Source: MACHINE DESIGN DATABOOK
CHAPTER
1 PROPERTIES OF ENGINEERING MATERIALS SYMBOLS5;6 a Aj Af A0 Ar Bhn d D E f" f F G HB lf lj l0 Q RB RC
area of cross section, m2 (in2 ) original area of cross section of test specimen, mm2 (in2 ) area of smallest cross section of test specimen under load Fj , m2 (in2 ) minimum area of cross section of test specimen at fracture, m2 (in2 ) original area of cross section of test specimen, m2 (in2 ) percent reduction in area that occurs in standard test specimen Brinell hardness number diameter of indentation, mm diameter of test specimen at necking, m (in) diameter of steel ball, mm modulus of elasticity or Young’s modulus, GPa [Mpsi (Mlb/in2 )] strain fringe (fri) value, mm/fri (min/fri) stress fringe value, kN/m fri (lbf/in fri) load (also with subscripts), kN (lbf) modulus of rigidity or torsional or shear modulus, GPa (Mpsi) Brinell hardness number final length of test specimen at fracture, mm (in) gauge length of test specimen corresponding to load Fj , mm (in) original gauge length of test specimen, mm (in) figure of merit, fri/m (fri/in) Rockwell B hardness number Rockwell C hardness number Poisson’s ratio normal stress, MPa (psi)
The units in parentheses are US Customary units [e.g., fps (foot-pounds-second)].
1.1 Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
PROPERTIES OF ENGINEERING MATERIALS
1.2
CHAPTER ONE
b c s t sf 0sf
transverse bending stress, MPa (psi) compressive stress, MPa (psi) strength, MPa (psi) tensile stress, MPa (psi) endurance limit, MPa (psi) endurance limit of rotating beam specimen or R R Moore endurance limit, MPa (psi) endurance limit for reversed axial loading, MPa (psi) endurance limit for reversed bending, MPa (psi) compressive strength, MPa (psi) tensile strength, MPa (psi) ultimate stress, MPa (psi) ultimate compressive stress, MPa (psi) ultimate tensile stress, MPt (psi) ultimate strength, MPA (psi) ultimate compressive strength, MPa (psi) ultimate tensile strength, MPa (psi) yield stress, MPa (psi) yield compressive stress, MPa (psi) yield tensile stress, MPa (psi) yield compressive strength, MPa (psi) yield tensile strength, MPa (psi) torsional (shear) stress, MPa (psi) shear strength, MPa (psi) ultimate shear stress, MPa (psi) ultimate shear strength, MPa (psi) yield shear stress, MPa (psi) yield shear strength, MPa (psi) torsional endurance limit, MPa (psi)
0sfa 0sfb sc su u uc ut su sb u suc sut y yc yt syc syt s u su y sy sf0
SUFFIXES a b c f s t u y
axial bending compressive endurance strength properties of material tensile ultimate yield
ABBREVIATIONS AISI ASA AMS ASM ASME ASTM BIS BSS DIN ISO
American Iron and Steel Institute American Standards Association Aerospace Materials Specifications American Society for Metals American Society of Mechanical Engineers American Society for Testing Materials Bureau of Indian Standards British Standard Specifications Deutsches Institut fu¨r Normung International Standards Organization
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
PROPERTIES OF ENGINEERING MATERIALS PROPERTIES OF ENGINEERING MATERIALS
SAE UNS
1.3
Society of Automotive Engineers Unified Numbering system
Note: and with subscript s designates strength properties of material used in the design which will be used and observed throughout this Machine Design Data Handbook. Other factors in performance or in special aspects are included from time to time in this chapter and, being applicable only in their immediate context, are not given at this stage.
Particular
Formula
For engineering stress-strain diagram for ductile steel, i.e., low carbon steel
Refer to Fig. 1-1
For engineering stress-strain diagram for brittle material such as cast steel or cast iron The nominal unit strain or engineering strain
Refer to Fig. 1-2
The numerical value of strength of a material
"¼
lf l0 l lf A0 Af ¼ ¼ 1¼ l0 l0 l0 A0
ð1-1Þ
where lf ¼ final gauge length of tension test specimen, l0 ¼ original gauge length of tension test specimen. F ð1-2Þ s ¼ A where subscript s stands for strength.
Point P is the proportionality limit. Y is the upper yield limit. E is the elastic limit. Y 0 is the lower yield point. U is the ultimate tensile strength point. R is the fracture or rupture strength point. R0 is the true fracture or rupture strength point.
FIGURE 1-1 Stress-strain diagram for ductile material. Subscript s stands for strength.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
PROPERTIES OF ENGINEERING MATERIALS
1.4
CHAPTER ONE
Particular
Formula
¼
The nominal stress or engineering stress
F A0
ð1-3Þ
where F ¼ applied load. F tru ¼ 0 ¼ Af
The true stress
Bridgeman’s equation for actual stress (act ) during r radius necking of a tensile test specimen
where Af ¼ actual area of cross section or instantaneous area of cross-section of specimen under load F at that instant. cal act ¼ ð1-5Þ 4r d ln 1 þ 1þ d 4r "tru ¼ "0 ¼
The true strain
l1 l2 þ l0 l0 þ l1 þ
¼ Integration of Eq. (1-6) yields the expression for true strain From Eq. (1-1) The relation between true strain and engineering strain after taking natural logarithm of both sides of Eq. (1-8)
"tru ¼ ln
l3 þ l0 þ l1 þ l2
ð lf
l0
lf l0
dli li
lf ¼1þ" l0 lf ln ¼ lnð1 þ "Þ or "tru ¼ lnð1 þ "Þ l0 " ¼ e"tru 1
Eq. (1-9) can be written as
ð1-4Þ
There is no necking at fracture for brittle material such as cast iron or low cast steel.
FIGURE 1-2 Stress-strain curve for a brittle material.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð1-6aÞ ð1-6bÞ ð1-7Þ ð1-8Þ ð1-9Þ ð1-10Þ
PROPERTIES OF ENGINEERING MATERIALS PROPERTIES OF ENGINEERING MATERIALS
Particular
Percent elongation in a standard tension test specimen Reduction in area that occurs in standard tension test specimen in case of ductile materials Percent reduction in area that occurs in standard tension test specimen in case of ductile materials For standard tensile test specimen subject to various loads
1.5
Formula
lf l0 ð100Þ l0 A0 Af Ar ¼ A0 A0 Af ð100Þ Ar100 ¼ A0 "100 ¼
ð1-11Þ ð1-12Þ ð1-13Þ
Refer to Fig. 1-3.
FIGURE 1-3 A standard tensile specimen subject to various loads.
The standard gauge length of tensile test specimen
pffiffiffi l0 ¼ 6:56 a
ð1-14Þ d02 df2
ð1-15Þ
lf d ¼ 2 ln 0 l0 df
ð1-16Þ
lf A 0 ¼ ¼ l0 A f
The volume of material of tensile test specimen remains constant during the plastic range which is verified by experiments and is given by
A0 l0 ¼ Af lf
Therefore the true strain from Eqs. (1-7) and (1-15)
"tru ¼ ln
The true strain at rupture, which is also known as the true fracture strain or ductility
where df ¼ minimum diameter in the gauge length lf of specimen under load at that instant, Ar ¼ minimum area of cross section of specimen under load at that instant. 1 "ftru ¼ ln ð1-17Þ 1 Ar
A0 Af
or
¼ ln
where Af is the area of cross-section of specimen at fracture.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
PROPERTIES OF ENGINEERING MATERIALS
1.6
CHAPTER ONE
Particular
Formula
Refer to Table 1-1A for values of "ftru of steel and aluminum. From Eqs. (1-9) and (1-16) Substituting Eq. (1-18) in Eq. (1-4) and using Eq. (1-3) the true stress From experimental results plotting true-stress versus true-strain, it was found that the equation for plastic stress-strain line, which is also called the strainstrengthening equation, the true stress is given by
A0 ¼1þ" Af
or Af ¼
A0 1þ"
ð1-18Þ
tru ¼ ð1 þ "Þ ¼ e"tru
ð1-19Þ
tru ¼ 0 "ntrup
ð1-20Þ
where 0 ¼ strength coefficient, n ¼ strain hardening or strain strengthening exponent, "trup ¼ true plastic strain. Refer to Table 1-1A for 0 and n values for steels and other materials.
The load at any point along the stress-strain curve (Fig 1-1)
F ¼ s A0
ð1-21Þ
The load-strain relation from Eqs. (1-20) and (1-2)
F ¼ 0 A0 "ntru e"tru
ð1-22Þ
Differentiating Eq. (1-22) and equating the results to zero yields the true strain equals to the strain hardening exponent which is the instability point
"u ¼ n
ð1-23Þ
The stress on the specimen which causes a given amount of cold work W
w ¼ 0 ð"w Þn ¼
The approximate yield strength of the previously cold-worked specimen
The approximate yield strength since A0w ¼ Aw
Fw Aw
ð1-24Þ
where Aw ¼ actual cross-sectional area of the specimen, Fw ¼ applied load. F ð1-25Þ ðsy Þw ¼ w0 Aw where Aw ¼ A0w ¼ the increased cross-sectional area of specimen because of the elastic recovery that occurs when the load is removed. F ð1-26Þ ðsy Þw ¼ w0 w Aw
By substituting Eq. (1-26) into Eq. (1-24)
ðsy Þw ¼ 0 ð"w Þn
The tensile strength of a cold worked material
ðsu Þw ¼
Fu A0w
ð1-27Þ ð1-28Þ
where Aw ¼ Au , Fu ¼ A0 ðsu Þ0 , su ¼ tensile strength of the original non-cold worked specimen, A0 ¼ original area of the specimen. The percent cold work associated with the deformation of the specimen from A0 to A0w
A0 A0w A A0w ð100Þ or w ¼ 0 A0 A0 W where w ¼ 100
W¼
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð1-29Þ
PROPERTIES OF ENGINEERING MATERIALS PROPERTIES OF ENGINEERING MATERIALS
Particular
For standard tensile specimen at stages of loading A0w is given by equation
Formula
A0w ¼ A0 ð1 wÞ
Eq. (1-31) can also be expressed as
ðsu Þ0 1w ðsu Þw ¼ ðsu Þ0 e"tru
The modulus of toughness
Valid for Aw Au or "w "u . ð "r Tm ¼ s d"
Expression for ðsu Þw after substituting Eq. (1-28)
1.7
ðsu Þw ¼
0
ð1-30Þ ð1-31Þ ð1-32Þ
ð1-33aÞ
s þ su ð1-34bÞ "r 2 where "r ¼ "u ¼ strain associated with incipient fracture.
HARDNESS The Vicker’s hardness number (HV ) or the diamond pyramid hardness number (Hp )
The Knoop hardness number
The Meyer hardness number, HM
2F sinð=2Þ 1:8544F ¼ ð1-35Þ d2 d2 where F ¼ load applied, kgf, ¼ face angle of the pyramid, 1368, d ¼ diagonal of the indentation, mm, HV in kgf/mm2 . F HK ¼ ð1-36Þ 0:07028d 2 where d ¼ length of long diagonal of the projected area of the indentation, mm, F ¼ load applied, kgf, 0:07028 ¼ a constant which depends on one of angles between the intersections of the four faces of a special rhombic-based pyramid industrial diamond indenter 172.58 and the other angle is 1308, HK in kgf/mm2 . HV ¼
HM ¼
4F d 2 =4
ð1-37Þ
where F ¼ applied load, kgf, d ¼ diameter of indentation, mm, HM in kgf/mm2 . The Brinell hardness number HB
HB ¼
2F pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi D½D D2 d 2
ð1-38Þ
where F in kgf, d and D in mm, HB in kgf/mm2 . The Meyer’s strain hardening equation for a given diameter of ball
F ¼ Ad p
ð1-39Þ
where F ¼ applied load on a spherical indenter, kgf, d ¼ diameter of indentation, mm, p ¼ Meyer strain-hardening exponent.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
PROPERTIES OF ENGINEERING MATERIALS
1.8
CHAPTER ONE
Particular
Formula
The relation between the diameter of indentation d and the load F according to Datsko1;2
F ¼ 18:8d 2:53
ð1-40Þ
The relation between Meyer strain-hardening exponent p in Eq. (1-39) and the strain-hardening exponent n in the tensile stress-strain Eq. ¼ 0 "n
p2¼n
ð1-41Þ
The ratio of the tensile strength (su ) of a material to its Brinell hardness number (HB ) as per experimental results conducted by Datsko1;2 For the plot of ratio of (su =HB Þ ¼ KB against the strain-strengthening exponent n (1)
where p ¼ 2.25 for both annealed pure aluminum and annealed 1020 steel, p ¼ 2 for low work hardening materials such as pH stainless steels and all cold rolled metals, p ¼ 2.53 experimentally determined value of 70-30 brass. su KB ¼ ð1-42Þ HB Refer to Fig. 1-4 for KB vs n for various ratios of ðd=DÞ.
FIGURE 1-4 Ratio of ðsu =HB Þ ¼ KB vs strain strengthening exponent n.
The relationship between the Brinell hardness number HB and Rockwell C number RC
RC ¼ 88HB0:162 192
The relationship between the Brinell hardness number HB and Rockwell B number RB
RB ¼
HB 47 0:0074HB þ 0:154
ð1-43Þ ð1-44Þ
Courtesy: Datsko, J., Materials in Design and Manufacture, J. Datsko Consultants, Ann Arbor, Michigan, 1978, and Standard Handbook of Machine Design, McGraw-Hill Book Company, New York, 1996.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
PROPERTIES OF ENGINEERING MATERIALS PROPERTIES OF ENGINEERING MATERIALS
Particular
1.9
Formula
The approximate relationship between ultimate tensile strength and Brinell hardness number of carbon and alloy steels which can be applied to steels with a Brinell hardness number between 200HB and 350HB only1;2
sut ¼ 3:45HB
The relationship between the minimum ultimate strength and the Brinell hardness number for steels as per ASTM
sut ¼ 3:10HB
The relationship between the minimum ultimate strength and the Brinell hardness number for cast iron as per ASTM
sut ¼ 1:58HB 86:2
The relationship between the minimum ultimate strength and the Brinell hardness number as per SAE minimum strength
sut ¼ 2:60HB 110
In case of stochastic results the relation between HB and sut for steel based on Eqs. (1-45a) and (1-45b)
sut ¼ ð3:45; 0:152ÞHB
In case of stochastic results the relation between HB and sut for cast iron based on Eqs. (1-47a) and (1-47b)
sut ¼ 1:58HB 62 þ ð0; 10:3Þ MPa
¼ 500HB
¼ 450HB
SI
ð1-45aÞ
USCS
ð1-45bÞ
SI
ð1-46aÞ
USCS
ð1-46bÞ
SI
ð1-47aÞ
USCS
ð1-47bÞ
SI
ð1-48aÞ
USCS
ð1-48bÞ
SI
ð1-49aÞ
USCS
ð1-49bÞ
MPa psi
MPa psi MPa
¼ 230HB 12500 psi MPa
¼ 237:5HB 16000 psi
¼ ð500; 22ÞHB
MPa
psi
SI
ð1-50aÞ
USCS
ð1-50bÞ
¼ 230HB 9000 þ ð0; 1500Þ psi
Relationships between hardness number and tensile strength of steel in SI and US Customary units [7]
Refer to Fig. 1.5.
The approximate relationship between ultimate shear stress and ultimate tensile strength for various materials
su ¼ 0:82sut
for wrought steel
ð1-51aÞ
su ¼ 0:90sut
for malleable iron
ð1-51bÞ
su ¼ 1:30sut
for cast iron
ð1-51cÞ
su ¼ 0:90sut
for copper and copper alloy ð1-51dÞ
su ¼ 0:65sut
for aluminum and aluminum alloys ð1-51eÞ
The tensile yield strength of stress-relieved (not coldworked) steels according to Datsko1;2
sy ¼ ð0:072sut 205Þ MPa
The equation for tensile yield strength of stressrelieved (not cold-worked) steels in terms of Brinell hardness number HB according to Datsko (2)
sy ¼ ð3:62HB 205Þ MPa
The approximate relationship between shear yield strength ðsy Þ and yield strength (tensile) sy
sy ¼ 0:55sy
¼ 1:05sut 30
kpi
¼ 525HB 30 kpi
SI
ð1-52aÞ
USCS
ð1-52bÞ
SI
ð1-53aÞ
USCS
ð1-53bÞ
for aluminum and aluminum alloys ð1-54aÞ
sy ¼ 0:58sy
for wrought steel
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð1-54bÞ
PROPERTIES OF ENGINEERING MATERIALS
1.10
CHAPTER ONE
Particular
The approximate relationship between endurance limit (also called fatigue limit) for reversed bending polished specimen based on 50 percent survival rate and ultimate strength for nonferrous and ferrous materials
Formula
For students’ use 0sfb ¼ 0:50sut
for wrought steel having sut < 1380 MPa ð200 kpsiÞ
ð1-55Þ
0sfb ¼ 690 MPa
for wrought steel having sut > 1380 MPa
ð1-56aÞ
0sfb ¼ 100 kpsi
for wrought steel having USCS sut > 200 kpsi
ð1-56bÞ
For practicing engineers’ use 0sfb ¼ 0:35sut
for wrought steel having sut < 1380 MPa ð200 kpsiÞ
ð1-57Þ
0sfb ¼ 550 MPa
for wrought steel having SI sut > 1380 MPa
ð1-58aÞ
for wrought steel having sut > 200 kpsi USCS
ð1-58bÞ
0sfb ¼ 80 kpsi 0sfb ¼ 0:45sut
for cast iron and cast steel when sut 600 MPa ð88 kpsiÞ ð1-59aÞ
0sfb ¼ 275 MPa
for cast iron and cast steel when sut > 600 MPa SI ð1-60aÞ
0sfb ¼ 40 kpsi
FIGURE 1-5 Conversion of hardness number to ultimate tensile strength of steel sut , MPa (kpsi). (Technical Editor Speaks, courtesy of International Nickel Co., Inc., 1943.)
for cast iron and cast steel when USCS ð1-60bÞ sut > 88 kpsi
0sfb ¼ 0:45sut
for copper-based alloys and nickel-based alloys
0sfb ¼ 0:36sut
for wrought aluminum alloys up to a tensile strength of 275 MPa (40 kpsi) based on 5 108 cycle life ð1-62Þ
0sfb ¼ 0:16sut
for cast aluminum alloys up to tensile strength of 300 MPa ð50 kpsiÞ based on 5 108 cycle life
0sfb ¼ 0:38sut
ð1-61Þ
ð1-63Þ
for magnesium casting alloys and magnesium wrought alloys ð1-64Þ based on 106 cyclic life
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
PROPERTIES OF ENGINEERING MATERIALS PROPERTIES OF ENGINEERING MATERIALS
Particular
The relationship between the endurance limit for reversed axial loading of a polished, unnotched specimen and the reversed bending for steel specimens The relationship between the torsional endurance limit and the reversed bending for reversed torsional tested polished unnotched specimens for various materials For additional information or data on properties of engineering materials
1.11
Formula
0sfa ¼ 0:850sfb ¼ 0:43sut
ð1-65Þ
sf0 ¼ 0:580sfb ¼ 0:29sut for steel
ð1-66aÞ
sf0
ð1-66bÞ
sf0
0:80sfb
0:480sfb
0:32sut for cast iron 0:22sut for copper
ð1-66cÞ
Refer to Tables 1-1 to 1-48
WOOD Specific gravity, Gm , of wood at a given moisture condition, m, is given by
Gm ¼
W0 Wm
ð1-67Þ
where W0 ¼ weight of the ovendry wood; N ðlbfÞ; Wm ¼ weight of water displaced by the sample at the given moisture condition, N (lbf ). weight of ovendry wood and the contained water volume of the piece at the same moisture content
The weight density of wood, D (unit weight) at any given moisture content
W¼
Equation for converting of weight density D1 from one moisture condition to another moisture condition D2
D2 ¼ D1
For typical properties of wood of clear material as per ASTM D 143
Refer to Table 1-47.
ð1-68Þ 100 þ M2 100 þ M1 þ 0:0135D1 ðM2 M1 Þ
ð1-69Þ
where D1 ¼ known weight density for same moisture condition M1 , kN/m2 (lbf/ft2 ), D2 ¼ desired weight density at a moisture condition M2 , kN/m2 (lbf/ft2 ). M1 and M2 are expressed in percent.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
PROPERTIES OF ENGINEERING MATERIALS
1.12
CHAPTER ONE
TABLE 1-1 Hardness conversion (approximate) Brinell 29.42 kN (3000 kgf ) load 10 mm ball
Rockwell hardness number
Diameter (mm)
Hardness number
Vickers or Firth hardness number
2.25 2.30 2.35 2.40 2.45 2.50 2.55 2.60 2.65 2.70 2.75 2.80 2.85 2.90 2.95 3.00 3.05 3.10 3.15 3.20 3.25 3.30 3.35 3.40 3.45 3.50 3 55 3.60 3.65 3.70 3.75 3.80 3.85 3.90 3.95 4.00 4.05 4.10 4.15 4.20 4.25 4.30 4.35 4.40
745 712 682 653 627 601 578 555 534 514 495 477 461 444 429 415 401 388 375 363 352 341 331 321 311 302 293 285 277 269 262 255 248 241 235 229 223 217 212 207 201 197 192 187
840 783 737 697 667 640 615 591 569 547 528 508 491 472 455 440 425 410 396 383 372 360 350 339 328 319 309 301 292 284 276 269 261 253 247 241 234 228 222 218 212 207 202 196
A scale 0.588 kN (60 kgf ) load 84 83 82 81 81 80 79 78 78 77 76 76 75 74 73 73 72 71 71 70 69 69 68 68 67 66 66 65 65 64 64 63 63 62 61 61
B scale 0.98 kN (100 kgf ) load
C scale 1.47 kN (150 kgf ) load
15-N scale 0.147 kN (15 kgf ) load
Shore Tensile strength, sut scleroscope approximate hardness number MPa kpsi
110 109 109 108 108 107 106 106 105 104 103 102 101 100 99 98 97 96 96 95 94 93 92 91
65 64 62 60 59 58 57 55 54 52 51 50 49 47 46 45 43 42 40 39 38 37 36 34 33 32 31 30 29 28 27 25 24 23 22 21 19 18 16 15 14 13 12 10
92 92 91 90 90 89 88 88 87 87 86 85 85 84 83 83 82 81 81 80 79 79 78 77 77 76 76 75 74 74 73 73 72 71 70 70
91 87 84 81 79 77 75 73 71 70 68 66 65 63 61 59 58 56 54 52 51 50 48 47 46 45 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29
2570 2455 2350 2275 2227 2192 2124 2020 1924 1834 1750 1675 1620 1532 1482 1434 1380 1338 12961255 1214 1172 1145 1103 1069 1042 1010 983 955 928 904 875 855 832 810 790 770 748 730 714 690 680 662 645
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
373 356 341 330 323 318 309 293 279 266 254 243 235 222 215 208 200 194 188 182 176 170 166 160 155 151 146 142 138 134 131 127 124 120 117 114 111 108 106 103 100 98 96 93
PROPERTIES OF ENGINEERING MATERIALS PROPERTIES OF ENGINEERING MATERIALS
1.13
TABLE 1-1 Hardness conversion (approximate) (Cont.) Brinell 29.42 kN (3000 kgf ) load 10 mm ball
Rockwell hardness number
Diameter (mm)
Hardness number
Vickers or Firth hardness number
4.45 4.50 4.55 4.60 4.65 470 4.80 4.90 5.00 5.10 5.20 5.30 5.40 5.50 5.60
183 179 174 170 167 163 156 149 143 137 131 126 121 116 111
192 188 182 178 175 171 163 156 150 143 137 132 127 122 117
A scale 0.588 kN (60 kgf ) load
B scale 0.98 kN (100 kgf ) load
C scale 1.47 kN (150 kgf ) load
90 89 88 87 86 85 83 81 79 76 74 72 70 68 65
9 8 7 5 4 3 1
15-N scale 0.147 kN (15 kgf ) load
Shore Tensile strength, sut scleroscope approximate hardness number MPa kpsi 28 27 26 25 24 23 22 21 20 19 18 17
631 617 600 585 576 562 538 514 493 472 451 435 417 400 383
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
91 89 87 85 83 81 78 74 71 68 65 63 60 58 55
290 125 90 80 108 225 410 430 260 410 150
Material
RQC-100a 1005-1009 1005-1009 1015 1020d 1045e 1045e 5160 9262 9262 950 931 414 345 414 441 724 1448 1669 924 1565 531 469 476 579
ST, SHg ST and RT ageh ST and AAi
MPa
HRb Plate CDc Sheet HR Sheet Normalized HR Plate Q and Tf Q and T Q and T Annealed Q and T HR Plate
Process/ Condition
68 69 84
135 60 50 60 64 105 210 242 134 227 77
kpsi
Ultimate strength, sut
379 303 469
883 400 262 228 262 634 1365 1531 455 1379 311
MPa
193 122 123 105 103 178 270 280 151 269 145 81 92 108
MPa
1331 841 848 724 710 1227 1862 1931 1041 1855 1000
Steel 128 58 38 33 38 92 198 222 66 200 48 Aluminum: 55 558 44 636 68 745
kpsi
Stress at fracture, f
kpsi
Yield strength, sy
25 35 33
67 64 80 68 62 65 51 42 14 32 72
%
Reduction in area, Af
0.28 0.43 0.41
1.02 1.02 1.60 1.14 0.96 1.04 0.72 0.87 0.16 0.38 1.24
"f
True strain at fracture
0.03 0.20 0.11
0.06 0.05 0.16 0.26 0.19 0.13 0.08 0.06 0.22 0.06 0.19
n
Strain harding exponent
131
903
66 117 120
107 166 302 308 253
738 1145 2082 2124 1744
455 807 827
170 76 77
kpsi
1172 524 531
MPa
Strength coefficient, 0
a Tradename, Bethlehem steel Corp. Rolled quenched and tempered carbon steel. Used in structural, heavy applications machinery. b Hot-rolled. c cold-rolled. d low carbon, common machining steels. e Bar stock, medium carbon high-strength machining steel. f Quenched and tempered. g Solution treated, strain hardened. h Solution treated and RT age. i Solution treated and artificially aged. Source: SAE j1099, Technical Report on Fatigue properties, 1975.
2024-T351 2024-T4 7075-T6
Brinell hardness HB
TABLE 1-1A Mechanical properties of some metallic materials
PROPERTIES OF ENGINEERING MATERIALS
1.14
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
25 mm (1 in) bar 25 mm (1 in) bar
4130 4340
Aged 4828C Aged 4828C Aged 4828C
876
CD 20% + s.r.2h (9008F WQ + (12008F) OQ + (1000 8F) OQ + (800 8F) 1540 1760 1980
814 1262 1531
517 621 805 965 634
586
455 620 710 790 448
Annealed HR CD 20% CD 50% Annealed
(12008F)
CD 0% CD 30% CD 60% CD 80% HR
Condition/Process MPa
225 256 288
118 183 200
127
75 90 117 140 92
85
66 90 102 115 65
kpsi
1480 1630 1920
703 1172 1379
696
352 414 670 855 365
441
275 585 605 660 331
215 237 279
102 170 200
101
51 60 97 124 53
64
40 85 88 96 48
MPa kpsi
724 1310 1517
MPa
105 190 220
kpsi
876 127 1007 146
MPa kpsi
752 855
241
427
269 296 370 410 365
296
240 315 350 365 241
MPa
690 690 760
490 109 669 124 469
35
MPa kpsi
100 100 110
71 97 68
62
d
39 43a 54d 60d 53
43
35d 46d 51d 53d 35d
kpsi
Fatigue limit, sf
207
204
GPa
30.0
29.6
Mpsi
Young’s modulus, E
81
79
83
11.7
11.4
12.0
110 75
100 68
55 62 50
64 52 47
31
57 50 44 25 40
70
70 62 54 26 59
Modulus of Fracture rigidity, G toughness, K IC Reduction in area GPa Mpsi GPa Mpsi A, %
0.80 0.97 0.69
1.02 0.73 0.63
0.37
0.84 0.69 0.58 0.33 0.51
1.20
1.20 0.97 0.78 0.30 0.89
True strain at fracture, "f
c
b
A description of the materials and typical uses follows the table. CD ¼ cold drawn (the percentage reduction in area); HR ¼ hot rolled; OQ ¼ oil quenched; WQ ¼ water quenched (temperature following is the tempering temperature); s:r: ¼ stress relieved. Smooth-specimen rotating-beam results, unless noted A (¼ axial). d 106 cycles. Source: Extracted from Kenneth S. Edwards, Jr, and Robert B. McKee, Fundamentals of Mechanical Component Design, McGraw-Hill, Inc., 1991, which is drawn from the Structural Alloys Handbook, published by the Metals and Ceramics Information Center, Battelle Memorial Institute, Columbus, Ohio, 1985.
a
18% Ni maraging 200 L plate 250 L plate 300 L plate
25 mm (1 in) bar
25 mm (1 in) bar or plate 25 mm (1 in) WQ bar or plate 25 mm (1 in) bar
1050
1040
1030
1020
Steel: 1016
Material Form
Ultimate Yield strength Shear (torsional) strength tensile strength, sut Tensile, syt Compressive, syc Ultimate, su Yield, sy
TABLE 1-1B Mechanical properties of some typical metallic materials
PROPERTIES OF ENGINEERING MATERIALS
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
1.15
PROPERTIES OF ENGINEERING MATERIALS
1.16
CHAPTER ONE
TABLE 1-2 Poisson’s ratio ðÞ Material
Material
Aluminium, cast Aluminium, drawn Beryllium copper Brass Brass, 30 Zn Cast steel Chromium Copper Douglas fir Ductile iron Glass Gray cast iron Iron, soft Iron, cast Inconel x Lead Magnesium Malleable cast iron
0.330 0.348 0.285 0.340 0.350 0.265 0.210 0.343 0.330 0.340–0.370 0.245 0.210–0.270 0.293 0.270 0.410 0.431 0.291 0.230
Molybdenum Monel metal Nickel, soft Nickel, hard Rubber Silver Steel, mild Steel, high carbon Steel, tool Steel, stainless (18-8) Tin Titanium Tungsten Vanadium Wrought iron Zinc
0.293 0.320–0.370 0.239 0.306 0.450–0.490 0.367 0.303 0.295 0.287 0.305 0.342 0.357 0.280 0.365 0.278 0.331
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
120
121
40
Automotive ASTMA602, SAE J158
ASTM A197 Perlite and martensite: ASTM A220 ANSI G48-2 MIL-1-11444B
Malleable cast iron: Ferrite ASTM A47-52, A338, ANSI G 48-1 FED QQ-1-66e
60
50
111
35
SAE 110
30
Gray cast iron ASTM class 20 25
b
Material, class, specification
365
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
517
621
M5503e
M7002e
724
517
M5003d
M8501
448
e
345
M4504d
414 448 448 448 483 517 552 552 586 655 724
40010 45008 45006 45010 50005 50007 60004 60003 70003 80002 90001 Grade M3210c
276
345
35018
105
90
75
75
65
50
60 65 65 65 70 75 80 80 85 95 105
40
53
50
62.5
431
Class or grade 32510
52.5
42.5
36.5
31
22 26
kpsi
362
293
252
214
152 179
MPa
Tension, sut
242 242 242 242
1670 1670 1670
220
208
187.5
164
140
124
109
83 97
kpsi
1670
1517
1434
1293
1130
965
855
752
572 669
MPa
Compression, suc
Ultimate strength
689
552
517
338
352
324
496
448
393
338
303
220 255
MPa
100
80
75
49
51
47
72
65
57
49
44
32 37
kpsi
Shear, su
610
503
393
334
276
179 220
MPa
88.5
73
57
48.5
40
26 32
kpsi
Torsional/ shear strength, s
TABLE 1-3 Mechanical properties of typical cast ferrous materialsa
586
483
379
345
310
224
276 310 310 310 345 345 414 414 483 552 621
207
241
220
MPa
85
70
55
50
45
32
40 45 45 45 50 50 60 60 70 80 90
30
35
32
kpsi
Yield strength, sy
276
270
255
220
214
193
169
148
128
110
97
69 79
MPa
40
39
37
32
31
28
24.5
21.5
18.5
16
14
10 11.5
kpsi
Endurance limit in reversed bending, sfb
269–302
229–269
187–241
187–241
163–217
156 max
149–197 156–197 156–207 185 179–229 204 197–241 226 217–269 241–285 269–321
156 max
156 max
156 max
302
262
235
212
210
156 174
186
186
183
180
172
172
141–162
130–157
27
27
26.5
26
25
25
20.4–23.5
18.8–22.8
16.0–20.0
14.5–17.2
13.0–16.4
9.6–14.0 11.5–14.8
Mpsi
Tension, E
110–138
10–119
90–113
66–97 79–102
Brinell hardness, HB GPa
160
160
160
160
172
172
GPa
27
23.2
23.2
23.2
25
25
Mpsi
Compression, E
Modulation of elasticity
Mpsi
54–59 7.8–8.5
50–55 7.2–8.0
44–54 6.4–7.8
40–48 5.8–6.9
36–45 5.2–6.6
27–39 3.9–5.6 32–41 4.6–6.0
GPa
Shear, G
1
2
3
3
4
10
10 8 6 10 5 7 4 3 3 2 1
5
18
10
Elongation in 50 mm (2 in), %
19
19
19
19
22
22
156
108
95
75 75
J
14
14
14
14
16.5
16.5
115
80
70
55 55
ft-lbf
Impact strength (Charpy)
Steering gear housing, mounting brackets Compressor crankshafts and hubs Parts requiring selective hardening, as gears For machinability and improved induction hardening Connecting rods, universal joint yokes Gears with high strength and good wear resistance
General engineering service at normal and elevated temperatures
General purpose at normal and elevated temperature, good machinability, excellent shock resistance. Pipe flanges, valve parts
Soft iron castings Cylinder blocks and heads, housing Flywheels, brake drums and clutch plates Heavy-duty brake drums, clutch plates Cam shafts, cylinder liners Special high-strength castings Special high-strength castings
Typical application
PROPERTIES OF ENGINEERING MATERIALS
1.17
1.18
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
g
f
e
d
c
b
a
24–45 30–90 25–45 20–45 34–90 60–100 55–60 58–65 16 35–55
60 65 80 100
141.3
110
81.1
67.3
90–150 100 100–160 70–100
133.5
220.0
56.0
52.5
52.0
kpsi
1240–1380 180–200
620–1040 690 690–1100 480–690
920
1515
386
362
359
MPa
Compression, suc
875
504
475
472
126.9
73.1
68.9
68.5
MPa kpsi
Shear, su MPa kpsi
Torsional/ shear strength, s
40 45 55 70
125.3
72.5
52.5
48.2
47.7
60
40
kpsi
193–241 28–35
276 310 379 483
864
500
362
332
329
414
276
MPa
Yield strength, sy
434
379
345
241
MPa
63
55
50
35
kpsi
Endurance limit in reversed bending, sfb
Source: Compiled from AMS Metals Handbook, American Society for Metals, Metals Park, Ohio, 1988. Minimum values of u in MPa (kpsi) are given by class number. Annealed. Air-quenched and tempered. Liquid-quenched and tempered. Heat-treated and average mechanical properties. Calculated from tensile modulus and Poisson’s ratio in tension.
170–310 210–620 170–310 140–310 235–620 415–690 380–415 400–450 110 241–380
414 448 552 689
974
758
F34800
F36200
559
464
F33100
F33800
461
F32800
66.9
80
552
F34100
kpsi
60
MPa
UNS No. F32800 414
Alloy cast irons Medium-silicon gray iron High chromium gray iron High nickel gray iron Ni-Cr-Si gray iron High-aluminum gray iron Medium-silicon ductile iron High-nickel ductile iron (20Ni) High-nickel ductile iron (23Ni) Durion Mechanite
SAE j 434C
120-9002h D4018 D4512 D5506 D7003
80–55– 06h 100-7003h
Nodular (ductile) cast iron Grade 60-40-18 ASTM A395-76 ASME SA 395 80-60-03 ASTM A476-70(d) SAE AMS5316 ASTM 60-40-18h A536-72 MIL-I-11466 B(MR) 65-45-12h
Material, class, specification
Tension, sut
Ultimate strength
TABLE 1-3 Mechanical properties of typical cast ferrous materialsa (Cont.)
170–250 250–500 130–250 110–210 180–350 140–300 140–200 130–170 520 190
170 max 156–217 187–255 241–302
332
257
192
167
167–178
201 min
143–187
158 83
164
162
168
168
169
Brinell hardness, HB GPa
23 12
23.8
23.5
24.4
24.4
24.5
Mpsi
Tension, E
164
165
163
164
GPa
23.8
23.9
23.6
23.8
Mpsi
Compression, E
Typical application
9.0–9.3g 11.2
62–64g
10
18 12 6 3
63.5–64g 9.2–9.3g 1.5
6-10
9.3–9.4g 15
64–65g
3
15–23 20–35 60–150 80–150 5–115 12 28 3
20–31 27–47 80–200 110–200 7–155 16 38 4
Pressurecontaining parts such as valve and pump bodies Machine components subjected to shock and fatigue loads Crankshafts, gears and rollers High-strength gears and machine components Pinions, gears, rollers and slides Steering knuckles Disk brake calipers Crankshafts Gears
ft-lbf
Impact strength (Charpy)
63–65.5g 9.1–9.5g 15
Elongation in 50 mm (2 in), % J
Valves and fittings for steam and chemical plant equipment Paper-mill dryer rollers
Mpsi
Shear, G
18
GPa
Modulation of elasticity
PROPERTIES OF ENGINEERING MATERIALS
37.7 10.6 24.5
43.5 12.2 28.3
50.8 14.2 33.1
58.0 16.2 37.7
FG 260 260 73c 169d
FG 300 300 84c 195d
FG 350 350 98c 228d
FG 400 400 112c 260d
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
174.1 32.5 75.4
156.6 28.4 66.0
139.2 24.4 56.6
125.3 21.2 49.0
111.4 17.8 41.5
104.4 16.2 37.7
87.0 12.2 15.2
kpsi
460
403
345
299
253
230
173
MPa
66.7
58.5
50.0
43.4
36.7
33.4
25.1
kpsi
Shear strength, s kpsi 9.9 9.9 13.1 12.6 14.4 13.6 17.0 15.7 19.6 18.4 21.6 18.7 2.0 18.4
MPa 68e 68f 90e 87f 99e 94f 117e 108f 135e 127f 149e 129f 152e 127f
Fatigue limit, sf
145
140
135
128
120
114
100
GPa
21.0
20.3
19.6
18.6
17.4
16.5
14.5
Mpsi
Tension
145
140
135
128
120
114
100
GPa
21.0
20.3
19.6
18.6
17.4
16.5
14.5
Mpsi
Compression
58
56
54
51
48
46
40
GPa
8.4
8.1
7.8
7.4
7.0
6.7
5.8
Mpsi
Modulus of rigidity, G
320a 400b
280a 250b
240a 300b
208a 260b
176a 120b
160a 200b
120a 150b
MPa
46.4 58.0
40.6 50.8
34.8 43.5
30.2 37.7
25.5 32.0
23.2 29.0
17.4 21.8
kpsi
Notched tensile strength, snt
0.28
0.25
0.22
0.20
0.18
0.17
0.15
Elastic strain at failure, % Brinell hardness HB
0.50g
0.50g
0.50g
0.57g
207–270
207–241
180–230
180–230
0.39–0.63g 180–220
0.48–0.67g 160–220
0.6–0.75g 130–180
Total elastic strain at fracture, %
0.26
0.26
0.26
0.26
0.26
0.26
0.26
7300
7300
7250
7200
7150
7100
7050
455.7
455.7
452.6
449.5
446.4
443.3
440.1
11.0
11.0
11.0
11.0
11.0
11.0
11.0
6.1
6.1
6.1
6.1
6.1
6.1
6.1
0.460
0.460
0.460
0.460
0.420
0.375
26.5
0.1089
0.1089
0.1098
0.1098
0.1003
0.0896
0.0640
Specific heat capacity at 20 to 2008C, c
Poisson’s Density, ratio, kg/m3 lbm /ft3 mm/mK min/in8F kJ/kg K Btu/lbm 8F
Coefficient of the thermal expansion, , 20 to 2008C
44.0
45.7
47.4
48.8
50.1
50.8
52.5
7.75
8.05
8.35
8.59
8.82
8.95
9.25
W/m2 K Btu/ft2 h8F
Thermal conductivity at 1008C, K
Note: The typical properties given in this table are the properties in a 30 mm (1.2 in) diameter separately cast test bar or in a casting section correctly represented by this size of test bar, where the tensile strength does not correspond to that given. Other properties may differ slightly from those given. Source: IS (Indian Standards) 210, 1993.
h
g
f
e
d
c
b
1200 224 520
1080 196 455
960 168 390
864 146 338
768 123 286
720 112 260
600 84 195
MPa
Compressive strength, sc
Modulus of elasticity, E
Circumferential 458 notch-root radius 0.25 mm (0.04 in), notch depth 2.5 mm (0.4 in), root diameter 20 mm (0.8 in), notch depth 3.3 mm (0.132 in), notch diameter 7.6 mm (0.36 in). Circumferential notch radius 9.5 mm (0.38 in), notch depth 2.5 mm (0.4 in), notch diameter 20 mm (0.8 in). 0.01% proof stress. 0.1% proof stress. Unnotched 8.4 mm (0.336 in) diameter. V-notched [circumferential 458 V-notch with 0.25 mm (0.04 in) root radius, diameter at notch 8.4 mm (0.336 in), depth of notch 3.4 mm (0.135 in)]. Values depend on the composition of iron. Poisson’s ratio ¼ 0:26.
32.0 9.0 20.7
FG 220 220 62e 143d
a
29.0 8.1 18.8
FG 200 200 56c 130d
kpsi
21.8 6.0 14.2
MPa
FG 150 150 42c 98d
Grade
Tensile strength, st
TABLE 1-4 Typical mechanical properties of gray cast iron
PROPERTIES OF ENGINEERING MATERIALS
1.19
30–60 61–200 30–60 61–200 30–60 61–200 30–60 61–200 30–60 61–200 30–60 61–200
mm
1.20
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
550 362 318 286 272 253 216 216 181
SG 900/2 SG 800/2 SG 700/2 SG 600/2 SG 500/7 SG 450/10 SG 400/15 SG 400/18 SG 350/22
79.8 52.5 46.1 41.5 39.5 36.7 31.3 31.3 31.3
kpsi
MPa
810 720 630 540 45 405 360 360 315
7150 7200 7200 7170 7100 7100 7100 7100 7100
kg/m3
117.5 107.4 91.4 78.3 65.3 58.7 52.2 52.2 45.7
kpsi
Shear strength, sc
1.2–2.4 2.44–8.0 1.2–2.4 2.44–8.0 1.2–2.4 2.44–8.0 1.2–2.4 2.44–8.0 1.2–2.4 2.44–8.0 1.2–2.4 2.44–8.0
in
317 304 280 248 224 210 195 195 180
MPa
46.0 44.1 40.6 35.0 32.5 30.5 28.3 28.3 26.1
kpsi
Fatigue limit, sc
446.4 449.5 449.5 447.6 443.3 443.3 443.3 443.3 443.3
lbm /ft3
Density
0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275
67.1 68.6 86.6 67.9 65.9 65.9 65.9 65.9 65.9
GPa
Poisson’s ratio, kpsi
MPa
kpsi
0.2% Proof stress, sy min
9.73 9.95 9.95 9.85 9.56 9.56 9.56 9.86 9.56
Mpsi
Modulus of, Elasticity E
169 169 169 169 169 174 176 176 169
Ten
GPa
169 169 169 169 169 174 176 176 169
Com
24.5 24.5 24.5 24.5 24.5 25.2 25.2 25.2 24.5
Ten
24.5 24.5 24.5 24.5 24.5 25.2 25.2 25.2 24.5
MPsi Com
Modulus of rigidity, G
11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0
lm/m K
Measured on test pieces from cast-on test samples 700 101.5 400 58.0 2 650 94.3 380 55.1 1 600 87.0 360 52.2 2 550 79.8 340 49.3 1 450 65.3 300 43.5 7 420 61.0 290 42.0 5 390 56.6 250 36.3 15 370 53.7 240 34.8 12 390 56.6 250 36.4 15 370 53.7 240 34.8 12 330 47.9 2231.9 18 320 46.4 210 30.6 15 150
130–180
130–180
170–240
180–270
220–320
280–360 245–335 225–305 190–270 160–240 160–210 130–180 130–180 150
Brinell hardness, HB
14 12b 17b 15b
b
10.3 (8.1) 8.8 (6.6) 12.5 (10.3) 11.1 (8.8)
0.461 0.461 0.461 0.461 0.461 0.461 0.461 0.461 0.461
0.1101 0.1101 0.1101 0.1101 0.1101 0.1101 0.1101 0.1101 0.1101
Btu/lbm 8F
Specific heat, c at 208 to 2008C kJ/kg K
(11) (9)c (14)c (12)c
c
33.5 31.40 31.40 32.80 35.50 36.5 36.5 36.5 36.5
W/m2 K
5.90 5.53 5.53 5.72 6.25 6.43 6.43 6.43 6.43
Btu/ft2 h8F
Thermal conductivity, at 1008C
Ferrite
Ferrite
Ferrite
Ferrite + pearlite
Ferrite + pearlite
Pearlite
Ferrite
Ferrite
Pearlite Pearlite Ferrite and pearlite Ferrite and pearlite
Predominant structural constituent
Mean value from 3 tests on V-notch test pieces at ambient
6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1
lin/in 8F at 208 to 2008C
b
6.6 (3.2) 12.5 (11.0) 10.3 (8.1) 12.5 (10.3)
ft-lbf
Impact values min (23 58C)
9.0b (4.3)c 17.0b (15.0)c 14.0b (11.0)c 17.0b (14.0)c
J
Thermal coefficient of linear expansion,
Elongationa %, min
Measured on test pieces from separately cast test samples 900 130.5 600 87.0 2 800 116.0 480 69.6 2 700 101.5 420 61.0 2 600 87.0 370 53.7 2 500 72.5 320 46.4 7 450 65.3 310 45.0 10 400 58.0 250 36.3 15 400 58.0 250 36.6 18 350 50.8 220 32.0 22
MPa
Tensile strength, st min
a Elongation is measured on an initial gauge length L ¼ 5d where d is the diameter of the gauge length of the test pieces. c Individual value. temperature. Source: IS 1865, 1991.
MPa
Compression strength, sc
Grade
SG 350/22A
SG 400/18A
SG 400/15A
SG 500/7A
SG 600/3A
SG 700/2A
SG 900/2 SG 800/2 SG 700/2 SG 600/2 SG 500/7 SG 450/10 SG 400/15 SG 400/18 SG 350/22
Grade
Typical casting thickness
TABLE 1-5 Mechanical properties of spheroidal or nodular graphite cast iron
PROPERTIES OF ENGINEERING MATERIALS
3.0 3.0 3.0 3.0 3.0 2.6 2.6 2.6 2.6 2.4 2.4
ASG Ni 13 Mn 7 ASG Ni 20 Cr 2 ASG Ni 20 Cr 3 ASG Ni 20 Si 5 Cr 2 ASG Ni 22 ASG Ni 23 Mn 4 ASG Ni 30 Cr 1 ASG Ni 30 Cr 3 ASG Ni 30 Si 5 Cr 5 ASG Ni 35 ASG Ni 35 Cr 3
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
140–150 112–130
112–133 112–133
85–112 120–140 112–130 92–105 91
112–140 112–123
ASG Ni 13 Mn 7 ASG Ni 20 Cr 2
ASG Ni 20 Cr 3 ASG Ni 20 Si 5 Cr 2
ASG Ni 22 ASG Ni 23 Mn 4 ASG Ni 30 Cr 1 ASG Ni 30 Cr 3 ASG Ni 30 Si 5 Cr 5
ASG Ni 35 ASG Ni 35 Cr 3
16.2–20.3 16.2–17.8
12.3–16.2 17.4–20.3 16.2–18.9 13.3–15.2 13.2
16.2–19.3 16.2–19.3
20.3–21.8 16.2–18.9
Mpsi
12.0–14.0 18.0–22.0 18.0–22.0 18.0–22.0 21.0–24.0 22.0–24.0 28.0–32.0 28.0–32.0 28.0–32.0 34.0–36.0 34.0–36.0
Ni
Thermal coefficient of linear expansion,
6.0–7.0 0.5–1.5 0.5–1.5 0.5–1.5 1.5–2.5 4.0–4.5 0.5–1.5 0.5–1.5 0.5–1.5 0.5–1.5 0.5–1.5
Mn
5 5
18.4 14.7 12.6 12.6 14.4
18.7 18.0
18.2 18.7
2.8 2.8
10.2 8.2 7.0 7.0 8.0
10.4 10.0
10.1 10.4
lm/m K lin/in 8F at 20 to 2008C
2.0–3.0 1.5–3.0 1.5–3.0 4.5–5.5 1.0–3.0 1.5–2.5 1.5–3.0 1.5–3.0 5.0–6.0 1.5–3.0 1.5–3.0
Si 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080
0.3 1.0–2.5 2.5–3.5 1.0–2.5 <0.5 <0.2 1.0–1.5 2.5–3.5 4.5–5.5 0.2 2.0–3.0
W/m2 K
12.6 12.6
12.6 12.6 12.6 12.6 12.6
12.6 12.6
12.6 12.6
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
Cumax
2.22 2.22
2.22 2.22 2.22 2.22 2.22
2.22 2.22
2.22 2.22
Btu/ft2 h8F
Thermal conductivity, K
Pmax
Cr 455.7 462.0 462.0 462.0 462.0 462.0 462.0 462.0 462.0 474.5 474.5
lbm /ft3 390–460 370–470 390–490 370–430 370–440 440–470 370–440 370–470 390–490 370–410 370–440
MPa 56.6–66.7 53.7–68.2 56.6–71.1 53.7–62.4 53.7–63.8 63.6–68.2 53.7–62.4 53.7–68.2 56.6–70.5 53.7–59.5 53.7–63.8
kpsi
Tensile strength, st min
30.5–37.7 30.5–36.3 30.5–37.7 30.5–37.7 24.7–36.3 30.5–34.8 30.5–39.2 30.5–37.7 34.8–45.0 30.5–34.8 30.5–42.1
kpsi 15–25 7–20 7–15 10–18 20–40 25–45 13–18 7–18 1–4 20–40 7–10
Elongationb %, min
Properties and applications
210–260 210–250 210–260 210–260 170–250 210–240 210–270 210–260 240–310 210–240 210–290
MPa
0.2% proof stress, sy min
130–170 140–200 150–255 180–230 130–170 150–180 130–190 140–200 110–250 130–180 140–190
15.0–27.5 13.5–27.5 12.0 14.9 20.0–33.0 24.0 17.0 8.5 3.9–5.9 20.5 7.0
11.1–20.3 10.0–20.3 8.9 11.0 14.8–24.3 17.7 8.1 6.3 2.9–4.4 15.1 5.2
Brinell Impact valuesd , min hardness, HB J ft-lb
Non-magnetic. Hence used as pressure covers for turbine generator sets, housing for insulators, flanges and switch gears. Corrosion and heat resistance. Used in pumps, valves, compressor exhaust gas manifolds, turbo-supercharger housings and bushings. Good resistance to corrosion. Used in valves, pump components and components subject to high pressure. High value of linear expansion and non-magnetic. Used for pumps, valves, compressor and exhaust gas manifold and turbocharge housings. High impact properties up to 1968C and non-magnetic. Used in castings for refrigerators, etc. Good bearing properties. Used in exhaust manifolds and pumps, valves and turbocharger gas housing. Used in boiler pumps, valves, filter parts and exhaust gas manifolds. Used in pump components, valves, etc. Power lower linear coefficient of expansion. Used in machine tool parts, scientific instruments, glass molds, and parts requiring dimensional stability. Possess lower linear thermal expansion. Used in gas turbine housings and glass molds.
7300 7400 7400 7400 7400 7400 7400 7400 7400 7600 7600
kg/m3
Density
b
Unless otherwise specified, other elements may be present at the discretion of the manufacturer, provided they do not alter the micro-structure substantially, or affect the property adversely. Elongation is measured on an initial gauge length L ¼ 5d where d is the diameter of the gauge length of the test pieces. c Measured on test pieces machined from separately cast test samples. d Mean value from 3 tests on V-notch test pieces at ambient temperature. Source: IS 2749, 1974.
a
GPa
Grade
Modulus of elasticity E
Cmax
Grade
Chemical compositiona , %
TABLE 1-5A Chemical compositiona and mechanical propertiesc of spheroidal graphite austenitic cast iron
PROPERTIES OF ENGINEERING MATERIALS
1.21
1.5–3.0 1.0–2.8 1.0–2.8 1.0–2.8 1.0–2.8 4.5–5.5 1.0–2.0 5.0–6.0 1.0–2.0
3.0 3.0 3.0 3.0 3.0 2.5 2.5 2.5 2.4
AFG Ni 13 Mn 7 AFG Ni 15 Cu 6 Cr 2 AFG Ni 15 Cu 6 Cr 3 AFG Ni 20 Cr 2 AFG Ni 20 Cr 3 AFG Ni 20 Si 5 Cr 3 AFG Ni 30 Cr 3 AFG Ni 30 Si 5 Cr 5 AFG Ni 35
12.4 14.6 5.0
AFG Ni 30 Cr 3 AFG Ni 30 Si 5 Cr 5 AFG Ni 35
6.9 8.1 2.8
460–500 460–500 460–500
460–500 460–500 460–500 460–500 460–500 460–500
0.11–0.12 0.11–0.12 0.11–0.12
0.11–0.12 0.11–0.12 0.11–0.12 0.11–0.12 0.11–0.12 0.11–0.12
Btu/lbm 8F
7300 7300 7300 7300 7300 7300 7300 7300 7300
kg/m3
37.7–41.9 37.7–41.9 37.7–41.9
37.7–41.9 37.7–41.9 37.7–41.9 37.7–41.9 37.7–41.9 37.7–41.9
W/m2 K
6.64–7.38 6.64–7.38 6.64–7.38
6.64–7.38 6.64–7.38 6.64–7.38 6.64–7.38 6.64–7.38 6.64–7.38
Btu/ft2 h8F
Thermal conductivity, K
0.5 5.5–7.5 5.5–7.5 0.5 0.5 0.5 0.5 0.5 0.5
Cu 140–220 170–210 190–240 170–210 190–240 190–280 190–240 170–240 120–180
MPa 20.3–32.0 24.7–30.5 27.6–34.8 24.7–30.5 27.6–34.8 27.6–40.6 27.6–34.8 27.4–34.8 17.4–26.1
kpsi
Tensile strength, st min
– 2 1–2 2–3 1–2 2–3 1–3 – 1–3
Elongation %, min 630–840 700–840 860–1100 700–840 860–1100 860–1100 700–910 560 560–700
MPa 91.4–121.8 101.5–121.8 124.7–159.5 101.5–121.8 124.7–159.5 124.7–159.5 101.5–132.0 81.2 81.2–101.5
kpsi
Ultimate compressive strength, sut
Properties and applications
120–150 140–200 150–250 120–215 160–250 140–250 120–215 150–210 120–140
Brinell hardness, HB
70–90 85–105 98–113 85–105 98–113 110 98–113 105 74
GPa
10.2–13.1 12.3–15.2 14.2–16.4 12.3–15.2 14.2–16.4 16.0 14.2–15.2 15.2 10.7
Mpsi
Modulus of elasticity, E
Non-magnetic. Used in pressure covers for turbine generator sets, housing for switch gears and terminals, and ducts. Resistance to corrosion, erosion, and heat. Good bearing properties. Used for pumps, valves, piston ring covers for pistons, furnace components, bushings. Possess high coefficient of thermal expansion, resistance to corrosion and erosion. Used for pumps handling alkalis. Used in soap, food and plastic industries. Resistance to erosion, corrosion, heat. Used in high temperature application. Not suitable between 500 and 6008C. Resistance to thermal shock and heat, corrosion at high temperature. Used in pumps, pressure vessels, valves, filters, exhaust gas manifolds, turbine housings. Resistance to erosion, corrosion, and heat. Possess average thermal expansion. Used in components for industrial furnaces, valves, and pump components. Possess low thermal expansion and resistant to thermal shock. Used for scientific instruments, glass molds and in such other parts where dimensional stability is required
455.7 455.7 455.7 455.7 455.7 455.7 455.7 455.7 455.7
lbm /ft3
Density
1.22
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
b
Unless otherwise specified other elements may be present at the discretion of the manufacturer, provided they do not alter the microstructure substantially, or affect the properties adversely. Measured on test pieces machined from separately cast test pieces/samples. Source: IS 2749, 1974.
a
17.7 18.7 18.7 18.7 18.7 18.0
AFG Ni 13 Mn 7 AFG Ni 15 Cu 6 Cr 2 AFG Ni 15 Cu 6 Cr 3 AFG Ni 20 Cr 2 AFG Ni 20 Cr 3 AFG Ni 20 Si 5 Cr 3
9.3 10.4 10.4 10.4 10.4 10.0
lm/m K lin/in 8F at 20 to 2008C
Grade
0.2 1.0–2.5 2.5–3.5 1.0–2.5 2.5–3.5 1.5–4.5 2.5–3.5 4.5–5.5 0.2
Cr
Specific hear, c
12.0–14.0 13.5–17.5 13.5–17.5 18.0–22.0 18.0–22.0 18.0–22.0 28.0–32.0 29.0–32.0 34.0–36.0
Ni
J/kg K
6.0–7.0 0.5–1.5 0.5–1.5 0.5–1.5 0.5–1.5 0.5–1.5 0.5–1.5 0.5–1.5 0.5–1.5
Mn
Thermal coefficient of linear expansion,
Si
C
Grade
Chemical composition, %
TABLE 1-5B Chemical compositiona and mechanical propertiesb of flake graphite austenitic cast iron
PROPERTIES OF ENGINEERING MATERIALS
(C 07) (C 10y) (C 14y) (C 15) (C 15 Mn 75) (C 20) (C 25) (C 25 Mn 75+) (C 30+) (C 35) (C 35 Mn 75+) (C 40+) (C 45+) (C 50+) (C 50 Mn 1) (C 55 Mn 75+) (C 60) (C 65)
7C4 10 C 4 14 C 6 15 C 4 15 C 8 20 C 8 25 C 4 25 C 8 30 C 8 35 C 4 35 C 8 40 C 8 45 C 8 50 C 4 50 C 12 55 C 8 60 C 4 65 C 6
0.12 max 0.15 max 0.10–0.18 0.20 max 0.10–0.20 0.15–0.25 0.20–0.30 0.20–0.30 0.25–0.35 0.30–0.40 0.30–0.40 0.35–0.45 0.40–0.50 0.45–0.55 0.45–0.55 0.50–0.60 0.55–0.65 0.60–0.70
%C 0.50 max 0.30–0.60 0.40–0.70 0.30–0.60 0.60–0.90 0.60–0.90 0.30–0.60 0.60–0.90 0.60–0.90 0.30–0.60 0.60–0.90 0.60–0.90 0.60–0.90 0.60–0.90 1.10–1.40 0.60–0.90 0.50–0.80 0.50–0.80
% Mn 320–400 340–420 370–450 370–490 420–500 440–520 440–540 470–570 500–600 520–620 550–650 580–680 630–710 660–780 720 min 720 min 750 min 750 min
MPa 46.5–58.0 49.4–70.0 53.6–65.0 53.6–71.0 61.0–72.5 63.5–75.4 63.5–78.3 68.2–82.7 72.5–87.0 75.4–90.0 79.8–94.3 84.1–98.7 91.4–103.0 95.7–113.1 104.4 min 104.4 min 108.8 min 108.8 min
kpsi
Tensile strength, st
Notes: a , area of cross section; y steel for hardening; + steel for hardening and tempering; Mn 75 ¼ average content of Mn is 0.75%. Source: IS 1570, 1979.
Old
New
Designation
TABLE 1-6 Carbon steels with specified chemical composition and related mechanical properties
27 26 26 25 25 24 23 22 21 20 20 18 15 13 11 13 11 10
Elongation, % (gauge length pffiffiffiffi ffi 5.56 a round test piece)
40.6 40.6
40.6 40.6 30.5 30.5
55 55 41.35 41.35
ft-lbf
55 55
J
Izod impact value, min (if specified)
PROPERTIES OF ENGINEERING MATERIALS
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
1.23
(10 S 11) (14 Mn 1 S 14) (25 Mn 1 S 14) (40 S 18) (11 S 25) (40 Mn 2 S 12)
10 14 25 40 11 40
0.15 max 0.10–0.18 0.20–0.30 0.35–0.45 0.08–0.15 0.35–0.45
%C 0.05–0.30 0.05–0.30 0.25 max 0.25 max 0.10 max 0.25 max
% Si 0.60–0.90 1.20–1.50 1.00–1.50 0.80–1.20 0.80–1.20 1.30–1.70
% Mn 0.08–0.13 0.10–0.18 0.10–0.18 0.14–0.22 0.20–0.30 0.08–0.15
%S 0.060 0.060 0.060 0.060 0.060 0.060
370–490* 440–540 500–600* 550–650* 370–490* 600–700*
%P (max) MPa
53.7–71.0 63.8–78.3 72.5–87.0 79.8–94.0 53.7–71.0 87.0–101.5
kpsi
Tensile strength, st
24* 22* 20* 17* 22* 15*
Minimum elongation, % (gauge length pffiffiffiffiffiffi ffi 5.65 a )
40.6
30.2 35.4
55
41 48
100 (4.0)
60 (2.4)
30 (1.2) 30 (1.2)
Izod impact value, Limiting min (if specified) ruling section, J ft-lbf mm (in)
Notes: a , area of cross section; , steel for case hardening. Minimum values of yield stress may be required in certain specifications, and in such case a minimum yield stress of 55 percent of minimum tensile strength should be satisfactory. Source: IS 1570, 1979.
C 8 S 10 C 14 S 14 C 12 S 14 C 10 S 18 C 10 S 25 C 15 S 12
Old
New
Designation
TABLE 1-7 Carbon and carbon - manganese free - cutting steels with specified chemical composition and related mechanical properties
PROPERTIES OF ENGINEERING MATERIALS
1.24
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
UNS no.
G10100
G10150
G10200
G10300
G10400
G10500
G10600
G10950
G11170
G11440
G13400
AISIa no.
1010
1015
1020
1030
1040
1050
1060
1095
1117
1144
1340
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
Normalized Annealed
As-rolled Normalized Annealed
As-rolled Normalized Annealed
As-rolled Normalized Annealed
As-rolled Normalized Annealed
As-rolled Normalized Annealed
As-rolled Normalized Annealed
As-rolled Normalized Annealed
As-rolled Normalized Annealed
As rolled Normalized Annealed
Hot-rolled Cold-drawn
Treatment
870 800
900 790
900 825
900 790
900 790
900 790
900 790
925 845
870 870
– 925 870
8C
1600 1475
1650 1450
1650 1575
1650 1450
1650 1450
1650 1450
1650 1450
1700 1550
1600 1600
– 1700 1600
8F
Austenitizing temperature
TABLE 1-8 Mechanical properties of selected carbon and alloy steels
836.3 703.3
703.3 667.4 584.7
486.8 467.1 429.5
965.3 1013.5 656.7
813.7 775.7 625.7
723.9 748.1 636.0
620.5 589.5 518.8
551.6 520.0 463.7
448.2 441.3 394.7
420.6 424.0 386.1
320 370
MPa
121.3 102.0
102.0 96.8 84.8
70.6 67.8 62.3
140.0 147.0 95.3
118.0 112.5 90.8
105.0 108.5 92.3
90.0 85.5 75.3
80.0 75.5 67.3
65.0 64.0 57.3
61.0 61.5 56.0
47 53
kpsi
Tensile strength, st
558.5 436.4
420.6 399.9 346.8
305.4 303.4 279.2
572.3 499.9 379.2
482.6 420.6 372.3
413.7 427.5 365.4
413.7 374.0 353.4
344.7 344.7 341.3
330.9 346.5 294.8
313.7 324.1 284.4
180 300
MPa
81.0 63.3
61.0 58.0 50.3
44.3 44.0 40.5
83.0 72.5 55.0
70.0 61.0 54.0
60.0 62.0 53.0
60.0 54.3 51.3
50.0 50.0 49.5
48.0 50.3 42.3
45.5 47.0 41.3
26 44
kpsi
Yield strength, sy
22.0 25.5
21.0 21.0 24.8
33.0 33.5 32.8
9.0 9.5 13.0
17.0 18.0 22.5
20.0 20.0 23.7
25.0 28.0 30.2
32.0 32.0 31.2
36.0 35.8 36.5
39.0 37.0 37.0
28 20
Elongation in 50 mm (2 in), %
62.9 57.3
41.0 40.4 41.3
63.0 63.8 58.0
18.0 13.5 20.6
34.0 37.2 38.2
40.0 39.4 39.9
50.0 54.9 57.2
57.0 60.8 57.9
59.0 67.9 66.0
61.0 69.6 69.7
50 40
Reduction in area, %
248 207
212 197 167
143 137 121
293 293 192
241 229 179
229 217 187
201 170 149
179 149 126
143 131 111
126 121 111
95 105
Brinell hardness, HB
92.5 70.5
52.9 43.4 65.1
81.3 85.1 93.6
4.1 5.4 2.7
17.6 13.2 11.3
31.2 27.1 16.9
48.8 65.1 44.3
74.6 93.6 69.4
86.8 117.7 123.4
110.5 115.5 115.0
J
68.2 52.0
39.0 32.0 48.0
60.0 62.8 69.0
3.0 4.0 2.0
13.0 9.7 8.3
23.0 20.0 12.5
36.0 48.0 32.7
55.0 69.0 51.2
64.0 86.8 91.0
81.5 85.2 84.8
ft-lbf
Izod impact strength
PROPERTIES OF ENGINEERING MATERIALS
1.25
1.26
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
G31400
G41300
G41500
G43200
G43400
G46200
G48200
G51500
G61500
G86300
G87400
G92550
G93100
3140
4130
4150
4320
4340
4620
4820
5150
6150
8630
8740
9255
9310
Normalized Annealed
Normalized Annealed
Normalized Annealed
Normalized Annealed
Normalized Annealed
Normalized Annealed
Normalized Annealed
Normalized Annealed
Normalized Annealed
Normalized Annealed
Normalized Annealed
Normalized Annealed
Normalized Annealed
Treatment
890 845
900 845
870 815
870 845
870 815
870 825
860 815
900 855
870 810
895 850
870 815
870 865
870 815
8C
1630 1550
1650 1550
1600 1500
1600 1550
1600 1500
1600 1520
1580 1500
1650 1575
1600 1490
1640 1560
1600 1500
1600 1585
1600 1500
8F
906.7 820.5
932.9 774.3
929.4 695.0
650.2 564.0
939.8 667.4
870.8 675.7
750.0 681.2
574.3 512.3
1279.0 744.6
792.9 579.2
1154.9 729.5
668.8 560.5
891.5 689.5
MPa
131.5 119.0
135.3 112.3
134.8 100.8
94.3 81.8
136.3 96.8
126.3 98.0
109.5 98.8
83.3 74.3
185.5 108.0
115.0 84.0
167.5 105.8
97.0 81.3
129.3 100.0
kpsi
Tensile strength, st
570.9 439.9
579.2 486.1
606.7 415.8
429.5 372.3
615.7 412.3
529.5 357.1
484.7 464.0
366.1 372.3
861.8 472.3
464.0 609.5
734.3 379.2
436.4 360.6
599.8 422.6
MPa
82.8 63.8
84.0 70.5
88.0 60.3
62.3 54.0
89.3 59.8
76.8 51.8
70.3 67.3
53.1 54.0
125.0 68.5
67.1 61.6
106.5 55.0
63.3 52.3
87.0 61.3
kpsi
Yield strength, sy
18.8 17.3
19.7 21.7
16.0 22.2
23.5 29.0
21.8 23.0
20.7 22.0
24.0 22.3
29.0 31.3
12.2 22.0
20.8 29.0
11.7 20.2
25.2 28.2
19.7 24.5
Elongation in 50 mm (2 in), %
58.1 42.1
43.4 41.1
47.9 46.4
53.5 58.9
61.0 48.4
58.7 43.7
59.2 58.8
66.7 60.3
36.3 49.9
50.7 58.4
30.8 40.2
59.5 55.6
57.3 50.8
Reduction in area, %
269 241
269 229
269 201
187 156
269 197
255 197
229 197
174 149
363 217
235 163
321 197
197 156
262 197
Brinell hardness, HB
119.3 78.6
13.6 8.8
17.6 40.0
94.6 95.2
35.5 27.4
31.5 25.1
109.8 92.9
132.9 93.6
15.9 51.1
72.9 109.8
11.5 24.7
86.4 61.7
88.0 58.0
10.0 6.5
13.0 29.5
69.8 70.2
26.2 20.2
23.2 18.5
81.0 68.5
98.0 69.0
11.7 37.7
53.8 81.0
8.5 18.2
63.7 45.5
39.5 34.2
ft-lbf
Izod impact strength
53.6 46.4
J
All grades are fine-grained except for those 1100 series, which are coarse-grained. Heat-treated specimens were oil-quenched unless otherwise indicated. Values tabulated were averaged and obtained from specimen 12.75 mm (0.505 in) in diameter which were machined from 25 mm (1 in); rounded gauge lengths were 50 mm (2 in). Source: ASM Metals Handbook, American Society for Metals. Metals Park, Ohio. 1988
a
UNS no.
AISIa no.
Austenitizing temperature
TABLE 1-8 Mechanical properties of selected carbon and alloy steels (Cont.)
PROPERTIES OF ENGINEERING MATERIALS
PROPERTIES OF ENGINEERING MATERIALS PROPERTIES OF ENGINEERING MATERIALS
1.27
TABLE 1-9 Mechanical properties of standard steels Tensile strength, st
Designation
Yield stress, sy
New
Old
MPa
kpsi
MPa
kpsi
Elongation in 50 mm (gauge pffiffiffiffiffi length 5.65 a )
Fe 290 Fe E 220 Fe 310 Fe E 230 Fe 330 Fe F 250 Fe 360 Fe F 270 Fe 410 Fe E 310 Fe 490 Fe E 370 Fe 540 Fe E 400 Fe 620 Fe E 460 Fe 690 Fe E 520 Fe 770 Fe E 580 Fe 870 Fe E 650
(St 30) – (St 32) – (St 34) – (St 37) – (St 42) – (St 50) – (St 55) – (St 63) – (St 70) – (St 78) – (St 88) –
290 290 310 310 330 330 360 360 410 410 490 490 540 540 620 620 690 690 770 770 870 870
42.0 42.0 45.0 45.0 47.9 47.9 52.2 52.2 59.5 59.5 71.1 71.1 78.3 78.3 90.0 90.0 100.0 100.0 111.7 111.7 126.2 126.2
170 220 180 230 200 250 220 270 250 310 290 370 320 400 380 460 410 520 460 580 520 650
24.7 32.0 26.1 33.4 29.0 36.3 32.0 39.2 36.3 50.0 42.0 53.7 46.4 58.0 55.1 66.7 59.5 75.4 66.7 84.1 75.4 94.3
27 27 26 26 26 26 25 25 23 23 21 21 20 20 15 15 12 12 10 10 8 8
Note: a area of cross-section of test specimen. Source: IS 1570, 1978.
TABLE 1-10 Chemical composition and mechanical properties of carbon steel castings for surface hardening Chemical composition (in ladle analysis) max, % Designation
C
Si
Mn
S
P
Cr
Ni
Mo
Cu
Residual elements
Gr 1 Gr 2
0.4-0.5 0.5-0.6
0.60 0.60
1.0 1.0
0.05 0.05
0.05 0.05
0.25 0.25
0.40 0.40
0.15 0.15
0.30 0.30
0.80 0.80
Yield strength, sy
Tensile strength, st Designation
Mpa
kpsi
Mpa
kpsi
Elongation, % min (gauge length pffiffiffiffi ffi 5.65 a )
Gr 1 Gr 2
620 700
90.0 101.5
320 370
46.4 53.7
12 8
Brinell hardness HB 460 535
Notes: a area of cross section of test specimen. All castings shall be free from distortion and harmful defects. They shall be well-dressed, fettled, and machinable. Unless agreed upon by the purchaser and the manufacturer, castings shall be supplied in the annealed, or nomalized and tempered condition. Source: IS 2707, 1973.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
0.06–0.24 0.12–0.18 0.14–0.19 0.18–0.22 0.26 max 0.12 max 0.15 max 0.10–0.15 0.12–0.18 0.12–0.18 0.12–0.18 0.12–0.20 0.33–0.40 0.32–0.42 0.30–0.40 0.35–0.45 0.35–0.45 0.30–0.40 0.35–0.45 0.36–0.44 0.20–0.30 0.50–0.60 0.45–0.55 0.18–0.23 0.33–0.41
%C 0.10–0.35 0.10–0.35 0.10–0.35 0.10–0.35 0.10–0.35 0.15–0.60 0.50 max 0.10–0.35 0.10–0.35 0.10–0.35 0.10–0.35 0.10–0.35 1.50–2.00 0.10–0.35 0.10–0.35 0.10–0.35 0.10–0.35 0.10–0.35 0.10–0.35 0.10–0.35 0.10–0.35 1.50–2.00 0.10–0.35 0.20–0.35 1.10–1.40
% Si 1.30–1.70 0.40–0.60 1.00–1.30 1.00–1.40 0.50–0.80 0.40–0.70 0.40–0.70 0.40–0.70 0.40–0.70 0.60–1.00 0.60–1.00 0.40–0.70 0.80–1.00 1.30–1.70 1.30–1.80 1.60–0.90 0.50–0.80 0.60–0.90 0.40–0.70 0.40–0.70 0.40–0.70 0.80–1.00 0.50–0.80 0.70–0.90 1.10–1.40
% Mn
0.20–0.35 0.40–0.70 0.45–0.65
0.15–0.25
0.90–1.20 0.40–0.60
1.00–1.50 1.25–1.75 2.25–2.75 0.30 max
0.40–0.70
0.20–0.35
0.20–0.35
0.80–0.15 0.10–0.20 0.15–0.25
0.90–1.70 0.90–1.20 0.45–0.75 0.90–1.30 0.50–0.80 2.90–3.40
0.15–0.30 0.45–0.65 0.90–1.10
% Mo
0.30 max 0.30 max 3.00–3.50 3.80–4.30 1.00–1.50 1.50–2.00 1.80–2.20
% Cr
0.50–0.80 0.80–1.10 1.00–1.30 0.90–1.20 0.70–1.10 2.00–2.50 0.60–1.00 1.00–1.40 0.75–1.25 0.75–1.25 1.40–1.70
% Ni
0.15–0.30
%V
% Al
Notes: (1) Sulfur and phosphorus can be ordered as per following limits: (i) S and P – 0.30 max; (ii) S – 0.02–0.035 and P – 0.035 max. (2) When the steel is Al killed, total Al contents shall be between 0.02–0.05 percent. Source: IS 4367, 1991.
Mn 2 Cr 65 Mn 1 Cr 95 Mn Cr 1 Cr 1 Mo 28 Cr 90 Mo 55 Cr 2 Mo 1 Ni 3 Cr 80 Ni 4 Cr 1 Ni Cr 1 Mo 12 Ni Cr 1 Mo 15 Ni Cr 2 Mo 20 Si 2 Mn 90 Mn 2 Mn 2 Mo 28 Cr 1 Cr 1 Mo 28 Ni 1 Cr 60 Ni 2 Cr 1 Mo 28 Ni 3 Cr 65 Mo 55 Cr 3 Mo 55 Si 2 Mn 90 Cr 1 V 23
20 15 17 20 21 07 10 13 15 15 15 16 37 37 35 40 40 35 40 40 25 55 50
20 15 16 20 21 07 10 13 15 15 15 16 36 37 35 40 40 35 40 40 25 55 50 20 37
C 15 Cr 3 Mn 5 Cr 4 Mn 5 Cr 5 Cr 4 Mo 2 Cr 4 Mo 6 Cr 9 Mo 10 Ni 13 Cr 3 Ni 16 Cr 5 Ni 5 Cr 4 Mo 1 Ni 7 Cr 4 Mo 2 Ni 8 Cr 6 Mo 2 S 17 C 15 Mn 6 Mo 3 Cr 4 Cr 4 Mo 3 Ni 5 Cr 2 Ni 6 Cr 4 Mo 3 Ni 10 Cr 3 Mo 6 Cr 13 Mo 6 Si 7 Cr 4 V 2 Ni Cr MO 2 Mn 5 Si 5
Old
New
Designation
TABLE 1-11 Chemical composition of alloy steel forgings for general industrial use
PROPERTIES OF ENGINEERING MATERIALS
1.28
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
H and T
H and T
R, Q and S.R R, Q and S.R R, Q and S.R H and T
20 C 15
30 C 15
15 16 20 21
R, Q and S.R R, Q and S.R R, Q and S.R R, Q and S.R R, Q and S.R R, Q and S.R H and T H and T H and T H and T
13 15 15 15 16 20 36 37 55 35
H and T
H and T
H and T
40 Cr 4
40 Cr 4 Mo 3
35 Ni 5 Cr 2
Ni 13 Cr 3 Ni 16 Cr 5 Ni 5 Cr 4 Mo 1 Ni 7 Cr 4 Mo 2 Ni 8 Cr 6 Mo 2 Ni Cr Mo 2 Si 7 Mn 5 Si 5 Si 7 Mn 6 Mo 3
N and T N and T
7 Cr 4 Mo 6 10 Cr 9 Mo 10
Cr 3 Mn 5 Cr 4 Mn 5 Cr 5 Cr 4 Mo 2
Condition
Designation 600–750 700–850 600–750 700–850 800–950 600 min 800 min 1000 min 650–800 700–850 800–950 380–550 410–590 520–680 850 min 1350 min 1000 min 1100 min 1350 min 900 min 800–950 780–930 1300–1500 700–850 900–1050 1000–1150 700–850 900–1050 700–850 900–1050 1000–1150 700–850 900–1050
MPa 87.0–108.8 101.5–123.3 87.0–108.8 101.5–123.3 116.0–137.8 87.0 min 116.0 min 145.0 min 94.3–116.0 101.5–123.3 116.0–137.8 55.1–79.8 59.5–85.6 75.4–98.6 123.3 min 195.8 min 145.0 min 159.5 min 195.8 min 130.5 min 116.0–137.8 113.1–134.9 188.6–217.6 101.5–123.3 130.5–152.3 145.0–166.8 101.5–123.3 130.5–152.3 101.5–123.3 130.5–152.3 145.0–166.8 101.5–123.3 130.5–152.3
kpsi
Tensile strength,b st
85.6 78.3 101.5 116.0 78.3 101.5 78.3 101.5 116.0 78.3 101.5
540 700 800 540 700 540 700 800 540 700
61.0 66.7 84.1 32.6 35.5 45.0
58.0 66.7 63.8 78.3 87.0
kpsi
590
420 460 580 225 245 310
400 460 440 540 600
MPa
Yield strength,b sy
TABLE 1-12 Mechanical properties of alloy steel forgings for general industrial use
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website. 220
220
220
229 241 217 217 229 213 217 217 245 220
170 187
170 207 217 210
220
200
Brinell hardness in soft annealed condition, max, HB
18 15 13 18 15 18 15 13 18 15
14
18 16 18 18 16 13 10 8 16 15 14 19 18 18 12 9 9 9 9 11
Elongation,b %, min (gauge length ffi pffiffiffiffi 5.65 a )a
55 50 45 55 50 55 50 45 55 50
50 50 50 48 48 48 35 38 60 55 50 60 55 50 48 35 41 35 35 41
J
40.6 36.9 33.2 40.6 36.9 40.6 36.9 33.2 40.6 36.9
36.9 36.9 36.9 35.4 35.4 35.4 25.8 28.0 44.3 40.6 36.9 44.3 40.6 36.9 35.4 25.8 30.2 25.8 25.8 30.2
ft-Ibf
Izod impactb value
100 150 63 30 100 30 150 63 30 150 63
4.00 6.00 2.52 1.20 4.00 1.20 6.00 2.52 1.20 6.00 2.52
4.00
235–280 100 380–440 208–252 268–311 295–341 208–252 266–311 208–252 266–311 295–341 208–252 266–311
2.4 1.20 1.20 1.20 1.20
2.52 1.20 6.00 4.00 2.52 1.20 1.20 1.20 6.00 4.00 1.60 1.60 2.00 60 30 30 30 30
178–221 63 208–252 63 178–221 150 208–252 100 235–280 63 30 30 30 190–235 150 208–252 100 235–280 40 40 50
Brinellb Limiting hardness ruling section number HB mm in
PROPERTIES OF ENGINEERING MATERIALS
1.29
H and T
H and T
40 Ni 10 Cr 3 Mo 6
50 Cr 4 V 2
900–1050 1100–1250 900–1050 1100–1250 1200–1350 1000–1150 1200–1350 1550 min 900–1100 1000–1200
MPa 130.5–152.3 159.5–181.3 130.5–152.3 159.5–181.3 174.0–195.8 145.0–166.8 174.0–195.8 224.8 min 130.5–159.5 145.0–174.0
kpsi 700 880 700 880 1000 800 1000 1300 700 800
MPa 101.5 127.6 101.5 127.6 145.0 116.0 145.0 188.5 101.5 116.0
kpsi
Yield strength,b sy
240
250
230
230
Brinell hardness in soft annealed condition, max, HB 15 12 55 11 10 12 10 8 12 10
Elongation,b %, min (gauge length pffiffiffiffi ffi 5.65 a Þa 55 41 55 41 30 48 35 15 45 45
J
40.6 30.2 40.6 30.2 22.1 35.4 25.8 11.1 33.2 33.2
ft–Ibf
Izod impactb value
266–311 325–370 266–311 325–370 355–399 295–341 355–399 450 min 266–325 295–355
150 100 150 63 30 150 150 100 100 40
6.00 4.00 6.00 2.52 1.20 6.00 6.00 4.00 4.00 1.60
Brinellb Limiting hardness ruling section number HB mm in
b
a
a , area of cross section. Mechanical properties in heat-treated conditions. Notes: H and T – hardened and tempered; N and T – normalized and tempered; R,Q and S.R – refined quenched and stress-relieved. All properties for guidance only. Other values may be mutually agreed on between the consumers and suppliers. Source: IS 4367, 1991.
H and T
Condition
40 Ni 6 Cr 4 Mo 3
25 Cr 13 Mo 6
Designation
Tensile strength,b st
TABLE 1–12 Mechanical properties of alloy steel forgings for general industrial use (Cont.) PROPERTIES OF ENGINEERING MATERIALS
1.30
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
##
Si
Mn
0.32– 0.10– 1.30– 0.42 0.35 1.70
0.30– 0.10– 1.30– 0.40 0.35 1.80
0.30– 0.10– 1.30– 0.40 0.35 1.80
0.35– 0.10– 0.60– 0.45 0.35 0.90
0.35– 0.10– 0.50– 0.45 0.35 0.80
0.10– 0.10– 0.40– 0.30 0.20 0.35 0.70 max
0.20– 0.10– 0.40– 0.30 0.30 0.35 0.70 max
37 C 15 (37 Mn 2)
35 Mn 6 Mo 3 (35 Mn 2 Mo 28)
35 Mn 6 Mo 4 (35 Mn 2 Mo 45)
40 Cr 4 (40 Cr 1)
40 Cr 4 Mo 2 (40 Cr 1 Mo 28)
15 Cr 13 Mo 6 (15 Cr 3 Mo 55)
25 Cr 13 Mo 6 (25 Cr 3 Mo 55)
Ni
0.22– 0.10– 1.30– 0.32 0.35 1.70
0.16– 0.10– 1.30– 0.24 0.35 1.70
C
27 C 15 (27 Mn 2)
20 C 15 (20 Mn 2)
Designation
0.35– 0.55
0.20– 0.35
Mo
2.90– 0.45– 3.40 0.65
2.90– 0.45– 3.40 0.65
0.90– 0.20– 1.20 0.35
0.90– 1.20
Cr
Percent V/Al
TABLE 1–13 Chemical composition and mechanical properties of alloy steels
890–1040 990–1140 1090–1240 1540 min
690–840 790–940
700–850 800–950 900–1050 1000–1150
690–840 790–940 890–1040
790–940 890–1040 990–1140
690–840 790–940 890–1040 990–1140
590–740 690–840 790–940 890–1040
590–740 690–840
590–740 690–840
MPa
129.0–150.8 143.6–165.3 158.1–179.8 223.4 min
100.0–121.8 114.6–136.3
101.5–123.3 116.0–137.8 130.5–152.3 145.0–166.8
100.0–121.8 114.6–136.3 129.0–150.8
114.6–136.3 129.0–150.8 143.6–165.3
100.0–121.8 114.6–136.3 129.0–150.8 143.6–165.3
85.5–107.3 100.0–121.8 114.6–136.3 129.0–150.8
85.5–107.3 100.0–121.8
85.6–107.3 100.0–121.8
kpsi
Tensile strength, st
56.6 71.1 79.9 94.3
71.1 14 79.9 12 650 94.3. 11 750 108.8 10 830 120.4 9 1240 179.8 8
490 550
13 12 11 10
71.1 14 79.8 12 94.3 11 490 71.1 550 79.8 650 94.3 750 108.8
490 550 650
550 79.8 16 650 94.3 15 750 108.9 13
14 12 12 10
18 18 16 15
56.6 18 65.3 16
56.6 18 65.3 16
490 71.1 550 79.8 650 94.3 750 108.8
390 490 550 650
390 450
390 450
40.6 36.8 36.8 35.4
35.4 35.4 35.4 30.2
40.6 36.8 36.8 35.4
50 48 41 14
36.8 35.4 30.2 10.3
55 40.6 50 36.8
55 50 50 48
55 40.6 50 36.8 50 36.8
55 40.6 55 40.6 48 35.4
55 50 50 48
48 48 48 41
48 35.4 48 35.4
48 35.4 48 35.4
255–311 285–341 311–363 444 min
201–248 229–277
201–248 229–277 255–311 285–341
201–248 229–277 255–311
229–277 255–311 285–341
201–248 229–277 255–311 285–341
170–217 201–248 229–277 255–311
170–217 201–248
170–217 201–248
Minimum 0.2% Minimum Izod impact proof stress, elongation value Brinell# min, sy (gauge length pffiffiffiffiffi hardness ¼ 5.65 a )a , MPa kpsi % J ft-lbf HB
150 (6.0) 150 (6.0) 100 (4.0) 63 (2.5)
150 (6.0) 150 (6.0)
150 (6.0) 100 (4.0) 63 (2.5) 30 (1.2)
100 (4.0) 63 (2.5) 30 (1.2)
150 (6.0) 100 (4.0) 63 (2.5)
150 (6.0) 100 (4.0) 63 (2.5) 30 (1.2)
150 (6.0) 100 (4.0) 30 (1.2) 15 (0.6)
100 (4.0) 63 (2.5)
63 (2.5)þ 30 (1.2)
Limiting ruling section, mm (in)þ
PROPERTIES OF ENGINEERING MATERIALS
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
1.31
790–940 890–1040 990–1140 1090–1240 1190–1340 1540 min 890–1040 990–1140 1090–1240 1190–1340 1540 min
0.35– 0.10– 0. 50– 3.20– 0.30 0.45 0.35 0.80 3.6 max
0.30– 0.10– 60–90 1.00– 0.45– 0.40 0.35 1.50 0.75
0.26– 0.10– 0.40– 3.90– 1.10– 0.34 0.35 0.70 4.30 1.40
0.35– 0.10– 0.40– 1.20– 0.90– 0.10– 0.45 0.35 0.70 1.60 1.30 0.20
0.35– 0.10– 0.40– 1.25– 0.90– 0.20– 0.45 0.35 0.70 1.75 1.30 0.35
35 Ni 5 Cr 2 (35 Ni 1 Cr 60)
30 Ni 16 Cr 5 (30 Ni 4 Cr 1)
40 Ni 6 Cr 4 Mo 2 (40 Ni Cr 1 Mo 15)
40 Ni 6 Cr 4 Mo 3 (40 Ni 2 Cr 1 Mo 28)
31 Ni 10 Cr 3 Mo 6 0.27– 0.10– 0.40– 2.25– 0.50– 0.40– (31 Ni 3 Cr 65 Mo 55) 0.35 0.35 0.70 2.75 0.80 0.70
1.50– 0.10– Al: 0.90– 1.80. 0.25 1.30
790–940 890–1040 990–1140 1090–1240
1540 min
690–840 790–940 890–1040
790–940 890–1040
690–840 790–940 890–1040
1340 min 1540 min
MPa
40 Ni 14 (40 Ni 31)
V/Al
0.35– 0.10– 0.40– 0.30 0.45 0.45 0.70 max
Mo
3.00– 0.90– V: 0.15– 3.50 1.10 0.25
Cr
40 Cr 7 Al 10 Mo 2 (40 Cr 2 Al 1 Mo 18)
Ni
0.35 – 0.10– 0.40– 0.30 0.45 0.35 0.70 max
Mn
40 Cr 13 Mo 10 V 2 (40 Cr 3 Mo 1 V 20)
Si
C
129.0–150.8 143.6–165.3 158.1–179.8 172.6–194.4 223.4 min
114.6–136.3 129.0–150.8 143.6–165.3 158.1–179.8 172.6–194.4 223.4 min
114.6–136.3 129.0–150.8 143.6–165.3 158.1–179.8
223.4 min
100.0–121.8 114.6–136.3 129.0–150.8
114.6–136.3 129.0–150.8
100.0–121.8 114.6–136.3 129.0–150.8
194.4 min 223.4 min
kpsi
Tensile strength, st
Designation
Percent
TABLE 1–13 Chemical composition and mechanical properties of alloy steels (Cont.)
8 8
179.9
8
71.1 14 79.8 12 94.3 10
79.8 16 94.3 15
71.1 18 79.8 16 94.3 15
152.2 179.8
650 750 830 930 1240
550 650 750 830 930 1240
94.3 108.8 120.4 134.9 179.8
79.8 94.3 108.8 120.4 134.9 179.8
15 12 11 10 8
16 15 11 11 10 6
550 79.8 16 650 94.3 15 750 108.8 13 830 120.4 13
1240
490 550 650
550 650
490 550 650
1050 1240
55 48 41 35 14
55 55 48 41 30 11
55 55 48 41
40.6 35.4 30.3 25.8 10.3
40.6 40.6 36.8 30.3 22.1 8.1
40.6 40.6 35.4 30.3
14 10.3
55 40.6 50 36.8 50 36.8
55 40.6 55 40.6
55 40.6 55 40.6 48 35.4
21 15.5 14 10.3
255–311 285–341 311–363 341–401 444 min
229–277 255–311 285–341 311–363 341–401 444 min
229–277 255–311 285–341 311–363
444 min
201–248 229–277 255–311
229–277 255–311
201–248 229–277 255–311
363 min 444 min
Minimum 0.2% Minimum Izod impact proof stress, elongation value Brinell# min, sy (gauge length pffiffiffiffiffi a hardness ¼ 5.65 a ) , MPa kpsi % J ft-lbf HB
150 (6.0) 150 (6.0) 100 (4.0) 63 (2.5) 63 (2.5)
150 (6.0) 150 (6.0) 100 (4.0) 63 (2.5) 30 (1.2) 30 (1.2)
150 (6.0) 100 (4.0) 63 (2.5) 30 (1.2)
(air-hardened)
150 (6.0)
(air-hardened)
150 (6.0)þ 100 (4.0) 63 (2.5)
100 (4.0) 63 (2.5)
150 (6.0) 100 (4.0) 63 (2.5)
63 (2.5) 30 (1.2)
Limiting ruling section, mm (in)þ
PROPERTIES OF ENGINEERING MATERIALS
1.32
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
C
Si
Mn
Ni
Cr
Mo
V/Al 990–1140 1090–1240 1190–1240 1540 min
MPa 143.6–165.3 158.1–179.8 172.6–194.4 223.4 min
kpsi
Tensile strength, st
750 830 930 1240
108.8 12 120.4 11 134.9 10 179.8 8
48 41 35 14
35.4 30.3 25.8 10.3
285–341 311–363 341–401 444 min
Minimum 0.2% Minimum Izod impact proof stress, elongation value Brinell# min, sy (gauge length pffiffiffiffiffi hardness ¼ 5.65 a )a , MPa kpsi % J ft-lbf HB
150 (6.0) 150 (6.0) 150 (6.0) 100 (4.0)
Limiting ruling section, mm (in)þ
Note: a , area of cross section; hardened and tempered condition – oil-hardened unless otherwise stated; # hardness given in this table is for guidance only; x steel designations in parentheses are old designations; þ numerals in parentheses are in inches. Source: IS 1750, 1988.
40 Ni 10 Cr 3 Mo 6 0.36– 0.10– 0.40– 2.25– 0.50– 0.40– (40 Ni 3 Cr 65 Mo 55) (0.44 0.35 0.70 2.75 0.80 0.70
Designation
Percent
TABLE 1–13 Chemical composition and mechanical properties of alloy steels (Cont.)
PROPERTIES OF ENGINEERING MATERIALS
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
1.33
PROPERTIES OF ENGINEERING MATERIALS
1.34
CHAPTER ONE
TABLE 1-14 Mechanical properties of case hardening steels in the refined and quenched condition (core properties)
Tensile strength, st Steel designation
MPa
kpsi
Minimum elongation, % (gauge length pffiffiffiffiffi = 5.65 a ) a
Izod impact value, min (if specified) J
ft-lbf
Limiting ruling section, mm (in)
Brinell hardness number, max, HB 130 143
10 C 4 (C 10) 14 C 4 (C 14)
490 490
71.1 71.1
17 17
54 54
39.8 39.9
10 C 8 S 11 (10 S 11) 14 C 14 S 14 (14 Mn 1 S 14) 11 C 15 (11 Mn 2) 15 Cr 65 17 Mn 1 Cr 95 20 Mn Cr 1 16 Ni 3 Cr 2 (16 Ni 80 Cr 60) 16 Ni 4 Cr 3 (16 Ni 1 Cr 80)
490 588
71.1 85.4
17 17
54 40
39.8 29.7
15 (0.6) >15 (0.6) <30 (1.2) 30 (1.2) 30 (1.2)
588
85.4
17
54
39.8
30 (1.2)
154
588 784 981 686
85.4 113.8 142.3 99.6
13 10 8 15
47 34 37 40
34.7 25.3 27.5 29.7
30 (1.2) 30 (1.2) 30 (1.2) 90 (3.6)
170 207 217 184
834 784 735 834 784 1324 1177 1128 834 686 882 784 735 981 932 1079 932 932 1324 1177 1128
121.0 113.8 106.7 121.0 113.8 192.0 170.7 163.2 121.0 99.6 128.0 113.8 106.7 142.3 135.1 156.5 142.3 135.1 193.0 170.7 163.6
12
40
29.7
217
12
47
34.7
9
34
25.3
12
61
44.8
11
40
29.7
9
40
29.7
9
34
25.3
9
34
25.3
30 (1.2) 60 (2.4) 90 (3.6) 60 (2.4) 100 (4.0) 30 (1.2) 60 (2.4) 90 (3.6) 30 (1.2) 60 (2.4) 30 (1.2) 60 (2.4) 90 (3.6) 30 (1.2) 90 (3.6) 30 (1.2) 60 (2.4) 90 (3.6) 30 (1.2) 60 (2.4) 90 (3.6)
13 Ni 13 Cr 3 (13 Ni 3 Cr 80) 15 Ni 4 Cr 1
20 Ni 2 Mo 25 20 Ni 7 Cr 2 Mo 2 (20 Ni 55 Cr 50 Mo 20) 15 Ni 13 Cr 4 (15 Ni Cr 1 Mo 12) 15 Ni 5 Cr 4 Mo 2 (15 Ni 2 Cr 1 Mo.15) 16 Ni 8 Cr 6 Mo 2 (16 Ni Cr 2 Mo 20)
143 154
229 241
207 213
217 217
229
a area of cross section. Source: IS 4432. 1967.
a
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
PROPERTIES OF ENGINEERING MATERIALS PROPERTIES OF ENGINEERING MATERIALS
1.35
TABLE 1-15 Typical mechanical properties of some carburizing steelsa Hardness Ultimate tensile strength, sut
Tensile yield strength, sy
Case
Elongation Core in 50 mm Reduction Brinell, AISI No. MPa kpsi MPa kpsi (2 in), % of area, % H B
Izod impact energy
Thickness Rockwell, RC
mm
in
J
ft-lbf
Machinability
Poor Poor Good Very good Excellent
C1015 C1020 C1022 C1117 C1118
503 517 572 669 779
73 75 83 97 113
317 331 324 407 531
46 48 47 59 77
31 31 27 23 17
71 71 66 53 45
Plain carbon 149 156 163 192 229
62 62 62 65 61
1.22 1.17 1.17 1.14 1.65
0.048 0.046 0.046 0.045 0.065
123 126 110 45 22
91 93 81 33 16
4320b 4620b 8620b
100 793 897
146 115 130
648 531 531
94 77 77
22 22 22
56 62 52
Alloy steels 293 235 262
59 59 61
1.91 1.52 1.78
0.075 65 0.060 106 0.070 89
48 78 66
a
Average properties for 15 mm (1 in) round section treated, 12.625 mm (0.505 in) round section tested. Water-quenched and tempered at 1778C (3508F), except where indicated. Core properties for 14.125 mm (0.565 in) round section treated, 12.625 mm (0.505 in) round section tested. Oil-quenched twice, tempered at 2328C (4508F). Source: Modern Steels and Their Properties, Bethlehem Steel Corp., 4th ed., 1958 and 7th ed., 1972.
b
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
PROPERTIES OF ENGINEERING MATERIALS
1.36
CHAPTER ONE
TABLE 1-16 Minimum mechanical properties of some stainless steels Tensile strength, st UNS No. AISI No. MPa
Yield strengtha , sy
kpsi
MPa
Brinell Elongation, hardness, H B %
kpsi
Reduction in area, %
Weldability Machinability Application
Annealed (room temperatures) Austenitic S30200 S30300 S30400 S30500 S30800 S30900 S31000 S31008 S34800 S38400
302 303b 304 305 308 309 310 310 S 348 384
515 585b 515 480 515 515 515 515 515 415–550
75 85b 75 70 75 75 75 75 75 60–80
205 240b 205 170 205 205 205 205 205
30 35b 30 25 30 30 30 30 30
88
40 50b 40 40 40 40 40 40 40
88 88 88 95 95 95 88
55b
Good Poor Good Good
Poor Good Poor
General purpose, springs Bolts, rivets, and nuts Welded structures General purpose
Good Good
Poor Poor
Heat-exchange parts Turbine and furnace Jet engine parts Fasteners and cold-worked parts
Excellent Fair Fair
Fair to good Fair
Screw machine parts, muffler Machine parts subjected to hightemperature corrosion
Annealed high-nitrogen Austenitic S20200 202 S21600 216 S30452 304 HN
655 690 620
95 100 90
310 415 345
4560 50
Ferrite S40500 S43000 S44600
405 430 446
415 450 515
60 65 75
170 205 275
25 30 40
88 max 88 max 95 max
22e 20
Martensite S40300 403 S41000 410
485 450
70 65
205 205
30 30
88 max 95 max
25c 22c
795 1450b 1720 1370b
115 210b 250 198b
620 1210b 1480b 1030b
90 175b 215b 149b
b
b
b
b
S41400 S41800d S42000e S43100d S44002 S44003 S44004 S50200
414 418d 420e 431d 440 A 440 B 440 C 502b
725
740 760b 485b
105
b
107 110b 70b
415
b
425 450b 205b
60
b
62 65b 30b
40 40 30
100 100
52RC 95
b
15 18b 8b 16b
b
20
b
18b 14b 30b
96 97b
Bolts, shafts, and machine parts Bolts, springs, cutlery, and machine parts 45 52b 25b 55b
b
High-strength parts used in aircraft and bolts Cutlery, bearing parts, nozzles and ball bearings
70b
a
At 0.2% offset. Typical values. 20% elongation for thickness of 1.3 mm (0.050 in) or less. d Tempered at 2608C (5008F). e Tempered at 2058C (4008F). Source: ASM Metals Handbook, American Society for Metals, Metals Park, Ohio, 1988. b c
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
11.5/13.5
Cr
0.20 max 1.0 max 1.5 max
0.03 max 1.0 max 2.0 max 8.0/12.0 17.5/20.0
0.08 max 1.0 max 2.0 max 8.0/10.5 17.5/20.0
0.15 max 1.0 max 2.0 max 8.0/10.0 17.0/19.0
0.08 max 1.0 max 2.0 max 9.0/12.0 17.0/19.0
0.08 max 1.0 max 2.0 max 9.0/12.0 17.0/19.0
0.08 max 1.0 max 2.0 max 10.0/14.0 16.0/18.0 2.0/3.0
0.08 max 1.0 max 2.0 max 10.0/14.0 16.0/18.0 2.0/3.0
0.08 max 1.0 max 2.0 max 10.0/14.0 16.0/18.0 2.0/3.0
0.03 max 1.0 max 2.0 max 11.0/15.0 18.0/20.0 3.0/4.0
0.25 max 2.5 max 2.0 max 18.0/21.0 24.0/26.0
0.12 max 1.0 max 10.0/14.0 3.5/5.5
0.35/0.50 2.5 max 1.0 max 12.0/15.0 12.0/15.0
X 15 Cr 25 N
X 02 Cr 19 Ni 10
X 04 Cr 19 Ni 9
X 07 Cr 18 Ni 9
X 04 Cr 18 Ni 10 Nb
X 04 Cr 18 Ni 10 Ti
X 04 Cr 17 Ni 12 Mo 2
X 02 Cr 17 Ni 12 Mo 2
X 04 Cr 17 Ni Mo 2 Ti 2
X 04 Cr 19 Ni 13 Mo 3
X 20 Cr 25 Ni 20
X 07 Cr 17 Mn 12 Ni 4
X 40 Ni 14 Cr 14 W 3 Si 2
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website. 5XC0.80
5XC0.80
Ti
and
P max
0.040
0.040
0.040
0.030 0.045 and N ¼ 0:25 max
0.030
0.030
0.030
Chromium steels 0.030 0.040
S max
0.035 W 2.0/3.0
0.030
0.030
0.030
0.030
0.030
0.030
0.030
0.030
0.030
0.030
0.045
0.045
0.045
0.045
0.045
0.045
0.045
0.045
0.045
0.045
0.045
Chromium–nickel steels 0.030 0.045
10XC1.0
Nb
(785)
515 (517) 515 (517) 515 (517) 485 (483) 515 (517) 515 (517) 515 (490) 550
485 (483) 515 (517) 515
415 (445}# 450 (483) 450 (483) (600 700) 515 (490)
MPa
(113.9)
74.7 (75.0) 74.7 (75.0) 74.7 (75.0) 70.3 (70.0) 74.7 (75.0) 74.7 {75.0) 74.7 (71.1) 79.8
70.3 (70.0) 74.7 (75.0) 74.7
60.2 (64.5) 65.3 (70.0) 65.3 (70.0) (87.0 101.5) 74.7 (71.1)
kpsi
Tensile strength, min, st
(345)
205 (207) 205 (207) 205 (207) 170 (172) 205 (207) 205 (207) 210 (210) 250
170 (172) 205 (207) 205
275 (280)
205 (276)# 205 (276) 205 (276)
MPa
(50.0)
29.7 (30.0) 29.7 (30.0) 29.7 (30.0) 24.7 (25.0) 29.7 (30.0) 29.7 (30.0) 30.5 (30.5) 36.3
24.7 (25.0) 29.7 (30.0) 29.7
39.9 (40.6)
29.7 (40.0) 29.7 (40.0) 29.7 (40.0)
kpsi
0.2% proof stress, min, sy
(269)
217
217
217
217
217
217
183
183
183
183
183
217 (212)
(225)
183
217
183
88
95
95
95
95
95
88
88
88
88
88
–
–
88
95
88
Brinell HB Rockwell RB
Hardness number
(35)
40 (40) 40 (40) 40 (40) 40 (40) 40 (40) 35 (40) 40 (40) 45
40 (40) 40 (40) 40
20 (16)
22 (20)# 20 (20) 22 (20)
(40)
(50)
(50)
(50)
(50)
(50)
(50)
(50)
(50)
(50)
(50)
(45)
(45)
(45)
(45)#
Elongation Reduction in 50 mm of area, (2 in), min, min, % %
Notes: Annealed quenched or solution-treated condition; for free-cutting varieties sulfur and selenium content shall be as agreed between the purchaser and the manufacturer; for electrode steel Nb 10C to 1.0 in place of Ti; # the mechanical properties in parentheses are for bars and flats and the properties without parentheses for plates, sheets, and strips. Source: Compiled from IS 1570 (part 5), 1985.
16.0/18.0
23.0/27.0
0.35/0.45 1.0 max 1.0 max 1.0 max 12.0/14.0
X 40 Cr 13
Mo
0.12 max 1.0 max 1.0 max 1.25/2.50 15.0/17.0
0.80/0.15 1.0 max 1.0 max 1.0 max 11.5/13.5
Ni
X 07 Cr 17
X 12 Cr 12
0.08 max 1.0 max 1.0 max
Mn
X 04 Cr 12
Si
C
Designation of steel
Chemical composition, %
TABLE 1-17 Chemical composition and mechanical properties of some stainless, heat resisting and high alloy steels
PROPERTIES OF ENGINEERING MATERIALS
1.37
1.38
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website. 415
485 550 620
Grade 60 Grade 70 Grade 80
485
Grade 50
K12249
K02601 K12609 K12700
70 80 90
60
70
65 75 85 70 70 65 95–115
kpsi
415 485 550
345
345
345 415 485 345 345 345 552
310 310
310
345 415 450 345
290
60 70 80
50
50
50 60 70 50 50 50 80
45 45
45
50 60 65 50
42
275–345 42–50
290–345 42–50
290–345 42–50
MPa
Minimum yielda strength,a sy
May vary with product size and mill form. Source: ASM Metal Handbook, American Society for Metals, Metals Park, Ohio, 1988.
a
A715
A690
A656
A618
450 520 590 483 483 448 655–793
65 60
450 410
A607
Grade 50 Grade 60 Grade 70 Grade I Grade II Grade III Grade 1 and 2
65
450
Hot-rolled and annealed or normalized Cold-rolled Grade 45
A606
65 75 80 70
450 520 550 480
Grade 50 Grade 60 Grade 65 Hot-rolled
60
415
Grade 42
415–485 60–70
435–485 63–70
435–480 63–70
kpsi
A572
K12211
A441
K11510
K12810
Type 1
A242
UNS designation MPa
A440
Type, grade, or condition
ASTM specification
Minimum tensilea strength,a st
TABLE 1-18 Mechanical properties of high-strength low-alloy steels
18
19 18 18 12
18 16 15
20
18
18
18
In 200 mm (8 in)
20–22 18–20 16–18
22–24
20–22 16–18 14 22 22 20
22 22–25
22
21 18 17 22
24
21
21
21
In 50 mm (2 ln)
Minimum elongation,a %
Truck frames, brackets, crane booms, railcars. and other applications where weight saving is important Dock walls, sea walls, bulkheads, excavations, and similar structures exposed to sea water Structural and miscellaneous applications where high strength, weight savings, improved formability, and good weldability are important
General structural purposes including welded, bolted, or riveted bridges and buildings
Structural and miscellaneous purposes where greater strength or weight saving is important
Structural and miscellaneous purposes where weight saving or added durability is important
Structural members in welded, bolted, or riveted construction Structural members, primarily in bolted or riveted construction Welded, bolted, or riveted structures but primarily welded bridges Welded, bolted, or riveted structures, but used mainly in bolted or riveted bridges and buildings
Intended uses
PROPERTIES OF ENGINEERING MATERIALS
CB-30d C-50d CE-30d CF-8d CH-20d
ACId
ASTM A607 A606 Types 2, 4h A607 715 (sheet)i A656 (plate) A607 A607
138 20 159 23 172 25 214 31 244 34 303 44 255 37 331 48 Cast Stainless Steels
Cast Alloy Steels 24 20 22 20 17 9 14 6
200 172 193 193
29 25 28 28
3 61 14 95 20
81 75 65 54 79 41 61 32 2 45 10 70 15
60 55 48 40 58 30 45 24
255
448 414 483 586
J410Cg J410Cg
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website. 70 85
65 60
414 60 448–483 65–70
1758
379 483
345 345
55 70
50 50
20 14
22 24
25 22
245 8 High-Strength Low-Alloy (HSLA) Steels
310 45 310–345 45–50
1689
6.6–12
31
23
17
20–30 15–22
35 40 50 60 85 125 95 145
kpsi
To 2144 To 311 To 1703 To 247
414 448 448 241–276 345
241 276 345 414 586 862 655 1000
MPa
23
95 70–97 87–97 75–85 80–88
65 70 80 90 105 150 120 175
kpsi
Yield strength, sy
60 15 65 18 65 18 35–40 55 50 38 Ultra-High-Strength Steels To 2068 To 300 To 1724 To 250 10
J410CRg
SAE J410Cg
Medium carbon low alloys 4 140 M, 433OV, D 6AC, 4340 Mod. 5 Cr-Mo-V tool steels: H-11 (Mod). H-13 (Mod) Maraging steels (high nickel): 18 Ni (350) Almar 302
448 483 552 620 724 1034 827 1207
Grade LC1a WC4a 80-50a 90-60a 105-85b 150-125b 120-95b 175-145b
ASTM A352-68a A219-6 A148-65 A148-1 A148-65 A148-65 A148-65 A148-65 655 483–669 600–669 517–586 552–607
MPa
Materials classification
Tensile strength, st
Fatiguec endurance limit, Elongation Modulus of Impact sj in 50 mm elasticity E Charpy (2 in) MPa kpsi % GPa Mpsi J ft-lbf
TABLE 1-19 Mechanical properties of some cast alloy, cast stainless, high-strength and iron-based super alloy steels
Cb and/or V
Composition Cb and/or V (Proprietary) Cu, Cr, Mn, Ni, P, and other additions Cb and or V (Proprietary) Cb, Ti, Zr, Si, N, V, and others
217 311 262 352
Rupture strength, Brinell 100 h at 5388C hardness, (10008F) temperature, Mpsi 8C (8F), HB GPa
PROPERTIES OF ENGINEERING MATERIALS
1.39
H-11
422
AM 350
Stainless W
16-25-G
17-24 Cu Mo
A-286
610
616
Austenitic 633
635
650
653
660
103–1413 1130 1517–1551 517–552 758–965 621 593–772 448 1007–903
827 531 682–896 758 931–2137 1241 1034–1655 1172
MPa
160–205 160 220–225 75–80 110–140 90 86–112 65 146 131
120 77 125–138 110 135–310 180 150–240 170
kpsi
414–1207 745 1482–2000 255–345 345–689 228 276–620 200 655 607
689 372 655–745 586 689–1655 965 682–1207 869
MPa
kpsi
60–175 482–689 70–100 108 215–290 372–662 54–96 37–50 50–100 33 40–90 29 95 88
12–38 9 1.5 58 20–45 58 30–45 37 25 19
3–17 10 16–19 16
30 20 7
20
19.3
19.5
20.9
20.3
20
21
22
21
c
b
2.88
2.80
2.85
3.02
2.94
2.90
3.05
3.17
3.08
Brinell hardness, temperature, 8C (8F), HB
14
21 538 5–144 4–106 21 538 20 15 21 538 11–35 8–26 21 538 56–81 41-60 21 538
19
70 1000 70 1000 70 1000 70 1000 70 1000
Temperature 8C 8F 21 70 538 1000 21 70 538 1000 14–43 10–32 21 70 538 1000 14–52 10–38 21 70 538 1000
Elongation Modulus of Impact in 50 mm elasticity E Charpy (2 in) % GPa Mpsi J ft-lbf
Iron-Based Superalloys
MPa
100 54 95–108 85 100–240 896 130 140 125–175 621–758 90–100 126
kpsi
Yield strength, sy
Normalized and tempered. Quenched and tempered. Polished specimen. d Corrosion resistance. e Heat resistance. f Heat and corrosion resistance. g Semikilled or killed. h Semikilled or killed-improved corrosion resistance. i Inclusion control-improved formability, killed. Source: Machine Design, 1981 Materials Reference Issue, Penton/IPC, Cleveland, Ohio, Vol. 53, No. 6 (March 19, 1981).
a
Chromalloy
604
Martensitic AISI 601 17-22A
Materials classification
Tensile strength, st
Fatiguec endurance limit, sj
TABLE 1-19 Mechanical properties of some cast alloy, cast stainless, high-strength and iron-based super alloy steels (Cont.)
75
49
Mpsi
689
330
538
220
710
400
100
48
78
32
103
58
655–793 95–115
517
338
GPa
Rupture strength, 100 h at 5388C (10008F)
PROPERTIES OF ENGINEERING MATERIALS
1.40
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
CS CS CS CS CS
1 2 3 4 5
a a , area of cross section. Source: IS 2644, 1979.
640 700 840 1030 1230
Designation
Grade 640 700 840 1030 1230
MPa 92.8 101.5 121.8 149.4 178.3
kpsi
Tensile strength, min, st
TABLE 1-20 Mechanical properties of high tensile cast steel
390 560 700 850 1000
MPa 56.7 81.2 101.5 123.3 145.1
kpsi
Yield strength (or 0.5% proof stress), min, sy
35 30 28 20 12
Reduction in area, min, %
15 14 12 8 5
Elongation, min, % (gauge length ffi pffiffiffiffi 5.65 a ) a
190 207 248 305 355
Brinell hardness, min, HB
30 30 29 20
J
22.1 21.1 20.6 14.5
ft-lbf
Izod impact strength, min
PROPERTIES OF ENGINEERING MATERIALS
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
1.41
1.30–1.50 1.25–1.40 1.10–1.25 0.65–0.75 0.80–0.90 0.70–0.80 0.60–0.70 2.00–2.30 150–1.70 1.00–1.20 0.90–1.20 0.85–0.95 0.90–1.20 0.90–1.20 0.50–0.60 0.50–0.60 0.45–0.55 0.55–0.65 0.26–0.34 0.50–0.60 0.25–0.40 0.30–0.40 0.30–0.40 0.70–0.80 0.75–0.90 0.50–0.60 0.12–0.20 0.15 max
T 140 W 4 Cr 50 T 133 T 118 T 70 T 85 T 75 T 65 T 215 Cr 12 T 160 Cr 12 T 110 W 2 Cr 1 T 105 W 2 Cr 60 V 25 T 90 Mn 2 W 50 Cr 45 T 105 Cr 1 T 105 Cr 1 Mn 60 T 55 Cr 70 T 55 Si 2 Mn 90 Mo 33 T 50 Cr 2 V 23 T 60 Ni 1 T 30 Ni 4 Cr 1 T 55 Ni 2 Cr 65 Mo 30 T 33 W 9 Cr 3 V 38 T 35 Cr 5 Mo V 1 T 35 Cr 5 Mo W 1 V 30 T 75 W 18 Co 6 Cr 4 V 1 Mo 75 T 83 Mo W 6 Cr 4 V 2 T 55 W 14 Cr 3 V 45 T 16 Ni 85 Cr 60 T 10 Cr 5 Mo 75 V 23
Optional Source: IS 1871, 1965.
a
%C
Steel designation
TABLE 1-21 Chemical composition of tool steels
0.10–0.35 0.10–0.30 0.10–0.30 0.10–0.30 0.10–0.35 0.10–0.35 0.10–0.35 0.10–0.35 0.10–0.35 0.10–0.35 0.10–0.35 0.10–0.35 0.10–0.35 0.10–0.35 0.10–0.35 1.50–2.00 0.10–0.35 0.10–0.65 0.10–0.35 0.10–0.35 0.10–0.35 0.80–1.20 0.80–1.20 0.10–0.35 0.10–0.35 0.20–0.35 0.10–0.35 0.10–0.35
% Si 0.25–0.50 0.20–0.35 0.20–0.35 0.20–0.35 0.50–0.80 0.50–0.80 0.50–0.80 0.25–0.50 0.25–0.50 0.90–1.30 0.25–0.50 1.25–1.75 0.20–0.40 0.40–0.80 0.60–0.80 0.80–1.00 0.50–0.80 0.50–0.80 0.40–0.70 0.50–0.80 0.20–0.40 0.25–0.50 0.25–0.50 0.20–0.40 0.20–0.40 0.20–0.40 0.60–1.00 0.25–0.50
% Mn
0.90–1.20 0.30 max 1.10–1.40 0.50–0.80 2.80–3.30 4.75–5.25 4.75–5.25 4.00–4.50 3.75–4.50 2.80–3.30 0.40–0.80 4.75–5.25
11.0–13.0 11.0–13.0 0.90–1.30 0.40–0.80 0.30–0.60 1.00–1.60 1.00–1.60 0.60–0.80
0.30–0.70
% Cr
0.20–0.30 0.25 max
0.12–0.20a 0.15–0.30
0.25 maxa
0.25–0.40
0.25–0.50 1.00–1.20 0.20–0.40 1.50–1.50 1.75–2.00 0.30–0.60 0.15–0.30
1.20–1.60 1.20–1.60 0.50–1.00 5.50–6.50
0.50–1.00
0.25–0.35
0.80 maxa 0.80 maxa
%V
0.80 maxa 0.80 maxa
%Mo
1.20–1.60 17.50–19.00 5.50–6.50 13.00–15.00
8.0–10.0
1.25–1.75 1.25–1.75 0.40–0.60
3.50–4.20
%W
0.60–1.00
1.00–1.50 3.90–4.30 1.25–1.75
% Ni
5.00–6.00
% Co
PROPERTIES OF ENGINEERING MATERIALS
1.42
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
640 2170 710 1827
Annealed 7758C (14258F) Tempered 2058C (4008F)
Annealed 8008C (14758F) Tempered 2058C (4008F)
Annealed 7908C (14508F) Tempered 2058C (4008F)
Annealed 8308C (15258F) Tempered 2058C (4008F)
Annealed 8458C (15508F)b Tempered 5658C (10508F)
P-20
S-1
S-5
S-7
A-8
724 2344
690 2068
103 265
93 315
105 340
100 300
100 270
95 290
103 290
100 295
kpsi
448 1550
380 1448
440 1930
414 1896
517 1413
380 1793
510 1793
365 1724
MPa
65 225
55 210
64 280
60 275
75 205
55 260
74 260
53 250
kpsi
Yield strength, sy
25 9
25 7
25 5
24 4
17 10
25 4
25 5
25 9
97 RB 52 RC
95 RR 58 RC
96 RB 59 RC
96 RB 57.5 RC
97 RB 52 RC
93 RB 54 RC
96 RB 54 RC
96 RB 55 RC
Elongation, % Hardness
1010
940
1850
1725
1600
1700
925 870
1575
855
1550
1575
855 845
1850
8F
1010
8C
Hardening temperature
air
air
oil
oil
oil
oil
oil
air
7
244
206
250
20
12
28
14
Quenched media J
Medium to high
152c
5
Medium
Medium
Medium
184c
180
Medium to high
Medium
High
Medium to high
Machinability
15
9
21
10
ft-lbf
Impact strength Charpy V-notch
b
Single temper, oil-quenched unless otherwise indicated. Double temper, air-quenched. c Charpy impact unnotched tests made on longitudinal specimens of small cross-sectional bar stock. The heat treatments listed were to develop nominal mechanical properties for hardened and tempered materials for test purposes only and may not be suitable for some applications. Source: Machine Design, 1981 Materials Reference Issue, Penton/IPC, Cleveland, Ohio, Vol. 53, No. 6 (March 19, 1981).
a
665 2000
Annealed 7758C (14258F)a Tempered 3158C (6008F)
L-6 690 1860
710 2000
Annealed 7758C (14258F) Tempered 2058C (4008F)
L-2
690 2034
Annealed 8708C (16008F) Tempered 5408C (10008F)
b
MPa
H-11
AISI steel designation Conditiona
Tensile strength, st
TABLE 1-22 Mechanical properties of some tool steels
PROPERTIES OF ENGINEERING MATERIALS
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
1.43
90.7–91.5
94.5–95.2
Fine Coarse
Medium
84WC-16Co
72WC-8TiC11.5TaC-8.5Co
Medium 64TiC-28WC2TaC-2Cr3 C2 -4.0Co
6.6
12.6
13.9 13.9
14.6 14.5
15.0 15.0 15.0
0.24
0.45
0.50 0.50
0.53 0.52
0.54 0.54 0.54
Mg/m3 lb/in3
Density
690
1720
3380 2900
3100 2760
1790 2000 2210
MPa
100
250
490 420
450 400
260 290 320
kpsi
4340
5170
4070 3860
5170 4000
5930 5450 5170
MPa
630
750
590 560
750 580
860 790 750
kpsi
Compressive strength, sc
1720
970 700
1590 1170
2550 1930 1450
MPa
250
140 100
230 170
370 280 210
kpsi
Proportional limit compressive strength, sp
558
524 524
620 552
614 648 641
GPa
81
76 76
90 80
89 94 93
Mpsi
Modulus of elasticity, E
1860
1340
1450 1520
MPa
270
195
210 220
kpsi
Tensile strength, st
0.90
3.05 2.83
1.69 2.03
1.02 1.36 1.36
J
8
27 25
15 18
9 12 12
in-lbf
Impact strength
– 50
88
– 112
– 100 121
W/m K
Thermal conductivity
–
5.8
– 5.8
– 5.2
4.3 4.3 4.3
2008C
–
7.0
– 7.0
– –
5.9 5.4 5.6
3.2
– 3.2
– 2.9
2.4 2.4 2.4
10008C 4008F
–
3.8
– 3.8
– –
3.3 3.0 3.0
18008F
Coefficient of linear expansion, lm/m8C at lin/in8F at
Source: Metals Handbook Desk Edition, ASM International 1985, Materials Park, OH 44073-0002 (formerly the American Society for Metals, Metals Park, OH 44073, 1985).
89 86.0–87.5
90.7–91.3 87.4–88.2
Fine Coarse
90WC-10Co
92.5–93.1 91.7–92.2 90.5–91.5
Fine Medium Coarse
Grain size
94WC-6Co
Nominal composition
Brinell Hardness HB
Transverse strength, sb
TABLE 1-23 Properties of representative cobalt-bonded cemented carbides PROPERTIES OF ENGINEERING MATERIALS
1.44
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
PROPERTIES OF ENGINEERING MATERIALS PROPERTIES OF ENGINEERING MATERIALS
1.45
TABLE 1-24 Typical uses of tool steel Steel designation
Type
T 140 W 4 Cr 50 T 133 T 118 T 70
Cold-Work Water-Hardening Steels Fast finishing tool steel Finishing tools with light feeds, marking tools, etc. Carbon tool steels Engraving tools, files, razors, shaping and wood-working tools, heading and press tools, drills, punches, chisels,shear blades, vice jaws, etc.
T 215 Cr 12 T 160 Cr 12 T 110 W 2 Cr 1 T 105 W 2 Cr 60 V 25 T 90 Mn 2 W 50 Cr 45 T 105 Cr 1 T 105 Cr 1 M 60 T 85 T 75 T 65 T 55 Cr 70 T 55 Si 2 Mn 90 Mo 33 T 50 Cr 1 V 23 T 60 Ni 1 T 30 Ni 4 Cr 1 T 55 Ni 2 Cr 65 Mo 3 T 33, W 9 Cr 3 V 38 T 35 Cr 5 Mo V 1 T 35 Cr 5 Mo W 1 V 30 T 75 W 18 Co 6 Cr 4 V 1 Mo 75 T 83 Mo W 6 Cr 4 V 2 T 55 W 14 Cr 3 V 45a T 16 Ni 80 Cr 60 T 10 Cr 5 bee 75 V 23
Typical uses
Cold-Work Oil and Air-Hardening Steels High-carbon highPress tools, drawing and cutter dies, shear blade thread chromium tool steels rollers. etc. Nondeforming tool steels Engraving tools, press tools, gauge, tape, dies, drills, hard reamers, milling cutters, broaches, cold punches, knives. etc. Carbon-chromium tool steels
Lathe centers, knurling tools, press tools Die blocks, garden and agricultural tools, etc.
Carbon tool steels Shock-resisting tool steels
Pneumatic chisels, rivet shape, shear blades, heavy-duty punches, scarfing tools, and other tools under high shock
Nickel-chromemolybdenum tool steels
Cold and heavy duty punches, trimming dies, scarfing tools, pneumatic chisels, etc.
Hot-Work and High-Speed Steel Hot-work tool steels Castings dies for light alloys, dies for extrusion, stamping, and forging High-speed tool steels
Drills, reamers, broaches, form cutters, milling cutters, deep-hole drills, slitting saws, high-speed and heavy-cut tools
Low-Carbon Mold Steel Carburizing steels After case hardening for molds for plastic materials
a May also be used as hot-work steel. Source: IS 1871, 1965.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
PROPERTIES OF ENGINEERING MATERIALS
1.46
CHAPTER ONE
TABLE 1-25 Mechanical properties of carbon and alloy steel bars for the production of machine parts Ultimate tensile strength, sut Steel designation
MPa##
kpsi
MPa‡
kpsi
14 C 4 (C 14) 20 C 8 (C 20) 30 C 8 (C 30) 40 C 8 (C 40) 45 C 8 (C 45) 55 C 8 (C 55 Mn 75) 65 C 6 (C 65) 14 C 14 S 14 (14 Mn 1 S 14) 11 C 10 S 25 (13 S 25)
363 432 490 569 618 706 736 432 363
52.6 62.6 71.1 82.5 89.6 102.4 106.7 62.6 52.6
441 510 588 667 696
64.0 74.0 85.3 96.7 101.0
530 481
76.8 69.7
Notes: a , area of cross section; Source: IS 2073, 1970.
##
Minimum (gauge length ffi pffiffiffiffielongation = 5.65 a ), % 26 24 21 18 15 13 10 22 23
minimum; ‡ maximum; steel designations in parentheses are old designations
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website. 1473–1123 1473–1123 1473–1123 1473–1123 1473–1123 1473–1123 1473–1123 1473–1123 1473–1123 1473–1123 1473–1123 1473–1123 1473–1123 1473–1123 1473–1123 1473–1123 1473–1123 1473–1123
1473–1123 1473–1123 1473–1123 1473–1123 1473–1123 1473–1123 1473–1123 1373–1123 1373–1123
30 C 8 (C 30) 35 C 8 (C 25 Mn 74) 40 C 8 (C 40) 50 C 8 (C 50) 55 C 8 (C 55 Ma 75) 40 C 10 Si 8 (40 S 18) 40 C 15 Si 2 (40 Mn 2 S 12) 220 C 15 (20 Mn 2) 27 C 15 (27 Mn 2) 37 C 15 (37 Mn 2) 40 Cr 4 (40 Cr 1) 35 Mn 6 Mo 3 (35 Mn 2 Mo 28) 35 Mn 6 Mo 4 (35 Mn 2 Mo 45) 40 Cr 4 Mo 3 (40 Cr 1 Mo 28) 40 Ni 14 (40 Ni 3) 35 Ni Cr 2 Mo (35 Ni Cr Mo 60) 40 Ni 6 Cr 4 Mo 2 (40 Ni Cr Mo 15) 40 Ni 6 Cr 4 Mo 3 (40 Ni 2 Cr 1 Mo 28)
15 Ni Cr 1 Mo 12 (31 Ni 3 Cr 65 Mo 55) 30 Ni 13 Cr 5 (30 Ni 4 Cr 1) 15 Cr 13 Mo 6 (15 Cr 3 Mo 55) 25 Cr 13 Mo 6 (25 Cr 3 Mo 55) 40 Cr 13 Mo 10 V 2 (40 Cr 3 Mo 1 V 20) 40 Cr 7 Al 10 Mo 2 (40 Cr 2 Al 1 Mo 18) 55 Cr 70) 105 Cr 4 (105 Cr 1) 105 Cr 1 Mn 60
a Stabilization 823 K (5508C). Source: IS 1871, 1965.
K
Designation
1200–850 1200–850 1200–850 1200–850 1200–850 1200–850 1200–850 1100–850 1100–850
1200–850 1200–850 1200–850 1200–850 1200–850 1200–850 1200–850 1200–850 1200–850 1200–850 1200–850 1200–850 1200–850 1200–850 1200–850 1200–850 1200–850 1200–850
8C
Hot-working temperature
800–850
850–880 830–860
1123–1153 1103–1133
1073–1123
860–890 850–880 830–860 810–840 810–840 830–860 840–870 860–900 840–880 850–870 850–880
8C
1133–1163 1123–1153 1103–1133 1083–1113 1083–1113 1103–1113 1113–1143 1133–1173 1133–1153 1123–1143 1123–1153
K
Normalizing
TABLE 1-26 Recommended hardening and tempering treatment for carbon and alloy steels
1103–1123 1083–1103 1163–1183 1163–1183 1173–1213 1123–1173 1073–1123 1093–1133 1073–1113
1133–1163 1113–1153 1103–1133 1083–1113 1083–1113 1103–1133 1113–1143 1133–1173 1133–1153 1123–1143 1123–1153 1113–1133 1113–1133 1123–1153 1103–1133 1093–1123 1103–1123 1103–1123
K
830–850 810–820 890–910 890–910 900–940 850–900 800–850 820–860 800–840
860–890 840–880 830–860 810–840 810–840 830–860 840–870 860–900 840–880 850–870 850–880 840–860 840–860 850–880 830–860 820–850 820–850 830–850
8C
Hardening 8C
Oil Air or oil Oil Oil Oil Oil Oil Water or oil Water or oil
Water or oil Water or oil Water or oil Oil Oil Oil Oil Water or oil Water or oil Water or oil Oil Water or oil Oil Oil Oil Water or oil Oil Oil
K
Quenching
823–923 803–1033 823–933 823–933 823–933 823–933 823–933 823–933 823–933 823–933 823–933 823–933 823–933 823–933 823–933 823–933 823–933 823–933 or 423–473 (depending on hardness required) 933 523 823–973a 823–973a 843–923 823–973 773–973 >423 403–453
K
Tempering
660 250 550–700a 550–700a 570–650 550–700 500–700 >150 in oil 130–180
550–660 530–760 550–660 550–660 550–660 550–660 550–660 550–660 550–660 550–660 550–660 550–660 550–660 550–660 550–660 550–660 550–660 550–660 or 150–200
8C
PROPERTIES OF ENGINEERING MATERIALS
1.47
11.2 12.7 12.5
11.6 13.6 13.6 12.6
14.3 14.1 14.1
13.0
5.8 6.3
0.85 1.11 1.28
0.83 1.16 0.93 0.98
0.52 0.75 1.24
0.75
0.90 0.89
0.37 0.6
0.95
1.47 0.99 0.64
0.38 0.60 0.67 0.6
0.57 0.54 0.94
Si
Mo Mo Mo Mo
1.46 Mo 1.20 Mo
3.65 Ni
2.4 Mo 2.0 Mo 3.0 Mo
0.96 1.10 0.96 0.87
Other
Mill liner Plate
Round
Round Round Round
Round Round Plate Plate
Round Round Keel block
Form
100 100
25
25 25 25
25 25 25 50
25 25 100
mm
4 4
1
1 1 1
1 1 1 2
1 1 4
in
Section
340 330a
655
600 745 600
695 560 510 435a
440 450 330a
MPa
49 48a
181
150
3.5 Ni manganese steel 295 43
95
6 Mn-1 Mo alloys 325 47 –
220 183 235
2 Mo manganese steels 370 54 365 53 440 64
87 108 87
163 185 188 –
1 Mo manganese steels 101 345 50 81 400 58 74 365 53 63a – –
kpsi
Brinell hardness, HB – – 245
MPa
Yield strength, sy (0.2% offset)
Plain manganese steels 64 – – 65 360 52 48a – –
kpsi
Tensile strength, st
2 1a
36
15.5 34.5 7.5
30 13 11 4a
14.5 4 1a
Elongation in 50 mm, %
– –
26
13 27 10
29 15 16 –
– – –
Reduction in area, %
b
a
Properties converted from transverse bend tests on 6 13 mm (14 12 in) bars cut from castings and broken by center loading across 25 mm (1 in) span. Charpy V-notch. Source: Metals Handbook Desk Edition, ASM International, 1985, Materials Park, OH 44073-0002 (formerly the American Society for Metals, Metals Park, OH 44073, 1985).
Mn
C
Composition, %
TABLE 1-27 Mechanical properties of some as-cast austenitic manganese steels
ft-lbf
9 –
–
– – –
– – 72 –
7 –
–
– – –
– – 53 –
– – – – 3.4 2.5
J
Impact strength Charpy b
PROPERTIES OF ENGINEERING MATERIALS
1.48
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
179 278 331 250
290
303 283
186
-T 43 -T 6 240.0 -F 295.0 -T 4 -T 6 319.0 -F -T 6 C 355.0 -T6 356.0 -T 6
A 390.0 -F -T 6 520.0 -T4 A 535.0 -F
-T 6
C 355.0 -T61 A 356.0 -T 61
-F
-O -H 14 -H 18 -T 3 -T 6 -O -T 451 -T 651 -O -T 451 -O -T 351 -T 3 -T 86
355.0
513.0
1100
2014 -T 4. -T 6. 2017 -T 4. 2024 -T 4.
2011
414 448 235 221 250 186 250 269 228
201.0
90 125 165 380 395 185 425 482 180 425 185 470 485 515
MPa
Alloy no.
13 18 24 55 57 27 62 70 26 62 27 68 70 75
27
44 41
42
26 40 48 36
60 65 34 32 36 27 26 39 33
kpsi
Ultimate tensile strength, sut
35 115 150 295 270 95 290 415 70 275 75 325 345 490
110
234 207
185
179 278 179 124
255 379 200 110 165 124 164 200 164
MPa
5 17 22 43 39 14 42 60 10 40 11 47 50 71
16
34 30
27
26 40 26 18
37 55 29 16 24 18 24 29 24
kpsi
Tensile yield strengthd , syt
117
248 221
185
17
36 32
27
27
25
172
186
56 30 17 25 19 25
kpsi
386 207 117 172 131 172
MPa
Compressive yield strength,d syc
60 75 90 220 235 125 260 290 125 260 125 285 280 310
152
221 193
235
234
9 11 13 32 34 18 38 42 18 38 18 41 40 45
22
32 28
34
34
26
26 31 22 29
179 217 152 200 179
42
kpsi
290
MPa
Shear strength, s
35 50 60 125 125 90 140 125 90 125 90 140 140 125
69
97 90
69
90 55
59
48 52 69 76
MPa
5 7 9 18 18 13 20 18 13 18 13 20 20 18
10
14 13
10
13 8
8.5
7 7.5 10 11
kpsi
Endurance limit in reversed bending, sfb
23 32 44 95 97 45 105 135 45 105 47 120 120 135
60
90 90
90
100 140 75 65
130 90 60 75 70 80 85 70
9.5
11.9
10.5
10.0 10.0 10.7 10.7
10.5
Wrought alloys
72
Permanent mold casting
65
82
72
69 69 74 74
Sand casting alloys
Brinell hardness Modulus of 4.9 kN e (500 kgf) load elasticity, E on 10-mm ball, HB GPa Mpsi
35 9 5 15 17 18 20 13 22 22 20 20 18 6
7.0
3.0 10.0
D B B
D B B B
– C D D
E D D A
1
3 3
3
4 4 1 1
1 1 3 2 2 3 3 3 3
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website. D C C D
D D D
A A A D
Machiability Gas
C C
A A A D
1
3 2
3
2 2 1 1
<1.0 <1.0 16 9.0
4.0
4 4 4 3 3 3 3 3 3
Corrosion resistance
17 8 1.0 8.5 5.0 2.0 2.0 5.0 3.5
(2 in), %
Elongation in 50 mm
TABLE 1-28 Mechanical properties, fabrication characteristics,a and typical uses of some aluminum alloysb
D B B C
D B B
A A A D
5
2 2
2
2 2 5 4
2 2 4 2 2 2 2 2 2
Arc
Welding
D B B B
B B B
B A A D
Resistance
Truck wheels, screw-machine products, aircraft structure
Truck frames, aircraft structures
Screw machine products
Sheet metal work, spun holloware, fin stock
Machine-tool parts, aircraft wheels, pump parts, marine hardware, valve bodies Ornamental hardware and architectural fittings
Timing gears, impellers, compressor and aircraft and missile components requiring high strength
Aircraft fittings and components, levers, brackets
Air compressor fitting, crankcase, gear housing Cylinder heads, impellers, timing gears, water jackets, meter parts Automotive engine blocks, pulleys, brake shoes, pumps
Crankcases, spring hangers, housing, wheels
Aircraft structural components
Uses
PROPERTIES OF ENGINEERING MATERIALS
1.49
110
150 200 180 240 285 195
260 290 125
310 90 240 230 570
-O
-H 14 -H 18 -O -H 34 -H 38 -O
-H 34 -H 38 -O
-T 6 -O -T 6 -O -T 6
3003
45 13 35 38 83
38 42 18
22 29 26 35 41 28
16
kpsi
275 50 215 105 505
215 255 55
145 185 70 200 250 90
40
MPa
40 7 31 15 73
31 37 8
21 27 10 29 36 13
6
kpsi
Tensile yield strengthd , syt MPa
kpsi
205 70 150 150 330
145 165 80
95 110 110 125 145 125
75
MPa
30 10 22 22 48
21 24 12
14 16 16 18 21 18
11
kpsi
Shear strength, s
95 55 70 115 160
125 140 60
60 70 95 105 110 110
50
MPa
14 8 10 17 23
18 20 9
9 10 14 15 16 16
7
kpsi
Endurance limit in reversed bending, sfb
95 25 73 60 150
68 77 30
40 55 45 63 77 47
28
ball, HB
Brinell hardness 4.9 kN (500 kgf) load on 10-mm GPa
Mpsi
Modulus of elasticity,e E
12 17 11
12
10 7 25
8 4 20 9 5 25
30
(2 in), %
Elongation in 50 mm
B A A – C
A A B
A A A A A A
A
Corrosion resistance
C D B
C
C C D
D D D C C D
E
A A A D D
A A A
A A B B B A
A
Machiability Gas
A A A C C
A A A
A A A A A A
A
Arc
Welding
A A A B B
A A B
A A B A A B
B
Resistance
Fin stock, cladding alloy Aircraft and other structures
Pipe, railing, furniture, architectural extrusions
Heavy-duty structures requiring good corrosion resistance, truck and marine, railroad car, furniture, pipeline applications
Hydraulic tube, appliances, bus body sheet, sheet metal work, welded structures, boat sheet
Trailer panel sheet, storage tanks, sheet metal works
Pressure vessels, storage tanks, heat-exchanger tubes, chemical equipments, cooking utensils
Uses
b
For ratings of characteristics, 1 is the best and 5 is the poorest of the alloys listed. Ratings A through D are relative ratings in decreasing order of merit. Average of tensile and hardness values determined by tests on standard 12.5-mm (12-in) diameter test specimens. c Endurance limits on 500 million cycles of completely reversed stresses using rotating beam-type machine and specimen. d At 0.2% offset. e Average of tension and compression moduli. Key: Temper designations: F, as cast; O, annealed; Hxx, strain hardened; T1, cooled from an elevated temperature shaping process and naturally aged; T2, cooled from an elevated temperature shaping process, cold-worked and naturally aged; T3, solution heat-treated and cold worked and naturally aged; T4, solution heat-treated and naturally aged; T5, cooled from an elevated temperature shaping process and artificially aged; T6, solution heat-treated and artificially aged; T7, solution heat-treated and stabilized; T8, solution heat-treated, cold-worked and artificially aged; TX 51, stressrelieved by stretching. Source: ASM Metals Handbook, American Society for Metals, Metals Park, Ohio, 1988.
a
7075
6063
6061
5052
3004
MPa
Alloy no.
Ultimate tensile strength, sut
Compressive yield strength,d syc
TABLE 1-28 Mechanical properties, fabrication characteristics,a and typical uses of some aluminum alloysb ðCont:Þ
PROPERTIES OF ENGINEERING MATERIALS
1.50
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
0.15–0.35
0.2–0.4
A-4
A-5
A-6
A-8
A-9
A-10 LM10 0.1
A-11 LM11 4.0–5.0
A-12 LM12 9.0–10.5
BS 1490 9.0–11.5 (LM12) A-13 LM 13 0.5–1.3
4223
5230
4600
4250
4635
5500
2280
2585
4685
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
A13 (special)
LM9
LM8
LM6
LM5
LM4
LM2
0.1
0.1
0.1
0.1
2.0–4.0
0.7–2.5
0.8–1.5
0.1
9.5–11.0
0.2–0.6
0.3–0.8
0.1
3.0–6.0
0.15
0.3
0.15
A-2
6.0–8.0
4520
LM1
A-1
Mg
2447
Cu
IS old
IS new
BS
Designation
11.0–13.0
2.5
2.0
0.25
0.25
10.0–13.0
3.5 –6.0
10.0–13.0
0.3
4.0–6.0
9.0–11.15
2.0–4.0
Si
0.8
1.0
1.0
0.5
Ni
0.1
0.1
0.1
0.1
0.5
0.6
Ti
0.8
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.5
1.2
0.2 0.2
0.05–0.3 0.05
0.2 0.2 0.3
0.1 0.1
0.2
0.1
0.05
0.2 0.2
0.1
0.2
0.2
0.1
0.1
0.2
0.05
0.2
0.2
0.3
0.3
Pb
0.1
0.2
Ti + Nb
0.2
2.0–4.0 0.2
Zn
2.0–3.0 0.1
0.5
0.5
0.1
0.1
0.3–0.7 0.1
0.5
0.5
0.3–0.7 0.1
0.3–0.7 0.3
0.5
0.6
Mn
0.5–1.5 0.6
0.25
0.35
0.6
0.6
0.6
0.6
0.8
1.0
1.0
Fe
Chemical composition, percent
TABLE 1-29 Chemical composition and mechanical properties of cast aluminum alloy5;6;7
0.10
0.1
0.10
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.20
0.20
Sn
R
E
D
N
I
A
M
E
R
Al
MPa
WP
Fullly heattreated WP
170 247 170 278 139 201
124 154 As cast 124 147 As cast 139 154 As cast 139 170 As cast 162 185 As cast 124 162 162 232 147 185 232 278 Precipitation- 170 treated 231 Solution278 treated 307 Solution216 treated 263 WP 278 309 Fully heattreated WP 278 As cast
Condition
24.6 35.9 24.6 40.3 20.2 29.2
40.3
18.0 22.3 18.0 21.3 20.2 22.3 20.2 24.6 23.5 26.9 18.0 23.5 23.5 33.6 21.3 26.9 33.6 40.3 24.6 36.4 40.3 44.8 31.3 38.1 40.3 44.8
kpsi
Tensile strength, st
2 1.5 2 8 12 7 13 4 9
2 2 3 5 5 7 2 3 2.5 5 1 2
65 65
100 100
100
Sand-cast Chill-cast Sand-cast Chill-cast Sand-cast Chill-cast
Sand-cast Chill-cast Sand-cast Chill-cast Sand-cast Chill-cast
Sand-cast Chill-cast Sand-cast Chill-cast Sand-cast Chill-cast Sand-cast Chill-cast Sand-cast Chill-cast Sand-cast Chill-cast
Brinell Elongation hardness, Test piece % HB
Mechanical properties
PROPERTIES OF ENGINEERING MATERIALS
1.51
A-18 LM18 0.1
A-22 LM22 2.8–3.8
A-24 LM24 3.0–4.0
4300
4223
4420
0.1
0.05
0.1
0.4–0.6
1.2–1.7
Mg
7.5–9.5
4.0–6.0
4.5–6.0
4.5–5.5
0.6
Si
1.3
0.7
0.6
0.6
0.6
Fe
0.5
Zn
0.1
0.25
0.5
1.0 3.0
0.15
0.1
0.1
1.8–2.3 0.1
Ni
0.3–0.6 0.15
0.5
0.5
0.6
Mn
Chemical composition, percent
0.2
0.2
0.2
0.2
0.2
0.2
0.2
Ti
Ti + Nb
0.3
0.05
0.1
0.05 0.1
0.05
Pb
Notes: IS: Sp-1-1967 Specification of Aluminum Alloy Castings and BS 1490 (from LM 1 to LM 24) are same. Refer to both Indian Standards and British Standards; ** refer to British Standards, BS 1490 only. Source IS Sp-1, 1967.
A-16 LM16 1.0–1.5
4225
A-14 (special)
A-14 LM 14 3.5–4.5
Cu
2285
BS
IS old
IS new
Designation
TABLE 1-29 Chemical composition and mechanical properties of cast aluminum alloy (Cont.)
0.1 0.20
0.05
0.05
0.05
0.05
Sn
Al 216 278 185 232
MPa
As cast
177
170 201 232 263 232 278 116 139 Solution (W)- 247 treated WP WP WP WP As cast
Fully heattreated WP Solutiontreated
Condition
25.7
24.6 29.2 33.6 38.1 33.8 40.3 16.8 20.2 35.9
31.3 40.3 26.9 33.6
kpsi
Tensile strength, st
1.5
3 4 8
2 3
100 100 75 75
Chill-cast
Sand-cast Chill-cast Sand-cast Chill-cast Sand-cast Chill-cast Sand-cast Chill-cast Chill-cast
Sand-cast Chill-cast Sand-cast Chill-cast
Brinell Elongation hardness, Test piece % HB
Mechanical properties
PROPERTIES OF ENGINEERING MATERIALS
1.52
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
99 min
99.5 min
19000
19500
Remainder
Remainder
Remainder
Remainder
Remainder
Remainder
Remainder
Remainder
24345
24534
43000
46000
52000
53000
54300
63400
19600
Al
Designation
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
0.1
0.1
0.1
0.1
0.1
0.1
3.5–4.7
3.8–5.0
0.05
0.1
Cu
0.4–0.9
4.0–4.9
2.8–4.0
1.7–2.6
0.2
0.2
0.4–1.2
0.2–0.8
–
0.2
Mg
0.7
0.7
0.4
0.7
Fe
0.3–0.7
0.4
0.6
0.6
0.6
0.7
0.5
0.5
10.0–13.0 0.6
4.5– 6.00 0.6
0.2–0.7
0.5–1.2
0.3
0.5
Si
0.3
0.5–1.0
0.5
0.5
0.5
0.5
0.4–1.2
0.3–1.2
0.05
0.1
Mn
Chemical composition, %
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.1
0.1
Zn
0.2
0.2
0.2
0.2
–
–
0.3
0.3*
–
–
Ti or others
0.1
0.25
0.25
0.25
–
–
–
0.3*
–
–
Cr
O Ma O Ma O W
Ma O Ma O Ma O Ma
W
Ma O
WP
Ma O Ma O Ma Ma O W
Condition
10 (0.4) 10 (0.4) 75 (3.0) 150 (6.0) – 10 (0.4) 25 (1.0) 75 (3.0) 150 (6.0) – – – 10 (0.4) 75 (3.0) 150 (6.0) – – – – – – – 50 (2.0) – – – All sizes – – 150 (6.0)
Over mm (in)
Size
10 (0.4) 75 (3.0) 150 (6.0) 200 (8.0) 10 (0.4) 25 (1.0) 75 (3.0) 150 (6.0) 200 (8.0) – – 10 (0.4) 75 (3.0) 150 (6.0) 200 (8.0) 15 (0.6) 15 (0.6) 15 (0.6) 15 (0.6) 150 (6.0) 50 (2.0) 150 (6.0) 150 (6.0) 150 (6.0) 150 (6.0) 150 (6.0) – – 150 (6.0) 200 (8.0)
Up to and including mm (in) 2.9 2.6 2.5 13 25.4 32.6 34.1 34.1 32.6 54.4 58.0 60.9 58.7 55.1 13.0 25.0 31.9 34.1 34.1 32.6 – – – – 10.2 14.5 14.5 – 18.9 18.1 – – 11.6 11.6
18 17 90 175 225 235 235 225 375 400 420 405 380 90 175# 220 235 235 225 – – – – 70 100 100 – 130 125 – – 80 80
kpsi
20
MPa
0.2% proof stress, min, sp
TABLE 1-30 Chemical composition and mechanical properties of wrought aluminum and aluminum alloys for general engineering purposes6
65 110# 65 100# 65 150 240# 375 385 385 375 430 460 480 460 430 150 240 375 385 385 375 90 130# 100 150# 160 240# 215 200 260# 275 350 110 130# 140 125
MPa
9.4 16.0 9.4 14.5 9.4 21.6 34.8 54.4 55.8 55.8 54.4 62.4 66.7 69.6 66.7 62.4 21.0 34.8 54.4 55.8 55.8 54.4 13.0 18.9 14.5 21.8 23.2 34.8 31.2 29.0 37.7 40.0 50.8 16.0 18.8 20.3 18.1
kpsi
Tensile strength, min, st
18 25 23 25 23 12 12 10 10 8 8 6 6 6 6 6 12 12 10 10 8 8 18 18 10 12 14 18 14 14 10 11 13 13 18 14 13
Elongation, % (min)
PROPERTIES OF ENGINEERING MATERIALS
1.53
Remainder
Remainder
Remainder
Remainder
64423
64430
65032
74530
1.54
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website. 0.4–1.2
0.5–1.3
Mg
0.2
0.4–0.8
0.6–1.3
0.7–1.3
Si
1.0– 1. 5 0.4–0.8
0.15–0.4 0.7–1.2
0.1
0.5–1.0
Cu
0.7
0.7
0.6
0.8
Fe
0.2–0.7
0.2–0.8
0.4–1.0
1.0
Mn
4–5
0.2
1.0
Zn
0.2
0.2
0.2
Ti or others
0.2
0.15–0.35
0.25
Cr
WP
WP
W (Naturally aged for 30 days) WP
WP
Ma O W
All sizes – 6 (0.24) 15 (0.6)
6 (0.24)
– 150 (6.0) – – – – All sizes – – 150 (6.0) – 5 (0.2) 75 (3.0) 150 (6.0) All sizes – – 150 (6.0) – 150 (6.0) – 6 (0.24) 75 (3.0)
P
–
–
Condition
Ma O W WP Ma O W WP
Over mm (in)
Size
6 (0.24) 75 (3.0) 150 (6.0) – 6 (0.24) 75 (3.0) 150 (6.0)
15 (0.6) 150 (6.0) 200 (8.0) 150 (6.0) 200 (8.0) 6 (0.24) 75 (3.0) 150 (6.0)
23 (0.12) 12 (0.5) 150 (6.0) 200 (8.0) – – – – – – 150 (6.0) 200 (8.0) 5 (0.2) 75 (3.0) 150 (6.0) 200 (8.0)
Up to and including mm (in)
245 26245 – 430 455 430
140 110 150 130 – 125# 155 265 80 – 120 100 255 270 270 240 50 115# 115 100 235 200 220 230 220
MPa
35.5 37.7 35.5 – 62.4 66.6 62.4
20.3 16.0 21.8 18.9 – 18.1 22.5 38.4 11.6 – 18.1 14.5 37.0 39.2 39.2 34.8 7.3 16.7 22.5 14.5 34.0 29.0 31.4 33.6 31.4
kpsi
0.2% proof stress, min, sp
285 310 290 290# 500 530 500
170 150 185 150 120 215# 265 330 110 150# 185 170 295 310 295 280 110 150# 185 170 280 245 255 275 265
MPa
41.3 45.0 42.1 42.1 72.5 78.9 72.5
24.7 21.8 26.8 21.8 17.4 31.2 38.4 47.9 16.0 21.8 26.8 24.7 42.8 45.0 42.8 40.6 16 21.8 26.8 24.7 40.6 35.5 37.0 40.0 38.4
kpsi
Tensile strength, min, st
7 7 7 10 6 6 6
7 7 7 6 10 15 13 7 12 16 14 12 7 7 7 6 12 16 14 12 7 6 9 9 9
Elongation, % (min)
Properties in M (as-cast) temper are only typical values and are given for information only. Key: # Maximum, M – as-cast condition; R – stress-relieved only; P – precipitation-treated; W – solution-treated, WP – solution-treated and precipitation treated; WPS – fully heat treated plus stabilization. Source: IS 733, 1983.
a
76528
Al
Designation
Chemical composition, %
TABLE 1-30 Chemical composition and mechanical properties of wrought aluminum and aluminum alloys for general engineering purposes (Cont.)
PROPERTIES OF ENGINEERING MATERIALS
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
84 Cu, 10 Sn, 2.5 Pb, 3.5 Ni 324 80 Cu, 10 Sn, 10 Pb 241
81 Cu, 4 Ni, 4 Fe, 11 AI
C 86300
C 87200
C 87500
C 90500
C 92200
C 96300
C 97800
C 99400
C 16200
C 17000
Silicon bronze
Silicon brass
Tin bronze
Leaded tin bronze
Leaded tin nickel bronze C 92900 High-leaded tin bronze C 93700
C 95500
Manganese bronze
Aluminum bronze
Copper-nickel
Nickel-silver
Special alloy
Cadmium copper
Beryllium copper
Leaded beryllium copper C 17300
88 Cu, 6 Sn, 1.5 Pb, 4.5 Zn 276
C 85400
99.5 Cu, 1.9 Be, 0.4 Pb
99.5 Cu, 1.7 Be, 0.20 Co
99.0 Cu, 1.0 Cd
90.4 Cu, 2.2 Ni, 2.0 Fe, 1.2 Al, 1.2 Si, 3.0 Zn
47 35
40
45
67
55
115
34
37
kpsi
179 124
138
152
207
172
572
83
117
MPa
26 18
20
22
30
25
83
12
17
kpsi
517 30
55
25
15
10
12–10
20 20
30
25
21
30
15
25
469-1479 68-200 172-1255 25-182 48-3
483-1310 70-190 221-1172 32-170 45-3
Wrought Alloys 7–69 57–1
234–372 34–54
207
379
241–689 35–100 48–476
455–545 66–79
55
75
Elongation in 50 mm (2 in), %
Cast Alloys 30
Tensile yieldb strength, syt
689–827 100–120 303–469 44–68
310
462
379
793
234
66 Cu, 5 Sn, 2 Pb, 25 Ni, 2 Zn379
79.3 Cu, 20 Ni, 0.7 Fe
88 Cu, 10 Sn, 2 Zn
82 Cu, 14 Zn, 4 Si
89 Cu min, 4 Si
63 Cu, 25 Zn, 3 Fe, 6 Al, 3 Mn
67 Cu, 1 Sn, 3 Pb, 29 Zn
255
Leaded yellow brass
85 Cu, 5 Sn, 5 Pb, 5 Zn
C 83600
Leaded red brass
MPa
UNS no. Composition,a
Alloy name
Ultimate tensile strength, sut
TABLE 1-31 Typical mechanical properties and uses of some copper alloys4
125–170
RB 98 RB 77
50
20
20
50
60
130d d
15
50
192–230d
150
40 80
42
30
50
80 60
65
115 134d 75
40
8
225d
85
80
84
50
60
Brinell, Machin4.9 kN (500-kgf Rockwell,a ability load) HB R ratingc
Hardness
Trolley wire, spring contacts, railbands, high-strength transmission lines, switch gear components, and ware-guide Bellows, diaphragms, fuse clips, fasteners, lock washers, springs, valves, welding equipment, bourdon tubing Bellows, diaphragms, fuse clips, fasteners, lock washers, springs, valves, welding equipment, switch parts, roll pins
Valves, flanges, pipe fittings, pump castings, water pump impellers and housings, small gears, ornamental fittings General-purpose yellow casting alloy, furniture hardware, radiator fittings, ship trimmings, clocks, battery clamps, valves, and fittings Extra-heavy-duty, high-strength alloy, large valve stems, gears, cams, slow heavy-load bearings, screw-down nuts, hydraulic cylinder parts Bearings, bells, impellers, pump and valve components, marine fittings, corrosion-resistant castings Bearings, gears, impeller, rocker arms, valve stems, small boat propellers Bearings, bushings, piston rings, valve components, steam fittings, gears Valves, fittings and pressure-containing parts for use up to 2888C (5508F), bolts, nuts, gears, pump piston, expansion joints Gears, wear plates, cams, guides Bearings for high-speed and heavy-pressure pumps, impellers, pressure-tight castings Valve guides and seats in aircraft engines, bushings, rolling mill bearings, washers, chemical plant equipment, chains, hooks, marine propellers, gears, worms Marine fittings, sleeves and seawater corrosion resistance parts Valves and valve seats, musical instrument components, sanitary and ornamental hardware Valve stems, marine uses, propeller wheels, mining equipment gears
Typical uses
PROPERTIES OF ENGINEERING MATERIALS
1.55
85.0 Cu, 15.0 Zn
C 22000
C 23000
C 26000
C 26800
C 28000
C 34000 C 36000 C 37700 C 44300 C 44400 C 44500 C 46400 to C 46700 C 51000
Commercial bronze (90%) Red brass (85%)
Cartridge brass (70%)
Yellow brass
Muntz metal
Medium leaded brass Free-cutting brass Forging brass Admiralty brass
C 71500
C 77000
Copper-nickel (30%)
Nickel-silver 55-18
1.56
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website. kpsi
69–427 10–62
69–400 10–58
MPa
15–60 18–45 20 18–22
172–455 25–66
103–414 124–310 138 124–152
145–379 21–55
138–483 20–70
207–414 30–60
60—145 186–621 27–90
54–75
65–84
56–145 145–483 21–70
47–140 131–552 19–80
55–88
47–88 49–68 52 48–55
54–74
46–128 97–427 14–62
44–130 76–448 11–65
39–105 69–434 10–63
37–72
34–64
kpsi
Tensile yieldb strength, syt
40–2
45–15
33–19
63–3
64–2
50–17
60–7 53–18 45 65–60
52–10
65–3
66–3
55–3
50–3
45–4
Elongation in 50 mm (2 in), %
90-82RB
30
20
30
30
20
30
70 100 80 30
85RF –80RB 40
80RB –64RF 30
82RB –64RF 30
77RB –55RF 30
70RB –53RF 20
64RB –46RF 20
Brinell, Machin4.9 kN (500-kgf Rockwell,a ability load) HB R ratingc
Hardness
Aircraft turn buckle barrels, balls, bolts, nuts, marine hardware, propeller, rivets, shafts, valve stems, welding rods, condenser plate Bellows, bourdon tubing, clutch disks, cotter pins, diaphragms, fasteners, lock washers, chemical hardware, textile machinery Hydraulic pressure liners, anchor screws, bolts, cap screws, machine screws, nuts, rivets, U-bolts, electrical conduits, welding rod Clutch disks, pump rods, shafting, balls, valve stems and bodies Condensers, condenser plates, distiller tubing, evaporator and heat-exchanger tubing, ferrules, salt water piping Optical goods, springs, and resistance wires
Coins, medals, bullet jackets, fuse caps, primers, jewellery base for gold plate Etching bronze, grillwork, screen cloth, lipstick cases, marine hardware, screws, rivets Conduit, sockets, fasteners, fire extinguishers, condenser and heat-exchanger tubing, radiator cores Radiator cores and tanks, flashlight shells, lamp fixtures, fasteners, locks, hinges, ammunition components, rivets Radiator cores and tanks, flashlight shells, lamp fixtures, fasteners, locks, hinges, rivets Architectural, large nuts and bolts, brazing rods, condenser plates, heat-exchanger and condenser tubing, hot forgings Butts, gears, nuts, rivets, screws, dials, engravings Gears, pinions, automatic high-speed screws, machine parts Forgings and pressings of all kinds Ferrules, condenser, evaporator and heat-exchanger tubing, distiller tubing
Typical uses
a b c Nominal composition. unless otherwise noted. All yield strengths are calculated by 0.5 percent offset method. Machinability rating expressed as a percentage of the machinability of d e 29.4 kN (3000 kgf) load. RA , RB , RF , Rockwell numbers in A, B, F scales. C 36000, free-cutting brass, based on 100 percent for C 36000. Note: Values tabulated are average values of test specimens. Source: ASM Metals Handbook, American Society for Metals, Metals Park., Ohio, 1988.
55.0 Cu, 27.0 Zn, 18.0 Ni 414–1000
58.5 Cu, 1.4 Fe, 39.0 Zn, 448– 579 1.0 Sn, 0. 1 Mn 70.0 Cu, 30.0 Ni 372–517
C 67500
Manganese bronze–A
386– 1000
324– 965
379–607
324–607 338–469 359 331–379
372– 510
317–883
303–896
97.0 Cu, 3.0 Si
95.0 Cu. 5.0 Sn, trace P
60.0 Cu, 39.25 Zn, 0.75 Sn
65.0 Cu. 1.0 Pb, 34.0 Zn 61.5 Cu, 3.0 Pb, 35.5 Zn 59.0 Cu, 2.0 Pb, 39.0 Zn 71.0 Cu, 28.0 Zn, 1.0 Sn
60.0 Cu, 41.0 Zn
65.0 Cu, 35.0 Zn
70.0 Cu, 30.0 Zn
269–724
255–496
234–441
MPa
High-silicon bronze -A C 65500
Phosphor bronze (5% A)
Naval brass
90.0 Cu, 10.0 Zn
C 21000
Guilding brass (95%)
95.0 Cu, 5.0 Zn
UNS no. Composition,a
Alloy name
Ultimate tensile strength, sut
TABLE 1-31 Typical mechanical properties and uses of some copper alloys (Cont.)
PROPERTIES OF ENGINEERING MATERIALS
6.0 7.6 9.0
6.0 4.3 9.0
3.0 8.5
3.0
AZ63A–T6 AZ81A–T4 AZ92A–T6 HK3IA–T6 HZ32A–T5 ZE41A–T5 ZH62A–T5 ZK61A–T6
AM60A–F AS41A–Fc AZ91A and B–Fc
AZ31B and C–Fd AZ80A–T5 HM31A–F ZK60A–T5
AZ3IB–H24 HK31A–H24 HM21A–T8 0.6
1.2
0.13 0.35 0.13
0.15 0.13 0.10
3.0 2.0
3.0
0.7
1.8
3.3 3.3
Mn(a) Th
1.0
5.5
1.0 0.5
2.1 4.2 5.7 6.0
3.0 0.7 2.0
Zn
0.6
0.45a
0.7 0.7 0.7 0.7 0.7
Zr
kpsi
MPa kpsi
1.0 Si
290 255 235
260 380 290 365
205 220 230
b
180 160 130
26 23 19
14 35 27 36
Extruded Bars and Shapes 38 200 29 97 55 275 40 240 42 230 33 185 53 305 44 250 Sheets and Plates 42 220 32 33 200 39 34 170 25
17 22 24
115 150 165
Die Castings 30 115 17 32 150 22 33 150 22
19 12 22 15 13 20 25 28
MPa kpsi
Compressive
Bearing
325 285 270
345 405
230
360 305 450 275 255 350 340
47 41 39
50 59
33
52 44 65 40 37 51 49
MPa kpsi
Yield strength, sy
Sand and Permanent Mold Castings 275 40 130 19 130 275 40 83 12 83 275 40 150 22 150 220 32 105 15 105 185 27 90 13 90 1.2 RE 205 30 140 20 140 240 35 170 25 170 310 45 195 28 195
Others MPa
Tensile
Minimum. 4.9-kN (500-kgf) load, 10-mm ball. c A and B are identical except that 0.30% max residual Cu is allowable in AZ91B. d Properties of B and C are identical, but AZ31C contains 0. 15 min Mn, 0.1 max Cu, and 0.03 max Ni. Source: ASM Metals Handbook, American Society for Metals, Metals Park, Ohio, 1988.
a
Al
Alloy
Composition
Tensile strength, st
TABLE 1-32 Nominal compositions and typical room-temperature mechanical properties of some magnesium alloys
15 9 11
15 7 10 11
6 4 3
5 15 3 8 4 3.5 4 10
160 140 125
130 165 150 180
140
145 125 150 145 140 160 165 180
23 20 18
19 24 22 26
20
21 18 22 21 20 23 24 26
73 68
88
49 82
63
73 55 84 55 57 62 70 70
Shear strength, Elongation s Brinellb in 50 mm hardness, (2 in), % MPa kpsi HB
PROPERTIES OF ENGINEERING MATERIALS
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
1.57
1.58
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website. 1290 830 1620 1460 1280 525
187 120 235 212 185 76
134 204 100
52 107
352 740 924 1410 690
65–110 55–75 95 50 90–120 185 75–90 70–95 145–180 140–170 91 98 185 19.6 162 70 75–100 80–120 140–175 105
kpsi
448–758 379–517 655 345 620–825 1275 517–621 483–655 1000–1240 965–1172 624 672 1276 135 1120 485 512–690 552–827 965–1207 725
MPa
1050 715 1310 1220 795 515
462 965 635
220 365
276–690 103–207 621 110 205–415 910 172–345 205–380 862–1172 724–1034 210 307 910 117 635 455 207–414 241–621 896–1172 260
152 104 190 177 115 75
67 140 92
32 53
40–100 15–30 90 16 30–60 132 25–50 30–50 125–170 105–150 30.4 45 132 17.0 92 66 30–60 35–90 130–170 38
b
10 8 15 14 25 35
52 17 27
14.5 56
35–10 35–40 4 50 55–35 28 60–35 45–25 5–2 30–20 49 46 28 102 24 9 60–30 50–25 5–2 56.0
Tensile yield strength, syt (0.2% offset) Elongation in 50 mm MPa kpsi (2 in), %
Values shown represent usual ranges for common sections. Values tabulated are approximate average ones. Source: ASM Metals Handbook, American Society for Metals, Metals Park, Ohio, 1988.
a
Waspaloy
Unitemp AF2–IDA Rene 95
Hastelloy B Udimet 700
Hastelloy G-3
Hastelloy W
Incoloy 800
Inconel X-750
Inconel 825
Monel K-500 Inconel 600
Monel 400
Durnickel 301
Bar, 218C (708F) 8708C (16008F) Bar, forging 218C (708F) 6508C (12008F) Bar, 218C (708F) 8708C (16008F)
Bar, cold-drawn Annealed Strip, cold-drawn Annealed Bar, cold-drawn, annealed Age-hardened Bar, annealed, 218C (708F) Wire. annealed Spring temper Bar, drawn, age-hardened Rod, annealed As rolled Bar, annealed, 218C (708F) 8718C (16008F) Bar, 218C (708F) 7608C (14008F) Bar, annealed Hot-finished Wire, spring temper Bar, solution-treated 4258C (8008 F) 9008C (16508F) Sheet, 6.4–19 mm (0.25–0.75 in) thick Bar, cast Bar, 218C (708F) 8708C (16008F)
Nickel 200
Nickel 270
Condition
Name of alloy
Ultimate tensile strength, sut
TABLE 1-33 Mechanical propertiesa of some nickel alloys4
87RB
24RC 75RB 86RB
95RB 35BB 35RC
53
Hardness number J
39
ft-lbf
Impact strength notched Charpy
Jet engines, missiles, turbines where hightemperature strength and corrosion resistance are important
Superalloy, jet engine, turbine, furnace
Springs Corrosion-resistant parts Jet engines, missiles, etc. where corrosion resistance and high strength are required
High strength and hardness, corrosion resistance Corrosion-resistant parts
Corrosion-resistant parts
Typical uses
PROPERTIES OF ENGINEERING MATERIALS
365 255 434
317
207 214
53 37 63
46
30 31
Zinc Foundry Alloys
Die-Casting Alloys
110–120 90–100 110–125
110–125
105–120 105–125
82 91
Tensile yield strength, syt Brinell hardness, MPa kpsi HB
3–6 8–11 1
2
1–3 1–3
10 7 14
Elongation in 50 mm (2 in), %
58 65 54
J
43 48 40
ft-lbf
Impact strength Charpy
Die-cast. Note: Values given are average values. Source: Machine Design, 1981 Materials Reference Issue, Penton/IPC, Cleveland, Ohio, Vol. 53, No. 6 (March 19, 1981); SAE Handbook, pp. 11–123, 1981.
a
58–64 45–47 65
400–440 310–324 448
ZA-27 Sand-cast Sand-cast Die-cast
41 47 47
57
283 324 283
kpsi
393
Z 33520 Z 35531
MPa
40–45 45–50
903 925a 903
UNS
276–310 310–345
AG 40 A AC 41 A
Alloy 3 Alloy 5 Alloy 7
SAE
Ultimate tensile strength, sut
ZA-12 Sand-cast Permanent Mold Die-cast
ASTM
Grade
Designation of alloy
TABLE 1-34 Mechanical properties of some zinc casting alloys8
47 56
MPa
6.8 8.2
kpsi
Fatigue endurance limit, sf , 108 cycles
PROPERTIES OF ENGINEERING MATERIALS
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
1.59
550
R 58010
900 1030 1170 1170
Ti-6AI-4Vb Ti-6Al-6V-2Sn Ti-10V-2Fe-3Ala;c Ti-6A1-2Sn-4Zr6Moe Ti-13V-11Cr-3Al Ti-3Al-8V-6Cr4Mo-4Zrb;c 900
790 690 1000
Ti-5Al-2.5Sn Ti-5Al-2.5Sn-ELI Ti-2.25Al-11Sn5Zr-IMo
130
130 150 170 170
115 100 145
50
830
830 970 1100 1100
760 620 900
480
380
280
170
120
120 140 160 160
110 90 130
70
55
40
25
4
10
19
20
22
24
13.5
24.5
35
10
18e
26a
34RC
30RC
40b
22b
30b
40b
MachiHardness nability
Gas turbine engine casting and rings, aerospace structural members, excellent weldability, pressure vessels, excellent corrosive resistance, jet engine blades and wheels, large bulkhead forgings Most widely used alloy, aircraft gas turbine disks and blades, turbine disks and blades, air frame structural components, gas turbine engines, disks and fan blade, components of compressors Missile applications such as solid rocket motor cases, advanced manned and unmanned airborne systems, springs for airframe applications
Resistance to temperature effect of structures, easy to fabricate, excellent corrosive resistance, cyrogenic applications
Uses
b
At 0.2% offset. Mechanical and other properties given for annealed conditions. c Mechanical and other properties given for solution-treated and aged condition. d Based on a rating of 100 for B1112 resulfurized steel. e Approximate values of annealed bars at room temperature. Source: Metals Handbook, Desk Edition, ASM International, Materials Park, Ohio 44073-0002, 1985 (formerly the American Society for Metals, Metals Park, Ohio, 1985).
a
Beta alloy Beta alloy
R 56260
R 56400
80
450
ASTM Grade 3 (Ti-65A) ASTM Grade 4
Alpha-beta alloy
65
340
ASTM Grade 2
Commercially pure titanium Commercially pure titanium Commercially pure titanium Alpha alloy R 54520 Alpha alloy R 54521 Alpha alloy R 54790
35
ASTM Grade 1
Commercially R 50520 pure titanium
240
Designation
Name of alloy UNS no.
Strength Ultimate Tensile yield impact tensile Charpy strength, sut strength, syt Elongation in 50 mm MPa kpsi MPa kpsi (2 in), % J ft-lbf
TABLE 1-35 Mechanical properties of some wrought titanium alloy4
PROPERTIES OF ENGINEERING MATERIALS
1.60
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
951 827 920
100 94 100
Forged
100 345 95.5 414 94 427 100 455 100 896 95.5 876 99 min 937 99 1103
Density , % MPa
Blended elemental alloy, cold Blended elemental alloy, forged, preforms or vacuum hot pressed Solution treated and aged Hot isostatically pressed
Forged
Processing
120 133.5
138
50 60 62 66 130 127 136 160
kpsi
738 841
910
344 324 338 365 827 786 862 1013
MPa
107 122
132
50 47 49 53 120 114 125 147
kpsi
62 28 60
60d
414d
kpsi
427 193 414
MPa
Fatigue limit notched, sf
83f
55e 45e 61e
76f
50e 40e 56e
pffiffiffiffi pffiffiffiffi MPA m kpsi in
Fracture toughness, KIC
114 117 116
103 103
GPa
16.5 17 16.8
15 15
Mpsi
Elastic modulus, E
5 11.5
15
23 10 8 12–18 4.9
5 15
8 25
39
30 20 14 15-40 7.6
35 14
ReducElonga- tion in tion, area, % %
b
0.12% oxygen. 0.2% oxygen. c Consolidated at 811 MPa (58.8 tpsi), 0.5 s dwell in low-carbon steel fluid dies. Preheat temperature was 9408C (17258F) held at temperature 0.75 h. Powder was vacuum filled into fluid dies following cold static outgassing for 24 h. d Kt ¼ 3. e Ke . f Ktc . Source: Metals Handbook, Desk Edition, ASM International, Materials Park, Ohio 44073-0002, 1985 (formerly the American Society for Metals, Metals Park, Ohio, 1985).
a
Plasma rotating electrode processed Ti-6Al-4V Powder metallurgy Ti-6Al-4Va
Wrought commercial purity titanium Grade II Sponge commercial puritya Powder metallurgy titanium Wrought Ti-6Al-4V (AMS 4298) Powder metallurgy Ti-6Al-4V
Name of alloy
Ultimate tensile Yield strength, sut strength, sy
TABLE 1-35A Mechanical properties of powder metallurgy and wrought titanium and titanium-base alloys
PROPERTIES OF ENGINEERING MATERIALS
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
1.61
4350
4930
5367
54520 30 8 MPa at 1008C
54820 34
54915 37
1.62
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
7610 2756
55111 52.5 19 MPa at 1008C
33
4790
1450
37
36
32
28
5380
5200
4640
4060
12.5 1810
MPa psi
Shear strength, s
28 10
13
16
14
12
10 30% at 1008C 12
8
30–60 135–200 at 1008C (2128F)
60
130
25
18
10
55
2
20 30 MPa 4358 at at 7 7 2 10 2 10
4–6
30
3.2–4.5
48
1495
624
464
8.1
10.30
4.3
3.2
Fatigue strength at 107 cycles, sf Hardness Elongation number, in 50 mm (2 in), % MPa psi HB
2.9 MPa for 1000 h 0.45 MPa for 1000 h at 1008C (2128F)
2.1 MPa for 1000 h
3.5 MPa for 1000 h 1.1 MPa for 1000 h at 1008C (2128F) 0.790 MPa for 0.01% per day
19.5 MPa-1000 h 7.5 MPa-1000 h at 1008C 28 MPa for 100 h 3% per year at 2.07 MPa
Creep
For general purpose; most popular of all lead alloys
Wiping solder for joining lead pipes and cable sheaths; for automobile radiator cores and heating units
Low melting-point chemical process applications, used as solder for the jobs lead alloyed with tin, bismuth cadmium, indium forms alloys with low melting point. Some of these are fusible alloys, used in automotive devices, fire extinguishers, sprinkler heads.
Uses
Note: Values tabulated are average values obtained from standard test specimens. Source: Metals Handbook, Desk Edition, ASM International, Materials Park, Ohio 44073-0002, 1985 (formerly the American Society for Metals, Metals Park, Ohio, 1985).
4700
55030 32.4
870
4060
54321 28
6 MPa at 1008C
10297
53620 71
10
4002
9570 870–1160
7978
MPa psi
52901 27.6
psi
1740–1885 55 5076 261 at 2128F 10152 66 2320–2755 6–8
MPa
Yield strength, sy
50042 12-13 50132 35 1.8 MPa at 1008C 50750 70 51120 16-19
UNS No.
Ultimate tensile strength, sut
TABLE 1-36 Mechanical properties of some lead alloys
PROPERTIES OF ENGINEERING MATERIALS
Sand-cast (cast-on) Sand-cast (separately cast) Chill-cast
Elongation percent, min
8.0 12.0
5.0
196 (28.4) 216 (31.3)
Class II gun metalc
3.0
186 (27.0)f 206 (29.9)f
Class I phosphora bronze b
4.0
2.0
137 (19.9) 157 (22.8)
Class III leaded
4.0
2.0
157 (22.8) 176 (25.5)
Class IV bronzed
Railway, bronze
12.0
8.0
186 (27.0) 206 (29.9)
Class V leadede gun metal
20.0 20.0
12.0
490 (71.0) 539 (78.2)
Grade II
15.0
647 (93.8) 647 (93.8)
Grade I
20.0
446 (64.7) 196 (28.4)
Grade III
Aluminum bronze
b
Brinell hardness, HB for phosphor bronzes: 60 for sand cast (cast-on) test pieces and 65 for sand-cast (separately cast) test pieces. Used for locomotive side valves, oil-lubricated side rod, pony pivot bushes, steel axle box, oil-lubricated connecting rod. c Used for fusible plugs, relief valves, whistle valve body, stuffing box, nonferrous boxes, oil-lubricated connecting rod, large end bearings. d Used for locomotive grease lubricated non-ferrous axle boxes, side rod and motion bushes. e Used for castings for carriage and wagon bearings shells. f sut given in parentheses are the units in US Customary Units (kpsi).
a
Sand-cast (cast-on) Sand-cast (separately cast) Chill-cast
Ultimate strength, min sut , MPa (kpsi)
Property
Mode of casting test pieces
TABLE 1-37 Mechanical properties of bronzes
12.0
216 (31.3) 226 (32.8) 245 (35.5) 8.0
Tin bronze
20.0
309 (44.8)
Silicon bronze
PROPERTIES OF ENGINEERING MATERIALS
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
1.63
1.27–3.00 1.30–1.40 1.20–1.30 1.06 1.12–2.00 0.97–1.25 0.98–1.35
Material
Duprene Koroseal (hard) Koroseal (soft) Plioform (plastic) Rubberb (hard) Rubberc (soft) Rubber (linings) 88 758 14 103
MPa
12.8 110.0 2.0 15.1
kpsi 1.4–28 14–62 3.4–17 28–34 7–69 3.5
MPa 0.2–4.0 2.0–9.0 0.6–2.6 4.0–5.0 1.0–10.0 0.6
kpsi
Tensile strength, st
b
Sclerscope. Coefficient of linear expansion from 0 to 333 K (608C ¼ 1408F) is 35 106 . c Coefficient of linear expansion from 0 to 333 K (608C ¼ 1408F) is 36 106 .
a
Specific gravity
Compressive strength, sc
TABLE 1-38 Mechanical properties of rubber and rubber-like materials
48 62 62 103
MPa
7.0 9.0 9.0 15.1
kpsi
Transverse strength, sb
50a /80
15–95 80–100 30–80
Hardness shore durometer
422 373 361 344–393 328–367 339–367 361
K
149 100 88 71–120 55–71 65–94 88
8C
300 212 190 160–250 130–160 150–200 190
8F
Maximum temperature
Softens Softens Softens
Stiffens slightly Softens Softens
Effect of heat
PROPERTIES OF ENGINEERING MATERIALS
1.64
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
0.5–2.8
21.0
15.2–47.5 2.2–6.9
8–12
6.5–7.0
55–69
69–138
3–48
55–83
45–48
Cellulosic (cellulose acetate)
Epoxy resin (glass-fiber filler)
Fluoroplastic group
Nylon
Phenolic (general purpose)
0.5–7.0
10–20
8–10
60–200
100–300
4.0
40–60
7.6–9.0
1.2–2.9
2.8–3.6
1.5–3.1
Acetal
5.4–10.5 5–50
2.3
37–72
5–20
Acrylics
6
kpsi
41
MPa
0.5–1.6
8.8
J
1.1–1.3
0.18–0.42
3.04
0.4–0.5
1.4–4.5
4.1
2.7–41
Excellent
Good
Available
Available
Heat
Good
Excellent
High
Fair
Fair
0.04-0.13
0.05
With steel
Coefficient of friction,
Chemical With plastic
Resistance to
114–120 R Poor
50-80 D
100–110 M
122 R
80–94 M
92–100 M
103
Hardness, Rockwell
0.30–0.35 70–95 E
1.0–3.3
3
2–30
1.0–7.3
0.4–1.2
6.5
ft-lbf
Izod impact strength
0.065–0.40 1.4–9.9
0.4–0.52
0.22–0.45
0.33
Modulus of Elongation elasticity, E in 50 mm (2 in), % GPa Mpsi
ABS (general purpose
Name of plastic
Tensile strength, sut
TABLE 1-39 Properties of some thermoplastics
Wall plates, industrial switch gears, handles for appliances, housing for vacuum cleaners, automatic transparent rings, housing for thermostats, small motors, small tools, communication instruments, components for aircraft and computers, used as synthetic rubber for tires
Structural, mechanical components such as gears, fan blades, washing-machine agitator, valve, pump, impeller, pistons, and cams
Gears, bearings, tracks, bushings, rollerskate wheels, chute liners
Filament wound structures, aircraft pressure bottles, oil storage tanks and highperformance tubing, reinforced glass-fiber composites
Decorative knobs, handles, camera cases, pipes, pipe fittings, eyeglass frames, phone and flashlight cases, helmets, pumps and power tool housings, transparent parts for safety glasses, lens signs, refrigerator shelves and snowmobile windshields, extruded and cast film, and sheet for packaging
Mechanical gears, cams, pistons, rollers, valves, fan blades, washing-machine agitators, bushings, bearings, chute liners, wear strips, and structural components
Light-duty mechanical knobs, pipe fittings, automobile-steering wheels, eyeglass frames, tool handles, camera cases, optical and transparent parts for safety glasses, snowmobile windshields, refrigerator shelves
Light-duty mechanical and decorative eyeglass frames, automobile-steering wheels, knobs, handles, camera cases, battery cases, phone and flashlight cases, helmets, housing for power tools, pumps
Application
PROPERTIES OF ENGINEERING MATERIALS
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
1.65
55–159
4–38
Polyester
Polyethylene
10.2
Polysulfone
1.66
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website. 50–100
10–500
20–1000
1–300
<1
25
0.7–6.2
0.1–1.2
1.9–11.7
2.3-5.9
2-5
0.7–2.6
0.3–23
0.5–1.9
0.25–17
2.7-21.7 2-16
2.7-6.8
ft-lbf
0.36
0.1–0.9
1.8
0.7–3.0
1.3
0.5–2.2
0.014–0.18 0.7–27.1 0.5–20
0.28–1.7
0.34-0.86
0.35-0.93
J
Izod impact strength
120 R
50–110 R
10–65 R
65–100 M
88–120 M
62- 91 M
115-119 R 106-108 L
Hardness, Rockwell
Excellent
Excellent
Excellent
Excellent
Good
Heat
Excellent
Poor
Excellent
Fair
Fair
0.12 0.22
0.52
0.12 0.13
0.39
With steel
Coefficient of friction,
Chemical With plastic
Resistance to
Source: Machine Design, 1981 Materials Reference Issue, Penton/IPC, Cleveland, Ohio. Vol. 53, No. 6 (March 19, 1981).
70
5–14.5
Polypropylene 34–100
0.6–5.5
8–23
3.6–50
25–345
Polyimide
10-125
2.4–6.4
Modulus of Elongation elasticity, E in 50 mm (2 in), % GPa Mpsi
7.0-17.3 4–60
kpsi
8-16
48-123
MPa
Polycarborate 55-110
Phenylene oxide
Name of plastic
Tensile strength, sut
TABLE 1-39 Properties of some thermoplastics (Cont.)
Mechanical cams, pistons, washing machine agitators, fan blades, valves, pump impellers, gears, bushings, chute liners, bearings, tracks, wear strips and other wearresisting parts Pipe fittings, battery cases, knobs, camera and handle cases, trim moldings, eyeglass frames, tool handles, housings for pumps, power tools, phone cases, transparent parts, safety glasses, lenses, snowmobile windshields, signs, refrigerator shelves, and vandal-resistant glazing
Decorative knobs, automobile steering wheels, eyeglass frames, tool handles, camera cases, phone and flashlight cases, housings for pump and power tools
Flashlight and phone cases, housing for pumps, power tools and other appliances, gears, bushings, bearings, tracks, rollerskate wheels and chute liners
Molded polyimides are used in jet-engine vane bushings, high load bearings for business machines and computer printout terminals, gear pump gaskets, hydraulic valve seals, multilayer printed-circuit boards, tubes for oil-well exploration
Mechanical gears, pistons, rollers, pump impellers, fan blades, rotor housing for pumps, power tools, phone cases, transparent parts for safety glasses, lenses and snowmobile windshields, refrigerator shelves, and flashlight cases
Small housing for power tools, pumps, small appliances, hollow shapes for telephones, flashlight cases, helmets, TV cabinets, cable protective cover, bush-bar sleeves, scrubbervane mist eliminators
Application
PROPERTIES OF ENGINEERING MATERIALS
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
21–66
28–69
34–69
28–138
34–62
3–45
Alkyd
Allylic
Amino
Epoxy
Phenolics
Silicone
0.4–6.5
5–9
4–20
5–1 0
4–10
3–9.5
kpsi
7–17
2.5–21
9–16
2–21
GPa
1.0–2.5
0.35–3.04
1.3–2.4
0.3–3.0
Mpsi
Modulus of elasticity, E
80–90 M
70–95 E
80–120 M
110–120 M
103–120 M
98E–99 M
Hardness, Rockwell
15
1–10
0.3–0.9
Elongation in 50 mm (2 in), %
0.5–14
0.4–1.5
0.3–41
0.4–24
0.3–16
0.5–14
J
0.3–10
0.26–1.05
0.2–30
0.27–18
0.2–12
0.3–10
ft-lbf
Impact strength Izod
Fair
Chemical
Excellent Excellent
Excellent Good
Excellent Excellent
Excellent Excellent
Excellent Excellent
Good
Heat
Resistance
Source: Machine Design, 1981 Materials Reference Issue, Penton/IPC, Cleveland, Ohio. Vol. 53, No. 6 (March 19, 1981).
MPa
Name
Tensile strength, st
TABLE 1-40 Properties of some thermosets8
Refrigerator equipment, used as a washing, sealant, laminating parts, injection mold silicon rubber
Handles for appliances, automotive power-brake systems and industrial terminal strips, industrial switch gear, housing for vacuum cleaners, handles for pots and pans, automotive transmission rings, and electrical components, thermostat housings, housing for small motors and heavy-duty electrical components, small power tools, electrical components for aircraft and computers, pump housings, synthetic rubber for tires and other mechanical rubber goods, dry ingredients for brake linings, clutch facings and other friction products
Filament wound structures, aircraft pressure bottles, oil storage tank, used with various reinforcements, glass fibers, asbestos, cotton, synthetic fibers, and metallic foils, imprinted circuits, graphite and carbon-fiber-reinforced laminates used for radomes, pressure vessels, and aircraft components requiring high modulus and light weight, potting and encapsulating electrical and electronic components ranging from miniature coils and switches to large motors and generators
Electrical wiring devices and switch housings, toaster and other appliance bases, push buttons, knobs, piano keys and camera parts, dinnerware, utensil handles, food-service trays, housings for electric shavers and mixers, metal blocks, connector plugs, automotive and aircraft ignition parts, coil forms, used as baking enamel coatings, particle-board binders, paper and textile treatment materials
Switch gear and TV components, insulators, circuit boards, and housings, tubing and aircraft parts, copper-clad laminate for high-performance printed-circuit boards
Military switch gear, electrical terminal strips, and relay housings and bases, automotive ignition parts, radio and TV components, switch gear, and small-appliance housings
Application
PROPERTIES OF ENGINEERING MATERIALS
1.67
Polycarbonate Marblette [annealed 72 h at 356 K (1818F)]
Bakelite ERL 2774 (50 phthalic anhydride) Hysole 4290: at 296.9 K (758F) at 405.2 K (2708F) Armstrong C-6
Araldite 6020 at 299.7 K (808F) Araldite 6020 at 277.4 K (408F) Araldite B
Methyl methacrylate (unplasticized) Polystyrene Cellulose nitrate Castolite Kriston CR-39 (Columbia resin) Epoxy Resin: Araldite CN-501
38.0–62.0 5.55–9.0 88.2–117.2
3.0
20.6
7.0
48.3
22.4 3.25 at 296.3 K at 748F 34.5 5.0
8.0
55.2
28.3 4.12 at 299 K at 778F
4.0
27.6
82.7 1.38
12.0 0.20
10.0
8.25 7.0–6.0
56.5 48.0–41.4
68.9
7.55
7.0
12.5–17.0
10.0
kpsi
51.7
48.2
69.0
Cataline (61-893)
8.68
60.0
MPa
Glass
kpsi
MPa
Tensile strength, st
Material
Elastic limit, se
3.45 0.014 3.3 at 294 K 2.55 3.79 –4.13
3.2 at 294 K 3.30 0.036 at 433 K
3.10 at 298 K 3.10
2.4 4.3 3.7 1.7–2.6
2.8
4.2–4.3
69.0
GPa 0.20
Poisson’s ratio,
0.38
500.0 2.0 475 at 708F 370.0 550.0 – 600.0
460 at 708F 478.5 5.2 at 3208F
452.0 at 778F 445.0
0.38 0.41
0.34 0.50
0.38
0.362
0.35
350.0 0.33 623.0 0.35 540.0 250.0–380.0 0.42
400.0
615.0–628.0 0.365
10,000
kpsi
Young’s modulus, E
TABLE 1-41 Optical and mechanical properties of photoelastic material6
10.508 0.245 13.222 at 293.6 K 7.355 14.535
10.30 0.435 at 433 K
60.0 1.4 75.5 at 708F 42.0 83.0
58.75 2.5 at 3208F
59.0
60,5
10.595 10.332
61.5 at 778F 58.0
310 245 182 80 83.5—99
54.290 42.907 31.873 14.010 14.623–17.338
10.770 at 298 K 10.157
880
87
1740–2420
5.59 at 293.6 K 4.00 5.33
4.3
4.83
4.57 at 298 K 4.57
25.40 1.00 4.83 11.90–12.50
91.00
4.83
4.83
220 at 708F 157 210
170
191
180 at 778F 180
1000 39 191 468–492
3582
191
191
lin/fri
Strain fringe value, fs
lbf/in fri lm/fri
154,113
304.724– 423.812 15.236
kN/m fri
Stress fringe value, f
347,000 261,000
328,000 57,000 290,000
320,000 83,000
310,000
305,000
290,000
56,000 135,000 264,000 116,000– 150,000
18,200
226,000– 163,000 27,600– 280,000
fri/m
8810 6626
8333 1428 6291
8145 2080
7796
7672
7350
1428 3423 6750 2994–3838
455
7069–7218
5747–4132
fri/in
Figure of merit, Q ¼ ðE=f Þ
4690
1694
4596
5360
2628
1408–1188
643
2500–4070
1970–1415
fri/m
119
43
16
136
67
36.0–30.0
16.3
63.8–100
5–3.5
fri/in
S ¼ e =f
Little optical and mechanical creep Good stress-optical relationship; susceptible for time edge effect
Used for 2-D and 3-D models
Used for 2-D and 3-D models
Used most commonly for 2-D and 3-D models Used for 2-D and 3-D models
Used most commonly for 2-D and 3-D models Used for 2-D and 3-D models
Used for 2-D and 3-D models
Used for 2-D models; free from time edge effect
Low optical sensitivity Free from time edge effect; used for photoplasticity
Used for 2-dimensional (2-D) and 3dimensional (3-D) models; susceptible for time edge effect
Low optical sensitivity; rarely used
Remarks
PROPERTIES OF ENGINEERING MATERIALS
1.68
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
2.85 102
46.2
31.0
MPa
6.70
4.50
kpsi
Tensile strength, st
0.003– 0.004 75.8 106
0.003
1.72
1.65
GPa
0.425– 0.625 11 103
0.425
250.0
240.0
kpsi
Young’s modulus, E
0.50
0.46
0.467
0.38
0.40
Poisson’s ratio,
0.025
0.158 0.14
0.9
0.5
10.0 1.7
1.752 0.289
0.084
57.6
57.0
483.00
82.00
40.60
431.80
5.84
7.87
19016
3228
1598
17000
230
310
lin/fri
Strain fringe value, fs
lbf/in fri lm/fri
10.087
9.982
kN/m fri
Stress fringe value, f
19,000– 25,000 3032
35,700
170,000
165,000
fri/m
78
4722–694
850
4340
4210
fri/in
Figure of merit, Q ¼ ðE=f Þ
1076
684
893
fri/m
31.6
17.4
47.4
fri/in
S ¼ e =f
Great optical sensitivity; used for model study of body forces
Used for preparation of models in stress wave propagation and models of dam
Good stress-optical relationship; susceptible for time edge effect
Remarks
Sources: K. Lingaiah, Machine Design Data Handbook, Vol. II (SI and Customary Metric Units), Suma Publishers, Bangalore, India, 1986, and K. Lingaiah and B. R. Narayana Iyengar, Machine Design Data Handbook, Vol. I (SI and Customary Metric Units), Suma Publishers, Bangalore, India, 1986.
Gelatin (15% gelatin, 25% glycerine, 60%water)
Hysole 4485
0.17
1.0
6.9
Urethane rubber Hysole 8705 at 26.9 K (758F)
2.70
18.9
Marblette (phenofomaldehyde) Catalin 800 Natural rubber Hard Soft
kpsi
MPa
Material
Elastic limit, se
TABLE 1-41 Optical and mechanical properties of photoelastic material (Cont.)
PROPERTIES OF ENGINEERING MATERIALS
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
1.69
W-Ni-Fe alloy 17.0 W-Ni Fe alloy 18.0 W-Ni-Fe alloy 18.5
2 3 4
0.614 895 0.650 925 0.667 795
0.614 785 130 134 115
114 615 655 690
605
MPa
89 95 100
88
kpsi
Yielda strength, spl
260 350 450
205
MPa
38 51 65
30
kpsi
Proportional limit, spl
275 310 345
275
GPa
40 45 50
40
Mpsi
Modulus of elasticity, E
16 6 3
4 27 RC 29 RC 32 RC
27 RC
Elongation in 50 mm (2 in), % Hardness 3.0 3.0 2.9 2.6
5.4 5.3 5.0
lin/in8F
5.4
lm/m8C
Coefficient of thermal expansion,
Virtually nonmagnetic Slightly magnetic Slightly magnetic Slightly magnetic
Magnetic properties
1.70
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website. 0.4 0.4 0.4 4 0.2–0.4 5 4 0.5 0.001–0.01 0.2 0.2–0.5 0.8
13 0.025–0.25 5 5–13 20.5
103 in
10.2 10.2 10.2 102.0 5–10 127 102
103 mm
7.64 2.43 2.62 1.11 1.49
2.48 2.43 2.46 2.56 1.43–1.75 1.78 3.40
g/cm3
0.283 0.090 0.097 0.041 0.052
0.092 0.090 0.091 0.095 0.053–0.066 0.066 0.126
lb/in3
Density,
2852–4184 689–2067 1378–2067 827 690
3100 4498 5510 2756 1723–3445 1240 2480
MPa
385–600 100–300 200–300 120 100
450 650 800 400 250–500 180 360
kpsi
Tensile strength, st
200 172 138–413 2.8 4
72.5 85 100 415 241–689 310 414
GPa
29 25 20–60 0.4 0.6
10.5 12.3 14.5 60 35–100 45 60
Mpsi
Modulus of elasticity, E
30 3.7 45–50 45–50
6.5 81–90 81–90
2.8 1.5 6.4 2.2
5.0 2.7 11.5 4.0 54
2.8
lin/in8F 5.0
lm/mK
Coefficient of thermal expansion,
60 87 29
7.5
Btu/(ft2 h8F)/in
381 381
1.7 1.7
22400–38080 100–170
13440 19488 6496
1680
W/(m2 K/m)
Thermal conductivity, K
Class 2, 91–94 Class 3, 94–96 Class 4, 96–98
Class 1, 89–91
Tungsten, % by weight
Courtesy: J. E. Ashton, J. C. Halpin, and P. H. Petit, Primer on Composite Materials—Analysis, Technomic Publishing Co., Inc., 750 Summer Street, Stanford, Conn. 06901, 1969.
E glass S glass 970 S glass Boron on tungsten Graphite Beryllium Silicon carbide on tungsten Stainless steel Asbestos Aluminum Polyamide Polyester
Fiber
Typical fiber diameter
TABLE 1-43 Representative properties for fiber reinforcement
a 0.2% offset; RC , Rockwell hardness scale C. Source: Metals Handbook Desk Edition, ASM International, Materials Park, OH 44073-0002 (formerly The American Society for Metals, Metals Park, OH 44073), 1985.
W-Ni-Cu alloy 17.0
kpsi
Ultimate tensile strength, sut
Mg/m3 lb/in3 MPa
1
Classification Class of alloy
Density,
TABLE 1-42 Typical mechanical properties of commercial machinable tungsten alloys
PROPERTIES OF ENGINEERING MATERIALS
Fe
97.7–100
97.7–100
97.7–100
97.4–99.7
97.4–99.7
97.4–99.7
97.0–99.1
97.0–99.1
97.0–99.1
97.0–99.1
97.0–99.1
97.0–99.1
93.8–98.5
93.8–98.5
93.5–98.2
93.5–98.2
93.5–98.2
93.5–98.2
93.1–97.9
93.1–97.9
93.1–97.9
93.1–97.9
93.1–97.0
93.1–97.9
91.4–95.7
91.0–95.4
91.0–95.4
86.0–93.4
MPIF material designationa
F-0000
F-0000
F-0000
F-0005
F-0005
F-0005
F-0008
F-0008
F-0008
F-0008
F-0008
F-0008
FC-0200
FC-0200
FC-0205
FC-0205
FC-0205
FC-0205
FC-0208
PC-0208
FC-0208
FC-0208
FC-0208
FC-0208
FC-0505
FC-0508
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
FC-0508
FC-0808
0.6–1.0
0.6–1.0
0.6–1.0
0.3–0.6
0.6–1.0
0.6–1.0
0.6–1.0
0.6–10
0.6–1.0
0.6–1.0
0.3–0.6
0.3–0.6
0.3–0.6
0.3–0.6
0.3 max
0.3 max
0.6–1.0
0.6–1.0
0.6–1.0
0.6–1.0
0.6–1.0
0.6–1.0
0.3–0.6
0.3–0.6
0.3–0.6
0.3 max
0.3 max
0.3 max
C
6.0–11.0
4.0–6.0
4.0–6.0
4.0–6.0
1.5–3.9
1.5–3.9
1.5–3.9
1.5–3.9
1.5–3.9
1.5–3.9
1.5–3.9
1.5–3.9
1.5–3.9
1.5–3.9
1.5–3.9
1.5–3.9
Cu
Ni
MPIF chemical composition limits and rangesb , %
HT
<6.0
AS AS
6.4–6.8 <6.0
HT
6.0–6.4
AS AS
6.4–6.8 6.0–6.4
AS
HT
AS
HT
6.0–6.4
6.8–7.2
6.8–7.2
6.4–6.8
AS
AS
6.4–6.8
HT
<6.0
AS
HT
AS
6.8–7.2
6.8–7.2
6.4–6.8
6.4–6.8
AS
AS
<6.0 6.8–7.2
HT
AS
HT
AS
HT
AS
HT
AS
AS
AS
6.8–7.2
6.8–7.2
6.4–6.8
6.4–6.8
6.0–6.4
6.0–6.4
6.4–6.8
6.4–6.8
6.0–6.4
7.2–7.6
AS
AS
<6.0 6.8–7.2
Conditionc
MPIF density, , g/cm3
250
515
480
425
455
345
690
550
550
415
295
225
690
425
585
345
255
160
650
395
510
290
400
240
415
220
170
275
205
110
MPa
MPa
kpsi
Yield strength, sy MPa
36
75
70
62
66
50
100
80
80
60
43
33
100
62
85
50
37
23
94
57
74
42
58
35
60
32
25
40
30 26
22
23
–
480
480
395
380
290
655
395
–
330
–
205
655
310
560
260
–
70
70
57
55
42
95
57
–
48
–
30
95
45
81
38
Copper Steel
160
–
195
185
160
170
130
260
210
210
155
110
85
260
160
220
130
95
110 130 130 90 116 90 90 116
30d 30d 38d 19d 25d 24d 27d 29d
–
110
23d
–
70
70 16d
130 13d
90 130
9d 14d
Iron Copper Steel 115 17 60
91
150
38d
130
36d
245
625
40
130
130
22d
275
195
100
24d
110
28d
–
36
150
110
110
14d
250 –
–
110
90
22d
–
19d
90
31d
110
90
155
85 13d
30
57
23
20 23d
205
395
160
140
90
160
15d
110
70 130
6 11d
12d
65
105
80
GPa
–
16
13
13
16
13
19
19
16
16
10.5
10.5
19
19
16
16
19
13
19
19
16
16
13
13
16
16
13
23
19
10.5
7.5
9.5
4.7
4.1
7.5
6.8
3.4
–
–
–
6.1
4.7
6.8
6.1
11
–
–
–
13
–
23
–
–
–
–
6.8
4.7
34
20
4.1
Mpsi J
Modulus of elasticity, E
10d
Steel
180
150
kpsi
Fatigue strength, sf
Iron and Carbon Steel 10 75 11 40
kpsi
Tensile strength, st
TABLE 1-44 Designation, composition and mechanical properties of ferrous powder metallurgy structural steels
5.5
7.0
3.5
3.0
–
–
–
–
–
–
–
4.5
3.5
5.0
4.5
8.0
5.0
2.5
9.5
5.5
17
–
–
–
–
5.0
3.5
25
15
3
ft-lbf
Impact energy
80RH
40RC
<0.5
1.0
55RB
85RB
30RC
<0.5
75RB 65RB
1.0
1.5
60RB
<0.5 1.0
80RB
35RC
70RB
95RB
1.5
<0.5
1.0
<0.5
45RB
35RC <0.5
<0.5
30RC 75RB
3.0
60RB
1.5
30RB
<0.5
7
2.5
30RC
<0.5
25RC 75RB
2.5
65RB
1.5
100RB
50RB
100RB
45RB
20RB
30RB
15RB
10RH
Apparent hardness
<0.5
<0.5
1.0
0.5
2.5
1.5
15
9
2
Elongation in 25 mm (1 in), %
B 426, Grade 3
B 426, Grade 2
B 426. Grade 1
B 310, Class C
B 310, Class B
B 310, Class A
ASTM designation
PROPERTIES OF ENGINEERING MATERIALS
1.71
91.6–98.7
90.2–97.0
FN-0208
FN-0400
1.72
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
0.6–0.9
2.0 max
6.0–8.0
87.1–93.4
AS AS
6.8–7.2 7.2–7.6
655
550
HT
FN-0708(e)
620 1160
AS
–
FN-0705
7.2–7.6
705
6.4–6.8 HT
6.0–8.0
370
2.0 max
AS
0.3–0.6
87.4–93.7
585
490
FN-0705
AS AS
6.8–7.2
640
395
1240
510
770
310
400
FN-0700
6.0–8.0
87.7–94.0
FN-0700
2.0 max
AS
0.3 max
AS
3.0–5.5 7.2–7.6
2.0 max
6.4–6.8
0.6–0.9
89.6–96.4
FN-0408
HT
AS
HT
7.2–7.6
6.4–6.8
AS
AS
340
545 1105
HT
690
HT AS
330
AS
760
HT
6.8–7.2. AS
7.2–7.6
6.4–6.8
345
SS
565
HT
7.2–7.6
3.0–5.5
3.0–5.5
3.0–5.5
1.0–3.0
1.0–3.0
6.8–7.2
255
310
195
205
MPa
95
80
168
90
102
54
85
71
93
57
80
74
112
45
58
49
160
79
100
48
110
50
82
37
45
28
30
kpsi
Tensile strength, st
AS
FN-0405
2.0 max
2.0 max
2.0 max
2.5 max
2.5 max
1.0–3.0
6.4–6.8
AS
AS
FN-0405
0.3–0.6
0.3–0.6
0.3 max
0.6–0.9
0.3–0.6
2.5 max
1.0–3.0
7.2–7.6
6.4–6.8
89.9–96.7
91.9–98.7
FN-0208
0.3–0–6
2.5 max
1.0–3.0
1.0–3.0
FN-0405
91.9–98.7
FN-0205
0.3–0.6
2.5 max
2.5 max
AS
<60
6.4–6.8
91.9–98.7
FN-0205
0.3 max
0.3 max
Conditionc
89.9–96.7
92.2–99.0
FN-0200
9.5–10.5
Ni
FN-0405
92.2–99.0
FN-0200
0.3 max
Cu
MPIF density, , g/cm3
7.2–7.6
87.2–90.5
FC-1000
C
MPIF chemical composition limits and rangesb , %
FN-0400
Fe
MPIF material designationa kpsi
–
30
455
380
895
390
57
60
55
130
260
220
500
250
280
150 80
Nickel Steel 240 35 550
240
195 48
330
Iron Nickel 275 40
160
450
205
310
125
255
42
154
43
94
26
160
68
470
290
1060
295
650
180
Nickel Steel
36
140
250
Iron Nickel 205 30
220
275
130
305
140
225
105
415
50
94
30
88
31
65
23
75 125
–
MPa
38
32
65
36
41
22
34
28
37
23
65
30
45
18
23
20
60
32
40
19
44
20
33
15
18
11
–
kpsi
Fatigue strength, sf
155
1070
345
650
205
605
215
450
160
Nickel Steel
205
Iron Nickel 125 18
–
Iron Copper
MPa
Yield strength, sy
160
145
160
160
115
115
160
145
160
115
160
160
115
115
160
145
160
160
115
115
145
145
115
115
160
115
–
GPa
23
21
23
23
17
17
23
21
23
17
23
23
17
17
23
21
23
23
17
17
21
21
17
17
23
17
–
22
16
27
33
11
12
35
28
22
81
19
41
8.1
14
68
47
24
30
8.1
11
22
24
8.1
14
36
19
–
Mpsi J
Modulus of elasticity, E
TABLE 1-44 Designation, composition and mechanical properties of ferrous powder metallurgy structural steels (Cont.)
16
12
20
24
8
9
26
21
16
6
14
30
6
10
50
35
18
22
6
8
16
18
6
10
50
14
–
ft-lbf
Impact energy
3.0
2.5
1.5
5.0
0.5
2.0
6
4
4.5
1.5
1.5
6.0
0.5
3.0
6.5
6
0.5
3.5
0.5
2.0
1.0
3.5
0.5
3.0
11
4
0.5
Elongation in 25 mm (1 in), %
96RB
88RB
40RC
90RB
24RC
69RB
83RB
72RB
95RB
72RB
44RC
80RB
27RC
63RB
67RB
60RB
47RC
87RB
34RC
62RB
42RC
70RB
32RC
50RB
51RB
38RB
70RF
Apparent hardness
B 484, Grade 3, Class C
B 484, Grade 3, Class B
B 484, Grade 3, Class A
B 484, Grade 2, Class C
B 484, Grade 2, Class B
B 484, Grade 2, Class A
B 484, Grade 1, Class C
B 484, Grade 1, Class B
B 484, Grade 1, Class A
B 222, B439, Grade 3
ASTM designation
PROPERTIES OF ENGINEERING MATERIALS
80.5–91.7
80.1–91.4
70.7–85.0
70.4–84.7
70.0–84.4
FX-1005 (e)
FX-1008 (e)
FX-2000 (e)
FX-2005 (e)
FX-2008 (e)
0.6–1.0
0.3–0.7
0.3 max
0.6–1.0
0.3–0.6
C
15.0–25.0
15.0–25.0
15.0–25.0
8.0–14.9
8.0–14.9
Cu
–
–
–
–
–
Ni
MPIF chemical composition limits and rangesb , %
7.2–7.6
–
7.2–7.6
7.2–7.6
7.2–7.6
MPIF density, , g/cm3
895
585 860
HT
790
HT AS
515
AS
450
HT AS
620
830
HT AS
570
MPa
AS
Condition
c
125
85
115
75
65
130
90
120
83
kpsi
Tensile strength, st kpsi
740
515
655
345
–
775
515
740
107
75
95
50
–
105
75
107
Infiltered Steel 440 64
MPa
Yield strength, sy
–
–
–
–
–
–
–
–
–
MPa
–
–
–
–
–
–
–
–
–
kpsi
Fatigue strength, sf
125
125
125
125
–
135
135
135
135
GPa
18
18
18
18
–
20
20
20
20
6.8
14
8.1
12.9
20
9.5
16.0
9.5
19
Mpsi J
Modulus of elasticity, E
5.0
10
6.0
9.5
15
7.0
12
7.0
14
ft-lbf
Impact energy
80RB 92RC
1.0
30RC
<0.5 <0.5
75RB
60RB
40RC
80RB
35RC
75RB
Apparent hardness
1.5
1.0
60.5
2.6
1.0
4.0
Elongation in 25 mm (1 in), %
B 303, Class C
B 303, Class B
B 303, Class A
ASTM designation
b
Designation listed are nearest comparable designations, ranges and limits may vary slightly between comparable designations. Metal Powder Industries Federation (MPIF) standards require that the total amount of all other elements be less then 2.0%, except that the total amount of other elements must be less than 4.0% infiltered steel. c AS, as sintered; SS, sintered and sized; HT, heat treated, typically austenized at 8708C (16008F), oil quenched and tempered at 2008C (4008F). d Estimated as 38% of tensile strength. e x indicates infiltered steel; f Unnotched Charpy test; RB ¼ hardness Rockwell B scale; RC ¼ hardness Rockwell scale C; RF ¼ hardness Rockwell F scale. Source: Metals Handbook Desk Edition, ASM International, 1985, Materials Park, OH 44073-0002 (formerly The American Society for Metals, Metals Park, OH 44073, 1985).
a
Fe
MPIF material designationa
TABLE 1-44 Designation, composition and mechanical properties of ferrous powder metallurgy structural steels (Cont.)
PROPERTIES OF ENGINEERING MATERIALS
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
1.73
1.74
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
Ti-5Al-3.5Sn Ti-5Al-2.5Sn (EL1) Ti-6Al-4V (EL1)
A 286
Pyromet 538 Nitromic 70 Kromare 5S
347
310S
0.05 1.4
9.5 8.0 9.3
2.0 max
2.0 max
2.0 max
S 30400 0.03 (AISI 304) S 31008 0.03 (AISI 310) S34700 0.03 (AISI 347)
0.5 0.10
304
0.1
0.7
0.5 0.1
15
Ni
2.0
0.4
0.15 3.5 0.05
1.0
1.5
2.6
7.0 8.5 23
9–13
19–22
Austenitic Stainless Steel 1.0 8–12
High Nickel Alloys Rem 1.7 39–44 0.9 Rem 2.5 Rem
Copper and Copper Alloys
0.05
5.5 Rem 18.5 6.8
0.2
Fe
0.07 0.04 0.04 0.04
C
16
Mo
0.35 max 0.4 0.8
Al
0.2 0.1 0.17
N
0.05
0.02 0.07 0.03
0.08 max
0.08 max
0.08 max
1.25
2.2
3.1.
0.20
0.02
2.0 Titanium and Titanium Alloys Omax Sn Hmax 0.20 2.0–3.0 0.02 0.5 max 0.15 max 4.0–6.0 0.07 max 0.12 2–3 0.018 0.2 max 0.08 max 4.7–5.6 0.05 max 3.5–4.5 0.13 0.015 max 0.15 max 0.15 max 0.08 max 5.5–6.5 0.05 max
0.3
20 17 15.5 0.16
17–19
24–26
18–20
15.5 16 18.6 15.0
Smax Aluminum Alloys
0.06
Ti
0.045
3.0 Zn 5.6 Zn
0.18 Zr
Pmax Other
0.30Mmax
0.005 0.008Zr, 0.016B 0.005B
0.045 (10C)(Nb+Tb)
0.045
1.5Co, 4.0W 3.0 (Nb+Ta) 5.0 Nb 0.85 Nb
30 Zn
0.1
V
70.0
0.15 0.20 0.20 0.23
Cr
1.9 Be
4.4 1.0 2.8 2.5
0.5
Mg
98.1
0.28 0.05 0.25 1.6
0.6 0.1
0.8 0.3 0.7
Mn
4.4 6.3
Cu
0.8
Si
No 5500 No 9706 No 7718
UNS No.
Hastelloy C Inconel 706 Inconel 718 Inconel X 750
C 17200 Beryllium copper C 26000 Cartridge brass, 70%
2014 2219 5083 6061 7039 7075
Alloy designation
Nominal composition, %
TABLE 1-45 Nominal composition of some of structural alloys at subzero temperatures (i.e., at cryogenic temperatures)
PROPERTIES OF ENGINEERING MATERIALS
320
423
452 75 320 423 452
253
269 24 196 253 269
24 196 253 6061, T651 temper, L.O. 24 196 269 7039, T6 temper, L.O. 24 196 253 7075, T 651 temper, L.O. 24 196 269 7075, T 7351 temper, L.O. 24 196 269
6061-T6 temper, L.O.
5083-H113, L.O.
75 320 423 75 320 452 75 320 423 75 320 452 75 320 452
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website. Plate
Plate
Sheet
Plate
Sheet
Plate
Plate
Sheet
97.6 48.5 67.1 90.0 85.8
97.6
84.5
320 46.3 425 61.8 495 72.0 310 44.9 400 58.3 485 70.1 455 66.0 575 83.2 665 96.2 580 84.2 705 102 825 120 525 76.2 675 98.2 760 110
675 335 465 620 590
675
585
44.9 58.3 70.1 60.2 66.5 78.8 94.5 67.8
196
2219-T87 temper, L.O.
2219-T62 temper, L.O.
310 400 485 415 460 545 650 465
75 320 452 75 320 423 452 75
24 196 269 24 196 253 269 24
2014-T651 temper, L.O.
Plate
MPa kpsi
Form
8C
Alloy and condition
8F
Tensile strength, st
Temperature
290 340 365 290 335 380 410 495 535 530 650 770 455 570 605
510 235 27.5 305 280
490
460
290 335 380 290 345 370 390 380
42.2 49.6 52.6 42.2 48.9 55.0 59.8 72.0 77.4 77.1 94.4 112 66.2 82.5 88.1
74.2 34.2 39.6 43.9 40.5
71.0
66.6
42.2 48.9 55.0 41.9 50.2 53.6 55.2 56.3
12 18 26 16 23 26 11 15 14 10 7 6 10 11 11
15 15 31 30 29
14
13
16 23 26 10 11 14 23 11
Yield strength, sy Elongation, MPa kpsi % MPa
kpsi
Room temperature yield strength, syr
14 10 9 22 14 12
50 48 42
23 23 31 24 28
21
25
26
403
536
381
289
142*
382
58.5
77.7
55.3
41.9
20.6*
55.4
Aluminum Alloys 50 432 62.7 48 42 382 55.4
Reduction in area, %
35.9 32.1
22.5 27.6
32.3 33.5
32.7 29.2
20.5 25.1
29.4 30.5
26.5 37.9
43.7*
48.0*
29.1 41.6
24.6* 39.5b
36.3 (26.2) 42.4 (31.4) 48.0 (34.0)
21.2 26.1
pffiffiffiffi kpsi m
27.0* 43.4b
39.9 (28.8) 46.5 (34.5) 52.5 (37.2)
23.2 28.7
pffiffiffiffi MPa m
Fracture toughness KIC (J)
T.S.
T.L.
Bend
Bend
Bend
C.T.
T.L.
T.L.
T.L.
T.L.
Bend, CT T.S.
Bend
Bend
Specimen Orientdesign ation
TABLE 1-46 Typical tensile properties and fracture toughness of structural alloys at sub-zero temperature (i.e. cryogenic temperature)
7039 has good combination of strength and fracture toughness at room and at 196 8C Used for plate of 7075-T6 for the inner tank skirt between the liquid oxygen and liquid hydrogen sections of the external tank of the space shuttle. Improves ductility and notch toughness of 7075 alloy at cryogenic temperature processing it to the T7351 temper.
Fracture toughness values are for 5083O, i.e., KIC (J). 5083-O is not heat treatable and used in annealed (O) condition. Used to build liquefied natural gas (LNG) spherical tanks in ships. Aluminum alloys 6061 in the T6 temper have the same strength and ductility at both room and sub-zero temperatures.
High toughness at room and sub-zero temperatures, used for liquid oxygen and liquid hydrogen tanks for space shuttle. Fracture toughness values in parentheses refer to specimen design C.T.
Possess high strength at room temperature and sub-zero temperature.
Uses and remarks
PROPERTIES OF ENGINEERING MATERIALS
1.75
1.76
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
452 75 320 423 452
75 260 320 452
269 GTA weld in Inconel 24 X-750 sheet, X-750 filler 196 metal, aged 20 h at 7008C 253 269
24 162 196 269
24 196 269 24 196
A645 (5Ni Steel), L.O. quenched, tempered, reversion annealed.
304 annealed, L.O.
310 S annealed, T.O.
75 320
24 196
Inconel 718, L.O. [Aged 34 h at 9828C (18008F)]
75 320 452 75 320
75 320 423 75 320 452
24 196 253 Inconel 706 (VIM-VAR) 24 STDA 196 269
Hastelloy C, cold rolled 20%, L.O.
C17200 TD02 temper (Solution treated, cold worked to 12 hard)
75 320 423 75 320 423
Forging
Sheet
Plate
Weldment
Sheet
Bar
Forged billets
Sheet
Sheet
Bar
165 220 252 183 228 243
263 187 224 241
660 95.5 1650 236 1700 247 330 48 670 97
715 104 930 135 1130 164
1810 1290 1540 1660
1410 204 1650 239
1140 1520 1740 1260 1570 1680
95.2 117 132 90 117 137
24 196 253 24 196 253
C26000 03 temper (34 hard) 655 805 910 620 805 945
MPa kpsi
Form
8C
Alloy and condition
8F
Tensile strength, st
Temperature
295 425 570 580 1070
530 570 765
1410 860 945 1020
1170 1340
1000 1280 1380 1050 1200 1250
420 475 505 550 690 750
21 22 50 28
15 21
13 32 33 24 29 30
14 28 32 15 37 45
42.5 55.0 82.5 84 155
75 42 30 40 46
76.8 32 82.9 2.8 111 30
204 125 137 148
170 197
145 186 200 152 174 181
61.0 68.5 73.5 80 100 109
Reduction in area, % MPa
kpsi
Room temperature yield strength, syr
825
1170*
1065
120
170*
154
Austenitic Stainless Steels – – – 76 260 37.9 67
Ferritic Nickel Steels 72 68 535 77.5 62
20
18 20
33 33 33
High-Nickel Alloys
58 63 58
Copper and Copper Alloys (L.O.)
Yield strength, sy Elongation, MPa kpsi %
196 87.1 58.4
112
178 79.3 53.2
134# 176‡
102
87.8* 94
143†
157†
96.4* 103
121†
pffiffiffiffi kpsi m
133†
pffiffiffiffi MPa m
Fracture toughness KIC (J)
122# 160‡
C.T.
C.T.
C.T.
T.L.
C.R.
Specimen Orientdesign ation
Uses and remarks
Austenitic stainless steels are used extensively for subzero temperature applications to 2698C. † Welding process, SMA, Filler, 310S. b In weld fusion zone, as welded.
(VEB). Used in construction of storage tanks for liquefied hydrocarbon gases, structures and machineries in cold regions.
Fracture toughness values refer to KIC (J). These high nickel alloys exhibit excellent combinations of strength, toughness, and ductility over the entire range of subzero temperatures. Used in energy related equipments such as superconducting motors and generators. * Refer to STDA alloy. The fatigue strengths of high-nickel alloys are higher at cryogenic temperature than at room temperature. # KIJ (J), fusion zone, gas tungsten arc weld (GTA). ‡ KIC (J), vacuum electron beam weld
†
Tensile and fatigue properties of copper alloys increase as the testing temperature decreased. Used in stabilizers, components of the windings in superconducting magnets, solenoids and power cables at super temperatures.
TABLE 1-46 Typical tensile properties and fracture toughness of structural alloys at sub-zero temperature (i.e. cryogenic temperature) (Cont.)
PROPERTIES OF ENGINEERING MATERIALS
75 320 423 75 320 452 75 452 452
A-286 annealed sheet, welded 24 and age hardened, L.O. 196 A-286 STA 253 24 196 269 24 269 269
452
75 320 452 75 320 452
269
452 452 75 320 423 75 320 423 75 320 423 75 320
Nitronic 60, annealed, L.O. 24 196 253 Kromarc 58 annealed 24 plate, tested as welded*, L.O. 196 Kromarc 58 STQ 269
310 S annealed, T.O.
109 218 204 72 124 154 11 16 15
66 60 24 36 46 33
79 66 27 61 41 40
24
74 61
24
370
340
–
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website. Weldamentc
820
125 166 186
58.1 101 125 133 192 209
31
52 47 35 3 29 2 3 10 10 51 48
26
MPa
119
88.2
53.8
49
–
kpsi
Room temperature yield strength, syr
Plate
860 1145 1280
400 695 860 915 1325 1440
239
57 61 63 173 208 226 160 223 259 105 211
160
Reduction in area, %
610
600 87 745 108 870 126
750 1500 1410 495 855 1060
1240 180
1650
255 420 435 1190 1430 1560 1100 1540 1790 725 1455
650 1365 1610 1320 1900 2010 1180 1720 2000 415 1005
94 198 234 191 276 292 171 249 290 60 146
1105
825 120
Yield strength, sy Elongation, MPa kpsi %
Bar
Plate Weldamentc Sheet
Plate
Plate Weldmentc Weldmenta Bar
Plate
Sheet
Sheet
Plate, Weldment† ;a Sheet
Form
MPa kpsi
8F
8C
269 269 347 annealed, L.O. 24 196 253 304 hard cold rolled, L.O. 24 196 253 310, 75% cold reduced, 24 L.O. 196 253 Pyromet 538 annealed 24 Pyromet 538 STQ 196
Alloy and condition
Tensile strength, st
Temperature
125 123 118 161 179 247b
214 155b
181 82b 175b
– 275a
259 116b
pffiffiffiffi MPa m
T.L.
Specimen Orientdesign ation
114 112 107 146 163 225b
195 141b
L.T.
T.S.
T.L.
165 at 2698C (4528F) 74b at 2698C (4528F) 159b at 2698C (4528F)
– 250a
236 106b
pffiffiffiffi kpsi m
Fracture toughness KIC (J) Uses and remarks
A-286 alloy develops good strength, with good ductility and notch toughness in the cryogenic temperature range.
Welding process: GTA. Filler: Kromrc 58. Kromrc is used for structural appliances. Prototype super-conducting generators
Strength of these steels is increased by rolling or cold drawing at 1968C. Used in liquid hydrogen and liquid oxygen tank construction in Atlas and Centaur rockets. Type 304 stainless steels used in piping, tubing, and valves. Used in transfer of oxygen for storage tanks. Cast steels are used for Bubble Chambers, and for cylindrical magnet tubes for superconducting magnets. ‡ Welding process: GTA. Filler: Pyromet 538. Fracture toughness values refer to Pyromet 538 STQ. a Shielded metal arc weld. b In weld fusion zone, as welded. c Gas tungsten arc weld.
TABLE 1-46 Typical tensile properties and fracture toughness of structural alloys at sub-zero temperature (i.e. cryogenic temperature) (Cont.)
PROPERTIES OF ENGINEERING MATERIALS
1.77
Forging
Sheet/ Plate
Sheet/ Plate
850 1370 1700 800 1300 1570 970 1570 1650
123 199 246 116 188 228 141 227 239
795 1300 1590 740 1210 1450 915 1480 1570
115 188 231 107 175 210 133 214 227
16 14 7 16 16 10 14 11 11
Reduction in area, % MPa
kpsi
Room temperature yield strength, syr
40 31 24
830
120
Titanium and Titanium Alloys 875 127 875 127 875 127 705 102 705 102
Yield strength, sy Elongation, MPa kpsi %
55.5 49.2
54.1
101 81.5
65.4 48.6
pffiffiffiffi kpsi m
610
111 89.6
71.8 53.4
pffiffiffiffi MPa m
Fracture toughness KIC (J)
C.T. Bend Bend C.T. C.T. Bend C.T.
L.T. L.T. L.T. L.T. L.T. L.T. L.T.
Specimen Orientdesign ation
Ti-5Al-2.5Sn and Ti-6Al-4V, titanium alloys have high strength to weight ratio at cryogenic temperatures and preferred alloys at temperatures of alloys at temperatures of 1968C to 2698C (3208F to 4528F). Used in spherical pressure vessels in Atlas and Centaur Rockets, the Apollo and Saturn launch Boosters and Lunar Modules. Should not be used at cryogenic temperatures for storage or transfer of liquid oxygen, since the condensed oxygen will cause ignition during abrasion.
Uses and remarks
AAM, air arc melted. C.T., compact toughness. GMA, gas metal arc welding process. GTA, gas tungsten arc weld. L.O., longitudinal orientation. S.T., solution treated. STDA, solution treated and double aged. VAR, vacuum arc remelted. VEB, vacuum electron beam weld. VIM, vacuum induction melted. W, weld. Source: Metals Handbook Desk Edition, ASM International, 1985, Materials Park, OH 44073-0002 (formerly The American Society for Metals, Metals Park, OH 44073, 1985).
75 320 423 75 320 423 75 320 423 452
Form
MPa kpsi
8F
8C
Ti-5 Al-2.5 Sn, nominal 24 interstitial annealed, L.O. 196 253 Ti-5 Al-2.5 Sn (EL1) 24 annealed, L.O. 196 253 Ti-6 Al-4 V (EL1) as 24 forged 196 253 269
Alloy and condition
Tensile strength, st
Temperature
TABLE 1-46 Typical tensile properties and fracture toughness of structural alloys at sub-zero temperature (i.e. cryogenic temperature) (Cont.) PROPERTIES OF ENGINEERING MATERIALS
1.78
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
0.64 0.67 0.66 0.53 0.43 0.55 0.66 0.55 0.77 0.51 0.68 0.66 0.71 0.55 0.45 0.56
Cedar, western red Cypress Douglas fir, coast region Hemlock, eastern Hemlock, western Larch, western Pine, red Pine, ponderosa Pine, eastern white Pine, western white Redwood Spruce, sitka Spruce, white
Ash, white Beech Birch, yellow Cherry, black Cottonwood, eastern Elm, American Elm, rock Sweetgum Hickory. shagbark Mahogany (swietenia spp) Maple, sugar Oak, red, northern Oak, white Tupelo, black Yellow poplar Walnut, black
6.64 7.11 6.80 5.53 4.42 5.53 7.00 5.69 7.90 5.37 6.95 6.95 7.58 5.53 4.58 6.00
3.62 5.06 5.37 4.42 4.6 6.00 4.90 4.42 3.62 4.27 4.42 4.42 4.42
42 45 43 35 28 35 44 36 50 34 44 44 48 35 29 38
23 32 34 28 29 38 31 28 24 27 28 28 28
kN/m3 lbf/ft3
Densityb , D
4.9 5.1 7.2 3.7 3.9 4.2 4.8 5.4 7.0 3.5 4.9 4.0 5.3 4.4 4.2 5.2
2.4 3.8 4.8 3.0 4.3 4.5 3.8 3.9 2.1 2.6 2.6 4.3 4.7
Rad
7.9 11.0 9.2 7.1 9.2 9.5 8.1 10.2 10.5 4.8 9.5 8.2 9.0 7.7 7.6 7.1
5.0 6.2 7.6 6.8 7.0 9.1 7.2 6.3 6.1 5.3 4.4 7.5 8.2
Tan
Shrinkagec
106.18 102.74 114.46 84.80 58.60 81.36 102.05 86.19 139.28 79.02 108.94 98.60 104.80 66.20 69.64 100.67
51.71 73.09 85.50 61.37 77.11 90.33 75.85 64.81 59.30 66.88 69.00 70.33 67.57
MPa
15.4 14.9 16.6 12.3 8.5 11.8 14.8 12.5 20.2 11.46 15.80 14.30 15.20 9.60 10.10 14.6
7.5 10.6 12.4 8.9 11.3 13.10 11.00 9.4 8.6 9.7 10.0 10.2 9.8
kpsi
Modulus of rupture
12.20 11.86 14.55 10.27 9.45 9.24 10.62 11.31 14.89 10.34 12.62 12.55 12.27 8.27 10.89 11.58
7.65 9.93 13.45 8.28 11.31 12.90 11.24 8.90 8.55 10.10 9.24 10.83 9.24
GPa
kpsi
4.56 6.36 7.24 5.41 7.71 7.64 6.07 5.32 4.80 5.04 6.15 5.61 5.47
7.41 7.30 8.17 7.11 4.91 5.52 7.05 6.32 9.21 6.80 7.83 6.76 7.44 5.52 5.54 7.58
Softwoods 1.11 31.44 1.44 43.85 1.95 49.92 1.20 37.30 1.64 49.02 1.87 52.68 1.63 41.85 1.29 36.68 1.24 33.10 1.46 34.75 1.34 42.40 1.57 38.68 1.34 37.72 Hardwoods 1.77 51.10 1.72 50.33 2.11 56.33 1.49 48.95 1.37 33.85 1.34 38.06 1.54 48.60 1.64 43.58 2.16 63.50 1.50 46.88 1.83 53.98 1.82 46.61 1.78 51.30 1.20 38.06 1.58 38.20 1.68 52.26
Maximumd crushing strength, scr MPa
Mpsi
Modulus of elasticity, E
Static bending
8.00 6.96 6.69 4.76 2.55 4.76 8.48 4.28 12.14 7.58 10.14 7.00 7.38 6.41 3.45 7.00
3.17 5.38 5.52 4.48 3.79 6.76 4.14 4.00 3.03 3.24 4.83 4.00 3.17
MPa
1.16 1.01 0.97 0.69 0.37 0.69 1.23 0.62 1.76 1.10 1.47 1.01 1.07 0.93 0.50 1.01
0.46 0.78 0.80 0.65 0.55 0.98 0.60 0.58 0.44 0.47 0.70 0.58 0.46
kpsi
Compressiona proportionality limit, scp
6.48 7.00 6.34 3.86 4.00 4.55 – 5.24 – 5.17 – 5.52 5.52 3.44 3.72 4.76
1.52 1.86 2.34 – 2.34 3.00 3.17 2.90 2.18 – 1.66 2.55 2.48
MPa
0.94 1.01 0.92 0.56 0.58 0.66 – 0.76 – 0.75 – 0.80 0.80 0.50 0.54 0.69
0.22 0.27 0.34 – 0.34 0.43 0.46 0.42 0.31 – 0.24 0.37 0.36
kpsi
Tensile strengthe;f , st
1092 1041 1397 737 508 990 1422 813 1702 – 483 1092 940 559 610 864
430 864 787 533 660 889 660 483 457 584 483 635 508
mm
43 41 55 29 20 39 56 32 67 – 19 43 37 22 24 34
17 34 31 21 26 35 26 19 18 23 19 25 20
in
Impact bending in a drop of 222 N (50 lbf) hammer
13.45 13.86 13.00 11.72 6.41 10.41 13.24 11.03 16.75 8.48 16.06 12.27 13.80 9.24 8.21 9.45
5.93 6.89 8.00 7.31 6.62 9.38 8.76 7.79 6.21 7.17 6.48 7.93 7.45
MPa
1.95 2.01 1.88 1.70 0.93 1.51 1.92 1.6 2.43 1.23 2.33 1.78 2.00 1.34 1.19 1.37
0.86 1.00 1.16 1.06 1.25 1.36 1.21 1.13 0.90 1.04 0.94 1.15 1.08
kpsi
Sheard strength, s
1320 1300 1260 950 430 830 1320 850 – 800 1450 1290 1360 810 540 1010
350 510 710 500 540 830 560 460 380 420 480 510 480
Hardness average of R and T
f
Seasoned wood at 12% moisture. b Seasoned wood at 12% moisture content. c Percent from green to ovendry condition based on dimensions when green. d Parallel to grain. e Perpendicular to grain. Height of drop of 222 N (50 lbf) hammer for failure, mm (in). Rad, radially. Tan, tangentially. g Tensile strength parallel to grain may be taken as equal to modulus of rupture in bending. Source: Extracted from Wood Handbook and the U.S. Forest Products Laboratory.
0.34 0.48 0.51 0.43 0.44 0.59 0.47 0.42 0.37 0.42 0.42 0.42 0.45
Kind of wood
a
Specific gravity Gm ovendry volume
TABLE 1-47 Typical properties of wooda of clear material of section 50 mm 50 mm (2 in 2 in), as per ASTM D143
PROPERTIES OF ENGINEERING MATERIALS
1.79
4
24 40 1 40
166 276 7 276 28
60 10 12 7 15
kpsi
414 69 83 48 103
MPa
14
365 310 214 145 152 172 469 290 83 345
GPa
9828C 18008F 218C
2
53 45 31 21 22 25 68 42 12 50 4.0
9.0 8.8 13.5 9.0 9.9 10.1 4.0 4.5 4.7 9.2 2.2
5.0 4.9 7.5 5.0 5.5 5.6 2.2 2.5 2.6 5.1
12320 29120 10528 4480 29120 4480 32480 32480 29120 22400
194880 64960
47040 324800 53760 13888 33600 12992 87360 44800 33600 49280
Specific heat, c
870
210 1450 240 62 15 58 390 200 150 220 290
55 130 47 20 15 20 145 145 130 100
1.42
1.09 2.09 1.05 0.25 0.59 0.25 0.84 1.51 1.63 0.46
0.34
0.26 0.50 0.25 0.06 0.14 0.06 0.20 0.36 0.39 0.11
2128F 18008F Btu/(ft2 h8F/in) kJ/kg8C Btu/lbm 8F
Thermal conductivity, K at
1008C 9828C lin/in8F W/(m2 8C/m)
Linear coefficientb of expansion,
Mpsi lm/ m8C
708F
Modulus of elasticity, E
3871
2032 2571 2799 3049 2538 2799 2760 2449 2760 2143
8C
7000
3690 4660 5070 5520 4600 5070 5000d 4440 5000 3890
8F
Fusion point
Good
Good Very good Poor Fair Fair Fair Excellent Good Good Good
103
10 0.5 1010 106
>1014 >1014 >1014 >1014 108
Thermal stress 708C resistance (218C)
102
104
107 108 107 105 500
18008F (9828C)
Electrical resistivity, cmc
b
Porosity: 0 to 5%. Between 208C (658F) and 9828C (18008F). c Multiply the values by 0.393 in to obtain electrical resistivity in units of -in. d Stabilized. Courtesy: Extracted from Mark’s Standard Handbook for Mechanical Engineers, 8th edition, McGraw-Hill Book Company, New York, 1978, and Norton Refractories, 3rd edition, Green and Stewart, ASTM Standards on Refractory Materials Handbook (Committee, C-8), 1.
a
3
2.22 0.0802 21
0.143 0.110 0.129 0.361 0.202 0.396 0.116 0.097 0.0813 0.224
100 20 14 12 20 12 24 50 7 100
3.97 3.03 3.58 10.00 5.60 10.96 3.22 2.52 2.25 6.20
Alumina (Al2 O3 ) Beryllium oxide (BeO) Magnesium oxide (MgO) Thoria (ThO2 ) Zirconia (ZrO2 ) Uranium oxide (UO2 ) Silicon carbide (SiC) Boron carbide (BC) Boron nitride (BN) Molybdenum silicide (MoSi2 ) Carbon (C)
lb/in3 MPa kpsi
218C 708F
689 138 97 83 138 83 166 345 48 689
g/m3
Material
Density
Modulus of rupture, sr
TABLE 1-48 Mechanical and physical properties of typical densea pure refractories
PROPERTIES OF ENGINEERING MATERIALS
1.80
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
PROPERTIES OF ENGINEERING MATERIALS PROPERTIES OF ENGINEERING MATERIALS
1.81
REFERENCES 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. 32. 33. 34.
Datsko, J., Material Properties and Manufacturing Process, John Wiley and Sons, New York, 1966. Datsko, J. Material in Design and Manufacturing, Malloy, Ann Arbor, Michigan, 1977. ASM Metals Handbook, American Society for Metals, Metals Park, Ohio, 1988. Machine Design, 1981 Materials Reference Issue, Penton/IPC, Cleveland, Ohio, Vol. 53, No. 6, March 19, 1981. Lingaiah, K., Machine Design Data Handbook, Vol. II (SI and Customary Metric Units), Suma Publishers, Bangalore, India, 1986. Lingaiah, K., and B. R. Narayana Iyengar, Machine Design Data Handbook, Vol. I (SI and Customary Metric Units), Suma Publishers, Bangalore, India, 1986. Technical Editor Speaks, the International Nickel Company, New York, 1943. Shigley, J. E., Mechanical Engineering Design, Metric Edition, McGraw-Hill Book Company, New York, 1986. Deutschman, A. D., W. J. Michels, and C. E. Wilson, Machine Design—Theory and Practice, Macmillan Publishing Company, New York, 1975. Juvinall, R. C., Fundaments of Machine Components Design, John Wiley and Sons, New York, 1983. Lingaiah, K., and B. R. Narayana Iyengar, Machine Design Data Handbook, Engineering College Co-operative Society, Bangalore, India, 1962. Lingaiah, K., Machine Design Data Handbook, Vol. II (SI and Customary Metric Units), Suma Publishers, Bangalore, India, 1981 and 1984. Lingaiah, K., and B. R. Narayana Iyengar, Machine Design Data Handbook, Vol. I (SI and Customary Metric Units), Suma Publishers, Bangalore, India, 1983. SAE Handbook, 1981. Lessels, J. M., Strength and Resistance of Metals, John Wiley and Sons, New York, 1954. Siegel, M. J., V. L. Maleev, and J. B. Hartman, Mechanical Design of Machines, 4th edition, International Textbook Company, Scranton, Pennsylvania, 1965. Black, P. H., and O. Eugene Adams, Jr., Machine Design, McGraw-Hill Book Company, New York, 1963. Niemann, G., Maschinenelemente, Springer-Verlag, Berlin, Erster Band, 1963. Faires, V. M., Design of Machine Elements, 4th edition, Macmillan Company, New York, 1965. Nortman, C. A., E. S. Ault, and I. F. Zarobsky, Fundamentals of Machine Design, Macmillan Company, New York, 1951. Spotts, M. F., Design of Machine Elements, 5th edition, Prentice-Hall of India Private Ltd., New Delhi, 1978. Vallance, A., and V. L. Doughtie, Design of Machine Members, McGraw-Hill Book Company, New York, 1951. Decker, K.-H., Maschinenelemente, Gestalting und Bereching, Carl Hanser Verlag, Munich, Germany, 1971. Decker, K.-H., and Kabus, B. K., Maschinenelemente-Aufgaben, Carl Hanser Verlag, Munich, Germany, 1970. ISO and BIS standards. Metals Handbook, Desk Edition, ASM International, Materials Park, Ohio, 1985 (formerly the American Society for Metals, Metals Park, Ohio, 1985). Edwards, Jr., K. S., and R. B. McKee, Fundamentals of Mechanical Components Design, McGraw-Hill Book Company, New York, 1991. Shigley, J. E., and C. R. Mischke, Standard Handbook of Machine Design, 2nd edition, McGraw-Hill Book Company, New York, 1996. Structural Alloys Handbook, Metals and Ceramics Information Center, Battelle Memorial Institute, Columbus, Ohio, 1985. Wood Handbook and U. S. Forest Products Laboratory. SAE J1099, Technical Report of Fatigue Properties. Ashton, J. C., I. Halpin, and P. H. Petit, Primer on Composite Materials-Analysis, Technomic Publishing Co., Inc., 750 Summer Street, Stanford, Conn 06901, 1969. Baumeister, T., E. A. Avallone, and T. Baumeister III, Mark’s Standard Handbook for Mechanical Engineers, 8th edition, McGraw-Hill Book Company, New York, 1978. Norton, Refractories, 3rd edition, Green and Stewart, ASTM Standards on Refractory Materials Handbook (Committee C-8).
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
PROPERTIES OF ENGINEERING MATERIALS
1.82
CHAPTER ONE
BIBLIOGRAPHY Black, P. H., and O. Eugene Adams, Jr., Machine Design, McGraw-Hill Book Company, New York, 1983. Decker, K.-H., Maschinenelemente, Gestalting und Bereching, Carl Hanser Verlag, Munich, Germany, 1971. Decker, K.-H., and Kabus, B. K., Maschinenelemente-Aufgaben, Carl Hanser Verlag, Munich, Germany, 1970. Deutschman, A. D., W. J. Michels, and C. E. Wilson, Machine Design—Theory and Practice, Macmillan Publishing Company, New York, 1975. Faires, V. M., Design of Machine Elements, 4th edition, McGraw-Hill Book Company, New York, 1965. Honger, O. S. (ed.), (ASME) Handbook for Metals Properties, McGraw-Hill Book Company, New York, 1954. ISO standards. Juvinall, R. C., Fundaments of Machine Components Design, John Wiley and Sons, New York, 1983. Lessels, J. M., Strength and Resistance of Metals, John Wiley and Sons, New York, 1954. Lingaiah, K., and B. R. Narayana Iyengar, Machine Design Data Handbook, Engineering College Co-operative Society, Bangalore, India, 1962. Mark’s Standard Handbook for Mechanical Engineers, 8th edition, McGraw-Hill Book Company, New York, 1978. Niemann, G., Maschinenelemente, Springer-Verlag, Berlin, Erster Band, 1963. Norman, C. A., E. S. Ault, and I. E. Zarobsky, Fundamentals of Machine Design, McGraw-Hill Book Company, New York, 1951. SAE Handbook, 1981. Shigley, J. E., Mechanical Engineering Design, Metric Edition, McGraw-Hill Book Company, New York, 1986. Siegel, M. J., V. L. Maleev, and J. B. Hartman, Mechanical Design of Machines, 4th edition, International Textbook Company, Scranton, Pennsylvania, 1965. Spotts, M. F., Design of Machine Elements, 5th edition, Prentice-Hall of India Private Ltd., New Delhi, 1978. Vallance, A., and V. L. Doughtie, Design of Machine Members, McGraw-Hill Book Company, New York, 1951.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
Source: MACHINE DESIGN DATABOOK
CHAPTER
2 STATIC STRESSES IN MACHINE ELEMENTS SYMBOLS3;4;5 A Aw a b c D C1 F Fc Ft F Fcr e et E Ec G Mb Mt i I Ixx , Iyy J k k0 kt
area of cross section, m2 (in2 ) area of web, m2 (in2 ) constant in Rankine’s formula radius of area of contact, m (in) bandwidth of contact, m (in) width of beam, m (in) distance from neutral surface to extreme fiber, m (in) diameter of shaft, m (in) constant in straight-line formula load, kN (lbf) compressive force, kN (lbf) tensile force, kN (lbf) shear force, kN (lbf) crushing load, kN (lbf) deformation, total, m (in) eccentricity, as of force equilibrium, m (in) unit volume change or volumetric strain thermal expansion, m (in) modulus of elasticity, direct (tension or compression), GPa (Mpsi) combined or equivalent modulus of elasticity in case of composite bars, GPa (Mpsi) modulus of rigidity, GPa (Mpsi) bending moment, N m (lbf ft) torque, torsional moment, N m (lbf ft) number of turns moment of inertia, area, m4 or cm4 (in4 ) mass moment of inertia, N s2 m (lbf s2 ft) moment of inertia of cross-sectional area around the respective principal axes, m4 or cm4 (in4 ) moment of inertia, polar, m4 or cm4 (in4 ) radius of gyration, m (in) polar radius of gyration, m (in) torsional spring constant, J/rad or N m/rad (lbf in/rad)
2.1 Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
STATIC STRESSES IN MACHINE ELEMENTS
2.2
CHAPTER TWO
l l0 L n n0 l, m, n P T T r q Q v V V Z xy , yz , zx " "T "x , "y , "z
b c sc cr e s t st x , y , z 1 , 2 , 3 y sy u su 0 00
length, m (in) length of rod, m (in) length, m (in) speed, rpm (revolutions per minute) coefficient of end condition speed, rps (revolutions per second) direction cosines (also with subscripts) power, kW (hp) pitch or threads per meter temperature, 8C (8F) temperature difference, 8C (8F) radius of the rod or bar subjected to torsion, m (in) (Fig. 2-18) shear flow first moment of the cross-sectional area outside the section at which the shear flow is required velocity, m/s (ft/min or fpm) volume, m3 (in3 ) shear force, kN (lbf) volume change, m3 (in3 ) section modulus, m3 (in3 ) deformation of contact surfaces, m (in) coefficient of linear expansion, m/m/K or m/m/8C ðin=in=8F) shearing strain, rad/rad shearing strain components in xyz coordinates, rad/rad deformation or elongation, m (in) strain, mm/m (min/in) thermal strain, mm/m (min/in) strains in x, y, and z directions, mm/m (min/in) angular distortion, rad angle, deg angular twist, rad (deg) angle made by normal to plane nn with the x axis, deg bulk modulus of elasticity, GPa (Mpsi) Poisson’s ratio radius of curvature, m (in) stress, direct or normal, tensile or compressive (also with subscripts), MPa (psi) bearing pressure, MPa (psi) bending stress, MPa (psi) compressive stress (also with subscripts), MPa (psi) hydrostatic pressure, MPa (psi) compressive strength, MPa (psi) stress at crushing load, MPa (psi) elastic limit, MPa (psi) strength, MPa (psi) tensile stress, MPa (psi) tensile strength, MPa (psi) stress in x, y, and z directions, MPa (psi) principal stresses, MPa (psi) yield stress, MPa (psi) yield strength, MPa (psi) ultimate stress, MPa (psi) ultimate strength, MPa (psi) principal direct stress, MPa (psi) normal stress which will produce the maximum strain, MPa (psi)
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
STATIC STRESSES IN MACHINE ELEMENTS STATIC STRESSES IN MACHINE ELEMENTS
s xy , yz , zx !
2.3
normal stress on the plane nn at any angle to x axis, MPa (psi) shear stress (also with subscripts), MPa (psi) shear strength, MPa (psi) shear stresses in xy, yz, and zx planes, respectively, MPa (psi) shear stress on the plane at any angle with x axis, MPa (psi) angular speed, rad/s
Other factors in performance or in special aspects are included from time to time in this chapter and, being applicable only in their immediate context, are not given at this stage. (Note: and with initial subscript s designates strength properties of material used in the design which will be used and observed throughout this Machine Design Data Handbook.)
Particular
Formula
SIMPLE STRESS AND STRAIN Ft ; A
Fc A
The stress in simple tension or compression (Fig. 2-1a, 2-1b)
t ¼
The total elongation of a member of length l (Fig. 2-2a)
¼
Fl AE
ð2-2Þ
"¼
¼ l E
ð2-3Þ
c ¼
ð2-1Þ
FIGURE 2-1
Strain, deformation per unit length
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
STATIC STRESSES IN MACHINE ELEMENTS
2.4
CHAPTER TWO
Particular
Formula
FIGURE 2-2
Young’s modulus or modulus of elasticity
E¼
"
ð2-4Þ
The shear stress (Fig. 2-1c)
¼
F A
ð2-5Þ
Shear deformation due to torsion (Fig. 2-18)
¼
L G
ð2-6Þ
Shear strain (Fig. 2-2c)
¼
a ¼ G l
ð2-7Þ
The shear modulus or modulus of rigidity from Eq. (2-7)
G¼
ð2-8Þ
Poisson’s ratio
¼ lateral strain/axial strain ¼
Poisson’s ratio may be computed with sufficient accuracy from the relation
¼
E 1 2G
ð2-10Þ
The shear or torsional modulus or modulus of rigidity is also obtained from Eq. (2-10)
G¼
E 2ð1 þ Þ
ð2-11Þ
The bearing stress (Fig. 2-3c)
b ¼
F bd2
ð2-12Þ
¼ x cos2
ð2-13Þ
"t "a
ð2-9Þ
STRESSES Unidirectional stress (Fig. 2-4) The normal stress on the plane at any angle with x axis
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
STATIC STRESSES IN MACHINE ELEMENTS STATIC STRESSES IN MACHINE ELEMENTS
Particular
2.5
Formula
FIGURE 2-3 Knuckle joint for round rods.
FIGURE 2-4 A bar in uniaxial tension.3;4
The shear stress on the plane at any angle with x axis
¼
x sin 2 2
ð2-14Þ
Principal stresses
1 ¼ x and 2 ¼ 0
ð2-15Þ
Angles at which principal stresses act
1 ¼ 08 and 2 ¼ 908
ð2-16Þ
Maximum shear stress
max ¼
Angles at which maximum shear stresses act
1 ¼ 458 and 2 ¼ 1358
x 2
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð2-17Þ ð2-18Þ
STATIC STRESSES IN MACHINE ELEMENTS
2.6
CHAPTER TWO
Particular
The normal stress on the plane at an angle þ ð =2Þ (Fig. 2-4d) The shear stress on the plane at an angle þ ð =2Þ (Fig. 2-4d)
Formula
0 ¼ x cos2 þ ð2-19Þ ¼ x cos2 2
cos þ ¼ 12 x sin 2 ð2-20Þ 0 ¼ x sin þ 2 2 ¼ 0 and ¼ 0
ð2-21Þ
The normal stress on the plane at any angle
¼ xy sin 2
ð2-22Þ
The shear stress on the plane at any angle
¼ xy cos 2
ð2-23Þ
The principal stress
1 ¼ xy and 2 ¼ xy
ð2-24Þ
Angles at which principal stresses act
1 ¼ 458 and 2 ¼ 1358
ð2-25Þ
Maximum shear stresses
max ¼ xy ¼
ð2-26Þ
Angles at which maximum shear stress act
1 ¼ 0 and 2 ¼ 908
ð2-27Þ
FIGURE 2-5 An element in pure shear.
FIGURE 2-6 An element in biaxial tension.
Therefore from Eqs. (2-13) and (2-19), (2-14), and (2-20)
PURE SHEAR (FIG. 2-5)
BIAXIAL STRESSES (FIG. 2-6) The normal stress on the plane at any angle
¼
x þ y x y þ cos 2 2 2
ð2-28Þ
The shear stress on the plane at any angle
¼
x y sin 2 2
ð2-29Þ
The shear stress at ¼ 0
¼ 0
ð2-30Þ
The shear stress at ¼ 458
max ¼ ð x y Þ=2
ð2-31Þ
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
STATIC STRESSES IN MACHINE ELEMENTS STATIC STRESSES IN MACHINE ELEMENTS
Particular
2.7
Formula
BIAXIAL STRESSES COMBINED WITH SHEAR (FIG. 2-7) The normal stress on the plane at any angle
¼
x þ y x y þ cos 2 þ xy sin 2 2 2
ð2-32Þ
The shear stress in the plane at any angle
¼
x y sin 2 xy cos 2 2
ð2-33Þ
The maximum principal stress
x þ y 1 ¼ þ 2
The minimum principal stress
2 ¼
Angles at which principal stresses act
1;2 ¼ 12 arctan
x þ y 2
x y 2 x y 2
1=2
2 þ
2 xy
ð2-34Þ 1=2
2 2 þ xy
2xy x y
ð2-35Þ
ð2-36Þ
where 1 and 2 are 1808 apart
x y 2
Maximum shear stress
max ¼
Angles at which maximum shear stress acts
¼ 12 arctan
The equation for the inclination of the principal planes in terms of the principal stress (Fig. 2-8)
tan ¼
σy
θ x
θ
τxy
¼
1 2 2
x y 2xy
1 x xy
τxy
y
τxy
1=2 2 þ xy
τxy
n
σx
2
σx
θ
σx τxy
σy (a)
n
τxy
σθ
θ τθ σy (b)
FIGURE 2-7 An element in plane state of stress.
FIGURE 2-8
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð2-37Þ
ð2-38Þ
ð2-39Þ
STATIC STRESSES IN MACHINE ELEMENTS
2.8
CHAPTER TWO
Particular
Formula
MOHR’S CIRCLE Biaxial field combined with shear (Fig. 2-9) Maximum principal stress 1
1 is the abscissa of point F
Minimum principal stress 2
2 is the abscissa of point G
Maximum shear stress max
max is the ordinate of point H
FIGURE 2-9 Mohr’s circle for biaxial state of stress.
TRIAXIAL STRESS (Figs. 2-10 and 2-11) The normal stress on a plane nn, whose direction cosines are l, m, n
¼ x l 2 þ y m2 þ z n2
The shear stress on a plane normal nn, whose direction cosines are l, m, n
¼
The principal stresses
1;2;3 ¼ x ; y ; z
The cubic equation for general state of stress in three dimensions from the theory of elasticity
3 ð x þ y þ z Þ 2 þ ð x y þ y z þ z x
qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2x l 2 þ 2y m2 þ 2z n2
ð2-40Þ ð2-41Þ ð2-42Þ
2 2 2 xy yz zx Þ 2 2 2 y zx z xy Þ ð x y z þ 2xy yz zx x zy
¼0
The maximum shear stresses on planes parallel to x, y, and z which are designated as
ð2-43Þ
The three roots of this cubic equation give the magnitude of the principal stresses 1 , 2 , and 3 . 3 3 ; ðmax Þ2 ¼ 1 ; ðmax Þ1 ¼ 2 2 2 2 ðmax Þ3 ¼ 1 ð2-44Þ 2
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
STATIC STRESSES IN MACHINE ELEMENTS STATIC STRESSES IN MACHINE ELEMENTS
Particular
2.9
Formula
MOHR’S CIRCLE Triaxial field (Figs. 2-10 and 2-11) Normal stress at point (Fig. 2-11b) on one octahedral plane
t ¼ 13 ð 1 þ 2 þ 3 Þ ¼ 13 ð x þ y þ z Þ
Shear stress at point T (Fig. 2-11b) on an octahedral plane
t ¼ 13 ½ð x y Þ2 þ ð y z Þ2 þ ð z x Þ2
ð2-45Þ
or t is the abscissa of point T ð2-46aÞ
2 2 2 1=2 þ yz þ zx Þ þ 6ðxy qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ¼ 13 ½ð 1 2 Þ2 þ ð 2 3 Þ2 þ ð 3 1 Þ2
or t is the ordinate of point T
FIGURE 2-10 An element in triaxial state of stress.
FIGURE 2-11 Mohr’s circle for triaxial octahedral stress state.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
STATIC STRESSES IN MACHINE ELEMENTS
2.10
CHAPTER TWO
Particular
Formula
STRESS-STRAIN RELATIONS Uniaxial field 1 ; E
1 ; E
Strain in principal direction 1
"1 ¼
The principal stress
1 ¼ E"1
The unit volume change in uniaxial stress
V ð1 2Þ 1 ¼ "1 ð1 2Þ ¼ E V
"2 ¼
"3 ¼
1 E
ð2-47Þ ð2-47aÞ ð2-48Þ
Biaxial field Strain in principal direction 1
"1 ¼
1 ð 2 Þ E 1
ð2-49Þ
Strain in principal direction 2
"2 ¼
1 ð 1 Þ E 2
ð2-50Þ
Strain in principal direction 3
"3 ¼
The principal stresses in terms of principal strains in a biaxial stress field
ð þ 2 Þ E 1
ð2-51Þ
1 ¼
E ð"1 þ "2 Þ 1 2
ð2-52Þ
2 ¼
E ð"2 þ "1 Þ 1 2
ð2-53Þ
3 ¼ 0 The unit volume change in biaxial stress
ð2-53aÞ
V ð1 2Þ þ ð 1 þ 2 Þ V E
ð2-54Þ
Triaxial field Strain in principal direction 1
"1 ¼
1 ½ ð 2 þ 3 Þ E 1
ð2-55Þ
Strain in principal direction 2
"2 ¼
1 ½ ð 3 þ 1 Þ E 2
ð2-56Þ
Strain in principal direction 3
"3 ¼
1 ½ ð 1 þ 2 Þ E 3
ð2-57Þ
The principal stresses in terms of principal strains in triaxial stress field
1 ¼
E ½ð1 Þ"1 þ ð"2 þ "3 Þ ð1 2 2 Þ
ð2-58Þ
2 ¼
E ½ð1 Þ"2 þ ð"3 þ "1 Þ ð1 2 2 Þ
ð2-59Þ
3 ¼
E ½ð1 Þ"3 þ ð"1 þ "2 Þ ð1 2 2 Þ
ð2-60Þ
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
STATIC STRESSES IN MACHINE ELEMENTS STATIC STRESSES IN MACHINE ELEMENTS
Particular
The unit volume change or volumetric strain in terms of principal stresses for the general case of triaxial stress (Fig. 2-12)
2.11
Formula
dV ð1 2Þ ¼ ð x þ y þ z Þ V E ð1 2Þ ¼ ð 1 þ 2 þ 3 Þ E
e¼
ð2-61aÞ ð2-61bÞ
FIGURE 2-12 Uniform hydrostatic pressure.
The volumetric strain due to uniform hydrostatic pressure c acting on an element (Fig. 2-12)
V 3ð1 2Þ c ¼ ¼ c V E
The bulk modulus of elasticity
¼
E 3ð1 2Þ
ð2-63Þ
The relationship between E, G and K
E¼
9KG ð3K þ GÞ
ð2-63aÞ
ð2-62Þ
STATISTICALLY INDETERMINATE MEMBERS (Fig. 2-13) The reactions at supports of a constant cross-section bar due to load F acting on it as shown in Fig. 2-13
The elongation of left portion La of the bar
Ra ¼
FLb FLb ¼ La þ Lb L
ð2-64aÞ
RB ¼
FLa FLa ¼ La þ Lb L
ð2-64bÞ
a ¼
RA La FLa Lb ¼ AE LAE
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð2-65Þ
STATIC STRESSES IN MACHINE ELEMENTS
2.12
CHAPTER TWO
Particular
Formula
RA La FL L ¼ a b AE LAE
The shortening of right portion Lb of the bar
b ¼
FIGURE 2-13
FIGURE 2-14
ð2-66Þ
THERMAL STRESS AND STRAIN The normal strain due to free expansion of a bar or machine member when it is heated
"T ¼ ðTÞ
ð2-67Þ
The free linear deformation due to temperature change
¼ LðTÞ
ð2-68Þ
The compressive force Fcb developed in the bar fixed at both ends due to increase in temperature (Fig. 2-14)
Fcb ¼ AEðTÞ
ð2-69Þ
The compressive stress induced in the member due to thermal expansion (Fig. 2-14)
cT ¼
Fcb ¼ EðTÞ A
ð2-70Þ
The relation between the extension of one member to the compression of another member in case of rigidly joined compound bars of the same length L made of different materials subjected to same temperature (Fig. 2-15)
s L c L þ ¼ ðc s ÞLðTÞ Es Ec
ð2-71Þ
The forces acting on each member due to temperature change in the compound bar
c Ac ¼ s As
ð2-72Þ
The relation between compression of the tube to the extension of the threaded member due to tightening of the nut on the threaded member (Fig. 2-16)
t L s L þ ¼ [number of turns ðiÞ Et Es ðthreads/meterÞ or pitch ðPÞ ¼ iP
The forces acting on tube and threaded member due to tightening of the nut
s As ¼ t At
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð2-73Þ ð2-74Þ
STATIC STRESSES IN MACHINE ELEMENTS STATIC STRESSES IN MACHINE ELEMENTS
Particular
FIGURE 2-15
2.13
Formula
FIGURE 2-16
COMPOUND BARS X Ei Ai i X Ei Ai ¼ Li Li
The total load in the case of compound bars or columns or wires consisting of i members, each having different length and area of cross section and each made of different material subjected to an external load as shown in Fig. 2-17
F¼
An expression for common compression of each bar (Fig. 2-17)
F ¼P ðEi Ai =Li Þ
FIGURE 2-17
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð2-75Þ
ð2-76Þ
STATIC STRESSES IN MACHINE ELEMENTS
2.14
CHAPTER TWO
Particular
Formula
The load on first bar (Fig. 2-17)
ðE A =L Þ F1 ¼ P1 1 1 F ðEA=LÞ
The load on ith bar (Fig. 2-17)
Fi ¼
ð2-77Þ
Ei Ai Li
ð2-78Þ
EQUIVALENT OR COMBINED MODULUS OF ELASTICITY OF COMPOUND BARS The equivalent or combined modulus of elasticity of a compound bar consisting of i members, each having a different length and area of cross section and each being made of different material
The stress in the equivalent bar due to external load F
E1 A1 þ E2 A2 þ E3 A3 þ þ En An A1 þ A2 þ A3 þ þ An P Ei Ai ¼P i ¼ 1;2;:::;n Ai
Ec ¼
The common extension or compression due to external load F
"¼
¼
Ec
Ec
ð2-79bÞ
F
¼P
i ¼ 1;2;3;:::
The strain in the equivalent bar due to external load F
ð2-79aÞ
P
F
P
FL
ð2-80Þ
Ai
i ¼ 1;2;3;:::
Ai
i ¼ 1;2;3;:::;n
L
ð2-81Þ
¼ "L
ð2-82Þ
¼
Ai
POWER The relation between power, torque and speed
P ¼ Mt !
ð2-83Þ
where Mt in N m (lbf ft), ! in rad/s (rad/min), and P in W (hp) ¼
Mt n0 159
SI
ð2-84aÞ
where Mt in kN m, n0 in rps, and P in kW ¼
Mt n 9550
SI
ð2-84bÞ
where Mt in kN m, n in rpm, and P in kW ¼
Mt n 63030
USCS
where Mt in lbf in, n in rpm, and P in hp
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð2-84cÞ
STATIC STRESSES IN MACHINE ELEMENTS STATIC STRESSES IN MACHINE ELEMENTS
Particular
Another expression for power in terms of force F acting at velocity v
2.15
Formula
P¼
F 1000
SI
ð2-85aÞ
where F in newtons (N), in m/s, and P in kW ¼
F 33000
USCS
ð2-85bÞ
where F in lbf, in fpm (feet per minute), and P in hp (horsepower)
TORSION (FIG. 2-18) The general equation for torsion (Fig. 2-18)
Mt G ¼ ¼ J L
Torque
Mt ¼
ð2-86Þ
159P n0
SI
ð2-87aÞ
where Mt in kN m, n0 in rps, and P in kW ¼
9550P n
SI
ð2-87bÞ
where Mt in kN m, n in rpm, and P in kW ¼
63030P n
USCS
ð2-87cÞ
where Mt in lbf in, n in rpm, and P in hp The maximum shear stress at the maximum radius r of the solid shaft (Fig. 2-18) subjected to torque Mt
max ¼
The torsional spring constant
kt ¼
16Mt
D3
ð2-88Þ
Mt GJ ¼ L
ð2-89Þ
FIGURE 2-18 Cylindrical bar subjected to torque.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
STATIC STRESSES IN MACHINE ELEMENTS
2.16
CHAPTER TWO
Particular
Formula
BENDING (FIG. 2-19) The general formula for bending (Fig. 2-19)
M b b E ¼ ¼ I c
ð2-90Þ
FIGURE 2-19 Bending of beam.
Mb c I
The maximum values of tensile and compressive bending stresses
b ¼
The shear stresses developed in bending of a beam (Fig. 2-20)
¼
V Ib
The shear flow
q¼
VQ I
ð2-91Þ
ðc y0
y dA
FIGURE 2-20 Beam subjected to shear stress.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð2-92Þ
ð2-93Þ
STATIC STRESSES IN MACHINE ELEMENTS STATIC STRESSES IN MACHINE ELEMENTS
Particular
2.17
Formula
ðc
The first moment of the cross-sectional area outside the section at which the shear flow is required
Q¼
The maximum shear stress for a rectangular section (Figs. 2-20 and 2-21)
max ¼
3V 2A
ð2-95Þ
For a solid circular section beam, the maximum shear stress
max ¼
4V 3A
ð2-96Þ
For a hollow circular section beam, the expression for maximum shear stress
max ¼
2V A
ð2-97Þ
An appropriate expression for max for structural beams, columns and joists used in structural industries
max ¼
V Aw
ð2-98Þ
y0
y dA
ð2-94Þ
FIGURE 2-21 Element cut out from a beam subjected to shear stress.
where Aw is the area of the web
ECCENTRIC LOADING The maximum and minimum stresses which are induced at points of outer fibers on either side of a machine member loaded eccentrically (Figs. 2-22 and 2-23)
max ¼
F Mb F M and min ¼ b þ Z Z A A
The resultant stress at any point of the cross section of an eccentrically loaded member (Fig. 2-24)
z ¼
F Mbx ey Mby ex Ixx Iyy A
ð2-99Þ
ð2-100Þ
COLUMN FORMULAS (Fig. 2-25) Euler’s formula (Fig. 2-26) for critical load
Fcr ¼
n 2 EA n 2 EI ¼ l2 ðl=kÞ2
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð2-101Þ
STATIC STRESSES IN MACHINE ELEMENTS
2.18
CHAPTER TWO
Particular
Formula
FIGURE 2-22 Eccentric loading.
FIGURE 2-23 Eccentrically loaded machine member.
FIGURE 2-24
FIGURE 2-25 Column-end conditions. (i) One end is fixed and other is free. (ii) Both ends are rounded and guided or hinged. (iii) One end is fixed and other is rounded and guided or hinged. (iv) Fixed ends.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
STATIC STRESSES IN MACHINE ELEMENTS STATIC STRESSES IN MACHINE ELEMENTS
Particular
Johnson’s parabolic formula (Fig. 2-26) for critical load
2.19
Formula
"
y Fcr ¼ A y 1 4n 2 E
2 # l k
ð2-102Þ
FIGURE 2-26 Variation of critical stress with slenderness ratio.
Straight-line formula for critical load
Straight-line formula for short column of brittle material for critical load Ritter’s formula for induced stress
Ritter’s formula for eccentrically loaded column (Fig. 2-23) for combined induced stress
Rankine’s formula for induced stress
The critical unit load from secant formula for a round-ended column
"
2 y Fcr ¼ A y pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 3 ð y =3nEÞ
# l k
l Fcr ¼ A C1 k " 2 # F e l c ¼ 1þ 2 A n E k " # 2 F e l ce þ 2 c ¼ 1þ 2 A n E k k " 2 # Fcr l 1þa c ¼ A k Fcr ¼ A
y ec l pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 1 þ 2 sec ðFcr =4AEÞ k k
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð2-103Þ
ð2-104Þ
ð2-105Þ
ð2-106Þ
ð2-107Þ
ð2-108Þ
STATIC STRESSES IN MACHINE ELEMENTS
2.20
CHAPTER TWO
Particular
Formula
HERTZ CONTACT STRESS Contact of spherical surfaces Sphere on a sphere (Fig. 2-27a) The radius of circular area of contact
2
31=3 1 12 1 22 þ 6 7 6 E E2 7 7 a ¼ 0:7216F 1 4 5 1 1 þ d1 d2
ð2-109Þ
FIGURE 2-27 Hertz contact stress.
2
The maximum compressive stress
cðmaxÞ
31=3 1 1 2 þ 6 7 d1 d2 7 ¼ 0:9186 7 6F 4 1 12 1 22 2 5 þ E1 E2 2
Combined deformation of both bodies in contact along the axis of load
Spherical surface in contact with a spherical socket (Fig. 2-27b) The radius of circular area of contact
6 6 ¼ 1:046F 2 4
2 6 6 a ¼ 0:7216F 4
1 12 1 22 þ E1 E2 d1 d2 d1 þ d2 1 12 1 22 þ E1 E2 1 1 d1 d2
ð2-110Þ
2 31=3 7 7 7 5
ð2-111Þ
31=3 7 7 7 5
ð2-112Þ
2
The maximum compressive stress
cðmaxÞ
31=3 1 1 2 6 7 d1 d2 7 ¼ 0:9186 6F 7 4 1 12 1 22 2 5 þ E1 E2
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð2-113Þ
STATIC STRESSES IN MACHINE ELEMENTS STATIC STRESSES IN MACHINE ELEMENTS
Particular
Combined deformation of both bodies in contact along axis of load
Distribution of pressure over band of width of contact and stresses in contact zone along the line of symmetry of spheres Sphere on a flat surface (Fig. 2-27c) The radius of circular area of contact
The maximum compressive stress
2.21
Formula
2
6 6 ¼ 1:046F 2 4
1 12 1 22 þ E1 E2 d1 d2 d2 d1
2 31=3 7 7 7 5
ð2-114Þ
Refer to Fig. 2-28a. "
a ¼ 0:721 Fd1
1 12 1 22 þ E1 E2
#1=3 ð2-115Þ
31=3 2 F cðmaxÞ ¼ 0:9186 7 4 2 1 12 1 22 2 5 þ d1 E1 E2
ð2-116Þ
where d ¼ d1 (Fig. 2-27c).
Contact of cylindrical surfaces Cylindrical surface on cylindrical surface, axis parallel (Fig. 2-27a and Fig. 2-28b) The width of band of contact
2
6F 6 2b ¼ 1:66 4L
1 12 1 22 þ E1 E2 1 1 þ d1 d2 2
The maximum compressive stress
Cylindrical surface in contact with a circular groove (Fig. 2-27b) The width of band of contact
cðmaxÞ
31=2 7 7 7 5
31=2 1 1 þ 6F 7 d1 d2 7 ¼ 0:7986 7 6 2 2 4L 1 1 1 2 5 þ E1 E2 2
6F 6 2b ¼ 1:66 4L
1 12 1 22 þ E1 E2 1 1 d1 d2 2
cðmaxÞ
Distribution of pressure over band of width of contact and stresses in contact zone along the line of symmetry of cylinders
Refer to Fig. 2-28b.
ð2-118Þ
31=2 7 7 7 5
31=2 1 1 6F 7 d1 d2 7 ¼ 0:7986 7 6 2 2 4L 1 1 1 2 5 þ E1 E2
The maximum compressive stress
ð2-117Þ
ð2-119Þ
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð2-120Þ
STATIC STRESSES IN MACHINE ELEMENTS
2.22
CHAPTER TWO
Particular
Formula
Cylindrical surface in contact with a flat surface (Fig. 2-27c): The width of band of contact
" Fd1 2b ¼ 1:6 L
1 12 1 22 þ E1 E2
#1=2 ð2-121Þ
31=2 F 1 ¼ 0:7986 ð2-122Þ 7 4Ld1 1 12 1 22 5 þ E1 E2 2
The maximum compressive stress
cðmaxÞ
where d ¼ d1 (Fig. 2-27c). Deformation of cylinder between two plates
d1 ¼
4F L
1 12
E
1 2d þ loge 1 3 b
ð2-123Þ
The maximum shear stress occurs below contact surface for ductile materials For sphere
max ¼ 0:31 cðmaxÞ
ð2-123aÞ
For cylinders
max ¼ 0:295 cðmaxÞ
ð2-123bÞ
The depth from contact surface to the point of the maximum shear
h ¼ 0:786b
ð2-123cÞ
FIGURE 2-28 Distribution of pressure over bandwidth of contact and stresses in contact zone along line of symmetry of spheres and cylinders for ¼ 0:3.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
STATIC STRESSES IN MACHINE ELEMENTS STATIC STRESSES IN MACHINE ELEMENTS
Particular
2.23
Formula
DESIGN OF MACHINE ELEMENTS AND STRUCTURES MADE OF COMPOSITE Honeycomb composite For the components of composite materials which give high strength–weight ratio combined with rigidity
Refer to Fig. 2-29.
For sandwich construction of honeycomb structure
Refer to Fig. 2-30.
FIGURE 2-29 Sandwich fabricated panel.
FIGURE 2-30 Honeycomb.
The moment of inertia of sandwich panel, Fig 2-30 Simplified Eq. (2-124) after neglecting powers of h
The flexural rigidity
3 Bh Hc þ h 2 þ 2Bh I ¼2 2 12 H I ¼ BhHc h þ c 2 D ¼ EI
ð2-124Þ ð2-125Þ ð2-126Þ
where E ¼ modulus of elasticity of the facing metal I is given by Eq. (2-125). D¼
EðH 3 Hc3 Þ 12ð1 2 Þ
ð2-127Þ
The flexural rigidity of sandwich construction for ðHc =hÞ > 5
D¼
EhðH þ Hc Þ2 8ð1 2 Þ
ð2-128Þ
The shear modulus of the core material as per Jones and Hersch
Gcore ¼
The flexural rigidity of sandwich plate/panel
1:5FLc BðH þ Hc Þ2 ð114 82 Þ
ð2-129Þ
where 4 and 2 ¼ deflection at quarter-span and midspan respectively F ¼ force over a support span Lc
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
STATIC STRESSES IN MACHINE ELEMENTS
2.24
CHAPTER TWO
Particular
Formula
The shear modulus G of isotropic material if the modulus of elasticity E is available
G¼
The modulus of elasticity of the core material (Fig. 2-31)
Ef ¼ Em
E 2ð1 Þ
ð2-130Þ
1 V 2=3 1 V 2=3 þ V
ð2-131Þ
where V ¼ ðHh =HÞ3 , Ef ¼ modulus of elasticity of foam, GPa (psi), Em ¼ modulus of elasticity of basic solid material, GPa (psi). Subscript f stands for foam/filament, m stands for matrix, and c stands for composite.
FIGURE 2-31 A unit cube foam subject to a tensile load.
The deflection for a beam panel according to Castigliano’s theorem
¼
FIGURE 2-32 Phantom load.
FIGURE 2-33
The deflection at midspan (Fig. 2-32)
L=2
@U @ ¼ @F @F
ð
@U @ ¼ ¼ @W @W
Mb2 dx þ 2EI
ð
ð
V 2 dx 2GA
Mb2 dx þ 2EI
ð
V 2 dx 2GA
ð2-132Þ
W ¼0
ð2-133aÞ 5FL3 FL þ ð2-133bÞ 349EI 8GA where W is the phantom load (Fig. 2-32). ¼
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
STATIC STRESSES IN MACHINE ELEMENTS STATIC STRESSES IN MACHINE ELEMENTS
Particular
The deflection per unit width for a sandwich panel at midspan (Fig. 2-32) under quarter-point loading
2.25
Formula
5FL3 FL þ 349DB 8Dc B HðH þ Hc Þ where Dc ¼ Gcore 2Hc
L=2 ¼
ð2-134Þ
The deflection per unit width for a sandwich panel at quarter panel (Fig. 2-32) under quarter-point loading
L=4 ¼
FL3 FL þ 96DB 8Dc B
ð2-135Þ
The deflection/unit width for a sandwich panel at center loading (Fig. 2-33)
L=2 ¼
FL3 FL þ 48DB 4Dc B
ð2-136Þ
The maximum normal stress (Fig. 2-32)
max
F L M FL 2 4 ¼ ¼ ¼ BhHc ðh þ Hc =2Þ Z 8BhHc H=2 ð2-137Þ FL 8BhH
ð2-138Þ
The minimum normal stress
min ¼
The average stress often used in the composite panel design
av ¼
The maximum shear stress in the core
max ¼
V 2V ¼ ½BðH þ Hc Þ=2 BðH þ Hc Þ
ð2-140Þ
The core shear strain
core ¼
max Gcore
ð2-141Þ
FLðL þ Hc Þ FL 16BhHc H 4BhðH þ Hc Þ
ð2-139Þ
FILAMENT REINFORCED STRUCTURES (Fig. 2-34) The strain in the filament is same as the strain in the matrix of composite material if it has to have strain compatibility
"m ¼ "f
FIGURE 2-34
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð2-142Þ
STATIC STRESSES IN MACHINE ELEMENTS
2.26
CHAPTER TWO
Particular
Formula
The relation between stress in matrix and stress in filament
m f ¼ Em Ef
ð2-143Þ
For equilibrium
F ¼ m Am þ f Af ¼ c Ac
ð2-144Þ
f ¼
FEf Af Ef þ Am Em
ð2-145Þ
m ¼
FEm Af Ef þ Am Em
ð2-146Þ
Ec ¼
E f Af ðAm þ Af Þ
ð2-147Þ
The stress in the filament
The stress in the matrix
The Young’s modulus of composite
The Young’s modulus of chopped-up glass filaments in resin matrix but still oriented longitudinally with respect to load as proposed by Outerwater
"
ðEc Þchpd-f
Af ¼ Ef Ac
1 4
yf
D2f Lpc
# ð2-148Þ
where ¼ applied tensile stress, MPa (psi) yf ¼ the strength of the fiber, MPa (psi) Df ¼ diameter of fiber, mm (in) pc ¼ uniform distance of one fiber from another on circumference, mm (in) L ¼ length of fiber, mm (in) Subscript chpd-f stands for chopped-up fiber. The relation between m and f , which has to satisfy Eq. (2-142) at any location on the curves, Fig. 2-35
f m ¼ ðE0 Þm ðE0 Þf
ð2-149Þ
where E0 ¼ secant modulus, GPa (Mpsi) From Eq. (2-144), the expression for c
For structure with all filament, Am ¼ 0
For structure with no filament, Af ¼ 0
c ¼
f Ac
¼
ð u Þf Ac
ðE0 Þm Am þ Af ðE0 Þf
ð m Þmax Am þ Af ð u Þf
c ¼
ð u Þf Af ¼ ð u Þf Ac
c ¼
ð u Þf Ac
ð m Þmax Am u
ð2-150Þ ð2-151Þ
ð2-152Þ ¼ ð m Þmax ¼ ð u Þm ð2-153Þ
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
STATIC STRESSES IN MACHINE ELEMENTS STATIC STRESSES IN MACHINE ELEMENTS
2.27
Particular
Formula
FIGURE 2-35 Stress-strain data for system shown in Fig. 2-34.
FIGURE 2-36 Filament wound cylindrical pressure vessel.
FILAMENT BINDER COMPOSITE (Fig. 2-36) Hoop stress for a closed end vessel/cylinder made of filaments winding
¼
pd 2h
ð2-154Þ
Longitudinal/axial stress for a closed end filament wound vessel/cylinder
a ¼
pd 4h
ð2-155Þ
The force carried by a helical filament wound on a shell of width w subjected to internal pressure p in the -direction
Fa ¼ so wh
The force in helical filament wound on a shell of width w subjected to internal pressure p in the hoop direction
F ¼ F sin
The hoop stress in the vessel wall due to the pressure p
¼
The stress in the vessel wall in the longitudinal/axialdirection
a ¼ 0 cos2
From Eq. (2-154) to (2-159) the optimum winding angle for closed end cylinders
tan2 ¼
The optimum winding angle for open end cylinders
a cos2 ¼ cot2 ¼ ¼ sin2
ð2-156Þ
where so ¼ strength of the filaments ð2-157Þ
F ¼ 0 sin2 A
a
ð2-158Þ ð2-159Þ
or 558
ð2-160Þ
or ¼ 908
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð2-161Þ
STATIC STRESSES IN MACHINE ELEMENTS
2.28
CHAPTER TWO
Particular
The stress in the hoop/circumferential direction for the filament wound cylinder/vessel consisting windings in longitudinal, hoop and helical directions to satisfy equilibrium condition
Formula
¼
0 h þ h h
ð2-162Þ
where 0 ¼ stress in the circumferential wound layer ¼ circumferential component of stress in the helical layer ht ¼ total thickness ¼ ha þ h þ h ha , h and h are the thicknesses in the preceding layers of filament windings
The longitudinal stress for the case of winding under Eq. (2-162)
a ¼
0a h0a þ a h h
ð2-163aÞ
so ðh þ h sin2 Þ h so a ¼ ðha þ h cos2 Þ h
where ¼
ð2-163bÞ ð2-163cÞ
so ¼ uniform filament stress a ¼ longitudinal component of stress in helical layer From Eqs. (2-159) and (2-158)
þ a ¼ 0 ðsin2 þ cos2 Þ ¼ 0
From Eqs. (2-154) and (2-155)
h¼
ð2-164Þ
pd 4 a
ð2-165Þ
pd 2h
ð2-154Þ
¼ The sum of stresses and a
þ a ¼ 3 a ¼ 0
For the ideal vessel
h¼
or
a ¼
0 3
3pd 4 0
ha ¼
h h cos2 3
ð2-166Þ ð2-167Þ
ð2-168aÞ
h ¼ 23 h sin2
ð2-168bÞ
2ha h 1 3 cos2
ð2-168cÞ
h ¼
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
STATIC STRESSES IN MACHINE ELEMENTS STATIC STRESSES IN MACHINE ELEMENTS
Particular
The structural efficiency of the wound vessel/cylinder
2.29
Formula
¼
W Ven pi
ð2-169Þ
where W ¼ weight of the vessel, kN (lbf) Ven ¼ enclosed volume, m3 (in3 ) pi ¼ internal pressure, MPa (psi)
FILAMENT-OVERLAY COMPOSITE T uw where T ¼ tension, kN (lbf) uw ¼ area of the element, m2 (in2 )
The stress in the wire which is wound on thin walled shell/cylinder with a wire of the same material (Fig. 2-37)
wr ¼
Under equilibrium condition over the length of shell L, the hoop stress
ð Þsh ¼
T wh
ð2-170Þ
ð2-171Þ
FIGURE 2-37 Shell subjected to an internal pressure.
The tension in the wound wire on the shell under internal pressure
Twr ¼
pd T þ 2ðh þ uÞ wu
ð2-172Þ
The tension in the shell under the above same condition
Tcy ¼
pd T 2ðh þ uÞ wh
ð2-173Þ
The yielding of shell due to internal pressure, i.e., due to plastic flow of material of the shell.
ð 0 Þshy ¼
ð2-174Þ
For the above same winding material under the tension equal to compression yield limits, the stress in the wire.
wr
T ¼ y wh T h ¼ ¼ y uw u
ð2-175Þ
If the vessel material is different from the winding material then stress in the wire and vessel
cy ¼ "sh Esh
ð2-176aÞ
wr ¼ "wr Ewr
ð2-176bÞ
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
STATIC STRESSES IN MACHINE ELEMENTS
2.30
CHAPTER TWO
Particular
Formula
For uniform distribution of stress in the cylinder/shell and in the wire, strains are proportional to the mean radii
rcy "cy cy Ewr ¼ ¼ rwr "wr wr Ecy
From Eq. (2-177), the stress in the cylinder and the wire
sh ¼ cy ¼ wr
wr ¼ cy
Ecy rcy Ewr rwr
Ewr rwr Ecy rcy
ð2-177Þ
ð2-178aÞ
ð2-178bÞ
where subscripts cy stands for cylinder, sh for shell and wr for winding. rcy and rwr are mean radii of cylinder and winding respectively. The total load on the cylinder and the winding
cy ð2LhÞ þ wr ð2LuÞ ¼ pdL
ð2-179Þ
From Eq. (2-179), the stress in the cylinder ( cy ) and the winding ( wr )
pd cy ¼ Ewr rwr u 2 þh Ecy rcy
ð2-180aÞ
pd wr ¼ Ecy rcy þu 2 Ewr rwr
ð2-180bÞ
The stress in the cylinder is the sum of results of Eqs. (2-180a) and (2-171)
pd T Rcy ¼ Ewr rwr u wh 2 þh Ecy rcy
ð2-181Þ
The resultant stress in the winding is the sum of results of Eq. (2-180b) and (2-170)
pd T þ Rwr ¼ Ecy rcy h wu þu 2 Ewr rwr
ð2-182Þ
For advanced theory using Theory of elasticity and Plasticity construction on composite structures and materials
Refer to advanced books and handbooks on composites, structures, handbooks and design data for reinforced plastics and materials.
For representative properties for fiber reinforcement
Refer to Table 2-1
FORMULAS AND DATA FOR VARIOUS CROSS SECTIONS OF MACHINE ELEMENTS For further data on static stresses, properties and torsion of shafts of various cross-sections: shear, moments, and deflections of beams, strain rosettes, and singularity functions
Refer to Tables 2-2 to 2-12
For summary of stress and strain formulas under various types of loads
Refer to Table 2-13
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
0.4 0.4 0.4 4
0.2–0.4 5 4
0.5 0.001–0.01 0.2 0.2–0.5 0.8
5–10 127 102
13 0.025–0.25 5 5–13 20.5
103 in
10.2 10.2 10.2 102.0
103 mm
7.64 2.43 2.62 1.11 1.49
1.43–1.75 1.78 3.40
2.48 2.43 2.46 2.56
g/cm3 3100 4498 5510 2756
MPa 450 650 800 400
kpsi
Tensile strength, st
0.283 0.090 0.097 0.041 0.052
2852–4184 689–2067 1378–2067 827 690
385–600 100–300 200–300 120 100
0.053–0.066 1723–3445 250–500 0.066 1240 180 0.126 2480 360
0.092 0.090 0.091 0.095
lb/in3
Density,
200 172 138–413 2.8 4
241–689 310 414
72.5 85 100 415
GPa
29 25 20–60 0.4 0.6
35–100 45 60
10.5 12.3 14.5 60
Mpsi
Modulis of elasticity, Eg
30 3.7 45–50 45–50
54 6.5 81–90 81–90
1.5 6.4 2.2
2.8
5.0 2.7 11.5 4.0
2.8
lin/in8F
5.0
lm/m K
Coefficient of thermal expansion,
381 381
22400–38080
13440 19488 6496
1680
W/(m2 K/m)
1.7 1.7
100–170
60 87 29
7.5
Btu/(ft2 h8F)/in)
Thermal conductivity, K
Courtesy: J. E. Ashton, J. C. Halpin, and P. H. Petit, Primer on Composite Materials: Analysis, Technomic Publishing Co., Inc., 750 Summer St., Stanford, Conn. 06901, 1969.
E glass S glass 970 S glass Boron on tungsten Graphite Beryllium Silicon carbide on tungsten Stainless steel Asbestos Aluminum Polyamide Polyester
Fiber
Typical fiber diameter
TABLE 2-1 Representative properties for fiber reinforcement STATIC STRESSES IN MACHINE ELEMENTS
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
2.31
STATIC STRESSES IN MACHINE ELEMENTS
2.32
CHAPTER TWO
TABLE 2-2 Torsion of shafts of various cross sections Polar section modulus, Polar radius of gyration, k0 Cross section Z0 ¼ J=c
D pffiffiffi ¼ 0:354D 8
D3 16
Angular deflection, In terms of torsional moment, Mt In terms of maximum stress, 2l D G
32l Mt
D4 D
at circumference
ðD41 D42 Þ 16D1
sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi D21 þ D22 ¼ 0:354 D21 þ D22 8
B h
A b
b2 h 16
a 1 4
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi b2 þ h2
2l D1 G
32l Mt
ðD41 D42 Þ G
at outer circumference
16ðb2 þ h2 Þl Mt G
b3 h3
ðb2 þ h2 Þl G bh2
h>b
2b2 h 9
at A b
a
h>b
rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi b2 þ h2 12 pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ¼ 0:289 b2 þ h2
mðb2 þ h2 Þl Mt G b3 h3 h ¼1 b
nðb2 þ h2 Þl G bh2 at A c
2
4
8
m ¼ 3:56 3:50 3:35 3:21 n ¼ 0:79 0:78 0:74 0:71 b3 20
46:2l Mt b4 G
a
0:289b
2:31l b G at center of side
0:92b3 a
0:645b
0:967l Mt G b4
0:9l b G at center of side
a This value is not true value of Z0 but is the value of Z0 for a circular section of equal strength and may be used for determining the maximum stress by the formula ¼ Mt =Z0 . b At B, shear stress ¼ 10Mt = bh2 . c At B, shear stress ¼ 9Mt =2bh2 . Source: V. L. Maleev and J. B. Hartman, Machine Design, International Textbook Company, Scranton, Pennsylvania, 1954.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
STATIC STRESSES IN MACHINE ELEMENTS STATIC STRESSES IN MACHINE ELEMENTS
2.33
TABLE 2-3 Shear stress in beams, caused by bending
Section
Shear stress at a distance y from neutral axis, , MPa (psi)
Maximum shear stress, max , MPa (psi)
2 3F 2y 1 2bh h
3F F ¼ 1:5 ðfor y ¼ 0Þ 2bh A
2 4F y 1 r 3 r2
4F F ¼ 1:33 ðfor y ¼ 0Þ A 3 r2
pffiffiffi pffiffiffi 2 F 2 y 2 y 4 1þ 2 b b b
1:591
F A
c for y ¼ 4
3F bc2 ðb aÞd 2 ðfor y ¼ 0Þ 3 3 4a bc ðb aÞd
TABLE 2-4 The values of constants a in Eq. (2-107) Yield stress in compression, yc
Value of a for various end-fixity coefficients 1
4
2
n
7
1 750
1 3000
1 1500
1 n 750
549
80
1 1600
1 6400
1 3200
1 n 1600
324
47
1 7500
1 30000
1 15000
1 n 7500
Material
MPa
kpsi
Timber
49
Cast iron Mild steel
TABLE 2-5 End condition coefficient n (Fig. 2-25) Particular
n
TABLE 2-6 End-fixity coefficients for cast iron column to be used in Eq. (2-104)
One end fixed and the other end free Both ends rounded and guided or hinged One end fixed, and the other end rounded and guided or hinged Both ends fixed rigidly Both ends flat
0.25 1 2
End conditions
C1
Maximum, l=k
Round Fixed One fixed, one round
175 88 116
90 160 115
4 1 to 4
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
STATIC STRESSES IN MACHINE ELEMENTS
2.34
CHAPTER TWO
TABLE 2-7 Properties of cross sections
Section
Area, A
Moment of inertia, I
Distance to farthest point, c
bh
bh3 12
h 2
bh2 6
0:289h
ðH cÞb
b ðH 3 h3 Þ 12
H 2
bðH 3 h3 Þ 3H
sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi H 3 h3 12ðH hÞ
BH bh
BH 3 bh3 12
H 2
BH 3 bh3 6H
sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi BH 3 bh3 12ðBH bhÞ
ð6b2 þ 6bb0 þ b20 Þh3 36ð2b þ b0 Þ
ð3b þ 2b0 Þh 3ð2b þ b0 Þ
ð6b2 þ 6bb0 þ b20 Þh2 12ð3b þ b0 Þ
rffiffiffiffi I A
D4 64
D 2
D3 32
D 4
2b þ b0 h 2
D2 4
2 ðD D22 Þ 4 1
Section modulus, Z ¼ I=c
Radius of gyration, pffiffiffiffiffiffiffiffi ffi k ¼ I=A
qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi D21 þ D22
ðD4 D42 Þ 64 1
¼ ðR41 R42 Þ 4
D1 ¼ R1 2
ab
ba3 64
a 2
ba2 32
a 4
bh 2
bh3 36
bh2 24
0:236h
ðD41 D42 Þ 32D1
4 ¼
qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi R21 þ R22
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
2
B to C : Mb ¼ Fðx bÞ
Max MbC ¼ Fa at C
A to B : V ¼ 0
B to C : V ¼ F
4. End supports, center load
3. Cantilever, uniform load
B to C : Mb ¼ þ 12 Fðl xÞ Max MbB ¼ þ14 FL at B
A to B : V ¼ þ 12 F B to C : V ¼ 12 F
Max MbB ¼ 12Wl at B
A to B : Mb ¼ þ 12 Fx
W x l
R1 ¼ þ12 F; R2 ¼ þ 12 F
V¼
1 W 2 x 2 l
A to B : Mb ¼ 0
R2 ¼ þF
Mb ¼
Max MbB ¼ Fl at B
V ¼ F
R2 ¼ þW ¼ wl
Mb ¼ Fx
R2 ¼ þF
1. Cantilever, end load
2. Cantilever, intermediate load
Bending moment Mb , and maximum bending moment
Reactions R1 and R2 , vertical shear V
Loading, support, and reference number
TABLE 2-8 Shear, moment, and deflection formulas for beams
ymax ¼
1 F ð3l 2 x 4x3 Þ 48 EI 1 Fl 3 at B 48 EI
A to B: y ¼
1 Wl 3 8 EI
1 W 4 ðx 4l 3 x þ 3l 4 Þ 24 EIl ymax ¼
y¼
1 F ð3a2 l a3 Þ 6 EI
1 F ½ðx bÞ3 3a2 ðx bÞ þ 2a3 6 EI B to C: y ¼
ymax ¼
1 F ða3 þ 3a2 l 3a2 xÞ 6 EI A to B: y ¼
1 Fl 3 at A 3 EI
1 F 3 ðx 3l 2 x þ 2l 3 Þ 6 EI
ymax ¼
y¼
Deflection y and maximum deflection
STATIC STRESSES IN MACHINE ELEMENTS
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
2.35
A O
2.36
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
I
W = wl
B M2
8. One end fixed, one end supported, uniform load
7. One end fixed, one end supported, center load
6. End supports, uniform load
5. End supports, intermediate load
Loading, support, and reference number b a ; R2 ¼ þF l l
ab at B l
a ðl xÞ l
b x l
Fbx ½2lðl xÞ b2 ðl xÞ2 6EIl
1 Wx 3 ðl 2lx2 þ x3 Þ 24 EIl
3 Max MbC ¼ 16 Fl at C
B to C: V ¼ 11 16 F
V¼W
3 x 8 l
M2 ¼ 18 Wl
R1 ¼ 38 W; R2 ¼ 58 W
Max MbB ¼ 18 Wl at B
9 Max þMb ¼ 128 Wl at x ¼ 38 l
Mb ¼ Wð38 x 12 x2 Þ
Wl 3 at x ¼ 0:4215l El
1 W ð3lx3 2x4 l 3 xÞ 48 EIl ymax ¼ 0:0054
y¼
ymax ¼ 0:00932
5 Max þMbB ¼ 32 Fl at B
5 F A to B: V ¼ þ 16
Fl 3 at x ¼ 0:4472l EI
1 F ½5x3 16ðx 12 lÞ3 3l 2 x 96 EI
3 M2 ¼ 16 Fl
B to C: y ¼
5 A to B: Mb ¼ 16 Fx
5 F; R2 ¼ 11 R1 ¼ 16 16 F
B to C: Mb ¼ Fð12 l 11 16 xÞ
5 Wl 3 Max y ¼ at x ¼ 12 l 384 EI
y¼
Faðl xÞ ½2lb b2 ðl xÞ2 B to C: y ¼ 6EIl pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi Fab ymax ¼ ða þ 2bÞ 3aða þ 2bÞ at 27EIl qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi x ¼ 13aða þ 2bÞ when a > b
A to B: y ¼
Deflection y and maximum deflection
1 F ð5x3 3l 2 xÞ 96 EI
Max Mb ¼ þ 18 Wl at x ¼ 12 l
x2 Mb ¼ 12 W x l
Max MbB ¼ þF
B to C: Mb ¼ þF
A to B: Mb ¼ þF
Bending moment Mb , and maximum bending moment
A to B: y ¼
2x V ¼ 12 W 1 l
R2 ¼ þ 12 W; R2 ¼ þ 12 W
A to B: V ¼ þF
b l a B to C: V ¼ F l
R1 ¼ þF
Reactions R1 and R2 , vertical shear V
TABLE 2-8 Shear, moment, and deflection formulas for beams (Cont.)
STATIC STRESSES IN MACHINE ELEMENTS
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website. 1 Max Mb ¼ 12 Wl at A and B
1 Max þMb ¼ 24 Wl at x ¼ 12 l
1 1 M1 ¼ 12 Wl; M2 ¼ 12 Wl
2x V ¼ 12 W 1 l
x2 1 Mb ¼ 12 W x l 6 l
R1 ¼ 12 W; R2 ¼ 12 W
Max Mb ¼ M2 when a > b
B to C: V ¼ R1 F ¼ R2
ab2 þ R1 a at B l2
Max Mb ¼ M1 when a < b
Max þMb ¼ F
ab2 þ R1 x Fðx aÞ l2
ab2 þ R1 x l2
A to B: V ¼ R1
ab2 a2 b ; M2 ¼ F 2 l2 l
B to C: Mb ¼ F
Fa2 ð3b þ aÞ l3
R2 ¼
M1 ¼ F
A to B: Mb ¼ F
Fb2 ð3a þ bÞ l3
R1 ¼
Source: J. E. Shigley, Mechanical Engineering Design, 3rd. ed., McGraw-Hill Book Company, New York, 1977.
11. Both ends fixed, uniform load
10. Both ends fixed, intermediate load
Max þMbB ¼ 18 Fl at B
A to B: V ¼ þ 12 F Max MbA;C ¼ 18 Fl at A and C
B to C: Mb ¼ 18 Fð3l 4xÞ
M1 ¼ 18 Fl; M2 ¼ 18 Fl
B to C: V ¼ 12 F
A to B: Mb ¼ 18 Fð4x lÞ
R1 ¼ 12 F; R2 ¼ 12 F
9. Both ends fixed, center load
Bending moment Mb , and maximum bending moment
Reactions R1 and R2 , vertical shear V
Loading, support, and reference number
TABLE 2-8 Shear, moment, and deflection formulas for beams (Cont.)
2 F a2 b3 2bl if a < b at x ¼ l 3 EI ð3b þ aÞ2 ð3b þ aÞ
1 Wl 3 at x ¼ 12 l 384 EI
1 Wx2 ð2lx l 2 x2 Þ 24 EIl ymax ¼
y¼
ymax ¼
1 Fa2 ðl xÞ2 ½ð3b þ aÞðl xÞ 3bl 6 EIl 3
1 Fb2 x2 ð3ax þ bx 3alÞ 6 EIl 3
2 F a3 b2 2al if a > b at x ¼ 3 EI ð3a þ bÞ2 ð3a þ bÞ
B to C: y ¼
ymax ¼
1 F ð3lx2 4x3 Þ 48 EI
1 Fl 3 at B 192 EI
A to B: y ¼
ymax ¼
A to B: y ¼
Deflection y and maximum deflection
STATIC STRESSES IN MACHINE ELEMENTS
2.37
STATIC STRESSES IN MACHINE ELEMENTS
2.38
CHAPTER TWO
TABLE 2-9 Some equations for use with the Castigliano method Type of load
General energy equation U¼
Axial
U¼
Bending Combined axial and bending
U¼
Torsion
U¼
Transverse shear
U¼
Transverse shear (rectangular section)
U¼
Open-coiled helical spring subjected to axial load F
U¼
ðl 0
ðl 0
ðl 0
ðl 0
ðl 0
ðl 0
ðl 0
Energy equation
2
2
2
General deflection equation ðl
F ds 2AE
U¼
F l Al ¼ 2AE 2E
¼
Mb2 l ds 2EI
U¼
Mb2 l 2EI
¼
U¼
F 2 l Mb2 l þ 2EA 2EI
Sum of axial and bending load
Mt2 ds 2GJ
U¼
Mt2 l 2GJ
¼
V 2 ds 2GA
U¼
V2l 2 ¼ Al 2GA 2G
¼
3V 2 ds 5GA
U¼
3V 2 l 5GA
¼
F2 ds þ 2AE
Mt2 ds þ 2GJ
ðl 0
ðl 0
Mb2 ds 2EI
Mb2 ds 2EI
Mt2 l Mb2 l þ 2GJ 2EI LFR2 cos2 sin2 ¼ þ GJ EI 2
U¼
0
ðl 0
ðl 0
ðl 0
ðl 0
Fð@F=@QÞ ds AE Mb ð@Mb =@QÞ ds EI
Mt ð@Mt =@QÞ ds GJ Vð@V=@GÞ ds GA 6Vð@V=@QÞ ds 5GA
cos2 sin2 ¼ 2 iFR3 sec þ GJ EI D ¼ mean radius of coil 2 ¼ helix angle of spring i ¼ number of coils or turns
where R ¼
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
STATIC STRESSES IN MACHINE ELEMENTS STATIC STRESSES IN MACHINE ELEMENTS
2.39
TABLE 2-10 Mechanical and physical constants of some materials1;2 Modulus of elasticity, E
Modulus of rigidity, G
Material
GPa
Mpsi
GPa
Mpsi
Aluminum Aluminum cast Aluminum (all alloys) Beryllium copper Carbon steel Cast iron, gray Malleable cast iron Inconel Magnesium alloy Molybdenum Monet metal Nickel-silver Nickel alloy Nickel steel Phosphor bronze Steel (18-8), stainless Titanium (pure) Titanium alloy Brass Bronze Bronze cast Copper Tungsten Douglas fir Glass Lead Concrete (compression) Wrought iron Zinc alloy
69 70 72 124 206 100 170 214 45 331 179 127 207 207 111 190 103 114 106 96 80 121 345 11 46 36 14–28 190 83
10.0 10.15 10.4 18.0 30.0 14.5 24.6 31.0 6.5 48.0 26.0 18.5 30 30.0 16.0 27.5 15.0 16.5 15.5 14.0 11.6 17.5 50.0 1.6 6.7 5.3 2.0–4.0 27.5 12
26 30 27 48 79 41 90 76 16 117 65 48 79 79 41 73
3.8 4.35 3.9 7.0 11.5 6.0 13.0 11.0 2.4 17.0 9.5 7.0 11.5 11.5 6.0 10.6
43 40 38 35 46 138 4 19 13
6.2 5.8 5.5 5.0 6.6 20.0 0.6 2.7 1.9
70 31
10.2 4.5
Poisson’s ratio,
Density, a, Mg/m3
0.334
2.69
0.320 0.285 0.292 0.211
2.80 8.22 7.81 7.20
0.290 0.350 0.307 0.320 0.332 0.30 0.291 0.349 0.305
8.42 1.80 10.19 8.83 8.75 8.3 7.75 8.17 7.75 4.47 6.6 8.55 8.30
0.33 0.324 0.349 0.326 0.330 0.245 0.431
0.33
8.90 18.82 4.43 2.60 11.38 2.35 6.6
Unit weight, b kfg/m3
kN/m3
lbf/in3
lbf/ft3
2,685 2,650 2,713 8,221 7,806 7,197 7,200 8,418 1,799 10,186 8,830 8,747
26.3 26.0 27.0 80.6 76.6 70.6
0.097 0.096 0.10 0.297 0.282 0.260
167 166 173 513 487 450
83.3 17.6 100.0 86.6 85.80
7,751 8,166 7,750 4,470
76.0 80.1 76.0 43.9
0.307 0.065 0.368 0.319 0.316 0.300 0.280 0.295 0.280 0.16
530 117 636 551 546 518 484 510 484 279
8,553 8,304 8,200 8,913 18,822 443 2,602 11,377 2,353 7,700
83.9 81.4
0.309
534
87,4 184.6 4.3 25.5 111.6 23.1
0.322
556
0.016 0.094 0.411
28 162 710 147
0.24
415
¼ mass density: ¼ weight density; w is also the symbol used for unit weight of materials. Sources: K. Lingaiah and B. R. Narayana Iyengar, Machine Design Data Handbook, Vol. I (SI and Customary Metric Units), Suma Publishers, Bangalore, India, and K. Lingaiah, Machine Design Data Handbook, Vol. II (SI and Customary Metric Units), Suma Publishers, Bangalore, India. 1986. a
b
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
E ð" "2 Þ 2ð1 þ Þ 1
0
Maximum shearing stress, max
Angle from gauge 1 axis to maximum normal stress angle, ’p
1 2"2 ð"1 þ "3 Þ tan1 2 "1 "3
E 2ð1 þ Þ qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ð"1 "3 Þ2 þ ½2"2 ð"1 þ "3 Þ2
"1 þ "3 1 1þ 1 qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ð"1 "3 Þ2 þ ½2"2 ð"1 þ "3 Þ2
"1 þ "3 1 þ 1þ 1 qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ð"1 "3 Þ2 þ ½2"2 ð"1 þ "3 Þ2
2
E 1þ sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ffi " þ "2 þ "3 2 "2 "3 2 pffiffiffi "1 1 þ 3 3
"1 þ "2 þ "3 1 1þ 3ð1 Þ sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ffi "1 þ "2 þ "3 2 "2 "3 2 pffiffiffi þ "1 3 3
"1 þ "2 þ "3 1 þ 1þ 3ð1 Þ sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ffi " þ "2 þ "3 2 "2 "3 2 pffiffiffi þ "1 1 3 3
3 1 p ffiffi ffi " Þ ð" 2 3 6 7 1 3 7 tan1 6 4 "1 þ "2 þ "3 5 2 "1 3
E
E
Rosette type
Poisson’s ratio. The author has used as symbol for Poisson’s ratio. Source: Perry, C. C., and H. R. Lissner, The Strain Gage Primer, 2nd ed., McGraw-Hill Publishing Company, New York, p. 147, 1962.
E 2
E ð"2 þ "1 Þ 1 2
Minimum normal stress, min
E 2
E ð"1 þ "2 Þ 1 2
Maximum normal stress, max
Required solutions
TABLE 2-11 Relations between strain rosette readings and principal stresses
E 2ð1 þ Þ rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 4 ð"1 "4 Þ2 þ ð"2 "3 Þ2 3 1 2ð" "3 Þ tan1 pffiffiffi 2 2 3ð"1 "4 Þ
E "1 þ "4 1 2 1 1þ rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 4 ð"1 "4 Þ2 þ ð"2 "3 Þ2 3
E "1 þ "4 1 þ 2 1 1þ rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 4 ð"1 "4 Þ2 þ ð"2 "3 Þ2 3
STATIC STRESSES IN MACHINE ELEMENTS
2.40
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
STATIC STRESSES IN MACHINE ELEMENTS STATIC STRESSES IN MACHINE ELEMENTS
Table 2-12 Singularity functions Graph of fn ðxÞ
Function Concentrated moment
Meaning hx ai2 ¼ ðx 1
Concentrated force
1
Unit step
Parabolic
x¼a x 6¼ a
1
x¼a
0
x 6¼ a
hx ai1 dx ¼ hx ai0
1
Rump
hx ai0 ¼ ðx
1 0
hx ai2 dx ¼ hx ai1
hx ai1 ¼ ðx
0
x
1
xa
hx ai dx ¼ hx ai1 0
0 x
hx ai2 ¼ ðx
0
x
ðx aÞ2
xa
hx ai3 hx ai2 dx ¼ 3 1
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
2.41
Type of loads
Axial load
Bending load
Bending and axial load
Torsion
Figure showing loads
1
2
3
4
sn
Figure showing stress
0
þ
R ¼
b ¼
F A
x
F A
Mb l
Mb c I
0
0
0
0
y
0
0
0
0
z
Applied stresses
Mt r Mt ¼ J Zp
0
0
0
bx ; E
; E
¼
r ¼ G L
"z ¼ "3 ¼ v"1
"y ¼ "2 ¼ v"1 ;
"x ¼ "1 ¼
"z ¼ "3 ¼ "1
"y ¼ "2 ¼ "1 ;
"x ¼ "1 ¼
"z ¼ "3 ¼ "1 ¼ "z ;
"y ¼ "2 ¼ "1 ¼ "x ;
bx
bx
bx 2
bx 2
x max ¼ 2 2
"x ¼ "1 ¼ ¼ x E E
x ¼ max
max
Strain equations/Area /Approach distance max
Maximum stress produced
1t ¼ 1c ¼ at 458 to the shaft axis
1 ¼ E"1 ; 2 ¼ 0; 3 ¼ 0
Principal stresses
Symbols: a ¼ major semi-axis of ellipse of area of contact, mm (in), and also radius of band of contact in case of spheres, mm (in); b ¼ minor semi-axis of ellipse of area of contact, mm (in), and also half-bandwidth of rectangle contact between cylinders with parallel axis, mm (in); d1 , d2 ¼ diameters of small and large spheres respectively, mm (in); E1 , E2 ¼ moduli of elasticities of bodies in contact respectively, GPa (psi); F ¼ load, kN (lbf); F 0 ¼ ðF=‘ Þ ¼ load per unit length, kN/m (lbf/in); k1 , k2 ¼ material constants for small and large solid elastic bodies in contact; L ¼ length of cylinder, m (in); pmax ¼ maximum pressure on surfaces of contact, MPa (psi); c max ¼ maximum contact compressive stress, MPa (psi); ¼ normal stress, also with subscripts, MPa (psi); ¼ shear stress, also with subscripts MPa (psi); 1 , 2 ¼ Poisson’s ratio of materials of small and large elastic bodies in contact respectively; ¼ approach distance along the line of action of the load between two points on the elastic bodies in contact, mm (in); ¼ hoop or circumferential or tangential stress, MPa (psi); a ¼ axial or longitudinal stress, MPa (psi); h ¼ thickness of cylinder/vessel/shell, mm (in). Meaning of other symbols used in this Table are given under Symbols introduced at the beginning of this Chapter. pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi a2 b2 d d d d 1 12 1 22 b ; k2 ¼ ; ¼ ;e ¼ do ¼ 1 2 ; do0 ¼ 1 2 ; k1 ¼ a a d1 þ d2 d1 d2 E1 E2
TABLE 2-13 Summary of strain and stress equations due to different types of loads
STATIC STRESSES IN MACHINE ELEMENTS
2.42
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
¼
¼
Thin-walled cylinder under internal pressure with closed ends
Thin-walled cylinder under internal pressure and axial tensile load with closed ends
Thin walled cylinder under internal pressure and compressive load with closed ends.
8
9
10 ¼
a ¼
a ¼
a ¼
pd 2h
pd 2h
0
0
0
y
pd F 4h A
pd F þ 4h A
pd 4h
0
0
0
0
0
0
z
Applied stresses
pd 2h
Mb c F þ l A
Axial, bending and torsion load
Mb c I
F A
x
7
Figure showing stress
Torsion and bending load
Torsion and axial load
Type of loads
6
5
Figure showing loads
TABLE 2-13 Summary of strain and stress equations due to different types of loads (Cont.)
0
0
0
Mt r Mt ¼ J Zp
Mt r Mt ¼ J Zp
Mt r Mt ¼ J Zp
h x 2
x 2
x or y whichever is larger
x
1 ð Þ E a 1 " ¼ ð a Þ E
1 ð Þ E a 1 " ¼ ð a Þ E "a ¼
"a ¼
x
þmax
max ¼
r ¼ G L
qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi zx þ 4 2 þ
1 2
h x 2
qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi zx þ 4 2
max ¼
1 2
r ¼ G L
x E
þ
max ¼
General biaxial 1 "a ¼ ð a Þ E 1 " ¼ ð a Þ E
¼
¼
and
x E
r ¼ G L
"x ¼
¼
and
"x ¼
1 ¼ 2
qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2x þ 4 2
x ; if y > 0 2 x y ; if y < 0 2
max 2
x 2
1 2
qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2x þ 4 2
qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2x þ 4 2
max ¼
max
max
1 ¼ 2
Maximum stress produced Strain equations/Area /Approach distance max max
qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 1 þ 2at þ 4 2 2 at
ð"1 "2 Þ 1 2 ð" "1 Þ 2 ¼ E 2 1 2 3 ¼ 0 1 ¼ E
ð"1 "2 Þ 1 2 ð" "1 Þ 2 ¼ E 2 1 2 3 ¼ 0 1 ¼ E
General biaxial: ð" "2 Þ 1 ¼ E 1 1 2 ð" "1 Þ 2 ¼ E 2 1 2 3 ¼ 0
qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 1 þ 2ab þ 4 2 2 ab qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 16 Mb Mb2 þ Mt2 ¼
D3 1 1;2 ¼ ½ at þ ab 2 qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 1 ð at ab Þ2 þ4 2 2 1 ¼
1;2 ¼
Principal stresses
STATIC STRESSES IN MACHINE ELEMENTS
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
2.43
14
h: THICKNESS
Hydraulic pressure
Thick-walled cylinder under internal and external pressure with closed ends
A thin-walled cylinder under internal pressure and torsion with closed ends
12
13
Closed walled spherical shell under internal pressure
11
Mt
Type of loads
Figure showing loads Figure showing stress pd 4h
ðp1 p0 Þd12 d02 4 d02 d12
b¼
p
p1 d12 p0 d02 d02 d12
b r2
a¼
where
¼ a þ
x ¼
¼
x pd 4h
p
y ¼ a
y ¼ a
a ¼
y
b r2
Applied stresses
TABLE 2-13 Summary of strain and stress equations due to different types of loads (Cont.)
p
-p
0
0
z
0
Mt r J
0
3pd ð1 Þ 4hE
General triaxial 1 " ¼ ½ ð r þ a Þ E 1 "a ¼ ½ a ð þ r Þ E
1 ð a Þ E 1 "a ¼ ð a Þ E r ¼ ¼ G L " ¼
" ¼
Biaxial hoop stress: Volume strain
0
r 2
max ¼
a 2
Maximum stress produced Strain equations/Area /Approach distance max max
1h ð þ a Þ 2 qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi : ð a Þ2 þ4 2
E ½ð1 Þ"1 þ ð"2 þ "3 Þ 1 2 2 E ½ð1 Þ"2 þ ð"3 þ "1 Þ 2 ¼ 1 2 2 E ½ð1 Þ"3 þ ð"2 þ "1 Þ 3 ¼ 1 2 2 1 ¼
12 ¼
Principal stresses
STATIC STRESSES IN MACHINE ELEMENTS
2.44
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
3.778 0.408 1.220
6.612 0.319 0.851
p q
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website. 2.731 0.493 1.453
30 2.397 0.530 1.550
35
The auxiliary angle defines the two coefficients p and q and is given by ¼ cos1 ð=Þ. p, q and are obtained from table given below for various values of :
20
General case of contact of two elastic bodies under compressive load
16
10
++General case of loading (Triaxial stress including shear stress)
15
Figure showing stress
, deg
Type of loads
Figure showing loads
1.926 0.604 1.709
45
F
ab
2.136 0.567 1.637
40
av ¼
x
Principal stresses
2 3 1 1 ; ðmax Þ2 ¼ 3 ; ðmax Þ3 ¼ 2 2 2 2
1.611 0.678 1.828
55
1.486 0.717 1.875
60
1.378 0.750 1.912
65
1.286 0.802 1.944
70
1.202 0.845 1.967
75
1.128 0.893 1.985
80
A ¼ ab 3 F ðk1 þ k2 Þ 1=3 3 F ðk1 þ k2 Þ 1=3 a¼p ; b¼q 4 4 1 1 1 1 1 ¼ ðA þ BÞ ¼ þ 0 þ þ 0 2 1 1 2 2 " 1 1 1 2 1 1 2 0 þ 0 þ ¼ ðB AÞ ¼ 2 1 1 2 2 1=2 1 1 1 1 þ cos 2 2 1 01 2 02 " #1=3 9F 2 ¼ ðk þ k2 Þ2 128 1
1.061 0.944 1.996
85
1.000 1.000 2.000
90
c max ¼
3 F 2 ab
b aþb
a aþb
" 1 tan1 e
e2
y¼b
1 tanh1 e 1 e2 e ðÞx¼0 ¼ ð1 2Þ c max
y¼0
3 ¼ ð z Þ ¼ c max : ðÞx¼a ¼ ð1 2Þ c max
ð1 2Þ c max
2 ¼ y ¼ 2 c max
ð1 2Þ c max
½ðmax Þz¼0:63a ¼ 0:34 c max 1 ¼ ð x Þ ¼ 2 c max
For details of general cases of stress, strains and direction cosines refer to Handbook and Theory of Elasticity.
The maximum shear stresses are: ðmax Þ1 ¼
The direction of each principal stress is defined by the cosines of the angles it makes with 0x, 0y, and 0z. The maximum shear stress occurs in each two planes inclined at 458 to the principal stress.
1.754 0.641 1.772
50
z
Maximum stress produced Strain equations/Area /Approach distance max max
The three principal stresses 1 ; 2 and 3 are given by the three roots of the cubic equation in 2 2 2 3 þ y þ x 2 y þ y z þ z x yz zx 2 2 2 x y z þ 2xy yz zx x yz y zx z xy ¼0
y
Applied stresses
TABLE 2-13 Summary of strain and stress equations due to different types of loads (Cont.)
STATIC STRESSES IN MACHINE ELEMENTS
2.45
Type of loads
Contact of a solid sphere on a solid plane surface under compressive load
Contact of a solid sphere on solid sphere under compressive load
Contact of a solid sphere with a spherical socket subject to compressive load.
Figure showing loads
17
18
19
x
y F
a2
F
a2
e max ¼
av ¼
c max ¼
av ¼
z
3 F 2 a2
3 F 2 a2
1=3 3 a ¼ Fd0 ðk1 þ k2 Þ 8 " #1=3 9F 2 ðk1 þ k2 Þ2 ¼ 8d0
A ¼ a2
a ¼ 0:721½Fd ðk1 þ k2 Þ1=3 sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2 3 2F ¼ 1:78 ðk1 þ k2 Þ2 d
A ¼ a2
cðmaxÞ ¼
24F þ k2 Þ2 a3 d02 ðk1
"
" z3 ða2 þ z2 Þ 3=2
#
c max
av ¼
F
a2 3 F ¼ 2 a2
1=3 a ¼ 0:721 Fd00 ðk1 þ k2 Þ 1=3 ðk þ k2 Þ ¼ 1:04 F 2 1 d0
The maximum sub-surface shear stress at z ¼ 0:63a is ðmax Þz¼0:63a ¼ 0:34 c max For principal stresses and variation of stresses along the line of action of load refer to Figure 2-28 "
#1=3
#1=3
24 F 1 0
3 d0 2 ðk1 þ k2 Þ2
rffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2 þ 2 7 2
cðmaxÞ
The distance from the surface of contact on the line of action of the load at which the maximum shear stress accurse z ¼ a
3F The maximum Hertz contact stress is ð z max Þz¼0 ¼ pmax ¼ c max ¼ 2 " 2 a 3 # p 1 2 z 3 z pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi The maximum shear stress is 13 ¼ xz ¼ max þ ð1 þ Þ pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2 2 2 a2 þ z2 a2 þ z2
z ð¼ c Þ ¼ pmax 1
;
#1=3 9 =
0:918
F d 2 ðk1 þ k2 Þ2
"
cðmaxÞ ¼
¼
y max z¼0 ¼
1 þ 2 1 þ 2 pmax ¼ c m 2 2 pmax 1 2 13 max ¼ xz max ¼ 2 2 pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2 þ ð1 þ Þ 2ð1 þ Þ 9
z¼0
max
Maximum stress produced Strain equations/Area /Approach distance max max Principal stresses
" 3 # p z z The three principal stresses at the point of contact are: r ¼ ¼ ¼ y ¼ max ð1 þ 2Þ 2ð1 þ Þ pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi þ pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2 2 2 2 2 a þz a þz
Figure showing stress
Applied stresses
TABLE 2-13 Summary of strain and stress equations due to different types of loads (Cont.)
STATIC STRESSES IN MACHINE ELEMENTS
2.46
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
Type of loads
Contact of a solid cylinder on a solid cylinder under compressive load with axes parallel.
Contact of solid cylinder on a solid cylinder under compressive load with axes perpendicular
Contact of a solid sphere with cylindrical groove/socket under compressive load.
Contact of a solid cylinder with a flat surface subject to compressive load
Figure showing loads
20
21
22
23
Figure showing stress
x
y
av ¼ a ¼
av ¼ z ¼
av ¼ z ¼
av ¼ z ¼
z
Applied stresses
TABLE 2-13 Summary of strain and stress equations due to different types of loads (Cont.)
F 2Lb
F
ab
F
ab
F 2Lb
Refer to Table Cr for
Refer to Table Cr for
1=2 Fd ð k þ k2 Þ b ¼ 1:6 L 1 F 2d ¼ 4 k1 ln þ 0:41 L b
A ¼ 2Lb
various ratios of 1 1 1 ip ¼ d1 d2 d1
F k1 þ k2 1=2 2b ¼ 1:6 L d00 sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2d d1 3 ¼ 1:41Cr 2F 2 2 ðk1 þ k2 Þ2 d1 d2
A ¼ ab
various ratios of 1 1 ip ¼ d2 d1
sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2d þ d1 3 ðk1 þ k2 Þ2 ¼ 1:41Cr 2F 2 2 d1 d2
A ¼ ab
b ¼ 1:6
A ¼ 2Lb 1=2 F d ð k þ k2 Þ L 0 1 2F d ¼ k ln 1 þ 0:41 þ b
L 1 d k2 ln 2 þ 0:41 b
Strain equations/Area /Approach distance max
1:5F
ab
1=2 F 1 cðmaxÞ ¼ 0:798 Ld k1 þ k2
1=2 F d00 cðmaxÞ ¼ 0:798 L k2 þ k 2
c max ¼ s ¼
1=2 F 1 cðmaxÞ ¼ 0:798 Ld k1 þ k2
max
Maximum stress produced
ðmax Þz¼0:63a ¼ :034 c max
Principal stresses
STATIC STRESSES IN MACHINE ELEMENTS
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
2.47
Contact of a solid sphere on a solid cylinder under compressive load
Cylinder between two flat plates under compressive load
24
25
x
av ¼ z ¼
av ¼ z ¼
z
F 2Lb
F
ab
1=3
c max ¼
max
Refer to Table Cr for
1=2
b ¼ 1:6
Fd ðk þ k2 Þ L 1 F 2d cy ¼ 4 k1 0:41 þ ln L b ! F 1 2
EL ¼4 ln L
E F ð1 2 Þ
A ¼ 2Lb
various ratios of 1 1 1 i ¼ 2 þ d1 d1 d2
a¼
#1=3
sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi F Ld ðk1 þ k2 Þ c max ¼ 0:798
2AF 1
3 d04 ðk1 þ k2 Þ2
"
max
Maximum stress produced
3 Fd ðk þ k2 Þ 8 0 1 sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ð2d2 þ d1 Þ 3 ¼ 1:4Cr 2F 2 ðk1 þ k2 Þ2 d1 d2
A ¼ ab
**TABLE: Crv values for various ratios of i
Approach distance of two points along the line of action of load in two plates is , if E1 ¼ E2 ¼ E and 1 ¼ 2 ¼
Total deformation due to compression of cylinder is cy
y
Strain equations/Area /Approach distance
i 1.00 0.404 0.250 0.160 0.085 0.067 0.044 0.032 0.020 0.015 0.003 Crv 1.00 0.957 0.905 0.845 0.751 0.716 0.655 0.607 0.546 0.510 0.358
Figure showing stress
Applied stresses
Source: Roark, R.J., and W. C. Young, Formulas for Stress and Strain, McGraw-Hill Publishing Company, New York, 1975. + Hertz. H., On the Contact of Elastic Solids, J. Math. (Crelle’s J.) vol. 92, pp 156-171, 1981 Hertz. H., On Gesammelte werke, Vol 1., p 155, Leipzig, 1895.
Type of loads
Figure showing loads
TABLE 2-13 Summary of strain and stress equations due to different types of loads (Cont.)
Principal stresses
STATIC STRESSES IN MACHINE ELEMENTS
2.48
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
STATIC STRESSES IN MACHINE ELEMENTS STATIC STRESSES IN MACHINE ELEMENTS
2.49
REFERENCES 1. Maleev, V. L. and J. B. Hartman, Machine Design, International Textbook Company, Scranton, Pennsylvania, 1954. 2. Shigley, J. E., Mechanical Engineering Design, 3rd edition, McGraw-Hill Book Company, New York, 1977. 3. Lingaiah, K., and B. R. Narayana Iyengar, Machine Design Data Handbook, Vol. 1 (SI and Customary Metric Units), Suma Publishers, Bangalore, India, 1986. 4. Lingaiah, K., Machine Design Data Handbook, Vol II (SI and Customary Metric Units), Suma Publishers, Bangalore, India, 1986. 5. Lingaiah, K., Machine Design Data Handbook, McGraw-Hill Publishing Company, New York, 1994. 6. Ashton, J. E, J. C. Halpin and P. H. Petit, Primer on Composite Materials-Analysis, Technomic Publishing Co., Inc., 750 Summer St., Stanford, Conn. 06901, 1969. 7. Roark, R. J., and W. C. Young, Formulas for Stress and Strain, McGraw-Hill Publishing Company, New York, 1975. 8. Hertz, H., On the Contact of Elastic Solids, J. Math. (Crelle’s J.) Vol. 92, pp. 156–171, 1981. 9. Hertz, H., On Gesammelte werke, Vol I., p. 155, Leipzig, 1895. 10. Timoshenko, S., and J. N. Goodier, Theory of Elasticity, McGraw-Hill Book Company, New York, 1951.
BIBLIOGRAPHY 1. Black, P. H., and O. Eugene Adams, Jr., Machine Design, McGraw-Hill Book Company, New York, 1965. 2. Lingaiah, K, and B. R. Narayana Iyengar, Machine Design Data Handbook (fps units), Engineering College CoOperative Society, Bangalore, India, 1962. 3. Norman, C. A., E. S. Ault, and I. F. Zarobsky, Fundamentals of Machine Design, The Macmillan Company, New York, 1951. 4. Vallance, A. E., and V. L. Doughtie, Design of Machine Members, McGraw-Hill Book Company, New York, 1951. 5. Timosheko, S., and J. N. Goodier, Theory of Elasticity, McGraw-Hill Book Company, New York, 1951. 6. Timoshenko, S., and J. M. Gere, Mechanics of Materials, Van Nostrand Reinhold Company, New York, 1972. 7. George Lubin, Editor, Handbook of Composites, Van Nostrand Reinhold Company, New York, 1982. 8. John Murphy, Reinforced Plastic Handbook, 2nd edition, Elsevier, Advanced Technology, 1998. 9. Hamcox, N. L., and R. M. Mayer, Design Data for Reinforced Plastics, Chapman and Hall, 1994.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
Source: MACHINE DESIGN DATABOOK
CHAPTER
3 DYNAMIC STRESSES IN MACHINE ELEMENTS2 SYMBOLS2;3 A a, b b c cL cT d E F F Fc Fd Fg Fi Fic Fir Fs g h J k kp K l m M ¼ m=A Mb
area of cross-section, m2 coefficients width of bar or beam, m distance from neutral axis to extreme fibre, m velocity of propagation of plane wave along a thin bar, m/s velocity of propagation of plane longitudinal waves in an infinite plate, m/s velocity of propagation of plane transverse waves in an infinite plate, m/s diameter of bar, m modulus of elasticity, GPa force or load, kN force acting on piston due to steam or gas pressure corrected for inertia effects of the piston and other reciprocating parts, kN centrifugal force per unit volume, kN/m3 the component of F acting along the axis of connecting rod, kN dynamic load, kN gas load, kN inertia force, kN inertia force due to connecting rod, kN inertia force due to reciprocating parts of piston, kN static load, kN acceleration due to gravity, 9.8066 m/s2 depth of bar or beam, m height of fall of weight, m polar moment of inertia, m4 (cm4 ) radius of gyration, m radius of gyration, polar, m kinetic energy, N m length, m mass, kg moving mass, kg ratio of moving mass to area of cross-section of bar bending moment, N m
3.1 Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
DYNAMIC STRESSES IN MACHINE ELEMENTS
3.2
CHAPTER THREE
Mt n n0 n0 ¼ l=r p P r t u u, v, w U Ui Umax Up v V V0 w W Z i s " "x , "y , "z xy , yz , zx
i , i 0 x , y , z
l
n
xy , yz , zx !
torque, m N speed, rpm speed, rps ratio of length of connecting rod to radius of crank pressure power, kW radius of crank, m radius of curvature of the path of motion of mass, m the moment arm of the load, m time, s displacement in x-direction modulus of resilience, N m/m3 displacement components in x, y, and z-directions respectively, m resilience, N m internal elastic energy, N m work done in case of suddenly applied load, N m maximum internal elastic energy, N m potential energy, N m velocity, m/s velocity of particle in the stressed zone of the bar, m/s volume, m3 initial velocity at the time of impact, m/s specific weight of material, kN/m3 total weight, kN section modulus, m3 (cm3 ) angle between the crank and the centre line of connecting rod, deg unit shear strain, rad/rad weight density, kN/m3 deflection/deformation, m (mm) deformation/deflection under impact action, m (mm) static deformation/deflection under the action of weight, m (mm) unit strain also with subscripts, mm/m strains in x, y, and z-directions, mm/m shearing-strains in rectangular coordinates, rad/rad angle between the crank and the centre line of the cylinder measured from the head-end dead-centre position, deg static angular deflection, deg angle of twist, deg angular deflection under impact load, deg Lame´’s constants Poisson’s ratio mass density, kg/m3 normal stress (also with subscripts), MPa impact stress (also with subscripts), MPa initial stress at the time of impact and velocity V0 , MPa normal stress components parallel to x, y, and z-axis shearing stress, MPa time of load application, s period of natural frequency, s shearing stress components in rectangular coordinates, MPa angular velocity, rad/s
Note: s and s with first subscript s designate strength properties of material used in the design which will be used and followed throughout the book. Other factors in performance or in special aspects which are included from time to time in this book and being applicable only in their immediate context are not given at this stage.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
DYNAMIC STRESSES IN MACHINE ELEMENTS DYNAMIC STRESSES IN MACHINE ELEMENTS
Particular
3.3
Formula
INERTIA FORCE Fv SI ð3-1aÞ 1000 where F is in newtons (N), v in m/s, and P in kW. Fv ¼ US Customary System units ð3-1bÞ 33000 where F is in lbf, v in ft/min, and P in hp.
Power
P¼
Velocity
v¼
2rn US Customary System units 12 where r in in, v in ft/min, and n in rpm.
v¼
2rn SI 60 where r in m, v in m/s, and n in rpm.
(3-2a)
ð3-2aÞ
wv2 rg
ð3-3Þ
The internal elastic energy or work done when a machine member is subjected to a gradually applied load, Fig. 3.1.
U ¼ 12 F
ð3-4Þ
The work done in case of suddenly applied load on an elastic machine member (Fig. 3-2)
Ud ¼ Fd
ð3-5Þ
FIGURE 3-1 Plot of force against deflection in case of elastic machine member subject to gradually applied load.
FIGURE 3-2 Plot of force against deflection in case of suddenly applied load on a machine member.
The relation between suddenly applied load and gradually applied load on an elastic machine member to produce the same magnitude of deflection.
Up ¼ Ud
ð3-6aÞ
Fd ¼ 12 F
ð3-6bÞ
Centrifugal force per unit volume
Fcv ¼
ENERGY METHOD
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
DYNAMIC STRESSES IN MACHINE ELEMENTS
3.4
CHAPTER THREE
Particular
The static deformation or deflection
Formula
W ð3-7Þ k where k ¼ spring constant of the elastic machine member, kN/m (lbf/in).
st ¼
IMPACT STRESSES Impact from direct load Wv2 2g
Kinetic energy
K¼
Impact energy of a body falling from a height h
K ¼ Wh
The height of fall of a body that would develop the velocity v.
h¼
The maximum stresses produced due to fall of weight W through the height h from rest without taking into account the weight of shaft and collar (Fig. 3-3)
i ¼ max
v2 2g
ð3-8Þ ð3-9Þ ð3-10Þ " rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi# W 2hEA 1þ 1þ ¼ A WL " rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi# 2hEA ¼ st 1 þ 1 þ WL 2 sffiffiffiffiffiffiffiffiffiffiffiffiffiffi3 2h ¼ st 41 þ 1 þ 5 st
ð3-11aÞ ð3-11bÞ
ð3-11cÞ
FIGURE 3-3 Striking impact of an elastic machine member by a body of weight W falling through a height h.
The maximum deflection or deformation of shaft due to fall of weight W through the height h from rest neglecting the weight of shaft and collar
"
max
rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi# 2hAE ¼ i ¼ st 1 þ 1 þ WL 2 sffiffiffiffiffiffiffiffiffiffiffiffiffiffi3 2h ¼ st 41 þ 1 þ 5 st
ð3-12aÞ
ð3-12bÞ
The stress produced due to suddenly applied load
ðmax Þsud ¼ 2ðmax Þstat
ð3-13Þ
The maximum deflection or deformation produced by suddenly applied load
ðmax Þsud ¼ 2st
ð3-14Þ
where subscript stat ¼ st ¼ static and sud ¼ suddenly
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
DYNAMIC STRESSES IN MACHINE ELEMENTS DYNAMIC STRESSES IN MACHINE ELEMENTS
Particular
The kinetic energy taking into account the weight of shaft or bar and collar
The relation between , , F and W
3.5
Formula
WVc2 Wb K¼ 1þ 2g 3W
ð3-15Þ
where Vc ¼ velocity of collar and weight W after the load striking the collar, m/s. where Wb ¼ weight of shaft or bar " rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi# F max max 2hAE ð3-16aÞ ¼ ¼ 1þ 1þ ¼ st st W WL 2 sffiffiffiffiffiffiffiffiffiffiffiffiffiffi3 2h ¼ 41 þ 1 þ 5 ð3-16bÞ st 2
The maximum stress due to fall of weight W through the height h from rest taking into account the weight of shaft/bar and collar
i ¼ max
3 sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ffi W4 2EAh 1 5 ¼ 1þ 1þ A WL 1 þ ðWb =3WÞ "
rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi# W 2EAh ¼ 1þ 1þ A WL 2 sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi3 2h5 ¼ st 41 þ 1 þ st where ¼ The maximum deflection due to fall of weight W through the height h from rest taking into consideration the weight of shaft/bar and collar
max
ð3-17aÞ ð3-17bÞ
ð3-17cÞ
1 W and ¼ b W 1 þ ð =3Þ
2 3 sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi WL 4 2hEA 1 5 1þ 1þ ¼ AE WL 1 þ ðWb =3WÞ "
rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi# WL 2hAE ¼ 1þ 1þ AE WL 2 sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi3 2h5 ¼ st 41 þ 1 þ st
ð3-18aÞ ð3-18bÞ
ð3-18cÞ
Internal elastic energy of weight W whose velocity v is horizontal
U¼
Wv2 2g
ð3-20Þ
Internal elastic energy of weight W whose velocity has random direction
U¼
Wv2 þ W sin 2g
ð3-21Þ
where ¼ angle of velocity, v, to the horizontal plane, deg.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
DYNAMIC STRESSES IN MACHINE ELEMENTS
3.6
CHAPTER THREE
Particular
Formula
Energy
Fig. 3-4a
Fig. 3-4b
Fig. 3-4c
Equation
Up
Wðh þ Þ
W
0
(3-22a)
K
0
Wv2 2g
0
(3-22b)
U
0
0
Wðh þ Þ
(3-22c)
FIGURE 3-4 Impact by a falling body
The equation for energy balance for an impact by a falling body (Fig. 3-4)
ðUp þ K þ UÞa ¼ ðUp þ K þ UÞb 0
Another form of equation for deformation or deflection in terms of velocity v at impact Equivalent static force that would produce the same maximum values of deformation or deflection due to impact
¼ ðUp þ K þ UÞc
ð3-23Þ
sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi1 v2 A ð3-24Þ max ¼ st @1 þ 1 þ gst 0 0 sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi1 sffiffiffiffiffiffiffiffiffiffiffiffiffiffi1 2h v2 A Feq ¼ W @1 þ 1 þ A ¼ W @1 þ 1 þ gst st ð3-25Þ
BENDING STRESS IN BEAMS DUE TO IMPACT Impact stress due to bending
FIGURE 3-5 Impact by a falling body on a cantilever beam
Deflection of the end of cantilever beam under impact (Fig. 3-5) The maximum bending stress for a cantilever beam taking into account the total weight of beam
ðb Þmax
" rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi# Wlc 6hEI ¼ bi ¼ 1þ 1þ I Wl 3 2 sffiffiffiffiffiffiffiffiffiffiffiffiffiffi3 Wlc 4 2h ¼ 1þ 1þ 5 I st 0 sffiffiffiffiffiffiffiffiffiffiffiffiffiffi1 2h ¼ ðb Þst @1 þ 1 þ A st
Wlc Mb c Mb : ¼ ¼ where ðb Þst ¼ Zb I I 0 1 sffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2h @ max ¼ st 1 þ 1 þ A st 2h ðb Þmax ¼ ðb Þst 1 þ st where ¼
ð3-26aÞ
ð3-26bÞ
ð3-26cÞ
ð3-27Þ ð3-28Þ
mb W b 1 ¼ and ¼ m W 1 þ ð33 =140Þ
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
DYNAMIC STRESSES IN MACHINE ELEMENTS DYNAMIC STRESSES IN MACHINE ELEMENTS
Particular
The maximum deflection at the end of a cantilever beam due to fall of weight W through the height h from rest taking into consideration the weight of beam The maximum bending stress for a simply supported beam due to fall of a load/weight W from a height h at the midspan of the beam taking into account the total weight of the beam (Fig. 3-6)
3.7
Formula
2
max
sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi3 2h5 ¼ st 41 þ 1 þ st
ð3-28aÞ
2
ðb Þmax
3 sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2h 1 5 ¼ ðb Þst 41 þ 1 þ st 1 þ ð17 =35Þ ð3-29aÞ
2
sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi3 2h5 ¼ ðb Þst 41 þ 1 þ st where ¼
1 1 þ ð17 =35Þ
and ¼
ð3-29bÞ Wb W
FIGURE 3-6 Simply supported beam
The maximum deflection for a simply supported beam due to fall of a weight W from a height h at the midspan of the beam taking into account the weight of beam. (Fig. 3-6)
2
max
sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi3 2h5 ¼ st 41 þ 1 þ st
ð3-30Þ
TORSION OF BEAM/BAR DUE TO IMPACT (Fig. 3-7) The equation for maximum shear stress in the bar due to impact load at a radius r of a falling weight W from a height h neglecting the weight of bar
FIGURE 3-7 Twist of a beam/bar
2
max
sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi3 2h 5 ¼ st 41 þ 1 þ rst
ð3-31Þ
FIGURE 3-8 Displacements due to forces acting on an element of an elastic media.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
DYNAMIC STRESSES IN MACHINE ELEMENTS
3.8
CHAPTER THREE
Particular
The equation for angular deflection or angular twist of bar due to impact load W at radius r and falling through a height h neglecting the weight of bar
Formula
2
max
sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi3 2h 5 ¼ st 41 þ 1 þ rst
ð3-32Þ
LONGITUDINAL STRESS-WAVE IN ELASTIC MEDIA (Fig. 3-8) One-dimensional stress-wave equation in elastic media (Fig. 3-8)
2 @2u 2 @ u ¼ c @t2 @x2
ð3-33aÞ
sffiffiffiffiffiffi sffiffiffiffi Eg E where c ¼ ¼
ð3-33bÞ
¼ velocity of propagation of stress waves, m/s: For velocity of propagation of longitudinal stresswave in elastic media The solution of stress-wave Eq. (3-33a)
The value of circular frequency p
The frequency
Refer to Table 3-1. p p x ¼ A sin x þ B cos x ðc sin pt þ D cos ptÞ ð3-34Þ c c where A, B, C and D are arbitrary constants which can be found from initial or boundary condition of the problem. sffiffiffiffiffiffi sffiffiffiffi nc n Eg n E p¼ ¼ ¼ ð3-35aÞ l l l where n is an integer ¼ 1; 2; 3; . . . sffiffiffiffi p n E c ¼ ¼ f ¼ 2 2l
ð3-35bÞ
where ¼ wave length ¼ 2l=n, c ¼ speed of sound or stress wave velocity, m/s.
LONGITUDINAL IMPACT ON A LONG BAR The velocity of particle in the compression zone The uniform initial compressive stress on the free end of a bar (Fig. 3-9)
The variation of stress at the end of bar at any time t
rffiffiffiffiffiffiffi g ¼ pffiffiffiffiffiffi E E sffiffiffiffiffiffiffi pffiffiffiffiffiffi E ¼ V0 E 0 ¼ V 0 g
V¼
ð3-36Þ
ð3-37Þ
where V0 ¼ initial velocity of the moving weight/ mass at the time of impact, m/s. pffiffiffiffiffiffi 2l E ¼ 0 exp ð3-38Þ t 0
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
DYNAMIC STRESSES IN MACHINE ELEMENTS DYNAMIC STRESSES IN MACHINE ELEMENTS
Particular
The equations of motion in terms of three displacement components assuming that there are no body forces.
