This content was uploaded by our users and we assume good faith they have the permission to share this book. If you own the copyright to this book and it is wrongfully on our website, we offer a simple DMCA procedure to remove your content from our site. Start by pressing the button below!
"
Y
A X
t h e branch has a member i n each i n t e r v a l o f
(remembering K6nig
order,
Y i s an i n f i n i t e branch i n
..Am]
Then f o r some t r u e l y f i n i t e
)
,
€aN.Suppose
t r u e l y f i n i t e m, q
m(*)
J,
"says" t h a t
(whose o r d e r i s i n c l u d e d i n t h e n a t u r a l o r d e r o f & N ) .
By t h e d e f i n i t i o n o f
A
j,
€aR a,, f i r s t
<
y
A
(X < 2 <
y)]
s a t i s f i e s " f o r every
e(-,-,p,q,A,
we can r e p l a c e
lemma) t h e s e t
Y)
Hence
m(*)+i'
i n the interval
Am(*)+i t* ( i n t h e t r e e
( 3 2 E
-t
t* such t h a t f o r e v e r y
,
(F2)
i t i s easy t o see t h a t
m(*)+l
x < y < a (x,y)
there i s
,...,Am)". by
m+l,
hence c l e a r l y
153
On Logical Sentences in PA
ip
€ f i N:
{p
E
a k ( 3 Y ) *(Y,
aN:
f o r every a
P, ill = E
y
...,Am )
BR a s
which belongs t o 2.7.
t* ( i n t h e t r e e
(x,y)
B(-,-,p,q,
l.
required.
m: For every n a t u r a l number
3 n CPQh ( n ,
in t h e i n t e r v a l
Am+1
E
t h e r e i s an element below Al,
t* such t h a t f o r every
there i s
A,+,
x < y < a , X E Am + l ,
k we can prove i n PA(Q
MM
) t h e statement
k).
Proof: F i r s t we prove t h a t t h e conclusion i s t r u e , i . e . t r u e i n t h e universe
6?)if
i t i s a model of say second o r d e r Peano a r i t h m e t i c .
Then f o r every n , t h e r e i s a p a i r
Suppose t h a t the conclusion f a i l s f o r k.
(Fn, H ) which forms acounterexample t o CP'
of functions
eh
n
We now d e f i n e by induction on i For
5
k i n f i n i t e sets
so t h a t R i + ,
Ai,
5 Ai.
i = 0 t h e r e i s no problem. Let A, = B, = t h e set of a l l natural numbers.
So suppose we have defined
A
for j s i
j
and we s h a l l define
By t h e i n f i n i t e Ramsey theorem we can get an i n f i n i t e ( a ) f o r every y Ai n y )
Now
(n,k).
z
<
in
A:,
f
j
for j = i+l.
Af 5 Ai such t h a t : F ( A , n y , A, n y , ...,
i s t h e function
Y¶Z
A
Z
restricted t o y.
f
does not depend on
z, i . e . i f
y
z,
< z,,
E
A
then
YSZ
SO l e t
f
= f
Y
for y
Y,Z
( b ) For
Y,
<
<
A' i '
z
Y, < y 2 i n
f
= YlZ,
f
YJ,
.
1
fy,ry, = fy,ry0 [Simply apply Ramsey theorem t o t h e natural t h r e e place c o l o u r i n g , f i r s t f o r ( a ) then f o r ( b ) l So
f
=
U If
Y
rz
are i n A i l
: z < y
i s a k-colouring ( o f t h e natural num-
b e r s ) . By t h e i n f i n i t e Ramsey theorem t h e r e i s i n
&3,
an i n f i n i t e s e t A:
A:,
which i s f-homogenous. Now we s h a l l deal with
H.
Again t h e r e is an i n f i n i t e
A: 5 A f
(A;
of course) such t h a t :
(c) i f H Z ( p , A, n y ,
y
<
z
. .., Ai
are i n
A:,
ny,
9)
< z
a r e in
95 Ai
n
y,
p
does not depend on
<
y
t h e n t h e value of
z.
Moreover (d) i f
x
<
y
A;,
9 5 Ai
nx,
p
<
x then t h e value of
BR,
S. SHELAH
154
..., Ai
HZ(p, A, n y.
For every p
9)
n y,
63,
E
and i n f i n i t e s e t
zero i f f f o r a r b i t r a r i l y large q HZ(p, A,
..., Ai
y,
n
<
. 9):
z in A i / q
i t is
the value of
i s zero. Clearly a f i n i t e change i n
HZ, and "for a r b i t r a r i l y large q
"for every large enough q "
z )
we define T ( p ,
5 A:
f o r every y
E ( % ~
n y, D n y - q )
n o t change the value of
(and on
does not depend on y
3
does
can be replaced by
"
(see 2 . 2 ) .
Now we want t o apply the Galvin Prikry theorem t o T, more exactly t o a parametrized version of i t
( p as the parameter). Simply i t e r a t e the usual Galvin-
Prikry theorem on the natural numbers, and take the diagonal intersection. What we get we call
.
A;
Again remembering 2.2, and the conclusion of the Galvin-Prikry theorem, we can
so t h a t f o r every p,
find Aitl 5 A:, Ai/q
the value of
i f f o r some q > p ,
..., A 1.
HZ(p,A, n y ,
n Y, Ai+,nY-q)
f o r every y
i s zero,
<
z in
then 9 = P
will serve. If
..., Ak
A,, n
A,,
9
Aktl
are defined, choose y
y > contradicts thechoice of
Fz, HZ
<
z in Aktl
and < A , n y,
.
However we want t o prove t h i s in PA(QMM) (and not in ZFC o r i n second order number theory). The proof i s the same, replacing "a s e t of natural numbers" by "a definable s e t of natural numbers". Why i s < < F , H > : n < W > definable? We canchoose for each n , a minimal n n pair < F n , H n > (by a simple enough coding). We can apply the i n f i n i t e Ramsey theoMM
rem as Macintyre [MI proves theparallel statement holds (from PA(Q ), of course the proof depends on the formula defining the colouring and the i n f i n i t e s e t ) . Wore exactly he proves that i f
,...,xn,
~(x,
-
p, z)
A
i s i n f i n i t e and definable,
i s such that
then there i s a definable i n f i n i t e
V x1
B c A and co
<
,...,xn
( 3 2 < c ) ~ ( x ,..., , xn,p,z)
c such that
We are l e f t with the "parametrized Galvin-Prikry". Let a < * b mean:
<
a , b code f i n i t e increasing sequences, ,
e ( a ) > respectively, and ca(m) : m < a ( a ) > i s a proper i n i t i a l seg-
ment of < b ( m ) : m
<
e(b)>.
155
On Logical Sentences in PA We d e f i n e
A:
A:
(after
has been d e f i n e d )
by d e f i n i n g by i n d u c t i o n on
I, kk, 6, such t h a t k,
(a)
<
... <
k
2- 1
L o , C1,
and
..., sI-l
{0,11
E
> < * a < b and f o r e v e r y p < k f o r some q, (QMMa,b) C < k o , ..., k f i - l y, z i f q < y < z, y E A?, z E A? t h e n HZ(p, A, n y, A . n y.
(b) f o r every
...,
1
Ia(m) : m < z ( a ) > / q ) =
1
cPl.
c ~ =- 0~ . Now we can c a r r y t h e d e f i n i t i o n (as i n [ M I n o t i n g t h e f o r m u l a s we use have (c) i f compatible w i t h
(a) t (b),
bounded complexity).So we f i n i s h t h e p r o o f o f 2 . 7 .
5 3. A t r u e
ny-sentence o f P A n o t p r o v a b l e i n PA
I n summer '80 Friedman and H a r r i n g t o n o f f e r e d h o t l y t h e i r view t h a t i t i s one o f t h e main problems o f contemporary l o g i c t o f i n d mathematical sentences as ment i o n e d i n t h e t y t l e , as w e l l as t o f i n d n a t u r a l t h e o r i e s w i t h incomparable c o n s i stency s t r e n g t h . The " t e c h n i c a l d i f f i c u l t y " i s i m m a t e r i a l ; i n f a c t t h e easiness o f t h e p r o o f may i n d i c a t e t h e profoundness and n a t u r a l i t y o f t h e sentence. Now an answer t o such q u e s t i o n i s n a t u r a l l y more open t o debate t h a n t h e usual mathematic a l problem.
A s t h e a u t o r d i d n o t want t o go i n t o such d i s c u s s i o n , and H a r r i n g t o n wanted a s o l u t i o n , an agreement was reached: i f t h e a u t h o r c o u l d f i n d a s o l u t i o n which H a r r i n g t o n would t h i n k i s O.K.,
he would w r i t e i t up, d i s c u s s i t and p u b l i s h i t .
The c o n t e n t o f t h i s s e c t i o n was done i n s p r i n g '81, H a r r i n g t o n O.K.ed i t , as w e l l as I 4 ( w h i c h was done i n summer '80) b u t was t o o l a z y t o f u l f i l l h i s promise. 3.1. C o n t e x t :
N be a n a t u r a l number
1) Let
r
= < r : I < I(;)> 9"
a finitesequence
o f n a t u r a l numbers.-
2) L e t
K = K i = {(A,
<,
R)
: A
6 R
a subset o f
N,
<
a l i n e a r order o f
A
a sequence o f r e l a t i o n s o v e r an
A
,
,
r -place
Ik e ( R ) = I(;)}.
3 ) Members o f
K
a r e denoted by
A, B
,
letting
power o f t h e s e t o f t h e s e t o f elements o f 4) I n (4a)
K
A =
/ ~ ,l
so
i s the
llAll
A.
we d e f i n e
A <en B
( B an end e x t e n s i o n o f
A) i f A
i s a submodel o f
B
and
S. SHELAH
156 x
IBI
E
,
- 1.4
(4b) A < B
y
satisfying
implies
y < x.
of
A'
into G
IIb/l 5 IlAll
A',
A <
en B over
i n t o @(N)
Let
+
1,
A < B and f o r any en t h e r e i s an embedding
.
A
f r o m @(N)
3.2. E ( N , r , k , n ) - p r i n c i p l e : F
PI
( B an u n i v e r s a l end e x t e n s i o n o f A) i f
A'
5) A function
1 ) Domain:
E
F
is
be a k - p l a c e f u n c t i o n s a t i s f y i n g
i s d e f i n e d on i n c r e a s i n g sequences o f l e n g t h
2) Choice F u n c t i o n :
..., A k )
F(A,,
...
3 ) Isomorphism I n v a r i a n c y : i f A 1 < i s an isomorphism
g
from A k
< Ak
onto
k
K
from
.
IA,[
E
if / G ( A ) I z f ( 1 A I ) .
f-small
B
k
E
K,
B1 <
mapping
... < B k
At
onto
E
Bil
K , and F
then
there and
g
commute, i .e. F(B~.
..., B k ) =
4 ) Weak H e r e d i t a r i t y : F o r e v e r y such t h a t : i f
f
B
-1
=
0)
then
Then - there
A,
+)
A2 <
<
i s a submodel o f
B~
F(A,
...,
g(F(Al,
,...,A k )
= F(Bl
...
. k t h e r e i s an x -small f u n c t i o n
< Ak,
f(Bil-l)
Ai,l
n Ail
5 Bil
(stipulating
,..., B k ) .
i s an i n c r e a s i n g sequence < A :~ il < n > on which
F
depends on
the f i r s t structure only. 3.3.
Fact
F to
F'
if
N > 22 k+n+'(r(i)+l),
F a s i n 3.2 and
N' >
a k - p l a c e f u n c t i o n s a t i s f y i n g 1 ) - 4 ) o f 3.2 f o r
N,
t h e n we can e x t e n d
N ' , i n one and o n l y one
way. __ P r o o f . By 3.2 ( 4 ) ( 3 ) (as i n t h e p r o o f o f 1.3 ( 1 ) ( b ) ) . 3.4.
Claim: I n
PA+PH
$* = ( V
r,
we can p r o v e (the
k, il)
r,
(N,
k , n ) - p r i n c i p l e h o l d s f o r e.g.
,k+n+ f C r ( i ) + l l
).
N = 2 __ P r o o f : D e f i n e by i n d u c t i o n on
m
e,
i s s m a l l e r enough t h a n
putation). Applying
PH
and i n d i s c e r n i b l e f o r F ' ( A ~, 1
e,
a model
Am<*A
e
we g e t a s e t (F'
as i n 3.2
..., A .
'k
) = F'(A. Ji
.
e
c
K
w i t h universe
il,
so t h a t i f
( j u s t t a k e c a r e o f 3.1 ( 4 ) ( b ) , easy com-
C
o f n a t u r a l numbers
for
,
A
N'
..., Ajk)
(V x < y ~ C ) C 2 2 ~ < y l ,
l a r g e enough)
,
and
ICI
>
4 Min C
157
On Logical Sentences in PA (we use an e q u i v a l e n t v a r i a n t o f P.H.).
: i
F
C>,
E
As i n 5 1
depends on t h e f i r s t v a r i a b l e o n l y . Now as i n t h e p r o o f o f 1.3
( 1 ) ( b ) we c o l l a p s e t h e s o l u t i o n below 3.5.
Claim: I n
PA+$*
N
.
we can p r o v e t h e c o n s i s t e n c y o f PA (hence
Proof. We can b u i l d a non-standard model o f dard,
N
l a r g e enough, and
..., Ak)
F(A,,
mal code f o r which
1
( v y)
e a s i l y f o r subsequences o f
r
PA,+$*,
<4> d e f i n e
F :
i s d e f i n e d as f o l l o w s :
let
{3Xcp(X.y)
=
..., A k > / = +
M, choose
cp(x,y)
3X[cp(X,y)
A
(v
z
< X)
and t h e n
( i f t h e r e i s one).
A,,
cp(x,y)
non s t a n -
be a f o r m u l a w i t h m i n i -
ic p ( Z , j ) l
(by the lexicographic order o f
E
k, n
"induction fails,i.e.
and t h e n t a k e minimal x
PAP$*).
1''
<Max
y.
y o , yl,
The r e s t i s as i n I 1
...>
)
the only
a d d i t i o n a l p o i n t i s why a r e a d d i t i o n and m u l t i p l i c a t i o n d e f i n a b l e ? T h i s i s by 3.1 ( 4 ) ( b ) .
5
4. On c o n s i s t e n c y s t r e n g t h
Let extending CON(T)
T PA
denote h e r e a ( r e c u r s i v e ) t h e o r y ( w i t h f i n i t e - s o r t , f i n i t e - l a n g u a g e ) b u t i t may a l s o "speak" on r e a l s and even a r b i t r a r y s e t s .
be t h e sentence ( i n
D e f i n i t i o n : We say
PA
T, scs T,
language) s a y i n g
T
i s consistent.
( t h e consistency strength o f
equal) than t h e consistency strength o f
T2)
if
PA
Let
t- CON(T,)
T,
i s smaller (or -f
CON(T,):
I t was observed t h a t e s s e n t i a l l y " l a r g e c a r d i n a l axioms a r e l i n e a r l y ordered"
(though i n some cases t h i s "has n o t y e t been proved").More e x a c t l y i t seems t h a t a l l s e t t h e o r i e s which has been c o n s i d e r e d so f a r , a r e l i n e a r l y o r d e r e d by Solovay
( I t h i n k ) has
found
T's
which a r e
5
-incomparable,
s
cs b u t t h e y were
.
cs " p a r a d o x i a l " (i .e. have s e l f - r e f e r e n t i a l sentences). We s h a l l t r y t o g e t more r e a sonable ones.
* * * * * * * Let
PA+
be
PA t C O N ( P A ) .
We work i n s i d e
P A . A model w i l l mean one which
i s definable. Let
T,,
T,
be c o n s i s t e n t t h e o r i e s ( i n o u r " u n i v e r s e " which s a t i s f i e s PA).
s. SHELAH
158
T,
" s a y i n g " t h e r e i s a model o f
(think o f
PA+,
PA
+
CFMSI, o r o f course As T,
+
ZFC,
T, " s a y i n g " t h e r e i s a model o f
ATR, see Friedman, McAloon and Simpson
T,tCON(TI)
hence t h e r e i s MI
( 1 ) q Q ( n ) says
n
i s c o n s i s t e n t , hence ( b y Godel incompleteness has a model M,
M,
E
f ''$2(n)''
I=
such t h a t
(n
. By
t h e r e q u i r e m e n t on T,
i s a non-standard i n t e g e r )
where
i s a n a t u r a l number and t h e r e i s a p r o o f o f s i z e
n
PA
ZFC+large c a r d i n a l s ) .
T, +CON(T,) + iCON(T, +CONTI)
iCON(T,),
n
of
t 1 CON ( Te)
PA
f ( 2 ) +,(n)
says
$
Q
(n)
but
f ( 3 ) T~ = PA + ( 3 n ) r$,(n) i s consistent with
i s t h e f i r s t such number.
n
As we have assumed t h a t
with
TI,
o r use
or
i s consistent,
theorem) M,
I rrl-CAo;
T, says t h a t
has a model, c l e a r l y
+-,~,,(2~")1 f
+ (Vm) l$,(m)
PA + 3 n$,(n)
( a s even
PA+
PA
i s consistent
.
PA+)
By a theorem o f Friedman (based on a n a l y z i n g Godel incompletness theorem) f
( 4 ) Tb = PA + ( 3 n ) C$,(n)
'
( 5 ) PA+
+
Ta, Tb
are
s
cs
-incomparable.
L e t us p r o v e e.q.
*
Ta 1- CON(Ta)
rBecause f o r any model nition
11
PA
We s h a l l p r o v e t h a t csTb
217
+.
i s consistent with
Ta
$,(2
f
o f a mode:
phism from
No
Clearly
N,
of
N o of PA
(i.e.
PA++Ta, No
b e i n g a model o f
1: "N,
i n t o a p r o p e r i n i t i a l segment o f N,
satisfies
of bounded f o r m u l a s and
Ta -PA,
has a d e f i -
i s a model o f P A " ) and an isomorN,.
as end e x t e n s i o n s p r e s e r v e t h e s a t i s f a c t i o n
f
$,(x),
PA+
$,(x)
a r e such f o r m u l a s . 1
Note a l s o t h a t (6)
PA
+
.
Ta I- 7CON(Tb)
[Otherwise t h e r e i s a model a d e f i n i t i o n o f a model segment o f No I= T
a' formulas,
N, No
(i.e. f "$,(n)
and
f
N, o f No
No
of
PA+Ta+CON(Tb)
Tb a n d a n i s o m o r p h i s m g of
hence i n
No
No
there i s
onto a proper i n i t i a l
s a t i s f i e s t h e sentences s a y i n g t h o s e t h i n g s ) . AS 211 f and -I $,(2 ) " f o r some n, b u t as $, $1 a r e bounded f commute w i t h e x p o n e n t i a t i o n , c l e a r l y N, I. "$,(g(n)) and
159
On Logical Sentences in PA 1 $,(22g(n))".
So
f 2m N, I= Tb hence f o r some m, N , I= "$,(m) and $ , ( 2 ) " . f f and $,(g(n))",hence by q 2 ' s definition g ( n ) , m have t o be
But
f
N , k "$,(m)
equal. B u t
N, k "$,(2
2m
)
and 7 $ 1 ( 2 ' g ( m ) ) " hence
g(n),
rn
should be unequal,
contraddictionl. By ( 5 ) and ( 6 ) clearly
PA+
+
C O N ( T a ) I$
(as PA+ + T~
CON(Tb)
is
consistent (by ( 3 ) ) ; t h i s implies
PA I f CON(Ta)
(7)
+
So Ta $ csTb.
CON(Tb)
. Tb $ csTa
i s t o t a l l y analogous. n f NOW (Woodin suggests) wecan replace the sentences ( 3n ) r $ , ( n ) + - 1 $ ~ ( 2 ' ) I n f ( 3 n ) r $ , ( n ) + $ J 2 ' ) I by inequalities of the indicator functions corresponding t o
and
The proof of
f , , f,
T I and T, ( i . e . the function T , , T,).
t o the consistency of
exhibiting the
E.g. ( V n ) [ i f
f,(n)
ITsentences :
corresponding
i s defined then
so i s
f , ( f , ( f , ( n ) ) 1 and i t s negation. So i f we accept those functions as "mathematical"
( n o t j u s t reasonable methamathematical ) we get mathematical theories of incomparable consistency strength. (Originally we have used three t h e o r i e s ) . We a r r i v e t o the dangerous question o f which PA
function: on
see Paris and Harrington [ P H I ,
T's
have matheratical indicator
on many theories ( l i k e ZFC+large
cardinal) see Friedman rFl1 on ATR, see Friedman McAloon and Simpson rFMSl on 1
IT,-CA,
see 5 2. Alternatively f o r an indicator function
f ( f * ( n ) + l ) , and use
$,
$3
where
$,
f
f*
define
= "the f i r s t
by
f*(O) = 0
n f o r which f ( n ) i s
:Q
f*(n+l)=
mod 4".
+ * * * * * * * Notice the following two phenomena
( A ) For any two natural s e t theories, not only they are
5
cs
-comparable, b u t one
i s interpretable in the other ( o r expected t o be s o ) . ( 6 ) Similarly, f o r any theories, e.q. undecidab l i t y r e s u l t s are gotten by i n t e r -
pretation. Friedman rFr21 proved a theorem saying ( A ) i s really true. Concerning ( B ) however, in CSh1, (under C H )
the monadic theory of the re 1 order i s proven undecidable
without the usual interpretation. I n Gurevich and Shelah
CGSl1 t h i s
i s explained i t i s a Boolean-valued i n t e r p r e t a t i o n , and by CGS21 the usual i n t e r pretation i s impossible. Now we can t r a n s l a t e i t t o ( A ) : l i s t the reasonable axioms f o r the monadic theory of the real order (considered as a two-sort model).
S. SHELAH
160
REFERENCES
CEHMRl P. Erdos, A. H a j n a l , A. Mate and R. Rado, C o m b i n a t o r i a l s e t t h e o r y , N o r t h H o l l a n d P u b l . Co.
CF11
H. Friedman, On t h e necessary use o f A b s t r a c t s e t t h e o r y , Advances i n Mathem a t i c s 41 (1981), 209-280.
TF21
H. Friedman, T r a n s l a t a b i l i t y and r e l a t i v e c o n s i s t e n c y .
C FMS 1 H. Friedman, K. McAloon and S.G. Simpson, A f i n i t e c o m b i n a t o r i a l p r i n c i p l e which i s e q u i v a l e n t t o t h e I - c o n s i s t e n c y o f p r e d i c a t i v e a n a l y s i s . CGSll
Y. Gurevich and S. Shelah, The monadic t h e o r y and t h e n e x t w o r l d . I s r a e l J.
Math. CGS21 Y. Gurevich and S. Shelah, A r i t h m e t i c cannot be i n t e r p r a t e d i n monadic theory o f 8. [MI
A. M a c i n t y r e , Ramsey q u a n t i f i e r s i n a r i t h m e t i c , Proc. o f a L o g i c Symp. .(Karpacz 1979) ed. L. P a c h o l s k i and A. W i l k i e , S p r i n g e r V e r l a g L e c t u r e Notes i n Mathematics.
[PHI
J . P a r i s and L. H a r r i n q- t o n ,- A mathematical incompleteness i n Peano a r i t h m e t i c , Handbook o f Mathematical L o g i c , ed. Barwise, N o r t h - H o l l a n d Publ. Co.., 1977, 1133-1142.
CSh 1
S. Shelah, The monadic t h e o r y o f o r d e r , Annals of Math. 102 (1975), 379-419.
CSSl
S.G. Simpson and J.Schmer1, On t h e r o l e o f Ramsey q u a n t i f i e r s i n f i r s t o r d e r a r i t h m e t i c , J. Symb. L o g i c .
LOGIC COLLOQUIUM '82 G. Lalli, G. Long0 and A . 'Marcia (editors) 0Elsevier Science Publishers B. V. (North-Holland), 1984
161
CONTINUOUS TRUTH I Non-constructive Objects Michael P . Fourman Department of Mathematics Department of Pure Mathematics Columbia University Uni vers i t y of Sydney New York, N . Y . 10027 N.S.W. 2006 U.S.A. Australia
W e g i v e a general theory of the l o g i c of p o t e n t i a l l y i n f i n i t e o b j e c t s , derived from a theory of meaning f o r statements concerning these o b j e c t s . The paper has two main p a r t s which may be read independently but a r e intended t o complement each o t h e r . The f i r s t p a r t i s e s s e n t i a l l y philosophical. In i t , we d i s c u s s the theory of meaning. We b e l i e v e t h a t even t h e s t a u n c h e s t r e a l i s t must view p o t e n t i a l i n f i n i t i e s o p e r a t i o n a l l y . The second p a r t i s formal. In i t , we consider t h e i n t e r p r e t a t i o n of l o g i c i n t h e gros topos of sheaves over t h e category of separable l o c a l e s equipped with t h e open cover topology. We show t h a t general p r i n c i p l e s of c o n t i n u i t y , l o c a l choice and l o c a l compactness hold f o r t h e s e models. We conclude with a b r i e f discussion of the philosophical s i g n i f i c a n c e of our formal r e s u l t s . They allow us t o reconc!le our explanation of meaning w i t h the "equivalence thesis , t h a t 'snow i s white i s t r u e ' i f f snow is white.
PROLEGOMENON Classical mathematics i s based on a p l a t o n i c view of mathematical o b j e c t s . The meanings of mathematical statements a r e determined t r u t h - f u n c t i o n a l l y . T h i s Fregean explanation of meaning j u s t i f i e s c l a s s i c a l l o g i c . The d e f i c i e n c i e s of such a view a r e amply discussed by Dummett C19781. A c o n s t r u c t i v e mathematician r e j e c t s t h e completed i n f i n i t i e s of classiGa1 mathematics. For h i m , t h e objects of mathematics a r e e s s e n t i a l l y f i n i t e . The meaning
of q u a n t i f i c a t i o n over i n f i n i t e domains is given o p e r a t i o n a l l y i n terms of a theory of c o n s t r u c t i o n s . T h e r e s u l t i n g l o g i c includes Heyting's p r e d i c a t e c a l culus and o t h e r p r i n c i p l e s ( e . g . choice p r i n c i p l e s ) .
As Dummett has s t r e s s e d , one t a s k of any philosophy of mathematics i s t o explain the a p p l i c a b i l i t y of mathematics. The p o t e n t i a l i n f i n i t i e s of experience exceed t h e f i n i t e o b j e c t s of t h e s t r i c t c o n s t r u c t i v i s t . They demanda mathematics of inf i n i t e objects. Naive a b s t r a c t i o n leads t o the i d e a l i n f i n i t e o b j e c t s of c l a s s i c a l mathematics. This i d e a l i s a t i o n has enjoyed remarkable success. However, the meaning of statements .of c l a s s i c a l mathematics remains problematic. Brouwer C19811 introduced t o mathematics p o t e n t i a l l y i n f i n i t e o b j e c t s such a s f r e e choice sequences. Consideration of t h e s e j u s t i f i e d , f o r Brouwer, i n t u i t i o n i s t i c l o g i c , including various choice and continuity princip2e.s. W e s h a l l consider a general notion of non-constructive o b j e c t . For us, t o present such a notion i s t o give a theory of meaning f o r statements involving non-constructive o b j e c t s .
Our non-constructive o b j e c t s a r e not t h e p l a t o n i c ideal o b j e c t s of c l a s s i c a l mathematics nor t h e f i n i t a r y o b j e c t s of pure constructivism. They a r e p o t e n t i a l l y
M.P. FOURMAN
162
i n f i n i t e o b j e c t s r e l a t e d t o t h e l a w l e s s sequences o f K r e i s e l 119681and t o Brouwer's f r e e - c h o i c e sequences ( T r o e l s t r a 119771). The meanin s o f s t a t e m e n t s about t h e s e o b j e c t s cannot be g i v e n i n terms o f t r u t h c o n d i t i o n s ?as f o r c l a s s i c a l P l a t o n i s t mathematics) o r i n terms of c o n s t r u c t i o n s ( a s f o r n a i v e c o n s t r u c t i v i s m ) . The essence o f t h e s e n o n - c o n s t r u c t i v e o b j e c t s l i e s i n t h e i r i n f i n i t e c h a r a c t e r . They a r e n o t , i n g e n e r a l , t o t a l l y grasped. They a r e g i v e n i n terms o f p a r t i a l d a t a which may l a t e r be r e f i n e d . Meaning f o r statements a b o u t n o n - c o n s t r u c t i v e o b j e c t s i s g i v e n b y s a y i n g what d a t a j u s t i f i e s a g i v e n a s s e r t i o n .
To d e s c r i b e a p a r t i c u l a r n o t i o n o f n o n - c o n s t r u c t i v e o b j e c t i s t o d e s c r i b e t h e t y p e o f d a t a on which i t i s based. We c o n s i d e r v a r i o u s such n o t i o n s . Each c o n c e p t i o n o f d a t a g i v e s an e x p l a n a t i o n o f meaning w h i c h extends t h e range o f meaningful statements and may b e viewed as i n t r o d u c i n g new o b j e c t s i n t h a t i t a s c r i b e s meani n g t o new forms o f q u a n t i f i c a t i o n . I n f a c t f o r each t y p e o f d a t a we i n t r o d u c e a c o n c r e t e r e p r e s e n t a t i o n o f t h e n o n - c o n s t r u c t i v e o b j e c t s based on i t . Such a p r o j e c t i s n o t n o v e l : B e t h 119471 i n t r o d u c e d h i s models t o p r o v i d e j u s t such an e x p l a n a t i o n o f meaning f o r c h o i c e sequences. Our models g e n e r a l i s e Beth's. Dumnett 119771 makes a l e n g t h y c r i t i q u e o f t h e view t h a t t h e i n t e n d e d meanings o f o f t h e l o g i c a l c o n s t a n t s a r e f a i t h f u l l y r e p r e s e n t e d on B e t h t r e e s . Since o u r models g e n e r a l i s e B e t h ' s t h e y appear prima f a c i e t o be s u s c e p t i b l e t o t h e same c r i t i c i s m s . However, Dummett's remarks on t h e (non)-consonance o f t h e i n t e n d e d meanings o f t h e c o n n e c t i v e s w i t h t h e i r i n t e r p r e t a t i o n i n B e t h t r e e s a r e d i r e c t e d a t a d i f f e r e n t problem f r o m t h e one we address. Dummett appears t o have o i e r l o o k e d t h e p o s s i b i l i t y o f s e p a r a t i n g t h e problem o f e x p l a i n i n g t h e c o n s t r u c t i v e meaning o f statements c o n c e r n i n g l a w l i k e o b j e c t s f r o m t h a t o f e x p l a i n i n g t h e i n t u i t i o n i s t i c meaning o f statements c o n c e r n i n g c h o i c e sequences. Although we know o f no s a t i s f a c t o r y e x p l a n a t i o n o f c o n s t r u c t i v e t r u t h ( i n p a r t i c u l a r , we agree w i t h Dummett t h a t B e t h models do n o t g i v e one), such a s e p a r a t i o n appears n a t u r a l . I t i s p o s s i b l e t o c o n c e i v e o f c o n s t r u c t i v e t r u t h i n d e p e n d e n t l y o f c h o i c e sequences. Given such a c o n c e p t i o n , Beth models p r o v i d e an account o f t h e i n t r o d u c t i o n o f n o n - l a w l i k e o b j e c t s . I t i s t h i s t y p e o f account we have g e n e r a l i s e d . By way o f example we now c o n s i d e r two n o t i o n s o f d a t a c l o s e l y r e l a t e d t o Beth models. They b o t h a r i s e f r o m t h e same i n f o r m a l p i c t u r e . The Imagine r e c e i v i n g f r o m Mars an i n f i n i t e sequence a o f n a t u r a l numbers. p i c t u r e i s o f a t i c k e r - t a p e which produces an i n d e f i n i t e l y c o n t i n u e d f i n i t e i n i t i a l segment a o f t h e sequence CL. (We w r i t e CL E a t o mean t h a t a i s an i n i t i a l segment o f a . ) We want t o examine t h e consequences o f t r e a t i n g such undetermined sequences s e r i o u s l y as sequences. ( L a t e r we s h a l l i n t r o d u c e more i n t e r e s t i n g examples )
.
A n a i v e view o f t h i s example c o n s i d e r s t h e stages b y which i n f o r m a t i o n a r i s e s : a t any stage, t h e p o s s i b l e f u t u r e d a t a i s r e p r e s e n t e d b y t h e c o l l e c t i o n N(where n E N) must appear. N o t o n l y do we n o t y e t know which o f t h e s e p o s s i b i l i t i e s w i l l occur, i t i s n o t y e t determined which w i l l o c c u r . On t h e b a s i s o f t h i s d a t a we may cons t r u c t many sequences. The s i m p l e s t o f these, a i s g i v e n b y t r a n s c r i b i n g t h e d a t a as i t a r r i v e s . Thus on t h e b a s i s o f d a t a b 5 a, we a r e j u s t i f i e d i n a s s e r t i n g t h a t a i s an i n i t i a l segment o f a. We w r i t e t h i s b i t CL E a. (We o r d e r sequences by s e t t i n g b 5 a i f a i s an i n i t i a l seqment o f b s i n c e t h e n b a l l o w s fewer p o s s i b i l i t i e s f o r CL.)Another sequence B i s g i v e n by f i r s t w r i t i n g down a f i x e d f i n i t e sequence b and t h e n c o n t i n u i n g w i t h t h e incoming data. S c h e m a t i c a l l y , a i l 6 t b*a where * denotes c o n c a t e n a t i o n , and hence " o b v i o u s l y " , f o r any c 5 a, we have c i k D E b*a. We want t o make a l l such "obvious" assumptions d b o u t t h e n a t u r e of j u s t i f i c a t i o n e x p 1 i c i t ; s o we g i v e i t s two b a s i c s t r u c t u r a l p r o p e r t i e s . J u s t i f i c a t i o n should be persistent
alC $ a*blt 0
Continuous Truth I and inductive
a* < n > l t $ f o r a l l n alk @
163
E
N
P e r s i s t e n c e r e f l e c t s t h e i d e a t h a t knowledge, once j u s t i f i e d , i s secure. The i n d u c t i v e c l a u s e comes f r o m r e f l e c t i o n on t h e i n f i n i t e c h a r a c t e r o f a. Given a E a, t h e c o l l e c t i o n { a *I n c N I covers a l l p o s s i b i l i t i e s f o r f u t u r e data. I n general, i f we s t i p u l a t e b l k $ f o r b E B 5 N
ample, any monotone f u n c t i o n g: N
Then a monotone map N
+
P w i l l r e p r e s e n t a non-constructive
We do n o t w i s h t o i n t r o d u c e t e c h n i c a l i t i e s h e r e . L a t e r we s h a l l g i v e a d e f i n i t i o n o f all- 4 , f o r f i r s t - o r d e r $ , b y i n d u c t i o n on t h e s t r u c t u r e o f 9. F o r t h e moment we j u s t remark t h a t such a d e f i n i t i o n o f a l l $ can b e g i v e n and t h a t t h e i n t e r p r e t a t i o n s o f t h e c o n n e c t i v e s a r e c o m p l e t e l y determined, i n t h e c o n t e x t o f o u r requirements on j u s t i f i c a t i o n , b y r e q u i r i n g t h a t t h e r u l e s o f p o s i t i v e l o g i c be v a l i d . I n o u r p r e s e n t case t h i s would amount t o g i v i n g B e t h ' s semantics f o r i n t u i t i o n i s t i c l o g i c w i t h a s l i g h t l y m o d i f i e d n o t i o n o f " b a r " . B e t h ' s semantics a r e w e l l known t o be e q u i v a l e n t t o t h e t o p o l o g i c a l i n t e r p r e t a t i o n o v e r B a i r e space e x p l o i t e d b y S c o t t [ I 9 6 8 1 and Moschovakis 119731;our m o d i f i c a t i o n r e p l a c e s B a i r e space b y f o r m a l B a i r e space ( Fourman and Grayson C19823). We now r e t u r n t o o u r p i c t u r e o f t h e t i c k e r - t a p e . What we have done i s t o g i v e a r e p r e s e n t a t i o n o f t h e subjective e x p e r i e n c e o f r e c e i v i n g word f r o m Mars, a n ext e r n a l view o f how t h e w o r l d w i l l l o o k when d a t a a appears on t h e t i c k e r - t a p e . T h i s view i s dependent on t h e c o n t i n g e n c i e s o f what d a t a i s a v a i l a b l e . B u t mathem a t i c s s h o u l d be t i m e l e s s and a b s o l u t e . T h i s r e q u i r e m e n t appears t o exclude cons i d e r a t i o n o f p o t e n t i a l l y i n f i n i t e o b j e c t s . We now a t t e m p t t o r e s o l v e t h i s contradiction.
-
P i c t u r e a room w i t h a t i c k e r - t a p e , A and v a r i o u s sequences i n progress, a,p,y d e s c r i b e d above f o r example. Now suppose t h a t on t h e t a p e we have t h e ' f i n i t e sequence b. We have d u l y n o t e d t h a t a E b, 8 E b*b, y E g ( b ) . Consider now ano t h e r room A ' w i t h a t i c k e r - t a p e which, as y e t , i s b l a n k and t h r e e non-constructive objects defined by c l t a' E b*c
CIF8 '
E
b*b*c
c ~ F Y g(b*c) ' . I n t h i s room on t h e b a s i s . o f no d a t a we can a l r e a d y n o t e t h a t a' E b, 8 ' E b*b, g ( b ) . Furthermore d a t a b*c a r r i v i n g i n room A w i l l always have t h e same conI n f a c t the sequences f o r a . 8 , ~as d a t a c a r r i v i n g i n room A ' has f o r a ' , B ' , y ' . mathematics (and l o g i c ) o f t h e two rooms, A w i t h d a t a b and A ' w i t h no data, s h o u l d b e t h e same. We want t o add t h i s t o o u r f o r m a l t r e a t m e n t . T h i s i s done by r e g a r d i n g incoming d a t a n o t as changing t h e w o r l d b u t r a t h e r as e f f e c t i n g a t r a n s f o r m a t i o n w h i c h changes o u r view o f t h e w o r l d . We c o n s i d e r n o t a p a r t i c u l a r t i c k e r - t a p e b u t r a t h e r t h e uses w h i c h c o u l d b e made o f such an i n d e t e r m i n a t e sequence t o generate n o n - c o n s t r u c t i v e o b j e c t s . Data j u s t becomes a way o f t r a n s y' 6
M.P. FOURMAN
164
forming one such process i n t o a n o t h e r , g e n e r a l l y l e s s f r e e : i t s r e s t r i c t i o n . We give a general d e f i n i t i o n of t h i s transformation a s follows: c l k $(sib) i f f b*clk $(6) (Where 6 i s a non-constructive o b j e c t given by s t i p u l a t i n g what d a t a j u s t i f i e s $ ( 6 ) f o r various $.) For example, a l b = a ' = a; Olb = a ' ; y l b = y ' .
This change of viewpoint amount s f o r m a l l y t o a change in our r e p r e s e n t a t i o n of d a t a . Formerly we considered the p a r t i a l l y ordered set o r t r e e N < N as representing various possible s t a t e s of information. Incoming data changes t h e world i n t h a t i t places us i n a new s t a t e . Now we consider N"' a s a c o l l e c t i o n of transformations which a c t t o change our view of t h e world. Formally i t i s convenient t o r e p r e s e n t t h e data a s t h e monoid of f i n i t e sequences under concatenation; i f g: N C N P r e p r e s e n t s a non-constructive o b j e c t y then y l b i s represented by gob where b : a b*a a c t s by l e f t concatenation. The notion of j u s t i f i c a t i o n i s t o be s t a b l e under such a change of perspective: a I b $ ' ] b i f f b*alk $ (where I b i s applied t o t h e non-constructive parameters of $ . ) -f
We now consider examples of a more general type of non-constructive o b j e c t intend-
ed t o r e p r e s e n t p o t e n t i a l i n f i n i t i e s of experience. We base our d e s c r i p t i o n , f o r t h e sake of e x p o s i t i o n , on a view o f c l a s s i c a l experimental physics which we asc r i b e t o t h e nineteenth century. B r i e f l y i t runs a s follows: Physics i s based on measurement. Experiments determine values o f parameters a t o a c e r t a i n degree of p r e c i s i o n . Generally some e r r o r i s i n e v i t a b l e b u t i t may i n p r i n c i p l e be made a r b i t r a r i l y small ( t h i s i s t h e assumption which leads us t o l a b e l t h i s a s a nineteenth century noti o n ) . Now, we refuse t o admit t h e c l a s s i c a l a s c r i p t i o n of a c t u a l values t o these parameters. A t f i r s t consideration t h i s may appear c h u r l i s h . There i s an apparent d i f f e r e n c e between a sequence determined only by t h e f r e e w i l l of a Martian and a physical value. W e leave a s i d e the question o f whether this i s an actual d i f f e r ence because t h i s question misses t h e p o i n t . The point i s t o a s k , "How can we assign meaning t o statements concerning such q u a n t i t i e s , i n p a r t i c u l a r how should we understand q u a n t i f i c a t i o n over such q u a n t i t i e s ? " Our r e f u s a l amounts t o denying the coherence of any explanation based on the assumption t h a t every sentence has a determinate truth value, e i t h e r true o r f a l s e . We r e f e r t o Dummett f o r e l a b o r a t i o n of t h i s point. The p o s s i b l e r e s u l t s of experiments a r e concrete by experiment t h a t a E U. These possible U form assumes t h a t a r b i t r a r y refinement of our methods presented by saying t h a t the V i < U representing cover U
.
however. I n general we may f i n d a poset IP. The c o n c e i t which i s i n p r i n c i p l e possible i s rea c e r t a i n degree .of refinement
For example, measurement of a q u a n t i t y c l a s s i c a l l y represented by a real parameter could be represented by taking f o r P t h e poset of r a t i o n a l open i n t e r v a l s , with t h e s t i p u l a t i o n t h a t f o r each E > 0 an open i n t e r v a l U i s covered by t h e c o l l e c t i o n of a l l s u b i n t e r v a l s of length 5 E , a l s o t h a t t h e c o l l e c t i o n of a l l proper s u b i n t e r v a l s of U covers U. In general then we consider a poset IP of p o s s i b l e outcomes f o r an experiment. We a s k , a s a technical convenience, t h a t i f p and q re resent a p r i o r i compatible r e s u l t s ( i . e . i f t h e r e i s an r with r 5 p and r 5 qp then we can consider the outcome which c o n s i s t s j u s t of g e t t i n g t h e s e two r e s u l t s ( i . e . we have an infinium p A q E P). We a l s o consider no information as a possible r e s u l t ( i . e . Ip has a
Continuous Truth I t o p element T ) . The p o s e t demand t h a t t h i s b e
IP
i s equipped w i t h a n o t i o n o f c o v e r i n g f a m i l y .
r e f Zective
stabZe
165
We
i p } covers p I f U covers p and q
monotone
5
p t h e n Iq
w Iw
A
E
U l covers q
I f V 2 U covers p t h e n V covers p.
The n o t i o n o f a c o v e r i n g f a m i l y i s c r u c i a l t o o u r e x p l a n a t i o n o f meaning f o r i n complete o b j e c t s . I t f o r m a l i s e s t h e sense i n which t h e y a r e p o t e n t i a l l y i n f i n i t e . We a v o i d t h e metaphor o f W r i g h t C19811 which r e p r e s e n t s such a c o v e r i n g f a m i l y as embodying t h e r e c o g n i t i o n t h a t t h e s t a t e o f i n f o r m a t i o n i s capable o f e f f e c t i v e enlargement t o one o f t y p e a*because i t seems t o l e a v e open t o us t h e c h o i c e o f n o t p e r f o r m i n g t h i s enlargement. The i d e a we have i s t o i n t r o d u c e c o n s i d e r a t i o n o f a p a r t i c u l a r t y p e o f i n c o m p l e t e o b j e c t b y s p e c i f y i n g t h e t y p e o f d a t a which generates i t . T h i s s p e c i f i c a t i o n i n c l u d e s a n o t i o n o f c o v e r i n g f a m i l y . D i f f e r ences o v e r w h i c h i s t h e p r o p e r c o l l e c t i o n o f c o v e r i n g f a m i l i e s do n o t a f f e c t t h e b a s i c c o n c e p t i o n b u t m e r e l y l e a d t o d i f f e r e n t types o f data. We a r e n o t as mathematicians o r l o g i c i a n s i n t e r e s t e d i n t h e r e s u l t o f a p a r t i c u l a r experiment. Rather, we a r e i n t e r e s t e d i n t h o s e p r o p e r t i e s which would remain i n v a r i a n t no m a t t e r what t h e outcome o r methodology o f a p a r t i c u l a r experiment. It i s n o t t h e r e s u l t b u t t h e uses t o which t h e r e s u l t m i g h t be p u t i n d e f i n i n g mathem a t i c a l q u a n t i t i e s which i n t e r e s t us. Were t h e temperature s c a l e n o n - l i n e a r , o r t h e t i m e s c a l e g i v e n by t h e unequal t i m e o f t h e sun, p h y s i c s would be d i f f e r e n t ( i t was). B u t mathematics and l o g i c s h o u l d be immune t o such v a g a r i e s . Our s o l u t i o n i s s i m i l a r t o t h a t we employed i n g i v i n g an o b j e c t i v e view of. open data. The p o s s i b i l i t y we envisage i s t h a t o f a change o f s c a l e which i n some sense r e f i n e s o u r p o s s i b i l i t i e s f o r measurement. The measurements o f t h e o l d cont e x t s h o u l d be meaningful i n t h e new one b u t t h e new one may a f f o r d f i n e r d i s t i n c t i o n s . To d e s c r i b e such a change o f s c a l e i s t o say which new o b s e r v a t i o n s q E Q a r e t o b e viewed as r e f i n i n g an o l d o b s e r v a t i o n p E IP. We w r i t e t h i s r e l a t i o n q 5 f * ( p ) and demand t h a t i t be
monotone
p q
muZtip Zicative
pi I i
continuous
{q I q
f*(p) q 5 f*(p') q 5 f*(p A p ' )
5
E
p'
5
I
r
covers p
f*(pi)
some i
E
5
f*(p)
11 covers r
.
The m o t i v a t i o n f o r t h e f i r s t two i s c l e a r . C o n t i n u i t y may b e viewed as t h e r e quirement t h a t a p r e v i o u s c o n v i c t i o n t h a t a c e r t a i n f a m i l y covers, cannot be overt u r n e d . The change o f v i e w p o i n t induced b y such a t r a n s f o r m a t i o n f i s g i v e n by
M a t h e m a t i c a l l y , o u r n o t i o n o f d a t a g i v e s a p r e s e n t a t i o n o f a ZocaZe. Change o f s c a l e i s r e p r e s e n t e d by a continuous f u n c t i o n between l o c a l e s . A b s t r a c t l y we w r i t e such a change f: Y X. -f
We now c o n s i d e r a supplement t o o u r n o t i o n o f j u s t i f i c a t i o n . Suppose, we consider, t h a t c o n s i d e r a t i o n o f a p a r t i c u l a r t y p e o f d a t a would j u s t i f y 0, t h e n C$ i s j u s t i f i e d . T h i s i s t h e r e f l e c t i o n on w h i c h o u r whole p r o j e c t i s based: t h a t we can j u s t i f y t a l k o f i n c o m p l e t e o b j e c t s by r e f l e c t i n g on hypothetica2 i n d e f i n i t e l y c o n t i n u e d processes.
M.P. FOURMAN
166
We s h a l l f o r m u l a t e t h i s b y s a y i n g t h a t i f f : Y + X r e p r e s e n t s t h e i n t r o d u c t i o n o f new d i s t i n c t i o n s independent o f those r e p r e s e n t e d b y X t h e n
o r t h a t such an f i s a cover. Our f i n a l problem o f f o r m a l i s a t i o n i s t o c h a r a c t e r i s e t h e i n t r o d u c t i o n o f independent data. A s i m p l e example i s , g i v e n P a n d Q w i t h n o t i o n s o f c o v e r i n g , t o consider P x Q t h e product poset w i t h coverings
I I
1 1
E I } covers p i E I} covers q . The p r o j e c t i o n g i v e n by5 n * ( p ' ) i f f p s p ' r e p r e s e n t s t h e i n t r o d u c t i o n o f d a t a o f t y p e Q i n d e p e n d e n t l y o f t h e d a t a IP under c o n s i d e r a t i o n . We s h a l l r e q u i r e t h a t a l l such p r o j e c t i o n s be covers.
II
i
E
i
E
I 1 covers I } covers
p.q
when {pi
p,q
when
qi
i
I n general t h e r e a r e two c o n d i t i o n s we r e q u i r e t o view a change o f s c a l e as t h e i n t r o d u c t i o n o f independent data. The f i r s t i s obvious: no new covers s h o u l d be i n t r o d u c e d between e x i s t i n g o b s e r v a t i o n s . qi s f * ( r i )
{qi 1 i
{ri I i
E
E
I } covers each q I } covers r
5
f*(r)
The second i s s u b t l e : no new c o n d i t i o n a l r e l a t i o n s h i p s s h o u l d b e i n t r o d u c e d between e x i s t i n g o b s e r v a t i o n s . We e x p l a i n : i f w E Q i s such t h a t
r 5 w f*(p) r 5 f*(q) (we view w as e s t a b l i s h i n g a c o n d i t i o n a l r e l a t i o n s h i p between f * ( p ) and f * ( q ) ) , we demand t h a t w 5 f * ( s ) f o r some s E I P such t h a t r
5
r s p
r s s r s q
Technically, these require( t h a t t h e r e l a t i o n s h i p be a l r e a d y e s t a b l i s h e d i n IP). ments amount t o demanding t h a t t h e continuous map f : Y + X be a s u r j e c t i o n and t h a t i t be open. The s t r u c t u r e o f d a t a we have a r r i v e d a t may b e viewed as t h e c a t e g o r y o f l o c a l e s equipped w i t h t h e t o p o l o g y o f c o v e r i n g b y open maps. Before t u r n i n g t o a formal examination o f t h e i n t e r p r e t a t i o n o f l o g i c over t h i s s i t e , we sum up o u r i n t e n t i o n s . We i n t r o d u c e n o n - c o n s t r u c t i v e o b j e c t s b y e x p l a i n i n g t h e meanings o f t h e connecti v e s f o r statements c o n c e r n i n g them. T h i s i s not a m a t t e r o f c h a r a c t e r i s i n g a domain o f q u a n t i f i c a t i o n . We have t o e x p l a i n t h e c o n n e c t i v e s anew i n terms o f t h e way such an o b j e c t i s g i v e n t o us. Moreover, i t i s n o t s u f f i c i e n t t o m e r e l y paraphrase t h e new q u a n t i f i e r s Wa and 3u. Such a paraphrase e n t a i l s a r e v i s i o n o f t h e i n t e r p r e t a t i o n s o f -+ and v . Our aim i s t o show t h a t i t i s p o s s i b l e t o d e r i v e r i g o r o u s l y p r o p e r t i e s o f v a r i o u s domains o f i n c o m p l e t e o b j e c t s by g i v i n g a f o r m a l r e p r e s e n t a t i o n o f t h e d a t a which p r e s e n t s them as a s i t e . We c o n s i d e r t h a t t h e passage f r o m an i n f o r m a l n o t i o n o f data t o t h e c o r r e s p o n d i n g s i t e i s s i m p l e and n a t u r a l . (Indeed, f o r us, t o have a c l e a r c o n c e p t i o n o f a t y p e o f d a t a i s t o be a b l e t o d e s c r i b e t h e c o r r e s p o n d i n g s i t e . ) Once t h i s passage i s made, t h e d e r i v a t i o n o f p r o p e r t i e s ( c h o i c e and cont i n u i t y p r i n c i p l e s , f o r example) i s a mathematical m a t t e r . Our hope i n p r e s e n t i n g these modeis i s L e i b n i t z i a n : t o e l i m i n a t e f u r t h e r d i s c u s s i o n o f t h e j u s t i f i c a t i o n o f such p r i n c i p l e s b y r e d u c i n g t h e m a t t e r t o c a l c u l a t i o n . I n o u r paper " N o t i o n s o f Choice Sequence" C19821 we presented v a r i o u s n o t i o n s o f
Continuous Truth I c h o i c e sequence, i n c l u d i n g ones purpose. U n f o r t u n a t e l y , as t h e i s i n t h e eye o f t h e b e h o l d e r . a t i o n o f our informal notion o f
167
s a t i s f y i n g t h e axioms o f LS and CS, w i t h t h e same l i t e r a t u r e on c h o i c e sequences makes c l e a r , c l a r i t y Hence t h e p r e s e n t a t t e m p t a t a more c a r e f u l explann o n - c o n s t r u c t i v e o b j e c t and i t s f o r m a l i s a t i o n .
CONTINUOUS TRUTH We s t a r t w i t h a c o n c r e t e p r e s e n t a t i o n o f t h e i n t e r p r e t a t i o n o f h i g h e r - o r d e r l o g i c i n a Grothendieck topos. T h i s m a t e r i a l (561-3) i s well-known t o cognoscenti ( tautologously), b u t i s otherwise accessible only through a study o f scattered r e f e r e n c e s . We g i v e some o f these sources b u t make no s y s t e m a t i c a t t e m p t a t a complete l i s t . Many i m p o r t a n t and h i s t o r i c a l l y s i g n i f i c a n t c o n t r i b u t i o n s a r e n o t mentioned. Our account i s f u l l e r t h a n i s l o g i c a l l y necessary f o r t h e sequel i n o r d e r t o p o i n t o u t some connections between d i f f e r e n t approaches. I t i s not, however, e x h a u s t i v e . 51
Frames and Locales
A frame i s a complete l a t t i c e w i t h f i n i t e A d i s t r i b u t i v e o v e r 1.1 D e f i n i t i o n . a r b i t r a r y V. Frame morphisms, "and-or maps", a r e maps p r e s e r v i n g these o p e r a t i o n s ; T,A,V. 1.2 Example. The l a t t i c e O(X) o f open subsets o f a t o p o l o g i c a l space i s a frame. I f f: Y + X i s a continuous map t h e n t h e inverse image f*: O ( X ) -r O ( Y ) i s an A,V-map. 1.3 D e f i n i t i o n . The c a t e g o r y o f Zocalos o r g e n e r a l i s e d spaces i s t h e dual o f t h e c a t e g o r y o f frames. We c a l l t h e morphisms continuous maps f: Y + X and w r i t e f*: U(X) + O ( Y ) f o r t h e c o r r e s p o n d i n g i n v e r s e image maps between t h e frames of opens o f X and Y ( a s i n t h e t o p o l o g i c a l case). Example 1.2 g i v e s a f u n c t o r 6: Top maps t o l o c a l e s .
+
LOC f r o m t o p o l o g i c a l spaces and continuous
1.4 D i s c r e t e spaces. S p a t i a l l y P(A) corresponds t o t h e d i s c r e t e t o p o l o g y on A. p o i n t space w i t h O( ll) = P( ll) . 1.5
Definition.
1.6
Lemma.
An example i s t h e one-
A t o p o l o g i c a l space X i s sober i f f Top[Il,Xl
1 LocCll,pX1.
On t h e f u l l subcategory o f sober spaces 6 i s f u l l and f a i t h f u l .
We t a c i t l y r e s t r i c t o u r a t t e n t i o n t o sober spaces and h e n c e f o r t h o m i t mention o f 8. We view l o c a l e s as generalised spaces. (The r e l a t i o n s h i p between LOC and Top i s b e t t e r expressed i n terms o f t h e r i g h t a d j o i n t , p t : LOC + Top, t o 6.) Q u o t i e n t maps o f frames i n d u c e congruences: i f f*: O(X) + U(Y) i s has a c a n o n i c a l p a q i f f f * p = f * q . Each congruence c l a s s !PI r e p r e s e n t a t i v e j p = V t q I p a q } . The maps j : O(X) + O(X) a r i s i n g i n t h i s way a r e monotone P 2 jp j2 = j idempotent ,
muttip l i c a t i v e
j(p
A
9) = j p
A
jq
.
Such maps a r e c a l l e d n u c t e i . The q u o t i e n t may b e i d e n t i f i e d as t h e image ( o r f i x e d p o i n t s ) o f j . The q u o t i e n t s o f O(X) a r e i s o m o r p h i c ( a s posets) w i t h t h e n u c l e i on U(X). S p a t i a l l y we view these q u o t i e n t s as g i v i n g r i s e t o subspaces o f x.
M.P. FOURMAN
168
1.8 Surjections. Dually, we view i n j e c t i v e inverse image maps as giving r i s e to surjections o f spaces. Each frame map f* has a r i g h t adjoint f,,
1.9 Right a d j o i n t s . given by The map q
p
A
f*p = V{q q has a r i g h t a d j o i n t r p ~ q s r iff
1
f*q
+p
where p + r = v!q I p A q 2 r } . morphisms are d i f f e r e n t ) .
d i r e c t image,
.
pl r defined by q s p + r 5
-f
Thus frames are complete Heyting algebras ( b u t the
Y i s o en i f the inverse image map 1.10 Definition. A map of spaces f : X f*: O(y) + O ( X ) has a l e f t a d j o i n t 3,: U ( X ) + O ( V 7 commuting with A : 3f(f*(Y) A x ) = Y A j f ( X ) or, equivalently, i f f* preserves +. -f
1.11 Proposition. The category o f locales i s complete and cocomplete. surjections a r e s t a b l e (under pull-back).
Open
The theory of locales i s developed extensively by Joyal and Tierney C19821. Johnstone 119821 uses locales systematically and has a comprehensive bibliography. 52
S i t e s a n d Sheaves
2.1 Definitions. Let 0 be a small categor . A cribte K of A E ! E l i s a suboil : t h a t i s , f o r each B E 181 a s e t functor of the representable functor A E S' K ( B ) 5 IB,AI, s t a b l e under composition; f o r each f E K ( B ) and g : C B in C , the composite f g E K ( C ) . -f
0
2 . 2 Lemma. The c r i b l e s of A form a frame, P ( A ) . If f : B + A i n B we have an inverse image map f*: P(A) + P(B) given by f o r the correspondf*K = Ig f g E K} f o r K E P ( A ) . By abuse we write f : ing continuous map. This map i s open.
B A
0
-f
2.3 Definition. (Lawvere-Tierney) A Grothendieck topology j on is a family of nuclei j A : P(A) P(A), natural i n A: t h a t i s f * o j A = jBof*for f: B
+
-f
A.
Lemma. I f j i s a Grothendieck topology on 0 , the quotient frames n(A) have induced inverse image maps f*: n(A) + n ( B ) and the corresponding map of locales, which we write f : B j +A', i s open. 2.4
2.5 Definitions. which i s
A pretopotogy J on 0 i s a family J(A)
A
reflerrive
K
multiplicative
K
stable
(For example, l e t K A crible K
E
E
E
E
J(A) i f f j K
J(A)
E
J(A) K n L J(A) f*K =
E
L E J(A) J(A) f: B + A
E
J(B)
T).
P(A) i s inductively c t o s e d f o r J i f f
c
P ( A ) f o r each A
E
B
169
Continuous Truth I f: B + A
f*K
E
J(B)
.
f c K
As A i s c l o s e d and an i n t e r s e c t i o n of c l o s e d c r i b l e s i s closed, each c r i b l e K E P(A) has a cZosure j A K . T h i s g i v e s a t o p o l o g y j on C. We say K inductiveZy covers A iffj K = A, and w r i t e t h i s K E J(A). U(X) be a frame viewed as a p o s e t viewed as ( I d e n t i f y i n g B + A w i t h i t s domain.) Then be a s m a l l c a t e g o r y o f l o c a l e s c l o s e d under f i n i t e l i m i t s (2) Let i n c l u s i o n s . L e t K E J(A) i f f K c o n t a i n s some f a m i l y Ifi: Bi + A l i E
2.6
Exam l e s . (1)
___R_ Let K J A i f f VK E
maps such t h a t
V
Let
= A.
= A.
3fi(Bi)
a category. n(X) 1 O ( X ) . and open 11 o f open
The c r i b l e generated b y each open i n c l u s i o n U T h i s assignment g i v e s an A;V map r*: U(A)
i s closed f o r t h i s topology.
+
4
A
n(A),
s p a t i a l l y a s u r j e c t i o n r : AJ + A . Each c l o s e d c r i b l e c o n t a i n s a l a r g e s t open i n c l u s i o n . T h i s assignment g i v e s an A V map i*:n(A) + U(A), s p a t i a l l y we have an i n c l u s i o n i: A c+JJ. Furthermore, adjoint retract o f
AJ
r
o
i = i d A and r * i * s id,(A)
so A i s an
(Fourman C19821).
2.7 D e f i n i t i o n . A presheaf on C i s a f u n c t o r X: Cop + Sets. I f f: B + A E C and a E X(A) we use t h e n o t a t i o n a l f , "a r e s t r i c t e d a l o n g f " , f o r X ( f ) ( a ) E X(B). Note t h a t a l f l g = a l f o g and a l i d = a. The a p p r o p r i a t e morpkisms between presheaves F: Y + X a r e n a t u r a l t r a n s f o r m a t i o n s , maps FA: Y(A) + X(A) w h i c h commute w i t h r e s t r i c t i o n s FB(a,lf) = ( F A a ) l f . 2.8
Exam l e s .
( 1 ) The r e p r e s e n t a b l e f u n c t o r [-,A], ( o r by abuse, j u s t i f i e d by i s a presheaf. R e s t r i c t i o n s are by composition g l f = gof. Yoneda's lemma t e l l s us t h a t f o r any o t h e r presheaf, X, we have X(A) [A,X]. In
Yone 7 a+ s emma, +A)
p a r t i c u l a r t h e embedding C + Stop i s f u l l and f a i t h f u l . Each c r i b l e K E P(A) i s a subpresheaf K H A . ( 2 ) P and n a r e presheaves w i t h r e s t r i c t i o n s g i v e n b y i n v e r s e images K l f = f * ( K ) . 2.9 D e f i n i t i o n . A p r e s h e a f X on C i s a sheaf f o r t h e ( p r e ) t o p o l o g y J i f whene v e r K E J ( A ) , each n a t u r a l t r a n s f o r m a t i o n x: K + X has a unique e x t e n s i o n a l o n g K >+ A . E q u i v a l e n t 1y, i f K E J(A) and we have a f a m i l y x f E X(B) f o r f: B -f A E K such t h a t xgf = x f l g f o r each g: C
xf = x l f f o r each f Grothendieck topos.
E
K.
+
8, t h e r e i s a unique x
E
X(A) such t h a t
The c a t e a o r v of sheaves and n a t u r a l t r a n s f o r m a t i o n s i s a
There i s , as y e t , no s t a i s f a c t o r y i n t r o d u c t o r y t e x t on topos t h e o r y . r e f e r e n c e s a r e SGA4, W r a i t h C19751, Johnstone C19771, F r e y d '19721.
53
The b a s i c
Forcing over a s i t e
Here we d e s c r i b e J o y a l ' s p r e s e n t a t i o n o f i n t e r p r e t a t i o n s i n t o p o i i n terms o f a n o t i o n o f f o r c i n g . L e t C and a ( p r e ) t o p o l o g y J b e f i x e d . The b a s i c s t r u c t u r e s we c o n s i d e r a r e diagrams o f preskeaves on C. Each p r e s h e a f A i n t e r p r e t s a type o r s o r t o f v a r i a b l e . A morphism f : A1 x ... x An + B i n t e r p r e t s an n-ary operation.
A subobject R
-
A1
x
...
x
An i n t e r p r e t s an n - a r y r e l a t i o n .
3.1 D e f i n i t i o n s . L e t L be a f i r s t - o r d e r language ( p o s s i b l y many-sorted) w i t h e q u a l i t y . An i n t e r p r e t a t i o n o f L i s g i v e n b y a s s i g n i n g t o each s o r t A o f L a p r e s h e a f A, t o each o p e r a t i o n F f r o m A1,. . .,An t o B a n a t u r a l t r a n s f o r m a t i o n F: A1 R
*
x
A1
... x An B, and t o each r e l a t i o n R on A1 x ... x An .. . x An. Given such an i n t e r p r e t a t i o n , f o r U E J C C J +
x
a subfunctor we l e t
LU b e t h e
M.P. FOURMAN
170
expansion o f L o b t a i n e d by a d d i n g c o n s t a n t s o f t h e a p p r o p r i a t e s o r t s f o r t h e e l e ments o f A(U). I f f : V + U t h e n f o r any term T o r f o r m u l a Q o f LU we o b t a i n a term
[lTnu
o r f o r m u l a @ I of f LV by r e s t r i c t i n g any new c o n s t a n t s which occur.
T l f
for U
E E
IC1 we d e f i n e f o r each c l o s e d term A(U) b y i n d u c t i o n : ucnu
Note t h a t
U T l f l "
=
c
=
. . ,Tn) 1,
[IF( TI,.
for =
c
E
A(U)
..,iTnj) .
F(lT,n,.
Now we d e f i n e i n d u c t i v e l y t h e r e l a t i o n , U f o r c e s Q,
[TDulf.
UIk Q f o r 4 a sentence o f Lu. INDUCTIVE DEFINITION OF FORCING
Vflt
a l l f: V f
@If
+
K K
E
J(U)
UIt @
f o r a l l f: V
+
U, i f VIE $ I f t h e n V l t $If V l t @ $ +
f o r a l l f: V
+
U, f o r a l l c E A(U), VIE ~ l f C c / x l U l t wx.+
We now g i v e some " d e r i v e d r u l e s " f o r f o r c i n g : 3.2
(PI
Now
o f s o r t A o f LU an interpretation
T
Lemma.
Basic properties o f f o r c i n g UIt 0
f : V + U
V l t +If
171
Continuous Truth I
K
f o r each f i n some
f o r each f i n some
K
E
E
U I t $ y Ji J(U) e i t h e r V f l t $ 4 f o r V f l t $ l f
Ult- 3x.g j ( U ) we have V f l t $ C c / x l f o r some c
+
*
V l t 8 U i f V l t g l f t h e n VIE +If +
f o r a l l f: V
A(Vf)
E
VIE W X . $ f o r a l l f: V
(Atomic)-
U and a l l c
-f
f o r each f i n some K
E
E
j(U)'we
A(U), we have Vlk $ l f [ c / x l
hav;
...,
[Tnllf>
E
R(Vf)
Our p r e s e n t a t i o n h e r e i s non-standard i n t h a t t h e d e f i n i t i o n o f f o r c i n g i s u s u a l l y g i v e n b y s t i p u l a t i n g b o t h p o s i t i v e and n e g a t i v e r u l e s f o r each c o n n e c t i v e , ( I ) and (P) a r e t h e n d e r i v e d . The r e s u l t i n g r e l a t i o n i s t h e same. 3.3 D e f i n i t i o n . pretation iff
r
A sequent
-
r 1 $)
i s uaZid ( w r i t t e n
UI~$CS(X)/XI a l l q u I t $CS(X)/Xl
E
i n the given i n t e r -
r
where E i s an i n t e r p r e a t i o n o f t h e v a r i a b l e s o f L by elements o f t h e a p p r o p r i a t e A(U). I f each s o r t i s i n t e r p r e t e d by an inhabited p r e s h e a f (each 3.4 P r o p o s i t i o n . A(U) i s i n h a b i t e d ) t h e n t h e axioms and r u l e s o f H e y t i n g ' s p r o p o s i t i o n a l c a l c u l u s a r e v a l i d f o r k.
( A d a p t a t i o n s f o r domains w h i c h a r e n o t i n h a b i t e d a r e discussed i n Fourman r19771, S c o t t 119781, J o y a l & B o i l e a u C19811, Makkai & Reyes 119771.) 3.5
Definitions.
A p r e s h e a f A i s separated i f f
'Ita
=
a = b
A subobject R
t+
f o r a,b
E
A(U)
for a
A(U).
A i s cZosed i f f U I t R(a)
FaquJ
E
A h i g h e r - o r d e r t y p e - t h e o r y i s m e r e l y a many-sorted f i r s t - o r d e r t h e o r y w i t h some s t r u c t u r e on t h e c o l l e c t i o n o f s o r t s and c e r t a i n d i s t i n g u i s h e d o p e r a t i o n s and r e l a t i o n s . One o f t h e i n s i g h t s due t o Lawvere and T i e r n e y i s t h a t t o p o i have such h i g h e r - o r d e r s t r u c t u r e . We c o n s i d e r languages where f o r any two s o r t s A and B we can f o r m t h e product A x B w i t h a p p r o p r i a t e pairing and p ro j e c t i o n operations, t h e f unction space BA w i t h an evaluation operation -( -), and a l s o t h e power t y p e
M.P. FOURMAN
172
P(A) w i t h a membership reZation E . An i n t e r p r e t a t i o n i s standard i f a l l t h i s s t r u c t u r e i s i n t e r p r e t e d by t h e c o r r e s p o n d i n g s t r u c t u r e on Sh((C). 3.6 P r o p o s i t i o n . I n any s t a n d a r d i n t e r p r e t a t i o n t h e f o l l o w i n g schemata, which combine comprehension and extensionality, a r e v a l i d . x
-
A 3!y E B.@(x,y) 3 ! z E P(A) W X
E
E
3!f
A
B A WX
E
(X
z
E
++
E
A.$(x,f(x))
@(x)).
0
Thus power-types and f u n c t i o n spaces behave as t h e y should. The c a t e g o r i c a l c h a r a c t e r i s a t i o n of t h i s h i g h e r - o r d e r s t r u c t u r e i n terms o f a d j o i n t s i s v e r y simple, p r o d u c t s a r e c a t e g o r i c a l p r o d u c t s ,
We s h a l l n o t d e s c r i b e t h i s s t r u c t u r e i n general h e r e . We s h a l l b e d e a l i n g p r i m a r i l y w i t h s o r t s i n t e r p r e t e d by r e p r e s e n t a b l e s . These a r e p a r t i c u l a r l y s i m p l e t o deal w i t h because t h e y have generic elements. A well-known consequence o f t h i s i s t h e Yoneda Lemma: OP F(U) [U,FI f o r F E I S c I and U E / c C 1 . We use t h i s t o c a l c u l a t e some examples o f t h e h i g h e r - o r d e r s t r u c t u r e . F o r t h i s e x e r c i s e , we suppose t h a t ci: has f i n i t e p r o d u c t s and t h a t each r e p r e s e n t a b l e f u n c t o r i s a sheaf. 3.7
Lemma.
(1) F'(U)
I f F i s a s h e a f and U,V a r e r e p r e s e n t a b l e F(U
C)
x
U and E
E
F(U
V) w i t h U l k a
E
R i f f Rl = V .
w i t h e v a l u a t i o n f o r u: V (2)
(PU)(V) = n(U
Proof.
U
F (V)
x
[V,F
(PU)(V)
U
1
+
V) g i v e n by ~ ( u )= sI.
x
[UxV,FI 2 F(UxV)
CV,PUI
0
S u b ( U x V ) = 6?(UxV).
A l o g i c a l c o u n t e r p a r t t o Yoneda's lemma i s t h e f o l l o w i n g . 3.8
Lemma.
Generic elements for representables.
I f U i s representable then
VIkWx
E
U.$
iff
V
Ulk $IT~[T~/XI.
x
Proof. + -
V
x
I n one d i r e c t i o n t h i s i s immediate f r o m I n t h e o t h e r , suppose V w i t h a: W + U E U(W) t h e n cf,a>: W + V x U and, b y p e r s i s t e n c e , i f U(k$fn1C.rr2/xl t h e n Wk I $ l f [ a / x l . So b y ( W ) ' we have V[kWx.$ . 0
We g i v e an example of t h e use o f g e n e r i c elements i n t h e s i m p l e case of a c a t e g o r y o f presheaves. 3.9 Proof.
Proposition.
Choice h o l d s f o r r e p r e s e n t a b l e s i n c a t e g o r i e s o f presheaves.
L e t U be a r e p r e s e n t a b l e and suppose
Vlk
WX
E
u . 3 ~E F.@(x,y)
then
U X VIk 3~
F.$IT~(T~,Y)
U x V l k $ 1 ~ ~ ( . r r ~ , Cf o) r some 6
E
F(UxV)
173
Continuous Truth I U r e g a r d i n g 5 as an element o f F (V) t h i s g i v e s u x
Since
51= 5 .
Vlt
~l+1,(51n2)(~l))
vit
wx
.
Thus U.4(X,E(X)),
t
and s o
vlt-
0
3f.Vx.+(x,f(x)).
From a c a t e g o r y - t h e o r e t i c v i e w p o i n t t h i s r e s u l t i s well-known i n t h e form, "Representables a r e i n t e r n a l l y p r o j e c t i v e " .
54
POINTS, LOCAL CHOICE, CONTINUITY
Now we l e t CC be a c a t e g o r y o f l o c a l e s c l o s e d under f i n i t e l i m i t s and open i n c l u s i o n s , equipped w i t h t h e open c o v e r t o p o l o g y , J. We w r i t e E f o r t h e topos Sh(C,J). F o r each l o c a l e X we d e f i n e an i n t e r n a l l o c a l e X b y
O(X)(u);
O(XX U J ) .
T h i s i s generated i n t e r n a l l y b y t h e b a s i s g i v e n b y B()#)(U)E
U)
O(Xx
or even b y t h e c o n s t a n t b a s i s Bo(X)(U) = O(X),
with t h e i n c l u s i o n s go(#) 4 X
x
UJ
-f
X
x
U
-f
X.
B(X)
4 I)()#)
induced b y t h e p r o j e c t i o n s
( I n t h e t e r m i n o l o g y o f J o y a l & T i e r n e y X = P*(X).)
The i n t e r n a l space o f p o i n t s o f X i s g i v e n b y ( p t X ) ( U ) ,z cruj,x1. T h i s i s t h e space o f E-valued models o f X. iff
F o r a: UJ
+
X and W
E
O(XxUJ)
= T.
-'(w)
s i n c e i*:o ( u ~ )+ U ( U ) r e f l e c t s 4.1
Proposition.
Proof.
F o r any X
We must show f o r W
6
B I t h e i n t e r n a l l o c a l e X has enough p o i n t s
E
O(X) t h a t
U l t K covers p t W
U l t K i s an i n d u c t i v e c r i b l e E K
UIFW
.
We assume t h e hypotheses, and l e t
M
=
{Wi
x
Ui
I
UiItWi
C l e a r l y IK i s a d o u b l y i n d u c t i v e c r i b l e o f O(W) We show t h a t I K covers W x U t h a t i s t h a t W x U s i n c e t h e n U l t W E K.
By p e r s i s t e n c e W
x
UlF KAn2
covers n l
E
x E
KIUil U(U), t h a t i s an open o f W x U. K, which i s e v i d e n t l y s u f f i c i e n t
M.P. FOURMAN
174
that i s W
U(k3V
x
Kln2.rl
E
V.
U(W) we have Wi
x
Ui
E
so IK"
= {Wi
x
U i l f o r some Vi
c
It Vi
E
K1r2
A
rl c Vi}
covers W x U. [Because, i f p: X + Y i s an open s u r j e c t i o n and Xlk V E K J P A e l p E V then YlkV E K A e E V: t h e b a s i c opens o f )# a r e constant and thus descend open s u r j e c t i o n s . 1 B u t now we c l a i m IK* IK because, by d e f i n i t i o n wi x ui I t n1 E vi i f f Mi 5 Vi and, as p r o j e c t i o n s a r e covers, Wi x Uilb Vi
E
KIn2 i f f
UiIkVi
E
KIUi.
0
Special cases o f t h i s a r e worthy o f mention. When X i s B a i r e space NN, Cantor N space 2 , Dedekind r e a l s R , t o say t h a t X has enough p o i n t s i s t h e i n t e r n a l statement of Bar i n d u c t i o n , Fan theorem, Heine Bore1 theorem ( r e s p e c t i v e l y ) . For these cases i t i s s u f f i c e i n t t o t a k e t h e topology on Q generated by covering f a m i l i e s of open inclusions: s i n c e each o f these spaces X has a p o i n t t h e proe c t i o n s X x U + X are covers f o r t h i s topology. We c a l l t h i s topology the open inclusion topology. We introduce some more general spaces. L e t f: X + U i n LOC. We consider t h e i n t e r n a l l o c a l e X / f defined a t U by t h e b a s i s U(V) w i t h a l l i t s standard covers. More p r o p e r l y f o r 9: W + U we d e f i n e
=
W/f)lg 0(9*X) given by p u l l i n g back f along g. Any commuting t r i a n g l e
x
F Y
induces an i n t e r n a l map o f l o c a l e s 5 : X / f + Y/h defined a t U. Given by 5-l on b a s i s elements, t h i s c l e a r l y takes b a s i c covers t o covers. Furthermore, i f 5: X + Y i s open (and s u r j e c t i v e ) then 5: X / f + Y/h i s open, s i n c e i t s u f f i c e s t o d e f i n e comnuting w i t h A on b a s i s elements, (and
4
s u r j e c t i v e since i f 5: X + Y i s an open s u r j e c t i o n then so a r e a l l i t s pullbacks, so i n t e r n a l l y 5-l r e f l e c t s b a s i c open covers). These spaces i n c l u d e t h e spaces )K we introduced e a r l i e r as U1l-X
(X
x U)/v
.
We now s p e c i a l i s e t o t h e case where t h e o b j e c t s o f b a r e T.I an isomorphism (ptX)(U) CCUj,Xl CCU,Xl
Then U
4
U j induces
so t h a t X represents t h e f u n c t o r p t X . This happens i n p a r t i c u l a r f o r t h e spaces N, NN, pN, R and t h e i r b a s i c opens (see Fourman 119831.) Furthermore, any element o f p t ( X / f ) d e f i n e d a t U induces a comnuting t r i a n g l e
\/
UJ
175
Continuous Truth I
X
which f o r TI
spaces
X corresponds t o a section o f g
U
U
So we have a p r e s e n t a t i o n correspond t o commuting t r i a n g l e s
pt(X/f)'g
/ / d l /
W
.U
9
w i t h r e s t r i c t i o n g i v e n b y composition. We e x t e n d o u r e a r l i e r lemma on g e n e r i c elements: 4.2
Lemma.
I f objects o f
(I:
a r e TI
then
ulk Vx
E
Pt(X/f).$
iff
Xlk
0
($lf)(id).
O f course these g e n e r a l i s e d r e p r e s e n t a b l e s can b e d e f i n e d i n t e r n a l l y i n any Grothendieck topos and t h i s r e s u l t h o l d s .
e4.3
I f t h e o b j e c t s o f C a r e T, t h e n f o r any X
P r o o s i t i o n-.
I C I and any
+
A
Wx
+
Proof.
E p t ( X ) . 3 a c A.$(x,a) 3 open c o v e r p: Z ->> X and a f u n c t i o n f: p t Z
E
WX E A.WZ E p t ZCpz = x As p t X i s r e p r e s e n t a b l e ,
+
such t h a t
$(x,f(z))l.
U I k V x 3 a o(x,a) iff
X i f f f o r some open c o v e r p: Z
zlk
ulk 3a
x
X
-->
x
$ln2(nl,a)
U
$ln20~(nlo~,S)
f o r some 5 c A ( Z )
iff
Ult-'Jz
E
z
$(P(Z),dZ)).
0
We do n o t know under what c o n d i t i o n s 6 descends t o g i v e a f u n c t i o n d e f i n e d on a c o v e r b y open s e t s . We can ensure t h i s b y c o n s i d e r i n g t h e open i n c l u s i o n t o p o l o g y on C i n w h i c h case we o b t a i n
1 Wx +
Wx
E
p t X.3a
E
3 open c o v e r Ui E
A.$(x,a) E
Ui.$(X'fi(X))
U(X) and f u n c t i o n s fi:
Ui
+
A such t h a t
.
We now c o n s i d e r c o n t i n u i t y . 4.4.
Proposition.
I f X,Y
a r e TI
then
1Vf:
pt
)#
+
p t W,
f is continuous.
M.P. FOURMAN
176
Proof. I f Uik f : p t )# + p t W t h e n f i s r e p r e s e n t e d b y 5 : X V E ( ) ( Y ) a b a s i c open o f W , w: W + U and x: W + X we have
Wkl iff
[S
0
(t;lw)(x)
E
<x,W>l-l(v)
w It- x
iff
1 regarding 5- V
O(Xx U) as an open o f
E
5- 1(V) i s open.
Thus
Ulk
55
Iteration
E
U
+
Y in
(c.
For
v w
=
-1 -1 <x,w> 5 (V) =
iff
x
w
c5-1(v)lwl d e f i n e d a t U.
