Isotopes in Palaeoenvironmental Research
Developments in Paleoenvironmental Research VOLUME 10
Isotopes in Palaeoenvironmental Research Edited by
Melanie J. Leng NERC Isotope Geosciences Laboratory, British Geological Survey, Keyworth, Nottingham, UK and School of Geography, University of Nottingham, Nottingham, UK
A C.I.P. Catalogue record for this book is available from the Library of Congress.
ISBN-10 ISBN-13 ISBN-10 ISBN-13
1-4020-2503-3 (HB) 978-1-4020-2503-7 (HB) 1-4020-2504-1 (e-book) 978-1-4020-2504-4 (e-book)
Published by Springer, P.O. Box 17, 3300 AA Dordrecht, The Netherlands. www.springeronline.com
Printed on acid-free paper
All Rights Reserved © 2006 Springer No part of this work may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission from the Publisher, with the exception of any material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Printed in the Netherlands.
TABLE OF CONTENTS
Preface and Acknowledgements
vii
List of Contributors
xiii
Editors and Board of Advisors of Developments in Paleoenvironmental Research Book Series xv Published and Forthcoming Titles in the Developments in Paleoenvironmental Research Book Series xvii
1. Isotopes in Water W. George Darling, Adrian. H Bath, John J. Gibson, Kazimierz Rozanski Introduction Oxygen and hydrogen stable isotopes in precipitation From precipitation to terrestrial water Lake waters and mass balance modelling Dissolved carbon From proxy to climate – constraints on interpretation Summary References 2. Isotopes in tree rings Danny McCarroll, Neil J. Loader Introduction Tree ring archives Isotopic fractionation in trees Sample selection and preparation Mass spectrometry Data analysis Environmental signals Multi-proxy dendroclimatology Summary References
1 1 4 17 27 36 49 51 52 67 67 67 69 72 83 93 101 104 105 106
3. Isotopes in bones and teeth Robert E.M. Hedges, Rhiannon E. Stevens, Paul L. Koch Introduction Isotope incorporation into bone Relationship of bone isotope composition to an animal's diet Preservation of the isotope signal in bone and tooth Environmental influences on isotope transport through food chains v
117 117 118 119 122 123
vi
TABLE OF CONTENTS
Application of isotope techniques to bone and teeth Summary References
127 138 138
4. Isotopes in lake sediments Melanie J. Leng, Angela L. Lamb, Timothy H.E. Heaton, James D. Marshall, Brent B. Wolfe, Matthew D. Jones, Jonathan A. Holmes, Carol Arrowsmith Introduction Oxygen isotope systematics in inorganic materials Carbon, isotopes in lacustrine organic matter Nitrogen isotopes in lacustrine organic matter Oxygen and hydrogen isotopes in lacustrine organic matter Summary References
147
148 150 166 169 173 175 176
5. Isotopes in speleothems Frank McDermott, Henry Schwarcz, Peter J. Rowe Introduction Oxygen isotopes in speleothems Carbon isotopes in speleothems Fluid inclusions in speleothems: methodologies and some recent results Summary References
185
6. Isotopes in marine sediments Mark A. Maslin, George E. A. Swann Introduction Oxygen isotopes in marine sediments Carbon isotopes in marine sediments Nitrogen isotopes in marine sediments Silicon isotopes in marine sediments Boron isotopes in marine sediments Summary References
227 227 231 245 259 264 268 272 273
Glossary, acronyms, abbreviations
291
Index
303
185 189 202 206 215 218
PREFACE This volume is intended to show how stable isotopes can be applied to understanding the palaeoenvironment. There are chapters on the interpretation of isotopes in water, tree rings, bones and teeth, lake sediments, speleothems and marine sediments. Crucial to the understanding of the environmental signal contained within the isotope composition of different materials is to gain more information about how rainfall isotope compositions are determined by climate. Chapter 1 (Darling et al.) describes O, H and C stable isotope compositions in the modern day water and aqueous carbon cycles to provide a framework for the interpretation of these isotopes in the past. The chapter on the water cycle divides naturally into a number of sections. The starting point, precipitation, is especially important because it is the precursor to which most O and H isotope proxy studies are attempting to relate. While much is understood about the isotope systematics of precipitation, largely owing to the existence of the IAEA– WMO Global Network for Isotopes in Precipitation (GNIP), important questions remain to be answered in relation to the isotope-temperature gradients of past climatic conditions. The chapter describes the three reservoirs of water sustaining all terrestrial proxies; soil and vadose zone moisture, groundwater, and surface waters. In each reservoir isotope effects intervene to modify to a greater or lesser extent the isotope signature of antecedent precipitation; groundwaters are least affected and surface waters the most. Since lake sediments are an important archive of the palaeoenvironment, the continuing development of isotope mass-balance modelling techniques is playing a role of considerable importance in interpreting isotope records from lake sediments (see also Leng et al., Chapter 4). The carbon cycle is far more complex than the water cycle, and is mentioned in various guises in all the other chapters. However, carbon is still of use, especially where the various carbon sources can be constrained and can be linked to the overall geochemical conceptual model. Trees provide a good archive of recent and earlier Holocene climate and environmental change (McCarroll and Loader, Chapter 2). Trees have the advantage of being widespread and can produce a near continuous archive of environmental information. The water isotopes provide two separate signals; the isotope composition of the source water and evaporation from leaves. The former is only a proxy for the isotope composition of precipitation if the trees are accessing relatively young and unmixed water. In other trees evaporative enrichment may be the predominant signal in the tree rings and this is controlled largely by air humidity. Carbon isotopes can complement the water data, notably in dry environments, where the main signals are air humidity and soil moisture content, and in moist environments where photosynthetic rate dominates and the signals are summer temperature and solar radiation. Perhaps one of the most significant advances in tree ring research is the development of on-line techniques which allow the analyses of increased numbers of tree rings, and these are reviewed. The ability to analyse smaller samples enables individual trees to provide data, while combining the results from several trees allows the quantification of variability, at different temporal frequencies, and thus allows statistically defined confidence limits to be placed around mean values. This way temporal frequencies, including the low-frequency, long-term changes that are so difficult to capture using more traditional methods, are able to be investigated.