3.9
Formula
ð þ GÞ
@" @2u þ Gr2 u ¼ 2 @x @t
ð3-39aÞ
ð þ GÞ
@" @2v þ Gr2 v ¼ 2 @y @t
ð3-39bÞ
ð þ GÞ
@" @2w þ Gr2 w ¼ 2 @z @t
ð3-39cÞ
where " ¼ "x þ "y þ "z
FIGURE 3-9 Prismatic bar subject to suddenly applied uniform compressive stress
r¼
@2 @2 @2 þ 2 þ 2 ¼ the Laplacian operator 2 @x @y @z
¼
E and ð1 þ Þð1 2Þ
¼G¼
E are Lame’s constants 2ð1 þ Þ
Dilatational and distortional waves in isotropic elastic media From the classical theory of elasticity equations for irrotational or dilatational waves
Equations for distortional waves
Equations (3-40) to (3-41) are one-dimensional stress wave equations of the form The velocity of stress wave propagation for the case of no rotation
@ 2 u þ 2G 2 r u ¼ @t2
ð3-40aÞ
@ 2 v þ 2G 2 r v ¼ @t2
ð3-40bÞ
@ 2 w þ 2G 2 ¼ r w @t2
ð3-40cÞ
@2u G 2 ¼ r u @t2
ð3-41aÞ
@2v G 2 ¼ r v @t2
ð3-41bÞ
@2w G 2 ¼ r w @t2
ð3-41cÞ
@2 ¼ a2 r2 @t2 sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi þ 2G Eð1 Þ ¼ a ¼ c1 ¼ ð1 þ Þð1 2Þ
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð3-42Þ ð3-43Þ
DYNAMIC STRESSES IN MACHINE ELEMENTS
3.10
CHAPTER THREE
Particular
The velocity of stress wave propagation for the case of zero volume change The ratio of c1 to c2
Formula
sffiffiffiffi sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi G E a ¼ c2 ¼ ¼ 2ð1 Þ c1 ¼ c2
ð3-44Þ
sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2ð1 Þ pffiffiffi ¼ 3 ð1 2Þ for Poisson’s ratio of ¼ 0:25 ð3-45Þ
The velocity of stress wave propagation for a transverse stress wave, i.e. distortional wave in an infinite plate
sffiffiffiffi sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi G E cT ¼ ¼ 2ð1 þ Þ
The velocity of stress wave propagation for plane longitudinal stress wave in case of an infinite plate
sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 4Gð þ GÞ E ¼ cL ¼ ð þ 2GÞ ð1 2 Þ
ð3-46Þ
ð3-47Þ
TORSIONAL IMPACT ON A BAR Equation of motion for torsional impact on a bar (Fig. 3-10) Torsional wave propagation in a bar subjected to torsion. For velocity of propagation of torsional stress-wave in an elastic bar
FIGURE 3-10 Torsional impact on a uniform bar showing torque on two faces of an element
The angular velocity of the end of a bar subject to torsion relative to the unstressed region
@2 @2 ¼ c2t 2 @t @x2 sffiffiffiffiffiffi sffiffiffiffi Gg G ct ¼ ¼
ð3-48Þ ð3-49Þ
Refer to Table 3-1.
FIGURE 3-11 Torsional striking impact
2 t pffiffiffiffiffiffi t 2 t d G ¼ pffiffiffiffiffiffi t d G
!¼
¼ t
The shear stress from Eq. (3-50)
¼
!d pffiffiffiffiffiffi G 2
The initial shear stress, if the rotating body strikes the end of the bar with an angular velocity !0
0 ¼
!0 d pffiffiffiffiffiffi G 2
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð3-50Þ ð3-51aÞ ð3-51bÞ
DYNAMIC STRESSES IN MACHINE ELEMENTS DYNAMIC STRESSES IN MACHINE ELEMENTS
Particular
The maximum shear stress for the case of a shaft fixed or attached to a very large mass/weight at one end and suddenly applied rotational load at the other end by means of some mechanical device such as a jaw clutch (Fig. 3-11)
3.11
Formula
max
2vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi "rffiffiffiffi# 1ffi 3 u 0 u1 1 7 ¼
¼ 0 6u 0 4t @ A 5 1þ 3
ð3-52Þ
Ib : I
where ¼
2 d Ib ¼ mass moment of inertia of bar ¼ mb 8 I ¼ mass moment of inertia of striking rotating weight Ib and I correspond to Wb and W of the weight of the bar and the rotating mass or weight respectively.
FIGURE 3-12 A striking rotating weight with massmoment of inertia I rotating at !0 engages with one end of shaft and the other end of shaft fixed to a mass-moment of inertia If
The more accurate equation for the max which is based on stress wave propagation
The initial/maximum ( i ¼ max ) shear stress for the case of a system shown in Fig. 3-12
2
max
sffiffiffiffiffiffiffiffiffiffiffi3 1 25 ¼ 0 41 þ þ 3
i ¼ max
sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ð1 þ Þ ¼ 0 ð1 þ þ Þ
i ¼ max
sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ð1 þ Þ ¼ 0 ð1 þ þ Þ
Accurate maximum stress for torsional impact shear stress based on stress-wave propagation as suggested by Prof. Burr
ð3-55Þ
W b mb m ¼ and ¼ mf W m
where ¼ Accurate maximum stress for longitudinal impact stress based on stress wave propagation as suggested by Prof. Burr
ð3-54Þ
Ib I and Ib ¼ Jl: ; ¼ I If
where ¼ A similar equation to Eq. (3-54) for maximum stress for longitudinal impact
ð3-53Þ
2
i ¼ max
sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi3 ð1 þ Þ 5 ¼ 0 41:1 þ ð1 þ þ Þ 2
i ¼ max
sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi3 ð1 þ Þ 5 ¼ 0 41:1 þ ð1 þ þ Þ
ð3-56Þ
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð3-57Þ
DYNAMIC STRESSES IN MACHINE ELEMENTS
3.12
CHAPTER THREE
Particular
Formula
INERTIA IN COLLISION OF ELASTIC BODIES When a body having weight W strikes another body that has a weight W 0 , impact energy Wh is reduced to nWh, according to law of collision of two perfectly inelastic bodies, the formula for the value of n
n¼
1 þ am ð1 þ bmÞ2 where m ¼
ð3-58Þ W0 ; a and b are taken from Table 3-3 W
RESILIENCE 2 V 1 2 AL ¼ 2 E 2 E
The expression for resilience in compression or tension
U¼
The modulus of resilience
u¼
The area under the stress-strain curve up to yielding point represents the modulus of resilience (Fig. 1.1)
u ¼ 12 " 2 2 k b AL Ub ¼ c 6E 2 2 k b ub ¼ c 6E
The resilience in bending The modulus of resilience in bending
ð3-59Þ
2 2E
ð3-60Þ ð3-61Þ ð3-62Þ ð3-63Þ
where ðk=cÞ2 ¼
1 3
for rectangular cross-section
¼
1 4
for circular section
c ¼ distance from extreme fibre to neutral axis Resilience in direct shear
U ¼
e2 V 2G
ð3-64Þ
The modulus of resilience in direct shear
u ¼
e2 2G
ð3-65Þ
Resilience in torsion
The modulus of resilience in torsion
The equation for strain energy due to shear in bending The modulus of resilience due to shear in bending
2
e2 AL k0 ð3-66Þ c 2G qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi where k0 ¼ D21 D20 =8 and c ¼ 12 D0 for hollow shaft. 2
2 k0 ð3-67Þ u ¼ e 2G c ðl k F 2
dx ð3-68Þ U b ¼ 0 2GA U ¼
u b ¼
k e2 2G
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð3-69Þ
DYNAMIC STRESSES IN MACHINE ELEMENTS
3.13
DYNAMIC STRESSES IN MACHINE ELEMENTS
Particular
Formula
The equation for shear or distortional strain energy per unit volume associated with distortion, without change in volume
U ¼
1 2 ½ þ 22 þ 23 ð1 2 þ 2 3 þ 3 1 Þ 6G 1 ð3-70aÞ
¼
1 ½ð 2 Þ2 þ ð2 3 Þ2 þ ð3 1 Þ2 12G 1 ð3-70bÞ
The equation for dilatational or volumetric strain energy per unit volume without distortion, only a change in volume For maximum resilience per unit volume (i.e., for modulus of resilience), resilience in tension for various engineering materials and coefficients a and b; velocity of propagation c and ct .
Uv ¼
ð1 2Þ ½ð1 þ 2 þ 3 Þ2 6E
ð3-71Þ
Refer to Tables 3-1 to 3-4.
TABLE 3-1 Longitudinal velocity of longitudinal wave c and torsional wave ct propagation in elastic media Density
Modulus of elasticity, E
Modulus of rigidity, G
sffiffiffiffi sffiffiffiffiffiffi E Eg ¼ c¼
#
sffiffiffiffi sffiffiffiffiffiffi G Gg # ¼ ct ¼
Material
g/cm3
lbm /in3 kN/m3 GPa
Mpsi
GPa
Mpsi
m/s
ft/s
m/s
ft/s
Aluminum alloy Brass Carbon steel Cast iron, gray Copper Glass Lead Inconel Stainless steel Tungsten
2.71 8.55 7.81 7.20 8.91 2.60 11.38 8.42 7.75 18.82
0.098 0.309 0.282 0.260 0.320 0.094 0.411 0.307 0.280 0.680
10.3 15.4 30.0 14.5 17.7 6.7 5.3 31.0 27.6 50.0
26.2 40.1 79.3 41.4 44.7 18.6 13.1 75.8 73.1 137.9
3.8 5.82 11.5 6.0 6.49 2.7 1.9 11.0 10.6 20.0
5116 3523 5145 3727 3648 4214 1796 5016 4955 4279
16785 11560 16887 12223 12176 13823 5879 16452 15972 14039
3110 2165 3200 2407 2240 2675 1073 2987 3071 2707
10466 7106 10485 7865 7373 8775 3520 9800 10074 8880
26.6 83.9 76.6 70.6 87.4 25.5 111.6 83.3 76.0 184.6
71.0 106.2 206.8 100.0 118.6 46.2 36.5 213.7 190.3 344.7
#
Note: ¼ Mass density, g/cm3 (lbm /in3 ), ¼ weight density (specific weight), kN/m3 (lbf/in3 ), g ¼ 9:8066 m/s2 in SI units, g ¼ 980 in=s2 ¼ 32:2 ft=s2 in fps units.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
DYNAMIC STRESSES IN MACHINE ELEMENTS
3.14
CHAPTER THREE
TABLE 3-2 Maximum resilience per unit volume (2, 1) Type of loading
Modulus of resilience, J (in lbf) 2e 2E
e2 2G
Tension or compression Shear, simple transverse Bending in beams With simply supported ends: Concentrated center load and rectangular cross-section Concentrated center load and circular cross-section Concentrated center load and I-beam section Uniform load and rectangular section Uniform-strength beam, concentrated load, and rectangular section
2e 18E 2e 24E 32e 32E 42e 45E 2e 6E
Fixed at both ends: 2e 18E 2e 30E
Concentrated load and rectangular cross-section Uniform load and rectangular cross-section Cantilever beam:
2e 18E 2e 30E
End load and rectangular cross-section Uniform load and rectangular cross-section Torsion
e2 4G Di 2 2 1þ Do 4G
Solid round bar Hollow round bar with D0 greater than Di Springs Laminated with flat leaves of uniform strength Flat spiral with rectangular section Helical with round section and axial load Helical with round section and axial twist Helical with rectangular section and axial twist
2e 6E 2e 24E
e2 4G 2e 8E 2e 6E
Sources: K. Lingaiah and B. R. Narayana Iyengar, Machine Design Data Handbook, Vol I (SI and Customary Metric Units), Suma Publishers, Bangalore, India, 1986; K. Lingaiah, Machine Design Data Handbook, Vol II (SI and Customary Metric Units), Suma Publishers, Bangalore, India, 1986; V. L. Maleev and J. B. Hartman, Machine Design, International Textbook Company, Scranton, Pennsylvania, 1954.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
DYNAMIC STRESSES IN MACHINE ELEMENTS DYNAMIC STRESSES IN MACHINE ELEMENTS
3.15
TABLE 3-3 Coefficients in Eq. (3-58) (1) Type of impact
a
b
Longitudinal impact on bar
1 3
1 2
Center impact on single beam
17 35
5 8
Center impact on beam with fixed ends
13 35
1 2
End impact on cantilever beam
4 17
3 8
TABLE 3-4 Resilience in tension Elastic limit, Material
MPa
Cast iron: Class 20 (ordinary) Class 25 Nickel, Grade II Malleable Aluminum alloy, SAF 33 Brass, SAE 40 or SAE 41 Bronze, SAE 43 Monel metal: Hot-rolled Cold-rolled, normalized Steel: SAE 1010 SAE 1030 SAE 1050, annealed SAE 1095, annealed SAE 1095, tempered SAE 2320, annealed SAE 2320, tempered SAE 3250, annealed SAE 3250, tempered SAE 6150, annealed SAE 6150, tempered Rubber
kpsi
Modulus of elasticity, E GPa
Mpsi
Modulus of resilience, u J
in lbf
42.8a 68.9a 117.2a 137.9 48.3 68.9 193.0
62 10.0 17.0 20.0 7.0 10.0 28.0
68.9 89.2 24.5 172.6 66.7 82.4 110.8
10 13 18 25 9.7 12 16
0.22 0.43 0.90 0.90 0.28 0.45 2.77
1.9 3.8 8.0 8.0 2.5 4.0 24.5
206.9 482.6
30.0 70.0
176.5 176.5
25.5 25.5
1.96 10.79
17.6 96
206.9 248.2 330.9 413.7 517.1 310.3 689.5 551.6 1379.0 427.6 1102.3 2.1
30.0 36.5 48.5 60.0 75.0 45.0 100.0 80.0 200.0 62.0 160.0 0.3
206.9 204.8 204.8 204.8 204.8 204.8 213.7 213.7 213.7 213.7 1034 109
30.3 30 29.7 29.7 29.7 29.7 29.7 31 31.0 31 31 150 106
1.69 2.45 4.27 6.77 16.08 3.82 18.83 21.58 72.57 6.96 52.47 33.89
15 22 38 60 94 34 167 193 645 62 466 300
a
Impact strength (Izod no.)
7.9 2.7
120 100
20
52 40 30
Cast iron has no well-defined elastic limit, but the values may be safely used anyway for all practical purposes. Source: Reproduced courtesy of V. L. Maleev and J. B. Hartman, Machine Design, International Textbook Co., Scranton, Pennsylvania, 1954.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
DYNAMIC STRESSES IN MACHINE ELEMENTS
3.16
CHAPTER THREE
REFERENCES 1. Maleev, V. L., and J. B. Hartman, Machine Design, International Textbook Co., Scranton, Pennsylvania, 1954. 2. Lingaiah, K., and B. R. Narayana Iyengar, Machine Design Data Handbook, Vol I (SI and Customary Metric Units), Suma Publishers, Bangalore, India, 1986. 3. Lingaiah, K., Machine Design Data Handbook, Vol II (SI and Customary Metric Units), Suma Publishers, Bangalore, India, 1986. 4. Lingaiah, K., Machine Design Data Handbook, McGraw-Hill Book Company, New York, 1994. 5. Burr, Arthur H., and John B. Cheatham, Mechanical Analysis and Design, 2nd edition, Prentice Hall, Englewood Cliffs, NJ, 1995. 6. Spotts, Merhyle F.,‘‘Impact Stress in Elastic Bodies Calculated by the Energy Method’’, Engineering Data for Product Design, edited by Douglas C. Greenwood, McGraw-Hill Book Company, New York, 1961. 7. Burr, A. H.,‘‘Longitudinal and Torsional Impact in Uniform Bar with a Rigid Body at One End’’, J. Appl. Mech., Vol. 17, No. 2 (June 1950), pp. 209–217; Trans. ASME, Vol. 72 (1950). 8. Timoshenko, S., and J. N. Goodier, Theory of Elasticity, 3rd edition, McGraw-Hill Book Company, New York, pp. 485–513, 1970. 9. Kolsky, H., Stress Waves in Elastic Solids, Dover Publications, New York, 1963. 10. Durellli, A. J., and W. F. Riley, Introduction to Photomechanics, Prentice Hall Inc, Englewood Cliffs, NJ, 1965. 11. Arnold, ‘‘Impact Stresses in a Simply Supported Beam’’, Proc. I.M.E., Vol. 137, p. 217. 12. Dohrenwend and Mehaffy, ‘‘Dynamic Loading’’, Machine Design, Vol. 15 (1943), p. 99.
BIBLIOGRAPHY Lingaiah, K., and B. R. Narayana Iyengar, Machine Design Data Handbook, Engineering College Co-operative Society, Bangalore, India, 1962. Norman, C. A., E. S. Ault, and E. F. Zarobsky, Fundamentals of Machine Design, The Macmillan Company, New York, 1951.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
Source: MACHINE DESIGN DATABOOK
CHAPTER
4 STRESS CONCENTRATION AND STRESS INTENSITY IN MACHINE MEMBERS SYMBOLS6;7;8 a 2a A b b ¼ ðw aÞ 2b B c C d
di do D F
h
diameter of circular hole (cut-out), m (in) semimajor axis of elliptical hole (cut-out), m (in) half of the length of the slot, m (in) length of straight crack, m (in) (Figs. 4-26A and 4-28) area of cross section, m2 (in)2 semiminor axis of elliptical hole (cut-out), m (in) maximum breadth of section of curved bar, m (in) width of notch at the edge, m (in) effective width of plate across the hole, m (in) or net width of plate, m (in) total width of plate with a crack, m (in) (Fig. 4-28) constant in curved bar equation outside diameter of reinforced ring in an asymmetrically reinforced circular hole distance from centroidal axis to extreme fiber of beam or inside edge of curved bar, m (in) spring index effective width of plate, m (in) width of U-piece at dangerous section, m (in) diameter of shaft at reduced section, m (in) reduced width of shoulder plate, m (in) diameter of hole (cut-out), m (in) outside diameter of reinforcement, m (in) total diameter of shaft, m (in) total width of plate, m (in) load, kN (lbf) force, kN (lbf) diametrically opposite concentrated loads on ring or hollow roller, kN (lbf) thickness of plate, m (in) thickness of ring or roller, m (in) lever arm from critical section of tooth, m (in)
4.1 Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
STRESS CONCENTRATION AND STRESS INTENSITY IN MACHINE MEMBERS
4.2
CHAPTER FOUR
2h h1
length of plate with a crack, m (in) (Fig. 4-28) depth of groove, m (in) (Figs 4-11, 4-12 and 4-13) depth of shoulder, m (in) thickness of reinforcement including plate thickness, m (in) moment of inertia, area, m4 (in4 ) moment of inertia, polar, m4 (in4 ) pffiffiffiffi openingpmode ffiffiffiffi or mode I of stress intensity factor, MPa m (kpsi in) pffiffiffiffi pffiffiffiffi mode II of stress intensity factor, MPa m (kpsi in) opening mode or mode I of critical stress intensity factor or pffiffiffiffi pffiffiffiffi fracture toughness factor, MPa m (kpsi in)
H I J KI KII KIC K ¼ K0 K Kf
Kf Kn Kg Kf Kf
max nom
theoretical stress-concentration factor for normal stress
combined stress-concentration factor (K0 is a theoretical factor) theoretical stress-concentration factor for shear stress (torsion) fatigue stress-concentration factor for normal stress or fatigue notch factor for axial or bending (normal) (Fig. 14-13) or fatigue strength reduction factor f fatigue limit of unnotched specimen (axial or bending) ¼ ¼ nf fatigue limit of notched specimen (axial or bending) stress-concentration factor (normal) based on net area (nominal) of cross section (i.e., net nominal stress) stress-concentration factor (normal) based on gross area of cross section (i.e., gross stress) fatigue stress-concentration factor for shear stress (torsion) or fatigue notch factor (torsion) f fatigue limit of unnotched specimen (torsion) ¼ ¼ nf fatigue limit of notched specimen (torsion) stress-concentration factor for U-grooved plate stress-concentration factor for a V-grooved plate effective stress-concentration factor under a static load, equivalent stress-concentration factor module, mm magnification factor bending moment, N m (lbf ft) torsional moment, N m (lbf ft) safety factor
Ku Kv Ke m MF Mb Mt n q¼ r r rj rt Ro Ri s VH VR
Kf 1 k 1
index of sensitivity or notch sensitivity factor radius of curvature of groove or notch of curved bar, m (in) minimum radius of curvature of an ellipse, m (in) polar coordinate distance of a point in a plate from the crack tip (Fig. 4-26C), m (in) minimum fillet radius of gear tooth, m (in) cutter tip radius, m (in) outside radius of ring or hollow roller, m (in) inside radius of ring or hollow roller, m (in) thickness of the tooth at critical section, m (in) volume of hole, m3 ðin3 Þ volume of reinforcement, m3 ðin3 Þ
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
STRESS CONCENTRATION AND STRESS INTENSITY IN MACHINE MEMBERS STRESS CONCENTRATION AND STRESS INTENSITY IN MACHINE MEMBERS
4.3
depth of U-piece-arm, m (in) total width of flat plate, m (in) stress components in x, y coordinates, MPa (kpsi) maximum normal stress, MPa (kpsi) nominal normal stress computed from F/A or Mb c=I or from an elementary formula which does not take into account the stress concentration, MPa (kpsi) average stress at the root of gear tooth, MPa (kpsi) maximum shear stress, MPa (kpsi) nominal shear stress computed from Mt r=J, MPa (kpsi) angle of a shallow U-groove, deg angle of V-groove, deg polar coordinate, deg angle made by r the distance of a point from tip of crack with x axis (Fig. 4-26C) Other factors in performance or in special aspects are included from time to time in this chapter, and being applicable only in their immediate context, are not given at this stage
w W x , y , xy max nom 0 max nom
Stress concentration factor theoretical/empirical or otherwise Particular
Extreme value
(a) Keyway (Fig. 4-1 and Tables 4-1 and 4-2: Profile keyway
Formula
Kf ¼ 1:68 Kf ¼ 1:44
Sled-runner keyway
TABLE 4-1 Shear stress-concentration factor for a keyway in a shaft subjected to torsion (by Leven)
TABLE 4-2 Stress-concentration factor Kf for keyways Annealed
r=d K
0.0052 3.92
0.0104 3.16
(b) Curved bar (Fig. 4.1a): For curved bar
0.0208 2.62
0.0417 2.30
0.0833 2.06
Hardened
Type of keyway
Bending
Torsion
Bending
Torsion
Profile Sled runner
1.6 1.3
1.3 1.3
2.0 1.6
1.6 1.6
I 1 1 þ K ¼ 1:00 þ B rc r bc2 ð4-1Þ where B ¼ 1.05 for circular or elliptical cross-section ¼ 0.5 for other cross-section
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
STRESS CONCENTRATION AND STRESS INTENSITY IN MACHINE MEMBERS
4.4
CHAPTER FOUR
Stress concentration factor theoretical/empirical or otherwise Particular
FIGURE 4-1 Stress-concentration factor for the straight portion of a keyway in a shaft in torsion.
Extreme value
Formula
FIGURE 4-1a Stress distribution in curved bar under bending.
(c) Spur gear tooth (Figs. 4-2 and 4-3, Table 4-3): At root fillet of an involute tooth profile of 14.58 pressure angle
K ¼ 2 to 2:5 K ¼ 0:22 þ
FIGURE 4-2 Stress-concentration factor at root of gear tooth.
FIGURE 4-3 Effect of fillet radius on stress-concentration at root of gear tooth.
rf s
1 0:2 0:4 h s
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð4-2Þ
STRESS CONCENTRATION AND STRESS INTENSITY IN MACHINE MEMBERS STRESS CONCENTRATION AND STRESS INTENSITY IN MACHINE MEMBERS
4.5
Stress concentration factor theoretical/empirical or otherwise Particular
Extreme value
Formula
TABLE 4-3 Stress-concentration factors at root fillet of gear m, mm
Kt
Kc
6.24 5 4.25 3.5 3
1.47 1.47 1.42 1.35 1.345
1.61 1.61 1.57 1.50 1.50
At root fillet of a full depth involute tooth profile of 208 pressure angle
K ¼ 0:18 þ
At root fillet of an involute tooth profile of 258 pressure angle
K ¼ 0:14 þ
(d) Circular cut-outs (holes) in plates (Fig. 4-4c): For infinite plate in:
1 0:15 0:45 rf h s s s rf
ð4-3Þ
0:11 0:50 s h
(i) Uniaxial tension (Fig. 4-4c)
K ¼ 3
K ¼
1 a2 3a4 2þ 2 þ 4 ¼ 3 ð4-4Þ 2 r r r¼a
(ii) Biaxial tension
K ¼ 2
K ¼
a2 1þ 2 ¼2 r r¼a
(iii) Pure shear
For stress concentration factor for a semi-infinite plate with a circular hole near the edge under tension.
K ¼ 4
K ¼
3a4 1þ 4 r
ð4-5Þ
r¼a
¼4
K ¼ 3
FIGURE 4-4 Stress distribution around holes (cut-outs) in plate in tension.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð4-6Þ
STRESS CONCENTRATION AND STRESS INTENSITY IN MACHINE MEMBERS
4.6
CHAPTER FOUR
Stress concentration factor theoretical/empirical or otherwise Particular
Extreme value
Formula
For finite plate in:
(i) Uniaxial tension (Fig. 4-5)
K ¼ 3
K ¼ 2 þ
(ii) Bending (Fig. 4-6)
K ¼ 2
K ¼ 2
b w
3
b w
ð4-7Þ
ð4-8Þ
(e) Filled circular hole: For filled circular holes in plate subjected to tension
K ¼ 2:5
(f) Reinforced circular holes: (i) For stress-concentration factor for a symmetrically reinforced circular hole in a flat plate under uniform uniaxial tension (ii) For stress-concentration factor for an asymmetrically reinforced circular hole in a flat plate under uniform uniaxial tension
FIGURE 4-5 Reproduced with permission. Stress-concentration factor for a plate of finite width with a circular hole (cut-out) in tension. (‘‘Design Factors for Stress Concentration,’’ Machine Design, Vol. 23, Nos. 2 to 7, 1951.)
Refer to Fig. 4-7a, b, and c.
FIGURE 4-6 Reproduced with permission. Stress-concentration factor for a plate of finite width with transverse circular hole (cut-out) subjected to bending. (‘‘Design Factors for Stress Concentration,’’ Machine Design, Vol. 23, Nos. 2 to 7, 1951.)
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
STRESS CONCENTRATION AND STRESS INTENSITY IN MACHINE MEMBERS STRESS CONCENTRATION AND STRESS INTENSITY IN MACHINE MEMBERS
4.7
Stress concentration factor theoretical/empirical or otherwise Particular
Extreme value
Formula
(g) Noncircular holes (cut-outs) in a plate: (i) An infinite plate with an elliptical hole (cutout) in uniaxial tension (load at right angles to major axis) (Fig. 4-4b)
a b rffiffiffi a K ¼ 1 þ 2 r
ð4-9aÞ
K ¼ 1 þ 2
(ii) An infinite plate with elliptical hole (cut-out) in uniaxial tension (load parallel to major axis)
K ¼ 1 þ
(iii) An infinite plate with elliptical hole (cut-out) in pure shear
a K ¼ 2 1 þ b
(iv) An infinite plate with an elliptical cut-out in biaxial tension
K ¼
ð4-9bÞ
2b a
ð4-9cÞ
ð4-10Þ
2a b
ð4-11Þ
(v) Transverse bending of a plate containing an elliptical cut-out (or hole)
2a ð1 þ vÞ 3 v þ b K ¼ ð3 þ vÞ
(vi) Slotted plate loaded in tension or bending
K ¼ 1:064 þ 0:788
a b
ð4-12Þ
for v ¼ 0:3 ð4-13aÞ
K ¼ 2 þ For reduction of endurance strength of steel
3 b w
for
a ¼1 r
ð4-13bÞ
Refer to Fig. 4-8.
(h) U-shaped member subjected to bending (Fig. 4-9): (1) At 08 with horizontal axis
KA ¼ 1 þ
d 4r
ð4-14Þ
(2) At 708 with horizontal axis
KB ¼ 1 þ
w 5r
ð4-15Þ
(i) Helical spring: Stress concentration or Wahl’s correction factor for helical spring
K ¼
4c 1 0:615 þ 4c 4 c
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð4-16Þ
STRESS CONCENTRATION AND STRESS INTENSITY IN MACHINE MEMBERS
4.8
CHAPTER FOUR
FIGURE 4-7(a) Stress-concentration factor for an asymmetrically reinforced circular hole (cut-out) in a flat plate subjected to tension. (PhD work of the author.)
FIGURE 4-7(c)
FIGURE 4-7(b) Stress-concentration factor for an asymmetrically reinforced circular hole in a flat plate subjected to uniform unidirectional tensile stress. (PhD work of the author, and R. E. Peterson, Stress Concentration Factors, John Wiley and Sons, Inc., 1974.)
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
STRESS CONCENTRATION AND STRESS INTENSITY IN MACHINE MEMBERS STRESS CONCENTRATION AND STRESS INTENSITY IN MACHINE MEMBERS
4.9
Stress concentration factor theoretical/empirical or otherwise Particular
FIGURE 4-8 Reduction of endurance strength of steel, f .
Extreme value
Formula
FIGURE 4-9 U-shaped member. (R. E. Peterson, Stress Concentration Factors, John Wiley and Sons, 1974.)
( j) Ring or hollow roller: For the ring loaded internally
max ½2hðRo Ri Þ 3 2 ðR þ R Þ 1 6 7 o i 5 4 F 1þ3 Ro Ri
K ¼ 2
ð4-17Þ For the ring loaded externally
K ¼
max ½hðRo Ri Þ 3FðRo þ Ri Þ
ð4-18Þ
(k) Shafts with transverse holes (Fig. 4-10): (i) Shaft with a circular hole subjected to transverse bending for a=d ! 0
K ¼ 3:0
(ii) Shaft with a circular hole subjected to torsion for a=d ! 0
K ¼ 2:0
(l) Shafts with grooves: Shaft with U and V circumferential groove in: (i) Tension or bending (Figs. 4-11 to 4-16 and 4-18)
rffiffiffiffiffi h1 r
K ¼ 1 þ 2
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð4-19Þ
STRESS CONCENTRATION AND STRESS INTENSITY IN MACHINE MEMBERS
4.10
CHAPTER FOUR
I d 3 ¼ 32 c nom ¼
D3 32
Mb 2 ðapprox:Þ dD 6
FIGURE 4-10 Reproduced with permission. Stress-concentration factor K for a shaft with transverse circular hole subjected to bending. (R. E. Peterson, ‘‘Stress Concentration Factors,’’ Machine Design, Vol. 23, Nos. 2 to 7, 1951.)
h1
FIGURE 4-11 Types of V-grooves.
FIGURE 4-12 Stress-concentration factor ratio due to notches of various shapes.
FIGURE 4-13 Average notch sensitivity.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
STRESS CONCENTRATION AND STRESS INTENSITY IN MACHINE MEMBERS STRESS CONCENTRATION AND STRESS INTENSITY IN MACHINE MEMBERS
4.11
Stress concentration factor theoretical/empirical or otherwise Particular
Extreme value
Formula
FIGURE 4-14 Reproduced with permission. Stress-concentration factor K for a grooved shaft in tension. (R. E. Peterson, ‘‘Design Factors for Stress Concentration,’’ Machine Design, Vol. 23, Nos. 2 to 7, 1951.)
FIGURE 4-15 Reproduced with permission. Round shaft in torsion with transverse hole. (R. E. Peterson, ‘‘Design Factors for Stress Concentration,’’ Machine Design, Vol. 23, Nos. 2 to 7, 1951.)
FIGURE 4-16 Reproduced with permission. Stress-concentration factor K for grooved shaft in bending. (R. E. Peterson, ‘‘Design Factors for Stress Concentration,’’ Machine Design, Vol. 23, Nos. 2 to 7, 1951.)
FIGURE 4-17 Plate loaded in tension by a pin through a hole, 0 ¼ F=A, where A ¼ ðw dÞt. When clearance exists, increase Kt 35 to 50 percent. (M. M. Frocht and H. N. Hill, "Stress Concentration Factors around a Central Circular Hole in a Plate Loaded through a Pin in Hole,’’ J. Appl. Mechanics, vol. 7, no. 1, March 1940, p. A-5.)
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
STRESS CONCENTRATION AND STRESS INTENSITY IN MACHINE MEMBERS
4.12
CHAPTER FOUR
Stress concentration factor theoretical/empirical or otherwise Particular
Extreme value
Formula
rffiffiffiffiffi h1 K ¼ 1 þ r rffiffiffiffiffi h1 K ¼ 1 þ r or
(ii) Torsion (Fig. 4-18)
(iii) Shaft with a small elliptical groove in torsion
ð4-20Þ ð4-21aÞ
h1 b b K ¼ 1 þ r 0:65
ð4-21bÞ
K ¼ 1 þ
(m) Shouldered shaft in torsion (Fig. 4-19):
d K 1 þ S r
where S is some function of 2
3 r 1 þ 2 d 6 6 7 d 7 7 61 K ¼ 1 þ D r 5 12r 4 1þ6 d d For stress-concentration factor and combined factor for stepped-shaft in tension and bending
FIGURE 4-18 Reproduced with permission. Stress-concentration factor K for grooved shaft in tension. (R. E. Peterson, ‘‘Design Factors for Stress Concentration,’’ Machine Design, Vol. 23, Nos. 2 to 7, 1951.)
ð4-21cÞ ð4-22aÞ D d
ð4-22bÞ
Refer to Figs. 4-14, 4-16, and 4-18 to 4-21.
FIGURE 4-19 Reproduced with permission. Stress-concentration factor K for stepped shaft in torsion. (R. E. Peterson, ‘‘Design Factors for Stress Concentration,’’ Machine Design, Vol. 23, Nos. 2–7, 1951.)
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
STRESS CONCENTRATION AND STRESS INTENSITY IN MACHINE MEMBERS
4.13
STRESS CONCENTRATION AND STRESS INTENSITY IN MACHINE MEMBERS
Stress concentration factor theoretical/empirical or otherwise Particular
Extreme value
Formula
(n) Bar containing grooves: (i) Bar with U, semicircular or shallow grooves symmetrically placed in tension (Figs. 4-11, 4-12, 4-22)
2
3n 1 h1 K ¼ 1 þ 6 7 D r5 4 1:55 1:3 d
ð4-23aÞ
or 3n D 1 6 d7 7 6 d 7 K ¼ 1 þ 6 4 D r5 2 1:55 1:3 d rffiffiffiffiffi D h 1 þ 0:3 1 d r where n ¼ rffiffiffiffiffi D h1 1 þ r d 2
(ii) Bar with deep V-groove in tension for r < 1 (Fig. 4-11a) h1
FIGURE 4-20 Reproduced with permission. Stress-concentration factor K for stepped shaft in tension. (R. E. Peterson, ‘‘Design Factors for Stress Concentration,’’ Machine Design, Vol. 23, Nos. 2 to 7, 1951.)
( Kv ¼ 1 þ ðKv 1Þ 1
180
ffi 1 þ 2:4pffiffiffiffiffiffi r=h1
ð4-23bÞ
) ð4-24Þ
FIGURE 4-21 Reproduced with permission. Stress-concentration factor K for stepped shaft in bending. (R. E. Peterson, ‘‘Design Factors for Stress Concentration,’’ Machine Design, Vol. 23, Nos. 2–7, 1951.)
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
STRESS CONCENTRATION AND STRESS INTENSITY IN MACHINE MEMBERS
4.14
CHAPTER FOUR
Stress concentration factor theoretical/empirical or otherwise Particular
Extreme value
Formula
FIGURE 4-22 Reproduced with permission. Stress-concentration factor K for notched flat bar in tension. (R. E. Peterson, ‘‘Design Factors for Stress Concentration,’’ Machine Design, Vol. 23, Nos. 2 to 7, 1951.)
(iii) Bar with shallow V-groove in tension for r >1 h1
( Kv ¼ 1 þ ðKv 1Þ 1
180
ffi 1 þ 2:4pffiffiffiffiffiffi r=h1
)
ð4-25Þ (iv) Elliptical groove at the edge of plate in tension
K ¼ 1 þ
2h1 b
rffiffiffiffiffi h K ¼ 1 þ 2 1 r (v) Bar with symmetrical U, semicircular shallow grooves in bending (Fig. 4-23).
2 K ¼ 1 þ 4
3 1 h1 0:85 D r5 4:27 4 d
ð4-26aÞ
ð4-26bÞ
ð4-27aÞ
or 2
30:85 D 1 6 d7 6 7 d 7 K ¼ 1 þ 6 4 D r5 2 4:27 4 d
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð4-27bÞ
STRESS CONCENTRATION AND STRESS INTENSITY IN MACHINE MEMBERS STRESS CONCENTRATION AND STRESS INTENSITY IN MACHINE MEMBERS
4.15
Stress concentration factor theoretical/empirical or otherwise Particular
Extreme value
FIGURE 4-23 Reproduced with permission. Stress-concentration factor K for notched flat bar in bending. (R. E. Peterson, ‘‘Design Factors for Stress Concentration,’’ Machine Design, Vol. 23, Nos. 2 to 7, 1951.)
For stress-concentration factors for small grooves in a shaft subjected to torsion. (o) Bar containing shoulders (i) Bar with shoulders in tension (Fig. 4-24)
TABLE 4-4 Stress-concentration factors for relatively grooves in a shaft subject to torsion, K
small
Formula
FIGURE 4-24 Reproduced with permission. Stress-concentration factor K for filleted flat bar in tension. (R. E. Peterson, ‘‘Design Factors for Stress Concentration,’’ Machine Design, Vol. 23, Nos. 2–7, 1951.)
Refer to Table 4-4.
2
3 1 h1 0:85 K ¼ 1 þ 4 D r5 2:8 2 d or 30:85 2 D 1 7 6 d7 6 d 7 K ¼ 1 þ 6 4 D r5 2 2:8 2 d
h1 r Included angle of V, deg
0.5
1
3
5
2
0 60 90 120
1.85 1.84 1.81 1.66
2.01 2.00 1.95 1.75
2.66 2.54 2.40 1.95
3.23 3.06 2.40 2.00
4.54 3.99 3.12 2.13
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð4-28aÞ
ð4-28bÞ
STRESS CONCENTRATION AND STRESS INTENSITY IN MACHINE MEMBERS
4.16
CHAPTER FOUR
Stress concentration factor theoretical/empirical or otherwise Particular
(ii) Bar with shoulders in bending (Fig. 4-25)
Extreme value
2 K ¼ 1 þ 4 or
2
Formula
3 1 h1 0:85 D r5 5:37 4:8 d
ð4-29aÞ
30:85 D 1 6 d7 6 7 d 7 K ¼ 1 þ 6 4 D r5 2 5:37 4:8 d
ð4-29bÞ
(p) Press-fitted or shrink-fitted members (Table 4-5): (i) Plain member
K ¼ 1:95
(ii) Grooved member
K ¼ 1:34
(iii) Plain member
Kf ¼ 2:00
(iv) Grooved member
Kf ¼ 1:70
(q) Bolts and nuts (Tables 4-6 and 4-7) Bolt and nut of standard proportions
K ¼ 3:85
Bolt and nut having lip
K ¼ 3:00
TABLE 4-5 Stress-concentration factors in shrink-fitted members Particular
K
Kf
Plain Grooved
1.95 1.34
2.00 1.70
FIGURE 4-25 Reproduced with permission. Stress-concentration factor K for stepped bar in bending. (R. E. Peterson, ‘‘Design Factors for Stress Concentration,’’ Machine Design, Vol. 23, Nos. 2 to 7, 1951.)
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
STRESS CONCENTRATION AND STRESS INTENSITY IN MACHINE MEMBERS STRESS CONCENTRATION AND STRESS INTENSITY IN MACHINE MEMBERS
4.17
TABLE 4-6 Stress-concentration factors for screw threads Analysis Types of thread
Seely and Smith
Square Sharp V Whitworth US standard Medium Carbon steel National coarse thread Heat-treated Nickel steel
2.0 3.0 2.0
Black (8)
Suggested value
3.35
5 to 6
2.5 2.84 3.85
TABLE 4-7 Stress-concentration factors Kf for screw threads
Type of thread
Peterson (1)
Annealed
Hardened
Rolled Cut
Rolled Cut
Sellers, American National, square thread
2.2
Whitworth rounded roots
1.4
2.8 1.8
3.0 2.6
3.8 3.3
TABLE 4-8 Stress-concentration factors for welds K
Location End or parallel fillet weld
2.7
Reinforced butt
1.2
Tee of transverse fillet weld
1.5
T-butt weld with sharp corners
2.0
TABLE 4-9 Index of sensitivity for repeated stress Average index of sensitivity q
Material
Annealed or soft
Armco iron, 0.02% C Carbon steel 0.10% C 0.20% C (also cast steel) 0.30% C 0.50% C 0.85% C Spring steel, 0.56% C, 2.3 Si, rolled SAE 3140, 0.73 C; 0.6 Cr; 1.3 Ni. Cr–Ni steel 0.8 Cr; 3.5 Ni Stainless steel, 0.3 C; 8.3 Cr, 19.7 Ni Cast iron Copper, electrolitic Duraluminum
0.15–0.20 0.05–0.10 0.10 0.18 0.26
0.25
Heat-treated and drawn at 921 K (6488C)
Heat-treated and drawn at 755 K (4828C)
0.35 0.40 0.45 0.38 0.45 0.25
0.45 0.50 0.57
0.70
0.16 0–0.05 0.07 0.05–0.13
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
STRESS CONCENTRATION AND STRESS INTENSITY IN MACHINE MEMBERS
4.18
CHAPTER FOUR
Stress concentration factor theoretical/empirical or otherwise Particular
Extreme value
Formula
(r) Crane hook: For crane hook under tensile load
K ¼ 1:56
(s) Rotating disk: For rotating disk with a hole for For thin disk (ring)
Ri !0 Ro
K ¼ 2 K ¼ 1
(t) Eye bar: For eye bar subjected to tensile load
K ¼ 2:8
Stress concentration factors for welds
Refer to Table 4-8.
(u) Notch sensitivity factors (Table 4-9): (i) Notch sensitivity factor for normal stress
For index of sensitivity for repeated stresses. (ii) Fatigue stress concentration factor for normal stress (iii) Notch sensitivity factor for shear stress
(iv) Fatigue stress-concentration factor for shear stress
q ¼
Kf 1 K 1
ð4-30aÞ
q ¼
Kf 1 K0 1
ð4-30bÞ
Refer to Table 4-9. Kf ¼ 1 þ q ðK 1Þ
ð4-31aÞ
Kf ¼ 1 þ q ðK0 1Þ
ð4-31bÞ
q ¼
Kf 1 K 1
Kf ¼ 1 þ q ðK 1Þ
ð4-32Þ ð4-33Þ
STRESS CONCENTRATION IN FLANGED PIPE SUBJECTED TO AXIAL EXTERNAL FORCE The stress in the pipe due to external load F (Fig. 4-25A)
F ð4-33aÞ A where f ¼ depends on the distance x from the flange of the pipe, MPa (psi)
¼ f þ
fm ¼ maximum stress at x ¼ 0, MPa (psi) A ¼ area of the cross section of pipe, m2 (in2 ) F ¼ external load, kN (lbf)
FIGURE 4-25A Pipe and flange under the axial force F
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
STRESS CONCENTRATION AND STRESS INTENSITY IN MACHINE MEMBERS STRESS CONCENTRATION AND STRESS INTENSITY IN MACHINE MEMBERS
Particular
Formula
sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 4 3ð1 2 Þ ¼ 10 R2 h2
The value of constant
4.19
ð4-33bÞ
where 2R ¼ 2Ri þ h ¼ mean diameter of pipe, m (in) 2Ro ¼ outer diameter of pipe, m (in) 2Ri ¼ inner diameter of pipe, m (in) h ¼ thickness of pipe, m (in) ¼ Poisson’s ratio of material For plot of the stress ratio
f versus x fm
Refer to Fig. 4-25B.
FIGURE 4-25B Stress concentration region in flanged pipe under axial external force F. Courtesy: Douglas C. Greenwood, Engineering Data for Product Design, McGraw-Hill Publishing Company, New York, 1961.
REDUCTION OR MITIGATION OF STRESS CONCENTRATIONS In designing a machine part, one has to take into consideration the stress concentration occurring in such parts and eliminate or reduce stress concentration. Fig. 4-25C shows various methods used to reduce stress concentration. Stream line flowing analogy in a channel can be applied to force flow lines of a flat plate without any type of flow subject to uniform uniaxial tensile stress as shown in Fig. 4-25C i(a). The stream line flow of water or any fluid is
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
STRESS CONCENTRATION AND STRESS INTENSITY IN MACHINE MEMBERS
4.20
CHAPTER FOUR
smooth and straight as shown in Fig. 4-25C i(a). If there is any obstruction such as a heavy iron ball or a pipe or stone boulder in the path of flow of water, the flow of water or fluid will not be smooth and straight as shown in Fig. 4-25C i(e). Similarly the force flow lines will not be straight as in case of plate with a circular or elliptical or any shape of holes in a plate as shown in Figs. 4-25C i(b), i(c), i(d) and i( f ). By providing some geometric changes, abrupt change of force-flow lines are smoothened. Fatigue strength of parts with stress raiser can be increased by cold working operation such as shot peening or pressing by balls which creates a nature of stress in thin layers of the part just opposite to the one induced in it. Press fit stress concentration can be reduced by making the gripping portion conical in case of hardening steel parts. Nitriding and plating the parts eliminate the corrosion effect, which combined with stress concentration reduces the fatigue strength of the machine part. (i) Plates:
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
STRESS CONCENTRATION AND STRESS INTENSITY IN MACHINE MEMBERS STRESS CONCENTRATION AND STRESS INTENSITY IN MACHINE MEMBERS
(ii) Stepped shafts subject to tensile force:
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
4.21
STRESS CONCENTRATION AND STRESS INTENSITY IN MACHINE MEMBERS
4.22
CHAPTER FOUR
(iii) Shafts with narrow collar, cylindrical holes and grooves subject to tensile force:
(iv) Shafts subject to bending and torque:
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
STRESS CONCENTRATION AND STRESS INTENSITY IN MACHINE MEMBERS STRESS CONCENTRATION AND STRESS INTENSITY IN MACHINE MEMBERS
(v) Screws and nuts under torque:
(vi) Keyways in shafts subject to torque:
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
4.23
STRESS CONCENTRATION AND STRESS INTENSITY IN MACHINE MEMBERS
4.24
CHAPTER FOUR
(vii) Gears: Maximum Fringe order means maximum stress at Tension side of root point of contact fillet with less stress concentration
Fn
Fr
β
α Fθ
Maximum Fringe order
h ρt
ρt
α
s
b
Forces acting on a Gear Tooth Profile due to Normal Force Fn (a)
Fringe pattern of gear teeth in contact showing stress concentration at root and point of contract (b)
Compression side of root fillet gear tooth with more fringes compare to tension side root fillet stress analysis of gear teeth in contact under load showing photoelastic fringes by using the results of photoelastic experiment (c)
Stress concentration at fillet and at point of contact are shown in photoelastic fringe pattern and also in Fig. c. The stress concentration at fillet can be reduced by providing suitable large fillet radius. Source: From the photoelastic work of K. Lingaiah, Fringe Pattern of Gear-Teeth Showing Stress Concentration at Root and Contact Point, Department of Mechanical Engineering, University Visvesvaraya College of Engineering, Bangalore University, Bangalore, 1973. (viii) Flate plate with and without asymmetrically reinforced circular cutout subjected to uniform uniaxial stress:
FIGURE 4-25C Mitigation of stress concentration in machine members.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
STRESS CONCENTRATION AND STRESS INTENSITY IN MACHINE MEMBERS
4.25
STRESS CONCENTRATION AND STRESS INTENSITY IN MACHINE MEMBERS
Particular
Formula
STRESS INTENSITY FACTOR OR FRACTURE TOUGHNESS FACTOR The energy criterion approach in the fracture mechanics analysis: The energy release rate in case of a crack of length 2a in an infinite plate subject to tensile stress at infinity (Fig. 4-26A). The energy release rate is defined as the rate of change in potential energy with crack area for a linear elastic material.
The critical energy release rate.
G¼
2 a E
ð4-34aÞ
where G ¼ energy release rate E ¼ modulus of elasticity, GPa (psi) a ¼ half crack length, mm (in) Gc ¼
2f ac E
ð4-34bÞ
where f ¼ failure stress, MPa (psi) Gc ¼ material resistance to fracture or critical fracture toughness
FIGURE 4-26A A flat infinite plate with a through thickness crack subject to tensile stress at infinity.
pffiffiffi pffiffiffi a
The stress intensity factor for a centrally located straight crack in an infinite plate subjected to uniform uniaxial tensile stress perpendicular to the plane of the crack.
KI ¼
The definition and unit of critical stress intensity factor KIc .
KIc is the critical stress intensity factor for static loading and plane-strain conditions of maximum constraints and is also referred to as the fracture toughness factor of the material at the onset of rapid pffiffiffiffiffiffiffiffiffiffiffiffiffi fracture dimension of (stress length), i.e. pffiffiffiffi pffiffiffiffiand has MPa m (kpsi in).
The relation between KI and G.
G¼
KI E
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð4-34cÞ
ð4-34dÞ
STRESS CONCENTRATION AND STRESS INTENSITY IN MACHINE MEMBERS
4.26
CHAPTER FOUR
Particular
Formula
Three modes of loading to analyse stress fields in cracks:
FIGURE 4-26B Three modes of loading for deformation of crack tip.
First mode of loading and stress components at crack tip, Fig. 4-26B (a): The localized stress components at the vicinity of the ‘‘opening mode’’ or ‘‘mode I’’ crack tip in a flat plate subjected to uniform applied stress at infinity from the theory of fracture mechanics (Fig. 4-26C).
KI 3 cos 1 sin sin x ¼ pffiffiffiffiffiffiffi 2 2 2 2r KI 3 cos 1 þ sin sin y ¼ pffiffiffiffiffiffiffi 2 2 2 2r z ¼ ðx þ y Þ for plane strain ¼0
The crack tip displacement fields for ‘‘first mode’’ (Mode I) in case of linear elastic, isotropic materials.
for plane stress
KI 3 xy ¼ pffiffiffiffiffiffiffi cos sin cos 2 2 2 2r rffiffiffiffiffiffi K r ux ¼ I cos 1 þ 2 sin2 2G 2 2 2 uy ¼
KI 2G
rffiffiffiffiffiffi r sin þ 1 2 cos2 2 2 2
where G ¼ modulus of shear, GPa (psi) ¼ 3 4 for plane strain ¼ ð3 Þ=ð1 þ Þ for plane stress FIGURE 4-26C State of stress in the vicinity of a crack tip.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð4-35aÞ ð4-35bÞ ð4-35cÞ ð4-35dÞ ð4-35eÞ ð4-35f Þ
ð4-35gÞ
STRESS CONCENTRATION AND STRESS INTENSITY IN MACHINE MEMBERS STRESS CONCENTRATION AND STRESS INTENSITY IN MACHINE MEMBERS
Particular
4.27
Formula
Second mode of loading and stress components in the vicinity of crack tip, Fig. 4-26B (b): The localized stress components at the vicinity of the ‘‘second mode’’ or ‘‘sliding mode’’ crack tip in a flat plate subjected to in-plane shear, Fig. 4-26B (b).
KII 3 x ¼ pffiffiffiffiffiffiffi sin 2 þ cos cos ð4-35hÞ 2 2 2 2r KII 3 sin cos cos ð4-35iÞ y ¼ pffiffiffiffiffiffiffi 2 2 2 2r KII 3 ð4-35jÞ cos 1 sin sin xy ¼ pffiffiffiffiffiffiffi 2 2 2 2r z ¼ 0 for plane stress
ð4-35kÞ
z ¼ ðx y Þ for plane strain
ð4-35lÞ
xz ¼ yz ¼ 0 The crack tip displacement fields for the ‘‘second mode’’ (Mode II) in case of linear elastic, isotropic materials.
ux ¼
KII 2G
uy ¼
rffiffiffiffiffiffi r sin þ 1 þ 2 cos2 2 2 2
KII 2G
rffiffiffiffiffiffi r cos 1 2 sin2 2 2 2
ð4-35mÞ ð4-35nÞ ð4-35oÞ
Third mode of loading and stress components in the vicinity of crack tip, Fig. 4-26B (c): The localized stress components at the vicinity of the ‘‘third mode’’ or ‘‘tearing mode III’’ crack tip in a flat plate subjected to out-of-plane shear, Fig. 4-26B (c), in case of linear elastic, isotropic materials.
The crack tip displacement field for the ‘‘third mode’’ (Mode III) in case of linear elastic, isotropic materials.
Stress intensity factor:
KIII sin xz ¼ pffiffiffiffiffiffiffi 2 2r KIII cos yz ¼ pffiffiffiffiffiffiffi 2 2r rffiffiffiffiffiffi KIII r sin uz ¼ G 2 2
ð4-35pÞ ð4-35qÞ ð4-35rÞ
w¼¼0
The stress intensity factor for a center cracked tension plate (CCT), according to Fedderson (Fig. 4-27a).
pffiffiffiffiffiffi a KI ¼ a sec 2b
The stress intensity factor for a double edge cracked plate according to Keer and Freedman (Fig. 4-27b).
3 pffiffiffiffiffiffi a a þ 0:13 Ki ¼ a 1:12 0:61 b b 1=2 a 1 b
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð4-35sÞ
ð4-35tÞ
STRESS CONCENTRATION AND STRESS INTENSITY IN MACHINE MEMBERS
4.28
CHAPTER FOUR
Particular
FIGURE 4-27a
FIGURE 4-27b
The stress intensity factor for the plate with a single edge crack, according to Gross, Srawley and Brown (Fig. 4-27c).
The stress intensity factor for single edged cracked plate/specimen subjected to bending (Mb ) (Fig. 4-27d).
Formula
FIGURE 4-27c
FIGURE 4-27d
2 pffiffiffiffiffiffi a a KI ¼ a 1:12 0:23 þ 10:6 b b 3 4 a a 21:7 þ 30:4 b b 2 pffiffiffiffiffiffi a a KI ¼ a 1:112 1:40 þ 7:33 b b 3 4 a a 13:08 þ 14:0 b b
ð4-35uÞ
ð4-35vÞ
Stress intensity factor for the case of angled crack (Fig. 4-27A):
FIGURE 4-27A Through crack in an infinite plate for the general case where the crack plane is inclined at 908 angle from the applied normal stress acting at infinity.
The stress intensity factors for Modes I and II.
KI ¼ KIð0Þ cos2
ð4-36aÞ
KII ¼ KIð0Þ cos sin
ð4-36bÞ
where KIð0Þ is the Mode I stress intensity factor when ¼0
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
STRESS CONCENTRATION AND STRESS INTENSITY IN MACHINE MEMBERS
4.29
STRESS CONCENTRATION AND STRESS INTENSITY IN MACHINE MEMBERS
Particular
Equations for stress and displacement components in terms of polar coordinates: The localized stress components at the vicinity of Mode I crack tips in terms of polar coordinates.
The crack tip displacement fields for ‘‘first mode’’ (Mode I) in case of linear elastic, isotropic materials.
Formula
KI 3 r ¼ pffiffiffiffiffiffiffi 5 cos cos 2 2 4 2r KI 3 3 cos þ cos ¼ pffiffiffiffiffiffiffi 2 2 4 2r KI 3 sin þ sin r ¼ pffiffiffiffiffiffiffi 2 2 4 2r
ð4-36dÞ
z ¼ 1 ðr þ Þ
ð4-36f Þ
ð4-36cÞ
ð4-36eÞ
where 1 ¼ 0 for plane stress and 1 is Poisson’s ratio, , for plane strain. These singular fields only apply as r ! 0. rffiffiffiffiffiffi K r 3 ð1 þ Þ ð2 1Þ cos cos ð4-36gÞ ur ¼ I 2E 2 2 2 K u ¼ I 2E
rffiffiffiffiffiffi r 3 ð1 þ Þ ð2 1Þ sin þ sin 2 2 2 ð4-36hÞ
uz ¼
2 z ðr þ 0 Þ E
ð4-36iÞ
where 3 ¼ , 1 ¼ 0, and 2 ¼ for plane stress 1þ ¼ ð3 4Þ, 1 ¼ , and 2 ¼ 0 for plain strain The localized stress components at the vicinity of Mode II crack tip in terms of polar coordinates.
The crack tip displacement fields for Mode II.
KI is given by Eq. (4-36a). KII sin r ¼ pffiffiffiffiffiffiffi 1 3 sin2 2 2 2r
ð4-36jÞ
3KII sin cos2 ð4-36kÞ ¼ pffiffiffiffiffiffiffi 2 2 2r rffiffiffiffiffiffi K r 3 ur ¼ II ð1 þ Þ ð2 1Þ sin þ 3 sin 2E 2 2 2 ð4-36lÞ rffiffiffiffiffiffi KII r 3 ð1 þ Þ ð2 1Þ cos þ 3 cos u ¼ 2 2 2E 2 ð4-36mÞ
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
STRESS CONCENTRATION AND STRESS INTENSITY IN MACHINE MEMBERS
4.30
CHAPTER FOUR
Particular
The localized stress components and crack tip displacement fields for Mode III in terms of polar coordinates.
The critical applied tensile stress necessary for crack extension according to Griffith theory for brittle metals.
The modified Griffith’s equation for a small amount of plastic deformation according to Orowan which can be applied to ductile materials at low temperature, high strain rate and localized geometric constraint. The elastic energy release rate for Mode I.
Formula
KIII r ¼ pffiffiffiffiffiffiffi sin 2 2r
KIII cos ð4-36pÞ ¼ pffiffiffiffiffiffiffi 2 2r rffiffiffiffiffiffi 2K r sin uz ¼ III ð4-36qÞ G 2 2 rffiffiffiffiffiffiffiffi EU ð4-36rÞ c / a where c ¼ critical applied stress E ¼ Young’s modulus U ¼ surface energy per unit area a ¼ crack length. rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi EðU þ pÞ ¼ ð4-36sÞ a where p ¼ plastic deformation energy per unit area for metallic solid, p U. 1 2 ð4-36tÞ GI ¼ KI2 for plane strain E ¼ KI2 =E
The elastic energy release rate for Mode II. The elastic energy release rate for Mode III. The stress-intensity factor for a centrally located straight crack in an infinite plate subjected to uniform shear stress .
ð4-36nÞ
GII ¼
for plane stress
ð1 2 Þ 2 KII E
ð1 þ Þ 2 KIII E pffiffiffi pffiffiffi KI iKII ¼ i a GIII ¼
The stress-intensity magnification factor for a centrally located straight crack of length 2a in a flat plate whose length 2h and width 2b are very large compared with the crack length subjected to uniform uniaxial tensile stress .
K MF ¼ pffiffiffi Ipffiffiffi a
For stress-intensity magnification factors of plates with straight crack located at various positions in the plate and cylinders subjected to various types of rate of loadings and for various values of a=b, a=d, a=h, a=ðro ri Þ, and other ratios.
Refer to Figs. from 4-28, 4-29 to 4-34.
The factor of safety.
n¼
KIc K
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð4-36uÞ ð4-36vÞ ð4-36wÞ ð4-37aÞ
ð4-37bÞ
ð4-38Þ
STRESS CONCENTRATION AND STRESS INTENSITY IN MACHINE MEMBERS STRESS CONCENTRATION AND STRESS INTENSITY IN MACHINE MEMBERS
4.31
FIGURE 4-28 Stress intensity magnification factor pffiffiffi pffiffiffi KI = a for various ratios a=b of a flat plate with a centrally located straight crack under the action of uniform uniaxial tensile stress .
FIGURE 4-29 Stress intensity magnification factor pffiffiffi pffiffiffi KI = a for an off-center straight crack in a flat plate subjected to uniform unidirectional tensile stress ; solid curves are for the crack tip at A; dashed curves for tip at B.
FIGURE 4-30 Stress intensity magnification factor pffiffiffi pffiffiffi KI = a for an edge straight crack in a flat plate subjected to uniform uniaxial tensile stress for solid curves there are no constraints to bending; the dashed curve was obtained with bending constraints added.
FIGURE 4-31 Stress intensity magnification factor pffiffiffi pffiffiffi KI = a for a rectangular cross-sectional beam subjected to bending Mb .
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
STRESS CONCENTRATION AND STRESS INTENSITY IN MACHINE MEMBERS
4.32
CHAPTER FOUR
FIGURE 4-32 Stress intensity magnification factor pffiffiffi pffiffiffi KI = a for a flat plate with a centrally located circular hole with two straight cracks under uniform uniaxial tensile stress .
FIGURE 4-33 Stress intensity magnification factor pffiffiffi pffiffiffi KI = a for axially tensile loaded cylinder with a radial crack of a depth extending completely around the circumference of the cylinder.
pffiffiffi pffiffiffi FIGURE 4-34 Stress intensity magnification factor KI = a for a cylinder subjected to internal pressure pi having a radial crack in the longitudinal direction of depth a. Use equation of tangential stress of thick cylinder subjected to internal pressure to calculate the stress at r ¼ ro .
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
STRESS CONCENTRATION AND STRESS INTENSITY IN MACHINE MEMBERS STRESS CONCENTRATION AND STRESS INTENSITY IN MACHINE MEMBERS
Particular
4.33
Formula
1
KIc sy =2
2
Critical crack length
ac ¼
For values of critical stress-intensity factor (KIc ) for some engineering materials.
Refer to Table 4-10.
TABLE 4-10 Plane-strain fracture toughness or stress intensity factor KIc for some engineering materials KIc
Material Previous designation Aluminum 2014-T651 2024-T851 7075-T651 7178
UNS designation
A92024-T851 A97075-T651
Titanium Ti-6Al-4V Ti-6Al-4V
R56401 R56401
Steel 4340 4340 H-11 H-11 52100
G43400 G43400 – – G52986
pffiffiffiffi MPa m
24.2 26 24 13 115 55 99 60 38.5 27.8 14
Yield strength, xy pffiffiffiffi kpsi in
Critical crack length, ac
MPa
kpsi
mm
in
22 24 22 30
455 455 495 490
66 66 72 71
3.6 4.3 3.0 5.8
0.14 0.17 0.12 0.23
105 50
910 1035
132 150
20.5 3.6
0.81 0.14
90 55 35 27 13
860 1515 1790 2070 2070
125 220 260 300 300
16.8 2 <0.6 0.23 <0.06
0.66 0.08 <0.02 0.009 <0.002
Heat treated to a higher strength.
REFERENCES 1. Lingaiah, K., Solution of an Asymmetrically Reinforced Circular Cut-out in a Flat Plate Subjected to Uniform Unidirectional Stress, Ph.D. Thesis, Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, Sask., Canada, 1965. 2. Lingaiah, K., W. P. T. North, and J. B. Mantle, ‘‘Photoelastic Analysis of an Asymmetrically Reinforced Circular Cut-out in a Flat Plate Subjected to Uniform Unidirectional Stress,’’ Proc. SESA, Vol. 23, No. 2 (1966), p. 617. 3. Peterson, R. E., ‘‘Design Factors for Stress Concentration,’’ Machine Design, Vol. 23, No. 27, Pentagon Publishing, Cleveland, Ohio, 1951. 4. Lingaiah, K., ‘‘Effect of Contact Stress on Fatigue Strength of Gears,’’ M.Tech. Thesis, Indian Institute of Technology, Kharagpur, India, 1958. 5. Lingaiah, K., ‘‘Photoelastic Stress Analysis of Gear Teeth Under Load,’’ Department of Mechanical Engineering, University Visveswaraya College of Engineering, Bangalore University, Bangalore, 1980. 6. Lingaiah, K., and B. R. Narayana Iyengar, Machine Design Data Handbook, Vol. I (SI and Customary Metric Units), Suma Publishers, Bangalore, India, 1986. 7. Lingaiah, K., Machine Design Data Handbook, Vol. II (SI and Customary Metric Units), Suma Publishers, Bangalore, India, 1986.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
STRESS CONCENTRATION AND STRESS INTENSITY IN MACHINE MEMBERS
4.34
CHAPTER FOUR
8. Lingaiah, K., Machine Design Data Handbook (SI and Customary US Units), McGraw-Hill Publishing Company, New York, 1994. 9. Aidad, T., and Y. Terauchi, ‘‘On the Bending Stress in a Spur Gear,’’ 3 Reports, Bull. JSME, Vol. 5 (1962), p. 161. 10. Dolan, T. J., and E. L. Broghamer, ‘‘A Photoelastic Study of Stresses in Gear Tooth Fillets,’’ Univ. Illinois Exptl. Station. Bull., 335 (1942). 11. Hetenyi, M., The Application of Hardening Resins in Three-Dimensional Photoelastic Studies, J. Appl. Phys., Vol. 10 (1939), p. 295. 12. Shigley, J. E., and L. D. Mitchell, Mechanical Engineering Design, McGraw-Hill Publishing Company, New York, 1983. 13. Greenhood, D. C., Engineering Data for Production Design, McGraw-Hill Publishing Company, New York, 1961. 14. Carlson, R. L., and G. A. Kardomateas, An Introduction to Fatigue in Metals and Composites. 15. Anderson, T. L., Fracture Mechanics—Fundamentals and Application, 2nd edition, CRC Press, New York, 1995. 16. Fedderson, C., ‘‘Discussion’’, in Plane Strain Crank Toughness Testing of High Strength Metallic Materials, ASTM STP410, American Society for Testing Materials, Philadelphia (1967), p. 77. 17. Keer, L. M., and J. M. Freedman, ‘‘Tensile Strip with Edge Cracks,’’ Int. J. Engineering Science, Vol. 11 (1973), pp. 1965–1075. 18. Gross, B., and J. E. Srawley, ‘‘Stress Intensity Factors for Bend and Compact Specimens,’’ Engineering Fracture Mechanics, Vol. 4 (1972), pp. 587–589. 19. Gross, B., J. E. Srawley, and W. E. Brown Jr., Stress Intensity Factors for a Single Edge Notch Tension Specimen by a Boundary Collocation of a Stress Function, NASA Technical Note D-2395, 1964. 20. Damage Tolerant Design Handbook, MICIC-HB-01, Air Force Materials Laboratory, Wright-Patterson Air Force Base, Ohio, December 1972, and supplements.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
Source: MACHINE DESIGN DATABOOK
CHAPTER
5 DESIGN OF MACHINE ELEMENTS FOR STRENGTH SYMBOLS5;6 A b B esz es e0s E F Fm0 G h Ksz Ks K K Kf Kf Mb 0 Mbm Mt 0 Mtm n na nd q qf r t x0 ymax Zb Zt
area of cross-section, m2 (in2 ) a shape factor (b > 0) a constant size coefficient surface coefficient in case of tension and bending surface coefficient in case of torsion Young’s modulus, GPa (Mpsi) normal load (also with suffixes and primes), kN (lbf) static equivalent of cyclic load, kN (lbf) modulus of rigidity, GPa (Mpsi) thickness, m (in) size factor surface factor theoretical normal stress-concentration factor theoretical shear stress-concentration factor fatigue normal stress-concentration factor fatigue shear stress-concentration factor bending moment (also with suffixes and primes), N m (lbf in) static equivalent of cyclic bending moment, N m (lbf in) twisting moment (also with suffixes and primes), N m (lbf in) static equivalent of cyclic twisting moment, N m (lbf in) safety factor a constant actual safety factor (also with suffixes) design safety factor (also with suffixes) index of sensitivity index of notch sensitivity for alternating stresses notch radius, mm (in) time, h the guaranteed value of x (x0 0) maximum deflection flexural section modulus, m3 or cm3 (in3 ) polar section modulus, m3 or cm3 (in3 ) characteristic or scale value ( x0 )
5.1 Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
DESIGN OF MACHINE ELEMENTS FOR STRENGTH
5.2
CHAPTER FIVE
0 su e d x y
00e fb e sy xy nom f " "0 "t "0 "_ v0
normal stress (also with suffixes and primes), MPa (psi) initial stress, MPa (psi) ultimate strength, MPa (psi) elastic limit for standard specimen for 12.5 mm (12 in), MPa (psi) design stress (also with suffixes), MPa (psi) normal stress in x direction, MPa (psi) yield stress, MPa (psi) normal stress in y direction, MPa (psi) nominal normal stress, MPa (psi) maximum normal stress, MPa (psi) elastic limit for any thickness h between 12.5 mm (12 in) and 75 mm (3 in), MPa (psi) elastic limit for 75 mm (3 in) specimen, MPa (psi) endurance limit in bending, MPa (psi) shear stress (also with suffixes and primes), MPa (psi) elastic limit in shear, MPa (psi) yield strength in shear, MPa (psi) shear stress in xy plane, MPa (psi) nominal shear stress, MPa (psi) endurance limit in torsion, MPa (psi) engineering or average strain, mm/m (min/in) true strain, mm/m (min/in) total creep, after a time t, mm/m (min/in) initial creep, mm/m (min/in) creep rate (m/m)/h [(min/in)/h] a constant
Suffixes
for
s u y e a b m t max min f o
static strength (u or y ) ultimate strength yield strength elastic limit amplitude bending mean tension maximum minimum endurance limit (also used for reversed cycle) endurance limit repeated cycle
Primes
for
nom max 0e
0 00
(single) (double)
static equivalent combined stress
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
DESIGN OF MACHINE ELEMENTS FOR STRENGTH DESIGN OF MACHINE ELEMENTS FOR STRENGTH
Particular
5.3
Formula
STATIC LOADS Influence of size
FIGURE 5-1 Change of elastic limit with size of section.
FIGURE 5-2 Influence of size on elastic limits.
The size coefficient (Fig. 5-1, Fig. 5-2, and Table 5-1)
00 esz ¼ 1 0:016 1 e ðh 12:5Þ e
ð5-1Þ
where e ¼ elastic limit for 12.5 mm (0.5 in) 00e ¼ elastic limit for 75 mm (3.0 in) TABLE 5-1 Strength ratios of various materials for use in Eqs. (5-1) and (5-2) Values of 00e =e
Material
Natural state
Annealed
Drawn at 6508C
Drawn at 5358C
Drawn at 4258C
Aluminum, strong, wrought Tobin bronze Monel metal, forged Ductile iron Low-carbon steel, C < 0:20% Medium-carbon steel, 0.30 to 0.50% C Nickel steel, SAE 2340 Cr–Ni steel, SAE 3140 Cast iron, Class no. 20 Cast iron, Class no. 25 Cast iron, Class no. 35 Wrought iron
0.93 0.90 0.80 0.80 0.84 — — — 0.55 0.73 0.60 0.55
— — — 0.98 — 0.85 0.86 0.86 — — — —
— — — — — 0.72 0.80 0.75 — — — —
— — — — — 0.59 0.74 0.70 — — — —
— — — — — 0.53 — 0.65 —
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
DESIGN OF MACHINE ELEMENTS FOR STRENGTH
5.4
CHAPTER FIVE
Particular
Formula
250 00 300 4h þ e ð4h 50Þ e
ð5-2Þ
1 ksz
ð5-3Þ
The size factor
Ksz ¼
The relation between size coefficient and size factor
esz ¼
The elastic limit for any thickness h between 12.5 mm and 75 mm can be determined from the relation (Fig. 5-1)
00e ¼ e
ðe 00e Þðh 12:5Þ ð75 12:5Þ
ð5-4Þ
INDEX OF SENSITIVITY Ka 1 K 1
The index of sensitivity
q¼
The actual or real stress-concentration factor
Ka ¼ 1 þ qðK 1Þ
ð5-5Þ ð5-6Þ
SURFACE CONDITION (Fig. 5-3) 1 es
The surface factor for the case of tension and bending
Ks ¼
The surface coefficient in case of torsion
e0s ¼ 0:425 þ 0:575es
FIGURE 5-3 Reciprocals of stress-concentration factors caused by surface conditions.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð5-7Þ ð5-8Þ
DESIGN OF MACHINE ELEMENTS FOR STRENGTH DESIGN OF MACHINE ELEMENTS FOR STRENGTH
Particular
SAFETY FACTOR The general equation for design safety factor (Table 5-2)
5.5
Formula
n ¼ k1 k2 k3 k4 . . . km na where k1 k2 k3 k4 .. . na
ð5-9Þ
¼ Ksz ¼ size factor ¼ Ks ¼ surface factor ¼ Kl ¼ load factor (Table 14-3) ¼ material factor ¼ actual safety factor (Table 5-2).
TABLE 5-2 Actual safety factora
Circumstance
Actual factor of safety or reliability factor, na
Strength properties of material well known, load accurately predictable, parts produced with close dimensional control and brought to close tolerance specifications, and low-weight criteria
1
Load accurately predictable and low-weight and low-cost criteria
1.1–1.5
Load accurately predictable and low-cost criteria (low-weight–no criteria)
1.5–2
Overloads expected, materials ordinary but reliability important
2–3
Strength properties not well defined, loading uncertain, human life at stake if failure occurred, high maintenance and shutdown cost
3
a
These values are recommended for use in design, in the absence of specific reliability data.
nud ¼ Ksz Ka nua
ð5-10Þ
Tension
0:45sy a 0:60sy
ð5-11Þ
Shear
a ¼ 0:40sy
ð5-12Þ
Bearing
a ¼ 0:90sy
ð5-13Þ
Bending
ð5-14Þ 0:60sy a 0:75sy X X X X Wl þ KFl þ Fw þ Fme F¼ Wd þ
The design safety factor based on ultimate strength The relationships between allowable stress and specified minimum yield strength using the AISC Code are given here:
The expression for forces or loads used to find stresses in machine members or structures as per AISC Code.
ð5-15Þ P where P Wd ¼ sum of dead loads Wl ¼ sum of all stationary or static live loads Fl ¼ impact or dynamic live load Fw ¼ wind load on the structure P Fme ¼ load which accounts for earthquakes, hurricanes, etc. K ¼ service factor obtained from Table 5-3. The value of design normal stress
d a
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð5-16Þ
DESIGN OF MACHINE ELEMENTS FOR STRENGTH
5.6
CHAPTER FIVE
Particular
Formula
TABLE 5-3 AISC service factor K for use in Eq. (5-15) Particular
K
For support of elevators
2
For cab-operated traveling-crane support girders and their connections
1.25
For pendant-operated traveling-crane support girders and their connections
1.10
For support of light machinery, shaft- or motor-driven
1.20
For supports of reciprocating machinery or power-driven units
1.50
For hangers supporting floors and balconies
1.33
The value of design shear stress
d a
The design safety factor
nd ¼
ð5-16aÞ
strength ¼ ns nL stress
ð5-17Þ
where ns ¼ safety factor to take into account the uncertainty of strength nL ¼ safety factor to take into account the uncertainty of load. The equation for design safety factor
nd ¼
strength in force units applied force or load
ð5-18Þ
The realized safety factor
nr ¼
s
ð5-19Þ
The design safety factor based on elastic limit
ned ¼ Ksz Ka nea
ð5-20Þ
The design safety factor based on yield strength
nyd ¼ Ksz Ka nya
ð5-21Þ
The design safety factor based on endurance limit on bending
nfd ¼ Ksz Ks Kld nfa
ð5-22Þ
Design stress based on elastic limit
or nr ¼
s
where Kld ¼ load factor ed ¼ e ned
ð5-23Þ
Design stress based on ultimate strength
ud ¼
su nud
ð5-24Þ
Design stress based on yield strength
yd ¼
sy nyd
ð5-25Þ
Design stress based on yield strength in shear
yd ¼
sy nyd
ð5-26Þ
Static design stress
sd ¼
su nud
or
sy nyd
as the case may be
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð5-27Þ
DESIGN OF MACHINE ELEMENTS FOR STRENGTH DESIGN OF MACHINE ELEMENTS FOR STRENGTH
Particular
5.7
Formula
sf nfd
Design stress based on endurance limit
fd ¼
The corrected fatigue strength or design fatigue strength
sf ¼ Ksr Ksz Kld KR KT Kme 0sf
ð5-28aÞ
se ¼ ksr ksz kld kR kT kme 0se
ð5-28bÞ
The corrected endurance limit or design endurance limit
The size facto ksz for bending or torsion of round bars made of ductile materials according to Juvinall
where
ð5-28Þ
0se 0sf
¼ endurance limit of test specimen ¼ fatigue strength of test specimen Ksr ¼ surface factor Ksz ¼ size factor Kld ¼ load factor KR ¼ reliability factor KT ¼ temperature factor Kme ¼ miscellaneous-effect factor also known as fatigue strength reduction factor 1=Kf (5-28c)
8 1 > > > < 0:9 Ksz ¼ > 0:8 > > : 0:7
d < 10 mm ð0:4 inÞ 10 mm ð0:4 inÞ < d < 50 mm ð2 inÞ 50 mm ð2 inÞ < d < 100 mm ð4 inÞ 100 mm ð4 inÞ < d < 150 mm ð5 inÞ ð5-28dÞ
The size factor for axial force
Ksz ¼ 0:7 to 0:9
The size factor as suggested by the ASME national standard on ‘‘Design of Transmission Shafting’’
Ksz ¼
The surface factor
8 1:00 > > > < 0:90 Ksr ¼ > 0:87 > > : 0:79
d 0:19 1:85d
ð5-28eÞ 2 < d < 10 in
0:19
50 < d < 250 mm
for longitudinal hand polish for hand burnish for smooth mill cut for rough mill cut
ð5-28f Þ
ð5-28gÞ
Also refer to Fig. 5-3 for surface coefficient esr ¼ For a rectangular cross-section in bending
1 Ksr
or Ksr ¼
1 esr
pffiffiffiffi d ¼ 0:81 A
ð5-28hÞ
where A ¼ area of the cross section The effective diameter of round-section corresponding to a nonrotating solid or hollow round-section
de ¼ 0:370D
The effective diameter of a rectangular section of dimensions h b which has A0:95cr ¼ 0:05bh
de ¼ 0:808ðhbÞ1=2
ð5-28iÞ
where D ¼ diameter
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð5-28jÞ
DESIGN OF MACHINE ELEMENTS FOR STRENGTH
5.8
CHAPTER FIVE
Particular
The equivalent diameter rotating-beam specimen for any cross-section according to Shigley and Mitchell
The load factor according to Shigley
Formula
rffiffiffiffiffiffiffiffiffiffiffiffiffiffi A95 deq ¼ ð5-28jÞ 0:0766 where A95 is the portion of the cross sectional area of the nonround part that is stressed between 95% and 100% of the maximum stress.
kId
8 0:923 > > > <1 ¼ >1 > > : 0:577
axial loading sut 1520 MPa ð220 kpsiÞ axial loading sut 1520 MPa ð220 kpsiÞ bending torsion and shear
ð5-28kÞ The fatigue stress concentration factor which is used here as the fatigue strength reduction factor at endurance limit 106 cycles
Kf ¼ 1 þ qðkt 1Þ
The fatigue strength reduction factor for lives less 0 than N ¼ 106 cycles is Kf and is given by
0 ¼ aN b Kf
ð5-28lÞ
where Kf , Kt and q have the same meaning as given in Chapter 4. ð5-28mÞ where a ¼
1 Kf
1 1 and b ¼ log 3 Kf
ð5-28nÞ
0 ¼ 1 at 103 cycles. Kf
For reliability factor KR
Refer to Table 5-3A. TABLE 5-3A Reliability correction factor based on a standard deviation equal to 8% or the mean fatigue limit.
The temperature factor as suggested by Shigley and Mitchell
Reliability, %
KR
50 90 99 99.9 99.999
1.000 0.897 0.814 0.743 0.659
8 for T 4508C ð8408FÞ > <1 KT ¼ 1 0:0058 ðT 450Þ for 4508C < T < 5508C > : 1 0:0032 ðT 840Þ for 8408F < T < 10208F
ð5-28pÞ These equations are applicable to steel. These cannot be used for Al, Mg, and Cu alloys. For typical fracture surfaces for laboratory test specimens subjected to range of different loading conditions
Refer to Fig. 5-3A.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
DESIGN OF MACHINE ELEMENTS FOR STRENGTH
FIGURE 5.3A Typical fracture surfaces for laboratory test specimens subjected to a range of different loading conditions. Courtesy: Reproduced from Metals Handbook, Vol. 10, 8th edition, p. 102, American Society for Metals, Metals Park, Ohio, 1975.
5.9 Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
DESIGN OF MACHINE ELEMENTS FOR STRENGTH
5.10
CHAPTER FIVE
Particular
Formula
THEORIES OF FAILURE
qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2 ðx y Þ2 þ 4xy
The maximum normal stress theory or Rankine’s theory
e ¼ 12 ðx þ y Þ þ
The maximum shear stress theory or Guest’s theory
e ¼
qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2 ðx y Þ2 þ 4xy
ð5-30Þ
The shear-energy theory or constant energy-ofdistortion or Hencky–von Mises theory
e ¼
qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2 ðx y Þ2 þ 3xy
ð5-31Þ
The maximum strain theory or Saint Venant’s theory
e ¼
1 2
ð5-29Þ
ð1 Þðx þ y Þ
qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2 þ ð1 þ Þ ðx y Þ2 þ 4xy
ð5-32Þ
The bearing stress which causes failure for no friction at the surface of contact
b ¼ 1:81e
ð5-33Þ
The bearing stress which causes failure for the friction at the surface of contact
b ¼ 2e
ð5-34Þ
The fatigue stress-concentration factor for normal stress
Kf ¼ qf ðK 1Þ þ 1
ð5-35Þ
The fatigue stress-concentration factor for shear stress
Kf ¼ qf ðK 1Þ þ 1
ð5-36Þ
CYCLIC LOADS (Figs. 5-4 and 5-5)
The empirical formula for notch sensitivity for alternating stress of steel
r2u qf ¼ 1 exp 0:904 106
Notch sensitivity curves for steel and aluminum alloys
Refer to Fig. 5-6.
The empirical formula for notch sensitivity for alternating stress for high-strength aluminum alloys having u ¼ 415 to 550 MPa (60 to 80 kpsi)
qf ¼ 1 exp
Endurance strength for finite life
0f ¼ f
106 N
r 0:01
ð5-38Þ
0:09
where N ¼ required life in cycles. The empirical relation between ultimate strength and endurance limits for various materials
ð5-37Þ
Refer to Tables 5-4 and 5-5.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð5-39Þ
DESIGN OF MACHINE ELEMENTS FOR STRENGTH DESIGN OF MACHINE ELEMENTS FOR STRENGTH
5.11
FIGURE 5-4 Types of fatigue stress variations.
1•0
2 Pa (140kgf / mm ) 80M / mm2) f g k 7 0 1 ( σ uf MPa 2) 050 =1 (70kgf / mm σ uf Pa 2) M 0 m m / f 9 g k 2 4 ( =6 a MP σ uf 0 1 =4 σ uf
= 13
Notch sensitivity, q
0•8 0•6 0•4
STEELS
0•2 0
ALUMINUM ALLOY
0
0•5
1•0
1•5 2•0 2•5 Notch radius r, mm
3•0
3•5
4•0
1 kgf/mm2 = 9.8066 N/mm2
FIGURE 5-5 Modified Goodman diagram.
FIGURE 5-6 Notch-sensitivity curves for steel and aluminum alloys.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
DESIGN OF MACHINE ELEMENTS FOR STRENGTH
5.12
CHAPTER FIVE
TABLE 5-4 Empirical relationship between ultimate strength and endurance limits for various materials (approximate) Tension, compression, and bending (reversed or repeated cycle)a
Torsion (reversed or repeated cycle)a
Gray cast iron
ft ¼ 0:6fb to 0:7fb b ¼ 1:2fb to 1:5fb
¼ 0:75fb to 0.9fb ¼ 1:2f to 1:3f
Carbon steels
ot ¼ 1:6fb ob ¼ 1:5fb
o ¼ 1:8f to 2f
Steels (general)
ft ¼ 0:7fb to 0:8fb ft ¼ 0:36u ; ot ¼ 0:5u fb ¼ 0:46u ; ob ¼ 0:6u
f ¼ 0:55fb to 0:58fb f ¼ 0:22u o ¼ 0:3u
Alloy steels
ft ¼ 0:95fb ot ¼ 1:5ft to 1:6ft ob ¼ 1:6fb
o ¼ 1:8f to 2f
Aluminum alloys
ot ¼ 0:7fb ob ¼ 1:8fb
f ¼ 0:55fb to 0:58fb o ¼ 1:4f to 2f
Material
f ¼ 0:58fb o ¼ 1:4f to 2f 6 0:09 10 0f ¼ f N
Copper alloys
Endurance strength for finite life a
f —ensurance limit (also for reversed cycle); o—endurance for repeated cycle; t—tension; b—bending; u—ultimate; N—number of cycles
TABLE 5-5 The empirical relation for endurance limit Endurance limit, f Material
Bending
Axial
Torsion
For steel and other ferrous materials [for u < 1374 MPa (199.5 kpsi)] For nonferrous materials
1/2–5/8u 1/4–1/3u
7/20–5/8u 7/40–1/3u
7/80–5/32u 7/160–1/12u
STRESS-STRESS AND STRESS-LOAD RELATIONS Axial load The maximum stress
max ¼
Fmax A
ð5-40Þ
The minimum stress
min ¼
Fmin A
ð5-41Þ
The load amplitude
Fa ¼
Fmax Fmin 2
ð5-42Þ
The mean load
Fm ¼
Fmax þ Fmin 2
ð5-43Þ
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
DESIGN OF MACHINE ELEMENTS FOR STRENGTH DESIGN OF MACHINE ELEMENTS FOR STRENGTH
Particular
5.13
Formula
The stress amplitude (Figs. 5-4 and 5-5)
a ¼
Fa A
ð5-44Þ
The mean stress
m ¼
Fm A
ð5-45Þ
The ratio of amplitude stress to mean stress
a F ¼ a m F m
ð5-46Þ
The static equivalent of cyclic load Fm Fa
Fm0 ¼ Fm þ
The static equivalent of mean stress m a
0m ¼
The Gerber parabolic relation (Fig. 5-7)
sd F fd a
Fm0 A a m 2 þ ¼1 fd ud
ð5-47Þ ð5-48Þ ð5-49Þ
FIGURE 5-7 Graphical representation of steady and variable stresses.
The Goodman relation (Figs. 5-5, 5-7, and 5-9)
a þ m ¼1 fd ud
ð5-50Þ
The Soderberg relation (Figs. 5-7 and 5-8)
a þ m ¼1 fd yd
ð5-51Þ
Bending loads The maximum stress
max ¼
MbðmaxÞ Zb
ð5-52Þ
The minimum stress
min ¼
MbðminÞ Zb
ð5-53Þ
The bending moment amplitude
Mba ¼
MbðmaxÞ MbðminÞ 2
ð5-54Þ
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
DESIGN OF MACHINE ELEMENTS FOR STRENGTH
5.14
CHAPTER FIVE
Particular
Formula
FIGURE 5-8 Representation of safe limit of mean stress and stress amplitude by Soderberg criterion.
MbðmaxÞ þ MbðminÞ 2
ð5-55Þ
The mean bending moment
Mbm ¼
The bending stress amplitude
ba ¼
Mba Zb
ð5-56Þ
The mean bending stress
bm ¼
Mbm Zb
ð5-57Þ
The ratio of stress amplitude to mean stress
ba M ¼ ba bm Mbm
ð5-58Þ sd Mba fd
The static equivalent of cyclic bending moment Mbm Mba
0 ¼ Mbm þ Mbm
The static equivalent of cyclic stress
0bm ¼
The Gerber parabolic relation (Fig. 5-7)
ba 2bm þ ¼1 fd 2ud
ð5-61Þ
The Goodman straight-line relation (Figs. 5-5, 5-7, and 5-9)
ba bm þ ¼1 fd ud
ð5-62Þ
The Soderberg straight-line relation (Figs. 5-7 and 5-8)
ba bm þ ¼1 fd yd
ð5-63Þ
MtðmaxÞ Zt
ð5-64Þ
0 Mbm Zb
ð5-59Þ ð5-60Þ
Torsional moments The maximum shear stress
max ¼
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
DESIGN OF MACHINE ELEMENTS FOR STRENGTH DESIGN OF MACHINE ELEMENTS FOR STRENGTH
Particular
5.15
Formula
FIGURE 5-9 Representation of safe limit of mean stress and stress amplitude by Goodman criterion.
The minimum shear stress
min ¼
MtðminÞ Zt
ð5-65Þ
The load amplitude
Mta ¼
MtðmaxÞ MtðminÞ 2
ð5-66Þ
The mean load
Mtm ¼
MtðmaxÞ þ MtðminÞ 2
ð5-67Þ
The shear stress amplitude
a ¼
Mta Zt
ð5-68Þ
The mean shear stress
m ¼
Mtm Zt
ð5-69Þ
The ratio of stress amplitude to mean stress
a M ¼ ta m Mtm
ð5-70Þ
The static equivalent of cyclic twisting moment Mtm Mta
0 ¼ Mtm þ Mtm
sd Mtd fd
0 Mtm Zt
ð5-71Þ
The static equivalent of cyclic stress
m0 ¼
The Gerber parabolic relation (Fig. 5-7)
a 2 þ 2m ¼ 1 fd ud
ð5-73Þ
The Goodman straight-line relation (Figs. 5-5, 5-7, and 5-9)
a þ m ¼1 fd ud
ð5-74Þ
The Soderberg straight-line relation (Figs. 5-7 and 5-8)
a þ m¼1 fd yd
ð5-75Þ
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð5-72Þ
DESIGN OF MACHINE ELEMENTS FOR STRENGTH
5.16
CHAPTER FIVE
Particular
Formula
THE COMBINED STRESSES Method 1 sd fd a
ð5-76Þ
sd fd a
ð5-77Þ
The static equivalent of m a
0m ¼ m þ
The static equivalent of m a
m0 ¼ m þ
The maximum normal stress theory or Rankine’s theory
qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 0 02 e ¼ m þ 02 m þ 4m
The maximum shear theory or Coulomb’s or Tresca criteria or Guest’s theory
1 2
ð5-78Þ
e ¼
qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 02 02 m þ 4m
ð5-79Þ
The distortion energy theory or Hencky–von Mises theory
e ¼
qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 02 02 m þ 3m
ð5-80Þ
The maximum strain theory or Saint Venant’s theory
qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 0 1 02 e ¼ 2 ð1 Þm þ ð1 þ Þ 02 m þ 4m
ð5-81Þ
The combined maximum normal stress
qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2 00max ¼ 12 max þ 2max þ 4max
ð5-82Þ
The combined minimum normal stress
00min
The combined maximum shear stress
00 ¼ 12 max
qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2 2max þ 4max
ð5-84Þ
The combined minimum shear stress
00 ¼ 12 min
qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2 2min þ 4min
ð5-85Þ
Method 2
The combined maximum normal stress according to strain theory
qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2 ¼ min þ 2min þ 4min
ð5-83Þ
1 2
qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 00max ¼ 12 ð1 Þmax þ ð1 þ Þ 2max þ 4max ð5-86Þ
00min
qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2 ¼ 12 ð1 Þmin þ ð1 þ Þ 2min þ 4min
The combined maximum octahedral shear stress
00 max
qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2 2max þ 3max ¼ 12
ð5-88aÞ
The combined minimum octahedral shear stress
00 min
qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2 2min þ 3min ¼
ð5-88bÞ
The combined mean stress
00m ¼
The combined minimum normal stress according to strain theory
1 2
00max þ 00min 2
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð5-87Þ
ð5-88cÞ
DESIGN OF MACHINE ELEMENTS FOR STRENGTH DESIGN OF MACHINE ELEMENTS FOR STRENGTH
Particular
The combined stress amplitude The Gerber parabolic relation (Fig. 5-7)
5.17
Formula
00max 00min 2 00 2 00a m þ ¼1 fd ud 00a ¼
ð5-88dÞ ð5-88eÞ
The Goodman straight-line relation (Figs. 5-5, 5-7, and 5-9)
00a 00 þ m ¼1 fd ud
ð5-88f Þ
The Soderberg straight-line relation (Figs. 5-7 and 5-8)
00a 00 þ m ¼1 fd yd
ð5-88gÞ
COMBINED STRESSES IN TERMS OF LOADS Method 1 Maximum shear stress theory
The shear energy theory
sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 0 0 2 Mbm Fm0 2 Mtm þ þ4 Zb A Zt sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 0 2 0 Mbm Fm0 2 e Mtm ¼ þ þ3 ned Zb A Zt e ¼ ned
ð5-89aÞ ð5-89bÞ
where d 3 d 3 and Zt ¼ 32 16 2 d A¼ 4 for solid shafts 2sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi3 MbðmaxÞ Fmax 2 MtðmaxÞ 2 5 1 1 4 þ þ4 þ Zb A Zt fd d 2sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi3 MbðminÞ Fmin 2 MtðminÞ 2 5 þ þ4 þ4 Zb A Zt 1 1 ¼2 ð5-90aÞ þ fd d 2sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi3 MbðmaxÞ Fmax 2 MtðmaxÞ 2 5 1 1 4 þ þ3 þ Zb A Zt fd d 2sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi3 MbðminÞ Fmin 2 MtðminÞ 2 5 þ þ3 þ4 Zb A Zt Zb ¼
Method 2 Maximum shear stress theory
The shear energy theory
1 1 ¼2 þ fd d
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð5-90bÞ
DESIGN OF MACHINE ELEMENTS FOR STRENGTH
5.18
CHAPTER FIVE
Particular
Formula
CREEP Creep in tension When the curve for total creep "t is approximated as a straight line its equation is
"t ¼ "0 þ "t
ð5-91aÞ
The creep rate "_ can be approximated by the equation
"_ ¼ B n
ð5-91bÞ
Creep rate "_ , when extrapolated into the region of lower stresses, can be determined with greater accuracy by the hyperbolic sine term
Refer to Table 5-6 for creep constants B and n. ð5-91cÞ "_ ¼ 0 sinh 1
True strain Creep life of aluminum Time for the stress to decrease from an initial value of 0 to a value of
"0 ¼ lnð1 þ "Þ 1 "cr ¼ n "_ n 1 1 0 1 t¼ EBðn 1Þn0 1
ð5-91dÞ ð5-92Þ ð5-93Þ
Creep in bending
The maximum stress at the extreme fibers in case of bending of beam is given by the relation
¼
The maximum deflection of a cantilever beam loaded at free end by a load F
ymax ¼
C1 BD
1=n ð5-94Þ
Mb
tF n l n þ 2 Dðn þ 2Þ
ð5-95Þ
2n þ 1 h ð2bÞn 1 2 where D ¼ 1 n B 2þ n Creep constants B and n are taken from Table 5-6. TABLE 5-6 Creep constants for various steels for use in Eqs. (5-91b) to (5-95) Temperature 8C
Steel 0.39% C 0.30% C 0.45% C 2% Ni, 0.8% Cr, 0.4% Mo 2% Ni, 0.3% C, 1.4% Mn 12% Cr, 3% W, 0.4% Mn Ni-Cr-Mo Ni-Cr-Mo 12% Cr
400 400 475 450 450 550 500 500 455
B
n 36
14 10 44 1030 — 10 1019 21 1022 24 1014 12 1016 16 1012 12 1022
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
8.6 6.9 6.5 3.2 4.7 1.9 2.7 1.3 4.4
DESIGN OF MACHINE ELEMENTS FOR STRENGTH DESIGN OF MACHINE ELEMENTS FOR STRENGTH
Particular
5.19
Formula
RELIABILITY The probability function or frequency function The cumulative probability function
The sample mean or arithmetic mean of a sample
p ¼ f ðxÞ Fðxj Þ ¼
X
xi xj
ð5-96Þ f ðxi Þ
ð5-97Þ
where f ðxÞ is the probability density x þ x2 þ x3 þ x4 þ þ xn x ¼ 1 n n 1X x ¼ n i¼1 i
ð5-98aÞ ð5-98bÞ
The population mean of a population consisting of n elements
where xi is the ith value of the quantity n is the total number of measurements or elements x þ x2 þ x3 þ x4 þ þ xn ¼ 1 ð5-99aÞ n n 1X x ð5-99bÞ ¼ n i¼1 i
The sample variance
s2x ¼
A suitable equation for variance for use in a calculator
s2x ¼
ðx1 xÞ2 þ ðx2 xÞ2 þ þ ðxn xÞ2 ð5-100aÞ n1 n 1 X ðx xÞ2 ð5-100bÞ ¼ n 1 i¼1 i P
The sample standard deviation (the symbol used for true standard deviation is ^) A suitable equation for standard deviation for use in a calculator
x2 x2 n
"
n 1 X ðx xÞ2 sx ¼ n 1 i¼1 i
8 <X sx ¼ :
#1=2 ð5-102Þ
P 2 91=2 x = x n ; n1 2
The coefficient of variation
xÞ100 c ¼ ðsx =
The normal, or Gaussian, distribution (Fig. 5-10)
2 2 1 f ðxÞ ¼ pffiffiffiffiffiffi eðxÞ =2^ ^ 2
The normal distribution as defined by parameters, the mean and standard deviation ^ according to the relation for the relative frequency f ðtÞ, which is the ordinate at t
ð5-101Þ
ð5-103Þ ð5-104Þ
1<x<1
2 1 eðt =2Þ f ðtÞ ¼ pffiffi ð2Þ
ð5-105Þ ð5-106Þ
where t ¼ ðx Þ=^ . Refer to Table 5-7 for ordinate f ðtÞ [i.e. y ¼ f ðtÞ] for various values of t.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
DESIGN OF MACHINE ELEMENTS FOR STRENGTH
5.20
CHAPTER FIVE
Particular
FIGURE 5-10 The shapes of normal distribution curves for various and constant .
Formula
FIGURE 5-11 The Gaussian (normal) distribution curve.
Refer to Table 5-8 for area under the standard normal distribution curve. The area under normal distribution curve to the right of t (Fig. 5-11)
Error function or probability integral
BðtÞ ¼ 1 AðtÞ
ð5-107Þ
where AðtÞ is the area to the left of t. The area under the entire normal distribution curve is AðtÞ þ BðtÞ and is equal to unity. The term BðtÞ can be found from Table 5-8 or by integrating the area under the curve. ð 2 x t2 erfðxÞ ¼ pffiffiffi e dt ð5-108Þ 0 Refer to Table 5-9 for erfðxÞ for various values of x. ¼ s þ
ð5-109Þ
The resultant mean of subtracting the means of two populations
¼ s
ð5-110Þ
The resultant standard deviation for both subtraction and addition of two standard deviations ^s and ^
^ ¼
The resultant mean of adding the means of two populations (Fig. 5-12)
FIGURE 5-12 Distribution curves for two means of populations.
qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ^2s þ ^2
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð5-111Þ
DESIGN OF MACHINE ELEMENTS FOR STRENGTH DESIGN OF MACHINE ELEMENTS FOR STRENGTH
5.21
TABLE 5-7 Standard normal curve ordinates
2 1 y ¼ pffiffiffiffiffiffi et =2 2p
t
0
1
2
3
4
5
6
7
8
9
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9
.3989 .3970 .3910 .3814 .3683 .3521 .3332 .3123 .2897 .2661 .2420 .2179 .1942 .1714 .1497 .1295 .1109 .0940 .0790 .0656 .0540 .0440 .0355 .0283 .0224 .0175 .0136 .0104 .0079 .0060 .0044 .0033 .0024 .0017 .0012 .0009 .0006 .0004 .0003 .0002
.3989 .3965 .3902 .3802 .3668 .3503 .3312 .3101 .2874 .2637 .2396 .2155 .1919 .1691 .1476 .1276 .1092 .0925 .0775 .0644 .0529 .0431 .0347 .0277 .0219 .0171 .0132 .0101 .0077 .0058 .0043 .0032 .0023 .0017 .0012 .0008 .0006 .0004 .0003 .0002
.3989 .3961 .2894 .3790 .3653 .3485 .3292 .3079 .2850 .2613 .2371 .2131 .1895 .1669 .1456 .1257 .1074 .0909 .0761 .0632 .0519 .0422 .0339 .0270 .0213 .0167 .0129 .0099 .0075 .0056 .0042 .0031 .0022 .0016 .0012 .0008 .0006 .0004 .0003 .0002
.3988 .3956 .3885 .3778 .3637 .3467 .3271 .3056 .2827 .2589 .2347 .2107 .1872 .1647 .1435 .1238 .1057 .0893 .0748 .0620 .0508 .0413 .0332 .0264 .0208 .0163 .0126 .0096 .0073 .0055 .0040 .0030 .0022 .0016 .0011 .0008 .0005 .0004 .0003 .0002
.3986 .3951 .3876 .3765 .3621 .3448 .3251 .3034 .2803 .2565 .2323 .2083 .1849 .1626 .1415 .1219 .1040 .0878 .0734 .0608 .0498 .0404 .0325 .0258 .0203 .0158 .0122 .0093 .0071 .0053 .0039 .0029 .0021 .0015 .0011 .0008 .0005 .0004 .0003 .0002
.3984 .3945 .3867 .3752 .3605 .3429 .3230 .3011 .2780 .2541 .2299 .2059 .1826 .1604 .1394 .1200 .1023 .0863 .0721 .0596 .0488 .0396 .0317 .0252 .0198 .0154 .0119 .0091 .0069 .0051 .0038 .0028 .0020 .0015 .0010 .0007 .0005 .0004 .0002 .0002
.3982 .3939 .3857 .3739 .3589 .3410 .3209 .2989 .2756 .2516 .2275 .2036 .1804 .1528 .1374 .1182 .1006 .0848 .0707 .0584 .0487 .0387 .0310 .0246 .0194 .0151 .0116 .0088 .0067 .0050 .0037 .0027 .0020 .0014 .0010 .0007 .0005 .0003 .0002 .0002
.3980 .3932 .3847 .3725 .3572 .3391 .3187 .2966 .2932 .2492 .2251 .2012 .1781 .1561 .1354 .1163 .0989 .0833 .0694 .0573 .0468 .0379 .0303 .0241 .0189 .0147 .0113 .0086 .0065 .0048 .0036 .0026 .0019 .0014 .0010 .0007 .0005 .0003 .0002 .0002
.3977 .3925 .3836 .3712 .3555 .3372 .3166 .2943 .2709 .2468 .2227 .1989 .1758 .1539 .1334 .1145 .0973 .0818 .0681 .0562 .0459 .0371 .0297 .0235 .0184 .0143 .0110 .0084 .0063 .0047 .0035 .0025 .0018 .0013 .0009 .0007 .0005 .0003 .0002 .0001
.3973 .3918 .3815 .3697 .3538 .3352 .3144 .2920 .2685 .2444 .2203 .1965 .1736 .1518 .1315 .1127 .0957 .0804 .0669 .0551 .0449 .0363 .0290 .0229 .0180 .0139 .0107 .0081 .0061 .0046 .0034 .0025 .0018 .0013 .0009 .0006 .0004 .0003 .0002 .0001
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
DESIGN OF MACHINE ELEMENTS FOR STRENGTH
5.22
CHAPTER FIVE
TABLE 5-8 Areas under the standard normal distribution curve
AðtÞ ¼
ðt 0
2 1 pffiffiffiffiffiffi et =2 dt 2p
t
0
1
2
3
4
5
6
7
8
9
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9
.0000 .0398 .0793 .1179 .1554 .1915 .2258 .2580 .2881 .3159 .3413 .3643 .3849 .4032 .4192 .4332 .4452 .4554 .4641 .4713 .4772 .4821 .4861 .4893 .4918 .4938 .4953 .4965 .4974 .4981 .4987 .4990 .4993 .4995 .4997 .4998 .4998 .4999 .4999 .5000
.0040 .0438 .0832 .1217 .1591 .1950 .2291 .2612 .2910 .3186 .3438 .3665 .3869 .4049 .4207 .4345 .4463 .4564 .4649 .4719 .4778 .4826 .4864 .4896 .4920 .4940 .4955 .4966 .4975 .4982 .4987 .4991 .4993 .4995 .4997 .4998 .4998 .4999 .4999 .5000
.0080 .0478 .0871 .1255 .1628 .1985 .2324 .2642 .2939 .3212 .3461 .3686 .3888 .4066 .4222 .4357 .4474 .4573 .4656 .4726 .4783 .4830 .4868 .4898 .4922 .4941 .4956 .4967 .4976 .4982 .4987 .4991 .4994 .4995 .4997 .4998 .4999 .4999 .4999 .5000
.0120 .0517 .0910 .1293 .1664 .2019 .2357 .2673 .2967 .3238 .3485 .3708 .3907 .4082 .4236 .4370 .4484 .4582 .4664 .4732 .4788 .4834 .4871 .4901 .4925 .4943 .4957 .4968 .4977 .4983 .4988 .4991 .4994 .4996 .4997 .4998 .4999 .4999 .4999 .5000
.0160 .0557 .0948 .1331 .1700 .2054 .2389 .2704 .2996 .3264 .3508 .3729 .3925 .4099 .4251 .4382 .4495 .4591 .4671 .4738 .4793 .4838 .4875 .4904 .4927 .4945 .4959 .4969 .4977 .4984 .4988 .4992 .4994 .4996 .4997 .4998 .4999 .4999 .4999 .5000
.0199 .0596 .0987 .1368 .1736 .2088 .2422 .2734 .3023 .3289 .3531 .3749 .3944 .4115 .4265 .4394 .4506 .4599 .4678 .4744 .4798 .4842 .4878 .4906 .4929 .4946 .4960 .4970 .4978 .4984 .4989 .4992 .4994 .4996 .4997 .4998 .4999 .4999 .4999 .5000
.0239 .0636 .1026 .1406 .1772 .2123 .2454 .2764 .3051 .3315 .3554 .3770 .3962 .4131 .4279 .4406 .4515 .4608 .4686 .4750 .4803 .4846 .4881 .4909 .4931 .4948 .4961 .4971 .4979 .4985 .4989 .4992 .4994 .4996 .4997 .4998 .4999 .4999 .4999 .5000
.0279 .0675 .1064 .1443 .1808 .2157 .2486 .2794 .3078 .3340 .3577 .3790 .3980 .4147 .4292 .4418 .4525 .4616 .4693 .4756 .4808 .4850 .4884 .4911 .4932 .4949 .4962 .4972 .4979 .4985 .4989 .4992 .4995 .4996 .4997 .4998 .4999 .4999 .4999 .5000
.0319 .0714 .1103 .1480 .1844 .2190 .2518 .2823 .3106 .3365 .3599 .3810 .3997 .4162 .4306 .4429 .4535 .4625 .4699 .4761 .4812 .4854 .4887 .4913 .4934 .4951 .4963 .4973 .4980 .4986 .4990 .4993 .4995 .4996 .4997 .4998 .4999 .4999 .4999 .5000
.0359 .0754 .1141 .1517 .1879 .2224 .2549 .2852 .3133 .3389 .3621 .3830 .4015 .4177 .4319 .4441 .4545 .4633 .4706 .4767 .4817 .4857 .4890 .4916 .4936 .4952 .4964 .4974 .4981 .4986 .4990 .4993 .4995 .4997 .4998 .4998 .4999 .4999 .4999 .5000
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
DESIGN OF MACHINE ELEMENTS FOR STRENGTH
5.23
DESIGN OF MACHINE ELEMENTS FOR STRENGTH
TABLE 5-9 Error function or probability integral
2 erfðxÞ ¼ pffiffiffi p x
0
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0
.11246 .22270 .32863 .42839 .52050 .60386 .67780 .74210 .79691 .84270 .88021 .91031 .93401 .95229 .96611 .97635 .98379 .98909 .99279 .99532 .99702 .99814 .99886 .99931 .99959 .99976 .99987 .99992 .99996 .99998
ðx 0
2
et dt
1
2
3
4
5
6
7
8
9
.01128 .12362 .23352 .33891 .43797 .52924 .61168 .68467 .74800 .80188 .84681 .88353 .91296 .93606 .95385 .96728 .97721 .98441 .98952 .99309 .99552 .99715 .99822 .99891 .99935 .99961 .99978 .99987 .99993 .99996
.02256 .13476 .24430 .34913 .44747 .53790 .61941 .69143 .75381 .80677 .85084 .88679 .91553 .93807 .95538 .96841 .97804 .98500 .98994 .99338 .99572 .99728 .99831 .99897 .99938 .99963 .99979 .99988 .99993 .99996
.03384 .14587 .25502 .35928 .45689 .54646 .62705 .69810 .75952 .81156 .85478 .88997 .91805 .94002 .95686 .96952 .97884 .98558 .99035 .99366 .99591 .99741 .99839 .99902 .99941 .99965 .99980 .99989 .99994 .99997
.04511 .15695 .26570 .36936 .46623 .55494 .63459 .70468 .76514 .81627 .85865 .89308 .92051 .94191 .95830 .97059 .97962 .98613 .99074 .99392 .99609 .99753 .99846 .99906 .99944 .99967 .99981 .99989 .99994 .99997
.05637 .16800 .27633 .37938 .47548 .56332 .64203 .71116 .77067 .82089 .86244 .89612 .92290 .94376 .95970 .97162 .98038 .98667 .99111 .99418 .99626 .99764 .99854 .99911 .99947 .99969 .99982 .99990 .99994 .99997
.06762 .17901 .28690 .38933 .48466 .57162 .64938 .71754 .77610 .82542 .86614 .89910 .92524 .94556 .96105 .97263 .98110 .98719 .99147 .99443 .99642 .99775 .99861 .99915 .99950 .99971 .99983 .99991 .99995 .99997
.07886 .18999 .29742 .39921 .49375 .57982 .65663 .72382 .78144 .82987 .86977 .90200 .92751 .94731 .96237 .97360 .98181 .98769 .99182 .99466 .99658 .99785 .99867 .99920 .99952 .99972 .99984 .99991 .99995 .99997
.09008 .20094 .30788 .40901 .50275 .58792 .66378 .73001 .78669 .83243 .87333 .90484 .92973 .94902 .96365 .97455 .98249 .98817 .99216 .99489 .99673 .99795 .99874 .99924 .99955 .99974 .99985 .99992 .99995 .99997
.10128 .21184 .31828 .41874 .51167 .59594 .67084 .73610 .79184 .83851 .87680 .90761 .93190 .95067 .96490 .97546 .98315 .98864 .99248 .99511 .99688 .99805 .99880 .99928 .99957 .99975 .99986 .99992 .99996 .99998
The standard variable tR (deviation multiplication factor) in order to determine the probability of failure or the reliability
s ffi¼ s tR ¼ pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2 2 ^ ^s þ ^
The reliability associated with tR
R ¼ 0:5 þ AðtR Þ
ð5-112Þ
where subscripts s and refer to strength and stress, respectively. ð5-113Þ
where AðtR Þ is the area under a standard normal distribution curve. Refer to Table 5-10 for typical values of R as a function of standardized variable tR .
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
DESIGN OF MACHINE ELEMENTS FOR STRENGTH
5.24
CHAPTER FIVE
Particular
Formula
TABLE 5-10 Reliability R as a function of tR Survival rate (R) %
tR
50 90.00 95.00 98.00 99.00 99.90 99.99
0 1.288 1.645 2.050 2.330 3.080 3.700
A safety factor of 1 is taken into account in determining the reliability from Eq. (5-113). The fatigue strength reduction factor based on reliability
CR ¼ 1 0:08ðtR Þ
If a factor of safety n0 is to be specified together with reliability, then Eq. (5-112) is rewritten to give a new expression for tR
n0 n0 ffi¼ s tR ¼ psffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ^ ^2s þ ^2
ð5-115Þ
The expression for safety factor n0 from Eq. (5-115)
n0 ¼
qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 1 s tR ^2s þ ^2
ð5-116aÞ
1 ð tR ^Þ s
ð5-116bÞ
¼ The best-fitting straight line which fits a set of scattered data points as per linear regression
The equations for regression
The correlation coefficient
ð5-114Þ
where tR is also called the deviation multiplication factor (DMF), taken from Table 5-10.
y ¼ mx þ b
ð5-117Þ
where m is the slope and b is the intercept on the y axis P P P x y xy m¼ ð5-118aÞ Pn 2 P 2 x x n P P ym x ð5-118bÞ b¼ n r¼
msx sy
ð5-119Þ
where r lies between 1 and þ1. If r is negative, it indicates that the regression line has a negative slope. If r ¼ 1, there is a perfect correlation, and if r ¼ 0, there is no correlation.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
DESIGN OF MACHINE ELEMENTS FOR STRENGTH DESIGN OF MACHINE ELEMENTS FOR STRENGTH
The equation for frequency or density function according to Weibull
f ðxÞ ¼
b x0
x x0 x0
b 1
5.25
x x0 b exp x0 ð5-120Þ
The cumulative distribution function
FðxÞ ¼
ðx x0
x x0 b f ðxÞ dx ¼ 1 exp x0 ð5-121Þ
b x FðxÞ ¼ 1 exp
Equation (5-121) after simplification
ð5-122Þ
REFERENCES 1. Maleev, V. L., and J. B. Hartman, Machine Design, International Textbook Company, Scranton, Pennsylvania, 1954. 2. Shigley, J. E., and L. D. Mitchell, Mechanical Engineering Design, McGraw-Hill Book Company, New York, 1983. 3. Faires, V. M., Design of Machine Elements, The Macmillan Company, New York, 1965. 4. Lingaiah, K., and B. R. Narayana Iyengar, Machine Design Data Handbook, Engineering Co-operative Society, Bangalore, India, Bangalore, India, 1962. 5. Lingaiah, K., and B. R. Narayana Iyengar, Machine Design Data Handbook, Vol. I (SI and Customary Units), Suma Publishers, Bangalore, India, 1986. 6. Lingaiah, K., Machine Design Data Handbook, Vol. II (SI and Customary Metric Units), Suma Publishers, Bangalore, India, 1986. 7. Juvinall, R. C., Fundamentals of Machine Component Design, John Wiley and Sons, New York, 1983. 8. Deutschman, A. D., W. J. Michels, and C. E. Wilson, Machine Design—Theory and Practice, Macmillan Publishing Company, New York, 1975. 9. Edwards, Jr., K. S., and R. B. McKee, Fundamentals of Mechanical Component Design, McGraw-Hill Publishing Company, New York, 1991. 10. Norton, R. L., Machine Design—An Integrated Approach, Prentice Hall International, Inc., Upper Saddle River, New Jersey, 1996. 11. Lingaiah, K. Machine Design Data Handbook, McGraw-Hill Publishing Company, New York, 1994. 12. Metals Handbook, American Society for Metals, Vol. 10, 8th edition, p. 102, Metals Park, Ohio, 1975.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
Source: MACHINE DESIGN DATABOOK
CHAPTER
6 CAMS SYMBOLS3;4 a A Ac b B ao ¼ o þ i d dh Do E1 , E2 f f ðÞ F F Fn Ft h Ki , Ko L n N1 , N2 r Rc Ro Rp Rr R, S S S1 v w
radius of circular area of contact, m (in) acceleration of the follower, m/s2 (in/s2 ) follower overhang, m (in) arc of pitch circle, m (in) half the band of width of contact, m (in) follower bearing length, m (in) distance between centers of rotation, m (in) diameter of shaft, m (in) hub diameter, m (in) minimum diameter of the pitch surface of cam, m (in) moduli of elasticity of the materials which are in contact, GPa (Mpsi) cam factor, dimensionless the desired motion of follower, as a function of cam angle applied load, kN (lbf ) total external load on follower (includes weight, spring force, inertia, friction, etc.), kN (lbf ) force normal to cam profile (Fig. 6-6), kN (lbf ) side thrust, kN (lbf ) depth to the point of maximum shear, m (in) constants for input and output cams, respectively length of cylinder in contact, m (in) total distance through which the follower is to rise, m (in) cam speed, rpm forces normal to follower stem, kN (lbf ) radius of follower, m (in) radius of the circular arc, m (in) minimum radius of the pitch surface of the cam, m (in) pitch circle radius, m (in) radius of the roller, m (in) functions of i and o , in basic spiral contour cams displacement of the follower corresponding to any cam angle , m (in) initial compression spring force with weight w, at zero position, kN (lbf ) velocity of the follower, m/s (in/s) equivalent weight at follower ends, kN (lbf )
6.1 Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
CAMS
6.2
CHAPTER SIX
cartesian coordinates of any point on the cam surface actual lift at follower end, m (in) rise of cam, m (in) radius of curvature of the pitch curve, m (in) radii of curvature of the contact surfaces, m (in) pressure angle, deg maximum pressure angle, deg angle through which cam is to rotate to effect the rise L, rad cam angle corresponding to the follower displacement S, rad angle rotated by the output-driven member, deg angle rotated by the input driver, deg angular velocity of cam, rad/s coefficient of friction between follower stem and its guide bearing Poisson’s ratios for the materials of contact surfaces maximum compressive stress, MPa (kpsi) shear stress, MPa (kpsi)
x, y y yc 1 , 2 m o i ! 1 , 2 c;max
Particular
Cam factor
Formula
Ac L
ð6-1Þ
The length of arc of the pitch circle
Ac ¼ Rp
ð6-2Þ
The pitch circle radius
Rp ¼
f ¼
fL
ð6-3Þ
The displacement of the center of the follower from the center of cam (Fig. 6-1)
R ¼ Ro þ f ðÞ
ð6-4Þ
For pointed cam, the radius of curvature of the pitch curve to roller follower
¼ Rr
ð6-5Þ
For roller follower, the radius of curvature of the pitch curve must always be greater than the roller radius to prevent points or undercuts
> Rr
ð6-6Þ
The radius of curvature for concave pitch curve
¼
RADIUS OF CURVATURE OF DISK CAM WITH ROLLER FOLLOWER
fR2 þ ½ f 0 ðÞ2 g3=2 R þ 2½ f 0 ðÞ2 R½ f 00 ðÞ 2
ð6-7Þ
where R ¼ Ro þ f ðÞ; The minimum radius of curvature
min ¼
dR ¼ f 0 ðÞ; d
d 2R ¼ f 00 ðÞ d2
R2o Ro f 00 ðÞo
where f 00 ðÞo is the acceleration at ¼ 0
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð6-7aÞ ð6-8Þ
CAMS CAMS
Particular
The minimum radius of curvature of the cam curve c
6.3
Formula
c;min ¼ min Rr
ð6-9Þ
FIGURE 6-1
The radius of curvature for convex pitch curve (Fig. 6-2) The minimum radius of a mushroom cam for harmonic motion The minimum radius of a mushroom cam for uniformly accelerated and retarded motion For cast-iron cam, the hub diameter
fR2 þ ½ f 0 ðÞ2 g3=2 R þ 2½ f 0 ðÞ2 R½ f 00 ðÞ 16200 1 L Ro ¼ 2 13131 1 L Ro ¼ 2 2
ð6-11Þ
dh ¼ 1:75d þ 13:75 mm ð1:75d þ 0:55 inÞ
ð6-13Þ
¼
2
ð6-10Þ
ð6-12Þ
Plate cam design radius of curvature: For cycloidal motion
Refer to Fig. 6-10.
For harmonic motion
Refer to Fig. 6-11.
For eight-power polynomial motion
Refer to Fig. 6-12.
RADIUS OF CURVATURE OF DISK CAM WITH FLAT-FACED FOLLOWER The displacement of the follower from the origin (Fig. 6-2)
R ¼ a þ f ðÞ
The parametric equations of the cam contour (Fig. 6-2)
x ¼ ½a þ f ðÞ cos f 0 ðÞ sin
ð6-15aÞ
y ¼ ½a þ f ðÞ sin þ f 0 ðÞ cos
ð6-15bÞ
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð6-14Þ
CAMS
6.4
CHAPTER SIX
Particular
Formula
The cam contour given by equations will be free of cusps if
a þ f ðÞ þ f 00 ðÞ > 0
ð6-16Þ
Half of the minimum length of the flat-faced follower or the minimum length of contact of the follower
b ¼ f 0 ðÞ
ð6-17Þ
FIGURE 6-2 (Courtesy of H. H. Mabie and F. W. Ocvivk, Dynamics of Machinery, John Wiley and Sons, 1957.)
PRESSURE ANGLE (Figs. 6-3 and 6-4) The pressure angle for roller follower
¼ tan1
The pressure angle for a plate cam or any cylindrical cam giving uniform velocity to the follower
tan ¼
The pressure angle for a plate cam giving uniformly accelerated and retarded motion to the follower
tan ¼
1 dR R d
360L 360L ¼ 2 Ro Do
360 2L when L > Do ðDo þ LÞ sffiffiffiffiffiffi 180 2 L when L > Do ¼ Do
ð6-18Þ ð6-19Þ ð6-20aÞ ð6-20bÞ
A precise pressure angle equation for a plate cam giving harmonic motion to the follower or a tangential cam
90L tan ¼ pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi R2o þ Ro L
For measuring maximum pressure angle of a parabolic cam with radially moving roller follower
Refer to Fig. 6-3 for nomogram of parabolic cam with radially moving follower
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð6-21Þ
CAMS CAMS
6.5
FIGURE 6-3 Nomogram for parabolic cam with radially moving follower. Source: Rudolph Gruenberg, ‘‘Nomogram for Parabolic Cam with Radially Moving Follower,’’ in Douglas C. Greenwood, Editor, Engineering Data for Product Design, McGraw-Hill Book Company, New York, 1961.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
CAMS
6.6
CHAPTER SIX
Particular
Formula
FIGURE 6-4 Nomogram to determine maximum pressure angle. (Courtesy of E. C. Varnum, Barber-Coleman Co.) Reproduced with permission from Machine Design, Cleveland, Ohio.
RADIAL CAM-TRANSLATING ROLLERFOLLOWER-FORCE ANALYSIS (Fig. 6-5) The forces normal to follower stem (Fig. 6-5)
FR ¼
lr F sin lg n
lr þ lg Fn sin lg " # 2lr þ lg F ¼ Fn cos sin lg
FL ¼ The total external load
F 2lr þ lg sin cos lg
The force normal to the cam profile
Fn ¼
The maximum pressure angle for locking the follower in its guide
m ¼ tan1
lg ð2lr þ lg Þ
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð6-22Þ ð6-23Þ ð6-24Þ ð6-25Þ
ð6-26Þ
CAMS CAMS
Particular
6.7
Formula
FIGURE 6-5 Radial cam-translating roller-follower force analysis.
SIDE THRUST (Fig. 6-5) The side thrust produced on the follower bearing
Fi ¼ F tan
ð6-27Þ
ao d 1þ o di do ao di i ¼ d 1þ o di
ð6-28Þ
BASIC SPIRAL CONTOUR CAM The radius to point of contact at angle o (Fig. 6-6) The radius to point of contact at angle i (Fig. 6-6)
o ¼
FIGURE 6-6 Basic spiral contour cam.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð6-29Þ
CAMS
6.8
CHAPTER SIX
Particular
Formula
BASIC SPIRAL CONTOUR CAM CONSTANTS The radius to point of contact at angle o
The radius to point of contact at angle i
ao Ko dS 1þ Ki dR K dS ao o Ki dR i ¼ K dS 1þ o Ki dR
o ¼
where R ¼ For characteristic curves of cycloidal, harmonic, and eight-power polynomial motions
ð6-30Þ
ð6-31Þ
i d d ; S ¼ o ; i ¼ ki ; and o ¼ ko : Ki Ko dR dS
Refer to Figs. 6-7 to 6-12
HERTZ CONTACT STRESSES Contact of sphere on sphere The radius of circular area of contact
The maximum compressive stress
vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi #ffi u " 2 2 u 1 v 1 v 1 2 u3F þ u E1 E2 u a ¼ 3u t 1 1 þ 4 1 2 c;max ¼
3F 2 a2
ð6-32Þ
ð6-33Þ
Contact of cylindrical surface on cylindrical surface Width of band of contact
The maximum compressive stress
vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi " u # u 1 v21 1 v21 u16F þ u E1 E2 u 2b ¼ u t 1 1 þ L 1 2 2F bL vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ffi u u0:35F 1 þ 1 u u 1 2 ¼u t 1 1 þ L E1 E2
ð6-34Þ
c;max ¼
ð6-35Þ
c;max
ð6-36Þ
The maximum compressive stress for 1 ¼ 2 ¼ 0:3
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
CAMS CAMS
6.9
FIGURE 6-7 Cycloidal motion characteristics. S ¼ displacement, inches; V ¼ velocity, inches per degree; A ¼ acceleration, inches per degree2 . (From ‘‘Plate Cam Design—with Emphasis on Dynamic Effects,’’ by M. Kloomok and R. V. Muffley, Product Eng., February 1955.) Reproduced with permission from Machine Design, Cleveland, Ohio.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
CAMS
6.10
CHAPTER SIX
FIGURE 6-8 Harmonic motion characteristics. S ¼ displacement, inches; V ¼ velocity, inches per degree; A ¼ acceleration, inches per degree2 . (From ‘‘Plate Cam Design—with Emphasis on Dynamic Effects,’’ by M. Kloomok and R. V. Muffley, Product Eng., February 1955.) Reproduced with permission from Machine Design, Cleveland, Ohio.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
CAMS CAMS
6.11
FIGURE 6-9 Eighth-power polynomial motion characteristics. S ¼ displacement, inches; V ¼ velocity, inches per degree; A ¼ acceleration, inches per degree2 . (From ‘‘Plate Cam Design—with Emphasis on Dynamic Effects,’’ by M. Kloomok and R. V. Muffley, Product Eng., February 1955.) Reproduced with permission from Machine Design, Cleveland, Ohio.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
CAMS
6.12
CHAPTER SIX
FIGURE 6-10 Cycloidal motion. (From ‘‘Plate Cam Design—Radius of Curvature,’’ by M. Kloomok and R. V. Muffley, Product Eng., September 1955.) Reproduced with permission from Machine Design, Cleveland, Ohio.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
CAMS CAMS
6.13
FIGURE 6-11 Harmonic motion. (From ‘‘Plate Cam Design—Radius of Curvature,’’ by M. Kloomok and R. V. Muffley, Product Eng., September 1955.) Reproduced with permission from Machine Design, Cleveland, Ohio.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
CAMS
6.14
CHAPTER SIX
FIGURE 6-12 Eighth-power polynomial motion. (From ‘‘Plate Cam Design—Radius of Curvature,’’ by M. Kloomok and R. V. Muffley, Product Eng., September 1955.) Reproduced with permission from Machine Design, Cleveland, Ohio.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
CAMS CAMS
Particular
6.15
Formula
TABLE 6-1 Cam factors for basic curves Types of motion Pressure angle , deg
Uniform
Modified uniform
Simple harmonic
Parabolic and cycloidal
10 15 20 25 30 35 40 45
5.67 3.73 2.75 2.14 1.73 1.43 1.19 1.00
5.84 3.99 3.10 2.58 2.27 2.06 1.92 1.82
8.91 5.85 4.32 3.36 2.72 2.24 1.87 1.57
11.34 7.46 5.50 4.28 3.46 2.86 2.38 2.00
The maximum shear stress
max ¼ 0:295c;max
ð6-37Þ
The depth to the point of maximum shear
h ¼ 0:786b
ð6-38Þ
For further data on characteristic equations of basic curves, different motion characteristics, cam factors, materials for cams and followers, and displacement ratios
Refer to Tables 6-1 and Figures 6-7, 6-8 and 6-9. For materials of cams refer to Chapter 1 on ‘‘Properties of Engineering Materials.’’
REFERENCES 1. Rothbart, H. A., Cams, John Wiley and Sons, New York, 1956. 2. Marks, L. S., Mechanical Engineers’ Handbook, McGraw-Hill Book Company, New York, 1951. 3. Lingaiah, K., and B. R. Narayana Iyengar, Machine Design Data Handbook, Engineering College Co-operative Society, Bangalore, India, 1962. 4. Lingaiah, K., Machine Design Data Handbook, Vol. II (SI and Customary Metric Units), Suma Publishers, Bangalore, India, 1986. 5. Rothbart, H. A., Mechanical Design and Systems Handbook, McGraw-Hill Book Company, New York, 1964. 6. Shigley, J. E., Theory of Machines, McGraw-Hill Book Company, New York, 1961. 7. Mabie, H. H., and F. W. Ocvirk, Mechanisms and Dynamics of Machinery, John Wiley and Sons, New York, 1957. 8. Kent, R. T., Mechanical Engineers’ Handbook—Design and Production, Vol. II. John Wiley and Sons, New York, 1961. 9. Klcomok, M., and R. V. Muffley, ‘‘Plate Cam Design—with Emphasis on Dynamic Effects,’’ Product Eng., February 1955. 10. Klcomok, M., and R. V. Muffley, ‘‘Plate Cam Design—Radius of Curvature,’’ Product Eng., February 1955. 11. Varnum, E. C., ‘‘Circular Nomogram—Theory and Practice Construction Technique,’’ Barber-Coleman Co., Product Eng. 12. Gruenberg, R., ‘‘Nomogram for Parabolic Cam with Radially Moving Follower,’’, in Douglas C. Greenwood, Editor, Engineering Data for Product Design, McGraw-Hill Book Company, New York, 1996.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
Source: MACHINE DESIGN DATABOOK
CHAPTER
7 PIPES, TUBES, AND CYLINDERS SYMBOLS5;6;9 d dc di do e E h or t I K L p pc pcr pi po ri c r rðmaxÞ sa su ðmaxÞ max
diameter of cylinder, m (in) diameter of contact surface in compound cylinder, m (in) inside diameter of cylinder or pipe or tube, m (in) outside diameter of cylinder or pipe or tube, m (in) factor for expanded tube ends modulus of elasticity, GPa (Mpsi) thickness of cylinder or pipe or tube, m (in) moment of inertia, area, m4 or cm4 (in4 ) constant maximum distance between supports or stiffening rings, m (in) maximum allowable working pressure, MPa (psi) unit pressure between the compound cylinders, MPa (psi) collapsing pressure, MPa (psi) internal pressure, MPa (psi) external pressure, MPa (psi) inside radius of tube or pipe, m (in) permissible working stress, from Table 7-1, MPa (psi) crushing stress, MPa (psi) radial stress (also with primes), MPa (psi) maximum radial stress, MPa (psi) maximum allowable stress value at design condition, MPa (psi) ultimate strength, MPa (psi) tangential stress (also with primes), MPa (psi) maximum tangential stress, MPa (psi) maximum shear stress, MPa (psi) Poisson’s ratio efficiency, from Table 7-4
Note: The initial subscript s, along with , which stands for strength, is used throughout this book.
7.1 Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
PIPES, TUBES, AND CYLINDERS
7.2
CHAPTER SEVEN
Particular
Formula
LONG THIN TUBES WITH INTERNAL PRESSURE The permissible steam pressure in steel and iron pipes (Table 7-1) according to ASME Power Boiler Code
p¼
2sa ðh 1:625 103 Þ 0:9 do
SI ð7-1aÞ
where h, do in m, and p and in MPa. p¼
2sa ðh 0:065Þ 125 do
USCS
ð7-1bÞ
where h, do in in, and p and in psi. For tubes from 6.35 mm (0.25 in) to 127 mm (5 in) nominal diameter p¼
2sa ðh 2:54 103 Þ do
SI ð7-2aÞ
where h, do in m, and p and in MPa. p¼
2sa ðh 0:1Þ do
USCS
ð7-2bÞ
where h, do in in, and p and in psi. For over 127 mm (5 in) diameter The minimum required thickness of ferrous tube up to and including 125 mm (5 in) outside diameter subjected to internal pressure as per ASME Power Boiler Code
The maximum allowable working pressure (MAWP) from Eq. (7-3) as per ASME Power Boiler Code
h¼
pdo þ 0:005do þ e 2sa þ p
ð7-3Þ
where sa is the maximum allowable stress value at design condition and e is the thickness factor for expanded tube ends. Refer to Table 7-1 for sa . Refer to table 7-2 for e. 2h 0:01do 2e p ¼ sa do ðh 0:005do eÞ ¼ sa
2h 0:01do 2e 1:005d0 h þ e
For maximum allowable working pressure
Refer to Table 9-1.
The minimum required thickness of ferrous pipe under internal pressure as per ASME Power Boiler Code
h¼
or
ð7-4Þ
pdo pri þC ¼ þC 2sa þ 2yp sa ð1 yÞp
ð7-5Þ
where ¼ efficiency (refer to Table 7-4 for ) y ¼ temperature coefficient (refer to Table 7-3 for y) C ¼ minimum allowance for the threading and structural stability, mm (in) (refer to Table 7-5 for h values and Table 7-6 for C values).
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
2
1
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
S31500 S31500
TP410 TP405 TpxM-8 TpxM-8 18Cr-2Mo 18Cr-2Mo TP304L TP304H, TP304 TP304N TP304N TP316L TP316L TP316H XM-15 XM-15 TP316N TP316N XM-29 TP321 TP321H FP347H TP348 TP348H, TP347H S30815
T1 T12 Fp11 T1
Low Alloy Steel: SA-209g SA-213 SA-369 SA-250
(B) High Alloy Steels SA-268 SA-268 SA-268 SA-268 SA-268 SA-268 SA-249. SA-312 SA-213, SA-312 SA-213, SA-312 SA-249, SA-312 SA-213, SA-312 SA-312, SA-688 SA-452 SA-312 SA-213 SA-213 SA-312 SA-312, SA-688 SA-213, SA-312 SA-249, SA-312 SA-430 SA-213 SA-249, SA-312 SA-213, SA-312 SA-789, SA-790 SA-789, SA-790 SA-789, SA-790, SA-669 SA-789, SA-790
C C
SA-210 SA-557b,f
c
(A) Carbon and Low Alloy Steels Carbon Steel: SA-106c A
Grade, alloy designation and temper
Specification number
S4 1 000 S40500 S43035 S43035 S44400 S44400 S30403 S30409, S30400 S30451 S30451 S31603 S31603 S31609 S31800 S38100 S31651 S3i651 S24000 S32100 S32109 S34700 S34800 S34809, S34709 S30815 S32550 S32550 S31500 S31500
3
UNS number
13Cr 12Cr-1Al 18Cr-Ti 18Cr-Ti 18Cr-2Mo 18Cr-2Mo 18Cr-8Ni 18Cr-8Ni 18Cr-8Ni-N 18Cr-8Ni-N 16Cr-12Ni-2Mo 16Cr-12Ni-2Mo 16Cr-12Ni-2Mo 18Cr-18Ni-2Si 18Cr-18Ni-2Si 16Cr-12Ni-2Mo-N 16Cr-12Ni-2Mo-N 18Cr-3Ni-12Mn 18Cr-10Ni-Ti 18Cr-10Ni-Ti 18Cr-10Ni-Cb 18Cr-10Ni-Cb 18Cr-10Ni-Cb 21Cr-11Ni-N 25.5Cr-5.5Ni-3.5Mo-Cu 25.5Cr-5.5Ni-3.5Mo-Cu 18Cr-5Ni-3Mo 18Cr-5N-3Mo
1Cr-12Mo 114Cr-12Mo-Si C-12Mo*
C-Mn-Si C-Mn
C-si
4
Nominal composition and size, mm (in)
Smls.Tb Wld.Tbf Wld.Tbd;f Smls.Tbd;f Wld.Tbd;f Smls.Tbd;f Wld.Tbf & Pp Smls.Tbg,h & Pp Smls.Tb & Ppg,h Wld.Th & Ppf,g,h Smls.Tb & Pp Wld.P & Tbf Cast. Ppg Wld.Tbf,g Smls.Tbg Smls.Tbg,h Wld.Ppf,g,h Wld.Ppf & Tb Smls.Tbg,h & Pp Wld.Tb & Ppf Smls.Ppg Smls.Tbg,h Wld.Tb & Ppf,g Smls.Tb & Ppf Smls.Tb & Ppd Wld.Tb & Ppd Smls.Tbd,f Wld.Tbd,f
Smls.Tb Smls.Tb Smls.Pp Wld Pp & Tb
Smls.Tb** Smls.Tb
Smls† .Pp*
5
Product form
TABLE 7-1 Maximum allowable stress values in tension of metals for tubes and pipes, sa
207 207 207 207 276 276 172 207 241 241 172 172 207 207 207 241 241 379 207 207 207 207 207 310 552 552 441 441
207 207 207 207
276 276
207
6
MPa
30 30 30 30 40 40 25 30 35 35 25 25 30 30 30 35 35 55 30 30 30 30 30 45 80 80 64 64
30 30 30 30
40 40
30
7
kpsi
Specified minimum yield strength, sy
414 414 414 414 414 414 483 517 552 552 483 483 517 517 517 552 552 689 517 517 483 517 517 600 758 758 634 634
379 414 414 379
483 483
331
8
MPa
48
60 60 60 60 60 60 70 75 80 80 70 70 75 75 75 80 80 100 75 75 70 75 75 87 110 110 92 92
55 60 60 55
70 70
9
kpsi
Specified minimum tensile strength, st
103 88 88 103 88 103 92 130 138 117 108 92 130 110 130 138 117 146 130 110 130 130 110 150 190 161 159 135
10
MPa
15.0 12.8 12.8 15.0 12.8 15.0 13.3 18.8 20.0 17.0 15.7 13.3 18.8 15.9 18.8 20.0 17.0 21.2 18.8 16.0 18.8 18.8 16.0 21.8 27.5 23.4 23.0 19.6
11
kpsi
38 (100)
99 84 84 98 84 99 78 123 138 117 92 78 130 104 122 138 117 143 127 93 123 123 105 149 189 161 153 130
12
MPa
14.3 12.2 12.) 14.3 12.2 14.3 11.4 17.8 131 17.0 13.3 11.3 18.8 15.1 17.7 20.0 17.0 20.8 18.4 13.5 17.9 17.9 15.2 21.6 27.4 23.3 22.2 18.9
13
kpsi
93 (200)
95 81 81 95 81 95 70 115 20.0 111 82 70 127 97 115 132 112 132 119 83 113 113 97 141 177 151 147 125
14
MPa
13.8 11.8 11.8 13.8 11.8 13.8 10.2 16.6 19.0 16.1 11.9 10.1 18.4 14.1 16.6 19.2 16.3 19.2 17.3 12.1. 16.4 16.4 14.0 20.4 25.7 21.9 21.3 18.1
15
kpsi
150 (300)
92 78 78 92 78 92 64 112 126 108 75 63 125 95 111 130 110 119 118 76 107 107 91 135 170 145 146 124
16
MPa
13.3 11.3 11.3 13.3 11.3 13.3 9.3 16.2 18.3 15.6 10.8 9.2 18.1 13.7 16.1 18.8 16.0 17.3 17.1 11.0 15.5 15.3 13.2 19.6 24.7 21.0 21.2 18.0
17
kpsi
205 (400)
Maximum allowable stress, sa
89 75 75 89 75 88 60 110 123 104 69 59 124 93 110 128 109 110 118 70 103 103 88 127 170 145 146 124
18
MPa
12.9 10.9 10.9 12.9 10.9 12.8 8.7 15.9 17.8 15.1 10.0 8.5 18.0 13.5 15.9 18.6 15.8 16.0 17.1 10.2 14.9 14,9 12.7 18.4 24.7 21.0 21.2 18.0
19
kpsi
260 (500)
PIPES, TUBES, AND CYLINDERS
7.3
21
20
22
MPa
23
kpsi
370 (700)
7.4
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
21.2 18.0
146 124
146 124
53 105 115 98 59 50 110 89 104 127 108 97 107 63 101 101 86 116
8.0 15.9 17.1 14.6 9.0 7.6 16.3 13.5 15.9 18.6 15.8 14.7 15.8 9.3 14.7 14.7 12.5 17.3
21.2 18.0
65 65
93 99 93 84 77
10.3 10.3
13.8 15.0 14.2 12.8 12.1
64 83 70
24
MPa
(B) High Alloy Steels 73 10.6 71 73 10.6 71 86 12.4 72 10.5 86 12.4 57 8.3 55 110 15.9 110 120 17.4 118 102 14.8 101 51 7.4 62 55 8.0 52 117 17.0 112 93 13.5 93 110 15.9 110 128 18.6 128 109 15.8 109 106 15.4 101 112 16.4 109 67 9.7 64 101 14.7 101 101 14.7 101 86 12.5 86 122 17.7 119
95 103
Low Alloy Steels 13.8 95 15.0 103 98 88 12.8 88 86 12.4 83
(A) Carbon and Low Alloy Steels Carbon Steel: 83 12.0 81 11.7 121 17.5 115 16.6 103 15.0 97 14.1
kpsi
MPa
315 (600)
7.7 15.2 16.6 14.2 8.6 7.3 15.9 12.9 15.1 18.4 15.6 14.1 15.5 9.2 14.7 14.7 12.5 16.8
9.4 9.4
13.5 14.4 13.5 12.2 11.1
9.3 12.0 10.2
25
kpsi
427 (800)
14.7 15.9 13.5
15.5 12.4 14.6 18.1 15.4 15.3 9.0 14.7 14.7 12.5 16.3
107 85 101 125 106 106 62 101 101 86 112
8.2
12.7 11.0 12.5 11.0 9.7
6.5 5.0 5.5
27
kpsi
101 110 93
57
86 76 86 76 67
45 35 38
26
MPa
482 (900)
13.8 8.9 14.4 14.0 12.3 14.9
13.7 17.4 14.8
95 120 102 95 61 99 97 84 103
15.3
13.8 15.0 12.7
3.4
4.8 5.5 6.2 4.1 6.4
2.5 1.5 2.1
29
kpsi
106
95 103 86
23
33 38 48 98 44
17 10 15
28
MPa
538 (1000)
48 52 90 63 76 62
85 72
85
6.9 7.5 13.0 9.1 11.1 9.0
12.4 10.5
12.4
9.8 9.7 8.3
2.9
20
68 67 57
4.0 2.6
31
kpsi
27 18
30
MPa
593 (1100)
24 32 55 30 46 36
51 43
51
42 41 35
7
8 7
32
MPa
3.6 4.6 7.9 4.4 6.7 5,2
7.4 6.3
7.4
6.1 6.0 5.1
1.0
1.2 1.0
33
kpsi
650 (1200)
for metal temperature, 8C (8F), not exceeding
TABLE 7-1 Maximum allowable stress values in tension of metals for tubes and pipes, sa (Cont.)
12 19 30 15 25 21
28
25
34
MPa
1.7 2.7 4.4 2.2 3.7 3.1
4.1
3.7
35
kpsi
704 (1300)
5 11 17 8 15 13
16
16
36
MPa
0.8 1.6 2.5 1.2 2.1 1.9
2.3
2.3
37
kpsi
760 (1400)
2 7 9 5 8 9
9
10
38
MPa
0.3 1.0 1.3 0.8 1.1 1.3
1.3
1.4
39
kpsi
815 (1500)
SA-268 SA-268 SA-268 SA-268 SA-268 SA-249, SA-312 SA-213, SA-312 SA-213, SA-312 SA-249, SA-312 SA-213, SA-312 SA-312, SA-688 SA-452 SA-312 SA-213 SA-213 SA-312 SA-312, SA-688 SA-213, SA-312 SA-249, SA-312 SA-430 SA-213 SA-249, SA-312 SA-312, SA-213 SA-789, SA-790 SA-789, SA-790 SA-789, SA-790, SA-669 SA-789, SA-790
SA-209g SA-213 SA-369 SA-250 SA-268
SA- 106c SA-210c SA-557b,f
40
Specification number
PIPES, TUBES, AND CYLINDERS
2
Specification number
1
e
SB-234
C700-Ann LCW***
p
C71500 Ann
Nickel and High Nickel Alloys: SB-161 201 Ann SB-163 800H Annk SB-163 825 Annk SB-144 625 Annp SB-468 20 cb.Wld. Annk,p SB-619 C-276 Sol. Annp SB-619 G. Sol. Annk,p
SB-543
SB-467
pp
C71500 Ann
SB-466
p
655. Ann
SB-315
g
192 Ann
SB-1 1 1
Copper and Copper Alloys: SB-111 102, 120, 122, 142i
6061-T6
3003-H25
SB-234
e
3003-H118 5083-H111d,p 1060-H14e
SB-241 SB-241 SB-234
e
6061-T6
SB-210
e
(C) Non-ferrous Metals Aluminum and Aluminum Alloys: SB-210 1060-1114d
Grade, alloy designation and temper
N02201 N08810 N08825 N06625 N08020 N10276 N06007
3
UNS number
Ni Low C Ni-Fe-Cr Ni-Fe-Cr-Mo-Cu Ni-Cr-Mo-Cb Cr-Ni-Fe-Mo-Cu-Cb Ni-Mo-Cr (All sizes) Ni-Cr-Fe-Mo-Cu (All sizes)
(Up to 112.5 incl) (up to 412 incl)
Ann LD‡ HD**
Up to 125 (up to 5.00) 0.250–12.50 (0.010–0.5000) 0.625–6.225 (0.025–0.249)
0.250–12.500 (0.010–0.500) 0.625–12.50 (0.025–0.50) Under 25 (under 1)
4
Nominal composition and size, mm (in)
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website. Pp & Tb Pp & Tb Pp & Tb
Pp & Tb Pp & Tb Pp & Tb
Wld.Cu-Ni-90/10Tb
Smls. Copper, iron alloy condenser Tb Smls. Cu-Si Alloy Pp and Th Smls. Cu-Ni 70/30 Pp & Tb. Wld. Cu-Ni-70/30 Pp
Smls. Copper condenser, Tb.
Smls.Pp Smls. extruded Tb Condenser and heat exchanger Tb Condenser and heat exchanger Tb Condenser and heat exchanger Tb
Smls.Tb
Drawn
5
Product form
69
69 172 241 414 241 283 242
103 241
138
124
103
62 207 276 83
241
131
165 131 69
241
6
MPa
10 25 35 60 35 41 35
15 35
20
18
15
9 30 40 12
35
19
24 19 10
35
10
7
kpsi
Specified minimum yield strength, sy
TABLE 7-1 Maximum allowable stress values in tension of metals for tubes and pipes, sa (Cont.)
83
345 448 586 827 552 689 620
270 310
345
345
345
207 248 310 262
290
145
186 228 83
290
8
MPa
50 65 85 120 80 100 90
40 45
50
50
50
30 36 45 38
42
21
27 33 12
42
12
9
kpsi
Specified minimum tensile strength, st
46 112 146 207 117 146 132
59 59
87
83
69
41 62 78 52
72
38
47 57 21
72
21
10
MPa
6.7 16.2 21.2 30.0 17.0 21.2 19.1
8.5 8.5
12.6
12.0
10.0
6.0 9.0 11.3 7.5
10.5
5.5
6.8 8.3 3.0
10.5
3.0
11
kpsi
38 (100)
44 112 146 207 117 146 132
56 56
61
78
69
33 62 78 46
72
38
46 57 21
72
21
12
MPa
6.4 16.2 21.2 30.0 17.0 21.2 19.1
8.1 8.1
8.9
11.3
10.0
4.8 9.0 11.3 6.7
10.5
5.5
6.7 8.3 3.0
10.5
3.0
13
kpsi
93 (200)
43 112 146 207 115 146 132
52 52
61
75
69
32 60 78 42
58
30
37 38 18
58
18
14
MPa
6.3 16.2 21.2 30.0 16.8 21.2 19.1
7.6 7.6
8.8
10.8
10.0
4.7 8.7 11.3 6.1
8.4
4.3
5.4 5.5 2.6
8.4
2.6
15
kpsi
150 (300)
43 112 146 194 110 143 128
50 50
61
71
35
21 57 30
31
17
17 21 8
31
8
16
6.2 16.2 21.2 28.2 15.9 20.7 18.6
7.2 7.2
8.8
10.3
5.0
3.0 8.2 4.3
4.5
2.4
2.5 3.0 1.2
4.5
1.2
17
kpsi
205 (400) MPa
Maximum allowable stress
43 110 146 186 107 140 126
43 43
61
68
18
MPa
6.2 16.0 21.2 27.0 15.5 20.3 18.3
6.3 6.3
8.8
9.9
19
kpsi
260 (500)
PIPES, TUBES, AND CYLINDERS
7.5
21
20
22
MPa
23
kpsi
370 (700)
Nickel and High Nickel 6.2 43 16.0 108 21.2 145 26.4 179 15.1 101 20.0 135 17.9 123
9.6 8.8 4.3 4.3
Alloy 6.2 15.7 21.0 26.0 14.7 19.6 17.8
41 105 143 179 99 134 120
24
MPa
5.9 15.3 20.8 26.0 14.3 19.4 17.4
25
kpsi
427 (800)
4.5 14.8 20.5 26.0 18.9 17.0
130 117
27
kpsi
31 102 141 179
26
MPa
482 (900)
128 111
21 99 36 179
28
MPa
18.5 16.1
3.0 14.4 19.7 26.0
29
kpsi
538 (1000)
12.7
26.0
179 88
2.0 11.6
31
kpsi
14 80
30
MPa
593 (1100)
57
91
8 51
32
MPa
8.3
13.2
1.2 7.4
33
kpsi
650 (1200)
32
34
MPa
4.7
35
kpsi
704 (1300)
21
36
MPa
3.0
37
kpsi
760 (1400)
13
38
MPa
1.9
39
kpsi
815 (1500)
SB-161 SB-163 SB-163 SB-444 SB-468 SB-619 SB-619
SB-111 SB-111 SB-315 SB-466 SB-467 SB-543
SB-210 SB-210 SB-241 SB-241 SB-234 SB-234 SB-234
40
Specification number
Source: The American Society of Mechanical Engineers, Boiler and Pressure Vessel Code, Section VIII, Division 1, July 1986. * Pp ¼ pipe; ** Tb ¼ tube; *** LCW ¼ light cold worked; Smls ¼ seamless; Wld ¼ welded; ‡ LD ¼ light drawn; HD ¼ hard drawn; Ann ¼ annealed; Soln Ann ¼ solution annealed. Notes: The superscript letters a, b, c, etc., refer to notes under each category of (A) Carbon and Low Alloy Steels, (B) High Alloy Steels, and (C) Non-ferrous Metals in Tables 8-9, 8-10, and 8-11 in Chapter 8.
43 110 146 182 104 138 123
67 61 30 30
Copper and Copper Alloys:
(C) Non-ferrous Metals Aluminum and Aluminum Alloys:
kpsi
MPa
315 (600)
for metal temperature, 8C (8F), not exceeding
TABLE 7-1 Maximum allowable stress values in tension of metals for tubes and pipes, sa (Cont.)
PIPES, TUBES, AND CYLINDERS
7.6
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
PIPES, TUBES, AND CYLINDERS PIPES, TUBES, AND CYLINDERS
7.7
TABLE 7-2 Thickness factor for expanded tube ends e for use in Eqs. (7-3) and (7-4) Particular
Value of e
Over a length at least equal to the length of the seat plus 25 mm (1 in) for tubes expanded into tube seats, except
0.04
For tubes expanded into tube seats provided the thickness of the tube ends over a length of the seat plus 25 mm (1 in) is not less than the following: 2.375 mm (0.095 in) for tubes 31.25 mm (1.25 in) OD 2.625 mm (0.105 in) for tubes >31.25 mm (1.25 in) OD and 50 mm (2 in) OD, including 3.000 mm (0.120 in) for tubes >50 mm (2 in) and 75 mm (3 in) OD, including 3.375 mm (0.135 in) for tubes >75 mm (3 in) OD and 100 mm (4 in) OD, including 3.75 mm (0.150 in) for tubes >100 mm (4 in) and 125 mm (5 in) OD, including
0
For tubes strength-welded to headers and drums
0
Source: ASME Boiler and Pressure Vessel Code, Section 1, 1983.
TABLE 7-3 Temperature coefficient y Temperature, 8C (8F)a
Material
482 (900)a
510 (950)
540 (1000)
565 (1050)
595 (1100)
620 (1150)
Ferrite steels
0.4
0.5
0.7
0.7
0.7
0.7
Austenitic steels
0.4
0.4
0.4
0.4
0.5
0.7
For nonferrous materials
0.4
0.4
0.4
0.4
0.4
0.4
a
Temperatures in parentheses are in Fahrenheit (8F). Values of y between temperatures not listed may be determined by interpolation. Source: ASME Boiler and Pressure Vessel Code, Section 1, 1983.
TABLE 7-4 Efficiency of joints, Particular
Efficiency,
Longitudinal welded joints or of ligaments between openings, whichever is lower Seamless cylinders
1.00
For welded joints provided all weld reinforcement on the longitudinal joints is removed substantially flush with the surface of the plate
1.00
For welded joints with the reinforcement on the longitudinal joints left in place
0.90
Riveted joints
Refer to Table 13-4 (Chap. 13)
Ligaments between openings
Refer to Eqs. under Ligament (Chap. 8)
Welded joint efficiency factor
Refer to Table 8-3 (Chap. 8)
Source: ASME Boiler and Pressure Vessel Code, Section 1, 1983.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
PIPES, TUBES, AND CYLINDERS
7.8
CHAPTER SEVEN
Particular
Formula
TABLE 7-5 The depth of thread h (formula h ¼ 0:8=i ) Number of threads per mm (in), i
Depth of thread, h mm (in)
0.32 (8) 0.46 (11.5)
2.5 (0.100) 1.715 (0.0686)
Source: ASME Boiler and Pressure Vessel Code, Section 1, 1983.
The maximum allowable working pressure from Eq. (7-5) as per ASME Power Boiler Code The minimum required thickness of nonferrous seamless tubes and pipes for outside diameters 12.5 mm (0.5 in) to 150 mm (6 in) inclusive and for wall thickness not less than 1.225 mm (0.049 in) as per ASME Power Boiler Code The maximum allowable working pressure as per ASME Power Boiler Code
p¼
2sa ðh CÞ sa ðh CÞ or p ¼ ð7-6Þ do 2yðh CÞ ri þ ð1 yÞðh CÞ
h¼
pdo þC 2sa
ð7-7Þ
Refer to Table 7-6 for values of C. p¼
2sa ðh CÞ do
ð7-8Þ ð7-9Þ
The minimum required thickness of tubes made of steel or wrought iron subjected to internal pressure which are used in watertube and firetube boilers as per ASME Power Boiler Code
h ¼ 0:0251do
The minimum required thickness of tubes made of nonferrous materials such as copper, red brass, admiralty and copper-nickel alloys used in watertube and firetube boilers with a design pressure over 207 kPa (30 psi) but not greater than 414 kPa (60 psi)
h¼
do þ 0:75 30
SI
ð7-10aÞ
h¼
do þ 0:03 30
USCS
ð7-10bÞ
The minimum required thickness of tubes made of nonferrous materials such as copper, red brass, admiralty and copper-nickel alloys used in steam boilers of less than 103 kPa (15 psi) and water boilers of less than 207 kPa (30 psi)
h¼
do þ 0:75 45
SI
ð7-11aÞ
h¼
do þ 0:03 45
USCS
ð7-11bÞ
The minimum required thickness of tubes when made of nonferrous materials but assembled with fittings, which are based on materials used, and based on whether the pressure is over 207 kPa (30 psi), but not in excess of 1013 kPa (160 psi) or whether the pressure does not exceed 207 kPa (30 psi)
h¼
do þ 0:75 except for copper ¼ 0:027 factor
The formula for permissible pressure in wrought-iron and steel tubes for watertube boilers according to ASME Power Boiler Code
SI ð7-12aÞ do h¼ þ 0:03 USCS ð7-12bÞ factor h 1 103 0:32 SI ð7-13aÞ p ¼ 125 do where h, do in m, and p in MPa. h 0:039 p ¼ 18000 250 USCS ð7-13bÞ do where h, do in in, and p in psi.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
PIPES, TUBES, AND CYLINDERS PIPES, TUBES, AND CYLINDERS
Particular
7.9
Formula
h 1 103 p ¼ 96:5 do
SI
where h, do in m, and p in MPa. h 0:039 USCS p ¼ 14000 do where h, do in in, and p in psi. h 1 103 p ¼ 73 do
SI
where h, do in m, and p in MPa. h 0:039 USCS p ¼ 10600 do
ð7-14aÞ
ð7-14bÞ
ð7-15aÞ
ð7-15bÞ
where h, do in in, and p in psi. Formula (7-13) applies to seamless tubes at all pressures, to welded steel tubes at pressure below 6 MPa (875 psi), and to lap-welded wrought-iron tubes at pressures below 2.5 MPa (358 psi). Formula (7-14) applies to welded steel tubes at pressures of 6 MPa (875 psi) and above. Formula (7-15) applies to lap-welded wrought-iron tubes at pressures of 2.5 MPa (358 psi) and above.
ENGINES AND PRESSURE CYLINDERS The wall thickness of engines and pressure cylinders
h¼
pdi þ 7:5 103 2sta
SI
ð7-16aÞ
where p, st in MPa, and di and h in m. h¼
pdi þ 0:3 2sta
USCS
ð7-16bÞ
where p, t in psi, and di and h in in. sta ¼ 9 MPa (1250 psi) for ordinary grades of cast iron.
OPENINGS IN CYLINDRICAL DRUMS The largest permissible diameter of opening according to D. S. Jacobus
p 3 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi do hð1:0 KÞ
SI
ð7-17aÞ
where do and h in m p 3 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi d ¼ 2:75 do hð1:0 KÞ
USCS
ð7:17bÞ
d 0 ¼ 0:81 0
where do and h in in.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
PIPES, TUBES, AND CYLINDERS
7.10
CHAPTER SEVEN
Particular
Formula
K¼
pdo 2h
5 su
USCS
ð7-17bÞ
The maximum diameter of the unreinforced hole should be limited to 0.203 m (8 in) and should not exceed 0:6do .
THIN TUBES WITH EXTERNAL PRESSURE Professor Carman’s formulas for the collapsing pressure for seamless steel tubes
3 h pcr ¼ 346120 do
SI
ð7-18aÞ
where h, do in m, and pcr in MPa. 3 h pcr ¼ 50200000 USCS ð7-18bÞ do h where h, do in in, and pcr in psi when < 0:025. d o h 1:50 SI ð7-19aÞ pcr ¼ 658:5 do where h, do in m, and pcr in MPa h 2090 USCS pcr ¼ 95520 do
Professor Carman’s formula for the collapsing pressure for lap-welded steel tubes
Professor Carman’s formula for the collapsing pressure for lap-welded brass tubes
where h, do in in, and pcr in psi h when > 0:03 do h 0:72 pcr ¼ 574 do
SI
ð7-19bÞ
ð7-20aÞ
where h, do in m, and pcr in MPa h 1025 USCS ð7-20bÞ pcr ¼ 83290 do h where h, do in in, and pcr in psi when > 0:03 d o 3 h SI ð7-21aÞ pcr ¼ 173385 do where h, do in m, and pcr in MPa 3 h USCS ð7-21bÞ pcr ¼ 25150000 do h where h, do in in, and pcr in psi when < 0:025 d o h 1:75 SI ð7-22aÞ pcr ¼ 644 do where h, do in m, and pcr in MPa
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
PIPES, TUBES, AND CYLINDERS PIPES, TUBES, AND CYLINDERS
Particular
Formula
h pcr ¼ 93365 2474 do
USCS
where h, do in in, and pcr in psi when
SHORT TUBES WITH EXTERNAL PRESSURES Sir William Fairbairn’s formula for collapsing pressure for length less than six diameters
7.11
ð7-22bÞ
h > 0:03 do
2:19 h pcr ¼ 66580 Ldo
SI
where h, L, do in m, and pcr in MPa 2:19 h pcr ¼ 9657600 USCS Ldo
ð7-23aÞ
ð7-23bÞ
where h, L, do in in, and pcr in psi Thickness of tubes, and pipes when used as tubes under external pressure as per Indian Standards
Refer to Fig. 7-1 to determine the standard thickness of tubes and pipes; see also Table 7-7.
FIGURE 7-1 Thickness of tubes and pipes under external pressure.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
PIPES, TUBES, AND CYLINDERS
7.12
CHAPTER SEVEN
TABLE 7-6 Values of C for use in Eqs. (7-5) to (7-8) Type of pipe
Value of C,b mm (in)
Threaded steel, wrought iron, or nonferrous pipea 19 mm (0.75 in), nominal and smaller 25 mm (1 in), nominal and larger
1.625 (0.065) Depth of thread hc
Plain-end d steel, wrought iron, or nonferrous pipe 87.5 mm (3.5 in), nominal and smaller 100 mm (4 in), nominal and larger
1.625 (0.065) 0
a
Steel, wrought iron, or nonferrous pipe lighter than schedule 40 of the American National Standard for wrought iron and steel pipe, ANSI B36.10-1970, shall not be threaded. b The values of C stipulated above are such that the actual stress due to internal pressure in the wall of the pipe is no greater than the value of S (i.e. sa ) given in Table PG 23.1 of ASME Power Boiler Code as applicable in the formulas. c The depth of thread h in inches may be determined from the formula h ¼ 0:8=i, where i is the number of threads per inch or from Table 7-5. d Plain-end pipe includes pipe joined by flared compression coupling, lap (Van Stone) joints, and by welding, i.e., by any method which does not reduce the wall thickness of pipe at the joint. Source: ASME Boiler and Pressure Vessel Code, Section 1, 1983.
Particular
Formula
LAME´’S EQUATIONS FOR THICK CYLINDERS General equations The tangential stress in the cylinder wall at radius r when subjected to internal and external pressures
¼
pi di2 po do2 di2 do2 ð pi po Þ þ 2 2 do2 di2 4r ðdo di2 Þ
¼aþ The radial stress in the cylinder at radius r when subjected to internal and external pressures
r ¼
b r2
pi di2 po do2 di2 do2 ð pi po Þ 2 2 4r ðdo di2 Þ do2 di2
ð7-24aÞ ð7-24bÞ ð7-25aÞ
b r2
ð7-25bÞ
a¼
pi di2 po do2 do2 di2
ð7-25cÞ
b¼
di2 do2 ð pi po Þ 4ðdo2 di2 Þ
ð7-25dÞ
¼a where
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
PIPES, TUBES, AND CYLINDERS PIPES, TUBES, AND CYLINDERS
Particular
7.13
Formula
Cylinder under internal pressure only The tangential stress in the cylinder wall at radius r
The radial stress in the cylinder wall at radius r
pi di2 do2 ¼ 2 1þ 2 do di2 4r
ð7-26Þ
pi di2 do2 1 do2 di2 4r2
ð7-27Þ
pi ðdi2 þ do2 Þ do2 di2
ð7-28Þ
r ¼
The maximum tangential stress at the inner surface of the cylinder at r ¼ di =2
ðmaxÞ ¼
The maximum radial stress
rðmaxÞ ¼ pi
The maximum shear stress at the inner surface of the cylinder under internal pressure
max ¼
pi do2 di2
The radial stress in the cylinder wall at radius r
ð7-30Þ
do2
Cylinder under external pressure only The tangential stress in the cylinder wall at radius r
ð7-29Þ
¼
po do2 di2 1 þ do2 di2 4r2
ð7-31Þ
¼
po do2 di2 1 do2 di2 4r2
ð7-32Þ
DEFORMATION OF A THICK CYLINDER The radial displacement of a point at radius r in the wall of the cylinder subjected to internal and external pressures
u¼
1 pi di2 po do2 r E do2 di2 1 þ di2 do2 ð pi po Þ þ E 4rðdo2 di2 Þ
ð7-33Þ
Cylinder under internal pressure only
The radial displacement at r ¼ di =2 of the inner surface of the cylinder
ui ¼
pi di 2E
The radial displacement at r ¼ do =2 of the outer surface of the cylinder
uo ¼
pi di2 do Eðdo2 di2 Þ
di2 þ do2 þ d02 di2
ð7-34Þ ð7-35Þ
Cylinder under external pressure only The radial displacement at r ¼ di =2 of the inner surface of the cylinder
ui ¼
po di do2 Eðdo2 di2 Þ
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð7-36Þ
PIPES, TUBES, AND CYLINDERS
7.14
CHAPTER SEVEN
Particular
The radial displacement at r ¼ do =2 of the outer surface of the cylinder
Formula
uo ¼
po do 1 2 E
di2 þ do2 do2 di2
ð7-37Þ
COMPOUND CYLINDERS Birnie’s equation for tangential stress at any radius r for a cylinder open at ends subjected to internal pressure
¼ ð1 Þ
The tangential stress at the inner surface of the inner cylinder in the case of a compound cylinder (Figs. 11-1 and 11-2)
i ¼
The tangential stress at the outer surface of the inner cylinder
ic ¼ pc
The tangential stress at the inner surface of the outer cylinder
oc ¼ pc
The tangential stress at the outer surface of the outer cylinder
o ¼
pi di2 d2d 2 p þ ð1 þ Þ 2 i 2o i 2 2 di 4r ðdo di Þ
ð7-38Þ
do2
2pc dc2 dc2 di2
ð7-39Þ
dc2 þ di2 dc2 di2
do2 þ dc2 þ do2 dc2
ð7-40Þ
ð7-41Þ
2pc dc2 do2 dc2
ð7-42Þ
THERMAL STRESSES IN LONG HOLLOW CYLINDERS The general expressions for the radial r , tangential , and longitudinal z stresses in the cylinder wall at radius r when the temperature distribution is symmetrical with respect to the axis and constant along its length, respectively
2 ð ðr E 4r di2 ro Tr dr Tr dr r ¼ ð1 Þr2 do2 di2 ri ri ¼
ð7-43Þ
2 ð ðr E 4r þ di2 ro 2 Tr dr þ Tr dr Tr ð1 Þr2 do2 di2 ri ri ð7-44Þ
z ¼
ð ro E 8 Tr dr T 1 do2 di2 ri
ð7-45Þ
where do ¼ 2ro and di ¼ 2ri The expressions for radial (r ), tangential ( ), longitudinal (z ) stresses in the cylinder at r when the cylinder is subjected to steady-state temperature distribution, i.e., logarithmic temperature distribution throughout the wall thickness of the cylinder by using equation T ¼ Ti ½ln Ro = ln R
r ¼
¼
ETi 2ð1 Þ lnðRÞ lnðRo Þ
1 ð1 R2o Þ lnðRÞ R2 1
ETi 2ð1 Þ lnðRÞ 1 lnðRo Þ
1 ð1 þ R2o Þ lnðRÞ R2 1
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð7-46Þ
ð7-47Þ
PIPES, TUBES, AND CYLINDERS
7.15
PIPES, TUBES, AND CYLINDERS
Particular
Formula
z ¼
ETi 2 1 2 lnðRo Þ 2 lnðRÞ 2ð1 Þ lnðRÞ R 1 ð7-48Þ
where R ¼
The expressions for maximum values of tangential (hoop) and longitudinal stresses at inner and outer surfaces of the cylinder under logarithmic temperature distribution. respectively
The simplified expressions for maximum values of tangential and longitudinal stresses at inner and outer surfaces of the cylinder under logarithmic temperature distribution when the thickness of cylinder is small in comparison with the inner radius of the cylinder, respectively
do ro r d r d ¼ ; Ro ¼ o ¼ o ; Ri ¼ i ¼ i di ri r 2r r 2r
Ti ¼ temperature at inner surface of cylinder, 8C (8F) ETi 2R2 ln R ð7-49Þ i ¼ zi ¼ 1 2 2ð1 Þ ln R R 1 ETi 2 1 2 ln R ð7-50Þ o ¼ zo ¼ 2ð1 Þ ln R R 1 ETi n ð7-51Þ i ¼ zi ¼ 1þ 3 2ð1 Þ o ¼ zo ¼
ETi n 1 2ð1 Þ 3
ð7-52Þ
where do =di ¼ 1 þ n and lnðdo =di Þ ¼ lnð1 þ nÞ The simplified expressions for maximum tangential and longitudinal stresses for thin cylinders under the logarithmic temperature distribution, respectively
i ¼ zi ¼ o ¼ zo ¼
The expressions for radial (r ), tangential (hoop) ( ), and longitudinal (z ) stresses in a cylinder at radius r subject to linear thermal temperature distribution throughout the wall thickness of the cylinder by using equation T ¼ Ti ðro rÞ=ðro ri Þ when the thickness of the cylinder wall is small in comparison with the outside radius
r ¼
¼
ETi 2ð1 Þ
ETi 2ð1 Þ
ð7-54Þ
2 ETi ðr r2i Þðro þ 2ri Þ 2 6ðro þ ri Þ ð1 Þr 3 3 2ðr ri Þ 3ro ðr2 r2i Þ þ 6ðro ri Þ 2 ETi ðr þ r2i Þðro þ 2ri Þ 2 6ðro þ ri Þ ð1 Þr 2ðr3 r3i Þ 3ro ðr2 r2i Þ ðro rÞr2 ro ri 6ðro ri Þ
The expressions for maximum tangential (hoop), ( ) and longitudinal (z ) stresses at inner and outer surfaces of the cylinder under the linear thermal gradient as per equation T ¼ Ti ðro rÞ=ðro ri Þ
ð7-53Þ
ð7-55Þ
ð7-56Þ
ETi ro þ 2ri ro r z ¼ 1 2ðro þ ri Þ ro ri
ð7-57Þ
ETi 2ro þ ri 1 3ðro þ ri Þ
ð7-58Þ
i ¼ zi ¼ o ¼ zo ¼
ETi ro þ 2ri 1 3ðro þ ri Þ
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð7-59Þ
PIPES, TUBES, AND CYLINDERS
7.16
CHAPTER SEVEN
Particular
The expressions for maximum tangential and longitudinal stresses at inner and outer wall surfaces of thin cylinder (i.e., ro ri ) under the linear thermal gradient as per equation T ¼ Ti ðro rÞ=ðro ri Þ
The wall thickness of a cylinder made of brittle materials The wall thickness of a cylinder made of ductile materials
Formula
i ¼ zi ¼ o ¼ zo ¼
ETi 2ð1 Þ
ð7-60Þ
ETi 2ð1 Þ
ð7-61Þ
Eqs. (7-60) and (7-61) for the linear thermal gradient are the same as Eqs. (7-53) and (7-54) for a logarithmic thermal gradient. ( ) di þ pi 1=2 h¼ 1 ð7-62Þ 2 pi d h¼ i 2
(
2pi
)
1=2
1
ð7-63Þ
where ¼ permissible working stress in tension, MPa (psi).
CLAVARINO’S EQUATION FOR CLOSED CYLINDERS (Based on the maximum strain energy) The general equation for equivalent tangential stress at any radius r
0 ¼ ð1 2Þa þ
The general equation for equivalent radial stress at any radius r
0r ¼ ð1 2Þa
The wall thickness for cylinders with closed ends
ð1 þ Þb r2
ð7-64Þ
ð1 þ Þb ð7-65Þ r2 where a and b have the same meaning as in Eqs. (7-25c) and (7-25d) " # di 0 þ ð1 2Þpi 1=2 h¼ 1 ð7-66Þ 2 0 ð1 þ Þpi where 0 ¼ permissible working stress in tension, MPa (psi).
BIRNIE’S EQUATIONS FOR OPEN CYLINDERS The equation for equivalent tangential stress at any radius r
0 ¼ ð1 Þa þ ð1 þ Þ
The equation for equivalent radial stress at any radius r
0r ¼ ð1 Þa ð1 þ Þ
b r2
ð7-67Þ
b ð7-68Þ r2 where a and b have the same meaning as in Eqs. (7-25c) and (7-25d)
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
PIPES, TUBES, AND CYLINDERS PIPES, TUBES, AND CYLINDERS
Particular
The wall thickness of cylinders with open ends
7.17
Formula
h¼
di 2
0 þ ð1 Þpi 0 ð1 Þpi
1=2
1
ð7-69Þ
BARLOW’S EQUATION The tangential stress in the wall thickness of cylinder
pi do 2h For refer to Table 7-1.
¼
TABLE 7-7 Standard thickness of tubes Diameter, mm (in)
Minimum thickness, mm (in)
25 (1) and over but less than 62.5 (2.5)
2.37 (0.095)
62.5 (2.5) and over but less than 87.5 (3.25)
2.625 (0.105)
87.5 (3.25) and over but less than 100 (4)
3.000 (0.120)
100 (4) and over but less than 125 (5)
3.375 (0.135)
125 (5) and over but less than 150 (6)
3.750 (0.150)
150 (6) and over
h ¼ 0:0251do
Source: ASME Boiler and Pressure Vessel Code, Section 1, 1983.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð7-70Þ
PIPES, TUBES, AND CYLINDERS
TABLE 7-8 Comparison of various thick cylinder formulas Symbols: do ¼ 2ro ¼ outside diameter of thick cylinder, in; di ¼ 2ri ¼ inside diameter of thick cylinder, in; h ¼ ðdo di Þ=2 ¼ cylinder wall thickness, in; pi ¼ internal pressure, psi; ¼ Poisson’s statio (for steel ¼ 0:3); ¼ tangential stress, psi; r ¼ radial stress, psi; ð0 Þ po ¼ 0 ¼ tangential stress, r ¼ ri psi R¼
do ro p d 2 po do2 d2d2ð p p Þ p d2 pi di2 do2 ¼ ; a ¼ i i2 ; b ¼ i o 2 i 2 o ; ða0 Þpo ¼ 0 ¼ 2 i i 2 ; ðb0 Þpo ¼ 0 ¼ 2 di ri do di do di 4ðdo2 di2 Þ 4ðdo di Þ
Author
Particular
Formula
Remark
1. Birnie
The equation for an equivalent tangential stress at b 0 ¼ ð1 Þa þ ð1 þ Þ 2 any radius r of a thick cylinder under internal r pressure pi and external pressure po
0 The equation for an equivalent tangential stress ð0 Þp ¼ 0 ¼ ð1 Þa0 þ ð1 þ Þ b o r i r ¼ ri at inner radius ri of a thick cylinder subject to 2 internal pressure pi only when ¼ 0:3 for steel d ð1 Þpi þ ð1 þ Þ o pi di ¼ 2 do 1 di
¼
pi ½ð1 Þ þ ð1 þ ÞR2 R2 1
¼
pi ½0:7 þ 1:3R2 R2 1
2. Clavarino The general equation for an equivalent tangential b 0 ¼ ð1 2Þa þ ð1 þ Þ 2 stress at any radius r of a thick cylinder under r internal pressure pi and external pressure po 2
2 3 do ð1 þ Þ The equation for an equivalent tangential stress 6 ð1 2Þ d 7 7 6 0 ð Þpo ¼ 0 ¼ pi 6 2 þ 2 i 7 at inner radius ri of a thick cylinder subject to 5 4 d d o o r ¼ ri internal pressure pi only when ¼ 0:3 for steel 1 1 di di ð1 2Þ ð1 þ ÞR2 ¼ pi þ 2 2 R 1 R 1 0:4 1:3R2 ¼ pi 2 þ R 1 R2 1 0:4 þ 1:3R2 ¼ pi 2 R 1
3. Barlow
4. Lame´
The tangential stress in the wall thickness of cylinder under internal pressure pi
pi do d0 ¼ pi 2h do di d0 pR d ¼ i ¼ pi i d0 R1 1 di
¼
The tangential stress in the thick cylinder wall at b ¼ a þ 2 any radius r subject to internal pressure pi and r external pressure po
Eqn. (7-67) Used for ductile materials Open ends thick cylinder
Eqn. (7-64) Used for ductile materials Closed ends cylinder
Eqn. (7-70) Open ends cylinder
Eqn. (7-24a) Used for brittle materials
pi di2 d2 0 1 þ o2 Closed ends cylinder The tangential stress in the thick cylinder wall at ð Þpo ¼ 0 ¼ 2 2 do di di r ¼ ri inside radius ri of cylinder subject to internal 2 pressure pi only when ¼ 0:3 for steel pi do 1 þ R2 ¼ 1 þ ¼ p i di R2 1 ðdo =di Þ2 1
Refer to equations in Lingaiah, K., Machine Design Data Handbook, McGraw-Hill Book Company, New York, 1994
7.18 Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
PIPES, TUBES, AND CYLINDERS PIPES, TUBES, AND CYLINDERS
7.19
FIGURE 7-2 Nomogram to find the stress in thick cylinder subject to internal pressure using four formulas given in Table 7-8.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
PIPES, TUBES, AND CYLINDERS
7.20
CHAPTER SEVEN
Particular
Formula
PROBLEM A closed end cylinder made of ductile material has inner diameter of 10 in (250 mm) and outside diameter of cylinder is 25 in (625 mm). The pressure inside the cylinder is 5000 psi. Use Clavarino’s equation from Table 7-8 R¼
do 25 ¼ ¼ 2:5 di 10
Mark on scale b at 2.5 Draw a perpendicular from x and this perpendicular meets scale d at y Join y and 5 (5000 psi) on scale e. Produce y–5 to meet scale f at z. y–5–z meets scale f at 8.25 Stress ¼ 8:25 ¼ 8250 psi Stress in SI units ¼ 8250 6:894 103 ¼ 56:88 MPa Check by using Clavarino’s equation from Table 7-8 0:4 þ 1:3R2 0:4 þ 1:3ð2:5Þ2 ¼ 5000 ¼ p1 R2 1 ð2:5Þ2 1 0:4 þ 8:125 4:2625 ¼ 5000 ¼ 104 6:25 1 5:25 ¼ 8120 psi ð56 MPaÞ The stress obtained from nomogram 8250 psi (56.88 MPa) is very close to stress value found from Clavarino’s equation
REFERENCES 1. ‘‘Rules for Construction of Power Boilers,’’ Section I, ASME Boiler and Pressure Vessel Code, American Society of Mechanical Engineers, New York, 1983. 2. ‘‘Rules for Construction of Pressure Vessels,’’ Section VIII, Division 1, ASME Boiler and Pressure Vessel Code, American Society of Mechanical Engineers, New York, July 1, 1986. 3. ‘‘Rules for Construction of Pressure Vessels,’’ Section VIII, Division 2—Alternative Rules, ASME Boiler and Pressure Vessel Code, American Society of Mechanical Engineers, New York, July 1, 1986. 4. Nicholas, R. W., Pressure Vessel Codes and Standards, Elsevier Applied Science Publications, Crown House, Linton Road, Barking, Essex, England. 5. Lingaiah, K., and B. R. Narayana Iyengar, Machine Design Data Handbook, Engineering College Co-operative Society, Bangalore, India, 1962. 6. Lingaiah, K., Machine Design Data Handbook, Vol. II (SI and Customary Metric Units), Suma Publishers, Bangalore, India, 1986. 7. Courtesy: Durham, H. M., Stress Chart for Thick Cylinders. 8. Greenwood, D. C., Editor, Engineering Data for Product Design, McGraw-Hill Book Company, New York, 1961. 9. Lingaiah, K., Machine Design Data Handbook (SI and U.S. Customary Systems Units), McGraw-Hill Book Company, New York, 1994.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
Source: MACHINE DESIGN DATABOOK
CHAPTER
8 DESIGN OF PRESSURE VESSELS, PLATES, AND SHELLS SYMBOLS13;14;15 a
A A A A1 A2 A3 A41 , A42 , A43 A5 Ab Am Am1 ¼ Wm1 =sb Am2 ¼ Wm2 =sa
length of the long side of a rectangular plate, m (in) pitch or distance between stays, m (in) major axis of elliptical plate, m (in) long span of noncircular heads or covers measured at perpendicular distance to short span, m (in) (see Fig. 8-10) factor determined from Fig. 8-3 total cross-sectional area of reinforcement required in the plane under consideration, m2 (in2 ) (see Fig. 8-17) (includes consideration of nozzle area through shell for sna =sva < 1:0) outside diameter of flange or, where slotted holes extend to the outside of the flange, the diameter to the bottom of the slots, m (in) area in excess thickness in the vessel wall available for reinforcement, m2 (in2 ) (see Fig. 8-17) (includes consideration of nozzle area through shell if sna =sva < 1:0) area in excess thickness in the nozzle wall available for reinforcement, m2 (in2 ) (see Fig. 8-17) area available for reinforcement when the nozzle extends inside the vessel wall, m2 (in2 ) (see Fig. 8-17) cross-sectional area of various welds available for reinforcement (see Fig. 8-17), m2 (in2 ) cross-sectional area of material added as reinforcement (see Fig. 8-17), m2 (in2 ) cross-sectional area of the bolts using the root diameter of the thread or least diameter of unthreaded portion, if less, Eq. (8-111), m (in) total required cross-sectional area of bolts taken as the greater of Am1 and Am2 , m2 (in2 ) total cross-sectional area of bolts at root of thread or section of least diameter under stress, required for the operating condition, m2 (in2 ) total cross-sectional area of bolts at root of thread or section of least diameter under stress, required for gasket seating, m2 (in2 )
8.1 Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
DESIGN OF PRESSURE VESSELS, PLATES, AND SHELLS
8.2
CHAPTER EIGHT
length of short side or breadth of a rectangular plate, m (in) short span of noncircular head, m (in) (see Fig. 8-10 and Eq. 8-86a) effective gasket or joint-contact-surface seating width, m (in) basic gasket seating width, m (in) (see Table 8-21 and Fig. 8-13) factor determined from the application material–temperature chart for maximum temperature, psi inside diameter of flange, m (in) corrosion allowance, m (in) basic dimension used for the minimum sizes of welds, mm (in), equal to tn or tx , whichever is less empirical coefficient taking into account the stress in the knuckle [Eq. (8-68)] empirical coefficient depending on the method of attachment to shell [Eqs. (8-82) and (8-85)] empirical coefficients depending on the mode of support [(Eqs. (8-92) to (8-94)] bolt-circle diameter, mm (in) finished diameter of circular opening or finished dimension (chord length at midsurface of thickness excluding excess thickness available for reinforcement) of nonradial opening in the plane under consideration in its corroded condition, m (in) (see Fig. 8-17) diameter or short span, m (in) diameter of the largest circle which may be inscribed between the supporting points of the plate (Fig. 8-11), m (in) diameter as shown in Fig. 8-9, m (in) factor, m3 (in3 )
b b bo B B c c c1 c2 c4 , c5 C d
d
d U h g2 V o o U h g2 d¼ VL o o d0 d¼
de di , Di do , Do dk D Dp e
for integral-type flanges for loose-type flanges diameter through the center of gravity of the section of an externally located stiffening ring, m (in); inner diameter of the shell in the case of an internally located stiffening ring, m (in) [Eq. (8-55)] outside diameter of conical section or end (Fig. 8-8(A)d), m (in) inside diameter of shell, m (in) outside diameter of shell, m (in) inside diameter of conical section or end at the position under consideration (Fig. 8-8(A)d), m (in) inside shell diameter before corrosion allowance is added, m (in) outside diameter of reinforcing element, m (in) (actual size of reinforcing element may exceed the limits of available reinforcement) factor, m1 (in1 )
F ho F e¼ L ho
for integral-type flanges
E Eam
modulus of elasticity at the operating temperature, GPa (Mpsi) modulus of elasticity at the ambient temperature, GPa (Mpsi)
e¼
for loose-type flanges
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
DESIGN OF PRESSURE VESSELS, PLATES, AND SHELLS DESIGN OF PRESSURE VESSELS, PLATES, AND SHELLS
hub stress correction factor for integral flanges from Fig. 8-25 (When greater than one, this is the ratio of the stress in the small end of the hub to the stress in the large end. For values below limit of figure, use f ¼ 1.) fr strength reduction factor, not greater than 1.0 fr1 sna =sva fr2 (lesser of sna or spa Þ=sva fr3 spa =sva F total load supported, kN (lbf ) total bolt load, kN (lbf ) F correction factor which compensates for the variation in pressure stresses on different planes with respect to the axis of a vessel (a value of 1.00 shall be used for all configurations, except for integrally reinforced openings in cylindrical shells and cones) F factor for integral-type flanges (from Fig. 8-21) FL factor for loose-type flanges (from Fig. 8-23) ga thickness of hub at small end, m (in) thickness of hub at back of flange, m (in) g1 G diameter, m (in), at location of gasket load reaction; except as noted in Fig. 8-13, G is defined as follows (see Table 8-22): When bo 6:3 mm (l/4 in), G ¼ mean diameter of gasket contact face, m (in). When bo > 6:3 mm (1/4 in), G ¼ outside diameter of gasket contact face less 2b, m (in). h distance nozzle projects beyond the inner or outer surface of the vessel wall, before corrosion allowance is added, m (in) (Extension of the nozzle beyond the inside or outside surface of the vessel wall is not limited; however, for reinforcement calculations the dimension shall not exceed the smaller of 2.5t or 2.5tn without a reinforcing element and the smaller of 2.5t or 2.5tn þ te with a reinforcing element or integral compensation.) h hub length, m (in) h, t minimum required thickness of cylindrical or spherical shell or tube or pipe, m (in) thickness of plate, m (in) thickness of dished head or flat head, m (in) ha actual thickness of shell at the time of test including corrosion allowance, m (in) hc thickness for corrosion allowance, m (in) hD radial distance from the bolt circle, to the circle on which HD acts, m (in) hG ¼ ðC GÞ=2 radial distance from gasket load reaction to the bolt circle, m (in) pffiffiffiffiffiffiffiffi ho ¼ Bgo factor, m (in) hT radial distance from the bolt circle to the circle on which HT acts as prescribed, m (in) H ¼ G2 P=4 total hydrostatic end force, kN (lbf ) HD ¼ B2 P=4 hydrostatic end force on area inside of flange, kN (lbf ) HG ¼ W H gasket load (difference between flange design bolt load and total hydrostatic end force), kN (lbf ) HP ¼ total joint-contact-surface compression load, kN (lbf ) 2b GmP f
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
8.3
DESIGN OF PRESSURE VESSELS, PLATES, AND SHELLS
8.4
CHAPTER EIGHT
HT ¼ H HD Is Is0 I I0 k 1 , k2 , k3 , k4 , k 5 k6 K ¼ A=B K K1 l L
difference between total hydrostatic end force and the hydrostatic end force on area inside of flange, kN (lbf ) required moment of inertia of the stiffening ring cross-section around an axis extending through the center of gravity and parallel to the axis of the shell, m4 or cm4 (in4 ) required moment of inertia of the combined ring-shell crosssection about its neutral axis parallel to the axis of the shell, m4 (in4 ) available moment of inertia of the stiffening ring cross-section about its neutral axis parallel to the axis of the shell, m4 (in4 ) available moment of inertia of combined ring shell cross-section about its neutral axis parallel to the axis of the shell, m4 or cm4 (in4 ) coefficients factor for noncircular heads depending on the ratio of short span to long span b=a (Fig. 8-10) ratio of outside diameter of flange to inside diameter of flange (Fig. 8-20) ratio of the elastic modulus E of the material at the design material temperature to the room temperature elastic modulus, Eam , [Eqs. (8-26) to (8-31), (8-55)] spherical radius factor (Table 8-18) length of flange of flanged head, m (in) effective length, m (in) distance from knuckle or junction within which meridional stresses determine the required thickness, m (in) perimeter of noncircular bolted heads measured along the centers of the bolt holes, m (in) distance between centers of any two adjacent openings, m (in) length between the centers of two adjacent stiffening rings, m (in) (Fig. 8-1)
te þ 1 t3 factor þ T d m gasket factor, obtained from Table 8-20 m ¼ 1= reciprocal of Poisson’s ratio Mb longitudinal bending moment, N m (lbf in) L¼
FIGURE 8-1 Cylindrical pressure vessels under external pressure.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
DESIGN OF PRESSURE VESSELS, PLATES, AND SHELLS DESIGN OF PRESSURE VESSELS, PLATES, AND SHELLS
torque about the vessel axis, N m (lbf in) component of moment due to HD , m N (in-lbf ) component of moment due to HG , m N (in-lbf ) total moment acting on the flange, for the operating conditions or gasket seating as may apply, m N (in-lbf ) MT ¼ HT h component of moment due to HT , m N (in-lbf ) N width, m (in), used to determine the basic gasket seating with bo , based on the possible contact width of the gasket (see Table 8-21) pi internal design pressure, MPa (psi) p maximum allowable working pressure or design pressure, MPa (psi) po load per unit area, MPa (psi) external design pressure, MPa (psi) P total pressure on an area bounded by the outside diameter of gasket, kN (lbf ) design pressure (or maximum allowable working pressure for existing vessels), MPa (psi) Pa calculated value of allowable external working pressure for assumed value of t or h, MPa (psi) r radius of circle over which the load is distributed, m (in) ri inner radius of a circular plate, m (in) inside radius of transition knuckle which shall be taken as 0:01dk in the case of conical sections without knuckle transition, m (in) R inner radius of curvature of dished head, m (in) Ri inner radius of shell or pipe, m (in) ro , Ro outer radius of a circular plate, m (in) outer radius of shell, m (in) R ¼ ½ðC BÞ=2 radial distance from bolt circle to point of intersection of hub g1 and back of flange, m (in) (for integral and hub flanges) R inside radius of the shell course under consideration, before corrosion allowance is added, m (in) Rn inside radius of the nozzle under consideration, before corrosion allowance is added, m (in) t or h minimum required thickness of spherical or cylindrical shell, or pipe or tube, m (in) t flange thickness, m (in) t nominal thickness of the vessel wall, less corrosion allowance, m (in) tc weld dimensions thickness or height of reinforcing element, m (in) te tn nominal thickness of shell or nozzle wall to which flange or lap is attached, irrespective of product form less corrosion allowance, m (in) tr required thickness of a seamless shell based on the circumferential stress, or of a formed head, computed by the rules of this chapter for the designated pressure, m (in) trn required thickness of a seamless nozzle wall, m (in) nominal thickness of cylindrical shell or tube exclusive of ts corrosion allowance, m (in) tw weld dimensions tx two times the thickness go , when the design is calculated as an integral flange, m (in), or two times the thickness, m (in), of shell nozzle wall required for internal pressure, when the design is calculated as a loose flange, but not less than 6.3 mm Mt MD ¼ HD hD MG ¼ HG hG Mo
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
8.5
DESIGN OF PRESSURE VESSELS, PLATES, AND SHELLS
8.6
CHAPTER EIGHT
(1/4 in) T U V VL w W W W Wm1
Wm2 y y ymax Y Z , 1 , 2 sy sa e sam sd sa sna sva spa sbat sbd sfd snd
H R 0 r s su z or l
factor involving K (from Fig. 8-20) factor involving K (from Fig. 8-20) factor for integral-type flanges (from Fig. 8-22) factor for loose-type flanges (from Fig. 8-24) width, m (in), used to determine the basic gasket seating width bo , based on the contact width between the flange facing and the gasket (see Table 8-21) weight, kN (lbf ) total load to be carried by attachment welds, kN (lbf ) flange design bolt load, for operating conditions or gasket seating, as may apply, kN (lbf ) minimum required bolt load for the operating conditions, kN (lbf ) (For flange pairs used to contain a tubesheet for a floating head for a U-tube type of heat exchanger, or for any other similar design, Wm1 shall be the larger of the values as individually calculated for each flange, and that value shall be used for both flanges.) minimum required bolt load for gasket seating, kN (lbf ) gasket or joint-contact-surface unit seating load, MPa (psi) deflection of the plate, m (in) maximum deflection of the plate, m (in) factor involving K (from Fig. 8-20) factor involving K (from Fig. 8-20) a factor for non-circular heads [Eq. (8-86b)] angles of conical section to the vessel axis, deg (Fig. 8-8(A)d) difference between angle of slope of two adjoining conical sections, deg (Fig. 8-8(A)d) normal or direct stress, MPa (psi) 0.2 percent proof stress, MPa (psi) maximum allowable stress value, MPa (psi) equivalent stress (based on shear strain energy), MPa (psi) allowable stress at ambient temperature, MPa (psi) design stress value, MPa (psi) allowable stress value as given in Tables 8-9 to 8-12, MPa (psi) allowable stress in nozzle, MPa (psi) allowable stress in vessel, MPa (psi) allowable stress in reinforcing element (plate), MPa (psi) allowable bolt stress at atmospheric temperature, MPa (psi) allowable bolt stress at design temperature, MPa (psi) allowable design stress for material of flange at design temperature (operating condition) or atmospheric temperature (gasket seating), as may apply, MPa (psi) allowable design stress for material of nozzle neck, vessel or pipe wall, at design temperature (operating condition) or atmospheric temperature (gasket seating), as may apply, MPa (psi) calculated longitudinal stress in hub, MPa (psi) calculated radial stress in flange, MPa (psi) calculated tangential stress in flange, MPa (psi) hoop stress, MPa (psi) radial stress, MPa (psi) strength, MPa (psi) ultimate strength, MPa (psi) longitudinal stress, MPa (psi)
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
DESIGN OF PRESSURE VESSELS, PLATES, AND SHELLS DESIGN OF PRESSURE VESSELS, PLATES, AND SHELLS
8.7
zt tensile longitudinal stress, MPa (psi) zc compressive longitudinal stress, MPa (psi) shear stress (also with subscripts), MPa (psi) Poisson’s ratio joint factor (Table 8-3) or efficiency ¼1 (see definitions for tr and trn ) when an opening is in the solid plate or joint efficiency obtained 1 ¼ 1 from Table 8-3 when any part of the opening passes through any other welded joint Note: and with initial subscript s designates strength properties of material used in the design which will be used and observed throughout this Machine Design Data Handbook. Other factors in performance or in special aspect are included from time to time in this chapter and, being applicable only in their immediate context, are not given at this stage.
Particular
PLATES13;14;15
Formula
Refer to Table 8-1
For maximum stresses and deflections in flat plates
Plates loaded uniformly The thickness of a plate with a diameter d supported at the circumference and subjected to a pressure p distributed uniformly over the total area The maximum deflection
Plates loaded centrally The thickness of a flat cast-iron plate supported freely at the circumference with diameter d and subjected to a load F distributed uniformly over an area (do2 =4) The deflection Grashof’s formula for the thickness of a plate rigidly fixed around the circumference with the above given type of loading
h ¼ k1 d
p sd
1=2 ð8-1Þ
Refer to Table 8-2 for values of k1 . p y ¼ k2 d 4 Eh3 Refer to Table 8-2 for values of k2 .
ð8-2Þ
0:67do F 1=2 h ¼ 1:2 1 d sd
ð8-3Þ
0:12d 2 F Eh3 F d 1=2 ln h ¼ 0:65 sd do y¼
y¼
0:055d 2 F Eh3
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð8-4Þ ð8-5Þ ð8-6Þ
Form of plate
Distributed on circumference of a concentric circle of radius r
8-134
8-133
Edge supported
Edge fixed
8-132
Edge fixed
8-131
Edge supported
Distributed over a concentric circular area of radius r
8-130
Edge fixed
Eq. 8-129
Type of support
Distributed Edge over the entire supported surface
Type of loading
TABLE 8-1 Maximum stresses and deflections in flat plates
2rp
2rp
r2 p
r2 p
r2o p
r2o p
Total load, F
3F 4h2
3Fð3m þ 1Þ 8mh2
Center
Edge
Center
Edge
Center
Location of max
8.8
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website. r ¼
3F r2 1 2 2 2h ro
All points inside the 2 circle of r r radius r þ ðm þ 1Þ loge o ðm 1Þ 2 r ro 3F Center when r ¼ ¼ ðm þ 1Þ 4mh2 r < 0:31ro Edge when ro r2 r > 0:31ro 2 loge þ 2 1 r ro
r ¼ ¼
3F r ðm þ 1Þ loge ro 2mh2 r2 þ ðm þ 1Þ 2 4ro 3F m 1 r ¼ ¼ 2 2mh2
r ¼ ¼
3F r ðm þ 1Þ loge o 2 r 2mh 2 r ðm 1Þ 2 þ m 4ro 3F r2 r ¼ 1 2 2 2ro 2h
r ¼
r ¼ ¼
Maximum stress, max
ro ð7m þ 3Þ 2 r mþ1 r
3Fðm2 1Þ 2Em2 h3 ð3m þ 1Þðr2o r2 Þ r r2 loge o 2ðm þ 1Þ r 2 3Fðm 1Þ 1 2 ro 2 2 2 ðro r Þ r loge r 2 3 2Em h
3Fðm2 1Þr2o 4Em2 h3
when r is very small (concentrated load)
3Fðm2 1Þ r 4r2o 4r2 loge o 3r2 2 3 r 16Em h
4r2 loge
3Fðm2 1Þr2o 16Em2 h3 3Fðm2 1Þ ð12m þ 4Þr2o mþ1 16Em2 h3
3Fðm 1Þð5m þ 1Þr2o 16Em2 h3
Maximum deflection, ymax
DESIGN OF PRESSURE VESSELS, PLATES, AND SHELLS
Form of plate
8-137
8-138
Distributed Outer edge over the entire fixed and surface supported
Distributed Outer edge over the entire fixed and surface supported, inner edge fixed
8-135
8-136
Uniform pressure over entire lower surface
Distributed over a concentric circular area of radius r
Eq.
Distributed Outer edge over the entire supported surface
Type of support
Type of loading
F ¼ ðr2o r2i Þp
F ¼ ðr2o r2i Þp
F ¼ ðr2o r2i Þp
r2 p
Total load, F
TABLE 8-1 Maximum stresses and deflections in flat plates (Cont.)
r ¼
¼
¼
ro r
3p ðr2o þ r2 Þ 4h2 4r2 r2 r 2 2 o 2 loge o r ro r
3pðm2 1Þ 4mh2 2 r 3 r2o r4i 12 r2o r2i loge o 4 ri 5 2 ro ðm 1Þ þ r2i ðm þ 1Þ
4ðm þ 1Þr2o r2i loge
þr4i ðm 1Þ 4mr2o r2i
3P r4o ð3m þ 1Þ 4mh2 ðr2o r2i Þ
Maximum stress, max 3F r ðm þ 1Þ loge o r ¼ ¼ 2 r 2mh 2 m1 r 1 2 þ 4 ro
Inner edge
Inner edge
Inner edge
Center
Location of max
3pðm2 1Þ 4 ro þ 3r4i 4r2o r2i 16Em2 h3 r 16r2 r4 r 2 4r2o r2i loge o þ 2 o i2 loge o ri ro ri ri
...
r4i ðm þ 3Þ r2o r2i ð3m þ 1Þ 8ðm þ 1Þ 2ðm þ 1Þ r2o r2i ð3m þ 1Þ r loge o 2ðm 1Þ ri 2 4 2r r ðm þ 1Þ r 2 2 o i2 loge o r ðro ri Þðm 1Þ þ
þ
3Fðm2 1Þ r4o ð5m þ 1Þ 2 3 8ðm þ 1Þ 2Em h
where r is very small (concentrated load) 3Fðm 1Þð7m þ 3Þr2o =16Em2 h3
3Fðm2 1Þ ro 2 2 3m þ 1 log 4r þ 2r e mþ1 r 16Em2 h3 2 2 4 7m þ 3 ðr r Þr r4 þ 2 r2o þ o 2 2 mþ1 r ro ro
Maximum deflection, ymax
DESIGN OF PRESSURE VESSELS, PLATES, AND SHELLS
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
8.9
8.10
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website. 8-140
8-141
8-142
8-143
Uniform over All edges entire surface supported
Uniform over All edges entire surface fixed
Uniform over Short edges entire surface fixed, long edges supported
Uniform over Short edges entire surface supported, long edges fixed
Eq. 8-139
Type of support
Distributed Inner edge over the entire fixed and surface supported
Type of loading
F ¼ abp
F ¼ abp
F ¼ abp
F ¼ abp
F¼
ðr2o
r2i Þp
Total load, F
b ¼
b ¼
b ¼
b ¼
Center of long edge
Center of short edge
Center of long edge
0:5b2 p b6 h2 1 þ 0:623 6 a
0:75b2 p b4 h2 1 þ 0:8 4 a b2 p a4 2h2 1 þ 0:2 4 b
Center
r4o ðm þ 3Þ þ r4o ðm 1Þ þ 4r2o r2i r2o ðm þ 1Þ þ r2i ðm 1Þ
Inner edge
Location of max
0:75b2 p b3 h2 1 þ 1:61 3 a
Maximum stress, max 3p r r ¼ 2 4r4o ðm þ 1Þ loge o r 4h
Note: Positive sign for indicates tension at upper surface and equal compression at lower surface; negative sign indicates reverse condition.
Form of plate
TABLE 8-1 Maximum stresses and deflections in flat plates (Cont.)
...
...
0:0284b4 p b5 Eh3 1 þ 1:056 5 a
0:1422b4 p b3 Eh3 1 þ 2:21 3 a
...
Maximum deflection, ymax
DESIGN OF PRESSURE VESSELS, PLATES, AND SHELLS
DESIGN OF PRESSURE VESSELS, PLATES, AND SHELLS
8.11
DESIGN OF PRESSURE VESSELS, PLATES, AND SHELLS
TABLE 8-2 Coefficients in formulas for cover plates13;14;15 Circular plate
Rectangular plate
Elliptical plate
Material of cover plate
Methods of holding edges
k1
k2
k3
k4
k5
Cast iron
Supported, free Fixed
0.54 0.44
0.038 0.010
0.75 0.62
1.73 1.4; 1.6a
1.5 1.2
Mild steel
Supported, free Fixed
0.42 0.35
... ...
0.60 0.49
1.38 1.12; 1.28
1.2 0.9
a
With gasket.
Particular
Formula
The deflection
Rectangular plates UNIFORM LOAD The thickness of a rectangular plate according to Grashof and Bach
h ¼ abk3
abF sd ða2 þ b2 Þ
The thickness of uniformly loaded elliptical plate
1=2 ð8-8Þ
where k4 ¼ coefficient, taken from Table 8-2
Elliptical plate
ð8-7Þ
sd ða2 þ b2 Þ
where k3 ¼ coefficient, taken from Table 8-2
h ¼ k4 CONCENTRATED LOAD The thickness of a rectangular plate on which a concentrated load F acts at the intersection of diagonals
1=2
p
h ¼ abk5
p
1=2 ð8-9Þ
sd ða2 þ b2 Þ
where k5 ¼ coefficient, taken from Table 8-2
SHELLS (UNFIRED PRESSURE VESSEL) Shell under internal pressure—cylindrical shell CIRCUMFERENCE JOINT The minimum thickness of shell exclusive of corrosion allowance as per Bureau of Indian Standards11
h¼
pdi pdo ¼ 2sa p 2sa þ p
ð8-10Þ
Refer to Tables 8-3 and 8-8 for values of and sa , respectively.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
DESIGN OF PRESSURE VESSELS, PLATES, AND SHELLS
8.12
CHAPTER EIGHT
TABLE 8-3 Joint efficiency factor ()13;14;15 Requirement
Class 1
Class 2
Class 3
Weld joint 1.00 efficiency factor ()
0.85
0.70
0.60
0.50
Shell or end plate thickness
No limitation on thickness
Maximum thickness 38 mm after adding corrosion allowance
Maximum thickness 16 mm before corrosion allowance is added
Maximum thickness 16 mm before corrosion allowance is added
Maximum thickness 16 mm before corrosion allowance is added
Type of joints
Double-welded butt joints with full penetration excluding butt joints with metal backing strips which remain in place Single-welded butt joints with backing strip ¼ 0:9
Double-welded butt joints with full penetration excluding butt joints with metal backing strips which remain in place Single-welded butt joints with backing strip ¼ 0:80
Double-welded butt joints with full penetration excluding butt joints with metal backing strips which remain in place Single-welded butt joints with backing strip ¼ 0:65
Single-welded butt joints with backing strip not over 16 mm thickness or over 600 mm outside diameter
Single full fillet lap joints for circumferential seams only
Single-welded butt joints without backing strip ¼ 0:55
Source: K. Lingaiah and B. R. Narayana Iyengar, Machine Design Data Handbook, Engineering College Cooperative Society, Bangalore, India, 1962; K. Lingaiah and B. R. Narayana Iyengar, Machine Design Data Handbook, Vol. I (SI and Customary Metric Units), Suma Publishers, Bangalore, India, 1983; K. Lingaiah, Machine Design Data Handbook, Vol. II (SI and Customary Metric Units), Suma Publishers, Bangalore, India, 1986; and IS: 2825-1969.
Particular
Note: A minimum thickness of 1.5 mm is to be provided as corrosive allowance unless a protective lining is employed. The design pressure or maximum allowable working pressure The minimum thickness of shell exclusive of corrosion allowance as per ASME Boiler and Pressure Vessel Code The maximum allowable working pressure as per ASME Boiler and Pressure Vessel Code [from Eq. (8-12)]1;2
Formula
p¼
2sa h 2sa h ¼ di þ h do h
ð8-11Þ
t¼
pRi 2sa þ 0:4p
ð8-12Þ
when the thickness of shell does not exceed one-half the inside radius ðRi Þ p¼
2sa t Ri 0:4t
ð8-13Þ
when the pressure p does not exceed 1:25sa . sa is taken from Tables 8-9, 8-11, and 8-12.
Rules for construction of pressure vessel, section VIII, Division 1, ASME Boiler and Pressure Vessel Code, July 1, 1986.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
DESIGN OF PRESSURE VESSELS, PLATES, AND SHELLS DESIGN OF PRESSURE VESSELS, PLATES, AND SHELLS
Particular
LONGITUDINAL POINT The minimum thickness of shell exclusive of corrosive allowance as per ASME Boiler and Pressure Vessel Code. [1-10]
8.13
Formula
t¼
pRi pRo ¼ sa 0:6p sa þ 0:4p
ð8-14Þ
when the thickness of shell does not exceed one-half the inside radius Ri sa t sa t ¼ Ri þ 0:6t Ro 0:4t
The maximum allowable working pressure as per ASME Boiler and Pressure Vessel Code [from Eq. 8-14)]
p¼
The design stress for the case of welded cylindrical shell assuming a Poisson ratio of 0.3
d ¼ 0:87
The allowable stress for plastic material taking into consideration the combined effect of longitudinal and tangential stress (Note: The design stress for plastic material is 13.0 percent less compared with the maximum value of the main stress.)
a ¼
The thickness of shell from Eq. (8-17) without taking into account the joint efficiency and corrosion allowance
h¼
ð8-15Þ
when the pressure p does not exceed 0.385sa pi ro h
ð8-16Þ
pi do 2:3h
ð8-17Þ
pdo 2:3sa
ð8-18Þ
The design thickness of shell taking into consideration the joint efficiency and allowance for corrosion, negative tolerance, and erosion of the shell (hc )
hd ¼
pdo þ hc 2:3sa
ð8-19Þ
The design formula for the thickness of shell according to Azbel and Cheremisineff 10
hd ¼
pdi þ hc 2:3sa p
ð8-20Þ
The factor of safety as per pressure vessel code, which is based on yield stress of material used for shell
n¼
sy a
ð8-21Þ
The factor of safety n should not be less than 4, which is based on yield strength sy of material.
Shell under internal pressure—spherical shell The minimum thickness of shell exclusive of corrosion allowance as per Bureau of Indian Standards
h¼
pdi pdo ¼ 4sa p 4sa þ p
ð8-22Þ
The design pressure as per Bureau of Indian Standards
p¼
4sa h 4sa h ¼ di þ h do h
ð8-23Þ
Rules for construction of pressure vessel, section VIII, Division 1, ASME Boiler and Pressure Vessel Code, July 1, 1986.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
DESIGN OF PRESSURE VESSELS, PLATES, AND SHELLS
8.14
CHAPTER EIGHT
Particular
Formula
The minimum thickness of shell exclusive of corrosion allowance as per ASME Boiler and Pressure Vessel Code
t¼
The design pressure (or maximum allowable working pressure) as per ASME Boiler and Pressure Vessel Code
p¼
Shells under external pressure—cylindrical shell (Fig. 8-1) (a) The minimum thickness of cylindrical shell exclusive of corrosion allowance as per Bureau of Indian Standards
pRi 2sa 0:2p
ð8-24Þ
when thickness of the shell of a wholly spherical vessel does not exceed 0.356Ri 2sa t Ri þ 0:2t
ð8-25Þ
when the maximum allowable working pressure p does not exceed 0.655sa
"
2=3 # 1:15p 4 KL þ 1:1570 10 h ¼ do do SI
ð8-26aÞ
where h, do , and L in m; and p in MPa and h ¼ t ¼ thickness of shell. " 2=3 # 1:15p 6 KL h ¼ do þ 4:19 10 do USCS
The design pressure as per Bureau of Indian Standards
ð8-26bÞ
where h, do , and L in in; and p in psi " 2=3 # h 4 KL p¼ 1:157 10 1:15 do do SI
ð8-27aÞ
where p and in MPa; h, do , and L in m " 2=3 # h 6 KL 4:19 10 p¼ 1:15 do do USCS
ð8-27bÞ
where p and in psi; h, do , and L in in for
L 5:7ð10p=Þ5=2 372:65 103 ðh=do Þ3=2 < or < pK K do SI
ð8-27cÞ
where and p in MPa; do , h, and L in m for
L 5:7ð10p=Þ5=2 5:41 107 ðh=do Þ3=2 or < < do pK K USCS
where and p in psi; L, do and h in in
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð8-27dÞ
DESIGN OF PRESSURE VESSELS, PLATES, AND SHELLS DESIGN OF PRESSURE VESSELS, PLATES, AND SHELLS
Particular
(b) The minimum thickness of cylindrical shell exclusive of corrosion allowance according to Bureau of Indian Standards11
8.15
Formula
h ¼ 2:234 104 do ð pKÞ1=3 but not less than ð3:5=2Þð pdo =Þ
SI
ð8-28aÞ
where do and h in m and p in MPa h ¼ 4:25 103 do ð pKÞ1=3 but not less than ð3:5=2Þð pdo =Þ
USCS
ð8-28bÞ
where do and h in in and p in psi or The design pressure as per Bureau of Indian Standards from Eq. (8-28)
8:97 1010 K
p¼
h do
3 but not greater than SI
2h 3:5do ð8-29aÞ
where p in MPa and h and do in m 13 106 K
p¼
h do
3 but not greater than
2 h 3:5 do
USCS
ð8-29bÞ
where p in psi and h and do in in for
L 97:78 14:6 > or > do ð pKÞ1=6 ð100h=do Þ1=2
for
L 22:4 1:46 > or > do ð pKÞ1=6 ðh=do Þ1=2
or
5:7
0:58
ð10p=Þ5=2 22:4 > pK ð pKÞ1=6
or
372:65 103
USCS
ð10p=Þ5=2 97:78 > pK ð pKÞ1=6
54:1 106 (c) In other cases, the minimum thickness of the shell exclusive of corrosion allowance as per Bureau of Indian Standards
SI
SI
USCS
ðh=do Þ3=2 1:46 > K ðh=do Þ1=2
SI
ðh=do Þ3=2 1:46 > K ðh=do Þ1=2
2=5 L h ¼ 3:576 10 do p K do 5
where h, do , and L in m; p in MPa
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
USCS
SI
ð8-30aÞ
DESIGN OF PRESSURE VESSELS, PLATES, AND SHELLS
8.16
CHAPTER EIGHT
Particular
Formula
2=5 L h ¼ 1:227 103 do p K do
USCS
ð8-30bÞ
SI
ð8-31aÞ
USCS
ð8-31bÞ
where h, L, and do in in; p in psi or The design pressure as per Bureau of Indian Standards
p¼
3:162 1012 ðh=do Þ5=2 LK=do
where h, L, and do in m; p in MPa h¼
189:58 106 ðh=do Þ5=2 LK=do
where h, do , and L in in; p in psi Reference Chart for ASME Boiler and Pressure Vessel Code, Section VIII, Division 112
Refer to Fig. 8-2.
(d) Maximum allowable stress values (1) The maximum allowable stress values in tension for ferrous and nonferrous materials sa The maximum allowable stress values (sa ) for bolt, tube, and pipe materials
Refer to Tables 7-1, 8-8 and 8-13 for sa . Refer to Tables 7-1, 8-8, 8-12 and 8-17.
FIGURE 8-2 Reference chart for ASME Boiler and Pressure Vessel Code, Section VIII, Division 1. (By permission, Robert Chuse, Pressure Vessels—The ASME Code Simplified, 5th edition, McGraw-Hill, 1977.)12
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
DESIGN OF PRESSURE VESSELS, PLATES, AND SHELLS
8.17
DESIGN OF PRESSURE VESSELS, PLATES, AND SHELLS
Particular
(2) The maximum allowable longitudinal compressive stress (ac ) to be used in the design of cylindrical shells or tubes, either seamless or butt-welded subjected to loadings that produce longitudinal compression in shell or tube. shall be as given in either Eq. (a) or (b).
Formula
ac < sa
from Tables 7-1, 8-9 to 8-13 (a)
ac < B
ðbÞ
where B ¼ a factor determined from the applicable material/temperature chart for maximum design temperature, psi, Figs. 8-4, 8-5. [Note: US Customary units (i.e., fps system of units) were used in drawing Figs. 8-3 to 8-5 of ASME Pressure Vessel and Boiler Code, which is now used to find the thickness of walls of cylindrical and spherical shells and tubes, unless it is otherwise mentioned to use both SI and US Customary units. Figures 8-3 to 8-5 are in US Customary units. The values from these figures and others can be used in the appropriate equation to find the values or results in SI units, if these values and equations are converted into SI units beforehand.]
(3) The procedure for determining the value of the factor B
The value of factor A
Select the thickness t (¼ h) and outside diameter Do or outside radius Ro of a cylindrical shell or tube in the corroded condition. Then calculate the value of A from Eq. (8-32) A¼
0:125 Ro =t
ð8-32Þ
Using this value of A enter the applicable material/ temperature chart for the material (Figs. 8-4 and 8-5) under consideration to find B. In case the value of A falls to the right of the end of the material/temperature line (Figs. 8-4 and 8-5), assume an intersection with the horizontal projection of the upper end of the material/temperature line. From the intersection move horizontally to the right and find the value of B. This is the maximum allowable compressive stress for the value of t and Ro assumed. If the value of A falls to the left of the applicable material/temperature line, the value of B, psi, shall be calculated from Eq. (8-33). The expression for value of factor B
AE ð8-33Þ 2 where E ¼ modulus of elasticity of material at design temperature, psi
B¼
Compare the value of B determined from Eq. (8-33) or from the procedure outlined above with the computed longitudinal compressive stress in the cylindrical shell or tube using the selected values of t and Ro . If the value of B is smaller than the computed, compressive stress, a greater value of t must be
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
DESIGN OF PRESSURE VESSELS, PLATES, AND SHELLS
8.18
CHAPTER EIGHT
FIGURE 8-3 Geometric chart for cylindrical vessels under external or compressive loadings (for all materials). (Source: American Society of Mechanical Engineers, ASME Boiler and Pressure Vessel Code, Section VIII, Division 1, July 1, 1986.)1;2;3
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
DESIGN OF PRESSURE VESSELS, PLATES, AND SHELLS DESIGN OF PRESSURE VESSELS, PLATES, AND SHELLS
8.19
FIGURE 8-4 Chart for determining shell thickness of cylindrical and spherical vessels under external pressure when constructed of carbon or low-alloy steels (specified minimum yield strength 24,000 psi to, but not including, 30,000 psi); (1 kpsi ¼6.894757 MPa).1;2;3
FIGURE 8-5 Chart for determining shell thickness of cylindrical and spherical vessels under external pressure when constructed of carbon or low-alloy steels (specified minimum yield strength 30,000 psi and over except for materials within this range where other specific charts are referenced) and type 405 and type 410 stainless steels (1 kpsi ¼6.894757 MPa). (Source: American Society of Mechanical Engineers, ASME Boiler and Pressure Vessel Code, Section VIII, Division 1, July 1, 1986.)1;2;3
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
DESIGN OF PRESSURE VESSELS, PLATES, AND SHELLS
8.20
CHAPTER EIGHT
Particular
Formula
selected and the procedure outlined above is repeated until a value of B is obtained, which is greater than the compressive stress computed for the loading on the cylindrical shell or tube. (e) Cylindrical shells and tubes. The required thickness of cylindrical shell or tube exclusive of corrosion allowance under external pressure either seamless or with longitudinal butt-welded joint as per ASME Boiler and Pressure Vessel Code can be determined by the following procedure: (1) Cylinders having (Do =t) values 10. Assume the thickness t of shell or tube. Determine Do =t and L=Do . Use Fig. 8-3 to find A. Find the value of A from Fig. 8-3 by following the procedure explained in paragraph (d) (3)
In cases where the value of A falls to the right of the end of the material/temperature line, assume an intersection with the horizontal projection of the upper end of the material/temperature line. Using this value of A enter the applicable material/temperature chart for material (Figs. 8-4 and 8-5) under consideration and find the value of B. This value of B is the maximum allowable compressive stress for the value of t and Ro assumed, Pa (psi).
The equation for maximum allowable external pressure (Pa ) by using this value of B
Pa ¼
4B 3ðDo =tÞ
ð8-34Þ
The equation for maximum allowable external pressure Pa for values of A falling to the left of the applicable material/temperature line.
Pa ¼
2AE 3ðDo =tÞ
ð8-35Þ
where Pa obtained from Eq. (8-35) is equal to or greater than P. P is the external design pressure, psi. This external allowable pressure is 15 psi (103.4 kPa) or less. The maximum external pressure is 15 psi (103.4 kPa) or 25% more than the maximum possible external pressure, whichever is smaller. (2) Cylinders having (Do =t) values <10. Using the procedure as outlined in section (d)(3), obtain the value of B. For values of (Do =t) less than 4, the value of A can be calculated using Eq. (8-36) The formula to calculate the value of Pa1 The formula to calculate the value of Pa2
A¼
1:1 ðDo =tÞ2
ð8-36Þ
For values of A greater than 0.10, use a value of 0.10 2:167 0:0833 B Do =t 2s 1 ¼ 1 Do =t Do =t
Pa1 ¼
ð8-37Þ
Pa2
ð8-38Þ
where s is the lesser of two times the maximum allowable stress value at design metal temperature, from the applicable Tables 8-9 to 8-12 or 0.9 times the yield strength of the
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
DESIGN OF PRESSURE VESSELS, PLATES, AND SHELLS DESIGN OF PRESSURE VESSELS, PLATES, AND SHELLS
Particular
8.21
Formula
material at design temperature. The yield strength values are twice the B value obtained from the applicable material/ temperature chart. The smaller of the values of Pa1 or Pa2 shall be used for the maximum allowable external pressure Pa . Thus Pa obtained is equal to or greater than the design pressure P.
Shell under external pressure—spherical shell The thickness of a spherical shell as per Bureau of Indian Standards The design pressure as per Indian Standards
h¼
pdo 0:80sa
ð8-39Þ
p¼
0:80sa h do
ð8-40Þ
A¼
0:125 Ro =t
ð8-41Þ
The minimum required thickness of a spherical shell exclusive of corrosion allowance under external pressure, either seamless or of built-up construction with butt joints, shall be determined by the following procedure as per ASME Boiler and Pressure Vessel Code. Select a value for t. Determine Do =L and Do =t. Find the value of A by using Fig. 8-3. The value of the factor A is also calculated from Eq. (8-41). Using this value of A, find the value of B from the applicable material/temperature chart as done in case of the cylindrical shell
where Ro is the outside radius of spherical shell in the corroded condition, in
The maximum allowable external pressure Pa for values of A falling to the right of the applicable material/temperature line
Pa ¼
The maximum allowable external pressure Pa for values of A falling to the left of the applicable material/temperature line
Pa ¼
B Ro =t
ð8-42Þ
where Pa is the calculated value of allowable external working pressure for the assumed value of t, Pa (psi), and P is the external design pressure, Pa (psi) 0:0625E ðRo =tÞ2
ð8-43Þ
The smaller value of Pa from Eq. (8-42) or (8-43) shall be used for the maximum allowable external pressure Pa . Pa obtained is equal to or greater than the design pressure P.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
DESIGN OF PRESSURE VESSELS, PLATES, AND SHELLS
8.22
CHAPTER EIGHT
Particular
Formula
For finding the thickness of a shell in the design of a longitudinal lap joint in a cylindrical or any lap joint in a spherical shell under external pressure
The thickness of the shell shall be determined by the rules already narrated for the longitudinal butt joint of the cylindrical and spherical shell, except that 2P shall be used instead of P in the calculations for the required thickness.
Cylindrical shell under combined loading as per Indian Standards The longitudinal stress
The hoop stress The shear stress
The Huber-Hencky equation for equivalent stress based on the shear strain energy criterion The basic design stress based on distortion energy theory
2 M pd þ W 4 b di 4 i z ¼ hðdi þ hÞ ¼
ð8-44Þ
pðdi þ hÞ 2h
ð8-45Þ
2Mt hdi ðdi þ hÞ qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi e ¼ 2 z þ 2z þ 3 2
ð8-46Þ
¼
ð8-47Þ
d ¼ ½2 þ 2z þ 2r 2ð z þ z r þ r Þ1=2 ð8-48Þ
Requirements are: (a) At design conditions
e sa
ð8-49Þ
zt sa
ð8-50Þ
ze 0:125Eðh=do Þ
ð8-51Þ
Refer to Table 8-14 for values of E. (b) At test conditions
e 1:3sam
ð8-52Þ
zt 1:3sam
ð8-53Þ
zc 0:125Esam ðha =do Þ
ð8-54Þ
Stiffening rings for cylindrical shells under external pressure The moment of inertia of the stiffening rings as per Indian Standards
Is ¼ 0:714 106 pLs d 03 K 4
SI
ð8-55aÞ
0
where Is in m , p in Pa, Ls and d in m Is ¼ 4:29 103 pLs d 03 K 4
USCS 0
where Is in in , p in psi, Ls and d in in
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð8-55bÞ
DESIGN OF PRESSURE VESSELS, PLATES, AND SHELLS
8.23
DESIGN OF PRESSURE VESSELS, PLATES, AND SHELLS
Particular
The required moment of inertia of a circumferential stiffening ring shall be not less than that determined by one of the formulas given in Eqs. (8-56) and (8-57) as per ASME Boiler and Pressure Vessel Code
Formula
Is ¼
D2o Ls ½t þ ðAs =Ls ÞA 14
USCS
ð8-56Þ
Is0 ¼
D2o Ls ½t þ ðAs =Ls ÞA 10:9
USCS
ð8-57Þ
The expression for factor B
B¼
3 4
For calculating factor A
Use the applicable material/temperature chart to find A
Select a member to be used for stiffening a ring after knowing Do , Ls , and t of a shell designed already. Then calculate factor B using Eq. (8-58)
For values of B falling below the left end of the material/temperature chart line for the design temperature the value of A can be determined from Eq. (8-59)
A¼
PDo t þ As =Ls
2B E
ð8-58Þ
ð8-59Þ
FORMED HEADS UNDER PRESSURE ON CONCAVE SIDE For domed ends of hemispherical, semiellipsoidal, or dished shape
Refer to Figs. 8-6 for domed end.
The required thickness at the thinnest point after forming of ellipsoidal, torispherical, hemispherical, conical, and toriconical heads under pressure on the concave side of the shell shall be computed by the appropriate formulas The thickness of the ends and/or heads under pressure on concave side (plus heads) as per Indian Standards
h¼
pdo C 2sa
ð8-60Þ
where C is a shape factor taken from Fig. 8-7 The allowable pressure as per Indian Standards
p¼
2hsa do C
FIGURE 8-6 Domed ends.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð8-61Þ
DESIGN OF PRESSURE VESSELS, PLATES, AND SHELLS
8.24
CHAPTER EIGHT
FIGURE 8-7 Shape factor C for domed ends.11
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
DESIGN OF PRESSURE VESSELS, PLATES, AND SHELLS DESIGN OF PRESSURE VESSELS, PLATES, AND SHELLS
Particular
8.25
Formula
Ellipsoidal heads The required thickness of a dished head of semiellipsoidal form. in which half the minor axis (inside depth of the head minus the skirt) equals one-fourth of the inside diameter of the head skirt, shall be determined by Eq. (8-62) as per ASME Boiler and Pressure Vessel Code
t¼
PD 2sa 0:2P
ð8-62Þ
The maximum allowable working pressure or design pressure as per ASME Boiler and Pressure Vessel Code
p¼
2sa t D þ 0:2t
ð8-63Þ
t¼
0:885PL sa 0:1P
ð8-64Þ
Torispherical heads The required thickness of a torispherical head for the case in which the knuckle radius is 6 percent of the inside crown radius and the inside crown radius equals the outside diameter of the skirt, shall be determined by Eq. (8-64) as per ASME Boiler and Pressure Vessel Code The maximum allowable working pressure as per ASME Boiler and Pressure Vessel Code
P¼
sa t 0:885L þ 0:1t
ð8-65Þ
Hemispherical heads The required thickness of a hemispherical head when its thickness does not exceed 0.36L or P does not exceed 0.665sa , shall be determined by Eq. (8-66) as per ASME Boiler and Pressure Vessel Code The design pressure
t¼
PL 2sa 0:2P
ð8-66Þ
P¼
2sa t L þ 0:2t
ð8-67Þ
h¼
pde c1 2sa
ð8-68Þ
Conical ends subject to internal pressure (Fig. 8-8d) as per Indian Standards KNUCKLE OR CONICAL SECTION The thickness of cylinder and conical section (frustrum) within pffiffiffiffiffi the distance L from the junction (L ¼ 0:5 de h=cos ) The thickness of those parts of conical sections not less than a distance L away from the junction with the cylinder or other conical section
Refer to Table 8-4 for values of c1 .
h¼
pdk 2sa p
1 cos
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð8-69Þ
DESIGN OF PRESSURE VESSELS, PLATES, AND SHELLS
8.26
CHAPTER EIGHT
FIGURE 8-8(A) (a) Ellipsoidal; (b) spherically dished (torispherical); (c) hemispherical; (d) typical conical shell connection; and (e) toriconical (cone head with knuckle).
Particular
Formula
SHALLOW CONICAL SECTIONS The thickness of conical sections having an angle of inclination to the vessel axis more than 708
pffiffiffiffiffiffiffiffiffiffiffi p=sa ð8-70Þ 90 The lower of values given by Eqs. (8-69) and (8-70) shall be used. h ¼ 0:5ðde ri Þ
Conical heads (without transition knuckle) as per ASME Boiler and Pressure Vessel Code The required thickness of conical heads or conical shell sections that have a half-apex angle not greater than 308 shall be determined by Eq. (8-71)
t¼
PD 2 cos ðsa 0:6PÞ
ð8-71Þ
where D ¼ inside diameter ¼ minimum joint efficiency, percent
TABLE 8-4 Values of c1 for use in Eq. (18-68) (as function of and ri =de ) ri =de
0.01
0.02
0.03
0.04
0.06
0.08
0.10
0.15
0.20
0.30
0.40
0.50
108 208 308 458 608 758
0.70 1.00 1.35 2.05 3.20 6.80
0.65 0.90 1.20 1.85 2.85 5.85
0.60 0.85 1.10 1.65 2.55 5.35
0.60 0.80 1.00 1.50 2.35 4.75
0.55 0.70 0.90 1.30 2.00 3.85
0.55 0.65 0.85 1.20 1.75 3.50
0.55 0.60 0.80 1.10 1.60 3.15
0.55 0.55 0.70 0.95 1.40 2.70
0.55 0.55 0.55 0.90 1.25 2.40
0.55 0.55 0.55 0.70 1.00 1.55
0.55 0.55 0.55 0.55 0.70 1.00
0.55 0.55 0.55 0.55 0.55 0.55
Source: IS 2825, 1969.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
DESIGN OF PRESSURE VESSELS, PLATES, AND SHELLS
8.27
DESIGN OF PRESSURE VESSELS, PLATES, AND SHELLS
Particular
Formula
P¼
2sa t cos D þ 1:2t cos
ð8-72Þ
The required thickness of the conical portion of a toriconical head, in which the knuckle radius is neither less than 6 percent of the outside diameter of the head skirt nor less than three times the knuckle thickness and pressure shall be determined by Eqs. (8-73) and (8-74)
tc ¼
PDi 2 cos ðsa 0:6PÞ
ð8-73Þ
P¼
2sa t cos Di þ 1:2t cos
ð8-74Þ
The required thickness of the knuckle and pressure shall be determined by Eqs. (8-75) and (8-76)
tk ¼
The design pressure
Toriconical heads
where Di ¼ inside cone diameter at point of tangency to knuckle PLM 2sa 0:2P
ð8-75Þ
or refer to Eqs. (8-66) and (8-67) where M ¼ factor depending on head proportion, L=r L ¼ Di =2 cos
The design pressure
Toriconical heads may be used when the angle 308 P¼
2sa tk ML þ 0:2tk
ð8-76Þ
FORMED HEADS UNDER PRESSURE ON CONVEX SIDE The thickness of heads and ends under pressure on convex side (minus heads) as per Indian Standards (a) Spherically dished ends and heads
The thickness of the spherically dished heads and ends shall be the greater of the following thicknesses: (1) The thickness of an equivalent sphere, having a radius ro or Ro equal to the outside crown radius of the end as determined from Eq. (8-39) (2) The thickness of the end under an internal pressure equal to 1.2 times the external pressure
(b) Ellipsoidal heads
The thickness of ends of a semiellipsoidal shape shall be the greater of the following: (1) The thickness of an equivalent sphere, having a radius ro or Ro calculated from the values of ro =do or Ro =Do in Table 8-5, determined as per Eq. (8-39)
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
DESIGN OF PRESSURE VESSELS, PLATES, AND SHELLS
8.28
CHAPTER EIGHT
Particular
Formula
(2) The thickness of the end under an internal pressure equal to 1.2 times the external pressure (c) Conical heads under external pressure: For a conical end or conical section under external pressure, whether the end is of seamless or buttwelded construction as per Indian Standards.
Use Eqs. (8-68), (8-69), and (8-70). Equations (8-68) to (8-70) are applicable, except that the shell thickness shall be no less than as prescribed below: (1) The thickness of a conical end or conical section under external pressure, when the angle of inclination of the conical section to the vessel axis is not more than 708, shall be made equal to the required thickness of cylindrical shell, in which the diameter is ðde = cos Þ and the effective length is equal to the slant height of the cone or conical section, or slant height between the effective stiffening rings, whichever is less. (2) The thickness of conical ends having an angle of inclination to the vessel axis of more than 708 shall be determined as a flat cover.
The thickness of formed heads under pressure on convex side (minus heads) as per ASME Boiler and Pressure Vessel Code The required thickness at the thinnest point after forming of ellipsoidal or torispherical heads under pressure on the convex side (minus heads) shall be the greater of the thicknesses given here
(1) The thickness as computed by the procedure given for the heads with the pressure on the concave side of the previous section using a design pressure 1.67 times the design pressure of the convex side, assuming the joint efficiency ¼ 1:00 for all cases, or (2) The thickness as determined by the appropriate procedure given in Ellipsoidal heads or Torospherical heads as per ASME Boiler and Pressure Vessel Code
HEMISPHERICAL HEADS The required thickness of a hemispherical head having pressure on the convex side shall be determined by Eqs. (8-41) to (8-43)
A¼
0:125 Ro =t
ð8-41Þ
B Ro =t
ð8-42Þ
Pa ¼
TABLE 8-5 Values of spherical radius factor Ko ¼ Ro =Do for ellipsoidal head with pressure on convex side as a function of ho =Do for use in Eq. (8-41) ho =Do Ko ¼ Ro =Do
0.167 1.36
0.178 1.27
0.192 1.182
0.208 1.08
0.227 0.99
0.25 0.90
0.276 0.81
0.313 0.73
0.357 0.65
0.417 0.57
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
0.5 0.5
DESIGN OF PRESSURE VESSELS, PLATES, AND SHELLS DESIGN OF PRESSURE VESSELS, PLATES, AND SHELLS
Particular
8.29
Formula
Pa ¼
0:0625 ðRo =tÞ2
ð8-43Þ
where Ro ¼ outside radius in corroded condition The procedure outlined in this section for finding the thickness of a spherical shell can be used to find the thickness of a hemispherical head by using Eqs. (841) to (8-43). ELLIPSOIDAL HEADS The minimum required thickness of ellipsoidal head having pressure on the convex side either seamless or of built-up construction with butt joints shall not be less than that determined by the procedure given here The factor A is given by Eq. (8-41)
TORISPHERICAL HEADS The required minimum thickness of a torispherical head having pressure on the convex side, either seamless or of built-up construction with butt joint
CONICAL HEADS AND SECTIONS The required minimum thickness of a conical head or section under pressure on the convex side, either seamless or the built-up construction with butt joints
Assume a value of t and calculate the value of factor A using the following equation: A¼
0:125 Ro =t
ð8-41Þ
Using the value of A calculated from Eq. (8-41) follow the procedure as that given for spherical shells to find the thickness of ellipsoidal heads. where Ro ¼ the equivalent outside spherical radius taken as Ko Do in the corroded condition Ko ¼ factor depending on the ellipsoidal head proportion Ro =Do (Table 8-5) The required thickness shall not be less than that determined by the same design procedure as is used for ellipsoidal heads given in the Ellipsoidal heads section, using appropriate values for Ro . For torispherical head, the outside radius of the crown portion of the head (Ro ) in corroded condition is taken for design purposes. This thickness can be determined following the procedure outlined under cylindrical shells in the Torispherical heads section to find factors A and B by assuming a value for te .
FIGURE 8-8(B) Typical conical sections for external pressure
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
DESIGN OF PRESSURE VESSELS, PLATES, AND SHELLS
8.30
CHAPTER EIGHT
Particular
The symbols involved in design calculations are
(1) When 608 and for cones having DL =te , values 10: Assume a value of te and determine ratios Le =DL and DL =te . The equation for calculating the maximum allowable external pressure Pa for the case of values of factor A falling to the right of the end of the material/temperature line. Equation for calculating the maximum allowable external pressure Pa for the case of values of factor A falling to the left of the applicable material/temperature line
Formula
te ¼ effective thickness of conical section Le ¼ equivalent length of conical section ¼ ðL=2Þð1 þ Ds =LÞ L ¼ axial length of cone or conical section (Fig. 8-8(B)) Ds ¼ outside diameter at small end of conical section under consideration Pa ¼
4B 3ðDL =te Þ
ð8-76aÞ
Pa ¼
2AE 3ðDL =te Þ
ð8-77Þ
where DL ¼ outside diameter at large end of conical section under consideration (Fig. 8-8(B)) ¼ one-half the apex angle in conical heads and section, deg. (Compare the value of Pa with design pressure P. If Pa < P, then select a new value for te and repeat the design procedure.)
(2) When 608 and for cones having DL =te , values <10: For values of DL =te less than 4, the value of factor A can be calculated by using Eq. (8-78).
A¼
For values of factor A greater than 0.10, use a value of 0.10 The equation for calculating Pa1 using the value of factor B obtained from material/temperature chart The equation for calculating Pa2
1:1 ðDL =te Þ2
2:167 0:0833 B DL =te 2s 1 ¼ 1 DL =te DL =te
ð8-78Þ
Pa1 ¼
ð8-79Þ
Pa2
ð8-80Þ
where s is less than two times the maximum allowable stress value at design metal temperature, from the applicable table or 0.9 times the yield strength of the material at design temperature. The yield strength is twice the value of B determined from the applicable material/temperature chart. The smaller of the values of Pa1 or Pa2 shall be used for the maximum allowable external pressure Pa . Pa is equal to or greater than P. (Design pressure P is obtained from appropriate table for material.) (3) When > 608
The thickness of the cone shall be the same as the required thickness for a flat head under external pressure, the diameter of which equals the largest diameter of the cone.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
DESIGN OF PRESSURE VESSELS, PLATES, AND SHELLS DESIGN OF PRESSURE VESSELS, PLATES, AND SHELLS
Particular
8.31
Formula
Toriconical head having the pressure on the convex side The required thickness of a toriconical head having pressure on the convex side, either seamless or of built-up construction with butt joints within the head
The length Le (Fig. 8-8B, panel a)
The length Le (Fig. 8-8B, panel b)
The length Le (Fig. 8-8B, panel c)
The thickness shall not be less than that determined using the procedure followed in the case of a cone having DL =te values 10 for conical heads and sections with exception that Le shall be determined using Eqs. (8-81): L DL þ Ds Le ¼ r1 sin 1 þ ð8-81aÞ 2 DLs Le ¼ r2
Dss L sin 2 þ DL 2
Le ¼ r1 sin 1 þ r2
Ds þ DL DL
Dss L sin 2 þ DLs 2
ð8-81bÞ
DL þ Ds DLs
ð8-81cÞ
To find the thickness when lap joints are used in formed head construction or for longitudinal joints in a conical header under external pressure
The rules in this section, except the design pressure 2P, shall be used instead of P in the calculations for the design of required thickness.
UNSTAYED FLAT HEADS AND COVERS (Fig. 8-9, Table 8-6) The thickness h of that unstayed circular heads, covers, and blind flanges as per Indian Standards
The minimum required thickness t of unstayed circular heads, covers and blind flanges as per ASME Boiler and Pressure Vessel Code The minimum required thickness t of flat unstayed circular heads, covers, and blind flanges which are attached by bolts, causing an edge moment as per ASME Boiler and Pressure Vessel Code
h ¼ c2 d
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ð p=sa Þ
ð8-82Þ
Refer to Table 8-6 for values of c2 . pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi t ¼ d ðCP=sa Þ
ð8-83Þ
Refer to Table 8-6 for values of C. t¼d
CP WhG þ 1:9 sa sa d 3
1=2 ð8-84Þ
where C is taken from Table 8-6 W ¼ flange design bolt load, lbf W ¼ Wm1 ¼ the minimum bolt load for operating condition, lbf t ¼ 0:785D2G P þ ð2b 3:14DG mpÞ
ð8-84aÞ
where W ¼ Wm2 ¼ the minimum required bolt load for gasket seating, lbf t ¼ 3:14bDG y
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð8-84bÞ
DESIGN OF PRESSURE VESSELS, PLATES, AND SHELLS
8.32
CHAPTER EIGHT
FIGURE 8-9 Types of unstayed flat heads. (K. Lingaiah and B. R. Narayana Iyengar, Machine Design Data Handbook, Engineering College Cooperative Society, Bangalore, India, 1962; K. Lingaiah and B. R. Narayana Iyengar, Machine Design Data Handbook, Vol. I (SI and Customary Metric Units), Suma Publishers, Bangalore, India, 1983; K. Lingaiah, Machine Design Data Handbook, Vol. II (SI and Customary Metric Units), Suma Publishers, Bangalore, India, 1986.)
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
DESIGN OF PRESSURE VESSELS, PLATES, AND SHELLS DESIGN OF PRESSURE VESSELS, PLATES, AND SHELLS
8.33
TABLE 8-6 Coefficients c2 and C for determining head thickness for typical unstayed flat heads (Fig. 8-9) Coefficient, c2 and C
Type of head IS (Fig. 8-9)a
ASME
c2 , IS (Fig. 8-9)
C, ASME
Remarks
AðaÞ
(b-2)
0.50
0.33 m but <0.20 j
Forged circular and noncircular heads integral with or butt-welded to the vessel
AðbÞ AðcÞ B
(b-1) (a)
0.50 0.45
0.35
0.17 0.17
0.10
0.45 0.50 0.1
CðaÞ to CðdÞ
(e), (f ) and (g)
pffiffiffiffiffiffiffiffiffiffiffi 0:7 hr =hs but <0.55 j
D
(h)
0.7
0.33
E
(i)
F
(p)
pffiffiffiffiffiffiffiffiffiffiffi 0:7 hr =hs but <0.55 j 0.42
0.33 m but <0.20 j 0.25
G
(c)
0.45
0.13
0.55 in other cases
0.20
0.33 m but <0.20 j 0.33
0.30
H IðaÞ IðbÞ IðcÞ
(m) (n) (o)
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 0:31 þ 95ðF=Pd 2 Þ 0.55 0.55 0.55
0.30 0.30 0.30
Flanged circular and noncircular heads forged integral with or butt-welded to the vessel with an inside corner radius not less than three times the required head thickness For circular heads when the pffiffiffiffiffiffi ffi flange length: 1. l ð1:1 0:8h2s =h2 Þ di h; r 2h, d ¼ di r and taper is 1 : 4 (Fig. 8-9) pffiffiffiffi 2. l ¼ ½1:1 0:8ððts =th Þ2 td d and taper is 1 : 3 (1) When r 2h, d ¼ di r and taper is 1 : 4 (Fig. 8-9) When d ¼ di and 0:25h r < 2h. For circular heads, when the flange length pffiffiffiffi l : l < ½1:1 0:8ðts =thp Þ2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi th d but the shell pffiffiffiffiffi thickness: ts <j 1:12th 1:1 1= th d; taper is at least 1 : 3 (2) Circular plates welded to inside of the pressure vessel Noncircular plates, welded to the inside of a vessel and otherwise meeting the requirements for the respective types of welded vessels For circular plates welded to the end of the shell when ts is at least 1.25tr For circular plates, if an inside fillet weld with minimum throat thickness of 0.7ts is used For circular and noncircular covers bolted with a full-face gasket, to shells, flanges or side plates Circular heads lap welded or brazed to the shell with corner radius not less than the 3h or 3t and l not less than required by formula (2) Circular and noncircular lap welded or brazed construction as above, but with no special requirement with regard to l Circular flanged plates screwed over the end of the vessel. with inside corner radius not less than 3t or 3h in which the design of threaded joint is based on a safety factor of 4 Autoclave manhole covers d >j 610 mm (24 in) Circular plates inserted in the end of a pressure vessel and held in place by a positive mechanical locking arrangement, and when all possible means of failure are resisted with a safety factor of at least 4; seal welding may be used, if desired
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
DESIGN OF PRESSURE VESSELS, PLATES, AND SHELLS
8.34
CHAPTER EIGHT
TABLE 8-6 Coefficients c2 and C for determining head thickness for typical unstayed flat heads (Fig. 8-9) (Cont.) Coefficient, c2 and C
Type of head IS (Fig. 8-9)a
JðaÞ JðbÞ KðaÞ KðbÞ
ASME
( j) (k) (r) (s)
c2 , IS (Fig. 8-9)
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 0:31 þ 190ðFbhG =Pd 3 Þ 0.7 0.7
C, ASME
0.3 0.3 0.33 0.33
Remarks Circular and noncircular head and covers bolted to the vessel as shown in Fig. 8-9 Circular plates having a dimension d not exceeding 450 mm (18 in) inserted into the vessel as shown in Fig. 8-9 and the end of the vessel shall be crimped over at least 308, but not more than 458; the crimping may be done cold only when this operation will not injure the metal in case of (r); in case of (s) the crimping shall be done when the entire circumference of the cylinder is uniformly heated to the proper forging temperature for the material used
a
Symbols in this column refer to Fig. 8-9. Where F (or W) is load on bolt. Sources: K. Lingaiah and B. R. Narayana Iyengar, Machine Design Data Handbook, Engineering College Cooperative Society, Bangalore, India, 1962; K. Lingaiah and B. R. Narayana Iyengar, Machine Design Data Handbook, Vol. I (SI and Customary Metric Units), Suma Publishers, Bangalore, India, 1983; and K. Lingaiah, Machine Design Data Handbook, Vol. II (SI and Customary Metric Units), Suma Publishers, Bangalore, India, 1986. b
Particular
The minimum thickness of noncircular heads and covers as per Indian Standards
The minimum heads, covers, or blind flanges of square, rectangular, oblong, segmental, or otherwise noncircular shape as per ASME Boiler and Pressure Vessel Code
Formula
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi h ¼ c2 k6 b ð pi =sa Þ
ð8-85Þ
Refer to Fig. 8-10 for values of k6 and Table 8-6 for values of c2 . pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi t ¼ d ðZCPÞ=sa ð8-88aÞ where Z ¼ a factor for noncircular heads depending on the ratio of long span to short span a=b Z ¼ 3:4
2:4d D
ð8-86bÞ
Refer to Fig. 8-10 for values of Z (Z ¼ k6 ). Z need not be greater than 2.5. d ¼ diameter or short span as indicated in Fig. 8-9. t, d in in and p and sa in psi
FIGURE 8-10 Coefficient k6 for noncircular flat heads.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
DESIGN OF PRESSURE VESSELS, PLATES, AND SHELLS DESIGN OF PRESSURE VESSELS, PLATES, AND SHELLS
Particular
The minimum thickness of flat unstayed non-circular heads, covers, or blind flanges attached by bolts causing a bolt load edge moment as per ASME Boiler and Pressure Vessel Code (Note: A stayed flat plate and types of stays are shown in Figs. 8-11 and 8-12.)
8.35
Formula
t¼d
ZCP 6WhG 1=2 þ sa sa Ld 2
ð8-87Þ
where hG ¼ gasket moment arm, equal to the radial distance from the center line of the bolts to the line of the gasket reaction as shown in Fig. 8-13
FIGURE 8-11 Stayed flat plate.
The net cover plate thickness under the groove or between the groove and outer edge (tg ) of the cover plate
qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 1:9WhG =sa d 3
ð8-88Þ
for circular heads and covers qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi tg <j d 6WhG =sa Ld 2
ð8-89Þ
tg <j d
for noncircular heads and covers The thickness of spherically dished ends and heads secured to the shell through a flange connection by means of bolts as per Indian Standards
h¼
3pdi 100h for R > j 1:3di and > j 10 2sa R
ð8-90Þ
The thickness of a dished head that is riveted or welded to a cylindrical shell according to ASME Boiler and Pressure Vessel Code
h¼
8:33PR 2su
ð8-91Þ
STAYED FLAT AND BRACED PLATES OR SURFACES (Figs. 8-11 and 8-12) The thickness of stayed and braced plate as per Indian Standards
h ¼ c4 d
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ð p=sa Þ
ð8-92Þ
Refer to Table 8-7 for values of c4 and Tables 8-8, 8-9, and 8-11 for allowable stress values sa .
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
DESIGN OF PRESSURE VESSELS, PLATES, AND SHELLS
8.36
CHAPTER EIGHT
FIGURE 8-12 Types of stays.
FIGURE 8-13 Location of bolt load reaction.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
DESIGN OF PRESSURE VESSELS, PLATES, AND SHELLS DESIGN OF PRESSURE VESSELS, PLATES, AND SHELLS
8.37
TABLE 8-7 Coefficients c4 for determining head thickness for stayed and braced plates Type of stay
c4
Remarks
A B C D E F
0.45 0.45 0.55 0.55 0.45 0.40
Flange of a flanged head Welded brace Welded tube stay Expanded and beaded tubular stay Bar stay with washer of diameter not less than 2.5 times the stay diameter Bar stay with washer and reinforcing plate of diameter not less than 0.3d
Particular
The minimum thickness for braced and stayed flat plates with braces or stay bolts of uniform diameter symmetrically spaced as per ASME Boiler and Pressure Vessel Code
The maximum allowable working pressure for braced and stayed flat plates as per ASME Boiler and Pressure Vessel Code
Formula
t ¼ pt
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ðP=sa c5 Þ
ð8-93Þ
where t ¼ minimum thickness of plate, exclusive of corrosion allowance, in sa ¼ maximum allowable stress, MPa (psi), taken from Tables 8-9 to 8-13 for shell plates and Table 8-23 for bolts P¼
t2 sa c5 p2t
ð8-94Þ
where c5 ¼ a factor depending on the plate thickness and type of stay taken from Table 8-15
Stayed flat plates with uniformly distributed load Grashof’s formula for maximum stress
The deflection
¼ 0:2275
p2t p h2
ð8-95Þ
y ¼ 0:0284
p4t p Eh3
ð8-96Þ
OPENINGS AND REINFORCEMENT For flanged-in and unreinforced openings in cylindrical or conical shell or spherical shell or heads and ends
Refer to Figs. 8-14 and 8-15. Holes cut in domed ends shall be circular, elliptical, or oblong. The radius r of flanged-in openings (Fig. 8-14) shall not be less than 25 mm. Flanged-in and other openings shall be arranged so that the distance from the edge of the end is not less than that shown in Fig. 8-14. In all cases the projected width of the ligament between any two adjacent openings shall be at least equal to the diameter of the smaller openings as shown in Fig. 8-15.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
DESIGN OF PRESSURE VESSELS, PLATES, AND SHELLS
8.38
CHAPTER EIGHT
FIGURE 8-14 Flanged-in unreinforced opening.
FIGURE 8-15 Unreinforced opening.
Particular
The distance between openings spaced apart, Lo , in a cylindrical or conical or spherical shell as per Indian Standards For size of openings in cylinders or conical shells or spherical shells subject to a maximum of 200 mm (8 in) which do not require reinforcement
Formula
Lo <j L ¼
dðha =hr Þ ðha =hr 0:95Þ
ð8-97Þ
Refer to Tables 8-16 and 8-17 for flange bolting. Refer to Fig. 8-16. where h ¼ distance between centers of any two adjacent openings, mm (in) d ¼ diameter or largest opening ¼ mean value of the major and minor axes in case of elliptical or obround openings, mm (in) ha ¼ actual thickness of vessel before corrosion allowance is provided, mm (in) hr ¼ required thickness of vessel putting ¼ 1:0 before corrosion allowance is added, mm (in)
The total cross-sectional area of reinforcement, Ar , as per Indian Standards
Ar <j A ¼ dhr
ð8-98Þ
where d ¼ nominal internal diameter of the branch plus twice the corrosion allowance, mm (in) hr ¼ thickness of an unpierced shell or end calculated from Eq. (8-10)
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
DESIGN OF PRESSURE VESSELS, PLATES, AND SHELLS DESIGN OF PRESSURE VESSELS, PLATES, AND SHELLS
Particular
The expression for K factor
8.39
Formula
K ¼ pDo =1:82a ha
ð8-99Þ
Refer to Fig. 8-16a and b, where K has a value of unity or greater, the maximum size of an unreinforced opening shall be 50 mm (2 in)
Design for internal pressure The total cross-sectional area of reinforcement A required in any given plane through the opening for a shell or formed head under internal pressure shall not be less than as per ASME Boiler and Pressure Vessel code The total cross-sectional area of reinforcement in flat heads that have an opening with a diameter that does not exceed one-half of the head diameter or shortest span, shall not be less than that given by Eq. (8-100) as per ASME Boiler and Pressure Vessel Code
A ¼ 0:5td
For nomenclature and formulas for reinforced openings as per ASME Boiler and Pressure Vessel Code
Refer to Fig. 8-17.
For values of spherical radius factor K1
Refer to Table 8-18.
The length of tapped hole ls to engage a stud
maximum allowable stress value of stud material at design temperature ls ¼ 0:75ds maximum allowable stress value of tapped material at design temperature
ð8-100Þ
where t ¼ minimum required thickness of flat head or cover, exclusive of corrosion allowance, m (in)
ð8-101Þ
and also ls <j ds , where ds ¼ nominal diameter of the stud, except that the thread engagement need not exceed 1:5ds
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
471 (68.3) 275 (39.9) 490 (71.1) 294 (42.6) 490 (71.1) 314 (45.5)
432 (62.7) 451 (65.4) 310 (45.0) 414 (60.0) 414 (60.0)
539 (78.2) 461 (66.9) 510 (74.0) 481 (69.8) 510 (74.0) 618 (89.6)
363 (52.6) 412 (59.8) 432 (62.7) 461 (66.9) 491 (71.2) 432 (62.7) 490 (71.1)
Plates 1 2A 2B 20 Mo 6 20 C 15 15 Cr 4 Mo 6 15 C 8
Forgings 20 Mo 6 15 Cr 4 Mo 6 10 Cr 9 Mo 10
Tubes and pipes 1% Cr 12% Mo 20 Mo 6 Fe 170 Fe 240 Fe 290
Castings Grade 1 Grade 2 Grade 3 Grade 4 Grade 5 Grade 6
Sections, plates, and bars Grade 1 Grade 2 Grade 3 Grade 4 Grade 5 Grade A-N Grade B-N
Plates, bars, forgings, seamless tubes X04 Cr 19 Ni 9 540 (78) X04 Cr 19 Ni 9 Ti 20 540 (78) X04 Cr 19 Ni 9 No 40 540 (78) X05 Cr 18 Ni 11 Mo 3 540 (78) X05 Cr 19 Ni 9 Mo 3 540 (78) Ti 20 Castings Grades 7, 8 461 (66.9)
363 (52.6) 412 (59.8) 510 (74.0) 471 (68.3) 510 (74.0) 490 (71.1) 412 (59.8)
Materials with grade or designation and product
28 28 28 28 28
21
205 (30)
26 25 23 22 21 23 20
17 17 15 17 17 15
950R20 950R20
20 20 20
26 25 20 20 20 20 25
235 (34) 235 (34) 235 (34) 235 (34) 235 (34)
0.55 R20 0.55 R20 0.55 R20 0.55 R20 0.55 R20 235 (34.0) 280 (40.6)
343 (49.8) 245 (35.5) 304 (44.1) 275 (39.9) 304 (44.1) 422 (61.2)
235 (34.1) 245 (35.5) 173 (25.1) 241 (35.0) 290 (42.1)
0.55 R20 a 0.50 R20 0.50 R20 275 (39.9) 294 (42.6) 294 (42.6) 226 (32.8)
Tensile strength, st , min R20 , MPa (kpsi)
Yield stress, sy min, E20 MPa (kpsi)
Mechanical properties
Allowable stress, sa at design temperature, K (8C)
8.40
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website. 137 (19.9)
157 (22.8) 157 (22.8) 157 (22.8) 157 (22.8) 157 (22.8)
121 (17.5) 137 (19.9) 143 (20.7) 153 (22.2) 163 (23.6) 143 (20.7) 163 (13.6)
134 (19.4) 115 (16.7) 127 (18.4) 120 (17.4) 127 (18.4) 154 (22.3)
143 (20.7) 150 (21.8) 103 (15.0) 137 (19.9) 137 (19.9)
157 (22.8) 163 (23.6) 163 (23.6)
121 (17.5) 137 (19.8) 170 (24.7) 157 (22.8) 170 (24.7) 163 (23.6) 137 (19.9)
111 (16.1) 126 (18.3) 131 (19.0) 141 (20.5) 150 (21.8) 143 (20.7) 163 (23.6)
134 (19.4) 114 (16.5) 127 (18.4) 120 (17.4) 127 (18.4) 154 (22.3)
143 (20.7) 150 (21.8) 103 (15.0) 137 (19.9) 137 (19.9)
157 (22.8) 163 (23.6) 163 (23.6)
121 (17.5) 126 (18.3) 156 (22.6) 157 (22.8) 170 (24.7) 163 (23.6) 137 (19.9)
127 (18.4)
139 (20.2) 140 (20.3) 140 (20.3) 142 (20.6) 142 (20.6)
102 (14.8) 117 (17.0) 122 (17.7) 130 (18.9) 138 (20.0) 133 (19.2) 158 (23.0)
134 (19.4) 108 (15.7) 127 (18.4) 120 (17.4) 127 (18.4) 154 (22.3)
139 (20.2) 143 (20.7) 97 (14.0) 136 (19.7) 137 (19.9)
157 (22.8) 163 (23.6) 163 (23.6)
113 (16.4) 117 (17.0) 144 (20.8) 157 (22.8) 167 (24.2) 163 (23.6) 127 (18.4)
93 (13.5) 106 (15.4) 111 (16.1) 119 (17.3) 126 (18.3) 121 (17.5) 143 (20.7)
132 (19.1) 100 (14.5) 125 (18.1) 117 (17.0) 127 (18.4) 154 (22.3)
133 (19.3) 133 (19.3) 88 (12.8) 124 (18.0) 137 (19.9)
150 (21.8) 163 (23.6) 163 (23.6)
102 (14.8) 106 (15.4) 130 (18.8) 150 (21.8) 150 (21.9) 163 (23.6) 116 (16.8)
76 (11.0) 88 (12.8) 91 (13.2) 105 (15.2) 109 (15.8) 88 (12.8) 105 (15.2)
110 (16.0) 86 (12.5) 108 (15.7) 104 (15.1) 127 (18.4) 160 (23.2)
119 (17.3) 115 (16.7) 74 (10.7) 103 (15.0) 124 (18.0)
130 (18.9) 149 (21.6) 170 (24.6)
85 (12.3) 88 (12.8) 109 (15.8) 129 (18.7) 126 (18.3) 149 (21.6) 96 (13.9)
70 (10.2) 79 (11.5) 83 (12.0) 94 (13.6) 98 (14.2) 79 (11.5) 94 (13.6)
99 (14.4) 80 (11.6) 100 (14.5) 99 (14.4) 117 (17.0) 152 (22.0)
113 (16.4) 108 (15.7) 66 (9.6) 93 (13.5) 113 (16.4)
121 (17.6) 141 (20.5) 161 (23.4)
77 (11.2) 79 (11.5) 98 (14.2) 121 (17.6) 114 (16.5) 141 (20.5) 87 (17.6)
117 (18.4)
122 (17.7) 124 (18.0) 124 (18.0) 127 (18.4) 127 (18.4)
106 (15.4)
104 (15.0) 106 (15.4) 106 (15.4) 113 (16.4) 113 (16.4)
High-Alloy Steels in Tension
84 (12.2) 96 (13.9) 100 (14.5) 115 (16.7) 119 (17.3) 96 (13.9) 115 (16.7)
120 (17.4) 94 (13.6) 117 (17.0) 110 (17.3) 128 (18.6) 169 (24.5)
127 (18.4) 127 (18.4) 80 (11.6) 113 (16.4) 135 (19.6)
140 (20.3) 157 (22.8) 176 (25.5)
93 (13.5) 96 (13.9) 119 (17.3) 140 (20.3) 137 (19.9) 157 (22.8) 105 (15.2)
Carbon and Low-Alloy Steel in Tension
104 (15.1)
97 (14) 104 (15) 104 (15) 110 (16) 110 (16)
67 (9.7) 76 (11.0) 79 (11.5) 89 (12.9) 93 (13.5)
94 (13.6) 79 (11.5) 98 (14.2) 95 (13.8) 115 (16.7) 146 (21.2)
109 (15.8) 104 (15.1) 63 (9.1) 88 (12.8) 106 (15.4)
107 (15.5) 135 (19.6) 158 (22.9)
74 (10.7) 76 (11.0) 93 (13.5) 117 (17.0) 108 (15.7) 135 (19.6) 82 (11.9)
104 (15.1)
92 (13.3) 104 (15) 104 (15) 110 (16) 110 (16)
64 (9.3) 73 (10.6) 76 (11.0) 81 (11.8) 81 (11.8)
61 (8.8) 76 (11.0) 94 (13.6) 91 (13.2) 116 (16.9) 141 (20.5)
105 (15.2) 101 (14.7) 61 (8.8) 81 (11.8) 81 (11.8)
113 (16.4) 131 (19.0) 155 (22.5)
71 (10.3) 73 (10.6) 81 (11.8) 113 (16.4) 81 (11.8) 128 (18.6) 79 (11.5)
98 (14.2) 94 (13.6) 42 (6.1) 42 (6.1) 42 (6.1)
106 (15.4) 124 (18.0) 146 (21.2)
42 (6.1) 42 (6.1) 42 (6.1) 106 (15.4) 42 (6.1) 124 (18.0) 42 (6.1)
104 (15.1)
85 (12.3) 104 (15.1) 10.4 (15.1) 110 (16.0) 110 (16.0)
58 (8.4) 58 (8.4) 58 (8.4) 58 (8.4) 58 (8.4)
104 (15.1)
79 (11.5) 101 (14.6) 104 (15.1) 109 (15.8) 109 (15.8)
42 (6.1) 42 (6.1) 42 (6.1) 42 (6.1) 42 (6.1)
43 (6.2) 31 (4.5) 74 (10.7) 71 (10.3) 91 (13.2) 82 (11.9) 89 (12.9) 86 (12.5) 109 115.8) 106 (15.4) 137 (19.9) 132 (19.1)
102 (14.8) 98 (14.2) 58 (8.4) 58 (8.4) 58 (8.4)
110 (16.0) 128 (18.6) 150 (21.8)
58 (8.4) 58 (8.4) 58 (8.4) 110 (16.0) 58 (8.4) 128 (18.6) 58 (8.4)
35 (5.0) 35 (5.0) 35 (5.0) 35 (5.0) 35 (5.0)
26 (3.8) 57 (8.8) 57 (8.3) 83 (12.0) 94 (13.6) 66 (9.6)
95 (13.8) 76 (11.0) 35 (5.1) 35 (5.1) 35 (5.1)
76 (11.0) 114 (16.5) 125 (18.1)
35 (5.1) 35 (5.1) 35 (5.1) 76 (11.0) 35 (5.1) 114 (16.5) 35 (5.1)
41 (5.9) 41 (5.9) 64 (9.3) 71 (10.3) 48 (7.0)
84 (12.2) 55 (8.0)
27 (3.9) 27 (3.9) 43 (6.2) 51 (7.5) 34 (4.9)
57 (8.3) 36 (5.2)
56 (8.1) 57 (8.3) 69 (10.0)
57 (8.3)
84 (12.2)
55 (8.0) 84 (12.2) 94 (13.6)
36 (5.2)
55 (8.0)
25 (3,6) 36 (5.2) 25 (3.6)
34 (5.0)
34 (5.0) 48 (7.0)
34 (5.0)
33 (4.8) 16 (2.3)
31 (4.5)
323 K 373 K 423 K 473 K 523 K 573 K 623 K 648 K 673 K 698 K 723 K 748 K 773 K 798 K 823 K 848 K (508C), (1008C), (1508C), (2008C) (2508C), (3008C), (3508C), (3758C), (4008C), (4258C), (4508C), (4758C), (5008C), (5258C), (5508C), (5758C) MPa (kpsi) MPa (kpsi) MPa (kpsi) MPa (kpsi) MPa (kpsi) MPa (kpsi) MPa (kpsi) MPa (kpsi) MPa (kpsi) MPa (kpsi) MPa (kpsi) MPa (kpsi) MPa (kpsi) MPa (kpsi) MPa (kpsi) MPa (kpsi)
TABLE 8-8 Allowable stresses sa for various ferrous and nonferrous materials
DESIGN OF PRESSURE VESSELS, PLATES, AND SHELLS
216 (31.3) 265 (38.4) 265 (38.4) 186 (27.0) 108 (15.7) 294 (42.6) 245 (35.5)
216 (31.3) 108 (15.7) 309 (44.8) 245 (35.5)
275 (40.0) 275 (40.0)
Sheet, strip S1B—12H NS4—14H
Bars, rods, and sections NE5—M NE6—M NE8—0 HE30—W HE30—WP
Drawn tubes HT30—W HT30—WP
Plate sheet and strips Cu Zn 30 Cu Zn 40
284 (41.2) 284 (41.2)
22
45 30
16 7
88+ 18+ 16 18 10
8 8
30 12
69 (10.0) 86 (12.5)
69 (10.0)
69 (10.0) 86 (12.5)
51 (7.4) 72 (10.4)
54 (7.8) 66 (9.6) 69 (10.0) 51 (7.4) 71 (10.3)
21 (3.0) 54 (7.8)
12 (1.7) 43 (6.2)
69 (10.0) 85 (12.3)
69 (10.0)
69 (10.0) 85 (12.3)
50 (7.3) 70 (10.2)
49 (7.1) 70 (10.2)
20 (2.9) 53 (7.7)
13 (1,9) 42 (6.1)
69 (10.0) 81 (11.7)
69 (10.0)
69 (10.0) 81 (11.7)
48 (7.0) 67 (9.7)
47 (6.8) 67 (9.7)
19 (2.8) 52 (7.5)
11 (1.6) 42 (6.1)
69 (10.0) 77 (11.2)
69 (10.0)
69 (10.0) 77 (11.2)
46 (6.7) 65 (9.4)
46 (6.7) 65 (9.4)
18 (2.6) 49 (7.1)
10 (1.5) 41 (5.9)
39 (5.7) 43 (6.2)
39 (6.7) 43 (6.2)
14 (2.0) 37 (5.4)
8 (1.2) 32 (4.6)
28 (4.1) 30 (4.4)
28 (4.1) 30 (4.4)
11 (1.6) 24 (3.5)
7 (1.1) 24 (3.5)
68 (9.9) 71 (10.3)
68 (9.9)
68 (9.9) 71 (10.3)
56 (8.1) 53 (7.7)
56 (8.1)
56 (8.1) 53 (7.7)
38 (5.5) 19 (2.8)
38 (5.5)
38 (5.5) 19 (2.8)
Copper and Copper Alloys
44 (6.38) 55 (8.0)
44 (6.4) 54 (7.8)
16 (2.3) 44 (6.4)
9 (1.3) 37 (5.4)
Aluminum and Aluminum Alloys in Tensions
323 K 373 K 423 K 473 K 523 K 573 K 623 K 648 K 673 K 698 K 723 K 748 K 773 K 798 K 823 K 848 K (508C), (1008C), (1508C), (2008C) (2508C), (3008C), (3508C), (3758C), (4008C), (4258C), (4508C), (4758C), (5008C), (5258C), (5508C), (5758C) MPa (kpsi) MPa (kpsi) MPa (kpsi) MPa (kpsi) MPa (kpsi) MPa (kpsi) MPa (kpsi) MPa (kpsi) MPa (kpsi) MPa (kpsi) MPa (kpsi) MPa (kpsi) MPa (kpsi) MPa (kpsi) MPa (kpsi) MPa (kpsi)
Allowable stress, sa at design temperature, K (8C)
b
These values have been used on a quality factor of 0.75. 0:55R20 ¼ 0:55 363 ¼ 199:7 MPa (29.0 kpsi). Notes: + The elongation values are based on 50.8-mm test piece; a area of cross-section; † tube normalized and tempered. Sources: K. Lingaiah and B. R. Narayana Iyengar, Machine Design Data Handbook, Engineering College Cooperative Society, Bangalore, India, 1962; K. Lingaiah and B. R. Narayana Iyengar, Machine Design Data Handbook, Vol. I (SI and Customary Metric Units), Suma Publishers. Bangalore. India. 1983; and K. Lingaiah, Machine Design Data Handbook, Vol. II (SI and Customary Metric Units), Suma Publishers, Bangalore, India, 1986
a
Tubes Alloy 1 Alloy 2
392 (56.9)
98 (14.2) 196 (28.4)
Plates PIB—M NP4—M
Bars and rods
64 (9.3) 186 (27.0)
Materials with grade or designation and product
Yield stress, sy min, E20 MPa (kpsi)
Tensile strength, st , min R20 , MPa (kpsi)
Mechanical properties
TABLE 8-8 Allowable stresses sa for various ferrous and nonferrous materials (Cont.)
DESIGN OF PRESSURE VESSELS, PLATES, AND SHELLS
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
8.41
8.42
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
SA 225 SA 302
SA 204
SA 203
Plate SA 202
h
g
A C C C
F
B
A
0.5 Cr-1.25 310 Mn-Si 0.5 Cr-1.25 324 Mn-Si 3.5 Ni, 379 50 mm (2 in.) C-0.5 Mo 255 C-0.5 Mo 296 Mn-0.5 Ni-V 483 Mn-0.5 Mo- 345 0.5 Ni 37 43 70 50
55
47
45
30 40 30 36 22.5 27.5 30.0
207 276 207 248 155 190 207
20 80
36
138 552
C-,Mn C-Mn-SiCb-V
24 40/42 42 32 38 35 38 50
kpsi
248
165 276/290 290 220 262 241 262 345
C C-Mn-Si C-Mn C-Si C-Si C-Mn-Si C-Mn-Si C-Mn-Si
Carbon steel forgings, castings, and bars SA 36b;c bars C-Mn-Si and shapes c SA 216 cast WCA C-Si WCC C-Mn-Si c SA 350 forge LFI C-Mn-Si LF2 C-Mn-Si SA 675b;c bar 45 C 60 C 70 C
Plates and sheets A SA 285b;c;d SA 299c b;c SA 414 F SA 515c 60 70 c 65 SA 516 70 c SA 537 Cl-1 up to 62.5 mm (2.5 in) incl. SA 620 1 and 2 SA 812 80
composition MPa
no.
Grade
Nominal
Specification
Specified minimum yield strength, sy
448 517 724 552
552
586
517
413 483 413 483 310 379 483
400
276 689
310 517 483 413 483 448 483 483
65 75 105 80
80
85
75
60 70 60 70 45 55 70
58
40 100
45 75 70 60 70 65 70 70
MPa kpsi
Specified minimum tensile strength st
112 130 181 138
138
147
130
103 121 103 121 78 95 121
100
69 147
78 130 121 103 121 115 121
MPa
16.3 18.8 26.3 20.0
20.0
21.3
18.8
15.0 17.5 15.0 17.5 11.3 13.8 17.5
14.5
10.0 21.3
11.3 18.8 17.5 15.0 17.5 16.3 17.5
kpsi
19 to 345 (30 to 650)
11.0 17.7 16.6 14.4 16.6 15.5 16.6
112 130 181 138
136
122
99 115 99 115 76 92 115
56
16.3 18.8 26.3 20.0
19.8
17.7
14.4 16.6 14.4 16.6 11.0 13.3 16.6
13.9
(Fig. 8-5)
76 121 114 99 114 107 114
MPa kpsi
370 (700)
135
112 130
122
108
90 102 90 102 71 83 102
87
71 108 101 90 102 96 102
19.6
16.3 18.8
17.7
15.7
13.0 14.8 13.0 14.8 10.3 12.1 14.8
12.6
10.3 15.7 14.7 13.0 14.8 13.9 14.8
MPa kpsi
400 (750)
10.8 12.0 10.8 12.0 9.0 10.2 12.0
10.5
9.0 12.6 12.0 10.8 12.0 11.4 12.0
60 64 54 54 54 60 64
57
54 66 63 60 64 62 64
130
109 130
83
83
18.8
15.8 18.8
12.0
12.0
123
106 126
54
54
Low-Alloy Steel
75 83 75 83 62 70 83
72
62 87 83 75 83 79 83
455 (850)
17.9
15.3 18.3
7.8
7.8
8.7 9.3 7.8 7.8 7.8 8.4 9.3
8.5
7.8 9.6 9.2 8.7 9.3 9.0 9.3
MPa kpsi
Carbon Steel
MPa kpsi
427 (800)
94
94 94
35
35
45 45 35 35 45 45 45
45 45 45 45 45 45 45
13.7
13.7 13.7
5.0
5.0
6.5 6.5 5.0 5.0 6.5 6.5 6.5
45
6.5 6.5 6.5 6.5 6.5 6.5 6.5
MPa kpsi
482 (900)
56
56 56
21
8.2
8.2 8.2
3.0
3.0
4.5
31
21
4.5 4.5 3.0 3.0
31 31 21 21
6.5
33.0
33.0 33.0
10.0
10.0
17.0
17.0 17.0 10.0 10.0
17.0 17.0 17.0 17.0
31 31 31 31
4.5 4.5 4.5 4.5
17.0
4.8
4.8 4.8
1.5
1.5
2.5
2.5 2.5 1.5 1.5
2.5 2.5 2.5 2.5
2.5
MPa kpsi
538 (1000)
(Fig. 8-5) 31 4.5
MPa kpsi
510 (950)
(Fig. 8-5) (Fig. 8-5)
MPa kpsi
566 (1050)
Maximum allowable stress, sa for metal temperature, 8C (8F), not exceeding
TABLE 8-9 Maximum allowable stress values, sa , in tension for carbon and low-alloy steel
MPa kpsi
593 (1100) MPa kpsi
620 (1150)
MPa kpsi
650 (1200)
SA 302
SA 203 SA 204gb SA 204g SA 225h SA 225h
SA 202
SA 675b;c bar
SA 350c forge
SA 36b;c bars and shapes SA 216c cast
SA 620 SA 812
SA 537c
SA 516c
SA 285b;c;d SA 299c SA 414b;c SA 515c
no.
Specification
DESIGN OF PRESSURE VESSELS, PLATES, AND SHELLS
11 Cl.2
SA 387
4N
3
B11
SA 487 cast
SA 541 forge
SA 739 bar
1 Cr-0.5 Mo 1.25 Cr-0.5 Mo-Si C-0.5 Mo 1 Ni-0.5 Cr0.5 MO 9 Cr-1 Mo 1.25 Cr-0.5 Mo-Si 0.5 Ni-0.5 Cr-0.25 Mo V 0.5 Ni-0.5 Mo V 1.25 Cr-0.5 Mo 2.25 Cr- 1 Mo
310
310
345
413
413 276
241 276
276 276
45
45
50
60
60 40
35 40
40 40
30
45
kpsi
517
483
552
620
620 483
448 483
483 483
413
517
75
70
80
90
90 70
65 70
70 70
60
75
MPa kpsi
Specified minimum tensile strength st
121
138
121
112 121
121 121
130
MPa
17.5
20.0
17.5
16.3 17.5
17.5 17.5
18.8
kpsi
19 to 345 (30 to 650)
121
121
138
141 121
112 121
121 121
95
130
17.5
17.5
20.0
20.5 17.5
16.3 17.5
17.5 17.5
13.7
18.8
MPa kpsi
370 (700)
119
121
138
136 121
112 121
121 121
91
130
17.2
17.5
20.0
19.8 17.5
16.2 17.5
17.5 17.5
13.2
18.8
MPa kpsi
400 (750)
116
121
132
132 121
109 121
121 121
88
130
16.9
17.5
19.1
19.1 17.5
15.8 17.5
17.5 17.5
12.8
18.8
MPa kpsi
427 (800)
113
118
125 118
105 118
118 118
83
126
16.4
17.1
18.2 17.1
15.3 17.1
17.1 17.1
12.1
18.3
MPa kpsi
455 (850)
109
110
114 110
90 103
110 110
75
110
15.8
15.9
10.5 15.9
13.7 15.0
15.9 15.9
10.9
15.9
MPa kpsi
482 (900)
76
76
76 76
56 63
76 76
55
76
11.0
11.0
11.0 11.0
8.2 9.2
11.0 11.0
8.0
11.0
MPa kpsi
510 (950)
52.0
48.0
51.0 48.0
33.0 40.0
45.0 48.0
40.0
48.0
7.6
6.9
7.4 6.9
4.8 5.9
6.6 6.9
5.8
6.9
MPa kpsi
538 (1000)
40
32
35 32
30 32
29
32
5.8
4.6
5.0 4.6
4.3 4.6
4.2
4.6
MPa kpsi
566 (1050)
Maximum allowable stress, sa for metal temperature, 8C (8F), not exceeding
30
19
23 19
18 19
20
19
4.4
2.8
3.3 2.8
2.6 2.8
2.9
2.8
MPa kpsi
593 (1100)
17
15
15
10 15
14
15
2.5
2.1
2.2
1.4 2.1
2.0
2.1
MPa kpsi
620 (1150)
7 8
9
8
10
9
8
1.3
1.2
1.5
1.0 1.2
1.3
1.2
MPa kpsi
650 (1200)
SA 541 forge SA 739 bar
SA 487 cast
SA 336 forge
SA 217 cast
SA 182 forge
SA 387
no.
Specification
Notes: a These stress values are one-fourth the specified minimum strength multiplied by a quality factor of 0.92, except for SA 283, grade D and SA-36. b For service temperature above 4558C (8508), it is recommended that killed steels containing not less than 10% residual silicon be used. c Upon prolonged exposure to temperature above 4268C (8008F) the carbide phase of carbon steel may be converted to graphite. d The material shall not be used in thickness above 50 mm (2 in). e The material shall not be used in thickness above 62 mm (2.5 in). f Only killed steel shall be used above 4558C (8508F). g Upon prolonged exposure to temperature above 4688C (8758F), the carbide phase of carbon molybdenum steel may be converted to graphite. h The maximum nominal plate thickness shall not exceed 14.75 mm (0.58 in). i These stress values apply to normalized and drawn materials only. j For other conditions and specifications, the reader is referred to the general notes given for Table UCS-23 of ASME Boiler and Pressure Vessel Code, Section VIII, Division 1, July 1, 1986. Source: The American Society of Mechanical Engineers, ASME Boiler and Pressure Vessel Code, Section VIII, Division 1, July 1, 1986.
B22
C12 F11
WC1 WC4
SA 336 forge
SA 217 cast
Forgings, castings, and bars SA 182 forge F12 F11b
5 Cl.1
composition MPa
Grade
no.
1.25 Cr-0.5 310 Mn-Si 5 Cr-0.5 Mo 207
Nominal
Specification
Specified minimum yield strength, sy
TABLE 8-9 Maximum allowable stress values, sa , in tension for carbon and low-alloy steel (Cont.)
DESIGN OF PRESSURE VESSELS, PLATES, AND SHELLS
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
8.43
DESIGN OF PRESSURE VESSELS, PLATES, AND SHELLS
8.44
CHAPTER EIGHT
TABLE 8-10 Maximum allowable stress values, sa in tension for nonferrous metals
Alloy Specification no. designation
Temper condition
Sheet and plate SB 209
-H 12
Nominal composition
UNS no.
Size or thickness mm (in)
Specified minimum tensile strength, st
Maximum allowable stress, sa , for metal temperature 8C (8F), not exceeding
Specified minimum yield strength, sy
38 (100)
65 (150) kpsi
93 (200)
MPa
kpsi
MPa
kpsi
MPa
kpsi
MPa
MPa
kpsi
96
14
76
11
24
3.5
24
3.5
24
3.5
110
16
96
14
26
4.0
26
4.0
26
4.0
138
20
117
17
35
5.0
35
5.0
35
5.0
117
17
69
10
30
4.3
30
4.3
30
4.3
193
28
145
21
48
7.0
48
7.0
48
7.0
234
34
179
26
58
8.5
58
8.5
58
8.5
214
31
83
12
54
7.8
54
7.8
54
7.8
248
36
179
26
62
9.0
62
9.0
62
9.0
207
30
110
16
52
7.5
52
7.5
52
7.5
165
24
41
6.0
41
6.0
41
6.0
427
62
290
42
107
15.5
107
15.5
107
15.5
400
58
262
38
100
14.5
100
14.5
100
14.5
241 96 282 290 262 165
35 14 41 42 38 24
96 35 131 179 241
14
8.8 3.4 10.3 10.5 9.5 6.0
61 23 71 72 63 40
8.8 3.4 10.3 10.5 9.2 5.9
23
3.4
19 26 35
61 23 71 72 65 41
62 39
9.0 5.7
379 441 434
55.0 64.0 63.0
207 379 372
30 55 54
95 110
13.8 16.0 15.8
95 110
13.8 16.0 15.8
92 109
13.3 15.9 15.8
262 255 241
38.0 37.0 35.0
241 228 220
35 33 32
65 64 61
9.5 9.3 8.8
65 64 61
9.5 9.3 8.8
65 64 61
9.5 9.3 8.8
50.0 (2.000)
207 172 331
30.0 25.0 48.0
138 124 200
20 18 29
52 43 65
7.5 6.3 9.5
52 43 52
7.5 6.3 7.5
52 43
7.5 6.3
50 mm (2 in) 50 mm (2 in) 12. 5 mm (12 in) 50 mm (2 in)
345 345 496 345
50.0 50.0 72.0 50.0
124 138 220 138
18 20 32 20
83 86 124 86
12.0 12.5 18.0 12.5
83 86 124 86
12.0 12.5 18.0 12.5
82
11.9
124 86
18.0 12.5
>50 mm (2 in) 87.5 mm (3.5 in) 100 mm (4 in) >75(3)–125(5)
310
45.0
103
15
69
10.0
69
10.0
69
10.0
310 345 345 345 310
45.0 50.0 50.0 50.0 45.0
103 138 124 138 124
15 20 18 20 I8
69 86 83 86 78
10.0 12.5 12.0 12.5 11.3
69 86 83 78 70
10.0 12.5 12.0 11.3 10.1
69 86 83 72 65
10.0 12.5 12.0 10.5 9.4
276
40.0
103
15
70
10.1
67
9.7
66
9.5
345 317 482 469
50.0 46.0 70.0 68.0
124 103 172 159
18 15 25 23
83 69 115 105
12.0 10.0 16.7 15.3
78 66 100 93
11.3 9.5 14.5 13.5
75 63 97 90
10.9 9.1 14.0 13.0
358 482 276 379
52 70 40 55
103 262 83 138
15 38 12 20
69 121 55 92
10.0 17.5 8.0 13.3
69 121 55 92
10.0 17.5 8.0 13.3
69 121 55 92
10.0 17.5 8.0 13.3
Aluminum and Aluminum Alloys 1100d
1.275–50.0 (0.051–2.000) 0.225–25.0 (0.009–1.000) 0.15–25.00 (0.006–1.000) 6.25–12.475 (0.250–0.499) 1.275–50.00 (0.051–2.000) 1.275–25.00 (0.051–1.000) 1.275–75.00 (0.051–3.000) 1.275–50.00 (0.051–2.000) 1.275–6.225 (0.051–0.249) 1.275–6.225 (0.051–0.249)
-H 14 SB 209
3003d
-H 14 -H 112
SB 209
3004d
-H 32
SB 209
5052d
-H 34
SB 209
5454d
-O -H 32
SB 209
6061e;f
T4 T 6 Wld
Rods, bars, and shapes SB 221 2024e
SB 221 SB 221 SB 221
5086e 3003d 5456d
SB 308
6061e ’
Die and hand forgings SB 247 2014 Diee
SB 247 SB 247
Castings SB 26 SB 108
-T 4
-H 112 -H 112 -O -H 111 -T 6 -T 6 Wld
100.0 (4.000) 50.0 (2.00) 50.0–100.00 (2.001–4.000) 100.0 (4.00) 100.0 (4.000) 100.025–200.0 (4.001–8.000)
-T 4 -T 6
6061 Diee 6061 Hande
-T 6 -T 6
SG 70 A(356)e
-T 6 -T 71 -T 4
204.0
3.125–12.475 (0.125–0.499) 162.54–200.00 (6.501–8.000) 125.00 (5.000) All 125.00 (5.00) 125.00 (5.00)
5
Copper and Copper Alloys Sheet and plates SB 96 655 SB 169 610 614 SB 171 C 36500, C 36600
Annealed Annealed Annealed Annealed
C 36700, C 36800
Annealed Annealed Annealed Annealed Annealed Annealed
Admiralty Naval brass
SB 171
443, 444, 445 C 46400, C 46500 C 46600, C 46700 715
SB402
706
Annealed
Cu-Ni 90/10
SB 171 SB 171
Die forgings (hot pressed) SB 283h C 37700h
Rods and bars SB 98g SB 98
Cu-Si alloy Al-bronze Al-bronze Lead-Muntz metal
Cu-Ni 70130
As forged
Forging brass
C 64200
As forged
Forgings, Al-Si bronze
655, 661g
Softh Half hardi Soft Half hard
651 j
Cu-Si Cu-Si
62.5 (2.5) 62.5 (2.5) 125(5) incl 62.5 (2.5) 37.5 (1.5) >37.5 (1.5) 37.5 (1.5) >37.5 (1.5)
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
DESIGN OF PRESSURE VESSELS, PLATES, AND SHELLS
8.45
DESIGN OF PRESSURE VESSELS, PLATES, AND SHELLS
TABLE 8-10 Maximum allowable stress values, sa in tension for nonferrous metals (Cont.) Maximum allowable stress, sa , for metal temperature, 8C (8F), not exceeding 120 (250) MPa
kpsi
150 (300) MPa
kpsi
176 (350) MPa
kpsi
205 (400) MPa
kpsi
232 (450) MPa
kpsi
260 (500) MPa
kpsi
288 (550) MPa
kpsi
315 (600) MPa
kpsi
343 (650) MPa
kpsi
370 (700) MPa
kpsi
Spec. No.
Sheet and plate SB 209
22 25 34 28 48 58 51 52 51 41
3.2 3.7 4.9 4.0 7.0 8.5 7.4 7.5 7.4 5.9
19 19 30 25 40 43 38 38 48 38
2.8 2.8 4.3 3.6 5.8 6.2 5.5 5.5 6.9 5.5
14 14 21 21 26 32 28 28 43 32
2.0 2.0 3.0 3.0 3.8 4.1 4.1 4.1 6.3 4.6
8 8 16 16 16 16 21 21 31 24
1.2 1.2 2.4 2.4 2.4 2.4 3.0 3.0 4.5 3.5
95 88
13.7 12.8
72 69
10.4 9.7
49 42
6.5 6.1
31 29
4.5 4.2
21
3.0
16
2.4
12
1.8
10
1.4
SB 221 SB 221 SB 221
59 37
8.5 5.4
50 35
7.2 5.0
39 29
5.6 4.2
28 22
4.0 3.2
SB 308
86 102 102 63 61 58
12.5 14.8 14.8 9.1 8.8 8.4
79 79 79 54 53 51
11.5 11.5 11.5 7.9 7.7 7.4
47 47 47 43 43 42
6.8 6.8 6.8 6.3 6.3 6.1
27 27 27 31 31 31
3.9 3.9 3.9 4.5 4.5 4.5
43 42
6.3 6.1
37
5.4
28
4.1
16
2.4
(Fig. 8-9) (Fig. 8-8)
SB 209 SB 209 SB 209 SB 209 SB 209
Rods, bars, and shapes SB 221
Die and hand forgings SB 247 SB 247 SB 247
Castings SB 26 SB 108 Sheet and plates SB 96g SB 169
81
11.7
69
10.0
38
5.0
124 86 69 69
18.0 12.5 10.0 10.0
124 85 69 69
18.0 12.3 10.0 10.0
124 75 69 68
18.0 10.8 10.0 9.8
121 36 36 24
17.5 5.3 5.3 3.5
86 83 72 64 64
12.5 12.0 10.4 9.3 9.3
86 83 72 64 62
12.5 12.0 10.4 9.3 9.0
43 43 72 64 60
6.3 6.3 10.4 9.3 8.7
17 17 72 64 59
2.5 2.5 10.4 9.3 8.5
117
17.0
14
2.0
72 64 57
10.4 9.3 8.2
114
16.5 SB 171 SB 171 SB 171
72 64 55
10.4 9.3 8.0
72 64 48
10.4 9.3 7.0
72 64 41
10.4 9.3 6.0
72 64
10.4 9.3
72 64
10.4 9.3
SB 171 SB 204
Die forgings (hot pressed) 93 96
13.5 12.5
93 86
13.5 12.5
90 83
13.0 12.0
69 121 55 88
10.0 17.5 8.0 12.8
69 121 48 69
10.0 17.5 7.0 10.0
35 69 35 55
5.0 10.0 5.0 8.0
76 76
11.0 11.0
52 52
7.5 7.5
36 36
5.2 5.2
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
SB 283h Rods and bars SB 98g SB 98
DESIGN OF PRESSURE VESSELS, PLATES, AND SHELLS
8.46
CHAPTER EIGHT
TABLE 8-10 Maximum allowable stress values, sa in tension for nonferrous metals (Cont.)
Alloy Specification no. designation
Temper condition
Castings SB 61 SB 148 SB 271 SB 584
As Cast As Cast As Cast As Cast
922 954 952 976
Nominal composition
UNS no.
Size or thickness mm (in)
Specified minimum tensile strength, st MPa
Maximum allowable stress, sa , for metal temperature 8C (8F), not exceeding
Specified minimum yield strength, sy
kpsi
MPa
kpsi
234 517 448 276
34 75 65 40
110 207 172 117
241
35
345 448
38 (100)
65 (150)
93 (200)
MPa
kpsi
MPa
kpsi
MPa
kpsi
16 30 25 17
59 13 108 52
8.5 18.8 15.7 7.5
59 130 108 52
8.5 18.8 15.7 7.2
59 129 103 48
8.5 18.7 14.9 7.0
172
25
61
8.8
59
8.1
50
7.3
50 65
276 379
40 55
86 112
12.5 16.3
82 107
12.0 15.6
75 99
10.9 14.3
482 345
70 50
345 276
50 40
121 86
17.5 12.5
121 81
17.5 11.7
113 74
16.4 10.7
358
52
207
30
90
13.0
76
11.0
552
80
379
55
138
20.0
114
16.6
Titanium and Titanium Alloys Sheet, strip, plate, bar, billet, and casting SB 265 Grade 1 (F1) SB 381 SB 348
2 (F2) 3 (F3)
SB 367h
12 (F12) Grade C-2
Annealed Annealed
Sheets, strips, plate Forging (F stands for forging) Bar, billet Castingb
Zirconium Flat-rolled products and bars SB 551 Grade R 60702 SB 550
Hot-rolled products Bars
R 60705
Nickel and Nickel Alloys Plate, sheet, and strip SB 127j
400
Ni-Cu
N04400
600 600j B2 825 X
Annealedj Hot-rolled Annealed Hot-rolledj Sol. ann. k Annealed Annealedk
SB 168 SB 168j SB 333k SB 424k SB 435k
Ni-Cr-Fe Ni-Cr-Fe Ni-Mo Ni-Fe-Cr-Mo-Cu Ni-Cr-Mo-Fe
N06600 N06600 N10665 N08825 N06002
SB 435
X
Annealed
Ni-Cr-Mo-Fe
N06002
SB 435k SB 443 SB 463
X 625 20Cb
Annealed Annealed Annealed
N06002 N06625 N08020
SB 575k SB 582 SB 582k SB 709
C22 G G 28
Sol. ann. k Sol. ann. Sol. ann. k Annealed
Ni-Cr-Mo-Fe Ni-Cr-Mo-Cb Cr-Ni-Fe-MoCu-Cb Ni-Mo-Cr Ni-Cr-Fe-Mo-Cu Ni-Cr-Fe-Mo-Cu Ni-Fe-Cr-MoCu Low C
N04400 N06600 N06600 N08825 N08020 N08330l N06625 N06455k N-12 WV CW-12MW
Bars, rods, shapes, and forgings SB 164 400 600k SB 166k SB 166 600 k 825 SB 425 SB 462k 20Cb SB 511l SB 564 SB 574k Castings SA 494h SA 494
Annealed Annealedk Hot fin Annealedk Annealedk
330 625 C-4
Annealed Sol. ann.
Ni-Cu Ni-Cr-Fe Ni-Cr-Fe Ni-Fe-Cr-Mo-Cu Cr-Ni-Fe-MoCu-Cb Ni-Fe-Cr-Si Ni-Cr-Mo-Cb Ni-Mo-Cr
B C
Annealedh Annealed
Ni-Mo Ni-Mo-Cr
N06022 N06007 N06007 N08028
All 0.063 (1/16) 0.188 (3/16) 0.063 (1/16) 0.188 (3/16)k >0.188 (3/16) >100 (4)
19.3 (3/4) >19.3 (3/4) k
All sizes
All sizes
482 517 552 586 758 586 689
70 75 80 85 110 85 100
193 276 241 241 352 241 276
28 40 35 35 51 35 40
388C (1008F) 128 18.6 129 18.7 138 20.0 146 21.2 190 27.5 148 21.5 161 23.3
938C (2008F) 113 16.4 129 18.7 138 20.0 146 21.2 190 27.5 148 21.5 144 20.9
1508C (3008F) 106 15.4 129 18.7 138 20.0 146 21.2 190 27.5 141 20.4 132 19.2
689
100
276
40
161
23.3
161
23.3
116
23.3
655 758 552
95 110 80
241 379 241
35 55 35
161 190 138
23.3 27.5 20.0
144 190 138
20.9 27.5 20.0
132 190 136
19.2 27.5 19.8
689 620 586 503
100 90 85 73
310 241 207 213
45 35 30 31
172 155 138 125
25.0 22.5 20.0 18.2
172 144 138 125
25.0 22.9 20.0 18.2
171 134 138 117
24.8 19.5 20.0 17.0
482 552 586 586 552
70 80 85 85 80
172 241 241 241 141
25 35 35 35 35
114 138 146 146 138
16.6 20.0 21.2 21.2 20.0
101 138 146 146 138
14.6 20.0 21.2 21.2 20.0
94 138 146 141 136
13.6 20.0 21.2 20.4 19.8
482 758 689
70 110 100
207 345 276
30 50 40
121 190 172
17.5 27.5 25.0
121 190 172
17.5 27.5 25.0
112 190 172
16.3 27.5 25.0
524 496
76 72
276 276
40 40
131 124
19.0 18.0
123 118
17.8 17.1
123 112
17.8 16.2
a
The stress values in this table may be interpolated to determine values for intermediate temperatures. Stress values in restricted shear shall be 0.8 times the values in this table. c Stress values in bearing shall be 1.60 times the values in the table. d For weld construction, stress values for this material shall be used. e The stress values given for this material are not applicable when either welding or thermal cutting is employed. f Allowable stress values shown are 90 percent those for the corresponding core material. g Copper-silicon alloys are not always suitable when exposed to certain media and high temperature, particularly steam above 1008C (2128F). h No welding is permitted. i If welded, the allowable stress values for annealed condition shall be used. j For plates only. b
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
DESIGN OF PRESSURE VESSELS, PLATES, AND SHELLS
8.47
DESIGN OF PRESSURE VESSELS, PLATES, AND SHELLS
TABLE 8-10 Maximum allowable stress values, sa in tension for nonferrous metals (Cont.) Maximum allowable stress, sa , for metal temperature, 8C (8F), not exceeding 120 (250) MPa
kpsi
150 (300) MPa
kpsi
176 (350) MPa
kpsi
205 (400) MPa
kpsi
232 (450) MPa
260 (500)
288 (550)
315 (600)
kpsi
MPa
kpsi
MPa
kpsi
MPa
kpsi
343 (650) MPa
kpsi
370 (700) MPa
kpsi
Spec. No. Castings
59 129 100 48
8.5 18.7 14.5 6.9
59 129 98 46
8.5 18.7 14.2 6.7
59 125 98
8.5 18.1 14.2
57 120 98
8.3 17.4 14.2
53 110 98
7.7 16.0 14.2
50 96 98
7.2 13.9 14.2
34 76 81
5.0 11.0 11.7
59 51
8.5 7.4
45
6.5
40
5.8
36
5.2
33
4.8
31
4.5
28
4.1
25
3.6
21
3.1
68 90 105 68
9.9 13.0 15.2 9.8
62 81 98 61
9.0 11.7 14.2 8.9
58 72 92 55
8.4 10.4 13.3 8.0
53 64 86 50
7.7 9.3 12.5 7.2
50 57 82
7.2 8.3 11.9
46 52 79
6.6 7.5 11.4
43 46 77
6.2 6.7 11.1
39 41 75
5.7 6.0 10.8
64
9.3
48
7.0
42
6.1
41
6.0
98
14.2
86
12.5
78
11.3
72
10.4
2058C (4008F) 102 14.8 129 18.7 138 20.0 146 21.2 190 27.5 132 19.2 123 17.8 158 22.9 123 17.8
2608C (5008F) 101 14.7 129 18.7 138 20.0 146 21.2 190 27.5 126 18.3 114 16.5 154 22.3 114 16.5
3158C (6008F) 101 14.7 129 18.7 138 20.0 146 21.2 189 27.2 123 17.8 108 15.6 146 21.1 108 15.6
3708C (7008F) 101 14.7 124 1 8.0 135 19.6 145 21.1 187 27.1 119 17.3 103 15.6 140 20.3 103 15.0
4268C (8008F) 98 14.2 98 14.2 132 19.1 141 20.4 137 19.8 118 17.1 101 14.7 136 19.7 101 14.7
4828C (9008F) 55 8.0 28 4.0 110 16.0 135 19.6
5398C (11008F)
5938C (11008F)
48 100
7.0 14.5
21 50
3.0 7.2
116 100 135 100
16.8 14.5 19.6 14.5
115 99 131 99
16.6 14.3 19.3 14.3
98 121 98
185 129
26.8 18.7
180 125
26.1 18.2
175 121
25.4 17.5
172 119
25.0 17.3
170 116
24.6 16.8
165
24.0
163
23.7
166
165 125 138 109
23.9 18.2 20.0 15.8
160 120 138 100
23.2 17.4 20.0 14.5
157 116 134 92
22.7 16.8 19.4 13.3
154 113 131
22.4 16.4 19.0
153 111 128
22.2 16.1 18.6
110 127
16.0 18.4
109 126
15.8 18.3
91 138 146 132 129 105
13.2 20.0 21.2 19.2 18.7 15.3
98 138 146 126 125 101
13.1 20.0 21.2 18.3 18.2 14.6
98 138 146 123 122 94
13.1 20.0 21.2 17.8 17.7 13.7
98 138 146 119 119 92
13.1 20.0 21.1 17.3 17.3 13.4
88 138 141 118 116 89
12.7 20.0 20.4 17.1 16.8 12.9
55 110 134 116
8.0 16.0 19.5 16.8
48 100 114
7.0 14.5 16.6
21 50
3.0 7.2
85
12.3
82
11.9
54
7.8
185 172
26.8 25.0
180 170
26.1 24.7
175 168
25.4 24.4
172 165
25.0 24.0
170 158
24.6 23.0
165
24.0
163
23.7
166
23.4
123 112
17.8 16.2
123 112
17.9 16.2
123 112
17.8 16.2
122 111
17.7 16.1
119 105
17.3 15.2
114 99
16.6 14.4
108 95
15.7 13.8
SB 61 SB 148 SB 271 SB 584 Sheet, strip, plate, bar, billet, and casting SB 265 SB 381 SB 348 Flat-rolled products and bars SB 367h Plate, sheet, and strip 33 4.8 SB 551 68
6488C (12008F) 14 38
2.0 5.5
14.2 17.5 14.2
78 78 78
11.3 11.3 11.3
23.4
91
13.2
4.9
7048C (13008F)
53 53 53
7.7 7.7 7.7
SB 550
7608C (14008F) SB 127j SB 168 SB 168j SB 333k SB 424k 33 4.8 33 4.8 33 4.8 SB 443 SB 463 SB 575k SB 582 SB 582k SB 709
14 38
2.0 5.5
32 91
4.7 13.2
Bars, rods, shapes, and forgings SB 164 SB 166k SB 166 SB 425k 21 3.1 SD 462k 12 1.8
k
SB 564 SB 574k Castings SA 494h SA 494
Nickel alloys have low yield strength. The stress values of these alloys used are slightly on the high side. These higher stress values exceed 2/3 but do not exceed 90 percent of the yield strength at temperature. These stress values are not recommended for the flanges of gasket joints where a slight amount of distortion can cause leakage. Sol. ann. = Solution annealed. l At temperature above 5388C (10008F), these stress values may be used only if the material is annealed at a minimum temperature of 10388C (19008F) and has a carbon content of 0.04% or higher. m These stress values multiplied by a joint efficiency factor of 0.85. n A joint efficiency factor of 0.85 has been applied in arriving at the maximum allowable stress values in tension for this material. o Alloy NO6225 in the annealed condition is subject to severe loss of impact strength at room temperature after exposure in the range of 5388 to 7608C (10008 to 14008F). p For other conditions and specifications, it is suggested to refer to the General Notes given for Table UNF-23.1 of ASME Boiler and Pressure Vessel Code, Section VIII, Division 1, July 1, 1986. Source: The American Society of Mechanical Engineers, ASME Boiler and Pressure Vessel Code, Section VIII, Division 1, July 1, 1986.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
DESIGN OF PRESSURE VESSELS, PLATES, AND SHELLS
8.48
CHAPTER EIGHT
TABLE 8-11 Maximum allowable stress values (sa ) in tension for high-alloy steel
Spec. no.
Grade
UNS no.
SA-240, SA-479 SA-240 SA-240 SA-240 SA-240 SA-479 SA-182 SA-217 SA-479 SA-412 SA-182 SA-240, SA-479 SA-351 SA-351 SA-351 SA-336 SA-240, SA-479 SA-182 SA-479 SA-240 SA-351 SA-240 SA-336 SA-240
405 410 S TP 409 18 Cr-2 Mo 430 410 F6 ACI.1 CA 15 430, XM8 201 F 304 L 304 L CF 3 CF 8 CF 8 M Cl-F 304 H 302 F 304 304 H 304 CF 3A 304 N F 304 N 316 L
S 40500 S 41008 S 40900 S 44400 S 43000 S 41000 S 41000 J 91150 S 43000, S 43035 S 20100 S 30403 S 30403 J 92500 J 92600 J 92900 S 30409 S 30200 S 30400 S 30400 S 30400 J 92500 S 30451 S 30451 S 31603
SA-182
F 316 L
S 31603
SA-479
316 L
S 31603
SA-351
CF 8 M
J 92900
SA-182
F 316
S 31600
SA-336
CI-F 316 H S 31609
SA-240
316 Ti
S 31635
SA- 1 82
F 316 H
S 31609
SA-479
316
S 31600
SA-240
317 L
S 31703
SA-240 SA-240
XM-15 316 M
S 38100 S 31651
SA-479, SA-240
XM-29
S 24000
SA-182, SA-336 SA-240, SA-479 SA-182, SA-336 SA-351 SA-240, SA-182 SA-479 SA-351 SA-182, SA-240
F 321 H 321 F 347 CFBC 347,348 F 347, F 348 CG 8 M F 44
S 32100 S 32100 S 34700 J 92710 S 34700 S 34800 S 31254
SA-182, SA-240. F 45 SA-479 SA-240, SA-479
S 30815 S 30815 S 32550
SA-351 SA-351 SA-240 SA-240, SA-182
CH 8 CH 20 309 S, 309Cb 310 Cb
J 93400 J 93402 S 30908, S 30940 S 31040,
SA-479 SA-240 SA-182, SA-336 SA-240, SA-479
CI-F310 310 S TP 329 FXM-27 Cb XM-27
S 31000 S 310 S S 32900 S 44625 S 44627
SA-240 SA-240, SA-479 SA-564 SA-182, SA-336, SA-41Z
XM-33 S 44626 844800 630 H 1100 S 17400 FMX-11, S-21904 NM-11
Specified minimum
Specified minimum
yield strength, sy
tensile strength, st
Maximum allowable stress, sa , for metal temperature, 8C (8F), not exceeding 30 to 38 (20 to 100)
93 (200)
150 (300)
205 (400)
Nominal composition
Product form
MPa
kpsi
MPa
kpsi
MPa
kpsi
MPa
kpsi
MPa
kpsi
MPa
kpsi
12 Cr-1 Ald 13 Cr 11 Cr-Ti 18 Cr-2 Mod 17 Crd 13 Cr 13 Cr 13 Crd 17 Crd;e ; 18 Cr-Tid;e 17 Cr-4 Ni-6 Mn 18 Cr-8 Ni 18 Cr-8 Ni 18 Cr-S Ni 18 Cr-8 Ni 18 Cr-9 Ni-2 Mo 18 Cr-8 Ni 18 Cr-8 Ni 18 Cr-8 Ni 18 Cr-8 Ni 18 Cr-8 Ni 18 Cr-8 Ni 18 Cr-8 Ni-N 18 Cr-8 Ni-N 16 Cr-12 Ni-2 Mo 16 Cr-12 Ni-2 Mo 16 Cr- 1 2 Ni-2 Mo 16 Cr- 1 2 Ni-2 Mo 16 Cr-12 Ni-2 Mo 16 Cr-12 Ni-2 Mo 16 Cr-12 Ni-2 Mo 16 Cr-12 Ni-2 Mo 16 Cr-12 Ni-2 Mo 18 Cr-13 Ni-3 Mo 18 Cr-18 Ni-2 Si 16 Cr-12 Ni-2 Mo-N 18 Cr-3 Ni-12 Mn 18 Cr-10 Ni-Ti 18 Cr-10 Ni-Ti 18 Cr-10 Ni-Cb 18 Cr-10 Ni-Cb 18 Cr-10 Ni-Cb 18 Cr-10 Ni-Cb 19 Cr-11 Ni-Mo 20 Cr-18 Ni-6 Mo 21 Cr- 1 1 Ni-N 21 Cr-11 Ni-N 25.5 Cr-5.5 Ni3.5 Mo 25 Cr-12 Ni 25 Cr-12 Ni 23 Cr-12 Ni
Plate. bar Plate Plate Plate Plate Bar, forge Bar, forge Cast Bare;g Plate Forgeg Plateg , bare;g Castg Castg;h Castg;h Forgeg Plate, bare;g Forgee;g Barg;e Plate Castg Plateg;h Forge Plateg
172 207 207 276 207 276 276 448 276 310 172 172 207 207 207 207 207 207 207 207 241 241 241 172
25 30 30 40 30 40 40 65 40 45 25 25 30 30 30 30 30 30 30 30 35 35 35 25
414 414 379 414 448 483 483 620 483 655 448 483 483 483 483 483 517 517 517 517 534 552 552 483
60 60 55 60 65 70 70 90 70 95 65 70 70 70 70 70 75 75 75 75 77.5 80 80 70
103 103 95 103 112 111 111 155 121 158 108 108 121 121 121 121 130 130 130 130 134 138 138 108
15.0 15.0 13.8 15.0 16.3 16.2 16.2 22.5 17.5 23.0 15.6 15.7 17.5 17.5 17.5 17.5 18.8 18.8 18.8 18.8 19.4 20.0 20.0 15.7
99 99 90 99 107 106 106 148 114 143 106 108 114 114 121 114 123 123 123 123 125 138 138 108
14.3 14.3 13.1 14.3 15.5 15.4 15.4 21.5 16.6 20.8 15.4 15.7 16.6 16.6 17.5 16.6 17.8 17.8 17.8 17.8 18.2 20.0 20.0 15.7
95 95 97 95 103 103 103 143 111 132 98 105 105 104 118 107 114 114 114 114
13.8 13.8 12.7 13.8 15.0 14.9 14.9 20.7 16.1 19.1 14.2 15.3 15.3 15.1 17.1 15.5 16.6 16.6 16.6 16.6
92 92 84 92 99 99 99 138 107
13.3 13.3 12.2 13.3 14.4 14.4 14.4 20.0 15.5
131 131 108
19.0 19.0 15.7
94 101 104 103 116 104 112 112 112 112 116 126 126 107
13.6 14.7 5.1 15.0 16.8 15.1 16.2 16.2 6.2 16.2 16.9 18.3 18.3 15.5
Forge g
172
25
448
65
108
15.7
108
15.7
108
15.7
107
15.5
Barg;f
172
25
483
70
108
15.7
108
15.7
108
15.7
107
15.5
Cast
207
30
483
70
121
17.5
121
17.5
118
17.1
116
16.8
25 Cr-20 Ni 25 Cr-20 Ni 26 Cr-4 Ni-Mo 27 Cr-Mo 27 Cr-Mo 27 Cr-Mo-Ti 29 Cr-4 Mo-2 Ni 17Cr-4 Ni-4 Cu 20 Cr-6 Ni-9 Mn
Forgeg;h;j
207
30
483
70
121
17.5
121
17.5
118
17.1
116
16.8
Forge
207
30
483
70
121
17.5
111
16.2
100
14.6
92
13.4
Plateg;h;i
207
30
517
75
130
18.8
130
18.8
127
18.4
125
18.1
Forgeg
207
30
517
75
130
18.8
130
18.8
127
18.4
125
18.1
Bare;g;h
207
30
517
75
130
18.8
130
18.8
127
18.4
125
18.1
Plateg
207
30
517
75
130
18.8
112
16.2
98
14.2
92
13.4
Plateg Plateg;h
207 241
30 35
517 552
75 80
130 138
18.8 20.0
122 138
17.7 20.0
114 132
16.6 19.2
111 130
16.1 18.8
Plate, barf;g
379
55
689
100
172
25.0
169
24.5
156
22.6
149
21.6
Forgeg;i Plateg;h , barg;h;e Forgeg;h;i Castg;h Plategg;h , forgeg;h Barg;h;e Castg Forge, plate
207 207 207 207 207 207 241 303
30 30 30 30 30 30 35 44
483 517 483 483 517 517 517 648
70 75 70 70 75 75 75 94
121 130 121 121 130 130 121 162
17.5 18.8 17.5 17.5 18.8 18.8 17.5 23.5
118 127 115 114 123 123 121 162
17.1 18.4 16.7 16.6 17.9 17.9 17.5 23.5
111 119 105 105 113 113 118 147
16.1 17.3 15.3 15.3 16.4 16.4 17.1 21.4
110 118 99 96 107 107 116 137
16.0 17.1 14.4 13.9 15.5 15.5 16.8 19.9
Forge, plate, bar 310 Forge. plate, bar 310 Plate, bar 552
45 45 80
600 600 758
87 87 110
150 150 190
21.8 21.8 27.5
149 149 189
21.6 21.6 27.4
141 141 177
20.4 20.4 25.7
135 135 170
19.6 19.6 24.7
Castg;h Casth Plateg;h;j
193 207 207
28 30 30
448 483 517
65 70 75
112 121 130
16.3 17.5 18.8
103 111 118
14.9 16.1 17.2
98 105 113
14.2 15.3 16.4
95 102 110
13.8 14.8 15.9
Plateg;k;h;j , forgeg;k;h
207
30
517
75
130
18.8
118
17.2
113
16.4
110
15.9
207 483 241 276
30 70 35 40
517 620 414 448
75 90 60 65
130 155 103 112
18.8 22.5 15.0 16.2
118 151 103 112
17.2 21.9 15.0 16.2
113 141 101 110
16.4 20.5 14.6 15.9
109 136 98 110
15.8 19.8 14.2 15.9
310 414 793 345
45 60 115 50
469 552 965 620
68 50 140 90
117 138 241 155
17.0 20.0 35.0 22.5
117 134 241 154
17.0 19.4 35.0 22.4
116 126 241 148
16.8 18.3 35.0 21.4
114 125 235 136
16.6 18.1 34.1 19.7
g;k;h;e
Bar Plated Forged Plated , bar, shaped;e Plated Plated , bard;e Bard;l Forge, plate
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
DESIGN OF PRESSURE VESSELS, PLATES, AND SHELLS DESIGN OF PRESSURE VESSELS, PLATES, AND SHELLS
8.49
TABLE 8-11 Maximum allowable stress values (sa ) in tension for high-alloy steel (Cont.) Maximum allowable stress, sa , for metal temperature, 8C (8F), not exceeding 260 (500)
315 (600)
370 (700)
427 (800)
482 (900)
538 (1000)
593 (1100)
MPa
kpsi
MPa
kpsi
MPa
kpsi
MPa
kpsi
MPa
kpsi
MPa
kpsi
MPa
89
12.9
85
12.4
83
12.1
76
11.1
69
9.7
27
4.0
(Fig. 8-5)
89 81 88 96 96 96 133 103
12.9 11.8 12.8 13.9 13.9 13.9 19.3 15.0
85 79 85 93 92 92 129 100
12.4 11.4 12.4 13.5 13.4 13.4 18.7 14.5
83 76
12.1 11.1
76 70
11.1 10.2
69 9.7 (Fig. 8-5)
44
6.4
20
90 90 90 125 97
13.1 13.1 13.1 18.1 14.1
82 82 82 115 89
12.0 12.0 12.0 16.7 12.9
45 44 44 34 45
6.5 6.4 6.4 5.0 6.5
92 99
13.4 14.4
92 96
13.3 14.0
90 93
13.1 13.5
89 90
12.9 13.0
102 102 116 102 110
14.8 14.8 16.8 14.8 15.9
102 102 116 102 110
14.8 14.8 16.8 14.8 15.9
102 102 112 102 110
14.8 14.8 16.3 14.8 15.9
100 100 109 100
14.6 14.6 15.8 14.6
110 110 110 114 123 123 99 99 99 116 116 86 124 124 124 86 110 128 148
15.9 15.9 15.9 16.5 17.8 17.8 14.4 14.4 14.4 16.8 16.8 12.5 18.0 18.0 18.0 12.5 15.9 18.6 21.4
110 110 110 112 120 120 93 93 93 116 116 81 117 117 117 81 110 128 144
15.9 15.9 15.9 16.3 17,4 17.4 13.5 13.5 13.5 16.8 16.8 11.8 17.0 17,0 17.0 11.8 15.9 18.6 20.9
110 110 110 112 118 118 89 89 89 112 112 78 112 112 112 78 110 128 138
15.9 15.9 15.9 16.3 17.1 17.1 12.9 12.9 12.9 16.3 16.3 11.3 16.3 16.3 16.3 11.3 15.9 18.6 20.0
105 105 105 100 114 114 85 85 85 109 110 76 110 110 110 76 104 127 131
110
16.0
110
16.0
109
15.8
118
17.1
113
16.4
109
15.8
96
13.9
94
13.7
94
94 103
13.7 14.9
94 101
13.7 14.7
103 116 128
14.9 16.8 18.5
101 123
127
18.4
127 170
18.4 24.7
93 97 107
72 72 72 76 76
10.5 10.4 10.4 11.0 11.0
kpsi
650 (1200)
704 (1300)
MPa
kpsi
MPa
kpsi
2.9
7
1.0
(Fig. 8-5)
22 3.2 (Fig. 8-5) (Fig. 8-5) 15 2.2
12
1.8
7.0
1.0
760 (1400) MPa
kpsi
815 (1500) MPa
kpsi
Spec. no. SA-240, SA-479 SA-240 SA-240 SA-240 SA-240 SA-479 SA-182 SA-217 SA-479
(Fig. 8-5)
92 107 98
13.4 15.5 14.2
83 103 92
12.0 14.9 13.4
52 61 68
7.5 8.9 9.8
33 37 42
4.8 5.4 6.1
23 23 25
3.3 3.4 3.7
16 16 16
2.3 2.3 2.3
12 11 10
1.7 1.6 1.4
15.2 15.2 15.2 14.6 16.6 16.6 12.4 12.4 12.4 15.8 15.9 11.0 15.9 15.9 15.9 11.0 15.1 18.4 19.0
101 101 101
14.7 14.7 14.7
95 95 95
13.8 13.8 13.8
68 68 68
9.8 9.8 9.8
42 42 42
6.1 6.1 6.1
25 25 25
3.7 3.7 3.7
16 16 16
2.3 2.3 2.3
10 10 10
1.4 1.4 1.4
110 110 83 83 93 107 107 74 103 103 103
15.9 15.9 12.1 12.1 12.1 15.5 15.6 10.8 15.5 15.5 15.5
103 103
15.0 15.0
67 67
9.7 9.7
41 41
6.0 6.0
103 103 73 105 105 105
14.9 15.0 10.6 15.3 15.3 15.3
65 85 71 85 85 85
9.4 12.4 10.3 12.4 12.4 12.4
41 51 51 51 51 51
6.0 7.4 7.4 7.4 7.4 7.4
27 28 28 28 28 28
4.0 4.1 4.1 4.1 4.1 4.1
16 17 16 16 16 16
2.4 2.5 2.3 2.3 2.3 2.3
10 8 9 9 9 9
1.5 1.2 1.3 1.3 1.3 1.3
101 125
14.6 18.1
94 120
13.7 17.4
85
12.4
51
7.4
107
15.5
105
15.3
96
14.0
62
9.0
37
5.4
22
3.2
13
1.9
8
1.1
107
15.5
105
15.3
95
13.8
48
6.9
25
3.6
12
1.7
5
0.8
2
0.3
13.7
94
13.7
94
13.7
91
13.2
63
9.1
30
4.4
15
2.2
8
1.2
5
0.8
94 101
13.7 14.7
94 101
13.7 14.7
94 101
13.7 14.7
91 96
13.2 14.0
72 63
10.5 9.1
34 30
5.0 4.4
19 15
2.7 2.2
11 8
1.6 1.2
7 5
1.0 0.8
14.7
101
14.7
101
14.7
101
14.7
96
14.0
63
9.1
30
4.4
15
2.2
8
1.2
5
0.8
17.9
121
17.5
122
17.7
86
12.5
116
16.8
112
16.3
103
14.9
62
9.0
36
5.2
21
3.1
13
1.9
9
1.3
122
17.7
86
12.5
116
16.8
112
16.3
103
14.9
62
9.0
36
5.2
21
3.1
13
1.9
9
1.3
13.5 14.1 15.5
92 92 105
13.3 13.4 15.3
90 88 104
13.0 12.7 15.1
90 94 103
13.0 12.2 14.9
86 81 96
12.5 11.7 13.9
72 70 72
10.5 10.2 10.5
45 45 45
6.5 6.5 6.5
26 26 26
3.8 3.8 3.8
16 16 16
2.3 2.3 2.3
9 9 9
1.3 1.3 1.3
5 5 5
0.8 0.8 0.8
107
15.5
105
15.3
104
15.1
103
14.9
96
13.9
76
11
59
8.5
41
6.0
24
3.5
11
1.6
5
0.8
107 136 98
15.5 19.8 14.2
105
15.3
104
15.1
103
14.9
95
13.8
76
11
98
14.2
110
15.9
110
15.9
113 125
16.4 18.1
111 125
16.1 18.1
230 123
33.3 17.9
226 117
32.8 17.0
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
SA-412 SA-182 SA-240, SA-479 SA-351 SA-351 SA-351 SA-336 SA-240, SA-479 SA-182 SA-479 SA-240 SA-351 SA-240 SA-336 SA-240 SA-182 SA-479 SA-351 SA-182 SA-336 SA-240 SA-182 SA-479 SA-240 SA-240 SA-240 SA-479, SA-240 SA-182, SA-336 SA-240, SA-479 SA-182, SA-336 SA-351 SA-240, SA-182 SA-479 SA-351 SA-182, SA-240 SA-182, SA-240 SA-479 SA-240, SA-479 SA-351 SA-351 SA-240 SA-240, SA-182 SA-479 SA-240 SA-182 SA-336 SA-440, SA-479 SA-240 SA-440, SA-479 SA-564 SA-182, SA-336
DESIGN OF PRESSURE VESSELS, PLATES, AND SHELLS
8.50
CHAPTER EIGHT
TABLE 8-11 Maximum allowable stress values (sa ) in tension for high-alloy steel (Cont.)
Spec. no.
Grade
SA-351 CG 6 MM SA-240, SA-412, XM-19 SA-479, SA-182
Product form
Specified minimum
Specified minimum
yield strength, sy
tensile strength, st
UNS no.
Nominal composition
J 93790 S 20910
22 Cr-13 Ni-5 Mn Cast 241 22 Cr-13 NI-5 Mn Plate, bar, forgef 379
MPa
Maximum allowable stress, sa 30 to 38 (20 to 100)
93 (200)
150 (300)
205 (400)
kpsi
MPa
kpsi
MPa
kpsi
MPa
kpsi
MPa
kpsi
MPa
kpsi
35 55
517 689
75 100
130 172
18.8 25.0
116 172
16.9 24.9
103 163
14.9 23.6
94 156
13.6 22.7
a
The stress value in this table may be interpolated to determine values for intermediate temperatures. Stress values in restricted shear shall be 0.8 times the values in this table. c Stress values in bearing shall be 1.60 times the values in this table. d This steel may be expected to develop embrittlement after service at moderately elevated temperature. e Use of external pressure charts for material in the form of barstock is permitted for stiffening rings only. f These stress values are the basic values multiplied by a joint efficiency factor of 0.85. b
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
DESIGN OF PRESSURE VESSELS, PLATES, AND SHELLS DESIGN OF PRESSURE VESSELS, PLATES, AND SHELLS
8.51
TABLE 8-11 Maximum allowable stress values (sa ) in tension for high-alloy steel (Cont.) For metal temperature, 8C (8F), not exceeding 260 (500)
315 (600)
370 (700)
427 (800)
482 (900)
538 (1000)
593 (1100)
650 (1200)
MPa
kpsi
MPa
kpsi
MPa
kpsi
MPa
kpsi
MPa
kpsi
MPa
kpsi
MPa
kpsi
MPa
kpsi
90 154
13.0 22.3
87 151
12.6 21.9
85 149
12.3 21.6
83 146
12.0 21.2
81 142
11.8 20.6
79 137
11.4 19.9
131
19.0
57
8.3
704 (1300) MPa
kpsi
760 (1400) MPa
kpsi
815 (1500) MPa
g
kpsi
Spec. no. SA-351 SA-240, SA-412, SA-479, SA-182
Alloy steels have low yield strength. The stress values of these alloy steels used are slightly on the high side. These higher stress values exceed 2/3 but do not exceed 90 percent of the yield strength at temperature. These stress values are not recommended for the flanges of gasket joints where a slight amount of distortion can cause leakage. h At temperature above 5408C (10008F), these stress values apply only when carbon is 0.04% or higher on heat analysis. i These stress values shall be applicable to forging over 125 mm (5 in) in thickness. j For temperature above 5408C (10008F), these stress values may be used only if the material is heat-treated by heating it to a minimum temperature of 10408C (19008F) and quenching in water or rapidly cooling by other means. k These stress values at 5658C (10508F) and above shall be used only when the grain size is ASTM 6 or coarser. l These stress values are established from a consideration of strength only and shall be satisfactory for average service. Source: The American Society of Mechanical Engineers, ASME Boiler and Pressure Vessel Code, Section VIII, Division 1, July 1, 1986.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
Cl 4 Ie,g A 37:6 mm (112 in) E; F 62:5 mm (212 inÞ E; F > 62:5h mm (212 in)
SA-508 SA-522 SA-592
620
90
85 75 100
75 75
85 95 80
85 65 75 70
724
724 690 792
690 690
724 792 758
690 655 655 620
620 690
792
690 792
105
105 100 115
100 100
105 115 110
100 95 95 90
90 100
115
100 115
66 (150)
181
181 163 198
172 146
181 198 190
172 163 164 155
155 172
198
172 198
26.3
26.2 23.7 28.8
25.0 21.3
26.3 28.8 27.5
25.0 23.7 23.8 22.5
22.5 25.0
28.8
25.0 28.8
MPa kpsi
93 (200)
181
181 153 198
161 137
181 199 190
161 163 164 155
155 172
198
161 198
26.3
26.2 22.2 28.8
23.4 19.9
26.3 28.8 27.5
23.4 23.7 23.8 22.5
22.5 25.0
28.8
23.4 28.8
MPa kpsi
181
148 198
156 133
181 198 187
156 161 164 155
155 172
198
157 198
150 (300)
26.3
21.5 28.8
181
198
26.3
28.8
Forgings 181 26.2
181
198
179
181 198 181
Castings 181 26.3 198 28.8 185 26.9
155 172
198
198
163 154
22.5 25.0
28.8
28.8
205 (400)
26.3
28.8
26.0
26.3 28.8 26.3
23.5 22.3
22.5 25.0
28.8
28.8
MPa kpsi
23.8 22.5
164 155
155 172
198
198
Plates
MPa kpsi
Pipes and tubes 22.7 19.3
26.3 28.8 27.2
22.7 23.3 23.8 22.5
22.5 25.0
28.8
22.7 28.8
MPa kpsi
120 (250)
181
198
178
181 198 178
163 154
155 172
198
198
26.3
28.8
25.8
26.3 28.8 25.8
23.5 22.3
22.5 25.0
28.8
28.8
MPa kpsi
260 (500)
181
198
175
181 198 174
163 154
155 172
198
198
26.3
28.8
25.4
26.3 28.8 25.3
23.5 22.3
22.5 25.0
28.8
28.8
MPa kpsi
315 (600)
180
197
173
181 198 172
161 153
155 172
197
197
26.2
28.7
25.1
26.3 28.8 24.9
23.4 22.2
22.5 25.0
28.7
28.7
MPa kpsi
345 (650)
181 198 168
159 151
155 172
26.3 28.8 24.4
23.1 21.9
22.5 25.0
MPa kpsi
370 (700)
Maximum allowable stress values, sa , for metal temperatures, 8C (8F) not exceeding
b
Minimum thickness after forming any section subject to pressure shall be 4.6875 mm (3/16 in). Not welded or welded if the tensile strength of the Section IX reduced section tension test is not less than 600 MPa (100 kpsi). c Welded with the tensile strength of the Section IX reduced tension test less than 690 MPa (100 kpsi) but not less than 655 MPa (95 kpsi). d Grade II of SA-533 shall not he used for minimum allowable temperature below 1708C (2758F). e To these stress values a quality factor as specified in UG-24 shall be applied for castings. f These stress values are the basic values multiplied by a joint efficiency factor of 0.85. g The maximum section thickness shall not exceed 75 mm (3 in) for double normalized and tempered forgings, or 125 mm (5 in) for quenched and tempered forgings. h The maximum thickness of non-heat-treated forgings shall not exceed 93.75 mm (334 in). The maximum thickness as heat treated may be 100 mm (4 in). Source: The American Society of Mechanical Engineers, ASME Boiler and Pressure Vessel Code, Section VIII, Division 1, July 1, 1986.
a
SA-592
517 517
8a,b 8a,c,f
SA-333 SA-334
586 517 690
586 655 551
586 448 517 482
70 83
100
690
482 572
75 100
517 690
MPa kpsi
MPa kpsi
Cl. 4 Qe Cl. 4 QAe Cl. CA 6 NMe
B A, C
A, B, D, J 31 25 mm (1.25 in) 62.5 mm (2.5 in) E 62:5 (212 in) > j 50 mm (6 in) > j 100 mm (4 in) A, B, C, D, Cl 2 B, D, C1 3 > j 62.5 mm (212 in) I, IIa,b,d
Grade and size
SA-487 SA-487 SA-487
SA-553 SA-645a SA-724
SA-533
SA-517
SA-353a,b SA-517
Spec. no.
Specified minimum tensile strength, st
Specified minimum yield strength, sy
TABLE 8-12 Maximum allowable stress values, sa , in tension for ferrite steels with properties enhanced by heat treatment
400 (750)
165
152 169
23.9
22.2 24.5
MPa kpsi
427 (800)
161
146
23.3
21.2
MPa kpsi
DESIGN OF PRESSURE VESSELS, PLATES, AND SHELLS
8.52
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
— 20 25 30 35 40 45 50 (Grade 3-2510) 55 60 — 20 25 30 35
SA-667 SA-278 SA-278 SA-278 SA-278 SA-278 SA-278 SA-278 SA-47 SA-278 SA-278 SA-476 SA-748 SA-748 SA-748 SA-748
138 138 172 207 241 276 310 345 345 379 414 552 138 172 207 241
MPa 20 20 25 30 35 40 45 50 50 55 60 80 20 25 30 35
kpsi
Source: ASME Boiler and Pressure Vessel Code, Section VIII, Division 1, July 1, 1986.
Class
Spec. no.
Specified minimum tensile strength, st
TABLE 8-13 Maximum allowable stress values, sa , in tension for cast iron
13.8 13.8 17.2 20.7 24.1 27.6 31.0 34.5 34.5 37.9 41.4 55.2 13.8 17.2 20.7 24.1
MPa 2.0 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.0 5.5 6.0 8.0 2.0 2.5 3.0 3.5
kpsi
Subzero to 232 (450)
27.6 31.0 34.5 34.5 37.9 41.4
MPa
345 (650)
4.0 4.5 5.0 5.0 5.5 6.0 — — —
kpsi
Maximum allowable stress, sa , for metal temperature, 8C (8F) not exceeding
DESIGN OF PRESSURE VESSELS, PLATES, AND SHELLS
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
8.53
Copper—Cu 99.98% Commercial brass— Cu 66%, Zn 34% Leaded tin bronze— Cu 88%, Sn 6%, Pb-1.5%, Zn-4.5% Phosphor bronze— Cu 85.5%. Sn 12.5%, Zn 10% Muntz—Cu 59%, Zn 39% Cupronickel— Cu 80%. Ni 20%
Nickel Nickel-copper alloy— Ni 70%, Cu 30% Nickel-chromium ferrous alloy-Ni 75%, Cr 14%,Fe 10%
1B, N3, N4 H9 H15 A6
Low-carbon steel C 0.03% High-carbon steel C > 0.3% Carbon molybdenum and chrome molybdenum steel up to 3% Cr
Material
273 K (08C)
293 K (208C)
323 K (508C)
348 K (758C)
373 K (1008C)
398 K (1258C)
423 K (1508C)
Design temperature 473 K (2008C)
573 K (3008C)
673 K (4008C)
773 K (5008C)
973 K (6008C)
973 K (7008C)
1023 K (7508C)
77 73 81 87
11.2 10.6 11.7 12.6
73 70 78 84
10.6 10.2 11.3 12.2
13.9 12.9 14.9 101 15.2 100 18.8 128
96 89 103 105 130
95 88
16.0 109
31.0
214
110
30.0 26.3
207 184
8.54
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website. 18.6
14.5
14.6
13.8 12.8
15.8
127
96
100
94 87
108
18.4
13.9
14.5
13.6 12.6
15.7
124
89
96
93 85
106
Copper and Its Alloys
Nickel and Nickel Alloy
18.0
12.9
13.9
13.5 12.3
15.4
Aluminum and Aluminum Alloys 69 10.0 68 9.9 67 9.7 66 9.6 65 9.4 64 9.3 64 9.3 63 9.1 73 10.6 72 10.4 71 10.3 70 10.2 79 11.5 78 11.3 77 11.2 76 11.0
203 29.4
206 29.9 206 29.9
69 10.0 65 9.4 73 10.6 79 11.5
203 29.4
206 29.9 206 29.9
70 10.2 67 9.7 74 10.7 80 11.6
Ferrous Materials 191 27.7
192 27.8 192 27.8
169 24.5
17
2.5
83 12.0
87 12.6 85 12.3
99 14.4
203 29.4 197 28.6 172 25.0 157 22.8 128 18.6 118 17.0
200 29.0 184 26.7 162 23.5 137 19.9 115 16.7 107 15.5 176 25.5 173 25.0 166 24.0 159 23.0 152 22.0 147 21.3
197 28.6 190 27.6 181 26.3
122 17.7 116 16.8
81 11.7
93 13.5
89 12.9 82 11.9
104 15.0
65 9.4 59 8.6 67 9.7 75 10.9
26
195 28.3 186 27.0 170 24.7
186 27.0 179
GPa Mpsi GPa Mpsi GPa Mpsi GPa Mpsi GPa Mpsi GPa Mpsi GPa Mpsi GPa Mpsi GPa Mpsi GPa Mpsi GPa Mpsi GPa Mpsi GPa Mpsi GPa Mpsi GPa Mpsi GPa Mpsi
73 K 173 K (2008C) (1008C)
TABLE 8-14 Modulus of elasticity for various materials
DESIGN OF PRESSURE VESSELS, PLATES, AND SHELLS
DESIGN OF PRESSURE VESSELS, PLATES, AND SHELLS DESIGN OF PRESSURE VESSELS, PLATES, AND SHELLS
8.55
TABLE 8-15 Values of coefficient c5 Coefficient c5
Types of stays
1 2 3
112 120 135
4
150
5
175
Stays screwed through plates 1.1 cm thick, with the ends riveted over Stays screwed through plates >1.1 cm thick, with the ends riveted over Stays screwed through plates and provided with single nuts outside the plate or with inside and outside nuts, but no washers With heads <1.3 j times the stay diameter, screwed through the plates, or made with a taper fit and having heads formed before installing and not riveted over; these heads have a true bearing on the plate Stays with inside and outside nuts and outside washers, when the washer diameter is 0:4a, and the thickness n
TABLE 8-16 Design stresses for bolted flanged beads, d Minimum of specified range of tensile strength of flange material at room temperature Maximum temperature
3170
3520
3870
4220
4920
Alloy bolt steel
K
8C
MPa
kpsi
MPa
kpsi
MPa
kpsi
MPa
kpsi
MPa
kpsi
MPa
kpsi
643 672 696 727 755 783
370 399 423 454 482 510
74.0 63.3 55.8 47.3 38.3 27.9
10.5 8.2 8.0 6.9 5.5 4.0
81.9 73.1 62.8 52.5 41.4 31.1
12.0 10.6 9.0 7.6 6.0 4.5
90.7 77.0 68.6 57.4 45.5 31.2
13.2 11.2 10.0 8.3 6.5 4.5
97.6 87.3 75.5 62.8 50.5 38.3
14.2 12.7 11.0 9.0 7.3 5.5
115.2 102.0 87.3 73.5 58.8 44.2
16.5 14.8 12.0 10.6 8.5 6.4
97.6 87.3 75.5 62.8 50.5 38.3
14.2 12.6 11.0 9.0 7.3 5.5
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
DESIGN OF PRESSURE VESSELS, PLATES, AND SHELLS
8.56
CHAPTER EIGHT
FIGURE 8-16(a) Maximum diameter of nonreinforced openings. (Source: IS 2825, 1969.)
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
DESIGN OF PRESSURE VESSELS, PLATES, AND SHELLS DESIGN OF PRESSURE VESSELS, PLATES, AND SHELLS
FIGURE 8-16(b) Maximum diameter of nonreinforced openings. (Source: IS 2825, 1969.)
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
8.57
Diameter, mm (in)
63.5 (2.5) >63.5 (2.5) to 102 (4) 63.5 (2.5) >63.5 (2.5) to 102 (4) 63.5 (2.5) >63.5 (2.5) to 102 (4) 102ð4Þ All (1) (2) All (1) (2)
843 min (122.3 min)
431–510 (62.5–74.0) 843 min (122.3) 775 min (112.4) 896 min (130.0) 647 min (93.8) 843 min (122.3) 804 min (116.6) 696 min (101.0 min) 539 min (78.2 min) In softened condition or 863 min (125.2) if cold-drawn
MPa (kpsi)
113 (16.4) 110 (16.0) 195 (28.3)
129 (18.7) 212 (30.8)
187 (27.1) 169 (24.5) 161 (23.4) 109 (15.7) 113 (16.4)
55 (8.0) 181 (26.3) 163 (23.6) 138 (20.0)
MPa (kpsi)
1008C
129 (18.7)
193 (28.0) 174 (25.2) 176 (25.5) 129 (18.7) 129 (18.7)
57 (8.3) 193 (28.0) 174 (25.2) 138 (20.0)
MPa (kpsi)
508C
94 (13.6) 169 (24.5)
100 (14.5)
181 (26.3) 163 (23.6) 141 (20.5) 85 (12.3) 100 (14.5)
53 (7.7) 168 (24.3) 152 (22.0) 138 (20.0)
MPa (kpsi)
2008C
87 (12.6) 160 (23.2)
93 (13.5)
176 (25.5) 159 (23.1) 134 (19.4) 78 (11.3) 93 (13.5)
48 (6.9) 159 (23.0) 145 (21.0) 138 (20.0)
MPa (kpsi)
2508C
83 (12.0) 152 (22.0)
90 (13.0)
170 (24.7) 152 (22.0) 126 (18.3) 76 (11.0) 90 (13.0)
154(22.4) 141(20.5) 138(20.0)
MPa (kpsi)
3008C
79 (11.5) 144 (20.9)
86 (12.5)
165 (23.9) 150 (21.8) 119 (11.3) 73 (10.6) 86 (12.5)
148 (21.5) 134 (19.4) 138 (20.0)
MPa (kpsi)
3508C
Allowable stress, sa , for design metal temperature not exceeding (8C)
1. Austenitic steel bolts for use in pressure joints shall not be less than 10 mm in diameter. 2. For bolts of up to 38 mm diameter use torque spanners. 3. High strength is obtainable in bolting materials by heat treatment of the ferritic and martensitic steels and by cold working of austenitic steels. Values in parentheses are in US Customary units (i.e., fps system of units). Sizes in parentheses are in inches and outside parentheses are in millimeters. Source: IS 2825, 1969.
18/9 Cr Ni Nb All (1) (2) stabilized steel 17/10/212Cr Ni Mo steel All (1) (2) 18/Cr 2 Ni steel 102 (4)
13% Cr Ni steel 18/8 Cr Ni steel 18/8 Cr Ni Ti stabilized steel
1% Cr V steel
5% Cr Mo steel
1% Cr Mo steel
Hot-rolled carbon steel 150 (6)
Material
Specified tensile strength, st
TABLE 8-17 Allowable stresses (sa ) for flange bolting material
78 (11.3) 127 (18.4)
84 (12.2)
157 (22.8) 143 (20.7) 104 (15.1) 72 (10.4) 84 (12.2)
140 (20.0) 127 (18.4) 138 (20.0)
MPa (kpsi)
4008C
DESIGN OF PRESSURE VESSELS, PLATES, AND SHELLS
8.58
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
DESIGN OF PRESSURE VESSELS, PLATES, AND SHELLS DESIGN OF PRESSURE VESSELS, PLATES, AND SHELLS
8.59
FIGURE 8-17 Nomenclature and formulas for reinforced openings. (This figure illustrates a common-nozzles configuration and is not intended to prohibit other configurations permitted by the code.) (American Society of Mechanical Engineers, ASME Boiler and Pressure Vessel Code, Section VIII, Division 1, July 1, 1986.)
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
DESIGN OF PRESSURE VESSELS, PLATES, AND SHELLS
8.60
CHAPTER EIGHT
TABLE 8-18 Values of spherical radius factor K1 equivalent to spherical radius = K1 D, D=2h = axis ratio D=2h K1
3.0 1.36
2.8 1.27
2.6 1.18
2.4 1.08
2.2 0.99
2 0.90
1.8 0.81
1.6 0.73
Particular
1.4 0.65
1.2 0.57
1.0 0.50
Formula
LIGAMENTS The efficiency of the ligament between the tube holes, when the pitch of the tube holes on every row is equal
¼
The efficiency of the ligament between the tube holes, when the pitch of tube holes on any one row is unequal (Fig. 8-18)
¼
pd p
ð8-102Þ
where p ¼ longitudinal pitch of tube holes, m (in) d ¼ diameter of tube holes, m (in) p1 nd p1
ð8-103Þ
where p1 ¼ unit length of ligament, m (in) n ¼ number of tube holes in length, p1
FIGURE 8-18 Irregular drilling.
The efficiency of the ligament, when bending stress due to weight is negligible and the tube holes are arranged along a diagonal line with respect to the longitudinal axis or to a regular sawtooth pattern as shown in Fig. 8-19a to d
¼
2 qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi A þ B þ ðA BÞ2 þ 4C2
ð8-104Þ
cos2 þ 1 2½1 ðd cos Þ=2a 1 d cos 1 ðsin2 þ 1Þ B¼ 2 a
where A ¼
sin cos C¼ d cos 2 1 a 1 cos ¼ pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ; 1 þ ðb2 =a2 Þ The smallest value of efficiency of all the ligaments (longitudinal, circumferential, and diagonal) in the case of regular staggered spacing of tube holes For minimum number of pipe threads for connections as per ASME Boiler and Pressure Vessel Code
¼
p c PL d ¼ pL PL
or
1 sin ¼ pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 1 þ a2 =b2
d a
The symbols are as shown in Fig. 8-19d. Refer to Table 8-19.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð8-105Þ
DESIGN OF PRESSURE VESSELS, PLATES, AND SHELLS
8.61
DESIGN OF PRESSURE VESSELS, PLATES, AND SHELLS
FIGURE 8-19(a) A regular staggering of holes.
FIGURE 8-19(c) Regular sawtooth pattern of holes.
FIGURE 8-19(b) Spacing of holes on a diagonal line.
FIGURE 8-19(d)
Particular
Formula
BOLTED FLANGE CONNECTIONS Bolt loads 2 G P þ 2bGmP 4
The required bolt load under operating conditions sufficient to contain the hydrostatic end force and simultaneously to maintain adequate compression on the gasket to ensure seating
Wm1 ¼ H þ HP ¼
For additional gasket criteria
Refer to Tables 8-20 and 8-21.