)#
0
We r e t u r n f o r a w h i l e t o c o n s i d e r a t i o n o f a general Grothendieck topos B = Sh(O,J). We c o n s i d e r t h e i n t e r n a l c a t e g o r y (I i n E g i v e n b y (E(U)
(c/u
w i t h r e s t r i c t i o n s g i v e n b y p u l l i n g back. [For those who w o r r y about coherence (one s h o u l d w o r r y ) , we remark t h a t a conc r e t e c a t e g o r y i n E w i t h an e q u i v a l e n t c a t e g o r y o f s e c t i o n s o v e r U i s g i v e n by c o n s i d e r i n g V / f t o be r e p r e s e n t e d as t h e element S o f (PV)(U) determined b y W / ~ V E S i f~f ~ f o v = g . So & i s an i n t e r n a l s m a l l f u l l subcategory o f E whose o b j e c t s a r e s u b f u n c t o r s o f representables.] We g i v e C_ a t o p o l o g y b y l e t t i n g
xi -x
\/
Now f o r A
E
I E I we d e f i n e
w i t h r e s t r i c t i o n s f o r g: V
and f o r 5: Y/h
+
cover X / f i n
A, E +
X/g i n a/U,
+
i f Xi
+
X cover X i n
ShE(C,J) b y UkA_(X/f) A(X) U given b y r e s t r i c t i o n along f*g
by r e s t r i c t i o n along 5 Y
Any morphism A
&
B i n E induces
A
X
U +,B i n ShE($,J).
c.
Continuous Truth I
177
For those who p r e f e r g l o b a l d e s c r i p t i o n s , we associate t o A functors 6/U + E/U n a t u r a l i n U (i.e.
comnuting w i t h g* f o r g: V
+
E
If[ (pseudo)
U) as f o l l o w s :
where
For Y
'
,E/U
nf
U X
a, B
+
X
31
we have nh
P
.
npE whence
nhS* * nf
(as E.*
4ng)
U
and nhAy
* nPx (as
Ay)
E*Ax
.
This gives t h e r e q u i r e d arrow nhayA functor
+
What we o b t a i n i s an ( i n t e r n a l )
nfAXA.
C+EC
OP *
We s h a l l show t h a t t h i s preserves f i r s t order l o g i c . liere we work c o n c r e t e l y f o r t h e sake o f computations. A simple b u t more a b s t r a c t treatment w i l l appear i n Fourman and K e l l y C19831. We now consider a f i r s t - o r d e r language L w i t h s o r t s f o r t h e o b j e c t s o f E and operations symbols f o r i t s morphisms. I n f a c t t o avoid s i z e problems, we consider an a r b i t r a r y small f r a g ment o f such a language. We may consider L a l s o as a language i n K as a constant object ( v i a A ) . Working i n E we consider t h e i n t e r p r e t a t i o n o f L given by i n t e r p r e t i n g t h e s o r t A by A and each o p e r a t i o n f: A + B by t h e corresponding morphism 4 + &. 5.1
Lemma.
For f: X
+
U and g: X
~ l xk/ f k
9
+
V
iff
vlt-
X/gl!-
+
Ulk X/flk *g i s defined t o mean 0 f o r a l l g: X v As no r u l e decreases t h e complexity o f then IF i s closed under t h e r u l e s o f 9 we say assume t h a t t h e r e s u l t holds f o r subformulae o f 9.
Proof.
By i n d u c t i o n , i t s u f f i c e s t o show t h a t i f
v ~ XF/ g l k
+
.
Only (+)+ and ( W ) ' present any d i f f i c u l t i e s . r e s u l t f o r @ and $.
Me consider (-+)+, and suppose t h e
Suppose t h a t f o r a l l E: W U and a l l h: Z + g*X, i f W Z/(E*f h) Ip*01(f*E 0 h) Then i f n: W ' + V and h ' : Z + rr*X a r e such then W l k Z / ( E * f h ) I p d ( f * E - h ) . that W ' Z ' / ( n * g h ' ) IF @ l ( g * n h ' ) then by i n d u c t i o n hypothesis -+
0
0
M.P. FOURMAN
178
It
U k - Z ' ( f 0 g*no h ' ) * $1(g*no h ' ) whence ( l e t t i n g 5 = i d and h = g*n h ' ) we have 0
U
Z'/(
f
0
g*n
0
It * $1 (g*n
h'
h') So V l k X / g / k ~ - t $ . The p r o o f
i n particularW'IkZ'(n*goh')lkJil(g*qoh').
0
I
for V 5.2
i s similar.
Theorem.
Proof.
0
F o r Q a f o r m u l a o f L w i t h a p p r o p r i a t e parameters
U IF'' X/flk Q" i f f xlk Q . F i r s t l y , t h i s i s w e l l formed: Parameters f o r Q a t X / f a r e elements o f which a r e g i v e n as elements o f A(X) and a r e t h u s parameters f o r $ a t X.
m)
We proceed by i n d u c t i o n .
T h a t i s , we show t h a t i f we d e f i n e
It* i n t e r n a l l y
It
Ulk X / f * Q iff X l t Q c l o s e d under t h e d e f i n i n g c l a u s e s o f l k i n t e r n a l l y , (whence UIk X / f 1 1@ X\k $) and i f we d e f i n e \I by + X $ i f f Ulc X / f Ik @ t h e n i s c l o s e d under t h e d e f i n i n g c l a u s e s o f (whence Xlk Q *VIE X / f l t - Q). then
by
-
it* i s
It+
\kt
As t h e o p e r a t i o n s A + B a r e j u s t t h o s e i n h e r i t e d f r o m E, terms a r e i n t e r p r e t e d a l i k e i n b o t h contgxts: Thus i f [ T I = Uo] t h e n UlkU-rl = Dull, so i s closed under ( = ) + and i f Ulk U ~ l l= Uol t h e n UIk T = a,
11'
so
IF*
i s c l o s e d under ( = ) +
It and \I-* a r e c l o s e d under ( A ) ' , (v)', (3.)' i s t r i v i a l . F o r I, suppose 1 1 ' $Ifi f o r fi: Xi X i n some cover o f X t h e n X I 1 Xi/fi $Ifi and by I i n t e r n a l l y Xik X / i d l k $. I n t h e c o n t r a r y d i r e c t i o n , suppose Ulk Xi/g fi IF* $Ifi f o r some c o v e r of X as above. Then Xi $Ifi so Xlk Q t h a t i s Ulk X/g Q. F o r (+)+, f i r s t suppose t h a t f o r a l l f: V U i f V I - - + ~ lt hfe n V I k + ~ l f Then . we c l a i m U I U / i d l k @ + I$,because f o r a l l g: W + U and a l l h : V + W , i f W @1g h, t h e n V It+$ l g h so V IF $19 h, t h a t i s W V/h v/h Jilg h. Conversely, iff o r a l l g: W + U and a l l h: Z + g*X, where f: X + U, i f WIE Z / g * f h \I* $ l f * g h , t h e n X I k @ + $, because f o r h: Z X i f Z \ k $ l h then U l t Z / f h It-* $ l h so Ulk Z / f h It-*Jl?h which g i v e s Zlk $Ih, so Ulk X / f I/-* Q Ji. That
+
Xi
+
0
+
IF
0
o
0
0
+
-t
0
0
0
+
0
The p r o o f f o r W+ i s s i m i l a r .
0
We view t h i s thorem as a s s e r t i n g t h a t i n t h e topos E t h e n a i v e n o t i o n o f t r u t h g i v e n by t h e e q u i v a l e n c e t h e s i s i s consonant w i t h t h e t h e o r y o f meaning g i v e n b y t h e n o t i o n o f f o r c i n g o v e r t h e s i t e &. O f course t h i s may seem vacuous as i t appears t h a t B i s manufactured w i t h t h i s r e s u l t i n mind. However, i n t h e case o f p r i m a r y i n t e r k t f o r t h i s paper, t h e r e s u l t s o f 84 a l l o w us t o r e g a r d (I i n t e r n a l l y as a f u l l subcategory o f Loc(E) equipped w i t h t h e open cover t o p o l o g y . I n f a c t , i f Q i s t h e c a t e g o r y o f s e p a r a b l e l o c a l e s , we may i d e n t i f y (I as a c a t e g o r y o f s e p g r a b l e l o c a l e s i n E. We s h a l l deal w i t h t h i s , among o t h e r t h i n g s , i n a sequel t o t h i s paper. Given f: X
-f
U we may view an element a o f A(X) as a f u n c t i o n : U
It a:
X/f
+
A,.
T h i s a l l o w s us t o r e p h r a s e o u r theorem. 5.3
Corollary.
ulkX/flk $(a)
iff
Ulk~tE
X/f@(a[t)).
0
We view t h i s as a g e n e r a l f o r m o f t h e e l i m i n a t i o n theorem ( c f . T r o e l s t r a C19771
Continuous Truth I
179
The appropriate theory o f continuous t r u t h CT has an axiom f o r each pp.33,79). clause i n t h e d e f i n i t i o n o f X/f/k$(a). For example, t h e clause f o r 3 gives the axiom o f l o c a l choice Y t E 3 y $ ( a ( t ) , y ) i f f 3 open cover p: Z ->> X and continuThe t r a n s l a t i o n T $ o f a formula $ w i t h ous f: Z + Y such t h a t W z $ ( a ( p ( z ) ) , f ( z ) ) . o u t f r e e lawless v a r i a b l e s i s given by T$ :def/k $.
X
CODA A general n o t i o n o f non-constructive o b j e c t i s given by i n t e r p r e t a t i o n s i n Grothendieck t o p o i . The process o f i t e r a t i o n described i n 55 shows how we may view ( i n t e r n a l ) t r u t h i n t h i s i n t e r p r e t a t i o n as given by a non-standard theory o f meaning. The clauses d e f i n i n g t h i s g i v e axioms f o r the corresponding theory o f continuous t r u t h CT and an " e l i m i n a t i o n " t r a n s l a t i o n . By construction, CT tf T$ and f o r formulae i n t h e l a w l i k e p a r t o f t h e language T $ 5 $. The p r o o f t h e o r e t i c content o f t h e e l i m i n a t i o n ;
I$
CT
$
iff
ID
T$,
requires f o r m a l i s a t i o n o f our treatment i n an appropriate theory I D o f i n d u c t i v e d e f i n i t i o n s . We do n o t undertake t h i s here. A f i n a l example o f an u n f i n i s h e d o b j e c t i s t h i s paper. Some o f t h e r e s u l t s , i n p a r t i c u l a r c o n t i n u i t y p r i n c i p l e s i n sheaves over s i t e s , go back t o 1978 and were much i n f l u e n c e d by discussions w i t h S c o t t and Hyland. Some r e s u l t s are s t i l l being r e f i n e d . Other p e r s i s t e n t i n f l u e n c e s have been those o f Joyal and Lawvere on t h e one hand and o f K r e i s e l , T r o e l s t r a and Dummett on the other. This research has been supported a t various times by the N.S.F. (U.S.A.), the S.R.C. (Netherlands), and t h e A.R.G.S. ( A u s t r a l i a ) , and made e a s i e r (U.K.), t h e Z.W.O. by t h e h o s p i t a l i t y o f many people n o t a b l y C h r i s t i n e Fox, I r e n e Scott, Karen Green, and Imogen K e l l y . I am g r a t e f u l .
REFERENCES A r t i n , M., Grothendieck, A., Verdier, J.L., ThGorie des Topos e t Cohomologie, E t a l e des Sch6mas (SGA4), (Lecture Notes i n Math. 269, 270, Springer-Verlag, B e r l i n , 1972). Beth, E.W., Semantical Considerations on I n t u i t i o n i s t i c Logic, Indag. Math., 9(1947), p.572-7. Boileau, Andr6 & Joyal, Andr6, La logique des topos, J.S.L.
46(1981), p.6-16.
Brouwer, L.E.J., Cambridge Lectures on I n t u i t i o n i s m , D. van Dalen, ed. (Cambridge U n i v e r s i t y Press, 1981). Dummett, Michael, Elements o f I n t u i t i o n i s m , (Oxford U n i v e r s i t y Press, 1977). Dummett, Michael, T r u t h and
o t h e r enigmas, (Duckworth, London, 1978).
Fourman, Michael P., The l o g i c o f Topoi, i n Handbook o f Math. Logic (ed. Barwise, J.), (North-Holland, 1977), p.1053-90.Fourman, Michael P., Notions o f Choice Sequence, Proc. Brouwer Symposium, (ed. T r o e l s t r a , A. and van Dalen, D.), (North-Holland, 1982). Fourman, Michael P. & Grayson, Robin J., Formal Spaces, Proc. Brouwer Symposium, (ed. T r o e l s t r a , A. and van Dalen, D.), (North-Holland, 1982). Fourman, Michael P.,
T1 spaces over t o p o l o g i c a l s i t e s , JPAA,
( t o appear), 1983.
180
M.P. FOURMAN
Freyd, P e t e r , Aspects of Topoi, Bull. A u s t r a l . Math. SOC., 7(1972), p.1-76. I s b e l l , John, Atomless p a r t s of spaces, Math. Scand., 31(1972), p.5-32. Johnstone, P e t e r T . , Topos Theory, (Acad. Press, London, 1977). Johnstone, Peter T . , Stone spaces, (Acad. Press, London, 1982). J o y a l , Andre, & Tierney, Myles, An extension of the Galois theory of Grothendieck, p r e p r i n t , 1982. Kreise!, Georg, Lawless sequences o f natural numbers. p .222-48.
Comp. Math. 20(1968),
Makkai , Michael & Reyes, Gonzalo, First-Order Categorical Logic, (Lecture Notes in Math. 611, Springer-Verlag, 1977). Moschovakis, Joan R., A topological i n t e r p r e t a t i o n o f second-order i n t u i t i o n i s t i c a r i t h m e t i c , Comp. Math., ( 3 ) , 26( 1973), p.261-75. S c o t t , Dana S., Extending t h e topological i n t e r p r e t a t i o n t o i n t u i t i o n i s t i c a n a l y s i s , Comp. Math. 20(1968), 222-48. S c o t t , Dana S . , I d e n t i t y and Existence i n I n t u i t i o n i s t i c Logic, Proc. Durham Symposium, (ed. Fourman e t a l . ) (Lecture Notes i n Math. 753, Springer-Verlag, 1978) , p. 660-96. T r o e l s t r a , Anne S . , Choice Sequences, (Oxford University P r e s s , 1977). Wraith, Gavin C . , Lectures on elementary t o p o i , Model theory and t o p o i , (ed. Lawvere F.W. e t a l . ) , (Lecture Notes i n Math. 445, Springer-Verlag. B e r l i n , 1975), p. 114-206. Wright, Crispin, W i t t g e n s t e i n ' s Philosophy of Mathematics, (Duckworth, 1981).
LOGIC COLLOQUIUM '82 G. Lolli, G. Longo and A . Marcia (editors) 0 Elsevier Science Publishers B. V. (North-Holland), 1984
181
HEYTING-VALUED SEMANTICS R.J. Grayson
*
Institut fur mathematische Logik und Grundlagenforschung Einsteinstrafle 6 4 ,
4400 Munster, West Germany
Introduction. Chapter I.
The Logic o f H-Sets.
5 1 . Complete Heyting algebras. § 2. Interpretations of propositional logic
5 5 9
3. H-sets. 4.
Interpretations of predicate logic.
5 . Number systems.
§ 6. Complete H-sets.
5
7. Interpretations o f higher-order logic.
Chapter 11. Mathematics in H-Sets. § 8.
5
Some internal constructions.
9. Internal topologies.
§ l0.Choice principles.
9
11.Continuity principles.
References
Introduction. In this paper we develop a semantics for intuitionistic systems in which sentences are given "truth-values'' in complete Heyting algebras (cHa), just as sentences of classical set theory are given values in complete Boolean algebras ([MD], for example). T h e use o f the lattice of open subsets of a topological space t o interpret intuitionistic propositional logic goes back t o Tarski ([Ta,RS]). Extensions t o predicate logic were made b y Beth and Kripke (ID]) and applied t o metamathematical results for arithmetic by Smorynski ([Tr]). Further interest was drawn t o the area by the topological interpretations of analysis in [Sl,Mo,VD], where it was shown that "Brouwer's Theorem", on the continuity o f all functions between reals o r the Baire space, could be modelled in this way. In addition, Bishop's book ([Bi]) showed the feasibility of constructivism and gave new impetus t o the investigation of constructive and intuitionistic systems. A t the same time, interest has arisen from the theory of topoi,
*
Research Fellow of the Alexander-von-Humboldt-Foundation
R.J. GRAYSON
182
which can be seen as a category-theoretical formulation of intuitionistic higher-order logic ( [ F l l , for example). Other kinds of semantics are also suggested by this approach, for example, sheaves over sites ([MR]). However, the level of generality of Heytingvalued semantics seems to provide a natural stopping-point: the notion of cHa is simply an algebraicisation o f the notion of "truth-value" for intuitionistic predicate logic, staying within the conceptual framework of topological, Beth and Kripke models. The general theory of sheaves over a cHa (here called H-sets) is worked out in great detail in [ F S ] , where it is shown how they model intuitionistic higher-order logic (the extension to set theory is made in [Gl]). This paper is designed as a self-contained introductory exposition of the basic definitions and results, which it is hoped will enable the interested reader then to come to grips with more detailed treatments as well as with more specialised papers in this area. The paper falls into two chapters. In Chapter I we describe successively the interpretations of propositional, predicate and higher-order logic over a cHa. In Chapter I1 we develop some analysis and topology in these models, with particular emphasis on topological models and on the interpretation of various principles of choice and continuity. We close with Joyal's very elegant proof, using topological models, of a derived rule of local continuous choice for intuitionistic higher-order logic. I have not attempted on the whole to assign credit too exactly, beyond references to the literature, but I should like to acknowledge here the contributions of Dana Scott, whose influence on the whole treatment should be clear, and of Mike Fourman and Martin Hyland, who have stimulated my interest in the subject over the years. I thank the Alexander-von-Humboldt-Foundation, Bonn, for financial support, and the Institut fur mathematische Logik und Grundlagenforschung, Miinster, for their hospitality.
CHAPTER I.
5
THE LOGIC OF H-SETS
1 . COMPLETE HEYTING ALGEBRAS
We begin by defining the structures which are to act as our domains of "truth-values". Although we will be mostly concerned with topological examples, this more general, algebraic setting seems to make the essential features clearer, besides providing further examples (see 9 . 7 for example). Much information on the classical theory of complete Heyting algebras (cHa) may be found in [ R S ] and on the constructive theory in [ F S , Chapter I]; for we want to be handle our models "constructively" too (see 7.8 for further discussion of this point). 1 . 1 Definition. A complete Heyting algebra
lattice (H,Z), with finitary and infinitary by h , l \ , v , V ,
is a complete
meet
and join denoted
satisfying the distributive law, for pEH and ASH, phVA
E
V(phq1qEA).
Hereafter H will always denote a cHa, with elements p,q,... also the notation T for VH. the "top" element, and 1 for "bottom" one.
AH,
.
We use
the
Heyting-Valued Semantics
Logically, the order relation tion. -
5
183
is read as the relation of implica-
In addition one may define in any complete lattice an
implication operation by
5
(p-9) = V I r t p A r
q}.
AS a special case we have negation ~p defined as (p+I), which equals V{r I pAr=I) 1.2 Lemma. In any cHa H the implication operator is characterised by the adjunction rZ(p+q)
iff
(phr)lq.
Proof. If ( p n r ) ~ q ,then rL(p+q) always holds, by definition of implication. If H is a cHa and rl(p+q), then the distributive law gives pAr
5 =
PAVCSIPAS5 V{pAS [ P A S
q}
5 qj
5 4.
Proof. (i)
-
(iii) follow at once from Lemma 1 . 2 .
Since ~p(~p,
(iii) gives ph7p=l and then p5-,-.p. From (i) and qATq=l we obtain ph(p+q)h~q=I, hence applying 1 . 2
(p+q)
5
~ ( p h ~ qand ) (p-tq1A-q 5 TP, by
again gives (p+q)
5
(iii)i
(-q+-p). The remainder is left as
an exercise. 1.4
Examples. a) The open subsets O(T) of any topological space T
form a cHa under inclusion, 5 . A , V , V are the set-theoretic fl,U,u while hA=Int ( O A ) and T
(U+V) = IntftI tEU + tEV).
is T , I is the empty set
In this context we use u , V ,
d , and
...
-rU is Int(T'U1.
for elements of O ( T ) , and s , t , . . .
for elements of T. We call such cHa topological; ways of obtaining
R.J. GRAYSON
184
nontopological examples may be found in [FS,S2]. b) As special cases of topological cHa we have those arising from partial orders ( K , c ) , where K is given the topology of upwards closed subsets (that i s , O ( K ) consists of those P such that Vi,jEK.j)iEP + j E P ) . This provides the connection between Kripkemodels based on partial orders and semantics with "truth-values" in topological cHa (see 3 . 3 (c))
.
c) For a similar connection with Beth-models based on a partial order ( K , Z ) , one takes T to consist of all maximal chains a in K , with O(T) having as subbasis the sets {UlfEa) for iEK. 1.5 Heyting Algebras. A lattice equipped with an implication having the property of Lemma 1.2 we may call simply a Heyting algebra. These are treated in [RSI under the name of "relatively pseudocomplemented" lattices; it is shown there that all such lattices satisfy & t Jfinitary distributive laws, as well as the infinitary one for such joins as exist.
For the purposes of 2.5 it is useful to note the following simple completion process for any Heyting algebra H: Let O(H) be the topology of downwards closed subsets of H (compare 1 . 4 (b)), and let J be the J-operator ( I F S , 2 . 1 1 ] ) defined by J ( U ) = the set of all joins of subsets of U which exist in H. Then p W [PI = {qlq
(i) (ii) (iii) (iv) (v)
.
T=pV-rp T=-,r+r -(Tnlr) 5 (T+r) -t(pAq) 5 lpv-q r+(pvq) 5 (r-rp)v(r-rq)
These follow straightforwardly from the q=lp and ~ r = @ .
observation
that p=lq,
2. INTERPRETATIONS OF PROPOSITIONAL L O G I C
The interpretation of intuitionistic propositional logic in a general cHa (or even, Heyting algebra-1.5) can perhaps hardly be counted a s "interpreting" at all; it i s more a matter of algebraicising logic, as i s made clear in [RS]. 2.1 Definition. An interpretation of a propositional language in a cHa H assigns an element "PI1 of H , the "truth-value'' of P , to each propositional letter P. Symbols t and f , for "true" and "false", are included in the language, and we require "t11 =T and [[f]l=I.
Given an interpretation we extend the evaluation to give a value [[A]] in H to each formula A of the language as follows: AAB 11 = [[ A 11 A [[ B and similarly for v,+ and
7 .
11
Heyting-Valued Semantics
185
2.2 Definition. A propositional formula A is valid in an interpretation iff [[A T. Further, A is universally valid iff it is valid in all interpretations.
I=
2.3 Definition. The system IPL of intuitionistic ro ositional logic is given by the following axioms and rules (takenPfrEm [Tr, 1.1.311, rules being indicated by the double arrow
*.
PL PL PL PL PL PL PL PL PL
1) 2) 3) 4) 5) 6)
7)
8) 9)
A+A A,A+B * B A+B,B+C i, A+C AhB+A, AhB+B, A+AVB, B+AVB A+C,B+C AVB+C A+B,A+C * A+BhC AhB+C 9 A+(B+C) A+(B-+C) * AhB+C f+A,A+t
2.4 Soundness Theorem. Every propositional formula provable in IPL is universally valid. Proof. Straightforward using Lemma 1.2 and its Corollary. Firstly, validity of A+A means that “A 11 + [[ A 11 = T, that is, that [[A]] 5 [[A]]. Closure under PL 2 means that, if [[A]] = T and “A11 + “ B l I = T , then “ B l I = T ; but “A11 + “ B l I = T iff “A 11 5 [[B]]. P L 3 is just the transitivity of 5 in H , while PL 4-6 express that A and V are respectively meet and join in H. PL 7-8 correspond exactly to Lemma 1.2, and PL 9 results from the requirements [[ t I] =T , [[ f 11 = 1. Note: By the soundness theorem we can give counter-examples to the provability of various assertions, by the method of 1.6. 2.5 Completeness Theorem. Every universally valid propositional formula is provable in IPL. Proof. We construct in fact a “universal” interpretation for which validity is exactly provability. Denote provability in IPL by Iand consider the “Lindenbaum-Heyting“ algebra of equivalence classes of formulae under the equivalence relation A-B
iff
I- A
++
B,
with the order relation given by [A]
5 [B] iff k A + B .
NOW complete this Heyting algebra as in 1.5 and interpret “PI] as the (image of the) equivalence class [PI. Then [[A]] = [A] for every formula, whence A is valid iff [A]=T=[tl iff I-A.
s
3. H-SETS
Preparatory to interpreting predicate logic over a cHa H, we describe the objects which are to provide the domains of interpretation of variables. They are sets with an H-valued equality relation, [I.= #I], which is not required to be reflexive, the value [[a=a]] rather giving a measure of the “existence” of an element a. Further discussion of these “partial” objects and their logic will be found in [FS,§41 and [S2].
R.J. GRAYSON
186
3.1 Definition. An H-set (given a cHa H) is a s e t A with a function [[. =*I] : AxA-G satisfying, for all a,b,cEA, (i) (ii)
[[ a=b]l [[ a=bll
= A
[[ b=a]l [I b=cl1
5
[[ a=c]l
We do not require “a=a]l= T, by [[Ea]] = [[a=a]]. If [[Eall
=
.
but define the existence predicate E T , a is called global.
A s motivation for this definition we have the following basic example. 3 . 2 Definition. Given topological spaces X and T , the O(T)-set X consists of all continuous functions a:U+X for UEO(T), with equality defined by
“a=b]]
= Int{tla(t)=b(t)}.
(Here external equality is also taken t o be “strict”, so that a(t)=b(t) implies tEdom(a) I7 dom(b) . ) Then [[ Eall = [[ a=a]] = dom(a), as this is open by definition. T h u s the existence predicate has a very natural interpretation as the “domain of definition” o f an object. Furthermore, equality on X is “local”, since tE[[ a=b]] iff a and b agree on some neighbourhoox o f t.
3.3 Further examples. a) F o r any set A the trivial or constant H-set f h a s A as its underlying set with “a=b
11
i
=
T
i f a=b
I
if a+b.
(For a constructive version, when equality o n A i s not decidable, one puts “a=bIl =V{Tla=b}.) If X,T are topological spaces, the constant O(T)-set ? can be identified with the subset o f XT consisting of all constant functions G=At.x, for xEx, since in x T ’ [[ $=$]]= {t I X=y} = V { T l x=y}. b) The product (A x...xA
)
o f H-sets A
* *
*,An is defined t o be
their set-theoretic product with equality
a=gll
=
& [ [ -
ai=bill
(Note that this differs slightly from the definition in [FS,4.8]: we are not concerned here t o k e e p the product “separated“ in the sense o f [FS,4.6].)
Heyting-Valued Semantics
187
c) The domain of a Kripke-model based on a partial order ( K , O ([D,Tr]) is given by assigning a set A(i) to each iEK, in such a way that j ’ i implies A(i) 5 A(j). Then with A = ,u A(i! we have iEK a natural existence predicate [[ E(-)]] : A-bO(K), K having the topology of 1.4(b), given by [[Ea]]
= {ilaEA(i)}.
Furthermore, if the model is equipped with equivalence relations we have an evaluation -i o n each A(i), with -i 5 --j for
icj,
[[ a=bl]
=
(ila-i
b}
making A an O(K)-set. The point we want to make here i s that “partial” objects are already latent in the growing domains of Kripke-models. 3.4 Definition. A predicate on an H-set A is a function [[ P(-)]] : A-bH, which is strict and extensional, that is, for a,bEA, (i) (ii)
tt
~ ( a ) l l 5 [kall P(a) 11
A
“a=bl]
5 “P(b)
11
A relation on an H-set (or on several H-sets) is taken to be a predicate on the appropriate product. 3.5 Remarks. a) The requirement of strictness for predicates, which says that a predicate can hold only of existing objects, is found to be technically convenient in handling the models. It should be noted though that (strict) predicates are not (in general) closed under logical operations, for example, negation: Xa,b. -[[a=b]] may very well not be strict. This point is discussed further in [52,3.11. b) In [FS] and [52], use is made of a (non-strict) relation of equivalence f , which may be defined in any H-set by “a~b]]
=
([hall
V
[[Ebll
-b
[[ a=bll )
and expresses (the value of) “a and b are equal insofar as either of them exists”. This relation is useful for talking about partial functions, and the logic of partial elements given in S 4 may also be neatly axiomatised using E and Einstead of =: in particular, in any H-set, equality can be reeovered by “a=bll
= [hall
A
“a=bl]
However we will make no further mention of this relation.
4.
INTERPRETATIONS OF PREDICATE LOGIC
We are now ready to formulate the notion of an interpretation in H-sets and to prove soundness for a formal system of predicate logic with “partial existence”. For a completeness theorem for this logic we fall back on the well-known theorem for Kripke-models. 4.1 Definition. An interpretation of a first-order (relational) predicate language, with equality and existence predicate, over a cHa H consists of an H-set A together with a relation on A (in the sense of 3.4) for each non-logical relation symbol of the language. (In general, constant and function symbols have to be interpreted as special kinds of relations; see 4.7-8.)
R.J. GRAYSON
188
Given an interpretation in an H-set A, we define the value “C]] in H for each sentence C o f the first-order language extended by adding constants for the elements of A , as follows: (i)
The atomic cases are given by the interpretation, equality and existence being interpreted by the basic structure of A as an H-set (3.1).
(ii)
The propositional connectives are dealt with as in 2.1.
(iii)
The evaluation of quantifiers is defined by Ujx. cII = V { “Ea A c [a/xlIl laeA} “Vx. C11
=A{
“Ea+
C[a/x]]l
laen}.
(Note: this i s the first point where w e have needed completeness o f H.) The idea in evaluating quantified formulae is that we only quanitify over existing objects; in other words, the quantifiers are relativised to the predicate E. On the other hand, free variables need not refer t o existing objects, and we make the following definition. 4.2 Definition. A formula C with free variables x in an interpretation in an H-set A iff
.
V = E A ~ .[[ c [ a l / x l ,. . ,an/xnI 11
=
T
I
.
.
. .xn
i s valid
.
C i s universally valid iff it i s so in all interpretations. We return to give examples of interpretations and o f the evaluation of formulae in § 5. Before that w e want to deal briefly with a formal system (essentially that o f [S2]) which i s natural for the above notion of interpretation. 4.3 Definition. T h e system IQL o f predicate logic with equality and existence consis t s o f the propositional system I P L (2.3) together with (i)
- -
For equality and existence the axioms El) Ex ++ x=x E 2 ) x=y y=x E3) x=y A y = z x=z E4) R(5) + EX h...hEX 1 E5) R(x) - A x l = y l A Axn=yn + R(x)
...
(ii)
For Ql) Q2) Q3) Q4)
(for each symbol R)
the quantifiers the axioms and rules E X A C + 3x.C EX AVX.C + C ( E X A C - D ) * (3x.C-D) ( D A E x + C ) 9 (D+VX.C)
(In Q3 and Q 4 , x should not be free in D.) 4.4 Soundness Theorem. Every predicate formula provable in IQL i s universally valid. Proof. The validity o f axioms El-5 is simply built into the definition o f interpretation, since (by 1.3) an implication C-D is valid 5 “011 T o check Q 1 , for example, in an interpretation iff [[C]] in an H-set A , we need to show that
.
VaEA.
“Ed]
A
“C[a/xll]
<_ “3X.Cll
(assuming for convenience that x i s the only variable free in C).
Heyting-Valued Semantics
189
But this is immediate from the definition of all the terms on the left.
I]
“3x.C
as the join of
To show closure under Q4 note first that, for any p in H , p<-[[’dx.cn
VaEA. I[DlI A whence
“Dl1
5
iff VaEA.pA [[Ed]
<_ “Vx.C]]
[[
c [a/xlIl
again. Now the validity of the hypothesis
making use of Lemma 1 . 2 of Q4 reads
;
5
“Ed
[[ C [a/Xll]
that is, (D+Vx.C) is also valid.
4.5 Completeness Theorem. Every universally valid predicate formula is provable in IQL. We do not give a proof of this result, since it follows straightforwardly from the completeness theorem for Kripke-models, which can be seen as special cases of interpretations in our sense (according to 1.4(b) and 3.3(c)). 4.6 These interpretations extend immediately to many-sorted languages, with sorts a , B , each interpreted by an H-set Aa,A B , . . .
...
acting as the range f v riables xa,xB,. fiers of the form Vx8,3x
’,...
..
of each sort, with quanti-
Actually, as may already have been noticed, we are tailoring our logic to our interpretations, rather than vice-versa. So we will tend to start with H-sets A,B, with various relations (and functions - see 4 . 7 ) on them, and interpret the language of these structures, with a sort for each H-set, writing, for example, the quantifiers now as VxEA,3yEB,
...
...
4.7 Function Relations. In order t o interpret predicate languages with constant and function symbols we need in general to treat them as special kinds of relation, namely singletons and functional relations respectively. A singleton on an H-set A is a predicate P such that
Va,bEA. [ [ P(a) 11
A
“P(b)
11
<_ “a=bll
.
A functional relation between H-sets A and B is a relation R on AxB such that VaEA Vb,b’EB. “R(a,b)
11
A
“R(a,b’)
11 <_
“b=b’l]
These conditions clearly correspond respectively to the validity of Vx,yEA (P(x) AP(y) + x=y) and VxEA Vy,zEB (R(x,y) A R ( x , z ) + y=z). In general, functional relations will serve to interpret partial functions (and singletons partially existing constants). To interpret total ones the relation R should also be total, that is, VaEA.
[I
Eall
<_v{ “R(a,b) 11
I bEB);
in other words, VxEA i’yEB.R(x,y) i s valid. 4.8 Functions. In particular cases, however, function symbols may be interpreted by functions F:A+B which are strict and extensional, that is, for a,a‘EA, (i) (ii)
“E(Fa)ll [[ a=a’I1
5 A
“Eall [[ E (Fa)I1
.(
[[ Fa=Fa’I1
F then gives rise to a functional relation R by “R(a,b)]] = “Fa=b]l, which is total just in case for all a
=
R.J. GRAYSON
190 (iii) [[ Eall
5
E(Fa)
11 .
The property of completeness for B , which ensures that every functional relation arises from a function in this way, is discussed in
5
6.
4.9 If function symbols occur in a many-sorted first-order language and are interpreted as in 4.8, we now have a class of terms u , ~ , . . . each of a particular sort; these are evaluated as elements R u 11, [[TI] of the H-sets interpreting those sorts, by the clause
,...
“F(U l,...,Un)ll
bn]]
= F ( ~ ~ U l ~ ~ , . . ) ,~ ,
and atomic sentences containing terms are evaluated by
,...
~ ~ R ~ U l , ~ .= . “R(“UIII ~ U n ~ ~ ~
“On]]
)I1
The logic IQL should then be extended by the addition of a rule of substitution. Full discussion of this logic may be found in r.521.
5
5. NUMBER SYSTEMS
In this section we consider structures which interpret the firstorder theories of the natural numbers, integers, rationals and real numbers in H-sets. The higher-order theory (in particular, the induction axiom for the natural numbers) will be dealt with in 8, where we also see that these structures are the (standard) interpretations of the number systems.
s
G,?,$
5 . 1 We start by giving the constant H-sets (3.3(a)) the trivial or constant first-order structure of the natural numbers, integers and rationals. That is, on each we use the standard arithmetic functions to interpret Successor, sum, product (as in 4.81, while the order relation (on Q, say) is given by
Then it is an easy induceion to show that in each case the terms are interpreted by themselves, ~[u]]=u, and the sentences by
For a constructive treatment we show “CIl= VITlC), and for this H should be an open cHa in the sense of [G4]. In any case this indicates that these interpretations have in themselves no interest for intuitionistic mathematics; they are needed however to provide a basis for the more interesting interpretations of analysis. 5.2 T o interpret the first-order theory of real numbers we specialise (as defined in 3.21, where to the case of O(T)-sets and consider R R denotes the (external) real numbers. ‘?his O(T)-set has a very rich structure, as first exploited (essentially) by [Sl]; see 5.7 for a discussion of his model. We consider first relations of order and apartness on R [[a
T:
= {tla(t)< b(t)l =
{tEdom(a)
n dom(b) 1
a(t)
b(t))
Heyting-Valued Semantics
191
the right-hand sets being always open as a,b are continuous. As in 3.2 the occurrence of < on the right is taken to be “strict“; for a constructive treatment we put on the right too in the definition of apartness. Here is a picture in the case T=R:
[[ a
T
5.3 Proposition. The intuitionistic theory of order and apartness on the reals (eg [He,Sl]) is valid in every RT. That is, the following are valid: (i) vx,y. x=y ++ 7x*y (ii) Vx,y. xty -P yylx (iii) Vx,y,z. xPy + (x#z v zky) (iv) Vx,y. xyy ++ ( x < y v y<x) (V) vx,y,z. X < y A y < Z + X
7
“arb]]
“Ed]
n
[[ Ebll
Since [[a=b]] n [[a*]] is clearly empty, we obtain the inclusion from left to right (Cor. 1.3). On the other hand, if U I7 aabl] = @ and tEU n dom a Il dom b, we have -r(a(t) # b(t)), so a(t)=b(t), and the other inclusion follows. For (iv) we need [[ affb]] E [[ aCb]] u “Ma]] b(t) iff a(t) < b(t) v b(t) < a(t). a(t)
+
, which follows from
For (vi), let tEdom(a) n dom(b) f l domtc) and a(t) < b(t); a(t)< c(t) or c(t)< b(t), so tE[[a
then
For (viil , if act\ < b(t\ , L e t x be chosen so t h a t a \ t > < x( b \ t ) . Then for the constant function x s . x we have t € “ a < k b I l . Hence I cERT} = [[3z.a
=
(tl,to)
= (to,t2)
“atbll
= (tl,to) U (to,t2)
“a=bll
=
@.
192
R.J. GRAYSON
Hence the following sentences C are not valid in both cases): (i) (ii)
(in fact to @ "Cll
a
Furthermore, by "shifting" a and b about we can arrange to omit any point of T , so that the universally quantified forms of (i) and (ii) get value @, and we obtain the stronger result that (i)' -rVx,y. x
V
yCx V X=y x#y
+
are both valid in RR. 5.5 Arithmetic structure on RT is also given "pointwise", by functions into RT, namely a+b = At.(a(t)+b(t)) a.b = At. (a(t).b(t)) a
-1
= ~t.a(t)-'
In each case the arithmetic functions on the right are taken to be "strict" also, so that dom(a+b) = dom(a) fl dom(b) = dom(a.b) and dom(a-') = ftEdom(a)la(t)+O), taking the external inverse function to be defined just at non-zero reals. The inverse function i s thus a typical example of a partial function, and satisfies in R V X . E ( X - ~ ) ~ + +x
8.
Together with the other usual identities this shows that R models the theory of an apartness field [He], with unit elements The constant functions 8 and I. AS
in 5.4 we can give counter-examples in R
Let a be At.max{O,t) and b be At.max{O,-t). a(t).b(t) = 0, so that [[a.b=OI]
R: Then, for all t ,
= R
while [ [ a s v b a l l = (--,O) U ( 0 , ~ )so that (a.b=O is not valid.
+
a=O
V
b=O)
A
5.6 A s in 3.3(a) we can treat the O(T)-set Q as the subset of R T consisting of all constant functions $ for ~ E Q .We can now prove one half of a cheorem characterising RT as the Dedekind cuts in the (The other half is proved in 8.5.) rationals, interpreted as
3.
Theorem. The subset 6 i s dense in RT and each element of RT acts as a Dedekind cut in 6 . T2at is, the following are valid (using p,q,... to range over Q , and x,y,... over R ) :
T
(i) (ii) (iii) (iv) (V)
(vi)
vx,y. xX 3q. X
Proof. The proof of ti) proceeds exactly as that of 5.3(vii), except that we now choose a rational p between a(t) and b(t). The remaining assertions may be straightforwardly deduced from the properties in 5.3 and the denseness of Q , arguing within the system IQL.
Heyting-Valued Semantics
193
To explain our sense of "cut" here briefly: thinking of the rationals below (resp. above) an element x as the left-hand (resp. right-hand) elements of a cut in Q , these conditions say successively that the two halves of the cut are inhabited, disjoint, closed downwards (resp. upwards), open (in Q) , and close together. This notion of cut is due originally to Tierney. 5 . 1 It may be asked why we consider artial functions at all in our models RT, and not only total ones, t s was done in [Sll (and, for Baire space, in h o ] ) . The point is that in those papers only special cases of the space T are considered, for which every partial function is locall extendable to a total one; that is, for each a and tEdom(a), theri is a total b w i t h a = b ] ] .
In general there may be very few total continuous functions but many partial ones, so that the total ones do not at all provide a representative picture. For example, take T = R U { * I , where R has its usual topology and has asneighbourhoods just the complements of finite sets. Then all total elements of RT are constant, while there are many non-constant elements defined just on R itself.
*
s
6
COMPLETE H-SETS
It is immediate that the O(T)-sets XT are always complete in the following sense, which we formulate for an arbitrary H-set A.
6.1
(i) For each aEA and pEH there is a (unique) restriction, alp, of a to p, with the property VbEA. [[ alp=b]]
=
[[ a=b]I
A
p.
From this follows [[ E(a1p) 11 = [[ Ea]] A p = [[ a=alp]I , that is, the "existence" of a is restricted to p , but where alp exists it equals a. In X the restriction alU is simply the set-theoretic restriction of a toTa smaller domain. (ii) For each compatible subset B of A , i.e. such that Vb,b'EB. [[ Ebll A [[ Eb'N 5 [[ b=b']I , there is a (unique) join, V B , in A, with the property VaEA. [[ a=VB]I
=
v f "a=b
v{[[
11 I
bEB).
.
EbII 1 bEB), and for bEB, From this follows [[ E(VB) 11 = [[ Eb]] 5 [[ b=VB]], that is, V B is a "glueing together" of the elements of B. A subset B of X is compatible iff all its elements agree pairwise on the intersecTions of their domains. Then the join of B i s the set-theoretic union of B, which is again an element of X T' 6 . 2 Remarks. a) Alternative definitions of "completeness" and proofs that the notions all coincide may be found in [FS,§4]; in particular, complete H-'sets are equivalent to sheaves over H. In [FS] also the completion of an H-set is constructed. Our position here is that completeness is useful (as in 6 . 3 ) when it arises naturally, but not worthwhile introducing specially.
b) Constant H-sets are never complete (unless H is trivial), since all elements are global, so that the "non-existent" element (a7 1) is missing, at least. However, when X is treated as a subset of X T as in 3.3(a), we can identify its completion as the locally constant elements of X In particular, this is useful for understanding the completions 8 and Q^ as subsets of RT.
OF
.
R.J. GRAYSON
194
6.3 The consequence (indeed, equivalent) of completeness that interestsus most here is that, when B is complete, every (total) functional relation R on AxB, for any A , arises from a (total) function F:A+B (as in 4.8), related to it by VaEA,bEB. [[ R(a,b) 11
=
[[ F(a)=bll.
Namely, given R , define F(a) = v { b l "
R(a,b)ll I b€BI.
The compatibility of the set on the right-hand side, for each a , is precisely the functional character of R. This representation of arbitrary functional relations will be especially useful in 9.8. 6.4 Another interesting equivalent of completeness is that, if A is a complete H-set, we can evaluate description terms (1x.C) ("the x such that C " ) in them, according to [[ Ix.CI1
since "Vx.x=a such that C".
++
=
V{al [[ Vx.x=a
++
Cll 1 a€A}
C " expresses exactly that "a i s the unique element
The corresponding logic of descriptions [52,§61 has the one extra axiom I)
Vy[y=Ix.C
f*
Vx(x=y
f-t
Cll.
As an example, if R is a functional relation on AXB, one obtains the the corresponding funytion (6.3) as F(a) = [[I~€B.R(a,x)ll. In particular,'the inverse a in RT (5.5) is obtained as (the interpretation of) IX. (a.x='i). These are examples where existence of a solution may be partial, but uniqueness is guaranteed. T o give an example of "partial uniqueness" we refer back to the picture in 3.2 and consider the term Ix.(x=avx=b): here a solution exists on the interval (to,t,) but is unique only on (t1, t2)
.
5
7
INTERPRETATION OF HIGHER-ORDER LOGIC
The final step, before doing "mathematics in H-sets" properly, is to interpret intuitionistic higher-order logic. We will here be exclusively concerned with "standard" interpretations, in that powersets will contain "all possible" subsets. Thus the interpretations will no longer be complete for the logic, and certain problems will necessitate recourse to other kinds of interpretation (realisability, On the sheaves over sites etc), to which we refer briefly in 1 1 . 1 - 2 . other hand, the mere fact of soundness of the interpretations is quite powerful, as will come out most clearly in 11. This is also the point at which one begins to reap the benefits of the generalisation from Kripke-models; as observed in the introduction to [VD], standard interpretations of, say, Baire space in Kripke-models over a partial order only yield constant structures, and nothing i s gained.
s
7.1 Definition. The power-set P(A) on an H-set A consists of all predicates (3.4) P,Q,... on A , with equality defined by P=Qll
= I \ { " Pa]]
+* [[ Qall
I aEA)
In this context we write [[ a€P]] for [[Pa 11 , and interpret bounded quantifiers 3x€P, etc., in the obvious way. Note that every element of P(A) i s global ( [ [ EP]] = T ) , so that P(A) is (almost) never complete (compare 6.2(b)).
195
Heyt ing-ValuedSemantics
7.2 Proposition. P(A) acts as an extensional power-set of A, satisfying full comprehension and with E strict (as a relation on AxP(A)). That is, the following are valid: (i) (ii) (iii)
VX,YEP(A). X=Y .++ VxEA(xEX ++ xEY) 3XEP(A) VxEA. xEX ++ C , for each formula C. xEX -b E x h E X .
Proof. (i) and (iii) are simply the definition of P(A). For (ii), given a formula C (in which we have assigned constants from some H-sets to all the free variables except x), we set
E[
a E ~ l 1= [[ Ea
A
~ [ a / x l l l,
so that P is clearly a predicate satisfying
(ii).
7.3 Definition. A many-sorted higher-order language is one in which, for each sort a , we have a power sort P(a), and, for any sorts a l , ...,a n , we have a product sort ( a x...xan). 1
In addition there should be function symbols for tupling and projection for the product sorts, a relatioE symbol for membership, E , on each a x P ( a ) , and abstraction terms {x IC} of sort P(a)for each formula C. The system IHL of intuitionistic higher-order logic is a many-sorted (4.6) version of the system IQL (4.3) with the addition of standard equations for tupling and projection, and axioms of extensionality, comprehension and strictness of E for the power sorts, as formulated in Proposition 7.2. The system IHLN is obtained by adding a sort N for natural numbers with a symbol for the successor function, and satisfying Peano's axioms including full induction (which we formulate below in 8.2). 7.4 Standard Interpretations. A standard interpretation of a manysorted higher-order language is one in the sense of § 4 in which the H-set A assigned to a power sort is always the power-set P(A ) P (a)
of that assigned to a, and in which the membership relation is interprehed as in 7.1. In particular then the interpretation [[{x lC}]]of an abstraction term is given as in the proof of 7.2(ii) by the predicate la.[[ EahC[a/x]]1 on Aa. Soundness of standard interpretations for the system IHL is immediate from 7.2; the extension to IHLN is dealt with in 9 8 . A more detailed description of a system similar to IHL may be found in [S2,§7] and of standard interpretations in H-sets in [FS,§5 and s71. 7.5 Types. A type in a many-sorted higher-order language is a term whose sort is a power sort. In particular, each abstraction term i s a type. We may think naively of types as " s ts" % =xa '} and use the notation Each sort a we identify with the type {x'lx VxEa etc. for the quantifiers. Conversely, each type can be treated in as a new sort, using the restricted quantifiers VxEu, 3xEr, the obvious way, and.relativising power sorts, product sorts and abstraction according to P(u) = {XEP(a) IXc_u} for u a term of sort P(a), and so on (see 152,571).
...
7.6 Interpreting Types. In parallel to the treatment of types as new sorts, we want to interpret each type (in a given standard interpretation in n-sets) as an H-set: A term u of sort P(a) is already interpreted as a predicate [[o]] on the H-set Aa. The H-set A is then defined as having the same
R.J. GRAYSON
196
but with equality relativised to [[u]]
underlying set as A [[ a=b]I
[[ a=bll a
=
aEol1
A
:
,
denoting by the subscripts u and a evaluation in A
and A
a'
Now an induction over the terms and formulae of the language shows that interpreting the relativised quantifiers etc. as speaking about the H-sets A amounts to the same thing as interpreting them as defined in tge original language, within the H-sets A a' 7 . 7 Exponents. A basic example of a type is the exponent U,B,
B a of sorts
given by the term {xEp(axB) lVxEa 3!yED.<x,y>Ex).
The interpretation of this term as an H-set, according to 7.6, is then the exponent of A and A B , which consists of all relations R,S on AaXAB with [[ E(R) 11
=
[[ R a total functional relation]]
Ba
and [[ R=Sl]
=
[[ E(R)II
Ba
aa
A
{ [ [ R(a,b)ll
aEA,,
*+
[[ S(a,btll 1
b€AB)
7.8 Now we ask the reader to look back over this first chapter and see that the definitions of H-sets and validity in them, and the proof o'f soundness of standard interpretations, can all be carried out within the system IHLN of 7 . 3 . This means, for example, that we can iterate the construction of the models inside any universe of H-sets, just as forcing is iterated in classical set theory (see [FS,§9] for example). More interestingly, perhaps, we can use the provable soundness of the interpretations to obtain derived rules for the system. We give an example of this, due to Joyal, in 1 1 . 5 ; other examples may be found in [Be,H2,FJ]. So in Chapter I1 we will be concerned to note, as we did in 5, what principles are needed to prove the validity of various assertions in various models, arguing so far as possible "constructively", i.e. within the system we are interpreting. In order to distinguish what is assumed to hold "on the outside" (or "in the ground model") from that which is valid in the interpretations, we use the terms external and internal.
The above cor.siderations all extend mutatis mutandis to systems of with the power-set axiom and full comprehension, as formulated in [Gl] and exploited in [HZ]. The general problem of interpreting a set theory, with only the axiom of exponents, within such a theory is dealt with in [G3]; appl-ications of this are made in [Be].
set theory -~
CHAPTER 11.
5 8.
MATHEMATICS IN H-SETS
SOME INTERNAL CONSTRUCTIONS
We are now ready to interpret constructions within the system IHLN of higher-order logic with a sort for natural members (7.3) in H-sets. The integers, rationals, real numbers, functions etc. appear as types (7.5) in this language, which we want to interpret as H-sets according to 7 . 6 . Such characterisations will generally be
Heyting-Valued Semantics
197
only "up to isomorphism", in the following sense. 8.1 Definition. An isomorphism between H-sets A and B is a total functional relation ( 4 . 7 ) on AxB which is internally one-one and onto. As in 4.8 and 6 . 3 , in particular cases an isomorphism may be given by a function from A to B which is internally one-one and onto, or even (for example, when both A and B are complete) by a pair of functions F:A+B and G:B+A which are inverse to one another:
VaEA.
[[ Ea]]
VbEB. [[ Eb]]
and
5 5
[[ a=G(Fa) 11 [[ b=F(Gb) 11
.
The extension to isomorphisms of structures is made in the obvious way. As in classical mathematics there is only one structure (up to isomorphism) satisfying Peano's axioms for arithmetic in any standard interpretation fn H-sets. We do not prove this fact but only show that the H-set N with constant structure ( 5 . 1 ) does satisfy the axioms, and hence can serve as the interpretation of the sort N. 8 . 2 Proposition. f j with the standard successor function S satisfies Peano's axioms for arithmetic, including induction in the form
VXEP(2). O E X A v x E X . SXEX
+
VXEN. XEX
Proof. Since the interpretation of first-order sentences is always absolute (5.11, the first-order axioms are trivial. To prove inguction one shows, by an external induction, for any predicate P on N. that OEP
if
q =
then
VnEN. q
By definition q ( " of 4.4,
5
5
5
:
95" VxEP.SxEP11,
[[ nEP11
A
[[ nEP11, q
VXEP. SXEP]], nEP11
OEPII and VnEN. q
hence, if q
A
5
that is, as in the proof
[[ SnEPl];
[[ SnEPl].
8.3 We leave the reader to check that, for some standard definitions of the integers and rationals as types obtained from products of N, the corresponding H-sets, according to 7.6, are isomorphic to the constant H-sets 2 and Alternatively 5 and with constant structure (5.1), can be shown to be the unique H-sets (up to isomorphism) with certain properties (e.9. 6 is a countable dense linear order without endpoints).
a.
0,
We are now ready to formulate and prove the "converse" of Theorem 5.6, giving a characterisation of real numbers in topological models. 8.4 Definition. A Dedekind cut (in the rationals) is a pair (L,U) of subsets of Q which are inhabited, disjoint, closed downwards (resp. upwards), open (in Q), and close together: that is, (i) (ii) (iii) (iv) (V)
3pEL A 3pEU L n u = @ (pqEU -+ pEU) (PEL + 3qEL. q>p) A (PEU -+ 3qEU. q
The conjunction of (i)-(v) we abbreviate as Cut (L,U). The type R of Dedekind reals (defined in IHLN) is the set of such cuts, with order, for example, defined by
R.J. GRAYSON
198
(L,u) < (L',u') iff 3pEu
n
L'.
R is understood to carry its order topology, with basis the rational
open intervals, the rationals being embedded in R by p +b (Iqlqpl). The main point about this notion of "real number" is that its interpretation in O(T)-sets is RT, as we now show; we consider reals given by sequences of rationals in 10.3. In the non-topological case the representation of the reals is not so concrete [FH,521. 8.5 Theorem. The standard interpretation of the type of Dedekind reals in O(T)-sets is isomorphic to the O(T)-set RT, with structure as in 5.2 and 5.5. (For a constructive treatment we regard the external reals as defined in the same way, as Dedekind cuts.) 2 Proof. A s a term, R is interpreted as the predicate C u t on P(Q) ; so, as a type, it is interpreted as the O(T)-set of pairs (L,U) of predicates on with [[ E(L,U) 11 = Cut ( L , U )11 and "extensional" equality (relativised to "Cut"):
6,
(L,u)
=
(L',u')II
=
[[ cutc~,u)ll
A
[[ L=L'IIA
uU=u'i,
the latter being evaluated in P(Q). Now, by Theorem 5.6, every element a of RT determines predicates L a' Ua on Q , for which [[ Cut(La,U )
and
11
Eall, according to
=
[t PEL,]]
=
[[ p
= {tlp
PEU,II
=
[[ a
= {tJa(t)
[[
Conversely, for any predicates L . U .
and
Lt = Ut =
if we set
IpltE"pELl11 IPltE" PEUIII,
we find that, for t€[[ Cut(L,U)l], Cut (Lt,Ut) holds; for example, if t€[[ 3pEL]], then, for some p,tE[[pEL]I, so 3pELt, and so on. Then, if we set a(t) = (Lt,Ut) for t€[[ Cut(L,U)]], we obtain an element a of RT with [[ Ea]] = [[ Cut (L,U)11. that, for all p,q,
To check continuity of a, observe
{tlp
n [tpE~lI n
[[ qEul1
which is open as L,U are predicates. We leave it to the reader to check that the two functions between O(T)-sets defined above constitute an isomorphism in the sense (at the end) of 8.1, which preserves all first-order structure (in particular, order). We now give a similar representation for Baire space in O(T)-sets. 8.6
Theorem. Baire space NN is interpreted in O(T)-sets by
N (N ) T'
Proof. NN is defined as the exponent type ( 7 . 7 ) , which is interpreted by the O(T)-set of all predicates R on ,'?i with [[ E(R) 11 = = [[ R a total functional relation]] and "extensional" equality. Now, as for the reals in 8.5, since NN is topologised by the subbasic opens V = {xlx(m)=n? each element a of (NN)T'determines a n,m
199
Heyting-ValuedSemantics
predicate R a , for which [[ R to [[ Ra(m,n)II
total functional]] =
= [[ Ea]]
,
according
{t(a(t)(m)=nI.
Conversely each predicate R determines a in (NN)T with domain [[ R total functional]] according to a(t) (m)=n iff tE" R(m,n) 11
.
8 . 7 Remarks. a) Theorems 8.5 and 8 . 6 are special cases of a general result for the spaces of models of arithmetically defined infinitary geometric propositional theories; this general theory is described in [FGI. b) In proving 8 . 6 we had to deal-with functional relations rather is far from complete than actual functions from 6 to N. since (6.2-3). Indeed functions from fi to 6 are simply standard, external functions from N to N , which ive rise just to the constant elements of (NN),. But, in case T is Nw itself, there are many non-constant elements, for example, the identity function; it is this richness which is exploited in [Mo,vD] (who however consider only the total elements - see 5.7).
a
5
9.
INTERNAL TOPOLOGIES
In this section we give each O(T)-set X a natural internal topology, as an example of how higher-order srructures are interpreted in our semantics. In the cases of the reals and Baire space we obtain the usual internally defined topologies. This approach is . generalised in [FS,§81 and exploited in [G2] to give results in general topology. 9.1 Notation. Let X and T be topological spaces. We use the variables s,t,... to range over T ; x , ~ , . . . over X ; a r b , over X (3.2); over O(T) ; V , V ' , over O ( X ) : W,W',.. over O ( T x X ) T the U,U',... product topology on TxX.
...
.
...
9.2 Definition. For each open set W in the product topology on TxX we define a predicate W on X T by " ~ E ~ I =I {tj (t,a(t))EwI, this set being open as a is continuous. The O(T)-set O(X ) conT sists of all such predicates, with "extensional" equality defined as for P(X-1 (7.1). In particular, each element is global.
9.3 Proposition. O(X
T
)
is internally a topology on X
Proof. For any W,W' and a in X [[
defining
zflc
I1
=
[[a Ex]]
T'
T
n
[[ a EL'
I1
=
aEznw' 11,
as an abstraction term in the standard way. Hence [[Wnw' = = T , while W' is again an element of O(X T 1 ; thus O(X ) is internally closed under intersections. Also the whole spzce XT is clearly represented by the predicate (E).
a']]
200
R.J. GRAYSON
To verify closure under unions we consider an arbitrary predicate P on O(XT), and define the open set
Wo = U{WplWEO(TxX)
wP
where
=
wn
( r r WEPII XX) .
Then iff iff iff iff Thus
"W0=
UP]] = T , as required. N
special cases we obtain i n this way topologies on R T and ( N )T' which turn out to coincide with the usual topologies defined internally, when we construe them as the internal reals and Baire space as in 8 . 5 - 6 . 9.4
As
This follows fairly immediately from the observation that, if B is a basis for O(X), the sets {(UxV) IVEB, U E O ( T ) 1 form a basis for O(TxX). Then, writing VT for the predicate (E). the elements V , for V in B, form an internal basis for O(XT), since, if (UxV)sWT u g VTGw]3. Now for the reals the basic opens are the rational intervals (p,q), , as basic opens of O ( R T ) ; which get interpreted as ( ~ , q ) ~hence similarly for Baire space. 9.5 Metrics. To show how topological structure on X carries over to X let X be a metric space with metric d, and define
d'
:T'2 XT -+ R T
by d'(a,bl
= At. d(a(t1 ,b(t)).
Thus d' reads off the distance between a and b pointwise, producing a real number in O(T)-sets, by 8.5. It is an easy exercise to check that d' is internally a metric function on X , and that the corresponding. metric topology coincides with that xefined in 9.2. 9.6 Compactness. A topological space is compact iff every open cover has a finite subcover, the constructive sense of "finite" used here being that of "enumerable by the natural numbers less than some natural number".
Proposition. I f Proof
x
is compact, so is XT'
Let P be any predicate on O(X ) and suppose that UP]]; then, by the proof 0 f ~ 9 . 3 , {t}xX 5 U{W,lWEO(TXX)}.
5
Thus for xEX, by the definition of the product topology, we can find U,V,W with tEU, xEV and (UxV)5Wp, that is, UxVcW and Uc_[[WEP]]
.
Now, if X is compact, we can find finitely many such opens U.,V 1 iewi for i=l,. n , with X E iynVi. Then with U = iTnUi we find
..,
that (UxX) tEU
5
at t.
[[ XT
5
iynWi and U
5
n [[ WiEP]l .
i bn iynWi icnwiEPn, thus A
Hence
giving a finite subcover of P
9.7 Remarks. The above proof is constructive. Furthermore, since, by an extension of Theorem 8 . 5 , the closed unit interval [0,11 is ' interpreted in O(T)-sets as [0,1lT, compactness of the unit interval
201
Heyting-ValuedSemantics
is valid in all topological models (when assumed externally); similarly for Cantor space 2N, which is interpreted as (2N)T. These principles are acceptable to intuitionists of the Brouwer school, but regarded as uncertain by the Bishop school of constructivism. Our models show at least that they are constructively "consistent", for example, with the completeness of intuitionistic predicate logic. That they are also inde endent of IHLN is shown by the non-topological counter-models
9.8 Continuous Functions. We take as the constructive definition of a continuous function F between spaces X and Y that, for VEO(Y), F-~(v)Eo(x). We now want to give an external representation of internal continuous functions between spaces X and Y T'
Since YT fs complete (6.1) we can treat arbitrary internal functional relations to YT as external functions ( 6 . 3 ) . So let F : X + YT be a function of O(T)-sets which is total and continuous T
"over U " , that is, U = F total continuous]]. We represent F by a continuous function f : UxX-tY given by the equation
(*I
f(t,a(t))
=
~ ( a(t), ) for t E U n d o m a.
First we must show that f is well-defined by ( * ) , that is, if a(t)=b(t), then F(a) (t)=F(b)(t); for this we need to assume that Y space. is a T Let VEg(Y); then V (as in 9.4) belongs to O(Y ) , so U C F-l(VT) open]], hence we cxn find WEO(TxX) with U 5 [[$=F-l(V )IT. Then we have the following chain of equivalences; for t E U I7 do; a , iff
(t,a(t))EW tE [[ a Ewll
iff
tE[[F(a)EvTl1
iff
F(a) (t)EV.
Thus, if a(t)=b(t), F(a) (t)EV iff F(b) (t)EV, for any VEO(Y); so the T -property ensures ~ ( a(t)=F(b) ) (t). Furthermore, for the special case of a=R, the above equivalences give (t,x)EW iff f(t,x)EV, whence f-l(V) = WEO(TxX); so f is continuous. Conversely, given a continuous f : UxX-tY, the equation ( * ) clearly defines a function F : X + Y T with U = [[ F total]]. Furthermore, for -1
VEO(Y), since W = f (V] is open, we obtain equivalences as above showing that U C_ [[ W=F- (V )]I. But by 9 . 4 the elements VT form a basis for O(YT), so F is ayso continuous over U. This representation allow us to draw "pictures" of arbitrary internal continuous fbnctions as continuous Y-valued surfaces over the TxX-plane. In this way one can draw simple counter-examples to classical theorems such as the Intermediate Value Thebrem, or the attainment of bounds on a closed interval. 9.9 Brouwer's Theorem. The principal result of [Sl] is that, for T the Baire space, the O(T)-set R T satisfies the so-called "Brouwer's Theorem":
All functions from reals to reals are continuous. A
similar result for (NN), is in [Mo,vDI and a result for more
R.J. GRAYSON
202
general spaces T is proved in [G2, 5 his theorem [Br] from stronger forms we discuss in S 11; he obtained also closed intervals, which holds too in such intervals are compact.
8.21. Brouwer himself deduced of continuity r.L;nciple, which uniform continuity on all our models since by 9.6 all
The scheme of Scott's proof is as follows: Given F : R -rR with U = [[ F total]] , define f : U x R + R by the equation ( * ) as in 9.8, now using the special properties of T to show that f is well-defined and continuous. This then implies continuity of F over U , as in 9.8.
5
10
CHOICE PRINCIPLES
A good deal of the "mathematics of H-sets" is now available in the literature [BM, vD, F H , F S , G1-2, MO, Mu, R , Sl], so having outlined the framework of the theory we concentrate on two types of principle of importance in intuitionism, principles of choice and continuity. We will find that validity in all topological models (in particular, in the models over Euclidean spaces) corresponds to a certain kind of continuity property, which conflicts with even the weakest of countable choice principles, denoted by AC-NN: AC-NN: VmEN 3nEN. R(m,n)
+
3f
:
N - + N VmEN. R(m,f(m)).
Thus the theory generally interpreted in these models turns out to be rather different from the traditional intuitionistic one, or that presented in Bishop's book [Bi]. We start however with a " po si tive " re s u 1t
.
10.1 Proposition. In O(NN)-sets the principle of (relativised) Dependent Choices holds: that is, for any O(NN)-set A, DC(A):
VxEA 3yEA. R(x,y) + VxEA 3f:N+A[f(O)=x
A
VmEN. R(f(m),f(m+l))].
Proof. See tMo,S3] for example. The proof uses the property of Baire space that every open cover has a disjoint refinement. It is of interest that this proof can be made constructive assuming Dependent Choices and Bar Induction externally. By contrast with the preceding result for O(NN)-sets, where internal Baire space 1"( is large and rich, we find that the local connecNN N tedness of the reals make (N trivial. R N 10.2 Proposition. Every element of (N )R i s locally constant, so ("1,
is just the completion of the constant set ("1-
(see 6.2 (b))
.
N
Proof. If a is a continuous function from R to N , the image under a of any rational interval (p,q) contained in dom(a) must be connected in N1, hence a singleton; that is, a must be constant on (Pt9). 10.3 Cauchy Reals. Now the reason for real numbers as cuts in the rationals lence classes of) Cauchy sequences of intuitionism and constructivism (e.g.
our choice of definition of (8.4) rather than as (equivarationals, as is more usual in [Bi]), becomes apparent:
Let us define a (Dedekind) real x to be Cauchy iff it can be approximated by a sequence of rationals, that is
203
Heyting-Valued Semantics 3f
:
N + Q VnEN.lx-f(n) I < l/n.
Then in O(R)-sets, since all sequences of natural numbers, hence also of rationals, are (locally) constant, every Cauchy real has to be (locally) constant (as an element of R ) , whereas R has a multitude of non-constant elements, for examplg, the identiay function Xt.t. In particular, since every Dedekind real x clearly does satisfy VnEN 3qEQ.Ix-ql
u c_
R f converges to all,
and fE(QN),
satisfies
then, for each tEU, f(t) converges to a(t), which equals t. Thus we must have found an approximating sequence f(t) continuously in the parameter t , and this is what 10.2 shows to be impossible. Thus failure of AC-NN over R is seen to fact that (even classically) one cannot quence to each real number continuously The relevance of local continuity comes example.
correspond to the simple choose an approximating sein the real (even locally). out more clearly in the next
10.5 Roots of Cubics. A well-known fact from elementary analysis is that one cannot find a total continuous function of t giving a root of the cubic x3-x+t, because one has to make a "jump" somewhere. On the other hand, one can easily choose a root locally continuously, in the sense that, for each t , there is a neighbourhood of t on which one can choose a root continuously.
What is perhaps less well-known is that one cannot choose a root of the cubic x3+sx+t even locally continuously in both s and t. A s the picture below of the surface x3+sx+t=0 over the (s,t)-plane indicates, there is no continuous choice of root on any neighbourhood of the origin.
27
To interpret this in our models: the parameter space is now R 2 and we have two "generic" elements of R 2 , a=X(s,t) . s and b=X(s,t) .t. The failure of continuity in parameaers then shows that 3 ( 0 , O ) B [[ 3x. x +ax+b=Oll,
R.J. GRAYSON
204
2 so that, in O ( R )-sets, the reals are not real-closed (in the simplest sense); on the other hand, the principle AC-NN suffices to prove real-closure. 10.6 A Derived Rule. We can also apply the above considerations in a more positive direction to any assertion of the form 3y. R(x,y), where R is polynomial equation. If this is valid in all topological models, it must be valid in the model over the parameter space of the parameters s , and hence a solution y must exist locally continuously in the parameters. Furthermore, all this is provable in the system IHLN, which leads to a derived rule of local continuous choice for this system ; we prove a general result of this form for arbitrary R in 11.5, but it seems helpful to have these simple examples in the background for motivation. On the other hand our cubic example shows that AC-NN prevents such a derived rule even for the special case of polynomial equations.
Vz
9
11
CONTINUITY PRINCIPLES
Among the most positive and "anti-classical" tenets of intuitionism are continuity principles of various degrees of strength. In this final section we indicate to what extent these can be interpreted in our models, and prove a derived rule of local continuous choice for our basic system IHLN using only the soundness theorem for topological models ( a proof due to Joyal). 11.1 Weak Continuity. We have already seen that the continuity of all functions from reals to reals, or from Baire space to Baire space, holds in certain topological models ( 9 . 9 ) . In intuitionistic treatments these are sometimes derived from the principle of weak continuity for N ~ WC, , namely wc: -
VUENN 3nEN. A(a,n) -t VUENN 3 m , n E N vgENN[6(m)=p(m) -tA(a,n)1
In topological terms this says that every countable cover of Baire space has an open refinement. In case the formula A is a formula of analysis without parameters other than a , WC can be shown (classically) to be valid in O(NN)-sets [vD]. In its full generality however WC can never hold in topological models [ G Z , s 8.11. It is an open question whether WC might hold over some non-topological cHa, but Krol' [K] has given a permutation submodel of the "full" model over O(NN) in which WC is valid (see also [ G Z , Appendix]). 11.2 Continuous Choice. A much stronger group of principles are those of continuous choice, which we may formulate generally as CC(X,Y) for (definable) spaces x and Y. VxEX 3yEY. A(x,y) CC(X,Y) : 3f
:
X
*
N
+
Y VxEX. A(x,f ( X I .
The special case CC(N ,NN) is also known as Va 3B-continuity. This is inconsistent with Kripke's Schema and hence fails in the model . of Krol'. Fourman [F2] has shown how to model this principle in sheaves over a site; as worked out in [HM] one obtains in this way in fact a model for the f u l l theory CS of choice sequences. The
205
Heyting-Valued Semantics
consistency of such strong principles had of course already been shown by other means, for example, realisability [Tr]. On the other hand, realisability does not appear so useful in dealing with continuity principles for the real numbers, which we now consider. 11.3 Local Continuous Choice. The principle CC(R,R) is simply inconsistent as is shown by the first example f 10.5, since one may easily prove (without AC-NN) that Vt 3x.xq-x+t=0. The more traditional counter-example is given by the provability of VxER jnEN.x
+
%Y
Vx'EU.A(x',f(x')).
Fourman's models in sheaves over sites IF21 show the consistency (relative to IHLN) of LCC(X,Y) for any complete separable metric spaces X,Y (definable in IHLN). On the other hand, the cubic example of 10.5 shows LCC(Rp) to be inconsistent with AC-NN. Discussion of the relations between various continuity principles (in the presence of countable choice) may be found in [Be]. 11.4 Derived Rules. T o each continuous choice principle CC(X,Y) or LCC(x,Y) there corresponds a continuous choice rule, that provability of the hypothesis implies provability of the conclusion. We denote these rules by CCR(X,Y) and LCCR(X,Y). Derived rules of this kind are proved in [Be], using realisability, and [HI] by proof-theoretic means, for various systems. We give here an exceedingly elegant proof of LCCR(X,Y) for IHLN, for any definable complete separable metric spaces X,Y, which is due essentially to Joyal and uses just the provable soundness (7.8) of topological models for IHLN; other applications of this technique are t o appear in [FJ]. The addition of AC-NN prevents LCCR(R,R), of course, as noted in 10.6. 11.5 Theorem. (Joyal, Hayashi) The system IHLN is closed under the rule LCCR(X,Y) for any definable (provably) complete separable metric spaces X,Y. Proof. This will be an informal proof within IHLN starting from the ( c 1 0 s ed) as sumption
1- VxEX 3yEY.A(x,y). By the soundness theorem, provable in IHLN ( 7 . 8 ) , this is provably valid in all topological models. We now define the particular space T , over which we want to use this validity: T = Xx{O,l]
and
wo w1
with open sets those WST for which
= {xExl<x,o> =
E wl
{XEXl<X,l> E
E O(X)
w} 2 wo
This has the effect that X is homeomorphic to the closed subspace T =Xx{O} of T , while X disc (the set X with the discrete topology) is homeomorphic to the open subspace T =Xx{l). as a "glueing" of x disc to X along the'identiy
T can be regarded map.
The assumptions on X and Y ensure that, just as for R and NN in 8.5 and 8.6, when we interpret the definitions of X and Y in O(T)-sets,
R.J. GRAYSON
206
we obtain the O(T)-sets XT and Y with topologies as in 9.2. (The general theory appears in [FG, 3T81.1 Now we apply the internal validity of VxEX 3yEY.A(x,y), in O(T)-sets, to the projection a=(X<x,i>.x), which belongs to XT and so is treated internally as an "element of X". Then we get [[ 3bEYT.A(a,b)]1 = T, hence, for any point x of X, we may find b in YT with <x,O> E [[ A(a,b)]]
fI dom(b) = W ,
where we may suppose without I D S S that W =W,=U€O(X). W e next want to transfer into the universe over X disc, i.e. P(X)-sets,
a) Since
into
for which we need three observations. Xdisc is (homeomorphic to) the open subspace T 1 of T,
evaluations [[
lldisc
in P(X)-sets
are obtained simply by
"restriction" to T 1 of evaluations over O(T)
.
b) Since Y is a T1-space, for any x'EU, we find that b(<x',O>) = b(<x',l>), so that the restrictizn of b to T gives rise to a continuous function 2 from U to Y with b(x') = b(<xl , l > ) . Similarly the restriction of a gives rise simply to the identity function id on X. Hence (a) yields 'disc
C -
A
[[ A(id,b)lldisc
-
c) Finally, interpretations of formulae over discrete spaces are always obtained "pointwise" in terms of "external truth", in particular [[ A(id,b)]Idisc
= {x'EXIA(id(x') ,%(xu))).
Together with (b) this shows thzt we have found a neighbourhood U of x and a continuous function b:U+Y such that Vx'EU. A(x',%(x')), giving the conclusion of LCCR(X,Y).
REFERENCES. [Be] M. Beeson: Principles of continuous choice, Annals of Math. Logic 1 2 (19771, 249-322 [Bi] E. Bishop: Foundations of constructive analysis, McGraw-Hill, 1967. [ B r ] Brouwer's Cambridge Lectures on intuitionism, ed. D. van Dalen, Cambridge University Press, 1981.
[BM]
Burden and C . Mulvey: Banach spaces in categories of sheaves, in Applications of Sheaves, Springer Lecture Notes 753 (1979), 169- 196.
C.
[vD] D. van Dalen: An interpretation of intuitionistic analysis, Annals of Math. Logic 1 3 (19781, 1-43.
207
Heyting-Valued Semantics
[D]
M. Dummett: Elements of intuitionism, Oxford University Press, 1977.
[Fi] M.P. Fourman: The logic of topoi, & Handbook of Mathematical Logic (ed. J. Barwise), North-Holland, 1977, 1053-1090 [F2]
------------:
Continuous truth, to appear (1982).
e Proceedings
[FG] M.P. Fourman and R.J. Grayson: Formal spaces, of the Brouwer Symposium, North-Holland, 1982.
[FH] M.P. Fourman and J.M.E. Hyland: Sheaf models for analysis, & Applications of Sheaves, Springer Lecture Notes 753 (1979), 280-301. [FJ] M.P. Fourman and A. Joyal: Metamathematical applications of sheaf theory, to appear. [FS] M.P. Fourman and D.S. Scott: The logic of sheaves, Applications of Sheaves, Springer Lecture Notes 753 (1979). 302-401. [Gl] R.J. Grayson: Heyting-valued models for intuitionistic set-theory, 9Applications of Sheaves, Springer Lecture Notes 753 (1979), 402-414. [G2]
- - - - - - - - - - - - :C oncepts of general topology in constructive mathematics and in sheaves, Annals of Math. Logic 20 (19811, 1-41. Ditto, 1 1 , to appear in the Annals of Math. Logic.
[G3]
------------:
[G4]
. Constructive properties of complete Heyting algebras and related structures, pre-print (1982).
[Hl]
S . Hayashi: Derived rules related to a constructive theory of metric spaces, Annals of Math. Logic 19 (19801, 33-65.
[H2]
- - - - - - - - - - :A
F orcing in intuitionistic systems without powerset, to appear in Journal of Symbolic Logic (1981).
note on the bar induction rule, & Proceedings of the Brouwer Symposium, North-Holland, 1982.
[He] A. Heyting: Intuitionism, An Introduction, North-Holland, 1956. rHm3 G. van der Hoeven and I. Moerdijk: Sheaf models for choice sequences, pre-print (1982). [Hy] J.M.E. Hyland: Aspects of constructivity in mathematics, Oxford Logic Colloquium '76 (eds. Gandy and Hyland), NorthHolland, 1977. [K]
M.D. Krol': A topological model for intuitionistic analysis with Kripke's Schema, ZMLG 24 (19781, 427-436.
[MR] M. Makkai and G. Reyes: First-order categorical logic, Springer Lecture Notes 611, 1977. [MDI R. Mansfield and J. Dawson: Boolean-valued set theory and forcing, Synthese 3 3 (1976), 223-252.
208
R.J. GRAYSON J.R. Moschovakis: A topological interpretation of second-order intuitionistic arithmetic, Comp. Math. 26 ( 1 9 7 3 ) , 2 6 1 - 2 7 5 . C.J. Mulvey: Intuitionistic algebra and representations of rings, in Mem. Amer. Math. S O C . 1 4 8 ( 1 9 7 4 1 , 3 - 5 7 . H. Rasiowa and R. Sikorski: The mathematics of metamathematics, Warsaw, 1 9 6 3 . Rousseau: Topos theory and complex analysis, in Applications of Sheaves, Springer Lecture Notes 7 5 3 ( 1 9 7 9 ) , 6 2 3 - 6 5 9 .
C.
D.S. Scott: Extending the topological interpretation to intuitionistic analysis - I , Comp. Math. 2 0 ( 1 9 6 8 1 , 1 9 4 - 2 1 0 . - 11, & Intuitionism and Proof Theory (eds. Kino, Myhill, Vesley), North-Holland ( 1 9 7 0 ) .
_--______-.
. Identity and existence in intuitionistic logic, Applications of Sheaves, Springer Lecture Notes 7 5 3 ( 1 9 7 9 ) , 660-696.
A. Tarski: Der Aussayenkalkul und die Topologie, Fund. Math. 3 1 ( 1 9 3 8 ) , 1 0 3 - 1 3 4 . A.S. Troelstra: Metamathematical investigation of intuitionistic arithmetic and analysis, Springer Lecture Notes 3 4 4 ( 1 9 7 3 ) .
Address for correspondence: Church Cottage, Benenden, Cranbrook, Kent, England.
LOGIC COLLOQUIUM '82 G . Lolli, C.Long0 and A. Marcia [editors) 0 Elsevier Science Publishers 8.V. (North-Holland), 1984
209
LAMBDA C A L C U L U S ANU I T S MODELS
Henk Eatendhegt M a t h e m a t i c a l I n s t i t u t e , Budapestlaan 6 3508 TA U t r e c h t , The N e t h e r l a n d s .
INTRODUCTION The Lambda c a l c u l u s was i n t r o d u c e d by Church around 1930 as a f o r m a l t h e o r y about r u l e s ( i . e .
f u n c t i o n s as g i v e n by a l g o r i t h m s ) .
The r e l a t e d t h e o r y o f c m b i -
n a t o r s was i n i t i a t e d by S c h S n f i n k e l and C u r r y s m e y e a r s e a r l i e r . The t h e o r y was c o n c e i v e d as t y p e f r e e : a l l o b j e c t s can be used b o t h as argument and as r u l e t o be a p p l i e d t o o t h e r o b j e c t s . Perhaps t h e subconscious w i s h was t o have a u n i v e r s e
U such t h a t a l l ( o r a t l e a s t many) f u n c t i o n s f r o m U t o U b e l o n g t o U. S i n c e by Cantors theorem t h e c a r d i n a l i t y o f Uu i s l a r g e r than t h a t o f U,
i t was n o t c l e a r
how t o c o n s t r u c t such a U. I n s p i t e o f t h i s , t h e r e were i n t e r e s t i n g r e s u l t s i n t h e s u b j e c t . Kleene showed t h a t t h e r e c u r s i v e f u n c t i o n s can be r e p r e s e n t e d i n t h e A - c a l c u l u s .