vii
viii
PREFACE
The third chapter deals with the isotope composition of bone and teeth (Hedges et al.) which are dominated by biological and ecological controls. This is even true for such isotopes as strontium that are adventitiously taken up according to local geology, and so potentially record animal movements within their ecological setting. However, there is a need to understand the biological features in the subject of study (such as food web structure) in order to get back to environmental information which cannot be done using isotopes alone. One of the problems with using bones as an environmental archive is the sporadic and acontextual deposition of bone, rarely enabling its data to be directly integrated with complementary data from the same site, apart from on a general scale. However, bone and teeth contain many different isotope signals which can be very sensitive - the non-linear change in C3/C4 plant abundance (and therefore with į13C in the bone collagen of herbivorous grazers) with local climate for example. Overall this chapter provides the background to understanding how isotope changes in bone and teeth are caused, and shown how these changes may be understood, though not always, in terms of environmental effects. Chapter 4 on lakes (Leng et al.) demonstrates that the oxygen, carbon, nitrogen and hydrogen isotope composition of lacustrine sedimentary materials can yield a wide range of useful palaeoclimate information, although a full interpretation of isotope data from lake sediments requires a detailed knowledge of the processes that control and modify the signal. For example, Chapter 1 describes the various factors that can change the isotope composition of precipitation, which is an important consideration in palaeolimnology. Processes that can affect the isotope composition of lacustrine sedimentary materials must be largely determined for an individual lake system, although typical responses are often assumed. Oxygen isotopes are the main isotopes used in palaeolimnology and can be obtained from a large range of inorganic and organic materials. However, even within the most established materials the interpretation is not easy. For example, a change in temperature will produce a shift in the equilibrium oxygen isotope composition of carbonate forming in lake water, but will also affect the isotope composition of the rainfall and rates of evaporation. Recent research has shown that this might be resolved by the analysis of the oxygen isotope composition of lacustrine organic materials, for example aquatic cellulose, which is thought to have G18O values that are independent of water temperature. Other palaeoenvironmental information can be achieved from organic materials in lakes (Chapter 4) from their carbon and nitrogen ratios, although they will also contain information on productivity and changes in nutrient supply. Chapter 5 describes the stable isotope composition of speleothems (McDermott et al.). Despite the generally acknowledged lack of precise isotope equilibrium between cave drip-waters and their carbonate precipitates, speleothems are usually deposited sufficiently close to isotope equilibrium to retain useful information about climatedriven changes in the isotope composition of meteoric water that falls on a cave site. As with all archives the quantitative interpretation of stable isotope shifts in speleothems is seldom straightforward, and a detailed knowledge of the meteorological variables that control these archives in the modern cave system is essential to provide a sound interpretation of past climates (see Chapter 1). Where possible, present-day monitoring studies of cave drip waters are essential to understand fully the site-specific relationships between speleothem G18O and meteorological variables at the surface.
PREFACE
ix
Temporal changes in speleothem G13C can offer considerable potential to reconstruct climate-driven changes in both the nature of vegetation (e.g., C3 vs. C4 type) and the intensity of vegetation above a cave site. One particular requirement in speleothem research is that carbon isotope data should be accompanied, where possible, by appropriate elemental data (e.g., Ca/Mg ratios) in order to evaluate other possible causes for temporal changes in G13C. For example, strongly correlated carbon isotope and Mg/Ca ratios may point to a role for partial degassing of cave drip-waters and calcite precipitation in the hydrological flow-path above the cave (so-called 'prior calcite precipitation') that could produce elevated G13C values unrelated to changes in vegetation type or intensity. One of the distinct advantages of using speleothems, is the ability to use U-series dating. The possibility of using well-dated speleothems records to refine the chronology for the high-latitude ice core records is particularly