ð8-106Þ
TABLE 8-19 Minimum number of threads for connections Size of pipe connection, mm (in)
12.5 and 18.75 (12 and 34)
25.0, 31.25, and 37.5 (1, 114, and 112)
50.0 (2)
62.5 and 75 (212 and 3)
100–150 (4–6)
200 (8)
250 (10)
300 (12)
Threads engaged
6
7
8
8
10
12
13
14
Minimum plate thickness required, mm (in)
10.75 (0.43)
15.25 (0.62)
17.50 (0.70)
25.0 (1.0)
31.25 (1.25)
37.50 (1.5)
40.5 (1.62)
43.75 (1.75)
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
10
10
Dimension N mm (in) (min)
Flat-metal-jacketed, asbestos-filled
Corrugated metal
Carbon steel, stainless steel or monel metal Soft aluminum Soft copper or brass Iron or soft steel Monel metal or 4–6% chrome steel Stainless steels Soft aluminum Soft copper or brass Iron or soft steel Monel metal or 4–6% chrome steel Stainless steel Soft aluminum Soft copper or brass Iron or soft steel Monel metal or 4–6% chrome steel Stainless steels
68.9 (10.0) 68.9 (10.0) 20.0 (2.9) 25.5 (3.7) 31.0 (4.5) 38.0 (5.5) 44.8 (6.5) 25.5 (3.7) 31.0 (4.5) 38.0 (5.5) 44.0 (6.5) 52.4 (7.6) 38.0 (5.5) 44.0 (6.5) 52.4 (7.6) 55.1 (8.0) 62.1 (9.0)
3.50 2.75 3.00 3.25 3.50 3.75 3.25 3.50 3.75 3.50 3.75
7.55 (1.1)
15.2 (2.2) 20.0 (2.9) 25.5 (3.7)
0 1.37 (0.2) 11.0 (1.6) 25.5 (3.7) 44.8 (6.5) 2.75 (0.40)
Minimum design seating stress, y MPa (kpsi)
2.50 3.00 2.50 2.75 3.00 3.25
1.75
Vegetable fiber
Spiral-wound metal, asbestos-filled Corrugated metal, asbestos inserted or Corrugated metal, jacketed asbestos filled
2.25 2.50 2.75
0.50 1.00 2.00 2.75 3.50 1.25
Gasket factor, m
Rubber and elastomers ( 3-ply with asbestos fabric 2-ply insertion, with or without 1-ply wire reinforcement
Rubber without fabric or a high percentage of asbestos fiber: <70 IRHD* (75A Shore Durometer) 70 IRHD (75A)* or higher ) 3.2 mm (0. 125 in) Asbestos with a suitable binder for the operating 1.6 mm (0.062 In) conditions 0.8 mm (0.031 in) thickness Rubber and elastomers with cotton fabric insertion
Gasket material
TABLE 8-20 Gasket materials and contact facingsa Sketches and and notes
1a, 1b, 1c , 1d 2
1 (a, b, c, d)
1 (a, b)
1 (a, b, c, d), 4, 5
1 (a, b, c, d), 4, 5,
Use facing sketch
II
II
II
II
II
Use column
Refer to Table 8-21
DESIGN OF PRESSURE VESSELS, PLATES, AND SHELLS
8.62
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
Solid flat metal
6
Rubber O-rings: <75 IRHD (75A Shore Dur) 75 (75A) to 85 IRHD (85A) Rubber square section rings: <75 IRHD (75A Shore Dur) 75 (75A) to 85 IRHD (85A) Rubber T-section rings: Below 75 IRHD (75A Shore Dur) Between 75 (75A) and 85 IRHD (85A)
Soft aluminum Soft copper or brass Iron or soft steel Monel metal or 4–6% chrome steel Stainless steels Soft aluminum Soft copper or brass Iron or soft steel Monel metal or 4–6% chrome steel Stainless steels Iron or soft steel Monel metal or 4–6% chrome steel Stainless steels
0.98 (0.14) 2.75 (0.40) 0.98 (0.14) 2.75 (0.40)
4c 9c
179.3 (26.0)
6.50
4c 9c
179.3 (26.0) 124.2 (18.0) 150.3 (21.8)
6.50 5.50 6.00
0.69 (0.10) 1.42 (0.2)
69.6 (10.1) 60.7 (8.8) 89.6 (13.0) 124.2 (18.0) 150.3 (21.8)
4.25 4.00 4.75 5.50 6.00
3c 6c
3.80 (5.5) 44.8 (6.5) 52.4 (7.6) 62.1 (9.0)
Minimum design seating stress, y MPa (kpsi)
3.25 3.50 3.75 3.75
Gasket factor, m
Sketches and and notes
9 only
8 only
7 only
6
1 (a, b, c, d), 2, 3, 4, 5
1 (a, b, c, d), 2, 3
Use facing sketch
II
I
II
Use column
Refer to Table 8-21
c
b
Gasket factors (m) for operating conditions and minimum design seating stress (y). or The surface of a gasket having a lap should not be against the nubbin. These values have been calculated. Note: This table gives a list of many commonly used gasket materials and contact facings with suggested design values of m and y that have generally proved satisfactory in actual service when using effective gasket seating with b given in Table 8-21 and Fig. 8-13. The design values and other details given in this table are suggested only and are not mandatory. Source: IS 2825, 1969.
a
Grooved metal
10
Ring joint
Gasket material
Dimension N mm (in) (min)
TABLE 8-20 Gasket materials and contact facingsa (Cont.)
DESIGN OF PRESSURE VESSELS, PLATES, AND SHELLS
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
8.63
DESIGN OF PRESSURE VESSELS, PLATES, AND SHELLS
TABLE 8-21 Effective gasket width Basic gasket seating width, b Facing sketch (exaggerated)
Column I
Column II
1a
N 2
N 2
1ba
1c
w þ 25T ; 3
wþN max 4
w þ 25T ; 3
wþN max 2
1d a
2
wþN 4
wþN ; 4
3
w ; 2
4a
3N 8
7N 16
5
N 4
3N 8
6
w 8
—
7
—
N 2
8
—
N 2
9
—
N 2
a
N min 4
w þ 3N 8
3N min 8
Where serrations do not exceed 0.4 mm depth and 0.8 mm width spacing, sketches 1b and 1d shall be used.
8.64 Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
DESIGN OF PRESSURE VESSELS, PLATES, AND SHELLS DESIGN OF PRESSURE VESSELS, PLATES, AND SHELLS
Particular
8.65
Formula
Wm2 ¼ bGy
The required initial bolt load to seat the gasket jointcontact surface properly at atmospheric temperature condition without internal pressure
ð8-107Þ
Refer to Table 8-20 for y.
Total required cross-sectional area of bolts at the root of thread
Am > Am1 or Am2
ð8-108Þ
Total cross-sectional area of bolt at root of thread or section of least diameter under stress required for the operating condition
Am1 ¼
Wm1 sbd
ð8-109Þ
Total cross-sectional area of bolt at root of thread or section of least diameter under stress required for gasket seating
Am2 ¼
Refer to Tables 8-17 and 8-23 for sbd . Wm2 sbat
ð8-110Þ
TABLE 8-22 Moment arms for flange loads under operating conditions Type of flange
hD
hT
hG
Integral-type flanges
R þ 0:5g1
Loose-type except lap joint flanges and optional-type flanges
CB 2 CB 2
R þ g1 þ hG 2 hD þ hG 2 CG 2
CG 2 CG 2 CG 2
Lap joint flanges
TABLE 8-23 Maximum allowable stresses in stays and stay bolts, sa Stress For lengths between support not exceeding 120 diameter
For lengths between support exceeding 120 diameter
Type of stay
MPa
MPa
kpsi
(a) Unwelded or flexible stays less than 20 diameter long, screwed through plates with ends riveted over (b) Hollow steel stays less than 20 diameter long, screwed through plates with ends riveted over (c) Unwelded stays and unwelded portions of welded stays, except as specified in (a) and (b) (d) Steel through stays exceeding 38 mm diameter (e) Welded portions of stays
51
7.5
55
8.0
66
9.5
58
8.5
71 41
10.4 6.0
62 51
9.0 7.5
kpsi
Source: ASME Boiler and Pressure Vessel Code.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
DESIGN OF PRESSURE VESSELS, PLATES, AND SHELLS
8.66
CHAPTER EIGHT
Particular
The actual cross-sectional area of bolts using the root diameter of thread or least diameter of unthreaded portion (if less), to prevent damage to the gasket during bolting up
Formula
Ab ¼
2yGN <j Am sbat
ð8-111Þ
Flange design bolt load W The bolt load in the design of flange for operating condition The bolt load in the design of flange for gasket seating
The relation between bolt load per bolt ðWb Þ, diameter of bolt D and torque Mt
ð8-112Þ
W ¼ Wm1 W¼
Am þ Ab sbat 2
Wb ¼ 0:17DMt
ð8-113Þ
for lubricated bolts USCS
ð8-114aÞ
where Wb in lbf, D in in, Mt in lbf in Wb ¼ 263:5DMt
SI
ð8-114bÞ
USCS
ð8-114cÞ
where Wb in N, D in m, Mt in N m Wb ¼ 0:2DMt
for unlubricated bolts
where Wb in lbf, D in in, Mt in lbf in Wb ¼ 310DMt
SI
ð8-114dÞ
where Wb in N, D in m, Mt in N m
Flange moments The total moment acting on the flange Mo for operating condition
The total flange moment Mo for gasket seating, which is based on the flange design bolt load of Eq. (8-113)
Mo ¼ MD þ Mt þ MG ¼ HD hD þ HT hT þ HG hG
ð8-115aÞ ð8-115bÞ
This is based on the flange design load of Eq. (8-112) with moment arms as given in Table 8-22. Am þ Ab CG Mo ¼ WhG ¼ ð8-116Þ sbat 2 2
Flange stresses The stress in the flange shall be determined for both the gasket seating condition and the operating condition.
The larger of these two controls with the following formulas:
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
DESIGN OF PRESSURE VESSELS, PLATES, AND SHELLS DESIGN OF PRESSURE VESSELS, PLATES, AND SHELLS
Particular
8.67
Formula
INTEGRAL-TYPE FLANGES AND LOOSETYPE FLANGES WITH A HUB There are three types of stress: Longitudinal hub stress
Radial flange stress
Tangential stress
For flange factors values
H ¼
fMo Lg21 B
ð8-117Þ
R ¼
ð1:33te þ 1ÞMo Lt2 B
ð8-118Þ
¼
YMo t2 B
ð8-119Þ
ZR
Refer to Figs. 8-20 to 8-25.
LOOSE-TYPE FLANGES WITHOUT HUB AND LOOSE-TYPE FLANGES WITH HUB WHICH THE DESIGNER CHOOSES TO CALCULATE (a) Stresses without considering the hub YMo t2 B
(1) Tangential stress
¼
(2) The radial and longitudinal stress
H ¼ R ¼ 0
ð8-120Þ ð8-121Þ
(b) Allowable flange design stresses: The flange stresses calculated by Eqs. (8-117) to (8-121) shall not exceed the values of stresses given by Eqs. (8-122) to (8-126). (1) The longitudinal hub stress
H <j sfd j 1:5sfd H >
(i) The longitudinal hub stress for optionaltype flanges designed as integral and also integral type where the neck material constitutes the hub of the flange (ii) The longitudinal hub stress for integraltype flanges with hub welded to the neck, pipe, or vessel wall
j 1:5sfd ðaÞ H >
for cast iron
ð8-122aÞ
for other materials
ð8-122bÞ
or 1:5snd
ð8-123aÞ
The smaller of sfd and snd is to be selected. j 1:5sfd ðbÞ H >
or 2:5snd
ð8-123bÞ
The smaller of sfd and snd is to be selected.
(2) The radial stress
R > j sfd
ð8-124Þ
(3) The tangential stress
j sfd >
ð8-125Þ
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
FIGURE 8-20 Values of T, U, Y, and Z for K ¼ ðA=BÞ > 1:5. (Source: IS 2825, 1969.)
DESIGN OF PRESSURE VESSELS, PLATES, AND SHELLS
8.68 Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
DESIGN OF PRESSURE VESSELS, PLATES, AND SHELLS DESIGN OF PRESSURE VESSELS, PLATES, AND SHELLS
FIGURE 8-21 Values of F (integral flange factors). (Source: IS 2825, 1969.)
FIGURE 8-22 Values of V (integral flange factors). (Source: IS 2825, 1969.)
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
8.69
DESIGN OF PRESSURE VESSELS, PLATES, AND SHELLS
8.70
CHAPTER EIGHT
FIGURE 8-23 Values of FL (loose hub flange factors). (Source: IS 2825, 1969.)
FIGURE 8-24 Values of VL (loose hub flange factors). (Source: IS 2825, 1969.)
Particular
Formula
(4) The average of H and R , and H and
ðH þ R Þ=2 > j sfd
ð8-126aÞ
j sfd ðH þ Þ=2 >
ð8-126bÞ
Flanges under external pressure The design of flanges for external pressure only shall be based on the formulas given for internal pressure except that for operating conditions.
Mo ¼ HD ðhD hG Þ þ HT ðhT hG Þ
Mo ¼ WhG
for operating conditions
ð8-127aÞ
for gasket seating
ð8-127bÞ
where W ¼ sbat ðAm2 þ Ab Þ=2
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð8-128Þ
DESIGN OF PRESSURE VESSELS, PLATES, AND SHELLS DESIGN OF PRESSURE VESSELS, PLATES, AND SHELLS
8.71
FIGURE 8-25 Values of f (hub stress correction factor). (Source: IS 2825, 1969.)
REFERENCES 1. ‘‘Rules for Construction of Pressure Vessels,’’ Section VIII, Division 1, ASME Boiler and Pressure Vessel Code, The American Society of Mechanical Engineers (ASME), New York, 1986 ed., July 1, 1986. 2. ‘‘Rules for Construction of Pressure Vessels,’’ Section VIII, Division 2, Alternative Rules, ASME Boiler and Pressure Vessel Code, ASME, New York, 1986 ed., July 1, 1986. 3. ‘‘Rules for Construction of Power Boiler,’’ Section 1, ASME Boiler and Pressure Vessel Code, ASME, New York, 1983 ed., July 1, 1971. 4. ‘‘Recommended Rules for Care of Power Boilers,’’ Section VII, ASME Boiler and Pressure Vessel Code, ASME, New York, 1983. 5. ‘‘Rules for in Service Inspection of Nuclear Power Plant Components,’’ Section XI, ASME Boiler and Pressure Vessel Code, 1971. 6. ‘‘Heating Boilers,’’ Section IV, ASME Boiler and Pressure Vessel Code, ASME, New York, 1983. 7. ‘‘Recommended Rules for Care and Operation of Heating Boilers,’’ Section VI, ASME Boiler and Pressure Vessel Code, ASME, New York, 1983. 8. ‘‘Part A: Ferrous Materials,’’ Section II, ASME Boiler and Pressure Vessel Code, ASME, New York, 1983. 9. ‘‘Part B: Non-ferrous Materials,’’ Section II, ASME Boiler and Pressure Vessel Code, ASME, New York, 1983. 10. Azbel, D. S., and N. P. Cheremisinoff, Chemical and Process Equipment Design—Vessel Design and Selection, Ann Arbor Science Publishers, Ann Arbor, Michigan, 1982.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
DESIGN OF PRESSURE VESSELS, PLATES, AND SHELLS
8.72
CHAPTER EIGHT
11. Bureau of Indian Standards, ZS 2825-1969 (under revision). 12. Chuse, R., Pressure Vessels—The ASME Code Simplified, 5th edition, McGraw-Hill Book Company, New York, 1977. 13. Lingaiah, K., and B. R. Narayana Iyengar, Machine Design Data Handbook, Engineering College Cooperative Society, Bangalore, India, 1962. 14. Lingaiah, K., and B. R. Narayana lyengar, Machine Design Data Handbook, Vol. I (SI and Customarv Metric Units), Suma Publishers, Bangalore, India, 1983. 15. Lingaiah, K., Machine Design Data Handbook, Vol. II (SI and Customary Metric Units), Suma Publishers, Bangalore, India, 1986.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
Source: MACHINE DESIGN DATABOOK
CHAPTER
9 DESIGN OF POWER BOILERS
SYMBOLS6;7 C d do Do D.S. E G h or t H l n L P p or P Ri S t (or h) SHS W WHS sa
smoke area consisting of the total internal transverse area of the tube, m2 (ft2 ) diameter of cylinder or shell, in (in) diameter or short span, measured as shown in Fig. 8-9 (Chap. 8) maximum allowable diameter of opening, m (in) outside diameter of cylinder or shell or tube or pipe, m (in) outside diameter of furnace or flue, m (in) disengaging surface or area of water surface through which steam bubbles must be discharged, the water being considered at the middle-gauge cock, m2 (ft2 ) modulus of elasticity, GPa (Mpsi) area of the grate as finally adopted, m2 (ft2 ) thickness of tube or shell wall, m (in) total heating surface in contact with the fire, m2 (ft2 ) length of the flue sections, m (in) factor of safety to be taken as 5 for usual cases radius to which the head is formed, measured on the concave side of the head, m (in) rated power of boiler maximum allowable working pressure, Pa or MPa (psi) inside radius of cylindrical shell, m (in) volume of steam included between the shell and a horizontal line through the position of the central gauge as finally determined, m2 (ft2 ) thickness of tube or pipe or cylinder or shell or plate, m (in) total area of superheating surface based on the actual area in contact with the fire, m2 (ft2 ) net water volume in the boiler below the line of the central gauge cock, m2 (ft2 ) total area of water heating surface based on the actual area in contact with the fire, m2 (ft2 ) maximum allowable stress value, MPa (kpsi) from Tables 7-1 (Chapter 7), 8-9 to 8-11, and 8-17 (Chapter 8) efficiency of joint
9.1 Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
DESIGN OF POWER BOILERS
9.2
CHAPTER NINE
Other factors in performance or in special aspects are included from time to time in this chapter and, being applicable only in their immediate context, are not given at this stage. Note: and with initial subscript s designates strength properties of material used in the design, which will be used and observed throughout this Machine Design Data Handbook.
Particular
Formula
BOILER TUBES AND PIPES For calculation of the minimum required thickness (t) and maximum allowable working pressure ( p or P) of ferrous and nonferrous tubes and pipes from 12.5 mm (12 in) to 150 mm (6 in) outside diameter used in power boilers as per ASME Boiler and Pressure Vessel Code2;3
Refer to Eqs. (7-1) to (7-15) (Chap. 7).
For efficiency of joints (), temperature coefficient (y), minimum allowance for threading, and structural stability (C) as per ASME Boiler and Pressure Vessel Code
Refer to Tables from 7-2 to 7-6 (Chap. 7).
For maximum allowable stress value (sa ) for the materials of tubes and pipes as per ASME Boiler and Pressure Vessel Code3
Refer to Table 7-1.
The maximum allowable working pressure for steel tubes or flues of fire tube boilers for different diameters and gauges of tubes as per ASME Power Boiler Code2
p¼
96:5 ðh 1:625 103 Þ do
SI ð9-1aÞ
where p in MPa, h and do in m p¼
14000 ðh 0:065Þ do
USCS
ð9-1bÞ
where p in psi, h and do in in For maximum allowable working pressure and thickness of steel tubes The maximum allowable working pressure for copper tubes for firetube boilers subjected to internal or external pressure as per ASME Power Boiler Code2
Refer to Tables 7-7, 9-1, 9-2 and 9-4 and Fig. 7-1. p¼
83 ðh 1 103 Þ 1:7 do
SI ð9-2aÞ
where p in MPa, do and h in m p¼
12000 ðh 0:039Þ 250 do
USCS
where p in psi, do and h in in For maximum allowable working pressure and thickness of copper tubes
Refer to Tables 9-3 and 9-5.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð9-2bÞ
0.055 0.065 0.075 0.085 0.095 0.105 0.120 0.135 0.150 0.165 0.180 0.200 0.220 0.240 0.260 0.280 0.300 0.320 0.340 0.360 0.380 0.400 0.420
1.375 1.625 1.875 2.125 2.375 2.625 3.000 3.375 3.750 4.125 4.500 5.000 5.500 6.000 6.500 7.000 7.500 8.000 8.500 9.000 9.500 10.000 10.500
17 16 15þ 14þ 13 12 11 10þ 9þ 8 7 6 5 4þ 3þ 2
Nearest Bwg no.
3.38 7.52 11.03
MPa
12.5
590 1090 1600
psi
(0.5)
2.41 4.62 6.90 9.24
MPa
19.0
Bwg ¼ Birmingham wire gauge Source: ASME Power Boiler Code, Section I, 1983.
in
mm
Wall thickness
350 670 1000 1340
psi
3.24 5.00 6.62
MPa
(1.75) 25.0
470 720 960
psi
(1.0)
2.42 3.80 5.10 12.13 13.65
MPa
31.25
350 550 740 1760 1980
psi
3.0 4.06 5.24 11.03 12.90
MPa
(1.25) 37.5
430 590 760 1600 1870
psi
(1.5)
3.38 4.34 9.24 10.82 12.34 13.92
MPa
43.75
490 630 1340 1570 1790 2020
psi
2.83 3.65 7.93 9.24 10.62 12.00 13.38
MPa
(1.75) 50.0
410 530 1150 1340 1540 1740 1940
psi
(2.0)
2.76 3.45 7.17 8.20 9.24 10.34 11.45 12.90
MPa
62.5
Tube outside diameter, mm (in)
400 500 1040 1190 1340 1500 1660 1870
psi
(2.5)
2.34 5.80 6.62 7.52 8.34 9.24 10.48 11.65 12.90
MPa
75.0
390 840 960 1090 1210 1340 1520 1690 1870
psi
(3.0)
2.90 5.52 6.27 7.03 7.72 8.76 9.80 10.68 11.86 12.90 13.92
MPa
87.5
420 800 910 1020 1120 1270 1420 1550 1720 1870 2020
psi
(3.5)
4.68 5.38 6.00 6.62 7.52 8.34 9.24 10.14 11.03 12.00 12.90 13.78
MPa
100.1
680 780 870 960 1090 1210 1340 1470 1600 1740 1870 2000
psi
(4.0)
4.62 5.24 5.80 6.55 7.31 8.07 8.90 9.65 10.48 12.24 12.06 12.90 13.72
MPa
112.5
670 760 840 950 1060 1170 1290 1400 1520 1630 1750 1870 1990
psi
(4.5)
4.70 4.62 5.10 7.80 6.48 7.17 7.86 8.55 9.24 10.00 10.68 11.45 12.13 12.90 13.65
MPa
125.0
TABLE 9-1 Maximum allowable working pressures for seamless steel and electric resistance welded steel tubes or nipples for watertube boilers [from Eq. (7-4)]
590 670 740 840 940 1040 1140 1240 1340 1450 1550 1660 1760 1870 1980
psi
(5.0)
DESIGN OF POWER BOILERS
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
9.3
0.095 0.105 0.120 0.135 0.150 0.165 0.180 0.200 0.220 0.240
2.375 2.625 3.000 3.375 3.375 4.125 4.500 5.000 5.500 6.000
1.93 2.62 3.58 4.55 5.52 6.48
280 380 520 660 800 940
MPa psi 1.45 1.93 2.69 3.38 4.14 4.83 5.58 6.55 7.52 8.40
210 280 390 490 600 700 810 950 1090 1230
MPa psi
37.50 (1.50) 50.00 (2)
Source: ASME Power Boiler Code, Section I, 1983.
420 560 770 980
13 12 11 10þ 9þ 8 7 6 5 4þ
In
mm
2.90 3.86 5.31 6.76
25.00 (1) Nearest Bwg no. MPa psi
Wall thickness
1.17 1.59 2.14 2.76 3.30 3.86 4.48 5.24 6.00 6.83
170 230 310 400 480 560 650 760 870 990
MPa psi
1.31 1.80 2.28 2.76 3.24 3.72 4.34 5.03 5.65
190 260 330 400 470 540 630 730 820
MPa psi
62.50 (2.50) 75.00 (3)
1.10 1.52 1.93 2.34 2.76 3.17 3.72 4.27 4.83
160 220 280 340 400 460 540 620 700
MPa psi
(4)
1.38 1.72 2.06 2.41 2.83 3.31 3.79 4.28
200 250 300 350 410 480 550 260
MPa psi
87.50 (3.50) 200
Size outside diameter mm (in)
TABLE 9-2 Maximum allowable working pressures for steel tubes or flues for firetube boilers [from Eq. (9-1)]
1.24 1.52 1.86 2.21 2.48 2.90 3.38 4.80
MPa
180 220 270 320 360 420 490 550
psi
1.38 1.65 1.93 1.28 2.62 3.03 3.38
MPa
200 240 280 330 380 440 490
psi
112.50 (4.50) 125.00 (5)
1.52 1.80 2.07 2.41 2.76 3.10
MPa
220 260 300 350 400 450
psi
1.65 1.86 2.21 2.55 2.83
240 270 320 370 410
MPa psi
137.50 (5.50) 150.0 (6)
DESIGN OF POWER BOILERS
9.4
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
DESIGN OF POWER BOILERS DESIGN OF POWER BOILERS
Particular
9.5
Formula
The external working pressure, for plain lap-welded or seamless tubes up to and including 150 mm (6 in) external diameter, and if the thickness is greater than the standard one
p¼
1 596h 9:6 n do
where p in Pa, h and d in m 1 86670h 1386 p¼ n do
SI
ð9-3aÞ
USCS
ð9-3bÞ
where p in psi, h and d in in Refer to Table 9-6.
For proportion of standard boiler tubes
TABLE 9-3 Maximum allowable working pressure for copper tubes for firetube boilersa [from Eq. (9-2)] Outside diameter of tube
Gauge, Bwg 12
11
10
9
8
7
6
5
4
MPa psi
MPa psi
MPa psi
MPa psi
MPa psi
MPa psi
MPa psi
MPa psi
1.72 1.72 1.72 1.31
1.72 1.72 1.72 1.59
mm
in
MPa psi
50.00 81.25 100.00 125.00
2 3.25 4 5
1.17
170 1.65
240 1.72 0.76
250 1.72 110 1.03
250 1.72 150 1.52 0.90
250 1.72 220 1.72 130 1.10
250 1.72 250 1.72 160 1.72 1.03
250 250 250 150
250 250 250 190
250 250 250 230
a
For use at pressure not to exceed 1.7 MPa (250 psi) or temperature not to exceed 2088C (4068F). Source: ASME Power Boiler Code, Section I, 1983.
TABLE 9-4 Maximum boiler pressures for use of ANSI B16.5 standard steel pipe flanges and flanged valves and fittings Maximum allowable boiler pressure Primary service pressure rating
Steam service at saturation temperature
Boiler feed and blow-off line service
Mpa
psi
MPa
psi
MPa
psi
1.14 2.17 2.86 4.23 6.30 10.44 17.33
164.7 314.7 414.7 614.7 914.7 1514.7 2514.7
1.41 4.44 5.75 8.10 11.40 17.23 22.10
204.7 644.7 834.7 1174.7 1654.7 2514.7 3206.0
1.20 3.65 4.68 6.79 10.10 16.13 22.20
174.7 529.7 679.7 984.7 1464.7 2339.7 3220.7
Notes: Adjusted pressure ratings for steam service at saturated temperature corresponding to the pressure, derived from Table 2 to 8 ANSI B 16.5– 1968. Pressures shown include the factor for boiler feed and blow-off line service required by ASME corrected for saturation temperature corresponding to this pressure. Source: ASME Power Boiler Code, Section I, 1983.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
DESIGN OF POWER BOILERS
9.6
CHAPTER NINE
TABLE 9-5 Maximum external working pressures for use with lap-welded and seamless boiler tubesa Maximum allowable pressure
Nominal diameter, external diameter, mm (in)
Standard thickness, mm
MPa
51 (2) 58 (2.25) 64 (2.5) 70 (2.75) 76 (3) 83 (3.25)
2.4 2.4 2.8 2.8 2.8 3.1
2.84 2.55 2.65 2.45 2.26 2.26
a
Maximum allowable pressure
psi
Nominal diameter, external diameter, mm (in)
Standard thickness, mm
MPa
psi
427 380 392 356 327 327
89 (3.5) 96 (3.75) 102 (4) 115 (4.5) 127 (5) 153 (6)
3.1 3.1 3.4 3.4 3.8 4.2
2.16 1.96 2.06 1.67 1.67 1.37
308 282 303 238 235 199
External diameter 50 to 150 mm (2 to 6 in).
TABLE 9-6 Proportions of standard boiler tubes Nominal diameter, actual external diameter mm (in)
Actual internal diameter, mm
45 (1.76) 51 (2) 58 (2.25) 64 (2.5) 70 (2.75) 76 (3) 83 (3.25) 89 (3.5) 96 (3.75) 102 (4) 115 (4.5) 127 (5) 153 (6)
38 46 50 56 64 71 76 81 89 94 107 120 142
Thickness, mm
External circumference, mm
Internal circumference, mm
External transverse area, mm2
Internal transverse area, mm2
Length of tube m2 of internal heating surface, m
2.4 2.4 2.4 2.8 2.8 2.8 3.0 3.0 3.0 3.3 3.3 3.8 4.2
140 160 181 200 220 240 260 280 300 320 360 400 480
125 144 165 183 200 221 241 260 280 290 340 370 450
1600 2000 2000 3200 3800 4500 5400 6200 7000 8000 10000 12800 18300
1200 1700 2100 2600 3200 3900 4500 5400 6200 6900 9000 11100 16300
7.58 6.58 5.78 5.24 4.74 4.38 3.98 3.71 3.45 3.25 2.86 2.58 2.15
Weight per meter N
lbf
24.5 28.2 32.0 40.7 44.9 49.1 58.5 63.0 68.0 80.8 91.2 112.3 150.0
1.679 1.932 2.186 2.783 3.074 3.365 4.011 4.331 4.652 5.532 6.248 7.669 10.282
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
DESIGN OF POWER BOILERS DESIGN OF POWER BOILERS
Particular
9.7
Formula
The external pressure, for plain lap-welded, or seamless tubes or flues over 50 mm (2 in) and not exceeding 150 mm (6 in) external diameter
Refer to Table 9-5.
The minimum required thickness of component when it is of riveted construction or does require staying as per ASME Power Boiler Code2
h¼
pRi 0:8sa 0:6p
ð9-4Þ
The maximum allowable working pressure as per ASME Power Boiler Code
p¼
0:8sa Ri þ 0:6h
ð9-5Þ
h¼
5pL 4:8sa
ð9-6Þ
DISHED HEADS The thickness of a blank unstayed dished head with the pressure on the concave side, when it is a segment of a sphere as per ASME Power Boiler Code
where L ¼ radius to which the head is dished, measured on the concave side of the head, m (in) ¼ efficiency of weakest joint used in forming the head. (Refer to Table 8-3 for .) The minimum distance between the centers of any two openings, rivet holes excepted, shall be determined by Eq. (9-7)
AþB 2ð1 KÞ
L¼
ð9-7Þ
where L ¼ distance between the centers of the two openings measured on the surface of the head, m (in) A; B ¼ diameters of two openings, m (in) K ¼ same as defined in Eqs. (9-8a) and (9-8b) The expression for K
K¼
pdo 1:6sa h
ð9-8aÞ
K¼
pdo 1:82sa h
ð9-8bÞ
Equation (9-8a) shall be used with shells and headers designed by using Eqs. (9-4) and (9-5). Equation (9-8b) shall be used with shells and headers designed by using Eqs. (9-9) and (9-10): The minimum required thickness of ferrous drums and headers based on strength of weakest course as per ASME Power Boiler Code
h¼
pdo pRi þ C or þC 2sa þ 2yp sa ð1 yÞp
ð9-9Þ
The maximum allowable working pressure as per ASME Power Boiler Code
p¼
2sa ðh CÞ sa ðh CÞ or do 2yðh CÞ Ri þ ð1 yÞðh CÞ
ð9-10Þ
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
DESIGN OF POWER BOILERS
9.8
CHAPTER NINE
Particular
Formula
For values y, C, and sa refer to Tables 7-1, 7-3, and 7-6. The thickness of a blank unstayed full-hemispherical head with the pressure on the concave side
h¼
pL 1:6sa
ð9-11aÞ
h¼
pL ð2sa 0:2pÞ
ð9-11bÞ
Equation (9-11b) may be used for heads exceeding 12.5 mm (0.5 in) in thickness that are to be used with shells or headers designed under Eqs. (9-9) and (9-10) and that are integrally formed on seamless drums or are attached by fusion welding and do not require staying. The formula for the minimum thickness of head when the required thickness of the head given by Eqs. (9-9) and (9-10) exceeds 35 percent of the inside radius
h ¼ Lðy1=3 1Þ
ð9-12Þ
where y¼
2ðsa þ pÞ 2sa p
ð9-12aÞ
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi Cp=sa
ð9-13Þ
UNSTAYED FLAT HEADS AND COVERS The minimum required thickness of flat unstayed circular heads, covers and blind flanges as per ASME Power Boiler Code
h¼d
where C ¼ a factor depending on the method of attachment of head on the shell, pipe or header (refer to Table 8-6 for C) d ¼ diameter or short span, measured as shown in Fig. 8-9
The minimum required thickness of flat unstayed circular heads, covers or blind flange which is attached by bolts causing edge moment Fig. 8-9( j ) as per ASME Power Boiler Code
h ¼ d½Cp=sa þ 1:78WhG =sa d 3 1=2
ð9-14Þ
where W ¼ total bolt load, kN (lbf ) hG ¼ gasket moment arm, Fig. 8-13 and Table 8-22.
For details of bolt load HG , bolt moments, gasket materials, and effect of gasket width on it
Refer to Tables 8-20 and 8-22 and Fig. 8-13
The minimum required thickness of unstayed heads, covers, or blind flanges of square, rectangular, elliptical, oblong segmental, or otherwise noncircular as per ASME Power Boiler Code
t or h ¼ d
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ZCp=sa
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð9-15Þ
DESIGN OF POWER BOILERS DESIGN OF POWER BOILERS
Particular
9.9
Formula
where Z ¼ 3:4 2:4d=a
ð9-15aÞ
a ¼ long span of noncircular heads or covers measured perpendicular to short span, m (in) Z need not be greater than 2.5 Equation (9-15) does not apply to noncircular heads, covers, or blind flanges attached by bolts causing bolt edge moment The minimum required thickness of unstayed noncircular heads, covers, or blind flanges which are attached by bolts causing edge moment Fig. 8-9 as per ASME Power Boiler Code
h ¼ d½ZCp=sa þ 6WhG =sa Ld 2 1=2
The required thickness of stayed flat plates (Figs. 8-10 and 8-11) as per ASME Power Boiler Code
h ¼ pt
ð9-16Þ
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ½ p=sa c5
ð9-17Þ
where pt ¼ maximum pitch, m (in), measured between straight lines passing through the centers of the stay bolts in the different rows (Refer to Table 9-7 for pitches of stay bolts.) c5 ¼ a factor depending on the plate thickness and type of stay (Refer to Table 8-15 for values of c5 .) For sa refer to Tables 8-8, 8-23, and 8-11 h2 sa c5 p2i
The maximum allowable working pressure for stayed flat plates as per ASME Power Boiler Code
p¼
For all allowable stresses in stay and stay bolts
Refer to Chapter 8
ð9-18Þ
Also for detail design of different types of heads, covers, openings and reinforcements, ligaments, and bolted flanged connection
COMBUSTION CHAMBER AND FURNACES Combustion chamber tube sheet The maximum allowable working pressure on tube sheet of a combustion chamber where the crown sheet is suspended from the shell of the boiler as per ASME Power Boiler Code
P ¼ 27000
hðD di Þ wD
USCS
ð9-19aÞ
where h ¼ thickness of tube, in w ¼ distance from the tube sheet to opposite combustion chamber sheet, in
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
100 110 120 125 130 140 150 160 170 180 190 200 225 250 300
0.67 0.76 0.83 0.86 0.90 0.96 1.03 1.10 1.17 1.24 1.31 1.38 1.55 1.72 2.07
131.25 125.000 118.750 118.750 115.625 112.500 106.250 103.125 100.000
7.8125
(5.25) (5.000) (4.75) (4.75) (4.625) (4.50) (4.25) (4.125) (4.000)
(0.3125)
159.375 150.000 143.750 140.625 137.500 134.375 128.125 125.000 121.875 118.750 115.625 112.500 106.25 100.000
9.375
Source: ASME Power Boiler Code, Section I, 1983.
psi
MPa
Pressure
(6.375) (6.000) (5.75) (5.625) (5.50) (5.375) (5.125) (5.000) (4.875) (4.75) (4.625) (4.50) (4.25) (4.000)
(0.375)
184.375 175.000 168.750 165.625 162.500 156.250 150.000 146.875 140.625 137.500 134.375 131.25 121.875 115.625 106.250
10.9375
(0.50)
14.0625
(7.375) (7.000) (6.75) (6.625) (6.50) (6.25) (6.000) (5.875) (5.625) (5.50) (5.375) (5.25) (4.875) (4.625) (4.25) 209.375 200.000 193.750 190.625 184.375 178.125 171.875 168.150 162.500 159.375 153.125 146.875 137.50 125.000
(8.375) (8.000) (7.75) (7.625) (7.375) (7.125) (6.875) (6.75) (6.50) (6.375) (6.125) (5.875) (5.50) (5.000) 209.375 200.00 193.750 187.500 184.375 178.125 175.000 162.500 156.250 140.625
Maximum pitch of staybolts, mm (in)
12.500
Thickness of plate, mm (in) (0.4375)
TABLE 9-7 Maximum allowable pitch for screwed staybolts, ends riveted over
(8.375) (8.000) (7.75) (7.500) (7.375) (7.125) (7.000) (6.50) (6.25) (5.625)
(0.5625)
209.375 203.125 196.875 193.750 181.250 171.875 156.250
15.6250
(8.375) (8.125) (7.875) (7.750) (7.25) (6.875) (6.25)
(0.625)
212.500 200.000 175.625 175.00
17.1875
(8.50) (8.00) (7.625) (7.000)
(0.6875)
DESIGN OF POWER BOILERS
9.10
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
DESIGN OF POWER BOILERS DESIGN OF POWER BOILERS
Particular
9.11
Formula
D ¼ least horizontal distance between tube centers on a horizontal row, in di ¼ inside diameter of tube, in P ¼ maximum allowable working pressure, psi P ¼ 186
hðD di Þ wD
SI
ð9-19bÞ
where p in MPa; h, D, di , and w in m The vertical distance between the center lines of tubes in adjacent rows where tubes are staggered
Dva ¼ ð2di D þ di2 Þ1=2
ð9-20Þ
where di and D have the same meaning as given under Eq. (9-19) For minimum thickness of shell plates, dome plates, and tube plates and tube sheet for firetube boiler
Refer to Table 9-8
For mechanical properties of steel plates of boiler
Refer to Table 9-9
TABLE 9-8 Minimum thickness of shell plates, dome plates, and tube sheet for firetube boiler Diameter of Shell and dome plates
Minithickness Tube sheet
Shell and dome plates
Tube sheet
m
in
m
in
mm
in
mm
in
0.9 >0.9–1.35 >1.35—1.8 >1.8
36 >36–54 >54–72 >72
1.05 >1.05–1.35 >1.35–1.8 >1.8
42 >42–54 >54–72 >72
6.25 7.81 9.375 12.5
0.25 0.3125 0.375 0.50
9.375 10.94 12.5 14.06
0.375 0.4375 0.500 0.5625
Source: ASME Power Boiler Code, Section I, 1983.
TABLE 9-9 Mechanical properties of steel plates for boilers Tensile strength Grade
MPa
kpsi
Yield stress, percent min of tensile strength
1 2A 2B
333.4–411.9 362.8–480.5 509.9–608.0
48.4–59.7 52.6–69.7 74.0–88.2
55 50 50
Elongation percent gauge length, pffiffiffiffi ffi 5.65 a a 26 25 20
a area of cross section. Source: IS 2002-1, 1962.
a
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
DESIGN OF POWER BOILERS
9.12
CHAPTER NINE
Particular
Formula
Plain circular furnaces FURNACES 300 mm (12 in) TO 450 mm (18 in) OUTSIDE DIAMETER, INCLUSIVE Maximum allowable working pressure for furnaces not more than 412 diameters in length or height where the length does not exceed 120 times the thickness of the plate
p¼
0:36ð18:75T 1:03LÞ D
SI
ð9-21aÞ
USCS
ð9-21bÞ
where p in MPa; T, D, and L in m p¼
51:5ð18:75T 1:03LÞ D
where p in psi D ¼ outside diameter of furnace, in L ¼ total length of furnace between centers of head rivet seams, in T ¼ thickness of furnace walls, sixteenth of an inch The maximum allowable working pressure for furnaces not more than 412 diameter in length of height where the length exceeds 120 times the thickness of the plate
p¼
29:3T 2 LD
SI
ð9-22aÞ
USCS
ð9-22bÞ
SI
ð9-23aÞ
USCS
ð9-23bÞ
SI
ð9-24aÞ
USCS
ð9-24bÞ
where p in MPa; T, L, and D in m p¼
4250T 2 LD
where p in psi; T, L, and D in in
Circular flues The maximum allowable external pressure for riveted flues over 150 mm (6 in) and not exceeding 450 mm (18 in) external diameter, constructed of iron or steel plate not less than 6 mm (0.25 in) thick and put together in sections not less than 600 mm (24 in) in length
p¼
56h d
where p in Pa; h and d in m p¼
8100h d
where p in psi; h and d in in d ¼ external diameter of flue, in The formula for maximum allowable external pressure for riveted, seamless, or lap-welded flues over 450 mm (18 in) and not exceeding 700 mm (28 in) external diameter, riveted together in sections not less than 600 mm (24 in) nor more than 312 times the flue diameter in length, and subjected to external pressure only
p¼
6:7h 0:4l d
where p in Pa; h, l, and d in m p¼
966h 53l d
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
DESIGN OF POWER BOILERS DESIGN OF POWER BOILERS
Particular
9.13
Formula
where p in psi and d in in h ¼ thickness of wall in 1.5 mm (0.06 in) l > 600 mm (24 in) and <3 12 d The maximum allowable working pressure for seamless or welded flues over 125 mm (5 in) in diameter and including 450 mm (18 in) (a) Where the thickness of the wall is not greater than 0.023 times the diameter as per ASME Power Boiler Code
p¼
68948h3 D3
SI
ð9-25aÞ
where p in MPa; h and D in m p ¼ maximum allowable working pressure D ¼ outside diameter of flue h ¼ thickness of wall of flue p¼
107 h3 D3
USCS
ð9-25bÞ
SI
ð9-26aÞ
USCS
ð9-26bÞ
SI
ð9-27aÞ
USCS
ð9-27bÞ
where p in psi; h and D in in (b) Where the thickness of the wall is greater than 0.023 times the diameter.
p¼
119h 1:9 D
where p in MPa; h and D in m p¼
17300h 275 D
where p in psi; h and D in in Equations (9-24) and (9-25) may applied to riveted flues of the size specified provided the section are not over 0.91 m (3 ft) in length and the efficiency () of the joint
<j
pD 138h
where p in MPa; D and h in m <j
pD 20000h
where p in psi; D and h in in
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
DESIGN OF POWER BOILERS
9.14
CHAPTER NINE
Particular
Formula
THE MAXIMUM ALLOWABLE PRESSURE FOR SPECIAL FURNACES HAVING WALLS REINFORCED BY RIBS, RINGS, AND CORRUGATIONS (a) Furnaces reinforced by Adamson rings
p¼
6:7h 0:4l d
SI
ð9-28aÞ
USCS
ð9-28bÞ
where p in Pa; h and d in m p¼
1080h 59l d
where p in psi h ¼ thickness of wall, 1.5 mm (0.06 in) not to be less 5 than 8 mm (16 in) l ¼ length of flue section, not to be less than 450 mm (18 in) (b) Another expression for the maximum allowable working pressure when plain horizontal flues are made in sections not less than 450 mm 5 (18 in) in length and not less than 8 mm (16 in) in thickness (Adamson-type rings)
p¼
0:4ð300h 1:03LÞ D
SI
ð9-29aÞ
USCS
ð9-29bÞ
SI
ð9-30aÞ
USCS
ð9-30bÞ
where p in MPa; h, L, and D in m p¼
57:6ð300h 1:03LÞ D
where p in psi; h, L, and D in in (c) Corrugated rings
p ¼ 68:5
h d
where p in Pa; h and d in m p ¼ 10000
h d
where p in psi; h and d in in h ¼ thickness of tube wall, mm (in), not to be less than 11 mm (0.44 in) (d) Plain circular flues riveted together in sections
p¼
6:7d 0:4l d
SI
ð9-31aÞ
USCS
ð9-31bÞ
where p in Pa; d and l in m p¼
966h 53l D
where p in psi; l and d in in
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
DESIGN OF POWER BOILERS DESIGN OF POWER BOILERS
Particular
9.15
Formula
Ring-reinforced type The required wall thickness of a ring-reinforced furnace of flue shall not be less than that determined by the procedure given here
Assume a value for h (or t) and L. Determine the ratios L=Do and Do =t. Following the procedure explained in Chap. 8, determine B by using Fig. 9-1. Compute the allowable working pressure Pa by the help of Eq. (9-32)
The allowable working pressure (Pa )
Pa ¼
B ðDo =tÞ
ð9-32Þ
where Do ¼ outside diameter of furnace or flue, in Compare Pa with P. If Pa is less than P select greater value of t (or h) or smaller value of L so that Pa is equal to or greater than P, psi The required moment of inertia (Is ) of circumferential stiffening ring
A LD2o t þ s A L Is ¼ 14
ð9-33Þ
where Is ¼ required moment of inertia of stiffening ring about its neutral axis parallel to the axis of the furnace, in4 As ¼ area of cross section of the stiffening ring, in2 A ¼ factor obtained from Fig. 9-1 The required moment of inertia of a stiffening ring shall be determined by the procedure given here
The expression for B
Assume the values of Do , L, and t (or h) of furnace. Select a rectangular member to be used for stiffening ring and find its area As and its moment of inertia I. Then find the value of B from Eq. (9-34) B¼
PDo t þ As =L
ð9-34Þ
where P, Do , t, As , and L are as defined under Eq. (9-33) The value of factor A
After computing B from Eq. (9-34), determine the value of factor A by the help of Fig. 9-1 and B. If the required Is is greater than the moment of inertia I, for the section selected above, select a new section with a larger moment of inertia and determine a new value of Is . If the required Is is smaller than the moment of inertia I selected as above, then that section should be satisfactory.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
DESIGN OF POWER BOILERS
9.16
CHAPTER NINE
FIGURE 9-1 Chart for determining wall thicknesses of ring reinforced furnaces when constructed of carbon steel (specified yield strength, 210 to 262 MPa (30 to 38 kpsi) (1 kpsi ¼ 6.894757 MPa). (Source: ‘‘Rules for Construction of Power Boilers,’’ ASME Boiler and Pressure Vessel Code, Section I, 1983 and ‘‘Rules for Construction of Pressure Vessels,’’ Section VIII, Division 1, ASME Boiler and Pressure Vessel Code, July 1, 1986.)1;2
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
DESIGN OF POWER BOILERS DESIGN OF POWER BOILERS
Particular
9.17
Formula
Corrugated furnaces The maximum allowable working pressure (P) on corrugated furnace having plain portion at the ends not exceeding 225 mm (9 in) in length
tC6 D where
P¼
ð9-35Þ
5 in) for t ¼ thickness, in, not less than 7.8 mm (16 Leeds, Morison, Fox and Brown, and not less 7 than 11 mm (16 in) for Purves and other furnaces corrugated by sections not over 450 mm (18 in) long. D ¼ mean diameter, in Values of C6 are taken from Table 9-10
TABLE 9-10 Values of C6 for use in Eq. (9–35) C6 1. 2. 3. 4. 5. 6.
For Leeds furnaces, when corrugations are not more than 200 mm (8 in) from center and not less than 56.25 mm (2.25 in) deep For Morison furnaces, when corrugations are not more than 200 mm (8 in) from center to center and the radius of the outer corrugation is not more than one-half of the suspension curve For Fox furnaces, when corrugations are not more than 200 mm (8 in) from center to center and not less than 37.5 mm (1.5 in) deep For Purves furnaces, when rib projections are not more than 225 mm (9 in) from center to center and not less than 34.375 mm (1.375 in) deep For Brown furnaces, when corrugations are not more than 225 mm (9 in) from center to center and not less than 40.625 mm (1.625 in) deep For furnaces corrugated by sections not more than 450 mm (18 in) from center to center and not less than 37.5 mm (1.5 in) deep, measured from the least inside greatest outside diameter of the corrugations and having the ends fitted into the other and substantially riveted together, provided the plain parts at the ends do not exceed 300 mm (12 in) in length
17,300 15,600 14,000 14,000 14,000
Source: ASME Power Boiler Code, Section I, 1983.
Stayed surfaces The maximum allowable working pressure (P) for a stayed wrapper sheet of a locomotive-type boiler
P¼
11000t P R s sin
USCS
ð9-36aÞ
where t ¼ thickness of wrapper sheet, in R ¼ radius of wrapper sheet, in ¼ minimum efficiency of wrapper sheet through joints or stay holes
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
DESIGN OF POWER BOILERS
9.18
CHAPTER NINE
Particular
Formula
P
s sin ¼ summated value of transverse spacing (s sin ) for all crown stays considered in one transverse plane and on one side of the vertical axis of the boiler s ¼ transverse spacing of crown stays in the crown sheet, in ¼ angle any crown stay makes with the vertical axis of boiler P¼
The longitudinal pitch between stay bolts or between the nearest row of stay bolts and the row of rivets at the joints between the furnace sheet and the tube sheet or the furnace sheet and the mud ring
R
76t P s sin
SI
where P in MPa; s, t, and R in m 56320t2 2 L¼ USCS PR
ð9-36bÞ
ð9-37aÞ
where t ¼ thickness of furnace sheet, in R ¼ outside radius of furnace, in P ¼ maximum allowable working pressure, psi 2:535 109 t2 2 L¼ SI ð9-37bÞ PR where P in Pa; t, L, and R in m
Cross-sectional area of diagonal stay (A)
A¼
aL l
ð9-38Þ
where a ¼ sectional area of direct stay, m (in) L ¼ length of diagonal stay, m (in) l ¼ length of line drawn at right angles to boiler head or a projection of L on a horizontal surface parallel to boiler drum, m (in) The total cross-sectional area of stay tubes which support the tube plates in multitubular boilers
At ¼
ðA aÞP sa
ð9-39Þ
where A ¼ area of that portion of tuber plate containing the tubes, m (in) a ¼ aggregate area of holes in the tube plate, m2 (in2 ) P ¼ maximum allowable working pressure, Pa (psi) sa ¼ maximum allowable stress value in the tubes, MPa (psi) >48 j MPa (7 kpsi) sa is also taken from Table 8-23 The pitch of stay tubes shall conform to Eqs. (9-17) and (9-18) and using the values of C7 as given in Table 9-11
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
DESIGN OF POWER BOILERS DESIGN OF POWER BOILERS
Particular
The pitch from the stay bolt next to the corner to the point of tangency to the corner curve for stays at the upper corners of fire boxes shall be as given in Eq. (9-40)
9.19
Formula
p¼
90½C7 ðT 2 =PÞ1=2 USCS angularity of tangent lines ðÞ
ð9-40aÞ
where T ¼ thickness of plate in sixteenths of an inch P ¼ maximum allowable working pressure, psi C7 ¼ factor for the thickness of plate and type of stay used pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi C7 ðT 2 =pÞ pt ¼ 7592 angularity of tangent lines ðÞ SI ð9-40bÞ where pt and T in m, and p in Pa
For various values of C7
Refer to Table 9-11
TABLE 9-11 Values of C7 for determining pitch of stay tubes
Pitch of stay tubes in the bounding rows Where there are two plain tubes between two stay tubes Where there is one plain tube between two stay tubes Where every tube in the bounding rows is a stay tube and each alternate tube has a nut
When tubes have nuts not outside of plates
When tubes are fitted with nuts outside of plates
120 140 —
130 150 170
Source: ASME Power Boiler Code, Section I, 1983.
FINAL RATIOS1 Design of a horizontal return tubular boiler
H ranges from 35 to 45 in firetube boilers; G 37 is a good working value ð9-41aÞ S lines between 12 and W cylindrical boilers C varies from G
1 6
to
1 3
for most types of
1 8
ð9-41bÞ ð9-41cÞ
S ¼ 16:7 103 ð0:6Þ to 19:5 103 ð0:7Þ ð9-41dÞ P H 0:92 to 1:12 m2 (10 to 12 ft2 ) for ¼ P externally fired boiler per hp ¼ 0:74 m2 (8 ft2 ) for Scotch boiler per hp ð9-41eÞ
The units in parentheses are in US Customary System units.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
DESIGN OF POWER BOILERS
9.20
CHAPTER NINE
Particular
Design of a vertical straight shell multitubular boiler
Formula
P ¼ 53 ð5:22Þ G
ð9-41f Þ
DS ¼ 64 103 to 73 103 N
ð9-41gÞ
H ¼ 60 G
ð9-42aÞ
WHS ¼ 45 G
ð9-42bÞ
SHS 1 ¼ WHS 3
ð9-42cÞ
S 1 ¼ W 3
ð9-42dÞ
S ¼ 22:3 103 ð0:80Þ P
ð9-42eÞ
A ¼ Total area of steam segment D ¼ Diameter of shell or drum h ¼ Height of the segment to be occupied by steam
FIGURE 9-2 Disengaging surface in horizontal cylindrical shell. (Source: Reproduced from G. B. Haven and G. W. Swett, The Design of Steam Boilers and Pressure Vessels, John Wiley and Sons, Inc., 1923.)1
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
DESIGN OF POWER BOILERS DESIGN OF POWER BOILERS
9.21
FIGURE 9-3 Areas of circular segments. (Reproduced from G. B. Haven and G. W. Swett, The Design of Steam Boilers and Pressure Vessels, John Wiley and Sons, Inc., 1923.)1
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
DESIGN OF POWER BOILERS
9.22
CHAPTER NINE
Particular
Formula
Watertube boiler design
For mechanical properties of carbon and carbon manganese steel plates, sections and angles for marine boilers pressure vessels and welded machinery and mechanical properties of steel plates for boilers
C 1 ¼ G 5:5
ð9-42f Þ
H ¼ 1:12 ð12Þ P
ð9-42gÞ
G P ¼ 18:3 103 ð20Þ or ¼ 51 ð5Þ P G
ð9-42hÞ
P ¼ 51 ð5Þ DS
ð9-42iÞ
H ¼ 50 G
ð9-43aÞ
S ¼ 11:2 103 ð0:424Þ p
ð9-43bÞ
H ¼ 0:92 ð10Þ P
ð9-43cÞ
P ¼ 51 ð4:37Þ G
ð9-43dÞ
DS ¼ 27:5 103 ð0:308Þ P Refer to Table 9-12
ð9-43eÞ
For properties of boilers
Refer to Table 9-13
For evaporation of water, average rate of combustion of fuels, and minimum rate of steam produced
Refer to Tables 9-14 to 9-16
TABLE 9-12 Mechanical properties of carbon and carbon manganese steel plates, sections, and angles steel for marine boilers, pressure vessels, and welded machinery Elongation percentage min on gauge length
Tensile strength Grade
MPa
kpsi
pffiffiffiffiffi 5.65 a a
1 2 3 4 5
362.8–441.3 411.9–490.3 431.5–529.6 460.9–559.0 490.3–588.4
52.6–64.0 59.7–71.1 62.6–76.8 66.8–81.0 71.1–85.3
26 25 23 22 21
200 mm
Bond test diameter of former
25 23 21 20 19
2t 2t 3t 3t 312 t
a
Area of cross section. Source: IS 3503, 1966.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
DESIGN OF POWER BOILERS DESIGN OF POWER BOILERS
9.23
TABLE 9-13 Properties of boilers Horizontal return tubular boilers Diameter of shell, mm 910 1070 1220 1370 1520 1680 1830 1980 2130 2290 2440
Diameter of tubes, mm 64 64 64 76 76 76 76 76 76 76 76
76 76 76 89 89 89 89 89 89 89 89
Length of tubes, m 2.44 3.05 3.66 3.97 4.28 4.88 4.88 4.88 4.88 4.88 4.88
102 102 102 102
3.66 3.66 4.28 4.28 4.88 5.18 5.50 5.18 5.50 5.18 5.18
4.28 4.58 4.58 5.50 5.50 6.10 5.50 6.10 5.50 5.50
4.88 4.88
5.5
6.10 6.10 6.10 6.10
Dry-back scotch boilers
Diameter of shell, m
Diameter of tubes, mm
Length of tubes, m
Inside diameter of furnace, mm
Length of grate, m
920 920 970 1150 1270 970 1150 1270
1.22 1.53 1.93 2.03 2.21 1.93 2.03 2.21
970 1040 1140 970 1040 1140
1.93 2.24 2.44 1.93 2.24 2.44
Short Types 1.19 1.99 2.14 2.29 2.44 2.90 3.20 3.50
76 89 89 89 89 89 89 89
2.90 3.50 3.80 3.80 3.97 3.80 3.80 3.89
2.06 2.21 2.36 2.84 3.05 3.28
102 102 102 102 102 102
4.88 4.88 4.88 4.88 4.88 4.88
Long Types
Locomotive-type boilers without dome
Vertical firetube boiler for power plant use
Dimensions of grate Diameter of waist, mm
Length of 7.5 mm tubes, m Width, mm
Length, m
Diameter of tubes, mm
Length of tubes, m
925 1070 1220 1370 1520 1680 1830
2.14 2.44 3.20 3.36 3.97 4.58 4.58
1.22 1.27 1.38 1.53 1.53 1.68 1.83
50 62
3.96 4.27 4.57 4.88
0.76 0.92 1.07 1.22 1.38 1.53 1.68
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
DESIGN OF POWER BOILERS
9.24
CHAPTER NINE
Particular
Formula
For permissible strain rates of steam plant equipments
Refer to Table 9-17
For water level requirements of boilers
Refer to Table 9-18
For minimum allowable thickness of plates for boilers
Refer to Table 9-19
For disengaging surface per horsepower
Refer to Table 9-20
For heating boiler efficiency
Refer to Table 9-21
TABLE 9-14 Evaporation kg (lb) of water per kg (lb) of fuel reduced to standard condition [from and at 373 K (1008C)] Approximate Type of fuel
kJ/kg
Btu/lb
Evaporation per kg (lb) of fuel, kg (lb)
Anthracite Coke Semibituminous Bituminous Lignite Fuel oil
29,038.3–27842.2 30,228.7 33,703.7 29,098.3 22,106.3 41,868.0
12,500–1 2000 13,000 14,500 12,500 9,500 19,000
9.5–9 9.5 10 9 6 14.5
TABLE 9-15 Average rates of combustion [kg/m2 (lb/ft2 ) of grate surface per hour] draft 12.55 mm (12 in) water column Fuel used
Stationary grate
Anthracite Semibituminous Bituminous Lignite
44–68.5 (9.14) 98 (20) 68.5 (14) 58.5 (12)
TABLE 9-16 Minimum kilograms (pounds) of steam per h per ft2 of surface Firetube boilers Particulars
kg
Boiler heating surface Hand-fired Stoker-fired Oil-, gas-, or powder-fired
11.0 15.4 17.6
Water wall heating surface Hand-fired Stoker-fired Oil-, gas-, or powder-fired
17.6 22.1 30.9
lb
Watertube boilers kg
lb
5 7 8
13.2 17.6 22.1
6 8 10
8 10 14
17.6 26.5 35.3
8 12 16
Source: ASME Power Boiler Code. Section I, 1983.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
DESIGN OF POWER BOILERS DESIGN OF POWER BOILERS
TABLE 9-17 Permissible strain rates for steam plant equipment
Machine part
Strain rate per hour
Turbine disk (pressed on shaft) Bolted flanges, turbine cylinders Steam piping, welded joints, and boiler tubes Superheated tubes
109 108 107 106
TABLE 9-18 Water level requirementsa Horizontal return tubular boilers Distance between gauge cocks, mm
Boiler diameters, mm 910, 1070, 1220 1370, 1520 1680, 1830, 1980, 2130
75 100 125
Vertical firetube boilers
Boiler diameters mm
Distance between gauge cocks, mm
910–1220 1250–1680 1700–2410 2460–3100
100 125 150 175
Dry-back Scotch boilers
Locomotive-type boilers
Low water level 89 mm above surface of tubes for all diameters: distance between gauge cocks may be reduced to a minimum of 75 mm
Low water level must be 75–125 mm above the water surface of the crown sheet; distance between gauge cocks is usually 75 mm for all diameters
a
Low water level 890 mm above surface of tubes.
TABLE 9-19 Minimum allowable thickness of plates for boilers (all dimensions in mm) Power boilers
Minimum thickness 6.5 8.0 9.5 11.0 12.5 14.5
Shell and dome plate diameter 910 >910–1370 >1370–1830 >1830
Tube sheet diameter
1065 >1065–1370 >1370–1830 >1830
9.25
Heating boilers Shell or other plate diameter 1065 >1065–1530 >1530–1980 >1980
Tube sheet or head diameter 1065 >1065–1530 >1530–1980 >1980
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
DESIGN OF POWER BOILERS
9.26
CHAPTER NINE
TABLE 9-20 Disengaging surface per horsepower mean water level Disengaging surface Type of boiler Horizontal return tubular Dry-back Scotch Vertical straight shell Vertical (Manning) Locomotive type Sectional water tube
m2 /kW
m2 /hp
0.087–0.10 0.075–0.087
0.065–0.0745 0.056–0.0650
0.020–0.025 0.011–0.013 0.100–0.125
0.0149–0.0186 0.0084–0.0093 0.0745–0.093
0.037–0.0500
0.0279–0.0372
TABLE 9-21 Heating boiler efficiency Firing method Hand-Fired Coal Lignite Subbituminous Bituminous Low-volatile bituminous Anthracite Coke Stoker Conversion Bituminous Anthracite Burner Conversion Natural gas Oil Designed for Burner Stoker 45 kg >45 kg Gas Oil Cast-iron boilers Steel boilers Package units
Efficiency, %
49 44–63 50–65 44–61 60–75 75–76 55–69 63 69–76 51; 65; 70 60–75 65 70 70–80 70–80 68 70 75
REFERENCES 1. Haven, G. B., and G. W. Swett, The Design of Steam Boilers and Pressure Vessels, John Wiley and Sons, Inc., New York, 1923. 2. ‘‘Rules for Construction of Power Boilers,’’ ASME Boiler and Pressure Vessel Code, Section I, 1983. 3. ‘‘Rules for Construction of Pressure Vessels, ’’ ASME Boiler and Pressure Vessel Code, Section VIII, Division I, July 1, 1986. 4. Code of Unfired Pressure Vessels, Bureau of Indian Standards, IS 2825, 1969, New Delhi, India. 5. Nichols, R. W., Pressure Vessel Codes and Standards, Elsevier Applied Science Publishing Ltd., Barking, Essex, England, 1987. 6. Lingaiah, K., and B. R. Narayana Iyengar, Machine Design Data Handbook, Engineering College Cooperative Society, Bangalore, India, 1962. 7. Lingaiah, K., Machine Design Data Handbook, Vol. II (SI and Customary Metric Units), Suma Publishers, Bangalore, India, 1986. 8. Lingaiah, K., Machine Design Data Handbook, (SI and U.S. Customary Units), McGraw-Hill Publishing Company, New York, 1994.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
Source: MACHINE DESIGN DATABOOK
CHAPTER
10 ROTATING DISKS AND 1 CYLINDERS SYMBOLS1 g r ri ro h h2 r z !
acceleration due to gravity, m/s2 (ft/s2 ) any radius, m (in) inside radius, m (in) outside radius, m (in) thickness of disk at radius r from the center of rotation, m (in) thickness of disk at radius r2 from the center of rotation, m (in) uniform tensile stress in case of a disk of uniform strength, MPa (psi) tangential stress, MPa (psi) radial stress, MPa (psi) axial stress or longitudinal stress, MPa (psi) density of material of the disk, kg/m3 (lbm /in3 ) angular speed of disk, rad/s Poisson’s ratio
Particular
DISK OF UNIFORM STRENGTH ROTATING AT ! rad=s (Fig. 10-1) The thickness of a disk of uniform strength at radius r from center of rotation
Formula
2 ! 2 2 h ¼ h2 exp ðr r Þ 2 2
ð10-1Þ
SOLID DISK ROTATING AT ! rad=s The general expression for the radial stress of a rotating disk of uniform thickness
r ¼
3þ 2 2 ! ðro r2 Þ 8
ð10-2Þ
10.1 Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ROTATING DISKS AND CYLINDERS
10.2
CHAPTER TEN
Particular
Formula
FIGURE 10-1 High-speed rotating disk of uniform strength.
FIGURE 10-2 Rotating disk of uniform thickness.
The general expression for the tangential stress of a rotating disk of uniform thickness
¼
The maximum values of stresses are at the center, where r ¼ 0, and are equal to each other
rðmaxÞ ¼ ðmaxÞ ¼
3þ 1 þ 3 2 !2 r2o r 8 3þ 3þ !2 r2o 8
ð10-3Þ
ð10-4Þ
HOLLOW DISK ROTATING AT ! rad=s (Fig. 10-2) The general expression for the radial stress of a rotating disk of uniform thickness
3þ 2 2 r2o r2i 2 2 ! ri þ ro 2 r r ¼ 8 r
The general expression for the tangential stress of a rotating disk of uniform thickness
¼
The maximum radial stress occurs at r2 ¼ ro ri
3þ r2 r2 1 þ 3 2 !2 r2i þ r2o þ o 2 i r 8 3þ r
rðmaxÞ ¼
3þ 2 ! ðro ri Þ2 8
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð10-5Þ
ð10-6Þ
ð10-7Þ
ROTATING DISKS AND CYLINDERS ROTATING DISKS AND CYLINDERS
Particular
The maximum tangential stress occurs at inner boundary where r ¼ ri
10.3
Formula
3þ 2 2 1 2 ! ro þ ri 4 3þ
ð10-8Þ
!2 ½ð3 2Þr2o ð1 þ 2Þr2 8ð1 Þ
ð10-9Þ
ðmaxÞ ¼
SOLID CYLINDER ROTATING AT ! rad=s The tangential stress
¼
The radial stress
!2 r ¼ 8
The maximum stress occurs at the center
The axial strain in the z direction (ends free)
3 2 ðr2o r2 Þ 1
rðmaxÞ ¼ ðmaxÞ ¼
!2 8
ð10-10Þ
3 2 2 ro 1
ð10-10aÞ
"z ¼
!2 r2o 2 E
The axial stress under plane strain condition (ends free)
z ¼
!2 4
ðr2o 2r2 Þ 1
ð10-12aÞ
The axial stress under plane strain condition (ends constrained)
z ¼
!2 1 ð3 2Þr2o 2r2 4ð1 Þ 2
ð10-12bÞ
ð10-11Þ
HOLLOW CYLINDER ROTATING AT ! rad=s The tangential stress at any radius r
!2 ¼ 8
3 2 1
" r2i
þ
r2o
r2 r2 þ i 2o r
# 1 þ 2 2 r 3 2 ð10-13Þ
The radial stress at any radius r
The axial stress (ends free) at any radius r
The axial stress under plane strain conditions (ends constrained) at any radius r
The maximum stress occurs at the inner surface where r ¼ ri
!2 r ¼ 8
z ¼
!2 4
z ¼
!2 4
ðmaxÞ
3 2 1
r2i
þ
r2o
r2 r2 i 2 o r2 r
½r2i þ r2o 2r2 1
3 2 1
!2 ¼ 4
2r2 r2i þ r2o 3 2
3 2 1
ð10-14Þ
ð10-15Þ
ð10-16Þ
" # 1 2 2 2 ð10-17Þ ro þ r 3 2 i
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ROTATING DISKS AND CYLINDERS
10.4
CHAPTER TEN
Particular
The axial strain in the z direction (ends free)
The displacement u at any radius r of a thin hollow rotating disk
Formula
"z ¼ " u¼
!2 2 ðr þ r2o Þ 2E i
!2 r ð3 þ Þð1 Þ E 8
r2o
þ
1 þ r2o r2i 1 þ 2 þ r 1 r2 3þ
r2i
SOLID THIN UNIFORM DISK ROTATING AT ! rad=s UNDER EXTERNAL PRESSURE po (Fig. 10-3)
The radial stress at any radius r
r ¼ po þ !2
The tangential stress at any radius r
¼ po þ !2
The maximum radial stress at r ¼ 0
ð10-18Þ
# ð10-19Þ
3þ ðr2o r2 Þ 8 3þ 8
rðmaxÞ ¼ po þ !2
r2o
1 þ 3 2 r 3þ
ð10-20Þ
3þ 2 ro 8
ð10-21Þ
ð10-22Þ
The maximum radial stress at r ¼ ro
r ¼ po
ð10-23Þ
The maximum tangential stress at r ¼ 0
ðmaxÞ ¼ rðmaxÞ
ð10-24Þ
The displacement u at any radius r
u¼
r !2 ½ð3 þ Þr2o ð1 þ Þr2 ð1 Þ po þ 8 E ð10-25Þ
FIGURE 10-3 Rotating disk of uniform thickness under external pressure.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ROTATING DISKS AND CYLINDERS ROTATING DISKS AND CYLINDERS
Particular
10.5
Formula
HOLLOW CYLINDER OF UNIFORM THICKNESS ROTATING AT ! rad=s. SUBJECT TO INTERNAL ( pi ) AND EXTERNAL ( po ) PRESSURES (Fig. 10-4) The general expression for the radial stress of a hollow cylinder of uniform thickness rotating at ! rad/s under internal ð pi Þ and external ð po Þ pressure at any radius r
The general expression for the tangential or hoop stress of a hollow cylinder of uniform thickness rotating at ! rad/s under internal ð pi Þ and external ð po Þ pressure at any radius r.
B !2 þ 8 r2
r ¼ A
r2i
3 2 1
r2 r2 i 2 o r2 r
ð10-26Þ
3 2 1 " # r2i r2o 1 þ 2 2 2 2 ri þ ro þ 2 r 3 2 r
¼ A þ
B !2 þ 8 r2
where The tangential or hoop stress in a hollow cylinder rotating at ! rad/s under po and pi at r ¼ ri (Fig. 10-4)
þ
r2o
ð
maxÞr ¼ ri
A¼ ¼
pi r2i po r2o ; r2o r2i
B¼
ð10-27Þ
r2i r2o ð pi po Þ r2o r2i
pi ðr2i þ r2o Þ 2po r2o r2o r2i " # !2 3 2 2 4 2 þ 2r2o þ r 8 1 3 2 i ð10-28aÞ
¼
pi ðr2i
þ r2o Þ r2o r2i
!2 þ 4
2po r2o
3 2 1
" # 1 2 2 2 ro þ r 3 2 i ð10-28bÞ
FIGURE 10-4
FIGURE 10-5
FIGURE 10-6
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ROTATING DISKS AND CYLINDERS
10.6
CHAPTER TEN
Particular
The tangential or hoop stress in a hollow cylinder rotating at ! rad/s under po and pi at r ¼ ro (Fig. 10-4)
Formula
ð
maxÞr ¼ ro
¼
2pi r2i po ðr2o þ r2i Þ r2o r2i !2 3 2 1 2 2 ro þ r2i þ 1 3 2 4 ð10-29Þ
The tangential stress in a cylinder rotating at ! rad/s at any radius r when subjected to internal pressure ð pi Þ only (Fig. 10-5)
ð Þpo ¼ 0 ¼
The tangential stress in a cylinder rotating at ! rad/s at any radius r when subject to external pressure ð po Þ only (Fig. 10-6)
ð Þpi ¼ 0 ¼
pi r2i ðr2o þ r2 Þ !2 3 2 þ 4 1 r2 ðr2o r2i Þ " # r2i r2o 1 þ 2 2 2 2 r ð10-30Þ ri þ ro þ 2 3 2 r po r2o ðr2 þ r2i Þ !2 3 2 þ 1 4 r2 ðr2o r2i Þ " # 2 2 ri ro 1 þ 2 2 2 2 r i þ ro þ 2 r ð10-31Þ 3 2 r
ROTATING THICK DISK AND CYLINDER WITH UNIFORM THICKNESS SUBJECT TO THERMAL STRESSES The hoop or tangential stress in thick disk or cylinder at any radius r rotating at ! rad/s subject to pressure po and pi
The radial stress in thick disk or cylinder at any radius r rotating at ! rad/s subject to pressure po and pi
" # B !2 2 1 þ 3 2 ro ¼ A þ 2 ð3 þ Þ r 3þ 8 r ð E ð10-32Þ ET þ 2 Tr dr r r ¼ A
ð B !2 E 2 2 ð3 þ Þðr Tr dr r Þ o 8 r2 r2 ð10-33Þ
where A and B are Lame´’s constants and can be found from boundary or initial conditions ¼ linear coefficient of thermal expansion, mm/8C (in/8F) T ¼ temperature, 8C or K (8F) ¼ density of rotating cylinder or disk material, kg/m3 (lbm /in3 ) E ¼ modulus of material of disk or cylinder, GPa (Mpsi)
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ROTATING DISKS AND CYLINDERS ROTATING DISKS AND CYLINDERS
Particular
10.7
Formula
ROTATING LONG HOLLOW CYLINDER WITH UNIFORM THICKNESS ROTATING AT ! rad=s SUBJECT TO THERMAL STRESS The general expression for the radial stress in the cylinder wall at any radius r when the temperature distribution is symmetrical with respect to the axis and constant along its length.
r ¼
3 2 r2 r2 r2i þ r2o i 2 o r2 1 r " # ð ð ro E 4r2 di2 ro Tr dr Tr dr þ ð1 Þr2 do2 di2 ri ri
!2 8
ð10-34Þ The general expression for the tangential stress in the cylinder wall at any radius r when the temperature distribution is symmetrical with respect to the axis and constant along its length.
" # 3 2 r2i r2o 1 þ 2 2 2 2 ri þ ro þ 2 r 1 3 2 r 2 ð E 4r þ di2 ro Tr dr þ ð1 Þr2 do2 di2 ri ð ro Tr dr Tr2 ð10-35Þ þ
!2 ¼ 8
ri
The general expression for the axial stress in the cylinder wall at any radius r when the temperature distribution is symmetrical with respect to the axis and constant along its length.
¼
½r2i þ r2o 2r2 1 ð ro E 8 Tr dr T þ 1 do2 di2 ri
!2 4
ð10-36Þ
where do ¼ 2ro and di ¼ 2ri
DEFLECTION OF A ROTATING DISK OF UNIFORM THICKNESS IN RADIAL DIRECTION WITH A CENTRAL CIRCULAR CUTOUT E h
The tangential stress within elastic limit, , in a rotating disk of uniform thickness (Fig. 10-7)
¼
The expression for the inner deflection i , of rotating thin uniform thickness disk with centrally located circular cut-out as per Stodalaa (Fig. 10-7)
i ¼ 3:077 106
ð10-37Þ
n 1000
2 ð7:5K 2 þ 5Þ
a
ð10-38Þ
Source: Stodala ‘‘Turbo-blower and compressor’’; Kearton, W. J. and Porter, L. M., Design Engineer, Pratt and Whitney Aircraft; McGraw-Hill Publishing Company, New York, U.S.A. Douglas C. Greenwood, Editor, Engineering Data for Product Design, McGraw-Hill Publishing Company, New York, 1961.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ROTATING DISKS AND CYLINDERS
10.8
CHAPTER TEN
FIGURE 10-7 Nomogram for radial deflection of rotating disks with constant thickness with a centrally located circular hole.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ROTATING DISKS AND CYLINDERS ROTATING DISKS AND CYLINDERS
Particular
The expression for the outer deflection o of rotating thin uniform thickness disk with centrally located circular cut-out as per Stodalaa (Fig. 10-7)
10.9
Formula
o ¼ 3:077 106
n 1000
2 ð1:5K 2 þ 7:5KÞ
ð10-39Þ
where K ¼ ro =ri ¼ tangential stress, psi ¼ i þ o ¼ total deflection of disk, in ri ¼ inner radius of disk, in ro ¼ outer radius of disk, in n ¼ speed, rpm The Nomogram can be used for steel, magnesium and aluminum since the modulus of elasticity E ¼ 29 106 psi (200 MPa) for steel and Poisson’s ratio ¼ 1=3. The error involved in using this equation with E and of steel for aluminum is about 0.5% and for magnesium is 2.5%.
REFERENCES 1. Lingaiah, K., and B. R. Narayana Iyengar, Machine Design Data Handbook, Volume I (SI and Customary Metric Units), Suma Publishers, Bangalore, 1986. 2. Lingaiah, K., Machine Design Data Handbook, McGraw-Hill Publishing Company, New York, 1994. 3. Douglas C. Greenwood, Engineering Data for Product Design, McGraw-Hill Publishing Company, New York, 1961.
a
Source: Stodala ‘‘Turbo-blower and compressor’’; Kearton, W. J. and Proter, L. M., Design Engineer, Pratt and Whitney Aircraft; McGraw-Hill Publishing Company, New York, U.S.A. Douglas C. Greenwood, Editor, Engineering Data for Product Design, McGraw-Hill Publishing Company, New York, 1961.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
Source: MACHINE DESIGN DATABOOK
CHAPTER
11 METAL FITS, TOLERANCES, AND SURFACE TEXTURE SYMBOLS1;2;3 area of cross section, m2 (in2 ) diameter of shaft, m (in) diameter of cylinder, m (in) modulus of elasticity, GPa (Mpsi) modulus of elasticity of cast iron, GPa (Mpsi) modulus of elasticity of steel, GPa (Mpsi) force, kN [lbf or tonf (pound force or tonne force)] length, m (in) length of hub, m (in) effective length of anchor, m (in) original length of slot, m (in) torque or twisting moment, N m (lbf in) pressure, MPa (psi) contact pressure MPa (psi) temperature, 8C (8F) coefficient of linear expansion, (m/m)/8C [(in/in)/8F] total change in diameter (interference), m (in) change in diameter, m (in) Poisson’s ratio stress, MPa (psi) coefficient of friction factor of safety
A d E Ec Es F l L Mt p pc t d n
SUFFIXES a b c d f h i o r
axial bearing surface contact surface, compressive design final hub internal, inner original, external, outer radial, rim
11.1 Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
METAL FITS, TOLERANCES, AND SURFACE TEXTURE
11.2
CHAPTER ELEVEN
shaft tangential or hoop initial final
s 1 2
Particular
Formula
PRESS AND SHRINK FITS Change in cylinder diameter due to contact pressure The change in diameter
d ¼ d"
The change in diameter of the inner member when subjected to contact pressure pc (Fig. 11-1)
di ¼
The change in diameter of the outer member when subjected to contact pressure pc (Fig. 11-1)
do ¼
The original difference in diameters of the two cylinders when the material of the members is the same
The total change in the diameters of hub and hollow shaft due to contact pressure at their contact surface when the material of the members is the same
ð11-1Þ
pc dc E
pc dc E
dc2 þ di2 dc2 di2
do2 þ dc2 þ do2 dc2
ð11-2Þ
ð11-3Þ
¼ do þ di p d do2 þ dc2 ¼ c c þ E do2 dc2 p d dc2 þ di2 þ c c E dc2 di2 ¼ ds þ dh ¼ ds dh pc ds ds2 þ di2 ¼ s Es ds2 di2 p d do2 þ dh2 þ c h þ exactly h Eh do2 ds2 ¼ pc dc
ð11-4Þ
ð11-5aÞ
dc2 þ di2 d02 þ dc2 þ sþ h 2 2 Es ðdc di Þ Eh ðdo2 dc2 Þ Es Eh
ðapprox:Þ
FIGURE 11-1
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð11-5bÞ
METAL FITS, TOLERANCES, AND SURFACE TEXTURE METAL FITS, TOLERANCES, AND SURFACE TEXTURE
Particular
The shrinkage stress in the band
11.3
Formula
¼
E dc
ð11-6Þ
The contact pressure between cylinders at the surface of contact when the material of both the cylinders is same (Fig. 11-2)
pc ¼
Eðdc2 di2 Þðdo2 dc2 Þ 2dc3 ðdo2 di2 Þ
ð11-7Þ
The tangential stress at any radius r of outer cylinder (Fig. 11-2a)
o ¼
pc dc2 do2 1 þ do2 dc2 4r2
ð11-8Þ
pc dc2 di2 ¼ 2 1þ 2 do dc2 4r
ð11-9Þ
do2 1 4r2
ð11-10Þ
The tangential stress at any radius r of inner cylinder (Fig. 11-2a)
i
The radial stress at any radius r of outer cylinder (Fig. 11-2a)
r o ¼
pc dc2 2 do dc2
pc dc2 di2 ¼ 2 1 2 dc di2 4r
The radial stress at any radius r of inner cylinder (Fig. 11-2a)
r i
The tangential stress at outside diameter of outer cylinder (Fig. 11-2)
oo ¼
2pc dc2 do2 dc2
ð11-11Þ
ð11-12Þ
The tangential stress at inside diameter of outer cylinder (Fig. 11-2)
oi ¼ pc
do2 þ dc2 do2 dc2
The tangential stress at outside diameter of inner cylinder (Fig. 11-2)
io ¼
pc ðdc2 þ di2 Þ dc2 di2
ð11-14Þ
The tangential stress at inside diameter of inner cylinder (Fig. 11-2)
ii ¼
2pc dc2 dc2 di2
ð11-15Þ
The radial stress at outside diameter of outer cylinder (Fig. 11-2)
r oo ¼ 0
FIGURE 11-2 Distribution of stresses in shrink-fitted assembly.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð11-13Þ
ð11-16Þ
METAL FITS, TOLERANCES, AND SURFACE TEXTURE
11.4
CHAPTER ELEVEN
Particular
Formula
The radial stress at inside diameter of outer cylinder (Fig. 11-2)
r oi ¼ pc
ð11-17Þ
The radial stress at outside diameter of inner cylinder (Fig. 11-2)
r io ¼ pc
ð11-18Þ
The radial stress at inside diameter of inner cylinder (Fig. 11-2)
r ii ¼ 0
ð11-19Þ
The semiempirical formula for tangential stress for cast-iron hub on steel shaft
¼
Eo dc þ 0:14do
Timoshenko equation for contact pressure in case of steel shaft on cast-iron hub
pc ¼
Ec dc
ð11-20Þ
1 ðdc =do Þ2 1:53 þ 0:47ðdc =do Þ2
for
Es ¼3 Ec ð11-21aÞ
The allowable stress for brittle materials
all ¼
su Ec ½1 þ ðdc =do Þ2 ¼ n dc ½1:53 þ 0:47ðdc =do Þ2
ð11-21bÞ
INTERFERENCE FITS Press The axial force necessary to press shaft into hub under an interface pressure pc
The approximate value of axial force to press steel shaft into cast-iron hub with an interference
Fa ¼ dc lpc
ð11-22aÞ
where ¼ 0:085 to 0.125 for unlubricated surface ¼ 0:05 with special lubricants F ¼ 4137 104
ðdo þ 0:3dc Þl do þ 6:33dc
SI
ð11-23aÞ
where do , dc , l and in m, and F in N F ¼ 6000
ðdo þ 0:3dc Þl do þ 6:33dc
USCS
ð11-23bÞ
where do , dc , l and in in, and F in tonf The approximate value of axial force to press steel shaft in steel hub
F ¼ 28:41 104
ðdo2 dc2 Þl do2
SI
ð11-24aÞ
where do , dc , l and in m, and F in N F ¼ 4120
ðdo2 dc2 Þl do2
USCS
where do , dc , l and in in, and F in tonf
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð11-24bÞ
METAL FITS, TOLERANCES, AND SURFACE TEXTURE METAL FITS, TOLERANCES, AND SURFACE TEXTURE
Particular
The transmitted torque by a press fit or shrink fit without slipping between the hub and shaft
The temperature t2 in 8C to which the shaft or shrink link must be heated before assembly
11.5
Formula
Mt ¼
dc2 lpc 2
ð11-25Þ
where ¼ 0:10 for press fit ¼ 0:125 for shrink fits 2 þ t1 t2 dc
ð11-26Þ
where t1 ¼ temperature of hub or larger part to which shaft or shrink link to be shrunk on, 8C
Shrink links or anchors (Fig. 11-3) The average compression in the part of rim affected according to C. D. Albert
F c ¼ pffiffiffiffiffiffiffiffiffiffiffi Ab Ar
ð11-27Þ
FIGURE 11-3 Shrink link.
The tensile stress in link
t ¼
Lf Lo E Lo
ð11-28Þ
The total load on link
F¼
ðLf Lo ÞEA Lo
ð11-29Þ
The compressive stress in rim
c ¼
Lf Lo EA pffiffiffiffiffiffiffiffiffiffiffi Lo Ab Ar
ð11-30Þ
The original length of link
Lo ¼
1þ 1þ
L AE pffiffiffiffiffiffiffiffiffiffiffi E r Ab Ar
r E
d l E
The necessary linear interference for shrink anchors
¼
The force exerted by an anchor
F ¼ abd
ð11-31Þ
ð11-32Þ ð11-33Þ
b ¼ 2 to 3 a d ¼ design stress based on a reliability factor of 1.25
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
METAL FITS, TOLERANCES, AND SURFACE TEXTURE
11.6
CHAPTER ELEVEN
Particular
Formula
For letter symbols for tolerances, basic size deviation and tolerance, clearance fit, transition fit, interference fit
Refer to Figs. 11-4 to 11-8
For press-fit between steel hub and shaft, cast-iron hub and shaft and tensile stress in cast-iron hub in press-fit allowance
Refer to Figs. 11-9 to 11-11
TOLERANCES AND ALLOWANCES The tolerance size is defined by its value followed by a symbol composed of a letter (in some cases by two letters) and a numerical value as
45 g7
A fit is indicated by the basic size common to both components followed by symbols corresponding to each component, the hole being quoted first, as
45H8 g7
For grades 5 to 16 tolerances have been determined in terms of standard tolerance unit i in micrometers (Refer to Table 11-l).
i ¼ 0:45D1=3 þ 0:001D
Values of standard tolerances corresponding to grades 01, 0, and 1 are (values in mm for D in mm)
IT 01 0:3 þ 0:008 D IT 0 0:5 þ 0:012 D IT 1 0:8 þ 0:020 D
or 45H8 g7 or 45
H8 g7 ð11-34Þ
where D is expressed in mm
ð11-35Þ
TABLE 11-1 Relative magnitudes of standard tolerances for grades 5 to 16 in terms of standard tolerance unit ‘‘i ’’ [Eq. (11-34)] Grade
IT 5
IT 6
IT 7
IT 8
IT 9
IT 10
IT 11
IT 12
IT 13
IT 14
IT 15
IT 16
Values
7i
10 i
16 i
25 i
40 i
64 i
100 i
160 i
250 i
400 i
640 i
1000 i
Source: IS 919, 1963.
TABLE 11-1A Coefficient of friction, (for use between conical metallic surfaces) Contacting surface
Nature of surfaces
Coefficient of friction,
Any metal in contact with another metal Any metal in contact with another metal Cast iron on steel Steel on steel Steel on steel Cast iron on steel
Lubricated with oil Greased Shrink-fitted Shrink-fitted Dry Dry
0.15 0.15 0.33 0.13 0.22 0.16
Source: Courtesy J. Bach, ‘‘Kegelreibungsverbindungen,’’ Zeitschrift Verein Deutscher Ingenieure, Vol. 79, 1935.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
METAL FITS, TOLERANCES, AND SURFACE TEXTURE METAL FITS, TOLERANCES, AND SURFACE TEXTURE
11.7
TABLE 11-2 Formulas for fundamental shaft deviations (for sizes 500 mm) Upper deviations (es)
Lower deviation (ei)
In lm (for D in mm)
Shaft designation
In lm (for D in mm)
j5–j8 k4–k7 k for grades 3 and 8
No formula pffiffiffiffi ¼ þ0:6 3 D ¼0
m n p
¼ þ(IT 7–IT 6) ¼ þ5D0:34 ¼ IT 7 þ 0 to 5
r
c
¼ ð265 þ 1:3DÞ for D 120 ¼ 3:5D for D < 120 l ð140 þ 0:85DÞ for D 160 l 1:8D for D > 160 ¼ 52D0:2 for D 40
d e f g
¼ ð95 þ 0:8DÞ for D > 40 ¼ 16D0:44 ¼ 11D0:41 ¼ 5:5D0:41 ¼ 2:5D0:34
h
¼0
¼ geometric mean of values ei for p and s ¼ þIT 8 þ 1 to 4 for D 50 ¼ þIT 7 þ 0:4D for D > 50 ¼ IT 7 þ 0:63D ¼ þIT 7 þ D ¼ þIT 7 þ 1:25D ¼ þIT 7+1.6D ¼ þIT 7 þ 2D ¼ þIT 7 þ 2:5D ¼ þIT 8 þ 3:15D ¼ þIT 9 þ 4D ¼ þIT 10 þ 5D
Shaft designation
a
For js: The two deviations are equal to
IT 2
s t u v x y z za zb zc
Source: IS 919, 1963.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
METAL FITS, TOLERANCES, AND SURFACE TEXTURE
11.8
CHAPTER ELEVEN
TABLE 11-3 Rules for rounding off values obtained by the use of formulas
Values in lm
Rounded in multiples of
Above Up to
5 45
45 60
60 100
100 200
200 300
300 560
560 600
600 800
800 1000
1000 2000
For standard tolerances for Grades II and finer
1
1
1
5
10
10
For deviations es, from a to g
1
2
5
5
10
10
20
20
20
50
For deviations ei, from k to zc
1
1
1
2
5
5
10
20
50
Source: IS 919, 1963.
FIGURE 11-4 Letter symbols for tolerances.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
2000
1000
METAL FITS, TOLERANCES, AND SURFACE TEXTURE METAL FITS, TOLERANCES, AND SURFACE TEXTURE
11.9
TABLE 11-4 Fundamental tolerances of grades 01, 0, and 1 to 16 Values of tolerances in lm (1 lm ¼ 0:001 mm) Diameter steps in mm 3 >3 6 >6 10 >10 18 >18 30 >30 50 >50 80 >80 120 >120 180 >180 250 >250 315 >315 400 >400 500
Tolerance grades 01
0
1
2
3
4
5
0.3
0.5
0.8
1.2
2
3
4
0.4
0.6
1
1.5
2.5
4
0.4
0.6
1
1.5
2.5
0.5
0.8
1.2
2
0.6
1
1.5
0.6
1
0.8
6
7
8
9
10
6
10
14
25
40
5
8
12
18
30
4
6
9
15
22
3
5
8
11
18
2.5
4
6
9
13
1.5
2.5
4
7
11
1.2
2
3
5
8
1
1.5
2.5
4
6
1.2
2
3.5
5
2
3
4.5
2.5
4
3 4
11
14a
15a
16a
12
13
60
100
140
250
400
600
48
75
120
180
300
480
750
36
58
90
150
220
360
580
900
27
43
70
110
180
270
430
700
1100
21
33
52
84
130
210
330
520
840
1300
16
25
39
62
100
160
250
390
620
1000
1600
13
19
30
46
74
120
190
300
460
740
1200
1900
10
15
22
35
54
87
140
220
350
540
870
1400
2200
8
12
18
25
40
63
100
160
250
400
630
1000
1600
2500
7
10
14
20
29
46
72
115
185
290
460
720
1150
1850
2900
6
8
12
16
23
32
52
81
130
210
320
520
810
1300
2100
3200
5
7
9
13
18
25
36
57
89
140
230
360
570
890
1400
2300
3600
6
8
10
15
20
27
40
63
97
155
250
400
630
970
1550
2500
4000
a
Up to 1 mm grades 14 to 16 are not provided. Source: IS 919, 1963.
FIGURE 11-5 Basic size deviation and tolerances.
FIGURE 11-6 Clearance fit.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
METAL FITS, TOLERANCES, AND SURFACE TEXTURE
11.10
CHAPTER ELEVEN
TABLE 11-5 Clearance fits (Fig. 11-6) (hole basis) Quality of fit
Large clearance
Combination of shaft and hole H 11 a 9 coarse H 11 b 9
Remarks and uses
Not widely used
H 11 a 11 normal H9a9 fine H8b8 Slack running
Loose running
Easy running
H 11 c 9 coarse H 11 c 11 normal H9c9 H8c8 fine H7c8 H 11 d 11 coarse H9d9 H 8 d 9 normal H8d8 fine H7d8 H8e9 coarse H9e9 H8e8 normal H7e8 H7e7 fine H6e7
Not widely used
Suitable for plummer block bearings and loose pulleys
Recommended for general clearance fits, used for properly lubricated bearings requiring appreciable clearance; finer grades for high speeds, heavily loaded bearings such as turbogenerator and large electric motor bearings
Normal running
H 8 f 8 coarse H 7 f 7 normal H 6 f 6 fine
Widely used as a normal grease lubricated or oil-lubricated bearing having low temperature differences, gearbox shaft bearings, bearings of small electric motor and pumps, etc.
Close running or sliding
H 8 g 7 coarse H 7 g 6 normal
Expensive to manufacture, small clearance. Used in bearings for accurate link work, and for piston and slide valves; also used for spigot or location fits
H6g6 fine H6g5 Precision sliding
H H H H H
11 h 11 8h7 8h8 7h6 6h5
Widely used for nonrunning parts; also used for fine spigot and location fit
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
METAL FITS, TOLERANCES, AND SURFACE TEXTURE
TABLE 11-6 Values of standard tolerances for sizes >500 to 3150 mm IT 6 a
10 I a
IT 7
IT 8
IT 9
IT 10
IT 11
IT 12
IT 13
IT 14
IT 15
IT 16
16 I
25 I
40 I
64 I
100 I
160 I
250 I
400 I
640 I
1000 I
Standard Tolerance Unit I (in mm) 0:004D þ 2:1 for D in mm.
Source: IS: 2101-1962.
FIGURE 11-8 Interference fit.
FIGURE 11-7 Transition fit.
TABLE 11-7 Transition and interference fits (hole basis) Quality of fit
Combination of shaft and hole
Push
H 8 j 7 coarse H 7 j 6 normal H 6 j 5 fine
True transition
H 8 k 7 coarse H 7 k 6 normal H 6 k 5 fine
Fit averaging virtually no clearance-recommended for location fits where a slight interference can be tolerated, with the object of eliminating vibration; used in clutch member keyed to shaft, gudgeon pin in piston bosses, hand wheel, and index disk on shaft
Interference transition
H 8 m 7 coarse H 7 m 6 normal H 6 m 5 fine H8n7 coarse H7n6
Fit averages a slight interference suitable for general tight-keying fits where accurate location and freedom from play are necessary; used for the cam holder, fitting bolt in reciprocating slide
True interference
Remarks and uses
Transition fit (Fig. 11-7) Slight clearance—recommended for fits where slight interference is permissible, coupling spigots and recesses, gear rings clamped to steel hubs
Suitable for tight assembly of mating surfaces
H 6 n 5 fine
Light press fit
H 7 p 6 normal H 6 p 5 fine
Medium drive fit
H 7 r 6 normal H 6 r 5 fine
Heavy drive fit
H8s7 normal H7s6
Force fit
H 6 s 5 fine H8t7 normal H7t6
Heavy force fit or shrink fit
H 6 t 5 fine H8u7 normal H7u6
Interference fit (Fig. 11-8) Light press fit for nonferrous parts which can be dismantled when required; standard press fit for steel, cast iron, or brass-to-steel assemblies, bush on to a gear, split journal bearing Medium drive fit with easy dismantling for ferrous parts and light drive fit with easy dismantling for nonferrous parts assembly; pump impeller on shaft, small-end bush in connecting rod, pressed in bearing bush, sleeves, seating, etc. Used for permanent or semipermanent assemblies of steel and castiron members with considerable gripping force; for light alloys this gives a press fit; used in collars pressed on to shafts, valve seatings, cylinder liner in block, etc. Suitable for the permanent assembly of steel and cast-iron parts; used in valve seat insert in cylinder head, etc.
High interference fit; the method of assembly will be by power press
H 6 u 5 fine
11.11 Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
METAL FITS, TOLERANCES, AND SURFACE TEXTURE
11.12
CHAPTER ELEVEN
TABLE 11-8 Preferred basic and design sizes Linear dimensions (in mm) Shaft basis A
B
1.6 2.5 4.0 6.0 10.0 16.0 25.0 40.0 63.0 100.0
5.0 8.0 12.0 14.0 18.0 20.0 22.0 32.0 50.0 80.0
Hole basis Priority 1 1.0 1.6 2.5 4.0 5.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0 20.0
Priority 2
22.0 25.0 28.0 32.0 36.0 40.0 45.0 50.0 56.0 63.0 71.0 80.0 90.0 100.0
110.0 125.0 140.0 160.0 180.0 200.0 220.0 250.0 280.0 320.0 360.0 400.0 450.0 500.0
1.2 2.0 3.2 4.5 5.5 7.0 9.0 11.0 13.0 15.0 17.0 19.0 21.0 23.0 26.0 30.0
Priority 3
34.0 38.0 42.0 48.8 53.0 58.0 65.0 75.0 85.0 95.0 105.0 115.0 120.0 130.0 135.0 150.0
170.0 190.0 210.0 230.0 240.0 260.0 270.0 300.0 340.0 380.0 420.0 430.0 470.0 480.0
145.0 155.0 165.0 175.0 185.0 195.0 290.0 310.0 330.0 350.0 370.0 390.0 410.0
440.0 460.0 490.0
Angular dimensions (in deg) Priority 1 2
Preferred angles 1
3 2
6 4
10 5
16 8
30 12
45
60
90
120
20
TABLE 11-9 Formulas for shaft and hole deviations (for sizes >500 to 3150 mm) Shafts d e f (g) h js k m n p r s t u
es es es es es ei ei ei ei ei ei ei ei ei
— — — — — — þ þ þ þ þ þ þ
Formulas for deviations in lm (for D in mm)
Holes
16 D0:44 11 D0:41 5.5 D0:41 2.5 D0:34 0 0.5 ITn 0 0.024 D þ 12:6 0.04 D þ 21 0.072 D þ 37:8 geometric mean between p and s or P and S IT 7 þ 0:4D IT 7 þ 0:63D IT 7 þ D
þ þ þ þ + — — — — — — —
EI EI EI EI EI ES ES ES ES ES ES ES ES ES
a
D E F (G) H JS K M N Pa Ra Sa Ta U
It is assumed that associated shafts and holes are of the same grade contrary to what has been allowed for the dimensions up to 500 mm (see IS 919, 1959). Source: IS 2101, 1962.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
METAL FITS, TOLERANCES, AND SURFACE TEXTURE METAL FITS, TOLERANCES, AND SURFACE TEXTURE
FIGURE 11-9 Press-fit pressures between steel hub and shaft (1 psi ¼ 6894.757 Pa; 1 in ¼ 25.4 mm). (Baumeister, T., Marks’ Standard Handbook for Mechanical Engineers, 8th ed., McGraw-Hill, 1978.)
11.13
FIGURE 11-10 Variation in tensile stress in cast-iron hub in press-fit allowance (1 psi ¼ 6894.757 Pa; 1 in ¼ 25.4 mm). (Baumeister, T., Marks’ Standard Handbook for Mechanical Engineers, 8th ed., McGraw-Hill, 1978.)
FIGURE 11-11 Press-fit pressure between cast-iron hub and shaft (1 psi ¼ 6894.757 Pa; 1 in ¼ 25.4 mm). (Baumeister, T., Marks’ Standard Handbook for Mechanical Engineers, 8th ed., McGraw-Hill, 1978.)
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
11.14
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
g5
g4
f8
f7
f6
e9
e8
e7
e6
d10
d9
d8
c11
c9
c8
b9
a9
System of basic shaft
3 6
270 300 140 170 70 88 70 100 70 145 30 48 30 60 30 78 20 28 20 32 20 38 20 50 10 18 10 22 10 28 04 08 04 09
— 3
270 295 140 165 60 74 60 85 60 120 20 34 20 45 20 60 14 20 14 24 14 28 14 39 06 12 06 16 06 20 02 05 02 06
Limits
esb eic es ei es ei es ei es ei es ei es ei es ei es ei es ei es ei es ei es ei es ei es ei es ei es ei
280 316 150 186 80 102 80 116 80 170 40 62 40 76 40 98 25 34 25 40 25 47 25 61 13 22 13 28 13 35 05 09 05 11
6 10 290 333 150 193 95 122 95 138 95 205 50 77 50 93 50 120 32 43 32 50 32 59 32 75 16 27 16 34 16 43 06 11 06 14
10 18
24 30
300 352 160 212 110 143 110 162 110 240 65 98 65 117 65 149 40 53 40 61 40 73 40 92 20 33 20 41 20 53 07 13 07 16
18 24
TABLE 11-10 Tolerancesa for shafts for sizes up to 500 mm
40 50
310 320 372 382 170 180 232 242 120 130 159 169 120 130 182 192 120 130 280 290 80 119 80 142 80 180 50 66 50 75 50 89 50 112 25 41 25 50 25 64 09 16 09 20
30 40
65 80
340 360 414 434 190 200 264 274 140 150 186 196 140 150 214 224 140 150 330 340 100 146 100 174 100 220 60 79 60 90 60 106 60 134 30 49 30 60 30 76 10 18 10 23
50 65
100 120
380 410 467 497 220 240 307 327 170 180 224 234 170 180 257 267 170 180 390 400 120 174 120 207 120 260 72 94 72 107 72 126 72 159 36 58 36 71 36 90 12 22 12 27
80 100 460 560 260 360 200 263 200 300 200 450
120 140 520 620 280 380 210 273 210 310 210 460 145 208 145 245 145 305 85 110 85 125 85 148 85 185 43 68 43 83 43 106 14 26 14 32
140 160 580 680 310 410 230 293 230 330 230 480
160 180
Diameter steps, mm
660 775 340 455 240 312 240 355 240 530
180 200 740 855 380 495 260 332 260 375 260 550 170 242 170 285 170 355 100 129 100 146 100 172 100 215 50 79 50 96 50 122 15 29 15 35
200 225
250 280
280 315
315 355
355 400
400 450
450 500
820 920 1050 1200 1350 1500 1650 935 1050 1180 1340 1490 1655 1805 420 480 540 600 680 760 840 535 610 670 740 820 915 995 280 300 330 360 400 440 480 352 381 411 449 489 537 577 280 300 330 360 400 440 480 395 430 460 500 540 595 635 280 300 330 360 400 440 480 570 620 650 720 760 840 880 190 210 230 271 299 327 190 210 230 320 350 385 190 210 230 400 440 480 110 125 135 142 161 175 110 125 135 162 182 198 110 125 135 191 214 232 110 125 135 240 265 290 56 62 68 88 98 108 56 62 68 108 119 131 56 62 68 137 151 165 17 18 20 33 36 40 17 18 20 40 43 47
225 250
METAL FITS, TOLERANCES, AND SURFACE TEXTURE
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
n5
n4
m7
m6
k7
k6
j7
j6
j5
h11
h10
h9
h8
h7
h6
h5
g6
System of basic shaft
es ei es ei es ei es ei es ei es ei es ei esb eic es ei es ei es ei es ei es ei es ei es ei es ei es ei
Limits
3 6
04 12 00 05 00 08 00 12 00 18 00 30 00 48 00 75 þ03 02 þ06 02 þ08 04 þ09 þ01 þ13 þ01 þ12 þ04 þ16 þ04 þ12 þ08 þ13 þ08
— 3
02 08 00 04 00 06 00 10 00 14 00 25 00 40 00 60 þ02 02 þ04 02 þ06 þ04 þ06 þ00 þ10 þ01 þ08 þ02 þ02 — þ07 þ04 þ08 þ04
10 18
05 06 14 17 00 00 06 08 00 00 09 11 00 00 15 18 00 00 22 27 00 00 36 43 00 00 58 70 00 00 90 110 þ04 þ05 02 03 þ07 þ08 02 03 þ10 þ12 05 06 þ10 þ12 þ01 þ01 þ16 þ19 þ01 þ01 þ15 þ18 þ06 þ07 þ21 þ25 þ06 þ07 þ14 þ17 þ10 þ12 þ16 þ20 þ10 þ12
6 10
24 30
07 20 00 09 00 13 00 21 00 33 00 52 00 84 00 130 þ05 04 þ09 04 þ13 08 þ15 þ02 þ23 þ02 þ21 þ08 þ29 þ08 þ21 þ15 þ24 þ15
18 24
30 40 09 25 00 11 00 16 00 25 00 39 00 62 00 100 00 160 þ06 05 þ11 05 þ15 10 þ18 þ02 þ27 þ02 þ25 þ09 þ34 þ09 þ24 þ17 þ28 þ17
40 50
TABLE 11-10 Tolerancesa for shafts for sizes up to 500 mm (Cont.)
50 65 10 29 00 13 00 19 00 30 00 46 00 74 00 120 00 190 þ06 07 þ12 07 þ18 12 þ21 þ02 þ32 þ02 þ30 þ11 þ41 þ11 þ28 þ20 þ33 þ20
65 80
80 100 12 34 00 15 00 22 00 35 00 54 00 87 00 140 00 220 þ06 09 þ13 09 þ20 15 þ25 þ03 þ38 þ03 þ35 þ13 þ48 þ13 þ33 þ23 þ38 þ23
100 120
120 140 14 39 00 18 00 25 00 40 00 63 00 100 00 160 00 250 þ07 11 þ14 11 þ22 18 þ28 þ03 þ43 þ03 þ40 þ15 þ55 þ15 þ39 þ27 þ45 þ27
140 160
160 180
Diameter steps, mm 180 200 15 44 00 20 00 29 00 46 00 72 00 115 00 185 00 290 þ07 13 þ16 13 þ25 21 þ33 þ04 þ50 þ04 þ46 þ17 þ63 þ17 þ45 þ31 þ51 þ31
200 225
225 250
250 280 17 49 00 23 00 32 00 52 00 81 00 130 00 210 00 320 þ07 16 þ16 16 þ26 26 þ36 þ04 þ56 þ04 þ52 þ20 þ72 þ20 þ50 þ34 þ57 þ34
280 315
315 355 18 54 00 25 00 36 00 57 00 89 00 140 00 230 00 360 þ07 18 þ18 18 þ29 28 þ40 þ04 þ61 þ04 þ57 þ21 þ78 þ21 þ55 þ37 þ62 þ37
355 400
400 450
20 60 00 27 00 40 00 63 00 97 00 155 00 250 00 400 þ07 20 þ20 20 þ31 32 þ45 þ05 þ68 þ05 þ63 þ23 þ86 þ23 þ60 þ40 þ67 þ40
450 500
METAL FITS, TOLERANCES, AND SURFACE TEXTURE
11.15
es ei es ei es ei
es ei es ei es ei es ei es ei es ei es ei es ei es ei es ei
3 6
6 10
10 18
þ28 þ23 þ41 þ23 — — þ46 þ28 — — þ47 þ35
þ50 þ42 þ62 þ50 þ98 þ80
þ22 þ18 þ32 þ18 — — þ34 þ20 — — þ36 þ26
þ38 þ32 þ50 þ40 þ74 þ60
þ61 þ52 þ82 þ67 þ119 þ97
þ34 þ28 þ50 þ28 — — þ56 þ34 — — þ57 þ42 — — — — — —
þ50 þ60
þ68 þ78
— —
þ40 þ45
þ67 þ72
— þ39
— þ47
11.16
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
b
a
þ41 þ33 þ60 þ33
þ10 þ17 þ21 þ26 þ06 þ12 þ15 þ18 þ12 þ20 þ24 þ29 þ06 þ12 þ15 þ18 þ16 þ23 þ28 þ34 þ10 þ15 þ19 þ23 — — — —
— 3
Tolerances in micrometers (1 mm ¼ 103 mm). es ¼ upper deviation. c ei ¼ lower deviation.
zc8
zb7
za6
z7
y6
x8
v5
u8
u5
t7
r6
p6
p5
System of basic shaft Limits 24 30
— — — — — —
— — — — — —
þ31 þ22 þ35 þ22 þ41 þ28 þ62 þ41 þ50 þ57 þ41 þ48 þ74 þ81 þ41 þ48 þ56 þ64 þ47 þ55 þ87 þ97 þ54 þ64 þ76 þ88 þ63 þ75 þ94 þ109 þ73 þ88
18 24
40 50
— — — — — —
— — — — — —
þ37 þ26 þ42 þ26 þ50 þ34 þ79 þ54 þ71 þ81 þ60 þ70 þ99 þ109 þ60 þ70 þ79 þ92 þ68 þ81 þ119 þ136 þ80 þ97 þ110 þ130 þ94 þ114 þ137 þ161 þ112 þ136
30 40
TABLE 11-10 Tolerancesa for shafts for sizes up to 500 mm (Cont.)
65 80
— — — — — —
— — — — — —
þ45 þ32 þ51 þ32 þ62 þ43 þ105 þ75 þ100 þ115 þ87 þ102 þ133 þ148 þ87 þ102 þ115 þ133 þ102 þ120 þ168 þ192 þ122 þ146 þ163 þ193 þ144 þ174 þ202 þ240 þ172 þ210
50 65
100 120
— — — — — —
— — — — — —
þ52 þ37 þ59 þ37 þ76 þ54 þ139 þ104 þ139 þ159 þ124 þ144 þ178 þ198 þ124 þ144 þ161 þ187 þ146 þ172 þ232 þ264 þ176 þ210 þ236 þ276 þ214 þ254 þ293 þ345 þ258 þ310
80 100
— — — — — —
þ188 þ170 þ233 þ170 þ220 þ202 þ311 þ248 þ325 þ300 þ405 þ365
120 140
— — — — — —
þ61 þ43 þ68 þ43 þ90 þ65 þ174 þ134 þ208 þ190 þ253 þ190 þ246 þ228 þ343 þ280 þ365 þ340 þ455 þ415
140 160
Diameter steps, mm
— — — — — —
þ228 þ210 þ273 þ210 þ270 þ252 þ373 þ310 þ405 þ380 þ505 þ465
160 180
— — — — — —
þ256 þ236 þ308 þ236 þ304 þ284 þ422 þ350 þ454 þ425 þ566 þ520
180 200
— — — — — —
þ70 þ50 þ79 þ50 þ109 þ80 þ226 þ180 þ278 þ258 þ330 þ258 þ330 þ310 þ457 þ385 þ499 þ470 þ621 þ575
200 225
— — — — — —
þ304 þ284 þ356 þ284 þ360 þ340 þ497 þ425 þ549 þ520 þ686 þ640
225 250
280 315
— — — — — —
— — — — — —
þ79 þ56 þ88 þ56 þ130 þ98 þ292 þ240 þ338 þ373 þ315 þ350 þ396 þ431 þ315 þ350 þ408 þ448 þ385 þ425 þ556 þ606 þ475 þ525 þ612 þ682 þ580 þ650 þ762 þ842 þ710 þ790
250 280
355 400
400 450
450 500
— — — — — —
— — — — — —
— — — — — —
— — — — — —
þ87 þ95 þ62 þ68 þ98 þ108 þ62 þ68 þ150 þ172 þ114 þ132 þ351 þ423 þ294 þ360 þ415 þ460 þ517 þ567 þ390 þ435 þ490 þ540 þ479 þ524 þ587 þ637 þ390 þ435 þ490 þ540 þ500 þ555 þ622 þ687 þ475 þ530 þ595 þ660 þ679 þ749 þ837 þ917 þ590 þ660 þ740 þ820 þ766 þ856 þ960 þ1040 þ730 þ820 þ920 þ1000 þ957 þ1057 þ1163 þ1313 þ900 þ1000 þ1100 þ1250
315 355
METAL FITS, TOLERANCES, AND SURFACE TEXTURE
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
J7
H11
H10
H9
H8
H7
H6
H5
G7
F8
F6
E5
D9
D8
C11
C8
B11
B9
A9
ESb EIc ES EI ES EI ES EI ES EI ES EI ES EI ES EI ES EI ES EI ES EI ES EI ES EI ES EI ES EI ES EI ES EI ES EI ES EI
System of basic hole Limits
þ295 þ270 þ165 þ140 þ200 þ140 74 þ60 þ120 þ60 þ34 þ20 þ45 þ20 þ18 þ14 þ12 þ6 þ20 þ6 þ12 þ2 þ4 0 þ6 0 þ10 0 þ14 0 þ25 0 þ40 0 þ60 0 þ4 6
— 3
þ300 þ270 þ170 þ140 þ215 þ140 þ88 þ70 þ145 þ70 þ48 þ30 þ60 þ30 þ25 þ20 þ18 þ10 þ28 þ10 þ16 þ4 þ5 0 þ8 0 þ12 0 þ18 0 þ30 0 þ48 0 þ75 0 þ6 6
3 6
þ316 þ280 þ186 þ150 þ240 þ150 þ102 þ80 þ170 þ80 þ62 þ40 þ76 þ40 þ31 þ25 þ22 þ13 þ35 þ13 þ20 þ5 þ6 0 þ9 0 þ15 0 þ22 0 þ36 0 þ58 0 þ90 0 þ8 7
6 10
14 18
þ333 þ290 þ193 þ150 þ260 þ150 þ122 þ95 þ205 þ95 þ77 þ50 þ93 þ50 þ40 þ32 þ27 þ16 þ43 þ16 þ24 þ6 þ8 0 þ11 0 þ18 0 þ27 0 þ43 0 þ70 0 þ110 0 þ10 8
10 14
24 30
þ352 þ300 þ212 þ160 þ290 þ160 þ143 þ110 þ240 þ110 þ98 þ65 þ117 þ65 þ49 þ40 þ33 þ20 þ53 þ20 þ28 þ7 þ9 0 þ13 0 þ21 0 þ33 0 þ52 0 þ84 0 þ130 0 þ12 9
18 24
TABLE 11-11 Tolerancesa for holes for sizes up to 500 mm
40 50
þ372 þ382 þ310 þ320 þ232 þ242 þ170 þ180 þ330 þ340 þ170 þ180 þ159 þ169 þ120 þ130 þ280 þ290 þ120 þ130 þ119 þ80 þ142 þ80 þ61 þ50 þ41 þ25 þ64 þ25 þ34 þ9 þ11 0 þ16 0 þ25 0 þ39 0 þ62 0 þ100 0 þ160 0 þ14 11
30 40
65 80
þ414 þ434 þ340 þ360 þ264 þ274 þ190 þ200 þ380 þ390 þ190 þ200 þ186 þ196 þ140 þ150 þ330 þ340 þ140 þ150 þ146 þ100 þ174 þ100 þ73 þ60 þ49 þ30 þ76 þ30 þ40 þ10 þ13 0 þ19 0 þ30 0 þ46 0 þ74 0 þ120 0 þ190 0 þ18 12
50 65
100 120
þ467 þ497 þ380 þ410 þ307 þ327 þ220 þ240 þ440 þ460 þ220 þ240 þ224 þ234 þ170 þ180 þ390 þ400 þ170 þ180 þ174 þ120 þ207 þ120 þ87 þ72 þ58 þ36 þ90 þ36 þ47 þ12 þ15 0 þ22 0 þ35 0 þ54 0 þ87 0 þ140 0 þ220 0 þ22 13
80 100 þ560 þ460 þ360 þ260 þ510 þ260 þ263 þ200 þ450 þ200
120 140 þ620 þ520 þ380 þ280 þ530 þ280 þ273 þ210 þ460 þ210 þ208 þ145 þ245 þ145 þ103 þ85 þ68 þ43 þ106 þ43 þ54 þ14 þ18 0 þ25 0 þ40 0 þ63 0 þ100 0 þ160 0 þ250 0 þ26 14
140 160 þ680 þ580 þ410 þ310 þ560 þ310 þ293 þ230 þ480 þ230
160 180
Diameter steps, mm
þ775 þ660 þ455 þ340 þ630 þ340 þ312 þ240 þ530 þ240
180 200 þ855 þ740 þ495 þ380 þ670 þ380 þ332 þ260 þ550 þ260 þ242 þ170 þ285 þ170 þ120 þ100 þ79 þ50 þ122 þ50 þ61 þ15 þ20 0 þ29 0 þ46 0 þ72 0 þ115 0 þ185 0 þ290 0 þ30 16
200 225 þ925 þ820 þ535 þ420 þ710 þ420 þ352 þ280 þ570 þ280
225 250
280 315
315 355
355 400
400 450
450 500
þ1050 +1180 +1340 +1490 +1655 +1805 þ920 +1050 +1200 +1350 +1500 +1650 þ610 +670 +740 +820 +915 +995 þ480 +540 +600 +680 +760 +840 þ800 +860 +960 +1040 +1160 +1240 þ480 +540 +600 +680 +760 +840 þ381 +411 +449 +489 +537 +577 þ300 +330 +360 +400 +440 +480 þ620 +650 +720 +760 +840 +880 þ300 +330 +360 +400 +440 +480 þ271 þ299 þ327 þ190 þ210 þ230 þ320 þ350 þ385 þ190 þ210 þ230 þ133 þ150 þ162 þ110 þ125 þ135 þ88 þ98 þ108 þ56 þ62 þ68 þ137 þ151 þ165 þ56 þ62 þ68 þ69 þ75 þ83 þ17 þ18 þ20 þ23 þ25 þ27 0 0 0 þ32 þ36 þ40 0 0 0 þ52 þ57 þ63 0 0 0 þ81 þ89 þ97 0 0 0 þ130 þ140 þ155 0 0 0 þ210 þ230 þ250 0 0 0 þ320 þ360 þ400 0 0 0 þ36 þ39 þ43 16 18 20
250 280
METAL FITS, TOLERANCES, AND SURFACE TEXTURE
11.17
11.18
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ES EI ES EI ES EI ES EI ES EI ES EI ES EI ES EI ES EI ES EI ES EI ES EI ES EI ES EI ES EI ES EI
6 10
þ2 7 þ5 10 0 15 4 19 9 24 20 29 17 32 — — 22 37 — — 28 43 — — 42 64 46 61 67 89 97 133
3 6
þ2 6 þ3 9 0 12 4 16 8 20 16 24 15 27 — — 19 31 — — 24 36 — — 35 53 38 50 50 68 80 110
— 3
0 6 0 10 2 12 4 14 6 16 14 20 14 24 — — 18 28 — — 20 30 — — 26 40 32 42 40 54 60 85
b
a
Tolerances in mm; 1 mm ¼ 103 mm ES ¼ upper deviation. c EI ¼ lower deviation.
ZC9
ZB8
ZA7
Z8
Y7
X7
V6
U7
T6
S7
S6
P7
N7
M7
K7
K6
System of basic hole Limits 14 18
þ2 9 þ6 12 0 18 5 23 11 29 25 36 21 39 — — 26 44 — 36 — 47 33 38 51 56 — — — — 50 60 77 87 — — — — — — — — — — — —
10 14
24 30
þ2 11 þ6 15 0 21 7 28 14 35 31 44 27 48 — 37 — 50 33 40 54 61 43 51 56 64 46 56 67 77 55 67 76 88 73 88 106 121 — — — — — — — — — — — —
18 24
40 50
þ3 13 þ7 18 0 25 8 33 17 42 38 54 34 59 43 49 59 65 51 61 76 86 63 76 79 92 71 88 96 113 85 105 110 130 112 136 151 175 — — — — — — — — — — — —
30 40
TABLE 11-11 Tolerancesa for holes for sizes up to 500 mm (Cont.)
65 80
þ4 15 þ9 21 0 30 9 39 21 51 47 53 66 72 42 48 72 78 60 69 79 88 76 91 106 121 96 114 115 133 111 135 141 165 133 163 163 193 172 210 218 256 — — — — — — — — — — — —
50 65
100 120
þ4 18 þ10 25 0 35 10 45 24 59 64 72 86 94 58 66 93 101 84 97 106 119 111 131 146 166 139 165 161 187 165 197 200 232 201 241 236 276 258 310 312 364 — — — — — — — — — — — —
80 100
85 110 77 117 115 140 155 195 195 220 233 273 285 325 365 428 — — — — — —
120 140 þ4 21 þ12 28 0 40 12 52 28 68 93 118 85 125 127 152 175 215 221 246 265 305 325 365 415 478 — — — — — —
140 160
Diameter steps, mm
101 126 93 133 139 164 195 235 245 270 295 335 365 405 465 528 — — — — — —
160 180
113 142 105 151 157 186 219 265 275 304 333 379 408 454 520 592 — — — — — —
180 200 þ5 24 þ13 33 0 46 14 60 33 79 121 150 113 159 171 200 241 287 301 330 368 414 453 499 575 647 — — — — — —
200 225
131 160 123 169 187 216 267 313 331 360 408 454 503 549 640 712 — — — — — —
225 250
149 181 138 190 209 241 295 347 376 408 455 507 560 612 710 791 — — — — — —
250 280 þ5 27 þ16 36 0 52 14 66 36 88 161 193 150 202 231 263 330 382 416 448 505 557 630 682 790 871 — — — — — —
280 315
179 215 169 226 257 293 369 426 464 500 569 626 709 766 900 989 — — — — — —
315 355
þ7 29 þ17 40 0 57 16 73 41 98 197 233 187 244 283 319 414 471 519 555 639 696 799 856 1000 1089 — — — — — —
355 400
450 500 þ8 32 þ18 45 0 63 17 80 45 108 219 239 259 279 209 229 272 292 317 347 357 387 467 517 530 580 582 647 622 687 717 797 780 860 897 977 960 1040 1100 1250 1197 1347 — — — — — — — — — — — —
400 450
METAL FITS, TOLERANCES, AND SURFACE TEXTURE
METAL FITS, TOLERANCES, AND SURFACE TEXTURE
11.19
METAL FITS, TOLERANCES, AND SURFACE TEXTURE
TABLE 11-12 Tolerancesa for shafts for sizes 500 to 3150 mm System of basic shaft Limits d10 e8 f9 g6 g7 h6 h7 h8 h9 h10 h11 js9 k6 m6 n6 p6 r7 s7 t7 u7
esb ei c es ei es ei es ei es ei es ei es ei es ei es ei es ei es ei es ei es ei es ei es ei es ei es ei es ei es ei es ei
Diameter steps, mm 500 560
560 630
630 710
710 800
800 900
900 1000
1000 1120
1120 1250
1250 1400
1400 1600
1600 1800
1800 2000
260 540 145 255 76 251 22 66 22 92 0 44 0 70 0 110 0 175 0 280 0 440
290 610 160 285 80 280 24 74 24 103 0 50 0 80 0 125 0 200 0 320 0 500
320 680 170 310 86 316 26 82 26 115 0 56 0 90 0 140 0 230 0 360 0 560
350 770 195 360 98 358 28 94 28 133 0 66 0 105 0 165 0 260 0 420 0 660
390 890 220 415 110 420 30 108 30 155 0 78 0 125 0 195 0 310 0 500 0 780
430 1030 240 470 120 490 32 124 32 182 0 92 0 150 0 230 0 370 0 600 0 920
87.5
100
115
130
155
185
þ66 0 þ106 þ40 þ132 þ66 þ186 þ120 þ355 þ365 þ250 þ260 þ625 þ685 þ520 þ580 þ885 þ945 þ780 þ840 þ1255 þ1405 þ1150 þ1300
þ78 0 þ126 þ48 þ156 þ78 þ218 þ140 þ425 þ455 þ300 þ330 þ765 þ845 þ640 þ720 þ1085 þ1175 þ960 þ1050 þ1575 þ1725 þ1450 þ1600
þ92 0 þ150 þ58 þ184 þ92 þ262 þ170 þ520 þ550 þ370 þ400 þ970 þ1070 þ820 þ920 þ1350 þ1500 þ1200 þ1350 þ2000 þ2150 þ1850 þ2000
þ44 þ50 þ56 0 0 0 þ70 þ80 þ90 þ26 þ30 þ34 þ88 þ100 þ112 þ44 þ50 þ56 þ122 þ139 þ156 þ78 þ88 þ100 þ220 þ225 þ255 þ265 þ300 þ310 þ150 þ155 þ175 þ185 þ210 þ220 þ350 þ380 þ420 þ460 þ520 þ560 þ280 þ310 þ340 þ380 þ430 þ470 þ470 þ520 þ580 þ640 þ710 þ770 þ400 þ450 þ500 þ560 þ620 þ680 þ570 þ730 þ820 þ920 þ1031 þ1140 þ600 þ660 þ740 þ840 þ940 þ1050
2000 2250
2250 2500
480 1180 260 540 130 570 34 140 34 209 0 110 0 175 0 280 0 440 0 700 0 1100
2800 3150
520 1380 290 620 145 685 38 173 38 248 0 135 0 210 0 330 0 540 0 860 0 1350
220 þ110 0 þ178 þ68 þ220 þ110 þ305 þ195 þ615 þ635 þ440 þ460 þ1175 þ1275 þ1000 þ1100 þ1675 þ1825 þ1500 þ1650 þ2475 þ2675 þ2300 þ2500
2500 2800
270 þ135 0 þ211 þ76 þ270 þ135 þ375 þ240 þ760 þ790 þ550 þ580 þ1460 þ1610 þ1250 þ1400 þ2110 þ2310 þ1900 þ2100 þ3110 þ3410 þ2900 þ3200
Tolerances in mm (1 mm ¼ 103 mm). es ¼ upper deviation. c ei ¼ lower deviation. Source: IS 2101, 1962. a
b
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
METAL FITS, TOLERANCES, AND SURFACE TEXTURE
11.20
CHAPTER ELEVEN
TABLE 11-13 Tolerancesa for holes for sizes 500 to 3150 mm System of basic hole Limits D10 E8 F9 G6 G7 H6 H7 H8 H9 H10 H11 JS9 K6 M6 N6 P6 R7 S7 T7 U7
ESa ESb ES EI ES EI ES EI ES El ES EI ES El ES EI ES El ES EI ES El ES EI ES El ES El ES EI ES EI ES EI ES EI ES EI ES EI
Diameter steps, mm 500 560
560 630
630 710
710 800
800 900
900 1000
1000 1120
1120 1250
1250 1400
1400 1600
1600 1800
1800 2000
2000 2240
2240 2500
2500 2800
2800 3150
þ540 þ260 þ255 þ145 þ251 þ76 þ66 þ22 þ92 þ22 þ40 0 þ70 0 þ110 0 þ175 0 þ280 0 þ440 0
þ610 þ290 þ285 þ160 þ280 þ80 þ74 þ24 þ103 þ24 þ50 0 þ80 0 þ125 0 þ200 0 þ320 0 þ500 0
þ680 þ320 þ310 þ170 þ316 þ86 þ82 þ26 þ115 þ26 þ56 0 þ90 0 þ140 0 þ230 0 þ360 0 þ560 0
þ770 þ350 þ360 þ195 þ358 þ98 þ94 þ28 þ133 þ28 þ66 0 þ105 0 þ165 0 þ260 0 þ420 0 þ660 0
þ890 þ390 þ415 þ220 þ420 þ110 þ108 þ30 þ155 þ30 þ78 0 þ125 0 þ195 0 þ310 0 þ500 0 þ780 0
þ1030 þ430 þ470 þ240 þ490 þ120 þ124 þ32 þ182 þ32 þ92 0 þ150 0 þ230 0 þ370 0 þ600 0 þ920 0
þ1180 þ480 þ540 þ260 þ570 þ130 þ144 þ34 þ209 þ34 þ110 0 þ175 0 þ280 0 þ440 0 þ700 0 þ1100 0
þ1380 þ520 þ620 þ290 þ685 þ145 þ173 þ38 þ248 þ38 þ135 0 þ210 0 þ330 0 þ540 0 þ860 0 þ1350 0
87.5
100
115
130
155
185
220
270
0 66 40 106 66 132 120 186 250 260 355 365 520 580 625 685 780 840 885 945 1150 1300 1255 1405
0 78 48 126 78 156 140 218 300 330 425 455 640 720 765 845 960 1050 1085 1175 1450 1600 1575 1725
0 0 0 44 50 56 26 30 34 70 80 90 44 50 56 88 100 112 78 88 100 122 138 156 150 155 175 185 210 200 220 225 255 265 300 310 280 310 340 380 430 470 350 380 420 460 520 560 400 450 500 560 620 680 470 520 580 640 710 770 600 660 740 840 940 1050 670 730 820 920 1030 1140
0 92 58 150 92 184 170 262 370 400 520 550 820 920 970 1070 1200 1350 1350 1500 1850 2000 2000 2150
0 110 68 178 110 220 195 305 440 460 615 635 1000 1100 1175 1275 1500 1650 1675 1825 2300 2500 2475 2675
0 135 76 211 135 270 240 375 550 580 760 790 1250 1400 1460 1610 1900 2100 2110 2310 2900 3200 3110 3410
Tolerances in mm (1 mm ¼ 103 mm). ES ¼ upper deviation. c EI ¼ lower deviation. Source: IS 2101, 1962. a
b
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
H6 h6
Precision location Normal location Loose location Slack assembly
17 10
21 10
12 8
17 8
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
Normal
Heavy force H7 u6 Fir or shrink fit
25 12
20 12 29.5 14.5
26.5 14.5
14.5 14.5 19.5 14.5
þ2.5 14.5 3.5 14.5
þ2 12 3 12
þ11 11 þ27 27 þ43 43 þ110 110
þ185 35
þ325 35
þ138 43
þ6.5 14.5
12 12 16 12
18 24
37 17
31 17
18 17 24 17
þ2 17 4 17
þ8 17
þ13 13 þ33 33 þ52 52 þ130 130
þ202.5 42.5
þ342.5 42.5
þ162 52
þ20.5 þ24 14.5 17 þ34 þ41 18 21 þ59 þ73 27 33 þ85 þ107.5 35 42.5
18
10
þ5 12
Tolerance in microns; 1 micron ¼ 103 mm ¼ mm ¼ 106 m
Normal
H7 s6
MHeavy drive fit
Normal
H7 r6
10 10 13 10
—
8 8 11 8
Normal
—
þ3 10
þ2 8
þ9 9 þ22 22 þ36 36 þ90 90
þ179 29
þ159.5 þ164 19.5 24
þ8 8 þ18 18 þ30 30 þ75 75
þ309 29
þ289.5 þ294 19.5 24
þ7 7 þ14 14 þ25 25 þ60 60
þ116 36
þ100 30
þ85 25
þ17 12 þ28 15 þ47 22 þ69 29
þ14 10 þ22 12 þ38 18 þ54 24
Light press fit Medium drive fit
H7 p6
6 10
þ11 8 þ16 9 þ28 14 þ39.5 19.5
2 10
Normal
3 6
1 8
H7 k6
H11 h11
H9 h9
—
3
True H7 h6 Normal transition Interference H7 m6 Normal transition
Push
H8 b9
Position fits
H8 h8
H8 a9
Normal
H8 d9
Position fits
Normal
H8 e8
Normal
Normal
H7 f 7
H9 c9
Normal
H7 g6
Combination of shaft and hole
Slack running
Precision sliding Normal running Easy running Loose running
Quality of fit
44 17
30
24
40 50
50
65 80
80 100
100 120
þ192 62
þ214 74
þ224 74
þ257 74
þ267 87
Clearance Fit (Fig. 11-6) þ34.5 þ40.5 24.5 28.5 þ60 þ71 30 35 þ106 þ126 46 54 þ160 þ190.5 60 70.5
65
140 160
þ300 100
þ310 100
þ46.5 32.5 þ83 40 þ148 63 þ226.5 81.5
140
120
Diameter steps, mm 160
þ330 100
180
180 225
200
þ355 115
þ375 115
þ52.5 37.5 þ96 46 þ172 72 þ263.5 93.5
200
225
þ395 115
250
250
280
þ420 130
þ460 130
315
þ59 42 þ108 52 þ191 81 þ295.5 105.5
280
315
þ500 140
þ64.5 46.5 þ119 57 þ214 89 þ324.5 114.5
355
355
þ540 140
400
55.5 20.5
81.5 24.5
47.5 24.5
64.5 28.5
44.5 28.5
72.5 28.5
47.5 28.5
84.5 32.5
55.5 32.5
60.5 32.5
66.5 37.5
71.5 37.5
75.5 37.5 92.5 100.5 113.5 121.5 131.5 32.5 32.5 37.5 37.5 37.5
57.5 32.5
41.5 37.5
þ4.5 37.5 8.5 37.5
þ21..5 37.5
96.5 117.5 137.5 162.5 182.5 202.5 227.5 249.5 275.5 24.5 28.5 28.5 32.5 32.5 32.5 37.5 37.5 37.5
53.5 24.5
37.5 24.5
35.5 32.5
Interference Fits (Fig. 11-8) 26.5 30.5 24.5 28.5 35.5 24.5
þ4.5 32.5 7.5 32.5
þ3.5 28.5 6.5 28.5
þ3.5 24.5 5.5 24.5
þ18.5 32.5
Transition Fits (Fig. 11-7) þ12.5 þ15.5 24.5 28.5
þ29 29 þ72 72 þ115 115 þ290 290
þ260 þ290.5 þ310.5 þ341.5 þ361.5 þ391.5 þ433.5 þ473.5 þ513.5 60 70.5 70.5 81.5 81.5 81.5 93.5 93.5 93.5 þ25 25 þ63 63 þ100 100 þ250 250
þ19 19 þ46 46 þ74 74 þ190 190
þ250 60 þ22 22 þ54 54 þ87 87 þ220 220
65.5 20.5
38.5 20.5
21.5 20.5 29.5 20.5
þ2.5 20.5 4.5 20.5
þ9.5 20.5
þ16 16 þ39 39 þ62 62 þ160 160
þ220.5 þ230.5 50.5 50.5
305 42
148 42
84 42
46 42
þ6 42 10 42
þ26 42
þ32 32 þ81 81 þ130 130 þ320 320
þ585.5 105.5
340 42
160 42
88 42
þ645.5 105.5
þ794.5 114.5
379.5 46.5
179.5 46.5
97.5 46.5
424.5 46.5
197.5 46.5
103.5 46.5
51.5 46.5
þ6.5 46.5 10.5 46.5
þ28.5 46.5
þ36 36 þ89 89 þ140 140 þ360 360
þ714.5 114.5
Location and Assembly Fit þ360.5 þ370.5 þ400 þ420 þ450.5 þ480.5 þ541.5 þ601.5 þ661.5 þ753.5 þ833.5 þ913.5 þ1025.5 þ1155.5 þ1314.5 þ1454.5 50.5 50.5 60 60 70.5 70.5 81.5 81.5 81.5 93.5 93.5 93.5 105.5 105.5 114.5 114.5
þ182 62
þ29.5 20.5 þ50 25 þ89 39 þ130.5 50.5
40
30
TABLE 11-14 Mean fit and variation about the mean fit for holes for sizes up to 400 mm
METAL FITS, TOLERANCES, AND SURFACE TEXTURE
11.21
0–0.12 0.12–0.24 0.24–0.40 0.40–0.72 0.72–1.20 1.20–2.00 2.00–3.20 3.20–4.80 4.80–7.20 7.20–10.00 10.00–12.60 12.60–16.00
0–3 3–6 6–10 10–18 18–30 30–50 50–80 80–120 120–180 180–250 250–315 315–400
0.006 0.008 0.009 0.011 0.013 0.016 0.019 0.022 0.025 0.029 0.032 0.036
mm
IT6
0.0002 0.0003 0.0004 0.0004 0.0005 0.0006 0.0007 0.0009 0.0010 0.0011 0.0013 0.0014
in
Source: Preferred metric limits and fits—BSI 4500.
in
mm
Basic sizes
TABLE 11-15 International tolerance grades
0.010 0.012 0.015 0.018 0.021 0.025 0.030 0.035 0.040 0.040 0.052 0.057
mm
IT7
0.0004 0.0005 0.0006 0.0007 0.0008 0.0010 0.0012 0.0014 0.0016 0.0018 0.0020 0.0022
in 0.014 0.018 0.022 0.027 0.033 0.039 0.046 0.054 0.063 0.072 0.081 0.089
mm
IT8
0.0006 0.0007 0.0009 0.0011 0.0013 0.0015 0.0018 0.0021 0.0025 0.0028 0.0032 0.0035
in 0.025 0.030 0.036 0.043 0.052 0.062 0.074 0.087 0.100 0.115 0.130 0.140
mm
Grades IT9
0.0010 0.0012 0.0014 0.0017 0.0020 0.0024 0.0029 0.0034 0.0039 0.0045 0.0051 0.0055
in
0.040 0.048 0.058 0.070 0.084 0.100 0.120 0.140 0.160 0.185 0.210 0.230
mm
IT10
0.0016 0.0019 0.0023 0.0028 0.0033 0.0039 0.0047 0.0055 0.0063 0.0073 0.0083 0.0091
in
0.060 0.075 0.090 0.110 0.130 0.160 0.190 0.220 0.250 0.290 0.320 0.360
mm
IT11
0.0024 0.0030 0.0035 0.0043 0.0051 0.0063 0.0075 0.0087 0.0098 0.0114 0.0126 0.0142
in
METAL FITS, TOLERANCES, AND SURFACE TEXTURE
11.22
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
eic
es
ei
es
ei
es
ei
es
ei
es
ei
j
c
k
d
n
f
p
g
s
h
u
0 0 3 0.12
10 0.40 14 0.56
14 0.56 18 0.72
b
a
18 0.72 24 0.96
24 0.96 30 1.20
30 1.20 40 1.60
40 1.60 50 2.0
50 2.00 65 2.60
65 2.60 80 3.20
80 3.20 100 4.00
100 4.00 120 4.80
120 4.80 140 5.60
140 5.60 160 6.40
160 6.40 180 7.20
180 7.20 200 8.00
200 8.00 225 9.00
225 9.00 2.50 10.00
250 10.00 280 11.20
280 11.20 315 12.60
315 12.60 355 14.20
355 14.20 400 16.00
400 16.00 4.50 18.00
450 18.00 500 20.00
0 0 þ18 þ700
20 20 25 25 30 30 36 36 43 43 43 50 50 56 56 62 62 68 68 800 1,000 1,000 1,200 1,200 1,400 1,400 1,700 1,700 1,700 2,000 2,000 2,000 2,200 2200 2,400 2,400 2,680 2,680 þ22 þ26 þ26 þ32 þ32 þ37 þ37 þ43 þ43 þ43 þ.50 þ50 þ50 þ.56 þ.56 þ62 þ62 þ68 þ68 þ900 þ1,000 þ1,000 þ1,300 þ1,300 þ 1,500 þ1,500 þ1,700 þ1,700 þ1,700 þ2,000 þ2,000 þ2,000 þ2,200 þ2,200 þ2,400 þ2,400 þ2,680 þ2,680
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 þ23 þ28 þ33 þ33 þ41 þ48 þ60 þ70 þ87 þ102 þ124 þ144 þ170 þ190 þ210 þ236 þ258 þ284 þ315 þ350 þ390 þ435 þ490 þ540 þ900 þ1,100 þ1.300 þ1,300 þ1,600 þ1,900 þ2,400 þ2,800 þ3,400 þ4,000 þ4,900 þ5,700 þ6,700 þ7,500 þ8,300 þ9,300 þ10,200 þ11,200 þ12,400 þ13,000 þ15,400 þ17,100 þ19,300 þ21,300
5 6 6 7 7 9 9 10 10 12 12 14 14 14 15 15 15 17 17 18 18 20 20 200 200 200 300 300 400 400 400 400 500 500 600 600 600 600 600 600 700 700 700 700 800 800 þ23 þ28 þ28 þ35 þ35 þ43 þ43 þ53 þ59 þ71 þ79 þ92 þ100 þ108 þ122 þ130 þ140 þ158 þ170 þ190 þ208 þ232 þ252 þ900 þ1,100 þ1,100 þ1,400 þ1,400 þ1,700 þ1,700 þ2,100 þ2,300 þ2,800 þ3,100 þ3,600 þ3,900 þ4,300 þ4,800 þ5,100 þ5,500 þ6,200 þ6,700 þ7,500 þ8,200 þ9,100 þ9,100
20 800 þ22 þ900
mm min mm min
4 200 þ19 þ700
16 600 þ18 þ700
2 100 þ14 þ600
16 600 þ18 þ700
mm min mm min
13 500 þ15 þ600
5 200 þ6 þ200
mm min mm min
10 400 þ12 þ500
20 30 40 50 50 65 65 80 80 100 100 120 120 145 145 145 170 170 170 190 190 210 210 230 230 800 1,200 1,600 2,000 2,500 2,600 2,600 3,100 3,100 3,900 3,900 4,700 4,700 5,700 5,700 5,700 6,700 6,700 6,700 7,500 7,500 8.300 8,300 9,100 9,100 þ4 þ8 þ10 þ12 þ12 þ15 þ15 þ17 þ17 þ20 þ20 þ23 þ23 þ27 þ27 þ27 þ31 þ31 þ31 þ34 þ34 þ37 þ37 þ40 þ40 þ200 þ300 þ400 þ500 þ500 þ600 þ600 þ700 þ700 þ800 þ800 þ900 þ900 þ1,100 þ1,100 þ1,100 þ1,200 þ1,200 þ1,200 þ1,300 þ1,300 þ1,500 þ1,500 þ1,600 þ1,600
mm min mm min
280 290 290 300 300 310 320 340 360 380 410 460 520 580 660 740 820 920 1,050 1,200 1,350 1,500 1,650 11,000 11,400 11,400 11,800 11,800 12200 12,600 13,400 14,200 14,900 16,100 18,100 20,500 22,800 26,000 29,100 32,300 36,200 41,300 47,200 53,200 59,000 64,900 2 2 2 3 4 5 5 7 7 9 9 11 11 11 13 13 13 16 16 18 18 18 20 80 80 80 100 160 200 200 280 280 360 360 450 450 450 510 500 500 600 600 700 700 700 800
6 0.24 10 0.40
60 70 80 95 95 110 110 120 130 140 150 170 180 200 210 230 240 260 280 300 330 360 400 440 480 2,400 2,800 3,100 3,700 3,700 4,300 4,300 4,700 5,100 5,500 5,900 6,700 7,100 7,900 8,300 9,100 9,400 10,200 11,000 11,800 13,000 14,200 15,700 17,300 18,900 0 þ1 þ1 þ1 þ1 þ2 þ2 þ2 þ2 þ2 þ2 þ3 þ3 þ3 þ3 þ3 þ4 þ4 þ4 þ4 44 þ4 þ4 þ4 þ5 0 þ40 þ40 þ40 þ40 þ100 þ100 þ100 þ100 þ100 þ100 þ100 þ100 þ100 þ100 þ100 þ160 þ160 þ160 þ160 þ160 þ160 þ160 þ160 þ200
270 10,600 2 80
3 0.12 6 0.24
Diameter steps
mm min mm min
mm 270 min 10,600 mm 2 min 80
mm in mm in
Tolerance in mm (1 mm ¼ 106 m: 1 min ¼ 106 in). es ¼ upper deviations. c ei ¼ lower deviations. Source: Preferred limits and fits—BSI 4500; IS 2101, 1962.
esb
a
System of basic shaft Limits
TABLE 11-16 Fundamental tolerancea (lm and lin) for shafts for sizes up to 400 mm (16 in)
METAL FITS, TOLERANCES, AND SURFACE TEXTURE
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
11.23
IT 2
IT 3
IT 1
—
—
Fine turn, fine bore
Cylindrical grind
Fine cylindrical grind
Surface grind
Fine surface grind
b
5
5
2 10 — —
3 105 105
—
—
—
2 10
5 105
5 105
—
4 105
4 105
3 105
104
10 104
—
4
Straightness of cylinders, gaps and tongues
5 105
5 10
5
Flatness of surfaces
Parallelism of cylinders on diameter
2 105
5 105
—
—
5 105
104
10
4
Parallelism squareness
104
3 104
—
—
3 104
3 104
3 10
4
Anyb other angle
Flat surface
2 105
5 105
2 10
5
5 105
5 105
104
10
104
3 104
104
3 104
3 104
3 104
3 104
103
103 4
Anyb other angle
Cylinders, gaps, tongues Parallelism squareness
Angularity
Expressed as mm/mm length of surface or cylinder
Order of tolerance
A roundness tolerance of 0.016 corresponds to a permissible diametrical variation of 0.032 (ovality). The values quoted are for good class of machine tools. Thrice or twice the above values, i.e., tolerance may have to be allowed for worn machine tools.
IT 4
Turn, bore
a
—
Mill, slot, plane
Drill
Machining processes
Roundnessa (circularity) of cylinders
TABLE 11-17 Relation between machine processes and geometry tolerances
METAL FITS, TOLERANCES, AND SURFACE TEXTURE
11.24
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
Strictly interchangeable
Strictly interchangeable
Strictly interchangeable
Strictly interchangeable
Selective assembly
Selective assembly
Selective assembly
Selective assembly
Loose
Free
Medium
Snug
Wringing
Tight
Medium force
Heavy force or shrink
Class of fit
Method of assembly
0.005 D1=3 0.005 D1=3
0.005 D1=3
0.005 D1=3 0.005 D1=3
0.005 D1=3
0.001 D
0.0005 D
0.00025 D
0.0035 D1=3
0.005 D1=3
0.0000
0.0035 D1=3
0.005 D1=3
0.0000
0.007 D1=3
0.007 D1=3
0.0025 D2=3
0.01 D1=3
0.01 D1=3
0.004 D2=3
0.02 D1
Shaft tolerance
0.02 D1=3
Hole tolerance
0.0075 D2=3
Allowance
Selected average interference of metal
TABLE 11-18 Formulas for recommended allowances and tolerances (all dimensions in mm)
Used for steel external members that have a high yield stress
Suitable for press fits on locomotive wheels, car wheels, generator and motor armature, and crank discs
Slightly negative allowance; suitable for semipermanent assembly and shrink fits
A metal-to-metal contact fit
Closest fit; zero allowance; suitable where no perceptible shake is permissible under load
Accurate automotive parts and machine tools; suitable for running fit
Suitable for running fit; suitable for shafts of motors, generators, engines, and some automotive parts
Suitable for running fit; considerable freedom permissible; used in agricultural, mining, and generalpurpose machinery
Uses
METAL FITS, TOLERANCES, AND SURFACE TEXTURE
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
11.25
METAL FITS, TOLERANCES, AND SURFACE TEXTURE
11.26
CHAPTER ELEVEN
TABLE 11-19 Surface finisha values (CLA) High quality
Normal quality
Coarse quality
Machining process
Tolerance grade
Finish (lm)
Tolerance grade
Finish (lm)
Tolerance grade
Finish (lm)
Drill Mill, slot, plane Turn, bore Ream Commercial grind Fine turn, bore Hone Broach Fine grind Lap
11 9 8 7 7 6 6 6 5 3
1.6–3.2 0.4–0.8 0.4–0.8 0.4–0.8 0.4–0.8 0.2–0.4 0.1–0.2 0.1–0.2 0.1–0.2 0.05–0 1
12 11 9 8 8 7 7 7 6 4
0.8–1.6 0.8–1.6 0.8–1.6 0.8–1.6 0.4–0.8 0.2–0.4 0.2–0.4 0.2–0.4 0.1–0.2
12 11
1.6–3.2 1.6–3.2
9
1.6–3.2
a
The Roughness Number represents the average departure of the surface from perfection over a prescribed ‘‘sampling length’’ normally 0.8 mm, and is expressed in micrometers (mm). The measurements are normally made along a line at right angles to the general directions of tool marks or scratches on the surface.
1 m ¼ 0:001 mm Old machining symbols
Description
Surface roughness
Unmachined surface. cleaned up by sand blasting, brushing, etc.
5–80 m
Surface to be rough machined if found necessary (to prevent fouling) Surface obtained by rough machining under turning, planing, milling etc. Quality coarser than 9
8–25 m
Finish-machined surface obtained by turning, milling etc. Quality 12–7
1.6–8 m
Fine finish-machined surface obtained by boring, reaming, grinding etc. Quality 9–6
0.25–1.6 m
Super finish-machined surface obtained by honing, lapping, super finish grinding. Quality 7–4
0–0.25 m
FIGURE 11-12 Machining symbols.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
METAL FITS, TOLERANCES, AND SURFACE TEXTURE METAL FITS, TOLERANCES, AND SURFACE TEXTURE
TABLE 11-20 Lay symbols
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
11.27
METAL FITS, TOLERANCES, AND SURFACE TEXTURE
11.28
CHAPTER ELEVEN
FIGURE 11-13 Application and use of surface-texture symbols. (Baumeister, T., Marks’ Standard Handbook for Mechanical Engineers, 8th ed., McGraw-Hill, 1978.)
TABLE 11-21 Preferred series roughness average values (Ra ) (in lm and lin) lm
lin
lm
lin
lm
lin
lm
lin
lm
lin
0.012 0.025 0.050 0.075 0.10
0.5 1 2 3 4
0.125 0.15 0.20 0.25 0.32 0.40
5 6 8 10 13 16
0.50 0.63 0.80 1.00 1.25 1.60
20 25 32 40 50 63
2.00 2.50 3.20 4.0 5.0 6.3
80 100 125 160 200 250
8.0 10.0 12.5 15.0 20.0 25.0
320 400 500 600 800 1000
Source: Reproduced from Baumeister, T., Marks’ Standard Handbook for Mechanical Engineers, 8th ed., with permission from McGraw-Hill Book Company, New York, 1978.
TABLE 11-22 Preferred series maximum waviness height values mm
in
mm
in
mm
in
0.0005 0.0008 0.0012 0.0020 0.0025 0.005
0.00002 0.00003 0.00005 0.00008 0.0001 0.0002
0.008 0.012 0.020 0.025 0.05 0.08
0.0003 0.0005 0.0008 0.001 0.002 0.003
0.12 0.20 0.25 0.38 0.50 0.80
0.005 0.008 0.010 0.015 0.020 0.030
Source: Reproduced from Baumeister, T., Marks’ Standard Handbook for Mechanical Engineers, 8th ed., with permission from McGraw-Hill Book Company, New York, 1979.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
METAL FITS, TOLERANCES, AND SURFACE TEXTURE METAL FITS, TOLERANCES, AND SURFACE TEXTURE
TABLE 11-23 Surface roughness ranges of production processes
Source: Reproduction from Baumeister, T., Marks’ Standard Handbook for Mechanical Engineers, 8th ed., with permission from McGraw-Hill Book Company, New York, 1979.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
11.29
METAL FITS, TOLERANCES, AND SURFACE TEXTURE
11.30
CHAPTER ELEVEN
TABLE 11-24 Application of surface texture values to surface symbols (63)
pffiffiffiffiffi 1:6
(63)
1.6
(32)
pffiffiffiffiffi 0:8
(32)
0:05ffi pffiffiffiffiffiffi 0:8
(32)
0:05 100 pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 0:8
Roughness average rating is placed at the left of the long leg; the specification of only one rating shall indicate the maximum value and any lesser value shall be acceptable
(63)
pffiffiffiffiffi 1:6 3:5
The specification of maximum value and minimum value roughness average ratings indicates permissible range of value rating
(63)
p ffiffiffiffiffi 1:6
(32)
0:8 pffiffiffiffiffi ?
Maximum waviness height rating is placed above the horizontal extension; any lesser rating shall be acceptable
(32)
pffiffiffiffiffi 0:8 2:5 ð0:100Þ
Maximum waviness spacing rating is placed above the horizontal extension and to the right of the waviness height rating; any lesser rating shall be acceptable
(32)
0:8 pffiffiffiffiffiffiffiffiffiffi ? 0:5
Machining is required to produce the surface; the basic amount of stock provided for machining is specified at the left of the short leg of the symbol
Removal of material by machining is prohibited Lay designation is indicated by the lay symbol placed at the right of the long leg
Roughness sampling length or cutoff rating is placed below the horizontal extension; when no value is shown, 0.80 mm is assumed
Where required, maximum roughness spacing shall be placed at the right of the lay symbol; any lesser rating shall be acceptable
Source: Reproduction from Baumeister, T., Marks’ Standard Handbook for Mechanical Engineers, 8th ed., with permission from McGraw-Hill Book Company, New York, 1979.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
METAL FITS, TOLERANCES, AND SURFACE TEXTURE METAL FITS, TOLERANCES, AND SURFACE TEXTURE
11.31
TABLE 11-25 Typical surface texture design requirements (250 min) (125 min)
(63 min)
(32 min)
pffiffiffiffiffi 6:3 pffiffiffiffiffi 3:2
pffiffiffiffiffi 1:60
pffiffiffiffiffi 0:80
Clearance surfaces Rough machine parts
(16 min)
pffiffiffiffiffi 0:40
Mating surfaces (static) Chased and cut threads Clutch-disk faces Surfaces for soft gaskets Piston-pin bores Brake drums Cylinder block, top Gear locating faces Gear shafts and bores Ratchet and pawl teeth Milled threads Rolling surfaces Gearbox faces Piston crowns Turbine-blade dovetails Broached holes Bronze journal bearings Gear teeth Slideways and gibs Press-fit parts Piston-rod bushings Antifraction-bearing seats Sealing surfaces for hydraulic tube fittings
(13 min)
(8 min)
(4 min)
(2 min) (1 min)
pffiffiffiffiffi 0:32 pffiffiffiffiffi 0:20
pffiffiffiffiffi 0:10
pffiffiffiffiffi 0:050 pffiffiffiffiffi 0:025
Motor shafts Gear teeth (heavy loads) Spline shafts O-ring grooves (static) Antifraction-bearing bores and faces Camshaft lobes Compressor-blade airfoils Journals for elastomer lip seals Engine cylinder bores Piston outside diameters Crankshaft bearings Jet-engine stator blades Valve-tappet cam faces Hydraulic-cylinder bores Lapped antifriction bearings Ball-bearing races Piston pins Hydraulic piston rods Carbon-seal mating surfaces Shop-gauge faces Comparator anvils Bearing balls Gauges and mirrors Micrometer anvils
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
METAL FITS, TOLERANCES, AND SURFACE TEXTURE
11.32
CHAPTER ELEVEN
TABLE 11-26 Range of surface roughnessa Manufacturing process Manual Hack saw cut Chipping Filing Emery polish Casting Sand casting Permanent mold Die casting Forming Forging Extrusion Rolling
With difficulty
Normally
Roughing
0.8–1.6 0.1–0.4
6.3–50 3.2–50 1.6–12.5 0.4–1.6
1.6–3.2
0.8–1.6
6.3–12.5 1.6–6.3 0.8–3.2
1.6–3.2 0.4–0.8 0.4–0.8
3.2–25 0.8–6.3 0.8–3.2
3.2–6.3
Machining Drilling Planing and shaping Face milling Turning Boring Reaming Cylindrical grinding Centerless grinding Surface grinding Broaching Superfinishing Honing Lapping
0.8–1.6 0.2–1.6 0.2–1.6 0.4–0.8 0.025–0.4 0.05–0.4 0.025–0.4 0.2–0.8 0.025–0.1 0.025–0.1 0.006–0.05
6.3–25 1.6–12.5 1.6–12.5 1.6–6.3 1.6–6.3 0.8–6.3 0.4–3.2 0.4–3.2 0.4–3.2 0.8–3.2 0.1–0.4 0.1–0.4 0.05–0.4
Gear manufacture Milling with form cutter Milling, spiral bevel Hobbing Shaping Shaving Grinding Lapping
1.6–3.2 1.56–3.2 0.8–3.2 0.4–1.6 0.4–0.8 0.1–0.4 0.05–0.2
3.2–12.5 3.2–12.5 3.2–12.5 1.6–12.5 0.8–3.2 0.4–0.8 0.2–0.8
1.6–3.2
3.2–50 0.1–6.3 0.2–0.8 0.05–0.1
Surface process Shot blast Abrasive belt Fiber wheel brushing Cloth buffing a
0.1–0.2 0.012–0.05
Surface roughness in mm (1mm ¼ 103 mm ¼ 106 m).
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
12.5–25
12.5–50 6.3–50 6.3–50 6.3–12.50 3.2–6.3 3.2–6.3 3.2–6.3
12.5–50 12.5–25 12.5–50 12.5–250
0.8–1
METAL FITS, TOLERANCES, AND SURFACE TEXTURE METAL FITS, TOLERANCES, AND SURFACE TEXTURE
FIGURE 11-14 Symbols for tolerances of form and position.
11.33
FIGURE 11-15 Rivet symbols
REFERENCES 1. Lingaiah, K., and B. R. Narayana Iyengar, Machine Design Data Handbook, Engineering College Cooperative Society, Bangalore, India, 1962. 2. Lingaiah, K., and B. R. Narayana Iyengar, Machine Design Data Handbook, Vol. I, Suma Publishers, Bangalore, India, 1986. 3. Lingaiah, K., Machine Design Data Handbook, Vol. II (SI and Customary Metric Units), Suma Publishers, Bangalore, India, 1986. 4. Black, P. H., and O. Eugene Adams, Jr., Machine Design, McGraw-Hill Publishing Company, New York. 5. Baumeister, T., Marks’ Standard Handbook for Mechanical Engineers, 8th ed., McGraw-Hill Publishing Company, New York, 1978. 6. Maleev, V. L., and J. B. Hartman, Machine Design, International Textbook Company, Scranton, Pennsylvania, 1954. 7. Shigley, J. E., Machine Design, McGraw-Hill Publishing Company, New York, 1956. 8. Vallance, A., and V. L. Doughtie, Design of Machine Members, McGraw-Hill Publishing Company, New York, 1951. 9. British Standard Institution. 10. Bureau of Indian Standards.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
Source: MACHINE DESIGN DATABOOK
CHAPTER
12 DESIGN OF WELDED JOINTS
SYMBOLS2;3;4 A A0 ¼ l! b c cx cy c1 c2 c3 d ex ey h i Ix , Iy , Iz J J! Kf l lt Mb Mt na Na Nb P Px Py
area of flange material held by welds in shear, m2 (in2 ) length of weld when weld is treated as a line, m (in) width of connection, m (in) distance to outer fiber (also with suffixes), m (in) distance of x axis to face, m (in) distance of y axis to face, m (in) distance of weld edge parallel to x-axis from the center of weld, to left, m (in) distance of weld edge from parallel to x-axis from the center of weld, to right, m (in) distance from farthest weld corner, Q, to the center of gravity of weld, m (in) (Fig. 12-8) depth of connection, m (in) eccentricity of Pz and Py about the center of weld, m (in) eccentricity of Px about the center of weld, m (in) thickness of plate (also with suffixes), m (in) number of welds moment of inertia of weld about x, y, and z axes respectively, m4 , cm4 (in4 ) moment of inertia, polar, m4 , cm4 (in4 ) polar moment of inertia of weld, when weld is treated as a line, m3 , cm3 (in3 ) fatigue stress-concentration factor (Table 12-7) effective length of weld, m (in) total length of weld, m (in) bending moment, N m (lbf in) twisting moment, N m (lbf in) actual factor of safety or reliability factor fatigue life (for which sfa is known) for fatigue strength sfa , cycle fatigue life (required) for fatigue strength sfb , cycle load on the joint, kN (lbf ) component of P in x direction, kN (lbf ) component of P in y direction, kN (lbf )
12.1 Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
DESIGN OF WELDED JOINTS
12.2
Pz r R t V w Z Z! 0 sfa sfb d e 0
CHAPTER TWELVE
component of P in z direction, kN (lbf ) distance to outer fiber, m (in) ratio of calculated leg size for continuous weld to the actual leg size to be used for intermittent weld throat dimension of weld, m (in) shear load, kN (lbf ) size of weld leg, m (in) section modulus, m3 (in3 ) section modulus of weld, when weld is treated as line (also with suffixes, m2 (in2 ) normal stress in the weld (in standard design formula), MPa (psi) force per unit length of weld (in standard design formula) when weld treated as a line, kN/m (lbf/in) fatigue strength (known) for fatigue life Na , MPa (psi) fatigue strength (allowable) for fatigue life Nb , MPa (psi) design stress, MPa (psi) elastic limit, MPa (psi) shear stress in the weld (in standard design formula), MPa (psi) shear force per unit length of weld (in standard design formula) when weld is treated as a line, kN/m (lbf/in) angle, deg efficiency of joint
Particular
Formula
FILLET WELD The throat thickness t, for case with equal legs, of weld (Fig. 12-1)
t ¼ w sin 458 ¼ 0:707w
ð12-1aÞ
The allowable load on the weld
P ¼ 0:707 i wl
ð12-1bÞ
FIGURE 12-1 Fillet weld.
FIGURE 12-2 A typical butt-weld joint.
BUTT WELD The average normal stress in a butt weld subjected to tensile or compression loading (Fig. 12-2)
F ð12-2Þ hl where h is the throat dimension. The dimensions of throat (t) are the same as the thickness of plate (h).
¼
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
DESIGN OF WELDED JOINTS DESIGN OF WELDED JOINTS
Particular
12.3
Formula
The throat dimension (h) does not include the reinforcement. The average shear stress in butt weld
The allowable load on the weld
F hl
ð12-3Þ
Fa ¼ a hl
ð12-4Þ
¼
TRANSVERSE FILLET WELD The average normal tensile stress
The average normal tensile stress for the case of transverse fillet weld shown in Fig. 12-3.
¼
F F ¼ wl cos 458 0:707wl
ð12-5Þ
¼
F 0:707hl
ð12-6Þ
The stress concentration occurs at A and B on the horizontal leg and at B on the vertical leg in the weld according to photoelastic tests conducted by Norris.1 A double fillet lap weld joint.
Refer to Fig. 12-4.
FIGURE 12-3 A transverse fillet weld.
FIGURE 12-4 A double-fillet lap-weld joint.
PARALLEL FILLET WELD (Fig. 12-5) The average shear stress in the weld
¼
P 0:707wl
ð12-7aÞ
where w ¼ dimension of leg of weld. w can be replaced by h (thickness of plate) when w and h are of same dimension. Either symbol F or P can be used for force or load depending on symbols used in figures in this chapter. The shear stress in a reinforced fillet weld
¼
P 0:85wl
where throat t is taken as 0.85w
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð12-7bÞ
DESIGN OF WELDED JOINTS
12.4
CHAPTER TWELVE
Particular
Formula
LENGTH OF WELD The effective length of weld (Fig. 12-5)
l ¼ lt
i 4
ð12-8Þ
where i ¼ total number of free ends The total length of weld (Fig. 12-5)
The relation between the length l1 and l2 (Fig. 12-5)
FIGURE 12-5 Parallel fillet weld.
lt ¼
P where lt ¼ 2ðl1 þ l2 Þ 0:707 wa
l1 l l þ l2 l ¼ 2¼ 1 ¼ t L x x L 2L
ð12-9Þ
ð12-10Þ
FIGURE 12-6
ECCENTRICITY IN A FILLET WELD The bending stress due to fillet weld placed on only one side of the plate (Fig. 12-6)
b ¼ ¼
4Pw 4ð0:707wÞ2 l
¼
2P wl
ð12-11Þ
P 1:414wl
ð12-12Þ
The stress due to tensile load t ¼ The combined normal stress at the root of the weld
n ¼ t þ b ¼
The shear stress ¼ The maximum normal stress The maximum shear stress
4Mb ð0:707wÞ2 l
P 2P þ 1:414wl wl
P 0:707wl
max ¼ 12 ðn þ max ¼ 12
ð12-13Þ ð12-14Þ
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2n þ 4 2 Þ
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2n þ 4 2
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð12-15Þ ð12-16Þ
DESIGN OF WELDED JOINTS DESIGN OF WELDED JOINTS
Particular
12.5
Formula
ECCENTRIC LOADS Moment acting at right angles to the plane of welded joint (Fig. 12-6) Direct load per unit length of weld
Pd ¼
P l
ð12-17Þ
Load due to bending per unit length of weld
Pn ¼
Pey I
ð12-18Þ
The resultant load or force
PR ¼
qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi P2d þ P2n
ð12-19Þ
Per J
ð12-20Þ
Moment acting in the plane of the weld (Fig. 12-7) Load due to twisting moment per unit length of weld
Pn ¼
The resultant load (Fig. 12-7)
PR ¼
qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi P2d þ P2n þ 2Pd Pn cos
ð12-21Þ
l2 where cos ¼ qffiffiffiffiffiffiffiffiffiffiffiffiffi 2 l1 þ l22
FIGURE 12-7
STRESSES Bending The bending stress
b ¼
Mb wZw
ð12-22aÞ
Mb (treating weld as a line) Zw
ð12-22bÞ
or 0b ¼
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
DESIGN OF WELDED JOINTS
12.6
CHAPTER TWELVE
Particular
Formula
Torsion The shear stress due to torsion
Mt r wJw
ð12-23aÞ
0 ¼
Mt r (treating weld as a line) Jw
ð12-23bÞ
0max
1 M ¼ 4 bþ 2 Zw
0 max
1 ¼ 2
¼ or
Combined bending and torsion The resultant or maximum induced normal force per unit throat of weld
The resultant induced torsional force per unit throat of weld
The required leg size of the weld when weld is treated as a line The resultant normal stress induced in the weld
2
sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi Mb 2 Mt r 2 þ4 Jw Zw
0 actual force 0 or max ¼ max0 permissible force a or a0 2 3 sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 1 4 Mb Mb 2 Mt r 2 5 þ þ4 max ¼ wZw 2 wZw wJw
w¼
The resultant shear stress induced in the weld max The required leg size of weld when the weld area is considered
3 sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi Mb 2 Mt r 2 5 þ4 Zw Jw
1 ¼ 2
sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi Mb 2 Mt r 2 þ4 wJw wZw
ð12-24Þ
ð12-25Þ ð12-26Þ
ð12-27Þ
ð12-28Þ
actual maximum stress induced in the weld permissible stress max or max ¼ a or a
w¼
FATIGUE STRENGTH The fatigue strength related to fatigue life can be expressed by the empirical formula
sfa ¼ sfb or
Na ¼ Nb
Nb Na
sfb sfa
k
ð12-29Þ
1=k
where k ¼ 0:13 for butt welds ¼ 0:18 for plates in bending, axial tension, or compression
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð12-30Þ
DESIGN OF WELDED JOINTS DESIGN OF WELDED JOINTS
Particular
12.7
Formula
DESIGN STRESS OF WELDS The design stress
d ¼
a na
ð12-31Þ
where
The design stress for completely reversed load
na ¼ actual safety factor or reliability factor ¼ 3 to 4 f fd ¼ ð12-32Þ na Kf
THE STRENGTH ANALYSIS OF A TYPICAL WELD JOINT SUBJECTED TO ECCENTRIC LOADING (Fig. 12-8)2;3;4 Throughout the analysis of a weld joint, the weld is treated as a line Area of cross section of weld
A ¼ ð2b þ dÞw
The distance of weld edge parallel to x axis from the center of weld, to left
c1 ¼
The distance of weld edge parallel to x axis from the center of weld, to right
c2 ¼
The distance from farthest weld corner, Q, to the center of gravity of weld
The moment of inertia of weld about x axis
The moment of inertia of weld about y axis
b2 2b þ d
bðb þ dÞ 2b þ d sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2ffi d c3 ¼ c22 þ 2
ð12-33Þ
ð12-34Þ ð12-35Þ
ð12-36Þ
Ix ¼
wd 2 ðd þ 6bÞ 12
ð12-37Þ
Iy ¼
wb3 ð2d þ bÞ 3ðd þ 2bÞ
ð12-38Þ
The moment of inertia of weld about z axis
Iz ¼ I x þ Iy
The section modulus of weld, about x axis
Zwx ¼
Ix wd ¼ ðd þ 6bÞ ðd=2Þ 6
Zwy ¼
Iy wb2 ð2d þ bÞ ¼ c2 3ðb þ dÞ
ð12-40Þ
Zwz ¼
Iz c3
ð12-41Þ
The section modulus of weld, about y axis
The section modulus of weld, about z axis
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð12-39Þ
DESIGN OF WELDED JOINTS
12.8
CHAPTER TWELVE
Particular
Formula
FIGURE 12-8 A typical weld joint subjected to Eccentric Loading. K. Lingaiah and B. R. Narayana Iyengar, Machine Data Handbook ( fps Units), Engineering College Cooperative Society, Bangalore, India, 1962; K. Lingaiah and B. R. Narayana Iyengar, Machine Design Data Handbook, Vol. I (SI and Customary Metric Units), Suma Publishers, Bangalore, India, 1986; and K. Lingaiah, Machine Design Handbook, Vol. II (SI and Customary Metric Units), Suma Publishers, Bangalore, India, 1986.
Pz component Throughout the analysis of this problem the weld is considered as a line The force per unit length of weld due to direct force Pz
0zd ¼
The force per unit length of weld an account of bending at the farthest weld corner, Q, due to eccentricity ex of load Pz
Pz A0
ð12-42Þ
0zb1 ¼
Pz ex Zwy
ð12-43Þ
The force per unit length of weld an account of bending at the farthest weld corner, Q, due to eccentricity ey of load Pz
0zb2 ¼
Pz ey Zwx
ð12-44Þ
The total force per unit length of weld due to bending
0zb ¼ 0zb1 þ 0zb2
ð12-45Þ
0z ¼ 0zd þ 0zb
ð12-46Þ
The combined force per unit length of weld due to load Pz
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
DESIGN OF WELDED JOINTS DESIGN OF WELDED JOINTS
Particular
12.9
Formula
Px component The force per unit length of weld due to direct shear force Px which acts in the horizontal direction (Fig. 12-8)
0 xd ¼
The twisting moment
Mtx ¼ Px ey
ð12-48Þ
The shear force per unit length due to twisting moment Mtx
0 ¼ tx
Mtx c3 Jwz
ð12-49Þ
0 The vertical component of tx
0 The horizontal component of tx
Px A0
ð12-47Þ
0 txv ¼
Mtx c3 cos Jwz
ð12-50Þ
0 ¼ txh
Mtx c3 sin Jwz
ð12-51Þ
where c3 ¼ distance from the center of gravity of the weld to the point being analyzed (i.e., Q) cos
The resultant shear force per unit length of weld in the horizontal direction due to Px only
¼
c2 (Fig. 12-8) c3
0 0 0 ¼ xd ¼ txh txrh
ð12-52Þ
Py component The direct shear force per unit length of weld parallel to y direction due to force Py (Fig. 12-8)
0 ¼ yd
The twisting moment
Mty ¼ Py ex
ð12-54Þ
The shear force per unit length of weld due to twisting moment Mty
ty0 ¼
Mty c3 Jwz
ð12-55Þ
The vertical component of ty0
0 ¼ ty0 cos tyv
ð12-56Þ
The horizontal component of ty0
0 tyh ¼ ty0 sin
ð12-57Þ
0 0 0 tyrv ¼ yd þ tyv
ð12-58Þ
The resultant shear force per unit length of weld in the vertical direction due to Py only
Py A0
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð12-53Þ
DESIGN OF WELDED JOINTS
12.10
CHAPTER TWELVE
Particular
Formula
COMBINED FORCE DUE TO Px , Py , AND Pz AT POINT Q (Fig. 12-8) From Eqs. (12-46), (12-50), (12-52), (12-57), and (12-58) The total shear force per unit length of weld in the x direction (Fig. 12-8) from Eqs. (12-52) and (12-57) The total shear force per unit length of weld in the y direction (Fig. 12-8) from Eqs. (12-50) and (12-58)
0 0 x0 ¼ tzrh þ tyh
ð12-59Þ
0 0 þ tyrv y0 ¼ txv
ð12-60Þ
qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi x02 þ y02
ð12-61Þ
The resultant shear force per unit length of weld at point Q due to Px and Py forces (Fig. 12-8) from Eqs. (12-59) and (12-60)
0 ¼
The resultant actual force per unit length of weld (treating weld as a line) due to components Px , Py , and Pz at point Q from Eqs. (12-46) and (12-61)
0actual ¼
The leg size of the weld
w0 ¼
For the AWS standard location of elements of welding symbol, weld symbols and direction for making weld
Refer to Figs. 12-9 to 12-11.
qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 02 02 z þ
0actual 0allowable
FIGURE 12-9 The AWS Standard location of elements of a welding symbol.
FIGURE 12-10 Weld symbols
FIGURE 12-11
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð12-62Þ
ð12-63Þ
DESIGN OF WELDED JOINTS DESIGN OF WELDED JOINTS
Particular
12.11
Formula
GENERAL For further data on welded joint design
Refer to Tables 12-1 to 12-16.
REFERENCES 1. Norris, C. H., Photoelastic Investigation of Stress Distribution in Transverse Fillet Welds, Welding Journal, Vol. 24, p. 557, 1945. 2. Lingaiah, K., and B. R. Narayana Iyengar, Machine Design Data Handbook, Engineering College Cooperative Society, Bangalore, India, 1962. 3. Lingaiah, K., and B. R. Narayana Iyengar, Machine Design Data Handbook, Vol. I (SI and Customary Metric Units), Suma Publishers, Bangalore, India, 1986. 4. Lingaiah, K., Machine Design Data Handbook, Vol. II (SI and Customary Metric Units), Suma Publishers, Bangalore, India, 1986. 5. Welding Handbook, 3rd ed., American Welding Society, 1950. 6. Bureau of Indian Standards. 7. Lingaiah, K., Machine Design Data Handbook, McGraw-Hill Publishing Company, New York, 1994.
BIBLIOGRAPHY Design of Weldments, The James F. Lincoln Arc Welding Foundation, Cleveland, Ohio, 1968. Design of Welded Structures, The James F. Lincoln Arc Welding Foundation, Cleveland, Ohio, 1966. Maleev, V. L. and J. B. Hartman, Machine Design, International Textbook Company, Scranton, Pennsylvania, 1954. Procedure Handbook of Arc Welding Design and Practice, The James F. Lincoln Arc Welding Foundation, Cleveland, Ohio, 1950. Salakian, A. G., and G. E. Claussen, Stress Distribution in Fillet Welds: A Review of the Literature, Welding Journal, Vol. 16, pp. 1–24, May 1937. Shigley, J. E., Machine Design, McGraw-Hill Publishing Company, New York, 1956. Spotts, M. F., Design of Machine Elements, 5th ed., Prentice-Hall of India Private Ltd., New Delhi, 1978. Vallance, A., and V. L. Doughtie, Design of Machine Members, McGraw-Hill Publishing Company, New York, 1951.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
DESIGN OF WELDED JOINTS
12.12
CHAPTER TWELVE
TABLE 12-1 Weld-stress formulas
Source: Welding Handbook, 3rd edition, American Welding Society, 1950.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
DESIGN OF WELDED JOINTS DESIGN OF WELDED JOINTS
12.13
TABLE 12-2 Design formulas used to obtain stress in weld Standard design formula, MPa (psi)
Type of loading
Treating the weld as a line, kN/m (lbf/in)
Primary Welds (transmit entire load) Tension or compression
¼
P A
0 ¼
P Iw
Vertical shear
¼
V A
0 ¼
V Iw
Bending
b ¼
Mb Z
0 ¼
Mb Zw
Twisting
¼
Mb c J
0 ¼
Mc Jw
Secondary Welds (hold section together; low stress) Horizontal shear
¼
VAy Ih
0 ¼
VAy I
Torsional horizontal shear
¼
Mt c J
0 ¼
Mt ch J
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
DESIGN OF WELDED JOINTS
TABLE 12-3 Properties of weld—treating weld as line Outline of welded joint b = width, d = depth
Bending (about horizontal axis x–x)
Twisting
Zw ¼
d2 6
Jw ¼
d3 12
Zw ¼
d2 3
Jw ¼
dð3b2 þ d 2 Þ 6
Jw ¼
b3 þ 3bd 2 6
Jw ¼
ðb þ dÞ4 6b2 d 2 12ðb þ dÞ
Jw ¼
ð2b þ dÞ3 b2 ðb þ dÞ2 12 2b þ d
Jw ¼
ðb þ 2dÞ3 d 2 ðb þ dÞ2 12 b þ 2d
Jw ¼
ðb þ dÞ3 6
Jw ¼
ðb þ 2dÞ3 d 2 ðb þ dÞ2 12 b þ 2d
Jw ¼
d 3 ð4b þ dÞ b3 þ 6ðb þ dÞ 6
Jw ¼
b3 þ 3bd 2 þ d 3 6
Jw ¼
2b3 þ 6bd 2 þ d 3 6
Jw ¼
d 3 4
Zw ¼ bd
Zw ¼
4bd þ d 2 d 2 ð4bd þ dÞ ¼ 6 6ð2b þ dÞ top bottom
Zw ¼ bd þ
Zw ¼
2bd þ d 2 d 2 ð2b þ dÞ ¼ 3 3ðb þ dÞ top bottom
Zw ¼ bd þ
Zw ¼
Zw ¼
d2 6
d2 3
2bd þ d 2 d 2 ð2b þ dÞ ¼ 3 2ðb þ dÞ top bottom 4bd þ d 3 4bd 2 þ d 3 ¼ 3 6b þ 3d top bottom
Zw ¼ bd þ
d2 3
Zw ¼ 2bd þ
d2 3
Zw ¼
d 2 4
Zw ¼
d 2 þ D2 2
—
—
Jw ¼
b3 12
Note: Multiply the values Jw by the size of the weld w to obtain polar moment of inertia Jo of the weld.
12.14 Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
DESIGN OF WELDED JOINTS DESIGN OF WELDED JOINTS
12.15
TABLE 12-4 Types of welds and symbols
Form of weld
Sectional representation
Appropriate symbol
Fillet
Sectional representation
Form of weld
Appropriate symbol
Plug or slot
Square butt Backing strip
Single-V butt Double-V butt
Spot
Single-U butt Double-U butt
Seam
Single-bevel butt
Mashed seam
Double-bevel butt Stitch Single-J butt Mashed stitch Double-J butt Stud
Projection
Bead (edge or seal)
Flash
Sealing run
Butt resistance or Pressure (upset)
IS: 696-1960(b) Bureau of Indian Standards.
TABLE 12-5A Properties of common welding rods Melting point
Tensile strength
Rods
8F
8C
MPa
Copper-coated mild steel High-tensile low-alloy steel Cast iron Stainless steel Bronze Ever dur Aluminum White metal Low-temperature brazing rod
2750 2750 2200 2550 1600–1625 1870 1190 715 1170–1185
1510 1510 1204 1399 870–885 1019 643 379 632–640
358.5 52 427.5 62 275.5 40 551.5 80 379.0 55 344.5 50 110.5 16 358.5 52 Varies with parent metal
kpsi
Elongation in 50 mm (2 in), % 23 20 — 30 — 20 25 8
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
DESIGN OF WELDED JOINTS
TABLE 12-5 Allowable loads on mild-steel fillet welds Allowable static load per linear cm of weld Bare welding rod Normal weld
Shielding arc
Parallel weld
Normal weld
Parallel weld
Size of weld, mm
N
lbf
N
lbf
N
lbf
N
lbf
23 55 66 88 10 10 12 12 14 14 15 15 18 18 20 20
1667.1 2745.8 3285.2 4373.7 5491.7 6570.4 7659.0 8237.5 9855.6 10944.2
375 617 738.5 983 1235 1477 1722 1852 2216 2460
1323.9 2186.9 2628.2 3501.0 4079.5 5263.3 6129.1 6570.4 7884.5 8757.3
298 491 590 787 983 1182 1378 1477 1772 1968
2059.4 3432.3 4118.8 5491.7 6864.6 8237.5 9581.0 10296.9 12326.9 13680.2
462 772 926 1235 1543 1852 2154 2315 2772 3075
1667.1 2745.8 3285.2 4373.7 5491.7 6570.4 7659.0 8237.5 9855.6 10944.2
375 617 738.5 983 1235 1477 1722 1852 2216 2460
Note: For intermediate sizes interpolate the values. Source: Welding Handbook, American Welding Society, 1950.
TABLE 12-6 Design stresses for welds made with mild-steel electrodes Bare electrodes u ¼ 274.6–380.5 MPa (40–55 kpsi) Type of load Butt Welds Tension Compression Shear Fillet Welds Shear
Covered electrodes u ¼ 416.8–519.7 MPa (60–75 kpsi)
Static loads
Dynamic loads
Static loads
Dynamic loads
MPa kpsi MPa kpsi MPa kpsi
89.70 13.0 103.40 15.0 55.10 8.0
34.30 5.0 34.30 5.0 20.60 3.0
110.30 16.0 124.10 19.5 68.90 10.0
55.10 8.0 55.10 8.0 83.40 12.0
MPa kpsi
78.0 11.5
20.60 3.0
96.50 14.0
34.30 5.0
Source: Welding Handbook, American Welding Society, 1950.
TABLE 12-7 Fatigue stress-concentration factors Kf Type of weld
Stress-concentration factors, Kf
Reinforced butt weld Toe of transverse fillet weld or normal fillet weld End of parallel weld or longitudinal weld T-butt joint with sharp corners
1.2 1.5 2.7 2.0
12.16 Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
DESIGN OF WELDED JOINTS DESIGN OF WELDED JOINTS
12.17
TABLE 12-8 Strength of shielded-arc flush steel welds Limit stress Deposited metal
Type of stress Tension MPa kpsi Compression MPa kpsi Bending MPa kpsi Shear MPa kpsi Shear and tension MPa kpsi
Recommended design stress
Base metal elastic limit, e
Elastic limit, e
Endurance limit, f
Static load
Load varies from O to F
Load varies from +F to –F
220.60 32
275.80 40
151.70 22
110.30 16
100.00 14.5
55.20 8.0
241.20 35.0
303.40 44.0
— —
124.20 10.0
110.30 16.0
55.23 8.0
241.20 35
303.40 44
179.30 26
124.20 18
110.30 16
62.10 9.0
137.90 20
165.40 24
— —
75.80 11
68.90 10
34.50 5
— —
— —
— —
75.80 11
68.90 10
34.50 5
For bare electrode welds, the allowable stress must be multiplied by 0.8 and for gas welds, they should be multiplied by 0.8 to 0.85.
TABLE 12-9 Length and spacing of intermittent welds R, % of continuous weld 75 66 60 57 50 44 43 40 37 33 30 25 20 16
Length of intermittent welds and distance between centers, mm 75–100a 100–150 75–125 50–100
75–150
100–175 100–200 100–225
75–175 50–125 50–160 50–200 50–250 50–300
100–250 75–200 75–225 75–250 75–300
100–300
a
75–100 means a weld 75 mm long with a distance of 100 mm between the centers of two consecutive welds. R in % ¼
calculated leg size (continuous) actual leg size used (intermittent)
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
DESIGN OF WELDED JOINTS
12.18
CHAPTER TWELVE
TABLE 12-10 Fatigue data on butt weld joints (average strength values) Endurance strength, f Base metal Material and joint Carbon steel With bead, or welded With bead, tempered 923 K (6508C) Bead machined off Bead machined off, tempered 923 K (6508C) Alloy steel As welded Stress-relieved
a
MPa kpsi MPa kpsi MPa kpsi MPa kpsi MPa kpsi MPa kpsi MPa kpsi MPa kpsi
u
y
423 61.3
235 34.0
745.6 108
K ¼ 1 a
K ¼ 0a
K ¼ 0:5 a
No. of cycles 2 106
100.0 14.5 98.0 14 121.6 17.5
152.0 22.0 148.0 21.5 198.0 28.5
155.9 22.5 160.8 23 198.0 28.5
227.5 33 214.7 31 335.3 48.5
253.0 37 264.7 38 304.0 44
114.7 16.5
193.1 28
132.3 19
340.2 49.3
292.2 42.4
400.1 58 456.0 66
539.3 78 593.2 86
368.7 53.5 379.5 55
672.0 97.5
K ¼ þ1 steady; K ¼ 1 complete reversal; K ¼ 0 repeated; K ¼ 12 fluctuating; K ¼
min stress . max stress
Source: Design of Weldments, The James F. Lincoln Arc Welding Foundation, Cleveland, Ohio, 1968.
TABLE 12-11 Stresses as per the AISC Code for weld metal Load type
Weld type
Tension Compression Shear Bending Bending
Butt Butt Butt or fillet Butt Butt
TABLE 12-12 Properties of weld metal
Allowable stress, a 0.60 y 0.60 y 0.40 y 0.90 y 0.60 y –0.66 y
Tensile strength
Yield strength
AWS electrode numbera
Elongation %
MPa
kpsi
MPa
kpsi
E E E E E E
17–25 22 19 14–17 13–16 14
427 483 550 620 690 828
62 70 80 90 100 120
345 393 462 530 600 738
50 57 67 77 87 107
60xx 70xx 80xx 90xx 100xx 120xx
a The American Welding Society (AWS) Specification Code numbering system for electrodes.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
DESIGN OF WELDED JOINTS DESIGN OF WELDED JOINTS
12.19
TABLE 12-13 Selection of fillet weld sizes by rule-of-thumb (all dimensions in mm) Designing for rigidity Plate thickness, h mm
Designing for strength, full-strength weld (w ¼ 3=4h)
50% of full-strength weld (w ¼ 3=8h)
33% of full-strength weld (w ¼ 1=4h)
6 8 9.5 11 12.5 14 15.5 19 22 25 28.5 31.5 35 37.5 41 44 50 54 57 60 62.5 66.5 70 75
4.5 6 8 9.5 9.5 11 12.5 14 15.5 19 22 25 25 28.5 31.5 35 37.5 41 44 44 47.5 50 50 56
4.5 4.5 4.5 4.5 4.5 6 6 8 9.5 9.5 11 12.5 12.5 14 15.5 19 19 22 22 25 25 25 25 28.5
4.5 4.5 4.5 4.5 4.5 6 6 6 8 8 8 8 9.5 9.5 11 11 12.5 14 14 15.5 15.5 19 19 19
Source: Welding Handbook, 3rd edition, American Welding Society, 1950.
TABLE 12-14 Equivalent length of fillet weld to replace rivets
Rivet diameter, mm 12.5 15.5 19 22 25 a
Length of fillet weldsa ‘‘Fusion Code’’ (structural) shielded arc welding, mm
Rivet shear value at 100 MPa (10.2 kgf/mm2 ) MPa
kgf/mm2
6-mm fillet
8-mm fillet
9.5-mm fillet
12.5-mm fillet
15.5-mm fillet
20.0 31.5 45.5 61.0 81.2
2.07 3.23 4.66 6.34 8.28
37.5 56 75 105 133
31.5 44.0 61.5 85.5 108.0
28.5 37.5 54 73 92
22 31.5 41 54 70
19 25 35 44 56
6 mm is added to calculated length of bead for starting and stopping the arc.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
DESIGN OF WELDED JOINTS
12.20
CHAPTER TWELVE
TABLE 12-15 Stress concentration factor, K Stress concentration factor, K Weld type and metal Weld metal Butt welds with full penetration End fillet welds Parallel fillet welds Base metal Toe of machined butt weld Toe of unmachined butt weld Toe of machined end fillet weld with leg ratio 1 : 1.5 Toe of unmachined end fillet weld with leg ratio 1 : 1.5 Parallel fillet weld Stiffening ribs and partitions welded with end fillet welds having smooth transitions at the toes Butt and T-welded corner plates Butt and T-welded corner plates, but with smooth transitions in the shape of the plates and with machined welds Lap-welded corner plates
Low-carbon steel
Low-alloy steel
1.2 2 3.5
1.4 2.5 4.5
1.2 1.5 2 2.7 3.5
1.4 1.9 2.5 3.3 4.5
1.5 2.7 1.5
1.9 3.3 1.9
2.7
3.3
TABLE 12-16 Allowable stresses for welds under static loads Allowable stresses
Weld type and process
Tension, ta
Compression, ca
Shear, a
Automatic and hand welding with shielded arc and butt welding Hand welding with ordinary quality electrodes Resistance spot welding
t a 0.9t 0.9t
t t t
0.65t 0.6t 0.5t
a
t is the allowable stress in tension of the base metal of the weld.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
Source: MACHINE DESIGN DATABOOK
CHAPTER
13 RIVETED JOINTS SYMBOLS2;3;4 A b c d Di e or l F h hc , h1 , h2 i I J K¼ m Mb p pc pd pt Pf Z a c a
F F0
area of cross-section, m2 (in2 ) the cross-sectional area of rivet shank, m2 (in2 ) breadth of cover plates (also with suffixes), m (in) distance from the centroid of the rivet group to the critical rivet, m (in) diameter of rivet, m (in) internal diameter of pressure vessel, m (mm) eccentricity of loading, m (in) force on plate or rivets (also with suffixes), kN (lbf) thickness of plate or shell, m (in) thickness of cover plate (butt strap), m (in) number of rivets in a pitch fine (also with suffixes 1 and 2, respectively, for single shear and double shear rivets) moment of inertia, area, m4 , cm4 (in4 ) moment of inertia, polar, m4 , cm4 (in4 ) coefficient (Table 13-11) margin, m (in) bending moment, N m (lbf in) pitch on the gauge line or longitudinal pitch, m (in) pitch along the caulking edge, m (in) diagonal pitch, m (in) transverse pitch, m (in) intensity of fluid pressure, MPa (psi) section modulus of the angle section, m3 , cm3 (in3 ) hoop stress in pressure vessel or normal stress in plate, MPa (psi) allowable normal stress, MPa (psi) crushing stress in rivets, MPa (psi) shear stress in rivet, MPa (psi) allowable shear stress, MPa (psi) efficiency of the riveted joint angle between a line drawn from the centroid of the rivet group to the critical rivet and the horizontal (Fig. 13-5)
13.1 Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
RIVETED JOINTS
13.2
CHAPTER THIRTEEN
Particular
Formula
PRESSURE VESSELS Thickness of main plates The thickness of plate of the pressure vessel with longitudinal joint
h¼
P f Di 2
ð13-1Þ
For thickness of boiler plates and suggested types of joints
Refer to Tables 13-1 and 13-2.
The thickness of plate of the pressure vessel with circumferential joint
h¼
For allowable stress and efficiency of joints
Refer to Tables 13-3, 13-4, 13-5, and 13-6.
P f Di 4
ð13-2Þ
PITCHES Lap joints The diagonal pitch (staggered) (Fig. 13-1) for p, pt , and pd
The distance between rows or transverse pitch or back pitch (staggered)
The rivet diameter
pd ¼
2p þ d 3
ð13-3Þ
Refer to Tables 13-7 and 13-8 for rivets for general purposes and boiler rivets. sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2 2p þ d 2 p ð13-4Þ pt ¼ 3 2 pffiffiffi pffiffiffi d ¼ 0:19 h to 0:2 h
SI
ð13-5aÞ
where h and d in m pffiffiffi pffiffiffi d ¼ 1:2 h to 1:4 h
USCS
ð13-5bÞ
where h and d in in pffiffiffi pffiffiffi d ¼ 6 h to 6:3 h
CM ð13-5cÞ
where h and d on mm FIGURE 13-1 Pitch relation
TABLE 13-1 Suggested types of joint Diameter of shell, mm (in) Thickness of shell, mm (in)
Type of joint
600–1800 (24–72) 900–2150 (36–84) 1500–2750 (60–108)
Double-riveted Triple-riveted Quadruple-riveted
6–12 (0.25–0.5) 7.5–25 (0.31–1.0) 9.0–44 (0.375–1.75)
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
RIVETED JOINTS RIVETED JOINTS
13.3
TABLE 13-2 Minimum thickness of boiler plates Shell plates
Tube sheets of firetube boilers
Diameter of shell, mm (in)
Minimum thickness after flanging, mm (in)
Diameter of tube sheet, mm (in)
Minimum thickness, mm (in)
900 (36) 900–1350 (36–54) 1350–1800 (54–72) 1800 (72)
6.0 (0.25) 8.0 (0.3125) 9.5 (0.375) 12.5 (0.5)
1050 (42) 1050–1350 (42–54) 1350–1800 (54–72) 1800 (72)
9.5 (0.375) 11.5 (0.4375) 12.5 (0.50) 14.0 (0.5625)
TABLE 13-3 Efficiency of riveted joints () % Efficiency,
Type of joint Lap joints Single-riveted Double-riveted Triple-riveted Butt joints (with two cover plates) Single-riveted Double-riveted Triple-riveted Quadruple-riveted
Normal range
Maximum
50–60 60–72 72–80
63 77 86.6
55–60 76–84 80–88 86–94
63 87 95 98
TABLE 13-4 Allowable stresses in structural riveting (b ) Rivets acting in single shear
Rivets acting in double shear
Load-carrying member
Type of stress
Rivet-driving method
Rolled steel SAE 1020
Tension Shear
Power
124 93
18.0 13.5
124 93
18.0 13.5
Shear Crushing Crushing
Hand Power Hand
68 165 110
10.0 24.0 16.0
68 206 137
10.0 30.0 20.0
Rivets, SAE 1010
MPa
kpsi
MPa
kpsi
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
RIVETED JOINTS
13.4
CHAPTER THIRTEEN
TABLE 13-5 Allowable stress for aluminum rivets, a Allowable stressa , a Shear
Bearing
Rivet alloy
Procedure of drawing
MPa
kpsi
MPa
kpsi
2S (pure aluminum) 17S 17S 615–T6 53S
Cold, as received Cold, immediately after quenching Hot, 500–5108C Cold, as received Hot, 515–5278C
20 68 62 55 41
3.0 10.0 9.0 8.0 6.0
48 179 179 103 103
7.0 26.0 26.0 15.0 15.0
a
Actual safety factor or reliability factor is 1.5.
TABLE 13-6 Values of working stressa at elevated temperatures Minimum of the specified range of tensile strength of the material, MPa (kpsi) Maximum temperatures
(45)
311
(50)
344
(55)
380
(60)
413
(75)
517
8F
8C
MPa
kpsi
MPa
kpsi
MPa
kpsi
MPa
kpsi
MPa
kpsi
0–700 750 800 850 900 950
0–371 399 427 455 482 511
61 56 45 37 29 22
9.0 8.22 6.55 5.44 4.33 3.20
68 62 53 41 33 26
10.0 9.11 7.33 6.05 4.83 3.60
76 68 54 46 37 27
11.00 10.00 8.00 6.75 5.50 4.00
82 77 61 51 38 27
12.00 11.20 9.00 7.40 5.60 4.00
103 89 70 57 41 27
15.00 13.00 10.20 8.30 6.00 4.00
a
Design stresses of pressure vessels are based on a safety factor of 5.
TABLE 13-7 Pitch of butt joints Type of joint
Diameter of rivets, d, mm
Pitch, p
Double-riveted— use for h 12:5 mm (0.5 in) Triple-riveted— use for h 25 mm (1 in) Quadruple-riveted— use for h 31:75 mm (1.25 in)
Any
5.5d (approx.)
1.75–23.80 27.00 30.15–36.50 17.50–23.80 27.00 30.15 33.30–36.50
8d–8.5d 7.5d 6.5d–7d 16d–17d 15d (approx.) 14d (approx.) 13d–14d
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
RIVETED JOINTS RIVETED JOINTS
13.5
TABLE 13-8 Transverse pitch ( pt ) as per ASME Boiler Code Value of p=d
1
2
3
4
5
6
7
Value of pt
2d
2d
2d
2d
2d
2.2d
2.3d
Particular
Formula
Butt joint pt ¼ 2d to 2:5d qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi pt 0:5pd þ 0:25d 2
The transverse pitch
ð13-6aÞ ð13-6bÞ
For rivets, rivet holes, and strap thick
Refer to Tables 13-9, 13-10, and Fig. 13-2.
TABLE 13-9 Rivet hole diameters
TABLE 13-10 Rivet hole diameters and strap thickness
Diameter of rivet, mm 12 14 16 18 20 22 24 27 30 33 36 39 42 48
Rivet hole diameters, mm (min) 13 15 17 19 21 23 25 28.5 31.5 34.5 37.5 41.0 44 50
Plate thickness, h, mm
6.25 7.20 8.00 8.75 9.50 10.30 11.10 12.00 12.50 13.50
Minimum strap thickness, hc mm
6.25
Hole Plate diameter, thickness, d, mm h, mm
8.00
11.10
14.25
11.10
15.90 19.00
12.50
22.25
15.90
25.00 28.50 31.75 83.10
12.50 19.00 22.25 25.00
17.50 20.50
9.50
Minimum strap thickness, hc mm
24.00
Hole diameter, d, mm
27.0 30.15
FIGURE 13-2 Quadruple-riveted double-strap butt joint.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
33.30
36.50 39.70
RIVETED JOINTS
13.6
CHAPTER THIRTEEN
Particular
Minimum transverse pitch as per ASME Boiler Code
Formula
pt ¼ 1:75d
if
p 4 d
pt ¼ 1:75d þ 0:001ð p dÞ
ð13-7aÞ p if > 4 d
SI
ð13-8aÞ
USCS
ð13-8bÞ
where pt , p, and d in m pt ¼ 1:75d þ 0:1ð p dÞ if
p >4 d
where pt , d, and p in in For transverse pitches Haven and Swett formula for permissible pitches along the caulking edge of the outside cover plate
Refer to Table 13-8. sffiffiffiffiffiffi 3 4 hc pc d ¼ 14 Pf
CM ð13-9aÞ
where pc , d, hc in cm, and Pf in kgf/cm2 sffiffiffiffiffiffi 3 4 hc pc d ¼ 21:38 USCS Pf where pc , d, hc in in, and Pf in psi sffiffiffiffiffiffi 3 4 hc pc d ¼ 77:8 Pf
SI
ð13-9bÞ
ð13-9cÞ
where pc , d, hc in m, and Pf in N/m2 Diagonal pitch, pd , is calculated from the relation
2ð pd dÞ ð p dÞ
ð13-10Þ
MARGIN Margin for longitudinal seams of all pressure vessels and girth seams of power boiler having unsupported heads
m ¼ 1:5d to 1:75d
ð13-11aÞ
Margin for girth seams of power boilers having supported heads and all unfired pressure vessels
m 1:25d
ð13-11bÞ
COVER PLATES The thickness of cover plate
hc ¼ 0:6h þ 0:0025 if h 0:038 m
SI
ð13-12aÞ
USCS
ð13-12bÞ
SI
ð13-12cÞ
USCS
ð13-12dÞ
where hc and h in m hc ¼ 0:6h þ 0:1 if h 1:5 in where hc and h in in hc ¼ 0:67h
if h > 0:038 m
where hc and h in m hc ¼ 0:67h
if h > 1:5 in
where hc and h in in
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
RIVETED JOINTS RIVETED JOINTS
13.7
TABLE 13-11 Rivet groups under eccentric loading value of coefficient K
}
K¼
1 lp 1 þ p21 þ p2 4
K¼
n sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi Alcn Alcn 2 þ þ1 2I 2I
n K ¼ sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2 6l þ1 ðn þ 1Þpt
n K ¼ sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ffi 2 lðn 1Þpt lp 1 2 þ 2 1 2 þ p þ 3 ðn 1Þp2t 2 p2 þ 13 ðn2 1Þp2t
n K ¼ sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ffi 2 lðn 1Þpt lp 1 2 þ 2 1 2 þ p þ 3 ðn 1Þp2t 3 p2 þ 12 ðn 1Þp2t
n K ¼ sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ffi 2 lðn 1Þpt lp 1 2 þ þ p21 þ p2 þ 23 ðn2 1Þp2t 4 p21 þ p2 þ 23 ðn2 1Þp2t
Key: n ¼ total number of rivets in a column F ¼ permissible load, acting with lever arm, l, kN (lbf) F 0 ¼ permissible load on one rivet, kN (lbf) K ¼ F=F 0 , coefficient Source: K. Lingaiah and B. R. Narayana Iyengar, Machine Design Data Handbook ( fps Units), Engineering College Cooperative Society, Bangalore, India, 1962; K. Lingaiah and B. R. Narayana Iyengar, Machine Design Data Handbook, Vol. I (SI and Customary Metric Units), Suma Publishers, Bangalore, India, 1983; and K. Lingaiah, Machine Design Data Handbook, Vol. II (SI and Customary Metric Units), Suma Publishers, Bangalore, India, 1986.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
RIVETED JOINTS
13.8
CHAPTER THIRTEEN
Particular
Formula
Thickness of the cover plate according to Indian Boiler Code Thickness of single-butt cover plate
h1 ¼ 1:125h
Thickness of single-butt cover plate omitting alternate rivet in the over rows
h2 ¼ 1:25h
Thickness of double-butt cover plates of equal width
hc ¼ h1 ¼ h2 ¼ 0:625h
Thickness of double-butt cover plates of equal width omitting alternate rivet in the outer rows
hc ¼ h1 ¼ h2 ¼ 0:625h
Thickness of the double-butt cover plates of unequal width
ð13-13Þ
pd p 2d
ð13-14Þ ð13-15Þ pd p 2d
ð13-16Þ
h1 ¼ 0:625h for narrow strap
ð13-17aÞ
h2 ¼ 0:750h for wide strap
ð13-17bÞ
For thickness of cover plates
Refer to Table 13-10.
The width of upper cover plate (narrow strap)
b1 ¼ 4m þ 2pt1
ð13-18Þ
The width of lower cover plate (wide strap)
b2 ¼ b1 þ 2pt2 þ 4m
ð13-19Þ
The tensile strength of the solid plate
F ¼ ph
ð13-20Þ
The tensile strength of the perforated strip along the outer gauge line
F ¼ ð p dÞh
ð13-21Þ
STRENGTH ANALYSIS OF TYPICAL RIVETED JOINT (Fig. 13-2)
The general expression for the resistance to shear of all the rivets in one pitch length
F ¼ ð2i2 þ i1 Þ
The general expression for the resistance to crushing of the rivets
Fc ¼ ði2 h þ i1 h2 Þdc
The resistance against failure of the plate through the second row and simultaneous shearing of the rivets in the first row
F1 ¼ ð p 2dÞh þ
d 2 4
ð13-22Þ ð13-23Þ d 2 4
ð13-24Þ
The resistance against failure of the plate through the second row and simultaneous crushing of the rivets in the first row
Fc1 þ ð p 2dÞh þ dhc
ð13-25Þ
The resistance against shearing of the rivets in the outer row and simultaneous crushing of the rivets in the two inner rows
Fc ¼
2 d þ idhc 4
ð13-26Þ
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
RIVETED JOINTS RIVETED JOINTS
Particular
13.9
Formula
EFFICIENCY OF THE RIVETED JOINT The efficiency of plate The efficiency of rivet in general case
For efficiency of joints The diameter of the rivet in general case
¼
pd p
d 2 ði1 þ 2i2 Þ 4ph h i 2 þ i 1 2 c h ¼ h2 c þ i2 þ i1 h
ð13-27Þ
¼
ð13-28Þ
Refer to Table 13-3. d¼
4hi2 þ i1 h2 c ði1 þ 2i2 Þ
ð13-29Þ
Note: for lap joint i2 ¼ 0 for butt joint i1 ¼ 0 ð2i2 þ i1 Þd 2 þd 4h
The pitch in general case
p¼
For pitch of joint
Refer to Table 13-7.
THE LENGTH OF THE SHANK OF RIVET (Fig. 13-3)
ð13-30Þ
L ¼ h þ h1 þ h2 þ ð1:5 to 1:7ÞD
ð13-31aÞ
L ¼ h þ hc þ ð1:5 to 1:7ÞD
ð13-31bÞ
for butt joint with single cover plate L ¼ 2h þ ð1:5 to 1:7ÞD for lap joint where D ¼ diameter of rivet
FIGURE 13-3
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð13-31cÞ
RIVETED JOINTS
13.10
CHAPTER THIRTEEN
Particular
Formula
STRUCTURAL JOINT Riveting of an angle to a gusset plate (Fig. 13-4) The resultant normal stress
p
g
a
¼
F
e
i
F Fe þ A Z
a
ð13-32Þ
F
F g
e
(a)
(b)
FIGURE 13-4 Riveting of an angle to a gusset plate.
RIVETED BRACKET (Fig. 13-5) The resultant load on the farthest rivet whose distance is c from the center of gravity of a group of rivets (Fig. 13-5)
" FR ¼
F nn0
2 þ
P
Mb c P x2 þ y2
2
#1=2 F Mb c P P þ2 cos nn0 x2 þ y2
FIGURE 13-5 Riveted bracket. (Bureau of Indian Standards.)
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð13-33Þ
RIVETED JOINTS RIVETED JOINTS
Particular
13.11
Formula
where n ¼ number of rivets in one column n0 ¼ number of rivets in one row x, y have the meaning as shown in Fig. 13-5 For rivet groups under eccentric loading value of coefficient K
Refer to Table 13-11.
For preferred length and diameter of rivets
Refer to Figs. 13-6 to 13-8 and Tables 13-12 to 13-13.
For collected formulas of riveted joints
Refer to Table 13-14.
REFERENCES 1. Maleev, V. L., and J. B. Hartmen, Machine Design, International Textbook Company, Scranton, Pennsylvania, 1954. 2. Lingaiah, K., and B. R. Narayana Iyengar, Machine Design Data Handbook ( fps Units), Engineering College Cooperative Society, Bangalore, India, 1962. 3. Lingaiah, K., and B. R. Narayana Iyengar, Machine Design Data Handbook, Vol. I (SI and Customary Metric Units), Suma Publishers, Bangalore, India, 1983. 4. Lingaiah, K., Machine Design Data Handbook, Vol. II (SI and Customary Metric Units), Suma Publishers, Bangalore, India, 1986. 5. Bureau of Indian Standards. 6. Lingaiah, K., Machine Design Data Handbook, McGraw-Hill Publishing Company, New York, 1994.
BIBLIOGRAPHY Faires, V. M., Design of Machine Elements, The Macmillan Company, New York, 1965. Norman, C. A., E. S. Ault, and I. F. Zarobsky, Fundamentals of Machine Design, The Macmillan Company, New York, 1951. Vallance, A., and V. L. Doughtie, Design of Machine Members, McGraw-Hill Publishing Company, New York, 1951.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
RIVETED JOINTS
13.12
CHAPTER THIRTEEN
FIGURE 13-6 Rivets for general purposes (less than 12 mm diameter). For preferred length and diameter combination, refer to Table 13-12.
FIGURE 13-7 Rivets for general purposes (12 to 48 mm diameter). For preferred length and diameter combination, refer to Table 13-13.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
RIVETED JOINTS RIVETED JOINTS
13.13
FIGURE 13-8 Boiler rivets (12 to 48 mm diameter). For preferred length and diameter combination, refer to Table 13-13.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
RIVETED JOINTS
13.14
CHAPTER THIRTEEN
TABLE 13-12 Preferred length () and diameter combinations for rivets (Fig. 13-6) Diameter, mm Length, mm
1.6
2
2.5
3
4
5
6
8
10
5 6 7 8 9 10 12 14 16 18 20 22 24 26 28 30 35 40 45 50 55 60 65 70
— — — — — — — — — — — — — — — — — —
— — — — — — — — — — — — — — — — — —
— — — — — — — — — — — — — — — —
— — — — — — — —
— — — — — — — —
— — — — — — — — — —
— — — — — — — — —
— — — — — — —
— — — — — — — — —
Source: Bureau of Indian Standards, IS: 2155, 1962.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
RIVETED JOINTS RIVETED JOINTS
13.15
TABLE 13-13 Preferred lengths () and diameter combinations of rivets (Fig. 13-7) Diameter, mm Length, mm
12
14
16
18
20
22
24
27
30
33
36
39
42
48
28 31.5 35.5 40 45 50 56 63 71 80 85 90 95 100 106 112 118 125 132 140 150 160 180 200 224 250
— — — — — — — — — — — — — — — —
— — — — — — — — — — — — — —
— — — — — — — — — — — —
— — — — — — — — — — — —
— — — — — — — — — — — —
— — — — — — — — — — —
— — — — — — — — — —
— — — — — — — — — —
— — — — — — — — — —
— — — — — — — — — — —
— — — — — — — — — — — — —
— — — — — — — — — — — — — — —
— — — — — — — — — — — — — — — —
— — — — — — — — — — — — — — — — —
Source: Bureau of Indian Standards, IS: 1929, 1961.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
Three rivets per pitch Type d
m
h m
pd p
2 d 3 ph 4
2 d 2 ph 4
pd p
ph
2 d 2 ph 4
Type c
Combined efficiency, c LAP JOINT
pd p
d 4
2
Two rivets per pitch Type b
Efficiency of rivets, r
pd p
Figure
Efficiency of plate, p
One rivet per pitch, Type a
Type of joint
TABLE 13-14 Formulas for riveted joints2;3;4
3:47h þ 40
2:62h þ 40
2:62h þ 40
1:13h þ 40
Longitudinal pitch, p, mm
2d
0:33p þ 0:67d
2d
Transverse pitch, pt , mm
1:5d
1:5d
1.5d
1:5d
Margin, Inner h2 m, mm (wider)
Outer, h1 (narrower)
Thickness of cover plate, mm
RIVETED JOINTS
13.16
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
Type g
Four rivets per pitch Type f
Type e
Type of joint
h
Figure
TABLE 13-14 Formulas for riveted joints2;3;4 (Cont.)
pd p
pd p
2 p 2d d 4:14h þ 40 4 p ph 4 2 d þ ph 4
0.2p+1.15d
0:33p þ 0:67d or 2d (whichever is greater)
Transverse pitch, pt , mm
2 p 2d d 4:14h þ 40 4 p ph 4 2 d þ ph 4
Longitudinal pitch, p, mm 0:33p þ 0:67d
2 d 3 ph 4
pd p
Combined efficiency, c 3:47h þ 40
Efficiency of rivets, r
Efficiency of plate, p
1:5d
1:5d
1:5d
Margin, Inner h2 m, mm (wider)
Outer, h1 (narrower)
Thickness of cover plate, mm
RIVETED JOINTS
13.17
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
Three rivets per pitch Type d
Type c
Two rivets per pitch Type b
Single butt strap One rivet per pitch Type a
Type of joint
Figure
TABLE 13-14 Formulas for riveted joints2;3;4 (Cont.)
2 d 3 ph 4
pd p
ph
2 d 2 ph 4
pd p
d 2 4
Combined efficiency, c
3:06h þ 40
3:06h þ 40
1:53h þ 40
Longitudinal pitch, p, mm
p 2d 4:05h þ 40 p 2 d þ ph 4
BUTT JOINT
2 d 2 ph 4
Efficiency of rivets, r
pd p
pd p
Efficiency of plate, p
0:33p þ 0:67d or 2d (whichever is greater)
0:33p þ 0:67d
2d
Transverse pitch, pt , mm
1:5d
1:5d
1:5d
1:5d
Margin, m, mm
Inner h2 (wider)
1:125h
1:125d
1:125h
1:125h
pd p 2d
Outer, h1 (narrower)
Thickness of cover plate, mm
RIVETED JOINTS
13.18
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
Type h
Two rivets per pitch Type g
Double-butt strap (equal widths) One rivet per pitch Type f
Two rivets per pitch Type e
Type of joint
Figure
TABLE 13-14 Formulas for riveted joints2;3;4 (Cont.)
pd p
pd p
2 d 3:75 4 ph
2 d 3:75 4 ph
2 d 1:875 4 ph
2 d 3 ph 4
pd p
pd p
Efficiency of rivets, r
Efficiency of plate, p Longitudinal pitch, p, mm
3:5h þ 40
3:5h þ 40
1:75h þ 40
p 2d 4:05h þ 40 p 2 d þ ph 4
Combined efficiency, c
0:33p þ 0:67d
2d
0:2p þ 1:15d
Transverse pitch, pt , mm
1:5d
1:5d
1:5d
1:5d
Margin, m, mm
0:625h
0:625h
0:625h
Inner h2 (wider)
0:625h
0:625h
0:625h
1:125h
pd p 2d
Outer, h1 (narrower)
Thickness of cover plate, mm
RIVETED JOINTS
13.19
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
Type l
Type k
Type j
Three rivets per pitch Type i
Type of joint
Figure
TABLE 13-14 Formulas for riveted joints2;3;4 (Cont.)
pd p
pd p
pd p
pd p
Efficiency of plate, p
2 d 5:625 4 ph
2 d 5:625 4 ph
2 d 5:625 4 ph
2 d 5:625 4 ph
Efficiency of rivets, r Longitudinal pitch, p, mm
4:63h þ 40
4:63h þ 40
4:63h þ 40
p 2d 4:63h þ 40 þ 1:875 p 2 d ph 4
Combined efficiency, c
0:33p þ 0:67d
0:2p þ 1:15d
2d
0:33p þ 0:67d or 2d (whichever is greater)
Transverse pitch, pt , mm
1:5d
1:5d
1:5d
1:5d
Margin, m, mm
pd p 2d
pd p 2d
0:625h
pd p 2d
0:625h
0:625h
0:625h
0:625h
pd p 2d
0:625h
Outer, h1 (narrower)
0:625h
0:615h
Inner h2 (wider)
Thickness of cover plate, mm
RIVETED JOINTS
13.20
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
Type p
Double butt (unequal widths) Two rivets per pitch Type o
Type n
Four rivets per pitch Type m
Type of joint
Figure
TABLE 13-14 Formulas for riveted joints2;3;4 (Cont.)
pd p
pd p
pd p
pd p
Efficiency of plate, p
p 2d þ 1:875 d 2 d ph 4
2 d 7:5 4 ph
2 d 2:875 4 ph
2 d 2:875 4 ph
p 2d þ 1:875 d 2 d ph 4
Combined efficiency, c
2 d 7:5 4 ph
Efficiency of rivets, r
3:5h þ 40
3:5h þ 40
5:52h þ 40
5:52h þ 40
Longitudinal pitch, p, mm
2d
0:33p þ 0:67d
0:2p þ 1:15d
0:33p þ 0:67d or 2d (whichever is greater)
Transverse pitch, pt , mm
1:5d
1:5d
1:5d
1:5d
0:75h
0:75h
0:625h
0:625h
Margin, Inner h2 m, mm (wider)
0:625h
0:625h
0:625h
0:625h
Outer, h1 (narrower)
Thickness of cover plate, mm
RIVETED JOINTS
13.21
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
Type s
Type r
Three rivets per pitch Type q
Type of joint
Figure
TABLE 13-14 Formulas for riveted joints2;3;4 (Cont.)
pd p
pd p
pd p
Efficiency of plate, p
2 d 4:75 4 ph
2 d 4:75 4 ph
2 d 4:75 4 ph
Efficiency of rivets, r
p 2d d 2 d þ ph 4
p 2d d 2 d þ ph 4
Combined efficiency, c
4:63h þ 40
4:63h þ 40
4:63h þ 40
Longitudinal pitch, p, mm
0:2p þ 1:15d
2d
0:33p þ 0:67d or 2d (whichever is greater)
Transverse pitch, pt , mm
1:5d
1:5d
1:5d
0:75h
0:75h
0:75h
Margin, Inner h2 m, mm (wider)
0:625h
0:625h
0:625h
Outer, h1 (narrower)
Thickness of cover plate, mm
RIVETED JOINTS
13.22
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
Particular
Figure
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website. pd p
Efficiency of plate, p
Formula
Combined efficiency, c 4:63h þ 40
Longitudinal pitch, p, mm
pffiffiffi pffiffiffi ¼ 1:2 h to 1:4 h where d and h in m
Pf Di 2 pffiffiffi pffiffiffi d ¼ 0:19 h to 0:2 h where d and h in m h¼
2 d 4:75 4 ph
Efficiency of rivets, r 0:33p þ 0:67d
Transverse pitch, pt , mm 1:5d
0:75h
0:625h
Outer, h1 (narrower)
USCS
SI
Margin, Inner h2 m, mm (wider)
Thickness of cover plate, mm
Key: d ¼ diameter of rivet, m (in); h ¼ thickness of main plate, m (in); ¼ hoop stress, MPa (psi); Di ¼ inside diameter of pressure vessel, m (in); Pf ¼ internal fluid pressure, MPa (psi); ¼ efficiency of the riveted joint. Source: K. Lingaiah and B. R. Narayana Iyengar, Machine Design Data Handbook, Engineering College Cooperative Society, Bangalore, India, 1983; and K. Lingaiah, Machine Design Data Handbook, Vol. II (SI and Customary Metric Units), Suma Publishers, Bangalore, India, 1986.
Unwin’s formula for diameter of rivet
Common Formula: The thickness of the main plate of a longitudinal joint
Type t
Type of joint
TABLE 13-14 Formulas for riveted joints (Cont.)
RIVETED JOINTS
13.23
Source: MACHINE DESIGN DATABOOK
CHAPTER
14 DESIGN OF SHAFTS SYMBOLS1;2;3 width of keyway, m (in) machine cost, $/m ($/in) (US dollars) diameter of shaft (also with subscripts), m (in) inside diameter of hollow shaft, m (in) outside diameter of hollow shaft, m (in) modulus of elasticity, GPa (Mpsi) axial load (tensile or compressive), kN (lbf) the static equivalent of cyclic load, (¼ Fm Fa ), kN (lbf) modulus of rigidity, GPa (Mpsi) depth of keyway, m (in) radius of gyration, m (in) material cost (also with subscripts), $/kg
b c D Di Do E F Fm0 G h k K¼ Kb Kt l Mb Mt 0 Mbm 0 Mtm
P n n0
Di Do
ratio of inner to outer diameter of hollow shaft numerical combined shock and fatigue factor to be applied to computed bending moment numerical combined shock and fatigue factor to be applied to computed twisting moment length, m (in) bending moment, N m (lbf in) twisting moment, N m (lbf in) static equivalent of cyclic bending moment Mbm Mba , N m (lbf in) static equivalent of cyclic twisting moment Mtm Mta , N m (lbf in) power, kW (hp) speed, rpm; safety factor speed, rps specific weight of material, kN/m3 (lbf/in) stress (tensile or compressive) also with subscripts, MPa (psi) shear stress (also with subscripts), MPa (psi) ratio of maximum intensity of stress to the average value from compressive stress only angular deflection, deg
14.1 Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
DESIGN OF SHAFTS
14.2
CHAPTER FOURTEEN
SUFFIXES a b d e h m sc t u y max min f
amplitude bending design elastic limit hollow mean static strength (su or sy ), solid twisting ultimate yield strength maximum minimum endurance
Other factors in performance or in special aspect are included from time to time in this chapter and, being applicable in their immediate context, are not given at this stage. Note: and with the initial subscript s designates strength properties of material used in the design which will be used and observed throughout this handbook. In some books on machine design and in this Machine Design Data Handbook the ratios of design stresses sd =fd and sd =fd ; and design stresses yd , yd 0 , fd , and fd have been used instead of sy =sf , sy =sf ; and yield strengths sy , sy and fatigue strengths, sf , sf in the design equations for shafts [Eqs. (14-1) to (14-65)]. This has to be taken into consideration in the design of shafts while using Eqs. (14-1) to (14-65).
Particular
Formula
SOLID SHAFTS (1) Stationary shafts with static loads The diameter of shaft subjected to simple torsion
The diameter of shaft subjected to simple bending
D¼ D¼
16Mt yd 32Mb yd
1=3 ð14-1Þ 1=3 ð14-2Þ
The diameter of shaft subjected to combined torsion and bending: (a) According to maximum normal stress theory
(b) According to maximum shear stress theory
D¼
16 fMb þ ðMb2 þ Mt2 Þ1=2 g yd
D¼
16 ðMb2 þ Mt2 Þ1=2 yd
(
(c) According to maximum shear energy theory D¼
16 yd
1=3 ð14-3Þ
1=3
)1=3 3 2 1=2 2 Mb þ Mt 4
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð14-4Þ
ð14-5Þ
DESIGN OF SHAFTS
14.3
DESIGN OF SHAFTS
Particular
Formula
The diameter of shaft subjected to axial load, bending, and torsion:13 "
(a) According to maximum normal theory D¼
(
16 yd
FD Mb þ 8
(
Mb þ
þ
FD 8
2
)1=2 )#1=3 þ Mt2 2
(b) According to maximum shear stress theory
(
FD Mb þ 8
16 D¼4 yd (c) According to maximum shear energy theory
ð14-6Þ
2
(
FD Mb þ 8
16 D¼4 yd
2
)1=2 31=3 5 þ M2
ð14-7Þ
t
2
3 þ Mt2 4
)1=2 31=3 5
ð14-8Þ
(2) Rotating shafts with dynamic loads, taking dynamic effect indirectly into consideration13 For empirical shafting formulas The diameter of shaft subjected to simple torsion
The diameter of shaft subjected to simple bending
Refer to Table 14-1. 1=3 16 ðKt Mt Þ D¼ yd D¼
32 ðK M Þ yd b b
ð14-9Þ
1=3 ð14-10Þ
The diameter of shaft subjected to combined bending and torsion (a) According to maximum normal stress theory
D¼
16 ½K M þ fðKb Mb Þ2 þ ðKt Mt Þ2 g1=2 yd b b
1=3
ð14-11Þ (b) According to maximum shear stress theory
(c) According to maximum shear energy theory
D¼ D¼
16 fðKb Mb Þ2 þ ðKt Mt Þ2 g1=2 yd
1=3
16 3 fðKb Mb Þ2 þ ðKt Mt Þ2 g1=2 yd 4
ð14-12Þ 1=3 ð14-13Þ
The diameter of shaft subjected to axial load, bending, and torsion (
(a) According to maximum normal stress theory D¼
16 yd
Kb Mb þ
" þ
Kb Mb þ
FD 8
FD 8
1=3 #1=2 9 =
2 þ ðKt Mt Þ2
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
;
ð14-14Þ
DESIGN OF SHAFTS
14.4
CHAPTER FOURTEEN
Particular
(b) According to maximum shear stress theory
Formula
" 16 D¼ yd
FD Kb Mb þ 8
1=2 #1=3
2 þ ðKt Mt Þ
2
ð14-15Þ (c) According to maximum shear energy theory
" 16 D¼ yd
FD Kb Mb þ 8
2
3 þ ðKt Mt Þ2 4
1=2 #1=3 ð14-16Þ
The diameter of shaft based on torsional rigidity
D¼
584Mt L G
1=4 ð14-17Þ
where Kb and Kt are taken from Table 14-2 (3) Rotating shafts and fluctuating loads, taking fatigue effect directly into consideration13 The diameter of shaft subjected to fluctuating torsion
The diameter of shaft subjected to fluctuating bending
( D¼ ( D¼
16
32
Mtm Mta þ yd fd
)1=3
Mbm Mba þ yd fd
ð14-18Þ )1=3 ð14-19Þ
The diameter of shaft subjected to combined fluctuating torsion and bending: (a) According to maximum normal stress theory
(b) According to maximum shear stress theory
(c) According to maximum shear energy theory
1=3 16 0 02 02 1=2 fMbm þ ðMbm þ Mtm Þ g D¼ yd D¼
16 02 02 1=2 ðMbm þ Mtm Þ yd
( D¼
16 yd
ð14-20Þ
1=3
)1=3 3 02 1=2 02 Mbm þ Mtm 4
ð14-21Þ
ð14-22Þ
where sd M fd ba
ð14-22aÞ
sd M fd ta
ð14-22bÞ
0 ¼ Mbm þ Mbm
0 ¼ Mtm þ Mtm
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
DESIGN OF SHAFTS DESIGN OF SHAFTS
Particular
14.5
Formula
The diameter of shaft subjected to combined fluctuating axial load, bending, and torsion (a) According to maximum normal stress theory
( D¼
16 yd
þ (b) According to maximum shear stress theory
" 16 D¼ yd
"
0 Mbm
0 þ Mbm
F 0 D þ m 8
Fm0 D 8
0 Mbm
2
02 þ Mtm
F 0 D þ m 8
2 þ
1=2 #)1=3 ð14-23Þ
02 Mtm
1=2 #1=3 ð14-24Þ
"
(c) According to maximum shear energy theory D¼
16 yd
0 þ Mbm
Fm0 D 8
2
3 02 þ Mtm 4
1=2 #1=3 ð14-25Þ
0 Mbm
0 Mtm
where and have the same meaning as in Eqs. (14-22a) and (14-22b) and Fm0 ¼ Fm þ sd Fa ð14-25aÞ fd
HOLLOW SHAFTS (1) Stationary shafts with static loads
The outside diameter of shaft subjected to simple torsion
Do ¼
The outside diameter of shaft subjected to simple bending
Do ¼
16Mt yd ð1 K 4 Þ 32Mb yd ð1 K 4 Þ
1=3 ð14-26Þ 1=3 ð14-27Þ
The diameter of shaft subjected to combined torsion and bending (a) According to maximum normal stress theory
Do ¼
1=3 16 2 2 1=2 þ ðM þ M Þ g fM t b b yd ð1 K 4 Þ ð14-28Þ
(b) According to maximum shear stress theory
Do ¼ (
(c) According to maximum shear energy theory Do ¼
16 ðMb2 þ Mt2 Þ1=2 yd ð1 K 4 Þ
1=3
)1=3 16 3 2 1=2 2 Mb þ Mt 4 yd ð1 K 4 Þ
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð14-29Þ
ð14-30Þ
DESIGN OF SHAFTS
14.6
CHAPTER FOURTEEN
Particular
Formula
The outside diameter of shaft subjected to axial load, bending, and torsion (a) According to maximum normal stress theory
( Do ¼
16 yd ð1 K 4 Þ
þ
FDo ð1 þ K 2 Þ Mb þ 8
FDo ð1 þ K 2 Þ Mb þ 8
1=2 !)1=3
2 þ
Mt2 ð14-31Þ
(b) According to maximum shear stress theory
( Do ¼
16 yd ð1 K 4 Þ #1=2 )1=3
" FDo Mb þ ð1 þ K 2 Þ 8
þ Mt2 (c) According to maximum shear energy theory
(
16 Do ¼ yd ð1 K 4 Þ #1=2 )1=3 3 2 þ Mt 4
ð14-32Þ " FDo 2 2 ð1 þ K Þ Mb þ 8 ð14-33Þ
(2) Rotating shafts with dynamic loads, taking dynamic effect indirectly into consideration13
The outside diameter of shaft subjected to simple torsion
Do ¼
The outside diameter of shaft subjected to simple bending
Do ¼
16 Kt M t yd ð1 K 4 Þ
1=3
32 Kb Mb yd ð1 K 4 Þ
ð14-34Þ 1=3 ð14-35Þ
The outside diameter of shaft subjected to combined bending and torsion (a) According to maximum normal stress theory
(b) According to maximum shear stress theory
Do ¼
Do ¼
16 ½Kb Mb þ fðKb Mb Þ2 yd ð1 K 4 Þ 1=3 þ ðKt Mt Þ2 g1=2
ð14-36Þ
1=3
16 fðKb Mb Þ2 þ ðKt Mt Þ2 g1=2 yd ð1 K 4 Þ
ð14-37Þ
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
DESIGN OF SHAFTS DESIGN OF SHAFTS
Particular
(c) According to maximum shear energy theory
14.7
Formula
"
1=2 #1=3 16 3 2 2 Do ¼ ðKb Mb Þ þ ðKt Mt Þ 4 yd ð1 K 4 Þ ð14-38Þ
The outside diameter of shaft subjected to axial load, bending and torsion (a) According to maximum normal stress theory
"
( 16 FDo 2 ð1 þ K Þ Do ¼ Kb Mb þ 8 yd ð1 K 4 Þ 2 FDo 2 þ Kb Mb þ ð1 þ K Þ 8 )#1=3 1=2
þ ðKt Mt Þ2 (b) According to maximum shear stress theory
" Do ¼
ð14-39Þ
( 2 16 FDo 2 M þ Þ ð1 þ K K b b 8 yd ð1 K 4 Þ )1=2 #1=3
þ ðKt Mt Þ2 (c) According to maximum shear energy theory
The outside diameter of shaft based on torsional rigidity
ð14-40Þ
(
" 2 16 FDo 2 ð1 þ K M þ Þ Do ¼ K b b 8 yd ð1 K 4 Þ #1=2 )1=3 3 þ ðKt Mt Þ2 ð14-41Þ 4 Do ¼
584Mt L ð1 K 4 ÞG
1=4 ð14-42Þ
(3) Rotating shaft with fluctuating loads, taking fatigue effect directly into consideration The outside diameter of shaft subjected to fluctuating torsion
The outside diameter of shaft subjected to fluctuating bending
"
16 Do ¼ ð1 K 4 Þ "
32 Do ¼ ð1 K 4 Þ
Mtm Mta þ yd fd
#1=3
Mbm Mba þ yd fd
ð14-43Þ #1=3
Please note: If the axial load does not produce column action, the constant need not be used to multiply the term [FDo (1 þ K 2 )/8] throughout this chapter.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð14-44Þ
DESIGN OF SHAFTS
14.8
CHAPTER FOURTEEN
Particular
Formula
The outside diameter of shaft subjected to combined fluctuating torsion and bending (a) According to maximum normal stress theory
Do ¼
1=3 16 0 02 02 1=2 fM þ ðM þ M Þ g tm bm bm yd ð1K 4 Þ ð14-45Þ
(b) According to maximum shear stress theory
Do ¼
16 02 02 1=2 þ Mtm Þ ðMbm yd ð1 K 4 Þ
1=3 ð14-46Þ
"
(c) According to maximum shear energy theory
#1=3 16 3 02 1=2 02 Do ¼ Mbm þ Mtm 4 yd ð1 K 4 Þ
ð14-47Þ
0 0 where Mbm , Mtm have the same meaning as in Eqs. (14-22a) and (14-22b)
The outside diameter of shaft subjected to combined fluctuating axial load, bending, and torsion (a) According to maximum normal stress theory
" Do ¼
16 yd ð1 K 4 Þ
þ
0 þ Mbm
(
0 þ Mbm
Fm0 Do ð1 þ K 2 Þ 8
Fm0 Do ð1 þ K 2 Þ 8
2
02 þ Mtm
1=2 )#1=3
ð14-48Þ ( (b) According to maximum shear stress theory
Do ¼
"
16 yd ð1 K 4 Þ
0 Mbm þ
Fm0 Do ð1 þ K 2 Þ 8
2
#1=2 !)1=3 þ ( (c) According to maximum shear energy theory
Do ¼
02 Mtm
ð14-49Þ
16 yd ð1 K 4 Þ
3 02 þ Mtm 4
" Fm0 Do ð1 þ K2 Þ 2 0 Mbm þ 8
#1=2 )1=3 ð14-50Þ
0 0 , Mtm , and Fm0 have the same meaning as where Mbm in Eqs. (14-22a), (14-22b), and (14-25a)
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
DESIGN OF SHAFTS DESIGN OF SHAFTS
Particular
14.9
Formula
COMPARISON BETWEEN DIAMETERS OF SOLID AND HOLLOW SHAFTS OF SAME LENGTH For equal strength in bending, torsion, and/or combined bending and torsion, the diameter (a) When materials of both shafts are same
D ¼ Do ð1 K 4 Þ1=3
(b) When materials of shafts are different
D ¼ Do
ð14-51Þ
eh ð1 K 4 Þ1=3 es
ð14-52Þ
For torsional rigidity (a) When torsional rigidities are equal (b) When torsional rigidities are different
D ¼ Do ð1 K 4 Þ1=4 D ¼ Do
Gh ð1 K 4 Þ Gs
ð14-53Þ 1=4 ð14-54Þ
For equal weight D ¼ Do ð1 K 2 Þ1=2
ð14-55Þ
w 1=2 D ¼ Do ð1 K 2 Þ h ws
ð14-56Þ
(a) For same material and machining cost for both shafts
D ¼ Do ð1 K 2 Þ1=2
ð14-57Þ
(b) For no machining cost for both shafts but with different material cost
w k 1=2 D ¼ Do ð1 K 2 Þ h h w s ks
ð14-58Þ
(c) When machining costs are different and material cost negligible
D¼
(a) When material of both shafts is same (b) When materials of both shafts are different
For equal cost
(d) When machining and material costs are different
D¼
ch cs
1=2
8 91=2 <D2o ð1 K 2 Þwh kh þ ch = c : ; ws ks þ s2 D
Note: If the axial load does not produce column action, the constant need not be used to multiply the term [FDo (1 þ K 2 )/8] throughout this chapter
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð14-59Þ
ð14-60Þ
DESIGN OF SHAFTS
14.10
CHAPTER FOURTEEN
Particular
Formula
STIFFNESS Instead of computing the transverse deflection, the maximum distance between the bearings (in meters) may be computed by the empirical formula to limit the transverse deflection to 0.8 mm/m of length
1500 cD2=3 n þ 1500 where c is a constant from Table 14-3
L¼
ð14-61Þ
RIGIDITY Moor’s formula for the increase of the angle of twist due to the keyway and applies only to the keyseated length of shaft
K1 ¼ 1 þ
0:4b þ 0:7h D
ð14-62Þ
EFFECT OF KEYWAYS The lowering of the strength of shaft by keyways may be taken into account by introducing a factor similar to a stress-concentration factor (or Moor’s formula for lowering the strength of shaft)
K ¼1þ
0:2b þ 1:1h D
ð14-63Þ
THE BUCKLING FACTOR For short columns or when l=k 115 For long columns or when l=k 115 (Euler’s formula)
1 1 0:0044ðl=kÞ sy l ¼ 2 nE k
¼
ð14-64Þ ð14-65Þ
where n ¼ 1 for hinged ends ¼ 2:25 for fixed ends ¼ 1:6 for both ends pinned or guided and partly restrained ( ¼ 1 for tensile load)
SHAFTS SUBJECTED TO VARIOUS STRESSES (1) Shaft subjected to steady torque and reversed bending moment taking into consideration stress concentration:
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
DESIGN OF SHAFTS DESIGN OF SHAFTS
Particular
14.11
Formula
Diameter of solid shaft: (a) According to maximum shear stress failure theory using Soderberg [4] criterion for fatigue strength a m 1 þ ¼ sf sy n
( 32n sy
D¼
2 1=2 )1=3 sy 2 M þ ðKf Mtm Þ Kf sf ba ð14-66Þ
where Kf ¼ fatigue stress-concentration factor due to bending, tension, or compression Kfr ¼ fatigue stress-concentration factor due to torsion
(b) According to maximum shear stress theory of failure using modified Goodman criterion for fatigue strength a 1 þ m ¼ sf sut n
Kf ¼ Kf ¼ 1 for ductile material under steady state of stress ( 2 1=2 )1=3 32n sut 2 D¼ M þ ðKf Mtm Þ Kf sf ba sut ð14-67Þ
Diameter of hollow shaft: (c) According to distortion-energy theory of failure using modified Goodman criterion for fatigue strength
(d) According to distortion-energy theory of failure combined with Gerber parabolic relation na nm 2 ¼1 þ sf sut
(e) According to distortion-energy theory of failure using ASME elliptic locus for fatigue strength 2 na nm 2 þ ¼1 sf sy
" Do ¼
16n 2Kf sut Mba sf sut ð1 K 4 Þ #1=3 pffiffiffi þ 3Kf Mtm
ð14-68Þ
( 16n Kf sut Mba Do ¼ sf sut ð1 K 4 Þ " #1=2 )1=3 2 sut 2 Kf þ M þ 3ðKf Mtm Þ sf ba ( Do ¼
"
sy 16n M 2Kf 4 sf ba sy ð1 K Þ #1=2 )1=3
2
þ 3ðKf Mtm Þ2
Bagci failure locus equation in quartic (fourthdegree) form
i.e.,
and yielding criterion (Langer) equation combined with any theories of failure can be used to predict the fatigue strength of shaft
na þ sf
i.e.,
a þ m 1 ¼ n sy
nm sy
4 ¼1
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð14-69Þ
ð14-70Þ
DESIGN OF SHAFTS
14.12
CHAPTER FOURTEEN
Particular
Formula
(2) Shaft subjected to fluctuating loads, i.e., reversed bending and reversed torque, taking into consideration stress concentration (a) The diameter of solid shaft according to maximum shear stress theory of failure using Soderberg criterion for fatigue strength
D¼
32n 2 ðMbe þ Mte2 Þ1=2 sy
1=3 ð14-71Þ
where Mbe ¼ static equivalent of cyclic bending moment sy ¼ Kf Mbm þ Kf M sf ba
(b) The diameter of hollow shaft according to distortion-energy theory of failure combined with Soderberg criterion for fatigue strength
Mte ¼ static equivalent of cyclic torsional moment sy M ¼ Kf Mtm þ Kf sf ta 1=3 16n 2 2 1=2 Do ¼ þ 3M Þ ð14-72Þ ð4M te be sy ð1 K 4 Þ where Mbe and Mte have the same meaning as given under Eq. (14-71)
(3) Shaft subjected to constant bending and torsional moments and reversed torsional and bending moments at the same frequency taking into consideration stress concentration (a) The diameter of solid shaft according to maximum distortion energy theory of failure using modified Goodman criterion for fatigue strength
D¼
16n f½4ðKf Mbm Þ2 þ 3ðKf Mtm Þ2 1=2 g sut 1=3 þ sut f½4ðKf Mba Þ2 þ 3ðKf Mta Þ2 1=2 g sf ð14-73Þ
(b) The diameter of solid shaft according to maximum shear stress theory of failure combined with modified Goodman criterion for fatigue strength
where Kf ¼ Kf ¼ 1 for constant torsional and bending moments 2 32n D¼ Mbm þ Kf sut Mba sut sf 2 1=2 1=3 sut þ Mtm þ Kf M ð14-74Þ sf ta
(c) The diameter of hollow shaft according to maximum shear stress theory of failure using Soderberg criterion for fatigue strength
Do ¼
32n sy ð1 K 4 Þ
Kf Mbm þ Kf
sy M sf ba
2 1=2 1=3 sy þ Kf Mtm þ Kf Mta sf
2
ð14-75Þ
where Kf ¼ Kf ¼ 1 for constant bending and torsional moments
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
DESIGN OF SHAFTS DESIGN OF SHAFTS
Particular
14.13
Formula
(4) Cyclic axial load combined with reversed bending and torsional moments taking into consideration stress concentration as per ASME Code for Design of Transmission Shafting (a) The diameter of solid shaft according to maximum shear stress theory of failure and Soderberg relation for fatigue strength
( D¼
32n sy
1=2 )1=3 Fae D 2 2 þ Mte Mbe þ 8
ð14-76Þ
where Mbe and Mte have the same meaning as given under Eq. (14-71)
(b) The diameter of hollow shaft according to distortion-energy theory of failure combined with modified Goodman relation for fatigue strength
Fae ¼ static equivalent axial load sy ¼ Kf Fam þ Kf F sf aa " ( 0 32n Fae Do ð1 þ K 2 Þ 2 0 Do ¼ þ M be 8 sut ð1 K 4 Þ )1=2 #1=3 3 þ Mte02 ð14-77Þ 4 where sut M sf ba Mte0 ¼ Kf Mtm þ Kf sut Mta sf 0 Fae ¼ Kf Fam þ Kf sut Faa sf
0 Mbe ¼ Kf Mbm þ Kf
When K ¼ 0, this equation reduces to an equation for a solid shaft
(5) The diameter of solid shaft subjected to axial, bending, and torsional alternating loads according to distortion-energy theory of failure combined with Soderberg relation for fatigue as per ASME Code for Design of Transmission Shafting5
The value of is given by Eq. (14-65) 2 1=2 32n F D 2 3Mta Mba þ a D¼ þ 4 sf 2 )!1=3 ( 2 1=2 32n Fm D 2 3Mtm þ þ Mbm þ 4 sut 2 ð14-78Þ Not explicit in D, use iterative methods to solve
Although ASME has withdrawn the ASME Code for Design of Transmission Shafting, some of the ASME equations given here have historic interest and hence are retained in this book.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
DESIGN OF SHAFTS
14.14
CHAPTER FOURTEEN
Particular
(6) The diameter of shaft made of brittle material, which is subjected to reversed bending and torsional moments taking into consideration stress concentration as per maximum normal stress theory of failure combined with modified Goodman relation for fatigue strength
Formula
D¼
1=3 16n 0 02 ½Mbe þ ðMbe þ Mte02 Þ1=2 sut
ð14-79Þ
for solid shaft 1=3 16n 0 02 02 1=2 þ ðM þ M Þ ½M Do ¼ te be be sut ð1 K 4 Þ ð14-80Þ 0 and Mte0 have the same for hollow shaft, where Mbe meaning as given under Eq. (14-77)
(7) Shaft subjected to combined axial, bending, and torsional reversed loads taking into consideration stress concentration and shock (a) The diameter of hollow shaft according to distortion-energy theory of failure using Soderberg relation The symbols used in Eqs. (14-80) to (14-85) and Figs. 14-1 and 14-2 are different than that of the ANSI/ ASME standard B106. IM-1985 in order to remain consistent with the symbols used in this Handbook.
( 32n Fae Do ð1 þ K 2 Þ 2 Do ¼ þ K M sb be 8 sy ð1 K 4 Þ )1=2 !1=3 3 þ Kst Mte2 ð14-81Þ 4 where Fae , Mbe and Mte have the same meaning as given under Eqs. (14-71) and (14-76) Refer to Table 14-4 for Ksb and Kst
New ASME Code for design of transmission shafting: The diameter of shaft subjected to fully reversed bending i.e., zero mean bending component and torsional fluctuating loads, i.e. alternating loads taking into consideration stress concentration according to distortion energy theory of failure combined with modified Goodman relation for fatigue as per new ANSI/ASME code for transmission shafting.
The factor of safety, n
" D¼
32n sf
3 ðKf Mba Þ2 þ ðKf Mta Þ2 4
1=2
1=2 #1=3 32n 3 2 2 ðKf Mbm Þ þ ðKf m Mtm Þ þ sut 4 ð14-82Þ when the axial load ¼ Fa is zero " 1=2 1 32 1 3 2 2 M Þ þ M Þ ðK ¼ ðK f ba f ta n D3 sf 4 1=2 # 1 3 2 2 ðKf Mba Þ þ ðKf m Mtm Þ þ ð14-83Þ sut 4
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
DESIGN OF SHAFTS DESIGN OF SHAFTS
Particular
The diameter of shaft made of brittle material subjected to reversed bending and torsional moments taking into consideration stress concentration as per maximum normal stress theory of failure combined with modified Goodman relation for fatigue strength
Formula
D¼
1=3 16n 0 02 fMbe þ ðMbe þ Mte02 Þ1=2 g sut ð14-84Þ
for solid shaft Do ¼
1=3 16n 0 02 02 1=2 fM þ ðM þ M Þ g te be be sut ð1 K 4 Þ ð14-85Þ
for hollow shaft 0 ¼ Kf Mbm þ Kf where, Mbe
Mte0 ¼ Kf Mtm þ For combined fatigue test data for reversed bending combined torsion and combined with reversed torsion on steel specimens.
14.15
sul M sf ba
sul M sf ta
Refer to Fig. 14-1.
FIGURE 14-1 Results of fatigue Tests of steel specimens subjected to Reversed Bending and Torsion. Source: Design of Transmission Shafting, American Society for Mechanical Engineers, New York, ANSI/ASME standard B106IM, 1985. Kececioglu, D. B., and V. R. Lalli, Reliability Approach to Rotating Component Design, Technical Note TND-7846, NASA, 1975. Davies, V. C., H. T. Gough, and H. V. Pollard, Discussion to the Strength of Metals under Combined Alternating stresses, Proc of the Inst. Mech. Eng., 131(3), pp. 66–69, 1935. Loewenthal, S. H., Proposed Design Procedure for Transmission Shafting under Fatigue Loading, Technical Note TM-7802, NASA, 1978. Gough, H. J., and H. V. Pollard, The Strength of Metals under Combined Alternating Stresses, Proc of the Inst. Mech. Eng., 131(3), pp. 3–103, 1935.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
DESIGN OF SHAFTS
14.16
CHAPTER FOURTEEN
Particular
Formula
GENERAL See Tables 14-1 to 14-6 and Fig. 14-2 for further details on shafting design;3 refer to Table 14-4 for shock load factors Ksb and Kst For further design details on shafting
Refer to Tables 14-5 to 14-7.
2 2 5 (0 16 0 ( •4 (0 0•3 16 •2 33 ) 66 ) )
re
6 5 •3
8) 20 6) 0• 16 5( (0• • 12 0 1
ing
mo e ad
a ftw o Fs D SP T R fA o ion s r ve
s du
ifie
en
d mo
e sb
a
is
Th
Fh D P
FIGURE 14-2 Nomogram for determining diameter (d), speed (n), force (F), torque (Mt ), and power (P) in Customary Metric units and System International units. (K. Lingaiah, Machine Design Data Handbook, Vol. II, Suma Publishers, Bangalore, India, 1986.)
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
DESIGN OF SHAFTS DESIGN OF SHAFTS
14.17
REFERENCES 1. Lingaiah, K., and B. R. Narayana Iyengar, Machine Design Data Handbook, Engineering College Cooperative, Bangalore, India, 1962. 2. Lingaiah, K., and B. R. Narayana Iyengar, Machine Design Data Handbook, Vol. I (SI Units and Customary Metric Units), Suma Publishers, Bangalore, India, 1986. 3. Lingaiah, K., Machine Design Data Handbook, Vol. II (SI Units and Customary Metric Units), Suma Publishers, Bangalore, India, 1986. 4. Soderberg, C. R., ‘‘Working Stresses,’’ J. Appl. Mechanics, Vol. 57, p. A-106, 1935. 5. ASME Code for Design of Transmission Shafting, Standard ANS/ASME B106.1M, 1985. 6. Shigley, J. E., Machine Design, McGraw-Hill Publishing Company, New York, 1956. 7. Kececioglu, D. B., and V. R. Lalli, Reliability Approach to Rotating Component Design, Technical Note TND-7846, NASA, 1975 8. Davies, V. C., H. T. Gough, and H. V. Pollard, Discussion to the Strength of Metals under Combined Alternating stresses, Proc of the Inst. Mech. Eng., 131(3), pp. 66–69, 1935. 9. Loewenthal, S. H., Proposed Design Procedure for Transmission Shafting under Fatigue Loading, Technical Note TM-7802, NASA, 1978. 10. Gough, H. J., and H. V. Pollard, The Strength of Metals under Combined Alternating stresses, Proc of the Inst. Mech. Eng., 131(3), pp. 3–103, 1935.
BIBLIOGRAPHY Berchard, H. A., ‘‘A Comprehensive Method for Designing Shafts to Insure Fatigue Life,’’ Machine Design, April 25, 1963. Black, P. H., and O. Eugene Adams, Jr., Machine Design, McGraw-Hill Publishing Company, New York, 1983. British Standards Institution. Deutschman, A. D., W. J. Michels, and C. E. Wilson, Machine Design—Theory and Practice, Macmillan Publishing Company, New York, 1975. Maleev, V. L., and J. B. Hartman, Machine Design, International Textbook Company, Scranton, Pennsylvania, 1954. Marks’ Standard Handbook for Mechanical Engineers, 8th ed., McGraw-Hill Publishing Company, New York, 1978. Vallance, A., and V. L. Doughtie, Design of Machine Members, McGraw-Hill Publishing Company, New York, 1951.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
DESIGN OF SHAFTS
14.18
CHAPTER FOURTEEN
TABLE 14-1 Empirical shafting formulas Power capacity, P
Load factors considered Kind of service
Torsion, Kt
Bending, Kb
kW
hp
Transmission shafts in torsion only Line shafting with limited bending Head or main shafts with heavy bending loads
1.0 1.0 1.0
1.0 1.5 2.5
54,831D3 n0 34,532D3 n0 20,715D3 n0
1:225 106 D3 n 7:715 107 D3 n 4:628 107 D3 n
TABLE 14-2 Shock and endurance factors Nature of loading Stationary shafts Gradually applied load Suddenly applied load Rotating shafts Steady or gradually applied loads Suddenly applied loads, minor shocks only Suddenly applied loads, heavy shocks
TABLE 14-3 Values of constant c Kb
Kt
1.0 1.5–2.0
1.0 1.5–2.0
1.5 1.5–2.0
1.0 1.0–1.5
2.0–3.0
1.5–3.0
Type of shaft loading Shaft heavily loaded, subjected to shock, or reversed under full load Line shafts and countershafts, loaded in bending but not reversed Line shafts or bar with pulleys close to the bearings
MPa
kpsi
0.82
17
2.5
1.1
27
4.0
1.56
44
6.4
TABLE 14-4 Shock load factorsa for use in Eq. (14-81) Nature of load
Ksb , Kst
Gradually applied load Loads applied with minor shocks Loads applied with heavy shocks
1.00 1.0–1.5 1.5–2.0
Allowable stress
Coefficient c in Eq. (14-61)
a
Data from Berchard, H. A., ‘‘A Comprehensive Method for Designing Shafts to Insure Fatigue Life,’’ Machine Design, April 25, 1963.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
DESIGN OF SHAFTS DESIGN OF SHAFTS
14.19
TABLE 14-5 Spacinga for fine shaft bearings
Transmission shaft stressed in torsion only, mm
Line shaft carrying pulleys or gears and subjected to usual bending loads, mm
Diameter of shaft, mm
1–250 rpm
251–400 rpm
1–250 rpm
251–400 rpm
36.5 49.0 62.0 74.5 87.5 100.0 112.5
274.5 305.0 335.5 366.0 396.0 427.0 457.0
244.0 274.5 305.0 335.5 366.0 396.0 427.0
213.5 229.0 244.0 259.0 274.5 289.5 305.0
198.0 213.5 228.5 244.0 259.0 274.5 289.5
a
Center-to-center distance in millimeters.
TABLE 14-6 Sizes of shafts Diameters, mm (in) 4 (0.16) 5 (0.20) 6 (0.24) 7 (0.28) 8 (0.32) 9 (0.36) 10 (0.4)
12 15 17 20 25 30 35
(0.48) (0.60) (0.68) (0.80) (1.0) (1.2) (1.4)
40 (1.6) 45 (1.8) 50 (2.0) 55 (2.2) 60 (2.4) 65 (2.6) 70 (2.8)
75 (3.0) 80 (3.2) 85 (3.4) 90 (3.6) 95 (3.8) 100 (4.0) 105 (4.2)
110 (4.4) 120 (4.8) 130 (5.2) 140 (5.6) 150 (6.0) 160 (6.4) 170 (6.8)
180 (7.2) 190 (7.6) 200 (8.0) 220 (8.8) 240 (9.6) 260 (10.4) 280 (11.2)
TABLE 14-7 Load factors for various machines, kl a Driver
Driven machinery
Factor, kl
Steam turbine
Electric generator, steady load; turbine blower Electric generator, uneven load; centrifugal pump Induced-draft fan; line shaft; gear drive Rolling mill, gear drive Turbine blower; metalworking machinery Centrifugal pump; wood working machinery Line shaft; ship propeller; double acting pump Triplex single-acting pump; elevator; crane Compressor, air or ammonia Rolling mill; rubber mill Values for electric-motor drive multiplied by 1.2–1.5 Values for electric-motor drive multiplied by 1.3–1.6 the factor depending on the coefficient of steadiness of the flywheel
1.00 1.25 1.50 2.00 1.25 1.50 1.75 1.75 1.75 2.50
Electric motor
Steam engine Gas and oil engines a
To be used also in Eqs. (5–9) and (19–79).
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
Source: MACHINE DESIGN DATABOOK
CHAPTER
15 FLYWHEELS SYMBOLS1,2 a A b Cf d dh D Do E Fc Fc0 g h i ko I J kt Mtm Mt m n n1 n2 r t T1 T2 v v1 v2 W Z
major axis of ellipse, m (in) negative acceleration or deceleration, m/s2 (ft/s2 ) cross-sectional area of the rim, m2 (in2 ) minor axis of ellipse, m (in) width of rim, m (in) coefficient of fluctuation of rotation diameter of shaft, m (in) hub diameter, m (in) flywheel diameter, m (in) outside diameter of rim, m (in) excess energy, J (ft lbf ) centrifugal force, kN (lbf ) centrifugal force per unit width of rim, kN (lbf ) acceleration due to gravity, 9.8066 m/s2 (32.2 ft/s2 ) depth of rim, m (in) number of arms polar radius of gyration of the rim, m (in) mass moment of inertia, N s2 m (lbf s2 ft) polar second moment of inertia, m4 (in4 ) torsional stiffness of shaft, N m/rad (lbf in/rad) mean torque, N m (lbf ft) transmitted torque, N m (lbf ft) coefficient of steadiness mean speed, rpm maximum speed, rpm minimum speed, rpm mean radius of the flywheel, m (in) time, s tension in belt on tight side, kN (lbf ) tension in belt on slack side, kN (lbf ) mean rim velocity, m/s (ft/min) maximum rim velocity, m/s (ft/min) minimum rim velocity, m/s (ft/min) rim weight, kN (lbf ) specific weight of material or weight density, N/m3 (lbf/in3 ) sectional modulus of the arm cross section at the hub, m3 (in3 )
15.1 Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
FLYWHEELS
15.2 1 , 2 ! !1 , !2
CHAPTER FIFTEEN
stress (also with subscripts), MPa (psi) maximum and minimum angular displacement of flywheel from constant speed deviation, rad (deg) average angular speed, rad/s maximum and minimum angular speed, respectively, rad/s Particular
Formula
The equation of motion of ith rotor of Ii inertia in a multirotor system connected by (i 1) number of shafts of various inertias subjected to external torque
Ii i ¼ Mti Mtði 1Þ
ð15-1Þ
The equation of motion of a flywheel, which is mounted on a shaft between two supports and rotates with an angular velocity and subjected to an input external torque Mti
I ¼ Mti Mto ¼ kt ð2 1 Þ
ð15-2Þ
where Mto ¼ output torque, N m (lbf ft) ¼ angular displacement of flywheel, rad (deg)
KINETIC ENERGY Kinetic energy (Fig. 15-1)
1 Wv2 1 2 K ¼ mv2 ¼ ¼ I! 2g 2 2
For variation of torque with crank angle for twocylinder engine
Refer to Fig. 15-1.
ð15-3Þ
FIGURE 15-1 Torque-crank shaft angle curve for a two-cylinder engine.
The kinetic energy of flywheel at an angular displacement 1 and at angular velocity !1 during one cycle
1 Wv21 K1 ¼ I!21 ¼ 2g 2
ð15-4Þ
The kinetic energy of flywheel at an angular displacement 2 and at angular velocity !2
1 Wv22 K2 ¼ I!22 ¼ 2g 2
ð15-5Þ
The change in kinetic energy or energy fluctuation due to change in angular velocity !1 to !2 in one cycle
1 Wðv22 v21 Þ E ¼ K2 K1 ¼ Ið!22 !21 Þ ¼ 2 2g ¼ 12 Ið!2 !1 Þð!2 þ !1 Þ ¼ Ið!2 !1 Þ! ¼ Wðv2 v1 Þ
v g
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð15-6Þ
FLYWHEELS FLYWHEELS
Particular
The coefficient of fluctuation of speed or rotation The change in kinetic energy or excess energy
15.3
Formula
Cf ¼
!2 !1 v2 v1 n2 n1 ¼ ¼ ! v n
E ¼ K2 K1 ¼ I!2 Cf ¼
ð15-7Þ
Wv2 Cf g
ð15-8Þ
FLYWHEEL EFFECT OR POLAR MOMENT OF INERTIA
Wk2 ¼
The mean angular velocity
!¼
!2 þ !1 2
ð15-10Þ
The coefficient of steadiness
m¼
1 Cf
ð15-11Þ
182:40gE n21 n22
ð15-9Þ
Refer to table 15-1 for Cf .
STRESSES IN RIM (Figs. 15-2 and 15-3) The component of the centrifugal force normal to any diameter of the flywheel
Fc ¼
2bhr2 !2 g
ð15-12Þ
The tangential force due to hoop stress in the flywheel rim (Fig. 15-3)
F ¼
bhr2 !2 g
ð15-13Þ
The tensile stress created in each cross section of the rim by the centrifugal force
¼ 0:01095
The centrifugal force per unit width of rim (Fig. 15-3)
2 2 r n g
Fc0 ¼ 0:01095
r2 n2 h g
SI
ð15-14Þ
SI
ð15-15Þ
TABLE 15-1 Coefficient of fluctuation of rotation, Cf Driven machine
Type of drive
Cf
AC generators, single or parallel AC generators, single or parallel DC generators, single or parallel DC generators, single or parallel Spinning machinery Compressure, pumps Paper, textiles, and flour mills Woodworking and metalworking machinery Shears and pumps Concrete mixers, excavators, and compressors Crushers, hammers, and punch presses
Direct-coupled Belt Direct-coupled Belt Belt Gears Belt Belt Flexible coupling Belt Belt
0.01 0.0167 0.0143 0.029 0.02–0.015 0.02 0.025–0.02 0.0333 0.05–0.04 0.143–0.1 0.2
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
FLYWHEELS
15.4
CHAPTER FIFTEEN
Particular
The bending stress
The combined tensile stress
Formula
b ¼ 0:2146
r3 n2 ghi2
SI
R ¼ 0:75 þ 0:25b
ð15-16Þ ð15-17Þ
STRESSES IN ARMS (Fig. 15-2) The stresses in the arm
1 ¼
Mt ðD dh Þ iZD
ð15-18Þ
FIGURE 15-2 Flywheel.
FIGURE 15-3 Centrifugal force acting on the rim of a flywheel.
When the flywheel is used as a belt pulley, the stresses at the hub
2 ¼
ðT1 T2 ÞðD dh Þ 2iZ
ð15-19Þ
In case of thin-rim flywheel, the stress
02 ¼
ðT1 T2 ÞðD dh Þ iZ
ð15-20Þ
Stress due to centrifugal force
3 ¼ 0:01095
r2 n2 g
The maximum tensile stress in an arm is at hub
max ¼ 1 þ 2 þ 3
The force necessary to stop the flywheel
F¼
SI
Wa g
ð15-21Þ ð15-22Þ ð15-23Þ
RIM DIMENSIONS (Fig. 15-2) The relation between ko in cm and the outside diameter D of the rim in m Cross-sectional area of the rim
k2o ¼ 0:125½D2o þ ðDo 2hÞ2
A¼
W 2k
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð15-24Þ
ð15-25Þ
FLYWHEELS FLYWHEELS
Particular
15.5
Formula
The relation between depth and width of rim
b ¼ 0:65 to 2 h
ð15-26Þ
The outside diameter of rim
Do ¼ 2ko þ h ðapprox:Þ
ð15-27Þ
The hub diameter in m
dh ¼ 1:75d þ 6:35 103 ¼ 2d
ð15-28Þ
The hub length
l ¼ 2d to 2:5d
ð15-29Þ
rffiffiffiffiffiffiffiffiffi 3 64Z
ð15-30Þ
ARMS (Fig. 15-2) The major axis in case of elliptical section can be computed from the relation
a¼
where z ¼
ba2 32
and
a ¼ 2b
ð15-31Þ
REFERENCES 1. Lingaiah, K., and B. R. Narayana Iyengar, Machine Design Data Handbook, Vol. I (SI and Customary Metric Units), Suma Publishers, Bangalore, India, 1986. 2. Lingaiah, K., Machine Design Data Handbook (SI and U.S. Customary Units), McGraw-Hill Publishing Company, New York, 1994.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
Source: MACHINE DESIGN DATABOOK
CHAPTER
16 PACKINGS AND SEALS SYMBOLS1;2 A Ag A1 , A2 b c d d1 d2 da di Dm Dam E Fb F Fo g h hi h i l l1 , l2 (dl) Mt Mti
area of seal in contact with the sliding member, m2 (in2 ) gasket area over which the bolt loads are distributed, m2 (in2 ) area of cross section of unthreaded and threaded portions of bolt, m2 (in2 ) width of U-collar, m (in) gland width or depth of groove, m (in) radial clearance between rod and the bushing, radial deflection of the ring, m (in) nominal diameter of the bolt, m (in) diameter of sliding member, m (in) outside diameter of packing material, m (mm) outside diameter of seal ring (Fig. 16-3), m (in) minor diameter of bolt, m (in) actual diameter of wire, m (in) inside diameter of packing material, m (in) estimated mean diameter of conical spring, m (in) actual mean diameter of conical spring, m (in) modulus of elasticity, GPa (psi) bolt load, kN (lbf ) frictional force, kN (lbf ) frictional force of the stuffing box when there is no fluid pressure, kN (lbf ) acceleration due to gravity, 9.8066 m/s2 (9806.6 mm/s2 ) (32.2 ft/s2 ) radial ring wall thickness, m (in) uncompressed gasket thickness, m (in) loss of head, m/m (in/in) number of bolts depth of U-collar (Fig. 16-2a), m (in) length of joint, m (in) incremental length in the direction of velocity [Eq. (16-15)], m (in) bolt elongation [Eq. (16-24)], m (in) twisting moment, N m (lbf in) initial bolt torque, N m (lbf in)
16.1 Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
PACKINGS AND SEALS
16.2
CHAPTER SIXTEEN
fluid pressure, MPa (psi) flange pressure on the gasket, MPa (psi) minimum per cent compression to seal pressure differential in the direction of velocity [Eq. (16-15)], MPa (psi) discharge, m3 /s (cm3 /s, mm3 /s) (in3 /s) equivalent radius, m (in) velocity, m/s (ft/min) nominal packing cross section, m (in) deflection of spring, m (in) absolute viscosity of fluid, Pa s (cP) design stress, MPa (psi) coefficient of friction
p pf Ps (dp) Q r v w y d
Particular
Formula
ELASTIC PACKING1–3 Frictional force exerted by a soft packing on the reciprocating rod
F ¼ kpd
ð16-1Þ
where k ¼ 0:005 and p ¼ 0:343 MPa SI k ¼ 0:2 and p ¼ 50 psi USCS
FRICTION Friction resistance
F ¼ Fo þ Ap
ð16-2Þ
where ¼ 0:01 for rubber and soft lubricated leather ¼ 0:15 for hard leather Torsional resistance in a rotary motion friction
F d kd 2 p ¼ 2 2 where k ¼ 0:005 SI k ¼ 0:2 USCS
Mt ¼
ð16-3Þ
c ¼ 0:2d þ 5 mm if d 100 mm pffiffiffi c ¼ 0:08 d if d > 0:1 mm pffiffiffi c ¼ 0:5 d if d > 4
ð16-4Þ
METALLIC GASKETS (Fig. 16-1) The empirical relations3
h¼
SI
ð16-5aÞ
USCS
ð16-5bÞ
d þ 12:54 mm or 0:5 in 8
ð16-6Þ
a ¼ d þ 2c
ð16-7Þ
¼ 108 to 158
ð16-8Þ
pffi d2 ¼ 0:2ðd þ 0:102Þ= i pffi d2 ¼ 0:2ðd þ 4Þ= i
SI
ð16-9aÞ
USCS
ð16-9bÞ
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
PACKINGS AND SEALS PACKINGS AND SEALS
Particular
16.3
Formula
FIGURE 16-1 Stuffing box with bolted gland. (V. L. Maleev and J. B. Hartman, Machine Design, International Textbook Company, Scranton, Pennsylvania, 1954.)
Diameter of bolt is also found by equating the working strength of the bolts to the pressure p exerted by the fluid on the gland and the frictional force F
sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ðd12 d 2 Þp 4F d2 ¼ þ id id
ð16-10Þ
where d2 ¼ minor diameter of bolt, m (in) d ¼ 68:7 to 83.3 MPa (10 to 12 kpsi)
SELF-SEALING PACKING (Fig. 16-2) Houghton, Welch, and Jenkin’s formula for an approximate thickness of a U-shaped collar for great pressure3
h ¼ 6:36 103 d 0:2
SI
ð16-11aÞ
SI
ð16-11bÞ
USCS
ð16-11cÞ
where h and d in m h ¼ 1:6d 0:2 where h and d in mm h ¼ 0:12d 0:2 where d and d in in
FIGURE 16-2 U-collar.
Width
b ¼ 4h
ð16-12aÞ
Depth
l ¼ 1:2b to 1:8b
ð16-12bÞ
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
PACKINGS AND SEALS
16.4
CHAPTER SIXTEEN
Particular
Formula
PACKINGLESS SEALS Leakage of the fluid past a rod can be computed with fair accuracy by the formula
Q¼
c3 d ð p1 p2 Þ 12 l
Q ¼ 1:79ð100cÞ3
ð p1 p2 Þd l
SI
ð16-13aÞ
USCS
ð16-13bÞ
Refer to Table 16-1 for values of . TABLE 16-1 Absolute viscosities Temperature
Absolute viscosity,
Temperature
Absolute viscosity,
Fluid
K
8C
MPa s
cP
K
8C
MPa s
cP
Steam Air Water Water Gasoline Kerosene Fuel oil, 308 Baume´ Fuel oil, 248 Baume´ Spindle oil Machine oil Castor oil
293 293 273 293 293 293 293 293 293 293 293
20 20 0 20 20 20 20 20 20 20 20
0.0097 0.018 1.79 1.0 0.6 2.7 5.0 40 20–35 200–500 1000
0.0097 0.018 1.79 1.0 0.6 2.7 5.0 40 20–35 200–500 1000
539 366 311 333 355 355 355 355 355 372 316
266 93 38 60 82 82 82 82 82 99 43
0.018 0.022 0.69 0.40 0.30 1.30 1.60 4 3–4 1.5–16 200
0.018 0.022 0.69 0.40 0.30 1.30 1.60 4 3–4 5.5–16 200
STRAIGHT-CUT SEALINGS (Fig. 16-3a) The equation for loss of liquid head
h ¼ 64v=2gd12 ðdpÞr 8ðdlÞ
ð16-14Þ
2
Leakage velocity
v¼
Quantity of leakage
Q ¼ vA
ð16-16Þ
Stress in a seal ring
0:4815cE ¼ 2 d h 11 h
ð16-17Þ
For allowable temperatures for materials and surface treatment
Refer to Table 16-2.
FIGURE 16-3(a) Straight-cut seal.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð16-15Þ
PACKINGS AND SEALS PACKINGS AND SEALS
Particular
16.5
Formula
V-RING PACKING Single-spring installations The estimated mean diameter of conical spring
The wire size (Table 16-3)
Dm ¼ di þ d¼
3w 2
D2m 139300
ð16-18Þ 1=3 SI
ð16-19aÞ
USCS
ð16-19bÞ
Customary Metric
ð16-19cÞ
where d and Dm in m d¼
D2m 3535
1=3
where d and Dm in in d¼
D2m 193:3
1=3
where d and Dm in mm The actual mean diameter of conical spring The deflection of spring
Multiple-spring installations BOLTS AND STRESSES IN FLANGE JOINTS The bolt load in gasket joint The flange pressure developed due to tightening of bolts that hold the gasket joint mechanical assembly together
The load on the bolt when it is tightened
STRESSES IN GROOVED JOINTS The uncompressed gasket thickness that will provide the minimum sealing compression when the flanges are tightened into face-to-face contact
Dam ¼ d1 12 ðw þ da Þ y¼
0:0123D2am da
ð16-20Þ ð16-21Þ
Two standard cylindrical spring sizes are generally used, depending on packing size.
Fb ¼
11mti d
ð16-22Þ
pf ¼
iFb 2iMt ¼ Ag Cu Ag Cu db
ð16-23Þ
where Cu ¼ torque friction coefficient Fb ¼
EðdlÞ ðl1 =A1 Þ þ ðl2 =A2 Þ
ð16-24Þ
hi ¼
100b 100 Ps
ð16-25Þ
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
PACKINGS AND SEALS
16.6
CHAPTER SIXTEEN
Particular
Formula
BOLT LOADS IN GASKET JOINT ACCORDING TO ASME BOILER AND PRESSURE VESSEL CODE (Fig. 16-3b)4
FIGURE 16-3(b) Location of gasket load reaction.
The required bolt load under operating condition sufficient to contain the hydrostatic end force and simultaneously to maintain adequate compression on the gasket to ensure seating
Wm1 ¼ H þ HP ¼ ð=4G2 PÞ þ 2bGmP
ð16-26Þ
The required initial bolt load to seat the gasket jointcontact surface properly at atmospheric temperature condition without internal pressure
Wm2 ¼ bGy
ð16-27Þ
Total required cross-sectional area of bolts at the root of thread
Am > Am1 or Am2
ð16-28Þ
Total cross-sectional area of bolt at root of thread or section of least diameter under stress required for the operating condition
Am1 ¼
Wm1 sbd
ð16-29Þ
Refer to Tables 8-20 and 8-21 for gasket factor m and minimum design seating stress, y, b, and bo
Refer to Table 8-17 for sbd Total cross-sectional area of bolt at root of thread or section of least diameter under stress required for gasket seating The actual cross-sectional area of bolts using the root diameter of thread or least diameter of unthreaded portion (if less), to prevent damage to the gasket during bolting-up
Am2 ¼
Ab ¼
Wm2 sbat
2yGN <j Am sbat
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð16-30Þ
ð16-31Þ
PACKINGS AND SEALS PACKINGS AND SEALS
Particular
16.7
Formula
FLANGE DESIGN BOLT LOAD W The bolt load in the design of flange for operating condition The bolt load in the design of flange for gasket seating
W ¼ Wm1 W¼
ð16-32Þ
Am þ Ab sbat 2
ð16-33Þ
The relation between bolt load per bolt (Wb ), diameter of bolt (D) and torque (Mt )
Wb ¼ 0:17DMt for lubricated bolts USCS
(Note: The meanings of symbols given in Eqs. (16-26) to (16-37) are defined in Chap. 8.)
Wb ¼ 263:5DMt
ð16-34Þ
where Wb in lbf, D in in, Mt in lbf in SI
ð16-35Þ
USCS
ð16-36Þ
where Wb in N, D in m, Mt in N m Wb ¼ 0:2DMt for unlubricated bolts where Wb in lbf, D in in, Mt in lbf in Wb ¼ 310DMt
SI
ð16-37Þ
where Wb in N, D in m, Mt in N m For location of gasket load reaction due to tightening of flange bolts
Refer to Fig. 16-3b
The total load on bolts in the gasket joint according to Whalen5
Fb ¼ g Ag
ð16-38Þ
where Ag ¼ contact area of gasket, m2 (in2 ) g ¼ gasket seating stress, MPa (psi), taken from Table 16-35 The load on bolts, which is based on hydrostatic end force
Fb ¼ nPt Am
ð16-39Þ
where Pt ¼ test pressure or internal pressure if no test pressure is available, MPa (psi) Am ¼ hydrostatic area (based on mean diameter of gasket) on which internal pressure acts, m2 (in2 ) n ¼ factor of safety taken from Table 16-36 For more information on design data, selection of packing and seals, properties of sealants and packing materials, dimensions and tolerances of seals, and chamfers on shaft, operating temperatures of various types of seals, data for metallic o-rings, q-rings and oring gaskets, static and dynamic seals, lip seals, and safety factors, etc.
Refer to Tables 16-4 to 16-36
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
PACKINGS AND SEALS
16.8
CHAPTER SIXTEEN
Particular
Formula
FIGURE 16-3(c) Plain bush seals. (Panels a and b courtesy of J. M. Neale, Tribology Handbook, Butterworths, London, 1973.)
Leakage through bush seals (Fig. 16-3c): The oil flow (Q) through plain axial bush seal due to leakage under laminar flow condition, Fig. 16-3c, panel a
2aðPs Pa Þ q l where Q in m3 /s (in3 /s)
Q¼
ð16-40Þ
¼ absolute viscosity, Pa s (cP) The symbols used in Eqs. (16-40) to (16-45) have the meaning as defined in Fig. 6-13c, panels a and b. The volumetric flow rate per unit pressure per unit periphery (q) under laminar flow condition for axial bush seal, Fig. 16-3c, panel a
q¼
c3 ð1 þ 1:5"2 Þ a 12
ð16-14Þ
for incompressible fluid where " ¼ c q¼
c3 Ps þ Pa 24 Pa
ð16-42Þ
for compressible fluidb The oil flow (Q) through plain radial bush seal due to leakage under laminar flow condition, Fig. 16-3c, panel b The volumetric flow rate per unit pressure per unit periphery (q) under laminar flow condition for radial bush seal, Fig. 16-3c, panel b
Q¼
2aðPs Pa Þ q ab
c3 a b 12 a log a e b for incompressible fluid q¼
q¼
c3 a b Ps þ Pa 24 a Pa
ð16-43Þ
ð16-44Þ
ð16-45Þ
for compressible fluid
a b
If shaft rotates, onset of Taylor vortices limits validity of formula to ðVc =Þ For Mach number <1.0, i.e., fluid velocity < local velocity of sound.
pffiffiffiffiffiffiffi c=a < 41:3 (where ¼ kinematic viscosity).
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
PACKINGS AND SEALS PACKINGS AND SEALS
Particular
16.9
Formula
The radial pressure distribution for laminar flow condition between smooth parallel surfaces in case face seal
p p1 ¼
3!2 2 6v r ðr R21 Þ 3 ln 20g R h
ð16-46Þ
where ¼ pressure at radial position r, MPa (lbf/in2 ) ¼ pressure at seal inside radius, MPa (psi) ¼ internal hydraulic pressure MPa (lbf/in2 ) ¼ radial position, m (in) ¼ kinematic viscosity N s/m2 (lbf s/in2 ) ¼ fluid density, lb/in3 (kg/mm3 ) ¼ rotational speed, rad/s ¼ inside radius of rotating member, m (in) ¼ outside radius of rotating member, m (in) ¼ thickness of fluid between members, m (in) h3 3!2 Q¼ ðR22 R21 Þ p2 p1 Þ 6 lnðR2 =R1 Þ 20g p p1 p2 r ! R1 R2 h
The amount of leakage of fluid through face seal
ð16-47Þ where Q ¼ volumetric leakage rate of fluid, m3 /s (in3 /s) The theoretical equation for zero leakage of fluid through face seal
p2 p1 ¼
The power loss or consumed due to leakage of fluid through face seal
P¼
The shape factor (Spf ) for a circular or annular gasket which is the ratio of the area of one load face to the area free to bulge6
3 !2 ðR22 R21 Þ 20
w2 ð16-49Þ ðR4 r41 Þ 13200h 2 where P ¼ power loss, hp D Di Spf ¼ o ð16-50Þ 4h where Do ¼ outside diameter of gasket, m (in) Di ¼ inside diameter of gasket, m (in)
For further design and selection of various types of seals, packings and gaskets, etc.
Refer to Figs. 16-4 to 16-14.
For nomenclature of gasketed joint
Refer to Fig. 16-15.
For packing assembly for a mechanical piston rod For shape factor for various gasket materials
6
For power absorption and starting torque for unbalanced and balanced seals
ð16-48Þ
Refer to Fig. 16-16. Refer to Fig. 16-17. Refer to Fig. 16-18.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
PACKINGS AND SEALS
16.10
CHAPTER SIXTEEN
FIGURE 16-4 Single radial lip seal.
FIGURE 16-5 Exclusion seal.
FIGURE 16-6 Radial exclusion seal. (Produced from ‘‘Packings and Seals’’ Issue, Machine Design, Jan. 20, 1977.)
FIGURE 16-7 Two-piece rod seal. (Produced from ‘‘Packings and Seals’’ Issue, Machine Design, Jan. 20, 1977.)
FIGURE 16-8 Clearance seal idealized labyrinth.
FIGURE 16-9 Face seal.
FIGURE 16-10 Compression packing.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
PACKINGS AND SEALS
TABLE 16-2 Allowable temperatures for materials and surface treatments Temperature
Temperature
Material or surface treatment
8F
8C
Material or surface treatment
Material Low-alloy gray irons Malleable iron Ductile iron Ni-Resist Ductile Ni-Resist 410 Stainless Steel 17-4 PH Stainless Steel Bronze Stellite no. 31 Inconel X Tool steel, Rc 62–65
650 720 720 800 1000 900 900 500 1200 1200 900
343 382 382 427 538 482 482 260 649 649 482
Carbon (high-temperature) K-30 (filled teflons) S-Monel Polymide Surface treatment Chromium plate Tin plate Silver plate Cadmium nickel plate Flame plate LW1 Flame plate LC-1A Flame plate LA-2
8F
8C
950 450–500 950 750
510 232–260 510 399
500 720 600 1000 1000 1600 1600
260 382 315.5 538 538 871 871
TABLE 16-3 Standard wire sizes for V-packing expanders Wire gaugea
Wire diameter, mm
Wire gauge
Wire diameter, mm
19 18 17 16 15 14
1.04 1.20 1.37 1.57 1.83 2.03
13 12 11
2.31 2.67 2.05 3.17 3.31 3.60
a
1 8
10 9
Wire gauge
Wire diameter, mm
5 32
3.82 4.11 4.49 4.77 4.89 5.25
8 7 3 16
6 5
American Wire Gauge (AWG).
TABLE 16-4 Dimensions (in mm) for chamfer on the shaft for mounting the seals d1 h11
d3
d1 h11
d3
d1 h11
d3
d1 h11
d3
d1 h11
d3
6 7 8 9 10 11 12 14 15 16 17 18 20 22
4.8 5.7 6.6 7.5 8.4 9.3 10.2 12.1 13.1 14.0 14.9 15.1 17.7 19.6
24 25 26 28 30 32 35 36 38 40 42 45 48 50
21.5 22.5 23.4 25.3 27.3 29.2 32.0 33.0 34.9 36.8 38.7 41.6 44.5 46.4
52 55 56 58 60 62 63 65 68 70 72 75 78 80
48.3 51.3 52.3 54.2 56.1 58.1 59.1 61.0 63.9 65.8 67.7 70.7 73.6 75.5
85 90 95 100 105 110 115 120 125 130 135 140 146 150
80.4 85.3 90.1 95.0 99.9 104.7 109.6 114.5 119.4 124.3 129.2 133.0 138.0 143.0
160 170 180 190 200 210 220 230 240 250 260 280 300 320
153 163 173 183 193 203 213 223 233 243 252 269 289 309
d1 h11
d3
340 360 380 400 420 440 460 480 500
329 349 369 389 409 429 449 469 489
16.11 Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
PACKINGS AND SEALS
16.12
CHAPTER SIXTEEN
TABLE 16-5 Selection of guide for packing materials
Condition
Leather (natural and synthetic)
Oil Air Water Steam Solvents Acids Alkalis Temperature range Types of metal
Good Good Good Not recommended Not recommended Not recommended Not recommended 558C þ828Ca Ferrous and nonferrous
Metal finish, rms (max.) Clearances Extrusions or cold flow Friction coefficient Resistance to abrasion Maximum pressure, MPa (kpsi) Concentricity Side loads High shock loads a
Homogeneous
Fabricated
63 Medium Good Low Good 861.7 (125)
Good Good Good Good Good Good Good 558C þ2008Ca Chrome-plated steel and nonferrous alloys with hard, smooth surfaces 16 Very close Poor Medium and high Fair 343.4 (50)
Good Good Good Good Good Good Fair 408C þ2608Ca Chrome-plated steel and nonferrous alloys with hard, smooth surfaces 32 Close Fair Medium Fair 549.4 (80)
Medium Fair Good
Very close Poor Poor to fair
Close Fair Fair
Depending on specification or combination of materials.
FIGURE 16-11 Molded packing. Typical U-ring packing.
FIGURE 16-12 Diaphragm seals-rolling diaphragm.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
PACKINGS AND SEALS PACKINGS AND SEALS
16.13
TABLE 16-6 Types of seals and their uses Type
Uses
Radial lip seals
For retaining lubricants in equipments having rotating, reciprocating oscillating shafts, to exclude foreign matter For containing highly viscous materials at low speeds For containing lubricants of lower viscosity at higher speeds in clean atmosphere For excluding contaminants such as dust and dirt For containing lubricant on one side and for excluding fluid on the other For splash system of lubrication For fixed shaft and rotating bore For directing oil flow back into the area to be sealed
Single lip (Fig. 16-4) Single lip—spring-loaded Double lip with one lip spring-loaded Dual lip with both lips spring-loaded Split seal External seal Hydrodynamic seal Exclusion seals (Figs. 16-5 and 16-6) Wipers, scrapers, axial seals, bellows, and boots Clearance seals (Fig. 16-8) Labyrinths, bushing, and ring seals Ring seals—split ring seals Expanding split ring Contracting split ring Straight-cut seal ring (Fig. 16-3a) Step seal ring Circumferential seal
To prevent entry of foreign materials into moving parts of machinery—to avoid contamination of lubricants Dynamic seals-to prevent leakage from a high-pressure station at one end of bushing to a region of low-pressure station at the other end of bushing To seal reciprocating components Used in compressors, pumps, and internal-combustion engines Linear actuators where high-pressure, high-temperature radiation and fatigue are expected Piston seal for low-grade actuators Devices where free-passage leakage is not permissible For rotary applications with low leakage and high performance
Face seals (Fig. 16-9) Stationary, rotating, and metal bellows type
Running seal between two flat precision finished surfaces, for high-speed applications, stuffing boxes, and temperature applications
Compression packing (Fig. 16-10)
For the throat of a stuffing box and its gland, dynamic seal
Molded packing (Fig. 16-11)
For automatic-hydraulic or mechanical packings
Lip type Single and multiple spring-loaded packings Squeeze type
Felt radial type
For sealing reciprocating parts Fitted in rectangular grooves machined in hydraulic or pneumatic mechanisms and used as a piston seal in hydraulic actuating cylinder, valve seat, or valve stem packing Used at high speeds from 10 to 20 m/s
Diaphragm seals (Fig. 16-12)
To prevent interchange of a fluid or contaminant between two separated areas, dynamic sealing and force transmitter
Nonmetallic gaskets (Fig. 16-13)
Static sealing
Metallic gaskets (Table 16-7) Corrugated, metal-jacketed, plain or machined (flat metal) round, heavy, or light cross-section (solid metal)
Static sealing, for high pressures and severe conditions, cast iron flanges, ammonia fittings, hydraulic cylinders, gas mains, heat exchangers, boiler openings, vacuum and cryogenic lines, and valve bonnets
Sealants Hardening (rigid or flexible), non-hardening and tapes
To exclude dust, dirt, moisture, and chemicals or contain a liquid or gas-surface coatings to protect against mechanical or chemical attack, to exclude noise, to improve appearance and to perform a joining function, thermal insulating, vibration damping
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
PACKINGS AND SEALS
16.14
CHAPTER SIXTEEN
TABLE 16-7 Properties and uses of nonmetallic gasket materials Classification
Special characteristics
General uses
Rubber asbestos
Tough and durable, relatively incompressible, good steam and hot water resistance
Heavy duty bolted and threaded joints as in water and steam pipe fittings; temperatures up to 2608C
Cork and rubber
Provides fluid barrier and resilience with compressibility; does not extrude from joint; die cuts well; high coefficient of friction
General-purpose gasketing; enables design of metal-to-metal joints; high friction keeps gasket positioned even where closing pressure is not perpendicular to flange faces
Cork composition
General purpose material compressible; high friction, low cost; excellent oil and solvent resistance; poor resistance to alkalis and corrosive acids
Mating rough or irregular parts; oil sealing at low cost in normal range of temperatures and pressures
Rubber, plastics
Highly adjustable according to compounding, hardness, modulus, fabric reinforcement, etc.; generally impervious, not compressible
Installations involving stretching over projections or where flow of gasket into threads or recesses is desired; for lowest compression set and maximum resistance to fluids such as alkalis, hot water, and certain acids
Low cost, noncorrosive General-purpose material; good oil, gasoline and water resistance
Spacers, dust barriers, splash seals where breathing and wicking not objectionable Machined or reasonably uniform flanges where adequate bolt pressures can be applied
Innumerable modifications available, depending on materials used and methods of combining
Usually employed for extreme conditions and special purposes
Paper Untreated Treated Combination constructions
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
PACKINGS AND SEALS PACKINGS AND SEALS
16.15
TABLE 16-8 Minimum metallic gasket seating stress Minimum seating stressa Type
f
f f f
f
Material
Thickness, mm
MPa
kpsi
Aluminum
3 1.5 and 0.75 3 1.5 and 0.75 3 1.5 and 0.75 3 1.5 and 0.75 3 1.5 and 0.75
109.8 137.3 248.1 309.9 379.0 474.1 448.2 559.9 577.3 646.2
16.0 20.0 36.0 45.0 55.0 69.0 65.0 81.0 84.0 94.0
3b 1.5 b 0.75 b 3b 1.5 b 0.75 b 3b 1.5 b 0.75 b 3b 1.5 b 0.75 b 3b 1.5 b 0.75 b
172.1 206.9 241.2 241.2 275.6 309.9 379.0 413.8 448.2 448.2 482.5 557.6 517.3 557.6 655.1
25.0 30.0 35.0 35.0 40.0 45.0 55.0 60.0 65.0 65.0 70.0 80.0 75.0 80.0 95.0
Copper Soft steel (iron) Monel Stainless steel Aluminum
Copper
Soft steel (iron)
Monel
Stainless steel
Aluminum Copper Soft steel (iron) Monel Stainless steel
3 3 3 3 3
10.3 13.7 27.4 30.9 41.2
1.5 2.0 4.0 4.5 6.0
Aluminum Copper Soft steel (iron) Monel Soft steel
3 3 3 3 3
13.7 17.2 20.6 24.0 27.4
2.0 2.5 3.0 3.5 4.0
Lead Aluminum Copper Soft steel (iron) Monel Stainless steel Inconel Hastelloy c
3 3 3 3 3 3 3 3
3.4 6.9 17.1 24.0 30.9 41.2 51.5 68.6
0.5 1.0 2.5 3.5 4.5 6.0 7.5 10.0
a
Seating stress values shown do not apply to ASME Code. Also they are based on optimum surface finish and clean flange surface, i.e., no grease, oil or gasket compound. Figures indicated are pitch, and the values of stress apply for all thicknesses.
b
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
PACKINGS AND SEALS
16.16
CHAPTER SIXTEEN
TABLE 16-9 Compression packing for various service conditions Service condition Fluid medium
Reciprocating shafts
Rotating shafts
Piston or cylinders
Valve stems
Acids and caustics
Asbestos, metallic, plastic (pliable), semimetallic, TFE fluorocarbon resins and yarns
Asbestos, plastic (pliable), semimetallic, TFE fluorocarbon resins and yarns
TFE fluorocarbon resins
Asbestos, plastic (pliable), semimetallic TFE fluorocarbon resins and yarns
Air, gas
Asbestos, metallic, semimetallic
Asbestos, semimetallic
Leather, metallic
Asbestos, semimetallic
Ammonia, low-pressure Duck and rubber, steam metallic, semimetallic
Asbestos, semimetallic
Duck and rubber
Asbestos, duck and rubber, semimetallic
Cold and hot gasoline and oils
Asbestos, plastic (pliable), semimetallic
Asbestos, plastic (pliable), semimetallic
High-pressure steam
Asbestos, metallic, plastic (pliable), semimetallic
Asbestos, metallic, plastic (pliable), semimetallic
Cold and hot water
Duck and rubber, Asbestos, plastic leather, plastic (pliable), (pliable), semimetallic semimetallic
Asbestos, plastic (pliable), semimetallic Metallic
Asbestos, metallic, plastic (pliable), semimetallic
Duck and rubber
Asbestos, duck and rubber, plastic (pliable), semimetallic
FIGURE 16-13 Common types of gasketed joints.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
PACKINGS AND SEALS
TABLE 16-10 Dimensions of oil seals
Nominala b 0:2, mm Shaft bore diameter Types A diameter d1 , of housing, mm mm and B Type C
cb min, mm
Nominala b 0:2, mm Shaft bore diameter diameter d1 , of housing, Types A mm mm and B Type C
cb min, mm
6
16 22
7
0.3
18
7
0.3
16 22
7
0.3
30 32 35 40
7 8
16 22 24
7
0.3
20
7
0.3
9
22 24 26
7
0.3
30 32 35 40 47
22 7
0.3
— 9
0.3
19 22 24 26
32 35 40 47
7
10
11
22 26
7
0.3
24
7
— 9
0.3
12
22 24 28 30
7
0.3
35 37 40 47
25
7
— 9
0.4
24 28 30 35
7
35 40 42 47 52
26
7
7
— 9
0.4
24 26 30 32 35
37 42 47
28
40 47 52
7
— 9
0.4
16
28 30 32 35
7
0.3
30
7
— 9
0.4
17
28 30 32 35 40
7
0.3
40 42 47 52 62
32
45 47 52
7
—
0.4
14
15
0.3
0.3
9
16.17 Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
PACKINGS AND SEALS
TABLE 16-10 Dimensions for oil seals (Cont.) Nominala b 0:2, mm Shaft bore diameter Types A diameter d1 , of housing, mm mm and B Type C
cb min, mm
35
0.4
47 50 52 62
7
47 50 52 62
7
38
52 55 62
40
36
— 9
Nominala b 0:2, mm Shaft bore diameter diameter d1 , of housing, Types A mm mm and B Type C
cb min, mm
63
85 90
10
12
0.5
65
85 90 100
10
12
0.5
68
90 100
10
12
0.5
70
90 100
10
12
0.5
72
95 100
10
12
0.5
75
95 100
10
12
0.5
78
100 100
10
12
0.5
80
100 110
10
12
0.5
85
110 120
12
15
0.8
90
110 120
12
15
0.8
95
120 125
12
15
0.8
100
120 125 130
12
15
0.8
105
130 140
12
15
0.8
110
130 140
12
15
0.8
115
140 150
12
15
0.8
120
150 160
12
15
0.8
— 9
0.4
7
— 9
0.4
52 55 62 72
8
— 9
0.4
42
55 62 72
8
— 10
0.4
45
60 62 65 72
8
— 10
0.4
48
62 72
8
— 10
0.4
50
65 68 72 80
8
— 10
0.4
68 72
8
70 72 80 85
8
70 72 80 85
8
58
72 80
8
— 10
0.4
125
150 160
12
15
0.8
60
80 85 90
8
— 10
0.4
130
160 170
12
15
0.8
62
85 90
10
12
0.5
135 140 145
170 170 175
11 15 15
15 15 15
0.8 1 1
52 55
56
— 10
0.4
— 10
0.4
— 10
0.4
16.18 Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
PACKINGS AND SEALS
TABLE 16-10 Dimensions for oil seals (Cont.) Nominala b 0:2, mm Shaft bore diameter Types A diameter d1 , of housing, mm mm and B Type C 150 160 170 180 190 200 210 220 230 240 250 260
180 190 200 210 220 230 240 250 260 270 280 300
15 15 15 15 15 15 15 15 15 15 15 20
15 15 15 15 15 15 15 15 15 15 15 20
cb min, mm
Nominala b 0:2, mm Shaft bore diameter diameter d1 , of housing, Types A mm mm and B Type C
cb min, mm
1 1 1 1 1 1 1 1 1 1 1 1
280 300 320 340 360 380 400 420 440 460 480 500
1 1 1 1 1 1 1 1 1 1 1 1
320 340 360 380 400 420 440 460 480 500 520 540
20 20 20 20 20 20 20 20 20 20 20 20
20 20 20 20 20 20 20 20 20 20 20 20
a
For limits of housing, see Tables 16-11 and 16-12. The edges may be chamfered or rounded according to the manufacturer’s discretion. Source: Bureau of Indian Standards: 5129, 1969. b
TABLE 16-11 Press-fit allowances and tolerancesa for type A seals Possible press-fit variation, mm Nominal bore diameter of housing, mm
Housing bore, mm
Outside diameter of seal, mm
High limit
Low limit
High limit
Low limit
Maximum interference
Minimum interference
25 25–55 55–125 125–200 200
þ0.03 þ0.03 þ0.03 þ0.04 þ0.05
0.03 0.03 0.03 0.04 0.05
þ0.20 þ0.25 þ0.30 þ0.38 þ0.48
þ0.10 þ0.15 þ0.20 0.22 0.32
0.23 0.28 0.33 0.42 0.53
0.07 0.12 0.17 0.18 0.27
a
All tolerances are relative to nominal bore diameter of housing. Source: IS 5129, 1969.
TABLE 16-12 Press-fit allowances and tolerances’ for types B and C seals Possible press-fit variation, mm Nominal bore diameter of housing, mm
Housing bore, mm
Outside diameter of seal, mm
High limit
Low limit
High limit
Low limit
Maximum interference
Minimum interference
50 50–90 90–115 115–170 170–215 215–230 230
Nominal Nominal þ0.03 þ0.03 þ0.04 þ0.04 þ0.04
0.03 0.03 0.03 0.03 0.04 0.04 0.04
þ0.12 þ0.14 þ0.18 þ0.20 þ0.23 þ0.25 þ0’30
þ0.04 þ0.06 þ0.08 þ0.10 þ0.13 þ0.15 þ0.20
0.15 0.17 0.21 0.23 0.27 0.29 0.34
0.04 0.06 0.05 0.07 0.09 0.11 0.16
a
All tolerances are relative to nominal bore diameter of housing. Source: IS 5129, 1969.
16.19 Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
PACKINGS AND SEALS
16.20
CHAPTER SIXTEEN
TABLE 16-13 Depth of the housing bore (all dimensions in mm) b
t (0.85b) Min
t2 (b to 0.3) Min
7 8 9 10 12 15 20
5.95 6.80 7.65 8.50 10.30 12.75 17.00
7.3 8.3 9.3 10.3 12.3 15.3 20.3
Source: Indian Standards 5129, 1969.
TABLE 16-14 Types of hollow, metallic O-rings8,9
FIGURE 16-14 Fully confined hollow-metal O-ring: (a) before bolting and (b) after bolting down.
Source: Wes J. Ratelle, ‘‘Seal Selection, Beyond Standard Practice,’’, Machine Design, Jan. 20, 1977 and, ‘‘Packings and Seals’’ Issue, Machine Design, Jan. 1977.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
PACKINGS AND SEALS PACKINGS AND SEALS
16.21
TABLE 16-15 Recommended groove dimensions for metallic Q-ring sealing inside pressure
Nominal O-ring OD Nominal tubing OD mm 0.8
Actual O-ring dimensions
Min B, mm
Incremental increase, I, mm
Tubing OD, O-Ring B, OD, mm mm
6.30
0.8 up to 25
0.74–0.96
1.6
11.0
1.6 thereafter 0.14–0.16
2.4
19
1.6
0.20–0.24
3.2
44
1.6
0.30–0.31
4.0
75
1.6
0.37–0.40
4.8
100
1.6
0.44–0.48
6.3
125
1.6
0.59–0.81
9.5
250
No limit
0.90–0.95
12.7
250
No limit
1.20–1.25
B þ 0:075 0.000 B þ 0:075 0.0006 B þ 0:100 0.000 B þ 0:125 0.000 B þ 0:150 0.000 B þ 0:175 0.000 B þ 0:200 0.000 B þ 0:300 0.000 B þ 0:400 0.000
Open-groove dimensions Maximum ID of closed groove, Y, mm
Maximum, radius of groove corner, R, mm
B 2:160
B 3:000
0.125
B 3:600
B 4:825
0.255
B 5:665
B 6:860
0.510
B 7:495
B 8:635
0.760
B 9:245
B 10:410
0.760
B 11:170
B 12:190
0.760
B 14:730
B 16:000
0.760
B 22:600
B 23:110
0.760
B 30:480
B 30:480
0.760
Depth, C, mm
Groove OD, Minimum X, groove ID, mm Y, mm
0.510– 0.500 1.066– 1.145 1.0650– 1.750 2.290– 2.415 2.920– 3.050 3.685– 3.810 4.955– 5.080 7.495– 7.620 9.910– 10.160
B þ 0:0105 to 0.01525 B þ 0:0105 to 0.01525 B þ 0:0127 to 0.0225 B þ 0:0178 to 0.0305 B þ 0:0203 to 0.0355 B þ 0:0228 to 0.0380 B þ 0:0280 to 0.0480 B þ 0:0355 to 0.0735 B þ 0:0510 to 0.0965
Source: Wes J. Ratelle, ‘‘Seal Selection. Beyond Standard Practice,’’ Machine Design, Jan. 20, 1977, and ‘‘Packings and Seals’’ Issue, Machine Design, Jan. 20, 1977.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
PACKINGS AND SEALS
16.22
CHAPTER SIXTEEN
TABLE 16-16 Rectangular groove dimensions for O-ring gaskets
O-ring nominal cross section, mm
Actual O-ring cross section, mm
Maximum groove depth, V, mm
1.6 1.6 1.6 1.6 1.6 2.4 3.2 4.8 6.4
0.100 0.0075 0.125 0.0075 0.150 0.0075 0.175 0.0075 0.175 0.0075 0.260 0.0075 0.350 0.0100 0.530 0.0125 0.700 0.0150
For Flange Gaskets (Axial) 0.070–0.0050 0.160 0.0050 0.090–0.0050 0.185 0.0075 0.110–0.0050 0.210 0.0075 0.130–0.0100 0.240 0.0075 0.125–0.0100 0.240 0.0075 0.205–0.0105 0.270 0.0125 0.280–0.0200 0.470 0.0125 0.445–0.0250 0.725 0.0125 0.585–0.0250 0.960 0.0125
1.6 1.6 1.6 1.6 1.6 2.4 3.2 4.8 6.4
0.100 0.0075 0.125 0.0075 0.150 0.0075 0.175 0.0075 0.175 0.0075 0.260 0.0075 0.350 0.0100 0.530 0.0125 0.700 0.0150
For Nonflange Gaskets (Radial) 0.075–0.0025 0.140 0.0050 0.095–0.0025 0.160 0.0075 0.115–0.0025 0.190 0.0075 0.135–0.0025 0.230 0.0075 0.130–0.0050 0.230 0.0075 0.210–0.0075 0.315 0.0125 0.290–0.0100 0.430 0.0125 0.455–0.0125 0.600 0.0125 0.595–0.0150 0.800 0.0125
TABLE 16-17 Triangular groove dimensions for O-ring flange gaskets
O-ring nominal cross section, mm
Actual O-ring cross section, mm
Width, h, mm
1.6 2.4 3.2 4.8 6.4
0:175 0:0075 0:260 0:0075 0:350 0:0100 0:530 0:0125 0:700 0:0150
0:240 þ 0:0075 0:000 0:345 þ 0:0125 0:000 0:470 þ 0:0175 0:000 0:710 þ 0:0255 0:000 0:950 þ 0:0375 0:000
Groove width, b, mm
Minimum diametral squeeze mm
Bottom radius, R1 , mm
0.025 0.030 0.035 0.040 0.045 0.050 0.060 0.075 0.100
0.0125 0.0200 0.0300 0.0380 0.0380 0.0500 0.0750 0.1250 0.1500
0.0175 0.025 0.030 0.035 0.038 0.043 0.050 0.065 0.090
0.0125 0.0200 0.0300 0.0380 0.0380 0.0500 0.0750 0.1250 0.1500
TABLE 16-18 Packing sizes recommended for various shaft diameters Shaft diameter, mm
Packing size, mm
12.70–15.85 17.45–38.10 39.70–50.80 52.40–63.50 65.10–76.20 77.80–101.60
7.95 9.50 11.10 12.70 14.30 15.85
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
PACKINGS AND SEALS PACKINGS AND SEALS
16.23
TABLE 16-19 Temperature limits for gasket materials Maximum sustained temperature Material
K
8C
Asbestos fiber and rubber Cellulose-fiber and rubber Cork and rubber Synthetic rubber Cork composition
673 423 393 393 393
400 150 120 120 120
TABLE 16-21 Selection of shaft piston seals Type name External-fitted to piston, sealing in bore Internal-fitted in housing, sealing on piston or rod Simple housing design Low wear rate High stability Low friction Resistance to extrusion Availability in small sizes Availability in large sizes Bidirectional sealing
Distributor
U-Ring
Cup
O-Ring
Good Very good Good Fair Good Fair Good
Good Good Fair Fair Good Good Fair Single acting only
Poor Good Very good Fair Good Poor Good
Very good Poor Poor Good Fair Very good Good Effective but usually used in pairs
FIGURE 16-15 Nomenclature of gasketed joint. (J. E. Shigley and C. R. Mischke, Standard Handbook of Machine Design, McGraw-Hill, 1986.)
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
0.34–2.94 50–425 27.46–48.05 4000–7000
0.29–0.53
17.16–20.59 2500–3000
0.49–4.90
Acrylic Polyester
Polyurethane-bitumen modified Butyls—mastic type Butyls—curing type
Polybutene Olcoresin
a
8.33–24.02
Epoxy–modified
5–20
5–150 650–800
250–400
100–270 3–15
10–20
50–750 250–350 75–125 325 3.0–6.0
150–500
0.17–0.27
0.34–0.69 0.15–0.44 0.34–0.59 0.44–0.69
Elongation %, ASTM D412 MPa
24.5–40
50–100 15–65 50–85.5 65–100
psi
Adhesion in tension, ASA 1161-1960
1.03–1.873
150–270
10.79–23.54 1500–3400
1500–2750
40–100 125–175 1500–3500
0.27–0.69 0.85–1.20 10.29–24.0
10.29–19.1
80–175 240–350 150–200
psi
0.55–1.20 1.72–2.40 1.03–1.37
MPa
Shear strength, ASTM D1002
Compounds built specifically for plotting and molding, where high strength and abrasion resistance are required.
70–710
42–75
1200–3500
56.5–125 1000–3000 285–780 1000–1500 500–600 1210 4000–13000
0.39–0.86 6.86–20.50 1.96–5.39 6.86–10.29 3.43–4.11 8.33 27.46–89.73
Polysulfide Polyurethanea Silicone Ncoprene Hypalon Viton Epoxy
psi
MPa
Tensile strength, ASTM D412
Sealant base test method
TABLE 16-20 Properties of sealants
0.5–5.0 0.25–1.5
0.75–1.50
1.0–5.0 0.25–0.75
0.27–0.50
0.25–1.5 1–3.0 0–1–0.25 0.5–1.5 1.0–5.0 0–3.0 0.04–0.10
Good Good
Good Good
Good
Fair to good Good
Good to excellent
Fair to good Excellent Fair to good Excellent Excellent Fair to good Good to excellent
Moisture resistance, % Abrasion ASTM D570 resistance
–30 to 120 –25 to 95
–20 to 95 –60 to 150
–35 to 95
–25 to 150 –55 to 150
–35 to 150
–50 to 120 –55 to 205 –75 to 370 –40 to 150 –40 to 150 –55 to 230 –35 to 150
Operating temperature 8C
20–40 5–70
5–70 15–75
0–3.0 l5–45
15.0–15.0
0–3.0
5.0–15.0 2.0–10.0
0–3.0 0–3.0
Shore ‘‘D’’ 40–60 Shore ‘‘D’’ 40–100 10–70 Shore ‘‘D’’ 10–45
0–3.0
0–3.0 0–10.0 0–10.0 0–10.0 10–20
Shrinkage 15–60 45–90 25–80 30–80 30–80 40–60 40–100
Shore A hardness ASTM 676
PACKINGS AND SEALS
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
PACKINGS AND SEALS PACKINGS AND SEALS
TABLE 16-22 Recommended maximum temperature for materials (supplement to Table 16-2)
TABLE 16-22 Recommended maximum temperature for material (supplement to Table 16-2)
Temperature Material Coil spring material Phosphor-bronze ASTM B159 Silicon bronze ASTM B99 Ni-span C902 Music wire ASTM A228 Hard-drawn spring wire ASTM A227 Oil-tempered wire ASTM A229 Valve spring wire ASTM A230 Beryllium-copper ASTM B197 Chrome-vanadium alloy steel AISI 6150 Silicon-manganese alloy steel AISI 9260 Chrome-silicon alloy steel AISI 9254 Martensite AISI 410 Martensite AISI 420 Austenitic AISI 301 Austenitic AISI 302 17-7 PH Stainless Steel Inconel6OO Nickel-chrome alloy steel A286 Inconel 7l8 Inconel X-750 L-605 S-816 Rene 41 Flat spring material Ni-span C902 Phosphor-bronze ASTM B103 High-carbon AISI 1050 High-carbon AISI 1065 High-carbon AISI 1075 High-carbon AISI 1095 Beryllium-copper ASTM B194 Austenitic AISI 301 Austenitic AISI 302 17-7 PH Stainless Steel Inconel 600 Beryleo-nickel Titanium 6-6-2 Sandvik 11 R51 Duranickel 301 Permanickel Elgiloy Havar Inconel 7l8 Inconel X-750 Rene 41
8F
8C
200 200 200 250 250 300 300 400 425 450 475 500 500 600 600 590 700 950 1200 1300 1400 1400 1400
93 93 93 121 121 149 149 204 218 232 246 260 260 315 315 311 371 510 649 704 760 760 760
200 200 200 200 250 250 400 600 600 700 700 700 750 800 800 800 900 900 1200 1300 1400
93 93 93 93 121 121 204 315 315 371 371 371 399 427 427 427 482 482 649 704 760
16.25
Temperature Material Formed metal bellows materials Brass CDA 240 Phosphor-bronze CDA 510 Beryllium-copper CDA 172 Monel 404 Unstabilized 300 series stainless steel Inconel 600 Inconel X-750 Welded metal bellows materials Ni-span C AM-350 Stainless Steel 410 Stainless Steel Commercially pure titanium Stabilized 300 series Stainless Steel Inconel X-750 Inconel 625 Hastelloy-C Rene 41
8F
8C
300 300 350 450 500 750 800
149 149 177 232 260 399 427
500 800 800 800 1220 1500 1500 1800 1800
260 427 427 427 659 815 815 982 982
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
PACKINGS AND SEALS
16.26
CHAPTER SIXTEEN
TABLE 16-23 pv values for seal face material (life of 8000 h) pv Value Unbalanced Product Water Oil Water Oil Water Oil Water Oil Water Water Oil
Combination face material Stainless steel Carbona Lead bronze Carbona Stellite carbona Tungsten carbide Carbonb Solid ceramic Sprayed ceramic
o o
o
Balanced
MPa, m/s
kpsi fpm
MPa, m/s
kpsi fpm
0.9 1.8 1.8 3.5 3.5 9 9 9 15 15 20
25.5 51.0 51.0 100 100
Seldom used Seldom used Seldom used Seldom used 10 70 25 150 Seldom used 90 150
Seldom used Seldom used Seldom used Seldom used 285 2000 710 4280 Seldom used 2570 4280
255 255 430 430 560
a
Metal-impregnated carbon. Retain impregnated carbon. Source: Courtesy M. J. Neale, Tribology Handbook, Butterworths, London, 1973. b
TABLE 16-24 Spring arrangements for various sizes of shaft and speeds Spring arrangement Stationary
Rotary
Shaft diameter, mm
Speed, rpm
Single
Multiple
Single
Multiple
100 >100 75 100 >100
3000 3000 4500 >4500 >4500
Yes No Yes Yes No
Yes Yes Yes Yes Yes
Yes No Yes No No
Yes Yes Yes No No
Source: Courtesy of M. J. Neale, Tribology Handbook, Butterworths, London, 1973.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
PACKINGS AND SEALS PACKINGS AND SEALS
16.27
TABLE 16-25 Types of static and dynamic seals Dynamic seals Clearance seals Static seals
Reciprocating
Fibrous gasket Metallic gasket Elastomeric gasket Plastic gasket Sealant, setting Sealant, nonsetting O-ring Inflatable gasket Pipe coupling Bellows
a
Labyrinth (Fig. 16-8) Fixed bushing Floating bushing
Contact seals
Rotary
Reciprocating
Rotary
Labyrinth (Fig. 16-8) Viscoseal Fixed bushing Floating bushing Centrifugal seal
U-ring (Fig. 16-11) O-ring (Table 16-15) Lobed O-ring Rectangular ring Packed gland Piston ring Bellows Diaphragm (Fig. 16-12)
Lip seal (Fig. 16-4) Face seal (Fig. 16-9a) Packed gland (Fig. 10-10) O-ringb (Fig. 16-14) Felt ring
a
Usually for steam or gas. Only for very slow speeds. Source: Courtesy M. J. Neale, Tribology Handbook, Butterworths, London, 1973. b
TABLE 16-26 Operating conditions of lip seals
Particular
TABLE 16-27 Types of seals for reciprocating shafts
Shaft diameter and housing
Remarks
Type of packing
75 mm diameter
60 kPa (8.7 psi)
>75 mm diameter 35 mm diameter
30 kPa (4.35 psi) 8000 rpm
75 mm diameter >75 mm diameter Housing Shaft
4000 rpm 15 m/s Fine-turned Grind and polish to better than 0.5 mm 0.25 mm total indicator reading Depends on speed, 0.25 mm Varies from 208C to 2008C (688F to 2668F)
Remarks
Cups and hats Maximum pressure of fluid Maximum speed
Surface finish
Eccentricity
Housing Shaft
Temperature
Semiautomatic, leather and rubber/ fabric used U-packing Used for piston rod application up to 10 MPa (1.5 kpsi) (rubber) or 20 MPa (3.0 kpsi) (rubber/fabric) Nylon-supported Used up to 25 MPa (3.6 kpsi) Composite Used with rubber sealing lips, rubber/ fabric supporting portions and nylon wearing portions—used for pressure varying from 15 to 20 MPa (2.2 to 3.0 kpsi) Source: M. J. Neale, Tribology Handbook, Butterworths, London, 1973.
Source: M. J. Neale, Tribology Handbook, Butterworths, London, 1973
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
PACKINGS AND SEALS
16.28
CHAPTER SIXTEEN
TABLE 16-28 Materials for lip seals (rubber) Resistance to
Temperature 8F
8C
Type of rubber
Trade names
Mineral oil
Chemical fluids
Acrylate
Thiacril Cyanacryl Viton Fluorel Silastic Silastomer Hycar Polysar
Excellent
Fair
68 to þ266
20 to þ130
Excellent
Excellent
77 to þ392
25 to þ200
Fair
Poor
158 to þ392
70 to þ200
Excellent
Fair
104 to þ212
40 to þ100
Fluoropolymer Polysiloxane Nitrile
Source: Courtesy M. J. Neale, Tribology Handbook, Butterworths, London, 1973.
TABLE 16-29 Seal materials for reciprocating shafts Material
Remarks
Rubber (nitrile) Highest scaling efficiency; low cost; easily formed to shape; limited to a pressure of 10 MPa (1.5 kpsi); excellent wear resistance RubberGreat toughness; resistance to extrusion impregnated and cutting; wear resistance inferior to fabric rubber Leather Good wear and extrusion resistance; poor resistance to permanent set; limited shaping capability Nylon Resist extrusion; provide a good bearing surface Source: Courtesy M. J. Neale, Tribology Handbook, Butterworths, London, 1973.
TABLE 16-30 Extrusion clearance for reciprocating shafts—dimensions in mm (in) 10 MPa (1.5 kpsi)
10–20 MPa (1.5–3.0 kpsi)
>20 MPa (3.0 kpsi)
Material
Normal
Short life
Normal
Short life
Normal
Short life
Rubber Rubber/fabric leather Polyurethane Nylon support
0.25 (0.01) 0.40 (0.015) 0.40 (0.015) —
0.50 (0.02) 0.60 (0.025) 0.60 (0.025) —
— 0.25 (0.01) 0.25 (0.01) 0.25 (0.01)
— 0.50 (0.02) 0.50 (0.02) 1.00 (0.04)
— 0.10 (0.005) 0.10 (0.005) 0.10 (0.005)
— 0.25 0.01) 0.25 (0.01) 0.25 (0.01)
Source: Courtesy M. J. Neale, Tribology, Handbook, Butterworths, London, 1973.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
250 300 300
0.700
0.525
7.000 1.750 2.100 2.100
Graphited asbestos with latern ring and jacket cooling arrangement—rotary type
Graphited asbestos with PTFE antiextrusion ring hand surface replaceable sleeve, jacket cooling arrangement—rotary type
Graphited asbestos and PTFE yarn with PTFE antiextrusion ring, jacket cooling arrangement—rotary type Reciprocating, steam-graphited asbestos Reciprocating, water-greased cotton packing Reciprocating, oil-graphited hemp yam
Source: Courtesy M. J. Neale, Tribology Handbook, Butterworths, London, 1973.
1000
0.280
Graphited asbestos with latern ring cooling arrangement—rotary type
75
100
40
15
0.105
Graphited asbestos—rotary type
psi
MPa
Pressure
Type of gland
TABLE 16-31 Operation conditions of packed glands (Fig. 16-1)
500 500 200
545
290
320
240
200
8F
260 260 93
285
143
160
115
93
8C
Temperature
0.75 0.75 0.75 (150)
5.5 (1080)
306 (6100)
17.75 (4000)
17.75 (4000)
17.75 (4000)
Velocity, m/s (fpm)
Steam Water Oil
No latern or jacket ring cooling required Cooling liquid used below 34.5 kPa sealing pressure Latern ring cooling liquid and water to jacket cooler used below sealing pressure of 34.5 kPa Cooling as per type 3; special packing and accurate assembly is required Water to jacket coolant used
Remarks
PACKINGS AND SEALS
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
16.29
PACKINGS AND SEALS
16.30
CHAPTER SIXTEEN
TABLE 16-32 Axial stress in packed glands
TABLE 16-33 Selection of number of sealing rings Minimum axial stress required for seal packing
Type of packing
MPa
psi
Teflon-impregnated braided asbestos Plastic Braided vegetable fiber, lubricated Plaited asbestos, lubricated Braided metallic
1.40
200
1.12 1.75 2.8 3.5
160 255 405 505
Pressure MPa
psi
Number of sets of sealing rings
1.0 1.0–2.0 2.0–5.0 3.5–17.0 7.0–15.0 >15.0
150 (150–250) 250–500 500–1000 1000–2000 above 2000
3 4 5 6 8 9–12
Source: Courtesy M. J. Neale, Tribology Handbook, Butterworths, London, 1973.
Source: Courtesy M. J. Neale, Tribology Handbook, Butterworths, London, 1973.
TABLE 16-34 Selection of packing materials
Material
Hardness of rod, HB
Axial clearance, mm
Lead bronze
250 min
0.08–0.12 (0.003–0.005 in)
Flake graphite gray cast iron White metal (Babbitt)
400 min
0.08–0.12
Filled PTFE
400 min
Reinforced pf resin Carbon-graphite Graphite/metal sinter
0.08–0.12
0.4–0.5 0.25–0.5
400 min
0.030–0.06
250 min
0.08–0.12
Application Optimum material with good lubricated bearing property High thermal conductivity; used where chemical condition exists and suited for pressure up to 300 MPa (50 kpsi) Cheaper suitable up to a pressure of 7 MPa (1.0 kpsi) Used where lead-bronze and flake graphite gray cast iron are not suitable because of chemical condition; used up to a maximum pressure of 35 MPa (5.0 kpsi) and maximum temperature 1208C (2508F) Suitable for unlubricated; very good chemical resistance; suited above 2.5 MPa (400 psi) Used with sour hydrocarbon gases and where lubricant may be thinned by solvents in gas stream Used with carbon-graphite piston rings; must be kept oil free; used up to 3508C (6608F) Alternative to filled PTFE and carbon-graphite
Source: Courtesy M. J. Neale, Tribology Handbook, Butterworths, London, 1973.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
PACKINGS AND SEALS
TABLE 16-35 Minimum recommended seating stresses for various gasket materials (Supplement to Table 16-8)
Nonmetallic
Metallic
Jacketed metalasbestos
Material, mm (in)
Gasket type
Asbestos fiber sheet 3.125 (18 in) thick 1 in) thick 1.563 (16 1 in) thick 0.78 (32
Flat
Asbestos fiber sheet 1 in) thick 0.78 (32 Asbestos fiber sheet 1 0.78 (32 in) thick Asbestos fiber sheet 1 in) thick 0.78 (32 Cellulose fiber sheet Cork composition Cork-rubber Fluorocarbon (TFE) 3.125 (18 in) thick 1 in) thick 1.563 (16 1 0.78 (32 in) thick Nonasbestos fiber sheets (glass, carbon, aramid, and ceramics) Rubber Rubber with fabric or metal reinforcement Aluminum Copper
Flat with rubber beads
Carbon steel
Flat
Stainless steel
Flat 241–655
Aluminum (soft) Copper (soft) Carbon steel (soft) Stainless steel Aluminum Copper Carbon steel Stainless steel Aluminum Copper Carbon steel Stainless steel Aluminum Copper Carbon steel Stainless steel Stainless steel
Corrugated Corrugated Corrugated Corrugated Profile Profile Profile Profile Plain Plain Plain Plain Corrugated Corrugated Corrugated Corrugated Spiral-wound
Flat with metal grommet Flat with metal grommet and metal wire Flat Flat Flat Flat
Flat
Flat Flat with reinforcement Flat Flat
Minimum seating stress range (psia) MPa
(1400–1600) 9.7–11.0 (3500–3700) 24.1–25.5 (6000–6500) 41.4–44.8 (1000–1500 lb/in) on beads 175–263 kN/m (3000–4000 lb/in) on grommet 525.4–700.5 kN/m (2000–3000 lb/in) on wire 350.2–525.4 kN/m (750–1100) 5.2–7.6 (400–500) 2.8–3.5 (200–300) 1.4–2.1 (1500–1700) 10.3–11.7 (3500–3800) 24.1–26.2 (6200–6500) 42.8–44.8 (1500–3000) depending on composition 10.3–20.7 (100–200) 0.7–1.4 (300–500) 2.1–3.5 (10,000–20,000) 68.9–137.9 (15,000–45,000) 103.4–310.3 depending on hardness (30,000–70,000) 207–483 depending on alloy and hardness (35,000–95,000) 241–655 depending on alloy and hardness (1000–3700) 6.9–25.5 (2500–4500) 17.2–31.0 (3500–5500) 24.1–37.9 (6000–8000) 41.4–55.2 (25,000) 172.4 (35,000) 241.3 (55,000) 379.2 (75,000) 517.1 (2500) 17.2 (4000) 27.6 (6000) 41.4 (10,000) 68.9 (2000) 13.8 (2500) 17.2 (3000) 20.7 (4000) 27.6 (3000–30,000) 20.7–206.8
a
Stresses in pounds per square inch except where otherwise noted. Source: J. E. Shigley and C. R. Mischke, Standard Handbook of Machine Design, McGraw-Hill Book Company, New York, 1986.
16.31 Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
PACKINGS AND SEALS
16.32
CHAPTER SIXTEEN
TABLE 16-36 Safety factors for gasketed joints, n, for use in Eq. (16-39) Safety factor, n
When to apply
1.2 to 1.4
For minimum-weight applications where all installation factors (bolt lubrication, tension, parallel seating, etc.) are carefully controlled; ambient to 2508F (1218C) temperature applications; where adequate proof pressure is applied For most normal designs where weight is not a major factor, vibration is moderate and temperatures do not exceed 7508F (3998C); use high end of range where bolts are not lubricated For cases of extreme fluctuations in pressure, temperature, or vibration; where no test pressure is applied; or where uniform bolt tension is difficult to ensure
1.5 to 2.5 2.6 to 4.0
Source: J. E. Shigley and C. R. Mischke, Standard Handbook of Machine Design, McGraw-Hill Book Company, New York, 1986.
FIGURE 16-16 Packing assembly for a mechanical piston rod. (M. J. Neale, Tribology Handbook, Butterworths, London, 1973.)
FIGURE 16-17 Ratio of retained stress to origins versus shape factor for, various materials: A—asbestos sheet; B— cellulose; C—cork-rubber. (J. E. Shigley and Mischke, Standard Handbook of Machine Design, McGraw-Hill, 1986.)
16.32 Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
PACKINGS AND SEALS PACKINGS AND SEALS
FIGURE 16-18 Power absorption and starting torque for balanced and unbalanced seals. (M. J. Neale, Tribology Handbook, Butterworths, London, 1973.)
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
16.33
PACKINGS AND SEALS
16.34
CHAPTER SIXTEEN
REFERENCES 1. Lingaiah, K., and B. R. Narayana Iyengar, Machine Design Data Handbook, Vol. I (SI and Customary Units), Suma Publishers, Bangalore, India, 1986. 2. Lingaiah, K., Machine Design Data Handbook, Vol. II (SI and Customary Metric Units), Suma Publishers, Bangalore, India, 1986. 3. Maleev, V. L., and J. B. Hartman, Machine Design, International Textbook Company, Scranton, Pennsylvania, 1954. 4. The American Society of Mechanical Engineers, ASME Boilers and Pressure Vessel Code, Section VIII, Division I, 1986. 5. Whalen, J. J., ‘‘How to Select the Right Gasket Material,’’ Product Engineering, Oct. 1860. 6. Shigley, J. E., and C. R. Mischke, Standard Handbook of Machine Design, McGraw-Hill Book Company, 1986. 7. Neale, M. J., Tribology Handbook, Butterworths, London, 1975. 8. Ratelle, W. J., ‘‘Seal Selection, Beyond Standard Practice,’’ Machine Design, Jan. 20, 1977. 9. ‘‘Packings and Seals’’ Issue, Machine Design, Jan. 1977. 10. Faires, V. M., Design of Machine Elements, Macmillan Book Company, 1955. 11. Bureau of Indian Standards. 12. Rothbart, H. A., Mechanical Design and Systems Handbook, McGraw-Hill Book Company, New York, 1985. 13. Lingaiah, K., Machine Design Data Handbook, McGraw-Hill Book Company, New York, 1994.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
Source: MACHINE DESIGN DATABOOK
CHAPTER
17 KEYS, PINS, COTTERS, AND JOINTS SYMBOLS4;5;6 a A b d d1 d2 d3 d4 dc dpl dm (or dpm ) dnom D F F 0 , F 00 F20 , F200 Ft F h l L lo , so m Mb Mt
addendum for a flat root involute spline profile, m (in) area, m2 (in2 ) breadth of key, m (in) effective length of knuckle pin, m (in) dedendum for a flat root involute spline profile, m (in) diameter, m (in) major diameter of internal spline, m (in) minor diameter of internal spline, m (in) major diameter of external spline, m (in) minor diameter of external spline, m (in) core diameter of threaded portion of the taper rod, m (in) large diameter of taper pin, m (in) mean diameter of taper pin, m (in) nominal diameter of thread portion, m (in) diameter of shaft, m (in) pitch diameter, m (in) force, kN (lbf) force on the cotter joint, kN (lbf) pressure between hub and key, kN (lbf) force applied in the center of plane of a feather keyed shaft which do not change the existing equilibrium but give a couple, kN (lbf) two opposite forces applied on the center plane of a double feather keyed shaft which give two couples, but tending to rotate the hub clockwise, kN (lbf) tangential force, kN (lbf) frictional force, kN (lbf) thickness of key, m (in) minimum height of contact in one tooth, m (in) length of key (also with suffixes), m (in) length of couple (also with suffixes), m (in) length of sleeve, m (in) length of spline, m (in) space width and tooth thickness of spline, m (in) module, mm, m (in) bending moment, N m (lbf in) twisting moment, N m (lbf in)
17.1 Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
KEYS, PINS, COTTERS, AND JOINTS
17.2
CHAPTER SEVENTEEN
pressure, MPa (psi) tangential pressure per unit length, MPa (psi) maximum pressure where the shaft enters the hub, MPa (psi) pressure at the end of key, MPa (psi) diametral pitch external load, kN (lbf) resistance on the key and on the shaft to be overcome when the hub is shifted lengthwise, kN (lbf) thickness of cotter, m (in) profile displacement, m (in) number of teeth, number of splines stress tensile or compressive (also with suffixes), MPa (psi) nominal bearing stress at dangerous point, MPa (psi) shear stress, MPa (psi) angle of cotter slope, deg angle of friction, deg coefficient of friction (also with suffixes)
p p1 p2 pd (or P) Q R t xm z b1
SUFFIXES b c d m p s t
bearing compressive design mean pin small end tensile, tangential Particular
Formula
ROUND OR PIN KEYS
pffiffiffiffi pffiffiffiffi d ¼ 3:035 D to 3:45 D
The large diameter of the pin key
where d and D are in mm pffiffiffiffi pffiffiffiffi d ¼ 0:6 D to 0:7 D where d and D are in in pffiffiffiffi pffiffiffiffi d ¼ 0:096 D to 0:11 D
SI
ð17-1aÞ
USCS
ð17-1bÞ
SI
ð17-1cÞ
where d and D are in m
STRENGTH OF KEYS Rectangular fitted key (Fig. 17-1, Table 17-1)
Pressure between key and keyseat
FIGURE 17-1
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
Width b Height h
Key cross section
2 2
6 8
6 20
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
Source: IS 2048, 1962.
6 36
Keyway radius r2 max
L min L max
0.16
r max r min
Chamfer or radius of key
Length of key
0.25 0.16
t2
þ0.05 0.00 þ0.05 0.00
1.8 1.4
3 3
8 10
Tolerance on keyway depth
t1
Keyway depth In shaft t1 1.2 (nominal) In hub t2 1
Above Up to
For shaft diameters
8 45
2.5 1.8
4 4
10 12 6 6
17 22
10 50
14 71
0.25
0.35 0.25
3.0 3.5 2.3 2.8
5 5
12 17
TABLE 17-1 Dimensions (in mm) of parallel keys and keyways
18 90
22 110
5 3.8
12 8
38 44
28 140
0.40
0.55 0.40
5 3.3
10 8
30 38
þ0.1 0.0 þ0.1 0.0
4.0 3.3
8 7
22 30
36 160
5.5 3.8
14 9
44 50
45 180
6 4.3
16 10
50 58
50 200
7 4.4
18 11
58 65
56 220
7.5 4.9
20 12
65 75
63 250
0.60
0.80 0.60
8.5 5.4
22 14
75 85
71 280
9.0 5.9
25 14
85 110
32 18
110 130
36 20
130 150
40 22
150 170
45 25
170 200
50 28
200 230
56 32
230 260
63 32
260 290
70 36
290 330
80 40
330 380
90 45
380 440
100 50
440 500
80 320
90 360
100 400
110 400
125 400
1.00
1.30 1.00
þ0.15 0.00 þ0.15 0.00
140 400
160 400
180 400
1.60
2.00 1.60
200 400
220 400
250 400
280 400
2.50
2.95 2.50
10 11 12 13 15 17 19 20 22 25 28 31 6.4 7.4 8.4 9.4 10.4 11.4 12.4 13.4 14.4 15.4 17.4 19.5
28 16
95 110
KEYS, PINS, COTTERS, AND JOINTS
17.3
KEYS, PINS, COTTERS, AND JOINTS
17.4
CHAPTER SEVENTEEN
Particular
Formula
Crushing strength The tangential pressure per unit length of the key at any intermediate distance L from the hub edge (Fig. 17-1, Table 17-2)
p ¼ p1 L tan
The torque transmitted by the key (Fig. 17-1)
Mt ¼ 12 p1 DL2 DL22 tan
The general expression for torque transmitted according to practical experience
where tan ¼
p1 p2 p1 ¼ L2 L0
Mt ¼ 14 b1 hDL2
2 1 18 b1 bL2
ð17-3Þ ð17-4Þ
where p2 ¼ 0, when L2 ¼ Lo ¼ 2:25D; tan ¼
For dimensions of tangential keys given here.
ð17-2Þ
p1 h ¼ b1 Lo 4:5D
Refer to Table 17-2.
Shearing strength The torque transmitted by the key (Fig. 17-1)
Mt ¼ 12 1 bDL2 19 1 bL22 where tan ¼
The shear stress at the dangerous point (Fig. 17-1)
1 ¼
ð17-5Þ
p1 b ¼ 1 Lo 2:25D
Mt L2 bð0:5D 0:11L2 Þ
ð17-6Þ
TAPER KEY (Fig. 17-2, Table 17-3) The relation between the circumferential force Ft and the pressure F between the shaft and the hub
F t ¼ 1 F
ð17-7Þ
The pressure or compressive stress between the shaft and the hub
F ¼ blp
ð17-8Þ
The torque
Mt ¼
1 2 1 blpD
ð17-9Þ
where 1 ¼ coefficient of friction between the shaft and the hub ¼ 0:25
FIGURE 17-2
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
KEYS, PINS, COTTERS, AND JOINTS KEYS, PINS, COTTERS, AND JOINTS
17.5
TABLE 17-2 Dimensions (in mm) of tangential keys and keyways
Keyway
Keyway
Shaft diameter, D
Height, h
Width, b
Radius, r
Key chamfer, a
100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 320 340 360 380 400 420 440
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 32 34 36 38 40 42 44
30 30 36 39 42 45 48 51 54 57 60 63 66 69 72 75 78 81 84 87 90 95 102 108 114 129 126 132
2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 4 4 4 4
3 3 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5
Shaft diameter, D 460 480 500 520 540 560 580 600 620 640 660 680 700 720 740 760 780 800 820 840 860 880 900 920 940 960 980 1000
Height, h 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 100
Width, b
Radius, r
Key chamfer, a
138 144 150 156 162 168 174 180 186 192 198 204 210 216 222 228 234 240 246 252 258 264 270 276 282 288 294 300
4 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 8 8 8 8 8 8 8
5 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 9 9 9 9 9 9 9
Notes: (1) The dimensions of the keys are based on the formula: width 0.3 shaft diameter, and thickness ¼ 0.1 shaft diameter; (2) if it is not possible to fix the keys at 1208, they may be fixed at 1808; (3) it is recommended that for an intermediate diameter of shaft, the key section shall be the same as that for the next larger size of the shaft in this table. Source: IS 2291, 1963.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
KEYS, PINS, COTTERS, AND JOINTS
TABLE 17-3 Dimensions (in mm) of taper keys and keyways
Shaft
Key
Above
Up to and including
6 8 10 12 17 22 30 38 44 50 58 65 75 85 95 110 130 150 170 200 230 260 290 330 380 440
8 10 12 17 22 30 38 44 50 58 65 75 85 95 110 130 150 170 200 230 260 290 330 380 440 500
Width, b (h9) 2 3 4 5 6 8 10 12 14 16 18 20 22 25 28 32 36 40 45 50 56 63 70 80 90 100
Height, h 2 3 4 5 6 7 8 8 9 10 11 12 14 14 18 10 25 22 25 28 32 32 36 40 45 50
Keyway in shaft and hub Chamfer or radius r1 , min 0.16 —
0.25 —
0.40 —
0.60 —
1.00 —
1.60 — 2.50
Keyway width, b (D10) 2 3 4 5 6 8 10 12 14 16 18 20 22 25 28 32 36 40 45 50 56 63 70 80 90 100
Depth in shaft, t1
Tolerance on t1
Depth in hub, t2
1.2 1.8 2.5 3.0 3.5 4.0 5.0 5.0 5.5 6.0 7.0 7.5 8.5 9.0 10.0 11.0 12.0 13.0 15.0 17.0 19.0 20.0 22.0 25.0 28.0 31.0
þ0.05 —
0.5 0.9 1.2 1.7 2.1 2.5 2.5 2.5 2.9 3.4 3.3 3.8 4.8 4.3 5.3 6.2 7.2 8.2 9.2 10.1 12.1 11.1 13.1 14.1 16,1 18.1
þ0.10
—
þ0.15
Tolerance on t2
Radius, r2 , max 0.16
þ0.1
0.25 —
— 0.40 —
þ0.2
0.60 —
—
1.00 —
þ0.3
1.60 —
Source: IS 2292, 1963.
17.6 Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
2.50
KEYS, PINS, COTTERS, AND JOINTS KEYS, PINS, COTTERS, AND JOINTS
Particular
17.7
Formula
The necessary length of the key
l¼
The axial force necessary to drive the key home (Fig. 17-2)
Fa ¼ F þ F ¼ 22 F þ F tan
The axial force is also given by the equation
Fa ¼ 0:21pbl
ð17-12Þ
Mt a
ð17-13Þ
2Mt 1 bpD
ð17-10Þ ð17-11Þ
where 2 ¼ 0:10, tan ¼ 0:0104 if the taper is 1 in 100
FRICTION OF FEATHER KEYS (Fig. 17-3) The circumferential force (Fig. 17-3) The resistance to be overcome when a hub connected to a shaft by a feather, Fig. 17-3a and subjected to torque Mt , is moved along the shaft
Ft ¼
R ¼ Ft þ 2 F 0
ð17-14Þ
¼ ð þ 2 ÞFt
ð17-15Þ
0
00
and F ¼ F ¼ Ft ¼ force assumed to be acting at the shaft axis without changing the equilibrium Fig. 17-3a The equation for resistance R, if and 2 are equal
R ¼ 2Ft
ð17-16Þ
The equation for torque if two feather keys are used, Fig. 17-3b
Mt ¼ 2F2 a
ð17-17Þ
The force F2 applied at key when two feather keys are used, Fig. 17-3b
F2 ¼
The resistance to be overcome when the hub connected to the shaft by two feather keys Fig. 17-3b and subjected to torque Mt is moved along the shaft
R2 ¼ 2F2 ¼
For Gib-headed and Woodruff keys and keyways
Refer to Tables 17-4 and 17-5.
Mt Ft þ 2a 2
ð17-18Þ R 2
FIGURE 17-3 Feather key.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð17-19Þ
17.8
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
12 17 22 30 38 44 50 58 65 75 85 95 110 130 150 170 200 230 260 290 330 380 440 500
Above
10 12 17 22 30 38 44 50 58 65 75 85 95 110 130 150 170 200 230 260 290 330 380 440
Source: IS 2293, 1963.
Up to and including
Shaft diameter, d
4 5 6 8 10 12 14 16 18 20 22 25 28 32 36 40 45 50 56 63 70 80 90 100
Width, b (h9) 4 5 6 7 8 8 9 10 11 12 14 14 16 18 20 22 25 28 32 32 36 40 45 50
Height (nominal) h
þ0.3
—
þ0.2
—
þ0.1
Tolerance on h
Key
TABLE 17-4 Gib-head keys and keyways (all dimensions in mm)
7 8 10 11 12 12 14 16 18 20 22 22 25 28 32 36 40 45 50 56 63 70 75 80
Height of gib-head, h1
2.50
1.60 —
1.00 —
0.60 —
—
0.40
—
0.16 — 0.25
Chamber or radius, r1 (min) 4 5 6 8 10 12 14 16 18 20 22 25 28 32 36 40 45 50 56 63 70 80 90 100
Width of keyway (D10) 2.5 3 3.5 4 5 5 5.5 6 7 7.5 8.5 9 10 11 12 13 15 17 19 20 22 25 28 31
Depth in shaft, t1
þ0.15
—
þ0.1
Tolerance on t1
1.2 1.7 2.1 2.5 2.5 2.5 2.9 3.4 3.5 3.8 4.8 4.3 5.3 6.2 7.2 8.2 9.2 10.1 12.1 11.1 13.1 14.1 16.1 18.1
Depth in hub, t2
Key in shaft and hub
þ0.3
þ0.15
þ0.1
Tolerance on t2
2.50
—
1.60
—
1.00
—
0.60
—
0.4
—
0.25
0.16
Radius at bottom of r2ðmaxÞ keyway
KEYS, PINS, COTTERS, AND JOINTS
Group I
Group II
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
1.4 2.6 2.6 3.7 3.7 3.7 5 6.5 5 6.5 7.5 6.5 7.5 9 7.5 9 (10) 11 9 11 13 11 13 16
3 4 6 6 8 8 8 — 10 10 — 12 12 — 17 17 17 — 22 22 — 30 30 —
4 6 8 8 10 10 10 — 12 12 — 17 17 — 22 22 22 — 30 30 — 38 38 —
6 8 10 10 12 12 12 16 17 17 17 22 22 22 30 30 30 30 38 38 38 38 38 38
8 10 12 12 17 17 17 17 22 22 22 30 30 30 38 38 38 38 — — — — — —
4.0 7.0 7.0 10.0 10.0 10.0 13.0 16.0 13.0 16.0 19.0 16.0 19.0 22.0 19.0 22.0 25.0 28.0 22.0 28.0 32.0 28.0 32.0 45.0
Keyslot in shaft
Keyslot in hub
0.2
0.2 0.1
0.1
0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 þ 0.2
þ0.1
3.82 6.76 6.76 9.66 9.66 9.66 12.65 15.72 12.65 15.72 18.57 15.72 18.57 21.63 18.57 21.63 24.49 27.35 21.63 27.35 31.43 27.35 31.43 43.08
1.0 2.0 1.8 2.9 2.9 2.5 3.8 5.3 3.5 5.0 6.0 4.5 5.5 7.0 5.1 6.6 7.6 8.6 6.2 8.2 10.2 7.8 9.8 12.8
1.0 2.0 1.8 2.9 2.9 2.8 4.1 5.6 4.1 5.6 6.6 5.4 6.4 7.9 6.0 7.5 8.5 9.5 7.5 9.5 11.5 9.1 11.1 14.1
þ0.2
þ0.1
þ0.2
þ0.1
0.6 0.8 1.0 1.0 1.0 1.4 1.4 1.4 1.7 1.7 1.8 2.2 2.2 2.2 2.6 2.6 2.6 2.6 3.0 3.0 3.0 3.4 3.4 3.4
0.6 0.8 1.0 1.0 1.0 1.1 1.1 1.1 1.1 1.1 1.1 1.3 1.3 1.3 1.7 1.7 1.7 1.7 1.7 1.7 1.7 2.1 2.1 2.1
þ0.1
0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4
0.2
0. 1
Chamfer Depth, t Depth t1 Radius, r1 Tolerance or Tolerance on d1 radius, r on r Length L Series A Series B Tolerance Series A Series B Tolerance Nominal Tolerance
Key
Notes: (1) The dimensions d t and d þ t1 may be specified on workshop drawings; (2) the key size 6 10 is nonpreferred; (3) the key size 2:5 3:7 shall be used in automobile industries only. Source: IS 2294, 1963.