Rosser c l a r i -
f i e d t h e r e l a t i o n between t h e A - c a l c u l u s and t h e t h e o r y o f c o m b i n a t o r s . The cons i s t e n c y o f t h e A - c a l c u l u s was p r o v e d v i a t h e Church-Rosser theorem. As a consequence o f t h i s c o n s i s t e n c y t h e r e a r e t h e open o r c l o s e d t e r m models c o n s i s t i n g o f t h e open or c l o s e d terms modulo p r o v a b l e e q u a l i t y . n a t o r s , e.g.
I n t e r e s t i n g work on t h e c m b i -
by BZjhm and h i s s c h o o l , can be viewed as r e s u l t s on t h e t e r m models.
I n 1969 S c o t t c o n s t r u c t e d n o n - s y n t a c t i c a l models o f t h e A - c a l c u l u s . A l t h o u g h t h e f u l l f u n c t i o n space Uu c a n n o t be i s o m o r p h i c t o U, some s u b s e t can be, e.g. t h e s e t o f c o n t i n u o u s f u n c t i o n s w i t h r e s p e c t t o sane c o n v e n i e n t t o p o l o g y . Because o f S c h l i n f i n k e l s i d e n t i f i c a t i o n o f Uuxu w i t h (UU)'
i t i s n a t u r a l t o use a class o f
t o p o l o g i c a l spaces t h a t f o r m a C a r t e s i a n c l o s e d c a t e g o r y ( c c c ) . F o r t h i s reason S c o t t worked w i t h i n t h e c a t e g o r y o f -with c o n s t r u c t e d an o b j e c t ,D
i s o m o r p h i c t o , ,D:
c o n t i n u o u s maps and thus y i e l d i n g an e x t e n s i o n a l model o f
the A-calculus. Some r e l a t e d C a r t e s i a n c l o s e d c a t e g o r i e s a r e a l s o o f importance. F i r s t t h e c o n t i n u o u s l a t t i c e s have a more n a t u r a l r e l a t i o n between t h e i r l a t t i c e s t r u c t u r e and t o p o l o g y ; e.g.
the topology o f a product i s the product o f the respective
t o p o l o g i e s , something t h a t i s f a l s e f o r c o m p l e t e l a t t i c e s . Then t h e r e a r e t h e ( c p o ' s ) o f w h i c h t h e r e a r e many more than t h e complete l a t t i c e s . P l o t k i n s model T W i s a cpo and n o t a c o m p l e t e l a t t i c e . Another u s e f u l c a t e g o r y i s t h a t o f fo-spaces as d e f i n e d by Ershov. These o b j e c t s have t h e advanP
H. BARENDREGT
210
t a g e o f n o t h a v i n g t o be complete,
e.g.
the set o f r.e.
s e t s p a r t i a l l y o r d e r e d by
i n c l u s i o n i s an f -space.
0
I t t o o k some t i m e a f t e r S c o t t gave h i s model c o n s t r u c t i o n u n t i l t h e r e was an agreement what i s t h e g e n e r a l n o t i o n o f a model o f t h e A - c a l c u l u s .
See Koymans
[1983] f o r t h e h i s t o r y . P r e s e n t l y one c o n s i d e r s two k i n d s o f models, v i z . t h e A a l g e b r a s and t h e A-models.
The A - a l g e b r a s s a t i s f y a l l p r o v a b l e e q u a t i o n s o f t h e
A - c a l c u l u s and form an e q u a t i o n a l c l a s s ( a x i o m a t i z e d by k x y = x , s x y z = x z ( y z ) and t h e f i v e c o m b i n a t o r y axioms o f C u r r y ) . T h e r e f o r e t h e A - a l g e b r a s a r e c l o s e d under s u b s t r u c t u r e s and homomorphic images. The A-models on t h e o t h e r hand s a t i s f y a l l p r o v a b l e e q u a t i o n s and moreover t h e a x i o m o f weak e x t e n s i o n a l i t y Vx(M=N)
-*
Ax.M=Ax.N.
I t t u r n s o u t t h a t A-models can be d e s c r i b e d by some f i r s t o r d e r axioms, b u t n o t
by e q u a t i o n s .
Indeed A-models a r e n o t c l o s e d u n d e r s u b s t r u c t u r e s n o r u n d e r homo-
morph i c images. Next t o t h e f i r s t o r d e r d e f i n i t i o n o f A - a l g e b r a s and A-models,
there i s a
s y n t a c t i c a l and a l s o a c a t a g o r i c a l d e s c r i p t i o n o f t h e s e c l a s s e s . The s y n t a c t i c a l d e s c r i p t i o n i s c o n v e n i e n t when c a l c u l a t i n g t h e i n t e r p r e t a t i o n o f terms i n a model The c a t e g o r i c a l d e s c r i p t i o n o f A - a l g e b r a s
i s r a t h e r n a t u r a l and u n i f i e s t h e two
I t c o n s i s t s o f a C a r t e s i a n c l o s e d c a t e g o r y t t o g e t h e r w i t h a so c a l l e d U r e f l e x i v e o b j e c t U E Q , i . e . U i s a r e t r a c t o f U: t h e r e a r e maps F:U+Uu and
concepts.
G:UU+U
such t h a t FOG = idUU. A s shown i n Koymans [19831,
i n t h i s context a
A-
model i s a A - a l g e b r a t h a t a r i s e s f r o m a c a t e g o r y t w i t h an o b j e c t U t h a t has "enough po i n t s"
.
Because of t h e p r e s e n t d e s c r i p t i o n o f lambda c a l c u l u s models, c h a p t e r
5 of
B a r e n d r e g t 119811 becomes somewhat o u t o f d a t e . T h i s p a p e r may be c o n s i d e r e d as a replacement o f t h a t c h a p t e r . U s i n g t h e c a t e g o r i c a l d e s c r i p t i o n o f t h e A - c a l c u l u s models, S c o t t [ 1 9 8 0 ] makes t h e f o l l o w i n g p h i l o s o p h i c a l remarks. 1 . The models f o r t h e t y p e f r e e A - c a l c u l u s come f r o m c c c ' s w i t h a r e f l e x i v e o b j e c t . The
CCC'S
-
themselves c o r r e s p o n d t o t h e t y p e d A - c a l c u l u s .
There-
f o r e t h e t y p e d A - c a l c u l u s has p r i o r i t y o v e r t h e t y p e f r e e t h e o r y .
2. Let
E
be a ccc w i t h r e f l e x i v e o b j e c t U. By t h e Yoneda lemna d: can be em-
bedded i n t o a t o p o s D = Setcop, U s i n g t h e K r i p k e - J o y a l semantics, i n s i d e PJ i t i s s a t i s f i e d t h a t Uu i s t h e f u l l f u n c t i o n space o f U and t h e r e f o r e
t h e axiom o f weak e x t e n s i o n a l i t y i s s a t i s f i e d by U i n
ID. The p r i c e one
has t o pay i s t o use i n t u i t i o n i s t i c l o g i c , s i n c e c l a s s i c a l l o g i c i s n o t sound f o r t h e K r i p k e - J o y a l
interpretation.
Some comnents. A s t o 1 , t h e r e a r e c e r t a i n l y n i c e r e s u l t s i n t h e t y p e d A - c a l c u l u s , f o r i n s t a n c e Statman [19801,
[19821. However we d i s a g r e e w i t h S c o t t s grounds f o r
21 1
Lambda Calculus and its Models
c o n c l u d i n g t h a t t h e typed t h e o r y has p r i o r i t y o v e r t h e t y p e f r e e one. Even i f t h e r e a r e f o r example more semigroups t h a n groups,
i t does n o t f o l l o w t h a t t h e
t h e o r y o f semigroups i s more fundamental t h a n t h e t h e o r y o f groups. As t o 2, S c o t t s s u g g e s t i o n t o make t r u e t h e o l d dream o f Church and C u r r y , namely U u E U , i n s i d e a topos,
i s indeed v e r y i n t e r e s t i n g . One has t o w a i t and see what a p p l i -
c a t i o n s t h i s can g i v e . T h a t A - a l g e b r a s a r e i n t e r n a l l y a l r e a d y A-models does n o t mean t h a t t h e c l a s s o f A - a l g e b r a s
i s d e v o i d o f i n t e r e s t . Compare t h i s w i t h t h e
n o t i o n o f a r e g u l a r r i n g . Viewed i n s i d e a t o p o s , r e g u l a r r i n g s a r e ( i n t u i t i o n i s t i c ) f i e l d s . B u t r e g u l a r r i n g s m e r i t a t t e n t i o n b y themselves and n o t j u s t as g l o b a l s e c t i o n s o f a f i e l d i n a topos. The same a p p l i e s t o A - a l g e b r a s . models a r e A - a l g e b r a s ,
b u t n o t A-models
Closed term
i n g e n e r a l , due t o w-incompleteness.
N e v e r t h e l e s s t h e s e s t r u c t u r e s have i n t e r e s t i n g p r o p e r t i e s , e.g.
t h e y a r e precom-
p l e t e numbered s e t s i n t h e sense o f Ershov, see V i s s e r [19801. N o t a t i o n s and r e f e r e n c e s t h a t a r e n o t g i v e n i n t h i s paper may be found i n B a r e n d r e g t [19811. I n p a r t i c u l a r we u s e t h e v a r i a b l e c o n v e n t i o n t h a t i d e n t i f i e s terms d i f f e r i n g o n l y i n t h e names f o r t h e i r bound v a r i a b l e s (e.g.
Xx.x=hy.y)
and r e q u i r e s t h a t a bound v a r i a b l e i n some m a t h e m a t i c a l c o n t e x t i s d i f f e r e n t f r o m the free variables i n t h a t context.
Sopfie
a b s t r a c t i o n i n t h e rneta language.
I thank K a t L b t KoljmuMn f o r many u s e f u l d i s c u s s i o n s on t h e sub-
Acknowledgements. j e c t and
1 denotes
WUM
Stakenbu%
51.
COMBINATORY ALGEBRAS
1.1
DEFINITION.
(i)
I=(X,.)
f o r her carefu1,nice typing o f the manuscript.
i s an a p p l i c a t i v e s t r u c t u r e i f
.
i s a b i n a r y oper-
a t i o n on X. ( i i ) Such a s t r u c t u r e i s e x t e n s i o n a l i f f o r a , b E X one has (VxEX
Notation.
-+
( i ) As i n a l g e b r a , a.b
( i i ) If
a=b.
i s u s u a l l y w r i t t e n as ab.
-+
If b=bl,
..., bn.
then
.. ( a b l ) b 2 . . . b n ) .
a b = a bl...bn=(
1.2
*
a.x=b.x)
I=
(X,.)
DEFINITION. L e t
t h e n we w r i t e a E W i n s t e a d o f a E X .
I be
an a p p l i c a t i v e s t r u c t u r e .
( i ) The s e t o f terms o v e r m , n o t a t i o n S b ) , i s i n d u c t i v e l y d e f i n e d as f o l l o w s . vo’vl’v2’‘’’ aE l A,BES@) N o t a t i o n . A,B,
. . . denote
E
SC)
*
ca
+
(AB)ESC)
€%(I)
(va r i ab 1 es ) (cons t a n t s )
a r b i t r a r y terms and x,y,
...
arbitrary variables i n
Sh).
H. BARENDREGT
212
ID?
( i i ) A valuation i n
i s a map p : v a r i a b l e s + 1.F o r a v a l u a t i o n p i n m t h e
i n t e r p r e t a t i o n o f A € % @ ) i n m under p ( n o t a t i o n (Ap'or
(A)
P
P
o r (A)m i f m o r p
i s c l e a r from t h e c o n t e x t ) i s i n d u c t i v e l y d e f i n e d as u s u a l :
( i i i ) A=B i s true i n U ! t under t h e v a l u a t i o n p ( n o t a t i o n m , p C A = B ) i f
m
n
( A l p = (B)p. i s t r u e i n J!R ( n o t a t i o n 9l
(iv) A = B
-
( v ) The r e l a t i o n
b A = B ) i f 8 ? , p I= A = B f o r a l l v a l u a t i o n s p.
i s a l s o used f o r f i r s t o r d e r f o r m u l a s over!U?. The d e f i -
n i t i o n i s as u s u a l . FV(A) i s t h e s e t o f ( f r e e ) v a r i a b l e s i n A. v a l u e s of p on FV(A). a t i o n (A)
1.3
P
C l e a r l y (A)
I n p a r t i c u l a r f o r c l o s e d A ( i . e . FV(A)
P
depends o n l y on t h e
=0)
the interpret-
i s independent o f p and may be denoted by ( A ) .
DEFINITION ( C u r r y ) . An a p p l i c a t i v e s t r u c t u r e 1 i s a c o m b i n a t o r y complete i f
f o r e v e r y A € % @ ) and xl...xn 3 f Vx,
...xn
w i t h FV(A)5{xl
f x l...x
,...,x
one has i n 1
= A
Note t h a t an e x t e n s i o n a l a p p l i c a t i v e s t r u c t u r e i s c o m b i n a t o r y complete i f f f o r a l l A € % @ ) one has
fz = A(;).
3 1 f Vz
1.4
NOTATION.
( i ) L e t p be a v a l u a t i o n i n m and l e t a E 1 . Then p ( x : = a )
i s the
valuation p' with
P'(x) = a
,
~ ' ( y )= P ( Y ) (ii)
if ygx.
+
-f
If x = x
a r e d i s t i n c t and a = a , , lI-.'Xn p ( x : = a ) = p(xl :=al) (X : = a 1. n n
( i i i ) A[x:=B]
1.5
...,an,
then
...
-f
i s t h e r e s u l t o f s u b s t i t u t i n g t h e t e r m B f o r x i n A.
LEMMA. L e t m b e an a p p l i c a t i v e s t r u c t u r e and A , A ' , B , B ' € S @ ? ) . ( i ) (A[x : = B I ) ,
=
:= (B)p)
(ii)wCA=A'hB=B' Proof.
(i)
Then
* 1 k
A[x:=BI
=A'[x:=B'].
I n d u c t i o n on t h e s t r u c t u r e o f A.
( i i ) By a s s u m p t i o n (A) (A[x : = B l )
P
=
P
=(A')
P
and (8)
,
:= (B)p)
= (A')p(x:=
(Bl)
P
= (8')
P
for a 1 p.
by ( i ) , = (A'[x:=B']) P
P
I t follows t h a t
213
Lambda Calculus and its Models
0
and we a r e done.
1.6
DEFINITION. L e t m = (X,.)
be an a p p l i c a t i v e s t r u c t u r e and l e t cp: X " + X
be
a map. ( i ) cp i s r e p r e s e n t a b l e o v e r !IN i f 3 f E X
V z € X"
+
+
f a = cp(a).
( i i ) cp i s a l g e b r a i c o v e r m i f t h e r e i s a t e r m A€X(!IR) w i t h
. . .x,l such 6 cp(2) = (A)p(;:=;).
FV(A) z { x l , . (1)
that
( C l e a r l y ( 1 ) does n o t depend on p ) .
Combinatory completeness says that all algebraic functions are representable. The converse is trivial. Schonfinkel showed that combinatory completeness follows from two of its instances. 1.7
DEFINITION. A cornbinatory a l g e b r a i s an a p p l i c a t i v e s t r u c t u r e 9 J = (X,.,k,s)
w i t h d i s t i n g u i s h e d elements s a t i s f y i n g k y = x sxyz = x z ( y 2 ) .
1.8
DEFINITION. L e t m be a c o m b i n a t o r y a l g e b r a . ( i ) Define the f o l l o w i n g constants: K = c k , S = c s , I ( i i ) For AE%(M) and a v a r i a b l e x , d e f i n e h * x . A E S m )
= c i with i
=
skk.
i n d u c t i v e l y as f o l l o w s :
,
X*X.X
= I
X*x.P
= KP,
i f P i s a v a r i a b l e g x o r a constant,
h*x.PQ = S(X*x.P) (h*x,Q).
+
( i i i ) L e t x = x,
1.9
, . . . ,x .
PROPOSITION. ( i ) FV(X*x.A) ( i ) (A*x.A)x=A, ( i i ) (X*;.A)z=A,
Proof. -
(i), (ii).
(ii )
ay
+
Then A*x.A
= ( h*xl
= FV(A)
. . . (X*xn.A).
. .) .
- {XI.
i n e v e r y cornbinatory a l g e b r a . i n e v e r y cornbinatory a l g e b r a .
I n d u c t i o n on t h e s t r u c t u r e o f A. Note t h a t l x = S K K x = K x ( K x ) = x .
(ii).
1.10 THEOREM. An applicative structure m i s combinatory completE iff it can be expanded to a combinatory algebra [by choosing k,s). Hence every combinatory algebra is combinatory complete.
Proof. By proposition 1.9(iii).
0
214
H. BARENDREGT REMARKS.
1.11
(i.e.
( i ) Note t h a t a c o m b i n a t o r y a l g e b r a % = (X,.,k,s)
iff k f s .
Card(W)>l)
i s non t r i v i a l
Indeed, k = s i m p l i e s a = s ( k i ) ( k a ) z = k ( k i ) ( k a ) z = i
f o r a l l a, S O W i s t r i v i a l ( i i ) When c o n s i d e r i n g c o m b i n a t o r y a l g e b r a s , we u s u a l l y t a c i t l y assume t h a t t h e y a r e non t r i v i a l .
1.12 D E F I N I T I O N .
Then c p : X
+X2
Let2Qi = ( X i , . i , k i , s i ) ,
i = 1 , 2 , be two combinatory a l g e b r a s .
i s a homomorphism ( n o t a t i o n cp:Wl+211)
2
1 and k and s , i .e. cp(x.,y)
i f cp p r e s e r v e s a p p l i c a t i o n
cp(y), cp(kl) = k 2 and cp(sl) = s 2 .
= cp(x).,
( i i) I +I2 l i f cp : w1 +I2 f o r some cp. i s ernbeddable i n m 2 (9111GW2) i f cp:YJ?,+?D2 f o r some i n j e c t i v e cp.
( i i i ) Wl (Wl (iv)
i s a s u b s t r u c t u r e o f 2112 (Ilc2R2)
W,
i f cp:Wl+W2
w i t h cp t h e i d e n t i t y . )
i s i s o m o r p h i c t o m 2 @J?l~9112)i f c p : 1 1 + W 2 f o r some b i j e c t i v e cp.
1.13 DEFINITION. ( i ) Q i s t h e s e t o f terms o f c o m b i n a t o r y l o g i c ,
i.e. applicative
terms b u i l t u p from v a r i a b l e s and K , S o n l y . Go = { P € Q l F V ( P ) = 0 } . ( i i ) L e t I be a c o m b i n a t o r y a l g e b r a . Then T h m ) = { P = Q l % C P = Q ,
1.14 PROPOSITION. L e t UJ:W,+SJI,. '
I
P,Q€&
0
1.
Then f o r P , Q € % @ ? * )
L
I 1 ( i ) cp(l[PJJ ) = [cp(P)? , w h e r e cp(P) r e s u l t s i r o m P by r e p l a c i n g t h e conP WP stants c a by 'cp(a). 0 ( i i )W, P = Q * W + s ( P ) = q ( Q ) , provided P , Q E & o r cp i s s u r j e c t i v e .
+
( i i i ) Th(9111)
2
Thb2).
( i v ) Th(9111) = Th@J$), Proof. -
p r o v i d e d t h a t cp i s i n j e c t i v e .
( i ) I n d u c t i o n on t h e s t r u c t u r e o f P€X(9ll).
k P=Q
( i i ) Wl
* *
-
[ P I p = UQn,
UPII,,
=
* W2 C I f P,Q€Q
0
f o r a l l p,
UPDcpop= ~ Q ~ c p of po r a l l P by ( i ) ,
[Qn,,
f o r a l l p ' i f cp i s s u r j e c t i v e ,
P=Q.
t h e n t h e i r v a l u e s do n o t depend on a p.
( i i i ) By ( i i ) .
0
( i v ) As f o r ( i i ) .
The f o l l o w i n g r e s u l t i s due t o Grzegorczyk.
1.15 THEOREM. Consider t h e f o l l o w i n g f i r s t o r d e r t h e o r y (CL) i n t h e language o f combinatory algebras.
1
Vxy
(CL)
Kxy=x
,
vxyz sxyz = xz(yz) K+S.
,
215
Lambda Calculus and its Models
( i ) (CL) i s e s s e n t i a l l y u n d e c i d a b l e ,
i .e. has n o
consistent decidable
extension. ( i i ) (CL) has no r e c u r s i v e models. Proof. -
(i)
I f T i s a consistent extension o f
A = IP
I
( C L ) , then
P=SET}
i s a non t r i v i a l s e t ( S E A , K ~ A o) f terms c l o s e d under p r o v a b l e e q u a l i t y . But then as i n B a r e n d r e g t [19811, theorem 6 . 6 . 2 ( i i )
i t f o l l o w s t h a t A and t h e r e f o r e
T i s not recursive. then T h b ) = { P = Q l W t = P = Q I i s a
( i i ) I f W i s a r e c u r s i v e model o f (CL), r e c u r s i v e c o n s i s t e n t e x t e n s i o n o f (CL),
contradicting ( i ) .
The axioms f o r c o m b i n a t o r y a l g e b r a s a r e i n s p i r e d by t h e a n a l y s i s o f r e c u r s i v e p r o c e s s e s , n o t by a l g e b r a . The f o l l o w i n g shows t h a t t h e s e s t r u c t u r e s a r e i n fact algebraically pathological.
1.16 PROPOSITION. Combinatory a l g e b r a s ( e x c e p t t h e t r i v i a l one) a r e ( i ) n e v e r commutative, ( i i ) never a s s o c i a t i v e , ( i i i ) never f i n i t e , ( i v ) never recursive. Proof. -
( i ) Suppose i k = k i . Then k = i k = k i , hence a = k a b = k i a b = i b = b f o r a l l a,b
and t h e a l g e b r a i s t r i v i a l . ( i i ) S i m i l a r l y t r i v i a l i t y follows from ( k i ) i = k ( i i ) . = kk,.
( i i i ) D e f i n e kl = k , kn+l ( i v ) By l . l s ( i i ) .
Then t h e kl,k2
,...
are a l l distinct.
0
The f o l l o w i n g r e s u l t , due t o B a r e n d r e g t , Dezani and K l o p , shows t h a t combinatory algebras a r e universal f o r recursive a p p l i c a t i v e structures.
1.17 THEOREM. Given a c o m b i n a t o r y a l g e b r a 8. Then e v e r y r e c u r s i v e a p p l i c a t i v e s t r u c t u r e !XI can be embedded i n t o 8. Proof. Let -
?I be g i v e n and !XI = ( I N , . )
a
= [A,'n']
with
.
recursive.
D e f i n e i n 91
= A*z.zArn'
w i t h A E B t o be d e t e r m i n e d and ' n ' E 8
t h e nth numeral. Then
a a = [A,'n'l[A,'m'] n m = [ A , rml]Arn' = AArml'n'
= [A,F'n"m''], = [A,'n.m'],
provided A=A*pqr.[p,Frq], provided F represents
. ,
216
H. BARENDREGT
.
= a n .m The e x i s t e n c e o f F f o l l o w s f r o m t h e A - d e f i n a b i l i t y : %+‘I1
Moreover hn.a a
= a
n
m
o f the recursive functions.
i s injective:
+ ‘n’
= ‘m‘
n=m.
0
The n e x t c o r o l l a r y i s a s t r e n g t h e n i n g o f a r e s u l t o f E n g e l e r due t o F. H o n s e l l .
1.18 COROLLARY. F o r e v e r y a p p l i c a t i v e s t r u c t u r e B t h e r e i s an e x t e n s i o n a l combinatory algebra
B
such t h a t
P r o o f . Given 8 , c o n s i d e r -
91CB.
the theory
T = (CL) + Diag(21) + E x t where Diag(B) = { P = Q I P,Q€Y€(a),F V ( P Q ) = 0 , 8 b P = Q } , E x t = Vab((Vx a x = b x ) Every f i n i t e p a r t T
D
+
a=b).
o f T i s c o n s i s t e n t : by 1.17 e v e r y non t r i v i a l e x t e n s i o n a l
c o m b i n a t o r y a l g e b r a , e.g.
D-,
can be made i n t o a model f o r T o . B u t t h e n by com-
pactness T i s c o n s i s t e n t and has a model a l g e b r a and
BCB.
B. T h i s i s an e x t e n s i o n a l c o m b i n a t o r y
0
The c o n s t r u c t i o n i n E n g e l e r [ 1 9 8 1 ] i s m o r e i n f o r m a t i v e i n a n o t h e r sense: f o r each s e t A t h e r e i s a c o m b i n a t o r y a l g e b r a DA such t h a t e v e r y a p p l i c a t i v e s t r u c t u r e w i t h u n i v e r s e A can be embedded i n t o DA.
92.
LAMBDA ALGEBRAS AND LAMBDA MODELS. S i n c e i n a c o m b i n a t o r y a l g e b r a B a b s t r a c t i o n can be s i m u l a t e d by k and s ,
i t i s p o s s i b l e t o i n t e r p r e t e A-terms
2.1
in 8.
NOTATION. L e t C be a s e t o f c o n s t a n t s . A(C)
i s t h e s e t o f A-terms u s i n g
p o s s i b l y c o n s t a n t s f r o m C . The A - c a l c u l u s axioms and r u l e s e x t e n d i n t h e o b v i o u s way t o e q u a t i o n s M = N w i t h M , N € h ( C ) .
For these M,N we s t i l l w r i t e X I - M = N .
!lX i s an a p p l i c a t i v e s t r u c t u r e , then A(YR)
2.2
If
i s A({cala€YR}).
DEFINITION. L e t m be a c o m b i n a t o r y a l g e b r a .
(i) Let
*
: A @ R ) + S @ l ? ) be t h e map t h a t r e p l a c e s e v e r y
M* f o r *(MI x* = x , c* = c , (MN)* =
M*N*
A
by
A*,
i.e.
writing
Lambda Calculus and its Models
(Ax.M)*
217
= A*x.M*.
( i i ) For M,N€A@J?)one d e f i n e s
I k
M=N
-
I , p b M = N f o r a l l p.
I f I i s a c o m b i n a t o r y a l g e b r a and UAx.xcaI B
.
aEI,
then we w r i t e e.g.
Ax.xa
for
Not a l l e q u a t i o n s p r o v a b l e i n A - c a l c u l u s a r e t r u e i n a c o m b i n a t o r y a l g e b r a . E.g.
i f II)) i s t h e t e r m model o f CL, then
I#Xz.(Ax.x)z since
2.3
S(K1)I and (Xz.z)*
(Xz.(Ax.x)z)*E
DEFINITION.
= 12.7. 5
I; b u t X!-Az.(Ax.x)z
=
Az.z.
( i ) A c o m b i n a t o r y a l g e b r a Yl? i s c a l l e d a A - a l g e b r a i f f o r a l l
M,N€A(!JJ~)
A
CM=N
=D
D?b M = N .
A - a l g e b r a homomorphism i s j u s t a c o m b i n a t o r y a l g e b r a homomorphism.
(ii) A
The n o t i o n o f A - a l g e b r a seems t o depend on t h e d e f i n i t i o n o f A*. of
2.4
B u t because
o t h e r d e s c r i p t i o n s , see 2 . 5 and § § 3 , 4 , t h i s i s n o t t h e case.
PROPOSITION. ( i ) I f q:iV?l+9J$,
p a r t i c u l a r q[MT
nn
= [M]m2
( i i ) Let!U?l+12. ( i i i ) 9R,C.m2 Proof. -
By 1.14.
9
thendM1:
=[q(M)IZfp
f o r M€A@).
then a l s o I 2.
Then Th@l)c_Th@J?2). So ifYl?, i s a A - a l g e b r a , Th@,)
In
f o r MEAO.
= Thm2).
0
By u s i n g C u r r y ' s c o m b i n a t o r y axioms AB one can a x i o m a t i z e t h e c l a s s o f
A-
algebras.
2.5
THEOREM. L e t I be a c o m b i n a t o r y a l g e b r a . Then
f i e s the f o l l o w i n g set of equations A
(Ag)
P r o o f . By -
I
(A.I)
Ii s
a A-algebra i f f % s a t i s -
R:
K = S ( S ( K S ) (s(KK)K)) ( K ( s K K ) ) ,
(A.2)
S = S(S(KS) (S(K(S(KS)))
(S(K(S(KK)))S)))
(A.3)
S ( S ( K S ) (S(KK) ( S ( K S ) K ) ) )
(KK) = S ( K K ) ,
(A.4)
S ( K S ) (S(KK))
(A.5)
S(K(S(KS)))
(K(K(SKK)))
= S ( K K ) (S(S(KS) (S(KK) ( S K K ) ) ) ( K ( S K K ) ) ) , (S(KS) ( S ( K S ) ) )
the fact t h a t the theories
= S ( S ( K S ) (S(KK) (S(KS) (S (K ( S (KS))
A
and CL+A
B
S) )
are equivalent,
(KS
.
i n t h e sense
H. BARENDREGT
218 that
A
I-
M=N
CL+A
see B a r e n d r e g t [19811 7.3.10
I- M* = N*,
B and 7.3.15.
0
The lambda a l g e b r a s u s u a l l y a r i s e as s u b s t r u c t u r e s o f a more n a t u r a l c l a s s o f A - c a l c u l u s models, t h e so c a l l e d lambda models. For t h e s e s t r u c t u r e s t h e r e i s a u n i f o r m method t o f i n d t h e elements r e p r e s e n t i n g a l g e b r a i c f u n c t i o n s , i n d e pendent o f t h e way t h e s e f u n c t i o n s a r e g i v e n (by t e r m s ) ; c f . theorem 5.8.
2.6
DEFINITION. L e t W be a c o m b i n a t o r y a l g e b r a . Ell i s c a l l e d weakly e x t e n s i o n a l
i f f o r A,B<X@i)
W C
Vx(A=B)
Ax.A = Xx.B
+
.
The c o n d i t i o n o f weak e x t e n s i o n a l i t y i s r a t h e r s y n t a c t i c a l . Meyer [19801 and S c o t t [19801 r e p l a c e i t as f o l l o w s .
2.7
DEFINITION.
( i ) I n a combinatory algebra d e f i n e 1 = S ( K I ) .
( i i ) A A-model
W such t h a t t h e f o l l o w i n g M e y e r - S c o t t axiom
i s a A-algebra
h o l d s i.n !JX Vx(ax=bx)
2.8
+
la = lb.
LEMMA. L e t Ell be a c o m b i n a t o r y a l g e b r a . Then i n Ell ( i ) lab = ab;
I f moreover!JX i s a A - a l g e b r a , (ii
1 = Axy.xy,
(iii
l(1x.A)
(iv
11 = 1 .
Proof. -
then
hence l a = X y . a y ;
= Xx.A,
f o r a l l A€%@)
i ) l a b = S ( K l ) a b = K l b ( a b ) = ab.
(ii
1 = S ( K I ) = (Xxyz.xz(yz)) (KI) = hyz.Klz(yz)
(iii
l ( A x . A ) = Ax.(Xx.A)x
= Ax.A,
PROPOSITION.
Proof. -
(-)
= 1yz.y~
by ( i i ) .
0
( i v ) By ( i i i ) and ( i i ) .
2.9
;
W i s a A-model
-
i s a weakly extensional A-algebra.
L e t m be w e a k l y e x t e n s i o n a l . Then
Vx ax = bx
* =b
Ax.ax = Ax.bx l a = l b , by 2 . 8 ( i i ) .
(*)
L e t W be a A-model.
Vx
A = B
=b
* =b
Then
Vx(Ax.A)x = ( h x . 6 ) ~ 1 (1x.A)
= t(Xx.B)
Ax.A = hx.8,
by 2 . 8 ( i i i ) .
0
Lambda Calculus and its Models 2.10 PROPOSITION. L e t % ?be a A - a l g e b r a .
ID) i s e x t e n s i o n a l Proof. -
(*)
* *
A=B
Then
ID) i s w e a k l y e x t e n s i o n a l and s a t i s f i e s I = 1
Q
(Ax.A)x = (Ax.B)x Ax.A = Ax.B,
by e x t e n s i o n a l i t y .
Moreover I x y = x y = l x y , so by e x t e n s i o n a l i t y ( t w i c e )
(*)
By 2.9
.
W i s a A-model
Vx a x = bx
219
*
I=1.
Hence
la = lb
0
a = b since 1 = I .
An e x t e n s i o n a l c o m b i n a t o r y a l g e b r a i s a u t o m a t i c a l l y a A - a l g e b r a .
A I-
because
*
M=N
CL+ext
t
M*=N*,
This i s
see B a r e n d r e g t [19811 7 . 3 . 1 4 .
TERM MODELS, INTERIORS. 2.11 DEFINITION. L e t T be an e x t e n s i o n o f t h e t h e o r y
A,
i.e.
o f the A-calculus.
( i ) Define M = N Q T [MIT = “€A
T
h / T = {[MI, [MIT.[NlT
k M=N
; t h i s i s a congruence r e l a t i o n on
A.
I M =T N}. 1 MEA}.
= [MNIT
; t h i s i s welldefined.
The open term model o f T i s ID)m(T) =
(
A/T,.,[KIT,[SIT
).
( i i ) By r e s t r i c t i n g e v e r y t h i n g t o c l o s e d terms one d e f i n e s t h e c l o s e d t e r m
-
model o f
T 0
ID) (T)
=(A
0
0 0 /T,.,[KIT,[SIT
Clearly i f T i s consistent, T
# K=S,
).
i.e.
does n o t p r o v e e v e r y e q u a t i o n , then 0 I n p a r t i c u l a r ID)(A) and ID) (A) a r e
so I ( T ) and d ( T ) a r e non t r i v i a l .
non t r i v i a l s i n c e i t f o l l o w s f r o m t h e Church-Rosser theorem t h a t t h e t h e o r y
A
consistent.
2.12 PROPOSITION. L e t T be an e x t e n s i o n o f t h e A - c a l c u l u s and l e t ( i ) F o r M w i t h FV(M) = { x ,
=
[MI;
(ii) T CM=N (iii) T Proof.
t-
M=N
[M [ x := +
* es
PI1
+
, . . . ,xn} (0)
* *
= ID)(O)(T).
has
.
ID)+ M = N
Wb
M = N , p r o v i d e d t h a t W = W ( T ) o r t h a t M,N a r e c l o s e d .
( i ) I n d u c t i o n on t h e s t r u c t u r e o f M * ,
(ii) TCM=N
W
and p w i t h p ( x i ) = [ P ]“’one i T
VF
TCM[Z:=bI
VP
[M[x : = P I I T = “ [ x
+
+
+
+
u s i n g TI-M
+
=N[x:=P]
+
+
:=PIIT
=
M*.
is
H. BARENDREGT
220
* Vp U M ~ , = [ N J P * I + M=N . = 9i?(T). L e t Po ( x ) = [XI,. Then
( i i i ) For W
!lJ?+M=N
* U MI * [MIT *
=
1N I
= [NIT,
by ( i ) ,
T+M=N.
F o r M,N c l o s e d .
!lJ?b M = N * UMJ,
=IN]
P [MIT = [NIT,
* *
by ( i ) ,
0
TkM=N.
2.13 COROLLARY. ( i ) W(')(T)
i s a A-algebra.
( i i ) I ( T ) i s a A-model. P r o o f . W r i t e I= I ( T ) . ( i ) By 2 . 1 2 ( i i ) . (ii )
B? b
* IC * WC
Vx a x = bx
Vx[M]x = [ N I X where a = [ M I and b = [M][z]
*
TCMz=Nz
* *
T
*
rlx+ l a = l b .
I- Az.Mz = k 1M = 1 N
T
"11~1,
=
"1,
f o r some f r e s h v a r i a b l e z ,
1z.N~
I0 (T)
Remarks. ( i ) ( J a c o p i n i [ 1 9 7 5 ] ) .
i s i n g e n e r a l n o t a A-model. Consider 0 0 T z A a x i o m a t i z e d b y {RKZ = RSZ Z E A 1 where R ~ ( A x . x x ) ( A x . x x ) . Then V Z E A 0 T RKZ = RSZ, hence I (T) l= Vx RKx = RSx. B u t I o ( T ) # 1 (RK) = 1 ( a s ) , s i n c e
1
+
otherwise T
t RKx
= RSx, w h i c h i s f a l s e .
0
( i i ) P l o t k i n [1974] shows t h a t e v e n I
(A)
and
I0 (An)
a r e n o t A-models.
( i i i ) By ( i ) i t follows t h a t p r o p o s i t i o n 2 . 1 2 ( i i i ) does n o t h o l d i n g e n e r a l 0 f o r I ( T ) : t a k e M=RKx, N=RSx.
conibinatory a l g e b r a . B ( n o t a t i o n B0 ) i s t h e s u b s t r u c t u r e
2.14 DEFINITION. L e t 91 be a ( i ) The i n t e r i o r o f
of
k,s. (ii)
II
is
hard i f
21'
= 21.
0 Note t h a t u p t o i s o m o r p h i s m W (T)
i s the i n t e r i o r o f %?(T).
2.15 PROPOSITION. L e t 8 be a A - a l g e b r a . (i) d(Th(8))
zWo
( i i ) L e t Th(%) = { M = N Then !$(Th(Yl))
zB.
M,N€Z(II),
c l o s e d and
B I= M = N l .
B
generated by
22 1
Lambda Calculus and its Models
Proof. -
i s a w e l l d e f i n e d isomorphism o n t o B
( i ) ( P ( [ M ] ~ ~ ( ~=~[ M ) j)'
( i ) Similarly.
0
.
0
f o l l o w s t h a t a l l A - a l g e b r a s a r i s e as a s u b s t r u c t u r e o f a A-model.
I
2.16 PROPOSITION. ( i ) ( B a r e n d r e g t , Koymans [ 1 9 8 0 ] ) .
Every
A - a l g e b r a can be em-
bedded i n t o a A-model.
( i i ) (Meyer [ 1 9 8 1 ] ) . P r o o f . ( i ) VI%J?
0
(Th
Every X - a l g e b r a
i s t h e homomorphic image o f a X-model.
(E)) c m(Th (X)). 0-
by t h e s u r j e c t i v e map t h a t r e p l a c e s
( ii ) Moreover %l?(Th(Z)) + %l? (Th(2)) e v e r y f r e e v a r i a b l e by say K.
0
The f o l l o w i n g i s proved i n B a r e n d r e g t and Koymans [19801. Here we s t a t e t h e result without a proof.
2.17 THEOREM. ( i ) T h e r e i s a A-model
t h a t c a n n o t be embedded i n t o an e x t e n s i o n a l
A-model. ( i i ) There i s a c o m b i n a t o r y c o m p l e t e a p p l i c a t i v e s t r u c t u r e t h a t cannot be made i n t o a A - a l g e b r a
(by c h o o s i n g k , s ) .
i i i ) There i s a A - a l g e b r a t h a t cannot be made i n t o a A-model
(by changing
k,s ( i v ) There i s a A-model CO 1
t h a t c a n n o t be made i n t o an e x t e n s i o n a l one (by
apsing i t ) . The t e r m models make i t p o s s i b l e t o g i v e t h e f o l l o w i n g p r o o f s o f some ccm-
pleteness r e s u l t s .
2.18 THEOREM. ( i )
A C
M=N
-
M = N i s t r u e i n a l l A-models
(or A-algebras).
( i i ) L e t T be an e x t e n s i o n o f t h e A - c a l c u l u s . Then T+-
M=N
(iii) Let (A)c
M = N i s t r u e i n a l l A-models s a t i s f y i n g T .
94
be t h e c l a s s i c a l f i r s t o r d e r t h e o r y a x i o m a t i z e d by t h e u n i v e r -
sal closure of Kxy = x syxz = xz(yz),
KZS V x ( a x = bx)
+
Then M=N
la = lb
-
xt
M=N.
H. BARENDREGT
222 Proof. -
(i)
(+) By d e f i n i t i o n .
t r u e i n W ( A ) ; hence
A t
(e)I f M = N i s t r u e i n a l l A-models,
then i t i s
M = N by 2 . 1 2 ( i i i ) .
( i i ) Similarly. ( i i i ) (a)Note t h a t W(X) C ( A ) c . T h e r e f o r e
(XIc (-)
53.
t
*
M=N
W(A) C M = N
A CM=N.
+
0
Trivial.
SYNTACTICAL MODELS I n t h i s s e c t i o n a s y n t a c t i c a l d e s c r i p t i o n o f t h e A - a l g e b r a s and A-models
w i l l be g i v e n , w h i c h i s e q u i v a l e n t t o t h e f i r s t o r d e r d e s c r i p t i o n i n 52. For some models,
i n p a r t i c u l a r t h e f i l t e r model o f B a r e n d r e g t e t a l .
[19831,
t h i s syntac-
t i c a l d e s c r i p t i o n i s more c o n v e n i e n t t h a n t h e f i r s t o r d e r . The method i s due t o H i n d l e y and Longo [19801.
3.1
DEFINITION. L e t W = ( X , . )
be an a p p l i c a t i v e s t r u c t u r e .
( i ) Val @I i) s the s e t o f valuations i n
1.
l ( i i ) A s y n t a c t i c a l i n t e r p r e t a t i o n i n 1 i s a map I : h @ ? ) x V a (sn) the f o l l o w i n g conditions; 1.
nxn P
I(M,p)
i s w r i t t e n as [MD
-f
X satisfying
P'
= p(x)
2. U c a l p = a
3. UPQD, = UPIIp.UQn P 4. UAx.Pl .a = UP] p ( x : = a ) P
5. pFFV(M)
EM1
= p'FFV(M)
P
= [MI
Note t h a t by t h e v a r i a b l e c o n v e n t i o n , 4
P"
i m p l i e s t h a t f o r y @ FV(M(x))
one has
41. u M ( x ) n p ( x : = a ) = [Ax.M(x)],a = UAy.M(y)l,a
:=a).
= uM(Y)np(y
( i i i ) A syntactical applicativestructure
[l 3.2
is a syntactical interpretation i n
i s of the formW=(X,.,[D)
where
W.
DEFINITION. L e t 1 be a s y n t a c t i c a l a p p l i c a t i v e s t r u c t u r e .
--
( i ) The n o t i o n o f s a t i s f a c t i o n i n 1131 i s d e f i n e d as u s u a l :
W,p C M=N WCM=N
[MI, Vp
= [NIP
W,pCM=N
-
and t h i s i s extended t o a r b i t r a r y f i r s t o r d e r f o r m u l a s o v e r t h e A - c a l c u l u s . ( i i ) IJ31 i s a s y n t a c t i c a l A - a l g e b r a (iii) i .e.
W i s a s y n t a c t i c a l A-model i f Va 'M'p(x
: = a ) = "'p(x
:=a)
if A k M = N
(5) W C +
[Ax.MI
WC
Vx(M=N) P
= UAx.ND
M=N. -f
P'
Ax.M = Ax.N,
223
Lambda Calculus and its Models
3.3
LEMMA. LetIIR be a s y n t a c t i c a l A-model.
= Vp
(p(M,N)
Consider t h e s t a t e m e n t
6M[x : = N l I p = uMIIp(x : = [ N I P ) .
Then f o r M,NEA6J?)
*
(i) z@FV(M) (ii) ~ M , N )
cp(M,z)
W(AY.M,N);
9
( ii i ) Q(M,N).
Proof.
( i ) W r i t e M=M(x).
uwnP
then
= uM(z)np(z : = p ( z ) )
= nM(X)ip(x :=p(z))
by 4 ’ . ( i i ) F i r s t assume x B F V ( N ) . By t h e v a r i a b l e c o n v e n t i o n y s x , y f F V ( N ) . f o r p* = p ( x : = [ N ]
P
) and a r b i t r a r y aEIIR : = a ) = UM[x : = N I I p ( Y : = a )
= :N(,I
(note that I N ]
P
:=a)).
=
UAy.M[x : = N I I p *
=
:=a)(x
=
:=a)
T h e r e f o r e by
= UAy.MB
:=[NIP)’
s i n c e (D(M,N),
;
(5)
P*
and hence [Ay.M[x := N l n
P
= [Ay.M[x
=‘Ay‘M’p(x I f xEFV(N),
P
= =
( i i i ) Now cp(M,N)
:=[NIP)’
[R[x
IMLx
:= Z ] [ Z := N]]
IIR
I-
P
= ”p(z
:=EN] P ) ( x
= u‘np(x
:=[NIP ) ’
by ( i ) , :=I”],)’
f o l l Q w s b y a s i m p l e i n d u c t i o n on t h e s t r u c t u r e o f M.
M=N
=P
IIRC M = N ,
i s a s y n t a c t i c a l A-algebra,
P r o o f . By
-
: = z ] I p ( z :=KN],)
THEOREM. L e t W be a s y n t a c t i c a l A-model.
A i.e.
P*
t h e n l e t z be a f r e s h v a r i a b l e . We have f o r M-Ay.M
[%[x := N l J
3.4
:= N l I
i n d u c t i o n on t h e l e n g t h o f p r o o f .
Then
Then
H. BARENDREGT
224 The axiom (Ax.M)N = M [ x : = N ]
f
i s sound:
= [M[x : = N ] ] Soundness o f t h e r u l e M = N
*
P'
by 3 . 3 ( i
i).
Ax.M = 1x.N f o lows from
(5). The
DEFINITION. A homomorphism between s y n t a c t i c a l A - a l g e b r a s
cp:XWl
i s a map
+XV2 such t h a t f o r a l l M € A @ ) one has
dM1,1
= I[cp(M)ncpop 2
where i n cp(M) t h e c
3.6
other rules are
0
trivial.
3.5
by 3,
(Ax.M)Nlp = !IAx.Ml,!IND,,
a r e r e p l a c e d by c
cp(a)
'
THEOREM. The c a t e g o r i e s o f s y n t a c t i c a l A - a l g e b r a s and homomorphisms and
t h a t o f A-algebras and homomorphisms a r e i s o m o r p h i c . Moreover s y n t a c t i c a l A models c o r r e s p o n d e x a c t l y t o A-models under t h i s isomorphism. Proof.'Easy. For a s y n t a c t i c a l X - a l g e b r a f o r c p : YX
1
+YX2
l e t Fcp = c p :
Pm,
+
XW=(X,.,II)
d e f i n e FBI = (X,.,UKl,USl);
Pmz. Then one has [MlPm
Conversely f o r a A-algebra B = (X,.,k,s)
P d e f i n e GB = (X,.,[]')
= [ M c f o r MEAm).
above. Then F, w i t h i n v e r s e G , i s t h e r e q u i r e d isomorphism.
54.
and Gcp = cp as
0
CATEGORICAL DESCRIPTION OF THE MODELS. I n t h i s s e c t i o n t h e c l a s s o f A-algebras w i l l be d e s c r i b e d i n a n a t u r a l c a t e -
g o r i c a l way. The A-models a r e t h e n t h o s e A - a l g e b r a s t h a t c m e f r o m c a t e g o r i e s " w i t h enough p o i n t s " .
The method i s due t o Koymans [1983] and i s based on work
o f Scott.
4.1
DEFINITION. L e t
0
be a c a t e g o r y . The i d e n t i t y map on an o b j e c t A E U i s de-
n o t e d by i d A . ( i ) 0 i s a Cartesian closed category (ccc) i f f
1.
iI
has a t e r m i n a l o b j e c t T such t h a t f o r e v e r y o b j e c t A E B t h e r e e x i s t s a
u n i q u e map ! A : A + T .
2. For A ,A
E C t h e r e i s an o b j e c t AIXAz
1 2 p i : A1xA2+Ai
u n i q u e map Notation.
(
( C a r t e s i a n p r o d u c t ) w i t h maps
( p r o j e c t i o n s ) such t h a t f o r a l l f i : C + A i
fl,fz)
: C + A 1 x A 2 w i t h p i n ( fl,f2)
If gi:Ai+B.
B1xBz, see f i g u r e .
( i = 1,2)
there i s a
= f i , see f i g u r e .
( i = l , 2 ) , then g l x g z = ( g l o p l ,
g20pz):A,XA2+
225
Lambda Calculus and its Models
I
exponcnt
pmduct
3 . For A,BE C t h e r e i s an o b j e c t
A
B E b (exponent) w i t h map e v = e v A , B :
A
3 x A + B such t h a t f o r a l l f : C x A + B t h e r e i s a u n i q u e A f : C + B A s a t i s f y i n g f = e v o ( A f X i d A ) , see f i g u r e . ( i i ) L e t C have a t e r m i n a l o b j e c t T. A
point
o f A€
i s a map x : T + A .
The
s e t o f p o i n t s o f A i s denoted by I A l . An o b j e c t A has enough p o i n t s i f f o r a l l f,g : A + B
one has f#g
*
3xE IAl
fox#gox.
Note t h a t i n a c c c one has A(hogxidB) = A(h) o g f , g ) o h = ( f o h , goh)
(
= ( f o h , gok)
fxgo (h,k)
DEFINITION. L e t C be a
4.2 o f U,
i.e.
CCC.
An o b j e c t U E B i s r e f l e x i v e i f Uu i s a r e t r a c t U and G : U + U such t h a t
t h e r e a r e maps F : U + U u
FOG = i d UU’
4.3
DEFINITION. L e t 0 be a c c c w i t h r e f l e x i v e o b j e c t U ( v i a t h e maps -F,G).
these data determine a s y n t a c t i c a l a p p l i c a t i v e s t r u c t u r e
m(e)
( = W(O,U,F,G))
Then as
follows: ( i ) The domain o f
m(C)
is
IUI.
( i i ) L e t Ap : U 2 + U be t h e map evU,Uo F x i d For f , g : A + U d e f i n e f a A g = Apo ( f , g ) . X.Y
= x .T y = Apo
(
IUI
x,Y).
As a p p l i c a t i v e s t r u c t u r e I ( Q ) ( i i i ) Uo = T, Un”
U’ In particular for x,yE
is (IUI,.)
= UnxU. L e t A = x l ,
...,x
. be a sequence o f d i s t i n c t v a r i -
a b l e s . W r i t e UA = U”. (iv)
nXA
: UA+U
i
i s t h e c a n o n i c a l p r o j e c t i o n on t h e i - t h c o o r d i n a t e .
226
H. BARENDREGT
,..., f n : A - t U ,
(v) I f fl
then ( f l
= '' A
0
(fl,...,fn+l)
= ((f,,
,..., f n ) : A + U n
i s d e f i n e d by
. . . ,f n ) , fn+l).
Clearly 7rA
0
(f,,
..., f n ) =
fi
xi ( v i ) Let
r
. . ,Y,
= yl,.
with
{q}~{z}.
Define
rlA = ( 7 r A
) :
,...,AA
y1
ua+ur.
ym
This i s the canonical "thinning",
IM(x,y)ll X?Y
[XIA
,. .. , x n ) .
b e i n g "X(x,y).[M(cx,c
(
y1
,.. . ,y,
)".
U A + U ( w i t h intended i n t e r p r e t Y
) l " ) as
follows.
;
= ITA
[canA = a o upon,
"h(xl
d e f i n e i n d u c t i v e l y [Ml,:
( v i i ) For AZFV(I1) a t i o n o f e.g.
i.e.
'
,
= upnA.ua
(for a €
tul) ;
nuA;
I A x . P I A = G O A ( [ P I I ~ , ~ )where , by t h e v a r i a b l e c o n v e n t i o n we assume x!€{Al. ( v i i i ) For a v a l u a t i o n p i n I U I l e t
[MI
P
=
[MILO
pA w i t h A=FV(M).
EM1 E I U I . P ( i x ) Finally%V(G) i s the s t r u c t u r e
Clearly
[ M I X :=N]lr
Proof. ( i ) , ( i i ) (i) [xy.Plro
(lUl,.,[l).
=
I n d u c t i o n on t h e s t r u c t u r e o f M. We o n l y t r e a t M=Xy.P. A = GoA(UPlr,y) o A
rfr
= GoA([P]r,yo = G~A([PI,,~~
= GoA(UPIA,y)
IH = niy.pnA.
n f x i d U ) , by 4 . 2 ( 1 ) ,
221
Lambda Calculus and its Models Here I H denotes “by
the induction hypothesis”.
+
+
3
= [~y.~[;,y
( i i ) u(A~.P)[x:=NII,
:=~,yIn, 3
= GoA(UP[;,y
:= N , ~ l l , , ~ )
+
(uN1,,y,
= GoA(IIPIA,yo IH
z
GoA(UPIA,ya(Exlr)x
= GoA(l[PIA,y)
0
*
i d U ) , see below,
([xl,)
= [[Xy.PD,o(U$), where
[yl,,y)),
;
i s shown as follows
(~ih,,~, u ~
+
I ~ , ~= ) ( ~NI,
0
n:.Y,
ni’y
(i) 3
p,,
= (UNIr,o
+
i d U o ( p1 ,p 2 )
= ([Nl,)x =
( i i i ) Apply ( i i ) t o A’=A,x
4.5
3
((“1,)
and
idUO pg
x idU.
+
r,
w r i t i n g A=y
PROPOSITION. L e t M,NEA(!V?(O)) and { A l z F V ( M N ) .
Proof. -
+
and M [ x : = N ] G M [ y , x
Then
I n d u c t i o n on t h e l e n g t h o f p r o o f of M = N . We t r e a t t h e e s s e n t i a l axiom
and r u l e . Axiom (Xx.P)Q = P [ x :=Ql. (hx.P)QIA = (GoA(uPIA,x))
0
UA
Rule P = Q
=
BPI,
--. *
*
Xx.P =
[ a , , by
[PlA0
uAx.PnA
=
[aA
AX.Q.
the induction hypothesis,
rIp
upnA,x =
= nQl,o
n p
an,,^. nxx.~,.
4.6
THEOREM. Every c c c
mc)
=
Proof. -
+
:=y,N].
t
0
w i t h r e f l e x i v e o b j e c t U determines a A-algebra
(iui,.,un). Immediate f r o m
4.5 and t h e d e f i n i t i o n of 111
P’
0
0
H.BARENDREGT
228
4.7
PROPOSITION. L e t
I=IIR($,U,F,G).
( i ) Let {A}?FV(M).
-Then
( i i ) U has enough p o i n t s U ( i i i ) U Z U v i a F,G I (iv) Proof.
u . U z U via
( i ) [lM],
inm.
[ l M ] I A = GoFo[M]I,
k 1
IIR
i s a A-model.
= I.
F,G and U has enough p o i n t s
-
Sn i s e x t e n s i o n a l .
= UAy.MyjA = GoA(evo ( Fo [ M I
UylA,y))
A,Y’
= GoA(evo ( F o [ M ] l A o IIA”, nA”))
A
Y
= GoA(evo(FoIIMDAopl,pz)) = GoA(evo (Fo [MI,)
x id)
= GoA(ev) o Fo [ M j A = GoFo [MI,.
(ii)
(-1
for a , b € I
Vx€Iax=bx
evo(Foa,x) = evo(Fob,x)
*
evo (Foa)x i d o ( id,x)
9
e v o (Foa)
* Hence
-
1 L e t U have enough p o i n t s . Then t h e same i s t r u e f o r U ( g U ) .
IIR
(-1 Then
= evo (Fob)x i d o ( id,x)
i d = e v o (Fob) x i d , s i n c e U’ has enough p o i n t s ,
X
l a = l b , s i n c e by ( i ) l c = GoFoc = GoA(evo ( F o c ) x i d ) . i s a A-model. Suppose
---
Ii s
a A-model
VxE I U l f O X = gox
and l e t f , g : U + U .
*
Vx i . x = g . x , where
1.f =
=9
7
= GoA(fopZ) and s a t i s f i e s f . x = f o x ,
1.9
G ~ F ~= TG
~
F
~
~
A ( f o p 2 ) = A ( g o p z ) , s i n c e FOG = i d , fop* = SOP2 f=g.
9
T h e r e f o r e U has enough p o i n t s . U ( i i i ) (*) I f U E U v i a F,G, t h e n GoF = i d U , hence by ( i )
UIMIA =
UMII,
i n p a r t i c u l a r 11x1,
[in, i.e.
II.
(-1
=
= [xi,.
[Ax.ixnA
Then as i n t h e p r o o f o f = U A ~ . ~ =~ 11111, ,
1 = I. Assume
II.
1 = I . Now
8 1 1 = [Axy.xyB
= GoA(llXy.xyJx)
= GoA(GoFo [ x I x ) ,
= G O A ( G O F ~ P; ~ )
by ( i ) ,
,
4.5
i t follows that
Now
229
Lambda Calculus and its Models
1 ID
and
= 60A(p2). Therefore
G O A ( G O F O=~ G ~ )O A ( ~ ~ )
*
A(GoFop2) = A(p2)
=s
GoFop2 =
(use F) (Ah u n i q u e l y d e t e r m i n e s h )
P2 GoF = idU
*
,
(use ( !
( i v ) By 2.10 and ( i i ) ,
idU)).
0
(iii).
L e t B be a A - a l g e b r a t h a t a r i s e s f r o m a c a t e g o r y t h a t i s " c o n c r e t e " , r o u g h l y one t h a t i s based on s e t s . Then
B
B
i.e.
i s a A-model and t h e i n t e r p r e t a t i o n i n
has a s i m p l e form.
4.8
DEFINITION. A c c c Q i s s t r i c t l y c o n c r e t e i f t h e r e i s a f u n c t o r 0 :@ + S e t
such t h a t 1. 0 i s f a i t h f u l 2. 0 i s f u l l
3.
(i.e.
(i.e.
i n j e c t i v e on a r r o w s ) .
s u r j e c t i v e ) o n Hom (T,A)
Q.
for AEC.
# p r e s e r v e s t h e t e r m i n a l o b j e c t , p r o d u c t s and p r o j e c t i o n s .
4. For a l l A,BE Q
Note t h a t t h i s i m p l i e s t h a t e v e r y o b j e c t i n
where ASet
,...,a n )
g(al
=Ad. g(al
,..., an,d)
C
has enough p o i n t s . Moreover
f o r g : Xn+l+Xn
i n Set. W r i t e
f o r t h e t e r m i n a l o b j e c t i n Set. Complete p a r t i a l o r d e r s o r c o m p l e t e l a t t i c e s w i t h c o n t i n u o u s maps a r e s t r i c t l y concrete c c c ' s .
4.9
DEFINITION. L e t Q be a s t r i c t l y c o n c r e t e c c c w i t h r e f l e x i v e o b j e c t U. ( i ) cp: ( i i)
IUI
-+
: #(Uu)
#(U) +
i s t h e b i j e c t i o n cp(x) = # ( x ) ( * ) .
#(U)
( i i i ) a.b = #(F)(a)(b)
i s t h e map
=
#(GI.
f o r a,bE#(U).
= V ( U ~ - ' ( M ) ~ ~ - ~f ,o~r ) MEA(O(U)).
( i v ) [MI:
. ,u
( v ) XQ# = ( ~ ( u ) ,
no).
4.10 THEOREM. (Koymand [ 1 9 8 3 ] ) .
( i ) The map
# 1. uxn, = P W ,
2. ucaj:
3.
= a,
f o r aE#(U);
UPQP = uPi#.ud'; P P P
4. U A X . P I ~= 0 6 d . P
:=d)).
'1
i n 4.9 s a t i s f i e s
{*I
H. BARENDREGT
230 ( i i ) a @ i s a A-model
isomorphic t o a ( c ) .
P r o o f . ( i ) As an example we show b . L e t p o = cp-lop and A = FV(Ax.P).
A
(*), where f o r s i m p l i c i t y we assume cp-'(P) = P ,
UAx.PIQ' = @ ( G O A ~ ( ~ P ~ , o, ~p,) ) P = ~ ( A s e p D ( ~ P I A , x )()P
A
1)
= o ( A d . O(UPJA,x)(p(x : = d ) A ' x ) ) = o()Sd. Q'(UPl
op0(x : = ~ - ' ( d ) ) ~ ' ~(*I) )
A.x
= o ( X d * (P(Up1 cp-lop(x : = d ) 1) = o(Xld. I P l O p ( x : = d ) ) .
+ : I i' s by 4 . 9 ( i v ) ( i i ) The map @::I($) enough p o i n t s , t h e s t r u c t u r e : I ( $ )
an isomorphism. S i n c e U i n i t f o l l o w s that!#
i s a A-model;
C
has
i s a A-model.
0 0
i s c a l l e d t h e c o n c r e t e v e r s i o n of:I(t)
v i a t h e f u n c t o r 0.
Now i t w i l l be p r o v e d t h a t e v e r y A - a l g e b r a can be o b t a i n e d f r o m a ccc w i t h a reflexive object.
4.11 DEFINITION.
L e t B be a A - a l g e b r a .
The Karoubi e n v e l o p o f 8, n o t a t i o n
i s t h e c a t e g o r y d e f i n e d as f o l l o w $ . L e t aob = A x . a ( b x ) ,
Objects: { a € $
I ao a
= a}.
Arrows: Hom(a,b) = I f € 8 Identity: i d Composition:
$(a),
for a,b€8.
1
bofoa = f } .
= a.
fog.
I t i s easy t o v e r i f y t h a t t ( 8 ) i s indeed a c a t e g o r y . Karoubi [1978] d e f i n e d t h e e n v e l o p f o r a d d i t i v e c a t e g o r i e s u n d e r t h e name " d e r i v e d pseudo a b e l i a n c a t e g o r y " .
T h i s can be g e n e r a l i z e d t o a r b i t r a r y categories.
The n o t i o n t h e n a p p l i e s t o a A - a l g e b r a
w(a)
= ({aes
Ia
F
by i n t r o d u c i n g t h e monoid
=la},o,~)
c o n s i d e r e d as c a t e g o r y w i t h one o b j e c t and as arrows t h e a E w ( 8 ) w i t h c o m p o s i t i o n . We need some n o t a t i o n f r o m t h e A - c a l c u l u s .
L e t [M,N]
= Az.zMN be p a i r i n g i n
a .a.), f o r i = 1 ,Z. Let 1 2 I w i t h n? t h e c a n o n i c a l A-terms such [MI] = M1, EM1 ,...,Mn+ll = "M1,.. *~MnI;Mn+lI n+l n+l n that n7[M1 Mn] = Mi f o r l < i < n . [ T I , = I , nn+l = TI^, ni = TI. o n l f o r t h e A - c a l c u l u s w i t h p r o j e c t i o n s ni = Ay.y(Aa
'
,...,
1S iSn.
1
4.12 PROPOSITION. ( S c o t t 119803). ( i i ) I i s a reflexive object Proof.
( i ) t ( 8 ) i s a ccc. n
t(n)
v i a the arrows F = G = l .
( i ) 1. T e r m i n a l o b j e c t . Th s i s t = A x y . y .
Note t h a t f : a + t
f=t.
23 1
Lambda Calculus and its Models
2 . P r o d u c t s . L e t a ,a
1
2
E C ( 8 ) . Then al X a 2 = X Z . [ ~ ~ ( T ~ aZ2)( ,n 2 z ) ] i s t h e
Cartesian product w i t h projections a a pi1 = a . o 71
i '
I
(f,g)
.
= Xz. [ f z , g z l .
3. Exponents. L e t a , b E C ( 8 ) .
Then
ba = Xz.b o z o a ev
a,b
= Xz.t(Tlz(a(T2z)))
A(f) = Xxy.f[x,y]. The c a l c u l a t i o n s t h a t show t h a t e v e r y t h i n g works a r e s t r a i g h t f o r w a r d and a r e l e f t t o t h e reader. ( i i ) Note t h a t 1 1 = 1 , 1 : l + l ,
1 : 1 + 1 and l o l = l = i d
4.13 THEOREM. (Koymans [ 1 9 8 3 1 ) . %V(U(%),l,l,l)
1'
0
=fl.
P r o o f . L e t I =YX(Q(8)). By i n d u c t i o n on t h e s t r u c t u r e o f M E A one can show
m
[MJ3 =
(+)
Xz. M
[x,
,... ,xn
:=
7172
,...,71:zl.
As an example we t r e a t M E 1 y . P . [Xy.PDz = GoA(lIPng
?Y
= loXpq.(Az.P[x,
,...,xn,y
n+ 1
:= ITl
z,..
IH = Xpq.P[x l,...,xn,y
hp. (Xy.P) [x,,
=
:= 71p ;
. . . ,x
... ,xn
hz.M[xl,
L e t 0 be a p p l i c a t i o n i n
,...,r;p,q
:= nyp,.
:= 7172,
I.Note
...,i
. . ,lr; T
p
that
a Q b = Ap o ( a , b )
= ev
o ( 1 o a,b) 1 9 1
= Xz.ev
[ l (az) ,bz] 1 3 1
= Xz.az(bz)
= Sab. Now d e f i n e c p : fl+m by cp(a) = Ka. Then cp i s c l e a r l y i n j e c t i v e .
x E I1
I =
t+
If
I , t h e n x i s c o n s t a n t s o x = K ( x l ) = c p ( x l ) ; t h e r e f o r e cp i s s u r j e c t i v e .
F i n a l l y cp i s a homomorphism: 1 . cp(xy) = K ( x y )
= S(Kx) ( K y ) , s i n c e 8 i s a X - a l g e b r a ,
H. BARENDREGT
232 = cp(x) o c o ( y ) .
2.
w(K)
=
KK = [K]"
by (+) and s i m i l a r l y f o r 5.
T h e r e f o r e cp i s an isomorphism and I
Zm.
C
I t f o l l o w s t h a t e v e r y A - a l g e b r a (A-model) can be o b t a i n e d f r o m a c c c w i t h r e f l e x i v e o b j e c t U ( h a v i n g enough p o i n t s ) . Remarks.
( i ) I t i s n o t h a r d t o show t h a t i f 91 i s a A-model,
then e v e r y o b j e c t o f
$ ( ? I ) has enough p o i n t s , see Koymans [ 1 9 8 3 ] . ( i i ) I t i s n o t t r u e t h a t C(%V(t,U))
t.
The c a t e g o r y
0:
may have many more
objects. The n o t i o n o f A - a l g e b r a homomorphism can be c h a r a c t e r i z e d i n a c a t e g o r i c a l way.
4.14 DEFINITION. A f u n c t o r @ between two
i s C a r t e s i a n i f Q, p r e s e r v e s t h e
CCC'S
t e r m i n a l o b j e c t , p r o d u c t s and e x p o n e n t s .
4.15 PROPOSITION. ( i ) F o r i = 1 , 2 t h e maps F. ,Gi.
L e t 0 :t 1 + C 2
l e t It. be a ccc w i t h r e f l e x i v e o b j e c t s U. v i a
be a C a r t e s i a n f u n c t o r w i t h Q(U ) = U 2 , Q ( F 1 ) = F2, 1
Q,(G1) =G2. Then @ i n d u c e s a homomorphism @ : %V(d,) ( i i ) I f cp:%+912
cp+ : C ( ? I 1 )
+
+* = c p
o v e r cp
i s a homomorphism,
then
(0
2 up t o isomorphism.
( i ) For x € I U
( i i ) For a an o b j e c t o f $ ( ? I , ) d e f i n e cp+(f) = cp(f). S i n c e
(0
T h i s i s a homomorphism s i n c e
d e f i n e cp+(a) = cp(a) and f o r f€Homd(al)(a,b)
p r e s e r v e s a l l c l o s e d A-terms,
f u n c t o r p r e s e r v i n g I and 1 . C l e a r l y
55.
m(C,).
Q(91 ) p r e s e r v i n g t h e r e f l e x i v e e l e m e n t s I and r e t r a c t i o n map 1 . More-
I d e f i n e @ * ( x ) = Q ( X ) € IU21. 1 p r e s e r v e s F,G and t h e C a r t e s i a n s t r u c t u r e .
Proof. -
+
induces a C a r t e s i a n f u n c t o r
+* = c p
(0
t h i s i s a Cartesian
o n m(C(21)) 2 8.
0
OTHER MODEL DESCRIPTIONS; CATEGORICAL MODELS. Lambda models were d e f i n e d as lambda a l g e b r a s s a t i s f y i n g t h e M e y e r - S c o t t
axiom. S i n c e t h e c o m b i n a t o r y axioms d e s c r i b i n g A - a l g e b r a s a r e n o t memorable, on'e may wonder w h e t h e r t h e s e c a n be s i m p l i f i e d i n p r e s e n c e o f t h e new axiom. T h i s i s indeed t h e case;
5.1
t h e r e s u l t i s due i n d e p e n d e n t l y t o Meyer and S c o t t .
DEFINITION. D e f i n e t h e f o l l o w i n g c o m b i n a t o r y terms.
l 1 = 1 = S(KI);
ln+l = S(Kl)(S(Kln)).
= 1 , In+, = S ( K I n ) 5.2, Remark. U s i n g t h e s i m p l e r d e f i n i t i o n l 1
5 . 3 and 5 . 6 ( i )
233
Lambda Calculus and its Models remain v a l i d .
5.2
LEMMA. ( i ) I f !D? i s a c o m b i n a t o r y a l g e b r a , t h e n
LY?C
( i i ) If!D?i s a A - a l g e b r a ,
then
. ab l...bn.
A k In= Aab l . . . b Proof. -
(i) (ii). 1,
5.3
.
= ab l . . . b
lnabl . . . b
I n d u c t i o n on n, e.g.
i n a A-algebra
= S(KI) = (Axyz.xz(yz))KI
= Ayz.Klz(yz)
THEOREM. (Meyer [19801; S c o t t [ 1 9 8 0 ] ) .
0
= Xyz.yz.
L e t A = (X,.,k,s).
Then!D? i s a
A-
model i f f !D? s a t i s f i e s 1 . Kxy = x ,
2 . sxyz = xz(yz),
3. Vx ax
*
= bx
l a = lb,
4. 1 2 K = K , 5. 1 Proof. -
(*)
s=
5.
I f A i s a A-model,
then by d e f i n i t i o n 1,2,3
hold. MoreoverA i s a
hence s a t i s f i e s 4,s s i n c e t h e s e e q u a t i o n s a r e p r o v a b l e i n
A-algebra,
(*)
3
A.
F i r s t show t h a t f o r a l l a , b E A l ( K a ) = Ka and l ( S a b ) = Sab.
Indeed, Ka = l Z K a = S(K1)Ka = l ( K a ) and s i m i l a r l y f o r S. S i n c e 1x.A i s always o f t h e f o r m KP o r SPQ i t f o l l o w s t h a t
(*)
l(Ax.A)
= Ax.A.
T h e r e f o r e A i s weakly e x t e n s i o n a l : Vx
* * *
A=B
Vx(Ax.A)x = (Ax.B)x l(Ax.A) = l(Ax.B), Ax.A = Ax.B,
by
by 3,
(*I.
I t remains t o show t h a t !D? i s a A - a l g e b r a ,
f o l l o w s by i n d u c t i o n on t h e p r o o f o f M = N , rule P=Q
9
Xx.P
i.e.
A I-
M=N
*
(JR
C M = N . This
weak e x t e n s i o n a l i t y t a k i n g c a r e o f t h e
= Ax.Q.
The f o l l o w i n g , d e f i n i t i o n o f Meyer [1980]
s i m p l i f i e s even more t h e d e s c r i p -
t i o n o f t h e essence o f a A-model.
5.4 fying
DEFINITION.
( i ) A c o m b i n a t o r y model i s a s t r u c t u r e A = (X,-,k,S,E)
(1)
Kxy = x ,
(2)
sxyz = xz(yz),
(3)
EXY
=
(4)
Vx
ax = b x
XY,
+
Ea = Eb.
satis-
H.BARENDRECT
234
( i i ) A c o m b i n a t o r y model i s s t a b l e i f moreover
(5) (6)
EE = E ,
E ~ K= K,
(7)
5.5
s,
E3S =
Here, o f c o u r s e ,
E
1
= E and E
-
n+l
=S(KE)(S(KE~)).
LEMMA. L e t 9 R = ( X , . , ~ , S , E >
(i) ~ (ii)
E
~ = +a a = a
be a c o m b i n a t o r y model.
~ A V X E(ax) =
vx l . . . x i
~9
(iii) l i s stable
Proof.
Ea a =
~
...x . )
€(axl
ax. = ax l . . . x . ,
O
~ , k , k a , s , s a , s a b a r e f o r a l l a,b
c9
f i x e d p o i n t s o f E.
( i ) (a)By a s s u m p t i o n
a = S(KE)(S(KEn))a
(1)
= E(S(KEn)a).
Hence by 5.4(3) ax = S ( K E ) a x = E (ax) ; t h e r e f o r e by 5 . 4 ( 4 )
and (1)
Ea = E(S(KEn)a) = a. (e)I n a c o m b i n a t o r y model one has cab = ab,
therefore
(2)
E(Ea) = Ea
Now ~ ~ + E~( Sa( K=E ~ ) ~ )t,h e r e f o r e by (2)
(3)
ax
Hence by 5.4(4)
= ~
E(En+la)
but also
=
E
~
,+
~
a
(ax) = ax.
and assumption E ( E ~ + ~ = ~Ea) = a .
Together w i t h
(3) t h i s i m p l i e s ~
~ = +a .
~
a
( i i ) By i n d u c t i o n on n .
( i i i ) (=+) As t o Sab: (4)
Sab =
E
3
Sab = E(Sab).
As t o Sa: Sa =
and i t f o l l o w s by (4)
E
3
Sa = S(KE) (sa)
,
and ( 2 ) t h a t Sa i s a f i x e d p o i n t of
E.
S i m i l a r l y i t f o l l o w s t h a t S, Ka and K a r e f i x e d p o i n t s . By assumption E i s a f i x e d p o i n t o f E. (e)By a s s u m p t i o n and ( i i ) .
5.6
~
0
PROPOSITION. ( i ) L e t B = ( X , . , ~ , S , E )
= and l( X , . , k , s )
i s a A-model.
(ii) I f l = (X,.,~,S,E)
be a s t a b l e c o m b i n a t o r y model. Then
Moreover k , s a r e u n i q u e l y d e t e r m i n e d by E .
i s a c o m b i n a t o r y model, t h e n W = ( X , * , k ' , s ' , ~ ' ) i s
a s t a b l e cornbinatory model, where k ' = e g k , s ' = E k and E '
3
=EE.
235
Lambda Calculus and its Models
Proof. -
( i ) Note t h a t
*
xy = l x y ; by 5.4(4),
EE = € 1
, , ,
E = 1
,
by s t a b i l i t y and 5 . 5 ( i i i ) .
Ex = E(1X)
-
= lx
* T h e r e f o r e (X,.,k,s)
by 5 . 5 ( i i i )
since l x = S ( K l ) x ,
by 5 . 4 ( 4 ) ,
i s by 5.3 a A-model.
As t o u n i c i t y ,
l e t ( X , . , k o , s 0 , ~ ) be a l s o a s t a b l e c o m b i n a t o r y model,
in
o r d e r t o show k = k o, s = s o . Then kxy = x = k 0x y ss
E(kx) = E(kOx)
+
s(kE)kx = s(kE)kox
+
E(s(kE)k) = E(s(kE)ko)
+
~
=+ Similarly s = s
k
2
=
~
2 0
k = k
k
0'
0'
( i i ) F i r s t note
(1)
EYZ
= yz, therefore
E(EY) = EY.
Now l e t x E { ~ ' , k ' , k ' a , s ' , s ' a , s ' a b } . By 5 . 5 ( i i i ) since then
E'X=EEX=EX=X.
i t s u f f i c e s t o show t h a t E X = X
S i m p l e c a l c u l a t i o n s show t h a t x = ~ yf o r some y ( e . 9 .
x = k ' = ~k = s ( k e ) ( s ( k E ) ) k = E ( s ( k s ) k ) ) . 2 0 E X = E ( E Y ) = EY = x.
Then by ( 1 ) i t f o l l o w s t h a t
A l t h o u g h i n A-models k,s a r e u n i q u e l y d e t e r m i n e d by 1 = s ( k i ) , p r e s e r v e s a p p l i c a t i o n and c o n s t a n t map Ax. 1 ' : I +
5.7
DEFINITION.
a map t h a t
1 i s n o t n e c e s s a r i l y a homomorphism: t a k e e.g.
the
I' .
( i ) L e t m = (X,.)
be a c o m b i n a t o r y c o m p l e t e a p p l i c a t i v e s t r u c -
t u r e . An e x p a n s i o n o f I i s o f t h e f o r m (?V,k,s)
= (X,.,k,s)
which i s a combinatory
a1 gebra. (ii)
I= (X,.)
i s a c a t e g o r i c a l A-model
t h e r e i s a u n i q u e e x p a n s i o n (9?,k,s)
making
( A - a l g e b r a , cornbinatory a l g e b r a ) i f
I into
a A-model
( A - a l g e b r a , combi-
natory algebra). ( i i i ) An element E o f I i s c a l l e d a s t a b l e E i f E E = E Vxax=bx
5.8
A
cab=ab
A
Ea=Eb.
+
THEOREM.@Let !Dl = (X;)
be c o m b i n a t o r y complete.
f r e p r e s e n t a b l e } and d e f i n e F : X + [ X + X l t o a A-model
i f f there exists a G : [ X + X ] + X
1.
FOG = i d
2.
GoFE [ X + X ] .
Let [ X + X ]
= {f : X+X
such t h a t
[x+xl;
( i i ) The G ' s s a t i s f y i n g 1,2
I
by F ( x ) ( y ) = x y . Then !Dl can be expanded
i n ( i ) correspond e x a c t l y t o s t a b l e
E'S.
H.BARENDREGT
236
( i i i ) VJt i s a c a t e g o r i c a l A-model
i f f the G i n ( i ) i s unique i f f there i s a unique s t a b l e Proof.
(i)
(-1
E.
L e t (m,k,s) be a A-model.
Oef i ne G(f) = l a f f o r some af r e p r e s e n t i n g f . G i s w e l l - d e f i n e d :
i f a x = f ( x ) = a ' x f o r a l l x, then
l a = l a ' by t h e M e y e r - S c o t t axiom. C l e a r l y F ( l a ) = F ( a f ) = f , so FOG= i d . Moreover f GoF(a) = l a , s i n c e a r e p r e s e n t s F ( a ) ; hence GoF i s r e p r e s e n t a b l e . (e)L e t k O , s O E X s a t i s f y t h e k,s
axioms. D e f i n e E,,=G(GoF).
Then
( X , . ,kO,sO,EO) i s a c o m b i n a t o r y model:
EOab = G(GoF)ab
= F(FoG(GoF) (a)) (b) = F(a)(b),
since FoG=id,
= ab.
Vxax=bx
=e
F ( a ) = F(b)
=e
~
GoF(a) = GoF(b) a
0
0
=
~
b
s i n c e E~ r e p r e s e n t s GoF. I t f o l l o w s by 5 . 6 ( i i )
t h a t R can be expanded t o a A-model.
( i i ) As i n ( i ) d e f i n e G E ( f ) = E a f actually stable:
~ =E
E
and E ~ = G ( G o F ) .F i r s t n o t e t h a t
F (~ E ~ ) ( E ~= ) F(G(GoF)) (G(GoF))
E~
is
= E ~ .
Moreover AG.E
and XE.G a r e i n v e r s e o f each o t h e r : G ( f ) = EGaf = F O G ( G O F ) ( ~ ~ )
G EG
= GoF(af) = G ( f ) ; = GE(GEoF) = Ea
E
GE
= EE,
since
E
GEoF
represents G O F :
GEoF(b) = EaF(b) = Eb, = E.
---
( i i i ) R i s a c a t e g o r i c a l A-model
c)
t h e r e a r e u n i q u e k , s m a k i n g W i n t o a A-model t h e r e a r e u n i q u e k , s , ~m a k i n g W i n t o a s t a b l e c o m b i n a t o r y model there i s a unique s t a b l e E t h e r e i s a u n i q u e G s a t i s f y i n g 1,2
in (i).
0
F i n a l l y some r e s u l t s a b o u t t h e c a t e g o r i c i t y o f two A-models. The argument is taken from Longo C19831, where the result i s shown in a general setting.
5.9
THEOREM. ( i ) (Bruce, Longo).
Pw i s a c a t e g o r i c a l A-model.
231
Lambda Calculus and its Models ( i i ) Pw i s n o t a c a t e g o r i c a l c o m b i n a t o r y a l g e b r a . Proof. -
( i ) D e f i n e x E P w t o be s a t u r a t e d i f ( n , m ) E x
A
enEen,
=)
(n',rn)Ex.
Step 1 . Assume x , x '
a r e s a t u r a t e d and Vy xy = x ' y , Then x = x ' .
Proof.