exciting. In the future it seems likely that data from speleothem fluid inclusions will provide a more robust basis for palaeoclimate interpretations, in particular enabling the relative effects of air temperature and atmospheric circulation changes to be unravelled. Measurement of oxygen and carbon isotopes in foraminifera have been central to the development and establishment of stable isotopes as one of the most important sets of proxies within palaeoceanography. In Chapter 6, Maslin and Swann, demonstrate how oxygen isotopes records can provide a stratigraphy while enabling the reconstruction of such things as: past global ice volume, ocean temperatures, relative sea level, ocean circulation and structure, surface water salinity, iceberg melting, river discharge, and monsoonal intensity. Carbon isotope records from both carbonate and organic matter found within marine sediments can provide information on the past carbon cycle on a range of time-scales, enabling an insight into past marine productivity, ocean circulation, past surface water, atmospheric CO2, storage and exchange of carbon on both the local and global scale. However, the interpretation of carbon isotope records is complicated by different sources of carbon entering the marine environment with an additional number of influences affecting the isotope values of each source. Recent years have witnessed the development of a variety of other isotope proxies, in particular į15N and į11B. While these are still not measured routinely, great steps forward have been achieved in our understanding of them, although significant difficulties remain in ensuring robust and accurate interpretations from the generated data. There is potential for both isotopes, however, to provide a more significant insight into past oceanic conditions and palaeo-pCO2 levels. As such, their use are likely to expand over the next decade as a greater understanding of the marine nitrogen cycle, controls on į15N and the errors associated with į11B based pCO2 reconstructions are achieved. Outside foraminiferal isotope based studies, there is great scope to generate isotope data from other biological sources. A current major limitation with foraminifera studies is the void of data from regions depleted in CaCO3 preservation, particularly in the Southern Ocean and other high latitude regions. Future development and use of į18O(diatom) and į30Si(diatom) alongside į13C and į15N analysis of intrinsic organic matter within diatom frustules will ultimately open the gateway for the extension of detailed, isotope based, palaeoceanographic reconstructions to more of the world's oceans. In summary, all the chapters presented here have several similar messages. Isotopes can be extremely powerful palaeoenvironmental tools. However, as with all archives, it is always desirable to carry out a calibration exercise to investigate the basic systematics
x
PREFACE
of isotope variation in the modern environment to establish the relationship between the measured signal and the isotope composition of the host. A robust calibration is seldom easy as the materials may not occur in the contemporary environment and the site may be in an isolated geographical region, making a rigorous contemporary study impossible. Where such a calibration is not possible assumptions have to be made, but these should be based on evidence from a multi-proxy approach using isotope signals from different materials or combined with other palaeoenvironmental techniques. Acknowledgements Many people have helped with the planning, and production of this volume. Bill Last and John Smol (DPER series editors), Judith Terpos and Gert-Jan Geraeds (Springer) have provided technical assistance as well as advice and encouragement. Each chapter benefited from two external referees (many of whom remain anonymous), the help of all those who generously gave their time is most gratefully acknowledged by all the authors. Finally, thanks are due to colleagues at the NERC Isotope Geosciences Laboratory, especially Carol Arrowsmith, Angela Lamb and Joanne Green for administrative and organisational efforts. The chapter authors have contributed to this book because of their enthusiasm and belief in the usefulness of isotope techniques. We hope that it may encourage young scientists to enter the field and that isotopes will be a valuable source of evidence for those who in the future continue to address questions in palaeoenvironmental research. Many of the authors wish to express personal thanks, in particular Danny McCarroll and Neil Loader thank Margaret Barbour, David Beerling, Keith Briffa, Tony Carter, Mary Gagen, Mike Hall, Gerd Helle, Debbie Hemming, Risto Jalkanen, Andreas Kirchhefer, Frank Pawellek, Iain Robertson, Roy Switsur and John Waterhouse for their assistance and many stimulating discussions. In