1 1.5 2 2 2.5 3 3 3 4 4 4 5 5 5 6 6 6 6 8 8 8 10 10 10
Diameter of b h Up to and Up to and tolerance (h9) (h12) Over including Over including d1
Key section
Range of shaft dia, d
TABLE 17-5 Woodruff keys and keyways (all dimensions in mm)
KEYS, PINS, COTTERS, AND JOINTS
17.9
KEYS, PINS, COTTERS, AND JOINTS
17.10
CHAPTER SEVENTEEN
Particular
Formula
SPLINES Parallel-sided or straight-sided spline The torque which an integral multispline shaft can transmit (Tables 17-6 to 17-12)
Mt ¼ 12 phliðD hÞ
ð17-20Þ
TABLE 17-6 Proportions of SAE standard parallel side splines Bearing pressure, p Types of spline fittings
Symbols
Proportions
Fit
MPa
kpsi
w h h
w ¼ 0:241D 4A, h ¼ 0:075D 4B, h ¼ 0:125D
A B
20.6 13.7
3.00 2.00
w h h h
w ¼ 0:250D 6A, h ¼ 0:050D 6B, h ¼ 0:075D 6C, h ¼ 0:100D
A B C
20.6 13.7 6.9
3.00 2.00 1.00
w h h h
w ¼ 0:156D 10A, h ¼ 0:045D 10B, h ¼ 0:070D 10C, h ¼ 0:095D
A B C
20.6 13.7 6.9
3.00 2.00 1.00
w h h h
w ¼ 0:098D 16A, h ¼ 0:045D 16B, h ¼ 0:070D 16C, h ¼ 0:095D
A B C
20.6 13.7 6.9
3.00 2.00 1.00
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
KEYS, PINS, COTTERS, AND JOINTS KEYS, PINS, COTTERS, AND JOINTS
17.11
TABLE 17-7 Proportions of involute spline profile (American Standard)
Proportions 6 P ¼ 32 through 48 96
Spline characteristics
Symbols
P ¼ 12 through 12 24
Pitch diameter
D
D ¼ zm ¼
Circular pitch
p
p ¼ ð=PÞ
p ¼ ð=PÞ
Tooth thickness
t
m ¼ t¼ 2 2P
t ¼ ðm=2Þ ¼ ð=2PÞ
Diametral pitch
P
P ¼ ð=pÞ
P ¼ ð=pÞ
Addendum
a
a ¼ 0:5m ¼
Dedendum (internal)
b1
b1 ¼ 0:90m ¼
Dedendum
b
b ¼ 0:5m ¼
Dedendum (external)
b1
b1 ¼ 0:9m ¼ 0:900=P
b1 ¼ 1:0m ¼ 1:000=P
Major diameter (internal)
Doi
Doi ¼ ðz þ 1:8Þm ¼ ðz þ 1:8Þ=P
Doi ¼ ðz þ 1:8Þm ¼ ðz þ 1:8Þ=P
Minor diameter (external)
Dme
Dme ¼ ðz 1:8Þm ¼ ðz 1:8Þ=P
Dme ¼ ðz 2:0Þm ¼ ðz 2:0Þ=P
z P
D ¼ zm ¼ z=P
0:500 P 0:900 P
0:500 P
a ¼ 0:5m ¼ 0:500=P b1 ¼ 0:9m ¼ 0:900=P b ¼ 0:5m ¼ 0:500=P
Source: Courtesy H. L. Horton, ed., Machinery’s Handbook, 15th ed., The Industrial Press, New York, 1957.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
KEYS, PINS, COTTERS, AND JOINTS
TABLE 17-8 Straight sided splines (all dimensions in mm)
Nominal size id D
No. of splines, i
Minor diameter, d
Major diameter, D
Width, B
6 23 26 6 26 30 6 28 32 8 32 36 8 36 40 8 42 46 8 46 50 8 52 58 8 56 62 8 62 68 10 72 78 10 82 88 10 92 98 10 102 108 10 112 120
6 6 6 8 8 8 8 8 8 8 10 10 10 10 10
23 26 28 32 36 42 46 52 56 62 72 82 92 102 112
26 30 32 36 40 46 50 58 62 68 78 88 98 108 120
Light-Duty Series 6 22.1 1.25 3.54 6 24.6 1.84 3.85 7 26.7 1.77 4.03 6 30.4 1.89 2.71 7 34.5 1.78 3.46 8 40.4 1.68 5.03 9 44.6 1.61 5.75 10 49.7 2.72 4.89 10 53.6 2.76 6.38 12 59.8 2.48 7.31 12 69.6 2.54 5.45 12 79.3 2.67 8.62 14 89.4 2.36 10.08 16 99.9 2.23 11.49 18 108.8 3.23 10.72
6 11 14 6 13 16 6 16 20 6 18 22 6 21 25 6 23 28 6 26 32 6 28 34 8 32 38 8 36 42 8 42 48 8 46 54 8 52 60 8 56 65 8 62 72 10 72 82 10 82 92 10 92 102 10 102 112 10 112 125
6 6 6 6 6 6 6 6 8 8 8 8 8 8 8 10 10 10 10 10
11 13 16 18 21 23 26 28 32 36 42 46 52 56 62 72 82 92 102 112
14 16 20 22 25 28 32 34 38 42 48 54 60 65 72 82 92 102 112 125
a These values are based on the generating process. Source: IS 2327, 1963.
d1 ,a min
e,a max
Medium-Duty Series 3 9.9 1.55 3.5 12.0 1.50 4 14.5 2.10 5 16.7 1.95 5 19.5 1.98 6 21.3 2.30 6 23.4 2.94 7 25.9 2.94 6 29.4 3.30 7 33.5 3.01 8 39.5 2.91 9 42.7 4.10 10 48.7 4.00 10 52.2 4.74 12 57.8 5.00 12 67.4 5.43 12 77.1 5.40 14 87.3 5.20 16 97.7 4.90 18 106.3 6.40 b
f
a
0.32 0.16 0.45 1.95 1.34 1.65 1.70 0.15 1.02 2.54 0.86 2.44 2.50 2.40 2.70 3.00 4.50 6.30 4.40
g, max
k, mix
r, max
0.3 0.3 0.3 0.4 0.4 0.4 0.4 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
0.3 0.3 0.3 0.4 0.4 0.4 0.4 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
0.2 0.2 0.2 0.3 0.3 0.3 0.3 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
0.3 0.3 0.3 0.3 0.3 0.3 0.4 0.4 0.4 0.4 0.4 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
0.3 0.3 0.3 0.3 0.3 0.3 0.4 0.4 0.4 0.4 0.4 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
0.2 0.2 0.2 0.2 0.2 0.2 0.3 0.3 0.3 0.3 0.3 0.3 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
Centering on
g
g
g
g
Inside centering is not always possible with generating processes.
17.12 Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
Inside diametera
Inside diameter or flanksb
Inside diametera
Inside diameter or flanksb
KEYS, PINS, COTTERS, AND JOINTS KEYS, PINS, COTTERS, AND JOINTS
17.13
TABLE 17-9 Tolerances for straight-sided splines (all dimensions in mm)
Tolerance on Minor diameter of hub, d
Major diameter of hub, D
Soft or hardened
Soft or hardened
Soft or hardened
Shaft sliding or fixed
D9
F10
H7
H11
Shaft sliding inside hub
h8
e8
f7
a11
Shaft fixed in hub Shaft sliding inside hub Shaft fixed in hub
p6 h8 u6
h6 e8 k6
j6 — —
a11 a11 a11
Assembly of splined hub and shaft Splined hub
Width of hub B
For centering on inner diameter or flanks For centering on inner diameter
Splined shaft For centering on flanks
Particular
Formula
Involute-sided spline AMERICAN STANDARD (Table 17-7) The addendum a and dedendum b for a flat root, Table 17-7 The area resisting shear, Table 17-7
The minimum height of contact on one tooth
The corresponding area of contact of all z teeth
a¼b¼m¼ A ¼
ð17-21Þ
DL 2
h ¼ 0:8m ¼ A¼
1 P
ð17-22Þ 0:8 0:8D ¼ P z
0:8D zL ¼ 0:8DL z
DL z
The torque capacity of teeth in shear
Mt ¼
The torque capacity of the spline in bearing with b ¼ 2dc
Mtb ¼ 0:8D2 Ldc
D ¼ 0:7854D2 Ld 2 d
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð17-23Þ ð17-24Þ
ð17-25Þ ð17-26Þ
KEYS, PINS, COTTERS, AND JOINTS
17.14
CHAPTER SEVENTEEN
TABLE 17-10 Straight-sided splines for machine tools (all dimensions in mm)
4 Splines
6 Splines
Nominal size, ia d D
Minor diameter, d
Major diameter, D
Width, B
4 11 15 4 13 17 4 16 20 4 18 22 4 21 25 4 24 28 4 28 32 4 32 38 4 36 42 4 42 48 4 46 52 4 52 60 4 58 65 4 62 70 4 68 78
11 13 16 18 21 24 28 32 36 42 46 52 58 62 68
15 17 20 22 25 28 32 38 42 48 52 60 65 70 78
3 4 6 6 8 8 10 10 12 12 14 14 16 16 16
a
i ¼ number of splines Source: IS 2610, 1964.
Nominal size, ia d D
Minor diameter, d
Major diameter, D
Width, B
6 21 25 6 23 28 6 26 32 6 28 34 6 32 38 6 36 42 6 42 48 6 46 52 6 52 60 6 58 65 6 62 70 6 68 78 6 72 82 6 78 90 6 82 95 6 88 100 6 92 105 6 98 110 6 105 120 6 115 130 6 130 145
21 23 26 28 32 36 42 46 52 58 62 68 72 78 82 88 92 98 105 115 130
25 28 32 34 38 42 48 52 60 65 70 78 82 90 95 100 105 110 120 130 145
5 6 6 7 8 8 10 12 14 14 16 16 16 16 16 16 20 20 20 20 24
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
KEYS, PINS, COTTERS, AND JOINTS
TABLE 17-11 Undercuts, chamfers, and radii for straight-sided splinesa (all dimensions in mm) External splines
Designation, id D
Type A
Type B
Type M
Internal splines
B
d1 , min
g, max
f , min
h
r1 , max
m
n
r2
k, max
r3 , max
Projected tip width of hub
4 11 15 4 13 17 4 16 20 4 18 22 4 21 25 4 24 28 4 28 32 4 32 38 4 36 42 4 42 48 4 46 52 4 52 60 4 56 65 4 62 70 4 68 78
3 4 6 6 8 8 10 10 12 12 14 14 16 16 16
9.6 11.8 15.0 16.9 20.1 23.0 26.8 30.3 34.5 40.2 44.4 49.5 56.2 59.5 64.4
0.2 0.2 0.3 0.3 0.3 0.3 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
1.50 2.37 2.87 4.35 5.00 7.30 7.39 9.56 11.03 15.41 16.79 21.63 23.26 23.61 27.57
5.0 5.5 6.7 7.7 8.9 10.4 12.1 14.2 15.9 19.0 20.7 23.7 26.4 28.3 31.2
0.10 0.10 0.15 0.15 0.15 0.15 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25
2.82 3.76 5.64 5.64 7.52 7.52 9.40 9.40 11.28 11.28 13.16 13.16 15.04 15.04 15.04
1.70 1.70 1.70 1.70 1.70 1.70 1.63 2.55 2.55 2.55 2.55 3.40 2.98 3.40 4.25
0.3 0.3 0.3 0.3 0.6 0.6 0.6 0.6 0.6 1.0 1.0 1.0 1.0 1.0 1.0
0.2 0.2 0.3 0.3 0.3 0.3 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
0.15 0.15 0.25 0.25 0.25 0.25 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40
0.5 0.5 0.7 0.7 0.7 0.7 1.0 1.0 1.0 1.0 1.3 1.3 1.6 1.6 1.6
a
Four splines; see Fig. 17-4a. Source: IS 2610, 1964
TABLE 17-12 Undercuts, chamfers, and radii for straight-sided splinesa (all dimensions in mm) External splines
Designation, id D
Type A B
d1 , min
g, max
f , min
h
r1 , max
m
n
r2
k, max
r3 , max
Projected tip width of hub
6 21 25 6 23 28 6 26 32 6 28 34 6 32 38 6 36 42 6 42 48 6 46 52 6 52 60 6 58 65 6 62 70 6 68 78 6 72 82 6 78 90 6 82 95 6 88 100 6 92 105 6 98 110 6 105 120 6 115 130 6 130 145
5 6 6 7 8 8 10 12 14 14 16 16 16 16 16 16 20 20 20 20 24
19.50 21.30 23.40 25.90 29.90 33.70 39.94 44.16 49.50 55.74 59.50 64.40 68.30 73.00 79.60 82.90 87.10 93.40 98.80 108.4 123.9
0.3 0.3 0.4 0.4 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.6 0.6 0.6 0.6 0.6
1.95 1.34 1.65 1.70 2.83 4.95 6.02 5.81 5.89 8.29 8.03 9.73 12.67 13.07 13.96 17.84 18.96 19.22 19.25 24.75 29.20
9.7 11.0 11.8 12.9 14.8 16.5 19.3 21.1 23.9 26.7 28.6 31.4 33.4 36.2 38.0 41.3 43.1 46.4 49.2 54.2 61.8
0.15 0.15 0.15 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.30 0.30 0.30 0.30 0.30
4.70 5.64 5.64 6.58 7.52 7.52 9.40 11.28 13.16 13.16 15.04 15.04 15.04 15.04 15.04 15.04 18.80 18.80 18.80 18.80 22.56
1.70 2.13 2.55 2.55 2.55 2.55 2.55 2.55 3.40 3.98 3.40 4.25 4.25 5.10 5.53 5.10 5.53 5.10 6.38 6.38 6.38
0.6 0.6 0.6 0.6 0.6 0.6 1.0 1.0 1.0 1.0 1.0 1.0 1.6 1.6 1.6 1.6 1.6 2.0 2.0 2.5 2.5
0.3 0.3 0.4 0.4 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.6 0.6 0.6 0.6 0.6
0.2 0.2 0.3 0.3 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.5 0.5 0.5 0.5 0.5
0.7 0.7 1.0 1.0 1.0 1.0 1.0 1.3 1.3 1.6 1.6 1.6 2.0 2.0 2.0 2.0 2.0 2.0 2.4 2.4 2.4
a
Type B
Type M
Internal splines
Six splines see Fig. 17-4b.
17.15 Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
KEYS, PINS, COTTERS, AND JOINTS
17.16
CHAPTER SEVENTEEN
Particular
Formula
The theoretical torque capacity of straight-sided spline with sliding according to SAE
Mt ¼ 6:895 106 i
Dþd hL 4
SI
ð17-26aÞ
where ¼ number of splines ¼ diameter as shown in Table 17-7, m ¼ inside diameter of spline, m ¼ pitch diameter of spline, m ¼ length of spline contact, m ¼ minimum height of contact in one tooth of spline, m Mt in N m Dþd Mt ¼ 1000i hL USCS ð17-26bÞ 4 i D; d d D L h
where Mt in lb in; d, D, L, and h in in D3me ð1 D4i =D4me Þ 4D2 where
Equating the strength of the spline teeth in shear to the shear strength of shaft, the length of spline for a hollow shaft
L¼
ð17-26cÞ
Di ¼ internal diameter of a hollow shaft, m (in) Dme ¼ minor diameter (external), m (in) D3me 4D2
The length of spline for a solid shaft
L¼
The effective length of spline for a hollow shaft used in practice according to the SAE
Le ¼
ð17-26dÞ
D3me ð1 D4i =D4me Þ D2
ð17-26eÞ
For solid shaft Di ¼ 0. For diametrical pitches used in involute splines (SAE and ANSI)
Refer to Table 17-13.
TABLE 17-13 Diametral pitchesa used in involute splines (SAE and ANSI) 2:5 5 a
3 6
4 8
5 10
6 12
8 16
10 20
12 24
16 32
20 40
24 48
32 64
40 80
48 96
Diametral pitches are designated as fractions; the numerator of these fractions is the diametral pitch, P.
INDIAN STANDARD (Figs. 17-4 and 17-5, Tables 17-14 and 17-15) The value of profile displacement (Fig. 17-4)
xm ¼ 12 ðd1 mz 1:1mÞ The value xm varies from 0:05m to þ0:45m
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð17-27Þ
KEYS, PINS, COTTERS, AND JOINTS KEYS, PINS, COTTERS, AND JOINTS
Particular
17.17
Formula
The number of teeth
z¼
The minor diameter of the internal spline (Fig. 17-4a)
d2 ¼ mz þ 2xm 0:9m ¼ d1 2m
ð17-29Þ
The major diameter of the external spline (Fig. 17-4a)
d3 ¼ mz þ 2xm þ 0:9m ¼ d1 0:2m
ð17-30Þ
The minor diameter of the external spline (Fig. 17-4a)
d4 mx þ 2xm 1:1m ¼ d1 2:2m
ð17-31Þ
1 ðd 2xm 1:1mÞ m 1
ð17-28Þ
FIGURE 17-4(a) Reference profile of an involute-sided spline. (Source: IS 3665, 1966.)
FIGURE 17-4(b) Nomenclature of the involute spline profile.
FIGURE 17-5 Measurement between pins and measurement over pins of an involute-sided spline. (Source: IS 3665, 1966.)
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
17.18
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
6 7 7 8 9 11 12 14 14 16 17 18 18 20 21 22 22 24 24 26 28 28 30 31 32 34 34 36 38 38 40
15 11 17 13 18 14 20 16 22 18 25 21 28 24 30 26 32 28 35 31 38 33 37 34 40 36 42 38 45 41 47 43 48 44 50 46 ð52 48Þ 55 51 ð58 54Þ 60 56 ð62 58Þ 65 61 ð68 64Þ 70 66 ð72 68Þ 75 71 ð78 74Þ 80 76 ð82 78Þ
12 14 14 16 18 22 24 28 28 32 34 36 36 40 42 44 44 48 48 52 56 56 60 62 64 68 68 72 76 76 80
do
10.392 12.124 12.124 13.856 15.588 19.053 20.785 24.299 24.249 27.713 29.445 31.177 31.177 34.641 36.373 38.105 38.105 41.569 41.569 45.033 48.497 48.497 51.962 53.694 55.426 58.890 58.890 62.354 65.818 65.818 69.283
db 14.6 16.6 17.6 19.6 21.6 24.6 27.6 29.6 31.6 34.6 36.6 37.6 39.6 41.6 44.6 46.6 47.6 49.6 51.6 54.6 57.6 59.6 61.6 64.6 67.6 69.6 71.6 74.6 77.6 79.6 81.6
d3 10.6 12.6 13.6 15.6 17.6 20.6 23.6 25.6 27.6 30.6 32.6 33.6 35.6 37.6 40.6 42.6 43.6 45.6 47.6 50.6 53.6 55.6 57.6 60.6 63.6 65.6 67.6 70.6 73.6 75.6 77.6
d4
Note: Values within parentheses are nonpreferred.
z
Nominal size d1 d 2 14.68 16.68 17.68 19.68 21.68 24.68 27.68 29.69 31.69 34.69 36.69 37.69 39.69 41.69 44.69 46.69 47.69 49.69 51.69 54.70 57.70 59.70 61.70 64.70 67.70 69.70 71.70 74.70 77.70 79.70 81.70
d5 , min
Dimensions (in mm) for involute splines of module 2
TABLE 17-14
10.92 12.92 13.92 15.92 17.92 20.92 23.92 25.91 27.91 30.91 32.91 33.91 35.91 37.91 40.91 42.91 43.91 45.91 47.91 50.90 53.90 55.90 57.90 60.90 63.90 65.90 67.90 70.90 73.90 75.90 77.90
d6 , max þ0.4 þ0.4 þ0.9 þ0.9 þ0.9 þ0.4 þ0.9 0.1 þ0.9 þ0.4 þ0.4 0.1 þ0.9 0.1 þ0.4 þ0.4 þ0.9 0.1 þ0.9 þ0.4 0.1 þ0.9 0.1 þ0.4 þ0.9 0.1 þ0.9 þ0.4 0.1 þ0.9 0.1
xm 3.603 3.603 4.181 4.181 4.181 3.603 4.181 3.326 4.681 3.603 3.603 3.026 4.181 3.026 3.603 3.603 4.181 3.026 4.181 3.603 3.026 4.181 3.026 3.600 4.181 3.026 4.181 3.603 3.026 4.181 3.026
l o ¼ so 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5
Pin diameter, d 7.629 9.324 10.379 12.736 14.460 17.478 20.738 22.484 24.738 27.711 29.571 30.566 32.739 34.589 37.604 39.720 40.740 42.621 44.740 47.724 50.624 52.740 54.650 57.648 60.740 62.663 64.740 67.729 70.672 72.740 74.676
Measurement between pins, Mi
Internal spline
2.42 2.19 1.61 1.66 1.64 1.96 1.68 2.41 1.69 1.88 1.86 2.15 1.70 2.08 1.84 1.84 1.70 2.00 1.71 1.82 1.95 1.71 1.93 1.80 1.71 1.90 1.71 1.79 1.88 1.72 1.87
Deviation factor, fi 5.5 5.0 6.0 6.0 5.5 4.5 5.0 4.0 4.5 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0
Pin diameter d 22.212 22.695 25.588 28.206 28.790 29.898 34.161 34.144 37.016 39.000 40.857 42.181 45.137 46.195 48.938 51.074 51.912 54.218 55.939 59.109 62.235 63.984 66.242 69.058 72.021 74.253 76.036 79.166 82.263 84.063 86.267
Measurement over pins, Ma
1.11 1.13 1.06 1.11 1.13 1.28 1.23 1.46 1.30 1.42 1.42 1.50 1.15 1.52 1.46 1.47 1.43 1.54 1.44 1.50 1.56 1.47 1.57 1.53 1.49 1.59 1.50 1.55 1.60 1.52 1.61
2 2 2 2 — — 3 3 3 3 4 3 4 4 4 4 5 4 5 5 5 6 5 6 6 6 7 7 7 7 7
Deviation factor, fa z0
External spline
9.121 9.214 9.714 9.807 — — 15.621 14.807 15.807 15.493 21.028 15.179 21.621 20.807 21.400 21.493 27.435 21.179 27.621 27.307 26.993 33.435 27.179 33.214 33.807 32.993 39.435 39.121 38.807 39.807 38.993
Tooth thickness deviation factor, 0.866
Tooth thickness over z0 teeth
KEYS, PINS, COTTERS, AND JOINTS
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
6 7 8 10 10 11 12 13 14 14 15 16 17 18 18 19 20 22 22 23 24 26 26 27 28 30 30 31 32 34 34 35 36 38 38 40
20 15 22 17 25 20 28 23 30 25 32 27 35 30 37 32 38 33 40 35 42 37 45 40 47 42 48 43 50 45 ð52 47Þ 55 50 ð58 53Þ 60 55 ð62 57Þ 65 60 ð68 63Þ 70 65 ð72 67Þ 75 70 ð78 73Þ 80 75 ð82 77Þ 85 80 ð88 83Þ 90 85 ð92 87Þ 95 90 ð98 93Þ 100 95 105 100
15.0 17.5 20.0 25.0 25.0 27.5 30.0 32.5 35.0 35.0 37.5 40.0 42.5 45.0 43.0 47.5 50.0 55.0 55.0 57.5 60.0 65.0 65.0 67.5 70.0 75.0 75.0 77.5 80.0 85.0 85.0 87.5 90.0 95.0 95.0 100.0
do
d3
12.990 19.5 15.155 21.5 17.321 24.5 21.651 27.5 21.651 29.5 23.816 31.5 25.981 34.5 28.146 36.5 30.311 37.5 30.311 39.5 32.476 41.5 34.641 44.5 36.806 46.5 38.971 47.5 38.971 49.5 41.136 51.5 43.301 54.5 47.631 57.5 47.631 59.5 49.796 61.5 51.962 64.5 56.292 67.5 56.292 69.5 58.457 71.5 60.622 74.5 64.952 77.5 64.952 79.5 67.117 81.5 69.282 84.5 73.612 87.5 73.612 89.5 75.777 91.5 77.942 94.5 82.272 97.5 82.272 99.5 86.603 104.5
db
Note: Values within brackets are nonpreferred.
z
Nominal size d1 d 2 14.5 16.5 19.5 22.5 24.5 26.5 29.5 31.5 32.5 34.5 36.5 39.5 41.5 42.5 44.5 46.5 49.5 52.5 54.5 56.5 59.5 62.5 64.5 66.5 69.5 72.5 74.5 77.5 79.5 82.5 84.5 86.5 89.5 92.5 94.5 99.5
d4 19.58 21.58 24.58 27.58 29.58 31.59 34.59 36.59 37.59 39.59 41.59 44.59 46.59 47.59 49.59 51.59 54.59 57.60 59.60 61.60 64.60 67.60 69.60 71.60 74.60 77.60 79.60 81.60 84.60 87.60 89.60 91.60 94.60 97.60 99.60 104.60
d5 , min 14.92 16.92 19.92 22.92 24.92 26.91 29.91 31.91 32.91 34.91 36.91 39.91 41.91 42.91 44.91 46.91 49.91 52.90 54.90 56.10 56.90 59.90 64.90 66.90 69.90 72.90 74.90 77.90 79.90 82.90 84.90 86.90 89.90 92.90 94.60 99.90
d6 , max
TABLE 17-15 Dimensions (in mm) for involute spline of module 2.5
þ1.125 þ0.875 þ1.125 þ0.125 þ1.125 þ0.875 þ1.125 þ0.875 þ0.125 þ1.125 þ0.875 þ1.125 þ0.875 þ0.125 þ1.125 þ0.875 þ1.125 þ0.125 þ1.125 þ0.875 þ1.125 þ0.125 þ1.125 þ0.875 þ1.125 þ0.125 þ1.125 þ0.875 þ1.125 þ0.125 þ1.125 þ0.875 þ1.125 þ0.125 þ1.125 þ1.125
xm 5.226 4.937 5.226 4.071 5.226 4.937 5.226 4.937 4.071 5.226 4.937 5.226 4.937 4.071 5.226 4.937 5.226 4.071 5.226 4.937 5.226 4.071 5.226 4.937 5.226 4.071 5.226 4.937 5.226 4.071 5.226 4.937 5.226 4.071 5.226 5.226
l o ¼ so 4.6 4.5 4.5 4.55 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5
Pin diameter, d 10.552 12.105 15.552 19.116 20.552 22.265 25.552 27.308 28.316 30.552 32.340 35.552 37.365 38.387 40.552 42.384 45.552 48.424 50.552 52.413 55.552 58.448 60.552 62.434 65.552 62.464 70.552 72.449 75.552 78.476 80.552 82.461 85.552 88.485 90.552 95.552
Measurement between pins, Mi
Internal spline
1.71 1.85 1.72 2.30 1.72 1.81 1.72 1.80 2.26 1.72 1.79 1.73 1.78 2.07 1.73 1.78 1.73 1.99 1.73 1.77 1.73 1.94 1.73 1.77 1.73 1.90 1.73 1.76 1.73 1.88 1.73 1.76 1.73 1.86 1.73 1.73
Deviation factor, fi 9.0 7.0 7.0 5.0 6.5 6.0 6.0 5.5 5.0 6.0 5.5 5.5 5.5 5.0 5.5 5.5 5.5 5.0 5.5 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0
Pin diameter d 33.258 30.558 34.113 33.006 38.151 38.835 42.093 42.764 43.096 47.204 47.881 51.035 52.974 53.156 56.100 58.052 61.157 63.198 66.206 66.846 69.924 73.229 74.954 76.920 79.981 83.253 85.004 86.978 90.026 93.273 95.045 97.024 100.063 103.288 105.079 110.094
Measurement over pins, Ma
1.03 1.08 1.13 1.37 1.19 1.23 1.25 1.30 1 43 1.28 1.33 1.33 1.36 1.47 1.36 1.38 1.38 1.51 1.40 1.45 1.44 1.53 1.46 1.48 1.47 1.55 1.48 1.50 1.49 1.57 1.50 1.52 1.51 1.58 1.52 1.53
2 2 2 2 3 3 3 3 3 3 3 4 4 4 4 4 4 4 5 5 5 5 5 5 6 6 6 6 6 6 7 7 7 7 7 8
Deviation factor, fa z0
External spline
12.026 11.892 12.252 11.491 19.293 19.160 19.526 19.392 18.759 19.759 19.625 26.793 26.660 26.026 27.026 29.892 27.259 26.491 34.193 34.160 34.526 33.759 34.759 34.625 41.793 41.026 42.026 41.892 42.259 41.491 49.293 49.160 49.526 48.759 49.759 56.793
Tooth thickness deviation factor, 0.866
Tooth thickness over z0 teeth
KEYS, PINS, COTTERS, AND JOINTS
17.19
KEYS, PINS, COTTERS, AND JOINTS
17.20
CHAPTER SEVENTEEN
Particular
The value of tooth thickness and space width of spline
Formula
l o ¼ so ¼ m
þ 2xm tan 2
ð17-32Þ
PINS Taper pins The diameter at small end (Figs. 17-6 and 17-7, Tables 17-16 and 17-17)
dps ¼ dpl 0:0208l
ð17-33Þ
The mean diameter of pin
dm ¼ 0:20D to 0:25D
ð17-34Þ
FIGURE 17-6 Tapered pin.
FIGURE 17-7 Sleeve and tapered pin joint for hollow shafts.
Sleeve and taper pin joint (Fig. 17-7) AXIAL LOAD The axial stress induced in the hollow shaft (Fig. 17-7) due to tensile force F
¼ 4
F ðd22
d12 Þ
2ðd2 d1 Þdm
ð17-35Þ
The bearing stress in the pin due to bearing against the shaft an account of force F
c ¼
F 2ðd2 d1 Þdm
17-36Þ
The bearing stress in the pin due to bearing against the sleeve
c ¼
F 2ðd3 d2 Þdm
ð17-35Þ
The shear stress in pin
¼
2F dm2
ð17-38Þ
The shearing stress due to double shear at the end of hollow shaft
¼
F 2ðd2 d1 Þl2
ð17-39Þ
The shear stress due to double shear at the sleeve end
¼
F 2ðd3 d2 Þl1
ð17-40Þ
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
1.60 1.59
1.60 1.54 0.20 1.50 0.30
Max Min
Max Min amax rnom c
dh6
2.00 1.94 0.25 2.00 0.35
2.00 1.99
2.01 2.00
2
1.50 2.44 0.30 2.50 0.40
2.50 2.49
2.51 2.50
2.5
3.00 2.94 0.40 3.00 0.50
3.00 2.99
3.01 3.00
3
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
1.50 1.46 0.20
Max Min
Source: IS 549, 1974.
a
dh10
1.5
dnom
2.00 1.96 0.25
2 2.50 2.46 0.30
2.5 3.00 2.94 0.35
3
TABLE 17-17 Dimensions (in mm) for solid and split taper pins
Source: IS 2393, 1980.
dh11
1.61 1.60
Max Min
dm6
1.5
TABLE 17-16 Dimensions (in mm) for cylindrical pins
4.00 3.95 0.40
4
4.00 3.92 0.50 4.00 0.63
4.00 3.98
4.01 4.00
4
5.00 4.95 0.63
5
5.00 4.92 0.63 5.00 0.80
5.00 4.98
5.01 5.00
5
6.00 5.95 0.80
6
6.00 5.92 0.80 6.00
6.00 5.98
6 01 6.00
6
8.00 7.94 1.00
8
8.00 7.91 1.00 8.00 1.60
8.00 7.98
8.02 8.01
8
10.00 9.94 1.20
10
10.00 9.91 1.20 10.00 2.00
10.00 9.98
10.02 10.01
10
12.00 11.93 1.60
12
12.00 11.89 1.60 12.00 2.50
12.00 11.97
12.02 12.01
12
Nominal diameter, dnom , mm
16.00 15.63 2.00
16
16.00 15.89 2.00 16.00 3.00
16.00 15.97
16.02 16.01
16
20.00 19.92 2.50
20
20.00 19.87 2.50 20.00 3.50
20.00 19.97
20.02 20.01
20
25.00 24.92 3.00
25
25.00 24.87 3.00 25.00 4.00
25.00 24.97
25.02 25.01
25
32.00 31.90 4.00
32
32.00 31.84 4.00 32.00 5.00
32.00 31.96
32.02 32.01
32
40.00 39.90 5.00
40
40.00 39.84 5.00 40.00 6.30
40.00 39.96
40.02 40.01
40
50.00 49.90 6.30
50
50.00 49.84 6.30 50.00 8.00
50.00 49.96
50.02 50.01
50
KEYS, PINS, COTTERS, AND JOINTS
17.21
KEYS, PINS, COTTERS, AND JOINTS
17.22
CHAPTER SEVENTEEN
Particular
The axial stress in the sleeve
Formula
¼ 4
TORQUE The shear due to twisting moment applied
For the design of hollow shaft subjected to torsion
F ðd32 d22 Þ 2ðd3 d2 Þdm Mt
¼
2 d d 4 m 2 Refer to Chapter 14.
ð17-41Þ
ð17-42Þ
Taper joint and nut F t ¼ d2 4 c
ð17-43Þ
The bearing resistance offered by the collar
F c ¼ 2 ðd d22 Þ 4 3
ð17-44Þ
The diameter of the taper d2
d2 > dnom
ð17-45Þ
The tensile stress in the threaded portion of the rod (Fig. 17-8) without taking into consideration stress concentration
FIGURE 17-8 Tapered joint and nut.
Provide a taper of 1 in 50 for the length (l l1 Þ
Knuckle joint The tensile stress in the rod (Fig. 17-9) The tensile stress in the net area of the eye
Stress in the eye due to tear of
t ¼
4F d 2
ð17-46Þ
t ¼
F ðd4 d2 Þb
ð17-47Þ
tn ¼
F bðd4 d2 Þ
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð17-48Þ
KEYS, PINS, COTTERS, AND JOINTS KEYS, PINS, COTTERS, AND JOINTS
Particular
17.23
Formula
FIGURE 17-9 Knuckle joint for round rods.
Tensile stress in the net area of the fork ends
F 2aðd4 d2 Þ
ð17-49Þ
tr ¼
F 2aðd4 d2 Þ
ð17-50Þ
Compressive stress in the eye due to bearing pressure of the pin
e ¼
F d2 b
ð17-51Þ
Compressive stress in the fork due to the bearing pressure of the pin
c ¼
F 2d2 a
ð17-52Þ
Stress in the fork ends due to tear of
Shear stress in the knuckle pin
i ¼
¼
2F d22
The maximum bending moment, Fig. 17-9 (panel b)
Mb ¼
The maximum bending stress in the pin, based on the assumption that the pin is supported and loaded as shown in Fig. 17-9b and that the maximum bending moment Mb occurs at the center of the pin
b ¼
The maximum bending moment on the pin based on the assumption that the pin supported and loaded as shown in Fig. 17-10b, which occurs at the center of the pin
Mb ¼
The maximum bending stress in the pin based on the assumption that the pin is supported and loaded shown in Fig. 17-10b
b ¼
ð17-53Þ
Fb 8
ð17-54Þ
4Fb d23
ð17-55Þ
F 2
b a þ 4 3
ðapprox:Þ
4ð3b þ 4aÞF 3d23
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð17-56Þ
ð17-57Þ
KEYS, PINS, COTTERS, AND JOINTS
17.24
CHAPTER SEVENTEEN
Particular
Formula
COTTER The initial force set up by the wedge action
F ¼ 1:25Q
ð17-58Þ
The force at the point of contact between cotter and the member perpendicular to the force F
H ¼ F tanð þ Þ
ð17-59Þ
The thickness of cotter
t ¼ 0:4D
ð17-60Þ
The width of the cotter
b ¼ 4t ¼ 1:6D
ð17-61Þ
Cotter joint The axial stress in the rods (Fig. 17-10) Axial stress across the slot of the rod
¼ ¼
4F d 2 d12
ð17-62Þ 4F 4d1 t
ð17-63Þ
Tensile stress across the slot of the socket
¼
The strength of the cotter in shear
F ¼ 2bt
ð17-65Þ
Shear stress, due to the double shear, at the rod end
¼
F 2ad1
ð17-66Þ
¼
F 2cðd4 d1 Þ
ð17-67Þ
4F d12 Þ
ð17-68Þ
Shear stress induced at the socket end The bearing stress in collar
Crushing strength of the cotter or rod
4F ðd32 d12 Þ 4tðd3 d1 Þ
c ¼
ðd22
F ¼ d1 tc
FIGURE 17-10 Cotter joint for round rods.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð17-64Þ
ð17-69Þ
KEYS, PINS, COTTERS, AND JOINTS KEYS, PINS, COTTERS, AND JOINTS
Particular
Crushing stress induced in the socket or cotter
17.25
Formula
c ¼
F ðd4 d1 Þt
ð17-70Þ
F¼
ðd22 d12 Þ c 4
ð17-71Þ
Shear stress induced in the collar
¼
F d1 e
ð17-72Þ
Shear stress induced in the socket
¼
F d1 h
ð17-73Þ
The maximum bending stress induced in the cotter assuming that the bearing load on the collar in the rod end is uniformly distributed while the socket end is uniformly varying over the length as shown in Fig. 17-10b
b ¼
Gib and cotter joint (Fig. 17-11)
The width b of both the Gib and Cotter is the same as far as a cotter is used by itself for the same purpose (Fig. 17-11). The design procedure is the same as done in cotter joint Fig. 17-10.
FIGURE 17-11 Gib and cotter joint for round rods.
FIGURE 17-12 Coupler or turn buckle.
The equation for the crushing resistance of the collar
Fðd1 þ 2d4 Þ 4tb2
ð17-74Þ
Threaded joint COUPLER OR TURN BUCKLE Strength of the rods based on core diameter dc , (Fig. 17-12)
2 d 4 c t
ð17-75Þ
The resistance of screwed portion of the coupler at each end against shearing
F ¼ ad
ð17-76Þ
From practical considerations the length a is given by
a ¼ d to 1.25d for steel nuts
ð17-77aÞ ð17-77bÞ
The strength of the outside diameter of the coupler at the nut portion
a ¼ 1:5d to 2d for cast iron F ¼ ðd12 d 2 Þt 4
F¼
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð17-78Þ
KEYS, PINS, COTTERS, AND JOINTS
17.26
CHAPTER SEVENTEEN
Particular
Formula
2 ðd d22 Þt 4 3
The outside diameter of the turn buckle or coupler at the middle is given by the equation
F¼
The total length of the coupler
l ¼ 6d
ð17-79Þ ð17-80Þ
REFERENCES 1. Maleev, V. L., and J. B. Hartman, Machine Design, International Textbook Company, Scranton, Pennsylvania, 1954. 2. Shigley, J. E., and L. D. Mitchell, Mechanical Engineering Design, McGraw-Hill Book Company, New York, 1983. 3. Faires, V. M., Design of Machine Elements, The Macmillan Company, New York, 1965. 4. Lingaiah, K., and B. R. Narayana Iyengar, Machine Design Data Handbook, Engineering College Cooperative Society, Bangalore, India, 1962. 5. Lingaiah, K., and B. R. Narayana Iyengar, Machine Design Data Handbook, Vol. I (SI and Customary Metric Units), Suma Publishers, Bangalore, India, 1986. 6. Lingaiah, K., Machine Design Data Handbook, Vol. II (SI and Customary Metric Units), Suma Publishers, Bangalore, India, 1986. 7. Juvinall, R. C., Fundamentals of Machine Component Design, John Wiley and Sons, New York, 1983. 8. Deutschman, A. D., W. J. Michels, and C. E. Wilson, Machine Design—Theory and Practice, Macmillan Publishing Company, New York, 1975. 9. Bureau of Indian Standards. 10. SAE Handbook, 1981.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
Source: MACHINE DESIGN DATABOOK
CHAPTER
18 THREADED FASTENERS AND SCREWS FOR POWER TRANSMISSION SYMBOLS5;6;7 Ab Abr Ac Ag Ar A d d2 d1 dc dm ¼ d2 D D1 D2 Db Di Do e Eb , Eg F Fa Ff Fi Ft h
area of cross section of bolt, m2 (in2 ) area of base of preloaded bracket, m2 (in2 ) core area of thread, m2 (in2 ) loaded area of gasket, m2 (in2 ) stress area, m2 (in2 ) shear area, m2 (in2 ) nominal diameter of screw m (in) major diameter of external thread (bolt), m (in) pitch diameter of external thread (bolt), m (in) minor diameter of external thread (bolt), m (in) mean diameter of thrust collar, m (in) mean diameter of square threaded power screw, m (in) diameter of shaft, m (in) major diameter of internal thread (nut), m (in) minor diameter of internal thread (nut), m (in) pitch diameter of internal thread (nut), m (in) diameter of bolt circle, m (in) inside diameter of a pressure vessel or cylinder, m (in) mean diameter of inside screw of differential or compound screw, m (in) mean diameter of outside screw of differential or compound screw, m (in) eccentricity, m (in) moduli of elasticity of bolt and gasket, respectively, GPa (Mpsi) permissible load on bolt, kN (lbf ) tightening load on the nut, kN (lbf ) applied or external load, kN (lbf ) final load on the bolt, kN (lbf ) initial load due to tightening, kN (lbf ) preload in each bolt, kN (lbf ) tangential force, kN (lbf ) thickness of a pressure vessel, m (in) thickness of a cylinder, m (in)
18.1 Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
THREADED FASTENERS AND SCREWS FOR POWER TRANSMISSION
18.2
h2 ho
CHAPTER EIGHTEEN
thickness of the flange of the cylindrical pressure vessel, m (in) depth of tapped hole (Fig. 18-1), m (in)
FIGURE 18-1 Flanged bolted joint.
i I K K l
lc lg L Mb Mt n p pc P t t1 W o , i c i , o a b 0b
number of threads in a nut number of bolts moment of inertia of bracket base, area (Fig. 18-6), m4 or cm4 (in4 ) constant (Eq. (18-4a)) stress concentration factor lever arms (with suffixes), m (in) distance from the inside edge of the cylinder to the center line of bolt, m (in) lead, m (in) required length of engagement of screw or nut (also with suffixes), m (in) gasket thickness, m (in) length of bolt nut to head (Fig. 18-2), m (in) bending moment, N m (lbf in) twisting moment, N m (lbf in) factor of safety pressure, MPa (psi) circular pitch of bolts or studs on the bolt circle of a cylinder cover, m (in) pitch of thread, m (in) thread thickness at major diameter, m (in) thread thickness at minor diameter, m (in) axial load, kN (lbf ) helix angle, deg respective helix angles of outside and inside screws of differential or compound screws, deg friction angle, deg half apex angle, deg coefficient of friction between nut and screw coefficient of collar friction respective coefficient of friction in case of differential or compound screw efficiency stress (normal), MPa (psi) allowable stress, MPa (psi) bending stress, MPa (psi) bending stress due to eccentric load [Eq. (18-61)] allowable bearing pressure between threads of nut and screw, MPa (psi)
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
THREADED FASTENERS AND SCREWS FOR POWER TRANSMISSION THREADED FASTENERS AND SCREWS FOR POWER TRANSMISSION
c d w a w
18.3
compressive stress, MPa (psi) design stress, MPa (psi) working stress, MPa (psi) applicable shear stress, MPa (psi) allowable shear stress, MPa (psi) permissible working shear stress, MPa (psi)
SUFFIXES vertical horizontal
v h
Particular
Formula
SCREWS The empirical formula for the proper size of a set screw
d¼
The maximum safe holding force of a set screw
F ¼ 54;254d 2:31
D þ 8 mm where D in mm 8
ð18-1Þ SI
ð18-2aÞ
USCS
ð18-2bÞ
where F in kN and d in m F ¼ 2500d 2:31 where F in lbf and d in in Applied torque
Mt ¼ 0:2Fa nominal diameter of bolt)
ð18-3Þ
Ff ¼ KFa þ Fi 2
ð18-4Þ
Gasket joint (Fig. 18-2) Final load on the bolt
3
E b Ab 7 6 L 7 6 7 where K ¼ 6 4Eb Ab Eg Ag 5 þ L lg
Refer also to Table 18-1 for values of K
FIGURE 18-2 Gasket joint.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð18-4aÞ
THREADED FASTENERS AND SCREWS FOR POWER TRANSMISSION
18.4
CHAPTER EIGHTEEN
Particular
Formula
TABLE 18-1 Values of K for use in Eq. (18-4) Type of joint
K
Soft, elastic gasket with studs Soft gasket with through bolts Copper asbestos gasket Soft copper corrugated gasket Lead gasket with studs Narrow copper ring Metal-to-metal joint
1.00 0.90 0.60 0.40 0.10 0.01 0.00
According to Bart, the tightening load for a screw of a steamtight, metal-to-metal joint
F ¼ 2804:69d
SI
ð18-5aÞ
USCS
ð18-5bÞ
SI
ð18-6aÞ
USCS
ð18-6bÞ
SI
ð18-7aÞ
where F in kN and d in m F ¼ 1600d where F in lbf and d in in
Tightening load for screw of a gasket joint
F ¼ 1402:34d where F in kN and d in m F ¼ 8000d where F in lbf and d in in
Cordullo’s equation for the tightening load on the nuts
F ¼ w ð0:55d 2 6:45 103 dÞ
where F in kN, w in MPa, and d in m F ¼ w ð0:55d 2 0:036dÞ
USCS
ð18-7bÞ
where F in lbf, w in psi, and d in in
Bolted joints (Fig. 18-2) The flange thickness of the cylinder or pressure vessel
h2 ¼ 1:25d to 1:5d <j 1:1h to 1:25h
ð18-8Þ
The bolt diameter
d ¼ 0:67h to 0:8h
ð18-9Þ
Circular pitch of the bolts or studs on the cylinder cover to ensure water and steamtight joint
pc ¼ 7d for pressure from 0 to 0.33 MPa (0 to 48 psi) as per American Navy Standards
ð18-10Þ
pc ¼3:5d for pressure from 1.2 MPa (175 psi) to 1.37 MPa (200 psi)
ð18-11Þ
pc ¼ 3d
ð18-12Þ
for tight joint
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
THREADED FASTENERS AND SCREWS FOR POWER TRANSMISSION THREADED FASTENERS AND SCREWS FOR POWER TRANSMISSION
Particular
The average stress for screw for sizes from 12.5 to 75 mm
18.5
Formula
av ¼
490:33 d
SI
ð18-13aÞ
USCS
ð18-13bÞ
where av in MPa and d in m av ¼
2;800;000 d
where av in psi and d in in Unwin’s formula for allowable stresses in bolts of ordinary steel to make a fluidtight joint
d ¼ 17;537:4d 2 þ 11 for rough joint
SI
ð18-14aÞ
USCS
ð18-14bÞ
s ¼ 33;828:9d 2 þ 17:3 for faced joint SI
ð18-14cÞ
where d in MPa and d in m d ¼ 6030d 2 þ 1600 where d in psi and d in in where d in MPa and d in m d ¼ 3070d 2 þ 2500
USCS
ð18-14dÞ
where d in psi and d in in
TENSION BOLTED JOINT UNDER EXTERNAL LOAD Spring constant of clamped materials and bolt (Fig. 18-3A) The spring constant or stiffness of the threaded and unthreaded portion of a bolt is equivalent to the stiffness of two springs in series. The basic equations for deflection (), and spring constant (k) of a tension bar/bolt subject to tension load.
1 1 1 ¼ þ k k1 k 2
ð18-15aÞ
¼
Fl AE
ð18-15bÞ
k¼
F AE ¼ l
ð18-15cÞ
The effective spring constant/total spring rate in case of long bolt consisting of the threaded and unthreaded portion having different area of crosssections, the clamped two or more materials of two or more different elasticities which act as spring with different stiffness sections in series.
1 1 1 1 1 ¼ þ þ þ þ kelf k1 k2 k3 kn
ð18-15dÞ
Spring constant of the clamped material
km ¼
Am Em Deff Em ¼ l 4 l
ð18-15eÞ
Spring constant of the threaded fastener
1 l l lt l l ¼ t þ ¼ t þ unt kb At Eb Ab Eb At Eb Ab Eb
2
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð18-15f Þ
THREADED FASTENERS AND SCREWS FOR POWER TRANSMISSION
18.6
CHAPTER EIGHTEEN
Particular
Formula
FIGURE 18-3A
FIGURE 18-3B Bolt joint diagram due to external load acting on the joint.
Approximate effective area of clamped material
Am ¼
2 ðD d 2 Þ 4 eff where
Deff d lt lunt
¼ effective diameter, m ¼ round bolt of diameter equal to shank, m ¼ threaded length of bolt, m ¼ unthreaded portion of bolt length, m
PRELOADED BOLT (Fig. 18-3B) The external load
Fa ¼ Fab þ Fam
The bolted joint in Fig 18-3A subjected to external load Fa is such that the common deflection is given by
¼
The load shared by bolt The resultant/total bolt load
ð18-15gÞ
Fb Fm ¼ kb km
Fab ¼
ð18-15hÞ
kb F kb þ km a
Fb ¼ Fab þ Fi ¼ Fi þ kb ¼
ð18-15iÞ kb F þ Fi ð18-15jÞ kb þ km a
¼ CFa þ Fi The resultant load on the clamped material
Fm ¼ Fab Fi ¼ Fi km ¼
ð18-15kÞ km F Fi ð18-15lÞ kb þ km a
¼ ð1 CÞFa Fi where C is called the joint constant or stiffness parameter Fm ¼ portion of load Fa taken by member/material, kN Ft ¼ preload, kN
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
THREADED FASTENERS AND SCREWS FOR POWER TRANSMISSION
18.7
THREADED FASTENERS AND SCREWS FOR POWER TRANSMISSION
Particular
The joint constant or stiffness parameter
Formula
kb kb þ km
C¼
or
The preload to prevent joint separation occurs when Fm ¼ 0
Fi ¼ ð1 CÞFao
The external load required to separate joint
Fao ¼
The tensile stress in the bolt
Preload under static and fatigue loading as per the recommendation of R, B and W,a and Bowman
C¼
1 1þ
km kb
ð18-15mÞ
where Fao ¼ external load that cause separation of joint
b ¼
Fi 1C
Fb CFa Fi ¼ þ At At At
ð18-15nÞ ð18-15oÞ
where At ¼ tensile stress area, m2 or mm2 0:75Fp for reused bolt connections Ft ¼ 0:90Fp for permanent bolt connections ð18-15pÞ where Fp is proof load, N
The proof stress load that has to be used in Eq. (18-15p)
Fp ¼ At sp
ð18-15qÞ
where sp ¼ proof strength, taken from tables 18-5c and 18-5d sp 0:85sy The load factor
n¼
Fao Fa
The load factor guarding against joint separation
n¼
Fi Fa ð1 CÞ
or Fao ¼ nFa
ð18-15rÞ ð8-15sÞ
GASKET JOINTS For design of gasket bolted joint
Refer to Chapter 16 under Bolt loads in gasket joints.
PRELOADED BOLTS UNDER DYNAMIC LOADING The mean forces felt by the bolt The alternating forces felt by the bolt
a
Fmn ¼ Fal ¼
Fb þ Fi 2
Fb Fi 2
Russel, Bardsall and Ward Corp., Helpful Hints for Fastener Design and Application, Mentor, Ohio 1976, p. 42.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð18-15tÞ ð18-15uÞ
THREADED FASTENERS AND SCREWS FOR POWER TRANSMISSION
18.8
CHAPTER EIGHTEEN
Particular
The stress due to the preload Fi The fatigue safety factor by using modified Goodman criterion The alternating component of bolt stress
Formula
i ¼ Kfm
Fi Ai
ð18-15vÞ
nf ¼
se ðsut i Þ se ðm i Þ þ sut a
ð18-15wÞ
a ¼
Fb Fi kb Fa CFa ¼ ¼ 2At kb þ km 2At 2At
ð18-16aÞ
The mean stress
m ¼ a þ
The factor of safety according to the Goodman criterion
n¼
Fi CP Fi ¼ þ At 2At At
sa a
ð18-16cÞ
sa ¼ sm
Fi At
sm ¼ sut 1 sa se Solving of Eqs. (18-16c) and (18-16d) simultaneously sa ¼
sut 1þ
ð18-16bÞ
Fi At
sut se
sy sy ¼ max m þ a
The factor of safety on the basis of yield strength
n¼
For specification of SAE, ASTM and ISO standard steel bolts
Refer to Tables 18-5c and 18-5d
The depth of tapped hole (Fig. 18-2)
ho ¼ 1:25d in steel castings
ð18-16dÞ ð18-16eÞ
ð18-16f Þ
ð18-16gÞ
ð18-16hÞ
ho ¼ 1:50d to 1:75d in cast iron
ð18-17Þ
ho ¼ 1:75d to 2d in aluminum
ð18-18Þ
The distance l from the inside edge of the cylinder to the center line of bolts (Fig. 18-2)
l ¼ 1:25d to 1:5d
ð18-19Þ
The diameter of bolt circle
Db ¼ D1 þ 2d
ð18-20Þ
The safe load on each bolt
F 0 ¼ A r d
ð18-21Þ
The number of bolts
i¼
D2b p 4F 0
ð18-22Þ
Another expression for the number of bolts
i¼
Db pc
ð18-23Þ
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
THREADED FASTENERS AND SCREWS FOR POWER TRANSMISSION THREADED FASTENERS AND SCREWS FOR POWER TRANSMISSION
Particular
18.9
Formula
TABLE 18-2 Approximate bolt tension and torque values
TABLE 18-3 Load and working stress for metric coarse threads
Minimum bolt tension
Equivalent torque
Bolt size, mm
kN
lbf
kN m
lbf ft
12.7 15.9 19.6 22.2 25.4 21.6 31.8
51.2 76.9 113.9 139.7 189.1 225.4 286.9
11,500 17,300 25,600 31,400 42,500 50,600 64,500
1.353 2.442 4.835 6.374 9.620 13.013 18.289
1,000 1,800 3,570 4,700 7,090 9,600 13,500
Major diameter, d, mm
Stress Design stress, w area, Ar , MPa psi mm2
kN
16 20 24 30 36 42 48 56
0.016 0.025 0.035 0.056 0.082 0.112 0.147 0.203
2.97 667 5.59 1,260 9.59 2,160 18.04 4,060 30.89 6,940 48.35 10,870 71.10 16,000 111.80 25,130
18.9 22.8 27.2 32.2 37.1 43.1 48.3 55.2
2,740 3,300 3,950 4,670 5,380 6,250 7,000 8,000
Permissible load lbf
Stress in tensile bolt Seaton and Routhwaite formula for working stress for bolt made of steel containing 0.08 to 0.25% carbon and with diameter of 20 mm and over Applied load
w ¼ CðAr Þ0:418
ð18-24Þ
Refer to Table 18-2 for bolt tension and torque values and Table 18-3 for w . Fa ¼ CðAr Þ1:418
ð18-25Þ
where C ¼ 7:8 108 (5000) for carbon steel bolts of u ¼ 414 MPa (60 kpsi) ¼ 23:3 108 (15,000) for alloy–steel bolts ¼ 0:33 108 (1000) for bronze bolts The values of C inside parentheses are for US Customary System units, and values without parentheses are for SI units.
Rotsher’s pressure-cone method for stiffness calculation of Fastenera The elongation of frustum of a cone (Fig. 18-3C)
¼
Fa ð2t tan þ D dÞðD þ dÞ ln ð19-25aÞ Ed tan ð2t tan þ D þ dÞðD dÞ
The spring stiffness of the frustum
k¼
Fa ¼
Ed tan ð2t tan þ D dÞðD þ dÞ ln ð2t tan þ D þ dÞðD dÞ
a
ð18-25bÞ
Courtesy: Shigley J. E. and C. R. Mischke, Mechanical Engineering Design, 5th Edn., McGraw-Hill Publishing Company, New York, 1989.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
THREADED FASTENERS AND SCREWS FOR POWER TRANSMISSION
18.10
CHAPTER EIGHTEEN
FIGURE 18-3C Compression of a member assumed to be confined to the frustum of a hollow cone.
FIGURE 18-3D Forms of threads for power screw.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
THREADED FASTENERS AND SCREWS FOR POWER TRANSMISSION THREADED FASTENERS AND SCREWS FOR POWER TRANSMISSION
Particular
The spring stiffness of the frustum when cone angle of frustum ¼ 308 For the members of the joint having same modulus of elasticity E with symmetrical frusta back to back which constitute as two springs in series and using the grip as l ¼ 2t and dw as the diameter of the washer face, the effective spring constant for the system. The effective spring constant for the case of back to back cone frusta with a washer face dw ¼ 1:5d and ¼ 308 from Eq. (18-25d).
18.11
Formula
k¼
0:577 dE ð1:15t þ D dÞðD þ dÞ ln ð1:15t þ D þ dÞD dÞ
ke ¼
ke ¼
ð18-35cÞ
Ed tan ðl tan þ dw dÞðdw þ dÞ 2 ln ðl tan þ dw þ dÞðdw dÞ 0:577 dE 0:577l þ 0:5d 2 ln 5 0:577l þ 2:5d
ð18-25dÞ
ð18-25eÞ
Power screw The helix angle of a V-thread (Fig. 18-3E) The tangential force for a square thread at mean radius of screw
¼ tan1 Ft ¼ W
l d2
ð18-26Þ
tan þ 1 tan
ð18-27Þ
Refer to Table 18-4 for . TABLE 18-4 Coefficient of friction for power screws Lubricant
Coefficient of friction,
Machine oil and graphite Lard oil Heavy machine oil
0.07 0.11 0.14
FIGURE 18-3E Helix angle of a single-start thread.
Torque required to raise the load by a power screw
Mtu ¼ Mtsu þ Mte Wd2 d2 þ l cos d ¼ þ c W c d2 cos l 2 2
ð18-28Þ
where d2 ¼ pitch diameter of thread The tangential force for V-thread or angular thread at mean radius (Fig. 18-4)
The total frictional torque including collar friction torque for square thread
cos Ft ¼ W tan 1 cos " # d2 tan þ dc þ c Mt ¼ W 2 1 tan 2 tan þ
ð18-28aÞ
ð18-29Þ
Refer to Table 18-4 for and Table 18-5a for c .
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
THREADED FASTENERS AND SCREWS FOR POWER TRANSMISSION
18.12
CHAPTER EIGHTEEN
FIGURE 18-3G Differential screw.
FIGURE 18-3F Power screw.
FIGURE 18-4 Forces acting on a triangular thread.
TABLE 18-5a Coefficient of friction on thrust collar, c
TABLE 18-5b Torque factor K for use in Eq. (18-30c)
Material
Coefficient of running friction
Coefficient of starting friction
Soft steel on cast iron Hardened steel on cast iron Soft steel on bronze Hardened steel on bronze
0.121 0.092 0.084 0.063
0.170 0.147 0.101 0.081
Bolt condition
K
Nonplated, black finish Zinc-plated Lubricated Cadmium-plated With Bowman anti-seize With Bowman-grip nuts
0.30 0.20 0.18 0.16 0.12 0.09
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
THREADED FASTENERS AND SCREWS FOR POWER TRANSMISSION THREADED FASTENERS AND SCREWS FOR POWER TRANSMISSION
Particular
The total frictional torque for V-thread, including collar friction torque
The mean diameter of collar Substituting the value of dc in Eq. (18-30a) and after simplifying
18.13
Formula
3 1 d2 B dc 7 cos C Mt ¼ W 6 4 @ tan A þ c 2 5 2 1 cos 2
0
tan þ
dc ¼ ðd þ 1:5dÞ=2 M t ¼ K Fi d
ð18-30aÞ ð18-30bÞ ð18-30cÞ
where K is the torque factor W ¼ Fi ¼ preload, N (lbf)
The torque factor
0 1 tan þ d cos C þ 0:625 K ¼ 2 B @ A c 2d 1 tan cos
ð18-30dÞ
where d2 ¼ dm Refer to Table 18-5b for K . tan Wl ¼ tanð þ Þ 2 Mt
The efficiency of square thread neglecting collar friction
¼
The efficiency formula for an angular-type thread with half apex angle and an allowance for nut or end friction on a radius rc
¼
The efficiency formula for square thread
d tan ¼ tan þ2 d þ c dc 1 tan 2 ¼
d2 tan tan þ = cos d þ c dc 1 tan = cos 2
l ½d2 tanð þ Þ þ c dc
ð18-31Þ ð18-32Þ
ð18-33Þ
ð18-34Þ
LOADING Lowering the load The tangential force at mean or pitch radius r2 ¼ rm The frictional torque at mean or pitch radius r2 ¼ rm
The condition for overhauling for square threads
Ft ¼ W tanð þ Þ Mt ¼
ð18-35Þ
Wd2 tanð Þ 2
ð18-36Þ
d2 þ c dc d2 c dc
ð18-37Þ
tan
Since the flat faces of hexagonal nut is same as the diameter of washer face which is 1.5 times the nominal diameter d.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
THREADED FASTENERS AND SCREWS FOR POWER TRANSMISSION
18.14
CHAPTER EIGHTEEN
Particular
Formula
Differential screws (Fig. 18-3G) The loading efficiency of a differential screw, not including the collar friction
¼
Do tan o Di tan i tan o þ o tan i þ i Do Di 1 o tan o 1 i tan i
ð18-38Þ
Compound screws The loading efficiency of a compound screw, not including collar friction The number of threads necessary in the nut The length of nut
¼
i¼
Do tan o þ Di tan i tan o þ o tan i þ i Do þ Di 1 o tan o 1 i tan i 4W 0b ðd 2 di2 Þ
ln ¼ iP ¼
4WP 0b ðd 2 d12 Þ
ð18-39Þ
ð18-40Þ ð18-41Þ
TABLE 18-5c Metric mechanical-property classes for steel bolts, screws, and studsa
Size range inclusive
Minimum proof strength, sp MPa
4.6
M5–M36
225
400
240
Low or medium carbon
4.8
M1.6–M16
310
420
340
Low or medium carbon
5.8
M5–M24
380
520
420
Low or medium carbon
8.8
M16–M36
600
830
660
Medium carbon, Q and T
9.8
M1.6–M16
650
900
720
Medium carbon, Q and T
10.9
M5–M36
830
1040
940
Low-carbon martensite, Q and T
12.9
M1.6–M36
970
1220
1100
Property class
a
Minimum tensile strength, st MPa
Minimum yield strength, sy MPa
Material
Alloy, Q and T
The thread length for bolts and cap screws is 8 L 125 > < 2d þ 6 LT ¼ 2d þ 12 125 < L 200 > : 2d þ 25 L > 200
where L is the bolt length. The thread length for structural bolts is slightly shorter than given above.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
Head marking
THREADED FASTENERS AND SCREWS FOR POWER TRANSMISSION THREADED FASTENERS AND SCREWS FOR POWER TRANSMISSION
18.15
TABLE 18-5d Grade identification marks and mechanical properties of bolts and screws
Identifier
Grade
A
SAE Grade 1
Size range (in)
Min. strength (103 psi) Proof
Tensile
Yield
Material and treatment
to 112
33
60
36
Low or medium carbon
to 112 to 34
33 55
60 74
36 57
Low carbon Low or medium carbon
to 112
33
60
36
SAE Grade 4
1 4 1 4 1 4 7 8 1 4
to 112
65
115
100
SAE Grade 5 and
1 4
to 1
85
120
92
ASTM A449 SAE Grade 5, ASTM A449
118 to 112
74
105
81
ASTM A449
134 to 3
55
90
58
C
SAE Grade 5.2
1 4
to 1
85
120
92
Low-carbon martensite, Q and T
D
ASTM A325, Type 1
1 2
Medium carbon, Q and T
ASTM A307 SAE Grade 2
B
to 1
85
120
92
118 to 112
74
105
81
1 2
Medium carbon, cold drawn Medium carbon, Q and T
E
ASTM A325, Type 2
to 1 118 to 112
85 74
120 105
92 81
Low carbon martensite, Q and T
F
ASTM A325, Type 3
1 2
to 1
85
120
92
Weathering steel, Q and T
118 to 112
74
105
81
G
ASTM A354, Grade BC
to 212
105
125
109
234 to 4
1 4
95
115
99
Alloy-steel, Q and T
SAE Grade 7
1 4
to 112
105
133
115
Medium carbon alloy, Q and T
SAE Grade 8
1 4 1 4
to 112
120
150
130
Medium carbon alloy, Q and T
ASTM A354, Grade BD
to 112
120
150
130
Alloy-steel, Q and T
J
SAE Grade 8.2
1 4
to 1
120
150
130
Low-carbon martensite, Q and T
K
ASTM A490, Type 1
1 2
to 112
120
150
130
Alloy-steel, Q and T
L
ASTM A490, Type 3
1 2
to 112
120
150
130
Weathering steel, Q and T
H I
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
THREADED FASTENERS AND SCREWS FOR POWER TRANSMISSION
18.16
CHAPTER EIGHTEEN
Particular
The required length of engagement for adequate shear strength (assuming that the load is distributed over the threads in contact) Neglecting the radial clearance between threads, or allowance at the major and minor diameters and considering the threads as a series of collars the equation for thread engagement The normal length of thread engagement as per Indian standard
Formula
lc ¼
nPF A
leðscrewÞ ¼
leðnutÞ ¼
ð18-42Þ
nPF d1 t1 ðscrewÞ
ð18-43Þ
nPF dtðnutÞ
ð18-44Þ
leNðminÞ ¼ 8:92Pd 0:2
SI
ð18-45aÞ
SI
ð18-45bÞ
SI
ð18-46aÞ
SI
ð18-46bÞ
where leN , P, and d in m leNðminÞ ¼ 2:24Pd 0:2 where leN , P, and d in mm leNðmaxÞ ¼ 26:67Pd 0:2 where leN , P, and d in m leNðmaxÞ ¼ 6:7Pd 0:2 where leN , P, and d in mm Note: If leN has to be between the limits, the length of the thread is said to be normal ðNÞ If leN has to be below the minimum level, length of thread is said to be short ðSÞ If leN has to be above the maximum level, length of thread is said to be long ðLÞ
Eccentric loading The load on bolt 1, Fig. 18-5 (panel a) The general expression for the load carried by ith bolt, Fi The maximum load on the bolt, Fig. 18-5(b)
F1 ¼
Fll1 lða b cos Þ ¼F l12 þ l22 þ l32 þ l42 4a2 þ 2b2
Fi ¼ F Fmax ¼
The maximum load on the bolt, Fig. 18-5(c)
2lða b cos Þ ð2a2 þ b2 Þi 2Flða þ bÞ ð2a2 þ b2 Þi " 2Fl a þ b cos
Fmax ¼
ð18-47Þ ð18-48Þ ð18-49Þ
1808 i
#
ð2a2 þ b2 Þi
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð18-50Þ
THREADED FASTENERS AND SCREWS FOR POWER TRANSMISSION THREADED FASTENERS AND SCREWS FOR POWER TRANSMISSION
Particular
18.17
Formula
FIGURE 18-5 Fastening of a flanged bearing.
Fastening of a bracket Bracket with no preload
Fll1 þ l22 þ l32 Þ
ð18-51Þ
F2 ¼
Fll2 2ðl12 þ l22 þ l32 Þ
ð18-52Þ
F3 ¼
Fll3 2ðl12 þ l22 þ l32 Þ
ð18-53Þ
F1 ¼ Tensile load taken by the bolts, Fig. 18-6(a)
2ðl12
Shear stresses (i) If shear load is taken completely by the lug, shear load on lug is given by
F1 ¼ F
ð18-54Þ
(ii) If shear load is taken completely by the bolt shear load on each bolt is given by
Fb ¼
F i
ð18-55Þ
(iii) If shear load is shared equally between the bolt and the lug
F10 ¼
F 2
ð18-56Þ
Fb0 ¼
F 2i
ð18-57Þ
Shear load due to the eccentricity e, Fig. 18-6(b), in each bolt is given by
Fex Fei0 ¼ P i2 xi
ð18-58Þ
where xi ¼ distance between the center of bolts and the center of the particular bolt Resultant shear load
Fex Fr ¼ Fb ðor Fb0 Þ þ P i2 xi
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð18-59Þ
THREADED FASTENERS AND SCREWS FOR POWER TRANSMISSION
18.18
CHAPTER EIGHTEEN
Particular
Formula
FIGURE 18-6 Preloaded bracket.
Preloaded bracket Compression stress in contact area between the bracket base and the wall, Fig. 18-6(c)
c ¼
iFi Ac
ð18-60Þ
Bending stress due to eccentric load, Fig. 18-6(d)
0b ¼
Mb c1 Flc1 ¼ Ic Ic
ð18-61Þ
Resultant compressive stress in the contact area
0c ¼
iFi Mb c1 iFi Flc1 ¼ Ac Ic Ac Ic
ð18-62Þ
Tensile stress in any individual bolt is given by
0b ¼
Fi Mb cb þ Ab Ic
ð18-63Þ
Fi >
Mb c1 Ac iIc
ð18-64Þ
With a 25% margin on the preload to account for overloads, condition to avoid separation of the base and wall
Fi ¼
1:25Mb c1 Ac iIc
ð18-65Þ
Bolt load taking into consideration 25% margin on the preload to account for overloads
Fb ¼
1:25Mb c1 Ac Mb cb þ iIc Ic
ð18-66Þ
Condition to avoid separation of the base and wall
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
THREADED FASTENERS AND SCREWS FOR POWER TRANSMISSION THREADED FASTENERS AND SCREWS FOR POWER TRANSMISSION
Particular
With an additional horizontal load Fh , the preload Fi is given by
18.19
Formula
Fi ¼
1:25Mb c1 Ac Fh iIc i
ð18-67Þ
where (þ) is used when Fh is away from the wall and () when Fh is toward the wall 1:25Mb c1 Ac Fh Mb cb Fh Ab þ iIc i Ic Ac
With the addition of a horizontal load Fh , the bolt load is given by
Fb ¼
Moment on the bracket
Mb ¼ Fl Fh e0
ð18-69Þ
M x Fi ¼ P1 2i xi
ð18-70Þ
ð18-68Þ
Shear loads Shear load due to the eccentricity e in each of the bolts with no horizontal load
where M1 ¼ Fe
Mb c1 pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi a2 þ b2 16Ic P 0:25Mb x0i c1 A2b Ic A c
ð88-70aÞ
where x0i ¼ distance of the center of a particular bolt to the center of the base of the bracket Shear load due to eccentricity e in each of the bolts with a horizontal load, Fh
M x Fi ¼ P1 2i xi
ð18-71Þ
where " 0:25Mb c1 Fh pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi a2 þ b2 M1 ¼ Fe Ic Ac 4 Ab Ac
Vertical applied load due to the friction component of the preload
Fv ¼
Condition for the nonexistence of the support for the shearload
F <
0:25Mb c1 Fh Ic Ac
1:25Mb c1 Ac Fh iIc
1:25Mb c1 Ac Fh iIc
X # x0i
ð18-72Þ
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð18-73Þ
THREADED FASTENERS AND SCREWS FOR POWER TRANSMISSION
18.20
CHAPTER EIGHTEEN
Particular
Formula
GENERAL See Tables 18-6 to 18-22 and Figs. 18-7 to 18-16 for further particulars on threaded fasteners and screws for power transmission. For British Standard ISO metric precision hexagon bolts, screws and nuts, and machine screws and machine screw nuts.
Refer to Tables 18-23 and 18-24.
For hexagon bolts, finished hexagon bolts, regular square nuts, hexagon and hexagon jam nuts, finished hexagon slotted nuts, regular hexagon and hexagon jam nuts, carriage bolts, countersunk, buttonhead and step bolts, machine screw heads, pan, truss and 1008 flat heads, slotted head cap screws, square head setscrews, slotted headless setscrews, etc.
Refer to Tables from 18-25 to 18-42.
For bolts, screws and nuts metric series—American National Standards hexagon cap screws, formed hex screws, heavy hex screws, recommended diameter– length combinations for screws, hexagon bolts, heavy hex bolts, heavy hex structural bolts, hexagon nuts, slotted hex nuts, etc.
Refer to Tables from 18-43 to 18-52.
All dimensions in inches.
TABLE 18-6 Allowable bearing pressure for screws, 0b Material
Safe bearing pressure, 0b
Type
Screw
Nut
MPa
psi
Rubbing velocity, m/s [fpm ¼ (ft/min)]
Hand press Jack screw Jack screw Hoisting screw Hoisting screw Lead screw
Steel Steel Steel Steel Steel Steel
Bronze Cast iron Bronze Cast iron Bronze Bronze
17.2–24.0 12.3–17.2 10.8–17.2 4.4–6.9 5.4–9.8 1.0–1.5
2500–3500 1800–2500 1600–2500 600–1000 800–1400 150–240
Low speed, well lubricated Low speed, not over 0.04 (8) Low speed, not over 0.05 (10) Medium speed, 0.1 to 0.2 (20–40) Medium speed, 0.1 to 0.2 (20–40) High speed, 0.25 and over (50)
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
THREADED FASTENERS AND SCREWS FOR POWER TRANSMISSION THREADED FASTENERS AND SCREWS FOR POWER TRANSMISSION
Particular
18.21
Formula
H ¼ 0:86603 P; H ¼ d 2H1 ¼ d 1:082 P; 2 3 D2 ¼ d2 ¼ d H ¼ d 0:64952 P; 4 H d1 ¼ d2 ¼ d 1:22687 P; 3 D D1 5 H1 ¼ ¼ H ¼ 0:54127 P; 8 2 d d1 17 ¼ H ¼ 0:61343 P; h3 ¼ 24 2 H r ¼ ¼ 0:1443 P; rc ¼ 0:10825 P; 6 d1 þ d2 2 stress area ¼ Ac ¼ 4 2 D1 ¼ d2
FIGURE 18-7 Basic profile ISO metric screw threads.
Designation: A pitch diameter combination of thread size 8 mm and pitch 1 mm shall be designated as M8 1. M8 shall designate pitch diameter combination of thread size 8 mm and pitch 1.25 mm.
In practice the root is rounded and cleared beyond a width of P 8
H1
D D2
Internal threads.
h3 External threads. H H 4 6 P
D1
Internal thread diameters
H 8
r
H 2
H
H 2
d d2
d1 External thread diameters
FIGURE 18-8 ISO metric screw thread design profiles of external and internal threads.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
THREADED FASTENERS AND SCREWS FOR POWER TRANSMISSION
18.22
CHAPTER EIGHTEEN
TABLE 18-7 Basic dimensions for design profiles of ISO metric screw threads Minor diameter, mm Basic diameter, mm 1 2 2.5 3.0 4.0 5.0 6.0 7.0 8.0 10
12
14
16 18
20
22
24
25
Lead angle at basic pitch diameter
Pitch, P, mm
Major diameter, d, mm
Pitch diameter, d2 , mm
External threads, d1
Internal threads, D1
deg
min
Tensile stress area, Ac , mm2
0.25 0.20 0.40 0.25 0.45 0.35 0.50 0.35 0.70 0.50 0.80 0.50 1.00 0.75 1.00 0.75 1.25 1.00 1.50 1.25 1.00 1.75 1.50 1.25 1.00 2.00 1.50 1.25 2.00 1.50 2.50 2.00 1.50 2.50 2.00 1.50 2.50 2.00 1.50 3.00 2.00 1.50 3.00
1.0 1.0 2.0 2.0 2.5 2.5 3.0 3.0 4.0 4.0 5.0 5.0 6.0 6.0 7.0 7.0 8.0 8.0 10.0 10.0 10.0 12 12 12 12 14 14 14 16 16 15 18 18 20 20 20 22 22 22 24 24 24 25
0.837620 0.870096 1.740192 1.837620 2.207716 2.272668 2.675240 2.772668 3.545337 3.675240 4.480385 4.675240 5.350481 5.512861 6.350481 6.512861 7.188101 7.350481 9.025721 9.188101 9.350481 10.863342 11.025721 11.188101 11.350481 12.700962 13.025721 13.188101 14.700962 15.025721 16.376202 16.700962 17.025721 18.376202 18.700962 19.025721 20.376202 20.700962 21.025721 22.051443 22.700962 23.025721 23.051443
0.693283 0.754626 1.509252 1.693283 1.947909 2.070596 2.386565 2.570596 3.141191 3.386565 4.018505 4.386565 4.773131 5.079848 5.773131 6.079848 6.466413 6.773131 8.159696 8.466413 8.773131 9.852979 10.159686 10.466413 10.773131 11.546261 12.159696 12.466413 13.546261 14.159696 14.932827 15.546261 15.159696 16.932827 17.516261 18.159696 18.932827 19.546261 20.159696 20.319392 21.556261 22.159696 21.319392
0.729367 0.783494 1.566987 1.729367 2.012861 2.121114 2.458734 2.621114 3.242228 3.458734 4.133975 4.458734 4.917468 5.188101 5.917408 6.188101 6.646835 6.917468 8.376202 8.646835 8.917468 10.105569 10.376202 10.646835 10.917468 11.834936 12.376202 12.646835 13.834936 14.376202 15.293671 15.834936 16.376202 17.293671 17.834936 18.376202 19.293671 19.834936 20.376202 20.752405 21.834936 22.376202 21.752405
5 4 4 2 3 2 3 2 3 2 3 2 3 2 2 2 3 2 3 2 1 2 2 2 1 2 2 1 2 1 2 2 1 2 1 1 2 1 1 2 1 1 2
27 11 11 29 43 20 24 18 36 29 15 57 24 29 52 6 10 29 2 29 57 56 29 2 36 52 6 44 29 49 47 11 36 29 57 26 14 46 18 49 39 11 36
0.46 0.53 2.07 2.45 3.39 3.70 5.03 5.61 8.78 9.79 14.2 16.1 20.1 22.0 28.9 31.3 36.6 39.2 58.0 61.2 64.5 84.3 88.1 92.1 96.1 115 125 129 157 167 192 204 216 245 258 272 303 318 333 353 384 401 385
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
THREADED FASTENERS AND SCREWS FOR POWER TRANSMISSION THREADED FASTENERS AND SCREWS FOR POWER TRANSMISSION
18.23
TABLE 18-7 Basic dimensions for design profiles of ISO metric screw threads (Cont.) Minor diameter, mm Basic diameter, mm 30
35 42
45
52
60
72
80
90
100
110
Pitch, P, mm
Major diameter, d, mm
3.50 3.00 2.00 1.50 1.50 4.5 4.0 3.0 2.0 1.5 4.5 4.0 3.0 2.0 1.5 5.0 4.0 3.0 2.0 1.5 5.5 4.0 3.0 2.0 1.5 6 4 3 2 6 4 3 2 6 4 3 2 6 4 3 2 6 4 3
30 30 30 30 35 42 42 42 42 42 45 45 45 45 45 52 52 52 52 52 60 60 60 60 60 72 72 72 72 80 80 80 80 90 90 90 90 100 100 100 100 110 110 110
Pitch diameter, d2 , mm 27.726683 28.051443 28.700962 29.025721 34.055721 39.072114 39.401924 40.051443 40.700962 41.025771 42.077164 42.401924 43.051443 43.700962 44.025771 48.752405 49.401924 50.051443 50.700962 51.025721 56.427645 57.401924 58.051443 58.700962 59.025721 68.102886 69.401924 70.051443 70.700962 76.102886 77.401924 78.051443 78.700962 86.102886 87.401924 88.051449 88.700962 96.102886 97.401924 98.051443 98.700962 106.102886 107.401924 108.051443
External threads, d1 25.705957 26.319392 27.546261 28.159696 33.159696 36.479088 37.092523 38.319392 39.546261 40.159696 39.479088 40.092523 41.319392 42.546261 43.159696 45.865653 47.092523 48.319392 49.546261 50.159696 53.252219 55.092523 56.319392 57.546261 58.159696 64.638784 67.092523 68.319392 69.546261 72.638724 75.092523 76.319392 77.546261 82.638784 85.092523 86.319292 87.546261 92.638784 95.092523 96.319392 97.546261 102.638784 105.092523 106.319392
Internal threads, D1 26.211139 26.752405 27.834936 28.376202 33.376202 37.128607 37.669873 38.752405 39.834936 40.376202 40.128607 40.669873 41.752405 42.834936 43.376202 46.587341 47.669873 48.752405 49.834936 50.376202 54.046075 55.669873 56.752405 57.834936 58.376202 66.504809 67.669873 68.752405 69.834936 73.504809 75.669873 76.752405 77.834936 83.504809 85.669873 86.752405 87.834936 93.504809 95.669873 96.752405 97.834936 103.504809 105.669873 106.752405
Lead angle at basic pitch diameter deg
min
Tensile stress area, Ac , mm2
2 1 1 0 0 2 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 0 0 0 1 1 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0
18 57 16 57 48 6 51 22 52 40 57 43 16 50 37 52 29 6 43 32 47 16 57 37 28 36 3 47 31 26 57 42 28 16 50 37 25 8 45 33 22 2 41 30
561 581 621 642 860 1120 1150 1210 1260 1290 1300 1340 1400 1460 1490 1760 1830 1900 1970 2010 2360 2490 2570 2650 2700 3460 3660 3760 3860 4340 4570 4680 4790 5590 5840 5970 6100 7000 7280 7420 7560 8560 8870 9020
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
THREADED FASTENERS AND SCREWS FOR POWER TRANSMISSION
18.24
CHAPTER EIGHTEEN
TABLE 18-7 Basic dimensions for design profiles of ISO metric screw threads (Cont.) Minor diameter, mm Basic diameter, mm 120
150
160
180
200
250
300
Lead angle at basic pitch diameter
Pitch, P, mm
Major diameter, d, mm
Pitch diameter, d2 , mm
External threads, d1
Internal threads, D1
deg
min
Tensile stress area, Ac , mm2
6 4 3 6 4 3 6 4 3 6 4 3 6 4 3 6 4 3 6 4
120 120 120 150 150 150 160 160 160 180 180 180 200 200 200 250 250 250 300 300
116.102886 117.401924 118.051443 146.102886 147.401924 148.051443 156.102886 157.401924 158.051443 176.102886 177.401924 178.051443 196.102886 197.401924 198.051453 246.102886 247.401924 248.051443 296.102886 297.401924
112.638784 115.092523 116.319392 142.538784 145.092523 146.319392 152.638784 155.092523 156.319392 172.638784 175.092523 176.319392 192.638784 195.092523 196.319392 242.638784 245.092523 246.319392 295.638784 292.092523
113.504819 115.669873 116.752405 143.504809 145.669873 146.752405 153.504809 155.669873 156.752405 173.504809 175.669873 176.752405 193.504809 195.669873 196.752405 243.504809 245.669873 246.752405 293.504809 295.669873
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
57 37 28 45 30 22 42 28 21 37 25 18 33 22 17 27 18 13 22 15
10300 10600 10800 16400 16800 17000 18700 19200 19400 23900 24400 24700 29700 30200 30500 46900 47600 48000 68100 68900
Source: IS: 4218-1967 (Part III).
FIGURE 18-9 Basic profile of square threads.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
THREADED FASTENERS AND SCREWS FOR POWER TRANSMISSION THREADED FASTENERS AND SCREWS FOR POWER TRANSMISSION
18.25
TABLE 18-8 Basis dimensions (in mm) for square threads
Nominal diameter
Major diameter Bolt, d
Nut, D
Minor diameter, d1
10 14 20 26 30 36 40 44 50 55 60 75 80 85 90 95 90 95 100 110 120 130 140 150 160 170 180 190 200 220 240
10 14 20 26 30 36 40 45 50 55 60 65 70 75 80 85 90 95 100 110 120 130 140 150 160 170 180 190 200 220 240
10.5 14.5 20.5 26.5 30.5 36.5 40.5 44.5 50.5 55.5 60.5 65.5 70.5 75.5 80.5 85.5 90.5 95.5 100.5 110.5 120.5 130.5 140.5 150.5 160.5 170.5 180.5 190.5 200.5 220.5 240.5
8 12 18 23 27 33 37 41 47 52 57 61 66 71 76 84 86 91 96 106 114 124 134 144 154 164 172 182 192 212 232
22 24 26 28 30 36 40 44 50 52 55 60 65 70
22 24 26 28 30 36 40 44 50 52 55 60 65 70
22.5 24.5 26.5 28.5 30.5 36.5 40.5 44.5 50.5 52.5 55.5 60.5 65.5 70.5
17 19 21 23 24 30 33 37 42 44 46 51 55 60
Pitch, P
e
r
h2
b
h1
a
H
2
1
0.12 0.75 0.25 1
0.25 1.25
3
1.5
0.12 1.25 0.25 1.5
0.25 1.75
3
1.5
0.12 1.25 0.25 1.5
0.25 1.75
4
2
0.12 1.75 0.25 2
0.25 2.25
6
3
0.25 2.5
0.5
3
0.25 3.25
8
4
0.25 3.5
0.5
4
0.25 4.25
5
2.5
0.25 2
0.5
2.5
0.25 2.75
6
3
0.25 2.5
0.5
3
0.25 3.25
7
3.5
0.25 3
0.5
3.5
0.25 3.75
8
4
0.25 3.5
0.5
4
0.25 4.25
9
4.5
0.25 4
0.5
4.5
0.25 4.75
5
0.25 4.5
0.5
5
0.25 5.25
Area of core, Ac , mm2 50.3 113 201 415 573 855 1075 1320 1735 2124 2552 2922 3421 3959 4536 5153 5809 5504 7248 8825 10207 12076 14103 16286 18627 21124 23235 26016 28953 35299 42273
Normal Series
10
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
227 284 346 415 452 707 855 1075 1385 1521 1662 2043 2376 2827
THREADED FASTENERS AND SCREWS FOR POWER TRANSMISSION
18.26
CHAPTER EIGHTEEN
TABLE 18-8 Basis dimensions (in mm) for square threads (Cont.)
Nominal diameter
Major diameter Bolt, d
Nut, D
Minor diameter, d1
75 80 85 90 95 100 110 120 130 140 150 160 170 180 190 200 300
75 80 85 90 95 100 110 120 130 140 150 160 170 180 190 200 300
75.5 80.5 85.5 90.5 95.5 100.5 110.5 121 131 141 151 161 171 181 191 201 301
65 70 73 78 83 88 98 106 116 126 134 144 154 162 172 182 274
22 24 26 28 30 36 40 50 60 70 75 80 90 120 150 180 200 300 400
22 24 26 28 30 36 40 50 60 70 75 80 90 120 150 180 200 300 400
22.5 24.5 26.5 28.5 30.5 36.5 40.5 50.5 61 71 76 81 91 121 151 181 201 301 401
14 16 18 20 20 26 28 38 46 54 59 64 72 98 126 152 168 256 352
Pitch, P
e
r
h2
b
h1
a
H
12
6
0.25
5.5 0.5
6
0.25
6.25
14
7
0.5
6
1
7
0.5
7.5
16
8
0.5
7
1
8
0.5
8.5
18
9
0.5
8
1
9
0.5
9.5
26
13
0.5
12
1
13
0.5
13.5
0.5
4
0.25
4.25
Area of core, Ac , mm2 3318 3848 4185 4778 5411 6082 7543 8825 10568 12469 14103 16286 18627 20612 23235 26016 58965
Coarse Series 8
4
0.25 3.5
10
5
0.25
4.5 0.5
5
0.25
5.25
12 14
6 7
0.25 0.5
5.5 0.5 6 1
6 7
0.25 0.5
6.25 7.5
16
8
0.5
7
1
8
0.5
8.5
18 22 24 28 32 44 48
9 11 12 14 16 24 24
0.5 0.5 0.5 0.5 0.5 0.5 0.5
8 10 11 13 15 21 23
1 1 1 1 1 1 1
9 11 12 14 16 22 24
0.5 0.5 0.5 0.5 0.5 0.5 0.5
9.5 11.5 12.5 14.5 16.5 22.5 24.5
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
164 201 254 314 314 531 616 1134 1662 2290 2734 3217 4072 8332 12469 18146 22167 51472 97314
THREADED FASTENERS AND SCREWS FOR POWER TRANSMISSION THREADED FASTENERS AND SCREWS FOR POWER TRANSMISSION
18.27
Pitch, mm
Depth of thread, mm
Depth of engagement, mm
e, mm
b, mm
r, mm
2 3 4 5 6 7 8 9 10 12 14 16 18 20 22 24 26 28 32 36 40 44 48
1.736 2.603 3.471 4.339 5.207 6.074 6.942 7.810 8.678 10.413 12.149 13.884 15.620 17.355 19.091 20.826 22.562 24.298 27.769 31.240 34.711 38.182 41.653
1.5 2.25 3 3.75 4.5 5.25 6 6.75 7.5 9 10.5 12 13.5 15 16.5 18 19.5 21 24 27 30 33 36
0.528 0.792 1.055 1.319 1.583 1.847 2.111 2.375 2.638 3.166 3.694 4.221 4.749 5.277 5.804 6.332 6.860 7.388 8.443 9.498 10.554 11.609 12.664
0.236 0.353 0.471 0.589 0.707 0.824 0.942 1.060 1.178 1.413 1.649 1.884 2.120 2.355 2.591 2.826 3.062 3.298 3.769 4.240 4.711 5.182 5.653
0.249 0.373 0.497 0.621 0.746 0.870 0.994 1.118 1.243 1.491 1.740 1.988 2.237 2.485 2.734 2.982 3.231 3.480 3.977 4.474 4.971 5.468 5.965
Designation: A sawtooth thread of nominal diameter 48 mm and pitch 3 mm shall be designated as ST 48 3.
FIGURE 18-10 Basic profile of sawtooth threads. (Source: IS 4696, 1968.)
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
THREADED FASTENERS AND SCREWS FOR POWER TRANSMISSION
18.28
CHAPTER EIGHTEEN
TABLE 18-9 Basic dimensions (in mm) for sawtooth threads Bolt
Nut
Nominal diameter
Major diameter, d
Minor diameter, d1
Area of core, mm2
10 12 14 16 20 22 30 36 40 50 55 60 65 70 75 80 85 90 95 100 120 150 180 200
10 12 14 16 20 22 30 36 40 50 55 60 65 70 75 80 85 90 95 100 120 150 180 200
6.528 8.528 10.538 12.528 16.528 16.794 24.794 30.794 34.794 44.794 49.794 54.794 58.058 63.058 68.058 73.058 78.058 83.058 88.058 93.058 109.586 139.586 166.116 186.116
33.5 57.1 87.1 123 215 222 483 745 951 1576 1947 2358 2647 3123 3638 4192 4785 5418 6090 6801 9432 15303 21673 27206
22 24 26 30 36 40 44 50 55 60 70 80 90 100 110 130 150 180 200
22 24 26 30 36 40 44 50 55 60 70 80 90 100 110 130 150 180 200
13.322 15.322 17.322 19.586 25.586 27.852 31.852 36.116 39.380 44.380 52.644 62.644 69.174 79.174 89.174 102.702 122.232 148.760 168.760
139 184 236 301 514 709 797 1024 1218 1547 2177 3082 3758 4923 6246 8775 11734 17381 22368
Pitch diameter, d2
Pitch, P
Major diameter, D
Minor diameter, D1
Fine Series 8.636 10.636 12.636 14.636 18.636 19.954 27.954 32.954 37.954 42.954 57.954 57.954 62.272 67.272 72.272 77.272 82.272 87.272 92.272 97.272 115.909 145.909 174.545 194.545
2 2 2 2 2 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 6 6 8 8
10 12 14 16 20 22 30 36 40 50 55 60 65 70 75 80 85 90 95 100 120 150 180 200
7 9 11 13 17 17.5 25.5 31.5 35.5 45.5 50.5 55.5 59 64 69 74 79 84 89 94 111 141 168 188
Normal Series 18.590 20.590 22.590 25.909 31.909 35.227 39.227 44.545 48.863 53.863 63.181 73.181 81.817 91.817 101.817 120.459 139.089 167.726 187.726
5 5 5 6 6 7 7 8 9 9 10 10 12 12 12 14 16 18 18
22 24 26 30 36 42 44 50 55 60 70 80 90 100 110 130 150 180 200
14.5 16.5 18.5 21 27 31.5 33.5 38 41.5 46.5 55 65 72 82 92 109 126 153 173
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
THREADED FASTENERS AND SCREWS FOR POWER TRANSMISSION THREADED FASTENERS AND SCREWS FOR POWER TRANSMISSION
18.29
TABLE 18-9 Basic dimensions (in mm) for sawtooth threads (Cont.) Bolt
Nut
Nominal diameter
Major diameter, d
Minor diameter, d1
Area of core, mm2
22 24 26 30 40 50 60 70 80 90 100 150 200
22 24 26 30 40 50 60 70 80 90 100 150 200
8.116 10.116 12.116 12.644 19.174 29.174 35.702 42.232 52.232 58.760 65.290 108.348 144.462
51.4 80.7 115 126 289 668 1001 1401 2143 2712 3348 9220 16391
Pitch diameter, d2
Coarse Series 16.545 18.545 20.545 23.181 31.817 41.817 50.453 59.089 69.089 77.726 86.362 138.634 178.179
Pitch, P
Major diameter, D
Minor diameter, D1
8 8 8 10 12 12 14 16 16 18 20 24 32
22 24 26 30 40 50 60 70 80 90 100 150 200
10 12 14 15 22 32 39 46 56 63 70 114 152
Radii, mm Nominal diameter, d, mm 8–12 14–38 40–100 105–200
Pitch, P, mm
Depth of thread, h1 , mm
Depth of engagement, h2 , mm
Nut Bolt, r
R
R1
2.550 3.175 4.233 6.350
1.270 1.588 2.117 3.175
0.212 0.265 0.353 0.530
0.606 0.757 1.010 1.515
0.650 0.813 1.084 1.625
0.561 0.702 0.936 1.404
Designation: A knuckle thread of nominal diameter 10 mm and pitch of 2.54 mm shall be designated as K10 2:54.
FIGURE 18-11 Basic profile of knuckle threads. (Source: IS 4695: 1968.)
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
THREADED FASTENERS AND SCREWS FOR POWER TRANSMISSION
18.30
CHAPTER EIGHTEEN
TABLE 18-10 Basic dimensions (in mm) for knuckle threads Bolt
Nut
Nominal diameter
Major diameter, d
Minor diameter, d1
Area of core, mm2
Pitch diameter, d2
Major diameter, D
Minor diameter, D1
8 9 10 12 14 16 20 24 30 36 40 44 50 55 60 65 70 75 80 85 90 95 100 110 120 130 140 150 160 170 180 190 200
8 9 10 12 14 16 20 24 30 36 40 44 50 55 60 65 70 75 80 85 90 95 100 110 120 130 140 150 160 170 180 190 200
5.460 6.460 7.460 9.460 10.825 12.825 16.825 20.825 26.825 32.825 35.767 39.767 45.767 50.767 55.767 60.767 65.767 70.767 75.767 80.767 85.767 90.767 95.767 103.650 113.650 123.650 133.650 143.650 153.650 163.650 173.650 183.650 193.650
23.4 32.8 43.7 70.3 92.0 129.2 222.3 340.6 565.2 846.3 1005 1242 1645 2024 2443 2900 3397 3933 4509 5123 5777 6471 7203 8438 10145 12008 14029 16207 18542 21034 23683 26489 29453
6.730 7.730 8.730 10.730 12.412 14.412 18.412 22.412 28.412 34.412 37.883 41.883 47.883 52.883 57.883 62.883 67.883 72.883 77.883 82.883 87.883 92.883 97.883 106.825 116.885 126.825 136.825 146.825 156.825 166.825 176.825 186.825 196.825
8.254 9.254 10.254 12.254 14.318 16.318 20.318 24.318 30.318 36.318 40.423 44.423 50.423 55.423 60.423 65.423 70.423 75.423 80.423 85.423 90.423 95.423 100.423 110.635 120.635 130.635 140.635 150.635 160.635 170.635 180.635 190.635 200.635
5.714 6.714 7.714 9.714 11.142 16.142 17.142 21.142 27.142 33.142 36.190 40.190 46.190 51.190 56.190 61.190 66.190 71.190 76.190 81.190 86.190 91.190 96.190 104.285 114.985 124.285 134.285 144.285 154.285 164.285 174.285 184.285 194.285
Source: IS 4695, 1968.
TABLE 18-11 Pitch-diameter combinations for ISO metric threads Pitch, P, mm
Maximum diameter, mm
0.5 0.75 1.00 1.50 2.00 3.00
22 33 80 150 200 300
TABLE 18-12 Tolerance grades 3, 4, 5 for precision; 6 for medium; and 7, 8, and 9 for coarse qualities for bolts and nuts Minor diameter of nut threads Major diameter of bolt threads Pitch diameter of nut threads Pitch diameter of bolt threads
3
4 4 4 4
5 5 5
6 6 6 6
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
7 7 7
8 8 8 8
9
41.910 47.803
9.147
40.431 46.324
31.770
25.279
25.793
19.806
15.301
38.952 44.845
30.291
24.117
18.631
14.940
11.445
8.566
Minor, d1
FP 5 FP 6
2.309 2.309
2.309
2.309 FP 4
FP 312
2.309
FP 214
2.309
2.309
FP 3
2.309
FP 214
Pitch, P
FP 2
Designation
138.430 193.830
113.030
100.330
87.884
75.184
62.710
59.614
Major, d2
136.951 162.351
111.551
98.851
86.407
73.705
64.231
58.135
Pitch, P
Basic diameter, internal and external threads
135.472 160.872
110.072
97.372
84.926
72.226
62.752
56.656
Minor, d1
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
FIGURE 18-12 Pipe threads for fastening purposes. (Source: IS 2643, 1964.)
Designation: An external pipe thread for fastening purposes of size 2 with class B tolerance shall be designated as Ext-FP 2B, and an internal pipe thread of size 2 shall be designated as Int-FP 2.
2.309 2.309
26.441
1.814
FP 114 FP 112
20.955
1.814 33.249
16.662
1.337
9.728 13.157
Pitch, P
Basic diameter, internal and external threads Major, d2
1.337
0.907
2.309
1 8 1 4 3 8 1 2 3 4
Pitch, P
FP 1
FP
FP
FP
FP
FP
Designation
All dimensions in mm
THREADED FASTENERS AND SCREWS FOR POWER TRANSMISSION THREADED FASTENERS AND SCREWS FOR POWER TRANSMISSION
18.31
5G
S
6G 7G
N
Source: IS 4218 (Part IV), 1967.
Fine Medium Coarse
Tolerance quality
7G 8G
L
Small allowance position G
TABLE 18-14 Preferred tolerance classes for nuts
a
Td in mm; P in mm; Td2 in mm; d in mm. Source: IS 4218 (Part IV), 1967.
Td2 (6) Td2 (6)
Nut
Bolt Nut
Td1 (6)
Bolt
Crest diameter
Pitch diameter
Td (6)
Bolt/nut
Diameter
5H 6H 7H
N 6H 7H 8H
L
—
433P 190P1:22 for P from 0.2 to 0.8 mm 230P0:7 for P from 1 mm and above 90P0:4 d 0:1 90P0:4 d 0:1 0.63 Td2 (6) 0.85 Td2 (6)
—
0.63 Td (6)
4
S
6e
N
7e 6e
L
Large allowance position e
Source: IS 4218 (Part IV), 1967.
Fine Medium Coarse
Tolerance quality
1.25 Td2 (6) 1.7 Td2 (6)
—
—
7
7g 6g
S
6g 8g
N
7g 6g 9g 8g
L
Small allowance position g
Td2 (6) 1.32 Td2 (6)
—
Td (6)
6
Tolerance grades
0.8 Td2 (6) 1.06 Td2 (6)
—
—
5
TABLE 18-15 Preferred tolerance classes for bolts
0.5 Td2 (6) —
—
3
3:15 180P2=3 pffiffiffiffi P
Value of tolerance unit
No allowance position H
4H 5H
S
Unit of tolerance
TABLE 18-13 Tolerance for crest and pitch diameters of bolts and nutsa
3h 4h 5h 6h
S
2 Td2 (6) —
—
—
9
4h 6h
N
5h 4h 7h 6h
L
No allowance position h
1.6 Td2 (6) 2.12 Td2 (6)
—
1.6 Td (6)
8
THREADED FASTENERS AND SCREWS FOR POWER TRANSMISSION
18.32
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
THREADED FASTENERS AND SCREWS FOR POWER TRANSMISSION THREADED FASTENERS AND SCREWS FOR POWER TRANSMISSION
18.33
TABLE 18-16 Coarse-threaded series—UNC and NC (dimensions in inches)
Sizesa 1 2 3 4 5 6 8 10 12 1 4 5 16 3 8 7 16 1 2 1 2 9 16 5 8 3 4 7 8
1 118 114 138 112 134 2 214 212 234 3 314 312 334 4
UN UN UN UN UN UN UN UN UN UN UN UN UN UN UN UN UN UN UN UN UN UN UN UN
Basic major (nominal) diameter, D
Threads per inch
Basic pitch diameter
Basic minor diameter external thread
0.0730 0.0860 0.0990 0.1120 0.1250 0.1380 0.1640 0.1900 0.2160 0.2500 0.3125 0.3750 0.4375 0.5000 0.5000 0.5625 0.6250 0.7500 0.8750 1.0000 1.1250 1.2500 1.3750 1.5000 1.7500 2.0000 2.2500 2.5000 2.7500 3.0000 3.2500 3.5000 3.7500 4.0000
64 56 48 40 40 32 32 24 24 20 18 16 14 13 12 12 11 10 9 8 7 7 6 6 5 412 412 4 4 4 4 4 4 4
0.0629 0.0744 0.0855 0.0958 0.1088 0.1177 0.1437 0.1629 0.1889 0.2175 0.2764 0.3344 0.3911 0.4500 0.4459 0.5084 0.5660 0.6850 0.8028 0.9188 1.0322 1.1572 1.2667 1.3917 1.6201 1.8557 2.1057 2.3376 2.5876 2.8376 3.0876 3.3376 3.5876 3.8376
0.0538 0.0641 0.0734 0.0813 0.0943 0.0997 0.1257 0.1389 0.1649 0.1887 0.2443 0.2983 0.3499 0.4056 0.3978 0.4603 0.5135 0.6273 0.7387 0.8466 0.9497 1.0747 1.1705 1.2955 1.5046 1.7274 1.9774 2.1933 2.4433 2.6933 2.9433 3.1933 3.4433 3.6933
Root areab in in2 , A 0.0023 0.0032 0.0042 0.0052 0.0070 0.0078 0.0124 0.0152 0.0214 0.0280 0.0469 0.0699 0.0962 0.1292 0.1243 0.1664 0.2071 0.3091 0.4286 0.5629 0.7178 0.9071 1.0760 1.3182 1.7780 2.3436 3.0610 3.7782 4.6886 5.6972 6.8039 8.0088 9.3119 10.7132
Minor diameter internal thread classes 1B, 2B, and 3B for engagement 2 3 3 D to 2 D Minimum
Maximum
0.0585 0.0699 0.0805 0.0894 0.1021 0.1091 0.1346 0.1502 0.1758 0.2013 0.2577 0.3128 0.3659 0.4226 0.4160 0.4783 0.5329 0.6481 0.7614 0.8722 0.9789 1.1039 1.2046 1.3296 1.5455 1.7728 2.0228 2.2444 2.4944 2.7444 2.9944 3.2444 3.4944 3.7444
0.0623 0.0737 0.0845 0.0939 0.1062 0.1140 0.1389 0.1555 0.1807 0.2067 0.2630 0.3182 0.3717 0.4284 0.4223 0.4843 0.5391 0.6545 0.7681 0.8797 0.9875 1.1125 1.2146 1.3396 1.5575 1.7861 2.0361 2.2594 2.5094 2.7594 3.0094 3.2594 3.5094 3.7594
a
Unified diameter-pitch relationships are marked UN. The actual root area of a screw will be somewhat less than A, but, since the tensile strength of a screw of ductile material is greater than that of a plain specimen of the same material and of a diameter equal to the root diameter of the screw, the tensile strength of a screw may be assumed to correspond to A as given. For complete manufacturing information and tolerances, see ASA Standard B1.1, 1949. b
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
THREADED FASTENERS AND SCREWS FOR POWER TRANSMISSION
18.34
CHAPTER EIGHTEEN
TABLE 18-17 Fine-thread series UNF and NF (dimensions in inches)
Basic pitch diameter
Basic minor diameter external thread
Root areab in in2 , A
Minimum
Maximum
80 72 64 56 48
0.0519 0.0640 0.0759 0.0874 0.0985
0.0447 0.0560 0.0668 0.0771 0.0864
0.0016 0.0025 0.0035 0.0047 0.0059
0.0479 0.0602 0.0720 0.0831 0.0931
0.0514 0.0635 0.0753 0.0865 0.0968
0.1250 0.1380 0.1640 0.1900 0.2160
44 40 36 32 28
0.1102 0.1218 0.1460 0.1697 0.1928
0.0971 0.1073 0.1299 0.1517 0.1722
0.0074 0.0090 0.0133 0.0181 0.0233
0.1042 0.1147 0.1358 0.1601 0.1815
0.1079 0.1186 0.1416 0.1641 0.1857
Basic major (nominal) diameter, D
Threads per inch
0 1 2 3 4
0.0600 0.0730 0.0860 0.0990 0.1120
5 6 8 10 12
Sizesa
Minor diameter internal thread classes 1B, 2B, and 3B for engagement 2 3 3 D to 2 D
1 4 5 16 3 8 7 16
UN UN UN UN
0.2500 0.3125 0.3750 0.4375
28 24 24 20
0.2268 0.2854 0.3479 0.4050
0.2062 0.2614 0.3239 0.3762
0.0334 0.0541 0.0824 0.1112
0.2150 0.2714 0.3332 0.3875
0.2190 0.2754 0.3372 0.3916
1 2 9 16 5 8 3 4 7 8
UN UN UN UN UN
0.5000 0.5625 0.6250 0.7500 0.8750
20 18 18 16 14
0.4675 0.5264 0.5889 0.7094 0.8286
0.4387 0.4943 0.5568 0.6733 0.7874
0.1512 0.1919 0.2435 0.3560 0.4869
0.4497 0.5065 0.5690 0.6865 0.8023
0.4537 0.5106 0.5730 0.6908 0.8068
UN UN UN UN UN
1.000 1.1250 1.2500 1.3750 1.5000
12 12 12 12 12
0.9459 1.0709 1.1959 1.3209 1.4459
0.8978 1.0228 1.1478 1.2728 1.3978
0.6331 0.8216 1.0347 1.2724 1.5346
0.9148 1.0398 1.1648 1.2893 1.4148
0.9198 1.0448 1.1698 1.2948 1.4198
1 118 114 138 112 a
Unified diameter-pitch relationships are marked UN. The actual root area of a screw will be somewhat less than A, but, since the tensile strength of a screw of ductile material is greater than that of a plain specimen of the same material and of a diameter equal to the root diameter of the screw, the tensile strength of a screw may be assumed to correspond to A as given. For complete manufacturing information and tolerances, see ASA Standard B1.1, 1949.
b
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
THREADED FASTENERS AND SCREWS FOR POWER TRANSMISSION THREADED FASTENERS AND SCREWS FOR POWER TRANSMISSION
18.35
TABLE 18-18 Extra-fine thread series—NEF
Basic pitch diameter, in
Basic minor diameter external thread, in
Root areab in in2 , A
Minimum
Maximum
32 32 32 32 28
0.1957 0.2297 0.2922 0.3547 0.4143
0.1777 0.2117 0.2742 0.3367 0.3937
0.0248 0.0352 0.0591 0.0890 0.1217
0.1855 0.2189 0.2807 0.3429 0.4011
0.1895 0.2229 0.2847 0.3469 0.4051
0.5000 0.5625 0.6250 0.6875 0.7500
28 24 24 24 20
0.4768 0.5354 0.5979 0.6604 0.7175
0.4562 0.5114 0.5739 0.6364 0.6887
0.1635 0.2054 0.2587 0.3181 0.3725
0.4636 0.5204 0.5829 0.6454 0.6997
0.4676 0.5244 0.5869 0.6494 0.7037
0.8125 0.8750 0.9375 1.0000 1.0625
20 20 20 20 18
0.7800 0.8425 0.9050 0.9675 1.0264
0.7512 0.8137 0.8762 0.9387 0.9943
0.4432 0.5200 0.6030 0.6921 0.7765
0.7622 0.8247 0.8872 0.9497 1.0064
0.7662 0.8287 0.8912 0.9537 1.0105
118 3 116 114 5 116 138
1.1250 1.1875 1.2500 1.3125 1.3750
18 18 18 18 18
1.0889 1.1514 1.2139 1.2764 1.3389
1.0568 1.1193 1.1818 1.2443 1.3068
0.8772 0.9840 1.0969 1.2160 1.3413
1.0689 1.1314 1.1939 1.2564 1.3189
1.0730 1.1355 1.1980 1.2605 1.3230
7 116 112 9 116 5 18 111 16
1.4375 1.5000 1.5625 1.6250 1.6875
18 18 18 18 18
1.4014 1.4639 1.5264 1.5889 1.6514
1.3693 1.4318 1.4943 1.5568 1.6193
1.4726 1.6101 1.7538 1.9035 2.0594
1.3814 1.4439 1.5064 1.5689 1.6314
1.3855 1.4480 1.5105 1.5730 1.6355
134 UN 2 UN
1.7500 2.0000
16 16
1.7094 1.9594
1.6733 1.9233
2.1991 2.9053
1.6865 1.9365
1.6908 1.9408
Sizesa 12 1 4 5 16 3 8 7 16
UN
1 2 9 16 5 8 11 16 3 4
UN
13 16 7 8 15 16
UN UN UN UN
1 1 116
UN
Basic major (nominal) diameter, D, in
Threads per inch
0.2160 0.2500 0.3125 0.3750 0.4375
Minor diameter internal thread classes 1B, 2B, and 3B for engagement 2 3 3 D to 2 D, in
a
Unified diameter-pitch relationships are marked UN. The actual root area of a screw will be somewhat less than A, but, since the tensile strength of a screw of ductile material is greater than that of a plain specimen of the same material and of a diameter equal to the root diameter of the screw, the tensile strength of a screw may be assumed to correspond to A as given. For complete manufacturing information and tolerances, see ASA Standard B1.1, 1949.
b
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
THREADED FASTENERS AND SCREWS FOR POWER TRANSMISSION
18.36
CHAPTER EIGHTEEN
TABLE 18-19 8-pitch thread series—8N (dimensions in inches) Minor diameter internal thread classes 1B, 2B, and 3B for engagement 23 D to 32 D
Sizea also basic major (normal) diameter, D
Basic minor diameter external thread
Minimum
1 UN 118 114 138 112 158 134 178 2 218 214 212 234
0.8466 0.9716 1.0966 1.2216 1.3466 1.4716 1.5966 1.7216 1.8466 1.9716 2.0966 2.3466 2.5966
0.8722 0.9972 1.1222 1.2472 1.3722 1.4972 1.6222 1.7472 1.8722 1.9972 2.1222 2.3722 2.6222
Minor diameter internal thread classes 1B, 2B, and 3B for engagement 23 D to 32 D
Maximum
Sizea also basic major (nominal) diameter, D
Basic minor diameter external thread
Minimum
Maximum
0.8797 1.0047 1.1297 1.2547 1.3797 1.5047 1.6297 1.7547 1.8797 2.0047 2.1297 2.3797 2.6297
3 314 312 334 4 414 412 434 5 514 512 534 6
2.8466 3.0966 3.3466 3.5966 3.8466 4.0966 4.3466 4.5966 4.8466 5.0966 5.3466 5.5966 5.8466
2.8722 3.1222 3.3722 3.6222 3.8722 4.1222 4.3722 4.6222 4.8722 5.1222 5.3722 5.6222 5.8722
8.8797 3.1297 3.3797 3.6297 3.8797 4.1297 4.3797 4.6297 4.8797 5.1297 5.3797 5.6297 5.8797
a
Unified diameter-pitch relationships are marked UN. For complete manufacturing information and tolerances, see ASA Standard B1.1, 1949.
FIGURE 18-14 American Standard screw thread.
FIGURE 18-15 Whitworth screw thread.
FIGURE 18-13 608 unified and American Standard screw-thread forms.
FIGURE 18-16 British Association screw thread.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
THREADED FASTENERS AND SCREWS FOR POWER TRANSMISSION THREADED FASTENERS AND SCREWS FOR POWER TRANSMISSION
18.37
TABLE 18-20 12-pitch thread series—12N (dimensions in inches)
Sizea also basic major (normal) diameter, D
Minor diameter internal thread classes 1B, 2B, and 3B for engagement 23 D to 32 D
Minor diameter internal thread classes 1B, 2B, and 3B for engagement 23 D to 32 D
Maximum
Sizea also basic major (nominal) diameter, D
Basic minor diameter external thread
Minimum
Maximum
0.4160 0.4783 0.5405 0.6029
0.4223 0.4843 0.5463 0.6085
2 UN 218 214 UN 238
1.8978 2.0228 2.1478 2.2728
1.9148 2.0398 2.1648 2.2898
1.9198 2.0448 2.1698 2.2948
UN
0.6478 0.7103 0.7728 0.8353
0.6653 0.7276 0.7900 0.8524
0.6707 0.7329 0.7952 0.8575
212 UN 258 234 UN 278
2.3978 2.5228 2.6478 2.7728
2.4148 2.5398 2.6648 2.7898
2.4198 2.5M8 2.6698 2.7948
1 1 UN 116 1 18 3 UN 116
0.8978 0.9603 1.0228 1.0853
0.9148 0.9773 1.0398 1.1023
0.9198 0.9823 1.0448 1.1073
3 UN 318 314 UN 338
2.8978 3.0228 3.1478 3.2728
2.9148 3.0398 3.1648 3.2898
2.9198 3.0448 3.1698 3.2948
114 5 UN 116 138 7 UN 116
1.1478 1.2103 1.2728 1.3353
1.1648 1.2273 1.2898 1.3523
1.1698 1.2323 1.2948 1.3573
312 UN 358 334 UN 378
3.3978 3.5228 3.6478 3.7728
3.4148 3.5398 3.6648 3.7898
3.4198 3.5448 3.6698 3.7948
112 158 134 UN 178
1.3978 1.5228 1.6478 1.7728
1.4148 1.5398 1.6648 1.7898
1.4198 1.5448 1.6698 1.7948
4 414 412 434
UN UN UN UN
3.8978 4.1478 4.3978 4.6478
3.9148 4.1648 4.4148 4.6648
3.9198 4.1698 4.4198 4.6698
5 514 512 534 6
UN UN UN UN UN
4.8978 5.1478 5.3978 5.6478 5.8978
4.9148 5.1648 5.4148 5.6648 5.9148
4.9198 5.1698 5.4198 5.6698 5.9198
Basic minor diameter external thread
Minimum
1 2 9 16 5 8 11 16
0.3978 0.4603 0.0228 0.5853
3 4 13 16 7 8 15 16
a
Unified diameter-pitch relationships are marked UN. For complete manufacturing information and tolerances, see ASA Standard B1.1, 1949.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
THREADED FASTENERS AND SCREWS FOR POWER TRANSMISSION
18.38
CHAPTER EIGHTEEN
TABLE 18-21 16-pitch thread series—16N (dimensions in inches)
Sizea also basic major (nominal) diameter, D
Minor diameter internal thread classes 1B, 2B, and 3B for engagement 23 D to 32 D
Basic minor diameter external thread
Minimum
Minor diameter internal thread classes 1B, 2B, and 3B for engagement 23 D to 32 D
Maximum
Sizea also basic major (nominal) diameter, D
Basic minor diameter external thread
Minimum
Maximum
3 4 13 16 7 8 15 16
UN UN UN
0.6733 0.7358 0.7983 0.8608
0.6865 0.7490 0.8115 0.8740
0.6908 0.7553 0.8158 0.8783
214 UN 5 216 238 7 216
2.1733 2.2358 2.2983 2.3608
2.1865 2.2490 2.3115 2.3740
2.1908 2.2533 2.3158 2.3783
1 1 116 1 18 3 116
UN UN UN UN
0.9233 0.9853 1.0483 1.1108
0.9365 0.9990 1.0615 1.1240
0.9408 1.0033 1.0658 1.1283
212 UN 258 234 UN 278
2.4233 2.5483 2.6733 2.7983
2.4365 2.5615 2.6865 2.8115
2.4408 2.5658 2.6908 2.8158
114 5 116 3 18 7 116
UN UN UN UN
1.1733 1.2358 1.2983 1.3608
1.1865 1.2490 1.3115 1.3740
1.1908 1.2533 1.3158 1.3783
3 UN 318 314 UN 338
2.9233 3.0483 3.1733 3.2983
2.9365 3.0615 3.1865 3.3115
2.9408 3.0658 3.1908 3.3158
112 UN 9 116 158 111 16
1.4233 1.4858 1.5483 1.6108
1.4365 1.4990 1.5615 1.6240
1.4408 1.5033 1.5658 1.6283
312 UN 358 334 UN 378
3.4233 3.5483 3.6733 3.7983
3.4365 3.5615 3.6865 3.8115
3.4408 3.5658 3.6908 3.8158
134 UN 113 16 178 115 16
1.6733 1.7358 1.7983 1.8608
1.6865 1.7490 1.8115 1.8740
1.6908 1.7533 1.8158 1.8783
4 414 412 434
UN UN UN UN
3.9233 4.1733 4.4233 4.6733
3.9365 4.1865 4.4365 4.6865
3.9408 4.1908 4.4408 4.6908
2 UN 1 116 1 28 3 216
1.9233 1.9858 2.0483 2.1108
1.9365 1.9990 2.0615 2.1240
1.9408 2.0033 2.0658 2.1283
5 514 512 534 6
UN UN UN UN UN
4.9233 5.1733 5.4233 5.6733 5.9233
4.9365 5.1865 5.4365 5.6865 5.9365
4.9408 5.1908 5.4408 5.6908 5.9408
a
Unified diameter-pitch relationships are marked UN. For complete manufacturing information and tolerances, see ASA Standard B1.1, 1949.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
THREADED FASTENERS AND SCREWS FOR POWER TRANSMISSION THREADED FASTENERS AND SCREWS FOR POWER TRANSMISSION
18.39
TABLE 18-22 Proportions of power threads (dimensions in inches) Square threads Size in 1 4 5 16 3 8 7 16
Threads per inch
Minor diameter
Acme threads Threads per inch
Regular minor diameter
Stub minor diameter
10
0.163
16
0.188
0.213
9 8
0.2153 0.266
14 12
0.241 0.292
0.270 0.325
7
0.3125
12
0.354
0.388
612
0.366
10
0.400
0.440
512
0.466
8
0.500
0.550
5
0.575
6
0.583
0.650
412
0.681
6
0.708
0.775
1
4
0.783
5
0.800
0.880
118
312
0.8750
5
0.925
1.005
114
312
1.000
5
1.050
1.130
138
3
1.0834
4
1.125
1.225
112
3
1.284
4
1.250
1.350
134
212
1.400
4
1.500
1.600
2 214
214 214
1.612 1.862
4 3
1.750 1.917
1.850 2.050
212
2
2.063
3
2.167
2.300
234
2
2.313
3
2.417
2.550
3
134
2.500
2
2.500
2.700
312
158
2.962
2
3.000
3.200
4
112
3.168
1 2 5 8 3 4 7 8
2
3.500
3.700
412
2
4.000
4.200
5
2
4.000
4.700
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
THREADED FASTENERS AND SCREWS FOR POWER TRANSMISSION
18.40
CHAPTER EIGHTEEN
TABLE 18-23 British Standard ISO Metric Precision Hexagon Bolts, Screws and Nuts (BS 3692: 1967)
For general dimensions see Tables 2, 3, 4 and 5. Source: Courtesy British Standards Institution, 2 Park Street, London W1A 2BS, 1986.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
THREADED FASTENERS AND SCREWS FOR POWER TRANSMISSION THREADED FASTENERS AND SCREWS FOR POWER TRANSMISSION
TABLE 18-24 British standard machine screws and machine screw nuts—metric series
For dimensions, see Tables 1 through 5. Source: Courtesy British Standards Institution, 2 Park Street, London W1A 2BS, 1986.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
18.41
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
2.0000 2.2500 2.5000 2.7500
3.0000 3.2500 3.5000 3.7500 4.0000
2 214 212 234
3 314 312 334 4
3.125 3.438 3.688 3.938 4.188
2.094 2.375 2.625 2.875
1.594 1.719 1.844 1.969 3.0000 3.3750 3.7500 4.1250 4.5000 4.8750 5.2500 5.5250 6.0000
412 478 514 538 6 4.350 4.712 5.075 5.437 5.800
2.900 3.262 3.625 3.988
2.175 2.356 2.538 2.719
1.450 1.631 2.812 1.994
1.5000 1.6875 1.8750 2.0625 2.2500 2.4375 2.6250 2.8125
0.725 0.906 1.088 1.269
0.425 0.484 0.544 0.603
Min
0.7500 0.9375 1.1250 1.3125
0.4375 0.5000 0.5625 0.6250
3 338 334 418
7 16 1 2 9 16 3 8 3 4 15 16 1 38 3 1 16 1 12 1 11 16 1 78 1 2 16 1 24 7 2 16 2 38 2 13 16
Max (basic)
Width across flats F
5.196 5.629 6.062 6.495 6.928
3.464 3.897 4.330 4.763
2.598 2.815 3.031 3.248
1.732 1.949 1.165 2.382
0.866 1.083 1.299 1.516
0.505 0.577 0.650 0.722
Max
4.959 5.372 5.786 6.198 6.612
3.306 3.719 4.133 4.546
2.480 2.686 2.893 3.100
1.653 1.859 2.066 2.273
0.826 1.033 1.240 1.447
0.484 0.552 0.620 0.687
Min
Width across corners G
178 2 218 5 216 212
7 132 138 117 32 111 16
1 3 132 3 132
3 32 13 64 13 64 3 32 3 16 23 64 13 32 35 64 30 64 11 16 23 32 23 32 13 16
Nom
1.935 2.064 2.193 2.385 2.576
1.263 1.423 1.583 1.744
0.974 0.038 1.134 1.198
0.627 0.718 0.813 0.878
0.323 0.403 0.483 0.563
0.163 0.211 0.243 0.291
Max
1.815 1.936 2.057 2.241 2.424
1.175 1.327 1.479 1.632
0.902 0.962 1.054 1.114
0.591 0.658 0.749 0.810
0.302 0.378 0.455 0.531
0.150 0.195 0.226 0.272
Min
Semifinished height H
0.062 0.062 0.062 0.062 0.062
0.062 0.062 0.062 0.062
0.062 0.062 0.062 0.062
0.047 0.062 0.062 0.062
0.031 0.031 0.047 0.047
0.031 0.031 0.031 0.031
Max
0.047 0.047 0.047 0.047 0.047
0.047 0.047 0.047 0.047
0.047 0.047 0.047 0.047
0.031 0.047 0.047 0.047
0.016 0.016 0.031 0.031
0.010 0.010 0.010 0.016
Min
Radius of fillet R
2 3 216 5 216 212 211 16
111 32 112 121 32 113 16
1 1 116 5 132 7 132
11 64 7 32 1 4 19 64 11 32 27 64 1 2 37 64 42 64 3 4 27 32 20 32
Max
2.060 2.251 2.380 2.572 2.764
1.388 1.548 1.708 1.869
1.036 1.100 1.196 1.260
0.700 0.780 0.876 0.940
0.364 0.444 0.524 0.604
0.188 0.235 0.268 0.316
Nom
1.815 1.936 2.057 2.241 2.424
1.175 1.327 1.479 1.632
0.902 0.962 1.054 1.114
0.591 0.658 0.749 0.810
0.302 0.378 0.455 0.531
0.150 0.195 0.226 0.272
Min
Regular height H1
0.188 0.188 0.188 0.188 0.188
0.125 0.188 0.188 0.188
0.125 0.125 0.125 0.125
0.062 0.125 0.125 0.125
0.031 0.062 0.062 0.062
0.031 0.031 0.031 0.031
Max
Radius of fillet R1
Courtesy: Viegas, J. J., ‘‘Standards for Mechanical Elements’’, Horald A. Rothbart, Editor, Mechanical Design and Systems Handbook, McGraw-Hill Publishing company, New York, 1964.
1.5000 1.6250 1.7500 1.8750
112 138 134 178
1.063 1.188 1.313 1.469
0.530 0.675 0.800 0.938
0.5000 0.6250 0.7500 0.8750
1.0000 1.1250 1.2500 1.3750
0.280 0.342 0.405 0.468
0.2500 0.3125 0.3750 0.4375
1 114 114 138
3 4 3 16 3 8 7 16 1 2 5 8 3 4 7 8
Body diam, Max
18.42
Nominal size or basic major diam of thread
TABLE 18.25 Hexagon Bolts21
THREADED FASTENERS AND SCREWS FOR POWER TRANSMISSION
CHAPTER EIGHTEEN
THREADED FASTENERS AND SCREWS FOR POWER TRANSMISSION THREADED FASTENERS AND SCREWS FOR POWER TRANSMISSION
18.43
TABLE 18-26 Regular unfinished square bolts21
Width across flats F
Nominal size or basic major diam of thread
Body diam, max
1 4 5 16 3 8 7 16
0.2500 0.3125 0.3750 0.4375
0.280 0.342 0.405 0.468
3 8 1 2 9 16 5 8
1 2 5 8 3 4 7 8
0.5000 0.6250 0.7500 0.8750
0.530 0.675 0.800 0.938
1 118 114 138 112 158
1.0000 1.1250 1.2500 1.3750 1.5000 1.6250
1.063 1.188 1.313 1.469 1.594 1.719
Max (basic)
Width across corners G
Height H Nom
Max
Min
Radius of fillet R, Max
0.498 0.665 0.747 0.828
11 64 13 64 1 4 19 64
0.188 0.220 0.268 0.316
0.156 0.186 0.232 0.278
0.031 0.031 0.031 0.031
1.061 1.326 1.591 1.856
0.995 1.244 1.494 1.742
21 64 27 64 1 2 19 32
0.348 0.444 0.524 0.620
0.308 0.400 0.476 0.568
0.031 0.062 0.062 0.062
2.121 2.386 2.652 2.917 3.182 3.447
1.991 2.239 2.489 2.738 2.986 3.235
21 32 3 4 27 32 29 32
0.684 0.780 0.876 0.940 1.036 1.132
0.628 0.720 0.812 0.872 0.964 1.056
0.062 0.125 0.125 0.125 0.125 0.125
Min
Max
Min
0.3750 0.5000 0.5625 0.6250
0.362 0.484 0.544 0.603
0.530 0.707 0.795 0.884
3 4 15 16 118 115 16
0.7500 0.9375 1.1250 1.3125
0.725 0.906 1.088 1.269
112 111 16 178 1 216 1 24 7 216
1.5000 1.6875 1.8750 2.0625 2.2500 2.4375
1.450 1.631 1.812 1.994 2.175 2.356
1 3 132
Note: Bolt is not finished on any surface. Minimum thread length shall be twice the diameter plus 14 in for length up to and including 6 in and twice the diameter plus 12 in for lengths over 6 in. Thread shall be coarse thread series class 2A.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
THREADED FASTENERS AND SCREWS FOR POWER TRANSMISSION
18.44
CHAPTER EIGHTEEN
TABLE 18-27 Finished hexagon bolts21
Nominal size or basic major diam of thread
Body diam, Width across flats min (max F equal to nominal size) Max (basic) Min
1 4 5 16 3 8 7 16
0.2500 0.3125 0.3750 0.4375
0.2450 0.3065 0.3690 0.4305
7 16 1 2 9 16 5 8
0.4375 0.5000 0.5625 0.6250
1 2 9 16 5 8 3 4 7 8
0.5000 0.5625 0.6250 0.7500 0.8750
0.4930 0.5545 0.6170 0.7410 0.8660
3 4 13 16 15 16 118 5 116
1 118 114 138
1.0000 1.1250 1.2500 1.3750
0.9900 1.1140 1.2390 1.3630
112 158 134 178
1.5000 1.6250 1.7500 1.8750
2 214 212 234 3
2.0000 2.2500 2.5000 2.7500 3.0000
Width across corners G Max
Min
0.428 0.489 0.551 0.612
0.505 0.577 0.650 0.722
0.7500 0.8125 0.9375 1.1250 1.3125
0.736 0.798 0.922 1.100 1.285
112 111 16 178 1 216
1.5000 1.6875 1.8750 2.0625
1.4880 1.6130 1.7380 1.8630
214 1 216 5 28 213 16
1.9880 2.2380 2.4880 2.7380 2.9880
3 338 334 418 412
Height H
Radius of fillet R
Nom
Max
Min
Max
Min
0.488 0.557 0.628 0.698
5 32 13 64 15 64 9 32
0.163 0.211 0.243 0.291
0.150 0.195 0.226 0.272
0.023 0.023 0.023 0.023
0.009 0.009 0.009 0.009
0.866 0.938 1.083 1.299 1.516
0.840 0.910 1.051 1.254 1.465
5 16 23 64 25 64 15 32 35 64
0.323 0.371 0.403 0.483 0.563
0.302 0.348 0.378 0.455 0.531
0.023 0.041 0.041 0.041 0.062
0.009 0.021 0.021 0.021 0.047
1.469 1.631 1.812 1.994
1.732 1.949 1.165 2.382
1.675 1.859 1.066 2.273
39 64 11 16 25 32 27 32
0.627 0.718 0.813 0.878
0.591 0.658 0.749 0.810
0.062 0.125 0.125 0.125
0.047 0.110 0.110 0.110
2.2500 2.4275 2.6250 2.8125
2.175 2.356 2.538 2.719
2.598 2.815 2.031 2.248
2.480 2.686 2.893 3.100
15 16
1 3 132 5 132
0.974 1.038 1.134 1.198
0.902 0.962 1.054 1.114
0.125 0.125 0.125 0.125
0.110 0.110 0.110 0.110
3.0000 3.3750 3.7500 4.1250 4.5000
2.900 3.262 3.625 3.988 4.350
3.464 3.897 4.330 4.763 5.196
3.306 3.719 4.133 4.546 4.959
7 132 138 117 32 111 16 178
1.263 1.423 1.583 1.744 1.935
1.175 1.327 1.479 1.632 1.815
0.125 0.188 0.188 0.188 0.188
0.110 0.173 0.173 0.173 0.173
Note: Bold type indicates unified thread.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
THREADED FASTENERS AND SCREWS FOR POWER TRANSMISSION THREADED FASTENERS AND SCREWS FOR POWER TRANSMISSION
18.45
TABLE 18-28 Regular square nuts21
Width across flats F
Nominal size or basic major diam of thread
Max (basic)
Width across corners G Min
Max
Min
Thickness H Nom
Max
Min
1 4 5 16 3 8 7 16
0.2500 0.3125 0.3750 0.4375
7 16 9 16 3 8 3 4
0.4375 0.5625 0.6250 0.7500
0.425 0.547 0.606 0.728
0.619 0.795 0.884 1.061
0.584 0.751 0.832 1.000
7 32 17 64 31 64 3 8
0.235 0.283 0.346 0.394
0.203 0.249 0.310 0.356
1 2 5 8 3 4 7 8
0.5000 0.6350 0.7500 0.8750
13 16
1 118 5 116
0.8125 1.0000 1.1250 1.3125
0.788 0.969 1.088 1.269
1.149 1.414 1.591 1.856
1.082 1.330 1.494 1.742
7 16 35 64 21 32 49 64
0.458 0.569 0.680 0.792
0.418 0.525 0.632 0.740
1 118 114 138 112 158
1.0000 1.1250 1.2500 1.3750 1.5000 1.6250
112 111 16 178 1 216 214 7 216
1.5000 1.6875 1.8750 2.0625 2.2500 2.4375
1.450 1.631 1.812 1.994 2.175 2.356
2.121 2.386 2.652 2.917 3.182 3.447
1.991 2.239 2.489 2.738 2.986 3.235
7 8
0.903 1.030 1.126 1.237 1.348 1.460
0.847 0.970 1.062 1.169 1.276 1.384
1 3 132 113 64 5 116 27 164
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
THREADED FASTENERS AND SCREWS FOR POWER TRANSMISSION
18.46
CHAPTER EIGHTEEN
TABLE 18-29 Hexagon and hexagon jam nuts21
Nominal size or basic major diam of thread
Width across flats F Max (basic)
Width across corners G
Min
Max
Min
Finished and regular semi-finished hexagon nuts thickness H Nom
Max
Min
Finished and regular semi-finished jam nuts thickness H Nom
Max
Min
1 4 5 16 3 8 7 16
0.2500 0.3125 0.3750 0.4375
7 16 1 2 9 16 11 16
0.4375 0.5000 0.5625 0.6875
0.428 0.489 0.551 0.675
0.505 0.577 0.650 0.794
0.488 0.557 0.628 0.768
7 32 17 64 21 64 3 8
0.226 0.273 0.337 0.385
0.212 0.258 0.320 0.365
5 32 3 16 7 32 1 4
0.163 0.195 0.227 0.260
0.150 0.180 0.210 0.240
1 2 9 16 5 8 3 4 7 8
0.5000 0.5625 0.6250 0.7500 0.8750
3 4 7 8 15 16 118 5 116
0.7500 0.8750 0.9375 1.1250 1.3125
0.736 0.861 0.922 1.088 1.269
0.866 1.010 1.083 1.299 1.516
0.840 0.982 1.051 1.240 1.447
7 16 31 64 35 64 41 64 3 4
0.448 0.496 0.559 0.665 0.776
0.427 0.473 0.535 0.617 0.724
5 16 6 16 3 8 27 64 31 64
0.323 0.324 0.387 0.446 0.510
0.302 0.301 0.363 0.398 0.458
1 118 114 138
1.0000 1.1250 1.2500 1.3750
112 111 16 178 1 216
1.5000 1.6875 1.8750 2.0625
1.459 1.631 1.812 1.994
1.732 1.949 2.165 2.382
1.653 1.859 2.066 2.273
55 64 31 32 1 116 111 64
0.887 0.999 0.094 1.206
0.831 0.939 1.030 1.138
35 64 39 64 23 32 25 32
0.575 0.639 0.751 0.815
0.519 0.579 0.687 0.747
112 158 134 178
1.5000 1.6250 1.7500 1.8750
214 7 216 5 28 213 16
2.2500 2.4375 2.6250 2.8125
2.175 2.356 2.538 2.719
2.598 2.815 3.031 3.248
2.480 2.686 2.893 3.100
9 132 25 164 112 139 64
1.317 1.429 1.540 1.651
1.245 1.353 1.460 1.567
27 32 29 32 31 32 1 132
0.880 0.944 1.009 1.073
0.808 0.868 0.929 0.989
2 214 212 234 3
2.0000 2.2500 2.5000 2.7500 3.0000
3 338 334 418 412
3.0000 3.3750 3.7500 4.1250 4.5000
2.900 3.262 3.625 3.988 4.350
3.464 3.897 4.330 4.763 5.196
3.306 3.719 4.133 4.546 4.959
123 32 159 64 9 264 23 264 237 64
1.763 1.970 2.193 2.415 2.638
1.675 1.874 2.089 2.303 2.518
3 132 113 64 129 64 137 64 145 64
1.138 1.251 1.505 1.634 1.763
1.050 1.155 1.401 1.522 1.643
Note: Bold type indicates unified threads.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
THREADED FASTENERS AND SCREWS FOR POWER TRANSMISSION THREADED FASTENERS AND SCREWS FOR POWER TRANSMISSION
18.47
TABLE 18-30 Finished hexagon slotted nuts21
Nominal size or basic major diam of thread
Width across flats F Max (basic)
Width across corners G
Min
Max
Min
Thickness H
Slot
Nom
Max
Min
Width, S
Depth, T
1 4 5 16 3 8 7 16
0.2500 0.3125 0.3750 0.4375
7 16 1 2 9 16 11 16
0.4375 0.5000 0.5625 0.6875
0.428 0.489 0.551 0.675
0.505 0.577 0.650 0.794
0.488 0.557 0.628 0.768
7 32 17 64 21 64 3 8
0.226 0.273 0.337 0.385
0.212 0.258 0.320 0.365
0.078 0.094 0.125 0.125
0.094 0.094 0.125 0.156
1 2 9 16 5 8 3 4 7 8
0.5000 0.5625 0.6250 0.7500 0.8750
3 4 7 8 15 16 118 5 116
0.7500 0.8750 0.9375 1.1250 1.3125
0.736 0.861 0.922 1.088 1.269
0.866 1.010 1.083 1.299 1.516
0.840 0.982 1.051 1.240 1.447
7 16 31 64 35 64 41 64 3 4
0.448 0.496 0.559 0.665 0.776
0.427 0.473 0.535 0.617 0.724
0.156 0.156 0.156 0.188 0.188
0.156 0.188 0.219 0.250 0.250
1 118 114 138
1.0000 1.1250 1.2500 1.3750
112 111 16 178 1 216
1.5000 1.6875 1.8750 2.0625
1.450 1.631 1.812 1.994
1.732 1.949 2.165 2.382
1.653 1.859 2.066 2.273
55 64 31 32 1 116 11 164
0.887 0.999 1.094 1.206
0.831 0.939 1.030 1.138
0.250 0.250 0.312 0.312
0.281 0.344 0.375 0.375
112 138 134 178
1.5000 1.6250 1.7500 1.8750
214 7 216 5 28 213 16
2.2500 2.4375 2.6250 2.8125
2.175 2.356 2.538 2.719
2.598 2.815 2.031 3.248
2.480 2.686 2.893 3.100
9 132 125 64 112 139 64
1.317 1.429 1.540 1.651
1.245 1.353 1.460 1.567
0.375 0.375 0.438 0.438
0.438 0.438 0.500 0.562
2 214 212 234 3
2.0000 2.2500 2.5000 2.7500 3.0000
3 338 334 418 412
3.0000 3.3750 3.7500 4.1250 4.5000
2.900 3.262 3.625 3.988 4.350
3.464 3.897 4.330 4.763 5.196
3.306 3.719 4.133 4.546 4.959
123 32 159 64 9 264 223 64 237 64
1.763 1.970 2.193 2.415 2.638
1.675 1.874 2.089 2.303 2.518
0.438 0.438 0.562 0.562 0.625
0.562 0.562 0.688 0.688 0.750
Note: Bold type indicates unified threads.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
THREADED FASTENERS AND SCREWS FOR POWER TRANSMISSION
18.48
CHAPTER EIGHTEEN
TABLE 18-31 Regular hexagon and hexagon jam nuts
Nominal size or basic major diam of thread
Width across flats F Max (basic)
Width across corners G
Min
Max
Min
Thickness regular jam nuts H
Thickness regular nuts H Nom
Max
Min
Nom
Max
Min
1 4 5 16 3 8 7 16
0.2500 0.3125 0.3750 0.4375
7 16 9 16 5 8 3 4
0.4375 0.5625 0.6250 0.7500
0.425 0.547 0.606 0.728
0.505 0.650 0.722 0.866
0.484 0.624 0.691 0.830
7 32 17 64 21 64 3 8
0.235 0.283 0.346 0.394
0.203 0.249 0.310 0.356
5 32 3 16 7 32 1 4
0.172 0.204 0.237 0.260
0.140 0.170 0.201 0.231
1 2 9 16 5 8 3 4 7 8
0.5000 0.5625 0.6250 0.7500 0.8750
13 16 7 8
1 118 158
0.8125 0.8750 1.0000 1.1250 1.3125
0.788 0.847 0.969 1.088 1.269
0.938 1.010 1.155 1.299 1.516
0.898 0.966 1.104 1.240 1.447
7 16 1 2 35 64 21 32 49 64
0.458 0.521 0.569 0.680 0.792
0.418 0.479 0.525 0.632 0.740
5 16 11 32 3 8 7 16 1 2
0.332 0.365 0.397 0.462 0.526
0.292 0.323 0.353 0.414 0.474
1.0000 1.1250 1.2500 1.3750 1.5000
112 111 16 178 1 216 1 24
1.5000 1.6875 1.8750 2.0625 2.2500
1.450 1.631 1.812 1.994 2.175
1.732 1.949 2.165 2.382 2.598
1.653 1.859 2.066 2.273 2.480
7 8
0.903 1.030 1.126 1.237 1.348
0.847 0.970 1.062 1.169 1.276
9 16 5 8 3 4 13 16 7 8
0.590 0.655 0.782 0.846 0.911
0.534 0.595 0.718 0.778 0.839
1 118 114 158 112
1 0 132 13 164 3 116
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
THREADED FASTENERS AND SCREWS FOR POWER TRANSMISSION THREADED FASTENERS AND SCREWS FOR POWER TRANSMISSION
18.49
TABLE 18-32 Carriage bolts
Countersunk
Nominal diam of bolt D
Diam of head max, A
No. 10
0.520 0.645 0.770 0.895 1.020 1.145 1.400 1.650
1 4 3 16 3 8 7 16 1 2 5 8 3 4
Fin neck
Feed thickness F
Depth of square and countersink max, E
Width of square, max, B
Diam of head, max, A
Height of head, max, H
Depth of fins, max, P
Distance across fins, max, W
Thickness of fins, max, M
0.016 0.016 0.031 0.031 0.031 0.031 0.031 0.047
0.250 0.312 0.375 0.437 0.500 0.562 0.687 0.812
0.199 0.260 0.324 0.388 0.452 0.515 0.642 0.768
0.469 0.594 0.719 0.844 0.969 1.094
0.114 0.145 0.176 0.208 0.239 0.270
0.088 0.104 0.135 0.151 0.182 0.198
0.395 0.458 0.551 0.645 0.739 0.833
0.098 0.114 0.145 0.161 0.192 0.208
Square neck Ribbed neck Nominal diam of bolt D
Diam of head, max, A
Height of head, max, H
Depth of square, max, P
Width of square, max, B
No. 10
0.469 0.594 0.719 0.844 0.969 1.094 1.344 1.594 1.844 2.094
0.114 0.145 0.176 0.208 0.239 0.270 0.344 0.406 0.469 0.531
0.125 0.156 0.187 0.219 0.250 0.281 0.344 0.406 0.469 0.531
0.199 0.260 0.324 0.388 0.452 0.515 0.642 0.768 0.895 1.022
1 4 5 16 3 8 7 16 1 2 5 8 5 8 7 8
1
Ribs below head P
Length of ribs Q
L 78
L1
L 78
L ¼ 1, L ¼ 1 18
L 1 14
Number of ribs
0.031 0.031 0.031 0.031 0.031 0.031 0.094 0.094
0.063 0.063 0.063 0.063 0.063 0.063 0.094 0.094
0.188 0.188 0.188 0.188 0.188 0.188 0.188 0.188
0.313 0.313 0.313 0.313 0.313 0.313 0.313 0.313
0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500
9 10 12 12 14 16 19 22
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
THREADED FASTENERS AND SCREWS FOR POWER TRANSMISSION
18.50
CHAPTER EIGHTEEN
TABLE 18-33 Countersunk, Buttonhead, and Step bolts
Countersunk bolt Nominal diam of bolt D
Buttonhead
Step bolt
Head diam, max, A
Head depth H
Head diam, max, A
Head height, max, H
Head diam, max, A
Head height, max, H
Depth of square, max, P
Width of square, max, B
24 20 18 16 14
— 0.493 0.618 0.740 0.803
— 0.140 0.176 0.210 0.210
0.469 0.594 0.719 0.844 0.969
0.114 0.145 0.176 0.208 0.239
0.656 0.844 1.031 1.219 1.406
0.114 0.145 0.176 0.208 0.239
0.125 0.156 0.187 0.219 0.250
0.199 0.260 0.324 0.388 0.452
0.935 1.169 1.402 1.637 1.869
0.250 0.313 0.375 0.438 0.500
1.094 1.344 1.594 1.844 2.094
0.270 0.344 0.406 0.469 0.531
1.594
0.270
0.281
0.515
1
13 11 10 9 8
118 114 138 112
7 7 6 6
2.104 2.337 2.571 2.804
0.563 0.625 0.688 0.750
No. 10 1 4 5 16 3 8 7 16 1 2 5 8 3 4 7 8
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
THREADED FASTENERS AND SCREWS FOR POWER TRANSMISSION THREADED FASTENERS AND SCREWS FOR POWER TRANSMISSION
18.51
TABLE 18-34 Machine-screw heads
Flat head
Nominal size No. 0 No. 1 No. 2 No. 3 No. 4 No. 5 No. 6 No. 8 No. 10 No. 12 1 4 5 16 3 8 7 16 1 2 9 16 5 8 3 4
Max diam D
Head diam, max, A
Height of head, max, H
0.060 0.073 0.086 0.099 0.112 0.125 0.138 0.164 0.190 0.216 0.250 0.3125 0.375 0.4375 0.500 0.5625 0.625 0.750
0.119 0.146 0.172 0.199 0.225 0.252 0.279 0.332 0.385 0.438 0.507 0.635 0.762 0.812 0.875 1.000 1.125 1.375
0.035 0.043 0.051 0.059 0.067 0.075 0.083 0.100 0.116 0.132 0.153 0.191 0.230 0.223 0.223 0.260 0.298 0.372
Round head
Width of slot, min, J
Depth of slot, min, T
0.016 0.019 0.023 0.027 0.031 0.035 0.039 0.045 0.050 0.056 0.064 0.072 0.081 0.081 0.091 0.102 0.116 0.131
0.010 0.012 0.015 0.017 0.020 0.022 0.024 0.029 0.034 0.039 0.046 0.058 0.070 0.066 0.065 0.077 0.088 0.111
Total height of head, max, O
Head diam, max, A
Height of head, max, H
Width of slot, min, J
Depth of slot, min, T
0.113 0.138 0.162 0.137 0.211 0.236 0.260 0.309 0.359 0.408 0.472 0.590 0.708 0.750 0.813 0.938 1.000 1.250
0.053 0.061 0.069 0.078 0.086 0.095 0.103 0.120 0.137 0.153 0.175 0.216 0.256 0.328 0.355 0.410 0.438 0.547
0.016 0.019 0.023 0.027 0.031 0.035 0.039 0.045 0.050 0.056 0.064 0.072 0.081 0.081 0.091 0.102 0.116 0.131
0.029 0.033 0.037 0.040 0.044 0.047 0.051 0.058 0.065 0.072 0.082 0.099 0.117 0.148 0.159 0.183 0.195 0.242
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
Total height of head, max, O
THREADED FASTENERS AND SCREWS FOR POWER TRANSMISSION
18.52
CHAPTER EIGHTEEN
TABLE 18-34 Machine-screw heads (Cont.) Oval head
Nominal Size No. 0 No. 1 No. 2 No. 3 No. 4 No. 5 No. 6 No. 8 No. 10 No. 12 1 4 5 16 3 8 7 16 1 2 9 16 5 8 3 4
Max diam D
Head diam, max, A
Height of head, max, H
0.060 0.073 0.086 0.099 0.112 0.125 0.138 0.164 0.190 0.216 0.250 0.3125 0.375 0.4375 0.500 0.5625 0.625 0.750
0.119 0.146 0.172 0.199 0.225 0.252 0.279 0.332 0.385 0.438 0.507 0.635 0.762 0.812 0.875 1.000 1.125 1.375
0.035 0.043 0.051 0.059 0.067 0.075 0.083 0.100 0.116 0.132 0.153 0.191 0.230 0.223 0.223 0.260 0.298 0.372
Fillister head
Width of slot, min, J
Depth of slot, min, T
Total height of head, max, O
0.016 0.019 0.023 0.027 0.031 0.035 0.039 0.045 0.050 0.056 0.064 0.072 0.081 0.081 0.091 0.102 0.116 0.131
0.025 0.031 0.037 0.043 0.049 0.055 0.060 0.072 0.084 0.096 0.112 0.141 0.170 0.174 0.176 0.207 0.235 0.293
0.056 0.068 0.080 0.092 0.104 0.116 0.128 0.152 0.176 0.200 0.232 0.290 0.347 0.345 0.354 0.410 0.467 0.578
Head diam, max, A
Height of head, max, H
Width of slot, min, J
Depth of slot, min, T
Total height of head, max, O
0.098 0.118 0.140 0.161 0.183 0.205 0.226 0.270 0.313 0.357 0.414 0.518 0.622 0.625 0.750 0.812 0.875 1.000
0.045 0.053 0.062 0.070 0.079 0.088 0.096 0.113 0.130 0.148 0.170 0.211 0.253 0.265 0.297 0.336 0.375 0.441
0.016 0.019 0.023 0.027 0.031 0.035 0.039 0.045 0.050 0.056 0.064 0.072 0.081 0.081 0.091 0.102 0.116 0.131
0.015 0.020 0.025 0.030 0.035 0.040 0.045 0.054 0.064 0.074 0.087 0.110 0.133 0.135 0.151 0.172 0.193 0.226
0.059 0.071 0.083 0.095 0.107 0.120 0.132 0.156 0.180 0.205 0.237 0.295 0.355 0.368 0.412 0.466 0.521 0.612
Note: Edges of head on flat- and oval-head machine screws may be rounded. Radius of fillet at base of flat- and oval-head machine screws shall not exceed twice the pitch of the screw thread. Radius of fillet at base of round- and fillister-head machine screws shall not exceed one-half the pitch of the screw thread. All four types of screws in this table may be furnished with cross-recessed heads. Fillister-head machine screws in sizes No. 2 to 38 in, inclusive, may be furnished with a drilled hole through the head along a diameter at right angles to the slot but not breaking through the slot.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
THREADED FASTENERS AND SCREWS FOR POWER TRANSMISSION THREADED FASTENERS AND SCREWS FOR POWER TRANSMISSION
18.53
TABLE 18-35 Machine screw heads—pan, hexagon, truss, and 1008 Flat heads
Pan head
Nominal size No. 2 No. 3 No. 4 No. 5 No. 6 No. 8 No. 10 No. 12 1 4 5 16 3 8
Max diam D
Head diam, max, A
Height of slotted head, max, H
Width of slot, min, J
Depth of slot, min, T
0.086 0.099 0.112 0.125 0.138 0.164 0.190 0.216 0.250 0.3125 0.375
0.167 0.193 0.219 0.245 0.270 0.322 0.373 0.425 0.492 0.615 0.740
0.053 0.060 0.068 0.075 0.082 0.096 0.110 0.125 0.144 0.178 0.212
0.023 0.027 0.031 0.035 0.039 0.045 0.050 0.056 0.064 0.072 0.081
0.023 0.027 0.030 0.032 0.038 0.043 0.050 0.060 0.070 0.092 0.113
Hexagon head
Radius R
Height of recessed head max, O
Head diam, max, A
Height of head, max, H
Width of slot, min, J
Depth of slot, min, T
0.035 0.037 0.042 0.044 0.046 0.052 0.061 0.078 0.087 0.099 0.143
0.062 0.071 0.080 0.089 0.097 0.115 0.133 0.151 0.175 0.218 0.261
0.125 0.187 0.187 0.187 0.250 0.250 0.312 0.312 0.375 0.500 0.562
0.050 0.055 0.060 0.070 0.080 0.110 0.120 0.155 0.190 0.230 0.295
0.031 0.035 0.039 0.045 0.050 0.056 0.064 0.072 0.081
0.025 0.030 0.033 0.052 0.057 0.077 0.083 0.100 0.131
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
THREADED FASTENERS AND SCREWS FOR POWER TRANSMISSION
18.54
CHAPTER EIGHTEEN
TABLE 18-35 Machine screw heads—pan, hexagon, truss, and 1008 Flat heads (Cont.) Truss head
Nominal size No. 2 No. 3 No. 4 No. 5 No. 6 No. 8 No. 10 No. 12 1 4 5 16 3 8 7 16 1 2 9 16 5 8 3 4
1008 flat head
Max diam D
Head diam, max, A
Height of slotted head, max, H
Width of slot, min, J
Depth of slot, min, T
Radius R
0.086 0.099 0.112 0.125 0.138 0.164 0.190 0.216 0.250 0.3125 0.375 0.4375 0.500 0.5625 0.625 0.750
0.194 0.226 0.257 0.289 0.321 0.384 0.448 0.511 0.573 0.698 0.823 0.948 1.073 1.198 1.323 1.573
0.053 0.061 0.069 0.078 0.086 0.102 0.118 0.134 0.150 0.183 0.215 0.248 0.280 0.312 0.345 0.410
0.023 0.027 0.031 0.035 0.039 0.045 0.050 0.056 0.064 0.072 0.081 0.081 0.091 0.102 0.116 0.131
0.022 0.026 0.030 0.034 0.037 0.045 0.053 0.061 0.070 0.085 0.100 0.116 0.131 0.146 0.162 0.182
0.129 0.151 0.169 0.191 0.211 0.254 0.283 0.336 0.375 0.457 0.538 0.619 0.701 0.783 0.863 1.024
Height of recessed head max, O
Head diam, max, A
Height of head, max, H
Width of slot, min, J
Depth of slot, min, T
0.225
0.048
0.031
0.017
0.279 0.332 0.385
0.060 0.072 0.083
0.039 0.045 0.050
0.022 0.027 0.031
0.507 0.635 0.762
0.110 0.138 0.165
0.064 0.072 0.081
0.042 0.053 0.064
Note: Radius of fillet at base of truss- and pan-head machine screws shall not exceed one-half the pitch of the screw thread. Truss-, pan-, and 1008 flat-head machine screws may be furnished with cross-recessed heads. Hexagon-head machine screws are usually not slotted; the slot is optional. Also optional is an upset-head type for hexagon-head machine screws of sizes 4, 5, 8, 12, and 14 in.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
THREADED FASTENERS AND SCREWS FOR POWER TRANSMISSION THREADED FASTENERS AND SCREWS FOR POWER TRANSMISSION
18.55
TABLE 18-36 Machine-screw heads—binding head
Nominal size No. 2 No. 3 No. 4 No. 5 No. 6 No. 8 No. 10 No. 12 1 4 5 16 3 8
Max diam D
Head diam, max, A
Total height of head, max, O
Width of slot, min, J
Depth of slot, min, T
Height of oval, max, F
Diam of undercut,a min, U
Depth of undercut, min, X
0.086 0.099 0.112 0.125 0.138 0.164 0.190 0.216 0.250 0.3125 0.375
0.181 0.208 0.235 0.263 0.290 0.344 0.399 0.454 0.513 0.641 0.769
0.046 0.054 0.063 0.071 0.080 0.097 0.114 0.130 0.153 0.193 0.234
0.023 0.027 0.031 0.035 0.039 0.045 0.050 0.056 0.064 0.072 0.081
0.024 0.029 0.034 0.039 0.044 0.054 0.064 0.074 0.088 0.112 0.136
0.018 0.022 0.025 0.029 0.032 0.039 0.045 0.052 0.061 0.077 0.094
0.124 0.143 0.161 0.180 0.199 0.236 0.274 0.311 0.360 0.450 0.540
0.005 0.006 0.007 0.009 0.010 0.012 0.015 0.018 0.021 0.027 0.034
a
Use of undercut is optional. Note: Binding-head machine screws may be furnished with cross-recessed heads.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
THREADED FASTENERS AND SCREWS FOR POWER TRANSMISSION
18.56
CHAPTER EIGHTEEN
TABLE 18-37 Slotted-head cap screws28
Fillister head Nominal size (body diam, max) D
Flat head
Round head
Width of slot min, J
Head diam, max, A
Height of head, max, H
Total height of head, max, O
Depth of slot, min, T
Head diam, max, A
Height of head average, H
Depth of slot, min, T
Head diam, max, A
Height of head, max, H
Depth of slot, min, T
1 4 3 16 3 8 7 16 1 2
0.064 0.072 0.081 0.081 0.091
0.375 0.437 0.562 0.625 0.750
0.172 0.203 0.250 0.297 0.328
0.216 0.253 0.314 0.368 0.412
0.077 0.090 0.113 0.133 0.148
0.500 0.625 0.750 0.8125 0.875
0.140 0.176 0.210 0.210 0.210
0.046 0.057 0.069 0.069 0.069
0.437 0.562 0.625 0.750 0.812
0.191 0.246 0.273 0.328 0.355
0.097 0.126 0.135 0.167 0.179
9 16 5 8 3 4 7 8
0.812 0.875 1.000 1.125 1.312
0.375 0.422 0.500 0.594 0.656
0.466 0.521 0.612 0.720 0.802
0.169 0.190 0.233 0.264 0.292
1.000 1.125 1.375 1.625 1.875
0.245 0.281 0.352 0.423 0.494
0.080 1.092 0.115 0.139 0.162
0.937 1.000 0.125
0.410 0.438 0.547
0.208 0.220 0.227
1
0.102 0.116 0.131 0.147 0.166
118 114 138 112
0.178 0.193 0.208 0.240
— — — —
— — — —
— — — —
— — — —
2.062 2.312 2.562 2.812
0.529 0.600 0.665 0.742
0.173 0.197 0.220 0.244
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
THREADED FASTENERS AND SCREWS FOR POWER TRANSMISSION THREADED FASTENERS AND SCREWS FOR POWER TRANSMISSION
18.57
TABLE 18-38 Socket-head cap screws Hexagona Socket width across flats, min, J
Fluted socket
Number of flutes
Socket diam minor, min, K
Socket diam major, min, M
Width of socket land, max, N
Nominal size
Body diam, max, D
Head diam, max, A
Head height max, H
Head side height, max, S
No. 0 No. 1 No. 2 No. 3 No. 4
0.060 0.073 0.0860 0.0990 0.1120
0.096 0.118 0.140 0.161 0.183
0.086 0.099 0.112
0.0803 0.0923 0.1043
1 16 5 64 5 64
6 6 6
0.063 0.080 0.080
0.073 0.097 0.097
0.016 0.022 0.022
No. 5 No. 6 No. 8 No. 10 No. 12
0.1250 0.1380 0.1640 0.1900 0.2160
0.205 0.226 0.270 5 16 11 32
0.125 0.138 0.164 0.190 0.216
0.1163 0.1284 0.1522 0.1765 0.2005
3 32 3 32 1 8 5 32 5 32
6 6 6 6 6
0.096 0.096 0.126 0.161 0.161
0.113 0.113 0.147 0.186 0.186
0.025 0.025 0.032 0.039 0.039
1 4 5 16 3 8 7 16 1 2
0.2500 0.3125 0.3750 0.4375 0.5000
3 8 7 16 9 16 5 8 1 4
1 4 5 16 3 8 7 16 1 2
0.2317 0.2894 0.3469 0.4046 0.4620
3 16 7 32 5 16 5 16 3 8
6 6 6 6 6
0.188 0.219 0.316 0.316 0.383
0.219 0.254 0.377 0.377 0.460
0.050 0.060 0.092 0.092 0.112
9 16 5 8 3 4 7 8
13 16 7 8
1 118 5 116
9 16 5 8 3 4 7 8
1
0.5625 0.6250 0.7500 0.8750 1.0000
1
0.5196 0.5771 0.6920 0.8069 0.9220
3 8 1 2 9 16 9 16 5 8
6 6 6 6 6
0.383 0.506 0.531 0.600 0.681
0.460 0.601 0.627 0.705 0.797
0.112 0.138 0.149 0.168 0.189
118 114 138 112
1.1250 1.2500 1.3750 1.5000
112 134 178 2
118 114 138 112
1.0372 1.1516 1.2675 1.3821
3 4 3 4 3 4
6 6 6 6
0.824 0.824 0.824 1.003
0.966 0.966 0.966 1.271
0.231 0.231 0.231 0.298
1
a
Maximum socket depth T should not exceed three-fourths of minimum head height H. Note: Head chamfer angle E is 28 to 328, the edge between flat and chamfer being slightly rounded. Screw point chamfer angle 35 to 408, the chamfer extending to the bottom of the thread. Edge between flat and chamfer is slightly rounded.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
THREADED FASTENERS AND SCREWS FOR POWER TRANSMISSION
18.58
CHAPTER EIGHTEEN
TABLE 18-39 Square-head set screws28
Width across flats F Nominal size No. 10 No. 12 1 4 5 16 3 8 7 16 1 2 9 16 5 8 3 4 7 8
1 118 114 138 112
0.190 0.216 0.250 0.3125 0.3750 0.4375 0.500 0.5625 0.6250 0.750 0.875 1.000 1.125 1.250 1.376 1.500
Width across corners G
Height of head H
Diam of neck relief K
Radius of head X
Radius Width of neck of neck relief relief R U
Max
Min
Min
Nom
Max
Min
Max
Min
Nom
Max
Max
0.1875 0.216 0.250 0.3125 0.375 0.4375 0.500 0.5625 0.625 0.750 0.875 1.000 1.125 1.250 1.375 1.500
0.180 0.208 0.241 0.302 0.362 0.423 0.484 0.545 0.606 0.729 0.852 0.974 1.096 1.219 1.342 1.464
0.247 0.292 0.331 0.415 0.497 0.581 0.665 0.748 0.833 1.001 1.170 1.337 1.505 1.674 1.843 2.010
9 64 5 32 3 16 15 64 7 32 31 64 3 8 27 64 15 32 9 16 21 32 3 4 27 32 15 16 1 132 1 18
0.148 0.163 0.196 0.245 0.293 0.341 0.398 0.437 0.485 0.582 0.678 0.774 0.870 0.966 1.063 1.159
0.134 0.147 0.178 0.224 0.270 0.315 0.361 0.407 0.452 0.544 0.635 0.726 0.817 0.908 1.000 1.091
0.145 0.162 0.185 0.240 0.294 0.345 0.400 0.454 0.507 0.620 0.731 0.838 0.939 1.064 1.159 1.284
0.140 0.156 0.170 0.225 0.279 0.330 0.385 0.439 0.492 0.605 0.716 0.823 0.914 1.039 1.134 1.259
15 32 35 64 5 8 25 32 15 16 3 132 1 14 113 32 9 116 7 18 3 216 212 213 16 318 7 316 3 34
0.027 0.029 0.032 0.036 0.041 0.046 0.050 0.054 0.059 0.065 0.072 0.081 0.092 0.092 0.109 0.109
0.083 0.091 0.100 0.111 0.125 0.143 0.154 0.167 0.182 0.200 0.222 0.250 0.283 0.283 0.333 0.333
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
THREADED FASTENERS AND SCREWS FOR POWER TRANSMISSION THREADED FASTENERS AND SCREWS FOR POWER TRANSMISSION
18.59
TABLE 18-40 Square-head setscrew points28
Full-dog, half-dog, and pivot pointa
Nom
Max
Min
Oval (round) point radius J, nom
1 4 5 16 3 8
3 32 7 64 1 8 11 64 13 64
0.102 0.115 0.132 0.172 0.212
0.088 0.101 0.118 0.156 0.194
0.141 0.156 0.188 0.234 0.281
0.127 0.144 0.156 0.203 0.250
0.120 0.137 0.149 0.195 0.241
0.090 0.110 0.125 0.156 0.188
0.045 0.055 0.063 0.078 0.094
7 16 1 2 9 16 5 8 3 4
16 64 9 32 5 16 22 64 7 16
0.252 0.291 0.332 0.371 0.450
0.232 0.270 0.309 0.347 0.425
0.328 0.375 0.422 0.469 0.563
0.297 0.344 0.391 0.469 0.563
0.287 0.334 0.379 0.456 0.549
0.219 0.250 0.281 0.313 0.375
0.109 0.125 0.140 0.156 0.188
7 8
1 118 114 138
33 64 19 32 43 64 3 4 53 64
0.530 0.609 0.689 0.767 0.848
0.502 0.579 0.655 0.733 0.808
0.656 0.750 0.844 0.938 1.031
0.656 0.750 0.844 0.938 1.031
0.642 0.734 0.826 0.920 1.011
0.438 0.500 0.562 0.625 0.688
0.219 0.250 0.281 0.312 0.344
112
29 32
0.926
0.886
1.125
1.125
1.105
0.750
0.375
Diam of cap and flat points C Nominal size No. 10 No. 12
Min
Full dog and pivot Q
Half dog q
Diam P Max
a Pivot points are similar to full-dog point except that the point is rounded by a radius equal to J. Where usable length of thread is less than the nominal diameter, half-dog point shall be used. When length equals nominal diameter or less, Y ¼ 1188 28; when length exceeds nominal diameter, Y ¼ 908 28 Note: All dimensions are given in inches.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
THREADED FASTENERS AND SCREWS FOR POWER TRANSMISSION
18.60
CHAPTER EIGHTEEN
TABLE 18-41 Slotted headless setscrews28
Radius of headless crown I
Width of slot J
Depth of slot T
Ovalpoints radius R
Max
Min
Max
Min
Fill Q
Half q
0.125 0.138 0.164 0.190 0.216
0.125 0.138 0.164 0.190 0.216
0.023 0.025 0.029 0.032 0.036
0.031 0.035 0.041 0.048 0.054
0.094 0.109 0.125 0.141 0.156
0.067 0.074 0.087 0.102 0.115
0.057 0.064 0.076 0.088 0.101
0.083 0.092 0.109 0.127 0.144
0.078 0.087 0.103 0.120 0.137
0.060 0.070 0.080 0.090 0.110
0.030 0.035 0.040 0.045 0.055
1 4 5 16 3 8 7 16
0.250 0.3125 0.375 0.4375
0.250 0.313 0.375 0.438
0.045 0.051 0.064 0.072
0.063 0.078 0.094 0.109
0.188 0.234 0.281 0.328
0.132 0.172 0.212 0.252
0.118 0.156 0.194 0.232
0.156 0.203 0.250 0.297
0.149 0.195 0.241 0.287
0.125 0.156 0.188 0.219
0.063 0.078 0.094 0.109
1 2 9 16 5 8 3 4
0.500 0.5625 0.625 0.750
0.500 0.563 0.625 0.750
0.081 0.091 0.102 0.129
0.125 0.141 0.156 0.188
0.375 0.422 0.469 0.563
0.291 0.332 0.371 0.450
0.270 0.309 0.347 0.425
0.344 0.391 0.469 0.563
0.344 0.379 0.456 0.549
0.250 0.281 0.313 0.375
0.135 0.140 0.156 0.188
Nominal size D 5 6 8 10 12
Diam of cup and flat points C
Diam of dog point P
Length of dog pointa
a
Where usable length thread is less than the nominal diameter, half-dog point shall be used. When L (length of screw) equals nominal diameter or less, Y ¼ 1188 28; when L exceeds nominal diameter, Y ¼ 908 28. Point angles ¼ 80 to 908; X ¼ 1188 58; Z ¼ 100 to 1108. Allowable eccentricity of dog point axis with respect to axis of screw shall not exceed 3% of nominal screw diameter with maximum 0.005 in. Note: All dimensions given in inches.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
0.087
0.102
0.115
No. 8
No. 10
No. 12
0.061
No. 4
0.067
0.054
No. 3
0.074
0.047
No. 2
No. 5
0.040
No. 1
No. 6
0.033
No. 0
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
0.101
0.088
0.076
0.064
0.057
0.051
0.045
0.039
0.033
0.027
Cup- and Screw flat-point size diameter nominal C diam D Max Min
3 32 7 64 1 8 9 64 5 32
0.084
1 16 5 64
0.055
3 64
Ovalpoint radius R
1 8 1 8 3 16 3 16 3 16
1 16 5 64 3 32 7 64 1 8
118 28 for these lengths and under
3 16 3 16 1 4 1 4 1 4
5 64 3 32 7 64 1 8 5 32
0.103 0.120
0.109 0.127
0.137
0.087
0.144
0.078
0.070
0.075
0.092
0.062
0.066
0.083
0.053
0.045
0.037
0.057
0.049
0.040
0.11
0.09
0.08
0.07
0.06
0.056
0.050
0.043
0.037
0.030
0.055
0.045
0.04
0.035
0.03
0.028
0.025
0.022
0.019
0.015
0.075
0.075
0.062
0.050
0.050
0.040
0.040
0.028
0.028
0.022
90 28 Dog point for these lengths Diam P Key and engagement† over Max Min Full Q Half q min
Cone-point angle Y
Fluted and hexagon socket types
TABLE 18-42 Fluted and hexagon socket-headless setscrews24
0.0947
0.0947
0.0791
0.0635
0.0635
0.051
0.051
0.0355
0.0355
0.0285
Max
1 16 1 16 5 64 3 32 3 32
0.050
0.050
0.035
0.035
0.028
Min
Socket width across flats J
Hexagon type
0.098
0.098
0.082
0.056
0.053
0.051
0.038
0.038
0.026
0.026
Max
0.096
0.096
0.080
0.055
0.052
0.050
0.0375
0.0375
0.0255
0.0255
Min
Socket diam, minor, J
0.115
0.115
0.098
0.079
0.071
0.062
0.050
0.050
0.035
0.035
Max
0.113
0.113
0.097
0.078
0.070
0.061
0.049
0.049
0.034
0.034
Min
Socket diam, major, M
Fluted typea
0.025
0.025
0.022
0.023
0.022
0.014
0.017
0.017
0.012
0.012
Max
0.023
0.023
0.021
0.022
0.021
0.013
0.016
0.016
0.0115
0.0115
Min
Socket land width N
THREADED FASTENERS AND SCREWS FOR POWER TRANSMISSION
18.61
0.808 0.886
1.039
0.848 0.926
1.086
1.244
2
1.193
112
27 32 15 16 1 132 1 18 5 116
27 64 15 32 9 16 21 32 3 4
3 16 15 64 9 32 21 64 3 8
Ovalpoint radius R
2
114 138 112 134
118
1
9 16 5 8 3 4 7 8
1 4 5 16 3 8 7 16 1 2
118 28 for these lengths and under
214
2
112 158 134
114
118
1
5 8 3 4 7 8
5 16 3 8 7 16 1 2 9 16
112
27 32 15 16 1 132 1 18 5 116
25 64 15 32 9 16 21 32 3 4
5 32 13 64 1 4 19 64 11 32
1.474
1.289
1.011 1.105
0.920
0.826
0.734
0.642
0.456 0.549
0.379
0.334
0.287
0.241
0.149 0.195
1
9 16 5 8 11 16 3 4 7 8
9 32 5 16 3 8 7 16 1 2
1 8 3 32 3 16 7 32 1 4
1 2
9 16 5 16 11 32 3 8 7 16
5 64 3 32 3 16 7 32 1 4
1 16 5 64 3 32 7 64 1 8
0.800
0.800
0.500 0.600
0.500
0.450
0.450
0.400
0.250 0.300
0.200
0.200
0.175
0.150
0.100 0.125
90 28 Dog point for these lengths Diam P Key and engagementb over Max Min Full Q Half q min
1.0040
0.0040
0.6290 0.7540
0.6290
0.5655
0.5655
0.5030
0.3155 0.3780
0.2520
0.2520
0.2207
0.1895
0.1270 0.1582
Max
1
1
9 16 3 8 3 8 3 4
1 4 5 16 3 8 1 2 9 16
1 8 5 32 3 16 7 32 1 4
Min
Socket width across flats J
Hexagon type
1.007
1.007
0.744 0.828
0.685
0.604
0.535
0.509
0.319 0.386
0.254
0.254
0.221
0.190
0.128 0.163
Max
1.003
1.003
0.740 0.824
0.681
0.600
0.531
0.506
0.316 0.383
0.252
0.252
0.219
0.188
0.126 0.161
Min
Socket diam, minor, J
1.275
1.275
0.869 0.970
0.801
0.709
0.631
0.604
0.380 0.463
0.298
0.298
0.256
0.221
0.149 0.188
Max
1.271
1.271
0.865 0.966
0.797
0.705
0.627
0.601
0.377 0.460
0.296
0.296
0.254
0.219
0.147 0.186
Min
Socket diam, major, M
Fluted typea
0.298
0.298
0.207 0.231
0.189
0.168
0.149
0.138
0.092 0.112
0.068
0.068
0.060
0.050
0.032 0.039
Max
0.294
0.294
0.203 0.227
0.185
0.164
0.145
0.134
0.089 0.109
0.066
0.066
0.058
0.048
0.030 0.037
Min
Socket land width N
b
The number of flutes for setscrews Nos. 0, 1, 2, 3, 5, and 6 is four. The number of flutes for Nos. 4, 8, and larger is six. These dimensions apply to cup- and flat-point screws one diameter in length or longer. For screws shorter than one diameter in length, and for other types of points, socket to be as deep as practicable. Note: All dimensions are given in inches. Source: Courtesy: John J. Viegas, Standards for Mechanical Elements, Harold A. Rothbart, Editor-in-Chief; Mechanical Design and Systems Handbook, McGraw-Hill Publishing Company, New York, 1964.
a
0.733
0.767
114 138 112 134
0.655
0.689
118
0.502
0.579
0.530
0.609
0.347 0.425
0.270
0.291
0.371 0.450
0.232
0.252
0.309
0.194
0.212
0.332
0.118 0.156
0.132 0.172
1
9 16 5 8 3 4 7 8
1 4 5 16 3 8 7 16 1 2
Cup- and Screw flat-point size diameter nominal C diam D Max Min
Cone-point angle Y
Fluted and hexagon socket types
TABLE 18-42 Fluted and hexagon socket-headless setscrews24 (Cont.)
THREADED FASTENERS AND SCREWS FOR POWER TRANSMISSION
18.62
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
THREADED FASTENERS AND SCREWS FOR POWER TRANSMISSION THREADED FASTENERS AND SCREWS FOR POWER TRANSMISSION
18.63
TABLE 18-43 American National Standard metric hex cap screws (ANSI B18.2.3.1M-1979, R1989)
Nominal screw diam, D and thread pitch
Body diam, Ds Max
Min
Width across flats, S Max
Min
Width across corners, E Max
Min
Head height, K Max
Min
Wrenching height, K1 Min
Washer face thickness, C Max
Min
M5 0:8 M6 1 M8 1:25
5.00 6.00 8.00
4.82 5.82 7.78
8.00 10.00 13.00
7.78 9.78 12.73
9.24 11.55 15.01
8.79 11.05 14.38
3.65 4.15 5.50
3.35 3.85 5.10
2.4 2.8 3.7
0.5 0.5 0.6
0.2 0.2 0.3
M10 1:5
10.00
9.78
15.00
14.73
17.32
16.64
6.63
6.17
4.5
0.6
0.3
M10 1:5
10.00
9.78
16.00
15.73
18.48
17.77
6.63
6.17
4.5
0.6
0.3
M12 1:75 M14 2 M16 2 M20 2:5 M24 3
12.00 14.00 16.00 20.00 24.00
11.73 13.73 15.73 19.67 23.67
18.00 21.00 24.00 30.00 36.00
17.73 20.67 23.67 29.16 35.00
20.78 24.25 27.71 34.64 41.57
20.03 23.35 26.75 32.95 39.55
7.76 9.09 10.32 12.88 15.44
7.24 8.51 8.68 12.12 14.56
5.2 6.2 7.0 8.8 10.5
0.6 0.6 0.8 0.8 0.8
0.3 0.3 0.4 0.4 0.4
M30 3:5 M36 4 M42 4:5 M48 5 M56 5:5
30.00 36.00 42.00 48.00 56.00
29.67 35.61 41.38 47.38 55.26
46.00 55.00 65.00 75.00 85.00
45.00 53.80 62.90 72.60 82.20
53.12 63.51 75.06 86.60 98.15
50.85 60.79 71.71 83.76 93.71
15.48 23.38 26.97 31.07 36.20
17.92 21.62 25.03 28.93 33.80
13.1 15.8 18.2 21.0 24.5
0.8 0.8 1.0 1.0 1.0
0.4 0.4 0.5 0.5 0.5
M64 6 M72 6 M80 6 M90 6 M100 6
64.00 72.00 80.00 90.00 100.00
63.26 71.26 79.26 89.13 99.13
95.00 105.00 115.00 130.00 145.00
91.80 101.40 111.00 125.50 140.00
109.70 121.24 132.72 150.11 167.43
104.65 115.60 126.54 143.07 159.60
41.32 46.45 51.58 57.74 63.90
38.68 43.55 48.42 54.26 60.10
28.0 31.5 35.0 39.2 43.4
1.0 1.2 1.2 1.2 1.2
0.5 0.6 0.6 0.6 0.6
All dimensions are in millimeters. This size with width across flats of 15 mm is not standard. Unless specifically ordered hex cap screws with 16 mm width across flats will be furnished. † Transition thread length, X, includes the length of incomplete threads and tolerances gaging length and body length. It is intended for calculation purposes. ‡ Basic thread lengths, B, are the same as given in Table 18-47. For additional manufacturing and acceptance specifications, reference should be made to Standard. Courtesy: American National Standards Institution, New York, USA. (ANSI B18.2.1M-1979, R1989)
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
THREADED FASTENERS AND SCREWS FOR POWER TRANSMISSION
18.64
CHAPTER EIGHTEEN
TABLE 18-44 American National Standard metric formed hex screws (ANSI B18.2.3.2M-1979, R1989)
Nominal screw diam, D, and thread pitch
Max
Min
Max
Min
Max
Min
Max
M5 0:8 M6 1 M8 1:25 M10 1:5 M10 1:5 M12 1:75 M14 2 M16 2 M20 2:5 M24 3
5.00 5.00 8.00 10.00 10.00 12.00 14.00 16.00 20.00 24.00
4.82 5.82 7.78 9.78 9.78 11.73 13.73 15.73 19.67 23.67
8.00 10.00 13.00 15.00 16.00 18.00 21.00 24.00 30.00 36.00
7.64 9.64 12.57 14.57 15.57 17.57 20.16 23.16 29.16 35.00
9.24 11.55 15.01 17.32 18.48 20.78 24.25 27.71 34.64 41.57
8.56 10.80 14.08 16.32 17.43 19.68 22.58 25.94 32.66 39.20
3.65 4.15 5.50 6.63 6.63 7.76 9.09 10.32 12.88 15.44
Body diam, Ds
Width across flats, S
Width across corners, E
Head height, K
Wrenching height, K1
Washer face thickness, C
Washer face diam, Dw
Min
Min
Max
Min
Min
3.35 3.85 5.10 6.17 6.17 7.24 8.51 9.68 12.12 14.56
2.4 2.0 3.7 4.5 4.5 5.2 6.2 7.0 8.8 10.5
0.5 0.5 0.6 0.6 0.6 0.6 0.6 0.8 0.8 0.8
0.2 0.2 0.3 0.3 0.3 0.3 0.3 0.4 0.4 0.4
6.9 8.9 11.6 13.6 14.6 16.6 19.6 22.5 27.7 32.2
All dimensions are in millimeters. This size with width across flats of 15 mm is not standard. Unless specifically ordered M10 formed hex screws with 16 mm width across flats will be furnished. † Transition thread length, X, includes the length of incomplete threads and tolerances on the grip gaging length and body length. It is intended for calculation purposes. ‡ Basic thread lengths, B are the same as given in Table 18-47. For additional manufacturing and acceptance specifications, reference should be made to the Standard. Courtesy: American National Standards Institution, New York, USA. (ANSI B18.2.3.2M-1979, R1989)
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
THREADED FASTENERS AND SCREWS FOR POWER TRANSMISSION THREADED FASTENERS AND SCREWS FOR POWER TRANSMISSION
18.65
TABLE 18-45 American National Standard metric heavy hex screws (ANSI B18.2.3.3M-1979, R1989)
Nominal screw diam, D, and thread pitch
Max
Min
Max
Min
Max
Min
Max
M12 1:75 M14 2 M16 2 M20 2:5 M24 3 M30 3:5 M36 4
12.00 14.00 16.00 20.00 24.00 30.00 36.00
11.73 13.73 15.73 19.67 23.67 29.67 35.61
21.00 24.00 27.00 34.00 41.00 50.00 60.00
20.67 23.67 26.67 33.00 40.00 49.00 58.80
24.25 27.71 31.18 39.26 47.34 57.74 69.28
23.35 26.75 30.14 37.29 45.20 55.37 66.44
7.76 9.09 10.32 12.88 15.44 19.48 23.38
Body diam, Ds
Width across flats, S
Width across corners, E
Head height, K
Wrenching height, K1
Washer face thickness, C
Washer face diam, Dw
Min
Min
Max
Min
Min
7.24 8.51 9.68 12.12 14.56 17.92 21.72
5.2 6.2 7.0 8.8 10.5 13.1 15.8
0.6 0.6 0.8 0.8 0.8 0.8 0.8
0.3 0.3 0.4 0.4 0.4 0.4 0.4
19.0 22.0 25.0 31.0 38.0 46.0 55.0
All dimensions are in millimeters Basic thread lengths, B, are the same as given in Table 18-47. Transition thread length, X, includes the length of incomplete threads and tolerances on the grip gaging length and body length. It is intended for calculation purposes. For additional manufacturing and acceptance specifications, reference should be made to the Standard.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
THREADED FASTENERS AND SCREWS FOR POWER TRANSMISSION
18.66
CHAPTER EIGHTEEN
TABLE 18-46 American National Standard metric hex flange screws (ANSI/ASME B18.2.3.4M-1984)
Nominal screw diam, D, and thread pitch
Max
Min
Max
Min
Max
Min
Max
Min
Min
Max
Min
Max
M5 0:8 M6 1 M8 1:25 M10 1:5 M12 1:75 M14 2 M16 2
5.00 6.00 8.00 10.00 12.00 14.00 16.00
4.82 5.82 7.78 9.78 11.73 13.73 15.73
7.00 8.00 10.00 13.00 15.00 18.00 21.00
6.64 7.64 9.64 12.57 14.57 17.57 20.48
8.08 9.24 11.55 15.01 17.32 20.78 24.25
7.44 8.56 10.80 14.08 16.32 19.68 22.94
11.4 13.6 17.0 20.8 24.7 28.6 32.8
9.4 11.6 14.9 18.7 22.0 25.9 30.1
1.0 1.1 1.2 1.5 1.8 2.1 2.4
5.6 6.8 8.5 9.7 11.9 12.9 15.1
2.30 2.90 3.80 4.30 5.40 5.60 6.70
0.3 0.4 0.5 0.6 0.7 0.8 1.0
Body diam, Ds
Width across flats, S
Width across corners, E
Flange diam, Dc
Bearing circle diam, Dw
Flange edge thickness C
Head height, K
Wrenching height, K1
All dimensions are in millimeters. Basic thread lengths, B, are the same as given in Table 18-47. Transition thread length, X, includes the length of incomplete threads and tolerances on grip gaging length and body length. This dimension is intended for calculation purposes only. For additional manufacturing and acceptance specifications, reference should be made to the Standard.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
Fillet radius, R
THREADED FASTENERS AND SCREWS FOR POWER TRANSMISSION THREADED FASTENERS AND SCREWS FOR POWER TRANSMISSION
18.67
TABLE 18-47 Received diameter-length combinations for metric hex cap screws, formed hex screws, heavy hex screws, hex flange screws and heavy hex flange screws Diameter—Pitch Nominal Lengtha
M5 0.8
M6 1
M8 1.25
M10 1.5
M12 1.75
M14 2
M16 2
M20 2.5
M24 3
M30 3.5
M36 4
8 10 12 14 16 20
—
— —
— — — b b
— — — — b
— — — — b
— — — — — —
— — — — — —
— — — — — —
— — — — — —
— — — — — —
25 30 35 40 45 50
—
— —
— — —
— — — — —
(55) 60 (65) 70 (75) 80
— — — — — —
— — — —
(85) 90 100 110 120 130
— — — — — —
— — — — — —
— — — — — —
— — —
—
140 150 160 (170) 180 (190)
— — — — — —
— — — — — —
— — — — — —
— — — — — —
— — — — — —
— — — — —
— — —
200 220 240 260 280 300
— — — — — —
— — — — — —
— — — — — —
— — — — — —
— — — — — —
— — — — — —
— — — — — —
— — — — —
— — —
All dimensions are in millimeters. a Lengths in parentheses are not recommended. Recommended lengths of formed Hex Screws, Hex Flange Screws and Heavy Hex Flange Screws do not extend above 150 mm. Recommended lengths of Heavy Hex Screws do not extend below 20 mm. Standard sizes for government use. Recommended diameter-length combinations are indicated by the symbol . Screws with lengths above cross lines are threaded full length. b Does not apply to Hex Flange Screws and Heavy Hex Flange Screws. For available diameters of each type of screw, see respective dimensional table.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
THREADED FASTENERS AND SCREWS FOR POWER TRANSMISSION
18.68
CHAPTER EIGHTEEN
TABLE 18-48 American National Standard Metric Hex Bolts (ANSI B18.2.3.5M-1979, R1989)
Nominal bolt diam, D, and thread pitch M5 0:8 M6 1 M8 1:25
For bolt lengths (mm) Body diam, Ds Max
Min
Width across flats, S Max
Min
Widths across corners, E Max
Min
Head height, K Max
Min
Wrenching height, K1 Min
<125
>125 and <200
>200
Basic thread length,b B
5.48 6.19 8.58
4.52 5.52 7.42
8.00 10.00 13.00
7.64 9.64 12.57
9.24 11.55 15.01
8.63 10.89 14.20
3.58 4.18 5.68
3.35 3.55 5.10
2.4 2.8 3.7
16 18 22
22 24 28
35 37 41
10.58
9.42
15.00
14.57
17.32
16.46
6.85
6.17
4.5
26
32
45
M10 1:5
10.58
9.42
16.00
15.57
18.48
17.59
6.85
6.17
4.5
26
32
45
M12 1:75 M14 2 M16 2 M20 2:5 M24 3
12.70 14.70 16.70 20.84 24.84
11.30 13.30 15.30 19.16 23.16
18.00 21.00 24.00 30.00 36.00
17.57 20.16 23.16 29.16 35.00
20.78 24.25 27.71 34.64 41.57
19.85 7.95 22.78 9.25 26.17 10.75 32.95 13.40 39.55 15.90
7.24 8.51 9.68 12.12 14.56
5.2 6.2 7.0 8.8 10.5
30 34 38 46 54
36 49 44 52 60
49 53 57 65 73
M30 3:5 M36 4 M42 4:5 M48 5 M56 5:5
30.84 37.00 43.00 49.00 57.20
29.16 35.00 41.00 47.00 54.80
46.00 55.00 65.00 75.00 85.00
45.00 53.80 62.90 72.60 82.20
53.12 63.51 75.06 86.60 98.15
50.55 60.79 71.71 82.76 93.71
19.75 23.55 27.05 31.07 36.20
17.92 21.72 25.03 28.93 33.80
13.1 15.8 18.2 21.0 24.5
66 78 90 102 —
72 84 96 108 124
85 97 109 121 137
M64 6 M72 6 M80 6 M90 6 M100 6
65.52 73.84 82.16 92.48 102.80
63.80 70.80 78.80 88.60 98.60
95.00 105.00 115.00 130.00 145.00
91.80 101.40 111.00 125.50 140.00
109.70 121.24 132.79 150.11 167.43
104.65 115.60 126.54 143.07 159.60
41.32 46.45 51.58 57.74 63.90
38.68 43.55 48.42 54.26 60.10
28.0 31.5 35.0 39.2 43.4
— — — — —
140 156 172 192 212
153 169 185 205 225
a
M10 1:5
All dimensions are in millimeters. a This size with width across flats of 15 mm is not standard. Unless specifically ordered, M10 set bolts with 16 mmm width across flats will be furnished. b Basic thread length, B, is a reference dimension. For additional manufacturing and acceptance specifications, reference should be made to the Standard.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
THREADED FASTENERS AND SCREWS FOR POWER TRANSMISSION THREADED FASTENERS AND SCREWS FOR POWER TRANSMISSION
18.69
TABLE 18-49 American National Standard Heavy Hex Bolts (ANSI B18.2.3.6M-1979, R1989)
Nominal diam, D and thread pitch
Body diam, Ds
Width across flats, S
Width across corners, E
Head height, K
Max
Min
Max
Min
Max
Min
Max
Min
Min
M12 1:75 M14 2 M16 2 M20 2:5 M24 3 M30 3:5 M36 4
12.70 14.70 16.70 20.84 24.84 30.84 37.00
11.30 13.30 15.30 19.16 23.16 29.16 35.00
21.00 24.00 27.00 34.00 41.00 50.00 60.00
29.16 23.16 26.16 33.00 40.00 49.00 58.80
24.25 27.71 31.18 39.26 47.34 57.74 69.28
22.78 26.17 29.56 37.29 45.20 55.37 66.44
7.95 9.25 10.75 13.40 15.90 19.75 23.55
7.24 8.51 9.68 12.12 14.56 17.92 21.72
5.2 6.2 7.2 8.2 10.5 13.1 15.1
All dimensions are in millimeters. a Basic thread lengths, B, are the same as given in Table 18-47. For additional manufacturing and acceptance specifications, reference should be made to the Standard.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
Wrenching height, K1
THREADED FASTENERS AND SCREWS FOR POWER TRANSMISSION
18.70
CHAPTER EIGHTEEN
TABLE 18-50 Recommended clearance holes for metric hex screws and boltsa Clearance hole diam, basic, Dh
Nominal diam, D and thread pitch
Close
Normal, preferred
M5 0:8 M6 1 M8 1:25 M10 1:5 M12 1:75 M14 2 M16 2 M20 2:5 M22 2:5b M24 3 M27 3b
5.3 6.4 8.4 10.5 13.0 15.0 17.0 21.0 23.0 25.0 28.0
5.5 6.6 9.0 11.0 13.5 15.5 17.5 22.0 24.0 26.0 30.0
Clearance hole diam, basic, Dh
Loose
Nominal diam, D and thread pitch
Close
Normal, preferred
Loose
5.8 7.0 10.0 12.0 14.5 16.5 18.5 24.0 26.0 28.0 32.0
M30 3:5 M36 4 M42 4:5 M48 5 M56 5:5 M64 6 M72 6 M80 6 M90 6 M100 6 —
31.0 37.0 43.0 50.0 58.0 66.0 74.0 82.0 93.0 104.0 —
33.0 39.0 45.0 52.0 62.0 70.0 78.0 86.0 96.0 107.0 —
35.0 42.0 48.0 56.0 66.0 74.0 82.0 91.0 101.0 112.0 —
All dimensions are in millimeters. a Does not apply to hex lag screws, hex socket headless screws, or round head square neck bolts. b Applies only to heavy hex structural bolts. Normal Clearance: This is preferred for general purpose applications and should be specified unless special design considerations dictate the need for either a close or loose clearance hole. Close Clearance: This should be specified only where conditions such as critical alignment of assembled parts, wall thickness or other limitations necessitate use of a minimum hole. When close clearance holes are specified, special provision (e.g. countersinking) must be made at the screw used bolt entry side to permit proper seating of the screw or bolt head. Loose Clearance: This should be specified only for applications where maximum adjustment capability between components being assembled is necessary. Recommended Tolerances: The clearance hole diameters given in this table are minimum. Recommended tolerances are: for screw or bolt diameter M5, þ0:2 mm; for M6 through M8, þ0:3 mm; for M20 through M24, þ0:4 mm; for M48 through M72, þ0:5 mm; and for M80 through M100, þ0:6 mm.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
THREADED FASTENERS AND SCREWS FOR POWER TRANSMISSION THREADED FASTENERS AND SCREWS FOR POWER TRANSMISSION
18.71
TABLE 18-51 American National Standard metric hex screws and bolts—reduced body diameters
Nominal diam, D, and thread pitch
Shoulder diam,b Ds
Body diam, Dsi
Max
Min
Max
M5 0:8 M6 1 M8 1:25 M10 1:5 M12 1:75
5.00 6.00 8.00 10.00 12.00
4.82 5.82 7.78 9.78 11.73
Metric Formed Hex Screws (ANSI B18.2.3.2M-1979, R1989) 4.46 4.36 3.5 2.5 M14 2 14.00 13.73 12.77 5.39 5.21 4.0 3.0 M16 2 16.00 15.73 14.77 7.26 5.04 5.0 4.0 M20 2:5 20.00 19.67 18.49 9.08 8.86 6.0 5.0 M24 3 24.00 23.67 22.13 10.95 10.68 7.0 6.0 — — — —
M5 0:8 M6 1 M8 1:25 M10 1:5
5.00 6.00 8.00 10.00
4.82 5.82 7.78 9.78
4.46 5.39 7.26 9.08
Metric Hex Flange Screws (ANSI B18.2.3.4M-1984) 4.36 3.5 2.5 M12 1:75 12.00 11.73 5.21 4.0 3.0 M14 2 14.00 13.73 7.04 5.0 4.0 M16 2 16.00 15.73 8.86 6.0 5.0 — — —
M5 0:8 M6 1 M8 1:25 M10 1:5 M12 1:75
5.48 6.48 8.58 10.58 12.70
4.52 5.52 7.42 9.42 11.30
4.46 5.39 7.26 9.08 10.95
Metric Hex Bolts (ANSI B18.2.3.5M-1979, R1989) 4.36 3.5 2.5 M14 2 14.70 13.30 5.21 4.0 3.0 M16 2 16.70 15.30 7.04 5.0 4.0 M20 2:5 20.84 19.16 8.86 6.0 5.0 M24 3 24.84 23.16 10.68 7.0 6.0 — — —
M12 1:75 M14 2 M16 2
12.70 14.70 16.70
M10 1:5 M12 1:75 M14 2
10.00 12.00 14.00
Min
Shoulder length,b Lsh Max
Min
Nominal diam, D, and thread pitch
Shoulder diam,b Ds Max
Min
Body diam, Dsi Max
Shoulder length,b Lsh
Min
Max
Min
12.50 14.50 18.16 21.80 —
8.0 9.0 11.0 13.0 —
7.0 8.0 10.0 12.0 —
10.95 12.77 14.77 —
10.68 12.50 14.50 —
7.0 8.0 9.0 —
6.0 7.0 8.0 —
12.77 14.77 18.49 22.13 —
12.50 14.50 18.16 21.80 —
8.0 9.0 11.0 13.0 —
7.0 8.0 10.0 12.0 —
11.30 13.30 15.30
Metric Heavy Hex Bolts (ANSI B18.2.3.6M-1979, R1989) 10.95 10.68 7.0 6.0 M20 2:5 20.84 19.16 18.49 12.77 12.50 8.0 7.0 M24 3 24.84 23.16 22.13 14.77 14.50 9.0 8.0 — — — —
18.16 21.80 —
11.0 13.0 —
10.0 12.0 —
9.78 11.73 13.73
Metric Heavy Hex Flange Screws (ANSI B18.2.3.9M- 1984) 9.08 8.86 6.0 5.0 M16 2 16.00 15.73 14.77 10.95 10.68 7.0 6.0 M20 2:5 20.00 19.67 18.49 12.77 12.50 8.0 7.0 — — — —
14.50 18.16 —
9.0 11.0 —
8.0 10.0 —
All dimensions are in millimeters. a Shoulder is mandatory for formed hex screws, hex flange screws, and heavy hex flange screws. Shoulder is optional for hex bolts and heavy hex bolts.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
Max
16.70 20.84 22.84 24.84 27.84 30.84 37.00
M16 2 M20 2:5 M22 2:5 M24 3 M27 3 M30 3:5 M36 4
15.30 19.16 21.16 23.16 26.16 29.16 35.00
Min
Body diam, DS
Nominal bolt diam, D, thread pitch 27.00 34.00 36.00 41.00 46.00 50.00 60.00
Max 26.16 33.00 35.00 40.00 45.00 49.00 58.80
Min
Width across flats, S
31.18 39.26 41.57 47.34 53.12 57.74 69.28
Max 29.56 37.29 39.55 45.20 50.85 55.37 66.44
Min
Width across corners, E
10.75 13.40 14.90 15.90 17.90 19.75 23.55
Max 9.26 11.60 13.10 14.10 16.10 17.65 21.45
Min
Head height, K
6.5 8.1 9.2 9.9 11.3 12.4 15.0
Min
Wrenching height, K1
24.9 31.4 33.3 38.0 42.8 46.5 55.9
Min
Washer face diam, Dw
0.8 0.8 0.8 0.8 0.8 0.8 0.8
Max
0.4 0.4 0.4 0.4 0.4 0.4 0.4
Min
Washer face thickness, C
31 36 38 41 44 49 56
Bolt lengths, >100
38 43 45 48 51 56 63
Basic
Bolt lengths, 100
Thread length, Ba
6.0 7.5 7.5 9.0 9.0 10.5 12.0
Max
Transition thread length, Xb
18.72
TABLE 18-52 American National Standard metric heavy hex structural bolts (ANSI B18.2.3.7M-1979, R1989)
THREADED FASTENERS AND SCREWS FOR POWER TRANSMISSION
CHAPTER EIGHTEEN
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
THREADED FASTENERS AND SCREWS FOR POWER TRANSMISSION THREADED FASTENERS AND SCREWS FOR POWER TRANSMISSION
18.73
TABLE 18-53 Recommended diameter-length combinations for metric heavy hex structural bolts Nominal length, L
Nominal diameter and thread pitch M16 2
M20 2:5
M22 2:5
M24 3
M27 3
M30 3:5
M36 4
45 50 55 60 65 70 75 80 85
—
— —
— — —
— — — —
— — — — —
— — — — — — —
90 95 100 110 120
130 140 150 160 170
180 190 200 210 220
230 240 250 260 270
280 290 300
All dimensions are in millimeters. Recommended diameter-length combinations are indicated by the symbol . Bolts with lengths above the heavy cross lines are threaded full length.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
THREADED FASTENERS AND SCREWS FOR POWER TRANSMISSION
TABLE 18-54 American National Standard metric hex nuts, Styles 1 and 2 (ANSI B18.2.4.1M and B18.2.4.2M-1979, R1989)
Nominal nut diam, and thread pitch
Width across flats, S Max
Min
Width across corners, E Max
Min
Thickness, M Max
Min
Bearing face diam, Dw
Washer face thickness C
Min
Max
Min
— — — — — — — — —
— — — — — — — — —
Metric Hex Nuts—Style 1 M1:6 0:35 M2 0:4 M2:5 0:45 M3 0:5 M3:5 0:6 M4 0:7 M5 0:8 M6 1 M8 1:25
3.20 4.00 5.00 5.50 6.00 7.00 8.00 10.00 13.00
3.02 3.82 4.82 5.32 5.82 6.78 7.78 9.78 12.73
3.70 4.62 5.77 6.35 6.93 8.08 9.24 11.55 15.01
3.41 4.32 5.45 6.01 6.58 7.66 8.79 11.05 14.38
1.30 1.60 2.00 2.40 2.80 3.20 4.70 5.20 6.80
1.05 1.35 1.75 2.15 2.55 2.90 4.40 4.90 6.44
2.3 3.1 4.1 4.6 5.1 6.0 7.0 8.9 11.6
a
M10 1:5
15.00
14.73
17.32
16.64
9.1
8.7
13.6
M10 1:5 M12 1:75 M14 2 M16 2 M20 2:5 M24 3 M30 3:5 M36 4
16.00 18.00 21.00 24.00 30.00 36.00 46.00 55.00
15.73 17.73 20.67 23.67 29.16 35.00 45.00 53.80
18.48 20.78 24.25 27.71 34.64 41.57 53.12 63.51
17.77 20.03 23.36 26.75 32.95 39.55 50.85 60.79
8.40 10.80 12.80 14.80 18.00 21.50 25.60 31.00
8.04 10.37 12.10 14.10 16.90 20.20 24.30 29.40
14.6 16.6 19.4 22.4 27.9 32.5 42.5 50.8
— — — — 0.8 0.8 0.8 0.8
— — — — 0.4 0.4 0.4 0.4
2.65 3.00 3.50 4.80 5.40 7.14
4.6 5.1 5.9 6.9 8.9 11.6
— — — — — —
— — — — — —
0.6
0.3
Metric Hex Nuts—Style 2 M3 0:5 M3:5 0:6 M4 0:7 M5 0:8 M6 1 M8 1:25
5.50 6.00 7.00 8.00 10.00 13.00
5.32 5.82 6.78 7.78 9.78 12.73
6.35 6.93 8.08 9.24 11.55 15.01
6.01 6.58 7.66 8.79 11.05 14.38
M10 1:5
15.00
14.73
17.32
16.64
10.0
9.6
13.6
0.6
0.3
M10 1:5 M12 1:75 M14 2 M16 2 M20 2:5 M24 3 M30 3:5 M36 4
16.00 18.00 21.00 24.00 30.00 36.00 46.00 55.00
15.73 17.73 20.67 23.67 29.16 35.00 45.00 53.80
18.48 20.78 24.25 27.71 34.64 41.57 53.12 63.51
17.77 20.03 23.35 26.75 32.95 39.55 50.85 60.79
9.30 12.00 14.10 16.40 20.30 23.90 28.60 34.70
8.94 11.57 13.40 15.70 19.00 22.60 27.30 33.10
14.6 16.6 19.6 22.5 27.7 33.3 42.7 51.1
— — — — 0.8 0.8 0.8 0.8
— — — — 0.4 0.4 0.4 0.4
a
2.90 3.30 3.80 5.10 5.70 7.50
All dimensions are in millimeters. a This size with width across flats of 15 mm is not standard. Unless specifically ordered, metric hex nuts with 16 mm width across flats will be furnished.
18.74 Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
THREADED FASTENERS AND SCREWS FOR POWER TRANSMISSION THREADED FASTENERS AND SCREWS FOR POWER TRANSMISSION
18.75
TABLE 18-55 American National Standard metric slotted hex nuts (ANSI B18.2.4.3M-1979, R1989)
Width across Nominal nut flats, diam, D, S and thread pitch Max Min
Width across corners, E Max
Min
M5 0:8 M6 1 M8 1:25
Thickness, M Max
Unslotted thickness, F
Min
Max
Min
4.80 5.40 7.14
6.9 8.9 11.6
3.2 3.5 4.4
Width of slot, N
Washer face thickness, C
Max
Min
Max
Min
2.9 3.2 4.1
2.0 2.4 2.9
1.4 1.8 2.3
— — —
— — —
8.00 10.00 13.00
7.78 9.78 12.73
9.24 11.55 15.01
8.79 11.05 14.38
M10 1:5
15.00
14.73
17.32
16.64
10.0
9.6
13.6
5.7
5.4
3.4
2.8
0.6
0.3
M10 1:5 M12 1:75 M14 2 M16 2 M20 2:5 M24 3 M30 3:5 M36 4
16.00 18.00 21.00 24.00 30.00 36.00 46.00 55.00
15.73 17.73 20.67 23.67 29.16 35.00 45.00 53.80
18.48 20.78 24.25 27.71 34.64 41.57 53.12 63.51
17.77 20.03 23.35 26.75 32.95 39.55 50.85 60.79
9.30 12.00 14.10 16.40 20.30 23.90 28.60 34.70
8.94 11.57 13.40 15.70 19.00 22.60 27.30 33.10
14.6 16.6 19.6 22.5 27.7 33.2 42.7 51.1
5.2 7.3 8.6 9.9 13.3 15.4 18.1 23.7
4.9 6.9 8.0 9.3 12.2 14.3 16.8 22.4
3.4 4.0 4.3 5.3 5.7 6.7 8.5 8.5
2.8 3.2 3.5 4.5 4.5 5.5 7.0 7.0
— — — — 0.8 0.8 0.8 0.8
— — — — 0.4 0.4 0.4 0.4
a
5.10 5.70 7.50
Min
Bearing face diam, Dw
All dimensions are in millimeters. a This size with width across flats of 15 mm is not standard. Unless specifically ordered, M10 slotted hex nuts with 16 mm width across flats will be furnished.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
THREADED FASTENERS AND SCREWS FOR POWER TRANSMISSION
18.76
CHAPTER EIGHTEEN
REFERENCES 1. Norman, C. A., E. S. Ault, and E. F. Zarobsky, Fundamentals of Machine Design, The Macmillan Company, New York, 1951. 2. Maleev, V. L., and J. B. Hartman, Machine Design, International Textbook Company, Scranton, Pennsylvania, 1954. 3. Black, P. H., and O. E. Adams, Jr., Machine Design, McGraw-Hill Publishing Company, New York, 1955. 4. Baumeister, T., ed., Marks’ Standard Handbook for Mechanical Engineers, 8th ed., McGraw-Hill Publishing Company, New York, 1978. 5. Lingaiah, K., and B. R. Narayana Iyengar, Machine Design Data Handbook, Engineering College Cooperative Society, Bangalore, India, 1962. 6. Lingaiah, K., and B. R. Narayana Iyengar, Machine Design Data Handbook, Vol. I (SI and Customary Metric Units), Suma Publishers, Bangalore, India, 1986. 7. Lingaiah, K., Machine Design Data Handbook, Vol. II (SI and Customary Metric Units), Suma Publishers, Bangalore, India, 1986. 8. Bureau of Indian Standards. 9. ISO Standards. 10. John, J. Viegas, Standards for Mechanical Elements, Harold A. Rothbart, Editor-in-Chief, Mechanical Design and Systems Handbook, McGraw-Hill Publishing Company, New York, 1964. 11. Russel, Bardsall and Ward Corp., Helpful Hints for Fastener Design and Application, Mentor, Ohio, 1976, p. 42. 12. Shigley J., E., and C. R. Mischke, Mechanical Engineering Design, 5th ed., McGraw-Hill Publishing Company, New York, 1989. 13. Burr, J. H., and J. B. Cheatham, Mechanical Analysis and Design, 2nd ed., Prentice Hall, Englewood Cliffs, New Jersey, 1995. 14. Edwards, K. S., Jr., and R. B. Mckee, Fundamentals of Mechanical Component Design, McGraw-Hill Publishing Company, New York, 1991. 15. Ito, Y., J. Toyoda, and S. Nagata, Interface Pressure Distribution in a Bolt-Flange Assembly, ASME Paper No. 77-WA/DE-11, 1977. 16. Little, R. E., Bolted Joints: How Much Give? Machine Design, Nov. 9, 1967. 17. Osgood, C. C., Saving Weight on Bolted Joints, Machine Design, Oct. 25, 1979. 18. Bowman Distribution-Barnes Group, Fastener Facts, Cleveland, Ohio, 1985, p. 90. 19. American National Standards, ANSI B18.2.3.5M-1979, R1989. 20. British Standards Institution, 2 Park Street, London, 1986. 21. Machinery Handbook, 20th ed., 1999, Industrial Press, U.S.A. 22. Shigley J. E., and C. R. Mischke, Standard Handbook of Machine Design, McGraw-Hill Publishing Company New York, 1996. 23. Lingaiah, K., Machine Design Data Handbook, McGraw-Hill Publishing Company, New York, USA, 1994.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
Source: MACHINE DESIGN DATABOOK
CHAPTER
19 COUPLINGS, CLUTCHES, AND BRAKES SYMBOLS8;9;10 a A Ar Ac b
c c1 c2 d d1 d2 d0 D D1 D2 Di Do Dm e1 , e2 , e3 E
distance between center lines of shafts in Oldham’s coupling, m (in) area, m2 (in2 ) external area, m2 (in2 ) radiating surface required, m2 (in2 ) contact area of friction surface, m2 (in2 ) width of key, m (in) width of shoe, m (in) width of inclined face in grooved rim clutch, m (in) width of spring in centrifugal clutch, m (in) width of wheel, m (in) width of operating lever (Fig. 19-16), m (in) heat transfer coefficient, kJ/m2 K h (kcal/m2 /8C/h) specific heat of material, kJ/kg K (kcal/kg/8C) radiating factor for brakes, kJ/m2 K s (kcal/m2 /min/8C) diameter of shaft, m (in) diameter of pin, roller pin, m (in) diameter of bolt, m (in) diameter of pin at neck in the flexible coupling, m (in) diameter of hole for bolt, m (in) outside diameter of bush, m (in) diameter of wheel, m (in) diameter of sheave, m (in) outside diameter of flange coupling, m (in) inside diameter of disk of friction material in disk clutches and brakes, m (in) outside diameter of disk of friction material in disk clutches and brakes, m (in) inside diameter of hollow rigid type of coupling, m (in) outside diameter of hollow rigid type of coupling, m (in) mean diameter, m (in) dimensions shown in Fig. 19-16, m (in) energy (also with suffixes), N m (lbf in) Young’s modulus of elasticity, GPa (Mpsi)
19.1 Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
COUPLINGS, CLUTCHES, AND BRAKES
19.2
F
F1 F2 Fa0 Fb Fc Fn Fx , Fy F g h
H Hg Hd i
i1 i2 i0 I kl ks l
L Mt Mta n n1 , n2 n P N N p
CHAPTER NINETEEN
operating force on block brakes, kN (lbf ); force at each pin in the flexible bush coupling, kN (lbf ) total pressure, kN (lbf ) force (also with suffixes), kN (lbf ) actuating force, kN (lbf ) tension on tight side of band, kN (lbf ) the force acting on disks of one operating lever of the clutch (Fig. 19-16), kN (lbf ) tension on slack side of band, kN (lbf ) total axial force on i number of clutch disks, kN (lbf ) tension load in each bolt, kN (lbf ) centrifugal force, kN (lbf ) total normal force, kN (lbf ) components of actuating force F acting at a distance c from the hinge pin (Figs. 19-25 and 19-26), kN (lbf ) tangential force at rim of brake wheel, kN (lbf ) tangential friction force, kN (lbf ) acceleration due to gravity, 9.8066 m/s2 (9806.6 mm/s2 ) (32.2 ft/s2 ) thickness of key, m (in) thickness of central disk in Oldham’s coupling, m (in) thickness of operating lever (Fig. 19-16), m (in) depth of spring in centrifugal clutch, m (mm) rate of heat to be radiated, J (kcal) heat generated, J (kcal) the rate of dissipation, J (kcal) number of pins, number of bolts, number of rollers, pairs of friction surfaces number of shoes in centrifugal clutch number of times the fluid circulates through the torus in one second number of driving disks number of driven disks number of operating lever of clutch moment of inertia, area, m4 , cm4 (in4 ) load factor or the ratio of the actual brake operating time to the total cycle of operation speed factor length (also with suffixes), m (in) length of spring in centrifugal clutch measured along arc, m (in) length of bush, m (in) dimension of operating lever as shown in Fig. 19-16 torque to be transmitted, N m (lbf in) allowable torque, N m (lbf in) speed, rpm speed of the live load before and after the brake is applied, respectively, rpm number of clutching or braking cycles per hour power, kW (hp) normal force (Figs. 19-25 and 19-26), kN (lbf ) frictional force (Figs. 19-25 and 19-26), kN (lbf ) unit pressure, MPa (psi)
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
COUPLINGS, CLUTCHES, AND BRAKES COUPLINGS, CLUTCHES, AND BRAKES
p
pa pb P P0 r rm rmi rmo R Rc Rd Rr Rx , Ry t Ta Tav T tc v v1 , v2 w W
y b 0b cðmaxÞ db b d1 d2 f s
unit pressure acting upon an element of area of the frictional material located at an angle from the hinge pin (Figs. 19-25 and 19-26), MPa (psi) maximum pressure between the fabric and the inside of the rim, MPa (psi) allowable pressure, MPa (psi) maximum pressure located at an angle a from the hinge pin (Figs. 19-25 and 19-26), MPa (psi) bearing pressure, MPa (psi) total force acting from the side of the bush on operating lever (Fig. 19-16), kN (lbf ) the force acting from the side of the bush on one operating lever, kN (lbf ) radius, m (in) distance from the center of gravity of the shoe from the axis of rotation, m (in) mean radius, m (in) mean radius of inner passage of hydraulic coupling, m (in) mean radius of outer passage in hydraulic coupling, m (in) reaction (also with suffixes), kN (lbf ) radius of curvature of the ramp at the point of contact (Fig. 19-21), m (in) radius of the contact surface on the driven member (Fig. 19-21), m (in) radius of the roller (Fig. 19-21), m (in) hinge pin reactions (Figs. 19-25 and 19-26), kN (lbf ) time of single clutching or braking operation (Eq. 19-198), s ambient or initial temperature, 8C (8F) average equilibrium temperature, 8C (8F) rise in temperature of the brake drum, 8C (8F) cooling time, s (min) velocity, m/s speed of the live load before and after the brake is applied, respectively, m/s axial width in cone brake, m (in) width of band, m (in) work done, N m (lbf in) weight of the fluid flowing in the torus, kN (lbf ) weight lowered, kN (lbf ) weight of parts in Eq. (19-136), kN (lbf ) weight of shoe, kN (lbf ) deflection, m (in) stress (also with suffixes), MPa (psi) allowable or design stress in bolts, MPa (psi) design bearing stress for keys, MPa (psi) maximum compressive stress in Hertz’s formula, MPa (psi) design bending stress, MPa (psi) shear stress, MPa (psi) allowable or design stress in bolts, MPa (psi) design shear stress in sleeve, MPa (psi) design shear stress in key, MPa (psi) design shear stress in flange at the outside hub diameter, MPa (psi) design shear stress in shaft, MPa (psi) one-half the cone angle, deg pressure angle, deg
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
19.3
COUPLINGS, CLUTCHES, AND BRAKES
19.4
CHAPTER NINETEEN
friction angle, deg one-half angle of the contact surface of block, deg coefficient of friction factor which takes care of the reduced strength of shaft due to keyway running speed of centrifugal clutch, rad/s speed at which the engagement between the shoe of centrifugal clutch and pulley commences, rad/s
!1 !2
SUFFIXES a d g 1, i 2, o n x y
axial dissipated, design generated inner outer normal x direction y direction tangential friction
Other factors in performance or in special aspects are included from time to time in this chapter and, being applicable only in their immediate context, are not included at this stage.
Particular
Formula
19.1 COUPLINGS COMMON FLANGE COUPLING (Fig. 19-1) i ¼ 20d þ 3 The commonly used formula for approximate number of bolts
SI
ð19-1aÞ
USCS
ð19-1bÞ
where d in m i ¼ 0:5d þ 3 where d in in Mt ¼
d 3 16 s
Mt ¼
1000P !
The torque transmitted by the shaft
The torque transmitted by the coupling
ð19-2Þ SI
ð19-3aÞ
USCS
ð19-3bÞ
where Mt in N m; P in kW; ! in rad/s Mt ¼
63;000P n
where Mt in lbf in; P in hp, n in rpm Mt ¼
9550P n
SI
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð19-3cÞ
COUPLINGS, CLUTCHES, AND BRAKES COUPLINGS, CLUTCHES, AND BRAKES
Particular
19.5
Formula
FIGURE 19-1 Flange coupling.
where Mt in N m; P in kW; n in rpm 159P SI n0 0 where Mt in N m; P in kW; n in rps 2 d1 D Mt ¼ i b 1 4 2 Mt ¼
The torque transmitted through bolts
ð19-3dÞ
ð19-4Þ
The torque capacity which is based on bearing of bolts
Mt ¼ iðd1 l1 Þb
D1 2
ð19-5Þ
The torque capacity which is based on shear of flange at the outside hub diameter
Mt ¼ tðD2 Þf
D2 2
ð19-6Þ
The friction-torque capacity of the flanged coupling which is based on the concept of the friction force acting at the mean radius of the surface
Mt ¼ i Fb rm where rm ¼
ð19-7Þ Dþd ¼ mean radius 2
Fb ¼ tension load in each bolt, kN (kgf ) The preliminary bolt diameter may be determined by the empirical formula The bolt diameter from Eqs. (19-2) and (19-4)
The bolt diameter from Eqs. (19-3) and (19-4)
0:5d d1 ¼ pffi i sffiffiffiffiffiffiffiffiffiffiffiffiffiffi d 2 s d1 ¼ 2ib D1 sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 8000P d1 ¼ i!b D1
ð19-8Þ
ð19-9Þ
SI
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð19-10aÞ
COUPLINGS, CLUTCHES, AND BRAKES
19.6
CHAPTER NINETEEN
Particular
Formula
where d1 , D1 in m; P in kW; b in Pa; ! in rad/s sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 1273P d1 ¼ SI ð19-10bÞ in0 D1 b where d1 , D1 in m; P in kW; b in Pa; n0 in rps sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 76;400P SI ð19-10cÞ d1 ¼ inb D1 where d1 , D1 in m; P in kW; b in Pa; n in rpm sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 50;400P d1 ¼ USCS ð19-10dÞ inD1 b
The diameter of shaft from Eqs. (19-2) and (19-3)
where d1 , D1 in in; P in hp; b in psi; ! in rpm where i ¼ effective number of bolts doing work should be taken as all bolts if they are fitted in reamed holes and only half the total number of bolts if they are not fitted into reamed holes sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 3 16;000P d¼ SI ð19-11aÞ !s where P in kW; d in m sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 3 100;800P d¼ ns
USCS
ð19-11bÞ
SI
ð19-11cÞ
SI
ð19-11dÞ
SI
ð19-12aÞ
USCS
ð19-12bÞ
SI
ð19-13aÞ
where D2 in m D2 ¼ 1:5d þ 1
USCS
ð19-13bÞ
D ¼ 2:5d þ 0:075
SI
ð19-14aÞ
USCS
ð19-14bÞ
where P in hp; d in in sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 3 152;800P d¼ ns where P in kW; d in m sffiffiffiffiffiffiffiffiffiffiffiffiffi 3 2546P d¼ n0 s where P in kW; d in m; n0 in rps The average value of diameter of the bolt circle
D1 ¼ 2d þ 0:05 where D1 in m D1 ¼ 2d þ 2
The hub diameter
The outside diameter of flange
D2 ¼ 1:5d þ 0:025
where D in m D ¼ 2:5d þ 3
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
COUPLINGS, CLUTCHES, AND BRAKES COUPLINGS, CLUTCHES, AND BRAKES
Particular
The hub length
19.7
Formula
l ¼ 1:25d þ 0:01875
SI
ð19-14cÞ
USCS
ð19-14dÞ
SI
ð19-15aÞ
USCS
ð19-15bÞ
where l in m and d in m l ¼ 1:25d þ 0:75 where l and d in in
MARINE TYPE OF FLANGE COUPLING Solid rigid type [Fig. 19-2(a), Table 19-1] The number of bolts
i ¼ 33d þ 5 where d in in i ¼ 0:85d þ 5
The diameter of bolt
where d in in sffiffiffiffiffiffiffiffiffiffiffiffiffiffi d 3 s d1 ¼ 2iD1 b based on torque capacity of the shaft sffiffiffiffiffiffiffiffiffiffiffiffiffiffi tD22 f d1 ¼ 4iD1 b
ð19-16aÞ
ð19-16bÞ
based on torque capacity of flange
FIGURE 19-2 Rigid marine coupling.
The thickness of flange
t ¼ 0:25 to 0:28d
ð19-17Þ
The diameter of the bolt circle
D1 ¼ 1:4d to 1:6d
ð19-18Þ
The outside diameter of flange
D ¼ D1 þ 2d to 3d
ð19-19Þ
Taper of bolt
1 in 100
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
COUPLINGS, CLUTCHES, AND BRAKES
19.8
CHAPTER NINETEEN
TABLE 19-1 Forged end type rigid couplings (all dimensions in mm) Number coupling
Shaft diameter
Recessed flange
Spigot flange
Flange outside Locating diameter, Flange diameter, Recess depth, c1 Max Min D width, t D2
R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16 R17 R18 R19 R20 R21 R22 R23 R24
S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16 S17 S18 S19 S20 S21 S22 S23 S24
53 45 55 70 80 90 110 130 150 170 190 210 230 250 270 300 330 360 390 430 470 520 571 620
— 36 46 55 71 81 91 111 131 151 171 191 211 231 251 271 301 331 361 391 431 471 521 571
100 120 140 175 195 225 265 300 335 375 400 445 475 500 560 600 650 730 775 875 900 925 1000 1090
17 22 22 27 32 32 36 46 50 55 55 65 70 70 80 85 90 100 105 110 115 120 125 130
50 60 75 95 95 125 150 150 195 195 240 240 280 280 330 330 400 400 480 480 560 560 640 720
6 6 7 7 7 7 9 9 9 10 10 10 10 10 10 10 10 10 11 11 11 12 12 12
Spigot depth, c2
Pitch circle Bolt Bolt hole diameter, size, diameter, Number D1 d1 d2 H8 of bolts
4 4 5 5 5 5 7 7 7 8 8 8 8 8 8 8 8 8 9 9 9 10 10 10
70 85 100 125 140 160 190 215 240 265 290 315 340 370 400 410 480 520 570 620 670 730 790 850
M10 11 M12 13 M14 15 M16 17 M18 19 20 21 24 25 30 32 33 34 36 38 36 38 42 44 45 46 45 46 52 55 56 60 60 65 68 72 72 76 76 80 80 85 90 95 110 105 110 115
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
4 4 4 6 6 6 6 6 8 6 8 8 8 10 10 10 10 10 10 12 12 12 12 12
COUPLINGS, CLUTCHES, AND BRAKES COUPLINGS, CLUTCHES, AND BRAKES
Particular
19.9
Formula
Hollow rigid type [Fig. 19-2(b)] i ¼ 50Do
The minimum number of bolts
SI
ð19-20aÞ
USCS
ð19-20bÞ
where Do in m i ¼ 1:25Do where Do in in sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ð1 K 4 ÞD3o s d1 ¼ 2iD1 b
The mean diameter of bolt
where K ¼ The thickness of flange
t¼
ð19-21Þ
Di Do
ð1 K 4 ÞD3o s 8D22 f
ð19-22Þ
The empirical formula for thickness of flange
t ¼ 0:25 to 0:28Do
ð19-23Þ
The diameter of bolt circles
D1 ¼ 1:4Do
ð19-24Þ
For design calculations of other dimensions of marine hollow rigid type of flange coupling
The method of analyzing the stresses and arriving at the dimensions of the various parts of a marine hollow flange coupling is similar to that given for the marine solid rigid type and common flange coupling.
For dimensions of fitted half couplings for power transmission
Refer to Table 19-2.
PULLEY FLANGE COUPLING (Fig. 19-3) The number of bolts
i ¼ 20d þ 3
SI
ð19-25aÞ
USCS
ð19-25bÞ
where d in m i ¼ 0:5d þ 3 where d in in The preliminary bolt diameter
0:5d dt ¼ pffi i
FIGURE 19-3 Pulley flange coupling.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð19-26Þ
Locating diameter, D4 H8/h7
75 95 125 150 195 240 280 330 400 480 580 720
Nominal diameter, d H7
30 40, 45, 50, 56 63, 71 80, 90 100, 110, 125 140 160, 180 200, 220 250 280, 320 360 400, 450, 500
100 125 160 190 240 290 340 400 480 570 670 850
Pitch circle diameter D1
TABLE 19-2 Fitted half couplings (all dimensions in mm)
4 6 6 6 6 8 8 10 10 10 12 12
No. of bolts 13 17 21 25 25 32 38 44 50 60 68 95
Diameter of hole, d2 H7
Bolt
M12 M16 M20 M24 M24 M30 M36 M32 M48 M56 M64 M90
Bolt size, d1
70 90 120 145 190 230 270 320 380 460 540 690
Hub diameter, D2
80 100 180 155 200 240 285 335 400 480 570 720
Shoulder diameter, D2
125 160 200 240 300 360 420 500 600 710 850 1050
Flange diameter, D
80 110 140 170 210 250 300 350 410 470 550 650
Long
58 82 105 130 165 200 240 280 330 380 450 540
Short
Length of shaft end, l
COUPLINGS, CLUTCHES, AND BRAKES
19.10
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
COUPLINGS, CLUTCHES, AND BRAKES COUPLINGS, CLUTCHES, AND BRAKES
Particular
The width of flange l1 (Fig. 19-3)
19.11
Formula
l1 ¼ 12 d þ 0:025
SI
ð19-27aÞ
USCS
ð19-27bÞ
SI
ð19-28aÞ
USCS
ð19-28bÞ
SI
ð19-29aÞ
USCS
ð19-29bÞ
SI
ð19-30aÞ
USCS
ð19-30bÞ
SI
ð19-31aÞ
USCS
ð19-31bÞ
SI
ð19-32aÞ
USCS
ð19-32bÞ
where l1 and d in m l1 ¼ 12 d þ 1:0 where d in in The hub length l
l ¼ 1:4d þ 0:0175 where l and d in m l ¼ 1:4d þ 0:7 where l and d in in
The thickness of the flange
t ¼ 0:25d þ 0:007 where t and d in m t ¼ 0:25d þ 0:25 where t and d in in
The hub diameter
D2 ¼ 1:8d þ 0:01 where D2 and d in m D2 ¼ 1:8d þ 0:4 where D2 and d in in
The average value of the diameter of the bolt circle
D1 ¼ 2d þ 0:025 where D1 and d in m D1 ¼ 2d þ 1:0 where D1 and d in in
The outside diameter of flange
D ¼ 2:5d þ 0:075 where D and d in m D ¼ 2d þ 3:0 where D and d in in
PIN OR BUSH TYPE FLEXIBLE COUPLING (Fig. 19-4, Table 19-3) Torque to be transmitted
D1 2 0 D1 Mt ¼ ipb ld 2
Mt ¼ iF
where pb ¼ bearing pressure, MPa (psi) F ¼ force at each pin, kN (lbf ) ¼ pb ld 0 d 0 ¼ outside diameter of the bush, m (in)
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð19-33aÞ ð19-33bÞ
COUPLINGS, CLUTCHES, AND BRAKES
19.12
CHAPTER NINETEEN
Shear stress in pin
p ¼
F 0:785dp2
ð19-34Þ
where
Bending stress in pin
p ¼ allowable shearing stress, MPa (psi) dp ¼ d1 ¼ diameter of pin at the neck, m (in) l þb F 2 b ¼ ð19-35Þ 3 d 32 p
OLDHAM COUPLING (Fig. 19-5) The total pressure on each side of the coupling
ð19-36Þ
F ¼ 14 pDh
where h ¼ axial dimension of the contact area, m (in) The torque transmitted on each side of the coupling
Mt ¼ 2Fl ¼
pD2 h 6
ð19-37Þ
where l ¼ 13 D ¼ the distance to the pressure area centroid from the center line, m (in) p ¼ allowable pressure >8.3 j MPa (1.2 kpsi) Power transmitted
P¼
pD2 hn 57;277
SI
ð19-38aÞ
USCS
ð19-38bÞ
where P in kW P¼
pD2 hn 378;180
where P in hp; D, h in in; p in psi The diameter of the disk
D ¼ 3d þ a
ð19-39Þ
The diameter of the boss
D2 ¼ 2d
ð19-40Þ
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
Type of flexible couplings
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website. 30 45 56 75 85 110 130 150
16 22 30 45 56 75 85 110 130
22 30 45 56 75 85 110 130
12 16 22 30 45 56 75 85 110
B3 B4 B5 B6 B7 B8 B9 B10
D1 D2 D3 D4 D5 D6 D7 D8 D9
150
22
16
B2
130
16
12
B1
D10
Max
Min
Coupling number
Bore, d
TABLE 19-3 Cast-iron flexible couplings (all dimensions in mm)
500
400
315
250
200
165
132
110
100
80
500
400
315
250
200
170
132
112
100
280
212
180
140
100
80
280
212
180
140
100
80
D2 min
80
diameter,
D, min
Hub
diameter,
Outside width,
100
90
80
63
56
45
40
32
30
28
100
90
80
63
56
45
40
32
30
28
60
56
50
45
40
35
30
22
20
18
60
56
50
45
40
35
30
22
20
18
l1
length, l, min
Flange
Hub Thickness
55
50, 55
45, 50
40, 45
35, 40
30, 35
25, 30
18, 25
16, 18
15, 16
—
—
—
—
—
—
—
—
—
—
of disk, C
18
18
16
16
12
12
12
10
10
8
18
18
16
16
12
12
12
10
10
8
d1
of bolt,
Diameter
16
16
12
12
8
8
8
6
6
6
8
8
6
6
4
4
4
3
3
3
holes
of bolt
Number
400
315
250
190
150
120
90
73
63
55
400
315
250
190
150
120
90
73
63
53
bolts, D1
28
28
22
22
15
15
15
12
12
10
28
28
22
22
15
15
15
12
12
10
t1
diameter of recess,
Pitch circle Bolt
—
—
—
—
—
—
—
—
—
—
45
45
40
40
30
25
25
22
22
20
diameter
Bush
Nominal gap
—
—
—
—
—
—
—
—
—
—
6
6
5
5
4
4
4
2
2
2
holes, c
coupling
between
Maximum
74.0
52.0
25.0
16.0
6.0
4.0
2.5
0.8
0.6
0.4
74.0
52.0
25.0
16.0
6.0
4.0
2.5
0.8
0.6
0.4
kW
100 rpm,
rating per
COUPLINGS, CLUTCHES, AND BRAKES
19.13
COUPLINGS, CLUTCHES, AND BRAKES
19.14
CHAPTER NINETEEN
Particular
FIGURE 19-5 Oldham’s coupling.
Formula
FIGURE 19-6 Muff or sleeve coupling.
Length of the boss
l ¼ 1:75d
ð19-41Þ
Breadth of groove
D 6 w h1 ¼ 2 w h¼ 2
ð19-42Þ
The thickness of the groove The thickness of central disk The thickness of flange
w¼
ð19-43aÞ ð19-43bÞ ð19-44Þ
t ¼ 34 d
MUFF OR SLEEVE COUPLING (Fig. 19-6) The outside diameter of sleeve
D ¼ 2d þ 0:013
SI
ð19-45aÞ
USCS
ð19-45bÞ
where D, d in m D ¼ 2d þ 0:52 The outside diameter of sleeve is also obtained from equation
where D, d in in sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 16Mt 3 D¼ d1 ð1 K 4 Þ where K ¼
ð19-46Þ
d D
The length of the sleeve (Fig. 19-6)
l ¼ 3:5d
ð19-47Þ
Length of the key (Fig. 19-6)
l ¼ 3:5d sffiffiffiffiffiffiffiffiffiffiffi 3 16Mt d¼ d
ð19-48Þ
The diameter of shaft
ð19-49Þ
where Mt is torque obtained from Eq. (19-2)
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
COUPLINGS, CLUTCHES, AND BRAKES COUPLINGS, CLUTCHES, AND BRAKES
Particular
19.15
Formula
The width of the keyway
b¼
2Mt d2 ld
ð19-50Þ
The thickness of the key
h¼
2Mt 0b ld
ð19-51Þ
FAIRBAIRN’S LAP-BOX COUPLING (Fig. 19-7) The outside diameter of sleeve
Use Eqs. (19-45) or (19-46)
The length of the lap
l ¼ 0:9d þ 0:003
SI
ð19-52aÞ
USCS
ð19-52bÞ
SI
ð19-53aÞ
USCS
ð19-53bÞ
where l, d in m l ¼ 0:9d þ 0:12 where l, d in in The length of the sleeve
L ¼ 2:25d þ 0:02 where L, d in m L ¼ 2:25d þ 0:8 where L, d in in
FIGURE 19-7 Fairbairn’s lap-box coupling.
FIGURE 19-8 Split muff coupling.
SPLIT MUFF COUPLING (Fig. 19-8) The outside diameter of the sleeve
D ¼ 2d þ 0:013
SI
ð19-54aÞ
USCS
ð19-54bÞ
SI
ð19-55aÞ
where D, d in m D ¼ 2d þ 0:52 where D, d in in The length of the sleeve (Fig. 19-8)
l ¼ 3:5d or 2:5d þ 0:05 where l, d in m
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
COUPLINGS, CLUTCHES, AND BRAKES
19.16
CHAPTER NINETEEN
Particular
Formula
l ¼ 3:5d or 2:5d þ 2:0
USCS
ð19-55bÞ
where l, d in in The torque to be transmitted by the coupling
dc2 t id 16 where
ð19-56Þ
Mt ¼
dc ¼ core diameter of the clamping bolts, m (in) i ¼ number of bolts
SLIP COUPLING (Fig. 19-9) 2 ðD D21 Þp 4 2
The axial force exerted by the springs
Fa ¼
With two pairs of friction surfaces, the tangential force
F ¼ 2Fa
The radius of applications of F with sufficient accuracy
rm ¼
The torque
Mt ¼ 0:000385ðD22 D21 ÞðD2 þ D1 Þp SI
ð19-57Þ ð19-58Þ
Dm D2 þ D1 ¼ 2 4
ð19-59Þ ð19-60aÞ
Mt ¼ 0:3927ðD22 D21 ÞðD2 þ D1 Þp USCS
ð19-60bÞ
where the values of and p may be taken from Table 19-4 The relation between D1 and D2
D2 ¼ 1:6 D1
ð19-61Þ
where D1 and D2 are the inner and outer diameters of disk of friction lining
FIGURE 19-9 Slip coupling.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
COUPLINGS, CLUTCHES, AND BRAKES COUPLINGS, CLUTCHES, AND BRAKES
Particular
19.17
Formula
SELLERS’ CONE COUPLING (Fig. 19-10) The length of the box
L ¼ 3:65d to 4d
ð19-62Þ
The outside diameter of the conical sleeve
D1 ¼ 1:875d to 2d þ 0:0125
SI
ð19-63aÞ
USCS
ð19-63bÞ
where D, d in m D1 ¼ 1:875d to 2d þ 0:5 where D, d in in Outside diameter of the box
D2 ¼ 3d
ð19-64Þ
The length of the conical sleeve
l ¼ 1:5d
ð19-65Þ
FIGURE 19-11 Hydraulic coupling.
FIGURE 19-10 Sellers, cone coupling.
HYDRAULIC COUPLINGS (Fig. 19-11) Torque transmitted
Mt ¼ Ksn2 Wðr2mo r2mi Þ where K ¼ coefficient ¼
Percent slip between primary and secondary speeds
The mean radius of inner passage (Fig. 19-11)
s¼
ð19-66Þ 1:42 ðapprox:Þ 107
np ns 100 np
ð19-67Þ
where np and ns are the primary and secondary speeds of impeller, respectively, rpm 3 2 r2 r31 ð19-68aÞ rmi ¼ 3 r22 r21
The mean radius of outer passage (Fig. 19-11)
rmo ¼
The number of times the fluid circulates through the torus in one second is given by
i¼
2 3
r34 r33 r24 r23
13;000Mt nWðr2mo r2mi Þ
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð19-68bÞ ð19-69Þ
Cast iron or steel Cast iron Steel Hard steel Hard steel, chromium plated Hard steel, chromium plated Cast iron or steel Hard steel, chromium plated Cast iron or steel Cast iron or steel Cast iron or steel Cast iron or steel Cast iron or steel
Cast bronze Cast iron Cast iron Hard steel Hard steel
0.08–0.12 0.12 0.05–0.1 0.1–0.15
Hard steel, chromium plated Cast iron or steel Cast iron or steel
Steel Cast iron
Woven asbestos
19.18
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website. 0.1
0.1–0.2
0.25 0.25
0.2–0.5 0.32
0.3–0.6
0.2–0.35 0.3–0.5 0.3–0.5 0.22 0.3–0.5
632–811 422
533 533–659
533
444–533
422 363.3 363.3 411 363.3
359–538 149
260 260–386
260
171–260
149 90.3 90.3 138 90.3
538 538
260
149 316 260 260 260
8C
Maximum temperature
2.0682 0.6894
0.3452–1.0346 1.0346
8.2738
0.6894–1.3788
0.03432–0.6894
0.4138–0.6208 0.0686–0.2746 0.0549–0.0981 0.0343–0.0686 0.0686–0.2746
1.0346 2.0682
1.0346
0.5521–0.8277 1.0346–1.7240 0.8277–1.3788 0.6894 1.3788
MPa
0.2109 0.0703
0.0352–0.1055 0.1055
0.8437
0.0703–0.1406
0.0350–0.0703
0.0422–0.0633 0.0070–0.0284 0.0056–0.01 0.0035–0.0070 0.3070–0280
0.1055 0.2109
0.1055
0.0563–0.0844 0.1055–0.1755 0.0844–0.1406 0.0703 0.1406
kgf/mm2
Maximum pressure, p
b
Conservative values should be used to allow for possible glazing of clutch surfaces in service and for adverse operating conditions. Steel, where specified, should have a carbon content of approximately 0.70%. Surfaces should be ground true and smooth. c For a specific material within this group, the coefficient usually is maintained within plus or minus 5%. Note: 1 kpsi ¼ 6.894757 MPa or 1 Pa ¼ 145 106 psi or 1 MPa ¼ 145 psi.
a
Carbon graphite Molded phenolic plastic, macerated cloth base
Molded asbestosc Impregnated asbestos
Cast iron or steel
Woven asbestos
0.1–0.2
Cast iron or steel
0.16 0.12–0.15 0.15–0.25 0.18
811 811
0.1–0.4 0.1–0.3
0.05–0.1 0.05–0.1
422 589 533 533 533
K
533
0.15–0.2
Dry
0.03
0.05 0.05 0.06 0.05 0.03
Wet
Friction coefficient,a
Wood Leather Cork Felt Vulcanized fiber or paper Woven asbestosc
Hard-drawn phosphor bronze Powder metalc Powder metalc
Opposingb
Wearing
Contact surfaces
TABLE 19-4 Friction materials for clutches
High Low
Very low Moderate
Moderate
Low
Low
Lowest Very low Very low Low Very low
High Very high
High
Low Very low Very low Moderate High
Relative cost
Prolonged slip service ratings given This rating for short infrequent engagements Used in Napier Sabre engine Wide field of applications For demanding applications For critical requirements For light special service
Unsuitable at high speed Subject to glazing Cork-insert type preferred Resinent engagement Low speeds, light duty
Good wearing qualities High energy absorption
Good wearing qualities
Subject to seizing Good at low speeds Fair at low speeds Subject to galling Durable combination
Comment
COUPLINGS, CLUTCHES, AND BRAKES
COUPLINGS, CLUTCHES, AND BRAKES COUPLINGS, CLUTCHES, AND BRAKES
Particular
Power transmitted by torque converter
19.19
Formula
Mt Kn2 D5
ð19-70Þ
where K ¼ coefficient—varies with the design n ¼ speed of driven shaft, rpm D ¼ outside diameter of vanes, m (in)
19.2 CLUTCHES POSITIVE CLUTCHES (Fig. 19-12) Jaw clutch coupling
a¼ c¼ f ¼ g¼ h¼ i¼ j¼ k¼ l¼
2:2d þ 0:025 m 1:2d þ 0:03 m 1:4d þ 0:0055 m d þ 0:005 m 0:3d þ 0:0125 m 0:4d þ 0:005 m 0:2d þ 0:0375 m 1:2d þ 0:02 m 1:7d þ 0:0584 m
a¼ c¼ f ¼ g¼ h¼ i¼ j¼ k¼ l¼
2:2d þ 1:0 in 1:2d þ 1:2 in 1:4d þ 0:3 in d þ 0:2 in 0:3d þ 0:5 in 0:4d þ 0:2 in 0:2d þ 0:15 in 1:2d þ 0:8 in 1:7d þ 2:3 in (19-71)
The area in shear
The shear stress assuming that only one-half the total number of jaws i is in actual contact
A¼
0:5ða bÞh sin
ð19-72Þ
¼
4F sin iða bÞh cos
ð19-73Þ
¼
2:8F iða bÞh
ð19-74Þ
for tan ¼ 0:7
where ¼ angle made by the shearing plane with the direction of pressure
FIGURE 19-12 Square-jaw clutch.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
COUPLINGS, CLUTCHES, AND BRAKES
19.20
CHAPTER NINETEEN
Particular
Formula
FRICTION CLUTCHES Cone clutch (Fig. 19-13) The axial force in terms of the clutch dimensions
Fa ¼ Dm pb sin
ð19-75Þ
where Dm ¼ 12 ðD1 þ D2 Þ (approx.) ¼ one-half the cone angle, deg ¼ ranges from 158 to 258 for industrial clutches faced with wood ¼ 12.58 for clutches faced with asbestos or leather or cork insert Axial force in terms of normal force (Fig. 19-13)
Fa ¼ Fn sin
The tangential force due to friction
F ¼
Torque transmitted through friction
Mt ¼
Power transmitted
P¼
Fa Dm n 19;100 sin kl
P¼
Fa Dm n 126;000 sin kl
P¼
pD2m bn 19;100kl
ð19-76Þ
Fa sin
ð19-77Þ
Fa Dm 2 sin
ð19-78Þ SI
ð19-79aÞ
USCS
ð19-79bÞ
SI
ð19-79cÞ
FIGURE 19-13 Cone clutch.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
COUPLINGS, CLUTCHES, AND BRAKES COUPLINGS, CLUTCHES, AND BRAKES
Particular
19.21
Formula
P¼
pD2m bn 126;000kl
USCS
ð19-79dÞ
where kl ¼ load factor from Table 14-7 Refer to Table 19-4 for p. The force necessary to engage the clutch when one member is rotating The ratio (Dm =b) The value of Dm in commercial clutches
Fa0 ¼ Fn ðsin þ cos Þ
ð19-80Þ
Dm ¼ 4:5 to 8 b sffiffiffiffiffiffiffiffiffiffi 3 Pkl q Dm ¼ 18:2 pn
ð19-81Þ
q¼
sffiffiffiffiffiffiffiffiffiffiffi 3 Pkl q Dm ¼ 34:2 pn
SI
ð19-82aÞ
USCS
ð19-82bÞ
Dm ¼ 5d to 10d
ð19-82cÞ
DISK CLUTCHES (Fig. 19-14) The axial force
Fa ¼ 12 pD1 ðD2 D1 Þ
ð19-83Þ
Refer to Table 19-4 for p. The torque transmitted
Mt ¼ 12 Fa Dm
ð19-84Þ
where Dm ¼
2 ðD32 D31 Þ 3 ðD22 D21 Þ
ð19-85aÞ
for uniform pressure distribution and Dm ¼ 12 ðD2 þ D1 Þ
ð19-85bÞ
for uniform wear
FIGURE 19-14 Multidisk clutch.
Power transmitted
P¼
iFa n 28;650kl
P¼
iFa n 189;000kl
D32 D31 D22 d12
D32 D31 D22 d12
SI
ð19-86aÞ
USCS
ð19-86bÞ
for uniform pressure
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
COUPLINGS, CLUTCHES, AND BRAKES
19.22
CHAPTER NINETEEN
Particular
Formula
where Fa ¼ p
D22 D21 4
P¼
ipnD1 ðD22 D21 Þ 76;400kl
SI
ð19-87aÞ
P¼
ipnD1 ðD22 D21 Þ 504;000kl
SI
ð19-87aÞ
for uniform wear The clutch capacity at speed n1
P1 ¼
Pn1 nks
ð19-88Þ
where P ¼ design power at speed, n ks ¼ speed factor obtained from Eq. (19-89) The speed factor
ks ¼ 0:1 þ 0:001n
ð19-89Þ
where n ¼ speed at which the capacity of clutch to be determined, rpm
DIMENSIONS OF DISKS (Fig. 19-15) The maximum diameter of disk
D2 ¼ 2:5 to 3:6D1
ð19-90Þ
The minimum diameter of disk
D1 ¼ 4d
ð19-91Þ
The thickness of disk
h ¼ 1 to 3 mm
ð19-92Þ
The number of friction surfaces
i ¼ i1 þ i2 1
ð19-93Þ
The number of driving disks
i1 ¼
i 2
ð19-94Þ
The number of driven disks
i2 ¼
i þ1 2
ð19-95Þ
FIGURE 19-15 Dimensions of disks.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
COUPLINGS, CLUTCHES, AND BRAKES COUPLINGS, CLUTCHES, AND BRAKES
Particular
19.23
Formula
DESIGN OF A TYPICAL CLUTCH OPERATING LEVER (Fig. 19-16) The total axial force on i number of clutch disk or plates
Fa0 ¼ ip0 D1 ðD1 D2 Þ
ð19-96Þ
0
where p ¼ actual pressure between disks Fa0 ¼
4Mta ; iðD1 DÞD2m
MPa ðpsiÞ
Mta ¼ allowable torque, N m (lbf in)
FIGURE 19-16 A typical clutch operating lever.
The force acting on disks of one operating lever of the clutch (Fig. 19-16)
F1 ¼
Fa0 i0
ð19-97Þ
where i0 ¼ number of operating levers The total force acting from the side of the bushing (Fig. 19-16)
P ¼ i0 p1
ð19-98Þ
The force acting from the side of the bushing on one operating lever (Fig. 19-16)
d L cotð þ Þ e1 2 P 1 ¼ F1 d e2 þ e3 þ 2
ð19-99Þ
The thickness of the !ever very close to the pin (Fig. 19-16)
2 31=3 6F 0 e h ¼ 6 a 3 7 4 b 0 5 i db h
ð19-100Þ
where db ¼ design bending stress for the material of the levers, MPa (psi) The diameter of the pin (Fig. 19-16)
Ratio of b=h ¼ 0:75 to 1 sffiffiffiffiffiffiffi 2Fr d¼ d
ð19-101Þ
where Fr ¼ resultant force due to F1 and P1 cotð þ Þ on the pin, kN (lbf ) d ¼ design shear stress of the material of the pin, MPa (psi)
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
COUPLINGS, CLUTCHES, AND BRAKES
19.24
CHAPTER NINETEEN
Particular
Formula
EXPANDING-RING CLUTCHES (Fig. 19-17) Torque transmitted [Fig. 19-17(a)]
Mt ¼ 2pwr2
ð19-102Þ
where ¼ one half the total arc of contact, rad w ¼ width of ring, m (in)
FIGURE 19-17 Expanding-ring clutch.
The moment of the normal force for each half of the band [Fig. 19-17(a)] The force applied to the ends of the split ring to expand the ring [Fig. 19-17(a)] If the ring is made in one piece (Fig. 19-7(b)] an additional force required to expand the inner ring before contact is made with inner surface of the shell
Mo ¼ pwrL
ð19-103Þ
when rad Fs ¼ pwr Fe ¼
Ewt3 6L
ð19-104Þ
1 1 d1 d
ð19-105Þ
where d1 ¼ original diameter of ring, m (in) d ¼ inner diameter of drum, m (in) w ¼ width of ring, m (in) t ¼ thickness of ring, m (in) F ¼ Fs þ Fe
The total force required to expand the ring and to produce the necessary pressure between the contact surfaces
F ¼ pwr þ
Ewt3 6L
ð19-106Þ
1 1 d1 d
ð19-107Þ
Fn ¼ Fn0 ðsin þ cos Þ
ð19-108Þ
Fn ¼ Fn0 sin
ð19-109Þ
Mt ¼ 12 i1 i2 F D ¼ i1 i2 D2 bp
ð19-110Þ
RIM CLUTCHES (Fig. 19-18) When the grooved rim clutch being engaged, the equation of equilibrium of forces along the vertical axis After the block is pressed on firmly the equation of equilibrium of forces along the vertical axis Torque transmitted
where i1 ¼ number of grooves in the rim i2 ¼ number of shoes b ¼ inclined face, m (in) 2 ¼ angle of contact, rad
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
COUPLINGS, CLUTCHES, AND BRAKES COUPLINGS, CLUTCHES, AND BRAKES
Particular
19.25
Formula
FIGURE 19-18 Grooved rim clutch.
D ¼ pitch diameter, m (in) 2 ¼ V-groove angle, deg The width of the inclined face
b ¼ 0:01D þ 0:006 m b ¼ 0:01D þ 0:25 in
Frictional force
SI
USCS ð19-111bÞ
F ¼ Fn0 where Fn0 ¼ 2 Dbp
Torque transmitted in case of a flat rim clutch when i1 ¼ 1 and the number of sides b is only one-half that of a grooved rim
ð19-111aÞ
ð19-112aÞ ð19-112bÞ
Mt ¼
i D2 bp 2
ð19-113Þ
Fc1 ¼
w 2 ! r g 1
ð19-114Þ
Fc2 ¼
w 2 ! r g 2
ð19-115Þ
CENTRIFUGAL CLUTCH (Fig. 19-19) Design of shoe Centrifugal force for speed !1 (rad/s) at which engagement between shoe and pulley commences Centrifugal force for running speed !2 (rad/s) The outward radial force on inside rim of the pulley at speed !2
The centrifugal force for !1 ¼ 0:75!2
Fc ¼ Fc2 Fc1 Fc ¼
w 2 ð! !21 Þr g 2
Fc0 ¼
7w 2 ! r 16g 2
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð19-116aÞ ð19-116bÞ ð19-117Þ
COUPLINGS, CLUTCHES, AND BRAKES
19.26
CHAPTER NINETEEN
Particular
Formula
FIGURE 19-19 Centrifugal clutch.
Torque required for the maximum power to be transmitted
Mt ¼ 4r0 Fc ¼ 4
w 2 ð! !21 Þrr0 g 2
ð19-118Þ
where r0 ¼ inner radius of the rim The equation to calculate the length of the shoe (Fig. 19-19)
l¼
Fc w ¼ ð!2 !21 Þr bp gbp 2
ð19-119Þ
y¼
1Wl 3 48EI
ð19-120Þ
Spring The central deflection of flat spring (Fig. 19-19) which is treated as a beam freely supported at the points where it bears against the shoe and loaded centrally by the adjusting screw The maximum load exerted on the spring at speed !1
W ¼ Fc1 ¼
w 2 ! r g 1
bh3 Wl 3 ¼ 12 48Ey
The cross section of spring can be calculated by the equation
I¼
For other proportionate dimensions of centrifugal clutch
Refer to Fig. 19-19.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð19-121Þ
ð19-122Þ
COUPLINGS, CLUTCHES, AND BRAKES COUPLINGS, CLUTCHES, AND BRAKES
Particular
19.27
Formula
OVERRUNNING CLUTCHES Roller clutch (Fig. 19-20) FIGURE 19-20 Roller clutch.
The condition for the operation of the clutch
< 2
ð19-123Þ
where ¼ angle of friction, varies from 0.03 to 0.005 The force crushing the roller
For ¼ angle 18430 , the angle < 38260 F ð19-124Þ F¼ tan where F ¼ tangential force necessary to transmit the torque at pitch diameter D
The torque transmitted
Mc ¼ 12 F D
The allowable load on roller
Fa ic k0 ld
ð19-125Þ
where k0 ¼ coefficient of the flattening of the roller 4:64c E for c ¼ allowable crushing stress ¼ 1035.0 MPa (150 kpsi) ¼
The roller diameter
d ¼ 0:1D to 0:15D
The number of roller
i¼
LOGARITHMIC SPIRAL ROLLER CLUTCH (Fig. 19-21) The radius of curvature of the ramp at the point of contact (Fig. 19-21) The radius vector of point C (Fig. 19-21) The radius of the contact surface on the driven member in terms of the roller radius and functions angles and (Fig. 19-21) The tangential force
ðD þ dÞ 2d
Rc ¼ 2ðRd Rr Þ
ð19-126Þ
ð19-126aÞ
sin 2 sin 2
ð19-127Þ
sin 2 R cosð2 þ Þ r cos Rd ¼ Rc 1 þ cosð2 þ Þ
ð19-128Þ
F ¼ F sin
ð19-130Þ
Rv ¼
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð19-129Þ
COUPLINGS, CLUTCHES, AND BRAKES
19.28
CHAPTER NINETEEN
Particular
Formula
FIGURE 19-21 Logarithmic spiral roller-clutch.
The normal force
Fn ¼
The torque transmitted
Mt ¼
The maximum compressive stress at the surface area of contact between the roller and the cage made of different materials
The maximum compressive stress at the surface area of contact between the roller and the cage for vc ¼ vr ¼ 0:3
The maximum compressive stress at the surface area of contact between the roller and the cage made of same material (Ec ¼ Er ¼ E) and vc ¼ vr ¼ 0:3
F ¼ F cos tan
iFn Rd cot where
ð19-130aÞ ð19-130bÞ
2 ¼ angle of wedge, deg (usually varies from 38 to 128) i ¼ number of rollers in the clutch 31=2 2 1 1 þ 6F 7 Rr Rc 7 cðmaxÞ ¼ 0:7986 ð19-131Þ 7 6 2 2 42l 1 vr 1 vc 5 þ Er Ec 2 31=2 1 1 0:35F þ 6 7 6 Rr Rc 7 7 cðmaxÞ ¼ 6 ð19-132Þ 5 4 1 1 l þ Er Ec 2 31=2 1 1 FE þ 4 Rr Rc 5 ð19-133aÞ cðmaxÞ ¼ 0:418 l sffiffiffiffiffiffiffi FE if Rc Rr cðmaxÞ ¼ 0:418 ð19-133bÞ lRr rffiffiffiffiffiffiffiffiffi 2FE ð19-133cÞ cðmaxÞ ¼ 0:418 ld where d ¼ 2Rr ¼ diameter of roller, m (mm) l ¼ length of the roller, m (mm)
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
COUPLINGS, CLUTCHES, AND BRAKES COUPLINGS, CLUTCHES, AND BRAKES
Particular
19.29
Formula
The design torque transmitted by the clutch
Mtd ¼
ildRd cðmaxÞ tan 0:35E
ð19-134Þ
where 2 varies from 3 to 6 deg. For further design data for clutches
Refer to Tables 19-5, 19-6, 19-7.
TABLE 19-5 Preferred dimensions and deviations for clutch facings (all dimensions in mm) Outside diameter
Deviation
Inside diameter
Deviation
Thickness
Deviation
120, 125, 130 135, 140, 145 150, 155, 150 170, 180, 190 200, 210, 220 230, 240, 250 260, 270, 280 290, 300
0 0.5
80, 85, 90 95, 100, 105 110
þ0.5 0
3, 3.5, 4
0. 1
0 0.8
120, 130, 140 150 175, 203
þ0.8 0 þ1.0 0
0 1.0
325, 350
19.3 BRAKES ENERGY EQUATIONS Case of a hoisting drum lowering a load: The decrease of kinetic energy for a change of speed of the live load from v1 to v2
Ek ¼
Fðv21 v22 Þ 2g
ð19-135aÞ
where v1 ; v2 ¼ speed of the live load before and after the brake is applied respectively, m/s F ¼ load, kN (lbf ) The change of potential energy absorbed by the brake during the time t
Ep ¼
F ðv þ v2 Þt 2 1
The change of kinetic energy of all rotating parts such as the hoist drum and various gears and sheaves which must be absorbed by the brake
Er ¼
X Wk2o ð!21 !22 Þ 2g
ð19-135bÞ ð19-136Þ
where ko ¼ radius of gyration of rotating parts, m (mm) !1 ; !2 ¼ angular velocity of the rotating parts, rad/s
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
COUPLINGS, CLUTCHES, AND BRAKES
19.30
CHAPTER NINETEEN
TABLE 19-6 Service factors for clutches
TABLE 19-7 Shear strength for clutch facings Service factor not including starting factor
Type of service Driving machine Electric motor steady load Fluctuating load Gas engine, single cylinder Gas engine, multiple cylinder Diesel engine, high-speed Large, low-speed Driven machine Generator, steady load Fluctuating load Blower Compressor depending on number of cylinders Pumps, centrifugal Pumps, single-acting Pumps, double-acting Line shaft Wood working machinery Hoists, elevators, cranes, shovels Hammer mills, ball mills, crushers Brick machinery Rock crushers
1.0 1.5 1.5 1.0 1.5 2.0
Shear strength Type Facing material
MPa kgf/mm2
A
7.4
0.75
4.9
0.50
Solid woven or plied fabric with or without metallic reinforcement Molded and semimolded compound
B
1.0 1.0 1.0 2.0–2.5 1.0 2.0 1.5 1.5 1.75 2.0 2.0 3.0 3.0 FIGURE 19-22 Single-block brake.
Particular
The work to be done by the tangential force F at the brake sheave surface in t seconds The tangential force at the brake sheave surface
Torque transmitted when the blocks are pressed against flat or conical surface
The operating force on block in radial direction (Fig. 19-22) Torque applied at the braking surface, when the blocks are pressed radially against the outer or inner surface of a cylindrical drum (Fig. 19-22)
Formula
Wk ¼ F ¼
F Dðn1 þ n2 Þt 2 60
ð19-137Þ
38:2ðEk þ Ep þ Er Þ Dðn1 þ n2 Þ
Mt ¼ Fn
ð19-138Þ
Dm 2
ð19-139Þ
where Fn ¼ total normal force, kN (lbf ) F 2 þ sin 2 F¼ ð19-140Þ 4 sin Mt ¼ F
D 2
4 sin 2 þ sin 2
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð19-141Þ
COUPLINGS, CLUTCHES, AND BRAKES COUPLINGS, CLUTCHES, AND BRAKES
Particular
19.31
Formula
FIGURE 19-23 ð4 sin Þ=ð2 þ sin 2Þ plotted against the semiblock angle .
The tangential frictional force on the block (Fig. 19-22)
F ¼ F
4 sin 2 þ sin 2
Refer to Fig. 19-23 for values of Torque applied when is less than 608
Mt ¼ F
ð19-142Þ 4 sin . 2 þ sin 2
D ðapprox:Þ 2
ð19-143Þ
where F ¼ pa ðbrÞ
BRAKE FORMULAS Block brake formulas For block brake formulas
Refer to Table 19-8 for formulas from Eqs. (19-144) to (19-148)
Band brake formulas For band brake formulas
Refer to Table 19-8 for formulas from Eqs. (19-149) to (19-157)
The magnitude of pressure between the band and the brake sheave
p¼
F1 þ F2 Dw
ð19-158Þ
The practical rule for the band thickness
h ¼ 0:005D
ð19-159Þ
Width of band
w¼
F1 hd
ð19-160Þ
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
COUPLINGS, CLUTCHES, AND BRAKES
19.32
CHAPTER NINETEEN
TABLE 19-8 Formulas for block, simple, and differential band brakes Type of brake and rotation
Force at the end of brake handle, kN (kgf ) a ða þ bÞ
Block brake
Rotation in either direction
F ¼ F
Block brake
Clockwise
F¼
F a aþb
Counterclockwise
F¼
F a aþb
Clockwise
F¼
F a aþb
Counterclockwise
F¼
F a aþb
Clockwise
F¼
F b a
Counterclockwise
F¼
F b a
Clockwise
F¼
F b a
Counterclockwise
F¼
F b a
Block brake
Simple band brake
Simple band brake
1 c a
1 c þ a
1 c þ a
1 c a
e e 1
(19-144)
(19-145)
(19-146)
(19-147)
(19-148)
(19-149)
1 e 1
1 e 1
e 1
e
For counterclockwise direction (c=a) must be less than (1=) or brake will be self-locking.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
(19-150)
(19-151)
(19-152)
COUPLINGS, CLUTCHES, AND BRAKES COUPLINGS, CLUTCHES, AND BRAKES
19.33
TABLE 19-8 Formulas for block, simple, and differential band brakes (Cont.) Type of brake and rotation
Force at the end of brake handle, kN (kgf )
Differential band brake
F¼
F a
Counterclockwise
F¼
F a
F¼
F b a
F¼
F a
}
If b2 ¼ b1 F is the same for rotation in either direction Clockwise
Differential band brake
Counterclockwise
*
Clockwise
F¼
F a
b2 e þ b1 e 1
b1 e þ b2 e 1
b1 e þ 1 e þ 1
b2 e b1 e 1
b2 b1 e e 1
(19-153)
(19-154)
(19-155)
(19-156)
(19-157)
For the above two cases, if b2 ¼ b1 ¼ b. In this case if b2 b1 e , F will be negative or zero and the brake works automatically or the brake is ‘‘self-locking.’’
**
Particular
Suitable drum diameter according to Hagenbook
Formula
Mt 69
1=3
< 10D <
Mt 54
1=3
where Mt in N m and D in m Mt 1=3 Mt 1=3
SI
ð19-161Þ
USCS
ð19-162Þ
where Mt in lbf and D in in Suitable drum diameter in terms of frictional horsepower
ð79:3PÞ1=3 < 100D < ð105:8PÞ1=3
SI
ð19-163aÞ
where P in kW and D in m ð60PÞ1=3 < D < ð80PÞ1=3
USCS ð19-163bÞ
where P in hp and D in in P is taken as the maximum horsepower to be dissipated in any 15-min period
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
COUPLINGS, CLUTCHES, AND BRAKES
19.34
CHAPTER NINETEEN
Particular
Formula
CONE BRAKES (Fig. 19-24) The normal force The radial force The tangential force or braking force
Fn ¼
Fa sin
ð19-164Þ
Fr ¼
Fa tan
ð19-165Þ
F ¼ Fn ¼
The braking torque
Fa sin
Fa D 2 sin where D ¼ mean diameter, m (mm)
Mt ¼
ð19-166Þ ð19-167Þ
CONSIDERING THE LEVER (Fig. 19-24) The axial force
Fa ¼
The relation between the operating force F and the braking force F
F¼
The area of the contact surface using the designation given in Fig. 19-24
A¼
aF h
hF sin a
Dw cos where
ð19-168Þ ð19-169Þ ð19-170Þ
w ¼ axial width, m (mm) ¼ half the cone angle, deg The average pressure between the contact surfaces
Fav ¼
Fn Fa ¼ A Dw tan
Take ¼ from 108 to 188 w ¼ 0:12D to 0:22D
FIGURE 19-24 Cone brake.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð19-171Þ
COUPLINGS, CLUTCHES, AND BRAKES COUPLINGS, CLUTCHES, AND BRAKES
Particular
19.35
Formula
DISK BRAKES The torque transmitted for i pairs of friction surfaces
Mt ¼
ip1 D1 ðD22 D21 Þ 8
ð19-172Þ
Fa ¼ 12 p1 D1 ðD2 D1 Þ
The axial force transmitted
ð19-173Þ
where p1 ¼ intensity of pressure at the inner radius, MPa (psi) Refer to Table 19-9.
For design values of brake facings TABLE 19-9 Design values for brake facings
Permissible unit pressure
Facing material Cast iron on cast iron Dry Oily Wood on cast iron Leather on cast iron Dry Oily Asbestos fabric on metal Dry Oily Molded asbestos on metal
Design coefficient of friction
1 m/s
10 m/s
MPa
kgf/mm2
MPa
kgf/mm2
0.20 0.07 0.25–0.30
0.5521–0.6824
0.0563–0.0703
0.1383–0.1726
0.0141–0.0176
0.40–0.50 0.15
0.0549–0.1039
0.0056–0.0106
0.35–0.40 0.25 0.30–0.35
0.6209–0.6894
0.0633–0.0703
0.1726–0.2069
0.0176–0.0211
1.0395–1.2062
0.106–0.123
0.2069–0.2756
0.0211–0.0281
Note: 1 kpsi ¼ 6.894757 MPa or 1 MPa ¼ 145 psi.
INTERNAL EXPANDING-RIM BRAKE Forces on Shoe (Fig. 19-25) FOR CLOCKWISE ROTATION The maximum pressure
The moment Mt of the frictional forces
The moment of the normal forces
pa ¼ p
sin a sin
Mt ¼
pa br sin a
Mtn ¼
pa bra sin a
ð19-174Þ ð 2 1
ð 2 1
sin ðr a cos Þ d
sin2 d
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð19-174aÞ
ð19-175Þ
COUPLINGS, CLUTCHES, AND BRAKES
19.36
CHAPTER NINETEEN
Particular
Formula
FIGURE 19-25 Forces on the shoe. (J. E. Shigley, Mechanical Engineering Design, 1962, courtesy of McGraw-Hill.)
Mtn Mt c
The actuating force
F¼
The torque Mt applied to the drum by the brake shoe
Mt ¼
pa br2 ðcos 1 cos 2 Þ sin a
The hinge-pin horizontal reaction
Rx ¼
pa br sin a
ð19-176Þ
ð
2
1
sin cos d
The hinge-pin vertical reaction
Ry ¼
pa br sin a
ð
2
1
ð19-177Þ
ð 2 1
sin2 d Fx
ð19-178Þ
sin2 d
þ
ð 2 1
sin cos Fy
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð19-179Þ
COUPLINGS, CLUTCHES, AND BRAKES COUPLINGS, CLUTCHES, AND BRAKES
Particular
FOR COUNTERCLOCKWISE ROTATION (Fig. 19-25)
19.37
Formula
Mtn þ Mt c ð 2 p br Rx ¼ a sin cos d sin a 1 ð 2 þ sin2 d Fx F¼
1
Ry ¼
pa br sin a
ð
2
1
ð19-180Þ
ð19-181Þ
sin2 d
ð 2 1
sin cos d Fy
ð19-182Þ
EXTERNAL CONTRACTING-RIM BRAKE Forces on shoe (Fig. 19-26) FOR CLOCKWISE ROTATION The moment Mt of the friction forces Fig. 19-26 The moment of the normal force
Mt ¼
pa br sin a
Mtn ¼
pa br sin a
ð 2 1
ð 2 1
sin ðr a cos Þ d
ð19-183Þ
sin2 d
ð19-184Þ
FIGURE 19-26 Forces and notation for external-contracting shoe. (J. E. Shigley, Mechanical Engineering Design, 1962, courtesy of McGraw-Hill.)
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
COUPLINGS, CLUTCHES, AND BRAKES
19.38
CHAPTER NINETEEN
Particular
The actuating force
The horizontal reaction at the hinge-pin
Formula
Mtn þ Mt c ð 2 p br Rx ¼ a sin cos d sin a 1 ð 2 þ sin2 d Fx F¼
ð19-185Þ
ð19-186Þ
1
The vertical reaction at the hinge-pin
Ry ¼
ð 2 pa br sin cos d sin a 1 ð 2 sin2 d þ Fy
ð19-187Þ
1
FOR COUNTERCLOCKWISE ROTATION
Mtn Mt c ð 2 p br Rx ¼ a sin cos d sin a 1 ð 2 sin2 d Fx
ð19-188Þ
F¼
ð19-189Þ
1
Ry ¼
pa br sin a
ð 2
ð 2 1
1
sin cos d
sin2 d þ Fy
ð19-190Þ
HEATING OF BRAKES Heat generated from work of friction
Hg ¼ pAc v J ðjoulesÞ Hg ¼
Heat to be radiated for a brake lowering the load
pAc v 778
H ¼ Wh J ðjoulesÞ
SI
ð19-191aÞ
USCS
ð19-191bÞ
SI
ð19-192aÞ
Wh USCS ð19-192bÞ 778 where h ¼ total height or distance, m (ft)
H¼
The heat generated is also given by the equation
Hg ¼ 754kl P
SI
ð19-193aÞ
USCS
ð19-193bÞ
where P in kW and Hg in J/s Hg ¼ 42:4kl P where P in hp
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
COUPLINGS, CLUTCHES, AND BRAKES
19.39
COUPLINGS, CLUTCHES, AND BRAKES
Particular
The rise in temperature in 8C of the brake drum or clutch plates
Formula
T ¼
H mC
ð19-194Þ
where m ¼ mass of brake drum or clutch plates, kg C ¼ specific heat capacity ¼ 500 J/kg 8C for cast iron or steel for cast iron ¼ 0:13 Btu/lbm 8F ¼ 0:116 Btu/lbm 8F for steel The rate of heat dissipation
Hd ¼ C2 TAr
SI
ð19-195aÞ
where Hd in J. Hd ¼ 0:25C2 TAr
Metric ð19-195bÞ
where C2 ¼ radiating factor from Table 19-13 Hd in kcal. The required area of radiating surface
Ar ¼
754kl N C2 T
SI
ð19-196aÞ
where Ar in m2 Ar ¼
0:18kl N C2 T
SI ð19-196bÞ
where Ar in mm2 Approximate time required for the brake to cool
Gagne’s formula for heat generated during a single operation
tc ¼
Wr C2 ln T KAr
ð19-197Þ
where K ¼ a constant varying from 0.4 to 0.8 " # AC nt Nt Hg ¼ ðTav Ta Þ c þ 1:5 1 c nc 3600 3600 ð19-198Þ where ðTav Ta Þ ¼ temperature difference between the brake surface and the atmosphere, 8C Refer to Table 19-15 for values of C.
For additional design data for brakes
Refer to Tables 19-11 to 19-17.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
COUPLINGS, CLUTCHES, AND BRAKES
19.40
CHAPTER NINETEEN
TABLE 19-10 Working pressure for brake blocks Pressure Rubbing velocity, m/s
Wood blocks
Asbestos fabric
Asbestos blocks
MPa
kgf/mm2
MPa
kgf/mm2
MPa
kgf/mm2
1 2 3 4 5 10
0.5521 0.4482 0.3452 0.2412 0.1726 0.1726
0.0563 0.0457 0.0352 0.0246 0.0176 0.0176
0.6894 0.5521 0.4138 0.2756 0.2069 0.2069
0.0703 0.0563 0.0422 0.0281 0.0211 0.0211
1.1032 1.0346 0.8963 0.6894 0.4825 0.2756
0.1125 0.1055 0.0914 0.0703 0.0492 0.0281
Note: 1 kpsi ¼ 6.894754 MPa or 1 MPa ¼ 145 psi.
TABLE 19-11 Comparison of hoist brakes Block brakes
Band brakes Axial brakes
Brake characteristics
Double block
V-grooved sheave
b a
Average numerical value Relative value
Force ratio
F F
Simple
Both directions of rotation
Cone
Multidisk
b sin a
b aðe 1Þ
bðe þ 1Þ aðe 1Þ
b sin a
b na
0.667
0.282
0.0323
0.165
0.161
0.097
20.6
8.7
1
5.1
5.0
h1 a b sin
h1 a 2b
h1 a 4b
h1 a b sin
a
3.00 b
ih01 a b
Travel at lever end
h1 a b
Average travel, mm (in)
8.0 (0.313)
18.8 (0.74)
74.5 (2.943)
37.36 (1.471)
32.8 (1.292)
5.56 (0.219)
1512.7 (2000)
18.9 (25)
227.0 (300)
75.6 (100)
37.8 (50)
90.8 (120)
Maximum capacity P, kW (hp) a b
h1 ¼ the normal distance between the sheave and the stationary braking surface to prevent dragging. h ¼ b in Fig. 19-21.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
COUPLINGS, CLUTCHES, AND BRAKES
TABLE 19-12 Service factors for typical machines Service factors for prime movers Electric motor steam or water turbine
High-speed steam or gas engine
4 Cyla
4 Cyl
6 Cyl
4 Cyl
Alternators and generators (excluding welding generators), induced-draft fans, printing machinery, rotary pumps, compressors, and exhausters, conveyors
1.5
2.0
2.5
3.0
3.5
5.0
Woodworking machinery, machine tools (cutting) excluding planing machines, calenders, mixers, and elevators
2.0
2.5
3.0
3.5
3.0
5.5
Forced-draft fans, high-speed reciprocating compressors, high speed crushers and pulverizers, machine tools (forming)
2.5
3.0
3.5
4.0
4.5
6.0
Rotary screens, rod mills, tube, cable and wire machinery, vacuum pumps
3.0
3.5
4.0
4.5
5.0
6.5
Low-speed reciprocating compressors, haulage gears, metal planing machines, brick and tile machinery, rubber machinery, tube mills, generators(welding)
3.5
4.0
4.5
5.0
5.5
7.0
Type of driven machine
TABLE 19-13 Radiating factors for brakes
Petrol engine
Oil engine
TABLE 19-14 pv values as recommended by Hutte for brakes
Radiating factor, C2
C2 T
pv
Temperature difference, T
W/m2 K
cal/m2 s 8C W/m2
cal/m2 s
Service
SI
Metric
55.5 111.5 166.5 222.6
12.26 15.33 16.97 18.40
2.93 3.66 4.05 4.39
162.73 406.83 675.34 976.40
Intermittent operations with long rest periods and poor heat radiation, as with wood blocks Continuous service with short rest periods and with poor radiation Continuous operation with good radiation as with an oil bath
26.97
2.75
13.73
1.40
40.70
4.15
681.36 1703.41 2827.66 4088.19
TABLE 19-15 Values of beat transfer coefficient C for rough block surfaces Heat-transfer coefficient, C
Velocity, v, m/s
W/m2 K
kcal/m2 h 8C
0.0 6.1 12.2 18.3 24.4 30.5
8.5 14.1 18.8 22.5 25.6 29.0
7.31 12.13 16.20 19.30 22.00 24.90
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
COUPLINGS, CLUTCHES, AND BRAKES
19.42
CHAPTER NINETEEN
TABLE 19-16 Values of e Leather belt on Wood
Cast iron
Proportion of contact to whole circumference
Steel band on cast iron ¼ 0:18
Slightly greasy ¼ 0:47
Very greasy ¼ 0:12
Slightly greasy ¼ 0:28
0.1 0.2 0.3 0.4 0.425 0.45 0.475 0.500 0.525 0.6 0.7 0.8 0.9 1.0
1.12 1.25 1.40 1.57 1.62 1.66 1.71 1.76 1.81 1.97 2.21 2.47 2.77 3.10
1.34 1.81 2.43 3.26 3.51 3.78 4.07 4.38 4.71 5.88 7.90 10.60 14.30 19.20
1.08 1.16 1.25 1.35 1.38 1.40 1.43 1.46 1.49 1.57 1.66 1.83 1.97 2.12
1.19 1.42 1.69 2.02 2.11 2.21 2.31 2.41 2.52 2.81 3.43 4.09 4.87 5.81
Damp ¼ 0:38 1.27 1.61 2.05 2.60 2.76 2.93 3.11 3.30 3.50 4.19 5.32 6.75 8.57 10.90
TABLE 19-17 Coefficient of friction and permissible variations on dimensions for automotive brakes lining
Type and class of brake lining Type I—rigid molded sets or flexible molded rolls or sets Class A—medium friction Class B—high friction Type II—rigid woven sets or flexible woven rolls or sets Class A—medium friction Class B—high friction
Tolerance on width for sizes, mm
Tolerance on thickness for sizes, mm
Range of coefficient of friction,
Permissible variation in , %
5 mm thickness
>5 mm thickness
5 mm thickness
>5 mm thickness
0.28–0.40 0.36–0.45
þ30, 20 þ30, 20
þ0 0.2
þ0 0.3
þ0 0.8
þ0 0.8
0.33–0.43 0.43–0.53
þ20, 30 þ20, 30
REFERENCES 1. Shigley, J. E., Machine Design, McGraw-Hill Book Company, New York, 1962. 2. Maleev, V. L. and J. B. Hartman, Machine Design, International Textbook Company, Scranton, Pennsylvania, 1954. 3. Black, P. H., and O. E. Adams, Jr., Machine Design, McGraw-Hill Book Company, New York, 1968. 4. Norman, C. A., E. S. Ault, and I. F. Zarobsky, Fundamentals off Machine Design, The Macmillan Company, New York, 1951.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
COUPLINGS, CLUTCHES, AND BRAKES COUPLINGS, CLUTCHES, AND BRAKES
19.43
5. Spotts, M. F., Machine Design Analysis, Prentice-Hall, Englewood Cliffs, New Jersey, 1964. 6. Spotts, M. F., Design of Machine Elements, Prentice-Hall of India Ltd., New Delhi, 1969. 7. Vallance, A., and V. L. Doughtie, Design of Machine Members, McGraw-Hill Book Company, New York, 1951. 8. Lingaiah, K., and B. R. Narayana Iyengar, Machine Design Data Handbook, Engineering College Cooperative Society, Bangalore, India, 1962. 9. Lingaiah, K., and B. R. Narayana Iyengar, Machine Design Data Handbook, Vol. I (SI and Customary Metric Units), Suma Publishers, Bangalore, India, 1986. 10. Lingaiah, K., Machine Design Data Handbook, Vol. II (SI and Customary Metric Units), Suma Publishers, Bangalore, India, 1986. 11. Lingaiah, K., Machine Design Data Handbook, McGraw-Hill Publishing Company, New York, 1994. 12. Bureau of Indian Standards, New Delhi, India.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
Source: MACHINE DESIGN DATABOOK
CHAPTER
20 SPRINGS SYMBOLS A b b0 c c1 , c2 C1 , C2 d d1 , d2 D D1 D2 esz e0sr E F F Fmax ko Fcr g G h i i0
area of loading, m2 (in2 ) width of rectangular spring, m (in) width of laminated spring, m (in) width of each strip in a laminated spring, m (in) spring index constants taken from Table 20-1 and to be used in Eqs. (20-1) to (20-36) constants to be used in Eqs. (20-20) and (20-21) and taken from Fig. 20-3 diameter of spring wire, m (in) diameter of torsion bar, m (in) diameter of outer and inner wires of concentric spring, m (in) mean or pitch diameter of spring, m (mm) overall diameter of the absorber, m (in) mean or pitch diameter of outer concentric spring, m (in) smallest mean diameter of conical spring, m (in) mean or pitch diameter of inner concentric spring, m (in) largest mean diameter of conical spring, m (in) size coefficient surface influence coefficient modulus of elasticity, GPa (psi) frequency, cycles per minute, Hz load, kN (lbf ) steady-state load [Eq. (20-84)] maximum force that can be imposed on the housing, kN (lbf ) force to compress the spring one meter (in) N/m (lbf/in) [spring rate, N/m (lbf/in)] critical load, kN (lbf ) acceleration due to gravity, 9.8066 m/s2 9806.06 mm/s2 (32.2 ft/s2 ; 386.4 in/s2 ) modulus of rigidity, GPa (psi) height (thickness) of laminated spring, m (in) axial height of a rectangular spring wire, m (in) total number of strips or leaves in a leaf spring number of coils in a helical spring total number of full-length blunt-ended leaves in a leaf spring
20.1 Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
SPRINGS
20.2
CHAPTER TWENTY
moment of inertia, area, m4 , cm4 (in4 ) stress factor (Wahl factor) correction factor factor depends on the ratio lo =D as shown in Fig. 20-8 reduced stress correction factor or Wahl stress factor or fatigue stress correction factor shear stress correction factor length, m (in) free length of helical spring, m (in) iD length of the coil part of torsion spring, m (in) effective length of bushing, m (in) overall length of the absorber (Fig. 20-15), m (in) constant depends on do =di as indicated in Fig. 20-3 twisting moment, N m (lbf in) factor of safety actual factor of safety or reliability factor resilience, N m (lbf in) energy to be absorbed by a rubber spring, N m (lbf in) volume of spring, m3 , mm3 (in3 ) specific weight of the spring material, N/m3 (lbf/in3 ) weight of spring, kN (lbf ) weight of effective number of coils i involved in the operation of the spring [Eq. (20-77)], kN (lbf ) deflection, m (in) critical deflection, m (in) section modulus, m3 , cm3 (in3 ) polar section modulus, m3 , cm3 (in3 ) stress, normal, MPa (psi) shear stress, MPa (psi) constant from Table 20-3 constants from Table 20-3 angular deflection, rad Poisson’s ratio
I k, k1 , k2 k4 Kl kr l lf or lo L M Mt n na U V W y ycr Z Zo , 0 , 0
SUFFIXES 1 2 a m max min f o
outside inside amplitude mean maximum minimum endurance lirnit (also used for reversed cycle) endurance limit for repeated cycle
Particular
Formula
LEAF SPRINGS (Table 20-1)1;2;3 The general equation for the maximum stress in springs
¼
c1 Fl bh2
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð20-1Þ
SPRINGS SPRINGS
Particular
20.3
Formula
The general equation for the maximum deflection springs The thickness of spring
y¼
c2 Fl 3 Ebh3
ð20-2Þ
h¼
c2 l 2 c1 yE
ð20-3Þ
Refer to Table 20-1 for values of c1 and c2 . For sizes and tolerances for leaf springs for motor vehicle suspension [4]
Refer to Tables 20-2 to 20-5.
TABLE 20-1 Deflection formula for beams of rectangular cross section and constants in beam Eqs. (20-1) to (20-3)
Particular
Maximum deflection, ymax
c1 , for the stress
c2 , for the deflection
Unit resilience, Nm/m3 (kgf mm/mm3 )
ymax ¼
2F bE
3 1 h
3
2
2 18E
ymax ¼
4F bE
3 1 h
3
4
2 6E
ymax ¼
3F bE
3 1 h
3
3
2 6E
ymax ¼
4F bE
3 1 h
6
4
2 18E
ymax ¼
8F bE
3 1 h
6
8
2 6E
ymax ¼
6F bE
3 1 h
6
6
2 6E
Source: K. Lingaiah and B. R. Narayana Iyengar, Machine Design Data Handbook, Engineering College Cooperative Society, Bangalore, India, 1962; K. Lingaiah and B. R. Narayana Iyengar, Machine Design Data Handbook, Vol. I, Suma Publishers, Bangalore, India, 1986; and K. Lingaiah, Machine Design Data Handbook, Vol. II, Suma Publishers, Bangalore, India, 1986.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
SPRINGS
20.4
CHAPTER TWENTY
Particular
Formula
LAMINATED SPRING (Fig. 20-1)5
FIGURE 20-1 Laminated springs for automobiles.
The load on the spring
ib0 h2 c1 l
F¼
ð20-4Þ
where ib0 ¼ b The maximum deflection The maximum deflection in case of laminated semielliptical spring for heavy loads The correction factor to be used in Eq. (20-6)
y¼
c2 Fl 3 Eib0 h3
ð20-5Þ
y¼
c2 Fl 3 k4 Eib0 h3
ð20-6Þ
k4 ¼
1 4r þ 2r2 ð1:5 ln rÞ ð1 rÞ3
where r ¼
i0 l
For standard sections of steel plates for laminated springs
Refer to Tables 20-2 to 20-6.
The correction factor k4 can also be obtained from
k4 ¼
Size coefficient
0:73r0:1 1
for 2 < r < 20 for r > 20
0:0025 h where h in mm
esz ¼ 0:8 þ
0:1 h where h in in
esz ¼ 0:8 þ
2:5 h where h in mm
esz ¼ 0:8 þ
ð20-7Þ
ð20-8Þ
SI
ð20-9aÞ
USCS
ð20-9bÞ
SI
ð20-9cÞ
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
SPRINGS SPRINGS
Particular
20.5
Formula
TABLE 20-2 Cross section tolerances for leaf springs for motor vehicle suspension—metric bar sizes—SAE J1123a
Width tolerance, mm
Tolerance, mm in thickness (þ)a and in flatness ()b
Maximum difference in thicknessc
For thickness
For thickness, mm
Width, mm
Minus 0.00
5.00–9.50
10.00–21.20
22.40–37.50
5.00–9.50
10.00–21.20
22.40–37.50
40.0 45.0 50.0 56.0 63.0 75.0 90.0 100.0 125.0 150.0
þ0.75 þ0.75 þ0.75 þ0.75 þ0.75 þ1.15 þ1.15 þ1.15 þ1.65 þ2.30
0.13 0.13 0.13 0.13 0.13 0.15 0.15 0.15 0.18 —
0.15 0.15 0.15 0.15 0.15 0.20 0.20 0.20 0.25 0.30
— — — — — 0.30 0.30 0.30 0.40 0.50
0.05 0.05 0.05 0.05 0.05 0.08 0.08 0.08 0.10 —
0.05 0.05 0.05 0.05 0.05 0.10 0.10 0.10 0.13 0.15
— — — — — 0.15 0.15 0.15 0.20 0.25
a
Thickness measurements shall be taken at the edge of the bar where the flat surfaces intersect the rounded edge. This tolerance represents the maximum amount by which the thickness of the center of the bar may be less than the thickness at the edges. Thickness of the center may never exceed the thickness at the edges. c Maximum difference in thickness between the two edges of each bar. Source: Reproduced from SAE Handbook, Vol. I, 1981, courtesy SAE. b
Size factor
ksz ¼
1 ¼ 4:66h0:35 esz
SI
ð20-10aÞ
USCS
ð20-10bÞ
SI
ð20-10cÞ
where k in m ksz ¼ 1:27h0:35 where h in in ksz ¼ 0:415h0:35 where h in mm
LAMINATED SPRINGS WITH INITIAL CURVATURE Fg ¼
2ð1 rÞ F 2þr
ð20-11Þ
The load shared by full-length leaves of the spring
Ff ¼
3r F 2þr
ð20-12Þ
The maximum stress in the graduated leaves
g ¼
The load shared by graduated leaves of the spring
The maximum stress in the full-length leaves
Fl lb0 h2 1:5Fl f ¼ 0 2 ib h
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð20-13Þ ð20-14Þ
SPRINGS
20.6
CHAPTER TWENTY
Particular
Formula
The maximum deflection of the leaves (in both graduated and full-length leaves)
y¼
Fl 3 Eib0 h3
ð20-15Þ
The camber to be provided for equalization of stress in both graduated and full-length leaves
c¼
0 Fl 3 ib0 Eh3
ð20-16Þ
The load on the clip bolt to be applied to provide camber
Fb ¼
0 Fl ib0 h2
ð20-17Þ
0 Fl ð20-18Þ ib0 h2 0 0 The values of constants , , and can be obtained from Table 20-7.
The maximum equalized stress
¼
TABLE 20-3 Cross section tolerances for leaf spring for motor vehicle suspension—SAE J510c Tolerance in width
Nominal width Over to and including
in
For thickness
0.0
in
63.5 þ0.030
0.076
63.5 4.00 101.6 þ0.045
+1.14
4.00 101.6 5.00 127.0 þ0.065
+1.65
5.00 127.0 6.00 152.4 þ0.090
+2.90
0.375 9.52 >0.375–0.875 9.52–22.22 0.375 9.52 >0.375–0.875 9.52–22.22 >0.875–1.500 22.22–38.10 0.375 9.52 >0.375–0.875 9.52–22.22 >0.875–1.500 22.22–38.10 >0.375–0.875 9.52–22.22 >0.875–1.500 22.22–38.10
in 0.00 2.50
mm
in
0.0 2.50
mm
0.00
mm
Tolerance in thicknessa
mm
Tolerance in flat surfacesb
in
mm in
0.005 0.006 0.006 0.008 0.012 0.007 0.010 0.016 0.012 0.020
0.13 0.15 0.15 0.20 0.30 0.18 0.25 0.41 0.30 0.51
0.005 0.006 0.006 0.008 0.012 0.007 0.010 0.016 0.012 0.020
Maximum difference in thicknessc
mm
in
mm
0.13 0.15 0.15 0.20 0.30 0.18 0.25 0.41 0.30 0.51
0.002 0.002 0.003 0.004 0.006 0.004 0.005 0.008 0.006 0.010
0.05 0.05 0.08 0.10 0.15 0.10 0.13 0.20 0.15 0.25
a
Thickness measurements shall be taken at the edge of the bar where the flat surfaces intersect the rounded edge. This tolerance represents the maximum amount by which the thickness of the center of the bar may be less than the thickness at the edges. Thickness at the center may never exceed the thickness at the edges. c Maximum difference in thickness between the two edges of each bar. Source: Reproduced from SAE Handbook, Vol. I, 1981. b
DISK SPRINGS (BELLEVILLE SPRINGS) The relation between the load F and the axial deflection y of each disk is given by the equation (Fig. 20-2)
F¼
" # 4Ey y 3 t þ t ðh yÞ h 2 ð1 v2 ÞMdo2
where t ¼ thickness, m (mm) h ¼ height, m (mm) M is a constant from Fig. 20-3
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð20-19Þ
SPRINGS SPRINGS
20.7
TABLE 20-4 Width and thickness of leaf springs for motor vehicle suspension—SAE J1123a Width, mm 40.0 45.0 50.0 56.0 63.0 FIGURE 20-2 Disk spring.
The maximum stress induced at the inner edge
The maximum stress induced at the outer edge
75.0 90.0 100.0 125.0 150.0
Thickness mm 5.00 5.30 5.60 6.00 6.30 6.70
7.10 7.50 8.00 8.50 9.00 9.50
10.00 10.60 11.20 11.80 12.50 13.20
14.00 15.00 16.00 17.00 18.00 19.00
20.00 21.20 22.40 23.60 25.00 25.50
28.00 30.00 31.50 33.50 35.50 37.50
Source: Reproduced from SAE Handbook, Vol. I, 1981.
" # 4Ey y C1 h i ¼ þ C2 t 2 ð1 v2 Þdo2
ð20-20Þ
" # 4Ey y o ¼ C1 h C2 t 2 ð1 v2 Þdo2
ð20-21Þ
where C1 and C2 are constants taken from Fig. 20-3 For spring design stresses
FIGURE 20-3 Constants C1 , C2 , and M for a disk spring. (V. L. Maleev and J. B. Hartman, Machine Design, International Textbook Company, Scranton, Pennsylvania, 1954.)
Refer to Table 20-8
FIGURE 20-3a Load-deflection curves for Belleville springs. Courtesy: Shigley, J. E. and L. D. Mitchell, Mechanical Engineering Design, McGraw-Hill Publishing Company, New York, 1983.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
SPRINGS
20.8
CHAPTER TWENTY
FIGURE 20-3b Load deflection characteristics for Belleville washers Courtesy: Jorres, R. L., Springs; Chapter 24 in Shigley, J. E. and C. R. Mischke, eds, Standards Handbook of Machine Design, McGraw-Hill Publishing Company, New York, 1986.
FIGURE 20-4 Helical spring under axial load.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
SPRINGS SPRINGS
Particular
20.9
Formula
HELICAL SPRINGS (Fig. 20-4)5
FIGURE 20-5 Stress factors for a helical spring. (V. L. Maleev and J. B. Hartman, Machine Design, International Textbook Company, Scranton, Pennsylvania, 1954.)
The more accurate formula for shear stress
The stress factor or Wahl factor6 k to be used in Eq. (20-2) The spring index The value of stress factor k may be approximated very closely (between c ¼ 2 and 12) by the relation Size factor
8FDk d 3 Refer to Fig. 20-5 for values of k.
ð20-22Þ
¼
4c 1 0:615 þ 4c 4 c D c¼ d 0:25 2 d k ¼ 0:25 ¼ 2 D c
ð20-23Þ
k¼
ksz ¼
1 d 0:25 ¼ esz 0:335
ð20-24Þ ð20-25Þ
SI
ð20-26aÞ
USCS
ð20-26bÞ
SI
ð20-26cÞ
where d in mm d 0:25 0:85 where d in in
ksz ¼
d 0:25 1:89 where d in mm
Ksz ¼
The shear stress taking into consideration k from Eq. (20-25) The angular deflection
¼
16FD0:75 5:1Fc0:75 ¼ d 2:75 d2
ð20-27Þ
¼
16FDl d 4 G
ð20-28Þ
The length of the spring wire
l ¼ iD ðapprox:Þ
The axial deflection of the whole spring
y¼
8FD3 i iD2 iD2:25 ¼ ¼ kdG 2d 1:25 G d 4G
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð20-28aÞ ð20-29Þ
SPRINGS
20.10
CHAPTER TWENTY
Particular
Formula
SPRING SCALE (Fig. 20-6)
FIGURE 20-6 Relation between loads and deflection in a helical spring.
Force to compress the spring 1 m (mm) (stiffness of spring) The total deflection (Fig. 20-6)
Fo ¼
F d4G GD Gd ¼ ¼ ¼ y 8iD3 8ic4 8ic3
ð20-30Þ
y2 ¼
F2 y0 F2 ¼ Fo F2 F1
ð20-31Þ
U¼
Fy 4F 2 D3 i 2 d 2 iD 2 ¼ ¼ 2 16k2 G d4G
RESILIENCE The resilience U of a spring is equal to energy absorbed
2 d 1:5 D1:5 i 2 1:55d 2 c1:5 i 2 ¼ 64G G V 2 V 2 D 0:5 Vc0:5 U¼ 2 ¼ ¼ 16G 4k G 16G d U¼
y2 d 4 G 16iD3 V ¼ Dið 14 d 2 Þ ¼
Volume of the spring
ð20-32aÞ ð20-32bÞ
ð20-32cÞ ð20-33Þ
RECTANGULAR SECTION SPRINGS (Fig. 20-7a)5 Shear stress
kFDð1:5h þ 0:9bÞ FD0:75 ð3h þ 1:8bÞ ¼ ð20-34aÞ b2 h2 b1:75 h2 kFDð1:5 þ 0:9mÞ FD0:75 ð3 þ 1:8mÞ 0 ¼ ¼ ð20-34bÞ m2 h3 m1:75 h2 b where m ¼ h 0 ¼
FIGURE 20-7(a) Spring with rectangular section.
The uncorrected shear stress for a rectangular section spring
0 ¼
FD kl bh2
ð20-35Þ
where k1 ¼ factor depending on b=h ¼ m, which is given in Table 20-9 The stress factor
k¼
4c 1 0:615 þ 4c 4 c
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð20-36Þ
SPRINGS
FIGURE 20-7(b) Minimum tensile strengths of spring wire. (Associated Spring, Barnes Group Inc., Bristol, Connecticut)
FIGURE 20-7(c) Modified Goodman diagram for Belleville washers; for carbon and alloy steels at 47 to 49 Rc with set removed, but not shotpeened (Associated Spring, Barnes Group Inc., Bristol, Connecticut.)
FIGURE 20-7(d) Deflection for helical compression spring at various loads. (Richard M. Phelan, Fundamentals of Mechanical Engineering Design, New Delhi, 1975, courtesy of TataMcGraw-Hill.)
20.11 Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
SPRINGS
20.12
CHAPTER TWENTY
TABLE 20-5 Width of leaf springs for motor vehicle suspension— SAE J510C in
mm
in
mm
in
mm
1.75 2.00 2.25
44.4 50.8 57.2
2.50 3.00 3.50
63.5 76.2 88.9
4.00 5.00 6.00
101.6 127.0 152.4
Source: Reproduced from SAE Handbook, Vol. I, 1981.
TABLE 20-6 Standard sections of steel plates for laminated springs (railway rolling stocks) Width, mm
50
63
75
90
100
115
120
125
140
150
Thickness, mm
10, 13
6, 8, 10, 11, 13
6, 8, 10, 11, 13, 16
6, 8, 10, 11, 16, 19
8, 10, 11, 13, 16, 19
10, 11, 13, 16, 19
16, 19
10, 13, 16
11, 13
11, 13, 16
TABLE 20-7 Constant in Eqs. (20-13) to (20-18) Constant
Cantilever
Simply supported
12 2þr 12 2þr
3 2þr 3 4ð2 þ rÞ
6
1.5
2
1 8
0
0
Particular
The value of stress k may be approximated very closely by the relation The spring index
Formula
2 c0:25 8 D > > < b c¼ > D > : h k¼
ð20-37Þ if b < h
ð20-38Þ
if h < b
where b ¼ breadth of spring wire, m (mm) h ¼ thickness of spring wire, m (mm) The deflection
y¼
2:83iFD3 ðb2 þ h2 Þ b3 h3 G
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð20-39Þ
SPRINGS SPRINGS
Particular
20.13
Formula
The deflection for an uncorrected spring of rectangular cross section
y¼
Force required to compress the spring by one meter (millimeter) (i.e., the spring rate)
Fo ¼
m3 h4 G 2:83iD3 ð1 þ m2 Þ
ð20-41Þ
The spring rate for an uncorrected rectangular section spring
Fo ¼
4Gb3 h k1 D3 i
ð20-42Þ
iFD3 k2 bh3 G
for h < b and m > 8
ð20-40Þ
Refer to Table 20-9 for k1 .
SQUARE SECTION SPRING The shear stress, for m ¼ 1
0 ¼
2:4kFD 4:8FD0:75 ¼ h2:75 h3
ð20-43Þ
The deflection
y¼
5:66iFD3 h4 G
ð20-44Þ
The approximate equivalent rectangular dimension of a rectangular cross section wire spring to restrict the solid length, which is equivalent to spring of round-wire cross section
h¼
2d 1 þ ðb=hÞ
ð20-44aÞ
The larger dimension of a keystone shape of rectangular wire after coiling
where d ¼ diameter of round wire h1 ¼ h
C þ 0:5 C
ð20-44bÞ
where h ¼ wider end of keystone section h ¼ original, smaller dimension of rectangular section The estimated solid height or length of a uniformly tapered, but not telescoping, spring with squared and ground ends made from round wire
ls ¼ iðd 2 u2 Þ1=2 þ 2d
ð20-44cÞ
where u ¼ outside diameter of large end minus outside diameter of small end divided by 2i
The increase in coil diameter due to compression of a helical spring
Do at solid ¼
D2 þ p2 d 2 2 þ d
The size coefficient for sections above 12.5 mm in section for round wires
esz ¼ 0:86 þ
0:0018 d
1=2 ð20-44dÞ
SI
ð20-45aÞ
SI
ð20-45bÞ
for steel, where d in m esz ¼ 0:986 þ
0:0001 d
for monel metal, where d in m
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
SPRINGS
20.14
CHAPTER TWENTY
Particular
Formula
0:07 d for steel, where d in in 0:0043 esz ¼ 0:986 þ d for monel metal, where d in in 1:8 esz ¼ 0:86 þ d for steel, where d in mm 0:1 esz ¼ 0:986 þ d for monel metal, where d in mm esz ¼ 0:86 þ
The general expression for size factor
Wire diameter
USCS
ð20-45cÞ
USCS
ð20-45dÞ
SI
ð20-45eÞ
SI ð20-45fÞ
ksz ¼ 4:66h0:35
where h in m
SI
ð20-46aÞ
ksz ¼ 1:27h0:35
where h in in
USCS
ð20-46bÞ
SI
ð20-46cÞ
ksz ¼ 0:415h0:35 sffiffiffiffiffiffiffiffiffiffiffiffiffi 3 8kFD d¼ d esz
where h in mm
ð20-47Þ
SELECTION OF MATERIALS AND STRESSES FOR SPRINGS For materials for springs7
Refer to Tables 20-8 and 20-10 and Figs. 20-7b and 20-7c.
The torsional yield strength
0:35sut sy 0:52sut for steels ð20-47aÞ 8 0:45sut cold-drawn carbon steel > > > > > < 0:50sut hardened and tempered sy ¼ a ¼ carbon and low-alloy steel > > > 0:35sut austenitic stainless steel > > : and nonferrous alloys
The maximum allowable torsional stress for static applications according to Joerres8;9;11
ð20-47bÞ where sy ¼ torsional yield strength, MPa (psi) The maximum allowable torsional stress according to Shigley and Mischke9
sy ¼ a ¼ 0:56sut
ð20-47cÞ
The shear endurance limit according to Zimmerli10
sf ¼ 310 MPa ð45 kpsiÞ
ð20-47dÞ
for unpeened springs sf ¼ 465 MPa ð67:5 kpsiÞ
ð20-47eÞ
for peened springs The torsional modulus of rupture
su ¼ 0:67sut
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð20-47f Þ
SPRINGS
20.15
SPRINGS
TABLE 20-8 Spring design stress, d , MPa (kpsi) Severe service
Average service
Light
Wire diameter, mm
MPa
kpsi
MPa
kpsi
MPa
kpsi
2.15 2.15–4.70 4.70–8.10 8.10–13.45 13.45–24.65 24.65–38.10
413.8 379.0 331.0 289.3 248.1 220.6
60 55 48 42 36 32
517.3 476.6 413.8 358.4 310.4 275.6
75 69 60 52 45 40
641.4 585.4 510.0 448.2 385.9 344.7
93 85 74 65 56 50
TABLE 20-9 Factors for helical springs with wires of rectangular cross section Ratio b=h ¼ m Factor k Factor k2
1 0.416 0.180
1.2 0.438 0.212
1.5 0.462 0.250
2.0 0.492 0.292
2.5 0.516 0.317
3 0.534 0.335
Particular
The weight of the active coil of a helical spring
For free-length tolerances, coil diameter tolerances, and load tolerances of helical compression springs
5 0.582 0.371
10 0.624 0.398
1 0.666 0.424
Formula
2 d 2 Di ð20-47gÞ 4 where ¼ weight of coil of helical spring per unit volume
W¼
Refer to Tables 20-11 to 20-13.
DESIGN OF HELICAL COMPRESSION SPRINGS Design stress The size factor
ksz ¼
d 0:35 0:355
ksz ¼
d 0:25 0:84
where d in m where d in in
d 0:25 where d in mm 1:89 0:335e ds ¼ e ¼ na ksz na d 0:25
ksz ¼ The design stress
SI
ð20-48aÞ
USCS
ð20-48bÞ
SI
ð20-48cÞ
SI
ð20-49aÞ
USCS
ð20-49bÞ
where e in MPa and d in m ds ¼
e 0:84e ¼ na ksz na d 0:25
where e in psi and d in in
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
0.60–0.70 0.60–0.90
0.70–1.00 0.30–0.60
C Mn
C Mn
Chrome-vanadium alloy steel (SAE 6150) AS 32 Silico-manganese alloy steel (SAE 9260) Type 18–8 stainless (Type 302, SAE 30915)
Hot-rolled bars SAE 1095, ASTM A14–42
AS 20
C Mn Cr V C Mn Si C Ni C Mn Si
C Mn
Mn
0.45–0.55 0.50–0.80 0.80–1.10 0.15–0.18 0.55–0.65 0.60–0.90 1.80–2.20 17–20 7–10 0.08–0.15 2 max 0.30–0.75
0.90–1.05 0.25–0.50
0.60–0.70 1034–2068 0.90–1.20
0.85–0.95 0.25–0.60
0.65–0.80 0.50–0.90
C Mn
C Mn
0.90–1.05 0.20–0.50
C Mn
Hard-drawn spring wire (ASTM A227–47) C
High–carbon wire AS 8 Oil-tempered wire (ASTM A229–41) AS10 Music wire (ASTM A228–47) AS 5
Clock spring steel AS 100 SAE 1095 Flat spring steel AS 101 SAE 1074
C Mn
Watch spring steel
1.10–1.19 0.15–0.25
Element %
Material
Analysis
20.16
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
2275
1103
1725
1377
1206–1377
150–300
1725–3790
1068–2059
1382–1725
1103–2206
1240–2343
2274–2412
Mpa
1.58
1.24
0.73–0.97
100–200
1.03–2.41
0.83–1.73
1.10–1.45
0.86–1.93
1.03–2.14
2.14–2.28
GPa
180–230
105–140
1 50–350
120–250
160–210
125–280
150–310
310–330
kpsi
Elastic limit
207
196
200
207
200
207
207
207
220
GPa
C42–46
C40–46
28
30
C35–45
C42–48
Alloy and Stainless Spring Materials
28.5
Hot-rolled Special Steel
29
30
29
Not used
1653
828
1206
965
760 965
1515
828
1034 2069
794 1377
1103 1377
Annealed, B70–85 Not used tempered C38–50
C40–52
Carbon Steel Wires 30 C44–48
30
30
Not used
0.90
0.69
0.51 0.76
0.90
0.51
0.62 1.24
0.55 0.90
0.76 1.03
Not used
Not used
Not used
GPa
100–130
75 110
75–130
90–180
80–130
110–150
kpsi
Elastic limit
79
72
79
79 82
79
79
Not used
Not used
Not used
GPa
120–240
0.97
0.31
45–140 69
10
11.5
10.5
11.5
11.5 12.0 depending on size
11. 5
11.5
Mpsi
Modulus in torsion, G
Torsional properties of wire
About the same as chrome vanadium
140–175
110–140
120–220
150–300
115–200
160–200
kpsi
Ultimate strength Rockwell hardness MPa
Flat Cold-rolled Spring Steel 32 C55–55
Mpsi
Modulus of elasticity, E
About the same as chrome vanadium 160–330 0.41 60–260 193 1.79
200–250
175–200
0.69–1.38
250–500
155–300
200–250
160–320
180–340
330–350
kpsi
Ultimate strength
Tensile properties
TABLE 20-10 Chemical composition and mechanical properties of spring materials
Best corrosion resistance, fair temperature resistance
Used as a lower–cost material in place of chrome vanadium
Cold–rolled or drawn: special applications
Hot-rolled heavy coil or flat springs
but lower-quality wire
Same uses as music wire
Miscellaneous small springs of various types— high quality
General spring use
High-grade helical springs or wire forms
Miscellaneous flat springs
Main springs for watches and similar uses Clock and motor springs, miscellaneous flat springs for high stress
Chief uses
SPRINGS
64 26 2.5 2.25 80 14 Balance 66 29 2.75 0.90 98
Ni Cu Mn Fe Ni Cr Fe Ni Cr Al Fe Ni Cu Mn Fe Si Cu Be
98 2
Small amounts
2–3 Small amounts balance
94–96 4–6
7–9
56 25 18
64–74 balance
12–14 0.25–0.40
Si Sn or Mn Cu
Cu Zn Ni Cu Sn or Cu Sn
Cu Zn
Cr C
1103 1377
1583
160–200
180–230
160–180
1103 1241
100–140
140–175
1241
0.76
100–150
0.55 0.76
0.27 0.41
0.90 1.38
0.41
80–110
130–200
103
60–110
110
107
193
0.69 1.03
1.17
0.90
0.79 1.00
0.76 0.93
0.55 0.83
100–150
130–170
115–145
110–135
80–120
110 127
207
179
213
179
28
C42–47
B90–100
B95–100
B90
16–18.5 Subject heat treatment
30
26
31
26
to C35–42
C36–46
C33–40
C30–40
C23–28
Nonferrous Spring Materials
15
16
15
Nonferrous Spring Materials
Properties similar to those of phosphor bronze
691
130–150
100–130
170–250
965 1206
691 964
102
91–93
897 1034
691 897
1171 1725
691 897
1034
828
725 862
651 828
519 760
725
554
588 691
308 622
828 1240
Note: The property values given in this table do not specify the minimum properties. Source: Handbook of Mechanical Spring Design, courtesy Associated Spring, Barnes Group Inc., Bristol, Connecticut.
Beryllium-coppcr AS 45 AS 145
Z–nickel
Inconel AS 40 AS140 K–Monel AS 40 AS 140
Silicon bronze (made under various trade names) AS 46 AS 146 Monel AS 40 AS 140
Phosphor bronze AS 60 AS 160
Nickel silver
Spring brass AS 55 AS 155
Cutlery-type stainless (Type 420)
0.59
0.35
0.41 0.48
0.21 0.41
0.55 0.83
50–85
60–70
30–60
80–120
43
38
38
76
6.25
5.5
5.5
11
100–130
120–150
105–125
95–120
75–110
0.45 0.66
0.68
0.41
0.45 0.58
0.38 0.55
0.31 0.48
65–95
60–90
65–85
55–80
45–70
11
9.5
11
9.5
41 6–7 48 Subject to heat treatment
76
65
76
65
Properties similar to those of phosphor bronze
80–105
85–100
45–90
120–180
Corrosion resistance like copper; high physical properties for electrical work; low hysteresis
Resists corrosion; high stresses to 2888C
Resists corrosion; high stresses to 2328C
Resists corrosion; high stresses to 3438C
Resists corrosion; moderate stresses to 204.58C
Used as substitute for phosphor bronze
Used for corrosion resistance and electrical conductivity
For electrical conductivity at low stresses; for corrosion resistance Used for its color; corrosion resistance
Resists corrosion when polished; good temperature resistance
SPRINGS
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
20.17
SPRINGS
20.18
CHAPTER TWENTY
TABLE 20-11 Free-length tolerances of squared and ground helical compression springsa Tolerances: mm/mm (in/in) of free length Spring index (D=d) Number of active coils per mm (in)
4
6
8
10
12
14
16
0.02 (0.5) 0.04 (1) 0.08 (2) 0.2 (4) 0.3 (8) 0.5 (12) 0.6 (16) 0.8 (20)
0.010 0.011 0.013 0.016 0.019 0.021 0.022 0.023
0.011 0.013 0.015 0.018 0.022 0.024 0.026 0.027
0.012 0.015 0.017 0.021 0.024 0.027 0.029 0.031
0.013 0.016 0.019 0.023 0.026 0.030 0.032 0.034
0.015 0.017 0.020 0.024 0.028 0.032 0.034 0.036
0.016 0.018 0.022 0.026 0.030 0.034 0.036 0.038
0.016 0.019 0.023 0.027 0.032 0.036 0.038 0.040
a
For springs less than 12.7 mm (0.500 in) long, use the tolerances for 12.7 mm (0.500 in). For closed ends not ground, multiply above values by 1.7. Source: Associated Spring, Barnes Group Inc., Bristol, Connecticut.
TABLE 20-12 Coil diameter tolerances of helical compression and extension springs Tolerances: mm (in) Spring index ðD=dÞ Wire diameter, mm (in)
4
6
8
10
12
14
16
0.38 (0.015) 0.58 (0.023) 0.89 (0.035) 1.30 (0.051) 1.93 (0.076) 2.90 (0.114) 4.34 (0.171) 6.35 (0.250) 9.53 (0.375) 12.70 (0.500)
0.05 (0.002) 0.05 (0.002) 0.05 (0.002) 0.08 (0.003) 0.10 (0.004) 0.15 (0.006) 0.20 (0.008) 0.28 (0.011) 0.41 (0.016) 0.53 (0.021)
0.05 (0.002) 0.08 (0.003) 0.10 (0.004) 0.13 (0.005) 0.18 (0.007) 0.23 (0.009) 0.30 (0.012) 0.38 (0.015) 0.51 (0.020) 0.76 (0.030)
0.08 (0.003) 0.10 (0.004) 0.15 (0.006) 0.18 (0.007) 0.25 (0.010) 0.33 (0.013) 0.43 (0.017) 0.53 (0.021) 0.66 (0.026) 1.02 (0.040)
0.10 (0.004) 0.15 (0.006) 0.18 (0.007) 0.25 (0.010) 0.33 (0.013) 0.46 (0.018) 0.58 (0.023) 0.71 (0.028) 0.94 (0.037) 1.57 (0.062)
0.13 (0.005) 0.18 (0.007) 0.23 (0.009) 0.30 (0.012) 0.41 (0.016) 0.53 (0.021) 0.71 (0.028) 0.90 (0.035) 1.17 (0.046) 2.03 (0.080)
0.15 (0.006) 0.20 (0.008) 0.28 (0.011) 0.38 (0.015) 0.48 (0.019) 0.64 (0.025) 0.84 (0.033) 1.07 (0.042) 1.37 (0.054) 2.54 (0.100)
0.18 (0.007) 0.25 (0.010) 0.33 (0.013) 0.43 (0.017) 0.53 (0.021) 0.74 (0.029) 0.97 (0.038) 1.24 (0.049) 1.63 (0.064) 3.18 (0.125)
Source: Associated Spring, Barnes Group Inc., Bristol, Connecticut.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
SPRINGS SPRINGS
20.19
TABLE 20-13 Load tolerances of helical compression springs Tolerance: % of load, start with tolerance from Table 20-11 multiplied by LF Deflection from free length to load, mm (in) Length tolerance mm (in)
1.27 2.54 3.81 5.08 6.35 7.62 10.2 12.7 19.1 25.4 38.1 50.8 76.2 102 152 (0.050) (0.100) (0.150) (0.200) (0.250) (0.300) (0.400) (0.500) (0.750) (1.00) (1.50) (2.00) (3.00) (4.00) (6.00)
0.13 (0.005) 0.25 (0.010) 0.51 (0.020) 0.76 (0.030) 1.0 (0.040) 1.3 (0.050) 1.5 (0.060) 1.8 (0.070) 2.0 (0.080) 2.3 (0.090) 2.5 (0.100) 5.1 (0.200) 7.6 (0.300) 10.2 (0.400) 12.7 (0.500)
12 — — — — — — — — — — — — — —
7 12 22 — — — — — — — — — — — —
6 8.5 15.5 22 — — — — — — — — — — —
5 7 12 17 22 — — — — — — — — — —
— 6.5 10 14 18 22 25 — — — — — — — —
— 5.5 8.5 12 15.5 19 22 25 — — — — — — —
— 5 7 9.5 12 14.5 17 19.5 22 25 — — — — —
— — 6 8 10 12 14 16 18 20 22 — — — —
— — 5 6 7.5 9 10 11 12.5 14 15.5 — — — —
— — — 5 6 7 8 9 10 11 12 22 — — —
— — — — 5 5.5 6 6.5 7.5 8 8.5 15.5 22 — —
— — — — — — 5 5.5 6 6 7 12 17 21 25
— — — — — — — — 5 5 5.5 8.5 12 15 18.5
— — — — — — — — — — — 7 9.5 12 14.5
— — — — — — — — — — — 5.5 7 8.5 10.5
First load test at not less than 15% of available deflection; final load test at not more than 85% of available deflection. Source: Associated Spring, Barnes Group Inc., Bristol, Connecticut.
TABLE 20-14 Equations for springs with different types of ends2,3
Particular Active coils, i Total coils, i
0
i0 lo d p
i0 12 lo p
i0 2 lo 3d p
i0 2 lo 2d þ2 p
Free length, lo or lf
ip þ d
ip
ip þ 3d
ip þ 2d
Pitch, p
lo d i0
lo i0
lo 3d i0
lo 2d i0
Solid height, h
dði0 þ 1Þ
dði0 þ 12Þ
dði0 þ 1Þ
i0 d
Source: K. Lingaiah and B. R. Narayana Iyengar, Machine Design Data Handbook, Vol. I, Suma Publishers, Bangalore, India, 1986, and K. Lingaiah, Machine Design Data Handbook, Vol. 11, Suma Publishers, Bangalore, India, 1986.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
SPRINGS
20.20
CHAPTER TWENTY
Particular
Formula
TABLE 20-15 Curvature factor kc c kc
3 1.35
4 1.25
ds ¼ 6 1.15
7 1.13
8 1.11
9 1.1
10 1.09
The actual factor of safety or reliability factor
e 1:89e ¼ na ksz na d 0:25
Metric
ð20-49cÞ
where e in kgf/mm2 and d in mm where na ¼ actual factor of safety or reliability factor na ¼ na ¼
FðcompressedÞ FðworkingÞ
ð20-50aÞ
free length fully compressed length free length working length yþa ¼ ð20-50bÞ y
where y is deflection under working load, m (mm), a is the clearance which is to be added when determining the free length of the spring and is made equal to 25% of the working deflection The wire diameter for static loading
Generally na is chosen at 1.25. 6na F 0:4 0:3 d ¼ 1:445 D e n F 0:4 0:3 ¼ 2:945 a D e
SI
ð20-51aÞ
where F in N, e in MPa, D in m, and d in m 6na F 0:4 0:3 d ¼ 0:724 D e n F 0:4 0:3 ¼ 1:48 a D Metric ð20-51bÞ e where F in kgf, e in kgf/mm2 , D in mm, and d in mm 6na F 0:4 0:3 d¼ D e n F 0:4 0:3 ¼ 2:05 a D USCS ð20-51cÞ e The wire diameter where there is no space limitation ðD ¼ cdÞ
where F in lbf, e in psi, D in in, and d in in n F 0:57 0:43 d ¼ 4:64 a c SI ð20-51dÞ e where d in m, F in N, e in Pa 6na F 0:57 0:43 c d¼ e
USCS
where d in in, F in lbf, e in psi
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð20-51eÞ
SPRINGS SPRINGS
Particular
20.21
Formula
n F 0:57 0:43 d ¼ 1:77 a c e
Metric ð20-51fÞ
where d in mm, F in kgf, e in kgf/mm2
Final dimensions (Fig. 20-7d) yd 4 G ydG kydG ¼ ¼ 8FD3 8Fc3 D2
The number of active coils
i¼
The minimum free length of the spring
lf ði þ nÞd þ y þ a
ð20-52Þ ð20-53Þ
where a ¼ clearance, m (mm) n ¼ 2 if ends are bent before grinding ¼ 1 if ends are either ground or bent ¼ 0 if ends are neither ground nor bent Outside diameter of cod of helical spring
Do ¼ D þ d
ð20-53aÞ
Solid length (or height) of helical spring
ls ¼ it d
ð20-53bÞ
Pitch of spring
p¼
ys þd i
ð20-53cÞ
Free length of helical spring lf or lo
lf ls þ ys
ð20-53dÞ
Maximum working length of helical spring
lmax ¼ lf ymax
ð20-53eÞ
Minimum working length of helical spring
lmin ¼ lf ymin
ð20-53fÞ
Springs with different types of ends1;2;3
Refer to Table 20-14.
where it ¼ total number of coild in the spring
STABILITY OF HELICAL SPRINGS The critical axial load that can cause buckling
Fcr ¼ Fo Kl lf
ð20-54Þ
where Kl is factor taken from Fig. 20-8
FIGURE 20-8 Buckling factor for helical compression springs. (V. L. Maleev and J. B. Hartman, Machine Design, International Textbook Company, Scranton, Pennsylvania, 1954.)
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
SPRINGS
20.22
CHAPTER TWENTY
Particular
The equivalent stiffness of springs
The critical load on the spring
The critical deflection is explicitly given by
Formula
ðEIÞspring ¼
Fcr ¼
ycr lf
Ed 4 l 32iDð2 þ vÞ
ð20-55Þ
2 Ed 4 32ð2 þ vÞiDðlf ycr Þ
2
ycr 2 1 þ v þ lf 2 2þv
D lf
ð20-56Þ 2 ¼0
ð20-57Þ
where l ¼ ðlf ycr Þ
REPEATED LOADING (Fig. 20-9) The variable shear stress amplitude
8D Fmax Fmin 2 d 3 where kw ¼ k kc
a ¼ kw
ð20-58Þ
Refer to Table 20-15 for kc .
FIGURE 20-9 Cyclic stresses in spring. (K. Lingaiah and B. R. Narayana Iyengar, Machine Design Data Handbook, Engineering College Cooperative Society, Bangalore, India, 1962; K. Lingaiah and B. R. Narayana Iyengar, Machine Design Data Handbook, Vol. I, Suma Publishers, 1986; K. Lingaiah, Machine Design Data Handbook, Vol. II, Suma Publishers, Bangalore, India, 1986.)
The mean shear stress
8D Fmax þ Fmin 2 d 3 where k ¼ 1 þ 0:5=c
m ¼ k
ð20-59Þ
Design equations for repeated loadings1;2;3 Method 1 The Gerber parabolic relation
a þ od
m ud
2 ¼1
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð20-60Þ
SPRINGS SPRINGS
Particular
20.23
Formula
The Goodman straight-line relation
a þ m ¼1 od ud
ð20-61Þ
The Soderberg straight-line relation
a þ m ¼1 od yd
ð20-62Þ
Method 2 The static equivalent of cyclic load Fm Fa
Fm0 ¼ Fm þ
sd F o a
ð20-63aÞ
sd F fd a
ð20-63bÞ
or Fm0 ¼ Fm þ The relation between e and f for brittle material
e ¼ 2f
ð20-64Þ
The static equivalent of cyclic load for brittle material
Fm0 ¼ Fm þ 2Fa
ð20-65Þ
The relation between Fm0 , Fmax and Fmin
Fm0 ¼ 12 ð3Fmax Fmin Þ
ð20-66Þ
The diameter of wire for static equivalent load
3na ð3Fmax Fmin Þ 0:4 0:3 D d ¼ 1:45 e
SI
ð20-67aÞ
where F in N, e in MPa, D in m, and d in m 3na ð3Fmax Fmin Þ 0:4 0:3 D USCS ð20-67bÞ d¼ e where F in lbf, e in psi, D in in, and d in in 3na ð3Fmax Fmin Þ 0:4 0:3 d ¼ 0:724 D e Metric
ð20-67cÞ
where F in kgf, e in kgf/mm , D in mm, and d in mm 3na ð3Fmax Fmin Þ 0:57 0:43 c SI ð20-68aÞ d ¼ 1:67 e 2
The wire diameter when there is no space limitation ðD ¼ cdÞ
where F in N, e in MPa, and d in m 3na ð3Fmax Fmin Þ 0:57 0:43 c USCS d¼ e
ð20-68bÞ
where F in lbf, e in psi, and d in in 3na ð3Fmax Fmin Þ 0:57 0:43 c d ¼ 0:64 e Metric
ð20-68cÞ
where F in kgf, e in kgf/mm , and d in mm 2
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
SPRINGS
20.24
CHAPTER TWENTY
Particular
Formula
CONCENTRIC SPRINGS (Fig. 20-10)
The relation between the respective loads shared by each spring, when both the springs are of the same length
F1 ¼ F2
The relation between the respective loads shared by each spring, when both are stressed to the same value
F 1 D2 ¼ F 2 D1
The approximate relation between the sizes of two concentric springs wound from round wire of the same material
F1 ¼ F2
D3 D1
D2 D1
3
d1 d2
d1 d2
3
4
i2 G 1 i1 G 2
ð20-69Þ
k1 k2
0:75
d1 d2
ð20-70Þ 2:5 ð20-71Þ
where suffixes 1 and 2 refer, respectively, to springs 1 and 2 (Fig. 20-10)
FIGURE 20-10 Concentric spring.
Total load on concentric springs The total maximum load on the spring The load on the inner spring The load on the outer spring
F ¼ F1 þ F2
ð20-72Þ
F2 ¼ mF1
ð20-73Þ
F ð20-74Þ 1þm where m 1 and F maximum spring load, kN (lbf)
F1 ¼
VIBRATION OF HELICAL SPRINGS The natural frequency of a spring when one end of the spring is at rest
rffiffiffiffiffiffi rffiffiffiffiffiffiffiffiffiffi 1 2k0 g k0 ¼ 0:705 fn ¼ W 2 W where
SI
fn ¼ natural frequency, Hz W ¼ weight of vibrating system, N k0 ¼ scale of spring, N/m g ¼ 9:8066 m=s2
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð20-75Þ
SPRINGS SPRINGS
Particular
20.25
Formula
1=2 k fn ¼ 22:3 0 W
SI
where k0 in N/mm, W in N, fn in Hz, g ¼ 9086:6 mm=s2 1=2 k fn ¼ 4:42 0 USCS W
ð20-75aÞ
ð20-75bÞ
where k0 in lbf/in, W in lbf, fn in Hz, g ¼ 32:2 ft=s2 1=2 k fn ¼ 1:28 0 USCS ð20-75cÞ W
The natural frequency of a spring when both ends are fixed
where k0 in lbf/in, W in lbf, fn in Hz, g ¼ 386:4 in=s2 rffiffiffiffiffiffi rffiffiffiffiffiffiffiffiffiffi 1 2k0 g k0 fn ¼ SI ¼ 1:41 W W where k0 in N/m, W in N, fn in Hz, g ¼ 9:0866 mm=s2 1=2 k fn ¼ 44:6 0 SI W where k0 in N/mm, W in N, fn in Hz, g ¼ 9086:6 mm=s2 1=2 k fn ¼ 2:56 0 USCS W
ð20-76Þ
ð20-76aÞ
ð20-76bÞ
where k0 in lb/ft, W in lbf, fn in Hz, g ¼ 32:2 ft=s2 1=2 k fn ¼ 8:84 0 USCS ð20-76cÞ W
The natural frequency for a helical compression spring one end against a flat plate and free at the other end according to Wolford and Smith7 Another form of equation for natural frequency of compression helical spring with both ends fixed without damping effect
where k0 in lbf/in, W in lbf, fn in Hz, g ¼ 386:4 in=s2 k g 1=2 fn ¼ 0:25 0 W fn ¼
1:12ð103 Þd D2 i
Gg
ð20-76dÞ
1=2 SI
ð20-76eÞ
SI
ð20-76f Þ
where G ¼ shear modulus, MPa g ¼ 9:8006 m=s2 d and D in mm, fn in Hz, in g/cm3 fn ¼
3:5ð105 Þd D2 i
for steel
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
SPRINGS
20.26
CHAPTER TWENTY
Particular
Formula
fn ¼
0:11d D2 i
Gg
1=2 USCS
ð20-76gÞ
USCS
ð20-76hÞ
where G ¼ modulus of rigidity, psi g ¼ 386:4 in=s2 d and D in in, fn in Hz, in lbf/in2 fn ¼
14ð103 Þd D2 i
for steel
STRESS WAVE PROPAGATION IN CYLINDRICAL SPRINGS UNDER IMPACT LOAD The velocity of torsional stress wave in helical compression springs
Gg 1=2 V ¼ 10:1
SI ð20-76iÞ
where V in m/s, G in MPa, g ¼ 9:8066 m=s2 , in g/cm3 Gg 1=2 V ¼ USCS ð20-76jÞ where V in in/s, G in psi, g ¼ 386:4 in=s2 , in lbf=in3 The velocity of surge wave (Vs ) The impact velocity (Vimp )
(It varies from 50 to 500 m/s.) g 1=2 Vimp ¼ 10:1 2G m=s for steel Vimp ¼ 35:5 g 1=2 Vimp ¼ 2G Vimp ¼
The frequency of vibration of valve spring per minute
131
in=s
SI
SI USCS ð20-76lÞ
for steel
rffiffiffiffiffiffi k0 fn ¼ 84:627 W where k0 in N/m, W in N rffiffiffiffiffiffi k0 fn ¼ 2676:12 W where k0 in kgf/mm, W in kgf rffiffiffiffiffiffi k0 fn ¼ 530 W where k0 in lbf/in, W in lbf
ð20-76kÞ
USCS SI
ð20-77aÞ
Metric
ð20-77bÞ
USCS
ð20-77cÞ
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
SPRINGS
20.27
SPRINGS
Particular
Formula
HELICAL EXTENSION SPRINGS (Fig. 20-11 to 20-13) For typical ends of extension helical springs
Refer to Fig. 20-11.
The maximum stress in bending at point A (Fig. 2012)
A ¼
Type
16K1 DF 4F þ 2 d 3 d
ð20-78aÞ
Recommended length min.–max.
Configurations
Twist loop or hook
0.5–1.7 I.D.
Cross center loop or hook
I.D.
Side loop or hook
0.9–1.0 I.D.
Extended hook
1.1 I.D. and up, as required by design
Special ends
As required by design
FIGURE 20-11 Common-end configuration for helical extension springs. Recommended length is distance from last body coil to inside of end. ID is inside diameter of adjacent coil in spring body. (Associated Spring, Barnes Group, Inc.)
FIGURE 20-12 Location of maximum bending and torsional stresses in twist loops. (Associated Spring, Barnes Group, Inc.)
The constant K1 in Eq. (20-78a)
The constant C1 in Eq. (20-78b)
K1 ¼
4C2 C1 1 4C1 ðC1 1Þ
ð20-78bÞ
C1 ¼
2R1 d
ð20-78cÞ
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
SPRINGS
20.28
CHAPTER TWENTY
Particular
Formula
For R1 , refer to Fig. 20-12. The maximum stress in torsion at point B (Fig. 20-12)
B ¼
8DF 4C2 1 d 3 4C2 4
2R2 d For R2 , refer to Fig. 10-12.
The constant C2 in Eq. (20-78d)
C2 ¼
For extension helical spring dimensions
Refer to Fig. 20-13.
ð20-78dÞ ð20-78eÞ
In practice C2 may be taken greater than 4.
FIGURE 20-13 Typical extension-spring dimensions. (Associated Spring, Barnes Group, Inc.)
For design equations of extension helical springs
The design equations of compression springs may be used.
The spring rate
k0 ¼
F Fi Gd 4 ¼ y 8D3 i
ð20-78fÞ
where Fi ¼ initial tension The stress
¼
k8FD d 3
ð20-78gÞ
where k ¼ stress factor for helical springs Refer to Fig. 20-5 for k.
CONICAL SPRINGS [Fig. 20-14(a)] The axial deflection y for i coils of round stock may be computed by the relation [Fig. 20-14(a)]
The axial deflection of a conical spring made of rectangular stock with radial thickness b and an axial dimension h [Fig. 20-14(c)]
y¼
2iFðD32 þ D22 D1 þ D2 D21 þ D31 Þ d 4G
ð20-79Þ
y¼
iðD32 þ D22 D1 þ D2 D21 þ D31 Þ 4dD2 kG
ð20-80Þ
y¼
0:71iFðb2 þ h2 ÞðD32 þ D22 D1 þ D2 D21 þ D31 Þ b3 h3 G ð20-81Þ
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
SPRINGS SPRINGS
Particular
20.29
Formula
FIGURE 20-14 Conical and volute springs.
NONMETALLIC SPRINGS Rectangular rubber spring (Fig. 20-15)
Approximate overall dimension of the shock absorber can be obtained by (Fig. 20-15)
L E ¼ 2 2 D 2F
Spring constant K of an absorber
D2 E L L1 ¼ 0:75L
Dimensions of sleeve and core are found by empirical relations
U ðFmax =FÞ2 1
K¼
ð20-82Þ ð20-83Þ ð20-84Þ
D1 ¼ 0:70D
ð20-85Þ
D2 ¼ 1:12D1
ð20-86Þ
¼
Mt F þ Z A
ð20-87Þ
¼
k0 Mt 2Mt þ Z DA
ð20-88Þ
y¼
Mt LD 2EI
ð20-89Þ
FIGURE 20-15 Rectangular rubber spring.
TORSION SPRINGS (Fig. 20-16)7 The maximum stress in torsion spring The stress in torsion spring taking into consideration the correction factor k0 The deflection The stress in round wire spring
8Mt ð4k0 D þ dÞ ð20-89aÞ d 3 D where k0 ¼ k1 can be taken from curve k1 in Fig. 20.5
¼
The torsional moment Mt is numerically equal to bending moment Mb .
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
SPRINGS
20.30
CHAPTER TWENTY
Particular
Formula
FIGURE 20-16 Common helical torsion-spring end configurations. (Associated Spring, Barnes Group, Inc.)
The stress is also given by Eq. (20-90) without taking into consideration the direct stress (F/A)
¼k
The expressions for k for use in Eq. (20-90)
k ¼ ko ¼
4C 2 þ C 1 4CðC þ 1Þ
for outer fiber
ð20-91aÞ
k ¼ ki ¼
4C2 C 1 4CðC 1Þ
for inner fiber
ð20-91bÞ
Mb c I where Mb ¼ Fr
ð20-90Þ
Equation (20-90) for stress becomes
¼ ki
The angular deflection in radians
¼
The spring rate of torsion spring
k0 ¼
Mb d4E ¼ 64Di
ð20-94Þ
The spring rate can also be expressed by Eq. (20-95), which gives good results
k00 ¼
d 4E 10:8Di
ð20-95Þ
32Fr d 3
ð20-92Þ
64Mb Di Ed 4
ð20-93Þ
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
SPRINGS SPRINGS
Particular
Formula
The allowable tensile stress for torsion springs sy ¼ a ¼
The endurance limit for torsion springs
20.31
8 0:78sut > > > > > 0:87 > sut > < > > > > > 0:61sut > > :
cold-drawn carbon steel hardened and tempered carbon and low-alloy steels stainless steel and nonferrous alloys
sf ¼ 538 MPa (78 kpsi)
Torsion spring of rectangular cross section The stress in rectangular wire spring
6k0 Mt 2Mt ð20-96Þ þ Dbh b2 h where k0 ¼ k2 can be taken from curve k2 in Fig. 20-5 D c¼ ð20-97Þ h
Axial dimension b after keystoning
b1 ¼ b
Another expression for stress for rectangular crosssectional wire torsion spring without taking into consideration the direct stress ( ¼ F=A)
¼
¼
C 0:5 C
6ki Mb bh2
where ki ¼ The spring rate
k0 ¼
ð20-98Þ ð20-99Þ
4C 4C 3
Mb Ebh3 ¼ 66Di
ð20-100Þ
FIGURE 20-17 Torsion bar spring
Torsion bar springs For allowable working stresses for rubber compression springs
Refer to Tables 20-16 and 20-17 and Fig. 20-17. Refer to Table 20-18.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
SPRINGS
20.32
CHAPTER TWENTY
TABLE 20-16 Design formulas for bar springs
TABLE 20-17 Factors for computing rectangular bars in torsion
Cross section of bar
Angular deflection, , rad
Maximum shear stress,
Solid circular bar
584Mt l d4G 584Mt l ðd14 d24 G
16Mt d 3 16Mt d1 ðd14 d24 Þ
407Mt l b4 G 57:3Mt l 0 k1 bh3 G
4:81Mt b3 Mt k02 2bh2
Hollow circular bar Square bar Rectangular bar
a
a
a
b=h
k0
k01
k02
1.0 1.2 1.5 2.0 2.5 3.0 4.0 5.0 10.0 1
0.675 0.759 0.848 0.930 0.968 0.985 0.997 0.999 1.000 1.000
0.140 0.166 0.196 0.229 0.249 0.263 0.281 0.291 0.312 0.333
0.208 0.219 0.231 0.246 0.258 0.267 0.282 0.291 0.231 0.333
Values of k01 and k02 can be obtained from Table 20-9.
TABLE 20-18 Suggested allowable working stresses for rubber compression springs Limits of allowable stress Occasional loading
Cont. or freq. loadingb
Durometer hardness
Areaa ratio
MPa
psi
MPa
psi
30 30 30 30 30 50 50 50 50 80 80 80
5 3 2 1 0.5 4 2 1 0.5 2 1 0.5
2.76 2.48 2.24 1.79 1.45 4.82 3.73 2.69 2.07 6.13 4.14 2.90
400 360 325 260 210 700 540 390 300 890 600 420
0.97 0.93 0.86 0.73 0.62 1.86 1.58 1.24 1.03 2.69 2.07 1.65
140 135 125 105 90 270 230 180 150 390 300 240
a
Ratio of load-carrying area available for bulging or lateral expansion
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
SPRINGS SPRINGS
20.33
REFERENCES 1. Lingaiah, K. and B. R. Narayana Iyengar, Machine Design Data Handbook, Engineering College Cooperative Society, Bangalore, India, 1962. 2. Lingaiah, K., and B. R. Narayana Iyengar, Machine Design Data Handbook, Vol. I (SI and Customary Metric Units), Suma Publishers, Bangalore, India, 1986. 3. Lingaiah, K., Machine Design Data Handbook, Vol. II (SI and Customary Metric Units), Suma Publishers, Bangalore, India, 1986. 4. SAE Handbook, Springs, Vol. I, 1981. 5. Maleev, V. L., and J. B. Hartman, Machine Design, International Textbook Company, Scranton, Pennsylvania, 1954. 6. Wahl, A. M., Mechanical Springs, McGraw-Hill Book Company, New York, 1963. 7. Associated Spring, Barnes Group Inc., Bristol, CT, USA. 8. Jorres, R. E., Springs; Chap. 24 in J. E. Shigley and C. R. Mischke, eds., Standard Handbook of Machine Design, McGraw-Hill Book Company, New York, 1986. 9. Shigley, J. E., and C. R. Mischke, Mechanical Engineering Design, 5th ed. McGraw-Hill Company, New York, 1989. 10. Zimmerli, F. P., Human Failures in Springs Applications, The Mainspring, No. 17, Associated Spring Corporation, Bristol, Connecticut, Aug.-Sept. 1957. 11. Shigley, J. E., and C. R. Mischke, Standard Handbook of Machine Design, McGraw-Hill Book Company, New York, 1986. 12. Phelan, R. M., Fundamentals of Mechanical Design, Tata-McGraw-Hill Publishing Company Ltd, New Delhi, 1975. 13. Lingaiah, K., Machine Design Data Handbook of Machine Design, 2nd edition, McGraw-Hill Publishing Company, New York, 1996). 14. Shigley, J. E., and C. R. Mischke, Standard Handbook of Machine Design, 2nd edition, McGraw-Hill Publishing Company, New York, 1996.
BIBLIOGRAPHY Baumeister, T., ed., Marks’ Standard Handbook for Mechanical Engineers, McGraw-Hill Book Company, New York, 1978. Black, P. H., and O. Eugene Adams, Jr., Machine Design, McGraw-Hill Book Company, New York, 1968. Bureau of Indian Standards. Chironis, N. P., Spring Design and Application, McGraw-Hill Book Company, 1961. Norman, C. A., E. S. Ault, and I. F. Zarobsky, Fundamentals of Machine Design, The Macmillan Company, New York, 1951. Shigley, J. E., Machine Design, McGraw-Hill Book Company, 1962.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
Source: MACHINE DESIGN DATABOOK
CHAPTER
21 FLEXIBLE MACHINE ELEMENTS SYMBOLS11;12;13 a a1 A ¼ 0:4ðd 2 =4Þ b c C
C1 d
d1 d2 da da1 da2 dc ¼ fp Fb df dp dr D Dr Dd
width of pulley face, m (in) pivot arm length in Rockwood drive, m (in) width of belt, m (in) useful area of cross-section of the wire rope, m2 (in2 ) thickness of arm, m (in) dimension in Rockwood drive (Fig. 21-5), m (in) dimension in Rockwood drive (Fig. 21-5), m (in) center distance between sprockets (also with suffixes), m (in) center distance between pulleys, m (in) capacity of conveyor, m3 (ft3 ) constant depends on the rope diameter, sheave diameter, chain, the bearing, and coefficient of friction [Eqs. (21-59) to (21-62) and (21-86) to (21-103)] (also with suffixes) tooth width in precision roller and bush chains, m (in) size of chain, m (in) diameter of shaft, m (in) diameter of idler bearing, m (in) diameter of smaller pulley, m (in) diameter of rope, m (in) pitch diameter of sprocket, m (in) diameter of small sprocket, m (in) hub diameter of pulley, m (in) diameter of large sprocket, m (in) tip diameter of sprocket, m (in) tip diameter of small sprocket, m (in) tip diameter of large sprocket, m (in) equivalent pitch diameter, m (in) root diameter of sprocket, m (in) pitch diameter of the V-belt small pulley, m (in) diameter of roller pin, m (in) pitch diameter of sheave, m (in) diameter of large pulley, m (in) wire rope drum diameter, m (in) (Fig. 21-4) diameter of reel barrel, m (in) Eq. (21-76) diameter of the drum in mm as measured over the outermost layer filling the reel drum
21.1 Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
FLEXIBLE MACHINE ELEMENTS
21.2
CHAPTER TWENTY-ONE
diameter of the sheave pin, m (in) unit elongation of belt corrected elasticity modulus of steel ropes (78.5 GPa ¼ 11.4 Mpsi), GPa (psi) F force, load, kN (lbf ) tension in belt, kN (lbf ) minimum tooth side radius, m (in) Fa correction factor for instructional belt service from Table 21-27 Fc correction factor for belt length from Table 21-26 Fct centrifugal tension, kN (lbf ) Fd correction factor for arc of contact of belt from Table 21-25 tangential force in the belt, required chain pull, kN (lbf ) F Fs tension due to sagging of chain, kN (lbf ) F1 tension in belt on tight side, kN (lbf ) tension in belt on slack side, kN (lbf ) F2 Fc centrifugal force, kN (lbf ) values of coefficient for manila rope, Table 21-32 FR1 the minimum value of tooth flank radius in roller and bush chains, m (in) FR2 the maximum value of tooth flank radius in roller and bush chains, m (in) g acceleration due to gravity, 9.8066 m/s2 (32.2 ft/s2 ) G tooth side relief in bush and roller chain, m (in) h the thickness of wall of rope drum, m (in) crown height, m (in) h1 depth of groove in rope drum, m (in) H ¼ ðDd Dr Þ=2 depth of rope layer in reel drum, m (in) i number of arms in the pulley, number of V-belts, number of strands in a chain, transmission ratio k ¼ ðe 1Þ=e variable in Eqs. (21-2d), (21-4a), (21-6), and (21-123), which depends on ðz1 z2 Þ=Cp kd duty factor kl load factor Kmin center distance constant from Table 21-57 ks service factor coefficient for sag from Table 21-55 ksg l width of chain or length of roller, m (in) minimum length of boss of pulley, m (in) minimum length of bore of pulley, m (in) length of conveyor belt, m (in) length of cast-iron wire rope drum, m (in) outside length of coil link chain, m (in) K1 tooth correction factor for use in Eq. (21-116a) K2 multistrand factor for use in Eq. (21-116a) L length of flat belt, m (in) pitch length of V-belt, m (in) rope capacity of wire rope reel, m (in) Lp length of chain in pitches Mt torque, N m (lbf in) n number of times a rope passes over a sheave, number of turns on the drum for one rope member speed, rpm factor of safety Do e E0
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
FLEXIBLE MACHINE ELEMENTS FLEXIBLE MACHINE ELEMENTS
n1 n2 n0 ¼ nkd P PT p p1 P Pb Ps Pt Pu Pw Q r s s S SA1 SA2 SR1 SR2 t T TDmin TDmax v w W WB wc WI WL z1 z2 1 2 c br c
speed of smaller pulley, rpm or rps speed of smaller sprocket, rpm or rps speed of larger pulley, rpm or rps speed of larger sprocket, rpm or rps stress factor power, kW (hp) power required by tripper, kW (hp) pitch of chain, m (in) pitch of the grooves on the wire rope drum, m (in) distance between the grooves of two-rope pulley, m (in) effort, load, kN (lbf ) bending load, kN (lbf ) service load, kN (lbf ) tangential force due to power transmission, kN (lbf ) ultimate load, kN (lbf ) breaking load, kN (lbf ) working load, kN (lbf ) load, kN (lbf ) radius near rim (with subscripts), m (in) radius, m (in) the amount of shift of the line of action of the load from the center line on the raising load side of sheave, m (in) the average shift of the center line in the load on the effort side of the sheave, m (in) the distance through which the load is raised, m (in) the minimum value of roller or bush seating angle, deg the maximum value of roller or bush seating angle, deg the minimum value of roller or bush seating radius, m (in) the maximum value of roller or bush seating radius, m (in) nominal belt thickness, m (in) thickness of rim, m (in) tension in ropes, chains, kN (lbf ) minimum limit of the tooth top diameter, m (in) maximum limit of the tooth top diameter, m (in) velocity of belt chain, m/s (ft/min) specific weight of belt, kN/m3 (lbf/in3 ) width between reel drum flanges, m (in) weight of belt, kN/m (lbf/in) weight of chain, kN/m (lbf/in) weight of revolving idler, kN/m (lbf/in) belt load, kN/m (lbf/in) number of teeth on the small sprocket number of teeth on the large sprocket stress, MPa (psi) unit tension in belt on tight side, MPa (psi) unit tension in belt on slack side, MPa (psi) centrifugal force coefficient for leather belt, MPa (psi) breaking stress for hemp rope, MPa (psi) shear stress, MPa (psi) arc of contact, rad angle between tangent to the sprocket pitch circle and the center line, deg coefficient of friction between belt and pulley coefficient of journal friction coefficient of chain friction
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
21.3
FLEXIBLE MACHINE ELEMENTS
21.4
CHAPTER TWENTY-ONE
!1 !2
efficiency angular speed of small sprocket, rad/s angular speed of large sprocket, rad/s
SUFFIXES bending breaking torque compressive design minimum maximum
b br t c d min max
Other factors in performance or in special aspects of design of flexible machine elements are included from time to time in this chapter and being applicable only in their immediate context, are not given at this stage. Particular
Formula
BELTS Flat belts The ratio of tight side to slack side of belt at low velocities The power transmitted by belt
F1 ¼ e F2 P¼
ð21-1Þ
F v 1000cs
SI
ð21-2aÞ
where F ¼ F1 F2 , P in kW, and v in m/s; F in N P¼
F v 33;000cs
USCS
ð21-2bÞ
where F in lbf; P in hp; v in ft/min P¼
F !r 1000cs
SI
ð21-2cÞ
where F in N, P in kW, r in m, and ! in rad/s Refer to Table 21-1 for cs . Power transmitted per m2 (in2 ) of belt at low velocities
P¼
1 kv 1000
SI
ð21-2dÞ
where k ¼ ðe 1Þ=e , and also from Table 21-2 1 in N/m2 , v in m/s, and P in kW P¼
1 kv 33;000
USCS
where 1 in psi, v in ft/min, and P in hp
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð21-2eÞ
FLEXIBLE MACHINE ELEMENTS FLEXIBLE MACHINE ELEMENTS
21.5
TABLE 21-1 Service correction factors, cs Atmospheric condition
Clean, scheduled maintenance on large drives Normal Oily, wet, or dusty Horizontal to 608 from horizontal 608–758 from horizontal 758–908 from horizontal Fiber on motor and small pulleys Cast iron or steel Temporary or infrequent Normal Intermittent or continuous Light, steady load, such as steam engines, steam turbines, diesel engines, and multicylinder gasoline engines Jerky loads, reciprocating machines such as normal-starting-torque squirrelcage motors, shunt-wound, DC motors, and single-cylinder engines Shock and reversing loads, full-voltage start such as squirrel-cage and synchronous motors
Angle of center line
Pulley material Service
Peak loads
1.2 1.0 0.7 1.0 0.9 0.8 1.2 1.0 1.2 1.0 0.8 1.0 0.8 0.6
TABLE 21-2 Values of ðe 1Þ=e ¼ k for various coefficients of frictions and arcs of contact Arc of contact between the belt and pulley (, deg) Value of
90
100
110
120
130
140
150
160
170
180
200
0.28 0.30 0.33 0.35 0.38 0.40 0.43 0.45 0.48 0.50 0.53
0.356 0.376 0.404 0.423 0.449 0.467 0.491 0.507 0.529 0.544 0.565
0.387 0.408 0.438 0.457 0.485 0.502 0.528 0.544 0.567 0.582 0.603
0.416 0.438 0.469 0.489 0.518 0.536 0.562 0.579 0.602 0.617 0.638
0.444 0.467 0.499 0.520 0.549 0.567 0.593 0.610 0.634 0.649 0.670
0.470 0.494 0.527 0.548 0.578 0.597 0.623 0.640 0.663 0.678 0.700
0.496 0.520 0.554 0.575 0.605 0.624 0.650 0.667 0.690 0.705 0.726
0.520 0.544 0.579 0.600 0.630 0.649 0.676 0.692 0.715 0.730 0.750
0.542 0.567 0.602 0.624 0.654 0.673 0.699 0.715 0.738 0.752 0.772
0.564 0.590 0.624 0.646 0.676 0.695 0.721 0.737 0.759 0.773 0.793
0.585 0.610 0.645 0.667 0.697 0.715 0.741 0.757 0.779 0.792 0.811
0.502 0.553 0.684 0.705 0.735 0.753 0.777 0.792 0.813 0.825 0.843
TABLE 21-3 Values of coefficients c for leather belts for use in Eqs. (21-3) and (21-4) Belt velocity, m/s (ft/min) Coefficient, c , kgf/cm2 MPa psi
7.5 (1500) 10.0 (1950) 12.70 (2500) 15.0 (2950) 17.5 (3500) 20.0 (3950) 22.5 (4450) 25.0 (4950) 0.57 1.05 1.63 2.35 3.10 4.07 5.14 6.36 0.0559 0.1030 0.1598 0.2305 0.3040 0.3991 0.5041 0.5237 8.0 15.0 23.2 33.5 45.0 58.0 73.0 76.0
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
FLEXIBLE MACHINE ELEMENTS
21.6
CHAPTER TWENTY-ONE
Particular
The ratio of tight to slack side of belt at high velocities
Formula
1 c ¼ e 2 c where c ¼
Power transmitted per m2 (in2 ) of belt at high velocities
P¼
ð21-3aÞ wv2 g
ð1 2 Þkv 1000
ð21-3bÞ SI
ð21-4aÞ
where 1 and c in N/m2 ; v in m/s; P in kW P¼
ð1 c Þkv 33;000
USCS
ð21-4bÞ
where 1 and c in psi; v in ft/min; P in hp Refer to Table 21-3 for values of c . Equation (21-3a) in terms of tension on tight side (F1 ) and slack side of belt (F2 ), and centrifugal force (Fc )
F1 Fc ¼ e F2 Fc
ð21-4cÞ
where F1 ¼ 1 A; F2 ¼ 2 A; Fc ¼ c A; A ¼ a1 t ¼ area of cross section of belt, m2 (in2 ) The relation between the initial tension in the belt (F0 ) and the tension in the belt on the tight side (F1;max ) to obtain maximum tension in the belt
F1;max ¼ 2F0
The power transmitted at maximum tension in belt, i.e., when F1 ¼ 2F0 , from Eq. (21-1)
P¼
F1;max v 2F0 v ¼ 33;000 33;000
P¼
F1;max v 2F0 v ¼ 1000 1000
P¼
2Kp Kv Fa v 33;000Cs
The power transmitted in actual practice taking into consideration pulley correction factor (Kp ), velocity correction factor (Kv ), and service factor (Cs ) at maximum tension in belt.