*
mExen=x'e
*
3en, c e (n'm) E x '
*
(n,m) E x ' , by s a t u r a t i o n .
(n,m)Ex
T h e r e f o r e x c x ' ; hence x = x ' by symmetry. Now l e t G s a t i s f y 1,2 o f 5.8 f o r Pw. Step 2.
( i ) a={(n,m)}.)aEiG(F(a)).
(ii) Vxf(x)zg(x)
Proof.
01
*
G(f)zG(g).
( i ) G(F(a))en = aen = { m l
*
3en, s e n ( " ' ,m) E G(F(a))
*
m E G ( F ( a ) ) e n ' = ae
*
n = n ' , o t h e r w i s e aen,
*
(n,m) E G(F(a))
n'
=0,
.
( i i ) Assume Vx f ( x ) _ c g ( x ) . Note t h a t
G(f)
= lG graph(f).
I mEf(en)}
where g r a p h ( f ) = {(n,m)
i s t h e s t a n d a r d g r a p h f o r Pw.
Therefore G ( f ) = lG graph(f)
5
lG graph(g)
uz
= G(g). Step 3. G ( f )
i s saturated.
P r o o f . Assume Then (n',m)
( n , m ) E G ( f ) and e n c e n I .
E GoF({(n',m)}),
-
c GoF({(n,m)}),
5
GoF(G(f)),
= G(f). F i n a l l y , l e t G,G'
by 2 ( i ) , by 2 ( i i ) ,
by 2 ( i i ) ,
0,
s a t i s f y 1,2 o f 5.8.
Then
G ( f ) ( x ) = f ( x ) = G ' ( f ) (x)
*
G(f) = G ' ( f ) ,
=)
G = G'.
T h e r e f o r e by 5 . 8 ( i i i )
by 3,1
,
Pw i s a c a t e g o r i c a l A-model.
3 , k = [ K J P w i s s a t u r a t e d . C l e a r l y k f 0 , s a y (n,m) E k . L e t e n 9 e n l . Then ( n ' , m ) E k and k ' = k - { ( n ' , m ) } a c t s e x t e n s i o n a l l y t h e same as k . ( i i ) By ( i ) s t e p
Hence k i s n o t u n i q u e .
0
H. BARENDREGT
238
5.10
[19831). ( i ) DA i s n o t a c a t e g o r i c a l A-model.
(Longo
THEOREM.
( i i ) As c m b i n a t o r y a l g e b r a s Pw and D Proof.
A
a r e n o t isomorphic.
I bEf(B)}.
( i ) I n DA t h e map G i s d e f i n e d by G ( f ) = { ( B , b )
But
G ' ( f ) = G ( f ) U A a l s o works. ( i i ) By ( i ) and
5.9(i).
119833
I n Longo
0
i t i s a l s o shown t h a t as a p p l i c a t i v e s t r u c t u r e s Pw and D A
a r e f o r c o u n t a b l e A m u t u a l l y embeddable i n t o each o t h e r .
REFERENCES Barendregt, H.P.,
119811
The Lambda c d c u l ~ t b ,k2 6yntaV and 6emaM.tic6, N o r t h H o l l a n d , Amstei.dam.
B a r e n d r e g t , H.P.
and Koymans, C . P . J . ,
[19801 Compaihing dome [ 19803, 287-302. Barendregt, H.P.,
dU4deA 06
Coppo, M.,
h b d a cdclLeus mod&,
Dezani-Ciancaglini,
i n H i n d l e y and S e l d i n
M.,
[19831 A d a e h Lambda model and Rhe compLeeteneA6
06
t y p e a6ignment, J. Symbolic
L o g i c , t o appear. Engeler, E.,
[1981]' Aegebhab and combinatom, A l g e b r a U n i v e r s a l i s , 13, 389-392. H i n d l e y , J.R.
[1980]
and Longo, G.,
Lambda cdcu&6 B d 2 6 , 289-310.
mod&
and e.xtenbionu&ty,
H i n d l e y , J.R. and S e l d i n , J.P. (Eds.). [19801 To H.B. C u r r y : EdsUyb on combinatoty Academic P r e s s , New Y o r k and London.
2. Math. L o g i k Grundlag. Math.,
Logic, Lambda-cdcLLeus and d o h m d h m ,
Jacopini, G.,
[19751
P h i n d p i o di M t e n b i o n W n e l cafkolo d e i combinatohi, C a l c o l o 1 1 , no. 4 , 465-471.
K a r o u b i , M.,
[1978]
K-theoty,
Koymans, C.P.J.,
[1983] Mode&
WI
in&odu&on,
06 .the
S p r i n g e r , B e r l i n and New York.
Lambda CaecLLeUd, I n f o r m a t i o n and C o n t r o l , t o appear.
Longo, G . ,
[19831 set-Rhtheoh&d mod& 06 h b d a c d c u R u s : theohicb, expavlbionb, homo%pkism, An. Math. L o g i c , t o appear. Meyer, A., i.4 a model 06 the h b d a C a e c l l h P, p r e p r i n t , L a b o r a t o r y f o r Comp u t e r Science, 545 Technology Square, Cambridge, Massachusetts 02139, USA.
[19801 What [1981]
Expanded v e r s i o n o f Meyer
[1980], Information and Control 52, 87-122.
Statman, R . ,
[I9801 On Xhe & f e n c e
d o s e d .tmi n -the t y p e d A-cdclLeud I , i n : [ l 9 8 0 ] , 511-534. 119821 CompLetenedd , i n v h n c e and A-de~inabLLiAy, J S y m b o l i c L o g i c , v o l . 47, 1 7-26. 04
H i n d l e y and S e l d i n
.
S c o t t , D.,
[1980]
R e l a t i n g -theohie~06 t h e h b d a Caecu&~, i n : H i n d l e y and S e l d i n t19801, 403-450.
Lambda Calculus and its Models Visser, A . , [19801 Numehatiom, X-cdcu&h 259-284.
and ahithmetic, in: Hindley and Seldin [19801,
239
LOGIC COLLOQUIUM'82 G. Lolli, G . Long0 and A. Marcia (editors) 0 Elsevier Science Publishers B. V. (North-Holland). 1984
24 1
EXTENDED TYPE STRUCTURES AND FILTER LAMBDA MODELS M. COPPO (1) F. HDNSELL ( 2 )
M. DEZANI-CIANCAGLINI (1) G. LONGD ( 3 )
D i p a r t i m e n t o d i Scienze d e l l ' I n f o r m a z i o n e , C. M. D ' A z e g l i o 42, 10125 T o r i n o . (2) Scuola Normale S u p e r i o r e , Pisa. (3) D i p a r t i m e n t o d i Scienze d e l l ' I n f o r m a z i o n e , U n i v e r s i t a d i Pisa. ITALY Research p a r t i a l l y s u p p o r t e d b y M.P. I . (Comitato p e r l a Matematica, f o n d i 40%). (1)
An Extended A b s t r a c t Type S t r u c t u r e i s a p r e - o r d e r e d s e t X which i n c l u d e s a l a r g e s t element and a + b, a A b, whenever a, b a r e i n X. Extended Type S t r u c t u r e s (ETS) may be g i v e n o v e r a p p l i c a t i v e s t r u c t u r e s , b y i n t e r p r e t i n g t h e p r e - o r d e r and " A " by s e t i n c l u s i o n and i n t e r s e c t i o n , r e s p e c t i v e l y . F o r any ,D model o f 1 - c a l c u l u s , t h e c l a s s o f b a s i c open s e t s , w i t h r e s p e c t t o t h e S c o t t t o p o l o g y , forms an ETS. The s e t o f f i l t e r s o f an ETS ( f i l t e r domain) i s an a l g e b r a i c complete l a t t i c e and may be t u r n e d i n t o a continuous a p p l i c a t i v e s t r u c t u r e . Domain w h i c h a r e models o f A-calculus ( f i l t e r A-models) a r e c h a r a c t e r i z e d . A c h a r a c t e r i z a t i o n i s a l s o g i m A-models which a r e r e f l e x i v e domains, t h a t i s which a r e domains where t h e s e t o f t h e c o n t i n u o u s f u n c t i o n s i s a r e t r a c t i o n . As a m a t t e r of f a c t , n o t any f i l t e r ?-model t u r n s o u t t o be a r e f l e x i v e domain. I n any f i l t e r h o d e l t h e i n t e r p r e t a t i o n o f a t e r m i s an element o f a t y p e ( s e t ) o f d a t a , as usual, as w e l l as a c o l l e c t i o n o f types; namely t h e f i l t e r o f t y p e s assigned t o i t by t h e t y p e assignment t h e o r y determined by t h e a s s o c i a t e d ETS. Moreover the f i l t e r &model i n [ 2 1 i s shown t o be i s o m o r p h i c , as a f i l t e r model. Also, domain, t o an e x p l i c i t l y g i v e n s u b s t r u c t u r e o f a D, any ( c o u n t a b l e ) a p p l i c a t i v e s t r u c t u r e may be i s o m o r p h i c a l l y embedded i n t o t h i s f i l t e r domain.
0.
INTRODUCTION
Type symbols a r e used i n v a r i o u s areas of Mathematical L o g i c and Computer Science as a f o r m a l r e p r e s e n t a t i o n o f c o l l e c t i o n s o f f u n c t i o n s , o f f u n c t i o n a l 5 o v e r f u n c t i o n s etc... I n Recursion Theory i n h i g h e r t y p e s one u s u a l l y b e g i n s w i t h j u s t one atomic t y p e symbol, 0 say, t o be i n t e r p r e t e d as t h e s e t o f n a t u r a l numbers N , and t h e n d e f i n e s t h e s e t o f t y p e symbols as t h e s m a l l e s t s e t c l o s e d under " + ' I . The meaning o f 0 0' i s t h e s e t o f f u n c t i o n s f r o m N t o N (see, f o r example, [131). Thus t h e i n t e r p r e t a t i o n o f t y p e s i s f i x e d and i t g i v e s t h e Type S t r u c t u r e as c o l l e c t i o n s o f f u n c t i o n s o v e r N e t c . i n any f i n i t e type. The use o f t y p e s f o r s t u d y i n g f u n c t i o n a l p r o p e r t i e s o f terms o f (untyped) 1 - c a l c u l u s i s due t o C u r r y (+) [51. C u r r y ' s t y p e s (which s h o u l d be b e t t e r c a l l e d " t y p e schemes") a r e j u s t s y n t a c t i c o b j e c t s , b u i l t f r o m a s e t o f v a r i a b l e s by an o p e r a t o r " + I ' o f t y p e f o r m a t i o n . They a r e assigned t o 1 - t e r m s
..,
(+)
While we were w r i t i n g t h e f i n a l v e r s i o n o f t h i s paper, t h e was saddened by t h e d e a t h o f P r o f e s s o r H a s k e l l B. Curry. P r o f e s s o r C u r r y s e v e r a l times. Besides h i s c o n t r i b u i t i o n s , a landmark f o r L o g i c , we c o u l d a l l admire h i s l i v e l y presence, h i s enthus iasm.
l o g i c community Most o f u s met which have been and encouraging
2 42
M.COPPO ET AL.
by formal assignment r u l e s . In t h i s way d i f f e r e n t types can be assigned t o t h e same 1-term. This i s the main d i f f e r e n c e between Curry's approach and t h e typed A-calculus 1111, where types a r e b u i l d a s in Recursion Theory and each term has a uni ue type. In [ 21 a n d ? 3 I a conservative extension of Curry's system i s g i v e n . This i s done by allowing e x p l i c i t l y t h a t t o a l - t e r m i s assigned more than one type. More formally a new o p e r a t o r " 4 ' ' of type formation and t h e " u n i v e r s a l " type w a r e introduced. The main f e a t u r e of t h i s extension i s t h a t types c h a r a c t e r i z e completely t h e functional behaviour of A-terms, see [ 3 I ( n o t i c e t h a t any 1-term has a t l e a s t one t y p e ) . S c o t t [181 gave a mathematical semantics f o r Curry's types which can be n a t u r a l l y extended t o t h e new types in [ 2 1 . Given an a p p l i c a t i v e s t r u c t u r e, types a r e i n t e r p r e t e d a s s u b s e t s of 0 , where, f o r A,BcD, A + B = { dcD PdecA d .eeB 1. Moreover " A " i s i n t e r p r e t e d a s set i n t e r s e c t i o n and I, w" a s t h e whole s e t D. By t h i s i n t e r p r e t a t i o n one has i n c l u s i o n r e l a t i o n s between t y p e s , which a r e represented in [ 2 1 by t h e (formal) r e l a t i o n " L " . A t y p i c a l case i s t h a t i f 0'50and T(T' then U+TLO' + T I ( c f r . 1.1.7): i f 0' i s smaller than u and r i s s m a l l e r than T', then t h e "functions" from u t o T a r e l e s s than those from u ' t o T I . On t h e o t h e r hand one may think i n a dual way. S t a r t i n g from t h e f a c t t h a t a type r e p r e s e n t s , in some sense, a domain-range information about a A-term, one may c o n s t r u c t a 1-model in which t h e i n t e r p r e t a t i o n of a term i s t h e s e t of i t s types. Since t h e s e s e t s a r e closed under " A " and " 5'' (upward), they turn o u t t o be f i l t e r s . This c o n s t r u c t i o n i s e x p l i c i t l y done in [ 2 1 , but i t i s , t o some extend, a common f e a t u r e of a l l 1-models defined by P l o t k i n ' s technique [141. Take, say, S c o t t ' s Pw model [191 o r Engeler's D A model [ 6 1 . There any d c DA i s a s e t of " i n s t r u c t i o n s " such a s ( B e b ) , where B E D A i s a f i n i t e s e t . I f ( g * b ) ~ d , then BLecD implies b f d - e , t h a t i s d c & + { " b } & D A , A where =Id cDAl c c _ d > . Thus ( B * b ) i s c l e a r l y r e l a t e d t o t h e type k + { i ~ l .This w i l l be used in several places i n t h i s paper and more formally s t u d i e d , p a r t i c u l a r l y when dealing with D, models. In t h e present paper t h e notion of types and t h e i r i n c l u s i o n p r o p e r t i e s a r e a b s t r a c t l y formalized i n t h e d e f i n i t i o n of Extended Abstract Type S t r u c t u r e (EATS). Actually EATS a r e information systems i n t h e sense of S c o t t [211 ( c f . 1 . 9 ) . I t i s i n t e r e s t i n s t o consider EATS given over a p p l i c a t i v e s t r u c t u r e s (they a r e c a l l e d ETS). ETS can be viewed a s i n t e r p r e t a t i o n s ( i n t h e sense of S c o t t ) of formal types. Continuous a p p l i c a t i v e s t r u c t u r e s over EATS ( f i l t e r domains) a r e defined. We then i n v e s t i g a t e embeddings and isomorphisms between f i l t e r domains. In p a r t i c u l a r , t h e f i l t e r domain defined in [21 i s shown t o be " u n i v e r s a l " in t h a t any f i l t e r domain i s isomorphic t o the range of a c l o s u r e operation which i s an element of IFI. Moreover we o b t a i n simple r e l a t i o n s between t h e p r o p e r t i e s of "2 of an EATS and the c l a s s of r e p r e s e n t a b l e f u n c t i o n s over the a s s o c i a t e d f i l t e r domain ( c f . 2.13). Some f i l t e r domains can a c t u a l l y be turned i n t o models of type f r e e 1-calculus ( f i l t e r A-models). An i n t e r e s t i n g c l a s s of them (which has a simple c h a r a c t e r i z a t i o n in terms of " < " ) i s t h e c l a s s of f i l t e r domains i n which a l l continuous functions a r e representable. However t h e r e e x i s t a l s o f i l t e r A-models i n which not a l l continuous f u n c t i o n s a r e r e p r e s e n t a b l e ( s e e 4.11). Embeddings and isomorphisms between r e f l e x i v e domains ( c f . [ l n ) and f i l t e r h o d e l s a r e s t u d i e d : i n p a r t i c u l a r any Dmspace i s isomorphic t o a ( s u i t a b l e ) f i l t e r h o d e l . L a s t l y j u s t using ( e a s i l y axiomatizable) a b s t r a c t 'I<'' r e l a t i o n s between formal type, we c o n s t r u c t some f i l t e r 1-models isomorphic to-D, spaces. In one of these D ,spaces t h e " u n i v e r s a l " f i l t e r isomorphically embedded.
1-model
can be
2 43
Extended Type Structures and Filter Lambda Models 1.
EXTENDED TYPE STRUCTURES
1.1. D e f i n i t i o n . An Extended A b s t r a c t Type S t r u c t u r e (EATS) S i s a s t r u c t u r e < X , ~ , A . + , ~ > , where X i s a set,weX,"A"and 14diare t o t a l f u n c t i o n s f r o m X x X t o X and k " i s a p r e o r d e r r e l a t i o n on X s a t i s f y i n g : 1. a L W 2. w 5 w+w 3. a L a A a 4. h b l a aAb5b 5. (a;b) A +c) L a +(bhf) 6. a s . , b d * a h b c a ' h b 7. a ' z a , & ' * a + b c a ' + b ' e X. where a,b,c,a',b'
(7
L e t a ?.b i f f a5bQ. Observe t h a t w w + w
and a
A
(bAC)
(ahb)hc.
...,in}, then
NOTATION: I and J w i l l always be f i n i t e s e t s o f i n d i c e s . I f I= {il, ,A a . means a . A a
I
'
11
i2/\
i;
1.2. EXAMPLES. ( i ) L e t T be t h e s e t o f f o r m a l t y p e s b u i l t f r o m w a n d a ( c o u n t a b l e ) s e t At= {$o, 4 l,. 1 o f t y p e v a r i a b l e s by t h e ( s y n t a c t i c ) o p e r a t o r s
..
" +'I
and
"A"
o f 1.1 t h e n
o f type formation. F=is
I f ''zO" i s t h e minimal p r e o r d e r s a t i s f y i n g 1-7 t h e f r e e EATS o v e r g e n e r a t o r s
...
4 0 . 4 ~ ~
defined i n [ 21. (ii)Consider $ =where P i s t h e s e t o f w . f . f . of ( p r o p o s i t i o n a l ) d e r i v a t i v e + A - l o g i c [16, p. 2851 , aeP and "(I' i s d e f i n e d by " p l q i f f p t q " . 9' i s an EATS s i n c e 1-7 t r i v i a l l y h o l d . and
Our " c o n c r e t e " EATS w i l l always be g i v e n o v e r an a p p l i c a t i v e s t r u c t u r e and " A " w i l l be ( i n t e r p r e t e d b y ) s e t t h e o r e t i c i n c l u s i o n and i n t e r s e c t i o n .
"2'
1.3. D e f i n i t i o n . ( i ) L e tbe a ( p a r t i a l ) a p p l i c a t i v e s t r u c t u r e and A , B g . Define then A+B = { d r 01 VeeA d.eeB 1 €PO (if i s a p a r t i a l o p e r a t i o n , b y d.eeB we mean: I'd-e i s d e f i n e d and d e B " ) . ( i i ) L e t be an a p p l i c a t i v e s t r u c t u r e . An Extended T e S t r u c t u r e (ETS) ( o v e r D ) i s an EATS S = < p, 5 , n, +,D>, where PSPD, C_ a n d K p a r e s e t i n c l u s i o n and s e t i n t e r s e c t i o n and B t P .
"."
I n o t h e r words an ETS i s a s e t o f subsets o f an a p p l i c a t i v e s t r u c t u r e , n o t c o n t a i n i n g t h e empty s e t , and c l o s e d under " n " and ' I + ' ' . I t i s t h e n easy t o check t h a t t h e c o n d i t i o n s o f 1.1 a r e s a t i s f i e d (indeed, "L'" i s a p a r t i a l order). 1.4. EXAMPLE. ( i ) L e t
i n [ 1 9 1 ) and P = I A ' d d e A } . T h e n < P , E , n , + , D > i s an ETS. (ii)Each c o l l e c t i o n o f a l g o r i t h m s as d e f i n e d i n [ 1 2 1 i s an ETS c l o s e d under i n f i n i t e intersection. L e t T be t h e s e t o f f o r m a l t y p e s as d e f i n e d i n 1 . 2 ( i ) . Given any EATS S o v e r a c o u n t a b l e s e t X we can d e f i n e t h e f o r m a l t h e o r y o f S b y a ( s u i t a b l e ) o r d e r r e l a t i o n on T. 1.5. then
Definition.
( i ) L e t T be t h e s e t o f t y p e s o f 1 . 2 ( i ) . If u ,TET, i s a formula ( 1 ) . (ii)A t y p e t h e o r y T i s any s e t o f f o r m u l a s c l o s e d under 1-7 o f 1.1 p l u s t r a n s i t i v i t y and r e f l e x i v i t y . u c T 'I s t a n d s f o r ULTET. UZT
M.COPPO ET AL.
2 44
( i i i ) I f 1 i s any s e t o f f o r m u l a s t h e n T ( z ) i s t h e t h e o r y generated by z . < -z s h o r t f o r i T [ 2)(iv) S (T)
.
.
For any t y p e t h e o r y 1.2(i). 1.6.
is
T, S ( T ) i s t r i v i a l l y an EATS. L e t To be t h e f r e e t h e o r y o f
A , + ,w> Definition. ( i ) L e t Ss < X , ( , i s a f u n c t i o n V: T + X such t h a t :
be
an
EATS.
Then
a
2. V( O A T ) = V ( U) A V ( T) 3. v(U*T)= v ( U)* V(T). We say t h a t < S,V> i s a t e model (a c o n c r e t e t y p e model when S i s an ETS). (ii)If<S.V> i s a t y p h t s t h e o r y TV i s g i v e n by TV = { O T I V ( O ) G v(T)}*
E.VT
stands f o r
U ~ T
Tv.
N o t i c e t h a t g i v e n any EATS S, we can always f i n d many V:T+X such t h a t <S,V> i s a t y p e model. C l e a r l y , i f X i s c o u n t a b l e , V can be made s u r j e c t i v e . O f course, t h e c o n d i t i o n on c o u n t a b i l i t y may be dropped i f one t a k e s t h e s e t A t o f atoms o f the desired cardinality. F i.n a l l y , i f V i s o n t o , Obviously Tv= T (Tv) and ToETV ( i . e . ''2; extends " 3 " ) one c l e a r l y has
z v , , -+ A
,w>
< X,L,
I
A
+ ,
@>
.
Some more work can be done w i t h EATS, l o o k i n g a t c o l l e c t i o n s o f t h e i r subsets. be an EATS. D e f i n i t i o n . L e t S= <X, < A , *,w> An a b s t r a c t f i l t e r x o f 3 i s a non empty subset o f X such t h a t : 1. a.be x =. h b e x 2. a; x, a 3 * k x . ( i i ) If AGX, t A i s t h e a b s t r a c t f i l t e r generated by A. I f A= {a), f o r fIa1. ( i i i ) IS1 i s t h e s e t o f a b s t r a c t f i l t e r s o f S ( f i l t e r domain o f S ) . 1.7. (i)
I f S i s an ETS, IS1
i s clearly the set o f f i l t e r s o f
f a stands
S i n t h e u s u a l sense.
1.8. LEMMA. < IS1 & > i s a complete a l g e b r a i c l a t t i c e , where f w and X a r e t h e l e a s t and t h e l a r g e s t elements ( r e s p e c t i v e l y ) . Moreover i f x,ye I S I : (i) x w = t (xL5) ( i i ) xny = X ~ Y ( i i i ) IfA G l S l i s a d i r e c t e d s e t , t h e n U A = U A . ( i v ) The finite elements are exactly the principal filters, i.e. x = u { f a 1 facx 1 Proof. Easy. 0 1.9. REMARKS. (i) EATS a r e i n f o r m a t i o n systems i n t h e sense o f S c o t t 1211. I n f a c t , an EATS s<X,< , A , *, w> i s an i n f o r m a t i o n system (X,u,Con,+) where Con c o n s i s t s o f a l l - f i n i t e subsets o f X and, i f A = {al, a n } , At-b iff a,&
... ~a~
...,
5 b (and +I-b i f f
w~
b ) . Moreover
IS1 i s t h e s e t o f elements o f
t h e c o r r e s p o n d i n g i n f o r m a t i o n system. ( i i ) Any ETS < p , c,n , *,D > i s a neighbourhood system i n t h e sense o f [ Z O I . Moreover i f we d e f i n e : AfdB * deA+B (where deD and A , W P ) t h e n f d i s an approximable mapping, as d e f i n e d i n [201.
245
Extended Type Structures and Filter Lambda Models FILTER DOMAINS
2.
This s e c t i o n mainly deals w i t h p r o p e r t i e s o f f i l t e r domains ( o f EATS), viewed as a p p l i c a t i v e s t r u c t u r e s . I n t h e sequel complete l a t t i c e s w i l l always be considered w i t h t h e S c o t t topology ( c f . [17]). D e f i n i t i o n . ( i ) I f D i s a complete l a t t i c e ( w i t h respect t o "I")and " ' " : DxD+D i s continuous, thenis a continuous a p p l i c a t i v e s t r u c t u r e . ( i i ) A continuous a p p l i c a t i v e s t r u c t u r e i s a l g e b r a i c i f f D i s algebraic.
2.1.
Given any EATS structure. 2.2.
S, one may t u r n Is1 i n t o an a l g e b r a i c continuous a p p l i c a t i v e
D e f i n i t i o n . L e t S be an EATS. Define: x IS1 + IS1 by x-y = { b 13aEy a + bexl.
"'":ISI
2.3. (ii)
LEMMA. ( i ) x , y r I S I * x ' y ~Is!i s an a l g e b r a i c continuous a p p l i c a t i v e s t r u c t u r e .
Proof. Routine (cf.Lemma 1.8.).
0
REMARKS. ( i ) L e t T be a type theory and S ( T ) as i n 1.5. Using2.4. one can e a s i l y show t h a t T i s t h e theory o f a concrete t y p e model. J u s t d e f i n e vT (oi)= I X E I S ( T ) I 1 oiex 1 S * ( 1) = <;(T) , C , n ,+,IS ( T ) I > Then an easy i n d u c t i o n shows t h a t V T ( 0 ) = I x E [S(T)[I x 1
(2).
and t h a t <S* (T), VT > i s a type model whose theory i s e x a c t l y T ( c f . Theorem 1.10 o f [ 201). as defined i n [ 61). Given a s e t A, l e t XA be t h e ( i i ) (Connections w i t h, c l o s u r e o f A " h ) ( w h e r e o s A ) under ' ' + I ' and "n."-Then, i f SA =<XA, 5, A , +,w >, i t can be e a s i l y proved t h a t < I S A ~ : ,E>~
,C > ( 3 ) .
Define v : XA +DA by v (W)' P v (a)= {a} f o r a l l aeA v (b +c)= { v ( b ) + d I d c V ( C ) 1 v (br, c ) = V(b)uv(C) and v* : I S A ~ DA by +
v*(x)="
cc x
v(c).
A r o u t i n e c a l c u l a t i o n shows t h a t v* i s an embedding. As usual, i fi s an a p p l i c a t i v e s t r u c t u r e t h e s e t o f representable f u n c t i o n s over i s given by: .(DiD)= { f : D'+D 13x'D VyeD x-y = f ( y ) } . Clearly, i f < D 1 - , L > i s a continuous a p p l i c a t i v e s t r u c t u r e , then (D+D) C C(D,D), t h e s e t o f continuous functions from D t o D. I f we d e f i n e F ( x ) ( y ) = x - y then F i s a continuous map o f D i n t o C(D,D) (onto (D+D)). Notice t h a t ( D + D ) i s a complete l a t t i c e by t h e c o n t i n u i t y o f F.
2.5.
D e f i n i t i o n . (i) A r e - r e f l e x i v e domain i s a t r i p l eD i s a complete*lattice (2) FE C(D,C(D ,O)) and GcC((D+D), 0 ) (where (D+D)=F(D)) ( 3 ) F O G = i d (4).
(1)
such t h a t
M.COPPO ET AL.
246
!
i s algebraic i f f D i s algebraic.
domain -
REMARK. I fi s a p r e - r e f l e x i v e domain t h e n G O F i s a r e t r a c t whose 2.6. range i s i s o m o r p h i c t o ( D + D ) . I f i s a d d i t t i v e ( c o a d d i t i v e ) t h e n G O F i s a closure (projection). < I S I , * > can be t u r n e d ( i n more t h a n one way i n g e n e r a l ) i n t o a p r e - r e f l e x i v e domain. However, i t i s u s e f u l t o c o n s i d e r a p a r t i c u l a r c h o i c e o f G. B u t we f i r s t need a lemma.
2.7. (1) (2) (3)
LEMMA. L e t S be an EATS and X E I S I . Then t h e f o l l o w i n g a r e e q u i v a l e n t : a+bex bex - t a a+ b e t { c -4 I dex. t c }.
Proof. (1) * ( 2 ) . By d e f i n i t i o n o f ' I - ' ' . c + bex * a+ bex ( s i n c e c + b j a + b ) . (2) * ( 1 ) . box - ? a 3ccta ( 3 ) * ( 1 ) . By assumption f o r some I ( 5 ) A c i + d i i a + b =)
a n d V i € 1 di (2)
=.
EX
.fci
. Thus,
I by ( 2 ) * ( l ) ,V i
E
I
ci +diex
and t h e n a+ bex.
(3). T r i v i a l . 0
The lemma suggests how t o o b t a i n , g i v e n an EATS, a c a n o n i c a l G. 2.8.
THEOREM. L e t S be an EATS. D e f i n e
feC(ISI
, Isl),
G,(f)=tIa+b
L e t Go be t h e r e s t r i c t i o n o f ,G
I
".'I
bef(ta)}
( a n d F ) as above a n d s e t , f o r
. Then
FoG,:id.
t o (IS1 +IS1 ) ,i s a c o a d d i t i v e
p r e - r e f l e x i v e domain. Proof. L e t s = < X , < , A , + , W > and f e C ( I S I , I S I ) . Since { t a l a e X } i s t h e s e t o f f i n i t e elements oPIS1 by 1 . 8 ( i i i ) one has f ( x ) = u { f ( t a ) ] . Thus, f o r a l l x e IS1 aex f ( x ) ={bl 3aex bef(fa)} c{bl 3aax a+be G (f)) G*(f).x. That i s fLF,G,
(f).
Note t h a t i f f e ( I S 1 + I S I ) , f = F ( z ) say, then, by Lemma 2.7, b e f ( t a ) = z * t a . Thus, i n t h i s case, one a c t u a l l y has f = FaG,,(f). Moreover, t a k e bi
E X
-?ai
CE
, ieI.
Eo
F ( x ) = ?{a+ b
By Lemma 2.7
I bex-fal.
Vie1 ai+bi
I t i s a r o u t i n e c a l c u l a t i o n t o show t h a t the Scott topology. n
Then, f o r some 1 , A a . +b I
E X
&
a + b e G o ( f ) =.
which implies
CEX.
i
Thus
< c with
i$0
FLid.
and F a r e c o n t i n u o u s w i t h r e s p e c t t o
I f S i s such t h a t , f o r some G ' ,i s a non t r i v i a l r e f l e x i v e domain t h e n we would o b t a i n a A - c a l c u l u s model ( c f . [ 1, 18.11 ). We w i l l say t h a t i s a f i l t e r A-model i f f i t i s a &model. A f i l t e r X-model i s n o t n e c e s s a r i l y a r e f l e x i v e domain, c f . 4 . 1 1 ( i i ) . EXAMPLE. L e t F= be as i n 1 . 2 ( i ) , t h e n i s a c o a d d i t i v e r e f l e x i v e domain (see t h e remark a f t e r Lemma 2.13). I f we d e f i n e G'(f)= G o ( f ) u A t where f e ( l FI +I FI ) and A t i s d e f i n e d i n 1 . 2 ( i ) we can e a s i l y p r o v e
2.9.
t h a t
i s an a d d i t t i v e r e f l e x i v e domain ( j u s t mimic [ 9 ] f o r a p r o o f . ) .
247
Extended Type Structures and Filter Lambda Models
2.10.
REMARKS.
( i ) Theorem 2.8 a c t u a l l y proves t h a t
i s a continuous
r e p r e s e n t a t i o n between C ( ISl,ISI) and IS1 a c c o r d i n g t o t h e d e f i n i t i o n o f 1151, i . e . F o G& i d and 0 F 5 id.
(ii)F o & i s a c l o s u r e o f C(ISI ,IS1 ) whose range i s (IS1 +IS1 ) (use f L F o C, ( f ) f o r feC(IS1 ,I 9 ) and f = F 0 G, ( f ) f o r f e (IS1 + IS I)). ( i i i ) L e t Dk be as i n 2 . 1 1 ( i ) .
I t i s easy t o show t h a t i fis
i( Dk )s( D +Dlk. (G^(
(coaddi t t i v e ) a1 g e b r a i c p r e - r e f 1 e x i ve domain t h e n
i0((
an a d d i t i v e
(D
+
D l k )GDk 1.
Therefore I SI+lSI ) ) c Is f o r a l l EATS S. Moreover t a k e F as i n 2.9, t h e n k f( I Flk)cC( IF1 , IF1 ) k y s i n c ei s an a d d i t t i v e r e f l e x i v e domain. I t i s
k
easy t o see t h a t t h i s i s n o t t r u e f o r a l l EATS S . There a r e some s i m p l e c o n d i t i o n s on EATS which correspond t o t h e d e f i n a b i l i t y o f c l a s s e s o f c o n t i n u o u s f u n c t i o n s (among them, t h e c l a s s o f a l l continuous functions). 2.11. D e f i n i t i o n . (i) L e t D be an a l g e b r a i c complete l a t t i c e . D e f i n e Dk'ICeDI c i s f i n i t e I .
(ii)L e t D and D ' be a l g e b r a i c complete l a t t i c e s . A s t e p f u n c t i o n f a b : D + D ' d e f i n e d by
1
fab(c)'
is
b i f a& I' o t h e r w i s e
where aeDk, I X D l k and
1'
i s t h e l e a s t element o f D ' .
The f i n i t e elements o f C ( D , D ' ) a r e e x a c t l y g i v e n by t h e f u n c t i o n s Uf,.,, where a.eD b. E D ' i e I . Note t h a t faibrc)=Y {bil ai cl. I ii 1 k' k' Thus (*) iff J = { i / a i r c l # m a n d dL Ubi. J 2.12. D e f i n i t i o n . L e t S an EATS. We d e f i n e t h e f o l l o w i n g c o n d i t i o n s on S : C1) ai +bi z c + d h bi 'd
y
fcdbyfaibi
+
C2) C3)
C
I
a +b_u -td and dl;w=r c a and b y A ai+bi 5 c+d=dl;w*J={i Iczai
I
l#S@3
biId.
C o n d i t i o n (*) i s c l e a r l y e q u i v a l e n t t o C3, where we t a k e ISlk and ,G
as d e f i n e d
i n 2.8. A d i f f e r e n t f o r m u l a t i o n o f C3 w h i c h w i l l be used i n many p r o o f s i s : a 1. + b i z c +d afidl;w93J#@ C I c z f ai and A bi(d. J C l e a r l y C3*C2*Cl.
9
A t y p e t h e o r y T s a t i s f i e s Cl(C2 o r C3) i f f S ( T ) s a t i s f i e s Cl(C2 o r C3). 2.13.THEOREM.Let S be an EATS. Then ( i ) satisfies C I * ( 1.~1) contains a l l constant functions. ( i i ) S s a t i s f i e s c2 9 ( I S [ + ISI) c o n t a i n s a l l s t e p f u n c t i o n s . ( i i i ) S s a t i s f i e s C3 0 (1Sl-t I S l ) = C ( ISI, 1st) ( i . e . < IS1 ,F,Go> i s a r e f l e x i v e domain and, t h u s , a f i l t e r A-model). P r o o f . We p r o v e o n l y ( i i i ) . The p r o o f s o f (i) and (ii) a r e s i m i l a r and e a s i e r . Let ai+bi(c+d. Take f e C ( I S I , 6 I) d e f i n e d by f ( x ) = $ K t b i I t a i s x l = L e t now t { b i l a + x , i e I } . I t i s t h e n easy t o show t h a t G o ( f ) = t / t a i + b i .
+
1
J = { i Ic Lai
c +de Go(f).
(*).
1 ( t h u s C 5 9 a i ).
Then
L a s t l y , d7.w i m p l i e s J # a.
Go(f)* tc= t A b J i
and
3 9Id,
since
I t i s enough t o p r o v e t h a t a l l sups o f f i n i t e s e t s o f s t e p f u n c t i o n s a r e
M. COPPO ET AL.
248
r e p r e s e n t a b l e . Then t h e p r o p e r t y f o l l o w s f r o m t h e f a c t t h a t ( IS I + I S I ) i s a complete l a t t i c e . ) . We p r o v e t h a t L e t f be d e f i n e d as above (observe t h a t f = & I taifbi x f = k ( f ) = f f a i * bi r e p r e s e n t s f, i . e . t h a t 'dye IS1 xf * y = f $ bi, where
J =Iila.ey,
In
'ieI}.
1
fact
dexf'y
* 3cey
;aTbi:c+d.
Now,
if
J ' = {iI c i a . 1,' we have t h a t J'c_ J , s i n c e c L a i by C3. T h e r e f o r e
aie y. Thus J ' P O and biid d. Moreover i t i s easy t o p r o v e t h a t A b. < x * y and t h e J I- f
3 bi
result follows.0
C o n d i t i o n C3 i s t h e c o n d i t i o n o f Lemma 2 . 4 ( i i ) o f [2]. Thus t h e r e p r e s e n t a b l e f u n c t i o n s o v e r < I F I , . > a r e e x a c t l y t h e c o n t i n u o u s ones. We can now g i v e some examples o f s t r u c t u r e s which s a t i s f y o n l y C 1 ( o r C2). B u t we f i r s t need a lemma. 2.14. LEMMA. L e t S-be an ETS. I f t h e r e e x i s t A,BieP t h a t ASyB and Vie I A 5Z B i, t h e n S does n o t s a t i s f y C3.
( i e I ) such
(y
Bi does n o t
Proof. Observe t h a t , g i v e n any Ce p, n e e d t o belong t o P ) . n
Bi+
C=("I B i) + C G A + C
2.15. EXAMPLES. ( i ) L e tbe an a p p l i c a t i v e s t r u c t u r e such t h a t Vd,eeD d - e = e. Then any (non t r i v i a l ) ETS S o v e r does n o t s a t i s f y C1. One a c t u a l l y has t h a t VA,BcD: A + A = B + B = D . (ii)L e t be such t h a t d-e=d. Then any (non t r i v i a l ) ETS S o v e r does n o t s a t i s f y C2, s i n c e vA,BED A+ B = D +B. C l e a r l y S s a t i s f i e s C1. ( i i i ) L a s t l y , we show an ETS which s a t i s f i e s C2 b u t n o t C3. L e t < x , - >be t h e Kleene a p p l i c a t i v e s t r u c t u r e d e f i n e d by n-m = { n 1 (m)
s a t i s f i e s C2. L e t A,B,C,E
. Actually
be non empty subsets o f 2 and EP 2. Then,
i f A + B G C + E , c l e a r l y BGE. Moreover l e t p e g \ E and q E " I k l ( x ) = i f x= r t h e n p e l s e q " i s such t h a t ke A+B b u t i s g i v e n by t h e C2 i s s a t i c f i e d . A X p l e T S o v e r < & , a > 1.4. Namely, by t h e I 1 Recursion Theorem t a k e no such t h a t
m e 2 . Then
{ A G yl
any ETS o v e r
B. I f r e C \ A, t h e n k t C+E. Thus G A and same argument used i n { n o X m ) = no, f o r a l l
no E A } i s an ETS and does n o t s a t i s f y C3 by Lemma 2.14.
A l s o t h e e x t e n s i o n a l i t y p r o p e r t y o f qISI,.> has an easy c h a r a c t e r i z a t i o n i n terms o f t h e p r o p e r t i e s o f S As u s u a l , an a p p l i c a t i v e s t r u c t u r ei s e x t e n s i o n a l i f f VG D a. c = b - c * a=b f o r a,beD.
.
2.16. THEOREM. L e t S*X, 2, A , +,u> be an EATS. ( i ) V'ze I S l x . z = y - z 0 (Va,beX a + b e x * a + b E y ) , f o r x , y l S I . ( i i ) . ISl,*>is e x t e n s i o n a l i f f VaeX 31 a * A b + ci.
I
Proof. ( i )
(-)
a+bex
i
b e x - f a (by Lemma 2.7) * be . f a * a-+iey. Immediate f r o m t k e d e f i n i t i o n o f ''.-''. ( * ) Let x a = f { b + c l a
(r).
(ii)
since and
< I S I , * > is
9 bi+
( c )Easy
3.
extensional.
Thus
ae xa,
that
is
By ( i ) x a = f a ,
3 1 Vi € 1 bi+ ci e xa
c. 5 a. 1
from ( i ) . 0
EMBEDDINGS AND ISOMORPHISMS
D e f i n i t i o n . L e t D be an a l g e b r a i c complete l a t t i c e . D e f i n e (i) 'c= {x I c L x } f o r c EDk, t h e cone o v e r a ( f i n i t e ) element.
3.1.
2 49
Extended Type Structures and Filter Lambda Models (ii)
K ( D ) = { z l ceD2.
( i i i ) C ( D ) as t h e c l o s u r e o f K ( D ) under f i n i t e union. As w e l l known, K(D) i s a b a s i s f o r t h e S c o t t t o p o l o g y on D. 3.2. REMARK. C(D) i s i f f C ( D ) i s c l o s e d under
c l o s e d under 'In''.,
, n ,+
,D >
is
an
ETS
'I+
THEOREM. L e tbe an a l g e b r a i c c o n t i n u o u s a p p l i c a t i v e s t r u c t u r e . IfS = i s an ETS t h e n < D , * ,&>c+< I s c [ , -,c_> C < I S I,.,g>. ( i i ) If S K = < K ( D ) , E , n , + , D > i s an ETS t h e n < D , * , G K Proof. ( i ) L e t Emb : D + I S C I be Emb(d)= { X E C(D) I dsX}. The embedding o f D 3.3. (i)
i n t o I S c [ as
lattices
is
trivially
verified.
To
prove t h a t
Emb p r e s e r v e s
a p p l i c a t i o n observe t h a t : X E Emb(a'b) * a*beX
* 3ceO d b
a.ceX,
f o r { a * c I ceDk
ccb} i s d i r e c t e d
w D k d c ae*c+ x k =. X E Emb(a) Emb(b). =)
-
The r e v e r s e i n t r i v i a l . (ii) L e t Iso: D-+lSKI be I s o ( d ) = & K ( D ) I The isomorphism as l a t t i c e s i s a p p l i c a t i o n goes as i n case (i). 3.4.
crd}.
immediate.
The
REMARKS. ( i ) I t can be e a s i l y proved t h a t
defined
as
i n 161,
N o t i c e t h a t K(P,)
are
closed
under
"+
"
that
C(Pu) and
and
and K(DA) a r e n o t c l o s e d under
proof
so
Is0
preserves
C(DA), where D A i s
Theorem 3 . 3 ( i )
applies.
'I+''.
.
(ii) K(I S ( T ) I ) i s c l o s e d under ' I + " f o r a l l t y p e t h e o r i e s T I n t h i s case Theorem 3 . 3 ( i i ) j u s t amounts t o say t h a t i f we b u i l d f i l t e r s o f f i l t e r s we do n o t change t h e c o n t i n u o u s a p p l i c a t i v e s t r u c t u r e (modulo isomorphisms). ( i i i ) I f. K There i s a s i m p l e c o n n e c t i o n between t h e c o a d d i t t i v i t y o f and t h e c l o s u r e o f K(D) under ' I + ' ' . 3.5.
THEOREM. L e tbe an a l g e b r a i c r e f l e x i v e dom;in. i s c o a d d i t t i v e , , * K ( D ) i s c l o s e d under I' K(D) i s c l o s e d under + ' I * 3 6 ' such t h a t r e f l e x i v e domain.
(1) (11)
Proof. de
+
( i ) We p r o v e t h a t Va,trDK
*a +b*=)F(d):
".
.
i s a coaddittive "
I
a + b = G(fab). O b v i o u s l y G ( f a d s a + b .
fab
*G(F(d)) !G(fab) (by c o a d d i t t i v i t y ) . *dlG(f
,d
(ii)D e f i n e a r b by : a L b = >+E, Notice t h a t b d e f i n i t i o n (1) f,bfF(d) * deZ+"b * arbgd
where a , b D
K'
and G ' ( f ) - C H a r b l f a , C f ) .
Moreover
M.COPPO ET AL.
250 and
f abC f * a c b LG'(f) (2) Thus F(G' ( f ) ) c K f a'b I f a b & F(G' ( f ) ) 1 = U [ f a b l a + b L G ' ( f ) l , by ( 1 ) CKfabl fabEf} f.
by ( 2 )
=
G'(F(d))=Uabb I f
CF(d) } abU a r b I a+b E d } , b y (1) d.
3.6.
REMARK. Since any
o f Theorem 3.5 i t
i s an e x t e n s i o n a l r e f l e x i v e domain, f r o m t h e p r o o f
f o l l o w s t h a t Va,b e (D,
)k a c b = f a E
From t h e p r e v i o u s r e s u l t s we o b t a i n t h e isomorphism o f any a l g e b r a i c c o a d d i t t i v e r e f l e x i v e domain w i t h t h e f i l t e r A-model, b u i l t on i t s compact cones. 3.7. D e f i n i t i o n . [ 151 An isomorphism between t h e r e f l e x i v e domainsand i s a p a i r , where w,w> i s an isomorphism between D and D ' such t h a t (1) F'(d)= v 0 F (w(d)) o w (2) G ' ( f ) = v(G(w0 f a v ) ) where d E D ' and f e C ( D ' , D ' ) . (1) i m p l i e s t h a t v and w p r e s e r v e " * ' I . By ( 1 ) and ( 2 ) V d e D v ( G o F ( d ) ) = G ' o F ' ( v ( d ) ) ( c f . t h e n o t i o n o f isomorphism i n [ l , 5.3.21). 3.8. THEOREM. L e t be an a l g e b r a i c c o a d d i t t i v e r e f l e x i v e domain and S = . Then d),F',G'> = < I S I , F,G,>. K K Proof. S Ki s an ETS b y Theorem 3.5. Since < D , F ' > - < I S K I , F > (by Theorem 3 . 3 ( i i ) ) t h e range o f F i s C(IS 1,l Sd ) I i . e . < I S I,F,GO> i s a r e f l e x i v e domain. K K I n 1151 Sanchis n o t i c e s t h a t g i v e n two c o a d d i t t i v e r e f l e x i v e domains, o n l y one o f t h e c o n d i t i o n s o f 3.7 s u f f i c i e s t o have t h e isomorphism. So we a r e done, s i n c e < I SKls,F,Go> i s c o a d d i t t i v e by Theorem 2.8 and c o n d i t i o n ( 1 ) o f 3.7 h o l d s , b y Theorem 3 . 3 ( i i ) . 0 Another i n t e r e s t i n g c l a s s o f embeddings i s d e f i n e d c o n s i d e r i n g f i l t e r s o f EATS b u i l t from tvoe theories. F o l l o w i n g [ f i ' l an element U E I FI i s a c l o s u r e o e r a t i o n i f f i t s a t i s f i e s : G , ( i d ) L u = u 0 u ( where u 0 u =G,(Az. u.(u.z)T). 3.9. (i (ii)
THEOREM. L e t T be a t y p e t h e o r y . Then one has % < I S ( T ) I , - , c _ > i s i s o m o r p h i c t o t h e range o f a c l o s u r e o p e r a t i o n u e I F I .
Proof.
.
.
( i ) Observe t h a t a b s t r a c t f i l t e r s o f
S ( T ) are abstract f i l t e r s o f
then, a r e c l o s e d u n d e r a p p l i c a t i o n . Thus < I FI , * ,g >.
F and,
i s a substructure o f
25 1
Extended Type Structures and Filter Lambda Models
( i i ) As p o i n t e d o u t i n 1.6, z T extends 2 0 . D e f i n e u = t Io+TI O -< T T I E I FI a n d + A d S ( T ) I as t h e f i l t e r generated by t h e s e t o f t y p e s A ( n o t i c e t h a t u i s c l o s e d under lo w h i l e + A i n c l o s e d under
3.We p r o v e t h a t u*A=+A.
+Ac_ u . A i s t r i v i a l . F o r t h e r e v e r s e observe t h a t T E
u.A-3Ue
A
*
u
s
O+T
* 30s A * 30 E A * 30 E A =. 3 0 c A
31 V i e 1 u ~ ~ ~ T o ~ ~& + 31 V i e 1 0 ~ i ~ ~ a n d 3 J uz0 c _ I3 u i
33 ui
U L ~ /Jui T
T ~ A .
,
OT+ T
~
~
~
,I~T~ , f (o r~F T satisfies
C3
zT$~iiO~
s i n c e < extends lo -T
Obviously u _ > i = t { o + . r l u i o T I
and u = u
-
3
u. C l e a r l y S ( T ) i s t h e range o f u. 0
Theorem 3.9 proves t h a t i s " u n i v e r s a l " ( i n t h e sense o f [ 191) f o r a l l f i l t e r domains. R e c a l l i n f a c t t h a t each such domain i s t r i v i a l l y isomorphic t o an EATS g i v e n by a s u i t a b l e t h e o r y (see what p o i n t e d o u t a f t e r 1.6). We can a c t u a l l y p r o v e t h a t any a p p l i c a t i v e s t r u c t u r e can be embedded i n t o . 3.10. THEOREM. L e t % .
b e a ( c o u n t a b l e ) a p p l i c a t i v e s t r u c t u r e . Then
Proof. L e t A = { a . I i L l } and x A = { $ i i $ j + $ d a i * a j = Emb: A + I S ( T z
)I by
Emb(ai)=
t$i
a h } . Define
(iL1).
A
Emb(ai)* Emb(a.)= Emb(ai. a .). _> i s t r i v i a l and C_ i s g i v e n J J by t h e m i n i m a l i t y o f iZA, as d e r i v e d f r o m x A ( f o r t h i s some b o r i n g c a l c u l a t i o n s
We c l a i m t h a t
a r e needed. We l e a v e them as an e x e r c i s e ) . Moreover < I S(Tz ) I ; > k < l A
FI
>;
by Theorem 3 . 9 ( i ) .
0
The c o n d i t i o n on t h e c a r d i n a l i t y o f A may be dropped j u s t t a k i n g enough atoms, i . e . t a k i n g A t l a r g e enough and c o n s t r u c t i n g T f r o m i t as i n 1 . 2 ( i ) . 4.
FILTER A-MODELS
As a l r e a d y p o i n t e d o u t , any EATS s a t i s f y i n g C3 y i e l d s a f i l t e r A-model. A c t u a l l y any such A-model i s g i v e n by a r e f l e x i v e domain, i.e. i t has t h e s t r o n g p r o p e r t y t h a t any c o n t i n u o u s f u n c t i o n i s r e p r e s e n t a b l e . T h i s i s more t h a n what i s r e q u i r e d by an a p p l i c a t i v e s t r u c t u r e t o y i e l d a A-model. Theorem 4.8 c h a r a c t e r i z e s EATS S such t h a t < S,F,G > i s a f i l t e r A-model. Theorem 4.11 g i v e s a f i l t e r A-model, which i s n o t a r e f l e x i v e domain. F o r t h e n o t i o n o f (expanded) combinatory a l g e b r a and A-model we m o s t l y r e f e r t o [ I 1 s [ 9 1 9 [I01
.
4.1. D e f i n i t i o n . L e t S= <X,(,A,+,W> be an EATS ( r e c a l l t h a t a -+b+ c stands f o r a -+ ( b + c ) ) . D e f i n e -K = t { a + b +c I CE t a 1 S = t { a + b +c+d I dcta.tc-(tb.tc)} E * t { a - . b +c I CE t a - t b l .
-
Note t h a t
K,
S a n d 5 have been d e f i n e d j u s t u s i n g G*
o f 2.8.
M. COPPO ET AL.
252
4.2. LEMMA. L e t S be an EATS. Then x - z -(y.z) ~ _ S - x . y - z and x.y@-x*y. ( i ) Vx,y,ze I S I x g : x . y , i s a combinatory a l g e b r a , t h e n KSK and S C S . Moreover, f o r ( i i ) I f < lSI,-,S,K> I=SKK, a+ b € 1 0 a 2 b. Proof. ( i ) By FOG*,
i d (see 2.8).
( i i ) Observe t h a t K . t a - t b = t a i m p l i e s by 2.7 a+b+ccK f o r S. Moreover a + b e I 0 b E I - t a = t a . 0
-
f o r a l l ceta. S i m i l a r l y
-
4.3. THEOREM. L e t s be an EATS. I f t h e r e a r e S, K such t h a t < I S I , ,S,K > i s an expanded combinatory a l g e b r a t h e n a l s o d s l , , $,E > i s an expanded combinatory algebra.
Proof. Immediate f r o m 4.2. THEOREM. L e t S = < X , L , A , + , w > 4.4. ( i e 1 ) o n e has(*) /\(bi+ci)+bi+ciza+b*3J
be an EATS. Assume t h a t f o r any a,b,bi,ci a 2 A d . e .&I. J J 3I Then, i fi s a combinatory a l g e b r a , < l S I , . , E > i s a 1-model.
EX
P r o o f . F o l l o w i n g [ l o ] , we j u s t need t o show t h a t ( 1 )g.x.y = x - y ( 2 ) vz x.2 = y.z =$ g. x =g.y (3) E.4 = E . As f o r (17, n o t e t h a t g=S(K(S&)). Then use 4.3. As f o r ( 2 ) , observe f i r s t t h a t a + b e E- 31 ? a i + b i - + c i ( a + b f i V i E I a 1. <- b . 1+ c i
,3I
A(bi+ci) +bi+ci5a+b I =, 35 a L A d .+e by ( * ) J J JTake now begax, t h e n 3 a ~ xa + b E s Use t h e p r e v i o u s argument t o o b t a i n J such
.+,
t h a t a z A d .e.:h.
J J J
d j +e j e y . NOW,
Since a
E
x,
by 2 . 1 6 ( i )
and t h e assumption i n ( 2 ) , V j E J
A ( d j - t e j ) + d j + e j E E , by d e f i n i t i o n .
J
Thus VjEJ dj+ e . E E - Y and b EE_.Y. J ( 3 ) follows from t h e d e f i n i t i o n s . n Note t h a t , i f < IS I . . , E > i s a x-model, t h e n E =S(K(SKK)) ( c f . 4.1) and, by d o e s n ' t need t o 4.2,s C _ E . However, a l s o i f < l S I , - , ~ > i s a x-m<delSbe a m o d e l , f o r < IS I , -,K,S_> may j u s t be a combinatory a l g e b r x ( o r a x - a l g e b r a ) . Each t y p e t h e o r y T induces a system o f t y p e assignment, i n t h e sense o f [ 2 1 , f o r t h e s e t A o f x-terms. By t h i s , Theorem 4.8 c h a r a c t e r i z e s t h e t y p e t h e o r i e s which y i e l d 1-models. N o t a t i o n and concepts a r e m o s t l y f r o m [ 21. I n p a r t i c u l a r i f CJ E T and M E A , then UM i s a statement, where u is t h e p r e d i c a t e and M t h e s u b j e c t . A basis i s a s e t o f statements w i t h o n l y v a r i a b l e s as s u b j e c t s . 4.5. D e f i n i t i o n . L e t 7 be a t y p e t h e o r y . The (extended) t y p e induced by T i s d e f i n e d by t h e f o l l o w i n g n a t u r a l d e d u c t i o n system
assignment
253
Extended Type Structures and Filter Lambda Models
( + ) i f x i s n o t f r e e i n assumptions on which T M depends o t h e r t h a n T
W r i t e B t-
oM i f
OX.
oM i s d e r i v a b l e f r o m t h e b a s i s B i n t h i s system.
4.6. D e f i n i t i o n . L e t T be a t y p e t h e o r y and S ( T ) be t h e EATS d e f i n e d i n 1 . 5 ( i v ) . F o r any map 5 f r o m v a r i a b l e s o f A t o IS( ~ ) and 1 M E A. define: (i) B =Ioxloe s(x)}
5
(ii) (II b y i n d u c t i o n on t h e s t r u c t u r e o f M) u x f =
UPQ 1 = F ( EPII [Ax. P
T
( UQII
T
I T = ( ,G he E 1 S( T ) I .[ P 1 ) 5 c [ x/el
(see 2.8).
( T h i s i s w e l l d e f i n e d , by t h e c o n t i n u i t y o f F and Note t h a t i f
I f B i s a basis, l e t B h = { o y 4.7.
> i s a x-model,
I oy
Thus V i
C_
. By i n d u c t i o n on M.
I
I
, by
induction
T
, by
rule ( < ) -T
Bd x / t a . l ~ BiP 1
* BPUIaix}t-~;P T
* B t-a.+Bi 5 1
Xx.P
, by (
The r e s u l t f o l l o w s b y u s i n g (
II J
i s the
[MI
T
5
= Io l B
T
5
t-oM}.
The o n l y non t r i v i a l case i s M - X x . P .
r
E
then
E B and y z x l .
THEOREM. L e t T be a t y p e t h e o r y . Then
Proof.
).
A
+I).
I ) and ( z T )
(standard)
M. COPPO ET AL.
254
.
3
T By i n d u c t i o n on t h e d e d u c t i o n B g t - oM. We j u s t check when ( + I ) i s used.
The r e s t i s t r i v i a l . Note t h a t i f
t ax1
t h e n we have, by a s h o r t e r d e d u c t i o n , gives the result. 0
BF[x/+alg 8p. The
i n d u c t i v e hypothesis
L e t G o be as i n 2.8. THEOREM. L e t T be a t y p e t h e o r y . Theni s a x-model * T T lB/X t- U+T xx.M * B / x ~ (UXI F TM). Proof. =*. R e c a l l t h a t G o i s t h e r e s t r i c t i o n o f G, t o ( I S ( T ) I + I S( T ) I ) , t h e
4.8.
IS( T ) I t o
IS( T ) I,
i s representable.
Thus t h e
representable functions.
By assumption,
which i s d e f i n e d by a
x-term
semantics o f x-terms i n
IS( T ) I i s d e f i n e d e x a c t l y as i n 4 . 6 ( i i ) ,
.
use G o i n s t e a d o f G, Let 4.7
g ( x ) = f { u J u z ~o r B
r
B/x+u+T
T
oxeB}. O b v i o u s l y B F p N * B I\x.M]
XX.M-U+TE
any f u n c t i o n f r o m
(using constants),
T
I-~N gB
Te
F(Go(f))(fu) f o r T
I
f=AeeIS
(T)
T
* B
/X U { U X } t- T M . gB =. The p r o o f o f Theorem 3.5 i n [ 2 ] remains v a l i d , c which r e q u i r e s t h e g i v e n c o n d i t i o n .
4.9. Oefine
except f o r
point
(iii),
we can now g i v e a c l a s s o f f i l t e r M o d e l s , which a r e n o t
D e f i n i t i o n . ( i ) Choose 0
c*=
b y Theorem
r-
q x / t u 1‘:’?ince
Using Theorem 4.8, r e f l e x i v e domains.
. Then,
where one may
{ ULU[ $/p]
IUE
A t and PcT such t h a t
T}.
( i i ) I * a n d ? i s short f o r (iii)u ~ i Tf f e i t h e r (1) u 3 T
zz* and &(E*),respectively.
0 does n o t o c c u r i n
p
.
Extended Type Structures and Filter Lambda Models 4.10. (ii)
ui*
LEMMA. ( i )
T
=)
o ~ A a + 6< * A y
. ,...,
d O / p I ~ * T[ $/PI + 6 = ~ * 3pl
pn
255
LT.
o b p l z . . . < p
I i i- J i in and each p (1 I h I n ) i s an i n t e r s e c t i o n o f arrows. Fi B&M~=) BL +/PI P T [ 4/01 M . ( i v ) vie1 B/XU{a.X} 6 f3.M and ai+Bi & A y . 4 . * VjeJ B / x U { y . x } p 6 . M . 1 1 J J J J J The o n l y non t r i v i a l case i s Proof. ( i ) By i n d u c t i o n on t h e d e f i n i t i o n o f -O/P 1. N o t i c e t h a t ( u [ $ / p J ) [ ~ / p l ~ u [ $ / p srnce ] $ does n o t o c c u r i n p (ii)By i n d u c t i o n on t h e d e f i ? i t i o n o f s*. The o n l y non t r i v i a l case i s r u l e V&V * l~ A *v. p l ? ~ ' I n t h i s case observe t h a t 6 o f 1 1 i . e . p <* p ' p A v<*'Sn v i * p 0 A j ' and a i j b l y t h e i n d u c t i o n . ( i i i T B y i n d u c t i o n on t h e d e d u c t i o n showing B ?! T M If t h e l a s t applied r u l e i s 1, use (i). (iv) If 2 i s 3 t h e p r o o f f o l l o w s by C3 ( r e c a l l t h a t 3 s a t i s f i e s C3 by
.
.
.
(2
2.4(ii) i n [2]). Bi
I n f a c t v j ~ J f a ~ + By.+a.implies ~ i ~ J J
i t j . Therefore
a.X 1
:
from t h e derivations
3K?@SIy
j 3
pi and
f o r a l l i e K one may o b t a i n :
6 fM
ujx a.x
(lo1
1
K
i t
6iM
-
tBiM
(A1)
6.M
(50)
J
I f case (2.1) YiX
:
obtain
a.X 1
i n 4.9 a p p l i e s , t h e n f r o m t h e d e r i v a t i o n YiX BiM j u s t u s i n g (i*)i n and
a.x
6;M
one may
.
1
I f case (2.2) i n 4.9 a p p l i e s t h e n yi+6i-(ai+Bi) QyPdO/Ply f o r a l l 0.y. B h U{ai[ $/PI X } P Bi[ 4/01 4.11. (ii)
[$/p
1.
By d e f i n i t i o n
T h e r e f o r e f r o m ( i i i ) B/xu(aixl@BiM
implies
M.
THEOREM. (i)B~-*u+TAx.M -BUIUX}PTM. L e t =S , < T , i * , A , +, w > . Theni s
a f i l t e r A-model.
Proof.
(i)L e t D be t h e d e d u c t i o n showing B ~ U + T A X . M . Assume t h a t , f o r some I,ai+BiAx.M,icI, a r e a l l t h e statements i n D on which u+TXX.M depends and which
a r e c o n c l u s i o n s o f (+I). I t i s t h e n easy t o p r o v e t h a t +ai+6izu+~ i s d e r i v e d f r o m t h e ai+Bi 2.7(iii)
i n [ 21).
,Since u+TAx.M
Ax.M u s i n g o n l y r u l e s ( A I ) , ( A E ) and (2,). (Cf. Lemma
By 4 . 1 0 ( i i )
above,
each uh i s an i n t e r s e c t i o n o f arrows.
3p1
,..., 11, + a i + .1%. <~l~...~p n-
,
where
The r e s u l t f o l l o w s by i t e r a t e d a p p l i c a -
tions o f 4.10(iv).
(ii)By (i) and 4.8.
0
S+ does n o t s a t i s f y C2 (and hence C3), w h i l e i t i s easy t o check t h a t p i* $.
f o r 4+ 6
*I
P
+
P
and
0
I* P ,
M. COPPO ET AL.
256
4.12. REMARK. ( i ) Theorem 4.7 g e n e r a l i z e s 3.5 i n 121. By t h i s a l s o t h e completeness r e s u l t i n [2,3.1Dl can be g e n e r a l i z e d . Given a 1-model nl =, an environment 5 and a t y p e i n t e r p r e t a t i o n V: T +PD, l e t m,5, VCoM and m,E, V I - B be as i n 1.2 o f 1 2 1 . Now, g i v e n a t y p e theorVy,= , d e f i n e BI=ToM i f f f o r a l l m , s,V, such t h a t T c T one has m, 5, m,E,V k oM. V By t h e same t e c h n i q u e as i n 121, u s i n g 4.7 and 2 . 4 ( i ) one can e a s i l y p r o v e
;
r
r
B I= UM * B F uM. (ii)(Comparing t h e completeness r e s u l t s i n [ 7 1 , [a1 and 121). The p r o o f i n [ 71 uses a t e r m model o f k a l c u l u s , namely t h e s e t o f 1-terms up t o 16-convertib i l i t y , i.e. m ( A g ) = { [ M l I M i s a A-term 1 where [ M ] = { N l x p . F M = N }. Then, f o r a g i v e n b a s i s 8, ty es a r e i n t e r p r e t e d by (1)
vH={
mn 5 0 IB+@P
c_
O M }
rn(xe1
where c 0 i s t h e t r i v i a l environment d e f i n e d by c 0 ( x ) = [ o f B, see [ 6 1 . I n 121, t y p e s a r e i n t e r p r e t e d by Vo(o) = I d / o e d } E I F [ . However, g i v e n a b a s i s B, Theorem 4.7 see t h e p r o o f o f 4.8) Vo(o) = ( [ M I
%+
IB'F
implies t h a t ( f o r the d e f i n i t i o n o f
5B'
UM 1.
As a m a t t e r of f a c t , n o t e t h a t V o 5.
and B + i s a v a r i a n t
To
To (2)
XI
and V
EXTENDED TYPE STRUCTURES AND D-
H
a r e v e r y much a l i k e .
A-MODELS
I n t h i s s e c t i o n we p r e s e n t some i n t e r e s t i n g t y p e t h e o r i e s o b t a i n e d by i n t e r p r e t i n g t y p e s i n well-known a p p l i c a t i v e s t r u c t u r e s , i . e . D, 1 -models o f S c o t t [ 171. F i r s t , we show how t o o b t a i n e x a c t l y t h e t h e o r y To by i n t e r p r e t i n g t y p e s i n an i n v e r s e l i m i t space,
DZ
,
c o n s t r u c t e d by s t a r t i n g w i t h t h e l a t t i c e P,
.
As immediate consequence, we have t h a t 'the completeness theorem f o r C u r r y ' s t y p e assignment system (and f o r i t s c o n s e r v a t i v e e x t e n s i o n i n 1 2 1 ) i s proved by t h e use o f a "mathematical" A-model. Dl
T h a t i s , by a model (which i s a s u b s t r u c t u r e o f
) c o n s t r u c t e d by means which a r e n o t s y n t a c t i c i n n a t u r e ,
f i l t e r A-model
i n 1 2 1 o r t h e t e r m model i n 171.
assignment f o r t n e model P, by Theorems 3.9 and 3.10, 0
i n t o Dm
has been proved,
such as t h e
(Completeness o f C u r r y ' s t y p e
i n d e p e n d e n t l y , i n [ 41). Moreover,
any ( c o u n t a b l e ) a p p l i c a t i v e s t r u c t u r e can be embedded
.
I n t h e second p a r t t h e r e l a t i o n s between t y p e t h e o r i e s and some 0,
A-models
are studied. We use s t a n d a r d n o t a t i o n on i n v e r s e l i m i t spaces ( c f . [ 17 ] o r [ 11). An i n v e r s e l i m i t D:
(i,j) of
i s c o m p l e t e l y determined by a complete l a t t i c e D D 1
=C(Do,Do)
on Do. As u s u a l we i d e n t i f y dt.0
t h a t , i f D o i s a l g e b r a i c , a l s o D, 0
L e t D,
i s a l g e b r a i c and (D,)
be t h e i n v e r s e l i m i t space determined by
p r o j e c t i o n (il,j,),
where i,(d)=AeeD
0
0
and a p r o j e c t i o n
w i t h an,
n
k
=
u (Dn) ne
(d)eDm. R e c a l l
k.
Do= P, and t h e s t a n d a r d
.d and j l ( f ) = f ( l ) .
Extended Type Structures and Filter Lambda Models 5.1.
Definition. ( i )
(ii)
v!
&=
D:>. "
T+K(D:)
s a t i s f i e s C3.
LEMMA. (i)V u e T V n V o ( u ) c _ { n l .
(ii) vC~(D:)
Proof. deD,.
I
i s t h e t y p e i n t e r p r e t a t i o n g i v e n by Vo($n)={nl+{Ol.
Note t h a t , by 2 . 1 3 ( i i i ) and 3 . 4 ( i i i ) , S m 5.2.
257
3 p e V ~
(vo(~)~vo(T)G*
(i)
Observe
that,
{%}=f
Then
with
l e t u'(flah+Bh)A(a$
i, ( d ) = f
t h e standard projection,
= $ + { n'}=D:+{
i } ( c f . 3.6).
@{n} The p r o o f i s by i n d u c t i o n on u . I f Else,
O ( ~ )~ v o ( T ) + v o ( ~ ) fi v o ( p ) & ) .
U ~ Ut h e
for all
proof i s t r i v i a l .
~ ' ( ~ ) s { " n > . Then,
k ) and assume
i d
by ~ 3 , f o r some HIGH
and
D:G(H",Vo(ah))n(n,IkI) (n,Vo(Bh))n(;7, [ O l ) ~ { % } . K H which i s i m p o s s i b l e by t h e i n d u c t i o n hypothesis.
and K ' S K such t h a t K ' U H ' P 0 ,
I f K ' = 0, t h e n n, V '(6 ) C { n ' l H h - , If K'#@, then V F K ' DoE{kl, which i s impossible. m
(ii)
.
Again by i n d u c t i o n on u
Thus t a k e
If
UEU
t h e assumption may h o l d o n l y f o r c=@.
PEW.
I f u? ( $ a h + B h ? A ( A $ ) , by C3, f o r some H'GH and K'EK, H ' U K ' f Q , V'(T)C_ K k ((H",V "(a h) )"($ [k I) and ( V O(8 h) In( I f K'=@, take p- A B H' I f K ' # @ , t h e n VkeK V O( T)c_Ik 1, which i s i m p o s s i b l e by ( i ) .
pl{61)s;.
5.3.
THEOREM. (i) T o :T V o .
(ii)c, l.
m
,-,E>
.
Proof. (i)By d e f i n i t i o n T o G T V O . Conversely, we p r o v e t h a t TSU. T r i v i a l . ~-4,.
I f u'u
U ~ ~ T * U % T
, t h e n u~ VO $ n
L e t t h e n u:(fiah+Bh)
A
;
O(
.
does n o t h o l d .
and
,; 611S{b I,
bh) 1
T
(2 $ k ) -
05 V ~ $ n * 3 H ' c H 3K'CK H ' U K ' # $ ( ,V
b y i n d u c t i o n on
{ n k ( f l , V o ( a h ) ) n ( n , [ i } ) and K by C3. I
",
By Lemma 5.2 we have K ' = 0 ( e l s e
H and
"
V o ( ~ h ) C { O I ) . Thus V k e K ' { n } g { k } ,
i.e.
VkeK' n=k. T h e r e f o r e A , $ =$ OU'A$ f o r some U ' E T. T h i s g i v e s u%$ K k- n T:T~+T~. The p r o o f goes as i n p r e v i o u s case a p p l y i n g i n d u c t i o n . T C T ~ A T ~ Use .
(ii)
We
U ~ V ~ T ~ A TU 2L *V ~ T i
have t o
show
that
and
ULVoT2
there
Define
io:IFI+IK(D_) I ^vO
by i o ( d ) = ? { V o ( u ) l u e d }
an embedding
as
lattices
.
i s i n j e c t i v e . It i s c l e a r l y i n c l u s i o n preserving.
We p r o v e t h a t ? ' ( d ) * i o ( e ) L i o ( d - e ) .
.
.
exists
a p p l i c a t i v e s t r u c t u r e s . The isomorphism h o l d s by 3 . 4 ( i i i ) . BY ( i ) ,
n
The r e v e r s e i n c l u s i o n i s e a s i e r .
and as
M. COPPO ET AL.
258
u)g.
N o t i c e f i - r s t t h a t E E V q d ) =+ 3ue d V,"( * , . ( d ) * V o ( e ) =+ 31be\j0(e) b + C E V o ( d ) *CE V * " * 3Tee 3 u Ed V0(r)E b a&vVo(~)E b+c * 3 ~ e e3 0 E d VO(u)c VO(,)+ c ;+ 3 r e e 3 0 Ed 3peT Vo(u) c_ VO(,)+ Vo(p) V 0 ( p ) c c, by 5 . 2 ( i i ) * 3 p t T 3 ~ ee T+$d V o ( p ) C c, b y (i) =+ 'ceVo(d-e). n
Then
and
T h i s theorem has an immediate consequence. SOROLLARY. 5.4. i n t o D, .
Any ( c o u n t a b l e ) a p p l i c a t i v e s t r u c t u r e
Proof. By Theorems 3.10 and 5 . 3 ( i i ) .
can be embedded
0
As a l r e a d y mentioned, t h e h y p o t h e s i s an t h e c o u n t a b i l i t y o f A can be dropped by t a k i n g enough t y p e v a r i a b l e s i n t h e d e f i n i t i o n o f T i n 1 . 2 ( i ) and u s i n g Pa i n s t e a d o f Pw , f o r a l a r g e enough c a r d i n a l a , i n the construction o f Dana S c o t t ( p e r s o n a l communication)
.D:
has a d i r e c t argument f o r a s i m i l a r
embedding r e s u l t . By Theorem 3.5, 0m and type
IK(D_)[
any D,
a r e i s o m o r p h i c as r e f l e x i v e domains.
interpretations
V:
domains. < I S ( T V ) I ,F,G t h e c o n s i d e r e d 0,
space y i e l d s an ETS o v e r K ( D _ ) . Moreover, by 3.8, T+K(Dm ) ,
Thus f o r a l l s u r j e c t i v e
and D,are
IS ( T V ) I
isomorphic r e f l e x i v e
> can be used as a t o o l f o r i n v e s t i g a t i n g p r o p e r t i e s o f
. For t h i s
purpose, however, we need a t h e o r y TV easy t o
handle (we ask, f o r example, t h a t T V i s r e c u r s i v e l y a x i o m a t i z a b l e ) . I n t h e r e s t of t h i s s e c t i o n we d e f i n e some s i m p l e t y p e t h e o r i e s w h i c h y i e l d f i l t e r ?,-models i s o m o r p h i c t o i n t e r e s t i n g i n v e r s e l i m i t spaces. We f i r s t need a r e s u l t which i s w o r t h d i s p l a y i n g by i t s own i n t e r e s t f o r t h e axiomatization o f type theories. 5.5.
THEOREM. L e t T be a t y p e t h e o r y s a t i s f y i n g C3. Assume t h a t
and 3J $.+ A $ . + $ . where VjeJ V@ieAt "i.;L? 1 T J J J Define Z T [ $ $ j ~ @ i l ,"~j~~i}Ut"+13'"ij+"jI, QT Then T=T(Zl. Proof. We o n l y need t o p r o v e t h a t TC_T (
x
$.EAtU[w},$.
3 J$.+Q. J J 1-
), i.e.
that
0
€At
u and
T
.
TEW.
Trivial.
TZ@ E
A t . I f uzw
or u
E
. .
u ~ ~ T ; + u ( ~ T
The p r o o f i s by i n d u c t i o n on t h e number o f arrows i n cases on
J
We work by
A t t h e r e s u l t i s obvious.
Otherwise, l e t u = (Aah+Bh )A((?k $1 ' s a r e as i n t h e assumption.
) , w i t h @k+T
t$pl, where t h e
$
1
' s and
Extended Type Structures and Filter Lambda Models 0 5T T
-
uLT
34 .++j
I'A
f o r some J, by h y p o t h e s i s L ~ ++j* ~
h ) ~$1+( t+1)
-vje
J
=. V j
J 3H'L H 3 L ' c L
E
259
ah+3
( A , 6 )A(;,
H'UL'#
0
and $ .<
- J-r'
fl, ah)A(t, $1) and
$1 IT+ by c 3
- V j e J 3 H ' zHH 3 hL 1 & L '
,9
H ' U L ~ #o
and
$ ;~filah)A(~,+l)and
($,~~)h((!,+~)5~ +jj. b y t h e assumption i f H ' i s empty and by t h e i n d u c t i o n hypothesis otherwise
* The case
, by
5< T
-z
T E T ~4 T~
i s t r i v i a l w h i l e t h e case
the induction hypothesis.
5.6.
LEMMA.
Let
1.1.
D m be any
t h a t V C ~ ( D 31 ~ )V(+$l)=c ~
T S T ~ + T ~e a s i l y
f o l l o w s f r o m C3 and
n inverse
limit
space.
Let
V:T+
K ( D m ) be such
(where $ i e A t f o r a l l i d ) . Then V i s s u r j e c t i v e .
P r o o f . R e c a l l t h a t i f ce(Dm ) k , t h e n c ~ ( D , ) ~ f o rsome n. The p r o o f i s by i n d u c t i o n on n. n=O. By t h e assumption.
-
.
L e t c ~ ( D ~ + ~Then ) ~ . f o r some I and ai,b;Dn, c = y fa,b. Now, =; ii+6 i, by Remark 3.6 1 1 c=nf I a.b. *;= ?V(ui)+V(ri) f o r some I, by t h e i n d u c t i o n h y p o t h e s i s JE=v(Au.+T
1 1
). i
(i)( P r o j e c t i o n s ) Given a complete l a t t i c e D o , d e f i n e t h e f o l l o w i n g p r o j e c t i o n s o f C(Do,Do) on Do : ie(d)= f je(f)=f(e) where eeDo ed i f Do= Pw,set i*(d)uf{nl{nll nedl j*(f)U(dl i*(d)Lfl. , and N L i s t h e f l a t (ii) ( I n v e r s e l i m i t spaces) L e t 6 = {1 , T ) , where I(T l a t t i c e o f i n t e g e r s ( i . e . x y i f f x = l o r Y=T o r x=y) Do = and p r o j e c t i o n s Then se:, w i t h 5.7.
Definition.
P
w
pw
NL NL 4 Dm
5 Dm
( iii) ( Formul a s )
6 0
M. COPPO ET AL.
260
(iv)
(Type I n t e r p r e t a t i o n s ) D e f i n e , f o r q=O,
... ,5,
Vq:l
vo(Qn)=v'(@n)=Iil V 2 ( Qn)=V3(Qn)=il
.
v4(Qn)=v5(@n)= i
The p r o j e c t i o n s ( i j ) have been i n t r o d u c e d by Park e' e It i s easy t o check t h a t ( i * , j * ) i s a c t u a l l y a p r o j e c t i o n o f C(Pw,Pw) on Pw
.
It
has been d e f i n e d u s i n g P r o p o s i t i o n 3.10 o f [ 17 1. 5.8.
THEOREM. L e t q= 0
(i)
V'
(ii)
T(Zq) = T v q
,... ,5.
Then
i s onto K ( D ~ ) .
.
P r o o f . By 5.5 and 5.6. 5.9.
REMARK. The s e t o f t y p e s i n T(Cq) and T ( z , ) a c t u a l l y c o n t a i n s j u s t one t y p e
v a r i a b l e (up t o " ^ . " ) , w h i l e t h e o t h e r t h e o r i e s above d e f i n e d , c o n t a i n i n f i n i t e t y p e v a r i a b l e s . T h i s corresponds t o t h e f a c t t h a t 6 has o n l y one compact element, T,
d i f f e r e n t from
elements.
I,
while NL
and Po have c o u n t a b l y many incomparable compact
I n general a complete a l g e b r a i c l a t t i c e , by t h e same t e c h n i q u e ,
would
g i v e a t y p e t h e o r y w i t h as many non e q u i v a l e n t t y p e v a r i a b l e s as t h e c a r d i n a l i t y o f t h e compact elements i n i t ( e x c e p t f o r The isomorphism between f i l t e r
I
).
A-models
i n i n v e s t i g a t i n g t h e t h e o r i e s o f D,
spaces.
and D _ s p a c e s may be o f some h e l p
I n p a r t i c u l a r we c o n j e c t u r e t h a t
n o t any D, A-model has a maximal t h e o r y . A n a t u r a l g e n e r a l i z a t i o n o f EATS i s o b t a i n e d by a l l o w i n g " A " t o be a p a r t i a l f u n c t i o n which s a t i s f i e s some ( n a t u r a l ) c o n d i t i o n s ( f o r example, i f U / \ T i s d e f i n e d and U < ( J ' , TLT' t h e n a l s o d AT' must be d e f i n e d , c f . t h e s e t Con o f r 2 1 1 ) . I n t h T s case t h e f i l t e r domains t u r n o u t t o be c.p.0.s. This i s also t h e approach o f S c o t t ' s i n f o r m a t i o n systems [ 2 1 ] . We c l a i m t h a t most o f t h e p r o p e r t i e s o f t h i s paper s t i l l h o l d . FOOTNOTES
"I" i s
(1)
Note t h a t i n D e f i n i t i o n 1.1 r e d as a s y n t a c t i c o b j e c t .
a r e l a t i o n w h i l e , here,
(2)
As u s u a l , i f f: A+B and CCA, f ( C ) = I f ( a ) I aeC1.