addition their friends in FOREST, PINE and ISONET for help and support. Isotope dendroclimatology in Swansea has been supported though grants from NERC, the Royal Society, The Leverhulme Trust, and the European Union. Frank McDermott acknowledges the help of numerous colleagues at the Open University (Mabs Gilmour, Peter van Calsteren), Bristol University (Chris Hawkesworth, Dave Richards and Siobhan McGarry), Birmingham University (Ian Fairchild and Andy Baker) and at UCD (James and Lisa Baldini). Financial support from Enterprise Ireland and Science Foundation Ireland is also acknowledged. Henry Schwarcz acknowledges the long and continued collaboration and co-operation of his past and present students and colleagues: Chas Yonge, Jim O’Neil, Russ Harmon, Peter Thompson, Mel Gascoyne, Tim Atkinson, Peter Rowe and, lately, Ren Zhang and Trish Beddows. Above all, he thanks his friend and colleague Derek Ford for many years of collaboration and encouragement in these studies. Martin Knyf has given invaluable assistance in all aspects of these analyses. Peter Rowe acknowledges the help and stimulating support of Tim Atkinson and Paul Dennis, and countless fruitful discussions with many members of the speleothem and stable isotope communities. The authors are grateful for constructive reviews by Mira Bar-Matthews and an anonymous reviewer. Informal reviews by Ian Fairchild and Lisa Baldini greatly improved the chapter. The marine isotope chapter was supported by a NERC PhD CASE studentship award to GEAS and NERC grants to MAM. The authors would like to thank Eelco Rohling
PREFACE
xi
and two anonymous reviewers for their critical insights, constructive comments and help in improving the quality of the manuscript. Additional thanks are given to the Drawing office, Department of Geography, University College London for assistance in the preparation of the figures. The following people generously provided images for the front cover: M. Jones (lake sediment), G. Swann (diatom), P. Langdon (chironomid), P. Shand (straw), N. Loader (tree ring), J. Evans (skull), P. Witney (rain drop), J. Pike and A.E.S. Kemp (marine sediment) and D. Genty (speleothem). Notation and standardisation To prevent repetition regarding notation and standardisation, a short summary is given here. However, fuller descriptions can be found in Bowen (1988), Coleman and Fry (1991), Clarke and Fritz (1997), Hoefs (1997), Criss (1999) and de Groot (2004). Isotope ratios (e.g., 18O/16O, 13C/12C) are expressed in terms of delta values (G), because the isotope ratios are more easily measured as relative differences, rather than absolute values. We refer to the delta value (G) and this is measured in units of per mille (‰). The G value is defined as: G = (Rsample/Rstandard) – 1. 103 Where R = the measured ratio of the sample and standard respectively. Since a sample’s ratio may be either higher or lower than that of the standard, G values can be positive or negative. The G value is dimensionless, so where comparisons are made between samples (e.g., where GA
References Bowen G.J. and Wilkinson B. 2002. Spatial distribution of G18O in meteoric precipitation. Geology 30: 315-318. Clark I. and Fritz I. 1997. Environmental Isotopes in Hydrogeology. Lewis Publishers, Boca Raton, New York, 328 pp. Coleman D.C. and Fry B. 1991. Carbon Isotope Techniques. Academic Press, London, 274 pp. Criss R.E. 1999. Principals of Stable Isotope Distribution, Oxford University Press, New York, 264 pp. De Groot P.A. 2004. Handbook of Stable Isotope Analytical Techniques. Elsevier, 1234 pp. Hoefs J. 1997. Stable Isotope Geochemistry. Springer, 201 pp.
LIST OF CONTRIBUTORS
Carol Arrowsmith, NERC Isotope Geosciences Laboratory, British Geological Survey, Nottingham NG12 5GG, UK. e-mail:
[email protected] Adrian H. Bath, Intellisci Ltd.,Loughborough, LE12 6SZ, UK. e-mail:
[email protected] W. George Darling, British Geological Survey, Wallingford, OX10 8BB, UK. e-mail:
[email protected] John J. Gibson, National Water Research Institute, University of Victoria, Victoria BC, V8W 2Y2, Canada. e-mail:
[email protected] Timothy H.E. Heaton, NERC Isotope Geosciences Laboratory, British Geological Survey, Nottingham NG12 5GG, UK. e-mail:
[email protected] Robert E.M. Hedges, Research Laboratory for Archaeology and the History of Art, University of Oxford, Oxford OX1 3QJ, UK. e-mail:
[email protected] Jonathan A. Holmes, Department of Geography, University College London, London WC1H OAP, UK. e-mail:
[email protected] Matthew D. Jones, School of Geography, University of Nottingham, Nottingham NG7 2RD, UK. e-mail:
[email protected] Paul L. Koch, Department of Earth Sciences, University of California Santa Cruz, California 95064, USA. e-mail:
[email protected] Angela L. Lamb, NERC Isotope Geosciences Laboratory, British Geological Survey, Nottingham NG12 5GG, UK. e-mail:
[email protected] Melanie J. Leng, NERC Isotope Geosciences Laboratory, British Geological Survey, Nottingham NG12 5GG, UK and School of Geography, University of Nottingham, Nottingham NG7 2RD, UK. e-mail:
[email protected] xiii
xiv Neil J. Loader, Department of Geography, University of Wales, Swansea SA2 8PP, UK. e-mail:
[email protected] James D. Marshall, Department of Earth Sciences, University of Liverpool, Liverpool L69 3GP, UK. e-mail:
[email protected] Mark A. Maslin, Department of Geography, University College London, London WC1H 0AP, UK. e-mail:
[email protected] Danny McCarroll, Department of Geography, University of Wales, Swansea SA2 8PP, UK. e-mail:
[email protected] Frank McDermott, Department of Geology, University College Dublin, Belfield, Dublin 4, Ireland. e-mail:
[email protected] Peter J. Rowe, School of Environmental Sciences, University of East Anglia, Norwich NR4 7TJ, UK. e-mail:
[email protected] Kazimierz Rozanski, Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, 30–059 Krakow, Poland. e-mail:
[email protected] Henry Schwarcz, Department of Geography and Geology, McMaster University, Hamilton, Ontario L8S 4M1, Canada. e-mail:
[email protected] Rhiannon E. Stevens, School of Geography, University of Nottingham, Nottingham NG7 2RD, UK. and NERC Isotope Geosciences Laboratory, British Geological Survey, Nottingham NG12 5GG, UK e-mail:
[email protected] George A. Swann, Department of Geography, University College London, London WC1H 0AP, UK. e-mail:
[email protected] Brent B. Wolfe, Department of Geography and Environmental Studies, Wilfrid Laurier University, Waterloo Ontario N2L 3C5, Canada. e-mail:
[email protected]
EDITORS AND BOARD OF ADVISORS OF DEVELOPMENTS IN PALEOENVIRONMENTAL RESEARCH BOOK SERIES Series Editors:
John P. Smol Paleoecological Environmental Assessment and Research Laboratory (PEARL) Department of Biology Queen's University Kingston, Ontario, K7L 3N6, Canada e-mail:
[email protected] William M. Last Department of Geological Sciences University of Manitoba Winnipeg, Manitoba R3T 2N2, Canada e-mail:
[email protected]
Advisory Board:
Raymond S. Bradley Department of Geosciences University of Massachusetts Amherst, MA 01003-5820 USA e-mail:
[email protected] H. John B. Birks Botanical Institute University of Bergen Allégaten 41 N-5077 Bergen Norway e-mail: John.Birks:bot.uib.no Keith Alverson Director, GOOS Project Office Intergovernmental Oceanographic Commission (IOC) UNESCO 1, rue Miollis 75732 Paris Cedex 15 France e-mail:
[email protected] xv
PUBLISHED AND FORTHCOMING TITLES IN THE DEVELOPMENTS IN PALEOENVIRONMENTAL RESEARCH BOOK SERIES Series Editors: John P. Smol, Department of Biology, Queen's University Kingston, Ontario, Canada William M. Last, Department of Geological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
Volume 12: Lochnagar: The Natural History of a Mountain Lake Edited by N.L. Rose Hardbound, ISBN 1-4020-3900-X, 2006 Volume 11: Dendroclimatology: Progress and Prospects Edited by M.K. Hughes, H.F. Diaz and Th.W. Swetnam Hardbound, forthcoming Volume 10: Isotopes in Palaeoenvironmental Research Edited by M.J. Leng Hardbound, ISBN 1-4020-2503-3, November 2005 Volume 9:
Earth Paleoenvironments: Records Preserved in Mid-and LowLatitude Glaciers Edited by L.D. Cecil, J.R. Green and L.G. Thompson Hardbound, ISBN 1-4020-2145-3, July 2004
Volume 8:
Long-term Environmental Change in Arctic and Antarctic Lakes Edited by R. Pienitz, M.S.V. Douglas and J.P. Smol Hardbound, ISBN 1-4020-2125-9, April 2005
Volume 7:
Image Analysis, Sediments and Paleoenvironments Edited by P. Francus Hardbound, ISBN 1-4020-2061-9, January 2005
Volume 6:
Past Climate Variability through Europe and Africa Edited by R.W. Battarbee, F. Gasse and C.E. Stickley Hardbound, ISBN 1-4020-2120-8, December 2004
Volume 5:
Tracking Environmental Change Using Lake Sediments. Volume 5: Data Handling and Numerical Techniques Edited by H.J.B. Birks et al. Hardbound, forthcoming
xvii
xviii Volume 4:
Tracking Environmental Change Using Lake Sediments. Volume 4: Zoological Indicators Edited by J.P. Smol, H.J.B. Birks and W.M. Last Hardbound, ISBN 1-4020-0658-6, June 2001
Volume 3:
Tracking Environmental Change Using Lake Sediments. Volume 3: Terrestrial, Algal, and Siliceous Indicators Edited by J.P. Smol, H.J.B. Birks and W.M. Last Hardbound, ISBN 1-4020-0681-0, June 2001
Volume 2:
Tracking Environmental Change Using Lake Sediments. Volume 2: Physical and Geochemical Methods Edited by W.M. Last and J.P. Smol Hardbound, ISBN 1-4020-0628-4, June 2001
Volume 1:
Tracking Environmental Change Using Lake Sediments. Volume 1: Basin Analysis, Coring, and Chronological Techniques Edited by W.M. Last and J.P. Smol Hardbound, ISBN 0-7923-6482-1, June 2001
For more information on this series, please visit: www.springeronline.com http://home.cc.umanitoba.ca/~mlast/paleolim/dper.html