Stresses in belt (Fig. 21-1c)
ð21-4dÞ
USCS
ð21-4eÞ
SI
ð21-4f Þ
USCS
ð21-4gÞ
2Kp Kv Fa v SI ð21-4hÞ 1000Cs where Fa ¼ allowable tension in belt, N (lbf) v ¼ velocity of belt, m/s (ft/min)
P¼
Tensile stress due to tension on tight side of belt F1 ðS1 Þ
1 ¼
F2 a1 t
ð21-4iÞ
Tensile stress due to tension on slack side of belt F2 ðS2 Þ
2 ¼
F2 a1 t
ð21-4jÞ
¼
F a1 t
ð21-4kÞ
Tensile stress due to tangential force (effective stress)
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
FLEXIBLE MACHINE ELEMENTS FLEXIBLE MACHINE ELEMENTS
Particular
The tensile stress due to belt tension on account of centrifugal force
21.7
Formula
c ¼
Fc v2 ¼ a1 t 9810
ð21-4lÞ
where ¼ specific weight of belt material N/dm3 (lbf/in3 ) The bending stress
b ¼
Fb d
ð21-4mÞ
The maximum belt stress
max ¼ 1 þ c þ b þ tw a
Stress due to twist in belt
tw ¼ E
a1 a
ð21-4nÞ
2 ð21-4pÞ
for crossed belt
¼ 0 for open belt Ea1 D ¼ for half-crossed belt 2a2 where a ¼ distance from centre of bigger pulley diameter to the point of twist of half-crossed belt and crossed belt >2D a ¼ allowable stress in belt, MPa (psi) For distribution of various stresses in belt
Refer to Fig. 21-1C. Refer to Table 21-4B for most commonly used belt materials in practice. The values of Kp and Cs are Table from Tables 21-4C and 21-4D, and Kv from Fig. 21-1B, and also Table 21-4E for minimum pulley sizes. Fa ¼ allowable tension in belt, N (lbf ) v ¼ velocity of belt, m/s (ft/min)
Coefficient of friction ()
¼ 0:54
0:7 2:4 þ v
SI
ð21-5Þ
may also be obtained from Tables 21-4A and 21-5. v ¼ velocity of belt, m/s. ¼ 0:54
140 500 þ v
USCS
where v ¼ velocity of belt, ft/min
For leather belts and belts of similar material c is of importance only if v > 15%.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð21-5aÞ
FLEXIBLE MACHINE ELEMENTS
21.8
CHAPTER TWENTY-ONE
TABLE 21-4A Coefficients of frictions of leather belts on iron pulleys depending on velocity of belt Velocity of belt, v, m/s
Coefficient of friction,
Velocity of belt, v, m/s
Coefficient of friction,
Velocity of belt, v, m/s
Coefficient of friction,
0.25 0.50 1.00 1.50 2.00 2.50 3.00 3.50
0.360 0.285 0.307 0.340 0.365 0.384 0.400 0.413 0.423
4.0 4.5 5.0 6.0 7.0 8.0 9.0 10.0 12.5
0.432 0.440 0.446 0.458 0.456 0.473 0.479 0.494 0.493
15.0 17.5 20.0 22.5 25.0 27.5 30.0 32.5
0.500 0.505 0.509 0.512 0.514 0.517 0.519 0.520
TABLE 21-4B Properties of some flat and round materials Minimum pulley diameter, in
Allowable tension per unit width at 600 ft/min, lb/in
Weight, lb/in3
Coefficient of friction
Material
Specification
Size, in
Leather
1 ply
t ¼ 11 64
3
30
0.035–0.045
0.4
t ¼ 13 64
3 12
33
0.035–0.045
0.4
t ¼ 18 64
4 12
41
0.035–0.045
0.4
t¼
6a
50
0.035–0.045
0.4
9a
60
0.035–0.045
0.4
10 35 60 60 100 175 275
0.035 0.035 0.051 0.037 0.042 0.039 0.039
0.5 0.5 0.5 0.8 0.8 0.8 0.8
2 ply
t¼
20 64 23 64
Polyamide
F-0 F-1c F-2c A-2c A-3c A-4c A-5c
t ¼ 0:03 t ¼ 0:05 t ¼ 0:07 t ¼ 0:11 t ¼ 0:13 t ¼ 0:20 t ¼ 0:25
0.60 1.0 2.4 2.4 4.3 9.5 13.5
Urethaned
w ¼ 0:50 w ¼ 0:75 w ¼ 0:125 Round
t ¼ 0:062 t ¼ 0:078 t ¼ 0:090 d ¼ 14
See Table 17-4E See
5.2e 9.8e 18.9e 8.3e
0.038–0.045 0.038–0.045 0.038–0.045 0.038–0.045
0.7 0.7 0.7 0.7
d ¼ 38 d ¼ 12
Table 17-4E
18.6e 33.0e
0.038–0.045 0.038–0.045
0.7 0.7
74.3e
0.038–0.045
0.7
b
c
d ¼ 14 a
Add 2 in to pulley size for belts 8 in wide or more. Source: Habasit Engineering Manual, Habasit Belting, Inc., Chamblee (Atlanta), Ga. c Friction cover of acrylonitrile-butadiene rubber on both sides. d Source: Eagle Belting Co., Des Plaines, Ill. e At 6% elongation; 12% is maximum allowable value. Notes: d ¼ diameter, t ¼ thickness, w ¼ width. The values given in this table for the allowable tension are based on a belt speed of 600 ft/min. Take Kv ¼ 1:0 for polyamide and urethane belts. Source: Eagle Belting Co., Des Plaines, Illinois; table reproduced from J. E. Shigley and C. R. Mischke, Mechanical Engineering Design, McGrawHill Book Company, New York, 1989. b
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
FLEXIBLE MACHINE ELEMENTS FLEXIBLE MACHINE ELEMENTS
21.9
TABLE 21-4C Pulley correction factor KP for flat beltsa Small-pulley diameter, in Material
1.6–4
4.5–8
9–12.5
14, 16
18–31.5
>31.5
Leather polyamide, F-0 F-1 F-2 A-2 A-3 A-4 A-5
0.5 0.95 0.70 0.73 0.73 —
0.6 1.0 0.92 0.86 0.86 0.70 —
0.7 1.0 0.95 0.96 0.96 0.87 0.71 —
0.8 1.0 1.0 1.0 1.0 0.94 0.80 0.72
0.9 1.0 1.0 1.0 1.0 0.96 0.85 0.77
1.0 1.0 1.0 1.0 1.0 1.0 0.92 0.91
a
Average values of KP for the given ranges were approximated from curves in the Habasit Engineering Manual, Habasit Belting, Inc., Chamblee (Atlanta), Ga. Source: Eagle Belting Co., Des Plaines, Illinois; table reproduced from J. E. Shigley and C. R. Mischke, Mechanical Engineering Design, McGrawHill Book Company, New York, 1989.
TABLE 21-4D Service factors Cs for V-belt and flat belt drives Power source Driven machinery
Normal torque characteristic
High or nonuniform torque
Uniform Light shock Medium shock Heavy shock
1.0–1.2 1.1–1.3 1.2–1.4 1.3–1.5
1.1–1.3 1.2–1.4 1.4-1.6 1.5–1.8
Source: Eagle Belting Co., Des Plaines, Illinois; table reproduced from J. E. Shigley and C. R. Mischke, Mechanical Engineering Design, McGrawHill Book Company, New York, 1989.
TABLE 21-4E Minimum pulley sizes for flat and round urethane belts (pulley diameters in inches) Ratio of pulley speed to belt length, rev/(ft-min) Belt style
Belt size, in
Up to 250
250 to 499
500 to 1000
Flat
0:50 0:062 0:75 0:078 1:25 0:090
0.38 0.50 0.50
0.44 0.63 0.63
0.50 0.75 0.75
Round
1 4 3 8 1 2 3 4
1.50 2.25 3.00 5.00
1.75 2.62 3.50 6.00
2.00 3.00 4.00 7.00
Source: Eagle Belting Co., Des Plaines, Illinois; table reproduced from J. E. Shigley and C. R. Mischke, Mechanical Engineering Design, McGrawHill Book Company, New York, 1989.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
FLEXIBLE MACHINE ELEMENTS
21.10
CHAPTER TWENTY-ONE
TABLE 21-5 Coefficient of friction for belts depending on materials of pulley and belt Pulley material Cast iron/steel Belt material
Dry
Wet
Greasy
Wood
Compressed paper
Leather face
Rubber face
Leather, oak-tanned Leather, chrome-tanned Canvas, stitched Cotton, woven Camel hair, woven Rubber Balata
0.25 0.35 0.20 0.22 0.35 0.30 0.32
0.20 0.32 0.15 0.15 0.25 0.18 0.20
0.15 0.22 0.12 0.12 0.20 — —
0.30 0.40 0.23 0.25 0.40 0.32 0.35
0.33 0.45 0.25 0.28 0.45 0.35 0.38
0.38 0.48 0.27 0.27 0.45 0.40 0.40
0.40 0.50 0.30 0.30 0.45 0.42 0.42
TABLE 21-6A Thickness and width of leather belts Average thickness, mm Grade
Single
Light
3
Medium Heavy
Double
Width, mm
Triple
Quadruple
Range
6
—
—
12–24 24–102 102–198
3 6 12
4
8
12.5
17.5
200–800 800–1400
25 50
5
10
15
20
800–1400 1500–2100
50 100
TABLE 21-6B Relative strength of belt joints
Type of joint
Relative strength of joint to an equal section of solid leather, efficiency, %
Cemented, endless Cemented at factory
90–100
Cemented in shop
80–90
Laced, wire By machine By hand Rawhide, small holes Rawhide, large holes
75–85 70–80 60–70 50–60
Hinged Wire hooks Metal hooks
40 35–40
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
Increment
FLEXIBLE MACHINE ELEMENTS
21.11
FLEXIBLE MACHINE ELEMENTS
Particular
Formula
The cross section of the belt is given
1000P a1 t ¼ wv2 v d k g
ð21-6aÞ
SI
where P in kW, v in m/s, g ¼ 9:8066 m/s2 , w in N/m3 , and d in MPa 33;000P a1 t ¼ wv2 4 10 k v d g
ð21-6bÞ
USCS
where P in hp, v in ft/min, g ¼ 386:4 in/s2 ¼ 32:2 ft/s2 , w in lbf/in3 , and d in psi Refer to Tables 21-6A to 21-14. For cross section and properties of belts
TABLE 21-7 Standard widths of transmission belting for different plies Standard width, mm Ply
25
32
40
44
50
63
76
90
100
112
125
140
152
180
200
224
250
305
355
400
3 4 5 6 8
pa q — — —
qb q — — —
p p — — —
q q — — —
p p
p p
— —
— —
p p p — —
q p q — —
q p p q —
— p p p —
— p p p —
— q — — —
— p p p —
— — rc p —
— q q p r
— — r — —
— — r r r
— — — — r
— — — — r
— — — — r
p ¼ these sizes are available in Hi-speed and Fort. q ¼ these sizes are available in Hi-speed only. c r ¼ these sizes are available in Fort only. a
b
TABLE 21-8 Widths of friction surface—rubber transmission belting Nominal belt width 103 m
Tolerance 103 m
25, 32, 40, 50, 63 71, 80, 90, 100, 112, 125 140, 160, 180, 200, 224, 250 280, 315, 355, 400, 450, 500
2.0 3.0 4.0 5.0
Source: IS 1370, 1965.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
FLEXIBLE MACHINE ELEMENTS
21.12
CHAPTER TWENTY-ONE
TABLE 21-9 Thickness of friction surface—rubber transmission belting Ply construction
Nominal thickness hard-type fabric 103 m
Tolerance 103 m
3 4 5 6 7 8
3.9 5.1 6.4 7.7 9.1 10.4
0.5 0.7 0.8 0.9 1.0 1.1
Source: IS 1370, 1964.
TABLE 21-10 Properties of leather belting for various purposes Purpose Power transmission
Properties Tensile strength, min
MPa kpsi
Breaking strength, min
N lbf
Temporary elongation, %, max Permanent elongation, %, max Stitch tear resistance thickness, min Grain strength
General
Single belts
Double belts
Splices single and double
20.6 3.0
24.5 3.5
24.5 3.5
20.6 3.0
Round belting for small machine Heavy (5)
Regular (6)
Heavy (7)
441 100
667 150
755 170
6 2 N/m lbf/in
83,356 475 Shall not crack
—
TABLE 21-11 Tensile strength of fabric in finished rubber transmission belting Tensile strength, N/m (kgf/mm) of width Weight of fabric per square meter
Warp
Weft
Type of fabric
N/m2
kgf/m2
N/m
kgf/mm
N/m
kgf/mm
Soft Hard Soft Hard
8.0 8.8 9.1 3.6
0.815 0.900 0.930 0.975
61,291.3 61,291.3 69,626.9 73,549.7
6.25 6.25 7.10 7.50
29,419.8 35,303.8 32,361.8 44,129.7
3.00 3.60 3.30 4.50
Source: IS 1370, 1965.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
A ¼ warp. b B ¼ weft.
Leather Light Medium Heavy Canvasstitched Balata Rubber
Belt material
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
— —
— 14.7 17.7 —
kN/ m
— —
— 1.5 1.8 —
kgf/ mm
— —
16.7 24.5 28.4 —
kN/ m
1.7 2.5 2.9 — — —
B
4.9 7.8
— — 35.3 —
kN/ m
0.5 0.8
— — 3.6 —
kgf/ mm
— 12.1 14.8 17.4 — 118.7 145.1 170.6 — 25.0 31.8 38.6 — 245.2 311.8 378.5 15 8
— 26.4 32.1 37.5 — 258.9 314.8 397.7
A
1AA
kgf/ mm
TABLE 21-13 Allowable tension in width of belt
a
Percentage elongation at break
Tear strength in N for the number of. plies
Bb
— 11.2 13.7 15.9 — 109.8 134.4 155.9 — 20.4 27.2 34.0 — 200.1 266.7 333.4 15 8
— 23.0 28.0 32.7 — 225.6 274.0 320.7
Tensile strength in kgf/mm width for number of plies Tensile strength in N-m 103 width for number of plies Tear strength in kgf for the number of plies
3 4 5 6 3 4 5 6 3 4 5 6 3 4 5 6
Aa
1A
Direction
Belt designation B
6.9 10.8
— — — 6.9
kN/ m
0.7 1.1
— — — 0.7
kgf/ mm
— 14.8 18.0 21.1 — 145.1 176.5 206.9 — 29.5 36.3 43.1 — 289.3 356.0 422.7 15 8
— 32.1 39.3 45.7 — 314.8 385.4 448.2
A
1B B
8.8 12.7
— — — 8.8
kN/ m
B
— 21.3 26.1 — — 209.9 255.0 — — 90.8 113.4 — — 890.4 1112.1 — 17 18
— 39.3 48.0 — — 385.4 470.7 —
A
2A B
— 24.1 29.5 — — 236.3 289.3 — — 104.3 131.4 — — 1022.8 1288.6 — 17 18
— 44.7 54.3 — — 438.4 532.5 —
A
2B
0.9 1.3
— — — 0.9
kgf/ mm
10.8 15.7
— — — 10.8
kN/ m
1.1 1.6
— — — 1.1
kgf/ mm
11.8 18.6
— — — —
kN/ m
1.2 1.9
— — — —
kgf/ mm
13.7 22.6
— — — 11.8
kN/ m
Ply or number of thickness of belt
— 18.6 22.7 26.4 — 182.4 222.6 258.9 — 36.3 45.4 54.4 — 356.0 445.2 533.5 15 8
— 38.6 47.1 55.0 — 378.5 461.9 539.4
A
1C
TABLE 21-12 Properties of ply woven fire-resistant conveyor belting for use in coal mines
B
1.4 2.3
— — — 1.2
kgf/ mm
25.5 25.5
— — — —
kN/ m
21.4 27.9 34.4 — 209.9 273.6 333.4 — 90.8 117.9 149.7 — 890.4 1156.2 1468.0 — 17 18
39.3 51.1 62.2 — 385.4 501.1 610.0 —
A
2C
2.6 2.6
— — — —
kgf/ mm
— 57.2 87.7 — — 560.9 860.0 —
A
3A
28.4 28.4
— — — 13.7
kN/ m
— 21.4 26.1 — — 209.9 256.0 — — — — — — — — — —
B
2.9 2.9
— — — 1.4
kgf/ mm
30.4 30.4
— — — —
3.1 3.1
— — — —
B
33.3 33.3
— — — 15.7
kN/ m
3.4 3.4
— — — 1.6
kgf/ mm
89.3 28.6 116.1 37.2 141.1 45.0 — — 875.7 280.5 1138.5 364.8 1383.7 441.3 — — — — — — — — — — —
A
3C
kgf/ mm
21.4 27.9 34.0 — 209.9 273.6 333.4 — — — — — — — — — —
B
kN/ m
62.5 81.3 99.1 — 612.9 797.3 971.8 —
A
3B
FLEXIBLE MACHINE ELEMENTS
21.13
FLEXIBLE MACHINE ELEMENTS
21.14
CHAPTER TWENTY-ONE
Particular
Formula
BELT LENGTHS AND CONTACT ANGLES FOR OPEN AND CROSSED BELTS (Fig. 21-1A) Length of belt for open drive (Fig. 21-1(A)a) Length of belt for crossed drive (Fig. 21-1(A)b) Length of belt for quarter turn drive For two-pulley open drive the center distance between the two pulleys when the length of the belt is known
L¼
qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 4C2 ðD dÞ2 ¼ 12 ðDL þ ds Þ
qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 4C2 ðD þ dÞ2 þ ðD þ dÞ 2 pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi L ¼ ðD þ dÞ þ C2 þ D2 þ C2 þ d 2 2 L¼
C¼
l ¼ þ 2 sin1 s ¼ sin1
¼ þ 2 sin1
Dd 2C
Dd 2C
ð21-9Þ
pffiffiffi e¼ 69;000
where in psi pffiffiffi e¼ 22 where in kgf/mm pffiffiffiffiffi pffiffiffiffiffi pffiffiffiffiffi 2 F0 ¼ F1 þ F2
ð21-10aÞ
Dþd 2C
where in MPa pffiffiffi e¼ 21;000
The relation between initial belt tension and final belt tension
ð21-8Þ
L 0:393ðD þ dÞ 4 " #1=2 2 L ðD dÞ2 ð21-10Þ 0:393ðD þ dÞ þ 4 8
where
The unit elongation of belt is given by the equation
ð21-7Þ
ð21-10bÞ ð21-10cÞ
SI
ð21-11aÞ
USCS
ð21-11bÞ
Metric
ð21-11cÞ
2
where F0 ¼ initial belt tension, kN (lbf )
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð21-12Þ
FLEXIBLE MACHINE ELEMENTS FLEXIBLE MACHINE ELEMENTS
21.15
FIGURE 21-1(A) Open and crossed belts.
FIGURE 21-1(B) Velocity correction factor for Kv for use in Eq. (21-4g) for leather belts.
Belt stresses in open drive: f ¼ c centrifugal stress; 2 slack side stress; 1 tight side stress ¼ 2 þ n ; n effective stress ¼ u ; b1 , b2 bending stresses on pulleys 1 and 2 respectively; G creep angle ( angle over which creep takes place between belt and pulley). Lectrum S2 ¼ slack side F2 ; treibend ¼ driving; Arbeitstrum S1 ¼ tight side F1 ; getrieben ¼ driven FIGURE 21-1(C) Stress distribution in belt. (G. Niemann, Maschinenelemente, Springer International Edition, Allied Publishers Private Ltd., New Delhi, 1978.)
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
FLEXIBLE MACHINE ELEMENTS
21.16
CHAPTER TWENTY-ONE
Particular
Formula
PULLEYS (Fig. 21-2 and Fig. 21-3) C. G. Barth’s formula for the width of the pulley face
a ¼ 1:19a1 þ 10 mm for single belt
SI
ð21-13aÞ
a ¼ 1:1a1 þ 5 mm for double belt
SI
ð21-13bÞ
Refer to Table 21-15 for width of pulley. a ¼ 1:1875a1 þ 38 in
USCS
ð21-13cÞ
where a and a1 in in for a single belt 3 in a ¼ 1:09375a1 þ 16
C. G. Barth’s empirical formula for the crown height for wide belts
USCS
ð21-13dÞ
where a and a1 in in for double belt p ffiffiffiffiffi 3 h ¼ 0:00426 a2 SI
ð21-14aÞ
where a in m p ffiffiffiffiffi 3 h ¼ 0:013125 a2
USCS
ð21-14bÞ
Customary Metric Units
ð21-14cÞ
SI
ð21-14dÞ
Customary Metric Units
ð21-14eÞ
where a in in For rubber belts on well-aligned shafts, the crown height
For poorly aligned shafts, the crown height
h¼
a 200
h¼
a 2
h¼
a 120
a SI ð21-14fÞ 0:12 Refer to Tables 21-16, 21-17A, and 21-17B for crown height. pffiffiffiffi t ¼ 0:25 D þ 1:5 mm ð21-15aÞ pffiffiffiffi t ¼ 0:375 D þ 3:2 mm ð21-15bÞ h¼
The rim thickness at edge for light-duty pulley The rim thickness at edge for heavy-duty pulley for a triple belt The hub diameter of the pulley (Fig. 21-2)
d1 ¼ 1:5d þ 25 mm
ð21-16Þ
Arms The bending moment on each arm The section modulus of the arm at the hub
Mb ¼ Z¼
F D i
F D id
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð21-17Þ ð21-18Þ
FLEXIBLE MACHINE ELEMENTS FLEXIBLE MACHINE ELEMENTS
Particular
21.17
Formula
FIGURE 21-2 Cast-iron pulley.
INDIAN STANDARD SPECIFICATION Cast-iron pulley ð21-19Þ
l ¼ 23 a
Minimum length of bore (Fig. 21-2)
It should not exceed a Half of the difference in diameters d1 and d2 (Fig. 21-2)
p d1 d2 3 ffiffiffiffiffiffiffi ¼ 0:412 aD þ 6 mm for a single belt 2 ð21-20Þ p d1 d2 3 ffiffiffiffiffiffiffi ¼ 0:529 aD þ 6 mm for a double belt 2 ð21-21Þ
The radius r1 near rim (Fig. 21-2)
r1 ¼ b=2
ð21-22Þ
The radius r2 near rim (Fig. 21-2)
r2 ¼ b=2
ð21-23Þ
TABLE 21-14 Properties of solid woven fire-resistance conveyor belting for use in coal mines Tensile strength/width Belt designation
Direction
kN/m
kgf/mm
Percentage elongation at break
4A
Warp Weft Warp weft Warp Weft
385.4 209.9 525.6 262.8 665.9 262.8
39.3 21.4 53.6 26.8 67.9 26.8
18 19 18 19 18 19
4B 4C
Tear strength kN
kgf
1.3
136.1
1.3
136.1
1.3
136.1
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
FLEXIBLE MACHINE ELEMENTS
TABLE 21-15 Width of flat cast-iron and mild steel pulleys
TABLE 21-16 Crown of cast iron and mild steel flat pulleys of diameters up to 355 mm
Width, mm
Tolerance, mm
Nominal diameter, D, mm
Crown, h, mm
20, 25, 32 40, 50, 63, 71 80, 90, 100, 112, 125, 140 160, 180, 200, 224, 250, 280, 315 355, 400, 450, 500, 560, 630
2
40–112 125, 140 160, 180 200, 224 250, 280 315, 355
0.3 0.4 0.5 0.6 0.8 1.0
1.5 2 3
TABLE 21-17A Crown of cast iron and mild steel flat pulleys of diameters 400 to 2000 mma Crown h of pulleys of width Nominal diameter, D, mm
125
140, 160
180, 200
224, 250
280, 315
355
400
400 450 500 560 630 710 800 900 1000 1120 1250 1400 1600 1800 2000
1 1 1 1 1 1 1 1 1 1.2 1.2 1.5 1.5 2.0 2.0
1.2 1.2 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 2 2 2.5 2.5
1.2 1.2 1.5 1.5 2 2 2 2 2 2 2 2.5 2.5 3 3
1.2 1.2 1.5 1.5 2 2 2.5 2.5 2.5 2.5 2.5 3 3 3.5 3.5
1.2 1.2 1.5 1.5 2 2 2.5 2.5 3 3 3 3.5 3.5 4 4
1.2 1.2 1.5 1.5 2 2 2.5 2.5 3 3 3.5 4 4 4.5 4.5
1.2 1.2 1.5 1.5 2 2 2.5 2.5 3 3.5 4 4 5 5 6
a
All dimensions in mm. Source: IS 1691, 1968.
TABLE 21-17B Crown height and ISO pulley diameters for flat belts Crown height, in ISO pulley diameter, in
Crown height, in
ISO pulley diameter, in
w 10 in
w > 10 in
1.6, 2, 2.5 2.8, 3.15 3.55, 4, 4.5 5, 5.6 6.3, 7.1 8, 9 10, 11.2
0.012 0.012 0.012 0.016 0.020 0.024 0.030
12.5, 14 12.5, 14 22.4, 25, 28 31.5, 35.5 40 45, 50, 56 63, 71, 80
0.03 0.04 0.05 0.05 0.05 0.06 0.07
0.03 0.04 0.05 0.06 0.06 0.08 0.10
Crown should be rounded, not angled; maximum roughness is Ro ¼ AA 63 min.
21.18 Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
FLEXIBLE MACHINE ELEMENTS
21.19
FLEXIBLE MACHINE ELEMENTS
Particular
Formula
Arms
Use webs for pulleys up to 200 mm diameter
The number of arms
i¼4
ð21-24aÞ
for pulleys above 200 mm diameter and up to 400 mm diameter i¼6
ð21-24bÞ
for pulleys above 450 mm diameter Use elliptical section rffiffiffiffiffiffiffi 3 aD b ¼ 0:294 4i rffiffiffiffiffiffiffi 3 aD for single belt b ¼ 1:6 i rffiffiffiffiffiffiffi 3 aD b ¼ 0:294 2i rffiffiffiffiffiffiffi 3 aD for double belt b ¼ 1:25 i
Cross section of arms Thickness of arm near boss (Fig. 21-2)
SI
ð21-25aÞ
USCS
ð21-25bÞ
SI
ð21-26aÞ
USCS
ð21-26bÞ
The diameter of pulleys and arms in pulleys
Refer to Tables 21-18 to 21-21.
The thickness of arm near rim
b1 —give a taper of 4 mm per 100 mm
The radius of the cross-section of arms
r ¼ 34 b
ð21-27Þ
TABLE 21-18 Minimum pulley diameters for given belt speeds and pliesa Maximum belt speeds, m/s No. of plies
10
15
20
25
30
2 3 4 5 6 7 8 9 10
50 90 140 200 250 355 450 560 630
63 100 160 224 315 400 500 630 710
80 112 180 250 355 450 560 710 800
90 140 200 315 400 500 630 800 900
112 180 250 355 450 560 710 900 1000
a
All dimensions in mm. Source: IS 1370, 1965.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
FLEXIBLE MACHINE ELEMENTS
21.20
CHAPTER TWENTY-ONE
TABLE 21-19 Diameters of flat pulley and tolerances Nominal diameter, mm
Tolerance, mm
Nominal diameter, mm
Tolerance, mm
40 45, 50 56, 63 71, 80 90, 100, 112 125, 140 160, 180, 200 224, 250
0.5 0.6 0.8 1.0 1.2 1.9 2.0 2.5
280, 315, 355 400, 450, 500 560, 630, 710 800, 900, 1000 1120, 1250, 1400 1600, 1800, 2000 — —
3.0 4.0 5.0 6.3 8.0 10.22 — —
Source: IS 1691, 1968.
TABLE 21-20 Minimum pulley diameters for conveyor belting Fabric 28
Fabric 32
Fabric 36
Fabric 42
Fabric 48
No. of plies
A
B
C
A
B
C
A
B
C
A
B
C
A
B
C
>75–100% rated max working tension
2 3 4 5 6 7 8 9 10
205 305 410 510 610 690 765 915 1070
155 255 305 410 460 610 690 690 765
155 205 255 360 410 460 500 610 690
255 360 460 610 690 765 915 1070 1220
205 305 360 460 510 690 765 915 915
155 205 305 360 460 510 610 610 690
305 460 610 690 915 1070 1220 1375 1525
255 36 460 610 690 765 915 1070 1220
205 305 360 460 610 690 690 765 915
305 460 610 765 915 1070 1220 1375 1525
255 360 510 610 765 915 1020 1070 1220
205 305 410 510 610 690 765 915 1070
— 530 710 890 1065 1245 1420 1600 1780
— 460 610 760 915 1065 1220 1370 1525
— 330 510 635 760 890 1015 1145 1245
>50–75% rated max working tension
2 3 4 5 6 7 8 9 10
205 305 360 460 510 610 765 915 915
155 205 305 360 460 510 610 690 765
155 205 255 305 360 410 510 610 610
205 305 410 510 610 690 915 915 1070
155 255 305 410 510 610 690 690 915
155 205 255 360 410 460 610 610 690
255 410 510 690 765 915 1070 1220 1375
205 305 410 510 610 690 915 915 1070
155 255 360 410 510 610 690 765 915
305 460 610 765 915 1070 1220 1375 1525
255 360 460 610 690 915 915 1070 1220
205 305 410 460 610 690 765 915 915
— 430 560 710 865 990 1145 1270 1420
— 355 485 610 735 865 965 1090 1220
— 305 405 510 610 710 815 915 1015
50% rated max working tension
2 3 4 5 6 7 8 9 10
155 255 305 410 510 610 690 765 915
155 205 255 360 410 460 510 610 690
155 155 205 255 360 410 460 510 510
205 305 360 460 510 610 765 915 915
155 205 305 360 460 510 610 690 765
155 205 255 305 360 410 510 610 610
255 360 460 610 690 765 915 1070 1220
205 305 410 460 510 690 705 915 915
155 255 360 410 510 610 690 765 915
255 410 510 690 765 915 1070 1220 1220
205 305 410 510 610 690 765 915 1070
155 255 360 410 510 610 690 765 915
— 380 510 635 735 865 990 1220 1245
— 330 430 530 635 735 865 965 1065
— 280 355 455 535 635 710 815 890
Running
Source: IS 1891 (Part 1), 1968.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
FLEXIBLE MACHINE ELEMENTS
21.21
FLEXIBLE MACHINE ELEMENTS
TABLE 21-21 Number of arms in mild steel pulley Details of spokes Diameter, mm
No.
Of diameter
250–500 560–710 800–1000 1120 1250 1400 1600 1800 2000
6 8 10 12 14 16 18 18 22
19 19 22 22 22 22 22 22 22
Source: IS 1691, 1968.
Particular
Formula
Mild Steel Pulley Minimum length of boss (Fig. 21-3)
l ¼ a=2
ð21-28Þ
<100 j mm for 19-mm-diameter spokes <138 j mm for 22-mm-diameter spokes t ¼ 5 mm for diameters from 400 to 2000 mm t¼
D þ 0:003 m 200
t¼
D þ 0:12 in for single belt 200
t¼
D þ 0:006 m 200
t¼
D þ 0:24 in for double belt 200
SI
ð21-29aÞ
USCS
ð21-29bÞ
SI
ð21-29cÞ
USCS
ð21-29dÞ
FIGURE 21-3 Mild steel pulley.
The crown height
Refer to Tables 21-16, 21-17A, and 21-17B.
Arms for mild steel pulleys
Refer to Table 21-21.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
FLEXIBLE MACHINE ELEMENTS
21.22
CHAPTER TWENTY-ONE
Particular
Formula
V-BELT The formula to obtain the maximum power in kilowatt which the V-belts of sections A, B, C, D, and E can transmit (Table 21-22 and 21-23)
Belt cross section Power rating per strand, kW A
P ¼ v
B
P ¼ v
C
P ¼ v
D
P ¼ v
E
2
0:45 19:62 0:765v de v0:09 104 0:79 51:33 1:31v2 de v0:09 104
1:47 143:27 2:34v2 de v0:09 104
3:16 507:50 4:77v2 de 104 v0:09 4:57 952 7:05v2 P ¼ v 0:09 de v 104
Max. value of dc , mm
SI
125
(21-30)
175
(21-31)
300
(21-32)
425
(21-33)
700
(21-34)
where P ¼ maximum power in kW at 1808 arc of contact for a belt of average length
de ¼ dp Fb
The equivalent pitch diameter
ð21-35Þ
Refer to Table 21-24 for Fb , the small-diameter factor. TABLE 21-22 Classification of V-belts Cross-sectional symbol
Nominal top width, W, mm
Nominal thickness, T, mm
A B C D E
13 17 22 30 33
8 11 14 12 23
Source: IS 2494, 1964.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
FLEXIBLE MACHINE ELEMENTS FLEXIBLE MACHINE ELEMENTS
Particular
The formulas to obtain the maximum horsepower of V-belts of A, B, C, D, and E sections
21.23
Formula
Refer to Eqs. (21-35a) to (21-35e).
Belt section A B C D E
Horsepower rating per strand (equations in USCS) 1:95 3:80 P¼V 0:0136V 2 0:09 kd V 3:43 9:83 0:0234V 2 P¼V 0:09 kd V 6:37 27:0 2 P¼V 0:0416V kd V 0:09 13:6 93:9 2 0:0848V P¼V kd V 0:09 19:9 17:8 0:122V 2 P¼V 0:09 kd V
(21-35a) (21-35b) (21-35c) (21-35d) (21-35e)
where V ¼ belt speed, thousands of ft/min k ¼ small-diameter factor for speed ratio of drive from Fig. 21-4b d ¼ pitch diameter of small sheave, in
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
0.13 0.24 0.40 0.58 0.74 0.85 0.94 1.08 1.17 1.32 1.40 1.47 1.54 1.62 1.69 1.77 1.84 1.84 1.84 1.84 1.91 1.91 1.91 1.84 1.84 1.77 1.69 1.62 1.54 1.47 1.32
0.5 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
21.24
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website. Cross section, B
0.14 0.25 0.43 0.64 0.81 0.95 1.05 1.25 1.35 1.54 1.62 1.69 1.84 1.91 1.99 2.06 2.13 2.21 2.28 2.28 2.35 2.35 2.35 2.35 2.35 2.28 2.28 2.20 2.13 2.06 1.99
0.14 0.27 0.46 0.68 0.88 1.04 1.15 1.39 1.50 1.69 1.77 1.91 2.06 2.13 2.28 2.35 2.43 2.50 2.57 2.65 2.72 2.72 2.72 2.79 2.79 2.79 2.72 2.72 2.65 2.57 2.50
0.15 0.28 0.49 0.72 0.93 1.13 1.25 1.50 1.62 1.77 1.91 2.06 2.21 2.35 2.50 2.57 2.65 2.79 2.87 2.94 3.02 3.02 3.09 3.09 3.16 3.16 3.16 3.09 3.09 3.02 2.94
0.15 0.29 0.51 0.74 0.96 1.18 1.32 1.54 1.69 1.84 1.99 2.13 2.28 2.43 2.50 2.65 2.79 2.87 2.94 3.02 3.00 3.16 3.24 3.24 3.31 3.31 3.31 3.31 3.24 3.24 3.16
0.22 0.37 0.66 0.96 1.18 1.47 1.62 1.91 2.06 2.21 2.35 2.50 2.65 2.79 2.87 2.94 3.02 3.09 3.16 3.16 3.16 3.16 3.16 3.09 3.02 2.94 2.79 2.65 2.50 2.43 2.13
0.22 0.44 0.74 1.03 1.32 1.54 1.84 2.13 2.28 2.43 2.65 2.79 3.02 3.16 3.16 3.38 3.46 3.66 3.60 3.68 3.75 3.75 3.75 3.75 3.68 3.60 3.53 3.45 3.31 3.16 2.94
0.22 0.54 0.81 1.10 1.40 1.69 1.99 2.21 2.43 2.65 2.87 3.09 3.31 3.46 3.60 3.75 3.90 3.97 4.04 4.19 4.19 4.27 4.27 4.27 4.27 4.19 4.19 4.12 3.97 3.82 3.68
0.22 0.44 0.81 1.17 1.47 1.84 2.06 2.35 2.65 2.87 3.09 3.31 3.53 3.75 3.90 4.05 4.19 4.34 4.19 4.46 4.63 4.71 4.78 4.78 4.78 4.78 4.71 4.63 4.56 4.49 4.34
0.29 0.51 0.88 1.25 1.50 1.91 2.21 2.50 2.79 3.02 3.31 3.53 3.75 3.97 4.19 4.34 4.49 4.71 4.78 4.92 5.00 5.07 5.15 5.22 5.22 5.22 5.22 5.15 5.15 5.00 4.92
0.29 0.51 0.88 1.39 1.62 1.99 2.28 2.65 2.94 3.16 3.46 3.95 3.67 4.19 4.56 4.63 4.78 4.92 5.07 5.22 5.44 5.44 5.52 5.55 5.66 5.66 5.66 5.66 5.59 5.52 5.44
0.37 0.64 1.15 1.62 2.06 2.35 2.72 3.02 3.31 3.60 3.82 4.04 4.19 4.34 4.49 4.63 4.71 4.78 4.78 4.78 4.78 4.71 4.56 4.34 4.19 4.15 3.82 3.60 3.24 3.19 2.43
0.44 0.73 1.32 1.84 2.35 2.79 3.16 3.60 3.97 4.27 4.56 4.92 5.15 5.44 5.59 5.81 5.96 6.10 6.25 6.33 6.33 6.33 6.33 6.25 6.18 6.03 5.88 5.66 5.44 5.15 4.18
0.44 0.81 1.47 2.06 2.57 3.09 3.60 4.05 4.49 4.95 5.22 5.59 5.96 6.25 6.55 6.77 7.06 7.21 7.35 7.58 7.65 7.72 7.80 7.80 7.72 7.72 7.58 7.43 7.35 7.06 6.77
0.51 0.88 1.85 2.21 2.76 3.38 3.90 4.41 4.85 4.37 5.81 6.18 6.62 6.91 7.28 7.58 7.87 8.09 8.38 8.53 8.68 8.83 8.90 8.97 9.05 9.05 8.97 8.90 8.75 8.60 8.38
0.51 0.88 1.69 2.35 3.02 3.60 4.19 4.71 5.22 5.81 6.25 6.69 7.13 7.58 7.94 8.31 8.61 8.90 9.19 9.41 9.63 9.86 10.00 10.08 10.15 10.15 10.15 10.15 10.08 9.93 9.71
0.51 0.96 1.77 2.50 3.16 3.75 4.41 5.00 5.59 6.10 6.62 7.13 7.72 8.16 8.53 8.90 9.27 9.56 9.93 10.15 10.44 10.66 10.81 11.03 11.11 11.18 11.18 11.18 11.18 11.03 10.80
280
Cross section, C
0.51 0.96 1.84 2.57 3.31 3.97 4.63 5.22 5.87 6.40 6.99 7.58 8.00 8.46 8.97 9.41 9.78 10.15 10.51 10.81 11.11 11.33 11.62 11.77 11.91 11.99 12.06 12.13 12.13 12.06 11.99
300 0.81 1.47 2.50 3.46 4.34 5.07 5.81 6.47 7.13 7.65 8.23 8.68 9.12 9.49 9.79 10.00 10.30 10.44 10.51 10.51 10.51 10.37 10.22 9.93 9.63 9.19 8.68 8.16 7.51 6.77 5.96
300 0.88 1.54 2.79 3.75 4.78 5.66 6.55 7.28 7.94 8.68 9.34 9.86 10.37 10.86 11.25 11.62 11.91 12.21 12.43 12.50 12.58 13.31 12.58 12.43 12.21 11.91 11.47 11.03 10.51 9.86 9.12
320
Equivalent pitch diameter, de , mm
100 110 120 125 130 140 150 160 170 180 180 200 220 240 260
Source: IS 2494, 1964.
0.13 0.22 0.37 0.51 0.58 0.74 0.81 0.88 0.90 1.03 1.10 1.18 1.25 1.32 1.32 1.32 1.40 1.40 1.40 1.40 1.32 1.32 1.25 1.25 1.18 1.10 1.03 0.88 0.81 0.66 0.51
90
Belt speed, m/s 80
Cross section, A
TABLE 21-23 Ratings for V-belts in kilowatts
0.96 1.69 2.94 4.04 5.15 6.10 7.06 7.94 8.68 9.49 10.22 10.88 11.47 12.06 12.88 13.09 13.46 13.83 14.12 14.27 14.49 14.56 14.56 14.56 14.34 14.27 13.97 13.53 13.09 12.58 11.91
340 0.96 1.77 3.09 4.34 5.44 6.55 7.51 8.46 9.34 10.22 11.03 11.84 12.50 13.16 13.75 14.34 14.78 15.22 15.59 15.89 16.11 16.40 16.47 16.40 16.40 16.25 16.11 15.81 15.44 15.00 14.42
360 1.03 1.84 3.24 4.56 5.74 6.91 7.94 8.97 10.00 10.96 11.84 12.58 13.39 14.05 14.56 15.44 15.96 16.55 16.99 17.36 17.65 17.87 18.02 18.17 18.24 18.17 17.87 17.80 17.43 17.14 16.70
380 1.03 1.91 3.38 4.71 6.03 7.21 8.38 9.41 10.52 11.47 12.43 13.39 14.19 15.00 15.74 16.40 16.99 17.58 18.09 18.53 18.98 19.27 19.49 19.71 19.78 19.78 19.78 19.56 19.34 19.12 18.68
400
Cross section, D
1.10 1.91 3.53 4.92 6.25 7.58 8.75 9.86 10.96 12.06 13.02 14.05 14.93 15.74 16.55 17.28 18.02 18.61 19.20 19.86 20.15 20.52 20.81 21.11 21.26 21.33 21.33 21.26 21.11 20.89 20.52
420 1.10 1.99 3.53 5.00 6.40 7.65 8.90 10.08 11.25 12.28 13.31 14.34 15.30 16.11 16.99 17.72 18.46 19.05 19.71 20.23 20.14 21.11 21.48 21.70 21.99 22.06 21.99 21.99 21.84 21.62 21.33
430 1.40 2.43 4.34 6.03 7.58 9.05 10.44 11.77 13.02 14.12 15.22 16.25 17.21 18.02 18.84 19.56 20.15 20.74 21.18 21.55 21.77 21.99 22.06 21.99 21.92 21.71 21.25 20.74 20.15 19.49 18.61
450 1.47 2.65 4.78 6.69 8.46 10.15 11.69 13.32 14.78 16.11 17.43 18.61 19.78 20.81 21.85 22.80 23.61 24.42 25.08 25.60 26.11 26.48 26.77 27.07 27.07 26.99 26.92 26.62 25.89 25.74 25.08
500
1.54 2.87 5.15 7.21 9.19 11.03 12.80 14.49 16.11 17.72 19.12 20.59 21.92 23.17 24.35 25.45 26.40 27.36 28.24 28.97 29.71 30.23 30.74 31.04 31.33 31.48 31.48 31.41 31.18 30.89 30.45
550
1.62 2.94 5.44 7.65 9.78 11.77 13.68 15.51 17.28 18.98 20.59 22.20 23.68 25.08 26.40 27.65 28.83 29.86 30.89 31.77 32.58 33.17 33.19 34.42 34.79 35.08 35.30 35.38 35.30 35.08 34.79
600
1.69 3.09 5.66 8.02 10.22 12.36 14.49 16.40 18.31 20.15 21.85 23.61 25.15 26.69 28.10 29.49 30.82 31.99 33.10 34.13 35.08 35.97 36.70 37.29 37.88 38.25 38.54 38.69 38.83 39.76 38.54
650
Cross section, E
1.77 3.24 5.88 8.38 12.74 13.02 15.07 17.14 19.05 21.11 22.95 24.71 26.40 28.02 29.57 31.04 32.44 33.76 35.01 36.19 37.22 38.17 38.98 39.72 40.38 40.89 41.46 41.56 41.78 41.78 41.70
700
FLEXIBLE MACHINE ELEMENTS
FLEXIBLE MACHINE ELEMENTS FLEXIBLE MACHINE ELEMENTS
TABLE 21-24 Small-diameter factor, Fb Speed ratio range
Small diameter factor
1.000–1.019 1.020–1.032 1.033–1.055 1.056–1.081 1.082–1.109 1.110–1.142 1.143–1.178 1.179–1.222 1.223–1.274 1.275–1.340 1.341–1.429 1.430–1.562 1.563–1.814 1.815–2.948 1.949
1.00 1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.09 1.10 1.11 1.12 1.13 1.14
Source: IS 2494, 1964.
FIGURE 21-4(a) Factors for power rating of V-belt for use with Eqs. (21-30) to (21-35).
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
21.25
FLEXIBLE MACHINE ELEMENTS
21.26
CHAPTER TWENTY-ONE
FIGURE 21-4(b) Factors for horsepower ratings of V-belts for use with Eqs. (21-35a) to (21-35e).
FIGURE 21-4(c) Correction factor K1 for angle of contact.
TABLE 21-25 Correction factors for arc of contact, Fd Correction factor (proportion of 1808 rating)
Arc of contact on smaller pulley, deg
VV
V-flat
180 177 174 171 169 166 163 160 157 154 151 148 145 142 139 136
1.00 0.99 0.99 0.98 0.97 0.97 0.96 0.95 0.94 0.93 0.93 0.92 0.91 0.90 0.89 0.88
0.75 0.76 0.76 0.77 0.78 0.79 0.79 0.80 0.81 0.81 0.82 0.83 0.83 0.84 0.85 0.85
Correction factor (proportion of 1808 rating)
Arc of contact on smaller pulley, deg
VV
V-flat
133 130 127 123 120 117 113 110 106 103 99 95 91 87 83
0.87 0.86 0.85 0.83 0.82 0.81 0.80 0.78 0.77 0.75 0.73 0.72 0.70 0.68 0.65
0.86 0.86 0.85 0.83 0.82 0.81 0.80 0.78 0.77 0.75 0.73 0.72 0.70 0.68 0.65
Source: IS 2494, 1964.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
FLEXIBLE MACHINE ELEMENTS FLEXIBLE MACHINE ELEMENTS
21.27
TABLE 21-26 Correction factors for belt length, Fc Belt cross-section Nominal inside length, mm
A
B
C
D
610 660 711 787 813 889 914 965 991 1016 1067 1092 1168 1219 1295 1372 1397 1422 1473 1524 1600 1626 1651 1727 1778 1905 1981 2032 2057
0.80 0.81 0.82 0.84 0.85 0.87 0.87 0.88 0.88 0.89 0.90 0.90 0.92 0.93 0.94 — 0.96 0.96 0.97 0.98 0.99 0.99 1.00 1.00 1.01 1.02 1.03 1.04 1.04
— — — — — 0.81 — 0.83 — 0.84 0.85 — 0.87 0.88 0.89 0.90 0.90 0.90 — 0.92 — — 0.94 0.95 9.95 0.97 0.98 — 0.98
— — — — — — — — — — — — — — 0.80 — — — — 0.82 — — — 0.85 — 0.87 — — 0.89
— — — — — — — — — — — — — — — — — — — — — — — — — — — — —
Belt cross-section E
Nominal inside length, mm
A
B
C
D
E
— — — — — — — — — — — — — — — — — — — — — — — — — — — — —
2159 2286 2438 2464 2540 2667 2845 3048 3150 3251 3404 3658 4013 4115 4394 4572 4953 5334 6045 6807 7569 8331 9093 9855 10617 12141 13665 15189 16713
1.05 1.06 1.08 — — 1.10 1.11 1.13 — 1.14 — — — — — — — — — — — — — — — — — — —
0.99 1.00 — 1.02 1.03 1.04 1.05 1.07 — 1.08 — 1.11 1.13 1.14 1.15 1.16 1.18 1.19 — — — — — — — — — — —
0.90 0.91 0.92 — — 0.94 0.95 0.97 0.97 0.98 0.99 1.00 1.02 1.03 1.04 1.05 1.07 1.08 1.11 1.14 1.16 1.19 1.21 1.23 1.24 — — — —
— — — — — — — 0.86 — 0.87 — 0.90 0.92 0.92 0.93 0.94 0.96 0.96 1.00 1.03 1.05 1.07 1.09 1.11 1.12 1.16 1.18 1.20 1.23
— — — — — — — — — — — — — — — — — 0.94 0.96 0.99 1.01 1.03 1.05 1.07 1.09 1.12 1.14 1.17 1.19
Source: IS 2494, 1964.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
FLEXIBLE MACHINE ELEMENTS
21.28
CHAPTER TWENTY-ONE
TABLE 21-27 Correction factors for industrial service, Fa Type of driving unit AC motors; high torque, high slip repulsion induction, single phase, series-wound and slip-ring AC motors; normal torque, squirrel cage, synchronous and split phase DC motors; shunt-wound, multiple cylinder internal combustion engines >600 rpm Severity of service Light-duty
Mediumduty
Heavy-duty
Extraheavy-duty
>16 h and continuous service
DC motors; series-wound and compound wound; single-cylinder internal-combustion engines; multicylinder internal-combustion engines <600 rpm, line shafts, clutches, brakes, direct on-line starting
10 h
>10 to 16 h
>16 h and continuous service
Type of driven machines
10 h
>10 to 16 h
Agitators for liquids, blowers, and exhausters, centrifugal pumps and compressors, fans up to 7.5 kW (10 hp) and light-duty conveyors Belt conveyors for sand, grain, etc; dough mixers; fans over 7.5 kW (10 hp); generators; line shafts; laundry machinery; machine tools; punches, presses and shears; printing machinery; positive-displacement rotary pumps; revolving and vibrating screens Brick machinery, bucket elevators, exciters, piston compressors, conveyors (drag-pan-screw), hammer mills, paper mill beaters, piston pumps, positive displacement blowers, pulverizers, saw mill and woodworking machinery, and textile machinery Crushers (gyratory-jaw-roll), mills (ball-rod-tube), hoists, and rubber (calendersextruders-mills) machinery
1.0
1.1
1.2
1.1
1.2
1.3
1.1
1.2
1.3
1.2
1.3
1.4
1.2
1.3
1.4
1.4
1.5
1.6
1.3
1.4
1.5
1.5
1.6
1.8
Note: This table gives only a few examples of particular machines. If an idler pulley is used, the following values must be added to the service factors: inside: 0:1 inside: 0 Idler pulley on the tight side Idler pulley on the slack side outside: 0:2 outside: 0:1 Source: IS 2494, 1964.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
FLEXIBLE MACHINE ELEMENTS FLEXIBLE MACHINE ELEMENTS
21.29
TABLE 21-28 Nominal inside length, nominal pitch lengths and permissible length variations for V-belts
Nominal inside length, mm 610 660 711 787 813 889 914 965 991 1016 1067 1092 1168 1219 1295 1372 1397 1422 1473 1524
Nominal pitch length, mm Cross-section A 645 696 747 823 848 925 950 1001 1076 1051 1102 1128 1204 1255 1331 1433 1451 1509 1560
B
C
Pitch length variation D
E
PLLa
MVLb
þ11.4 6.4 þ12.5 7.5
932
2.5 1008 þ14.0 8.9
1059 1110 1212 1262 1339 1415 1440 1466 1567
þ16.0 9.0
1351
1580 5.0
1600 1626 1651 1727 1778 1905 1981 2032 2057 2159 2286 2438 2464 2540 2667 2845 3048 3150 3251 3404 3658 4013 4115 4394 4572
1636 1661 1687 1763 1814 1941 2017 2068 2093 2195 2322 2474
1694 1770 1821 1948 2024 2101 2202 2329
2703 2880 3084
2507 2583 2710 2888 3091
3287
3294
3693
3701 4056 4158 4437 4615
þ17.8 12.5 1783 1991
þ30 16
2113 2215 2342 2494
2723 2901 3104 3205 3307 3459 3713 4069 4171 4450 4628
7.5
þ34 18 3127 3330 3736 4092 4194 4473 4651
10 þ38 21 þ43 24
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
12.5
FLEXIBLE MACHINE ELEMENTS
21.30
CHAPTER TWENTY-ONE
TABLE 21-28 Nominal inside length, nominal pitch lengths and permissible length variations for V-belts (Cont.) Nominal pitch length, mm, Cross section Nominal inside length, mm
A
4953 5334 6045 6807 7569 8331 9093 9855 10617 12141
Pitch length variation
B
C
D
E
4996 5377
5009 5390 6101 6863 7625 8387 9149
5032 5413 6124 5886 7648 8410 9172 9934 10696 12220
5426 6137 6899 7661 8423 9185 9947 10709 12233
37 þ76 43
13744 15268 16792
13757 15281 16805
þ89 50 þ105
PLLa
MVLb
þ49 28 þ56 32 þ65
15
17.5 13665 15189 16713
59
a
Pitch length limit. Maximum variation in length within a matched set. Source: IS 2494, 1964. b
TABLE 21-29 Dimensions for standard V-grooved pulleys
Groove section
Pitch width, lp , min
Minimum height of groove above pitch line, bmin , mm
Minimum depth of groove below pitch line, h, min, mm
Center to center distance of grooves, e, mm
A
11
3.3
8.7
15 0:3
B
14
4.2
10.1
19 0:4
C
19
5.7
14.3
25:5 0:5
D
27
8.1
19.9
37 0:6
E
32
9.6
23.4
44:5 0:7
Edge of pulley to first groove center, f , mm þ2 1 þ2 12.5 1 þ2 17 þ1 þ3 24 1 þ4 29 1 10
Source: IS: 3142-1965.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
75 80 85 90 95 100 106 112 118 125 132 140 150 160 170 180 190 200 212 224 236 250 265 280 300 315 355
75 80 85 90 95 100 106 112 118 125 132 140 150 160 170 180 190 200 212 224 236 250 265 280 300 315 355
76.3 81.3 86.4 91.4 96.5 101.6 107.7 113.8 119.9 127.0 134.1 142.2 152.4 162.6 172.7 182.9 193.0 203.2 215.4 227.6 239.8 354.0 269.2 284.5 304.8 320.0 360.7
Max, mm
2 2 1 2 1 2 1 3 1 2 1 2 2 1 2
2 1 2 2 1 2
B
3 3 3 1 2 1 2 1 2 1 2 1 2 1 3 1 3 1
A
1 2 1 2 1 2 1 2 1 2
C
1
D
Degree of preferencea for pitch diameters, according to groove section
a Key: 1—first preference; 2—second preference; 3—not recommended Source: IS 3142, 1965.
Min, mm
Pitch diameter limits
Nominal value, mm
Series of pitch diameters
TABLE 21-30A Recommended standard pulley pitch diameters
E 375 400 425 450 475 500 530 560 600 630 670 710 750 800 900 1000 1060 1120 1250 1400 1500 1600 1800 1900 2000 2240 2500
Nominal value mm 375 400 425 450 475 500 530 560 600 630 670 710 750 800 900 1000 1060 1120 1250 1400 1500 1600 1800 1900 2000 2240 2500
Min, mm 381.0 406.4 431.8 457.2 482.6 508.8 538.5 569.0 609.6 640.0 680.7 721.4 762.0 812.8 914.4 1016.0 1077.0 1137.9 1270.0 1422.4 1524.0 1625.6 1828.4 1930.4 2032.0 2275.8 2540.0
Max, mm
Pitch diameter limits
Series of pitch diameters
1 3 2 2 1 2 2 1 2 1
1
2 3
1
3
2
2
2
2 1
B
1
A
1
2 1 2
2 2 1 2 1
1 3 2 2 1
2 1 2 2
C
1
2 2 1 2 1 2 2 1 2 2 1 2
1 2 1 3 2 2 1
2 1
D
Degree of preferencea for pitch diameters, according to groove section
2 1 2 2 1 2 2 1 2 1
1 2 1 2 1 2 1 3 1 2 1
E
FLEXIBLE MACHINE ELEMENTS
21.31
FLEXIBLE MACHINE ELEMENTS
21.32
CHAPTER TWENTY-ONE
TABLE 21-30B Standard V-belt sections Minimum sheave diameter, in
hp range, one or more belts
Belt section
Width, a, in
Thickness, b, in
A
1 2 21 32 7 8 1 14 1 12
11 32 7 16 17 32 3 4
9.0 13.0
15–100 50–250
1
21.6
100
B C D E
3.0
1 4–10
5.4
1–25
TABLE 21-30C Inside circumferences of standard V-belts Section
Circumference, in
A B
26, 31, 33, 35, 38, 42, 46, 48, 51, 53, 55, 57, 60, 62, 64, 66, 68, 71, 75, 78, 80, 85, 90, 96, 105, 112, 120, 128 35, 38, 42, 46, 48, 51, 53, 55, 57, 60, 62, 64, 65, 66, 68, 71, 75, 78, 79, 81, 83, 85, 90, 93, 97, 100, 103, 105, 112, 120, 128, 131, 136, 144, 158, 173, 180, 195, 210, 240, 270, 300 51, 60, 68, 75, 81, 85, 90, 96, 105, 112, 120, 128, 136, 144, 158, 162, 173, 180, 195, 210, 240, 270, 300, 330, 360, 390, 420 120, 128, 144, 158, 162, 173, 180, 195, 210, 240, 270, 300, 330, 360, 390, 420, 480, 540, 600, 660 180, 195, 210, 240, 270, 300, 330, 360, 390, 420, 480, 540, 600, 660
C D E
TABLE 21-30D Length conversion dimensionsa
Belt section Quantity to be added a
A 1.3
B 1.8
C 2.9
D 3.3
Add the values given above to the inside circumference to obtain the pitch length in inches.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
E 4.5
FLEXIBLE MACHINE ELEMENTS FLEXIBLE MACHINE ELEMENTS
21.33
TABLE 21-30E Horsepower rating of standard V-belts Belt speed, ft/min Belt section A
B
C
D
E
Sheave pitch diameter, in 2.6 3.0 3.4 3.8 4.2 4.6 5.0 4.2 4.6 5.0 5.4 5.8 6.2 6.6 7.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 16.0 18.0 20.0 22.0 24.0 26.0 28.0
1000
2000
3000
4000
0.47 0.66 0.81 0.93 1.03 1.11 1.17 1.07 1.27 1.44 1.59 1.72 1.82 1.92 2.01 1.84 2.48 2.96 3.34 3.64 3.88 4.09 4.14 5.00 5.71 6.31 6.82 7.27 7.66 8.01 8.68 9.92 10.9 11.7 12.4 13.0 13.4
0.62 1.01 1.31 1.55 1.74 1.89 2.03 1.58 1.99 2.33 2.62 2.87 3.09 3.29 3.46 2.66 3.94 4.90 5.65 6.25 6.74 7.15 6.13 7.83 9.26 10.5 11.5 12.4 13.2 13.9 14.0 16.7 18.7 20.3 21.6 22.8 23.7
0.53 1.12 1.57 1.92 2.20 2.44 2.64 1.68 2.29 2.80 3.24 3.61 3.94 4.23 4.49 2.72 4.64 6.09 7.21 8.11 8.84 9.46 6.55 9.11 11.2 13.0 14.6 15.9 17.1 18.1 17.5 21.2 24.2 26.6 28.6 30.3 31.8
0.15 0.93 1.53 2.00 2.38 2.69 2.96 1.26 2.08 2.76 3.34 3.85 4.28 4.67 5.01 1.87 4.44 6.36 7.86 9.06 10.0 10.9 5.09 8.50 11.4 13.8 15.8 17.6 19.2 20.6 18.1 23.0 26.9 30.2 32.9 35.1 37.1
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
5000
0.38 1.12 1.71 2.19 2.58 2.89 0.22 1.24 2.10 2.82 3.45 4.00 4.48 4.90 3.12 5.52 7.39 8.89 10.1 11.1 1.35 5.62 9.18 12.2 14.8 17.0 19.0 20.7 15.3 21.5 26.4 30.5 33.8 36.7 39.1
FLEXIBLE MACHINE ELEMENTS
21.34
CHAPTER TWENTY-ONE
TABLE 21-30F Belt-length correction factor, K2 a Nominal belt length, in Length factor
A belts
B belts
C belts
D belts
E belts
0.85 0.90 0.95 1.00 1.05 1.10 1.15 1.20
35 38–46 48–55 60–75 78–90 96–112 120 and up
46 48–60 62–75 78–97 105–120 128–144 158–180 195 and up
75 81–96 105–120 128–158 162–195 210–240 270–300 330 and up
128 144–162 173–210 240 270–330 360–420 480 540 and up
195 210–240 270–300 330–390 420–480 540–600 660
a
Multiply the rated horsepower per belt by this factor to obtain the corrected horsepower.
Particular
Number of belts
Formula
i¼
PFa P Fc Fd
ð21-36Þ
where P ¼ drive power in kW Obtain Fd , Fc , and Fa from Tables 21-25, 21-26, and 21-27, respectively. dn1 n2
The diameter of larger pulley
D¼
Nominal pitch length of belt
ðD dÞ2 L ¼ 2C þ ðD þ dÞ þ 4C 2
For nominal inside length, nominal pitch lengths and permissible length variations for standard sizes of V-belts
Refer to Table 21-28.
Dimensions for standard V-grooved pulley
Refer to Table 21-29.
For small-diameter factor, for speed ratio and length of belt factor
Refer to Figs. 21-4a and 21-4b.
Recommend standard pitch diameters of pulleys
Refer to Table 21-30A.
For further data for design of V-belts in US Customary system units for use with Eqs (21-35a) to (21-35e)
Refer to Tables 21-30B and 21-30F, and Figs. 21-4b and 21-4c.
Center distance for a given belt length and diameters of pulleys
C¼
L ðD þ dÞ 4 8 sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi L ðD þ dÞ 2 ðD dÞ2 þ 8 4 8
ð21-37Þ ð21-38Þ
ð21-39Þ
Maximum center distance
Cmax ¼ 2ðD þ dÞ
ð21-40Þ
Minimum center distance
Cmin ¼ 0:55ðD þ dÞ þ t
ð21-41Þ
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
FLEXIBLE MACHINE ELEMENTS FLEXIBLE MACHINE ELEMENTS
Particular
21.35
Formula
MINIMUM ALLOWANCES FOR ADJUSTMENT OF CENTERS FOR TWO TRANSMISSION PULLEYS Lower limiting value
CL ¼ Cnominal 1:5%L
ð21-42Þ
Higher limiting value
CH ¼ Cnominal þ 3%L
ð21-43Þ
L ¼ 0:5 to 1%L
ð21-44Þ
INITIAL TENSION In order to give the initial tension, the belts may be stretched to Arc of contact angle
For V-belt and pulley dimensions as per SAE J 636C standard
Dd 2C Dd ¼ 1808 608 C ¼ 2 cos1
ð21-45Þ ð21-46Þ
Refer to Table 21-31A and Fig. 21-5A, Tables 21-31B and 21-31C.
SYNCHRONOUS BELT DRIVE ANALYSIS The transmission ratio of synchronous belt drive
i¼
n1 z2 d 02 ¼ ¼ n2 z1 d 01
ð21-46aÞ
where
Datum length of synchronous belt
z1 ; z2 ¼ number of teeth in smaller and larger pulley, respectively d 01 ; d 02 ¼ pitch diameter of smaller and larger pulley, respectively, m (in). p ð21-46bÞ l ¼ 2C sin þ z þ z2 þ ðz z1 Þ 2 2 1 908 2 l 2C
p ðz þ z2 Þ þ 2 1
p 2
2
ðz2 z1 Þ2 l approximate
l pzb where
The minimum number of meshing teeth
¼ angle of contact of belt, deg p ¼ pitch, m (in) zb ¼ number of teeth in belt zb ¼ 6 to 8 teeth
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð21-46cÞ ð21-46dÞ
FLEXIBLE MACHINE ELEMENTS
21.36
CHAPTER TWENTY-ONE
Particular
Formula
For S1 synchronous belts and pulley dimensions and tolerances
Refer to Figs. 21-5B, 21-5C, 21-5D, 21-5E, 21-5F and Tables 21-31D(a) to 21-31D(i).
For the standard pitch according to ISO 5296 Standard
Refer to Table 21-31D( j).
TABLE 21-31D( j) Standard pitch value Extra light XL
Light L
Heavy H
Extra heavy XH
Double extra heavy XXH
Belt pitch, in
1 4
3 8
1 2
7 8
1 14
Nominal power kW
0.15
1.0
10
40
107
TABLE 21.31B Standard belt center distance tolerances Belt length
Tolerance on center distance
mm
in
mm
in
1270 >1270 to 1524, incl >1524 to 2032, incl >2032 to 2540, incl
50 >50 to 60, incl >60 to 80, incl >80 to 100, incl
3.0 4.1 4.8 5.6
0.12 0.16 0.19 0.22
TABLE 21.31C Maximum center distance for belts in a set SAE size SI units
fps units
mm
in
6A 8A 10A 11A 13A 15A 17A 20A 23A
0.250 0.315 0.380 0.440 0.500 11/16 (0.600) 3/4 (0.660) 7/8 (0.790) 1 (0.910)
0.8 0.8 1.0 1.0 1.0 1.5 1.5 1.5 1.5
0.03 0.03 0.04 0.04 0.04 0.06 0.06 0.06 0.06
Source: V-belts and Pulleys, SAE J 636 C. Reprinted with permission from SAE Handbook, Part I, 1977, Society of Automotive Engineers, Inc.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
0.250 0.315 0.380 0.440 0.500 11/16 (0.600)
3/4 (0.660)
7/8 (0.79)
1 (0.900)
6A 8A 10A 11A 13A 15A
17A
20A
23A
57 57 61 70 76 76 >102 >152 76 >102 >152 89 >114 >152 102 >152 >203
mm 2.25 2.25 2.40 2.75 3.00 3.00 >4.00 >6.00 3.00 >4.00 >6.00 3.50 >4.50 >6.00 4.00 >6.00 >8.00
in 36 36 36 36 36 34 36 38 34 36 38 34 36 38 34 36 38
Groove angle deg. 0.5 A, deg 6.3 8.0 9.7 11.2 12.7 — 15.2 — — 16.8 — — 20.0 — — 23.1 —
mm 0.248 0.315 0.380 0.441 0.500 0.597 — — 0.660 — — 0.785 — — 0.910 — —
in
Effective groove width W
7 9 11 13 14 — 14 — — 15 — — 18 — — 21 —
mm 0.276 0.345 0.433 0.512 0.551 0.551 — — 0.630 — — 0.709 — — 0.827 — —
in
Groove depth minimum D
5.558 7.142 7.938 9.525 11.113 — 12.70 — — 14.288 — — 17.463 — — 20.638 —
0.013 mm 0.2188 0.2812 0.3125 0.3750 0.4375 0.500 — — 0.5625 — — 0.6875 — — 0.8125 — —
0.0005 in
Ball or rod diameter d
4.16 5.63 3.77 5.88 7.99 6.42 7.02 7.56 8.21 8.82 9.38 11.77 12.42 13.02 15.67 16.33 16.94
mm
2K d
0.164 0.222 0.154 0.231 0.314 0.258 0.280 0.302 0.328 0.352 0.374 0.472 0.496 0.520 6.616 0.642 0.666
in
1.0 1.3 1.5 1.8 2.0 — 0 — — 6.5 — — 1.0 — — 1.5 —
mm
2X b
0.04 0.05 0.06 0.07 0.08 0.00 — — 0.02 — — 0.04 — — 0.06 — —
in
8.00 10.49 13.71 15.01 16.79 — 19.76 — — 21.36 — — 24.54 — — 27.71 —
mm
0.315 0.413 0.541 0.591 0.661 0.778 — — 0.84 — — 0.966 — — 1.091 — —
in
Groove spacinga 0:38 S
b
Pulley effective diameters below those recommended should be used with caution, because power transmission and belt life may be reduced. 2X is to be subtracted from the effective diameter to obtain ‘‘pitch diameter’’ for speed ratio calculation. c These values are intended for adjacent grooves of the same effective width ðWÞ. Choice of pulley manufacture or belt design parameter may justify variance from these values. The S dimension shall be the same on all multiple groove pulleys in a drive using matched belts. d 2K dimensions are calculated in millimeters.
a
fps units
SI units
SAE size
Recommended minimum effective diameter
FIGURE 21-5A V-belt pulley dimensions.
1. The sides of the groove are to be 125 min (3.2 mm) A. A. maximum. 2. Radial run-out not to exceed 0.015 in (0.38 mm) full indicator movement (FIM). Axial run-out is not to exceed 0.015 in (0.38 mm) FIM. Run-out in the two directions is measured separately with a ball mounted under spring pressure to follow the groove as the pulley is rotated. Diameter, load, and overhang conditions may require or permit variations in the above specified run-out limits. 3. Bottom corner radii optional but, if used, it shall be below the depth, D. 4. In pulleys for use with belts in multiple on common centers, the diameters over the ball gages are not to vary from groove to groove in the same pulley more than 0.002 in/in (0.05 mm/25 mm) of diameter, with top limit of 0.012 in (0.30 mm) for diameters 6 in (152 mm) and above. 5. Centerline of groove is to be 90 28 with pulley axis. 6. The X dimension is radial. 2X is to be subtracted from the effective diameter to obtain ‘‘pitch diameter’’ for speed ratio calculation.
Notes:
FLEXIBLE MACHINE ELEMENTS
21.37
FLEXIBLE MACHINE ELEMENTS
21.38
CHAPTER TWENTY-ONE
Particular
Formula
For determining the center distance of synchronous belt pulleys.a
Refer to Fig. 21-5F.a
The distance from belt pitch line to the pulley—tip circle radius (Fig. 21-5C)
a¼
d 0 do 2 2
ð21-46eÞ
The permissible initial tensioning force range FA
Fu FA 1:5Fw
ð21-46f Þ
where Fu ¼ the transmissible peripheral force, kN (lbf ) Fw ¼ the effective shaft tensioning force, kN (lbf ) F1 ffi5 F2
The belt side-force ratio
ð21-46gÞ
where F1 ¼ tension belt on tight side of synchronous belt, kN (lbf) F2 ¼ tension belt on slack side of synchronous belt, kN (lbf) a
Courtesy: J. E. Shigley and C. R. Mischke, Standard Handbook of Machine Design, 2nd edition, McGraw-Hill Publishing Company, New York, 1996.
FIGURE 21-5B Pulley generating tool rack form
TABLE 21.31D (a) Pulley generating tool rack form dimensions (mm)
Pulley section
Diameter range (No. of grooves)
Pb Pitch 0.003
0.25 deg
hg þ0.05 0.00
bg þ0.05 0.00
rb 0.03
rt 0.03
2a
ST SU SU STA
10 14–19 >19 19
9.525 12.700 12.700 9.525
40 40 40 40
2.13 2.59 2.59 2.13
3.10 4.24 4.24 3.10
0.86 1.47 1.47 0.86
0.53 1.04 1.42 0.71
0.762 1.372 1.372 1.372
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
FLEXIBLE MACHINE ELEMENTS FLEXIBLE MACHINE ELEMENTS
21.39
The pitch line is situated outside the pulley-tip-circle radius at a distance equaling that of the neutral axis r0 ¼ d 02 ¼ pulley pitch radius do ¼ pulley outside diameter a ¼ distance between the pitch line of belt and the pulley tip circle radius pc ¼ pitch ¼ pitch angle (Fig. 21-5C)
FIGURE 21-5C Pulley dimensions
TABLE 21.31D (b) Pulley tolerance (mm) Pitch to pitch tolerance Outside diameter range
Adjacent grooves
Accumulative over 908
50, incl >50 to 100, incl >100 to 175, incl >175 to 300, incl
0.03 0.03 0.03 0.03
0.09 0.11 0.13 0.15
Outside diameter Up to 50 mm, incl For each additional 25 mm or portion thereof Outside diameter runout Up to 75 mm, incl outside diameter For each additional 25 mm or portion thereof Axial runouta (side wobble) Up to 250 mm, incl outside diameter For each additional 25 mm outside diameter over 220 mm ad 0.01 mm Diametrical taper 0.01 mm per 10 mm of face width Groove helix 0.01 mm per 10 mm of face width a
Tolerance þ0.05 to 0.00 mm þ0.025 to 0.00 mm 0.08 mm (max) 0.01 mm (max) 0.02 mm per 25 mm of diameter add 0.01 mm
Full indicator movement
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
FLEXIBLE MACHINE ELEMENTS
21.40
CHAPTER TWENTY-ONE
TABLE 21.31D (d) Belt width tolerances (mm) TABLE 21.31D (c) Nominal belt dimensions (mm) (Fig. 21-5C)
Belt length range
Belt section
Pitch
hb
2 deg
ht
bt
rbb
rbt
ST SU STA
9.525 12.700 9.525
3.6 4.1 4.1
40 40 40
1.9 2.3 1.9
0.5 4.4 3.2
0.5 1.0 0.5
1.0 0.5
Belt width
840, incl
>840 to 1680, incl
40, incl
þ0.6 0.6 þ0.8 0.8
þ0.6 0.6 þ1.0 1.0
>40 to 50, incl
TABLE 21.31D (e) Measuring pulley dimensions, (mm)
Belt section
No. of grooves
Pitch circumference
Outside diam, 0.013
Outside diam, runout FIM,a max
ST SU STA
16 20 20
152.40 254.00 190.50
47.748 79.479 59.266
0.013 0.013 0.013
a b
Axial runout (side wobble) FIM,a max
Min clearanceb
0.025 0.025 0.025
0.33 0.38 0.33
Full indicator movement. See Fig. 21.5.
TABLE 21.31D (f ) Total measuring force (N) Belt width (mm) Belt section
8
10
12
14
16
18
19
20
22
25
28
30
33
35
40
45
50
ST SU STA
55 — —
75 — —
100 245 245
125 300 300
145 370 370
165 420 420
175 445 445
185 475 475
210 530 530
240 610 610
275 700 700
295 750 750
330 840 840
355 900 900
410 1050 1050
470 1200 1200
530 1350 1350
TABLE 21.31D (g) Minimum recommended pulley diameters and flange dimensions (mm) Pulley section
Pitch diam
Min. grooves
Min. pitch diam
Min. outside diam
Min. flange thickness
Min. flange height
ST SU STA
9.525 12.700 9.525
10 14 19
30.32 56.60 57.61
29.56 55.23 56.23
1.3 1.3 1.3
1.6 2.0 2.4
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
FLEXIBLE MACHINE ELEMENTS FLEXIBLE MACHINE ELEMENTS
21.41
TABLE 21.31D (h) Belt length tolerances (mm)
FIGURE 21-5D Belt section
Belt length range
Tolerance on belt pitch length
400, incl >400 to 520, incl >520 to 770, incl >770 to 1020, incl >1020 to 1270, incl >1270 to 1525, incl >1525 to 1780, incl >1780 to 2040, incl >2040 to 2300, incl >2300 to 2560, incl >2560 to 3050, incl
0.46 0.51 0.61 0.66 0.76 0.81 0.86 0.91 0.97 1.02 1.12
TABLE 21.31D (i) Pulley groove tolerances (mm) (Fig. 21-5D) Pulley section
Top curvature band width
Max. top radius tolerance
Flank band width
Bottom curvature band width
Depth band width
Upper reference depth
ST
0.04
0.1 0.0
0.05
0.05
0.05
0.5
SU
0.04
0.1 0.0
0.05
0.05
0.05
0.8
STA
0.04
0.1 0.0
0.05
0.05
0.05
0.5
FIGURE 21-5E Pulley groove profile. Source: Synchronous Belts and Pulleys, SAE J 1313 Oct. 80. Reprinted with permission from SAE Handbook, Part I, Society of Automotive Engineers, Inc., 1997.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
FLEXIBLE MACHINE ELEMENTS
21.42
CHAPTER TWENTY-ONE
FIGURE 21-5F Determination of center distance of synchronous belts. Source: J. E. Shigley and C. R. Mischke, Standard Handbook of Machine Design, 2nd edition, McGraw-Hill Book Company, New York, 1996.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
FLEXIBLE MACHINE ELEMENTS FLEXIBLE MACHINE ELEMENTS
Particular
21.43
Formula
The power transmitted by synchronous belt
P¼
Ps Cs
ð21-46hÞ
where Ps ¼ standard capacity of the selected belt, kW (hp) Cs ¼ service correction factor
CONVEYOR (Tables 21-12, 21-14, 21-20, and 21-31) The average capacity, C, of conveyor in m3 (in)3 per hour at 0.5 m/s (100 fpm) speed For flat belts
For belts on idlers
For belts on threeto five-step idlers
when a1 in m
C ¼ 70a21
when a1 in in
C¼
when a1 in mm
C ¼ 0:7
when a1 in m
C ¼ 88a21
when a1 in in
C ¼ 3465a
when a1 in mm
C ¼ 0:88
when a1 in m
C ¼ 132a21 to 154a21
when a1 in in
C¼
when a1 in mm
C ¼ 1:32 105 a21 to 1:54 105 a21
2756a21 105 a21
2
5158a21
105 a21
to
6063a21
SI
ð21-47aÞ
USCS
ð21-47bÞ
SI
ð21-47cÞ
SI
ð21-48aÞ
USCS
ð21-48bÞ
SI
ð21-48cÞ
SI
ð21-49aÞ
USCS
ð21-49bÞ
SI
ð21-49cÞ
TABLE 21-31 Maximum inclination of belt conveyors
Material conveyed
Maximum inclination, deg
Material conveyed
Maximum inclination, deg
Briquets and egg-shaped material Wet-mixed concrete Sized coal Washed and screened gravel Loose cement Crushed and screened coke Sand
12 15 8 18 20 20 20
Glass batch Run-of-mine coal Run-of-bank gravel Crushed ore Crushed stone Tempered foundry sand Wood chips
20 22 22 25 20 25 28
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
FLEXIBLE MACHINE ELEMENTS
21.44
CHAPTER TWENTY-ONE
Particular
The power required by a horizontal belt conveyor
Formula
d vL P ¼ ðWI þ 2WB þ WL Þ þ PT D 1000 SI
ð21-50aÞ
where W in N/m, v in m/s, L in m, and P in kW d vL P ¼ ðWI þ 2WB þ WL Þ þ PT D 102 Metric
ð21-50bÞ
where W in kgf/m, v in m/s, L in m, and P in kW FIGURE 21-5 Rockwood pivoted motor base.
d vL P ¼ ðWI þ 2WB þ WL Þ þ PT D 33;000 USCS
ð21-50cÞ
where W in lbf/in, v in ft/min, L in in, and P in hp where ¼ coefficient of friction of idler bearing ¼ 0:15 for roller bearings ¼ 0:35 for grease lubricated idlers
SHORT CENTER DRIVE Rockwood drive (Fig. 21-5) The value of F1
The value of F2
The pivot-arm length for motor of weight W
F1 ¼
aW þ cFn cþb
ð21-51Þ
F2 ¼
aW bFn cþb
ð21-52Þ
F Fn b 1 þ c F 2 a¼ F1 W 1 F2 where Fn ¼ required net pull, kN (lbf ) W ¼ weight of the motor, kN (lbf )
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð21-53Þ
FLEXIBLE MACHINE ELEMENTS FLEXIBLE MACHINE ELEMENTS
Particular
21.45
Formula
ROPES Manila rope (Tables 21-32 and 21-34) Pu ¼ 48053d 2
The ultimate load
SI
ð21-54aÞ
USCS
ð21-54bÞ
where d in m and Pu in kN Pu ¼ 7000d 2
where d is diameter of rope in in and Pu in lbf F þ Fc 2 where d in m and F1 in N F F1 ¼ 200d 2 ¼ F þ þ Fc 2 where d in in and F1 in lbf
The maximum tension on the tight side
F1 ¼ 137:5 104 d 2 ¼ F þ
F1 ¼ 0:14d 2
SI
ð21-55aÞ
USCS
ð21-55bÞ
Customary Metric
ð21-55cÞ
where d in mm and F1 in kgf P ¼ vð0:6 6:7 104 Fc Þ
Power transmitted
SI
ð21-56aÞ
where Fc in N, P in kW, and v in m/s 2v ð200 Fc Þ 105 where Fc in lbf and P in hp
P¼
USCS
ð21-56bÞ
Refer to Table 21-32 for Fc ¼ values of coefficients for manila rope
Hemp ropes d 2 4 br where
The load on the hemp rope
ð21-57Þ
F¼
br ¼ breaking stress, MPa (psi) ¼ 9:81 MPa (1.42 kpsi) for white rope ¼ 8:82 MPa (1.28 kpsi) for tarred rope
TABLE 21-32 Value of coefficient Fc for manila rope Velocity, mps Coefficient, Fc
7.50 2.96
10.00 5.40
12.50 8.44
15.00 12.60
17.50 16.10
20.00 21.00
22.50 26.55
25.00 32.89
27.50 39.69
30.00 41.17
32.50 55.34
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
35.00 64.40
FLEXIBLE MACHINE ELEMENTS
21.46
CHAPTER TWENTY-ONE
Particular
Formula
The load on the hemp rope in terms of nominal diameter of rope
F ¼ 7:7 106 d 2 for white rope
SI
ð21-58aÞ
USCS
ð21-58bÞ
SI
ð21-58cÞ
USCS
ð21-58dÞ
where d in m and F in N F ¼ 1120d 2 where d in in and F in lbf F ¼ 7 106 d 2 for tarred rope where d in m and F in N F ¼ 1020d 2 where d in in and F in lbf
HOISTING TACKLE The effort on the rope in case of single-sheave pulley (Fig. 21-6)
P¼
D þ d þ 2s Q ¼ CQ D d 2s0
ð21-59Þ
Refer to Table 21-33 for C.
FIGURE 21-6 Rope passing over sheave.
FIGURE 21-7 Load on a hoist.
The effort on the rope in a hoist for raising the load (Fig. 21-7)
P¼
Cn ðC 1Þ Q Cn 1
ð21-60Þ
The pull required on the rope in a hoist for lowering the load
P0 ¼
C1 Q CðCn 1Þ
ð21-61Þ
TABLE 21-33 Value of C Manila rope Wire rope Dry chain Greased chain
1.15 1.07 1.10 1.04
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
FLEXIBLE MACHINE ELEMENTS FLEXIBLE MACHINE ELEMENTS
Particular
Efficiency of hoist
21.47
Formula
¼
Cn 1 nCn ðC 1Þ
ð21-62Þ
where n ¼ number of times a rope passes over a sheave
Continuous system Fig. (21-8)
In the continuous system one continuous rope passes around the driving and driven sheaves several times, in addition to making one loop about tension pulley located on a traveling carriage.
FIGURE 21-8 Continuous system.
The relation between ultimate load, bending and service load in wire rope
Pu Pb þ Ps n
The bending load
Pb ¼ kA
Another formula connecting ultimate strength of rope, tensile load on rope (P), dimensions of the rope, wire, and sheave diameter
ð21-63aÞ
dw D where k ¼ 82728:5 MPa (12 Mpsi)
Pu ¼
1 n0
d D
P
dw d
ð21-63bÞ
ð21-63cÞ
E0 u
where D ¼ minimum diameter of sheave or pulley, m (in) n0 ¼ stress factor ¼ nkd n ¼ safety factor kd ¼ duty factor obtainable from Table 21-35 Area of useful cross-section of the rope
The approximate ultimate strength of plow-steel ropes
A¼
u n0
d D
P
dw E0 d
ð21-63dÞ
Pu ¼ 524;000d 2 for 6 7 and 6 19 ropes SI ð21-64aÞ where Pu in kN and d in m Pu ¼ 76d 2
USCS
ð21-64bÞ
SI
ð21-64cÞ
where Pu in lbf and d in in Pu ¼ 517;800d 2 for 6 37 ropes where Pu in kN and d in m
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
FLEXIBLE MACHINE ELEMENTS
TABLE 21-34 Manila rope Breaking load Pitch Size designation (C)a mm
Number of yards per strand
25 32 35 38 41 44 51 57 64 70 76 83 89 95 102 108 114 121 127 140 152 165 178 203 229 254 279 305 330 356 381 406 432 457
3 4 5 6 7 8 11 13 17 20 24 28 33 37 43 48 54 60 67 81 96 113 131 171 216 267 323 384 451 523 600 683 771 864
a
Linear density kilotex 53 66 89 107 120 138 191 226 294 346 413 489 569 635 742 831 933 1,090 1,159 1,329 1,661 1,954 2,265 2,958 3,736 4,620 5,583 6,640 7,800 9,044 10,376 11,811 13,335 14,943
Grade 1 2.6C a mm
3.2C a mm
20.7–25.5 26.5–32.6 29.0–36.7 31.5–38.7 34.0–41.8 36.4–44.8 42.2–52.0 47.2–58.1 53.0–65.2 58.0–71.3 62.9–77.4 68.7–M.6 73.7–90.7 78.7–96.8 84.5–104.0 89.4–110.1 94.4–116.2 100.2–123.3 105.2–129.4 116.0–142.7 125.9–154.9 136.6–168.2 147.4–181.4 168.1–206.9 189.6–233.8 210.3–258.8 231.0–284.3 252.5–360.5 273.2–336.3 294.8–362.8 315.5–388.3 336.2–413.8 357.7–440.3 378.4–465.7
kN 5.4 6.9 8.9 10.5 12.3 14.2 19.9 23.9 31.6 37.6 44.8 52.1 59.5 68.0 76.5 85.2 95.4 105.1 116.1 139.0 163.9 190.8 219.7 282.5 353.2 432.9 520.1 616.8 719.9 829.5 953.1 1081.6 1216.1 1362.1
Grade 2
kgf
kN
546 711 902 1,067 1,257 1,448 2,032 2,439 3,226 3,836 4,572 5,309 6,071 6,935 7,798 8,687 9,729 10,719 11,837 14,174 16,714 19,457 22,404 28,805 36,019 44,147 53,038 62,893 73,409 84,586 97,185 10,292 24,009 38,894
4.7 6.2 7.8 9.3 11.0 12.6 17.7 21.2 28.1 33.4 39.9 46.3 53.1 60.5 68.0 75.7 84.7 93.4 103.1 123.6 145.5 169.4 195.3 251.1 313.9 384.6 462.3 548.0 639.7 737.3 846.9 961.8 1081.1 1210.6
kgf 483 635 800 953 1,118 1,283 1,803 2,159 2,870 3,404 4,064 4,725 5,410 5,172 6,935 7,722 8,636 9,525 10,516 12,599 14,834 17,273 19,915 25,604 32,005 39,219 47,145 55,883 65,230 75,188 86,364 98,049 110,241 123,450
Grade 3 kN 4.1 5.5 6.9 8.2 9.6 11.0 15.4 18.4 24.7 29.1 34.9 40.6 46.3 52.8 59.5 66.3 74.2 81.7 95.2 108.1 127.0 148.0 170.9 219.7 274.5 336.3 404.5 479.3 559.5 645.2 740.8 841.5 946.1 1059.2
kgf 419 559 699 838 978 1,118 1,575 1,880 2,515 2,972 3,556 4,140 4,725 5,383 6,071 6,757 7,570 8,332 9,703 11,024 12,955 15,088 17,425 22,404 27,992 34,292 41,252 48,872 57,051 65,789 75,543 85,805 96,474 108,006
C stands for nominal circumference of the rope.
TABLE 21-35 Duty factor and life of mechanism of electric wire rope hoists Duty factor
Average life
Mechanism class
Strength
Wear
Running h/day
Total life h, over
1 2 3 4
1.0 1.2 1.4 1.6
0.4 0.5 0.6 0.7
0.5 0.5 3.0 over 6
2500 9000 20000 40000
Source: IS 3938, 1967.
21.48 Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
FLEXIBLE MACHINE ELEMENTS
21.49
FLEXIBLE MACHINE ELEMENTS
Particular
Formula
Pu ¼ 75d 2
USCS
ð21-64dÞ
where Pu in lbf and d in in The nominal bearing pressure
p¼
2Pt Cu Dr Di
ð21-65Þ
where C ¼ 0:0015 Refer to Table 21-33 for C.
DRUMS Wire rope drum The number of turn on the drum for one rope member (Fig, 21-9) The length of the drum
iS þ2 D 2iS þ 7 p for one rope l¼ D 2iS þ 12 p þ p1 for two ropes l¼ D
n¼
ð21-66Þ ð21-67aÞ ð21-67bÞ
where S ¼ height to which the load is raised, m (in)
FIGURE 21-9 Wire rope drum
The minimum diameter of groove of sheaves and drums (d)
dgs ¼ d þ 0:8 mm to d0 þ 3:2 mm
The thickness of wall of drum made of cast iron
h ¼ 0:02D þ 0:6 to 1:0 cm
ð21-68Þ
The outside diameter of the drum (Fig. 21-9)
Do ¼ ðD þ 6dÞ
ð21-69Þ
The depth of groove in drum or sheave
h1 < 1 1:5d
ð21-70Þ
The outside diameter of sheave (dos )
dos ¼ ds þ 2h1 where ds ¼ minimum diameter of sheave, m
Stresses developed in drum The maximum bending stress
The maximum torque on the drum
8FlD ðD4 D4i Þ Dþd Mt ¼ F 2 b ¼
where d ¼ diameter of rope
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð21-71Þ ð21-72Þ
FLEXIBLE MACHINE ELEMENTS
21.50
CHAPTER TWENTY-ONE
Particular
The maximum shear stress The crushing stress
The combined stress according to normal stress theory
Formula
¼
16Mt D ðD4 D4i Þ
c ¼
ð21-73Þ
F ph
ð21-74Þ
where p ¼ pitch of the grooves on the drum qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ð21-75Þ ¼ 2b þ 2c þ 4 2 d where d ¼ design stress
HOLDING CAPACITY OF WIRE ROPE REELS The rope capacity (L) in meters in any size length may be calculated by the formula
L¼
ðH þ Dr ÞWH 1000d
ð21-76Þ
WIRE ROPE CONSTRUCTION For wire rope strand construction, diameter, weight, breaking load for different purposes
Refer to Tables 21-36 to 21-39 and Figs. 21-10 to 21-16.
For wire rope data, factor of safety, values of C, and application
Refer to Tables 21-40 to 21-45.
CHAINS Hoisting chains The working load for the ordinary steel common coil chain
Pw ¼ 84;800d 2
SI
ð21-77aÞ
USCS
ð21-77bÞ
Customary Metric
ð21-77cÞ
where d in m and Pu in kN Pw ¼ 12;300d 2 where d in in and Pu in lbf Pw ¼ 8:65d 2
where d in mm and Pu in kgf The working load for stud chain
Pw ¼ 60;310d 2
SI
ð21-78aÞ
USCS
ð21-78bÞ
where d in m and Pu in kN Pw ¼ 8750d 2 where d in in and Pu in lbf Pw ¼ 6:15d 2
Customary Metric ð21-79Þ
where d in mm and Pu in kgf
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
FLEXIBLE MACHINE ELEMENTS
TABLE 21-36 Steel wire ropes (from Indian standards) Nominal breaking strength of rope Tensile strength of wire Diameter of rope mm
Strand construction Group 6 19 6 12/6/1 6 1216 þ 6F/ 1 6 9/9/1 6 10=5 þ 5F/1 (Fig. 21-10)
Group 6 37 6 14/7 and 7/7/1; 6 14=7þ 7F/7/1; 6 1618þ 8F6/1 6 15/15/6/ 1; 6 18=12=6=1; 6 16/8 and 8/1/1 (Fig. 21-11)
1568–1716 MPa (160–175 kgf/mm2)
Approx. weight N/m
kgf/m
kN
tf
1716–1863 MPa (175–190 kgf/mm2) kN
tf
General Engineering Purposes 8 10 12 14 16 18
2.4 4.3 5.3 7.5 9.2 12.3
0.24 0.44 0.54 0.76 0.94 1.25
33.3 64.7 84.3 106.9 131.4 189.3
3.4 6.6 8.6 10.9 13.4 19.3
36.3 70.6 92.2 116.7 144.2 206.9
3.7 7.2 9.4 11.9 14.7 21.1
20 22 24 25 29 32 35 38 41 44 48 51 54 10 12 14 16 18 20 22 24 25 29 32 35 38 41 44 48 51 54 57 64 70
14.4 18.0 20.9 23.6 29.9 36.8 44.6 53.3 62.5 72.4 83.2 94.5 106.8 4.4 5.9 7.3 9.0 12.3 15.5 17.7 20.6 32.2 29.3 36.2 43.9 52.2 61.3 71.0 81.6 92.8 104.7 117.5 145.0 175.3
1.47 1.84 2.13 2.41 3.05 3.75 4.55 5.43 6.37 7.38 8.48 9.64 10.89 0.45 0.60 0.74 0.92 1.32 1.58 1.81 2.10 2.37 2.99 3.69 4.48 5.32 6.25 7.24 8.32 9.46 10.68 11.98 14.79 17.98
221.6 254.0 294.2 333.4 423.6 522.7 623.5 752.2 886.5 1026.8 1175.8 1345.6 1514.1 60.8 79.4 101.0 124.5 179.5 209.9 241.2 278.5 318.7 398.2 493.3 598..2 712.0 836.5 971.8 1116.0 1266.0 1434.1 1604.4 1982.2 2401.6
22.6 25.9 30.0 34.0 43.2 53.3 64.6 76.7 90.4 104.7 119.9 137.2 154.4 6.2 8.1 10.3 12.7 18.3 21.4 24.6 28.4 32.5 40.6 50.3 61.0 72.6 85.3 99.1 113.8 129.1 146.3 163.6 202.2 244.9
241.2 278.5 323.6 368.7 462.9 570.7 692.3 826.7 971.8 1125.8 1295.5 1474.9 1664.2 66.7 87.3 110.8 136.3 196.1 230.5 263.8 304.0 349.1 438.4 543.3 658.0 782.6 916.9 1065.9 1225.8 1394.5 1574.0 1763.2 2172.2 2630.1
24.6 28.4 33.0 37.6 47.2 58.2 70.6 84.3 99.1 114.8 132.1 150.4 269.7 6.8 8.9 11.3 13.9 20.0 23.5 26.9 31.0 35.5 44.7 55.4 67.1 79.8 93.5 108.7 125.0 142.2 160.5 179.8 221.5 288.0
FIGURE 21-10 Round strand group 6 19.
FIGURE 21-11 Round strand group 6 37.
21.51 Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
FLEXIBLE MACHINE ELEMENTS
21.52
CHAPTER TWENTY-ONE
TABLE 21-36 Steel wire ropes (from Indian standards) (Cont.) Nominal breaking strength of rope Tensile strength of wire Diameter of rope mm
Strand construction
1568–1716 MPa (160–175 kgf/mm2)
Approx. weight N/m
kgf/in
1716–1863 MPa (175–190 kgf/mm2)
kN
tf
kN
tf
6 24 Fiber Core (Fig. 21-12)
8 10 12 14 16 18 20 22 24 25 29 32 35 38 41 44 48 51 54
2.1 3.1 5.3 6.6 7.8 11.7 13.8 16.1 18.2 20.4 26.3 31.8 38.8 46.7 54.0 63.1 73.0 82.0 93.4
0.21 0.32 0.54 0.67 0.80 1.19 1.41 1.64 1.86 2.08 2.68 3.24 3.96 4.76 5.51 7.43 7.44 8.36 9.52
29.4 53.9 74.5 92.2 112.8 164.8 196.1 228.5 258.9 289.3 368.7 448.2 548.2 662.9 762.0 891.4 1025.0 1166.0 1315.1
3.0 5.5 7.6 9.4 11.5 16.8 20.0 23.3 26.4 29.5 37.6 45.7 55.9 67.6 77.7 90.9 104.6 118.9 134.1
32.4 59.8 81.4 102.0 123.6 181.4 214.8 249.1 278.5 313.8 403.1 493.3 603.1 722.7 836.5 976.7 1125.8 1274.9 1443.5
3.3 6.1 8.3 10.4 12.6 18.5 21.9 25.4 28.4 32.0 41.1 50.3 61.5 73.7 85.3 99.6 114.8 130.0 147.3
Group 11 F 6 9/12/; 6 10/12/; 6 12/12/; (Fig. 21-14)
14 16 18 20 22 24 25 29 32 35 38 41 44 48 51
8.3 10.2 13.7 16.3 20.1 23.2 26.4 33.2 41.2 49.6 59.0 69.1 81.0 92.7 105.0
0.85 1.04 1.40 1.66 2.05 2.37 2.69 3.39 4.20 5.05 6.02 7.05 8.26 9.45 10.71
112.8 143.2 208.9 246.1 284.4 323.6 363.8 462.9 572.7 692.5 816.9 966.9 1116.0 1275.2 1454.3
11.5 14.6 21.3 25.1 29.0 33.0 37.1 47.2 58.4 69.6 83.3 98.6 113.8 130.1 148.3
121.6 155.9 224.6 263.8 308.9 349.1 393.2 498.2 622.7 737.5 886.5 1036.6 1216.0 1374.9 1574.0
12.4 15.9 22.9 26.9 31.5 35.6 40.1 50.8 53.5 75.2 90.4 105.7 124.0 140.2 160.5
FIGURE 21-12 Round strand group 6 24 fiber core.
FIGURE 21-14 Compound flattened strand, group II F.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
FLEXIBLE MACHINE ELEMENTS
21.53
FLEXIBLE MACHINE ELEMENTS
TABLE 21-36 Steel wire ropes (from Indian standards) (Cont.) Nominal breaking strength of rope Tensile strength of wire Diameter of rope mm
N/m
kgf/in
17 7, 18 7 (Fig. 21-15)
8 10 12 14 16 18 20 22 24 25 29 32 35 39
2.5 4.1 5.6 7.8 9.6 12.9 15.2 18.9 21.9 24.8 31.4 38.8 46.8 55.9
34 7 (Fig. 21-13)
15 18 20 22 24 25 29 32 35 38 44 51
10.2 13.4 16.0 19.8 22.8 26.0 32.9 40.6 49.0 58.3 79.5 103.9
Strand construction
1568–1716 MPa (160–175 kgf/mm2)
Approx. weight kN
tf
1716–1863 MPa (175–190 kgf/mm2) kN
tf
0.25 0.42 0.57 0.80 0.98 1.32 1.55 1.93 2.23 2.53 3.20 3.96 4.77 5.70
35.3 68.6 87.3 113.8 142.2 201.0 237.3 268.7 313.8 359.9 443.3 548.2 672.7 802.2
3.6 7.0 8.9 11.6 14.5 20.5 24.2 27.4 32.0 36.6 45.2 55.9 68.6 81.8
1.04 1.37 1.63 2.02 2.32 2.65 3.35 4.14 5.00 5.95 8.21 10.59
134.4 193.2 225.6 263.8 299.1 344.2 433.5 538.4 647.2 771.8 1025.8 1334.7
13.7 19.7 23.0 26.9 30.5 35.1 44.2 54.9 66.0 78.7 104.6 136.1
FIGURE 21-16(a) Metal core. FIGURE 21-13 Multistrand nonrotating ropes 34 7.
FIGURE 21-16(b) Metal core. FIGURE 21-15 Multistrand nonrotating ropes 17 7 and 18 7.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
FLEXIBLE MACHINE ELEMENTS
21.54
CHAPTER TWENTY-ONE
TABLE 21-36 Steel wire ropes (from Indian standards) (Cont.) Nominal breaking strength of rope Tensile strength of wire
Diameter of rope mm
N/m
Group 6 19 6 19 (12/6/1); 6 19 filler wire, 6 19 (9/9/1) Seale
6 8 10 12 14 16 18 20 21 25
1.5 2.5 3.9 5.4 7.4 9.3 12.2 14.2 18.1 22.1
Group 8 19 8 19 filler wire; 8 19 (9/9/1) Seale
8 10 12 14 16 18 20 22 25
2.0 3.4 4.9 6.9 8.3 10.9 13.2 16.7 19.6
0.20 0.35 0.50 0.70 0.85 1.10 1.35 1.70 2.00
10 12 14 16 18 20 22 25
4.4 5.9 8.3 10.3 13.7 16.2 19.6 24.5
0.45 0.60 0.85 1.05 1.40 1.65 2.00 2.50
Strand construction
6 25 flattened strand
Approx. weight kgf/m
1079–1226 MPa (110–125 kgf/mm2) kN
1226–1372 MPa (125–140 kgf/mm2)
tf
kN
tf
1.5 2.3 4.0 5.5 7.7 9.6 12.7 15.0 18.8 23.3
16.7 26.5 44.1 58.8 86.3 107.9 139.5 166.7 207.9 255.0
1.7 2.7 4.5 6.0 8.8 11.4 14.2 17.0 21.2 26.0
21.3 37.6 49.0 68.6 88.3 112.8 137.3 181.4 01.0
2.2 3.8 5.0 7.0 9.0 11.1 14.0 18.5 20.6
24.5 42.2 53.9 79.4 98.1 132.4 152.0 205.9 235.4
2.5 4.3 5.5 8.1 10.0 13.5 15.5 21.0 24.0
42.2 56.9 79.4 102.9 137.3 161.8 203.0 243.2
4.3 5.8 8.1 10.5 14.0 16.5 20.7 24.8
49.0 64.7 90.2 117.7 151.0 184.4 230.5 272.6
5.0 6.6 9.2 12.0 15.4 18.8 23.5 27.8
Lifts and Hoists 0.15 14.7 0.25 22.6 0.40 39.2 0.55 53.9 0.75 75.5 0.95 94.1 1.25 124.5 1.45 147.1 1.85 184.4 2.25 225.6
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
FLEXIBLE MACHINE ELEMENTS
TABLE 21-36 Steel wire ropes (from Indian Standard) (Cont.) Nominal breaking strength of rope Tensile strength of wire
Strand construction 67
Diameter Approx. weight of rope, mm N/m kgf/m
1225.8–1373.0 MPa (125–140 kgf/mm2)
1373.0–1520.0 MPa (140–155 kgf/mm2)
1520.0–1667.0 MPa (155–170 kgf/mm2)
1667.0–1814.2 MPa (170–185 kgf/mm2)
kN
kN
kN
tf
kN
tf
19 20 22 24 25 26 27 28 31 35
Winding purposes in mines 166.7 17.0 183.5 18.9 192.2 19.6 211.8 21.6 224.6 22.9 250.1 25.5 254.0 25.9 283.4 28.9 283.3 29.5 325.6 33.2 310.0 31.6 341.3 34.8 332.4 33.9 366.7 37.4 368.7 37.6 410.0 41.8 453.1 46.2 512.8 52.3 553.1 56.4 618.9 63.1
199.1 230.4 268.7 309.1 349.1 399.1 391.9 443.3 548.2 662.9
20.3 23.5 27.4 31.5 35.6 39.9 40.7 45.2 55.9 67.6
213.8 250.1 289.3 333.4 378.6 402.1 430.5 478.6 598.2 717.8
21.8 25.5 29.5 34.0 38.6 41.0 40.9 43.8 71.2 73.2
12.8 15.0 17.7 29.3 23.0 24.6 26.3 29.2 35.9 43.4
1.31 1.53 1.80 2.07 2.35 2.51 2.68 2.98 3.66 4.43
tf
tf
Nominal breaking strength of rope Tensile strength of wire
Strand construction 6 19
1226–1373 MPa (125–140 kgf/mm2)
1373–1520 MPa (140–155 kgf/mm2)
1520–1667 MPa (155–170 kgf/mm2)
1667–1814 MPa (170–185 kgf/mm2)
Diameter Approx. weight of rope, mm N/m kgf/m
kN
tf
kN
tf
kN
tf
kN
tf
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
154.9 179.5 193.2 206.2 222.6 237.3 268.7 291.3 318.7 348.1 372.6 400.1 428.5 447.1 471.7 493.3 518.8 548.2 580.5 611.2 629.6 650.2
15.8 18.3 19.7 21.1 22.7 24.2 27.4 29.7 32.5 35.5 38.0 40.8 43.7 45.6 48.1 50.3 52.9 55.9 59.2 62.4 64.2 66.3
171.6 199.1 213.2 229.5 246.1 263.8 300.1 326.5 352.1 383.4 413.8 443.3 473.7 498.2 522.7 548.2 572.7 608.0 641.3 678.6 696.3 714.9
17.5 20.3 21.8 23.4 25.1 26.9 30.6 33.3 35.9 39.1 42.2 45.2 48.3 50.8 53.3 55.9 58.4 62.0 65.4 69.2 71.0 72.8
189.3 221.6 237.3 254.0 273.6 294.2 334.4 365.8 394.2 423.6 456.0 483.5 522.7 545.2 572.7 608.1 632.5 672.7 707.1 752.2 772.8 792.4
19.3 22.6 24.2 25.9 27.9 30.0 34.1 37.3 40.2 43.2 46.5 49.3 53.3 55.6 58.4 61.5 64.5 68.6 72.1 76.7 78.8 80.8
206.9 243.2 260.8 278.5 301.1 323.6 368.7 399.1 436.4 462.9 502.1 536.4 572.7 603.1 632.5 663.9 692.3 732.5 773.7 826.7 849.3 868.9
21.2 24.8 26.6 28.4 30.7 33.0 37.7 40.7 44.5 47.2 51.2 54.7 58.4 61,5 64.5 67.7 73.6 74.7 78.9 84.3 86.6 88.6
13.2 14.6 16.4 18.0 19.5 20.9 23.6 26.6 28.3 31.3 33.8 35.6 38.2 39.7 41.6 43.1 44.6 47.3 50.2 53.3 55.9 59.2
1.35 1.49 1.67 1.84 1.99 2.13 2.41 2.71 2.89 3.19 3.45 3.63 3.90 4.05 4.24 4.39 4.55 4.82 5.12 5.43 5.70 6.04
21.55 Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
FLEXIBLE MACHINE ELEMENTS
21.56
CHAPTER TWENTY-ONE
TABLE 21-36 Steel wire ropes (from Indian Standard) (Cont.) Nominal breaking strength of rope Tensile strength of wire
Diameter Approx. weight of rope, mm N/m kgf/m
Strand construction
1226–1373 MPa (125–140 kgf/mm2) kN
1373–1520 MPa (140–155 kgf/mm2)
1520–1667 MPa (155–170 kgf/mm2)
1667–1814 MPa (170–185 kgf/mm2)
tf
kN
tf
kN
tf
kN
tf
41 42 44 46 48 51 54
62.5 65.4 72.4 78.1 83.2 94.5 106.8
6.37 6.67 7.38 7.96 8.48 9.64 10.89
726.7 781.6 836.5 893.3 950.3 1100.3 1230.7
74.1 79.7 85.3 91.1 96.9 112.2 125.5
803.2 863.9 926.7 995.4 1057.2 1217.0 1365.1
81.9 88.1 94.5 101.5 107.8 124.1 139.2
886.5 955.2 1025.8 1101.3 1175.8 1345.6 1514.1
90.4 97.4 104.6 112.3 119.9 157.2 155.4
771.8 1048.3 1125.8 1210.1 1225.5 1475.0 1664.2
99.2 106.9 114.8 123.4 192.1 150.4 169.7
19 21 22 24 25 29 22 25 31 41 44 48 51 54 57 64 70
12.9 15.5 17.7 20.6 23.2 29.3 36.2 43.9 52.2 61.3 71.0 81.6 92.8 104.8 117.6 145.0 175.3
1.32 1.58 1.81 2.10 2.37 2.99 3.69 4.48 5.32 6.25 7.24 8.32 9.45 10.68 11.98 14.79 17.88
145.1 170.6 195.8 222.5 260.0 318.7 343.7 478.6 572.7 665.1 676.9 896.3 1006.2 1156.2 1285.6 1624.0 1932.9
14.8 17.4 19.9 23.4 26.4 32.5 35.0 48.8 58.4 67.8 69.0 91.4 102.6 117.9 131.1 165.6 197.3
162.8 190.2 218.7 254.0 289.3 359.0 393.2 548.2 642.3 757.1 857.1 1006.2 1135.6 1295.5 1444.5 1793.6 2172.2
16.6 19.4 22.3 25.9 29.5 36.6 48.1 55.9 65.5 70.2 87.4 102.6 115.8 132.1 147.3 182.9 221.5
179.5 209.8 241.2 278.6 318.4 398.1 493.3 598.2 712.0 836.5 871.8 1116.0 1226.0 1434.7 1604.4 1912.9 2401.6
18.3 21.4 24.6 28.4 32.5 40.6 50.3 61.0 72.6 85.3 99.1 113.8 129.8 146.3 163.6 202.2 244.9
196.1 230.5 263.8 304.0 349.1 438.4 543.3 658.0 782.6 916.9 1066.0 1225.8 1394.0 1574.0 1763.2 2172.2 2630.0
20.0 23.5 26.9 31.0 35.6 44.7 55.4 67.1 79.8 93.5 108.7 125.0 142.2 160.5 179.8 221.5 268.2
67 19 Triangular core 21 22
15.0 17.6 20.1
1.53 1.79 2.05
181.4 205.9 244.2
18.5 21.0 24.9
199.1 228.5 268.7
20.3 23.3 27.4
216.7 249.1 294.2
22.1 25.4 30.0
235.4 272.6 313.7
24.0 27.8 32.6
Group IF 6 7=
24 25 28 31 36
23.24 26.28 33.24 41.19 49.62
2.37 2.68 3.39 4.20 5.06
278.5 313.8 403.1 498.2 598.2
28.4 32.0 41.1 50.8 61.0
306.9 347.1 443.3 553.1 662.9
31.3 35.4 45.2 56.4 67.6
333.4 378.5 483.5 608.0 727.6
34.0 38.6 49.3 62.9 74.2
363.8 413.8 528.6 658.0 792.4
37.1 42.2 53.1 67.1 80.8
Group IIF 6 8/; 6 8/12 Or less/; 6 9/12 Or less/; 6 10/12
19 21 22 24 25 29 32
15.00 17.55 20.10 23.24 26.28 33.24 41.18
1.53 1.79 2.05 2.37 2.68 3.39 4.20
179.5 209.9 234.4 273.6 304.0 393.2 473.6
18.3 21.4 23.9 27.9 31.0 40.1 48.3
194.2 228.5 258.9 299.1 333.4 428.5 522.7
19.8 23.3 26.4 30.5 34.0 43.7 53.3
208.9 246.1 284.4 323.6 363.8 492.9 572.7
21.3 25.1 29.0 33.0 37.1 47.2 58.4
224.6 263.8 308.9 349.1 393.2 498.2 622.7
22.9 26.9 31.5 35.6 40.1 50.8 63.5
6 37
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
FLEXIBLE MACHINE ELEMENTS
21.57
FLEXIBLE MACHINE ELEMENTS
TABLE 21-36 Steel wire ropes (from Indian Standard) (Cont.) Nominal breaking strength of rope Tensile strength of wire 1226–1373 MPa (125–140 kgf/mm2)
1373–1520 MPa (140–155 kgf/mm2)
1520–1667 MPa (155–170 kgf/mm2)
1667–1814 MPa (170–185 kgf/mm2)
Diameter Approx. weight of rope, mm N/m kgf/m
kN
tf
kN
tf
kN
tf
kN
tf
Or less/; 6 12/12 Or less/
35 38 41 44 48 51
49.62 5.06 59.03 6.02 69.14 7.05 81.00 8.26 92.67 9.45 105.03 10.71
572.7 677.6 825.2 916.2 1075.8 1216.0
58.4 69.1 84.3 93.6 109.7 124.0
627.6 766.9 896.3 1016.0 1175.8 1334.7
64.0 78.2 91.4 103.6 119.9 136.1
682.5 816.9 966.9 1116.0 1275.8 1454.3
69.6 83.3 98.6 113.8 138.1 140.3
737.5 886.5 1036.6 1216.0 1375.0 1574.0
75.2 90.4 105.7 124.0 140.2 160.5
Group IIIF 6 15/12/A 6 18/12/A
19 21 22 24 25 29 32 35 38 41 44 48 51 54 57 64 70
15.00 17.55 20.10 23.05 26.28 33.24 41.19 49.62 59.04 69.14 81.00 92.67 105.03 118.17 133.57 164.26 198.58
156.9 184.4 208.9 234.4 273.6 354.0 443.3 517.8 627.6 747.3 857.1 986.5 1125.7 1255.2 1448.5 1793.6 2152.5
16.0 18.8 21.3 23.9 27.9 36.1 45.2 52.8 64.0 76.2 87.4 100.6 114.8 128.0 147.3 189.9 219.5
174.6 205.0 234.4 263.8 304.0 388.3 488.4 577.6 682.5 816.9 946.3 1085.6 1235.4 1385.7 1584.2 1954.8 2341.8
17.8 20.9 23.9 26.9 31.0 39.6 49.8 58.9 69.6 83.3 96.5 110.7 126.0 141.3 161.6 199.1 238.8
193.2 226.5 258.9 294.2 333.4 423.6 533.5 537.4 757.1 886.5 1036.6 1185.6 1348.5 1514.1 1724.0 2112.6 2550.7
19.7 23.1 26.4 30.0 34.0 43.2 54.4 65.0 77.2 90.4 105.7 120.9 137.2 154.4 175.8 215.4 260.1
210.8 247.1 284.4 323.6 363.8 458.0 577.6 656.3 821.8 986.1 1125.8 1285.6 1452.8 1643.7 1863.3 2278.2 2740.0
21.5 25.2 29.0 33.0 37.1 46.7 58.9 71.0 83.8 97.5 114.8 131.1 148.3 167.6 190.0 231.7 279.4
Strand construction
1.53 1.79 2.05 2.35 2.68 3.39 4.20 5.06 6.02 7.05 8.26 9.45 10.71 12.05 13.62 16.75 20.25
Minimum break load Approx. weight Strand construction 6 7 ð6 1) Round
For tensile designation
Diameter rope, mm
N/100 m
kgf/100 m
8 9 10 11 12
217.7 275.6 340.3 411.9 490.3
Haulage purposes in mines 22.2 33.3 3400 28.1 42.3 4300 38.7 52.2 3320 42.0 63.1 6430 50.0 75.1 7660
1569.3 MPa
160 kgk/mm2
1765.2 MPa
180 kgf/mm2
37.6 47.5 58.6 71.0 84.4
3830 4840 5980 7240 8610
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
FLEXIBLE MACHINE ELEMENTS
21.58
CHAPTER TWENTY-ONE
TABLE 21-36 Steel wire ropes (from Indian Standard) (Cont.) Minimum breaking load of rope For tensile designation
Approx. weight
1569 MPa (160 kgf/mm2)
1765 MPa (180 kgf/mm2)
Diameter of rope, mm
N/100 m
kgf/100 m
kN
kgf
kN
kgf
6 7 (6 1) Round
13 14 16 18 19 20 21 22 24 25 26 27 28 29 31 35
574.7 666.9 870.8 1098.3 1225.8 1363.1 1500.4 1647.5 1961.3 2128.0 2304.6 2481.1 2667.4 2863.5 3275.9 4167.8
58.6 68.0 88.8 112.0 125.0 139.0 153.0 168.0 200.0 217.0 235.0 253.0 272.0 292.0 334.0 425.0
88.1 102 133 169 188 209 229 252 300 326 352 380 409 438 501 638
8980 10400 13600 17200 19200 21300 23400 25700 30600 33200 35900 38700 41700 44700 51100 65100
99 115 150 190 212 234 259 283 337 367 396 428 460 493 564 719
10100 11700 15300 19400 21600 23900 26400 28900 34400 37400 40400 43600 46900 50300 57500 73300
6 19 (9/9/1) Round
13 14 16 18 19 20 21 22 24 25 26 28 29 32 35 36 38
599.2 695.3 908.1 1147.4 1284.7 1422.0 1569.1 1716.2 2039.8 2216.3 2422.2 2785.5 2981.2 3628.4 4344.3 4599.3 5413.2
61.1 70.9 92.6 117 131 145 160 175 208 226 247 284 304 370 443 469 552
87.8 102 133 169 187 208 229 251 299 325 351 407 436 532 636 673 750
8950 10400 13600 17200 19100 21200 23400 25600 30.500 33100 35800 41500 44500 54200 64900 68600 76500
99 115 150 189 211 233 258 282 336 365 395 459 491 598 716 757 843
10100 11700 15300 19300 21500 23800 26300 28800 34300 37200 40300 46700 50100 61000 73000 77200 86000
Strand construction
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
FLEXIBLE MACHINE ELEMENTS
21.59
FLEXIBLE MACHINE ELEMENTS
TABLE 21-36 Steel wire ropes (from Indian Standard) (Cont.) Minimum breaking load of rope For tensile designation
Approx. weight
1569 MPa (160 kgf/mm2)
1765 MPa (180 kgf/mm2)
Diameter of rope, mm
N/100 m
kgf/100 m
kN
kgf
kN
kgf
6 8 (7/) Triangular
13 15 16 18 19 20 21 22 24 25 26 28 29 31 35
675.7 783.5 1019.9 1294.5 1441.6 1598.5 1765.2 1931.9 2304.5 2500.1 2696.8 3128.3 3363.7 3844.2 4893.5
68.9 79.9 104 132 147 163 180 197 235 255 275 319 343 392 499
95.9 111 145 183 205 227 250 275 327 354 383 445 478 545 695
9780 11300 14800 18700 20900 23100 25500 28007 33306 36100 39100 45400 48700 55600 70900
106 124 161 204 228 252 278 305 363 393 426 493 530 605 771
10800 12600 16400 20800 23200 25700 28300 31100 37000 40100 43400 50300 54000 61700 78600
6 22 (9/12/) Triangular
13 14 16 18 19 20 21 22 24 25 26 28 29 32 35 38
685.5 794.3 1039.5 1314.1 1461.2 1618,1 1784.8 1961.3 2334.0 2530.1 2736.0 3137.3 3412.7 4148.2 4962.1 5854.5
69.9 81 106 134 149 165 182 200 238 258 279 324 348 423 506 597
93.1 108 141 178 199 221 243 267 317 343 372 431 463 564 675 795
9490 11000 14400 18200 20300 22500 24800 27200 32300 35000 37900 44000 47200 57500 68800 81100
104 120 157 198 222 245 270 296 353 384 414 481 515 629 750 885
10610 12200 16000 20200 22600 25000 27500 30200 36000 39100 42200 49000 52500 64000 76500 90200
Strand construction
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
FLEXIBLE MACHINE ELEMENTS
21.60
CHAPTER TWENTY-ONE
TABLE 21-36 Steel wire ropes (from Indian Standard) (Cont.) Maximum breaking load of rope
Approx. weight Strand construction
Diameter of wire, mm
N/m
kgf/m
Small Wire Ropes (Fiber Core) 0.147 0.015 0.324 0.033 0.559 0.057 0.873 0.099 1.255 0.128 1.696 0.172
kN
kgf
2.6 5.9 10.4 16.3 23.5 32.0
260 600 1060 1660 2400 3260
6 7 (6/1)
2 3 4 5 6 7
6 12 (12/fiber)
3 4 5 6 7
0.235 0.412 0.637 0.922 1.255
0.024 0.042 0.065 0.094 0.128
3.7 6.5 10.3 14.9 20.3
380 670 1050 1520 2070
6 19 (12/6/1)
3 4 5 6 7
0.314 0.539 0.843 1.206 1.648
0.035 0.052 0.086 0.124 0.168
4.9 8.7 13.5 19.6 26.6
500 890 1880 2000 2710
6 24 (15/9/fiber)
4 5 6 7
0.530 0.834 1.206 1.618
0.054 0.085 0.122 0.165
8.6 13.3 19.3 29.3
880 1360 1970 2680
Diameter of wire Strand construction
Max, mm
77 77 7 19 7 19 7 19 7 19 7 10
1.8 2.7 3.5 4.4 5.2 6.0 6.8
Min, mm
Approx. weight, max N/m
kgf/m
Preferred Galvanized Steel Wire Ropes for Aircraft Controls 1.6 0.108 0.011 2.4 0.235 0.024 3.2 0.422 0.043 4.0 0.657 0.067 4.8 0.804 0.082 5.6 1.236 0.126 6.4 1.608 0.164
Minimum breaking load kN
kgf
2.2 4.1 8.9 12.5 18.6 24.9 31.1
220 420 910 1270 1900 2540 3170
Note: kgf ¼ kilogram force; tf ¼ ton force:
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
FLEXIBLE MACHINE ELEMENTS FLEXIBLE MACHINE ELEMENTS
21.61
TABLE 21-37 Round strand galvanized steel wire ropes for shipping purposes Tensile strength of wire, 1373–1569 MPa (140–160 kgf/mm2)
Approx. weight Diameter of wire, mm
N/m
8 9 10 11 12 14 16 18 20 22 24 26 28 32 36 40
2.2 2.8 3.3 4.0 5.1 5.8 8.7 10.9 13.9 16.6 19.5 22.8 27.1 34.7 44.5 54.3
kgf/m kN
67 0.22 0.28 0.34 0.41 0.52 0.69 0.89 1.11 1.42 1.69 1.99 2.32 2.76 3.54 4.54 5.54
6 19 8 9 10 11 12 14 16 18 20 22 24 26 28 32 36 40 44 48 52 60
Breaking strength of rope, min
1.9 0.20 2.8 0.29 3.4 0.35 3.9 0.40 5.1 0.52 6.5 0.66 8.8 0.90 10.6 1.08 13.5 1.38 15.7 1.60 19.2 1.96 23.1 2.36 26.0 2.65 33.7 3.44 42.4 4.32 54.1 5.52 65.1 6.64 78.0 7.95 90.0 9.18 104.0 10.61
kgf Fiber core
31.0 38.8 47.1 56.9 72.6 96.1 123.6 154.0 198.1 236.3 278.5 323.6 385.4 494.3 634.5 773.9
3150 3950 4800 5800 7400 9800 12600 15700 20200 24100 28400 33000 39300 50400 64700 78900
Fiber core 28.0 2850 40.2 4100 47.3 4800 53.9 5500 71.1 7250 90.2 9200 122.6 12500 147.1 15000 188.3 19200 218.7 22300 267.7 27300 321.6 32800 360.9 36800 468.8 47800 588.4 60000 664.9 67800 905.2 92300 1084.6 110600 1251.3 127600 1446.5 147500
Approx. weight N/m
kgf/m kN
16 12 1.5 2.1 2.5 2.8 3.7 4.7 6.4 7.6 9.8 11.4 13.9 16.8 18.7 24.3 30.6 39.0
0.15 0.21 0.25 0.29 0.38 0.48 0.65 0.78 1.00 1.16 1.42 1.70 1.91 2.48 3.12 3.98
6 24 2.2 2.6 3.1 3.7 4.4 5.9 8.4 10.4 12.7 15.0 17.7 22.0 25.1 32.0 41.8 50.5 60.1 73.3 84.7 97.0
Breaking strength of rope, min
0.22 0.27 0.32 0.38 0.45 0.60 0.86 1.06 1.29 1.53 1.80 2.24 2.56 3.26 4.26 5.15 6.13 7.47 8.64 9.90
kgf Fiber core
18.1 26.0 30.4 35.3 46.1 58.4 79.4 95.6 122.1 141.7 173.6 208.9 234.4 304.0 382.5 489.4
1850 2650 3100 3650 4700 5950 8100 9750 12450 14450 17700 21300 23900 31000 39000 49900
Fiber core
Approx. weight N/m
kgf/m kN
6 13
5.1 7.8 9.4 12.4 14.9 18.5 21.0 25.5 30.5 39.4 40.1 61.6
Breaking strength of rope, min
0.52 0.80 0.96 1.26 1.52 1.89 2.14 2.60 3.11 4.02 4.09 6.28
6 37
28.4 2900 2.3 0.23 34.8 3550 2.9 0.30 42.2 4300 3.3 0.34 50.0 5100 4.1 0.42 58.8 6000 5.0 0.51 78.5 8000 7.0 0.71 112.8 11500 9.3 0.95 140.2 14300 12.0 1.22 169.7 17300 14.9 1.52 201.0 20500 18.2 1.86 238.3 24100 20.0 2.04 294.2 30000 23.8 2.43 336.9 34300 28.0 2.85 428.6 43700 37.2 3.79 599.0 57000 47.8 4.87 676.7 69000 56.6 5.77 806.1 82200 69.5 7.09 982.6 100200 83.9 8.55 1136.6 115900 95.2 9.71 1301.3 132700 111.7 11.39
kgf
Fiber core
72.6 109.8 132.4 174.6 209.9 261.8 295.2 361.9 429.5 555.1 703.1 867.9
7400 11200 13500 17800 21400 26700 30100 36900 43900 56600 71700 88500
Fiber core 31.9 41.2 47.1 58.4 70.6 98.1 31.4 168.7 256.9 256.9 282.4 336.4 394.2 524.7 674.7 798.3 981.6 1183.7 1344.5 1577.9
Approx. weight N/m
kgf/m kN
77
3.7 4.4 5.7 7.6 9.7 12.1 15.5 18.5 21.9 25.4 30.2 38.7 49.7
Breaking strength of rope, min
0.38 0.45 0.58 0.77 0.99 1.23 1.58 1.89 2.23 2.59 3.08 3.95 5.07
7 19
Fiber core
52.0 62.8 80.4 106.9 137.3 171.6 219.7 262.8 308.9 359.9 427.6 548.2 704.1
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
5300 6400 8200 10900 14000 17500 22400 26800 33500 36700 43600 56000 71800
Wire core
3250 4200 4800 5950 7200 7.3 0.74 101.5 10000 9.9 1.01 138.3 13400 11.9 1.21 165.7 17200 15.2 1.55 211.8 26200 17.7 1.80 245.2 26200 20.8 2.12 289.3 29900 26.0 2.65 361.9 34300 29.1 2.97 406.0 40200 37.9 3.86 526.6 53500 47.6 4.85 662.9 68800 60.8 6.20 847.3 81400 73.1 7.45 1027.7 100100 86.3 8.80 1203.3 120700 101.0 10.30 1407.3 137100 116.6 11.89 1625.0 160900 133.8 13.59 1857.4
Source: IS 2581, 1968.
kgf
10350 14100 16900 21600 25000 29500 36900 41400 53700 67600 86400 104800 122700 143500 165700 189400
FLEXIBLE MACHINE ELEMENTS
21.62
CHAPTER TWENTY-ONE
TABLE 21-38 Dimensions and breaking strength of flat balancing wire ropes Nominal size b s,a mm
Constructions
Doublestitched
Singlestitched
Approximate weight Diameter of the wire, mm
Cross section of the strand, mm2
Double-stitched N/m
kgf/m
Single-stitched N/m
kgf/m
Minimum breaking strength of rope kN
kgf
647
70 17 74 18 78 19 82 20 87 21 91 22 95 23
70 15 74 16 78 17 82 18 87 19 91 20 95 21
1.60 1.70 1.80 1.90 2.00 2.20 2.20
338 381 427 477 528 581 638
34.3 39.2 44.1 49.0 53.9 59.8 65.7
3.5 4.0 4.5 5.0 5.5 6.1 6.7
33.3 37.3 42.2 47.1 52.0 56.9 62.8
3.4 3.8 4.3 4.8 5.3 5.8 6.4
463.9 522.7 585.5 654.1 724.7 797.2 875.7
47300 53300 59700 66700 73900 81300 89300
847
110 20 113 20 116 21 119 21 122 22 125 22 128 23
110 18 113 18 116 19 119 19 122 20 125 20 128 21
1.90 1.95 2.00 2.05 2.10 2.15 2.20
636 670 703 739 775 812 851
65.7 68.7 72.6 76.5 79.4 83.4 87.3
6.7 7.0 7.4 7.8 8.1 8.5 8.9
62.8 65.7 68.7 72.6 76.5 79.4 83.4
6.4 6.7 7.0 7.4 7.8 8.1 8.5
872.8 919.9 956.0 1014.0 1064.0 1116.0 1168.0
89000 93800 98400 103400 108500 113800 119100
6 4 12
112 26 115 26 118 27 121 27 124 28 127 28 130 29
112 23 115 23 118 24 121 24 124 25 127 25 130 26
1.90 1.95 2.00 2.05 2.10 2.15 2.20
818 861 904 950 996 1045 2094
84.3 88.3 98.2 98.1 103.0 107.9 112.8
8.6 9.0 9.5 10.0 10.5 11.0 11.5
80.4 84.3 88.3 93.2 98.1 103.0 106.9
8.2 8.6 9.0 9.5 10.0 10.5 10.9
1122.9 1181.7 1240.5 1304.3 1367.0 1439.6 1483.7
114500 120500 126500 133000 139400 146300 151300
8 4 12
146 26 149 26 154 27 157 27 160 28 165 28 168 29
146 23 149 23 154 24 157 24 160 25 165 25 168 26
1.90 1.95 2.00 2.05 2.10 2.15 2.20
1091 1148 1206 1267 1329 1394 1459
112.8 118.7 124.5 130.4 137.3 143.2 150.0
11.5 12.1 12.7 13.3 14.0 14.6 14.3
106.9 112.8 118.7 124.5 130.4 136.3 143.2
10.9 11.5 12.1 12.7 13.3 13.9 14.6
1497.5 1575.9 1655.4 1738.7 1824.0 1913.3 2002.5
152700 160700 168800 177300 186000 195100 204200
8 4 14
160 27 164 28 168 28 172 29 176 29 180 30 184 30
160 24 164 25 168 25 172 26 176 26 180 27 184 27
1.90 1.95 2.00 2.05 2.10 2.15 2.20
1272 1340 1407 1478 1550 1626 1702
131.4 138.3 145.1 152.0 159.8 167.7 175.5
13.4 14.1 14.8 15.5 16.3 17.1 17.9
124.6 131.4 138.3 145.1 152.0 159.9 166.7
12.7 13.4 14.1 14.8 15.5 16.3 17.0
1745.5 1842.2 1930.9 2029.0 2188.0 2232.0 2335.9
178000 187800 196900 206900 217000 227600 238200
8 4 91
186 31 190 32 194 33
186 28 190 29 194 30
1.90 1.95 2.00
1727 1818 1909
177.5 187.3 191.1
18.1 19.1 20.1
169.7 178.5 187.3
17.3 18.2 19.1
2377.3 2495.8 2620.3
251700 254500 267200
a b ¼ width of rope, s ¼ thickness of rope. Source: IS 5203, 1969.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
FLEXIBLE MACHINE ELEMENTS FLEXIBLE MACHINE ELEMENTS
21.63
TABLE 21-39 Dimensions and breaking strength of flat hoisting wire ropes
Construction
Nominal size, b s, mm
Weight
Minimum breaking strength of ropea
Nominal wire diameter, mm
Cross section of strand, mm2
N/m
kgf/m
kN
kgf
647
52 10 56 11 60 12 65 14 70 15 74 16 78 16 82 18 87 19 91 20 95 21
1.20 1.30 1.40 1.50 1.60 1.70 1.80 1.90 2.00 2.10 2.20
190 223 259 297 338 381 427 477 528 581 638
18.6 21.6 25.5 29.4 33.3 37.3 42.2 47.1 52.0 56.9 62.8
1.9 2.2 2.6 3.0 3.4 3.8 4.3 4.8 5.3 5.8 6.4
298.1 349.1 406.0 465.8 529.6 597.2 669.8 748.2 827.7 911.0 1000.3
30400 35600 41400 47500 54000 60900 68300 76300 84400 92900 102000
847
70 10 75 11 80 12 86 14 92 15 98 16 104 17 110 18 116 19 122 20 128 21
1.20 1.30 1.40 1.50 1.60 1.70 1.80 1.90 2.00 2.10 2.20
253 298 345 396 450 508 569 636 703 775 851
24.5 29.4 34.3 39.2 44.1 50.0 55.9 62.8 68.6 76.5 83.4
2.5 3.0 3.5 4.0 4.5 5.1 5.7 6.4 7.0 7.8 8.5
396.2 466.8 541.3 620.8 706.1 796.3 892.4 997.3 1102.3 1216.0 1333.7
40400 47600 55200 63300 72000 81200 91000 101700 112400 124400 136600
a Rope having wires of tensile strength of 1569 MPa (160 kgf/mm2 ). Source: IS 5202, 1269.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
FLEXIBLE MACHINE ELEMENTS
21.64
CHAPTER TWENTY-ONE
TABLE 21-40 Tensile grade Tensile strength range Grade of wire
MPa
kgf/mm2
120 140 160 180 200
1176.8–1471.0 1372.9–1078.7 1569.1–1863.3 1765.2–2059.4 1961.3–2353.6
120–150 140–170 160–190 180–210 200–240
TABLE 21-41 Values of C for wire ropes Rope diameter, mm
C
Rope diameter, mm
C
9.50 11.11 12.70 14.30
1.090 1.083 1.076 1.070
15.90 19.00 22.20 25.40
1.064 1.054 1.046 1.040
TABLE 21-42A Approximate wire rope and sheave data
Rope construction
MN
lbf 103
kN/m
lbf/ft
Wire, diameter dw , mm (in)
6 19 6 37 8 19 67
500:8d 2 473:1d 2 431:3d 2 473:0d 2
72d 2 68d 2 62d 2 68d 2
36:3d 2 35:3d 2 34:3d 2 32:4d 2
1:60d 2 1:55d 2 1:50d 2 1:45d 2
0:063d 0:045d 0:050d 0:106d
Ultimate strength, Fu
Weight
Recommended sheave diameter, mm (in) Area A, mm2 (in2 )
Average
Minimum
0:38d 2 0:38d 2 0:35d 2 0:38d 2
45d 27d 31d 72d
30d 18d 21d 42d
SI units: d ¼ diameter of rope, m. US Customary units: d ¼ diameter of rope, in.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
FLEXIBLE MACHINE ELEMENTS
TABLE 21-42B Wire rope data
Rope
Weight per foot, lb
Minimum sheave Standard diameter, in sizes, d, in Material
6 7 haulage
1:50d 2
42d
1 1 4 –12
6 19 standard hoisting
1:60d 2
26d–34d
1 3 4 –2 4
6 37 special flexible 8 19 extra flexible 7 7 aircraft
1:55d 2
18d
1 1 4 –3 2
1:45d 2
21d–26d
1 1 4 –1 2
1:70d 2
—
1 3 16 – 8
7 9 aircraft
1:75d 2
—
1 3 8 –1 8
19-wire aircraft
2:15d 2
—
1 5 32 – 16
Monitor steel Plow steel Mild plow steel Monitor steel Plow steel Mild plow steel Monitor steel Plow steel Monitor steel Plow steel Corrosion-resistant steel Carbon steel Corrosion-resistant steel Carbon steel Corrosion-resistant steel Carbon steel
Size of outer wires
Modulus of elasticity,a Mpsi
Strength,b kpsi
d/9 d/9 d/9 d/13–d/16 d/13–d/16 d/13–d/16 d/22 d/22 d/15–d/19 d/15–d/19 — — — — — —
14 14 14 12 12 12 11 11 10 10 — — — — — —
100 88 76 106 93 80 100 88 92 80 124 124 135 143 165 165
a
The modulus of elasticity is only approximate: it is affected by the loads on the rope and, in general, increases with the life of the rope. The strength is based on the nominal area of the rope. The figures given are only approximate and are based on 1-in rope sizes and 14-in aircraftcable sizes. Source: Compiled from American Steel and Wire Company Handbook. b
TABLE 21-43 Common wire rope application Sheave diameter, cm Type of service
Rope construction
Recommended
Minimum
Haulage rope Mine haulage Factory-yard haulage Inclined planes Tramways Power transmission Guy wires Standard hoisting rope (Most commonly used rope) Mine hoists Quarries Ore docks Cargo hoists Car pullers Cranes Derricks Tramways Well drilling Elevators Extraflexible hoistings rope Special flexible hoisting rope Steel-mill ladles Cranes High speed elevators
67
72d
42d
6 19
45d 60–100d
30d
20–30d
8 19 6 37
31d 27d
21d 18d
21.65 Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
FLEXIBLE MACHINE ELEMENTS
TABLE 21-44 Recommended safety factors for wire ropes Safety factor 100 or other figure laid down by the statutory authority Rope application
Class 1
From Indian Standards Mining ropes 3.5 Wire ropes used on the cranes and other hoisting equipment Fixed guys Unreeved rope bridles of jib cranes or ancillary appliances, such as lifting beams Ropes which are straight between terminal fittings Hoisting, luffing and reeved bridle systems of inherently flexible crances 4.0 (e.g., mobile crawler tower, guy derrick, stiffleg derrick) where jibs are supported by ropes or where equivalent shock absorbing devices are incorporated in jib supports Cranes and hoists in general hoist blocks 4.5
Classes 2, 3
Class 4
4.0
4.5
4.5
5.5
5.0
6.0
From Other Sources Mine Shafts Depths to 152 m 305–610 m 610–915 m >915 m Haulage ropes Small electric and air hoists Hot ladle cranes Slings
8 7 6 5 6 7 8 8
Source: IS 3973, 1967.
TABLE 21-45 Ratio of drum and sheave diameter to rope diameter Minimum, ratioa Purpose
Construction
100
Mining Installation
All
Class 1
Classes 2, 3
Class 4
Cranes and allied hoisting equipment
6 15 8 19 filler wire 8 19 8 19 Warrington 8 19 Seale 34 7 nonrotating 6 24 6 19 filler wire 6 19 6 19 Warrington 17 7 nonrotating 18 7 nonrotating 6 19 Seale
15
17
22
17
18
24
18 18 19
19 20 23
25 23 27
24
28
35
a
The ratio of the sheave diameters specified are valid for rope speeds up to 50 m/min. For speeds above 50 m/min, the drum or sheave diameter should be increased pro rata by 8% for each additional 50 m/min of rope speed where practicable.
21.66 Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
FLEXIBLE MACHINE ELEMENTS FLEXIBLE MACHINE ELEMENTS
Particular
The working load for the ordinary steel BB crane chain
21.67
Formula
Pw ¼ 93;750d 2
SI
ð21-79aÞ
USCS
ð21-79bÞ
Customary Metric
ð21-79cÞ
where d in m and Pw in kN Pw ¼ 13;600d 2 where d in in and Pw in lbf Pw ¼ 9:56d 2
where d in mm and Pw in kgf The sheave diameter
D ¼ 20d to 30d
ð21-80Þ
Round steel short link and round steel link chain LENGTH AND WIDTH (Figs. 21-17 and 21-18): The outside dimensions of the links shall fall between the following limits: Outside link length limits (Fig. 21-17)
Maximum outside link width (Fig. 21-18)
Minimum inside link width
l> j 5dn
for uncalibrated chain
ð21-81aÞ
l <j 6dn
for calibrated chain
ð21-81bÞ
Wmax > j 3:5dn
away from weld
ð21-82aÞ
j 1:05 Wmax >
(adjacent width) at weld for noncalibrated chains
ð21-82bÞ
Wmax ¼ 3:25dn
for calibrated chain
ð21-83Þ
Wt <j 1:25dn
except at the weld for noncalibrated chain
ð25-84Þ
Pitch (i.e., inside length)
p ¼ 3dn
Dimensions and lifting capacities and properties of noncalibrated and calibrated chains
Refer to Tables 21-46 to 21-51.
for calibrated chain
FIGURE 21-17 Diameter of material and welded chain.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð21-85Þ
1.2 1.4 1.6 1.8 2.0 2.2 2.5 2.8 3.2 3.6 4.0 4.4 5.0 5.6 6.4 7.2 8.0 9.0
þ0.12, 0.36 þ0.14, 0.42 þ0.16, 0.48 þ0.18, 0.54 þ0.20, 0.60 þ0.22, 0.66 þ0.25, 0.75 þ0.28, 0.84 þ0.32, 0.96 þ0.90
þ1.0 þ1.1 1.2 1.4 1.6 1.9 2.0 2.2
Nominal size, dn , mm
6.3 7.1 8.0 9.0 10.0 11.2 12.5 14.0 16.0 18.0
20.0 22.0 25.0 28.0 32.0 36.0 40.0 45.0
Source: IS 2429 (Part I), 1970.
(dw d) max
Diameter tolerance j 16, þ0:02s dn > 0:06s dn 16, 0:05s
7.0 7.7 8.7 9.8 1.1 1.2 1.4 1.6
2.1 2.4 2.8 3.1 3.5 3.9 4.4 4.9 5.6 6.3
(G d) max
Maximum additional weld dimensions
100 110 125 140 160 180 200 225
32 36 40 45 50 56 62 70 80 90
5dn
95 105 120 130 150 170 190 215
30 34 38 43 48 53 59 66 76 86
4:75dn
Outside link length limits
70 77 87 98 110 120 140 160
22 25 28 31 35 39 44 49 56 63
Away from weld, Wmax 3:5dn
3.5 3.9 4.4 4.9 5.5 6.0 7.0 8.0
1.1 1.25 1.4 1.6 1.8 2.0 2.2 2.5 2.8 3.1
Max extra at weld, 0:5Wmax
Maximum outside link width, W
TABLE 21-46 Dimensions and lifting capacities of grade 30 noncalibrated chain (Figs. 21-17 and 21-18)
25 28 31 35 40 45 50 56
7.9 8.9 10 1.1 12 14 16 18 20 22
Minimum inside link width, 1:25dn
189.0 228.0 296.0 372.0 483.0 610.0 757.0 953.0
18.9 23.6 30.2 38.1 47.1 59.2 73.8 93.0 120.0 153.0
32.0 42.0 53.0 67.0 87.0 112.0 136.0 173.0
3.4 4.3 5.5 6.9 8.5 10.7 13.4 16.7 22.0 39.0
Minimum energy Guaranteed absorption minimum factor (energy breaking load absorption stress 30h bar, 0.054 kJ m1 kN mm2 ), kJ/m
49.0 57.0 74.0 93.0 121.0 152.0 189.0 228.0
4.8 5.9 7.5 9.5 11.8 14.8 18.5 23.2 30.0 38.2
Minimum safe working load (stress 7:5h bar), kN
5.0 6.3 8.0 10.0 12.5 16.0 20.0 22.5
0.50 0.63 0.80 1.00 1.25 1.6 2.0 2.5 3.2 4.0
Lifting capacity (stress 7:6h bar), tonnes
FLEXIBLE MACHINE ELEMENTS
21.68
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
0.48 0.56 0.64 0.72 0.80 0.88 1.0 1.1 1.2 1.4 1.6 1.8 2.0 2.2 2.5 2.8 3.2 3.6
þ0.12, 0.36 þ0.14, 0.42 þ0.16, 0.48 þ0.18, 0.54 þ0.20, 0.60 þ0.22, 0.66 þ0.25, 0.75 þ0.28, 0.80 þ0.32, 0.96 0.90 1.0 1.1 1.2 1.4 1.6 1.9 2.0 2.2
Nominal size, dn , mm
6.3 7.1 8.0 9.0 10.0 11.2 12.5 14.0 16.0 18.0 20.0 22.0 25.0 28.0 32.0 36.0 40.0 45.0
Source: IS 2429 (Part II), 1970.
(dw d) max
Diameter tolerance dn > j 16, þ0:02s 0:06s dn 16, 0:05s 2.1 2.4 2.8 3.1 3.5 3.9 4.4 4.9 5.6 6.3 7.0 7.7 8.7 9.8 1.1 12 14 16
(G d) max
Maximum additional weld dimensions
19 21 24 27 30 34 37 42 48 54 60 66 75 84 96 108 120 155
Preferred pitch (inside length), 3dn 0.26 0.30 0.33 0.36 0.40 0.44 0.49 0.55 0.63 0.71 0.79 0.87 0.99 1.1 1.2 1.4 1.6 1.8
Pitch tolerance (one link), 0:00396dn 20 23 26 29 32 36 41 46 52 58 65 73 82 91 100 110 130 150
Preferred outside width, w ¼ 3:25dn 0.45 0.52 0.59 0.67 0.75 0.84 0.93 1.05 1.20 1.35 1.50 1.70 1.90 2.10 2.40 2.70 3.00 3.40
Outside width tolerance away from weld zone þ0:075dn 0
TABLE 21-47 Dimensions and lifting capacities of grade 30 calibrated chain (Figs. 21-17 and 21-18)
0.90 1.0 1.1 1.3 1.5 1.7 1.9 2.1 2.4 2.7 3.0 3.4 3.8 4.2 4.8 5.4 6.0 6.8
At weld zone þ0:15dn 0 18.9 23.6 30.2 38.1 47.1 59.2 73.8 93.0 120 153 189 228 296 372 483 610 757 953
Guaranteed minimum breaking load (stress 30h bar), kN 3.4 4.3 5.5 6.9 8.5 10.7 13.4 16.7 22.0 26.0 39.0 42.0 53.0 67.0 87.0 112.0 136.0 173.0
Minimum energy absorption factor (energy absorption 0.054 kJ m1 mm2 ), kJ/m
4.8 5.9 7.5 9.5 11.8 14.8 18.5 23.2 30.0 38.2 49.0 57.0 74.0 93.0 121.0 152.0 189.0 228.0
Maximum safe working load (stress 7:5h bar), kN
0.50 0.63 0.80 1.00 1.60 1.60 2.0 2.5 3.2 4.0 5.0 6.3 8.0 10.0 12.5 16.0 20.0 22.5
Lifting capacity (stress 7:5h bar), tonnes
FLEXIBLE MACHINE ELEMENTS
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
21.69
1 1.4 1.6 1.8 2.0 2.2 2.5 2.8 3.2 3.6 4.0 4.4 5.0 5.6 6.4 7.2 8.0 9.0
0.12, 0.36 0.14, 0.42 0.16, 0.48 0.18, 0.54 0.20, 0.60 0.22, 0.66 0.25, 0.75 0.28, 0.84 0.32, 0.96 þ0.90 þ1.0 þ1.1 1.2 1.4 1.6 1.9 2.0 2.2
Nominal size, dn , mm
6.3 7.1 8.0 9 10 11 12.5 14.0 16.0 18.0 20.0 22.0 25.0 28.0 32.0 36.0 40.0 45.0
Source: IS 3109 (Part I), 1970.
(dw d) max
Diameter tolerance j 16, þ0:02s dn > 0:06s dn 16, 0:05s 2.1 2.4 2.8 3.1 3.5 3.9 4.4 4.9 5.6 6.3 7.0 7.7 8.7 9.8 11 12 14 16
(G d) max
Maximum additional weld dimensions
30 35 40 45 50 55 62 70 80 90 100 110 125 140 160 180 200 225
5dn 28 33 38 43 48 52 59 66 76 86 95 105 120 130 150 170 190 215
4:75dn
Outside link length limits
21 24 28 31 35 39 44 49 56 63 70 77 87 98 110 120 140 160
Away from weld, Wmax 3:5dn 1.0 1.24 1.4 1.6 1.8 2.0 2.2 2.5 2.8 3.1 3.5 3.9 4.4 4.9 5.5 6.0 7.0 8.0
Max extra at weld, 0:05Wmax
Maximum outside link width, W
TABLE 21-48 Dimensions and lifting capacities of grade 40 noncalibrated chain (Figs. 21-17 and 21-18)
7.5 8.8 10 1.1 12 14 16 18 20 22 25 28 31 35 40 45 50 56
Minimum inside link width, 1:25dn 24.9 31.6 40.2 50.9 62.8 79.0 98.4 124.0 161.0 204.0 252.0 304.0 394.0 492.0 644.0 814.0 1010.0 1270.0
Guaranteed minimum breaking load stress 30h bar, kN 4.50 4.70 7.25 9.18 11.30 14.20 17.7 22.2 29.0 37.7 45.3 55.0 70.7 89.0 116.0 147.0 181.0 230.0
Minimum energy absorption factor (energy absorption 0.072 kJ m1 mm2 ), kJ/m
6.2 7.9 10.0 12.7 15.7 19.7 24.5 30.8 40.3 50.5 63.0 76.0 98.5 123.0 161.0 204.0 252.0 318.0
Minimum safe working load (stress 10h bar), kN
0.63 0.80 1.00 1.25 1.6 2.0 2.5 3.2 4.0 5.0 6.3 8.0 10.0 12.5 16.0 20 25 32
Lifting capacity (stress 10h bar), tonnes
FLEXIBLE MACHINE ELEMENTS
21.70
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
0.48 0.56 0.64 0.72 0.80 0.88 1.0 1.1 1.2 1.4 1.6 1.8 2.0 2.2 2.5 2.8 3.2 3.6
0.12, 0.36 0.14, 0.42 0.16, 0.48 0.18, 0.54 0.20, 0.60 0.22, 0.66 0.25, 0.75 0.28, 0.80 0.32, 0.96 0.90 1.0 1.1 1.2 1.4 þ1.6 þ1.9 þ2.0 þ2.2
Nominal size, dn , mm
6.3 7.1 8.0 9.0 10.0 11.2 12.5 14.0 16.0 18.0 20.0 22.0 25.0 28.0 32.0 36.0 40.0 45.0
Source: IS 3102 (Part II), 1970.
(dw d) max
Diameter tolerance dn > j 16, þ0:02s 0:06s dn 16, 0:05s 2.1 2.4 2.8 3.1 3.5 3.9 4.4 4.9 5.6 6.3 7.0 7.7 8.7 9.8 11 12 14 16
(G d) max
Maximum additional weld dimensions
19 21 24 27 30 34 37 42 48 54 60 66 75 84 96 108 120 135
Preferred pitch (inside length), 3dn 0.26 0.30 0.33 0.36 0.40 0.44 0.49 0.55 0.63 0.71 0.79 0.87 0.99 1.1 1.2 1.4 1.6 1.8
Pitch tolerance (one link), 0:0396dn 20 23 26 29 32 36 41 46 52 58 65 73 82 91 100 110 130 150
Preferred outside width, w ¼ 3:25dn 0.45 0.52 0.59 0.57 0.75 0.88 0.93 1.05 1.20 1.35 1.50 1.70 1.90 2.10 2.40 2.70 3.00 3.40
1.1 1.2 1.4 1.9 1.7 1.9 2.1 2.4 2.7 3.0 3.4 3.8 4.3 4.8 5.0 6.1 6.8 7.6
At weld zone þ0:167dn 0
Tolerance on outside width Away from weld zone þ0:075dn 0
TABLE 21-49 Dimensions and lifting capacities of grade 40 calibrated chain (Figs. 21-17 and 21-18)
24.9 31.6 42.2 50.9 62.8 79.0 98.4 124 161 204 252 304 394 492 644 814 1010 1270
Guaranteed minimum breaking load (stress 40h bar), kN
4.50 5.70 7.25 9.18 11.3 14.2 17.7 22.2 29.0 37.7 45.3 55.0 70.7 890 116 147 181 230
Minimum energy absorption factor (energy absorption 0.072 kJ m1 mm2 ), kJ/m
6.20 7.80 10.00 12.7 15.7 19.7 24.5 30.8 40.3 50.5 63.0 76.0 98.5 123 161 204 252 318
Maximum safe working load (stress 10h bar), kN
0.63 0.70 1.0 1.25 1.60 2.00 2.5 3.2 4.0 5.0 6.3 8.0 10.0 12.5 16.0 20.0 25.0 32.0
Lifting capacity (stress 10h bar), tonnes
FLEXIBLE MACHINE ELEMENTS
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
21.71
FLEXIBLE MACHINE ELEMENTS
TABLE 21-50 Requirements of arc welded grade 30 chain for lifting purposes
Proof load based on a stress of 98.1 MPa (10 kgf/mm2 )
Minimum breaking load based on a stress of 294.2 MPa (30 kgf/mm2 )
Minimum energy absorption factor for 1-m gauge length based on an energy absorption of 58.8 MN-m/m2 (6 kgf-m/mm2 )
Maximum safe working load for nominal working condition based on a stress of 49 MPa (5 kgf/mm2 )
Size (nominal diameter), mm
kN
kgf
kN
kgf
Nm
kgf-m
kN
kgf
6 8 9 10 12 14 16 18 20 22 24 27 30 33 36 39
8.6 9.8 12.5 15.4 22.2 30.2 39.4 49.9 61.6 74.5 88.8 102.5 138.7 167.7 192.7 234.4
570 1000 1270 1570 2260 3080 4020 5090 6280 7600 9050 10450 14140 17100 20360 23900
16.7 29.5 37.5 46.2 66.5 90.6 118.3 149.8 184.9 223.7 266.2 336.9 415.9 503.3 598.8 702.9
1700 3010 3820 4710 6780 9140 12060 15270 18850 22810 27140 34350 42410 51320 61070 71680
3.3 5.9 7.5 9.2 13.3 18.1 23.7 30.0 37.0 44.7 53.2 67.4 83.2 100.7 119.8 140.6
340 602 764 942 1356 1848 2412 3054 3770 4562 5428 6870 8482 10264 12214 14336
2.8 4.9 6.2 7.7 11.1 15.1 19.7 25.0 30.8 37.3 44.4 56.14 69.3 83.9 99.8 117.2
285 500 635 785 1130 1540 2010 2545 3140 3800 4525 5725 7070 8550 10180 11950
TABLE 21-51 Requirements for electrically welded steel chain grade 30 chain for lifting purposes
Proof load based on a stress of 157 MPa (16 kgf/mm2 )
Size (nominal diameter), mm
kN
kgf
5 6 7 8 9 9.5 10 11 12 14 16 18 20 22 24 26 28 30 33 36 39 42
6.1 8.9 12.1 15.8 20.0 22.2 24.7 29.8 38.5 48.3 63.1 79.9 98.6 119.3 142.0 166.6 193.2 221.8 268.4 319.4 374.9 434.8
628 904 1232 1608 2036 2268 2514 3042 3928 4926 6434 8144 10054 12164 14476 16990 19704 22620 27370 32572 38228 44334
Minimum breaking load based on a stress of 392.3 MPa (40 kgf/mm2 ) kN 15.4 22.2 30.2 39.4 49.9 55.6 61.6 74.6 96.3 120.8 157.7 199.6 246.5 298.2 354.9 416.5 483.1 554.6 671.0 798.6 937.2 1086.9
kgf 1571 2262 3079 4021 5089 5671 6283 7603 9818 12315 16085 20358 25133 30411 36191 42474 49260 56549 68424 81430 95567 110836
Minimum energy absorption factor for 1-m gauge length based on an energy absorption of 78.5 MN-m/m2 (8 kgf-m/mm2 )
Maximum safe working load for nominal working condition based on a stress of 49 MPa (5 kgf/mm2 )
Nm
kgf-m
kN
kgf
3.1 4.4 6.0 7.9 10.0 11.1 12.3 14.9 19.3 24.2 31.6 39.9 49.2 59.6 71.0 83.3 96.6 110.9 134.2 159.7 187.4 217.4
314 452 616 804 1018 1134 1257 1521 1964 2463 3217 4072 5027 6082 7238 8495 9852 11310 13685 16286 19114 22167
3.1 4.4 6.0 7.9 10.0 11.1 12.3 14.9 19.3 24.2 31.6 39.9 49.3 59.6 71.0 83.3 96.6 110.9 134.2 153.7 187.4 217.4
314 452 616 804 1018 1134 1257 1521 1964 2463 3217 4072 5027 6082 7238 8495 9852 11310 13685 16286 19114 22167
21.72 Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
FLEXIBLE MACHINE ELEMENTS FLEXIBLE MACHINE ELEMENTS
Particular
21.73
Formula
Chain passing over a sheave (Fig. 21-19) The effort on the chain in case of single-sheave pulley (Fig. 21-19)
P¼
D þ Do þ c d Q ¼ CQ D Do c d
ð21-86Þ
where C ¼ 1:04 for lubricated chains C ¼ 1:10 for chains running dry The efficiency of the chain sheave
1 C where ¼ 0:96 for lubricated chains ¼ 0:91 for chain running dry
¼
ð21-87Þ
FIGURE 21-18 Pitch length and width of link.
FIGURE 21-19 Chain passing over sheave.
FIGURE 21-20 Differential chain block.
Differential chain block (Fig. 21-20) RAISING THE LOAD Q Q ð1 nÞ 2 d r where n ¼ ¼ D R
The effort required for raising the load without friction
Po ¼
ð21-88Þ
The relation between the tension in the running-off and running-on chains
T 1 ¼ C1 T 2
ð21-89Þ
The tension in the running-off chains
T1 ¼
Ct Q 1 þ C1
ð21-90Þ
T2 ¼
Q 1 þ C1
ð21-91Þ
The tension in the running-on chain
where C1 depends on the size of the chain and diameter of the lower sheave
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
FLEXIBLE MACHINE ELEMENTS
21.74
CHAPTER TWENTY-ONE
Particular
The relation between effort (P), load (Q), T1 and T2
Formula
PR þ T2 r ¼ C2 T1 R
ð21-92Þ
where C2 depends on the size of the chain and diameter of upper sheave The effort required for raising the load with friction
C2 C2 n Q 1 þ C1
P¼
ð21-93Þ
when C1 and C2 are different Or C2 n Q 1þC
P¼
ð21-94Þ
where C is the average value of C1 and C2 The efficiency for the differential chain hoist
1þC C2 n
¼
1n 2
T1 ¼
Q 1þC
ð21-96Þ
T2 ¼
CQ 1þC
ð21-97Þ
ð21-95Þ
Lowering the load The equations for the tension in the running-on running-off and pull (P0 ) required on the chain so as to prevent running down of the load
T1 R ¼ CP0 R þ CT2 r The pull required on the chain so as to prevent running down of the load
P0 ¼
Q C
The efficiency for the reversed motion
0 ¼
2 C
1 nC 2 1þC
ð21-98Þ
1 nC2 ð1 nÞð1 þ CÞ
ð21-99Þ ð21-100Þ
where C varies from 1.054 to 1.09 or obtained from Table 21-33 For mechanical properties of the coil link chain and the strength of hoisting chains in terms of bar from which they are made
Refer to Tables 21-52 and 21-53.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
FLEXIBLE MACHINE ELEMENTS FLEXIBLE MACHINE ELEMENTS
21.75
TABLE 21-52 Mechanical properties of the coil link chain Requirement Properties
Grade 30
Grade 40
Mean stress at guaranteed minimum breaking load, Fw min, h bar Mean stress at proof load, Fe , h bar Ratio of proof load of guaranteed minimum breaking load Guaranteed minimum elongation at fracture, A min Guaranteed minimum energy absorption factor, Fw A Maximum safe working load mean stress, h bar
30 15 50% 14.4% 0.054 kJ m1 mm2 7.5
40 20 50% 14.4% 0.054 kJ m1 mm2 10
TABLE 21-53 The strength of hoisting chains in terms of the bars from which they are made Particular
% of bar
Standard close link Coil chain BB crane chain Stud chain
138 120 145 165
Particular
Formula
Conditions for self-locking of differential chain block
1 nC 2 1þC
The condition for self-locking
P0 ¼
For self-locking differential chain block
n>
1 C2
ð21-102Þ
n¼
1 C2
ð21-103Þ
The initial value of the ratio
r R
Q C
0
ð21-101Þ
Power chains Roller chains !1 n1 d2 z2 ¼ ¼ ¼ !2 n2 d1 z1
The transmission ratio
i
The average speed of chain
v¼
pz1 n1 m=s or 60
v¼
ð21-104Þ pz1 n1 ft=min 12
ð21-105Þ
where z1 ¼ number of teeth on the small sprocket and p in m (in)
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
FLEXIBLE MACHINE ELEMENTS
21.76
CHAPTER TWENTY-ONE
Particular
The empirical formula for pitch
Formula
900 2=3 p 0:25 n1
SI
ð21-106aÞ
USCS
ð21-106bÞ
Customary Metric
ð21-106cÞ
where p in m p
900 n1
2=3
where p in in 900 2=3 p 250 n1
where p in mm, n1 ¼ speed of the small sprocket, rpm Bartlett formula relating speed (n1 ) and pitch ( p) based on allowable amount of impact between a roller and a sprocket
1170 n1 ¼ p
sffiffiffiffiffiffiffiffiffi A wf p
SI
ð21-107aÞ
where n1 in rpm, p in m, wf in N/m, and A in m2 11;800 n1 ¼ p
sffiffiffiffiffiffiffiffiffi A wf p
Customary Metric
ð21-107bÞ
where n1 in rpm, p in mm, wf in kgf/m, and A in mm2 1920 n1 ¼ p
sffiffiffiffiffiffiffiffiffi A wf p
USCS
ð21-107cÞ
where n1 in rpm, p in in, wf in lbf/ft, and A in in2 A ¼ ldr ¼ projected area of the roller dr ¼ diameter of rollers l ¼ width of chain or length of roller Maximum allowable chain velocity based on Eq. (21-107)
vmax
sffiffiffiffiffiffiffiffiffi A 19:48z1 wf p
SI
ð21-108aÞ
where vmax in m/s, A in m2 , p in m, and wf in N/m vmax
sffiffiffiffiffiffiffiffiffi A 160z1 wf p
USCS
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð21-108bÞ
FLEXIBLE MACHINE ELEMENTS FLEXIBLE MACHINE ELEMENTS
Particular
21.77
Formula
where vmax in ft/min, A in in2 , p in in, and wf in lbf/ft sffiffi vmax 0:196z1
A wf p
Customary Metric
ð21-108cÞ
where vmax in m/s, A in mm2 , p in mm, and wf in kgf/m Maximum speed based on the energy of impact per tooth per minute
1437 n p
sffiffiffiffiffiffi 3 A wf
SI
ð21-109aÞ
where A in m2 , p in m, and wf in N/m 2000 n p
sffiffiffiffiffiffi 3 A wf
USCS ð21-109bÞ
where A in in2 , p in in, and wf in lbf/ft n
6712 p
sffiffiffiffiffiffi 3 A wf
Customary Metric
ð21-109cÞ
where A in mm2 , p in mm, and wf in kgf/m Maximum chain velocity based on Eq. (21-109), m/s
vmax
sffiffiffiffiffiffi 3 A 24z1 wf
SI
ð21-110aÞ
where vmax in m/s, A in m2 , and wf in N/m vmax
sffiffiffiffiffiffi 3 A 166z1 wf
USCS ð21-110bÞ
where vmax in ft/min, A in in2 , and wf in lbf/ft vmax 0:11z1
sffiffiffiffiffiffi 3 A wf
Customary Metric
ð21-110cÞ
where vmax in m/s, A in mm2 , and wf in kgf/m Maximum sprocket speed based on the effect of centrifugal force
36350 n p
sffiffiffiffiffiffiffiffiffiffi A z1 wf
SI
ð21-111aÞ
where p in m, A in m2 , and wf in N/m 9516 n p
sffiffiffiffiffiffiffiffiffiffi A z1 wf
USCS ð21-111bÞ
where p in in, A in in2 , and wf in lbf/ft
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
FLEXIBLE MACHINE ELEMENTS
21.78
CHAPTER TWENTY-ONE
Particular
Formula
sffiffiffiffiffiffiffiffi Az1 600 wf
Maximum velocity based on Eq. (21-111) vmax
SI
ð21-112aÞ
where vmax in m/s, A in m2 , and wf in N/m sffiffiffiffiffiffiffiffi Az1 USCS ð21-112bÞ vmax 793 wf where vmax in ft/min, A in in2 , and wf in lbf/ft sffiffiffiffiffiffiffiffi Az1 Customary Metric ð21-112cÞ vmax 0:2 wf where vmax in m/s, A in mm2 , and wf in kgf/m
Chain pull For preliminary computation, the allowable pull
Fa ¼
Fu no
ð21-113Þ
where Fu ¼ ultimate strength from Tables 21-35B and 21-42 no ¼ working factor, no ¼ 5 for sprocket having over 40 teeth and a speed of 0.5 m/s no ¼ 18 for sprocket having 10 or 11 teeth and a speed of 6 m/s AGMA formula for allowable pull based on velocity factor Cv ¼ 3=ð3 þ vÞ and bearing pressure of 29.4 MPa (4333 psi) for the pin
90 106 ldr v2 wf SI ð21-114aÞ 3þv 9:8 where l and dr in m, v in m/s, and wf in N/m
Fa ¼
Fa ¼
v2 w f ldr 2;600;000 600 þ v 3ð1011 Þ USCS
ð21-114bÞ
where l and dr in in, v in ft/min, and wf in lbf/ft where l ¼ length of roller pins, m (in) v¼
z1 pn1 m=s 60
dr ¼ roller pin diameter, m (in) For dimensions of American Standard Roller Chains—single-strand
Refer to Tables 21-54A.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
FLEXIBLE MACHINE ELEMENTS FLEXIBLE MACHINE ELEMENTS
21.79
TABLE 21-54A Dimensions of American Standard roller chains—single-strand ANSI chain number 25 35 41 40 50 60 80 100 120 140 160 180 200 240
Pitch, in (mm)
Width, in (mm)
Minimum tensile strength, lb (N)
0.250 (6.35) 0.375 (9.52) 0.500 (12.70) 0.500 (12.70) 0.625 (15.88) 0.750 (19.05) 1.000 (25.40) 1.250 (31.75) 1.500 (38.10) 1.750 (44.45) 2.000 (50.80) 2.250 (57.15) 2.500 (63.50) 3.00 (76.70)
0.125 (3.18) 0.188 (4.76) 0.25 (6.35) 0.312 (7.94) 0.375 (9.52) 0.500 (12.7) 0.625 (15.88) 0.750 (19.05) 1.000 (25.40) 1.000 (25.40) 1.250 (31.75) 1.406 (35.71) 1.500 (38.10) 1.875 (47.63)
780 (3470) 1760 (7830) 1500 (6670) 3130 (13920) 4880 (21700) 7030 (31300) 12500 (55600) 19500 (86700) 28000 (124500) 38000 (169000) 50000 (222000) 63000 (280000) 78000 (347000) 112000 (498000)
Average weight, lb/ft (N/m) 0.09 (1.31) 0.21 (3.06) 0.25 (3.65) 0.42 (6.13) 0.69 (10.1) 1.00 (14.6) 1.71 (25.0) 2.58 (37.7) 3.87 (56.5) 4.95 (72.2) 6.61 (96.5) 9.06 (132.2) 10.96 (159.9) 16.4 (239.0)
Roller diameter, in (mm)
Multiple-strand spacing, in (mm)
0.130 (3.30) 0.200 (5.08) 0.306 (7.77) 0.312 (7.92) 0.400 (10.16) 0.469 (11.91) 0.625 (15.87) 0.750 (19.05) 0.875 (22.22) 1.000 (25.40) 1.125 (28.57) 1.406 (35.71) 1.562 (39.67) 1.875 (47.62)
0.252 (6.40) 0.399 (10.13) — — 0.566 (14.38) 0.713 (18.11) 0.897 (22.78) 1.153 (29.29) 1.409 (35.76) 1.789 (45.44) 1.924 (48.87) 2.305 (58.55) 2.592 (65.84) 2.817 (71.55) 3.458 (87.83)
Source: Compiled from ANSI B29.1-1975.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
FLEXIBLE MACHINE ELEMENTS
21.80
CHAPTER TWENTY-ONE
TABLE 21-54B Rated horsepower capacity of single-strand single-pitch roller chain for a 17-tooth sprocket ANSI chain number Sprocket speed, rpm
25
35
40
41
50
60
50 100 150 200 300 400 500 600 700 800 900 1000 1200 1400 1600 1800 2000 2500 3000
0.05 0.09 0.13a 0.16a 0.23 0.30a 0.37 0.44a 0.50 0.56a 0.62 0.68a 0.81 0.93a 1.05a 1.16 1.27a 1.56 1.84
0.16 0.29 0.41a 0.54a 0.78 1.01a 1.24a 1.46a 1.68 1.89a 2.10 2.31a 2.73 3.13a 3.53a 3.93 4.32a 5.28 5.64
0.37 0.69 0.99a 1.29 1.85 2.40 2.93 3.45a 3.97 4.48a 4.98 5.48 6.45 7.41 8.36 8.96 7.72a 5.51a 4.17
0.20 0.38 0.55a 0.71 1.02 1.32 1.61 1.90a 2.18 2.46a 2.74 3.01 3.29 2.61 2.14 1.79 1.52a 1.10a 0.83
0.72 1.34 1.92a 2.50 3.61 4.67 5.71 6.72a 7.73 8.71a 9.69 10.7 12.6 14.4 12.8 10.7 9.23a 6.58a 4.98
1.24 2.31 3.32 4.30 6.20 8.03 9.81 11.6 13.3 15.0 16.7 18.3 21.6 18.1 14.8 12.4 10.6 7.57 5.76
Type A
Type B
a
Estimated from ANSI tables by linear interpolation. Note: Type A—manual or drip lubrication, type B—bath or disk lubrication; type C—oil-stream lubrication. Source: Compiled from ANSI B29.1-1975 information only section, and from B29.9-1958.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
Type C
FLEXIBLE MACHINE ELEMENTS FLEXIBLE MACHINE ELEMENTS
21.81
TABLE 21-54C Rated horsepower capacity of single-strand single-pitch roller chain for a 17-tooth sprocket ANSI chain number Sprocket speed, rpm 50 100 150 200 300 400 500 600 700 800 900 1000 1200 1400 1600 1800 2000 2500 3000 Type C
Type B
Type A
80
100
120
140
160
180
200
240
2.88 5.38 7.75 10.0 14.5 18.7 22.9 27.0 31.0 35.0 39.9 37.7 28.7 22.7 18.6 15.6 13.3 9.56 7.25
5.52 10.3 14.8 19.2 27.7 35.9 43.9 51.7 59.4 63.0 52.8 45.0 34.3 27.2 22.3 18.7 15.9 0.40 0
9.33 17.4 25.1 32.5 46.8 60.6 74.1 87.3 89.0 72.8 61.0 52.1 39.6 31.5 25.8 21.6 0
14.4 26.9 38.8 50.3 72.4 93.8 115 127 101 82.4 69.1 59.0 44.9 35.6 0
20.9 39.1 56.3 72.9 105 136 166 141 112 91.7 76.8 65.6 49.0 0
28.9 54.0 77.7 101 145 188 204 155 123 101 84.4 72.1 0
38.4 71.6 103 134 193 249 222 169 0
61.8 115 166 215 310 359 0
Type C0
Note: Type A—manual or drip lubrication; type B—bath or disk lubrication; type C–oil-stream lubrication; type C0 —type C, but this is a galling region; submit design to manufacturer for evaluation. Source: Compiled from ANSI B29.1-1975 information only section, and from B29.9-1958.
TABLE 21-54D Tooth correction factors, K1 Number of teeth on driving sprocket
Tooth correction factor, K1
Number of teeth on driving sprocket
Tooth correction factor, K1
11 12 13 14 15 16 17 18 19 20 21
0.53 0.62 0.70 0.78 0.85 0.92 1.00 1.05 1.11 1.18 1.26
22 23 24 25 30 35 40 45 50 55 60
1.29 1.35 1.41 1.46 1.73 1.95 2.15 2.37 2.51 2.66 2.80
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
FLEXIBLE MACHINE ELEMENTS
21.82
CHAPTER TWENTY-ONE
TABLE 21-54E Multistrand factors K2 Number of strands
K2
1 2 3 4
1.0 1.7 2.5 3.3
TABLE 21-54F Service factor for roller chains, ks
Operating characteristics
Intermittent few hours per day, few hours per year
Normal 8 to 10 hours per day 300 days per year
Continuous 24 hours per day
Easy starting, smooth, steady load Light medium shock or vibrating load Medium to heavy shock or vibrating load
0.06–1.00 0.90–1.40 1.20–1.80
0.90–1.50 1.20–1.90 1.50–2.30
0.90–2.00 1.50–2.40 1.80–2.80
Particular
Formula
Power For the rated horsepower capacity of single-strandsingle-pitch roller chains for 17-tooth sprocket and values of K1 and K2
Refer to Tables 21-54B to 21-54E.
Power required
P¼
F v 1000kl ks
SI
ð21-115aÞ
USCS
ð21-115bÞ
Customary Metric
ð21-115cÞ
where F in N and P in kW P¼
F v 33;000kl ks
where F in lbf and P in hp P¼
F v 102kl ks
where F ¼ required chain pull in kgf and P in kW kl ¼ load factor from 1.1 to 1.5 and also obtained from Chap. 14 ks ¼ service factor ¼ 1 for 10 h service per day ¼ 1.2 for 24 h operation and also obtained from Table 21-54F
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
FLEXIBLE MACHINE ELEMENTS FLEXIBLE MACHINE ELEMENTS
Particular
21.83
Formula
The rated horsepower of roller chain per strand
"
# v v1:41 2 90 P¼p 1 þ 5o sin 0:75 3:7 z1 2
Pc ¼ K1 K2 Pr
The corrected horsepower (Pc )
ð21-116Þ ð21-116aÞ
where Pr ¼ rated horsepower and K1 and K2 from Tables 21-54D and 21-54E
CHECK FOR ACTUAL SAFETY FACTOR The actual safety factor checked by the formula
na ¼
Fu F þ Fcs þ Fs
where Fcs ¼
wv2 ; Fs ¼ ksg wC g
ð21-117Þ ð21-117aÞ
33;000P ð21-117bÞ v where F in lbf, P in hp, and v in ft/min
F ¼
1000P v where F in N, P in kW, and v in m/s
F ¼
w ¼ weight per meter of chain, N (lbf ) v ¼ velocity of chain, m/s (ft/min) C ¼ center distance, m (in) ksz ¼ coefficient for sag from Table 21-55 F i¼ Fa
The number of strand in a chain, if F > Fa
ð21-118Þ
Center distance of chain length The proper center distance between sprockets in pitches
Cp ¼ 20p to 30p or Cp ¼ 40 10 pitches
The minimum center distance
Cmin ¼ Kmin C
where pCp ¼ C
where C ¼
da1 þ d2 2
TABLE 21-55 Coefficient for sag, ksg Position of chain drive ksg
Horizontal
<408
>408
Vertical
6
4
2
1
ð21-119Þ
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð21-120Þ
FLEXIBLE MACHINE ELEMENTS
21.84
CHAPTER TWENTY-ONE
Particular
Formula
TABLE 21-56 Values of k to he used in Eq. (21-123) ðz1 z2 Þ=Cp
0.1
1.0
2.0
3.0
4.0
5.0
6.0
k
0.02533
0.02538
0.02555
0.02584
0.02631
0.02704
0.02828
TABLE 21-57 Minimum center distance constant, Kmin Transmission ratio, i
Minimum center distance constant, Kmin
3 3–4 4–5 5–6 6–7
1 þ ð30–50=c 0 Þ 1.2 1.3 1.4 1.5
da ¼
p þ 0:6p 180 tan z
Refer to Table 21-56 for values of k [used in Eq. (21123)] and Table 21-57 for Kmin . The maximum center distance
The chain length in pitches
Cmax ¼ 80p
ð21-121Þ
where p ¼ pitches of chain, mm z þ z2 z z2 þ 1 (exact) Lp ¼ 2Cp cos þ 1 2 180 ð21-122Þ Lp ¼ 2Cp þ
The chain length, m or in
z1 þ z2 kðz1 z2 Þ2 þ 2 Cp
L ¼ 2C cos þ
ð21-123Þ
z1 pð180 þ 2Þ z2 pð180 2Þ þ 360 360 ð21-124Þ
where z1 ¼ number of teeth on a small sprocket z2 ¼ number of teeth on a large sprocket ¼ angle between tangent to the sprocket pitch circle and the center line d2 d1 ¼ sin1 2C z z2 k ¼ a variable which depends on 1 Cp and obtained from Table 21-56
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
FLEXIBLE MACHINE ELEMENTS FLEXIBLE MACHINE ELEMENTS
Particular
The chain length The pitch diameter of a sprocket
21.85
Formula
L ¼ pLp d¼
ð21-125Þ
p 180 sin z
ð21-126Þ
Roller chain sprocket zmin ¼
4dr þ 5 for pitches of 25 mm p
ð21-127aÞ
zmin ¼
4dr þ 4 for pitches 32 to 58 mm p
ð21-127bÞ
Minimum number of teeth
zmin ¼
4dr þ 6 for pitches to 51 mm p
The root diameter of sprocket
df ¼ d dr
Minimum number of teeth
Silent chain sprocket ð21-128Þ ð21-129Þ
where dr ¼ diameter of roller pin, m (in) The width of sprocket tooth (Fig. 21-22)
C1 ¼ l 0:05p
ð21-130Þ
where l ¼ chain width or roller length Maximum hub diameter
Power per cm of width in hp
180 ðH þ 0:1270Þ z where H ¼ height of link plate, m or in ¼ 0:3p pv v P¼ 1 6:80 2:16ðz1 8Þ Dh ¼ d cos
ð21-131Þ
ð21-132Þ
pz1 n1 ¼ chain speed, m/s; p in m 60 pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi h ¼ 0:433 S 2 L2 ð21-133aÞ where v ¼
The relationship between depth of sag, and tension due to weight of chain in the catenary (approx.)
F ¼w
S2 h þ 8h 2
ð21-133bÞ
where h ¼ depth of sag, m (in) L ¼ distance between points of support, m (in) S ¼ catenary length of chain, m (in) F ¼ tension or chain pull, kN (lbf ) w ¼ weight of chain, kN/m (lbf/in)
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
FLEXIBLE MACHINE ELEMENTS
21.86
CHAPTER TWENTY-ONE
Particular
Formula
Tension chain linkages Allowable load
Fa ¼ 13:1 106 p2
SI
ð21-134aÞ
USCS
ð21-134bÞ
where p in m and Fu in N Fa ¼ 1900p2
where p ¼ pitch of chain, in, and Fu in lbf Allowable load for lightweight chain
Fa ¼ 7 106 p2
SI
ð21-134cÞ
USCS
ð21-134dÞ
where p in m Fa ¼ 1020p2 where p in in, F in lbf
Indian Standards PRECISION ROLLER CHAIN (Figs 21-21 to 21-25, Tables 21-58, 21-59, 21-60) P 180 sin z
ð21-135Þ
Pitch circle diameter (Fig. 21-21)
PCD ¼
Bottom diameter
BD ¼ PCD Dr
FIGURE 21-21 Notation for wheel rim of chain.
FIGURE 21-22 Notation for wheel rim profile of roller chain.
ð21-136Þ
Wheel tooth gap form The minimum value of roller seating radius, mm (Fig. 21-24)
SR1 ¼ 0:505Dr
The maximum value of roller seating radius, mm (Fig. 21-25)
SR2 ¼ 0:505Dr þ 0:069
ð21-137Þ p 3 ffiffiffiffiffiffi Dr
where Dr ¼ roller diameter, mm
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð21-138Þ
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
25.40 25.40 31.70 31.75 38.10 38.10 50.80 50.80 63.50 63.50 76.20 76.20 88.90 101.60
Pitch, P, mm
7.92 8.51 10.16 10.16 11.91 12.07 15.88 15.88 19.05 19.05 22.23 25.40 27.94 29.21
7.95 7.75 9.53 9.65 12.70 11.68 15.88 17.02 19.05 19.56 25.40 25.40 30.99 30.99
3.96 4.45 5.08 5.08 5.94 5.72 7.92 8.28 9.53 10.19 11.10 14.63 15.90 17.81
Bearing in diameter max, Dp , mm 4.01 4.50 5.13 5.13 5.99 5.77 7.97 8.33 9.58 10.24 11.15 14.68 15.95 17.86
Bush bore, min, db , mm 12.33 12.07 15.35 14.99 18.34 16.39 24.39 21.34 30.48 26.68 36.55 33.73 36.46 42.72
Chain path depth, max, hc , mm 12.07 11.81 15.09 14.73 18.08 16.13 24.13 21.08 30.18 26.42 36.20 33.40 37.08 42.29
Plate depth, H, min, mm 6.9 6.9 8.4 8.4 9.9 9.9 13.0 13.0 16.0 16.0 19.1 19.1 21.3 24.4
Crank linked dimension max, X, mm 11.18 11.30 13.84 13.28 17.75 13.62 22.61 25.45 27.46 29.01 35.46 37.92 46.58 45.57
Width over inner link, min, W , mm
11.31 11.43 13.97 13.41 17.88 15.76 22.74 25.58 27.59 29.14 35.59 38.05 46.71 45.70
Width between outer plates max, mm
17.8 17.0 21.8 19.6 26.9 22.7 33.5 36.1 41.1 43.2 50.8 53.4 65.1 64.7
Width over bearing pin, min, A, mm
3.9 3.9 4.1 4.1 4.6 4.6 5.4 5.4 6.1 6.1 6.6 6.6 7.4 7.9
127.5 127.5 196.1 196.1 284.4 284.4 500.2 500.1 774.7 774.7 1108.2 1108.2 1510.2 2000.6
13 13 20 20 29 29 51 51 79 79 113 113 164 204
Addition width for joint fastener, Measuring load max, B, mm N kgf
13.8 17.9 21.8 22.3 31.2 28.9 55.6 42.3 86.8 64.5 124.5 97.9 129.1 169.1
kN
1410 1820 2220 2270 3180 2950 5670 4310 8850 6580 12700 9980 13160 17240
kgf
Breaking load, min
Notes: (1) The chain path depth Hc is the minimum depth of channel through which the assembled chain will pass; (2) the overall width of chain with joint fastener is A þ B for riveted pin end and fastener on one side; A þ 1:6B for headed pin end and fastener on one side; and A þ 2B for fastener on both sides. The actual dimensions will depend on the type of fastener used, but they should not exceed the dimensions in this column. Source: IS 3542, 1966.
208A 208B 210A 210B 212A 212B 216A 216B 220A 220B 224A 224B 228B 232B
Chain no.
Width Roller between diameter inner plates, max, Dr , W, min, mm mm
TABLE 21-58 Extended pitch transmission roller chain dimensions, measuring loads and breaking loads
FLEXIBLE MACHINE ELEMENTS
21.87
FLEXIBLE MACHINE ELEMENTS
21.88
CHAPTER TWENTY-ONE
Particular
Formula
FIGURE 21-23 Notation for tooth gap form of roller chain.
FIGURE 21-24 Notation for minimum tooth gap form of roller chain.
The minimum value of roller seating angle, deg (Fig. 21-24)
SA1 ¼ 1408
908 z
ð21-139Þ
The maximum value of roller seating angle, deg (Fig. 21-25)
SA2 ¼ 1208
908 z
ð21-140Þ
The minimum value of tooth flank radius, mm (Fig. 21-24)
FR1 ¼ 0:12Dr ðz þ 2Þ
ð21-141Þ
The maximum value of tooth flank radius, mm (Fig. 21-25)
FR2 ¼ 0:008Dr ðz2 þ 180Þ
ð21-142Þ
FIGURE 21-25 Notation for maximum tooth gap form of roller chain.
Tooth heights and top diameters (Fig. 21-23) The maximum limit of the tooth height above the pitch polygon The minimum limit of the tooth height above the pitch polygon The maximum limit of the tooth top diameter, mm The minimum limit of the tooth top diameter, mm
0:8 HTmax ¼ p 0:3125 þ 0:5Dr z 0:6 0:5Dr HTmin ¼ p 0:25 þ z TDmax ¼ PCD þ 0:625p Dr 0:4 TDmin ¼ PCD þ p 0:5 Dr z
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð21-143Þ ð21-144Þ ð21-145Þ ð21-146Þ
2.0000 2.1519
2.3048
2.4586
2.6131
2.7682
2.9238
3.0798
3.2361 3.3927
3.5494
3.7065
3.8637
4.0211
4.1786
4.3362
4.4940 4.6518
4.8097
4.9677
5.1258
5.2840
512
6 612
7
712
8
812
9
912
10 1012
11
1112
12
1212
13
1312
14 1412
15
1512
16
1612
2812
28
2712
27
26 2612
2512
25
2412
24
2312
23
22 2212
2112
21
2012
20
1912
19
18 1812
1712
17
9.0902
8.9314
8.7726
8.6138
8.2962 8.4550
8.1375
7.9787
7.8200
7.6613
7.5026
7.3439
7.0266 6.1853
6.8681
6.7095
6.5509
6.3925
6.2340
6.0755
5.7588 5.9171
5.6005
5.4422
No. of teeth, Pitch circle z diameter
a The values given are for a unit pitch (e.g., 1 mm). Source: IS 3542, 1966.
1.7013
1.8496
5
No. of teeth, Pitch circle z diameter
4012
40
3912
39
38 3812
3712
37
3612
36
3512
35
34 3412
3312
33
3212
32
3112
31
30 3012
2912
29
12.9045
12.7455
12.5865
12.4275
12.1095 12.2685
11.9506
11.7916
11.6327
11.4737
11.3148
11.1558
10.8380 10.9969
10.6790
10.5201
10.3612
10.2023
10.0434
9.8845
9.5668 9.7256
9.4080
9.2491
No. of teeth, Pitch circle z diameter
TABLE 21-59 Pitch circle diametersa for extended pitch transmission roller chain wheels
5212
52
5112
51
50 5012
4912
49
4812
48
4712
47
46 4612
4512
45
4412
44
4312
43
42 4212
4112
41
16.7212
16.5622
16.4031
16.2441
15.9260 16.0850
15.7669
15.6079
15.4488
15.2898
15.1308
14.9717
14.6537 14.8127
14.4946
14.3356
14.1765
14.0176
13.8585
13.6995
13.3815 13.5405
13.2225
13.0635
No. of teeth, Pitch circle z diameter
6412
64
6312
63
62 6212
6112
61
6012
60
5912
59
58 5812
5712
57
5612
56
5512
55
54 5412
5312
53
20.5393
20.3800
20.2210
20.0619
19.7437 19.6029
19.5847
19.4255
19.2665
19.1073
18.9482
18.7892
18.4710 18.6301
18.3119
18.1529
17.9938
17.8347
17.6756
17.5166
17.1984 17.3575
17.0393
16.8803
No. of teeth, Pitch circle z diameter
20.6982
75
74 7412
7312
73
7212
72
7112
71
70 70122
6912
69
6812
68
23.8802
23.5620 23.7213
23.4031
23.2438
23.0849
22.9256
22.7667
22.6074
22.2892 22.4485
22.1303
21.9710
21.8121
21.6528
21.4939
21.3346
6612 6712
21.0164 21.1757
20.8575 66 6612
6512
65
No. of teeth, Pitch circle z diameter
FLEXIBLE MACHINE ELEMENTS
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
21.89
6.35
4310 4960 5540 6070 6500 6940 7290 7590 7840 8050 8230 8380 8480 8560 8610 8780 8200 7580 6820 5950 5010 4020
No. of teeth
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 30 35 40 45 50 55 60
2260 2590 2900 3170 3420 3630 3810 3970 4100 4210 4300 4380 4480 4410 4510 4490 4290 3970 3570 3110 2620 2100
9.50 1690 1940 2180 2380 2560 2720 2860 2980 3080 3160 3230 3290 3330 3360 3380 3370 3220 2970 2670 2330 1970 1580
12.70 1220 1400 1570 1720 1850 1969 2060 2150 2220 2280 2330 2370 2400 2420 2440 2430 2320 2140 1930 1680 1420 1140
15.80 920 1050 1110 1290 1390 1480 1550 1610 1670 1720 1750 1780 1800 1820 1830 1830 1740 1610 1450 1270 1070 860
19.05
TABLE 21-60 Maximum speed (rpm), recommended of sprockets for roller chains
580 670 750 820 880 935 985 1020 1060 1090 1110 1130 1150 1160 1100 1160 1110 1020 920 805 675 545
25.40 415 475 535 585 630 670 700 730 755 755 790 805 875 825 830 825 790 730 655 575 410 390
31.75
Pitch
325 375 415 455 490 520 550 750 590 605 620 630 640 645 650 645 615 570 515 450 375 305
38.10 235 270 305 335 360 380 400 415 430 440 450 460 405 470 475 470 450 415 375 325 275 220
44.45 200 230 260 280 305 325 340 355 365 375 385 390 395 400 400 400 380 355 320 275 235 185
50.80
165 190 215 255 255 270 285 295 305 315 320 325 330 300 335 335 320 295 265 230 195 155
57.15
145 165 186 205 220 235 245 255 265 270 280 280 285 290 290 290 275 255 230 200 170 135
63.50
110 125 140 155 165 175 185 195 200 205 210 215 215 220 220 220 210 195 175 150 125 100
76.20
FLEXIBLE MACHINE ELEMENTS
21.90
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
FLEXIBLE MACHINE ELEMENTS FLEXIBLE MACHINE ELEMENTS
Particular
21.91
Formula
Wheel rim profile (Fig. 21-22) Tooth width
C1 ¼ 0:95W with a tolerance of h=4
ð21-147Þ
The minimum tooth side radius
F ¼ 0:5p
ð21-148Þ
The tooth side relief
G ¼ 0:05p to 0:075p
ð21-149Þ
Absolute maximum shroud diameter
D ¼ p cot
For leaf chain dimension, breaking load, anchor clevises and chain sheaves
Refer to Tables 21-61, 21-62, and 21-63.
1808 1:05H 1:00 2 Koct , mm z ð21-150Þ
Leaf chains PRECISION BUSH CHAINS (Figs. 21-26 to 21-29, Tables 21-64 to 21-68) p 180 sin z
The pitch circle diameter (Fig. 21-21, Table 21-62)
PCD ¼
Bottom diameter
BD ¼ PCD Db
ð21-152Þ
The minimum value of bush seating radius, mm (Fig. 21-28)
SR1 ¼ 0:505Db
ð21-153Þ
The maximum value of bush seating radius, mm (Fig. 21-29)
SR2 ¼ 0:505Db þ 0:0693
The minimum value of bush seating angle, deg (Fig. 21-28)
SA1 ¼ 1408
ð21-151Þ
pffiffiffiffiffiffi Db
ð21-154Þ
908 z 908 SA2 ¼ 1208 z
ð21-155Þ
The minimum value of tooth flank radius, mm (Fig. 21-28)
FR1 ¼ 0:12Db ðz þ 2Þ
ð21-157Þ
The maximum value of tooth flank radius, mm (Fig. 21-29)
FR2 ¼ 0:008Db ðz2 þ 180Þ
ð21-158Þ
ð21-159Þ
The minimum limit of the tooth top diameter
TDmax ¼ PCD þ 1:25p Db 1:6 Db TDmin ¼ PCD þ p 1 z
The maximum limit of the tooth height above the pitch polygon
HTmax ¼ 0:625p 1:5Db þ
The maximum value of bush seating angle, deg (Fig. 21-29)
TOOTH TOP DIAMETERS HEIGHT (Fig. 21-27)
AND
ð21-156Þ
TOOTH
The maximum limit of the tooth top diameter
0:8p z
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð21-160Þ ð21-161Þ
TABLE 21-61 Leaf chain dimensions, measuring loads, and breaking loads
FLEXIBLE MACHINE ELEMENTS
21.92 Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
12.70 12.70 12.70 12.70 15.88 15.88 15.88 15.88 19.05 19.05 19.05 19.05 25.40 25.40 25.40 31.75 31.76 31.75 38.10 38.10 38.10 44.45 44.45 44.45 50.80 50.80 50.80
0822 0823 0834 0846 1022 1023 1034 1046 1222 1223 1234 1246 1623 1634 1646 2023 2034 2046 2423 2434 2446 2823 2834 2846 3223 3234 3246
Source: IS: 1072-1967.
Pitch mm
Chain number
Chain width, W1 mm 6.45 8.08 11.30 16.13 7.26 9.09 12.73 18.16 12.50 15.62 21.87 31.24 21.34 29.87 42.67 23.24 32.54 46.68 30.73 43.03 61.47 35.94 50.32 71.88 40.51 56.72 81.03
Lacing
22 23 34 46 22 23 34 46 22 23 34 46 23 34 46 23 34 46 23 34 46 23 34 46 23 34 46 8.69 10.31 13.54 18.36 9.80 11.63 15.27 20.70 15.90 19.02 25.27 34.65 25.48 34.01 46.81 28.35 37.64 51.59 38.05 50.34 68.78 43.89 58.27 79.83 49.43 65.63 89.94
Width over bearing pins, W2 max, mm 4.45 4.45 4.45 4.45 5.08 5.08 5.08 5.08 6.78 6.78 6.78 6.78 8.28 8.28 8.28 10.19 10.19 10.19 14.63 14.63 14.63 15.90 15.90 15.90 17.81 17.81 17.81
Pin body diameter, max, Dp max mm 4.48 4.48 4.48 4.48 5.10 5.10 5.10 5.10 6.80 6.80 6.80 6.80 8.30 8.30 8.30 10.22 10.22 10.22 14.66 14.66 14.66 15.92 15.92 15.92 17.84 17.84 17.84
Articulating plates bore, diameter, min, Dp max mm 11.81 11.81 11.81 11.81 14.73 14.73 14.73 14.73 16.13 16.13 16.13 16.13 21.08 21.08 21.08 26.42 26.42 26.42 33.40 33.40 33.40 37.08 37.08 37.08 42.29 42.29 42.29
Plate depth, min, H mm 1.57 1.57 1.57 1.57 1.78 1.78 1.78 1.78 3.07 3.07 3.07 3.07 4.22 4.22 4.22 4.60 4.60 4.60 6.10 6.10 6.10 7.14 7.14 7.14 8.05 8.05 8.05
Plate thickness, max, T mm 190.0 190.0 280.0 370.0 250.0 250.0 390.0 500.0 450.0 450.0 670.0 890.0 630.0 1020.0 1250.0 980.0 1510.0 1960.0 1600.0 2400.0 3200.0 2400.0 3200.0 4300.0 2800.0 4100.0 5500.0
N 19.10 19.10 28.60 38.10 25.40 25.40 39.90 50.80 45.40 45.40 68.00 90.70 63.50 104.30 127.00 99.80 154.20 199.60 163.30 244.90 326.60 217.70 326.60 435.50 281.20 421.80 562.50
kgf
Measuring load
18.7 18.7 26.3 37.4 24.9 24.9 39.1 49.8 44.5 44.5 66.7 82.0 62.3 102.3 124.5 97.9 151.2 195.7 160.1 240.2 320.3 213.5 320.3 427.1 275.8 413.6 551.9
kN
1910 1910 2860 3810 2540 2540 3990 5080 4540 4540 6800 9070 6350 10430 12700 9980 15420 19960 16330 24490 32660 21770 32660 43550 28120 42180 56280
kgf
Breaking load, min
FLEXIBLE MACHINE ELEMENTS
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
21.93
21.94
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
12.70 12.70 12.70 12.70 15.88 15.88 15.88 15.88 19.05 19.05 19.05 19.05 25.40 25.40 25.40 31.75 31.75 31.75 38.10 38.10 38.10 44.45 44.45 44.45 50.80 50.80 50.80
0822 0823 0834 0846 1022 1023 1034 1046 1222 1223 1234 1246 1623 1634 1646 2023 2034 2046 2423 2434 2446 2823 2834 2846 3223 3234 3246
Source: IS 1072, 1967.
Pitch P, mm
Chain number
Outside flange thickness, t, min 1.57 1.57 1.57 1.57 1.78 1.78 1.78 1.78 3.07 3.07 3.07 3.07 4.22 4.22 4.22 4.60 4.60 4.60 6.10 6.10 6.10 7.14 7.14 7.14 8.05 8.05 8.05
Lacing
22 23 34 46 22 23 34 46 23 23 34 46 23 34 46 23 34 46 23 34 46 23 34 46 23 34 46 — — 8.18 — — — 9.16 — — — 15.75 — — 21.49 — — 23.42 — — 30.94 — — 36.17 — — 40.77 —
A K þG — — — 13.11 — — — 14.76 — — — 25.25 — — 34.44 — — 37.54 — — 49.58 — — 37.96 — — 65.33
E K1 þ K2 6.35 6.35 6.35 6.35 7.95 7.95 7.95 7.95 9.53 9.53 9.53 9.53 12.70 12.70 12.70 15.88 15.88 15.88 19.05 19.05 19.05 22.23 22.23 22.23 25.40 25.40 25.40
End radius, R, max
TABLE 21-62 Dimensions of anchor clevises for leaf chains (all dimensions in mm)
6.35 6.35 6.35 6.35 7.95 7.95 7.95 7.95 9.53 9.53 9.53 9.53 12.70 12.70 12.70 15.88 15.88 15.88 19.05 19.05 19.05 22.23 22.23 22.23 25.40 25.40 25.40
Slot depth, U, min 0.79 0.79 0.79 0.79 0.79 0.79 0.79 0.79 1.59 1.59 1.59 1.59 1.59 1.59 1.59 1.59 1.59 1.59 2.38 2.38 2.38 2.38 2.38 2.38 3.18 3.18 3.18
Fillet radius, B, min — — 4.85 — — — 5.46 — — — 9.37 — — 12.80 — — 13.94 — — 18.44 — — 21.56 — — 24.31 —
K — — — 8.08 — — — 9.09 — — — 15.62 — — 21.34 — — 23.24 — — 30.73 — — 35.94 — — 40.51
K1
Slot pitch
3.33 — 3.33 — 3.73 — 3.73 — 6.38 — 6.38 — — 8.69 — — 9.47 — — 12.50 — — 14.61 — — 16.31 —
G
— 5.03 — 5.03 — 5.66 — 5.66 — 9.63 — 9.63 13.11 — 13.11 14.30 — 14.30 18.85 — 18.85 22.02 — 22.02 24.82 — 24.82
G1
Slot width
þ0:02p þ 0:100 0
þ0:02p þ 0:100 0
Tolerance on A, E G, G1
FLEXIBLE MACHINE ELEMENTS
Source: IS 1072, 1967.
Distance between flanges, L, min 9.12 10.80 14.20 19.28 10.29 12.22 16.03 21.74 16.69 19.96 26.54 36.37 26.75 35.71
Chain number
0822 0823 0834 0846 1022 1028 1034 1046 1222 1223 1234 1246 1623 1634
TABLE 21-63 Dimensions (in mm) for leaf chain sheaves
63.50 63.50 63.50 63.50 79.38 79.38 79.38 79.38 95.25 95.25 95.25 95.25 127.00 127.00
Sheave diameter, SD, min 88.90 88.90 88.90 88.90 104.78 104.78 104.78 104.78 120.65 120.65 120.65 120.65 152.40 152.40
Flange diameter, FD, min 1646 2023 2034 2046 2423 2434 2446 2823 2834 2846 3223 3234 3246
Chain number
49.15 29.77 39.52 51.18 39.95 52.86 72.21 46.08 61.19 83.82 51.89 68.92 94.44
Distance between flanges, L, min
127.00 158.75 158.75 158.75 190.50 190.50 190.50 222.25 222.25 222.25 254.00 254.00 254.00
Sheave diameter, SD, min
152.40 184.15 184.15 184.15 215.90 215.90 215.90 247.65 247.65 247.65 279.40 279.40 279.40
Flange diameter, FD, min
FLEXIBLE MACHINE ELEMENTS
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
21.95
FLEXIBLE MACHINE ELEMENTS
21.96
CHAPTER TWENTY-ONE
TABLE 21-64 Short pitch transmission precision bush chain dimensions, measuring loads, and breaking loads (all dimensions in mm) Chain No. 04C Pitch, p Bush diameter, Db , max Width between inner plates, min, W Bearing pin body diameter, max, Dp Bush bore, db , min Chain path depth, Hd , min Inner plate depth, Hi , max Outer or immediate plate depth, Ho , max Cranked link dimensions X, min Y, min Z, min Transverse pitch, Yp Width over inner link, W1 , max Width between outer plates, W2 , min Width over bearing pins A, max A2 , max A3 , max Additional width for joint fasteners, B, max Measuring load Simplex Duplex Triplex Breaking load, min Simplex Duplex Triplex
06C
6.35 3.30 3.18 2.29 2.34 6.27 6.02 5.21
9.525 5.08 4.77 3.59 3.63 9.30 9.05 7.80
2.64 3.06 0.08 6.40 4.80 4.93
3.96 4.60 0.08 10.13 7.47 7.60
9.10 15.5 21.8 2.5
13.20 23.4 33.5 3.3
0.05 kN 0.10 kN 0.15 kN
5 kgf 10 kgf 15 kgf
3.4 kN 6.9 kN 10. 3 kN
350 kgf 700 kgf 1050 kgf
0.07 kN 0.14 kN 0.20 kN 7.8 kN 15.5 kN 23.2 kN
7 kgf 14 kgf 21 kgf 790 kgf 1580 kgf 2370 kgf
Notes: (1) Dimension C represents clearance between the cranked link plates and the straight plates available during articulation; (2) the chain path depth Hc is the minimum depth of channel through which the assembled chain passes; (3) width over bearing pins for chains wider than triplex ¼ A1 þ Tp (No. of strands in chain—1); (4) cranked links are not recommended for use on chains which are intended for onerous applications. Source: IS 3563, 1966.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
2.9238 3.2361 3.5494 3.8637 4.1786 4.4940 4.8097 5.1258 5.4422 5.7588 6.0755 6.3925 6.7095 7.0266 7.3439 7.6613 7.9787 8.2962 8.6138 8.9314 9.2491 9.5668 9.8845 10.2023
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
No. of teeth 10.5201 10.8380 11.1558 11.3747 11.7916 12.1096 12.4275 12.7455 13.0635 13.3815 13.6995 14.0176 14.3356 14.6537 14.9717 15.2868 15.6079 15.9260 16.2441 16.5622 16.8803 17.1984 17.5166 17.8347
Pitch circle diameter
a The values given are for a unit pitch length (e.g., 1 mm). Source: IS 3560, 1966.
Pitch circle diameter
No. of teeth 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
No. of teeth 18.1529 18.4710 18.7892 19.1073 19.9255 19.7437 20.0619 20.3800 20.6982 21.0164 21.3246 21.6528 21.9710 22.2892 22.6074 22.9256 23.2438 23.5620 24.8802 24.1985 24.5167 24.8349 25.1513 25.4713
Pitch circle diameter
TABLE 21-65 Pitch circle diametersa for short pitch transmission precision bush chain wheels
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
No. of teeth 26.7896 26.1078 26.4260 26.7443 27.0625 27.3807 27.6990 28.0172 28.3355 28.6537 28.9719 29.2902 29.6084 29.9267 30.2449 30.5632 30.8815 31.9097 31.5180 31.8362 32.1545 32.4727 32.7910 33.1093
Pitch circle diameter 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
No. of teeth 33.4275 33.7458 34.0648 34.3823 34.7006 35.0188 35.3371 35.6554 35.9737 36.2919 36.6102 36.9285 37.2467 37.5650 37.8833 38.2016 38.5198 38.8381 39.1564 39.4776 39.7929 40.1112 40.4295 43.7478
Pitch circle diameter
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
No. of teeth
41.0660 41.3843 41.7026 42.0209 42.3291 42.6574 42.9757 43.2940 43.6123 43.9306 44.2488 44.5671 44.8854 45.2037 45.5220 45.8403 46.1585 46.4768 46.7951 47.1134 47.4317 47.7500
Pitch circle diameter
FLEXIBLE MACHINE ELEMENTS
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
21.97
FLEXIBLE MACHINE ELEMENTS
21.98
CHAPTER TWENTY-ONE
TABLE 21-66 Recommended design data for silent chains No. of teeth Chain pitch, mm
Speed of small sprocket
Driver
Driven
Min center distance, mm
9.3 12.7 15.8 19.0 22.2 25.4 31.7 38.1 50.8 76.2
2000–4000 1500–2000 1200–1500 1000–1200 900–1000 800–900 650–800 500–650 300–500 300
17–25 17–25 19–25 19–25 19–25 19–25 21–25 25–27 25–27 25–27
21–120 21–130 21–150 23–150 23–150 23–150 25–150 27–150 27–150 27–150
152.4 228.6 304.8 381.0 457.2 533.4 685.8 914.4 1219.2 1676.4
TABLE 21-67A Maximum speed of small sprocket for inverted tooth chains
Pitch, mm
Max width, mm
Number of teeth
9.50 12.70 15.88 19.05 25.40 31.75 38.10 50.80
101.6 177.8 203.2 254.0 355.6 508.0 609.6 762.0
17 19 21 23 25 27 29 31 33 35 37 45 40 50
Speed, rpm 4000 5000 6000 6000 6000 6000 6000 6000 6000 6000 5000 4000 5000 3500
3500 3500 3000 4000 4000 4000 4000 4000 4000 4000 3500 3000 3500 2500
2500 2500 3000 3000 3500 3500 3500 3500 3500 3500 3000 2000 2500 2000
2000 2500 2500 2500 2500 2500 2500 2500 2500 2500 2500 2000 2500 1800
1200 1500 1800 1800 1800 2000 2000 2000 2000 2000 1800 1500 1500 1200
1200 1200 1800 1800 1800 1800 1800 1800 1800 1200 1000 1200 1000
1000 1000 1200 1200 1200 1200 1200 1200 1200 1000 900 900 800
700 700 800 900 900 900 900 900 900 800 700 800 600
TABLE 21-67B Maximum velocity for various types of chains, rpm Number of sprocket teeth Bush roller chain Type of chain
Chain pitch, p, mm
12 15 20 25 30
2300 1900 1350 1150 1000
15
19
23
27
30
Silent chains 17.35
2400 2000 1450 1200 1050
2530 2100 1500 1250 1100
2550 2150 1550 1300 1100
2600 2200 1550 1300 1100
12.7 15.87 19.05 25.40 31.75
3300 2650 2200 1650 1300
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
FLEXIBLE MACHINE ELEMENTS FLEXIBLE MACHINE ELEMENTS
21.99
TABLE 21-68 Safety factor Speed of smaller sprocket, rpm Chains
50
Bush roller chains p ¼ 12, 15 mm p ¼ 20, 25 mm p ¼ 30, 35 mm Silent chains p ¼ 12:7, 15.87 mm p ¼ 19:05, 25.4 mm
7.0 7.0 7.0 20 20
260
7.8 8.2 8.55 22.2 23.4
400
600
800
1000
1200
1600
2000
8.55 9.35 10.2
9.35 10.3 13.2
10.2 10.7 14.8
11.0 12.9 16.3
11.7 14.0 19.5
13.2 16.3
1.48
24.4 26.7
28.7 30.0
29.0 33.4
31.0 36.8
33.4 40.0
37.8 46.5
42.0 53.5
FIGURE 21-26 Notation for wheel rim profiles of bush chain.
FIGURE 21-28 Notation for minimum tooth gap form for bush chain.
FIGURE 21-27 Notation for tooth gap form of bush chain.
FIGURE 21-29 Notation for maximum tooth gap form for bush chain.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
FLEXIBLE MACHINE ELEMENTS
21.100
CHAPTER TWENTY-ONE
Particular
Formula
The minimum limit of the tooth height above the pitch polygon
HTmin ¼ 0:5ð p Db Þ
ð21-162Þ
WHEEL RIM PROFILE (Fig. 21-26) The value of tooth width for simple chain wheels (Fig. 21-26)
C1 ¼ 0:93w
ð21-163Þ
The value of tooth width for duplex and triplex chain wheels
C1 ¼ 0:91w
ð21-164Þ
The value of tooth width for quadruplex chain wheels and above
C1 ¼ 0:88w
ð21-165Þ
The value of tolerance shall be h=4. The value of width over tooth
C2 ðor C3 Þ ¼ number of strands 1Tp þ C1 ð21-166Þ with a tolerance value of h=4 where Tp ¼ transmission pitch of strands
The minimum tooth side radius
F ¼p
ð21-167Þ
The tooth side relief
G ¼ 0:1p to 0:15p
ð21-168Þ
Absolute maximum shroud diameter
SD ¼ p cot
For bush chains dimensions, breaking load, pitch circle diameters, etc.
Refer to Tables 21-64 to 21-68.
1808 1:05Hi 1:00 2Kort , mm z ð21-169Þ
REFERENCES 1. Maleev, V. L., and J. B. Hartman, Machine Design, International Textbook Company, Scranton, Pennsylvania, 1954. 2. Black, P. H., and O. E. Adams, Jr., Machine Design, McGraw-Hill Book Company, New York, 1968. 3. Norman, C. A., E. S. Ault, and I. F. Zarobsky, Fundamentals of Machine Design, The Macmillan Company, New York, 1951. 4. Shigley, J. E., Machine Design, McGraw-Hill Book Company, New York, 1962. 5. Shigley, J. E., and C. R. Mischke, Mechanical Engineering Design, McGraw-Hill Book Company, New York, 1989. 6. Shigley, J. E., and C. R. Mischke, Standard Handbook of Machine Design, McGraw-Hill Book Company, New York, 1986. 7. Baumeister, T., ed., Marks’ Standard Handbook for Mechanical Engineers, McGraw-Hill Book Company, New York, 1978. 8. Niemann, G., Maschinenelemente, Springer-Verlag, Berlin; Zweiter Band, Munich, 1965. 9. Niemann, G., Machine Elements—Design and Calculations in Mechanical Engineering, Vol. II, Allied Publishers Private Ltd., New Delhi, 1978. 10. Decker, K. H., Maschinenelemente, Gestaltung and Berechnung, Carl Hanser Verlag, Munich, 1971.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
FLEXIBLE MACHINE ELEMENTS FLEXIBLE MACHINE ELEMENTS
21.101
11. Lingaiah, K. and B. R. Narayana Iyengar, Machine Design Data Handbook, Engineering College Cooperative Society, Bangalore, India, 1962. 12. Lingaiah, K. and B. R. Narayana Iyengar, Machine Design Data Handbook, Vol. I (SI and Customary Metric Units), Suma Publishers, Bangalore, India, 1973. 13. Lingaiah, K., Machine Design Data Handbook, Vol. II (SI and Customary Metric Units), Suma Publishers, Bangalore, India, 1986. 14. Bureau of Indian Standards. 15. Albert, C. D., Machine Design Drawing Room Problems, John Wiley and Sons, New York, 1949. 16. V-Belts and Pulleys, SAE J 636C, SAE Handbook, Part I, Society of Automotive Engineers, Inc., 1997. 17. SI Synchronous Belts and Pulleys, SAE J 1278 Oct.80, SAE Handbook, Part I, Society of Automotive Engineers, Inc., 1997. 18. Synchronous Belts and Pulleys, SAE J 1313 Oct.80, SAE Handbook, Part I, Society of Automotive Engineers, Inc., 1997. 19. Wolfram Funk, ‘Belt Drives,’ J. E. Shigley and C. R. Mischke, Standard Handbook of Machine Design, 2nd edition, McGraw-Hill Publishing Company, New York, 1996.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
Source: MACHINE DESIGN DATABOOK
CHAPTER
22 MECHANICAL VIBRATIONS
SYMBOLS a A B C Cc Ct C1 , C2 d D e E f F Fo FT g G h i I J k ke kt K
coefficients with subscripts flexibility acceleration, m/s2 (ft/s2 ) area of cross section, m2 (in2 ) constant constant coefficient of viscous damping, N s/m or N/ (lbf s/in or lbf/) constant critical viscous damping, N s/m (lbf s/in) coefficient of torsional viscous damping, N m s/rad (lbf in s/rad) coefficients constants diameter of shaft, m (in) flexural rigidity ½¼ Eh3 =12ð1 2 Þ displacement of the center of mass of the disk from the shaft axis, m (in) modulus of elasticity, GPa (Mpsi) frequency, Hz exciting force, kN (lbf ) maximum exciting force, kN (lbf ) transmitted force, kN (lbf ) acceleration due to gravity, 9.8066 m/s2 (32.2 ft/s2 or 386.6 in/s2 ) modulus of rigidity, GPa (Mpsi) thickness of plate, m (in) integer (¼ 0, 1, 2, 3, . . .) mass moment of inertia of rotating disk or rotor, N s2 m (lbf s2 in) polar second moment of inertia, m4 or cm4 (in4 ) spring stiffness or constant, kN/m (lbf/in) equivalent spring constant, kN/m (lbf/in) torsional or spring stiffness of shaft, J/rad or N m/rad (lbf in/rad) kinetic energy, J (lbf/in)
22.1 Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
MECHANICAL VIBRATIONS
22.2
CHAPTER TWENTY-TWO
l m me M Mt p q r R ¼ 1 TR R2 ¼ D2 =2 t T TR U v w W x x1 , x2 xo x_ x€ Xst y ¼
C Cc
length of shaft, m (in) mass, kg (lb) equivalent mass, kg (lb) total mass, kg (lb) torque, N m (lbf ft) circular frequency, rad/s pffiffiffiffiffiffiffiffiffiffiffiffiffi damped circular frequency ð¼ 1 2 Þ radius, m (in) percent reduction in transmissibility radius of the coil, m (in) time (period), s temperature, K or 8C (8F) transmissibility vibrational energy, J or N m (lbf in) potential energy, J (lbf in) velocity, m/s (ft/min) weight per unit volume, kN/m3 (lbf/in3 ) total weight, kN (lbf ) displacement or amplitude from equilibrium position at any instant t, m (in) successive amplitudes, m (in) maximum displacement, m (in) linear velocity, m/s (ft/min) linear acceleration, m/s2 (ft/s2 ) static deflection of the system, m (in) deflection of the disk center from its rotational axis, m or mm (in) weight density, kN/m3 (lbf/in3 ) damping factor
logarithmic decrement, deflection, m (in) static deflection, m (in) phase angle, deg wavelength, m (in) Poisson’s ratio mass density, kg/m3 (lb/in3 ) normal stress, MPa (psi) shear stress, MPa (psi) period, s angular deflections, rad (deg) angular velocity, rad/s angular acceleration, rad/s2 forced circular frequency, rad/s
st
_
€ !
Particular
Formula
SIMPLE HARMONIC MOTION (Fig. 22-1) The displacement of point P on diameter RS (Fig. 22-1)
x ¼ xo sin pt
ð22-1Þ
The wavelength
¼ 2
ð22-2Þ
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
MECHANICAL VIBRATIONS MECHANICAL VIBRATIONS
Particular
22.3
Formula
FIGURE 22-1 Simple harmonic motion.
The periodic time The frequency
¼
2 p
ð22-3Þ
f¼
1 p ¼ 2
ð22-4Þ
The maximum velocity of point Q
vmax ¼ pxo
The maximum acceleration of point Q
amax ¼ v_max ¼ p xo
ð22-5Þ 2
ð22-6Þ
Single-degree-of-freedom system without damping and without external force (Fig. 22-2) Linear system
FIGURE 22-2 Spring-mass system.
The equation of motion
m€ x þ kx ¼ 0
ð22-7Þ
The general solution for displacement
x ¼ A sin pt þ B cos pt
ð22-8Þ
x ¼ C sinð pt Þ
ð22-9Þ
where ¼ phase angle of displacement The equation for displacement of mass for the initial condition x ¼ xo and x_ ¼ 0 at t ¼ 0
x ¼ xo cos pt
The natural circular frequency
rffiffiffiffi rffiffiffiffiffi k g ¼ m st rffiffiffiffi pn 1 k ¼ fn ¼ 2 2 m rffiffiffiffiffi 1 g fn ¼ 2 st 1=2 3:132 1 1=2 1 0:5 fn ¼ 2 st st pn ¼
The natural frequency of the vibration The natural frequency in terms of static deflection st
where st in m and fn in Hz
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð22-10Þ
ð22-11Þ ð22-12Þ ð22-13Þ ð22-13aÞ
MECHANICAL VIBRATIONS
22.4
CHAPTER TWENTY-TWO
Particular
Formula
fn ¼
99 2
1 st
1=2
1=2 1 15:76 st
SI
ð22-13bÞ
USCS
ð22-13cÞ
USCS
ð22-13dÞ
USCS
ð22-13eÞ
where st in mm and fn in Hz fn ¼
5:67 2
1 st
1=2
1=2 1 0:9 st
where st in ft and fn in Hz fn ¼
19:67 2
1 st
1=2
3:127 ¼ pffiffiffiffiffi st
where st in in and fn in Hz 187:6 fn ¼ pffiffiffiffiffi st
where st in in and fn in cpm (cycles per minute)
FIGURE 22-3 Static deflection (st ) vs. natural frequency. (Courtesy of P. H. Black and O. E. Adams, Jr., Machine Design, McGraw-Hill, New York, 1955.)
The plot of natural frequency vs. static deflection
Refer to Fig. 22-3.
Simple pendulum The equation of motion for simple pendulum (Fig. 22-4) The angular displacement for ¼ o and _ ¼ 0 at t¼0 The circular frequency for simple pendulum for small oscillation
g g € ¼ sin ¼ € þ ¼ 0 l l rffiffiffi g ¼ o sin t l rffiffiffi g p¼ l
ð22-14Þ ð22-15Þ ð22-15aÞ
ENERGY The total energy in the universe is constant according to conservation of energy
K þ U ¼ constant
ð22-16Þ
Kinetic energy
K ¼ 12 mv2 ¼ 12 mx_ 2
ð22-17Þ
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
MECHANICAL VIBRATIONS MECHANICAL VIBRATIONS
Particular
22.5
Formula
Potential energy
U ¼ 12 kx2
ð22-18Þ
Maximum kinetic energy is equal to maximum potential energy according to conservation of energy
Kmax ¼ Umax
ð22-19Þ
FIGURE 22-4 Simple pendulum.
FIGURE 22-5 Single rotor system subject to torque.
Torsional system (Fig. 22-5) The equation of motion of torsional system (Fig. 22-5) with torsional damping under external torque Mt sin pt The equation of motion of torsional system without considering the damping and external force on the rotor The equation for angular displacement
The angular displacement for ¼ o and _ ¼ 0 at t¼0 The natural circular frequency The natural circular frequency taking into account the shaft mass The natural frequency
The expression for torsional stiffness
I € þ Ct _ þ kt x ¼ Mt sin pt
ð22-20Þ
where Ct ¼ coefficient of torsional viscous damping, N m s/rad € ð22-21Þ I þ kt ¼ 0
¼ A sin pt þ B cos pt
ð22-22aÞ
¼ C sinð pt Þ
ð22-22bÞ
where ¼ phase of displacement pffiffiffiffiffiffiffiffiffi
¼ o cosð kt =IÞt pn ¼
pffiffiffiffiffiffiffiffiffi kt =I
" #1=2 Is pn ¼ kt Iþ 3
ð22-23Þ ð22-24Þ ð22-25Þ
fn ¼
pn 1 pffiffiffiffiffiffiffiffiffi ¼ kt =I 2 2
ð22-26Þ
kt ¼
JG d4 G ¼ l 32 l
ð22-27Þ
where J ¼ d4 =32 ¼ moment of inertia, polar, m4 or cm4
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
MECHANICAL VIBRATIONS
22.6
CHAPTER TWENTY-TWO
Particular
Formula
Single-degree-freedom system with damping and without external force (Fig. 22-6) The equation of motion
m€ x þ cx_ ¼ kx ¼ 0
ð22-28Þ
The general solution for displacement
x ¼ C1 es1 t þ C2 es2 t pffiffiffiffiffiffiffi ffi pffiffiffiffiffiffiffiffi 2 2 x ¼ C1 eð 1Þpn t þ C2 eðþ 1Þpn t
ð22-29Þ
x ¼ Ae pn t sinðqt þ Þ
ð22-31Þ
ð22-30Þ
where C1 , C2 , and A are arbitrary constants of integration. (They can be found from initial conditions.) " #1=2 C C 2 k s1;2 ¼ ð22-32Þ 2m 2m m qffiffiffiffiffiffiffiffiffiffiffiffiffi
s1;2 ¼
2 1 pn
ð22-33Þ
C ¼ damping ratio, Cc pffiffiffiffiffiffiffi Cc ¼ 2mpn ¼ 2 km
where ¼ FIGURE 22-6 Single-degree-of-freedom spring-mass-dashpot system.
q ¼ frequency of damped oscillation qffiffiffiffiffiffiffiffiffiffiffiffiffi 2 k c2 1=2 ¼ 1 2 pn ¼ ¼ 2 d m 4m ð22-33aÞ
¼ phase angle or phase displacement with respect to the exciting force
For the damped oscillation of the single-degreefreedom system with time for damping factor < 1
Refer to Figs. 22-7 and 22-8.
FIGURE 22-7 Damped motion < 1:0.
FIGURE 22-8 Logarithmic decrement. (Reproduced from Marks’ Standard Handbook for Mechanical Engineers, 8th edition, McGraw-Hill, New York, 1978.)
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
MECHANICAL VIBRATIONS MECHANICAL VIBRATIONS
Particular
22.7
Formula
LOGARITHMIC DECREMENT (Fig. 22-8) The equation for logarithmic decrement
¼ ln
xo x U 2 ¼ ln 1 ¼ ¼ pffiffiffiffiffiffiffiffiffiffiffiffiffi 2 x1 x2 U 1 2
ð22-34Þ
EQUIVALENT SPRING CONSTANTS (Fig. 22-9) The spring constant or stiffness
k¼
F x
ð22-35Þ
The flexibility
a¼
x F
ð22-36Þ
The equivalent spring constant for springs in series (Fig. 22-9a)
ke ¼
1 1 1 þ k1 k2
ð22-37Þ
The equivalent spring constant for springs in parallel (Fig. 22-9b)
ke ¼ k 1 þ k 2
ð22-38Þ
For spring constants of different types of springs, beams, and plates
Refer to Table 22-1
FIGURE 22-9 Springs in series and parallel.
FIGURE 22-10 Spring-mass-dashpot system subjected to external force.
Single-degree-of-freedom system with damping and external force (Fig. 22-10) The equation of motion
m€ x þ cx_ þ kx ¼ Fo sin !t x€ þ 2 pn x_ þ p2n x ¼
Fo sin !t m
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð22-39Þ ð22-40Þ
MECHANICAL VIBRATIONS
22.8
CHAPTER TWENTY-TWO
TABLE 22-1 Spring constants or spring stiffness of various springs, beams, and plates Formula for spring constant, k
Particular
Figure
Equation
Linear Spring Stiffness or Constants [Load per mm (in) Deflection] Helical spring subjected to tension with i number of turns
k¼
Gd4 64iR3
(22-41)
Bar under tension
k¼
EA l
(22-42)
Cantilever beam subjected to transverse load at the free k ¼ 3EI l3 end
(22-43)
Cantilever beam subjected to bending at the free end
k¼
2EI l2
(22-44)
Simply supported beam with concentrated load at the center
k¼
48EI l3
(22-45)
Simply supported beam subjected to a concentrated load k ¼ 3EIl a2 b2 not at the center
(22-46)
Beam fixed at both ends subjected to a concentrated load k ¼ 192EI l3 at the center
(22-47)
Beam fixed at one end and simply supported at another k ¼ 768EI 7l3 end subjected to concentrated load at the center
(22-48)
(22-49)
Circular plate clamped along the circumferential edge subjected to concentrated load at the center whose flexural rigidity is D ¼ Eh3 =12ð1 2 Þ, thickness h and Poisson ratio
k¼
16D R2
Circular plate simply supported along the circumferential edge with concentrated load at the center
k¼
16D R2
String fixed at both ends subjected to tension T
1þ 3þ
(22-50)
where ¼ Poisson’s ratio k¼
4T String tension T l
(22-51)
Torsional or Rotational Spring Stiffness or Constants (Load per Radian Rotation) Spiral spring whose total length is l and moment of inertia of cross section I
kt ¼
EI l
Helical spring with i turns subjected to twist whose wire diameter is d, the coil
(22-52)
diameter is D
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
MECHANICAL VIBRATIONS MECHANICAL VIBRATIONS
kt ¼
22.9
Ed4 64iD
(22-53)
TABLE 22-1 Spring constants or spring stiffness of various springs, beams, and plates (Cont.) Formula for spring constant, k
Particular
Figure
Equation
Bending of helical spring of i number of turns
kt ¼
Ed4 1 32iD 1 þ ðE=2GÞ
(22-54)
Twisting of bar of length l
kt ¼
JG l
(22-55)
Twisting of a hollow circular shaft with length l, whose outside diameter is Do , and inside diameter is Di
kt ¼
GIp G D4o D4i ¼ 32 l l
(22-56)
Twisting of cantilever beam
kt ¼
GJ l
(22-57)
Simply supported beam subjected to couple at the center
kt ¼
12EI l
Particular
The complete solution for the displacement
Formula
x ¼ Aepn t sinðqt þ 1 Þ þ Xo sinð!t Þ
ð22-60aÞ
x ¼ Aepn t sinðqt þ 1 Þ þ The steady-state solution for amplitude of vibration
ð22-60bÞ
Fo ffi X ¼ qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ðk m!2 Þ2 þ ðc!Þ2 ¼
The phase angle
ðFo =kÞ sinð!t Þ ½f1 ð!=pn Þ2 g2 þ ð2!=pn Þ2 1=2
Fo =k 2 2
½f1 ð!=pn Þ g þ ð2!=pn Þ2 1=2 " 1
¼ tan
2ð!=pn Þ 1 ð!=pn Þ2
ð22-60cÞ
#
The magnification factor
Xo 1 ¼ Xst ½f1 ð!=pn Þ2 g2 þ ð2!=pn Þ2 1=2
The plot of magnification factor ðXo =Xst Þ vs. frequency ratio ð!=pn Þ and phase angle vs. ð!=pn Þ
Refer to Figs. 22-11 and 22-12.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð22-61Þ ð22-62Þ
MECHANICAL VIBRATIONS
22.10
CHAPTER TWENTY-TWO
Particular
Formula
FIGURE 22-11 Phase angle vs. frequency ratio ð!=pn Þ.
FIGURE 22-12 Magnification factor ðXo =Xst Þ vs. frequency ratio ð!=pn Þ.
The amplitude at resonance (i.e. for !=pn ¼ 1)
Fo F X ¼ o ¼ st cpn 2k 2
ð22-63Þ
The equation of motion
M€ x þ cx_ þ kn ¼ ðme!2 Þ sin !t
ð22-64Þ
The steady-state solution for displacement
me!2 X ¼ qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ðk M!2 Þ2 þ ðc!Þ2
Xres ¼
UNBALANCE DUE TO ROTATING MASS (Fig. 22-13)
X¼
ðm=MÞ eð!=pn Þ2 ½f1 ð!=pn Þ2 g2 þ ð2!=pn Þ2 1=2
ð22-65aÞ
ð22-65bÞ
FIGURE 22-13 External force due to rotating unbalanced mass. (Produced with some modification from N. O. Myklestad, Fundamentals of Vibration Analysis, McGraw-Hill, New York, 1956.)
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
MECHANICAL VIBRATIONS MECHANICAL VIBRATIONS
Particular
The complete solution for the displacement
22.11
Formula
x ¼ Aepn t sinðqt þ 1 Þ þ
eðm=MÞð!=pn Þ2 ½f1 ð!=pn Þ2 g2 þ ð2!=pn Þ2 1=2
sinð!t Þ ð22-66Þ
Nondimensional form of expression for Eq. (22-65b)
The phase angle
For a schematic representation of Eqs. (22-67) and (22-68) or harmonically disturbing force due to rotating unbalance
M X ð!=pn Þ2 ¼ m e ½f1 ð!=pn Þ2 g2 þ ð2!=pn Þ2 1=2 " # 2 1 2ð!=pn Þ
¼ tan 1 ð!=pn Þ2 Refer to Figs. 22-14 and 22-15
FIGURE 22-14 MX=me vs. frequency ratio ð!=pn Þ.
FIGURE 22-15 Phase angle vs. frequency ratio ð!=pn Þ.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð22-67Þ
ð22-68Þ
MECHANICAL VIBRATIONS
22.12
CHAPTER TWENTY-TWO
Particular
Formula
WHIPPING OF ROTATING SHAFT (Fig. 22-16) The equation of motion of shaft due to unbalanced mass
m€ xc þ cx_ c þ kxc ¼ me!2 cos !t
ð22-69aÞ
m€ yc þ c€ yc þ kyc ¼ me!2 sin !t
ð22-69bÞ
where xc and yc are coordinates of position of center of shaft with respect to x and y coordinates The solution
The displacement of the center of the disk from the line joining the centers of bearings
me!2 cosð!t Þ xc ¼ qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ðk m!2 Þ2 þ ðc!Þ2
ð22-70aÞ
me!2 sinð!t Þ yc ¼ qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ðk m!2 Þ2 þ ðc!Þ2
ð22-70bÞ
r¼
FIGURE 22-16 Whipping of shaft. (Reproduced from Marks’ Standard Handbook for Mechanical Engineers, 8th edition, McGraw-Hill Book Company, New York, 1978.)
ð22-71aÞ
eð!=pn Þ2
ð22-71bÞ ½f1 ð!=pn Þ2 g2 þ ð2!=pn Þ2 1=2 " # c! 2ð!=pn Þ 1 1 ¼ tan ð22-72Þ
¼ tan k m!2 1 ð!=pn Þ2 r¼
The phase angle
qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi me!2 x2c þ y2c ¼ qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ðk m!2 Þ2 þ ðc!Þ2
FIGURE 22-17 Excitation of a system by motion of support.
EXCITATION OF A SYSTEM BY MOTION OF SUPPORT (Fig. 22-17) The equation of motion The absolute value of the amplitude ratio of x and y
m€ x þ cx_ þ kx ¼ ky þ cy_ #1=2 " 2 X 1 þ ð2!=p Þ n ¼ Y ½1 ð!=pn Þ2 2 þ ð2!=pn Þ2
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð22-73Þ ð22-74Þ
MECHANICAL VIBRATIONS MECHANICAL VIBRATIONS
Particular
The phase angle
22.13
Formula
" 1
¼ tan
2ð!=pn Þ3 f1 ð!=pn Þ2 g2 þ ð2!=pn Þ2
# ð22-75Þ
Refer to Fig. 22-20 for jX=Yj vs. !=pn . The plot of Eq. (22-55) for motion due to support
INSTRUMENT FOR VIBRATION MEASURING (Fig. 22-18)
The curves are similar.
m€ z þ cz_ þ kz ¼ m€ y ¼ mY!2 sin !t
The equation of motion The steady-state solution for relative displacement Z
The phase angle
Z¼
Yð!=pn Þ2 ½f1 ð!=pn Þ2 g2 þ ð2!=pn Þ2 1=2
¼ tan1
2ð!=pn Þ 1 ð!=pn Þ2
ð22-76Þ ð22-77Þ
ð22-78Þ
Refer to Figs. 22-14 and 22-15. The plot of absolute value of jZ=Yj vs. frequency ratio ð!=pn Þ and the phase angle vs. frequency ratio ð!=pn Þ
FIGURE 22-18 Instrument for vibration measuring. (Reproduced from Marks’ Standard Handbook for Mechanical Engineers, 8th edition, McGraw-Hill, New York, 1978.)
The curves for jZ=Yj vs. !=pn and vs. !=pn are identical.
FIGURE 22-19 External force transmitted to foundation through damper and springs. (Reproduced from Marks’ Standard Handbook for Mechanical Engineers, 8th edition, McGraw-Hill, New York, 1978.)
ISOLATION OF VIBRATION (Fig. 22-19) The force transmitted through the springs and damper
FT ¼ FT ¼
qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ðkXÞ2 þ ðc!XÞ2 Fo ½1 þ ð2!=pn Þ2 1=2 ½f1 ð!=pn Þ2 g2 þ ð2!=pn Þ2 1=2
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð22-79Þ ð22-80Þ
MECHANICAL VIBRATIONS
22.14
CHAPTER TWENTY-TWO
Particular
Formula
Transmissibility TR ¼
qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 1 þ ð2!=pn Þ2
FT ¼ Fo ½f1 ð!=pn Þ2 g2 þ ð2!=pn Þ2 1=2
ð22-81Þ
Refer to Fig. 22-20 for TR and jX=Yj. Comparison of Eqs. (22-81) and (22-85) indicates that the plot of F =Fo is identical to jX=Yj. Transmissibility when damping is negligible
The transmissibility in terms of static deflection st
The frequency from Eq. (22-83)
TR ¼
TR ¼
1 ð!=pn Þ2 1
ð22-82Þ
1
ð22-83Þ
ð2fn Þ2 st 1 g
" " #1=2 #1=2 3:132 1 1 1 2R þ1 ¼ 0:5 fn ¼ 2 st TR st 1 R SI
ð22-84aÞ
where fn in Hz and st in m The percent reduction in the transmissibility is defined as R ¼ 1 TR " " #1=2 #1=2 99 1 2 R 1 2R fn ¼ ¼ 15:76 2 st 1 R st 1 R SI
ð22-84bÞ
USCS
ð22-84cÞ
USCS
ð22-84dÞ
where fn in Hz and st in mm " #1=2 19:67 1 2 R fn ¼ 2 st 1 R FIGURE 22-20 Transmissibility (TR ) vs. frequency ratio ð!=pn Þ.
where st in in and fn in Hz "
1 fn ¼ 187:6 st
2R 1R
#1=2
where fn in rpm and st in in For the plot of static deflection st vs. R
Refer to Fig. 22-21.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
MECHANICAL VIBRATIONS MECHANICAL VIBRATIONS
FIGURE 22-21 Static deflection (st ) vs. disturbing frequency for various percent reduction in transmissibility (TR ) for ¼ 0. (Courtesy of F. S. Tes, I. E. Morse, and R. T. Hinkle, Mechanical Vibration—Theory and Applications, CBS Publishers and Distributors, New Delhi, India, 1983.)
22.15
FIGURE 22-22 Undamped two-degree-of freedom system.
Particular
Formula
UNDAMPED TWO-DEGREE-OF-FREEDOM SYSTEM (Fig. 22-22) WITHOUT EXTERNAL FORCE Equations of motion
The frequency of equation which gives two values for p2
m1 x€1 þ ðk1 þ k3 Þx1 k3 x2 ¼ 0
ð22-85aÞ
m2 x€2 þ ðk2 þ k3 Þx2 k3 x1 ¼ 0 k þ k3 k 2 þ k3 þ p4 p2 1 m1 m2
ð22-85bÞ
þ The amplitude ratio
k1 k2 þ k2 k3 þ k1 k3 ¼0 m1 m2
a1 k3 m p2 k2 k3 ¼ ¼ 2 2 a2 m1 p k1 k3 k3
ð22-86Þ ð22-87Þ
DYNAMIC VIBRATION ABSORBER (Fig. 22-23) Equations of motion
The solution of the forced vibration of the absorber will be of the form
M€ x1 þ ðK þ kÞx1 kx2 ¼ Fo sin !t
ð22-88aÞ
m€ x2 þ kðx2 x1 Þ ¼ 0
ð22-88bÞ
x1 ¼ a1 sin pt
ð22-89aÞ
x2 ¼ a2 sin pt
ð22-89bÞ
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
MECHANICAL VIBRATIONS
22.16
CHAPTER TWENTY-TWO
Particular
The ratio of amplitudes a1 and a2 to the static deflection of the main system xst
Formula
!2 1 2 a1 pa ¼ 2 xst ! k !2 k 1 2 1þ 2 K pm K pa a2 1 ¼ xst !2 k !2 k 1 2 1þ 2 K pm K pa
ð22-90aÞ
ð22-90bÞ
where xst ¼ Fo =K ¼ static deflection of main system p2a ¼ K=m ¼ natural circular frequency of absorber FIGURE 22-23 Dynamic vibration absorber.
FIGURE 22-24 Two-rotor system.
If the main system is in resonance, then considering pa ¼ pm or
k K k m ¼ or ¼ ¼ Rm m M K M
Eqs. (7-90a) and (7-90b) become
The natural frequencies
The mass equivalent for the absorber
p2m ¼ k=M ¼ natural circular frequency of main system Rm ¼
m absorber mass ¼ mass ratio ¼ M main mass
x1 1 ð!=pa Þ2 ¼ sin !t 2 xst ½1 ð!=pa Þ ½1 þ Rm ð!=pa Þ2 Rm ð22-91aÞ x2 1 ¼ sin !t xst ½1 ð!=pa Þ2 ½1 þ Rm ð!=pa Þ2 Rm ð22-91bÞ
! pa
2 ¼
R R2 1=2 1 þ m Rm þ m 2 4
meq 1 ¼ m 1 ð!=pa Þ2
ð22-92Þ ð22-93Þ
where meq ¼ equivalent mass solidly attached to the main mass M
TORSIONAL VIBRATING SYSTEMS Two-rotor system (Fig. 22-24) The torque on rotor A
Mta ¼ Ia p2 a
ð22-94Þ
The total torque on two rotors
Mti ¼ Mta þ Mtb ¼ Ia p2 a þ Ib p2 b ¼ 0
ð22-95Þ
The angular displacement or angle of twist of rotor B
where i ¼ imaginary M I p2 b ¼ a ta ¼ a 1 a kt kt
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð22-96Þ
MECHANICAL VIBRATIONS MECHANICAL VIBRATIONS
Particular
The frequency equation
The natural circular frequency
The natural frequency
Formula
I I p2 p2 a Ia þ Ib a b ¼0 kt pn ¼ fn ¼
1 2
ðIa þ Ib Þkt Ia Ib
a I l ¼ b¼ a b Ia lb
The relation between Ia , Ib , la , and lb
Ia l a ¼ Ib l b la ¼
ð22-97aÞ
1=2
ðIa þ Ib Þkt Ia Ib
The amplitude ratio
The distance of node point from left end of rotor A
22.17
ð22-97bÞ 1=2 ð22-98Þ ð22-99Þ ð22-100Þ
Ib l Ia þ Ib
ð22-101Þ
Two rotors connected by shaft of varying diameters The length of torsionally equivalent shaft of diameter d whose varying diameters are d1 , d2 , and d3
le ¼ d4
l1 l2 l þ þ 3 d41 d42 d43
ð22-102Þ
Three-rotor torsional system (Fig. 22-25) The algebraic sum of the inertia torques of rotors A, B, and C
Mti ¼ Mta þ Mtb þ Mtc ¼ Ia p2 a þ Ib p2 b þ Ic p2 c ð22-103Þ where a , b , and c are angular displacement or angular twist at rotors, A, B, and C, respectively
FIGURE 22-25 Three-rotor system.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
MECHANICAL VIBRATIONS
22.18
CHAPTER TWENTY-TWO
Particular
The frequency equation
Formula
I I I I I I I I p2 a ðIa þ Ib þ Ic Þ p2 a b þ a c þ a c þ b c kt1 kt1 kt2 kt2 I I I þ p4 a b c ¼0 ð22-104aÞ kt1 kt2 1 kt1 kt2 kt1 þ kt2 þ þ p2 ¼ 2 Ia Ic Ib 1 kt1 kt2 kt1 þ kt2 2 þ þ Ia Ic Ib 2 1=2 k k 4 t1 t2 ðIa þ Ib þ Ic Þ ð22-104bÞ Ia Ib Ic where kt1 and kt2 are torsional stiffness of shafts of lengths l1 and l2
The amplitude ratio
The relation between Ia , Ic , la , and lc The relation between Ia , Ib , la , and lc Frequency can also be found from Eqs. (22-108) and (22-109)
b I p2 ¼1 a a kt1
ð22-105aÞ
c Ia I I p4 Ia I ¼ 1 p2 þ c þ b þ kt1 kt2 a kt1 kt2 kt2
ð22-105bÞ
Ia l a ¼ Ic l c 1 1 1 1 ¼ þ Ia la Ib l1 la l2 lc sffiffiffiffiffiffi 1 ktc fc ¼ Ic 2 GJ2 lc sffiffiffiffiffiffi k0tb 1 fb ¼ Ib 2
ð22-106Þ ð22-107Þ
ð22-108Þ
where ktc ¼
where k0tb ¼
GJ1 GJ2 þ l1 la l2 lc
For collection of mechanical vibration formulas to calculate natural frequencies
Refer to Table 22-2.
For analogy between different wave phenomena
Refer to Table 22-3.
For analogy between mechanical and electrical systems
Refer to Table 22-4.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð22-109Þ
MECHANICAL VIBRATIONS MECHANICAL VIBRATIONS
22.19
TABLE 22-2 A collection of formulas Particular
Formula
Natural Frequencies of Simple Systems sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi End mass M, spring mass m, spring k pn ¼ stiffness k M þ m=3 sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi End inertia I, shaft inertia Is , shaft stiffness kt p ¼ n kt I þ Is =3 sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi Two disks on a shaft kt ðI1 þ I2 Þ pn ¼ I1 I2 rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi Cantilever; end mass M, beam mass m, k pn ¼ stiffness by formula (22-93) M þ 0:23m rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi Simply supported beam central mass M; k pn ¼ beam mass m; stiffness by formula (22-95) M þ 0:5m vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi u Massless gears, speed of I2 n times as as 1 I1 þ n2 I2 u u p ¼ n speed of I1 t1 1 I1 I2 n2 þ kt1 n2 kt2 p2n
1 ¼ 2
kt1 kt3 kt1 þ kt3 þ þ I1 I3 I2
1 2
ffi sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi kt1 kt3 kt1 þ kt3 2 kt1 kt3 þ þ 4 ðI þ I2 þ I3 Þ I1 I3 I2 I1 I2 I3 1
Uniform Beams (Longitudinal and Torsional Vibration) sffiffiffiffiffiffiffiffiffi Longitudinal vibration of cantilever: 1 AE pn ¼ n þ A ¼ cross section, E ¼ modulus of 2 1 l2 elasticity 1 ¼ mass per unit length, n ¼ 0; 1; 2; 3 ¼ number of nodes
For steel and l in inches, this becomes
Organ pipe open at one end, closed at the other
For air at atm. pressure, l in m
f¼
f¼
Longitudinal vibration of beam clamped or free at both ends; n ¼ number of half waves along length
f¼
(22-110)
(22-111)
(22-112)
(22-113) (22-114)
(22-115)
(22-116)
(22-117)
(22-118)
pn 1295 Hz ¼ ð1 þ 2nÞ l 2
pn 84 ¼ ð1 þ 2nÞ Hz l 2
n ¼ 0; 1; 2; 3; . . . Water column in rigid pipe closed at one end (l in m)
Equation
(22-119)
pn 360 Hz ¼ ð1 þ 2nÞ l 2
n ¼ 0; 1; 2; 3; . . . sffiffiffiffiffiffiffiffiffi AE pn ¼ n 1 l2 n ¼ 1; 2; 3; . . .
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
(22-120) (22-121)
MECHANICAL VIBRATIONS
22.20
CHAPTER TWENTY-TWO
TABLE 22-2 A collection of formulas (Cont.) Particular
Formula
Equation
For steel, l in m
pn 2590 Hz ¼ l 2 p 102;000 Hz f¼ n ¼ l 2 p n168 Hz f¼ n ¼ l 2
(22-122a)
For steel, l in inches Organ pipe closed (or open) at both ends (air at 608F, 15.58C)
f¼
n ¼ 1; 2; 3; . . . Water column in rigid pipe closed (or open) at both ends
f¼
(22-123)
n721 Hz l
n ¼ 1; 2; 3; . . . For water columns in nonrigid pipes
(22-122b)
fnonrigid 1 ¼ sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi frigid 206D 1þ tEpipe
(22-124) (22-125a)
Epipe ¼ elastic modulus of pipe, MPa D, t ¼ pipe diameter and wall thickness, same units For water columns in nonrigid pipes . . .
fnonrigid 1 ¼ sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi frigid 300;000D 1þ tEpipe
(22-125b)
Epipe ¼ elastic modulus of pipe, psi D, t ¼ pipe diameter and wall thickness, same units Torsional vibration of beams . . .
Same as (22-117) and (22-118); replace tensional stiffness AE by torsional stiffness GIp ; replace 1 by the moment of inertia per unit length i1 ¼ Ibar =l
Uniform Beams (Transverse or Bending Vibrations) The same general formula holds for all the following cases, sffiffiffiffiffiffiffiffiffi EI pn ¼ an 1 l4
(22-126)
where EI is the bending stiffness of the section, l is the length of the beam, 1 is the mass per unit length ¼ W=gl, and an is a numerical constant, different for each case and listed below. Cantilever or ‘‘clamped-free’’ beam . . .
Simply supported or ‘‘hinged-hinged’’ beam
a1 a2 a3 a4 a5 a1 a2 a3 a4 a5
¼ 3:52 ¼ 22:0 ¼ 61:7 ¼ 121:0 ¼ 200:0 ¼ 2 ¼ 9:87 ¼ 42 ¼ 39:5 ¼ 92 ¼ 88:9 ¼ 162 ¼ 158 ¼ 252 ¼ 247
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
MECHANICAL VIBRATIONS MECHANICAL VIBRATIONS
22.21
TABLE 22-2 A collection of formulas (Cont.) Particular
Formula
‘‘Free-free’’ beam or floating ship . . .
a1 a2 a3 a4 a5 a1 a2 a3 a4 a5 a1 a2 a3 a4 a5 a1 a2 a3 a4 a5
‘‘Clamped-clamped’’ beam has same frequencies as ‘‘free-free’’
‘‘Clamped-hinged’’ beam may be considered as half a ‘‘clamped-clamped’’ beam for even a-numbers
‘‘Hinged-free’’ beam or wing of autogyro may be considered as half a ‘‘free-free’’ beam for even a-numbers
Equation
¼ 22:0 ¼ 61:7 ¼ 121:0 ¼ 200:0 ¼ 298:2 ¼ 22:0 ¼ 61:7 ¼ 121:0 ¼ 200:0 ¼ 298:2 ¼ 15:4 ¼ 50:0 ¼ 104 ¼ 178 ¼ 272 ¼0 ¼ 15:4 ¼ 50:0 ¼ 104 ¼ 178
Rings, Membranes, and Plates Extensional vibration of a ring, radius r, weight density sffiffiffiffiffiffi 1 Eg pn ¼ r
(22-127)
Bending vibrations of ring, radius r, mass per unit length, 1 , in its own plane with n full ‘‘sine waves’’ of disturbance along circumference sffiffiffiffiffiffiffiffiffi (22-128) nðn2 1Þ EI pn ¼ pffiffiffiffiffiffiffiffiffiffiffiffiffi 1 r4 1 þ n2 Circular membrane of tension T, mass per unit area 1 , radius r sffiffiffiffiffiffiffiffiffi T pn ¼ acd 1 r2
(22-129)
The constant acd is shown below, the subscript c denotes the number of nodal circles, and the subscript d the number of nodal diameters: c d
1
2
3
0 1 2 3
2.40 3.83 5.11 6.38
5.52 7.02 8.42 9.76
8.65 10.17 11.62 13.02
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
MECHANICAL VIBRATIONS
22.22
CHAPTER TWENTY-TWO
TABLE 22-2 A collection of formulas (Cont.) Membrane of any shape of area A roughly of equal dimensions in all directions, fundamental mode: sffiffiffiffiffiffiffiffiffi T pn ¼ const 1 A Circle Square Quarter circle 2 1 rectangle
(22-130)
const ¼ 2:40 ¼ 4:26 const ¼ 4:44 const ¼ 4:55 const ¼ 4:97
Circular plate of radius r, mass per unit area 1 ; the ‘‘plate constant D’’ defined in Eq (22-49) sffiffiffiffiffiffiffiffiffi D pn ¼ a 1 r4 For free edges, 2 perpendicular nodal diameters For free edges, one nodal circle, no diameters Clamped edges, fundamental mode Free edges, clamped at center, umbrella mode
(22-131)
a ¼ 5:25 a ¼ 9:07 a ¼ 10:21 a ¼ 3:75
Rectangular plate, all edges simply supported, dimensions l1 and l2 : 2 sffiffiffiffiffi n2 D 2 m m ¼ 1; 2; 3; . . . ; n ¼ 1; 2; 3; . . . pn ¼ þ 2 1 l21 l1 Square plate, all edges clamped, length of side l, fundamental mode: sffiffiffiffiffi 36 D pn ¼ 2 1 l
(22-132)
(22-133)
Source: Formulas (Eqs.) (7-110) to (7-133) extracted from J. P. Den Hartog, Mechanical Vibrations, McGraw-Hill Book Company, New York, 1962.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
MECHANICAL VIBRATIONS MECHANICAL VIBRATIONS
22.23
TABLE 22-3 Analogy between different wave phenomena Phenomenon
Quantity
String
Transverse wave
Longitudinal wave
Acoustic wave
Torsional wave in bar
Particle velocity
x_
x_
x_
x_
_
c voltage
Mass per unit length
:A
:A
:A
a : A
:J
C capacitance/cm
Inverse spring constant per unit length
1=T
1=G : A
1=E : A
1 pn : k : A
1 J:G
L self-inductance/cm
Elastic force on a mass-element
T? ¼ T :
Velocity of propagation c
sffiffiffiffiffiffiffi T pA
sffiffiffiffi G p
sffiffiffiffi E p
sffiffiffiffiffiffiffiffiffiffi pn : k pn
sffiffiffiffi G p
rffiffiffiffiffiffiffi 1 LC
Ratio of force to velocity
sffiffiffiffiffiffi A x_ ¼ T? : pT
A x_ ¼ pffiffiffiffiffiffi pG
A x_ ¼ pffiffiffiffiffiffi pE
pA x_ ¼ pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi pn : pn k
Mt _ ¼ pffiffiffiffiffiffi pG
i c ¼ pffiffiffiffiffiffiffiffiffiffi L=C
Intensity I
ðx_ o Þ2 :p:C 2
ðx_ o Þ2 :p:C 2
ðx_ o Þ2 :p:C 2
ðx_ o Þ2 :p:C 2
energy per sec total ð_o Þ2 :J:p:c 2
energy per sec c2 :C:c 2
Wave impedance
p:c ¼
@x @y
rffiffiffiffiffiffi pT A
A ¼ G : A :
p:c ¼
@x @y
pffiffiffiffiffiffiffiffiffi p:G
A ¼ E : A :
p:c ¼
@x @y
pffiffiffiffiffiffiffiffiffi p:G
pA ¼ pn : k : A :
pn : c ¼
@x @ Mt ¼ J : G : @y @y
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi pn : pn k
p:c ¼
pffiffiffiffiffiffiffiffiffi p:G
Electric cable
i current
inverse wave impedance rffiffiffiffi 1 C ¼ Zwave L
Source: Courtesy G. W. van Santen, Introduction to Study of Mechanical Vibration, 3rd edition, Philips Technical Library, 1961. Key: c ¼ capacitance; e ¼ voltage; i ¼ current, A; I ¼ intensity, W/m2 ; J ¼ polar moment of inertia, m4 or cm4 ; k ¼ cp =cv ¼ ratio of specific heats; L ¼ inductance, H; n ¼ any integer ¼ 1, 2, 3, 4, . . . ; p ¼ pressure of gas, sound pressure, MPa; pn ¼ average pressure of gas, MPa; R ¼ resistance, ; T ¼ tension; T? ¼ component of tension T which returns the string to the position of equilibrium, kN; ¼ specific mass of the material of string, density of air, kg/m3 ; n ¼ average density of gas, kg/m3 ; ¼ normal stress, MPa; ¼ shear stress, MPa; ¼ wavelength, m. The meaning of other symbols in Table 7-3 are given under symbols at the beginning of this chapter.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
MECHANICAL VIBRATIONS
22.24
CHAPTER TWENTY-TWO
TABLE 22-4 Analogy between mechanical and electrical systems Electrical system Mechanical system
Force—current
Force—voltage
D’Alembert’s principle Force applied Rectilinear system
Kirchhoff’s current law Switch closed Electrical network
Kirchhoff’s voltage law Switch closed Electrical network
i ¼ Cc_, q ¼ C€ c, Energy ¼ 12 C24
e¼L
Torsional system
F ¼ m_ ¼ m€ x, Kinetic energy ¼ 12 m 2
di ¼ L€ q dt
Energy ¼ 12 Li2
F ¼ cx_ , Power ¼ Fx_ ¼ c 2
i¼
c 1 ; q ¼ e_ R R
Power ¼ ci ¼
ð F ¼ kx ¼ k x_ dt
i¼ 1 F20 2 k
1 L
e ¼ Ri ¼ Rq_ , Power ¼ ci ¼ Ri2 ¼ Rq_ 2
c2 R
ð e dt; q ¼
e L
e¼
1 1 q¼ C C
ð i dt
Energy ¼ 12 Li2
Energy ¼ 12 Ce2
(b) Parallel connected electrical elements
(c) Series connected electrical elements
ð mv_ þ c þ c þ k dt ¼ FðtÞ I € ct _ þ kt ¼ Mt ðtÞ
Differential equation for current ð r 1 e dt ¼ iðtÞ Ce_ ¼ þ R L
m€ x þ cx_ þ kx ¼ FðtÞ
C€ eþ
Differential equation for voltage ð dl 1 L þ Ri þ i dt ¼ eðtÞ dt C q L€ q þ Rq_ þ ¼ eðtÞ C
Potential energy ¼
ð FðtÞ ¼ kx ¼ x_ dt (a) Spring-mass-dashpot elements
Shaft-rotor-dashpot elements
Differential equation of motion
1 d e ðtÞ e_ þ ¼ i R L ex
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
MECHANICAL VIBRATIONS MECHANICAL VIBRATIONS
22.25
REFERENCES 1. Den Hartog, J. P., Mechanical Vibrations, McGraw-Hill Book Company, New York, 1962. 2. Thomson, W. T., Theory of Vibration with Applications, Prentice-Hall, Englewood Cliffs, New Jersey, 1981. 3. Baumeister, T., ed., Marks’ Standard Handbook for Mechanical Engineers, 8th ed., McGraw-Hill Book Company, New York, 1978. 4. Black, P. H., and O. E. Adams, Jr., Machine Design, McGraw-Hill Book Company, New York, 1955. 5. Lingaiah, K., and B. R. Narayana Iyengar, Machine Design Data Handbook, Engineering College CoOperative Society, Bangalore, India, 1962. 6. Myklestad, N. O., Fundamentals of Vibration Analysis, McGraw-Hill Book Company, New York, 1956. 7. Tse, F. S., I. E. Morse, and R. T. Hinkle, Mechanical Vibration—Theory and Applications, CBS Publishers and Distributors, New Delhi, India, 1983.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
Source: MACHINE DESIGN DATABOOK
CHAPTER
23 DESIGN OF BEARINGS AND TRIBOLOGY 23.1 SLIDING CONTACT BEARINGS1,2,11 SYMBOLS distance between bolt centers [Eqs. (23-70) to (23-72)], m (in)
a h a¼ 2 B A ¼ Ld
dimensionless quantity projected area of the journal bearing (Fig. 23-6), m2 (in2) effective area of the bearing, m2 (in2) projected area at full pool pressure in case of hydrostatic journal bearing (Fig. 23-47), m2 (in2) projected area of the region having a linear pressure gradient in case of hydrostatic journal bearing (Fig. 23-47), m2 (in2) width of slider bearing in the direction of motion, m (in) length of journal bearing in the direction of motion, m (in) diametral clearance, m (in) combined coefficient of radiation and convection, W/m2 K (kcal/mm2 s8C) constants in Eq. (23-23)
A0 B c¼Dd C C1 , C2 F F1 CPF1 , CPF2 , CPF3 , CPF4 CPFm , CPFs CF ¼
CPW CQ CS1 to CS7 W W1 C ¼ 1 CP CW ¼
friction leakage factor in Eq. (23-54) constants in Eqs. (23-77b), (23-78b), (23-79b), and (23-80b) friction resistance factor for moving and stationary member, respectively, in pivoted shoe slider bearing in Eqs. (23-96b) and (23-97b) load factor in Eq. (23-95b) flow correction factor from (Fig. 23-42) and Eq. (23-65) constants in Eqs. (23-86b), (23-87b), (23-88b), (23-89b), (23-90b), (23-91b), and (23-92b) load leakage factor in Eqs. (23-52) coefficient of friction factor in Eq. (23-53) coefficient of friction factor in Eqs. (23-98) and Table 23-17
23.1 Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
DESIGN OF BEARINGS AND TRIBOLOGY
23.2
CHAPTER TWENTY-THREE
d di , d2 dc D e ¼ c hmin E Eto F FPFW F F0 Fm Fmp Fs Fsp F1 G h h1 , h2 hc hmin ¼ ho hmax Hd Hg i k k ¼ ðhÞPðmaxÞ PðminÞ
K K1 , K2 , K3 , K4 K5 , K6 KLP1 , KLP2 , KLP3 Klt KPt Kt l1 lc L h m¼ 1 Mt h2 n n0
diameter of journal, m (in) inside and outside diameters of thrust, pivot, and collar bearings, m (in) diameter of capillary in case of hydrostatic journal bearing, m (in) diameter of bearing, m (in) eccentricity, m (in) Young’s modulus, GN/m2 or GPa (Mpsi) Engler, deg force (also with subscripts), kN (lbf ) load factor in Eqs. (23-83) and (23-84) friction force, kN (lbf ) F friction force per unit area of bearing, MPa (Psi) dL friction force on the moving member of bearing (i.e., slider), kN (lbf ) friction force on the moving member of pivoted slider bearing (i.e., slider), kN (lbf ) friction force on the stationary member of bearing (i.e., shoe), kN (lbf ) friction force on the stationary member of pivoted slider bearing (i.e., shoe), kN (lbf ) friction force acting on the moving surface of the same bearing with the same oil-film shape but without end leakage, kN (lbf ) flow factor given by Eq. (23-82) oil film thickness, m (in) thickness of oil film at entrance and exit, respectively, of a slider bearing (Fig. 23-48 and Fig. 23-52), m (in) thickness of bearing cap, m (in) minimum thickness of oil film, m (in) maximum thickness of oil film, m (in) heat dissipating capacity of bearing, kJ/s (kcal/s) heat generated in bearing. kJ/s (kcal/s) number of collars characteristic number of the given crude oil (’1.4 to 2.8), constant (also with subscripts) heat dissipating coefficient thickness of the oil film where the pressure has its maximum or minimum values, m (in) constant for a given grade of oil (varies from 1.000 to 1.004) constants in Eqs. (23-73b), (23-74b), (23-75b), and (23-76b) respectively constants in Eqs. (23-143b) and (23-144b), respectively constants in Eqs. (23-116b), (23-118b), and (23-119b) for parallel surface thrust bearing constant in Eq. (23-121b) for a tilting-pad bearing constant in Eq. (23-120b) for a tilting-pad bearing coefficient of friction factor in Eq. (23-126b) for a tilting-pad bearing length of bearing pressure pad in case of hydrostatic journal bearing (Fig. 23-47), m (in) length of capillary, m (in) axial length of the journal (or of the bearing) normal to the direction of motion, m (in) ratio of the film thicknesses at the entrance to exit in the slider bearing torque, N m (lbf in) speed, rpm speed, rps
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
DESIGN OF BEARINGS AND TRIBOLOGY DESIGN OF BEARINGS AND TRIBOLOGY
power (also with subscripts), kW (hp) intensity of pressure, MPa (psi)
P P P¼
W Ld
load per projected area of the bearing, MPa (psi)
unit load supported by a parallel surface thrust bearing, MPa (psi) lower pool pressure in hydrostatic journal bearing (Fig. 23-47), MPa (psi) P2 , P4 left and right pool pressure in hydrostatic journal bearing (Fig. 23-47), MPa (psi) P3 upper pool pressure in hydrostatic journal bearing (Fig. 23-47), MPa (psi) P01 ¼ P02 ¼ P03 ¼ the pressure in first, second, third and fourth quadrant of the pool, P04 ¼ P0 respectively, when the journal is concentric (e ¼ o) in hydrostatic journal bearing, MPa (psi) Pi inlet pressure, MPa (psi) Po constant manifold pressure, MPa (psi), pressure in the oil film in journal bearing at the point when ¼ 0, MPa (psi) h1 q¼ 1 constant used in Eqs. (23-95b) and (23-97b) for a slider bearing h2 Q flow of lubricant through the bearings, m3/s r radius of journal, m (in) r1 , r2 inside and outside radii of thrust bearing, m (in) R number of Redwood seconds in Eqs. (23-15) and (23-16) n0 1 S¼ Sommerfeld number or bearing characteristic number P 2 0 60n 1 bearing characteristic number (Fig. 23-40) S0 ¼ 2 P n bearing modulus (Tables 23-2 and 23-7) S00 ¼ 1 P t running temperature of the bearing, K (8C), number of seconds, Saybolt, in Eqs. (23-7) and (23-8) T ¼ ðtb ta Þ difference in temperature between bearing housing and surrounding air, K (8C) u average velocity, m/s (ft/min) velocity in the oil film at height y (Fig. 23-1), m/s (ft/min) U maximum velocity (Fig. 23-1), m/s (ft/min) v velocity, m/s (ft/min) vm mean velocity, m/s (ft/min) surface speed of journal, m/s (ft/min) V rubbing velocity, m/s (ft/min) W load on the bearing, kN (lbf ) load acting on the journal bearing with end leakage, kN (lbf ) W1 load acting on the journal bearing without end leakage, kN (lbf ) X0 factors used with Eqs. (23-162), (23-165) x the distance of the pivoted point from the lower end of the shoe (Fig. 23-48), i.e., the distance of the pressure center from the origin of the coordinate, m (mm) y distance from the stationary surface (Fig. 23-1), m (in) y0 factors used with Eqs. (23-162) and (23-165) ¼ qa a constant in equation of pivoted-shoe slider bearing [Eqs. (23-86b) and (23-86c)] Pu P1
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
23.3
DESIGN OF BEARINGS AND TRIBOLOGY
23.4
CHAPTER TWENTY-THREE
t ¼1" 2e "¼ c h ¼ 1 min d 0 1 2 p o
o ¼
g
attitude or eccentricity ratio or relative eccentricity
absolute viscosity (dynamic viscosity), Pa s absolute viscosity (dynamic viscosity), kgf s/m2 absolute viscosity (dynamic viscosity), cP absolute viscosity (dynamic viscosity), kgf s/cm2 dynamic viscosity of oil above atmospheric pressure P, N s/m2 or Pa s (cP, kgf s/m2 ) dynamic viscosity of oil at atmospheric pressure, i.e., when P ¼ 0, N s/m2 (cP, kgf s/m2 ) the angle measured from the position of minimum of oil film to any point of interest in the direction of rotation or the angle from the line of centers to any point of interest in the direction of rotation around the journal, deg coefficient of friction (also with subscripts) viscosity, reyn kinematic viscosity, m2 /s (cSt) density of oil or specific gravity of oil used, kg/m3 (g/mm3 ) stress (normal), MPa (psi) shear stress in lubricant, MPa (psi) attitude angle or angle of eccentricity, deg
¼ !
angular length of bearing or circumferential length of bearing, deg specific weight (weight density) at temperature t, 8C, kN/m3 (lbf/in3 ) the minimum film thickness variable
c d
diametral clearance ratio or relative clearance angular speed, rad/s
Other factors in performance or in special aspects are included from time to time in this chapter and being applicable only in their immediate context, are not included at this stage.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
DESIGN OF BEARINGS AND TRIBOLOGY DESIGN OF BEARINGS AND TRIBOLOGY
Particular
23.5
Formula
SHEAR STRESS1,2 The shearing stress in the lubricant (Fig. 23-1)
¼
F U u du ¼ ¼ ¼ A h y dy
ð23-1Þ
VISCOSITY The absolute viscosity (dynamic viscosity) in SI units
¼ 103 1
SI
ð23-2aÞ
where in Pa s or (N s/m ) and 1 in cP 2
U
F
y
h
U
FIXED FIGURE 23-1 Shearing stress in lubricant.
The absolute viscosity (dynamic viscosity) in Customary Metric units
¼ 9:80660
ð23-2bÞ
¼ 9:8066 104 2
ð23-2cÞ 0
where in Pa s, in kgf s/m , and 2 in kgf s/cm2 2
104 1:45 o where is Pa s and o in reyn
¼
0 ¼ 0:102 where 0 in
Customary Metric
0 ¼
ð23-3bÞ
kgf s and 1 in cP m2
103 1:422 o
where 0 in
ð23-3aÞ
kgf s and in Pa s m2
0 ¼ 1:02 104 1 where 0 in
ð23-2dÞ
ð23-3cÞ kgf s and o in reyn m2
For absolute viscosity (dynamic viscosity) in centipoise and SI units
Refer to Figs 23-2a and 23-2b
The absolute viscosity (dynamic viscosity) in centipoise
1 ¼ 103
Customary Metric
ð23-4aÞ
where 1 in cP and in Pa s 1 ¼
108 1:02 2
where 1 in cP and 2 in 1 ¼
ð23-4bÞ kgf s cm2
104 0 1:02
where 1 in cP and 0 in
ð23-4cÞ kgf s m2
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
DESIGN OF BEARINGS AND TRIBOLOGY
23.6
CHAPTER TWENTY-THREE
Particular
Formula
107 1:45 o where 1 in cP and o in reyn
1 ¼
o ¼ 1:45 104
The viscosity in reyn (lbf s/in2 )
ð23-4dÞ
USCS
ð23-5aÞ
where o in reyn and in Pa s o ¼ 1:45 107 1
ð23-5bÞ
where o in reyn and 1 in cP o ¼ 14:222 where o in reyn and 2 in kgf s/cm 2000 1000 500 400 300 200 150
K
I
H G
F
75
E D C
50 40
B A
100 Absolute viscosoity, η, centipoise
J
ð23-5cÞ 2
30 20 15 10 9 8 7 6 5 4 20
30
40
50
60 70 80 Temperature, C
90
100 110
FIGURE 23-2a Absolute viscosity versus temperature.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
DESIGN OF BEARINGS AND TRIBOLOGY DESIGN OF BEARINGS AND TRIBOLOGY
Particular
Formula
o ¼ 1:422 103 0
ð23-5dÞ
where o in reyn and 0 in Kinematic viscosity
¼
g ¼ 2 density
kgf s m2
Customary Metric
104 5 3 2 103 5 3 2 102
SA
Absolute viscosity, mPa s
5
E
70
60
4
50
3 30
2
40
20 10
10
5 4 3
2 10
20
30
40
23.7
50
60 70 80 Temperature, C
90
100 110
120 130 140
FIGURE 23-2b Absolute viscosity versus temperature.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð23-6aÞ
DESIGN OF BEARINGS AND TRIBOLOGY
23.8
CHAPTER TWENTY-THREE
Particular
Formula
where v in cm2 =s and 2 in
kgf s ; cm2
g ¼ 980:66 cm=s2 and in Kinematic viscosity
v¼
g 4 10
kgf cm3 SI
ð23-6bÞ
Ns or (Pa s), in N/m3 , and v in m2 /s m2 180 ¼ t 0:22t t where in
Saybolt to centipoises (Fig. 23-3)3 or mPa s
SI=Customary Metric ð23-7Þ where in cP and t in gf/cm3 or N/m3 , t in s Saybolt to reyn
Refer to Table 23-1 for t . "
o ¼ 0:145t 0:22t Kinematic viscosity in centistokes from Saybolt universal seconds (Figs. 23-3 and 23-4)3
Kinematic viscosity
vk ¼
180 t
# USCS
180 0:22t t
ð23-7aÞ
ð23-8aÞ
where vk in cSt and t in s v ¼ 106 vk
SI 2
where v in m /s and vk in cSt
TABLE 23-1 Specific gravity of oils at 15.58C (608F) No.
Oil characteristics
15:5
A B C D E F G H I J K
Turbine oil, ring-oiled bearing Turbine oil, ring-oiled bearing, SAE 10 All-year automobile oil, SAE 20 Ring-oiled bearing oil, high-speed machinery Automobile oil, SAE 20 Automobile oil, SAE 30 Automobile oil, SAE 40, medium-speed machinery Airplane oil 100, SAE 60 Transmission oil, SAE 110, spur and bevel gears Gear oil, slow-speed worm gears Transmission oil. SAE 60, slow-speed gears
0.8877 0.8894 0.9036 0.9346 0.9254 0.9263 0.9275 0.8927 0.9328 0.9153 0.9365
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð23-8bÞ
DESIGN OF BEARINGS AND TRIBOLOGY DESIGN OF BEARINGS AND TRIBOLOGY
Particular
23.9
Formula
v¼
180 106 0:22t t
ð23-8cÞ
where t in Saybolt seconds and v in m2 /s 141:5 Customary Metric ð23-9aÞ 131:5 þ 8API where 15:5 in gf/ml (gram force/milliliter) 141:5 15:5 ¼ 9807 SI ð23-9bÞ 131:5 þ 8API
Specific weight at 15.58C
15:5 ¼
where 15:5 in N/m3
10000
500 400 300
H G
1000 750
Viscosity, saybolt universal, seconds
1000
J I
D
300
B 200 A
200 150
F E
100 75
C
50 40
150
30
100 90 80
20 15
70 60 55
Kinematic viscosity, v, centistokes
5000 4000 3000 2000 1500
500
2000
K
10.0 9.0 8.0 7.0
50
6.0
45
5.0 40 30
40
50
60 70 Temperature, C
80
90
100
4.0
FIGURE 23-3 Viscosity Saybolt universal seconds and kinematic viscosity versus temperature.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
DESIGN OF BEARINGS AND TRIBOLOGY
23.10
CHAPTER TWENTY-THREE
Particular
Formula
API ¼ American Petroleum Institute gravity constant t ¼ 15:5 0:000637ðt 15:5Þ
Specific weight at any temperature
ð23-10Þ
Refer to Table 23-1 for 15:5 t ¼ 60 0:000365ðt 60Þ
USCS
2000
1000
lty
ira
700 500
w ed
R
300
a
l
ro
fu
t ol
yb
Sa
es
re
er
l ng
200
Kinematic viscosity, v, centistokes
d
oo
dm
g de
E
d
o wo
d
Re
100 70
t ol
. No
s
nd
1 er
l ng
o ec
s
E
al
s er
iv
un
yb
50
Sa
30
Ba
20
rb
10
ey
flu
di
ty
7 5 3 2 24 8
1 10
20
30
50 70 100 200 300 Time of eflux, sec
500 700 1000
2000
FIGURE 23-4 Viscosity conversion chart.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð23-10aÞ
45
50
60
70
80
100
150
200
300
500 400
1.4
1.5
1.6
1.8
2.0
2.5
3.0
4.0
5
6
10 9 8 7
20
30
40
50
70
10.0 8.0
6.0 5.0
100
170
260
cSt 450
15.0
20.0
30.0
50.0
E
20 30
40
50
60
RE
RA TU
PE
S
NE
LI FO R O S
IL
80 90 100 110 120 Operating temperature, C
EM
/T
TY
SI
70
O
50 C REFERENCE TEMPERATURE FOR VISCOSITY TY PI CA L VI SC
10 000
5000
3000
1500
1000
750
500
300
50
n, rev/min 150
100 200
500 d, mm
DESIGN OF BEARINGS AND TRIBOLOGY
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
FIGURE 23-4a Viscosity conversion chart and a guide to suitable oil viscosities for rolling contact bearings (Courtesy: SKF Rolling Bearings).
Example : A bearing having a bore diameter d = 340mm and operating at a speed n = 500 rev/min requires an oil having a viscosity of 13.2 centistokes at the operating temperature. If this operating temperature is assumed to be 70 C an oil having a viscosity of 26 centistokes at 50 C should be selected.
d = bearing bore diameter mm n = rotational speed rev/min An example is given below and shown on the graph by means of the lines of dashes.
In the figure
40
45
50
60
70
80
100
150
200
300
500 400
Viscosity RI SSU
DESIGN OF BEARINGS AND TRIBOLOGY
23.11
DESIGN OF BEARINGS AND TRIBOLOGY
23.12
CHAPTER TWENTY-THREE
Particular
The dynamic viscosity
Formula
¼ ð0:22t 180=tÞ106 where t in 8F where in Pa s, ¼ =g, and in kg/m3
The absolute viscosity (dynamic viscosity) in terms of Engler degree, Et 8
The density ð Þ of oil and its specific gravity ðÞ relative to water have the same numerical value. 0:635 0 ¼ 106 t 0:737Et 8 Et 8 Customary Metric ð23-11Þ 0
The relation between arbitrary viscosity in Engler degree (V in Et 8) and the absolute viscosity (dynamic viscosity) in kgf s/m2 The change in viscosity 0 depending on temperature is expressed by formula
The relation between viscosity and pressure
where in kgf s/m V ¼ k0
ð23-12Þ
where k ’ 14:9 103 Et 8/(kgf s/m2 ) ¼ proportionality factor 0 ¼
i ð0:1t8Þ3
Customary Metric ð23-13Þ
where i ¼ characteristic number of the given grade of oil i ’ 1:4 to 2.8 0 in kgf s/m2 p ¼ no K P
Kinematic viscosity in centistokes from Redwood No
2
Customary Metric ð23-14Þ
where P ¼ pressure, kgf/cm2 K ¼ constant for the given grade of oil ’ varies from 1.001 to 1.004 for pressure P up to 400 kgf/cm2 (39 MPa). (Changes in oil viscosity due to change in pressure can be neglected.) v ¼ 0:260R
179 when 34 < R < 100 R Customary Metric ð23-15aÞ
where v in cSt and R in number of Redwood seconds
Kinematic viscosity in centistokes from Redwood Admiralty
v ¼ 0:247R
50 when R > 100 R
ð23-15bÞ
2000 Customary Metric ð23-16Þ R where R ¼ the number of Redwood seconds
v ¼ 2:7R
HAGEN-POISEUILLE LAW The rate of laminar flow of lubricant in tubes
Q¼
d 4 dp 128 dz
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð23-17Þ
DESIGN OF BEARINGS AND TRIBOLOGY
23.13
DESIGN OF BEARINGS AND TRIBOLOGY
Particular
Formula
VERTICAL SHAFT ROTATING IN A GUIDE BEARING (Fig. 23-5) The surface velocity of shaft
U ¼ dn0
The length of bearing in the direction of motion
B ¼ d
The torque (Fig. 23-5)
Petroffs equation for coefficient of friction (Fig. 23-5)
Design practice for journal bearing3 The coefficient of friction can also be obtained from expression
ð23-18Þ
8 360
ð23-19Þ
Mt ¼ ðLdÞP
d 2 d 2 Ln0 ¼ 2
ð23-20Þ
Refer to Fig. 23-6 for projected area ðLdÞ. 0 n 1 ¼ 2 2 P
ð23-21Þ
Refer to Table 23-2. 0 n 1 1010 þ ¼ Ka P
ð23-22Þ
where Ka ¼ 5:53 ¼ 1980 for ¼ 3608 Customary Metric 0
where in cP, n in rps, and P in kgf/cm Ka ¼ 1:31 ¼ 473 for ¼ 3608
ð23-22aÞ 2
USCS
ð23-22bÞ
where in cP, n in rpm, and P in psi Ka ¼ 9:23 104 ¼ 0:33 for ¼ 3608 Customary Metric where in cP, n in rpm, and P in kgf/mm d+c d
W L
Projected area ωrad/s FIGURE 23-5 Vertical shaft rotating in a cylindrical bearing.
L
d
FIGURE 23-6 Projected area of a bearing.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð23-22cÞ 2
DESIGN OF BEARINGS AND TRIBOLOGY
23.14
CHAPTER TWENTY-THREE
Particular
Formula
Ka ¼ 0:0553 ¼ 19:8 for ¼ 3608 Customary Metric
0.015
0
where in cP, n in rps, and P in kgf/mm Value of
0.010
Ka ¼ 5:4 108 ¼ 1:95 1011 for ¼ 3608 SI ð23-22eÞ where in Pa s, n0 in rps, and P in N/m2
0.005
0
ð23-22dÞ 2
¼ factor to correct for end leakage ¼ 0:002 for L=d ranging from 0.75 to 2.8 0
0.5
1.0 1.5 2.0 Ratio, L/d
2.5
3.0
Refer also to Fig. 23-7 for .
FIGURE 23-7 Correction factor for use in Eq. (23-22).
Louis Illmer equation for coefficient of friction in case of imperfect lubrication
sffiffiffiffiffiffi 4 P ¼ 0:00012C1 C2 vm
SI
where P in N/m2 and vm in m/s sffiffiffiffiffiffi 4 P Customary Metric ¼ 0:0066C1 C2 vm where P in kgf/mm2 and vm in m/s sffiffiffiffiffiffi 4 P USCS ¼ 0:004C1 C2 vm
ð23-23aÞ
ð23-23bÞ
ð23-23cÞ
where P in psi and vm in ft/min Refer to Tables 23-3 and 23-4 for C1 and C2 , respectively. For behaviour of journal at stand still, at start and running in its bearing
Refer to Fig. 23-8.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
DESIGN OF BEARINGS AND TRIBOLOGY
23.15
DESIGN OF BEARINGS AND TRIBOLOGY
TABLE 23-2 Journal bearing design practices Bearing modulus (minimum) Maximum pressure, P
Diameter clearance ratio c ¼ d
L d
Viscosity, 1
Viscosity, S 00 ¼
cP
Pa s 103
1 n P
n0 P SI Units, 109
S 00 ¼
Machinery
Bearing
kgf/mm2
kpsi
MPa
Automobile and aircraft engines
Main Crankpin Wrist pin
0.56–1.19 1.06–2.47 1.62–3.62
0.8–1.7 1.5–3.5 2.3–5.0
5.50–11.70 — 10.40–24.40 15.00–34.80
0.1–1.8 0.7–1.4 1.5–2.2
7 to 8
7 to 8
15 10 8
36.3 24.2 19.3
Gas and oil engines (fourstroke)
Main Crankpin Wrist pin
0.49–0.85 0.90–1.27 1.27–1.55
0.7–1.2 1.4–1.8 1.8–2.2
4.85–8.35 0.001 8.80–12.40 <0.001 12.40–15.20 <0.001
0.6–2.0 0.6–1.5 1.5–2.0
20 to 65
20 to 65
20 10 5
48.4 24.2 12.1
Gas and oil engines (twostroke)
Main Crankpin Wrist pin
0.35–0.56 0.70–1.06 0.85–1.07
0.5–0.8 1.0–1.5 1.2–1.8
3.42–5.50 0.001 6.85–10.40 <0.001 8.35–12.50 <0.001
0.6–2.0 0.6–1.5 1.5–2.0
20 to 65
20 to 65
25 12 10
60.4 29.0 24.2
Marine steam engines
Main Crankpin Wrist pin
0.35 0.42 1.06
0.5 0.6 1.5
3.42 4.14 10.40
<0.001 <0.001 <0.001
0.7–1.5 0.7–1.2 1.2–1.7
30 40 30
30 40 30
20 15 10
48.4 36.3 24.2
Stationary, slow-speed steam engines
Main Crankpin Wrist pin
0.28 1.06 1.27
0.4 1.5 1.8
2.75 10.40 12.50
<0.001 <0.001 <0.001
1.0–2.0 0.9–1.3 1.2–1.5
60 80 60
60 80 60
20 6 5
48.4 14.5 12.1
Stationary, high-speed steam engines
Main Crankpin Wrist pin
0.17 0.42 1.27
0.25 0.6 1.8
1.66 4.14 12.50
<0.001 <0.001 <0.001
1.5–3.0 0.9–1.5 1.3–1.7
15 30 25
15 30 25
25 6 5
60.4 14.5 12.1
Steam locomotives
Driving axle 0.39 Crankpin 1.40 Wrist pin 2.82
0.55 2.0 4.0
3.72 13.70 27.60
0.001 <0.001 <0.001
1.6–1.8 0.7–1.1 0.8–1.3
100 40 30
100 40 30
30 5 5
72.5 12.1 12.1
Reciprocating pumps and compressors
Main Crankpin Wrist pin
0.17 0.42 0.70
0.25 0.6 1.0
1.66 4.14 6.85
<0.001 <0.001 <0.001
1.0–2.2 0.9–1.7 1.5–2.0
30 to 80
30 to 80
30 20 10
72.5 48.4 24.2
Railway cars
Axle
0.35
0.45
3.42
0.001
1.8–2.0
100
100
50
120.9
Steam turbines
Main
0.07–0.19
0.1–0.275
0.69–1.87
0.001
1.0–2.0
2–16
2–16
100
241.8
Generators, motors, centrifugal pumps
Rotor
0.07-0.14
0.1-0.2
0.69-1.37
0.0013
1.0–2.0
25
25
Gyroscope
Rotor
0.60
0.85
5.90
0.0013
—
30
30
55
133.0
Transmission shafting
Light, fixed 0.08 Self-aligning 0.106 Heavy 0.106
0.025 0.15 0.15
0.17 1.04 1.04
0.001 0.001 0.001
2.0–3.0 2.5–4.0 2.0–3.0
25 to 60
25 to 60
100 30 30
241.8 72.5 72.5
Cotton mill
Spindle
0.0007
0.001
0.0069
0.005
—
2
2
10000
24177.5
Machine tools
Main
0.21
0.3
2.06
0.001
1.0–1.4
40
40
40
Punching and shearing machine
Main Crankpin
2.82 5.62
4.0 8.0
27.80 55.60
0.001 0.001
1.0–2.0 1.0–2.0
100 100
100 100
Rolling mills
Main
2.11
3.0
20.60
0.0015
1.1–1.5
50
50
Ratio
USCSU
200
— —
483.5
96.7 — —
10
24.2
Key: ð1 Þ ¼ absolute viscosity, Pa s (cP); n ¼ speed, rpm; n0 ¼ speed, rps; P ¼ pressure, N/m2 or MPa (psi); MPa ¼ megapascal ¼ 106 N/m2 ; Pa ¼ Pascal ¼ 1 N/m2 ; 1 psi ¼ 6894.757 Pa; 1 kpsi ¼ 6.89475 MPa; USCSU ¼ US Customary System units.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
DESIGN OF BEARINGS AND TRIBOLOGY
23.16
CHAPTER TWENTY-THREE
TABLE 23-3 Values of factor C1 in Eq. (23-23) Lubrication
Workmanship
Attendance
Operating condition
Constant C1
Oil bath or flooded
High grade
First class
Clean and protected
1
Oil, free drop (constant feed)
Good
Fairly good
Favorable (ordinary condition)
2
Oil cup or grease (intermittent feed)
Fair
Poor
Exposed to dirt, grit or other unfavorable conditions
4
TABLE 23-4 Values of factor C2 in Eq. (23–23) Type of bearing
Constant C2
Rotating journals, such as rigid bearing and crankpins
1
Oscillating journals, such as rigid wrist pin and Pintle blocks
1
Rotating bearings lacking ample rigidity, such as eccentric and the like
2
Rotating flat surfaces lubricated from the center to the circumference, such as annular step or pivot bearings
2
Sliding flat surfaces wiping over the guide ends, such as reciprocating crossheads; use 2 for relatively long guides and 3 for short guides
2–3
Sliding or wiping surfaces lubricated from the periphery or outer wiping edge, such as marine thrust bearings and worm gears
3–4
Long power-screw nuts and similar wiping parts over which it is difficult to effect a uniform distribution of lubricant or load
4–6
w
r+
c 2
e
A
0’
B
E
0’
0
ω
0’
0
e
0
β α’
D
c 2
r
w
φ
θ
r+
w
h (a) Stand still
(b) At start
(c) Running
FIGURE 23-8 Behaviour of a journal in its bearing.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
DESIGN OF BEARINGS AND TRIBOLOGY DESIGN OF BEARINGS AND TRIBOLOGY
Particular
23.17
Formula
BEARING PRESSURE (Fig. 23-9) General Electric Company’s formula for bearing pressure in the design of motor and generator bearing
Pa ¼ 6:2 105
3 ffiffiffiffiffiffi p vm
SI
ð23-24aÞ
USCS
ð23-24bÞ
Customary Metric
ð23-24cÞ
2
where Pa in N/m and vm in m/s Pa ¼ 15:5
p 3 ffiffiffiffiffiffi vm
where Pa in psi and vm in ft/min Pa ¼ 0:0635
p 3 ffiffiffiffiffiffi vm
where Pa in kgf/mm2 and vm in m/s Victor Tatarinoff’s equation for safe operating load
W¼
1 nd 3 ðL=dÞ2 L 127ð106 Þh 1 þ d
USCS
ð23-25aÞ
where 1 in cP, n in rpm, L, d, h, and c in in, W in lbf W¼
Victor Tatarinoff’s equation for permissible unit pressure
n0 d 3 ðL=dÞ2 L 0:295h 1 þ d
SI
ð22-25bÞ
where in Pa s, n0 in rps, L, d, h, and c in m, W in N 1 n0 L USCS ð23-26aÞ P¼ 3175ð104 Þ 2 L þ d where P in psi, 1 in cP, n in rpm, L and d in in n0 L P ¼ 13:5 2 SI ð23-26bÞ Lþd where P in Pa, in Pa s, n0 in rps, and L and d in m
w
L
Bearing Journal Oil inlet
hmax
d+c
θ
Pmin
o
ho = hmin
n
C E e=
p
c
φ
Line of centers or line joining 0 (centre of bearing) and 0’ (centre of jouurnal)
I
P ma x
Oil film pressure
θ PO Without θPmax groove
With groove
FIGURE 23-9 Oil film pressure distribution in the full journal bearing.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
DESIGN OF BEARINGS AND TRIBOLOGY
23.18
CHAPTER TWENTY-THREE
Particular
H. F. Moore’s equation for critical pressure
Formula
pffiffiffi Pc ¼ 7:23 105 v
SI
ð23-27aÞ
where Pc in N/m and v in m/s pffiffiffi Pc ¼ 0:0737 v Customary Metric
ð23-27bÞ
where Pc in kgf/mm2 and v in m/s pffiffiffi USCS Pc ¼ 7:5 v
ð23-27cÞ
2
The critical unit pressure for any given velocity should not exceed according to Louis Illmer
where Pc in psi and v in ft/min rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi vm 3 Pc ¼ 4:6 106 t 288:5
SI
ð23-28aÞ
where Pc in N/m2 , vm in m/s, and t in K rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi vm 3 Customary Metric ð23-28bÞ Pc ¼ 0:47 t 15:5 where Pc in kgf/mm2 , vm in m/s, and t in 8C rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi vm 3 USCS ð23-28cÞ Pc ¼ 140 t 15:5 Stribeck’s equation for the critical pressure when the speed does not exceed 2.5 m/s (500 ft/min)
Stribeck’s equation for the critical pressure when the speed exceeds 2.5 m/s (500 ft/min)
where Pc in psi, vm in ft/min, t in 8F pffiffiffi Pc ¼ 9:7 105 v SI
ð23-28dÞ
2
where Pc in N/m and v in m/s pffiffiffi Pc ¼ 10 v
USCS
ð23-28eÞ
where Pc in psi and v in ft/min pffiffiffi Customary Metric Pc ¼ 0:0986 v
ð23-28f Þ
where Pc in kgf/mm2 and v in m/s pffiffiffi Pc ¼ 2:9 106 v
SI
ð23-28gÞ
where Pc in N/m and v in m/s pffiffiffi Pc ¼ 30 v USCS
ð23-28hÞ
2
where Pc in psi and v in ft/min pffiffiffi Customary Metric ð23-28iÞ Pc ¼ 0:296 v where Pc in kgf/mm2 and v in m/s Refer to Table 23-5 for allowable pressures for reciprocating motion. For permissible Pv values
Refer to Table 23-6.
For values S00 for various combinations of journal bearing materials, abrasion pressure for bearings, allowable bearing pressures for semi-fluid lubricants and diametral clearances in bearing dimensions.
Refer to Tables 23-7 to 23-10.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
DESIGN OF BEARINGS AND TRIBOLOGY DESIGN OF BEARINGS AND TRIBOLOGY
23.19
TABLE 23-5 Allowable bearing pressure, reciprocating motion Pressure, P Type of bearing
Type of machinery
psi
MPa
Steam engine, stationary Steam engine, marine Steam engine, locomotive Gas and oil engines, stationary Compressors and pumps
35–60 55–100 70–90 40–70 50–90
0.24–0.412 0.378–0.688 0.48–0.62 0.275–0.48 0.342–0.62
and oil engines, stationary f Gas Automotive and aircraft engines
20–25 25–40
0.136–0.172 0.172–0.275
f
Crosshead
Trunk pin
TABLE 23-6 Permissible Pv values Values Class of bearing or journal
psi ft/s
N/m s
Mill shafting, with self-aligning cast-iron bearings, grease, or imperfect oil-lubrication, maximum value
12,000
4.2105
Mill shafting, self-aligning ring-oiled babbitt bearings, maximum
24,000
8.45105
Self-aligning ring-oiled bearings, continuous load in one direction
35,000–40,000
Crankshaft journals with bronze bearings
22,000
7.7105
Crankshaft bearings with babbitted bearings, maximum
59,000
20.8105
133,000
46.5105
For excellent radiating condition
12.3105 to 14105
Key: US Customary unit: P ¼ pressure, psi, v ¼ velocity, ft/s; SI unit: P ¼ pressure, N/m2 , v ¼ velocity, m/s
TABLE 23-7 Values S 00 for various combinations of journal bearing materials Bearing-modulus S 00 ¼
1 n P
n0 P SI 109
S 00 ¼
Shaft
Bearing
Metric
Hardened and ground steel
Babbitt
28,500
Machined, soft steel
Babbitt
36,000
61.2
Hardened and ground steel
Plastic bronze
42,700
72.6
Machined, soft steel
Plastic bronze
35,800
60.9
Hardened and ground steel
Rigid bronze
56,900
96.7
Machined, soft steel
Rigid bronze
71,100
120.8
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
48.5
DESIGN OF BEARINGS AND TRIBOLOGY
23.20
CHAPTER TWENTY-THREE
TABLE 23-8 Abrasion pressures for bearings Pressure Materials in contact
psi
MPa
Remarks
Hardened tool steel on lumen or phosphor bronze
10,000
68.8
Values applies to rigid, polished and accurately fitted rubbing surface
0.50 C machine steel on lumen or phosphor bronze
8,000
55.0
When not worn to a fit or well lubricated reduce to 4.22 kgf/mm2 (41.4 MPa)
Hardened tool steel on hardened tool steel
7,000
48.0
0.50 C machine steel or wrought iron on genuine hard babbitt
6,000
41.5
Cast iron on cast iron (close grained or chilled)
4,500
31.0
Case-hardened machine steel on case-hardened machine steel
4,000
27.5
0.30 C machine steel on cast iron (close-grained)
3,500
24.0
0.40 C machine steel on soft common babbitt
3,000
20.6
Soft machine steel on machine steel (not casehardened)
2,000
13.8
Machine steel on lignum vitae (water-lubricated)
1,500
10.2
TABLE 23-9 Allowable bearing pressures for semifluid lubrication Allowable pressure, Pa Bearing material
Journal material
psi
MPa
Lumen of phosphor bronze
Hardened tool steel
2500
17.30
Hardened steel
Hardened alloy steel
2000
14.40
Hard babbitt
SAE 1050 steel
1500
10.30
Bronze
Hardened alloy steel
1300
8.90
Cast iron
Cast iron
1100
7.58
Bronze
Alloy steel
850
5.90
Babbit, soft
SAE 1040 steel
750
5.20
Bronze
Mild steel, smooth finish
540
3.70
Bronze
Mild steel, ordinary finish
400
2.75
Bronze
Cast iron
400
2.75
Cast iron
Mild steel
350
2.40
Lignum vitae, water lubricated
Mild steel
350
2.40
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
DESIGN OF BEARINGS AND TRIBOLOGY
23.21
DESIGN OF BEARINGS AND TRIBOLOGY
TABLE 23-10 Diametral clearance in bearings dimension in micrometers (1 lm ¼ 106 m) Diametral clearances, c in lm d ¼ 12
d ¼ 25
d ¼ 50
d ¼ 100
d ¼ 140
Precision spindle, hardened and ground steel, lapped into bronze bearingvm < 25 m/s; P < 500 psi (3.43 N/m2 ); 0.2–0.4 mm rms
7–19
19–38
38–63
63–88
88–125
Precision spindle, hardened and ground steel, lapped into bronze bearingvm > 25 m/s; P > 500 psi (3.43 N/m2 ); 0.2–0.4 mm rms
13–25
25–50
50–75
75–113
113–163
Electric motors and generators, ground journals in broached or reamed bronze or babbitt bearings; 0.4–0.8 mm rms
13–38
25–50
38–85
50–100
75–150
General machinery, intermittent or continuous motion, turned or cold-rolled journal in reamed and bored bronze or babbitt bearings; 0.8–1.5 mm rms
50–100
63–113
75–125
100–175
125–200
Rough machinery, turned or cold-rolled steel journals in poured babbitt bearings; 1.5–3.8 mm rms
77–150
125–225
200–300
275–400
350–500
38 50 36
63 75 88
Particular about bearing and journal
Automotive crankshaft Babbitt-lined bearing Cadmium silver copper Copper lead
Particular
Formula
IDEALIZED JOURNAL BEARING (Figs. 23-8 and 23-9) The diametral clearance ratio or relative clearance
Attitude or eccentricity ratio or eccentricity coefficient
¼ "¼
c d
ð23-29Þ
2e 2h ¼ 1 min d c
ð23-30Þ
Refer to Fig. 23-10 for ". Oil film thickness at any position
c h ¼ ð1 þ " cos Þ 2
For position of minimum oil thickness and max oil film pressure
Refer to Figs. 23-11 and 23-11A
Minimum oil film thickness
c hmin ¼ ho ¼ ð1 "Þ 2 2h ¼ min ¼ ð1 "Þ c
The minimum oil film thickness variable
Refer to Figs. 23-12 to 23-14 and 23-15 for .
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð23-31Þ
ð23-32Þ ð23-33Þ
DESIGN OF BEARINGS AND TRIBOLOGY 1.0
Attitude, ε
0.8 Lightly loaded bearing
0.6 0.4
Beyond this point 1 S= . 59 36
Reynolds
0.2 0
Petroff 0.10
0
0.20
0.30
ηn Bearing characteristic number, S = P
0.40
1 ψ2
(a) Moderately and lightly loaded bearing
1.0
Attitude, ε
0.8 0.6 0.4 0.2 0
0.010
0
0.020
ηn’ Bearing characteristic number, S = P
0.030 1 ψ2
0.040
(b) Heavily loaded bearing
FIGURE 23-10 Variation of attitude " of full journal bearing with characteristic number S. [Radzimosvksy4 ] 100
Position of Minimum Oil Film Thickness, φ deg
90 80 70
L =∞ d
60
1
50
1 2 1 4
40 30 20 10 0 0
0.01
0.02
0.04 0.06 0.080.1
0.2
0.4 0.6 0.81.0
ηn’ Bearing Characteristic Number, S = P
2
4
6
8 10
1 ψ2
FIGURE 23-11 Position of minimum oil film thickness vs. bearing characteristic number S for full journal bearing. (Refer to Fig. 23-9 for definition of .) [Boyd and Raimondi5 ]
23.22 Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
DESIGN OF BEARINGS AND TRIBOLOGY 1.0
MINIMUM FILM THICKNESS VARIABLE, δ
0.8
0.6
0.4
0.2
0
0
1
2
4
6
8 10
2
4
6
BEARING CHARACTERISTIC NUMBER S’ =
8 102
2
4
6
8 103
60ηn’ 1 P ψ2
FIGURE 23-12 Minimum oil film thickness variable based on no side flow. [Boyd and Raimondi5 ] PETROFF
1.0 0.9 0.8 0.7
2nmin c
0.5
δ=
0.6
0.4
REYNOLDS
LIGHTLY LOADED BEARING
0.3 0.2 0.1 0
0
0.10 0.20 0.30 BEARING CHARACTERISTIC NUMBER ηn’ 1 S= P ψ2
FIGURE 23-13 Variation of minimum oil film thickness variable of full journal bearing with S.
23.23 Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
DESIGN OF BEARINGS AND TRIBOLOGY
23.24
CHAPTER TWENTY-THREE
Particular
Formula
The safe oil film thickness for a bearing in good condition and vm 1 m/s (200 ft/min)
0:2 hmin ¼ ho ¼ 2:37 105 v0:4 m A
SI
ð23-34aÞ
2
where hmin in m, A in m , and vm in m/s 0:2 hmin ¼ 0:0015v0:4 m A
Customary Metric
ð23-34bÞ
2
where hmin in mm, A in mm , and vm in m/s 0:2 hmin ¼ 0:000026v0:4 m A
USCS
ð23-34cÞ
2
where hmin in in, A in in , and vm in in The thickness of oil film where the pressure is maximum or minimum
ðhÞPðmaxÞ ¼ k ¼ PðminÞ
2cð1 "2 Þ 2 þ "2
ð23-35Þ
The resultant pressure distribution around a journal bearing excluding Po the oil film pressure at the point where ¼ 0 or ¼ 2
Pr ¼ ðP Po Þ 12U "ð2 þ " cos Þ sin ¼ 2 d ð2 þ "2 Þð1 þ " cos Þ2
The pressure at any point (Figs. 23-8 and 23-9)
P ¼ Pr þ Po UL
ð23-36Þ ð23-37Þ
!
W¼
The bearing characteristic number or Sommerfeld number
S¼
For Sommerfeld number S
Refer to Tables 23-10 to 23-12 for Sommerfeld numbers S for full and partial bearings.
MINIMUM FILM THICKNESS VARIABLE, δ
The load carrying capacity of the bearing [Fig. 23-8 (panel c)]
2
2 " pffiffiffiffiffiffiffiffiffiffiffiffiffi 2 "2 ð2 þ "2 Þ
n0 1 P 2
ð23-39Þ
1.0 0.8 0.6 0.4 0.2 0
0
40
80
120
160
200 60 S VALUE OF CL 106
240
280
320
ð23-38Þ
360
FIGURE 23-14 Variation of minimum oil film thickness variable with S=CL .
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
2hmin c
0.02
0.4
2
4
Optimum Boundary
1
4
6
8 10
0.8
0.7
0.6
0.5
0.2 ηn’ 1 ( 2) ψ P
0.04 0.06 0.08 0.1
Bearing Characteristic Number, S =
0.6 0.8 1.0
2
1.0
0.01
1
0.4
0.3
0
Lo ad
1
0.2
0.1
0.9
0
∞
Ma xim um
L = d
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
Friction imum Min
Attitude or Eccentricity Ratio, ε = 2e c
FIGURE 23-15 Variation of minimum oil film thickness variable and attitude " of full journal bearing with bearing characteristic number S. [Boyd and Raimondi5 ]
Minimum Oil Film Thickness Variables, δ =
1.0
DESIGN OF BEARINGS AND TRIBOLOGY DESIGN OF BEARINGS AND TRIBOLOGY
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
23.25
DESIGN OF BEARINGS AND TRIBOLOGY
23.26
CHAPTER TWENTY-THREE
Particular
Formula
n P where in Pa s (cP)
The constant of the bearing or bearing modulus
S 00 ¼
ð23-40Þ
Refer to Table 23-7 for bearing modulus. The calculation of minimum oil film thickness from Figs 23-14 and 23-16
The bearing characteristic number or Sommerfeld number as a function of attitude
Hint: S is determined from Eq. (23-39) and CL from Fig. 23-16 for a given ðL=dÞ ratio. Calculate 60S=ðCL 106 Þ. Knowing 60S=ðCL 106 Þ, you can then obtain the minimum film thickness variable from Fig. 23-14. From and Eq. (23-33), you can then determine the minimum oil film thickness. pffiffiffiffiffiffiffiffiffiffiffiffiffi ð2 þ "2 Þ 1 "2 S¼ ð23-41Þ 12 2 "
The angular positions of points where the maximum or minimum pressure in the oil film occur [Fig. 23-8c and Fig. 23-9]
Refer to Fig. 23-10 for " for various values of S. 3" ð23-42Þ ¼ cos1 2 " þ2
For positions of maximum oil film pressure and oil film termination vs. bearing characteristic number S
Terminating Position of Oil Film, θPo deg
90
25
1 2
1
L = d
1 4
80
20
70 1 4
60
15
50 40
10
1 2
30 20 10 0
5
I
Pmax
L =∞ d
Angular Position of Maximum Oil Film Pressure, θ deg
100
Refer to Fig. 23-15A.
∞ 0
θ Po θ
Pmax
0.01
0.02
0.04 0.06 0.08 0.1
0.2
0.4
0.6 0.8 1.0
Bearing Characteristic Number , S =
2
4
6
0 8 10
η n’ 1 P ψ2
FIGURE 23-15A Position of maximum oil film pressure and oil film termination versus bearing characteristic number S. [Boyd and Raimondi24 ] (Refer to Fig. 23-9 for definition of Pmax , and P0 .)
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
DESIGN OF BEARINGS AND TRIBOLOGY DESIGN OF BEARINGS AND TRIBOLOGY
23.27
TABLE 23-11 Dimensionless performance parameters for full journal bearings with side flow Values of L=d ratio For maximum load For minimum friction L d
0.25 0.27 0.03
0.5 0.43 0.12
1 0.66 0.6
1.0 0.53 0.3 Qs Q
csp T0 P
P Pmax
3.45 3.76 4.37 4.99 5.60 5.91 6.12 —
0 0.180 0.330 0.567 0.746 0.884 0.945 0.984 1.0
1 1287.0 611.0 245.0 107.6 35.4 14.1 3.73 0
— 0.515 0.489 0.415 0.334 0.240 0.180 0.108 0
1 85.6 40.9 17.0 8.10 3.26 1.60 0.610 0
3.43 3.72 4.29 4.85 5.41 5.69 5.88 —
0 0.173 0.318 0.552 0.730 0.874 0.939 0.980 1.0
1 343.0 164.0 68.6 33.0 13.4 6.66 2.56 0
— 0.523 0.506 0.441 0.365 0.267 0.206 0.126 0
(85) 79.5 74.02 63.10 50.58 36.24 26.45 15.47 0
1 26.4 12.8 5.79 3.22 1.70 1.05 0.514 0
3.37 3.59 3.99 4.33 4.62 4.74 4.82 —
0 0.150 0.280 0.497 0.680 0.842 0.919 0.973 1.0
1 106 52.1 24.3 14.2 8.0 5.16 2.61 0
— 0.540 0.529 0.484 0.415 0.313 0.247 0.152 0
(70.92) 69.10 67.26 61.94 54.31 42.22 31.62 — 0
1 4.80 2.57 1.52 1.20 0.961 0.756 — 0
3.03 2.83 2.26 1.56 0.760 0.411 — 0
0 0 0 0 0 0 0 0 0
1 19.9 11.4 8.47 9.73 15.9 23.1 — 1
— 0.826 0.814 0.764 0.667 0.495 0.358 — 0
"
S
0.25
0 0.1 0.2 0.4 0.6 0.8 0.9 0.97 1.0
1.0 0.9 0.8 0.6 0.4 0.2 0.1 0.03 0
1 16.2 7.57 2.83 1.07 0.261 0.0736 0.0101 0
(89.5) 82.31 75.18 60.86 46.72 31.04 21.85 12.22 0
1 322.0 153.0 61.1 26.7 8.80 3.50 0.922 0
0.5
0 0.1 0.2 0.4 0.6 0.8 0.9 0.97 1.0
1.0 0.9 0.8 0.6 0.4 0.2 0.1 0.03 0
1 4.31 2.03 0.779 0.319 0.0923 0.0313 0.00609 0
(88.5) 81.62 74.94 61.45 48.14 33.31 23.66 13.75 0
1
0 0.1 0.2 0.4 0.6 0.8 0.9 0.97 1.0
1.0 0.9 0.8 0.6 0.4 0.2 0.1 0.03 0
1 1.33 0.631 0.264 0.121 0.0446 0.0188 0.00474 0
1
0 0.1 0.2 0.4 0.6 0.8 0.9 0.97 1.0
1.0 0.9 0.8 0.6 0.4 0.2 0.1 0.03 0
1 0.240 0.123 0.0626 0.0389 0.021 0.0115 — 0
4Q d 2 n0 L
Key: Qs ¼ flow of lubricant with side flow, cm3 /s; ¼ weight per unit volume of lubricant whose specific gravity is 0.90 ¼ 8.83 kN/m3 (0.0325 lbf/ in3 ); csp ¼ specific heat of the lubricant, kJ/NK (Btu/lbf 8F) ¼ 0.19 kJ/NK (0.42 Btu/lbf 8F); T0 ¼ difference in temperature, 8C. Source: A. A. Raimondi and J. Boyd, ‘‘A Solution for the Finite Journal Bearings and Its Applications to Analysis and Design’’ ASME, J. Lubrication Technol., Vol. 104, pp. 135–148, April 1982.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
DESIGN OF BEARINGS AND TRIBOLOGY
23.28
CHAPTER TWENTY-THREE
TABLE 23-12 Dimensionless performance parameters for 1808 bearing centrally loaded with side flowa Values of L=d ratio For maximum load For minimum friction L d
0.25 0.28 0.03
0.5 0.42 0.23
Qs Q
csp T0 P
P Pmax
3.44 3.71 4.11 4.25 4.07 3.72 3.29 —
0 0.176 0.320 0.534 0.698 0.837 0.905 0.961 1.0
1 653.0 320.0 146.0 79.8 36.5 18.4 6.46 0
— 0.513 0.489 0.417 0.336 0.241 0.180 0.110 0
1 44.0 21.6 9.96 5.41 2.54 1.38 0.581 0
3.41 3.64 3.93 3.93 3.56 3.17 2.62 —
0 0.167 0.302 0.506 0.665 0.806 0.886 0.951 1.0
1 177.0 87.8 42.7 25.9 15.0 9.80 5.30 0
— 0.518 0.499 0.438 0.365 0.273 0.208 0.132 0
90.0 78.50 68.93 58.86 44.67 32.33 24.14 14.57 0
— 14.1 7.15 3.61 2.28 1.39 0.921 0.483 0
3.34 3.46 3.49 3.25 2.63 2.14 1.60 —
0 0.139 0.252 0.425 0.572 0.721 0.818 0.915 1.0
1 57.0 29.7 16.5 12.4 10.4 9.13 6.96 0
— 0.525 0.513 0.466 0.403 0.313 0.244 0.157 0
90.0 72.90 61.32 49.99 43.15 33.35 25.57 15.43 0
1 3.55 2.01 1.29 1.06 0.859 0.681 0.416 0
3.04 2.80 2.20 1.52 0.767 0.380 0.119 0
1 0 0 0 0 0 0 0 0
1 14.7 8.99 7.34 8.71 14.1 22.5 44.0 1
— 0.778 0.759 0.700 0.607 0.459 0.337 0.190 0
"
S
0.25
0 0.1 0.2 0.4 0.6 0.8 0.9 0.97 1.0
1.0 0.9 0.8 0.6 0.4 0.2 0.1 0.03 0
1 16.3 7.60 2.84 1.08 0.263 0.0736 0.0104 0
90.0 81.40 73.70 58.99 44.96 30.43 21.43 12.28 0
1 163.0 79.4 35.1 17.6 6.88 2.99 0.877 0
0.50
0 0.1 0.2 0.4 0.6 0.8 0.9 0.97 1.0
1.0 0.9 0.8 0.6 0.4 0.2 0.1 0.03 0
1 4.38 2.06 0.794 0.321 0.0921 0.0314 0.00635 0
90.0 79.97 72.14 58.01 45.01 31.29 22.80 13.63 0
1
0 0.1 0.2 0.4 0.6 0.8 0.9 0.97 1.0
1.0 0.9 0.8 0.6 0.4 0.2 0.1 0.03 0
1 1.40 0.670 0.278 0.128 0.0463 0.0193 0.00483 0
1
0 0.1 0.2 0.4 0.6 0.8 0.9 0.97 1.0
1.0 0.9 0.8 0.6 0.4 0.2 0.1 0.03 0
1 0.347 0.179 0.898 0.0523 0.0253 0.0128 0.00384 0
a
1 0.64 0.60
1.0 0.52 0.44 4Q d 2 n0 L
See Key and Source under Table 23-11.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
DESIGN OF BEARINGS AND TRIBOLOGY DESIGN OF BEARINGS AND TRIBOLOGY
23.29
TABLE 23-13 Dimensionless performance parameters for 1208 for centrally loaded bearing with side flowa Values of L=d ratio For maximum load For minimum friction L d
0.25 0.26 0.06
0.5 0.38 0.28
Qs Q
csp T0 P
P Pmax
3.34 3.44 3.42 3.20 2.67 2.21 1.69 —
0 0.143 0.260 0.442 0.599 0.753 0.846 0.931 1.0
1 502.0 254.0 125.0 75.8 42.7 25.9 11.6
— 0.456 0.438 0.389 0.321 0.237 0.178 0.112 0
1 36.6 18.1 8.20 4.43 2.17 1.24 0.550 0
3.29 3.32 3.15 2.80 2.18 1.70 1.19 —
0 0.124 0.225 0.386 0.530 0.684 0.787 0.899 1.0
— 149.0 77.2 40.5 27.0 19.0 15.1 10.6 0
— 0.431 0.424 0.389 0.336 0.261 0.203 0.136 0
90.0 72.43 58.25 43.98 35.65 27.42 21.29 13.49 0
1 14.5 7.44 3.60 2.16 1.27 0.855 0.461 0
3.20 3.11 2.75 2.24 1.57 1.11 0.694 —
0 0.0876 0.157 0.272 0.384 0.535 0.657 0.812 1.0
1 59.5 32.6 19.0 15.0 13.9 14.4 14.0 0
— 0.427 0.420 0.396 0.356 0.290 0.233 0.162 0
90.0 66.69 52.60 39.02 32.67 26.80 21.51 13.86 0
1 6.02 3.26 1.78 1.21 0.853 0.653 0.399 0
3.02 2.75 2.13 1.47 0.759 0.388 0.118 0
0 0 0 0 0 0 0 0 0
1 25.1 14.9 10.5 10.3 14.1 21.2 42.3 1
— 0.610 0.599 0.566 0.509 0.405 0.311 0.199 0
"
S
0.25
0 0.10 0.20 0.40 0.6 0.8 0.9 0.97 1.0
1.0 0.9044 0.8011 0.6 0.4 0.2 0.1 0.03 0
1 18.4 8.45 3.04 1.12 0.268 0.0743 0.0105 0
90.0 76.97 65.97 51.23 40.42 28.38 20.55 12.11 0
1 124.0 60.4 26.6 13.5 5.65 2.63 0.852 0
0.50
0 0.1 0.2 0.4 0.6 0.8 0.9 0.97 1.0
1.0 0.9034 0.8003 0.6 0.4 0.2 0.1 0.03 0
1 5.42 2.51 0.914 0.354 0.0973 0.0324 0.00631 0
90.0 74.99 63.38 48.07 38.50 28.02 21.02 13.00 0
1
0 0.1 0.2 0.4 0.6 0.8 0.9 0.97 1.0
1.0 0.9024 0.8 0.6 0.4 0.2 0.1 0.03 0
1 2.14 1.01 0.385 0.162 0.0531 0.0208 0.00498 0
1
0 0.1 0.2 0.4 0.6 0.8 0.9 0.97 1.0
1.0 0.9007 0.8 0.6 0.4 0.2 0.1 0.03 0
1 0.877 0.431 0.181 0.0845 0.0328 0.0147 0.00406 0
a
1 0.53 0.5
1.0 0.46 0.4 4Q d 2 n0 L
See Key and Source under Table 23-11.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
DESIGN OF BEARINGS AND TRIBOLOGY
23.30
CHAPTER TWENTY-THREE
TABLE 23-14 Dimensionless performance parameters for 608 centrally loaded bearing with side flowa Values of L=d ratio For maximum load For minimum friction L d
0.25 0.15 0.10
0.5 0.20 0.16
Qs Q
csp T0 P
P Pmax
3.16 3.04 2.57 1.98 1.30 0.894 0.507 —
0 0.0666 0.131 0.236 0.346 0.496 0.620 0.786 1.0
1 499.0 260.0 136.0 86.1 54.9 41.0 29.1 0
— 0.251 0.249 0.242 0.228 0.195 0.159 0.107 0
1 48.6 24.2 10.3 4.93 2.02 1.08 0.490 0
3.11 2.91 2.38 1.74 1.05 0.664 0.329 —
0 0.0488 0.0883 0.160 0.236 0.350 0.464 0.650 1.0
1 201.0 109.0 59.4 40.3 29.4 26.5 27.8 0
— 0.239 0.239 0.233 0.225 0.201 0.172 0.122 0
90.0 67.92 50.96 33.99 24.56 18.33 15.33 10.88 0
1 29.1 14.8 6.61 3.29 1.42 0.822 0.422 0
3.07 2.82 2.22 1.56 0.883 0.519 0.226 —
0 0.0267 0.0481 0.0849 0.127 0.200 0.287 0.465 1.0
1 121.0 67.4 39.1 28.2 22.5 23.2 30.5 0
— 0.252 0.251 0.247 0.239 0.220 0.192 0.139 0
90.0 65.91 48.91 31.96 23.21 17.39 14.94 10.58 0
1 19.7 10.1 4.67 2.40 1.10 0.667 0.372 0
3.01 2.73 2.07 1.40 0.722 0.372 0.115 0
0 0 0 0 0 0 0 0 0
1 82.3 46.5 28.4 21.4 19.2 22.5 40.7 1
— 0.337 0.336 0.329 0.317 0.287 0.243 0.163 0
"
S
0.25
0 0.1 0.2 0.4 0.6 0.8 0.9 0.97 1.0
1.0 0.9251 0.8242 0.6074 0.4 0.2 0.1 0.03 0
1 35.8 16.0 5.20 1.65 0.333 0.0844 0.0110 0
90.0 71.55 58.51 41.01 30.14 21.70 16.87 10.81 0
1 121.0 58.7 24.5 11.2 4.27 2.01 0.713 0
0.5
0 0.1 0.2 0.4 0.6 0.8 0.9 0.97 1.0
1.0 0.9223 0.8152 0.6039 0.4 0.2 0.1 0.03 0
1 14.2 6.47 2.14 0.695 0.149 0.0422 0.00704 0
90.0 69.00 52.60 37.00 26.98 19.57 15.91 10.85 0
1
0 0.1 0.2 0.4 0.6 0.8 0.9 0.97 1.0
1.0 0.9212 0.8133 0.6010 0.4 0.2 0.1 0.03 0
1 8.52 3.92 1.34 0.450 0.101 0.0309 0.00584 0
1
0 0.1 0.2 0.4 0.6 0.8 0.9 0.97 1.0
1.0 0.9191 0.8109 0.6002 0.4 0.2 0.1 0.03 0
1 5.75 2.66 0.931 0.322 0.0755 0.0241 0.00495 0
a
1 0.25 0.23
1.0 0.23 0.22 4Q d 2 n0 L
See Key and Source under Table 23-11.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
DESIGN OF BEARINGS AND TRIBOLOGY DESIGN OF BEARINGS AND TRIBOLOGY
Particular
23.31
Formula
10
Factor CL
8 6 4 2 0
0
1
2 Ratio, L/d
3
4
The total frictional resistance on an idealized journal bearing surface
F ¼
FIGURE 23-16 Variation of factor CL with L=d ratio.
4 UL
! 1 þ 2"2 pffiffiffiffiffiffiffiffiffiffiffiffiffi ð2 þ "2 Þ 1 "2
ð23-43Þ
or F ¼ The total frictional resistance on an idealized lightly loaded journal bearing
F ¼
For the relation between dimensionless quantity n0 1 and Sommerfeld numbers S F0
4 2 n0 Ldð1 þ 2"2 Þ pffiffiffiffiffiffiffiffiffiffiffiffiffi ð2 þ "2 Þ 1 "2 2 2 n0 Ld
ð23-44Þ
ð23-45Þ
Refer to Fig. 23-17.
0.06 Petroff
0.05
1 ψ
ηn’ Fµ’
0.04 0.03 0.02 0.01 0
0
0.1
1.5
0.2
Bearing characteristic number, S =
0.3 ηn’ P
1 ψ2
FIGURE 23-17 Variation of dimensionless 1 n0 with Sommerfeld number S for quantity F0 an idealized full journal bearing.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
DESIGN OF BEARINGS AND TRIBOLOGY
23.32
CHAPTER TWENTY-THREE
Particular
Formula
The relation between coefficient of friction and bearing characteristic number The relation between the coefficient of friction and attitude "
n0 ¼ 2 P 2
¼
1
1 þ 2"2 3"
ð23-46Þ
ð23-47Þ
For average coefficient of friction at very high pressures
Refer to Table 23-15 for coefficient of friction
The friction coefficient variable
¼
¼
1 þ 2"2 3"
Refer to Figs. 23-20 to 23-24. TABLE 23-15 Average coefficient of friction at very high pressure Angular displacement, deg Material
108
508
Stearic acid
0.022
0.029
Tungsten disulphide
0.032
0.037
Molybdenum disulphide
0.032
0.033
Graphite
0.036
0.058
Silver sulphate
0.055
0.054
Turbine oil plus 1% MoS2
0.060
0.068
Lead iodide
0.061
0.071
Palm oil
0.063
0.075
Castor oil
0.064
0.081
Grease (zinc-oxide base)
0.071
0.080
Lard oil
0.072
0.084
Grease (calcium base)
0.073
0.082
Residual
0.076
0.083
Sperm oil
0.077
0.085
Turbine oil plus 1% graphite
0.081
0.105
Turbine oil plus 1% stearic acid
0.087
0.096
Turbine oil
0.088
0.108
Capric acid
0.089
0.109
Turbine oil plus 1% mica
0.091
0.105
Oleic acid
0.093
0.119
Machine oil
0.099
0.115
Soapstone (powdered)
0.169
0.306
Mica (powdered)
0.257
0.305
Boron (not a lubricant)
0.482
0.710
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð23-48Þ
DESIGN OF BEARINGS AND TRIBOLOGY DESIGN OF BEARINGS AND TRIBOLOGY
Particular
23.33
Formula
INFLUENCE OF MISALIGNMENT OF SHAFT IN BEARING Minimum oil film thickness corresponding to the materials factor (km ), the surface roughnesses (Rp ) and amount of misalignment of the journal and bearing (Ma )
Ma L ð23-48aÞ 2 where km ¼ material factor from Table 23-15a L ¼ length of bearing Rpb ¼ surface roughness of bearing from Table 23-15b Ma ¼ x=L amount of misalignment
hmin ¼ km ðRpj þ Rpb Þ þ
Refer to Table 23-15c and Fig. 23-18 for Ma 2Q ð23-48bÞ L dn0 c 3 0 where Q in m /s, L, d, and c in m, n in rps
Dimensionless oil feed rate
Q0 ¼
TABLE 23-15a Material factor, km
TABLE 23-15b Surface finish, predominant peak height, Rp km
Bearing lining material Phosphor bronze Leaded bronze Tin aluminium White metal (Babbitt) Thermoplastic (bearing grade) Thermosetting plastic
1 0.8 0.8 0.5 0.6 0.7
Courtesy: Neale, M. J., Tribology Handbook, Newnes-Butterworths, 1973
Surface type
Micro-inch cla
Turned or rough 100 ground Ground or fine 20 bored Fine ground 7 Lapped or 1.5 polished
lm RMS
Rp Class
lm lin
2.8
6
12
480
0.6
8
3
120
0.19 0.04
10 12
0.8 32 0.2 9
Courtesy: Neale, M. J., Tribology Handbook, Newnes-Butterworths, 1973
TABLE 23-15c Values of misalignment factor, Ma at two ratios of (hmin =c) (hmin =c)
d
Ma (L=c)
0.1
0.01
0 0.05 0.25 0.50 0.75
100 65 25 12 8
100 33 7 3 1
Courtesy: Neale, M. J., Tribology Handbook, Newnes-Butterworths, 1973
x Ma =
x y
y
L
FIGURE 23-18 Misaligned journal inside the bearing under load
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
DESIGN OF BEARINGS AND TRIBOLOGY
23.34
CHAPTER TWENTY-THREE
Particular
Formula
Bearing load capacity number
W0 ¼
W e n0 Ld
ð23-48cÞ
2
where W 0 ðd=LÞ2 ¼ dimensionless load number, W in N, n0 in rps, e in N s/m2 , L, d, and c in m The required grease supply rate per hour for grease lubricated bearing
Qg ¼ kg c dL
The coefficient of friction
¼
The diameter of journal bearing for speeds below 2.5 m/s
The diameter of journal bearing for speeds exceeding 2.5 m/s
ð23-48dÞ
where kg ¼ a factor for grease lubrication at various rotational speeds. Taken from Table 23-15d. ð23-48eÞ
where ¼ = sffiffiffiffiffiffiffiffi 2 5 W d ¼ 3:2 103 2 0 i n
ð23-48f Þ
where W in N, d in m; l=d ¼ i and n0 in rps sffiffiffiffiffiffiffiffi 2 7 W ð23-48gÞ d ¼ 2 103 3 0 i n
POWER LOSS The power loss in the bearing due to viscous friction
P¼
F U 33;000
USCS
ð23-49aÞ
where P in hp, F in lbf, and U in ft/min F U Customary Metric ð23-49bÞ 102 where P in kW, F in kgf, U ¼ dn0 ¼ velocity in m/s, d in m, and n0 in rps F U SI ð23-49cÞ P¼ 1000 where P in kW, F in N, and U in m/s
P¼
TABLE 24-15d Values of factor kg for grease lubrication at various rotational speeds Journal speed, n in rpm
kg
up to
0.1 0.2 0.4 1.0
100 250 500 1000
Courtesy: Neale, M. J., Tribology Handbook, Newnes Butterworth
Lubricant feed rate Q
b
Diametrical clearance Cd d w
n’ Lubricant viscosity ηe
FIGURE 23-19 Journal inside the bearing under Load (W) at speed (n0 ).
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
µ Coefficient of friction variable, ψ
0 0
5
10
15
0 0
1
2
3
4
0.10
4. 0 B/L = . 0 3 = B/L 2. 0 B/L = . B/L = 1 0 B/L = 0
1.0
B/L = 0
4. 0 B/L = . 30 = B/L 2. 0 B/L = . B/L = 1 0
1.5 ηn’ 1 Bearing characteristic number, S = P ψ2
0.5
60 Partial journal bearings
0.15 ηn’ 1 Bearing characteristic number, S = P ψ2
0.05
60 Partial journal bearings
2.0
0.20
FIGURE 23-20 Variation of coefficient of friction variable = with S for 608 partial journal bearing.
µ Coefficient of friction variable, ψ
µ Coefficient of friction variable, ψ 0
10
20
0 0
1
2
3
4
0
0.10
1.0
ηn’ Bearing characteristic number, S = P
0.5
B/L = 1.0
120 Partial journal bearings
B/L =
1. 0
.0 =4 B/L .0 =3 /L B .0 2 = B/L
B/L = 0
1.5 1 ψ2
B/L =
0
0 B/L = 2
. B/L = 3. 0
B/L = 4.0
0.15 ηn’ 1 Bearing characteristic number, S = P ψ2 0.05
120 Partial journal bearings
2.0
0.20
FIGURE 23-21 Variation of coefficient of friction variable = with S for 1208 partial journal bearing.
µ Coefficient of friction variable, ψ
5
DESIGN OF BEARINGS AND TRIBOLOGY
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
23.35
0
1
2
3
4
23.36
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
0
B/L = 2.0
=0
1.0
1.5 ηn’ 1 Bearing characteristic number, S = P ψ2
0.5
B/L = 1.0 B/L = 0
.0 B/L = 3.0 B/L = 4
180 Partial Journal bearings
2.0
0.20
FIGURE 23-22 Variation of coefficient of friction variable = with S for 1808 partial journal bearing.
0
10
20
0.10
B/L
.0 B/L = 1
.0 B/L = 2
.0 =4 B/L 3. 0 = L / B
0.15 ηn’ 1 Bearing characteristic number, S = P ψ2
0.05
180 Partial journal bearings
µ Coefficient of friction variable, ψ 0
1.0
2.0
3.0
4.0
5.0
0
10
20
30
40
45
0
OF
TR
PE
F
. 40
1.0 Bearing characteristic number, S =
0.5
B/L = 3.0 B/L = 2.0 µ 2 PETROFF ψ = 2 π s
B/L = 4.0
360 Journal bearings
0.10
.0 =1 B/L 0 = B/L
2. 0
3. 0
= B/L
= B/L
L=
ηn’ 1 P ψ2
1.5
0.15 ηn’ 1 Bearing characteristic number, S = P ψ2
0.05
B/
360 Journal bearings
2 .0
0.20
FIGURE 23-23 Variation of coefficient of friction variable = with S for 3608 partial journal bearing.
µ Coefficient of friction variable, ψ
5
30
µ Coefficient of friction variable, ψ
µ Coefficient of friction variable, ψ
6.5 6.0
DESIGN OF BEARINGS AND TRIBOLOGY
DESIGN OF BEARINGS AND TRIBOLOGY DESIGN OF BEARINGS AND TRIBOLOGY
Particular
23.37
Formula
2
Coefficient of Friction Variable, λµ = µ/ψ
102 5 4 3 2
1 4 L = d
10 5 4 3
1 ∞
2
1 2
1
0
0
0.01
0.02 0.04 0.06 0.08 0.1 0.2
0.4 0.60.81.0 ηn’ 1 Bearing Characteristic Number, S = ( 2) ψ P
2
4
6
8 10
FIGURE 23-24 Variation of the coefficient of friction variable ¼ = with S for 3608 journal bearing. [Boyd and Raimondi5 ]
PARTIAL JOURNAL BEARING (Fig. 23-25) The resultant pressure distribution around the partial journal bearing excluding, Po oil film pressure at the point where ¼ 0
Pr ¼ P Po where P Po ¼
12U 2d
ð23-50Þ
ð1 "2 Þ ð2 þ "2 Þðk=cÞ ð1 "2 Þ2=5 ! rffiffiffiffiffiffiffiffiffiffiffi 1" arc tan tan 1þ" 2 þ
ðk=2cÞ" sin 2ð1 "2 Þð1 þ " cos Þ2
þ
" sin fð3k=2cÞ 2ð1 "2 Þg 2ð1 "2 Þ2 ð1 þ " cos Þ
where k ¼ h is the thickness of oil film at maximum pressure value
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
DESIGN OF BEARINGS AND TRIBOLOGY
23.38
CHAPTER TWENTY-THREE
Particular
d
w,
h’max
Formula
+ c d
h’max A
B
θ
φ
Bearing
n
Leading edge
O
e
=
cε
O’
Journal ho = hmin Trailing edge Line of centers
α β
Pmax Pressure distribution
FIGURE 23-25 Partial journal bearing. 90
1.0
80 Attitude angle φ, deg
Attitude, ε
0.8 0.6 0.4 0.2 0
0
0.10
0.20
ηn’ Bearing characteristic number, S = P
0.30 1 ψ2
FIGURE 23-26 Variation of attitude " with S for an idealized offset partial bearing having the maximum load capacity corresponding to a given attitude.
70 60 50 40 30 20 10 0
0
0.1
0.2
0.3
0.4
0.5 0 .6 ηn’ 1 Bearing characteristic number, S = ψ2 P
FIGURE 23-27 Variation of attitude angle with S for an idealized offset partial bearing.
Pressure at any point in a partial journal bearing
P ¼ Po þ Pr
To determine the attitude " and attitude angle for various values of S and for an idealized offset partial bearing having the maximum load capacity corresponding to a given attitude
Refer to Figs. 23-26 and 23-27 respectively.
ð23-51Þ
INFLUENCE OF END LEAKAGE Leakage factors CW , CF , and C
Refer to Fig. 23-28 for CW , CF , and C for various values of B=L ratios
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
DESIGN OF BEARINGS AND TRIBOLOGY DESIGN OF BEARINGS AND TRIBOLOGY
Particular
23.39
Formula
Load leakage factor according to Kingsbury6
CW ¼
W W1
ð23-52Þ
Refer to Fig. 23-28 for CW . Load leakage factor CW as a function of B=L ratio for a slider bearing having q ¼ ðh1 =h2 Þ 1 ¼ 1 or h1 ¼ 2h2
Refer to Table 23-16.
Load leakage factor for 1208, centrally loaded partial bearing according to Needs7
Refer to Fig. 23-29 for CW for various attitudes ".
Load correction factor for side flow according to Boyd and Raimondi24
Refer to Fig. 23-30 for CW for various minimum oil film thickness variables .
Coefficient of friction leakage factor according to Kingsbury6
C ¼
1
ð23-53Þ
Refer to Fig. 23-28 for C Friction leakage factor according to Kingsbury6
CF ¼
F F 1
ð23-54Þ
Refer to Fig. 23-28 for CF . Refer to Fig. 23-31 for CF for various attitudes ".
Friction leakage factor for 1208, centrally loaded partial bearing according to Needs7 1.0
Leakage factors CW, CF, and Cµ
0.9
CF
0.8 0.7 0.6 0.5 0.4
CW
0.3
Cµ
TABLE 23-16 Load leakage factor CW as a function of B=L ratio for a slider bearing having the quality q equal to unity
0.2 0.1 0
0
0.5
1.0
1.5
2.0
2.5
3.0
2.5
Length in direction of motion Length in direction perpendicular to motion
=
4.0 B L
FIGURE 23-28 Kingsbury’s leakage factors as function of B=L ratios under minimum friction. [Kingsbury6 ]
B=L
CW
B=L
CW
0.00 0.175 0.25 0.50 0.75
1.00 0.92 0.835 0.68 0.55
1.00 1.50 2.00 3.00 4.00
0.44 0.278 0.185 0.090 0.060
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
0
1
2
Axial length
Length in direction of motion
Slider
= L
B
3
120 Centrally loaded partial journal bearings
∈=0 .2
∈=0. 6 ∈=0. 4
∈=0. 8
4
FIGURE 23-29 Leakage factors for load for 1208 centrally partial journal bearings for various attitudes. [Needs7 ]
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
0
2 Length in direction of motion
0.2
3 =
L
B
δ = 0. 4 δ = 0. 6 δ = 0. 8
δ=
5
0 .1
0 .0
δ=
δ=
B = 2πr
Length in direction perpendicular to motion
1
r
B
δ=0
L
Load correction factor, CW
FIGURE 23-30 Load correction factor (CW ) for side flow. [Boyd and Raimondi5 ]
0
0.2
0.4
0.6
0.8
1.0
4
23.40
Load factor, CW
1.0
DESIGN OF BEARINGS AND TRIBOLOGY
CHAPTER TWENTY-THREE
DESIGN OF BEARINGS AND TRIBOLOGY DESIGN OF BEARINGS AND TRIBOLOGY
Particular
Formula
1.0
Friction factor, CF
23.41
∈=0.2 ∈=0.4 ∈=0.6
0.9 120 Centrally loaded partial journal bearings
0.8
SLIDER
∈=0.8 0
1
2
Length in direction of motion Axial length
3 =
4 FIGURE 23-31 Leakage factors for friction force for 1208 centrally loaded partial journal bearings for various attitudes. [Needs7 ]
B L
Refer to Fig. 23-32 for CF for various minimum oil film thickness variables and B=L ratios.
The ratios of the maximum pressure in the oil film Pmax , and the unit load, P, with B=L ratios for various values of attitude, ", for 1208 central partial journal bearing according to Needs7
Refer to Fig. 23-33 for Pmax =P and Fig. 23-34 for P=Pmax for various values of B=L ratios and attitudes ".
The variation of attitude, ", with bearing characteristic number, S, for various values of B=L ratios for 608, 1208, 1808 partial and full journal bearings
Refer to Figs. 23-35 to 23-38 for " for various values of S and B=L ratios.
The variation of coefficient of friction variable, ¼ = , with bearing characteristic number, S, for various values of B=L ratios for 608, 1208, 1808, partial and full journal bearing
Refer to Figs. 23-20 to 23-24 and 23-39 for ¼ various values of S and B=L ratios.
The friction curves illustrating boundary conditions
Refer to Fig. 23-39.
Friction correction factor, CF
Friction correction factor for side flow according to Boyd and Raimondi5
1.0
δ = 1.0
δ = 0.8 δ = 0.6
0.9
δ = 0.4 δ = 0.2
0.8 0.7
δ = 0. 1 δ = 0. 05
0
1
2 Length in direction of motion
Length in direction perpendicular to motion
3 =
B
4
L
FIGURE 23-32 Friction correction factor for side flow. [Boyd and Raimondi5 ]
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
for
DESIGN OF BEARINGS AND TRIBOLOGY
23.42
CHAPTER TWENTY-THREE
5 0. 9
∈=
P
Pressure ratio
Pmax
4
.8 ∈=0
. ∈=0 6 . ∈=0 4
3
. ∈=0 2
2
1
0
0
1
2
3
Length in direction of motion Length in direction perpendicular to motion
=
4
B L
FIGURE 23-33 The ratio of the maximum pressure (Pmax ) and the unit load Pð¼ Pu Þ with B=L ratios for various attitudes for a 1208 central partial bearing. [Needs7 ]
Maximum Oil Film Pressure Ratio,
P Pmax (gauge)
1.0
L =∞ d
0.9 0.8 0.7 0.6 0.5
1
0.4
1 2 1 4
0.3 0.2 0.1 0
0
0.01
0.02
0.04 0.06 0.08 0.1
0.2
0.4
0.6 0.81.0
Bearing Characteristic Number, S =
ηn’ P
2
4
6
8 10
1 ψ2
FIGURE 23-34 Chart for maximum oil film pressure ratio P=PmaxðgaugeÞ with bearing characteristic number S for full journal bearing. [Boyd and Raimondi5 ]
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
0.6
0.8 0.7
1.0 0.9
0 0 1.0
B/L = 0
B/L = 1.0
B/L = 2.0
B/L = 4.0
0.15 ηn’ 1 2 ψ
B/L = 0
1.5 ηn’ 1 Bearing characteristic number, S = ψ2 P
0.5
B/L = 3.0
ηn’ Bearing characteristic number, S = P
60 Partial journal bearings
0
60 Partial journal bearings 0.05 0.10
B/L = 1.0
2.0
0.20
B/L = 2.0
B/L = 3.0 B/L = 4.0
FIGURE 23-35 Variation of attitude " with S for 608 partial journal bearing.
(b)
0.3 0.2 0.1
0.5 0.4
0.7 0.6
1.0 0.9 0.8
(a)
Attitude, ε
Attitude, ε
0
0.10
B/L = 3.0
1.0
1.5 ηn’ 1 Bearing characteristic number, S = ψ2 P
0.5
B/L = 0
B/L = 1.0
B/L = 2.0
B/L = 3 .0
B/L = 4.0
120 Partial journal bearings
0.15 ηn’ 1 Bearing characteristic number, S = ψ2 P
0.05
B/L = 0
B/L = 1.0
B/L = 4.0 B/L = 2.0
2.0
0.20
FIGURE 23-36 Variation of attitude " with S for 1208 partial journal bearing.