(3)
As u s u a l ,L, ( t h e r e i s an i n j e c t i v e ( b i j e c t i v e ) homomorphism v:
"I" i s
conside-
means t h a t D';,E'
>.
Extended Type Structures and Filter Lambda Models
261
(4)
I d denotes always t h e i d e n t i t y f u n c t i o n on some s e t which i s c l e a r from the context.
(5)
We keep u s i n g t h i s abuse o f language: 3 I.. stands f o r " t h e r e e x i s t f i n i t e l y many elements o f t h e i n t e n d e d s e t , indexed i n I , such t h a t . . . " .
.
"2' between t y p e s i s i n t e n d e d modulo p e r m u t a t i o n s and and EUAW ).
(6)
" A W "
( f o r example
BATETAU
ACKNOWLEDGEMENTS A few d i s c u s s i o n s we had w i t h Henk Barendregt and K a r s t Koymans, i n t h e b e a u t i f u l s u r r o u n d i n g s o f Mount Gran Paradiso, were v e r y h e l p f u l i n c l e a r i f y i n g o u r view p o i n t and some o f o u r r e s u l t s . REFERENCES
[l]
Barendregt, H., The Lambda C a l c u l u s , i t s Syntax and Semantics ( N o r t h Hol 1and, Amsterdam, 1981).
[2 ]
Barendregt, H., Coppo, M. and D e z a n i - C i a n c a g l i n i , M., A F i l t e r Lambda Model and t h e Completeness o f Type Assignment, J. Symbolic L o g i c ( t o appear).
[3 ]
Coppo,M., D e z a n i - C i a n c a g l i n i , M. and Venneri, B., F u n c t i o n a l Characters o f S o l v a b l e Terms, Z. Math. L o g i k Grundlag. Math. 27 (1981) 45-58.
1
Coppo, M., Completeness o f Type Assignment i n Continuous Lambda Models, Theor. Comput. S c i . ( t o appear).
[4
[5 1
Curry, H.B.
and Feys,R.
%
Combinatory L o g i c
I (North-Holland, Amsterdam,
1958). [6 1
Engeler,
E.,
Algebras and Combinators,
Algebra U n i v e r s a l i s 13 (1981)
389-392. [7]
H i n d l e y , R., The Completeness Theorem f o r Typing X-terms, Theor.Comput. S c i . 22 (1) (1983).
[81
Hindley, R., The Simple Semantics f o r Coppo-Dezani-Sall@ Type Assignment, in: Dezani-Ciancaglini, M. and Montanari, U. (eds.), I n t e r n a t i o n a l Symposium on Programming (LNCS, 137, Springer-Verlag, B e r l i n , 1981).
[9 I
Longo, G., S e t - t h e o r e t i c a l Models o f A - c a l c u l u s : T h e o r i e s , Expansions, Isomorphisms ( r e v i s e d v e r s i o n ) , LCS-MIT Tech. Mom. 207 (December 1982), Ann. Math. L o g i c ( t o appear).
[lo 1
Meyer, A., What i s a Model o f X - c a l c u l u s ? (expanded v e r s i o n ) , I n f o r m a t i o n and C o n t r o l 52 (1982) 87-1 22.
[111
M i l n e r , R., F u l l y A b s t r a c t Models o f Typed X - c a l c u l u s , S c i . 4 (1977) 1-22.
[12 1
Nolin, 8, R-1,
L., A l g o r i t h m e s U n i v e r s e l s , R.A. I.R.O. (1974) 6-17.
Theor.
Comput.
I n f o r m a t i q u e Th@orique,
M. COPPO ET AL.
262 [131
Norman, D., Recursion on t h e Countable F u n c t i o n a l s (LNM, 811, S p r i n g e r Verlag, B e r l i n , 1980).
[141
P l o t k i n , G.D., A s e t - t h e o r e t i c a l D e f i n i t i o n o f A p p l i c a t i o n , School o f A r t i f i c i a l I n t e l l i g e n c e , Memo MIP-R-95, Edinburgh Univ. (1972).
[151
Sanchis, L.E., R e f l e x i v e Domains, i n : H i n d l e y , J.R. and S e l d i n , J.P. (eds.), t o H.B. C u r r y : Essays on Combinatory L o g i c , Lambda C a l c u l u s and Formalism (Academic Press, London, 1980).
[161
Schmidt, H.A., 1960).
Mathematische Gesetze d e r L o g i k ( S p r i n g e r - V e r l a g , B e r l i n ,
17 1
S c o t t , D.S., Continuous L a t t i c e s , i n : Lawvere, F.W. (ed.), Toposes, A l g e b r a i c Geometry and L o g i c (LNM, 274, S p r i n g e r - V e r l a g , B e r l i n , 1972).
181
S c o t t , D.S., Open Problem n. 11, 4 i n : Bijhm, C. ( e d . ) , A-calculus and Computer Science Theory (LNCS, 37, S p r i n g e r - V e r l a g , B e r l i n , 1975).
191
S c o t t , D.S.,
201
S c o t t , D.S., L e c t u r e s on a Mathematical Theory o f Computation, Lab. Tech. Monograph PRG-19, O x f o r d Univ. (1981).
211
S c o t t , D.S., Domains f o r D e n o t a t i o n a l Semantics, i n : N i e l s e n , M. and Schmidt, E.M. (eds.), Automata, Languages and Programming (LNCS, 140, S p r i n g e r - V e r l a g , B e r l i n , 1982).
Data Types as L a t t i c e s , S I A M J. Comput. 5 (1976) 522-587. Comp.
LOGIC COLLOQUIUM '82 G . Lolli, G. Long0 and A. Marcja (editors) 0 Elsevier Seience Publishers B. V. (North-Holland], 1984
263
D E C I S I O N PROBLEMS I N PREDICATE LOGIC
Egon B o r g e r ( + ) Lehrstuhl Informatik I 1 U n i v e r s i t a t Dortmund P o s t f a c h 500 500 D-4600 Dortmund 50
ABSTRACT I n t h i s paper we s u r v e y fundamental methods and r e s u l t s a b o u t t h e d e c i s i o n problem f o r c l a s s e s o f f i r s t o r d e r l o g i c a l f o r m u l a e . We beg i n w i t h a kintotocal. account which t e l l s t h e main s t e p s i n t h e deve: lopment o f t h e f i e l d f r o m H i l b e r t ' s f o r m u l a t i o n o f t h e Entscheidungsproblem t o today. We t h e n d i s c u s s i n more d e t a i l n meMod due t o Aanderaa and m y s e l f which b u i l d s upon and extends i d e a s o f T u r i n g and Buchi and i s p a r t i c u l a r l y w e l l s u i t e d 60. logical. &chipLLvMo 0 6 compuRnLLvml. pmblem,; we e x p l a i n how b y t h i s method (and var i a n t s t h e r e o f ) s t r u c t u r a l p r o p e r t i e s o f c o m p u t a t i o n f o r m a l i s m s and o f t h e i r d e s c r i b i n g f o r m u l a e a r e i n t i m a t e l y c o r r e l a t e d i n such a way t h a t many r e c u r s i o n and c o m p l e x i t y t h e o r e t i c a l p r o p e r t i e s by t h i s r e d u c t i o n a r e e a s i l y c a r r i e d o v e r f r o m t h e c o m b i n a t o r i a l d e c i s i o n problems t o t h e c o r r e s p o n d i n g l o g i c a l d e c i s i o n problems. As example we produce by s l i g h t and n a t u r a l v a r i a t i o n s o f t h a t method u ~ d o m(and e a s y ) pmo@ f o r : NP-resp. x 1 r e s p . n 1- r e s p . n 2 - c o m p e t e n u n 0 6
t h e d e c d i o n pmblem f o r p r o p o s i t i o n a l (Cook) resp. f r i s t o r d e r l o g i c (Church, T u r i n g ) r e s p . o f t h e emptiness ( T r a c h t e n b r o t , B u c h i ) r e s p . t h e i n f i n i t y problem f o r f i r s t o r d e r npectm, t h e chamctehizuLLon o f t h e l a t t e r ( S c h o l z ' s problem) as t h e NEXPTIME-acceptable s e t s ( B e n n e t t , Rodding, Schwichtenberg, Jones, Selman) r e s p . o f t h e gener a l i z e d s p e c t r a as t h e NP-sets ( F a g i n ) , s i m p l e axioms f o r e s s e n t i a l l y u n d e c i d a b l e and i w o m p l & t e t h e o h i u resp. n a - t h @ a b l e d o m u h e w i t h o u t fiecumive mock& d e s c r i b i n g enumeration programs f o r xo-unseparab l e r . e . s e t s , Loweh compeexity bounds and i n d e e d completeness r e s u l t s f o r many n a t u r a l s o l v a b l e cases o f f i r s t o r d e r l o g i c a l d e c i s i o n problems as s u b r e c u r s i v e analogues t o t h e u n d e c i d a b l e r e d u c t i o n c l a s s e s , and o t h e r c o m p l e x i t y r e s u l t s f o r f i r s t o r d e r o r p r o p o s i t i o n a l l o g i c problems l i k e a n a t u r a l l o g i c a l c h a r a c t e r i z a t i o n o f n e t work o r T u r i n g machine campLexity o BooLmn duncLLo~owhich i s s t r o n g l y r e l a t e d t o t h e P = NP-prob em. Our main concern i s t o r e v e a l t h e deep s t r u c t u r a l and c o m b i n a t o r i a l s i m u l a r i t i e s between computat i o n s and l o g i c a l d e d u c t i o n s , which b r i n g o u t e x p l i c i t e l y t h e fundamental and u n i f o r m reason f o r many u n d e c i d a b i l i t y and c o m p l e x i t y r e s u l t s f o r c o m b i n a t o r i a l and f o r l o g i c a l d e c i s i o n problems (see t h e above c i t e d examples). HISTORY OF IDEAS From t h e v e r y b e g i n n i n g of mathematics a g r e a t amount o f mathematical r e s e a r c h has been d e v o t e d t o f i n d i n g a l g o r i t h m i c s o l u t i o n s t o g i v e n problems. An i m p o r t a n t subc l a s s o f such problems a r e t h e so c a l l e d d e c i s i o n problems c o n s t i t u t e d b y a c l a s s X of o b j e c t s t o g e t h e r w i t h a p r o p e r t y ( o r r e l a t i o n ) P on X; such d e c i s i o n problems a r e c a l l e d s o l v a b l e if t h e r e e x i s t s an a l g o r i t h m which e n a b l e s t o d e c i d e f o r e v e r y o b j e c t i n X whether i t shares t h e p r o p e r t y P o r n o t . The e f f o r t t o s o l v e problems +) P r e s e n t l y a t I s t i t u t o d i M a t e m a t i c a , I n f o r m a t i c a e S i s t e m i s t i c a o f U n i v e r s i t y o f U D I N E I I t a l y , on l e a v e f r o m U n i v e r s i t y o f Dortmund.
4
E. BORGER
264
i n an a l g o r i t h m i c manner on t h e one hand r e p l i e s t o t h e p r a c t i c a l need o f mechanizing a p p l i c a t i o n s o f mathematical reasoning, o f breaking down complicated mathematical processes i n t o a succession o f elementary steps which can be performed i n a p u r e l y mechanical way w i t h o u t deeper mathematical understanding and w i t h o u t any need f o r i n t e l l i g e n t e x t e r n a l c o n t r o l o r i n t e r v e n t i o n . On the o t h e r hand t h i s e f f o r t o f a l g o r i t h m i s i n g mathematical t h i n k i n g i s c o r r e l a t e d t o and has been s t i m u l a t e d by an o l d dream o f humanity t o f i n d a general r e l i a b l e method by which a l l p h i l o s o p h i c a l and s c i e n t i f i c problems and a l l d i s p u t a t i o n s on them could be s e t t l e d i n an e f f e c t i v e and d e f i n i t e way. This Ldidea 06 a u n i v e m d pmbLem n o t u h g a.tgo&LZhn, present f o r ex. i n Raimundus L u l l u s ' reasoning about an ars magna, has been made more p r e c i s e by L e i b n i z f i r s t l y i n h i s d i s t i n c t i o n between an ars inveniendi - an a l g o r i t h m f o r searching and l i s t i n g s y s t e m a t i c a l l y s o l u t i o n s t o a l l problems - and an ars i u d i c a n d i - an a l g o r i t h m f o r deciding f o r every p a r t i c u l a r problem posed whether the answer t o i t i s yes o r no ; secondly by r e a l i s i n g t h a t such a u n i v e r s a l search o r d e c i s i o n method presupposes a mathem a t i c a l l y precise u n i v e r s a l language i n which a l l problems can be unambigously expressed. This Leibnizean p r o j e c t o f a chamc.tehid.tiCa u n i v e a ~ a L ihas ~ been f u l l y r e a l i z e d o n l y by Frege's f o r m u l a t i o n o f what we c a l l today c l a s s i c a l f i r s t order l o g i c ( p r e d i c a t e c a l c u l u s ) and Godel's (1930) completeness theorem t h a t t h e l a t t e r i n deed describes e x a c t l y t h e n o t i o n o f u n i v e r s a l l o g i c a l v a l i d i t y . This r a t i o n a l calculus, t o say i t i n Leibnizean terms, enabled H i l b e r t t o t u r n the o l d human dream of an ars magna i n t o a s p e c i f i c mathematical problem, namely H i l b e r t ' s program. (1) H i l b e r t asked i n p a r t i c u l a r t o c o d i f y the various branches o f mathematics by f i r s t order axiom systems so t h a t t h e p r o o f o f a n y p a r t i c u l a r mathem a t i c a l statement comes up t o d e r i v i n g i t from t h e axiomsby the i n d i c a t e d p u r e l y l o g i c a l means; t h a t would t u r n d e r i v a t i o n s o f mathemacical r e s u l t s a t l e a s t i n p r i n c i p l e i n t o a mechanical game w i t h concrete o b j e c t s , namely s t r i n g s o f symbols representing f i r s t order l o g i c a l d e r i v a t i o n s . This i s the reason why the d e c i s i o n problem f o r c l a s s i c a l p r e d i c a t e l o g i c , i . e . t h e problem t o know i f t h e r e e x i s t s (and e v e n t u a l l y t o e x h i b i t ) an a l g o r i t h m by which f o r any w e l l formed statement o f p r e d i c a t e l o g i c i t can be decided i n a f i n i t e number o f steps whether i t i s l o g i c a l l y t r u e o r not, has been c a l l e d by H i l b e r t "WS ENTSCHEIDUNGSPROBLEM" t o u t court, considered one i f n o t the main mathematical problem o f t h a t period.
A l l attempts i n the Twenties and e a r l y T h i r t i e s t o solve the Entscheidungsproblem f a i l e d and came up w i t h n o l d o v l b o f the d e c i s i o n problem o n l y 6012 phticduh nubcasu. To formulate the most s i g n i f i c a n t o f these e a r l y p a r t i a l s o l u t i o n s ...) t h e c l a s s o f a l l closed prenex formulae o f r e s t r i c t e d denote by n(ml,m2,m3, predicate l o g i c ( i . e . w i t h o u t f u n c t i o n symbols o r i d e n t i t y s i g n ) having a p r e f i x o f form and c o n t a i n i n g a t most m. p r e d i c a t e symbols o f rank i. The f o l l o w i n g subcases o f p r e d i c a t e l o g i c have a'solvable d e c i s i o n problem w i t h respect t o s a t i s f i a b i l i t y ( 2 ) and a r e optimal t h e r e f n i n a sense t o be made p r e c i s e l a t e r : Monadic p r e d i c a t e l o g i c V. VAV V V... VMV V VA A V...
..
... ... ...
(Lowenheim (1915)) (Ackermann (1928)) (Godel (1932),Kalmar(1933),SchUtte (1934)) (Bernays fi Schonfinkel (1928))
(l) I t i s e p i s t e m o l o g i c a l l y i n t e r e s t i n g t h a t H i l b e r t ' s program was formulated w i t h t h e i n t e n t i o n t o defend mathematics against t h e a t t a c k o f t h e foundational c r i s i s due t o the discovery o f various paradoxes w i t h i n systems o f s e t theory, by p u t t i n g mathematical reasoning on a safe epistemological basis. ( * ) Mostly f o r t e c h n i c a l convenience we s h a l l speak o f l o g i c a l d e c i s i o n problems always i n terms o f s a t i s f i a b i l i t y instead of l o g i c a l v a l i d i t y ; t h i s i s wothout l o s s o f g e n e r a l i t y since a formula i s s a t i s f i a b l e i f f i t s negation i s n o t l o g i c a l l y v a l i d . For a c l a s s o f formulae we consider t h e r e f o r e i f {FIFEC,F i s s a t i s f i a b l e ) i s r e c u r s i v e o r not.
265
Decision Problems in Predicate Logic
I n 1936/7 i t has been p r o v e d t h a t H d b e m 2 EnXAcheidu~1gop4obbe.mas a whole noR nabuabbe. abgohithmicaUy. Indeed Church (1936) showed t h a t any p a r t i a l r e c u r s i v e f u n c t i o n can be r e p r e s e n t e d i n a f i n i t e e x t e n s i o n o f f i r s t o r d e r p r e d i c a t e l o g i c ; as a c o n c l u s i o n t h i s e x t e n s i o n and t h e r e b y a l s o D r e d i c a t e l o g i c cannot be a d e c i d a b l e t h e o r y . T u r i n g (1937) o b t a i n e d t h e r e s u l t i n d e p e n d e n t l y by an e x p l i c i t d e s c r i p t i o n of T u r i n g machine computations by l o g i c a l f i r s t o r d e r formulae t h e r e b y r e d u c i n g e f f e c t i v e l y an u n s o l v a b l e c l a s s o f p a r t i c u l a r word problems f o r T u r i n g machines t o t h e d e c i s i o n problem f o r corresponding f i r s t o r d e r formulae, c o n c l u d i n g t h e u n d e c i d a b i l i t y o f t h e l a t t e r f r o m t h e undecidab i l i t y o f t h e former. Since a t t h a t t i m e a l a r g e number o f s p e c i a l c l a s s e s o f f i r s t o r d e r formulae was known a l r e a d y t o have a s o l v a b l e Entscheidungsproblem, T u r i n g found i t i n t e r e s t i n g t o observe i n o p . c i t . t h a t f o r h i s r e d u c t i o n he r e a l l y needed o n l y a small p o r t i o n o f p r e d i c a t e l o g i c , namely t h e subclass V A V A6(0,-). By T u r i n g ' s c o n s t r u c t i o n , Godel I s completeness theorem t e l l i n g t h a t f i r s t o r d e r l o g i c a l v a l i d i t y i s r e c u r s i v e l y enumerable and t h e u n i v e r s a l i t y o f T u r i n g machines t h e above c l a s s i s even a "ke&LLon claoo", i . e . a c l a s s X o f f o r m u l a e w i t h a d e c i s i o n problem t o which t h e whole Entscheidungsproblem i s many-one r e d u c i b l e , i n o t h e r words f o r which a procedure e x i s t s a s s o c i a t i n g t o e v e r y f i r s t o r d e r formulaF a f o r m u l a F i n X which i s e q u i v a l e n t t o i t i n t h e sense t h a t F i s s a t i s f i a b l e i f f F i s s a t i s f i a b l e . A f t e r t h e appearence o f T u r i n g ' s paper, many e f f o r t s were spent t o i m prove t h i s r e s u l t and t o 4e@%2H d b s 4 - f ~EnXAcheidcngsp&obbem, on t h e one hand by p r o d u c i n g " s m a l l e r " such " r e d u c t i o n c l a s s e s " - t h e r d o r e w i t h undecidable, even many-one complete Entscheidungsproblem, see Suranyi (1959) - on t h e o t h e r hand by e x h i b i t i n g d e c i s i o n procedures f o r l a r g e r and l a r g e r subclasses, see Ackermann (1954) f o r t h e s t a t e o f t h e a r t i n t h e F i f t i e s . I n measuring t h e l o g i c a l c o m p l e x i t y o f formulae m a i n l y t h e above mentioned two c l a s s i f i c a t i o n p r i n c i p l e s were pursued c o n s i d e r i n g t h e s t r u c t u r e o f t h e p r e f i x - l e n g t h and number (and k i n d ) o f q u a n t i f i e r changes and/or number and a r i t y o f o c c u r i n g p r e d i c a t e symb o l s . Most r e d u c t i o n s proceeded by s k i l f u l and o f t e n v e r y c o m p l i c a t e d f i r s t o r d e r f o r m a l d e s c r i p t i o n s o f d i r e c t t r a n s f o r m a t i o n s o f models f o r g i v e n formulae F ( o f w e l l known l o g i c a l s t r u c t u r e ) i n t o models o f a " c o d i n g " F o f F such t h a t f r o m any model f o r F a model f o r F can be e x t r a c t e d . These a x i o m a t i z a t i o n s o f d i r e c t model t r a n s f o r m a t i o n s o f t e n y i e l d e d much more t h a n what was r e q u i r e d by t h e v e r y n o t i o n o f r e d u c t i o n c l a s s , namely second-order l o g i c a l equivalences; and indeed i t i s a w i d e l y open, i n t e r e s t i n g problem t o know what a r e t h e b e s t r e d u c t i o n c l a s s e s w i t h r e s p e c t t o second-order d e d u c i b l e e q u i v a l e n c e between ( t h e e x i s t e n t i a l c l o s u r e s o f ) F and i t s r e d u c t i o n f o r m u l a F ( i n s t e a d o f a s k i n g m e r e l y t h a t F i s s a t i s f i a b l e ( f i r s t o r d e r d e d u c i b l e ) i f f F i s ) . B u t i n s p i t e o f many new r e d u c t i o n s which were found up t o t h e end o f t h e F i f t i e s , n o t even t h e d e c i s i o n p r o blem o f a l l f o r m a l l y s p e c i f i e d c l a s s e s o f formulae l i k e t h e p r e f i x c l a s s e s (I o r t h e p r e f i x - s i m i l a r i t y c l a s s e s n(ml,m *,...) c o u l d be s e t t l e d .
-
S t r a n g e l y e n o u g h T u r i n g ' s i d e a t o l o o k f o r smooth and d i r e c t l o g i c a l d e s c r i p t i o n o f machine computations o r s i m i l a r processes was n o t r e a l l y pursued up t o 1962. Only t h e n Buchi (1962) t o o k up a g a i n T u r i n g ' s approach and combined i t w i t h s k i l f u l use o f *Lea theohems &e Ro Shabern. These theorems t e l l t h a t a prenex f o r m u l a o f r e s t r i c t e d p r e d i c a t e l o g i c ( i . e . w i t h o u t f u n c t i o n symbols and w i t h o u t i d e n t i t y s i g n ) i s s a t i s f i a b l e i f f i t s Skolem normal f o r m i s , and t h a t i n models f o r such Skolem normal forms one can r e s t r i c t a t t e n t i o n t o t h e domain o f terms b u i l t up f r o m t h e i n d i v i d u a l c o n s t a n t s and f u n c t i o n symbols o c c u r i n g i n t h e f o r m u l a and t o i n t e r p r e t a t i o n o f t h e terms by themselves. T h e r e f o r e i n t h e l o g i c a l d e s c r i p t i o n o f computation processes l i k e t h e one g i v e n i n T u r i n g ' s (1937) paper one has n o t t o c a r e any more about t h e f o r m a l r e p r e s e n t a t i o n o f t h e o b j e c t s o f computation - l i k e numbers, words, sequences, domino p o s i t i o n s and l i k e ; these d a t a a r e r e p r e s e n t e d j u s t as i n d i v i d u a l terms appearing i n f o r mulae i n Skolem normal form. A f o r m u l a F i n VAVA o f form VAVAG f o r example i s uxvy s a t i s f i a b l e i f f i t s Skolem normal f o r m M G U , V ( O , ~ ' ) - w i t h Hx 1'. . ,xn ( tl 3. . . I t n )
w
.
E. BORGER
266
d e n o t i n g t h e r e s u l t o f simultaneous s u b s t i t u t i o n o f xi by ti - i s s a t i s f i a b l e o v e r the naturals IO,O',O",O'", ...1 w i t h t h e i n d i c a t e d i n t e r p r e t a t i o n o f t h e zerop l a c e resp. one-place f u n c t i o n as t h e number 0 r e s p t h e n a t u r a l successor VA o f f o r m f u n c t i o n x + 1. S i m i l a r l y a f o r m u l a F i n AV
...
AV
xv1
. ..
VA G VnY
i s s a t i s f i a b l e i f f i t s Skolem normal f o r m G ; v.,l
. .,vn
(al,.
. . ,an)
i s s a t i s f i a b l e o v e r t h e domain of a l l words o v e r t h e a l p h a b e t
...,an)
{al.
w i t h t h e one-place f u n c t i o n symbols i n t e r p r e t e d as word successor f u n c t i o n s . S i m i l a r l y formulae o f p r e f i x f o r m M V t a l k about t h e F i t c h domain (Dyck language D1) o f a l l c o r r e c t p a r e n t h e s i s expressions b u i l t up f r o m t h e 2-ary p a r e n t h e s i s (,); V n M V corresponds t o t h e s t r u c t u r e o f b i n a r y t r e e s w i t h leaves l a b e l e d by symbols al,. . ,a ecc.
.
Buchi's s i m p l e b u t f u n d a m e n t a l o b s e r v a t i o n c o n s t i t u t e d a breakthrough. I t became c l e a r t h a t i n o r d e r t o show a c l a s s X t o be a r e d u c t i o n c l a s s one had t o l o o k above a l l f o r an a p p r o p r i a t e t y p e o f c o m b i n a t o r i a l system - l i k e T u r i n g machines, Thue systems, P o s t correspondence problems, domino games - where a p p r o p r i a t e n e s s means t h a t t h e d a t a s t r u c t u r e o f t h e c o m b i n a t o r i a l system can be c o n v e n i e n t l y encoded i n t o t h e t e r m s t r u c t u r e o f t h e (Skolem normal f o r m o f t h e ) f o r m u l a e i n X, and then d e s c r i b e an u n s o l v a b l e d e c i s i o n problem f o r t h e c o m b i n a t o r i a l system by a s a t i s f i a b i l i t y ( o r d e d u c i b i l i t y ) problem o f a f o r m u l a i n X.(1) By t h i s m t h o d Biichi (1962) showed t h e u n s e t t l e d p r e f i x c l a s s t o be a (even c o n s e r v a t i v e T 2 ) ) r e d u c t i o n c l a s s . Indeed f o l l o w i n g t h i s l i n e o f a t t a c k w i t h i n 4 y e a r s t h e d e c i s i o n problem o f a l l p r e f i x - s i m i l a r i t y c l a s s e s n(ml,m 2,...) could be s e t t l e d by proving the f o l l o w i n g t o be c o n s e r v a t i v e r e d u c t i o n c l a s s e s : AVA(-,l)
Kahr (1962), i m p r o v i n g t h e r e d u c t i o n c l a s s AVA (0,m) Kahr, Moore, Wang (1962)
in
A V ~ A ( O , ~ K) o s t y r k o (1964), Genenz (1965) ; s t r e n g t h e n e d i n Deutsch (1981) AVAVm(O,l) Gurevich (1966)
(1) I t i s i n t e r e s t i n g t o n o t e i n t h i s c o n t e x t t h a t v a r i o u s small u n i v e r s a l combinat o r i a l systems o r s t r o n g c o m b i n a t o r i a l t o o l s have been developed i n t h e a t t e m p t t o d e c i d e a g i v e n l o g i c a l d e c i s i o n problem. Good example a r e : Ratmey'n (1928) theanem developed i n t h e course o f t h e s t u d y o f t h e d e c i s i o n problem f o r t h e SchGnf i n k e l - B e r n a y s c l a s s V" f i m , a n d o t h e r s ; R a d d i t t g ' o (1969) p t h pmbLem i n t h e f i r s t (Gaussian) q u a d r a n t w i t h n a t u r a l c o o r d i n a t e s developed f o r an e l e g a n t p r o o f o f t h e u n d e c i d a b i l i t y o f t h e AVA (-,1) case - t h i s u n s o l v a b l e problem, a k i n d o f g e o m e t r i c a l model encoding a r b i t r a r y machine computations, t u r n e d o u t t o be extreml y u s e f u l f o r c o n s t r u c t i o n o f s m a l l u n i v e r s a l T u r i n g machines (see K l e i n e Buning & Ottmann (1977) and f o r d e c i s i o n problems i n g e n e r a l i z e d v e c t o r a d d i t i o n systems (see K l e i n e Buning (1980)); t h e fineah nampfing pnobLem d e v i c e d by Aanderaa d u r i n g t h e s t u d y o f subcases o f t h e AVA - d e c i s i o n problem (Aanderaa (1966) see below t h e AVA -Subclass Theorem) which prompted Lewis (1979) t o g i v e a new p r o o f f o r B e r g e r ' s (1966) theorem of t h e u n s o l v a b i l i t y o f t h e u n c o n s t r a i n e d domino problem. (2) A reduction class X i s c a l l e d conservative i f also f i n i t e s a t i s f i a b i l i t y i s preseri f t h e r e d u c t i o n procedure a l s o f u l f i l l s t h a t F i s s a t i s f i a b l e i f f F i s . ved,i.e.
267
Decision Problems in Predicate Logic
These t h r e e fundamental r e s u l t s t o g e t h e r w i t h t h e d e c i d a b l e cases mentioned a t t h e b e g i n n i n g (and w i t h some a d d i t i o n a l easy r e d u c t i o n s , see f o r ex. Gurevich (1966) o r K o s t y r k o (1966) y i e l d t h e f o l l o w i n g p r e f i x - s i m i l a r i t y theorem, f o r which we g e n e r a l i z e s l i g h t l y o u r
No-t~~tition.F o r any c l a s s n o f p r e f i x e s and any c l a s s u o f p r e d i c a t e symbols l e t n ( u ) be t h e c l a s s o f c l o s e d prenex f o r m u l a e o f r e s t r i c t e d p r e d i c a t e l o g i c w i t h p r e f i x i n n and p r e d i c a t e symbols i n U. L e t V"A" : = I V ~ Am,n~ ~= 0,1, ... I mn) be a c l a s s o f ml monadic,m2 and s i m i l a r l y f o r V m ~ V m e t c . L e t (ml,m2, b i n a r y ,...,mn n-ary and no o t h e r p r e d i c a t e symbol.
...,
Phe6ix-SimiJhhity Theohem doh k e n h i c t e d ptedicute
F o r any c l a s s p r e f i x e s and any c l a s s u o f p r e d i c a t e symbols t h e f o l l o w i n g h o l d s :
n
of
1. e i t h e r n(~) i s a c o n s e r v a t i v e r e d u c t i o n c l a s s o r has a s o l v a b l e d e c i s i o n problem 2. n(o) has a s o l v a b l e d e c i s i o n problem i f f e i t h e r u c o n t a i n s o n l y monadic p r e d i c a t e symbols o r II 5 V"A" or
u V"AV"
u V"MV"
and ~ - ( v " A " u V"AV" u V"MV")
are f i n i t e
( i . e . e s s e n t i a l l y o n l y t h e subcases mentioned a t t h e b e g i n n i n g have s o l v a b l e d e c i s i o n problem). 3. Any p r e f i x - s i m i l a r i t y r e d u c t i o n c l a s s i s more c o m p l i c a t e d o r equal t o one o f the f o l l o w i n g nine minimal conservative reduction classes: f i n i t e p r e f i x : AvA(m,l)
A3V (", 1
i n f i n i t e prefix: A"V(0,l)
A 3 ~ " ( ~1),
v"A3v( 0,1)
V"AVA(O,~)
q u a n t i f i e r changes :1
AVA"(O, 1), AV"A (0, 1
AVAV"
(o,~)
:2 :3
where n ( u ) i s n o t more c o m p l i c a t e d t h a n ( i . e . < ) n ' ( u ' ) i f f t h e elements o f n can be o b t a i n e d f r o m t h e elements o f n' by d e T e t i o n o f q u a n t i f i e r s and t h e r e i s a 1-1-mapping f r o m u t o U ' which does n o t decrease t h e a r i t y o f p r e d i c a t e symbols i n u . An analogous theorem h o l d s when a l s o f u n c t i o n symbols and t h e e q u a l i t y s i g n a r e allowed, denote by ( ~ ; u ; T ) t h e c l a s s o f c l o s e d prenex f o r m u l a e w i t h p r e f i x i n n
(2)
A good source f o r a p r o o f a r e f o r p a r t 2 t h e papers by Lowenheim, Godel, Bernays E S c h o n f i n k e l c i t e d a t t h e beginning, f o r p a r t 3 t h e papers Gurevich (1966), Kostyrko(1964) and f o r t h e AVA(m,l) case e i t h e r K o s t y r k o ( l 9 6 6 ) o r Rodding (1969).
E. BORGER
268
and p r e d i c a t e s resp. f u n c t i o n s as i n d i c a t e d by 0 r e s p . T. We t h e n can f o r m u l a t e t h e f o l l o w i n g v a r i a n t o f t h e above theorem which a g a i n has been e s t a b l i s h e d piecemeal by v a r i o u s a u t h o r s :
P m & i x - S U n i t y Theoaiem doh. @&?. ptredicate L o g i c . 1. F o r i d e n t i t y f r e e p r e d i c a t e l o g i c a c l a s s ( 7 ; O ; T )
w i t h a t l e a s t one f u n c t i o n symbol e i t h e r has a s o l v a b l e d e c i s i o n problem and i s i n c l u d e d i n a t l e a s t one o f t h e c l a s s e s o f a l l c l o s e d prenex f o r m u l a e w i t h - o n l y monadic p r e d i c a t e and f u n c t i o n symbols or - a t most one u n i v e r s a l q u a n t i f i e r o r t h e c l a s s i s u n s o l v a b l e and i n d e e d a c o n s e r v a t i v e r e d u c t i o n c l a s s and i n c l u d e s a t l e a s t one o f t h e c l a s s e s o f a l l c l o s e d prenex f o r m u l a e w i t h p r e f i x M a n d one b i n a r y p r e d i c a t e and one monadic f u n c t i o n symbol o r v i c e versa one b i n a r y f u n c t i o n and one monadic p r e d i c a t e symbol.
2. F o r f u l l p r e d i c a t e l o g i c w i t h = a c l a s s ( T ; O , T ) w i t h a t l e a s t one f u n c t i o n symbol e i t h e r has a s o l v a b l e d e c i s i o n problem and i s i n c l u d e d i n a t l e a s t one o f t h e c l a s s e s o f a l l c l o s e d prenex f o r m u l a e w i t h
-
-
o n l y monadic p r e d i c a t e and a t most one, a m o n a d i c > f u n c t i o n symbols or o n l y one u n i v e r s a l q u a n t i f i e r and a t most one, a monadic, f u n c t i o n symbol or only existential quantifiers
o r i t i s a c o n s e r v a t i v e r e d u c t i o n c l a s s and i n c l u d e s a t l e a s t one o f t h e classes w i t h
-
prefix A
,2
-
prefix A
,
p r e f i x A\
monadic f u n c t i o n s and no p r e d i c a t e besides = or 1 b i n a r y f u n c t i o n and no p r e d i c a t e besides = or 1 monadic f u n c t i o n , 1 b i n a r y p r e d i c a t e besides =
The same theorem h I d s i f f u n c t i o n s may be i n t e r p r e t e d n o t as t o t a l b u t as p a r t i a1 f u n c t i o n s .?I) A t t h e b e g i n n i n g o f t h e S e v e n t i e s Krom (1970), Aanderaa (1971) and m y s e l f i n 8 o r g e r (1971) i n d e p e n d e n t l y came up w i t h a t h i r d i d e a which pursued B u c h i ' s approach t o i t s l a s t consequences. Whereas Buchi and h i s f o l l o w e r s i n t h e 6 0 - i e s d e s c r i b e d c o m p u t a t i o n processes w i t h e x p l i c i t r e f e r e n c e t o t h e t i m e component, we r e a l i z e d t h a t t h i s i s n o t necessary i f one aims a t a d e s c r i p t i o n o f p r o p e r t i e s o f computations where t h e t i m e needed a t a d e s c r i p t i o n o f p r o p e r t i e s o f computations where t h e t i m e needed t o reach t h i s p r o p e r t y i s i r r e l e v a n t . Such a p r o p e r t y i s f o r ex. t h a t a computation j u s t h a l t s , w i t h o u t w o r r i n g a b o u t how many s t e p s t h i s may take. T h e r e f o r e we t r i e d and succeeded i n b c ~ i b i n c jcompu*a.tion p o c e s n e s &thou2 ae6eaencing .time. T h i s method a l l o w e d enormous s i m p l i f i c a t i o n s o f r e d u c t i o n f o r m u l a e d e s c r i b i n q machine and l i k e problems and r e s u l -
(1)
F o r p r o o f s see Gurevich (1969),(1973),(i976) - f o r a s i m p l i f i c a t i o n o f t h e main r e d u c t i o n i n t h e l a s t paper a l s o Borger (1978) o r W i r s i n g (1977 b ) ; t h e decidab i l i t y o f t h e o n e - q u a n t i f i e r c l a s s w i t h = and o n l y one, a monadic, f u n c t i o n symb o l i s due t o Shelah (1977); t h e case f o r p a r t i a l f u n c t i o n s i s t r e a t e d i n Abramsky (1980).
Decision Problems in Predicate Logic
269
ted i n almost t r i v i a l i z i n g many proofs(')and i n much s h a r p e r reduction c l a s s e s as before, defined by imposing r e s t r i c t i o n s not only on p r e f i x and s i m i l a r i t y , b u t a l s o on t h e t r u t h - f u n c t i o n a l s t r u c t u r e of reduction formulae, on the s t r u c ture of atomic subformulae i n them and on t h e number of occurences of atomic subformulae. F u r t h e r a n a l y s i s using s t r o n g l y the idea of describing computations without bothering about t h e time d e s c r i p t i o n and based on these new s t r o n g e r c l a s s i f i c a t i o n p r i n c i p l e s i n some cases again brought t o t h e border l i n e between decidable and undecidable cases, although not in such a complete and natural way a s i n the case of t h e p r e f i x - s i m i l a r i t y problem. For a systematic ( b u t not complete) account we r e f e r t o t h e two r e c e n t books Dreben & Goldfarb (1979) and Lewis (1979) and l i m i t ourselves here t o mention only f o u r t y p i c a l and outstanding examples f o r such (almost) minimal undecidable cases (indeed reduction c l a s s e s ) . The f i r s t example i s about Khom ,pmunLLeae, i.e. formulae in prenex conjunctive normal form with a matrix containing only binary d i s j u n c t i o n s . The i n t e r e s t f o r t h i s c l a s s of formulae comes from two f a c t s : a ) the proof by Herbrand (1930: pg. 118), (1931: pg. 33 sq.) t h a t t h e decision problem f o r formulae in prenex conjunctive normal form where the matrix i s a conjunction of atomic o r negated atomic formulae i s s o l v a b l e ; b) Chang's & K e i s l e r ' s (1962) normal form theorem showing t h a t any i d e n t i t y - f r e e f i r s t order formula can be p u t i n t o prenex conj u n c t i v e normal form with a l t e r n a t i o n s of length a t most 3. Krom (1964), (1966), (1967), (1967 a ) , (1968) studied then formulae with binary d i s j u n c t i o n s from various points of view and obtained in Krom (1970) the r e s u l t t h a t t h e i r decision problem i s unsolvable. Thourough research based on the method developed in Aanderaa (1971) and Borger (1971) r e s u l t e d i n the following &om and H o m ~Pnehix Theohem. R e s t r i c t e d t o K m m (prenex conjunctive normal form w i t h matrices containing only binary d i s j u n c t i o n s ) and t o Hohn formlilae ( i . e . no d i s j u n c t i o n contains more than one non-negated atomic subformula) a l l p r e f i x c l a s s e s except f o r t h e c l a s s e s AVAVn f o r n = 1,2, ....m - whose decision problems a r e s t i l l open, but we c o n j e c t u r e them t o be solvable - a r e e i t h e r conservative reduction c l a s s e s o r have a s o l v a b l e decision problem. In p a r t i c u l a r the following a r e minimal undecidable c l a s s e s : VAVA AVVA AVM M V A : r e s t r i c t e d t o Krom & Horn AVAV A3V : ( r e s t r i c t e d t o Krom allowing = ) o r ( r e s t r i c t e d t o Horn) whereas t h e following c l a s s e s have a s o l v a b l e decision problem: AVA (even with = allowed) VmAmVm : r e s t r i c t e d t o Krom AVA : r e s t r i c t e d t o Horn The two Krom and Horn c l a s s e s MV nand A V V A a r e h i s t o r i c a l l y t h e f i r s t minimal ones which have been proved t o posses an unsolvable decision problem by the method developed in Aanderaa (1971) and Borger (1971); f o r t h e sake of exempli-
(2) Recently Jones & Matijasevich (1982) applied t h e same idea t o a d i r e c t desc r i p t i o n of r e g i s t e r machine h a l t i n g problems by exponential diophantine equat i o n s ; t h i s r e s u l t e d in a tremendous s i m p l i f i c a t i o n of t h e proof f o r the DavisPutnam-Robinson theorem t h a t every r e c u r s i v e l y enumerable set i s exponential diophantine avoiding completely use o f the Chinese remainder theorem and t h e t r i c k y number t h e o r e t i c a l c o n s t r u c t i o n s involved.
270
E. BORCER
f i c a t i o n t h i s p r o o f w i l l be reproduced i n t h e n e x t s e c t i o n . o t h e r undecidable cases have been o b t a i n e d by l a t e r r e f i n e m e n t s o f t h i s method. Up t o today t h e p r e f i x - s i m i l a r i t y problem r e s t r i c t e d t o Krom and f o r Horn c l a s s e s i s neverthel e s s s t i l l open; o n l y s c a t t e r e d p a r t i a l r e s u l t s ( a l t h o u g h o b t a i n e d by i n t e r e s t i n g refinements o f t h e above mentioned method) a r e known l i k e t h e u n d e c i d a b i l i t y o f the classes VAVmA(O,l),AVmA( 1,1),AVmA(0,2) r e s t r i c t e d t o Krom and Horn (see Lewis (1976),(1979) based on a d e s c r i p t i o n o f P o s t correspondence problems f o l l o w e d by f u r t h e r r e d u c t i o n s by a technique i n s p i r e d by Sh n o n ’ s (1956) cons t r u c t i o n o f a u n i v e r s a l T u r i n g machine w i t h o n l y 2 s t a t e s . ) ? ? )
“7,
I n t e r e s t i n g l y enough i n t h e Krom case, d i f f e r e n t l y from t h e n o t t r u t h - f u n c t i o n a l l y r e s t r i c t e d c l a s s i c a l case, p r e d i c a t e s o f rank b i g g e r than 2 may p l a y an e s s e n t i a l r o l e f o r t h e ( u n - ) s o l v a b i l i t y o f t h e d e c i s i o n problem o f a c l a s s ; i n f a c t t h e c l a s s AVA-(-,-) r e s t r i c t e d t o Krom has a s o l v a b l e d e c i s i o n problem as proved i n Borger (1973) by r e d u c t i o n t o t h e AVA-Krom case, whereas f o r some k t h e c l a s s e s MVA(0,-,k) and AVM(0,-,k) r e s t r i c t e d t o Krom a r e c o n s e r v a t i v e r e d u c t i o n c l a s s e s . F o r r e a l l y small k l i k e k < 7 n o t h i n g i s known and t h e a c t u a l l y a v a i l a b l e methods do n o t seem t o be s u f f i c i e n t t o s e t t l e these q u e s t i o n s . W i t h o u t c o n s i d e r a t i o n o f t h e p r o p o s i t i o n a l f o r m one has f o r one o f t h e minimal f i n i t e - p r e f i x r e d u c t i o n c l a s s e s t h e f o l l o w i n g i n t e r e s t i n g sharp c l a s s i f i c a t i o n o f subclasses: AVA Subc&eans Theohem. Subclasses o f t h e minimal undecidable f i n i t e - p r e f i x c l a s s AVA(m,l) s p e c i f i e d by any o f t h e 212-1 combinations o f a l l o w e d atomic subformulae b u i l t up f o r m t h e v a r i a b l e s i n t h e p r e f i x AVA have an u n s o l v a b l e deXVY c i s i o n problem ( i n d e e d c o n s t i t u t e r e d u c t i o n c l a s s e s ) i f f a t l e a s t t h r e e forms o f atomic sirhfnrmiilae(jrc1uding e i t h e r Rxy t o g e t h e r w i t h Ryv o r Ryx t o g e t h e r w i t h Rvy a r e allowed.
Fw Atomic SubgomLLeae Theomm. ( G o l d f a r b ( 1 9 7 4 ) ) ( 4 ) The subclass o f AVA“ o f a l l formulae w i t h m a t r i c e s o f t h e form (Ao A 1A1) v (A2 A l A 3 ) where A . a r e atomic formulae i s a r e d u c t i o n c l a s s ; t h e c l a s s o f a l l formulae c o n t a i n i n g ( e v e n t u a l l y an a r b i t r a r y number o f d i f f e r e n t occurences o f ) o n l y two d i s t i n c t atomic subformulae has a s o l v a b l e d e c i s i o n problem. The case where t h r e e atomic subformulae a r e a l l o w e d i s open. ( l ) AVAA,AAVA a r e due t o Lewis (see Aanderaa & Lewis (1973)), AVAV and A3V f o r H w n a r e a l s o ( s e e Ph.D. T h e s i s ) and f o r Krom w i t h allowance o f = t o Aanderaa & F r g e r & Gurevich (1982). The d e c i s i o n procedures a r e due r e s p e c t i v e l y t o Aanderaa & Lewis (1973) ( f o r t h e i n c l u s i o n o f = see a g a i n Aanderaa & Borger & Gurevich ( 1 9 8 2 ) ) , Maslov (1964) and G o l d f a r b (1974). F o r c o n s e r v a t i v i t y o f t h e r e d u c t i o n s see Aanderaa & Borger & Lewis (1982). F o r AVA i n Krom w i t h = see G o l d f a r b ’ s Ph.D. Thesis.
(’) An e a r l y r e s u l t o f an u n s o l g a b l e p r e f i x - K r o m c l a s s w i t h a small number o f b i n a r y p r e d i c a t e symbols was AV A (0,4) r e s t r i c t e d t o Krom and Horn and was proved i n Rodding & Borger (1974) by a much s i m p l e r method t h a n t h e one used by H a r r y Lewis f o r h i s s h a r p e r r e s u l t s . Krom (1970) o b t a i n e d t h e u n s o l v a b i l i t y o f t h e Krom c l a s s hVmA(O,k) f o r some ( b i g ? ) k by d e s c r i b i n g d e d u c t i o n s i n P o s t ’ s t a g systems. ( 3 ) F o r t h e d e c i d a b l e cases see Dreben & Kahr & Wang (1962), f o r t h e undecidable cases Aanderaa & Lewis (1974) which i s based on Aanderaa (1966) and t h e i n t e r e s t i n g and v e r y d i f f i c u l t l i n e a r sampling problem e s p e c i a l l y devised f o r t h i s case. T h i s c l a s s i f i c a t i o n was suggested a l r e a d y by Buchi (1962) and a l s o appears i n Wang (1962). K o s t y r k o (1966) proves t h e u n s o l v a b i l i t y w i t h any t h r e e o f t h e f o u r atomic subformulae Rxy,Ryx,Ryv,Rvy b e s i d e s o n l y monadic subformulae. ( 4 ) F o r t h e l o n g t r a d i t i o n t o c l a s s i f y formulae w i t h r e s p e c t t o forms o f t h e i r atomic subformulae see t h e l i s t o f r e f e r e n c e s i n Lewis (1979), pg. 155 i n c l u d i n g among o t h e r s Skolem, Church, Friedman, and Maslov.
271
Decision Problems in Predicate Logic W h i n g ' n T h e o k m . W i r s i n g (1977). The c l a s s o f formulae o f form A
x1
... 9
(S1 = S 2 A S 3 # s 4 )
6
w i t h terms si b u i l t up from a monadic f u n c t i o n symbol f and t h e v a r i a b l e s x ,..., x i s a c o n s e r v a t i v e r e d u c t i o n c l a s s (The cases w i t h 5,4 o r 3 u n i v e r s a l q i a n t i f i h - s a r e s t i l l open problems.) The i n t i m a t e s t r u c t u r a l and c o m b i n a t o r i c a l connections between programs M and the l o g i c a l formulae LX d e s c r i b i n g t h e e f f e c t o f t h e e x e c u t i o n o f M on g i v e n data, once r e v e a l e d by o u r method f o r l o g i c a l d e s c r i p t i o n o f computation processes t o be e x p l a i n e d i n t h e n e x t s e c t i o n , immediately y i e l d as b y - p r o d u c t t h a t v i a t h i s implementation m c k i n e haPLing pmbLemn and Logical? & c h i o n pMbl?emn a m mcwrniueLy inomo?Lpkic. From t h i s isomorphism many c o m p l e x i t y t h e o r e t i c a l consequences can be drawn; some examples w i l l be g i v e n i n t h e t h i r d s e c t i o n below. I n part i c u l a r l e t us mention here two fundamental theorems which w i l l be proved parap h r a s i n g t h e many-one completeness p r o o f g i v e n i n t h e n e x t s e c t i o n f o r H i l b e r t ' s Entscheidungsproblem:
Aandenaa'n Theohem (1971). I f a program M enumerates r e c u r s i v e l y unseparable s e t s then t h e f i r s t o r d e r t h e o r y w i t h t h e program d e s c r i p t i o n a M as n o n l o g i c a l axiom has r e c u r s i v e l y unseparable theoremhood and l o g i c a l f a l s e h o o d and i s t h e r e f o r e e s s e n t i a l l y undecidable and incomplete. (A v a r i a n t o f ) a,,, i s a s a t i s f i a b l e formula
w i t h o u t r e c u r s i v e models.
(We w i l l g i v e t h e p r o o f w i t h t h e s i m p l e r formulae
aM
found i n Borger (1975),
(1982) which y i e l d an analogous statement f o r En-unseparable En+l-sets Grzegorczyk's h i e r a r c h y . )
in
Ttiacktenbhot'n Theomm. The c l a s s e s o f c o n t r a d i c t o r y r e s p . f i n i t e l y s a t i s f i a b l e ( r e s p . n o n - c o n t r a d i c t o r y b u t n o n - f i n i t e l y s a t i s f i a b l e ) f i r s t o r d e r formulae a r e r e c u r s i v e l y i n s e p a r a b l e . As a c o n c l u s i o n t h e same h o l d s r e s t r i c t e d t o a r b i t r a r y c o n s e r v a t i v e r e d u c t i o n classes. Note t h a t by t h e u n s o l v a b i l i t y o f t h e Entscheidungsproblem, G o d e l ' s completeness theorem and t h e obvious f a c t t h a t t h e f i n i t e l y s a t i s f i a b l e formulae form a r e c u r s i v e l y enumerable c l a s s ( 1 ) t h e c l a s s o f i n f i n i t y axioms ( i . e . o f noncontrad i c t o r y b u t n o t f i n i t e l y s a t i s f i a b l e formulae) i s t r i v i a l l y n o t r e c u r s i v e l y enumerable. Most known formulae c l a s s e s w i t h s o l v a b l e d e c i s i o n problem have t h e p r o p e r t y t h a t any s a t i s f i a b l e f o r m u b i n them admits a l s o f i n i t e models; t h i s so c a l l e d f i n i t e c o n t r o l l a b i l i t y p r o p e r t y i s s t u d i d e x t e n s i v e l y i n Dreben & Goldf a r b (1979); see a l s o Ash (1975). An i n t e r e s t i n g counterexample i s t h e c l a s s A V A r e s t r i c t e d t o Krom which c o n t a i n s t h e f o l l o w i n g i v f i n i t y axiom (Gxy means: x i s b i g g e r t h a n y; r e d v as successor x o f x ) :
I ::
A V A (Gvx & (GXY
+
Gvy)
A
~GXX)
X V Y
T h i s f i r s t c o n j u n c t asks f o r a " g r e a t e r " element x
~ t +o any ~ g i v e n xn, t h e
second c o n j u n c t l i n k s these elements t o g e t h e r by ( a k i n d o f ) t r a n s i t i v i t y ( 2 ) i n t o a c h a i n (xo,xl,x 2,...) where every xi i s " g r e a t e r " t h a n x . i f i i s b i g g e r than j, J t h e t h i r d c o n j u n c t exludes t h a t an x . may be equal t o some xi f o r i < j . We w i l l J use t h i s s i m p l e i n f i n i t y axiom i n t h e n e x t s e c t i o n t o assure c o n s e r v a t i v i t y o f reductions. ( 1 ) F i n i t e s a t i s f i a b i l i t y i s c o m p l e t e l y a x i o m a t i z e d i n B u l l o c k & Schneider (1973); c f . a l s o H a i l p e r i n (1961) f o r a complete a x i o m a t i z a t i o n o f formulae which a r e i n v a l i d i n some f i n i t e domain. ( 2 ) NB. F u l l t r a n s i t i v i t y cannot be expressed by a Krom formula, see Krom (1966).
212
E. BORGER
The o r i g i n a l proofs in Trachtenbrot (1950), (1953) a r e much more involved, they y i e l d i n t e r e s t i n g a p p l i c a t i o n s t o normal form theorems f o r r e c u r s i v e l y enumerable p r e d i c a t e s . Indeed t h e 1950-proof i s based o n a construction s h o w i n g t h a t p4ecDeLq t h e gnaphn ad pLhtiaL necuhbive @nc.tiou have a npectmL hepmenah.tivn, i . e . admit a f i r s t o r d e r formula F with =, without function symbols and with cert a i n monadic p r e d i c a t e symbols Pi such t h a t f o r a l l x ~ , . . . , x ~ + ~ : f ( xl , . . . . x ) = x ~ +i f f ~ t h e r e i s a f i n i t e model of F where t h e monadic prea r e i n t e r p r e t e d a s s e t s of d i c a t e symbols P 1 , . . . , P n + l c a r d i n a l i t y x l , ... , x ~ +r e ~s p e c t i v e l y ( ' ) . Related t o these techniques developed by Trachtenbrot and o t h e r s i s the SpectnaLpmblem formulated i n Scholz (1952), i . e . the pmbLem t o chanactehize npectm f o r f i r s t o r d e r formulae including t h e i d e n t i t y symbol, where t h e spectrum ( F ) of a formula F i s defined a s t h e c l a s s of a l l those natural numbers n f o r which F has a f i n i t e model of c a r d i n a l i t y n . (Note t h a t by well known p r o p e r t i e s of f i r s t order l o g i c i t i s reasonable t o formulate t h i s problem a s done above f o r f i n i t e c a r d i n a l i t i e s of models f o r f i n i t e l y axiomatizable l o g i c a l t h e o r i e s with = , where without l o s s of g e n e r a l i t y functions a r e represented by t h e i r g r a p h s . ) Already e a r l y i n v e s t i g a t i o n s i n t o t h i s problem - s e e Asser (1955), Mostowski (1956) - showed t h a t t h e SpekxhzLpmbLem h a ~-13 do w L t h compcLta.tivmL p m b L m a n d t h e i 4 cvmpLexity a t lower l e v e l s of t h e Grzegorczyk-hierarchy ( E n : 0 5 n ) of p r i m i t i v e r e c u r s i v e functions: f o r ex. every Grzegorczyk-E2 ( r e a d : by a determin i s t i c polynomial-time-bounded r e g i s t e r machine a c c e p t a b l e ) set i s a spectrum and the c l a s s of s p e c t r a i s s t r i c t l y included in t h e c l a s s of a l l E3-sets ( r e a d : of a l l s e t s acceptable by a d e t e r m i n i s t i c r e g i s t e r machine in exponential t i m e ) , whereas u p t o today i t i s not known whether every spectrum of a f i r s t o r d e r f o r mula i s a l s o an E2-set nor what i s t h e answer t o Anne4'n pmbLem whether the complement of every spectrum i s a l s o a spectrum. Considering in the same way f o r any f i n i t e order n the c l a s s SPECTRAn : = {spectrum(F)I F l o g i c a l formula of order n} of s p e c t r a of n - t h o r d e r formulae i t turned o u t t h a t n - t h order s p e c t r a form a s t r i c t hierarchy SPECTRAn+l SPECTRAn+2exhausting e x a c t l y t h e c l a s s of a l l Kalmar-elementary s e t s ( E 3 - s e t s ) of p o s i t i v e n a t u r a l numbers (Bennett 1962), i n particular: T h e v m (Rodding & Schwichtenberg 1972): y n c SPECTRAn+l 5 y n + l Here y n denotes the c l a s s of a l l s e t s which a r e accepted by a r e g i s t e r machine an(x) within time bound a n ( p ) f o r some polynomial p and a o ( x ) : = x , a n + l ( x ) := 2 B e n n e t t ' s t h e s i s already contained among o t h e r s an au-totmah Lhevnetic chamctehiza.tivn ad d i h b t o4dehspecxhz, b u t s i n c e i t was never published t h i s r e s u l t became not known t o t h e s c i e n t i f i c community. Rodding's and Schwichtenberg's above c i t e d paper (which was submitted on february 26, 1971) rediscovered among o t h e r s - without s t a t i n g i t e x p l i c i t e l y a s such - t h i s c h a r a c t e r i z a t i o n as s p e c i a l case obtained by a smooth n = 1 of the proof f o r t h e f i r s t i n c l u s i o n y n 5
( l ) Oeutsch (1975) s t r e n g t h e n s this r e s u l t t o closed prenex formulae with p r e f i x AV ...VA, only one occurence of t h e i d e n t i t y symbol and besides the P . only one, a binary, p r e d i c a t e symbol. His proof i s based on t h e Davis-Putnam-Rabinson (1961) exponential diophantine normal form f o r r e c u r s i v e l y enumerable predic a t e s , s e e f o o t n o t e 2 on page 7 of t h i s paper and c f . Deutsch (1975). See a l s o t h e reduction i n Fagin (1975) of a r b i t r a r y s p e c t r a with only one e x t r a pred i c a t e , a binary one.
Decision Problems in Predicate Logic
273
n - t h order l o g i c a l d e s c r i p t i o n of time-bounded r e g i s t e r machine computations over f i n i t e domains. Since t h a t paper was w r i t t e n i n german i t needed a t h i r d independent rediscovery of this r e s u l t by N.D.Jones and A.L.Selman - announced i n AMSNotices 19,2(1972) under number *72T-E28 and published in Jones & Selman (1974) -, and a n a t u r a l extension of i t t o f i r s t o r d e r f i n i t e l y axiomatizable p r o j e c t i v e c l a s s e s of f i n i t e type formulated e x p l i c i t e l y i n Fagin (1974), t o become widely known and c e l e b r a t e d . The fundamental idea underlying a l l these d i f f e r e n t proofs i s simple: t o give an a p p r o p r i a t e f i r s t - o r n - t h order L o g i c a t denchiption 0 4 &m i t e d hnLtLng p m b l m o d nrrckined OWeh 4inite ( n o t any more i n f i n i t e ) danrrim. In f a c t we can e x t r a c t t h i s idea e x p l i c i t e l y by showing t h a t a natural adaption of our l o g i c a l d e s c r i p t i o n of machine computations - namely t o f i n i t e computations t o be described over corresponding f i n i t e domains - y i e l d s almost t r i v i a l l y (and following t h e same proof p a t t e r n a s explained f o r the Church/Turing, the Aanderaa and t h e Trachtenbrot theorem) t h e above mentioned: .btomta RheomaZc chamctehizaaZon 06 & i & t - O h & h specfm : With r e s p e c t t o unary (resp. binary) r e p r e s e n t a t i o n SPECTRAl coincides with the NP- ( r e s p . NEXPTIME-) s e t s of p o s i t i v e n a t u r a l numbers. As usual P,NP,DEXPTIME,NEXPTIME denote the c l a s s of a l l s e t s which a r e accepted by a d e t e r m i n i s t i c resp. nondeterministic Turing machine within polynomial resp. exponential time in t h e ( b i n a r y ) length of the input. C.A. Christen i n his doctoral d i s s e r t a t i o n "Spektren und Klassen elementarer Funktionen" (ETH Zurich, 1974) has l i f t e d this Bennett-Rodding-SchwichtenbergJones-Selman-characterization t o higher-order s p e c t r a completing Rodding's and Schwichtenberg's inclusions yn 5 SPECTRAn+l 5 Y ~ t +o ~ SPECTRAn+l = NTIME( an+l)-sets of p o s i t i v e numbers. Fagin (1974) observed t h a t t h i s c h a r a c t e r i z a t i o n of s p e c t r a a p p l i e s equally well t o f i n i t e l y axiomatizable c l a s s e s of f i n i t e s t r u c t u r e s : one only needs t o add t o the c o n s t r u c t i o n a n a p p r o p r i a t e encoding of s u b s e t s of f i n i t e s e t s . Remember t h a t a f i n i t e l y ( f i r s t o r d e r ) axiomatizable pmjectiwe c . k s b of f i n i t e type i n the sense of Tarski i s a c l a s s of p r e c i s e l y those f i n i t e s t r u c t u r e s ( i . e . w i t h f i n i t e domain and f i n i t e l y many f i n i t e r e l a t i o n s over t h a t domain) which a r e models of a formula V ... V a without f r e e individual v a r i a b l e s , with t h e bounded p r e d i c a t e '1 'r and some f r e e occuring p r e d i c a t e symbols R1,...,Rd, sometimes v a r i a b l e s P1,...,Pc such a c l a s s i s a l s o c a l l e d R1,...,Rd -spectrum of V ... V o r simply genem'1 'r &zed ( f i r s t o r d e r ) specinurn. Assuming t a c i t l y t h a t a l l model c l a s s e s we a r e t a l l i n g about a r e closed under isomorphisms and r e f e r r i n g t o a standard encoding of f i n i t e s t r u c t u r e s i n t o binary words the proof of the above c h a r a c t e r i z a t i o n of f i r s t order s p e c t r a i s e a s i l y extended t o a proof f o r the following:
Chamctehizafion 0 6 genekxfized dih&t-ohakh s p e c t m : The (encodi ngs o f ) generalized s p e c t r a a r e p r e c i s e l y t h e NP-sets (of nonempty words). The method of l o g i c a l d e s c r i p t i o n of f i n i t e computations over f i n i t e domains does not depend on the p a r t i c u l a r machine model. I f we apply i t mutatis mutandis d i r e c t l y t o f o r ex. t h e rudimentary p r e d i c a t e s i n t h e sense of Smullyan we o b t a i n d o h ewehy mckmentahy pmciicate a 6 i ~ O th & h mphedenaiztion i n ,5inite domim and thereby from the e x i s t e n c e of a rudimentary Kleene-T-predicate a s c o r o l l a r y the n;-completenedn 06 t h e emptineds pmbLem d o h 6imi-ohdeh &pectm (Buchi 1962) and the ~2-compLetenedb 06 .thein: indinity pmblem. The Bennett-Rodding-Schwichtenberg-Jones-Selma,i-Fagin-Christen-characterization o f ( g e n e r a l i z e d ) s p e c t r a shows a very c l o s e connection between t h e Spektralpro-
E. BbRGER
274
blem resp. A s s e r s ' s ( s t i l l unsolved(')) complement problem f o r f i r s t order s p e c t r a and the fundamental and outstanding complexity theone.tical wahiant ad HLLobent'n E n h c h e i d u n g n p ~ ~ b l ewhich m can be formulated a s follows and i s known a s the P = NP-problem o r Cook'n ptroblsm I s t h e r e a d e t e r m i n i s t i c Turing machine wich recognizessatisfiability f o r a r b i t r a r y formulae of propositional l o g i c w i t h i n polynomial time bound ( i n the length of t h e i n p u t formulae)? Indeed t h i s open problem plays a c e n t r a l r o l e f o r the important question about t h e f e a s i b i l i t y o r not of a huge v a r i e t y of algorithms designed f o r combinatorial dec i s i o n problems occuring in almost every area of computer a p p l i c a t i o n s . This i s not the r i g h t place t o d i s c u s s i n more length the importance and the wide range of ram i f i c a t i o n s of Cook's problem i n t o many a r e a s of computer s c i e n c e , operations research, mathematics and l o g i c ; s e e f o r ex. the book by Garey & Johnson (1979) e want t o mention however one important a s p e c t of o r the survey Hartmanis (1982). W t h i s problem which i l l u m i n a t e s t h e analogy between Cook's problem and H i l b e r t ' s Entscheidungsproblem and echoes the analogy between the P = NP-question and P o s t ' s problem in degree t h e o r y . ( 2 ) The P = NP-problem i s e q u i v a l e n t t o the above given formulation of Cook's problem because the decL5inion pmoblem doh plwpobLtiomf? l o g i c 0 complete d o h NP with r e s p e c t t o polynomial-time computable reductions in t h e same sense a s t h e p r e d i c a t e l o g i c decision problem i s many-one complete f o r t h e r e c u r s i v e l y enumerable s e t s : Cook'n theonem (1971). The s a t i s f i a b i l i t y problem f o r propositional l o g i c i s NP-complete. The i n t e r e s t i n g p o i n t i n our context i s t h a t n o t only the r e s u l t i s analogous t o the cl-completeness of H i l b e r t ' s Entscheidungsproblem (with r e s p e c t t o deducibil i t y ) , b u t t h a t v i r t u a l l y t h e same proof can be given f o r both theorems: we j u s t eventually i n f i n i t e com u t a t i o n s in r e i n t e r p r e t e our firs_t~crdeyd e s c r i p t i o n ptopon-i.tioml Logic terms doh d i n i t e compu*a.tionn. E s s e n ~ i i l T y - W ~ - w ~ n T ~ - ~ ~ ~ ~ r t amounts t o "look a t " f i r s t o r d e r atomic formulae - representing machine configur a t i o n s - a s propositional v a r i a b l e s and t o use f i n i t e conjunctions i n s t e a d of universal q u a n t i f i c a t i o n s f o r t h e d e s c r i p t i o n of p o s s i b l e machine t r a n s i t i o n s . We w i l l give the d e t a i l s i n the l a s t s e c t i o n . Apart from r e v e a l i n g in a n a t u r a l and s t r i k i n g l y simple way the j u s t one fundamental reason f o r computational completeness of f i r s t order and propositional
for
~-
( l ) F o r generalized s p e c t r a where only monadic p r e d i c a t e symbols a r e allowed Fagin (1975 a ) shows t h a t not f o r every spectrum t h e complement i s a l s o a spectrum. See a l s o Fagin (1975 b ) and Yasuhara (1971) where o the c l a s s of number theor e t i c a l f u n c t i o n s d e f i n a b l e from successor and maxfny by composition and t h e folloYing max-Qounded p r i m i t i v e recursion: f(x,l) = g(x) f(;,n+l) = max(')(h(;,n,f(;,n)),n+l) i t i s shown t h a t both t h e range and ( i f not empty) a l s o i t s complement a r e firstorder s p e c t r a f o r every element i n t h i s class.Examples of t h u s obtained s p e c t r a a r e the s e t of Fermat resp. o f Mersenne primes and t h e i r complements.Fagin (1975) gives an i n t e r e s t i n g c h a r a c t e r i z a t i o n of those s e t s X of n a t u r a l s where X and i t s complement a r e f i r s t - o r d e r s p e c t r a . (*)For i l l u m i n a t i n g remark on t h i s l a s t analogy s e e f o r ex. Fagin (1974:pp.86 sq.), Hartmanis (1982), Specker & S t r a s s e n (1976). I n t e r e s t i n g degree t h e o r e t i c a l ams i d e r a t i o n s about r e l a t i o n s between t h e complexity of s e t s of n a t u r a l s A,the s e t of formulae v a l i d i n a l l s t r u c t u r e s of c a r d i n a l i t y i n A and r e l a t i v i z e d h a l t i n g problems can be found i n Hay (1973), (1973 a ) , (1975), Selman (1973), (1974).
Decision Problems in hedicate Logic
275
l o g i c , f o r Aanderaa's and f o r T r a c h t e n b r o t ' s theorem, f o r complexity t h e o r e t i c a l c h a r a c t e r i z a t i o n s of s p e c t r a , t h i s way t o prove those r e s u l t s permits a l s o t o loc a t e e x p l i c i t e l y and in a p r e c i s e way how the LagLcal h t m a e of program desdeXemnLnhLLc to nondetemnLdLLc comp&c r i p t i o n s .LA addected by pIbAing . t i o ~ n . Cook (1971) proved t h a t the s a t i s f i a b i l i t y problem f o r propositional Krom formulae i s i n P , t h e i r u n s a t i s f i a b i l i t y problem i s even complete f o r nondetermin i s t i c logarithmic space a s shown by Jones & Laaser & Lien (1976) and an analogous completeness r e s u l t holds f o r t h e i r s a t i s f i a b i l i t y problem i n q u a n t i f i e d Boolean l o g i c , s e e Aspvall & Plass & Tarjan (1979). While i n t h e realm of f i r s t order d e s c r i p t i o n s of computations Kmm h ~ c t u mcan in some cases be obtained by an a p p r o p r i a t e choice of computation model and using s u f f i c i e n t l y rich o t h e r l o g i c a l expressive means - p r e f i x s t r u c t u r e , s i m i l a r i t y type e t c . -, in some o t h e r cases i t c u t s down t h e complexity of decision problems from undecidable t o decidable a s can be seen from t h e Krom and Horn p r e f i x theorem; i n the propositional case f o r Cook's theorem Krom s t r u c t u r e cannot be obtained unless P = NP: in f a c t a choice between a t l e a s t two possible next s i t u a t i o n s following a given one does not seem t o be d e s c r i b a b l e by a binary d i s j u n c t i o n ( b u t with a t e r n a r y one i t i s ) ; note t h a t t r a n s i t i v i t y cannot be expressed by Krom formulae, c f . Krom 1966). S i m i l a r l y H a m ~ L u c t u ~seems e t o belong t o d e t e r m i n i s t i c computations: the s a t i s f i a b i l i t y problem f o r propositional Horn formulae i s in P and l i k e Krom formulae shares c e r t a i n completeness p r o p e r t i e s , s e e Jones & Laaser (1977) and Aanderaa & Borger (1979). In f a c t t h e Horn s t r u c t u r e can be preserved in going from f i r s t order t o propositional l o g i c d e s c r i p t i o n of the program formulae of d e t e r m i n i s t i c programs, but ( u n l e s s P = NP) t h i s i s impossible f o r t h e i n p u t d e s c r i p t i o n which can however be given by a Krom formula: Cook's theorem can be shown with a conjunction of a program formula which i s not Krom b u t Horn except f o r those conjuncb describing nondeterministic moves and a Krom formula which i s n o t Horn f o r desc r i p t i o n of input and s t o p condition. T h u s i t seems natural t o measure the comp l e x i t y o d Boolean ~unc.titiolzn in terms of minimal length of propositional formulae defining them and having (almost) Horn s t r u c t u r e . This y i e l d s a complexity measure which i s s t r o n g l y r e l a t e d t o Cook's problem and which by a natural adaption of the Aanderaa-Borger reduction method t o propositional d e s c r i p t i o n s of logical networks has been shown t o be equivalent t o network and Turing machine complexity f o r Boolean f u n c t i o n s , a s w i l l be discussed i n t h e l a s t s e c t i o n . The Spektralproblem and i t s r e l a t i o n t o computational complexity problems i s only one example i n t h e s t i l l growing f i e l d of complexity theory where smooth logical d e s c r i p t i o n s of combinatorial (computational) problems play a d e c i s i v e r o l e . From the examples i n t h e following s e c t i o n s i t should become c l e a r t h a t i f the logical d e s c r i p t i o n i s such a s t o "show" an i n t i m a t e s t r u c t u r a l c o r r e l a t i o n between the combinatorial system described and the l o g i c a l expressive means used, then t h i s link w i l l a l s o c a r r y over complexity phenomena from the computational system t o the corresponding l o g i c a l system; indeed the optimal s i t u a t i o n i s t h a t Rhe l o g i cal nynteni can be u i w e d v i a Rhe -tmMnk.tion jut an a naiutuml i.mplemevLta.tion 0 6 the denchibed compu;ting nyhtem. In a way t h i s d e s i r e underlies a l s o t h e many approaches t o d e f i n e semantics of programming languages by l o g i c a l o r a b s t r a c t a l g e b r a i c a l means; i t underlies numerous simulation techniques between various computation models. Success r e s u l t s here not only i n b e t t e r and deeper understanding of t h e s i t u a t i o n , b u t a l s o in b e t t e r technical s o l u t i o n s of given problems. (Take a s a b s t r a c t example t h e simulation techniques developed in Borger 1979.) In any way i t w i l l become c l e a r from t h e next s e c t i o n s t h a t and why the techniques developed f o r e s t a b l i s h i n g lower complexity bounds f o r decision procedures f o r dec i d a b l e l o g i c a l decision problems resemble s t r o n g l y those developed i n t r a d i t i o n a l reduction theory. The reader i s i n v i t e d t o compare t h i s w i t h t h e i l l u m i n a t i n g d i s cussion i n the book of Machtey & Young (1978) where i t i s shown how lower comp l e x i t y r e s u l t s can be derived by methods invented by Godel t o give h i s incompleteness theorems, j u s t by proving them through a p p r o p r i a t e r e p r e s e n t a b i l i t y ( r e a d : expressabi l i t y ) statements.
om
By careful l o g i c a l d e s c r i p t i o n s of a p p r o p r i a t e l y chosen computation models many lower complexity bound r e s u l t s have been proved f o r l o g i c a l t h e o r i e s which in some cases meet e x a c t l y known upper bounds ( i . e . complexity of e x i s t i n g algorithms f o r
E. BORCER
216
t h e s o l u t i o n o f t h e problem under c o n s i d e r a t i o n ) . I n t h e r e a l m o f pure p r e d i c a t e l o g i c t h e f o l l o w i n g two theorems resume e s s e n t i a l l y t h e s t a t e o f t h e a r t :
d x n p l e x i t y Theomri d o h P t l e d i x - S U h i t g C h n n e n . The d e c i s i o n problem w i t h r e s p e c t t o s a t i s f i a b i l i t y o f t h e f o l l o w i n g s o l v a b l e subclasses o f p r e d i c a t e l o g i c has t h e i n d i c a t e d p r e c i s e ( l o w e r and upper bound) c o m p l e x i t y where c denotes some c o n s t a n t and n t h e i n p u t l e n g t h : Monadic p r e d i c a t e l o g i c : N T I M E ( c ~ " ~ ~1 VmAVm n Monadic : DTIME( " " ) vm*2vm
: NTIME(
V"A"
: NTIME(C")
"
"
)
Examples o f c l a s s e s w i t h NP-complete s a t i s f i a b i l i t y problem a r e VpAq w i t h i y t q , V"Aq w i t h OZq,A"
and VAm.
Complexity Theotlem d o h K m m nubc&zannen. The s a t i s f i a b i l i t y problem f o r Krom f o r mulae r e s t r i c t e d t o t h e f o l l o w i n g c l a s s e s has t h e i n d i c a t e d c o m p l e x i t y : Monadic i s complete f o r P 2 V ~ (even A ~ v A") i s complete f o r p o l y n o m i a l space V ~ A (even ~ V ~ A ~ V )i s complete f o r DEXPTIME
b u t V"AkVm i s i n P f o r e v e r y f i x e d k AVA i s i n P The u n s a t i s f i a b l e Krom f o r m u l a e i n AVA a r e complete f o r n o n d e t e r m i n i s t i c l o g a r i t h m i c space. The u n s a t i s f i a b l e Herbrand formulae ( i . e . prenex normal forms whose m a t r i x i s a c o n j u n c t i o n o f a t o m i c o r negated atomic f o r m u l a e ) a r e a l s o comp l e t e f o r n o n d e t e r m i n i s t i c l o g a r i t h m i c space. T h e r e f o r e n o t o n l y f o r t h e u n d e c i d a b l e cases, b u t a l s o f o r t h e c o m p l e x i t y o f dec i d a b l e cases o f t h e Entscheidungsproblem Krom s t r u c t u r e p l a y s a d e c i s i v e r o l e . Complete ( r e f e r e n c e s and) p r o o f s f o r t h e above two theorems can be found i n Lewis (1980), F u r e r (1981), Denenberg & Lewis (1982), Lewis & Statman (1983); we l i m i t o u r s e l v e s h e r e t o a s h o r t comment on how t h e l o w e r c o m p l e x i t y bounds a r e o b t a i n e d t o g i v e t h e r e a d e r a f e e l i n g t h a t i n a s t r o n g sense u n d e c i d a b i l i t y and l o w e r comp l e x i t y bound r e s u l t s a r e s i m i l a r i n n a t u r e . The l o w e r NEXPTIME bounds f o r t h e monadic, t h e Godel-Kalmar-Schutte and t h e Schonfinkel-Bernays case i n Lewis (1980) a r e o b t a i n e d by a d i r e c t d e s c r i p t i o n o f t h e acceptance problem f o r n o n d e t e r m i n i s t i c exponential-time-bounded T u r i n g machine computations as s a t i s f i a b i l i t y q u e s t i o n f o r f o r m u l a e o f t h e f o r m VAAVAM w i t h o n l y monadic p r e d i c a t e s i n t h e f i r s t two cases,of t h e f o r m V...VA...A i n t h e t h i r d case where p a r t i c u l a r c o m p l i c a t i o n s a r i s e f o r an a p p r o p r i a t e d e s c r i p t i o n o f t h e successor r e l a t i o n between t h e encod i n g s o f n a t u r a l numbers ( t h e s e r e p r e s e n t a t i o n resemble by t h e way those which had t o be i n t r o d u c e d by Jones & Selman (1974) f o r t h e i r automata t h e o r e t i c c h a r a c t e r i z a t i o n o f s p e c t r a . ) F u r e r ( p r i v a t e communication) o b a t i n e d t h e l o w e r c o m p l e x i t y bound N T I M E ( c ~ " ~') ~ even f o r t h e subclass A V n M f r o m a r e d u c t i o n t o i t o f t h e n o t o r i g i n c o n s t r a i n e d bounded domino problem which he has shown t o be o f e x a c t (upper and l o w e r ) c o m p l e x i t y NTIME(cn). The l o w e r DEXPTIME bound f o r t h e monadic Ackermann case has been o b t a i n e d i n d e p e n d e n t l y by F u r e r (1981) and Lewis (1980); Lewis achieves t h e r e s u l t by a d e s c r i p t i o n o f t h e non-acceptance problem f o r t h e a l t e r n a t i n g push-down automata ( i n v e s t i g a t e d i n Chandra & Stockmeyer (1976) and Ladner & L i p t o n & Stockmeyer (1978) and a c c e p t i n g p r e c i s e l y t h e s e t s i n DEXPTIME), v e r y much i n t h e s p i r i t o f t h e r e d u c t i o n t e c h n i q u e e x p l a i n e d i n t h e n e x t s e c t i o n based on t h e f a c t t h a t t h e p r e f i x s t r u c t u r e i n t h i s case a l l o w s t o speak d i r e c t l y about t h e words t o be memorized i n t h e s t a c k ; a s i m i l a r d e s c r i p t i o n o f a l t e r -
Decision Problems in Predicate Logic
271
nating stack automata accepting p r e c i s e l y t h e s e t s in DZEXPTIME y i e l d s a lower n/log n f o r another i n t e r e s t i n g subclass of t h e p r e f i x c l a s s complexity bound cc \p'~\p'/\determined by imposing r e s t r i c t i o n s on the form of occuring atomic s u b formulae b u i l t u p from only binary p r e d i c a t e symbols, see again Lewis (1980); Fiirer describes linear-time-bounded a l t e r n a t i n g Turing machines using t h e f a c t t h a t DTIME ( c f ( " ) ) ~ASPACE(f(n)) f o r every f and o b t a i n s thereby even formulae k in t h e subclass AV where k comes from t h e number of successors in universal branch s t a t e s . The complexity theorem f o r Krom c l a s s e s i s e n t i r e l y due t o Denenberg & Lewis (1982). They o b t a i n t h e i r lower complexity b o u n d s ( r e a d : completeness r e s u l t s ) in the monadic case from t h e observation t h a t Lewis'(1980) construction f o r the Ackermann c l a s s y i e l d s monadic formulae and t h a t t h e only conjuncts in the f o r mulae describing t h e non-acceptance problem of an a l t e r n a t i n g push-down automaton which a r e not Krom a r e those used t o describe t h e a c t i o n of t h e machine a t universal branch s t a t e s ; b u t without universal branch s t a t e s one i s describing the non-acceptance problem of nondeterministic ( r a t h e r than a l t e r n a t i n g ) push-down automata which i s hard f o r P . For the Bernays-Schonfinkel Krom case a d e s c r i p t i o n of polynomial-space-bounded Turing machine computations i s given again in the same s p i r i t a s the method explained in t h e next s e c t i o n using t h e f a c t t h a t the p r e f i x s t r u c t u r e in t h i s case allows t o r e p r e s e n t s t a t e s and symbols of the machine d i r e c t l y by constant terms; t h e space needed f o r t h e computation i s taken i n t o c a r e by t h e number of arguments of t h e (unique) p r e d i c a t e symbol which determines a l s o t h e number of universal q u a n t i f i e r s needed. The subcase with only 2 e x i s t e n t i a l q u a n t i f i e r s comes from t h e f a c t t h a t i t i s s u f f i c i e n t t o have machines working over an alphabet with only 2 symbols. S i q i l a r l y t h e lower DEXPTIME bound f o r t h e Maslov case i s achieved bv a d e s c r i o t i o n ofcomoutations of 1 inear-space-bounded a ] t e r n a t i n q Turinq machjnesiwhich accept p r e c i s e i y t h e s e t s in DEXPTIME,the r e s u l t i n a formulae a r e even i n A V . A l p t comment has t o be-made on t h e G 6 d d c&eanean w L t h identity, i . e . t h e c l a s s V"A V" w i t h t h e e q u a l i t y symbol allowed. I t i s not known whether t h i s c l a s s has a recursive decision problem o r not whereas without i d e n t i t y i i s f i n i t e l y cont r o l l a b l e a s shown by Godel (1933) and Schutte (1933), (1934)tl;. Goldfarb (1981) has shown t h a t a t l e a s t t h e r e can be no primitive r e c u r s i v e decision procedure. His proof c o n s t r u c t s formulae F n ~ M Vw i t h e q u a l i t y describing i n i t i a l p a r t s of t h e graph of t h e Ackermann function; t h e Fn a r e (even f i n i t e l y ) s a t i s f i a b l e b u t not over domains with l e s s than a(n,O) elements f o r t h e Ackermann function (Y. Recently f o r a subcase of t h e Godel c l a s s with = , Goldfarb & Gurevich & Shelah (1983) gave a proof of f i n i t e c o n t r o l l a b i l i t y ; t h i s i s t h e s u b l a s s of formulae Q YF in N\V which r e q u i r e only f o r every unordered p a i r Ix,y) ( i n s t e a d of every ordered p a i r ( x . y ) ) a v such t h a t F(x,y,v) holds,formally speaking t h e Class of a l l formulae of form A A V((KXy -+ ~ K y x )& (KXY -+ G ) )
0
X Y
v
with a binary p r e d i c a t e symbol K and a q u a n t i f i e r f r e e formula G ; t h e a l l e g e d decision procedure i s not primite r e c u r s i v e , but i t i s not known whether t h e r e can be no p r i m i t i v e r e c u r s i v e one: u p t o now no formulae a r e known i n t h a t c l a s s which allow only "big" models l i k e Goldfarb's Fn mentioned above. We conclude t h i s panorama of main i d e a s , methods and r e s u l t s in c l a s s i c a l reduction and complexity theory f o r l o g i c a l decision problems by a h i n t t o an area of research which has not y e t found broader a t t e n t i o n d e s p i t e i t s n a t u r a l n e s s s many f a s c i n a t i n g open problems and t h e a v a i l a b i l i t y o f strong methods which could
(l)Gurevich & Shelah (1983) have p u t foreward a very e l e g a n t and s t r a i g h t forward p r o b a b i l i s t i c argument showing f i n i t e c o n t r o l l a b i l i t y of A2V" with = .