,62723(6,1:$7(5
:*(25*('$5/,1*ZJG#EJVDFXN %ULWLVK*HRORJLFDO6XUYH\ :DOOLQJIRUG2;%%8.
$'5,$1+%$7+DEDWK#LQWHOOLVFLFRXN ,QWHOOLVFL/WG /RXJKERURXJK/(6=8.
-2+1-*,%621MRKQJLEVRQ#HFJFFD 1DWLRQDO:DWHU5HVHDUFK,QVWLWXWH 8QLYHUVLW\RI9LFWRULD 9LFWRULD9:<&DQDGD
.$=,0,(5=52=$16.,UR]DQVNL#QRYHOOIWMDJKHGXSO )DFXOW\RI3K\VLFVDQG$SSOLHG&RPSXWHU6FLHQFH $*+8QLYHUVLW\RI6FLHQFHDQG7HFKQRORJ\ ±.UDNRZ3RODQG
.H\ZRUGV6WDEOHLVRWRSHVZDWHUF\FOHFDUERQF\FOHSUHFLSLWDWLRQVXUIDFHZDWHUVJURXQGZDWHU LVRWRSHPDVVEDODQFHSUR[LHV
,QWURGXFWLRQ 6FRSHRIWKLVFKDSWHU 7KH VWXG\ RI LVRWRSLF SUR[LHV KDV WZR GLIIHUHQW WKRXJK UHODWHG EDVLF DLPV DQ XQGHUVWDQGLQJRIWKHZD\LQZKLFKWKHZDWHUF\FOHLVOLQNHGWRDOWHUDWLRQVLQFOLPDWH DQGKRZWKHFDUERQF\FOHKDVUHVSRQGHGWRWKHVHFKDQJHV7KLVQHFHVVDULO\UHTXLUHVWKH VWXG\RIR[\JHQK\GURJHQDQGFDUERQVWDEOHLVRWRSHUDWLRV:DWHUSOD\VDYLWDOUROHLQ WKHJURZWKRUIRUPDWLRQRIDOOSUR[LHVZKHWKHUDQLPDOYHJHWDEOHRUPLQHUDOZKLOHZDWHU PROHFXOHV FRQVLVW RI R[\JHQ DQG K\GURJHQ LVRWRSHV DORQH WKH\ DUH DOVR D VROYHQW IRU VHYHUDOGLIIHUHQWIRUPVRIFDUERQ7KHUHDUHRIFRXUVHVWDEOHLVRWRSHVRIRWKHUHOHPHQWV HQFRXQWHUHGLQGLVVROYHGIRUPIRUH[DPSOHERURQFKORULQHQLWURJHQDQGVXOSKXUEXW QRQH RI WKHVH KDV \HW DFKLHYHG PRUH WKDQ D QLFKH UROH LQ WKH VWXG\ RI SUR[LHV 7KLV FKDSWHUWKHUHIRUHFRQFHQWUDWHVH[FOXVLYHO\RQWKHZHOOHVWDEOLVKHGWULRRI2+DQG& 1RWHWKDWWKHGDWLQJRIZDWHUE\FDUERQRURWKHUUDGLRLVRWRSHPHWKRGVLVQRWLQFOXGHG DV GLUHFW GDWLQJ RI SUR[LHV SURYLGHV PXFK KLJKHU UHVROXWLRQ :DWHU GDWLQJ DQG DOOLHG LQIRUPDWLRQLVH[WHQVLYHO\UHYLHZHGLQERRNVE\&ODUNDQG)ULW] DQG&RRNDQG +HUF]HJ 0-/HQJHG ,VRWRSHVLQ3DODHRHQYLURQPHQWDO5HVHDUFK6SULQJHU. Printed inTKH 1HWKHUODQGV
'$5/,1*%$7+*,%621$1'52=$16.,
7KUHH PDLQ UHVHUYRLUV RI ZDWHU PD\ FRQWULEXWH WR WKH LVRWRSLF FRPSRVLWLRQV RI SUR[\ LQGLFDWRUV VXUIDFH ZDWHUV VRLO DQG XQVDWXUDWHG YDGRVH ]RQH PRLVWXUH DQG JURXQGZDWHU2QHLPSRUWDQWDLPRIVWXG\LQJSUR[\LQGLFDWRUVLVWRDUULYHEDFNDWWKH LVRWRSLFFRPSRVLWLRQRIWKHDQWHFHGHQWUDLQIDOOGXULQJWKHSHULRGRIJURZWK:KLOHWKH ZD\VLQZKLFKWKHSUR[LHVPD\LVRWRSLFDOO\IUDFWLRQDWHWKHR[\JHQDQGK\GURJHQLQWKHLU UHVHUYRLU ZDWHU GXULQJ JURZWK RU IRUPDWLRQ DUH FRQVLGHUHG LQ WKH IROORZLQJ FKDSWHUV LQWKLVYROXPHLWZRXOGDWOHDVWEHKHOSIXOWRHVWDEOLVKWKHW\SLFDOH[WHQWWRZKLFKWKH LVRWRSLFFRPSRVLWLRQRIUDLQIDOOPD\EHPRGL¿HGLQWKHWKUHHUHVHUYRLUVDWWKHSUHVHQW GD\7KHODUJHO\SK\VLFDOQDWXUHRIWKHVHIUDFWLRQDWLRQHIIHFWVPD\YDU\XQGHUGLIIHUHQW FOLPDWLF UHJLPHV VR WKH K\GURORJLFDO SDUWV RI WKLV FKDSWHU ZLOO FRQVLGHU WKH DYDLODEOH HYLGHQFHIURPDUDQJHRIFOLPDWHW\SHVZRUOGZLGH &KDUDFWHULVLQJ WKH HYROXWLRQ RI WKH FDUERQ LVRWRSH FRQWHQW RI ZDWHUV SULRU WR SUR[\ IRUPDWLRQ LV SHUKDSV D JUHDWHU FKDOOHQJH LQYROYLQJ DV LW GRHV ERWK RUJDQLFDOO\ DQG LQRUJDQLFDOO\PHGLDWHGLQWHUDFWLRQVEHWZHHQZDWHUURFNDQGJDVHV7KHDOPRVWLQ¿QLWH YDULHW\RIHQYLURQPHQWDOVHWWLQJVPDNHVLWPXFKPRUHGLI¿FXOWWREHSUHVFULSWLYHZLWK FDUERQWKDQZLWKR[\JHQDQGK\GURJHQEXWQHYHUWKHOHVVZHFRQVLGHULWZRUWKZKLOHWR HVWDEOLVKWKH³JURXQGUXOHV´IRUGLVVROYHGFDUERQ6RPHRIWKHLQGLYLGXDOIUDFWLRQDWLRQ SURFHVVHVDUHDVFOLPDWHGHSHQGHQWDVIRUR[\JHQDQGK\GURJHQLVRWRSHUDWLRVVRFOLPDWLF GLIIHUHQFHVZLOOEHFRQVLGHUHGDOEHLWLQUDWKHUOHVVGHWDLOWKDQIRU2DQG+ 7KHGHYHORSPHQWRIVWDEOHLVRWRSHK\GURORJ\ 5HVHDUFK RQ WKH WHFKQLFDO DVSHFWV RI 2 + DQG & VWDEOH LVRWRSH PHDVXUHPHQW EHJDQ LQ WKH HDUO\ V HJ (SVWHLQ DQG 0D\HGD )ULHGPDQ &UDLJ EXWZLGHVSUHDGK\GURORJLFDOXVDJHFRQFHQWUDWLQJRQį2DQGį+GLGQRWDUULYHXQWLO WKH V $OWKRXJK VWXGLHV FDUULHG RXW GXULQJ WKH V RQ UDLQIDOO E\ &UDLJ DQG 'DQVJDDUG SDYHG WKH ZD\ IRU WKLQNLQJ DERXW LVRWRSHV LQ WKH ZDWHU F\FOH DWWHQWLRQZDVWRDODUJHH[WHQWGLYHUWHGE\WULWLXP+ LQWKHZDNHRIWKHDWPRVSKHULF WKHUPRQXFOHDU WHVWLQJ RI WKH ± SHULRG +RZHYHU DV LQWHUHVW LQ + JUDGXDOO\ ZDQHGWKHXVHIXOQHVVRIį2DQGį+EHJDQWREHDSSUHFLDWHGRQFHPRUHOHDGLQJWR WKHZLGHVSUHDGGHYHORSPHQWRIVWDEOHLVRWRSHODERUDWRULHVGXULQJWKHVDQGHDUO\ V ,W ZDV HDUO\ UHDOLVHG WKDW LVRWRSH PHWKRGV ZHUH QRW UHVWULFWHG WR WKH VWXG\ RI ZDWHU DQGLFHEXWFRXOGDOVR EHDSSOLHGWRVWHDPHJ*LJJHQEDFK )XUWKHUPRUH LW EHFDPHDSSDUHQWWKDWLVRWRSHVFRXOGEHLQVWUXFWLYHO\DSSOLHGWRµKLGGHQ¶IRUPVRIZDWHU ² IRU H[DPSOH VRLO PRLVWXUH HJ =LPPHUPDQ HW DO ZDWHU RI FU\VWDOOLVDWLRQ HJ6RIHU DQGÀXLGLQFOXVLRQVHJ5RHGGHU ,WDOVREHFDPHDSSDUHQWWKDWJURXQGZDWHUVIURPWKHFRQ¿QHGSDUWVRIDTXLIHUVZHUH RIWHQLVRWRSLFDOO\GHSOHWHGUHODWLYHWRPRGHUQZDWHUV'XULQJWKHVWKHGHYHORSPHQW RI URXWLQH PHWKRGV IRU PHDVXULQJ UDGLRFDUERQ & LQ JURXQGZDWHUV OHG WR D PRUH TXDQWLWDWLYHXQGHUVWDQGLQJRIWKHPDJQLWXGHDQGWLPLQJRIFOLPDWHFKDQJHDZD\IURP SRODUUHJLRQV 2YHU WKH ODVW IHZ GHFDGHV WKH SUROLIHUDWLRQ RI ODERUDWRULHV URXWLQHO\ XVLQJ 2 DQG + LVRWRSHV WR XQGHUVWDQG WKH ZDWHU F\FOH SUHVHQW DQG SDVW PHDQV WKDW D IDLU GHJUHH RI PDWXULW\KDVEHHQUHDFKHG:KLOHWKHUHUHPDLQVPXFKGDWDWREHFROOHFWHGWR¿OOYDULRXV
,62723(6,1:$7(5