0 0
0.3 0.2 0.1
0.5 0.4
0.7 0.6
0.4 0.3
0.6 120 Partial journal bearings 0.5
0.8 0.7
1.0 0.9 0.8
Attitude, ε Attitude, ε
1.0 0.9
DESIGN OF BEARINGS AND TRIBOLOGY
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
23.43
Attitude, ε
23.44
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
0
180 Partial journal bearings
0.2 0.1 0
0.4 0.3
0.7 0.6 0.5
1.0 0.9 0.8
0
0 0.10
B/L = 4.0
= 2. 0
= 4. 0 = 3. 0
1.0
1.5 ηn’ 1 Bearing characteristic number, S = P ψ2
0.5
= 1. 0 B/L = 0
B/L
B/L
B/L
B/L
180 Partial journal bearings
0.15 ηn’ 1 Bearing characteristic number, S = P ψ2
0.05
B/L = 0
0.4 0.3
0.2 0.1
B/L = 1 . 0
0.7 0.6 0.5
B/L = 2.0
B/L = 3.0
0.20
2.0
FIGURE 23-37 Variation of attitude " with S for 1808 partial journal bearing.
Attitude, ε
Attitude, ε 0
0.2 0.1
0.4 0.3
0.7 0.6 0.5
1.0 0.9 0.8
0
0
0
0.2 0.1
0.4 0.3
0.7 0.6 0.5
1.0 0.9 0.8
B/L
=0
B/L
0.5
.0
.0
1.0
360 Journal bearings
1.5 ηn’ 1 Bearing characteristic number, S = P ψ2
=2 = 1. 0
B/L
.0
=4 =3
B/L B/L
0.10
0.15 ηn’ 1 Bearing characteristic number, S = P ψ2
0.05
B/L = 0
B/L = 1 . 0
B/L = 2 . 0
B/L = 4 . 0 B/L = 3 . 0
360…Journal bearings
2.0
0.20
FIGURE 23-38 Variation of attitude " with S for 3608 partial journal bearing.
Attitude, ε
1.0 0.9 0.8
DESIGN OF BEARINGS AND TRIBOLOGY
DESIGN OF BEARINGS AND TRIBOLOGY DESIGN OF BEARINGS AND TRIBOLOGY
Particular
23.45
Formula
6.0
Coefficient of friction variable,
5.0
Representative experimental Dividing line
4.0
Sommerfeld 3.0
Minimum
Petroff
Boundary Fluid film region 2.0 region
Reynold
1.0
0
0
2
4
6
8
10
12
14 16 60ηn’ 1 Bearing characteristic number, S’ = P ψ2
18
20
FIGURE 23-39 Friction curves illustrating boundary conditions.
FRICTION IN A FULL JOURNAL BEARING WITH END LEAKAGE FROM BEARING The total friction force acting on the surface of a full journal bearing with end flow
2 2 n0 Ld F ¼ 12 W" sin þ pffiffiffiffiffiffiffiffiffiffiffiffiffi 1 "2
The coefficient of friction variable
" 2 2 S ¼ sin þ pffiffiffiffiffiffiffiffiffiffiffiffiffi 2 1 "2 pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi " ð1 "2 2 2 S þ pffiffiffiffiffiffiffiffiffiffiffiffiffi ¼ 2 1 "2 ¼
ð23-55Þ
ð23-56aÞ ð23-56bÞ
P value Lasche’s equation for P
P ¼ 195;350=t
SI 2
where P in N/m and t in K
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð23-57aÞ
DESIGN OF BEARINGS AND TRIBOLOGY
23.46
CHAPTER TWENTY-THREE
Particular
Formula
P ¼ 0:02=t
Customary Metric
ð23-57bÞ
where P in kgf/mm and t in 8C 2
P ¼ 51=t
USCS
ð23-57cÞ
SI
ð23-58aÞ
Customary Metric
ð23-58bÞ
where P in psi and t in 8F Lasche’s equation for the coefficient of friction which may be used for bearing subjected to pressure varying from 0.103 MPa (15 psi) to 1.55 MPa (225 psi) and speed varying from 2.5 to 18 m/s and temperature varying from 30 to 1008C
¼
23;126 pffiffi P t
where P in N/m2 and t in K ¼
0:00236 pffiffi P t
where P in kgf/mm2 and t in 8C 4:5 ¼ pffiffi P t
USCS
ð23-58cÞ
SI
ð23-59aÞ
where P in psi and t in 8F The coefficient of friction according to Illmer when bearing is subjected to pressure varying from 0.23 MPa (35 psi) to 0.7 MPa (100 psi) and speed varying from 0.5 m/s to 1.5 m/s (100 ft/min to 300 ft/min)
¼
p 3 ffiffiffi v pffiffiffiffiffi 0:05 Pt
where P in N/m2 , v in m/s, and t in K ¼
p 3 ffiffiffi v pffiffiffiffiffi 157:7 Pt
Customary Metric
ð23-59bÞ
where P in kgf/mm2 , v in m/s, and t in 8C ¼
p 3 ffiffiffi v pffiffiffiffiffi 20 Pt
USCS ð23-59c Þ
where P in psi, v in ft/min, and t in 8F The coefficient of friction according to Tower tests
¼
144;204:5 P
rffiffiffi v t
SI
ð23-60aÞ
where P in N/m2 , v in m/s, and t in K ¼
0:0147 P
rffiffiffi v t
Customary Metric
ð23-60bÞ
where P in kgf/mm2 , v in m/s, and t in 8C rffiffiffi 2 v USCS ð23-60cÞ ¼ P t where P in psi, v in ft/min, and t in 8F
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
DESIGN OF BEARINGS AND TRIBOLOGY DESIGN OF BEARINGS AND TRIBOLOGY
Particular
The coefficient of friction according to Lasche when the speed exceeds 2.5 m/s (500 ft/min)
23.47
Formula
24:73 ¼ pffiffiffiffiffi Pt
SI
ð23-61aÞ
Customary Metric
ð23-61bÞ
where P in N/m2 and t in K 0:0079 ¼ pffiffiffiffiffi Pt
where P in kgf/mm2 and t in 8C 0:4 ¼ pffiffiffiffiffi Pt
USCS
ð23-61cÞ
where P in psi and t in 8F
OIL FLOW THROUGH JOURNAL BEARING Oil flow through bearing
Q ¼ 0:785cLdn0
SI
ð23-62Þ
0
where c, L, and d in m, n in rps, and Q in m3 /s Q ¼ 785cLdn0
SI
ð23-63aÞ
0
where c, L, and d in m, n in rps, and Q in dm3 /s Q ¼ 7:85 107 cLdn0
SI
ð23-63bÞ
0
where c, L, and d in mm, n in rps, and Q in liters/s or dm3 /s Q ¼ 0:0034cLdn0
USCS
ð23-63cÞ
where c, L, and d in in, n in rpm, and Q in US gallons/min
dc3 Po ð1 þ 1:5"2 Þ 48L
Oil flow through a central groove of bearing from one end
Q¼
Total oil flow through a central groove of bearing from both ends
Qg ¼
Total oil flow through a central groove for lightly loaded bearing [From Eq. (23-65) as " ! 0]
Q’
dc3 Po 24L
ð23-66Þ
Total oil flow through a central groove for heavily loaded bearing [From Eq. (23-65) as " ! 1]
Q’
2:5 dc3 Po 24L
ð23-67Þ
Oil flow through a single hole
Qh ¼
ð23-64Þ
dc3 Po ð1 þ 1:5"2 Þ 24L
c3 Po ð1 þ 1:5"2 Þ tan1 24
ð23-65Þ
d L
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð23-68Þ
DESIGN OF BEARINGS AND TRIBOLOGY
23.48
CHAPTER TWENTY-THREE
Particular
Formula
The ratio of Qg to Qh in the unloaded region of bearing from Eq. (23-65) and (23-68)
Qg
d ¼ Qh L tan1 ð d=LÞ
ð23-69Þ
where d is the diameter of journal Flow variable (dimensionless)
0Q ¼
4Q 60c2 n0 L
ð26-70Þ
Refer to Figs. 23-40 and 23-41 for flow variable 0Q . Oil flow through a bearing with side leakage
Q¼
600Q d 2 n0 L CQ 4
or
600Q c2 n0 L CQ 4
ð23-71Þ
where CQ ¼ flow correction factor from Fig. 23-42 Oil flow ratio
Qs Q
Refer to Fig. 23-43.
Flow variable,
4Q ψ 60c2n’L
3.0
2.0
1.0
0
0
1
2
4
6
8 10
2
4
6
Bearing characteristic number, S =
8 102
2
4
60ηn’ 1 P ψ2
FIGURE 23-40 Chart for determining oil flow, based on no side flow. [Boyd and Raimondi5 ]
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
6
8 103
DESIGN OF BEARINGS AND TRIBOLOGY DESIGN OF BEARINGS AND TRIBOLOGY
Particular
23.49
Formula
L/d=1/4
6
L/d=
5
L/d=1
4
=∞
3
2
L/d
ψ Flow Variable, λ’Q = 4Q/d2n’Lψ = 4Q c2 n’L
1/2
1
0
0
0.01 0.02 0.04 0.06 0.1
0.2
0.4 0.6 0.8 1.0 ηn’ 1 Bearing Characteristic Number, S = ψ2 P
2
4
6 8 10
FIGURE 23-41 Chart for oil flow variable Q with bearing characteristic number S for full journal bearing. [Boyd and Raimondi5 ]
THERMAL EQUILIBRIUM OF JOURNAL BEARING The general expression for heat generated in bearing
Hg ¼ Mt ð2 n0 Þ ¼ ¼ ðPLdÞ
d W ð2 n0 Þ 2
d ! ¼ ðPLdÞv SI ðUSCSÞ ð23-72aÞ 2
where Hg in J/s (Btu/s), Mt in N m (lbf in), W in N (lbf ), P in N/m2 (psi), L in m (in), d in m (in), n0 in rps, ! in rad/s, and v in m/s (ft/ min)
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
DESIGN OF BEARINGS AND TRIBOLOGY
23.50
CHAPTER TWENTY-THREE
9
δ=
Flow correction factor, CQ
8
05 0.
δ=
6
0.1
δ = 0.2
4
δ = 0.4
2
δ = 0•8 δ = 0.6 δ = 1.0
0
0
1
2
3
Length in direction of motion Length in direction, perpendicular to motion
4 =
B L
FIGURE 23-42 Flow correction factor for side flow. [Boyd and Raimondi5 ] 1.0
L d = 1 4
0.9
Oil Flow Ratio,
Qs Q
0.8
1 2
0.7 0.6 0.5 0.4
1
0.3 0.2
L =∞ d
0.1 0
0
0.01
0.02
0.04
0.08 0.1
0.2
0.4 0.6 0.8 1.0
2
4
6
8 10
ηn’ 1 Bearing Characteristic Number, S = P ψ2 FIGURE 23-43 Oil flow ratio (Qs =Q) versus bearing characteristic number S for full journal bearing. [Boyd and Raimondi5 ]
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
DESIGN OF BEARINGS AND TRIBOLOGY
23.51
DESIGN OF BEARINGS AND TRIBOLOGY
Particular
Formula
ðPLdÞv ðPLdÞð dn0 Þ ¼ 778 778 ðPLdÞd! ¼ USCS ð23-72bÞ 1556 where P in psi, L in in, d in in, v in ft/min, ! in rad/s, Hg in Btu/s, and n0 in rps
Hg ¼
The heat generated can also be found by knowing the temperature rise of lubricant oil which is used to carry away heat generated in the bearing
Temperature rise of the lubricant film variable T The temperature rise of the lubricant film due to heat generated which is to be carried away by the lubricant, can be found from Eq. (23-66c)
Hg ¼ Csp Q T
SI ðUSCSÞ ð23-73Þ
where Hg in J/s (Btu/s) ¼ weight per unit volume of lubricant whose average specific gravity is 0.90 ¼ 8:83 kN/m3 (0.0325 lbf/in3 ) Csp ¼ specific heat of lubricant, kJ/N K (Btu/lbf 8F) ¼ 0.19 kJ/N K (0.42 Btu/lbf 8F) Q in m3 /s; T in 8C Refer to Fig. 23-44 for T . T ¼
4 P 427Csp Q
ð23-74aÞ
Customary Metric
where ¼ = ¼ friction coefficient variable Q ¼ flow variable ¼ 4Q=d 2 n0 L P in kgf/m2 , Csp in kcal/kgf 8C, in kgf/m3 , and T in 8C T ¼ 78
P 78ð= ÞP P ¼ ¼ 19:5 Q 4Q=d 2 n0 L Q=d 2 n0 L Customary Metric
ð23-74bÞ
2
where P in kgf/mm , d in mm, L in mm, Q in mm3 /s, n0 in rps, and T in 8C T ¼
8:3 106 ð= ÞP 8:3 106 P ¼ Q=d 2 n0 L Q=d 2 n0 L SI
ð23-74c Þ
where P in N/m , Q in m /s, d in m, L in m, n0 in rps, and T in K or 8C, since T 8C ¼ T K 2
If the end flow is also taken into consideration then the temperature rise of the flow Q Qel due to heat generated, is T and the temperature rise of end leakage is T=2, which is the average of the inlet and the outlet temperatures
T ¼
3
0:103ð= ÞP ½1
1 2 0 2 ðQel =QÞð4Q=d n L
Þ
P ¼ 0:0258 1 ½1 2 ðQel =QÞðQ=d 2 n0 LÞ USCS
ð23-75aÞ
where P in psi, d in in, L in in, Qel and Q in in3 /s, n0 in rps, and T in 8F
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
DESIGN OF BEARINGS AND TRIBOLOGY
23.52
CHAPTER TWENTY-THREE
Particular
Formula
103 8 6 4
P
Temperature rise of the lubricant film vanable, λT =
γ Csp∆T
2 For
102 8 6
L =1 d
4 2 10 8 6 4 2
0
0
.01
.02
.04 .06.08.10
.20
.40 .60 .801.0
2.0 4.0 6.0 8.010 ηn’ 1 Sommerfeld number or bearing characteristic number, S = P ψ2
FIGURE 23-44 Variation of temperature rise of the lubrication film variable T with Sommerfeld number S. [Boyd and Raimondi5 ]
T ¼ ¼
8:3 106 ð= ÞP ½1 12 ðQel =QÞðQ=d 2 n0 L Þ 8:3 106 P ½1 12 ðQel =QÞðQ=d 2 n0 LÞ
SI
ð23-75bÞ
where P in N/m2 , d and L in m, Qel and Q in m3 /s, n0 in rps, and T in K
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
DESIGN OF BEARINGS AND TRIBOLOGY DESIGN OF BEARINGS AND TRIBOLOGY
Particular
23.53
Formula
The temperature rise of the lubricant film due to heat generated in pressure fed bearings
T ¼
16 106 ð= ÞSW 2 ð1 þ 1:5"2 ÞPS d 4
SI
ð23-76aÞ
where W in N, PS in N/m2 , d in m, and T in K 9:7ð= ÞSW 2 Customary Metric ð23-76bÞ ð1 þ 1:5"2 ÞPS d 4 where W in kgf, PS in kgf/mm2 , d in mm, and T in 8C ð23-77Þ Hd ¼ CAðtb ta Þ where C ¼ combined coefficient of radiation and convection ¼ 9:6 103 kW/m2 K (1.7 Btu/ft2 h 8F) when the bearing located in still air and oil bath ¼ 11:36 103 kW/m2 K (2 Btu/ft2 h 8F) when the bearing located in air circulation and in oil bath ¼ 15:36 103 kW/m2 K (2.7 Btu/ft2 h 8F) for average design practice ¼ 33:5 103 kW/m2 K (5.9 Btu/ft2 h 8F) when the air velocity over the bearing is 2.5 m/s (500 ft/min) A ¼ effective surface area of bearing housing ¼ (25 104 dL) in m2 for bearing masses of metal as in a ring oil bearing (25 dL in in2 ) ¼ (6 104 dL) in m2 for light construction (6 dL in in2 ) tb ¼ surface temperature of bearing housing, 8C (8F) ta ¼ temperature of surrounding air, 8C (8F) CA Hd ¼ ð23-78Þ ðt ta Þ mþ1 o where m can be assumed as constant which depends on the lubrication system and it is taken from Table 23-17a, to is lubricant film temperatures, 8C. C and A are as given under Eq. (23-67a) Hd ¼ kðLdÞðtb ta Þ ¼ kA T Customary Metric ð23-79aÞ where A ¼ Ld ¼ projected area of bearing, cm2 k T ¼ kðtb ta Þ values can be taken from Fig. 23-45(a) and Hd in kcal/min Hd ¼ 697:8kðtb ta ÞðLdÞ SI ð23-79bÞ where kðtb ta Þ in kcal/min cm2 , values are taken from Fig. 23-45(a); ðLdÞ in m2 and Hd in J/s ¼ k < dðtb ta Þ USCS ð23-68cÞ where kðtb ta Þ in ft-lbf/min/in2/8F values can be taken from Fig. 23-45(b) T ¼
Heat dissipated by self-contained bearings
TABLE 23-17a Values of factor, m in Equation (23-67b) Lubrication system
Conditions
Values of m
Oil ring
Moving air Still air Moving air Still air
1-2 1 2-1 1 2-1 1 2 5-5
Oil bath
Another formula for the heat dissipated in bearing in terms of average lubricant oil film temperature
The heat dissipating capacity of bearing based on projected area of bearing
Pederson’s equation for heat radiating capacity of bearing due to friction between journal and bearing
Hd ¼
ðT þ 18Þ2 ðLdÞ k
SI ðUSCSÞ ð23-80aÞ
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
DESIGN OF BEARINGS AND TRIBOLOGY
23.54
CHAPTER TWENTY-THREE
Particular
Formula
Hd ¼
ðT þ 33Þ2 Ld k
USCS
ð23-80bÞ
where Hd in J/s (ft-lbf/s/in2 ), Ld in in2 m2 (in2), T in 8C (8F) k ¼ 751 (3300) for bearings of light construction located in still air ¼ 7367 Customary Metric ¼ 423 (1860) for bearings of heavy construction and well ventilated ¼ 4152 Customary Metric ¼ 262 (1150) for General Electric Company’s wellventilated bearing ¼ 2567 Customary Metric TABLE 23-17 Quantities CPW , CPFm , CP , and x=B as functions of q for use in Eqs. (23-95) to (23-99) q
CPW
CPFm
CP
0.10 0.20 0.25 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 1.10 1.20 1.30 1.40 1.50 1.60 1.70 1.80 2.00 2.20 2.50 2.75 3.00 4.00 5.00 7.00 8.00 9.00
0.007209 0.012585 0.014741 0.016608 0.019618 0.021864 0.023514 0.024714 0.025597 0.026129 0.026481 0.026661 0.026707 0.026645 0.026500 0.026289 0.026026 0.025728 0.025386 0.024653 0.03870 0.022664 0.021668 0.020699 0.017257 0.014528 0.010692 0.009332 0.008225
0.955265 0.919159 0.903630 0.889234 0.864722 0.843721 0.825665 0.809936 0.796076 0.783718 0.772589 0.762470 0.753191 0.744615 0.736633 0.729156 0.722120 0.715441 0.709100 0.697225 0.686283 0.671087 0.659606 0.648392 0.609438 0.580067 0.521586
22.085010 12.172679 10.216742 8.923752 7.346332 6.431585 5.852294 5.462059 5.183394 4.999030 4.862537 4.766450 4.700334 4.657628 4.632912 4.622694 4.624350 4.634646 4.655453 4.713591 4.791810 4.935044 5.073580 5.220786 5.885901 6.654587 8.130471
0.477917
9.684235
x=B
0.533761 0.546881 0.558394 0.563687 0.568688 0.573426 0.577926 0.582209 0.586293 0.590193 0.594111 0.600937 0.607410 0.613416 0.621673 0.633787
Source: F. I. Radzimovsky, Lubrication of Bearings—Theoretical Principles and Designs, The Ronald Press Company, New York, 1959.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
DESIGN OF BEARINGS AND TRIBOLOGY
23.55
DESIGN OF BEARINGS AND TRIBOLOGY
Particular
Formula
900
17
800
13 11
Average
2
19 15
Well ventilated
3
1000
9 7 5
1
0 (a)
Thin shell not attached to radiating mass 0
10
20
30
40
50
60
70
80
90
k(tb ta), ft-ibf/min/in2/ F
4
21
1 - Thin shell not attached to large radiating mass 2 - Average industrial bearing, unventilated 3 - Well ventilated bearing
700 600 500 400
3
300
3
200
1 0
100
(b)
2
0 0
1 20 40 60
80 100 120 140 160
Temperature rise (tb
ta)
FIGURE 23-45 The rate of heat dissipated from a journal bearing.
Hd ¼
ðT þ 18Þ2 ðLdÞ 427k Customary Metric
ð23-80cÞ
where Hd in kcal/s, ðLdÞ in m , T in 8C values of k are as given inside parentheses under Eq. (23-80a) for US customary system units and values of k for customary metric units also given under Eqs. (23-80a) and (23-80b) 2
The difference in temperature (T) of the bearing and of the cooling medium can be found from the equation
The difference between the bearing-wall temperature tb and the ambient temperature ta , for three main types of lubrication by oil bath, by an oil ring, and by waste pack or drop feed
BEARING CAP The bearing cap thickness
ðT þ 18Þ2 ¼ K 0 Pv
SI ðMetricÞ ð23-81Þ
where P in N/m (kgf/mm ), v in m/s, and T in K (8C) 2
2
K 0 ¼ 0.475 (4:75 106 ) for bearings of light construction located in still air ¼ 0.273 (2:7 106 ) for bearings of heavy construction and well ventilated ¼ 0.165 (1:65 106 ) for General Electric Company’s well-ventilated bearing t0 tb Refer to Fig. 23-46 for tb ta ’ 2
hc ¼
rffiffiffiffiffiffiffiffiffiffi 3Wa 2L
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð23-82Þ
DESIGN OF BEARINGS AND TRIBOLOGY
23.56
CHAPTER TWENTY-THREE
Particular
Formula
Drop feed
ga vin ir
Mo
air
Sti
ir
ll a ir
Oil bath
St
40
Mo ving
Stil
l ai
r
50
Oil ring
ill a
60
Moving air
Oil film temperature rise above ambient, to ta, C
70
30
20
10
0
0
10 20 30 Temperature rise of wall above ambient tb ta, C
40
The deflection of the cap
The thickness of cap from Eq. (23-71)
FIGURE 23-46 Relation between oil film temperature and bearing wall temperature.
y¼
Wa3 4ELh3c
ð23-83Þ
sffiffiffiffiffiffiffiffiffi 3 W hc ¼ 0:63a ELy
ð23-84Þ
where the deflection should be limited to 0.025 mm (0.001 in)
EXTERNAL PRESSURIZED BEARING OR HYDROSTATIC BEARING: JOURNAL BEARING (Fig. 23-47) The pressure in the lower pool of quadrant 1 (Fig. 23-47)
P1 ¼ K1 Po
ð23-85aÞ
where K1 ¼
4 1þ
Po 1 P0
1
2 3 þ 2:121" þ 1:93" 0:589" 4 ð23-85bÞ
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
DESIGN OF BEARINGS AND TRIBOLOGY DESIGN OF BEARINGS AND TRIBOLOGY
Particular
23.57
Formula
L 3
l1
3
l1
Oil pocket
hmax
b
w 2
d
4
e hmin
t
h e
1
Hydraulic resistance
Constant pressure oil manifold (a)
1
Oil inlet hole (b)
Ps
Oil inlet
l1
(c)
FIGURE 23-47 (a) and (b) schematic diagram of a full cylindrical hydrostatic bearing; (c) oil pressure distribution along the bearing. [Shaw and Macks10 ]
The pressure in the upper pool of quadrant 3 (Fig. 23-47)
P 3 ¼ K3 P o
ð23-86aÞ
where K3 ¼
4 1þ
Po 1 P0
1
þ 2:121" þ 1:93"2 þ 0:589"3 4 ð23-86bÞ
The pressure in the left pool of quadrant 2 (Fig. 23-47)
P 2 ¼ K2 P o where 1 P0 K2 ¼ ð6:283 þ 3:425"2 Þ 8 Po
The pressure in the right pool of quadrant 4 (Fig. 23-47)
The flow of lubricant through the lower quadrant 1 of the bearing from the manifold
P 4 ¼ K4 P o where 1 P0 K4 ¼ ð6:283 þ 3:425"2 Þ 8 Po
ð23-87aÞ
ð23-87bÞ ð23-88aÞ
ð23-88bÞ
3 4
Q1 ¼
d P1 CPF1 96l1
ð23-89aÞ
where CPF1 ¼
2:121" þ 1:93"2 0:589"3 4
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð23-89bÞ
DESIGN OF BEARINGS AND TRIBOLOGY
23.58
CHAPTER TWENTY-THREE
Particular
The flow of lubricant through the left quadrant 2 of the bearing from the manifold
Formula 3 4
Q2 ¼
d P2 C 768l1 PF2
ð23-90aÞ
where CPF2 ¼ 6:283 þ 3:425"2 The flow of lubricant through the upper quadrant 3 of the bearing from the manifold
ð23-90bÞ
3 4
Q3 ¼
d P3 CPF3 48l1
ð23-91aÞ
where CPF3 ¼ The flow of lubricant through the right quadrant 4 of the bearing from the manifold
þ 2:121" þ 1:93"2 þ 0:589"3 4
ð23-91bÞ
3 4
Q4 ¼
d P4 C 768l1 PF4
ð23-92aÞ
where
The total flow of lubricant through quadrant of the bearing from the manifold assuming P2 ¼ P4 ¼ P0 (good approximation)
CPF4 ¼ CPF2 ¼ 6:283 þ 3:425"2
ð23-92bÞ
Q ¼ Q1 þ Q2 þ Q3 þ Q4
ð23-93aÞ
3 4
Q¼
d Po G 48l1
ð23-93bÞ
where G ¼ flow factor given by Eq. (23-94) The flow factor in Eq. (23-81b)
G ¼ CPF1 K1 þ 18 ðCPF2 K2 þ CPF4 K4 Þ þ CPF3 K3 ¼ CPF1 K1 þ 14 CPF2 K2 þ CPF3 K3
ð23-94Þ
since K2 ¼ K4 and CPF2 ¼ CPF4 The external load on the hydrostatic journal bearing
A0 A0 W ¼ ðP1 P3 Þ A þ ¼ Po A þ FPFW 2 2 ð23-95Þ where FPFW ¼ load factor given by Eq. (23-95)
The load factor
FPFW ¼ K1 K3
ð23-96Þ
The pressure ratio connecting the dimensions of the bearing and its external resistances
3 Po d c lc ¼ 1 þ 6 P0 dc dc l1
ð23-97Þ
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
DESIGN OF BEARINGS AND TRIBOLOGY DESIGN OF BEARINGS AND TRIBOLOGY
Particular
23.59
Formula
IDEALIZED SLIDER BEARING (Fig. 23-48) Plane-slider bearing The pressure at any point x w U
zy x 1 x
F x
h
L
2 B
FIGURE 23-48 Plane slider bearing with an angle of inclination.
The load carrying capacity
U C B s1 where
P¼
Cs1 ¼ ¼ W¼
ð23-98aÞ
6x1 ð1 x1 Þ ð 2aÞða þ x1 Þ2 h2 h1 ; B
a¼
h2 ; B
x1 ¼
ð23-98bÞ x B
ð23-98cÞ
6UL Cs2 2
ð23-99aÞ
where Cs2 ¼ ln The resultant shear stress at any point along the slider (Fig. 23-48)
¼
a 2 þ a 2a
U C B s3
ð23-100aÞ
where Bða þ x1 Þ 2y Cs3 ¼ B 3ða þ x1 2ax1 Þ ð 2aÞða þ x2 Þ3 1 þ a þ x1 The shear stress at any point on the surface of the moving member of the bearing (i.e., slider at y ¼ 0) (Fig. 23-48)
U C B s4 where
m ¼
Cs4 ¼
ð23-99bÞ
ð23-100bÞ ð23-101aÞ
4 6aða Þ a þ x1 ð2a Þða þ x1 Þ2 ð23-101bÞ
The shear stress at any point on the surface of the stationary member of the bearing (i.e., shoe at y ¼ h) (Fig. 23-48)
U C B s5 where
s ¼
Cs5 ¼ ¼
ð23-102aÞ
2 6aða Þ a þ x1 ð2a Þða þ x1 Þ2
h2 h1 B
and h ¼ Bða þ x1 Þ
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð23-102bÞ
DESIGN OF BEARINGS AND TRIBOLOGY
23.60
CHAPTER TWENTY-THREE
Particular
The frictional force on the moving member of the bearing (i.e., slider)
Formula
Fm ¼ ULCs6 where 4 Cs6 ¼ ln
The frictional force on the stationary member of the bearing (i.e., shoe)
The distance of the pressure center from the origin of the coordinates, i.e., from the lower end of the shoe (Fig. 23-48)
a a
6 2a
Fs ¼ ULCs7 where 2 Cs7 ¼ ln
The coefficient of friction
ð23-103aÞ
a 4
ð23-103bÞ ð23-104aÞ
6 ð23-104bÞ 2a a 2ð2a Þ ln 32 Fm a ¼ ð23-105Þ ¼ a W 3ð2a Þ ln þ 6 a 2 3 a 2 2:5 ða Þð3a Þ þ 3a 6 7 6 7 a 7B x ¼ 6 4 5 a 2 2 ð 2aÞ ln a þ
ð23-106Þ
Pivoted-shoe slider bearing (Fig. 23-48 and Fig. 23-52) The load-carrying capacity
W¼
6ULB2 CPW h22
ð23-107aÞ
where CPW ¼
1 2 lnð1 þ qÞ qðq þ 2Þ q2
ð23-107bÞ
Refer to Table 23-17 for CPW . The frictional force on the moving member of the bearing (i.e., slider)
FmP ¼
ULB CPFm h2
ð23-108aÞ
where 4 6 CPFm ¼ lnð1 þ qÞ q 2þq
ð23-108bÞ
Take CPFm from Table 23-17 for various values of q. The frictional force on the stationary member of the bearing (i.e., shoe)
FsP ¼
ULB CPFs h2
ð23-109aÞ
where 2 ð1 þ qÞa 6 CPFs ¼ ln þ q 2 2þq
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð23-109bÞ
DESIGN OF BEARINGS AND TRIBOLOGY DESIGN OF BEARINGS AND TRIBOLOGY
Particular
The coefficient of friction
23.61
Formula
¼
FmP h2 ¼ W B
1 CPFm 6 CPW
¼
h2 C B P
ð23-110Þ
where CP ¼ coefficient of friction factor The distance of the pivoted point from the lower end of the shoe (Fig. 23-39), i.e., the distance of the pressure center from the origin of the coordinates
Take CP from Table 23-17 for various values of q. ð1 þ qÞð3 þ qÞ lnð1 þ qÞ qð2:5q þ 3Þ x ¼ B qðq þ 2Þ lnð1 þ qÞ 2q2 ð23-111Þ The ratios x=B are taken from Table 23-17.
DESIGN OF VERTICAL, PIVOT, AND COLLAR BEARING Pivot bearing (Figs. 23-49, 23-50, and 23-53) FLAT PIVOT The total axial load on the flat pivot with extreme diameters of the actual contact d1 and d2
W ¼ p
d12 d22 4
The friction torque based on uniform intensity of pressure with extreme diameters of the actual contact d1 and d2
Mt ¼ 13 W
The friction torque based on uniform wear with extreme diameters of the actual contact d1 and d2
Mt ¼ W
The power absorbed by friction with d as the diameter of flat pivot bearing
P ¼
w
w
ð23-113Þ
d1 þ d2 4
ð23-114Þ
W dn 189;090
USCS ð23-115bÞ
where P in hp, W in lbf, d in in, and n in rpm
Oil Oil groove Radial oil groove
d13 d23 d12 d22
W dn0 SI ð23-115aÞ 478 where P in kW, W in N, d in m, and n0 in rps
P ¼
d (a)
ð23-112Þ
d (b)
FIGURE 23-49 Pivot thrust bearing
CONICAL PIVOT The friction torque based on uniform intensity of pressure with extreme diameters of the actual contact d1 and d2 The friction moment which resists the rotation of the shaft in a conical pivot bearing for uniform wear
1 W d13 d23 3 sin d12 d22 where 2 ¼ cone angle of pivot, deg W d1 þ d2 Mt ¼ 4 sin
The loss of power in vertical bearing
P ¼ 6:2 108
Mt ¼
d 2 Ln02
SI
ð23-116Þ
ð23-117Þ ð23-118aÞ
where P in kW, in Pa s, d and L in m, and n0 in rps
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
DESIGN OF BEARINGS AND TRIBOLOGY
23.62
CHAPTER TWENTY-THREE
Particular
Formula
P ¼ 2:35 104
1 d 2 Ln2
Customary Metric ð23-118bÞ where P in hpm, 1 in cP, d and L in cm, and n in rpm d 2 Ln2 P ¼ 2:35 107 1 Customary Metric ð23-118cÞ where P in hpm, 1 in cP, d and L in mm, and n in rpm 0 d 2 Ln2 P ¼ 2:35 106 Customary Metric ð23-118dÞ where P in hpm, 0 in kgf s/m2 , d and L in m, and n in rpm 0 d 2 Ln2 P ¼ 2:35 103
If the journal and the bearing are eccentric and the distance between their axes is ", the power loss is calculated from formula
Customary Metric ð23-118eÞ where P in hpm, 0 in kgf s/m2 , L and d in mm, and n in rpm 3:8 1 d 2 Ln2 P ¼ USCS ð23-118f Þ 3 where P in hp, 1 in cP, d and L in in, and n in rpm 6:2 108 d 2 Ln02 qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi P ¼ SI ð23-119aÞ 1 ð2"Þ2 where P in kW, in Pa s, d and L in m, and n0 in rps d 2 Ln2 P ¼ 2:35 107 q1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 1 2"Þ2 Customary Metric ð23-119bÞ where P in hpm, 1 in cP, d and L in mm, and n in rpm 0 d 2 Ln2 P ¼ 2:3 106 qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 1 ð2"Þ2 Customary Metric ð23-119cÞ where P in hpm, 0 in (kgf s/m2 ), d and L in m, and n in rpm 3:8 d 2 Ln2 P ¼ 3 q1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi USCS ð23-119dÞ 10 1 ð2"Þ2 where P in hp, 1 in cP, L and d in in, and n in rpm
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
DESIGN OF BEARINGS AND TRIBOLOGY DESIGN OF BEARINGS AND TRIBOLOGY
Particular
23.63
Formula
Collar bearing (Fig. 23-51) The average intensity of pressure with i collars The friction moment for each collar for uniform intensity of pressure The total friction moment for i collars for uniform intensity of pressure The friction moment for each collar for uniform rate of wear The total friction moment for i collars for uniform rate of wear The friction power in collar bearing Oil in
W 0:784ðd12 d22 Þi 1 W d13 d23 Mte ¼ 3 i d12 d22 3 1 d1 d23 Mt ¼ W 3 d12 d22 W d1 þ d2 Mte ¼ 4 i d1 þ d2 Mt ¼ W 4
P¼
P ¼
ð23-120Þ ð23-121Þ ð23-122Þ ð23-123Þ ð23-124Þ
Wðd1 þ d2 Þn0 2;292;296
SI
ð23-125aÞ
where P in kW, W in N, d in m, and n0 in rps w
d
P ¼ FIGURE 23-50a Collar thrust bearing.
Oil in
The coefficient of friction for collar bearing w
The coefficient of friction for collar bearing
Wðd1 þ d2 Þn 252;120
USCSU ð23-125bÞ
where P in hp, W in lbf, d in in, and n0 in rpm ¼ 83:8
v0:5 p0:67
SI
ð23-126aÞ
where v in m/s and P in N/m2 ¼ 0:016
v0:5 p0:67
USCS ð23-126bÞ
where v in ft/min and P in psi
d2 d1
FIGURE 23-50b Plain thrust bearing.
Allowable pressure P may be taken so that Pv value for v ranging from 0.20 to 1 m/s (50 to 200 ft/min)
¼ 1:73 103
v0:5 p0:67
Customary Metric ð23-126cÞ
where v in m/s and P in kgf/mm2 Pv 707;505
SI
ð23-127aÞ
where P in Pa and v in m/s Pv 0:0715
Customary Metric ð23-127bÞ 2
where P in kgf/mm and v in m/s Pv 20;000
USCS
where P in psi and v in ft/min
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð23-127cÞ
DESIGN OF BEARINGS AND TRIBOLOGY
23.64
CHAPTER TWENTY-THREE
Particular
Formula
PLAIN THRUST BEARING (Fig. 23-50b) W ¼ K1 ðd12 d22 Þ
Recommended maximum load
SI ðUSCSÞ ð23-128Þ
where K1 ¼ 0:3 ð48Þ, W in N (lbf), d1 and d2 in mm (in) d þ d2 0 SI ðUSCSUÞ ð23-129Þ nW P ¼ K2 1 2
Approximate power loss in bearing
where K2 ¼ 70 106 ¼ ð11 106 Þ P in W (hp), n0 in rps, and W in N (lbf) Q ¼ K3 P
Lubrication flow rate to limit lubricant temperature rise to 208C
SI ðUSCSUÞ ð23-130Þ 6
where K3 ¼ 0:03 10 (0.3), Q in m3 /s (q.p.m), and P in W s (hp)
Thrust bearing Parallel-surface thrust bearing (Figs. 23-51 to 23-52)
Refer to Table 23-8 for P and Table 23-6 for Pv values.
The pressure at any point along the bearing
P¼
6UB KLP1 h2 where
KLP1 ¼ 0 ¼
x1 ln½ð 0 1Þx1 þ 1Þ ln 0
2 x ;x ¼ 1 1 B
ω w y x
w y
z
ωr r
1 z
ω
x (a)
U x
h
d
ð23-131aÞ
2 B (b)
FIGURE 23-51 Parallel-surface thrust bearing.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð23-131bÞ
DESIGN OF BEARINGS AND TRIBOLOGY DESIGN OF BEARINGS AND TRIBOLOGY
Particular
23.65
Formula
ad
be
ari
ng
h22 6ηUB
0.04
h2 6ηUB
Til tin
gp
0.02
ρ2 ρ1
0
y
0.2 x
0.4 0.6 Ratio of x B
0.8
1.0
h2
h
0.96 0.98
c
h1
= 0.92
z Pivot
FIGURE 23-52 Comparison of pressure distribution across tilting-pad and parallel-surface thrust bearing.
2 a ¼ 1 þ ðt2 t1 Þ 1 1
The ratio of the density of the lubricant leaving the bearing to the density of the lubricant entering the bearing
0 ¼
The unit load supported by a parallel-surface thrust bearing
Pu ¼
where a ¼ constant, a= 1 ¼ 0:0004, and t1 and t2 are the temperatures in 8C corresponding to densities 1 and 2 , respectively 6UB KLP2 h2 where
KLP2 ¼ The approximate formula for unit load supported by a parallel-surface thrust bearing
ð23-132Þ
Pu ¼
1 0 1 þ þ 2 1 ln 0
6UB KLP3 h2
where KLP3 ¼ 0:09ð1 0 Þ
ð23-133aÞ
ð23-133bÞ ð23-134aÞ ð23-134bÞ
Refer to Table 23-18 for KLP3 . The pressure distribution along a tilting-pad bearing of infinite width (Figs. 23-48 and 23-52)
P¼
6UB Kpt h21
ð23-135aÞ
where Kpt ¼
ðm 1Þð1 x1 Þx1 ðm þ 1Þðm mx1 þ x1 Þ2
m ¼ h1 =h2 ; x1 ¼ x=B
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð23-135bÞ
DESIGN OF BEARINGS AND TRIBOLOGY
23.66
CHAPTER TWENTY-THREE
Particular
Formula
TABLE 23-18 Comparison of load capacities of tilting-pad and parallel-surface-type of bearings Temperature rise through bearings, 8C
0
KLP3
Klt (for h0 ¼3)
Relative load capacity, KLP3 =Klt
10 38 93
0.98 0.96 0.92
0.0018 0.0036 0.0072
0.025
14 7 3.5
Source: F. I. Radzimovsky. Lubrication of Bearings—Theoretical Principles and Designs. The Ronald Press Company. New York, 1959.
h
W
(a)
d1
n
(b)
Po oil supply pressure
d2
m Po
n’
m’
FIGURE 23-53 (a) Hydrostatic step bearing; (b) plan view and general character of pressure distribution along diameter of the bearing.
The unit load supported by a tilting-pad bearing of infinite width (Fig. 23-52)
Pu ¼
6UB Klt h22
where 1 Klt ¼ ðm 1Þ2
ð23-136aÞ
2ðm 1Þ ln m mþ1
ð23-136bÞ
OIL FILM THICKNESS The thickness of oil film in a parallel-surface thrust bearing
The thickness of minimum oil film at location 2 (Figs. 23-48 and 23-52)
pffiffiffiffiffiffiffiffiffiffiffiffiffi h ¼ 6KLP3
sffiffiffiffiffiffiffiffiffiffi UB P
Refer to Table 23-18 for KLP3 . sffiffiffiffiffiffiffiffiffiffi pffiffiffiffiffiffiffiffiffi UB h2 ¼ 6Klt P Refer to Table 23-18 for Klt .
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð23-137Þ
ð23-138Þ
DESIGN OF BEARINGS AND TRIBOLOGY DESIGN OF BEARINGS AND TRIBOLOGY
Particular
For properties of lubricant bearing materials and applications, conversion factors for viscosity, kinematic and Saybolt viscosity equivalents and conversion tables for viscosity equivalent
Formula
Refer to Tables 23-19 to 23-23.
The coefficient of friction in case of a parallel-surface thrust bearing Another formula for coefficient of friction in case of a parallel-surface thrust bearing The coefficient of friction for a tilting-pad bearing of infinite width
1:82 1 0
h B sffiffiffiffiffiffiffiffiffi 1 U ¼ pffiffiffiffiffiffiffiffiffiffiffiffiffi P 6KLP3 uB ¼
COEFFICIENT OF FRICTION
23.67
sffiffiffiffiffiffiffiffiffi U ¼ Kt Pu B where
ð23-139Þ
ð23-140Þ
ð23-141aÞ
31=2 m1 2 4 ln m 6 7 mþ1 7 7 m1 5 6 ln m 12 mþ1
2
6 6 Kt ¼ 6 4
m ¼ h1 =h2 ¼ film thickness ratio
ð23-141bÞ
HYDROSTATIC BEARING: STEP-BEARING (Fig. 23-53) The pressure in the pocket supplied from external source to support the load
Po ¼
The load-carrying capacity
W¼
The rate of flow of lubricant through the bearing
Q¼
Power loss in bearing
8W lnðd2 =d1 Þ
ðd22 d12 Þ
Po ðd22 d12 Þ d2 ln d1
Po h3 2 lnðd2 =d1 Þ
ð23-142aÞ ð23-143Þ
ð23-144Þ
n02 4 ðd d14 Þ SI ð23-145aÞ 16h 2 where P in kW, in Pa s, h, d1 , and d2 in m, and n0 in rps
P ¼ 0:062
P ¼ 8:3 104
n0 4 ðd d14 Þ 16h 2 Customary Metric ð23-145bÞ
where P in hpm, in kgf s/mm, h, d1 , and d2 in mm, and n0 in rps
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
0.885
0.895 0.910 0.904
Heavy
Steam Cylinder Oil
0.872
0.858 0.864 0.876 0.884 0.887 0.892 0.892
0.870 0.885 0.891 0.890 0.992 — —
0.900 0.934 0.930 0.937 —
0.877
10W 20W 30 40 50 60 70
75 80 90 140 250
Medium
Turbine-grade oil Light
Aircraft engine oil
Automotive oil
Transmission gear oil
Type and application
23.68
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website. 260 211 343
243
12
14 1.5 15.5
235
12
111 146 215.5 224 232 249 318
65 62 18 18 18 18 7
210
210 227 238 240.5 254.5 —
26 23 20 18 12 — —
18
193 185 232 260 254.5
Flash point, 8C
23 32 23 18 15
Density, Pour g/cm3 , at point, SAE no. 15.58C 8C
TABLE 23-19 Typical properties of lubricants
101 107 103
100
105
109
87 79 106 96 95 95 96
102 96 92 90 90 80 80
121 78 91 82 83
Viscosity index
1800 3750 6470
460
300
150
43 59 350 514 829 1240 1711
190 330 530 800 1250 — —
220 320 1330 3350 5660
130 210 300
62
53
44
33 35 57 64 80 99 120
46 54 64 77 97 115 137
50 52 100 160 220
At 38 8C At 998C
Saybolt seconds, S
kgf s/m2 104
Pa s 103
390 810 1400
99
65
32
5 10 76 111 179 268 369
41 71 114 173 270 — —
47 69 287 725 1220
27 45 64
10.8
8.2
5.4
1.6 2.5 9.3 11.3 15.5 20.1 25.0
6.0 8.5 11.3 14.8 19.7 — —
7.3 7.9 20.4 34 47
8.36
5.51
1.63 2.55 9.49 11.53 15.81 20.50 25.50
6.12 8.67 11.53 15.10 20.10 — —
397.80 27.45 826.20 45.90 1428.00 65.28
100.98 11.02
66.30
32.64
5.10 10.20 77.52 113.22 182.58 273.36 376.38
41.82 72.42 116.28 176.46 275.40 — —
47.94 7.45 70.38 8.06 292.74 20.81 739.50 34.68 1244.40 47.94
390 810 1400
99
65
32
5 10 76 111 179 268 369
41 71 114 173 270 — —
47 69 287 725 1220
27 45 64
10.8
8.2
5.4
1.6 2.5 9.3 11.3 15.5 20.1 25.0
6.0 8.5 11.3 14.8 19.7 — —
7.3 7.9 20.4 34 47
g
g
Railroad stationary steam engines cylindered applications, enclosure gears
Direct-connected turbines electric motors Land-geared turbines electric-motors Marine-propulsion geared turbines
Various reciprocating aircraft engines
Turbojet engines
Automobile, truck and marine reciprocating engines; very-heavy-duty oils used in diesel engines
Combination pinion reduction gear units, enclosed reduction gear sets
At 388C At 998C At 388C At 998C At 388C At 998C Uses
Centipoise, cP
Viscosity
DESIGN OF BEARINGS AND TRIBOLOGY
0.887 0.895 0.901
0.844
0.895 0.898 0.909 0.902
0.881 0.898 0.915 0.915 0.890
Hydraulic oils Light Medium Heavy
Extra-low-temperature
Refrigerating machine oil
Machine tools and general-purpose oil
Type and application
188 207 257
110 146 165.5 182 190.5 177 199 185 199 235
24 45.5 37 29 23 4 4 12 15 9
Flash point, 8C
42 26 12
Density, Pour g/cm3 , at point, SAE no. 15.58C 8C
TABLE 23-19 Typical properties of lubricants (Cont.)
80 80 83 25 80
53 22 34 35
226
64 66 70
Viscosity index
105 205 305 510 930
72 195 235 335
74
150 310 910
39 46 49 59 80
36 43 45 49
43
42 50 74
At 38 8C At 998C
Saybolt seconds, S
kgf s/m2 104
Pa s 103
22 44 66 110 200
14 42 51 72
14
32 67 196
3.9 6.0 7.0 9.9 15.5
2.9 5.1 5.7 7.0
5.2
4.8 7.3 14.0
22.44 44.88 67.32 112.20 204.00
14.28 42.84 52.02 73.44
14.28
3.98 6.12 7.14 10.10 15.81
2.96 5.20 5.81 7.14
5.30
32.64 4.90 68.34 7.45 199.92 14.28
22 44 66 110 200
14 42 51 72
14
32 67 196
3.9 6.0 7.0 9.9 15.5
2.9 5.1 5.7 7.0
5.2
4.8 7.3 14.0
All general-purpose lubrication, machine tools
Ammonia compressor
Aircraft hydraulic systems
Hydraulic fluids for most indoor industrial hydraulic equipments Heavier loads, higher temperature
At 388C At 998C At 388C At 998C At 388C At 998C Uses
Centipoise, cP
Viscosity
DESIGN OF BEARINGS AND TRIBOLOGY
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
23.69
Composition, %
23.70
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
Sintered iron
Iron base Gray cast iron
Bronze, high-lead Bronze, lead tin Bronze, 80–10–10 Bronze, nickel tin Bronze, aluminum Bronze, zinc
Bronze, high-lead
Copper alloys Clock brass
Cu 7.5, Fe 92.5
C 3.5, Si 2.5, Fe 94.0
Pb 3.0, Zn 35.5, Cu 61.5 Sn 4.0, Pb 14.0, Zn 1.5, Ni 1.0 max, Cu 79.5 Sn 16, Pb 14.0, Cu 70.0 Sn 8, Pb 3.5, Zn 3.5, Cu 85 Sn 10.0, Pb 10.0, Cu 80 Sn 10.0, Ni 3.5, Pb 2.5, Cu 84.0 Al 10.5, Fe 3.5, Cu 86.0 Al 1.0, Si 0.8, Mn 2.5, Zn 37.5, Cn 58.2
Sn 10.0, Sb 15.0, Pb 75.0 Tin base Cu 8.3, Sb 8.3, Sn 83.4 Cadmium base Ni 1.4, Cd 98.6 Aluminum Cu 1.0, Sn 6.5 alloys Ni 1.5, Al 91.0
Babbitts Lead base
Material
0.34 0.33
8.6 2.86
0.15 0.37 0.52 0.39
8.86 — 7.6 8.09
—
0.30
0.37
0.26
8.4
7.2
0.37
0.15
—
—
—
0.28
7.47
8.4
0.34
Dry coefficient of friction,
9.69
Specific gravity
TABLE 23-20 Journal bearing materials and applications
—
21.10 min
49.22 min
70.30
17.58 min 31.64
21.1 min
—
38.0– 45.0 14.0
— 15.5
7.88
7.03
kgf/mm2
—
207.00 min
482.84 min
689.74
207.00 min 172.46 min 310.04
—
372.48– 445.45 138.00
— 151.76
77.30
68.96
MPa
Ultimate tensile strength, su
—
1.898
1.055
1.125
—
0.773
—
—
1.055
— 0.724
0.534
0.295
kgf/mm2 104
—
186.2
103.5
110.4
—
75.8
—
—
103.5
— 71.0
52.4
28.9
GPa
Modules of elasticity, E
—
180
202
95
65
53
—
45
54–142
— 45
27
45
Brinell
—
—
B 80–92 —
—
—
—
—
—
—
B 40–75
— —
—
—
Rockwell
Hardness numbers
Used in refrigerators, compressors, camshafts, high load at low speed with good lubrication Used with impregnates with oil will give good results; load—3.4 MPa (0.35 kgf mm2 ) and speed 0.67 m/s
General-duty bearing bronze; load up to 20.6 MPa (2.1 kgf/mm2 ); speed—4.5 m/s Used in medium- to heavy-duty application; good strength requirement Used in heavy-duty bearings requiring high strength and good impact resistance Heavy-duty impact loadings; on hardened shaft
Moderately heavy duty
Same as above; can withstand higher loads
Used in poorly lubricated applications with moderately heavy loads
Used for light load
Used in automobiles and electrical equipment Used in automotive and diesel engines, steam turbines and motors Used where lubrication is intermittent Used in high-temperature high-load services and in diesels; requires good lubrication and hardened shaft
Applications
DESIGN OF BEARINGS AND TRIBOLOGY
15.1
C þ Cu þbinder
Tungsten carbide 97.0, Co 3.0
0.18
1.36
P cP kgf s/m2 kg/m s lbf s/ft2 lb/ft s Pa s
cP
100 1 9.80665 103 103 4.788 104 1.4882 103 103
P
1 0.01 98.0665 10 4.788 102 14.882 10
TABLE 23-21 Conversion factors for viscosity
7.03
1.40– 10.55 2.11
7.03
573.00 (compressive)
2.11– 4.22
0.53 1.80
kgf/mm2
0.1 103 9.80665 1 47.88 1.4882
kg/m s
68.96
13.73– 103.50 20.70
68.96
5621 (compressive)
20.7– 41.4
5.17– 17.25
MPa
Ultimate tensile strength, su
0.0102 1.0297 104 1 0.102 4.8824 0.1518 0.102
kgf s/m2
0.17
2.2
Polytetrafluoroethylene Textolite 2001 Phenolic, graphite and cotton cloth
Teflon
0.25–0.30
0.97–2.00
0.86
0.20
0.17
0.15
Rubber
Plastics and rubber Nylon Polyamide
Wood
1.44
2.9/3.8
C þ binder
Graphite Carbon graphite
Carbon graphite and metal Cemented carbide
1.63–1.86
Composition, %
Material
Specific gravity
Dry coefficient of friction,
TABLE 23-20 Journal bearing materials and applications (Cont.)
Rockwell
0.0672 6.7197 6.5898 0.6720 32.174 1
2.0886 103 2.0886 105 0.20482 2.0886 102 1 0.0311
M 100
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website. 1
0.1 103 9.80665
Pa s
Shore scleroscope 50
M 90
C 80
Shore scleroscope 75
Shore scleroscope 75
Brinell
lb/ft s
4.375– 6.35
0.410
2.25
672.5
—
—
GPa
Hardness numbers
lbf s/ft2
0.0443 0.0647
0.0042
0.023
6.885 (compressive)
—
—
kgf/mm2 104
Modules of elasticity, E
Used in many household appliances and other lightly loaded applications; requires little lubrication Marine propellers, pumps, turbine, load 0.54 MPa (0.055 kgf/mm2 ) Useful in corrosive conditions; dairy, textile, and food machinery Used where low wear and good compatibility characteristics are required
Used in high-speed precision grinders which require perfect alignment and good lubrication; can withstand extreme loading and high speeds Used in conveyors; light loads at high speeds under 658C
Particularly suited to high-temperature application (<4558C) where lubrication is difficult; used in electric motors, conveyors Same as above, higher strength
Applications
DESIGN OF BEARINGS AND TRIBOLOGY
23.71
DESIGN OF BEARINGS AND TRIBOLOGY
23.72
CHAPTER TWENTY-THREE
TABLE 23-22 Kinematic and Saybolt viscosity equivalents Kinematic viscosity, Saybolt viscosity, S a
Metric units cSt
cm2 =s 102
SI units m2 /s 106
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 23 25 27 29 30 31 33 35 37 39 40 41 43 45 47 49 50 55 60 65 70 >70
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 23 25 27 29 30 31 33 35 37 39 40 41 43 45 47 49 50 55 60 65 70
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 23 25 27 29 30 31 33 35 37 39 40 41 43 45 47 49 50 55 60 65 70
a
At 388C
At 998C
32.6 36.0 39.1 42.4 45.6 48.8 52.1 55.5 58.9 62.4 66.0 69.8 73.6 77.4 81.3 85.3 89.4 93.6 97.8 102.0 110.7 119.3 128.1 136.9 141.3 145.7 154.7 163.7 172.7 181.8 186.3 190.8 199.8 209.1 218.2 227.5 232.1 255.2 278.3 301.4 324.4 S ¼ cSt 4:635
32.9 36.3 39.4 42.7 45.9 49.1 52.5 55.9 59.3 62.9 66.5 70.3 74.1 77.9 81.3 85.9 90.1 94.2 98.5 102.8 111.4 120.1 129.0 137.9 142.3 146.8 155.8 164.9 173.9 183.0 187.6 192.1 201.2 210.5 219.8 229.1 233.8 257.0 280.2 303.5 326.7 S ¼ cSt 4:667
S ¼ cSt 4:635 at 388C; S ¼ cSt 4:667 at 998C
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
DESIGN OF BEARINGS AND TRIBOLOGY DESIGN OF BEARINGS AND TRIBOLOGY
23.73
TABLE 23-23 Conversion table for viscosity equivalents Kinematic viscosity, Metric units
Viscosity
cSt
cm2 =s 102
SI units m2/s 106
2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10 11 12 13 14 15 16 17 18 19 20 22 24 26 28 30 32 34 36 38
2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10 11 12 13 14 15 16 17 18 19 20 22 24 26 28 30 32 34 36 38
2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10 11 12 13 14 15 16 17 18 19 20 21 24 26 28 30 32 34 36 38
Saybolt, S
Engler 8
Redwood no. 1
32.60 33.40 34.10 34.80 35.40 36.00 36.70 37.30 37.90 38.50 39.1 40.8 42.4 44.0 45.6 47.2 48.8 50.4 52.1 53.8 55.5 57.2 58.9 62.4 66.0 69.7 73.5 77.3 81.2 85.2 89.3 93.4 97.6 106.1 114.7 123.4 132.3 141.1 149.9 158.9 167.9 176.9
1.12 1.14 1.16 1.18 1.20 1.22 1.23 1.25 1.27 1.29 1.31 1.35 1.40 1.44 1.48 1.52 1.56 1.60 1.65 1.70 1.75 1.79 1.84 1.94 2.02 2.12 2.22 2.32 2.43 2.54 2.64 2.75 2.87 3.10 3.33 3.57 3.82 4.07 4.32 4.57 4.82 5.08
30.8 31.3 31.8 32.3 32.8 33.3 33.8 34.3 34.8 35.3 35.8 37.0 38.3 39.6 40.9 42.3 43.6 44.9 46.3 47.7 49.0 50.5 51.9 54.9 58.0 61.2 64.5 67.9 71.3 74.8 78.4 82.0 85.7 93.2 100.8 108.5 116.3 124.2 132.1 140.0 147.9 155.9
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
DESIGN OF BEARINGS AND TRIBOLOGY
23.74
CHAPTER TWENTY-THREE
TABLE 23-23 Conversion table for viscosity equivalents (Cont.) Kinematic viscosity, Metric units
Viscosity
cSt
cm2 =s 102
SI units m2/s 106
40 42 44 46 48 50 55 60 65 70 75 80 85 90 95 100 110 120 130 140 150 160 170 180 190 200 220 240 260 280 300 320 340 360 380 400 500 600 700 800 900 1000
40 42 44 46 48 50 55 60 65 70 75 80 85 90 95 100 110 120 130 140 150 160 170 180 190 200 220 240 260 280 300 320 340 360 380 400 500 600 700 800 900 1000
40 42 44 46 48 50 55 60 65 70 75 80 85 90 95 100 110 120 130 140 150 160 170 180 190 200 220 240 260 280 300 320 340 360 380 400 500 600 700 800 900 1000
Saybolt, S
Engler 8
Redwood no. 1
186.0 195.0 204.0 213.0 222.0 232.0 255.0 278.0 301.0 324.0 347.0 370.0 393.0 416.0 439.0 463.0 509.0 555.0 602.0 648.0 694.4 740.0 787.0 833.0 879.0 926.0 1018.0 1111.0 1203.0 1296.0 1388.0 1480.0 1574.0 1666.0 1759.0 1851.0 2314.0 2777.0 3239.0 3702.0 4165.0 4628.0
5.33 5.59 5.84 6.10 6.36 6.62 7.26 7.90 8.55 9.21 9.87 10.53 11.19 11.85 12.51 13.16 14.47 15.80 17.11 18.43 19.75 21.05 22.38 23.70 25.00 26.32 28.95 31.60 34.25 36.85 39.50 42.12 44.75 47.40 50.00 52.65 65.80 79.00 92.20 105.30 118.50 131.60
164.0 172.0 180.0 188.0 196.0 204.0 225.0 245.0 265.0 286.0 306.0 326.0 346.0 367.0 387.0 407.0 448.0 489.0 529.0 570.0 611.0 651.0 692.0 733.0 774.0 815.0 896.0 978.0 1059.0 1140.0 1222.0 1303.0 1385.0 1465.0 1546.0 1628.0 2036.0 2443.0 2850.0 3258.0 3668.0 4074.0
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
DESIGN OF BEARINGS AND TRIBOLOGY DESIGN OF BEARINGS AND TRIBOLOGY
Particular
23.75
Formula
SPHERICAL BEARINGS (Fig. 23-54) Wr2 þ 6Wa2 Wr BD
Equivalent bearing pressure (Fig. 23-54)
p¼
Maximum bearing pressure if an average bearing life of 105 number of oscillations is to be expected
po ¼
Bearing life (Fig. 23-54) Wr
φ
D
φ
Bearing type
As a rule ϕ <8
ð23-146bÞ ð23-146cÞ
D
PTFE. FIBRE OR IMPREGNATED METAL
HARDENED STEEL
L ¼ bearing life, i.e. average number of oscillations to failure assuming unidirectional loading f ¼ life-increasing factor depending on periodical relubrication 10–15 for hardened steel on hardened steel 1 for PTFE fiber or impregnated metal on hardened steel 5–10 for d > 0:05 m bronze on hardened steel po ¼ maximum allowable bearing pressure, assuming unidirectional dynamic loading and no re-lubriBRONZE cation ¼ 24a MPa (3500 psi) for hardened steel on hardened steel ¼ 97 MPa (14000 psi) for PTFE fiber or impregHARDENED nated metal on hardened steel and temperature STEEL up to 2808C (5368 F) ¼ 10a MPa (1450 psi) bronze on hardened steel and temperature up to 1008C (2128 F) Butternl ¼ average number of oscillations to failure ¼ 105 nr ¼ recommended interval between re-lubrication in number of oscillations < 0.3nl for hardened steel on hardened steel < 0.3nl (usually) for bronze on hardened steel Wmax
B HARDENED STEEL
Wmax for n1 ¼ 105 BD 3 po L¼f 105 p
ð23-146aÞ
where B
Wa
provided Wa < Wr
HARDENED STEEL
FIGURE 23-54 Spherical bearings Courtesy: Neale, M. J., Tribology Handbook, Newnes and worths
a
The figures given above are based on dynamic load conditions. For static load conditions, where the load-carrying capacity of the bearing is based on bearing-surface permanent deformation, not fatigue, the load capacity of steel bearings may reach 10 po and of aluminum bronze 5 po . Ability to carry alternating loading is 1:7 po for metal contact; and is reduced by 0:25 po for DTFE fibre on hardened steel.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
DESIGN OF BEARINGS AND TRIBOLOGY
23.76
CHAPTER TWENTY-THREE
Particular
Load carrying capacity of spherical step bearing
Formula
W¼
Po d22 ðcos 1 cos 2 Þ tanð 2 =2Þ ln tanð 1 =2Þ
ð23-146dÞ
LIFT Inlet pressure
" # 48Q eð4 e2 Þ ð2 þ e2 Þ 1þe þ arctan pffiffiffiffiffiffiffiffiffiffiffiffiffi Pi ¼ 3 2 l d 2ð1 e2 Þ2 ð1 e2 Þ5=2 1 e2 ð23-147Þ
Load-carrying capacity of bearing
"
W¼
24Q 2 þ 3e e3 3 2 d ð1 e2 Þ2
#
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð23-148Þ
DESIGN OF BEARINGS AND TRIBOLOGY DESIGN OF BEARINGS AND TRIBOLOGY
23.2 ROLLING CONTACT BEARINGS1 SYMBOLS a1 ; a2 ; a3 b B c C Ca Ca1 , Ca2 ; . . . ; Can Cn Co Coa d db di do dr d1 , d2 D D1 Dw e E f fa fc
fd fk fL fn fs fnt fo foa F
life adjustment factors, Eq. (23-185a), (23-185b) Weibull exponent width of bearing, m (in) permissible increase in diametral clearance, (mm) basic dynamic load rating for radial and angular contact ball or radial roller bearings, kN (lbf ) basic dynamic load rating for single-row, single- and double-direction thrust ball or roller bearings, kN (lbf ) basic load rating per row of a one-direction multi-row thrust ball or roller bearing, each calculated as single-row bearing with Z1 , Z2 ; . . . ; Zn balls or rollers, respectively capacity of the needle bearing, kN (lbf ) basic static load rating for radial ball or roller bearing, kN (lbf ) basic static load rating for thrust ball or roller bearings, kN (lbf ) bearing bore diameter, m (in) diameter of ball, m (in) shaft or outside diameter of inner race used in Eqs. (23-246) and (23-247), m (in) inside diameter of outer race of needle bearing, m (in) roller diameter (mean diameter of tapered roller), m (in) diameter of needle roller, m (in) diameter of spherical balls or cylindrical rollers used in contact stress [Eqs. (23-250) to (23-253)], m (in) outside diameter of bearing, m (in) diameter of revolving race, m (in) diameter of ball, mm bearing constant modulus of elasticity, GPa (psi) a factor use in Eq. (23-155) application factor to compensate for shock continuous duty or inequality of loading a factor which depends on the geometry of the bearing components, the accuracy to which the various bearing parts are made and the material used in Eqs. (23-187), (23-188), and (23-199) to (23-202); a factor which depends on the units used, the exact geometrical shape of the load-carrying surfaces of the roller and rings (or washers in case of thrust bearing), and the accuracy to which the various bearing parts are made and the material, used in Eqs. (23-207), (23-208) a factor for the additional forces emanating from the mechanisms coupled to the gearing used in Eq. (23-154) a factor for the additional forces created in the gearing itself used in Eq. (23-154) index of dynamic stressing speed factor for ball bearings according to Table 23-37 speed factor for roller bearings according to Table 23-38 index of static bearing speed factor used in tapered roller bearing a factor used in Eqs. (23-161) and (23-167) a factor used in Eqs. (23-152) and (23-154) load, kN (lbf )
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
23.77
DESIGN OF BEARINGS AND TRIBOLOGY
23.78
Fa Faa Far Fbs Fc Fe Feffg Fna Fnt Fr i k Ka Kh Kt Kn l leff
L LB10 L10 Lh Mt n n0 ne ni nl nm n1 n2 P P Pa Pm Pmax Pmin Po Poa qi R10 X
CHAPTER TWENTY-THREE
theoretical tooth load, kN (lbf ) thrust load, kN (lbf ) applied thrust load, kN (lbf ) thrust component of pure radial load F, due to tapered roller, kN (lbf ) shaft load due to belt drive, kN (lbf ) static load, kN (lbf ) radial equivalent load from combination of radial and thrust loads or effective radial load, kN (lbf ) effective tooth load, kN (lbf ) net thrust load, kN (lbf ) net thrust load on the tapered roller bearing, kN (lbf ) radial load capacity of ball bearing, kN (lbf ) radial bearing load, kN (lbf ) number of rows of balls in any one bearing constant used in Eqs. (23-156), (23-158) to (23-160) application factor, Eq. (23-186) hardness factor used in Eq. (23-247) life load factor taken from the curve in Fig. 23-55 marked ‘‘T-needle’’ and used in Eq. (23-247) a constant used in Eq. (23-152) and Eq. (23-153) length of needle bearing, m (in) the effective length of contact between one roller and that ring (or that washer in case of thrust bearing) where the contact is the shortest (overall roller length minus roller chamfers or minus grinding undercuts), m (in) life of bearing at constant speed, rpm life of bearing at constant speed, h life corresponding to desired reliability, R, used in Eq. (23-194) life factor corresponding to desired B-10 hours of life expectancy used in Eq. (23-195) rating life fatigue life torque, N m (lbf in) speed, rpm speed, rps effective speed, rpm ith speed, rpm limiting speed, rpm mean speed, rpm speed of the inner race, rpm speed of the outer race, rpm power, kW (hp) equivalent dynamic load, kN (lbf ) equivalent dynamic thrust load, kN (lbf ) mean load, kN (lbf ) maximum load, kN (lbf ) minimum load, kN (lbf ) static equivalent load, kN (lbf ) static equivalent load for thrust ball or roller bearings under combined radial and thrust loads, kN (lbf ) percentage time of ith speed 0.90 reliability corresponding to rating life radial factor used in Eqs. (23-177b), (23-182), (23-190), (23-210), and (23-180)
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
DESIGN OF BEARINGS AND TRIBOLOGY DESIGN OF BEARINGS AND TRIBOLOGY
Xo Y Yo Z
Z1 , Z2 ; . . . ; Zn
!
cðmaxÞ max
radial factor used in Eqs. (23-162), (23-165), (23-173c) and (23-157) Tables (23-37), (23-38), (23-39) thrust factor used in Eqs. (23-163), (23-166), (23-173), (23-178), and (23-180) thrust factor used in Eqs. (23-162), (23-165), and (23-157) number of balls per row number of balls carrying thrust in one direction number of rollers per row number of rollers carrying thrust in single-row one-direction bearing number of needle-rollers number of balls or rollers in respective rows of one-direction multi-row bearings nominal angle of contact, that is, nominal angle between the line of action of the ball load and a plane perpendicular to the bearing axis the angle of contact, that is, the angle between the line of action of the roller resultant load, and a plane perpendicular to the bearing axis angular speed, rad/s coefficient of friction Poisson’s ratio maximum compressive stress, MPa (psi) maximum shear stress, MPa (psi)
Particular
The torque
23.79
Formula
9550P SI ð23-149aÞ n where P in kW, n in rpm, and Mt in N m
Mt ¼
Mt ¼
1000P !
SI ð23-149bÞ
where P in kW, ! in rad/s, and Mt in N m 159:2P SI ð23-149cÞ n0 where P in kW, n0 in rps, and Mt in N m
Mt ¼
Mt ¼
63;000P n
USCS ð23-149dÞ
where P in hp, n in rpm, and Mt in lbf in 716P Customary Metric ð23-149eÞ n where P in hpm, n in rpm, and Mt in kgf m
Mt ¼
937P Customary Metric ð23-149f Þ n where P in kW, n in rpm, and Mt in kgf m
Mt ¼
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
DESIGN OF BEARINGS AND TRIBOLOGY
23.80
CHAPTER TWENTY-THREE
Particular
Formula
TABLE 23-32 Coefficient of friction for rolling contact bearings
TABLE 23-33 Safe working values of k for average bearing life
Type of bearing
Material
k 106
Self-aligning bearings Cylindrical roller bearings Thrust ball bearings Angular contact ball bearings Deep groove ball bearings Tapered roller bearings Spherical roller bearings Needle bearings
0.0016–0.0066 0.0012–0.0060 0.0013 0.0018–0.0019 0.0022–0.0042 0.0025–0.0083 0.0029–0.0071 0.0045
For un-hardened steel 3.80 For hardened alloy steel on flat races 6.89 For hardened carbon steel 4.80 For hardened carbon steel on grooved 10.34 races For hardened alloy steel grooved races 13.79 (having radius ¼ 0.67 do )
USCSU* 550 1000 700 1500 2000
* US customary system units.
The equation for friction torque
Mt ¼
Fr d 2
ð23-149gÞ
For values of , refer to Table 23-32.
ROLLING ELEMENTS BEARINGS Definition, Dimensions and Nomenclature For nomenclature, other details and definition of a ball bearing
Refer to Fig. 23-49.
For nomenclature, other details and definition of a taper roller bearing
Refer to Fig. 23-50.
A rule of thumb used for ordinary ball and straight roller bearings
d þD 0 n 8:33 2 where d, D in m and n0 in rps d þD n 500;000 2
ð23-150aÞ
ð23-150bÞ
where d, D in mm and n in rpm
SPEED Effective speed The effective speed which determines the life of the bearing is found from the relation
n ¼ n1 n2
ð23-151Þ
where the plus sign is used when the races rotate in opposite directions and the minus sign is used when the races rotate in the same direction
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
DESIGN OF BEARINGS AND TRIBOLOGY DESIGN OF BEARINGS AND TRIBOLOGY
Width
23.81
Snap ring groove Corner radius
Seal or shield groove
Shoulders
Seal or shield notch Corner radius Inner ring raceway
Outside diameter
Bore
Inner ring Inner ring land
Separator
Inner ring face
Outer ring raceway Outer ring land
Outer ring face
Outer ring
FIGURE 23-49 Ball bearing nomenclature. (Courtesy: New Departure-Hyatt Bearing Division, General Motors Corporation.)
Cup back face radius, r
Bearing width Cup length
Cup back face
Cone back face rib
Cage
Cone back face
Cone front face rib Cone length
Cone bore
Cup outside diameter
Cup front face radius Cup front face
Cone front face radius Cone
Cone front face
Roller
Cone back face radius
Cup
Standout FIGURE 23-50 Nomenclature of tapered roller bearing.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
DESIGN OF BEARINGS AND TRIBOLOGY
23.82
CHAPTER TWENTY-THREE
Particular
Formula
Limiting bearing speed The limiting bearing speed when the bearing outside diameter is less than 30 mm
nl ¼
The limiting bearing speed when the bearing outside diameter is 30 mm and over
nl ¼
Kn D 10 For values of Kn refer to Table 23-34.
ð23-153Þ
Feffg ¼ fk fd F
ð23-154Þ
3Kn D þ 30
ð23-152Þ
GEAR-TOOTH LOAD The effective tooth load which is used in design of bearings The shaft load due to belt drive which is used in design of bearings
For values of fk and fd refer to Table 23-35. Fbs ¼ fF
ð23-155Þ
For values of f refer to Table 23-35.
TABLE 23-34 Values of Kn to be used in Eqs. (23-l52) and (23-153) Constant, Kn Type of bearing Radial bearings Deep groove bearings Single row Single row with leeds Double row Magneto bearings Angular contact ball bearing Single row Single row paired Double row Self-aligning ball bearings Self-aligning bail bearings with extended inner ring Cylindrical roller bearing Single row Double row Tapered roller bearings Barrel roller bearings Spherical roller bearings Series 213 Thrust bearings Thrust ball bearings Angular contact thrust ball bearings Cylindrical roller thrust bearings Spherical roller thrust bearings
Grease lubrication
Oil lubrication
500,000 360,000 320,000 500,000
630,000 — 400,000 630,000
500,000 400,000 360,000 500,000 250,000
630,000 500,000 450,000 630,000 320,000
500,000 500,000 320,000 220,000 220,000
630,000 630,000 400,000 280,000 280,000
140,000 220,000 90,000 140,000
200,000 320,000 120,000 200,000
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
DESIGN OF BEARINGS AND TRIBOLOGY DESIGN OF BEARINGS AND TRIBOLOGY
Particular
23.83
Formula
TABLE 23-35 Value of factors fk , fd and f to be used in Eqs. (23-154) and (23-155) Tooth load Particular
fk
Gear drive Precision gears (errors in pitch and form less than 0.025 mm) Commercial gears (errors in pitch and form 0.025 mm to 0.125 mm)
1.05–1.1 1.1–1.3
Prime movers and driven machines Shock-free rotary machines e.g. electrical machines and turbo-compressors Reciprocating engines, according to the degree of balance Machinery subjected to heavy shock loading, such as rolling mills
fd
f
1.0–1.2 1.2–1.5 1.5–3.0
Belt drive Vee-belts Single leather belts with jockey pulleys Single leather belts, balata belts, rubber belts
2.0–2.5 2.5–3.0 4.0–5.0
Full ball bearing sizes of different bearing series
Refer to Fig. 23-51
For summary of types and characteristics of rolling contact bearing9
Refer to Fig. 23-52
Extra light series
Light series
Medium series
Extra light series
Light Medium series series
(100)
(200)
(300)
(100)
(200)
Relative proportions of bearings with same outside diameter
Shaft load
(300)
Relative proportions of bearings with same bore diameter
FIGURE 23-51 Ball bearing size of bearing series. (Courtesy: New Departure-Hyatt Bearing Division, General Motors Corporation.)
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
DESIGN OF BEARINGS AND TRIBOLOGY
23.84
CHAPTER TWENTY-THREE
Particular
Formula
STATIC LOADING Stribeck equation for permissible static load
Fc ¼ kdb2
ð23-156Þ
where k ¼ 686:5 106 (100)* for carbon steel balls ¼ 862 106 (125)* for hardened alloy steel balls Use a factor of safety of 10 Fc in N (lbf) and db in m (in) Stribeck equation for permissible static load for ball bearing
Fc ¼
The radial load capacity of ball bearing
Fr ¼
4:37Fr Z
kZdb2 4:37 where db in m and Fr , Fc in kN Refer to Table 23-33 for values of k
kZdb2 5 Refer to Table 23-33 for values of k Fr ¼
Radial load capacity of roller bearing
BASIC STATIC LOAD RATING AS PER INDIAN STANDARDS
ð23-157Þ ð23-158Þ
ð23-159Þ
kZldr ð23-160Þ 5 where k ¼ 48:3 106 (7.0)* for hardened carbon steel ¼ 69 106 (10.0)* for hardened alloy steel ¼ 690 106 (100)* for carbon steel balls l, dr in m (in) and Fr in N (lbf)
Fr ¼
Radial ball bearing The basic static radial load rating for radial ball bearing
Cor ¼ fo iZD2w cos
ð23-161Þ
where Cor in N and Dw in mm Refer to Table 23-36 for fo This formula is applicable to bearings with a crosssectional raceway groove radius not larger than 0:52Dw in radial and angular contact groove ball bearing inner rings and 0:53Dw in radial and angular contact groove ball bearing outer rings and selfaligning ball bearing inner rings.
The static equivalent load for radial ball bearings is greater of the two values given by the formulae
Por ¼ Xo Fr þ Yo Fa
ð23-162Þ
Por ¼ Fr
ð23-163Þ
For values of Xo and Yo refer to Table 23-37. * Values outside the parentheses are in SI units in Pd and inside the parentheses are in US customary system units in kpsi.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
Load Carring Capacity
Yes∗
For Use on Free-end
Yes
One direction only
Excellent
Good
Contact angle 15 , 30 , 40 , Two bearings are usually mounted in opposition Clearance adjustment is necessary.
Yes Yes∗
Yes Yes∗
Duplex Angular Contact Ball Bearings
Fair Two directions
Poor
Yes∗
Yes∗
Yes
Yes
Self Aligning Ball Bearings
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website. × Impossible
Yes∗ Yes∗
Yes∗
Yes
×
×
Yes
×
×
Yes Yes
Yes
Cylindrical Cylindrical Double Row Cylindrical Roller Cylindrical Roller Roller Bearings Roller Bearings Bearings with Bearings Angle Ring
FIGURE 23-52 Types and characteristics of rolling bearings. (Courtesy: NSK Corp.)
* Can be used as free-end bearings if tap fit allows axial motion.
Legend
Remarks
Tapered Bore of Inner Ring
Yes
For Use on Fixed-end
Ring Separability
Self-Aligning Capability
Angular Misalignment
Rigidity
Low Noise and Torque
High Accuracy
High Speeds
Combined Load
Axial Load
Radial Load
Two bearings are usually mounted in opposition.
Double Row Angular Contact Ball Bearings
Any arrangement of the pair is possible.
Features
Angular Contact Ball Bearings
Yes
Yes
×
×
Needle Roller Bearings
Yes
Tapered Roller Bearings
Two bearings are usually mounted in opposition. Clearance adjustment is necessary.
Magneto Bearings
Yes∗
Yes∗
Yes
Yes
Yes
Spherical Roller Bearings
Yes
Yes
Double Row Tapered Roller Bearings
×
×
Yes
Yes
Yes
×
×
×
Yes
×
×
×
×
×
Angular Contact Thrust Ball Bearings
Thrust Ball Bearings with Aligning Seats
Thrust Ball Bearings
Yes
×
×
×
Cylindrical Roller Thrust Bearings
Needle roller thrust bearings are available.
Deep Groove Ball Bearings
Yes
×
×
×
Tapered Roller Thrust Bearings
Yes
Yes
Spherical Roller Thrust Bearings
This type should have oil lubrication.
Bearing Type
DESIGN OF BEARINGS AND TRIBOLOGY
23.85
DESIGN OF BEARINGS AND TRIBOLOGY
23.86
CHAPTER TWENTY-THREE
Particular
Formula
Radial roller bearing The basic static radial load rating for radial roller bearings The static equivalent radial load for roller bearings with 6¼ 08 is the greater of the two values given by the formulae The static equivalent radial load for radial roller bearings with ¼ 08 and subjected to radial load only, is given by the formula
D Cor ¼ 44 1 we cos iZLwe Dwe cos Dpw
ð23-164Þ
Por ¼ Xo Fr þ Yo Fo
ð23-165Þ
For factors Xo and Yo refer to Table 23-38. Por ¼ Fr
ð23-166Þ
Coa ¼ fo ZD2w sin
ð23-167Þ
THRUST BEARINGS Ball bearings The basic static axial load rating for single- or doubledirection thrust ball bearings
where fo values are taken from Table 23-36 Z ¼ number of balls carrying load in one direction
The static equivalent axial load Poa for thrust ball bearing with contact angle 6¼ 908
The static equivalent axial load for thrust ball bearings with ¼ 908 is given by the equation
Poa ¼ Fa þ 2:3Fr tan
ð23-168Þ
This formula is valid for all ratios of radial load to axial load in the case of double-direction bearings. For single direction bearings it is valid where ðFr =Fa Þ 0:44 cot and gives satisfactory but less conservative values of Poa for ðFr =Fa Þ up to 0:67 cot . Poa ¼ Fa
for ¼ 908
ð23-169Þ
Roller bearings The basic static axial load rating for single- and double-direction thrust roller bearings
D cos ZLwe Dwe sin Coa ¼ 220 1 we DPW
ð23-170Þ
where Z ¼ number of rollers carrying load in one direction The static equivalent axial load for thrust roller bearings with contact angle 6¼ 908
Poa ¼ Fa þ 2:3Fr tan
ð23-171aÞ
This formula is valid for all ratios of radial load to axial load in the case of double-direction bearings. For single-direction bearings, it is valid where ðFr =Fa Þ 0:44 cos and gives satisfactory but less conservative values of Poa for ðFr =Fa Þ up to 0:67 cot .
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
DESIGN OF BEARINGS AND TRIBOLOGY DESIGN OF BEARINGS AND TRIBOLOGY
23.87
TABLE 23-36 Values of factor fo for radial ball bearingsa Factor fo Radial ball bearings
Dw cos Dpw
Radial and angular contact groove ball bearings
Self-aligning ball bearings
Thrust ball bearings
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
14.7 14.9 15.1 15.3 15.3 15.7 15.9 16.1 16.3 16 5
1.9 2 2 2.1 2.1 2.1 2.2 2.2 2.3 2.3
61.6 60.8 59.9 59.1 58.3 57.5 56.7 55.9 55.1 54.3
0.10 0.11 0.12 0.13 0.14
16.4 16.1 15.9 15.6 15 4
2.4 2.4 2.4 2.5 2.5
53.5 52.7 51.9 51.2 50.4
0.15 0.16 0.17 0.18 0.19
15.2 14.9 14.7 14.4 14.2
2.6 2.6 2.7 2.7 2.8
49.6 48.8 48.0 47.3 46.5
0.20 0.21 0.22 0.23 0.24
14.0 13.7 13.5 13.2 13.0
2.8 2.8 2.9 2.9 3.0
45.7 45.0 44.2 43.5 42.7
0.25 0.26 0.27 0.28 0.29 0.30 0.31 0.32 0.33 0.34 0.35
12.8 12.5 12.3 12.1 11.8 11.6 11.6 11.2 10.9 10.7 10.5
3.0 3.1 3.1 3.2 3.2 3.3 3.3 3.4 3.4 3.5 3.5
41.9 41.2 40.5 39.7 39.0 38.2 37.5 36.8 36.0 35.3 34.6
0.36 0.37 0.38 0.39 0.40
10.3 10.0 9.8 9.5 9.4
3.6 3.6 3.7 3.8 3.8
a The Table 23-36 is based on the Hertz’s point contact formula with a modulus of elasticity ðEÞ ¼ 2:07 105 mPa and a Poisson’s ratio () of 0.3. It is assumed that the load distribution for radial ball bearings results in a maximum ball load of (5Fo =Z cos ), and for thrust ball bearings (Fo =Z sin ). Values of fo for intermediate values of (Dw cos =Dpw ) are obtained by linear interpolation. (IS: 3823-1988, ISO: 76-1987)
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
DESIGN OF BEARINGS AND TRIBOLOGY
23.88
CHAPTER TWENTY-THREE
Particular
Formula
TABLE 23-37 Values of factors Xo and Yo for radial ball bearingsa for use in Eqs. (23-162) Single row bearings
Double row bearings
Xo
Yo
Xo
Yo
Angular-contact groove ball bearings
¼ 158 ¼ 208 ¼ 258 ¼ 308 ¼ 358 ¼ 408 ¼ 458
0.6 0.5 0.5 0.5 0.5 0.5 0.5 0.5
0.5 0.46 0.42 0.38 0.33 0.29 0.26 0.22
0.6 1 1 1 1 1 1 1
0.5 0.92 0.84 0.76 0.66 0.58 0.52 0.44
Self-aligning ball bearings
6¼ 908
0.5
0.22 cot
1
0.44 cot
Bearing type Radial contact groove ball bearings
a
Permissible value of Fa =Cor depends on bearing design (internal clearance and raceway groove depth)
TABLE 23-38 Values of factors Xo and Yo for radial roller bearings with 6¼ 08 for use in Eq. (23-165) Bearing type
Xo
Yo
Single-row Double-row
0.5 1.0
0:22 cot 0:44 cot
The static equivalent axial load for thrust roller bearings with ¼ 908 is given by the equation
Poa ¼ Fa
ð23-171bÞ
C o ¼ fs P o
ð23-172Þ
CATALOGUE INFORMATION FROM FAG FOR THE SELECTION OF BEARING The basic static load rating
where fs ¼ index of static dressing ¼ 1:5 to 2.5 for high degree ¼ 1:0 to 1.5 for normal degree ¼ 0:7 to 1.0 for moderate degree The equivalent static load
Po ¼ Fr
for ðFa =Fr Þ 0:8
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð23-173aÞ
DESIGN OF BEARINGS AND TRIBOLOGY DESIGN OF BEARINGS AND TRIBOLOGY
Particular
23.89
Formula
Po ¼ 0:6Fr þ 0:5Fa
for ðFa =Fr Þ > 0:8
P o ¼ Xo Fr þ Yo Fa
ð23-173bÞ ð23-173cÞ
where Co and Po in kN For various values of factors Xo and Yo refer to Table 23-39 and Tables from FAG catalogue.
TABLE 23-39 Calculation of equivalent static and dynamic load Series Bearing type
IS
FAG
SKF
Static, Po
Dynamic, P
For dimensions, C, Ca , nmax , X, e Y, Yo refer to Table
Deep groove ball bearings
02 03 04
62 63 64
62 63 64
Fr when Fa =Fr 0:8 0:6Fr þ 0:5Fa when Fa =Fr > 0:8
Fr when Fa =Fr e 0:56Fr þ YFa when Fa =Fr > e
23-60 23-61 23-62
Self aligning ball bearings
02 03
12 13 22 23
12 13 22 23
Fr þ Yo Fa
XFr þ YFa
02 03
72B 73B
72B 73B
33
33A
Fr when Fa =Fr 1:9 0:50Fr þ 0:26Fa when Fa =Fr >1.9 Fr þ 0:58Fa
Fr when Fa =Fr 1:4 0:35Fr þ 0:57Fa when Fa =Fr > 1:14 Fr þ 0:66Fa when Fa =Fr 0:956 0:6Fr þ 1:07Fa when Fa =Fr > 0:95
23-69
N2 N3 N4 NU22 NU23
N2 N3 N4 NU22 NU23
Fr
Fr
23-70 23-71 23-72 23-73 23-74
322A 22 23
322
02 03
Fr when Fa =Fr 12 Yo 0:5Fr þ Yo Fa when Fa =Fr > 12 Yo
Fr when Fa =Fr e 0:4Fr þ YFa when Fa =Fr > e
11 12 13 14
511 512 513 514
511 512 513 514
Fa
Fa
522
522
Single row angular contact ball bearings Double row angular contact ball bearings
Cylindrical roller bearings
02 03 04
Tapered roller bearings
Single thrust ball bearings
Double thrust ball bearings
Equivalent load
23-63 23-64 23-65 23-66 23-67 23-68
23-75 23-76 23-76B 23-77 23-78 23-79 23-80 23-81 23-82
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
DESIGN OF BEARINGS AND TRIBOLOGY
23.90
CHAPTER TWENTY-THREE
Particular
Formula
DYNAMIC LOAD RATING OF BEARINGS The relation between two groups of identical bearings tested under different loads F1 and F2 , and length of lives L1 and L2 respectively as per experiments conducted by Palmgern
L1 ¼ L2
F2 F1
m
ð23-174Þ
where m ¼ 3 generally accepted ¼ 3.333 used by Timken ¼ 4 used by New Departures L ¼ life in millions of revolutions ¼ life in hours at constant speed in rpm
For various typical values of bearing life for various applications
Refer to Tables 23-40 and 23-41
LIFE
m
The Antifriction Bearing Manufacturers Association (AFBMA) statistically related formula for the rating life of bearing in millions of revolutions of a bearing subjected to any other load F, which is derived from Eq. (23-174)
For values of C for various types of bearings, refer to Table 23-42.
Equation (23-175) can be written as
C ¼ FL1=m
(The International Organisation for Standardisation (ISO) defines the rating life of a group of apparently identical rolling elements bearings as that completed or exceeded by 90% of that group before first evidence of fatigue)
L¼
C F
ð23-175Þ
ð23-176Þ
where L in millions of revolutions
BASIC DYNAMIC LOAD RATING AS PER FAG CATALOGUEa The load and life of bearings are related statistically as per ISO equation for basic rating life
L10 ¼ L ¼
C F
m or
C 1=m ¼ L10 F
ð23-177aÞ
where L10 ¼ rating life in millions of revolutions (i.e. number of revolutions resulting in 10% failure) C ¼ basic dynamic load rating, N (obtained from manufacturer’s catalogue) F ¼ equivalent dynamic load (also with suffix e, i.e. Fe ), N (also symbol P is used in place of F) a
Note: The designer is advised to read carefully the manufacturer’s Catalogue, which explains how load rating and life are established.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
DESIGN OF BEARINGS AND TRIBOLOGY DESIGN OF BEARINGS AND TRIBOLOGY
23.91
TABLE 23-40 Typical values of bearing life for various applications
TABLE 23-41 Life of bearings, Lh
Application
Class of machinery
Life, kh
Instruments and apparatus which are used occasionally
0.5
Aircraft engines
0.5–2
Design life, h
Agricultural equipment Aircraft engines
3000–6000 500–1500
Automobile applications Race car Light motor cycle Heavy motor cycle Light car Heavy car Light truck Heavy truck Bus Boat gearing units Beater mills Briquette presses Domestic appliances Electrical motors (up to 0.5 kW) Electrical motors (up to 4 kW) Electrical motors, medium Electrical motors, large Elevator cables sheaves Small fans Mine ventilation fans
500–800 600–1200 1000–2000 1000–2000 1500–2500 1500–2500 2000–2500 2000–5000 3000–5000 20000–30000 20000–30000 1000–2000 1000–2000 8000–10000 10000–15000 20000–30000 40000–60000 2000–4000 40000–50000
Gearing units Automotive Multi-purpose Machine tool Ship Rail vehicles Heavy rolling mill Grinding spindles Locomotive axle boxes, outer bearings Locomotive axle boxes, inner bearings Machine tools Mining machinery Paper machines
600–5000 8000–15000 20000 20000–30000 15000–25000 50000 and more 1000–2000 20000–25000 30000–40000 10000–30000 4000–15000 50000–80000
Rail vehicle axle boxes Mining cars Motor rail cars Open pit mining cars Street cars Passenger cars Freight cars
5000 16000–20000 20000–25000 20000–25000 26000 35000
Rolling Mills Small cold mills Large multipurpose mills Gear drives Ship gear drives Propeller thrust bearings Propeller shaft bearings
5000–6000 8000–10000 50000 and more 20000–30000 15000–25000 80000 and more
Machines used for period where stoppage of service is of minor importance
4–8
Machine working intermittently whose service is essential
8–14
Machine working for 8 h per day whose service is not fully utilized
14–20
Machine working for 8 h per day whose service is fully utilized
20–30
Machines working continuously for 24 h Machines working continuously for 24 h with high reliability
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
50–60 100–200
13800 15010 18894 21119 22367
27557 31115 33006 37788 41336
43561 52459 57339
06 07 08 09 10
11 12 13 14 15
16 17 18 19 20
23.92
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
32 34
21 22 24 26 28 30
3842 4067 5557 6323 8134 9957
00 01 02 03 04 05
90679
72451
Light 200 N
SAE No.
137798 148921
80017 88909 101528 113346 122245
46227 58341 56448 68012 72451
18002 21334 27296 34006 38455
6664 7242 9428 9957 14445
113346 122245 137798
56448 68012 72451 88906 101352
27117 31340 35880 44629 48341
Medium 300 Heavy 400 N N
Double-row self-aligning
TABLE 23-42 Values of C for various types of bearings
96011 106683
54223 60907 64896 78233 87122
32674 39122 42895 46227 48902
14445 19110 21830 24451 26009
3332 5067 5557 7115 9604 10309
Light 200 N
144472 166698
92463 99568 108907 117796 135583
53341 60901 68012 75568 82683
21335 25343 30890 40004 46227
6488 8007 8712 10596 14181 16229
76910 84456 92463 115671 124470
33040 42288 48902 58682 64896
28008
Medium 300 Heavy 400 N N
Single-row deep groove
87122 90679 103135 126694 142247
52459 63563 69345 75568 80071
23559 31566 35564 40004 42895
5419 8271 9075 11554 15778 16895
Light 200 N
147921 147921 157809
85789 97794 111132 122245 135583
34672 40004 49794 62495 75568
82104 20002 26676
122245 135583
59564 62230 78233 97794 122245
Medium 300 Heavy 400 N N
Double-row deep groove
184471 191139
106683 122245 137798 157809 173362
56448 63563 73784 78233 87122
32673 39122 44423 48902 50676
14220 18894 22367 25343 26676
10133
Light 200 N
260043
212596
153369 173362
92463 101528 108707 117796 144472
53341 60907 68012 75568 84456
21335 25343 30890 40004 46227
12005 16895
73784 81350 88906 113346 120221
22673 40004 47118 57340 63563
27558
Medium 300 Heavy 400 N N
Single-row angular contact
DESIGN OF BEARINGS AND TRIBOLOGY
1.15 1.24 1.34 1.45 1.56 1.68 1.82 1.96 2.12 2.29 2.47 2.67 2.88 3.11 3.36 3.63 3.91 4.23 4.56 4.93 5.32 6.70
100 500 1,000 1,250 1,600 2,000 2,500 3,200 4,000 5,200 6,300 8,000 10,000 12,500 16,000 20,000 25,000 32,000 40,000 50,000 63,000 80,000 100,000 200,000
1.06 1.15 1.24 1.34 1.45 1.56 1.68 1.82 1.96 2.12 2.29 2.47 2.67 2.88 3.11 3.36 3.63 3.91 4.93
25
Life, Lh hours 10
100
1.06 1.45 1.34 1.82 1.45 1.96 1.56 2.12 1.68 2.29 1.82 2.47 1.96 2.67 2.12 2.88 2.29 3.11 2.47 3.36 2.67 3.63 2.88 3.91 3.11 4.23 3.36 4.56 3.63 4.93 3.91 5.32 4.23 5.75 4.56 6.20 4.93 6.70 5.32 7.23 5.75 7.81 6.20 8.43 7.81 10.6
40
1.56 1.96 2.12 2.29 2.47 2.67 2.88 3.11 3.36 3.63 3.91 4.23 4.56 4.93 5.32 5.75 6.20 6.70 7.23 7.81 8.43 9.11 11.5
125
1.68 1.12 2.29 2.47 2.67 2.88 3.11 3.36 3.63 3.91 4.23 4.56 4.93 5.32 5.75 6.20 6.70 7.23 7.81 8.43 9.11 9.83 12.4
160 1.06 2.82 2.29 2.47 2.67 2.88 3.11 3.36 3.63 3.91 4.23 4.56 4.93 5.32 5.75 6.20 6.70 7.23 7.81 8.43 9.11 9.83 10.6 13.4
200 1.15 1.96 2.47 2.67 2.88 3.11 3.36 3.63 3.91 4.23 4.56 4.93 5.32 5.75 6.20 6.70 7.23 7.81 8.43 9.11 9.83 10.6 11.5 14.5
250
TABLE 23-42a Loading ratio C=P for different for ball bearings
1.24 2.12 2.67 2.88 3.11 3.36 3.63 3.91 4.23 4.56 4.93 5.32 5.75 6.20 6.70 7.23 7.81 8.43 9.11 9.83 10.6 11.5 12.4 15.6
320 1.34 2.29 2.88 3.11 3.36 3.63 3.91 4.23 4.56 4.93 5.32 5.75 6.20 6.70 7.23 7.81 8.43 9.11 9.83 10.6 11.5 12.4 13.4 16.8
400 1.45 2.47 3.11 3.36 3.63 3.91 4.23 4.56 4.93 5.32 5.75 6.20 6.70 7.23 7.81 8.43 9.11 9.83 10.6 11.5 12.4 13.4 14.5 18.2
500 1.56 2.67 3.36 3.63 3.91 4.23 4.56 4.93 5.32 5.75 6.20 6.70 7.23 7.81 8.43 9.11 9.83 10.6 11.5 12.4 13.4 14.5 15.6 19.6
630 1.68 2.88 3.63 3.91 4.23 4.56 4.93 5.32 5.75 6.20 6.70 7.23 7.81 8.43 9.11 9.83 10.6 11.5 12.4 13.4 14.5 15.6 16.8 21.2
800 1.82 3.11 3.91 4.23 4.56 4.93 5.32 5.75 6.20 6.70 7.23 7.81 8.43 9.11 9.83 10.6 11.5 12.4 13.4 14.5 15.6 16.8 18.2 22.90
1.96 3.36 4.23 4.56 4.93 5.32 5.75 6.20 6.70 7.23 7.81 8.43 9.11 9.83 10.6 11.5 12.4 13.4 14.5 15.6 16.8 18.2 19.6 24.7
2.12 3.63 4.56 4.93 5.32 5.75 6.20 6.70 7.23 7.81 8.43 9.11 9.83 10.6 11.5 12.4 13.4 14.5 15.6 16-9 18.2 19.6 21.2 26.7
2.29 3.91 4.93 5.32 5.75 6.20 6.70 7.23 7.81 8.43 9.11 9.83 10.6 11.5 12.4 13.4 14.5 15.6 16.9 18.2 19.6 21.2 22.9 28.8
2.47 4.23 5.32 5.75 6.20 6.70 7.23 7.81 8.43 9.11 9.83 10.6 11.5 12.4 13.4 14.5 15.6 16.8 18.2 19.6 21.2 22.9 24.7 31.1
2.67 4.56 5.75 6.20 6.70 7.23 7.81 8.43 9.11 9.83 10.6 11.5 12.4 13.4 14.5 15.6 16.8 18.2 19.6 21.2 22.9 24.7 26.7
2.88 4.93 6.20 6.70 7.23 7.81 8.43 9.11 9.83 10.6 11.5 12.4 13.4 14.5 15.6 16.8 18.2 19-6 21.2 22.9 24.7 26.7 28.8
3.11 5.32 6.70 7.23 7.81 8.43 9.11 9.83 10.6 11.5 12.4 13.4 14.5 15.6 16.8 18.2 19.6 21-2 22.9 24.7 26.7 28.8 31.1
3.36 5.75 7.32 7.81 8.43 9.11 9.83 10.6 11.5 12.4 13.4 14.5 15.6 16.8 18.2 19.6 21.2 22.9 24.7 26.7 28 8 31.1
3.63 6.20 7.81 8.43 9.11 9.83 10.6 11.5 12.4 13.4 14.5 15.6 16.8 .18.2 19.6 21.2 22.9 24.7 26.7 28.8 31.1
3.91 6.70 9.43 9.11 9.83 10.6 11.5 12.4 13.4 14.5 15.6 16.8 18.2 19.6 21-2 22.9 24.7 26.7 28.8 31.1
4.23 7.23 9.11 9.83 10.6 11.5 12.4 13.4 14.5 15.6 16.8 18.1 19.6 21.2 22.9 24.7 26.7 28.8 31.1
4.56 7.81 9.83 10.6 11.5 12.4 13.4 14.5 15.6 16.8 18.1 19.6 21.2 22.9 24.7 26.7 28.8 31.1
1000 1250 1600 2000 2500 3200 4000 5000 6200 8000 10000 12500 16000
Speed, rpm
DESIGN OF BEARINGS AND TRIBOLOGY
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
23.93
1.13 1.21 1.30 1.39 1.49 1.60 1.71 1.83 1.97 2.11 2.26 2.42 2.59 2.78 2.97 3.19 3.42 3.66 3.92 4.20 4.50 5.54
100 500 1,000 1,250 1,600 2,000 2,500 3,200 4,000 5,000 6,300 8,000 10,000 12,500 16,000 20,000 25,000 32,000 40,000 50,000 63,000 80,000 100,000 200,000
1.05 1.13 1.21 1.30 1.39 1.46 1.60 1.71 1.83 1.97 2.11 2.26 2.42 2.59 2 78 2.97 3.19 3.42 4.20
25
Life, Lh hours 10
1.05 1.30 1.39 1.49 1.60 1.71 1.83 1.97 2.11 2.26 2.42 2.59 2.78 2.97 3.19 3.42 3.66 3.92 4.20 4.50 4.82 5.17 6.36
40
1.39 1.71 1.83 1.97 2.11 2.26 2.42 2.59 2.78 2.97 3.19 3.42 3.66 3.92 4.20 4.50 4.82 5.17 5.54 5.94 6.36 6.81 8.38
100
1.49 1.83 1.97 2.11 2.26 2.42 2.59 2.78 2.97 3.19 3.42 3.66 3.92 4.20 4.50 4.82 5.17 5.54 5.94 6.36 6.81 7.30 8.98
125
200
1.05 1.60 1.71 1.97 2.11 2.11 2.26 2.26 2.42 2.42 2.59 2.59 2.78 2.78 2.97 2.97 3.19 3.19 3.42 3.42 3.66 3.66 3.92 3.92 4.20 4.20 4.50 4.50 4.82 4.82 5.17 5.17 5.54 5.54 5.94 5.94 6.36 6.36 6.81 6.81 7.30 7.30 7.82 7.82 8.38 9.62 10.3
160 1.13 1.83 2.26 2.42 2.59 2.78 2.97 3.19 3.42 3.66 3.92 4.20 4.50 4.82 5.17 5.54 5.94 6.36 6.81 7.30 7.82 8.38 8.98 11.0
250 1.21 1.97 2.42 2.59 2.78 2.97 3.19 3.42 3.66 3.92 4.20 4.50 4.82 5.17 5.54 5.94 6.36 6.81 7.30 7.82 8.38 8.98 9.62 11.8
320
TABLE 23-42b Loading ratio C=P for different lives for roller bearings
1.30 2.11 2.59 2.78 2.97 3.19 3.42 3.66 3.92 4.20 4.50 4.82 5.17 5.54 5.94 6.36 6.81 7.30 7.82 8.38 8.98 9.62 10.3 12.7
400 1.39 2.26 2.78 2.97 3.19 3.42 3.66 3.92 4.20 4.50 4.82 5.17 5.54 5.94 6.36 6.81 7.30 7.82 8.38 8.98 9.62 10.3 11.0 13.6
500 1.49 2.42 2.97 3.19 3.42 3.66 3.92 4.20 4.50 4.82 5.17 5.54 5.94 6.36 6.81 7.30 7.82 8.38 8.98 9.62 10.3 11.0 11.8 14.6
630 1.60 2.59 3.19 3.42 3.66 3.92 4.20 4.50 4.82 5.17 5.54 5.94 6.36 6.81 7.30 7.82 8.38 8.98 9.62 10.3 11.0 11.8 12.7 15.6
800 1.71 2.78 3.42 3.66 3.92 4.20 4.50 4.82 5.17 5.54 5.94 6.36 6.81 7.30 7.82 8.38 8.98 9.62 10.3 11.0 11.8 12.7 13.6 16.7
1.83 2.97 3.66 3.92 4.20 4.50 4.82 5.17 5.54 5.94 6.36 6.81 7.30 7.82 8.38 8.98 9.62 10.3 11.0 11.8 12.7 13.6 14.6 17.9
1.97 3.19 3.92 4.20 4.50 4.82 5.17 5.54 5.94 6.36 6.81 7.30 7.82 8.38 8.98 9.62 10.3 11.0 11.8 12.7 13.6 14.6 15.6 19.2
2.11 3.42 4.20 4.50 4.82 5.17 5.54 5.94 6.36 6.81 7.30 7.82 8.38 8.98 9.62 10.3 11.0 11.8 12.7 13.6 14.6 15.6 16.7 20.6
2.26 3.66 4.50 4.82 5.17 5.54 5.94 6.36 6.81 7.30 7.82 8.38 8.98 9.62 10.3 11.0 11.8 12.7 13.6 14.6 15.6 16.7 17.9
2.42 3.92 4.82 5.17 5.54 5.94 6.36 6.81 7.30 7.87 8.38 8.98 9.62 10.3 11.0 11.8 12.7 13.6 14.6 15.6 16.7 17.9 19.2
2.59 4.20 5.17 5.54 5.94 6.36 6.81 7.30 7.82 8.38 8.98 9.62 10.0 11.0 11.8 12.7 13.6 14.6 15.6 16.7 17.9 19.2 20.6
2.78 4.50 5.54 5.94 6.36 6.81 7.30 7.82 8.38 8.98 9.62 10.3 11.0 11.8 12.7 13.6 14.6 15.6 16.7 17.9 19.2 20.6
2.97 4.82 5.94 6.36 6.81 7.30 7.82 8.38 8.98 9.62 10.3 11.0 11.8 12.7 13.6 14.6 15.6 16.7 17.9 19.2 20.6
3.19 5.17 6.36 6.81 7.30 7.82 8.38 8.98 9.62 10.3 11.0 11.8 12.7 13.6 14.6 15.6 16.7 17.9 19.2 20.6
3.42 5.54 6.81 7.30 7.82 8.38 8.98 9.62 10.3 11.0 11.8 12.7 13.6 14.6 15.6 16.7 17.9 19.2 20.6
3.66 5.94 7.30 7.82 8.38 8.99 9.62 10.3 11.0 11.8 12.7 13.6 14.6 15.6 16.7 17.9 19.2 20.6
3.92 6.36 7.82 8.38 9.98 9.62 10.3 11.0 11.8 12.7 13.6 14.6 15.6 16.7 17.9 19.2 20.6
1000 1250 1600 2000 2500 3200 4000 5000 6200 8000 10000 12500 16000
Speed, rpm
DESIGN OF BEARINGS AND TRIBOLOGY
23.94
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
DESIGN OF BEARINGS AND TRIBOLOGY DESIGN OF BEARINGS AND TRIBOLOGY
Particular
23.95
Formula
m ¼ life exponent ¼ 3.0 for ball bearing ¼ 10/3 for roller bearing Load ratio ðC=Pð¼ C=FÞÞ and also taken from Tables 23-42a and 23-42b can be determined from Fig. 23-53. C can be obtained from manufacturer’s catalogue. The equivalent dynamic load used in Eq. (23-177a) is given by
The Eq. (23-177a) in terms of Lh hours of life
Fe ¼ XFr þ YFa
ð23-177bÞ
where Fe ¼ P ¼ equivalent radial load for radial bearings or axial load for axial bearings Fr ¼ radial load, N Fa ¼ axial load, N X ¼ radial factor Y ¼ axial/thrust factor The values of X and Y can be found in tables of the manufacturer’s catalogue (e.g. FAG catalogue). 106 C m Lh ¼ ð23-178aÞ 60n F where Lh ¼ L10h ¼ nominal rating life, h
The relation between fatigue life (Lh ) in hours and the life in millions of revolutions (L)
The Eq. (23-178b) can be written as
106 L ð23-178bÞ 60n Refer to Tables 23-43 and 23-44 for index of dynamic strengthening fL and Lh . L10h ¼ Lh ¼
500ð33 13Þ60L 60n 1 m 33 3 C ¼ Lh ¼ 500 F n
L10h ¼ Lh ¼
ð23-179aÞ
L10h
ð23-179bÞ
Values of L10h in hours as function of speed n and load ratio ðC=F ¼ C=PÞ are given in Fig. 23-53. The simplified form of Eq. (23-179b)
fL ¼
C f F n
ð23-180aÞ
The basic dynamic load rating from Eq. (23-180a)
C¼
fL f F¼ LP fn fn
ð23-180bÞ
where F ¼P fL ¼ index of dynamic stressing fn ¼ speed factor Refer to Fig. 23-56.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
DESIGN OF BEARINGS AND TRIBOLOGY
23.96
CHAPTER TWENTY-THREE
ROLLER BEARINGS
BALL BEARINGS Speed rev/min 20
Load ratio C/P
Rating life hours Million Lh revolutions 200 L=L10
30 40
1.0
50 60 70 80 90 100
2 1.5
2 150 200 300 400 500 600 700 800 900 1000 1200 1500 1800 2000
3 4 5 6 8 10 20
3
4 5 6 7 8 9 10
3000 20
15000
40
400
40
500
60 70 80 90 100
1500
150
300
4000
400
200
5000
500
6000
600
300 400 500 600 800 1000
7000 8000 9000 10000
700 800 900 1000
30000 40000 50000 60000
1.0
15000
1500
20000
1800 2000
30000
3000
40000
4000
50000
5000
60000 70000 80000 90000 100000
6000 7000 8000 9000 10000
1.5
3 4 6 8 10
200000
20000
30000
300000
30000
500 600 700 800 900 1000
2000
4
30 40 50 60 80 100
5
200
6000
300 400 500 600 800 1000
7000 8000 9000 10000
3000 4000 5000
6 7 8 9 10
15
15000 2000 3000 4000 5000 6000 8000 10000
20000
30000 40000 50000
20
20000 30000 40000 50000 60000 80000 100000
60000 70000 80000 90000 100000
150000
15000
20000
400
1500 20
30 150000
1.0 2
3
1200
Rating life hours Million Lh revolutions 200 L=L10 300
2
3000
3000 4000 5000 6000 8000 10000
Load ratio C/P
50
600 700 800 900 1000
200
20000 30
30
2000
5000 6000 7000 8000 9000 10000
300
30 40 50 60 80 100
2000 15
4000
1.0
Speed rev/min 20
40
200000
200000 300000
FIGURE 23-53 Nomogram chart for determining c/p for ball and roller bearings (ISO-R281) (Note: Information on the calculation of load rating C and equivalent load P can be obtained from ISO Recommendation R281. Values of C for various types of bearing can be obtained from the bearing manufacturers.)
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
DESIGN OF BEARINGS AND TRIBOLOGY DESIGN OF BEARINGS AND TRIBOLOGY
Particular
23.97
Formula
rffiffiffiffiffiffiffiffi Lh fL ¼ 500 For a life of 500 h, fL ¼ 1
The value of index of dynamic stressing, fL , can be obtained from Eq. (23-179b)
m
ð23-181aÞ
Refer to Table 23-43 for fL of ball bearings Refer to Table 23-44 for fL of roller bearings and to Table 23-58
TABLE 23-43 Index of dynamic stressing fL for ball bearings for use in Eq. (23-180) Lh hours
fL
Lh hours
fL
100 105 110 115 120
0.585 0.595 0.604 0.613 0.622
300 310 320 330 340
0.843 0.852 0.861 0.870 0.879
125 130 135 140 145
0.631 0.639 0.647 0.654 0.662
350 360 370 380 390
150 155 160 165 170
0.670 0.677 0.684 0.691 0.698
175 180 185 190 195
Lh hours
fL ¼
p 3 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi Lh =500
fL
Lh hours
fL
Lh hours
fL
Lh hours
fL
Lh hours
fL
700 720 740 760 780
1.120 1.130 1.140 1.150 1.160
1750 1800 1850 1900 1950
1.520 1.535 1.545 1.560 1.575
4500 4600 4700 4800 4900
2.08 2.10 2.11 2.13 2.14
10000 10500 11000 11500 12000
2.71 2.76 2.80 2.85 2.85
30000 31000 32000 33000 34000
3.91 3.96 4.00 4.04 4.08
0.888 0.896 0.905 0.913 0.921
800 820 840 860 880
1.170 1.180 1.190 1.200 1.205
2000 2100 2200 2300 2400
1.590 1.615 1.640 1.665 1.690
5000 5200 5400 5600 5800
2.15 2.18 2.21 2.24 2.27
12500 13000 13500 14000 14500
2.93 2.96 3.00 3.04 3.07
35000 36000 37000 38000 3900
4.12 4.16 4.20 4.24 4.27
400 410 420 430 440
0.928 0.936 0.944 0.951 0.959
900 920 940 960 980
1.215 1.225 1.235 1.245 1.260
2500 2600 2700 2800 2900
1.710 1.730 1.755 1.775 1.795
6000 6200 6400 6600 6800
2.29 2.32 2.34 2.37 2.39
15000 15500 16000 16500 17000
3.11 3.14 3.18 3.21 3.24
40000 41000 42000 43000 44000
4.31 4.35 4.38 4.42 4.45
0.705 0.712 0.718 0.724 0.731
450 460 470 480 490
0.966 0.973 0.980 0.987 0.994
1000 1050 1100 1150 1200
1.260 1.280 1.300 1.320 1.340
3000 3100 3200 3300 3400
1.815 1.835 1.855 1.875 1.895
7000 7200 7400 7600 7800
2.41 2.43 2.46 2.48 2.50
17500 18000 18500 19000 19500
3.27 3.30 3.33 3.36 3.39
45000 46000 47000 48000 49000
4.48 4.51 4.55 4.58 4.61
200 210 220 230 240
0.737 0.749 0.761 0.772 0.783
500 520 540 560 580
1.000 1.015 1.025 1.040 1.050
1250 1300 1350 1400 1450
1.360 1.375 1.395 1.410 1.425
3500 3600 3700 3800 3900
1.910 1.930 1.950 1.965 1.985
8000 8200 8400 8600 8800
2.52 2.54 2.56 2.58 2.60
20000 21000 22000 23000 24000
3.42 3.48 3.53 3.58 3.63
50000 55000 60000 65000 70000
4.64 4.80 4.94 5.07 5.19
250 260 270 280 290
0.794 0.804 0.814 0.824 0.834
600 620 640 660 680
1.065 1.075 1.085 1.100 1.110
1500 1550 1600 1650 1700
1.445 1.460 1.475 1.490 1.505
4000 4100 4200 4300 4400
2.000 2.020 2.030 2.050 2.070
9000 9200 9400 9600 9800
2.62 2.64 2.66 2.68 2.70
25000 26000 27000 28000 29000
3.68 3.73 3.78 3.82 3.87
75000 80000 85000 90000 100000
5.30 5.43 5.55 5.65 5.85
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
DESIGN OF BEARINGS AND TRIBOLOGY
23.98
CHAPTER TWENTY-THREE
Particular
Formula
The value of speed factor, fn , can be obtained from Eq. (23-179b)
sffiffiffiffiffiffiffiffi rffiffiffiffiffiffiffiffi 33 13 m 100 fn ¼ ¼ n 3n m
ð23-181bÞ
For a speed factor of n ¼ 33 13 min, fn ¼ 1 Refer to Table 23-45 for fn of ball bearings Refer to Table 23-46 for fn of roller bearings The equivalent dynamic load for deep groove ball bearings with increased radial clearance
Fe ¼ Pa ¼ XFr þ YFa
ð23-182Þ
TABLE 23-44 Index of dynamic stressing fL for roller bearings for use in Eq. (23-180) Lh hours
fL
Lh hours
fL
100 105 110 115 120
0.617 0.626 0.635 0.643 0.652
300 310 320 330 340
0.858 0.866 0.875 0.883 0.891
125 130 135 140 145
0.660 0.665 0.675 0.683 0.690
350 360 370 380 390
150 155 160 165 170
0.697 0.704 0.710 0.717 0.723
175 180 185 190 195
Lh hours
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 10=3 Lh =500
fL ¼
fL
Lh hours
fL
Lh hours
fL
Lh hours
fL
Lh hours
700 720 740 760 780
1.105 1.115 1.125 1.135 1.145
1750 1800 1850 1900 1950
1.455 1.470 1.480 1.490 1.505
4500 4600 4700 4800 4900
1.935 1.945 1.960 1.970 1.985
10000 10500 11000 11500 12000
2.46 2.49 2.53 2.56 2.59
30000 31000 32000 33000 34000
3.42 3.45 3.48 3.51 3.55
0.889 0.906 0.914 0.921 0.928
800 820 840 860 880
1.150 1.160 1.170 1.180 1.185
2000 2100 2200 2300 2400
1.515 1.540 1.560 1.580 1.600
5000 5200 5400 5600 5800
2.00 2.02 2.04 2.06 2.09
12500 13000 13500 14000 14500
2.63 2.66 2.69 2.72 2.75
35000 36000 37000 39000 39000
3.58 3.61 3.64 3.67 3.70
400 410 420 430 440
0.935 0.942 0.949 0.956 0.962
900 920 940 960 980
1.190 1.200 1.210 1.215 1.225
2500 2600 2700 2800 2900
1.620 1.640 1.660 1.675 1.695
6000 6200 6400 6600 6800
2.11 2.13 2.15 2.17 2.19
15000 15500 16000 16500 17000
2.77 2.80 2.83 2.85 2.88
40000 41000 42000 43000 44000
3.72 3.75 3.78 3.80 2.83
0.730 0.736 0.742 0.748 0.754
450 460 470 480 490
0.969 0.975 0.982 0.994 0.998
1000 1050 1100 1150 1200
1.230 1.250 1.270 1.285 1.300
3000 3100 3200 3300 3400
1.710 1.730 1.755 1.760 1.775
7000 7200 7400 7600 7800
2.21 2.23 2.24 2.26 2.28
17500 18000 18500 19000 19500
2.91 2.93 2.95 2.98 3.00
45000 46000 47000 48000 49000
3.86 3.88 3.91 3.93 3.96
200 210 220 230 240
0.760 0.771 0.782 0.792 0.802
500 520 540 560 580
1.000 1.010 1.025 1.035 1.045
1250 1300 1350 1400 1450
1.315 1.330 1.345 1.360 1.375
3500 3600 3700 3800 3900
1.795 1.810 1.825 1.840 1.850
8000 8200 8400 8608 8800
2.30 2.31 2.33 2.35 2.36
20000 21000 22000 23000 24000
3.02 3.07 3.11 3.15 3.19
50000 55000 60000 65000 70000
3.98 4.10 4.20 4.30 4.40
250 260 270 280 290
0.812 0.822 0.831 0.840 0.849
600 620 640 660 680
1.055 1.065 1.075 1.085 1.095
1500 1550 1600 1650 1700
1.390 1.405 1.420 1.430 1.445
4000 4100 4200 4300 4400
1.865 1.880 1.895 1.905 1.920
9000 9200 9400 9600 9800
2.38 2.40 2.41 2.43 2.44
25000 26000 27000 28000 29000
3.23 3.27 3.31 3.35 3.38
75000 80000 85000 90000 100000 150000 200000
4.50 4.58 4.66 4.75 4.90 5.54 6.03
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
fL
DESIGN OF BEARINGS AND TRIBOLOGY DESIGN OF BEARINGS AND TRIBOLOGY
TABLE 23-45 Speed factor fn for ball bearings for use in Eq. (23-180) Speed, n, rpm
Speed factor, fn
10 11 12 13 14
1.494 1.447 1.405 1.369 1.335
15 16 17 18 19
Speed, n, rpm
fn ¼
Speed factor, fn
Speed, n, rpm
Speed factor, fn
Speed, n, rpm
Speed factor, fn
60 62 64 66 68
0.822 0.813 0.805 0.797 0.788
250 260 270 280 290
0.511 0.504 0.498 0.492 0.487
900 920 940 960 980
0.333 0.331 0.329 0.326 0.324
1.305 1.277 1.252 1.225 1.206
70 72 74 76 78
0.781 0.774 0.767 0.760 0.753
300 310 320 330 340
0.481 0.476 0.471 0.466 0.461
1000 1050 1100 1150 1200
20 21 22 23 24
1.186 1.166 1.148 1.132 1.116
80 82 84 86 88
0.747 0.741 0.735 0.729 0.724
350 360 370 380 390
0.457 0.453 0.448 0.444 0.441
25 26 27 28 29
1.100 1.089 1.071 1.060 1.048
90 92 94 96 98
0.718 0.713 0.708 0.703 0.698
400 410 420 430 440
30 31 32 33 34
1.036 1.025 1.014 1.003 0.993
100 105 110 115 120
0.693 0.692 0.672 0.662 0.652
35 36 37 38 39
0.984 0.975 0.966 0.958 0.949
125 130 135 140 145
40 41 42 43 44
0.941 0.933 0.926 0.919 0.912
45 46 47 48 49 50 52 54 56 58
Speed, n, rpm
23.99
q ffiffiffiffiffiffiffiffiffiffiffiffiffi 3 33 13 =n
Speed factor, fn
Speed, n, rpm
Speed factor, fn
4000 4100 4200 4300 4400
0.203 0.201 0.199 0.198 0.196
15,000 15,500 16,000 16,500 17,000
0.131 0.129 0.128 0.126 0.125
0.322 0.317 0.312 0.302 0.303
4500 4600 4700 4800 4900
0.195 0.193 0.192 0.191 0.190
17,500 18,000 18,500 19,000 19,500
0.124 0.123 0.122 0.121 0.120
1250 1300 1350 1400 1450
0.299 0.295 0.291 0.288 0.284
5000 5200 5400 5600 5800
0.188 0.186 0.183 0.181 0.179
20,000 21,000 22,000 23:000 24,000
0.119 0.117 0.115 0.113 0.112
0.437 0.433 0.430 0.426 0.423
1500 1550 1600 1650 1700
0.281 0.278 0.275 0.272 0.270
6000 6200 6400 6600 6800
0.177 0.175 0.173 0.172 0.170
25,000 26,000 27,000 28,000 29,000
0.110 0.109 0.107 0.106 0.105
450 460 470 480 490
0.420 0.417 0.414 0.411 0.408
1750 1800 1850 1900 1950
0.267 0.265 0.262 0.260 0.258
7000 7200 7400 7600 7800
0.168 0.167 0.165 0.164 0.162
30,000 32,000 34,000 36,000 38,000
0.104 0.101 0.0993 0.0975 0.0957
0.644 0.635 0.627 0.620 0.613
500 520 540 560 580
0.406 0.400 0.395 0.390 0.386
2000 2100 2200 2300 2400
0.255 0.251 0.247 0.244 0.248
8000 8200 8400 8600 8800
0.611 0.160 0.158 0.157 0.156
40,000 42,000 44,000 46,000 50,000
0.0941 0.0926 0.0912 0.0898 0.0874
150 155 160 165 170
0.606 0.599 0.583 0.586 0.581
600 620 640 660 680
0.382 0.378 0.374 0.370 0.366
2500 2600 2700 2800 2900
0.237 0.234 0.231 0.228 0.226
9000 9200 9400 9600 9800
0.155 0.154 0.153 0.152 0.150
0.905 0.898 0.892 0.585 0.880
175 180 185 190 195
0.575 0.570 0.565 0.560 0.555
700 720 740 760 780
0.363 0.359 0.356 0.353 0.350
3000 3100 3200 3300 3400
0.223 0.221 0.218 0.216 0.214
10,000 10,500 11,000 11,500 12,000
0.149 0.147 0.145 0.143 0.141
0.874 0.863 0.851 0.841 0.831
200 210 220 230 240
0.550 0.541 0.533 0.525 0.518
800 820 840 860 880
0.347 0.344 0.341 0.339 0.336
3500 3600 3700 3800 3900
0.212 0.210 0.208 0.206 0.205
12,500 13,000 13,500 14,000 14,500
0.139 0.137 0.135 0.134 0.132
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
DESIGN OF BEARINGS AND TRIBOLOGY
23.100
CHAPTER TWENTY-THREE
TABLE 23.46 Speed factor fn for roller bearings for us in Eq. (23-180) Speed, n, rpm
Speed factor, fn
10 11 12 13 14
1.435 1.395 1.359 1.326 1.297
15 16 17 18 19
Speed, n, rpm
fn ¼
Speed factor, fn
Speed, n, rpm
Speed factor, fn
Speed, n, rpm
Speed factor, fn
60 62 64 66 68
0.838 0.830 0.822 0.815 0.807
250 260 270 280 290
0.546 6.540 0.534 0.528 0.523
900 920 940 960 980
0.372 0.370 0.367 0.365 0.363
1.271 1.246 1.224 1.203 1.184
70 72 74 76 78
0.800 0.794 0.787 0.781 0.775
300 310 320 330 340
0.517 0.512 0.507 0.503 0.498
1000 1050 1100 1150 1200
20 21 22 23 24
1.166 1.149 1.133 1.118 1.104
80 82 84 86 88
0.769 0.763 0.758 0.753 0.747
350 360 370 380 390
0.494 0.490 0.486 0.482 0.478
25 26 27 28 29
1.090 1.077 1.065 1.054 1.0411
90 92 94 96 98
0.742 0.737 0.733 0.728 0.724
400 410 420 430 440
30 31 32 33 34
1.032 1.022 1.012 1.003 0.994
100 105 110 115 120
0.719 0.709 0.699 0.690 0.681
35 36 37 38 39
0.986 0.977 0.969 0.962 0.954
125 130 135 140 145
40 41 42 43 44
0.947 0.940 0.933 0.927 0.920
45 46 47 48 49 50 52 54 56 58
Speed, n, rpm
qffiffiffiffiffiffiffiffiffiffiffiffiffi 33 13 =n
10=3
Speed factor, fn
Speed, n, rpm
Speed factor, fn
4000 4100 4200 4300 4400
0.238 0.236 0.234 0.233 0.231
15000 15500 16000 16500 17000
0.160 0.158 0.157 0.156 0.154
0.361 0.355 0.350 0.346 0.341
4500 4600 4700 4800 4900
0.230 0.228 0.227 0.225 0.224
17500 18000 18500 19000 19500
0.153 0.152 0.150 0.149 0.148
1250 1300 1350 1400 1450
0.337 0.333 0.329 0.336 0.322
5000 5200 5400 5600 5800
0.222 0.220 0.217 0.215 0.213
20000 21000 22000 23000 24000
0.147 0.145 0.143 0.141 0.139
0.475 0.471 0.467 0.464 0.461
1500 1550 1600 1650 1700
0.319 0.316 0.313 0.310 0.307
6000 6200 6400 6600 6800
0.211 0.209 0.207 0.205 0.203
25000 26000 27000 28000 29000
0.137 0.136 0.134 0.133 0.131
450 460 470 480 490
0.458 0.455 0.452 0.449 0.447
1750 1800 1850 1900 1950
0.305 0.302 0.300 0.297 0.295
7000 7200 7400 7600 7800
0.201 0.199 0.198 0.196 0.195
30000 32000 34000 36000 38000
0.130 0.127 0.125 0.123 0.121
0.673 0.665 0.657 0.650 0.643
500 520 540 560 580
0.444 0.439 0.434 0.429 0.425
2000 2100 2200 2300 2400
0.293 0.289 0.285 0.281 0.274
8000 8200 8400 8600 8800
0.137 0.192 0.190 0.189 0.188
40000 42000 44000 46000 50000
0.119 0.117 0.116 0.114 0.111
150 155 160 165 170
0.637 0.631 0.625 0.619 0.613
600 620 640 660 680
0.420 0.416 0.412 0.408 0.405
2500 2600 2700 2800 2900
0.274 0.271 0.268 0.265 0.262
9000 9200 9400 9600 9800
0.187 0.185 0.184 0.183 0.182
0.914 0.908 0.902 0.896 0.891
175 180 185 190 195
0.608 0.603 0.598 0.593 0.589
700 720 740 760 780
0.401 0.398 0.395 0.391 0.388
3000 3100 3200 3300 3400
0.259 0.257 0.254 0.252 0.250
10000 10500 11000 11500 12000
0.181 0.178 0.176 0.173 0.171
0.896 0.875 0.865 0.856 0.847
200 210 220 230 240
0.584 0.576 0.568 0.560 0.553
800 820 840 860 880
0.385 0.383 0.380 0.377 0.375
3500 3600 3700 3800 3900
0.248 0.246 0.243 0.242 0.240
12500 13000 13500 14000 14500
0.169 0.167 0.165 0.163 0.162
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
DESIGN OF BEARINGS AND TRIBOLOGY
23.101
DESIGN OF BEARINGS AND TRIBOLOGY
Particular
Formula
TABLE 23-47a Values of radial factors X and thrust factors Y for deep groove ball bearings with increase In radial clearance Bearing clearance C3a
Normal Bearing Standard clearance
fo
Fa Co
0.3 0.5 0.9 1.6 3.0 6.0
Fa e Fr
Fa >e Fr
Fa e Fr
Bearing clearance C4a
Fa >e Fr
Fa e Fr
Fa >e Fr
e
X
Y
X
Y
e
X
Y
X
Y
e
X
Y
X
Y
0.22 0.24 0.28 0.32 0.36 0.43
1 1 1 1 1 1
0 0 0 0 0 0
0.56 0.56 0.56 0.56 0.56 0.56
2.0 1.8 1.6 1.4 1.2 1.0
0.32 0.35 0.39 0.43 0.48 0.54
1 1 1 1 1 1
0 0 0 0 0 0
0.46 0.46 0.46 0.46 0.46 0.46
1.70 1.56 1.41 1.27 1.14 1.00
0.40 0.43 0.45 0.48 0.52 0.56
1 1 1 1 1 1
0 0 0 0 0 0
0.44 0.44 0.44 0.44 0.44 0.44
1.40 1.31 1.23 1.16 1.08 1.00
a C3 , C4 Standard for a radial clearance that is larger than normal. Values of factor fa are given in Table 23-47b
For values of X and Y, refer to Table 23-39 and also to bearing tables given in FAG catalogue. For values of X and Y of deep groove ball bearings with increased radial clearance, refer to Table 23-47b.
LIFE ADJUSTMENT FACTORS An adjusted fatigue life equation for a reliability of (100-n) percent An approximate equation for adjusted factor a1 , which accounts for reliability, R, is calculated from the Weibull distribution. The adjusted fatigue life for non-conventional materials and operating conditions.
L10a ¼ a2 a3 L10
ð23-183Þ
where a2 ¼ life adjustment factor for materials ¼ 3 for radial ball bearings of good quality as per AFBMA ¼ 0.2 to 2.0 for normal bearing materials ¼ 2.0 for most common material, AISI 52100 a3 ¼ life adjustment factor for application operating conditions ¼ 1 for well and adequately lubricated bearings < 1 for other adverse lubricating conditions and temperatures. The standard does not yet include values of a3
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
DESIGN OF BEARINGS AND TRIBOLOGY
23.102
CHAPTER TWENTY-THREE
TABLE 23-47b Factor fo for deep groove ball bearings for use in Table 23-47a Factor fo Bore reference number
Bearing series 160
60
62
63
64
00 01 02 03 04 05 06 07
— — 13.9 14.3 14.9 15.4 15.2 15.6
12.4 13.0 13.9 14.3 13.9 14.5 14.8 14.8
12.1 12.2 13.1 13.1 13.1 13.8 13.8 13.8
11.3 11.1 12.1 12.2 12.1 12.4 13.0 13.1
— — — 10.9 11.0 12.1 12.2 12.1
08 09 10 11 12
15.9 15.9 16.1 16.1 16.3
15.2 15.4 15.6 15.4 15.5
14.0 14.1 14.3 14.3 14.3
13.0 13.0 13.0 12.9 13.1
12.2 12.1 12.2 12.2 12.3
13 14 15 16 17
16.4 16.2 16.4 16.4 16.4
15.7 15.5 15.7 15.6 15.7
14.3 14.4 14.7 14.6 14.7
13.2 13.2 13.2 13.2 13.1
12.3 12.1 12.2 12.3 12.3
18 19 20 21 22
16.3 16.5 16.4 16.3 16.3
15.6 15.7 15.9 15.8 15.6
14.5 14.4 14.4 14.3 14.3
13.9 13.9 13.8 13.7 13.8
12.2
24 26 28 30 32
16.4 16.4 16.4 16.4 16.4
15.9 15.8 16.0 16.0 16.0
14.8 14.5 14.8 15.2 15.2
13.5 13.6 13.6 13.7 13.9
34 36 38 40 44
16.4 16.3 16.4 16.3 16.3
15.7 15.6 15.8 15.6 15.6
15.3 15.3 15.0 15.3 15.2
13.9 13.9 14.0 14.1 14.1
48 52 56 60
16.4 16.4 16.4 16.4
15.8 15.7 15.9 15.7
15.2 15.2 15.3
14.2
64 68 72 76
16.4 16.3 16.4 16.5
15.9 15.8 15.9 15.9
TABLE 23-48 Life adjustment factor for reliability a1 Reliability R, %
Ln
Adjustment factor, a1
90 95 96 97 98 99
L10 L5 L4 L3 L2 L1
1 0.65 0.53 0.44 0.33 0.21
Note: These values of a1 and a2 have to be used judiciously and designers are advised to consult manufacturer’s Catalogue
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
DESIGN OF BEARINGS AND TRIBOLOGY DESIGN OF BEARINGS AND TRIBOLOGY
Particular
23.103
Formula
From Eq. (23-177a), an adjusted fatigue life equation taking into consideration adjustment factors a1 , a2 and a3 , and for a failure probability of n as per ISO 281
Lna ¼ a1 a2 a3
C F
m
¼ a1 a2 a3 L
where L in millions of revolutions Lhna ¼ a1 a2 a3 Lh
An adjusted fatigue life equation, which accounts for variation in vibration and shock, speed, environment, etc in addition to adjustment factors a1 , a2 and a3
ð23-184aÞ
ð23-184bÞ
where Lh in h C m L ¼ a1 a2 a3 Ka F
ð23-185Þ
where L in 106 revolutions Ka ¼ application factor taken from Table 23-49
From Eq. (23-186a), the basic equivalent load rating, which accounts for application factor Ka , and adjustment factors a1 , a2 and a3
C ¼ Ka F
L a1 a2 a3
1=m ð23-186Þ
where L in 106 revolutions
Fig. 23-54 shows the plot of relative life vs probability of failure in percent. L10 life (also called as B10 life or minimum life), which indicates a 10% probability of failure, i.e. 90% of the loaded bearings will survive beyond this life, is taken as reference. L50 in Fig. 23-54 indicates median life with a 50% probability of failure, which is also known as average life. From Fig. 23-54 it can be seen that L50 5L10 , which indicates only 50% of the bearings will survive this longer life. For life curves of ball bearings as per SKF and New Departure (ND) and Needle-bearings
Refer to Fig. 23-55
TABLE 23-49 Load application factor Ka for use in Eqs. (23-185) and (23-186) Operating conditions
Smooth operation free from shock Normal operation Operation accompanied by shock and vibration
Applications
Ka
Precision gearing Commercial gearing Applications with poor bearing seals Machinery with no impact: Electric motors, machine tools, air conditioners Machinery with light impact: Air blowers, compressors, elevators, cranes, paper making machines Machinery with moderate impact: Construction machines crushers, vibration screens, rolling mills
1.0–1.1 1.1–1.3 1.2
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
1–1.2 1.2–1.5 1.5–3.0
DESIGN OF BEARINGS AND TRIBOLOGY
23.104
CHAPTER TWENTY-THREE
20
Relative fatigue life
15
10
L50
5
L10
1 0
10
20
30 40 50 60 70 Probability of failure, percent
80
90
100
FIGURE 23-54 Typical life distribution in rolling bearings. (Courtesy: SKF Industries, Inc.)
2•5 2•0
Load Factor Kl
1•5 1•0
ND
0•7
T-Ne edle
0•5 0•4
SKF
0•3 0•2 500
1,000
2,000 3,000 5,000 10,000 Life of Bearing, Hours
20,000
50,000
FIGURE 23-55 Life curves of ball and needle bearings.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
DESIGN OF BEARINGS AND TRIBOLOGY DESIGN OF BEARINGS AND TRIBOLOGY
Particular
23.105
Formula
BASIC DYNAMIC LOAD RATING OF BEARINGS AS PER INDIAN STANDARDS Radial Ball Bearing The basic dynamic load rating for radial and angular contact ball bearings.
Cr ¼ fc ði cos Þ0:7 Z2=3 ðDw Þ1:8
ð23-187Þ
for Dw 25:4 mm where Cr in N, Dw in mm Cr ¼ 3:647fc ði cos Þ0:7 Z2=3 ðDw Þ1:4
ð23-188Þ
for Dw > 25:4 mm where Cr in N, Dw in mm For values of factor fc refer to Table 23-50. TABLE 23-50 Values of factor fc for radial ball bearings for use in Eqs. (23-187) and (23-188) Factor, fc Dw cos Dpw
Single row radial contact groove ball bearings and single and double rowangular contact groove ball bearings
Double row radial contact groove ball bearings
Single row and double row selfaligning ball bearings
Single row radial contact separable ball bearings (magneto bearings)
0.05 0.06 0.07
46.7 49.1 51.1
44.2 46.5 48.4
17.3 18.6 19.9
16.2 17.4 18.5
0.08 0.09 0.10
52.8 54.3 55.5
50.0 51.4 52.6
21.1 22.3 33.4
19.5 20.6 21.5
0.12 0.14 0.16
57.5 58.8 59.6
54.5 55.7 56.5
25.6 27.7 29.7
23.4 25.3 27.1
0.18 0.20 0.22
59.9 59.9 59.6
56.8 56.8 56.5
31.7 33.5 35.2
28.8 30.5 32.1
0.24 0.26 0.28
59.0 58.2 57.1
55.9 55.1 54.1
36.8 38.2 39.4
33.7 35.2 36.6
0.30 0.32 0.34
56.0 54.6 53.2
53.0 51.8 50.4
40.3 40.9 41.2
37.8 38.9 39.8
0.36 0.38 0.40
51.7 50.0 48.4
48.9 47.4 45.8
41.3 41.0 40.4
40.4 40.8 40.9
Note: Values of fc for intermediate values of D0w cos =Dpw are obtained by linear interpolation. IS: 3824 (Part 1)–1983
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
DESIGN OF BEARINGS AND TRIBOLOGY
23.106
CHAPTER TWENTY-THREE
Particular
The approximate rating life in millions of revolutions for ball bearing The equivalent radial load for radial and contact ball bearings under combined constant radial and axial loads The basic rating life for a radial ball bearing which is based statistically
Formula
Ln ¼
C P
3 ð23-189Þ
Pr ¼ XFr þ Fa
ð23-190Þ
For values of X and Y refer to Table 23-51. L10 ¼
Cr Pr
3 ð23-191Þ
where L10 ¼ basic rating life in millions of revolutions (i.e., the number of revolutions resulting in 10% failure). The values of Cr and Pr shall be calculated in accordance with Eqs. (23-187), (23-188), and (23-190).
Adjusted rating life The adjusted rating life for a reliability of (100-n) percent
Ln ¼ a1 L10
ð23-192Þ
The adjusted rating life for non-conventional materials and operating conditions
L10a ¼ a2 a3 L10
ð23-193Þ
The adjusted rating life for non-conventional materials and operating conditions, and for a reliability of (100-n) percent.
Lna ¼ a1 a2 a3 L10
ð23-194Þ
Refer to Table 23-48 for a1 values
Radial roller bearings The basic dynamic radial load rating of radial roller bearings
Cr ¼ fc ðiLwe cos Þ7=9 Z3=4 D29=27 we
ð23-195Þ
where Cr in N, Lwe and Dwe in mm For values of factor fc refer to Table 23-52.
The equivalent radial load for radial roller bearings with 6¼ 08 under combined constant radial and axial loads
Pr ¼ XFr þ YFa
ð23-196Þ
For values of X and Y refer to Table 23-53.
The equivalent radial load for radial roller bearings with 6¼ 08 and subjected to radial load only
P r ¼ Fr
The basic rating life in millions of revolutions for radial roller bearings
L10 ¼
ð23-197Þ Cr Pr
10=3 ð23-198Þ
The values of Cr and Pr are calculated in accordance with Eqs. (23-195) to (23-197). For adjusted rating life for roller bearings
Refer to Eqs. (23-192) to (23-194) with suitable modification.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
DESIGN OF BEARINGS AND TRIBOLOGY
TABLE 23-51 Factors X and Y for radial ball bearings for use in Eq. (23-190) Single-row bearings Fa e Fr ‘Relative axial load’a
Double-row bearings
Fa e Fr
Fa e Fr
Fa e Fr
X
Y
X
Y
X
Y
X
Y
e
1
0
0.56
2.30 1.99 1.71 1.55 1.45 1.31 1.15 1.04 1.00
1
0
0.56
2.30 1.99 1.71 1.55 1.45 1.31 1.15 1.04 1.00
0.19 0.22 0.26 0.28 0.30 0.34 0.38 0.42 0.44
Radial contact groove ball bearings Fa Fa Cor i ZD2w 0.014 0.028 0.056 0.084 0.11 0.17 0.28 0.42 0.56
0.172 0.345 0.689 1.30 1.38 2.07 3.45 5.17 6.89
Angular contact groove ball bearings iFa Fa Cor ZD2w 58
0.014 0.028 0.056 0.085 0.11 0.17 0.28 0.42 0.56
0.172 0.345 0.689 1.03 1.38 2.07 3.45 5.17 6.89
1
0
For this type use the X, Y and e values applicable to single row radial contact groove ball bearings
1
2.78 2.40 2.07 1.87 1.75 1.58 1.39 1.26 1.21
0.78
3.74 3.23 2.78 2.52 2.36 2.13 1.87 1.69 1.63
0.23 0.26 0.30 0.34 0.86 0.40 0.45 0.50 0.52
108
0.014 0.029 0.057 0.086 0.11 0.17 0.29 0.43 0.57
0.172 0.345 0.689 1.03 1.38 2.07 3.45 5.17 6.89
1
0
0.46
1.88 1.71 1.52 1.41 1.34 1.23 1.10 1.01 1.00
1
2.18 1.98 1.76 1.63 1.55 1.42 1.27 1.17 1.16
0.75
3.06 2.78 2.47 2.29 2.18 2.00 1.79 1.64 1.63
0.29 0.32 0.36 0.38 0.40 0.44 0.49 0.54 0.54
158
0.015 0.029 0.058 0.087 0.12 0.17 0.29 0.44 0.58
0.172 0.345 0.689 1.03 1.38 2.07 3.45 5.17 6.89
1
0
0.46
1.47 1.40 1.30 1.23 1.19 1.12 1.02 1.00 1.00
1
1.65 1.57 1.40 1.38 1.34 1.26 1.14 1.12 1.12
0.72
2.39 2.28 2.11 2.00 1.93 1.82 1.66 1.63 1.63
0.38 0.40 0.43 0.46 0.47 0.50 0.55 0.56 0.56
208 258 308 358 408 458
— — — — — —
— — — — — —
1
0
0.43 0.41 0.39 0.37 0.35 0.33
1.00 0.87 0.76 0.66 0.57 0.50
1
1.09 0.92 0.78 0.66 0.55 0.47
0.70 0.67 0.63 0.60 0.57 0.54
1.63 1.41 1.24 1.07 0.93 0.81
0.07 0.68 0.80 0.95 1.14 1.34
1
0
0.40
0.4 cot
1
0.42 cot 0.65
0.65 cot 1.5 tan
1 Single row radial contact separable ball bearings (magnetic bearings)
0
0.5
2.5
—
—
—
Self-aligning ball bearings
—
0.2
Note: Values of X, Y and e for intermediate ‘relative axial loads’ and/or contact angles are obtained by linear interpolation. IS: 3824 (Part 1), 1983. a
Permissible maximum value depends on bearing design (internal clearance and raceway groove depth).
23.107 Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
DESIGN OF BEARINGS AND TRIBOLOGY
23.108
CHAPTER TWENTY-THREE
Particular
TABLE 23-52 Values of fc for radial roller bearings for use in Eq. (23.195) Dw cos Dpw
fc
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.12 0.14 0.16 0.18 0.20 0.22 0.24 0.26 0.28 0.30
52.1 60.8 66.5 70.7 74.1 76.9 79.2 81.2 82.8 84.2 86.4 87.7 88.5 88.8 88.7 88.2 87.5 86.4 85.2 83.8
Formula
TABLE 23-53 Values of factors X and Y for radial roller bearings for use in Eq. (23-196) Fa e Fr
Fa >e Fr
Bearing type
X
Y
X
Y
e
Single-row 6¼ 0 Double-row 6¼ 0
1
0
0.4
0:4 cot
1:5 tan
1
0:45 cot
0.67
0:67 cot
1:5 tan
IS: 3824 (Part 2) 1983.
Note: Values of fc for intermediate value of Dw cos =Dw are obtained by linear interpolation. IS: 3824 (Part 2) 1983.
THRUST BEARINGS Ball bearings The basic dynamic axial load rating for a single-row, single- or double-direction thrust ball bearing
ðCa Þ ¼ 908 ¼ fc Z2=3 D1:8 w
ð23-199Þ
for Dw 25:4 mm ðCa Þ 6¼ 908 ¼ fc ðcos Þ0:7 tan Z2=3 D1:8 w
ð23-200Þ
for Dw 25:4 mm ðCa Þ ¼ 908 ¼ 3:647fc Z2=3 D1:4 w
ð23-201Þ
for Dw > 25:4 mm ðCa Þ 6¼ 908 ¼ 3:647fc ðcos Þ0:7 tan Z2=3 D1:4 ð23-202Þ w for Dw > 25:4 mm where Ca in N, Dw in mm For various values of fc refer to Table 23-54. Z ¼ number of balls carrying load in one direction.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
DESIGN OF BEARINGS AND TRIBOLOGY DESIGN OF BEARINGS AND TRIBOLOGY
Particular
23.109
Formula
TABLE 23-54 Values of factor fc for thrust ball bearings for use in Eqs. (23-199) to (23-202) fc
Dw Dpw
fc ¼ 908
Dw cos Dpw
¼ 458
¼ 608
¼ 758
0.01 0.02 0.03
36.7 45.2 51.1
0.01 0.02 0.03
42.1 51.7 58.2
39.2 49.1 54.2
37.3 45.9 51.7
0.04 0.05 0.06
55.7 59.5 62.9
0.04 0.05 0.06
63.3 67.3 70.7
58.9 61.6 65.8
56.1 59.7 62.7
0.07 0.08 0.09
65.8 68.5 71.0
0.07 0.08 0.09
73.5 75.9 78.0
68.4 70.7 72.6
65.2 67.3 69.2
0.10 0.12 0.14
73.3 77.4 81.1
0.10 0.12 0.14
79.7 82.3 84.1
74.2 76.6 78.3
70.7
0.16 0.18 0.20
84.4 87.4 90.2
0.16 0.18 0.20
85.1 85.5 85.4
79.2 79.6 79.5
0.22 0.24 0.26
92.8 95.3 97.6
0.22 0.24 0.26
84.9 84.0 82.8
0.28
99.8
0.28
81.3
0.30
101.9
0.30
79.6
0.32
103.9
0.34
105.8
Note: For thrust bearings > 458, values for ¼ 458 are shown to permit interpolation of values for between 458 and 608. IS: 3824 (Part 3) 1983
Bearings with two or more rows of balls The basic dynamic axial load rating for thrust ball bearings with two or more rows of similar balls carrying load in the same direction
Ca ¼ ðZ1 þ Z2 þ þ Zn Þ " Z1 10=3 Z2 10=3 þ Ca1 Ca2 # 3=10 Zn 10=3 þ þ Can
a
ð23-203Þa
Note: The designers or bearing users are advised to refer to catalogues or standards in this regard or the bearing users should consult the bearing manufacturers regarding the evaluation of equivalent load and life in case where bearing with ¼ 08 are subjected to an axial load. The ability of radial roller bearings with ¼ 08 to support axial loads varies considerably with bearing designer execution.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
DESIGN OF BEARINGS AND TRIBOLOGY
23.110
CHAPTER TWENTY-THREE
Particular
Formula
The load ratings Ca1 ; Ca1 ; . . . ; Can for the rows with Z1 ; Z2 ; . . . ; Zn balls are calculated from appropriate single row bearing formulae from Eqs. (23-199) to (23-202), Values of fc for Dw =Dpw or ðDw cos Þ= DPW and/or contact angle other than shown in Table 23-54 are obtained by linear interpolation or extrapolation.
Dynamic equivalent axial load Pa ¼ XFr þ YFa
The equivalent load for thrust ball bearings with 6¼ 908 under combined constant axial and radial loads
ð23-204Þ
For values of X and Y refer to Table 23-55. Pa ¼ Fa
The equivalent axial load for thrust bearing with ¼ 908 which can support axial loads only
ð23-205Þ
Basic rating life
The basic rating life in millions of revolutions for a thrust ball bearings
L10 ¼
Ca Pa
3 ð23-206Þ
The values of Ca and Pa are calculated in accordance with Eqs. (23-199) to (23-205).
TABLE 23-55 Values of factors X and Y for thrust ball bearings for use in Eq. (23-204) Single direction bearings a
Double direction bearings
Fa >e Fr
Fa e Fr
Fa >e Fr
X
Y
X
Y
X
Y
e
458 508 558 608 658 708 758 808 858
0.66 0.73 0.81 0.92 1.06 1.28 1.66 2.43 4.80
1
1.18 1.37 1.60 1.90 2.30 2.90 3.89 5.86 11.75
0.59 0.57 0.56 0.55 0.54 0.53 0.52 0.52 0.51 10 1 1 sin 13 3
0.66 0.73 0.81 0.92 1.06 1.28 1.66 2.43 4.80
1
1.25 1.49 1.79 2.17 2.68 3.43 4.67 7.09 14.29
1
1:25 tan
6¼ 908
2 1:25 tan 1 sin 3
1
20 1 tan 1 sin 13 3
2 1:25 tan 1 sin 3
Note: For thrust bearings > 458. Values for ¼ 458 are shown to permit interpolation of values for between 458 and 508. a Fa =Fr e is unsuitable for single direction bearings. IS: 3824 (Part 3) 1983.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
DESIGN OF BEARINGS AND TRIBOLOGY
23.111
DESIGN OF BEARINGS AND TRIBOLOGY
Particular
Formula
Adjusted rating life The adjusted rating life of (100-n) percent
Ln ¼ a1 L10
ð23-192Þ
Refer to Table 23-48 for values of factor a1 . For other adjusted rating life with modification if required
Refer to Eqs. (23-193) to (23-194).
Roller bearings The basic dynamic axial load rating for single row, single- or double-direction thrust roller bearing
7=9 3=4 29=27 Z Dwe ðCa Þ ¼ 908 ¼ fc Lwe
ð23-207Þ
ð23-208Þ ðCa Þ 6¼ 908 ¼ fc ðLwe cos Þ7=9 tan Z3=4 D29=27 we where Ca in N, Lwe and Dwe in mm For values of factor fc refer to Table 23-56. Z ¼ number of rollers carrying load in one direction. TABLE 23-56 Values of factor fc for thrust roller bearings for use in Eqs. (23-207) and (23-208) Dwc Dpw
fc
Factor fc
¼ 908
Dw cos Dpw
¼ 508
0.01 0.02 0.03
105.4 122.9 134.5
0.01 0.02 0.03
109.7 127.8 139.5
107.1 124.7 136.2
105.6 123.0 134.3
0.04 0.05 0.06
143.4 150.7 156.9
0.04 0.05 0.06
148.3 155.2 160.9
144.7 151.5 157.0
142.8 149.4 154.9
0.07 0.08 0.09
162.4 167.2 171.7
0.07 0.08 0.09
165.6 169.5 172.8
161.6 165.5 168.7
159.4 163.2 166.4
0.10 0.12 0.14
175.7 183.0 189.4
0.10 0.12 0.14
175.5 179.7 182.3
171.4 175.4 177.9
169.0 173.0 175.5
0 16 0.18 0.20
195.1 200.3 205.0
0.16 0 18 0.20
183.7 184.1 183.7
179.3 179.7 179.3
0.22 0.24 0.26
209.4 213.5 217.3
0.22 0.24 0.26
182.6 180.9 178.7
0.28 0.30
220.9 224.3
a
¼ 658
b
a Applicable for 458 < < 608; b Applicable for 608 < < 758; c Applicable for 758 < < 908 Note: Values of fc for intermediate values of Dwc =Dpw or Dw cos =Dpw are obtained by linear interpolation. IS: 3824 (Part 4) 1983.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
¼ 808
c
DESIGN OF BEARINGS AND TRIBOLOGY
23.112
CHAPTER TWENTY-THREE
Particular
Formula
Bearing with two or more rows of rollers The basic dynamic axial load rating for thrust roller bearings with two or more rows of rollers carrying load in the same direction TABLE 23-57 Values of factors X and Y for thrust roller bearings for use in Eqs. (23-210) Fa e Fr Bearings type
X
Single-direction a 6¼ 908 Double-direction 1.5 tan 6¼ 908
Fa >e Fr Y
Ca ¼ ðZ1 Lwe1 þ Z2 Lwe2 þ þ Zn Lwen Þ " Z1 Lwe1 9=2 Z2 Lwe2 9=2 þ Ca1 Ca2 þ þ
Zn Lwen Can
9=2 #2=9 ð23-209Þ
where Ca in N, Lwe and Dwe in mm
Y
X
e
a
tan 1
1.5 tan
0.67 tan 1
1.5 tan
The load ratings Ca1 ; Ca2 ; . . . ; Can for the rows with Z1 ; Z2 ; . . . ; Zn rollers of length Lwe1 ; Lwe2 ; . . . ; Lwen are calculated from the appropriate single row bearing Eqs. (23-207) and (23-208).
* Fa =Fr e is unsuitable for single-direction bearing. IS: 3824 (Part 4) 1983.
The equivalent axial load for thrust roller bearings when 6¼ 908 under combined constant axial and radial load The equivalent axial load for thrust roller bearings with ¼ 908 which can support only axial load The basic rating life in millions of revolutions for thrust roller bearings
Pa ¼ XFr þ YFa
ð23-210Þ
For values of X and Y refer to Table 23-57. Pa ¼ Fa L10 ¼
ð23-211Þ Ca Pa
10=3 ð23-212Þ
The values of Ca and Pa are calculated in accordance with Eqs. (23-207), (23-208), and (23-210).
Adjusted rating life The Eqs. (23-192), (23-193) and (23-194) for adjusted rating life with appropriate modification to suit the roller thrust bearings are repeated here
Ln ¼ a1 L10
ð23-192Þ
L10a ¼ a2 a3 L10
ð23-193Þ
Lna ¼ a1 a2 a3 L10
ð23-194Þ
Variable bearing load and speed The mean affective load Fm under varying load and varying speed n1 , n2 , n3 ; . . . ; ni at which the individual loads F1 , F2 , F3 ; . . . ; Fi act.
rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi F1m n1 þ F2m n2 þ F3m n3 þ þ Fim ni Fm ¼ n m
rP ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ðFi Þm ni m Fm ¼ n
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð23-213aÞ ð23-213bÞ
DESIGN OF BEARINGS AND TRIBOLOGY
23.113
DESIGN OF BEARINGS AND TRIBOLOGY
Particular
Formula
where F1 ; F2 ; F3 ; . . . ; Fi ¼ constant loads among series of i loads during n1 ; n2 ; n3 ; . . . ; ni revolutions. ni ¼ number of revolutions at which Fi load operates n ¼ total number of revolutions in a complete cycle ¼ n1 þ n2 þ n3 þ . . . þ ni , F1 ; F2 ; F3 ; . . . ; Fi act
during
which
loads
m ¼ exponent mi ¼ 3 for ball bearings mi ¼ 10 3 for roller bearings Fmin þ 2max 3
The mean effective load Fm under linearly varying load from minimum load Fmin to maximum load Fmax at constant speed n.
Fm ¼
The equivalent dynamic load for the varying load which acts in a radial direction only for radial bearings and in a axial direction only for thrust bearing.
P ¼ Fm
ð23-215Þ
In the direction and magnitude of load changes with time then the equivalent loads P1 , P2 , P3 ; . . . ; must be calculated for the individual time periods n1 , n2 , n3 using the general equation.
P ¼ XFr þ YFa
ð23-216Þ
The mean equivalent load Pm by substituting the individual values of P1 , P2 , P3 ; . . . ; obtained from equivalent load’s Eq. (23-119).
ð23-214Þ
rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi m m Pm 1 n1 þ P2 n2 þ P3 n3 þ n where
Pm ¼
m
ð23-217Þ
m ¼ exponent ¼ 3 for ball bearings
The life of a bearing under variable load and variable speed, taking into consideration life adjustment factors a1 , a2 , a3 and application factor Ka The basic load rating for a required bearing life in case of variable load and variable speed, factor Ka and a1 , a2 , a3
¼ 10 3 for roller bearings m C 1 L ¼ a1 a2 a3 Ka F1m n1 þ F2m n2 þ F3m n3 þ . . . C ¼ Ka ðF1m n1 þ F2m n2 þ F3m n3 þ . . .Þ
L a1 a2 a3
ð23-218Þ 1=m ð23-219Þ
where L is in millions of revolutions; C and F in N; n1 ; n2 ; n3 ; . . . are rotational speeds in rpm under loads F1 ; F2 ; F3 ; . . . m ¼ 3 for ball bearings ¼ 10 3 for roller bearings
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
DESIGN OF BEARINGS AND TRIBOLOGY
23.114
CHAPTER TWENTY-THREE
TABLE 23-58 Index fL of dynamic stressing for use in Eq. (23-180) Application
fL
Motor vehicles Motorcycles Light cars Heavy cars Light trucks or lorries Heavy trucks or lorries Buses Tractors Tracked vehicles
1.4–1.9 1.6–2.1 1.7–2.2 1.7–2.2 2.0–2.6 2.0–2.6 1.6–2.2 2.1–2.7
Electric motors For household appliances Small standard motors Medium-sized standard cars Large motors Traction motors
1.5–2.0 2.5–3.5 3.0–4.0 3.5–4.5 3.0–4.0
Railbound vehicles Axle boxes for haulage trolleys Trams Railway coaches Freight cars Overburden removal cars Outer bearings of locomotives Inner bearings of locomotives Gears
3.0–4.0 4.5–5.5 4.0–5.0 3.5–4.0 3.5–4.0 4.0–5.5 4.5–5.5 3.5–4.5
Rolling mills Neck bearings Gears
2.0–2.5 3.0–5.0
Ship building Ship propeller thrust blocks Ship propeller shaft bearings Large marine gears
2.9–3.6 6.0 2.6–4.0
General engineering Small universal gears Medium-sized universal gears Small fans
2.5–3.5 3.0–4.0 2.5–3.5
Application
fL
Medium-sized fans 3.0–4.5 Large fans 4.5–5.5 Centrifugal pumps 2.5–4.5 Centrifuges 3.0–4.0 Winding cable sheaves 4.5–5.0 Belt conveyor idlers 3.0–4.5 Conveyor drums 4.5–5.5 Shovels and reclaimers 6.0 Crushers 3.0–3.5 Beater mills 3.5–4.5 Tube mills 6.0 Vibrating screens 2.5–2-8 Vibrating rolls and large out-of-balance exciters 1.6–2.0 Vibrators 1.0–1.5 Briquette presses 4.5–5.0 Large mechanical stirrers 3.5–4.0 Rotary furnace rollers 4.5–5.0 Flywheels 3.4–4.0 Printing machines 4.0–4.5 Papermaking machines Wet sections Dry sections Refiners Calendars
5.0–6.0 5.0–6.0 4.5–4.6 4.0–4.5
Centrifugal casting machines
3.4–4.0
Textile machines
3.6–4.7
Machine tools Lathes, boring and milling machines Grinding, lapping, and polishing machines
2.7–4.5 2.7–4.5
Woodworking machines Milling cutters and cutter shafts Saw mills (con rods)
3.0–4.0 2.8–3.3
Machines for working of wood and plastics
3.0–4.0
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
DESIGN OF BEARINGS AND TRIBOLOGY DESIGN OF BEARINGS AND TRIBOLOGY
Particular
23.115
Formula
Reliability The reliability (Ri ) of a group of i bearings
The expression for reliability (R) as per Weibull threeparameter
Ri ¼ ðRÞi
ð23-220Þ
where R ¼ reliability of each bearing " " # # x xo b L=L10 xo b ¼ exp R ¼ exp xo xo ð23-221aÞ
Another Weibull three-parameter equation for reliability (R) for bearings.
" # ðL=L10 Þ 0:02 1:40 R ¼ exp 4:91
The reliability (R) of bearing using Weibull twoparameter for tapered roller bearings.
" # " # x b L=L10 1:5 ¼ exp ð23-222aÞ R ¼ exp 4:48
ð23-221bÞ
where x ¼ life measure xo ¼ guaranteed values of life measure ¼ Weibull characteristic of life measure
Another form of reliability (R) equation for bearing using Weibull two-parameter
b ¼ Weibull exponent/shape parameter " # L b R ¼ exp mL10
ð23-222bÞ
where R ¼ reliability corresponding to life L L10 ¼ rating life ðR ¼ 0:90Þ Weibull two-parameter equation for reliability is obtained from Eq. (23-225a) by putting b ¼ 1.17 and ¼ 6.84.
m ¼ scale constant " 1:17 # L R ¼ exp 6:84L10
Weibull equation for the distribution of bearing rating life based on reliability.
L ¼ L10
The relation between the design or required values and the dynamic load rated or catalog values (Cr ) according to the Timken Engineering is given by
Cr ¼ Fr
lnð1=RÞ lnð1=R10 Þ
"
Ld Lr
ð23-223Þ
1=b
nd nr
ð23-224Þ #1=m ð23-225Þ
where subscripts d and r stand for design and rated values Cr ¼ basic load capacity or dynamic load rating corresponding to Lr hours of L10 life at the speed nr in rpm, kN
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
DESIGN OF BEARINGS AND TRIBOLOGY
23.116
CHAPTER TWENTY-THREE
Particular
Formula
Fr ¼ actual radial bearing load carried for Ld hours of L10 life at the speed nd in rpm, kN m ¼ an exponent which varies from 3 to 4 "
The basic dynamic capacity or specific dynamic capacity of bearing corresponding to any desired life L at the reliability R
Cr ¼ Fr
Ld Lr
nd nr
1 6:84
#1=m
1 ½lnð1=RÞ1=1:17m ð23-226Þ
Another equation connecting catalog radial load rating (Fr ), the design radial load (Fd ) and reliability (R).
Cr ¼ Fd
1=m
Ld nd =Lr nr 0:02 þ 4:439½lnð1=RÞ1=1:483
ð23-227Þ
where Cr ¼ the catalog radial load rating corresponding to Lr hours of life at the rated speed nr in rpm, kN Fd ¼ the design radial load corresponding to the required life of Ld hours at a design speed of nd in rpm, kN R ¼ reliability
Roller bearing, fL 1.00
3
2
0.70
n=
10
1
0.7
.
m r.p.
0.70
20 50 70 100
0.40 Roller bearing, P C
0.50
30
0.50
0.40 0.30
200 300 500 700 0 100
0.30
0.20
000
2
0.20
1.00
0
300
0 500 00 70 00 100
0.10
000
0.10
20 00 300
0.07
0.07
0.05 5
4
3
2 Ball bearing, fL
1
0.7
FIGURE 23-56 Selection of bearing size.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
Ball bearing, P C
4
DESIGN OF BEARINGS AND TRIBOLOGY
THE EQUIVALENT DYNAMIC LOAD FOR ANGULAR CONTACT BALL BEARINGS B (a) Direct Mounting or Fronts of Bearings Fa Facing each others
A
FrA
FrB
B
A
(b) Indirect Mounting or Backto-back Mounting
Fa FrA
FrB
FIGURE 23-57 Angular contact ball bearings mounted on a single shaft. Thrust load to be used in equivalent load calculation Condition of load
Bearing A (Fig. 23-57)
Bearing B (Fig. 23-57)
FrB FrA YB YA
—
Fa þ 0:5
FrA YA
(23-228)
—
Fa þ 0:5
FrA YA
(23-229)
FrB FrA > YB YA F F Fa > 0:5 rB rA YB YA FrB FrA > YB YA F F Fa 0:5 rB rA YB YA
0:5
FrB Fa YB
—
(23-230)
Where thrust factors are: Y ¼ 0:57 for Series 72B (Series 02) and 73B (Series 03); Y ¼ 1:19 for Series LS AC and MS AC; Y ¼ 0:87 for Series 173 and 909; Y ¼ 0:66 for Fa =Fr 0:95 and Y ¼ 1:07 for Fa =Fr > 0:95 for Series 33.
Fraction of basic dynamic capacity, C’ C
1 0.9 0.8 0.7 0.6
ball bearings roller bearings
0.5 0.4 0.3 0.01
0.02 0.04 0.08 0.03 0.06 0.1
0.2 0.30.4 0.6 0.81
2
3 4
6 8 10
Probability of failure, F(percent)
FIGURE 23-58 Reduction in life for reliabilities greater than 90%. (Courtesy: Tedric A Harris, Predicting Bearing Reliability, Machine Design, Vol. 35, No. 1, Jan. 3, 1963, pp. 129–132)
23.117 Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
DESIGN OF BEARINGS AND TRIBOLOGY
23.118
CHAPTER TWENTY-THREE
Particular
Formula
An expression for tapered roller bearings connecting catalog radial load rating (Fr ), the design radial load (Fd ) and reliability
Cr ¼ Fd
The radial equivalent or effective load when the cup rotates in case of tapered roller bearing (Fig. 23-50)
Fr ¼ 1:25Fr
The thrust component of pure radial load (Fr ) due to the tapered roller
Fan ¼
Ld nd =Lr nr
3=10
4:4½lnð1=RÞ1=1:5
ð23-231Þ ð23-232Þ
where Fr is the calculated radial load, kN 0:47Fr K where
K¼
ð23-233Þ
radial rating of bearing thrust rating of bearing
¼ 1:5 for radial bearings ¼ 0:75 for steep-angle bearings The net thrust on the tapered roller bearing when the induced thrust (Far ) is deducted from the applied thrust (Faa )
Fnt ¼ Faa Far
ð23-234Þ
0:47Fr K 0:47Fr Fe ¼ Fr þ K Faa K
ð23-235Þ
Fe ¼ 0:53Fr þ KFnt 0:47Fr Fe ¼ 1:25Fr þ K Faa K
ð23-237Þ
Fe ¼ 0:78Fr þ KFnt
ð23-239Þ
Fnt ¼ Faa
The radial equivalent load when the cup rotates in case of tapered roller bearing (Fig. 23-50)
The radial equivalent load when the cone rotates in case of tapered roller bearing (Fig. 23-50)
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð23-236Þ
ð23-238Þ
DESIGN OF BEARINGS AND TRIBOLOGY DESIGN OF BEARINGS AND TRIBOLOGY
Particular
23.119
Formula
THE EQUIVALENT DYNAMIC LOAD FOR TAPERED ROLLER BEARINGS A (a) Indirect Mounting or Backs of Bearings Fo Facing each other
B
B
A
Fo FrA
FrA
FrB
FrB
(b) Direct Mounting or Fronts of Bearings Facing each other
FIGURE 23-59 Two taper roller bearings mounted on a single shaft.
Thrust load to be used in equivalent load calculation Condition of load
Bearing A (Fig. 23-59)
Bearing B (Fig. 23-59)
FrB FrA YB YA
—
Fa þ 0:5
FrA YA
(23-240)
—
Fa þ 0:5
FrA YA
(23-241)
FrB FrA > YB YA F F Fa > 0:5 rB rA YB YA FrB FrA > YB YA F F Fa 0:5 rB rA YB YA
0:5
FrB Fa YB
—
(23-242)
The thrust factors Y and Ye are taken from Table 23-39 and 23-47a.
The radial equivalent load on bearing A according to Timken Engineering Journal (Fig. 23-59) The radial equivalent load on bearing B according to Timken Engineering Journal (Fig. 23-59)
0:46FrB FaA ¼ 0:4FrA þ KA Fa þ KB FeB ¼ 0:4FrB þ KB
0:47FrA Fa KA
ð23-243Þ
ð23-244Þ
DIMENSIONS, BASIC LOAD RATING CAPACITY, FATIGUE LOAD LIMIT AND MAXIMUM PERMISSIBLE SPEED OF ROLLING CONTACT BEARINGS Deep groove ball bearings—Series 02, Series 03, Series 04
Refer to Tables 23-60, 23-61, and 23-62 respectively.
Self-aligning and deep groove ball bearings—Series 02, Series 03, Series 22 (FAG) and Series 23 (FAG)
Refer to Tables 23-63, 23-64, 23-65 and 23-66 respectively.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
DESIGN OF BEARINGS AND TRIBOLOGY
23.120
CHAPTER TWENTY-THREE
Particular
Formula
Single row angular contact ball bearings—Series 02 and Series 03
Refer to Tables 23-67 and 23-68.
Double row angular contact ball bearings—Series 33 (FAG)
Refer to Table 23-69.
Cylindrical roller bearings—Series 02, Series 03, Series 04, Series NU 22 (FAG), Series NU 23 (FAG)
Refer to Tables 23-70, 23-71, 23-72, 23-73, and 23-74.
Tapered roller bearings—Series 322, Series 02 (22) and Series 03 (23)
Refer to Tables 23-75, 23-76, 23-76A, 23-76B and 2377.
Single thrust ball bearings—Series 11, Series 12, Series 13 and Series 14
Refer to Tables 23-78, 23-79, 23-80, and 23-81.
Double thrust ball bearing-Series 522 (FAG)
Refer to Table 23-82.
Selection of bearing size
Refer to Table 23-83.
NEEDLE BEARING LOAD CAPACITY For various types of needle roller bearings and for some of their characteristics
Refer to Table 23-59.
The capacity of needle bearing at 3000 h average life
Zld Cn ¼ 1:76 107 p 3 ffiffiffiffi0 n
ð23-245Þ
where Cn in N, l, and d in m, and n0 in rps The load capacity of needle bearing based on the projected area of the needle-rollers
Cn ¼ 5:33
Lðdi þ dr Þ p 3 ffiffiffiffi0 n
ð23-246Þ
where Cn in N, l di ,and dr in m, and n0 in rps The load capacity of needle bearing is also calculated from formula
Cn ¼ Kh Kl pldi
ð23-247Þ
For hardness factors Kh refer to Table 23-83 and for life factor Kl refer to Fig. 23-55.
PRESSURE The pressure for wrist pin rocker arm and similar oscillating mechanism is given by
P ¼ 34:32 MPa
The rotary motion pressure may be computed from the relation
2:86 106 P¼ p 3 ffiffiffiffiffiffiffiffiffi0ffi D1 n
ð23-248Þ
where P in Pa, D1 in m, and n0 in rps Check for total circumferential clearance from formula
c ¼ ðdi þ dr Þ Zdr
For dimensions, design data and sizes for needle bearings.
Refer to Tables 23-84 to 23-88.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð23-249Þ
DESIGN OF BEARINGS AND TRIBOLOGY DESIGN OF BEARINGS AND TRIBOLOGY
Particular
23.121
Formula
TABLE 23-59 Typical forms of needle roller bearings and some of their important characteristics. Bore size (in.) Type
min
max
Dynamic
State
Limiting speed factor
Drawn cup needle
0.125
7.250
High
Moderate
0.3
Low
Drawn cup needle grease retained
0.156
1.000
High
Moderate
0.3
Low
Drawn cup roller
0.187
2.750
Moderate
Moderate
0.9
Moderate
Heavy duty roller
0.625
9.250
Very high
Moderate
1.0
Moderate
Caged roller
0.500
4.000
Very high
High
1.0
Moderate
Cam follower
0.5000
6.000
Moderate to high
Moderate to high
0.3–0.9
Low
Needle thrust
0.252
4.127
Very high
Very high
0.7
Low
Open end
Open end
Relative load capacity
Misalignment tolerance
Close end
Close end
Courtesy: Machine Design, 1970 Bearings Reference Issue, The Penton Publishing Co., Cleveland, Ohio.
HERTZ-CONTACT PRESSURE Maximum contact pressure between cylinders and spheres of steel ( ¼ 0.3) (i) For cylinders
(ii) For a cylinder and plane
cðmaxÞ
sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2FEðd1 þ d2 Þ ¼ 0:418 ld1 d2 rffiffiffiffiffiffiffiffiffi 2FE ld sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2 2 3 4Fðd1 þ d2 Þ E ¼ 0:388 d12 d22
ð23-250Þ
cðmaxÞ ¼ 0:418
ð23-251Þ
cðmaxÞ
ð23-252Þ
(iii) For two spheres
(iv) For a sphere and plane
cðmaxÞ
sffiffiffiffiffiffiffiffiffiffiffi 2 3 4FE ¼ 0:388 2 d
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð23-253Þ
d
r
B
r
D
Old
10BC02 12BC02 15BC02 17BC02 20BC02 25BC02 30BC02 35BC02 40BC02 45BC02 50BC02 55BC02 60BC02 65BC02 70BC02 75BC02 80BC02 85BC02 90BC02 95BC02 100BC02 105BC02 110BC02 120BC02
New
10 12 15 17 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 120 130 140 150 160 170 180 190 200 220 240 260 280
IS No.
Bearing No.
6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6224 6226 6228 6230 6232 6234M 6236M 6238M 6240M 6242M 6244M 6246M 6248M
FAG 6200 01 02 03 04 05 6206 07 08 09 10 6211 12 13 14 6215 16 17 18 19 6220 21 22 24 6226 6228 6230 32 34 36 38 40 6244 6248 6252 6256
SKF 10 12 15 17 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 120 130 140 150 160 170 180 190 200 220 240 260 280
d 30 32 35 40 47 52 62 72 50 85 90 100 110 120 125 130 140 150 160 170 180 190 200 215 230 250 270 290 310 320 340 360 400 440 480 500
D 9 10 11 12 14 15 16 17 18 19 20 21 22 23 24 25 26 28 30 32 34 36 38 40 40 42 45 48 52 52 55 58 65 72 80 80
B
r 0.6 0.6 0.6 0.6 1.0 1.0 1.0 1.1 1.1 1.1 1.1 1.5 1.5 1.5 1.5 1.5 2.0 2.0 2.0 2.1 2.1 2.1 2.1 2.1 3.0 3.0 3.0 3.0 4.0 4.0 4.0 4.0 4.0 5.0 5.0 6.0
Dimensions, mm
.025 .04 .07 .13 .25 .50
Fa =Co 2.0 1.8 1.6 1.4 1.2 1.0
Y
Factor
TABLE 23-60 Deep groove ball bearings—Diameter series 2 (Series 02) (Indian Standards)
0.22 .24 .27 .31 .37 .44
e 2.60 3.10 3.75 4.75 6.55 7.80 11.20 15.30 18.00 20.40 24.00 29.00 36.00 41.50 44.00 49.00 53.00 64.00 72.00 81.50 93.00 104.00 116.00 122.00 146.00 166.00 170.00 204.00 224.00 245.00 280.00 310.00 355.00 475.00 560.00 600.00
kN
FAG
2360 3100 3750 4750 6550 7800 11200 15300 19000 21600 23200 29000 32500 40500 45000 49000 55000 64000 73500 81500 93000 104000 118000 118000 132000 150000 166000 186000 224000 240000 280000 310000 365000 475000 530000 600000
N
SKF
Static, Co
6.00 6.95 7.80 9.50 12.70 14.00 19.30 25.50 29.00 31.00 36.50 43.00 52.00 60.00 62.00 65.50 72.00 83.00 96.50 108.00 122.00 132.00 143.00 146.00 166.00 176.00 176.00 200.00 212.00 224.00 255.00 270.00 300.00 360.00 405.00 425.00
kN
FAG
5070 6890 7800 9560 12700 14000 19500 25500 30700 33200 35100 43600 47500 55900 60500 66300 70200 83200 95600 10800 124000 133000 143000 146000 156000 165000 174000 186000 212000 229000 255000 270000 296000 358000 390000 423000
N
SKF
Dynamic, C
Basic load rating capacity
100 132 160 200 280 335 475 655 860 915 980 1250 1400 1730 1900 2040 2200 2500 2890 3000 3350 3650 4000 3900 4150 4150 4900 5300 6100 7350 7350 7800 8800 10800 11800 12900
N
Fatigue load limit, Fa SKF/FAG
32000 30000 26000 22000 18000 17000 14000 24000 20000 19000 18000 16000 14000 13000 12000 11000 11000 10000 9000 8500 8000 7500 7000 6700 6300 6000 5600 5600 5300 4800 4300 4000 3600 3400 3200 3000
rpm
Kinematically permissible speed, n SKF/PAG
0.031 0.038 0.044 0.063 0.105 0.128 0.199 0.290 0.372 0.430 0.466 0.616 0.785 1.000 1.080 1.200 1.460 1.870 2.230 2.740 3.300 3.880 4.640 5.630 6.24 8.07 10.30 14.70 18.30 19-00 22.80 27.20 37.90 51.30 68.40 72.90
Mass kg
DESIGN OF BEARINGS AND TRIBOLOGY
23.122
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
B
r
D
d
Old
10BC03 12BC03 15BC03 17BC03 20BC03 25BC03 30BC03 35BC03 40BC03 45BC03 50BC03 55BC03 60BC03 65BC03 70BC03 75BC03 80BC03 85BC03 90BC03 95BC03 100BC03 105BC03 110BC03 120BC03
New
10 12 15 17 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 120 130 140 150 160 170 180 190 200 220 240
IS No.
Bearing No.
6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6324 6326M 6328M 6330M 6332M 6334M 6336M 6338M 6340M 6344M 6348M
FAG 6300 6301 6302 6303 04 05 06 07 08 09 6310 11 12 13 14 15 16 17 18 19 20 6321 22 24 26 28 30 32 34 6336 38 40 44
SKF 10 12 15 17 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 120 130 140 150 160 170 180 190 200 220 240
d 30 37 42 47 52 62 72 80 90 100 110 120 130 140 150 160 170 180 190 200 215 225 240 260 280 300 320 340 360 380 400 420 460 500
D 11 12 13 14 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 50 55 58 62 65 68 72 75 78 80 88 95
B
r 0.6 1.0 1.0 1.0 1.1 1.1 1.1 1.5 1.5 1.5 2 2 2.1 2.1 2.1 2.1 2.1 3.0 3.0 3.0 3.0 3.0 3.0 3.0 4.0 4.0 4.0 4.0 4.0 4.0 5.0 5.0 5.0 5.0
Dimensions, mm
.025 .04 .07 .13 .25 .05
Fa =Co 2.0 1.8 1.6 1.4 1.2 1.0
Y
Factor
TABLE 23-61 Deep groove hall bearings—Diameter series 3 (Series 03) (Indian Standards)
0.22 .24 .27 .31 .37 .44
e 3.45 4.15 5.40 6.55 7.80 11.40 16.30 19.00 25.00 32.00 38.00 47.00 52.00 60.00 68.00 76.50 86.50 88.00 102.00 112.00 134.00 146.00 166.00 190.00 216.00 245.00 300.00 325.00 365.00 405.00 440.00 465.00 550.00 620.00
kN
FAG
3400 4150 5400 6550 7800 11600 16000 19000 24000 31500 38000 45000 52000 60000 68000 76500 86500 96500 10800 118000 140000 153000 180000 186000 216000 245000 285000 285000 340000 405000 430000 465000 520000
N
SKF
Static, Co
8.15 9.65 11.40 13.40 16.00 22.40 29.00 33.50 42.50 53.00 62.00 76.50 81.50 93.00 104.00 114.00 122.00 125.00 134.00 143.00 163.00 173.00 190.00 212.00 228.00 255.00 285.00 300.00 325.00 355.00 375.00 380.00 430.00 465.00
kN
FAG
8060 9750 11400 13500 15900 22500 28100 33200 41000 52700 61800 71500 81900 92300 104000 114000 124000 133000 143000 153000 174000 182000 203000 208000 290000 251000 276000 276000 312000 351000 371000 377000 410000
N
SKF
Dynamic, C
Basic load rating capacity
143 176 228 275 335 490 670 815 1020 1340 1600 1900 2200 2500 2750 3000 3250 3550 3800 4150 4750 5100 5700 5700 6300 7100 7800 7650 8800 10800 10800 11200 12000
N
Fatigue load limit, Fa SKF/FAG
56000 53000 43000 39000 34000 28000 24000 20000 18000 16000 14000 13000 12000 11000 10000 9500 9000 8000 8000 7500 7000 6700 6300 6000 5600 5300 4800 4300 4000 3800 3600 3400 3200 3000
rpm
Kinematically permissible speed, n SKF/FAG
0.058 0.062 0.087 0.116 0.153 0.237 0.355 0.472 0.639 0.853 1.090 1.400 1.750 2.140 2.610 3.180 3.800 4.350 5.430 6.230 7.670 8.700 10.300 12.800 18.300 22.300 26.700 31.800 37.300 43.600 50.400 56.600 75.000 96.400
Mass kg
DESIGN OF BEARINGS AND TRIBOLOGY
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
23.123
B
r
D
6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415M 6416M 6417M 6418M
15BC04 17BC04 20BC04 25BC04 30BC04 35BC04 40BC04 45BC04 50BC04 55BC04 60BC04 65BC04 70BC04 75BC04 80BC04 85BC04 90BC04
17 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90
6403 04 05 06 07 08 09 10 6411 12 13 14 15 16 17 18
SKF 15 17 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90
d 52 62 72 80 90 100 110 120 130 140 150 160 180 190 200 210 225
D 15 17 19 21 23 25 27 29 31 33 35 37 42 45 48 52 54
B
Dimensions, mm
1.1 1.1 1.1 1.5 1.5 1.5 2 2 2.1 2.1 2.1 2.1 3.0 3.0 3.0 4.0 4.0
r 0.025 .04 .07 .13 .25 .5
Fa =Co 2.0 1.8 1.6 1.4 1.2 1.0
Y
Factor
.22 .24 .27 .31 .37 .44
e
11.0 15.0 19.3 23.2 31.0 36.5 45.0 52.0 62.0 69.5 78.0 104.0 114.0 125.0 137.0 163.0
kN
FAG
10680 15100 18500 22690 29790 36900 42880 48900 57340 64880 75570 99570 106720 117800 128920 142350
N
SKF
Static, Co
23.6 30.5 36.0 42.5 55.0 63.0 76.5 86.5 100.0 110.0 118.0 143.0 153.0 163.0 173.0 196.0
kN
FAG
17350 23570 27540 32690 42240 48950 57330 67590 76880 82680 90700 108880 117800 124460 133280 142250
N
SKF
Dynamic, C
Basic load rating capacity
Source: 1. Extracted with permission from ‘‘FAG Rolling Bearings’’, Catalogue WL 41520 EI, 1995 Edition: FAG Precision Bearings Ltd, Manja, Vadodara, India. 2. Courtesy: Extracted from SKF Rolling Bearings, Catalogue 4000 E, 1989, SKF Rolling Bearings India Ltd., Mumbai, India.
d
r
FAG
Old
New
IS No.
Bearing No.
TABLE 23-62 Deep groove ball bearing—Diameter Series 4 (Series 04) Indian Standards
30000 26000 22000 19000 16000 15000 13000 12000 11000 10000 9500 8500 8000 7500 7000 6700
rpm
Kinematically permissible speed, n FAG
0.275 0.412 0.546 0.746 0.928 1.18 1.51 1.83 2.40 2.90 3.49 4.80 5.64 6.63 9.52 11.6
Mass kg
DESIGN OF BEARINGS AND TRIBOLOGY
23.124
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
B
r
d
10B502 12B502 15B502 17B502 20B502 25B502 30B502 35B502 40B502 45B502 50B502 55B502 60B502 65B502 70B502 75B502 80B502 85B502 90B502 95B502 100B502 105B502 110B502 120B502
10 12 15 17 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 120
1200TV 1201TV 1202TV 1203TV 1204TV 1205TV 1206TV 1207TV 1208TV 1209TV 1210TV 1211TV 1212TV 1213TV 1214TV 1215TV 1216TV 1217TV 1218TV 1219M 1220M 1221M 1222M 1224M
FAG 1200E 01E 02E 1203E 04E 05E 1206E 07E 08E 1209E 10E 11E 1212E 13E 14 1215 16 17 1218 19. 20 1221 22 24
SKF 10 12 15 71 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 120
d 30 32 35 40 47 52 62 72 80 85 90 100 110 120 125 130 140 150 160 170 180 190 200 215
D 9 10 11 12 14 15 16 17 18 19 20 21 22 23 24 25 26 28 30 32 34 36 38 42
B 0.6 0.6 0.6 0.6 10 1.0 1.1 1.1 1.1 1.1 1.1 1.5 1.5 1.5 1.5 1.5 2.0 2.0 2.0 2.1 2.1 2.1 2.1 2.1
r min
Dimensions, mm
.32 .37 .34 .33 .27 .27 .22 .22 .22 .21 .20 .19 .18 .18 .19 .19 .16 .17 .17 .17 .18 .18 .17 .25
e 2.05 1.77 1.95 2.03 2.34 2.48 2.94 2.65 3.04 3.18 3.32 3.47 3.64 3.74 3.52 3.48 4.08 3.91 3.92 3.91 3.75 3.5 3.78 3.25
Yo 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1.95 1.69 1.86 1.93 2.24 2.37 2.53 2.18 2.90 3.04 3.17 3.31 3.47 3.57 3.36 3.32 3.90 3.73 3.74 3.73 3.58 3.68 3.61 3.11
.65 .65 .65 .65 .65 .65 .65 .65 .65 .65 .65 .65 .65 .65 .65 .65 .65 .65 .65 .65 .65 .65 .65 .65
3.2 2.62 2.98 2.00 3.46 3.66 3.91 4.34 4.49 4.70 4.90 5.12 5.37 5.52 5.21 5.15 6.03 5.78 5.79 5.78 5.53 5.48 5.58 4.81
Y
X
X
Y
Fn =Fr > e
Fn =Fr e
Factors
1.2 1.27 1.76 2.04 2.65 3.35 4.65 5.20 6.55 7.35 8.15 10.00 11.60 12.50 13.70 15.60 17.00 20.40 23.6 27.0 29.0 32.0 38.0 53.0
kN
FAG kN
FAG
5530 6240 7410 8840 12700 14300 15600 19000 19900 22900 26500 27600 31200 35100 34500 39000 39700 48800 57200 65700 68900 74100 88400 119000
N
SKF
Dynamic, C
1180 5.5 1430 5.6 1760 7.5 3000 8.0 3400 10.0 4000 12.2 4650 15.6 6000 16.0 6950 19.3 7800 22.0 9150 22.8 10600 27.0 12200 30.0 14000 31.0 13700 34.5 15000 39.0 17000 46.0 20900 49.0 23600 57.0 27000 64.0 30000 69.5 32500 75.0 39000 88.0 53000 120.0
N
SKF
Static, Co
Basic load rating capacity
61 72 90 114 176 204 240 305 355 400 475 540 620 720 710 800 830 980 1080 1200 1200 1370 1600 2120
N
Fatigue load limit, Fn SKF
30000 30000 26000 22000 18000 16000 14000 12000 10000 9000 8500 7500 6700 6300 6000 5600 5000 4500 4500 6000 5600 5300 5000 4800
rpm
Kinematically permissible speed, n FAG
0.034 0.041 0.048 0.073 0.119 0.139 0.222 0.322 0.415 0.463 0.525 0.685 0.895 1.16 1.25 1.34 1.66 2.06 2.50 3.40 3.29 4.31 5.67 7.43
kg
Mass FAG
Note: SKF 1984; FAG, 1995,: These values of C and Co of SKF ball bearings refer to old standards in Table 23-62, EK ¼ tapered bore; TV ¼ self-aligning ball bearings with cages of glass fibre reinforced polyamide 66, M ¼ machined brass cage. Source: 1. Extracted with permission from ‘‘FAG Rolling Bearings’’, CatalogueWL 41520EI, 1995 Edition: FAG Precision Bearings Ltd, Maneja, Vadodara, India. 2. Courtesy: Extracted from SKF Rolling Bearings, Catalogue 4000E, 1989, SKF Rolling Bearings. India Ltd., Mumbai, India.
D
r
Old
New
IS No.
Bearing No.
TABLE 23-63 Self-aligning ball bearings—Diameter Series 12 (Series 02, Indian Standards)
DESIGN OF BEARINGS AND TRIBOLOGY
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
23.125
r
B
r
d
10B503 12B503 15B503 17B503 20B503 25BS03 30B503 35BS03 40B503 45B503 50B503 55B503 60B503 65B503 70B503 70B503 80B503 85B503 90B503 95B503 100B503 105B503 110B503
10 12 15 17 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110
1300 1301 1302 1303TV 1304TV 1305TV 1306TV 1307TV 1308TV 1309TV 1310TV 1311TV 1312TV 1313TV 1314M 1315M 1316M 1317M 1318M 1319M 1320M 1321M 1322M
FAG
d
1300 10 01E 12 02E 15 1303E 17 04E 20 05E 25 1306E 30 07E 35 08E 40 1309E 45 10E 50 11E 55 1312E 60 13E 65 14 70 1315 75 16 80 17 85 1318 90 19 95 20 100 1321 105 22 110
SKF 35 37 42 47 52 62 72 80 90 100 110 120 130 140 150 160 170 180 190 200 215 225 240
D 11 12 13 14 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 50
B 1.0 1.5 1.5 1.0 1.1 1.1 1.1 1.5 1.5 1.5 2.0 2.0 2.1 2.1 2.1 2.1 2.1 3.0 3.0 3.0 3.0 3.0 3.0
r min
Dimensions, mm
.34 .35 .35 .32 .29 .28 .26 .26 .25 .25 .24 .24 .23 .23 .23 .23 .22 .22 .22 .23 .23 .23 .23
e 1.90 1.90 1.90 2.03 2.27 2.40 2.51 2.59 2.64 2.62 2-73 2.79 2.90 2.88 2.93 2.90 3.00 3.02 2.97 2.50 2.81 2.88 2.92
Yo 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1.90 1.80 1.80 1.94 2.17 2.29 2.39 2.47 2.52 2.50 2.60 2.66 2.77 2.75 2.79 2.77 2.87 2.88 2.83 2.73 2.68 2.75 2.79
.65 .65 .65 .65 .65 .65 .65 .65 .65 .65 .65 .65 .65 .65 .65 .65 .65 .65 .65 .65 .65 .65 .65
2.90 2.80 2.80 3.00 3.50 3.54 3.71 3.82 3.90 3.87 4.03 4.12 4.28 4.26 4.32 4.29 4.44 4.46 4.38 4.23 4.15 4.25 4.32
Y
X
X
Y
Fn =Fr > e
Fn =Fr e
Factors, FAG
3.20 3.35 5.00 6.30 8.00 9.65 12.90 14.30 18.00 20.80 22.80 27.50 30.00 32.50 38.00 43.00 51.00 58.50 65.50 71.00
kN
FAG
7200
2160 2600 3400 4600 5400 6800 8500 11200 13400 14000 18000 22000 25500 27500 30000 33500 38000 44000 51000 57000
N
SKF
Static, Co
9360 10800 12700 17000 19000 22500 26500 33800 39000 43600 50700 58500 65000 74100 79300 88400 97500 117000 133000 143000
N
SKF
12.50 12.50 18.00 21.20 25.00 29.00 38.00 41.50 51.00 57.00 62.00 75.00 80.00 88.00 98.00 108.00 132.00 143.00 156.00 163.00 16300
kN
FAG
Dynamic, C
2750
112 134 176 204 280 355 430 570 695 720 915 1120 1250 1340 1430 1500 1700 1930 2160 2360
N
Fatigue load limit, Fn SKF
18000 16000 14000 11000 9500 8500 7500 6700 6000 5300 5000 7000 6300 6000 5600 5300 5000 4800 4500 4500
rpm
Kinematically FAG
3000
22000 20000 17000 15000 12000 11000 9000 8000 7500 6700 6000 5300 5300 4800 4500 4300 4000 3600 3600 3400
Oil SKF
Permissible speed, n
Source: 1. Extracted with permission from ‘‘FAG Rolling Bearings’’, Catalogue WL 41520EI, 1995 Edition: FAG Precision Bearings Ltd., Maneja, Vadodara, India. 2. Courtesy: Extracted from SKF Rolling Bearings, Catalogue 4000E, 1989, SKF Rolling Bearings India Ltd., Mumbai, India.
D
Old
New
IS No.
Bearing No.
Basic load rating capacity
TABLE 23-64 Self-aligning ball bearings—Diameter Series 03 [Series 03 (Indian Standards)], Dimensions Series 13 FAG and SKF
0.129 0.164 0.262 0.391 0.570 0.711 0.957 1.25 1.59 1.96 1.83 3.42 3.65 4.76 5.19 6.13 6.55 8.70 9.89 11.80
kg
Mass FAG
DESIGN OF BEARINGS AND TRIBOLOGY
23.126
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
B
r
r
d
2220M
2200E 01E 02E 2203E 04E 05E 2206E 07E 08E 2209E 10E 11E 2212E 13E 14 2215 16E 17 2218 19 20 2221 22
2200TV 2201TV 2202TV 2203TV 2204TV 2205TV 2206TV 2207TV 2208TV 2209TV 2210TV 2211TV 2212TV 2213TV 2214M 2215TV 2216TV 2217M 2218TV 2219M. 2220TV
10 12 15 17 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110
d 30 32 35 40 47 52 62 72 80 85 90 100 110 120 125 130 140 150 160 170 180 190 200
D 14 14 14 16 18 18 20 23 23 23 23 25 28 31 31 31 33 36 40 43 46 50 53
B 0.6 0.6 0.6 0.6 1.0 1.0 1.0 1.1 1.1 1.1 1.1 1.5 1.5 1.5 1.5 1.5 2.0 2.0 2.0 2.1 2.1 2.1 2.1
r min
Dimensions, mm
.28
.58 .58 .46 .46 .44 .35 .30 .30 .26 .26 .24 .22 .23 .23 .27 .26 .25 .26 .27 .27 .27
e
2.33
1.14 1.25 1.44 1.43 1.51 1.86 2.23 2.23 2.54 2.54 2.74 3.06 2.82 2.92 2.45 2.59 2.6 2.58 2.44 2.43 2.44
Yo
1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2.23
1.09 1.20 1.37 1.37 1.45 1.75 2.13 2.13 2.43 2.43 2.61 2.93 2.69 2.78 2.34 2.47 2.48 2.46 2.33 2.32 2.33 .65
.65 .65 .65 .65 .65 .65 .65 .65 .65 .65 .65 .65 .65 .65 .65 .65 .65 .65 .65 .65 .65 3.45
1.69 1.85 2.13 2.17 2.24 2.75 3.29 3.29 3.76 3.76 4.05 4.53 4.16 4.31 3.62 3.82 3.84 3.81 3.61 3.59 3.61
Y
X
X
Y
Fn =Fr > e
Fn =Fr e
52.00
1.73 1.96 2.08 2.75 3.55 4.40 6.95 9.00 9.50 9.50 9.50 12.70 16.60 19.30 17.00 18.00 20.00 23.60 28.50 34.0 40.50
kN
FAG
1730 1900 2040 2550 4150 4400 6700 8800 10000 10600 11200 13400 17000 20000 17000 18000 25500 23600 28500 34500 40500 45000 52000
N
SKF
Static, Co
N
SKF
8060 8520 8710 10600 16800 16800 23800 30700 31000 32500 33800 39000 48800 57200 44200 44200 65000 58500 70200 83200 97500 108000 125.00 124000
8.3 9.0 9.15 11.40 14.30 17.00 25.50 32.00 31.50 28.00 28.00 39.00 47.50 57.00 44.00 44.00 49.00 58.50 71.00 83.00 98.00
kN
FAG
Dynamic, C
Basic load rating capacity
90 98 104 132 216 228 345 455 510 540 570 695 880 1020 880 900 1250 1120 1320 1530 1760 1900 2120
N
Fatigue load limit, Fn SKF
28000 26000 24000 19000 17000 15000 12000 9500 9000 8500 8000 6700 5300 5300 8500 5300 5000 7000 4300 6000 5600 3000 5000
rpm
Kinematically FAG
28000 26000 22000 20000 17000 14000 12000 10000 9000 8500 7500 7000 6300 6000 5000 5300 4800 4500 4300 4000 3800 3600 3400
Oil SKF
Permissible speed, n
Source: 1. Extracted with permission from ‘‘FAG Rolling Bearings’’, Catalogue WL 41520EI, 1995 Edition: FAG Precision Bearings Ltd., Maneja, Vadodara, India. 2. Courtesy: Extracted from SKF Rolling Bearings, Catalogue 4000E, 1989, SKF Rolling Bearings India Ltd., Mumbai, India.
D
r
r
SKF
FAG
Bearing No.
Factors, FAG
TABLE 23-65 Self-aligning ball bearings—Dimension Series 22—FAG and SKF
0.045 0.050 0.017 0.086 0.136 0.159 0.259 0.404 0.488 0.527 0.567 0.763 1.08 1.36 1.10 1.20 2.10 2 68 3.30 4.10 4.98 6.10 7.10
kg
Mass FAG
DESIGN OF BEARINGS AND TRIBOLOGY
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
23.127
B
r
d
2301 02 03 2304 05 06 2307E 08E 09E 2310 11 12 2313 14 15 2316 17 18 2319 20 22
2301TV 2302TV 2303TV 2304TV 2305TV 2306TV 2307TV 2308TV 2309TV 2310TV 2311TV 2312TV 2313M 2314M 2315M 2316M 2317M 2318M 2319M 2320M 2322M
12 15 17 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 110
d 37 42 47 52 62 72 80 90 100 110 120 130 140 150 160 170 180 190 200 215 240
D 17 17 19 21 24 27 31 33 36 40 43 46 48 51 55 58 60 64 67 73 80
B
r 1.0 1.0 1.0 1.1 1.1 1.1 1.5 1.5 1.5 2.0 2.0 2.1 2.1 2.1 2.1 2.1 3.0 3.0 3.0 3.0 3.0
Dimensions, mm
.51 .51 .51 .48 .45 .47 .43 .43 .43 .42 .41 .39 .38 .38 .37 .37 .39 .38 .38 .37
e
1.29 1.25 1.29 1.38 1.47 1.42 1.52 1.55 1.44 1.58 1.62 1.70 1.73 1.72 1.78 1.76 1.71 1.74 1.75 1.77
Yo
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X
1.23 1.19 1.23 1.32 1.4 1.35 1.45 1.48 1.47 1.51 1.55 1.62 1.65 1.64 1.7 1.68 1.68 1.66 1.67 1.69
Y
Fn =Fr e
Factors, FAG
.65 .65 .65 .65 .65 .65 .65 .65 .65 .65 .65 .65 .65 .65 .65 .65 .65 .65 .65 .65
X
1.91 1.85 1.9 2.04 2.17 2.1 2.25 2.29 2.27 2.33 2.4 2.51 2.55 2.54 2.62 2.61 2.53 2.57 2.58 2.62
Y
Fn =Fr > e
3.75 3.20 4.65 6.55 8.65 11.2 13.4 16.3 20.0 23.6 28.0 32.5 37.5 42.5 48.0 51.0 57.0 64.0 78.0 95.0
kN
FAG
2700 2900 3550 4750 6550 8800 11200 16000 19300 20000 24000 28500 32500 37500 43000 49000 51000 57000 64000 80000 95000
N
SKF
Static, Co
16.0 13.4 18.0 24.5 31.5 39.0 45.0 54.0 64.0 75.0 86.5 95.00 110.0 122.0 137.0 140.0 153.0 163.0 193.0 216
kN
FAG
11700 11000 14600 18200 24200 31200 39700 54000 63700 63700 76100 87100 95600 111000 124000 135000 140000 153000 165000 190000 216000
N
SKF
Dynamic, C
Basic load rating capacity
140 150 183 240 340 450 585 815 1000 1040 1250 1450 1660 1860 2040 2240 2280 2500 2750 3200 3650
N
Fatigue load limit, Fn SKF
17000 18000 17000 16000 18000 10000 9000 8000 7000 6300 5600 5000 4800 6300 6000 5600 5300 5000 4800 4500 4300
rpm
Kinematically FAG
20000 18000 16000 14500 12000 10000 8500 7500 6700 5500 5600 5300 4800 4500 4000 3800 3600 3400 3200 3000 2300
Oil SKF
Permissible speed, n
Source: 1. Extracted with permission from ‘‘FAG Rolling Bearings’’, Catalogue WL 41520EI, 1995 Edition: FAG Precision Bearings Ltd., Maneja, Vadodara, India. 2. Courtesy: Extracted from SKF Rolling Bearings, Catalogue 4000E, 1989, SKF Rolling Bearings India Ltd., Mumbai, India.
D
r
SKF
FAG
Bearing No.
TABLE 23-66 Self-aligning ball bearings—Dimension Series 23 FAG and SKF
0.095 0.115 0.172 0.226 0.335 0.500 0.675 0.925 1.23 1.60 2.06 2.74 3.33 4.52 5.13 5.50 7.05 8.44 9.86 12.40 16.90
kg
Mass FAG
DESIGN OF BEARINGS AND TRIBOLOGY
23.128
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
B
a
r
r1
7200BE 7201BE 7202BE 7203BE 04BE 05BE 06BE 07BE 08BE 09BE 10BE 7211BE 12BE 13BE 14BE 15BE 16BE 17BE 18BE 19BE 20BE 7221BE 22BE 7224BE
7200B 7201B 7202B 7203B 7204B 7205B 7206B 7207B 7208B 7209B 7210B 7211B 7212B 7213B 7214B 7215B 7216B 7217B 7218B 7219B 7220B 7221B 7222B 7222B
15BA02 17BA02 20BA02 25BA02 30BA02 35BA02 40BA02 45BA02 50BA02 55BA02 60BA02 65BA02 70BA02 75BA02 80BA02 85BA02 90BA02 95BA02 100BA02 105BA02 110BA02 120BA02
10 12 15 17 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 120
d 30 32 35 40 47 52 62 72 80 85 90 100 110 120 125 130 140 150 160 170 180 190 200 215
D 9 10 11 12 14 15 16 17 18 19 20 21 22 23 24 25 26 28 30 32 34 36 38 40
B 0.6 0.6 0.6 0.6 1.0 1.0 1.0 1.1 1.1 1.1 1.1 1.5 1.5 1.5 1.5 1.5 2 2 2 2.1 2.1 2.1 2.1 2.1
r min
Dimensions, mm
0.3 0.3 0.3 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 1.0 1.0 1.0 1.0 1.0 1.5 1.0 1.1 1.1 1.1 1.1 1.1 1.1
r1 min 13 14 16 18 21 24 27 31 34 37 39 43 47 50 53 56 59 63 67 72 76 80 84 90
a 2.5 3.4 4.3 5.5 7.65 9.30 13.40 18.30 23.20 26.50 28.50 36.00 44.00 53.00 58.50 58.50 69.50 80.00 93.00 100.00 114.00 129.00 143.00 160.00
kN
FAG
3350 3800 4860 6100 83000 10200 15600 20800 26000 28000 30500 38000 45500 54000 60000 64000 73000 83000 96500 108000 122000 137000 153000 163000
N
SKF
Static, Co
5.00 6.95 8.00 10.00 13.40 14.60 20.40 27.00 32.00 36.00 37.50 46.50 56.00 64.00 69.50 68.00 80.00 90.00 106.00 116.00 129.00 143.00 153.00 166.00
kN
FAG
7020 7610 8840 11100 14000 15600 23800 30700 36400 37700 39000 48800 57200 66300 71500 72800 83200 95600 106000 124000 135000 146000 163000 165000
N
SKF
Dynamic, C
Basic load rating capacity
140 160 204 286 355 420 655 880 1100 1200 1290 1630 1930 2280 2500 2650 3000 3250 3650 4000 4400 4800 5200 5300
N
Fatigue load limit, Fuf SKF
32000 28000 24000 20000 18000 16000 13000 11000 9500 8500 8000 7000 6300 6000 5600 5300 5000 4500 4300 4000 3800 3600 3600 3400
FAG rpm
Kinematically
27000 26000 24000 20000 17000 15000 12000 11000 9500 9000 8000 7500 6700 6000 5600 5600 5000 4800 4500 4300 4000 3800 3600 3200
SKF
Oil a
Permissible speed, n
0.028 0.036 0.045 0.07 0.103 0.127 0.207 0.296 0.377 0.430 0.485 0.645 0.779 0.975 1.07 1.19 1.42 1.89 2.22 2.66 3.18 3.19 4.44 5.31
kg
Mass FAG
Use Xe ¼ 1, when Fa =Fr 1:9; Xe ¼ 0:5, Yo ¼ 0:26 when Fa =Fr > 1:9, X ¼ 1 when Fa =Fr 1:4; X ¼ 0:35, Y ¼ 0:57 when Fa =Fr > 1:14. a Oil lubrication, E ¼ cylindrical bore, EK, K ¼ tapered bore, TV ¼ self-aligning bearings with caging of glass-fiber reinforced polyamide, M ¼ ball-riding mechanical brass caps. Source: 1. Extracted with permission from ‘‘FAG Rolling Bearings’’, Catalogue WL 41520EI, 1995 Edition: FAG Precision Bearings Ltd., Maneja, Vadodara, India. 2. Courtesy: Extracted from SKF Rolling Bearings, Catalogue 4000E, 1989, SKF Rolling Bearings India Ltd., Mumbai, India.
D d
r
r
SKF
FAG
IS Old No.
Bearing No.
TABLE 23-67 Single row angular contact ball bearings—Dimension Series 02 (Indian Standards)
DESIGN OF BEARINGS AND TRIBOLOGY
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
23.129
d
a
r
r1
7303B 7304B 7305B 7306B 7307B 7308B 7309B 7310B 7311B 7312B 7313B 7314B 7315B 7316B 7317B 7318B 7319B 7320B 7321B 7322B
7300B 7301B 7302B 17BA03 20BA03 25BA03 30BA03 35BA03 40BA03 45BA03 50BA03 55BA03 60BA03 65BA03 70BA03 75BA03 80BA03 85BA03 90BA03 95BA03 100BA03 105BA03 110BA03
17 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110
7303BE 04BE 05BE 7306BE 07BE 08BE 7309BE 10BE 11BE 7312BE 13BE 14BE 7315BE 16B 17B 7318B 19B 20B 7321B 22B
SKF 10 12 15 17 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110
d 35 37 42 47 52 62 72 80 90 100 110 120 130 140 150 160 170 180 190 200 215 225 240
D 11 12 13 14 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 50
B 1.0 1.0 1.0 1.0 1.1 1.1 1.1 1.5 1.5 1.5 2.0 2.0 2.1 2.1 2.1 2.1 2.1 3 3 3 3 3 3
r min
Dimensions, mm
.5 .6 .6 .6 .6 .6 .6 1.0 1.0 1.0 1.0 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1
r1 min 15 16.0 18.0 20 23 27 31 35 39 43 47 51 55 60 64 68 72 76 80 84 90 94 98
a
5.00 6.55 8.30 10.40 15.00 20.00 25.00 32.50 40.00 47.50 56.00 65.50 75.00 86.50 100.00 114.00 127.00 140.00 153.00 180.00 200.00 224.00
kN
FAG
5000 6700 8300 10400 15600 21200 24500 33500 41000 51000 60000 69500 80000 90000 106000 118000 132000 146000 163000 190000 208000 224000
N
SKF
Static, Co
10.50 12.90 16.00 19.00 26.00 32.50 39.00 50.00 60.00 69.5 78.00 90.00 102.00 114.00 127.00 140.00 150.00 160.00 173.00 193.00 208.00 224.00
kN
FAG
10600 13000 15900 19000 26000 34500 39000 49400 60500 74100 85200 95600 108000 119000 133000 143000 158000 165000 176000 203000 212000 225000
N
SKF
Dynamic, C
Basic load rating capacity
208 280 355 440 655 900 1640 1400 1730 2200 2550 3000 3350 3650 4150 4500 4900 5200 5600 6400 6400 7200
N
Fatigue load limit, Fuf SKF
24000 20000 18000 17000 14000 11000 9500 8500 7500 7000 6300 5600 5300 5000 4500 4300 4000 3800 3800 3600 5300 3400
rpm
FAG
Kinematically
24000 20000 18000 16000 13000 11000 10000 9000 8000 7000 6300 6000 5600 5000 4800 4500 4300 4000 3800 3600 3400 3200
SKF
Oil a
Permissible speed, n
Use Xe ¼ 1, when Fa =Fr 1:9; Xe ¼ 0:5, Yo ¼ 0:26 when Fa =Fr > 1:9, X ¼ 1 when Fa =Fr 1:4; X ¼ 0:35, Y ¼ 0:57 when Fa =Fr > 1:14. a Oil lubrication. Source: 1. Extracted with permission from ‘‘FAG Rolling Bearings’’, Catalogue WL 41520EI, 1995 Edition: FAG Precision Bearings Ltd., Maneja, Vadodara, India. 2. Courtesy: Extracted from SKF Rolling Bearings, Catalogue 4000E, 1989, SKF Rolling Bearings India Ltd., Mumbai, India.
D
r
r
B
FAG
New
Old
IS No.
Bearing No.
TABLE 23-68 Single row angular contact hall bearings—Dimension Series 03 (Indian Standards)
0.059 0.09 0.113 0.147 0.221 0.342 0.447 0.657 0.821 1.050 1.36 1.72 2.10 2.53 3.18 3.75 4.27 5.72 5.99 7.14 9.00 9.74
kg
Mass FAG
DESIGN OF BEARINGS AND TRIBOLOGY
23.130
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
a
B
r
d
D
3302A 03A 04A 3305A 06A 07A 3308A 09A 10A 3311A 12A 13A 3314A 15A 16A 3317A 18A 19A 20A
3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320
15 17 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
d 42 47 52 62 72 80 90 100 110 120 130 140 150 160 170 180 190 200 215
D 19 22.2 22.2 25.4 30.3 34.9 36.5 39.7 44.4 49.2 54 58.7 63.5 68.5 68.3 73 73 77.8 82.6
B
Dimensions, mm
1.5 1.5 2 2 2 2.5 2.5 2.5 3 3 3.5 3.5 3.5 3.5 3.5 4 4 4 4
r 30 34 36 43 51 56 64 72 79 87 96 102 109 117 123 131 136 143 153
a 10,243 14,455 15,092 21,750 29,792 39,200 50,666 63,602 78,353 90,699 106,722 124,460 140,042 157,780 173,361 202,272 228,182 253,379 284,494
N
FAG
9,065 12,642 13,720 19,600 27,146 35,574 44,590 54,390 72,520 78,400 94,570 108,870 126,430 127,940 153,860 173.460 205,800
N
SKF
Static, Co
Basic capacity
12,887 18,032 18,424 25,382 32,814 42,924 52,479 63,602 78,164 88,896 101,332 117,796 128,919 144,520 157,780 177,821 193,608 206,682 224,723
N
FAG
13,720 18,914 18,914 26,008 35,280 43,615 53,410 62,230 85,995 85,840 98,000 115,640 135,730 140,740 157,780 173,460 200,018
N
SKF
Dynamic, C
10,000 8,000 8,000 6,000 6,000 5,000 5,ooo 4,000 4,000 4,000 3,000 3,000 3,000 2,500 2,500 2,500 2,500
Maximum permissible speed, rpm
Note: These bearings are provided with filling slots on one side; in case of unidirectional thrust loads, the bearings should be so arranged in mounting that the balls on the slot side are relieved from load.Use Xo ¼ 1, Yo ¼ 0:58 and X ¼ 1, Y :66, when Fa =Fr 0:95; X ¼ :6, Y ¼ 1:07 when Fa =Fr > 0:95.
r
SKF
FAG
Bearing No.
TABLE 23-69 Double-row angular contact ball bearings series 33
DESIGN OF BEARINGS AND TRIBOLOGY
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
23.131
d
r
D
N203E N204E N205E N206E N207E N208E N209E N210E N211E N212E N213E N214E N215E N216E N217E N218E N219E N220E N221E N223E N224E
10RN02 12RN02 15RN02 17RN02 20RN02 25RN02 30RN02 35RN02 40RN02 45RN02 50RN02 55RN02 60RN02 65RN02 70RN02 75RN02 80RN02 85RN02 90RN02 95RN02 100RN02 105RN02 110RN02 120RN02 N203EC 204EC 205EC N206EC 207EC 208EC N209EC 210EC 211EC N212EC 213EC 214EC N215EC 216EC 217EC N218EC 219EC N220EC 221EC 222EC 224EC
SKF 10 12 15 17 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 120
d 30 32 35 40 47 52 62 72 80 85 90 100 110 120 125 130 140 150 160 170 180 190 200 215
D 9 10 11 12 14 15 16 17 18 19 20 21 22 23 24 25 26 28 30 32 34 36 38 40
B 1.0 1.0 1.0 0.6 1.0 1.0 1.0 1.1 1.1 1.1 1.1 1.5 1.5 1.5 1.5 1.5 2.0 2.0 2.0 2.1 2.1 2.1 21 2.1
r min
0.3 0.6 0.6 0.6 0.6 1.1 1.1 1.1 1.1 1.5 1.5 1.5 1.5 2-0 2.0 2.0 2.1 2.1 2.1 2.1 2.1
r1 min
35.1 41.5 46.5 55.6 64.0 71.5 76.5 81.5 90.0 100.0 108.6 113.5 118.5 127.3 136.5 145.0 154.5 163.0 171.5 180.5 195.5
E
14.6 24.5 27.5 37.5 50.0 53.0 63.0 68.0 95.0 104.0 120.0 137.0 156.0 170.0 193.0 216.0 265.0 305.0 320.0 365.0 415.0
kN
FAG
14300 22000 27000 36500 48000 55000 64000 69500 95000 102000 118000 137000 156000 166000 200000 220000 265000 305000 315000 365000 430000
N
SKF
Static, Co
17.6 27.5 29.0 39.0 50.0 53.0 61.0 64.0 83.0 95.0 108.0 120.0 132.0 140.0 163.0 183.0 220.0 250.0 280.0 290.0 335.0
kN
FAG
17200 25100 28600 38000 48000 53000 60500 64000 84200 93500 106000 119000 130000 138000 165000 183000 220000 251000 264000 292000 341000
N
SKF
Dynamic, C
Basic load rating capacity
1730 2700 3350 4550 6100 6700 8150 8800 12200 13400 15600 18000 20400 21200 24500 27000 32500 36500 36500 42500 49000
N
Fatigue load limit, Fuf SKF
18000 16000 15000 12000 10000 9000 8500 8000 7000 6300 6000 5300 5300 4800 4500 4500 3800 4800 5600 3400 3200
FAG rpm
Kinematically
19000 16000 14000 12000 10000 9000 8000 7500 7000 6300 5600 5300 5300 4800 4500 4300 4000 3800 3600 3400 3000
SKF
Oil a
Permissible speed, n
Use Xe ¼ 1, Yo ¼ Y ¼ 0. a Oil lubrication. Source: 1. Extracted with permission from ‘‘FAG Rolling Bearings’’, Catalogue WL 41520EI, 1995 Edition: FAG Precision Bearings Ltd., Maneja, Vadodara, India. 2. Courtesy: Extracted from SKF Rolling Bearings, Catalogue 4000E, 1989, SKF Rolling Bearings India Ltd., Mumbai, India.
E
r1
B
FAG
IS
Bearing No.
Dimensions, mm
TABLE 23-70 Cylindrical roller bearings—Dimension Series 02 (Indian Standards)
0.067 0.107 0.139 0.205 0.300 0.380 0.434 0.493 0.669 0.827 1.040 1.160 1.270 1.550 1.870 2.250 2.750 3.320 4.690 4.840 5.770
kg
Mass FAG
DESIGN OF BEARINGS AND TRIBOLOGY
23.132
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
B
r
D
N303 N304 N305E N306E N307E N308E N309E N310E N311E N312E N313E N314E N315E N316E N317EMI N318EMI N319EMI N320 N321 N322EMI N324EMI N326EMI N328EMI N330EMI N332EMI N334M
FAG
N303EC N304EC 305EC 306EC N307EC 308EC 309EC N310EC 311EC 312EC N313EC 314EC 315EC N316EC 317EC 318EC N319EC 320EC 321EC N322EC 324EC 326EC 328EC N330EC 332EC 334EC
SKF 10 12 15 17 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 120 130 140 150 160 170
d 35 37 42 47 52 62 72 80 90 100 110 120 130 140 150 160 170 180 190 200 215 225 240 260 280 300 320 340 360
D 11 12 13 14 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 50 55 58 62 65 68 72
B 1.0 1.5 1.5 1.5 2.0 1.1 1.1 1.5 1.5 1.5 2.0 2.0 2.1 2.1 2.1 2.1 2.1 3.0 3.0 3.0 3.0 3.0 3.0 3.0 4.0 4.0 4.0 4.0 4.0
r min
1 2 1.1 1.1 1.1 1.5 1.5 2.0 2.0 2.1 2.1 2.1 2.1 2.1 3.0 3.0 3.0 3 3 3 3 4 4 4 4 4
r1 min
39.1 44.5 54.0 62.5 70.2 80.0 88.5 95.0 106.5 115.0 124.5 133.0 143.0 151.0 160.0 169.5 171.5 191.5 195.0 211.0 230.0 247.0 264.0 283.0 300.0 310.0
E N
SKF
20400 26000 37.5 36500 48.0 49000 63.0 63000 78.0 78000 100.0 10000 114.0 112000 140.0 143000 156.0 160000 190.0 196000 220.0 220000 265.0 265000 275.0 290000 325.0 335000 345.0 360000 380.0 390000 425.0 440000 500.0 500000 510.00 540000 600.00 620000 720.00 750000 800.0 710000 930.0 965000 1060.0 680000 1020.0 1180000
kN
FAG
Static, Co
41.5 51.0 64.0 81.5 98.0 110.0 134.0 150.0 180.0 204.0 240.0 255.0 290.0 315.0 335.0 380.0 410.8 440.0 520.0 610.0 670.0 765.0 865.0 800.0
kN
FAG N
Fatigue load limit, Fuf SKF
20400 2550 30800 3250 40200 4550 51200 6200 64400 8150 80900 10200 99000 12900 110000 15000 138000 18600 151000 20800 183000 25500 205000 29000 242000 33500 260000 36000 297000 41500 319000 43000 341000 46500 391000 51000 440000 57000 468000 61000 539000 69500 627000 81500 594000 75000 781000 100000 501000 72000 952000 110000
N
SKF
Dynamic, C
Basic load rating capacity
4800 4500 4300 3800 3600 3000 3000
12000 10000 9000 8500 6700 6300 5600 5000 4800 4500 4000 3800 5600 5300 5300 5000
FAG rpm
Kinematically
17000 15000 12000 11000 9500 8000 7500 6000 5600 5000 4800 4300 4000 3800 3600 3400 3200 3000 2800 2600 2400 2200 2400 2000 2200 1700
SKF
Oil a
Permissible speed, n
Use Xe ¼ 1, Yo ¼ Y ¼ 0, a Oil lubrication. Source: 1. Extracted with permission from ‘‘FAG Rolling Bearings’’, Catalogue WL 41520EI, 1995 Edition: FAG Precision Bearings Ltd., Maneja, Vadodara, India. 2. Courtesy: Extracted from SKF Rolling Bearings, Catalogue 4000E, 1989, SKF Rolling Bearings India Ltd., Mumbai, India.
E d
r1
10RN03 12RN03 15RN03 17RN03 20RN03 25RN03 30RN03 35RN03 40RN03 45RN03 50RN03 55RN03 60RN03 65RN03 70RN03 75RN03 80RN03 85RN03 90RN03 95RN03 100RN03 110RN03 120RN03
IS
Bearing No.
Dimensions, mm
TABLE 23-71 Cylindrical roller bearings—Dimension Series 03 (Indian Standards)
0.120 0.150 0.234 0.379 0.486 0.649 0.885 1.010 1.400 1.850 2.300 2.730 3.340 3.880 5.220 6.150 7.060 8.750 10.230 11.700 15.200 18.600 22.600 24.000 32.000 36.300
kg
Mass FAG
DESIGN OF BEARINGS AND TRIBOLOGY
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
23.133
r
D
N405 N406 N407 N408 N409 N410 N411 N412 N413 N414 N415 N416 N417 N418 N419 N420
15RN04 17RN04 20RN04 25RN04 30RN04 35RN04 40RN04 45RN04 50RN04 55RN04 60RN04 65RN04 70RN04 75RN04 80RN04 85RN04 90RN04 95RN04 100RN04 NU405 NU406 NU407 NU408 NU409 NU410 NU411 NU412 NU413 NU414 NU415 NU416 NU417 NU418 NU419 NU420
SKF 15 17 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
d 52 62 72 80 90 100 110 120 130 140 150 160 180 190 200 210 225 240 250
D 15 17 19 21 23 25 27 29 31 33 35 37 42 45 48 52 54 55 58
B 2.0 2.0 2.0 2.5 2.5 2.5 2.5 3.0 3.5 3.5 3.5 3.5 4.0 4.0 4.0 5.0 5.0 5.0 5.0
ra
Dimensions, mm
62.8 73 83 92 100.5 110.8 117.2 127 135.3 152 160.5 170 177 191.5 201.5 211
Ea
23130 32680 42240 51550 63550 81340 81340 99570 110000 143900 157780 164490 213450 235590 253380 283160
N
FAGa
53000 69500 90000 102000 127000 140000 173000 190000 240000 280000 320000 335000 415000 455000 475000
N
SKF
Static, Co
40050 53560 68010 82680 99560 122260 124460 148910 168900 211140 231130 259700 297800 320070 355390 391170
N
FAGa
60500 76500 96000 106000 130000 142000 168000 183000 229000 264000 303000 319000 350000 413000 429000
N
SKF
Dynamic, C
6800 9000 11600 13400 16600 18600 22000 24000 30000 34000 39000 39000 48000 52000 53000
N
Fatigue load Fuf limit SKF
8000 8000 6000 6000 6000 5000 5000 5000 4000 4000 4000 3000 3000 3000 3000 2500
FAGa
Kinematically
7500 6700 6000 5600 5000 4800 4300 4000 3600 3400 3200 3000 2800 2600 2400
rpm
SKF
Greaseb
Permissible speed, n
Use Xe ¼ X ¼ 1, Y ¼ 0, NU Series have two integral flanges on the outer ring and inner without flanges. a Refer to old FAG designation. b Grease lubrication. c Oil lubrication. Source: 1. Extracted with permission from ‘‘FAG Rolling Bearings’’, Catalogue WL 41520EI, 1995 Edition: FAG Precision Bearings Ltd., Maneja, Vadodara, India. 2. Courtesy: Extracted from SKF Rolling Bearings, Catalogue 4000E, 1989, SKF Rolling Bearings India Ltd., Mumbai, India.
Ed
B
FAG
IS Old No.
Bearing No.
Basic load rating capacity
TABLE 23-72 Cylindrical roller bearings—Dimension Series 04 (Indian standards) and series NU 4, SKF
9000 8000 7000 6700 6000 5600 5000 4800 4300 4000 3800 3600 3400 3200 3000
Oilc
0.75 1.00 1.30 1.65 2.00 2.50 3.00 3.60 5.25 6.25 7.30 8.70 10.50 13.6 19.0
kg
Mass SKF
DESIGN OF BEARINGS AND TRIBOLOGY
23.134
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
d
B
D
r
NU2203EC NU2204EC 2205EC 2206EC 2207EC 2208EC 2209EC 2210EC NU2211EC 2212EC 2213EC 2214EC 2215EC NU2216EC 2217EC 2218EC 2219EC 2220EC NU2222EC 2224EC 2226EC 2228EC 2230EC 2232EC 2234EC 2236EC 2238EC 2240EC
NU2203E NU2204E NU2205E NU2206E NU2207E NU2208E NU2209E NU2210E NU2211E NU2212E NU2213E NU2214E NU2215E NU2216E NU2217E NU2218E NU2219E NU2220E NU2222E NU2224E NU2226E NU2228E NU2230EMI NU2232EMI NU2234EMI NU2236EMI NU2238EMI NU2240EMI
17 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 110 120 130 140 150 160 170 180 190 200
d 40 47 52 62 80 80 85 90 100 110 120 125 130 140 150 160 170 180 200 215 230 250 270 290 310 320 340 360
D 16 18 18 20 21 23 23 23 25 28 31 31 31 33 36 40 43 46 53 58 64 68 73 80 86 86 92 98
B .6 1.0 1.0 1.0 1.5 1.5 1.1 1.1 1.5 1.5 1.5 1.5 1.5 2 2 2 2.1 2.1 2.1 2.1 3 3 3 3 4 4 4 4
r min
Dimensions, mm
0.3 0.6 0.6 0.6 1.1 1.5 1.1 1.1 1.1 1.5 1.5 1.5 1.5 2 2 2 2.1 2.1 2.1 2.1 3 3 3 3 4 4 4 4
r1 min 22.1 26.5 31.5 37.5 46.2 51.0 54.5 59.5 66.0 72.0 78.5 83.5 88.5 95.3 100.05 107.0 112.5 119.0 132.5 143.5 153.5 169.0 182.0 193.0 205.0 215.0 228.0 241.0
F 22.0 31.0 34.5 50.0 63.0 78.0 81.5 88.0 118.0 153.0 183.0 196.0 208.0 215.0 275.0 315.0 375.0 440.0 520.0 610.0 735.0 830.0 980.0 1180.0 1400.0 1500.0 1660.0 1860.0
kN
FAG
21600 27500 34000 49000 63000 75000 81000 88000 118000 153000 180000 193000 208000 245000 280000 315000 375000 450000 520000 630000 735000 830000 930000 1200000 1430000 1500000 1660000 1900000
N
SKF
Static, Co
24.0 32.5 34.5 49.0 64.0 81.5 73.5 78.0 98.0 129.0 150.0 156.0 163.0 186.0 216.0 240.0 285.0 335.0 380.0 450.0 530.0 570.0 655.0 800.0 950.0 1000.0 1100.0 1220.0
kN
FAG
23800 29700 34100 48400 64400 70000 73700 78100 99000 128000 147000 154000 161000 157000 216000 242000 266000 336000 380000 457000 528000 572000 627000 809000 968000 1010000 1100000 1230000
N
SKF
Dynamic, C
Basic load rating capacity
2600 3450 4250 6100 8150 9650 10000 11400 15300 20000 24000 25500 27000 31000 34300 39000 45500 54000 61000 72000 83000 93000 100000 129000 150000 156000 170000 190000
N
Fatigue limit, Fuf SKF
18000 16000 15000 12000 9000 7500 8000 8000 7000 6300 5600 5300 5300 4800 4500 4300 3800 3800 3400 3200 3000 4500 4300 3800 3200 3200 3000 2800
rpm
Kinematically FAG
19000 16000 14000 12000 9500 9000 8000 7000 7000 6300 5600 5300 5300 4800 4500 4300 4000 3800 3400 3000 2800 2600 2460 2200 2200 2000 1900 1800
Oila SKF
Permissible speed, n
Use Xe ¼ X ¼ 1, Yo ¼ Y ¼ 0. EC design series have higher loading capacity for the same boundary dimension than earlier design. a Oil lubrication. Source: 1. Extracted with permission from ‘‘FAG Rolling Bearings’’, Catalogue WL 41520EI, 1995 Edition: FAG Precision Bearings Ltd., Maneja, Vadodara, India. 2. Courtesy: Extracted from SKF Rolling Bearings, Catalogue 4000E, 1989, SKF Rolling Bearings India Ltd., Mumbai, India.
F
r1
SKF
FAG
Bearing No.
TABLE 23-73 Cylindrical roller bearings—Dimension Series NU22
0.092 0.142 0.162 0.359 0.488 0.658 0.530 0.571 0.793 1.08 1.44 1.51 1.60 2.01 2.50 3.18 3.90 4.77 6.73 8.21 10.4 13.2 18.7 23.9 35.7 36.4 36.9 45.1
kg
Mass FAG
DESIGN OF BEARINGS AND TRIBOLOGY
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
23.135
B
r
D
NU2304EC NU2305EC 2306EC 2307EC NU2308EC 2309EC 2310EC NU2311EC 2312EC 2313EC NU2314EC 2315 2316 NU2317EC 2318EC 2319EC NU2320EC 2322EC 2324EC NU2326EC NU2328EC 2330EC 2332EC NU2334 NU2336 NU2338EC NU2340EC
NU2304E NU2305E NU2306E NU2307E NU2308E NU2309E NU2310E NU2311E NU2312E NU2313E NU2314E NU2315 NU2316 NU2317 NU2318 NU2319 NU2320 NU2322 NU2324 NU2326MI NU2328MI NU2330MI NU2332MI NU2334M NU2336M NU2338M NU2340
20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 110 120 130 140 150 160 170 180 190 200
d 52 62 72 80 90 100 110 120 130 140 150 160 170 180 190 200 215 240 260 280 300 320 340 360 380 400 420
D 21 24 27 31 33 36 40 43 46 48 51 55 58 60 64 67 73 80 86 93 102 108 114 120 126 132 138
B 1.1 1.1 1.1 1.5 1.5 1.5 2 2 2.1 2.1 2.1 2.1 2.1 3 3 3 3 3 3 4 4 4 4 4 5 5 5
r
Dimensions, mm
0.6 1.1 1.1 1.1 1.5 1.5 2 2 2.1 2.1 2.1 2.1 2.1 3 3 3 3 3 3 4 4 4 4 4 4 5 5
r1 27.5 34.0 40.5 46.2 52.0 58.5 65.0 70.5 77.0 82.5 89.0 95.0 101.0 108.0 113.5 121.5 127.5 143.0 154.0 167.0 180.0 193.0 204.0 220.0 232.0 245.0 260.0
F 39.0 56.0 75.0 98.0 120.0 153.0 186.0 228.0 260.0 285.0 325.0 390.0 425.0 450.0 530.0 585.0 720.0 800.0 1020.0 1220.0 1400.0 1600.0 1830.0 1760.0 2000.0 2200.0 2200.0
kN
FAG
38000 55000 75000 98000 120000 153000 186000 232000 265000 290000 325000 400000 440000 490000 540000 565000 735000 900000 1040000 1250000 1430000 1630000 1860000 1800000 2040000 2550000 2650000
N
SKF
Static, Co
41.5 57.0 73.5 91.5 112.0 137.0 163.0 200.0 224.0 245.0 275.0 325.0 355.0 365.0 430.0 455.0 570.0 630.0 780.0 915.0 1020.0 1160.0 1320.0 1220.0 1370.0 1500.0 1500.0
kN
FAG
41300 56100 73700 91300 112000 136000 161000 201000 224000 251000 275000 330000 358000 396000 440000 468000 583000 682000 792000 935000 1050000 1190000 1320000 1230000 1400000 1830000 2050000
N
SKF
Dynamic, C
Basic load rating capacity
4300 6950 9650 12700 15300 20000 24500 30500 34500 35000 41500 50000 55000 60000 65500 69000 85000 102000 116000 137000 150000 170000 190000 180000 204000 236000 260000
N
Fatigue limit, Fuf SKF
14000 12000 10000 9000 7500 6700 6300 5600 5000 4800 4500 4000 3800 3600 3400 3400 3200 2800 4300 3800 3600 3200 3000 2800 2800 2800 2600
rpm
Kinematically FAG
11000 9000 8000 7000 6300 5600 5000 4600 4300 4000 3600 3400 3200 3000 2800 2600 2400 2000 1900 1800 1800 1700 1500 1400 1300 1200 1200
Oila SKF
Permissible speed, n
Oil lubrication. Source: 1. Extracted with permission from ‘‘FAG Rolling Bearings’’, Catalogue WL 41520EI, 1995 Edition: FAG Precision Bearings Ltd., Maneja, Vadodara, India. 2. Courtesy: Extracted from SKF Rolling Bearings, Catalogue 4000E, 1989, SKF Rolling Bearings India Ltd., Mumbai, India.
a
F
d
r1
SKF
FAG
Bearing No.
TABLE 23-74 Cylindrical roller bearings—Dimensions Series NU23
0.215 0.348 0.530 0.721 0.959 1.300 1.740 2.240 2.780 3.320 4.030 4.93 5.88 6.57 7.84 9.21 12.00 16.80 23.20 26.10 36.50 43.90 46.70 61.00 65.40 83.40 95.70
kg
Mass FAG
DESIGN OF BEARINGS AND TRIBOLOGY
23.136
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
a T
B
c
D
r1
r
32206 07 08 32209 10 11 32212 13 14 32215 16 17 32218 19 20 32221 22 24 32226 28 30
32206A 32207A 32208A 32209A 32210A 32211A 32212A 32213A 32214A 32215A 32216A 32217A 32218A 32219A 32220A 32221A 32222A 32224A 32226A 32228A 32230A
30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 120 130 140 150
d 62 72 80 85 90 100 110 120 125 130 140 150 160 170 180 190 200 215 230 250 270
D 20 23 23 23 23 25 28 31 31 31 33 36 40 43 46 50 53 58 64 68 73
B 21.25 24.25 24.75 24.75 24.75 26.75 29.75 32.75 33.25 33.25 35.25 38.5 42.5 45.5 49.0 53.0 56.0 61.5 61.75 71.75 77.0
T 17 19 19 19 19 21 24 27 27 27 28 30 34 37 39 43 46 51 56 58 60
C
Dimensions, mm
1.0 1.5 1.5 1.5 1.5 2.0 2.0 2.0 2.0 2.0 2.5 2.5 2.5 3.0 3.0 3.0 3.0 3.0 4.0 4.0 4.0
r 1.0 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 2.0 2.0 2.0 2.5 2.5 2.5 2.5 2.5 3.0 3.0 3.0
r1 16 18 19 20 21 23 24 26 28 29 31 34 36 39 42 44 46 51 56 60 64
a .37 .37 .37 .40 .42 .40 .40 .40 .42 .44 .42 .42 .42 .42 .42 .42 .42 .44 .44 .44 .44
e 1.6 1.6 1.6 1.48 1.33 1.48 1.48 1.48 1.43 1.38 1.43 1.43 1.43 1.43 1.43 1.43 1.43 1.38 1.38 1.38 1.38
Y
Factors
.88 .88 .88 .81 .79 .81 .81 .81 .79 .76 .79 .79 .79 .79 .79 .79 .79 0.79 0.79 0.76 0.76
Yo N
SKF kN
FAG
50100 66000 74800 80900 82500 106000 125000 151000 157000 161000 182000 212000 251000 281000 319000 358000 402000 468000 550000 644000 737000
N
SKF
Dynamic, C
63.0 57000 54.0 85.0 78000 71.0 95.0 86500 80.0 100.0 98000 83.0 110.0 100000 88.0 137.0 129000 110.0 170.0 160000 134.0 200.0 193000 156.0 216.0 208000 163.0 232.0 212000 173.0 265.0 245000 200.0 305.0 285000 228.0 360.0 340000 260.0 415.0 390000 300.0 475.0 440000 335.0 550.0 510000 380.0 600.0 570000 415.0 735.0 695000 490.0 865.0 830000 570.0 1000.0 1000000 655.0 1160.0 1140000 750.0
kN
FAG
Static, Co
Basic load rating capacity
6500 8650 9800 11200 11600 15000 19000 23200 24500 25000 28500 33500 38000 43000 48000 55000 61000 72000 85000 100000 112000
N
Fatigue load limit, SKF
12000 10000 9000 8000 7500 6700 6000 5600 5300 5000 5000 4800 4500 4300 4000 3600 3400 3000 2600 2600 2600
rpm
Kinematically FAG
6000 5300 4000 4500 4300 3800 3400 3000 2800 2600 2400 2200 2000 1900 1800 1800 1700 1600 1500 1400 1200
Greasea SKF
Permissible speed, n
Grease lubrication. Source: 1. Extracted with permission from ‘‘FAG Rolling Bearings’’, Catalogue WL 41520EI, 1995 Edition: FAG Precision Bearings Ltd., Maneja, Vadodara, India. 2. Courtesy: Extracted from SKF Rolling Bearings, Catalogue 4000E, 1989, SKF Rolling Bearings India Ltd., Mumbai, India.
a
d
r
r1
SKF
FAG
Bearing No.
TABLE 23-75 Taped roller bearings—Dimensions Series 322
0.276 0.425 0.555 0.570 0.602 0.872 1.14 1.59 1.69 1 93 2.18 2.76 3.78 4.23 5.67 6.07 7.35 10.1 11.7 14.0 18.5
kg
Mass FAG
DESIGN OF BEARINGS AND TRIBOLOGY
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
23.137
DESIGN OF BEARINGS AND TRIBOLOGY
General Plan Boundary Dimensions for Tapered Roller Bearings There are four series in tapered roller bearings. They are: (1) Angle series, (2) diameter series, (3) width series, (4) dimension series. Dimension series is a combination of angle series, diameter series and width series. Dimension series shall be designated by a combination of three symbols, for example 2BD. The first symbol is a numeric character which represents a range of contact angles (angle series). The second symbol is an alphabetic character which represents range of numeric values for the outside diameter to bore relationship (diameter series). The third symbol is an alphabetic character which represents a range of numeric values of the width to section relationship (width series).
TABLE 23-76 Series designation
T=ðD dÞ0:95
(D=d 0:77 )
Angle Series
Over
1 2 3 4 5 6 7
Reserved for future use 108 138 520 138 520 158 590 188 550 158 590 188 550 238 238 278 278 308
Up to
Diameter series
Over
A B C D E F G
Reserved for future use 3.40 3.80 3.80 4.40 4.40 4.70 4.70 5.00 5.00 5.60 5.60 7.00
Up to
Width series
Over
A B C D E
Reserved for future use 0.50 0.68 0.68 0.80 0.80 0.88 0.80 1.00
Symbol r
r1 r
α
r1
r r1
r
Dφ E
r1
dφ B
T
d D T B C E r1 r1s min r2 r2s min r3 r3s min r4 r4s min r5
bearing bore diameter, nominal bearing outside diameter, nominal bearing width, nominal cone width, nominal cup width, nominal cup small inside diameter, nominal bearing contact angle, nominal cone back face chamfer height smallest single r1 cone back face chamfer width smallest single r2 cup back face chamfer height smallest single r3 cup back face chamfer width smallest single r4 cone and cup front face chamfer height and width
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
Up to
DESIGN OF BEARINGS AND TRIBOLOGY DESIGN OF BEARINGS AND TRIBOLOGY
23.139
TABLE 23-77 Dimensions for tapered roller bearings—Contact angle series 2 d
r
r1 r
α
r1
r r1
r
Dφ E
r1
dφ B
T
15 17 17 17 20 20 20 20 22 25 25 25 25 28 28 30 30 30 32 32 35 35 40 40 40 45 45 50 50 50 55 55 55 55 60 60 60 60 65 65 65 65 70 70 70 75 75 75 80 80 80 85 85 85
D
T
B
r1s min r2s min
C
r3s min r4s min
E
Dimension series
42 40 40 47 37 47 47 52 40 42 62 50 52 45 55 47 58 72 52 62 55 68 62 75 90 68 80 72 85 100 80 85 95 120 85 90 100 130 90 100 110 125 100 105 120 105 115 125 110 120 130 120 125 135
14.25 13.25 17.25 20.25 12 15.25 19.25 22.25 12 12 25.25 17 19.25 12 19 12 19 28.75 14 21 14 23 15 24 35.25 15 24 15 24 42.25 17 18 27 45.5 17 18 27 48.5 17 22 31 43 20 22 34 20 25 34 20 25 34 23 25 34
13 12 16 19 12.0 14 18 21 12 12 24 17.5 18.0 12 19.5 12 19.5 27 15 21 14 23 15 24 33 15 24 15 24 40 17 18.5 27 43 17 18.5 27 46 17 22 31 42 20 22 33 20 25 33 20 25 33 23 25 33
1 1 1 1 0.3 1 1 1.5 0.3 0.3 1.5 1.5 1 0.3 1.5 0.3 1.5 1.5 0.6 1.5 0.6 2 0.6 2 2 0.6 2 0.6 2 2.5 1 2 2 2.5 1 2 2 3 1 2 2 2.5 1 2 2 1 2 2.5 1 2 2.5 1.5 2.5 2.5
11 11 14 16 9 12 15 18 9 9 20 13.5 16 9 15.5 9 15.5 23 10 17 11.5 18.5 12 19.5 27 12 19.5 12 19.5 33 14 14 21.5 35 14 14 21.5 37 14 17.5 25 35 16 17.5 27 16 20 27 16 20 27 18 20 28
1 1 1 1 0.3 1 1 1.5 0.3 0.3 1.5 1 1 0.3 1.5 0.3 1.5 1.5 0.6 1.5 0.6 2 0.6 2 1.5 0.6 2 0.6 2 2 1 2 2 2 1 2 2 2.5 1 2 2 2.5 1 2 2 1 2 2 1 2 2 1.5 2 2
108 450 2900 128 570 1000 118 450 108 450 2900 128 128 570 1000 128 2800 118 180 3600 128 128 118 180 3600 138 300 138 300 128 128 100 128 128 500 118 510 3500 128 128 300 118 128 350 108 550 128 070 128 570 1000 128 138 128 500 138 520 128 570 1000 118 390 128 490 128 430 3000 128 570 1000 128 270 138 380 3000 138 270 128 570 1000 138 150 128 100 3000 128 270 128 118 530 128 490 3000 128 220 128 310 128 128 550 138 100 128 330 3000 138 300 128 180 138 70 3000 138 020
33.272 31.408 31.170 36.090 29.621 37.304 35.810 39.518 32.665 34.608 48.637 40.205 41.335 37.639 44.838 39.617 47.309 55.767 44.261 50.554 47.220 55.400 53.388 62.155 69.253 58.852 66.615 62.748 70.969 86.263 69.503 73.586 80.106 94.316 74.185 78.249 84.587 102.939 78.849 87.433 93.090 102.378 88.590 92.004 101.343 93.223 100.414 105.786 97.974 105.003 110.475 106.599 109.650 115.94
2FB 2DB 2DD 2FD 2BD 2DB 2DD 2FD 2BC 2BD 2FD 2CC 2CD 2BD 2CD 2BD 2CD 2FD 2BD 2CD 2BD 2DD 2BC 2CD 2FD 2BC 2CD 2BC 2CD 2FD 2BC 2CC 2CD 2FD 2BC 2CC 2CD 2FD 2BC 2CC 2DD 2FD 2BC 2CC 2DD 2BC 2CC 2DD 2BC 2CC 2BD 2BC 2CC 2DD
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
DESIGN OF BEARINGS AND TRIBOLOGY
TABLE 23-77 (Cont.)
r
r1 r
α
r1
r r1
r
Dφ E
r1
dφ B
T
d
D
T
B
r1s min r2s min
C
r3s min r4s min
E
Dimension series
90 90 90 95 95 95 100 100 105 105 105 110 110 110 120 120 130 130 140 140 150 150 160 160 170 180 180 190 190 200 200 220 220 240 240 260 260
125 135 140 130 140 145 140 150 145 155 160 150 160 185 168 180 180 190 190 205 210 215 220 225 235 240 145 255 260 265 270 285 290 305 310 325 330
23 28 34 23 28 34 25 34 25 33 38 25 33 38 29 41 32 41 32 44 38 44 38 44 44 39 44 41 47 41 47 41 47 41 47 41 47
23 27.5 33 23 27.5 33 25 33 25 31.5 37 25 31.5 37 29 40 32 40 32 43 38 43 38 43 43 38 43 40 46 40 46 40 46 40 46 40 46
1.5 2.5 2.5 1.5 2.5 2.5 1.5 2.5 1.5 2.5 3 1.5 2.5 3 1.5 3 2 3 2 3 2.5 3 2.5 3 3 3 3 3 4 3 4 4 4 4 4 4 4
18 23 28 18 23 28 20 28 20 27 31 20 27 31 23 33 25 33 25 36 30 36 30 36 36 31 36 33 38 33 38 33 38 33 38 33 38
1.5 2 2.5 1.5 2.5 2.5 1.5 2.5 1.5 2.5 2.5 1.5 2.5 2.5 1.5 2.5 1.5 2.5 1.5 2.5 2 3 2 3 3 3 3 3 3 3 3 3 3 3 3 4 4
128 510 128 010 3000 128 020 3000 138 250 128 300 128 300 128 230 128 570 3000 128 510 128 170 3000 128 170 3000 138 200 128 420 3000 128 420 3000 138 050 128 080 3000 128 450 128 510 3000 138 300 128 450 128 260 128 370 138 138 140 3000 128 130 3000 128 470 128 460 3000 128 150 128 150 128 450 128 450 128 450 128 128 530 128 520 138 460 138 440 3000
111.282 119.139 121.860 116.082 123.797 126.47 125.717 130.992 130.359 137.045 139.734 135.182 141.607 144.376 148.464 158.233 161.652 167.414 171.032 181.645 187.926 190.810 197.962 200.146 211.346 218.311 220.684 232.395 234.615 241.710 244.043 2U637 265.24 281.653 284.035 300.661 303.004
2BC 2CC 2CD 2BC 2CC 2CD 2CC 2CB 2CC 2CD 2DD 2CC 2CD 2DD 2DD 2CC 2CC 2DD 2CC 2DD 2DC 2DD 2DC 2BD 2DD 2DB 2BC 2DC 2DD 2DC 2DD 2DC 2DD 2DC 2DD 2DC 2DD
All dimensions in mm. Courtesy: Extracted from IS: 7461 (part 1) 1993.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
DESIGN OF BEARINGS AND TRIBOLOGY
TABLE 23-78 Dimensions for tapered roller bearings—Contact angle series 5 d
D
T
B
r1s min r2s min
C
r3s min r4s min
E
Dimension Series
20 25 28 30 32 35 40 40 45 45 50 50 55 55 60 60 65 65 70 70 75 75 80 80 85 85 90 90 95 95 100 100 105
47 52 58 62 65 72 80 50 85 100 90 110 100 120 110 130 115 120 125 130 130 135 135 140 140 145 145 150 150 155 155 160 160
19.25 19.25 20.25 21.25 22 24.25 24.75 27 24.75 38.25 24.75 42.25 30 45.5 34 48.5 34 39 37 42 37 42 37 42 37 42 37 42 37 42 37 42 37
18 18 19 20 21.5 23 23 26.5 23 36 23 40 28.5 43 32 46 32 38 34.5 40 34.5 40 34.5 40 34.5 40 34.5 40 34.5 40 34.5 40 34.5
1 1 1 1 1 1.5 1.5 4 1.5 2 1.5 2.5 4 2.5 4 3 4 4 4 4 4 5 4 5 4 5 4 5 4 5 5 5 5
15 15 16 17 17 19 19 21.5 19 30 18 33 24 35 27 37 27 31 30 34 30 34 30 34 30 34 30 34 30 34 30 34 30
1 1 1 1 1 1.5 1.5 1.5 1.5 1.5 1.5 2.0 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 3 3 3 3 3 3 3 3 3 3
198 218 150 208 340 208 340 208 218 100 208 208 430 3000 218 350 208 218 200 208 208 208 198 3000 208 208 3000 208 280 198 340 198 1100 208 260 208 198 360 208 490 208 240 198 160 198 160 208 208 208 440 208 440 198 200 198 400
33.708 37.555 42.436 46.389 48.523 53.052 61.438 58.963 66.138 71.639 72.169 78.582 77.839 86.300 85.698 94.000 89.829 91.241 98.100 100.186 102.199 104.210 108.128 108.199 112.385 115.106 118.567 119.254 122.832 123.374 127.221 130.033 133.284
5DD 5CD 5DB 5DC 5DC 5DC 5DC 5DD 5DC 5FD 5DC 5FD 5DD 5FD 5DD 5FD 5DD 5ED 5DD 5ED 5DD 5ED 5DD 5ED 5DD 5ED 5DD 5ED 5DD 5ED 5DD 5ED 5DD
All dimensions in mm. Courtesy: Extracted from IS: 7461 (part 1) 1993.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
23.142
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
r
r-
r
CD
51100 51101 51102 51103 51104 51105 51106 51107 51108 51109 51110 51111 51112 51113 51114 51115 51116 51117 51118 51120 51122 51124 51126 51128 51130 51132FP 51134FP 51136FP 51138FP 51140FP
10TA11 12TA11 15TA11 17TA11 20TA11 25TA11 30TA11 35TA11 40TA11 45TA11 50TA11 55TA11 60TA11 65TA11 70TA11 75TA11 80TA11 85TA11 90TA11 100TA11 110TA11 120TA11 130TA11 140TA11 150TA11 160TA11 170TA11 180TA11 190TA11 200TA11
51100 01 02 03 04 05 51106 07 08 09 10 11 51112 13 14 15 16 17 51118 20 22 24 26 28 51130 32 34 36 38 40
SKF 10 12 15 17 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 100 110 120 130 140 150 160 170 180 190 200
d 11 13 16 18 21 26 32 37 42 47 52 57 62 67 72 77 82 87 92 102 112 122 132 142 152 162 172 183 193 203
C 24 26 28 30 35 42 47 52 60 65 70 78 85 90 95 100 105 110 120 135 145 155 170 178 188 198 213 222 237 247
D 9 9 9 9 10 11 11 12 13 14 14 16 17 18 18 19 19 19 22 25 25 25 30 31 31 31 34 34 37 37
B 24 26 28 30 35 42 47 52 60 65 70 78 85 90 95 100 105 110 120 135 145 155 170 180 190 200 215 225 240 250
E
Dimensions, mm
0.3 0.3 0.3 0.3 0.3 0.6 0.6 0.6 0.6 0.6 0.6 0.6 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.1 1.1 1.1 1.1
r min 0.001 0.001 0.001 0.002 0.004 0.004 0.007 0.009 0.016 0.02 0.024 0.038 0.053 0.06 0.067 0.095 0.1 0.12 0.19 0.36 0.43 0.48 0.75 0.85 0.90 1.0 1.4 1.5 2.4 2.4
Minimum load constant, Mb 14.0 15.3 15.3 15.3 20.8 29.0 33.5 37.5 50.0 57.0 63.0 78.0 93.0 98.0 104.0 137.0 140.0 150.0 190.0 270.0 290.0 310.0 390.0 400.0 400.0 430.0 500.0 530.0 655.0 655.0
kN
FAG
14000 15300 14000 15300 20800 29000 33500 37500 56000 57000 63000 78000 90000 98000 104000 137000 140000 150000 190000 270000 290000 310000 390000 400000 400000 425000 500000 530000 655000 655000
N
SKF
10.0 10.4 10.4 9.65 12.70 15.6 16.6 17.6 23.2 24.5 25.5 31.0 36.5 37.5 37.5 44.0 45.0 45.5 60.0 85.0 86.5 90.0 112.0 112.0 111.0 112.0 132.0 134.0 170.0 170.0
kN
FAG
9950 10400 9360 9750 12700 15900 16800 17400 23400 24200 25500 30700 35800 37100 37700 44200 44900 46200 59200 85200 87100 88400 111000 111000 111000 112000 133000 135000 172000 168000
N
SKF
Dynamic, C
560 620 560 620 850 1160 1340 1530 2040 2280 2550 3100 3600 4000 4150 5500 5700 6000 7500 10000 10200 10800 12900 12900 12500 12900 14300 15000 18000 17600
N
Fatigue load limit, Fuf
9500 9000 8500 8500 7000 6300 5600 5300 4500 4500 4300 3800 3600 3400 3400 3200 3200 3200 2800 2200 2200 2000 1800 1800 1700 1700 1500 1500 1400 1400
b
rpm
Kinematically, FAG
7000 6700 6300 6300 5600 4800 4500 4300 3800 3400 3200 2800 2800 2600 2400 2200 2000 2000 1800 1700 1600 1600 1400 1300 1200 1200 1100 1000 950 950
Greasea , SKF
Permissible speed, n
Grease lubrication. To find Fa min ¼ minimum axial load using M refer to table 23-82. Source: 1. Extracted with permission from ‘‘FAG Rolling Bearings’’, Catalogue WL 41520EI, 1995 Edition: FAG Precision Bearings Ltd., Maneja, Vadodara, India. 2. Courtesy: Extracted from SKF Rolling Bearings, Catalogue 4000E, 1989, SKF Rolling Bearings India Ltd., Mumbai, India.
a
r
Ed
B
FAG
IS Old No.
Bearing No.
Static, Co
Basic load rating capacity
TABLE 23-79 Single direction thrust ball bearings—Dimension Series 11 (Indian Standards), FAG and SKF Series 511
0.021 0.023 0.024 0.026 0.041 0.060 0.069 0.087 0.125 0.153 0.169 0.247 9.330 0.359 0.385 0.520 0.557 0.597 0.878 1.300 1.450 1.590 2.370 2.59 2.26 2.39 3.09 3.17 4.08 4.26
kg
Mass FAG
DESIGN OF BEARINGS AND TRIBOLOGY
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
r
51200 51201 51202 51203 51204 51205 51206 51207 51208 51209 51210 51211 51212 51213 51214 51215 51216 51217 51218 51220 51222 51224 51226 51228 51230MP 51232MP 51234MP 51236MP 51238MP 51240MP
FAG 51200 01 02 03 04 05 51206 07 08 19 10 11 51212 13 14 15 16 17 51218 20 22 24 26 28 51230 32 34 36 38 40
SKF 10 12 15 17 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 100 110 120 130 140 150 160 170 180 190 200
d 12 14 17 19 22 27 32 37 42 47 52 57 62 67 72 77 82 88 93 103 113 123 133 143 153 163 173 183 194 204
C 26 28 32 35 40 47 52 62 68 73 78 90 95 100 105 110 115 125 135 150 160 170 187 197 212 222 237 260 265 275
D 11 11 12 12 14 15 16 18 19 20 22 25 26 27 27 27 28 31 35 38 38 39 45 46 50 51 55 56 62 62
B 26 28 32 35 40 47 52 62 68 73 78 90 95 100 105 110 115 125 135 150 160 170 190 200 215 225 240 260 270 280
E
Dimensions, mm
0.6 0.6 0.6 0.6 0.6 0.6 0.6 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.1 1.1 1.1 1.1 1.5 1.5 1 1 1 1 2 2
r min 0.002 0.002 0.003 0.004 0.008 0.013 0.014 0.028 0.05 0.043 0.01 0.11 0.12 0.14 0.11 0.18 0.22 0.38 0.53 0.67 0.80 1.0 1.7 1.9 2.8 3.2 4.5 5 7 8
Minimum load constant, Mb 17.0 19.0 25.0 27.5 37.5 50.0 47.5 67.0 98.0 80.0 106.0 134.0 140.0 150.0 160.0 170.0 190.0 250.0 300.0 320.0 360.0 400.0 540.0 570.0 735.0 780.0 930.0 1000.0 1160.0 1220.0
kN
FAG
17000 19000 25000 27500 37500 50000 47500 67000 98000 80000 106000 134000 140000 150000 160000 170000 190000 250000 300000 320000 360000 400000 540000 570000 735000 780000 930000 1000000 1160000 1220000
N
SKF
12.70 13.20 16.6 17.3 22.4 28.0 25.5 35.5 46.5 39.0 50.0 61.0 62.0 64.0 65.5 67.0 75.0 98.0 120.0 122.0 129.0 140.0 183.0 190.0 236.0 245.0 285.0 290.0 335.0 340.0
kN
FAG
12700 13300 16500 17200 22500 27600 25500 35100 46800 39000 49400 61000 62400 63700 65000 67600 76100 97500 119000 124000 130000 140000 186000 190000 238000 242000 286000 296000 332000 338000
N
SKF
Dynamic, C
695 765 1000 1100 1530 2040 1900 2700 4000 3200 4300 5400 5600 6000 6400 6800 7650 8800 11400 11400 12500 13400 15000 17600 22000 22800 26000 27500 31000 31500
N
Fatigue load limit, Fuf
8000 8000 6700 6700 5600 5000 4800 4000 3800 3600 3400 3200 3000 3000 2800 2800 2600 2200 2000 1900 1800 1700 1600 1500 1400 1400 1200 1200 1000 1000
b
rpm
Kinematically, FAG
6000 6000 5300 5000 4500 4000 3600 3000 2800 2600 2400. 1900 1900 1800 1800 1700 1700 1600 1500 1300 1200 1100 950 950 900 850 800 800 750 750
Greasea , SKF
Permissible speed, n
Grease lubrication. To find Fa min ¼ minimum axial load using M refer to table 23-82. Source: 1. Extracted with permission from ‘‘FAG Rolling Bearings’’, Catalogue WL 41520EI, 1995 Edition: FAG Precision Bearings Ltd., Maneja, Vadodara, India. 2. Courtesy: Extracted from SKF Rolling Bearings, Catalogue 4000E, 1989, SKF Rolling Bearings India Ltd., Mumbai, India.
a
r
r
Ed
B
10TA12 12TA12 15TA12 17TA12 20TA12 25TA12 30TA12 35TA12 40TA12 45TA12 50TA12 55TA12 60TA12 65TA12 CD 70TA12 75TA12 80TA12 85TA12 90TA12 r 100TA12 110TA12 120TA12 130TA12 140TA12 150TA12 160TA12 170TA12 180TA12 190TA12 200TA12
IS Old No.
Bearing No.
Static, Co
Basic load rating capacity
TABLE 23-80 Single direction thrust ball bearings (with Flat Housing Washer)—Dimension Series 12 (Indian Standards)
0.031 0.034 0.046 0.053 0.083 0.115 0.130 0.215 0.278 0.302 0.371 0.586 0.651 0.737 0.783 0.827 0.908 1.22 1.68 2.22 2.37 2.67 3.99 4.33 6.09 6.56 8.12 8.70 11.70 12.00
kg
Mass FAG
DESIGN OF BEARINGS AND TRIBOLOGY
23.143
b
a
r
r
r
C D
51305 51306 51307 51308 51309 51310 51311 51312 51313 51314 51315 51316 51317 51318 51320 51322MP 51324MP 51326MP 51328MP 51330MP 51332M 51334M 51336M 51338M 51340M
FAGb 51305 06 07 51308 09 10 51311 12 13 51314 15 16 51317 18 20 51322 24 26 51328 30 51332 34 36 38 40
SKFb 25 30 35 40 45 50 55 60 65 70 75 80 85 90 100 110 120 130 140 150 160 170 180 190 200
d 27 32 37 42 47 52 57 62 67 72 77 82 88 93 103 113 123 134 144 154 164 174 184 195 205
C 52 60 68 78 85 95 105 110 115 125 135 140 150 155 170 187 205 220 235 245 265 275 245 315 335
D 18 21 24 26 28 31 35 35 36 40 44 44 49 50 55 63 70 75 80 80 87 87 95 105 110
B 52 60 68 78 85 95 105 110 115 125 135 140 150 155 170 190 210 225 240 250 270 280 300 320 340
E
Dimensions, mm
1.0 1.0 1.0 1.0 1.0 1.1 1.1 1.1 1.1 1.1 1.5 1.5 1.5 1.5 1.5 2.0 2.1 2.1 2.1 2.1 3.0 3.0 3.0 4.0 4.0
r min 0.019 0.028 0.05 0.08 0.12 0.18 0.26 0.28 0.32 0.53 0.75 0.8 1.1 1.2 1.8 2.8 4.5 6.0 8.0 9.0 12.0 13.0 18.0 26.0 30.0
Minimum load constant, Mb 55.0 65.5 88.0 112.0 140.0 173.0 208.0 208.0 220.0 300.0 360.0 360.0 425.0 465.0 560.0 720.0 915.0 1060.0 1220.0 1290.0 1500.0 1630.0 1830.0 2200.0 2400.0
kN
FAG kN
FAG
34.5 38.0 50.0 61.0 75.0 88.0 102.0 102.0 106.0 137.0 163.0 160.0 190.0 196.0 232.0 275.0 325.0 360.0 400.0 405.0 455.0 465.0 520.0 600.0 2400000 620.0
55000 65500 88000 112000 140000 173060 208000 208000 220000 300000 360000 360000 425000 465000 560000 720000 915000 1060000 1220000 1290000 1500000 1600000 1830000
N
SKF
2240 2650 3550 4500 5600 6950 8300 8300 8800 11800 14000 13700 16000 16500 19600 24000 28500 32000 35500 36500 41500 43000 47500
N
Fatigue load limit, Fuf
624000 56500
34500 37700 49400 61800 76100 88400 104000 101000 106000 135000 163000 159000 190000 195000 229000 276000 325000 358000 397000 410000 440000 468000 520000
N
SKF
Dynamic, C
4300 4000 3600 3200 3000 2800 2400 2200 2200 1900 1800 1800 1700 1700 1600 1400 1200 1100 1000 950 900 900 800 750 700
rpm
Kinematically, FAG
480
3400 2800 2400 2000 1900 1800 1600 1600 1500 1400 1200 1200 1100 1000 950 850 800 750 700 670 630 600 560
Greasea , SKF
Permissible speed, n
Grease lubrication. Source: 1. Extracted with permission from ‘‘FAG Rolling Bearings’’, Catalogue WL 41520EI, 1995 Edition: FAG Precision Bearings Ltd., Maneja, Vadodara, India. 2. Courtesy: Extracted from SKF Rolling Bearings, Catalogue 4000E, 1989, SKF Rolling Bearings India Ltd., Mumbai, India.
r
Cd
B
25TA13 30TA13 35TA13 40TA13 45TA13 50TA13 55TA13 60TA13 65TA13 70TA13 75TA13 80TA13 85TA13 90TA13 100TA13 110TA13 120TA13 130TA13 140TA13 150TA13
IS Old No.
Bearing No.
Static, Co
Basic load rating capacity
TABLE 23-81 Single Direction thrust ball bearings, Dimension Series 13 (Indian Standards), FAG and SKF series 513
0.170 0.263 0.377 0.533 0.613 0.940 1.300 1.370 1.490 1.910 2.610 2.710 3.530 3.570 4.960 7.700 10.700 13.000 15.700 16.400 21.300 22.500 24.800 31.000 44.300
kg
Mass FAG
DESIGN OF BEARINGS AND TRIBOLOGY
23.144
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
b
a
r
r
r
CD
51405 51406 51407 51408 51409 51410 51411 51412FP 51413FP 51414FP 51415FP 51416FP 51417FP 51418FP 51420FP 51422FP 51424FP 51426FP 51428FP 51430FP
FAGb 51405 06 07 51408 09 10 51411 12 13 51414 15 16 51417 18 20 51422 24 26 28 30
SKFb 25 30 35 40 45 50 55 60 65 70 75 80 85 90 100 110 120 130 140 150
d
D
60 70 80 90 100 110 120 130 140 150 160 170 177 187 205 225 245 265 280 154 295
27 32 37 42 47 52 57 62 68 73 78 83 88 93 103 113 123 134
C 24 28 32 36 39 43 48 51 56 60 65 68 72 77 85 95 102 110 112 120
B 1.0 1.0 1.1 1.1 1.1 1.5 1.5 1.5 2.0 2.0 2.0 2.1 2.1 2.1 3.0 3.0 4.0 4.0 4.0
300
r min
60 70 80 90 100 110 120 130 140 150 160 170 180 190 210 230 250 270
E
Dimensions, mm
20.0
0.043 0.08 0.13 0.22 0.32 0.48 0.67 0.85 1.1 1.4 1.8 2.2 2.8 3.4 5.3 7.5 9.0 15.0
Minimum load constant, Mb
1800.0
90.0 125.0 156.0 204.0 245.0 310.0 360.0 400.0 450.0 500.0 560.0 620.0 680.0 750.0 965.0 1140.0 1220.0 1600.0
kN
FAG
90000 125000 156000 204000 240000 310006 360000 400000 450000 500000 560000 620000 680000 750000 965000 114000 122000 160000 160000 180000
N
SKF
560.0
56.00 72.0 86.5 112.0 129.0 156.0 180.0 200.0 216.0 236.0 250.0 270.0 290.0 305.0 365.0 415.0 425.0 520.0
kN
FAG N
Fatigue load limit, Fuf
3600 5100 6200 8300 9600 12500 14300 16000 18000 19300 20800 22400 24000 25500 31500 34500 36000 45000 44000 559000 48000
55300 72800 87100 112000 130000 159000 178000 199000 216000 234000 251000 270000 286000 307000 371000 410000 423000 520000
N
SKF
Dynamic, C
750
3600 3200 3000 2400 2200 2000 1800 1700 1600 1600 1500 1400 1300 1200 1000 950 900 800
rpm
Kinematically, FAG
2600 2600 1800 1700 1600 1500 1300 1100 1100 950 900 850 850 800 700 630 600 560 530 500
Greasea , SKF
Permissible speed, n
Grease Lubrication. Source: 1. Extracted with permission from ‘‘FAG Rolling Bearings’’, Catalogue WL 41520EI, 1995 Edition: FAG Precision Bearings Ltd., Maneja, Vadodara, India. 2. Courtesy: Extracted from SKF Rolling Bearings, Catalogue 4000E, 1989, SKF Rolling Bearings India Ltd., Mumbai, India.
r
Ed
B
25TA14 30TA14 35TA14 40TA14 45TA14 50TA14 55TA14 60TA14 65TA14 70TA14 75TA14 80TA14 85TA14 90TA14 100TA14
IS Old No.
Bearing No.
Static, Co
Basic load rating capacity
TABLE 23-82 Single direction thrust ball bearings—Dimension Series 14 (Indian Standards), FAG and SKF Series 514
0.363 0.576 0.962 1.170 1.600 2.18 2.91 3.70 4.67 5.72 7.06 8.23 9.79 11.60 15.40 20.80 26.50 32.80 34.50 43.10
kg
Mass FAG
DESIGN OF BEARINGS AND TRIBOLOGY
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
23.145
r1
d1
d2
r1
r
h
r
52202 04 05 06 07 08 09 52210 11 12 13 14 15 52216 17 18 20 52222 24 26 28 30 32 34
52202 52204 52205 52206 52207 52208 52209 52210 52211 52212 52213 52214 52215 52216 52217 52218 52220 52222 52224 52226 52228 52230MP 52232MP 52234MP
15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 100
d 10 15 20 25 30 30 35 40 45 50 55 55 60 65 70 75 85 95 100 110 120 130 140 150
d1 17 22 27 32 37 42 47 52 57 62 67 72 77 82 88 93 103 113 123 133 143 153 163 173
32 40 47 52 62 68 73 78 90 95 100 105 110 115 125 135 150 160 170 190 200 215 225 240
d2 a D 22 26 28 29 34 36 37 39 45 46 47 47 47 48 55 62 67 67 68 80 81 89 90 97
H 5 6 7 7 8 9 9 9 10 10 10 10 10 10 12 14 15 15 15 18 18 20 20 21
h
Dimensions, mm
0.6 0.6 0.6 0.6 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.1 1.1 1.1 1.1 1.5 1.5 1.5 1.5 1.5
r min 0.3 0.3 0.3 0.3 0.3 0.6 0.6 0.6 0.6 0.6 0.6 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.1 1.l 1.1 1.1 1.1 1.1
r1 min 0.003 0.008 0.013 0.014 0.028 0.05 0.043 0.07 0.11 0.12 0.14 0.16 0.18 0.22 0.38 0.53 0.67 0.81 1.0 1.7 1.9 2.8 3.2 4.5
FAG
Minimum load constant, M
25.0 37.5 50.0 47.5 67.0 98.0 80.0 106.0 134.0 140.0 150.0 160.0 170.0 190.0 250.0 300.0 320.0 360.0 400.0 540.0 570.0 735.0 760.0 930.0
kN
FAG
25000 37500 50000 47500 67000 98000 80000 106000 134000 140000 150000 160000 170000 190000 250000 300000 320000 360000 400000 540000 570000 736000 760000 930000
N
SKF
Static, Co
16.6 22.4 28.0 25.5 36.5 46.5 39.0 50.0 61.0 62.0 64.0 65.5 67.0 75.0 98.0 120.0 122.0 129.0 140.0 183.0 190.0 236.0 245.0 285.0
kN
FAG
16500 22500 27600 25500 35100 46800 32000 49400 61800 62400 63700 65000 67600 76100 97500 119000 124000 130000 140000 186000 190000 238000 242000 286000
N
SKF
Dynamic, C
Basic load rating capacity
1000 1500 2040 1900 2700 4000 3200 4300 5400 5600 6000 6400 6800 7650 9500 11400 11400 11500 13400 17000 17500 22000 22800 26000
N
Fatigue load limit, Fuf SKF
6700 5600 5000 4800 4000 3800 3600 3400 3200 3000 3000 2800 2800 2600 2200 2000 1900 1800 1700 1600 1500 1400 1400 1200
rpm
Kinematically, FAG
5300 4500 4000 3600 3000 2800 2600 2400 1900 1900 1800 1750 1700 1700 1600 1600 1300 1200 1100 950 950 900 850 800
Greaseb , SKF
Permissible speed, n
0.081 0.147 0.215 0.247 0.408 0.553 0.597 0.710 1.100 1.210 1.340 1.470 1.570 1.720 2.390 3.220 4.210 4.63 5.23 7.99 8.66 11.40 12.30 14.00
kg
Mass FAG
b
d2 : Refer to FAG bearings. Grease lubrication. Source: 1. Extracted with permission from ‘‘FAG Rolling Bearings’’, Catalogue WL 41520EI, 1995 Edition: FAG Precision Bearings Ltd., Maneja, Vadodara, India. 2. Courtesy: Extracted from SKF Rolling Bearings, Catalogue 4000E, 1989, SKF Rolling Bearings India Ltd., Mumbai, India. The minimum axial load in case of thrust ball bearings according to FAG Fa min ¼ Mðnmax =1000Þ2 where nmax ¼ maximum operating speed, rpm; M ¼ minimum load constant taken from Tables 23-78 to 23-82 for thrust ball bearings.
a
H
D d r
SKF
IS FAG
Bearing No.
TABLE 23-83 Double direction thrust ball bearings—Dimension Series 522
DESIGN OF BEARINGS AND TRIBOLOGY
23.146
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
DESIGN OF BEARINGS AND TRIBOLOGY
TABLE 23-84 Needle bearings—Light Series Bearing No. IS
B
d D
r
D
r
di
B
r
NRB
Basic load rating capacity
Bearing with inner ring
Bearing without inner ring
Bearing with inner ring
Bearing without inner ring
Dimensions, mm d Nom
di Nom
D Nom
B Nom
NA1012 NA1015 NA1017 NA1020 NA1025 NA1030 NA1035 NA1040 NA1045 NA1050 NA1055 NA1060 NA1065 NA1070 NA1075 NA1080
RNA1012 RNA1015 RNA1017 RNA1020 RNA1025 RNA1030 RNA1035 RNA1040 RNA1045 RNA1050 RNA1055 RNA1060 RNA1065 RNA1070 RNA1075 RNA1080
Na1012 Na1015 Na1017 Na1020 Na1025 Na1030 Na1035 Na1040 Na1045 Na1050 Na1055 Na1060 Na1065 Na1070 Na1075 Na1080
Na1012S/Bi Na1015S/Bi Na1017S/Bi Na1020S/Bi Na1025S/Bi Na1030S/Bi Na1035S/Bi Na1040S/Bi Na1045S/Bi Na1050S/Bi Na1055S/Bi Na1060S/Bi Na1065S/Bi Na1070S/Bi Na1075S/Bi Na1080S/Bi
12 15 17 20 25 30 35 40 45 50 55 60 65 70 75 80
17.6 20.8 23.9 28.7 33.5 38.2 44.0 49.7 55.4 62.1 68.8 72.6 78.3 83.1 88 96
28 32 35 42 47 52 58 65 72 80 85 90 95 100 110 115
15 15 15 18 18 18 18 18 18 20 20 20 20 20 24 24
r
Dynamic, C, N
Limiting Static, speed, Co , n, N rpm
.35 .35 .65 .65 .65 .65 .65 .65 .85 .65 .65 .65 .65 .65 .65 .65
11280 12600 12260 19610 21570 23930 26480 28730 31000 33540 36190 37460 41580 43350 64720 68650
9415 10890 12260 18340 21180 23930 27360 30700 34030 37850 41680 43740 49520 52860 80410 86790
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
21600 18300 15900 13200 11100 10000 8600 7600 6900 6100 5500 5200 4900 4500 4300 4000
DESIGN OF BEARINGS AND TRIBOLOGY
23.148
CHAPTER TWENTY-THREE
TABLE 23-85 Needle bearings—Medium Series Bearing No. IS
B
di
r
D
NRB
Bearing with inner ring
Bearing without inner ring
Bearing with inner ring
Bearing without inner ring
NA2015 NA2020 NA2025 NA2030 NA2035 NA2040 NA2045 NA2050 NA2055 NA2060 NA2065 NA2070 NA2075 NA2080 NA2085 NA2090 NA2095 NA2100 NA2105 NA2110 NA2115 NA2120 NA2125 NA2130 NA2140 NA2150 NA2160 NA2170 NA2180 NA2190 NA2200 NA2210 NA2220 NA,2230 NA2240 NA2250
RNA2015 RNA2020 RNA2025 RNA2030 RNA2035 RNA2040 RNA2045 RNA2050 RNA2055 RNA2060 RNA2065 RNA2070 RNA2075 RNA2080 RNA2085 RNA2090 RNA2095 RNA2100 RNA2105 RNA2110 RNA2115 RNA2120 RNA2125 RNA2130 RNA2140 RNA2150 RNA2160 RNA2170 RNA2180 RNA2190 RNA2200 RNA2210 RNA2220 RNA2230 RNA2240 RNA2250
Na2015 Na2020 Na2025 Na2030 Na2035 Na2040 Na2045 Na2050 Na2055 Na2060 Na2065 Na2070 Na2075 Na2080 Na2085 Na2090 Na2095 Na2100 Na2105 Na2110 Na2115 Na2120 Na2125 Na2130 Na2140 Na2150 Na2160 Na2170 Na2180 Na2190 Na2200 Na2210 Na2220 Na2230 Na2240 Na2250
Na2015S/Bi Na2020S/Bi Na2025S/Bi Na2030S/Bi Na2035S/Bi Na2040S/Bi Na2045S/Bi Na2050S/Bi Na2055S/Bi Na2060S/Bi Na2065S/Bi Na2070S/Bi Na2075S/Bi Na2080S/Bi Na2085S/Bi Na2090S/Bi Na2095S/Bi Na2100S/Bi Na2105S/Bi Na2110S/Bi Na2115S/Bi Na2120S/Bi Na2125S/Bi Na2130S/Bi Na2140S/Bi Na2150S/Bi Na2160S/Bi Na2170S/Bi Na2180S/Bi Na2190S/Bi Na2200S/Bi Na2210S/Bi Na2220S/Bi Na2230S/Bi Na2240S/Bi Na2250S/Bi
Basic load rating capacity Dimensions, mm D B r d di Nom Nom Nom Nom
Dynamic, C, N
Static, Co , N
Limiting speed, n, rpm
15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 140 150 160 170 180 190 200 210 220 230 240 250
24320 29220 31580 35700 39230 42950 46580 63740 71100 74040 80410 83360 105910 112780 115720 122580 118660 125320 131410 136310 141220 145140 149060 152000 159850 168670 174560 238300 246150 256930 262820 282430 337350 346170 356960 367750
21570 26280 31580 35700 40500 45600 50500 74530 82380 84340 95610 101010 131410 143180 148080 156410 162790 170630 177500 185340 196130 202020 211820 216730 233400 248110 262820 367650 384420 408940 423650 446200 557010 578590 603110 632530
17200 13200 11100 10000 8600 9600 6900 6100 5500 5200 4900 4500 4300 4000 3800 3600 3500 3300 3200 3000 2900 2800 2700 2600 2400 2200 2100 2000 1900 1800 1700 1600 1500 1500 1400 1300
22.1 28.7 33.5 38.2 44 49.7 55.4 62.1 68.8 72.6 78.3 83.1 88 96 99.5 104.7 109.1 114.7 119.2 124.7 132.5 137 143.5 148 158 170.5 179.3 193.8 202.6 216 224.1 236 248.4 258.4 269.6 281.9
35 42 47 52 58 62 72 80 85 90 95 100 110 115 120 125 130 135 140 145 155 160 165 170 180 195 205 220 230 240 255 265 280 290 300 315
22 22 22 22 22 22 22 28 28 28 28 28 32 32 32 32 32 32 32 34 34 34 34 34 36 36 36 42 42 42 42 42 49 49 49 49
.65 .65 .65 .65 .65 .65 .55 .65 .65 .65 .65 .65 .65 .65 .65 .65 .65 .65 .65 .65 .65 .65 .65 1.35 1.35 1.35 1.35 1.35 1.85 1.85 1.85 1.85 1.85 1.85 1.85 1.85
Courtesy: IS: 4215, 1993.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
DESIGN OF BEARINGS AND TRIBOLOGY
TABLE 23-86 Needle bearings—Heavy Series Bearing No. IS
B
r
d
r
D
NRB
Basic load rating capacity
Bearing with inner ring
Bearing without inner ring
Bearing with inner ring
Bearing without inner ring
Dimensions, mm d di D B r Nom Nom Nom Nom
NA3030 NA3035 NA3040 NA3045 NA3050 NA3055 NA3060 NA3065 NA3070 NA3075 NA3080 NA3085 NA3090 NA3095 NA3100 NA3105 NA3110 NA3115 NA3120 NA3125 NA3130 NA3140 NA3150 NA3160 NA3170 NA3180 NA3190 NA3200 NA3210 NA3220 NA3230 NA3240 NA3250
RNA3030 RNA3035 RNA3040 RNA3045 RNA3050 RNA3055 RNA3060 RNA3065 RNA3070 RNA3075 RNA3080 RNA3085 RNA3090 RNA3095 RNA3100 RNA3105 RNA3110 RNA3115 RNA3120 RNA3125 RNA3130 RNA3140 RNA3150 RNA3160 RNA3170 RNA3180 RNA3190 RNA3200 RNA3210 RNA3220 RNA3230 RNA3240 RNA3250
Na3030 Na3035 Na3040 Na3045 Na3050 Na3055 Na3060 Na3065 Na3070 Na3075 Na3680 Na3085 Na3090 Na3095 Na3100 Na3105 Na3110 Na3115 Na3120 Na3125 Na3130 Na3140 Na3150 Na3160 Na3170 Na3180 Na3190 Na3200 Na3210 Na3220 Na3230 Na3240 Na3250
Na3030S/Bi Na3035S/Bi Na3040S/Bi Na3045S/Bi Na3050S/Bi Na3055S/Bi Na3060S/Bi Na3065S/Bi Na3070S/Bi Na3075S/Bi Na3080S/Bi Na3085S/Bi Na3090S/Bi Na3095S/Bi Na3100S/Bi Na3105S/Bi Na3110S/Bi Na3115S/Bi Na3120S/Bi Na3125S/Bi Na3130S/Bi Na3140S/Bi Na3150S/Bi Na3160S/Bi Na3170S/Bi Na3180S/Bi Na3190S/Bi Na3200S/Bi Na3210S/Bi Na3220S/Bi Na3230S/Bi Na3240S/Bi Na3250S/Bi
30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 140 150 160 170 180 190 200 210 220 230 240 250
44 49.7 55.4 62.1 68.8 72.6 78.3 83.1 88 96 99.5 104.7 109.1 114.7 119.2 124.7 132.5 137 143.5 152.8 158 170.5 179.3 193.8 202.6 216 224.1 236 248.4 258.4 269.6 281.5 290.9
62 72 80 85 90 95 100 105 110 120 125 130 135 140 145 150 160 165 170 185 190 205 215 230 245 255 265 280 290 300 315 325 340
30 36 36 38 38 38 38 38 38 38 38 38 43 43 43 45 45 45 45 52 52 52 52 57 57 57 57 57 64 64 64 64 74
0.65 0.65 0.65 0.85 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 1.35 1.35 1.35 1.35 1.35 1.85 1.85 1.85 1.85 1.85 1.85 1.85 1.85
Dynamic, Static, C, Co , N N 35790 91690 102970 106890 115720 119640 126510 131410 137290 140230 149060 153960 189270 196130 201040 207900 215750 221630 228490 273600 280470 294200 307930 368730 380500 397170
68160 98070 107870 121600 134350 141220 151026 160830 169650 184360 190250 198090 249090 262820 270660 283410 300080 311850 323620 397170 409920 441300 463850 568780 593300 632530
421680 490330 504060 517790 514850 666850
691370 813950 847290 882590 921820 11157180
Limiting speed, n, rpm 8600 7600 6900 6100 5500 5200 4900 4500 4300 4000 3800 3600 3500 3300 3200 3000 2900 2800 2700 2500 2400 2200 2100 2000 1900 1800 1700 1600 1500 1500 1400 1300 1300
Courtesy: IS: 4215, 1993.
TABLE 23-87 Hardness factors for needle-roller bearings Rockwell C hardness of raceway
Approximate Brinell hardness (Bhn)
Hardness factor, Kh
63 60 58 56 54 52 50
660 620 595 570 545 515 490
1.00 0.98 0.96 0.92 0.83 0.70 0.50
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
DESIGN OF BEARINGS AND TRIBOLOGY
23.150
CHAPTER TWENTY-THREE
Particular
Formula
TABLE 23-88 Torrington needle-roller sizes Diameter, mm
Length, mm
Diameter, mm
Length, mm
1.590 1.590 1.590 1.590 2.380 2.3815 2.3850 2.3850 3.1750 3.1750 3.1750 3.1750
9.40 12.45 15.75 16.95 10.55 19.05 11.745 24.758 9.770 12.750 15.650 19.050
3.175 3.175 3.175 3.175 4.010 4.740 4.765 4.765 4.765 4.765 5.500 6.350
22.25 23.82 25.40 28.575 18.800 13.380 18.900 25.400 30.200 34.950 19.100 31.750
Maximum shear stress occurs below the contact surface for ductile material
Refer to Table 23-91.
(i) For spheres
Refer to Table 23-92.
(ii) For cylinders
SELECTION OF FIT FOR BEARINGS For selection of fit for housing seatings for radial and thrust bearings For selection of fit for shaft (solid) seatings for radial and thrust bearings.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
DESIGN OF BEARINGS AND TRIBOLOGY DESIGN OF BEARINGS AND TRIBOLOGY
23.151
TABLE 23-89 Dimensions for needle bearing without outer ring, type NCS d, mm
do , mm
B, mm
r, mm
30 32 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140
44.2 46.4 50 55.7 61.4 67.1 72.9 80.5 84.3 90.1 96.8 102.4 106.5 111.7 116.1 121.7 126.2 131.7 139.5 144 150.54 155.04 159.8 165.04
18 18 18 18 18 20 20 20 20 20 24 24 32 32 32 32 32 34 34 34 34 34 36 36
1 1 1 1.5 1.5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
B
r
d
Source: IS 4215, 1967.
TABLE 23-90 Design data for needle-roller bearings Recommended Journal race diameter, mm
Total radial clearance, mm
Needle diameter,
9.50–19.00 19.00–31.75 31.75–50.80 50.80–76.00 76.00–127.00 127.00–177.00
0.0125–0.040 0.0180–0.050 0.0200–0.055 0.0255–0.065 0.0305–0.075 0.0355–0.085
1.55 2.35 3.20 3.20 4.75 4.75
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
Do
DESIGN OF BEARINGS AND TRIBOLOGY
23.152
CHAPTER TWENTY-THREE
TABLE 23-91 Selection of fit (a) Housing seatings for radial bearings Conditions
Applications
Tolerance
Solid Housings Rotating outer-ring load Heavy loads on bearings in thin walled housings; heavy shock loads Normal and heavy loads Light and variable loads Direction of loading indeterminate Heavy shock loads Heavy and normal loads; axial mobility of outer ring unnecessary Normal and light loads; axial mobility of outer ring desirable
Roller bearing wheel hubs; big-end bearings
P7
Ball bearing wheel hubs; big-end bearings Conveyor rollers, rope sheaves; belt tension pulleys
N7 M7
Electric traction motors Electric motors, pumps, crankshaft main bearings
M7 K7
Electric motors, pumps; crankshaft main bearings
J7
Split or Solid Housing Stationary outer-ring load Shock loads intermittent All loads Normal and light loads Heat condition through shafts
Railway axle boxes Bearings in general applications Line shafting Drying cylinders; large electric motors
J7 H7 H8 G7
Solid Housings Arrangement of bearing very accurate Accurate running and great rigidity under variable load Accurate running under light loads of indeterminate direction Accurate running; axial movement of outer ring desirable
Roller bearings D > 125 mm For machine-tool D < 125 mm main spindles Ball bearings at work end of grinding spindle; locating bearings in high-speed centrifugal compressors Ball bearings at drive end of grinding spindles; axially free bearings in high-speed centrifugal compressors
N6 M6 K6
J6
(b) Housing seatings for thrust bearings Conditions
Applications
Tolerance
Purely axial load
Thrust ball bearings Spherical roller thrust bearings where another bearing takes care of the radial location Stationary load on housing washer or direction of loading indeterminate Generally Rotating load or housing washer Heavy radial load
H8
Combined (radial and axial) load or spherical roller thrust bearings
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
J7 K7 M7
DESIGN OF BEARINGS AND TRIBOLOGY
23.153
DESIGN OF BEARINGS AND TRIBOLOGY
TABLE 23-92 Selection of fit (a) Shaft (solid) seatings for radial bearings Shaft diameter, mm
Conditions
Ball bearings
Application
Cylindrical and tapered roller bearings
Spherical roller bearings
Tolerance
Bearings with cylindrical bore Stationary inner-ring load Easy axial displacement of inner ring on shaft desirable Easy axial displacement of inner ring on shaft unnecessary
Wheels on nonrotating axles
All diameters
g6
Tension pulleys; rope sheaves
All diameters
h6
Rotating inner-ring or direction of loading indeterminate Light and variable loads Electrical apparatus; machine tools; pumps; transport vehicles
18 18–100 100–200
Normal and heavy loads
General application electric motors pumps; turbines; gearing; wood working machines; and internalcombustion engines
18 18–100 100–140 140–200 200–280
Shock and heavy loads
Locomotive axle boxes; traction motors
— — — —
Purely axial load
All kinds of bearing arrangements
Loads of all kinds
Bearing arrangements in general; railway axle boxes Line shafting
— 40 40-140 140-200 — 40 40–100 100–140 140–200 200–400
50–140 140–200 — — All diameters
— 40 49-100 100-200 — 40 40–65 65–100 100–140 140–280 280–500 >500 50–100 100–140 140–200 200–500
h5 j6 k6 m6 j5 k5 m5 m6 n6 p6 r6 r7 n6 p6 r6 r7 j6
Bearings with taper bore and sleeve All diameters
h9
All diameters
h10
(b) Shaft seatings for thrust bearings Conditions
Applications
Tolerance
Purely axial load
Thrust ball bearing, spherical roller thrust bearings
All diameters
j6
Combined (radial and axial) load on spherical thrust bearings
Stationary load on shaft washer Rotating load on shaft washer or direction of loading indeterminate
All diameters d 200 mm d ¼ 200–400 mm d > 400 mm
j6 k6 m6 n6
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
DESIGN OF BEARINGS AND TRIBOLOGY
23.154
CHAPTER TWENTY-THREE
23.3 FRICTION AND WEAR1 SYMBOLS a A Aa A0 b c c1 , c2 d E F F Fa Ff Fploughing G h hm H i Qme k 1 , k2 k KE KL KV KW Ksm KsV 0 Ksv L m n Pc PH Pt Ptot P Pa Pm
half the mean diameter of area of contact, Eq. (23-252) real area of contact, m2 (in2) apparent area of contact, m2 (in2) abrasion factor constant used in Eq. (23-222), exponent constant used in Eqs. (23-225) and (23-280) constants as given in Eqs. (23-28lb) and (23-281c) diameter, m (in) Young’s modulus, GPa (psi) force, kN (lbf ) total force of friction, kN (lbf ) adhesive component of friction force or force to shear junctions, kN (lbf ) fatigue resistance is the average number of reversed stress cycles which the surface layer must undergo under given abrasion condition, kN (lbf ) force to plough the asperities on one surface through the other, kN (lbf ) elasticity constant characterizing rubber thickness of layer removed, m (in) effective thickness of the worn-out surface layer, m (in) height of asperities, m (in) hardness of softer material, N/m2 or Pa (psi) number of surface layer which are abraded during a test number of repeated deformation as used in Eqs. (23-256) to (23-258) mechanical equivalent of heat, N m/J (lbf in/Btu or lbf ft/Btu) thermal conductivity of two conducting materials, W/m K (Btu/ft h 8F) constant used in Eq. (23-245) and given in Table 23-77 energetic wear rate or energy index of abrasion linear wear rate volumetric wear rate gravimetric wear rate specific wear by mass specific wear by volume modified specific wear sliding distance, m (in) mass of wear debris, kg (lb) exponent power used to elongate shred power applied to hysteresis loss which accompanies roll deformation power used to tear shred from surface layer total fictional power yield pressure of soft material (about 5 times the critical shear stress), MPa (psi) apparent pressure over the contact area, MPa (psi) mean pressure over the contact area, MPa (psi) flow pressure of material, MPa (psi)
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
DESIGN OF BEARINGS AND TRIBOLOGY DESIGN OF BEARINGS AND TRIBOLOGY
q r R s v v1 V V W Wtb Wtot ¼ Wn2 W z n m a c ploughing
c
n m
friction work done corresponding to a simple stressing cycle which corresponds to a sliding length of , N m (lbf in) radius of curvature, m (in) radius of circular junction (Fig. 23-60), m (in) mean radius of the curvature at the tip of the abrasive particles, m (in) spacing between ridges in the elastomer surface, m (in) velocity, m/s (ft/min) velocity, m/s (ft/min) volume deformed body, m3 (in3) volume of transferred fragment, m3 (in3) volume of layer removed, m3 (in3) applied load at interface, kN (lbf ) the work of adhesion of the contacting metals which can be expressed in terms of their surface energies, N m (lbf in or lbf ft) normal load per unit area, kN (lbf ) weight lost due to abraded layer being removed from the bulk material, kN (lbf ) the average depth of penetration for single sphere, m (in) the absolute approach, m (in) coefficient of hysteresis loss constant depends on the surface treatment taken from Table 23-73 surface tension of the softer sliding member, N/m (lbf/in) abradability as wear index angle of slope of irregularities, deg mean temperature rise at the sliding junction, 8C (8F) coefficient of friction adhesive component of coefficient of friction coefficient of elastic friction coefficient of static friction taken from Table 23-74 ploughing component of coefficient of friction Poisson’s ratio density of the abraded elastomer, kg/m3 (lb/in3) coefficient of abrasion resistance mean wavelength of the surface asperities stress, MPa (psi) contact pressure or pressure over the contours, MPa (psi) tensile strength of elastomer in simple tensions, MPa (psi) shear strength of junction, MPa (psi) mean shear stress, MPa (psi)
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
23.155
DESIGN OF BEARINGS AND TRIBOLOGY
23.156
CHAPTER TWENTY-THREE
Particular
Formula
FRICTION The general expression for force of friction
F ¼ Fa þ Fploughing
ð23-256Þ
The total friction force
F ¼ A
ð23-257Þ
The real area of contact
A¼
The general expression for coefficient of friction
¼ a þ ploughing
The total coefficient of friction
F A ¼ ¼ ð23-260Þ W W P " # 1=2 pffiffiffi Kn K4 hm 2=ð2 þ 1Þ c 2=ð2 þ 1Þ e ¼ r E 2ð þ 1Þ
W P
ð23-258Þ ð23-259Þ
¼
The coefficient of elastic friction when a rigid rough surface is pressed against an elastically deformable second surface
ð23-261Þ where K ’ 1; calculate K4 from Eq. (23-262). The expression for K4 to be used in Eq. (23-261)
K4 ¼
0:75ð1 v2 Þ K2 b
=ð2 þ 1Þ
ð23-262Þ
where K2 ¼ 1, 0.4, 0.12 for ¼ 1, 2, 3 respectively
TABLE 23-93 Constant to he used in Eq. (23-261)
Refer to Table 23-93 for .
Surface treatment
b
Turning, milling Planing Polishing
2 3 3
1–3 4–6 5–10
Greenwood and Tabor’s formula for coefficient of elastic friction
e ¼ n Pm
9 1 v2 64 E
ð23-263Þ
Coefficient of friction under dynamic conditions Franke’s expression for coefficient of friction during rotation
r ¼ o ecv
Stiehl’s formula for coefficient of friction
¼ 0:6
Schutch’s formula for coefficient of friction for leather sliding against slightly lubricated steel plate
¼ 0:5ð1 þ 0:1vÞ
ð23-264Þ
where c ¼ constant taken from Table 23-94 0:6 vþ1
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð23-265Þ ð23-266Þ
DESIGN OF BEARINGS AND TRIBOLOGY DESIGN OF BEARINGS AND TRIBOLOGY
Particular
23.157
Formula
Krumme’s formula for coefficient of friction in textile machinery
¼ 0:38
Formula for coefficient of friction used in design of brakes
¼ 0:6
0:1 0:5 þ v
ð23-267Þ
16P þ 100 100 80P þ 100 3vk þ 100
ð23-268Þ
where P ¼ real pressure on brake shoe, tonne force (tf ) TABLE 23-94 Values of constant c to be used in Eq. (23-264) Sliding combination
State of rubbing surfaces
Coefficient of static friction, o ,
Constant c
Cast iron—steel Forged iron—forged Iron
Dry Dry Slightly moist
0.29 0.29 0.24
1/23 1/50 1/35
Temperature of sliding surface Mean temperature rise at the interface above the material
m ¼
0:25Wv Qme rðk1 þ k2 Þ
ð23-269Þ
where Qme ¼ mechanical equivalent of heat N m/J (lbf in/ Btu or lbf ft/Btu) v ¼ velocity of sliding, cm/s (ft/min) r ¼ radius of the circular junction, cm, m (in) k1 ; k2 ¼ thermal conductivity of the two contacting materials, W/m 8C (Btu/ft h 8F) taken from Table 23-95 TABLE 23-95 Temperature rise per unit sliding velocity
k1
Material combination
dyn/cm
N/m
Steel on steel Lead on steel Bakelite on Bakelite Brass on brass Glass on steel Steel on nylon Brass on nylon Steel on bronze
0.5 0.5 0.3 0.4 0.3 0.3 0.3 0.25
1500 450 100 900 500 120 120 900
1.50 0.45 0.10 0.90 0.50 0.12 0.12 0.90
k2
cal/s cm 8C 0.11 0.08 0.0015 0.26 0.0007 0.11 0.26 0.11
0.11 0.11 0.0015 0.26 0.11 0.0006 0.0006 0.18
k1
k2 W/m 8K
46.055 33.490 0.628 108.856 0.293 46.055 108.856 46.055
46.055 46.055 0.628 108.856 46.055 0.25121 0.25121 75.362
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
=, 8C/cm/s 0.75 0.26 2.20 0.15 0.30 0.07 0.03 0.17
DESIGN OF BEARINGS AND TRIBOLOGY
23.158
CHAPTER TWENTY-THREE
Particular
Formula
Simple and crude formula for the mean temperature rise
m ¼ 54:4v ð a factor of 1.67Þ
The radius of a junction (Fig. 23-60)
r ¼ 12;000
The load carried by each junction (Fig. 23-60)
W ¼ r2 P
Mean temperature rise at the interface above the rest of material
m ¼
Material I 2r
9400v Qme ðk1 þ k2 Þ
ð23-271Þ ð23-272Þ ð23-273Þ
where ¼ surface tension of the softer sliding member, N/m (lbf/in) taken from Table 23-95
Load W
Elevation
P
ð23-270Þ
For coefficient of friction refer to Table 23-95.
Material II
Plan
FIGURE 23-60 Assumed junction model.
WEAR AND ABRASION Linear wear rate
KL ¼
Steady state wear rate, depth per unit time
KL ¼ KPVðabcdeÞ
thickness of layer removed h ¼ sliding distance L
ð23-274Þ ð23-275Þ
where K ¼ constant depends on (i) mechanical properties of material and its ability to (ii) smooth the counterface surface and/or (iii) transfer a thin film of debris For a, b, c, d, e, refer to Table 23-103. volume of layer removed V ¼ sliding distance apparent area LAa ð23-276Þ
Volumetric wear rate
KV ¼
Energetic wear rate
KE ¼
The energetic and linear wear rate related by equation
KE ¼ KL ðAa =F Þ
volume of layer removed V ¼ work of friction F L
ð23-277Þ ð23-278Þ
where F L is measured in kW h The gravimetric wear rate
KW ¼
W ¼ Kv LAa
where ¼ density of abraded elastomer
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð23-279Þ
DESIGN OF BEARINGS AND TRIBOLOGY DESIGN OF BEARINGS AND TRIBOLOGY
Particular
23.159
Formula
Wear index is given by abradability,
¼
abraded volume V V A0 ¼ ¼ ¼ work of friction F L WL
ð23-280Þ
where A0 ¼ ðV=WLÞ ¼ abrasion factor Energetic wear rate ðKE Þ ¼ abradability ðÞ
The relation between KE and
ð23-281Þ work of friction FL 1 1 ¼ ¼ ¼ ¼ ð23-282Þ abraded volume V A0 KE
The coefficient of abrasion resistance as per work in the former Soviet Union
¼
For surface roughness as obtained by different machining processes
Refer to Table 23-96.
Work done during wear
W 0 ¼ Vm
ð23-283Þ
Volume of transferred fragments formed in sliding a distance L
V¼
kWL 300P
ð23-284Þ
For k ¼ coefficient of wear, refer to Table 23-97. For P ¼ hardness of the softer material, Pa (psi), refer to Table 23-99. TABLE 23-96 Surface roughnesses as obtained by machining processes
TABLE 23-97 Wear constant k
Manufacturing process
Surface roughnesses, lm
Sliding combination
Wear constant, k
Turned Coarse ground Fine ground 600 emery Polished Super finished
1–6 0.4–3 0.2–0.4 0.2 0.05–0.1 0.02–0.05
Zinc on zinc Low-carbon steel on low-carbon steel Copper on copper Stainless steel on stainless steel Copper on low-carbon steel Low-carbon steel on copper Bakelite on Bakelite
0.160 45 32 21 1.5 0.5 0.02
TABLE 23-98 Values of coefficient of wear, k Metal on metal Like
Unlike 105
Condition Clean Poorly lubricated Average lubrication Excellent lubrication
500 20 2 0.2–0.2
20 20 2 0.2–0.2
Metal on non-metal 106 5 5 5 2
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
8C
660 630 1400 270 321 838 804 29 1875 1495 1083 1407 1496 827 1312 30 937 1063 2222 1461 156 2454 1534 930 325 180 1652 650 1245 –39 2610 1018 1453 2468 2700 1552 1769 640 64
Metal
Aluminum Antimony Beryllium Bismuth Cadmium Calcium Cerium Cesium Chromium Cobalt Copper Dysprosium Erbium Europium Gadolinium Gallium Germanium Gold Hafnium Holmium Indium Iridium Iron Lanthanum Lead Lithium Lutetium Magnesium Manganese Mercury Molybdenum Neodymium Nickel Niobium Osmium Palladium Platinum Plutonium Potassium
933 903 1673 543 594 1111 1077 302 2148 1778 1356 1680 1769 1100 1585 303 1210 1336 2495 1734 429 2727 1807 1203 598 453 1925 923 1518 234 2883 1291 1726 2741 2973 1825 2042 913 337
K
Melting temperature
0.63 0.80 3.0 0.32 0.56 0.25 0.30 2.6 2.1 1.2 0.63 0.75 0.56 1.56 0.81 0.68 0.11 5.4 2.04 0.39 0.16
0.44
3.0 0.38 2.08 1.05 5.70 1.15 1.50 0.99
2.65 2.14 1.22 0.64 0.78
0.57
1.59 0.83
0.69 0.11 5.50 2.08 0.40 0.16
0.45
3.06 0.39 2.12 1.07 5.81 1.17 1.53 1.01
3.0 0.38 2.08 1.05 5.70 1.15 1.50 0.99
0.44
0.68 0.11 5.4 2.04 0.39 0.16
1.56 0.81
0.56
2.6 2.1 1.2 0.63 0.75
0.63 0.80 3.0 0.32 0.56 0.25 0.30
8.4 1.7 3.2 2.8 3.1 1.6 2.8
3.16 1.63 2.86
1.5 2.5
2.1 2.4 2.2 0.03 6.3 2.5 1.9 0.09
2.7
8.57 1.73 3.26 2.86
1.53 2.55
2.14 2.45 2.24 0.03 6.43 2.55 1.94 0.09
2.76
1.6 7.8 3.2 3.3 2.9
0.72 0.87 1.20
0.73 0.89 1.22 1.63 7.96 3.26 3.37 2.96
1.1 0.11 3.20
1.12 0.11 3.26
23.160
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website. 3.1 1.6 2.8
8.4 1.7 3.2 2.8
1.5 2.5
2.1 2.4 2.2 0.03 6.3 2.5 1.9 0.09
2.7
1.6 7.8 3.2 3.3 2.9
0.72 0.87 1.20
1.1 0.11 3.20
kgf/cm2 103 N/m2 108 MPa 102
kgf/cm2 106 N/m2 1011 MPa 105
0.64 0.82 3.06 0.33 0.57 0.26 0.31
Yield strength, sy
Young’s modulus, E
TABLE 23-99 Properties of metallic elements
240 80 210 160 800 110 100 266 0.04
118 46 3300
58 260 90 0.9 350 82 150 4
125 125 80 117 161 17 97 6.5
27 58 150 7 22 17 48
235.2 78.4 205.8 156.8 784 107.8 98 260.68 0.04
115.64 45.08 3234
56.84 254.80 88.2 0.88 343.0 80.36 147 3.92
122.5 122.5 78.4 115.66 157.78 16.66 95.06 6.37
26.46 56.84 147.0 6.86 21.56 16.66 47.04
235.2 78.4 205.8 156.8 784 107.8 98 260.68 0.04
115.64 45.08 3234
56.84 254.80 88.2 0.88 343.0 80.36 147 3.92
122.5 122.5 78.4 115.66 157.78 16.66 95.06 6.37
26.46 56.84 147.0 6.86 21.56 16.66 47.04
kgf/cm2 102 N/m2 107 MPa 10
Hardness, P
1.80 0.086
1800 86
1.70 2.10 1.19
0.46
460
1700 2100 1190
0.56
0.45 0.40
450 400 560
1.50
0.36 1.12
1.53 1.10
0.900 0.370 1.0 0.39 0.62
N/m
1500
360 1120
1530 1100
900 370 1000 390 620
erg/cm
Surface energy,
0.12
1.10
0.18
0.55 0.19
0.12 0.14
0.33 0.064 0.067 0.56 0.28
m
2300
18
23
0.18
8.1 0.081 13 0.13 1.5 0.015
12
110
18
55 19
12 14
33 6.4 6.7 56.0 28
cm
=P
DESIGN OF BEARINGS AND TRIBOLOGY
8C
919 3180 1966 39 2500 1072 1540 961 98 2996 1356 303 1750 1545 232 1670 3410 1132 1900 824 1495 420 1852
Metal
Praseodymium Rhenium Rhodium Rubidium Ruthenium Samanium Scandium Silver Sodium Tantalum Terbium Thallium Thorium Thulium Tin Titanium Tungsten Uranium Vanadium Ytterbium Yttrium Zinc Zirconium
1192 3453 2293 312 2773 1345 1813 1234 371 3269 1629 576 2023 1818 505 1943 3683 1405 2173 1097 1768 693 2125
K
Melting temperature
0.35 4.70 2.96 4.22 0.35 0.78 1.90 0.58 1.47 0.44 1.13 3.51 1.69 1.34 0.18 0.66 0.91 0.96
0.36 4.79 3.02
4.30 0.36
0.80
1.93 0.59
1.50
0.45 1.15 3.58 1.72 1.36 0.18 0.67 0.93 0.98
0.44 1.13 3.51 1.69 1.34 0.18 0.66 0.91 0.96
1.47
1.90 0.58
0.78
4.22 0.35
0.35 4.70 2.96
kgf/cm2 106 N/m2 1011 MPa 105
Young’s modulus, E
TABLE 23-99 Properties of metallic elements (Cont.)
3.5 0.09 1.5 1.4 1.15 1.4 18.0 2.0 8.4 0.73 1.4 1.3 2.0
0.09 1.53 1.43 1.17 1.43 18.36 2.04 8.57 0.74 1.43 1.33 2.04
2.0
5.5 1.3
2.0 22.0 9.7
3.56
2.04
5.61 1.33
2.04 22.40 9.89
0.09 1.5 1.4 1.15 1.4 18.0 2.0 8.4 0.73 1.4 1.3 2.0
3.5
2.0
5.5 1.3
2.0 22.0 9.7
kgf/cm2 103 N/m2 108 MPa 102
Yield strength, sy
86.24 1.96 36.26 51.94 5.19 64.7 426.3
20.58 36.26 37.24 142.10
21 37 38 145
78.4 0.07
88 2 37 53 53 65 435
80 0.07
382.2 62.72
119.56
122 390 64
74.48
76
20.58 36.26 37.24 142.10
86.24 1.96 36.26 51.94 5.19 64.7 426.3
78.4 0.07
382.2 62.72
119.56
74.48
kgf/cm2 102 N/m2 107 MPa 10
Hardness, P
0.79
2.30
2300
790
0.57
0.40
0.92 0.20
N/m
570
400
920 200
erg/cm
Surface energy,
21
5.3
110
200
11 2800
cm
0.21
0.053
1.10
2.0
0.11 28
m
=P
DESIGN OF BEARINGS AND TRIBOLOGY
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
23.161
DESIGN OF BEARINGS AND TRIBOLOGY
23.162
CHAPTER TWENTY-THREE
Particular
Formula
Another formula for volume of transferred fragment formed in sliding a distance
V¼
kAL 3
ð23-285Þ
For k refer to Table 23-98. V W ¼K L Pm
The primary equation of wear according to Archard, Burwell, and Strang
ð23-286Þ
where Pm ¼ flow pressure of material For K, refer to Table 23-100.
Abrasion wear
Wab H
The mean diameter of loose wear particles which are produced at a smooth interface
d ¼ K1
The ratio of half mean diameter of the area of contact to mean radius of the curvature at the tip of the abrasive particle
a W ¼ K2 R GR2
ð23-287Þ ð23-288Þ
where ¼ value of exponent to be determined from experiment
TABLE 23-100 Coefficient of wear Hardness Sliding against hardened tool-steel unless otherwise stated Mild steel on mild steel 60/40 brass Teflon 70/30 brass Perspex Bakelite (molded) type 50B Silver steel Beryllium copper Hardened tool steel Stellite Ferritic stainless steel Laminated Bakelite Type 292/16 Molded Bakelite Type 11085/1 Tungsten carbide on mild steel Molded Bakelite Type 547/1 Polythene Tungsten carbide on tungsten carbide
Wear coefficient, K 3
7 10 6 104 2:5 104 1:7 104 0:7 106 7:5 106 6 105 3:7 105 1:3 104 5:5 105 1:7 105 1:5 106 7:5 107 4 106 3 107 1:3 107 1 106
kgf/mm2 18.6 95.0 5.0 68.0 0.0 5.0 320.0 210.0 850.0 690.0 50.0 33.0 30.0 186.0 29.0 1.70 1300.0
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
MPa 182.4 931.6 49.0 666.8 196.1 245.2 3138.1 2059.4 8335.6 6776.6 2451.7 323.6 294.2 1824.0 284.4 16.7 12749
DESIGN OF BEARINGS AND TRIBOLOGY
23.163
DESIGN OF BEARINGS AND TRIBOLOGY
Particular
Volumetric wear rate
Volumetric wear rate for ¼ 13 Half the mean diameter of the area of contact for ¼ 13 The spacing s between ridges in the elastomer surface
Formula
KV ¼ K3 n2 R3
Wtot Gn2 R2
3
where n2 ¼ number of abrasive particles per unit area Wtot R KV ¼ K3 ð23-290Þ G a ¼ K1 s’
WR G
1=3 ð23-291Þ
Wtot Rd 2 G
1=3
KV ’ s
ð23-292Þ ð23-293Þ
s ’ d 2=3 The ratio of Kv to s when the abrasive surface consists of closely packed hemisphere so that d ¼ 2R
ð23-289Þ
Wtot G
2=3 ð23-294Þ
Fatigue wear Volume of surface layer removed under fatigue
V ¼ iAh
ð23-295Þ
The required sliding length during abrasion cycle under the given abrasion conditions before failure and separation occurs
L ¼ iFf
ð23-296Þ
The total work of friction
W0 ¼ ðWtot ÞL ¼ iqFf
ð23-297Þ
The coefficient of abrasion resistance
qFf AL 2 3 3 W 2=3 ð1 2 Þ z¼ 4 E 2=3 R1=3 W 2=3 z ¼ 0:683 E 2=3 R1=3
ð23-298Þ
The Hertzian relationship for the average depth of penetration for single spheres
¼
ð23-299aÞ ð23-299bÞ
for rubber ¼ 0:5 where R ¼ asperity tips radius, cm, m (in) E ¼ Young’s modulus for rubber, GPa (psi)
The depth penetration
W ¼ applied load per asperity 2 2 2=3 2 Wtot z ¼ 0:685 A E 2=3 R1=3
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð23-300Þ
DESIGN OF BEARINGS AND TRIBOLOGY
23.164
CHAPTER TWENTY-THREE
Particular
The number of asperities
The effective thickness of the surface layer of elastomer
Formula
i¼
Wtot A ¼ 2 W
h ¼ k0 z
ð23-301Þ
R2 2
ð23-302Þ
where K 0 ¼ constant The coefficient of abrasion resistance
¼
1=3 Ff 2=3 Wtot E R 2:14K 0 A
The ratio of abrasion resistance to coefficient of sliding friction
1 ¼ A0
The fatigue resistance of rubber taking into consideration tensile strength, geometry of the base surface, and the loading conditions
Ff ¼
ð23-303Þ ð23-304Þ
o K 0 ðW=AÞ1=3 E 2=3 ðR=Þ3 2
ð23-305Þ
Wtot ð1 bÞ=3 ð5 2bÞ=3 ¼ K bo E 2ð1 bÞ=3 A R The ratio of abrasion resistance to coefficient of friction
ð23-306Þ where b ¼ index which is characteristic of the material where K ¼ constant
The relationship between fatigue index b and
b ¼ 13 ð þ 2Þ
ð23-307Þ
Roll formation The coefficient of abrasion resistance
¼
Ptot ðd VÞ=dt
ð23-308Þ
where ðd VÞ=dt ¼ volume abraded per unit time Ptot ¼ total frictional power ¼ Pt þ Pe þ PH The main condition which determines the probable occurrence of roll formation
Ptot o WV
ð23-309Þ
The more general form of the equation for volumetric wear rate which dependence on abrasion by load
KV ¼ CP
ð23-310Þ
where C ¼ constant taken from Table 23-101 P ¼ interfacial pressure, MPa (psi) is obtained from Table 23-101.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
DESIGN OF BEARINGS AND TRIBOLOGY DESIGN OF BEARINGS AND TRIBOLOGY
Particular
23.165
Formula
TABLE 23-101 Wear of rubber on steel, gauze, and abrasive paper Values of constants Rubber
Nature of surface
C 103
A
Steel Gauze Abrasive paper Steel Gauze Abrasive paper Steel Gauze Abrasive paper
1.1 1.5 240 2.7 1.1 305 1.2 5.4 65
1.9 5.3 1.1 1.9 2.0 0.9 3.1 3.0 1.0
B
C
Tread rubber The shearing stress for tread rubber
¼ P
ð23-311Þ
where P ¼ normal pressure, MPa (psi) The critical shearing stress for tread rubber
crit ¼ crit P
For < crit
The fatigue wear predominates.
For > crit
Either wear through roll formation or abrasive wear occurs.
For < crit
The wear is due to surface fatigue.
For > crit
Other forms of wear predominate.
ð23-312Þ
Specific wear Specific wear by mass Specific wear by volume Specific wear by volume based on the geometry of the aspirities arising out of the surface treatment
Ksm ¼
m Ad
ð23-313Þ
KsV ¼
V Ad
ð23-314Þ
KsV ¼
tan "hm z ¼ ¼ ð þ 1Þ2i ð þ 1Þid ð þ 1Þid
ð23-315Þ
where values of angle of slope of irregularities, , can be obtained from Table 23-102 and the values of from Table 23-93 z ¼ absolute approach " ¼ z=hm
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
DESIGN OF BEARINGS AND TRIBOLOGY
23.166
CHAPTER TWENTY-THREE
Particular
Formula
TABLE 23-102 Radii of curvature asperities for different methods of surface preparation Angle of slope of irregularities,
Slope radii, micron Treatment
Accuracy class
Transverse
Longitudinal
Transverse
Longitudinal
Shaping Grinding Honing Finishing (lapping)
5–8 5–9 8–11 10–13
20–120 5–20 4–30 15–250
10–25 250–15000 60–160 7000–35000
5–20 7–35 3–13 5–20
5–10 2–10 1–4 2–10
The absolute approach
z¼
6 c K1 2
ð23-316Þ
where K1 K2 ¼ coefficient of rigidity K¼ K1 þ K2 Ki ¼
Ei 2 i ð1 v2i Þ
2 ¼ diameter of contact spot, cm ¼ tangent to the smoothness of the surface equal to the derivative of approach over the contact area ¼ tan An expression for modified specific wear Modified specific wear formula during microcutting
0 ¼ KsV KsV
0 ¼ KsV
A P ¼ KsV a P Aa
ð23-317Þ
tan Pa ð þ 1Þ2P
ð23-318Þ
Pa P to 0:04 a for tan ¼ 0:1 to 0:2 P P during microcutting ¼ 0:02
Modified specific wear formula during plastic contact
0 KSV
¼
hmax rbð1=Þ
5=2
Pa P
ð5 þ 2Þ=2
c "fail
21=2 =8 ð23-319Þ
where hmax ¼
d tan 2"max
"fail ¼ relative elongation corresponding to failure of the specimen c ¼ constant depending on sliding combination taken from Table 23-94
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
DESIGN OF BEARINGS AND TRIBOLOGY DESIGN OF BEARINGS AND TRIBOLOGY
Particular
23.167
Formula
Modified specific wear formula during elastic contact
0 KSV
" 2=ð2 þ 1Þ ð1 v2 ÞPa K c E ¼ c1 E c2 o ð1 v2 ÞPa ð23-320aÞ
where
pffiffiffi 3 c1 ¼ 8 K2 ð þ 1Þ c2 ¼
ð23-320bÞ
=ð2 þ 1Þ 1=ð2 þ 1Þ b 0:75 2=ð2 þ 1Þ hmax 2 K2 r
ð23-320cÞ
GENERAL For values of wear rate correction factors; physical and mechanical properties of clutch facings; mechanical properties, performance and allowable operating conditions for various materials; physical and mechanical properties of materials for sliding faces; rubbing bearing materials and applications and allowable working conditions and frictions for various clutch facing materials
Refer to Tables 23-103 to 23-108.
TABLE 23-103 Approximate values of wear rate correction factors Name of factor
Condition
Constant
a. Geometrical factor
Continuous motion þ rotating load Unidirectional load Oscillating motion Metal housing, thin shell, intermittent operation Metal housing, continuous operation Nonmetallic housing, continuous operation PTFE base: 208C 1008C 2008C 208C Carbon graphite thermoset 1008C 2008C Stainless steels, chrome plate Steels Soft, nonferrous metals 0.1–0.2 mm 0.2–0.4 mm 0.4–0.8 mm
0.5 1 2 0.5 1 2 1 2 5 1 3 6 0.5 1 2.5 1 2–5 4–10
b. Heat dissipation factor
c. Temperature factor
d. Counterface factor
c. Surface finish factor
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
DESIGN OF BEARINGS AND TRIBOLOGY
23.168
CHAPTER TWENTY-THREE
TABLE 23-104 Physical and mechanical properties of clutch facings
Thermal conductivity Specific heat Thermal expansion Specific gravity Young’s modulus, E Ultimate tensile strength, ut Ultimate shear, stress, u Ultimate compressive strength, uc
Rivet holding capacity
Resin-based material
Sintered metals
0.80 W/m 8C 1.25 kJ/kg 8C 0:50 104 =8C 1.6 for woven 2.8 for molded 352 kgf/mm2 3:45 109 N/m2 3.45 GPa 2.14 kgf/mm2 21 106 N/m2 21 MPa 1.22 kgf/mm2 12 106 N/m2 12 MPa 10.5 kgf/mm2 103 106 N/m2 103 MPa 7.03 kgf/mm2 69 106 N/m2 69 MPa
16 W/m 8C 0.42 kJ/kg 8C 0:13 104 =8C 1488 kgf/mm2 14:5 109 N/m2 14.5 GPa 4.57 kgf/mm2 44:8 106 N/m2 44.8 MPa 3.59 kgf/mm2 35:2 106 N/m2 35.2 MPa 15.6 kgf/mm2 153 106 N/m2 153 MPa
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
MPa
106 N=m2
kgf/mm2
MPa
106 N=m2
kgf/mm2
MPa
kgf/mm2
Coefficient of friction,
Specific gravity
0.32
0.30 4.91 48.2 48.2 7.02 68.9 68.9 10.50 151.6 151.6
6.0
0.92
9.0
9.0 10..54 103.4 103.4
96.5 15.50 152
0.32
96.5
41.3 10.10 103
2.0
9.85
41.3
0.35 1.39 13.8 13.8 1.39 13.8 13.8 10.54 103.4 103.4 17.50 172
8.2
4.21
2.0
8.2
8.2
0.35 1.05 10.3 10.3 0.84
8.2
1.7
8.2 0.84
69 83
0.40 0.84
8.2
kgf/mm2 7.03 8.45
106 N=m2
1.7
1.0 0.50 2.1 20.7 20.7 1.26 12.4 12.4 9.85 96.5 96.5 1.5–2.0 0.4 2.45 24.1 24.1 1.39 13.8 13.8 10.54 103.4 103.4
106 N=m2
Key: 1 psi ¼ 6895 Pa; 1 kpsi ¼ 6:894757 MPa.
Cement
Lining Woven cotton Woven asbestos Molded Light-duty (flexible) Medium (semi-flexible) Heavy-duty Pad Resin-based or asbestos Sintered metals
Materials
MPa 172
152
103
69 83
350 400 500 650
6:1 106 3:1 106 1:8 106 1:2 106
Used at 650 higher temperature 800
150 250
Wear rate at 1008C, mm3 /J 12:2 106 9:2 106
Maximum
Temperature 8C
400
300
300
225
200
175
100 125
Maximum operating
Rivet holding capacity kgf/mm2 103 35.5–107.0
35.5–356.5
35.5–178.5
7.2–71.5
7.2–71.5
7.2–71.5
7.2–71.5 7.2–71.5
Working pressure, Pw
70–700
70–700
70–700
70–700 70–700
103 MPa
Maximum pressure, Pmax
0.390 3.8 3.8
0.296 2.8 2.8
0.214 2.1 2.1
0.152 1.5 1.5 0.214 2.1 2.1
350–1050 350–1050 0.703 6.9 6.9
350–3500 350–3500 0.561 5.5 5.5
350–1750 350–1750 0.561 5.5 5.5
70–700
70–700
70–700
70–700 70–700
103 N/m2
Compressive stress, c
kgf/mm2
Shear stress,
106 N=m2
Tensile stress, t
MPa
TABLE 23-105 Mechanical properties, performance, and allowable operating conditions for various materials
DESIGN OF BEARINGS AND TRIBOLOGY
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
23.169
Synthetic carbon 1 Synthetic carbon 2 Carbon 2 Carbon 1 Carbon 3 Carbon 4 Carbon 5 Carbon 6 Graphite 1 Graphite 2 Graphite 3 Graphite 4 Graphite 5 Graphite 6 Hard alloy 1 Hard alloy 2 Hard alloy 3
Hard rubber Synthetic resin 2 PTFE
Phenol resin Synthetic resin 1 Resinimpregnated fabric Acetal resin Bakelite
Nylon
PTFCE
Materials
156.9
164.8
176.6 264.9 245.3 329.6 343.4 230.5 122.6 98.1 122.6 69.7 54.9 137.3 1470 2746.8 1324.4
16.5
18 27 25 33.5 35 23.5 12.5 10 12.5 7.1 5.5 14 150 280 135
98.1– 147
16
10– 15
98.1– 240
10– 24.5
kgf/mm2
215.8 549.4 49.1– 88.3 68.7 207 98.1– 171.7 98.1– 216
MN/m2
20– 56 5– 9 7– 21 10– 17.5 10– 24
MPa
176.6 264.9 245.3 329.6 343.4 230.5 122.6 98.1 122.6 69.7 54.9 137.3 1470 2746.8 1324.4
164.8
156.9
98.1– 147
98.1– 240
215.8 549.4 49.1– 88.3 68.7 207 98.1– 171.7 98.1– 216
2.8 1.83 3.1 3.6 2.1 5.3 1.6 1.55 1.9 1.45 1.4 2.0 3.8 30 53.0
2.3
2.1
27.5 17.2 30.4 35.3 20.6 52.0 15.7 14.7 18.6 14.2 13.7 19.6 372.8 294.3 519.9
22.6
20.1
27.5 49.1 9.81 27.5 14.7– 39.2 40.2
68.7
2.8– 5.0 1.0– 2.8 1.5– 4.0 4.1
7
kgf/mm2 31.4– 39.2 48.1– 73.6 49.154.9 34.3– 48.1 22.6– 61.8
MN/m2
3.2– 4.0– 4.9– 7.5 5.0– 5.6 3.5– 4.9 2.3– 6.3
MPa 27.5 17-2 30.4 35.3 20.6 52.0 15.7 14.7 18.6 14.2 13.7 19.6 372.8 294.3 519.9
22.6
20.1
27.5 49.1 9.81– 27.5 14.7– 39.2 40.2
68.7
31.4– 39.2 48.1– 73.6 49.1– 54.9 34.3– 48.1 22.6– 61.8
kgf/mm2 103 1.4 1.85 1.46 1.60 1.35 2.60 0.7 1.0 1.15 1.30 0.56 1.0 2.4 24.4 23
1.32
0.70– 1.7 0.35 0.10 1.75
0.70– 1.75 0.1
0.34
0.18– 0.28 0.52– 0.70 2.1– 3.5 0.63– 0.90
0.16
GN/m2 1.37 18.15 14.32 15.7 13.24 25.5 6.87 9.81 11.28 12.75 5.49 9.81 235.4 239.4 225.6
12.95
6.87– 17.58 0.343– 0.98 18.06
6.87– 17.16 1.03
3.28
1.77– 2.75 5.1– 6.87 20.7– 34.3 6.2– 8.9
1.55
GPa (0.4)
0.25
0.35
(0.30)
(0.25)
0.25
(0.3)
(0.3)
Poisson’s ratio,
1.37 18.15 14.32 15.7 13.24 15.5 6.87 9.81 11.28 12.75 5.49 9.81 235.4 239.4 225.6
12.95 0.22 0.18 0.2 (0.2) (0.2) 0.2 0.22 0.2 0.18 0.22 0.22 0.22 0.3 (0.3) 0.3
(025)
6.87– (0.25) [17.58 0.343– (0.5) 0.98 18.06 0.2
6.87– 17.16 1.03
3.28
1.77– 2.75 5.1– 6.87 20.7– 34.3 6.2– 8.9
1.55
2.8 1.8 1.82 1.79 2.5 2.4 1.73 1.65 1.85 1.85 1.83 1.66 1.8 8.78 7.77 8.65
85 100 80 75 85 93 65 65 72 60 50 70 58–62 60y 48–50y
1-52– 2.0 1.3– 1.82 1.6– 1.9 2.1– 2.3 2.0
1.425
65
65
55–63
2.1
Hardness, Hh 1.09– 1.14 1.25– 1.3 1.75– 1.25 1.36– 1.43
g/cm3
80
kg/m3 1800 1820 1790 2500 2400 1730 1650 1850 1850 1830 1660 1800 8780 7770 8650
2800
1520 2000 1300– 1820 1600– 1900 2100– 2300 2000
1425
1.09– 1140 1250– 1300 1750– 1250 1360– 1430
2100
Porosity, ", % 0.1 0.4 0.5 2.5 4.0 0.3 14 1.0 0.25 0.3 10.0 7.0
0
0.3
0
0
0
0
8C 180 365 285 280 350 370 540 365 370 180 520 340 1250 1150 1260
170
170
130– 160 280
175– 230 100
100
120– 150 120
135– 150 130
150
453 638 558 553 623 643 813 638 643 453 793 613 1523 1423 1533
443
443
403– 433 553
448– 503 373
373
393– 423 393
408– 423 403
423
K
Density,
5.0 6.1 5.3 6.6 4.82 2.16 4.9 5.25 5.2 3.5 4.5 2.0 11.4 9.9 11.9
20
13.5
70
15–30
54
05–40
81
10–40
19–26
100– 140 25–60
50
312 126 320 (273) (260) 750.0 362 235 260 250 520 780 97 (87) 135
(65)
66
(410)
(75)
180
87
167
(150)
(50)
140
(130)
(320)
Temperature range, T
106 8C1
595 399 593 546 (533) 1023 635 508 533 523 793 1053 370 360 840
338
239
(683)
348
453
360
440
(423)
(323)
(413)
(403)
(593)
K
Tensile strength, t
8C
Expansion coefficient Thermal conductivity
4.0 13 20.0 30.0 34.0 20.0 46.0 90.0 89.0 100.0 60.0 60.0 7.0 9.7 11.0
2.5
2.0
0.4– 1.0 0.2
0.29– 0.58 0.25
0.2
0.12– 0.21 0.1– 0.2 0.36– 0.51 0.14– 0.25
0.052
kcal/m h8C
Maximum temperature, Tmax
4.65 15.12 23.3 34.89 39.54 23.3 53.50 104.67 103.51 116.3 69.78 69.78 8.14 11.28 12.79
2.91
2.33
.465– 1.163 .233
.337– .675 .291
0.233
.140– .244 .116– .233 .419– .593 .163– .291
0.096
W/m K
Modulus of elasticity, E
Thermal stress resistance
1250 1650 6400 (8200) (8800) 15000 16700 21200 23000 25000 26000 47000 680 (850) 1480
(164)
132
(82)
(53)
45.0
38.0
33.5
(30.0)
22.0
(21.5)
(21.5)
(16.6)
kcal/m h
Compressive strength, c
1453.75 1918.95 7443.20 (9536.60) (10234.4) 17445.0 19422.10 24655.60 26749 29075 30238 54461 790.84 (988.55) 1720.24
190.73
153.46
(95.37)
(61.64)
52.34
44.19
39.96
(34.89)
25.59
(25.00)
(25.00)
19.31
W/m
TABLE 23-106 Physical and mechanical properties of materials for sliding face
DESIGN OF BEARINGS AND TRIBOLOGY
23.170
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
kgf/mm2
3434
618
1470 687
1648 2746 2070 755 1648 284 1030 2845 3433 4120 4905 3630
3434 2943 3591 2453
63
150 70
168 280 210 77 168 29 105 290 350 420 500 370
350 (300) 366 250
687– 824 206c 279c 981 833 697
MN/m2
350
70 84 21c 28.5 100 85 70
MPa
3434 2943 3591 2453
1648 2746 2070 755 1648 284 1030 2845 3433 4120 4905 3630
1470 687
618
3434
687– 824 206c 279c 981 833 687
49 130 70 7 10 8.4 8.4 11 12.6 17.5 24 14.7 21 17.5 12.5 27 140 120 85 115 14 91 105 56 140
1481 1275.3 687 68.7 98.1 82.4 82.4 107.9 122.6 171.7 235.4 144.2 206 171.7 122.6 264.9 1370 1177.2 833.8 1128.2 137 892.7 1030.1 549 1370
441.5 171.5– 206 834 824 510 235.4 196.2
45 17.50 21 85 84 52 24 20
kgf/mm2
274.6– 343.4 529.7
MN/m2
28– 35 54
MPa 1481 1275.3 687 68.7 98.1 82.4 82.4 107.9 122.6 171.7 235.4 144.2 206 171.7 122.6 264.9 1370 1177.2 833.8 1128.2 137 892.7 1030.1 549 1370
441.5 171.7– 206 834 824 510 235.4 196.2
274.6– 343.4 529.7
15 10.5– 11.3 21.4 20 20.3 21 9.11 11 25 20.6 33 10.5 21.4 14.7 12.5 7.3 22.3 39 35 26 26.6 45.5 48 32 49 56 70 54.5 31.4 41.3 28.7 40 30.4
147.2 103– 111 210 196.2 199 206 89– 108 245.2 202 323.7 103 209.4 144.2 122.6 72.1 218.8 382.6 343.4 255.1 261 446.4 470.8 313.9 480.7 549.4 687 534.6 308 405.2 281.5 392.4 298.2
196.2
20
kgf/mm2 103 171.6
GN/m2
17.5
GPa 147.2 103– 111 210 196.2 199 206 89– 108 245.2 202 323.7 103 209.4 144.2 122.6 72.1 218.8 382.6 343.4 255.1 261 446.4 470.8 313.9 480.7 549.4 687 534.6 308 405.2 281.5 392.4 298.2
196.2
171.6 7.98
[8.0 7.3 9.23 8.94 7.53 8.9 7.25 7.19 7.8 10-2 2.7 3.5 9.69 3.7 2.6 3.4 3.7 3.9 5.9 [6.0 2.51 3.1 7.0 13.0. 14.1 14.8 14.0 [4.9 6.0 6.3 5.8 7.0
155–185f 160f 125–173f 215f 225f 300f 125f 150–220f 180f 64–67e 20–26f 7.5h
(0.3) (0.3) 0.28 0.28 0.25 0.3 0.28 0.324 (0.3) 0.36 0.17 0.35 0.15 0.27 0.31 0.2 0.21 0.26 (0.25) (0.25) 0.26 0.26 0.248 0.216 0.242 0.29 0.25 0.26 (0.25) 0.3
0.3 0.25
0.28
87.5f
8h 800h 9h 9h 9h 37f 50f 2800g 2500g 86.5f 83–64f 86–87f 91.5f 89f 2460g 89f 82.5f
7.7
Hardness, Hh 53–57e
Poisson’s ratio, r
g/cm3
(0.26)
kg/m3 7250 7190 7800 10200 2700 3500 9690 3700 2600 3400 3700 3900 5900 6000 2510 3100 7000 13000 14100 14800 14000 4900 6000 6300 5800 7000
9230 8940 7530 8900
8000 7300
7980
7700
Porosity, ", % 0.1 0.1 0.3 0.1
0.02 0.5 0 0 0
0.02
0
0
0
1400b 1800b 600 550 1000 2800b 3300b 1000 1723b 1400 1550 1750 1800 1700 2500b 2400 1900b 600 600 600 600 3140b 1000 1000 1200b 650
1335b 1285b 1500b 1495b
1425b 1200b
1400b
800
8C 1673b 2073b 873 823 1273 2073b 3573b 1373 1996b 1673 1823 2023 2073 1973 2773b 2673 2173b 873 873 873 873 3413b 1273 1273 1473b 923
1608b 1558b 1773b 1768b
1698b 1473b
1673b
1073
10.0 6.2 14.8 4.8 8.2 13.5 9.2 4.0 0.5 5.5 5.8 6.0 8.0 7.5 4.5 3.9 9.0 9.0 6.8 5.6 7.0 7.4 9.5 10.4 5.7 8.7
10.0 11.3 10.6 12.3
0.9 17.0
16.0
8.5
150 220 305 325 (57) 22 52 108 2550 74 54 92 56 78 (64) (50) 70 240 230 170 225 43 175 260 (185) (370)
(280) (260) 173 67
230 78
121
(157)
Temperature range, T
423 493 578 598 (330) 295 325 381 2823 347 327 365 329 351 (337) (323) 343 513 503 443 498 316 448 543 (462) (643)
553 533 450 340
403 351
394
430
Thermal conductivity
40.0 57.6 45.0 110 2.15 31.0 9.0 4.3 1.37 11.4 16.2 25.0 25.0 29.0 22.3 86.0 (20.0) (30.0) (50.0) (60.0) (40.0) 21.5 26.0 28.0 29.0 45.0
9.7 10.8 19.0 59.5
9.5 34
16.0
12.2
46.5 66.99 52.34 127.90 25.0 36.05 4.65 5.00 1.59 13.37 18.84 29.1 29.1 33.73 25.94 100 (23.3) (34.89) 58.15 (62.78) (46.5) 25.0 30.34 32.56 33.73 52.34
11.28 12.56 22.10 69.20
11.05 39.54
18.61
14.19
Thermal stress resistance
6000 12700 13800 3560 (120) 680 470 465 3500 840 875 2300 1400 2250 1430 (4300) (1400) (7200) (11500) (10000) (9000) 930 4550 7300 (5400) (16700)
(2700) (2800) 3300 4000
2200 2650
1940
1930
6978.0 14770 16049 1440.2 140 790.8 546.6 540.7 4070.5 976.9 1017.6 2674.4 1628.2 2616.7 1663.1 5000.9 (1628.2) 8373.6 13374.5 11630 10467.2 1081.5 5291.6 8489.9 6270.2 (19422.1)
1340.1 (3256.4) 3837.9 (4652.0)
2558.6 3081.9
2253.2
2244.5
Key: a Brinell hardness; b melting point; c Shore hardness; d scleroscope; e Rockwell hardness; ðf Rockwell A; g Knoop hardness; h Mohs hardness; i electric limit; j values in parentheses ( ) are approximate. Prefixes: k ¼ 103 ; M ¼ 106 ; G ¼ 109 . Conversion: 1 kgf/mm2 ¼ 9:80665 106 N/m2 ; 1 N/m2 ¼ 1 Pa; 1 kcal/h m 8C¼ 1:163 W/m K; 1 kcal h m ¼ 1:163 W/m¼ 1:163 J/h m; 1 psi ¼ 6894:757 Pa; 1 kpsi ¼ 6:894757 MPa; 1 Mpsi ¼ 6:894757 GPa; 1 Btu=lft2 h 8F ¼ 5:678 W=m2 8C; 1 W=m2 8C ¼ 0:1761 Btu=ft2 h 8F; 1 g=cm3 ¼ 3:6127 102 lb=in3 ¼ 62:428 lb=ft3 . PTFCE ¼ polytetrafluorochloroethylene; PTFE ¼ polytetrafluoroethylene.
Chrome Steel Molybdenum Steatite Magnesium Thoria Zircon Quartz glass Alumina 1 Alumina 2 Alumina 3 Cement 1 Cement 2 Boron carbide Silicon carbide Chromium carbide Tungsten carbide 1 Tungsten carbide 2 Tungsten carbide 3 Tungsten carbide 4 Titanium carbide 1 Titanium carbide 2 Titanium carbide 3 Titanium carbide 4 Titanium carbide 5
Hastelloy B Hastelloy C Chrome (cast) Cobalt Cast iron
Hardened nickel Stainless steel Steel AISI 316 Invar Niresist (cast)
Materials
K
Density,
106 8C1
K
Tensile strength, t
8C
Expansion coefficient
kcal/m h8C
Maximum temperature, Tmax
W/m K
Modulus of elasticity, E
kcal/m h
Compressive strength, c
W/m
TABLE 23-106 Physical and mechanical properties of materials for sliding face (Cont.)
DESIGN OF BEARINGS AND TRIBOLOGY
23.171
14.28
0.71
14.28
42.84
Thermoplastic with filler bonded to metal back
Filled PTFE
PTFE with filler bonded to steel backing
Woven PTFE reinforced and banded metal backing
3.57
1.03
0.20
Graphite-thermosetting resin Reinforced thermosetting plastic
Thermoplastic with filler or metalbacked
7.14
Graphite-impregnated metal
1.02
35.0
0.31–0.41
Carbon/graphite with metal
Thermoplastic material without filler
2.0
0.14–0.20
Carbon/graphite
420.0
140.0
7.0
140.0
10.14
10.0
70.0
3.0–4.0
1.4–2.0
kgf/mm2
Materials
N/m 106
2
420.0
140.0
7.0
140.0
10.14
10.0
35.0
2.0
70.0
3.0–4.0
1.4–2.0
MPa
Maximum loading, P
TABLE 23-107 Rubbing, bearing materials and applications
0.35
0:35 1:75
1:60
0:0357 0:1785
0:1623
0.035–0.11
0.035
0.35
0.35
1:60
1:75
0:35
0.35
0.035–0.11
0.035
0.35
0.35
0.28–0.35
0.11 0.18 0.145 0.22
0.11 0.18 0.145 0.22 0.28–0.35
MPa m/s
MN/m2 m/s
Pv value
0.0357
0.0036– 0.0112
0.0036
0.0357
0.0357
0.0286– 0.0357
0.0112– 0.0184 0.0148– 0.0224
kgf/mm m/s
2
0.03–0.33, dry
0.05–0.30, dry
0.05–0.35, dry
0.20–0.35, dry
0.15–0.40, dry
0.1–0.45, dry
0.1–0.4, dry, 0.006, waterlubricated
250
280
250
105
100
100
200
250
350–600
130–350
0.10–0.35, dry
0.10–0.15, dry 0.020–0.025, greaselubricated 0.13–0.5, dry
350–500
Maximum temperature, 8C
0.10–0.25, dry
Coefficient of friction,
20 (lining)
60–80
27
80–100
25–80 depending on plane of reinforcement 100
3.5–5.0
12–13 with iron matrix
4.2–5.0
2.5–500
Coefficient of expansion, 106 , 8C
Water-lubricated roll neck bearings in hot rolling mills, rubber bearings, bearings subjected to atomic radiation Textile and food machinery bearings, bushes and thrust washers in automobile, bearing of linkages For more heavily loaded applications, textile and food machinery, automobile and linkage Ball joints, gearbox bushes, kingpin bushes, suspension and steering linkages Bushes, thrust washers, sideways Aircraft controls, linkages, automobile gearboxes, conveyors, bridges and building, expansion bearings, bushes, and steering suspension Aircraft engine controls, automobile suspension, engine mountings, linkages, bridges, and building expansion joint
Conveyors, furnaces, food and textile machinery Bearings immersed in water, acid or alkaline solution, etc. Bearings of foundry plant, coal mining machines, steel plants, etc.