278
E. BORCER
e v e n t u a l l y be p u t t o use t o s e t t l e those problems. I am speaking a b o u t t h e comp l e x i t y o f t h e d u h i o n p4obLem 6011. decidxbee &COJL&A h.enZLicted t o 6om&e with 4impLe p X d d i e h O h r m W x oh atomic 4ub6om&e na3tuctu4e : a huge amount o f r e s u l t s i s known a b o u t d e c i s i o n problems f o r d e c i d a b l e f i r s t o r (weak) (monadic) second o r d e r t h e o r i e s and t h e c o m p l e x i t y o f d e c i s i o n procedures f o r d e c i d a b l e cases(1); we have seen how much work has been done i n p u r e p r e d i c a t e l o g i c t o determine t h e non- o r s u b r e c u r s i v e c o m p l e x i t y o f t h e d e c i s i o n problem f o r f o r m u l a e c l a s s e s determined b y r e s t r a i n t s on t h e a v i l a b l e e x p r e s s i v e means l i k e q u a n t i f i e r , m a t r i x o r a t o m i c subformulae s t r u c t u r e . I n p a r t i c u l a r we have seen t h a t such s t r u c t u r a l c o n s t r a i n t s p l a y an i m p o r t a n t r o l e i n c u t t i n g down huge ( u p p e r and l o w e r ) c o m p l e x i t y bounds. The s i t u a t i o n t h a t a l m o s t a l l a c t u a l l y known l o w e r combounds f o r d e c i d a b l e t h e o r i e s a r e s o h u g e ( 2 ) may w e l l depend on t h e f a c t t h a t no n a t u r a l s t r u c t u r a l c o n s t r a i n t s a r e imposed on t h e formulae; f o r ex. what a b o u t a huge l o w e r c o m p l e x i t y bound f o r a t h e o r y i f a r b i t r a r y q u a n t i f i e r l e n g t h s and q u a n t i f i e r a l t e r n a t i o n s a r e a l l o w e d which h a r d l y appear i n mathematical p r a c t i c e ? To b r i n g t o a e t h e r t h e s e two l i n e s o f r e s e a r c h w i l l be a f r u i t - and s u c c e s s f u l enterprise.( 3) A LOGICAL DESCRIPTION OF MACHINE COMPUTATIONS
F o l l o w i n g Aanderaa (1971) and B o r g e r (1971) we b e g i n w i t h a d e s c r i p t i o n o f how machines M can be encoded smoothly i n f o r m u l a e aM. Through an a p p r o p r i a t e c h o i c e of M and aM we w i s h t o a c h i e v e two t h i n g s : t o g e t s y n t a c t i c a l l y s i m p l e f o r m u l a e aM whose l o g i c a l s t r u c t u r e r e f l e c t s t h e s y n t a c t i c a l s t r u c t u r e o f M, and - based on such 9 r e l a t i o n - t o make t h e p r o o f o f e q u i v a l e n c e o f t h e M - d e c i s i o n problem t o ( l ) See t h e e x c e l l e n t surveys Ershov e t a l . (1965), Rabin (1977), t h e book F e r r a n t e & Rackow (1979) and Kozen (1979) f o r r e s u l t s and r e f e r e n c e s . Joseph & Young (1981) c o n t a i n a d i s c u s s i o n o f r e l a t i o n s o f q u e s t i o n s o f p r o v a b i l i t y i n weak t h e o r i e s o f a r i t h m e t i c t o such computational q u e s t i o n s as whether P = NP o r NP = coNP. I f may be n o t e d a l s o t h a t ( u n - ) d e c i d a b i l i t y r e s u l t s f o r ( f i r s t o r d e r ) l o g i c a l t h e o r i e s can i n t u r n y i e l d r e s u l t s i n p u r e p r e d i c a t e l o g i c ; f o r ex. H e i d l e r (1973) o b t a i n s t h e s u r p r i s i n g r e s u l t t h a t p u r e e q u a t i o n a l l o g i c w i t h o u t any o t h e r p r e d i c a t e symbol a p a r t f r o m = and w i t h o u t any f u n c t i o n symbol b u t a l l o w i n g H i l b e r t ' s c h o i c e o p e r a t o r E t o b u i l d terms f r o m f o r m u l a e has an u n s o l v a b l e d e c i s i o n problem, by r e d u c i n g t o i t t h e ( u n d e c i d a b l e ) t h e o r y o f one symmetric r e l a t i o n .
( * ) Ex: n o n - K a l m a r - e l e m e n t a r i t y o f weak monadic second o r d e r t h e o r y o f one successor o r o f f i r s t o r d e r t h e o r y o f l i n e a r o r d e r (Meyer ( 1 9 7 5 ) ) , t h e t r i p l e exp o n e n t i a l l o w e r bound f o r t h e d e c i s i o n problem o f m u l t i p l i c a t i v e a r i t h m e t i c ( F i s c h e r & Rabin ( 1 9 7 5 ) ) , d o u b l e e x p o n e n t i a l f o r P r e s b u r g e r a r i t h m e t i c ( F i s c h e r & Rabin ( 1 9 7 4 ) J and f o r r e a l a d d i t i o n t h e completeness i n t h e c l a s s o f problems s o l v e d by a l t e r n a t i n g T u r i n g machines i n t i m e bound 2Cn u s i n g n a l t e r n a t i o n s f o r some c o n s t a n t c, see F i s c h e r & Rabin (1974), F e r r a n t e & Rackow (1975) and Berman (1977). ( 3 ) Some i n t e r e s t i n g r e s u l t s i n t h i s d i r e c t i o n : see G u r e v i c h (1965) and S c a r p e l l i n i (1982) where t h e r o l e o f q u a n t i f i e r r e s t r i c t i o n s on (un-) d e c i d i a b i l i t y f o r some t h e o r i e s i s analysed, and B o r g e r & K l e i n e Buning (1980) where f o r e x t e n s i o n s o f m u l t i p l i c a t i v e a r i t h m e t i c i t i s shown t h a t r e s t r i c t i o n s on p r e f i x - s i m i l a r i t y type, q u a n t i f i e r , Krom, Horn and t e r m s t r u c t u r e c u t down a r b i t r a r i l y complex u n d e c i d a b i l i t y t o d e c i d a b i l i t y . One h a l f o f t h i s c l a i m i s p r o v e d b y a p p l i c a t i o n s o f t h e r e d u c t i o n method o u t l i n e d i n t h i s s e c t i o n t o v a r i o u s o t h e r c o m p u t a t i o n f o r m a l i s m s l i k e r e s t r i c t e d P o s t c a n o n i c a l forms, P e t r i n e t s ( d e s c r i b e d as f a c t o r replacement systems)etc. ( N o t e t h a t i n t h e meantime i t has been p r o v e d i n K o s a r a j u (1982) t h a t t h e r e a c h a b i l i t y problem f o r P e t r i n e t s i s i n d e e d r e c u r s i v e , a r e s u l t which i s needed f o r t h e above c l a i m . )
Decision Problems in Predicate Logic
279
t h e a M - d e d u c i b i l i t y q u e s t i o n i n f i r s t o r d e r p r e d i c a t e l o g i c a t r i v i a l one. As exp l a i n e d i n t h e course o f t h e p r e c e d i n g s e c t i o n v i a Skolem prenex normal form t h e data of M a r e r e p r e s e n t e d by t h e l o g i c a l terms c o n s t i t u t i n g t h e u n i v e r s e o f t h e i n t e n d e d model o f aM; t h e s t a t e s o f t h e f i n i t e c o n t r o l o f M a r e encoded by p r e d i c a t e symbols o c c u r i n g i n ab,. The q u a n t i f i e r f r e e m a t r i x o f aM w i l l be a conj u n c t i o n o f i m p l i c a t i o n s where t o each p o s s i b l e t r a n s i t i o n s t e p ( " i n s t r u c t i o n " , " r u l e " ) Ii d e f i n e d by t h e program M corresponds a c o n j u n c t pi o f aM a s s u r i n g t h a t i f an i n s t a n c e o f t h e p r e m i s e s i n
pi
r e p r e s e n t s a c o n f i g u r a t i o n C o f M,
then t h e c o r r e s p o n d i n g i n s t a n c e o f t h e c o n c l u s i o n s i n
pi
r e p r e s e n t s t h e immediately
succeding c o n f i g u r a t i o n a c c o r d i n g t o Ii. Consider a r e g i s t e r machine program M w o r k i n g o v e r 2 r e g i s t e r s . S i n c e t h e i r i n v e n t i o n by Minsky (1961) and Shepherdson & S t u r g i s (1963) t h e s e machines have become w i d e l y known, i n p a r t i c u l a r t h e f a c t t h a t t h e y a r e u n i v e r s a l f o r t h e computation o f a l l p a r t i a l r e c u r s i v e f u n c t i o n s . F o r convenience o f e x p o s i t i o n we assume w i t h o u t l o s s o f g e n e r a l i t y t h a t M c o n s i s t s o f i n s t r u c t i o n s Ii = ( i : do oi,go
t o (p,q))
oiEIal,a2,s1,s2,stop}
w i t h i n s t r u c t i o n numbers l ~ i ~o pre,r a t i o n symbols and numbers l s i , q i z r
o f t h e n e x t i n s t r u c t i o n t o be executed.
Execute Ii means: t e s t , i f t h e r e g i s t e r c o n s i d e r e d i n oi equals z e r o o r n o t ,
- i . e . +1 i n t h e j - t h r e g i s t e r i n case oi = aJ. ' -1 i n t h e j - t h r e g i s t e r i n case oi = s . - and t h e n go o v e r t o t h e n e x t i n s t r u c t i o n w i t h number J pi r e s p . qi i f t h e r e g i s t e r t e s t e d was equal z e r o r e s p . n o t . Assume a l s o t h a t
execute oi
Ir = ( r , s t o e go t o r ) , t h a t t h e s t a r t i n s t r u c t i o n i s I1 and t h a t t e s t s a r e executed o n l y i n s u b t r a c t i o n i n s t r u c t i o n s ( i . e .
oiEIal,a2)
i m p l i e s pi = qi
in
which case we w r i t e pi i n s t e a d o f (pi,pi)).
To
defines\,
we r e p r e s e n t n a t u r a l numbers n by means o f l o g i c a l terms b u i l t up
from a symbol 0 f o r an i n d i v i d u a l c o n s t a n t and a symbol ' o f a monadic f u n c t i o n ; f o r a l a t e r a p p l i c a t i o n we w r i t e these terms b o t h i n p r e f i x - and i n p o s t f i x n o t a t i o n , i . e . i n t h e forms -
n : = O& n times
:E
or
-
I...I v 0
n - t i mes
Any s t a t e i o f M i s r e p r e s e n t e d by a b i n a r y p r e d i c a t e symbol, c a l l i t a g a i n Ii. T h e r e f o r e an M - c o n f i g u r a t i o n C = (m,i,n) o f s t a t e i and c o n t e n t s m o f t h e f i r s t and n o f t h e second r e g i s t e r i s coded by t h e l o g i c a l a t o m i c f o r m u l a (m,i,n)
::
iii I. n 1 -
t o be i n t e r p r e t e d as meaning t h a t t h e c o n f i g u r a t i o n C can be reached through an M-computation s t a r t i n g f r o m a p r e v i o u s l y g i v e n i n i t i a l c o n f i g u r a t i o n . D e f i n e uM : :A A ( P ~ A . . . A ~ ~w i- t ~h ) t h e c o n j u n c t s XY i n s t r u c t i o n Ii on c o n f i g u r a t i o n s d e f i n e d by: x'1.y J (OIiy -+ O I j y ) xIiy
f o r I.= ( i , d o al,
-f
A
(x'Iiy
-f
pi
describing the e f f e c t o f
go t o j )
x I k y ) f o r Ii=(iSl,
go t o ( j , k ) )
S y m m e t r i c a l l y f o r i n s t r u c t i o n s w i t h o p e r a t i o n s a2 o r s2 by i n t e r c h a n g i n g t h e p o s i t i o n s o f x and y and u s i n g ' x i n s t e a d o f X I .
E. BORGER
280
I t should already be c l e a r from the above t h a t r e a l l y u i s nothing e l s e t h a n ( a definition of the e f f e c t o f ) the program of instructrons M formulated in f i r s t order logical terms; in f a c t one has t r i v i a l l y the following
RechcLLoian Cmm. For any M-configurations C , D holds: C +M D iff u M h i5 + D
bL
where C +M D means t h a t M , s t a r t e d in C , a f t e r a f i n i t e number of steps reaches D, and $L denotes deducibility in predicate logic. Phood. Based on Skolem's theorem(') on canonical interpretations of s a t i s f i a b l e formulae over the corresponding term domains discussed i n the preceding section one obtains the implication from r i g h t t o l e f t j u s t by observing t h a t the above indicated intended canonical interpretation over the natural numbers of m1.n as meaning C 3 (m,i,n) 1-
obviously yields a model f o r the premisse uM A c, from which in t h a t model the follows meaning t h a t C +M 0. The other implication follows from the conclusion f a c t t h a t by the very definition of uM as e f f e c t of program M , any model for uM simulates every possible computation step of M ; t o say i t more precisely in any canonical model of uM over the naturals a n d f o r every single M-computation step producing D from C by l e t us say instruction I . , the corresponding conf r h C in the given model. junct pi assures the t r u t h of the inference of
n
Since 2-register machine programs a r e known t o be universal f o r the computation of p a r t i a l recursive functions the above reduction lemma already contains a complete proof f o r the
C a t o U u h q . The Entscheidungsproblem f o r ( r e s t r i c t e d ) f i r s t order predicate logic i s complete f o r the recursively enumerable s e t s (Church(1936), Turing (1937)) even when r e s t r i c t e d t o the class VAVA(0,m) (Buchi (1962)) and Krom and Horn formulae (Aanderaa (1971), Borger ( 1 9 7 1 ) ) ( 2 ) ; thereby t h i s class i s a reduction class f o r sa t i s f i abi 1 ity . Indeed by contraposition a ( f o r ex. halting) configuration D cannot be reached by M from C i f f the formula uM A A ID i s s a t i s f i a b l e , and t h i s formula i s via prenexing equivalent t o the Skolem normal form of a Krom and Horn formula in VAVA(0,m).
As referred t o in the preceding section many other r e s u l t s on strong reduction classes have been obtained by variations and f u r t h e r refinements of the above method to describe over term domains suited t o the data s t r u c t u r e of the given machine model three things: - the e f f e c t uM of the program M - a s t a r t condition C - a (non-) stoo condition ij (1) See f o r example Kreisel & Krivine (1967: pp. 18-20) (L)
With respect t o prefix and Krom structure t h i s r e s u l t i s already optimal as i t i s with prefix AVVA; the l a t t e r i s obtained in l i t e r a l l y the same way by substituting 0 by a term *x f o r a new Skolem function symbol * t o be used as constant zero function.
28 1
Decision Problems in Predicate Logic
We want t o g i v e h e r e d e t a i l s f o r j u s t one o t h e r case t o i l l u s t r a t e t h a t such r e d u c t i o n s can y i e l d n o t o n l y u n d e c i d a b i l i t y phenomena f o r l o g i c a l d e c i s i o n problems based on t h e u n d e c i d a b i l i t y o f t h e c o m b i n a t o r i a l system described, b u t by s i m p l e c o n t r a p o s i t i o n a1 so Logical dechiniotz phoccddwren doh cornbimtotohiaL ciecOiun pmbLem reduced t o d e c i s i o n problems o f a s o l v a b l e c l a s s o f formulae. T h i s approach has been i n v e s t i g a t e d by Lewis (1975) f o r ( t h e emptyness problem o f ) c o n t e x t f r e e grammars, f i n i t e ( t r e e ) automata ( o f f i n i t e o r d e r ) and push-down automata and f o r ( t o t a l i t y and t o t a l - e q u i v a l e n c e problem o f ) f u l l schemas; i n t h e l a s t case an i m provement o f Manna's (1968) r e d u c t i o n o f these problems f o r a b s t r a c t programs t o t h e d e c i s i o n problem f o r p r e d i c a t e l o g i c w i t h f u n c t i o n symbols ( b u t n o t = ) i s g i v e n which a v o i d s use o f f u n c t i o n s and r e s u l t s f o r f u l l schemata i n formulae o f a d e c i d a b l e c l a s s . F o r t h e o t h e r cases r e d u c t i o n s t o f o r m u l a e o f Monadic p r e d i c a t e resp. p r o p o s i t i o n a l l o g i c a r e g i v e n whose d e c i s i o n problem i s known t o be s o l v a b l e . We show h e r e t h e d e s c r i p t i o n o f c o n t e x t f r e e grammars. L e t a c o n t e x t - f r e e grammar M be g i v e n w i t h o u t l o s s o f g e n e r a l i t y w i t h r u l e s Sk + S . S and S . + ak i n Chomsky normal f o r m and axiom S1. We g i v e a d e s c r i p t i o n 1 J J o f M by a Skolemized f o r m u l a uM w i t h prenex normal f o r m i n t h e monadic subclass 2 o f V"A V; t h e t e r m i n a l symbols ak a r e r e p r e s e n t e d by i n d i v i d u a l c o n s t a n t s (denoted a g a i n b y ) ak t h e o p e r a t i o n o f c o n c a t e n a t i o n o f symbols t o words b y a b i n a r y f u n c t i o n symbol denoted by
'I()":
any t e r m
T
b u i l t up f r o m t h e a k by use o f " ( ) "
corresponds t o t h e u n i q u e l y determined word t o b t a i n e d f r o m T by j u s t c a n c e l l i n g a l l parentheses. Every v a r i a b l e 5 . o f M i s r e p r e s e n t e d by a monadic p r e d i c a t e 1
symbol (denoted a g a i n b y ) Si w i t h t h e f o l l o w i n g i n t e n d e d i n t e r p r e t a t i o n :
Sit
means
Si +Mt
t h e q u e s t i o n i f S1 -fMt f o r some t e r m i n a l word t i s f o r m u l a t e d as q u e s t i o n
i.e.
whether some t can be parsed s u c c e s s f u l l y by M (read: whether i n v e r s e a p p l i c a t i o n s o f grammatical r u l e s o f M t o some t f i n a l l y y i e l d S1). D e f i n e uM :=
A A ( P ~ A . . . ~w~i t)h t h e c o n j u n c t s B~
describing the parsing e f f e c t
(i.e.
t h e e f f e $ t Y o f an i n v e r s e a p p l i c a t i o n ) o f t h e L - t h grammatical r u l e S.S o f M t o words d e f i n e d by: i j Six A S.y + S k ( x y ) f o r e v e r y r u l e Sk + S . S . i n M and l e t tMbe t h e J 1 J c o n j u n c t i o n o f a l l formulae:
Sk
+
f o r every r u l e S .a J k Then t h e f o l l o w i n g Ireduc.tion p ~ o p e h t yh o l d s :
S1 +Mtf o r some t e r m i n a l word t i f f +
PL
S. J
+
uM A tM+ VSlx
ak
in
1.1
as one can show paraphrasing
X
t h e a r g u m e n t a t i o n g i v e n f o r t h e p r e c e d i n g r e d u c t i o n o f r e g i s t e r machines. Theref o r e uM A tMA 1 V S1x i s a monadic f o r m u l a which i s s a t i s f i a b l e i f f M generates X
t h e empty language; and a prenex normal f o r m o f i t i s indeed i n t h e c l a s s V.. . V M V w i t h number o f b e g i n n i n g e x i s t e n t i a l q u a n t i f i e r s depending on t h e number o f t e r m i n a l symbols. P r e c i s e l y t h e same c o n s t r u c t i o n a p p l i e s t o f i n i t e t r e e automata w i t h f i x e d o r d e r k where S i f expresses t h a t M w o r k i n g on t reaches t h e r o o t i n s t a t e i; t h e i m p l i c a t i o n o f u , , c o r r e s p o n d i n g t o an i n s t r u c t i o n ( i ( l ) , Si!l)xl~...~Si(k)xk j-th letter.
-+
Sefjx l...xk
...,i ( k ) , j )
+
L
o f M i s then
w i t h a k - a r y Skolem f u n c t i o n f . r e p r e s e n t i n g t h e J
E. BORGER
282
COMPLEXITY RELATIONS BETWEEN PROGRAMS AND PROGRAM FORMULAE The i n t i m a t e c o n n e c t i o n between programs M and t h e i r l o g i c a l d e s c r i p t i o n ',,, ( b e t t e r : t h e l o g i c a l f o r m u l a t i o n o f t h e i r e f f e c t on g i v e n data, o f t h e i r semant i c s as i s s a i d i n computer s c i e n c e ) which has been e s t a b l i s h e d by t h e method exp l a i n e d i n t h e p r e c e d i n g s e c t i o n f o r t h e examples r e g i s t e r machines, c o n t e x t f r e e grammars and f i n i t e automata i s such as t o c a r r y o v e r n o t o n l y ( u n - ) d e c i d a b i l i t y p r o p e r t i e s b u t a l s o t o p r e s e r v e t h e c o m p l e x i t y o f c o r r e s p o n d i n g d e c i s i o n problems, a g a i n i n such a way t h a t t h e p r o o f o f t h i s c o m p l e x i t y p r e s e r v a t i o n i s o b v i o u s f r o m t h e c o n s t r u c t i o n . We i l l u s t r a t e t h i s f e a t u r e by two examples c o n s i d e r i n g a ) deghee compeexity o f d e c i s i o n problems, b ) i M e p m b i U t y phopehtien f o r machine problems and t h e i r t r a n s l a t i o n i n t o complexity bouna2 ( o h f i t h e mode,& o f t h e desc r i b i n g formulae. S i n c e t h e program
M
and t h e program f o r m u l a aM a r e " t h e same"
-
even more: i n t h e
r e d u c t i o n lemma e v e r y c o m p u t a t i o n s t e p o f M i s i n 1-1-correspondence w i t h a l o g i c a l d e d u c t i o n s t e p u s i n g an i m p l i c a t i o n o f aM - i t i s n o t s u r p r i s i n g t h a t b y t h e r e d u c t i o n lemma any 0 - h a l t i n g problem HD(M) : = IC
I
C
+M 01
i s 1-1 e q u i v a l e n t and t h e r e f o r e hec~vrcrivedyb o m o h p k i c t o t h e d e c i s i o n problem w i t h r e s p e c t t o deduci b i 1 it y o f t h e f o r m u l a e c l a s s FD(M) : = {aM
A
+
D
1
C arbitrary}. (1)
We say: any 0 - h a l t i n g problem " i s " v i a o u r t r a n s l a t i o n a l o g i c a l d e c i s i o n problem ( w i t h respect t o d e d u c i b i l i t y ) . Since registermachines ( w i t h 2 r e g i s t e r s ) are universal f o r the computation o f a l l p a r t i a l recursive f u n c t i o n s a l s o the deducib i l i t y d e c i s i o n problem o f any c y l i n d r i c a l r e c u r s i v e c l a s s o f f o r m u l a e F can be shown " t o be" ( r e c u r s i v e l y i s o m o r p h i c t o ) a 0 - h a l t i n g problem o f a 2 - r e g i s t e r mac h i n e M w i t h a s i m p l e r e l a t i o n between F and M. We c o n c l u d e t h a t f i r s t o r d e r l o g i c a l d e c i s i o n problems a r e as " n a t u r a l " as h a l t i n g problems o f 2 - r e g i s t e r machines. B u t th.ere i s more t o say a b o u t t h e degree t h e o r e t i c a l r e l a t i o n between l o g i c a l and c o m b i n a t o r i a l d e c i s i o n problems. F i r s t observe t h a t b y i g n o r i n g t h e v a r i a b l e s i n t h e d e f i n i t i o n o f oM,uMcan he viewed as a semi-Thue system - w i t h s u b s t i t u t i o n rules
Pi
and an a l p h a b e t c o n s i s t i n g o f l e t t e r s 1,O and I.( f o r e v e r y s t a t e o f M) J
- w o r k i n g on " c o n f i g u r a t i o n words" C j u s t l i k e M on c o n f i g u r a t i o n s C i n t h e p r e c i s e sense o f t h e r e d u c t i o n lemma above, which i s a g a i n o b v i o u s f r o m t h e semiThue " i m p l e m e n t a t i o n " uM o f M and now reads: C +M 0
i f f C +u
-
0. M I n t h i s sense t h e l o g i c a l d e c i s i o n problem f o r c l a s s e s o f f o r m u l a e a M ~ + CD
i s ( u p t o r e c u r s i v e isomorphy) a l s o t h e same as t h e word problem
{(SJD) IC
+o
Dl
M f o r t h e semi-Thue i n t e r p r e t a t i o n uM o f M.
(1) Note t h a t t h e s e c l a s s e s FD(M) as w e l l as t h e f o r m u l a e uM can be c h a r a c t e r i z e d by p u r e l y s y n t a c t i c a l l o g i c a l means w i t h o u t any r e f e r e n c e t o programs M o r c o n f i g u r a t i o n s D.
Decision Problems in Predicate Logic
283
In Borger (1979) (1983) f u r t h e r e q u a l l y natural and simple " i n t e r p r e t a t i o n " of M have been given !n terms of Thue-systems - j u s t add t o uM t h e inverses of a l l i t s PrOdUCtionS--, Markov algorithm , Post normal c a l c u l i , Post correspondence problems, Turing machines, p a r t i a l implicational propositional c a l c u l i , Wang's non e r a s i n g Turing machines and o t h e r s and i t i s shown t h a t through a l l these i n t e r p r e t a t i o n s of M t h e many-one degrees i f not the r e c u r s i v e isomorphy types of corresponding decision problems l i k e h a l t i n g , word, confluence and so on a r e preserved; t h e proofs of these equivalences follow a general p a t t e r n developed t h e r e ; they a r e easy i f not t r i v i a l once one has grasped t h e "good implementation" of M i n t h e system considered. Therefore we have p u t foreward strong evidence f o r the following epistemological STATEMENT. LogicaL d e c h i a n p m b k m axe ab "mtuhae" M a n y aMeh k i n d a6 cambimto hiad d e c i b i o n p h o b L m . Let us mention two consequences of these c o n s i d e r a t i o n s . The f i r s t concerns Wang's (1962: pg. 54) problem "Whether t h e r e i s some natural undecidable s e t of formulas of the p r e d i c a t e c a l c u l u s w i t h a decision problem t h a t i s not of t h e maximum r e c u r s i v e l y enumerable degree". Our reply on t h e b a s i s of t h e above shown " i d e n t i t y " of (machine and o t h e r ) h a l t i n g problems - t r a d i t i o n a l l y taken a s representing ( r e c u r s i v e l y enumerable) degrees - with l o g i c a l decision problems i s t h a t Wang'h p m b L e m h n o t a problem about l o g i c a l decision problems but t h e pobLem whetheh thehe ate m t m k i & m e d i a t e degheen; t h e f a c t t h a t u p t o now a l l p r e f i x - s i m i l a r i t y and o t h e r " n a t u r a l l y " c l a s s i f i e d c l a s s e s turned o u t t o have e i t h e r a r e c u r s i v e o r a decision problem of maximum degree i s only just another among many examples in mathematics suggesting t h a t intermediate degrees do not ( y e t ? ) c o n t r i b u t e t o s a t i s f a c t o r y c l a s s i f i c a t i o n s of t h e complexity of construct i o n s occuring in mathematical p r a c t i c e . A second s i m i l a r conclusion can be drawn about many attempts in the l i t e r a t u r e
t o study decision problems of formal grammars with r e s p e c t t o t h e i r degree comp l e x i t y . In Borger (1983) we develop a method showing t h a t Post correspondence problems - t h e s e a r e most f r e q u e n t l y used f o r reductions t o show formal language decision problems t o be unsolvable - and any formal language decision problem t o which t h e former have been reduced e f f e c t i v e l y in a very strong s y n t a c t i c a l sense ' b e the same"; indeed t h e i r r e c u r s i v e isomorphy types coincide. Therefore here again i t turns o u t t h a t degree complexity does not c o n t r i b u t e t o t h e i n s i g h t i n t o formal language decision problems: j u s t d e c i d a b i l i t y o r u n d e c i d a b i l i t y of maximal degree i s t h e only r e l e v a n t question, a p a r t from i n v e s t i g a t i o n s on subrecursive complexity i n decidable cases. Let us conclude t h i s argument however with a p o s i t i v e example: the f a c t t h a t the h a l t i n g problems H D ( M ) and t h e decision problems of FD(M) a r e " t h e same" implies t h a t well known complexity r e s u l t s f o r metadecision problems of h a l t i n g problems i n t h e Kleene-Mostowski a r i t h m e t i c a l hierarchy c a r r y over automatically t o logical metadecision problems a s exemplified i n the following
C o h a U a h y . (Borger & Heidler (1976)) With r e s p e c t t o d e d u c i b i l i t y t h e following metadecision problems f o r l o g i c a l decision problems a r e of t h e i n d i c a t e d ( p r e c i s e ) a r i t h m e t i c a l complexity: - t h e emptyness problem i s nl-complete - t o t a l i t y and i n f i n i t y problem a r e n2-complete - c o f i n i t e n e s s , r e c u r s i v i t y and reduction c l a s s problem a r e n3-complete A b h o h t and n&p&
pmoa doh T m c k t e n b m t ' n Meohem, promised i n the preceding s e c t i o n a s consequence of our reduction method, w i l l be given now. By t h e r e duction lemma we have already shown t h a t t h e c l a s s e s No := I F / C , F } F i n : = IFlF has a f i n i t e model}
284
E. BORCER
a r e r e c u r s i v e l y i n s e p a r a b l e : t h e r e c u r s i v e u n s e p a r a b i l i t y o f two h a l t i n g problems
HE(M) i s c a r r i e d o v e r t o t h e no-model and t h e f i n i t e - s a t i s f i a b i l i t y prob-
HD(M) and
lems through o u r r e d u c t i o n :
(1) C +MD
implies
( 2 ) C +ME
"
+
1(uM
A
PL
uM
C
A
A
c
l n
A
la)
has a f i n i t e model
I n f a c t f o r ( 2 ) n o t e t h a t C +ME i m p l i e s t h a t n o t C i n t h e r e d u c t i o n lemma i n t h a t case f o r uM
A
C
+MD;
A 1D
t a k e t h e model c o n s t r u c t e d
and c u t i t down t o t h e i n i t i a l
domain o f a l l numbers zt t 1, where t denotes t h e maximal r e g i s t e r c o n t e n t o c c u r i n g i n t h e t e r m i n a t i n g computation from C t o E, by d e f i n i n g ( t + l ) ' : = t t l . T h i s i s s t i l l a model f o r u,, A C A 1 D . The c l a s s e s No and I n f o f a l l i n f i n i t y a x i o m a r e r e c u r s i v e l y i n s e p a r a b l e because No and F i n a r e r e c u r s i v e l y enumerable b u t p r e d i c a t e l o g i c i s undecidable. To show a l s o t h e r e c u r s i v e u n s e p a r a b i l i t y o f t h e f i n i t e - s a t i s f i a b i l i t y and t h e i n f i n i t y - a x i o m p r o p e r t y we have t o m o d i f y s l i g h t l y o u r d e f i n i t i o n o f uM f o r M t o assure t h a t a l l n o n - p e r i o d i c computations o f M g e t i n f i n i t y axioms as t h e i r desc r i p t i o n ; because t h e n t h e d e s i r e d i n s e p a r a b i l i t y p r o p e r t y i s c a r r i e d o v e r f r o m t h e corresponding i n s e p a r a b i 1 it y p r o p e r t y o f a p p r o p r i a t e l y chosen machines M. The problem i s e a s i l y s o l v e d b y t h e o b s e r v a t i o n t h a t n o n - p e r i o d i c r e g i s t e r machine computations must have l a r g e r and l a r g e r numbers o c c u r i n g i n a t l e a s t one r e g i s t e r ; such " b i g " elements i n t h e models can be assured by t h e " g r e a t e r as" axioms discussed i n t h e p r e c e d i n g s e c t i o n , r e l a t i v i z e d however t o p o s s i b l e r e g i s t e r contents. F o r m a l l y d e f i n e 6 as b e f o r e uM w i t h t h e a d d i t i o n a l c o n j u n c t s ( f o r e v e r y M - i n s t r u c t i o n Ii): (xIiy
+
x'Gx) (yIix
+
x ' G x ) (XGY
+
x'GY)
ixGx
As b e f o r e t h e r e d u c t i o n lemma and f o r a p p r o p r i a t e D, E a l s o t h e above r e l a t i o n ( 2 ) h o l d ; i n a d d i t i o n we have t h e d e s i r e d r e l a t i o n t h a t i f C does n o t d e r i v e D i n M, then 6 A A l n has a model as b e f o r e b u t no f i n i t e one. F o r more s u b t l e quest i o n s !!bout c o n s e r v a t i v i t y o f s p e c i f i c r e d u c t i o n procedures see Aanderaa & Borger & Lewis (1982). F o r a n o t h e r i11 u s t r a t i o n ( l ) o f how o u r r e d u c t i o n technique c a r r i e s o v e r unseparab i l i t y p r o p e r t i e s f r o m machine problems t o formulae problems d e f i n e ( t h e "ThueV C ~ A ~ O M " T~ ) as uM w i t h ++ i n s t e a d o f +. I t i s easy t o adapt t h e p r o o f o f t h e r e d u c t i o n lemma f o r oM t o a p r o o f f o r t h e f o l l o w i n g
ReducGtion Lemm
6 0 ' ~Rhe
Thue uemian
T~
05
uM. F o r any c o n f i g u r a t i o n s D,E
of M
which a r e n o t r e a c h a b l e one f r o m t h e o t h e r i n M h o l d s :
(1) C
+MD
iff
I-
T~ A
PL
( 2 ) C +ME
iff
+
PL
T ~ ,A
ln ,n
IT
A
+
A
+c
( l ) Taken f r o m Aanderaa (1971) and Borger (1975). Aanderaa's method i s d i f f e r e n t f r o m mine i n t h e r e s p e c t t h a t Aanderaa does n o t s e p a r a t e c o m p l e t e l y t h e i n p u t d e s c r i p t i o n f r o m t h e program f o r m u l a t i o n . Due t o t h i s f a c t h i s formulae a r e more complex than o u r s and h i s p r o o f o f what i n o u r f o r m u l a t i o n reduces a g a i n t o t h e r e d u c t i o n lemma becomes more i n v o l v e d and does n o t show t h a t t h e same argument works a l s o i n s u b r e c u r s i v e c o m p l e x i t y l i k e f o r En-unseparable En+l-sets.
285
Decision Problems in Predicate Logic
Pmod. In ( 1 ) from l e f t t o r i g h t the claim follows from t h e case f o r r i g h t t o l e f t assume t h a t C 7LMD: then a canonical model f o r i s given by defining F a s meaning F fMD
T~
A
JD
uM; A
E
A
from
C
I n ( 2 ) from l e f t t o r i g h t conclude a s i n t h a t case f o r uM but using the implithe to infer c a t i o n s from r i g h t t o l e f t i n T~ and s t a r t i n g w i t h given computation C +ME. In the o t h e r d i r e c t i o n defining F a s meaning F +ME
r
y i e l d s a canonical model f o r which means: C +ME. The reduction lemma f o r
T~
T~
A
ID
A
c
F where t h e r e f o r e a l s o
c must
be t r u e
immediately implies my 1975-version o f Aanderaa's
Theonem. For a r b i t r a r y r e c u r s i v e l y unseparable h a l t i n g problems H o ( M )
and H E ( M ) , in theory T w i t h T~ A TEA F a s non-logical axiom theoremhood and l o g i c a l falsehood a r e r e c u r s i v e l y unseparable. Therefore t h i s theory i s e s s e n t i a l l y undec i d a b l e and consequently incomplete. Phood. Any r e c u r s i v e s e t R s e p a r a t i n g I F I h F ) and IF1 pT1F) would y i e l d the rec u r s i v e s e p a r a t i o n s e t {TITER) f o r H D ( M ) and H E ( M ) . For the same reason T can have no r e c u r s i v e supertheory. B u t then i t must be incomplete because otherwise i t would be r e c u r s i v e .
S u f f i c i e n t l y d i f f i c u l t h a l t i n g problems f o r a machine M(1ike t h e above r e c u r s i v e s t a t i n g t h e e f f e c t of t h e u n s e p a r a b i l i t y ) generate "program formulae" T~ A ID A program on i t s p o s s i b l e data t o g e t h e r with a commitment on one s t o p s t a t e which may and one which may not be reached and y i e l d i n g thereby e s s e n t i a l l y undecidable and incomplete t h e o r i e s . I t would be i n t e r e s t i n g t o analyze how simple such program formulae could become generating s t i l l incomplete t h e o r i e s . ( l ) .
r
Note t h a t by r e l a t i v i z i n g our program formula -tM A A 'E t o a new "successor" r e l a t i o n S defined by A V Sxv a formula i s obtained which by t h e same arguments
x v as above can be seen t o have r e c u r s i v e l y enumerable b u t no r e c u r s i v e models i f H D ( M ) and H E ( M ) a r e r e c u r s i v e l y unseparable, and En+l - but no E n - models in the Grzegorczyk hierarchy i f H O ( M ) and H E ( M ) a r e En-unseparable En+l-sets. (The comp l i c a t i o n by r e l a t i v i z i n g t o a successor r e l a t i o n i s needed because T~ A A i s a KrOm formula and a l l s a t i s f i a b l e Krom formulae a r e known t o posses r e c u r s i v e models ( s e e Aanderaa & Jensen (1973), Ershov ( 1 9 7 3 ) ) ) . T h u s we have a s h o r t proof e x h i b i t i n g a very simple s a t i s f i a b l e formula excluding recur-
ln
(1) A very i n t e r e s t i n g r e s u l t . r e l a t e d t o t h i s question i s i n German0 (1976) where i t i s shown t h a t any theory i s incomplete i f i t i s r e c u r s i v e l y enumerable, c o n s i s t e n t and admits term r e p r e s e n t a t i o n s f o r a d d i t i o n and m u l t i p l i c a t i o n ( u s i n g =,O, Successor).
E. BdRGER
286
s i v e models, improving considerably much more involved e a r l i e r s o l u t i o n s by Kreisel (1953), Mostowski (1953), (1955), Rabin (1958) t o t h a t problem r a i s e d by H i l b e r t & Bernays (1939).
DESCRIPTION OF BOUNDED MACHINE COMPUTATIONS: COOK'S PROBLEM, SPEKTRAL-PROBLEM Take again t h e technique of f i r s t o r d e r d e s c r i p t i o n of e v e n t u a l l y unbounded machine computations a s explained i n s e c t i o n 2 and consider i t f o r f i n i t e computat i o n s : look a t the atomic formulae PI .q representing t h e t - t h configuration 1t C reached by M s t a r t i n g with Co = C a s propositional v a r i a b l e s := I t . with P31 ,q the same intended i n t e r p r e t a t i o n of
ct
I t . = 1 a s meaning CO c~. PY1.9 I f you d e f i n e now uM f o r given computation length a. and given i n p u t (memory) bound k a s before but using f i n i t e conjunctions over time 0 5 t 5 a. and r e g i s t e r contents 0 5 p. q 5 k i n s t e a d of universal q u a n t i f i c a t i o n , then t h e r e s u l t i n g formula u M,ge,k again f u l f i l l s the &duc.tion pmpehty t h a t -f
c
~
-f
iD i f f
u,,,,a,k
A
' C
-+
na.i s
a tautology
However the length of u grows exponentially because t h e formula d e s c r i b e s M,k,k g l o b a l l y the e f f e c t of every machine i n s t r u c t i o n , i . e . r e f e r r i n g always t o the whole configuration say ( p , i , q ) and not only the content of the p a r t i c u l a r memory p o s i t i o n a f f e c t e d by I i . Indeed i n t h a t way we succeeded in giving compact formul a t i o n s of M - namely by Krom formulae - and i n t r i v i a l i z i n g completely t h e equivalence proofs showing t h a t t h e reductions work. I t i s easy however t o modidy 0u4 g l o b a l duchip-tion techniyue t o a Local one s i n c e f o r every reasonable notion of algorithm t h e execution of an elementary computation step ( i n s t r u c t i o n ) has a local c h a r a c t e r . I t i s s u f f i c i e n t t o consider the r e g i s t e r s not any more a s s t a c k s but a s containing s t r i n g s of symbols displayed i n l i n e a r order with a p o i n t e r showing the p o s i t i o n of the symbol on which t h e program a c t u a l l y i s working (Tur i n g t a p e ) . What we w i l l gain i s t o o b t a i n from our c o n s t r u c t i o n i n the same way a l s o a proof f o r Cook's theorem t h a t any computation in time bound a. , s t a r t i n g with input of length n , of any (even nondeterministic) Turing machine M can be described by a propositional formula u M,n,a. of polynomial length in M,n,a. Since the s a t i s f i a b i l i t y problem of Krom formulae i s in P(see Cook 1971), unless P=NP we have t o g i v e uv ,the K4om b t ~ u c t u h ef o r u ~ , ~ , ~ . W e can preserve however the Horn s t r u c t u r e f o r our program formulae, a p a r t i c u l a r l y i n t e r e s t i n g f e a t u r e s i n c e P contains a l s o t h e s a t i s f i a b i l i t y problem f o r Horn formulae. This comes o u t from the following ( c f . Aanderaa & Borger 1979): T h e o m o n ( a h o n t - ) How &chipZion 0 6 ~ i n ; R ecompuhtioiovld. There i s a P-comput a b l e function a s s o c i a t i n g t o every d e t e r m i n i s t i c T u r i n g machine program M and any natural numbers n ( f o r i n p u t l e n g t h ) and a. ( f o r computation l e n g t h ) a Horn formula u ("pmgmm ~ o h m u h " ) , a Krom Formula aM ("n&~taht & ~ m u h "with so c a l l e d M, a. ,n "input" v a r i a b l e s x l , .. . , x n ) and a Herbrand formula wM,% ("&top ~ o t ~ n & ~ ' s) a t i s fying t h e following &duca%on pmpehty: l e t Co(q) be t h e s t a r t configuration of M with i n p u t q . Then
-+i accepting config.
i s s a t i s f i a b l e f o r every M,a. 0-1-sequence q of length n where a M,n ( 9 ) denotes t h e r e s u l t of simultaneous substit u t i o n of every x i by qi f o r 1 5 i 5 n . Co(q)
i f f uM,k
A
aM,n(q) A w
281
Decision Problems in Predicate Logic ( A Hehbmnd formulae. )
60m&
i s a conjunction of atomic formulae o r negations of atomic
Proof. F i x a r b i t r a r i l y Q , n and a d e t e r m i n i s t i c Turing machine M with s e t s of i n s m i o n s e t s I . = ( i , j , o . .,$. .) f o r 1 5 i 5 r , 0 5 j 5 m over the alphabet 1 - J 1,J {ao,...,am}. To execute I i means a s usual: i f in s t a t e i the l e t t e r under the reading head (pointed t o by t h e p o i n t e r ) i s a . , t h e n do o i , j - which i s one o f : a k . J ( " w r i t e " a ) o r r resp. a.(move p o i n t e r 1 p o s i t i o n t o the r i g h t resp. l e f t ) - and k go t o execute the i n s t r u c t i o n w i t h index $i .. Let a. = 0 , al = 1, a2 = b ("blank" ,J symbol) and without l o s s of g e n e r a l i t y l e t 0 be t h e accepting s t a t e of M . Let the i n i t i a l c o n f i g u r a t i o n s CO(q) f o r 0-1-input sequences q of length n be defined by the i n i t i a l s t a t e 1 and t h e following f i n i t e tape w i t h p o s i t i o n s numbered by -Q ,...,0 , l ) . .., I.: b. ..b b q b . . b
+
c-rc'+
Q times
1 - n times
i . e . t h e p o i n t e r (reading head) i s in p o s i t i o n (with number) 0. To encode a r b i t r a r y M-configurations we introduce f o r a l l numbers t , k , j , i with 0 5 t 5 1 , -Q < k 5 R , 0 5 j 5 m, 0 5 i 5 r pairwise d i f f e r e n t propositional t-Tt where Ct denotes with t h e following intended i~~Xeqme,?izfitn variable I i , Pk, k,j t h e configuration reached by M in t s t e p s f o r given Co = Co(q):
I t. = 1 t Pk = 1 Ti,j
i f f t h e i n s t r u c t i o n t o be executed i n Ct i s i i f f the p o i n t e r C t i s in p o s i t i o n k 1 i f f the tape c e l l ( w i t h number) k i n C t contains a . .
=
J
a s conjunction of t h e following formulae desDefine t h e pmgmm @un& c r i b i n g l o c a l l y - i . e . f o r any s i n g l e tape c e l l - f o r every M-instruction I i how execution of I i on C a f f e c t s the i n s t r u c t i o n address, the p o i n t e r p o s i t i o n and t h e content of the tape c e l l (we w r i t e f o r s h o r t n e s s 6 -+ y1 A y 2 i n s t e a d of (6
-+
(i)
Y,)
A
(6
+
~2)):
f o r any w r i t e - i n s t r u c t i o n ( i , j , a h , $ i , j ) i n M:
IF
A
t
I.
P:
A
t
A
Pk
T:,~
+
T~+' +i,j
t
A
Tk1.j'
A
P:+'
A
klh
tt 1 -+
T~+'
(successive s t a t e , pointer position, c o n t e n t of working c e l l ) ( " c o n t e n t of nonworking c e l l s remains unchanged")
T k i , j i
f o r any -Q 5 k , k' 5 R and 0 5 j ' 5 m w i t h k' # k ( i i ) f o r any right-move j n s t r u c t i o n ( i , j , r , $ . . ) : 1 ,J t t t+l t+l A T t + l A 'k A T k , j A ':',j' . A 'k+l k ,j ,J
A
T t+ k, 1 , j'
( i i i ) f o r any left-move i n s t r u c t i o n analogously w i t h -I 5 k - 1.
E. BORGER
288
Define the n f ~ ~ t a h~tomunUaaa
M,n I; { i n i t i a l s t a t e i s 11 P:
encoding Co a s conjunction o f : { i n i t i a l p o i n t e r p o s i t i o n i s 01
Ti,o
-
G,2
f o r - 2 5 k 5 0 o r n < k 5 a. Inoninput c e l l s a r e blank}
f--t
';,l
lXk
xk f o r 1 5 k 5 n
{ i n p u t in c e l l s 1, ..., n}
of l I .9i f o r 1 5 i 5 r expressing t h a t Define the n t o p 6omunUaa w ~ a, s conjunction ~ a t time a. M could be in accepting s t a t e 0 b u t i n no o t h e r s t a t e . The reduction property f o r u A aM,,(q) A w ~ i s, e a~ s i l y proved following the M,9. approach explained in s e c t i o n 2: i f M reaches i n 9. s t e p s an accepting configurat i o n ( i . e . with s t a t e 0 ) from given Co = C o ( q ) , then t h e above i n d i c a t e d intended t r u e . Conversely any model i n t e r p r e t a t i o n obviously makes u M , % A ~ ~ , ~ A( q ) f o r t h i s formula simulates any M-computation of length (a. s t a r t i n g with Co(q) i n the sense t h a t f o r any t r u t h assignement A making our formula t r u e and f o r any t t C and t 5 .f with Co(q) +; C t where C has i n s t r u c t i o n i, p o i n t e r p o s i t i o n k and tape a . ... a . , A a s s i g n s truth-value 1 t o the encoding v a r i a b l e s 1.; and L
J-9.
J9.
2 9.. I t follows t h a t C9. must have s t a t e 0 because
T k , j h f o r -9. 5 h
A(1:)
Pi
L
=
0 for
a l l 1 <. i < r. This c o n s t h c t i o n e s t a b l i s h e s a l s o C o o k ' 6 Rheohm about NP-completeness of the prop o s i t i o n a l l o g i c decision problem s i n c e i f M i s nondeterministic, proceed a s above b u t f o r every p a i r ( i , j ) take in u a s conclusion of the corresponding impliM,a. c a t i o n ( s ) t h e d i s j u n c t i o n over a l l p o s s i b l e 1 - s t e p t r a n s i t i o n s ( i , j , o . .,$. .) 1.J 1 , J of M. (Note t h a t then uMP9. i s not any more a Horn formula.) We now show t h a t applying t h e same c o n s t r u c t i o n t o machine d e s c r i p t i o n s over f i n i t e domains y i e l d s t h e famous automata t h e o r e t i c c h a r a c t e r i z a t i o n of s p e c t r a . In f a c t the only thing t o show i s t h e following h g i c a l denchipLLan 0 6 ,jivzite cornpuhLLouzb Oweh divzite domcLim : For every n we a s s o c i a t e t o every r e g i s t e r (or Turing) machine program M and any s a formula ci of order n + 1 f u l f i l l i n g t h e following /reduction p m p e h t y : M accepts k in 'an(ks) steps i f f s f k a f o r every 2 5 k . Proof. We paraphrase our proof given f o r Cook's theorem. Let n,M,s be a r b i t r a r i l y fixed. To d e s c r i b e over a domain w i t h k elements - say k := { O , l , ..., k - 1 ) - t h e M-computation of length a n ( k s ) s t a r t e d with i n p u t k , we need an encoding of a,(ks) many successive "time moments" t o g e t h e r with t h e corresponding s i t u a t i o n of t h e computation. The i d e a i s t o c m t e by nuccenniwe poloeh n e t c o m t m t i o n - s t a r t i n g from t h e s-ary Cartesian product over k - Rhe needed a n ( k 6 ) o b j e c h of a type u n of order n , t o ohdeh thene o b j e c h in a & n U h m y and then t o d e s c r i b e t h e M-computation in the same way a s done before but using now a zero p r e d i c a t e Z and a successor r e l a t i o n S r e l a t i v e t o the previously defined l i n e a r ordering K, and an embedding F of k i n t o a segment of these un-type o b j e c t s f o r d e s c r i p t i o n of t h e input. Formally the power s e t types over k S a r e defined by u1
:=w u
s-times
~ :=+ ( ~ ui)
IU n I
=
n
289
Decision Problems in Predicate Logic
...,
Over k = 10, k - 1 ) t h e r e a r e e x a c t l y a n ( k s ) o b j e c t s of type u n where by o b j e c t s of type uo we understand s - t u p l e s of elements from k . We use x,y,z a s v a r i a b l e s of 1 resp. a s s-tuples and t . u , v , w , t ' , u ' , a s v a r i a b l e s of type o n f o r n type of v a r i a b l e s of type I f o r n = 0 ( u s i n g u = v a s abbreviation f o r u1 = V ~ ... A A u = vs, s i m i l a r l y A e t c . ) .
...
S
U
Dedine t h e formula Ord(Z,S) of o r d e r n + 1 - expressing t h a t Z represents "zero" ( t h e f i r s t element) and S the "successor" r e l a t i o n w i t h r e s p e c t t o a l i n e a r ordering K of a l l type -u - o b j e c t s over any ( f i n i t e ) domain - a s conjunction o f the n following formulae: ( ( K u v v Kvu v u
A A A
=
v)
A
A TKuu
(Kuv
A KVW +
K uw ) )
u v w VZU
A
u A
A ( Z U -+
u
1VKvu)
A(Suv + + ( K u v
u v
{"zero" has no "predecessor")
V A
lV(Kuw
A
Kwv)))
{no element between successors}
W
Using Ord(Z,S) we can d e f i n e t h e program formula uM a s before using Z resp. S (predicate) f o r 0 resp. t + 1 and (almost) t h e same i n t e n d e d r n u n i n g doh v a r i a b l e s I i , P and T . encoding over any domain k = {O, k - 1 ) resp. s t a t e i , J the p o i n t e r ( r e a d i n g head) p o s i t i o n and tape c e l l i n s c r i p t i o n a . f o r any time J moment t and any tape p o s i t i o n u of any M-computation s t a r t e d with C o ( k ) ( l e t - 2 be t h e number of t h e leftmost c e l l v i s i t e d during t h e given computation and It( t h e o r d e r number of t i n t h e given ordering K ) :
...,
I i t i s t r u e i f f a t time It1 i n s t r u c t i o n i i s executed P t u i s t r u e i f f I u I = ( p o i n t e r p o s i t i o n a t time It1 )+ I T . t u i s t r u e i f f a t time It1 the tape c e l l with number 1.1 J letter a .
+ n.
contains t h e
J
Formally l e t M have i n s t r u c t i o n s I i ( O 2 i 5 r ) over the alphabet a.(O 5 j 5 m ) J with a. = b ( " b l a n k " ) , a l = 1, accepting s t a t e 0 of M and i n i t i a l configurations C o ( k ) defined by the i n i t i a l s t a t e 1 and unary encoding of k i n t o the tape k-times ... b'l l'b
...
...
f
with the p o i n t e r (reading head) in p o s i t i o n (numbered) 0. For technical reasons which w i l l become c l e a r l a t e r choose s such t h a t f o r any k , i f M accepts k , then during t h e computation s t a r t e d w i t h input k i t w i l l never v i s i t the tape c e l l numbered -a (ks) + k. Without l o s s o f g e n e r a l i t y we assume a l s o t h a t in the accept i n g s t a t e !ny computation becomes c o n s t a n t (formally I. = (O,j,aj,O) f o r a l l 0 < j < m; remember t h a t we t h i n k of Turing i n s t r u c t i o n s I i a s of s e t s of quxdruples. )
Dedine the program formula of t h e following formulae:
uM
a s universal q u a n t i f i c a t i o n of t h e conjuncticn
9 s
(i)f o r any w r i t e - i n s t r u c t i o n s e t ( i , j , a h , + i , j ) i n M: t ' A Pt'u A Tht'u I i t A P t u A T . t u A S t t ' -+ I J +i,j {successive s t a t e , p o i n t e r p o s i t i o n unchanged,new working c e l l content}
E. BORGER
290
I i t A P t u A T . , t v A v f. u A S t t ' + T t ' v f o r 0 5 j' J j' {content of non working c e l l s remains unchanged) ( i i ) f o r any right-move i n s t r u c t i o n s e t ( i , j , r , @ i .) in M:
zm
,J
1.t 1
A
Ptu
A
T.,tv
+
I
T.tu
A
J
A
J
t'
$i,j
Stt' A
A
SUU'
Pt'u'
T.t'u
A
J
A
T.,t' J
for 0 5 j '
zm
( i i i ) f o r left-move i n s t r u c t i o n s analogously To d e f i n e t h e i n p u t r e p r e s e n t a t i o n we make use of the following embedding dohmula s t a t i n g t h a t t h e given domain (namely k = {O, ...,k-1) f o r some k ) i s embedded i n t o a segment of the ordering of t h e on-objects by some function ( w i t h graph)F:
V Fxu { e x i s t e n c e } x u A A A (Fxu A Fyu -t x A
A
A
A ( F X U A Fxv
A A
+
u
=
v ) {uniqueness]
x u v =
y) {injectivityl
X Y IJ A
A(KUV u v w x y
A A A A
A
Kvw
A
Fxu
A
Fyw
-+
VFzv)
{range i s a segment}
Z
Ued-ine t h e n-taht domula
aM,s
a s conjunction of the above embedding formula and
the following formulae: A ( Z t + I l t ) {read: a t time p o i n t 0 i n s t r u c t i o n 1 i s t o be executed} t A ( Z t -t V V ( P t u A Fxu A A ( K v u -t 1VFyv))) t u x V Y {read: a t time 0 t h e p o i n t e r p o s i t i o n i s encoded by the f i r s t F-value} A ( ( J V F x u ) -+ T o t u ) ) u x X {read: a t time 0 every tape c e l l (with number) i n the range of F has tape i n s c r i p t i o n a l = 1 and any o t h e r the blank symbol a. = b . 1
A ( Z t + A((VFxu + Tltu)
t
by saying t h a t a t t h e l a s t moment no i n s t r u c t i o n De6-ine t h e n t o p 60hmLLPa w M,s d i f f e r e n t from the a c c e p t i n g - s t a t e - i n s t r u c t i o n I. can be executed:
...
+ 111th A lIrt) t u We now show t h a t M e ConjuncLLon a := Ord(Z,S) A oM,s A aM,s A wM,s
A((1VKtU)
pmgmm, n.taht and n t o p 6omlLeae w i t h hebpect t o M e ckr&Lned by Ord(2,S) ~ U R d mM e heduction pmpehty.
06
ze.ho-AWCebnOh-bth4kJW
Indeed i f M accepts k in a t most a n ( k s ) . then {remember t h a t t h e configuration sequence ( C t : 0 < t 5 a n ( k s ) ) defined by Co(k) and M becomes c o n s t a n t once the i s c a l l e d } t h e above i n d i c a t e d accepting i n s t r u c t i o n set I. = (O,j,aj,O)o < intended meaning of K,Z,S,Ii,P,T. over k = TO,.T.,k-ll y i e l d s a model f o r a over k J together w i t h Fxu meaning I u I = p. + x (where p. and I u / a r e defined a s i n d i c a t e d above f o r the given k ) .
29 1
Decision Problems in Predicate Logic I n v e r s e l y any model M o f c a r d i n a l i t y k s a t i s f y i n g a, say o v e r t h e domain t k-11, encodes any M-computation ( C :O 5 t 5 a ( k ' ) ) s t a r t e d f r o m n t Co = Co(k) i n t h e sense t h a t i f C has i n s t r u c t i o n number i, p o i n t e r p o s i t i o n k k = {O,l,
...,
and t a p e a .
...
~ - e
, then
a
Iiut,
Putue+k and Tjhutuh+e
for
-e 5
h <
j a n ( ks)-a.
an(ks) a r e t r u e i n t h e model where u t denotes t h e t - t h o b j e c t o f t y p e on o v e r k w i t h r e s p e c t t o t h e g i v e n i n t e r p r e t a t i o n o f K and i s t h e o r d e r number o f t h e consequently M a t t i m e p o i n t K - s m a l l e s t F-value. Due t o t h e s t o p f o r m u l a w M,s an(ks) c a n n o t be i n any o f i t s s t a t e s 1 5 i 5 r, t h e r e f o r e a t t h a t moment i t must be e x e c u t i n g t h e a c c e p t i n g i n s t r u c t i o n Io. From t h e above g i v e n c o n s t r u c t i o n and w e l l known f a c t s a b o u t t h e Grzegorczyk- and t h e y n - h i e r a r c h y ( c f . Rodding 1967) f o l l o w s : yn 5 SPECTRAn+l, whereas SPECTRAn+l 5 yn+l f o l l o w s f r o m an easy g o d e l i z a t i o n o f formulae w i t h types bounded by n + 1 i n t o a r i t h m e t i c a l statements o v e r +,.,2' w i t h q u a n t i f i e r s bounded by an; see o p . c i t . S i n c e as e x p l a i n e d f o r Cook's theorem t h e same c o n s t r u c t i o n a p p l i e s t o n o n d e t e r m i n i s t i c machines f r o m t h e s p e c i a l case n = o f o l l o w s :
Fimt-ohdm Spectm a m ULith m p e c t t o 06
u n a q mpmentaLion pmc.hdy
the
NP-be.12
pobLtLve nwnbehs.
S i n c e a f u n c t i o n i s p o l y n o m i a l i n t h e l e n g t h k o f t h e unary r e p r e s e n t a t i o n k-times o f k i f f i t i s e x p o n e n t i a l i n t h e l e n g t h o f t h e b i n a r y r e p r e s e n t a t i o n o f k, t h a t c h a r a c t e r i z a t i o n can a l s o be s t a t e d i n t h e more f r e q u e n t l y used form:
WLth hebpect t o b i m q m p w e n t a f i o n t h e 6ih6t-ohCleh 6peCtM am phec.hdy those netn 0 6 pOb&iVe numbea which am accepted by a nondetemini6Lic Tuhing mckine i n e x p o n e m e (namely 2c"(x) f o r some c o n s t a n t c ) time. Using t h e s t a n d a r d encoding e(S) o f a f i n i t e s t r u c t u r e S = (k;R l,...,Rd) t e n a t i o n o f t h e encodings e(R1) d e f i n e d as {al,a2}-word
,...,
e(Rd) o f R1,...,Rd
as conca-
where f o r r - a r y R e(R) i s
o f l e n g t h kr which has i - t h d i g i t a2 resp. al
if R is
t r u e resp. f a l s e f o r t h e i - t h element o f kr w i t h r e s p e c t t o l e x i c o g r a p h i c a l o r d e r i n g , t h e domain c a r d i n a l i t y k need n o t t o be encoded s i n c e i t can be computed n o n d e t e m i n i s t i c a l l y i n p o l y n o m i a l t i m e f r o m e ( S ) . T h i s i s t h e reason why t h e above g i v e n p r o o f f o r t h e c h a r a c t e r i z a t i o n o f f i r s t - o r d e r s p e c t r a proves a l s o F a g i n ' s e x t e n s i o n t o g e n e r a l i z e d s p e c t r a : F o r any LENP n o t c o n t a i n i n g t h e empty word h o l d s L = e ( [ I } -spectrum(a)) where a i s t h e f o r m u l a d e f i n e d i n t h e main cons t r u c t i o n f o r a n o n d e t e r m i n i s t i c T u r i n g machine M a c c e p t i n g L i n t i m e ks, b u t w i t h a d d i t i o n a l l y Ord(O,xx,y.y = x + l ) - i n o r d e r t o r e s t r i c t a t t e n t i o n t o models o v e r k = [O,l, k-11 - and t h e f o l l o w i n g replacements i n t h e s t a r t f o r m u l a aM . ,s' r e p l a c e t h e embedding f o r m u l a by t h e new embedding 60hmLLen e x p r e s s i n g t h a t t h e domain k = [O,l, k-11 'is embedded v i a F i n an o r d e r p r e s e r v i n g way i n t o a segment o f t h e s - t u p l e s : A V Fxu A A A A A(Fxv A Fyw -P ( S xy++ Svw)) x u x y v w
...,
...,
{Note t h a t t h e o r d e r - p r e s e r v a t i o n i m p l i e s uniqueness and i n j e c t i v i t y o f F and t h e f a c t t h a t t h e range o f F i s an K-segment}; r e p l a c e t h e i n i t i a l - t a p e - d e s c r i p t i o n by t h e f o l l o w i n g new i n i t i a l - h p e 60mLLen e x p r e s s i n g t h a t M s t a r t s a t t i m e 0 w i t h t h e encoding o f t h e monadic " i n p u t " p r e d i c a t e I - which i s o f l e n g t h k and i s i n s c r i -
E. BORGER
292
bed i n t h e tape c e l l s numbered by F-values u: A ( Z t + A A(FXU + ( ( I x
A
+
Tptu)
(1Ix
A
-+
Tltu))
x u
t
A(Zt t
-+
A((~VFXU) Totu)) u x -f
{ b l a n k a.
o u t s i d e range ( F ) }
F i n a l l y bound a l l p r e d i c a t e symbols e x c e p t I by an e x i s t e n t i a l q u a n t i f i e r . Again t h e same c o n s t r u c t i o n a p p l i e s t o r u d i m e n t a r y p r e d i c a t e s , i . e . those number t h e o r e t i c a l r e l a t i o n s which can be d e f i n e d e x p l i c i t e l y f r o m t h e graphs o f "+" and a number t h e o r e t i c a l ' I - ' ' u s i n g Boolean o p e r a t i o n s and bounded q u a n t i f i c a t i o n s : p r e d i c a t e R i s s a i d t o have a ,$&5.t ohdeh mpkueevLtaLLtion i n 4.inite d o d m i f f some f i r s t o r d e r f o r m u l a % ( c o n t a i n i n g i n p a r t i c u l a r a p r e d i c a t e symbol T? o f t h e same a r i t y as R and e v e n t u a l l y a b i n a r y p r e d i c a t e symbol K) i s s a t i s f i a b l e o v e r e v e r y domain k := { O , l , ..., k ~ l }w i t h K i n t e r p r e t e d as < and i n e v e r y such model o f "p; t h e i n t e r p r e t a t i o n o f R i s t h e r e s t r i c t i o n o f R t o k. O b v i o u s l y t h e zero p r e d i c a t e xx.x = 0 and t h e successor r e l a t i o n xx,y.y = x + l have r e p r e s e n t a t i o n Ord(Z,S)Z resp. Ord(Z,S)S w i t h Ord(Z,S) as d e f i n e d above, whereas one can d e f i n e aR : z Ord(Z,S)
A
add f o r R = G+ : = hx,y,z.x+y
%
A
add
:: Ord(Z,S)
A
= z and
m u l t f o r R = G.
where add and m u l t a r e t h e r e c u r s i v e d e f i n i t i o n s o f
"+"
resp.
'I-"
add : z A A ~ ( z + y (G+xyz +-+x = z ) ) { r e a d : x + o = XI X Y z A A A A A ( s y y ' + ( G + X y ' Z ' t t v(-d+XyZ A S Z Z ' ) ) ) { X + y ' = (X x y ' 2' y Z m u l t :E A A A(Zy XY z A
+
(c.xyz++
A A
A
A(Syy'
x y'
2'
y
+
y)}
+
x}
{ r e a d : x0 = XI
y = 2))
+ (G.Xy'Z'tt
f r o m Z,S:
v(G.XyZ
A
G+ZXZ')))
{xy' = Xy
Z
Since K l e e n e ' s T - p r e d i c a t e can be c o n s t r u c t e d as r u d i m e n t a r y p r e d i c a t e (see Smullyan 1961) t h e r e i s i n p a r t i c u l a r a f i r s t o r d e r r e p r e s e n t a t i o n ar o f T i n f i n i t e domains where f u r t h e r m o r e T(i,x,y)
i m p l i e s i , x < y. Therefore t h e
cl-
complete non-emptiness problem I i I V V T ( i , x , y ) l f o r t h e r . e . s e t s W . = XY I x 1 3 y T ( i , x , y ) ) resp. t h e i r n2-complete i n f i n i t y problem { i I g x 3 y T ( i , x , y ) }
is
1-1-reduced t o t h e nonemptiness resp. i n f i n i t y problem f o r spectrum (nonemptyi) resp. spectrum ( i n f i ) nonemptyi
where
:: V V V(a z x y Xz.z=i
A
Z=i) A
(ar
TZXY))
{read: machine i f o r some i n p u t x has an a c c e p t i n g computation y l infi
:= machine i f o r some x has an a c c e p t i n g computation y A
A 1KYYl Y1
A
A (fzxyl
YI
{ y i s t h e l a s t element i n t h e model]
-+
lKyly)
{no a c c e p t i n g computation f o r i n p u t x i s s h o r t e r than y l
293
Decision Problems in Predicate Logic
Note t h a t i n t h e a l m o s t Horn d e s c r i p t i o n o f f i n i t e computations non-Horn i m p l i c a t i o n s appear o n l y f o r t h e i n p u t d e s c r i p t i o n o r f o r n o n d e t e r m i n i s t i c i n s t r u c t i o n s . T h i s suggests t h e f o l l o w i n g LogicaL complexity meanurn do& Boolean dune.tiom: say t h a t a f o r m u l a F d e f i n e s a Boolean f u n c t i o n s f ( w i t h r e s p e c t t o i t s " i n p u t " v a r i a b l e s x = xl, x ) i f f f o r e v e r y 0-1-sequence q: n f ( q ) = 1 i f f F(x/q) i s s a t i s f i a b l e .
...,
F i s c a l l e d pseudo-Horn o r Horn i n i t s w o r k i n g v a r i a b l e s i f F ( x / q ) " i s " a Horn f o r m u l a f o r e v e r y 0-1-sequence q. D e f i n e Horn c o m p l e x i t y o f f as l e n g t h o f a s m a l l e s t pseudo-Horn f o r m u l a F d e f i n i n g f. T h i s c o m p l e x i t y measure i s n t m n g l y connected t o Cook'n pmbLem: The Horn c o m p l e x i t y o f any Boolean f u n c t i o n can be p o l y n o m i a l l y bounded by i t s a r i t y n and program s i z e and maximal r u n t i m e on any i n p u t sequence o f l e n g t h n o f any d e t e r m i n i s t i c T u r i n g machine computing t h e funct i o n ; s i m i l a r l y i t can be proved t h a t P # NP i f f o r e v e r y p o l y n o m i a l p t h e r e i s a f u n c t i o n f such t h a t i t s s m a l l e s t pseudo-Horn d e f i n i t i o n i s a t l e a s t p - b i g g e r than i t s s m a l l e s t p r o p o s i t i o n a l d e f i n i t i o n . S i m i l a r r e s u l t s a r e known f o r network o r T u r i n g machine c o m p l e x i t y o f Boolean f u n c t i o n s ; i n f a c t we have t h e f o l l o w i n g
T h e o m (Aanderaa & Borger 1979) F o r any Boolean f u n c t i o n f, i t s Hohn complexity and i t s ( l o g i c a l ) nehuonk compLexity - and t h e r e f o r e T u r i n g machine c o m p l e x i t y ahe poLynomiaLtq e q l L i v a L e k W i t h o u t g i v i n g t h e whole p r o o f we want t o i l l u s t r a t e t h a t one d i r e c t i o n o f t h i s e q u i v a l e n c e , namely C H ( f ) 5 O(C,4(f)), amounts t o a l o g i c a l d e s c r i p t i o n o f a r b i t r a r y l o g i c a l network computations which can and has been done a g a i n by an approp r i a t e m o d i f i c a t i o n o f t h e r e d u c t i o n technique e x p l a i n e d i n t h e second s e c t i o n o f t h i s paper: S i n c e C r r ( f ) can be bounded by some l i n e a r e x p r e s s i o n i n t h e network c o m p l e x i t y o f f w i t h r e s p e c t t o l o g i c a l networks b u i l t up w i t h any complete. s e t o f b i n a r y Boolean o p e r a t i o n s , we need t o c o n s i d e r o n l y networks computing f w i t h b i n a r y o p e r a t i o n s say v , A and I ( S h e f f e r ' s s t r o k e ) . We show how one can a s s o c i a t e t o an a r b i t r a r y such l o g i c a l network N (computing Boolean f u n c t i o n f ) a Horn netw h k domanLLea on, a Kmm i n p u i dom& an which i s Horn i n t h e i n p u t v a r i a b l e s and a Hehmnd ouipLLt darn&
w such t h a t uN
A
an
A
w defines f w i t h r e s p e c t t o i t s i n -
p u t v a r i a b l e s and i s o f l e n g t h l i n e a r l y bounded by t h e c o m p l e x i t y o f N. By such a construction CH(f) CN(O(f)) i s proved. L e t N be an a r b i t r a r y l o g i c a l network w i t h nodes No,...,Nm
where N1,
...,Nn
are
e n t r i e s , No i s t h e node w i t h r e s p e c t t o which N computes f and t h e n o n - e n t r i e s a r e l a b e l e d w i t h v,
A
1.
or
Every node Nk i s encoded by v a r i a b l e s yk.uk w i t h t h e in-
tended iuztehpm&ztivn Yk = f,i,Nk(q)
and
k
-
1Y k
f o r p r e v i o u s l y g i v e n values q t o t h e i n p u t v a r i a b l e s xl,
..., xn.
Define therefore
aN as c o n j u n c t i o n o f t h e f o l l o w i n g formulae f o r e v e r y node Nk l a b e l l e d w i t h op(Nk) a p p l i e d t o t h e d i r e c t l y preceeding nodes Ni,N.
-
0 5 i,j,k
p u t e d a t Ni,N.: J Case 1. op(Nk) = A : (yi Case 2. op(Nk) = v : yi Case 3. op(Nk) = Define
an
w := yo
A
i n t h i s order
J
5 m -, d e s c r i b i n g t h e computation a t node Nk f o r t h e arguments com-
I:
u.
1
A -+
A
yj) yk
+
yk
yj u . + yk
-+
J
as c o n j u n c t i o n o f a l l yi
ui yk
Yi
+
uk u j + uk (ui A u . ) + uk J Uk Y j Uk
+
xi and ui
+
++
l x . f o r 1 5 i 5 n and
The n e c h t i o n pmpehty f o r a l l qe{O,ll
A
reads:
294
E. BORGER
fN,No(q) = 1 iff
uN
A
an(q)
A
yo
A
l u o is satisfiable
where a s before a n ( q ) denotes an a f t e r s u b s t i t u t i o n of q i f o r x i . The proof of the reduction property follows the now well e s t a b l i s h e d p a t t e r n : from l e f t t o r i g h t the above i n d i c a t e d intended i n t e r p r e t a t i o n s a t i s f i e s a N A a n ( q ) A w . Conversely any truth assignement f o r which t h a t formula i s t r u e simulates t h e network computation i n t h e sense t h a t f o r every node N k of N: (i)
f N , N k ( q )= 1 implies A(yk) = 1
from which f
N,No
( 4 ) = 1 follows because A ( u o ) = 0 by
W.
The simulation property
i s shown by induction along t h e computation process of N: the base of t h e induct i o n a t e n t r i e s N i ( l 5 i 5 n ) i s assured by a n ( q ) , whereas f o r every node N k with d i r e c t l y preceding nodes Ni,N. i n t h i s order t h e claim follows from t h e inducJ t i v e hypothesis, the formulae corresponding t o t h i s node and f N , N k ( q ) = o p ( N k ) ( f N , N , ( q ) ,f N , N ( 9 ) ) . j 2 3 For a proof of the o t h e r claim C N ( f ) 5 O(CH(f) ( l g C H ( f ) ) ) s e e Aanderaa & Borger 1981.
Added 1 9 8 3 , j u l y . W.D. G o l d l a r b has j u s t shown t h a t t h e case w i t h = i s u n s o l v a b l e , e v e n when r e s t r i c t e d t o Krom
GGdel-Kalmar-SchOtte
o r t o formulae w i t h
o n l y d y a d i c p r e d i c a t e l e t t e r s . See t h e p a p e r “The U n s o l v a b i l i t y o f t h e GGdel c l a s s w i t h i d e n t i t y ” s u b m i t t e d t o t h e J . o f Symbolic Logic.
Decision Problems in Predicate Logic
295
References A complete l i s t o f papers published i n t h e area o f (complexity o f ) l o g i c a l d e c i s i o n problem i s o u t o f t h e scope o f t h i s survey. However t a k i n g t h e union o f a l l papers c i t e d i n any o f t h e papers c i t e d i n t h i s l i s t w i l l g i v e you a r a t h e r complete picture o f the situation. Aanderaa, S t i l 0. (1966): A New Undecidable Problem w i t h A p p l i c a t i o n s i n Logic. Ph.0. t h e s i s , Harvard U n i v e r s i t y . Aanderaa, S.O. (1971): On t h e d e c i s i o n problem f o r formulas i n which a l l d i s j u n c t i o n s are b i n a r y . Proc. o f t h e Second Scand. Log. Symp., pp. 1-18. Aanderaa, S.O., Borger, E. (1979): The Horn complexity o f Boolean f u n c t i o n s and Cook's problem. i n : F.V. Jensen, B.H. Mayoh, K.K. M o l l e r (Ed.): Proceedings from 5 t h Scandinavian Logic Symposium, Aalborg U n i v e r s i t y Press, pp. 231-256, Aanderaa, S.O., Borger, E. (1981): The equivalence o f Horn and network complexity f o r Boolean f u n c t i o n s . Acta I n f o r m a t i c a 15, 303-307. Aandera, S.O. & Borger, E. & Gurevich, Yu. (1982: P r e f i x classes o f Krom formulae w i t h i d e n t i t y . i n : Archiv f. math. Logik 22, pp, 43-49. Aanderaa, S.O., Borger, E., Lewis, H.R. (1982): Conservative r e d u c t i o n classes o f Krom formulas. The Journ. o f Symb. Logic 47, 110-129. Aanderaa, S.O. & Jensen, F.V. (1973):On t h e existence o f r e c u r s i v e models f o r Krom formulas. Manuscript, U n i v e r s i t y o f Oslo. Aanderaa, S d l 0. and Harry 4. Lewis (1973): P r e f i x classes o f Krom formulas, Journal o f Symbolic Logic pp. 628-642.