JDSV LQ NQRZOHGJH WKH VXEMHFW DUHD LV XQGHUVWRRG ZHOO HQRXJK HJ &ODUN DQG )ULW] WRFRQVWUDLQWKHLQWHUSUHWDWLRQRISUR[\GDWD 7KHLQYROYHPHQWRI&LVRWRSHVLQK\GURORJ\DQGHQYLURQPHQWDOVWXGLHVKDVEHHQPRUH FU\SWLF:KLOHLWZDVNQRZQDVHDUO\DVWKHVWKDWWKHUHZHUHGLIIHUHQFHVLQ&& EHWZHHQ RUJDQLF DQG LQRUJDQLF PLQHUDO FDUERQ 1LHU DQG *XOEUDQVHQ UHVHDUFK LQ WKH V DQG V ZDV IRFXVHG RQ WKH XVH RI į& IRU FRUUHFWLQJ UDGLRFDUERQ DJHV RIJURXQGZDWHUVIRUµGLOXWLRQ¶E\LQRUJDQLFFDUERQDWHWKDWLVGHDGWRUDGLRFDUERQHJ 9RJHO DQG (KKDOW 3HDUVRQ DQG +DQVKDZ DQG RQ WKH VWXG\ RI UHDFWLRQ PHFKDQLVPVIRUFDUERQLQSODQWVIRUH[DPSOHWKH&DQG&SKRWRV\QWKHWLFSDWKZD\V %HQGHU'HLQHV (DUO\ZRUNRQFDUERQDWHVFHQWUHGDURXQGWKHXVHRIį2 UDWKHUWKDQį&DQGLWZDVQRWXQWLOWKHPLGVWKDWPXFKDWWHQWLRQVWDUWHGWREH SDLG WR FDUERQ LQ IUHVKZDWHU IDXQD DQG ODNH GHSRVLWV HJ .HLWK DQG :HEHU 6WXLYHU /LNHZLVH VSHOHRWKHPV ZHUH LQLWLDOO\ YDOXHG PRUH IRU WKHLU į2 DQG GDWLQJ SRWHQWLDO VXPPDULVHG LQ 6FKZDUF] DQG LW ZDV RQO\ VLQFH WKH ZRUN RI +HQG\ WKDWWKHVLJQL¿FDQFHRIYDULDWLRQVLQį&KDVOHGWRLWEHLQJPRUHURXWLQHO\ PHDVXUHG DQG LQWHUSUHWHG 7KH FDUERQ LQ WUDYHUWLQHW\SH GHSRVLWV DQG RWKHU SRWHQWLDO IUHVKZDWHUSUR[LHVPD\KDYHGHULYHGIURPDPXOWLSOLFLW\RIVRXUFHVVRWKDWWKHLUį& FRPSRVLWLRQRIWHQUHYHDOVPRUHDERXWPRGHRIIRUPDWLRQWKDQSDODHRHQYLURQPHQW7XUL 1HYHUWKHOHVV LQWHUHVW LV GHYHORSLQJ LQ WKH LQWHUSUHWDWLRQ RI FDUERQ LVRWRSHV LQ IUHVKZDWHUWXIDVDQGDOOLHGF\DQREDFWHULDOGHSRVLWVHJ3D]GXUHWDO $QGUHZV HWDO 7KHZDWHUDQGFDUERQF\FOHV )LJXUHGHSLFWVWKHJOREDOZDWHURUK\GURORJLFDO F\FOH:KLOHWKHFRQFHSWRIWKHZDWHU F\FOHPD\EHVLPSOHLQHVVHQFH²ZDWHUHYDSRUDWHVIURPWKHVHDIDOOVDVUDLQRYHUODQG DQGHYHQWXDOO\UHWXUQVWRWKHVHDPDLQO\YLDULYHUDQGJURXQGZDWHUGLVFKDUJH²WKHUH DUHDQXPEHURIFRPSOLFDWLQJIDFWRUVDWOHDVWZKHUHVWDEOHLVRWRSHVDUHFRQFHUQHG0XFK RIWKHIRFXVRIWKLVFKDSWHUOLHVLQFRQVLGHULQJKRZWKHVHIDFWRUVDIIHFWWKHPRUHDFWLYH SDUWVRIWKHZDWHUF\FOH7KHSK\VLFDOSURFHVVHVJRYHUQLQJWKHLVRWRSLFFRPSRVLWLRQRI SUHFLSLWDWLRQDUHDQDWXUDOVWDUWLQJSRLQW)ROORZLQJRQIURPWKLVLVDFRQVLGHUDWLRQRI WKH WUDQVIRUPDWLRQ RI SUHFLSLWDWLRQ LQWR WKH EDVLF µWHUUHVWULDO UHVHUYRLUV¶ RI VRLO]RQH PRLVWXUH JURXQGZDWHU DQG VXUIDFH ZDWHUV 3URFHVVHV VXFK DV VHDVRQDO IUHH]HWKDZ SODQWWUDQVSLUDWLRQDQGVRLOHYDSRUDWLRQFDQHDFKFDXVHLVRWRSLFFKDQJHVEXWSHUKDSVRI PRVWVLJQL¿FDQFHLVHYDSRUDWLRQIURPVXUIDFHZDWHUV/DNHVHGLPHQWVDUHDQLPSRUWDQW DUFKLYHIRUFOLPDWHFKDQJHDQGLWLVWKHUHIRUHYLWDOWRXQGHUVWDQGDVIDUDVSRVVLEOHWKH RIWHQFRPSOH[LVRWRSLFUHODWLRQVKLSEHWZHHQLQGLYLGXDOODNHVDQGUHJLRQDOSUHFLSLWDWLRQ $FFRUGLQJO\WKLVFKDSWHUFRQVLGHUVLVRWRSHPDVVEDODQFHPRGHOOLQJLQVRPHGHWDLO 7KHVLWXDWLRQZLWKUHJDUGWRFDUERQLVPRUHFRPSOLFDWHGEHFDXVHWKH&F\FOHFDQQRW EHVXPPDULVHGLQDVLPSOHFOLPDWHUHODWHGPDQQHU:KLOH&VWDEOHLVRWRSHVDUHFUXFLDO WRSDODHRHQYLURQPHQWDOUHFRQVWUXFWLRQDVRWKHUFKDSWHUVLQWKLVYROXPHGHPRQVWUDWH 0F&DUUROODQG/RDGHU+HGJHVHWDO/HQJHWDO0F'HUPRWWHWDODOOWKLVYROXPH WKHLU LQFRUSRUDWLRQ LQ SUR[LHV LV DIIHFWHG E\ PDQ\ IDFWRUV LQFOXGLQJ K\GURORJ\ WKDW PD\ EH PRUH RU OHVV UHODWHG WR FOLPDWH )RU LQVWDQFH WKH PDVV EXGJHWV DQG LVRWRSLF FRPSRVLWLRQVRIFDUERQLQODQGDQLPDOGLHWDQGSODQWSKRWRV\QWKHWLFSDWKZD\VDUHQRW
'$5/,1*%$7+*,%621$1'52=$16.,
N AND TRANSPIRA PORATIO TION %VA
)CE CAP
#AVE OR VOID
3URFACE OR NEAR SURFACE DISCHARGE
2ECHARGE 7ATER TABLE
'ROUNDWATER DISCHARGE &RACTURED AQUIFER
)NTERGRANULAR AQUIFER
%VAPORATION 3EA 3ALINE INTRUSION
)LJXUH6FKHPDWLFRIWKHJOREDOZDWHUF\FOH(YDSRUDWLRQRIVHDZDWHUOHDGVWRFORXGIRUPDWLRQ ZLWK SURJUHVVLYH UDLQRXW DV WHPSHUDWXUH GHFUHDVHV 7KH PRLVWXUH ZLOO HYHQWXDOO\ UHWXUQ WR WKH RFHDQPDLQO\YLDVXUIDFHUXQRIIRUVXEVXUIDFHGLVFKDUJHWKRXJKLWPD\EHGHOD\HGE\UHF\FOLQJ YLD HYDSRUDWLRQ IURP ODNHV RU WUDQVSLUDWLRQ IURP YHJHWDWLRQ $OVR VKRZQ RQ WKH ¿JXUH DUH WKH WKUHH µWHUUHVWULDO UHVHUYRLUV¶ RI ZDWHU WKDW DUH RI LPSRUWDQFH WR SUR[\ IRUPDWLRQ ± VRLO DQG XQVDWXUDWHG]RQHPRLVWXUH±JURXQGZDWHU±VXUIDFHZDWHUV
FRQWUROOHG VLPSO\ E\ WKH FDUERQ FRQWHQWV RI HQYLURQPHQWDO ZDWHUV +RZHYHU PDQ\ SUR[LHVJURZLQJLQDTXDWLFHQYLURQPHQWVZLOOKDYHFDUERQLVRWRSHFRPSRVLWLRQVWKDWFDQ EHUHODWHGEDFNLQYDULRXVZD\VWRWKHRULJLQDOZDWHUVLJQDO 7KHXQGHUO\LQJDLPRIWKLVFKDSWHULVWRGHPRQVWUDWHWKDWFKDQJHVDVVRFLDWHGZLWKWKH ZDWHUF\FOHKDYHLPSOLFDWLRQVIRUXQGHUVWDQGLQJWKHFOLPDWLFLQIRUPDWLRQUHFRUGHGE\WKH 2+DQG&VWDEOHLVRWRSHFRPSRVLWLRQVRISUR[LHV&RQVWUDLQWVRQWKHLVRWRSLFDSSURDFK DUHGLVFXVVHGLQWKH¿QDOVHFWLRQRIWKHFKDSWHU 2[\JHQDQGK\GURJHQVWDEOHLVRWRSHVLQSUHFLSLWDWLRQ 7KHJOREDODWPRVSKHUHSURYLGHVDG\QDPLFOLQNEHWZHHQWKHPDMRUUHVHUYRLUVRIZDWHU RQ (DUWK FI GLVFXVVLRQ DERYH $WPRVSKHULF ZDWHU YDSRXU LV WKH SULPDU\ YHKLFOH WKURXJKZKLFKWKLVOLQNLVDFFRPSOLVKHG7KHPDVVRIZDWHUYDSRXULQWKHFRQWHPSRUDU\ DWPRVSKHUH LV HVWLPDWHG WR EH DURXQG îNJ RI ZKLFK DERXW LV ORFDWHG LQ WKHORZHUWURSRVSKHUHEHORZWKHDOWLWXGHRINP7KHDPRXQWRIZDWHUVWRUHGLQWKH DWPRVSKHUH DV ZDWHU YDSRXU LV QHJOLJLEOH ZKHQ FRPSDUHG ZLWK WKH ZRUOG¶V RFHDQV RU FRQWLQHQWDO LFH VKHHWV WKH FRUUHVSRQGLQJ PDVV UDWLRV EHLQJ DSSUR[LPDWHO\ ± DQG î ±UHVSHFWLYHO\%HUQHUDQG%HUQHU 7KHDWPRVSKHUHLVRQO\SDUWLDOO\VDWXUDWHG ZLWKZDWHUZLWKWKHJOREDOO\DYHUDJHGUHODWLYHKXPLGLW\RIWKHORZHUWURSRVSKHUHEHORZ WKHSODQHWDU\ERXQGDU\OHYHOEHLQJDURXQG7KLVODFNRIVDWXUDWLRQVWHPVIURPWKH H[LVWLQJWKHUPDOVWUXFWXUHDQGODUJHVFDOHFLUFXODWLRQSDWWHUQVRIWKHWURSRVSKHUH
,62723(6,1:$7(5