Application
DESIGN OF BEARINGS AND TRIBOLOGY
23.172
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
DESIGN OF BEARINGS AND TRIBOLOGY DESIGN OF BEARINGS AND TRIBOLOGY
23.173
TABLE 23-108 Allowable working conditions and friction for various clutch facing materials Temperature Working pressure Working conditions Light-duty Woven Mill board Medium-duty Wound tape yarn Asbestos tape Molded Heavy-duty Sintered Cement Oil immersed Paper Woven Molded Molded (grooved) Sintered Sintered (grooved) Resin/graphite
Coefficient of friction,
Maximum 8C
Continuous 8C
kgf/mm2
N/m2 106
MPa
Power rating, W/mm2
0.35–0.4 0.40
250 250
150 150 200
0.18–0.51 0.18–0.71
1.75–5.00 1.75–7.00
1.75–5.0 1.75–5.0
0.3–0.6 0.3–0.6
0.38 0.40 0.35
350 350 350
200 200
0.18–0.71 0.18–0.71 0.18–0.71
1.75–7.0 1.75–7.0 1.75–7.0
1.75–7.0 1.75–7.0 175–7.0
0.3–0.6 0.6–1.2 0.6–1.2
0.36/0.30 0.40
500
300
0.36–0.29 0.71–1.43
3.5–28 7.0–14
3.5–28.0 7.0–14.0
1.7 4.0
0.11 0.08 0.04 0.06
0.71–1.79 0.71–1.79 0.17–1.79
7.1–17.5 7.1–17.5 7.1–17.5
7.1–17.5 7.1–17.5 7.1–17.5
2.3 1.8 0.6
0.11/0.05 0.11/0.06
0.71–4.28 0.71–4.28
7.0–42 7.0–42
7.0–42.0 7.0–42.0
2.3 2.3
0.10
5.3
REFERENCES 1. Lingaiah, K., Machine Design Data Handbook, Vol. II (SI and Customary Metric Units), Suma Publishers, Bangalore, India. 1986. 2. Lingaiah, K., and B. R. Narayana Iyengar, Machine Design Data Handbook, Engineering College Cooperative Society, Bangalore, India, 1962. 3. Maleev, V. L., and J. B. Hartman, Machine Design, International Textbook Company, Scranton, Pennsylvania, 1954. 4. Radzimovsky, F. I., Lubrication of Bearings—Theoretical Principles and Designs, The Ronald Press Company, New York, 1959. 5. Raimondi, A. A., and J. Boyd, ‘A Solution for the Finite Journal Bearings and Its Application to Analysis and Design’, ASME J. Lubrication Technol., Vol. 104, pp. 135–148, April 1982. 6. Kingsbury, A., ‘Optimum Conditions in Journal Bearing,’ Trans. ASME, Vol. 54, 1932. 7. Needs, S. J., ‘Effect of Side Leakage in 120-degree Centrally Supported Journal Bearings,’ Trans. ASME, Vol. 56, 1934; Vol. 51, 1935. 8. Shigley, J. E., Mechanical Engineering Design, First Metric Edition, McGraw-Hill Book Company, New York, 1986. 9. Edwards, K. S., Jr., and R. B. McKee, Fundamentals of Mechanical Component Design, McGraw-Hill Book company, 1991. 10. Shaw, M. C., and F. Macks, Analysis and Lubrication of Bearings, McGraw-Hill Book Company, New York, 1949. 11. Lingaiah, K., Machine Design Data Handbook, McGraw-Hill Publishing Company, New York, U.S.A., 1994. 12. FAG Rolling bearings, Catalog WL 41520EI, 1995 edition, FAG Precision Bearings Ltd., Maneja, Vadodara, India.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
DESIGN OF BEARINGS AND TRIBOLOGY
23.174
13. 14. 15. 16. 17. 18. 19. 20. 21.
CHAPTER TWENTY-THREE
SKF Rolling Bearings, Catalog 4000E. 1989, SKF Rolling Bearings, India Ltd., Mumbai, India. Bureau of Indian Standards, Manak Bhavan, 9 Bahadur Shah Marg, New Delhi 110 002, India. Neale, M. J., Editor, Tribology Handbook, Butterworth, London, 1973. International Organization for Standards, 1, rue de Varembe, Case Postale 56, CH 1211, Geneve 20, Switzerland. New Departure-Hyatt Bearing Division, General Motor Corporation, USA. NSK Corporation (Corporate), Automotive Products Bearing Division, 3861 Research Park Drive, Ann Arbor, Michigan 48100-1507, USA. The Torrington Company, 59 Field Street, Torrington, Conn 06790, USA. Antifriction Bearing Manufacturers Association, USA. Black, P. H., and O. E. Adams, Jr., Machine Design, McGraw-Hill Publishing Company, New York, 1968.
BIBLIOGRAPHY ASME Standards. Baumeister, T., ed., Marks’ Handbook for Mechanical Engineers, McGraw-Hill Book Company, New York, 1978. Black, P. H., and O. E. Adams, Jr., Machine Design, McGraw-Hill Book Company, New York, 1968. Boswall, R. O., The Theory of Film Lubrication, Longmans, Green and Company, New York, 1928. Bureau of Indian Standards. O’Connor, J. J. ed., Standard Handbook of Lubricating Engineering, McGraw-Hill Book Company, New York, 1968. Fuller, D. P., The Theory and Practice of Lubrication for Engineers, John Wiley and Sons, New York, 1956. Niemann, G., Machine Elements—Design and Calculations in Mechanical Engineering, Vol. II, Springer-Verlag, Berlin, 1950; Student Edition, Allied Publishers Private Ltd. Bangalore, India, 1979. Niemann, G., Maschinenelemente, Springer-Verlag, Berlin, Erster Band, 1963. Niemann, G., Maschinenelemente, Springer-Verlag, Berlin, Zweiter Band, 1965. Hyland, P. H., and J. B. Kommers, Machine Design, McGraw-Hill Book Company, New York, 1943. ISO Standards Lansdown, A. R., Lubrication: A Practical Guide to Lubricant Selection, Pergamon Press, New York, 1982. Leutwiler, O. A., Elements of Machine Design, McGraw-Hill Book Company, New York, 1917. Michell, A. G. M., Lubrication—Its Principles and Practice, Blackie and Son, London, 1950. Neale, M. J., ed., Tribology Handbook, Butterworth, London, 1973. Norman, C. A., E. S. Ault, and I. F. Zarobsky, Fundamentals of Machine Design, The Macmillan Company, New York, 1951. Norton, A. E., Lubrication, McGraw-Hill Book Company, New York, 1942. Slaymaker, R. R., Bearing Lubrication Analysis, John Wiley and Sons, New York, 1955. Rippel, H. C., ‘‘Design of Hydrostatic Bearings,’’ Machine Design, Parts 1 to 16, Aug. 1 to Dec. 5, 1963. SAE Handbook, 1957. Shigley, J. E., Machine Design, McGraw-Hill Book Company, New York, 1962. Shigley, J. E., and C. R. Mischke, Standard Handbook of Machine Design, McGraw-Hill Book Company, New York, 1986. Shigley, J. E., and C. R. Mischke, Mechanical Engineering Design, McGraw-Hill Book Company, New York, 1989. Vallance, A., and V. L. Doughtie, Design of Machine Members, McGraw-Hill Book Company, New York, 1951. Wilcock, D. F., and E. R. Booser, Bearing Design and Application, McGraw-Hill Book Company, New York, 1957.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
Source: MACHINE DESIGN DATABOOK
CHAPTER
24 MISCELLANEOUS MACHINE ELEMENTS2,3 24.1 CRANKSHAFTS2,3 SYMBOLS A b c d de do dm E F Fc Fcomb Fic Fr F G h i0 ¼
lo do
ratio of length to diameter of crank
Di Do
ratio of inner to outer diameter of a hollow shaft
I K¼ Kb Kt l le Mb
area of cross section, m2 (in2 ) width of crank cheek, m (in) distance from the neutral axis of section to outer fiber, m (in) diameter (also suffixes), m (in) equivalent diameter, m (in) diameter of crankpin, m (in) diameter of main bearing, m (in) modulus of elasticity, GPa (psi) force acting on the piston due to steam or gas pressure corrected for inertia effects of the piston and other reciprocating parts, kN (lbf ) the component of force F acting along the axis of connecting rod, kN (lbf ) combined force, kN (lbf ) magnitude of inertia force due to the weight of connecting rod itself, kN (lbf ) total radial force acting on the crankpin, kN (lbf ) total tangential force acting on the crankpin, kN (lbf ) modulus of rigidity, GPa (psi) thickness of cheek or web (also with suffixes), m (in) moment of inertia, m4 , cm4 (in4 )
numerical combined shock and fatigue factor to be applied to the computed bending moment numerical combined shock and fatigue factor to be applied to the computed twisting moment length (also with suffixes), m (in) equivalent length, m (in) bending moment, N m (lbf in)
24.1 Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
MISCELLANEOUS MACHINE ELEMENTS
24.2
Mt p r Z
CHAPTER TWENTY-FOUR
twisting moment, N m (lbf in) allowable pressure, MPa (psi) radius, throw of crankshaft, m (in) section modulus, m3 , cm3 (in3 ) normal stress (also with suffixes), MPa (psi) shear stress, MPa (psi)
SUFFIXES b c comb e m max r ra rh t s
bending compressive combined elastic main maximum radial resultant in arm resultant in hub torque shaking tangential
Other factors in performance or special aspects which are included from time to time in this chapter and are applicable only in their immediate context are not given at this stage.
Particular
Formula
FORCE ANALYSIS (Fig. 24-1) The radial component of force Fc acting along the axis of connecting rod (Fig. 24-1)
The tangential component of force Fc acting along the axis of connecting rod (Fig. 24-1)
The radial component of force Fic (Fig. 24-1)
F Fc1 ¼ Fc cosð þ Þ ¼ sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi cosð þ Þ sin 2 1 n0 ð24-1Þ F Fc2 ¼ Fc sinð þ Þ ¼ sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi sinð þ Þ sin 2 1 n0 ð24-2Þ Fic1 ¼ 23 Fic cos
ð24-3Þ
where ¼ angle between the force Fic and the radial component of Fic The tangential component of force Fic (Fig. 24-1)
Fic2 ¼ 23 Fic sin
ð24-4Þ
The total radial force acting on the crank
Fr ¼ Fic1 Fc1
ð24-5Þ
Fr ¼ 23 Fic cos Fc cosð þ Þ
ð24-6Þ
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
MISCELLANEOUS MACHINE ELEMENTS MISCELLANEOUS MACHINE ELEMENTS
Particular
Formula
F ¼ Fic2 Fc2
The total tangential force acting on the crank
¼ 23 Fic sin Fc sinð þ Þ qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi Fcomb ¼ F2r þ F2 Fcomb
c1
F
θ
α
r
lo
Fs (b) Shaking force diagram Fc φ
Fic1
Fc
F
1 3l
l
d1
h
c2
x
c1
x
-x
l1
Arm
F
l
ð24-8Þ
b1 = 1.5 d0 b2 = 1.35 d l0 = 1.25 d0
do
Fr = Fic1 – Fc1
Fi
r
Fc2 Fic2 Fic γ
ð24-7Þ
Neutral axis of arm
h1
r1
The resultant force on the crankpin
(θ + φ)
24.3
b1 b2
x dm
d2 = 1.75 d d1 = 2 d0 h1 = 1.4 d0 h2 = 1.4 d
d2
(a)
FIGURE 24-1 (a) Forces acting on crankshaft. (b) Vector sum of F and Fr .
lm
h2
FIGURE 24-2 Overhung built-up crank.
SIDE CRANK Crankpin The maximum bending moment on the crankpin (Fig. 24-2)
MbðmaxÞ ¼ Fcomb
lo t þ 2 2
ð24-9Þ
¼ Fcomb l lo þ c2 ¼ distance from centroidal axis 2 to the application of load (Fig. 24-2), m (in) sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 3 32lFcomb ð24-10Þ do ¼ b where l ¼
The crankpin diameter with respect to the bending moment
where b ¼ allowable bending stress, MPa (psi) The diameter of crankpin from the consideration of bearing pressure From Eqs. (24-10) and (24-11) neglecting t=2 and eliminating lo the equation for crankpin diameter Empirical relation to determine the length of crankpin
Fcomb lo p sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2 4 16Fcomb do ¼ pb
ð24-11Þ
lo ¼ i0 d o
ð24-13Þ
do ¼
where i0 ¼
lo ¼ 1:25 to 1.5 do
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð24-12Þ
MISCELLANEOUS MACHINE ELEMENTS
24.4
CHAPTER TWENTY-FOUR
Particular
Another relation for the crankpin length/diameter ratio Another relation for the crankpin diameter
Formula
l i ¼ o ¼ do 0
sffiffiffiffiffiffiffiffiffiffiffi 0:2b p
sffiffiffiffiffiffiffiffiffiffiffi Fcomb do ¼ i0 p
ð24-14Þ
ð24-15Þ
HOLLOW CRANKPIN The crankpin length/diameter ratio
l i ¼ o ¼ Do 0
sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 0:2ð1 K4 Þ p
where K ¼ The crankpin outside diameter
ð24-16Þ
Di Do
sffiffiffiffiffiffiffiffiffiffiffi Fcomb Do ¼ i0 p
ð24-17Þ
Crank arm CRANK ON HEAD-END DEAD-CENTER POSITION When the crank is on the head-end dead-center position, the section XX (Fig. 24-2) of the arm is subjected to bending moment
Mb ¼ Fcomb l
ð24-18Þ
The direct compressive stress due to the load Fcomb (i.e., more specifically by its component Fc )
c ¼
Fcomb A
ð24-19Þ
The resultant stress in the crank arm at XX
ra ¼
Fcomb MbC A I where
ð24-20Þ
A ¼ area of cross section of the arm at XX, m2 (in2 ) c ¼ distance from the neutral axis of section to outer fiber of arm, m (in) I ¼ moment of inertia of the section, cm4 (in4 ) CRANK ON CRANK-END DEAD-CENTER POSITION The direct tensile stress in the plane of the hub of crankshaft section passing through the shaft center due to load Fcomb (Fig. 24-2)
t ¼
The bending stress in the section due to bending moment Fcomb a
b ¼
Fcomb h2 ðd2 dÞ
Fcomb a Z where Z ¼ section modulus, cm3 (in3 )
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð24-21Þ ð24-22Þ
MISCELLANEOUS MACHINE ELEMENTS MISCELLANEOUS MACHINE ELEMENTS
Particular
24.5
Formula
r ¼ t b
ð24-23Þ
The bending moment in the plane of rotation of the crank
Mb ¼ Fcomb l
ð24-24Þ
The bending stress
b ¼
Mb c1 Zb
ð24-25Þ
The torsional moment
Mt ¼ Fcomb r1
ð24-26Þ
The shear stress
¼
Mt c 1 Zt qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi i h max ¼ 12 b þ 2b þ 4 2
ð24-27Þ
The resultant stress in the plane of the hub of crankshaft section passing through the shaft center CRANK PERPENDICULAR TO THE CONNECTING ROD
The maximum normal stress for crank made of cast iron
ð24-28Þ
qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2b þ 4 2
ð24-29Þ
The shaking force on the main bearing from F and Fr (Fig. 24-1b)
Fs ¼ vector sum of F and Fr
ð24-30Þ
The diameter of main bearing taking into consideration the bearing pressure on the projected area of the crankshaft
dm ¼
The maximum shear stress for the crank made of steel
max ¼ 12
DIMENSION OF CRANKSHAFT MAIN BEARING (Fig. 24-2b)
Fs lm p
ð24-31Þ
where lm ¼ length of bearing, m (in) p ¼ allowable bearing pressure, MPa (psi)
The bending movement on the crankshaft
Mb ¼ Fcomb l1
ð24-32Þ
lo l þ h2 þ m 2 2 where
l1 ¼
h2 ¼ hub length, m (in) lo ¼ length of crankpin, m (in) lm ¼ length of bearing on crankshaft, m (in) The torque on the crankshaft
Mt ¼ Fcomb r
The diameter of crankshaft taking into consideration indirectly the fatigue and shock factors
where r ¼ throw of the crank, m (in) ffi sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 3 16 dm ¼ Kb Mb þ ðKb Mb Þ2 þ ðKt Mt Þ2 e ð24-34Þ
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð24-33Þ
MISCELLANEOUS MACHINE ELEMENTS
24.6
CHAPTER TWENTY-FOUR
Particular
Formula
The length of main bearing
lm ¼
Fs dm p
ð24-35Þ
PROPORTIONS OF CRANKSHAFTS For proportions of crankshaft
Refer to Figs. 24-2 to 24-10. 0.8 to 1.1do
0.5 to 0.9do
do
d0
1.4d0
Throw
1.1d1
d
1.8d1 d1
K
2 to 2.5d
FIGURE 24-3 Overhung built-up crank.
1.1 to 1.2d
FIGURE 24-4 Overhung forged crank. Fcomb
L 2
lo
Center of bearing
dm
h
lm 2
12mm c
12mm
lm 2
b
FIGURE 24-6 Center crank (American Bureau of Shipping method).
dc
FIGURE 24-5 Disk crank.
h
Dc
h
r=
d1 d2 d
h1
Center of bearing
dm
h2
t D
do
do
L
do
d3
dj
r
I Dj
dj
Ie e 2
FIGURE 24-7 Equivalent length of crankshaft.
h
c
h
e 2
FIGURE 24-8 Center hollow crank.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
b
MISCELLANEOUS MACHINE ELEMENTS MISCELLANEOUS MACHINE ELEMENTS
Particular
Formula
B = Cylinder bore
0.71 to 0.80B
0.5d
R = 0.35B
0.7B + 9.5 = d
0.06 to 0.12B
24.7
0.58B
0.53 31B + 9.5 to 0.6B
0.825B + 9 All dimensions in mm
FIGURE 24-9 Empirical proportion for center crank.
2.35d
1.5d
3.25d
0.580d
3.75d
d
d 2.25d
3.75d
2.15d
1.15d
0.58d
Throw
d
1.5d
2.1d
CENTER CRANK (Fig. 24-6) Crankpin The maximum bending moment treating the crankpin as a simple beam with concentrated load at the center
Fcomb ðlo þ h þ lm Þ 4 where lo ¼ length of crankpin, m (in) lm ¼ length of main bearing, m (in) h ¼ thickness of cheek, m (in) Mbc ¼
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð24-36Þ
MISCELLANEOUS MACHINE ELEMENTS
24.8
CHAPTER TWENTY-FOUR
Particular
The diameter of the crankpin based on maximum bending moment Mbc
Formula
sffiffiffiffiffiffiffiffiffiffiffiffiffi 3 32Mbc do ¼ b
ð24-37Þ
where b ¼ design stress, MPa (psi) The diameter of crankpin based on bearing pressure between pin and the bearing
do ¼
Fcomb lo p
ð24-38Þ
Dimensions of main bearing Fcomb le ð24-39Þ 4 where le ¼ equivalent length of crankshaft, m (in)
The maximum bending moment treating the center crank as a simple beam with load concentrated at the center
Mbb ¼
The twisting moment
Mt ¼ Fcomb r
The diameter of crankshaft at main bearing taking into consideration the fatigue and shock factors
sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ffi qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 3 16 2 2 Kb Mbb þ ðKb Mbb Þ þ ðKt Mt Þ dm ¼ e
ð24-40Þ
ð24-41Þ The diameter of the crankshaft based on bearing pressure
dm ¼
Fs lm p
ð24-42Þ
American Bureau of Shipping formulas for center crank The thickness h of the cheeks or webs (Fig. 24-6) The diameter of crankpins and journals (Fig. 24-6)
h ¼ 0:4d to 0:6d sffiffiffiffiffiffiffiffiffi 3 Dpc d¼a b
ð24-43Þ ð24-44Þ
where a ¼ coefficient from Table 24-1A D ¼ diameter of cylinder bore, m (in) p ¼ maximum gas pressure, MPa (psi) c ¼ distance over the crank web plus 25 mm (1.0 in) (Fig. 24-6) b ¼ allowable fiber stress, MPa (psi) The thickness h and the width b of crank cheeks must satisfy the conditions
bh2 0:4d3
ð24-45aÞ
b2 h d3
ð24-45bÞ
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
MISCELLANEOUS MACHINE ELEMENTS MISCELLANEOUS MACHINE ELEMENTS
Particular
24.9
Formula
EQUIVALENT SHAFTS A portion of a shaft length l and diameter d can be replaced by a portion of length le and diameter de The length he equivalent to crank web
le ¼ l
de d
4 ð24-46Þ
rC B where
ð24-47Þ
he ¼
1 d4e G ¼ torsional rigidity of the crankpin C ¼ 32 1 hb3 E ¼ flexural rigidity of the web B ¼ 12
The equivalent length crankshaft le of Fig. 24-7 varies between
0:95l < le < 1:10l
The equivalent length of commercial crankshaft for solid journal and crankpin according to Carter (Fig. 24-8)
Le ¼
d4e
The equivalent length of commercial crankshaft for hollow journal and crankpin according to Carter (Fig. 24-8)
Le ¼ d4e
The equivalent length of crankshaft for solid journal and crankpin according to Wilson (Fig. 24-8)
Le ¼
The equivalent length of crankshaft for hollow journal and crankpin according to Wilson (Fig. 24-8)
d4e Le ¼ d4e
e þ 0:8a 0:75b 1:5r þ þ 3 D4J D4c ac
ð24-48Þ
e þ 0:8a 0:75b 1:5r þ þ D4J d4J D4c d4c ac3
ð24-49Þ ð24-50Þ
e þ 0:4DJ b þ 0:4Dc r 0:2ðDJ þ Dc Þ þ þ D4J D4c ac3
ð24-51Þ e þ 0:4DJ b þ 0:4Dc r 0:2ðDJ þ Dc Þ þ þ D4J d4J D4c d4c ac3 ð24-52Þ
EMPIRICAL PROPORTIONS For empirical proportions of side crank, built-up crank, and hollow crankshafts
Refer to Figs. 24-2 to 24-10.
The film thickness in bearing should not be less than the values given here for satisfactory operating condition: Main bearings
h ¼ 0:0025 mm (0.0001 in) to 0.0042 mm (0.0017 in)
ð24-52aÞ
Big-end bearings
h ¼ 0:002 mm (0.00008 in) to 0.004 mm (0.00015 in)
ð24-52bÞ
The oil flow rate through conventional central circumferential grooved bearings
Q¼
kpc3 d ð1 þ 1:5"2 Þ L
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð24-52cÞ
MISCELLANEOUS MACHINE ELEMENTS
24.10
CHAPTER TWENTY-FOUR
Particular
Formula
where Q ¼ oil flow rate, m3 /s (gal/min) k ¼ a constant ¼ 0:0327 SI units ¼ 4:86 104 US Customary System Units p ¼ oil feed pressure, Pa (psi) c ¼ D d ¼ diametral clearance, m (in) ¼ absolute viscosity (dynamic viscosity), Pa s (cP) d ¼ bearing bore, m (in) L ¼ land width, m (in) " ¼ attitude or eccentricity ratio For oil flow rate in medium and large diesel engines at 0.35 MPa 0.5 psi
Refer to Table 24-1B.
The velocity of oil in ducts on the delivery side of the pump
v ¼ 1:8 to 3.0 m/s (6 to 10 ft/s)
ð24-52dÞ
The velocity of oil in ducts on the suction side of the pump
v ¼ 1:2 m=sð4 ft=sÞ
ð24-52eÞ
The delivery pressure in modern high-duty engines
p ¼ 0:28 to 0.42 MPa (40--60 psi)
ð24-52f Þ
pmax ¼ 0:56 MPa ð80 psiÞ
ð24-52gÞ
For housing tolerances
Refer to Table 24-1C.
TABLE 24-1A Coefficient a in the American Bureau of Shipping formula [Eq. (24-44)] Ratio of stroke to distance over crank webs ¼ l=c
Number of cylinder Type
Four-stroke
Two-stroke
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
Explosion engines
1, 2, 4 3, 5, 6 8 10, 11, 12 1, 2, 4 3, 5, 6 8 12 16
1, 2 3 8 5, 6 1, 2
1.17 1.17 1.17 1.18 1.17 1.19 1.20 1.22 1.25
1.17 1.17 1.19 1.20 1.19 1.22 1.24 1.25 1.29
1.17 1.17 1.21 1.23 1.22 1.25 1.27 1.29 1.33
1.17 1.17 1.23 1.25 1.25 1.28 1.30 1.32 1.36
1.17 1.19 1.25 1.28 1.28 1.32 1.33 1.36 1.40
1.17 1.20 1.28 1.31 1.31 1.35 1.37 1.39 1.44
1.17 1.22 1.30 1.33 1.34 1.38 1.40 1.42 1.47
1.17 1.24 1.32 1.35 1.36 1.41 1.43 1.45 1.50
Air-injection diesel engines
3 4 5, 6 8
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
MISCELLANEOUS MACHINE ELEMENTS MISCELLANEOUS MACHINE ELEMENTS
TABLE 24-1B Oil flow rate in medium and large diesel engines at 0.35 MPa
24.11
TABLE 24-1C Housing tolerances Parts
Tolerances
Waviness of the surface Run-out of thrust faces Surface finish Journals
>0.0001d j >0.0003d j
Oil flow rate Different parts of engine
liters/min/kW liters/min/hp (gal/h/hp)
Bed plate gallery to mains with piston cooling Mains to big end (with piston cooling) Big ends to pistons (with oil cooling) Total flow of oil with uncooled pistons
0.536
0.4 (5)
0.362
0.27 (3.5)
0.201
0.15 (2)
0.335
0.25 (3)
Gudgeon pins Housing bores Alignment of adjacent housing The fine grinding or honing
0.2–0.25 mm Ra (8–10 in clearance) 0.1–0.16 mm Ra (4–6 in clearance) 0.75–1.6 mm Ra (30–60 in clearance) <1 in 10,000 to 1 in 12,000 0.025–0.05 mm (0.001–0.002 in)
TABLE 24-1D Properties of some steel-backed crankshaft plain bearing materials
Nominal composition, per cent
Lining or overlay thickness, mm
Relative fatigue strength
Guidance peak loading limits, rs1 , MPa
Recommended journal hardness, V.P.N.
Tin-based white metal
Sn 87, Sb 9 Cu 4, Pb 0.35 max
Over 0.1 Up to 0.1
1.0 1.3
12–14 14–17
160 160
Tin-based white metal with cadmium
Sn 89, Sb 7.5 Cu 3, Cd 1
No overlay
1.1
12–15
160
Copper-lead, overlaid with cast white metal
Cu 70, Pb 30
0.2
1.4
15–17
160
Sintered copper-lead, overlay plated with lead-tin
Cu 70 Bb 30
0.05 0.025
1.8 2.4
21–23a 28–31a
230 280
Cast copper-lead, overlay plated with lead-tin or lead-indium
Cu 76, Pb 24
0.025
2.4
31a
Sintered lead-bronze, overlay plated with lead-tin
Cu 74, Pb 22 Sn 4
0.025
2.4
28–31a
400
Tin-aluminum
Al 60, Sn 40
No overlay
1.8
21–23
230
Lining materials
Tin-aluminum
Al 80, Sn 20
No overlay
3.3
28–35
230
Tin-aluminum, overlay plated with lead-tin
Al 92, Sn 6 Cu 1, Ni 1
0.025
2.4
28–31a
400
a
Limit set by overlay fatigue in the case of medium/large diesel engines. Suggested limits are for big-end applications in medium/large diesel engines and are not to be applied to compressors. Maximum design loadings for main bearings will generally be 20% lower. (Courtesy: Extracted from M. J. Neale, ed., Tribology Handbook, Section A11, Newnes-Butterworth, London, 1973)
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
MISCELLANEOUS MACHINE ELEMENTS
24.12
CHAPTER TWENTY-FOUR
24.2 CURVED BEAM2,3 SYMBOLS semimajor axis of ellipse, m area of cross section, m2 width of beam, m semiminor axis of ellipse, m distance from the centroidal axis to the inner surface of curved beam, m distance from the centroidal axis to the outer surface of curved beam, m distance from the neutral axis to inner surface of curved beam, m distance from the neutral axis to outer surface of curved beam, m diameter of curved beam of circular cross section, m distance from centroidal axis to neutral axis of the section, m modulus of elasticity, GPa load, kN modulus of rigidity, GPa depth of beam, m moment of inertia, m4 , cm4 stress factor (also with suffixes) constant length of straight section between the semicircular ends of chain link, m pure number to be determined for each particular shape of the cross section by performing the integration applied bending moment (also with suffixes), N m radius of centroidal axis, m inner radius of curved beam, radius of curvature, m outer radius of curved beam, m radius of neutral axis, m deflection, m normal stress (also with suffixes), MPa
a A b c1 c2 ci ¼ c1 e co ¼ c2 þ e Hð¼ dÞ e E F G h I k K l m Mb rc ri ro rn y
Please note: The US Customary System units can be used in place of the above SI Units.
SUFFIXES b i h o n max r v x y
bending inner horizontal outer neutral maximum resultant or combined vertical x direction y direction
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
MISCELLANEOUS MACHINE ELEMENTS MISCELLANEOUS MACHINE ELEMENTS
Particular
24.13
Formula
GENERAL Pure bending The general equation for the bending stress in a fiber at a distance y from the neutral axis (Figs. 15-11 and 15-12)
b ¼
The maximum compressive stress due to bending at the outer fiber (Fig. 24-12)
bo ¼
The maximum tensile stress due to bending at the inner fiber (Fig. 24-12)
bi ¼
Mb Ae
y rn þ y
ð24-53Þ
Mb co Aero
ð24-54Þ
Mb ci Aeri
ð24-55Þ
Stress due to direct load ¼
F A
ð24-56Þ
co
axis
b
ral
dA
F
b
d
g
F
ro ri rn rc
F
e
Mb
d
t Neu
Mb ac
troi
dθ
e
Cen
c
cl
F
axis
f
y
o
dy
θ
M
The direct stress due to load F
Mb
rc
rn
b d
O1
FIGURE 24-11 Bending stress in curved beam.
O2 FIGURE 24-12 Analysis of stresses in curved beam.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
MISCELLANEOUS MACHINE ELEMENTS
24.14
CHAPTER TWENTY-FOUR
Particular
Formula
Combined stress due to load F and bending The general expression for combined stress
F Mb A Ae
r ¼
y rn þ y
ð24-57Þ
The combined stress in the outer fiber
ro ¼
F Mb co A Aero
ð24-58Þ
The combined stress in the inner fiber
ri ¼
F Mb ci þ A Aeri
ð24-59Þ
For values of radius to neutral axis for curved beams
Refer to Table 24-2.
TABLE 24-2 Values of radius to neutral axis for curved beams Radius of neutral surface, rn
Section
ri
ro
b
e
h c
ri
ro
rc rn bi
bo
e
h
ro
b2
bi
bo
e
ao
ri rc rn
d
a2
a1 ro
rn ¼
CL of curvature
rc rn
b
rn ¼
ri
CL of curvature
e
CL of curvature
rc rn
a
CL of curvature
Type
rn ¼
pffiffiffiffi pffiffiffiffi ð ro þ ri Þ2 4
(24-60)
h r ln o ri
(24-61)
1 þb Þ 2 hðb i o
bi ro bo ri r ln o h ri
(24-62)
ðbi bo Þ
If bo ¼ 0, this section reduces to a triangle rn ¼
A r þ ai r ao ro þ b2 ln o þ bo ln bi ln i ri ri þ ai ro ao
If ao ¼ 0, this section reduces to a ? section; rn is the same for a box section in dotted lines with each side panel 12 b2 thick
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
(24-63)
MISCELLANEOUS MACHINE ELEMENTS MISCELLANEOUS MACHINE ELEMENTS
Particular
Formula
APPROXIMATE EMPIRICAL EQUATION FOR CURVED BEAMS An approximate empirical equation for the maximum stress in the inner fiber
24.15
i ¼ Mb
c1 K þ I bc1
1 1 þ ri ro
ð24-64Þ
where K ¼ 1.05 for circular and elliptical sections ¼ 0:5 for all other sections b ¼ maximum width of the section, m (in) Mb in N m (lbf ft) The stress at inner radius for a curved beam of rectangular cross section The stress at inner radius of circular cross section
The stress at inner radius of elliptical sections according to Bacha
6Mb h 1 þ 0:25 ri bh2 32Mb d 1 þ 0:3 i ¼ ri d3
i ¼
i ¼
32Mb a 1 þ 0:3 ri a2 b
ð24-65Þ ð24-66Þ ð24-67Þ
STRESSES IN RINGS (Fig. 24-13a) Fr ¼ 0:318Fr ð24-68Þ where ve sign refers to tensile load, þ ve sign refers to comprehensive load
Maximum moment for a circular ring at the point of application of the load, A, Fig. 24-13a
MbðmaxÞ ¼
Another maximum momentb for a circular ring at a point B 908 away from the point of application of load
MbðmaxÞ ¼ 0:182Fr
Direct stress for the ring at point B 908 away from the point of application of load
¼
The general expression for bending moment at any cross section DD at an angle with the horizontal (Fig. 24-13b) The stress due to direct load F at any cross section DD at an angle with the horizontal
a b
ð24-69Þ
where ve sign refers to comprehensive load, þ ve sign refers to tensile load F 2A
Mb ¼ MA 12 Frð1 cos Þ
¼
F sin 2A
Courtesy: Bach, Maschinenelemente, 12th ed., p. 43. Moments which tend to decrease the initial curve of the bar are taken as positive.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð24-70Þ ð24-71Þ
ð24-72Þ
MISCELLANEOUS MACHINE ELEMENTS
24.16
CHAPTER TWENTY-FOUR
Particular
Formula
F MA A
F A
A A B
B
r
o
r
A
D
A B
D θ B
x
r x (b)
F 2
B MB
B A
F (a) FIGURE 24-13 Bending moments in a ring.
The combined stress at any cross section
MB B
B MB
MA A F FIGURE 24-14 Bending moments in a link.
r ¼
1F M sin b Ae 2A
y rn þ y
ð24-73Þ
DEFLECTION The increase in the vertical diameter of the ring (Fig. 24-13a)
yv ¼ 0:149
Fr3 EIz
ð24-74Þ
The decrease in the horizontal diameter of the ring (Fig. 24-13a)
yh ¼ 0:137
Fr3 EIz
ð24-75Þ
LINK (Fig. 24-14) The moment, MbA , at the point of application of load (Fig. 24-14)
MbA ¼
Frð2r þ lÞ 2ðr þ lÞ
ð24-76Þ
The moment, MbB , at the section 908 away from the point of application of load (Fig. 24-14)
MbB ¼
Frð2r rÞ 2ðr þ lÞ
ð24-77Þ
where l ¼ length of straight section between the semicircular ends.
CRANE HOOK OF CIRCULAR SECTION (Fig. 24-15) The combined stress in any fiber of a crane hook subject to a load F The maximum combined stress
F Mb y Fy ¼ A Ae rn þ y Amðrx yÞ F H F rðmaxÞ ¼ ¼ ki A 2mri A r ¼
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð24-78Þ ð24-79Þ
MISCELLANEOUS MACHINE ELEMENTS MISCELLANEOUS MACHINE ELEMENTS
Particular
24.17
Formula
The minimum combined stress
rðminÞ ¼
F A
H 2mro
¼
F k A o
ð24-80Þ
where ki and ko are stress factors which depend on H=2rc ; ki is the critical one which varies from 13.5 to 15.4 as ratio H=2rc changes from 0.6 to 0.4 For crane hook of trapezoidal section
Refer to Fig. 24-16 and Table 24-3.
Gi
Gi
UNDERCUT
Undercut
G K
B A
U
D
N J
E
D
M B
E
Q
P
F
H
M
N
U K
H
Z F
C
H
I
G
Z
P
C
A
Z D
L
E
F Z
R
H
FIGURE 24-15 Hook of circular section.
M Z
J
F
E H
Z M
FIGURE 24-16 Crane hook of standard trapezoidal section.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
20
25
32
40
50
60
70
85
10.0
12.0
16.0
20.0
25
32
40
50
MS HS MS HS MS HS MS HS MS HS MS HS MS HS MS HS MS HS MS HS MS HS MS HS MS HS MS HS
74 63 105 91 145 126 187 162 233 201 294 256 327 286 369 319 415 360 465 404 520 451 569 481 616 533 680 588
35 38 50 43 69 60 89 71 111 96 140 122 156 136 176 152 198 171 221 193 248 215 271 229 293 254 324 280
27 23 38 33 53 46 68 59 85 73 107 93 119 104 134 116 151 131 169 147 189 164 207 175 224 194 247 214
39 33 55 48 76 66 98 85 122 105 154 134 171 150 193 167 217 189 243 211 272 236 298 252 323 279 356 308
34 29 48 41 66 58 85 74 106 91 134 116 149 130 168 145 189 164 211 184 236 205 259 219 280 242 309 268
27 23 38 33 53 46 68 59 85 73 109 93 119 104 134 116 151 131 169 147 189 164 207 175 224 194 247 214
15 12 20 20 30 25 35 30 45 40 55 50 60 55 70 60 80 70 85 80 100 85 110 100 120 110 130 120
M M M M M M M M M M M M M M M M M M M M M M M M M M M M
14 12 20 18 27 24 33 30 42 30 52 48 60 52 68 60 76 68 80 72 90 80 100 90 110 100 120 110 6 6 6 6 6 6 8 6 6 6 6 6
Course series with graded pitches
c
b
Thread
Ball bearings (per IS 2512, 1963)
25 21 35 31 49 43 63 55 79 68 100 86 111 97 125 108 140 122 157 137 176 153 193 163 208 180 229 199
20 17 28 25 40 34 51 44 64 55 80 70 89 78 100 87 113 98 127 110 142 123 155 131 168 146 187 160
25 21 35 31 49 42 63 54 78 67 98 86 109 96 123 107 139 120 155 135 174 151 191 161 206 178 227 197
MS HS MS HS MS HS MS HS MS HS MS HS MS HS MS HS MS HS MS HS MS HS MS HS MS HS MS HS
19 16 27 23 37 32 48 41 60 51 75 63 83 73 94 81 106 92 118 103 132 115 145 122 157 136 173 150
16 14 23 20 32 28 41 35 51 44 64 56 71 62 80 70 91 79 101 88 113 98 124 105 134 116 148 128
32 28 46 40 64 55 82 71 102 88 128 112 143 125 161 139 181 157 203 176 227 197 248 210 268 233 296 257
14 12 19 16 26 23 34 30 42 36 54 46 60 52 67 58 76 66 84 74 94 82 104 88 112 97 124 107
14 12 19 16 26 23 34 30 42 36 54 46 60 52 67 58 76 66 84 74 94 82 104 88 112 97 124 107
8 7 11 10 16 14 20 18 26 22 32 29 36 31 40 35 45 39 51 44 57 49 62 52 67 58 74 64
3 3 5 4 6 6 8 7 10 9 13 11 14 12 16 14 18 16 20 18 23 20 25 21 27 23 30 26
15 12 20 20 30 25 35 35 45 40 55 50 60 56 70 60 80 70 85 80 100 85 110 100 120 110 130 120
11 11 11 11 12 12 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13
28 26 35 35 52 47 68 60 85 78 105 95 110 105 125 110 140 125 150 140 190 150 210 190 210 190 225 210
9 9 10 10 16 15 24 21 28 26 35 31 35 35 40 35 44 40 49 44 63 49 70 63 70 63 75 70
H J K M N P R U Z Outside (0.93C) (0.75C) (0.92C) L (0.70C) (0.60C) (1.20C) (0.50C) (0.50C) (0.30C) (0.12C) Bore Series diameter Width
Tonne-force, 1 tonne force ¼ 1 tf ¼ 1 Mgf ¼ 1000 kgf ¼ 9086.6 pffiffiffiffi N ¼ 9.8066 kN. pffiffiffiffi Formula for catching C: for MS (mild steel); C ¼ 26:73 P; for HS (high-tensile steel), C ¼ 23:17 P. Machined shank diameter (min). Source: IS 3815, 1969.
a
16
6.4
3.2
8.0
4
2.0
10
2
1.0
5.0
1
0.5
Safe working Proof load load A D E F Nominal W, tf a P, tf (2.75C) B (3.1C) C b (1.44C) (1.25C) (1.00C) G e size G1 Pitch
TABLE 24-3 Hooks of standard trapezoidal section (Refer to Fig. 24-16)
MISCELLANEOUS MACHINE ELEMENTS
24.18
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
MISCELLANEOUS MACHINE ELEMENTS MISCELLANEOUS MACHINE ELEMENTS
24.3 CONNECTING AND COUPLING ROD2,3 SYMBOLS2,3 area of cross section, m2 (in2 ) Rankine’s constant width, m (in) diameter, m (in) core diameter of bolt, m (in) crankpin diameter, m (in) gudgeon pin diameter, m (in) modulus of elasticity, GPa (psi) force acting on the piston due to steam or gas pressure corrected for inertia effects of the piston and other reciprocating parts, kN (lbf ) the component of F acting along the axis of connecting rod, kN (lbf ) inertia force, kN (lbf ) inertia force due to reciprocating masses, kN (lbf ) crippling or critical force, kN (lbf ) acceleration due to gravity, 9.8066 m/s2 9806.6 mm/s2 (32.2 ft/s2 ) depth of rectangular or other sections, m (in) radius of gyration, m (in) length of connecting rod, m (in) length of crankpin, m (in) equivalent length, m (in) length of gudgeon pin, m (in) bending moment, N m (lbf in) speed of crank, rpm safety factor
A a b d d1 dc dg E F Fc Fi Fir Fcr g h k l lc le lg Mb n n1 n0 ¼ p pf v w W Z !
l r
ratio of connecting rod length to radius of crank allowable pressure, MPa (psi) load due to gas or steam pressure on the piston, MPa (psi) velocity of crank, m/s (fps) specific weight of material of connecting road, kN/m3 (lbf/in3 ) weight of the reciprocating masses, kN (lbf ) section modulus, m3 , cm3 (in3 ) angular speed of crank, rad/s angle between the crank and the center line of connecting rod, deg angle between the crank and the center line of the cylinder measured from the head-end dead-center position, deg angle between the center line of piston and the connecting rod, deg normal stress (also with suffixes), MPa (psi)
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
24.19
MISCELLANEOUS MACHINE ELEMENTS
24.20
CHAPTER TWENTY-FOUR
Particular
Formula
The velocity
2rn 60 where r in m
v¼
ð24-81Þ
DESIGN OF CONNECTING ROD (Fig. 24-17) Gas load Load due to gas or steam pressure on the piston
Fg ¼
d2 p 4 f
Fir ¼
Wv2 gr
ð24-82Þ
Inertia load due to reciprocating motion Inertia due to reciprocating parts and piston
cos þ
Fir ¼ 0:01095
Wrn2 g
cos 2 n0
cos þ
ð24-83aÞ cos 2 n0
Wrn2 1 1þ 0 g n
ð24-83bÞ
The maximum value of Fir occurs when ¼ 08 or when the crank is at the head-end dead center
F1irðmaxÞ ¼ 0:01095
At the crank-end dead center, when ¼ 1808, Fir attains the maximum negative value, acting in opposite direction
F2irðmaxÞ ¼ 0:01095
The combined force on the piston
F ¼ Fg Fir
ð24-86Þ
The component of F acting along the axis of connecting rod
F Fc ¼ sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi sin 2 1 n0
ð24-87Þ
Wrn2 1 1 0 g n
ð24-84Þ ð24-85Þ
The stress induced due to column action on account of load Fc acting along the axis of connecting rod " 2 # Fc l 1 ¼ 1þa e A k
(a) As per Rankine’s formula
ð24-88aÞ
Fi
r
Fc F
α
2l 3
l FIGURE 24-17 Forces acting on a connecting rod.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
MISCELLANEOUS MACHINE ELEMENTS MISCELLANEOUS MACHINE ELEMENTS
Particular
(b) As per Ritter’s formula
(c) As per Johnson’s parabolic formula
24.21
Formula
" 2 # Fc e le 1 ¼ 1þ 2 A n E k 1 ¼
Fc
"
y A 1 4n2 E
2 # le k
ð24-88bÞ ð24-88cÞ
where le ¼ equivalent length, m (in) k ¼ radius of gyration, m (in) n ¼ end-condition coefficient (Table 2-4) a ¼ constant obtained from Table 2-3
Inertia load due to connecting rod The magnitude of inertia force (Fig. 24-17) due to the weight of the rod itself, not including the ends
Fic ¼
Awv2 l sin 2gr
ð24-89aÞ
Fic ¼
Wv2 2gr
ð24-89bÞ
when ¼ 908
where W ¼ Awl ¼ weight of the rod itself, not including the ends, kN (lbf ) The maximum bending moment produced by the inertia force Fic is at a distance (2/3)l from wrist pin
The maximum bending stress developed in the rod due to inertia force Fic
2F l 2Wv2 l MbðmaxÞ ¼ picffiffiffi ¼ pffiffiffi sin 9 3 9 3 2gr
ð24-90aÞ
Wv2 l MbðmaxÞ ¼ pffiffiffi 9 3gr
when ¼ 908
ð24-90bÞ
MbðmaxÞ Wv2 l sin ¼ pffiffiffi Z 9 3grZ
ð24-91aÞ
bðmaxÞ ¼
Wv2 l bðmaxÞ ¼ pffiffiffi 9 3grZ The crank angle () at which the maximum bending moment occurs according to B. B. Low
¼ 908
The relation between the moment of inertia in the xx and yy planes in order to have same resistance in either plane
Iyy ¼ 14 Ixx
when ¼ 908
3500 ðn0 þ 7:82Þ2
ð24-91bÞ ð24-92Þ ð24-93Þ
or k2yy ¼ 14 k2xx
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð24-94Þ
MISCELLANEOUS MACHINE ELEMENTS
24.22
CHAPTER TWENTY-FOUR
Particular
Formula
DESIGN OF SMALL AND BIG ENDS The diameter of crankpin at the big end
dc ¼
F lc p
ð24-95Þ
where p ¼ allowable bearing pressure based on projected area, MPa (psi) ¼ 4.9 to 10.3 MPa (700 to 1500 psi), and lc ¼ 1:25 to 1:5 dc The diameter of the gudgeon pin at the small end
dg ¼
F lg p
ð24-96Þ
where p ¼ 10.3 to 13.73 MPa (1.2 to 2.0 kpsi), and lg ¼ 1:5 to 2 d
DESIGN OF BOLTS FOR BIG-END CAP The diameter of bolts used for fixing the big-end cap
sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2F1irðmaxÞ di ¼ d
ð24-97Þ
where F1irðmaxÞ is obtained from Eq. (24-84) d ¼ design stress of bolt material, MPa (psi) The expression for checking load for measuring peripheral length of each thin-walled half-bearing according to J. M. Conway Jonesa
Wc ¼ 6000
Lhb D
SI
ð24-97aÞ
SI
ð24-97bÞ
where Wc ¼ checking load, N L ¼ axial length of bearing, mm hb ¼ wall thickness of bearing, mm D ¼ diameter of housing, mm
The expression for total minimum nip, n
n ¼ 44 106
D2 hb
or 0:12 mm
whichever is larger a
In M. J. Neale, ed., Tribology Handbook, Section A20, Newnes-Butterworth, London, 1973.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
MISCELLANEOUS MACHINE ELEMENTS MISCELLANEOUS MACHINE ELEMENTS
Particular
24.23
Formula
Note: The ‘‘nip’’ or ‘‘crush’’ is the amount by which the total peripheral length of both halves of bearing under no load exceeds the peripheral length of the housing of the bearing. The compressive load on each bearing joint face to compress nipa
a
b
l h
b
a
SI
ð24-97cÞ
W ¼ Lhsl y 106
SI
ð24-97dÞ
or
whichever is smaller where
α
b
α
D ¼ housing diameter, mm (in) r
a
a
α
hsl ¼ steel thickness þ 12 lining thickness, mm (in) m ¼ sum of maximum circumferential nip on both halves of bearing, mm (in)
(a)
b
ELhsl m ðD hsl Þ106
W¼
b
W ¼ compressive load on each bearing joint face, N (lbf) E ¼ modulus of elasticity of material of backing, Pa (psi)
α
r
¼ 210 GPa (30.45 Mpsi) for steel L ¼ bearing axial length, mm (in)
(b)
FIGURE 24-18 Forces acting on a coupling rod.
y ¼ yield stress of steel backing, Pa (psi) ¼ 350 MPa (50 kpsi) for white-metal-lined bearing ¼ 300 to 400 MPa (43.5 to 58 kpsi) for bearing with copper-based lining ¼ 600 MPa (87 kpsi) for bearing with aluminumbased lining
The bolt load required on each side of bearing to compress nip for extremely rigid housing
Wb ¼ 1:3W
ð24-97eÞ
The bolt load required on each side of bearing to compress nip for normal housing with bolts very close to back of bearing The ratio of connecting rod length (l) to crank radius (r)
Wb ¼ 2W
ð24-97f Þ
l n0 ¼ ¼ 3:4 to 4.4 single-acting engines ð24-98Þ r ¼ 4.6 to 5.4 for double-acting engines ¼ 6.0 or more for steam locomotive engines ¼ 5 to 7 for stationary steam engines ¼ 3.2 to 4 for internal-combustion engines ¼ 1.5 to 2 for aero engines
a
In M. J. Neale, ed., Tribology Handbook, Section A20, Newnes-Butterworth, London, 1973.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
MISCELLANEOUS MACHINE ELEMENTS
24.24
CHAPTER TWENTY-FOUR
Particular
Formula
DESIGN OF COUPLING ROD (Fig. 24-18) The centrifugal force due to the weight of the rod
Fc ¼
wv2 hbl gr
Fc ¼
Wv2 gr
ð24-99Þ ð24-100Þ
wv2 hbl Wv2 cos cos ¼ gr gr
ð24-101Þ
wv2 hbl2 Wv2 l ¼ 8gr 8gr
ð24-102Þ
wv2 Wv2 sin hbl sin ¼ gr gr
ð24-103Þ
The bending component of centrifugal force
Fcb ¼
The maximum bending moment due to the uniformly distributed load of Fcb
MbðmaxÞ ¼
The axial component of the centrifugal force
Fca ¼
For some of the common cross sections of connecting rods
Refer to Fig. 24-19.
For forces acting on a coupling rod
Refer to Fig. 24-18.
For proportions of ends of round and H-section connecting rod
Refer to Fig. 24-20.
For proportions and empirical relations of steam engine common strap end
Refer to Fig. 24-21.
Y x
0.36 to 0.4B
x
d
Y b = 4t
0.6B
t x
t
x
h = 5t
h
t
Y b x
Y (b)
0.02B
Groove in bush 0.02 to 0.04B 0.27B
0.04 to 0.05B
Y (a)
x
Lock washer
Sphere 0.358
Y (c)
FIGURE 24-19 Connecting rod sections.
Rad
Groove in bush B 120 0.06 to 0.13B
Rad
0.26 to 0.33B B = cylinder bore FIGURE 24-20 Two typical end designs for round and H-section connecting rods.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
MISCELLANEOUS MACHINE ELEMENTS
F
C
MISCELLANEOUS MACHINE ELEMENTS
b
D d
F
E
A
B
Taper of cotter 1 in 16
G
H
A
t
b
A = 0.9d B = 0.5d + 10 b=d D = 0.35d + 3
E = 1.15d + 5.5 F = 0.37d + 3 G = 0.1d + 4
d
H = 0.3d + 1.5 C = 0.3d + 1.5 t = 0.2d + 1.5
All dimensions in mm FIGURE 24-21 Steam engine common strap end.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
24.25
MISCELLANEOUS MACHINE ELEMENTS
24.26
CHAPTER TWENTY-FOUR
24.4 PISTON AND PISTON RINGS SYMBOLS2,3 A b B c C d dg D Dr E F F h h1 , h2 , h3 H l g i0 ¼ d g lg L Mb n Pb p r R, Ri , Rh th tr Tc Te w
area of cross section of piston head, m2 (in2 ) width of face of piston, m (in) diameter of bore, m (in) heat-conduction factor, kJ/m2 /m/h/K (Btu/in2 /in/h/8F) higher heat value of fuel used, kJ/kg (Btu/lb) nominal diameter of piston ring, m (in) diameter of piston rod, m (in) diameter of gudgeon pin, m (in) diameter of bore (cylinder), m (in) root diameter of the piston ring groove, m (in) modulus of elasticity, GPa (psi) force, kN (lbf ) diametral load on the piston ring to close the gap which is less than 2.45 N (0.55 lbf ) tangential load on the piston ring to close the gap which is less than 2.45 N (0.55 lbf ) thickness (also with subscripts), m (in) radial thickness of piston ring, m (in) thickness as shown in Fig. 24-24, m (in) heat flowing through the head, kJ/h (Btu/h) length/diameter ratio length of gudgeon pin, m (in) length of piston, m (in) bending moment, N m (lbf in) safety factor brake horsepower (bhp) pressure, MPa (psi) radius, m (in) radius as shown in Fig. 24-22b, m (in) thickness of head, m (in) thickness under ring groove, m (in) temperature at center of head, 8C (8F) temperature at edge of head, 8C (8F) weight of fuel used, kg/bhp/h axial width of ring, m (in) stress (also with subscripts), MPa (psi) angle (Fig. 24-23), deg
TABLE 24-4 Dimensions of cast-iron piston up to 430 mm diameter (Fig. 22-24) (all dimensions in cm) Diameter of cylinder, D
Diameter of piston rod, d
d1
b
a
h
h1
h2
h3
d2
d3
15.0 20.0 25.0 30.0 35.0 40.0
2.8 3.4 4.0 5.0 5.6 5.9
2.5 3.1 3.7 4.7 5.0 5.6
7.5 8.1 9.0 10.0 11.2 11.8
1.2 1.4 1.6 1.7 1.9 1.9
1.2 1.2 1.4 1.6 1.6 1.7
1.4 1.6 1.7 1.7 1.9 2.2
0.8 0.95 0.95 1.2 1.2 1.2
0.8 0.8 0.95 0.95 0.95 0.95
3.1 3.4 4.0 4.6 5.3 5.8
2.5 3.1 3.7 4.7 5.0 5.6
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
MISCELLANEOUS MACHINE ELEMENTS MISCELLANEOUS MACHINE ELEMENTS
Particular
24.27
Formula
STEAM ENGINE PISTONS Piston rods The diameter of piston rod
d¼D
rffiffiffiffiffi p a
ð24-104Þ
where
The diameter of piston rod according to Molesworth
p ¼ unbalanced pressure or difference between the steam inlet pressure and the exhaust, MPa (psi) u ¼ allowable stress, MPa (psi) a ¼ n Note: a is based on a safety factor of 10 for doubleacting engines and 8 for single-acting engines. (The diameter of piston rod is usually taken as 16 to 17 the diameter of the piston.) pffiffiffi d ¼ 0:0044D p for cast-iron pistons ð24-105Þ pffiffiffi d ¼ 0:00338D p for steel pistons ð24-106Þ
Ri R Rh
(a)
θ
(b) FIGURE 24-23 Conical plate piston.
FIGURE 24-22 Plate piston.
h2 h1
d2
a
b
a
h3
d1
h
d3 d D
FIGURE 24-24 Cast-iron piston of diameter 400 mm (16.0 in).
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
MISCELLANEOUS MACHINE ELEMENTS
24.28
CHAPTER TWENTY-FOUR
Particular
Formula
PROPORTIONS FOR PRELIMINARY LAYOUT FOR PLATE PISTONS Box type (Figs. 24-22a and 24-24) Width of face
b ¼ 0:3 to 0:5D
ð24-107Þ
Thickness of walls and ribs for low pressure
pffiffiffi h ¼ ð2R þ 50 cmÞ ð0:003 p þ 0:0275 cmÞ
ð24-108Þ
or
The thickness of walls and ribs for high pressure
h¼
2R þ 10 mm (0.40 in) 60
ð24-109Þ
h¼
2R þ 10 mm (0.40 in) 40
ð24-110Þ
For dimensions of conical plate piston
Refer to Fig. 24-23.
For dimensions of cast-iron piston of 400 mm diameter
Refer to Fig. 24-24 and Table 24-4.
Disk type (Fig. 24-22b) Width of face
b ¼ 0:3 to 0:5D
Thickness of walls and ribs for low pressure
pffiffiffi h ¼ ð2R þ 12:5 cmÞ ð0:0096 p þ 0:057 cmÞ ð24-112Þ
ð24-111Þ
The hub thickness
h1 ¼ 0:45d
ð24-113Þ
The hub diameter
Dh ¼ 2Rh ¼ 1:6 the piston diameter
ð24-114Þ
Width of piston rings
w ¼ 0:03D to 0:06D
ð24-115Þ
Thickness of piston rings
h ¼ 0:025D to 0:03D
ð24-116Þ
For dimensions of cast-iron piston
Refer to Table 24-4.
STRESSES (a) Distributed load over the plate inside the outer cylindrical wall (i.e., the area R2i ) (1) Stress at the outer edge (Fig. 24-22b)
(2) Stress at the inner edge (Fig. 24-22b)
1 ¼
3p 4R2h Ri 2 2 3R þ ln R i h R2i R2h Rh 4h2
ð24-117Þ
2 ¼
3p 4R2i R2h 2 Ri 2 2 R þ R ln i h Rh R2i R2h 4h2
ð24-118Þ
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
MISCELLANEOUS MACHINE ELEMENTS MISCELLANEOUS MACHINE ELEMENTS
Particular
(b) Load on the outer wall, pðR2 R2i Þ distributed around the edge of the plate (1) Stress at the outer edge (Fig. 24-22b) (2) Stress at the inner edge (Fig. 24-22b)
24.29
Formula
3pðR2 R2i Þ 2R2h Ri 3 ¼ ln 1 2 Ri R2h Rh 2h2 3pðR2 R2i Þ 2R2i Ri ln 1 2 4 ¼ Ri R2h Rh 2h2
ð24-119Þ ð24-120Þ
(3) The sum of the stresses at the outer edge
o ¼ 1 þ 3
ð24-121Þ
(4) The sum of the stresses at the inner edge
i ¼ 2 þ 4
ð24-122Þ
(Note: o or i should not be greater than the permissible stress of the material. A safety factor, n, of 8 can be used.)
Dished or conical type (Fig. 24-23) An empirical formula for the thickness of conical piston (Fig. 24-23)
pffiffiffiffiffiffiffiffiffiffiffiffi h ¼ 0:288 pD= sin
SI
ð24-123aÞ
where p and in MPa, and D and h in m pffiffiffiffiffiffiffiffiffiffiffiffi h ¼ 9:12 pD= sin Customary Metric ð24-123bÞ where p and in kgf/mm2 , D and h in mm pffiffiffiffiffiffiffiffiffiffiffiffi h ¼ 1:825 pD= sin USCS ð24-123cÞ where p and in psi, D and h in in
The height of boss
H ¼ 1:1K
The diameter of boss
Dh ¼ 1:7K for small pistons
ð24-124Þ ð24-125aÞ
Dh ¼ 1:5K for large pistons and light engines ð24-125bÞ The thickness h1 measured on the center line
h1 ¼ Kc
ð24-126Þ
where c ¼ 1 to 0.75 depending on the angle of inclination (Refer to Table 24.5.) ¼ varies from 68 to 358 K ¼ 1 to 4.5 for varying pressure and diameter Also refer to Table 24-6 for values of K. For calculating hub diameter, width of piston rings, and thickness of piston rings
Refer to Eqs. (24-114) to (24-116).
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
MISCELLANEOUS MACHINE ELEMENTS
24.30
CHAPTER TWENTY-FOUR
Particular
Formula
PISTONS FOR INTERNAL-COMBUSTION ENGINES Trunk piston (Fig. 24-25) The head thickness of trunk pistons (Fig. 24-25a)
sffiffiffiffiffiffiffiffiffiffiffiffi 3PD2 th ¼ 16
ð24-127Þ
where ¼ 39 MPa (5.8 kpsi) for close-grained cast iron ¼ 56.4 MPa (8.2 kpsi) for semisteel or aluminum alloy ¼ 83.4 MPa (12.0 kpsi) for forged steel
COMMONLY USED EMPIRICAL FORMULAS IN THE DESIGN OF TRUNK PISTONS FOR AUTOMOTIVE-TYPE ENGINES th ¼ 0:032D þ 1:5 mm
Thickness of head (Fig. 24-25a)
th ¼ 0:00D þ 0:06 in The head thickness for heat flow
D tr
HD2 0:16cðTc Te ÞA
¼
H 0:194cðTc Te Þ
ð24-128Þ
USCS
ð24-128aÞ
SI
ð24-129aÞ
where
tr
th
th ¼
SI
Tc Te ¼ 2058C (4008F) and Tc ¼ 698K, 4258C (8008F) for cast-iron piston T ¼ Tc Te ¼ 558C (1308F) and Tc ¼ 533K, 2608C (5008F) for aluminum piston
(a)
c ¼ 2.2 for cast iron
Dr
c ¼ 7.7 for aluminum
tr
th ¼
(c) (b)
HD2 H ¼ 16cTA 12:5cT
USCS
ð24-129bÞ
(d)
D
FIGURE 24-25 Trunk piston for small internal-combustion engine. (a) piston laid out for heat transfer; (b) piston modified for structural efficiency; (c and d) alternate pin designs.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
MISCELLANEOUS MACHINE ELEMENTS
24.31
MISCELLANEOUS MACHINE ELEMENTS
Particular
Formula
ð24-130Þ
The thickness of wall under the ring groove
tr ¼ thickness of head ¼ th pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi tr ¼ 12 ðDr D2r 4Dth Þ
The heat flow through the head
H ¼ KCwPb
ð24-132Þ
Thickness of wall under the ring (Fig. 24-25a and b)
ð24-131Þ
where w ¼ weight of fuel used, kJ/kW/h (lbf/bhp/h) K ¼ constant representing that part of heat supplied to the engine which is absorbed by the piston ¼ 0.05 (approx.) Pb ¼ brake horsepower per cylinder The root diameter of ring grooves, allowing for ring clearance
Dr ¼ D ð2w þ 0:006D þ 0:02 inÞ
USCS
Dr ¼ D ð2w þ 0:006D þ 0:5 mmÞ at the compression rings Dr ¼ D ð2w þ 0:006D þ 1:5 mmÞ
SI
ð24-132aÞ
SI ð24-132bÞ
Dr ¼ D ð2w þ 0:00D þ 0:06 inÞ at the oil grooves
USCS
where Dr and D in mm (in) Length L of piston
L ¼ D to 1:5D
For chemical composition and properties of aluminum alloy piston
Refer to Table 24-10B.
ð24-133Þ
Gudgeon pin The diameter of gudgeon pin
sffiffiffiffiffi F dr ¼ i0 p
ð24-134Þ
where F ¼ maximum gas pressure corrected for inertia effect of the piston and other reciprocating parts, kN (lbf ) p ¼ working bearing pressure ¼ 9.81 MPa (1.42 kpsi) to 14.7 MPa (2.13 kpsi) lg ¼ 1:5 to 2 dg
The length/diameter ratio of gudgeon pin
i0 ¼
For gudgeon pin allowable oval deformation
Refer to Fig. 24-28c.
For empirical relations and proportions of pistons
Refer to Figs. 24-26 to 24-28a.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð24-135Þ
MISCELLANEOUS MACHINE ELEMENTS CHAPTER TWENTY-FOUR
0.2B
24.32
0.11B
X
0.052B
0. 7D
0.35B=D
Local clearance 0.05D
X
1.25B
0.67B
0.1B
0.4B
0.22B
0.04B
0.0
42B
0.07B
0.37B
Local clearance 0.1B
0.035B
B = cylinder bore
FIGURE 24-26 Proportions of a typical alloy piston.
A
0.2B
0.03 to 0.05B
to
6 0.2 B 0.3
Taper
Offset
0.375 to 0.4B
1.75 to 2.0B
C
0.025 to 0.033B
0.170 to 0.125B
B
1.0B
0.2 to 0.25B
B (Nominal)
0.03 to 0.04B D
FIGURE 24-27 Proportions of an iron piston.
Fig. 24-27
mm (in)
Cylinder 152.5 bore (6) Crown A 16 thickness (5/8) Clearance B 0.760 (0.03) Clearance C 0.125 (0.005) Clearance D 0.125 (0.005)
mm (in)
mm (in)
mm (in)
mm (in)
203.2 (8) 19 (3/4) 0.900 (0.035) 0.225 (0.008) 0.150 (0.006)
254 (10) 32 (114) 1.145 (0.045) 0.230 (0.009) 0.180 (0.007)
305 (12) 41.5 (158) 1.525 (0.06) 0.255 (0.01) 0.200 (0.008)
406.5 (16) 47.5 (178) 2.030 (0.08) 0.255 (0.01) 0.230 (0.009)
Piston weight ¼ 40:715B3 N (approx.) SI where B ¼ cylinder bore, m Piston weight ¼ 0:15B3 lbf USCS where B in in
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
MISCELLANEOUS MACHINE ELEMENTS MISCELLANEOUS MACHINE ELEMENTS
Ra d
2.2B B.less 1000
d
0.11B
0.085B
B B.less 1000 B.less 3B 0.045B 4000
0.4B 0.045B
0.425B
1.35 to 1.5B 0.8 to 0.95B 0.22B 0.03B
Ra
Relief in way of pin bosses B = 1000
24.33
0.036B
0.21B
0.03B 3B B.less 4000
650
d
90
600 550
80
A
450
48
400
.4
σ = 0.415P
2 /m
G
2 /m
MN
300 250 200 0.100
0.150
0.200
d t
2
,P=
GAS LOAD AREA A
MN
.5
34
350
70
.2
55
2) n f/i IN lb n2 ) AR 00 f/i ) 2 BE lb 00 n (1 000 lbf/i 2 ) SS BO 0 (9 /in f N/ 00 2) lb PI 8 ( n 0 N 2 f/i 00 EO m b / l 2) (7 DG 0 2 n MN GU f/i 00 /m 69 6 lb 2 ( MN 0 /m 62 00 2 MN (5 /m MN .3
500
0.250
0.300 t GUDGEON PIN d
PR
60 50
ES
SU
RE
’P’
0.350
40
0.400
GUDGEON PIN FATIGUE STRESS,σ. thousands of
× 103 100 t
41
GUDGEON PIN FATIGUE STRESS,σ. MN/m2
700
lbf/in2
FIGURE 24-28(a) Iron piston for small engines (B ¼ cylinder bore).
30 0.450
FIGURE 24-28(b) Fatigue stress in gudgeon pins for various pin and piston geometries. (M. J. Neale, Tribology Handbook, Butterworth-Heinemann, 1973.)
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
MISCELLANEOUS MACHINE ELEMENTS
24.34
CHAPTER TWENTY-FOUR
Formula
CYLINDER BORE DIAMETER (NOMINAL), in 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
60 PIN OVAL DEFORMATION δ = (a b) D2 P d m 171 L δ D2 P d ( OR t = 900 in) L δ t=
DEFORMATION, µm
50
L t 40
d
b a D DIA.
30
P MAX. PRESSURE
MN/m2 (lbf/in2)
20
10
2.6 2.5 2.4 2.3 2.2 2.1 2.0 1.9 1.8 1.7 1.6 1.5 1.4 1.3 1.2 1.1 1.0 0.9 0.8 0.7 0.6 0.5
DEFORMATION, THOUSANDTHS OF AN INCH
Particular
100 150 200 250 300 350 400 CYLINDER BORE DIAMETER (NOMINAL), mm
FIGURE 24-28(c) Gudgeon pin allowable oval deformation. (M. J. Neale, Tribology Handbook, Butterworth-Heinemann, 1973.)
For fatigue stress in gudgeon pins
Refer to Fig. 24-28b.
For empirical proportions and values of cylinder cover, cylinder liner, and valves
Refer to Figs. 24-30 to 24-33.
Piston rings Width of rings
For land width or axial width of piston ring (w) required for various groove depths (g) and maximum cylinder pressure, pmax .
w¼
D for concentric rings 20
w¼
D opposite the joint of eccentric rings 27:5 ð24-136bÞ
w¼
D at the joint of eccentric rings 55
Refer to Fig. 24-28d.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð24-136aÞ
ð24-136cÞ
MISCELLANEOUS MACHINE ELEMENTS MISCELLANEOUS MACHINE ELEMENTS
24.35
Groove depth g, in 0.200
0.250
0.300
0.350
0.400
0.450
0.500
2400 2200 ALUMINIUM PISTON LAND WIDTH W TO DETERMINE LAND WIDTHS FOR PISTONS IN CAST IRON OR STEEL USE THE FOLLOWING CONSTANTS
16.0
15.0
0.600 1600
13.0
16
1400
0.550
1200
0.500
M
12
13
.8
15
.2
.6
M N/ M m2 N/ . m 4 N/ 2 11 M .0 N/ m 2 9. M m2 65 N/ M m2 N /m 2
STEEL W FROM GRAPH × 0.5
0.650
1800
CAST IRON W FROM GRAPH × 0.700
14.0
2000
W, mm
11.0
3
8.
1000
2
/m
N
M
0.450
2
10.0
m MAX. CYLINDER M PRESSURE, Ibf/in2 0.400 9 6.
9.0
0.350
N/
W, in
12.0
8.0 0.300 7.0
g w
6.0
0.250
5.0
0.200
4.0
0.150
3.0
5.0
6.0
7.0
8.0
9.0
10.0
11.0
12.0
13.0
Groove depth, mm FIGURE 24-28(d) The land width required for various groove depths and maximum cylinder pressures. (M. J. Neale, Tribology Handbook, Butterworth-Heinemann, 1973.)
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
MISCELLANEOUS MACHINE ELEMENTS δf δc Fθ
Fθ
Free ring Compressed ring
r v
r + v+ d
d φ
δc = circumferential clearance gap δf = free piston ring gap h = radial depth or wall thickness of piston ring w = axial width of piston ring d = nominal diameter of piston ring r = radius of neutral axis of ring h w FIGURE 24-28(e) Nomenclature of piston ring and tangential force, F .
d
Variable pv = p (φ)
Constant pc
Fd
Fd φ
pc FIGURE 24-28( f ) Typical variable and constant contact pressure distribution around piston rings for four-stroke engines. (Courtesy: Piston Ring Manual, Goetze AG, D5093 Burscheid, Germany, August 1986.)
FIGURE 24-28(g) Diametrically opposite force (Fd ) applied on piston ring.
Gap clearance Fθ
Fθ
FIGURE 24-29 Tangentially applied force, F , on a piston ring.
24.36 Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
MISCELLANEOUS MACHINE ELEMENTS MISCELLANEOUS MACHINE ELEMENTS
Particular
The modulus of elasticity of piston ring as per Indian Standards
24.37
Formula
3 d 1 F 5:37 h E¼ w
when the ring is diametrically loaded
ð24-137aÞ
3 d 14:14 1 F h E¼ w
when the ring is tangentially loaded
ð24-137bÞ
where E ¼ modulus of elasticity, MPa (psi)
¼ difference between free gap and gap after applying the load, mm (in) The bending moment produced at any cross section of the ring by the pressure uniformly distributed over the outer surface of the ring at an angle measured from the center line of the gap of the ring (Figs. 24-28e and 24-28f )
Mb ¼ 2pwr2 sin2
2
Mb ¼ pwr2 ð1 þ cos Þ
ð24-138aÞ ð24-138bÞ
where r ¼ radius of neutral axis, mm (in) p ¼ pressure at the neutral axis of the piston ring, Pa (psi)
The bending moment (Mb ) in Eq. (24-138a) in terms of tangential force, F The uniform contact pressure of the piston ring on the wall
Mb ¼ F rð1 þ cos Þ
p¼
En f 7:07dðd=h 1Þ3
ð24-138cÞ
ð24-138dÞ
where d ¼ external piston ring diameter h ¼ radial depth or wall thickness of piston ring En ¼ nominal modulus of elasticity of material of the ring
f ¼ free ring gap The radial distance from a point in piston ring to obtain a uniform pressure distribution (Fig. 24-28e) according to R. Munroa
a
ro ¼ r þ v þ dv
In M. J. Neale, ed., Tribology Handbook, Section A31, Newnes-Butterworth, London, 1973.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð24-138eÞ
MISCELLANEOUS MACHINE ELEMENTS
24.38
CHAPTER TWENTY-FOUR
Particular
Formula
where
.067B+4
.04B .05B
.067B + 35.5
.09 to .12B
.065B
All dimensions in mm FIGURE 24-30 Proportion for four-stroke cover, 100- to 450-mm bore (B ¼ cylinder bore).
Fr4 ð1 cos þ 12 sin Þ En I " r Fr3 2 ð 12 cos 12 sin Þ dv ¼ 2 En I # v¼
ð24-138f Þ
ð3 sin þ cos Þ where F ¼ (mean wall pressure ring axial width)
x 0.1 to 0.08 to 0.15B 0.12B
2.5 0.75
0.08 to 0.12B
9.15 .18D to .21D
3 to 4.75
1.25 to 1.35B 1.18 to 1.2B 3.45
0.1 Clear on dia.
0.75 to 1.0B
3.25
r ¼ radius of neutral axis, when the ring is in place inside the cylinder (Fig. 24-28e)
.25 to .30D .25D
0.03B 0.07to 0.08B
18 to 22lbf/sq in of valve area
H J
B 0.0012
.38D
9
.65D
7R
5B 8000 Clear on dia
7.5
G
w 3
0.07B 0.05B
F
B 0.0125 X
Lowest ring on BDC
All dimensions in mm FIGURE 24-31 Empirical rules for average practice in liner design (B ¼ cylinder bore).
D FIGURE 24-32 Valve seated directly in the cylinder head.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
MISCELLANEOUS MACHINE ELEMENTS MISCELLANEOUS MACHINE ELEMENTS
Particular
24.39
Formula
¼ angle measured from bottom of the vertical line passing through the center of the gap of the ring as shown in Fig. 24-28e I ¼ moment of inertia of the ring The relation between the ratio of fitting stress ft to nominal modulus of elasticity (En ) in terms of h, d, and f
ft 4ð8h f þ 0:00dÞ ¼ En 3hðd=h 1Þ2
The relation between the ratio of working stress (w ) to nominal modulus of elasticity (En ) in terms of h, d, and f
4ð f 0:00dÞ w ¼ En 3hðd=h 1Þ2
The relation between the ratio of the sum of (ft þ w ) to nominal modulus of elasticity (En ) in terms of d and h
ft þ w 32 ¼ En 3ðd=h 1Þ2
where ft ¼ opening stress when fitting the piston ring onto the piston
For preferred number of piston rings
Refer to Table 24-10C.
For properties of typical piston ring materials
Refer to Table 24-10D.
0.27D 3 off
Rib 0.27D D 2
D 2.0
0.16D
D C
E
Two ribs thus (revolved section) Coreplug
0.12D
Cooling water connection N
B
Two bosses thus
1.1D
ð24-138hÞ
where w ¼ working stress when the piston ring is in the cylinder
Equation (24-138i) is independent of f .
Hardened
ð24-138gÞ
Copper joint FIGURE 24-33 Valve with removable cage.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð24-138iÞ
MISCELLANEOUS MACHINE ELEMENTS
24.40
CHAPTER TWENTY-FOUR
Particular
The circumferential clearance ( c ) or gap between ends of ring
Formula
c ¼ d p T
ð24-138jÞ
where p ¼ coefficient of expansion of piston ring material T ¼ operating temperature d ¼ cylinder diameter
An expression for pressure acting on ring from Eqs. (24-138b) and (24-138c)
p¼
F rw
ð24-139aÞ
The pressure in the radial outward direction against the cylinder
p¼
2F dw
ð24-139bÞ
For variable and constant radial contact pressure distribution of piston ring
Refer to Fig. 24-28f.
The diametral load which acts at 908 to the gap required to close the ring to its nominal diameter, d (Fig. 24-28g)
Fd ¼ 2:05F
for modulus of elasticity E 150 GPa ð24-140aÞ
Fd ¼ 2:15F
for modulus of elasticity E > 150 GPa ð24-140bÞ
Fd 2:21F
ð24-140cÞ
The maximum bending stress at any cross section which makes an angle measured from the center line of the gap of the ring
12pr2 b ¼ 2 sin2 2 h
ð24-141Þ
12pr2 h2max
ð24-142Þ
The maximum bending stress which occurs at ¼ , i.e., at the cross section opposite to the gap of the ring
max ¼
The bending stress present in the ring of rectangular cross section in terms of free gap ( f ) of the ring, when it is in place in the cylinder
b ¼ 0:424 f
Eh ðd hÞ2
SI
ð24-142aÞ
where b and E in N/mm2 h, d, and f in mm
The bending stress present in the ring of rectangular cross section in terms of tangential force, F (Fig. 2429)
b ¼
The bending stress present in the case of slotted oil control ring of rectangular cross section in terms of free ring gap, f
bso ¼ 0:424
6ðd hÞ F ð24-142bÞ wh2 2 where b in N/mm ; F in N; d, h, and w in mm
f Elco Im ðd hÞ2 Ius
ð24-142cÞ
where bso in N/mm2 and Ius ¼ moment of inertia of the unslotted cross-section ring, mm4 Im ¼
Ius þ Is 2
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
MISCELLANEOUS MACHINE ELEMENTS MISCELLANEOUS MACHINE ELEMENTS
Particular
24.41
Formula
Is ¼ moment of inertia of the slotted cross-section ring, mm4 lco ¼ twice the diameter between center of gravity and outside diameter, mm The bending stress present in the case of slotted oil control ring of rectangular cross section in terms of tangential load, F
The tangential load or force required for opening of a rectangular cross-section piston ringa
bso ¼
6ðd hÞlco Im F wh3 Is
ð24-142dÞ
where bso in N/mm2 ; F in N; lco , d, h, and w in mm; Im and Is in mm4 ;max ¼
hE ð1:26"T 1:84k þ 0:025Þ dh SI
ð24-142eÞ
where dþh 1 dh k ¼ piston ring parameter from Eq. (24-142f ) and (24-142h)
"T ¼
3ðd hÞ2 F E wh3
The piston ring parameter (k) in terms of tangential load F for rectangular cross-section rings
k¼
The tangential load or force required for opening of rectangular cross-section slotted oil control rings
;max T ¼
ð24-142f Þ
lci E I ð1:26"T 1:84k þ 0:025Þ m dh Is ð24-142gÞ
where dþh 1 SI dh lci ¼ twice the distance between center of gravity and inside diameter, mm
"T ¼
k ¼ piston ring parameter from Eq. (24-142e) and (24-142f ) The piston ring parameter (k) in terms of free ring gap ( f ) for rectangular cross-section slotted oil rings for use in Eq. (24-142g)
k¼
2 f 3 d h
ð24-142hÞ
The piston ring parameter (k) in terms of the constant pressure ( p) for rectangular cross-section rings also for use in Eqs. (24-142f ) and (24-142g)
k¼
3 p dðd hÞ2 2E h3
ð24-142iÞ
The radial thickness of the ring at a section which makes an angle measured from the center line of the gap of the ring a
sffiffiffiffiffiffiffiffiffiffiffi 4 3 24pr sin2 h¼ 2 E
Goetze AG, Piston Ring Manual, 3rd ed., Burscheid, Germany, 1987.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð24-142jÞ
MISCELLANEOUS MACHINE ELEMENTS
24.42
CHAPTER TWENTY-FOUR
Particular
Formula
The maximum thickness of the ring which occur opposite the gap of the ring (i.e., at ¼ )
hmax
sffiffiffiffiffiffiffiffiffiffiffi 24pr4 ¼ E
ð24-142kÞ
For piston ring dimensional deviation, hardness, and minimum wall pressure
Refer to Tables 24-7 to 24-9.
For cylinder bore diameter
Refer to Table 24-10.
TABLE 24-5 Values of c for various inclinations of coned pistons
Cone
Inclination ranges, , deg
c
— Slightly Medium Strong
0–6 6–18 18–28 28–35
1 0.85–0.95 0.75–0.85 0.65–0.75
TABLE 24-6 Values of coefficient K for pistons (admissible pressures, kgf/mm2 absolute) Pressure, kgf/mm2 Diameter of cylinder, mm
0.01 to 0.02
0.02 to 0.04
0.04 to 0.06
0.06 to 0.08
0.08 to 0.10
0.10 to 0.12
0.12 to 0.14
0.14 to 0.16
380–575 575–775 775–975 975–1175 1175–1375 1375–1575 1575–1775 1775–1975 1975–2150 2150–2350 2350–2550 2550–2750
1.000 1.375 1.500 1.750 2.000 2.375 2.500 2.750 3.000 3.000 3.125 3.375
1.125 1.500 1.750 2.000 2.250 2.500 3.000 3.125 3.375 3.500 3.500 3.750
1.375 1.750 2.000 2.375 2.750 3.125 3.375 3.500 3.750 4.000
1.500 2.000 2.500 3.000 3.125 3.500 4.000 4.125 4.375
1.750 2.500 3.125 3.500 3.750 4.000 4.375
2.000 2.750 3.500 4.000 4.125 4.375
2.125 3.000 3.750 4.500
2.500 3.375 4.000
Key: 1 kgf/mm2 ¼ 1:42247 kpsi; 1 kpsi ¼ 6:894757 MPa.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
MISCELLANEOUS MACHINE ELEMENTS
24.43
MISCELLANEOUS MACHINE ELEMENTS
TABLE 24-7 Recommended hardness for piston rings of IC engines Nominal diameter, d, mm <100 100–200 >200
TABLE 24-8 Minimum wall pressure for piston rings of IC engines
Hardness HRD 95–107 93–105 90–102
Compression rings
Petrola Diesel a
Oil rings 2
MPa
kgf/cm
MPa
kgf/cm2
0.059 0.013
0.60 1.05
0.137 0.196
1.40 2.00
Gasoline.
TABLE 24-9 Permissible deviation on the dimensions of piston rings of IC engines Dimensions
Deviations, mm
Axial width, b
0.010 0.022
Radial thickness 80 mm ring diameter >80 mm with 175 mm ring diameter 175 mm ring diameter Parallelism of sides—40% of tolerance on axial width
0.08 0.12 0.15
TABLE 24-10A Preferred cylinder bore diameters for internal-combustion (IC) engines (all dimensions in mm) 30 32 34 (35) 36 38 40 42 44 46 48 50 52 54 56 (57) 58 (59) 60
(62) 65 (68) 70 (72) (73) 74 (76) (78) (79.4) 80 82 85 87.3 88 (88.9) 90 (91.4) (92)
95 98 (98.4) 100 (101.6) (102) (103.2) (104.8) 105 108 110 (111.1) 112 (114.3) 115 (118) 120 (120.6) (122)
125 (127) (128) (128.2) 130 (132) (133.4) 135 (138) (139.7) 140 (142) 142.9 (145) (146) (148) (149.9) 150 (152)
(152.4) 155 (158) (158.8) 160 (162) 165 (165.1) (168) 170 (171.4) (172) 175 (177.8) (178) 180 (182) (184.2) 185
(188) 190 (190.5) (192) 195 (196.8) 198 200 (205) (209.6) 210 (215) (215.9) 220 (225) (228.6) 230 (235) 240
(241.3) (245) (250) (254) (255) 266 (265) 270 (273) (275) 280 (285) 290 (292.1) (295) (298.4) 300 (305) 103
315 (317.5) 320 (325) 330 (335) 340 (343) (345) 350
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
34,850 49,582 49,285
2285 4658 4928A 4928B
3.5–4.5 0.8–1.5 0.8–1.5 0.8–1.5
Cu
1.2–1.8 0.8–1.3 0.8–1.3 2.8–1.3
Mg 0.6 11.0–13.0 17.0–19.0 23.0–26.0
Si 0.7 0.8 0.7 0.7
Fe 0.2 0.2 0.2 0.2
Mn 1.1–2.3 1.5 0.8–1.3 0.1–1.3
Nic 0.2 0.35 0.2 0.2
Zn
Chemical composition, %
0.23 0.2 0.2 0.2
Ti 0.05 0.05 0.05 0.05
So 0.05 0.05 0.05 0.05
Pb
c
b
Alloys have been designated in accordance with IS 6051, 1970. Code for designation of aluminum and aluminum alloys. Physical properties are attainable after suitable heat treatment. The purchaser may specify nickel content, if so desired. Source: Bureau of Indian Standards, New Delhi.
a
Forging
Casting
Alloy designationa
0.3–0.6
Cr
MPa 225–275 195–245 175–215 165–205
Hardness, HB 90–130 90–140 90–125 90–125
Al
32.7–39.8 28.5–35.6 25.6–31.3 24.2–29.7
kpsi
49.8–59.7 42.7–52.6 32.7–28.5
kpsi
Forging
345–410 295–365 225–295
MPa
Tensile strength Chill casting
Remainder
Physical propertiesb
TABLE 24-10B Chemical composition of alloys and physical properties of aluminum alloy piston (values in % maximum unless shown otherwise)
23–24 20.5–21.5 18.5–19.5 17–18
mm/mm/ 8C 104
Coefficient of thermal expansion (20 to 2008C)
MISCELLANEOUS MACHINE ELEMENTS
24.44
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
MISCELLANEOUS MACHINE ELEMENTS MISCELLANEOUS MACHINE ELEMENTS
24.45
TABLE 24-10C Preferred number of piston rings Differential pressure Std. atm. MPa psi Minimum number of rings
0–9 10–14 15–24 25–29 30–49 50–99 100–200 0–0.88 0.98–1.37 1.47–2.35 2.45–2.85 2.94–4.80 4.90–9.71 9.81–19.61 0–128 142–199 213–341 355–412 426–696 710–1406 1422–2844 2 3 4 5 6 7 8
Source: M. J. Neale, Tribology Handbook, Butterworth-Heinemann, London, 1973; reproduced with permission.
TABLE 24-10D Properties of typical piston ring materials
Tensile strength, t Material Metallic: Gray irons Carbide malleable irons Malleable and/or nodular irons Sintered irons Nonmetallic: Carbon-filled PTFE Graphite/MoS2 -filled PTFE Resin-bonded PTFE Carbon Resin-bonded carbon Glass-filled PTFE Bronze-filled PTFE Resin-bonded fabric
Nominal modulus of elasticity, En
Typical coefficient of expansion,
MPa
kpsi
GPa
Mpsi
Brinell hardness number, HB
Bulk density, g/cm3 106 =8C
230–310 400–580 540–820
33.4–45.0 58.0–84.1 78.3–119.0
83–124 140–160 155–165
12.1–18.0 20.3–23.2 22.5–24.0
210/310 250/320 200/440
Good Excellent Poor
250–390
36.5–56.6
120
17.4
130/150
Good
10.3 19.6
1.49 2.85
2.05 2.20
55 115
29.4 43.4 19.6 16.7 12.8 110.8
4.27 6.30 2.85 2.42 1.85 16.07
1.75 1.8 1.9 2.26 3.90 1.36
30 43 20 80 118 22.5/87.5a
a
Material is anisotropic. Source: M. J. Neale, Tribology Handbook, Butterworth-Heinemann, London, 1973, extracted with permission.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
Wear rating
MISCELLANEOUS MACHINE ELEMENTS
24.46
CHAPTER TWENTY-FOUR
TABLE 24-10E Piston rings and piston ring elements Mechanical properties
Designation
Grade
Hardness
Tensile strength, st , MPa
Modulus of elasticity, E, MPa
Steel GOE 61 GOE 62
Cr steel, 17% Cr min Cr-Si steel
380–450 HV 30 500–600 HV 30
1200 approx. 1900 approx.
230 000 approx. 210 000 approx.
Cr-Si steel Cr steel, 11% Cr min, high C Cr steel, 11% Cr min, low C
450–550 HV 30 300–400 HV 30
1700 approx. 1300 approx.
210 000 approx. 210 000 approx.
270–420 HV 30
1300 approx.
220 000 approx.
GOE 64 GOE 65A GOE 65B
Cast Iron GOE 12 GOE 13 GOE 32
GOE 44 GOE 52 GOE 56
Unalloyed non heattreated gray cast iron Unalloyed non heattreated gray cast iron Alloyed heat-treated gray cast iron with carbides Malleable cast iron Spheroidal graphite cast iron Spheroidal graphite cast iron
Main application
Compression rings Coil spring loaded rings Compression rings Compression rings, nitrided Coil spring loaded rings and segments, nitrided
94–106 HRB
350 min
85 000 typical
97–108 HRB
420 min
95 000–125 000
109–116 HRB
650 min
130 000–160 000
Compression and oil control rings Compression and oil control rings Compression rings
102–111 HRB 104–112 HRB
800 min 1300 min
150 000 min 150 000 min
Compression rings Compression rings
40–46 HRC
1300 min
150 000 min
Compression rings
Source: Goetze Federal Mogul Burscheid GmbH, Piston Ring Manual, 4th ed., January 1995, Burscheid, Germany, reproduced with permission
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
MISCELLANEOUS MACHINE ELEMENTS MISCELLANEOUS MACHINE ELEMENTS
24.5 DESIGN OF SPEED REDUCTION GEARS AND VARIABLE-SPEED DRIVES SYMBOLS2,3 center distance, m (in) number of pinions or planetary pinion (Fig. 24-36) center distance (also with subscripts) (Fig. 24-36) area of reduction gear housing, m2 (in2 ) noncooled, i.e., ribbed, surface of housing of reduction gear drive, m2 (in2 ) cooled surface of reduction gear drive, m2 (in2 ) surface area of contact of teeth when one-fourth of all teeth of wheel in wave-type reduction gears are engaged, m2 (in2 ) width of rim, m (in) diameter of pinion, m (in) diameter of rigid immovable rim with internal teeth of wave-type reduction gears, m (in) diameter of gear, m (in) diameter of flexible movable wheel rim with external teeth of wave-type reduction gear, m (in) maximum diameter of the circumference of the belt arrangement on the V-belt of a variable-speed drive, m (in) minimum diameter of the circumference of the belt arrangement on the V-belt of a variable-speed drive, m (in)
a A An Ac Aw b d1 d2 dmax dmin D¼
dmax dmin
velocity control range for a V-belt drive with only one adjustable pulley velocity control range for a V-belt drive with two adjustable pulleys working height of a V-groove of the pulley, m (in) maximum load acting on the pinion, kN (lbf ) mean load acting on the pinion, kN (lbf ) height of tooth, m (in) coefficient of heat transfer, W/m2 K (Btu/ft2 h 8F) coefficient of heat transfer of noncooled surface, W/m2 K (Btu/ ft2 h 8R) coefficient of heat transfer of cooled surface, W/m2 K (Btu/ft2 h 8R) addendum of tooth, m (in) dedendum of tooth, m (in) transmission or speed ratio
D1 D2 e Fmax Fm h hn hc ha hf i knl ¼ L m Mts n n1 , n2 q
velocity control range for a V-belt drive
Fmax Fm
nonuniform load distribution factor distance between the axes of the pinions (Fig. 24-36d) module, m (in) torque acting on smaller wheel, N m (lbf in) speed, rpm speeds of pinion and gear, respectively, rpm a whole number heat generated, W (Btu/h)
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
24.47
MISCELLANEOUS MACHINE ELEMENTS
24.48
CHAPTER TWENTY-FOUR
maximum radius of the circumference of the belt arrangement on the V-belt of a variable-speed drive, m (in) minimum radius of the circumference of the belt arrangement on the V-belt of a variable-speed drive, m (in) temperature of lubricant, 8C (8F) ambient temperature, 8C (8F) number of teeth on sun pinion and planetary pinion of epicyclic gear transmission, respectively, Fig. 24-36 number of teeth on pinion and gear, respectively number of teeth on ring gear 3 (Fig. 24-36a) number of teeth on smaller wheel angular speed of pinion and gear, respectively, rad/s deformation, m (in) clearance between the pinions which should be at least 1 mm (in) half-cone angle of V-belt, deg allowable compressive stress, MPa (psi)
rmax rmin t1 ta z1 , z2 z3 zs !1 , !2
ca
Particular
Formula
!1 n1 d2 z2 ¼ ¼ ¼ !2 n2 d1 z1
Transmission or speed ratio for single reduction gear
i¼
For different types of gear reduction drives
Refer to Fig. 24-35 and Table 24-11.
b
dmax
dmin
h
e
Belt
2α Belt (a) V-belt at top position
(b) V-belt at bottom position
FIGURE 24-34 Dimension of V-belt variable-speed drive.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð24-143Þ
MISCELLANEOUS MACHINE ELEMENTS MISCELLANEOUS MACHINE ELEMENTS
1. Single-reduction spur gear
5. Single-reduction bevel gear 9. Single-reduction worm gear with worm arranged sideways
H
2
2
H
L 2. Double-reduction coaxial gear
6. Double-reduction bevel spur gear
2
4
H
L 3. Double-reduction spur and hellcal gear I (a)
2
4
(b)
L
H
L 8. Single-reduction worm gear with worm on top
12. Combination wormspur helical reduction gear
I
I 3 4
H
5 6
l 2
11. Double-reduction worm gear
H
4
4. Triple-reduction spur and helical gear
H
7. Single-reduction worm gear with worm underneath
L
I
2
L
L
2
(b)
L
2
3 4
H H
(a)
10. Single-reduction worm gear with worm arranged vertically
H
4 3
H
L
I
H
L
H
L
l 4 4
L I
5 6
H
L H = High Speed
H L
I = Intermediate Speed
L = Low Speed
FIGURE 24-35 Schematic diagrams of various types of spur, helical, herringbone, bevel, and worm reduction gears.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
24.49
MISCELLANEOUS MACHINE ELEMENTS
24.50
CHAPTER TWENTY-FOUR
Particular
Formula
PLANETARY REDUCTION GEARS L ¼ 2A1;2 sin
First condition—mating
¼ z2 m þ 2mð1 þ Þ þ a
ð24-144Þ
where
The sum of the radii of the addendum circles of the mating pinions in planetary reduction gears should be smaller than the distance between their axes (Fig. 24-36d) so that the top of the pinions should not touch each other
a ¼ number of pinions ¼ clearance between the pinions, which should be at least 1 mm A1;2 ¼ center distance as shown in Fig. 24-36
2
1
2π a
A 1,2
A2,3
1
3
2
2 A1,2
A2,3
2 A1,2
1
3
3
1
π a ∆ L
(b)
(a) i=8
i = 15
(c)
(d)
i = 20 to 100
FIGURE 24-36 Planetary reduction gears.
Second condition—coaxiality The center distance of each pair of wheels should be equal (Fig. 24-36)
A12 ¼ A23 ; A12 ¼ A23 ¼ A20 30
The relationship between teeth in corrected or uncorrected gears (Fig. 24-36a)
z1 þ z2 ¼ z3 z2
ð24-145Þ ð24-146aÞ
or z1 þ 2z2 ¼ z3
ð24-146bÞ
The relationship between teeth in corrected or uncorrected gears (Fig. 24-36c) to ratify two conditions (i) First condition
Refer to Eq. (24-146).
(ii) Second condition
m2 ðz3 z2 Þ ¼ m02 ðz03 z02 Þ
ð24-147aÞ
or z3 z2 ¼ z03 z02
since
m2 ¼ m02
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð24-147bÞ
MISCELLANEOUS MACHINE ELEMENTS MISCELLANEOUS MACHINE ELEMENTS
Particular
24.51
Formula
Third condition—coincidence The condition for the teeth and spaces of the meshed gears should coincide when the pinions are arranged uniformly over the circumference
z1 þ z3 ¼q a where q is a whole number
The moment acting on smaller wheel
Mts ¼
Mt1 knl zs a z1
ð24-148Þ
ð24-149Þ
where zs ¼ z1 or zs ¼ z2 if z1 > z2 knl ¼ 2 maximum value ¼ 1.4 to 1.6 for gears of 7th degree of accuracy ¼ 1.1 to 1.2 when floating central wheels are used to equalize the load
CONDITIONS OF PROPER ASSEMBLY OF PLANETARY GEAR TRANSMISSION Two planetaries Both the driving pinion (sun pinion) and the planetaries may have either an even or an odd number of teeth.
Three planetaries If z1 (number of teeth on sun pinion) is divisible by 3, then z2 (number of teeth on planetary pinion) must also be divisible by 3. If z2 1 is divisible by 3, then z2 þ 1 must be divisible by 3. If z1 þ 1 is divisible by 3, then z2 1 must be divisible by 3.
Four planetaries If z1 is even, then z2 must be even. If z1 is odd, then z2 must be odd.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
MISCELLANEOUS MACHINE ELEMENTS
24.52
CHAPTER TWENTY-FOUR
Particular
Formula
WAVE-TYPE REDUCTION GEARS Transmission or gear ratio
i¼
z2 d2 ¼ z1 z2 d1 d2
ð24-150Þ
For a double-wave drive, z1 z2 ¼ 2. The necessary deformation
¼ d1 d2 ¼
The condition for obtaining the module for the drive
d1 d2 ¼ ðz1 z2 Þm ¼
ð24-152Þ
¼ 0:5
z1 z2
ð24-153Þ
The module of the drive from Eq. (24-152)
m¼
d2 i
ð24-151Þ
The tooth height
h¼
ð24-154Þ
The tooth addendum
ha ¼ 0:44
ð24-155Þ
The tooth dedendum
hf ¼ 0:56
ð24-156Þ
The rim width
b ¼ 0:1d2 to 0:2d2
ð24-157Þ
The total surface area of contact of teeth when onefourth of all teeth of wheel are engaged
Aw ¼ 0:5h 0:25z2 b
ð24-158Þ
The torque transmitted
Mt ¼ 0:5d2 Aw ca ’ 0:06d22 bz2 ca
ð24-159Þ
where ca ¼ 29:5 MPa (4.28 kpsi) for hardened steel wheels
VARIABLE-SPEED DRIVES (Figs. 24-34 and 24-37, and Table 24-12) For schematic arrangements of various variablespeed drives
Refer to Figs. 24-34 and 24-37.
The velocity control range for V-belt drive with only one adjustable pulley
D1 ¼
The relation between dmax and dmin of V-belt drive
dmax ¼ dmin þ 2ðe hÞ
ð24-161aÞ
dmax ¼ dmin þ b cot 2h
ð24-161bÞ
The velocity control range for V-belt drive from Eqs. (24-160) and (24-161)
D¼
dmax dmin
ð24-160Þ
dmax 2e 2h ¼1þ dmin dmin dmin
D¼1þ
b dmin
cot
2h dmin
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð24-162aÞ ð24-162bÞ
MISCELLANEOUS MACHINE ELEMENTS MISCELLANEOUS MACHINE ELEMENTS
Particular
24.53
Formula
The velocity control range for V-belt drive when two pulleys are adjustable
D2 ¼ D1
ð24-163Þ
The total range of velocity control of variable-speed drive of two adjustable pulleys of V-belt drive
D ¼ D21
ð24-164Þ
The working height of the V-groove of the pulley
e>
b cot 2
b ’ 1:8h
The width of standard V-belt 6. V-belt
1. Frontal friction L H
L
H
L
L
L H
H
7. Chain
L
LH
LH
4. Ball
L
H
H
H
H
3. Toroidal friction
H
L
L
H 2. Bevel friction
L
H
H
H
L
L
8. Combination
5. Disk
x
H H
x
x
L
x
L
FIGURE 24-37 Variable-speed drives.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð24-165Þ ð24-166Þ
MISCELLANEOUS MACHINE ELEMENTS
24.54
CHAPTER TWENTY-FOUR
Particular
Formula
The larger ratio of width to height of specially profiled broad V-belts
b ’ 2 to 3 h
ð24-167Þ
The total velocity control range for adjustable pulleys of V-belt drive
D ¼ D41
ð24-168Þ
DISSIPATION OF HEAT IN REDUCTION GEAR DRIVES hðt1 ta Þ
The area of housing required for dissipating heat generated in a closed-type reduction gear drive operating in an oil bath at stable thermal equilibrium condition
A¼
The thermal equilibrium condition of reduction gear drive which has a housing of noncooled surface (ribbed surface) and cooled surface (cooled by blowing of air by fan)
(hn An þ hc Ac ) W (Btu/h)
ð24-170Þ
pffiffiffi hc ¼ 12 v W/m2 K (Btu/ft2 h 8R)
ð24-171Þ
The expression for coefficient of heat transfer of the housing or reduction gear drive blown over by air The velocity of air which depends on impeller velocity
ð24-169Þ
where h ¼ coefficient of heat transfer, which varies from 8.75 to 17.5 W/m2 K (1.54 to 3.1 Btu/ ft2 h 8R)
where v ¼ velocity of air, m/s (ft/min) v ’ 0:005ni m/s (ft/min) ni ¼ impeller speed, rpm
For minimum weight equations for gear systems
Refer to Table 24-13.
For total weight equations for gear systems
Refer to Table 24-14.
For K factors for preliminary estimate of spur and helical gear size
Refer to Table 24-15.
For comparison of five gear systems
Refer to Table 24-16.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
MISCELLANEOUS MACHINE ELEMENTS MISCELLANEOUS MACHINE ELEMENTS
24.55
TABLE 24-11 Transmission ratio (i), efficiency (), and allowable transmitted power (Pal ) for reduction gears Type of reduction gear
Fig. no.
Single- and triple-spur and helical reduction gear
24-35, serial nos. 3a, 4a 24-35, serial no. 1
Single-spur reduction gear Single worm Helical worm Harmonic drive Planetary reduction gear
24-36a 24-36b 24-36c
Wave-type toothed reduction gear
i
Pal , kW
10–60 8–10
8 15 20–100 100
108 100 100 0.97–0.99 0.97–0.99
1000 100
0.75–0.85
TABLE 24-12 Velocity control range (D), efficiency (), and allowable power transmitted (Pal ) for variable-speed drives
Particular
Type of drive
Frontal friction
Single Twin type Single Double Self-locking ring
Bevel friction
Toroidal friction Ball Disk drives
Serial no. in Fig. 24-37 1 2
3 4 5
V-belt drives
Solid disk
6
Chain drives
Grooved disk First type of drive Second type of drive
7
D 3–4 8–10 3–4 4–10 16 4–6 10–12 3 4–5 1.3– 1.7 2 6 7–10
Pal , kW 20 5
0.7–0.8 0.95
10 20
0.8–0.9
800 300 50
0.8–0.9
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
30 75
MISCELLANEOUS MACHINE ELEMENTS
24.56
CHAPTER TWENTY-FOUR
MINIMUM AND TOTAL WEIGHT EQUATION FOR GEAR SYSTEMS The following symbols are used in Tables 24-13 to 24-16: a ¼ number of branches in an epicyclic gear: C ¼ ð2Mt =KÞ, m3 ; d ¼ pitch diameter, m (in); i ¼ gear speed ratio; io ¼ overall ratio; is ¼ dp =ds ¼ zp =zs ¼ speed ratio of planet gear to sun gear; j ¼ number of idlers; K ¼ a factor from Table 24-15; Mt ¼ input torque, N m (lbf in); ðio þ 1Þ=io ¼ i0o .
TABLE 24-13 Minimum weight equations for gear systems
TABLE 24-14 Total weight equations for gear systems
Particular
Equation
Particular
Equation
Simple train (offset) Offset with idler
2i3 þ i2 ¼ 1 2i3 þ i2 ¼ i2o þ 1
Offset
1 ðbd2 =CÞ ¼ 1 þ þ i þ i2 i
Offset with two idlers
2i3 þ i2 ¼
i2o þ 1 2
Offset with idler
1 i2 ðbd2 =CÞ ¼ 1 þ þ i þ i2 þ o þ i2o i i
Offset with j idlers
2i3 þ i2 ¼
i2o þ 1 j
Offset with two idlers
ðbd2 =CÞ ¼
Double-reduction
2i3 þ
2i2 i2o þ 1 ¼ 0 io i0o
Doublereduction
1 i 2 i2 ðbd2 =CÞ ¼ 1 þ þ 2i þ i2 þ o þ o þ i2o i io 2i
Double-reduction, double branch
2i3 þ
2i2 i2o þ 1 ¼ 2i0o i0o
Double-reduction, four branch
2i3 þ
2i2 i2o þ 1 ¼ 4i0o i0o
Double-reduction, j branches
2i3 þ
Planetary (theoretical)
2i3s
Star (theoretical)
2i3s
2i2 i2o þ 1 ¼ ji0o i0o
þ
i2s
0:4ðio 1Þ2 þ 1 ¼ a
þ
i2s
0:4i2o þ 1 ¼ a
Doublereduction, double branch Doublereduction, fourbranch Planetary
1 1 i 2 i2 þ þ i þ i2 þ o þ o 2 2i 2i 2
ðbd2 =CÞ ¼
1 1 i2 i2 i 2 þ þ 2i þ i2 þ þ o þ o 2 2i io 2i 2
ðbd2 =CÞ ¼
1 1 i2 i2 i 2 þ þ 2i þ i2 þ þ o þ o io 4i 4 4 4i
ðbd2 =CÞ ¼
1 1 0:4ðio 1Þ2 þ is þ i2s þ þ a ais ais þ
Star
ðbd2 =CÞ ¼
0:4ðio 1Þ2 a
1 1 0:4i2o 0:4i2o þ is þ i2s þ þ þ a ais ais a
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
MISCELLANEOUS MACHINE ELEMENTS MISCELLANEOUS MACHINE ELEMENTS
24.57
TABLE 24-15 K factors for preliminary estimate of spur and helical gear size
Particular Motor driving compressor Engine driving compressor Turbine driving generator Industrial drives
Large industrial gears such as hoists, kilns, and mills Aircraft, single pair Aircraft, planetary Automotive transmission Small commercial vehicles Small gadgets
K factor
Hardness HB ; pinion gear
Pitch line velocity, m/s
225–180 225–180 575–575 225–180 575–575 575–575 350–300 210–180 575–575 300–300 210–180 225–180
>20.5 >20.5
260–210 60RC –60RC 60RC –60RC 60RC –60RC 350; phenolic laminated nylon 200; zinc alloy die casting 200; brass or A1 Brass or A1
kgf/mm2
MN/m2
MPa
0.036 0.032–0.050 0.155–0.320 0.066–0.077 0.280–0.56 0.350–0.703 0.246–0.316 0.120–0.176 0.334–0.527 0.193–0.264 0.088–0.141 0.056–0.070
0.353 0.314–0.49 1.52–3.14 0.65–0.76 2.746–5.50 3.434–6.89 2.234–3.100 1.177–1.726 3.277–5.170 1.893–2.589 0.873–0.138 0.550–0.687
0.353 0.314–0.49 1.52–3.14 0.65–0.76 2.746–5.50 3.434–6.89 2.234–3.10 1.177–1.726 3.277–5.170 1.893–2.589 0.873–0.138 0.550–0.687
<5.1
0.091–0.120 0.703 (at take off) 0.492 (at take off) 1.055 0.52 0.035 0.018
0.893–1.177 6.89 4.82 10.35 5.10 0.343 0.176
0.893–1.177 6.89 4.82 10.35 5.10 0.343 0.176
<2.55 <2.55
0.018 0.016
0.176 0.157
0.176 0.157
>20.5 5.1 5.1 5.1 15.3 15.3 15.3 5.1 max
51 15.3–51 <5.1
TABLE 24-16 A comparison of five gear systems (all systems producing 0.746 kW at 18 rpm) Parameter
Epicyclic
Herringbone
Single worm
Helical worm
Harmonic drive
Speed ratio Safety factor Height, mm Length, mm Width, mm Cubic volume, m3 Weight, kgf Efficiency, % Number of gears Number of bearings Tooth-sliding velocity, m/s Pitch line velocity, m/s Tooth contact pressure, kgf/mm2 Tooth contact pressure, GPa Tooth in contact, % Tooth contact Quiet operation Balanced forces
97.4 3 330 381 330 0.0410 111.60 85 13 17 12.75 7.65 35 0.343 7 Line No Yes
96.2 2 356 508 254 0.0458 127.00 85 4 6 12.75 7.65 35 0.343 5 Line Yes No
108 2 580 483 356 0.1000 104.33 40 2 6 7.65 7.65 3.5 0.034 2 Line Yes No
100 2 406 432 254 0.0442 93.00 78 4 6 12.75 7.65 35 0.343 3 Line Yes No
100 36 152 152 152 0.003 13.61 82 2 2 0.143 0.092 0.425 0.0042 50 Surface Yes Yes
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
MISCELLANEOUS MACHINE ELEMENTS
24.58
CHAPTER TWENTY-FOUR
24.6 FRICTION GEARING SYMBOLS2,3 a b d1 d2 F Fa Fr FR Ft h i n0 n P p0 vm R 0 !l , !2
1 , 2
center distance, m (in) dimensions as shown in Fig. 24-42 gear face width, m (in) diameter of smaller wheel, m (in) diameter of larger wheel, m (in) pressure on wheels, kN (lbf ) thrust, kN (lbf ) radial force on the grooved spur wheel for each groove, kN (lbf ) normal reaction between two bevel friction gears (Fig. 24-40), kN (lbf ) tangential force, kN (lbf ) depth of groove, m (in) number of grooves, m (in) speed, rps speed, rpm power transmitted, kW (hp) permissible pressure, kN/m (lbf/in) mean circumferential velocity, m/s (ft/min) cone distance, m (in) (Fig. 24-40) half the included angle of the groove, deg ranges from 128 to 188 (should not exceed 208) angle of friction, deg coefficient of friction between wheels coefficient of friction between shaft of wheel and bearings angular speeds of smaller and larger wheels, respectively, rad/s cone center angles of smaller and larger wheels, respectively, deg
Particular
Formula
SPUR FRICTION GEARS Plain spur friction wheels (Fig. 24-38) The radial pressure on the wheels
F ¼ bp0
ð24-172Þ
The tangential force due to radial pressure F
Ft ¼ bp0
ð24-173Þ
The power transmitted
P¼
Ft vm 1000
SI
ð24-174aÞ
where P in kW, Ft in N, and vm in m/s P¼
Ft vm 33,000
USCS
ð24-174bÞ
where P in hp, Ft in lbf, and vm in ft/min
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
MISCELLANEOUS MACHINE ELEMENTS MISCELLANEOUS MACHINE ELEMENTS
Particular
24.59
Formula
Ft
ω2
ω1
d1 d2
FIGURE 24-38 Plain spur friction gears.
Ft vm Customary Metric ð24-174cÞ 75 where P in hpm , Ft in kgf, and vm in m/s
P¼
The gear face width
b¼
1000P p0 dn0
SI
ð24-175aÞ
where P in kW, p0 in N/m, n0 in rps, and b and d in m b¼
102 103 P p0 dn0
Customary Metric ð24-175bÞ
where P in kW, p0 in kgf/mm, n0 in rps, and b and d in mm b¼
33,000P p0 dn
USCS
ð24-175cÞ
where P in hp, p0 in lbf/in, n in rpm, and b in in and d in ft b¼
126,000P p0 dn
USCS ð24-175dÞ
where b and d in in and p0 in lbf/in, n in rpm, and P in hp
Grooved spur friction wheel (Fig. 24-39) The radial force on the wheel for each groove The total tangential force The power transmitted
Fr ¼ 2p0 hðtan þ Þ
ð24-176Þ
Ft ¼ 2ip0 h sec
ð24-177Þ
0
0
2ihp d1 n SI ð24-178aÞ 1000 cos where P in kW, p0 in N/m, n0 in rps, and h and d1 in mm
P¼
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
MISCELLANEOUS MACHINE ELEMENTS
24.60
CHAPTER TWENTY-FOUR
Particular
Formula
Fr Fr
B d2
α
α δ
δ Fn C
Fn
h
Fr d1 A
Fr FIGURE 24-39 Grooved spur friction gears.
P¼
ihp0 d1 n 63,000 cos
USCS
ð24-178bÞ
where P in hp, p0 in lbf/in, n0 in rps, and h and d1 in in 2ihp0 d1 n Customary Metric ð24-178cÞ 4500 103 cos where P in hpm , p0 in kgf/mm, n in rpm, and h and d1 in mm
P¼
The empirical relation for the depth of the groove
h ¼ 0:006d1 þ 4 mm (0.15 in)
The recommended value for the mean circumferential velocity
vm 6 þ 0:08d1
ð24-179Þ SI
ð24-180aÞ
USCS
ð24-180bÞ
where vm in m/s and d1 in m vm 1200 þ 4d1 where v in ft/min
BEVEL FRICTION GEARS (Fig. 24-40) Starting The reaction is inclined from the normal by an angle of friction
F0R ¼
F01a F02a ¼ sinð 1 þ Þ cosð 1 þ Þ
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð24-181Þ
MISCELLANEOUS MACHINE ELEMENTS MISCELLANEOUS MACHINE ELEMENTS
Particular
24.61
Formula
The tangential force transmitted
F0t ¼ F0R cos ¼
1000P vm
F0t ¼ F0R cos ¼
75P vm
SI
ð24-182aÞ
Customary Metric ð24-182bÞ
The least axial thrust on the small wheel F01a ¼
1000Pðsin 1 þ cos 1 Þ vm
F01a ¼
33,000Pðsin 1 þ cos 1 Þ vm
F02a ¼
1000Pðcos 1 sin 1 Þ vm
F02a ¼
33,000Pðcos 1 sin 1 Þ vm
FR ¼
F1a F ¼ 2a sin 1 cos 1
The least axial thrust on the big wheel
SI
ð24-183aÞ
USCS ð24-183bÞ SI
ð24-184aÞ
USCS ð24-184bÞ
Running
b
The reaction in this case is designated by FR bp0 (where p0 is the permissible unit pressure)
ω2
d2 F2a
δ2
FR
R
δ1
ρ
FR
ω1 d1
F1a
FIGURE 24-40 Bevel friction gears.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð24-185Þ
MISCELLANEOUS MACHINE ELEMENTS
24.62
CHAPTER TWENTY-FOUR
Particular
The tangential force transmitted
The least axial thrust on the small wheel
Formula
Ft ¼ FR ¼
1000P vm
Ft ¼ FR ¼
33,000P vm
1000P sin 1 vm 2 3 1000P d1 q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ¼ 4 5 vm d2 þ d2
SI
ð24-186aÞ
USCS
ð24-186bÞ
SI
ð24-187aÞ
USCS
ð24-187bÞ
SI
ð24-188aÞ
USCS
ð24-188bÞ
SI
ð24-189aÞ
F1a ¼
1
2
33,000P sin 1 vm 2 3 33,000 d1 qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ¼ 4 5P vm d2 þ d2
F1a ¼
1
The least axial thrust on the big wheel
2
1000P cos 1 vm 2 3 1000P d2 ¼ 4qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi5 vm d2 þ d2
F2a ¼
1
2
33,000P cos 1 vm 2 3 33,000 d2 q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ¼ 4 5P vm d2 þ d2
F2a ¼
1
2
DISK FRICTION GEARS (Fig. 24-41) The torque on the driving shaft
Mt ¼
1000P !
where Mt in N m, P in kW, and ! in rad/s Mt ¼
9550P n
SI
ð24-189bÞ
where Mt in N m, P in kW, and n in rpm Mt ¼
159P n0
SI
where Mt in N m, P in kW, and n0 in rps
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð24-189cÞ
MISCELLANEOUS MACHINE ELEMENTS MISCELLANEOUS MACHINE ELEMENTS
Particular
24.63
Formula
Driven spur wheel Driving disc
FIGURE 24-41 Variable-speed disk friction gearing.
Mt ¼
716,000P n
Customary Metric ð24-189dÞ
where Mt in kgf mm, P in hpm , and n in rpm Mt ¼
63,000P n
USCS
ð24-189eÞ
where Mt in lbf in, P in hp, and n in rpm The tangential force acting on the driven wheel for the minimum speed at minimum diameter of driving disk
Ft1 ¼
1000P d1 n0
SI
ð24-190aÞ
where Ft1 in N, P in kW, d1 in m, and n0 in rps Ft1 ¼
33,000P d1 n
USCS ð24-190bÞ
where Ft1 in lbf, P in hp, d1 in ft, and n in rpm Ft1 ¼
102 103 P d1 n0
Customary Metric
ð24-190cÞ
where Ft1 in kgf, P in kW, d1 in mm, and n0 in rps The tangential force acting on the driven wheel for the maximum speed at maximum diameter of driving disk
Ft2 ¼
1000P d2 n0
SI
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð24-191aÞ
MISCELLANEOUS MACHINE ELEMENTS
24.64
CHAPTER TWENTY-FOUR
Particular
Formula
Ft2 ¼
33,000P d2 n
USCS
ð24-191bÞ
Customary Metric
ð24-191cÞ
SI
ð24-192aÞ
USCS
ð24-192bÞ
where d2 in ft
The minimum thrust to be applied to the disk for the minimum speed
Ft2 ¼
102 103 P d2 n0
Fa1 ¼
Ft1 1000P ¼ d1 n0
Fa1 ¼
33,000P d1 n
where Fa1 ¼ bp0 (b ¼ face width of driven cylindrical wheel) and d2 in ft The maximum thrust to be applied to the disk for maximum speed
F2a ¼
Ft2 1000P ¼ d2 n0
F2a ¼
33,000P d2 n
SI
ð24-193aÞ
USCS
ð24-193bÞ
USCS
ð24-193cÞ
where d2 in ft F2a ¼
126,000P nd2
where d2 in in and F2a in lbf, n in rpm, and P in hp The axial thrust required to shift the driven wheel underload
Fa ¼ F1 ð þ 0 Þ
The efficiency
¼
ð24-194Þ
0
where is the coefficient of friction between the shaft of driven wheel and its bearings d dþb
ð24-195Þ
where varies from 0.6 at low speeds when d ¼ d1 to 0.8 at high speeds, when d ¼ d2 The minimum force available on the chain sprocket at minimum speed of driven wheel
F1cs ¼
Ft1 d d3
ð24-196Þ
where d ¼ diameter of driven wheel, m (in) d3 ¼ diameter of chain sprocket, m (in) The maximum force available on the chain sprocket at maximum speed of driven wheel
F2cs ¼
Ft2 d d3
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð24-197Þ
MISCELLANEOUS MACHINE ELEMENTS MISCELLANEOUS MACHINE ELEMENTS
Particular
24.65
Formula
BEARING LOADS OF FRICTION GEARING (Fig. 24-42, Table 24-17) Driven shaft ðL þ eÞFt ðe þ L þ cÞ
The horizontal force on bearing A due to the tangential force Ft
FhA ¼
The vertical force on bearing A due to thrust Fa and the force on the chain sprocket Fcs
FVA ¼
ð24-199Þ
FRA
ð24-200Þ
The resultant load on bearing A
ðL þ eÞFa þ eFcs ðe þ L þ cÞ qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ¼ F2hA þ F2VA
ð24-198Þ
The horizontal force on bearing B due to the tangential force Ft
FhB ¼
The vertical force on bearing B due to the thrust Fa and the force on the chain sprocket Fcs
FVB ¼
ð24-202Þ
FRB
ð24-203Þ
The resultant force on bearing B
cFt ðe þ L þ cÞ
cFa þ ðc þ LÞFcs ðe þ L þ cÞ qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ¼ F2hB þ F2VB
Bearing
D Driving shaft a Bearing Fa
C
Driving disc
b
Bearing
Driven spur wheel A
Driven shaft
Chain sprocket B
Bearing
Chain c
L
e
FIGURE 24-42 Bearing loads of disk friction gearing.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð24-201Þ
MISCELLANEOUS MACHINE ELEMENTS
24.66
CHAPTER TWENTY-FOUR
Particular
Formula
Driving shaft The horizontal force due to thrust Fa on bearing D
The horizontal force due to the tangential force Ft on the bearing D The resultant force on the bearing D The horizontal force due to thrust Fa on the bearing C The horizontal force due to the tangential force Ft on the bearing C The resultant force on the bearing C
d1 Ft ð24-204Þ 2a where d1 and d2 denote the minimum and maximum diameters of driving disk
FhDa ¼
bFt a qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ¼ F2hDa þ F2hDt
FhDt ¼
ð24-205Þ
FRD
ð24-206Þ
Fhca ¼
d1 Ft 2a
ð24-207Þ
ða þ bÞFt a qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ¼ F2hca þ F2hct
Fhct ¼
ð24-208Þ
FRc
ð24-209Þ
TABLE 24-17 Design data for friction gearing Allowable pressure, p0 Material of driver
kN/m
lbf/in
Coefficient of friction with cast iron
Cast iron Cork composition Paper Rubber Wood
530 8.9 26.5 17.7 26.5
3000 50 150 100 150
0.15 0.21 0.15 0.20 0.15
Allowable pressure, p0 Material of driver
kN/m
Leather Leather fiber Straw fiber Sulfite fiber Tarred fiber
26.5 42.2 26.5 24.5 44.1
lbf/in
Coefficient of friction with cast iron
Coefficient of friction with aluminum
150 240 150 140 250
0.09 0.18 0.15 0.20 0.28
0.13 0.18 0.16 0.19 0.28
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
MISCELLANEOUS MACHINE ELEMENTS MISCELLANEOUS MACHINE ELEMENTS
24.7 MECHANICS OF VEHICLES SYMBOLS2,3 a A b B c C Dt Dw Ef Esh F Fmax G h i k l l0 l1 l2 l3 l4 l5 l6 l7 l8 m Mt Mtt Mti Mto Mtf Mtr n n0 ni no P r rmi rmo
center distance, m (in) a constant in Eq. (24-216b) frontal projected area of vehicle, m2 (ft2 ) face width of gear, m (in) a constant in Eq. (24-216b) width of bearing, m (in) distance between adjacent rotating parts, m (in) constant (also with suffixes) maximum diameter of torus, m (in) diameter of wheel, m (in) flow loss in each member of hydraulic torque converter, N m (lbf in) shock loss in each member of hydraulic torque converter, N m (lbf in) driving force at the tire, kN (lbf ) maximum permissible load on the pitch circle of any particular pair of gears, kN (lbf ) gradient thickness of housing, m (in) gear ratio (total) a constant distance between support bearings on a shaft in gearbox, m (in) distance between bearings of overhanging shaft, m (in) distance of rotating part from the bearing, m (in) distance of bearing from the wall, m (in) cap height from bolt to end, m (in) distance of rotating parts from the bearing cap, m (in) width of boss of rotating parts, m (in) distance of coupling to cap, m (in) distance between gear and shaft, m (in) distance of rotating parts from inner wall of housing, m (in) module, m (in) output torque of the engine, N m (lbf in) torque at the tire surface, N m (lbf in) the input torque, N m (lbf in) the reaction to the output torque, which is opposite in direction to output torque, N m (lbf in) the torque that must be applied to transmission housing to balance the moments of internal friction, oil churning, etc., N m (lbf in) the torque reaction of the transmission housing due to the gear reduction in transmission, N m (lbf in) speed, rpm speed, rps speed of driving shaft, rpm speed of driven shaft, rpm power, kW (hp) radius of the driving wheel, m (in) mean radius of inflow to the runner, m (in) mean radius of outflow from the runner, m (in)
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
24.67
MISCELLANEOUS MACHINE ELEMENTS
24.68
CHAPTER TWENTY-FOUR
air resistance, kN (lbf ) rolling resistance, kN (lbf ) road resistance, kN/tf (lbf/ton) gradient resistance, kN (lbf ) total resistance, kN (lbf ) tonne, t tonne force, tf velocity, m/s (ft/min) speed of vehicle, km/h (ft/s) velocity of fluid relative to the vane, m/s (ft/min) shock velocity, m/s (ft/min) weight of the vehicle, kN (Tonf ) number of teeth angle of inclination of road, deg angle of repose, deg minimum clearance between gears and inner wall of housing, m (in) transmission efficiency
Ra Rr R00r Rg Rt t tf v V Vf Vsh W z
SUFFIXES 1 2 b t max min
pinion gear brake tonne maximum minimum
Other factors in performance or in special aspects which are included from time to time in this section and, being applicable only in their immediate context, are not given at this stage. Particular
Formula
CALCULATION OF POWER 1000P SI ð24-210aÞ ! where P in kW, ! in rad/s, and Mt in N m
Torque
Mt ¼
9550P SI ð24-210bÞ n where P in kW, n in rpm, and Mt in N m
φ
Mt ¼ Rg
63,000P USCS ð24-210cÞ n where P in hp, n in rpm, and Mt in lbf in
Mt ¼
+
α
α
+
φ
w FIGURE 24-43 Forces on the vehicle moving up the gradient.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
MISCELLANEOUS MACHINE ELEMENTS MISCELLANEOUS MACHINE ELEMENTS
Particular
24.69
Formula
Mtt ¼ Mt
Torque at the tire surface
ð24-211Þ
where ¼ 0.90 at top gear ¼ 0.80 at other gears Mt r
The driving force at the tire
F¼
Tractive factor
ftr ¼
Mtt 1000W
ftr ¼
Mtt 2240W
Rg ¼
1000W sinð þ Þ cos
Rg ¼
2240W sinð þ Þ cos
Force required to pull the vehicle of weight W up the slope (Fig. 24-43)
ð24-212Þ SI
ð24-213aÞ
USCS ð24-213bÞ SI
ð24-214aÞ
USCS ð24-214bÞ
Gradient
G¼
W Rg
ð24-215Þ
The air resistance
Ra ¼ kAV2
ð24-216aÞ
where k ¼ constant obtained from Table 24-18 For values of air resistance at different speeds of vehicle
Refer to Table 24-19.
The rolling resistance
Rr ¼ ða þ bVÞW
ð24-216bÞ
where a ¼ constant varies from 15 to 600 b ¼ constant varies from 0.1 to 3.5 For rolling or road resistance surfaces
R0r
for various road
The general formula for total resistance or tractive resistance (Fig. 24-44)
Refer to Table 24-20.
Rt ¼ kAV2 þ W
sinð þ Þ cos
þ ða þ bVÞW Another formula for total resistance
Rt ¼ Ra þ Rg þ Rr 1000 þ kAV2 ¼ W R0r þ G
ð24-217aÞ
ð24-217bÞ
where k and R0r are obtained from Tables 24-19 and 24-20 where R0r in N/tf, W in tf, A in m2 , V in m/s
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
MISCELLANEOUS MACHINE ELEMENTS
24.70
CHAPTER TWENTY-FOUR
Particular
Formula
Rt ¼ Ra þ Rg þ Rr 2240 0 ¼ W Rr þ þ kAV2 G
USCS
ð24-217cÞ
where R0r in lbf/t, W ¼ weight of vehicle, tonf A ¼ projected frontal area of vehicle, ft2 V ¼ speed of vehicle, ft/s Tractive effort at the tire surface
Ftr ¼
iMt r
ð24-218Þ
where i ¼ gear ratio obtained from Table 24-21 The speed of the vehicle
V ¼ 0:00297
nDw i
USCS
ð24-219aÞ
where V in mph (miles per hour), Dw in in, and n in rpm V ¼ 0:052 Power
AIR RESISTANCE Ra =
kAV2
ROLLING RESISTANCE Rr = (a+bv) W
nDw i
SI
ð24-219bÞ
where V in m/s, Dw in m, and n in rpm P¼
0:002VMtt Dw
SI
ð24-220aÞ
where V in m/s, Mtt in N m, Dw in m, and P in kW W SIN (α+φ) GRADIENT RESISTANCE Rg= COS φ
P¼
USCS
ð24-220bÞ
where V in mph, Mtt in lbf ft, Dw in in, and P in hp P¼
FIGURE 24-44 Various resistances on the moving vehicle.
0:00163VMtt Dw
5:5VMtt Dw
Customary Metric
ð24-220cÞ
where V in km/h, Mtt in kgf m, Dw in mm, and P in kW
TRANSMISSION GEARBOX (Fig. 24-45) The equation for center distance between main and countershafts for the case of three-speed passenger car
a ¼ 0:5
p 3 ffiffiffiffiffiffiffi Mt
USCS
ð24-221aÞ
SI
ð24-221bÞ
where a in in and Mt in lbf ft a ¼ 0:0106
p 3 ffiffiffiffiffiffiffi Mt
where a in m and Mt in N m
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
MISCELLANEOUS MACHINE ELEMENTS MISCELLANEOUS MACHINE ELEMENTS
Particular
24.71
Formula
F
G
A Clutch I D H II
B
C
E FIGURE 24-45 A typical four-speed gearbox.
The distance between support bearings of shaft
l ¼ 0:0254
p p 3 ffiffiffiffiffiffiffi 3 ffiffiffiffiffiffiffi Mt to 0:0318 Mt
SI
ð24-222aÞ
where l in m and Mt in N m l ¼ 1:2
p p 3 ffiffiffiffiffiffiffi 3 ffiffiffiffiffiffiffi Mt to 1:5 Mt
USCS ð24-222bÞ
where l in in and Mt in lbf ft The maximum permissible load at the pitch circle of any pair of gears
Fmax ¼ c1 bm ¼
c1 b Pm
ð24-223Þ
where c1 ¼ constant obtained from Table 24-22 The face width of gear tooth
b¼
The expression for center distance for the case of fourspeed truck transmission
a ¼ 0:017
Fmax Fmax Pn ¼ mc1 c1 p 3 ffiffiffiffiffiffiffi Mt
SI
ð24-225aÞ
where a in m and Mt in N m a ¼ 0:8
The distance between support of bearings of shaft
ð24-224Þ
p 3 ffiffiffiffiffiffiffi Mt
USCS ð24-225bÞ
where a in in and Mt in lbf ft p p 3 ffiffiffiffiffiffiffi 3 ffiffiffiffiffiffiffi l ¼ 0:0254 Mt to 0:0318 Mt where l in m, and Mt in N m p p 3 ffiffiffiffiffiffiffi 3 ffiffiffiffiffiffiffi l ¼ 1:2 Mt to 1:5 Mt
SI
ð24-226aÞ
USCS ð24-226bÞ
where l in in and Mt in lbf ft The face width of gear tooth
b¼
Fmax Fmax Pn ¼ mc1 c1
For values of c1 , refer to Table 24-22.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð24-227Þ
MISCELLANEOUS MACHINE ELEMENTS
24.72
CHAPTER TWENTY-FOUR
Particular
The expression for center distance for the case of five-speed and reverse truck transmission
Formula
a ¼ 0:0170
p 3 ffiffiffiffiffiffiffi Mt
where a in m and Mt in N m p 3 ffiffiffiffiffiffiffi a ¼ 0:8 Mt The distance between support of bearings of shaft
where a in in and Mt in lbf ft p p 3 ffiffiffiffiffiffiffi 3 ffiffiffiffiffiffiffi l ¼ 0:0254 Mt to 0:0318 Mt where l in m and Mt in N m p p 3 ffiffiffiffiffiffiffi 3 ffiffiffiffiffiffiffi l ¼ 1:2 Mt to 1:5 Mt
The face width of gear tooth
The expression for center distance for a farm tractor transmission
Effective face width of gear tooth
The efficiency of transmission
SI
ð24-228aÞ
USCS
ð24-228bÞ
SI
ð24-229aÞ
USCS
ð24-229bÞ
where l in in and Mt in lbf ft F F P b ¼ max ¼ max n mc1 c1
ð24-230Þ
For values of c1 , refer to Table 24-22. p 3 ffiffiffiffiffiffiffi SI a ¼ 0:021 Mt
ð24-231aÞ
where a in m and Mt in N m p 3 ffiffiffiffiffiffiffi a ¼ Mt
ð24-231bÞ
USCS
where a in in and Mt in lbf ft Fmax v SI ð24-232aÞ b¼ 28 105 m where b in m, Fmax in N, m in m, and v in m/s F vP b ¼ max n USCS ð24-232bÞ 8,000,000 where b in in, Fmax in lbf, Pn in in1 , and v in ft/min n M Mto ð24-233Þ ¼ o to ¼ ni Mti ir ½Mto ðMtr Mtf Þ where ir ¼ reduction ratio of transmission ¼ ðni =no Þ
Distance of rotating parts from the inner wall of housing
l8 ¼ 10 to 15 mm or more for high-power and heavyduty operation l8 ¼ 0:4 to 0:6 in
USCS
ð24-234Þ
Distance between adjacent rotating parts
c ¼ 10 to 15 mm (0.4 to 0.6 in)
ð24-235Þ
Minimum clearance between gears and inner wall of housing
1:2h
ð24-236Þ
Distance between bearings of overhanging shaft
l0 ¼ 1:2d to 3d
Distance of bearing from the wall
l2 ¼ 5 to 10 mm (0.2 to 0.4 in)
where h ¼ thickness of housing ð24-237Þ
where d ¼ diameter of shaft ð24-238Þ
Cap height from bolt end
l3 ¼ depends on the design by empirical formula
Distance of rotating parts from the bearing cap
l4 ¼ 15 to 20 mm (0.6 to 0.8 in)
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð24-239Þ
MISCELLANEOUS MACHINE ELEMENTS MISCELLANEOUS MACHINE ELEMENTS
Particular
24.73
Formula
Width of boss of rotating part
l5 ¼ 1:2d to 1:5d
Distance of coupling to cap
(depends on the type of coupling)
Distance between gear and shaft
l7 20 mm (0.8 in)
ð24-241Þ
Distance of rotating part from the bearing
l1 ¼
B l þ l3 þ l4 þ 5 2 2 Refer to Chapter 24, Section 24.5.
ð24-242Þ
For planetary gear transmission For detail design equations of spur, helical, bevel, crossed-helical and worm gears
ð24-240Þ
Refer to Chapter 23.
HYDRAULIC COUPLING (Fig. 24-46) Torque transmitted by the coupling
Mt ¼ ksn2 Wðr2mo r2mi Þ
ð24-243Þ 7
where k ¼ coefficient ¼ 1:42 10 Percent slip between primary and secondary speeds
r3
where np and ns are primary and secondary speeds of impeller, respectively, rpm r1
C DA
ð24-244Þ
r2
r4
B
(approx.)
ðnp ns Þ 100 s¼ np
FIGURE 24-46 Hydraulic coupling.
The mean radius of the inner passage (Fig. 24-46) The mean radius of the outer passage (Fig. 24-46)
rmi ¼
2 3
rmo ¼
2 3
r32 r31 r22 r21 r34 r33 r24 r23
The expression for number of times the fluid circulates through the torus in one second
if ¼
The torque capacity of hydraulic coupling at a given slip
Mt ¼ Kn2 D5t
ð24-245Þ ð24-246Þ
13,000Mt nWðr2mo r2mi Þ
ð24-247Þ ð24-248Þ
where K ¼ coefficient varying from 0:166 108 to 0:244 108 ¼ 1.56 to 2.28
SI
USCS
Dt ¼ diameter of torus, m (ft) Mt ¼ torque capacity, N m (lbf ft); n in rpm
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
MISCELLANEOUS MACHINE ELEMENTS
24.74
CHAPTER TWENTY-FOUR
Particular
Formula
HYDRODYNAMIC TORQUE CONVERTER (Fig. 24-47) Mti ¼ Kn2i D5t
The equation for input torque
ð24-249Þ
where Impeller
Runner
K ¼ coefficient depending on design ni ¼ speed of input shaft, rpm Dt ¼ any linear dimension such as maximum diameter of impeller
Reactor
FIGURE 24-47 Hydrodynamic torque converter.
The equation for the input power
ð24-250Þ
P ¼ Cn3i D5t
where C ¼ coefficient depending on design The expression for flow loss or friction loss in each member of the torque converter under any particular operating conditions in energy unit per kilogram of fluid circulated
Ef ¼
Cf V2f 2g
ð24-251Þ
where Cf ¼ coefficient whose value depends mainly on the Reynolds number and the relative smoothness of the metallic surface ¼ 0.445 to 0.890 SI (where Ef in N m and Vf in m/s) ¼ 0.328 to 0.656 USCS (where Vf in ft/s and Ef in lbf ft)
The expression for shock loss per kg fluid circulated in the impeller of a torque converter
Esh ¼
Csh V2sh 2g
ð24-252Þ
where Csh ¼ coefficient The maximum inside diameter of torus
Dt ¼ 0:00135C
qffiffiffiffiffiffiffiffiffiffiffiffiffiffi 3 Mt =n02
SI
ð24-253aÞ
0
where Dt in m, Mt in N m, and n in rps Dt ¼ 0:00168C
rffiffiffiffiffiffiffi 3 Mt n2
USCS
ð24-253bÞ
where Dt in in, Mt in lbf in, and n in rpm C ¼ coefficient ¼ 14 for a ratio of minimum inside diameter to maximum diameter of torus of one-third n ¼ speed in hundreds of rpm
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
MISCELLANEOUS MACHINE ELEMENTS MISCELLANEOUS MACHINE ELEMENTS
Particular
Formula
TRACTIVE EFFORT CURVES FOR CARS, TRUCKS, AND CITY BUSES For finding the diameter of tire of vehicles for a particular wheel speed
Refer to Fig. 24-48.
For tractive effort of a passenger car
Refer to Fig. 24-49.
For tractive effort of trucks, tractors, and city buses
Refer to Fig. 24-50.
850 800 750 700
Pa ss
600
en
i Tra
ge
s,
rc
ler
ars
550
tr u ck
s, an
500
dc ity
Wheel speed, rpm
650
es ss bu
450 400 350 300 250
50
60
70
80 90 100 Tyre diameter, cm
110
120
130
FIGURE 24-48 Wheel speed vs. tire diameter of vehicles.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
24.75
MISCELLANEOUS MACHINE ELEMENTS
24.76
CHAPTER TWENTY-FOUR
Tractive effort, kgf
200
100
50
0
500
1000
1500 Gross vehicle weight, kgf
2000
2500
FIGURE 24-49 Tractive effort curve for passenger cars (1 kgf ¼ 9.8066 N ¼ 2.2046 lbf ). 950 900 850 800 750 700 650
Tractive effort, kgf
600 550 500 450 400 350 300 250 200 150 100
2000 4000
6000
8000 10000 12000 14000 16000 18000 20000 Gross vehicle weight, kgf
FIGURE 24-50 Tractive effort curve for trucks, tractors, and city buses.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
MISCELLANEOUS MACHINE ELEMENTS MISCELLANEOUS MACHINE ELEMENTS
24.77
TABLE 24-18 Values of k for use in Eq. (24-216) and (24-217) Particular
k in USCSUa
k in SI
Average automobile of modern design Streamlined racing car Truck or omnibus
0.0017
0.20
0.0006 0.0024
0.07 0.28
a
US Customary System units.
TABLE 24-19A Air resistancea
TABLE 24-19B Air resistance in SI units
Speed of vehicle, mph
Velocity of wind, V, ft/s
0.0024V2
0.0017V2
0.0006V2
Speed of vehicle km/h
Velocity of wind V, m/h
0.28V2
0.20V2
0.07V2
10 20 30 40 50 60 90 150
14.67 29.35 44.00 58.60 73.30 88.00 132.00 220.00
0.516 2.060 4.650 8.240 12.900 18.600 — —
0.366 1.460 3.300 5.830 9.130 13.160 29.650 —
— 0.516 1.160 2.060 3.220 4.650 10.450 29.000
10 20 30 40 50 60 70 80 90 100
2.78 5.56 8.34 11.12 13.90 16.68 19.46 22.21 25.02 27.80
2.17 8.68 19.50 34.72 54.25 78.00 106.40 139.00 176.00 217.00
1.55 6.20 13.92 24.80 38.80 57.60 76.00 99.20 125.60 155.00
0.54 2.17 4.88 8.68 13.56 19.50 26.60 34.75 44.00 54.25
a
Values given in this table are in US Customary System units.
TABLE 24-20 Road resistance, R0r Solid Surface
N/tf
Polished marble Concrete Asphalt Stone Good quality Poor quality Vitrified bricks Good macadam (metal road) Good Fair Rough Clay Sand
lbf/ton
Pneumatic %
N/tf
lbf/ton
%
29.3 62.4 67.4
12.12 14.25 15.40
0.541 0.636 0.687
35.3 41.5 448.2
8.08 9.50 10.25
0.360 0.423 0.457
71.8 153.2 85.0
16.40 35.00 19.45
0.732 1.562 0.866
477.6 102.0 56.7
10.92 23.30 12.95
0.487 1.040 0.578
146.2 220.0 307.0 438.4 1314.0
33.50 50.00 70.00 100.00 300.00
1.491 2.240 3.130 4.470 13.400
97.9 186.4 389.3 389.3 874.8
22.20 33.20 46.60 66.60 200.00
0.998 1.900 2.100 3.970 8.920
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
SI 106 USCSU
SI 106 USCSU
SI 106
USCSU
III
I
SI 106
USCSU
IV SI 106
USCSU
V
Low speed reduction
Three-speed passenger 124.6–145.2 18,000–21,000 145.2–153.5 21,000–24,000 193.7–221.2 28,000–32,000 car transmission Four-speed truck 76.0–90.0 11,000–13,000 128.0–149.0 18,500–21,500 96.8–110.9 14,000–16,000 175.2–207.5 26,000–30,000 transmission Five-speed reverse 76.0–90.0 11,000–13,000 138.2–152.0 20,000–22,000 105.0–117.7 15,000–17,000 90.0–105.0 13,000–15,000 175.2–207.5 26,000–30,000 truck transmission
No. of speeds and type of transmission
Intermediate speed reduction
Gear wheels belonging to
High speed reduction
TABLE 24-22 Value of coefficient c1 in SI and USCSU
II
4 : 1 to 5 : 1 1:6 : 1 (total 6 or 7 : 1) 2:5 : 1 (total 10 : 1) Same as or higher than low gear ratio <75% above the propeller shaft
Final drive (rear-axle differential) Second Low
Reverse gear Overdrive
Ratio
Particular
TABLE 24-21 Gear ratios
MISCELLANEOUS MACHINE ELEMENTS
24.78
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
MISCELLANEOUS MACHINE ELEMENTS MISCELLANEOUS MACHINE ELEMENTS
24.79
24.8 INTERMITTENT-MOTION MECHANISMS SYMBOLS2,3 a b d dh e1 , e2 Fn Fnr Ft h m Mb Mt n0 n p p r s1 s2 s02 z Z
¼ tan ¼ ¼ tan1 ¼ ’ b ¼ m b
distance of the pawl pivot point, m (in) face width of ratchet tooth, m (in) diameter (also with suffixes), m (in) hub diameter, m (in) dimensions as shown in Fig. 24-52, m (in) normal force through O, Figs. 24-51 and 24-52, kN (lbf ) peripheral force normal to the tooth of ratchet, kN (lbf ) tangential force at diameter, d, kN (lbf ) tooth height or distance from the critical section to the line of action of the load Fnr , m (in) module, m (in) bending moment, N m (lbf in) twisting moment, N m (lbf in) speed, rps speed, rpm tooth pitch, m (in) linear unit pressure, N/m (lbf/ft) radius, m (in) dimension as shown in Fig. 24-53 breadth of tooth land (Fig. 24-53), m (in) thickness of tooth at base (Fig. 24-52), m (in) number of teeth on ratchet wheel section modulus, m3 (cm3 ) (in3 ) pressure angle or angle of the pawl force, deg angle at pawl (¼ 908 8), deg coefficient of friction friction angle, deg ratchet tooth angle or pitch angle, deg varies from 1.5 to 3 stress, MPa (psi) bending stress, MPa (psi) shear stress, MPa (psi)
Particular
Formula
PAWL AND RATCHET The ratchet tooth angle (Fig. 24-51)
The ratchet diameter (Fig. 24-51)
’¼
2 ; rad z
ð24-254aÞ
’¼
360 ; deg z
ð24-254bÞ
pz
ð24-255Þ
d2 ¼ mz ¼
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
MISCELLANEOUS MACHINE ELEMENTS
24.80
CHAPTER TWENTY-FOUR
Particular
Formula
The face width of ratchet tooth
b
The allowable unit pressure or force
F ¼
Fn b
ð24-257Þ
Ft ¼
2Mt d
ð24-258Þ
The normal force through O (Fig. 24-51)
Fn ¼
Ft cos
The normal force through O (Fig. 24-52)
Fn ¼ Ft
The bending stress
b ¼
Allowable bending stress (b )
Refer to Table 24-23.
Number of teeth
z ¼ 6 to 30
ð24-261Þ
Module
m > 6 (mostly from 10 to 20)
ð24-262Þ
The ratio of h=m
h=m ¼ 0:6 to 1
ð24-263Þ
For ratchet wheel definitions and dimensions
Refer to Fig. 24-53.
The ratio of s2 =m
s2 =m ¼ 0:6 to 0.9
ð24-264Þ
The tooth height
h ¼ 5 to 15 for toothed ratchet
ð24-265Þ
The tangential force
Fnr
ð24-256Þ
ð24-259aÞ ð24-259bÞ
Mb 6Ft h ¼ 2 ba Z bs1
ð24-260Þ
e1
µFnr O
s2
Fnr = Ft
e2
µFnr
F nr
s2
α
d
2
p
h2
Fn=Ft α
h2
O
Fn Fn
d2
p
dh
FIGURE 24-51 Ratchet wheel with radial tooth flanks and pawl.
FIGURE 24-52 Ratchet wheel with non-radial tooth flanks and pawl.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
MISCELLANEOUS MACHINE ELEMENTS MISCELLANEOUS MACHINE ELEMENTS
Particular
24.81
Formula
p
h
1
s2 r1
s1 h
2
2
d
2
r2
FIGURE 24-53 Definitions and dimensions of ratchet wheel.
For external ratchet
¼ 148 to 178
ð24-266Þ
For internal ratchet
¼ 178 to 308
ð24-267Þ
The ratio of a=d (internal ratchet)
a=d ¼ 0:35 to 0:43 sffiffiffiffiffiffiffiffiffiffiffiffiffi 3 Mt m¼2 z ba
ð24-268Þ
The module
ð24-269Þ
The bending moment on pawl
Mb1 ¼ Fn e2
ð24-270Þ
The bending stress
b ¼
6Mb1 Fn þ ba bs1 bs21 sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ffi b 3 Fn þ th d1 ¼ 2:71 2ba 2
ð24-271Þ
The diameter of pawl pin
where th ¼ thickness of hub on pawl TABLE 24-23 F Material
kN/m
Cast iron 49–98 Steel or 98–196 cast steel Hardened 196–392 steel
b
lbf/in 280–560 560–1120 1120–2240
MPa
kpsi
19.5–29.5 2.85–4.27 39–68.5 5.69–10.0 58.8–98
8.54–14.23
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð24-272Þ
MISCELLANEOUS MACHINE ELEMENTS
24.82
CHAPTER TWENTY-FOUR
24.9 GENEVA MECHANISM SYMBOLS2,3 r1 sin
a¼ F1 F2
F2ðmaxÞ FðmaxÞ FiðmaxÞ
i¼
z2 z
k M1t M2t M2ti M2t n0 n P r1 r2 r02 ra2 rp r2 r1
m
gear ratio
radius ratio total time required for a full revolution of the driver or crank, s time required for indexing Geneva wheel, s time during which Geneva wheel is at rest, s velocity, m/s number of slots on the Geneva wheel crank angle or angle of driver at any instant, deg (Fig. 24-54) angular acceleration, m/s2 (ft/s2 ) angular acceleration of Geneva wheel, m/s2 (ft/s2 ) angular position of the crank or driver radius at which the product ! 2a is maximum, deg angle of the driven wheel or Geneva wheel at any instant, deg (Fig. 24-54)
t ti tr v z 2a
¼
the component of force acting on the crank or the driving shaft due to the torque, M1t , kN (lbf ) (Fig. 24-57) the component of force acting on the driven Geneva wheel shaft due to the torque M2t , kN (lbf ) (Fig. 24-57) maximum force (pressure) at the point of contact between the roller pin and slotted Geneva wheel, kN (lbf ) the component of maximum friction force at the point of contact due to the friction torque M2t , on the driven Geneva wheel shaft, kN (lbf ) the component of maximum inertia force at the point of contact due to the inertia torque on the driven Geneva wheel shaft, kN (lbf )
polar moment of inertia of all the masses of parts attached to Geneva wheel shaft, m4 (in4 ) the working time coefficient of the Geneva wheel total torque on the driver or crank, N m (lbf in) total torque on the driven or Geneva wheel, N m (lbf in) inertia torque on the Geneva wheel, N m (lbf in) friction or resistance torque on Geneva wheel, N m (lbf in) speed, rps speed, rpm power, kW (hp) radius to center of driving pin, m (in) radius of Geneva wheel, m (in) distance of center of semicircular end of slot from the center of Geneva wheel, m (in) outside radius of Geneva wheel, which includes correction for finite pin diameter, m (in) pin radius, m (in)
J
Rr ¼
center distance, m (in)
r1 a
the ratio of the driver radius to center distance efficiency of Geneva mechanism
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
MISCELLANEOUS MACHINE ELEMENTS MISCELLANEOUS MACHINE ELEMENTS
24.83
locking angle of driver or crank, rad or deg ratio of time of motion of Geneva wheel to time for one revolution of driver or crank
¼
360 2z
semi-indexing or Geneva wheel angle, or half the angle subtended by an adjacent slot, deg (Fig. 24-54) crank or driver angle, deg (Fig. 24-54)
2n !¼ 60 !1 , !2
a1
angular velocity of driver or crank (assumed constant), rad/s angular velocities of driver or crank and Geneva wheel, respectively, rad/s φ
β
r2 ω2
a
a2 ω1 α a3
ψ
r1
FIGURE 24-54 Design of Geneva mechanism. Particular
Formula
The angular velocity (constant) of driver or crank
!1 ¼
Gear ratio
i¼
angle moved by crank or driver during rotation angle moved by Geneva wheel during rotation
i¼
z2 z
2n 60
360 2z
The semi-indexing angle or Geneva wheel angle or half the angle subtended by two adjacent slots
¼
The angle through which the Geneva wheel rotates
2 ¼
360 z
ð24-273Þ
ð24-274Þ or or
z
ð24-275Þ
2 z
ð24-276Þ
EXTERNAL GENEVA WHEEL The angle of rotation of driver through which the Geneva wheel is at rest or angle of locking action (Fig. 24-55) The crank or driver angle
¼ 2ð Þ ¼ þ 2 ¼
¼
ðz þ 2Þ z
ðz 2Þ ¼ 2 2z
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð24-277Þ
ð24-278Þ
MISCELLANEOUS MACHINE ELEMENTS
24.84
CHAPTER TWENTY-FOUR
Particular
ro
2
Formula
r’2
a
φ ω2
ψ
”
90 ω1
r1
FIGURE 24-55 External Geneva mechanism.
DISPLACEMENT r1 sin
The center distance (Fig. 24-55)
a¼
The radius ratio
Rr ¼
The ratio of crank radius to center distance
¼
The relation between crank angle and Geneva wheel angle
r2 ¼ cot r1
r1 ¼ sin ¼ sin a z sin
¼ tan1 1 cos
ð24-279Þ ð24-280Þ ð24-281Þ ð24-282Þ
VELOCITY The angular velocity of the Geneva wheel
!2 ¼
d ðcos Þ ! ¼ dt 1 2 cos þ 2 1
sinð=zÞðcos sin =zÞ !1 1 2 sinð=zÞ cos þ sin2 =z d !2ðmaxÞ ¼ ¼ ! dt max 1 1 1 sin !1 ¼ sin z z
!2 ¼ The maximum angular velocity of Geneva wheel at angle ¼ 0
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð24-283aÞ ð24-283bÞ
ð24-283cÞ
MISCELLANEOUS MACHINE ELEMENTS
24.85
MISCELLANEOUS MACHINE ELEMENTS
Particular
Formula
ACCELERATION The angular acceleration, a 2a , of Geneva wheel
d2 ð 3 Þ sin ¼ !21 2 dt ð1 þ 2 2 cos Þ2
a
2a ¼
a
2a ¼
sinð=zÞ cos2 ð=zÞ sin !21 1 2 sinð=zÞ cos þ sin2 ð=zÞ
cos ðmaxÞ ¼ þ
The maximum angular acceleration of Geneva wheel which occurs at ¼ ðmaxÞ
pffiffiffiffiffiffiffiffiffiffiffiffiffi 2 þ 2
ð 2a Þi; f ¼
sinð=zÞ cos3 ð=zÞ !21 ½1 2 sin2 ð=zÞ þ sin2 ð=zÞ
¼ !21 tan ¼ !21 tan =z r ¼ !21 1 r2 Total time required for a full revolution of the crank or driver
α2a 20 ω12
t¼
60 n
ð24-285Þ ð24-286Þ
6
ω2 ω1
4
10
2
0
0 α α2a ω12
ω2 ω1
10 20 30
a
ð24-284cÞ
where 1 1 ¼ þ 4
The angular acceleration of Geneva wheel at start and finish of indexing
α2a ω12
ð24-284bÞ
Refer to Fig. 24-56.
For angular velocity and angular acceleration curves for three-slot external Geneva wheel with driver velocity, !1 ¼ 1 rad/s
30
ð24-284aÞ
FIGURE 24-56 Angular velocity and angular acceleration curves for three-slot external Geneva wheel.
2a is the symbol used for angular acceleration of Geneva wheel; is the crank or driver angle at any given instant.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
MISCELLANEOUS MACHINE ELEMENTS
24.86
CHAPTER TWENTY-FOUR
Particular
Formula
The ratio of ti to t
ti 2 z2 ¼ ¼ ¼ t 2 2z
ð24-287Þ
The ratio of tr to t
tr 2ð Þ zþ2 ¼ ¼1 ¼ t 2 2z
ð24-288Þ
The sum of angles of ( þ )
þ
ð24-289Þ
The time required for indexing Geneva wheel, in seconds The time during which Geneva wheel is at rest, in seconds The working time coefficient of Geneva wheel Ratio of time of motion of Geneva wheel to time for one revolution of crank or driver The required speed of the driver shaft or crankshaft
¼ 908
z2 z2 t¼ 2z z z þ 2 60 tr ¼ z 2n
ti ¼
60 2n
ð24-290Þ ð24-291Þ
ti z 2 ¼ tr z þ 2 z2 1 v¼ < 2z 2 z þ 2 60 n¼ z 2tr
ð24-292Þ
k¼
ð24-293Þ ð24-294Þ
where n in rpm
SHOCK OR JERK The jerk or shock, J2 , on Geneva wheel
The jerk or shock at ¼ 0 The jerk or shock at start, i.e., ¼
The length of the slot (Fig. 24-54)
The condition to be satisfied by diameter on which the driver or crank is mounted
J2 ¼
ð 1Þ½2 cos2 þ ð1 þ 2 Þ cos 4 þ !31 ð1 þ 2 2 cos Þ3 ð24-295Þ
ðJ2 Þ ¼ 0 ¼ ðJ2 Þ ¼ ¼
d3 dt3 d3 dt3
¼0
¼
¼
ð þ 1Þ 3 !1 ð 1Þ3
¼
3 2 !31 1 2
a2 ¼ r1 þ r2 a ¼ a sin þ cos 1 z z d1 < 2a3 ¼ 2ða r2 Þ ¼ 2a 1 cos z
ð24-296Þ ð24-297Þ ð24-298Þ ð24-299Þ
or
The condition to be satisfied by the diameter on which Geneva wheel is mounted
d1 < 2 1 cos ¼ 4 sin2 a z 2z d2 ¼ 4 sin2 < 2 1 sin z 4 2z a
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð24-300Þ ð24-301Þ
MISCELLANEOUS MACHINE ELEMENTS
24.87
MISCELLANEOUS MACHINE ELEMENTS
Particular
Formula
TORQUE ACTING ON SHAFTS OF GENEVA WHEEL AND DRIVER The total torque acting on Geneva wheel shaft
M2t ¼ M2t þ M2ti ¼ M2t þ J 2a
ð24-302Þ
It is assumed that M2t is constant. The torque on the shaft of crank or driver
The efficiency of Geneva mechanism
M1t ¼ M2t
!2 1 ! 1 ¼ ðM2t þ J 2a Þ 2 !1 !1
ð24-303Þ
¼ 0.80 to 0.90 when Geneva wheel shaft is mounted on journal bearings (24-304a) ¼ 0.95 when drive shaft is mounted on rolling contact bearings
(24-304b)
¼ 0.75 when the diameter of bearing surface is larger than the outside diameter of Geneva wheel
(24-304c)
INSTANTANEOUS POWER The instantaneous power on the crank or driving shaft
P¼
Mt ! 1000
SI
ð24-305aÞ
where P in kW, Mt in N m, and ! in rad/s Mt ! Customary Metric ð24-305bÞ 102 103 where P in kW, Mt in kgf mm, and ! in rad/s
P¼
Mt ! Customary Metric ð24-305cÞ 75 103 where P in hpm , Mt in kgf mm, and ! in rad/s
P¼
P¼
Mt n 63,000
USCS ð24-305dÞ
where P in hp, Mt in lbf in, and n in rpm
Calculation of average power The average torque MtiðavÞ for complete cycle
MtiðavÞ ¼ 0
The average torque for first half-cycle
MtðavÞ ¼ MðavÞ " 2 # 2 zJ 1 M2t þ ¼ !21 z2 2 1
ð24-306Þ
ð24-307Þ
where J ¼ polar moment of inertia, m4 , cm4 (in4 )
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
MISCELLANEOUS MACHINE ELEMENTS
24.88
CHAPTER TWENTY-FOUR
Particular
The average power required on the crank or driving shaft
Formula
MtðavÞ ! SI ð24-308aÞ 1000 where Pav in kW, MtðavÞ in N m, and ! in rad/s
Pav ¼
MtðavÞ ! Customary Metric ð24-308bÞ 75 103 where Pav in hpm , MtðavÞ in kgf mm, and ! in rad/s
Pav ¼
Pav ¼
MtðavÞ n 63,000
USCS
ð24-308cÞ
where Pav in hp, MtðavÞ in lbf in, and n in rpm
Calculation of maximum power The maximum torque on the driven shaft of Geneva wheel
M2tðmaxÞ ¼ M2t þ M2tiðmaxÞ where M2t is constant M2tiðmaxÞ ¼ J 2aðmaxÞ ¼
The maximum torque on the driving shaft of the crank ω2
r2
β
a
M1tðmaxÞ ’
ω1
M2t
2n 60
2
ð24-310aÞ
1 1
þ
r1
α
J 1 ð ! Þ !1 2a 2 max
2 ð1 2 Þðcos m Þ sin m ð1 2 cos m þ 2 Þ3 1 J!21 ð24-310bÞ
β+α β+α
F1
J 2aðmaxÞ !21
1 !2ðmaxÞ M1tðmaxÞ ¼ M2t !1 þ
F2
ð24-309Þ
where ¼ m at which Mt1 is maximum
FIGURE 24-57 Forces acting on Geneva wheel.
The maximum power required on the shaft of the crank or driver
M1tðmaxÞ ! SI ð24-311aÞ 1000 where P1ðmaxÞ in kW, M1tðmaxÞ in N m, and ! in rad/s
P1ðmaxÞ ¼
M1tðmaxÞ ! Customary Metric ð24-311bÞ 102 103 where P1ðmaxÞ in kW, M1tðmaxÞ in kgf mm, and ! in rad/s
P1ðmaxÞ ¼
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
MISCELLANEOUS MACHINE ELEMENTS MISCELLANEOUS MACHINE ELEMENTS
Particular
24.89
Formula
P1ðmaxÞ ¼
M1tðmaxÞ n 63,000
USCS
ð24-311cÞ
where P1ðmaxÞ in hp, M1tðmaxÞ in lbf in, and n in rpm
FORCES AT THE POINT OF CONTACT (Fig. 24-57) The maximum force at the point of contact between the roller pin and slotted Geneva wheel
F2ðmaxÞ ¼
M2t r2
ð24-312aÞ
F2ðmaxÞ ¼ FðmaxÞ þ FiðmaxÞ
ð24-312bÞ
where qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi r2 ¼ a2 2ar1 cos þ r21 qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi r ¼ 1 1 2 cos þ 2 The component of maximum friction force at the point of contact due to the friction torque M2t on the driven Geneva wheel shaft
F2ðmaxÞ ¼
M2t M2t ¼ r2ðminÞ r1 1
where r2ðminÞ ¼ a r1 ¼
ð24-313Þ
1 1 r 1
For maximum values of F2i
Refer to Table 24-24.
For design data for external Geneva mechanism
Refer to Table 24-25A.
INTERNAL GENEVA WHEEL The time required for indexing Geneva wheel, s
The time during which Geneva wheel is at rest, s
zþ2 ti ¼ z tr ¼
z2 z
60 2n 60 2n
ð24-314Þ ð24-315Þ
The ti =t ratio
ti z þ 2 ¼ t 2z
ð24-316Þ
The tr =t ratio
tr z 2 ¼ t 2z
ð24-317Þ
The working time coefficient of Geneva wheel
k¼
The relationship between crank or driver angle and Geneva wheel angle
zþ2 >1 z2 sin
¼ tan1 1 þ cos
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð24-318Þ ð24-319Þ
MISCELLANEOUS MACHINE ELEMENTS
24.90
CHAPTER TWENTY-FOUR
Particular
Formula
The angular velocity of Geneva wheel
!2 ¼
The maximum angular velocity of Geneva wheel
d ¼ dt
!2ðmaxÞ ¼
The angular acceleration, 2a , of Geneva wheel
2a ¼
ðcos þ Þ !1 1 þ 2 cos þ 2
ð24-320Þ
! 1þ 1
ð24-321Þ
d2 ð1 2 Þ sin ¼ !21 2 dt ð1 þ 2 cos þ 2 Þ2
ð24-322Þ
For values of 2a at start and finish of indexing
Use Eq. (24-285) of external Geneva wheel.
For curves of angular velocity and angular acceleration of internal Geneva wheel
Refer to Fig. 24-58.
The contact forces between the slotted wheel and the pin on the driving crank of the internal Geneva wheel are calculated in a manner similar to that for the external Geneva wheel
0.8 0.6 ω2 ω1 0.4
Materials
1.00
α2a ω12
α 0
3
F2iðmaxÞ
0
α α2a ω12
TABLE 24-24 Maximum F2i values
Jn2 r1
α2a ω12
0.25
0
Chromium steel 40 Cr 1 hardened and tempered to Rc 45 to 55 is used for the sides of slotted Geneva wheel.
0.50
0.2
Chromium steel 15 Cr65 case-hardened to Rc 58 to 65 is used for the roller pin on the driver or crank.
z
0.75
ω2 ω1
4
5
6
8
! 1.966 0.126 0.0318 0.0131 0.00424 FIGURE 24-58 Angular velocity and angular acceleration for four-slot internal Geneva wheel.
TABLE 24-25A Design data for external Geneva mechanism
z
3 4 6 8 10
608 458 308 228300 188
308 458 608 678300 728
i
r1 =a
r2 =a
Rr
r02 =a
!2ðmaxÞ
2aðinitialÞ ¼
ðmaxÞ
Jmax
J ¼ 0
0.5 1 2 3 4
0.886 0.707 0.500 0.383 0.309
0.500 0.707 0.866 0.924 0.951
0.577 1.000 1.732 2.414 3.078
0.134 0.293 0.500 0.617 0.690
3008 2708 2408 2258 2168
0.167 0.250 0.333 0.375 0.400
6.46 2.41 1.00 0.620 0.447
1.732 1.000 0.577 0.414 0.325
48460 118240 228540 318380 388300
31.44 5.41 1.35 0.699 0.465
672 48 6 2.25 1.24
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
MISCELLANEOUS MACHINE ELEMENTS MISCELLANEOUS MACHINE ELEMENTS
24.91
24.10 UNIVERSAL JOINT SYMBOLS2,3 diameter, m (in) shock factor correction factor to be applied to torque to be transmitted correction factor to be applied to power to be transmitted length (also with subscripts), m (in) life, h torque to be transmitted by universal joint, N m (lbf in) design torque, N m (lbf in) speed, rpm speed, rps power to be transmitted by universal joint, kW (hp) design power, kW (hp) angle between two intersecting shafts 1 and 2, deg angle of rotation of the driver shaft 1, deg angle of rotation of the driven shaft 2, deg angular velocities of driver and driven shafts respectively, rad/s
d Ks Kct Kct l L Mt Mtd n n0 P Pd
!1 , !2
Particular
Formula
SINGLE UNIVERSAL JOINT (Figs. 24-59 and 24-61a) The relation between , , and
tan cos
ð24-323Þ
!2 cos ¼ !1 1 sin2 sin2
ð24-324Þ
tan ¼
The relation between the angular velocities of driving shaft 1 or driver (!1 ) to the driven shaft 2 or the follower (!2 )
β R
ω2
r cos β β r P
d1 ω1
1
d2 β O
2
Q 3
S
FIGURE 24-59 A single universal joint.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
MISCELLANEOUS MACHINE ELEMENTS
24.92
CHAPTER TWENTY-FOUR
Particular
The maximum value of !2 =!1
The minimum value of !2 =!1
Formula
!2 !1
¼ max
cos 1 ¼ 1 sin2 cos
ð24-325Þ
when sin ¼ þ1, i.e., ¼ 908, 2708, or =2 or 3=2, etc. !2 ¼ cos ð24-326Þ !1 min when sin ¼ 0, i.e., ¼ 0, , 2, etc.
The angular acceleration of the driven shaft 2, if !1 is constant The value of for which the angular acceleration of the driven shaft is maximum
d 2 d!2 cos sin2 sin 2 2 ¼ !1 ¼ 2 dt dt ð1 sin2 sin2 Þ2 pffiffiffiffiffiffiffiffiffiffiffiffiffi cos 2ðmaxÞ ¼ 2 þ 2
ð24-327Þ ð24-328Þ
where ¼ ð2 sin Þ=2 sin 2
2
The angular acceleration of driven shaft is maximum when is approximately equal to 458, 1358, etc., when the arms of cross are inclined at 458 to the plane containing the axes of the two shafts. The power transmitted by universal joint
P ¼ Mt !=1000
SI
ð24-329aÞ
where P in kW, Mt in N m, and ! in rad/s P ¼ Mt n=63,000
USCS
ð24-329bÞ
where P in hp, Mt in lbf in, and n in rpm The design torque of universal joint
Mtd ¼ Mt Ks Kct
ð24-330Þ
The design power of universal joint
Pd ¼
P KCN
ð24-331Þ
For calculation of torque and power transmitted by universal joint for various angles of inclination
Refer to Figs. 24-62 to 24-65.
For design data of universal joint
Refer to Tables 24-25B and 24-25C.
DOUBLE UNIVERSAL JOINT (Figs. 24-60 and 24-61b) The angular velocities ratio for a double universal joint which will produce a uniform velocity ratio at all times between the input and output ends
!1 ¼1 !2
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð24-332Þ
MISCELLANEOUS MACHINE ELEMENTS 2
1
ω1 (driver) ω2 (driven)
β
3
β
Intermediate shaft (a)
1
ω1 (driver) 3
β
β
(b)
ω2 (driven)
2
Yoke 1 or fork 1 β1
Yoke 2 or fork 2 1 2
3
β2
(a)
2
β
β
3 β
1
2
3
1
(b)
β
FIGURE 24-60 Double universal joints. 90
L3 2 L4
0.5 × 45 L2
(Refer to Table 25.25B) (b) Double universal joint di = 10 to 50
D × 45 L1
L3
L1
do
L1
L1 =
di
D × 45
do
di
0.5 × 45
L1 =
L3 L2
L2
(a) Single universal joint di = 6 to 50
FIGURE 24-61 Dimensions of universal joints.
24.93 Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
MISCELLANEOUS MACHINE ELEMENTS CHAPTER TWENTY-FOUR
Correction factor, KCN
Correction factor, Kct
24.94
2.5 2.2 2 1.8 1.6 1.4 1.2 1
10
15 20 25 30 35 40 Angle of inclination (β), deg
45
FIGURE 24-62 Angle between two intersecting shafts vs. correction factor (Kct ).
50×90 40×75
20
25×50 32×50
15 10 8 6 5 4
20×40 25×40
3
32×63 40×63
176.5 Nm
98.10 78.45 58.84 49.03 39.23 29.42
16×25 20×32 12×25 16×25
19.61 10×20 12×20
9.81 7.85 5.88 4.90 3.92 2.94
d1×d2
0.2 0.1
1 2 3 5 10 20 50 30
40
45
FIGURE 24-63 Angle between two intersecting shafts vs. correction factor (KCN ).
196.1
2 1 0.8 0.6 0.5 0.4 0.3
20 25 30 35 Angle of inclination (β), deg
981.0 784.5 588.4 490.3 392.3 294.2
120× 104 rpm
Design torque, (Mtd), kgf m
18 kgf m
15
Design torque, (Mtd), N m
100 80 60 50 40 30
1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 10
1.96 0.98 200 500 2000 5000
4 100 300 1000 3000 10000×10
Speed × life (nL), rpm h
FIGURE 24-64 Design curves for single universal joint with needle bearings for ¼ 108.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
MISCELLANEOUS MACHINE ELEMENTS
kg f
4 5 6 8 10 3 2
40 ×7 5
6× 16
0.1 0.08 0.06 0.05 0.04 0.03
0. 2
1 16 2× 10 ×2 25 1 × 5 8 2× 20 10 ×1 20 ×1 6 6
0.2
0. 1
1 0.8 0.6 0.5 0.4 0.3
0. 0. 0. 0. 0. 1 3 4 5 6 8
32 2 3 5× 40 ×6 25 20 2×5 50 ×63 3 1 × ×4 0 20 6×3 40 0 ×3 2 2
Design power (pd), kW
2
d i ×d o
0.02 0.01
17 .5
50 ×9 0
kW 10 8 5.7 kW 6 5 4 3
10 80 0 60 50 40 30 20
kg f 30 m 0 20 0
m
MISCELLANEOUS MACHINE ELEMENTS
325 rpm
10
200 300 400600 1000 20 30 40 60 100 Speed, (n), rpm
FIGURE 24-65(a) Design curves for single universal joint with plain bearings for ¼ 108.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
24.95
MISCELLANEOUS MACHINE ELEMENTS
TABLE 24-25B Dimensions of universal joint (Fig. 24-61) Maximum allowable rotational play Test torque di H7
do k11
6 8 10
16 20
12 25 16 32 20 40 25 50 32 63 40 50
75 90
L2
L3 þ1
9 11 15 13 18 15 22 19 25 23 32 29 40 36 50 44 54
34 40 52 48 62 56 74 68 86 82 108 105 132 130 166 160 190
L4 1
z
0.196
0.02
45
0.392
0.04
40
0.981
0.10
32
0.667
0.17
28
3.334
0.34
25
5.296
0.54
20
14.710
1.5
18
0.12
21.575 27.458
2.2 2.8
16 14
0.15
Nm
Tolerance on coaxiality of the two bores
74 0.5 88 86 104 124 128 156 160 188 198 238 245 290
0.06
1
m
0.09
USE OF CURVES IN FIGS. 24-62 TO 24-65 do
di
Worked example 1 A single universal joint has to transmit a torque of 10 kgf m at 1500 rpm. The angle between intersecting shafts is 258. The joint is subjected to a minor shock. The shock factor ðKs Þ is 1.5. Design a universal joint with needle bearings for a life of 800 h.
dp
FIGURE 24-65(b) Taper pin joint. The length of the taper pin should conform to diameter do in Table 24-25B.
TABLE 24-25C Dimensions of taper pina (Fig. 24-65b) di
dp
m
6 8 10 12 16 20 25 32 40 50
2 3 4 5 6 8 10 12 14 16
4.5 5 6 7.5 9 11 15 18 22 27
The shear stress of taper pin ¼ ¼ 158:5 to 247.5 MPa (16 to 25 kgf/mm2 ).
a
kgf m
Angular rotational play at an angle of inclination of deg in minutes
SOLUTION From Fig. 24-62 correction factor for
¼ 258 is Kct ¼ 1:2. Design torque ¼ Mtd ¼ Mt Ks Kct ¼ 10 1:5 1:2 ¼ 18 kgf m (176.5 N m). Speed life ¼ nL ¼ 1500 800 ¼ 120 104 rpm h. From Fig. 24-64 for Mtd ¼ 18 kgf m (176.5 N m) and nL ¼ 120 104 rpm h, the size of a single universal joint is ðdi do Þ 40 75 mm.
Worked example 2 Design a single universal joint with plain bearings to transmit 2 kW power at 325 rpm. The angle between two intersecting shafts is 27.58. SOLUTION From Fig. 24-63 correction factor for ¼ 27:58 is KCN ¼ 0:35. Design power ¼ Pd ¼ ðP=KCN Þ ¼ ð2=0:35Þ ¼ 5:7 kW. From Fig. 24-65a the size of a single universal joint for Pd ¼ 5:7 kW and speed ¼ n ¼ 325 rpm is ðdi do Þ 40 75 mm. The permissible torque for this size of joint (Fig. 24-65a) is 17.5 kgf m (171.5 N m).
24.96 Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
MISCELLANEOUS MACHINE ELEMENTS MISCELLANEOUS MACHINE ELEMENTS
24.11 UNSYMMETRICAL BENDING AND TORSION OF NONCIRCULAR CROSS-SECTION MACHINE ELEMENTS SYMBOLS2,3 semimajor axis of elliptical section, m (in) width of rectangular section, m (in) (in2) A area of cross section, m2 (in) b semi-minor axis of elliptical section, m (in) height of rectangular section, m (in) c distance of the plane from neutral axis, m (in) thickness of narrow rectangular cross section (Fig. 24-68) e the distance from a point in the shear center S (Table 24-26) E Young’s modulus, GPa (MPsi) G modulus of rigidity, GPa (MPsi) I moment of inertia, area (also with suffixes), m4 (cm4 ) (in4 ) Iu , Iv moment of inertia of cross-sectional area, respectively, m4 (cm4 ) (in4 ) Jk polar moment of inertia, m4 (cm4 ) (in4 ) k 1 , k2 constants from Table 24-28 for use in Eqs. (24-343) and (24344) L length, m (in) Mb bending moment, N m (lbf ft) Mt twisting moment, N m (lbf ft) Mbu ¼ Mb cos bending moment about the U principal centroidal axis or any axis parallel thereto Mbv ¼ Mb sin bending moment about the V principal centroidal axis or any axis parallel thereto q ¼ t shear flow Q the first moment of the section, m4 (cm4 ) (in4 ) S the length of the center of the ring section of the thin tube, m (in) t width of cross section at the plane in which it is desired to find the shear stress, m (in) thickness of the wall of the thin-walled section, m u, v coordinates of any point in the section with reference to principal centroidal axes V shear force on the cross section, kN (lbf) Vy resultant shear force acting at the shear center, kN (lbf) x the distance of the section considered from the fixed end (Fig. 24-73) x, y coordinates in x and y directions b bending stress (also with suffixes), MPa (psi) shear stress (also with suffixes), MPa (psi)
variable thickness of thin tube wall (Fig. 24-70), m (in) angle measured from the V principal centroidal axis, deg angle of twist, deg a
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
24.97
MISCELLANEOUS MACHINE ELEMENTS
24.98
CHAPTER TWENTY-FOUR
Particular
Formula
SHEAR CENTER The shear stress at any point in transverse plane or section of a member
¼
The flexural stress in a thin-walled open section
b ¼
Shear flow
q ¼ t ¼
For the equations for locating the shear centers of various thin open sections
Refer to Table 24-26.
VQ It
ð24-333Þ
Mb c I VQ I
ð24-334Þ ð24-335Þ
UNSYMMETRICAL BENDING The flexural stress in case of sections subjected to unsymmetrical bending
b ¼ ¼
Flexural modulus for any cross section on which the stress is desired
ðMb cos Þv ðMb sin Þu þ Iu Iv Mbu v Mbv u þ Iu Iv
Z ¼ Iu Iv =ðvIv cos þ uIu sin Þ
ð24-336Þ ð24-337Þ
TORSION Solid sections ELLIPTICAL CROSS SECTION Shear stress acting in the x direction on the xz plane (Fig. 24-66)
xz ¼
Shear stress acting in the y direction on the yz plane (Fig. 24-66)
yz ¼
Maximum shear stress on the periphery at the extremities of the minor axis (Fig. 24-66 and Table 24-27)
max ¼
2Mt ab2
ð24-340Þ
Minimum shear stress on the periphery at the extremities of the major axis
min ¼
2Mt a2 b
ð24-341Þ
Angle of twist (Fig. 24-66)
¼
2Mt y ab3 2Mt x a3 b
Mt ða2 þ b2 Þ L G a3 b3
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð24-338Þ ð24-339Þ
ð24-342Þ
MISCELLANEOUS MACHINE ELEMENTS MISCELLANEOUS MACHINE ELEMENTS
Particular
24.99
Formula
lRECTANGULAR CROSS SECTION The maximum shear stress at point A on the boundary, close to the center (Fig. 24-67 and Table 24-27)
A ¼
ð24-343Þ
where k1 depends on ratio a=b (Refer to Table 24-28.) ¼
Angle of twist (Table 24-27)
Mt k1 ab2
Mt L k2 ab3 G
ð24-344Þ
where k2 depends on ratio a=b (Refer to Table 24-28.)
y
Mt
y
τyz
A τxz
y
x
τmax
b
x
x
b
a
a
FIGURE 24-66 FIGURE 24-67
NARROW RECTANGULAR CROSS SECTIONS (Fig. 24-68) Equation for twisting moment (Fig. 24-68)
Mt ¼ 13 Gc3 b
ð24-345Þ
Equation for angle of twist
¼
3Mt Gc3 b
ð24-346Þ
The maximum shear stress
max ¼
3Mt bc2
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð24-347Þ
MISCELLANEOUS MACHINE ELEMENTS
24.100
CHAPTER TWENTY-FOUR
TABLE 24-26 Location of shear center for various cross sections Location of shear center tf
b t s w
tw 2 x
c
3b2 tf htw þ 6btf
Location of shear center
b2
b1
s
c
e¼
h
h
for b2 < b1
x
e
vy
3ðb21 b22 Þ ðtw =tf Þh þ 6ðb1 þ b2 Þ
tf
e
e¼
Section
tf
Section
tf
y
c
s e
x
where b1 ¼ b t h2 ¼ h t
h1 h 2
y
vy
b
h h 1 2
t
c
e y b
x
e¼
x
e
b c
t2
y
x
vy
t1
c
s
bt1 h31 t1 h31 þ t2 h32
x
e
b b 3 2 b1 b1 e ¼ b1 3 2 pffiffiffi b b b 2 þ3 3 þ1 b1 b1 b1
b
y
L = Length of Dotted line
2 b þ h1 b bh m ¼ 12 þ 6 þ 12 21 þ6 a a a 2 3 h1 h1 b þ 3 4 a a a
vy y
vy
m n
x h1
a
s
c s h2
1þ
where b1 ¼ b t=2 h2 ¼ h þ t
h1
vy
9 > 1 b1 4 h1 2 > > = 2 h1 3 h2 e ¼ b1 > 1 h2 b1 h 2h > > > > þ þ2 1 1þ 1 > :1 þ ; h2 3h2 6 h1 h1
h1 h 2
s
8 > > > <
t
b
e¼
b 1
h1 h 2
t
b
e
h1
9 > 1 b1 4 h1 2 > > = 2 h1 3 h2 e ¼ b1 > > 1 h b 2h 2h > > 2 > þ 1 1 1 1 > :1 þ ; h2 3h2 6 h1 h1 1þ
t
8 > > > <
b
b t
y
b
vy
h
th s
c
y
e
vy
x tb
e¼
2A h þ Lðth =tb Þ
where A ¼ area
2 b þ h1 h h n ¼ 3 þ 12 3þ 1 þ4 1 a a a a s
c
x α
vy
e
C is at the centroid of triangle e ¼ 0:47a for narrow triangle ð > 128Þ approx.
y
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
MISCELLANEOUS MACHINE ELEMENTS MISCELLANEOUS MACHINE ELEMENTS
24.101
TABLE 24-26 (Cont.) Location of shear center for various cross sections Section φ φ
C e
a
vy
y
Section
Location of shear center b1
2a½ð Þ cos þ sin ½ð Þ þ sin cos 4a For ¼ ; e ¼ 2
e¼
x t
e1 ¼ c
t
s
Location of shear center
½3Ixy ðh cÞ þ Ix ð2b1 3dÞ
t C
e2 ¼ d þ
c
s
x
vx
e1
h
b21 ht 6ðIy Ix I2xy Þ
b21 ht 6ðIy Ix I2xy Þ
t
½Ixy ð2b1 3dÞ þ 3Iy ðh cÞ y
b ex ¼ 2
tw
ey tf
b
s
vx
h 2
þ tf
e2
where
d
vy
y
c¼
b2
h2 þ 2b1 h b21 þ b22 ;d¼ 2hðb1 þ b2 Þ 2hðb1 þ b2 Þ
Ix ; Iy ¼ moment of inertia of section about x and y axes, respectively Ixy ¼ product of moment of inertia
ht3w ht3w
b3
x
y b
e
y
c
vy
tf c h
ey ¼
ht3w ht3w þ tf b3
tw s vy
x
8 9 > < 1 > = 1 3 h tf e ¼ ðtf þ bÞ > > 2 1 þ : ; t3w b
l c
s
vy
e
y
t
ex
h
x
dx
e¼
1 þ 3v 1þv
ð xt3 dx ð t3 dx
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
MISCELLANEOUS MACHINE ELEMENTS
24.102
CHAPTER TWENTY-FOUR
TABLE 24-27 Approximate formulas for torsional shearing stress and angle of twist for various cross sections
2b C
2a
C
Angle of twist per unit length , rad/in (rad/m)
Shearing stress, lbf/in2 (N/m2 or MPa)
Cross section
b
b
c ¼
2Mt ab2
¼
¼
2Mt Ab
¼
42 JMt A4 G
¼
20Mt b3
¼
46:2Mt Gb4
c ¼
Mt k1 ab2
¼
Mt k2 ab3 G
¼
Mt 2r2
¼
Mt 2r3 G
¼
3Mt 2r 2
¼
3Mt 2r 3 G
¼
Mt 2ab
¼
Mt
c ¼
Mt 2ab 1
¼
D ¼
Mt 2ab
a
r
Mt ða2 þ b2 Þ Ga3 b3
δ
r
δ C
δ
2b
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2ða2 þ b2 Þ 4a2 b2 G
2a δ1
C
D
b
δ a
Mt ða þ b 1 Þ 2
1 a2 b2 G
A ¼ area of cross section
TABLE 24-28 Variation of k1 and k2 with the ratio a=b for use in Eqs. (24-343) and (24-344) a=b
1
1.2
1.5
2.0
2.5
3.0
4.0
5.0
10.0
1
k1 k2
0.208 0.141
0.219 0.166
0.231 0.196
0.246 0.229
0.258 0.249
0.267 0.263
0.282 0.281
0.391 0.291
0.312 0.312
0.333 0.333
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
MISCELLANEOUS MACHINE ELEMENTS MISCELLANEOUS MACHINE ELEMENTS
Particular
24.103
Formula
COMPOSITE SECTIONS Cross Sections Composed of Narrow Rectangles Equation for torque of a narrow rectangular cross section
Mt ¼
k2 bc3 G L
ð24-348Þ
Equation for torque of a narrow rectangular section (b=c ! 1, k2 ¼ 13)
Mt ¼
G bc3 3L
ð24-349Þ
Equation for torque for a cross-section composed of several narrow rectangles (Table 24-27)
Mt ¼
G k2 bc3 L
ð24-350Þ
Angle of twist for a cross section composed of several narrow rectangles
¼
Maximum shear stress
3Mt L Gbc3
max ¼
ð24-351Þ
3Mt cmax k for 2 ¼ 1 k1 bc3
ð24-352Þ
where cmax ¼ maximum thickness of the narrow section For approximate formulas for torsional shearing stress and angle of twist for various cross sections
Refer to Table 24-27.
For variation of stress-concentration factor K with ratio r=c for structural angle (Fig. 24-69)
Refer to Table 24-29.
y
y B
c
A
A B z
0
z
Section on BB
b
z 0 Section on AA
x
x FIGURE 24-68
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
MISCELLANEOUS MACHINE ELEMENTS
24.104
CHAPTER TWENTY-FOUR
Particular
Formula
TABLE 24-29 Stress concentration factors for structural angle, K (Fig. 24-69) 0.125 2.550
r=c K
0.250 2.250
0.500 2.000
0.750 1.875
c
1.000 1.800
r c FIGURE 24-69
HOLLOW THIN-WALLED TUBES (Fig. 24-70) The equation for the twisting moment
Mt ¼ qð2AÞ ¼ 2A
ð24-353Þ
where A ¼ area enclosed by the median line of the tubular section Mt S 4A2 G
ð24-354Þ
ds ¼ 2GA
ð24-355Þ
The angle of twist
¼
Þ By membrane analogy the value of ds
þ
The equation for the shear stress
¼
The difference in level between DC and AB of membrane
h ¼
The equation for twisting moment of thin webbed tubes (or box beams) (Fig. 24-71)
Mt ¼ 2ðA1 h1 þ A2 h2 Þ
ð24-358aÞ
Mt ¼ 2ðA1 1 1 þ A2 2 2 Þ
ð24-358bÞ
The equations for shear stress S 0
x
δ
y z
D 0
ð24-356Þ ð24-357Þ
1 ¼ Mt
3 S2 A1 þ 2 S3 ðA1 þ A2 Þ R
ð24-359aÞ
2 ¼ Mt
3 S1 A2 þ 1 S3 ðA1 þ A2 Þ R
ð24-359bÞ
3 ¼ Mt
1 S3 A1 2 S1 A2 R
ð24-359cÞ
where
C
h A
Mt
2A
B
x
R ¼ 2½ 1 3 S2 A21 þ 2 3 S1 A22 þ 1 2 S3 ðA1 þ A2 Þ2 FIGURE 24-70
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð24-360Þ
MISCELLANEOUS MACHINE ELEMENTS MISCELLANEOUS MACHINE ELEMENTS
Particular
24.105
Formula
S1
S2 δ2
A2
S3
τ3
δ1
A1
δ3
τ1
τ2 C
B
D
t1
v
h1 δ1
h2
h2
A
E
tw
F
Mt
c
x h 2
h τ3 τ2
v
τ1
b y
FIGURE 24-71
FIGURE 24-72
BENDING STRESSES CAUSED BY TORSION Torsion of I-beam having one section restrained from warping The lateral bending moment in the flanges of an Ibeam subjected to twisting moment at one end, the other end being fixed, Fig. 24-72 The maximum bending moment for long beam
Twisting moment at any section, distance x from the fixed end The angle of twist per unit length
The total angle of twist at the free end Maximum bending moment
Mb ¼
Mt sin hðL xÞ=k k h cos hðL=kÞ
MbðmaxÞ ¼
Mt k h
as
tan h
L ¼1 k
where k ¼ ðh=2Þ½EI=JG 1=2 cos hðL xÞ=k Mtx ¼ Mt 1 cos hðL=kÞ M cos hðL xÞ=k u ¼ t 1 JG cos hðL=kÞ M L ¼ t L k tan h k JG MbðmaxÞ ¼
Mt L k tan h h k
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð24-361Þ
ð24-362Þ
ð24-363Þ ð24-364Þ ð24-365Þ ð24-366Þ
MISCELLANEOUS MACHINE ELEMENTS
24.106
CHAPTER TWENTY-FOUR
Particular
Formula
The angle of twist at free end if l=k > 2:5
¼
The maximum bending moment if l=k > 2:5
Mt ðL kÞ JG
ð24-367Þ
Mt k h
ð24-368Þ
MbðmaxÞ ¼
The bending stress
b ¼
MbðmaxÞ b 2If
where MbðmaxÞ obtained from Table 24-30 Refer to Table 24-30.
For beams subjected to torsion
TRANSVERSE LOAD ON BEAM OF CHANNEL SECTION NOT THROUGH SHEAR CENTER (Fig. 24-73) σ1 = Mh 2I σ2 = vl b 2If 6Fel = ht b2
b
l
b
l
v t
v
(b)
L
h
v F e
t1
v tw Mt
h 2
y
vy
x
h
Shear centre
s
y b (c)
(a)
FIGURE 24-73
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð24-369Þ
MISCELLANEOUS MACHINE ELEMENTS MISCELLANEOUS MACHINE ELEMENTS
Particular
24.107
Formula
The direct stress
t ¼
The bending stress
b ¼
The maximum longitudinal stress (Fig. 24-73b)
¼
For geometrical properties, weight, and nominal dimensions of beams, channels, T-bars, and equal and unequal angles
Refer to Tables 24-31 and 24-32 and Figs. 24-74 to 24-79.
Mh I 2 where M ¼ Fe VIb=2 6Fel ¼ I htb2
Mh 6Fel þ 2I htb2
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð24-370Þ
ð24-371Þ ð24-372Þ
MISCELLANEOUS MACHINE ELEMENTS
24.108
CHAPTER TWENTY-FOUR
TABLE 24-30 Formulas for maximum lateral bending moment and angle of twist of beams subjected to torsiona Maximum lateral bending moment in flange, lbf in (N m)
Type of loading and support
MbðmaxÞ ¼
Mt
Mt
¼ if
L Mt = wLe w
Mt = wLe w
¼
Mt k h
L L
Mt k h
¼
Mt k h
L1
L2 if
cot h
L 2k 2k L
¼
Mt 2JG
¼
Mt 2JG
if cot h
L k k L
L1 L2 Mt k sin h k sin h k ¼ h L sin h k Mt k ¼ 2h
L1 L and 2 > 2 k k
¼
Mt JG
¼
Mt JG
L k 4
b
L L k tan h 2 2k L k 2
b
L > 2:5 2k
¼
1 Mt 2 JG
¼
1 Mt 2 JG
if
L L k tan h 4 4k
L > 2:5 4k
if
Mt ðL 2kÞb JG
L > 2:5 2k
L is large k
MbðmaxÞ
Mt
L is large 2k
MbðmaxÞ ¼
if
¼ if
Mt k 2h
e
Mt L L 2k tan h 2k JG
Mt k h
MbðmaxÞ ¼
if
¼
L > 2:5 2k
e
L
Mt k L tan h h 2k
Angle of twist of beam of length L, rad
L L k tan h ðapprox:Þ 2 2k
L k 2
b
L > 2:5 2k
error is small a b
Formulas given in Table 24-30 can also be used for Z and channel sections. Error is small for the conditions L=2k > 2:5 and L=4k > 2:5.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
150 175 200 225 75 100 125 150 175 200 225 250 275 300 325 350 400 450 500 550 600 100 125 150 175 200 225 250 300 350 400 450 500 550 600 150 175 200 225
Beam or column section (See Fig. 24-74)
ISJB 150 ISJB 175 ISJB 200 ISJB 225 ISLB 75 ISLB 100 ISLB 125 ISLB 150 ISLB 175 ISLB 200 ISLB 225 ISLB 250 y ISLB 275 b ISLB 300 tf ISLB 325 D ISLB 350 exx !SLB 400 tw b - tw ISLB 450 4 h ISLB 500 x x ISLB 550 ISLB 600 ISMB 100 ISMB 125 r1 r2 ISMB 150 ISMB 175 eyy y ISMB 200 ISMB 225 FIGURE 24-74 ISMB 250 Beam or column ISMB 300 section. ISMB 350 ISMB 400 ISMB 450 ISMB 500 ISMB 550 ISMB 600 ISWB 150 ISWB 175 ISWB 200 ISWB 225
mm
Section 50 50 60 80 50 50 75 80 90 100 100 125 140 150 165 165 165 170 180 190 210 75 75 80 90 100 110 125 140 140 140 150 180 190 210 100 125 140 150
mm
(3)
(1)
(2)
Width of flange, b
Depth of Designation beam, h
3.0 3.2 3.4 3.7 3.7 4.0 4.4 4.8 5.1 5.4 5.8 6.1 6.4 6.7 7.0 7.4 8.0 8.6 9.2 9.9 10.5 4.0 4.4 4.8 5.5 5.7 6.5 6.9 7.5 8.1 8.9 9.4 10.2 11.2 12.0 5.4 5.8 6.1 6.4
mm
(4)
Thickness of web, tw
4.6 4.3 5.0 5.0 5.0 6.4 6.5 6.8 6.9 7.3 8.6 8.2 8.8 9.4 9.8 11.4 12.5 13.4 14.1 15.0 15.5 7.2 7.6 7.6 8.6 10.8 11.8 12.5 12.4 14.2 16.0 17.4 17.2 19.3 20.8 7.0 7.4 9.0 9.9
mm
(5)
Thickness of flange, tf
91.5 91.5 91.5 91.5 91.5 91.5 91.5 91.5 91.5 91.5 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 96 96 96 96
deg
(6)
Slope of flange, D
Dimensions of the section
5.0 5.0 5.0 6.5 6.5 7.0 8.0 9.5 9.5 9.5 12.0 13.0 14.0 15.0 16.0 16.0 16.0 16.0 17.0 18.0 20.0 9.0 9.0 9.0 10.0 11.0 12.0 12.0 14.0 14.0 14.0 15.0 17.0 18.0 20.0 8.0 8.0 9.0 9.0
mm
(7)
Radius at root, r1 ðrr Þ
1.5 1.5 1.5 1.5 2.0 3.0 3.0 3.0 3.0 3.0 6.0 6.5 7.0 7.5 8.0 8.0 8.0 8.0 8.5 9.0 10.0 4.5 4.5 4.5 5.0 5.5 6.0 6.5 7.0 7.0 7.0 7.5 8.5 9.0 10.0 4.0 4.0 4.5 4.5
mm
(8)
Radius at toe, r2 ðrt Þ
cm
(9)
Center of gravity, Cyy
TABLE 24-31 Geometrical properties, weight, and nominal dimensions of beams, channels, and T-bars
9.01 10.28 12.64 16.28 7.71 10.21 15.12 18.08 21.30 25.27 29.92 35.53 42.02 48.08 54.90 63.01 72.43 83.14 95.50 109.97 126.69 14.60 16.60 19.00 24.62 32.33 39.72 47.55 56.26 66.71 78.46 92.27 110.74 132.11 156.21 21.67 28.11 36.71 43.24
cm
2
(10)
Sectional area, A
7.1 8.1 9.9 12.8 6.1 8.0 11.9 14.2 16.7 19.8 23.5 27.9 33.0 37.7 43.1 49.5 56.9 65.3 75.0 86.3 99.5 11.5 12.0 14.9 19.3 25.4 31.2 37.3 44.2 52.4 61.6 72.4 86.9 103.7 122.6 17.0 22.1 28.8 33.9
kg
(11)
Weight per meter, w
322.1 479.3 780.7 1308.5 72.7 168.0 406.8 688.2 1096.2 1696.6 2501.9 3917.8 5375.3 7332.9 9874.6 13158.3 19306.3 27536.1 38579.0 53161.6 72867.6 257.5 449.0 726.4 1272.0 2235.4 3441.8 5131.6 8603.6 13630.3 20450.4 30390.8 45218.3 64893.6 91813.0 839.1 1509.4 2624.5 3920.5
cm
4
(12)
Ixx
9.2 9.7 17.3 40.5 10.0 12.7 43.4 55.2 79.6 115.4 112.7 193.4 287.0 376.2 510.8 631.9 716.4 853.0 1063.9 1335.1 1821.9 40.8 43.7 52.6 85.0 150.0 218.3 334.5 453.9 537.7 622.1 834.0 1369.8 1833.8 2651.0 94.8 188.6 328.8 448.6
cm
4
(13)
Iyy
Moments of inertia
5.98 6.83 7.86 8.97 3.07 4.06 5.19 6.17 7.17 8.19 9.15 10.23 11.31 12.35 13.41 14.45 16.33 18.20 20.10 21.99 23.98 4.20 5.20 6.18 7.19 8.32 9.31 10.39 12.37 14.29 16.15 18.15 20.21 22.16 24.24 6.22 7.33 8.46 9.52
cm
(14)
rxx
1.01 0.97 1.17 1.58 1.14 1.12 1.69 1.75 1.93 2.13 1.94 2.33 2.61 2.80 3.05 3.17 3.15 3.20 3.34 3.48 3.79 1.67 1.62 1.66 1.86 2.15 2.34 2.65 2.84 2.84 2.82 3.01 3.52 3.73 4.12 2.09 2.59 2.99 3.22
cm
(15)
ryy
Radius of gyration
42.9 54.8 78.1 116.3 19.4 33.6 65.1 91.8 125.3 169.7 222.4 297.4 392.4 488.9 607.7 751.9 965.3 1223.8 1543.2 1933.2 2428.9 51.5 71.8 96.9 145.4 223.5 305.9 410.5 573.6 778.9 1022.9 1350.7 1808.7 2359.8 3060.4 111.9 172.5 262.5 348.5
cm
3
(16)
Zxxx
3.7 3.9 5.8 10.1 4.0 5.1 11.6 13.8 17.7 23.1 22.5 30.9 41.0 50.2 61.9 76.6 86.8 100.4 118.2 140.5 173.5 10.9 11.7 13.1 18.9 30.0 39.7 53.5 64.8 76.8 88.9 112.2 152.2 193.0 252.5 19.0 30.2 47.0 59.8
cm3
(17)
Zyy
Section moduli
MISCELLANEOUS MACHINE ELEMENTS
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
24.109
h
r1
cyy eyy y
r2
ISJC 100 ISJC 125 ISJC 150 ISJC 175 ISJC 200 ISLC 75 ISLC 100 ISLC 125 ISLC 150 ISLC 175 ISLC 200 ISLC 225 ISLC 250 ISLC 300 ISLC 350 ISLC 400 ISMC 75 ISMC 100 ISMC 125 ISMC 150 ISMC 175 ISMC 200
ISWB 250 ISWB 300 ISWB 350 ISWB 400 ISWB 450 ISWB 500 y b ISWB 550 ISWB 600 tf D ISHB 150 ISHB 200 tw ISHB 225 b - tw ISHB 250 2 x ISHB 300 ISHB 350 ISHB 400 ISHB 450
FIGURE 24-75 Channel section.
x
exx
Section
100 125 150 175 200 75 100 125 150 175 200 225 250 300 350 400 75 100 125 150 175 200
250 300 350 400 450 500 550 600 150 200 225 250 300 350 400 450
mm
45 50 55 60 70 40 50 65 75 75 75 90 100 100 100 100 40 50 65 75 75 75
200 200 200 200 200 250 250 250 150 200 225 250 250 250 250 250
mm
(3)
(1)
(2)
Width of flange, b
Depth of Designation beam, h
3.0 3.0 3.6 3.6 4.1 3.7 4.0 4.4 4.8 5.1 5.5 5.8 6.1 6.7 7.4 8.0 4.4 4.7 5.0 5.4 5.7 6.7
6.7 7.4 8.0 8.6 9.2 9.9 10.5 11.2 5.4 6.1 6.5 6.9 7.6 8.3 9.1 9.8
mm
(4)
Thickness of web, tw
5.1 6.6 6.9 6.9 7.1 6.0 6.4 6.6 7.8 9.5 10.8 10.2 10.7 11.6 12.5 14.0 7.3 7.5 8.1 9.0 10.2 11.4
9.0 10.0 11.4 13.0 15.4 14.7 17.6 21.3 9.0 9.0 9.1 9.7 10.6 11.6 12.7 13.7
mm
(5)
Thickness of flange, tf
91.5 91.5 91.5 91.5 91.5 91.5 91.5 91.5 91.5 91.5 96.0 96.0 96.0 96.0 96.0 96.0 96.0 96.0 96.0 96.0 96.0 96.0
96 96 96 96 96 96 96 96 96 94 94 94 94 94 94 94
deg
(6)
Slope of flange, D
Dimensions of the section
6.0 6.0 7.0 7.0 8.0 6.0 6.0 7.0 8.0 8.0 8.5 11.0 11.0 12.0 13.0 14.0 8.5 9.0 9.5 10.0 10.5 11.0
10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 8.0 9.0 10.0 10.0 11.0 12.0 14.0 15.0
mm
(7) mm
(8)
Radius at toe, r2 ðrt Þ
5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 4.0 4.5 5.0 5.0 5.5 6.0 7.0 7.5 Channel Section 2.0 2.4 2.4 3.0 3.2 2.0 2.0 2.4 2.4 3.2 3.2 3.2 3.2 3.2 4.8 4.8 2.4 2.4 2.4 2.4 3.2 3.2
Radius at root, r1 ðrr Þ
1.40 1.64 1.66 1.75 1.97 1.35 1.62 2.0.4 2.38 2.40 2.35 2.46 2.70 2.55 2.41 2.36 1.31 1.53 1.94 2.22 2.20 2.17
cm
(9)
Center of gravity, Cyy
7.41 10.07 12.65 14.24 17.77 7.26 10.02 13.67 18.36 22.40 26.22 30.53 35.65 42.11 49.47 58.25 8.67 11.70 16.19 20.88 24.38 28.21
52.05 61.33 72.50 85.01 101.15 121.22 143.34 170.38 34.48 47.54 54.94 64.96 74.85 85.91 98.66 111.14
cm
2
(10)
Sectional area, A
TABLE 24-31 Geometrical properties, weight, and nominal dimensions of beams, channels, and T-bars (Cont.)
5.8 7.9 9.9 11.2 13.9 5.7 7.9 10.7 14.4 17.6 20.6 24.0 28.0 33.1 38.8 45.7 6.8 9.2 12.7 16.4 19.1 22.1
40.9 48.1 56.9 66.7 79.4 95.2 112.5 133.7 27.1 37.3 43.1 51.0 58.8 67.4 77.4 87.2
kg
(11)
123.8 270.0 471.1 719.9 1161.2 66.1 164.7 356.8 697.2 1148.4 1725.5 2547.9 3687.5 6047.9 9382.6 13989.5 76.0 186.7 416.4 779.4 1223.3 1819.3
5943.1 9821.6 15521.7 23426.7 35057.6 52290.9 74906.1 106198.5 1455.6 3608.4 5279.5 7736.5 12545.2 19159.2 28083.5 39210.8
cm
4
(12)
14.9 25.7 37.9 50.5 84.2 11.5 24.8 57.2 103.2 126.5 146.9 209.5 298.9 346.0 394.6 460.4 12.6 25.9 59.9 102.3 121.0 140.4
857.5 990.1 1175.9 1388.0 1706.7 2987.8 3740.5 4702.5 431.7 967.1 1353.8 1961.3 2193.6 2451.4 2728.3 2985.2
cm
4
(13)
Weight Moments of inertia per meter, w Ixx Iyy
4.09 5.18 6.10 7.11 8.08 3.02 4.06 5.11 6.19 7.16 8.11 9.14 10.17 11.98 13.72 15.50 2.96 4.0 5.07 6.11 7.08 8.03
10.69 12.66 14.63 16.60 18.63 20.77 22.85 24.97 6.50 8.71 9.80 10.91 12.95 14.93 16.87 18.78
cm
(14)
rxx
1.42 1.60 1.73 1.88 2.18 1.26 1.57 2.05 2.37 2.38 2.37 2.62 2.89 2.97 2.82 2.81 1.21 1.49 1.92 2.21 2.23 2.23
4.06 4.02 4.03 4.04 4.11 4.96 5.11 5.25 3..54 4.51 4.96 5.49 5.41 5.34 5.26 5.18
cm
(15)
ryy
Radius of gyration
24.8 43.2 62.8 82.3 116.1 17.6 32.9 57.1 93.0 131.3 172.6 226.5 295.0 603.2 532.1 699.5 20.3 37.3 66.6 103.9 139.8 181.9
475.4 654.8 887.0 1171.3 1558.1 2091.6 2723.9 3540.0 194.1 360.8 489.3 618.9 836.3 1094.8 1404.2 1742.7
cm
3
(16)
Zxxx
4.8 7.6 9.9 11.9 16.7 4.3 7.3 12.8 20.2 24.8 28.5 32.0 40.9 46.4 52.0 60.2 4.7 7.5 13.1 19.4 22.8 26.3
85.7 99.0 117.6 138.8 17.07 239.0 299.2 376.2 57.6 96.7 120.3 156.9 175.5 196.1 218.3 238.8
cm3
(17)
Zyy
Section moduli
MISCELLANEOUS MACHINE ELEMENTS
24.110
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
x
4
rr
eyy = cyy
b - tw
tf
y
b y
tw
x
4
b - tw
eyy = cyy
rt
y
b y
tw
ISMC 225
exx
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
100 150 200 250 50 62.5 75 87.5 100 50 62.5 75 87.5 75 100 125 150
ISDT 100 ISDT 150 ISDT 200 ISDT 250 ISMT 50 ISMT 62.5 ISMT 75 ISMT 87.5 ISMT 100 ISMT 50 ISMT 62.5 ISMT 75 ISMT 87.5 ISHT 75 ISHT 100 ISHT 125 ISHT 150
50 75 165 780 75 75 80 90 100 70 70 75 85 150 200 250 250
20 30 40 50 60 75 100 150
80 90 100 100
80
mm
5.8 8.0 8.0 9.2 4.0 4.4 4.8 5.5 5.7 4.5 4.8 5.0 5.8 8.4 7.8 8.8 7.6
4.0 4.0 6.0 6.0 6.0 9.0 10.0 10.0
7.1 7.6 8.1 8.6
6.4
mm
(4)
Thickness of web, tw
10.0 11.6 12.5 14.1 7.2 7.6 7.6 8.6 10.8 7.5 8.0 8.0 9.0 9.0 9.0 9.7 10.6
4.0 4.0 6.0 6.0 6.0 9.0 10.0 10.0
14.1 13.6 13.5 15.3
12.4
mm
(5)
Thickness of flange, tf
98.0 98.0 98.0 98.0 98.0 98.0 98.0 98.0 98.0 98.0 98.0 98.0 98.0 94.0 94.0 94.0 94.0
96.0 96.0 96.0 96.0
96.0
deg
(6)
Slope of flange, D
3.2
mm
(8)
Radius at toe, r2 ðrt Þ
3.2 3.2 4.8 4.8 Normal T-Bar 4.0 3.0 5.0 3.5 5.5 4.0 6.0 4.0 6.5 4.5 8.0 5.5 9.0 6.0 10.0 7.0 Slit and Deep-Legged 8.0 4.0 9.0 4.5 16.0 8.0 17.0 8.5 9.0 4.5 9.0 4.5 9.0 4.5 10.0 5.0 11.0 5.5 9.0 4.5 9.0 4.5 9.0 4.5 10.0 5.0 8.0 4.0 9.0 4.5 10.0 5.0 11.0 5.5
12.0 13.0 14.0 15.0
12.0
mm
(7)
Radius at root, r1 ðrr Þ
0.60 0.32 1.14 1.35 1.56 2.04 2.62 3.61 T-Bar 3.03 4.75 4.78 6.40 0.96 1.30 1.67 1.98 2.13 1.04 1.39 1.73 2.06 1.62 1.91 2.37 2.66
2.30 2.36 2.44 2.42
2.30
cm
(9)
Center of gravity, Cyy
10.37 19.96 36.22 47.75 7.30 8.30 9.50 12.31 16.16 7.35 8.40 9.54 12.43 19.49 25.47 34.85 37.42
1.45 2.26 4.45 5.66 6.85 12.69 18.97 28.88
38.67 45.64 53.66 62.93
33.01
cm
2
(10)
Sectional area, A
8.1 15.7 28.4 37.5 5.7 6.5 7.5 9.7 12.7 5.8 6.6 7.5 9.8 15.3 20.0 27.4 29.4
1.1 1.8 3.5 4.4 5.4 10.0 14.9 22.7
30.4 35.8 41.1 49.4
25.9
kg
(11)
99.0 450.2 1267.8 2774.4 9.7 21.3 40.1 72.6 115.8 10.8 22.8 41.2 75.6 96.2 193.8 415.4 573.7
0.5 0.8 6.1 12.3 21.4 62.0 163.9 541.1
3816.8 6362.6 10008.0 15082.8
2694.6
cm
4
(12)
9.6 37.0 358.2 532.0 20.4 21.9 26.3 42.5 75.0 17.7 19.2 23.4 38.4 230.2 497.3 1005.8 1096.8
0.2 0.8 2.9 5.7 9.7 29.2 76.8 250.3
219.1 310.8 430.6 504.8
187.2
cm
4
(13)
Weight Moments of inertia per meter, w Ixx Iyy
3.09 4.75 5.92 7.62 1.15 1.60 2.05 2.43 2.68 1.21 1.65 2.08 2.47 2.22 2.76 3.45 3.92
0.58 0.89 1.18 1.47 1.77 2.21 2.94 4.33
9.94 11.81 13.66 15.48
9.03
cm
(14)
rxx
0.96 1.36 3.15 3.34 1.67 1.62 1.66 1.86 2.15 1.55 1.51 1.57 1.76 3.44 4.42 5.37 5.41
0.41 0.59 0.81 1.01 1.19 1.52 2.01 2.94
2.38 2.61 2.83 2.83
2.38
cm
(15)
ryy
Radius of gyration
14.2 43.9 83.3 149.2 2.4 4.3 6.9 10.7 14.7 2.7 4.7 7.1 11.3 16.4 24.0 41.0 46.5
0.3 0.8 2.1 3.4 4.8 11.4 22.2 47.5
305.3 424.2 571.9 754.1
239.5
cm
3
(16)
Zxxx
3.8 9.9 43.4 59.1 5.4 5.8 6.6 9.4 15.0 5.0 5.5 6.2 9.0 30.1 49.3 79.9 87.7
0.2 0.5 1.5 2.3 3.2 7.8 15.4 33.4
38.4 46.8 57.0 66.6
32.8
cm3
(17)
Zyy
Section moduli
Key: ISJB—Indian Standard Junior Beams; ISLB—Indian Standard Light-Weight Beams; ISMB—Indian Standard Medium-Weight Beams; ISWB—Indian Standard Wide-Flange Beams; ISHB—Indian Standard Column H-Section Beams; ISJC—Indian Standard Junior Channel; ISLC—Indian Standard Light-Weight Channel; ISMC—Indian Standard Medium-Weight Channel; ISNT—Indian Standard Normal Tee-Bar (T-Bar)., Indian Standard Provisional Slit Medium-Weight Tee-Bars; ISDT—Indian Standard Deep-Legged Tee-Bar; ISLT—Indian Standard Slit Light-Weight Tee-Bar; ISMT—Indian Standard Slit Medium Weight Tee-Bar; ISHT-Indian Standard Slit Tee-Bar from HSection. Source: IS 808, 1964; IS 1173, 1967.
20 30 40 50 60 75 100 150
250 300 350 400
225
mm
ISNT 20 ISNT 30 ISNT 40 ISNT 50 ISNT 60 ISNT 75 ISNT 100 ISNT 150
ISMC 250 ISMC 300 x ISMC 350 ISMC400
cxx
FIGURE 24-77 Slit and deeplegged T-bar. (See Table 24-32.)
h
rr
tf
cxx
exx
FIGURE 24-76 Normal T-bar. (See Table 24-32.)
h
h 2
rt
Section
(3)
(1)
(2)
Width of flange, b
Depth of Designation beam, h
Dimensions of the section
TABLE 24-31 Geometrical properties, weight, and nominal dimensions of beams, channels, and T-bars (Cont.)
MISCELLANEOUS MACHINE ELEMENTS
24.111
90
100
30
35
40
45
50
55
60
65
70
75
80
90
ISA3030
ISA3535
ISA4040
ISA4545
ISA5050
ISA5555
ISA6060
ISA6565
ISA7070
ISA7575
ISA8080
ISA9090
ISA100100 100
80
75
70
65
60
55
50
45
40
35
30
25
25
(3)
20
(2)
20
(1)
Equal Angle ISA2020 Section (see Fig. 24-78) ISA2525
Section
Section dimensions Designation A, mm B, mm
3.0 4.0 3.0 4.0 5.0 3.0 4.0 5.0 3.0 4.0 5.0 3.0 4.0 5.0 3.0 4.0 6.0 3.0 4.0 6.0 5.0 6.0 10.0 5.0 6.0 8.0 5.0 6.0 10.0 5.0 6.0 8.0 5.0 6.0 10.0 6.0 8.0 10.0 6.0 8.0 10.0 6.0 8.0 12.0
(4)
24.112
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website. 8.5
8.0
8.0
7.0
7.0
6.5
6.5
6.5
6.0
5.5
5.0
5.0
4.5
4.0
(5)
(6)a 0.59 0.63 0.71 0.75 0.79 0.83 0.87 0.92 0.95 1.00 1.04 1.08 1.12 1.16 1.20 1.25 1.33 1.32 1.37 1.45 1.53 1.57 1.72 1.65 1.69 1.77 1.77 1.81 1.97 1.89 1.94 2.02 2.02 2.06 2.22 2.18 2.27 2.34 2.42 2.51 2.59 2.67 2.76 2.92
(7) 0.59 0.63 0.71 0.75 0.79 0.83 0.87 0.92 0.95 1.00 1.04 1.08 1.12 1.16 1.20 1.25 1.33 1.32 1.37 1.45 1.53 1.57 1.72 1.65 1.69 1.77 1.77 1.81 1.97 1.89 1.94 2.02 2.02 2.06 2.22 2.18 2.27 2.34 2.42 2.51 2.59 2.67 2.76 2.92
(8) 1.12 1.45 1.41 1.84 2.25 1.73 2.26 2.77 2.03 2.66 3.27 2.34 3.07 3.78 2.64 3.47 5.07 2.95 3.88 5.68 5.27 6.26 10.02 5.75 6.94 8.96 6.25 7.44 12.00 6.77 8.06 10.58 7.27 8.66 14.02 9.29 12.21 15.05 10.47 13.79 17.03 11.67 15.39 22.59
(9) 0.9 1.1 1.1 1.4 1.8 1.4 1.8 2.2 1.6 2.1 2.6 1.8 2.4 3.0 2.1 2.7 4.0 2.3 3.0 4.5 4.1 4.9 7.9 4.5 5.4 7.0 4.9 5.8 9.4 5.3 6.3 8.3 5.7 6.8 11.0 7.3 9.6 11.8 8.2 10.8 13.4 9.2 12.1 17.7
(10) 0.4 0.5 0.8 1.0 1.2 1.4 1.8 2.1 2.3 2.9 3.5 3.4 4.5 5.4 5.0 6.5 9.2 6.9 9.1 12.9 14.7 17.3 16.3 19.2 22.6 29.0 24.7 29.1 45.0 31.1 36.8 47.4 38.7 45.7 71.4 56.0 72.5 87.7 80.1 104.2 126.7 111.3 145.1 207.0
(11) 0.4 0.5 0.8 1.0 1.2 1.4 1.8 2.1 2.3 2.9 3.5 3.4 4.5 5.4 5.0 6.5 9.2 6.9 9.1 12.9 14.7 17.3 16.3 19.2 22.6 29.0 24.7 29.1 45.0 31.1 36.8 47.4 38.7 45.7 71.4 56.0 72.5 87.7 80.1 104.2 126.7 111.3 145.1 207.0
(12) 0.6 0.8 1.2 1.6 1.8 2.2 2.8 3.4 3.6 4.7 5.6 5.5 7.1 8.6 8.0 10.4 14.6 11.1 14.5 20.6 23.5 27.5 41.5 30.6 36.0 46.0 39.4 46.5 71.3 49.8 58.8 75.5 61.9 73.1 113.3 89.6 115.6 139.5 128.1 166.4 201.9 178.1 231.8 329.3
(13) 0.2 0.2 0.3 0.4 0.5 0.6 0.7 0.9 0.9 1.2 1.5 1.4 1.8 2.2 2.0 2.6 3.8 2.8 3.6 5.3 6.9 7.0 11.2 7.7 9.1 11.9 9.9 11.7 18.8 12.5 14.8 19.3 15.5 18.4 29.4 22.5 29.4 36.0 32.0 42.0 51.6 44.5 58.4 87.7
(14) 0.58 0.58 0.73 0.73 0.72 0.89 0.89 0.88 1.05 1.05 1.04 1.21 1.21 1.20 1.38 1.37 1.35 1.53 1.53 1.51 1.67 1.66 1.62 1.82 1.82 1.80 1.99 1.98 1.94 2.15 2.14 2.12 2.31 2.30 2.26 2.46 2.44 2.41 2.77 2.75 3.73 3.09 3.07 3.03
(15) 0.58 0.58 0.73 0.73 0.72 0.89 0.89 0.88 1.05 1.05 1.04 1.21 1.21 1.20 1.38 1.37 1.35 1.53 1.53 1.51 1.67 1.66 1.62 1.82 1.82 1.80 1.99 1.98 1.94 2.15 2.14 2.12 2.31 2.30 2.26 2.46 2.44 2.41 2.77 2.75 2.73 3.09 3.07 3.03
(16) 0.73 0.72 0.93 0.91 0.91 1.13 1.12 1.11 1.33 1.32 1.31 1.54 1.53 1.51 1.74 1.73 1.70 1.94 1.93 1.90 2.11 2.10 2.03 2.31 2.29 2.27 2.51 2.50 2.44 2.71 2.70 2.67 2.92 2.91 2.84 3.11 3.08 3.04 3.50 3.47 3.44 3.91 3.88 3.82
(17) 0.37 0.37 0.47 0.47 0.47 0.57 0.57 0.57 0.67 0.67 0.67 0.77 0.77 0.77 0.87 0.87 0.87 0.97 0.97 0.96 1.06 1.06 1.06 1.16 1.15 1.15 1.26 1.26 1.25 1.36 1.36 1.35 1.46 1.46 1.45 1.52 1.55 1.55 1.75 1.75 1.70 1.95 1.95 1.94
(18)
0.3 0.4 0.4 0.6 0.7 0.6 0.8 1.0 0.9 1.2 1.4 1.2 1.6 1.9 1.5 2.0 2.9 1.9 2.5 3.6 3.7 4.4 7.0 4.4 5.2 6.8 5.2 6.2 9.9 6.1 7.3 9.5 7.1 8.4 13.5 9.6 12.6 15.5 12.2 16.0 19.2 15.8 20.0 29.2
(19)
0.3 0.4 0.4 0.6 0.7 0.6 0.8 1.0 0.9 1.2 1.4 1.2 1.6 1.9 1.5 2.0 2.9 1.9 2.8 3.6 3.7 4.4 7.0 4.4 5.2 6.8 5.2 6.2 9.9 6.1 7.3 9.5 7.1 8.4 13.5 9.6 12.6 15.5 12.2 16.0 19.8 15.2 20.0 29.2
(20)
(21)
Moment of inertia Radii of gyration Thick- Radius at Radius at Center of gravity Sectional Weight Moduli of section ness t, root, r1 , toe, r2 , area, A, per meter, Iuu , (max), Ivv , (min), ruu , (max), rvv , (min), mm mm mm Cxx , cm Cyy , cm cm2 w, kg Ixx , cm4 Iyy , cm4 cm4 cm4 rxx , cm ryy , cm cm cm Zxx , cm3 Zyy , cm3 tan
Dimensions of the section
TABLE 24-32 General properties, weight, and nominal dimensions of equal and unequal angles
MISCELLANEOUS MACHINE ELEMENTS
Unequal Angle Section (see Fig. 24-79)
Section
40
200
ISA200200 200
ISA4025
150
ISA150150 150
30
130
ISA130130 130
ISA3020
110
ISA110110 110
A
U
v
cxx
exx
8.0 10.0 16.0 8.0 10.0 12.0 16.0 10.0 12.0 16.0 20.0 12.0 16.0 20.0 25.0
(4)
r1
cyy
90
t
15.0
12.0
10.0
10.0
(5)
y
y
B
eyy
90
(6)a
t v
U
3.00 3.09 3.32 3.50 3.59 2.67 3.82 4.08 4.16 4.31 4.46 5.39 5.56 5.71 5.90
(7)
x r2
3.00 3.09 3.32 3.50 3.59 3.67 3.82 4.08 4.16 4.31 4.46 5.39 5.56 5.71 5.90
(8)
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
25
20
3.0 4.0 5.0 2.0 4.0 5.0 6.0 5.0
4.5
0.98 1.02 1.06 1.30 1.35 1.39 1.43
0.49 0.53 0.57 0.57 0.62 0.66 0.69
FIGURE 24-78 Equal-angle section.
x
(3)
(2)
(1)
Section dimensions Designation A, mm B, mm
1.41 1.84 2.25 1.88 2.46 3.02 3.05
17.08 21.12 32.76 20.28 25.12 29.88 39.16 29.21 34.77 45.65 56.21 46.94 61.82 76.38 94.13
(9)
1.1 1.4 1.8 1.5 1.9 2.4 2.8
13.4 16.6 25.7 15.9 19.7 23.5 30.7 22.9 27.3 35.8 44.1 36.9 48.5 60.0 73.9
(10)
A cxx
rn
y
y
cyy
90
t
312.7 381.5 564.3 526.3 644.6 757.1 965.6 1007.4 1186.6 1522.5 1829.6 2905.4 3764.1 4568.6 5501.5
(13)
exx
v
196.8 240.2 357.3 331.0 405.3 476.4 609.1 633.5 746.3 958.9 1153.5 1826.3 2366.2 2875.0 3470.2
(12)
B v
t eyy
90
81.0 98.9 150.0 135.6 166.0 195.6 252.6 259.6 305.9 395.3 481.3 747.2 958.5 1181.4 1438.8
(14)
α
U
3.40 3.37 3.30 4.04 4.02 3.99 3.94 4.66 4.63 4.58 4.53 6.24 6.19 6.14 6.07
(15)
r2
x
3.40 3.37 3.30 4.04 4.02 3.99 3.94 4.66 4.63 4.58 4.53 6.24 6.19 6.14 6.07
(16) 4.28 4.25 4.15 5.10 5.07 5.03 4.97 5.87 5.94 5.77 5.71 7.87 7.80 7.73 7.69
(17)
2.18 2.16 2.14 2.59 2.57 2.56 2.54 2.98 2.97 2.94 2.93 3.99 3.96 3.93 3.91
(18)
1.2 1.5 1.9 3.0 3.8 4.6 5.4
0.4 0.5 0.6 0.9 1.1 1.4 1.6
1.4 1.8 2.1 3.3 4.3 5.1 5.9
0.2 0.3 0.4 0.5 0.7 0.8 1.0
0.92 0.92 0.91 1.25 1.25 1.24 1.23
0.54 0.54 0.53 0.68 0.68 0.67 0.66
0.99 0.98 0.97 1.33 1.32 1.31 1.29
0.41 0.41 0.41 0.52 0.52 0.52 0.52
0.6 0.8 1.0 1.1 1.4 1.8 2.1
24.6 30.4 46.5 34.9 43.1 51.0 66.3 58.0 68.8 89.7 109.7 125.0 163.8 201.2 246.0
(19)
FIGURE 24-79 Unequal-angle section. (See Table 24-32.)
U
x
196.8 240.2 357.3 331.0 405.3 476.4 609.1 633.5 746.3 958.9 1153.5 1826.3 2366.2 2875.0 3470.2
(11)
0.3 0.4 0.4 0.5 0.6 0.7 0.9
24.6 30.4 46.5 34.9 43.1 51.0 66.3 58.0 68.8 89.7 109.7 125.0 163.8 201.2 246.0
(20)
0.43 0.42 0.41 0.38 0.38 0.37 0.37
(21)
Moment of inertia Radii of gyration Thick- Radius at Radius at Center of gravity Sectional Weight Moduli of section ness t, root, r1 , toe, r2 , area, A, per meter, Iuu , (max), Ivv , (min), ruu , (max), rvv , (min), 2 4 4 4 4 w, kg Ixx , cm Iyy , cm cm cm rxx , cm ryy , cm cm cm Zxx , cm3 Zyy , cm3 tan mm mm mm Cxx , cm Cyy , cm cm
Dimensions of the section
TABLE 24-32 General properties, weight, and nominal dimensions of equal and unequal angles (Cont.)
MISCELLANEOUS MACHINE ELEMENTS
24.113
Section
(2)
45
50
60
65
70
75
80
90
100
100
125
125
(1)
ISA4530
ISA5030
ISA6040
ISA6545
ISA7045
ISA7550
ISA8050
ISA9060
ISA10065
ISA10075
ISA12575
ISA12595
24.114
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
95
75
75
65
60
50
50
45
45
40
30
30
(3)
Section dimensions Designation A, mm B, mm
3.0 4.0 5.0 6.0 3.0 4.0 5.0 6.0 5.0 6.0 8.0 5.0 6.0 8.0 5.0 6.0 8.0 10.0 5.0 6.0 8.0 10.0 5.0 6.0 8.0 10.0 6.0 8.0 10.0 12.0 6.0 8.0 10.0 6.0 8.0 10.0 12.0 6.0 8.0 10.0 6.0 8.0 10.0 12.0
(4)
9.0
9.0
8.5
8.0
7.5
7.0
6.5
6.5
6.0
6.0
5.5
5.0
(5)
4.8
(6)a 1.42 1.47 1.51 1.55 1.63 1.68 1.72 1.76 1.95 1.99 2.07 2.07 2.11 2.19 2.27 2.32 2.40 2.48 2.39 2.44 2.52 2.60 2.60 2.64 2.73 2.81 2.87 2.96 3.04 3.12 3.19 3.28 3.37 3.01 3.10 3.19 3.27 4.05 4.15 4.24 3.72 3.80 3.89 3.97
(7) 0.69 0.73 0.77 0.81 0.65 0.70 0.74 0.78 0.96 1.00 1.08 1.08 1.12 1.20 1.04 1.09 1.16 1.24 1.16 1.20 1.28 1.36 1.12 1.16 1.24 1.32 1.39 1.48 1.55 1.63 1.47 1.55 1.63 1.78 1.87 1.95 2.03 1.59 1.68 1.76 2.24 2.32 2.40 2.48
(8) 2.18 2.86 3.52 4.16 2.34 3.07 3.78 4.47 4.76 5.65 7.37 5.26 6.25 8.17 5.52 6.56 8.58 10.52 6.02 7.16 9.38 11.52 6.27 7.46 9.78 12.02 8.65 11.37 14.01 16.57 9.55 12.57 15.51 10.14 13.36 16.50 19.56 11.66 15.38 19.02 12.92 17.04 21.08 25.04
(9) 1.7 2.2 2.8 3.3 1.8 2.4 3.0 3.5 3.7 4.4 5.8 4.1 4.9 6.4 4.3 5.2 6.7 8.3 4.7 5.6 7.4 9.0 4.9 5.9 7.7 9.4 6.8 8.9 11.0 13.0 7.5 9.9 12.2 8.0 10.5 13.0 15.4 9.2 12.1 14.9 10.1 13.4 16.5 19.7
(10) 4.4 5.7 6.9 8.0 5.9 7.7 9.3 10.9 16.9 19.9 25.4 22.1 26.0 33.2 27.2 32.0 41.0 49.3 34.1 40.3 51.8 62.3 48.6 48.0 61.9 74.7 70.6 91.3 110.9 129.1 96.7 125.9 153.2 100.9 131.6 160.4 187.5 187.8 245.5 300.3 205.5 268.3 328.0 384.8
(11) 1.5 2.0 2.4 2.8 1.6 2.1 2.5 2.9 6.0 7.0 8.8 8.6 10.1 12.8 8.3 10.3 13.1 15.6 12.2 14.3 18.3 21.8 12.3 14.4 18.5 22.1 25.2 32.4 39.1 45.2 32.4 41.9 50.7 48.7 63.3 76.9 89.5 51.6 67.2 81.6 103.6 134.7 164.1 191.8
(12) 5.0 6.5 7.9 9.2 6.5 8.5 10.3 11.9 19.5 22.8 29.0 25.9 30.4 38.7 30.9 36.3 46.3 55.4 39.4 46.4 59.4 71.2 45.7 53.9 69.3 83.3 81.5 105.3 127.3 147.5 110.6 143.6 174.2 124.0 161.3 196.1 228.4 208.9 272.8 332.9 254.0 331.4 404.5 473.7
(13) 0.9 1.1 1.4 1.7 1.0 1.2 1.5 1.8 3.4 4.0 5.2 4.8 5.7 7.4 5.1 6.0 7.8 9.5 6.9 8.2 10.6 12.9 7.2 8.5 11.0 13.5 14.3 18.6 22.8 26.8 18.6 24.2 29.7 25.6 33.6 41.2 48.6 30.5 40.0 49.1 55.1 71.7 87.6 103.0
(14) 1.42 1.41 1.40 1.39 1.59 1.58 1.57 1.56 1.89 1.88 1.86 2.05 2.04 2.02 2.22 2.21 2.19 2.16 2.38 2.37 2.35 2.33 2.55 2.54 2.52 2.49 2.86 2.84 2.81 2.79 3.18 3.16 3.14 3.15 3.14 3.12 3.10 4.01 4.00 3.97 3.99 3.97 3.95 3.92
(15) 0.84 0.84 0.83 0.82 0.82 0.82 0.81 0.80 1.12 1.11 1.10 1.28 1.27 1.25 1.26 1.25 1.24 1.22 1.42 1.41 1.40 1.38 1.40 1.39 1.37 1.36 1.17 1.69 1.67 1.65 1.94 1.83 1.81 2.19 2.18 2.16 2.14 2.10 2.09 2.07 2.83 2.81 2.79 2.77
(16) 1.52 1.51 1.50 1.49 1.67 1.66 1.65 1.64 2.02 2.01 1.98 2.22 2.21 2.18 2.36 2.35 2.32 2.29 2.56 2.55 2.52 2.49 2.70 2.69 2.66 2.63 3.07 3.04 3.01 2.98 3.40 3.38 3.35 3.50 3.48 3.45 3.42 4.23 4.21 4.18 4.43 4.41 4.38 4.35
(17) 0.63 0.63 0.63 0.63 0.65 0.63 0.63 0.63 0.85 0.85 0.84 0.96 0.95 0.95 0.96 0.96 0.95 0.95 1.07 1.07 1.06 1.06 1.07 1.07 1.06 1.06 1.28 1.28 1.27 1.27 1.39 1.39 1.38 1.59 1.59 1.58 1.58 1.62 1.61 1.61 2.07 2.05 2.04 2.03
(18)
1.4 1.9 2.3 2.7 1.7 2.3 2.8 3.4 4.2 5.0 6.5 5.0 5.9 7.7 5.7 6.8 8.9 10.9 6.7 8.0 10.4 12.7 7.5 9.0 11.7 14.4 11.5 15.1 18.6 22.0 14.2 18.7 23.1 14.4 19.1 23.6 27.9 22.2 29.4 36.3 23.4 30.9 38.1 45.1
(19)
0.7 0.9 1.1 1.3 0.7 0.9 1.1 1.3 2.0 2.3 3.0 2.5 3.0 3.9 2.5 3.0 3.9 4.8 3.2 3.8 4.9 6.0 3.2 3.8 4.9 6.0 5.5 7.2 8.8 10.3 6.4 8.5 10.4 8.5 11.2 13.8 16.3 8.7 11.5 44.2 14.3 18.8 23.1 27.3
(20)
0.44 0.43 0.43 0.42 0.36 0.36 0.35 0.35 0.44 0.43 0.42 0.47 0.47 0.46 0.41 0.41 0.40 0.39 0.44 0.44 0.43 0.42 0.39 0.39 0.38 0.38 0.44 0.44 0.43 0.42 0.42 0.42 0.41 0.55 0.55 0.55 0.54 0.37 0.36 0.36 0.57 0.57 0.56 0.56
(21)
Moment of inertia Radii of gyration Thick- Radius at Radius at Center of gravity Sectional Weight Moduli of section ness t, root, r1 , toe, r2 , area, A, per meter, Iuu , (max), Ivv , (min), ruu , (max), rvv , (min), w, kg Ixx , cm4 Iyy , cm4 cm4 cm4 rxx , cm ryy , cm cm cm Zxx , cm3 Zyy , cm3 tan mm mm mm Cxx , cm Cyy , cm cm2
Dimensions of the section
TABLE 24-32 General properties, weight, and nominal dimensions of equal and unequal angles (Cont.)
MISCELLANEOUS MACHINE ELEMENTS
a
75
115
100
150
150
ISA15075
ISA150115 150
ISA200100 200
ISA200150 200
(3)
(2)
(1) 8.0 10.0 12.0 8.0 10.0 12.0 10.0 12.0 16.0 10.0 12.0 16.0
(4)
13.5
12.0
11.0
10.0
(5)
4.8
4.8
4.8
4.8
(6)a 5.24 5.33 5.42 4.48 4.57 4.65 6.98 7.07 7.25 6.02 6.11 6.72
(7) 1.54 1.62 1.70 2.76 2.84 2.92 2.03 2.11 2.27 3.35 3.63 3.79
(8) 17.48 21.62 25.68 20.72 25.66 30.52 29.21 34.77 45.66 34.29 40.85 53.83
(9) 13.7 17.0 20.2 16.3 20.1 24.0 22.9 27.3 35.8 26.9 33.1 42.2
(10)
For the cases for which the radius at toe r2 is not given, the toe should be reasonably square. Source: IS 808, 1964.
Section
Section dimensions Designation A, mm B, mm
410.3 502.2 590.0 474.4 581.8 684.8 1227.8 1449.2 1870.1 1409.2 1655.6 2155.2
(11) 71.1 86.3 100.4 244.4 298.8 350.6 214.7 251.5 319.6 688.9 812.1 1044.9
(12) 435.7 532.7 625.1 589.6 722.6 849.5 1304.9 1539.0 1982.1 1729.6 2043.3 2638.6
(13) 45.7 55.7 65.4 129.2 158.0 185.9 137.6 161.6 207.7 368.5 434.5 561.5
(14) 4.85 4.82 4.79 4.78 4.76 4.74 6.48 6.46 6.40 6.41 6.39 6.33
(15) 2.02 2.00 1.98 3.43 3.41 3.39 2.71 2.69 2.65 4.48 4.46 4.41
(16) 4.99 4.96 4.93 5.33 5.31 5.28 6.68 6.65 6.59 7.10 7.07 7.01
(17) 1.62 1.61 1.60 2.50 2.48 2.47 2.17 2.16 2.13 3.28 3.26 3.23
(18)
42.0 51.9 61.6 45.1 55.8 66.2 94.3 112.1 146.5 100.8 119.9 157.0
(19)
11.9 14.7 17.3 28.0 34.5 40.8 26.9 31.9 41.5 60.2 71.4 93.2
(20)
0.26 0.26 0.26 0.58 0.58 0.57 0.27 0.26 0.26 0.26 0.55 0.55
(21)
Moment of inertia Radii of gyration Thick- Radius at Radius at Center of gravity Sectional Weight Moduli of section ness t, root, r1 , toe, r2 , area, A, per meter, Iuu , (max), Ivv , (min), ruu , (max), rvv , (min), 2 4 4 4 4 mm mm mm Cxx , cm Cyy , cm cm w, kg Ixx , cm Iyy , cm cm cm rxx , cm ryy , cm cm cm Zxx , cm3 Zyy , cm3 tan
Dimensions of the section
TABLE 24-32 General properties, weight, and nominal dimensions of equal and unequal angles (Cont.)
MISCELLANEOUS MACHINE ELEMENTS
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
24.115
MISCELLANEOUS MACHINE ELEMENTS
24.116
CHAPTER TWENTY-FOUR
REFERENCES 1. Lingaiah, K., and B. R. Narayana Iyengar, Machine Design Data Handbook, fps system, Engineering College Co-operative Society, Bangalore, India, 1962. 2. Lingaiah, K., and B. R. Narayana Iyengar, Machine Design Book Handbook, Volume I. (SI and Customary Metric Units), Suma Publishers, Bangalore, India, 1986. 3. Lingaiah, K., Machine Design Data Handbook, Volume II (S.I. and Customary Metric Units), Suma Publishers, Bangalore, India, 1986. 4. Lingaiah, K., Machine Design Data Handbook, McGraw-Hill Publishing Company, New York, 1994. 5. Maleev, V. L., and J. B. Hartman, Machine Design, International Text book Company, Scranton, Pennsylvania, 1954. 6. Black, P. H., and O. E. Adams, Jr., Machine Design, McGraw-Hill Book Company Inc., New York, 1968. 7. Neale, M. J., Tribology Handbook, Newnes-Butterworth, London, 1973. 8. Bach, Maschinenelemente, 12th ed., P-43. 9. Heldt, P. M. Torque Converters for Transmissions, Chiltan Company, Philadelphia, 1955. 10. Newton, K., and W. Steeds, The Motor Vehicle, Iliffe and Sons Ltd, London, 1950. 11. Steeds, W., Mechanics of Road Vehicle, Iliffe and Sons, Ltd., London, 1960. 12. Arkhangelsky, V., et al., Motor Vehicles Engines, Mir Publisher, Moscow, 1971. 13. Heldt, P. M., High Speed Combustion Engines, 6th ed., Chilton Company, Philadelphia, 1955. 14. Thimoshenko, S., and J. N. Goodier, Theory of Elasticity, McGraw-Hill Book Company, Inc., and Kogakkusha Company Ltd., Tokyo, 1951. 15. Timoshenko, S., and S. Woinowsky-Krieger, Theory of Plates and Shells, McGraw-Hill Book Company, Inc., New York, 1959. 16. Seely, F. B., and J. O. Smith, Advanced Mechanics of Materials, John Wiley and Sons, Inc., 2nd ed., 1959. 17. Timoshenko, S., and J. M. Gere, Mechanics of Materials, Von Nostrand Reinhold Company, New York, 1972. 18. Goetze, A. G. Piston Ring Manual, 3rd ed., Burscheid, Germany, 1987. 19. Bureau of Indian Standards, New Delhi, India.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
Source: MACHINE DESIGN DATABOOK
CHAPTER
25 ELEMENTS OF MACHINE TOOL DESIGN SYMBOLS Ai B c d D Dm Dw E F Fa ¼ Fx Fc Fhc Fmax Fn Fn Fr FR Fs Ff ¼ Fx Ft ¼ Fz ¼ Fc Fy ¼ Fr F F ¼ Fr
cross-sectional area of chip before removal from workpiece, m2 (in2 ) width of V or U die, m (in) chisel edge length, m (in) diameter of the hole, m (in) diameter of the drill, m (in) depth of cut, m (in) blank diameter, m (in) diameter of milling cutter, m (in) shell diameter, m (in) diameter of machined surface, m (in) diameter of workpiece or job, m (in) Young’s modulus, GPa (kpsi) work done in punching or shearing of material, N m (lbf ft) work done per unit volume of removed, J/mm3 force, kN (lbf ) axial component of cutting force, kN (lbf ) cutting force, kN (lbf ) normal cutting force or the resultant force on a single point metal cutting tool in the horizontal plane, kN (lbf ) maximum force at the punch, kN (lbf ) force normal to F , kN (lbf ) force normal to shear force, kN (lbf ) reaction of the cutting force, kN (lbf ) radial component of the cutting force, kN(lbf ) resultant cutting force, kN (lbf ) stripping pressure, kN (lbf ) feed force, kN (lbf ) tangential component of the cutting force, kN(lbf) radial component of the cutting force, kN (lbf ) frictional force on tool face, kN (lbf ) frictional force of the saddle on lathe bed, kN (lbf )
25.1 Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ELEMENTS OF MACHINE TOOL DESIGN
25.2
CHAPTER TWENTY-FIVE
shear force kN (lbf ) depth of cut, m (in) shell height, m (in) height of the lathe center, m (in) swing over the bed of the lathe, m (in) constant of proportionality in Eq. (25-31) constant coefficient, also with subscripts clearance length of cut or perimeter of the cut, m (in) length of job, m (in) exponents
F h hc hsw K K Kc L Lm m, m1 , m2 , m3 , m4 Mb Mt n n0 p p, q P P Pc Pg Pf Pu ¼ Ps Q r rc rc ¼ ðt1 =t2 Þ rn R Ri s sz t t1 t2 uc us v vc vf V W x, v, z z f n o p tr
bending moment, N m (lbf ft) turning moment N m (ft lbf ) speed, rpm speed, rps pitch of thread, mm (in) exponents periphery, m (in) power, kW (hp) power at cutting tool, kW (hp) gross or motor power, kW (hp) tare power, that is the power required to run the machine at no load, kW (hp) unit power or specific power, kW (hp) metal removal rate, cm3 /min (in3 /min) radius, m (in) corner radius, m (in) cutting ratio nose radius, m (in) roughness height, m m (m in) inside radius of bend, m (in) feed rate, mm/rev (in/rev) feed per tooth of milling cutter, mm/tooth thickness of material to be punched or sheared, m (in) thickness of chip, m (in) depth of cut, m (in) initial thickness of the chip, m (in) final thickness of the chip, m (in) number of chamfered threads number of splines velocity, m/s (ft/min) cutting speed, m/min (ft/min) feed rate, mm/min (in/min) cutting velocity, m/min (ft/min) work done per unit volume, N m/m3 (lbf ft/ft3 ) machine reference co-ordinate axes number of teeth on milling cutter relief or clearance angle, deg side relief or clearance angle, deg normal relief or clearance angle, deg orthogonal clearance angle, deg front or end relief or clearance angle, deg true relief or clearance angle, deg
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ELEMENTS OF MACHINE TOOL DESIGN ELEMENTS OF MACHINE TOOL DESIGN
b f n o p "
c
b s c sut y n ð¼ su Þ
o
p
s !
helix angle, deg bevel angle, deg rake angle, also with subscripts, deg side rake angle, deg normal rake angle, deg orthogonal rake angle, deg back rake angle, deg deflection, mm (in) gullet angle, deg peripheral pitch angle, deg efficiency wedge angle, also with subscripts, deg chip flow angle, deg approach angle in Eq. (25-104b), deg corner angle in Eq. (25-104a) bend angle, deg inclination angle, deg coefficient of friction friction angle, deg stress, also with suffices, MPa (kpsi) compressive stress, MPa (kpsi) ultimate tensile strength, MPa (kpsi) yield stress, MPa (kpsi) tool life shear stress, MPa (kpsi) resistance of the material to shearing or the ultimate shearing strength, MPa (kpsi) cutting edge angle, also with subscripts, deg shear angle, deg end cutting edge angle, deg principal cutting edge angle, deg side cutting edge angle, deg engagement angle for milling depth, deg angular speed, rad/s
Note: and with subscript s designates strength properties of material used in the design which will be used and observed throughout this Machine Design Data Handbook. Other factors in performance or in special aspects are included from time to time in this chapter and, being applicable, only in their immediate context, are not given at this stage.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
25.3
ELEMENTS OF MACHINE TOOL DESIGN
25.4
CHAPTER TWENTY-FIVE
Particular
Formula
25.1 METAL CUTTING TOOL DESIGN 25.1.1 Forces on a single-point metal cutting tool Nomenclature of metal cutting tool The normal cutting force or resultant force on a single-point metal cutting tool in horizontal plane (Fig. 25-2) The resultant cutting force on the cutting tool (Fig. 25-2)
Refer to Fig. 25-1. qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi Fhc ¼ Ff2 þ Fr2
FR ¼
qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2 Ft2 þ Fhc
ð25-2Þ
FR ¼
qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi Ff2 þ Fr2 þ Ft2
ð25-3Þ
Shank
Cutting part
Minor cutting edge
Tool axis Base
Minor flank
Major cutting edge
Corner
Face
Major flank
FIGURE 25-1 Nomenclature of metal cutting tool.
FR = resultant cutting force on the cutting tool
z Dw
ω
Ff (=Fx) = feed
force
x
Ft or Fc (=Fx) = tangential cutting force d = depth of cut Fr (=Fy) = radial force y
ð25-1Þ
Dm
Feed motio
n
FIGURE 25-2 Components of cutting force acting on a single point metal cutting tool.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ELEMENTS OF MACHINE TOOL DESIGN ELEMENTS OF MACHINE TOOL DESIGN
Particular
25.5
Formula
where Ft or Fc ð¼Fz Þ ¼ tangential cutting force perpendicular to Fr (¼Fy ) and Ff (¼Fx ) in the vertical plane. Fr ð¼Fy Þ ¼ radial force perpendicular to the direction of feed and in the horizontal plane. Ff ð¼Fx Þ ¼ feed force in the horizontal plane against the direction of the feed. x, y and z are machine reference axes along feed force Ff , radial force Fr , and cutting force Ft or Fc directions, respectively.
25.1.2 Merchant’s circle for cutting forces for a single-point metal cutting tool F Fhc þ Fc tan ¼ Fn Fc Fhc tan
The co-efficient of friction in orthogonal cutting (Fig.25-3)
¼ tan ¼
The shear force
F ¼ Fc cos Fhc sin
ð25-5Þ
The friction force
F ¼ Fhc cos þ Fc sin
ð25-6Þ
Mean shear stress
¼
Fc sin cos Fhc sin2 Ai
ð25-7Þ
t2
Chip Fτ Fc
t1
α
Tool
rn
Fhτ = F hc 2φ
Fτ
ρ = tan—1µ
φ
rn
φ
FR
α Fµ
ρ α
FIGURE 25-3 Force acting in orthogonal cutting with a continuous chip. Courtesy: ASTME, Tool Engineers’ Handbook, 2nd Edition, McGraw-Hill Book Company, New York, 1959.
d-rn
ð25-4Þ
d
Feed θ Direction of chip flow FIGURE 25-4 Approximate chip flow direction.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ELEMENTS OF MACHINE TOOL DESIGN
25.6
CHAPTER TWENTY-FIVE
Particular
Formula
Work done in shearing the material
W ¼ ½cot þ tanð Þ
ð25-8Þ
Work done in overcoming friction
W ¼
F sin Ai cosð Þ
ð25-9Þ
Wt ¼
Fc Ai
The total work done in cutting
ð25-10Þ
rc cos 1 rc sin
The shear angle ( )
tan ¼
The tangential cutting force
Ft ¼ KCs m1 d m2
ð25-11Þ ð25-12Þ
where d ¼ depth of cut, m (mm) m1 ¼ slope of Ft versus s graph (typical values 0.5 to 0.98) m2 ¼ slope of Ft versus d graph (typical values 0.90 to 1.4) K ¼ overall correction coefficient, depends on actual conditions of tool angles and working conditions (varies from 0.9 to 1.0) C ¼ coefficient characterized by material of job, condition of working tool, coolants, etc. (Table 25-1) The values of K in Eq. (25-12) are calculated from equation
K ¼ Km K K Kc
ð25-12aÞ
where Km ¼ material correction coefficient K ¼ correction coefficient, depends on back rack angle Kc ¼ correction coefficient for coolant used K ¼ correction coefficient, depends on top rack angle Values of Km , K , Kc , and K are taken from Tables 25-2 and 25-3.
TABLE 25-1 Values of C and exponents
Type of operation
Material
Turning and boring Facing and parting Turning and boring Parting and facing
Steel Steel Gray cast iron Gray cast iron
Ultimate strength, u , MPa
Hardness, Brinell, HB
C
m1
m2
735 735
215 215 190 190
225 264 98 135
1.0 1.0 1.0 1.0
0.75 1.00 1.75 1.0
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ELEMENTS OF MACHINE TOOL DESIGN ELEMENTS OF MACHINE TOOL DESIGN
Particular
25.7
Formula
The chip flow angle for zero-degree rake angle (Fig. 25-4)
tan ¼
d rn þ ðd rn Þ tan
ð25-13Þ
where rn ¼ nose radius ¼ side cutting edge angle, deg The equation relating the true rake angle to the corresponding chip flow angle
tan tr ¼ tan sin þ tan cos
The equation for locating the maximum rake angle
tan max ¼
The metal removal rate
Q¼
ð25-14Þ
tan tan
ð25-15Þ
ðD dÞsdn ¼ Vsd 1000 where
ð25-16Þ
s ¼ feed rate, mm/rev Q ¼ metal removal rate, cm3 /min d ¼ depth of cut, mm D ¼ diameter of work piece, mm V ¼ ½ðD dÞn=1000, m/min The approximate relationships between Ft ð¼Fz Þ, Ff ð¼Fx Þ and Fr ð¼Fy Þ
Ff ð¼Fx Þ 0:3 to 0:2 Ft ð¼Fz Þ
ð27-17Þ
Fr ð¼Fx Þ 0:2 to 0:1 Ft ð¼Fz Þ
ð27-18Þ
The turning moment on the work piece due to tangential cutting force
Mtcut ¼ Ft
TABLE 25-2 Material correction coefficient, Km
TABLE 25-3 Values of Kc , K , and K
Material Steel
Cast iron
Ultimate strength , MPa
Km
Coolant
390–490 490–588 686–785 785–880 980–1175 1370–1570 1570–1765 1765–1960 2155–2355 2355–2745
0.76 0.82 1.00 1.10 1.28 0.88 0.94 1.00 1.12 1.17
Dry Soda water Emulsion Mineral oil
D 2
Hard mineral oil
ð25-19Þ
, deg
K
15 10 þ5 0 þ5 þ10 þ15 þ20
1.40 1.30 1.23 1.13 1.06 1.00 0.94 0.89
, deg
K
Kc
30 45 60 75
1.05 1.00 0.96 0.94
1 1.03 1.10 1.15
90
0.92
1.20–1.25
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ELEMENTS OF MACHINE TOOL DESIGN
25.8
CHAPTER TWENTY-FIVE
Particular
The bending moment due to bending of the tool in the vertical plane by tangential cutting force
Formula
Mb ¼ Ft l
ð25-20Þ
where l ¼ cantilever length of the cutting tool, m
25.1.3 Power The total power at the cutting tool, Ptotal
Ptotal ¼ Pc þ Pf þ Pr
ð25-21Þ
where Pc ¼
Ft Vt ¼ power required for turning cut, kW 1000
Pf ¼
Ff Vf ¼ power required to feed in a horizontal 1000 direction, kW. The feed velocity is very low. Power required to feed is approximately 1% of total power. Hence it is neglected.
Pr ¼
Fr Vr ¼ power required to feed in radial direc1000 tion, kW. The radial velocity is zero. Therefore Pr is ignored.
After neglecting Pf and Pr , the power required at the cutting tool, taking Vc for Vt and Ptotal Pc
The gross or motor power
Ft Vc KCs m1 d m2 Vc ¼ ð25-22Þ 1000 1000 where Pc in kW, Ft in N, Vc in m/s, s and d in m
Pc ¼
Pg ¼
Pc þ Pt
ð25-23Þ
where ¼ mechanical efficiency of machine tool Pt ¼ tare power, the power required at no-load, kW
25.1.4 Specific power or unit power consumption The specific power Pu ð¼Ps Þ, required to cut a material
Pu ¼
Pc (cubic meter or cubic millimeter of material removed by cut per minute)
ð25-24Þ
The specific power or unit power Pu ð¼Ps Þ, for turning
Pu ¼
Pc Ft C ¼ ¼ Vc sd 1000sd 1000s 1 m1 d 1 m2
ð25-25Þ
where Pc , Pu in kW/m3 /min, Ft in N, s and d in m, and Vc in m/s Another relation connecting specific powers at different cutting feeds and depths of cuts
Pu2 ¼ Pu1
s1 s2
1 m1
d1 d2
1 m2
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð25-26Þ
ELEMENTS OF MACHINE TOOL DESIGN ELEMENTS OF MACHINE TOOL DESIGN
25.9
Particular
Formula
TABLE 25-4 Typical values of specific power consumption Ps or Pu
Refer to Table 25-4 for Pu (m3 /s) or Pu (mm3 /s) for various materials.
Material Plain carbon steel
Alloy steel Free cutting steel Cast iron Aluminum alloy
Brinell hardness number, HB
Specific power consumption, Ps or Pu ; kW/m3
126 179 262 179 429 229 140 256 55 115
1.6 to 1.8 1.9 to 2.2 2.3 to 2.6 1.5 to 1.86 3.0 to 5.20 1.37 to 1.48 0.60 to 0.90 2.32 to 3.60 0.76 0.46 to 0.57 1.5
Brass
m1 and m2 are taken from Table 25-1.
25.1.5 Tool design For comparison of Orthogonal Rake System (ORS), Normal Rake System (NRS) and American (ASA) tool nomenclature
Refer to Table 25-5.
25.1.6 Tool signatures The tool signature of ASA, ORS and NRS
The tool signature for sintered carbide tipped single point tool
p - f - p - f - o - s - rn
ðASAÞ
s - o - o - 1o
- o - p - rn
ðORSÞ
s - n - n - 1n - o - p - rn
ðNRSÞ
Refer to Fig. 25-5.
TABLE 25-5 Comparison of tool nomenclature system
Particular
Orthogonal rake system (ORS)a
Normal rake system (NRS)a
American Standards Association (ASA)b
Location of cutting edges Orientation of face Orientation of principal flank Orientation of Auxiliary flank Nose radius
p , o o , s o 0o rn
p , o n , s n 0n rn
s , o p , f p , f — rn
a
Tool reference system. b Machine reference system
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ELEMENTS OF MACHINE TOOL DESIGN
25.10
CHAPTER TWENTY-FIVE
Particular
Formula
Tool signature 8 Back rake angle Side rake angle End relief angle End clearance angle
Top view
7
7
9
6 10 8
0 1/64 = 0.4 mm
Side relief angle Side clearance angle End cutting edge angle Side cutting edge angle Nose radius
Carbide insert
8
1/64 in. = 0.4 mm 7
6 10
8
7 9
Right side view
Front view FIGURE 25-5 A straight shank, right cut, sintered carbide tipped, single point tool. Rake angles are negative. Courtesy: American Society of Tool and Manufacture Engineers, Fundamentals of Tool Design, Prentice Hall of India Private Ltd., New Delhi, 1969.
For general recommended various angles for HSS single-point tool
Refer to Table 25-6.
For general recommended various angle for carbide single-point tool
Refer to Table 25-8.
25.1.7 Tool life The relation between the tool life and cutting speed V according to Taylor
Kc ¼ V m
ð25-27Þ
where Kc ¼ constant taken from Table 25-7 or constant equal to the intercept of the tool life and cutting speed curve and the ordinate (V curve) m ¼ slope of the V curve m¼
logðV1 =V2 Þ logð2 =1 Þ
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð25-28Þ
γp = back rack angle
υp = true wedge angle
φp
F
S
φs
O O1
P
O1
P
O
F
αo
υ s
N
lip angle
γo
υ = wedge angle
υn = true wedge angle
= normal clearance angle
Section N—N
γn = normal rack angle
γn
υn
αn
orthogonal rack angle
λs = inclination angle
φp = principal cutting edge angle φs = side cutting edge angle
N
Section O—O
φo = end cutting edge angle
orthogonal clearance angle
υo
ELEMENTS OF MACHINE TOOL DESIGN
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
FIGURE 25-6 Single-point tool geometry (angles of machine reference system ASA, ORS and NRS). Courtesy: Principles of metal cutting—An introduction, Centre for Continuing Education, I.I.T., Madras, November, 1987.5
Section P—P
γp
υp
α1 = α’0
αp = front or end clearance or relief angle.
Section O1 —O1
γ1
υ1
Section F—F
αf = side clearance angle
υf
γf = side rack angle
ELEMENTS OF MACHINE TOOL DESIGN
25.11
∝
λs
n
N
= 10°
n
N
Section O–O
Section N–N
∝ ° ∝ = 6° °
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website. ∝n = 6°
O
φ = 8° °
φ °
F
P
P
O1
Section F–F
φs
O1
P
φ
O
15'
F φs = 15°
S
∝f = 5°
P
∝ = 22° 6' P
∝
1
∝
Section P–P
P
P
= 2°
Section O1 –O1
1
∝
36'
FIGURE 25-7 Left hand single-point tool geometry (angles of machine reference system ASA, ORS and NRS) Courtesy: Principles of metal cutting—An introduction, Centre for Continuing Education, I.I.T., Madras, November, 1987.5
υ =true wedge angle, deg. ° φ =principal cutting edge angle, deg. P φ =end cutting edge angle, deg. ° φ =side cutting edge angle, deg. s
View S
λs = 0°
= 10°
∝
∝
°
°
∝
∝f
∝
25.12
∝
∝ f
ELEMENTS OF MACHINE TOOL DESIGN
CHAPTER TWENTY-FIVE
ELEMENTS OF MACHINE TOOL DESIGN ELEMENTS OF MACHINE TOOL DESIGN
Particular
25.13
Formula
m ’ 0:1 to 0.15 for high speed steels (HSS) m ’ 0:2 to 0.25 for carbides m ’ 0:6 to 1.0 got ceramics and also taken from Table 25-7. The velocity of the job or bar of diameter D1 at speed n1
V1 ¼
D1 n1 1000 60
ð25-29Þ
TABLE 25-6 Recommended angle for high-speed-steel (HSS) single-point tools Back-rake angle, p , deg
Material High speed, alloy, and high-carbon tool steels and stainless steel Steels: C15 to C40 C45 to C90 14Mn1 S14, 40Mn 2S12 T50 Cr1 V23 40Ni2 Cr1 Mo28 Aluminum Bakelite Brass Commercial bronze Bronze Hard phosphor bronze Gray cast iron Copper Copper alloys, soft Copper alloys, hard Monel and nickel Nickel iron Fiber Formica Micarta Rubber, hard
Front-relief angle, p , deg
Side-rake angle, f deg
Side relief angle, f , deg
5 to 7
6 to 8
8 to 10
7 to 9
10 to 12 10 to 12 12 to 14 6 to 8 6 to 8 30 to 35 0 0 0 0 0 3 to 5 14 to 16 0 to 2 0 8 to 10 6 to 8 0 to 2 14 to 16 14 to 16 0 to 2
8 to 10 8 to 10 7 to 9 7 to 9 7 to 9 8 to 10 8 to 10 8 to 10 8 to 10 8 to 10 6 to 8 6 to 8 12 to 14 8 to 10 6 to 8 12 to 14 10 to 12 12 to 14 10 to 12 10 to 12 14 to 16
10 to 12 10 to 12 12 to 14 8 to 10 8 to 10 14 to 16 0 1 to 3 2 to 4 2 to 4 0 10 to 12 18 to 20 0 0 12 to 14 12 to 14 0 10 to 12 10 to 12 0 to 2
8 to 10 7 to 9 7 to 9 7 to 9 7 to 9 12 to 14 10 to 12 10 to 12 8 to 10 8 to 10 8 to 10 8 to 10 12 to 14 10 to 12 8 to 10 14 to 16 14 to 16 14 to 16 14 to 16 14 to 16 18 to 20
TABLE 25-7 Values of Kc and m Tool material
Kc
m
High-speed steel Carbide Ceramic
60–100 200–330 330–600
0.08–0.15 0.16–0.5 0.40–0.6
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ELEMENTS OF MACHINE TOOL DESIGN
25.14
CHAPTER TWENTY-FIVE
Particular
Formula
D2 n2 1000 60
The velocity of the job or bar of diameter D2 at speed n2
V2 ¼
For standard spindle speeds for machine tools
Refer to Table 23-66.
The relationship between the tool life, speed of cut, feed and depth of cut
K ¼ V m s m3 d m4
ð25-30Þ
ð25-31Þ
where m ¼ exponent taken from Table 25-7 m3 ¼ exponent of feed ’ 0:5 to 0.8 (average values) m4 ¼ exponent of depth of cut ’ 0:2 to 0.4 (average values)
For standard speeds, feeds and etc.
Refer to Tables 23-66 to 23-70
The approximate equation relating tool life to Brinell hardness number (HB )
K ¼ V m s m3 d m4 ðHB Þ
The cutting speed
k V ¼ 0:371 0:77 d s
ð25-32Þ
rffiffiffiffiffi! 6 60 Ccf
ð25-33Þ
TABLE 25-8 Recommended angles for carbide single-point tools
Material Copper, soft Brass and bronze Aluminum alloys Cast Iron: hard chilled malleable Low carbon steels 320 to 470 MPa Carbon steels 620 MPa Alloy steels Free machining steel 700 MPa Stainless steels, austenitic Stainless steels, hardenable High-nickel alloys Titanium alloys
Side cutting End edge, clearance, deg deg
Side clearance, deg
Nose radius rn , mm
6 to 8 6 to 8 10 6 to 8 6 to 8 10 8 to 12 6 to 10 10
10 10 10
2 to 3 2 to 3 2 to 3
2 to 3 2 to 3 2 to 3
0.4 2.00 0.4
þ6 to 7 3 to 6 4 to 8 þ6 to 7
3 to 3 to 3 to 5 to
5 5 5 10
3 to 4 3 to 4 3 to 5 5 to 10
10 10 10 10
10 10 10 10
2 2 2 2
to 3 to 3 to 3 to 3
2 to 2 to 2 to 2 to
3 3 3 3
0.75 0.75 0.75 0.75
þ6 to 7 þ6 to 7 þ6 to 7 þ6 to 7 þ6 to 7 þ6 to þ10 þ6 to 5
5 to 5 to 5 to 4 to 4 to 5 to 5 to
8 10 8 6 6 10 8
5 to 8 5 to 10 5 to 8 4 to 6 4 to 6 5 to 10 5 to 8
10 10 10 10 10 10 10
10 10 10 10 10 10 10
2 2 2 2 2 2 2
to 3 to 3 to 3 to 3 to 3 to 3 to 3
2 to 2 to 2 to 2 to 2 to 2 to 2 to
3 3 3 3 3 3 3
1.00 1.00
Back-rake angle, deg
Side-rake angle, deg
Endrelief, deg
0 to 10 0 to 5 0 to 10
15 to 25 þ8 to 5 10 to 20
0 to 7 0 to 7 0 to 4 0 to 7 0 to 7 0 to 7 0 to 7 0 to 7 0 to 7 0 to 3 0 to 5
Siderelief, deg
End cutting edge, deg
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
1.00 1.00 1.00 1.00
ELEMENTS OF MACHINE TOOL DESIGN ELEMENTS OF MACHINE TOOL DESIGN
Particular
Formula
where
1000
Cutting speed, v(m min 1)
25.15
500
Key : 1 HSS 2 Carbide 3 Ceramic
3 2 100
1
50
k1 ¼ an approximate constant taken from Table 25-9 Ccf ¼ correction factor for the tool material (18-4-1 HSS ¼ 100) taken from Table 25-10 rffiffiffiffiffi 6 60 ¼ a factor which will correct the cutting speed from that obtained for a basic 60-minute tool life to the cutting speed for the desired tool life
10
Tool life, t(min)
¼ tool life in minutes
FIGURE 25-8 Tool life () versus cutting speed (v). Courtesy: James Carvill, Mechanical Engineer’s Data Handbook, Butterworth-Heinemann, 1994.
Refer to Fig. 25-8.
For numerical values of d 0:37 and s0:77 for various values of d and s
Refer to Fig. 25-11.
25.2 MACHINE TOOLS For machine tools with a rotary primary cutting motion
Refer to Fig. 25-9.
TABLE 25-9 Numerical value for k1 k1 , for 18-4-1 high-speed-steel tool and tool life of
Material to be cut Light alloys Brass (80–120 HB ) Cast brass Cast steel Carbon steel: SAE1015 SAC1025 SAE1035 SAE1045 SAE1060 Chrome-nickel steel Cast iron: 100 HB 150 HB 200 HB
60 min without cutting fluid, or 480 min with cutting fluid
60 min with cutting fluid
480 min without cutting fluid
25.0 6.7 4.2 1.5
2.1
1.1
3.0 2.4 1.9 1.5 1.0 1.6
4.2 3.3 2.7 2.1 1.4 2.3
2.1 1.7 1.3 1.1 0.7 1.1
2.2 1.4 0.8
3.0 1.9 1.1
1.5 1.0 0.5
Courtesy: Wilson, F. W., Fundamentals of Tool Design, A.S.T.M.E., Prentice Hall of India Private Limited, New Dehli, 1969.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ELEMENTS OF MACHINE TOOL DESIGN
25.16
CHAPTER TWENTY-FIVE
TABLE 25-10 Correction factors for compositions of tool material Approximate composition, % Type
W Cr V C
Co Mo Ccf
14-4-1 18-4-1 18-4-2 18-4-3 18-4-1 þ 5% Co 18-4-2 þ 10% Co 20-4-2 þ 18% Co Sintered carbide
14 18 18 18 18 18 20 —
— — — — 5 10 18 —
4 4 4 4 4 4 4 —
1 1 2 3 1 2 2 —
0.7–0.8 0.7–0.75 0.8–0.85 0.85–1.1 0.7–0.75 0.8–0.85 0.8–0.85 —
— — 0.75 — 0.5 0.75 1.0 —
0.88 1.00 1.06 1.15 1.18 1.36 1.41 Up to 5
TABLE 25-11 Numerical values for d 0:37 and s0:77 d
d 0:37
d
d 0:37
s
s0:77
s
s0:77
0.25 0.50 1.00 1.50 2.00 2.50 3.50 4.50 5.50
0.60 0.77 1.00 1.16 1.29 1.40 1.60 1.75 1.88
6.25 7.50 8.75 10.00 11.25 12.50 18.75 25.00
1.97 2.11 2.23 2.34 2.45 2.55 2.96 3.29
0.025 0.05 0.10 0.15 0.20 0.25 0.35 0.45 0.55
0.058 0.01 0.17 0.23 0.29 0.34 0.45 0.51 0.63
0.625 0.750 0.875 1.00 1.12 1.25 1.875 2.50
0.70 0.80 0.90 1.00 1.095 1.188 1.623 2.025
V
V
(a) Lathe
(b) Drilling machine
v V
(c) Milling machine
(d) Grinding machine
FIGURE 25-9 Machine tools with a rotary primary cutting motion.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ELEMENTS OF MACHINE TOOL DESIGN ELEMENTS OF MACHINE TOOL DESIGN
Particular
25.17
Formula
Vw V
Vr
Vw
(b) Shaping machine
(a) Slotting machine
Vw
Vr
(c) Planing machine FIGURE 25-10 Machine tools with a straight line reciprocating primary cutting motion. Courtesy: N. Acherkan, General Editor, Machine Tool Design, volume 1, Mir Publishers, Moscow, p. 21, 1968.
For machine tools with a straight line reciprocating primary cutting motion
Refer to Fig. 25-10.
25.2.1 Lathe turning (Fig. 25-9a) The tangential cutting force
Ft ¼ ks sd
ð25-34Þ
where ks ¼ specific cutting resistance or force offered by the workpiece material per unit chip section, MPa ks ’ 3 to 5 u The maximum tangential force is also obtained from equation.
FtðmaxÞ ¼ 98:1 103 hc
The maximum tangential cutting force in terms of swing over the bed of the center lathe
FtðmaxÞ ¼ 49 103 hsw
ð25-35Þ
where hc in m and FtðmaxÞ in N
where hsw in m and FtðmaxÞ in N
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð25-36Þ
ELEMENTS OF MACHINE TOOL DESIGN
25.18
CHAPTER TWENTY-FIVE
Particular
The maximum torque of the center lathe
Formula
MtðmaxÞ ¼ FtðmaxÞ
hswðmaxÞ 2
ð25-37Þ
where hswðmaxÞ ¼ maximum swing over cross-slide The maximum swing over cross slide for universal lathe
hswðmaxÞ ¼ ð0:55 to 0:7Þhsw
ð25-38Þ
The maximum torque of the lathe by taking hswðmaxÞ ¼ 0:6hsw
MrðmaxÞ ¼ 0:3FrðmaxÞ hsw
ð25-39Þ
The maximum feed force
Ff ¼ FxðmaxÞ þ F ¼ 0:6FcðmaxÞ
ð25-40Þ
where F ¼ Fr ; FxðmaxÞ ¼ 0:3FcðmaxÞ Fr ¼ reaction of the cutting force ¼ 2FcðmaxÞ ¼ coefficient of friction between bed of the lathe and saddle ¼ 0:15 The radial component of cutting force Fy ð¼Fr Þ (Fig. 25-2)
Fy ¼
The deflection of the tool taking into consideration the effect of cantilever of tool
t ¼
2:4EIW LW
ð25-41Þ
Ft l 3 3EI
ð25-42Þ
where l ¼ projected length of tool from the tool post, m I ¼ moment of inertia of area of the cross-section of the tool (bh3 =12) b ¼ width of the tool shank, m h ¼ depth of the tool shank, m Ft L3W 0:05 48EIW
The maximum deflection of job or work piece in the vertical plane due to cutting force Fc ¼ Ft which should not exceed 0.05 mm and Dw =Lw < 16
j ¼
The diameter of job or work piece
DW ¼ 0:25ds
ð25-44Þ
The length of job or workpiece which is equal to the distance between centers of center lathe
LW ¼ 8DW
ð25-45Þ
The tangential component of cutting force is also calculated from the equation
Ft ¼ 2:5Fy
ð25-46Þ
Another equation for the power due to tangential component of cutting force
Pc ¼
ð25-43Þ
where IW ¼ D4W =64 moment of inertia, m4 (cm4 )
Ft vkw ks sdv ¼ 1000 1000
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð25-47Þ
ELEMENTS OF MACHINE TOOL DESIGN ELEMENTS OF MACHINE TOOL DESIGN
Particular
25.19
Formula
The cutting speed for carbide tools may be taken as 150 to 170 m/min. The torque
Mt ¼
1000Pc !
ð25-48Þ
159Pc ð25-49Þ n0 where Mt in N m, Pc in kW, n0 in rps and ! in rad=s
Mt ¼
The minimum speed of work piece
nmin ¼
1000vmin Dmax
ð25-50Þ
The maximum speed of work piece
nmax ¼
1000vmax Dmin
ð25-51Þ
where D ¼ diameter of job in mm The bed width of lathe The moment acting on tailstock body in the plane xz1
B ¼ ð1:5 to 2Þhc Mtxz1
Wj ¼ Fz h 2
ð25-52Þ ð25-53Þ
where Fz ¼ Ft The moment acting on tailstock body in the plane xz2 The moment acting on tailstock body in the yz plane
Mtxz2 ¼ Fx hc
ð25-54Þ
Mtyz ¼ Fy hc
ð25-55Þ
where Wj ¼ weight of job, kN h ¼ lever arm of the vertical force, m (mm) Fa ¼ axial force with which tailstock center holds the job, kN
For speeds and feeds for turning of metals and plastics with HSS, carbide and Stellite tools
Refer to Table 25-12.
For cutting speeds and feeds for turning, facing and boring of cast iron, non-ferrous and non-metallic materials with HSS and carbide tools
Refer to Table 25-13.
25.2.2 Drilling machine CALCULATION OF FORCES AND POWER IN DRILLS (Fig. 25-11) For nomenclature of twist drills
Refer to Fig. 25-11.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ELEMENTS OF MACHINE TOOL DESIGN
TABLE 25-12 Speeds and feeds for turning of metals and plastics with HSS, carbide and stellite tools Turning cutting speed, n (m/min) Depth of cut, d (mm) 0.1–0.5
0.5–2.0
2.0–5.0
6.0–10.0
Feed, s (mm/rev) Work piece material
Tool material
Mild steel
HSS Carbide Stellite HSS Carbide Stellite HSS Carbide Stellite HSS Carbide HSS Carbide Stellite HSS Carbide Stellite HSS Carbide Stellite HSS Carbide Stellite HSS Carbide Stellite HSS Carbide Stellite
Alloy steel
Stainless steel
Free cutting steel Cast, gray
Aluminum alloys Copper alloys
Magnesium alloys Monel metal
Thermosetting plastic
0.05–0.20
0.20–0.30
0.25–0.50
40–80 150–450
30–60 120–200
30–50 80–150
25–35 60–120
20–45 80–180
15–35 60–100
15–26 40–80
10–15 30–65
20–50 50–90
15–30 50–80
15–25 40–70
15–20 40–60
50–120 200–500 110–160 80–120
40–110 150–250 35–45 80–110
40–70 120–180 25–30 70–100
20–40 90–150 20–25 60–90
100–200 150–600
90–120 90–450
70–100 80–180
40–70 60–150
100–200 120–310
90–120 90–180
60–100 60–150
40–60 50–110
100–200 150–160
90–120 90–450
70–100 80–180
40–70 60–150
Speed, V (m/min) and feed s (mm/rev) for stellite tool
v ¼ 70–120; s ¼ 0:125–2.00 v ¼ 20–35; s ¼ 0:125–1.25 v ¼ 30–50; s ¼ 0:075–1.00
v ¼ 60–90; s ¼ 0:20–2.5 v ¼ 120–180; s ¼ 0:075–0.50 v ¼ 70–150; s ¼ 0:125–0.75 v ¼ 85–135 v ¼ 15–20; s ¼ 0:04–0.4; d ¼ 0:6–4 mm v ¼ 50–80; s ¼ 0:04–0.6; d ¼ 0:4–4 mm v ¼ 25–45; s ¼ 0:125–0.325 v ¼ 35–50; s ¼ 0:25; d ¼ 4 mm v ¼ 100–200; s ¼ 0:25; d ¼ 4 mm v ¼ 70–120; s ¼ 0:25; d ¼ 4 mm
Tang
Point angle Taper shank
Tang drive Flutes Shank diameter
0.40–0.60
Axis
Neck Straight shank Shank length
Overall length
Clearance Drill diameter diameter Body dia. clearance Chisel edge Rake Lip relief angle angle or Helix angle Margin
Flute length Body
Lip
Land Web Chisel edge
FIGURE 25-11 Nomenclature of twist drills. Courtesy: MCTI, Metal Cutting Tool Handbook.
25.20 Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ELEMENTS OF MACHINE TOOL DESIGN ELEMENTS OF MACHINE TOOL DESIGN
25.21
Particular
Formula
The equation developed experimentally and analytically by Shaw and Oxford for torque of a twist drill operating in an alloy steel with an hardness of 200HB .
3 2 c 1:8 7 6 1 c d 7 Mt ¼ 37 106 s 0:8 d 1:8 6 0:2 þ 3:2 7 6 d 5 4 c 1þ d 2
ð25-56Þ where Mt in N m, c, s and d in m TABLE 25-13 Cutting speeds and feeds rates for turning, facing and boring of cast iron, non-ferrous and non-metallic materials with HSS and carbide tools. [Speed (at average HB ) for tool life of 1 12 to 2 hours between grinds, m/min] Cast iron Soft Medium hard HB ¼ 160–220 Depth of HB ¼ 160 cut, d Feeds, s, (mm) (mm/rev) HSS Carbide HSS Carbide 0.80
1.6
3.2
6.4
9.6
12.5
0.1 0.2 0.4 0.1 0,2 0.4 0.8 0.1 0.2 0.4 0.8 0.1 0.2 0.4 0.8 1.6 0.1 0.2 0.4 0.8 1.6 2.4 3.2 0.4 0.8 1.6 2.4
Hard HB ¼ 220–360
Aluminum, magnesium
Aluminum alloys, copper, soft bronze, soft brass, fiber, and plastic
Hard bronze, hard brass, hard rubber, and marble
HSS Carbide
HSS Carbide HSS
Carbide
HSS Carbide
200 150 110 150 120 71 71 120 100 71 56 110 80 60 45 36 90 70 56 40 25 20 —
400 300 220 300 250 180 140 250 200 150 110 180 140 110 90 45 150 120 90 71 40 32 —
90 71 56 71 63 45 32 63 50 36 25 45 40 32 20 16 40 36 25 20 16 9 —
90 70
160 120
50 40
120 90
32 25
100 71
80 63 50
140 110 100
45 32 25
110 80 63
25 20 16
90 71 56
71 56 45
140 110 90
40 32 25
90 71 63
25 20 16
71 63 50
62 45 40 25
120 90 80 56
32 25 20 16
71 63 45 36
20 16 10 8
63 50 40 25
40 36 25 — 20 40 32 25 16
80 71 50 — 36 80 60 45 25
20 16 10 — 9 20 16 10 8
56 45 32 — — 50 40 12 —
16 10 7 — 5 10 9 7 5
45 36 25 — — 40 12 20 —
500 360 280 400 300 220 180 300 250 200 140 250 180 140 110 71 200 150 120 90 63 45 —
150 120 90 120 100 71 56 95 80 63 45 50 63 50 36 25 71 56 45 32 20 16 —
Key: 1. In case of shock and impact cuts, 70% of above speeds for carbide tools and 80% above speeds for HSS tools are used. 2. The above speeds are for cutting without cutting fluid. 3. A 10% reduction in the above speeds are recommended for soft, medium, hard, hard alloy and malleable irons.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
250 200 150 220 180 140 100 180 140 110 71 140 120 90 63 40 140 110 80 50 32 25 —
ELEMENTS OF MACHINE TOOL DESIGN
25.22
CHAPTER TWENTY-FIVE
Particular
The axial force or thrust acting on a drill
Formula
3 c 1 6 c 0:8 7 d 7 Fa ¼ 2:7 109 s 0:8 d 1:8 6 0:2 þ 2:2 7 6 d 4 5 c 1þ d 2
þ 1:33 108 c2
ð25-57Þ
where Fa in N, c, s and d in m c ¼ chisel edge length 1:15 web thickness for normal sharpening The equation for torque of a drill of regular proportions whose c=d may be set equal to 0.18
Mt ¼ 40 106 s 0:8 d 1:8
The axial thrust for a drill of regular proportions whose c=d is equal to 0.18
Fa ¼ 3:6 109 s 0:8 d 0:8 þ 39 106 d 2
The equation for torque at the spindle of a drill based on Brinell hardness number (HB )
Mt ¼ Cd 2 s 0:8 ðHB Þ0:7
ð25-60Þ
Mt ¼ 2 106 d 2 s 0:8 ðHB Þ0:7
ð25-61Þ
ð25-58Þ
where Mt in N m, s and d in m ð25-59Þ
where Fa in N, c, s and d in m
where Mt in N m, d and s in m The constant C ¼ 2 106 for HSS drill drilling in carbon steel. The equation for axial thrust at the spindle of a drill required for drilling which is based on Brinell hardness number (HB )
Fa ¼ Cds 0:7 ðHB Þ0:8
ð25-62Þ
Fa ¼ 1:9 106 ds 0:7 ðHB Þ0:8
ð25-63Þ
where Fa in N, d and s in m The constant C ¼ 1:9 106 for HSS drill drilling in carbon steel. Another equation for the turning moment on the drill
Mt ¼ Kt d 1:9 s 0:8
ð25-64Þ
Mt ¼ 41:7 106 s 0:8 d 1:9 for steel
ð25-65Þ
Mt ¼ 28:8 106 s 0:8 d 1:9 for cast iron
ð25-66Þ
where Mt in N m, s and d in m Another equation for the axial force acting on the drill
Fa ¼ Ksm d
ð25-67Þ
Fa ¼ 1:1 108 s 0:7 d for steel
ð25-68Þ
Fa ¼ 1:5 108 s 0:8 d for cast iron
ð25-69Þ
where Fa in N, s and d in m
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ELEMENTS OF MACHINE TOOL DESIGN ELEMENTS OF MACHINE TOOL DESIGN
Particular
25.23
Formula
REAMERS (Fig. 25-12) The equation for torque of a reamer or core drill
The equation for axial thrust for a reamer or core drill
3 d1 2 7 6 1 d 7 Mt ¼ 37 106 Ks 0:8 d 1:8 6 0:2 7 6 5 4 d1 1þ d 2
where Mt in N m, s, d1 and d in m 2 2 3 d1 1 7 6 d 7 9 0:8 1:8 6 Fa ¼ 2:7 10 Ks d 6 0:2 7 5 4 d1 1þ d
ð25-70Þ
ð25-71Þ
where Fa in N, s, d1 and d in m d1 ¼ diameter of hole to be enlarged, m K ¼ a constant depending upon the number of flutes. Refer to Table 25-14. For tapping drill sizes for coarse threads
Refer to Table 25-15.
For cutting speeds and feeds for drills
Refer to Table 25-16.
For drill angles, cutting angles and cutting lubricant for drilling with high speed steel drills.
Refer to Table 25-17.
TABLE 25-14 Values of constant K
TABLE 25-15 Tapping drill sizes for coarse threads
Number of flutes
Constant, K
Number of flutes
Constant, K
1 2 3 4 6
0.87 1.00 1.08 1.15 1.25
8 10 12 16 20
1.32 1.38 1.43 1.51 1.59
Courtesy: Wilson F. W., Fundamentals of Tool Design, A.S.T.M.E., Prentice Hall of India Private Limited, New Dehli, 1969.
Nominal Thread Tap drill Nominal Thread Tap drill diameter, pitch, size, diameter, pitch, size, mm mm mm mm mm mm 1.6 2.0 2.5 3.0 3.5 4.0 5.0 6.0 8.0 10.0 12.0 16.0
0.35 0.40 0.45 0.50 0.60 0.70 0.80 1.00 1.25 1.50 1.75 2.00
1.20 1.60 2.05 2.50 2.90 3.30 4.20 5.30 6.80 8.50 10.20 14.00
20.0 24.0 30.0 36.0 42.0 48.0 56.0 64.0 72.0 80.0 90.0 100.0
2.50 3.00 3.50 4.00 4.50 5.00 5.50 6.00 6.00 6.00 6.00 6.00
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
17.5 21.0 26.5 32.0 37.5 43.0 50.5 58.0 66.0 74.0 84.0 94.0
a
0.05
0.03
0.08 0.05
0.55
1.10
0.83 0.55
0.05 to 0.075 0.05 to 0.10 0.05 to 0.125 0.05 to 0.10 0.05 to 0.075
mm/rev 0.12
to
to
to
to
to
Feed s, mm
m/s 0.55
4275 5500 4575 6700 1500 1800 9150 1200 3650 1550
Speed n, rpm
0.85 0.55
1.10
0.55
m/s 0.55
2100 to 2800 2300 to 3350 7600 to 9100 4575 to 6100 1800 to 2250
Speed n, rpm
0.13 0.13
0.05
0.12
mm/rev 0.25
0.051 to 0.075 0.05 to 0.10 0.05 to 0.075 0.05 to 0.10 0.05 to 0.075
Feed s, mm
3.0
0.85 0.55
1.10
0.55
m/s 0.55
0 0.15
0
0.10
mm/rev 0.30
0.075 to 0.125 0.10 to 0.15 0.075 to 0.125 0.10 to 0.175 0.075 to 0.10
Feed s, mm
6.0
1050 to 1375 1150 to 1675 3800 to 4600 2300 to 3000 925 to 1150
Speed n, rpm
Extruded, molded or cast. b Extruded or molded. c Cast, molded or filled.
Plastics: Thermoplastics, polyethylene, polypropylene, TFB fluorocarbona Nylon, acetates, polycarbonate Polystyreneb Thermosetting plastics: Soft gradec Hard tradec
Tool steel, steel castings, stainless steel and monel metal
Bronze, brass
Aluminum
Cast iron
Metals with HSS drills: Mild steel
Material
1.5
TABLE 25-16 Cutting speeds and feeds for drills
— —
—
—
m/s —
700 to 925 750 to 1125 2500 to 3000 1525 to 2025 600 to 750
Speed n, rpm
— —
—
—
mm/rev —
0.125 to 0.175 0.15 to 0.225 0.075 to 0.125 0.171 to 0.25 0.10 to 0.15
Feed s, mm
10.0
0.85 0.55
1.10
0.55
m/s 0.55
525 to 700 575 to 850 1900 to 2280 1150 to 1525 450 to 575
Speed n, rpm
0.20 0.20
0.10
0.20
mm/rev 0.38
0.150 to 0.20 0.20 to 0.30 0.15 to 0.20 0.25 to 0.35 0.15 to 0.225
Feed s, mm
12.0
— —
—
—
m/s —
— —
—
—
mm/rev —
0.25 to 0.35 0.30 to 0.40 0.20 to 0.25 0.35 to 0.45 0.20 to 0.30
Feed s, mm
16.0
425 to 550 450 to 675 1500 to 1800 900 to 1200 350 to 450
Speed n, rpm
Drill sizes, mm
0.85 0.55
1.10
0.55
m/s 0.55
350.0 to 450 375 to 550 1250 to 1500 750 to 1000 300 to 375
Speed n, rpm
0.25 0.25
0.13
0.25
mm/rev 0.46
0 25 to 0.35 0.30 to 0.40 0.20 to 0.25 0.35 to 0.45 0.20 to 0.30
Feed s, mm
20.0
— —
—
—
m/s —
300 to 400 325 to 475 1095 to 1300 650 to 875 260 to 325
Speed n, rpm
— —
—
—
mm/rev —
0.35 to 0.40 0.35 to 0.50 0.25 to 0.325 0.40 to 0.55 0.25 to 0.35
Feed s, mm
22.0
0.85 0.55
1.10
0.55
m/s 0.55
265 to 340 280 to 425 950 to 1125 575 to 750 225 to 280
Speed n, rpm
0.30 0.30
0.15
0.30
mm/rev 0.50
0.35 to 0.40 0.35 to 0.50 0.25 to 0.35 0.40 to 0.55 0.20 to 0.35
Feed s, mm
25.0
0.85 0.55
1.10
0.55
m/s 0.55
Speed n, rpm
0.38 0.38
0.18
0.38
mm/rev 0.64
Feed s, mm
30.0
ELEMENTS OF MACHINE TOOL DESIGN
25.24
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ELEMENTS OF MACHINE TOOL DESIGN ELEMENTS OF MACHINE TOOL DESIGN
Particular
25.25
Formula
TABLE 25-17 Drill angles and cutting lubricants for drilling with HSS drills Lip relief angle, deg
Chisel edge angle, deg
Helix angle, deg
Cutting lubricants
Workpiece material
Hardness HB
Point angle, deg
Aluminum alloys Magnesium alloys Copper Brass Bronze Cast iron soft medium hard chilled Cast steel Mild steel Medium carbon steel Free machining steels Alloy steels Tool steels Stainless steels Spring steel Titanium alloy Monel metal Pure nickel Manganese steel Duraluminum Wood Bakelite
30–150 40–90 80–85 192–202 166–183
90–140 70–118 100–125 118–130 118
12–15 12–15 12–15 10–12 12–15
125–135 120–135 125–135 125–135 125–135
24–48 30–40 28–40 10–30 10–30
Paraffin, lard oil, kerosene Mineral oil Soluble oil Dry, lard oil, paraffin mixture Dry, lard oil, paraffin mixture
126 196 293–302 402 286–302 225–325 325–425 85–225 423 510 135–325 402 110–402 149–170 187–202 187–217 90–104 — —
90–100 90–100 118 118 118 118 118–135 118 118–135 150 118 150 118–135 118 118 130 118 60 130
8–12 8–12 8–12 8–12 12–15 10–12 8–10 12–15 7–10 7–10 7–10 7–10 7–10 12–15 10–12 7–10 10–12 15–20 7–10
125–135 125–135 125–135 125–135 125–135 125–135 125–135 125–135 125–135 125–135 125–135 125–135 125–135 125–135 125–135 125–135 125–135 135 135
24–32 24–32 24–32 24–32 24–32 24–32 24–32 24–32 24–32 24–32 24–32 24–32 20–32 24–32 24–32 24–32 32–45 24–32 24-32
Dry Dry Dry, soluble oil Dry, lard oil Lard oil, soluble oil Soluble oil, lard oil Sulfur base oil, mineral lard oil Soluble oil, lard oil Soluble oil, mineral oil Soluble oil, lard oil with sulfur Sulfur base oil Lard oil with sulfur Sulfur base oil Lard oil, sulfur base oil Lard oil Mineral oil Mineral oil None None
For elements of metal-cutting reamer
Refer to Fig. 25-12.
For reamer angles and cutting lubricants for reaming with HSS reamers.
Refer to Table 25-18.
25.2.3 Taps and tapping Power, P, at the spindle of tap for tapping of V-thread
1:75p P ¼ 6:3 103 Km Vpuc 0:15 þ uc where Km ¼ material factor taken from Table 25-19 V ¼ cutting velocity, m/min p ¼ pitch of thread, mm uc ¼ number of chamfered threads
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð25-72Þ
ELEMENTS OF MACHINE TOOL DESIGN
25.26
CHAPTER TWENTY-FIVE
Particular
Formula
For material factor, Km , for use in drilling, reaming tapping
Refer to Table 25-19.
For nomenclature of tap
Refer to Fig. 25-13.
For tip angles and lubricants for tapping with HSS taps
Refer to Table 25-20.
Overall length
Chamfer-relief Chamfer length angle Land width Margin
Shank length Tang
Flute length
Taper shank
Cutter sweep
Chamfer angle
Actual size Chamfer length
Helix angle
Chamfer Radial rake Chamfer angle relief angle Straight flutes shown
Actual size
Straight shank Shank length
Helical flutes right-hand helix shown
(a)
Body
(a) Straight and Taper shank chucking reamer
(b) Machine reamer
FIGURE 25-12 Elements of metal-cutting reamers. Courtesy: MCTI, Metal Cutting Tool Handbook.
TABLE 25-18 Reamer angles and cutting lubricants for reaming with HSS reamers (Fig. 25-12) Chamfer
Workpiece material
Hardness, HB
Radial rack angle, deg
Primary relief angle, deg
Helix angle, deg
Aluminum alloys Magnesium alloys Brass, bronze Cast iron: soft, medium and hard Mild steel Free machining steels Alloy steels Tool steels
30–150 40–90 165–202
5–10 7 0–5
7–8 5–6 5–7
0–10 0.5–1.5 45 0 to 10 0.15–0.30 45 0–12 0.125–0.35 40
126–302 226–325 85–225 423 510
0–10 2–3 2–3 2–3 2–3
5–6 4–5 4–5 2–4 2–4
0–10 0–10 0–10 0–10 0–10
Margin width, mm
0.10–0.65 0.10–0.25 0.15–0.20 0.15–0.20 0.15–0.20
Angle, deg
45 45 45 45 45
Relief angle, deg
Length, mm
Cutting lubricants
10–15 10–15 10–15
1.5 1.5 2.5
Mineral lard oil Mineral oil Soluble oil
7–23 7 7 7 7
1.5 1.5 1.5 1.5 1.5
Dry, soluble oil Mineral lard oil Soluble oil Lard oil Lard oil
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ELEMENTS OF MACHINE TOOL DESIGN ELEMENTS OF MACHINE TOOL DESIGN
Cutting edge
TABLE 25-19 Material factor, Km , for use in drilling, reaming and tapping calculations
Relieved to cutting edge
No relief
25.27
Heel Size of square Concentric
Eccentric relief
Workpiece material
Length of square
Concentric portion Eccentric relief Flute
Con-eccentric relief
Nagative rake angle
Length of shank Axis
Land
90… Helix angle Positive Root rake angle Crest
Zero rake Hook Tangential measurement
Land Flute
Core diam Hook angle (Crodel measurement)
Aluminum Copper alloys Cast iron
Shank diam
Overall length
Malleable iron Height of thread
Carbon steels
Major diam Pitch diam Minor diam Rear flank Front flank
Flute
Pitch
Thread angle Thread length
Base
Hardness, HB
Alloy steels
Thread half angle
Stainless steel
Chamfer angle
Ultimate tensile strength, ust , MPa
85 175 205 180 220 150 200 165 195 210 240 185 270
278.50 210.00 344.00 540.00 666.50 568.50 588.00 772.50 803.20 633.50 910.00
Material factor, Km 0.55 0.55 0.92 1.40 0.75 0.85 1.50 1.90 1.55 2.04 2.15 2.50 1.55 2.40
Chamfer length Point diam
Internal center External center
TABLE 25-20 Tap angles and cutting lubricants for tapping with HSS taps Rack angle Workpiece material
Hardness, HB
Hook, deg
Positive, deg
Aluminum Copper Bronze Brass Cast iron Cast steel Mild steel Medium carbon steel Alloy steels Tool steels Stainless steels Titanium alloys Phenolic plastics, hard rubber and fibers
30–150 80–85 166–183 192–202 100–300 286–302 225–325 325–425 130–423 300–402 135–325 110–402
10–18 20 4–20 — 0–2
— — — 0 0 10–15
a b
9–12 9–12 10–15 5–10 15–20 5–12
Chamfera relief angle, deg 12 10 10 10 6–12 8 8 8 5–8 10 12
10–15
Number of flutesb
Cutting lubricant
2–3 4 4 4 4 2–3 2–3 2–3 2–3 2–3 2–3 2–3 4
Kerosene and paraffin Milk Soluble oil Lard oil, soluble oil Dry or soluble oil Sulfur base oil, lard oil Soluble oil, lard oil Sulfur base oil, lard oil Soluble oil, mineral oil Soluble oil, lard oil with sulfur Sulfur base oil Sulfur base oil Dry
Chamfer length 212 to 3 threads for blind holes; 3 to 4 threads for through holes. For taps of 12 mm or smaller diameter.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ELEMENTS OF MACHINE TOOL DESIGN
25.28
CHAPTER TWENTY-FIVE
Particular
Formula
25.2.4 Broaching machine BROACHES (Figs. 25-14 and 25-15) AND BROACHING For broach tooth form
Refer to Fig. 25-14.
For nomenclature of round pull broach
Refer to Fig. 25-15.
The allowable pull of internal or hole broach
Fapl ¼
A sut n
The permissible load on push type of round broach (Fig. 25-15) using Euler’s column formula with both ends free but guided
Fpps ¼
2 EI 2 E ¼ 2 nL2 nL
The allowable push in case of push type round broaches when E ¼ 206:8 GPa in Eq. (25-74)
Faps ¼
Note: when (L=D) is greater than 25, a push broach is considered as a long column and strength is based on this. If (L=D) is less than 25, the broach is considered to act as a short column which resist compressive load only.
Land
Rake angle
ð25-73Þ
D4r 64
100;000D4r nL2 where
ð25-74Þ
ð25-75Þ
Fapl ¼ allowable pull, N Faps ¼ allowable push, N A ¼ area of the minimum cross-section of broach which occurs at the root of the first roughing tooth or at the pull end, mm2
Back off angle
Pitch
Straight land
Depth Radius FIGURE 25-14 Broach tooth form. Courtesy: American Broach and Machine Division, Sundstrand Machine Tools Company. Pull end
Shank
Front pilot
Semifinish Finishing teeth teeth Broach "length" Round hole broach Burnishing teeth
Roughing teeth
Round hole broach with burnishers
Rear pilot
Rear support
Follow rest grip
FIGURE 25-15 Nomenclature of a typical round pull broach. Courtesy: American Broach and Machine Division, Sundstrand Machine Tools Company.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ELEMENTS OF MACHINE TOOL DESIGN ELEMENTS OF MACHINE TOOL DESIGN
Particular
25.29
Formula
n ¼ factor of safety to prevent broach damage because of sudden overloads due to hard spots in material, etc. n ¼ 3 or more dependent on slenderness ratio sut ¼ tensile strength of the broach material, N/mm2 Dr ¼ root diameter of the broach at 1=2L, mm L ¼ length of broach from push end of first cutting tooth, mm sa ¼ sut =n
The safe tensile stress for high speed steel
as ¼ 98 MPa for keyway broaches as ¼ 196 MPa for polygon broaches as ¼ 245 MPa for round/circular broaches The number of teeth cutting at a time in case of surface broaching
z¼
lmax þ1 p
ð25-76Þ
where lmax ¼ maximum length of workpiece, mm p ¼ pitch of the broach teeth, mm Sum of the length of all the teeth engaged at any instant in broaching
L ¼ Dz for circular/round broach
ð25-77aÞ
L ¼ bz for spline broach
ð25-77bÞ
L ¼ lz for surface broach
ð25-77cÞ
ks ¼ 4415 þ 3 108 24;515sz
The specific broaching/cutting force
ð25-78Þ
where ks in N/mm2 Also refer to Table 25-21 for ks
TABLE 25-21 Specific broaching force, ks Rise per tooth, sz , mm 0.03
0.04
0.05
0.06
0.08
0.1
Specific broaching force, ks , MPa
Material Mild steel Cast iron: Gray Malleable Alloy steel
4168
3580
3285
3040
2745
2550
3726 3334 5688
3236 2844 4505
2942 2648 4413
2648 2452 4168
2452 2206 3775
2305 2060 3530
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ELEMENTS OF MACHINE TOOL DESIGN
25.30
CHAPTER TWENTY-FIVE
Particular
Formula
¼ tensile strength of workpiece, N/mm2 ¼ rack angle, deg sz ¼ rise per tooth, mm The recommended speeds and feeds for broaching
Refer to Table 25-22
The broaching force
F ¼ kks ðDzÞsz for circular or round broaches ð25-79aÞ F ¼ kks ðbzÞus sz for spline or key broaches ð25-79bÞ F ¼ kks ðlzÞsz for surface broaches
ð25-79cÞ
where b ¼ width of spline or key, mm D ¼ diameter of broached hole, mm l ¼ width to be broached in case of surface broach, mm k ¼ coefficient (may be taken as 1.1 to 1.3) z ¼ number of teeth engaged at a time us ¼ number of spline Another equation for the broaching force in case of key and splines broaching
F ¼ Cszm5 ðbzÞus
TABLE 25-22 Recommended speeds and feeds for broaching
TABLE 25-23 Broach angles for broaching with HSS broaching (Fig. 25-14)
Brinell hardness, HB
Workpiece material Aluminum alloys Copper alloys Cast iron: Gray
Malleable Low alloy steels Carbon steel Free cutting steel
Rise per tooth, mm
Cutting speed, m/min
30–150 40–200
0.15 0.12
10–20 8–10
110–140 190–220 250–320 110–400 85–125 120–375 100–200 275–325 325–375
0.13 0.07 0.05 0.15 0.10 0.08 0.10 0.07 0.05
9 8 4.5 5–30 9 3–8 10–12 6 6
Workpiece material Aluminum/ magnesium Copper alloys Cast iron Lead brass Mild steels Alloy steels Tool steels Stainless steel Titanium
ð25-80Þ
Brinell hardness, HB 30–150 40–200 100–320 — 225–325 130–423 300–402 135–325 110–402
Hook/rake angle, deg
Clearance angle, deg
10–15
1–3
0–10 6–8 5 to þ5 15–20 8–12 8–12 12–18 8–26
1–3 2–3 1–3 2–3 1–3 1–2 2–3 2–8
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ELEMENTS OF MACHINE TOOL DESIGN ELEMENTS OF MACHINE TOOL DESIGN
Particular
25.31
Formula
where C ¼ coefficient which takes into consideration condition of cutting and characteristic of workpiece. Taken from Table 25-25. sz ¼ feed per tooth, mm (Table 25-25) m5 ¼ exponent taken from Table 25-25 Another equation for the broaching force in case of cylindrical broaching
F ¼ Cszm5 Dz
The velocity of broaching
v¼
Kv m6 szm7
ð25-81Þ
ð25-82Þ
where Kv ¼ velocity coefficient depends on the conditions of metal cutting (Table 25-24) ¼ life of tool, min su ¼ stress of material, N/m2 , from Table 25-24 The power required for broaching by the broaching machine
Fv 1000 where F in N, v in m/s, and P in kW
P¼
ð25-83Þ
25.2.5 Milling machines A knee horizontal-milling machine for plain or slab milling
Refer to Fig. 25-16.
A knee-type vertical milling machine for face milling
Refer to Fig. 25-17.
For nomenclature and tool geometry of milling cutters
Refer to Figs. 25-18 and 25-19a.
For tool angles of millings cutters
Refer to Table 25-26 and Figs. 25-18 and 25-19a. rffiffiffiffi z h ð25-84Þ k¼ ¼ " D where
The engagement parameter (Fig. 25-19a)
¼ engagement angle for milling depth, h rffiffiffiffi h ¼2 D
ð25-85Þ
" ¼ peripheral pitch angle, deg
2 z
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð25-86Þ
— — up to 686 686–785 above 785
200 200 up to 200 200–230 above 200 14.0 11.5 16.8 15.5 11.2
Kv 0.50 0.50 0.62 0.62 0.62
m6 0.60 0.60 0.62 0.62 0.62
m7
sz as given in Table 25-25
Circular or round broaching
Alloy steels
Cast steel
Cast iron
Stress su , MPa — — 686 686–785 >785 686 686–785 >735
Brinell hardness, HB
200 >200 200 200–230 >230 200 200–230 >230
Workpiece material
2942 3472 6865 7472 8257 6865 7472 8257
C
6.2 5.1 9.2 8.8 6.3
Kv
0.04–0.08 0.03–0.06 0.02–0.03 0.02–0.05 0.02–0.03 0.02–0.03 0.02–0.04 0.02–0.03
sz 0.73 0.73 0.85 0.85 0.85 0.85 0.85 0.85
0.6 0.6 0.87 0.87 0.87
m6
1128 1344 1735 1980 2452 1735 1980 2452
C
6.2 5.1 7.7 7.0 5.0
Kv 0.6 0.6 0.87 0.87 0.87
m6
0.08–0.15 0.07–0.12 0.04–0.07 0.07–0.12 0.04–0.07 0.03–0.06 0.06–0.10 0.04–0.07
sz
Keyway broaching
0.95 0.95 1.4 1.4 1.4
m7
0.73 0.73 0.85 0.85 0.85 0.85 0.85 0.85
m5
0.95 0.95 1.4 1.4 1.4
m7
sz > 0:07 mm
Keyway broaching sz 0.07 mm
m5
Circular or round broaching
TABLE 25-25 Values of C, sz and m5 for use in Eqs. (25-80) and (25-81)
Steels
Cast iron
Stress su , MPa
Brinell hardness, HB
Workpiece material
1490 2108 2079 2255 2785 2079 2255 2785
C
17.5 14.7 15.5 14.0 10.2
Kv
0.05–0.10 0.04–0.08 0.04–0.06 0.04–0.08 0.03–0.05 0.03–0.05 0.04–0.06 0.03–0.05
sz
Spline broaching
0.5 0.5 0.6 0.6 0.6
m6
0.73 0.73 0.85 0.85 0.85 0.85 0.85 0.85
m5
0.6 0.6 0.75 0.75 0.75
m7
sz as given in Table 25-25
Spline broaching
25.32
TABLE 25-24 Values constant, Kv and exponents m6 and m7 for use in Eq. (25-82)
ELEMENTS OF MACHINE TOOL DESIGN
CHAPTER TWENTY-FIVE
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ELEMENTS OF MACHINE TOOL DESIGN ELEMENTS OF MACHINE TOOL DESIGN
Particular
25.33
Formula
For up-milling and down-milling processes
Refer to Fig. 25-19.
The minimum number of teeth for satisfactory cutting action (Fig. 20-19a)
2 zmin ¼ pffiffiffiffiffiffiffiffiffi h=D
ð25-87Þ
where h ¼ depth of milling, mm 1 For h=D ¼ 10 to
The circumferential or circular pitch
pc ¼
1 20
the zmin lies between 20 and 28.
D z
ð25-88Þ
Overarm Arbor Work table
Column
Saddle Knee Base (a) Knee - type horizontal milling machine Y Z Machined surface
Tool
X
Primary motion (C) Continuous feed motion(X’) Workpiece Work surface
(b) Helical milling cutter FIGURE 25-16 Knee-type horizontal milling machine for plane milling. Courtesy: G. Boothroyd, Fundamentals of Metal Machining and Machine Tools, McGraw-Hill Book Company, New York, 1975.9
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ELEMENTS OF MACHINE TOOL DESIGN
25.34
CHAPTER TWENTY-FIVE
Particular
Formula
pc D ¼ tan z tan
The axial pitch
pa ¼
The number of teeth in engagement in case of plain milling cutter whose helix angle is
z b tan þ zs ¼ D
The design equation for the number of teeth on milling cutter
ð25-89Þ
rffiffiffiffi! h D
ð25-90Þ
where b ¼ width of cutter, mm pffiffiffiffi z¼m D
ð25-91aÞ
where m is a function of helix angle . Table 25-27 gives values of m for various helix angles .
Head
Table
Column
Saddle Knee Z X
Y
Base (a) Knee - type vertical milling machine
Cutting Edge
Primary motion ( C)
Tool
Relief Angle Primary clearance angle (α) Secondary clearance angle (α1)
Lip Angle
Machined surface
Back of Tooth Face of Tooth
Radial Rake Angle = γ1
Land (f) Gash or Chip space
BODY OF CUTTER
(b) Face milling cutter
FIGURE 25-17 Knee-type vertical milling machine for face milling. Courtesy: G. Boothroyd, Fundamentals of Metal Machining and Machine Tools, McGraw-Hill Book Company, New York, 1975.9
Direc
Work surface
tion
Root diameter (Dr)
f Rota
Workpiece
tion o
Continuous feed motion ( X’)
Fillet or Root radius
Tooth depth
Outside diameter (D ) ¡
FIGURE 25-18 Nomenclature and geometry of milling cutter.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ELEMENTS OF MACHINE TOOL DESIGN ELEMENTS OF MACHINE TOOL DESIGN
Particular
Formula
R=
γ
α1
ψ
V
D 2 f
∋ h
δ
Feed
α
δ = gullet angle, deg. γ = rake angle α = primary clearance angle α1 = secondary clearance angle h = depth of cut or depth of mmilling, min
Feed
= peripheral pitch angle or angular pitch, deg. = engagement angle for milling depth, h = (ψ / = engagement parameter = land, mm
(∋
∋
ψ k f
25.35
(b) Up-milling
(a) Down-milling
FIGURE 25-19 Horizontal milling process.
The gullet angle (Fig. 25-19a)
¼"þ
if rack angle ¼ 0
ð25-91bÞ
where ¼ wedge angle, deg CHIP FORMATION IN MILLING OPERATION PLAIN MILLING (Fig. 25-21) The maximum undeformed chip thickness in case of plain or slab milling (Fig. 25-21) as per Martellotti10,11 tucðmaxÞ
2 8 91=2 3 D > > > > > > 1 6 < = 7 h 7 cos 6 ¼ 6sz 2 2 7 5 4 > > v v D D > f f > > > 1 : ; 2h V Vh ð25-92Þ
The length of undeformed chip (Fig. 25-21)
l¼
The inherent roughness height
R¼
D 2
1=2 vf D h 1 h V D sz
sz
z
ð25-93Þ ð25-94Þ
where the upper sign (þ) refers to up-milling and the lower sign () refers to down-milling The feed s which is equal to the distance moved by the workpiece during one resolution of tool (Fig. 25-21)
vf n where s in mm/rev
s¼
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð25-95aÞ
Radial rake γr
(b) End mills
Corner
Axial relief αa
Corner
Axial rake α
Axial rake a or helix angle β
Radial relief αr Axial relief αa
Axial rake λa
Approach angle x
(a) Face mills
Radial relief αr
(c) Side and slot mills
Axial relief αa
Radial relief αr
Radial rake γr
Radial rake γr
Figure 25-20 30–150
Side and slot End
25.36
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
6
15 12
Diameter, mm
r1 , deg r2 , deg
13 11
10 13 10
12 12 9
16 10 8
25
85–440
Face
Side 135–425 and slot End
Face
Side and slot End
Face
Side 100–400 and slot End
Face
Brinell hardness, HB
Types of of mills
Note: 1. Use 1 458 or radius for corner. 2. End cutting edge concavity angle: (a) for aluminum, 5 deg. (b) for alloy steels and aluminum, 3 deg. a 3. Radial relief angles (r ) for end mill
Stainless steels
Steels (machineability 100)
Cast iron (machineability 100)
Aluminum alloys
Workpiece material
TABLE 25-26 Tool angles of milling cutters (Figs. 25-18 and 25-19)
HSS Carbide HSS Carbide HSS Carbide HSS Carbide HSS Carbide HSS Carbide HSS Carbide HSS Carbide HSS Carbide HSS Carbide HSS Carbide HSS Carbide
Material of tool
5 to 10 5 to 10 10–15 5 to þ5 10–20 3–5 10–15 0 to 7 5–12 2–4 15 0–3 10–12 0 to 10
10–20 5–15 15–20 5–8 20–35 10–20 10–20 þ5 to 10 12
Radial rake,
r , deg
20–30 5–10 10–15 0 to 5 30–35 15—25 10–15 0 to 7 10–12 5 to þ5 30–35 15–25 10–15 0–10
10–25 10–20 30–45 25 20–35 10–20 10–12 0 to 10 30–35
Axial rake,
a , deg
r2 a 4–8 3–7 3–7 4–8 5–8 — r2 a 8–10
4–7
3–7 5–8 r2 a
10–12
5–11 7–10 r1 a
Radial relief, r , deg
Tool angles
2–4 3–7 3–5 5–7 5–7 3–5 2–4 — 3–7 8–10 3–7
3–7 4–7
2–4 3–5
3–5
5–7 5–7 8–12
Axial relief, a , deg
30
30
30
30–45
Helix angle, , deg
ELEMENTS OF MACHINE TOOL DESIGN
ELEMENTS OF MACHINE TOOL DESIGN
25.37
ELEMENTS OF MACHINE TOOL DESIGN
Particular
Formula
TABLE 25-27
δ
Helix angle, , deg
m
10–20 20–30 30–45
1.25–1.5 0.8–1.25 0.5–0.8
ψ D 2
S
h B
V R A
l
tuc(max)ψ
D 2
h Lw
υf
FIGURE 25-21 Geometry of plain-milling chip.
The engagement angle for milling depth, h The feed per tooth of milling cutter
If V (cutter velocity) vt (feed rate) and trochoidal arcs are replaced by circular arcs, Eqs. (25-92), (25-93) and (25-94) become
FIGURE 25-22 Relative motion between the workpiece and a plain milling cutter.
2h ¼ cos1 1 D vf nz where s in mm/rev, sz in mm/tooth,
sz ¼
tucðmaxÞ ¼ sz sin cos sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ffi 2vf h h tucðmaxÞ ¼ 1þ for ¼ 0 D D zn l¼
D s cos þ z 2 2
R¼ If (h=D) is very small i.e.: when ðh=DÞ 1, Eqs. (25-96), (25-97) and (25-98) become
h (D - h)
s2z 4D
rffiffiffiffi! h tucðmaxÞ 2sz cos D rffiffiffiffi 2vf h tucðmaxÞ for ¼ 0 zn D pffiffiffiffiffiffiffi vf l ¼ Dh 2zn R
s2z 4D
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð25-95bÞ ð25-95cÞ in rad ð25-96aÞ ð25-96bÞ ð25-97Þ ð25-98Þ ð25-99aÞ ð25-99bÞ ð25-100Þ ð25-101Þ
ELEMENTS OF MACHINE TOOL DESIGN
25.38
CHAPTER TWENTY-FIVE
Particular
Formula
The machining time (Fig. 25-22)
m ¼
Lm þ
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi hðD hÞ vf
ð25-102Þ
where Lm ¼ length of workpiece, mm The metal removal rate or feed rate which is equal to the product of feed speed and cross-sectional area of the metal removed, measured in the direction of feed motion
hbvf bhsm ¼ 1000 1000 where
Qw ¼
ð25-103Þ
sm ¼ feed ¼ sz nz, mm/min b ¼ back engagement which is equal to the width of the workpiece Qw in cm3 /min FACE MILLING (Fig. 25-23) The maximum chip thickness in case of face-milling
The average value of chip thickness in case of facemilling (Fig. 25-23)
vf cos c ¼ sz cos c ð25-104aÞ nz where c denotes the corner angle, deg " # 57:3 2b1 2ðb b1 Þ tav ¼ þ cos sz sin cos D D tcðmaxÞ ¼
ð25-104bÞ where ¼ approach angle, deg The approximate length of chip
b
l¼
ð25-105Þ
D 2
tc(max)
ψ
D b1
D 2
Lw
D 2
(a)
2
n
vf
FIGURE 25-23 Face milling chip formation.
h (D - h)
Lw
h (D - h) h D 2
(b) FIGURE 25-24 Relative motion between the workpiece and the face milling cutter.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ELEMENTS OF MACHINE TOOL DESIGN
25.39
ELEMENTS OF MACHINE TOOL DESIGN
Particular
Formula
The angle of engagement with the workpiece for use in Eq. (25-105) (Fig. 25-23) The value of tcðmaxÞ when the corner angle c is zero
¼ sin1
2b1 D
þ sin1
2ðb b1 Þ D
ð25-106Þ
vf ¼ sz nz
ð25-107Þ
The machining time, when the path of tool axis passes over the workpiece, is given by (Lw þ D) [Fig. 25-24(a)]
m ¼ ðLw þ DÞvf
ð25-108Þ
The machine time when the path of the tool axis does not pass over the workpiece [Fig. 25-24(b)]
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi Lw þ 2 hðD hÞ m ¼ vf
ð25-109Þ
tcðmaxÞ ¼
where Lw ¼ length of the workpiece, mm END MILLING AND SLOT MILLING The average chip thickness in case of end-milling and slot-milling (Fig. 25-25)
tav ¼
114:6
sz
h D
ð25-110Þ
ω
h
ψ
D
Feed FIGURE 25-25 End-milling and slot-milling.
FORCES AND POWER The empirical equation for the tangential force, Ft , in milling operation as per Kovan12
Ft ¼ Chx syz zbp Dq
ð25-111Þ
where C ¼ constant depends on the material of the tool, and the workpiece taken from Table 25-28 z ¼ number of teeth on milling cutter in simultaneous contact with the workpiece
TABLE 25-28 Values of x, y, p, q and C for use in Eq. 25-111 (approx) Material of workpiece
x
y
p
q
C
Cast iron Steel
0.83–1.14 0.86
0.65–0.70 0.74
1.00–0.90 1.00
0.83 to 1.14 0.86
470–686 392–785
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ELEMENTS OF MACHINE TOOL DESIGN
25.40
CHAPTER TWENTY-FIVE
Particular
Formula
z¼
z 360
b ¼ width of milling cutter or chip ¼ h=sin
x, y, p and q exponents taken from Table 25-28 for steels and cast iron Ft in N The tangential force, Ft , can also be calculated from unit power concept
1000P V where
Ft ¼
ð25-112Þ
P ¼ power at the spindle, kW V ¼ cutting speed, m/s D 2 where Mt in N m, D in m, Ft in N
ð25-113Þ
P¼
Ft V 1000 where P in kW, Ft in N, V in m/s
ð25-114Þ
P ¼ Pu kh kr Q
ð25-115Þ
The torque
Mt ¼ Ft
The power
The power at the spindle from the concept of unit power
where Pu ¼ unit power, kW/cm3 /min or kW/m3 /min as per Table 25-29 kh ¼ correction factor for flank wear as per Table 25-30 kr ¼ correction factor for radial rake angle as per Table 25-31
Another equation for power for peripheral milling
Q ¼ metal removal rate, cm3 /min or m3 /min m9 h ð25-116Þ P ¼ kvzbCszm8 R where k, C, m8 and m9 are taken from Tables 25-32 and 25-33, P in W, v in m/s, b in mm, sz ¼ mm/tooth, h in mm, m8 and m9 are indices, C ¼ constant from Table 25-33, R ¼ D=2 ¼ radius of cutter, mm
The approximate relationships between Fr ð¼Fx Þ, Ff ð¼Fy Þ and Ft ð¼Fz ¼ Fc Þ for different milling process
Fr ð¼Fx Þ ¼ 0:5Ft to 0:55Ft ð¼Fz Þ
ð25-117Þ
for symmetrical face-milling Ff ð¼Fy Þ ¼ 0:25Ft to 0:35Ft ð¼Fz Þ for symmetrical face-milling
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð25-118Þ
ELEMENTS OF MACHINE TOOL DESIGN ELEMENTS OF MACHINE TOOL DESIGN
25.41
TABLE 25-29 Average unit power Pu , for turning and milling Unit power Pu , 103 kW=cm3 /min
Work material Free machining steels Mild steels Medium carbon steels Alloy steels Tool steels Stainless steelsa
Cast irona Gray, Ductile, Malleable
Aluminum alloys
Copper alloys Magnesium alloys Titanium alloys Ti–Al–Cr Pure Ti Ti–Al–Mn Ti–Al–V Ti–Al–Cr–Mo a
Tensile strength, st MPa
0.025
0.05
0.075
0.1
0.15
0.2
0.3
0.5
0.8
390 490 588 686 785 880 980 1078 1470 1570 1666 1765 1863 1960 1570 1666 1765 1863 1960 2157 2354 2550 2745 98 196 294 392 490 — 98 147 196 245
54 60 66 69 73 78 80 85 80 86 92 99 104 110 30 31 35 36 38 42 46 50 53 13 19 24 28 32 25 9 10 12 13
45 50 55 59 63 65 69 72 71 76 82 90 96 101 26 28 30 31 33 36 40 43 46 11 16 20 23 26 21 7 9 10 11
41 45 50 53 56 59 62 65 66 72 78 84 91 96 24 25 27 29 30 33 36 39 42 9 14 17 21 23 19 6 8 9 10
39 42 47 50 52 56 59 61 61 67 73 80 86 91 22 24 25 27 28 31 34 37 39 9 13 16 19 22 17 6 7 8 9
35 39 42 45 48 50 53 56 57 62 68 75 81 88 21 22 23 24 26 29 31 33 36 8 12 14 17 19 16 5 6 7 8
33 36 39 42 44 47 49 53 52 58 61 69 78 85 19 20 22 23 24 26 29 31 34 7 11 13 16 18 15 5 6 7 7
30 32 35 37 40 42 44 5.1 48 54 56 62 69 78 18 1.9 21 21 22 24 27 29 31 6 10 12 14 16 13 4 6 6 7
26 29 31 33 35 38 39 44 44 50 52 59 64 71 16 17 19 17 20 22 24 26 28 6 8 10 12 14 12 4 5 5 6
23 26 28 30 32 34 35 36 40 46 48 52 58 60 14 15 17 17 18 20 21 23 25 5 7 9 11 12 10 3 4 4 5
1078 — — — —
59 61 67 68 77
51 52 58 59 66
47 48 53 54 60
45 45 50 52 57
41 41 45 47 52
39 38 43 45 49
36 35 39 41 45
32 31 35 37 40
30 28 31 34 36
Average chip thickness, mm
Values in HB .
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ELEMENTS OF MACHINE TOOL DESIGN
25.42
CHAPTER TWENTY-FIVE
TABLE 25-30 Correction factor for flank wear Correction coefficient, kh Hardness of work material Flank wear, mm 0.2
0.4
0.6
0.8
1
Average chip thickness, mm
125
150
200
250
300
350
400
51
56
61
0.1 0.3 0.5 1.0 0.1 0.3 0.5 1.0 0.1 0.3 0.5 1.0 0.1 0.3 0.5 1.0 0.1 0.3 0.5 1.0
1.16 1.06 1.04 1.02 1.50 1.20 1.12 1.06 1.68 1.26 1.17 1.09 1.91 1.35 1.23 1.12 2.18 1.45 1.30 1.15
1.17 1.07 1.05 1.02 1.50 1.20 1.12 1.06 1.71 1.25 1.19 1.10 2.04 1.41 1.28 1.14 2.32 1.50 1.34 1.16
1.18 1.08 1.05 1.03 1.50 1.20 1.14 1.07 1.73 1.29 1.20 1.10 2.10 1.42 1.32 1.15 2.39 1.56 1.39 1.17
1.19 1.08 1.05 1.03 1.53 1.22 1.15 1.07 1.84 1.33 1.23 1.12 2.34 1.52 1.36 1.17 2.54 1.67 1.47 1.20
1.20 1.09 1.05 1.03 1.57 1.23 1.16 1.08 1.94 1.37 1.26 1.14 2.47 1.56 1.38 1.18 2.65 1.70 1.45 1.23
1.21 1.09 1.06 1.30 1.67 1.27 1.19 1.10 2.09 1.44 1.30 1.16 2.54 1.62 1.43 1.23 2.84 1.74 1.51 1.27
1.22 1.09 1.07 1.03 1.78 1.32 1.24 1.12 2.20 1.50 1.37 1.19 2.65 1.70 1.52 1.27 3.15 1.90 1.67 1.35
1.25 1.13 1.08 1.04 1.80 1.36 1.26 1.14 2.43 1.61 1.47 1.25 2.99 1.90 1.66 1.35 3.46 2.16 1.84 1.44
1.33 1.16 1.12 1.06 1.92 1.41 1.30 1.16 2.72 1.78 1.57 1.30 3.26 2.02 1.74 1.40 — — — —
1.38 1.18 1.13 1.07 2.12 1.52 1.38 1.20 2.82 1.85 1.61 1.33 — — — — — — — —
HB
RC
Note: HB ¼ Brinell hardness number, RC ¼ Rockwell hardness scale C
TABLE 25-31 Correction factor for rake angle, kr Rake angle, degrees Correction coefficient, kr
15 10 5
þ5
0
þ10 þ15 þ20
1.35 1.29 1.21 1.13 1.07 1
0.93 0.87
TABLE 25-33 Values of C for use in Eq. (25-116) Material
TABLE 25-32 Values of m8 , m9 , k for use in Eq. (25-116) Material
m8
m9
k
Steel Cast iron
0.85 0.70
0.925 0.85
0.164 0.169
Free machining carbon steel Carbon steels Nickel-chrome steels Nickel-molybdenum and chromemolybdenum steels Chrome-vanadium steels Flake graphite cast iron Nodular cast irons
C 980 (120 HB )
1190 (180 HB )
1620 (125 HB ) 1460 (125 HB ) 1600 (150 HB )
2240 (225 HB ) 220 (270 HB ) 1960 (280 HB )
1820 (170 HB ) 635 (100 HB ) 1110 (annealed)
2380 (190 HB ) 1330 (263 HB ) 1240 (as cast)
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ELEMENTS OF MACHINE TOOL DESIGN ELEMENTS OF MACHINE TOOL DESIGN
Particular
25.43
Formula
Fr ð¼Fx Þ ¼ 0:5Ft to 0:55Ft ð¼Fz Þ
ð25-119Þ
for asymmetrical face-milling Ff ð¼Fy Þ ¼ 0:30Ft to 0:40Ft ð¼Fz Þ
ð25-120Þ
for asymmetrical face-milling Fr ð¼Fx Þ ¼ 0:15Ft to 0:25Ft ð¼Fz Þ
ð25-121Þ
for end milling (308 helical flute cutters) Ff ð¼Fy Þ ¼ 0:45Ft to 0:55Ft ð¼Fz Þ for end milling (308 helical flute cutters) For types and definitions of milling cutters
Refer to Table 25-34.
For feed per tooth for milling; cutting speeds for face and end milling; feeds and speeds for hobbing.
Refer to Tables 25-35, 25-36 and 25-37.
For milling cutters selection, dimensions for interchangeability of milling cutters, milling arbors with tenon drive and milling arbor with key drive and different types of milling cutters.
Refer to Tables 25-38 to 25-48
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð25-122Þ
ELEMENTS OF MACHINE TOOL DESIGN
25.44
CHAPTER TWENTY-FIVE
TABLE 25-34 Types and definitions of milling cutters
Type
Arrangement of teeth
Application
Size Up to 160 160 mm
Cylindrical (slab or rolling)
Helical teeth on periphery
Flat surfaces parallel to cutter axis
Side and face
On periphery and both sides
Steps and slots Up to 200 mm diameter, 32 mm wide
Appearance
Clearance
Straddle ganged
On periphery and both sides
Cutting two steps
Up to 200 mm diameter, 32 mm wide
Side and Teeth on face periphery. Face teeth on staggered tooth alternate sides
Deep slots
Up to 200 mm diameter, 32 mm wide
Single angle Teeth on conical surface and flat face
Angled surfaces 60–858 in 58 steps and chamfers
Feed
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ELEMENTS OF MACHINE TOOL DESIGN ELEMENTS OF MACHINE TOOL DESIGN
TABLE 25-34 Types and definitions of milling cutters (Cont.)
Type
Arrangement of teeth
Double angle
Application
Size
Teeth on two conical faces
Vee slots
458, 608, 908
Rounding
Concave quarter circle and flat face
Corner radius on edge
1.5–20 mm radius
Involute gear cutter
Teeth on two involute curves
Involute gears
Large range
Appearance
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
25.45
ELEMENTS OF MACHINE TOOL DESIGN
25.46
CHAPTER TWENTY-FIVE
TABLE 25-34 Types and definitions of milling cutters (Cont.)
Type End mill
Arrangement of teeth
Application
Helical teeth at one Light work, end and slots, circumferential profiling, facing narrow surfaces
Size
Appearance
50 mm
TANGED END
TAPPED END
Parallel Shank
Tee slot
Circumferential and both sides
Tee slots in machine table
Dovetail
On conical surface Dovetail and one end face machine slides
For bolts up to 24 mm diameter
38 mm diameter, 458 and 608
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ELEMENTS OF MACHINE TOOL DESIGN ELEMENTS OF MACHINE TOOL DESIGN
TABLE 25-34 Types and definitions of milling cutters (Cont.)
Type
Arrangement of teeth
Application
Skid end mill
Circumferential and one end
Larger work 40–160 mm than end mill diameter
Cutting Circumferential saw (slot) teeth
Cutting off or slitting. Screw slotting
Size
Appearance Cutter Arbor
60–400 mm diameter
Clearance
Thick Thin
Concaveconvex
Curved teeth on periphery
Radiusing
1.5–20 mm radius
Concave
Convex
Thread milling cutter
PARALLEL SHANK
TAPER SHANK
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
25.47
ELEMENTS OF MACHINE TOOL DESIGN
TABLE 25-35 Suggested feed per tooth for milling various materials, mm
Face mills Materials to be milled Cast iron Soft (up to 160HB ) Medium (160 to 220HB ) Hard (220 to 320HB ) Malleable irona Steel Softa (up to 160HB ) Medium (160 to 220HB ) Harda (220 to 360HB ) Stainlessa Brass and Bronze Soft Medium Hard Copper Monel Aluminuma a
Helical mills
Slotting and side mills
End mills
Form relieved cutters
Circular saws
HSS
Carbide HSS
Carbide HSS
Carbide HSS
Carbide HSS
Carbide HSS
Carbide
0.40 0.32 0.28 0.30
0.50 0.40 0.30 0.35
0.32 0.25 0.20 0.25
0.40 0.32 0.25 0.28
0.22 0.18 0.15 0.18
0.30 0.25 0.18 0.20
0.20 0.18 0.15 0.15
0.25 0.20 0.15 0.18
0.12 0.10 0.08 0.10
0.15 0.12 0.10 0.10
0.10 0.08 0.08 0.08
0.12 0.10 0.08 0.10
0.20 0.15 0.10 0.20
0.35 0.30 0.25 0.30
0.18 0.12 0.08 0.15
0.28 0.25 0.20 0.25
0.12 0.10 0.08 0.12
0.20 0.18 0.15 0.18
0.10 0.08 0.05 0.10
0.18 0.15 0.12 0.15
0.08 0.05 0.05 0.05
0.10 0.10 0.08 0.08
0.05 0.05 0.03 0.05
0.10 0.08 0.08 0.08
0.55 0.35 0.22 0.30 0.20 0.55
0.50 0.30 0.25 0.30 0.25 0.50
0.45 0.28 0.18 0.25 0.18 0.45
0.40 0.25 0.20 0.22 0.20 0.40
0.32 0.20 0.15 0.18 0.12 0.32
0.30 0.18 0.15 0.18 0.15 0.30
0.28 0.18 0.12 0.15 0.10 0.28
0.25 0.15 0.12 0.16 0.12 0.25
0.18 0.10 0.08 0.10 0.08 0.18
0.15 0.10 0.08 0.10 0.08 0.15
0.12 0.08 0.05 0.08 0.05 0.12
0.12 0.08 0.08 0.05 0.08 0.12
Coolant to be used.
TABLE 25-36 Recommended cutting speeds for face and end milling with plain HSS and carbide milling cutters, m/min Depth of cut
Material to be milled Cast iron Soft Medium Hard Malleable Iron Steela : Soft Medium Hard Stainless Brass Average Soft yellow Bronze Copper Monel Aluminuma
Roughing cut, 3 to 5 mm
Semi-finishing cut, 1.5 to 3 mm
HSS
HSS
Carbide
Carbide
Finishing cut, below 1.5 mm HSS
Carbide
25 15 12 25
68 50 38 68
30 25 16 30
80 68 50 80
36 30 20 36
105 80 68 105
28 22 15 18
120 100 75 50
32 28 20 22
150 120 90 68
40 32 25 28
180 135 105 80
30 60 28 45 18 75
75 120 75 100 50 240
45. 90 36 68 22 105
120 180 100 150 68 300
60 120 45 90 28 150
150 240 128 210 80 450
a
Coolant to be used Note: Cutting speeds for 12% cobalt HSS should be about 25% to 50% higher than those shown for plain HSS. Cutting speeds for cast alloy should be about 100% higher than those shown for plain HSS. Above speeds should be reduced when milling work that has hard spots or when milling castings that are sandy.
25.48 Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ELEMENTS OF MACHINE TOOL DESIGN
TABLE 25-37 Feeds and speeds for hobbing Feed, mm/rev. of blank
Type of gear
Material
High speed reduction and step up Instrument
Steel Steel Non-ferrous Steel Steel, C.I. Non-ferrous Steel
Aircraft Machine tool and printing press Automotive, including trucks and tractors High quality industrial General industrial Splines
Steel Cast iron Steel Cast iron Steel
Module mm
Roughing (single thread hob)
Roughing (multithread hob)
1.5–8 0.4–1.25 0.4–1.25 2.0–4.0 2.0–6.0 2.0–6.0 1.5–8.10
1–1.5 0.5–1.5 1.0–1.5 1.0–1.5 2.0–3.2 2.0–3.2 2.0–3.2
1–1.5 Up to 3 Up to 3 Up to 3 Up to 2.5 Up to 2.5 Up to 2.5 Up to 2.0 (3 starts)
10.0–25.0 2.5–8.0 10.0–25.0 2.5–8.0
2.0–2.5 1.25–3.2 2.0–2.5 1.25–3.2 1.25–3.0
1.25–1.5
Finishing
Hob speeds, m/min
0.8–1.25 0.5–1.0 0.5–1.0 0.8–1.25 1.0–1.5 1.0–1.5 1.25–2.0
9–25 25–60 25–60 15–45 15–30 25–450 15–45
1.25–2.0
12–30
1.50–2.5
12–30
0.50–1.75
l8–45
TABLE 25-38 Selection of milling cutters Material One-piece construction Two-piece construction Cutting portion Body
High-speed steel High speed steel Carbon steel with tensile strength not less than 700 MPa (190 HN)
Hardness Cutting portion Shank portion Parallel shank Tang of Morse taper shank
760 HV (62 HRC) Min 245 HV (21 HRC) Min 320 HV (32 HRC) Min
Note: The equivalent values within parentheses are approximate.
Recommendations for selection of milling cutters: Tool Type N—For mild steel, soft cast iron and medium hard non-ferrous metals. Tool Type H—For specially hard and tough materials. Tool Type S—For soft and ductile materials. Material to be cut
Tensile strength, MPa
Carbon steel
Up to 500 Above 500 up to 800 Above 800 up to 1000 Above 1000 up to 1300
Steel casting Gray cast iron
Brinell hardness, HB
Up to 180 Over 180
Malleability cast iron Copper alloy Soft Brittle Zinc alloy Aluminum alloy Soft Medium/Hard Aluminum alloy, age hardened Low cutting speed High cutting speed Magnesium alloy Unlaminated a
Tool typea N or (S) N N or (H) H H N H N S or (N) N or (H) S or (N) S N or (S) N S S or (N) N or (S)
Tool types within parentheses are non-preferred. Courtesy: IS 1830, 1971
25.49 Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ELEMENTS OF MACHINE TOOL DESIGN
25.50
CHAPTER TWENTY-FIVE
TABLE 25-39 Dimensions for interchangeability of milling cutters and arbors with tenon drive A z r1 r
a
a1
dφ A s × 45
dφ
s× 45
b
b1
All dimensions in millimeters Arbor
Cutter
da h6/H7
a h11
b H11
r Max
a1 H11
b1 H13
r1 Max
5 8 10 13 16 19 22 27 32 40 50 60
3 5 6 8 8 10 10 12 14 18 16 20
2.0 3.5 4.0 4.5 5.0 5.6 5.6 6.3 7.0 9.0 8.0 10.0
0.3 0.4 0.5 0.5 0.6 0.6 0.6 0.8 0.8 1.0 1.0 1.0
3.3 5.4 6.4 8.4 8.4 10.4 10.4 12.4 14.4 16.4 18.4 20.5
2.5 4.0 4.5 5.0 5.6 6.3 6.3 8.0 7.0 9.0 10.0 11.2
0.6 0.6 0.8 1.0 1.0 1.2 1.2 1.6 1.2 2.0 2.0 2.0
a
b
s 0.3 0.4 0.5 0.5 0.6 0.6 0.6 0.8 0.8 1.0 1.0 1.0
zb þ 0.1
þ0.2
þ0.3
The tolerance on d is not applicable to gear hobs.
z ¼ maximum permissible deviation between the axial plane of the tenon and the axis of arbor of diameter d.
Courtesy: IS 6285-1971
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
0.075 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.125
ELEMENTS OF MACHINE TOOL DESIGN
25.51
ELEMENTS OF MACHINE TOOL DESIGN
TABLE 25-40 Dimensions for interchangeability of milling cutters and milling arbors with key drive r
a
a C
C1
s× 45
r1
C1
C
a
b
KEY SECTION dφ
KEYWAY IN CUTTER
KEYWAY IN ARBOR
All dimensions in millimeters Key da h6/H7
a h9
bb
8 10 13 16 19 22 27 32 40 50 60 70 80 100
2 3 3 4 5 6 7 8 10 12 14 16 18 25
2 3 3 4 5 6 7 7 8 8 9 10 11 14
a
S 0.16
0.25
Keyway Tolerance on S ac þ0.09 0
0þ0.15
9 0.40
0.60
þ0.20 0
2 3 3 4 5 6 7 8 10 12 14 16 18 25
C 6.7 8.2 11.2 13.2 15.6 17.6 22.0 27.0 34.5 44.5 54.0 63.5 73.0 91.0
The tolerance on diameter d is not applicable to gear hobs. Tolerance on thickness b of key: square, h9; rectangular, h11. c Tolerance on keyway width a: light drive fit, N9. For keyway in arbor: running fit, H9; light drive fit, N9. For keyway in cutter: C11
Tolerance on C C1
0 0–0.1
0–0.2
8.9 11.5 14.6 17.7 21.1 24.1 29.8 34.8 43.5 53.5 64.2 75.0 85.5 107.0
Tolerance on C1 r
Tolerance on r r1
Tolerance on r1
0.16
0.6
0–0.1 0 –0.2
0 –0.08
0 –0.3
0.25
1.2
0 –0.09
0–0.5
0.40
0–0.15
0.60
0–0.20 –0.20
0.4 þ0.1 0 1.0
þ0.2 0
1.6 2.0 2.5
IS: 6285, 1971.
b
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ELEMENTS OF MACHINE TOOL DESIGN
25.52
CHAPTER TWENTY-FIVE
TABLE 25-41 American National Standard staggered teeth, T-slot milling cutters with Brown and Sharpe taper and Weldon shanks (ANSI/ASME B94, 19, 1986)
With B. and S. tapera Bolt size 1 4 5 16 3 8
1 5 8 3 4
1
Cutter diam., D
Face width, W
Neck diam., N
9 16 21 32 26 32 13 32 114 115 32 127 32
16 64 17 64 21 64 25 64 31 32 5 8 53 64
17 64 21 64 13 32 17 32 21 32 25 32 1 132
With Weldon shank
Length L
Taper No.
Length L
Diam., S
—
—
219 32
— —
211 16 314 7 316 15 316 7 416 13 416
1 2 1 2 3 4
— — 5
7
614
7
678
9
714
9
1 1 — 114
All dimensions are inches. All cutters are high-speed steel and only right-hand cutters are standard. a For dimensions of Brown and Sharpe taper shanks. See information given in standard Handbook. Tolerances: On D, þ0.000, 0.010 inch; on W, 1 þ0.000, 0.005 inch; on N, þ0.000, 0.005 inch, on L, 16 inch; on S, 0.0001 to 0.0005 inch.
TABLE 25-42 American National Standard 60-degree single-angle milling cutters with Weldon shanks (ANSI/ASME B94, 19, 1985) L
60
w S
D
Diam., D
S
W
L
Diam., D
S
W
L
3 4
3 8 5 8
5 16 9 16
1 216
178
7 8
214
1
13 16 1 116
314
278
138
All dimensions are in inches. All cutters are high-speed steel. Right-hand cutters are standard. 1 inch. Tolerances: On D, 0.015 inch; on S, 0.0001 to 0.0005 inch; on W, 0.015 inch; and on L, 16
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
334
ELEMENTS OF MACHINE TOOL DESIGN ELEMENTS OF MACHINE TOOL DESIGN
25.53
TABLE 25-43 American National Standard multiple flute, helical series end mills with Brown and Sharpe taper shanksa (ANSI/ ASME B94, 19, 1985) L w D
Diam., D
W
L
Taper No.
Diam., D
W
L
Taper No.
–
–
–
–
1
158
558
7
2
714
9
214
712
9
234
8
9
–
–
–
–
1 2 3 4
15 16 114
415 16
7
114 112
514
7
2
All dimensions are in inches. All cutters are high-speed steel. Right-hand cutters with right hand helix are standard. Helix angle is not less than 10 degrees. No. 5 taper is standard without tang: Nos. 7 and 9 are standard with tang only. 1 1 inch; and L, 16 inch. Tolerances: On D, þ0.005 inch; on W, 32 a For dimensions of B. and S. taper shanks, see information given in standard handbook.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ELEMENTS OF MACHINE TOOL DESIGN
25.54
CHAPTER TWENTY-FIVE
TABLE 25-44 American National Standard form relieved, concave, convex, and corner-rounding arbor-type cuttersa (ANSI/ASME B94, 19, 1985) R w
w
C H
H
D
Concave
Max.
Min.
H
D
Convex
Diameter C or radius R Nom.
w
C
Cutter diam. D b
D Corner - Rounding
Width W :010 c
Diameter of hole H Nom.
Max.
Min.
1
1.00075
1.00000
1 1
1.00075 1.00075
1.00000 1.00000
Concave cuttersc 1 8 1 4 3 8 1 2 3 4
0.1270
0.1240
214
0.2520 0.3770
0.2490 0.3740
212 234
0.5040
0.4980
3
0.7540
0.7480
334
1
0.0040
0.9980
414
1 4 7 16 5 8 13 16 113 16 9 116
1
1.00075
1.00000
114
1.251
1.250
114
1.251
1.250
1
1.00075
1.00000
1
1.00075
1.00000
1
1.00075
1.00000
114
1.251
1.250
114
1.215
1.250
1
1.00075
1.00000
1
1.00075
1.00000
114
1.251
1.250
d
Convex cutters 1 4 3 8 1 2 3 4
0.2520
0.2480
212
0.3770
0.3730
234
0.5020
0.4980
3
0.7520
0.7480
334
1 4 3 8 1 2 3 4
1
1.0020
0.9980
414
1
Corner-rounding cutterse 1 8 1 4 1 2
0.1260
0.1240
212
0.2520
0.2490
3
0.5020
0.4990
4 14
1 4 13 32 3 4
All dimensions in inches. All cutters are high-speed steel and are form relieved. Right-hand corner rounding cutters are standard, but left-hand cutter for 14 inch size is also standard. a For key and keyway dimensions for these cutters, see standard handbook. b c
1 1 Tolerances on cutter diameters are þ 16 , 16 inch for all sizes.