38,
Aanderaa, S . O . G1 Lewis, H.R. (1974): Linear sampling and t h e v j v case o f t h e dec i s i o n problem. Journal o f Symbolic Logic 39, pp. 519-548. Abramsky, M o t t i (1980): The c l a s s i c a l d e c i s i o n problem and p a r t i a l f u n c t i o n s . i n : Archiv math. Logik 20, pp. 3-12. Ackermann, W. (1928): Ober d i e E r f u l l b a r k e i t gewisser Zahlausdrdcke. Mathematische Annalen 100, pp. 638-649. Ackermann, W. (1954): Solvable Cases o f t h e Decision Problem, North-Holland, Amsterdam. Ash, C.J. (1975): Sentences w i t h f i n i t e models. i n : Z e i t s c h r . f . math. Logik und Grundlagen d. Math. 21, pp. 401-404. Asser, G. (1955) : Das Reprasentantenproblem i m Pradikatenkal k u l der e r s t e n Stufe m i t I d e n t i t a t . Z e i t s c h r i f t fir math'ematische Logik und Grundlagen der Mathematik, 1, pp. 252-263. Bennett, J. (1962): On spectra, Doctoral D i s s e r t a t i o n , Princeton U n i v e r s i t y , P1.J. Berman, L. (1977). Precise bounds on Presburger a r i t h m e t i c and t h e r e a l s w i t h add i t i o n : p r e l i m i n a r y r e p o r t . Proceedings o f 18th Annual Symposium on Foundations o f Computer Science, IEEE Computer Society, pp. 95-99. Bernays, Paul & Schonfinkel, Moses (1928): Zum Entscheidungsproblem der mathemat i s c h e n Logik, Mathematische Annalen 99, pp. 342.372. Borger, E. (1971): Reduktionstypen i n Krom- und Hornformeln. D i s s e r t a t i o n . Minster see B e i t r a g z u r Reduktion des Entscheidungsproblems auf Klassen von Hornformeln m i t kurzen Alternationen. i n : Archiv f u r math. Logik und Grundlagenforschung 16 (1974), 67-84. Borger, E. (1973): Eine entscheidbare Klasse von Kromformeln. Z e i t s c h r . f u r math, Logik und Grundlagen d e r llathematik 19, 117-120.
E. Borger (1974): La z3-completude de l'ensemble des types de reduction, in: Logique e t Analyse 65-66, 89-94.
E. BORGER
296
Borger, E. (1975): On t h e c o n s t r u c t i o n o f simple f i r s t - o r d e r formulae w i t h o u t r e c u r s i v e models. Proc. Coloquio sobra l o g i c a simbolica, Madrid, 9-24. Borger, E. (1979): A new general approach t o the theory o f t h e many-one equivalence o f d e c i s i o n problems f o r a l g o r i t h m i c systems, i n : R. Kaerkes, J. flerkwitz and 1.4 Oberschelp, Eds., S c h r i f t e n z u r I n f o r m a t i k u. Angew. Math. 30, RWTH Aachen Also i n : Z. Math. Logik Grundlagen Hath. 25, 135-162. E. Borger (1983): U n d e c i d a b i l i t y versus degree complexity o f d e c i s i o n problems f o r formal grammars. Submitted f o r p u b l i c a t i o n . P r e l i m i n a r y v e r s i o n i n : Proc. o f GTI, Paderborn 1932. Borger, E. and H e i d l e r , K. (1976): Die m-Grade l o g i s c h e r Entscheidungsprobleme. i n : Archiv f. math. Logik und Grundlagenforschung 17, 105-112. Borger, E. and K l e i n e Buning, H. (1980): The r e a c h a b i l i t y problem f o r P e t r i nets and d e c i s i o n problems f o r Skolem a r i t h m e t i c . i n : Theoretical Computer Science 11, 123-143. Buchi, J.R. (1962): Turing machines and t h e Entscheidungsproblem, Mathematische Annalen 148, pp. 201-213. Bullock, A.M. & Schneider, H.H. (1973): On generating t h e f i n i t e l y s a t i s f i a b l e formulas. i n : Notre Dame J . o f Formal Logic X I V , pp. 373-376. Chandra, A.K. & Stockmeyer, L.J. (1976): A l t e r n a t i o n , Proc. 17th Symposium on Foundations o f Computer Science, pp. 98-108. & Stockmeyer, L.J. (1978): A l t e r n a t i o n , IBM Thomas Kozen, D.C. Chandra, A.K., J . Natson Research Center Technical Report, RC 7489. See J . o f t h e ACM 28 (1981), pp. 114-133. Chang, C.C. and H.J. K e i s l e r (1962): An improved prenex normal form. Journal o f Symbolic Logic pp. 317-326.
7,
Church, Alonzo (1936): A n o t e on t h e Entscheidungsproblem. Journal o f Symbol. Logic 1, pp. 40-41; C o r r e c t i o n i b i d , pp. 101-102. Cohen, Daniel C. (1980): Degree problems f o r modular machines, i n : The Journal o f Symbolic Logic 45, pp. 510-528. Cook, S,A. (1971): The complexity o f theorem p r o v i n g procedures. Conf. Rec. o f 3 r d ACM Symp. on Theory o f Computing, 151-158. Davis, M. & Putnam, H. & Robinson, J. (1961): The d e c i s i o n problem f o r exponent i a l diophantine equations. i n : Annals o f Math. 74, 425-436. Oenenberg, L. & Lewis, H.R. (1982): The complexity o f t h e s a t i s f i a b i l i t y problem f o r Krom formulas. manuscript, Harvard U n i v e r s i t y . Deutsch, M. (1975): Zur D a r s t e l l u n g koaufzahlbarer Pradikate b e i Verwendung eines einzigen unbeschrankten Quantors. in: Z e i t s c h r . f. math. Logik und Grundlagen der Mathemati k 21, pp. 443-454. Deutsch, Michael (1975 a . ) : Zur Theorie der spektralen Darstellung von Pradikaten durch Ausdrucke der P r a d i k a t e n l o g i k I . Stufe. i n : Archiv math. Logik 17, pp. 9-16. Deutsch, rlichael (1981): Zur Reduktionstheorie des Entscheidungsproblems. i n : Zeitschr. f . math. Logik und Grundlagen d. Mathe., 27, pp.113-117. Oreben, Burton (1961): Solvable Suranyi subclasses: An i n t r o d u c t i o n t o t h e Herbrand theory. Proceedings o f a Harvard Symposium on D i g i t a l Computers, 3-6 A p r i l 1961; Annals o f t h e Computation Laboratory o f Harvard U n i v e r s i t y 2, Harvard U n i v e r s i t y Press, Cambridge, Plassachusetts, pp. 32-47. Dreben, 6. 4r Goldfarb, W.D. (1979): The Decision Problem: Solvable Classes o f Q u a n t i f i c a t i o n a l Formulas, Rddison4esley, Advanced Book Program, Reading, Massachusetts, 1979.
297
Decision Problems in Predicate Logic
Oreben, Burton, A.S. Kahr, and Hao Wang (1962): C l a s s i f i c a t i o n o f AEA formulas by l e t t e r atoms. B u l l e t i n o f t h e American Mathematical S o c i e t y 68, pp. 528-532. Ershov, Yu. L . (1973): Skolem f u n c t i o n s and c o n s t r u c t i v e models. Algebra y Logika 12, 644-654. Ershov, Y.L., Lavrov, I . A . , Taimanov, A.D., & T a i t s l i n , M.A. t h e o r i e s . Russian Math. Surveys, 20, pp. 35-105,
(1965). Elementary
Fagin, R. (1973): C o n t r i b u t i o n s t o t h e model t h e o r y o f f i n i t e s t r u c t u r e s . Doctoral d i s s e r t a t i o n , U n i v e r s i t y o f C a l i f o r n i a , Berkeley. Fagin, Ronald (1974): Generalized F i r s t - O r d e r Spectra and Polynomial-Time Recogn i z a b l e Sets. i n : R. Karp (Ed.): Complexity o f Computation, SIB1 ANS Proceedings Vol 7, pp. 43-73.
-
.
Fagin, R. (1975): Ronadic generalized spectra. i n : Z e i t s c h r . f. math. Logik und Grundlagen d. Math., 21, pp. 89-96. Fagin, R. (1975 a ) : A two-cardinal c h a r a c t e r i z a t i o n o f double spectra. i n : Z e i t s c h r i f t fiir math. Logik und Grundlagen d. Math., 21, pp. 121-122. Fagin, R. (1975 b ) : A spectrum hierarchy. i n : Z e i t s c h r . f . math. Logik und Grundlagen d. Math., 21, pp. 123-134. Ferrante, J. & Rackoff, C. (1975): A d e c i s i o n procedure f o r t h e f i r s t order theory o f r e a l a d d i t i o n w i t h order. Ferrante, J. & Rackoff, C.W. (1979): The Computation Complexity o f Logical TheoSpringer-Verlag Lecture Notes i n Mathematics. New York.
ries.
Fischer, F1.J. d Rabin, M.O. (1974). Super-exponential complexity o f Presburger a r i t h m e t i c . Complexity o f Computation, ed. R.M. Karp, pp. 27-41. Proceedings o f SIAM-AMS Symposium i n Applied Mathematics. F i r e r , M. (1981): A l t e r n a t i o n and t h e Ackermann case o f t h e d e c i s i o n problem. i n : L'Enseignement math'eniatique X X V I I , 1-2, pp. 137-162. Garey, 1,I.R. & Johnson, D.S. (1979). Computers and I n t r a c t a b i l i t y : A Guide t o the Theory o f NP-Completeness, H. Freeman, San Francisco. Genenz, J. (1965) : Untersuchungen zum Entscheidungsproblem i m P r l d i katenkal kU1 der e r s t e n StUfe. D i s s e r t a t i o n , I n s t i t u t f. math. Logik und Grundlagenforschung, Univ e r s i t a t Miinster i.W. Germano, G. (1976): An a r i t h m e t i c a l r e c o n s t r u c t i o n o f t h e l i a r ' s antinomy using a d d i t i o n and m u l t i p l i c a t i o n . i n : Notre Dame J. o f Formal Logic X V I I , 457-461. Godel, Kurt (1930): Die V o l l s t a n d i g k e i t der Axiome des logischen Funktionenkalkuls. Flonatshefte f u r Mathematik und Physik 2, pp. 349-360; E n g l i s h t r a n s l a t i o n i n van H e i j e n o o r t (1971), pp. 582-591. Godel, K u r t (1932): E i n S p e z i a l f a l l des Entscheidungsproblems der theoretischen Logik, Ergebnisse eines mathematischen Kolloquiums 2, pp. 27-28. Godel, K u r t (1933): Zum Entscheidungsproblen des logischen Funktionenkalkuls. Monatsh. Math. Phys. 40, pp. 433-443. Goldfarb, Warren 0. (1974): On Decision Problems f o r Q u a n t i f i c a t i o n Theory. Ph.D. t h e s i s , Harvard U n i v e r s i t y
.
Goldfarb. W.D. (1981): On t h e Godel c l a s s w i t h i d e n t i t y . i n : The Journal of Synbol i c Logic 46, pp. 354-364. Goldfarb, Warren 0. and Harry R. Lewis (1975): Skolem r e d u c t i o n classes. Journal o f Symbolic Logic 40, pp. 62-68. Goldfarb, W.D. Gurevich, Yu. & Shelah, S. (1983): On t h e Godel c l a s s w i t h ident i t y . ( t o appear).
E. BORGER
298
Grzegorczyk, A. (1953): Some classes o f r e c u r s i v e f u n c t i o n s . Rozprawy Matematyczne I V , Warzsaw. Gurevich, Yuri (1965): E k z i s t e n t i a l ' n a y a i n t e r p r e t a t s i y a . Algebra i Logika 71-84.
4,pp.
Gurevich, Yuri (1966): Ob effektivnom raspozriavanii v i p o l n i m o s t i formul U I P . Algebra i Logika 5, 25-55. Gurevich, Yuri (1969): Problema razresheniya d l y a l o g i k i predikatov i operatsiy. Algebra i Logika 8 , pp. 284-308; E n g l i s h t r a n s l a t i o n i n Algebra and Logic pp. 160-174.
8,
Gurevich, Yuri (1973): Formulas w i t h one v. i n : I n Memory o f A . I . Russian).
Maltsev. ( i n
Gurevich, Yuri (1976): The d e c i s i o n problem f o r standard classes. Journal o f Symb o l i c Logic pp. 460-464.
5,
Gurevich, Yu. & Shelah, S. (1983): Random models and t h e Godel case o f t h e d e c i s i o n problem. The Journal o f Symbolic Logic ( t o appear). H a i l p e r i n , Th. (1961): A complete s e t o f axioms f o r l o g i c a l formulas i n v a l i d i n some f i n i t e domain. i n : Z e i t s c h r i f t f . math. Logik und Grundlagen der Math. 7, pp. 84-96. Hartmanis, J. (1982): On t h e s t r u c t u r e o f f e a s i b l e computations o r t h e search f o r what i s f e a s i b l y computable. Series o f l e c t u r e s d e l i v e r e d t o t h e AMS Summer School i n "Recursion Theory," Cornell U n i v e r s i t y , I t h a c a N.Y. Hay, L. (1973): The h a l t i n g problem r e l a t i v i z e d t o complements. i n : Proc. AMS 41, pp. 583-.587. Hay, L. (1975): Spectra and h a l t i n g problems. i n : Z e i t s c h r i f t f. math. Logik und Grundlagen d. Math. 21, pp. 167-176. Heidler, K (1973). Untersuchungen zur Reduktionstheorie des Entscheidungsproblems i n der Pradikaten- und Termlogik. D i s s e r t a t i o n , U n i v e r s i t a t Freiburg. J . Herbrand (1930): Recherches sur l a th'eorie de l a d'emonstration. Travaux de l a Socigt'e des Sciences e t des L e t t r e s de Varsovie. Classe 111. Warszawa, pp. 128 Herbrand, Jacques (1931): Sur l e probl&ne fondamental de l a l o g i q u e mathgmatique. Sprawozdania z posiedzen Towarzystwa Naukowego Warszawskiego, Wydzial 111, 24, pp. 12-56; E n g l i s h t r a n s l a t i o n i n Herbrand (1971), pp. 215-271. H i l b e r t , 0. & Bernays, P. (1939): Grundlagen der Mathematik, Vol. 11. B e r l i n Jones, N.D. & Laaser, W.T. (1977): Complete problems f o r d e t e r m i n i s t i c polynomial time. i n : Theor. Computer Science 3, 105-117. Jones, N.G. & Selman, A.L. (1974): Turing machines and t h e spectra o f f i r s t - o r d e r formulas, Journal o f Symbolic Logic 39, pp. 139-150. Joseph, Deborah & Young, Paul (1981): A survey o f some r e c e n t r e s u l t s on computat i o n a l complexity i n weak t h e o r i e s o f a r i t h m e t i c . Proc. MFCS, pp. 46-60. Kahr, A.S. (1962): Improved reductions o f the Entscheidungsproblem t o subclasses o f AEA formulas. Proceedings o f a Symposium on t h e Mathematical Theory o f Automata, Brooklyn P o l y t e c h K c I n s t i t u t e , New York. Kahr, A.S., Moore, E.F. & WangAao (1962): Entscheidungsproblem Reduced t o t h e AEA case, Proc. Nat. Acad. Sci. USA 48, pp. 365-377. KalmBr, Laszlb (1933): Uber d i e E r f u l l b a r k e i t derjenigen Zahlausdrucke, welche i n der Nomalform zwei benachbarte A l l z e i c h e n enthalten, Mathematische Annalen 108, pp. 466-484. K l e i n e Buning, Hans (1980): Decision problems i n generalized vector a d d i t i o n systems. i n : Annales S o c i e t a t i s Mathematicae Polonae, Series I V : Fundamenta I n f o r matica 111. 4., pp. 497-512.
Decision Problems in Predicate Logic
299
K l e i n e Buninq, H. & Ottmann. Th. (1977): K l e i n e u n i v e r s e l l e mehrdimensionale Turingmaschinen: i n : Elektronische informationsverarbeitung und Kybernetik E I K 13, pp. 179-201. Kosaraju, S. Rao (1982): D e c i d a b i l i t y o f r e a c h a b i l i t y i n v e c t o r a d d i t i o n systems. ACM Symposium on Computing, pp. 267-281. Kostryko, V.F.
(1964): Klass cvedeniya
v$v.
Algebra i Logika
Kostyrko. V.F. (1966): Klass cvedeniya v3v. K i b e r n e t i k a t r a n s l a t i o n , Cybernetics 2, pp. 15-19. Kozen, D.C. Science.
2,
3,
pp. 45-65.
pp. 17-22; E n g l i s h
(1979): Complexity o f Boolean Algebras. i n : T h e o r e t i c a l Computer
K r e i s e l , G. (1950): Note on a r i t h m e t i c models f o r c o n s i s t e n t formulae of p r e d i c a t e c a l c u l u s . i n : Fundamenta rlathematicae 37, 265-285. K r e i s e l , G. (1953): Note on a r i t h m e t i c models f o r c o n s i s t e n t formulae o f t h e pred i c a t e c a l c u l u s 11. i n : Proc. X I - t h I n t . Congr. Philosophy, v o l . 14, pp. 39-49. K r e i s e l , G. fi K r i v i n e , J.L. (Dunod)
.
(1967): Elements de l o g i q u e mathhnatique, P a r i s
Krom, M.R. (1964): A d e c i s i o n procedure f o r a c l a s s o f formulas o f f i r s t order p r e d i c a t e c a l c u l u s . i n : P a c i f i c J . o f Math. 14, 11, pp. 1305-1319. Krom, M.R. (1966): A p r o p e r t y o f sentences t h a t d e f i n e quasi-order. J. of Formal Logic 7, pp. 349-352.
i n : Notre Dame
Krom, M.R. (1967 a.): The d e c i s i o n problem f o r a c l a s s o f f i r s t - o r d e r formulas i n which a l l d i s j u n c t i o n s a r e binary. i n : Z e i t s c h r . f u r math. Logik und Grundlagen der llath. 13, 15-20. Krom, P1.R. (1967 b): The d e c i s i o n problem f o r segregated formulas i n f i r s t - o r d e r l o g i c . i n : Mathematica Scandinavica 21, 233-240. Krom, H.R. (1968): Some i n t e r p o l a t i o n theorems f o r f i r s t - o r d e r formulas i n which a l l d i s j u n c t i o n s a r e binary. i n : Logique e t Analyse 43, 403-412. Krom, M.R. (1970): The d e c i s i o n problem f o r formulas i n prenex c o n j u n c t i v e normal form w i t h b i n a r y d i s j u n c t i o n s . i n : The J. o f Symbolic Logic 35, 210-216. Ladner, R.E., Lipton, R.J. & Stockmeyer, L.J. (1978): A l t e r n a t i n g Pushdown Automat a , Proc. 1 9 t h Symp. on Foundations o f Computer Science, pp. 92-106. Lewis, H.R. (1975): D e s c r i p t i o n o f r e s t r i c t e d automata by f i r s t - o r d e r formulae. i n : Math. Systems Theory 9, 97-104. Lewis, H.R. (1976): Krom formulas w i t h one dyadic p r e d i c a t e l e t t e r . i n : Journal o f Symbolic Logic 41, pp. 341-362. Lewis, H.R.
(1979): Unsolvable classes of q u a n t i f i c a t i o n a l formulas. Reading(Mass.)
Lewis, H.R. JCSS.
(1980): Complexity r e s u l t s f o r classes o f q u a n t i f i c a t i o n a l formulas.
Lewis, H.R. & Statman, R. (1983): U n i f i a b i l i t y i s complete f o r CO-NLOG space. i n : I n f o r m a t i o n Processing L e t t e r s ( t o appear). LovBsz, L. & GBcs, P. (1977): Some remarks on generalized spectra. i n : Z e i t s c h r . f . math. Logik und Grundlagen d. Math., 23, pp. 547-554. Lowenheim, Leopold (1915): Uber Moglichkeiten i m R e l a t i v k a l k u l , Mathematische Annalen 76, pp. 447-470. Machtey, M. & Young, P. (1978). An I n t r o d u c t i o n t o t h e General Theory o f Algorithms. North-Holland, New York. Manna, Z. (1968): Termination o f Algorithms. Doctoral D i s s e r t a t i o n , CarnegieMe1l o n U n i v e r s i t y .
300
E. BORGER
Maslov, S. Ju. (1964): An i n v e r s e method f o r e s t a b l i s h i n g d e d u c i b i l i t i e s i n t h e c l a s s i c a l p r e d i c a t e c a l c u l u s . i n : Dokl. Akad. Nauk SSSR 159, 17-20 = S o v i e t Math. Doklady 5, 1420-1424. Meyer, A.R. (1975). Weak monadic second order theory o f successor i s n o t element a r y - r e c u r s i v e . Proceedings o f Boston U n i v e r s i t y Logic Colloquium, Springer-Verlag, pp. 132-154. Minsky, M.L. (1961): Recursive u n s o l v a b i l i t y o f P o s t ' s problem o f 'Tag' and o t h e r t o p i c s i n theory o f Turing machines, Ann. o f Math. 74, 437-455. Mostowski, A. (1953): On a system o f axioms which has no r e c u r s i v e l y enumerable model. i n : Fundamenta Mathematicae 40, 56-61, Mostowski, A. (1955): A formula w i t h nor r e c u r s i v e l y enumerable model. i n : Fundamenta Mathematicae 43, 125-140. Mostowski, A. (1956): Concerning a problem o f H. Scholz, Z e i t s c h r i f t f u r mathemat i s c h e Logik und Grundlagen der blathematik, 2, pp. 210-214. Rabin, MO. (1958): On r e c u r s i v e l y enumerable and a r i t h m e t i c models o f s e t theory. i n : The Journal o f Symbolic Logic 23, pp. 408-416. Rabin, 1.1.0 (1977): Decidable Theories. Handbook o f Mathematical Logic, ed. 3 . Barwise, pp. 595-629. North-Holland, Amsterdam. Rackoff, C.W. (1975). Complexity o f some l o g i c a l t h e o r i e s . Doctoral D i s s e r t a t i o n , Dept. o f E l e c t r i c a l Engineering, MIT, Cambridge, Mass., P r o j e c t MAC Technical Report TR-144. Ramsey, F.P. (1930): On a problem o f formal l o g i c . i n : Proc. London Math. SOC. ( 2 ) , 30, pp. 264-286. Rodding, D i e t e r (1970): Reduktionstypen d e r Pradikatenlogik. Lecture notes, Uni1969/70. See review i n : Z e n t r a l b l a t t f u r Mathematik v o l . v e r s i t a t Munster i . W . , 207, No. 02034. Rodding, 0. & Borger, E. (1974): The u n d e c i d a b i l i t y o f b i n a r y d i s j u n c t i o n s . Journ. o f Symb. Logic 39, 412-413.
AV
~(0,4)
-
formulae w i t h
Rodding, D., Schwichtenberg, H. (1972): Bemerkungen zum Spektralproblem. Z e i t s c h r i f t f u r math. Logik und Grundlagen der Mathematik, 18, pp. 1-12 S c a r p e l l i n i , B. (1982): Constructive q u a n t i f i e r e l i m i n a t i o n i n Presburger A r i t h metic. Manuscript, U n i v e r s i t y o f Basel. Scholz, H e i n r i c h (1952): E i n ungelostes Problem i n der symbolischen Logik. i n : The Journal o f Symbolic Logic 17, pp. 160. Schutte, K u r t (1933) : Untersuchungen zum Entscheidungsproblem der mathematischen Logik, Mathematische Annalen 109, pp. 572-603. Schutte, K u r t (1934): Ober d i e E r f u l l b a r k e i t e i n e r Klasse von logischen Formeln. i n : Plathematische Annalen 110, pp. 161-194. Selman, A.L. (1970): A r i t h m e t i c a l r e d u c i b i l i t i e s and s e t s o f formulas v a l i d i n f i n i t e c a r d i n a l i t y . Ph.0. Thesis, Pennsylvania S t a t e Univer., U n i v e r s i t y Park, Pa. Selman, A.L. (1973): Sets o f formulas v a l i d i n f i n i t e s t r u c t u r e s . i n : Transactions AMS 177, pp. 491-504. Selman, A.L. (1974): R e l a t i v i z e d h a l t i n g problems. i n : Z e i t s c h r . f . math. Logik und Grundlagen d. Math., 20, pp. 193-198. Sevjakov, V.S. (1973): Formulas o f t h e r e s t r i c t e d p r e d i c a t e c a l c u l u s which d i s t i n g u i s h c e r t a i n classes o f models w i t h simply computable predicates. i n : Soviet Nath. Dokl. 14, 743.745. Shelah, S. (1977): D e c i d a b i l i t y o f a p o r t i o n o f t h e p r e d i c a t e c a l c u l u s . i n : I s r a e l J. Math. 28, pp. 32-44.
Decision Problems in Predicate Logic
30 1
Shepherdson, J.C. (1965): Machine configuration and word problems of given degree of unsolvability. Z. Math. Logik Grundlagen Math. 11, 149-175. Specker, E. & Strassen, V. (1976): Komplexitat von Entscheidungsproblemen. Springer Lecture Notes in Computer Science Vol. 43. Suranyi, J. (1959): Reduktionstheorie des Entscheidungsproblems im PradikatenkalkU1 der ersten Stufe. Verlag der Ungarischen Akademie der Wissenschaften, Budapest Trachtenbrot, B.A. /1950): Im ossibility of an a1 orithm for the decision problem in finite classes. in: Dokl. /$kad. Nauk SSSR70, f950, pp. 569-572. English translation in: AMS Transl. Ser. 2 Vol. 23 (1963) pp. 1-5. Trachtenbrot, B.A. (1953): 0 recursivno otdelimosti. in: Dokl. Akad.. Nauk SSS R 88, p p . 953-955.
Turing, Alan M. (1937): On computable numbers, with an application to the Entscheidungsproblem. Proceedinqs of the London Mathematical Society, 2nd series 42, pp. 230-265; correction ibid., 43, pp. 544-546. Wang, Hao (1962): Dominoes and the AEA case of the decision problem. Proceedings of a Symposium on the Mathematical Theory of Automata, Polytechnic Institute of Brooklyn, New York, pp. 23-55. Uirsing, M. (1977): Das Entscheidungsproblem der Klasse von Formeln, die hochstens zwei Primformeln enthal ten. manuscripta math. 22, 13-25. Wirsing, Martin (1978): A proof by Turing machines o f the undecidability o f the class of first order formulas with only one quantifier. Manuscript, Techn. Universitat Munchen, pp. 7. Yasuhara, M. (1971): On a problem o f Mostowski on finite spectra. in: Zeitschr. f. math. Logik und Grundlagen d. Math. 17, pp. 17-20.
LOGIC COLLOQUIUM '82 G . LON< G. Long0 and A. Marcia (editors) 0 Elsevier Science Publishers B. V. (North-Holland), 1984
MODEL THEORETIC ISSUES IN THEORETICAL COWUTER SCIENCE, PART I: RELATIONAL DATA BASES AND ABSTRACT DATA TYPES.
J.A.Makowsky Department of Computer Science, Technion - Israel Institute of Technology, Haifa, Israel
Table of Contents: Introduction. 1. Abstract model theory and computer science. 1.1 From syntax to semantics and back. 1.2Finding axioms. 1.3Comparing logics.
2.Data base theory. 2.1. What it is all about. 2.2.Safety (definiteness,domain independence). 2.3.Typed dependencies. 2.4.Implicational dependencies. 2.5. Decision problems. 2.6. Query languages. 2.7.Conclusions and some open problems. 3. Specification of abstract data types. 3.1.Introduction. 3.2. The axiomatic framework. 3.3. A complete specification language for rich semantical systems. 3.4. Typical models and initial algebras. 3.5. A complete language for semantic systems which admit initial semantics. 3.6. Relevance for specification of abstract data types. 3.7.A word on other applications.
Supported by t h e Swiss National Science Foundation Grant No. 82.820.0.80
303
304
J.A. MAKOWSKY
Introduction The following paper is an account of experiences I had in several attempts to capture problems posed in computer science, or more precisely by computer scientists. In most of the cases the computer scientist already thought that logic might help in stating problems more precisely, and ultimately, also in solving them, though they were usually suspicious about the impact such solutions would have on their direct practical involvement with programming, program analysis, program design or program veriflcation. Maybe a word on impact of foundational studies on applied science and engineering is needed here: Most electricians are not aware how much 19th century physics has contributed in making the portability of electrical appliances possible. The fact that two or three numeric parameters (voltage, power and the number of cycles in alternating current) contain all the information needed to decide, whether a given appliance can be used by plugging it into a given outlet, has become too common in every day life to be reflected upon. To remember that many years of research were needed to clarify this situation, is by now safely forgotten. Ultimately the problems posed by computer scientist to logicians, or for that matter to any one willing to spend time on foundational questions, is similar: What are the parameters needed t o e m r e portability and reliability of software? Needless to say, we are still very far from satisfactory answers. The current progress in technology even prevents computer manufacturers from reaching agreements, a s they were reached rather quickly, say, by manufacturerers of phonographs and, to some extent, videotape systems, on speed and size of the records (tapes) to be produced. But a deeper reason behind the problem consists in the absence of a definite model of the real world, here the programming environment. Though models of "computability" have been sufficiently clarified for deterministic sequential algorithms, provided their task can be unambiguously specified in some form of "natural scientific language", it is much less clear what "specipcation", "implementation" and "correctness" should mean. The problems involved are not exclusively problems of computer science. Any large scale design and implementation of a big organisational complex, from industrial to social engineering, touches upon the same fundamental questions. The only difference with computers stems from the fact, that they execute programs very quickly, and programs, which are used only once or a few times, become very soon obsolete. But we are generally inclined to expect that the time needed t o develop a program stays within proportions to the time i t runs and remains useful. This leads some to think, that also the foundational questions can be solved quickly. However, a short glance a t the history of mathematics shows us, that something like fifty years were spent till the basic notions of, say, point set topology were safely
Model Theoretic Issues in Theoretical Computer Science
305
established and had their impact not only on mathematicians but also physicists and practitioners of applied statistics. In the following paper I will try to explain how I have learned to view certain problems in the foundations of computer science and I will do this with three apparently different aspects of current computer science research: Data base theory, algebraic specification of abstract data types and algorithmic logic. As I will try to show, they have much more in common than widely believed, a t least when looked a t from the point of view of " a b s t r a c t m o d e l theory". But I a m fully aware that the challenge of applied science is not met by declaring that some ready made theory captures all its problems. This is never so. The difference between pure and applied, say, in differential equations, consists rather in the motivation of the results than in the results itself. The pure mathematician is content with knowledge which contributes to his understanding of the internal problems of differential equations as such, and solving a particular one is seen by him as a challenge of his general understanding. To the physicist, most of the work actually consists in justifying his particular differential equation, its parameters and its solutions in terms of his physical problem, and a large part of the work of good applied mathematics consists in reaching an understanding between the two perspectives. In computer science, we meet the same situation and both sides are often tempted to underestimate the work involved in Listening t o e a c h o t h e r . This paper is also an attempt to illustrate this work. For reasons of space (in this proceedings) and time (the Damocles sword of the deadlines), the paper had t o be cut into two parts. The first deals with data base theory and specification of abstract data types, and the second one with various approaches to semantics of programming languages. The first part also includes a general introduction on abstract model theory and its potential use in theoretical computer science. The second part [Makowsky 19831 will also include a n expository chapter of some more technical parts of abstract model theory. Here is an outline of both parts: In chapter 1 we t r y to give a description of what abstract model theory is all about, and how it is connected to the fundamental questions of computer science cited above. In chapter 2 we t r y to exemplify this in the case of data base theory. As it turns out there are various intimate connections between f r n i t e m o d e l t h e o r y and data base theory, which have led people to think that either data base theory is just undergraduate logic or that the logicians try to sell i t as such. But the real problems in any applied science are neither defined by their mathematical difficulty nor by the methodologies used to solve them, but rather by the questions they try to answer. Data base theory tries to answer the questions about design, design criteria, optimization and specification of data bases and their queries. This chapter could not have been written without the patience of C.Beeri, M.Vardi and A.Zvieli.
306
J.A. MAKOWSKY
In chapter 3 we turn our attention to the problem of specifying abstract data types. There are various approaches to this problem, but the most successful, a t least in terms of fashion, is the one called algebraic. Here w e flnd an i n t e r e s t i n g i n t e r p l a y b e t w e e n category theory and universal algebra, which has led people to think that this is just disguised "abstract nonsense", but again, as above, the problem we address here is the clarification of concepts such as data type, implementation, specification, modular programming and their ramifications and only a close, sympathetic analysis of these problems can lead to satisfactory answers. The results reported here are joint work with B.Mahr. As it turns out, there is a common theme in these last two chapters: In both u n i v e r s a l Horn formulas play a n eminent role. In the last section of chapter 3 we try to give some explanation of this phenomenon. It seems to support some of the arguments put foreward by the proponents of logic p r o g r a m m i n g as the programming style appropriate for the fifth generation computers. However, some recent complexity results, such a s [Itai-Makowsky 19821 still nourish some scepticism with respect to the unrestricted use programming languages like PROLOG. The remaining two chapters form part two ([Makowsky 19831): In chapter 4 we turn to the technical parts of abstract model theory a s we see them fit the needs of various branches of program semantics and program verification. We attempt to give a general definitjon of predicate transformers, as they appear in the context of program correctness. The definition is parallel t o the definition of generalized quantifiers, which will turn out to be a special case. On the basis of a set of predicate transformers one can build various algorithmic logics, of which again the classical examples of dynamic logic, process logic and others are special cases. In chapter 5 we turn our attention to program correctness and programming logics. We use the various logics from the previous chapter to introduce a new type of semantics, which in contrast to operational or denotational semantics, maps programming languages into subsets of logics. Here the meaning of a program is the set of all statements in a predicate transformer logic which are true about it. This is clearly not new as such, but has never been defined in a general context. One of the advantages of such a general approach is, that this allows us also to compare various approaches to program semantics which hitherto were considered incomparable. This last chapter is to report about work which is still in progress, mainly in collaboration with N.Francez and S.Katz. I would like to thank the Swiss National Science Foundation, who supported me generously during the two years in which the material presented came into being. I would like to thank also E.Engeler and E.Shamir who encouraged me to look into foundational problems in Computer Science and to C.Beeri, A.Meyer and V.Pratt. whose interest and criticism in early stages of the work was extremely stimulating. I
Model Theoretic Issues in Theoretical Computer Science
307
would also like 'to thank R.Fagin and J.Thatcher, who read and commented the almost final version. A last note on the references: There are over one hundred titles listed as I saw them fit my presentation. I did not try to give historic remarks, nor did I attempt completeness. I tried t o give the reader pointers to the vast literature, a s I came accross it during my random walk in the world of theoretical computer science. It serves as a basis for further backtracking: The transitive closure of this reference list surely covers much.
1. Abstract model theory and computer science. 1.1 From syntax to semantics and back. In the early days of modern logic, logic was perceived mainly syntactically. Propositional logic, first order logic and second order logic were given as formal languages and a main topic of research was the study of deduction rules and proof systems. There are various philosophical, sociological and even political reasons for this, usually subsumed under the name "Hilbert's program". G.Kreise1 has written extensively about Hilbert's program and the way it failed. From his analysis in [Kreisel 1968,19701 he drew several conclusions relevant for computer science which inspired the theses of R.Statman [Statman 19743 and C.Goad [Goad 19801. The former added a new dimensions to our understanding of the complexity of proofs and the latter used his experience gained in proof theory to speed up the synthesis of special purpose programs for hidden surface elimination, [Goad 19821, Hilbert's program wanted to reduce mathematics, and therefore all exact sciences, to the formal (or, as we would say today: algorithmic) manipulations of symbols. The ultimate hope behind this was, to find general purpose algorithms, which would solve all formally stated problems. A s we know today, Godel showed that this is impossible. But a t the same time modern semantics was born. The fashion had changed, and instead of the "God given" Natural Numbers, Tarski and his contemporaries moved to accept naive set theory as the basis of mathematics and proposed to explain logic in terms of set theory. The meaning of logical formulas was explained in terms of structures, relations, functions and in the case of first order logic this was justified by the celebrated conipleteness theorem. One of the corollaries of the completeness theorem is the compactness theorem, which was extended to uncountable sets by Mal'cev in 1936 and independently by Henkin in 1949. Among the many consequences of the compactness theorem is the existence of various "non-standard" models of arithmetic and analysis, which later led to a very fruitful branch of logic called non-standard analysis, which was first pursued by
308
J.A. MAKOWSKY
A.Robinson and led to various impressive results in analysis, Banach space theory, the theory of Brownian motion and even mathematical economics. But one of the first non-trivial applications of the compactness theorem was the characterization of the universal first order formulas in terms of an algebraic preservation property: A first order formula cp is logically equivalent to a universal formula if and only if cp is preserved under substructures. This result was followed by a n intensive program exploring the relationship between semantic properties of formulas and syntactic characterizations of such formulas. Motivated by algebraic practice the notion of substructure was replaced successively by unions of chains, products, reduced products, factors and many others and sufficient experience was gained to delegate this direction of research to the level of master theses and difficult exercises. The mathematical tools used to solve such problem, if there is a clean solution, usually are interpolation theorems, ultraproducts and Back and Forth arguments. In [Chang-Keisler 19731 the reader may find what ever is known in this direction. But there is another way in looking a t this program: We could reverse the problem and start with any syntactically defined class of formulas together with their meaning functions and ask for a characterization of this class in terms of the preservation properties it has. Looked a t it this way, what we really are asking for is giving meaning to syntactic categories. It is this aspect of preservation theorems which I think is relevant to foundational questions in computer science. Very often the computer scientists start with syntactic restrictions and later try very hard to remove them, without understanding their significance. But, a s will be shown in chapters 2 and 3, those restrictions, originally imposed for technical reasons, can be characterized by preservation properties, which show that they are intimately connected with the implicit assumptions the computer scientists have made. The use of powerful set theoretic methods led also to another development. Already in the fifties Mostowski in Warsaw, Engeler in Zurich and Tarski and Henkin in Berkeley started to look a t various generalizations of first order logic involving infinitary constructs and generalized quantifiers and a n abundancy of logics appeared. It was Engeler, however, who first noticed the possible relevance of infinitary logics to computer science([Engeler 1967,1970]).This has since led to the development of dynamic logic, and we shall return to this topic in chapter 4 and 5 of this paper. In the sixties much of model theory was generalized to those newly discovered logics, and, based on earlier work by Mostowski, Lindstrom defined an axiomatic framework, sometimes called abstract model theory or higher model theory, in which we can study logics in general, compare their expressive power and prove characterization theorems for logics in terms of their model theoretic properties. The latter has very striking parallels with the above mentioned preservation theorems both in content a s well as in methodology. In the rest of this chapter we shall briefly describe this framework and give some key
Model Theoretic Issues in Theoretical Computer Science
309
results, which we will apply in chapter 4 and 5 to the study of various dynamic logics. An account of the state of art in abstract model theory can be found in the forthcoming book [Banvise-Feferman 19831, and an introductory survey in [Flum 19751. The purpose of abstract model theory can be summarized as follows: We want to be able to quantify over all possible logics satisfying certain properties and prove theorems about them. The theorems we want to prove can be (A) characterization theorems. (B) presentation theorems. (C) theorems relating various properties of logics. Examples for (A) are the Lindstrorn theorems, ([Lindstrom 1969]), characterizing first order logic in terms of the Lowenheim-Skolem theorem together with various properties such a s compactness or axiomatizabilty. The latter has been closely analyzed for its usefulness in computer science in [Manders-Daley 19831 and in [Makowsky 19801. Examples for (B)are Birkhoff's theorem characterizing the varieties a s the equationally definable classes of algebras (cf.[Graetzer 1979]), Mal'cev's characterization of the quasi-varieties (cf. [Mal'cev 19711) and Cudnovskii's theorem that every class of structures closed under substructures can be axiomatized by a class of infinitary clauses (cf. theorem 1 in chapter 3 and [Cudnovskii 19681).In some sense the result in [Meyer-Parikh 19811, showing that most dynamic logics for finitely branching programs can be embedded in the recursive part of countably infinite logic, also fits this category. An example for (C), finally, is that axiomatizability implies recursive compactness or that for countable logics the amalgamation property is equivalent to compactness. The former is a corollary of the Lindstrom theorems and the latter is in [Makowsky-Shelah 19831. The use of abstract model theory lies in its limitative character. It tells us that certain requirements are incompatible o r entail other limitations. It can tell us to what extent seemingly different approaches are nevertheless the same. Or it can give is a framework in which we can precisely compare concepts which hitherto appeared incomparable. 1.2 Finding axioms. Our first problem is to find axioms for logics. Logics will consist of quadruples L = ( T , % r , F l n l , i= ), where T is a class of v o c a b u l a r i e s or s i g n a t u r e s and Str is a function mapping every T E T into a subclass * ( T ) of all structures of vocabulary T such that if T,T' E T,T c T' then S t r ( ~c) S t 7 ( ~ ' ) . Here we assume that in T we have a partial order denoted by c . In all the cases we consider the elements of T are sets of symbols and c just is the subset relation. The usage of the term v o c a b u l a r y for what is called similarity type ( o r signature or even language) seems to capture what we really have in mind. The vocabulary is the most elementary part of logic, and it determines about what we will talk. In the case of first order logic it consists just of sets of relations symbols, function symbols or constant symbols,
310
J.A. MAKOWSKY
together with their arities, and in the case of many sorted logic, with their sort specifications. In other cases it may also specify variables to be second order, or make certain distinctions between logic with or without equality, or other special symbols. Sometimes it is convenient to think of T as a c a t e g o r y of v o c a b u l a r i e s rather than just a set or a class. This is especially the case when want to consider vocabularies which are more complicated than usually and we have to define the partial order on T in a more complex way. But these cases are still not very well developed. Now given T,the class % ( T ) tells us which structures of vocabulary 7 we are interested in. This may, in logic, often comprise all the 7-structures, but in applications we very often impose restrictions. In chapter 2 we shall see that for data base theory we only consider finite structures, or finite reducts of expansions of the standard model of arithmetic, and in chapter three only certain countable structures, the reachable structures are of interest. Finally in chapters 4 and 5 various more complicated structures will enter the picture, including certain models of tense logic, probability logic etc. Again it may be convenient to think of % ( T ) as subcategories of a big category S r u c t = u S ~ T ( Tand ) of a functor T E
T
mapping T into S t m c t . We refer the reader to [Barwise 19741 for a detailed presentation. Also i+ni is a function which maps every T E T into a set of objects called f o n n t d a s . Again we require that for T , T ' E T , T C T ' we have that M ( Tc)M ( 7 ' ) .When choosing the set of formulas, we have to bear in mind to contradicting aspects: We want to say much about our structures, certainly as much as we need in our particular context. But we do not want to say too much, because we want to keep our model theory out of the difficulties of full second order logic. Finally I= is a relation on % ( T ) x ~ ( T ) ,which satisfies certain axioms: IsomOrphismAxiom If A B E ST(T),(P E M(T and ) AEB then At= iff BI= rp. ReductAxiomlf ( p ~ m n l ( ~ ) , ~ c ~ ' a n d thenAl=rpiff A~St~(~A ' )r r l = ( p . Renaming Axiom Let U,T E T and p : +~u be a r e n a m i n g , i.e. an isomor) is phism in the category of vocabularies. Then for each p E M ( Tthere ++ E Rd (u) such that for all A E S ~ T ( Twe ) have that Al= rp iff MI= p". Those axioms do not require too much. All examples which we shall encounter in this paper satisfy them. From the theorems in abstract model theory cited in the previous section, however, only example (B) can be proved with these axioms alone. In chapter 3 we shall use similar axioms to axiomatize the behaviour of sets of formulas rather than formulas. What makes abstract model theory into a theory are various additional closure properties, which we impose on the formulas, or rather on their models Mod,(rp)=IA E S t r ( ~ ) : A l =pi. Many model theoretic properties of various logics can be stated by only referring to the model classes Mod,((p) definable by their formulas. The compactness theorem and the Lowenheim-Skolem theorem are among them, and also various
Model Theoretic Issues in Theoretical Computer Science
31 1
definability theorems. But here are some of the closure axioms: Atomic Axiom For every T E T the usual r-atomic formulas are contained ill M
( T ) .
Basic Axiom For every
T E T the usual 7-basic formulas (i.e. atomic and negated atomic formulas) are contained in M ( T ) . Boolean Axiom Ftnl(7) is closed under the boolean operations A , V , .. with their usual meaning, i.e. heir model classes are defined by intersection, union and complement respectively. QuantificationAxiom h z i ( T ) is closed under existential quantification 4 z with its usual meaning. The next two axioms assume some knowledge of the structure of the formulas if we want to state them naturally. They are the relativizatian axii~rnand the substitution axiom. We will discuss them in more detail in chapter 4. For the first part of the paper their exact definition is irrelevant. Examples of logics are first order logic, infinitary logics, logics with generalized quantifiers etc. All the classes of dependencies in chapter 2 can be viewed a s logics (though without all the closure properties) and in some sense also the s e m a n t i c a l systems of chapter 3. Behind the choice of closure properties lies the problem of iteration under various formation rules for formulas, in other words the choice of primitives for our logics. Already in the early days of infinitary logics did fieisel point out in [Kreisel 19681 that we need definability criteria to evaluate such choices, rather than just adding various constructs ad libitum. He advocated a line of research which not only led to unifying results for infinitary logics and generalized recursion theory but also to a deeper insight in general. It led to the very rich theory of admissible sets, as presented in [Barwise 19751. The corresponding problem we face in computer science has not even been formulated generally. In data base theory only [Chandra 1901] questions the choice of programming primitives and [Chandra-Hare1 19801 define general criteria for query languages. We shall study the latter in section 2.7. and show that in this case "Kreisel's program" can be followed to a large extent. For specifications of abstract data types [Burstall-Goguen 19831 and [Makowsky-Mahr 19831 attack this problem In the second part of the paper we shall outline what can be done for semantics of programming languages, but we are still f a r from a general understanding. When we want to apply the framework of abstract model theory t o foundational problems in computer science, we observe quickly that what we hope to be logics are usually not closed under all the closure operations we have mentioned above. The striking example here is Hoare logic, which consists of statements about programs of a particular form, the correctness statements, but is not closed under any iteration or boolean operation. This leads t o an abundancy of logics which are hard t o compare, cf. [Meyer-Tiuryn 19811 and [Meyer 19801. The reasons for
312
J.A. MAKOWSKY
the absence of closure properties are sometimes not clear, but in other cases motivated by practical experience. Logics are usually closed under substitutions of predicate symbols by formulas, but in programming some formulas occur as test in programs, and those should remain simple, and it is clear that we do not allow termination statements of other programs to occur as test. The choice of the correct closure properties for logics affects the applicability of results from abstract model theory very much. Sometimes, however, the absence of closure properties can be compensated by a weakening of the theorems. OIten a theorem states that every formula p in a given logic satisfying certain conditions is equivalent to another formula in a different logic. In the absence of the Boolean axiom, this may be conveniently rephrased by stating that (p is equivalent to a boolean combination of such formulas. In more complicated cases, however, we have to allow the use of additional predicates. To be more precise we need some definitions: Definitions: (i) Let cp E M ( T u IRj) R E T be a formula and u c T . We say that (p deflnes R implicitly over u i f : Every u-structure A can be expanded to a T u [Rj-structure A’ such that A’ I=p and given two structures A,B E ~ T ( uT {I?{) with Al= (p,BI=(p such that At u = E l u, then RA=RB,i.e. R is uniquely determined by (p and u. (ii) Let p E M ( T [Rj) Ube a formula which defines R implicitly over u, R n-ary. We say that $(vl,vz,...,v,) E ~ ( U )with n free variables defines R explicitly, if for every A E ~ T ( T with ) Al= (p we have that Al= v 111.v~ ....,vn(R<=>$(v i,vz,...,
v,)).
With these definitions we can state a n even stronger closure property: A-closure Axiom: Every implicitly defined relation has an explicit definition. Examples: (i) (Many-sorted) first order logic satisfies all the closure axioms. The A-closure is a variant of Beth’s definability theorem first stated in [Feferman 19741. (ii) First order logic without function symbols and with all structures finite, as we shall use it for data base theory in chapter 2 , does not satisfy the A-closure axiom, a s pointed out in [Hajek 19761. (iii) Note that A-closure is a stronger property than closure under substitution. (iv) I t is this A-closure property which made various ideas of [Kreisel 19681 more precise. Kreisel’s work led to the definition of admissible sets, and H.Friedman showed a deep connection between A-closed logics and logics built on admissible sets, cf. [Makowsky-Shelah-Stavi 19761. (v) An interesting application of Beth’s theorem to data base decomposition problems may be found in [Vqrdi 19821. More examples will be studied in chapter 4.
Model Theoretic Issues in Theoretical Computer Science
313
1.3 Comparing logics. When we want to compare logics, we want to compare their expressive power, i.e. what subsets or relations of its structures are definable. We say that a logic L1 is reducible to a logic Lz if every formula of L , can be translated into a formula of Lz. Again our notion of comparability will depend on the various closure properties the logics in question have. For positive results we are usually interested in the highest possible degree of precision on the nature of this translation, whereas for negative results, on the contrary, we prefer ample freedom. Let us propose some definitions: Definitions: Let &=(7i,&t,ml,I= *) be logics for i=1.2. (i) L , is explicitly reducible to L,, if T , c Tz,for each T E T, Str2(r)c S T , ( T ) , and for every p E M , ( T there ) is 11 E M z ( r )such that MoG((o)n S t ~ ( ~ ) = M o d ~ ( l ( ' )
We write for this L , < L ~ . (ii) L1 is implicitly reducible to Lz, if TI c Tz, for each T E TI . % T ~ ( T )c str,(~),and for every implicit definition over T via c E i%i,(r') with T c T' there is an implicit definition over T via @ E F&(T') such that ~%d,~(p)n * z ( T ' ) 1 mod,(@) 1 T We write for this L , h , L 2 . (iii) We say that L , and Lz are explicitly (implicitly) equivalent, if both L I c L z and Lz
314
J.A. MAKOWSKY
2. Data Base Theory for the Relational Model. 2.1 Introduction One of the most frequent application of computers nowadays is in data bases. There are various ways of modeling data bases, such as the network model or the hierarchical model, but the most widely studied for theoretical purposes is the relational model. An excellent reference is the textbook [Ullman 19821. The entity-relationship model, cf. [Cheri 1976,1981] has not yet been really studied from a theoretical point of view. As much as I understand it, most of the theoretical results for the relational model carry over to the entity-relationship model, such as computable queries and dependency theory, but, to the best of my knowledge, no serious attempt has been undertaken to carry out such a task. In what follows we concentrate on the relational model. It consists of families of data base states, which are divided in acceptable or consistent states and inconsistent states. Those are distinguished by constraints or dependencies. The consistent states are the models of the dependencies. With data base states we can do two things: We can ask queries or we can perform transactions. To complicate matters this is usually done by many users a t the same time; we speak therefore of concurrent users. Transactions map consistent data base states into consistent data base states. They are usually decomposed into smaller operations which map consistent data base states sometimes into inconsistent data base states. There are two kinds of simple transactions: read only and write only. More complex transactions can be built from simple transactions by composition. Needless to say, all these operations should be computable. To sort out this mess a theory of transactions and concurrency control is in the making. The state of the art is described in [Date 19821, [Casanova 19811 and in the forthcoming book [Maier 19831. An excellent survey is [Bernstein-Goodman 19821. In this chapter we are only concerned with a special case of read only transactions, queries and dependencies. Neither general transactions nor concurrency control play a direct role. Indirectly, however, they serve as a motivation in our presentation of dependency theory. Queries map data base states into relations. In [Chandra-Hare1 19801 an abstract definition is given, the computable queries, which is the basis of our presentation in this chapter.
Data base states are structures like for first order logic, but for practical purposes some restriction are necessary. First of all, the structures are finite. Second, we distinguish between the relations representing the tuples in the data bases and the aggregate functions such as arithmetic operations or linear order on the entries. And third, we are not really interested in the underlying universes but only in the relations a s such. In this chapter we shall not talk about the aggregate functions a t all. To ensure that it makes no difference whether we talk about
Model Theoretic Issues in Theoretical Computer Science
315
relations or structures we introduce an invariance condition, called safety, which is discussed in section 2.2.
Dependencies are classes of data base states, usually the models of some first order sentences. They are grouped and classified according to syntactic criteria: Functional dependencies (FD), full implicational dependencies (FID), embedded implicational dependencies (EID), template dependencies (TD), multi valued dependencies (MVD) and embedded multi-valued dependencies (EMVD) can be conveniently described as classes of first order sentences with specific syntactic restrictions. In the sense of chapter 1, dependencies usually form a logic, with the vocabularies ranging over sets of relation symbols only and all the structures being finite. Queries are definable relations in this logic, and we shall see in section 2.6. that the knplicit definition play an important role here. Preservation theorems in logic are theorems which characterize classes of first order formulas having some semantic properties by showing that those sentences are exactly the ones which allow a special syntactic normal form. They are special cases of presentation theorems in the sense of chapter 1. But in contrast to universal normal form theorems (such as every first order formula is equivalent to a prenex formula) which usually are constructive, the normal form theorems coming from preservation theorems are often non-constructive. What we get is the following: The set of sentences Shaving some semantic property P is not recursive, but there is a recursive set So such that every sentence u E S is equivalent ( over some first order theory ) to a sentence u o ~ S O . Though the theorem is non-constructive this has two advantages: (i) We can, with no loss of generality, restrict ourselves - or for that matter the programmer of a data base system - to dependencies of the form So,and (ii) by doing so, we know that property P is a priori ensured. If the property p is one which is of intrinsic importance to our database system, then the restriction to sentences from So will free the programmer from the correctness proof - or rather - force him t d choose his dependencies carefully and prove then correctness before he is allowed to write them down.
Now in logic, the choice of the semantic properties P is usually given in a natural way, say from algebraic considerations , and the problem is to find So. In data base theory the situation is reversed: We are given various candidates s,, a s the FD, FID, EID, MVD, TD, EMVD etc, and the problem we pose, is to define the corresponding properties P which both characterize so’and a r e g e n u i n e l y m o t i v a t e d by data base considerat i o n s . Tt is our firm belief, that the syntactic restrictions given to various classes of dependencies are only meaningful iff they correspond to a semantic property which reflects d a t a base p r a c t i c e . And it is such a property which should be called the meaning of a syntactic restriction. What we show here is giving meaning to being safe, typed and being a
316
J.A. MAKOWSKY
typed implicational dependency. What we propose furthermore is a program which consists of searching for the meaning of various other syntactic definitions of dependencies such as template, embedded etc. Fagin went a good way to do this for typed embedded implicational dependencies [Fagin 19821 by showing that they are faithful (i.e true in a product of finite non-empty relations iff true in each factor) and my previous [Makowsky 19811 proposed several such characterization, but their relevance for data base practice was not yet satisfactorally shown. In a forthcoming paper [Makowsky-Vardi 19831 more such results are collected. Our main results here are: (i) The complete characterization of equality generating dependencies based on separable dependencies wich have the subrelation property and are preserved under products. (ii) The complete characterization of full typed tuple generating dependencies based on separable dependencies with the intersection property and the duplicate extension property. The intersection property had been previously characterized in [MaierMendelzon-Sagiv 19791 a s the property which guaranties the uniqueness of the completion operation in connection with the chase. Separability, however, is introduced here to give meaning to the restriction to typed formulas. It is discussed in detail in section 3 and captures the idea of separation of sorts, or attributes. This chapter is organized a s follows: In section 2.2 we discuss a well known example from the above point of view, the definite formulas from [Kuhns 19691 and their syntactic characterization a s permissible f o n n d a s , as described by many authors, e.g. [Cooper. 19801, or as safe formulas ,as described in Ullman’s book [Ullman 19821. We also note that the definite formulas are not recursively enumerable, as was shown by [Di Paola 19691. In section 2.3 we follow the same pattern to propose a semantic characterization of typed, formulas. We also show that this class is not recursively enumerable. The results in this section are drawn from [Makowsky-Vardi 19831. In section 2.4 we discuss FID’s and FD’s and connect the typed FID‘s (TFID) to the intersection property of relations. The results here are continuations of our previous work [Makowsky 19811. We end our presentation with some final remarks and open problems. In section 2.5 we discuss decidability and complexity results for the consequence problem for various classes of dependencies. In section 2.6 we give a brief presentation of the theory of computable queries and in section 2.7 we draw some conclusions and present some more open problems.
Model Theoretic Issues in Theoretical Computzr Science
317
2.2. Safety (def3niteness.domai.n independence). Already in 1967 [Kuhns 19671 it was realized that first order formulas, which are relevant for data base dependencies or queries, should satisfy an invariance condition. Intuitively this condition says that it does not matter if we speak of a relation or of a first order structure containing this relation. Definitions: Let R be a finite relation on and let A = c A , , A 2 , ' ' ,&,R>
n,A(
be the corresponding relational structure. Let A * be the relational structure obtained from A by addition of exactly one element 4 to every sort A( and not extending R . Kuhns calls the formulas u which are true in A iff they are true in A* definite. A class r of data base states is called definite if it is closed under the formation of A*. Fagin [Fagin 19821 independently looked a t this property and called it &main independence. Let S denote the class of definite first order formulas, and 9 be the class of definite formulas with a t most k a o free variables. Di Paola showed Theorem 1: 9 is not recursively enumerable for any kro. For a proof one may also consult [Vardi 19811. Note that if we allow infinite relations, we only get that s* is not recursive. Here we have a non-recursive set of formulas S and we would like to find a recursive set So such that every formula u E S is equivalent to a formula uo E s,. Let So be the set of safe formulas a s in Ullman's book [Ullman 19821 ( or equivalently the set of permissible formulas from [Cooper 19801 ). If we allow infinite relations, it follows easily from results in model theory that every formula of S is equivalent to a formula in So. In fact we have even more: Theorem 2: Let C be a first order theory. Call a formula C -definite if i t is definite on the class of finite models of 8. Then the following are equivalent: (i) u is C-definite and (ii) In all finite models of C is u is equivalent to a formula in So. For the proof we define a n algorithm based on r e l a t i u i z a t i o n , which maps arbitrary first order formlas into safe formulas and which preserves equivalence (for models of C) if and only if the original formula was safe. This does not contradict theorem 1, since it merely says that the set of first order formulas, on which this algorithm does preserve equivalence, is not recursive. Formulas with 'free variables define relations. For first order formulas this gives us a special case of first order (explicitly) definable queries. The definition of definite is naturally extended to this case. We will return to definite formulas in the section on query languages.
318
J.A. MAKOWSKY
2.3.Typed dependencies. In this section we look at the class of typed and s a f e formulas, which we denote by To. Clearly this a recursive set of first order formulas. We propose to define a n operation on finite relations, which intuitively corresponds to the introduction of different attributes (sorts) for the arguments of the relation. Let R c A n be a finite n-ary relation over some domain A . Let rri(R) be the i-th projection of R onto A . and q=ni(R)x[i] We define a new relation R on in the following way: ((a1,1).(az,2) ,...,(%,TI)) E R if7 ( a l , a z,...,u,,) E R .
n& i
We say that a first order formula u admits separation of attributes (sorts) or, shortly, is separable, if u is true about R iff it is true about R. A class of data base states r is called separable if it is closed under the formation of R. Remarks: (i) If all the rr,(R) are disjoint then R is isomorphic to R . (ii) Using (i) we see that separable formulas are definite. This is due to our definition of A, which is a projection. Had we defined it just to be a new copy of A , the results below had to be slightly modified. (iii) Functional dependencies are separable. Let T denote the class of separable first order formulas, and P be the class of separable formulas with a t most k r o free variables. Using a similer argument as in [Vardi 19811 one gets: Theorem 3: P is not recursively enumerable for any kto.
Problem: Is the class of EID’s which are in T recursive ? That separable formulas really capture the separation of attributes (sorts) is shown in the following theorem: Theorem 4: Let Z be a first order theory. Call a formula E-separable if it is separable on the class of finite models of X . Then the following are equivalent: (i) u is X-separable and (ii) X proves that u is equivalent to a formula in To. The proof is similar to the proof of theorem 2. 2.4. Implicational Dependencies. We are now in a position to define more classes of dependencies: Definitions: (i) A first order formula over a set T of relation symbols is a full implicational dependency (FID),if it is of the form Yf Aib,(z)
4
b (z)
where each bi is an atomic formula not containing the equality symbol, b is atomic possibly containing equality and each variable which occurs in b also occurs in some b,. Note that we do not allow the empty conjunction.
Model Theoretic Issues in Theoretical Computer Science
319
If
b is an equality we also speak of equality generating dependencies (EGD), and if b is an instance of a relation symbol we speak of tuple generating dependencies (TGD). The functional dependencies (FD)are the EGD’swith only two hi's. (ii) The classes TFID of typed full implicational dependencies, typed tuple generating dependencies TTGD and typed equality generating dependencies TEGD are defined analoguously. (iii) The class of embedded implicational dependencies EID, consists of first order formulas of the form VZ A+@)
+
gV
A;j(T.V)
where the hi's are a s for the FID and the ci’s are atomic with all the variables from d occurring already in the b i g s . (iv) The class of embedded template dependencies ETD8 consists of the EID’s with only one formula cr, which is not a n equality. In contrast to. some papers in the literature we allow EID’s to be untyped. A special case of template dependencies are the inclusion dependencies IND, where there is also only one formula b i . (v) The classes TFID,TEID,TETD,TINDof typed embedded dependencies are defined similerily. An important subclass of TID are the Functional Dependencies FD. Let X be a set of first order formulas and E(X) denote the set of first order formulas which are equivalent to some formula in X. The followihg is a useful observation: Proposition 5: (Beeri and Vardi) Every typed full implicational dependency is equivalent to a conjunction of a TGD and a EGD. As was observed by Vardi and the author we have Theorem 6:Both E(FID)and E(TGD) are not recursive. Neither is E(FD).
A proof, due to Vardi, may be found in [Makowsky 19811. I t could also be proved using methods similar to [McNulty 19791. U n d e r what conditions can we axiomatize classes r o f data base states by dependencies of prescribed syntactic form ? Let us look first at
TFID’S.Clearly they are again definite and separable. They also are preserved under Cartesian products (the p r o d m t property). Given u E FD and a relation R and a subrelation Ro c R then u is true about R iff it is true about Ro. (This is not generally true for FID.) Let us call this last property the subrelation property, both a s a preservation property for formulas u as well as a closure property for classes of data base states r. The subrelation property is very strong and dependencies which satisfy it are invariant under losing any portion of your data bases. Its integrity can not be destroyed by deleting data. Note that the subrelation property is stronger than the substmcture property in model theory, because here we really take subsets of the relation, whereas in model theory we take subsets of the domains and consider the relation naturally induced on them. The substructure property is true for FfD..h
320
J.A. MAKOWSKY
fact we have ([Makowsky-Vardi19833): Theorem 7: A class r of data base states, closed under isomorphisms. is axiomatizable by a set of typed equality generating dependencies TEGD i f fr i s (i) separable, (ii) has the subrelation property and (iii) contains the trivial structure and (iv) is closed under products. The triwial s b t u r e , is the structure which has exactly one element of each sort and all the tuples satisfy all the relations. Since the compactness theorem is not true, if we only consider finite structures, theorem 7 can not be stated, like theorem 2 and 4, for single formulas. Similarily we can define the intersectionproperty, which requires that if u is true in two relations Rl,R2 then it is also true in RI n Ra. Again we have two versions of it, one as a preservation property and the other as a closure property for classes of structures. Clearly the subrelation property implies the intersection property, but the intersection property s e e m more natural: Not every subset of a library catalogue is necessarily a catalogue, but we definitely expect the intersection of two catalogues t o be a catalogue. The intersection property is true for TGD and for FD but not for FID. Proposition 8: If a separable formula has the intersection property, then it has the substructure property (but not necessarily the subrelation property). The proof is purely semantical and uses the fact that we can represent every substructure as the intersection of two relations by renaming. A last such property we want to consider is preservation (closure) under duplicate eztensions. This is like logic without equality, i.e. we allow multiple occurrence of elenients. More precisely, let a E A , b L A and h be a mapping such that it is the identity on A+] and h ( a ) = b . We have a natural extension of h to R. Now C A u f b 1,R u h(R)> is a duplicate extension of cA.R>. With this we have ([Makowsky-Vardi 19831): Theorem 9: A class r of data base states, closed under isomorphisms, is axiomatizable by a set of tuple generating dependencies TGD iff r is (i) definite (ii) closed under duplicate extensions, (iii) the intersection property and (iv) contains the trivial structure. For typed dependencies we have the following analogue to theorem 9, also from [Makowsky-Vardi 19831. Similar theorems can also be stated for the other cases. Theorem 1 0 Let E be a set of first order formulas such that (i) E is true in the trivial structure, (ii) is separable,
Model Theoretic Issues in Theoretical Computer Science
32 1
(iii) has the intersection property and (iv) preserves duplicating extensions. Then C is equivalent to a set of typed tuple generating dependencies TTGD'S.
All the properties above but the closure under products have natural justifications in terms of data base practice. We had previously characterized TFfD in terms of the Armstrong property (cf. [Fagin 1982, Makowsky 19811 and a strong form of the finite model property [Makowsky 19811,but theorem 10 seems more natural. The Armstrong property is version of the weak generic structures, a s dealt with in chapter 3, adapted t o database theory, The finite model property in question is related to the class of securable formulas as defined in section 2.5. 2.5. The Consequence Problem
For various classes of dependencies the consequence problem has been studied. In general it is stated as follows: Given a finite set C of dependencies in D , and a single dependency o F D , can we decide whether o is true in all (finite) relations satisfying 2? This is closely related to the consequence problems in logic, with the difference that here we are mainly interested in finite models over relation symbols only and that the class of formulas D , is of very low quantifier rank. Additionally, if we look a t typed dependencies, we can not use variables repeatedly in different positions. Though a logician would expect undecidability results, if the formulas involve both existential and universal quantifiers, there is still place for many decidable subcases. Clearly if the dependencies are boolean combinations of purely universal and purely existential formulas, the consequence problem is decidable ([Bernays-Schonfinkel 19281,see also [Lewis 1979,1980]).This class of formulas has also been extensively studied in model theory (cf.[Tharp 19741 and [Makowsky 1975]), and they were called securable or c o n t i n u o u s formulas. They have many nice properties: Proposition 11: Let s be the class of securable formulas. Then (i) S is closed under boolean operations and (ii) The class of valid and of finitely valid formulas in S coincide. Clearly we get from this that the consequence problem for securable formulas is decidable. In fact, the exact complexity of this consequence problem is known. The reader not familiar with complexity classes should consult [Garey-Johnson 19791. Theorem 1 2 ([Lewis 19801)) There are constants c > d > l such that the consequence problem for securable formulas without function symbols or equality can be solved in N71AfE(cn)but not in NTIME(dn). Securable formulas have the finite model property and are closed under boolean operations. This leads us t o the following problem: Problem: Do the properties (i) and (ii) proposition 1 1 characterize S up t o logical equivalence, i.e. given s satisfying (i) and (ii), is i t true t h a t
322
J.A. MAKOWSKY
every formula in s' is equivalent to a formula in S ? If this is not the case, i s there such a maximal class for (i) and (ii), or what properties have to be added to get maximality? Note that by a folklore result in model theory [Shoenfield 1967, problem ~ O C p.971 , S is characterized by the fact that every formula (p E S both (p and -(p are preserved under unions of chains. Some applications of securable formulas in characterizing dependencies may be found in [Makowsky 19811, cf. also section 2.4. The first undecidability result for a class of dependencies, which was introduced previously in data base theory, appeared in [ChandraLewis-Makowsky 19811. There it is shown that the consequence problem over finite relations for typed embedded implicational dependencies TEID- is not even recursively enumerable. This has been later improved to the class of typed template dependencies TTD by [Vardi 19821 and [Gurevich-Lewis 19821. Theorem 13: ([Gurevich-Lewis 19831) Let C range over finite sets of TETD's and u over elements of TETD. Then the following two sets are effectively inseparable: (i) The pairs (E,u) such that E I= u ( C I= (ii) The pairs ( C p ) such that IT fails in some finite data base which satisfies C. I t follows immediately hat neither set is recursive and that there is no for TETD. recursive axiomatization for I= As we know from theorem 12, the consequence problem for FID is decidable in exponential time. The most successful algorithm for this is the CHASE introduced in [Maier-Mendelzon-Sagiv 19791. Some of its limitations are discussed in [Goodman-Shmueli 19811. Its popularity derives from the fact that it runs rather fast on interesting subclasses of FID. An abundancy of complexity results for such cases may be found in [Maier-Sagiv-Yannakakis 19811. However, for the general case of typed and untyped FID's we have:
Theorem 14: ([ Chandra-Lewis-Makowsky 19811) ~W) (i) The consequence problem for TFID can be solved in D T I M E ( C ~ / ~ but for some constants c . d > l . not in DTIME(d-) (ii) The consequence problem for FID can be solved in DTIME(cn) but not in DTIME(dn) for some constants c > d > l . These results apply in particular to the CHASE algorithm. It is sometimes argued, e.g. by V.Pratt, that simply exponential algorithms are suitable for computers. If we accept this we view we might argue that the FID's are the largest class of dependencies which are reasonable for data bases. Further evidence for this view stems from the fact that they were independently proposed in various disguised forms, e.g. in [Papadimitriou-Yannakakis 19821, [Fagin 19821, [Beeri-Vardi 19811 or [Paredaens 19821. The first three papers also introduce the EID's. A good source for the history is [Fagin 19821. The question which remains open till today, is whether every reasonable subclass of embedded
323
Model Theoretic Issues in Theoretical Computer Science
dependencies has an undecidable consequence problem. The hard case s e e m to be the following: Definition: A dependency is a embedded multivalued dependency if it is of the form 't/abibzci~zd~dz((P(a,bi.~~.di) A P ( a , b z . c z , d z ) )-a
4 dsP(e.b,,cz.d3)).
Here all the a , b , c . d ' s are vectors of variables. We do not enter here the discussion of the importance of multivalued dependencies. The reader is referred to [Fagin 19771 or [Ullman 19821. The reason we introduce them here is the following Problem: Is the consequence problem for embedded multivalued dependencies decidable ? To show how delicate such problems can be, let us look at the case of inclusion dependencies IND, which are a very special case of EID's where both the hypothesis and the conclusion have length one and no equality is allowed. The precise definition was stated in section 2.4. The following resumes what is known on the consequence problem for IND alone and for IND u FD.
Theorem 15: (i) [Casanova et al. 19821:The consequence problem for hVD is
PSPACE-
complete. (ii) [Mitchell 19831 and [Chandra-Vardi 19831:The consequence problem for IND u FD is undecidable. This is an example where a subset of EID which is not in F1D has a decidable consequence problem, but where a very small extension leads to an undecidable consequence problem. 2.6. QueryLanguages. A query q of type 7 , where
7=s0 u [I?,,] is the similerity type of a class of data base states augmented by a new n-ary relation symbol, is a function which maps states(r,,) into n-ary relations on the domain of these states. Since both states and relations are finite objects, we can code them in arithmetic and it makes sense to require that (i) this function q is a parEial recursive function on these codes, i.e. there exists a Turing machine T&, which computes the query on the codes. On the other hand we do not want this function to be dependent on the particular codes, so we require also that (ii) if two data base states D1,Da are isomorphic, i.e. D,EDz, so
P (DiIrq
(4).
In [Chandra-Hare1 19801 queries satisfying condition (i) and (ii) are called computable queries. They argue convincingly that every reasonable query should be computable and say that a query language Q is complete i f every query in Q is computable and for every function satisfying (i) and (ii) there is a term q E Q representing it. They also
324
J.A. MAKOWSKY
construct a complete query language QL which is based on relations only, i.e. without aggregate functions, but which leaves the arity of the relation symbol dynamic. QL also has wtijkstaternent built in. Query languages actually used in practice or studied in the literature are not complete. However, two such languages SQL and QBE can be completed, without violating their main design principles. In [MakowskyZvieli 19831 we show how to complete those two languages with static arity of R and by only adding a recursive insed-procedure, rather than a while-statement. The basic idea behind this comes from realizing that there is a n alternative, more model theoretic, definition of the computable queries. Let us look a t the graph of the above function q . It is given by a class of structures of type T such that (iii) for every finite so-structure A there is a t most one, up to isomorphism, relation *RA> in the graph of q . We realize that this is exactly a statement of the form "The graph of q defines R implicitly", as we know it from model theory. Now there are various forms of implicit definitions, depending on the use of additional predicates or even extensions of the domains. However, if we allow unrestricted extensions of the domains, even the first order implicitly defined relations on finite structures are not in general computable. On the other hand, without additional predicates and extensions of the domains, only a restricted class of computable queries can be obtained. In fact, it follows from [F'agin 19741 that the queries which arise from first order implicit definitions without extensions of the domains are exactly the .VPrecognizable classes of finite structures which are closed under isomorphisms. To get things under control we introduce a notion of implicit definition with recursively bounded extensions of the universe, which we parametrize by families of recursive functions. With the help of these concepts we ([Makowsky-Zvieli 19831) can show that Theorem 16: The computable queries are exactly the first order recursively bounded implicitly definable queries. This theorem can be viewed as another presentation theorem in the sense of chapter 1. I t is also another illustration of Kreisel's program, since it says, that on finite structures the computable queries are hclosed for recursively bounded implicitly definable queries. In other words, it exhibits the connection between definability and computability, which deepens the justification for the approach in [Chandra-Hare1 19801. The language QL turns out to be an analogue of the recursive infinite extension of first order logic, which also plays the role as the unifying logic for various versions of dynamic and algorithmic logics, a s discussed in chapter 5 . The theorem also says that all the Coddcomplete, i.e. containing all explicit definable queries, and computable query languages are implicitly equivalent.
Model Theoretic Issues in Theoretical Computer Science
325
To measure how they differ explicitly, one can now classify query languages according to the complexity of the evaluation of its queries. This leads to various hierarchies, with the complete languages on the top and the first order explicitly definable queries on the bottom. Query languages which are in this hierarchy are called Codd-complete. In [Chandra-Hare1 19821 and [Vardi 19821 this hierarchy is investigated along traditional complexity measures, which are not obviously connected to the way those queries are expressed. In [Immerman 19821 a different approach to complexity is suggested, which is based on the complexity of the definitions of the queries. Theorem 15 is useful especially for this latter approach. However, from a practical point of view, implicitly definable queries have one serious drawback: Proposition 17: I t is undecidable, given a first order formula (p over a vocabulary T containing a predicate letter R, whether (p(R)represents an implicit definition of R . In first order logjc over arbitrary models Beth’s Definability theorem tells us that every implicit definition is equivalent to an explicit definition. Over finite models this is false. To illustrate the power of implicit definitions we ([Makowsky-Zvieli 19831) have an interesting application of an old result of [Friedman 19761. Theorem 18: For every recursive function there exist an explicitly definable query q such that (i) there is an implicit definition p of q but every explicit definition 9 of q has length 1 ($)>I(1 ((p)) In this context we can return to our theme of preservation theorems. Like for dependencies, we can look at queries, whose implicit definitions are given by formulas with certain syntactic restrictions. For instance, if the implicit definition is given by a formula from FID, treating the relation variable like an ordinary relation symbol, we call them the f u l l implicational implicit queries (FIIQ).
Proposition 19: Every query q E FIIQ is an explicitly definable query The queries in FIIQ are queries written in the language of programming logic, as exemplified by the language PROLOG, with the additional property that they have a unique solution. In programming with PROLOG one is not interested in this case, but rather in the least fixed point. Proposition 18 justifies this point of view. In [Chandra-Hare1 19821 the complexity of PROLOG queries is investigated: Though they do not form a complete query language, they go far beyond the explicitly definable queries. Problem: Show that, for the explicit FIrg from theorem 19, there is an exponential lower bound. Show also, that in theorem 18 we could restrict the implicit definition to be an embedded implicational implicit query EIIQ. In other words, like for the consequence problem, the difference between embedded and full consists in not recursively bounded versus exponential lower bound.
326
J.A. MAKOWSKY
2.7.Conclusionsand some open problems. What is the meaning of a syntactic restriction on first order dependencies , we asked in the beginning of this section. In cases like prenex normal forms the meaning is that one can always do it. In the case of safe formulas the answer is definiteness, as it was observed by many authors before. In the case of typed formulas the meaning is separation of attributes (separability), a s we showed in section 2.3, in the case of equality generating dependencies the meaning is separability, the subrelation property and closure under productsr, and in the case of full typed tuple generating dependencies ( T G D ) the meaning is separability, the duplicate extension and the intersection property. In the latter case we could also answer separability , the substructure property and faithfulness, but this can only satisfy an algebraist, and is not relevant for data base theory. The intersection property is not only conceptually more appealing, but is also justified by its usefulness in connection with the "chase", as pointed out in [Maier-Mendelzon-Sagiv 1979, lemma 71.
In each of the above cases the meaning of the syntactic restriction was exhibited by proving a n appropriate preservation theorem. The tools to prove such theorems are taken from model theory or a t least derive very.strongly from proof techniques well known to model theorists. But the properties which are preserved are directly derived from data base practice. In each of the above cases the syntactic restriction also gives us a recursive set of formulas (dependencies) whereas the set OF formulas equivalent to a restricted formula is not even recursively enumerable. I t is now natural to ask whether such characterization can also be given to other classes of dependencies. In [Makowsky 19811 we proposed such characterizations, but they are not satisfactory enough. Problem: Give characterizations for embedded multi-valued dependencies, typed embedded implicational dependencies and template dependencies. We have not yet studied'the way normalization theory gives rise t o syntactically defined dependency classes. But it s e e m natural to guess that there are preservation theorems stemming from normal f o r m of data base schemes. A step in this direction may be found in [GinsburgHull 19821 and [Ginsburg-Spanier 19821. Another direction along these lines are characterizations which describe more closely the structure of the vocabulary (similarity type). Being typed is such a property, but more relevant and fruitful is the distinction between cyclic and acyclic data bases, a topic which we unfortunately could not cover here, cf. [Goodman-Shmueli 19821. A good survey is [Fagin 19831. The distinction between those two types of data bases is also reflected in various complexity results. For a n excellent survey of normal forms (in contrast to syntactic normal forms), cf. [Beeri-Bernstein-Goodman 19781, [Bernstein-Goodman 19801 and [Ullman 19821.
Model Theoretic Issues in Theoretical Computer Science
327
Queries were defined as computable functions of data base states which preserve isomorphisms In the spirit of our approach i t is natural to ask if there other invariance properties which should be considered. In [Cooper 19801 it is suggested that definite formulas play also a role in query languages. His point is that, whereas queries are in general only partial recursive function, queries explicitly defined by definite formulas lead to total functions. This line of thought deserves more attention. The way one could make use of separable queries is obvious: but not very promising. A modest step for queries definable by FID’s was done in proposition 18. A related approach, though different in spirit, may be found in [Goodman-Shmueli 19821, where aspects of query processing used for syntactic characterizations. But what we have is rather a Problem: Which invariance properties for queries give meaning to interesting syntactically defined classes of computable queries. And which of these classes reflect also some complexity issue ? The importance of the work in [Chandra-Hare1 19801 lies not only in the clarity of their concepts. The complete query language QL they propose is the decisive step to provide data base theory with a notion of operational semantics for all reasonable query languages. The completeness of QL enables us to provide all other query languages which precise definitions of their semantics, by interpreting them in QL. The usefulness of QL is only theoretical. But it also lead in [Makowsky-Zvieli 19831 to extensions of existing query languages such as SQL and QBE, cf. [Ullman 19821 for their definition. Those extensions turned out to be complete in the sense of [Chandra-Hare1 19801. The success of the approach of [Chandra-Hare1 19801 suggests some further research: One can try to mimick these definitions in the context of the entity-relationship model for data bases, as proposed in [Chen 19761.This would lead to a precise comparison of the power of the two models and probably to a precise notion of their equivalence. On the other hand one can t r y to generalize the concept of a computable query to other transactions and develop a theory of computable transactions. A transaction will also be a computable function mapping data base states into data base states, but it is less clear what kind of isomorphisms o r other properties i t should preserve. We suggest that the methods we have illustrated in this section may lead to interesting developments in a general theory of computable transactions.
328
J.A. MAKOWSKY
3. Specification of Abstract Data Types.
3.1.Introduction. Data structures are structures, usually finite, sometimes potentially infinite. Their main purpose in programming sterns from the need to organize algorithms transparently, saving space and time wherever appropriate. This is particularily important when we want t o build polynomial, especially linear time algorithms. As a modest example for logicians let us pose the following problem: Given a set of propositional Horn formulas, we want to test satisfiability. It is easy to find an algorithm which uses 0(n3)time, and working a bit harder, even one that uses O ( n i o g n ) time. But only a careful choice of the data structure will give a 0 ( n ) algorithm, cf. [Itai-Makowsky 19821. Logicians are usually not trained to express their ideas that way. Much more dramatic results of this type, involving deep mathematics, were obtained e.g. by R.Tarjan for graph theoretic algorithms, for which he was awarded the newly created Nevanlinna Prize 1982. Good introductions to combinatorial algorithms using various data structures are [Even 19791 and [Reingold-NivergeltDeo 19771. The latter contains also an annotated bibliography. Abstract data types are abstract structures like in algebra, category theory or model theory. They arise in attempts to axiomatize the properties of the data structures, which are needed to prove correctness of the so designed algorithms. The abstraction stems from the need to distinguish between the intended data type and its implementation. Especially in modular programming or in correctness proofs of programs one has to distinguish further between what is t r u e in a data type and what jbllows from the assumptions which were made explicit. All other assumptions should be considered implementation dependent. From our remarks in the introductory chapter it should be clear, that we try to separate between correctness of a program in a particular implementation and correctness which is provable from explicit assumptions, and therefore enhances portability. aeciflcation theory is the model theory of these explicit assumptions, or rather of what we allow to be such assumptions, since what follows from them is true in all its models. Usually such assumptions are expressed as equations, or, more generally, as universal Horn fomulas, and strict universal Horn formulas (i.e. inondegenerate implications) cf. [Goguen-Burstall 19831. But the model theory is modified to the extent that not all algebras, but only the initial algebras are considered, or at least, play a special role. We t r y to attack the problem here from the point of view of abstract model theory, as described in [Barwise-Feferman 19831. The computer scientist's point of view of specification of abstract data types is widely discussed in the literature of the last decade, and many formalisms and semantical approaches have been proposed. A very useful dydactic essay on the "software engineering viewpoint" is [Bjorner 19801.