Tolerance does not apply to convex cutters. d Size of cutter is designated by specifying diameter C of circular form. e Size of cutter is designated by specifying radius R of circular form. Source: Courtesy: ANSI/ASME B94, 19, 1985, Erik Oberg Editor Etd., Extracted from Machinery’s Handbook, 25th edition, Industrial Press, N.Y., 1996.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ELEMENTS OF MACHINE TOOL DESIGN ELEMENTS OF MACHINE TOOL DESIGN
25.55
TABLE 25-45 American National Standard roughing and finishing gear milling cutters for gears with 1412 degree pressure angles (ANSI/ASME B94, 19, 1985)
D
D H
H
ROUGHING Diametral pitch
Diam. of cutter, D
Diam. of hole, H
Diametral pitch
FINISHING Diam. of cutter, D
Diam. of hole. H
Diametral pitch
Diam. of cutter, D
Diam. of hole, H
Roughing gear milling cutters 1
812
2
3
514
112
5
338
1
112
7
134
4
434
134
6
312
114
1
612
134
4
414
114
7
338
114
212
618
134
5
438
134
8
314
114
3
558
134
5
334
114
–
–
–
14
218
1
16
218
114
18
2
112
20
2
1
22
2
7 8 7 8 7 8 7 8 7 8
114 114
24 26
214 134
36
7 8 7 8 7 8
–
Finishing gear milling cutters 812
2
112
7
2
612
212
618
3
558
3 4
514 414
5
438 414 414
134 134 134 134 112 134 134 112 134
1
5 6
6
378
6
318 338 312 278 318
7 8 8 9 10 11 12 14
3 238 278 212
112
7 8
114
40
134 134
1
–
–
1
All dimensions are in inches. All gear milling cutters are high-speed steel and are form relieved. For keyway dimensions refer to standard handbook. 1 1 Tolerances: On outside diameter, þ 16 , 16 inch; on hole diameter, through 1 inch hole diameter, þ0.00075 inch; over 1 inch and through 2 inch hole diameter, þ0.0010 inch. For cutter number relative to number of gear teeth, see standard handbook. Roughing cutters are made with No. 1 cutter form only. Source: Courtesy: ANSI/ASME B94, 19, 1985, Erik Oberg Editor Etd., Extracted from Machinery’s Handbook, 25th edition, Industrial Press, N.Y., 1996.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ELEMENTS OF MACHINE TOOL DESIGN
25.56
CHAPTER TWENTY-FIVE
TABLE 25-46 American National Standard regular, long and extra length, multiple-flute medium helix single-end end mills with Weldon shanks (ANSI/ASME B94, 19, 1985) L w S
D
AS INDICATED BY THE DIMENSIONS GIVEN BELOW, SHANK DIAMETERS MAY BE LARGER, SMALLER, OR THE SAME AS THE CUTTER DIAMATERS D. Regular mills Cutter diam, D 1a 4 5a 16 3a 8 7 16 1 2 9 16 3 8 11 16 3 4 7 8
1
Long mills
S
W
L
Na
S
W
L
Na
S
W
3 8 3 8 3 8 3 8 3 8 1 2 1 2 1 2 1 2 5 8 5 8 7 8 7 8
5 8 3 4 3 4
7 216
4
3 8 3 8 3 8 1 2 1 2
114
1 316
4
9 316
4
318 314 334
4
2
314
4
4
3 8 1 8 3 8
134
138 112 134
212
414
4
–
–
–
–
4 –
4 –
1 2
–
3 –
5 –
4 –
1 1 138 138 158 158 178 178
212 212 211 16 211 16 338 338 358 358
4
4
6
4 4
4
5 8
212
458
4
5 8
4
4
–
–
–
–
–
–
4
3 4 7 8
3
514
4
4
614
4
312
534
4
3 4 7 8
5
714
4
612 612 612 612 612 612 612 612
4
1
6
812
6
–
–
–
–
6 6
114a –
6 –
812 –
6 –
6
–
–
–
–
6
114
8
1012
6
6
–
–
–
–
8
–
–
–
–
4
2
414
6
1
4
1
2 2
414 414
6 6
1 1
4 4
114
114
2
412
6
114
4
112 134
114 114 114
2
412 412 412
6
114
4
6
114
4
8
114
4
2
2
4
–
1
2
Na
2 –
6
114 112
L
4 4
4
118
Extra long mills
618 –
4 –
6
All dimensions are in inches. All cutters are high-speed steel. Helix angle is greater than 19 degrees but not more than 39 degrees. Right-hand cutters with right-hand helix are standard. 1 1 inch; on L, 16 inch; N ¼ number of flutes. Tolerances: On D, þ0.003 inch; on S, 0.0001 to 0.0005 inch; on W, 32 a In case of regular mill a left-hand cutter with left-hand helix is also standard. Source: ANSI/ASME B94, 19, 1985, Erik Oberg Editor Etd., Extracted from Machinery’s Handbook, 25th edition, Industrial Press, N.Y., 1996.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ELEMENTS OF MACHINE TOOL DESIGN ELEMENTS OF MACHINE TOOL DESIGN
25.57
TABLE 25-47 American National Standard long length single-end and stub-, and regular length, double-end plain- and ball-end, medium helix two-flute end mills with Weldon shanks (ANSI/ASME B94, 19, 1985) L
B
w
S
D L
w
w
C D
S
D C
Single end Long length—plain end
Long length—ball end
Diam., C and D
S
Ba
W
L
S
Ba
W
L
1 4 5 16 3 8 1 2 5 8 1 4
3 8 3 8 3 8 1 2 5 8 3 4
112
5 8 3 4 3 4
1 316
112
5 8 3 4 3 4
1 316
1
4
138
458
158
538
3 8 3 8 3 8 1 2 5 8 3 4
1
1
212
714
1
5
134 134 7 232 23 232 311 32 431 32
5 316 5 316
134 134 214 234 338
5 316 5 316
1
4
138
438
158
538
212
714
Double end Stub length—plain end Diam., C and D
Regular length—plain end
Regular length—ball end
S
W
L
S
W
L
S
5 32 1 4 5 16 3 8 7 16 1 2 5 8 11 16 3 4
3 8 3 8
15 64 3 8
234
318
–
–
–
318
–
–
318 334 334 412
3 8 3 8 3 8 1 2 1 2 5 8
1 2 9 16 9 16 13 16 13 16 118
318
–
5 5
– 3 4
– 5 116
– 5
1
7 16 1 2 9 16 9 16 13 16 13 16 118 5 116 5 116 5 18
578
1
158
578
–
–
–
–
–
–
–
–
–
–
–
–
– –
– –
– –
3 8 3 8 3 8 3 8 1 2 1 2 5 8 3 4 3 4
–
–
–
1
278
318
W
L
318 318 334 334 412
All dimensions are in inches. All cutters are high-speed steel. Right-hand cutters with right hand helix are standard. Helix angle is greater than 19 degrees but not more than 39 degrees. 1 inch; on L, Tolerances: On C and D, þ0.003 inch; for single-end mills, 0.0015 inch for double end mills on S, 0.0001 to 0.0005 on W, 32 a 1 inch. B is the length below the shank. 16 Source: Courtesy: ANSI/ASME B94, 19, 1985, Erik Oberg Editor Etd., Extracted from Machinery’s Handbook, 25th edition, Industrial Press, N.Y., 1996.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ELEMENTS OF MACHINE TOOL DESIGN
25.58
CHAPTER TWENTY-FIVE
TABLE 25-48 American National Standard Woodruff keyseat cuttersa —shank-type straight teeth and arbor staggered teeth (ANSI/ASME B94, 19, 1985) w L
w D
D
1—DIAM. 2
H
Shank-type cutters Nom. Cutter diam. of No. cutter, D 202 203 403 404 405 505
1 4 3 8 3 8 1 2 5 8 5 8
Width of face, W 1 16 1 16 1 8 1 16 1 8 5 32
Nom. Length Cutter diam. of overall, L No. cutter, D 1 216 1 216 1 28 1 216 1 28 1 232
807
3 4 7 8 7 8 7 8
1008
1
1208
1
506 507 707
Width of face, W 5 32 5 32 7 32 1 4 5 16 3 8
Nom. Length Cutter diam. of overall, L No. cutter, D 5 232 5 232 5 232 1 24 5 216 3 28
809
118
710
114 114 114 112 112
1010 1210 812 1212
Width of face, W
Length overall, L
1 4 7 32 5 16 3 8 1 4 3 8
214
Width of face, W
Diam. of hole, H 1 1 –
9 232 5 216
238 214 238
Arbor-type cutters Nom. Cutter diam. of No. cutter, D 617 817
218 218
1217
218
822
234
Width of face, W 3 16 1 4 3 16 1 4
Nom. Diam. of Cutter diam. of a hole, H No. cutter, D 3 4 3 4 3 4
1
1012 1222
234 234
1262
234
1288
312
Width of face, W 5 16 3 8 1 2 3 8
Nom. Diam. of Cutter diam. of a hole, H No. cutter, D 1 1
1628 1828
312 312
1
2428
312
1 2 9 16 3 4
1
–
–
–
1
All dimensions are given in inches. All cutters are high-speed steel. Shank type cutters are standard with right-hand cut and straight teeth. All sizes have 12 inch diameter straight shank. Arbor type cutters have staggered teeth. For Woodruff key and key-slot dimensions, see standard handbook. 1 3 3 7 5 to 32 inch face þ0.0000, 0.0005: 16 to 32 , 0.002, 0.0007, 14, 0.0003, 0.0008, 16 , 0.0004, 0.0009, Tolerances: Face width W for shank type cutters: 16 3 5 1 8, 0.0005, 0.001, 0.0008, 16, 0.0004, 0.0009, 8 and over, 0.0005, 0.000 inch. Hole size H, þ0.00075, 1:000 inch. Diameter D for shank type cutters; 18, through 14 inch diameter, þ0 016, þ0.015, 78 through 118, þ0.012, þ0.017; 1 114 through 112, þ0.015, þ0.02 inch. These tolerances includes an allowance for sharpening. For arbor type cutters diameter D is furnished 32 inch larger than bore and tolerance of þ0.002 inch applies to the over size diameter. Source: Courtesy: ANSI/ASME B94, 19, 1985, Erik Oberg Editor Etd., Extracted from Machinery’s Handbook, 25th edition, Industrial Press, N.Y., 1996.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ELEMENTS OF MACHINE TOOL DESIGN ELEMENTS OF MACHINE TOOL DESIGN
Particular
25.59
Formula
GRINDING The tangential component of grinding force Fz , which constitutes the major value of grinding force Fig. 25-26
Grinding wheel vg
Work piece
Fx Fy = Fr
vw Fz = Ft
FR
FIGURE 25-26 Forces acting on a grinding wheel.
The chip thickness
Ft ¼ Km st
vw vg
ð25-123Þ
where s ¼ feed rate, mm/rev t ¼ thickness of material removed from job or depth of cut, mm vw ¼ peripheral velocity of workpiece/job, m/min vg ¼ peripheral velocity of the grinding wheel, m/min Km ¼ specific resistance to grinding of the work material, N/m2 (Table 25-51) Fy ¼ Fr ¼ radial component of the force in cylindrical grinding operation, kN Fx ¼ horizontal component of the force against the feed, kN Fz ¼ Ft ¼ vertical component of the force in the cylindrical grinding operation, kN 2pvw t¼ vg
sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ðdw dg Þs dg dw
ð25-124Þ
where p ¼ pitch of grains, mm dw ¼ diameter of workpiece, mm dg ¼ diameter of grinding wheel, mm þve sign for external grinding wheel, ve for internal grinding wheel The power required by the grinding wheel
P¼
Ft ð¼Fz Þvg 1000
ð25-125Þ
where Ft ¼ Fz ¼ tangential force on wheel, N P ¼ power, W vg ¼ velocity of grinding wheel, mm/s dw ts 1000
Metal removal rate in case of transverse grinding
Q¼
The power at the spindle
P ¼ Pu Q
ð25-126Þ ð16-127Þ 3
where Q in cm /min Refer to Table 25-50 for Pu .
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ELEMENTS OF MACHINE TOOL DESIGN
25.60
CHAPTER TWENTY-FIVE
Particular
Energy per unit volume of material removed
Formula
E¼
P bsvg
ð25-128Þ
where b ¼ width of cut, mm s ¼ feed rate or depth of cut, mm/rev E in J/mm3 Vertical boring: The power required for boring
iFt v 1000 where
P¼
ð25-129Þ
i ¼ number of heads v ¼ cutting speed, mm/s Centerless grinding: The peripheral grinding wheel speed
vg ¼
dw n 1000 60
ð25-130Þ
Through feed rate
st ¼ dr nr sin
ð25-131Þ
where dr ¼ diameter of regulating wheel, mm nr ¼ speed of regulating wheel, rpm ¼ regulating wheel inclination angle, deg Metal removal rate from through feed grinding
dw tst 1000 where Qt in cm3 /min
Qt ¼
ð25-132Þ
st ¼ through feed rate, mm/min Metal removal rate from plunge grinding
dw bsp 1000 where Qp in cm3 /min
Qp ¼
ð25-133Þ
b ¼ width of cut plunge grinding, mm sp ¼ plunge in feed rate per minute ¼ ðsnw Þ, mm/min s ¼ plunge in feed rate per work revolution, mm/rev nw ¼ workpiece revolution per minute For the unit power
Refer to Table 25-50.
Power at the spindle
P ¼ Pu Q
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð25-134Þ
ELEMENTS OF MACHINE TOOL DESIGN ELEMENTS OF MACHINE TOOL DESIGN
Particular
25.61
Formula
SHAPING (Fig. 25-27) The force of cutting can be found by empirical formula Fz
Fz ¼ Ft ¼ 9:807Cp kd x sy
SI
ð25-135aÞ
where Fz in N Fz ¼ Ft ¼ Cp kd x sy Customary Metric Units ð25-135bÞ where x, y, k and Cp have the same values as in lathe tools; Fz in kgf Equation (25-135) can be also used for the case of planing machine.
The approximate equation 1 expression for cutting force Fz for cast iron
Fz ¼ 1860ds 0:75 K
SI
ð25-136aÞ
Fz ¼ 190ds 0:75 K Customary Metric Units ð25-136bÞ
The power consumption of shaping machine
1 Fz vr ð25-137Þ 1000 60 where vr ¼ the the average velocity of ram in its middle position during its stroke 2rn v1 ¼ ð25-138aÞ 1000 P¼
The velocity of crank pin of r radius The peripheral velocity of the sliding block
v2 ¼ v1 cosð Þ
The peripheral velocity of the driving pin of the rocker arm at point A.
vra ¼ v2
The average velocity of ram at its middle position during its stroke Fig. 25-28
vr av ¼ n
R Ma Rl R þ ðl=2Þ
FR (a)
Fx FIGURE 25-27 Forces acting on a shaping tool.
ð25-138dÞ
vc max vr max vr B C vra
Fz = Ft
ð25-138cÞ
where n in rpm
(b)
Fy
ð25-138bÞ
l
A L
l
v2 a b α−γ
α
c v1 K
γ
d O
R p
M FIGURE 25-28 Ram velocity diagram of a crank shaper.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ELEMENTS OF MACHINE TOOL DESIGN
25.62
CHAPTER TWENTY-FIVE
Particular
Formula
The approximate/average velocity of ram
vr ¼ vra cos vr ¼
ð25-138eÞ
2nRl cos2 cosð Þ 1000ð2R þ l cos Þ
ð25-138f Þ
R þ ðlmin =2Þ R þ lmin
ð25-139aÞ
2nRl 1000ð2R þ lÞ
ð25-139bÞ
R þ ðlmax =2Þ R lmax
ð25-139cÞ
The maximum speed of ram for the average value of cutting speed vr
nmax ¼ vr
The maximum velocity of ram travel in the cutting stroke when it is at ¼ ¼ 0
vc max ¼
The minimum speed for the average value of cutting speed vr
nmin ¼ vr
vr is a function of l, since and R are constants, i.e. vr ¼ f ðlÞ The maximum velocity of ram travel during the return stroke at ¼ 1808 and ¼ 0
vr max ¼
The average cutting velocity vr av during travel 2l of ram
vr av ¼
2nRl 1000ð2R lÞ
ð25-139dÞ
2ln 1000 where vr av in m/min
ð25-139eÞ
PRESS TOOLS Punching (Figs. 25-29, 25-31 and 25-32): Maximum shearing force or pressure to cut the material
Fmax ¼ pDu t
Work done
W ¼ Fmax x F x
t
Load, F, N
ð25-141Þ
Workpiece
dp
Die 1… 4 to
(b)
for any other contour
Punch
dd
(a)
¼ u tP
F
Work done, N-m (lbf in) x
FIGURE 25-29
Shear punch
112… hτ
Fmax
ð25-140Þ
for round hole
Distance
Workpiece
t
t FIGURE 25-30
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
Die
ELEMENTS OF MACHINE TOOL DESIGN
25.63
ELEMENTS OF MACHINE TOOL DESIGN
Particular
Guide pin busing Guide pins
Formula
Punch
Punch holder Punch
Tensile Workpiece
Stripper Die block
Compressive Tensile
Die holder
Die
Bolster plote
FIGURE 25-31 Common components of a simple die. Courtesy: F. W. Wilson, Fundamentals of Tool Design, American Society of Tool and Manufacturing Engineers, Prentice-Hall of India, 1969.
Penetration ratio
FIGURE 25-32 Stresses in die cutting.
c¼
x t
ð25-142Þ
where Fmax ¼ maximum shear force, kN (lbf ) u ¼ ultimate shear stress, taken from Table 25-54 t ¼ material thickness, mm (in) x ¼ penetration, mm (in) P ¼ perimeter of profile, mm (in) Punch Dimensioning: When the diameter of a pierced round hole equals stock thickness, the unit compressive stress on the punch is four times the unit shear stress on the cut area of the stock, from the formula.
4t ¼1 c d
ð25-143Þ
where c ¼ unit compressive stress on the punch, MPa (psi) ¼ unit shear stress on the stock, MPa (psi) t ¼ thickness of stock, mm (in) d ¼ diameter of the punched hole, mm (in) A value for the ratio d=t of 1.1 is recommended.
The maximum allowable length of a punch can be calculated from the formula
d L¼ 8
Ed t
1=2
where d=t ¼ 1:1 or higher value E ¼ modulus of elasticity, GPa (psi) For clearance between punch and die
Refer to Tables 25-52 and Fig. 25-36.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð25-144Þ
ELEMENTS OF MACHINE TOOL DESIGN
25.64
CHAPTER TWENTY-FIVE
Particular
Formula
Shearing (Fig. 25-30): Fmax h 1þ x where h is shown in Fig. 25-30
Shearing force
F ¼
The stripper pressure or force
Fstr ¼ 24 106 Pt
ð25-145Þ
SI
ð25-146aÞ
where P ¼ perimeter of cut, m t ¼ thickness of workpiece, m; Fstr in N Fstr ¼ 3500Pt
USCS
ð25-146bÞ
SI
ð25-147aÞ
where Fstr in lbf, t in in, P in in The formula used to compute the force (or pressure) in swaging operation
Fswg ¼ A sut where A ¼ area to be sized in m2
sut ¼ ultimate compressive strength of metal, MPa, and Fswg in N A sut USCS 2000 where A in in2 , sut in psi, Fswg in tonf
Fswg ¼
ð25-147bÞ
SHEET METAL WORK Bending (Figs. 25-33 to 25-36): The bend allowance as per ASTME die design standard (Fig. 25-33)
b ¼
2ri þ Kn t 360
Bend angle = θ
Bend line
Set back
Area under tension Bend allowance Area under compression
ri 0.33 T to 0.5 T
Neutral axis Bend axis
Bend radius
FIGURE 25-33 Bend terms for general angle.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð25-148Þ
ELEMENTS OF MACHINE TOOL DESIGN
25.65
ELEMENTS OF MACHINE TOOL DESIGN
Particular
Formula
where
K
O
b ¼ bend allowance (arc length of neutral axis), mm (in)
t T
θ
ri
Flange
¼ bend angle, deg ri ¼ inside radius of bend, mm (in)
We b
t ¼ metal thickness, mm (in) Kn ¼ constant for neutral axis location
FIGURE 25-34
¼ 0:33 when ri is less than 2t Another equation for bending allowance with outside bending angle (Fig 25-34).
¼ 0:50 when ri is more than 2t
t r þ b ¼ ðri þ tÞ tan 2 360 i 2
ð25-149Þ
where in deg
b ¼ 3 tan 0:0218 t 2
ð25-150Þ
when ri ¼ 2t t ri þ 2 2
Initial length of strip of metal (Fig. 25-35)
Li ¼ T t 2ri þ K þ
Bending allowance for right angle bend to take into account reduction of length K and T (Fig. 25-35)
b ¼ ri þ t
t r þ 4 i 2
ð25-151Þ ð25-152aÞ
b ¼ 1:037t
ð25-152bÞ
when ri ¼ 2t The bending force
Fb ¼ Wtu
ð25-153Þ
Planishing force
Fp ¼ WK sy
ð25-154Þ
where K and W are dimensions as shown in Figs. 25-34 and 25-35 sy ¼ yield stress, MPa (psi) Flange
t F T
W
V-Punch
Vee die
Knurled The bending pin punch
ri K
Web
Length of bend
Die
Spring (a) V-bending-clamping a part in a V-die.
FIGURE 25-35
Spring loaded pad
(b) Edge-bending
FIGURE 25-36 Bending methods.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ELEMENTS OF MACHINE TOOL DESIGN
25.66
CHAPTER TWENTY-FIVE
Particular
Formula
The force/pressure required for V-bending (Fig. 25-36a)
KLt2 sut W where
Fv ¼
ð25-155Þ
F ¼ V-bending force, kN (tonforce) L ¼ length of part, m (in) W ¼ width of V- or U-die, m (in) sut ¼ ultimate tensile strength, MPa (tonf/in2 ) K ¼ die opening factor ¼ 1:20 for a die opening of 16t ¼ 1:33 for a die opening of 8t The force required for U-bending (channel bending)
Fu ¼ 2Fv (approx)
ð25-156aÞ
The force required for edge-bending (Fig.25-36b)
Fed ¼ 12 Fv
ð25-156bÞ
Force required for drawing
F ¼ dt u
ð25-157Þ
Empirical formula for pressure (or force) for a cylinder shell
where u ¼ ultimate tensile stress, MPa (psi) D F ¼ dt sy c ð25-158Þ d
Drawing (Fig. 25-37):
where D ¼ diameter of blank d
T
t
d ¼ diameter of shell h ¼ height of shell r ¼ corner radius T ¼ bottom thickness of shell
t D
t ¼ thickness of wall of shell
FIGURE 25-37
C ¼ constant which takes into account friction and bending
A tentative blank size for an ironed shell can be obtained from equation
¼ 0:6 to 0.7 rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi t D ¼ d 2 þ 4dh T pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi D ¼ d 2 þ 4dh
ð25-160aÞ
when d=r ¼ 20 or more pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi D ¼ d 2 þ 4dh 0:5r
ð25-160bÞ
The blank size taking into consideration the ratio of the shell diameter to the corner (d=r) which affects the blank diameter.
when d=r lies between 15 and 20
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð25-159Þ
ELEMENTS OF MACHINE TOOL DESIGN ELEMENTS OF MACHINE TOOL DESIGN
Particular
25.67
Formula
D¼
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi d 2 þ 4dh r
ð25-160cÞ
when d=r lies between 10 and 15 qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi D ¼ ðd 2rÞ2 þ 4dðh rÞ þ 2rðd 0:7rÞ ð25-160dÞ when d=r is less than 10 For die clearance for different metals
Refer to Fig. 25-38
For nomograph for determining draw-die radius
Refer to Fig. 25-39
For chart for checking percentage reduction in drawing of cups.
Refer to Fig. 25-40
For clearance between punch and die
Refer to Fig. 25-29 and Table 25-52
For draw clearance
Refer to Table 25-53
For design of speed-change gear box for machine tools, kinematic schemes of machine tools, layout diagrams or structural diagram for gear drives, version of kinematic structures in machine tools, etc.
Refer to subsection ‘‘Designing spur and helical gears for machine tools’’ from pp. 23-109 to 23-138 of Machine Design Data Handbook, McGraw-Hill Publishing Company, New York, 1994.
For fits and tolerances
Refer to Chapter 11 on ‘‘Metal fits, tolerances and surface textures’’, pp. 11.1 to 11.32.
For surface roughness and surface texture
Refer to Chapter 11 on ‘‘Metal fits, tolerances and surface textures’’, pp. 11.26 to 11.32.
For tool steels and die steels
Refer to Chapter 1 on ‘‘Properties of engineering materials’’, Tables 1-31 to 1-36 for tool steels and Tables 1-49 and 1-51 for die steels.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ELEMENTS OF MACHINE TOOL DESIGN
25.68
CHAPTER TWENTY-FIVE
TABLE 25-49 Metal removal rate in milling operation, Q Material
Metal removal rate, Q, mm3 /kW min
Cast iron, gray Cast steel Mild steel Alloy steel Stainless steel Aluminum Copper Titanium
12600 12600 18900 10500 8400 42000 18900 10500
TABLE 25-50 Average unit power Pu , for grinding Unit power Pu , kW/cm3 /min Depth of grinding, mm per pass Infeed, mm per revolution of work
Work material
Free-machining steels Mild steels Medium carbon steels Alloy steels Tool steels Stainless steels Cast iron: gray, ductile, malleable Aluminum alloys Titanium alloys
0.0125
0.025
0.05
0.075
0.1
0.25
0.5
0.75
1.4
0.88
0.7
0.6
0.51
0.35
0.23
0.18
1.3 1.15 1.4 1.15
0.85 0.82 0.84 0.79
0.68 0.65 0.65 0.65
0.58 0.56 0.58 0.51
0.49 0.46 0.51 0.44
0.34 0.32 0.37 0.3
0.25 0.26 0.29 0.23
0.19 0.21 0.26 0.19
0.58 0.93
0.45 0.79
0.35 0.6
0.33 0.56
0.29 0.51
0.21 0.37
0.17 0.3
0.15 0.25
TABLE 25-51 Values of Km st, mm2
0.3
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.4
Steel 32360 25500 21570 18140 15690 13720 12750 11750 10790 10300 9810 Km N/m2 Cast iron 29910 22550 17650 13730 11770 10780 9810 8825 8430 7845 7350
2.6
2.8
3.0
8830 7355
8830 7355
8330 7110
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ELEMENTS OF MACHINE TOOL DESIGN ELEMENTS OF MACHINE TOOL DESIGN
25.69
TABLE 25-52 Clearance between punch and die (Fig. 25-29) Location of the proper clearance determines, either hole or blank size, punch size controls hole size, die size controls blank size. 2C ¼ clearance ¼ dp ddi Clearance between punch and die, mm Sheet thickness, mm
Mild steel
Moderately hard steel
Hard steel
Soft brass
Hard brass
Aluminum
0.25 0.50 0.75 1.0 1.25 1.5 1.75 2.0 2.25 2.5 2.75 3.0 3.3 3.5 3.8 4.0 4.3 4.5 4.8 5.0
0.01 0.025 0.04 0.05 0.06 0.075 0.09 0.10 0.11 0.13 0.14 0.15 0.17 0.18 0.19 0.20 0.22 0.23 0.24 0.25
0.015 0.03 0.045 0.06 0.075 0.09 0.10 0.12 0.14 0.15 0.17 0.18 0.20 0.21 0.23 0.24 0.26 0.27 0.29 0.30
0.02 0.035 0.05 0.07 0.09 0.10 0.12 0.14 0.16 0.18 0.20 0.21 0.23 0.25 0.27 0.28 0.30 0.32 0.34 0.36
0.01 0,025 0.03 0.04 0.05 0.06 0,075 0.08 0.09 0.10 0.12 0.13 0.15 0.16 0.19 0.21 0.23 0.26 0.29 0.33
0.025 0.03 0.04 0.06 0.07 0.08 0.09 0.10 0.11 0.13 0.14 0.16 0.18 0.19 0.22 0.24 0.27 0.30 0.33 0.36
0.02 0.05 0.07 0.10 0.12 0.15 0.17 0.20 0.22 0.25 0.29 0.30 0.33 0.35 0.38 0.40 0.43 0.45 0.48 0.50
TABLE 25-53 Draw clearance, t ¼ thickness of the original blank Blank thickness mm
in
First draws
Redraws
Sizing drawa
Up to 3.81 0.41–1.27 1.30–3.18 3.45 and up
Up to 0.15 0.016–0.050 0.051–0.125 0.136 and up
1.07t–1.09t 1.08t–1.1t 1.1t–1.12t 1.12t–1.14t
1.08t–1.1t 1.09t–1.12t 1.12t–1.14t 1.15t–1.2t
1.04t–1.05t 1.05t–1.06t 1.07t–1.09t 1.08t–1.1t
a
Used for straight-sided shells where diameter or wall thickness is important or where it is necessary to improve the surface finish in order to reduce finishing costs.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ELEMENTS OF MACHINE TOOL DESIGN
25.70
CHAPTER TWENTY-FIVE
TABLE 25-54 Shear strength of various materials Ultimate strength, sut Material
MPa
Ferrous alloys 0.10 carbon steel annealed 0.20 carbon steel annealed 0.30 carbon steel annealed 0.50 carbon steel annealed 1.00 carbon steel annealed Chromium-molybdenum steel: SAE 4130
620 690 862 1035 1240
psi
90,000 100,000 125,000 150,000 180,000
Nickel steel (drawn to 4268C (8008F) and water-quenched): SAE 2320 SAF 2330 SAE 2340 Nickel-chromium steel (drawn) to 4268C (8008F): SAE 3120 SAE 3130 SAE 3140 SAE 3280 SAE 3240 SAE 3250 Nonferrous materials Aluminum and alloys Copper and alloys Magnesium alloys Monel metal K monel Nickel Inconel (nickel chromium iron)
475 745 672 1072 469 831 550 620 689 792 965 1103 1206
69,000 108,000 97,500 155,600 68,000 120,500 80,000 90,000 100,000 115,000 140,000 160,000 175,000
Shear strength, s MPa
psi
240 290 358 550 768
35,000 42,000 52,000 80,000 110,000
380 448 515 620 725
55,000 65,000 75,000 90,000 105,000
675 758 862
98,000 110,000 125,000
655 758 896 930 1035 1138
95,000 110,000 130,000 135,000 150,000 165,000
28–282 150 330 28–145 295–450 450 680 360 520 406 434 455 490 538 580 600
4,000–41,000 22,000 48,000 4,000–21,000 42,900 65,200 65,300 98,700 52,300 75,300 59,000 63,000 66,000 71,000 78,000 84,000 87,000
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ELEMENTS OF MACHINE TOOL DESIGN ELEMENTS OF MACHINE TOOL DESIGN
25.71
TABLE 25-54 Shear strength of various materials (Cont.) Ultimate strength, sut Material
MPa
psi
Nonmetallic materials Asbestos board Cellulose acetate Cloth Fiber, hard Hard rubber Leather, tanned Leather, rawhide Mica Papera Bristol board Pressboards Phenol fiberb a b
Shear strength, s MPa
34 69 55 124 138 48 90 69 44 33 24 180
psi
5,000 10,000 8,000 18,000 20,000 7,000 13,000 10,000 6,400 4,800 3,500 26,000
For hollow die used one-half value shown for shearing strength. Blank and perforate hot.
0.010 0.009
Die clearance, in
0.008 0.007 0.006 up
0.005
o Gr
0.004
p rou
0.003
G
Gro
up
1
3
m
s
ial
er
at
s, ial
5%
. ,7
+
a
er
av
%
6.0
an
ar
cle
le ec
e
nc
ara
rag
ve
+a
ge
ce
r ver ate +a 2m 5% . 4 , ials ter ma
c age
lea
ran
ce
0.002 0.001
Group 1: 1100S and 5052S aluminum alloys, all tempers. An average clearance of 412 per cent of material thickness is recommended for normal piercing and blanking. Group 2: 2024ST and 6061ST aluminum alloys; brass, all tempers; cold rolled steel, dead soft; stainless steel soft. An average clearance of 6 per cent of material thickness is recommended for normal piercing and blanking. Group 3: Cold rolled steel; half hard; stainless steel, half hard and full hard. An average clearance of 712 per cent is recommended for normal piercing and blanking. Courtesy: Frank W. Wilson, Fundamentals of Tool Design, ASTME, Prentice-Hall of India Private Limited, New Delhi, 1969.
0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.12 Nominal thickness of material which die is designed for, in. Note: 1 in = 24.5 mm
FIGURE 25-38 Die clearances for different groups of metals.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ELEMENTS OF MACHINE TOOL DESIGN
25.72
CHAPTER TWENTY-FIVE
TABLE 25-55 Drawing speeds
TABLE 25-56 Drawing radii Drawing speed, Vd (m/min)
Thickness of stock, mm
Drawing radius, mm
Material
Single action
Double action
Aluminum provide Strong aluminum alloys Brass Copper Steel Steel in carbide dies Stainless steel Zinc
55 — 65 45 18 — — 45
30 10–15 30 25 10–16 20 7–10 13
0.4 0.8 1.25 1.6 2 2.5 3.15
1.6 3.2 4.8 6.3 10 11.2 14
TABLE 25-57 Blank holder force in drawing Thickness of stock, t, mm
Force, N per mm
0.25 0.4 0.5 0.63 0.80 0.9 1.00 1.12 1.25 1.4 1.6 1.8 2.0 2.24 2.5 and over
314 304 294 280 270 260 250 235 225 220 210 196 181 167 157
TABLE 25-58 Recommended die plate thickness (a) For dies with cutting perimeter less than 50 mm Stock thickness 7 mm 0.25 0.5 0.75 Die plate thickness, 2 3 mm/shear stress, kgf/mm2 1 (b) For dies with cutting perimeter greater than 50 mm Cutting perimeter, mm over 50 75 up to 75 150 Factor by which the above tabulated values under (b) should be multiplied 1.25 1.5
1
1.25
1.5
1.75
2
2.25
2.5
4
4.5
5.25
5.75
6.3
6.7
7
150 300
1.75
300 500
2.0
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ELEMENTS OF MACHINE TOOL DESIGN
TABLE 25-59 Chart for bend allowance and correction factor Recommended minimum bend radius ri for sheet metal Aluminum alloys
Magnesium
Steel
Material thickness
24ST and Alclad
24SO and Alclad
2S, 3S and 52S (12 hard)
Cold bend
Hot formed
Stainless Annealed
a 1 2
Up to 0.015 0.016 0.020 0.025 0.032 0.040 0.051 0.064 0.072 0.081 0.091 0.102 0.125 0.156 0.187 0.250 0.375
0.06 0 06 0.09 0.12 0.12 0.12 0.19 0.19 0.25 0.31 0.38 0.44 0.50 0.69 0.81 1.00 —
0.06 0.06 0.09 0.09 0.09 0.09 0.09 0.09 0.12 0.12 0.16 0.19 0.19 0.28 0.38 0.50 —
0.03 0 03 0.03 0.03 0.06 0.09 0.09 0.12 0.16 0.19 0.19 0.19 0.19 0.25 0.38 0.50 —
0.06 0 09 0.12 0.19 0.25 0.31 0.38 0.50 0.56 0.62 0.69 0.75 1.00 1.35 1.50 2.00 3.00
0 06 0.06 0.06 0.06 0.09 0.99 0.12 0.19 0.19 0.19 0.25 0.25 0.31 0.44 0.50 0.62 1.00
0 03 — 0.03 0.03 0.03 0.06 0.06 0.06 0.09 0.09 0.12 0.16 0.19 0.19 0.25 — —
0 03 — 0.06 0.06 0.06 0.09 0.09 0.12 0.12 — — — — — — — —
hard
Low carbon, X-4130 annealed b
— 0.03 0.03 0.03 0.03 0.06 0.06 0.06 0.06 0.09 0.09 0.12 0.12 0.19 0.19 0.25 —
Note: a For bends up to 90 deg. b This applies to 8630 and similar steels. C= t 90 deg angle
t
0.25
90… angle C
C. correction factor
0.20
Closed bevels α’ C
0.15 t
t thickness = 0.125
Open bevels
0.091 0.081
α’
0.10
0.064 0.051 0.040 0.032 0.025 0.020 0.015
0.05
0
80
60
40 Open bevel
20
0
20
α, bevel angle in degrees
40
60 Closed bevel
.80
Courtesy: D. C. Greenwood (ed.), Engineering Data for Product Design, McGraw-Hill Publishing Company, New York, 1961.
25.73 Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ELEMENTS OF MACHINE TOOL DESIGN
25.74
CHAPTER TWENTY-FIVE
Particular
Formula
FORMING PROCESS: Note: The Symbols, Equations and Examples given in the book entitled ‘‘Mechanical Presses*’’ by Professor Dr. Ing. Heinrich Ma¨kelt and translated by R. Hardbottle, are followed and used in Symbols, Equations and Examples with reference to Figs. 25-41 to 25-49 in this Machine Design Data Handbook. The minimum ram force in mechanical presses
Pmin ¼ 0:5Prat
ð25-161Þ
where Prat ¼ tonnage rating, tonneforce (tf ) The maximum ram force
Pmax ¼ Qkmax ¼ F max
tf
ð25-162Þ
where Q ¼ cross-section kmax ¼ maximum specific loading, MPa (psi) max ¼ maximum stress, MPa (psi) F ¼ workpiece surface, in2 The press work
A ¼ mPmax h ¼ Pmi h where
ð25-163Þ
m ¼ correction factor taken from Table 25-62 h ¼ work path ¼ 0:5 H H ¼ total maximum stroke setting The volume of the workpiece before and after forming
Q1 h1 ¼ Q2 h2 ¼ constant
The force required to trim the forging
F¼
Pts tf 2000 where F in tonneforce (tf )
ð25-164Þ ð25-165Þ
P ¼ periphery of forging, in t ¼ thickness, in s ¼ shear strength of material, psi For chart for calculating ram path and velocity versus crank angle
Refer to Fig. 25-41
For calculation chart for blanking and piercing with full-edge cutting tool.
Refer to Fig. 25-42
For calculation chart for rectangular bending (a) Vbending on a fixed die, (b) U-bending with back-up
Refer to Fig. 25-43
For calculation chart for deep drawing and redrawing (a) deep drawing with blank holder (b) re-drawing of body
Refer to Fig. 25-44
* Heinrich Ma¨kelt, ‘‘Mechanical Presses’’, translated into English by R. Handbottle, Edward Arnold (Publishers) Ltd., 1968
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ELEMENTS OF MACHINE TOOL DESIGN ELEMENTS OF MACHINE TOOL DESIGN
Particular
25.75
Formula
For determination of blank-holder force for deep drawing
Refer to Fig. 25-45
For chart for extrusion molding and impact extrusion: a, extrusion molding of hollow bodies in direction of punch travel (forward extrusion); b, impact extrusion (tube extrusion) against direction of punch travel (backward extrusion)
Refer to Fig. 25-46
For determination of multiplication factor for impact extrusion and cold extrusion, and also for stamping and coining
Refer to Fig. 25-47
For chart for calculating stamping and coining
Refer to Fig. 25-48
For chart for calculating hot upsetting and drop forging
Refer to Fig. 25-49
For penetration of sheet thickness before fracture, suggested reductions in diameters for drawing, mean values for m and suggested trimming allowances
Refer to Tables 25-60, 25-61, 25-62 and 25-63
TABLE 25-60 Approximate penetration of sheet thickness before fracture in blanking Work metal
Penetration %
Work metal
Penetration %
Carbon steels 0.10% C annealed 0.10% C cold rolled 0.20% C annealed 0.20% C cold rolled 0.30% C annealed 0.30% C cold rolled
50 38 40 28 33 22
Non-ferrous metal Aluminum alloys Brass Bronze Copper Nickel alloys Zinc alloys
60 50 25 55 55 50
TABLE 25-61 Suggested reductions in diameters for drawing
TABLE 25-62 Mean values for m (standard coefficients)
Material
First draw %
Redraws %
Particulars
Aluminum, soft Aluminum, deep drawing quality Brass Copper Steel Steel, deep drawing quality Steel, stainless Zinc Tin
40 40–50
20–25 20–30
45 40 35–40 40–45 35–40 50 35–45
20–25 15–20 15–20 15–20 15–20 15–20 10–15
Blanking and piercing (full-edge) tough (soft) sheet brittle (hard) sheet Making V- and U-bends with die clash without die clash Deep-drawing and re-drawing Impact extrusion and extrusion forming Stamping Hot, first upsetting operations End drop-forging
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
m 0.63 0.32 0.32 0.63 0.63 1.00 0.5 0.71 0.36
ELEMENTS OF MACHINE TOOL DESIGN
25.76
CHAPTER TWENTY-FIVE
Particular
Formula
TABLE 25-63 Suggested trimming allowances Allowance per side, mm, for steel with Rockwell B hardness of
First trim or single trim
Second trim or add to first trim
Blank thickness, mm
50–66
75–90
90–106
1.20 1.60 2.00 2.36 2.80 3.15 1.20 1.60 2.00 2.36 2.80 3.15
0.063 0.075 0.090 0.106 0.125 0.18 0.03 0.035 0.045 0.050 0.063 0.09
0.075 0.106 0.125 0.150 0.180 0.224 0.035 0.050 0.063 0.075 0.090 0.100
0.106 0.125 0.15–0.180 0.18–0.224 0.224–0.230 0.3–0.355 0.05 0.063 0.075–0.09 0.09–0.100 0.1–0.14 0.15-0.18
MACHINE TOOL STRUCTURES: The optimum ratio l 2 =h for every structure which depends on [], [ ] and E
l 2 6E½ ¼ h ½
ð25-166Þ
where l ¼ length of structure/beam
The natural frequency of an elastic element such as a bar or beam subjected to tension or compression—a case of single degree freedom system
h ¼ distance of outermost fiber from the neutral axis in case of bending rffiffiffiffi sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi sffiffiffiffiffiffiffiffiffi k EA 1 E 1 ¼ ¼ ð25-167Þ f ¼ m l Al l2 where k ¼ stiffness of the system ¼ F=4l
The natural frequency of a simply supported beam subjected to a load at the center of beam – a case of single degree freedom system
¼ mass density of member rffiffiffiffi sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi k 48E 1 48E bh3 1 E 4bh3 ¼ f ¼ ¼ ¼ 3 3 12 Al m Al 4 l Al l ð25-168Þ where E= is the unit or specific thickness. It is an important parameter in machine tool structural material and ¼ mass density of material of beam, ¼ specific weight of material or beam. The natural frequency depends on E=.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ELEMENTS OF MACHINE TOOL DESIGN ELEMENTS OF MACHINE TOOL DESIGN
25.77
D t
R
R = 0.8 (D d) t where D = blank diameter, in. Tolerance for R = ± 0.005 in.
d
1.600 0.160 0.140 0.120 0.100 0.080 0.060
1.200 0.800
0.040 0.024 0.020
0.400 0.360 0.320 0.280 0.240
Blank thickness ’t.
Radius R
0.012
0.200 0.160 0.120
16.00
Diameter difference (D d)
12.00
4.80 5.60 6.40 7.20 8.00
2.40 2.80 3.20 3.60 4.00
2.00
1.600
1.200
0.400
0.040
0.480 0.560 0.640 0.720 0.800
0.080
d
h
Example: d = 1.00 h = 0.75 t = 0.020 D = d 2 + 4dh = 2.00 D d=1 R = 0.110 ± 0.005
FIGURE 25-39 Nomograph for determining draw-die radius. Courtesy: American Machine/Metal working Manufacturing Magazine.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ELEMENTS OF MACHINE TOOL DESIGN
25.78
26
0
CHAPTER TWENTY-FIVE
2
4
6
8
10 12
14 40
24
35
22
30 25 20 15 10 5
18 16 14
Reduction, %
Diameter of blank or cup, in.
20
12 10 8 6 4 2 0
0
2
4
6 8 10 12 Cup diameter, in.
14
FIGURE 25-40 Chart for checking percentage reduction in drawing of cups. The inside diameter is ordinarily used for the cup diameter. Courtesy: From ASM, Metals Handbook, 8th ed., vol. 4, 1969.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ELEMENTS OF MACHINE TOOL DESIGN
25.79
0 40 5 31 50 2 0
lo
20 60 1 125 00 1 0 8 3 6
ve
50 0 4 .5 31 25
C
m
315 355 40 45 50 56 56
A1
D1
n-
1
0.1 0.08 0.063 E2 0.05 0.04 0.035
0.025
Z
0.02 0.016 0.0125 0.01
0.008
0.0063
∑ α α…
28
mi
0.2
2 .6 1 5 1.2 1 .8 0 .63 0 5 0.
25
n,
F2
20 21
1000 800 600 500 400 315 250 200 160 125 100 80 63 50 D2 40 31.5 25 20 16 12.5 10
E1 0.125
4 15 3. .5 2
18
II
0.16
6.3 5
15
13
A2
es
50 40 .5 31 5 2 0 2 16 2.5 F1 1 10 8
12.5
ok
in
B1
str
/m
r
m
m
v,
pa
ro
m
0.01 0.0125 0.02 0.02 0.025 0.025 0.02 0.05 0.053 0.02 0.1 0.25 0.15 0.235 0.236 0.29 0.355 0.355 0.53 0.11 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28 0.35 0.4 0.45 0.5 0.56 0.63 0.71 0.8 0.9 1 1.12 1.25 1.4 1.6
Crank angle 2, rad
1.61.5 1 4.5 9 5.6 6.3 7.9 8 9 10 11.2 Crank angle o2, degrees 12.5
0.8 0.63 0.5 0.4 0.315 0.25
III
or
g
st
h,
Ra
ty
W
kin
f to
ke
Connecting rod ratio 10 λ = H: 21 = 1: 10 8 6.3 5 Work-path/ stroke h/H 4 0.001 0.002 0.002 0.002 0.005 0.002 0.004 0.005 0.053 0.003
1
ci
20 6 1 .5 12 10
am
4 .5 31 2.5
R
I
0.06 0.07 0.08 0.09 0.1
1000 800 630 500 400 315 250 200 160 125 100 80 63 50 40 31.5 25 20 16 12.5 10 8 6.3 5 4
8 3 6. 5
Total ram stroke H, mm
B2
C
2 6 1. 26 1. 1
1000 800 630 500 400 315 250 200 160 125 100 80 63 53 40 31.5 25 20 16 12.5
0.8.83 0 0.5 .4 0 .15 0 .25 0 .2 0 6 0.7 .15 0 .1 0
Total ram stroke H, mm
ELEMENTS OF MACHINE TOOL DESIGN
8 6.3 5
λ = 1:10
0.925 0.412 0.515 0.58 0.69 0.825 0.875 0.975 0.63 0.463 0.067 0.075 0.085 0.095 0.106 0.118 0.132 0.15 0.17 0.19 0.212 0.236 0.265 0.3 0.335 0.375 0.95 0.75 0.06 0.07 0.08 0.09 3.5
4
4.5
5
0.1
0.11 0.12 0.14 0.16 0.18 0.20 0.22 0.25 0.28 0.32 0.35 0.4
5.6
6.3
7.1
8
9
10 11.2 12.5
14
16
18
20 22.4
0.45 0.5 25
28
0.56 0.63 0.71 0.8 0.9 1 1.12 1.4 1.6 1.25 31.5 35.5 40 45 50 56 63 80 90 71
FIGURE 25-41 Chart for calculating ram path and velocity versus crank angle.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
50
ELEMENTS OF MACHINE TOOL DESIGN
25.80
CHAPTER TWENTY-FIVE
10000
C
2000
800 500 315
630
0.6 3 0.4 0.2 5
80
1600 1000
4 2.5 1.6 1
1250
Sh
400
A
160
16
31.5
25
50
40
125
80
63
k
100
200
160
315
250
E
Hole diametar d, mm
ee
tt hi 6,3 s. ck 4 mm n es 2,5 1,6
1
th
pa
h.
s
0,6 3
m
m
G
4 2.5 1.6
10 6.3
Sh 10
k
ine it l Lim
25 16
ity ac ap kc r o sw es pr r fo 6.3
16
or W
III
500
400 25
Blanking circumferenca U. mm
6,310 16 25 40 63 100 160 250 400 630 1000 1600 2500 4000 6300 10000 16000 25000 40000 100 2 3,2 5 8 12,5 20 32 50 80 125 200320 500 800
0,4
PK d (u)
Fs
δ=hk
0,2 5
F
1
0.63 0.4 0.25
rk th
pa h.
Blanking work Ak, m.kg or tonnes
20
Blanking force p , tonnes
10
6.3
t th s. m ickn m ess
Wo mm
6300 4000 2500 1600 1000 630 400 250 160 100 63 40 25 15 10 6.3 4 2.5 1.5 1
12.5
8
5
E
ee
250
200 125
I
B
10 6.3
20 5 2 .5 31 0 4 0 5 3 6
3150 2500
Limit
4000
C
D
Blanking area, mm2
10 .5 12 16
line s=d ,
II
25
6300 5000
16 10
th ng tre 2 r s mm ea kg/ Sh k ,s
8000
FIGURE 25-42 Calculation chart for blanking and piercing with full-edge cutting tool. Equations and Examples Equations: Area ¼ Fs ¼ Us ¼ ds Section II: The tonnage rating of the press ¼ Pk ¼ Fs ks =1000 tonneforce (tf ). The shear strength of metallic material, ks , is ks ¼ 0:8 B N/mm2 (kgf/mm2 ) The work path is taken as hk ¼ s, where s ¼ thickness of material/sheet. Section III: The cutting work¼ Ak ¼ mPk hk , mm-tonneforce (mm tf) or m kgf where m ¼ correction factor ¼ 0:63 for soft sheet. Example: Blank diameter d ¼ 800 mm (31.5 in) or U ¼ 2500 mm (98 in). Sheet thickness ¼ 1 mm (0.039 in); The blanking area ¼ Fk ¼ 2500 mm2 (3.85 in2 ). Blanking or cutting force Pk ¼ 980 kN (100 tf ). Work¼ 61:78 N m (63 mm-tf or 456 ft-lbf ).
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ELEMENTS OF MACHINE TOOL DESIGN Limit line 1min=2.8 for V-form
Die-span I (only V-form). mm Bending width b.mm 10 12.5 16 20 25 31.5 40 50 63 80 100 125 160 200 250 315 400 500 630 800 1000 0.4 0.5 0.63 0.8 1 1.25 1.6 2 2.5 3.15 4 5 6.3 8 10 12.5 16 20 25 0.06 A1’ A1 A A’ 0.1
nve
rsio
n li
ne
B
for
U-f
B
orm
2 1 50 10 80 63 0 4 2 0 16 5
I
0.16
0.4
C 1 C’ 2.5 6.3
II
0.25
100 160 250 400 630 0 100 D’ 0 160 0 250 0 400
0.63
CC
1.6
4
C’
10
0
(b)
b
a m =r in i
s
hv
ra
250
Die-span I’(only for v-form). mm
400
10 72.5
16
E
8
5
12.
5 3.15 2 1.25
fo
rp
re
ss
F
e 80 lin it 50 m 31.5 Li 20
80
tones
1000 1600 2500 4000 Pv,U/σB E’
125
45
50 63
6300 10000 2.5 2.5 4 6.3 10 16 25 40 63 100160 250 B ’ 3.2 6.3 h vU . th σB pa 8 4 h ork mm t W 5 10 ng tre 12.5 6.3 l s m2 16 8 a i er g/m t 20 10 a k 1 M 12.5 25 12 0 . 5 16 31.5 16 2 2 0 IV 2.0 40 III 31 5 50 40 .5 2.5 5 H G K G 63 0 63 31.5 80 80 40 G’ F’ 50 100 G’ H’ 125 63 80 160 100 200 12.5 250 160 315 I I’ 200 400 500 250 2.5 4 6.3 10 16 25 40 63 100 160 250 400 630 1000 1600 2500 4000 630010000 16000 Bending force Pv,U,tonnes Bending work Av,U’,m.kg or mm.tonnes (+counterforce Pa for U-form) 630
Maximum force Pv max’
160
20 25
.5
Hu
t PG
l
31
b s
lmin
100
100
Pu
ri
D
00
630
(a)
Pv
ri
/σB P v,U
Co
s2//’ for V-form, s/2.5 for U-form
Sheet thickness s.mm
w
or
ki
ng
ca
pa
ci
ty
FIGURE 25.43 Calculation chart for rectangular bending (a) V-bending on a fixed die, (b) U-bending with back-up Courtesy: Heinrich Makelt, Die Mechanischen Pressen, Carl Hanser Verlag, Munich, German Edition, 1961 (Translated by R. Hardbottle, Mechanical Presses, Edward Arnold (Publishers) 1968) Equations and Examples: (Fig. 25-43) Equations: Refer to Eqs. (25-155) and (25-156) for V-bending force and U-bending force. The equation for V-bending force Pv ¼ ½C B bs2 =1000l 0 tonneforce (tf) (kN or lbf ). The bending work Av ¼ mPE hv mm tonneforce (mm tf ). The limit of effective span or width of V-die lmin ¼ 2:8s in mm (in). The work path hv ¼ 0:5l 0 0:4ðs þ ri Þ in mm (in). (a) V-bending Example: s ¼ t ¼ 2:5 mm (0.1 in); b ¼ 630 mm (25 in); B ¼ 618 N/mm2 ¼ 63 kgf /mm2 (90000 lbf/in2 ); Pv ¼ 25 tf [E-F-G ]; PE ¼ 50 tf; h ¼ 0:5l ¼ 5 mm (0.2 in) and m ¼ 0:32. The bending work¼ As ¼ 784 kN m (80 mm tf or 579 ft lbf ) [A-B-C-C-A ], D-D [B-H and G-H-I ]. (b) U-bending: Equations: The equation for U-bending force ¼ Pv ¼ C(2/5) B bs=1000 tf (kN or lbf ). The backing force PG ¼ 25% of PU . The total force PU þ PG ¼ 1:25PU . The bending force ¼ AU ¼ mðPU þ PG ÞhU mm-tf (m N or ft lbf ). The work path ¼ hU ¼ 3s mm (in). The correction factor ¼ m ¼ 0:63. Example: s ¼ 5 mm (0.2 in); s=2:5 ¼ 2 mm (0.08 in) [A0 -B0 -C0 ]. b ¼ 500 mm (19.75 in), PU = B ¼ 1000 [C0 -D0 and A0 -D0 ]. B ¼ 392 N/mm2 (40 kgf/mm2 or 57000 lbf/in2 ). PU ¼ 392 N or 40 tf [D0 -E 0 -F 0 -G0 ]. PU þ PG ¼ 496 N or 50 tf. AU ¼ 4900 mm kN (500 mm tf or 500 m kgf or 3617 ft lbf) for hv ¼ 16 mm (0.70 in) and m ¼ 0:63 [G0 -H 0 -I 0 ]. Prut ¼ 490 kN (50 tf ) [I 0 -K-G ]
25.81 Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ELEMENTS OF MACHINE TOOL DESIGN
10 12.5 16 20 25 31.5 40 50
2500 2000 1600
63 80
D
C C’
D’
1250 1000 630
800
Body cross-section Sheet thickness s, s2. mm Qz,2. mm2 5
0.4
250
(a)
Pz
II
2.5 5 6.3
20 3.2
25 32 40
6.3 12.5
10 5
E’
s
E
Qz
63 hz
40
500 C’
B1’
25
I’
III
B2’
315
5 0.2
C bo onv dy ers cro ion ss- lin sec e fo tion r Q
I
2
200 125
s
h1
80
(b)
PA d1 (U1)
Q1
d2 (U2)
50
hz
s
Q2 s1 31.5 40 10 16 25 100 160 250 25 63 160 250 100 630 1000 25 63 40 400 10 16 20 80 200 315 31.5 125 50 200 80 1250 2000 3150 50 31.5 500 800 315 500 125 Press tonnage rating Prat. tonnes 2 63 400 250 160 250 100 40 63 400 630 1000 1600 2500 16 100 160 40 25 10 160 500 20 50 80 125 315 800 31.5 12.5 31.5 12.5 200 50 200 20 125 80 8 E’ 12.5 K’ E 3 4 A 16 250
5
50 63
80 0 10
s
d (U)
Drawing force Pz,A. tonnes
4 8
100
D
2 0.3
B
C
400
160
1 0.8 3 0.6 0.5
2 1.6 .25 1
4 .15 2.5 3
G
H
G’
40
0.8 0.63 0.5
20 31.5 G
F’
z,A
50
A2’
40
31.5
400
C
ro s ra s-s tio ec IV q tio n A Drawing ratio βN
F
L’
G’
50 H’ 63 0 80 16 00 50 15 00 00 30 00 000 250 600 000 500 150 000 000 300 000 0000 500 2 2 2 3 4 5 6 8 1 1 1 2 2 3 4 5 6 8 1 1 100 63 re-drawing Work A . 5 12
Drawing Or m.kg or mm.tonnes
A 1
A1’
2.5 2.24 25 20
2
1.8
16
1.6 12.5
Blank height h1. mm
1.4
10
1.2 5 8
M’
630 1000
1600 6.3
Blank cross-section Q1. mm2
Body drawing stress Kz = Z(A) σB. kg/mm2
1 — Mean drawing diameter d, d2, mm; 2 — Mean body circumference U, U2, mm; 3 — Mean drawing diameter d, mm; 4 — Drawing force Pz, tonnes; 5 — Limit line for rational utilisation of press-working capacity; 6 — Work path hz,2 (mm) of cylindrical bodies
FIGURE 25-44 Calculation chart for deep drawing and redrawing (a) Deep drawing with blank holder (b) Re-drawing of body Courtesy: Heinrich Makelt, Die Mechanischen Pressen, Carl Hanser Verlag, Munich, German Edition, 1961 (Translated by R. Hardbottle, Mechanical Presses, Edward Arnold (Publishers) 1968) Equations and Examples: (Fig. 25-44) Force and work requirements for deep drawing and re-drawing: The body cross sectional area Qz ¼ Us ¼ ds mm2 where d ¼ mean diameter of the drawn parts, mm U ¼ mean circumference of the drawn part, mm s ¼ sheet thickness, mm The maximum draw force ¼ Pz ¼ Qz z B =1000 tf where z ¼ drawing factor ¼ y ln N =F ¼ ln N = ln max N ¼ useful drawing ratio ¼ ðD=dÞ max ¼ limiting drawing ratio ¼ Dmax =d D, Dmax ¼ diameters of draw of the blank sheet, mm F ¼ forming efficiency For D ¼ 160 mm (6.3 in), d ¼ 100 mm (4 in), N ¼ 1:6 and max ¼ 1:8, the drawing factor is z ¼ 0:8. The strength ratio ¼ y ¼ 1:2 between the deformation strength kfm and the tensile strength B (lines a-b-c and d-e-f ) i.e., y ¼ kfm = B . 2 1Þ mm. The work path for cylindrical drawn part ¼ hz ¼ d=4ðN The drawing work ¼ Az ¼ mPz hz N m or mm tf (m kgf) where m ¼ correction factor ¼ 0:63 Mean body circumference ¼ U ¼ 315 mm (12.5 in) [Left side of Fig. 25-44]. Mean drawing diameter for the case of cylindrical hollow-ware ¼ d ¼ 100 mm (4 in). The body cross section due to drawing stress kz is Qz ¼ 800 mm2 (1.23 in2 ) [Section I top right]. The sheet thickness ¼ s ¼ 2:5 mm (0.1 in) [line A-B-C ]. Section II (top left) gives Pz ¼ 309 kN (31.5 tf) [C-D-E ]. Drawing stress is kz ¼ Z B ¼ 0:8 50 ¼ 392 N/mm2 (40 kgf/mm2 ). Section IV (bottom right) gives hz ¼ 35:5 mm (1.4 in) for BN ¼ 1:6 and d ¼ 100 mm (4 in) [A-F-G ]. The drawing work¼ Az ¼ mPz hz ¼ 0:63 31:5 35:5 ¼ 6908 mm N (705 mm tf or 5136 ft-lbf) [G-H and E-B ]. The press tonnage rating Prat ¼ 63 tf. Force and work requirements for re-drawing: The reduced body cross-section during redrawing ¼ Qz ¼ Uz sz ¼ dz sz mm2 where Uz ¼ mean circumference, mm dz ¼ mean diameter of the finished product, mm sz ¼ re-drawn wall thickness, mm The reduced body cross-section ¼ Qz ¼ 500 mm2 (0.77 in2 ) undergoing loading by the drawing stress kz [line A01 -B01 -C10 ] (Fig. 25-44). Section II kt ¼ ZA B ¼ 071 45 9:8066 ¼ 312 N/mm2 (31.5 kgf/mm2 or 45000 psi). The re-drawn force ¼ PA ¼ 16 tf [C0 -D0 -E 0 ]. The blank cross section Q1 ¼ Q2 =qA ¼ 800 mm2 (1.23 in2 ) [C0 -B02 -L0 -M 0 ] (Fig. 25-44). The blank height h1 ¼ 31:5 mm (1.25 in). h2 ¼ 50 mm (2 in) [A02 -F 0 -G0 , here F 0 happens to coincide with L0 ] P1 ¼ 16 tf, h2 ¼ 50 mm (2 in), m ¼ 0:63 [E 0 -H 0 and G0 -H 0 ]. Psat ¼ 50 tf, [H 0 -I 0 -K 0 ].
25.82 Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ELEMENTS OF MACHINE TOOL DESIGN Sum of diameters D + da ¯ d( β + 1). mm
80
25
16
10
6.3
H
4
2.5
50
31.5
20
12.5
5
8
H
3.15
M at σ e B rial .k s g/ tre m n III m 2 gt h 80 63 0 5 0 4 .5
G
31 5 2 0 2 6 1 .5 12 0 1
50 53 58 40 31.5 25 20 16 12.5 10
Material strength σB. kg/mm2
2
1.6
m m
N.
2.2 4 2 1.8 1.6 1.4 1.25
40
Blank-holder pressure P N. kg/cm2
Drawing ratio β
1.25
0.01 0.012 0.016 0.02 0.025 0.032 0.04 0.05 0.063 0.08 0.1 0.125 0.16 F F 0.2 0.25 0.315 0.4 0.5 0.63 0.8 1.0
Dra
win
4
gr
atio
β=
1.2
5
1.4 1.6
IV
E
1.8
Ratio PN / σB
nes
Fl an ge
ton
63
Ratio PN / σB
,
e PN
100
B
forc
K
id th
der
3.15 2 I 1.25 0.8 .5 0 0.32 0.2 0.12 0.08 0.05
Holding-down area FN. cm2
hol
Holding-down area FN. cm2
nk-
II
w
Bla
500 315 200 125 80 50 31.5 20 12.5 8 5
31.5 40 50 63 80 100 125 160 200 250 315 400 500 630 800 1000 1250 1600 2000 2500 3150 31500 4000 5000 50 63 80 100 125 160 200 250 315 400 500 630 800 1000 1250 1600 2000 2500 3150 500 20000 400 A Mean flange 12500 circumference 315 8000 UN .mm 150 250 5000 125 200 3150 100 160 2000 80 125 1250 63 100 800 50 80 500 40 63 325 31.5 50 200 25 40 I 125 20 31.5 B 16 C 80 C 25 50 12.5 20 D 31.5 BN 10 16 FN 20 8 12.5 DN (UN) 12.5 6.3 s 10 da 8 5 8 5 4 3.25 1
2 2.24
D 5 6.3 8 10 12.5 16 20 25 31.5 40 50 63 80 101 125 100 200 250 325 400 Ratio da / s
FIGURE 25-45 Determination of blank-holder force for deep drawing Courtesy: Heinrich Makelt, Die Mechanischen Pressen, Carl Hanser Verlag, Munich, German Edition, 1961 (Translated by R. Hardbottle, Mechanical Presses, Edward Arnold (Publishers) 1968) Equations and Examples: The blank holder force PN ¼ 10% of the ram drawing force Pz ¼ 0:1Pz . The drawing work ¼ Az ¼ ðmPz þ PN Þhz m N (mm tf or m kgf ). Section I (Fig. 25-45): First holding down area (flange area) under load ¼ FN ¼ UN BN ¼ ð=4ÞðD þ da ÞðD da Þ ¼ ð=4Þdð þ 1Þdð 1Þ cm2 where UN ¼ mean flange width, cm; D ¼blank diameter, cm; da ¼outside diameter after drawing, cm d ¼ mean drawing diameter, cm; ¼ drawing ratio Empirical equation for the ratio PN = B . Section II: PN = B ¼ 0:25 ½ð 1Þ2 þ 0:005 ðda =s)] where PN in N/mm2 (kgf/cm2 ) and in N/mm2 (kgf/mm2 ). Section III: The blank holder force ¼ PN ¼ FN PN =1000 tf. Example: Section I: For the case of cylindrical part from sum of the D and da ðD þ da Þ ¼ 235 mm (9.3 in). For ¼ 1:6 with 458 slope FN ¼ 100 cm2 (15.4 in2 ) [line A-B-C ] (Fig. 25-45). For mean flange circumference ¼ UN ¼ 375 mm (14.8 in). FN ¼ 100 cm2 (15.4 in2 ) [A-B-C ] for BN ¼ 26:5 mm (10 5 in). Section IV: For ðda =sÞ ¼ 40, ¼ 1:6, ðPN = B Þ ¼ 0:14 [D-E-F ] (Fig. 25-45). B ¼ 392 N/mm2 (40 kgf/mm2 , or 57000 psi) in Section III. From this the blank holder pressure ¼ P0N ¼ 55 N/mm2 (5.6 in kgf/cm2 or 80 psi) [F-G-H ] (Fig. 25-45). Finally PN ¼ 5490 N (0.56 tf) [H-I and J-K ] (Fig. 25-45). Section II: FN ¼ 100 cm2 (15.4 in2 ).
25.83 Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ELEMENTS OF MACHINE TOOL DESIGN CHAPTER TWENTY-FIVE
D’
63 0 8
10 0
50
16 20 0 2 0 31 50 5
5 12
E’
E
5 6.3 8 10 12.5 16 20 25 31.5 40 50 63 80 100 125 150 200 250 325 400 500
Extrusion moulding or impact extrusion force PHF. tonnes
C’
da
C d1
12.5
40
16
50
25
31.5
80
40
100
50
125
3
4
160
L’
6 .1
0
25 40 63
6
10 0 16 0
M’
32 0.
40
25
63
200
F’
F
M N’
80
250
100
315
95 94 92 90 88 84 80 16
5
3.2 4 5 6.3 8 8 10 12.5 16 G 20 G G’ 25 G’ 0 0 5 12 31.5
Forming height
h2. hi. mm A1’ A1 630 500 400 315 250 200 160 125 100 80 63 50 40 31.5 25 20 16 12.5 25
Extrusion moulding or impact extrusion work AH,F. m. kg or mm. tonnes
20
S1
C bl on an ve k rs cr io os n s fin -s e ec for tio n Q A’ H Blank diameter d1.di
4 3.2 8.5
63
0 -1 d1
6.3
1
FN
A 10
31.5
6.3 10 16
50 40
63
III
16 12 20 0 5 0 25 0 31 5 40 0 50 0 63 0 80 0 10 00 12 50 16 00 20 00 25 00 31 50 40 00 50 00 63 00 80 00 100 00
80 0 10
2
.5 12 10 8
L
B 6.3
5
5 63 8 10 12.5 16 20 25 1.5 40 50 63 80 100 125 150 200 250 325 400 500
E’ K’ E Lim it of pline f res or ra sw tio ork na ing l ut cap ilisa aci tion ty I H H’
S1
1
Extrusion moulding or impact extrusion force PHF. tonnes
20 25 .5 31
=
16
B
FBa
75 20 68 25 60 31.5 50 40
50 63 80 100 125 160 N 200 250 7 315 10 8 6.3 400 500 630 800 1000 1250 1600
QZ (mm2)
D
400 630 100 160 0 0 250 0
hZ
25 20
hF s1 s2
0
Qz
d2 (U2)
I
0. .2 25
sZ
QF hi
FBi
di
all l w ss tia ne In ick mm th s 1.
ion ss re m2 mp /m co . kg i fi c ec g K D Sp din loa
QH
(U)
d s3
0. 0. 4 5
hZ~hH
d1 (U1)
b)
0
s
II
0. 0. 05 0 0. 6 0. 08 1 0. 12
PH
4000 3150 2500 2000 1600 1250 1000 C’ 630 500 C 400 325 250 200 150 125 100 200 150 125 100 80
0
a)
Blank cross-section OH. FBl. mm2
25.84
IV
1 — Limit line; 2 — Conversion line for blank cross-section; 3 — Mean blank circumference U1, mm; 4 — Degree of deformation ∈, %; 5 — Cross-section ratio qH, F; 6 — Body cross-section QF, mm; 7 — Body cross-section; 8 — Extrusion moulding or impact extrusion stroke h1, F, mm
FIGURE 25-46 Chart for extrusion molding and impact extrusion: a, extrusion molding of hollow bodies in direction of punch travel (forward extrusion); b, impact extrusion (tube extrusion) against direction of punch travel (backward extrusion). Courtesy: Heinrich Makelt, Die Mechanischen Pressen, Carl Hanser Verlag, Munich, German Edition, 1961 (Translated by R. Hardbottle, Mechanical Presses, Edward Arnold (Publishers) 1968) Extrusion Forming (Fig. 25-46) : (a) Equations: The extrusion molding force ¼ PH ¼ QH kD =1000 tonneforce (tf) (kN or lbf ). The body cross section ¼ QH ¼ U1 s1 ¼ d1 s1 mm2 (in2 ). The reciprocal ratio of cross-section qH ¼ Qz =QH ¼ U2 s2 =U1 s1 , where QH ¼ cross-section of the deformed blank before forming and Qz ¼ cross-section of the blank after forming, Us ¼ mean circumference and s2 ¼ wall thickness of finished product. The relation between the cross-sectional ratio qH and the degree of deformation " (%) is qH ¼ 1 ð"=100Þ. Example: Blank diameter d ¼ 25 mm (1 in), s1 ¼ 11:2 mm (0.45 in) U1 ¼ 80 mm (3.2 in) Body cross sectional ratio¼ qH ¼ 0:25 corresponding to " ¼ 75%. Specific compression loading kD ¼ 2196 N/mm2 (224 kgf/mm2 or 319000 psi). The extrusion force ¼ PB ¼ 1960 kN (200 tf) (C-D-E); Qz ¼ 224 mm2 (0.36 in2 ) (B-L-M-N) (Fig. 25-46). Work done due to extrusion ¼ AH ¼ 4000 mm tf (4000 m kgf or 28933 ft/lbf ) [G-H and E-H, H on the limit line]. (b) Equation: The punch force ¼ PF ¼ FB1 kD =1000 tf. The body cross-section ¼ QF ¼ FB1 qF =ðl qF Þ mm2 . The cross-section ratio ¼ qF ¼ QF =FB . The total initial cross-section of the blank disc ¼ FB ¼ QF =qF ¼ QF þ FB mm2 . The wall thickness of the product ¼ sB ¼ ½QF =qF 1=2 d1 =2 mm. The work path ¼ hF ¼ s1 s2 ¼ qF h1 mm. The work for m ¼ 1, AF ¼ PF hF mm tf.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ELEMENTS OF MACHINE TOOL DESIGN ELEMENTS OF MACHINE TOOL DESIGN
25.85
Example: d ¼ 45 mm (1.8 in), kD ¼ 785 N/mm2 (80 kgf/mm2 or 114000 psi) q ¼ 0:2, forming height ¼ h ¼ 12:5mm: B ¼ 196 N/mm2 (20 kgf/mm2 or 28500 psi). Punch force ¼ PF ¼ 1225 kN (125 tf) [C0 -D0 -E 0 ] (Fig. 25-46). Blank area ¼ FB1 ¼ 1600 mm2 (2.46 in2 ) [A0 -B0 -C0 ]. Body cross-section of product ¼ QF ¼ 400 mm2 (0.62 in2 ) [A0 -L0 -M 0 -N 0 ]. The inside body height ¼ h1 ¼ 125 mm (5 in). Work done: AF ¼ 30896 m N (3150 mm tf or 22785 ft-lbf ) [E 0 -H 0 and G0 -H 0 ]. Press rating ¼ Psat ¼ 1960 kN (200 tf) [H 0 -I 0 -K 0 ].
10
6.3
4 3.15 2.5 2
s die bo
5
S Co I ho oli ldd l l o ex w and tru bo de di d, es thi ck wa II lle St dh a oll ow mpi n bo die g s lid So
Multiplication factor, π H,F,P
8
1.6 1.25 1
Degree of forming ∈, % 95 94 92 90 88 84
0.05 0.06 0.08 0.1
80 75 68
0.12 0.16 0.2 0.25 0.32
60 50 37 0.4
0.5
20
0.63 0.8
Cross-section ratio qH,F for extusion moulding and impact extrusion Height ratio S2 / S1 for stamping and cold working FIGURE 25-47 Determination of multiplication factor for impact extrusion and cold extrusion, and also for stamping and coining Courtesy: Heinrich Makelt, Die Mechanischen Pressen, Carl Hanser Verlag, Munich, German Edition, 1961 (Translated by R. Hardbottle, Mechanical Presses, Edward Arnold (Publishers) 1968)
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ELEMENTS OF MACHINE TOOL DESIGN
6 0
II
8 0 10 5
12 60 1 00 2 50 2
5
31
X
n sio es m2 pr m /m co , kg lflc K D ec ng Sp n d i lo
B
50 3
8000 6300 5000 4000 3150 2500 2000 1600 1250 1000 800 A 630 A 500 400 315 250 200 160 125 100
C fo on r d ve ie rsi ar on ea c ur ve
CHAPTER TWENTY-FIVE
X
25.86
Fp
I
D
FP
PP
hP
Vstamp
s1
s2
d
E 20 25 31.5 40 50 63 Blank diemeter d. mm E
80 100
F
Y
3.1 2.5 2 5
1. 1.2 1 6 5
C 80 8 12.5 20 31.5 50 80 125 200 315 500 10 12.5 16 5 6.3 10 16 25 40 63 100 160 250 400 5.3 0.63 20 C 8 0.8 25 L imi .5 10 31 t cu G H G rve 12.5 40 cap for ra 15 50 aci tion ty u al 20 63 tllls pres 25 atio sw 80 o n rkin 0 31.5 III 10 g 5 40 12 0 6 50 1 65
IV
Stamping work Ap, m.kg or mm.tonnes
63 80 10 0 12 5 16 0 20 0 25 0 31 5 40 0
25 31 .5 40 50
10 12 .5 16 20
6. 3 8
20 0 25 0 31 5 40 0 50 0 63 0 80 0 10 00 12 50 16 00 20 00 25 00 31 50 40 00 50 00 63 00 80 00 10 00 12 0 50 0
5
4
Y
he
c la
Stamping volume Vstamp, cm3
X — Projected die area Fp, mm; Y — Stamping stroke hp, mm; Z — Stamping force FIGURE 25-48 Chart for calculating stamping and coining Courtesy: Heinrich Makelt, Die Mechanischen Pressen, Carl Hanser Verlag, Munich, German Edition, 1961 (Translated by R. Hardbottle, Mechanical Presses, Edward Arnold (Publishers) 1968) X- projected die area Fp , mm; Y- stamping stroke hp , mm; Z, stamping force Pp , tonnes.
Key to Fig. 25-49 Equations and Examples: Forging temperature ¼ T ¼ 10008C. Tensile strength of plain carbon steel ¼ B ¼ 588 N/mm2 (60 kgf/mm2 or 86000 lbf/in2 [point B ] (Fig. 25-49). Static deformation resistance ¼ kFg ¼ 49 N/mm2 (5 kgf/mm2 or 7100 lbf/in2 ) [point C of curve]. The deformation rate ¼ w ¼ "r=t(% sec) ¼ 500%/sec [point D ]. The arithmetic proportions of upsetting ¼ "h ¼ 4h=ho ¼ ½1 Fo =F1 100%. The dynamic deformation resistance ¼ kFd ¼ 98 N/mm2 (10 kgf/mm2 or 14200 psi) [point E of the curve] (Fig. 25-49). ¼ 2kFg where kFa ¼ static strength. pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi pffiffiffiffiffi The diameter of non-circular upset or forged component is calculated from d111 ¼ ð4=ÞF1 ¼ 1:13 F1 mm where F1 ¼ crosssection after forming (upsetting surface). The flash ratio ¼ b=s ¼ 4:8 (point F, scale 11). The deformation resistance ¼ kw ¼ 392 N/mm2 (40 kgf/mm2 or 57000 psi) [point G of the curve]. The upsetting force ¼ Ps ¼ 24516 kN (2500 tf) [point I of the curve] A prescribed or theoretical upsetting or die diameter d1 [D ¼ 280 mm (11 in)]. The corresponding upsetting or die area F1 ½Ftot ¼ 63000 mm2 (96 in2 ) [point H ]. The maximum diameter D ¼ d1 þ 2b of forged component The crushed flash or the total cross-sectional area ¼ Ftot ¼ F1 þ Ub where U ¼ periphery of crushed area. The mass ratio ¼ Ls =Bm ¼ 6:3 [point K ]. The maximum upsetting force ¼ Pmax ¼ 30890 kN (3150 tf) [point L of the curve]. The upset path ¼ h ¼ 16 mm (0.65 in) [point M ]. The upsetting work ¼ As ¼ 348134 mm N (35500 mm tf or 256665 ft-lbf) [line N-O ].
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ELEMENTS OF MACHINE TOOL DESIGN ELEMENTS OF MACHINE TOOL DESIGN
I Free forging d 1 /h 1m II Drop forging b/s III Form upsetting d 1 /2h 1m
Forging temperature T. …C
ia
ls
te
st
in
g
ac
ne
III
rk
N
40
M
16
6.3
2.5
Upsetting path h to BDC on upsetting. mm 200
80
31.5
12.5
Upsetting path h to BDC on fininshed forging. mm
5
.1 2
0
ter d1 or ttin D. ga mm or nd Ft d i ot . e mm are aF 2 1 250
me dia
25
G 50 100
160
12
100
5
8
80 5 63 3.15 800
20
0×
10 3
80
50
31. 5
H
20
12.
5
se
40
200
0
125
1250
Upsetting force P s . tonnes
2000
I I
3150
5000
Ls
800
1250
e ur
2000
3150
5000
L
t en m m /B
s ea L s m io ie rat D
V K
1 5 2. 3 6. 16
100
L
Max. upsetting work. tonnes
o gw
kg
Pres a t 2 5 s w o r k in g % sp c e e d a p a c it y In c r e ase Pres s a t 1 5 w o r k in g % sp capa eed d e c r c it y ease
ps
in ett
315
15
500
0 ..
Bm
1
1.6
4
2.5
3 10
6.3
16
10
40
25
63
× 100
A
m. s.
50
400
10
250 500
O
VI
500 mm
6.3
150
U
250
G
10
Up
1 1.5 2.1 3 4 5.3 7 9
ig
IV
4
0.8 3 0.6 0.5 0.4 5 0.31 5 0.2 0.2 6 F 0.1 5 0.12 0.1
H
0
2.5
n tio ma for cy De icien eff
1 1.6 2.4 3.4 4.8 6.3 8.5 11.2 14
4
h
~8
E
C
gt
0
Dyn. deformation strength. kg/mm 2
6.3
2.5
2.5
σB
H ig C h-p r- e N rc hs i st ent le N pe ee ag si i s rc n ls e B te en Te C el ta (h s g st ig e ee h- C ls C pe st rs r e te cen els el ta s) g e
n tre
0
4
m
~5
6.3
10
hi
/m
... 5 40
16
m
10
dd ie
X
E
C
1400
2
g .k
ga n
.1
~3
Z Y s er mm ) Ha 5 m/s
ff.
(ue
s s e /s) os 5 m p r .. 0.0 i c 5. u l 0.02 r a f. = y d (uef
er
1250
I
ttin
H
at
1150
A
se
0 00
M
Deformation resistance, kg/mm 2
50
te
1000
900
16
Up
50 160 500 600 000 5 1
25
1 2.5 4 6 8.5 12 16
Static deformation strength K Fs. kg/mm 2
5
800 25
II
ra n io ec t a m /s or % e f w, D D
25.87
X — Explosion deformatuon; Y — Highspeed presses (V eff ~ 0.53); Z — Longitudinal mechanical presses (V eff ~ 0) 125)
FIGURE 25-49 Chart for calculating hot upsetting and drop forging Courtesy: Heinrich Makelt, Die Mechanischen Pressen, Carl Hanser Verlag, Munich, German Edition, 1961 (Translated by R. Hardbottle, Mechanical Presses, Edward Arnold (Publishers) 1968)
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ELEMENTS OF MACHINE TOOL DESIGN
25.88
CHAPTER TWENTY-FIVE
Particular
Formula
Refer to Table 25-64 for unit stiffness or specific stiffness E=. The ratio of weights of two bars of same length whose weights are W1 ¼ 1 A1 l and W2 ¼ 2 A2 l
W1 1 A1 l E2 1 E2 =2 ¼ ¼ ¼ W2 2 A2 l E1 2 E1 =1
ð25-169Þ
where E= is the unit stiffness or specific stiffness Refer to Table 25-64, which gives E, and E= for some machine tool structural materials The ratio of weights of two bars of same length subjected to tensile load F
W1 nPLð1 = ut1 Þ ut2 =2 ¼ ¼ W2 nPLð2 = ut2 Þ ut1 =1
ð25-170Þ
where ut = is unit strength under tension The ratio of weights of two bars of same length subjected to torque Mt
2=3
W1 ut =2 ¼ W2 ut2=3 =1
ð25-171Þ
2=3
where ut = is an index of the ability of a material to resist torsion and is known as unit strength under torsion The ratio of weights of two bars of same length subjected to bending Mb
2=3
W1 ð1= b1 Þ2=3 1 b2 =2 ¼ ¼ W2 ð1= b2 Þ2=3 2 2=3 =1 b1 2=3
ð25-172Þ
where b = is an index of the ability of a material to resist bending and is known as the unit strength under bending For specific stiffness (in tension)
Refer to Table 25-64.
For comparison of specific strength and stiffness/ rigidity of different section having equal cross sectional area
Refer to Table 25-65.
DESIGN OF FRAMES, BEDS, GUIDES AND COLUMNS: For machine frames
Refer to Table 25-66.
For stiffening effect of reinforcing ribs
Refer to Fig. 25-50.
For characteristics of bending and torsional rigidities of models of various forms
Refer to Table 25-67.
For variations in relative bending and torsional rigidity for models of various forms
Refer to Table 25-68.
For effect of stiffener arrangement on torsional stiffness of open structure
Refer to Table 25-69.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ELEMENTS OF MACHINE TOOL DESIGN ELEMENTS OF MACHINE TOOL DESIGN
Particular
25.89
Formula
For effect of aperture and cover plate design in static and dynamic stiffness of box sections
Refer to Table 25-70.
For typical cross-sections of beds
Refer to Fig. 25-51A, B, C and D.
For classification and identification of machine tools
Refer to Table 25-72.
For machine tools sliding guides, ball and roller guides made of cast iron, steels and plastics
Refer to Tables and Figures from 25-66 to 25-71. In addition to these, readers are advised to refer to books and handbooks on machine tools. The design of machine tool slideways, guides, beds, frames and columns subjected to external forces are beyond the scope of this Handbook.
For design of spindle units in machine tools
Refer to Chapter 14 on ‘‘Design of shafts’’ in this Handbook.
For design of power screws and lead screws of machine tools
Refer to Chapter 18 on ‘‘Power screws and fasteners’’ in this handbook, and books on power screw design of machine tools.
For vibration and chattering in machine tools
Refer to Chapter 22 on ‘‘Mechanical vibrations’’ in this Handbook.
For variable speed drives and power transmission
Refer to Chapter 23 on ‘‘Gears’’ and Chapter 25 on ‘‘Miscellaneous machine elements’’ in this Handbook.
For lubrication of guides, spindles and other parts of machine tools
Refer to Chapter 24 on ‘‘Design and bearings and Tribology’’ in this Handbook and other books on lubrication.
TOOLING ECONOMICS (Adopted from Tool Engineers Handbook) Symbols: a saving in labor cost per unit C first cost of fixture D annual allowance for depreciation, per cent H number of years required for amortization of investment out of earnings I annual allowance for interest on investment, per cent
M N S t T V
annual allowance for repairs, per cent number of pieces manufactured per year yearly cost of setup percentage of overhead applied on labour saved annual allowances for taxes, per cent yearly operating profit over fixed charges
N¼
CðI þ T þ D þ MÞ þ S að1 þ tÞ
ð25-173Þ
C¼
Nað1 þ tÞ S I þT þDþM
ð25-174Þ
Number of years required for a fixture to pay for itself
H¼
C Nað1 þ tÞ CðI þ T þ MÞ S
ð25-175Þ
Profit from improved fixture designs
V ¼ Nað1 þ tÞ CðI þ T þ D þ MÞ S
ð25-176Þ
Number of pieces required to pay for fixture
Economic investment in fixtures for given production
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ELEMENTS OF MACHINE TOOL DESIGN
25.90
CHAPTER TWENTY-FIVE
Particular
Formula
PROCESS—COST COMPARISONS: Symbols: c value of each piece, dollars Cx , Cy total unit cost for methods Y and Z respectively d hourly depreciation rate for the first machine (based on machine hours for the base years period) D hourly depreciation rate for the second machine (based on machine hours for the base years period) k annual carrying charge per dollar of inventory, dollar l labor rate for the first machine, dollar L lot size, pieces labor rate for the second machine, dollar m monthly consumption, pieces Nt total number of parts to be produced in a single run Number of parts for which the unit costs will be equal for each of two compared methods Y and Z (‘‘breakeven point’’)
number of parts for which the unit costs will be equal for each of two compared methods Y and Z (break-even point) number of pieces produced per hour by the first machine number of pieces produced per hour by the second machine unit tool process cost for method Y unit tool process cost for method Z quantity of pieces at break-even point total tool cost for method Y total tool cost for method Z setup hours required on the first machine setup hours required on the second machine ratio of machining time piece
Nb p P Py Pz Q Ty Tz s S V
Nb ¼
Ty Tz Pz Py
ð25-177Þ
Cy ¼
Py Nt þ Ty Nt
ð25-178Þ
Total unit cost for method Z
Cz ¼
Pz Nt þ Tz Nt
ð25-179Þ
Quantity of pieces at break-even point
pPðSL þ SD sl sdÞ Pðl þ dÞ pðL þ DÞ sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 24mS L¼ kcð1 þ mvÞ
Total unit cost for methods Y
Relatively simple formula for calculation of economic lot size, pieces
Q¼
ð25-180Þ
ð25-181Þ
MACHINING COST: Machining time cost per work piece Non-productive time cost per work piece Tool change time cost per work piece Tool cost per work piece
tm R 60 t R Cn ¼ tL þ s nb 60
Cm ¼
ð25-182Þ ð25-183Þ
Cc ¼
tm tc R 60t1
ð25-184Þ
Ct ¼
Ct1 t t R þ sh m 60t1 1 þ ns
ð25-185Þ
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ELEMENTS OF MACHINE TOOL DESIGN ELEMENTS OF MACHINE TOOL DESIGN
Particular
25.91
Formula
Total cost of machining
Ctot ¼ Cm þ Cn þ Cc þ Ct
ð25-186Þ
Total tool cost per workpiece
Cn ¼ Cc þ Ct
ð25-187Þ
where tm ¼ machining time per workpiece, min tL ¼ loading and unloading time per workpiece, min ts ¼ setting time per batch, min tt ¼ tool life, min tc ¼ tool charge time, min tsh ¼ tool sharpening time, min R ¼ cost rate per hour nb ¼ number of batch ns ¼ number of resharpening
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ELEMENTS OF MACHINE TOOL DESIGN
25.92
CHAPTER TWENTY-FIVE
TABLE 25–64 Unit stiffness/rigidity of some materials Modulus of elasticity, E Material
GPa
Aluminum Aluminum cast Aluminum (all alloys) Beryllium copper Carbon steel Cast iron, gray Malleable cast iron Inconel Magnesium alloy Molybdenum Monel metal Nickel-silver Nickel alloy Nickel steel Phosphor bronze Steel (18-8), stainless Titanium (pure) Titanium alloy Brass Bronze Bronze cast Copper Tungsten Douglas fir Glass Lead Concrete (compression) Wrought iron Zinc alloy Graphite HTS Graphite/5208 epoxy T50 Graphite 2011 Al Boron Boron carbide, BC Silicon carbide, SiC Boron/5505 epoxy Boron/6601 Al Kelvar 49 Kelvar 49/resin Silicon, Si Wood (along fiber) Nylon Paper E Glass/1002 epoxy
69 70 72 124 206 100 170 214 45 331 179 127 207 207 111 190 130 114 106 96 80 121 345 11 46 36 14–28 190 83 750 172 160 380 450 560 207 214 130 76 110 11–15.1 4 1–2 39
Mpsi 10.0 10.15 10.4 18.0 30.0 14.5 24.6 31.0 6.5 48.0 26.0 18.5 30.0 30.0 16.0 27.5 15.0 16.5 15.5 14.0 11.6 17.5 50.0 1.6 6.7 5.3 2.0–4.0 27.5 12 108.80 24.95 23.20 55.11 65.28 81.22 30.07 31.03 18.85 11.02 15.95 1.59–2.19 0.58 0.15–0.29 5.65
Modulus of rigidity, G Poisson’s ratio, GPa Mpsi 26 30 27 48 79 41 90 76 16 117 65 48 79 79 41 73
3.8 4.35 3.9 7.0 11.5 6.0 13.0 11.0 2.4 17.0 9.5 7.0 11.5 11.5 6.0 10.6
43 40 38 35 46 138 4 19 13
6.2 5.8 5.5 5.0 6.6 20.0 0.6 2.7 1.9
70 31
10.2 4.5
Density, a
Unit weight, b Unit stiffness E=
Mg/m3
kg/m3
kN/m3
lbf/in3 lbf/ft3
0.334
2.69
0.320 0.285 0.292 0.211
2.80 8.22 7.81 7.20
167 166 173 513 487 450
8.42 1.80 10.19 8.83 8.75 8.3 7.75 8.17 7.75 4.47 6.6 8.55 8.30
26.3 26.0 27.0 80.6 76.6 70.6 70.61 83.3 17.6 100.0 86.6 85.80 81.4 76.0 80.1 76.0 43.8
0.097 0.096 0.10 0.297 0.282 0.260
0.290 0.350 0.307 0.320 0.332 0.30 0.291 0.349 0.305
2,685 2,650 2,713 8,221 7,806 7,197 7,200 8,418 1,799 10,186 8,830 8,747 8,304 7,751 8,166 7,750 4,470 6,600 8,553 8,304 8,200 8,913 18,822 443 2,602 11,377 2,353
0.307 0.065 0.368 0.319 0.316 0.300 0.280 0.295 0.280 0.16
530 117 636 551 546 518 484 510 484 279
83.9 81.4 80.0 87.4 184.6 4.3 25.5 111.6 23.1
0.309
534
0.322 1.89 0.016 0.094 0.411
556
2:62 106 2:66 106 2:68 106 1:54 106 2:69 106 1:42 106 2:41 106 2:57 106 2:56 106 3:31 106 2:06 106 1:48 106 2:54 106 2:72 106 1:38 106 2:50 106 2:37 106 2:60 106 1:26 106 1:18 106 1:00 106 1:38 106
28 162 710 147
2:56 106 1:80 106 3:10 106 0:60 106
7,700
76.0 0.24
415
0.33 0.324 0.349 0.326 0.330 0.245 0.431
0.33
8.90 18.82 4.43 2.60 11.38 2.35
6.6 2.25 1.55
22.1 15.2
2.58 2.5 2.4 3.2 1.99 2.60 1.44 1.38 2.30 0.41–0.82 1.1 0.50 1.80
25.3 44.1 22.5 31.4 19.5 25.5 14.1 13.5 22.5 4.0–8.0 10.8 4.9 17.6
2:50 106 1:18 106 34:00 106 11:30 106 6:32 106 11:00 106 19:20 106 17:80 106 8:40 106 8:20 106 9:20 106 5:60 106 4:86 106 2.75–1:86 106 0:37 106 0.20–0:41 106 2:22 106
a
, mass density. , weight density; w is also the symbol used for unit weight of materials. Source: K. Lingaiah and B. R. Narayana Iyengar, Machine Design Data Handbook, Volume I (SI and Customary Metric Units), Suma Publishers, Bangalore, India and K. Lingaiah, Machine Design Data Handbook, Volume II, (SI and Customary Metric Units), Suma Publishers, Bangalore, India, 1986.
b
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ELEMENTS OF MACHINE TOOL DESIGN
25.93
ELEMENTS OF MACHINE TOOL DESIGN
TABLE 25-65 Comparison of specific strength and Rigidity/Stiffness of different sections having equal cross sectional areas (in Flexure) Distance to farthest point, c
Moment of inertia I
Section modulus Z ¼ I=c
i¼
I
Ia
Z
Za
0.14
1
1
0.083
0.166
1.06
1.16
B3r2/6
0.083r
0:166
1.9
1.6
0:05D4 ð1 4 Þ
0:1D3 ð1 4 Þ
0:08
2.1
1.73
B4 ð1 4 Þ 12
B3 ð1 4 Þ 6
1 4 12ð1 2 Þ2
4.6
3.2
9.5
4.6
I A2
Cross-section
Area A
F
0.785D2
D 2
0.05D4
0.1D3
0.08
F
B2
B 2
B4/12
B3/6
F
B2 r ðr ¼ H=BÞ
H 2
B4r3/12
F
0.785D2 (1 2) ð ¼ d=DÞ
D 2
F
B2(1) ð ¼ b=BÞ
B 2
w¼
Z A3=2
D
B pffiffi r
H B
d
1 4 ð1 2 Þ2
0:14
1 4 ð1 2 Þ3=2
D
b
1 4 6ð1 2 Þ3=2
B F b h H B F b
h H
B
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ELEMENTS OF MACHINE TOOL DESIGN
TABLE 25-65 Comparison of specific strength and Rigidity/Stiffness of different sections having equal cross sectional areas (in Flexure) (Cont.)
Cross-section
b h H
Area A BHð1 Þ ð ¼ b=B; ¼ h=HÞ
Distance to farthest point, c H 2
Moment of inertia I
Section modulus Z ¼ I=c
i¼
BH 3 12 ð1 3 Þ
BH 2 6 ð1 3 Þ
0:083
I A2 1 3 ð1 Þ2
w¼
Z A3=2
0:166
I
Ia
Z
Za
11
52
1 3 ð1 Þ3=2
B F b/2
b/2
h H
B D3 D4 ; Ia=Moment of Inertia of round solid section= . 32 64 Z/Za and I/Ia for solid and hollow stock having identical cross sectional area in flexure.
* Za=section modulus of round solid section=
TABLE 25-66 Machine Frames Simple frames and beds of horizontal machines Simple frames and beds of vertical machines
Portal frames
Circular frames, housings
Frames of piston machines, banks of cylinders
Frames of conveying machines Crane structures
25.94 Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ELEMENTS OF MACHINE TOOL DESIGN ELEMENTS OF MACHINE TOOL DESIGN
TABLE 25-66 Machine Frames (Cont.) Baseplates Boxes
Pillars, brackets, pedestals, hangers, etc.
Tables, slide blocks, carriages Crossheads, slides, jibs Lids and casings
Source: Courtesy: Dobrovolsky, V., etl., ‘‘Machine Elements’’, Mir Publishers, Moscow, 1974.
TABLE 25-67 Characteristics of Bending and Torsional Rigidities for Models of Various Forms Relative rigidity in bending Sb
Relative rigidity in torsion St
Weight of model G
Sb G
St G
1 (basic)
1.00
1.00
1.00
1.00
1.00
2a
1.10
1.63
1.10
1.00
1.48
2b
1.09
1.39
1.05
1.04
1.32
3
1.08
2.04
1.14
0.95
1.79
4
1.17
2.16
1.38
0.85
1.56
5
1.78
3.69
1.49
1.20
3.07
6
1.55
2.94
1.26
1.23
2.39
Model No.
Model form
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
25.95
ELEMENTS OF MACHINE TOOL DESIGN
25.96
CHAPTER TWENTY-FIVE
TABLE 25-28 Variations in Relative Bending and Torsional Rigidity for Models of Various Forms Relative rigidity in bending
Relative rigidity in torsion
Model No.
Relative weight of box-like section
With ribs
With thicker walls
With ribs
With thicker walls
1 (basic) 2a 2b 3 4 5 6
1.00 1.10 1.05 1.14 1.38 1.49 1.26
1.00 1.10 1.09 1.08 1.17 1.78 1.55
1.00 1.15 1.10 1.16 1.29 1.30 1.19
1.00 1.63 1.39 2.04 2.16 3.69 2.94
1.00 1.18 1.10 1.21 1.40 1.46 1.24
Source: Courtesy: Dobrovolsky, V., etl., ‘‘Machine Elements’’, Mir Publishers, Moscow, 1974.
TABLE 25-69 Effect of stiffner arrangement on torsional stiffness of open structure4
Relative torsional stiffness
Relative weight
Relative torsional stiffness per unit weight
1
1.0
1.0
1.0
2
1.34
1.34
1.0
3
1.43
1.34
1.07
4
2.48
1.38
1.80
5
3.73
1.66
2.25
Stiffener arrangement
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ELEMENTS OF MACHINE TOOL DESIGN ELEMENTS OF MACHINE TOOL DESIGN
25.97
TABLE 25-70 Effect of aperture and cover plate design on static and dynamic stiffness of box section3
Relative stiffness about
Y
Relative natural frequency of vibrations about
Relative damping of vibrations about
X-X
Y-Y
Z-Z
X-X
Y-Y
Z-Z
X-X
Y-Y
Z-Z
100
100
100
100
100
100
100
100
100
85
85
28
90
87
68
75
89
95
89
89
35
95
91
90
112
95
165
91
91
41
97
92
92
112
95
185
X
Y X
Y X
Y X
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ELEMENTS OF MACHINE TOOL DESIGN
25.98
CHAPTER TWENTY-FIVE
Factors Profile
Iben
Itors
A
Iben A
Itors A
1
1
1
1
1
1.17
2.16
1.38
0.85
1.56
1.55
3
1.26
1.23
2.4
1.78
3.7
1.5
1.2
2.45
FIGURE 25-50 Stiffening effect of reinforcing ribs.
(a)
(b)
(c)
(d)
FIGURE 25-51A Typical cross-sections of beds.
Male parts 55
55 Female parts
(a)
(b)
(c)
P
P
(d)
FIGURE 25-51B Principal shapes of sliding guides. (a) flat ways; (b) prismatic ways; (c) dovetail ways; (d) cylindrical (bar-type) ways.
(a)
(b)
FIGURE 25-51C Sliding guides. (a) closed type; (b) open type.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ELEMENTS OF MACHINE TOOL DESIGN ELEMENTS OF MACHINE TOOL DESIGN
Px
P
Px
y
2r Z PH
Px P 45”
Z
PH PH
2r
2r (a) P x
P 45”
Z
Px P
y
Z
2r COS45” P PH 45” PH Z 2r
(b)
25.99
y 45”
2r Px P 2r 45”
y
Z
FIGURE 25-51D Rolling (a) open (b)type closed type. (a)guides. open type; (b) type; closed
TABLE 25-71 Traversing Force Calculations – Typical Cases Type of ways
Px P
1
z
2r Px
2
y
P
y
2r
y
Pp
Pp
2r
Pp
Q ¼ Px þ 3T0 þ 1:5 r fr P P ¼ P 2 þ G 1 þ G2
r 1:4
Q ¼ Px þ 4T0 þ 1:4 r fr P
r 1:5
Q ¼ Px þ 2T0 þ 1:5 r fr P
r 2:8
Q ¼ Px þ 4T0 þ 2:8 r fr P P
z Px P
4
r 1:5
45
Px P 2r
Traversing force Q. kgf
45 2r cos 45
z 3
req.cm
45
z
Px
P
45
z 2 r
Px
P
45 z 2r
Pp
y
Pp
y
Q ¼ Px þ 2T0 þ 2:8 r fr P P
Pp
y
Notes: 1. The coefficient of rolling friction fr ¼ 0:001 for ground steel ways and fr ¼ 0:0025 for scraped cast iron ways. The initial friction force, referred to one separator, T 0 ¼ 0:4 kgf: 2. Because of the low value of the friction forces, a simplified arrangement has been accepted in which the ways are subject only to the feed force Px, vertical component Px of the cutting force, table weight G1 and workpiece weight G2. The tilting moments, force Pp and the components of the traversing force are not taken into account. 3. In the type 4 ways only the feed force Px and the preload force Pp are taken into consideration.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ELEMENTS OF MACHINE TOOL DESIGN
25.100
CHAPTER TWENTY-FIVE
z Px Pz
ZQ
G fB XC
Qx
Xc XA
Py Pz
Acosα fA O XB
C
(a)
Y
d1 Qz
II
yc
A a
Bcosβ
β
fB
A sinα
α
b
Px
yQ
yG
(C)
β
x
y
(C) (c)
fC
Py
I
G
XQ
Qz
A
yc B
c
I
yp
Zp
C Bcosβ fC
z
Xp
fA
O
α
I (d)
L
(b) FIGURE 25-52 Forces acting on the Slidways of a Lathe – A Typical Case Source: Courtesy: Acherkan, N., ‘‘Machine Tool Design’’, Mir Publishers Moscow, 1968.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ELEMENTS OF MACHINE TOOL DESIGN ELEMENTS OF MACHINE TOOL DESIGN
TABLE 25-72 Classification and Identification code of Machine Tools – Kinematic Diagram Description
Symbol
Shafts
Description
Symbol
Belt drives: Open flat belts
Shafts coupling: Closed Closed with over-load protection
Crossed flat belts
Flexible Universal V-belts Telescopic Floating Toothed
Chain drive
Parts mounted on shafts: Freely mounted Sliding on feather Engaged with sliding key
Toothed gearing: Spur or helical gears
Fixed Bevel gears Plain bearings: Radial Single-direction thrust
Spiral (crossed helical) gears
Two-direction thrust Worm gearing Antifriction bearings: Radial
Single angular-contact Back-and-pinion gearing Duplex angular contact
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
25.101
ELEMENTS OF MACHINE TOOL DESIGN
25.102
CHAPTER TWENTY-FIVE
TABLE 25-72 Classification and Identification code of Machine Tools – Kinematic Diagram (Cont.) Description
Symbol
Nut on power screw: Solid nuts
Description
Symbol
Single-direction overrunning clutches
Split nuts Two-direction overrunning clutches Clutches: Single-direction jaw clutches Brakes: Cone Spindle noses: Centre type Chuck type
Shoe
Bar type Band Drilling Boring spindles with faceplates
Disk
Milling Two-direction jaw clutches
Grinding
Cone clutches Electric motors: On feet Single disk clutches
Twin disk clutches
Flange-mounted
Built-in
Source: Courtesy: Acherkan, N., et1., ‘‘Machine Tool Design’’, Moscow, 1968.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ELEMENTS OF MACHINE TOOL DESIGN ELEMENTS OF MACHINE TOOL DESIGN
25.103
REFERENCES 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25.
Lingaiah, K., Machine Design Data Handbook, McGraw-Hill Publishing Company, New York, 1994. Lingaiah, K., Machine Design Data Handbook, Vol. I, Suma Publishers, Bangalore, India, 1986. Merchant, M. E., Trans. Am. Soc. Mech. Engrs., 66, A-168, 1944. Ernst, H., and M. E. Merchant, Chip Formation, Friction and Finish, Cincinneti Milling, Machine Company, USA. American Society of Tool and Manufacturing Engineers (ASTME), Tool Engineers Handbook, 2nd ed., F. W. Wilson, Editor, McGraw-Hill Book Publishing Company, New York, 1959. Cyril Donaldson, George H. Lecain and V.C. Goold, Tool Design, Tata-McGraw-Hill Publishing Company Ltd., New Delhi, India, 1976. Frank W. Wilson, Editor-in-Chief, American Society of Tool and Manufacturing Engineers (ASTME), Fundamentals of Tool Design, Prentice Hall, New Delhi, India, 1969. Kuppuswamy, G., Center for Continuing Education, Department of Mechanical Engineering, Indian Institute of Technology, Madras, India, August 12, 1987. Sen, G. C., and A. B. Bhattacharyya, Principles of Machine Tools, New Central Book Agency, (P) Ltd., Calcutta, India, 1995. Geoffrey Boothroyd, Fundamentals of Metal Machining and Machine Tools, McGraw-Hill Publishing Company, New York, 1975. Koenigsberger, F., Design Principles of Metal Cutting Machine Tools, the MacMillan Company, New York, 1964. Shaw, M. C., and C. J. Oxford, Jr., (1) ‘‘On the Drilling Metals’’ (2) ‘‘The Torque and Thrust in Milling’’, Trans. ASME., 97:1, January 1957. Hindustan Machine Tools, Bangalore, Production Technology, Tata-McGraw-Hill Publishing Company Ltd., New Delhi, India, 1980. Central Machine Tool Institute, Machine Tool Design Handbook, Bangalore, India, 1988. Acherkan, A., General Editor, V. Push, N. Ignatyev, A. Kakoilo, V. Khomyakov, Y. U. Mikheyev, N. Lisitsyn, A. Gavryushin, O. Trifonov, A. Kudryashov, A. Fedotyonok, V. Yermakov, V. Kudinov, Machine Tool Design, Vol. 1 to 4, Mir Publishers, Moscow, 1968-69. Milton C. Shaw, Metal Cutting Principles, Clarendon Press, Oxford, 1984. Martelloti, M. E., Trans. Am. Soc. Mech. Engrs., 63, 677, 1941. Kovan, V. M., Technology of Machine Building, Mashgiz, Moscow, 1959. Basu, S. R., and D. K. Pal, Design of Machine Tools, 2nd ed., Oxford and IBH Publishing Company, New Delhi, 1983. Heinrich Makelt, Die Mechanischen Pressen, Carl Hanser Verlag Muchen, 1961 (in German) Translated to English by R. Hardbottle, Mechanical Presses, Edward Arnold (Publishers) Ltd., 1968. Dobrovolsky, K. Zablonsky, S. Mak, Radchik, L. Erlikh, Machine Elements, Mir Publishers, Moscow, 1968. Rivin, E. I., Stiffness and Damping in Mechanical Design, Marcel Dekker, Inc., New York, 1999. Machine Tool Design and Numerical Control. Chernov, N., Machine Tools, Translated from Russian to English by Falix Palkin, Mir Publishers, Moscow, 1975. Greenwood, D. C., Engineering Data for Product Design, McGraw-Hill Publishing Company, New York, 1961.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
Source: MACHINE DESIGN DATABOOK
CHAPTER
26 RETAINING RINGS AND CIRCLIPS SYMBOLS a Ch Chmax CF d D f Ftg Fig Frt Fir F 0r F 00r Ftrr Fsg Fsr l n nmax q r rmax t T w ðwaÞg ðwaÞr xo sy saw s
acceleration of retained parts, m/s2 (ft/s2 or in/s2 ) actual chamfer, m (in) listed maximum allowable chamfer, m (in) conversion factor (refer to Table 26-1) depth of groove, m (in) shaft or housing diameter, m (in) frequency of vibration, cps allowable static thrust load on the groove wall, kN (lbf) allowable impact load on groove, kN (lbf) allowable static thrust load of the ring, kN (lbf) allowable impact load on a retaining ring, kN (lbf) listed allowable assembly load with maximum corner radius or chamfer, kN (lbf) allowable assembly load when cornor radius or chamfer is less than the listed, kN (lbf) allowable thrust load exerted by the adjacent part, kN (lbf) allowable sudden load an groove, kN (lbf) allowable sudden load on ring, kN (lbf) distance of the outer groove wall from the end of the shaft or bore as shown in Fig. 26-2, m (in) factor of safety (about 2 to 4 may be assumed) maximum safe speed, rpm reduction factor from Fig. 26-1. actual corner radius or chamfer, m (in) listed maximum allowable corner radius, m (in) ring thickness, m (in) largest section of the ring, m(in) weight of retained parts, kN (lbf) allowable vibratory loading on groove, kN (lbf) allowable vibratory loading on ring, kN (lbf) amplitude of vibration, m (in) tensile yield strength of groove material, Table 26-2, MPa (psi) maximum working stress of ring during expansion or contraction of ring, MPa (psi) shear strength of ring material, MPa (psi) (refer to Table 26-3) coefficient of friction between ring and retained parts whichever is the largest.
26.1 Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
RETAINING RINGS AND CIRCLIPS
26.2
CHAPTER TWENTY-SIX
Note: and with subscript s designates strength properties of material used in the design which will be used and observed throughout this Machine Design Data Handbook. Other factors in performance or in special aspects are included from time to time in this chapter and, being applicable only in their immediate context are not given at this stage. Particular
Formula
RETAINING RINGS AND CIRCLIPS: (Figs. 26-1 to 26-28 and Tables 26-1 to 26-13) Load Capacities of Retaining Rings: Allowable static thrust load on the groove Allowable static thrust load on ring which is subject to shear The allowable thrust load exerted by adjacent part
Allowable assembly load when the corner radius or chamfer is less than the listed (F 00r < F 0r )
Ftg ¼
CF Ddsy nq
ð26-1Þ
Fr ¼
CF Dts n
ð26-2Þ
Ftrr
saw tT 2 18D
ð26-3Þ
F 00r ¼
Fr0 rmax r
Fr00 ¼
Fr0 Chmax Ch
for radius for chamfer
ð26-4Þ ð26-5Þ
Dynamic Loading: Allowable sudden load on ring
Fsr 0:5Fr
ð26-6Þ
Allowable sudden load on groove
Fsg 0:5Ftg
ð26-7Þ
Allowable vibration loading on ring
ðwaÞr 540Fr a
ð26-8Þ
Allowable vibration loading on groove
ðwaÞg 400Ftg
ð26-9Þ
Acceleration of retained parts for harmonic oscillation
a 40xo f 2
ð26-10Þ
Allowable impact loading on groove
Fig ¼ Fr d=2
ð26-11Þ
Allowable impact loading on ring An empirical formula for maximum safe speed with standard types of rings
a
Fir ¼ Fr t=2 nmax ¼ 5000000=D nmax ¼ 20000=D
a
ð26-12Þ where D in mm
ð26-13Þ
where D in inches
ð26-14Þ
Note: Actual tests should be conducted because of repeated or cyclic condition.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
RETAINING RINGS AND CIRCLIPS RETAINING RINGS AND CIRCLIPS
Particular
26.3
Formula
For dimensions of external circlips—Type A—light series
Refer to Table 26-5 and Fig. 26-3.
For dimensions of external circlips—Type A—heavy series
Refer to Table 26-6 and Fig. 26-4. Refer to Table 26-7 and Fig. 26-5.
For dimensions of internal circlips—Type B—light series Refer to Table 26-8 and Fig. 26-6. For dimensions of internal circlips—Type B—Heavy series Refer to Table 26-9 and Fig. 26-7. For dimensions of external circlip—Type C For dimensions, allowable static thrust load, allowable corner radii, chamfers, housing diameter and ring thickness of retaining rings—basic internal, bowed internal, beveled internal, inverted internal, double beveled internal, crescent-shaped, bowed Ering, reinforced, locking prong in grooved housing and on grooved shafts, self locking and triangular self locking ring etc.
Refer to Tables 26-10 to 26-13 and Figs. from 26-1 to 26-28.
Refer to Fig. 26-1. For q reduction factor
TABLE 26-1 Conversion or correction factor CF for calculating Fr and Ftg for use in Eqs. (26-l) and (26-2) Conversion or correction factor CF Ring type
Ring: Fr
Basic, bowed internal Beveled internal Double-beveled internal Inverted internal, external Basic, bowed external Beveled external
1.2 1.2
Groove: Ftg
1.2 1.2 Use d=2 instead of d 2/3 1/2 1 1 1 1 Use d=2 instead of d Crescent-shaped 1/2 1/2 Two-part interlocking 3/4 3/4 E-ring, bowed E-ring 1/3 1/3 Reinforced E-ring 1/4 1/4 Locking-prong ring See manufacturer’s 1.2 specifications Heavy-duty external 1.3 2 High-strength radial 1/2 1/2 Miniature high-strength See manufacturer’s specifications Thinner-gage high-strength 1/2 1/2 radial
FIGURE 26-1 Reduction curve
FIGURE 26-2 Edge margin
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
RETAINING RINGS AND CIRCLIPS
TABLE 26-2 Tensile yield strength of groove material Tensile yield strength, sy Groove material
MPa
lbf/in2
Cold-rolled steel Hardened steel (Rockwell C40) Hardened steel (Rockwell C50) Aluminum (2024-T4) Brass (naval)
310 1034 1380 276 210
45,000 150,000 200,000 40,000 30,000
TABLE 26-3 Shear strength of ring material for use in Eq. (26-2) Shear strength, s Ring material Carbon spring steel (SAE 1060– 1090)
Ring type
Ring thickness mm (in)
lbf/in2
Basic, bowed, beveled, inverted internal and external rings and crescent-shaped
Up to and including 0.9 (0.035)
827
120,000
Double-beveled internal rings
1.07 (0.042) and over
1034
150,000
Heavy-duty external
0.90 (0.035) and over
1034
150,000
Miniature high-strength
0.510 (0.020) and 0.635 (0.025)
827
120,000
0.9 (0.035) and over
1034
150,000
Two-part interlocking, reinforced E-ring, high-strength radial
All available
1034
150,000
Thinner high-strength radial
All available
1034
150,000
E-ring, bowed E-ring
0.254 (0.010) and 0.380 (0.015)
690
100,000
0.635 (0.025)
827
120,000
1034
150,000
0.9 (0.035) and over
Beryllium copper (CDA 17200)
MPa
Locking-prong
All available
896
130,000
Basic external
0.254 (0.010) and 0.380 (0.015) sizes 12 through 23
758
110,000
Bowed external
0.380 (0.015) sizes 18 through 23
758
110,000
E-ring
0.254 (0.010) (size 4 only)
662
95,000
26.4 Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
RETAINING RINGS AND CIRCLIPS
TABLE 26-4 Maximum working stress of ring during expansion or contraction Maximum allowable working stress, saw Ring material
MPa
lbf/in2
Carbon spring steel (SAE 1075) Stainless steel (PH 15-7 Mo) Beryllium copper (CDA 17200) Aluminum (Alclad 7075-T6)
1724 1724 1380 482
250,000 250,000 200,000 70,000
Courtesy: # 1964, 1965, 1973, 1981 Waldes Kohinoor, Inc., Long Island City, New York, 1985. Edward Killian, ‘‘Retaining Rings’’, Robert O. Parmley, Editor-in-Chief ‘‘Mechanical Components Handbook’’, McGraw-Hill Publishing Company, New York, USA.
TABLE 26-5 Dimensions for external circlips—type A—light series
FIGURE 26-3
All dimensions in millimeters Circlip Shaft Dia d1 8 9
Axial force s h11
a b Max. Approx. d3
Tol. on d4 d5 d3 Expanded Min.
0.8
3.2
þ0.09 0.18 þ0.15
1.5 1.7
10
7.4 8.4 9.3
1.8 1
3.4
15.2 16.4
2
10.2 11 11.9
1:2
d2
Tol. on m1 d2 H13
7.6 8.6
0.9
m2 Min.
n Min.
1.0
N
lbf
1180 1360
265 305
1500
340
2060 2270 2940
460 510 660
0.6 17.6
0.30
3.3 11 12 13
Shaft groove
9.6 1.5
18.6 19.6 20.8
10.5 11.5 12.4
h11
1:1
1:2
0.75
26.5 Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
RETAINING RINGS AND CIRCLIPS
26.6
CHAPTER TWENTY-SIX
TABLE 26-5 Dimensions for external circlips—type A—light series (Contd.) All dimensions in millimeters Circlip Shaft Dia d1 14 15 16 17 18 19 20 21 22 24 25 26 28 29 30 32 34 35 36 38 40 42 45 48 50 52 55 56 58 60 62 63 65 68 70 72 75 78 80 82 85 88 90
Shaft groove Axial force
s h11
a b Max. Approx. d3
Tol. on d4 d5 d3 Expanded Min.
3.5 3.6 3.7 3.8 3:9
þ0:18 0.36
4 4.1 4.2 4.4
1.2
4.5 4.7 4.8 5 5.2 5.4 5.6
1.5
2
5.8 6 6.5 6.7 6.9 6.9 7 7.2 7.3
2.5
7.4 7.5 7.6 7.8 8 8.1 8.2 8.4
1.75
8.6 8.7 8.8 3
2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 3 3.1 3.2 3.4 3.5 3.6 3.8 3.9 4 4.2 4.4 4.5 4.7 5 5.1 5.2 5.4 5.5 5.6 5.8 6 6.2 6.3 6.5 6.6 6.8 7 7.3 7.4 7.6 7.8 8 8.2
12.9 13.8 14.7 15.7 16.5 17.5 18.5 19.5 20.5 22.2 23.2 24.2 25.9 26.6 27.9 29.6 31.5 32.2 33.2 35.2 36.5 38.5 41.5 44.5 45.8 47.8 50.8 51.8 53.9 55.8 57.8 58.8 60.8 63.5 65.5 67.5 70.5 73.5 74.5 76.5 79.5 82.5 84.5
þ0.21 0.42
þ0.25 0.25
þ0.39 0.78
þ0.46 0.92
þ0.46 0.92
22 23.2 24.4 25.6 26.8 27.8 29 30.2 31.4 33.8 34.8 36 38.4 39.6 4.1 43.4 45.8 47.2 48.2 50.6 53 56 59.4 62.8 64.8 67 70.4 71.6 73.6 75.8 78 79.2 81.6 85 87.2 89.4 92.2 96.2 98.2 101 104 107 109
1:7
2
2.5
3
d2
Tol. on m1 d2 H13
13.4 14.3 15.2 16.2 17 18 19 20 21 22.9 23.9 24.9 26.6 27.6 28.6 30.3 32.3 33 34 36 h12 37.5 39.5 42.5 45.5 47 49 52 53 55 57 59 60 62 65 67 69 72 75 76.5 h12 78.5 81.5 84.5 86.5
m2 Min.
n Min. 0.9 1.1 1.2
1.5 1.3
1.4 1.7
2.1 1.6
1.7 2.6 3
1.85
2
2.15
2.3
3.8
4.5
4.5 2.65
2.8
3.15
3.3
5.3
N 3190 3920 4809 5100 6770 7110 7550 7900 8300 9900 10400 10790 14710 15300 15890 20590 21770 26180 27070 28540 37360 39230 42170 45110 55900 58350 61780 62760 65210 67665 69625 71100 73550 76880 78940 81395 84336 88260 104930 107870 111795 116700 118660
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
lbf 720 880 1080 1150 1520 1600 1700 1780 1860 2230 2335 2425 3310 3440 3570 4630 4890 5890 6085 6415 8400 8820 9480 10140 12565 13120 13890 14110 14660 15210 15650 15985 16535 17285 17748 18300 18960 19840 23590 24250 25130 26236 26675
RETAINING RINGS AND CIRCLIPS RETAINING RINGS AND CIRCLIPS
26.7
TABLE 26-5 Dimensions for external circlips—type A—light series (Contd.) All dimensions in millimeters Circlip Shaft Dia d1 95 100 105 110 115 120 125 130 135 140 145 150 155 160 165 170 175 180 185 190 195 200 210 220 230 240 250 260 270 280 290 300
Shaft groove Axial force
s h11
a b Max. Approx. d3
4
9.4 9.6 9.9 10.1 10.6 11 11.4 11.6 11.8 12 12.2 13 13.3 13.5
8.6 9 9.3 9.6 9.8 10.2 10.4 10.7 11 11.2 11.5 11.8 12 12..2 12.5 12.9 Max 13.5 Max
14 Max
5 16 Max
89.5 94.5 98 103 108 113 118 123 128 133 138 142 146 151 155.5 160.5 165.5 170.5 175.5 180.5 185.5 190.5 198 208 218 228 238 245 255 265 275 285
d5 Tol. on d4 d3 Expanded Min. þ0.54 1.08
þ0.63 1.26
þ0.72 1.44
þ0.81 1.62
115 121 126 132 138 143 149 155 160 165 171 177 182 188 193 197 202 208 213 219 224 229 239 249 259 269 279 293 303 313 323 333
3.5
4
5
d2
Tol. on m1 d2 H13
91.5 96.5 101 106 111 116 121 126 131 136 141 145 150 155 160 165 170 175 180 185 190 h13 195 204 214 224 234 244 252 262 272 282 292
m2 Min.
n Min.
6
4.15
4.3
7.5
9 5.15
5.3
12
N
lbf
125525 132390 158865 166712 174555 181422 189265 197110 204958 212800 220650 283410 294200 304000 313810 322640 331460 341270 331460 328520 320675 312830 478560 502095 524650 518770 493270 533480 514846 498175 491505 463850
28220 29764 35716 37490 39244 40785 42550 44315 46080 47840 49606 63716 66140 69346 70550 72535 74520 76724 74520 73858 72094 70330 107590 112880 117950 116630 110900 119936 115748 112000 108250 104280
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
RETAINING RINGS AND CIRCLIPS
TABLE 26-6 Dimensions for external circlips—type A—heavy series
FIGURE 26-4
All dimensions in millimeters Circlip Shaft Dia d1 15 16 17 18 20 22 24 25 28 30 32 34 35 38 40 42 45 48 50 52 55 58 60 65 70 75 80 85 90 100
Shaft groove Axial force
s h11
a b Max. Approx. d3 4.8 5
1.5
1.75
5.1 5.5 6 6.3 6.4
2 6.5
2.5
3
4
6.6 6.7 6.8 7 7.2 7.5 7.8 8 8.2 8.5 8.8 9 9.3 9.5 9.7 9.8 10 10.2 10.5
2.4 2.5 2.6 2.7 3 3.1 3.2 3.4 3.5 4.1 4.2 4.3 4.4 4.5 4.7 5 5.1 5.2 5.4 5.6 5.8 6.3 6.6 7 7.4 7.8 8.2 9
13.8 14.7 15.7 16.5 18.5 20.5 22.2 23.2 25.9 27.9 29.6 31.5 32.2 35.2 36.5 38.5 41.5 44.5 45.8 47.8 50.8 53.8 55.8 60.8 65.5 70.5 74.5 79.5 84.5 94.5
Tol. on d4 d5 d3 Expanded Min. þ0.18 0.36
þ0.21 0.42
þ0.25 0.50 þ0.39 0.78
þ0.46 0.92
þ0.54 1.08
25.5 27.5 28.5 29.5 32.5 35.5 38 39 42.5 44.5 46.5 49 50 53 55.5 58 61.5 65 68 70 73.5 77 79 85 90.5 96 101 106.5 112 124
2
2.5
3
3.5
d2 14.3 15.2 16.2 17 19 21 22.9 23.9 26.6 28.6 30.3 32.3 33 36 37.5 39.5 42.5 45.5 47 49 52 55 57 62 67 72 76.5 81.5 86.5 96.5
Tol. on m1 d2 H13
m2 Min.
n Min. 1.1
h11
1.6
1.7
1.85
2
1.2 1.5
1.7 2.15
2.3
2.1 2.6 3
2.65
2.8 3.8
h12
3.15
3.3 4.5
4.15
4.3 5.3
N 3922 4805 5100 6765 7550 8286 9905 10395 14710 15896 20594 21770 25890 28242 37658 39226 42168 45110 55898 58350 61780 65214 67665 70550 78942 84336 104930 111795 118660 132390
lbf 882 1080 1146 1520 1698 1862 2226 2336 3310 3570 4630 4895 5820 6350 9466 8820 9480 10140 12566 13118 13990 14660 15212 16535 17744 19956 23590 25134 26676 29764
Designation: A circlip of light series in type A for shaft diameter d1 equal to 50 mm shall be designated as: Circlip, Light A 50 IS: 3075, 1965.
26.8 Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
RETAINING RINGS AND CIRCLIPS
TABLE 26-7 Dimensions for internal circlips—type B—light series
FIGURE 26-5
All dimensions in millimeters Circlip Shaft Dia d1 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 24 25 26 28 30 32 34 35 36 37 38 40 42
Bore groove Axial force
s a b h11 Max. Approx. d3 0.8
2.4 2.5 3.2 3.3 3.4 3.6 3.7 3.8
1.1 1.3 1.4 1.5 1.7 1.8 1.9 2
3.9 4.1
2.1 2.2
1
4.2
1.2
4.4 4.5 4.7 4.8
5.4 1.5 5.5 5.8 5.9
2.3 2.4 2.5 2.6 2.7 2.9 2.9 3.0 3.2 3.3 3.4 3.5 3.6 3.7 3.9 4.1
8.7 9.8 10.8 11.8 13.0 14.1 15.1 16.2 17.3 18.3 19.5 20.5 21.5 22.5 23.5 25.9 26.9 27.9 30.1 32.1 34.4 36.5 37.8 38.8 39.8 40.8 43.5 45.5
Tol. on d4 d5 d3 Compressed Min.
þ0.36 0.18
þ0.42 0.21
þ0.50 0.25
þ0.78 0.39
2.8 3.5 3.1 3.9 4.7 5.3 6 7 7.7 8.4 8.9 9.8 10.6 11.6 12.6 14.2 15 15.6 17.4 19.4 20.2 22.2 23.2 24.2 25 26 27.4 29.2
1 1.2 1.5
1.7
2
d2 8.4 9.4 10.4 11.4 12.5 13.6 14.6 15.7 16.8 17.8 19 20 21 22 23 25.2 26.2 27.2 29.4 31.4 33.7 35.7 37 38 39 40 42.5 44.5
Tol. on m1 d2 H13
m2 Min.
n Min.
0.6
0.75 0.9
H11 1.1
1.2
1.1 1.2
1.5
1.8 1.3
1.4 2.1 2.6
1.6
1.7
3
N 1255 1412 1570 1725 2353 3080 3295 4138 5050 5364 7110 7492 7894 8286 8650 11375 11769 12258 15495 16572 21575 22750 27655 28440 29224 30106 39716 41678
lbf 282 318 352 389 530 692 740 930 1135 1205 1598 1684 1775 1862 1943 2558 2645 2756 3485 3726 4850 5115 6216 6394 6570 6768 8930 9370
26.9 Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
RETAINING RINGS AND CIRCLIPS
TABLE 26-7 Dimensions for internal circlips—type B—light series (Contd.) All dimensions in millimeters Circlip Shaft Dia d1 45 47 48 50 52 55 56 58 60 62 63 65 68 70 72 75 78 80 82 85 88 90 92 95 98 100 102 105 108 110 112 115 120 125 130 135 140 145 150 155 160 165 170 175 180
Bore groove Axial force
s a b h11 Max. Approx. d3 1.75 6.2 6.4 6.5 6.7 6.8 2 6.9 7.3 7.6 7.8 2.5
4.3 4.4 4.5 4.6 4.7 5.0 5.1 5.2 5.4 5.5 5.6 5.8 6.1 6.2 6.4 6.6 6.8
8.5
8.6 3
8.7 8.8 9 9.2 9.5 10.4 10.5
11 11.2 11.4 12 4 13
7.0 7.2 7.4 7.6 7.8 8.1 8.3 8.4 8.5 8.7 9 9 9.1 9.3 9.7 10 10.2 10.5 10.7 10.9 11.2 11.4 11.6 11.8 12.2 Max 12.7 Max 13.2
48.5 50.5 51.5 54.2 56.2 59.2 60.2 62.2 64.2 66.2 67.2 69.2 72.5 74.5 76.5 79.5 82.5 85.5 87.5 90.5 93.5 95.5 97.5 100.5 103.5 105.5 108 112 115 117 119 122 127 132 137 142 147 152 158 164 169 174.5 179.5
d5 Tol. on d4 d3 Compressed Min.
þ0.92 0.46
þ1.08 0.54
þ1.08 0.54
þ1.26 0.63
31.6 33.2 34.6 36 37.6 40.4 41.4 43.2 44.4 46.4 47.4 48.8 51.4 53.4 55.4 58.4 60 62 64 66.8 69.8 71.8 73.6 76.4 79 81 82.6 85.6 88 88.2 90 93 97 102 107 112 117 122 125 130 133 138 145
184.5
149
189.5
153
2.5
3
3.5
4
d2
Tol. on m1 d2 H13
47.5 H12 49.5 50.5 53 55 58 59 61 63 65 66 68 71 73 75 78 81 83.5 85.5 88.5 91.5 93.5 95.5 H12 98.5 101.5 103.5 106 109 112 114 116 119 124 129 134 139 144 149 155 160 165 170 175 180 185
H13
m2 Min.
n Min.
1.85
2
3.8
2.15
2.3
4.5
2.65
2.8
5.3
3.15
3.3
5.3
6
4.15
4.3
N
lbf
44325 46286 47268 59526 61780 65214 66195 68646 71098 73354 74334 76688 80120 82572 84826 88260 91690 109834 112775 116699 120620 123562 126505 130428 134350 137292 159849 164750 169654 172596 175538 180440 188286 195150 202996 210940 219686 226532 226532 294198 312830 322936 332444
9965 10406 10626 13382 13766 14660 14882 15442 15984 16490 16712 17240 18012 18564 19070 19700 20614 24692 25354 26236 27118 27790 28440 29322 30205 30866 35936 37040 38142 38902 39465 40566 42330 43874 45238 47400 49165 50930 50930 66142 70330 72535 74740
341270
76724
338328
76062
26.10 Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
RETAINING RINGS AND CIRCLIPS
TABLE 26-7 Dimensions for internal circlips—type B—light series (Contd.) All dimensions in millimeters Circlip Shaft Dia d1
Axial force s a b h11 Max. Approx. d3 Max 13.7 Max 13.8 Max
185 190 195 200 210 220 230 240 250 260 270 280 290 300
Bore groove
14 Max 5
16 Max
d5 Tol. on d4 d3 Compressed Min.
d2
Tol. on m1 d2 H13
m2 Min.
n Min.
N
lbf
194.5 þ1.44
157
190
343230
77165
199.5 0.72 204.5 209.5 222 232 242 252 262 275 þ1.62 285 0.81 295 305 315
162 167 171 181 191 201 211 221 227 237 247 257 267
195 200 205 216 226 236 246 256 268 278 288 298 308
333424 323618 318715 488368 511904 538392 514846 495232 529556 507980 490330 472678 456006
74960 72755 71652 109795 115096 121040 115748 111338 119055 114205 110236 106268 102520
5
9 5.15
5.3 12
26.11 Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
RETAINING RINGS AND CIRCLIPS
TABLE 26-8 Dimensions for internal circlips—type B—heavy series
FIGURE 26-6
All dimensions in millimeters Circlip Shaft Dia d1
s h11
20 22 24 25 26 28 30 32 34 35 37 38 40 42 45 47 50 52 55 60 62 65 68 70 72 75 80 85 90 95 100
4.5 4.7 4.9 o 1.5 5 5.1 5.3 5.5 5.7 5.9 1.75 6 ) 6.2 6.3 6.5 2 6.7 7 7.2 7.5 2.5 7.7 8 8.5 8.6 8.7 3 8.8 9 9.2 9.3 9.5 9.7 4 10 10.3 10.5
Bore groove Axial force
a Max.
b Approx. d3
Tol. on d3
2.4 2.8 3
þ0.42 0.21
3:1 3.2 3.3 3.4 3.7 3.8 3.9 4.1 4.3 4.4 4.6 4.7 5 5.4 5.5 5.8 6.1 6.2 6.4 6.6 7 7.2 7.6 8.1 8.4
21.5 23.5 25.9 26.9 27.9 30.1 32.1 34.4 36.5 37.8 39.8 40.8 43.5 45.5 48.5 50.5 54.2 56.2 59.2 64.2 66.2 69.2 72.5 74.5 76.5 79.5 85.5 90.5 95.5 100.5 105.5
þ0.50 0.25
þ0.78 0.39
þ0.92 0.46
þ1.08 0.54
d5 d4 Compressed Min.
d2
10 11.6 13.2 14 14.8 16.4 18 19.6 21.2 22 23.6 24.4 26 27.6 30 31.6 34 35.6 38 42 43.8 46.6 49.4 51 52.6 55.5 60 64.6 69 73.4 78
21 23 25.2 26.2 27.2 29.4 31.4 33.7 35.7 37 39 40 42.5 44.5 47.5 49.5 53 55 58 63 65 68 71 73 75 78 83.5 88.5 93.5 98.5 103.5
2
2.5
3
3.5
Tol. on d2
m1 H13
m2 Min.
n Min. 1.5
1.6
1.7
1.8 2.1 2.6
1.85
2 3
2.15
2.3
2.65
2.8
3.8
H12
4.5 3.15
3.3
4.15
4.3
5.3
N
lbf
7895 8650 11375 11768 12259 15495 16572 21575 22750 27655 29224 30106 39716 41678 44325 46286 59526 61782 65214 71098 73354 76688 80120 82570 84926 89260 109834 116698 123564 130429 137292
1775 1945 2558 2646 2755 3484 3726 4950 5115 6218 6590 6768 8930 9370 9965 10406 13382 13890 14660 15984 16490 17240 18017 18564 19070 19942 24692 26236 27780 29322 30966
26.12 Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
RETAINING RINGS AND CIRCLIPS
TABLE 26-9 Dimensions for external circlips—type C
FIGURE 26-7
All dimensions in millimeters Circlip
Shaft Groove
Nominal size d1
d4 Expanded
a H10
s
0.8 1.2 1.5 1.9 2.3 3.2 4 5 6 7 8 9 10 12 15 19 24
2 3 4 4.5 6 7 9 11 12 14 16 18.5 20 23 29 37 44
0.58 1.01 1.28 1.61 1.94 2.70 3.34 4.11 5.26 5.84 6.52 7.63 8.32 10.45 12.61 15.92 21.88
0.2 0.3 0.4 0.5 0.6 0.6 0.7 0.7 0.7 0.9 1.0 1.1 1.2 1.3 1.5 1.75 2.0
Tol. on s
0.02
0.03
To
d3 h11
m
From
d3 1 1.4 2 2.5 3 4 5 6 7 8 9 10 11 13 16 20 25
1.4 2 2.5 3 4 5 7 8 9 11 12 14 15 18 24 31 38
0.8 1.2 1.5 1.9 2.3 3.2 4 5 6 7 8 9 10 12 15 19 24
0.24 0.34 0.44 0.54 0.64 0.64 0.74 0.74 0.74 0.94 1.05 1.15 1.25 1.35 1.55 1.80 2.05
Tol. on m 0:02
0.03
0.06
n Min 0.4 0.6 0.8 1 1 1 1.2 1.2 1.2 1.5 1.8 2 2 2.5 3.0 3.5 4.0
IS: 3075, 1965
REFERENCES 1. Lingaiah K., Machine Design Data Handbook, McGraw-Hill Publishing Company, New York, 1994. 2. Waldes Kohinoor, Inc., Long Island City, New York, U.S.A, 1985. 3. Edward Killian, Retaining Rings, Waldes Kohinoor, Inc., Long Island City, New York, U.S.A, 1985 and Robert O. Parmley, Editor-in-Chief, Mechanical Components Handbook, McGraw-Hill Publishing Company New York, 1985. 4. IS: 3075, 1965, Circlips. 5. Industrial Fasteners Handbook, 2nd Edition, Trade and Technical Press Limited, Morden Surrey, England, 1980. 6. ‘‘General Purpose Uniform Cross-section Spiral Retaining Rings’’, ANSI, B27.6, 1972 (R 1977) 7. ‘‘General Purpose Tapered and Reduced Cross-section Retaining Rings (Metric)’’, ANSI B 27.7, 1977. 8. ‘‘General Purpose Metric Tapered and Reduced Cross-section Retaining Rings’’ ANSI B27.8M, 1978. 9. Joseph E. Shigley, ‘‘Unthreaded Fasteners’’, and Shigley, J. E., and Mischke, C. R., Standard Handbook of Machine Design, McGraw-Hill Publishing Company, New York, 1996.
26.13 Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
From
26.14
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
19.050 (0.750) — 20.620 (0.812) 25.40 (1.000) 26.980 (1.062) 38.10 (1.500) 39.680 (1.562) 50.90 (2.000) 52.380 (2.062) 63.50 (2.500) 66.680 (2.625) 76.20 (3.000) 80.160 (3.156) 101.60 (4.000)
Inverted internal in grooved housings (see Fig. 26-11)
0.890 (0.035) 1.070 (0.042) 1.270 (0.050) 1.580 (0.062) 1.980 (0.078) 2.360 (0.093) 2.760 (0.109)
1.350 (0.053) 1.320 (0.052) 1.720 (0.068) 12.080 (0.082)
0.380 (0.015) 0.635 (0.025) 0.890 (0.035) 1.070 (0.042) 1.270 (0.050) 1.580 (0.062) 1.980 (0.078) 2.360 (0.093) 2.760 (0.109) 3.180 (0.125) 3.960 (0.156) 4.750 (0.187)
Nominal ring thickness, in mm (in)
7,340 11,564 18,460 33,805 56,266 95,402 120,096
51,376 57,156 98,292 132,105
1,868 4,670 8,806 20,238 33,138 60,938 101,192 149,898 209,500 412,330 612,440 851,792
N
1,650 2,600 4,150 7,600 12,650 19,200 27,000
11,550 12,850 19,950 29,700
420 1,050 1,990 4,550 7,450 13,700 22,750 33,700 47,100 92,700 137,700 191,500
lbf
From lbf
12,450 14,700 23,900 10,200
— — 14,679 3,300 26,020 5,850 43,368 9,750 68,054 15,300 97,412 21,900 152,122 34,200
55,378 65,385 106,306 45,370
2,358 530 5,694 1,280 13,344 3,000 26,919 6,050 46,926 10,550 77,840 17,500 122,705 27,600 175,696 39,500 342,496 77,000 471,042 105,900 686,326 154,300 1175,162 264,200
N
Through
Groove material having minimum tensile yield strength of 1034 MPa (150,000 lbf/in2 )
2,668 3,114 5,560 11,786 20,016 32,025 47,148
16,012 20,906 29.912 45,370
845 1,556 2,268 7,028 13,566 28,245 48,260 73,392 107,196 266,890 229,596 443,020
N
600 700 1,250 2,650 4,500 7,200 10,600
3,600 4,700 6,500 10,200
190 350 510 1,590 3,050 6,350 10,850 16,500 24,100 60,000 74,100 99,600
lbf
From
— 5,115 11,120 19,126 28,912 42.700 75,170
19,126 27,132 42,700 54,265
1,068 2,046 6,494 13,344 26,688 45,814 69,610 102,970 244,640 305,132 413,364 848.334
N
— 1,150 2,500 4,300 6,500 9,600 16,900
4,300 6,100 9,600 12,200
240 460 1,460 3,000 6,000 10,300 15,650 23,150 55,000 68,600 93,100 190,700
lbf
Through
Groove material having minimum tensile yield strength of 310 MPa (45,000 lbf/in2 )
1.27 (0.050) 1.37 (0.050) 1.95 (0.069) 2.24 (0.088) 3.18 (0.125) 3.81 (0.150) 4.42 (0.174)
1.62 (0.064) 1.62 (0.064) 1.98 (0.078) 2.23 (0.088)
0.28 (0.011) 0.58 (0.023) 0.69 (0.027) 0.89 (0.035) 1.12 (0.044) 1.63 (0.064) 1.93 (0.076) 2.23 (0.088) 2.46 (0.097) 4.26 (0.168) 4.50 (0.177) 5.13 (0.202)
From
— 1.63 (0.064) 2.06 (0.081) 3.00 (0.118) 3.66 (0,144) 4.29 (0.169) 4.42 (0.174)
1.62 (0.064) 1.62 (0.064) 1.98 (0.078) 2.23 (0.088)
0.40 (0.016) 0.68 (0.027) 0.81 (0.032) 1.07 (0.042) 1.22 (0.048) 1.63 (0.064) 1.98 (0.078) 2.33 (0.092) 4.01 (0.158) 4.26 (0.168) 4.98 (0.196) 6.36 (0.270)
Through
Radii
0.79 (0.031) 0.86 (0.034) 1.09 (0.043) 1.40 (0.055) 2.00 (0.078) 2.38 (0.094) 2.77 (0.109)
1.27 (0,050) 1.27 (0.050) 1.58 (0.062) 1.78 (0.070)
0.22 (0.0085) 0.45 (0.019) 0.53 (0.021) 0.71 (0.028) 0.89 (0.035) 1.27 (0.050) 1.55 (0.061) 1.78 (0.070) 1.98 (0.078) 3.40 (0.134) 3.61 (0.142) 4.11 (0.162)
From
— 1.02 (0.040) 1.30 (0,051) 1.88 (0.074) 2.28 (0.090) 2.69 (0.106) 2.77 (0.109)
1.27 (0.050) 1.27 (0.050) 1.58 (0.062) 1.78 (0.070)
0.33 (0.013) 0.53 (0.021) 0.64 (0.025) 0.86 (0.034) 0.97 (0.038) 1.27 (0.050) 1.58 (0.062) 1.88 (0.074) 3.20 (0.126) 3.40 (0.134) 3.61 (0.142) 4.11 (0.162)
Through
Chamfers
3,780 5,560 8,006 12,900 20,460 29,802 40,032
12,676 12,232 20,905 31,136
845 2,358 4,892 7,340 10,675 17,346 27,578 40,032 53,376 66,720 102,304 151,232
N
850 1,250 1,800 2,900 4,600 6,700 9,000
2,850 2,750 4,700 7,000
190 530 1,100 1,650 2,400 3,900 6,200 9,000 12,000 15,000 23,000 34,000
lbf
Allowable thrust load, when rings abut parts with listed corner radii or chamfers, Fr0
FIGURE 26-11 Inverted internal
Maximum allowable corner radii or chamfers of retained parts, mm (in)
FIGURE 26-10 Beveled and double-beveled internal
Allowable static thrust load, when rings abut parts with sharp cornersa
FIGURE 26-9 Bowed internal
c
a
Courtesy: # 1964, 1965, 1973, 1991 Waldes Kohinoor, Inc., Long Island City, New York, 1985. Where rings are of immediate size—or groove materials have intermediate tensile yield strengths—loads may be obtained by interpolation; b Numbers inside the brackets are in inches and numbers outside brackets are in millimeters; Approximate corner radii and chamfers limits for parts with intermediate diameters can be determined by interpolation. Corner radii and chamfers smaller than those listed will increase the thrust load proportionately, approaching but not exceeding allowable static thrust loads of rings abutting parts with sharp corners. Courtesy: Edward Killian, ‘‘Retaining Rings’’, Robert O. Parmley, Editor-in-Chief ‘‘Mechanical Components Handbook’’, McGraw-Hill Publishing Company, New York, USA, 1985.
39.630 (1.562) 142.00 (1.688) 44.450 (1.750) 50.80 (2.000) 52.390 (2.062) 64.28 (2.531) 65.080 (2.562) 71.42 (2.812)
Double beveled internal (see Fig. 26-10)
7.93 (0.312) 11.50 (0.453) 19.05 (0.750) 25.98 (1.023) 38.10 (1.500) 50.80 (2.000) 64.28 (2.531) 76.20 (3.000) 127.00 (5.000) 152.40 (6.000) 177.90 (7.000) 254.00 (10.000)
Through
Housing diameter, mm (in)b
Basic internal
Basic 6.350 (0.250) internal, 9.525 (0.375) Bowed 12.700 (0.500) internal, 19.740 (0.777) Bevelled 26.980 (1.062) internal 39.680 (1.562) in grooved 52.000 (2.047) housings 65.080 (2.562) (see Figs 26-8 77.780 (3.062) and 26-9) 133.350 (5.250) 158.750 (6.250) 184.150 (7.250)
Ring type
FIGURE 26-8
TABLE 26-10 Axially assembled tapered-section internal rings
RETAINING RINGS AND CIRCLIPS
12.700 17.475 26.980 39.675 53.975 69.850 89.900
Inverted external on grooved shafts (see Fig. 26-15)
c
3.962 (0.156) 6.994 (0.236)c 11.912 (0.469) 11.069 (0.672) 25.981 (1.023) 38.100 (1.500) 50.800 (2.000) 68.275 (2.688) 87.325 (3.438) 127.600 (5.000) 152.400 (6.000) 177.800 (7.000) 254.00 (10.000)
Through
(0.500) 17.068 (0.672) (0.688) 25.400 (1.000) (1.062) 38.100 (1.500) (1.562) 50.800 (2.000) (2.125) 66.675 (2.625) (2.750) 85.000 (3.346) (3.500) 101.600 (4.000)
3.175 (0.125) 4.775 (0.188)c 6.350 (0.250) 12.700 (0.500) 17.475 (0.688) 26.980 (1.062) 39.675 (1.562) 52.375 (2.062) 69.850 (2.750) 88.900 (3.500) 133.350 (5.250) 158.750 (6.250) 190.500 (7.500)
Basic external, Bowed external, Beveled external in grooved shafts (see Figs 26-12 to 26-14)
c
From
Ring type
Shaft diameter, mm (in)b
0.890 (0.035) 1.050 (0.042) 1.278 (0.050) 1.570 (0.062) 1.981 (0.078) 2.362 (0.093) 2.768 (0.109)
0.254 (0.010) 0.381 (0.015) 0.635 (0.025) 0.890 (0.035) 1.050 (0.042) 1.270 (0.050) 1.575 (0.062) 1.981 (0.078) 2.362 (0.093) 2.768 (0.109) 3.175 (0.125) 3.962 (0.156) 4.775 (0.188)
Nominal ring thickness, mm (in)b
FIGURE 26-16 Heavy-duty external ring
FIGURE 26-15 Inverted external rings
lbf
N
lbf
Through N
4,993 10,230 18,459 33,805 57,824 89,405 132,995
1,100 6,450 2,300 14,678 4,150 26,020 7,600 43,368 13,000 71,612 20,100 108,976 29,900 152,566
1,450 3,300 5,850 9,750 16,100 24,500 34,300
1,245 280 2,224 500 5,338 1,200 11,565 2,600 20,239 4,550 32,025 7,200 67,152 11,500
35 50 175 550 1,000 2,400 5,200 8,450 14,400 22,800 40,800 58,300 84,800
lbf
From lbf
2,090 4,670 11,120 17,792 29,580 46,704 62,272
470 1,050 2,500 4,000 6,650 10,500 14,000
245 55 534 120 2,002 450 4,225 950 10,008 2,250 22,240 5,000 35,806 8,050 61,605 13,850 97,410 21,900 165,020 37,100 239,302 53,800 323,370 72,700 666,310 149,800
N
Through
Groove material having minimum tensile yield strength of 310 MPa (45,000 lbf/in2 )
489 110 578 130 156 1,068 240 1,378 310 355 2,624 590 4,892 1,100 779 7,340 1,650 9,795 2,200 2,446 5,123 3,400 22,462 5,050 4,448 27,578 6,200 39,142 8,800 10,675 50,707 11,400 64,940 14,600 23,930 84,280 18,950 109,886 24,700 37,596 133,885 30,100 167,690 37,700 64,050 199,715 44,900 285,562 64,200 101,414 343,830 77,300 392,758 88,300 181,478 510,630 114,800 572,012 129,600 259,319 734,810 165,200 979,450 220,200 377,190
N
From
Groove material having minimum tensile yield strength of 1034 MPa (150,000 lbf/in2 )
Allowable static thrust load, when rings abut parts with sharp cornersa
FIGURE 26-13 Bowed external rings
FIGURE 26-12 Basic external rings
TABLE 26-11 Axially assembled tapered-section external retaining rings
1.295 (0.051) 1.696 (0.066) 2.336 (0.092) 2.642 (0.104) 3.378 (0.133) 4.191 (0.165) 5.131 (0.202)
0.254 (0.010) 0.355 (0.014) 0.457 (0.019) 0.864 (0.034) 1.066 (0.042) 1.524 (0.060) 2.082 (0.082) 2.480 (0.098) 2.850 (0.112) 3.29 (0.1295) 4.292 (0.169) 4.750 (0.187) 5.588 (0.220)
From
1.651 (0.065) 2.311 (0.091) 2.540 (0.100) 3.225 (0.127) 4.038 (0.159) 4.928 (0.194) 5.410 (0.213)
0.381 (0.015) 0.419 (0.0165) 0.788 (0.031) 1.016 (0.040) 1.473 (0.058) 2.006 (0.079) 2.438 (0.096) 2.832 (0.1115) 3.276 (0,129) 4.196 (0.165) 4.675 (0.184) 5.283 (0.208) 7.468 (0.294)
Through
Radii
0.813 (0.032) 1.067 (0.042) 1.473 (0.058) 1.676 (0.066) 2.134 (0.094) 2.616 (0.103) 3.226 (0.127)
0.152 (0.006) 0.216 (0.0085) 0.279 (0.011) 0.508 (0.020) 0.635 (0.025) 0.914 (0.036) 1.245 (0.049) 1.498 (0.059) 1.702 (0.067) 1.981 (0.079) 2.565 (0.101) 2.945 (0.112) 3.353 (0.132)
From
N
1.041 (0.041) 1.448 (0.057) 1.600 (0.063) 2.032 (0.090) 2.515 (0.099) 3.073 (0.121) 3.378 (0.133)
3,025 4,448 6,494 10,008 16,680 24,464 34,916
0.228 (0.009) 200 0.254 (0.010) 467 0.457 (0.018) 2,090 0.610 (0.024) 4,048 0.980 (0.035) 5,960 1.194 (0.047) 8,674 1.448 (0.057) 13,344 1.702 (0.067) 22,240 1.956 (0.077) 32,692 2.515 (0.099) 46,704 2.794 (0.110) 60,048 3.175 (0.125) 93,408 4.470 (0.176) 133,440
Through
Chamfers
Maximum allowable corner radii or chamfers of retained parts, mm (in)b
680 1,000 1,460 2,250 3,750 5,500 7,850
45 105 470 910 1,340 1,950 3,000 5,000 7,350 10,500 13,500 21,000 30,000
lbf
Allowable thrust load, when rings abut parts with listed corner radii or chamfers, Fr0
FIGURE 26-17 Miniature high-strength ring
FIGURE 26-14 Beveled external rings
RETAINING RINGS AND CIRCLIPS
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
26.15
9.525 (0.375) 12.700 (0.500) 15.975 (0.625)
Average sizes shaft diameter, in 1.270 (0.050) 1.575 (0.062) 1.575 (0.062)
3.400 (0.134) 0.509 (0.020) 5.156 (0.203) 0.635 (0.025) 8.331 (0.328) 0.889 (0.035)
0.890 (0.035) 1.050 (0.042) 1.278 (0.050) 1.981 (0.078) 2.362 (0.093) 2.709 (0.109) 3.175 (0.125)
Nominal ring thickness, mm (in)b
250 490 1,200
2,000 3,000 3,900 9,000 15,000 24,500 37,000
lbf
4,003 5,338 3,451
900 1,200 1,900
CRS/SAE on soft steel shaft
1,112 2,180 5,338
8,896 13,344 17,347 40,032 66,720 108,976 164,576
N
From lbf
330 650 1,800
3,336 5,338 7,116
750 1,200 1,600
Cabra 353 brass
1,468 2,890 8,006
— — — — 23,130 5,200 51,152 11,500 86,736 19,500 129,992 29,000 169,624 38,000
N
Through lbf
60 130 220
2,668 600 4,003 900 4,892 1,100
Cabra 110 copper
266 578 978
3,114 700 4,480 1,000 4,892 1,100 10,760 2,400 21,350 4,800 44,490 10,000 68,054 15,300
N
From lbf
1,334 2,002 2,891
1.194 (0.047) 1.778 (0.070) 1.778 (0.070) 2.200 (0.089) 2.692 (0.106) 3.250 (0.128) 3.886 (0.153)
From — — 1.956 (0.077) 2.548 (0.100) 3.251 (0.128) 3.251 (0.128) 3.886 (0.153)
Through
Radii
0.991 (0.039) 1.473 (0.058) 1.473 (0.059) 1.880 (0.074) 2.235 (0.088) 2.718 (0.107) 3.251 (0.128)
From
— — 1.625 (0.064) 2.108 (0.083) 2.718 (0.107) 2.718 (0.107) 3.251 (0.128)
Through
Chamfers
Maximum allowable corner radii or chamfers of retained parts, mm (in)b
300 450 650
Not applicable
90 0.330 (0.013) 0.355 (0.014) 0.254 (0.010) 0.279 (0.011) 200 0.534 (0.021) 0.584 (0.023) 0.432 (0.017) 0.457 (0.018) 460 0.711 (0.028) 0.965 (0.038) 0.558 (0.022) 0.762 (0.030)
Type 3003 aluminium
400 890 2,046
— — — — 8,451 1,900 17,792 4,000 36,474 8,200 55,155 12,400 75,616 17,000
N
Through
Groove material having minimum tensile yield strength of 310 MPa (45,000 lbf/in2 )
890 1,424 2,668
2,002 2,446 2,890–4,003 11,120 17,792 22,240 26,688
N
Fr0
200 320 600c
450 550 650–900 2,500 4,000 5,000 6,000
lbf
Allowable thrust load, when rings abut parts with listed corner radii or chamfers,
b
a
Courtesy: # 1964, 1965, 1973, 1991 Waldes Kohinoor, Inc., Long Island City, New York, 1985. Where rings are of immediate size—or groove materials have intermediate tensile yield strengths—loads may be obtained by interpolation. Numbers inside the brackets are in inches and numbers outside brackets are in millimeters. c Rings for shafts 3.175 mm (0.125 in) through 6.00 mm (0.236 in) diameter are made of beryllium copper only. Approximate corner radii and chamfers limits for parts with intermediate diameters can be determined by interpolation. Corner radii and chamfers smaller than those listed will increase the thrust load proportionately, approaching but not exceeding allowable static thrust loads of rings abutting parts with sharp corners. Exceptions: for shafts 14.00 mm (0.551 in), 77.125 mm (3.06 in), 89.9 mm (3.500 in), 90.00 mm (3.543 in), 92.00 mm (3.625 in), 101.6 mm (4.000 in), 114.3 mm (4.500 in), 152.4 mm (6.000 in), and 158.75 mm (6.250 in) in diameter, refer to manufacturer’s specifications for data. Note: Fr0 ¼ 3; 115 N(700 lbf) for ring used with 6.6 mm (0.260 in) in-diameter shaft. Courtesy: Edward Killian, ‘‘Retaining Rings’’, Robert O. Parmley, Editor-in-Chief ‘‘Mechanical Components Handbook’’, McGraw-Hill Publishing Company, New York, USA, 1985
Permanent shoulder on grooved shafts
Through
(0.394) — (0.473) — (0.500) 17.000 (0.669) (0.750) 25.400 (1.000) (1.062) 35.001 (1.378) (1.500) 45.000 (1.772) (1.938) 50.800 (2.000)
2.565 (0.101) 3.962 (0.156) 5.562 (0.219)
10.000 12.014 12.700 19.050 26.980 38.100 49.225
Heavy-duty external on grooved (see Fig. 26-16)
Miniature high-strength external on grooved shafts (see Fig. 26-17)
From
Ring type
mm (in)b
Shaft diameter,
Groove material having minimum tensile yield strength of 1034 MPa (150,000 lbf/in2 )
Allowable static thrust load, when rings abut parts with sharp cornersa
TABLE 26-11 Axially assembled tapered-section external retaining rings (Contd.)
RETAINING RINGS AND CIRCLIPS
26.16
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
3.175 (0.125) 5.562 (0.219) 12.700 (0.500) 17.475 (0.688) 28.575 (1.125) 44.450 (1.750)
11.912 16.764 24.994 39.624 50.012 69.850 85.725
3.175 (0.125) 3.556 (0.140) 6.350 (0.250) 9.525 (0.375) 12.700 (0.500)
Crescent-shaped on grooved shafts (see Fig. 26-18)
Two-part interlocking on grooved shafts (see Fig. 26-19)
Bowed E-ring on grooved shafts (see Fig. 26-20)
(0.469) (0.669) (0.994) (1.562) (1.969) (2.750) (3.375)
From
Ring type
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
— 5.562 (0.219) 7.925 (0.312) 11.125 (0.438) 15.875 (0.625)
15.815 (0.625) 22.225 (0.875) 38.100 (1.500) 47.625 (1.975) 66.675 (2.625) 82.550 (3.250) —
4.775 (0.188) 11.125 (0.438) 15.875 (0.625) 25.400 (1.000) 38.100 (1.500) 50.800 (2.000)
Through
Shaft diameter, mm (in)b
FIGURE 26-21 E-ring
FIGURE 26-18 Crescent shaped ring
0.254 (0.010) 0.391 (0.015) 0.635 (0.025) 0.890 (0.035) 1.066 (0.042)
0.890 (0.035) 1.066 (0.042) 1.270 (0.050) 1.575 (0.062) 1.981 (0.078) 2.362 (0.093) 2.768 (0.109)
0.381 (0.015) 0.635 (0.025) 0.889 (0.035) 1.066 (0.042) 1.270 (0.050) 1.575 (0.062)
Nominal ring thickness, mm (in)b
TABLE 26-12 Radially assembled external retaining rings
191 334 1,134 3,069 4,937
8,896 14,900 26,020 52,264 81,176 134,232 193,488
378 1,156 3,692 7,562 14,768 23,600
N 578 2,312 4,582 11,031 19,660 32,470
N
43 75 255 690 1,110
512 1,446 3,692 6,316
—
— 115 325 830 1,420
2,650 4,400 9,950 14,100 24,300 35,750 —
130 520 1,030 2,480 4,420 7,300
lbf
Through
2,000 11,797 3,350 19,571 5,850 39,910 11,750 62,716 19,250 108,086 30,200 159,016 43,500 —
85 260 830 1,700 3,320 6,430
lbf
From
Groove material having minimum tensile yield strength of sy , 1034 MPa (150,000 lbf/in2 )
200 266 512 1,401 2,668
2,759 5,560 12,999 25,131 40,032 66,720 91,628
200 445 2,002 3,558 9,786 23,574
N
45 60 115 315 600
620 1,250 2,900 5,650 9,000 15,000 20,600
45 100 450 800 2,200 5,300
lbf
From
— 3,358 1,001 2,135 4,670
3,692 7,116 19,794 30,246 53,376 79,174 —
311 1,556 3,114 8,006 17,792 31,136
N
75 225 480 1,050
—
830 1,600 4,450 6,800 12,000 17,800 —
70 350 700 1,800 4,000 7,000
lbf
Through
Groove material having minimum tensile yield strength of sy , 310 MPa (45,000 lbf/in2 )
Allowable static thrust load, when rings abut parts with sharp cornersa
FIGURE 26-22 Reinforced E-ring
FIGURE 26-19 Two-part interlocking ring
1.016 (0.040) 1.524 (0.060) 1.524 (0.060) 1.650 (0.065) 2.032 (0.080)
1.321 (0.052) 1.650 (0.065) 2.184 (0.086) 2.540 (0.100) 2.890 (0.114) 3.632 (0.143) 4.622 (0.182)
0.355 (0.014) 0.583 (0.021) 0.762 (0.030) 0.864 (0.034) 1.325 (0.052) 2.056 (0.081)
From
— 1.524 (0.060) 1.524 (0.060) 1.650 (0.065) 2.032 (0.080)
1.321 (0.052) 1.650 (0.065) 2.194 (0.086) 2.540 (0.100) 2.895 (0.114) 3.632 (0.143) 4.622 (0.182)
0.533 (0.021) 0.736 (0.029) 0.838 (0.033) 1.168 (0.046) 1.752 (0.069) 2.311 (0.091)
Through
Radii
0.762 (0.030) 1.143 (0.045) 1.143 (0.045) 1.270 (0.050) 1.524 (0.060)
1.016 (0.040) 1.270 (0.050) 1.676 (0.066) 1.956 (0.077) 2.235 (0.088) 2.794 (0.110) 3.556 (0.140)
0.280 (0.011) 0.406 (0.016) 0.584 (0.023) 0.660 (0.026) 1.016 (0.040) 1.575 (0.062)
From
— 1.143 (0.045) 1.143 (0.045) 1.270 (0.050) 1.524 (0.060)
1.016 (0.040) 1.270 (0.050) 1.676 (0.066) 1.956 (0.077) 2.235 (0.088) 2.794 (0.110) —
0.406 (0.016) 0.558 (0.022) 0.635 (0.025) 0.899 (0.035) 1.346 (0.053) 1.778 (0.070)
Through
Chamfers
Maximum allowable corner radii or chamfers of retained parts, mm (in)b
FIGURE 26-23 Locking-prong ring
FIGURE 26.20 Bowed E-ring
lbf
Same values as sharp corner abutment
610 880 1,250 1,900 3,050 4,300 5,950
Same values as sharp corner abutment
2,713 3,914 5,560 8,451 13,566 19,126 26,466
N
Allowable thrust load, when rings abut parts with listed corner radii or chamfers, Fr0
RETAINING RINGS AND CIRCLIPS
26.17
2.336 (0.092) 4.775 (0.188) 9.525 (0.375) 4.775 (0.188) 7.925 (0.312) 11.125 (0.439) 19.050 (0.750) 25.400 (1.000) 4.775 (0.188) 9.525 (0.375) 12.700 (0.500) 19.050 (0.750)
Locking-prong ring on grooved shafts (see Fig. 26-23)
3.962 (0.156) 7.925 (0.312) 11.125 (0.438) 6.350 (0.250) 9.525 (0.375) 15.875 (0.625) — — 7.925 (0.312) 11.125 (0.438) 15.875 (0.625) 25.400 (1.000)
3.175 (0.125) 6.350 (0.250) 11.125 (0.438) 14.275 (0.562)
0.254 (0.010) 0.381 (0.015) 0.508 (0.020) 0.890 (0.035) 1.066 (0.042) 1.270 (0.050) 1.575 (0.062) 1.981 (0.078) 0.635 (0.025) 0.890 (0.035) 1.066 (0.042) 1.270 (0.050)
0.381 (0.015) 0.635 (0.025) 0.890 (0.035) 1.066 (0.042)
0.254 (0.010) 0.381 (0.015) 0.635 (0.025) 0.990 (0.035) 1.066 (0.042) 1.270 (0.050) 1.575 (0.062)
1.270 (0.050) 1.575 (0.062)
Nominal ring thickness, mm (in)b 2,000 3,450 13 45 170 690 1,110 2,000 3,450 50 150 420 820
80 200 550 600 1,300 2,200 4,600 7,500 430 1,300 2,100 3,700
58 200 756 3,069 4,937 8,896 15,346 222 667 1,368 3,647
356 890 2,446 2,668 5,782 9,786 20,460 33,360 1,912 5,782 9,340 16,458
lbf
8,896 15,346
N
From
3,470 8,228 11,120 21,350
534 1,556 3,114 4,003 6,894 13,344
334 1,120 2,669 4,136
89 334 1,446 3,692 6,316 11,787 18,236
11,787 18,236
N
120 350 700 900 1,550 3,000 — — 790 1,850 2,500 4,800
75 250 600 930
20 75 325 830 1,420 2,650 4,100
2,650 4,100
lbf
Through
58 178 600 2,046
27 89 266 1,401 2,669 6,672 6,672
6,672 6,672
156 622 2,002 579 1,120 1,780 7,116 11,565 579 1,334 1,780 7,116
N
35 140 450 130 250 400 1,600 2,600 130 300 400 1,600
13 40 135 460
6 20 60 315 600 1,500 1,500
1,500 1,500
lbf
From
445 1,334 2,668 890 1,334 18,236 — — 1,120 1,780 2,668 11,565
111 334 1,268 4,805
31 200 1,001 2,135 4,670 8,451 10,452
8,451 10,452
N
From
100 300 600 200 300 1,100 — — 250 400 600 2,600
25 75 285 480
7 45 225 480 1,050 1,900 2,350 (0.045) (0.065) (0.070) (0.090)
1.270 (0.050) 1.650 (0.065) 2.032 (0.080) 2.160 (0.085) 2.286 (0.090) 1.270 (0.050) 1.650 (0.065) 2.032 (0.080) 2.286 (0.090)
1.143 1.650 1.778 2.032
0.381 (0.015) 1.016 (0.040) 1.524 (0.060) 1.650 (0.065) 2.032 (0.080) 2.160 (0.085) 2.286 (0.090)
(0.045) (0.065) (0.070) (0.080)
1.270 (0.050) 1.650 (0.065) 2.032 (0.080) — — 1.270 (0.050) 1.650 (0.065) 2.032 (0.080) 2.286 (0.090)
1.143 1.650 1.778 2.032
0.762 (0.030) 1.016 (0.040) 1.524 (0.060) 1.650 (0.065) 2.032 (0.080) 1.956 (0.077) 2.296 (0.090)
1.956 (0.077) 2.296 (0.090)
Through
Radii
1,900 2.160 (0.085) 2,350 2.286 (0.090)
lbf
Through
(0.033) (0.050) (0.055) (0.060)
0.939 (0.033) 1.270 (0.050) 1.396 (0.055) 1.524 (0.060)
0.508 (0.020) 0.765 (0.030) 1.143 (0.045) 1.270 (0.050) 1.524 (0.060) 1.448 (0.057) 1.778 (0.070)
1.448 (0.057) 1.778 (0.070)
Through
1.066 (0.040) 1.270 (0.050) 1.524 (0.060) 1.651 (0.065) 1.778 (0.070) 1.016 (0.040) 1.270 (0.050) 1.524 (0.060) 1.779 (0.070)
1.066 (0.040) 1.270 (0.050) 1.524 (0.060) — — 1.016 (0.040) 1.270 (0.050) 1.524 (0.060) 1.778 (0.070)
Not applicable
0.835 1.270 1.396 1.524
0.254 (0.010) 0.762 (0.030) 1.143 (0.045) 1.270 (0.050) 1.524 (0.060) 1.651 (0.065) 1.778 (0.070)
1.651 (0.065) 1.778 (0.070)
From
Chamfers
Maximum allowable corner radii or chamfers of retained parts, mm (in)b
lbf
250 350 600 1,000 1,800 150 300 400 1,000
Same values as sharp corner abutment
Same values as sharp corner abutment
1112 1556 2669 4448 8006 667 1334 1780 4448
N
Fr0
Allowable thrust load, when rings abut parts with listed corner radii or chamfers,
b
a
Courtesy: # 1964, 1965, 1973, 1991 Waldes Kohinoor, Inc., Long Island City, New York, 1985. Where rings are of immediate size—or groove materials have intermediate tensile yield strengths—loads may be obtained by interpolation. Numbers inside the brackets are in inches and numbers outside brackets are in millimeters. Approximate corner radii and chamfers limits for parts with intermediate diameters can be determined by interpolation. Corner radii and chamfers smaller than those listed will increase the thrust load proportionately, approaching but not exceeding allowable static thrust loads of rings abutting parts with sharp corners. Exeptions: for shafts 14.00 mm (0.551 in), 77.125 mm (3.06 in), 89.9 mm (3.500 in), 90.00 mm (3.543 in), 92.00 mm (3.625 in), 101.6 mm (4.000 in), 114.3 mm (4.500 in), 152.4 mm (6.000 in), and 158.75 mm (6.250 in) in diameter, refer to manufacturer’s specifications for data. Rings for shafts 3.175 mm (0.125 in) through 6.00 mm (0.236 in) diameter are made of beryllium copper only. Courtesy: Edward Killian, ‘‘Retaining Rings’’, Robert O. Parmley, Editor-in-Chief ‘‘Mechanical Components Handbook’’, McGraw-Hill Publishing Company, New York, USA, 1985
2.388 (0.094) 3.962 (0.156) 7.925 (0.312) 12.700 (0.500)
Reinforced E-ring on grooved shafts (see Fig. 26-22)
1.575 (0.062) 3.556 (0.140) 7.925 (0.312) 11.125 (0.439) 15.975 (0.625) 25.400 (1.000) 34.925 (1.375)
25.400 (1.000) 34.925 (1.375)
19.050 (0.750) 30.175 (1.189)
1.016 (0.040) 2.388 (0.094) 3.556 (0.140) 9.525 (0.375) 12.700 (0.500) 19.050 (0.750) 30.175 (1.189)
Through
From
E-ring on grooved shafts (see Fig. 26-21)
Ring type
mm (in)b
Shaft diameter,
Groove material having minimum tensile yield strength of sy , 310 MPa (45,000 lbf/in2 )
Allowable static thrust load, when rings abut parts with sharp cornersa Groove material having minimum tensile yield strength of sy , 1034 MPa (150,000 lbf/in2 )
TABLE 26-12 Radially assembled external retaining rings (Contd.)
RETAINING RINGS AND CIRCLIPS
26.18
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
RETAINING RINGS AND CIRCLIPS RETAINING RINGS AND CIRCLIPS
26.19
TABLE 26-13 Radially assembled external retaining rings
FIGURE 26-26 Internal self-locking ring
FIGURE 26-25 External self-locking ring
FIGURE 26-24 Reinforced external self-locking ring
FIGURE 26-27 Triangular self-locking ring
Allowable static thrust load, when rings abut parts with sharp cornersa
Housing diameter or shaft diameter From
Through
Nominal ring thickness
Groove material having minimum tensile yield strength of 1034 MPa (150,000 lbf/in2 ) From
Through
Ring type
mm
in
mm
in
mm
in
N
lbf
N
lbf
Reinforced self-locking external on shafts, no grooves
2.388 2.388 11.125
0.094 0.094 0.438
9.525 9.525 25.400
0.375 0.375 1.000
0.254 0.380 0.380
0.010 0.015 0.015
— — —
— — —
— — —
— — —
Self-locking external on shafts, no grooves
2.388 11.125
0.094 0.438
9.525 25.400
0.375 1.000
0.254 0.380
0.010b 0.015
— —
— —
— —
Self-locking internal in housing, no grooves
7.925 19.050
0.312 0.750
15.875 50.300
0.625 2.000c
0.254 0.380
0.010 0.015
— —
— —
Triangular retainer on shafts, no grooves
1.575 1.575 4.388 4.388 4.775 9.525 11.231
0.062 0.062 0.094 0.094 0.188 0.375 0.437
— — 3.962 3.962 7.925 —
— — 0.156 0.156 0.312 —
d
d
0.254 0.380 0.254 0.380 0.380 0.509 0.6351
0.010 0.015 0.010 0.015 0.015 0.020 0.025
— — — — — — —
0.381 0.508 0.508 0.635
0.015 0.020 0.020 0.025
622 890 978 978
Triangular nut on threaded, parts
4.761 4.761 6.35–20 6.35–20
6/32 6/32 1/4–20 1/4–20
7.939 7.938 6.35–28 6.35–28
10/32 10/32 1/4–28 1/4–28
Groove material having minimum tensile yield strength of 310 MPa (45,000 lbf/in2 ) From N
N
lbf
120 27 200 45 534 126
289 534 622
65 120 140
— —
58 222
13 50
200 289
45 65
— —
— —
356 334
80 75
200 245
45 55
— — — — — — —
— — — — — — —
— — — — — — —
111 25 178 40 266 60 256 80 622 140 1112 250 1200 270
— — 334 534 890 — —
— — 75 120 200 — —
140 200 220 220
756 978 — —
170 220 — —
645 845 — —
145 190 — —
622 800 978 978
lbf
Through
140 180 220 220
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
RETAINING RINGS AND CIRCLIPS
26.20
CHAPTER TWENTY-SIX
TABLE 26-13 Radially assembled external retaining rings (Contd.)
FIGURE 26-28 Radial clamp ring Allowable static thrust loade
Shaft diameter From mm
Shaft without groove
Through
in
mm
in
Nominal ring thickness mm
in
From N
lbf
Shaft with groove, 310 MPa (45,000 lbf/in2 )
Through N
lbf
From
Through
N
lbf
N
lbf
Tapered-section self-locking clamp ring on shafts with or without grooves Inch type
2.388 4.750 7.925 11.100 15.875
0.094 0.187 0.312 0.437 0.625
3.962 6.350 9.525 12.700 19.050
0.156 0.250 0.375 0.500 0.750
0.635 0.890 1.066 1.270 1.575
0.025 0.035 0.042 0.050 0.062
45 111 200 266 378
10 25 45 60 95
98 156 266 289 400
22 35 60 65 90
— — 489 1290 2535
— — 110 290 570
— 400 800 1735 3780
— 90 180 390 850
Millimeter type
2.006 5.004 5.994 8.992 13.538
0.079 0.197 0.236 0.354 0.533
2.947 — 7.010 10.005 14.986
0.118 — 0.276 0.394 0.590
0.610 0.913 0.990 1.194 1.500
0.024 0.032 0.039 0.047 0.059
45 133 155 222 334
10 30 35 50 75
66 — 178 245 356
15 — 40 55 80
— — 178 40 311 70 579 130 1512 340
— — 445 756 1645
— — 100 170 370
Inch type
2.362 4.750 7.925
0.093 0.187 0.312
3.962 6.350 9.525
0.156 0.250 0.375
0.635 0.889 1.066
0.025 0.035 0.042
36 80 142
8 18 32
58 98 187
13 22 42
— — —
— — —
— — —
— — —
Millimeter type
1.981 5.004 7.925
0.078 0.197 0.312
3.962 7.900 9.962
0.156 0.276 0.393
0.660 0.889 1.092
0.024 0.035 0.043
30 85 147
7 19 33
53 102 218
12 23 49
— — —
— — —
— — —
— — —
Radially applied self-locking clamp rings on shafts without grooves
Courtesy: # 1964, 1965, 1973, 1991 Waldes Kohinoor, Inc., Long Island City, New York, 1985. a Where rings are of immediate size—or groove materials have intermediate tensile yield strengths—loads may be obtained by interpolation. b Ring for shaft 6.096 mm (0.240 in) diameter is available only in 0.380 mm (0.015 in) thickness: allowable thrust load ¼ 178 N (40 lbf). c Ring for housing 34.925 mm (1.375 in) diameter is available only as reinforced ring having an allowable thrust load ¼ 667 N (150 lbf). d Round and hexagonal shafts. e Grooved shafts are recommended only for rings used on shafts 0.197 in (5.0 mm) or larger. Courtesy: Edward Killian, ‘‘Retaining Rings’’, Robert O. Parmley, Editor-in-Chief ‘‘Mechanical Components Handbook’’, McGraw-Hill Publishing Company, New York, USA, 1985
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
Source: MACHINE DESIGN DATABOOK
CHAPTER
27 APPLIED ELASTICITY SYMBOLS
c C1 , C2
inner radius of cylinder, m (in) inner radius of rotating cylinder, m (in) inner radius of circular plate, m (in) cross-sectional area, m2 (in2 ) outer radius of inner cylinder, m (in) inside radius of outer cylinder, m (in) outer radius of rotating cylinder, m (in) outer radius of circular plate, m (in) outside radius of outer cylinder, m (in) constants of integration, m (in)
D¼
flexural rigidity of a plate or shell, N/m (lbf/in)
a A b
Eh3 12ð1 2 Þ
E G g h I J L l, m, n M Mb Mt Mx , My Mxy
Mn , Mnt Ms , M , Mr n n Nx , Ny Nxy
modulus of elasticity, GPa modulus of rigidity, GPa acceleration due to gravity, 981 cm/s2 thickness of plate, m (in) moment of inertia, cm4 (in4 ) polar moment of inertia, cm4 (in4 ) length, m (in or ft) direction cosines of the outward normal moment (also with subscripts) N m (lbf ft) bending moment, N m (lbf ft) torsional moment, m N (ft lbf ) bending moments per unit length of sections of a plate perpendicular to x and y axes, respectively, N m (lbf ft) twisting moment per unit length of sections of a plate perpendicular to x-axis, N m (lbf ft) bending and twisting moments per unit length of sections of a plate perpendicular to n-direction, N m (lbf ft) radial, tangential and twisting moments in polar co-ordinates normal direction a number, usually but not always, integer normal force per unit length of sections of a plate perpendicular to x and y axis, respectively, N (lbf) shearing force in the direction of y-axes per unit length of section of a plate perpendicular to x axis, N/m (lbf/ft)
27.1 Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
APPLIED ELASTICITY
27.2
CHAPTER TWENTY-SEVEN
Nr , N0 p q Qx , Qy Nr , N r rx , ry r, t T Mtxy u, v, w V W w x, y, z X, Y, Z Z ! x , y , z r , r , , z xy , yz , zx " "x , "y , "z "r , " xy , yz , zx r , z r , z , rz
normal forces per unit length in radial and tangential directions in polar co-ordinates, N (lbf) pressure, MPa (psi) load per unit length, kN/m (lbf/in) shearing forces parallel to z-axis per unit length of sections of a plate perpendicular to x and y axis, N/m (lbf/in) radial and tangential shearing forces, N (lbf ) radius, m (in) radii of curvature of the middle surface of a plate in xz and yz planes polar co-ordinates time, s temperature, 8C tension of a membrane, kN/m (lbf/in) twist of surface components or displacements, m (in) strains energy weight, N (lbf ) displacement, m (in) displacement of a plate in the normal direction, m (in) deflection, m (in) rectangular co-ordinates, m (in) body forces in x; y; z directions, N (lbf ) section modulus in bending, cm3 (in3 ) density, kN/m3 (lbf/in3 ) angular speed, rad/s stress, MPa (psi) normal components of stress parallel to x, y, and z axis, MPa (psi) radial and tangential stress, MPa (psi) normal stress components in cylindrical co-ordinates, MPa (psi) shearing stress, MPa (psi) shearing stress components in rectangular co-ordinates, MPa (psi) unit elongation, m/m (in/in) unit elongation in x, y, and z direction, m/m (in/in) radial and tangential unit elongation in polar co-ordinates shearing strain shearing strain components in rectangular co-ordinate shearing strain in polar co-ordinate shearing stress components in cylindrical co-ordinates, MPa (psi) Poisson’s ratio stress function angular deflection, deg e ¼ "x þ "y þ "z ¼ "r þ " þ "z e ¼ "x þ "y þ "z ¼ volume expansion shearing components in cylindrical co-ordinates
Note: and with subscript s designates strength properties of material used in the design which will be used and observed throughout this Machine Design Data Handbook
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
APPLIED ELASTICITY APPLIED ELASTICITY
Particular
27.3
Formula
STRESS AT A POINT (Fig. 27-1) The stress at a point due to force F acting normal to an area dA (Fig. 27-1b)
Stress ¼ ¼ lim
A ! 0
F A
ð27-1Þ
where F ¼ force acting normal to the area A A ¼ an infinitesimal area of the body under the action of F For stresses acting on the part II of solid body cut out from main body in x, y and z directions, Fig. 27-1b
x ¼ lim
Fx Ax
ð27-2aÞ
xy ¼ lim
Fy Ax
ð27-2bÞ
xz ¼ lim
Fz Ax
ð27-2cÞ
Ax ! 0
Ax ! 0
Ax ! 0
Similarly the stress components in xy and xz planes can be written and the nine stress components at the point O in case of solid body made of homogeneous and isotropic material
x yz
xy y
xz yz
zx
zy
z
ð27-3Þ
Fig. 27-1c shows the stresses acting on the faces of a small cube element cut out from the solid body.
F4
F5
a
F1
Part I
Part II
∆Fy ∆A a N ∆F o
F8
a F6
y
F2
F3
F7
(a) A solid body subject to action of external forces
z
∆Fz a
y
F2
F3
F1
Part II ∆Fx
x F8
F7 (b) An infineticimal area ∆A of Part II of a solid body under the action of force ∆F at 0
σy
τyz τzy dy σ z
o τzx
τyx τxy
τxz
σx
x
dz
dx z (c) Stresses acting on the faces of a small cube element cut out from the solid body
FIGURE 27-1
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
APPLIED ELASTICITY
27.4
CHAPTER TWENTY-SEVEN
Particular
Formula
Summing moments about x, y and z axes, it can be proved that the cross shears are equal
xy ¼ yx ;
yz ¼ zy ;
All nine components of stresses can be expressed by a single equation
ij ¼ lim
Fj Ai
Ai ! 0
zx ¼ xz
ð27-4Þ
ð27-5Þ
where i ¼ 1; 2; 3 and j ¼ 1; 2; 3 The FNx , FNy , and FNz unknown components of the resultant stress on the plane KLM of elemental tetrahedron passing through point O (Fig. 27-2)
FNx ¼ x cos N; x þ xy cos N; y þ xz cos N; z FNy ¼ yx cos N; x þ y cos N; y þ yz cos N; z FNz ¼ zx cos N; x þ zy cos N; y þ z cos N; z
The unknown components of resultant stress FNx , FNy and FNz in terms of direction cosines l, m and n (Fig. 27-4) y
τxy
Fz
FNx ¼ x l þ xy m þ zx n FNy ¼ yz l þ y m þ yx n FNz ¼ zx l þ zy m þ z n
Surface area KLM = A TN N (normal to KLM) FNy τzx σz τxz Fx FNz ho’ τzy FNx K x o τyz Fy
l ¼ cos ¼ cos N; x; m ¼ cos ¼ cos N; y, n ¼ cos ¼ cos N; z, l s þ m2 þ n2 ¼ ðlÞ 02 þ ðm0 Þ2 þ ðn0 Þ2 ¼ 1
τyx
y
σy
L
TN = stress vector in N direction Fbx, Fby, Fbz = Body forces in x, y and z - direction
z
σy+
FIGURE 27-2 The state of stress at O of an elemental tetrahedron.
τyz+
y
σx
M Tx’ τx’y’
σz
τxz τzx
L
γ
τxy o τyx z’
β o’ h α τzy
τyz
N
∂τyz ∂y
dy τ zx
τxz
∂τzy
∂σy dy ∂y ∂τyx
τyx+
dy σz ∂τ τxy+ xy dx
∂y
∂x
τzy
∂τxzσx + τzy+ ∂z dz + τ ∂τzy xz ∂x dx τxy o dy τzx+ ∂z dz ∂σz σz+ ∂z dz τ τyz dz yx σy
y’
σx
ð27-7Þ
where the direct cosines are
M
σx
ð27-6Þ
x’
σx’
∂σx ∂x
dx x
dx K
x
τz’x’ σ y
z
FIGURE 27-3 Small cube element removed from a solid body showing stresses acting on all faces of the body in x, y and z directions.
z
FIGURE 27-4 Tx0 , resolved into x0 , x0 y0 and x0 z0 stress components.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
APPLIED ELASTICITY
27.5
APPLIED ELASTICITY
Particular
Formula
cos ¼ l ¼ angle between x axis and Normal N cos ¼ m ¼ angle between y axis and Normal N
The resultant stress FN on the plane KLM
cos ¼ n ¼ angle between z axis and Normal N qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2 2 2 FN ¼ FNx ð27-8Þ þ FNy þ FNz
The normal stress which acts on the plane under consideration
N ¼ FNx cos þ FNy cos þ FNz cos
The shear stress which acts on the plane under consideration
N ¼
qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi FN2 2n
ð27-8aÞ ð27-8bÞ
Equations (27-1), (27-2) and (27-7) to (27-8) can be expressed in terms of resultant stress vector as follows (Fig. 27-2) The resultant stress vector at a point
FN ð27-9aÞ A where TN coincides with the line of action of the resultant force Fn
TN ¼ lim
A ! 0
The resultant stress vector components in x, y and z directions
The resultant stress vector
TNx ¼ x l þ xy m þ xz n
ð27-9bÞ
TNy ¼ xy l þ y m þ zy n
ð27-9cÞ
TNz ¼ zx l þ zy m þ z n
ð27-9dÞ
TN ¼
qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2 þ T2 þ T2 TNx Ny Nz
ð27-9eÞ
where the direction cosines are cosðTN ; xÞ ¼ TNx =jTN j,
cosðTN ; yÞ ¼ TNy =jTN j,
cosðTN ; zÞ ¼ TNz =jTN j The normal stress which acts on the plane under consideration
N ¼ jTN j cosðTN ; NÞ
ð27-9f Þ
N ¼ TNx cosðN; xÞ þ TNy cosðN; yÞ þ TNz cosðN; zÞ ð27-9gÞ The shear stress which acts on the plane under consideration
N ¼ jTN j sinðTN ; NÞ
ð27-10aÞ
qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi TN2 2N
ð27-10bÞ
N ¼ The angle between the resultant stress vector TN and the normal to the plane N
cosðTN ; NÞ ¼ cosðTN ; xÞ cosðN; xÞ þ cosðTN ; yÞ cosðN; yÞ þ cosðTN ; zÞ cosðN; zÞ
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð27-10cÞ
APPLIED ELASTICITY
27.6
CHAPTER TWENTY-SEVEN
Particular
Formula
EQUATIONS OF EQUILIBRIUM The equations of equilibrium in Cartesian coordinates which includes body forces in three dimensions (Fig. 27-3)
@x @xy @xz þ þ þ Fbx ¼ 0 @x @y @z
ð27-11aÞ
@y @yz @yx þ þ þ Fby ¼ 0 @y @z @x
ð27-11bÞ
@z @zx @zy þ þ þ Fbz ¼ 0 @z @x @y
ð27-11cÞ
where Fbx , Fby and Fbz are body forces in x, y and z directions Stress equations of equilibrium in two dimensions
@x @xy þ þ Fbx ¼ 0 @x @y
ð27-11dÞ
@y @yx þ þ Fby ¼ 0 @y @x
ð27-11eÞ
TN ¼ iTNx þ jTNy þ kTNz
ð27-12aÞ
TN 0 ¼ iTN 0 x þ jTN 0 y þ kTN 0 z
ð27-12bÞ
N ¼ il þ jm þ kn
ð27-12cÞ
TRANSFORMATION OF STRESS The vector form of equations for resultant-stress vectors TN and TN0 for two different planes and the outer normals N and N 0 in two different planes
0
0
0
0
N ¼ il þ jm þ kn
ð27-12dÞ
where i, j and k are unit vectors in x, y and z directions, respectively The projections of the resultant-stress vector TN onto the outer normals N and N 0
Substituting Eqs. (27-9b), (27-9c), (27-9d) and (27-9e) in Eqs. (27-13), equations for TN , N and TN , N 0
TN N ¼ TNx l þ TNy m þ TNz n
ð27-13aÞ
TN N 0 ¼ TNx l 0 þ TNy m0 þ TNz n0
ð27-13bÞ
TN N ¼ x l 2 þ y m2 þ z n2 þ 2xy lm þ 2yz mn þ 2zx nl 0
0
0
ð27-14aÞ 0
0
TN N ¼ x ll þ y mm þ z nn þ xy ½lm þ ml 0 þ yz ½mn0 þ nm0 þ zx ½nl 0 þ ln0 The relation between TN , N 0 and TN0 , N
TN0 N ¼ TN N 0
By coinciding outer normal N with x0 , N with y0 , and N with z0 individually respectively and using Eqs. (27-14a) to (27-14b), x0 , y0 and z0 can be obtained (Fig. 27-4)
x0 ¼ Tx0 x0 ¼ x cos2 ðx0 ; xÞ þ y cos2 ðx0 ; yÞ
ð27-14bÞ ð27-15Þ
þ z cos2 ðx0 ; zÞ þ 2xy cosðx0 ; xÞ cosðx0 ; yÞ þ 2yz cosðx0 ; yÞ cosðx0 ; zÞ þ 2zx cosðx0 ; zÞ cosðx0 ; xÞ
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð27-15aÞ
APPLIED ELASTICITY APPLIED ELASTICITY
Particular
27.7
Formula
y0 ¼ Ty0 y 0 ¼ y cos2 ðy0 ; yÞ þ z cos2 ðy0 ; zÞ þ x cos2 ðy0 ; xÞ þ 2yz cosðy0 ; yÞ cosðy0 ; zÞ þ 2zx cosðy0 ; zÞ cosðz0 ; xÞ þ 2xy cosðy0 ; xÞ cosðy0 ; yÞ
ð27-15bÞ
z0 ¼ Tz0 z0 ¼ z cos2 ðz0 ; zÞ þ x cos2 ðz0 ; xÞ þ y cos2 ðz0 ; yÞ þ 2zx cosðz0 ; zÞ cosðz0 ; xÞ þ 2xy cosðz0 ; xÞ cosðz0 ; yÞ þ 2yz cosðz0 ; yÞ cosðz0 ; zÞ By selecting a plane having an outer normal N coincident with the x0 and a second plane having an outer normal N 0 coincident with the y0 and utilizing Eq. (27-14b) which was developed for determining the magnitude of the projection of a resultant stress vector on to an arbitrary normal can be used to determine x0 y0 . Following this procedure and by selecting N and N 0 coincident with the y0 and z0 , and z0 and x0 axes, the expression for y0 z0 and z0 x0 can be obtained. The expressions for x0 y0 , y0 z0 and z0 x0 are
ð27-15cÞ
x0 y0 ¼ Tx0 y0 ¼ x cosðx0 ; xÞ cosðy0 ; xÞ þ y cosðx0 ; yÞ cosðy0 ; yÞ þ z cosðx0 ; zÞ cosðy0 ; zÞ þ xy ½cosðx0 ; xÞ cosðy0 ; yÞ þ cosðx0 ; yÞ cosðy0 ; xÞ þ yz ½cosðx0 ; yÞ cosðy0 ; zÞ þ cosðx0 ; zÞ cosðy0 ; yÞ þ zx ½cosðx0 ; zÞ cosðy0 ; xÞ þ cosðx0 ; xÞ cosðy0 ; zÞ ð27-16aÞ y0 z0 ¼ Ty0 z0 ¼ y cosðy0 ; yÞ cosðz0 ; yÞ þ z cosðy0 ; zÞ cosðz0 ; zÞ þ x cosðy0 ; xÞ cosðz0 ; xÞ þ yz ½cosðy0 ; yÞ cosðz0 ; zÞ þ cosðy0 ; zÞ cosðz0 ; yÞ þ zx ½cosðy0 ; zÞ cosðz0 ; xÞ þ cosðy0 ; xÞ cosðz0 ; zÞ þ xy ½cosðy0 ; xÞ cosðz0 ; yÞ þ cosðy0 ; yÞ cosðz0 ; xÞ ð27-16bÞ z0 x0 ¼ Tz0 x0 ¼ z cosðz0 ; zÞ cosðx0 ; zÞ þ x cosðz0 ; xÞ cosðx0 ; xÞ þ y cosðz0 ; yÞ cosðx0 ; yÞ þ zx ½cosðz0 ; zÞ cosðx0 ; xÞ þ cosðz0 ; xÞ cosðx0 ; zÞ þ xy ½cosðz0 ; xÞ cosðx0 ; yÞ þ cosðz0 ; yÞ cosðx0 ; xÞ þ yz ½cosðz0 ; yÞ cosðx0 ; zÞ þ cosðz0 ; zÞ cosðx0 ; yÞ ð27-16cÞ Equations (27-15a) to (27-15c) and Eqs. (27-16a) to (27-16c) can be used to determine the six Cartesian components of stress relative to the Oxyz coordinate system to be transformed into a different set of six Cartesian components of stress relative to an Ox0 y0 z0 coordinate system
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
APPLIED ELASTICITY
27.8
CHAPTER TWENTY-SEVEN
Particular
For two-dimensional stress fields, the Eqs. (27-15a) to (27-15c) and (27-16a) to (27-16c) reduce to, since z ¼ zx ¼ yz ¼ 0 z0 coincide with z and is the angle between x and x0 , Eqs. (27-15a) to (27-15c) and Eqs. (27-16a) to (27-16c) y TNy K
TNz M
O
L
x0 ¼ x cos2 þ y sin2 þ 2xy sin cos ¼
x þ y x y þ cos 2 þ xy sin 2 2 2
ð27-17aÞ
y0 ¼ y cos2 þ x sin2 2xy sin cos ¼
N
y þ x y x þ cos 2 xy sin 2 2 2
ð27-17bÞ
x0 y0 ¼ y cos sin x cos sin
TN, σN TNx N
Formula
þ xy ðcos2 sin2 Þ
x
z FIGURE 27-5 The stress vector TN .
¼
y x sin 2 þ xy cos 2 2
z0 ¼ z0 x0 ¼ y0 z0 ¼ 0
ð27-17cÞ ð27-17dÞ
PRINCIPAL STRESSES By referring to Fig. 27-5, where TN coincides with outer normal N, it can be shown that the resultant stress components of TN in x, y and z directions
TNx ¼ N l
Substituting Eqs. (27-9b) to (27-9d) into (27-18), the following equations are obtained
x l þ yx m þ zx n ¼ N l
TNy ¼ N m
ð27-18Þ
TNz ¼ N n
xy l þ y m þ xy n ¼ N m
ð27-19Þ
xz l þ yz m þ z n ¼ N n Eq. (27-19) can be written as
ðx N Þl þ yx m þ zx ¼ 0 xy l þ ðy N Þm þ zy ¼ 0
ð27-20Þ
xz l þ yz m þ ðz N Þn ¼ 0 From Eq. (27-20), direction cosine (N, x) is obtained and putting this in determinant form
Putting the determinator of determinant into zero, the non-trivial solution for direction cosines of the principal plane is
0 yx zx 0 zy y n 0 yz z N cosðN; xÞ ¼ x N yx zx y N zy xy xz yz z N
ð27-21Þ
x N xy xz
ð27-22Þ
yx y N yz
zy ¼ 0 z N zx
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
APPLIED ELASTICITY
27.9
APPLIED ELASTICITY
Particular
Expanding the determinant after making use of Eqs. (27-4) which gives three roots. They are principal stresses
Formula
3N ðx þ y þ z Þ2N 2 2 2 þ ðx y þ y z þ z x xy yz zx ÞN 2 2 2 ðx y z x yz y zx z xy þ 2xy yz zx Þ ¼ 0
ð27-23Þ For two-dimensional stress system the coordinating system coinciding with the principal directions, Eq. (27-23) becomes
2 3i ðx þ y Þ2i þ ðx y xy Þi ¼ 0
ð27-23aÞ
where i ¼ 1; 2; 3
The three principal stresses from Eq. (27-23a) are 1;2
1 ¼ ðx þ y Þ 2
ffi sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi x y 2 2 þ xy 2
ð27-23bÞ
3 ¼ 0 The directions of the principal stresses can be found from
2xy sin 2ðN1 ; xÞ ¼ qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2 ðx y Þ2 þ 4xy
ð27-23cÞ
x y cos 2ðN1 ; xÞ ¼ qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2 ðx y Þ2 þ 4xy
ð27-23dÞ
tan 2ðN1 ; xÞ ¼
2xy x y
ð27-23eÞ
From Eq. (27-15)
TN1 N2 ¼ TN2 N1
From definition of principal stress
TN1 ¼ 1 N1
ð27-25aÞ
TN2 ¼ 2 N2
ð27-25bÞ
Substituting the values of TN1 and TN2 in Eq. (27-15) and simplifying
ð1 2 ÞN1 N2 ¼ 0
From Eq. (27-20)
N1 N2 ¼ 0
ð27-24Þ
ð27-26Þ
where 1 and 2 are distinct ð27-27Þ
which proves that N1 and N2 are orthogonal. The three invariant of stresses from Eq. (27-23)
I1 ¼ x þ y þ z ¼ x0 þ y0 þ z0
ð27-28aÞ
2 2 2 I2 ¼ x y þ y z þ z x xy yz zx
¼ x0 y0 þ y0 z0 þ z0 x0 x20 y0 y20 z0 z20 x0 ð27-28bÞ 2 2 2 I3 ¼ x y z x yz y zx z xy þ 2xy yz zx
¼ x0 y0 z0 x0 y20 z0 y0 z20 x0 z0 x20 y0 þ 2x0 y0 y0 z0 z0 x0
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð27-28cÞ
APPLIED ELASTICITY
27.10
CHAPTER TWENTY-SEVEN
Particular
Formula
where I1 ¼ first invariant, I2 ¼ second invariant and I3 ¼ third invariant of stress For the coordinating system coinciding with the principal direction, the expression for invariants from Eq. (27-28)
I 1 ¼ 1 þ 2 þ 3
ð27-29aÞ
I2 ¼ 1 2 þ 2 3 þ 3 1
ð27-29bÞ
I3 ¼ 1 2 3
ð27-29cÞ
x E
ð27-30aÞ
STRAIN (Fig. 27-6) The normal strain or longitudinal strain by Hooke’s law (Fig. 27-6) in x-direction
"x ¼
The lateral strains in y and z-direction
v ¼ v"x E x v "z ¼ x ¼ v"x E y vy "y ¼ ; "x ¼ "z ¼ ¼ v"y E E v "z ¼ z ; "x ¼ "y ¼ z v"z E E "y ¼
The normal strains caused by y and z
ð27-30bÞ ð27-30cÞ ð27-31Þ ð27-32Þ
THREE-DIMENSIONAL STRESS-STRAIN SYSTEM The general stress-strain relationships for a linear, homogeneous and isotropic material when an element subject to x , y and z stresses simultaneously
"x ¼
1 ½ vðy þ z Þ E x
ð27-33aÞ
"y ¼
1 ½ vðz þ x Þ E y
ð27-33bÞ
y
dz
σx
dx’ dx
y
dy
dy’
σx z
dz’
FIGURE 27-6 Uniaxial elongation of an element in the direction of x.
τxy
M N x z
τxy
τxy τ L xy
K
M
τxy
M’ m I
L x τxy L’ τ xy
N
N’ τxy
n
k K’
K
FIGURE 27-7 A cubic element subject to shear stress, xy .
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
APPLIED ELASTICITY
27.11
APPLIED ELASTICITY
Particular
The expressions for x , y and z stresses in case of three-dimensional stress system from Eqs (27-33)
Formula
"z ¼
1 ½ vðx þ y Þ E z
x ¼
E ½ð1 vÞ"x þ vð"y þ "z Þ ð1 þ vÞð1 2vÞ
ð27-33cÞ
ð27-34aÞ y ¼
E ½ð1 vÞ"y þ vð"z þ "x Þ ð1 þ vÞð1 2vÞ ð27-34bÞ
z ¼
E ½ð1 vÞ"z þ vð"x þ "y Þ ð1 þ vÞð1 2vÞ
ð27-34cÞ
BIAXIAL STRESS-STRAIN SYSTEM The normal strain equations, when z ¼ 0 from Eq. (27-33)
"x ¼
1 ½ vy E x
ð27-35aÞ
1 ½ vx E y v "z ¼ ½x þ y E "y ¼
The normal stress equation, when z ¼ 0 from Eq. (27.34)
ð27-35bÞ ð27-35cÞ
E ½" þ v"y ¼ J1 þ 2"x 1v x 2 ¼ ð" þ "y Þ þ 2"x
þ 2 x
x ¼
E ½" þ v"x ¼ J1 þ 2"y 1v y 2 ð" þ "x Þ þ 2"y ¼
þ 2 y
ð27-36aÞ
y ¼
z ¼ J1 þ 2"z ¼ 0 xy ¼ xy ;
yz ¼ yz ¼ 0;
ð27-36bÞ ð27-36cÞ
zx ¼ zx ¼ 0 ð27-36dÞ
SHEAR STRAINS For a homogeneous, isotropic material subject to shear force, the shear strain which is related to shear stress as in case of normal strain
xy G yz yz ¼ G zx zx ¼ G
xy ¼
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð27-37aÞ ð27-37bÞ ð27-37cÞ
APPLIED ELASTICITY
27.12
CHAPTER TWENTY-SEVEN
Particular
Formula
F2
y F3 Unstrained element
P L M dy K w dx N dz
Deformed element due to strain in new position
u
L’
M’
K’
N’
u+
∂v dy ∂y
ν+
v
F4
Y
F1
P’
F5
O
∂u dy ∂y u
L
L’ M
dy
x x
∂u dy M’ ∂y
K’ K
dx
N
u+
N’
∂v dx ∂x
ν
ν+
∂u dx ∂x
z
∂ν dx ∂x
y X
FIGURE 27-8 Deformation of a cube element in a solid body subject to loads.
FIGURE 27-9 Two-dimensional deformation under load.
It has been proved that the shear modulus (G) is related to Young’s modulus (E) and Poisson’s ratio as
G¼
From Eqs. (27-37), shear strain in terms of E and
E 2ð1 þ vÞ
ð27-38Þ
xy ¼
2ð1 þ vÞ xy E
ð27-39aÞ
yz ¼
2ð1 þ vÞ yz E
ð27-39bÞ
zx ¼
2ð1 þ vÞ zx E
ð27-39cÞ
STRAIN AND DISPLACEMENT (Figs. 27-8 and 27-9) The normal strain in x-direction
The normal strain in y and z-directions
The shear strains xy, yz and zx planes
@u change in length dx þ @x dx dx @u ¼ "x ¼ ¼ original length @x dx ð27-40aÞ "y ¼
@v @y
ð27-40bÞ
"z ¼
@w @z
ð27-40cÞ
xy ¼
@v @u þ @x @y
ð27-41aÞ
yz ¼
@w @v þ @y @z
ð27-41bÞ
zx ¼
@u @w þ @z @x
ð27-41cÞ
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
APPLIED ELASTICITY APPLIED ELASTICITY
Particular
The amount of counterclockwise rotation of a line segment located at R in xy, yz and zx planes
Formula
xy ¼
1 2
yz ¼
1 2
zx The strain "z and first strain invariant J1 in case of plane stress
1 ¼ 2
"z ¼
J1 ¼ The strains components "x0 , "y0 and "z0 , along x0 , y0 and z0 axes line segments with reference to the O0 x0 y0 z0 system
27.13
@v @u @x @y @w @v @y @z @u @w @z @x
ð27-41dÞ ð27-41eÞ
ð" þ "y Þ
þ 2 x
2 ð" þ "y Þ
þ 2 x
ð27-41f Þ
ð27-41gÞ
ð27-41hÞ
"x0 ¼ "x cos2 ðx; x0 Þ þ "y cos2 ðy; x0 Þ þ "z cos2 ðz; x0 Þ þ xy cosðx; x0 Þ cosðy; x0 Þ þ yz cosðy; x0 Þ cosðz; x0 Þ þ zx cosðz; x0 Þ cosðx; x0 Þ ð27-42aÞ "y0 ¼ "y cos2 ðy; y0 Þ þ "z cos2 ðz; y0 Þ þ "x cos2 ðx; y0 Þ þ yx cosðy; y0 Þ cosðz; y0 Þ þ zx cosðz; y0 Þ cosðx; y0 Þ þ xy cosðx; y0 Þ cosðy; y0 Þ ð27-42bÞ "z0 ¼ "z cos2 ðz; z0 Þ þ "x cos2 ðx; z0 Þ þ "y cos2 ðy; z0 Þ þ zx cosðz; z0 Þ cosðx; z0 Þ þ xy cosðx; z0 Þ cosðy; z0 Þ þ yz cosðy; z0 Þ cosðz; z0 Þ ð27-42cÞ
The shearing strain components (due to angular changes) x0 y0 , y0 z0 and z0 x0 with reference to the O0 x0 y0 z0 system
x0 y0 ¼ 2"x cosðx; x0 Þ cosðx; y0 Þ þ 2"y cosðy; x0 Þ cosðy; y0 Þ þ 2"z cosðz; x0 Þ cosðz; y0 Þ þ xy ½cosðx; x0 Þ cosðy; y0 Þ þ cosðx; y0 Þ cosðy; x0 Þ þ yz ½cosðy; x0 Þ cosðz; y0 Þ þ cosðy; y0 Þ cosðz; x0 Þ þ zx ½cosðz; x0 Þ cosðx; y0 Þ þ cosðz; y0 Þ cosðx; x0 Þ ð27-43aÞ
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
APPLIED ELASTICITY
27.14
CHAPTER TWENTY-SEVEN
Particular
Formula
y0 z0 ¼ 2"y cosðy; y0 Þ cosðy; z0 Þ þ 2"z cosðz; y0 Þ cosðz; z0 Þ þ 2"x cosðx; y0 Þ cosðx; z0 Þ þ yz ½cosðy; y0 Þ cosðz; z0 Þ þ cosðy; z0 Þ cosðz; y0 Þ þ zx ½cosðz; y0 Þ cosðx; z0 Þ þ cosðz; z0 Þ cosðx; y0 Þ þ xy ½cosðx; y0 Þ cosðy; z0 Þ þ cosðx; z0 Þ cosðy; y0 Þ ð27-43bÞ z0 x0 ¼ 2"z cosðz; z0 Þ cosðz; x0 Þ þ 2"x cosðx; z0 Þ cosðx; x0 Þ þ 2"y cosðy; z0 Þ cosðy; x0 Þ þ zx ½cosðz; z0 Þ cosðx; x0 Þ þ cosðz; x0 Þ cosðx; z0 Þ þ xy ½cosðx; z0 Þ cosðy; x0 Þ þ cosðx; x0 Þ cosðy; z0 Þ þ yz ½cosðy; z0 Þ cosðz; x0 Þ þ cosðy; x0 Þ cosðz; z0 Þ ð27-43cÞ For the case of two-dimensional state of stress when z0 coincides with z and zx ¼ yz ¼ 0, the angle between x and x0 coordinates
"x0 ¼ "x cos2 þ "y sin2 þ zy sin cos ¼
1 2 ½ð"x
ð27-44aÞ
þ "y Þ þ ð"x "y Þ cos 2 þ xy sin 2 ð27-44bÞ
"y0 ¼ "y cos2 þ "x sin2 zy sin cos ¼
1 2 ½ð"y
þ "x Þ þ ð"y "x Þ xy sin 2
ð27-44cÞ ð27-44dÞ
x0 y0 ¼ 2ð"y "x Þ sin cos þ xy ðcos2 sin2 Þ 1 0 0 2 x y
¼ 12 ½ð"x "y Þ sin 2 12 xy cos 2
"z0 ¼ "z ; The cubic equation for principal strains whose three roots give the distinct principal strains associated with three principal directions, is
y0 z0 ¼ z0 x0 ¼ 0
ð27-44eÞ ð27-44f Þ ð27-44gÞ
"3n ð"x þ "y þ "z Þ"2n 2 2 xy yz 2 þ "x "y þ "y "z þ "z "x zx "n 4 4 4 2 2 yz xy xy yz zx 2 "x "y "z "x "y zx "z þ ¼0 4 4 4 4 ð27-45Þ
The three strain invariants analogous to the three stress invariants
J1 ¼ "x þ "y þ "z ¼ first invariant of strain
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð27-45aÞ
APPLIED ELASTICITY
27.15
APPLIED ELASTICITY
Particular
Formula
J2 ¼ "x "y þ "y "z þ "z "x
2 2 xy yz 2 zx 4 4 4
¼ second invariant of strain J3 ¼ "x "y "z
ð27-45bÞ
2 2 2 "x yz "y zx "z xy xy yz zx þ 4 4 4 4
¼ third invariant of strain
ð27-45cÞ
BOUNDARY CONDITIONS The components of the surface forces Fsfx and Fsfy per unit area of a small triangular prism pqr so that the side qr coincides with the boundary of the plate ds (Fig. 27-10)
Fsfx ¼ lx þ mxy ;
Fsfy ¼ my þ lyx
ð27-46Þ
where l and m are the direction cosines of the normal N to the boundary
O
x
p
q Fsfx
r qr = ds
COMPATIBILITY The six strain equations of compatibility
ds
N
y Fsfy
FIGURE 27-10 Area of a small triangular prism pqr.
@ 2 xy @ 2 "x @ 2 "y ¼ þ 2 @x @y @y2 @x
ð27-47aÞ
@ 2 yz @ 2 "y @ 2 "z ¼ 2 þ 2 @y @z @z @y
ð27-47bÞ
@ 2 zx @ 2 "z @ 2 "x ¼ þ 2 @z @x @x2 @z 2 @yz @zx @xy @ "x @ 2 ¼ þ þ @y @z @x @x @y @z @ 2 "y @ @yz @zx @xy 2 ¼ þ @z @x @y @x @y @z 2 @ "z @ @yz @zx @xy 2 ¼ þ @x @y @z @x @y @z
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð27-47cÞ ð27-47dÞ ð27-47eÞ ð27-47f Þ
APPLIED ELASTICITY
27.16
CHAPTER TWENTY-SEVEN
Particular
The volume dilatation of rectangular parallelopiped element subject to hydrostatic pressure whose sides are l1 , l2 and l3
Formula
Vf V V ¼ V V where
e¼
ð27-48Þ
Vf ¼ final volume after straining of element ¼ l1f l2f l3f V ¼ initial volume of element ¼ l1 l2 l3 The final dimensions of the element after straining
Substituting the values of l1f , l2f , l3f , l1 , l2 , l3 in Eq. (27-48) and after neglecting higher order terms of strain
l1f ¼ l1 ð1 þ "1 Þ
ð27-49aÞ
l2f ¼ l2 ð1 þ "2 Þ
ð27-49bÞ
l3f ¼ l3 ð1 þ "3 Þ
ð27-49cÞ
e¼
l1 l2 l3 ð1 þ "1 Þð1 þ "2 Þð1 þ "3 Þ l1 l2 l3 l1 l2 l3
¼ "1 þ "2 þ "3 ¼ J1 1 2v ð1 þ 2 þ 3 Þ ¼ E
ð27-50aÞ ð27-50bÞ
V 3ð1 2vÞ0 ¼ ¼ 0 V E K where K ¼ bulk modulus of elasticity
If hydrostatic pressure (0 ) or uniform compression is applied from all sides of an element such that x ¼ y ¼ z ¼ 0 ¼ 1 ¼ 2 ¼ 3 , xy ¼ yz ¼ zx ¼ 0, Eq. (27-48) becomes
e¼
The bulk modulus of elasticity
K¼
E ¼ 0 e 3ð1 2vÞ
ð27-52Þ
K¼
2ð1 þ vÞG 3ð1 2vÞ
ð27-53Þ
GENERAL HOOKE’S LAW
ð27-51Þ
The general equation for strain in x-direction according to general Hooke’s law in case of anisotropic or non-homogeneous and non-isotropic materials such as laminate, wood and fiber-filled-epoxy materials as a linear function of each stress
"x ¼ S11 x þ S12 y þ S13 z þ S14 xy þ S15 yz
For relationships between the elastic constants
Refer to Table 27-1.
The three-dimensional stress-strain state in anisotropic or non-homogeneous and non-isotropic material such as laminates, fiber filled epoxy material by using generalized Hooke’s law which is useful in designing machine elements made of composite material (Fig. 27-1c) Note: ½S matrix is the compliance matrix which gives the strain-stress relations for the material. The inverse of the compliance matrix is the stiffness matrix and the stress-strain relations. If no symmetry is assumed, there are 92 ¼ 81 independent elastic constants present in the compliance matrix [Eq. (27-55)]
þ S16 zx þ S17 xz þ S18 zy þ S19 yz
3 2S 11 "x 6 6 S 7 6 6 "y 7 21 7 6 6 7 6 6 6 "z 7 6 6 7 6 6 6 7 6 xy 7 6 6 7 6 6 7 6 6 yz 7¼6 7 6 6 6 7 6 6 zx 7 6 7 6 6 6 7 6 6 xz 7 6 7 6 6 6 zy 7 6 6 5 4 4 yx S 2
91
ð27-54Þ
3 x 7 76 6 7 S29 7 76 y 7 76 7 6 z 7 7 76 7 76 7 6 7 7 76 xy 7 76 7 6 7 7 76 yz 7 76 7 6 zx 7 7 76 7 76 7 6 7 7 76 xz 7 76 7 7 6 54 zy 7 5
S92
S93
S94
S95
S96
S97
S98
S99
S12
S13
S14
S15
S16
S17
S18
S22
S23
S24
S25
S26
S27
S28
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
S19
32
yx
ð27-55Þ
APPLIED ELASTICITY
27.17
APPLIED ELASTICITY
Particular
Formula
TABLE 27.1 Relationships between the elastic constants equals
a equals
E equals
v equals
K equals
, a
–
–
ð3 þ 2Þ
þ
2ð þ Þ
3 þ 2 3
, E
–
b
–
b
, v
–
ð1 2vÞ 2v
ð1 þ vÞð1 2vÞ v
–
ð1 þ vÞ 3v
, K
–
3ðK Þ 2
9KðK Þ 3K
3K
–
, E
2 E E 3
–
–
E 2 2
E 3ð3 EÞ
, v
2v 1 2v
–
2ð1 þ vÞ
–
2ð1 þ vÞ 3ð1 2vÞ
, K
3K 2 3
–
9K 3K þ
3K 2 2ð3K þ Þ
–
E, v
vE ð1 þ vÞð1 2vÞ
E 2ð1 þ vÞ
–
–
E 3ð1 2vÞ
K, E
3Kð3K EÞ 9K E 3Kv 1þv
3EK 9K E
–
3K E 6K
–
3Kð1 2vÞ 2ð1 þ vÞ
3Kð1 2vÞ
–
–
v, K
A þ ðE 3 Þ 4
A ðE þ Þ 4
b
A þ ð3 þ EÞ 6
a
¼G ¼ modulus of rigidity/shear. pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi A ¼ E 2 þ 2 E þ 9 2 . Courtesy: Dally, J. W. and William F. Riley, Experimental Stress Analysis, McGraw-Hill Publishing Company, New York, 1965. b
Equation (27-55) can be written as given here under Eq. (27-56) with the following use of change of notations and principle of symmetrical matrix in case of stiffness matrices xy ¼ yx
"12 ¼ "21
S12 ¼ S21
yz ¼ zy
"23 ¼ "32
S13 ¼ S31
xz ¼ zx
"13 ¼ "31
etc
2
"x
3
2
"1
3
2
S11
6 7 6 7 6 6 "y 7 6 "2 7 6 S21 7 6 7 6 6 7 6 7 6 6 6 " z 7 6 "3 7 6 7 6 7 6 6 7¼6 7¼6 6 6 yz 7 6 "4 7 6 7 6 7 6 6 7 6 7 6 6 6 zx 7 6 "5 7 6 5 4 5 4 4 xy S61 "6
S12
S13
S14
S15
S22
S23
S24
S25
S62
S63
S64
S65
S16
32
x
3
7 76 7 6 S26 7 76 y 7 76 7 7 6 7 76 z 7 76 7 7 6 76 yz 7 7 76 7 6 xz 7 7 54 5 xy S66 ð27-56Þ
and the following changes in Eq. (27-54) x ¼ 1
yz ¼ 4 ¼ 23
"x ¼ "1 2yz ¼ "4 ¼ 23
y ¼ 2
xz ¼ 5 ¼ 13
"y ¼ "2
2xz ¼ "5 ¼ 13
z ¼ 3
xy ¼ 6 ¼ 12
"z ¼ "3
2xy ¼ "6 ¼ 12
a Courtesy: Extracted from Ashton, J. E., J. C. Halpin, and P. H. Petit, Primer on Composite Materials—Analysis, Technomic Publishing Co., Inc., 750 Summer Street, Stamford, Conn. 1969.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
APPLIED ELASTICITY
27.18
CHAPTER TWENTY-SEVEN
Particular
Formula
The general stress-strain equations under linear stress-strain relationship
x ¼ K11 "x þ K12 "y þ K13 "z þ K14 xy þ K15 yz þ K16 zx y ¼ K21 "x þ K22 "y þ K23 "z þ K24 xy þ K25 yz þ K26 zx z ¼ K31 "x þ K32 "y þ K33 "z þ K34 xy þ K35 yz þ K36 zx xy ¼ K41 "x þ K42 "y þ K43 "z þ K44 xy þ K45 yz þ K46 zx yz ¼ K51 "x þ K52 "y þ K53 "z þ K54 xy þ K55 yz þ K56 zx zx ¼ K61 "x þ K62 "y þ K63 "z þ K64 xy þ K65 yz þ K66 zx ð27-57Þ where K11 to K66 are the coefficients of elasticity of the material and are independent of the magnitudes of both the stress and the strain, provided the elastic limit of the material is not exceeded. There are 36 coefficients of elasticity.
The stress-strain relationships for the case of isotropic material
x ¼ ð"x þ "y þ "z Þ þ 2"x
ð27-58aÞ
y ¼ ð"x þ "y þ "z Þ þ 2"y z ¼ ð"x þ "y þ "z Þ þ 2"z xy ¼ xy yz ¼ yz zx ¼ zx where
¼ Lame´’s constant ¼ G ¼ modulus of shear
The strain expressions from Eqs. (27-58a)
"x ¼
þ
ð þ z Þ 3 þ 2 x 2ð3 þ 2Þ y
"y ¼
þ
ð þ z Þ 3 þ 2 y 2ð3 þ 2Þ x
"z ¼
þ
ð þ x Þ 3 þ 2 z 2ð3 þ 2Þ y
xy ¼
1 1 ¼ xy G xy
yz ¼
1 1 ¼ yz G yz
zx ¼
1 1 ¼ zx G zx
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð27-58bÞ
APPLIED ELASTICITY
27.19
APPLIED ELASTICITY
Particular
Formula
Mb
Element A
Mb A Mb
Mb σ2
τ12
σ1
τ12
FIGURE 27-10A Thin laminae of a composite laminate under bending.
The matrix expression from Eq. (27-55) for orthotropic material in a three-dimensional state of stress
The two-dimensional or a plane stress state matrix expression after putting 3 ¼ 23 ¼ 13 ¼ 0 and 23 ¼ 13 ¼ 0 and "3 ¼ S13 1 þ S23 2 in Eq. (27-59) for orthotropic material The stress-strain relationship for homogenous isotropic laminae of a laminated composite in the matrix form, which is assumed to be in state of plane stress
2
3 2 "1 S11 6 7 6 6 "2 7 6 S12 6 7 6 7 6 6 6 "3 7 6 S13 7 6 6 6 23 7 ¼ 6 0 7 6 6 7 6 6 4 13 5 4 0 0 12
S12 S22 S23 0
S13 S23 S23 0
0 0 0 S44
0 0 0 0
0 0
0 0
0 0
S55 0
3 1 7 7 76 7 6 76 2 7 76 7 76 3 7 76 7 76 23 7 76 7 76 7 0 54 13 5 S66 12 ð27-59Þ 0 0 0 0
32
where there are 9 independent constants in the above compliance matrix which is inverse of stiffness matrix 3 2 32 3 2 1 "1 S11 S12 0 7 6 76 7 6 ð27-60Þ 4 "2 5 ¼ 4 S21 S22 0 54 2 5 12 12 0 0 S66 3 2 K11 1 7 6 6 4 2 5 ¼ 4 K21 0 12 n 2
K12 K22 0
3 2 3 0 "1 7 6 7 0 5 4 "2 5 K66 n 12 n
ð27-61Þ
where K is stiffness matrix K11 ¼ K12 ¼ E=ð1 v2 Þ K12 ¼ vE=ð1 v2 Þ K66 ¼ E=2ð1 vÞ ¼ G Alternatively Eqs. (27-61) can be written for the nth layer of laminated composite, which is assumed to be in a state of plane stress
1 ¼ ð"1 þ v"2 Þ
E 1 v2
2 ¼ ð"2 þ v"1 Þ
E 1 v2
12 ¼ 12
E 2ð1 vÞ
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð27-62Þ
APPLIED ELASTICITY
27.20
CHAPTER TWENTY-SEVEN
Particular
Substituting strain-displacement, Eqs. (27-40) and (27-41) into stress-strain Eqs. (27-33) and (27-37) or (27-39), displacement stress equation are obtained with from 15 unknowns to 9 unknowns
Formula
@u 1 ¼ ½ vðy þ z Þ @x E x
ð27-63Þ
@v 1 ¼ ½ vðz þ x Þ @y E y @w 1 ¼ ½ vðx þ y Þ @z E z @u @v 1 þ ¼ @y @x xy @v @w 1 þ ¼ @z @y yz @w @u 1 þ ¼ @x @z zx where ¼ G
Combining stress equation of equilibrium from Eqs. (27-11) with stress displacement Eqs. (27-63) (from 9 to 3 unknowns)
r2 u þ
1 @ 1 2v @x
r2 v þ
1 @ 1 2v @y
1 @ 1 2v @z
@u @v @w þ þ @x @y @z @u @v @w þ þ @x @y @z
þ
1 F ¼0 bx ð27-64Þ
þ
1 F ¼0 by
@u @v @w 1 þ þ þ Fbz ¼ 0 @x @y @z 2 @ @2 @2 þ þ where r2 is the operator @x2 @y2 @z2 1 @ 2 I1 v @Fbx @Fby @Fbz ¼ r 2 x þ þ þ @y @z 1 þ v @x2 1 v @x r2 w þ
Six stress equations of compatibility are obtained by making use of stress strain relations of Eqs. (27-33) and (27-39), the stress equations of equilibrium Eq. (27-11) and the strain compatibility Eq. (27-47) in three dimension in Cartesian system of coordinates
@Fbx ð27-65aÞ @x 1 @ 2 I1 v @Fbx @Fby @Fbz þ þ ¼ r 2 y þ @y @z 1 þ v @y2 1 v @x 2
@Fby ð27-65bÞ @y 1 @ 2 I1 v @Fbx @Fby @Fbz þ þ r 2 z þ ¼ @y @z 1 þ v @z2 1 v @x 2
@Fbz @z 2 1 @ I1 @Fbz @Fby ¼ þ r2 zy þ 1 þ v @x @y @y @x 2
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð27-65cÞ ð27-65dÞ
APPLIED ELASTICITY
27.21
APPLIED ELASTICITY
Particular
Formula
@Fby @Fbz 1 @ 2 I1 ¼ þ @z @y 1 þ v @y @z 1 @ 2 I1 @Fbx @Fbz ¼ þ r2 zx þ 1 þ v @z @x @z @x r2 yz þ
ð27-65eÞ ð27-65f Þ
AIRY’S STRESS FUNCTION Differential equations of equilibrium for twodimensional problems taking only gravitational force as body force
@x @xy þ ¼0 @x @y
ð27-66aÞ
@y @yz þ þ g ¼ 0 @y @x r2 ¼ ðx þ y Þ ¼ 0 where r2 ¼
ð27-66bÞ
@2 @2 þ 2 2 @x @y
The stress components in terms of stress function and body force
x ¼
Substituting Eqs. (27-66c) for stress components into Eq. (27-66b) that the stress function must satisfy the equation
@4 @4 @4 þ 2 þ ¼0 @x4 @x2 @y2 @y4
The stress compatibility equation for the case of plane strain
r2 ðx þ y Þ ¼
If components of body forces in plane strain are
Substituting Eqs. (27-68) into Eqs. (27-11d), (27-11e) 2ð þ Þ 1 and Eq. (27-67) and taking ¼
þ 2 1v
By assuming that the stress can be represented by a @2 stress function such that x ¼ 2 þ , @y @2 @2 and substituting y ¼ 2 þ , and xy ¼ @x@y @x these into Eqs. (27-69) and Eq. (27-69c) becomes
@2 gy; @y2
Fbx ¼
@ ; @x
y ¼
@2 gy; @x2
2ð þ Þ
þ 2
Fby ¼
@2 @x @y ð27-66cÞ
xy ¼
ð27-72Þ @Fbx @Fby þ @x @y
@ @y
@x @xy @ þ ¼ @x @y @x @xy @y @ þ ¼ @x @y @y r2 x þ y ¼0 1v r4 ¼
1 2v 2 r 1v
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð27-67Þ ð27-68Þ ð27-69aÞ ð27-69bÞ ð27-69cÞ ð27-70Þ
APPLIED ELASTICITY
27.22
CHAPTER TWENTY-SEVEN
Particular
Formula
Stresses for plane-stress can be obtained by letting v ! v in Eq. (27-70) and it becomes 1v
r4 ¼ ð1 vÞr2
If body forces are zero or constant then Eq (27-70) becomes
r4 ¼ @
The biharmonic Eq. (27-71a) can be written in expanded form as
ð27-71Þ
ð27-71aÞ
which is a biharmonic equation in and is a stress function @2 @4 @4 þ 2 þ ¼0 @x4 @x2 @y2 @y4
ð27-72Þ
The solution of a two-dimensional problem when the weight of body is the only body force reduces to finding a solution of Eq. (27-72) which satisfies boundary condition Eq. (27-46) of the problem.
CYLINDRICAL COORDINATES SYSTEM General equations of equilibrium in r, and z coordinates (cylindrical coordinates) taking into consideration body force (Figs. 27-13 to 27-15)
@r 1 @r @rz r þ þ þ þ FbR ¼ 0 @r @z r r @
ð27-73aÞ
@rz 1 @z @z rz þ þ þ þ Fbz ¼ 0 @r @z r r @
ð27-73bÞ
@r 1 @ @z 2r þ þ þ þ Fb ¼ 0 ð27-73cÞ @r @z r r @ where FbR , Fb and Fbz are body force components
z
θ r dθ
z ∂τ θz d ∂σz z dz ∂ + ∂z τ θz ∂τ zθ dθ ∂θ + τ zθ ∂σθ σθ + dθ ∂θ F ∂τ τrθ bz τrθ + rθ d θ ∂θ Fbθ τrθ τzr τrz Fb ∂τzr dr n + τ τθ z σ zr ∂r z ∂τθr τzθ dr τ θr + ∂r ∂σr dr dr σr + ∂r ∂τ τrz + rz d z ∂z σz +
σr dz
σθ
FIGURE 27-11 Element showing stresses in r, and in the axial direction.
σθ +
r dθ r
∂σθ dθ ∂θ
σr τθr
∂τ r θ dθ ∂θ ∂τ τθr + θr dr ∂τrz ∂r τrz + ∂z dz ∂σ σr + r dr ∂r F R τ τrθ +
rz
τrθ σθ
dr
FIGURE 27-12 Element showing stresses in r and directions.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
APPLIED ELASTICITY
27.23
APPLIED ELASTICITY
Particular
Formula
Mt
A A1
N τr θ
O
x
θ
τ θz
dθ 0
τrθ
(b)
σr
τrz
σr +
∂σr dr ∂r
∂σr dr ∂r ∂τr θ dr τr θ + ∂r ∂σθ dθ σθ + ∂θ
r
a dr
θ
∂σ σz + z dz ∂z
σθ
σr
τrz
ν r
u
rd
z dz
dθ
σz
a’
A v β
α
σr +
A’ Z
Mt
(a)
FIGURE 27-13
Equations of equilibrium for axial symmetry Eqs. (27-73) reduce to Eqs. (27-74) when there are body forces acting on the body
Equations of equilibrium in two dimension in r and coordinates (polar coordinates) taking into consideration body force components
Equations of equilibrium for an axially symmetrical stress distribution in a solid of revolution when there are no body forces acting on the body (Fig. 27-13), since the stress components are independent of .
∂u ∂θ dθ
y
b’
b u + ∂u dr ∂r v r ∂ν dr ∂r B
ν+ ∂ ν ∂θ dθ B’
FIGURE 27-14 Strain components in polar co-ordinates.
@r @rz r þ þ þ FbR ¼ 0 @r @z r
ð27-74aÞ
1 @ @z þ þ Fb ¼ 0 r @ @z
ð27-74bÞ
@rz 1 @z @z rz þ þ þ þ Fbz ¼ 0 r @ @r @z r
ð27-74cÞ
@r 1 @r 1 þ þ ðr Þ þ FbR ¼ 0 @r r @ r
ð27-75aÞ
1 @ @r 2r þ þ þ Fb ¼ 0 r @ @r r
ð27-75bÞ
@r @rz ðr Þ þ þ ¼0 @r @ r
ð27-76aÞ
@rz @z rz þ þ ¼0 @r @z r
ð27-76bÞ
STRAIN COMPONENTS (Fig. 27-14) The strain components in r, and z coordinates system The strain in the radial direction
"r ¼
@u @r
ð27-77aÞ
The strain in the tangential direction
" ¼
1 @v u þ r @ r
ð27-77bÞ
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
APPLIED ELASTICITY
27.24
CHAPTER TWENTY-SEVEN
Particular
Formula
@w @z
The strain in the axial direction
"z ¼
The shear strains
r ¼
1 @u @v v þ r @ @r r
ð27-77dÞ
z ¼
1 @w @v þ r @ @z
ð27-77eÞ
ð27-77cÞ
@u @w þ @z @r 1 @v v 1 @u þ r ¼ 2 @r r r @ 1 1 @w @v z ¼ 2 r @ @z 1 @u @w zr ¼ 2 @z @r
ð27-77f Þ
zr ¼
The rotation of the element in the counter clock-wise direction in the r, z and zr planes
ð27-78aÞ ð27-78bÞ ð27-78cÞ
AIRY’S STRESS FUNCTION IN POLAR COORDINATES When components of body force Fbr and Fb are zero, Eqs. (27-74a) and (27-74b) are satisfied by assuming stress function for r , and r
r ¼
1 @ 1 @ 2 þ r @r r2 @2
ð27-79aÞ
¼
@2 @r2
ð27-79bÞ
@ r ¼ @r The stress equation of compatibility Eq. (27-72) in terms of Airy’s stress function referred to Cartesian coordinates x and y, has to be transferred to Airy’s stress function referred to polar coordinates r and system. In this transformation from x and y coordinates transform to r and coordinates
1 @ r @
r2 ¼ x2 þ y2 ;
¼
1 @ 1 @ 2 r2 @ r @r @
¼ tan1
y x
ð27-79cÞ ð27-80Þ
from which @r x ¼ ¼ cos ; @x r
@r y ¼ ¼ sin @y r
@ y sin ¼ 2¼ ; @x r r
@2 @2 þ 2 2 @x @y
@ x cos ¼ ¼ @y r2 r @2 @2 þ @x2 @y2
ð27-81Þ
Eq. (27-72) can be written as
r2 ¼
Using Eqs. (27-79) and (27-80) and transforming Eq. (27-72) into stress equation of compatibility in polar coordinates r and system
@ 2 @ 2 @ 2 1 @ 1 @ 2 þ ¼ 2þ þ r @r r2 @2 @x2 @y2 @r
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð27-82Þ ð27-83Þ
APPLIED ELASTICITY APPLIED ELASTICITY
Particular
Stress equation of compatibility in terms of Airy’s stress function in polar coordinate r and is obtained by substituting (Eq. (27-83) to Eq. (27-82))
27.25
Formula
@2 1 @ 1 @2 þ þ @r2 r @r r2 @2 2 @ 1 @ 1 @ 2 þ þ @r2 r @r r2 @r2
r4 ¼
ð27-84Þ
SOLUTION OF ELASTICITY PROBLEMS USING AIRY’S STRESS FUNCTION Any Airy’s stress function either in Cartesian coordinates or polar coordinates used in solving any two-dimensional problems must satisfy Eqs. (27-66) and (27-72) in Cartesian coordinates and Eqs. (27-79) and (27-84) in polar coordinates and boundary conditions (27-46)
Cartesian coordinates Solutions of many two-dimensional problems can be found by assuming Airy’s stress function in terms of polynomial and Fourier series, which are
1 ¼ a1 x þ b1 y
first degree polynomial
ð27-85Þ
2 ¼ a2 x2 þ b2 xy þ c2 y2 second degree polynomial
ð27-86Þ
3 ¼ a3 x3 þ b3 x2 y þ c3 xy2 þ d3 y3 third degree polynomial
ð27-87Þ
4 ¼ a4 x4 þ b4 x3 y þ c4 x2 y2 þ d4 xy3 þ e4 y4 fourth degree polynomial
ð27-88Þ
5 ¼ a5 x5 þ b5 x4 y þ c5 x3 y2 þ d5 x2 y3 þ e5 xy4 þ f5 y5 fifth degree polynomial ð27-89Þ ¼ sin
m x f ðyÞ l
Fourier series
ð27-90Þ
where m is an integer ¼
nX ¼1
an cos
n¼0
¼1 n x nX n x bn sin þ l l n¼1
where n is an integer a0 ¼
1 2l
an ¼
1 l
ð 2l 0
ð 2l 0
dx cos
n x dx if n 6¼ 0 l
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð27-91Þ
APPLIED ELASTICITY
27.26
CHAPTER TWENTY-SEVEN
Particular
Formula
bn ¼
1 l
ð 2l 0
sin
n x dx l
is any periodic function of x, which represents itself at interval of 2l
Polar coordinates
(
)
r4 ¼ 0 is a fourth order biharmonic partial differential equation. The fourth order differential equation can be obtained by using a function in r4 ¼ 0 which in term gives four different stress functions
cos n n ¼ Rn ðrÞ sin n
One of the stress function for solving many problems in polar coordinates
1 ¼ A ln r þ Br2 ln r þ Cr2 þ D
The second order stress function 2
sin 2 ¼ ðA1 r þ B1 =r þ C1 r þ D1 r ln rÞ cos
ð27-92Þ
ð27-93Þ (
)
3
ð27-94Þ ) sin n n ¼ ðAn rn þ Bm =rn þ Cn r2 þ n þ Dn r2 n Þ cos n (
The third order stress function 3
ð27-95Þ The fourth order stress function
m ¼ Am þ Bm r2 þ Cm r sin þ Dm r cos ð27-96Þ It is sometimes difficult to select a stress function for solving a problem. But it is left to the discretion of the problem solver to select or decide the correct stress function to suit the problem under consideration.
The general expression for the stress function which satisfy boundary conditions and compatibility Eq. (27-84)
¼ A0 þ B0 r2 þ C0 r sin þ D0 r cos þ D00 þ C00 r2 þ B00 r2 ln r þ A00 ln r B þ A1 r þ 1 þ C1 r3 þ D1 r ln r sin r B0 þ A01 r þ 1 þ C10 r3 þ D01 r ln r cos r 1 X Bn Dn n nþ2 An r þ þ Cn r þ n 2 sin n þ rn r n¼2 1 X B0 D0 þ A0n rn þ n þ Cn0 rn þ 2 þ n n2 cos n rn r n¼2 ð27-97Þ
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
APPLIED ELASTICITY APPLIED ELASTICITY
Particular
In a general case the loading can be represented by the trigonometric series
Formula
q ¼ A0 þ
1 X m¼1
þ B0 þ
Am cos
1 X m¼1
The stress function can also be represented by
27.27
1 m x X m x A0m cos þ l l m¼1
Bm sin
1 m x X m x B0m cos þ l l m¼1 ð27-98Þ
¼ ðA ey þ B ey þ Cy ey þ Dy ey Þ sin x ð27-99Þ
APPLICATION OF STRESS FUNCTION Thick cylinder Stress function used in this case, Eq. (27-93)
¼ A ln r þ Br2 ln r þ Cr2 þ D
Boundary conditions are
ðr Þr ¼ di =2 ¼ pi
Equation of equilibrium used in this problem
@r r þ ¼0 @r r
and
ð27-93Þ
ðr Þr ¼ d0 =2 ¼ po
ð27-100aÞ ð27-100bÞ
Since it is a case of problem of symmetry with respect to axis of cylinder and no body force acting on it. r ¼
pi di2 po do2 di2 do2 ð pi po Þ 2 2 do2 di2 4r ðdo di2 Þ
ð27-101aÞ
The expression for tangential stress in thickness wall of thick cylinder under pressures po and pi at any radius r
¼
pi di2 po do2 di2 do2 ð pi po Þ þ 2 2 4r ðdo di2 Þ do2 di2
ð27-101bÞ
The shear stress
r ¼ 0
The expression for radial stress in thickness wall of thick cylinder under external pressure (po ) and internal pressure (pi ) at any radius r
Expression for displacement of an element in the thickness wall of cylinder at any radius r in radial direction and tangential direction respectively
u¼
1 d 2d 2ð p p Þ ð1 þ vÞ i o 2 o 2 i E 4rðdo di Þ 1 pi di2 po do2 þ ð1 vÞ r do2 di2
ð27-101cÞ
¼0
ð27-101dÞ ð27-101eÞ
Curved bar under pure bending (Fig. 27-15) Stress function used in this problem Eq. (27-93)
¼ A ln r þ Br2 ln r þ Cr2 þ D
Boundary conditions
ðr Þr ¼ do =2; di =2 ¼ 0
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð27-93Þ ð27-102aÞ
APPLIED ELASTICITY
27.28
CHAPTER TWENTY-SEVEN
Particular
Formula
ð do =2
y
di =2
l
ð do =2 di =2
Mb
r dr ¼ Mb
ð27-102bÞ
dr ¼ 0
ð27-102cÞ
ðr Þr ¼ do =2; di =2 ¼ 0
ð27-102dÞ
Equation of equilibrium used in this problem of symmetry with respect to the xy-plane perpendicular to axis of the bar
@r r þ ¼0 @r r
ð27-100bÞ
The expression for the radial stress component in the bar at r radius
4Mb r ¼
Mb
r0
d di 0 2 2
O
x
FIGURE 27-15
do2 di2 do do2 2r di2 di ln þ ln þ ln 4 do 4 2r 16r2 di
ð27-103Þ
4Mb do2 di2 do do2 2r di2 di ln þ ln þ ln
4 do 4 2r 16r2 di 1 þ ðdo2 di2 Þ ð27-104Þ 4
The expression for the tangential stress component in the bar at r radius
¼
The expression for shear stress component
r ¼ 0
ð27-105aÞ
where
¼
ðdo2 di2 Þ2 1 2 2 d 2 do di ln o 16 di 4
ð27-105bÞ
STRESS DISTRIBUTION IN A FLAT PLATE WITH HOLES OR CUTOUTS UNDER DIFFERENT TYPES OF LOADS C Ar2 þ Br4 þ 2 þ D cos 2 r
An infinite flat plate with centrally located circular cutout or hole subject to uniform uniaxial tension (Fig. 27-16)
¼
The expression for stress function
ðr Þr ¼ b ¼ cos2 ¼ 12 ð1 þ cos 2Þ
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð27-106Þ ð27-107aÞ
APPLIED ELASTICITY APPLIED ELASTICITY
Particular
27.29
Formula
ðr Þr ¼ b ¼ 12 sin 2 ð27-107bÞ " # a2 4a2 3a4 r ¼ 1 2 þ 1 2 þ 4 cos 2 2 r r r
Boundary conditions are The radial stress in an infinite plate with a centrally located circular hole (cut-out) subject to uniform uniaxial tension at infinity (Fig. 27-16)
"
The tangential stress in an infinite plate with centrally located circular hole (cutout) under uniform uniaxial tension at infinity
¼
The shear stress in an infinite flat plate with a centrally located circular cutout (hole) subject to uniform uniaxial tension at infinity
r ¼
2
# a2 3a4 1 þ 2 1 þ 4 cos 2 r r
2a2 3a4 1 þ 2 4 sin 2 2 r r
The stress concentration factor
For distribution of tangential stress around circle of hole under uniform uniaxial tension
Refer to Fig. 27-18.
For superposition of stresses in a flat plate with a centrally located circular hole subject to tension, compression and uniform pressure
Refer to Fig. 27-19.
The shear stress around hole at ¼ =2 or 3 =2
ðr Þr ¼ a ¼ 0
ð27-109Þ ð27-110Þ
a2 3a4 ð Þr ¼ a ¼ 2þ 2 þ 4 2 r r 1 a2 3a4 K ¼ ¼ ¼3 2þ 2 þ 4 2 r r r¼a
The tangential stress at hole boundary at ¼ =2 or 3 =2
ð27-108Þ
ð27-111aÞ ð27-111bÞ
ð27-111cÞ
σ
y
σ y
2a
=
P
q =
Q
q
σ
σ FIGURE 27-16 A large flat plate with a centrally located circular hole under uniform uniaxial stress at infinity.
3σ
a S
R
σ h
σ
σ
w
q
=
θ
2a
x
q
σmax
σ
σ
x σ
=
60
σ
σ
σ FIGURE 27-17 A large flat plate with circular hole under pure shear stress.
σ FIGURE 27-18 Distribution of stress around the boundary of circular cutout (hole).
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
APPLIED ELASTICITY
27.30
CHAPTER TWENTY-SEVEN
Particular
Formula
σ 2
σ 2
σ
τ=
2a
σ 2
τ=
σ 2
2a =
2a
σ 2
σ σ + 2 2
τ=
σ 2
τ=
σ 2
σ 2
σ 2
σ
σ 2
FIGURE 27-19 Principle of superposition.
Pure shear An infinite flat plate with centrally located circular cutout or hole subject to uniform uniaxial tension and compression (i.e., pure shear) (Fig. 27-17) C Ar2 þ Br4 þ 2 þ D sin 2 r
The expression for stress function
¼
Boundary conditions are
ðr Þ1 ¼ ð Þ1
ð27-113aÞ
r ¼ q sin 2
ð27-113bÞ
r ¼ q cos 2
ð27-113cÞ
ð27-112Þ
where q ¼ shear load
The tangential stress in an infinite plate with a centrally located circular hole subject to uniform tensile and compressive stresses as shown in Fig. 27-17 The radial stress
The shear stress
ðr Þr ¼ a ¼ ðr Þr ¼ a ¼ 0 3a4 ¼ q 1 þ 4 sin 2 r 4a2 3a4 r ¼ q 1 2 þ 4 sin 2 r r 2a2 3a4 r ¼ q 1 þ 2 4 cos 2 r r
The tangential stress
¼ 2 cos 2 ½ 2 cosð2 Þ
The maximum tangential stress at ¼ =2 or 3 =2 i.e., at P and Q (Fig. 27-17)
ð Þ ¼ =2 or 3 =2; r ¼ a ¼ 4
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð27-113dÞ ð27-114Þ
ð27-115Þ ð27-116Þ ð27-117Þ ð27-118aÞ
APPLIED ELASTICITY APPLIED ELASTICITY
Particular
27.31
Formula
The maximum tangential stress at ¼ 0 or ¼ , i.e., at R and S (Fig. 27-17) The stress concentration factor
ð Þ ¼ 0 or ; r ¼ a ¼ 4
K ¼
max ¼
ð27-118bÞ
3a4 1þ 4 ¼4 r r¼a
ð27-118cÞ
Bi-axial tension (Fig. 27-20) An infinite flat plate with centrally located circular hole (cutout) under biaxial uniform tension (Fig. 27-20) The radial stress at hole boundary
ðr Þr ¼ a ¼ 0
ð27-119aÞ
The shear stress at hole boundary
ðr Þr ¼ a ¼ 0
ð27-119bÞ
The tangential stress in an infinite flat plate with a centrally located circular hole subject to uniform biaxial tensile stress at infinity
¼ 2 cos 2 ½ 2 cosð2 Þ
The stress concentration factor
¼ 2
ð27-120Þ ð27-120aÞ
K ¼
2 ¼2
ð27-120bÞ
K ¼
max nom
ð27-121aÞ
Finite plate (Fig. 27-21) Uniaxial tension (Fig. 27-21)
σ
2a σ
θ
σ
Stress concentration factor, K ’
3.0
F
FIGURE 27-20 Biaxial tension.
d s
F
w
σmax
2.6
2.4
2.2
2.0 σ
q
2.8
h
P
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 Ratio of d/w
FIGURE 27-21 Stress concentration factor for a plate of finite width with a circular hole (cutout) in tension (Howland).
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
APPLIED ELASTICITY
27.32
CHAPTER TWENTY-SEVEN
Particular
The stress distribution in a flat plate of finite width w with a centrally located small circular hole according to Howland11 , which can be expressed in terms of stress concentration around hole
Formula
K ¼
max d 1 w
ð27-121bÞ
where nom ¼
F ¼ ðw dÞh 1 ðd=wÞ
ð27-121cÞ
¼ F=wh ¼ stress at the end of infinite plate The tangential stress at the points of q and s when w ¼ 2d according to Howland
¼ 4:3
ð27-121dÞ
The tangential stress at the point P according to Howland11
¼ 0:75
ð27-121eÞ
From Eqs. (27-75a) and (27-75b), which can be made use of for a rotating disk of uniform thickness with z-axis perpendicular to the xy-plane and stress components do not depend on . Hence Eqs. (27-75a) taking a body force equal to inertia force i.e., FbR ¼ !2 r, becomes
@r 1 þ ðr Þ þ FbR ¼ 0 @r r
ð27-122aÞ
Equation of force equilibrium from Eqs. (27-122a) after substituting value of FbR becomes
r
@r þ r þ !2 r2 ¼ 0 @r
ð27-122bÞ
It can be seen from Fig. 27-21 that maximum stress which is at the hole boundary, decreases very rapidly and approach the value of average stress at the edge of the infinite plate
ROTATING SOLID DISK WITH UNIFORM THICKNESS (Fig. 27-22)
@ðrr Þ þ !2 r2 ¼ 0 @r where
ð27-122cÞ
FbR ¼ body force per unit volume ¼ !2 r F ¼ rr ¼ stress function ¼ density, kg/m3 ! ¼ angular velocity, rad/s Stress is a function of r only because of symmetry Equation of compatibility
r
Using compatibility equation (27-123) and Hooke’s law after simplification, the expression for force equilibrium (27-122b) becomes
r2
@" þ " ¼ "r @r @2F @F þr F ¼ ð3 þ vÞ!2 r3 @r @r2
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð27-123Þ ð27-124aÞ
APPLIED ELASTICITY APPLIED ELASTICITY
Particular
O
27.33
Formula
x
θ dθ b r
σθ
σr
ω a dr
ρω 2r
σθ y
σ
b ∂σ ∂r r d
r+
r
FIGURE 27-22 Element of a rotating disk.
FIGURE 27-23
The general solution of Eq. (27-124a), when r ¼ e is substituted in it, becomes
F ¼ Ar þ
B !2 r3 ð3 þ vÞ ð27-124bÞ 8 r where A and B are constants of integration to be found by boundary conditions
Boundary conditions (a) The radial stress at outer boundary of rotating disc of radius b
ðr Þr ¼ b ¼ 0
ð27-125aÞ
(b) stress at center of rotating disc
ðr Þr ¼ 6¼ 0
ð27-125bÞ
The expression for radial stress at any radius r
3þv !2 ðb2 r2 Þ 8 3þv 1 þ 3v !2 r2 !2 b2 ¼ 8 8
The expression for tangential stress as any radius r
r ¼
ROTATING DISK WITH A CENTRAL CIRCULAR HOLE OF UNIFORM THICKNESS, Fig. 27-23
ðr Þr ¼ a ¼ 0
Boundary conditions
ðr Þr ¼ b ¼ 0
Using force equilibrium Eq. (27-124b) and boundary conditions Eqs. (27-128) the tangential and radial stresses at any radius r are
ð27-126Þ ð27-127Þ
ð27-128aÞ
ð27-128bÞ # 3þv a2 b2 1 þ 3v 2 2 2 2 ¼ ! a þ b þ 2 r 8 3þv r "
ð27-129Þ r ¼
3þv a2 b2 !2 a2 þ b2 2 r2 8 r
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð27-130Þ
APPLIED ELASTICITY
27.34
CHAPTER TWENTY-SEVEN
Particular
Formula
3þv !2 ðb aÞ2 8 " # 3þv 1v 2 2 2 ¼ ! b þ a 8 3þv
The expression for maximum radial stresses which pffiffiffiffiffi occurs at r ¼ ab
r max ¼
ð27-131aÞ
The expression for maximum tangential stress which occur at r ¼ a
max
ð27-131bÞ
Rotating disk as a three-dimensional problem The differential equations of equilibrium from Eqs. (27-76) when body force which is an inertia force (centrifugal force) is included, becomes
After substituting the body forces Fbx ¼ !2 x, Fby ¼ !2 y, Fbz ¼ 0 in Eqs. (27-65) and the last three equations containing shearing stress components remain the same as in Eqs. (27-65), and the first three equations in polar coordinates become
@r @rz r þ þ þ !2 r ¼ 0 @r @z r
ð27-132aÞ
@rz @z rz þ þ ¼0 @r @z r
ð27-132bÞ
2 1 @2I 2!2 ð27-133aÞ ðr Þ þ ¼ 2 2 1v 1 þ v @r r
r 2 r r 2 þ
r 2 z þ
2 1 1 @I 2!2 ¼ ð Þ þ r 1v 1 þ v r @r r2 ð27-133bÞ 1 @2I 2v!2 ¼ 2 1v 1 þ v @z
ð27-133cÞ
The equations of shearing stress components in Eqs. (27-65) remain the same without any change even when the body forces are acting. The solution of Eq. (27-132) consists of a particular solution and complementary function. The particular solution call be obtained by assuming
r ¼ Br2 þ Dz2 ;
z ¼ Ar2 ;
¼ Cr2 þ Dz2 ;
rz ¼ 0
The complementary solution is obtained by assuming a stress function, which has to satisfy boundary conditions, compatibility equations and having a form of a polynomial of the fifth degree
¼ a5 ð8z5 40r2 z2 þ 15r4 zÞ
The particular solution
r ¼
þ b5 ð2z5 r2 z3 3r4 zÞ !2 2 !2 ð1 þ 2vÞð1 vÞ 2 r z 3 6vð1 vÞ
dr
r
z ¼ !2 h
1 þ 3v 2 r 6v
ðaÞ
ðbÞ
ðcÞ ðdÞ
b
FIGURE 27-24 Rotating disc of variable thickness.
The complementary function obtained from assuming stress function Eq. (b)
¼
!2 ð1 þ 2vÞð1 þ vÞ 2 z 6vð1 vÞ
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ðeÞ
APPLIED ELASTICITY
27.35
APPLIED ELASTICITY
Particular
Formula
r ¼ !2 ¼ !2
vð1 þ vÞ 2 3 þ v 2 z þ r 2ð1 vÞ 8
1 þ 3v 2 vð1 þ vÞ 2 r þ z 8 2ð1 vÞ
ðfÞ ðgÞ
!2 vð1 þ vÞ c2 ð3 þ vÞa2 þ !2 8 2ð1 vÞ 3
An expression for uniform radial tension on the disk which is superposed on the resultant stresses to express the resultant radial compression along the boundary
Tr ¼
The final expressions for stress components
r ¼ !2
ðhÞ
3þv 2 vð1 þ vÞ 2 ða r2 Þ þ ðc 3z2 Þ 8 6ð1 vÞ
ð27-134aÞ
1 þ 3v 2 r 8 vð1 þ vÞ 2 ðc 8z2 Þ þ 6ð1 vÞ
¼ r!2
z ¼ 0;
3þv 2 a 8
rz ¼ 0
ð27-134bÞ ð27-134cÞ
For disk of uniform strength rotating at ! rad/s
Refer to Chapter 10, Eq. (10-1) and Fig. 10-1.
For solid cylinder rotating at ! rad/s, hollow cylinder rotating at ! rad/s and solid thin uniform disk rotating at ! rad/s under external pressure
Refer to Chapter 10, Eqs. (10-9) to (10-25) and Figs. 10-2 and 10-3.
For asymmetrically reinforced circular holes/cutouts in a flat plate subject to uniform uniaxial tensile force/stress
Refer to Chapter 4, Figs. 4-7(a), 4-7(b) and 4-7(c).
ROTATING DISK OF VARIABLE THICKNESS (Fig. 27-24) The equation of force equilibrium in case of rotating disk of variable thickness from Eq. (27-122b)
d ðrhr Þ h þ 2 !rh ¼ 0 dr
Using rhr ¼ F and thickness variation as h ¼ Cr , Hooke’s law, r ¼ e and Eq. (27-123), Eq. (27-135) become
r2
ð27-135Þ
@2F @F þ ð1 þ Þr ð1 þ v ÞF 2 @r @r ¼ ð3 þ vÞ2 !Cr3
ð27-136aÞ
@2F @F ð1 þ v ÞF þ @ @2 ¼ ð3 þ vÞ!2 C eð3 Þ where C and are constants
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð27-136bÞ
APPLIED ELASTICITY
27.36
CHAPTER TWENTY-SEVEN
Particular
Boundary conditions
Formula
ðr Þr ¼ b ¼ 0
ð27-137aÞ
ðr Þr ¼ 0 6¼ 1
ð27-137bÞ
ð Þr ¼ 6¼ 1 The expression for radial stress
ð27-137bÞ " 2 #
1 þ 1 3þv r r r ¼ !2 b 8 ð3 þ vÞ b b ð27-138Þ
The expression for tangential stress
¼
3þv !2 b2 8 ð3 þ vÞ " # r 1 þ 1 1 þ 3v r 2 1 b 3þv b
where
¼ 2
sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ffi 2 ð1 þ v Þ 2
ð27-139aÞ
ð27-139bÞ
1 and 2 are roots of Eq. (27-139b) For a symmetrically reinforced circular cutout in a flat plate under uniform uniaxial tension according to the analysis of Timoshenko
Refer to Fig. 27-25.
NEUTRAL HOLES (MANSFIELD THEORY) Reinforced holes which do not affect the stress distribution in a plate are said to be neutral
Resolving the forces in x-direction, and using stress @2 @2 function for stresses as x ¼ z , y ¼ 2 and @y @x @2 xy ¼ and after integrating, an expression is @x@y obtained as Resolving the forces in y-direction after performing integration etc. as done under Eq. (a), another expression is obtained
There is negligible bonding on the reinforcement since it is thin compared to the radius of the curvature of the hole, and shear across the section of reinforcement is zero. F @ cos ¼ þB ðaÞ t @y
F sin t
From Eqs. (a) and (b) tan
Eq. (c) may be written as
¼
@ þA @x
@ þA dy ¼ @x ¼ @ dx þB @y
@ @ dy þ dx þ B dy þ A dx ¼ 0 @y @x
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ðbÞ
ðcÞ
ðdÞ
APPLIED ELASTICITY APPLIED ELASTICITY
Particular
27.37
Formula
3.0 ANALYSIS OF TIMOSHENKO di = 0.2 w
Stress - concentration Factor, Kσ
σmax σmax di KσB = (1 β) 1 = σnom w σ
2.0
Where Bend cross-section (do-di) (H-h) β= = dih Hole cross-section
KσB H h
X
KσB σ
do di
1.0
σ 1.0
σmax B
0
0
0.1
0.2
0.3
Section X-X
0.4
0.5
X
0.6
B
0.7
0.8
0.9
0 1.0
FIGURE 27-26 Stress-concentration factor KB , for a symmetrically reinforced circular hole (cutout) in a flat plate in tension.
Integrating Eq. (c) an expression for is obtained as
þ By þ Ax þ C ¼ 0
ð27-140Þ
The term Ax þ By þ C can be included or excluded from the stress function without changing the stress distribution. These terms do not affect the shape of the neutral hole but determines the position of the hole. By omitting A; B and C the shape of the neutral hole is given by stress function
¼0
ð27-141Þ
Compatibility Considering the displacements and strain of triangular element klm as shown in Fig. 27-26 x and y directions due to x , y and xy stresses and equating strain in the plate equal to strain in the reinforcement, an expression for area of reinforcement (AR ) for neutral hole is obtained as
Strain in the plate ¼ strain in the reinforcement
" #3=2 F @ 2 @ 2 AR ¼ ¼t þ E"t @x @y "( @ 2 @ 2 @ 2 @ 2 þ 2 @y @x2 @x @y ) ( @ 2 @ @ @ 2 @ 2 v 2 @x @y @x @y @x2 @y )#1 @ 2 @ 2 @ 2 @ @ 2 ð27-142Þ þ 2 @x @x @y @y @x @y
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
APPLIED ELASTICITY
27.38
CHAPTER TWENTY-SEVEN
Particular
l σ 2a
m Element k
σ
Reinforcement y
F l
Formula
ψ
σy
τxy
dx
x
(a)
σ
2b
y
σx
dy
σ 2
σ 2
m τxy
2a x
x
2a
(b)
dz
y k
σ y
F + dF
FIGURE 27-26 (a) A reinforced circular hole under tension, (b) element at reinforcement under the action of normal stresses x and y and shear stress xy due to force F acting on the cross-section of the reinforcement.
(a)
(b)
FIGURE 27-27 Thin walled cylinder with a circular hole under stress.
Neutral hole in a thin walled cylinder (Fig. 27-27) The stress function may be taken as
For neutral hole
Eq. (27-144) becomes an ellipse whose minor axispis ffiffiffi 2r and ratio of major axis (2a) to minor axis (2b) is 2 : 1 Substituting stress function from Eq. (27-144a) in Eq. (27-142), the area of reinforcement
2 y2 þ Ax þ By þ C x þ 2 2 2 y2 ¼ x þ C 2 2 ¼
ð27-143aÞ ð27-143bÞ
if the origin of coordinates is taken at center of hole 2 y2 ð27-144aÞ x þ C ¼0 ¼ 2 2 y2 2r ¼ 0 2 pffiffiffi x2 3=2 rt 2 1 þ 2 r AR ¼ 3x2 1 2v þ 2 r where t ¼ thickness of plate x2 þ
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð27-144bÞ
ð27-145Þ
APPLIED ELASTICITY APPLIED ELASTICITY
Particular
27.39
Formula
COMPLEX VARIABLE METHOD APPLIED TO ELASTICITY For equation of equilibrium in three-dimension and two-dimension
Refer to Eqs. (27-11a) to (27-11e).
The combinations of grouping of stress components are
¼ x þ y
ð27-146aÞ
¼ x y þ 2ixy
ð27-146bÞ
¼ xz þ iyz
ð27-146cÞ
z ¼ z
ð27-146dÞ
The body force complex potentials and components of body force complex potentials
Vðx; y; zÞ ¼ Uðz; z; zÞ Fbx ¼
The equations of equilibrium can be reduced to two equations using the stress combinations of Eqs. (27-146) and variable complex number
When the body force is zero Eq. (27-148) can be written as
@V ; @x
Fby ¼
@V ; @y
ð27-147Þ Fbz ¼
@V @z
@ @ @ ð þ 2UÞ þ þ ¼0 @ z @z @z
ð27-148aÞ
where z ¼ x þ iy, z ¼ x iy @ @ @ ð þ UÞ þ þ ¼0 @z z @z @ z @ @ @ þ þ ¼0 @ z @z @z @z @ @ þ þ ¼0 @z @ z @z
ð27-148bÞ ð27-149aÞ ð27-149bÞ
Stress strain relation The complex displacement
Stress-displacement equations by using Eqs. (27-146) and Eqs. (27-58)
D ¼ u þ iv
ð27-150Þ
@w @u @v @w @D @ D þ þ ¼ þ þ ð27-151aÞ @x @y @z @z @ z @z @D @ D @w þ þ 2v ð1 2vÞ ¼ 2G ð27-151bÞ @z @ z @z " # @D @ D @w þ þ ð1 vÞ ð1 2vÞz ¼ 2G v @z @z @z ð27-151cÞ ¼ 4G
@D @ z
@D @w ¼G þ2 @z @ z
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð27-151dÞ ð27-151eÞ
APPLIED ELASTICITY
27.40
CHAPTER TWENTY-SEVEN
Particular
Formula
STRAIN COMBINATIONS ¼ "x þ "y
The strain combinations are
¼ "x "y þ ixy ¼ xz þ iyz ;
ð27-152Þ
D ¼ u þ iv
@D @ D ¼ þ @z @ z @D ¼2 @ z @D @w ¼ þ2 @ z @ z_ Strain transformation rules (Fig. 27-28)
D ¼ u þ iv;
D0 ¼ u0 þ iv0
D ¼ re ;
0
D ¼ De
i
y y’
0
y v
i
0 ¼
v’ u’
α
¼
x 0
FIGURE 27-28 Strain transformation.
Stress transformation rules
ð being invariantÞ
0 ¼ e2i
x
z
0 @D @ D @D0 @ D þ ¼ þ 0 ¼ 0 @z @ z @z @ z
¼ 0
x’
P (x,y) u
ð27-154Þ
i
z ¼ ze
D
θ
ð27-153Þ
¼
@D @w þ2 @z @z ei
@" @w @"0 ¼ ¼ @z @z @z
ðinvariantÞ
¼ 2ð þ GÞð"x þ "y Þ þ 2 "z ¼ 2ð þ GÞ þ 2 "z ¼ 2ð þ GÞ0 þ 2 "z0 ¼ 0
"
¼ 2G "x "y þ i
@u @v þ @y @x
ð27-155Þ
# ¼ 2G
0 ¼ 2G0 ¼ e2i " # @u @w @v @w ¼G þ þi þ @z @x @z @y ¼ Gðxz þ iyz Þ ¼ G 0 ¼ eia
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
APPLIED ELASTICITY APPLIED ELASTICITY
Particular
27.41
Formula
PLANE STRAIN (Figs. 27-29 and 24-30) External forces have to be applied on both top and bottom flat ends of the cylinder to prevent its movement in order to meet the condition that w ¼ 0. The Eq. (27-151b) becomes And Eq. (27-151d) becomes
The expression for F The stress combinations are
@D @ D ð1 2vÞ ¼ 2G þ @z @ z
ð27-156Þ
¼0 ð27-156aÞ @D since U independent of z; ¼ 0 ¼G @z 1 2v 0 ð ð F ¼ 2½ðzÞ þ z w zÞ þ ! zÞ 1v 1 @w 0 ð ¼ 2½0 ðzÞ þ zÞ þ 1 v @z 00 ð 0 ð zÞ þ ! zÞ þ ¼ 2½z
1 2v @w 1 v @ z
ð27-156bÞ ð27-156cÞ ð27-157Þ
0 ð ð zÞ ! zÞ 2GD ¼ ð3 4vÞðzÞ z
The displacement D
þ
1 2v w 2ð1 vÞ
ð27-158Þ
BOUNDARY CONDITIONS Specified stresses The expression for F
F ¼2
By using Eq. (27-155), Eq. (27-159) becomes
ðs 0
ðn þ ins UÞ
@z ds þ constant @s
ðs
ðn þ ins Þ
@z ds þ constant @s
¼ f1 þ if2 on C
ð27-160Þ
0 ð ðzÞ þ z zÞ þ !ð zÞ ¼
0
where f1 and f2 are functions of z only R y S ( m, l, o)
z (or z)
N (l, m, o)
ds
α
O x
y FIGURE 27-29
ð27-159Þ
x C
FIGURE 27-30
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
APPLIED ELASTICITY
27.42
CHAPTER TWENTY-SEVEN
Particular
Formula
Specified displacement From Eq. (27-158) for D
1 2v 0 ð ð ð3 4vÞðzÞ z zÞ ! zÞ ¼ 2GD w 2ð1 vÞ ð27-161Þ
If body force is absent Eq. (27-161) becomes
0 ð ð ð3 4vÞðzÞ z zÞ ! zÞ ¼ 2Gðg1 þ ig2 Þ on C ð27-162Þ where g1 and g2 are functions of z only
FORCE AND COUPLE RESULTANTS AROUND THE BOUNDARY (Fig. 27-31) The expression for force with components X and Y at point O The expression for couple at O
h iB1 0 ð ð X þ iY ¼ i ðzÞ þ z zÞ þ ! zÞ
ð27-163Þ
A1
h iB1 ð B1 @z þ U ds N ¼ Rl ðzÞ z!ðzÞ z z0 ðzÞ A1 @s A1 ð27-164Þ
GENERALIZED PLANE STRESS The average stress combinations assuming z ¼ 0, a stress free surface, i.e. xz ¼ yz ¼ 0 at the surface and body force potential Uðz; zÞ is independent of z
o ¼ x þ y
ð27-165aÞ
o ¼ x y þ 2ixy
ð27-165bÞ
where
B1
τnb
1 2h
pav ¼
1 2h
τyn
ðh h
ðh
h
σn α
N
X
O
1 2h
ðh h
dz
p dz
O
2h x
y x
FIGURE 27-31
o ¼
z
A1
Y
dz;
τxn
ds
y
o ¼
y
x
FIGURE 27-32
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
APPLIED ELASTICITY APPLIED ELASTICITY
Particular
The average complex displacement
The body force Eq.
@ @ @ þ þ ¼ 0 becomes @z @ z @z
Formula
Do ¼ uo þ ivo ¼ 1 2h
ðh h
¼ Taking into consideration the body force, Eq. (27-167) and other expression for F and o become
1 2h
ðh h
ð27-166Þ
D dz
@ @ @ þ þ dz ¼ 0 @z @ z @z
ð27-167aÞ
@o @o þ ¼0 @z @z
@ @o h þ 2Ui þ ¼0 @ z o @z @! v @D @ D þ ¼ 1 v @z @ z @z ¼ 4G
ð27-167bÞ ð27-168aÞ
@D @ z
o ¼ 4G
ð27-168bÞ
@Do @ z
ð27-168cÞ
1v @Do @ D þ o ¼ 2G @z 1þv @ z The equations for generalized plane stress
27.43
0 ð ð zÞ þ ! zÞg þ F ¼ 2fðzÞ þ z 2GD ¼
ð27-168dÞ 1 2K w 1K
ð27-169Þ
3v 1 2K 0 ð ð zÞ ! zÞ ðzÞ z w 1þv 2ð1 KÞ ð27-170Þ
0 ð zÞ ¼ 2 0 ðzÞ þ
1 @w 1 K @z
1 2K @w 00 ð 0 ð zÞ þ ! zÞg ¼ 2fz 1 K @ z
ð27-171Þ ð27-172Þ
CONDITIONS ALONG A STRESS-FREE BOUNDARY, Fig. 27-33 Adding Eqs. (27-169) and (27-170) and putting F ¼ 0 along free boundary, i.e. segment AB, the displacement along AB
D¼
4 ðzÞ E
SOLUTION INVOLVING CIRCULAR BOUNDARIES (Figs. 27-33 and 27-34) From stress strain transformation rules
0 ¼ ¼ r þ
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð27-173Þ
APPLIED ELASTICITY
27.44
CHAPTER TWENTY-SEVEN
Particular
Formula
y
B
y
A
θ = constant
x r C
FIGURE 27-33
r = constant
θ
x
FIGURE 27-34
z z i i where r ¼ , z ¼ r e , z ¼ r e
0 ¼ F e2i ¼ r þ 2i ¼
1 @w ð27-174Þ 1 K @z 1 2K z @w z 0 ð zÞ þ ! zÞ 0 ¼ 2 z00 ð 1 K z @z z 0 ð 0 ¼ 2f0 ðzÞ þ zÞg
2GD0 ¼ ei The boundary conditions are
F ¼2
ðs 0
3v 0 ð ð zÞ ! zÞ ðzÞ z 1þv
1 2K w 1K
ðr þ ir þ UÞ
ð27-175Þ
ð27-176Þ @z ds þ constant @s ð27-177aÞ
0
ð zÞ þ ! zÞ ¼ f1 þ if2 ðzÞ þ z ð
on C
ð27-177bÞ
APPLICATION OF CONFORMAL TRANSFORMATION (Fig. 27-35) The stress combinations after transformation
Eqs. (27-178) are related stress combinations in rectangular coordinates x and y as
0 ¼ þ
ð27-178aÞ
0 ¼ þ 2i
ð27-178bÞ
0 ¼
ð27-179aÞ
0 ¼ e2i
ð27-179bÞ
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
APPLIED ELASTICITY APPLIED ELASTICITY
Particular
Formula
ξ = constant
y
η
η
τξη
ϑ = constant
P
27.45
σξ
η = constant
Q r
ρ
α
x
O
(a) z - plane
ρ = constant ξ = constant
ϑ
O
ξ O
(b) ϕ - plane
(c)
ξ
FIGURE 27-35
An explanation for e2i
where z ¼ zðÞ ¼ f ð; Þ þ igð; Þ ¼ þ i f ð; Þ and gð; Þ are real and imaginary parts of zðÞ e2i ¼ z0 ðÞ=z0 ðÞ ð27-179cÞ or
Using Eqs. (27-179a) and (27-179b), and Eqs. (27-171) and (27-172), when these are no body forces, letting ðzÞ ¼ 1 ðÞ and !ðzÞ ¼ !1 ðÞ The transformation of a given boundary in the zplane into the unit circle in the -plane
Using polar coordinates (, #), the stress components become
d 0 d þ 1 ; ð Þ ð27-180aÞ 0 ¼ 2 01 ðÞ dz d z 0 01 ; ðÞ 1 ðÞ þ 0 ¼ 2 ð27-180bÞ z0 ðÞ z0 ðÞ o 2 n 01 ðÞ þ 0 001 ðÞi þ ! 01 ðÞ zðÞh00 0 ¼ 0 z ðÞ ð27-181aÞ or ( ) 0 2 1 1 ; ð Þ 0 0 1 ; ðÞ ¼ 0 ð27-181bÞ þ! z ðÞ zðÞ z0 ðÞ 00 ¼ þ # ¼ þ # 2i# 00
Using polar coordinates Eqs. (27-180a) and (27-181) in terms of complex potentials become
ð27-182aÞ
00
0
ð27-182bÞ 00
0
2i#
where ¼ and ¼ e " # 0 ðÞ 0 ðÞ 00 þ ¼2 0 z ðÞ z0 ðÞ
¼
0 :
ð27-183Þ
i 2 h 01 ðÞ þ 0 001 ðÞi þ ! 0 ðÞ zðÞh00 0 z ðÞ ð27-184aÞ " # 0 ðÞ 2 0 ðÞ þ! ð27-184bÞ zðÞ 0 00 ¼ 0 z ðÞ z ð Þ 00 ¼
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
APPLIED ELASTICITY
27.46
CHAPTER TWENTY-SEVEN
Particular y
Formula
y
T
T
T x
a
T
σy
y
τxy
dy y z
2b
τxy σx
2b
x
Mb
2h
Mb
a
a
FIGURE 27-36
a
FIGURE 27-37
Rectangular plate under all round tension Value of complex potentials ðzÞ and !ðzÞ assumed
ðzÞ ¼ 12 Tz;
From stress combination Eqs. (27-156c) and (27-157)
0 ð zÞg þ ¼ 2f0 ðzÞ þ
!ðxÞ ¼ 0
ð27-185Þ 1 @w 1 v @z
¼ 2½12 T þ 12 T ¼ 2T
ð27-156cÞ
1 2v @w 00 ð 0 ð zÞ þ ! zÞg þ ¼ 2fz 1 v @ z
ð27-157Þ
where ¼ x þ y and ¼ x y þ 2ixy The stress x and y after equating real and imaginary parts
x ¼ T;
The displacement from Eq. (27-158) after equating real and imaginary parts
0 ð ð zÞ ! zÞ 2GD ¼ ð3 4vÞðzÞ z
y ¼ T;
þ
xy ¼ 0
1 2v w 2ð1 vÞ
ð27-158Þ
D¼
T ð1 vÞðx þ iyÞ ¼ u þ i E
u¼
T ð1 vÞx; E
¼
ð27-186Þ
T ð1 vÞy E
ð27-187Þ
Rectangular plate under plane flexure Assume values of complex potentials ðzÞ and !ðzÞ as
ðzÞ ¼ Az2 !ðzÞ ¼ Bz2 Choose A and B, which may be complex, so that edges y ¼ b are stress free.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
APPLIED ELASTICITY APPLIED ELASTICITY
Particular
27.47
Formula
Boundary conditions From stress combinations Eqs. (27-156) and (27-157) boundary conditions
0 ð 0 ðzÞ þ zÞ þ z00 ðzÞ þ !0 ðzÞ ¼ y þ ixy
ð27-156Þ
y ¼ 0, xy ¼ 0 throughout the plate A ¼ iC and B ¼ iC where C is real ¼ 0x þ 0y ¼ 0x ¼ 8Cy
The bending moment
Mb ¼
ðb
x 2hy dy ¼ 8CI
b
ð27-188Þ
where I ¼ moment of inertia about oz C¼
Mb 8I
The values of complex potentials ðzÞ ¼ Az2 and !ðzÞ ¼ Bz2 are
ðzÞ ¼
The displacement from Eq. (27-158)
D¼
iMb 2 z ; 8I
!ðzÞ ¼
iMb 2 z 8I
ð27-188aÞ
i 1 h 0 ð ð zÞ ! zÞ ¼ u þ iv ð3 4vÞðzÞ z 2G
when body forces are zero Substituting the values of ðzÞ and !ðzÞ in the above, u and v can be determined.
Thick cylinder under internal and external pressure Values of complex potentials ðzÞ and !ðzÞ assumed using boundary conditions at r ¼ a or di =2 and r ¼ b or do =2 with no body forces, assuming internal pressure pi , external pressure po , values of A and B in Eq. (27-189), which are real, can be found. From Eqs. (27-174) and (27-175)
The expressions for and r at any radius
ðzÞ ¼ Az
and !ðzÞ ¼
B z
ð27-189aÞ
where A and B are real 0 1 2 ½
0 ð þ 0 ¼ r þ ir ¼ 0 ðzÞ þ zÞ z 00 ðzÞ !0 ð zÞ z z
ð27-189bÞ
The equations for and r are given in Eqs. (27-101b) and (27-101a) respectively.
Rotating solid disk and hollow disk of uniform thickness rotating at ! rad/s Values of complex potentials ðzÞ and !ðzÞ assumed
ðzÞ ¼ Cz
and !ðzÞ ¼
B z
where C and B are real
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð27-189cÞ
APPLIED ELASTICITY
27.48
CHAPTER TWENTY-SEVEN
Particular
Formula
Using boundary conditions at ðr Þr ¼ b ¼ 0 and ðr Þr ¼ 0 6¼ 0 for solid disk ðr Þr ¼ a ¼ 0 and ðr Þr ¼ b ¼ 0 for hollow disc taking into consideration body forces, values of C and B in Eq. (27-189c) which are real can be found
Refer Eqs. (27-126), (27-127) and (27-128) to (27-131)
The radial displacements at the boundaries
ður Þr ¼ a ¼
!2 a fð1 vÞa2 þ ð3 þ vÞb2 g 4E
ð27-189dÞ
ður Þr ¼ b ¼
!2 b fð1 vÞb2 þ ð3 þ vÞa2 g 4E
ð27-189eÞ
Large plate under uniform uniaxial tension with a centrally located unstressed circular hole Values of complex potentials ðzÞ and !ðzÞ assumed
Using Eq. (27-189b) and above complex potentials Using boundary condition at r ¼ a
Tz A þ 4 z 1 B C !ðzÞ ¼ Tz þ þ 3 2 z z where A, B and C are real
ðzÞ ¼
ð27-190Þ
1 3A 1 z B 3C T 2 þ T þ þ 3 ð27-190aÞ 2 2 z z z z z z 1 B 1 A Tþ 2 þ T þ 2 e2i ðr ir Þr ¼ a ¼ 2 2 a a 3C 3A 2i þ ð27-190bÞ e a4 a2 r ir ¼
A ¼ 12 Ta2 ;
B ¼ 12 Ta2 ;
C ¼ 12 a4
ð27-190cÞ
since hole is stress free The new values of ðzÞ and !ðzÞ
ðzÞ ¼
Using Eqs. (27-174), (27-175) and after equating the real and imaginary parts, the stress components are y A T
A
FIGURE 27-38
θ
a T
x
Tz 1 Ta2 þ 4 2 z
ð27-190dÞ
1 Ta2 a4 ð27-190eÞ þ 3 !ðzÞ ¼ Tz 4 2 2z " # 1 a2 4a2 3a4 r ¼ T 1 2 þ 1 2 þ 4 cos 2 2 r r r
¼
1 T 2
" 1þ
a2 r2
#
3a4 1 þ 4 cos 2 r
1 2a2 3a4 r ¼ T 1 þ 2 4 sin 2 2 r r
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð27-191Þ ð27-192Þ ð27-193Þ
APPLIED ELASTICITY APPLIED ELASTICITY
Particular
The , r and r at r ¼ a
The maximum tangential stress The stress concentration factor
27.49
Formula
ðr Þr ¼ a ¼ ðr Þr ¼ a ¼ 0
ð27-194aÞ
ð Þr ¼ a ¼ Tð1 2 cos 2Þ
ð27-194bÞ
max ¼ ð Þr ¼ a ¼ 3T
ð27-194cÞ
K ¼
ð Þmax 3T ¼ ¼3 T T
ð27-195Þ
Large plate containing a circular hole under uniform pressure Values of complex potentials ðzÞ and !ðzÞ assumed From Eqs. (27-174) and (27-175) in the absence of body forces
ðzÞ ¼ 0;
!ðzÞ ¼
A z
ð27-196Þ
0 ð zÞg ¼ r þ ¼ 0 0 ¼ 2f0 ðzÞ þ z 0 00 ð ð zÞ þ ! zÞ 0 ¼ 2 z z ¼ r þ 2ir ¼
Boundary conditions are
ðr Þr ¼ a ¼ p ¼
ðaÞ
2A r2
ðbÞ
2A a2
A ¼ pa2 The new complex potentials
ðzÞ ¼ 0;
The stress components are
r ¼
!ðzÞ ¼
pa2 ; r2
¼ r ¼ The displacement from Eq. (27-176)
ðcÞ pa2 z
r ¼ 0 pa2 r2
2GD0 ¼ 2Gður þ iu Þ ¼ ei A ; 2Gr pa ¼ 2G
ður Þ ¼ ður Þr ¼ a
ðdÞ ð27-197Þ
A z
¼
A r
u ¼ 0
ð27-198Þ
Large plate containing a circular hole filled by an oversize disk 1. Rigid Disk The radius of disk rd
rd ¼ að1 þ "Þ where a ¼ radius of hole
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ðaÞ
APPLIED ELASTICITY
27.50
CHAPTER TWENTY-SEVEN
Particular
From first of Eq. (27-198), the radial displacement The stress components
Formula
ur ¼ a" ¼
A 2Ga
r ¼ ¼ 2G"
or A ¼ 2Ga2 "
ðbÞ
a2 r2
ðcÞ
r ¼ 0
ðdÞ
2. Elastic Disk The complex potential for all round pressure on the disk
1 ðzÞ ¼ 12 pz;
The displacement from Eq. (27-176)
2G1 D0 ¼ 2G1 ður1 þ iu1 Þ ¼ ei ¼ ur1 ¼
!1 ðzÞ ¼ 0
ðeÞ
ð1 vÞpz 1þv
pð1 v1 Þpa 1 þ v1
ðfÞ
pð1 v1 Þa E1
ðgÞ
where subscript 1 for disk and 2 for plate The radial displacement of plate The pressure between disc and plate
ur2 ¼ p¼
pa 2G2
ðhÞ
E1 E2 E1 ð1 þ v2 Þ þ E2 ð1 v1 Þ
ð27-198Þ
Elliptical hole in a large plate under tension (Fig. 27-39) The expression for transformation
m ; z¼C þ
m<1
ð27-199Þ
Transforms the outside of an ellipse of semiaxes a and b in the z-plane into the outside of a unit circle r in the -plane, provided ab C ¼ 12 ða þ bÞ; m ¼ ð27-200aÞ aþb z ¼ ei# þ m ei# C ¼ ð1 þ mÞ cos # þ ð1 mÞi sin # ð27-200bÞ aþb 2a 2b z¼ cos # þ i sin # ð27-200cÞ 2 aþb aþb or
x þ iy ¼ a cos # þ ib sin #
# ¼ eccentric angle around the ellipse
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð27-200dÞ
APPLIED ELASTICITY APPLIED ELASTICITY
Particular
Formula
s
z = x + iy
T
y
27.51
η
η ζ = ξ+iη = eiϑ
ab
b a
x
α
ϑ
ξ
1
T (a) z - Plane
(b) ζ - Plane
FIGURE 27-39
The points at which the transformation ceases to be conformal are
The boundary condition at the stress free ellipse The boundary condition in terms of
Eq. (27-203) on unit circle becomes
z0 ðÞ ¼ 0
m z0 ðÞ ¼ C 1 2 ¼ 0 pffiffiffiffi ¼ m; since m < 1 0 ð ð zÞ þ ! zÞ ¼ f1 þ if2 ðzÞ þ z
ð27-201aÞ ð27-201bÞ
ð27-202Þ on the boundary of ellipse ¼ 0 0 ðÞ 1 ðÞ ¼ 0 1 ðÞ þ zðÞ 01 þ ! z ð Þ or 01 ðÞ þ z0 ðÞ þ z0 ðÞ! 1 ðÞ ¼ 0 z0 ðÞ1 ðÞ þ zðÞ ð27-203Þ 01 ð 01 ð z0 ð Þ1 ðÞ þ zðÞ Þ þ z0 ð Þ! Þ ¼ 0 or 1 1 01 1 þ z0 1 ! 1 z0 1 ðÞ þ zðÞ ¼0
The complex potentials for an infinite plate without a hole acted upon by uniaxial tension at an angle to the x-axis in the z-plane and -plane
ð27-204Þ where ¼ ; ¼ ¼ 1 on since ¼ 1 on unit circle ðzÞ ¼ 14 Tz; !ðzÞ ¼ 12 Tz e2i on z plane ð27-205aÞ m z ¼ Cð þ m=Þ ! C and z0 ðÞ ¼ C 1 2 ! C at in -plane
The complex potentials for an infinite plate with stress free elliptic hole subject to tension at an angle to the x-axis in -plane
ð27-205bÞ 1 ðÞ ¼ 14 TC; !1 ðÞ ¼ 12 TC e2i 1 A B C ð27-206aÞ 1 ðÞ ¼ TC þ þ 2 þ 3 þ 4 1 D1 E1 F1 0 2 2i þ 2 þ 3 þ þ z ðÞ!1 ðÞ ¼ TC e 2 ð27-206bÞ
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
APPLIED ELASTICITY
27.52
CHAPTER TWENTY-SEVEN
Particular
Using Eqs. (27-206) in Eqs. (27-204), after equating coefficients of powers of or (since E1 ¼ B ¼ C ¼ 0, D1 ¼ 1 þ m2 2Me2i , F1 ¼ e2i , A ¼ 2e2i mÞ
Formula
* + 1 2e2i m 1 ðÞ ¼ TC þ 4
ð27-206cÞ
*
1 !1 ðÞ ¼ TC 2
1 þ m2 2m e2i e2i 3 e2i þ m 1 2
+
The tangential stress on the boundary of elliptical hole from Eq. (27-183) 00 ¼ # þ where ¼ 0 after equating to real part of right hand side of equation and simplification (Fig. 27-39)
ð27-206dÞ 1 m2 þ 2m cos 2 2 cos 2ð# Þ # ¼ T 1 þ m2 2m cos 2# ð27-207Þ
The tangential stress on the boundary of elliptical hole for ¼ 0 (Fig. 27-40)
# ¼ T
The maximum tangential stress # max on the contour ab of any elliptical hole for any value of m ¼ and aþb 1 c ¼ ða þ bÞ will be at # ¼ 2
ð# Þmax
1 m2 þ 2m 2 cos 2# 1 þ m2 2n cos 2# 3m 2b ¼T ¼T 1þ 1þm a
ð27-208Þ ð27-209Þ
2
If a ¼ b in Eq. (27-209), then the ellipse becomes a circle
ðv Þmax ¼ 3T
The stress concentration factor
K ¼
By taking ¼ 458 with T ¼ S, and ¼ 458 with T ¼ þS, and on adding these solutions, a solution for pure shear S applied to an infinite flat plate with an elliptical hole at infinity is obtained. The shear will be parallel to the axes of the ellipse with around the elliptical hole is given by
ð27-209aÞ
ðv Þmax ¼3 T 4 sin 2 ¼ S 1 2m cos 2 þ m2
ð27-209bÞ ð27-210Þ
MUSKHELISHVILI’S DIRECT METHOD In this method that a hole L can be transformed conformally into a unit circle in the -plane so that outside of the hole is mopped on the inside of (Fig. 27-41) The form of the conformal transformation will be If the loading of the plate at infinity is given by the complex potential ðÞ, !ðÞ , the full complex potentials which will also satisfy the condition around the hole, can be written as
z¼C
1 þ e1 þ e2 2 þ e3 3 þ þ en n
ðÞ ¼ ðÞ þ o ðÞ
ð27-211Þ ð27-212Þ
!ðÞ ¼ ! ðÞ þ !o ðÞ
ð27-213Þ
where o ðÞ ¼
1 X o
an n ;
!o ðÞ ¼
1 X
bn n
o
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð27-213aÞ
APPLIED ELASTICITY APPLIED ELASTICITY
Particular
27.53
Formula
S
S 45 b S
45
η
y
θ
η
S
a
o
S FIGURE 27-40
ξ
L
S
S
x
z-Plane
ζ
ζ-Plane
o
FIGURE 27-41
The boundary condition around a stress free hole assuming no body forces is given by (refer to Eqs. (27-203) and (27-204)) Substituting the complex potentials given by Eqs. (27-212), in Eq. (27-214)
zðÞ 0 1 1 ðÞ þ þ ! ¼0 ð27-214Þ 1 z0 zðÞ 0 1 1 o þ! ¼ f1 þ if2 o ðÞ þ o 1 z0 ð27-215aÞ where
2
3 zðÞ 0 1 1 f1 þ if2 ¼ 6 ðÞ þ þ! 7 1 5 4 z0
Using Harnack’s theorem, residue theorem and 1 d Cauchy’s integral, multiplying by and 2 i integrating around Eq. (27-214) can be written as
The complex potential o ðÞ from Eq. (27-216) is
ð27-215bÞ 0o 1 ð ð 1 o ðÞ 1 zðÞ d þ d 2 i 2 i 0 1 z 1 ð ! ð o 1 1 f1 þ if2 d d ¼ þ 2 i 2 i ð27-216Þ 0o 1 ð zðÞ ð 1 1 f1 þ if2 o ðÞ þ d d ¼ 2 i 0 1 2 i ð Þ z ð27-217Þ
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
APPLIED ELASTICITY
27.54
CHAPTER TWENTY-SEVEN
Particular
Taking conjugate of Eq. (27-215), remembering that 1 d ¼ 1 and multiplying by and integrating 2 i around
The complex potential !o ðÞ can be found after substituting the value of o ðÞ Eq. (27-218) which can be evaluated from Eq. (27-217)
Formula
1 o 1 ð ð z 1 1 0o ðÞ d þ d 2 i 2 i z0 ðÞ ð ð 1 !o ðÞ 1 f1 if2 d d ¼ þ 2 i 2 i ð27-218Þ 1 ð z ð 1 1 f1 if2 0o ðÞ d ðÞ ¼ d þ ! o 2 i z0 ðÞ 2 i ð27-219Þ y
Stress free square hole in a flat plate under uniform uniaxial tension (Fig. 27-42)
T
T
x d FIGURE 27-42
The form of the conformal transformation will be
The known complex potential in this case
z¼C
1 3 6
ðÞ ¼
ð27-220Þ
1 1 3 TC 4 6
ð27-221Þ
1 1 3 ! ðÞ ¼ TC 2 6
ð27-222Þ
After substituting ðÞ and ! ðÞ from Eqs. (27-221) and (27-222) into Eq. (27-215)
1 2 3 1 f1 þ if2 ¼ TC 2 þ 3 3 3 4
ð27-223Þ
After substituting the value of f1 þ if2 from Eq. (27-223) in Eq. (21-217) and simplification
o ðÞ ¼ TC
Substituting the value of o ðÞ from Eq. (27-224) in Eq. (27-219) and after simplification
!o ðÞ ¼
3 1 þ 3 7 12
ð27-224Þ
1 1 TC 2 þ 3 4 3 " # 1 1 6 4 3 2 þ TC 3 2 þ 4 7 4
þ
1 TC 14
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð27-225Þ
APPLIED ELASTICITY APPLIED ELASTICITY
Particular
27.55
Formula
3 1 1 1 3 þ þ 7 4 24 1 91 78 3 !ðÞ ¼ TC þ 2 84ð2 þ 4 Þ
The full complete complex potentials after simplification
ðÞ ¼ TC
The tangential stress around the square hole
# ¼ Rl: 4
By adding more terms to the expression for transformation
z¼C
0 ðÞ z0 ðÞ
ð27-227Þ ð27-228Þ
1 1 3 1 þ 7 6 56
ð27-228aÞ
the radius becomes r ¼ 0:025d 1 1 3 1 1 11 þ 7 z¼C 6 56 176
The radius r will be rounded of
ð27-226Þ
ð27-228bÞ
the radius becomes r ¼ 0:014d For graph of # =T versus # in degrees
Refer to Fig. 27-43.
Stress free square hole in a flat plate under pure bending (Fig. 27-44)
The conformal transformation for plate with a square hole such that the diagonals along the coordinate axes as shown in Fig. 27-44
z¼C
The known complex potentials from Eqs. (27-188a)
ðzÞ ¼
8 T 6 4
Square Hole I r = 0.06 d II r = 0.025 d III r = 0.014 d
r
III
I III
20
2
40
iMb 2 z ; 8I
ð27-229Þ
! ðzÞ ¼
iMb 2 z 8I
ð27-188aÞ
T
ϑ
I
0
d
II
2
1 1 3 þ 6
60 ϑ - Degrees
80
II
90 Mb
Mb
4
FIGURE 27-43
FIGURE 27-44 Flat plate with stress-free square hole under pure bending.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
APPLIED ELASTICITY
27.56
CHAPTER TWENTY-SEVEN
Particular
The complete complex potentials in -plane will be of the form
From Eq. (27-217)
From Eq. (27-219)
Formula
iMb C2 1 1 3 2 þ þ o ðÞ 8I 6 iMb C 2 1 1 3 2 þ !o ðÞ !ðÞ ¼ þ 8I 6 iMb C2 4 2 1 4 1 o ðÞ ¼ þ 6 8I 3 3 36 ðÞ ¼
ð27-230aÞ ð27-230bÞ ð27-231Þ
1 1 þ 6 4 0 ðÞ 2 2 4 o iM C2 4 2 1 4 1 37 ¼ b þ 6 8I 3 3 16 18
!o ðÞ
ð27-232Þ The full complex potentials become often simplifying
ðÞ ¼ !ðÞ ¼
iMb C 8I
iMb C 2 8I
2
After knowing full complex potentials, the tangential stress at various angles around the hole/cutout can be calculated For graphs of v =ðMb c=IÞ versus # degree
1 1 2 þ 4 3 2
ð27-233Þ
18 þ 45 2 31 4 þ 36 6 15 8 9 2 ð2 4 Þ ð27-234Þ
Refer to Fig. 27-45.
Large plate containing an elliptical hole subjected to uniform pressure (Fig. 27-46) The expression for transformation
m z¼C þ ;
m<1
ð27-199Þ
where 1 ab C ¼ ða þ bÞ; m ¼ 2 aþb Refer to other details under Eq. (27-199) The complex potential at infinity
ðÞ ¼ ! ðÞ ¼ 0
The required complex potentials
ðÞ ¼
Boundary conditions
n ¼ ¼ p;
1 X an ; n 0
!ðÞ ¼
ð27-235aÞ 1 X bb n 0
ð27-235bÞ
ns ¼ 0 around the hole ð27-236Þ
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
APPLIED ELASTICITY APPLIED ELASTICITY
Particular
27.57
Formula
n p
6 5 4 3 2
I
Mb
I - Second moment of inertia ϑ = Angle form z-axis to a point on hole boundary
1
20
0 1
III
II
Mb
40
x
I
I
a p
p
III (a)
II
γ 60
γ 80
III
b
(b)
90
II
A D
B C
R
2 FIGURE 27-46
FIGURE 27-45
From Eq. (27-117b)
0 ð ð ðzÞ þ 2 zÞ þ ! zÞ ¼ ðn þ ns Þ
@z ds @s
¼ pz
Expressing Eq. (27-237) in -plane at all points of
1 @ 2 i [Considering the first of these integrals, one has to remember that is now a boundary to the region external to the unit circle. Thus it is necessary to consider an integration around a contour consisting of together with C circle 0 of large radius R joined by two close paths AB and CD, Fig. 27-46] Multiplying Eq. (27-238) by
Using Cauchy’s integral, Harnack’s theorem and residue theorem, Eq. (27-239) gives the expression for ðÞ
at all points on the ellipse ð27-237Þ zðÞ 0 1 1 þ! ¼ pzðÞ ðÞ þ 1 z0 2 þ mðÞ 0 1 1 ðÞ þ þ ! ð1 m2 Þ m ð27-238Þ ¼ pC þ 0 1 ð ð 2 1 ðÞ @ 1 þm þ d 2 i 2 i ð1 m2 Þ 1 ð ! ð þm d 1 pC d ¼ þ 2 i 2 i ð27-239Þ
ðÞ ¼
pCm
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð27-240Þ
APPLIED ELASTICITY
27.58
CHAPTER TWENTY-SEVEN
Particular
Formula
Taking conjugate of Eq. (27-239) and integrating around , the expression for !ðÞ The stress can be obtained by making use of Eq. (27-183) for 00 and (27-184b) for 00 and equating real parts on both sides of equation
!ðÞ ¼
pC pCm
½ ¼ 1 ¼ p from boundary condition 0 ðÞ ½00 ¼ 1 ¼ 4Rl 0 z ðÞ ¼ 1 ¼ # þ ¼
The tangential stress around by elliptical hole from Eq. (27-243)
1 þ m 2 2 m
# ¼ or
4pmðcos 2# mÞ 1 þ m2 2m cos 2#
4#mðcos 2v mÞ þp 1 þ m2 2m cos 2#
# ¼ p
1 þ 2m cos 2# 3m2 1 2m cos # þ m2
ð27-241Þ ð27-242Þ
ð27-243Þ ð27-244Þ ð27-245Þ
Large flat plate under uniform uniaxial tension with a circular hole whose edge is rigidly fixed (Fig. 27-49) The edge of the hole r ¼ a is held fixed by a rigid circular ring to which the material of the plate adheres at all points The boundary condition is given by T The complex potential form of displacement for generalized plane stress problem from Eqs. (27-170) when there are no body forces
½Dr ¼ a ¼ 0 for all # ð27-246aÞ 3v 0 ð ð ðzÞ z zÞ ! zÞ ¼ 0 ð27-246bÞ 2GD ¼ 1þv or 0 ð ð zÞ ! zÞ ¼ 0 on r ¼ a KðzÞ z
ð27-246cÞ
where 3v K¼ 1þv KðÞ zðÞ
0 ðÞ ðÞ ¼ 0 in terms of ! z0 ðÞ ð27-246dÞ
y a
θ
T
x T
FIGURE 27-47
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
APPLIED ELASTICITY APPLIED ELASTICITY
Particular
27.59
Formula
a
The conformal transformation for this problem can be taken as
z¼
The full complex potentials in this case can be taken as
ðÞ ¼
ð27-247Þ 1 Ta þ o ðÞ 4
!ðÞ ¼
1 Ta þ !o ðÞ 2
ð27-248aÞ ð27-248bÞ
where first terms in each of the above equations is for stress state at infinity The condition to be satisfied on ¼ 1 by o ðÞ and !o ðÞ is
zðÞ 0 1 1 Ko ðÞ ! o o 1 z0 1 a 1 ¼ TðK 1Þ Ta 4 2
1 d and integrating 2 i around , after simplification Multiplying Eq. (27-249) by
Multiplying the conjugate of Eq. (27-229) by 1 d and integrating around and after simplifi2 i cation, expression for !o ðÞ The full complex potentials are
o ðÞ ¼
Ta 2K
1 2 3 !o ðÞ ¼ Ta ðK 1Þ 4 K
ðÞ ¼
1 1 2 Ta 4 K
ð27-249Þ ð27-250Þ
ð27-251Þ
ð27-252aÞ
1 a 1 2 !ðÞ ¼ T þ Ta ðK 1Þ 3 ð27-252bÞ 2 4 K From the Eqs. (27-182a) and (27-182b) for 00 and 00 , the following stress components are
¼
1 2 TðK þ 1Þ 1 þ cos 2# 4 K
ð27-253Þ
# ¼
1 2 Tð3 KÞ 1 þ cos 2# 4 K
ð27-254Þ
# ¼
1 K þ1 T sin 2# 2 K
ð27-255Þ
TORSION (Fig. 25-49) The angle of twist , which is proportional to the distance of cross-section from the fixed end
¼ z where ¼ angle of twist per unit length
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð27-256Þ
APPLIED ELASTICITY
27.60
CHAPTER TWENTY-SEVEN
Particular
Formula
y
y
P’(x+u, y+ν) Mt
O
α Mt
z
P(x, y)
Fixed End
r α
x FIGURE 27-48 Torsion of prismatic bar.
O
v
u
β
x
Pðx; y; zÞ is a point in a section of bar z-distance from fixed end (Fig. 27-48) and it is displaced to a new point P0 ðx þ u; y þ v; z þ wÞ after deformation due to twist such that OP OP0 r
FIGURE 27-49 Shows a cross-section of twisted bar in xyplane.
The displacement of point P in x-direction assuming that is small such that cos ¼ 1 and sin
u ¼ r cosð þ Þ r cos y ¼ zy
ð27-257Þ
The displacement of point P in y-direction
v ¼ r sinð þ Þ r sin x ¼ zx
ð27-258Þ
The warping of bar, which is invariant with z and is defined by a function
w ¼ ðx; yÞ
ð27-259Þ
The component of strains from Eqs. (27-40) and (27-41)
"x ¼ "y ¼ "z ¼ xy ¼ 0 @w @u @ yz ¼ þ ¼ G y @x @z @x @w @v @ þ ¼ G þx xz ¼ @y @z @y
The stress components from Eqs. (27-34) and (27-37)
The equations of equilibrium from Eqs. (27-11)
where ðx; yÞ is a function of x and y only
x ¼ y ¼ z ¼ xy ¼ 0 @ y xz ¼ G @x @ yz ¼ G þx @y
ð27-260aÞ ð27-260bÞ ð27-260cÞ ð27-261aÞ ð27-261bÞ ð27-261cÞ
@x @xy @xz þ þ þ Fbx ¼ 0 @x @y @z
ð27-11aÞ
@y @yz @yx þ þ þ Fby ¼ 0 @y @z @x
ð27-11bÞ
@z @zx @zy þ þ þ Fbz ¼ 0 @z @x @y
ð27-11cÞ
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
APPLIED ELASTICITY APPLIED ELASTICITY
Particular
Neglecting body forces in z-direction, Eq. (27-11) yields after substituting the Eqs. (27-261b) and (27-261c) in it
27.61
Formula
2 @ @2 G þ ¼0 @x2 @y2 or
@2 @2 þ 2 2 @x @y
ð27-262aÞ
¼0
ð27-262bÞ
which is true throughout the cross-sectional region of the bar From the equilibrium condition of the surface Eq. (27-7)
FNx ¼ x l þ xy m þ xz n
ð27-7aÞ
FNy ¼ yz l þ y m þ yz n
ð27-7bÞ
FNz ¼ zx l þ zy m þ z n
ð27-7cÞ
When surface forces are absent FNx ¼ FNy ¼ FNz ¼ 0 and cosðNzÞ ¼ n ¼ 0, x ¼ y ¼ z ¼ yz ¼ 0 from Eq. (27-7c)
zx l þ zy m ¼ 0
From the infinitesimal element pqr, if s increasing in the direction from q to r then
l¼
ð27-263Þ
dy ¼ cosðN; xÞ ds
ð27-264aÞ
dx ¼ cosðN; yÞ ds @ dy @ dx y þx ¼0 @x ds @y ds
m¼ Using Eqs. (27-261b), (27-261c), (27-264a) (27-264b) in Eq. (27-263), an expression for boundary condition is obtained (Fig. 27-50)
ð27-264bÞ ð27-265Þ
In torsion problems involving in finding a function which satisfy Eqs. (27-262) and boundary condition Eq. (27-265)
Stress function From equation of equilibrium
@xy ¼ 0; @z
A function which satisfy the third equation of Eq. (27-266) is
xz ¼
@yz ¼ 0; @z
@xz @yz þ ¼0 @x @y
@ @y
@ @x where is a function of x and y only @ @ ¼ G þx @x @y @ @ ¼ G y @y @x yz ¼
From Eqs. (27-267), (27-268), and Eqs. (27-261), equations involving and are:
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð27-266Þ ð27-267Þ ð27-268Þ
ð27-269aÞ ð27-269bÞ
APPLIED ELASTICITY
27.62
CHAPTER TWENTY-SEVEN
Particular
Formula
S O
τxz
p dy
Region
y
x
τyz dx
q
b
ds
r qr = ds
a
x N
y FIGURE 27-50 Boundary condition.
FIGURE 27-51 Elliptical cross-section of bar under torsion.
By making use of Eqs. (27-269) and after eliminating from Eqs. (27-269a) and (27-269b) by mathematical method, a differential equation for stress function is obtained
@2 @2 þ ¼F @x2 @y2
Boundary condition Eq. (27-265) becomes
@ dy @ dx d þ ¼ ¼0 @y ds @x ds ds
ð27-270Þ
where F ¼ 2G
ð27-270aÞ ð27-271Þ
which indicates that the stress function must be constant along the boundary of the cross-section. This constant is taken as zero for a solid bar. The total torque at the ends of the twisted bar due to couple
ðð Mt ¼ 2
dx dy
ð27-272Þ
Torsion of elliptical cross-section bar (Fig. 27-51) The boundary of an elliptical cross-section can be taken as
x2 y2 þ 1¼0 a2 b2
The stress function which satisfy Eq. (27-270) and the boundary condition Eq. (27-271)
¼m
ð27-273Þ
x2 y2 þ 1 a2 b2
ð27-274Þ
where m is a constant Substituting the expression for from Eq. (27-274) in Eq. (27-270) and value of m can be found, and it is
m¼
a2 b2 F 2ða2 þ b2 Þ
Substituting the value of m from Eq. (27-275) into Eq. (27-274) the stress function becomes
¼
a2 b2 F 2ða2 þ b2 Þ
ð27-275Þ x2 y2 þ 1 a2 b2
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð27-276Þ
APPLIED ELASTICITY APPLIED ELASTICITY
Particular
The torque Mt is obtained after substituting this stress function from Eq. (27-276) into Eq. (27-272) and carrying out integration and simplification
Mt Torque
Convex (+ve)
FIGURE 27-52
Formula
Mt ¼
ðð a2 b2 F 1 x2 dx dy a2 þ b2 a2 ðð ðð 1 y2 dx dy þ 2 dx dy b
a3 b3 F 2ða2 þ b2 Þ
Mt ¼
The expression for F from Eq. (27-278)
2Mt ða2 þ b2 Þ a3 b3 M x2 y2 ¼ t þ 1 ab a2 b2
The stress components xz and yz from Eqs. (27-267) and (27-268) after substituting the value of from Eq. (27-280)
The maximum shear stress which occurs at y ¼ b
F ¼
xy ¼
2Mt y ab3
2Mt x a3 b 2Mt ¼ ab2
ð27-278Þ ð27-279Þ ð27-280Þ ð27-281Þ
yz ¼
ð27-282Þ
max
ð27-283Þ
The angle of twist after substituting the value of F from Eq. (27-279) into Eq. (27-270a) and simplification
¼ Mt
The torsional rigidity C which is defined as twist per unit length
C¼
For various values of the angle of twist (0 ¼ ) and thereby the values of C for various cross-sections and built up beams
ð27-277Þ
where ðð ba3 x2 dx dy ¼ Iy ¼ 4 ðð ab3 y2 dx dy ¼ Ix ¼ 4 ðð dx dy ¼ A ¼ ab
After substituting the values of Ix , Iy and A into Eq. (27-277) and simplification, the expression for Mt
The equation for stress function after substituting the value of F from Eq. (27-279) in Eq. (27-276)
27.63
a2 þ b2 a3 b3 G
a3 b3 G G A4 ¼ a2 þ b2 4 2 Ip
ð27-284Þ ð27-285Þ
where A ¼ ab, Ip ¼ centroidal moment of inertia of the cross-section ¼ ð ab3 Þ=4 þ ð a3 bÞ=4 Refer to Tables 24-27 and 24-30 under Chapter 24.
The expression for warping of elliptical cross-section after substituting Eqs. (27-280), (27-281) and (27-282) into Eqs. (29-260b) and (27-260c) and integrating
w ¼ Mt
For warping of elliptical cross-section
Refer to Fig. 27-52.
Note: The symbol is used for angle of twist here in order to avoid confusion regarding which is used as a stress function
Equations (27-277) to (27-285) are also given in Chapter 24 from Eqs. (24-338) to (24-342), and angle of twist in Chapter 24 in Tables 24-27 and 24-30.
ðb2 a2 Þxy a3 b3 G
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð27-286Þ
APPLIED ELASTICITY
27.64
CHAPTER TWENTY-SEVEN
Particular
Formula
For torsion of elliptical and rectangular solid sections and other sections (Fig. 24-66 to 24-71)
Refer to Chapter 24 from Eqs. (24-338) to (24-352), Tables 24-27 to 24-30.
Torsion of equilateral triangle bar The expression for stress function
pffiffiffi pffiffiffiffiffi 2 2 a ¼ x 3y a x þ 3y a x þ A 3 3 3 ð27-287Þ
Substituting Eq. (27-287) in Eqs. (27-267) and (27-268) @2 @2 and 2 can be found. The values the values of 2 @x @y are substituted in Eq. (27-270) to find the value A
A ¼ G
ð27-288Þ
The stress function from Eq. (27-287) becomes
1 1 2 ¼ G ðx2 þ y2 Þ ðx3 3xy2 Þ a2 2 2a 27
ð27-289Þ The expression for xz from Eq. (27-267) after using the value of A ¼ G
xz ¼ 0
The expression for yz from Eq. (27-268) after using the value of A ¼ G
yz ¼
The maximum shear stress
ðyz Þx ¼ a=3 max ¼
The shear stress at the center of triangular bar
ðyz Þx ¼ 2a=3
3G 2a
ð27-290aÞ
2ax x2 3
Ga ð27-291aÞ 2 3G 2ax x2 ¼ ¼ 0 ð27-291bÞ 2a 3 x ¼ 2a=3
Ga4 3 pffiffiffi ¼ GIp 15 3 5
The torque Mt filter substituting the value from Eq. (27-289) into Eq. (27-272) and carrying out integration and simplification
Mt ¼
For shear stress variation along x-axis
Refer to Fig. 27-53.
a
2a 3
o
a 2
ð27-290bÞ
x
y
FIGURE 27-53 Equilateral triangle bar under torsion.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð27-292Þ
APPLIED ELASTICITY
27.65
APPLIED ELASTICITY
Particular
Formula
Membrane analogy @2z @2z p þ ¼ T @x2 @y2
Equation of equilibrium of the element klmn
where
Comparing the statement and Eq. (27-293) with Eqs. (27-270) which have been derived for stress function , it can be seen that two problems are identical
p ¼ pressure per unit area of the membrane T ¼ uniform tension per unit length of the membrane z is zero at the edges of the membrane
The quantities which are analogous to each other between torsion and membrane problems are
z is analogous to p=T is analogous to F ¼ 2G
By analogy in terms of stress function and hence in terms of yz and xz from Eq. (27-267) it can be shown that
@ @ @y @ @x ¼ @s @y @s @x @s
The magnitude of the shearing stress at k
¼ yz cosðN; xÞ xz cosðN; yÞ @ dz @ dy d þ ¼ ¼ @x dn @y dn dn
By analogy
¼
T
T dx m dx dy n k T dx l
T dy
b
z dz dy
a o
dz dx
z o’ T
Tdy
z x
dz d2z + dx dx2
(a) z+ dz dx
(b)
z
x
ð27-295Þ
dz dn
ð27-296Þ
Tdx T dz d2z + dy dy2 z+ dz
a
T dy
ð27-294Þ
Maximum slope of the membrane at this point
The resultant shear stress
b
@y @x yz ¼0 @x @s
¼ xz
This proves that the projection of the resultant shear stress at a point k (Fig. 27-56) on the normal N to the contour line is zero
y
ð27-293Þ
T
dy y
(c)
FIGURE 27-54 Membrane subjected to uniform tension at the edges and uniform lateral pressure q.
r z y
O
Tdy T
x
q y
Tdx T
T
O
o
τyz τxz
k
dn dx N dy
FIGURE 27-55
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
τ
x
x
APPLIED ELASTICITY
27.66
CHAPTER TWENTY-SEVEN
Particular
Formula
By analogy the slope of the membrane in the direction of the normal is obtained from
This proves that the magnitude of the shearing stress at B is given by the maximum slope of the membrane at this point. @z @z p @n ¼ or ¼ ð27-297Þ p 2G @n 2G t t ð @z ¼ pA ds @n ð ds ¼ 2GA ð27-298Þ
For equation of equilibrium of the portion of the membrane (Fig. 27-55)
where A ¼ horizontal projection of the portion qr of the membran (Fig. 27-55) The membrane analogy can be used to solve problems of build up narrow cross sections, hollow sections, thin tubes, thin webbed tubes, box sections, etc. which are subjected to torsion
Torsion of hollow sections and thin-walled tubes (Fig. 27-57) Equating forces in the two directions acting on an element of hollow section as shown in Fig. 27-56
These conditions can be satisfied only if q is constant The torque
@q ds dl q dl ¼ 0 or @s @q qþ dl ds q ds ¼ 0 or @l
qþ
FIGURE 27-56
ð27-300Þ
ð27-301bÞ
where A ¼ area enclosed by the median line of the tubular section. S
qdl ∂q q+ dl ds ∂l
ð27-299bÞ
Mt ¼ q2A
ρ
∂q ds dl ∂s
dq ¼0 @l
ð27-301aÞ
o q+
ð27-299aÞ
q ¼ t ¼ constant ð ð Mt ¼ q ds ¼ q ds
ds qds
@q ¼0 ds
y D
h A
x δ
z o
C B
x
FIGURE 27-57
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
APPLIED ELASTICITY APPLIED ELASTICITY
Particular
27.67
Formula
Shear flow in force per unit length
q¼
The shear stress
¼
Mt 2A
ð27-302Þ
q Mt ¼ t 2At where
ð27-303Þ
t ¼ thickness of hollow section or tubular section d ¼ distance from O to mid line or median line of hollow sections or the tubular section (Fig. 27-56)
Torsion of thin-walled tubes (Fig. 27-57) The shear stress at any point is given by the slope of the membrane
h where
¼
ð27-304Þ
h ¼ the difference in level between DC and AB of membrane ¼ variable thickness of thin-walled tube A ¼ mean area enclosed by the outer and inner boundaries of the cross-section of the tube S ¼ the length of the center line of the ring section of the tube (Fig. 27-57) The expression for torque
Mt ¼ 2Ah ¼ 2A
ð27-305Þ
The shear stress
¼
Mt 2A
ð27-306Þ
The angle of twist for tube with uniform thickness
¼
Mt S 4A2 G
ð27-307Þ
Refer to Fig. 24-71 and Eqs. (24-353a) to (24-360) in Chapter 24.
Torsion of thin-welded tubes (or box beams) (Fig. 27-58) For calculation of each item, assume anticlockwise path for each shell The torque
Mt ¼ 2 volume under membrane 2 ¼ ½2A1 h1 þ A1 h2 ¼ 16 3 a 2
For the section shown in Fig. 27-58, the shear stresses
1 ¼
h1 ;
1 ¼
h1 5Mt ¼ 32a2
2 ¼
h2 ;
3 ¼
ð27-308Þ
h1 þ h2
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð27-309aÞ
APPLIED ELASTICITY
27.68
CHAPTER TWENTY-SEVEN
Particular
Formula
τ
τ2
τ1 ϕA τ1
δ
τ1
A δ
τ3
h1
O
τ1 A
δ
τ1
a (a)
τ3
τ2
a
u
a δ
ds
+s
τ
ρ
A’ du
A dz
dz
τ1
z
a
(a)
h1
h2
θ
(b)
(b)
FIGURE 27-58
FIGURE 27-59
2 ¼
h2 3 Mt ¼ 16 a2
ð27-309bÞ
3 ¼
h1 h2 Mt ¼ 32a2
ð27-309cÞ
7 Mt 32 a2 G
ð27-310Þ
Mt 32a2 G ¼ 7
ð27-311Þ
The angle of twist of section
¼
The torsional rigidity of section shown
C¼
Warping of a box section (Fig. 27-59) The shearing strain
@u @w sz þ ¼ @z s G where
s ¼
ð27-312Þ
u ¼ displacement in direction s w ¼ displacement in direction z ¼ angle of twist per unit length The expression for incremental displacement in s-direction
du ¼ dz
ð27-313Þ
The slope of the warped cross-section
@w ¼ @s G
ð27-314Þ
TORSION OF CIRCULAR SHAFT OF VARIABLE DIAMETER (Fig. 27-13) For Figure of circular shafts of variable diameter
Refer to Fig. 27-13
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
APPLIED ELASTICITY APPLIED ELASTICITY
Particular
For strains and displacements of a solid of revolution twisted by couples applied at ends
Differential equations of equilibrium when the body force is absent
Since it is a problem of symmetry
27.69
Formula
"¼
@u ; @r
" ¼
u 1 @v þ ; r r @
r ¼
@u @v v þ r d @r r
rz ¼
@w @u þ ; @r @z
"z ¼
@w @z ð27-315aÞ
@w @v þ r d @z
ð27-315bÞ
@r 1 @r @rz r þ þ þ ¼0 @r @z r r @
ð27-316aÞ
@rz 1 @z @z rz þ þ þ ¼0 @r @z r r @
ð27-316bÞ
@r 1 @ @z 2r þ þ þ ¼0 @r @z r r @
ð27-316cÞ
"r ¼ " ¼ "z ¼ rz ¼ 0
ð27-317aÞ
r ¼
@v v ; @r r
z ¼
z ¼
@v @z
ð27-317bÞ
The third of Eqs. (27-316c) can be written as
@ 2 @ 2 ðr r Þ þ ðr z Þ ¼ 0 @r @z
Eq. (27-318) is satisfied if the stress function given here used
r2 r ¼
From Eqs (27-317) and (27-319)
@v v @r r @ v 1 @ ¼ Gr ¼ 2 ð27-320Þ @r r r @z @v @ v 1 @ ¼ Gr ð27-321Þ z ¼ Gz ¼ G ¼ 2 @z @z r r @r @ 1 @ @ 1 @ þ ¼0 ð27-322aÞ @r r3 @r @z r3 @z
From the above equation it follows
@ ; @z
r2 z ¼
@ @r
ð27-318Þ ð27-319Þ
r ¼ Gr ¼ G
or
@ 2 3 @ @ 2 ¼0 þ @r2 r @r @z2
ð27-322bÞ
This Eq. (27-322) gives the angle of twist as a function of and z. Boundary conditions
Refer to Fig. 27-50.
The equation which gives the stress function constant value along the boundary of the axial section of the shaft
@ @z @ ds þ ¼0 @z @s @r ds
ð27-324Þ
Equation (27-322) together with the boundary condition (27-324) completely determine the stress function .
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
APPLIED ELASTICITY
27.70
CHAPTER TWENTY-SEVEN
Particular
The torque for cross-section ϕ
Formula
ða
Mt ¼
2 r2 z dr
0
r
Mt ¼ 2
ða 0
ð27-325Þ
@ dr ¼ 2 jja0 @r
ð27-326Þ
where a ¼ outer radii of the cross-section
α
z
FIGURE 27-60
Conical shaft (Fig. 27-60) The angle is given by pffiffiffiffiffiffiffiffiffiffiffiffiffiffi The ratio ðx= r2 þ z2 Þ is constant at the axial section
z cos ¼ pffiffiffiffiffiffiffiffiffiffiffiffiffiffi r2 þ z2
The stress function which satisfies the boundary condition Eq. (27-324) and equilibrium Eq. (27-316) is taken as
z 1 ¼ c pffiffiffiffiffiffiffiffiffiffiffiffiffiffi r2 þ z2 3
The expression for z
z ¼
Substituting Eq. (27-327) in Eq. (27-325), the value of constant C can be obtained
c¼
The angle of twist
"
ð jÞ
z pffiffiffiffiffiffiffiffiffiffiffiffiffiffi r2 þ z2
3 # ð27-327Þ
where c ¼ constant
¼
1 @ crz ¼ 2 r2 @r ðr þ z2 Þ5=2
ð27-328Þ
Mt 2 ð23 cos þ 13 cos3 Þ
ð27-329Þ
c 3Gðr2 þ z2 Þ3=2
ð27-330Þ
PLATES Differential equation for cylindrical bending of plates (Figs. 27-61 and 27-62) The unit elongation of a fiber at a distance z from the middle plane or surface of plate (Fig. 27-62a)
"x ¼ z
d 2w dx2
ð27-331Þ
where d 2 w=dx2 ¼ the curvature of the deflection curve of the plate w ¼ deflection of the plate in z direction which is very small compared to the length of plate l The normal bending stress bx
bx ¼
Ez d 2 w 1 v2 dx2
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð27-332Þ
APPLIED ELASTICITY APPLIED ELASTICITY
Particular
27.71
Formula
σy I
h 2
x
h 2
1 (unit width)
σx
Mb
Mb dz
z
σx
(a) y
w
σx
σy
z
FIGURE 27-61 Bending of a plate due to lateral uniform load acting along the length of plate
σx
(b) Element cut out from the bent plate as shown in Fig (a) FIGURE 27-62
The bending moment in the elemental strip of plate (Fig. 27-63)
Mb ¼
Eh3 d 2w d 2w ¼ D 2 2 12ð1 v Þ dx dx2
ð27-333Þ
where D¼
Eh3 ¼ flexural rigidity of plate ð27-333aÞ 12ð1 v2 Þ
Cylindrical bending of uniformly loaded rectangular plate with simply supported edges, which are restricted from movement (Fig. 27-63) The bending moment at any cross-section of plate at x distance from the left support Substituting Eq. (27-334) in Eq. (27-333) and making use of boundary conditions w ¼ 0 at x ¼ 0 and x ¼ l, the expression for w can be obtained after integrating as
qlx qx2 ð27-334Þ Fa w 2 2 2 3 l cosh u x 7 q 6 qx 2 17 w¼ 4 6 4 5 þ 2 ðl xÞ ul u D 2u D cosh 2 ð27-335Þ
Mb ¼
where u ¼ The expression for axial force
The expression for difference between deflection curve and chord,
The maximum bending moment
Fa D
3 Eh q2 l 5l 5 ul þ tan 2 ð1 v2 Þl D2 24u4 4u6 2u7 l ul þ 6 tanh2 ð27-336Þ 2 4u ð 5ð1 v2 Þl 1 l dw 2 dx ð27-337Þ ¼
¼ Eh 2 0 dx 2 d w ð27-338Þ Mb max ¼ D dx2 x ¼ 2l
Fa ¼
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
APPLIED ELASTICITY
27.72
CHAPTER TWENTY-SEVEN
Particular
Formula q intensity of the uniform load per unit length
a q intensity of the uniform load per unit length
Fa ql 2
w
x
l
Fa
Fa Fa ql 2
x
Mbo ql 2
x
a
x
Mbo
w ql 2
l
z z
FIGURE 27-64
FIGURE 27-63
The maximum bending stress
b max ¼
Mb max Z
ð27-338aÞ
where Z ¼ section modulus ¼ The axial stress due to Fa The total stress tot
a ¼
h2 1 6
Fa h1
tot ¼
ð27-338bÞ
Mb max Fa þ Z h
ð27-339Þ
Cylindrical bending of uniformly loaded rectangular plates with built-in edges (Fig. 27-64) Bending moment at any section of plate x-distance from left end
Substituting Eq. (27-340) in Eq. (27-333) and making use of boundary conditions w ¼ 0 at x ¼ 0; dw=dx ¼ 0 for x ¼ 0 and x ¼ l=2, the expression for w can be obtained after integrating and simplification
qlx qx2 Fa w þ Mbo ð27-340Þ 2 2 where Mbo ¼ fixed end movement 2 3 2x 4cosh u 1 l 5 ql 4 w¼ 1 cosh u 16u3 D tanh u
Mb ¼
þ
ql 2 ðl xÞx 5u2 D
where u2 ¼ The expression for Mbo Mbo ¼
Fa l 2 D 4
ql 2 ql 2 ql 2 coth u ¼ 2 4u 12 4u
where
ð27-341Þ
1 ðuÞ
¼
1 ðuÞ
3ðu tanh uÞ u2 tanh u
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð27-342Þ ð27-343aÞ
APPLIED ELASTICITY APPLIED ELASTICITY
Particular
The stresses are
Formula
1 ¼
Eu2 3ð1 v2 Þ
2 h l
6M q 2 ¼ 2bo ¼ 2 h The maximum stress, The maximum deflection at x ¼ 12
27.73
ð27-344aÞ
2 l h
1 ðuÞ
ð27-344bÞ
max ¼ 1 þ 2 wmax ¼
ð27-345Þ
ql 4 f ðuÞ 384D 1
24 where f1 ðuÞ ¼ 4 u
ð27-346Þ
u2 u u þ 2 sinh u tanh u
ð27-346aÞ
Cylindrical bending of plate on an elastic foundation (Fig. 27-65) A strip of plate cut out from main plate when treated as a beam on an elastic foundation, it can be shown that
D
@4w @4w k q ¼ q kw or þ w¼ 4 D @x @x4 D
ð27-347Þ
where q ¼ intensity of the uniform load acting on the plate k ¼ reaction of the foundation per unit area for a deflection equal to unity
The general solution of Eq. (27-347) consists of complementary function and particular integral which can be written as
w ¼ c1 sin x sinh x þ c2 sin x cosh x þ c3 cos x sinh x þ c4 cos x cosh x q þ ð27-348Þ k where 44 ¼
By taking coordinate as system shown in Fig. 27-65 and making use of symmetry and boundary conditions w ¼ 0 ¼ @ 2 w=@x2 at x ¼ l=2, the final equation for deflection w can be written as The maximum deflection wmax at x ¼ 0
The maximum bending moment of the strip of plate at the middle plane and is obtained by
w¼
k D
q 2 sin sinh 1 sin x sinh x k cos 2 þ cosh 2 2 cos cosh cos x cosh x ð27-349Þ cos 2 þ cosh 2
ðwÞx ¼ 0 ¼ wmax ¼ Mb max ¼ D
q 2 cos cosh 1 ð27-350Þ k cos 2 þ cosh 2
@2w @x2
x¼0
where w is from Eq. (27-349)
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð27-351Þ
APPLIED ELASTICITY
27.74
CHAPTER TWENTY-SEVEN
Particular
Formula
q intensity of uniform load per unit length O
K
x
L l 2
l
w
x
l
dx
y k
Slope of the plate surface in the y-direction Slope of the surface of plate in n-direction (Fig. 27-66) For y-direction of maximum slope or tan 1
For zero slope,
From Eqs. (d) and (e)
The expression for maximum slope The curvature of the surface of a plate in a plane parallel to xz plane (Fig. 27-67) is The curvature of the surface of a plate in a plane parallel to yz is The twist of the surface of the plate with respect to the x and y axes The curvature of the middle surface of plate in any direction n (Fig. 27-67) is
x b
l
dx
dn
dy t
(a)
y
(b)
m α n
FIGURE 27-66
Pure bending of plates Slope of the plate surface in the x-direction (Fig. 27-66)
dw
x m
z
z
FIGURE 27-65
O
O
Lt
w dw ¼ x dx
ðaÞ
Lt
w dw ¼ y dy
ðbÞ
x ! 0
y ! 0
@w @w dx @w dy @w @w ¼ þ ¼ cos þ sin ðcÞ @n @x dn @y dn @x @y @ @w @w @w ¼0¼ sin þ cos @ @n @x @y @w @y ðsay ¼ 1 Þ ðdÞ or tan 1 ¼ @w @x @w @w @x ðsay ¼ 2 Þ ¼ 0 or tan 2 ¼ ðeÞ @w @n @y tan 1 tan 2 ¼ 1 ðfÞ Therefore the two directions of 1 (maximum slope) and 2 (zero slope) are perpendicular to each other. sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi @w @w 2 @w 2 ¼ þ ðgÞ @n max @x @y 1 @2w ¼ 2 rx @x 1 @2w ¼ 2 ry @y
ðhÞ ðiÞ
1 @2w ¼ ðjÞ rxy @n @y 1 @ @w 1 1 1 ¼ cos2 ¼ sin 2 þ sin2 rn @n @n rx rxy ry ð27-352Þ
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
APPLIED ELASTICITY
27.75
APPLIED ELASTICITY
Particular
Formula
The sum of curvature or average curvature of the middle surface of plate at a point
The twist of the surface of plate at b with respect to bm and bt directions Thus twist of the surface of plate
1 1 1 1 þ ¼ þ rn rt rx ry
ð27-353Þ
This shows that the sum of curvature in n and t two perpendicular directions is independent of angle . 1 d dw ¼ ð27-354aÞ rnt dt dn 1 1 1 1 1 ¼ sin 2 þ cos 2 rnt 2 rx ry rxy
ð27-354bÞ
2 rxy tan 2 ¼ 1 1 rx ry
Bending moments and curvature in pure bending of plates (Fig. 27-67)
z ; rx
The unit elongation in x and y directions of an elemental lamina klmO0 at a distance z from the neutral surface (Fig. 27-68)
"x ¼
The corresponding stresses in the lamina klm 00
Ez x ¼ 1 v2 ¼ y ¼
"y ¼
Ez 1 v2
Ez 1 v2
¼
Ez 1 v2
ð27-355Þ
z ry
ð27-356Þ
1 1 þv rx ry
@2w @w2 þ v @x2 @y2
1 1 þv ry rx
ð27-357aÞ
@2w @2w þv 2 @y @x2
ð27-357bÞ dx
dy My
O
n
x
Mx
Mx
n
n z
k
O’
l
O y
My
y
z
FIGURE 27-67
m
h 2 h 2
dz
z
FIGURE 27-68
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
x
APPLIED ELASTICITY
27.76
CHAPTER TWENTY-SEVEN
Particular
Formula
The external moments per unit length of element (Fig. 27-68); which are equal to internal couple on the element O
Mby
k
α
Mbx
m y
x
O
l
k
Mbnt
Mx σx α
Mbn (a)
My
h=2
x
σy
τnt
Mbx ¼
ð h=2
l
σn
ð27-358Þ Mby ¼
ð h=2 h=2
m y
1 v x z dy dz ¼ D þ rx ry 2 @ w @2w þ v ¼ D @x2 @y2
1 v þ ry rx 2 @ w @2w þ v ¼ D @y2 @x2
y z dx dz ¼ D
(b)
ð27-359Þ
FIGURE 27-69
Bending moment acting on a section inclined to x and y axes The normal component n and shearing component nt acting on the element klm (Fig. 27-69) in the n and t directions respectively
n ¼ x cos2 þ y sin2
ðaÞ
nt ¼ 12 ðx y Þ sin 2
ðbÞ
The magnitude of the bending moment Mbn per unit length along ml (Fig. 27-69)
Mbn ¼ Mbx cos2 þ Mby sin2
ð27-360Þ
The twisting moment Mbnt per unit length acting on the section ml of the plate
Mbnt ¼ 12 ðMbx Mby Þ sin 2
ð27-361Þ
Substituting in Eq. (27-360), the expressions for Mx and My from Eqs. (27-358) and (27-359), the moment Mbn (Fig. 27-71)
The shearing strain The corresponding shearing stress Figure 27-70(b) shows a section of the middle surface of the plate made by the normal plane through n-axis, ‘ab’ was an element which was initially perpendicular to the xy-plane.
1 1 cos2 þ sin2 rx ry 1 1 þ vD sin2 þ cos2 rx ry 1 1 ¼D þv rn rnt 2 @ w @2w ¼ D þ v @n2 @t2 @u @v nt ¼ þ @t @n @u @v þ nt ¼ G @t @n Mbn ¼ D
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð27-362Þ ðcÞ ðdÞ
APPLIED ELASTICITY APPLIED ELASTICITY
Particular
Formula
x
O
O
n
p dt
ν + ∂ν dt ∂t
u
s t
s’ u + ∂u dt ∂t
y
(a)
a dn
p’ ν
r
q
27.77
u + ∂u dn ∂n
n q’ ν + ∂v dn ∂n
z
O
∂w ∂n b
φ R
(b)
Mb
Mb
B
A
r’
b
FIGURE 27-70
The displacement in n and t directions
FIGURE 27-71
u ¼ z
@w @n
ðeÞ
v ¼ z
@w @t
ðfÞ
Substituting the values of n and v from Eqs. (e) and (f), Eq. (d) becomes
nt ¼ 2 Gz
The twisting moment, Mbnt
Mbnt ¼
@2w @n @t
ð h=2
h=2
nt z dz ¼
¼ Dð1 vÞ
Strain along the circumference of circular plate acted by uniform edge moments (Fig. 27-71)
ð27-363aÞ Gh3 @ 2 w 6 @n @t
@2w @n @t
3R
The circumferential strain at the edge of the plate
"¼
The maximum bending strain
"maxðbendingÞ ¼
ð27-363bÞ
ð27-364aÞ
h ð27-364bÞ 2R where R ¼ radius as shown in Fig. 27-71
Lagrange’s differential equation for laterally loaded plates (Figs. 27-72, 27-73, 27-74) Equations of equilibrium for plate
@Qx @Qy þ þ qðx; yÞ ¼ 0 @x @y @Mx @Mxy þ ¼ Qx @x @y @My @Mxy ¼ Qy @y @x
Lagrange’s bending moment equilibrium equation for plate
@ 2 Mxy @ 2 My @ 2 Mx þ 2 ¼ q @x @y @x2 @y2
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð27-365Þ
ð27-366Þ
APPLIED ELASTICITY
27.78
CHAPTER TWENTY-SEVEN
Particular
z dy
Formula
dx
∂My My+ dy ∂y ∂Myx Myx+ dy ∂y
Mx+
My
∂Mx dx ∂x
Mxy+
∂Mxy dx ∂x
Myx
x ∂Qx Qx+ dx ∂x
y
Myx
Mx
My+
∂Qy Qy+ dy ∂y
∂My dy ∂y
Mxy+ Myx+
∂Myx dy ∂y
FIGURE 27-73
Lagrange’s equilibrium equation for deflection surface of plate
@4w @4w @4w q þ2 þ 4 ¼ 4 2 2 D @x @x @y @y
The normal stresses are
xz max ¼
3 Qx 2 h
ð27-369aÞ
yz max ¼
3 Qy 2 h
ð27-369bÞ
xy max ¼
6Mxy h2
ð27-369cÞ
x max ¼
6Mx ; h2
y max ¼
6My h2
ð27-370Þ
Qy
Mxy
Mxy
ð27-367Þ
Qx ¼
The shearing stresses are
x ∂Mxy Mxy+ dx ∂x ∂Mx Mx+ dx + ∂x ∂My My+ dy y ∂y y ∂Mxy Mxy+ dy ∂y (b)
∂Mxy dx ∂x
@Mxy @Mx @ @2w @2w þ ¼ D þ ð27-368aÞ @y @x @x @x2 @y2 @My @Mxy @ @2w @2w ð27-368bÞ ¼ D þ Qy ¼ @y @x @y @x2 @y2
The expression for shearing forces are
My
∂Mx dx ∂x
(a)
FIGURE 27-72
Mx
Mx+
Qx
x q(x,y) Qx+
Qy+
∂Qx dx ∂x
x=a
∂Qy dy ∂y
h
(c)
FIGURE 27-74 Stresses, shearing forces and moments at the middle surface of a plate
FIGURE 27-74A
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
APPLIED ELASTICITY APPLIED ELASTICITY
Particular
27.79
Formula
Boundary conditions SIMPLY SUPPORTED EDGE (Fig. 27-74) Boundary conditions for plates at x ¼ a from the simply supported edge
The deflection ðwÞx ¼ a ¼ 0
ð27-371aÞ
The bending moment ðMbx Þ 2 @ w @2w ¼ D þ v ¼0 @x2 @y2 x ¼ a
ð27-371bÞ
or ðwÞx ¼ 0 ¼ 0 BUILT-IN EDGE Boundary conditions for plates at x ¼ a from the built-in edge
FREE EDGE (Fig. 27-75) The total shearing force Qx along the free edge x ¼ a
The deflection ðwÞx ¼ a ¼ 0 @w ¼0 The slope @x x ¼ a Vx ¼
Qx
@Mxy @y
ð27-372Þ
x¼a
¼0
ð27-373Þ
FIGURE 27-75
@ 3 wxy @3w þ ð2 vÞ ¼ 0 for all y ð27-374Þ @x @y2 x ¼ a @x3 2 @ w @2w þ v ¼0 Also ðMx Þx ¼ a ¼ D @x2 @y2 x ¼ a ð27-375aÞ or 2 @ w @2w þ v ¼ 0 for all y ð27-375bÞ @x2 @y2 x ¼ a
The magnitude of total reaction which is due to unbalanced force at the corners (Fig. 27-75)
R ¼ 2Mxy ¼ 2Dð1 vÞ
Eq. (27-373) in terms of w Mxy
R = total reaction Mxy
@2w @x @y
x¼a y¼b
ð27-376Þ
ELASTICALLY SUPPORTED EDGE (Fig. 27-76) STRAIGHT BOUNDARY (Fig. 27-76) The pressure transmitted in z-direction at the junction of the plate and beam transmitted from the plate to the supporting beam
Differential equation of the deflection curve of elastic support
@Mxy Vx ¼ Qx @y x ¼ a 2 @ @ w @2w ¼D þ ð2 vÞ ð27-377Þ @x @x2 @y2 x ¼ a 4 @ w @ @2w @2w ¼ D þ ð2 vÞ B @x @x2 @y4 x ¼ a @y2 x ¼ a ð27-378Þ where B ¼ EI of support or beam
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
APPLIED ELASTICITY
27.80
CHAPTER TWENTY-SEVEN
Particular
Formula
O
x
a
dy K
x
z
FIGURE 27-76
The rotational equilibrium of the element of the beam
CURVED BOUNDARY (Fig. 27-77) The expressions for bending moment and twist moments at point K
t
y
Mnt
α n
ds y
Qy
Qx
dx
Mn
t Qn
(a)
n (b)
FIGURE 27-77
G
2 @ @ w ¼ ðMx Þx ¼ a @y @x @y x ¼ a 2 @ w @2w ¼D þ @x2 @y2 x ¼ a
Mn ¼
ð27-379Þ
ð h=2 h=2
zn dz
¼ Mx cos2 þ My sin2 2Mxy sin cos ð27-380aÞ ð h=2 znt dz Mnt ¼ h=2
¼ Mxy ðcos2 sin2 Þ þ ðMx My Þ sin cos ð27-380bÞ From equation of equilibrium of an element at K of the curvilinear boundary the shear in the n-direction
Qn ¼ Qx cos þ Qy sin
If the curvilinear edge is a built-in edge then
w ¼ 0;
In case simply supported edge
w ¼ 0;
For the case of free edge of curvilinear plate
Mn ¼ 0;
For the case of free edge of curvilinear plate Eq. (27-380f ) can be represented for boundary condition as
@w ¼0 @n Mn ¼ 0
ð27-380dÞ ð27-380eÞ
V n ¼ Qn
ð27-380cÞ
@Mnt ¼0 @s
@2w @2w þ sin2 2 @x @y2 @2w þ sin 2 ¼0 @x @y
ð27-380f Þ
v w þ ð1 vÞ cos2
ð27-381Þ
@w @w @ þ sin þ ð1 vÞ @x @y @s " 2 # @2w 1 @ w @2w þ sin 2 ¼0 cos 2 @x @y 2 @y2 @x2
cos
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
APPLIED ELASTICITY APPLIED ELASTICITY
Particular
27.81
Formula
where w ¼
@2w @2w @x2 @y2
Simply supported rectangular plates under sinusoidal loading (Fig. 27-78) General sinusoidal load is taken as
m x n y sin a b
ð27-382Þ
w ¼ C sin
m x n y sin a b where m and n are integers
ð27-383Þ
From Eq. (26-367)
@4w 2@ 4 w @4w q m x n y þ 2 2 þ 4 ¼ 0 sin sin 4 D a b @x @x @y @y
ð27-384Þ
Substituting Eq. (27-383) in Eq. (27-384) and solving for C
C¼
After substituting value of C in (Eq. 27-383), the expression for w
w¼
The general expression for deflection of plate
If m ¼ 1 and n ¼ 1 then Eq. (27-386) becomes
q ¼ q0 sin
D 4 D 4
w¼
D
4
q0 m2 n2 þ a2 b2 q0 m2 n2 þ a2 b2 q0 1 1 þ a2 b2
ð27-385Þ
2
m x n y sin a b
ð27-386Þ
x y sin a b
ð27-387Þ
2 cos
2 cos
x y sin a b
The sinusoidal load is taken as
q ¼ q0 sin
From Eq. (27-367) or Eq. (27-384) becomes
@4w 2@ 4 w @4y q x y þ 2 2 þ 4 ¼ 0 sin sin 4 D a b @x @x @y @y
The boundary conditions
ðwÞx ¼ 0 ¼ 0
ðMx Þx ¼ 0 ¼ 0
ðwÞy ¼ 0 ¼ 0
ðMy Þy ¼ 0 ¼ 0
x¼a
a
o
x sinusoidal loading
b
y¼b
x¼a
y¼b
or ðwÞx ¼ 0 ¼ 0 x¼a
y
z
FIGURE 27-78
ð27-388aÞ
ðwÞy ¼ 0 ¼ 0 y¼b
@2w @x2 @2w @y2
x¼0 x¼a
¼0
y¼0 y¼b
¼0
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð27-388bÞ ð27-389Þ
APPLIED ELASTICITY
27.82
CHAPTER TWENTY-SEVEN
Particular
Formula
x y sin a b
The expression for deflection surface of plate which satisfies the boundary conditions Eq. (27-389) and Eq. (27-388b)
w ¼ C sin
Substituting Eq. (27-390) in Eq. (27-388b) and solving for C
C¼
Equation (27-390) for w becomes
q0 x y sin sin ð27-390bÞ 1 1 a b 4 D 2 þ 2 a b q 1 v x y Mx ¼ 0 þ sin sin 2 a b a2 b2 1 1 2 þ a2 b2 ð27-391aÞ q v 1 x y My ¼ 0 þ 2 sin sin 2 2 a b a b 1 1 2 2 þ 2 a b ð27-391bÞ
The expression for Mx , My and Mxy
4 D
1 1 þ a2 b2
q0 ð1 vÞ x y 2 sin sin a b 1 1 2 2 þ 2 ab a b
wmax ¼
4 D
Mx max ¼
q0 1 1 þ a2 b2
4 D My max ¼
2
The maximum deflection and bending moments for a square plate The shearing forces from Eqs. (27-368)
wmax ¼
Qx ¼
Qy ¼
ð27-390aÞ
2
w¼
Mxy ¼ The maximum deflection and bending moments, which occur at midpoint of plate
q0
ð27-390Þ
q0 a4 ; 4 4 D
1 1 þ a2 b2
1 1 þ a2 b2
ð27-392aÞ
2
q0
q0
ð27-391cÞ
2
2
1 v þ a2 b2
v 1 þ a2 b2
ð27-392bÞ
Mx max ¼ My max ¼
ð27-392cÞ
ð1 þ vÞq0 a2 4 2 ð27-393Þ
q x y cos sin 0 1 1 a b a 2 þ 2 a b q x y sin cos 0 1 1 a b b 2 þ 2 a b
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð27-394aÞ
ð27-394bÞ
APPLIED ELASTICITY APPLIED ELASTICITY
Particular
The reactive forces at the support edges at x ¼ a and y ¼ b respectively
27.83
Formula
Vx ¼
Qx
@Mxy @y
q0 1 1 2 a 2 þ 2 a b
Vx ¼
ð27-395aÞ
x¼a
1 2v þ 2 a2 b
sin
y b
ð27-395bÞ @Mxy ð27-395cÞ V y ¼ Qy @x y ¼ b q 1 2v x þ sin Vy ¼ 0 2 2 2 a b a 1 1 b 2 þ 2 a b ð27-395dÞ The resultant reaction concentrated at the corners of the plate
The total pressure on all four edges of plate
R ¼ 2ðMxy Þx ¼ a ¼ y¼b
ðb 2 0
vx dy þ 2 ¼
The four corners reactions, which are equal due to symmetry
R ¼
2q0 ð1 vÞ 1 1 2 2 ab 2 þ 2 a b
ð27-396Þ
ða 0
4q0 ab þ 4
vy dx
8q0 ð1 vÞ 1 1 2 ab 2 þ 2 a b
ð27-397Þ
2
8q0 ð1 vÞ 1 1 2 2 ab 2 þ 2 a b
which is the second term on the right hand side of Eq. (27-397) The maximum bending stress if a > b is due to My which is greater than Mx
Using Eq. (27-395d), the expression for maximum shear stress which is at the middle of the longer side of the plate
6My max h2 6q0 v 1 ¼ þ 1 1 2 a2 b2 2 h2 2 þ 2 a b 3q0 1 2v ðyz Þmax ¼ þ 2 a 1 1 2 b2 2 bh 2 þ 2 a b y max ¼
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.
ð27-398Þ
ð27-399Þ