Model Theoretic Issues in Theoretical Computer Science
329
Data types are generally considered t o be many sorted structures or algebras, and methods from universal algebra, category theory and model theory have more or less successfully been applied to study the various questions concerning modularization techniques and expressive power (see for example [Goguen et al. 19781, [Burstall-Goguen 19801. [Wand 19781, [Kamin 1980,1983],[Bergstra et al. 19811, [Ehrig et al. 19801, [Ehrig et al.lQ82], [Ernst-Ogden 19801). While most of the work in this area is intended to contribute to the design of specification techniques of languages, or studies of recursiveness in connection with specifications, little is known about the consequences of the implicit assumptions which underly the proposed semantical concepts. Studying the implicit assumptions of algebraic specification theory is a problem which is conveniently expressible as a problem of a b s t m c t m o d e l t h e o r y : We have to axiomatize the universe of discourse when we want t o prove something about "all passible a p p m a c h e s t o algebraic speci$cations". The main difference here is, that we have to be much more careful about the choice of closure condiCions imposed o n t h e specifications. It is not a priori clear that we have closure under negation. d i s j u n c t b n or any sort of quantification. And in fact our results will show that such closure conditions are n o t appropriate. Here we want to exhibit some of these assumptions common to all of the above mentioned approaches, and shows that, surprisingly, they essentially determine the character of the possible specification languages. Our results confirm the particular choice of specification languages in the literature in the following sense: Each of the languages we discuss is complete for a set of implicit assumptions; in other words, each such language satisfies the assumptions, and any other language which satisfies these assumptions has no more expressive power. In other words, we have here another instance of a presentation theorem in the sense of chapter 1. But it is evident that, to complete Kreisel's program, we still have to go much further in isolating more definability criteria and in extending the framework to allow more general concepts of data structures, such as envisaged in [Goguen-Burstall 19831. Our results rely havily on the assumptions we made on the vocabularies (similarity types) of the data structures. Though they hold also for many-sorted relational structures with heterogeneous function and relation symbols, covering for instance all of the examples in [BroyWirsing 19831, we do not know, a t present, if they can be extended to other similarity types, a s allowed in [Bloom-Wright 19821. The results in this chapter are inspired by Mal'cev's characterization of free classes [Mal'cev 19541 and extend [Mahr-Makowsky 19821. They are essentially taken from [Mahr-Makowsky 19831, which is an adaption of this characterization to framework of specification of abstract data types.
330
J.A. MAKOWSKY
The notions used in this chapter are standard in universal algebra and logic and can be found for example in [Monk 19761. Explicitly we assume signatures, (vocabularies) to be of the form T = (S,C,F,R), so including sorts, sorted names for constants, functions and relation symbols. Rnitary signatures, (finitary vocabularies), are those where function and relation symbols have finite arity Structures (including relations) and algebras are defined in the usual way. Renaming T u + T for signatures a and T denotes the bijective assignment of T to u which is compatible with the sorting of the components of T and u. Renaming carries over to structures, and we denote by A[r), with respect t o a renaming 7 , the structure which is identical to A except that its universe, constants, functions and relations are renamed according to T . Basic formulas consist of atomic and negated atomic formulas (including equations and inequalities) with free variables. Free variables could also be treated as uninterpreted constants. Basic sentences are variable free. For a structure A , the set of basic sentences holding true in A is called the (basic)diagram of A If E is a set of formulas (possibly infinite) we denote by A E , V C the conjunction (resp. disjunction) of all the formulas in Z.
3.2.The Axiomatic Framework. To prove statements about all possible specification languages we have to make precise what we mean by "all possible specification languages". In this section we give such a definition. The only objection it could provoke is being too general. But since our theorems hold for it, they will a fortiori hold for any narrower concept of specification languages, so we do not have t o be bothered by this discussion here. Definition:A semantical system is given by a pair ( T , A ) consisting of: a class T of finitary signatures and a family A=(C,),EI of classes of type(i)- structures where type:/-+ T associates with each index a EI a signature type (i) such that the following axioms four hold: l.bomorphism Axiom Given T - structures A.B, and a class C, from A. Then A E B implies that A E C, iff B E C, . This axiom merely says that we deal with abstract data types, i.e. we are only interested in its isomorphism type and not in its particular representation. This is just the isomorphism axiom from abstract model theory, as defined in chapter 1. 2.Renaming Axiom Given a renaming T : T - . U and a class C, with type(i)=r, then there exists j E I with type U ) = u such that : A E C, iff A(') E Cj for all rstructures A . This axiom just says that we can change names of relations or functions without affecting the structures. For example we can change from additive to multiplicative notation when dealing with a group without affecting the group itself. This is just the renaming axiom from chapter 1.
Model Theoretic Issues in Theoretical Computer Science 3. Intersection Axiom: For all indices i.j
E
I there is index k t~ I
33 1 such that
C;=C, n Cj.
This axiom ensures that the union of two specifications is again a specification. Note that here, in contrast to abstract model theory, we actually axiomatize the notion of "sets of sentences", rather than sentences. We get therefore conjunctions for free, but can avoid the other closure operations in our basic definitions. 4. Empty Class Axiom For each T E T there is i E I such that type(i)=r and q = g . This axiom merely says that we can specify the empty class of r structures. The next step in our definition ensures that we are always allowed to add new constant symbols. We could be more liberal and also allow free use of new relation and function symbols, but our main results shows that this does not change anything. Definition: A semantical system (T,A)is r i c h e n o u g h if additionally the following axiom (5) holds: 5. Richness Axiom: If T=(s,c,F,R) E T , then for all families of constant symbols C ' over the same sorts S such that C c C' also s'=(S,C',F.R)E T ; and for all T E T and all sets B of basic rsentences Mod(B)E A. In other words, we can extend a signature by arbitrary sets of constant symbols and every set of basic (variable free) sentences defines a specification. In computer science, unlike in model theory, the intended models have to be countable, and preferably also r e a c h a b l e . Recall that a structure A is reachable if every element in a r s t r u c t u r e A is the interpretation of a term over r. (Clearly every structure can be made reachable by adding enough constant symbols.) Since we want to use model theoretic methods, we do not restrict ourselfs to such models, but demand, that every specification which has a model, has also a reachable model. More precisely: Definition: A semantical system (T,A)admits r e a c h a b l e structuTes if it is rich enough and additionally the following axiom: 0. ReachabilityAxiom For all indices i E I there is a reachable structure A EC,.
Remark: If (T,A) is rich enough, then for any reachable rstructure A with r E T there is a n index i c I with A E c,. g can be chosen to be the class of models of the b a s i c d i u g r u m of A , i.e. the set of atomic and negated atomic (variable free) sentences true in A . Definitions: (i) Given a class C of r-structures.'Then C is basic c o m p a c t if for all sets B of basic r-sentences C n Mod(R)# $ iff for all finite Bo c B C n Mod(BO)# 9. (ii) We call a semantical system (T,A)basic c o m p a c t (or o f f i n i t e support), if for all i E I the class C, is basic compact.
332
J.A. MAKOWSKY
Note, if C is first order definable, then C is basic compact. Basic compactness just says that i€ a set of basic sentences makes a specification inconsistent, then there is already a finite subset of basic sentences which makes i t inconsistent. Clearly, any system axiomatizable by finitary rules has this property. EXampleS: (1) Let Te be the class of signatures containing only function symbols and constant symbols and let AE be all the equationally definable classes. This gives us a basic compact semantic system which admits reachable structures. (2) Let TE be as above and A,$ be the all the classes definable by finite sets of equations. This gives us a basic compact semantic system, but it is not rich enough. (3) Let ' ' 7 be as above and AH be the quasi-varieties (i.e. classes definable by sets of finite first order Horn formulas, cf. [Monk 19761). This again gives us a basic compact semantic system which admits reachable structures. (4) Let T be the class of all signatures and A" be the classes definable by first order formulas. Then we get a basic compact semantic system which is rich enough but does not admit reachable structures. However, if we restrict ourselfs to classes definable by universal formulas, then it does admit reachable structures. If we allow infinitary clauses (cf.section 3.2) then we destroy compactness, but still get a semantic system which admits reachable structures. (5) If TR contains only relation symbols and A ~ Bconsists of classes definable by full implicational data base dependencies (F'D), as in chapter 2, then we get a basic compact semantical system, provided we allow infinite data base states. If we allow only finite data base states, a s in chapter 2, compactness fails. However, in both cases the system admits reachable structures. (6) We still get a semantical system which is rich enough if take T a s above and let Am be the classes definable by sets of statements expressing partial correctness of program, i.e statements of Hoare 1,ogic. For terminology cf. [Harel 19791. But here we loose both compactness and the reachable structures. (7) If L = ( T , S r , m ,I= ) is a logic, then the classes of the form Mod,(@) with @ c % ( T ) form a semantic system. If L satifies additionally the Basic Axiom then the resulting semantic system is rich.
Model Theoretic Issues in Theoretical Computer Science
333
3.3. A complete specification Language for rich semantical systems admitting reachable structures. In this section we show that the existence of reachable structures together with the axioms of rich semantical systems already determines fairly well, what kind of syntax is appropriate for specification languages. The reader, however, should be warned: the infinitary language we first present is not the ultimate specification language. Our first. theorem just illustrates how little we need to get our first presentation theorem. If we add basic compactness (a model theoretic substitute for axiomatizability), a s in theorem 2, we get the more familiar finitary logics. Definition: The language of i n f l n i t a r y c l a u s e s is given by LO=(To,ALg,mnlo,I= ), with: To the class of all finitary signatures and Alg(r) the class of all 7-structures. mnlO(r) consists of all infinitary clauses over T , i.e. formulas which are infinite disjunction of basic r-formulas, possibly with infinitely many free variables. Formally, if B is any set of basic rformulas (possibly with free variables) , then V B is a infinite clause. Finally,for A E AZg(7) and c M o ( ~I= ) ,is defined by Al= oQ if for every V B E the universal closure of V E holds in A , We denote by L, the system which we get from Lo by restricting it to finite sets B of basic formulas, and call it the language o f f i n i t e clauses. L, is logically equivalent to the system given by sets of universal first order sentences (cf. Example (4)). Both Lo and L, are logics satifying the Basic Axiom. Our next two theorems show that the language of infinite (finite) clauses is universal for semantic systems which admit reachable structures (and are basic compact). More precisely: Theorem 1: Let (To,&)be the semantical system resulting from the logic Lo of infinitary clauses, i.e. C, E & iff there is c b ( t y p e ( i ) )with C,=hlolod(O) . Then admits reachable structures; (i) ( To,Ao) (ii) If ( T , A ) is a semantical system which admits reachable structures, then A is a subfamily of i.e. for all C E A we have C E &, and thus C is Lo- definable. Theorem 2: Let ( To.AJ) be the semantical system resulting from the logic Lo of finite clauses, i.e. C, €AJ iff there is @ c L , ( t y p e ( i ) ) with G=&lod(Q) . Then (i) ( To,A,) admits reachable structures and is basic compact; (ii) If (T,A) is a semantical system which admits reachable structures and is basic compact. then A is a subfamily of A, i.e. for all C E A we have C E A,, and thus C is L,- definable. Proof The first. theorem is proved using the method of diagrams and the second follows from the first using compactness. A reader with no background in model theory should consult [Monk 19761 , or any other beginning text in model theory. A complete proof may be found in [Mahr-Makowsky 19821.
+
+
+
334
J.A. MAKOWSKY
3.4. Typical models and initial algebras. The notion of a semantical system is meant to capture the semantics of a specification language and interpretes a class C in the system as the semantics of a single specification. However, specification of abstract data types often attaches a single structure as semantics to a specification, like the initial algebra approach [Goguen e t a1.19781 or the final algebra approach [Wand 19781. In both cases the single structures have a distinguished position in the "specific" class C, which characterizes them uniquely up to isomorphism. Note, that one could also propose to vary the notion of "isomorphisms", i.e. pass to different categories, than just the category of rstructures. In [Wirsing-Broy 19801 it was proposed to require that the category of finitely generated structures form a complete lattice, to allow other than universal first order formulas in the specification language. Our theorems below illustrate, why such a n approach must run into certain difficulties. On the other side there more possible choices of structures which are unique in their class, so additional arguments should be put forward when one chooses initial or final algebras. One such argument may be found in the notion of g e n e r i c algebras or, what this really amounts to, the concept of proof by e x a m p l e . If we write do% a specification Z of a data structure in some formally defined specification language L , the intended data structure should satisfy C, but nothing else. However, this is not possible, since some other statements in L might be logical consequences of C. So the best we can hope for is a structure (algebra) A wich satisfies C together with all the consequences of C, but whenever some statement u E L is not a consequence of C, then it is false in A . In algebra such a structure is called g e n e r i c f o r C . In data base theory such structures are called A m t r o n g r e l a t i o n s , (cf.[Fagin 19821). The usefulness of this concept is that truth in the generic structure (an example) is equivalent to being a logical consequence of C, i.e. it formalizes the notion of proof by example.This idea has recently also been M exploited for testing programs ,cf [RowlandDavis 19811. What we try to argue for here, is that behind the notion of the initial a l g e b r a lies a similar concept, and that the uniqueness of the initial algebra is just one of the many nice properties it has. The following notion of D f r e e s t r u c t u r e captures the intention behind these two approaches. Definition: Given a class T of signatures, and let PT and NT denote the atomic, respectively negated atomic, rsentences for
T E
T. Then a class
D c PT u NT is called a preference s y s t e m f o r T if (i) D is consistent, i.e. M O ~ ( D ) I, # (ii) D is maximal, i.e. any D with D c D c PT u NT is inconsistent, in other words Mod(D)=#, Note that if D contains free variables, then D is consistent if the existential closure of D has a model.
Model Theoretic Issues in Theoretical Computer Science
335
Example: Let A be a r-structure and D be the set of all basic r-sentences true in A (the diagram of A ) . Then D is a preference system. In fact, every preference system can be obtained in this way. To obtain a preference system D with free variables in this way we just look at the free variables as distinct new constant symbols (or generators) and take as A the reachable model described by D and the new constant, symbols. Preference systems may also be useful to handle parametrizations without mechanisms for "parameter passing". as was pointed out t o me by J.Thatcher, cf. [Goguen et al. 19781 and [Thatcher et al. 19821. Definitions: (i) Given a class T of signatures and a preference system D for T. Let C be a class of rstructures with T E T and A E C, then A is D-MiCd in C if A I= u implies C I= u for all u E D . If u contains free variables, we mean by A I= IJ that the universal closure of E holds in A and sirnilwily €or Cl= u. D-typical structures are a weak form of generic structures, as far as basic, variable free sentences are concerned. If D contains free variables and D c PT,T has no relation symbols, then they are exactly the generic structures. (ii) A is D-free in C if A is reachable and D-typical in C. D-free structures combine the requirements of reachability and genericity, as far as they are compatible. For the usual definition of generic algebras, it may well be that there are no reachable generic structures, even if both separately exist. More on generic structures may be found in [Gratzer 1979, Appendix 41. FXElmpleS: (1) (initial) Let 7' be arbitrary and D=PT. Then A initial in C iff A D-free in C. (2) (Anal) Let T be arbitrary and D c NT.Then A final in C iff A D-free in c.
(3) In general , if D is the diagram of some structure A then a D-free structure 3 in C is as different from A as C permits, i.e. for u E D B I= u only if for all B E c B I= U. This is why we call D a preference system. Facts: (1) If A.A' are D-free in C then A r k . (2) Let D be an arbitrary preference system for T and C the class of all rstructures for given T E T , then A is D-free in C iff the restriction of D to T is exactly the diagram of A . (Recall that the diagram of A is the set of all basic sentences holding in A ) . Definition: A semantical system (T,A) admits D-pee S ~ r U c t U r e sfoor a given prejerence s y s t e m D ~ O T if (T,A) is rich enough and additionally satisfies the following axiom: 6'.Preference Axiom: For all indices i E I there is 'a D-free structure in C,.
336
J.A. MAKOWSKY
3.5. A complete language for semantic systems which admit initial f3emantics.
In this section we show that the existence of D-free structures determines even more, what kind of syntax is appropriate for specification languages. Again, it does not suggest any particularily useful syntax, but it shows how few assumptions allow us to get much information. If we assume, furthermore, basic compactness, then we shall get the expected finitary Horn clauses. Definition: Given T=T,, the class of all finitary signatures, and D a preference system for T . Then the logic of infinitary D - H o r n clauses Lf=(To,AZg , M DI= , is defined like Lo,except that for a set B of basic Tformulas V B E L # ( T ) iff there is a t most one formula in B n D. We denote by Lj) the set of f i n i t e Horn clauses. Note that if B is a set of basic sentences with B n D=$ and d E D then - d = b o is not in D and the clause V ( B u [ d j ) is equivalent to the infinitary formulas A B + b o , which is indeed a n infbitary Horn formula. Theorem 3: Let ( T o , @ be the semantical system resulting from the logic L# for a given preference system D , i.e. C, E @iff there is c FhzlD(type(i)) with C, =Mod (a) . Then (i) If D=(PT then Lo.@ admits D-free structures and (ii) If (T,AD is a semantical system which admits D-free structures, then AD is a subfamily of 4D, i.e. for all C E AD we have C E @, and thus are Lfdefinable. Remark: (i) of the theorem has a n additional assumption, which we conjecture not to be necessary. However, in the case of basic compact semantic systems this additional assumption is not needed. Theorem 4: Let (T, , A f i be the semantical system resulting from the logic L? for a given preference system D , i.e. C, E A: iff there is c FhzlD(twe(i)) with C, =Mod (a) . Then (i) I,,,Ap) admits D-free structures and (ii) If ( T , A is ~ a semantical system which admits D-free structures and is basic compact, Lhen AD is a subfamily of A?, i.e. for all C e A D we have C E A?, and thus are L?- definable. Proof: Part (ii) in both theorems follows from a result due to G.V.Cudnovskii [Cu68] which was independently rediscovered via methods of category theory in [Andreka-Nemeti 19751 and in [Banaschewski-Herrlich 19761. Part (i) in the infinitary case with D=PT may also be found there. To prove part (i) for general D one has to prove a lemma: Lemma 5: Let C be a set of finite D-Horn formulas and u1n2E D . Then C u [u,,bzjis consistent iff for each i=1,2 C u tu,j is consistent. Proof of lemma: This follows from a close analysis of the resolution method to check satisfiability of sets of clauses, together with compactness. For more details on resolution we recornmend [Robinson 19791.
Model Theoretic Issues in Theoretical Computer Science
337
3.6. Relevance for Specification of Abstract Data Types. The completeness results in the previous sections talk about the limitations in defining classes of structures by specifications. These limitations are not determined by the properties of particular specification languages, but are caused mainly by the assumption of admitting reachable or D-free structures. That such assumptions are reasonable will be discussed below. What should be pointed out here is, that we have turned the tTad%hnalquestion of finding reasonable semantics for given syntactic approaches, upside down: We have first defined axiomatically how our semantics should look like by extracting some of the key ideas and intuitions behind the [Goguen e t al. 1978l-approach and then we proved that this determines, up to logical equivalence, pretty well what kind of a syntax is well suited for specification of abstract data types. I t remains open, how this approach can successfully be extended to the more general framework as envisaged in [Goguen-Burstall 19831. But I a m convinced that a careful implementation of “Kreisel’sprogram” will lead t o various clarifications in the relative chaos of too many practical proposals. And the experience gained from abstract model theory may help us in asking a t least the right type of questions. We did not deal for instance with the problem of ”hidden functions”, as stated e.g. in [Thatcher e t al. 19821. But it may well be that our notion of A-closure and implicit definability from section 1.3 points in the right direction to clarify this concept. In section 2.6 w e have already given a n example of how t o use implicit definitions. Let us now look, retrospectively, a t two special cases, initial and final structures, and discuss the semantic assumptions more closely. Specification of Abstract Data m s w i t h Initial Semantics. The so-called algebraic approach to data type specification originates in the work of [Liskov-Zilles 19741, [Guttag 19751 and [Goguen et al. 19781 and considers specifications to be sets of equations or implicational equations (=strict universal Horn formulas). The definable classes are varieties or quasi-varieties of many-sorled algebras which contain, uniquely up to isomorphism, an initial algebra. Several attempts to extend this approach have been made, namely to use arbitrarty first order formulas (including relation symbols), see [Carvalho et al. 19801 and [Wirsing-Broy 19801. The last theorem shows that any extension beyond universal Horn clauses is unsafe in the sense that it does not guarantee the existence of initial structures. In the spirit of chapter 2 we could say that the meaning of universal Horn formulas is exactly given by the initial semantics. Since equivalence to a set of universal Horn sentences is generally undecidable (see section 2.4), a specification language which admits initial structures, and which allows a reasonable syntax analysis, therefore should be the language Lp with D = P ~ . This observation also applies to RequiTement specifications as introduced in [Ehrig 19811. There a set of requirements (in a typical case a set of first order sentences) is meant to precondition the data
338
J.A. MAKOWSKY
type to be specified, or to restrict the class of structures. That such a set of requirements allows initial structures is thus of great importance. A language for such requirements again is bounded in its expressive power by Lywith D = P p Specificationof Abstract Data m e s with Final Semantics. As a reaction to [Goguen e t al. 19781 final semantics is proposed in [Wand 19781 to determine by a specification not only a single data type, but also its possible implementations. Specification techniques for the so-called final semantics approach are not equally well developed. See, however, [Kamin 1980, 19831 and [Hornung-Raulefs 19811. The possibilities of specifying a class of implementations for the, up to isomorphism, uniquely existing final structure a r e bounded by L g or Lj' with D=NT, in a sense just like above.
3.7.A Word on Other Applications. Some of our results may have other applications a s well. A s it turns out the programming language PROLOG, (cf. [Clocksin-Mellish 19821) gains popularity and is even considered by some as the language of the fifth generation of computers. In PROLOG, one can specify data types directly in Horn formulas, and our results show that this choice is appropriate. In [Chandra-Hare1 19811 the connection between PROLOG and query languages, as we described them in the previous chapter, is studied. They show that PROLOG, taken as a query language, is not complete, and determine exactly its position in their complexity hierarchy for query languages. In PROLOG, the data types specified by Horn clauses, are always realized as the initial structures, provided space considerations allow it. Not provable is equated with not true. Our notion of preference systems suggests interesting variations for that. I can think of applications in domains, which usually are captured by "non-monotonic logics", a s suggested in [Artificial Intelligence 19801. Here D can be thought of a s a description of a n ideal world, or some default assumptions, and the D - t y p i ~ d models a s best approximations to or least deviations from D. Specifications expressed in D-Horn formulas give the description of the real world. Our characterization of D-Horn formulas implies that such best approximations always exist, and that, if they always exist, the specifications have t o be written in D-Horn formulas. We plan to explore this aspect of our work in the future.
Model Theoretic Issues in Theoretical Computer Science
339
References. (Note that the references have no claim for either completeness nor historic accuracy concerning priorities. They merely reflect the authors accidental readings.) Andreka,H. and Nemeti.1.; Generalisation of variety and quasivariety concepts to partial algebras through category theory, Dissertationes Mathematicae (Rozprawy Math.) 204 (1982) Artificial Intelligence vol13 (1980), Special Issue on Non-Monotonic Logic. J3anaschewski.B. and Herrlich,H.; Subcategories deflned by implications, Houston Journal of Mathematics 2.2 (1976)pp.149-171 Barwise,J. and FefermanS.; Higher Model Theory: Logic o! Mathematical Concepts, Springer 1983 BarsriseJ.;Axioms for abstract model theory, Ann.Math.Logic vo1.7 (1974) pp. 221-265. BarwiseJ.; Admissible sets and structures, Springer Verlag 1975. Beeri,C. and Vardi,M.Y.;The implication problem for data dependencies, Proceedings of the 8th ICALP. LNCS vol. 115 (1981) pp.73-85. Beeri,C., Bernstein,P.A. and Goodman,N.;A sophisticate’s introduction to database normalization theory, 1978 W E Conf. pp 113-124 Bergstra. J.A., Broy, M., Tucker. J.W., Wirsing, M.; On the Power of Algebraic Specifications, Proceedings of the MFCS’81, Springer Lecture Notes 118 (1981) Berman,P.,Halpern.J.Y. and Tiuryn,J.;On the power ot nondeterminism in dynamic logic,ICALP1962, LNCS vol.140 pp 48-60 I3ernays.P. and Schoenflnke1.M.; Zum Entscheidungsproblem der mathematischen Logik, Math.Annalen 99 (1926) pp.342-372. Bernstein, P.A. and Goodman, N.; What does Boyce-Codd normal form do ?, VLDB 1980,pp 245-259 Bernstein,P.A. and Goodman,N.;A sophisticate’s introduction to distributed database concurrency control, Harvard University TR +l8-82 ,46p. B1oomS.L. and Wright.J.B.; Finite quasi-varieties, Journ.of pure and applied algebra 25 (1982) pp. 121-154. Bjorner, D.; Formal description of progr~ammingconcepts, Mathematical foundations of computer science, Springer LNCS vol. 66 (1980) pp.1-21. W.Oy,M. and Wirsing,M.: Generalized heterogeneous algebras and partialinterpretations. CAAP ‘83,to appear in Springer LNCS. Burstal1,R.M. and Goguen,J.A.;The semantics of CLeAR, a specification language, Proc. of 1979 Copenhagen Winter School on Abstract Software Specifications. Pequeno, T.H.C., Pereda, A.A. and Veloso, P.A.S.; A Carvalho, R.L.de, Maibaum, T.S.E., Model Theoretic Approach to the Theory of Abstract Data Types and Data Structures, Research Report CS-80-22,Waterloo, Ontario, 1980, Casanova. M.A.; The concurrency control problem tor database systems. LNCS 116. S p r m e r 1981 Chandra, Ashok and’Harel, David; Computable queries for relational data bases, JCSS 21.2 (1980) pp 156-178 Chandra, Ashok and Harel, David; Horn clauses and the fixpoint query preprint 1982 .I1 p
hierdrchy,
Chandra. Ashok and Harel. David; Structure and complexity of relational queries, JCSS to appear, preprint 30p
340
J.A. MAKOWSKY
Chandra, Ashok; Programming primitives for database languages, Proceedings of the 8th symposium on Principles of Programming languages (1981) pp.50-62. Chandra,A.K.,Lewis,H.R.and Makowsky.J.A.;Embedded Implicational dependencies and their inference problem, abstract in SIGACT 1981. to appear in JCSS 1983. Chang,C.C.and Keis1er.H.J.;Model theory, North Holland 1973. Chen.P.: The entity-relationship model - Towards a unified view of data, ACM TODS 1.1 (1976) pp.9-38 Chen,P.ed.; Entity-Relationship Approach t o Information Modelling and Analysis, ERInstitute Publications, 1981. Clocksin,W.F. and Mellish,C.S.;Programming in PROLOG, Springer 1981. Cooper,E.C.;On the expressive power of query languages for relational databases, TR1480, Harvard University 1980 Cudnovskii,G.V.; Some results in the theroy of inbitely long expressions, Soviet Math.Dokl.9 (1968) pp.556-559 Date,C.J.;An Introduction to Data Base SystemsLvol.l,3rded., Addison-Wesley 1981. Date,C.J.;An Introduction to Data Base Systems,vol.2,Addison-Wesley 1983. Di Pao1a.R.A.; The recursive unsolvability of the decision problem for the class of definite formulas, JACM 16.2 (1969) pp 324-27 Ehrenfeucht,A.; An application of games to the completeness problem of formalized theories, Fund.Math, 49 (1961) pp.129-141. Ehrig, H.. Kreowski, H.J., Mahr, B. and Padawitz. P.: Algebraic Implementation of Abstract Data Types,t o appear in TCS. Fall '82. Ehrig. H., Kreowski, H.J., Thatcher, J.W., Wagner, E.G. and Wright, J.B.; Parametrized Data Types in Algebraic Specification Languages, Proceedings of the 7th ICALP'80, LNCS 85 pp.157-168 Springer 1980 Ehrig. H.: Algebraic Theory of Parametrized Specifications with Requirements, Proceedings of the CAAF"81,Springer - Lecture Notes, No.112 (1981) Engeler,E.; Algorithmic properties of structures, Math.Syst.Theory 1 (1967) pp.183-195. Engeler,E.: Proof theory and the accuracy of computations, In: Symposium on automatic demonstration, Springer LNM vol. 125 (1970) pp.62-71. Emst,G.W. and Ogden,W.F.;Specification of abstract data types in MODULA,ACM TQPLAS 2.4 (1980) pp 522-543. Eken,S.;Graph Algorithms, Computer Science Press 1979. Fagin.R.; Armstrong Databases For Functional and Inclusion Dependencies, RJ3500 8.7.1982 IBM Report RJ 3500 (1982) Fagin,R.; Horn clauses and database dependencies, t o appear J.ACM, preprint March 1982. 58 p ( extended abstract ln SIGACT 1980) Fagin,R.; Multivalued dependencies and a new normal form for relational data bases, ACM TODS 2.3 (1977) pp.282-278. FaginJ?.; Acyclic data base schemes (of various degrees): A painless introduction, Proceedings of the 8th CAAP, L'Aquila 1983. to appear. FefermanS.; Applications of many-sorted interpolation theorems, In: Proceedings of the Tqrski Symposium, L.Henkin ed. AMS Proceedings of symposia in pure mathematics V01.25 (1974), pp. 205-224.
FlumJ : First order logic and its extensions, In: ISILC Logic Conference proceedings, G.H.Muller et al. ed.. Springer LNM vo1.499 (1975) pp.248-310.
Model Theoretic Issues in Theoretical Computer Science
341
Francez,N.,Katz,Sand Makowsky,J.A.;The expressive power of nondeterministic control and random assignments, preprint April 1982 Friedman,H.; The complexity of explicit definitions, Advances in Math. vol. 20 (1976) pp.18-29. Garey M.R and Johnson D.S.;Computers and intractability, San Francisco 1979. Ginsburg. Seymour and Hull, Richard Characterizations for functional dependency and Boyce Codd normal f o r m f a d i e s . preprint Feb 1982,65 p Ginsburg, Seymour and Spanier, Edwin H.; On completing tables to satisfy functional dependencies, preprint July 1982, 13 p Goad,C.;Automatic construction of special purpose programs, Report No. STAN-CS-82897, Stanford University 1982. Goad,C.; Computational uses of the manipulation of formal proofs, Report No. STANCS-80-819, Stanford University 1980. Goguen, J., Thatcher, J., Wagner, E.; Abstract Data Types as Initial Algebras and Correctness of Data Representations, Current Trends in Programming Methodology, Vol. 4 (R.Yeh,ed.). Prentice Hall, N.Y., 1978, pp. 80-149. Goguen.J.A. and Burstal1,R.M.; Institutions: Abstract model theory for program specification, unpublished draft, Stanford SRI, 1983. Goodman,N.and Shmueli.0.;hmitations of the Chase, IFP 13.4-5 (1981) pp.154-159. GoodmanJ and Shmueli,O.;Syntactic characterization of tree database schemas, preprint, March 1982, Goodman,N. and Shmueli, 0.; Tree queries: a simple class of queries, ACM TODS 7.4 (1982) pp.653-677. Gratzer,G.: Universal Algebra, 2nd ed., Springer 1979 Gurevich,Y. and Lewis,H.R.; The inference problem for template dependencies, to appear in Information and Control 1983, extended abstract in Proceedings of the 14th annual ACM Symposium of Computing. 1982, pp.137-142. Guttag, J.V.; The Specification and Application to Programming of Abstract Data Types, TR. CSRG-59, Toronto, 1975. Hajek.P.; Some remarks on observational model theoretic languages, In: Set theorey and hierarchy theory,W.Mareket al. ed. , Springer LNM vol. 537 (1976)pp. 335-345. Harel,D.;First-Order Dynamic Logic, LNCS 68, Springer 1979 Hornung, G. and Raulefs, P.; Initial and Termlnal Algebra Semantics of Parametrized Abstract Data Type Specifications with Inequalities. Proceedings of the CAAF"B1.LNCS No. 112, Springer 1981 Immerman,N.; Number of quantifiers is better than number of tape cells, JCSS 22.3 (1981) pp.384-406. Immerman,N.; Relational queries computable in polynomial timaproceedings of the 14th annual ACM Symposium of Computing, 1982, pp.147-152. Itai,A. and Makowsky,J.A.;On the complexity of Herbrand's theorem, TR-243, May 1982, Technion-Israel Institute of Technology, Haifa, Israel. Kamin. S.;Final Data Type Speciflcations: A New Data Type Speciflcation Method, Proc. of the 7th POPL-Conference, 1980. Kamin, S.;Final data types and their specification, ACM TOPLAS 5.1 (1963) pp.97-124. Kreise1,G.: Hilbert's programme and the search for automatic proof procedures, In: Symposium on automatic demonstration, Springer LNM vol. 125 (1970) pp.128-146.
3 42
J.A. MAKOWSKY
Kreise1,G.;Survey of proof theory, JSL vo1.33 (1968) pp.321-38E. Kuhns,J.L.; Answering questions by computer: A logical study. RM-5428-PR,Rand Corp. Santa Monica, Ca. Dec. 1967. Lehmann.D.,Pnueli,A. and StaviJ.; Impartiality,justice and fairness: The ethics of concurrent termination,Proceedings of the Eth ICALP, LNCS vol.115 (1981) pp.264-277. Lewis.H.R.;Complexity results for classes of quantificational formulas, JCSS 21 (1980) pp, 317-353. Lewis,H.R.;Unsolvable classes of quantificational formulas, Addison-Wesley 1.979. Llndstrom,P.; On extensions of elementary logic, Theoria vo1.35 (1969) pp.1-11. Liskov, B.H.and Zilles, S.M.; Programming with Abstract Data Types, Proc. ACM Symp. on Very High Level Languages, SIGPLAN Notices, 9, 1974, pp. 50-9, McNulty,G.F.;The decision problem for sentences preserved under relations between structures, abstract, JSL 44.4 (1979) p.452. Mahr, B. and Makowsky, J.A.; Characterizing Specification Languages with admit Initial Semantics, Tech. Report #232, Technion, Haifa, Israel, February 1982, to appear in TCS, extended abstract in CAAP ‘83, to appear also in LNCS. Mahr,B and Makowsky,J.A.; An axiomatic approach to semantics of specification languages, Theoretical Computer Science, 6th GI-Conference, Dortmund, January 1983, LNCS vol. 145 (1983) pp. 211-220. Maier,D., Mendelzon,A.O.and Sagiv,Y.;Testing implications of data base dependencies, ACM TODS, 4.4 (1979) pp 455-469 Maier,D.,Sakiv,Y.and Yannakakis,M.; On the complexity of testing implications of functional and join dependencies, JACM 28 (1981) pp.680-895. Maier,D.;Theory of Relational Data Bases, Computer Science Press, to appear (1983?). Makowsky,J.A.;Characterizing Data Base Dependencies, Proceedings of the 8th ICALP ‘81. LNCS 115, (1981) pp.86-97 Mak0wsky.J.A.;Measuring the expressive power of dynamic logics,in: Proceedings of the 7th ICALP. LNCS vol.85 (1980) pp.409-421. Makowsky.J.A.;Securable quantifiers, k-unions and admossible sets, In “Logic Colloquium ‘73” R0se.H.E and Shepherdson,J.C.ed.. North l-iolland 1975, pp. 409-428. Mak0wskyJ.A.; Model theoretic issues in theoretical computer science, part 2: Assigning logics to programming languages, in preparation. Positive results in abstract model theory: A theory of Mnk0wsky.J.A. and Shelah,S.; compact logics, to appear in Ann.Math.Logic (1983). Makowsky J.A.,Shelah,S. and StaviJ; Ann.Math.Logicvol.10 (1976) pp.155-192.
A-logics
and
generalized
quantifiers,
Makowsky,J.A.and Vardi.M.Y.;in preparation (1983) Makowsky,J.A.and Zvieli, A,; Defhable queries, in preparation (1983). Mal’cev. A.I.; Quasiprimitive Classes of Abstract Algebras,in the Metamathematics of Algebraic Systems, Studies in Logic, Vol. 86. North-Holland, 1971, pp, 27-31. Manders,K.L. and Daley,R.F.;TheComplexity of the validity problem for dynamic logic, to appear in 1nf.and Contr. Meyer,A.R.;Ten thousand and one logics of programming. FATCS Bull. (January 1980) pp. 11-20, Meyer,A.R. and Tiuryn.J.; A note on equivalence among logics of progranwpreprint MlT Dec 1961
Model Theoretic Issues in Theoretical Computer Science
343
Meyer.A.R., and Parikh,R.; Definability in dynamic logic, JCSS vo1.23.2 (1981) pp.279298. Monk,J.D.;Mathematical Logic, Springer 1976 Papadimitriou,C.H. and Yannakakis,M.; Algebraic dependencies, JCSS 25 (1982) pp.2-41. Paredaens,J.; A universal formalism to express decompositions, functional dependencies and other constraints in a relational data base, Th.C.Sc.vol.19.2 (1982) pp. 143160.
Reingold,E.M.,Nievergelt,J. and Deo,N.;Combinatorial Algorithms, Prentice Hall 1977. Robinson,J.A.;Logic: Form and Function, North Holland 1979 Rowland,J.H. and Davis,P.J.; On the use of transcendentals for program testing, JACM 28.1. (1981) pp.181-190 Sadri,F. and Ullman.J.D.; Template dependencies: A large class of dependencies in relational databases and its complete axiomatization, Journal ot ACM 29.2 (1982) pp 363372 Shmueli.0.; The fundamental role of tree schemas in relational query processing, Harvard University TR-16-81, 160 p Shoenfield,J.R.; Mathematical logic, Addison-Wesley 1967. Statman,R.; Structural complexity of proofs, Ph.D. Department of philosophy, Stanford University, 1974. Tarski,A,; Some notions and methods on the borderline of algebra and metamathematics, Proc.Int.Congr.of Mathematicians, Cambridge Ma., vol 1 (1952) pp 705-720. Tharp,L.H.; Continuity and elementary logic, JSL 39 (1974) pp.700-716 Thatcher,J.W., Wagner,E.G. and Wright,J.B.; Data type specification: Parametrization and the power of specification techniques, ACM TOPLAS 4.4 (1982) pp.711-732. Ullman,J.D.; Principles of Data Base Systems,second edition, Computer Science Press 1982 Ullman,J.D.;Principles of data base systems, Computer Science Press 1980 VardiMY.; On decompositions of relational databases, FOCS 1982 Vardi,M.Y.; The complexity of relational query languages, Proceedings of the 14th annual ACM Symposium of Computing, 1982, pp.137-146. Vardi,M.Y.;The decision problem for data base dependencies, IPL 12.5 (1981) pp. 251254. Vardi,M.Y.;The implication and finite implication problem for typed template dependencies, Proceedings of the ACM Symposium on Principles of Data Base Systems, Los Angeles 1982, pp. 230-236. Wand,M.; Final Algebra Semantics and Data Type Extensions, Indiana TR65 (1978) Wirsing,M. and Broy,M.; Abstract data types as lattices of flnitely generated models. Mathematical foundations of computer science, Springer LNCS vol.88( 1980) pp.673685.
LOGIC COLLOQUIUM '82 G. Lolli. G. Long0 and A . Marqa (editors) 0 Ekevier Science Publishers B. V. (North-Holland), I984
345
NP AND C R A I G ' S INTERPOLATION THEOREM
Daniele Mundici
.
L oc Romol a N .76 50060 Donnini
F1 orencc-I t a l y
The t r u t h - v a l u e s of two renowned c o n j e c t u r e s about NP (namely, P f NP and, NP i s n o t c l o s e d under complementation) depend on t h e d i f f i c u l t y i n w r i t i n g down C r a i g ' s i n t e r p o l a n t s i n s e n t e n t i a l l o g i c . The g e n e r a l connection between NP and i n t e r p o l a t i o n i s s t u d i e d by b l e n d i n g i d e a s and t e c h n i q u e s from both model t h e o r y and computation t h e o r y .
0.
Introduction.
W e f i x throughout an a1 habet
c
and r e g a r d Boolean e x p r e s s i o n s a s p a r t i c u l a r words over I f B-+C i s a tautology, then Craig's i n t e r p o l a t i o n theorem y i e l d s an i n t e r p o l a n t I , t h a t i s , a Boolean e x p r e s s i o n I such t h a t B + I and IC are t a u t o l o g i e s , and t h e v a r i a b l e s o c c u r r i n g i n I are e x a c t l y t h o s e which j o i n t l y occur i n B and C. I n Theorem 2 and C o r o l l a r y 6 w e prove t h e f o l l o w i n g r e s u l t (where TAUT&* i s t h e set of t a u t o l o g i e s and is the set of words over
2.
c*
c):
A t l e a s t one of t h e f o l l o w i n g s e n t e n c e s i s t r u e :
(I)
TAUT
i s accepted i n d e t e r m i n i s t i c polynomial t i m e (viz..P=NP);
(11)
TAUT
i s n o t a c c e p t e d i n n o n d e t e r m i n i s t i c polynomial t i m e NP i s n o t c l o s e d under complementation);
(viz., (111)
-
-
I n t e r p o l a t i o n i s polynomially i n t r a c t a b l e , v i z . , f o r every f u n c t i o n Cp if $J i s computable i n d e t e r m i n i s t i c polynomial t i m e , t h e n f o r some t a u t o l o g y B C , $(B,C) f a i l s t o be an i n t e r p o l a n t f o r B+ C.
:c*xc*
c*,
For t h e proof w e use a m i x t u r e of t e c h n i q u e s from computation and model t h e o r y . Assume now t h a t t h e upper bounds f o r computations are r e l a x e d from t h e set 3 of polynomials t o any set 3 2 9 c l o s e d und e r sum and composition. Then t h e above r e s u l t s t i l l h o l d s r e l a t i v e perhaps w i t h a d i f f e r e n t d i s t r i b u t i o n of t o t h e new upper bounds t r u t h - v a l u e s among ( 1 ) - ( 1 1 1 ) . T h i s i s proved i n Theorem 7. Thus i t might be i n t e r e s t i n g t o f i n d two sets 3 and 3' ( i f any) ass i g n i n g d i f f e r e n t t r i p l e t s of t r u t h v a l u e s t o ( I ) - ( I I I ) : as a matter of f a c t , when 3 i s t h e set of a l l f u n c t i o n s , o r even, when '5 c o n t a i n s t h e e x p o n e n t i a l , t h e n t r i v i a l l y ( I ) becomes t r u e and (11)
--
3 46
D.MUNDICI
and (111) f a l s e . A t t h e o p p o s i t e extreme, when '5 is restricted t o t h e set of p o l y n o m i a l s , i t i s w i d e l y c o n j e c t u r e d t h a t ( I ) i s f a l s e , hence, e i t h e r of (11) or (111) i s t h e n t r u e . The above r e s u l t s y i e l d j u s t one more c o n n e c t i o n between t h e modelt h e o r e t i c a l n o t i o n of i n t e r p o l a t i o n , and computation t h e o r y . For a n o t h e r such c o n n e c t i o n , i n c61 i t i s proved t h a t i f t h e r a t e of growth of t h e l e n g t h of i n t e r p o l a n t s f o r any t a u t o l o g y B + C can be kept below some polynomial i n t h e l e n g t h of B and C , t h e n every f u n c t i o n which i s computable i n d e t e r m i n i s t i c polynomial time h a s c i r c u i t d e p t h growing p r o p o r t i o n a l l y t o t h e l o g a r i t h m of t h e input l e n g t h . T h i s as w e l l as o t h e r r e s u l t s c o n c e r n i n g t h e complexity of C r a i g ' s i n t e r p o l a t i o n theorem i n s e n t e n t i a l and i n f i r s t - o r d e r l o g i c a r e surveyed i n t h e f i n a l s e c t i o n of t h i s p a p e r . For t h e g e n e r a l r o l e of C r a i g ' s i n t e r p o l a t i o n theorem i n ( a b s t r a c t ) model t h e o r y , s e e , e . g . , [I1 , [8J and [91.
1.
Preliminaries.
For
A
an a r b i t r a r y s e t ,
d e n o t e s t h e set of words o v e r
A*
t h e set of a l l f i n i t e s t r i n g s of symbols from length
For paper
of
1w1
aCA,
an
A.
For
i.e.,
A,
the
w€A*,
i s t h e number of o c c u r r e n c e s of symbols i n
w
stands f o r
aa...a
(n
times).
Throughout
w.
this
d e n o t e s t h e f o l l o w i n g set of symbols:
c
{ A , v , T p ) .( , X , 0, 1 ) .
=
c,
Boolean e x p r e s s i o n s are u n d e r s t o o d as p a r t i c u l a r words over
accord-
i n g t o t h e f a m i l i a r f o r m a t i o n rules s t u d i e d i n s e n t e n t i a l l o g i c . p o s i t i o n a l v a r i a b l e s a r e words o v e r where t h e s u b s c r i p t
bl...b
i n binary notation.
For
,
var B
E
c*
I var
and
number of e l e m e n t s i n t h i s s e t .
B
I
The v a r i a b l e s i n
t h e o r d e r g i v e n by t h e i r s u b s c r i p t s . Letting
now
XI=
we mean t h a t
B,
B
b = lvar Bl (read:
. . .bn
'
an a r b i t r a r y Boolean e x p r e s s i o n ,
r e s p e c t i v e l y d e n o t e t h e set of v a r i a b l e s o c c u r r i n g i n
bits.
Xbl
i s t h e sequence of d i g i t s of a number
n B
of t h e form
{X,O,I)
Pro-
x
Elements of and
var B {0,1)
x €{O,l}b
satisfies
and
B,
,
inherit
are c a l l e d by
B)
c o n s i d e r e d as a Boolean f u n c t i o n
the
B:{O,l}b-+{O,I),
NP and Craig's Interpolation Theorem
takes value
on i n p u t
1
.. ,xb)).
( =(xl,.
x
341
One can r e c o v e r
f a m i l i a r s e m a n t i c s of s e n t e n t i a l l o g i c upon i d e n t i f y i n g "true"
and
Mod B =
For a r b i t r a r y
tautology
terminology,
( t o the f i r s t
n
Mod B r ( f i r s t n b i t s ) of t h e models of
bits)
Mod B = { O , l } b
f o r any two Boolean e x p r e s s i o n s t a u t o l o g y , an i n t e r p o l a n t var I
Here, as u s u a l ,
logies. In case
var B
n var
C
and
C
a
$
and
either i
B
g:
-
c- p,ll3
c
f o r every
{o,i)",
=(c
1
(resp.,
polynomial t i m e . strings
with regard whether tion
T u r i n g machine i n time
P=NP
one-one
. .. , g ( c n ) ,
A s usual,
P
we s h a l l b r i e f l y
s t a n d s f o r t h e c l a s s of sets
(that is,
f o r any
whether S E A * ,
NP if
say
of
whose c h a r a c t e r i s t i c f u n c t i o n
i n d e t e r m i n i s t i c polynomial t i m e ;
o r even,
bounded
(resp., nondeterministic)
t o n o n d e t e r m i n i s t i c polynomial t i m e .
(that is,
c
i s computable by a determi-
f
nondeterministic)
which are a c c e p t e d
i s computable)
(but otherwise arbi-
,...,CJEC*.
i s computable i n d e t e r m i n i s t i c
f
i s a tautology.
n a t u r a l l y i n d u c e s a one-one map:
g
by a polynomial i n t h e l e n g t h of t h e i n p u t , that
C
r ( c ) = c o n c a t e n a t i o n of g ( c l ) ,
with
I n s t e a d of s a y i n g t h a t nistic
((iB)V(C)).
mapping t h e symbols of
o n t o t h e s e t of t r i p l e t s of b i t s ;
r :C*
a
I such
a r e tauto-
I-C
or
Throughout t h i s p a p e r w e a l s o u s e a f i x e d function
is
B+C
(never occurring i n t h i s paper) Craig's
i n t e r p o l a t i o n theorem s t a t e s t h a t
trary)
) yields,
Boolean e x p r e s s i o n
B-I
a
Mod B f $.
(see [l]
such t h a t
is
B
i s an a b b r e v i a t i o n of
B-C =
and
B
that is
I,
var B f l var C,
=
by
i s t h e set
B.
is satisfiable iff
B
;
C r a i g ' s i n t e r p o l a t i o n theorem i n s e n t e n t i a l l o g i c
that
i s defined
w e a l s o set
n,
iff
Mod B
{ x € [ O p l ] b l x k B}.
I n model-theoretical of r e d u c t s
The set
"false".
with
0
the
with
1
NP
is the
same,
I t i s n o t known
i s c l o s e d under complementaSbNP
then
A*\
S€NP).
I n t h e f o l l o w i n g theorem t h e s e problems are r e l a t e d t o t h e d e g r e e of
D.MUNDICI
3 48
d i f f i c u l t y i n w r i t i n g down
Craig's interpolants i n sentential logic.
A t l e a s t one of t h e f o l l o w i n g s t a t e m e n t s h o l d s t r u e :
2 . Theorem.
(i)
P=NP;
(ii)
NP
i s n o t c l o s e d under complementation;
( i i i ) ( I n t r a c t a b i l i t y of s e n t e n t i a l i n t e r p o l a t i o n ) :
function
:
c*x c*-
c*,
$ is
if
computable i n d e t e r m i n i s t i c
polynomial t i m e , t h e n t h e r e i s a t a u t o l o g y and
var B A var C
for
B-C.
f
!if, such t h a t
f o r every
with
B-C
B,CEX*
i s n o t an i n t e r p o l a n t
$(B,C)
For t h e proof w e p r e p a r e t h e f o l l o w i n g lemma: 3.Lemma.
For
an a r b i t r a r y nonempty set t h e f o l l o w i n g
S C{O,I}*
are e q u i v a l e n t : (a)
SENP;
(b)
there e x i s t s a function
F:{l}*
-c*
d e t e r m i n i s t i c polynomial t i m e , such t h a t , have, f o r e a c h
Proof of Lemma 3 .
1x1 and
s
Fn;
and (b)
+
(a).
i s , on i n p u t
F~
and
Cook's
as f o l l o w s :
XE{O,I)*,
XI
=yl ,
(b)
.
Fnl ;
n
bits).
f i r s t compute
f i n a l l y guess a
We s h a l l o b t a i n t h e r e q u i r e d NP-complete
(see [2J ) .
,...,h)
lal,a2,...,a k )
Let
A =
and
ak=the b l a n k
v a r i a b l e s of 1
j Gk,
p
Fn
O,
symbol.
S
i n t h e l e n g t h of t h e i n p u t .
b e t h e set of s t a t e s of
T,
with
be t h e a l p h a b e t of Fix
are, f o r each
nB 1 t,i,j,q
t h e following:
We
Theorem 7 . 3 . 9 J .
be a n o n d e t e r m i n i s t i c T u r i n g machine a c c e p t i n g
bounded by a polynomial {O
by
F
well-known argument t o p r o v e t h a t t h e s a t i s f i a b i l i -
s h a l l c l o s e l y f o l l o w t h e n o t a t i o n and t e r m i n o l o g y of [5, T
n =
y E [O,l}r
...,xn=yn.
t y problem f o r Boolean e x p r e s s i o n s i s
So l e t
~ ( i ~w )e ,
=
A f a s t nondeterministic algorithm f o r
r = lvar
(a) modifying
= Mod F n r ( f i r s t
Sn{O,l)n
then let y != Fn
such t h a t
letting
n 2 1:
l v a r Fnlgn,
accepting
which i s computable i n
in t i m e
Let
h
the halting state.
T,
with
and l e t
a =1, a = O 1
m = p(n).
(OGtgm,
2 The
O,
349
NP and Craig's Interpolation Theorem
HEAD(t,i),
SYMB(t,i,j),
(1)
and
STATE(t,q),
respectively saying t h a t a t t i m e square
i,
Consider t h e
t,
a . i s p r i n t e d on t a p e J i , and T i s i n s t a t e q.
has t a p e p o s i t i o n
T
c o n j u n c t i o n of t h e f o l l o w i n g s e n t e n c e s , which uniformly
d e s c r i b e t h e b e h a v i o r of a t each t i m e
T
over any i n p u t of l e n g t h
t , each tape square
p r i n t e d on i t ,
n:
h a s p r e c i s e l y one symbol
i
i s scanning p r e c i s e l y one s q u a r e , and
T
T
i s i n p r e c i s e l y one s t a t e ; a t e a c h time
i
symbol on
if
t,
i s n o t over s q u a r e
T
t',
T
the
halts;
t h e computation s t a r t s i n s t a t e
o v e r t h e l e f t hand
0
end of
w i t h t h e t a p e o n l y c o n t a i n i n g b l a n k symbols ( w i t h
m
t h e p o s s i b l e e x c e p t i o n of t h e s q u a r e s initially
or
then
does n o t change;
a t some t i m e
the input,
i,
each t a p e square
m
through
through m+n-I
m+n-1);
has e i t h e r
1
p r i n t e d on i t ;
0
t h e changes i n t a p e symbols, head p o s i t i o n and s t a t e obey
T's
i n s t r u c tions.
w e assume t h a t t h e i n p u t i s p r i n t e d
N o t i c e t h a t , f o l l o w i n g c5],
rn
t h e tape squares and on
through
m, h, k
and t h e i n s t r u c t i o n s of
among t h o s e d i s p l a y e d i n l y w r i t t e n down i n
our
(A)
(F)
is
m+n-I.
I t i s well-known
can be w r i t t e n down as Boolean e x p r e s s i o n s
(F)
[5
t a k e c a r e of
(D)
and
t h a t (A),(B),(C) o n l y depending
are
and whose v a r i a b l e s
indeed, such expressions a ~ e x p l i c i t -
(1):
, p.236,237, e x p r e s s i o n s ( 1 ) - ( 5 ) , ( 7 ) , ( 8 ) , ( 9 ) ] :
corresponds t o ( 7 ) A (8)A (9)
T,
on
(1)A ( 2 ) A ( 3 ) , therein
.
( B ) i s (41, ( C )
i s (5).
and
The f o l l o w i n g Boolean e x p r e s s i o n s
(E):
m- 1
2m
STATE( 0 , O ) A HEAD(0.m) A ( i& SYMB( 0 , i ,k ) A (i=c+n SYMB(0, i ,k ) ) ;
(D)
mcn-I
i.A = m (sYMB(o,i,l)v S Y M B ( O , ~ , ~ ) ) .
Let
F,
=
(A)A
...A (F);
let
s = I v a r Fn I
-
I.
I t i s no
loss
of
D. MUNDICI
350
g e n e r a l i t y t o assume t h a t t h e first SYm(O,m,l), riable
Xr
x r t {O,l), F,;
...,SYMB(O,m+n-1,l)
of
n
r = 0,.
.. , s ,
are
Fn
i n t h e g i v e n o r d e r . Assume e a c h
i s assigned a b i t
F,
v a r i a b l e s of
va-
( i n t u i t i v e l y , a truth-value)
i n such a way t h a t
xo,
.. . , x
S
satisfies
i n symbols,
(2)
X
o'.
,x
*
t
Then i n t h e l i g h t of
we obtain a collection
(1)
" a t time
of t h e form
-
Fn
t ,
such and such s t a t e , and t a p e s q u a r e p r i n t e d on i t " ,
f o r each
of s t a t e m e n t s
h a s such and such p o s i t i o n , T i s i n
T
OGtLm
i
and
h a s such and such symbol OGiC2m
A
.
Now t h e d e f i n i -
Fn. t o g e t h e r w i t h ( 2 ) e n s u r e t h a t i s not a brute l e c t i o n OP i n c o h e r e n t s t a t e m e n t s , b u t r a t h e r d e s c r i b e s a l e g a l t i o n of
c e p t i n g computation of
m
tape squares
on some i n p u t
T
through
m+n-1
.
y E {O,lIn
colac-
p r i n t e d on t h e
To f i n d t h e symbol
y . originally J (j = 0 , . , n - l ) , observe t h a t i f x . = l p r i n t e d on t a p e s q u a r e m + j J t h e n SYMB(O,m+j,l) i s " t r u e " and, by ( 1 ) w e have t h a t y . = 1 .
..
J
x . = 0 , t h e n SYMB(O,m+j,l) J i s " t r u e " , s o t h a t by ( l ) ,
On t h e o t h e r hand, i f by ( E ) , that 0
SYMB(O,m+l,2)
a =1
1 ,... ,n-1,
and
a = 0).
Mod F~
Conversely ,i f
V
of
T
xo,.. /=
, xs
XO'...'xn-l'xn,... (3)
In definitive,
2
so t h a t
..
on i n p u t
E S
1
T.
xo
i n t i m e a t most
m,
s a f e l y assume t h a t t h e i n p u t i s p r i n t e d on t a p e s q u a r e s m+n-1, Using x
t h e whole t a p e (1)
,...,x n
S
having
Therefore, I n symbols,
t h e n t h e r e i s an a c c e p t i n g computation
... , xn-1
X0'
J
,...,xn- 1 E S. b i t s ) E s n { 0 . 1 ) ~.
n
*Xn-l
y. = x.
y . = 0 (recall J f o r each j =
i s a c c e p t e d by
implies
Fn
r (first
xo..
. ,xn-1
i s " f a l s e " and,
2m+l
many s q u a r e s ,
0.1.
and w e
m
can
through
...,2 m .
w e can unambiguously a s s i g n t r u t h v a l u e s t o all the
v a r i a b l e s of
of i n f o r m a t i o n c o n t a i n e d i n p u t a t i o n w e t h e n have, (4)
X0'.
Therefore,
xo,
.. ,xS
...,xn-1
v.
F
n ' Since t h e l a t t e r i s a
by d e f i n i t i o n of !=
E S
X O p . . . l X n-1 ' by j u s t coding t h e p i e c e s
legal
com-
Fn :
Fn
implies that there is
yo,
...,y s I=
Fn
35 1
NP and Craig's Interpolation Theorem
with
yo=xo,.
n
s
(5)
.. , Y , - ~ = X ~ - ~ . C _ Mod Fn
{O,ljn
Now ( 3 ) and ( 5 )
I n symbols,
r (first n
j o i n t l y y i e l d a f i r s t d e s i r e d c o n c l u s i o n about
(a) 3 (b)
To complete t h e proof t h a t
[5,
But t h i s i s well-known
( A ) A ( B ) A (C)A(F) ;
t o hold f o r
portional t o
p4(n),
t h e r e i n i s a t worst pro-
(1)-(9)
i s so simple.
and t h a t ( 1 ) - ( 9 )
The same
c l u s i o n h o l d s i n t h e p r e s e n t c a s e , w i t h t h e same argument. c l u d e s t h e proof t h a t
+ (b)
(a)
Assume s t a t e m e n t s
Mod I n
with
r
the
( i i i ) i n Theorem 2 a r e both
c*
I: {If*+
which i s computable
NP
(6)
s
=
I?
is satisfiable},
{ x ~ j o , ~ ) ~-'(XI l
map d e f i n e d i n s e c t i o n 1 . S i n c e t h e set of s a t i s f i a b l e Boolean e x p r e s s i o n s t h e n s o i s t h e set
( s e e r5, 7.3.51) =
In = I ( 1 " ) . w e
n21:
Proof of L e m m a 4. is in
T h i s con-
I
i n d e t e r m i n i s t i c polynomial t i m e , such t h a t , l e t t i n g have f o r each
con-
and completes t h e proof of lemma 3
( i i ) and
Then t h e r e i s a f u n c t i o n
false.
see
i s claimed t o h o l d ,
m8
where an upper bound of t h e form
p.2381
a f t e r o b s e r v i n g t h a t t h e l e n g t h of
4.Lemma.
F.
w e must show t h a t t h e map
d e s c r i b e d above i s computable i n d e t e r m i n i s t i c polynomial
I n I----, Fn
time.
bits).
r
{ x € {O,l]*]
S
g i v e n by
is satisfiable].
-'(x)
T h i s c l e a r l y f o l l o w s from t h e d e f i n i t i o n of
-S =
assumed t o be f a l s e , t h e n t h e set
r
.
Since
is in
S
{O,l{*\
(ii) i s
NP, t o o .
Withcut l o s s of g e n e r a l i t y t h e r e are n o n d e t e r m i n i s t i c T u r i n g machines T
T'
and
-
accepts
S
and a polynomial
p
i n t i m e bounded by
exist functions
H':
H,
such t h a t p.
~I}*-b~*
(7)
s
n 1o.1)~
s n {o.i)."
accepts
n
Hn = H ( 1 ) ,
n21:
~~r
=
Mod
=
Mod H,:
=+
and
S
TI
(b)) t h e r e
which are computable i n d e t e r -
m i n i s t i c polynomial t i m e such t h a t , l e t t i n g
w e have f o r each
T
B y Lemma 3 ( ( a )
(first
n
bits),
I (first
n
bits).
and
HI
n
= H'(ln),
D. MUNDICI
352
Since
and
T
b o t h a c t i n time bounded by
T'
t i o n of t h e proof of
p , by an e a s y i n s p e c -
w e can s a f e l y s t i p u l a t e t h a t , i n
Lemma 3
ad-
dition, =
v a r H r\ v a r HA
(8)
n
[SYMB(O,m,l)
,...,SYMB(O,m+n-1,l))
w e j u s t u s e t h e same symbols f o r t h e f i r s t
HA,
t h e n rename t h e o t h e r v a r i a b l e s of
condition
is satisfied.
(8)
Hn
n
v a r i a b l e s of
w e have t h a t
xO , . . . , ~ n - l E S
and
so that
Consider now t h e Boolean e x p r e s s i o n
..., xn - l , x n ,...,x
xo,
Hn
( i f necessary)
i f t h e l a t t e r c o n j u n c t i o n were s a t i s f i a b l e
H n h HA:
t h e s i s ) , say
;
n5
(absurdum hypo-
HnA HA , t h e n by ( 7 )
satisfies
, which i s i m p o s s i b l e .
Therefore
we get: (9)
Hn-iHv
i s a tautology, f o r each
n
S i n c e w e a r e assuming t h a t
(iii) i s f a l s e , l e t
that is,
( i i i ) i n Theorem 2 :
example t o
n& 1.
$
$
be a c o u n t e r -
i s computable i n
t e r m i n i s t i c polynomial t i m e , and misses no i n t e r p o l a n t s .
,
= $(Hn
1HA);
then
So l e t
deIn
has t h e following properties:
In
(10)
H n I In
and
(11)
v a r In
{SYMB(O,~,I)
(12)
t h e mapping
In-
a r e t a u t o 1o g i e s ;
i H A
,...,S Y M B ( O , ~ + ~ - ~ , ~ ) ;) .
=
i s computable i n d e t e r m i n i s t i c
In
In
polynomial t i m e . Clause
(12)
i s a consequence of our assumptions about
w i t h t h e f a c t t h a t t h e maps
n
+ Hn
and
computable i n determin s t i c polynomial t i m e . in (13)
( 1 0 ) . and from Mod H~
Hence, by (14)
and
(8
r (first
n
(11)
bits)
C_
w e have Mod I
n
.
Mod In.
S i m i l a r l y , from t h e second t a u t o l o g y i n
(15)
a r e both
From t h e f i r s t t a u t o l o g y
(7) we get
S n{O,lJnC
and from
n w HA
together
(8),(11),(7)
s n {O,l)n
C_
we obtain
ModlIn
.
( l o ) , w r i t t e n as
HI
n
-
71
n'
NP and Craig's Interpolation Theorem From
(14)
and
(15), recalling
(16)
Mod I n = S n j 0 , l ) "
353
we get
(6)
is satisfiable
{ X € { O , I } ~ ~r - ' ( x )
=
w h i c h c o m p l e t e s t h e p r o o f o f our L e m m a .
5 . End of t h e p r o o f of Theorem 2. W e s h a l l prove t h a t if
(iii)
I:{l)**C*
To t h i s p u r p o s e , l e t
M
and
a r e b o t h f a l s e , t h e n P=NP.
(ii)
b e as g i v e n by L e m m a 4 , and l e t
b e a d e t e r m i n i s t i c T u r i n g machine computing e a c h
bounded by a p o l y n o m i a l
q
i n the length
B E E *a,s compute
(D2)
w r i t e down
n =
(D3)
using
w r i t e down
(D4)
check whether
cess
M
Ir(B)l r(B)
3lBI;
=
In; In.
c a n b e c a r r i e d o u t i n d e t e r m i n i s t i c p o l y n o m i a l time
(D4)
q ( n ) , and
r(B)
i n t h e l e n g t h OP
L e t now
B.
\In(
i s bound-
b i t s . The a b o v e p r o -
B
i n t i m e bounded by a p o l y n o m i a l
Therefore we conclude t h a t , under our assumptions,
T h i s c o m p l e t e l y provets
TAUTSZ*
t a u t o l og i e s
n
provides t h e required d e c i s i o n procedure f o r s a t i s -
(Dl)-(D4)
holds.
ensure t h a t
M
i s a sequence of
f i a b i l i t y of any Boolean e x p r e s s i o n
P=NP
on
r(B);
as c l a i m e d , s i n c e t h e p r o p e r t i e s o f e d by
of t h e i n p u t .
follows:
(Dl)
Notice t h a t
i n time
for satisfiability is,
A fast(deterministic)decision p r o c e d u r e
input
n
In
t h e Theorem.
d e n o t e t h e set o f B o o l e a n e x p r e s s i o n s w h i c h
are
. A t l e a s t o n e of t h e f o l l o w i n g s t a t e m e n t s h o l d s t r u e :
6.Corollary. (I)
TAUT
i s accepted i n d e t e r m i n i s t i c polynomial time;
(11)
TAUT
i s n o t accepted i n n o n d e t e r m i n i s t i c polynomial time;
(111)
same a s s t a t e m e n t
P r o o f . I t i s well-known
(iii) that
i n Theorem
TAUT
is i n
2.
P
iff
P=NP
(see [2]).
S i m i l a r l y , TAUT i s i n NP i f f NP i s c l o s e d u n d e r c o m p l e m e n t a t i o n (see, e.g.,
[3.
1.11
).
Now a p p l y Theorem
2.
D.MUNDICI
354
The above C o r o l l a r y i s s t a b l e under r e l a x a t i o n of t h e upper bounds for
computations, a s w e s h a l l
( d e t e r m i n i s t i c and n o n d e t e r m i n i s t i c )
7
s e e i n Theorem functions
below.
f : PI-
.A
El
%
A s usual,
3
set
C
N
5
all
i s c l o s e d under composition
N
5
i f f t h e composition of any two f u n c t i o n s i n in
t h e set of
denotes
i s still a function
c l o s u r e under sum i s s i m i l a r l y d e f i n e d .
;
7. Theorem.
9C%
Let
be an a r b i t r a r y set c o n t a i n i n g t h e polynoThen a t l e a s t one
m i a l s and c l o s e d under composition and sum.
3
( p e r h a p s depending on
)
of t h e f o l l o w i n g s t a t e m e n t s h o l d s t r u e :
TAUT i s a c c e p t e d by some d e t e r m i n i s t i c T u r i n g machine i n t i m e
(Ig)
3
bounded by a f u n c t i o n of (113)
( i n t h e l e n g t h of t h e i n p u t ) ;
i s n o t a c c e p t e d by any n o n d e t e r m i n i s t i c T u r i n g machine
TAUT
- c*
i n t i m e bounded by a f u n c t i o n of For every
(1113)
p
:c * X
c*
3.
;
,
4,
if
a
i s computable by
,
d e t e r m i n i s t i c T u r i n g machine i n time bounded by a f u n c t i o n of then t h e r e i s a tautology such t h a t
C , with
B--,
-
n var
var B
B,CEC*,
i s n o t an i n t e r p o l a n t f o r
H(B.C)
B
f @,
C
C.
For t h e proof w e modify L e m m a s 3 and 4 as f o l l o w s :
8. Lemma.
@
Assume
f
Then t h e r e e x i s t s
F:
i s accepted by a
non-
i n t i m e bounded by a f u n c t i o n
f e z
S E{0,1}*,
d e t e r m i n i s t i c T u r i n g machine (1)"-
T
and
z*
S
by a d e t e r -
which i s computable
3 ,
m i n i s t i c T u r i n g machine i n t i m e bounded by a f u n c t i o n of letting lvar Proof.
w e have f o r each
Fn = F ( I n )
F
~
n, I
and ~
s
n {o,i)"
=
Write down
Fn
T
i s now g i v e n by
and n o t e t h a t
of t h e p r e s e n t Lemma.
Fn
f
such t h a t
n>l: Mod
~~r
Argue e x a c t l y as i n t h e proof of Lemma 3
upper bound f o r
.
(first
n
bits).
( ( a ) =3 ( b ) ) ;
( i n s t e a d of
p
the
therein).
s a t i s f i e s t h e second r e q u i r e m e n t
T o see t h a t t h e mapping
n W F n
i s computable
by a d e t e r m i n i s t i c T u r i n g machine i n t i m e bounded by a f u n c t i o n of by analogy w i t h t h e f i n a l o b s e r v a t i o n i n t h e proof of Lemma 3,
'5 ,
first
note that lFnl i s a t most p r o p o r t i o n a l t o m4 , t h a t i s , p r o p o r t i o n a l 4 can be w r i t t e n down i n time n o t much g r e a t e r t o f ( n ) . Again, than
IFn)
,
F,
say f o r definiteness lFn12
.
But t h e f u n c t i o n
f8(n)
355
NP and Craig's Interpolation Theorem
2 !FA2 still is in 9.Lemma.
(119) and
).
r
{0,1)
€
*\ z
Z
be defined by
c*\TAUT
. 3Clearly,
1°C
=
p ( x ) is
{O,l>*I
r
,
is accept-
2
in time bounded by
Y
is in
.
w
we can safely assume
c*
HI : {I}*-
w'.
=
By Lemma 8
3
)
zn{o,I)n
=
Mod
zn(O,l}n
=
Mod
in
Hl;r
Since
(1113)
sum,
deterministic Turing
such a way
5
(using the
that
(first n
bits),
(first n
bits).
and
-
Arguing now as in the proof of Lemma 4 one shows that is a tautology.
W' in
there are functions
which are computable by
3
-
Z=
is closed under
machines in time bounded by the same function U E closure properties of
a
NP, hence the set
is accepted by a nondeterministic Turing machine
time bounded by a function ~ ' € 3 Since
H,
such that letting
is a tauto~ogy).
By assumption, and by definition of
ed by a nondeterministic Turing machine €unction ~
3 ,
n21
(x E {O,l}n
z c_ {o,I)*
Let
a taut 01ogy
a
which is computable by a deterministic
we have for each Mod In =
Proof.
(1119) are both false. Then there is
machine in time bounded by a function of
In = I(ln)
.
3
by the assumed closure properties of
- x*
Assume
function I: {I}* Turing
3,
Hn is assumed to be false, let
- I Hn '
$
be
computable by a deterministic Turing machine in time bounded by some function
bE
4
tautology, $(Hn
3
, 1 HA);
, with the property that whenever B -C is a (B,c) is an interpolant for B + C. Let In
the mapping
n !-+
In
Turing machine in time bounded by some function d € g tained as a suitable composition of the functions u,b some polynomial).
The mappingnI,n
(d
can be ob-
together with
is now proved to satisfy all
our requirements by the same argument as in the end of the proof Lemma
4.
This completes the proof o€ Lemma
3
Turing machine
accepting
Thus Theorem 7
is proved.
of
9.
Arguing now as in section 5 , using Lemmas 8 and 9 closure properties of
=
is computable by a deterministic
and the
, one easily produces a deterministic TAUT
in time bounded by a function of
5.
D. MUNDICI
356
10.
F u r t h e r Topics.
I n t h i s f i n a l s e c t i o n w e survey
what i s known on t h e complexity
of
e s h a l l s t a t e a number of r e s u l t s C r a i g ' s i n t e r p o l a t i o n theorem. W c o n c e r n i n g t h e r a t e of growth of i n t e r p o l a n t s , b o t h i n s e n t e n t i a l Boolean e x p r e s s i o n s for s e n t e n t i a l l o g i c
and i n f i r s t - o r d e r l o g i c .
are p a r t i c u l a r words over a l p h a b e t
c
as d e f i n e d i n s e c t i o n 1 .
Sentences of f i r s t - o r d e r l o g i c are u n d e r s t o o d as p a r t i c u l a r over some s u i t a b l e a l p h a b e t ).
( s ee [I]
rules
c' ,
words
according t o t h e f a m i l i a r formation
I n s e n t e n t i a l l o g i c t h e precise determination
of t h e r a t e of growth
of i n t e r p o l a n t s i s an open
(and i m p o r t a n t )
The Pollowing Theorem s t a t e s t h a t if s e n t e n t i a l i n t e r p o l a n t s
problem.
t u r n out t o grow polynomially, i n d e t e r m i n i s t i c polynomial
t h e n e v e r y f u n c t i o n which i s computable
(Turing) t i m e ,
has c i r c u i t depth
p o r t i o n a l t o t h e l o g a r i t h m of t h e i n p u t l e n g t h .
pro-
T h i s would p r o v i d e
a p o s i t i v e s o l u t i o n t o a c e n t r a l open problem of computation t h e o r y (see [I I] )
.
Assume t h e r e e x i s t s a polynomial
10.1 Theorem. whenever
an i n t e r p o l a n t
with
I
111
t h e r e s t r i c t i o n of
f
d e p t h Fn See [6
Recall function
,
< p ( 1BI +
F1 , F 2 ,
to
,
2.3.23)
f : {O,l}n-
I
tO.1)
,
Then f o r e v e r y f u n c t i o n
c i r c u i t s , with
d e l a y complexity of
computing
n
c>O,
.
n = 1,2,...
. that the delay
complexity
of a Boolean
i s t h e d e p t h oP t h e smallest d e p t h
(over our f i x e d b a s i s
Boolean e x p r e s s i o n
F
such t h a t , f o r some
f o r each
)
{A, V
. As u s u a l ,
any
i s r e g a r d e d as a Boolean f u n c t i o n o v e r i t s own
B
variables, via the identification
propagate t o
ICl).
... of
[O,lJn,
< c - l o g2 n
Theorem 2 . g
(from b 0
circuit for
such t h a t
which i s computable i n d e t e r m i n i s t i c polynomial
(0'1)
t i m e t h e r e i s a sequence
ProoP.
p
i s a t a u t o l o g y i n s e n t e n t i a l l o g i c , one can f i n d
B-C
f : {O,l]*-
for t h e n e c e s s a r y background:
See f l 0 , 2.21
B
1 = 'ltrue'l
i s , roughly,
and
0 = "false"; the
t h e t i m e needed f o r i n p u t s t o
t h e o u t p u t , i n t h e Pastest c i r c u i t computing
B.
The
f o l l o w i n g Theorem t h e n s t a t e s t h a t t h e t i m e needed by t h e f a s t e s t
NP and Craig's Interpolation Theorem
c i r c u i t t o compute terpolant
( t h e Boolean f u n c t i o n c o r r e s p o n d i n g t o ) any
needed t o compute e i t h e r of 10.2 Theorem. d<620) and I
C
or
B
C:
F o r i n f i n i t e l y many
t h e r e i s a tautology
d€N
(and s t a r t i n g w i t h
some
i n s e n t e n t i a l l o g i c , with
B+C
B
having t h e i r d e l a y complexity S d , such t h a t e v e r y i n t e r p o l a n t
h a s a d e l a y complexity
Proof.
in-
B - + C may happen t o be g r e a t e r t h a n t h e time
for
I
351
17,
See
d
I
>d +
(1/3)log2(d/2).
Theorem 2.51
As remarked above, i n s e n t e n i a l l o g i c t h e r e i s a t p r e s e n t no deEini-
t i v e e s t i m a t e oP t h e r a t e oP growth of ICl
, where
Theorem
a s a f u n c t i o n of IBI and
111
i s a smallest l e n g t h i n t e r p o l a n t € o r
I
(See [6,
B-C.
1.93 f o r an upper bound, and t r y t o improve i t ) .
By c o n t r a s t
i n f i r s t - o r d e r l o g i c w e have: 10.3 Theorem. ( i ) In t h e arithmetical hierarchy t h e r e i s a
TI1 - f u n c t i o n
g i v i n g an upper bound f o r t h e l e n g t h oP P i r s t - o r d e r (*)
whenever
B+C
interpolant ( i i ) No
c
1
I
-function
with
B+C
as i n
(*)
[ 6 , Theorem 3.13
Theorem
b
ICl). can g i v e an
.
Proof.
,
b(lBI+
111
( i . e . , no r e c u r s i v e f u n c t i o n )
111
[4
i n t e r p o l a n t s , i.e..
i s v a l i d i n f i r s t - o r d e r l o g i c , t h e r e i s an for
upper bound f o r ( i ) See
b: N+pl
.
(11)
T h i s c a n be e x t r a c t e d from
11.
Due t o i t s a s y m p t o t i c c h a r a c t e r , t h e above Theorem
10.3 ( i i ) g i v e s
no i n f o r m a t i o n on t h e p o s s i b l e l e n g t h s of i n t e r p o l a n t s € o r s h o r t plications.
The 'following i s a non-asymptotic r e s u l t :
We c a n w r i t e down a v a l i d i m p l i c a t i o n i n f i r s t - o r d e r
10.4 Theorem.
logic,
with
B---+C
l B ( .lC(<1145
pol a n t w e have : .*2
III> 2'
Proof.
See
im-
&,
Theorem 3 . 4 .
1
such t h a t whenever
seven t w o ' s
.
I
i s an i n t e r -
D.MUNDICI
358
References Chang C . C . and Keisler H . J . , Model Theory (North-Holland, Amsterdam, second e d i t i o n 1 9 7 7 ) . Cook S . A . , The complexity of theorem p r o v i n g p r o c e d u r e s , I n : P r o c e e d i n g s of t h e T h i r d Annual ACM Symp. on t h e Theory of Computing, Yay 1 9 7 1 , pp.151-158. Cook S . A . and Reckhow R.A., The r e l a t i v e e f f i c i e n c y of p r o p o s i t i o n a l proof s y s t e m s , J o u r n a l of Symb.Logic 44 ( 1 9 7 9 ) 36-50. Friedman H., The complexity of e x p l i c i t d e f i n i t i o n s , Advances i n Mathematics 2 0 ( 1 9 7 6 ) 18-29. Machtey M. and Young P . . An I n t r o d u c t i o n t o t h e General Theory of Algorithms (North-Holland, Amsterdam, t h i r d p r i n t i n g 1 9 7 9 ) . Mundici D . , Complexity of C r a i g ' s i n t e r p o l a t i o n , Annales SoC. Math.Pol., Series I V : Fundamenta I n f o r m a t i c a e V.3-4 (1982) 261- 278. Mundici D . , A lower bound f o r t h e complexity of C r a i g ' s i n t e r p o l a n t s i n s e n t e n t i a l l o g i c , Archiv math.Logik ( 1 9 8 3 ) t o appear. Yundici D . , D u a l i t y between l o g i c s and e q u i v a l e n c e r e l a t i o n s , T r a n s a c t i o n s A m e r Math SOC 27 0 ( 1 98 2) 1 1 1 -1 29.
.
. .
Mundici D . , Compactness, i n t e r p o l a t i o n and F r i e d m a n ' s t h i r d problem, Annals of Mathematical Logic 22 ( 1 982) 197-21 1
.
Savage J.E.,
The Complexity of Computing (Wiley, New Y o r k 1 9 7 6 ) .
Schnorr C.P., The network complexity and t h e T u r i n g machine complexity of f i n i t e f u n c t i o n s , Acta I n f o r m a t i c a 7 (1976) 95-107.