'LVWULEXWLRQ RI ZDWHU YDSRXU LQ WKH ORZHU DWPRVSKHUH LV KLJKO\ LQKRPRJHQHRXV ,W LV FRQWUROOHG E\ H[LVWLQJ WKHUPDO JUDGLHQWV LPSRVLQJ SKDVH FKDQJHV HYDSRUDWLRQ FRQGHQVDWLRQIUHH]LQJ VXEOLPDWLRQUHVXEOLPDWLRQ DV ZHOO DV E\ WKH GLVWULEXWLRQ RI PDMRUZDWHUVRXUFHVRQWKH(DUWK¶VVXUIDFH,QWKHVWUDWRVSKHUHSKRWRFKHPLFDOUHDFWLRQV VXFK DV R[LGDWLRQ RI PHWKDQH FRQVWLWXWH WKH SULQFLSDO PHFKDQLVP FRQWUROOLQJ VSDWLDO GLVWULEXWLRQRIZDWHUYDSRXU([SUHVVHGDVDPL[LQJUDWLRNJ+ 2SHUNJRIGU\DLU ZDWHUYDSRXUFRQWHQWGHFUHDVHVIURPDSSUR[LPDWHO\±LQWKHORZHUWURSRVSKHUHFORVH WR WKH SODQHWDU\ ERXQGDU\ OHYHO WR DURXQG î ± LQ WKH ORZHU VWUDWRVSKHUH DQG WKHQ LQFUHDVHV DJDLQ WR DSSUR[LPDWHO\ ± DW WKH DOWLWXGH RI NP &ORVH WR WKH (DUWK¶V VXUIDFHLWYDULHVEHWZHHQDSSUR[LPDWHO\î ±RYHUWURSLFDORFHDQVWRî ±RYHUGU\ UHJLRQVLQWKHLQWHULRURIFRQWLQHQWVDQGOHVVWKDQ ±RYHULFHVKHHWVDWKLJKODWLWXGHV 7KH UHVHUYRLU RI DWPRVSKHULF ZDWHU YDSRXU LV KLJKO\ G\QDPLF TXLFNO\ UHVSRQGLQJ WRFKDQJHVRIH[WHUQDOFRQGLWLRQVVXFKDVWKHÀX[RIVRODUHQHUJ\UHDFKLQJWKH(DUWK¶V VXUIDFHDQGRUFKDQJHVRIWHPSHUDWXUHODSVHUDWHLQWKHWURSRVSKHUH7KHPHDQWXUQRYHU WLPHLVDXVHIXOTXDQWLW\FKDUDFWHULVLQJG\QDPLFEHKDYLRXURIZDWHUYDSRXULQWKHJOREDO DWPRVSKHUH,WLVGH¿QHGDVWKHUDWLRRIWKHWRWDOPDVVRIZDWHULQWKHDWPRVSKHUHWRWKH ÀX[RIZDWHUOHDYLQJWKHDWPRVSKHULFUHVHUYRLUDVSUHFLSLWDWLRQDQGLVHTXDOWRDURXQG GD\V $OWKRXJK EHLQJ D WUDFH FRQVWLWXHQW RI WKH JOREDO DWPRVSKHUH DWPRVSKHULF PRLVWXUH SOD\VDFUXFLDOUROHLQWKHJOREDOHFRV\VWHPEHKDYLRXU)LUVWO\LWLVWKHPRVWLPSRUWDQW JUHHQKRXVH JDV UHVSRQVLEOH IRU DSSUR[LPDWHO\ RI WKH QDWXUDO JUHHQKRXVH HIIHFW 6HFRQGO\ DWPRVSKHULF PRLVWXUH VHUYHV DV DQ LPSRUWDQW UHJXODWRU RI KHDW ÀX[HV LQ WKH DWPRVSKHUH UHGXFLQJ WKHUPDO JUDGLHQWV EHWZHHQ ORZ DQG KLJK ODWLWXGHV 7KLUGO\ DWPRVSKHULFZDWHUYDSRXUVHUYHVDVWKHSULPDU\VRXUFHPDWHULDOIURPZKLFKSUHFLSLWDWLRQ LVIRUPHG ,VRWRSLFFRPSRVLWLRQRIDWPRVSKHULFZDWHUYDSRXU ,QWHUHVW LQ WKH LVRWRSLF FRPSRVLWLRQ RI DWPRVSKHULF ZDWHU YDSRXU JRHV EDFN WR WKH EHJLQQLQJRILVRWRSHK\GURORJ\,QWKHHDUO\V&UDLJDQG*RUGRQ PHDVXUHG WKH LVRWRSLF FRPSRVLWLRQ RI DWPRVSKHULF ZDWHU YDSRXU RYHU WKH 1RUWK 3DFL¿F 'XULQJ WKH\HDUV±DQG±(KKDOW REWDLQHGDQXPEHURIYHUWLFDOSUR¿OHVRI WKH + FRQWHQW LQ WURSRVSKHULF ZDWHU YDSRXU XS WR WKH WURSRSDXVH UHJLRQRYHUVHYHUDO ORFDWLRQV LQ WKH FRQWLQHQWDO 86$ ,Q (XURSH WKH + DQG 2 FRQWHQW LQ WURSRVSKHULF ZDWHU YDSRXU XS WR DQ DOWLWXGH RI NP ZDV PHDVXUHG GXULQJ DQG 7D\ORU 7KHVHWZRVHWVRIPHDVXUHPHQWVUHPDLQWRGDWHWKHPDMRUVRXUFHRILQIRUPDWLRQ DERXWWKHYHUWLFDOGLVWULEXWLRQRI+DQG2LQZDWHUYDSRXULQWKHORZHUWURSRVSKHUHWKH UHJLRQZKHUHPRVWSUHFLSLWDWLRQLVIRUPHG $FRPPRQIHDWXUHREVHUYHGZDVDJUDGXDOGHSOHWLRQLQKHDY\LVRWRSHVZLWKLQFUHDVLQJ DOWLWXGHXSWRWKHWURSRSDXVHUHJLRQZLWKDUHYHUVHGWUHQGGHWHFWHGZLWKLQWKHVWUDWRVSKHUH 7KHJHQHUDOLVHGYHUWLFDOSUR¿OHRIį+LQDWPRVSKHULFZDWHUYDSRXULVVKRZQLQ)LJXUH 7KH+FRQWHQWGHFUHDVHVJUDGXDOO\ZLWKDOWLWXGHIURPDį+YDOXHRI±ÅFORVH WRWKHVXUIDFHWR±ÅLQWKHWURSRSDXVHUHJLRQWKHQLQFUHDVHVXSWR±Å DWDERXWNPDOWLWXGH5R]DQVNLDQG6RQQWDJ-RKQVRQHWDO &KDQJHVRI į2ZLWKDOWLWXGHUHYHDOVLPLODUFKDUDFWHULVWLFV
'$5/,1*%$7+*,%621$1'52=$16.,
342!4/30(%2%
!LTITUDE KM
42/0/0!53%
42/0/30(%2%
n
n
n
n
n
n
n n
G ( y
)LJXUH6FKHPDWLFUHSUHVHQWDWLRQRIWKHYHUWLFDOGLVWULEXWLRQRIGHXWHULXPFRQWHQWLQDWPRVSKHULF ZDWHUYDSRXULQWKHWURSRVSKHUHDQGWKHORZHUVWUDWRVSKHUH
7KH REVHUYHG GLVWULEXWLRQ RI į+ DQG į2 ZLWK DOWLWXGH LV FXUUHQWO\ H[SODLQHG DV D FRQVHTXHQFH RI WKH IROORZLQJ SURFHVVHV L LVRWRSH IUDFWLRQDWLRQ ERWK HTXLOLEULXP DQGNLQHWLF DVVRFLDWHGZLWKJUDGXDOFRQGHQVDWLRQRIDWPRVSKHULFZDWHUYDSRXUGXULQJ FORXG IRUPDWLRQ DQG VXEVHTXHQW UDLQRXW SURFHVVHV OHDGLQJ WR SUHIHUHQWLDO UHPRYDO RI KHDY\ LVRWRSHV IURP WKH UHVHUYRLU RI DWPRVSKHULF PRLVWXUH LL WXUEXOHQW PL[LQJ RI GLIIHUHQW DLU PDVVHV FRQWDLQLQJ ZDWHU YDSRXU ZLWK FRQWUDVWLQJ LVRWRSH FRPSRVLWLRQV LLL DGGLWLRQ RI LVRWRSLFDOO\ KHDY\ PRLVWXUH RULJLQDWLQJ LQ WKH HYDSRWUDQVSLUDWLRQ SURFHVVLY ORIWLQJXSZDUGDGYHFWLRQ DQGVXEVHTXHQWHYDSRUDWLRQRILFHFU\VWDOVDQG Y R[LGDWLRQRIPHWKDQH7KH¿UVWWZRSURFHVVHVDUHWKRXJKWWREHPDMRUPHFKDQLVPV FRQWUROOLQJYHUWLFDOGLVWULEXWLRQRIį+DQGį2WKURXJKRXWWKHWURSRVSKHUH7UDQVSLUHG PRLVWXUH PRGL¿HV WKH LVRWRSLF FRPSRVLWLRQ RI DWPRVSKHULF ZDWHU YDSRXU FORVH WR WKH (DUWK¶V VXUIDFH -DFRE DQG 6RQQWDJ %DULDF HW DO /RIWLQJ RI LFH FU\VWDOV DFURVVWKHWURSRSDXVHUHJLRQZDVVXJJHVWHGDVDQLPSRUWDQWSKHQRPHQRQLQÀXHQFLQJ+ DQG2FRQWHQWLQWKHORZHUPRVWVWUDWRVSKHUH.HLWK 3KRWRFKHPLFDOR[LGDWLRQRI PHWKDQHLQWKHPLGGOHDQGXSSHUVWUDWRVSKHUHLVUHVSRQVLEOHIRUWKHREVHUYHGLQFUHDVHRI ZDWHUYDSRXUFRQWHQWZLWKDOWLWXGHDVZHOODVWKHJUDGXDOLQFUHDVHRI+DQG2FRQWHQW LQWKLVUHJLRQ-RKQVRQHWDO 6\VWHPDWLF VWXGLHV DLPHG DW FKDUDFWHULVLQJ WKH LVRWRSLF FRPSRVLWLRQ RI QHDUJURXQG ZDWHU YDSRXU RQ D UHJLRQDO VFDOH ZHUH ODXQFKHG LQ WKH HDUO\ V LQ (XURSH 7KH
,62723(6,1:$7(5
LVRWRSLFFRPSRVLWLRQRIGDLO\FRPSRVLWHVDPSOHVRIDWPRVSKHULFPRLVWXUHZDVPRQLWRUHG E\DQHWZRUNRIVHYHUDOVWDWLRQVDFURVVWKH(XURSHDQFRQWLQHQWEHWZHHQDQG 6FKRFK)LVFKHUHWDO 2QHVLWH+HLGHOEHUJ*HUPDQ\ KDVFRQWLQXHGWRGRWKLVXS WRWKHSUHVHQWGD\-DFREDQG6RQQWDJ$JHPDU DQGKDVDFFXPXODWHGDXQLTXH KLJKUHVROXWLRQUHFRUGRIWKH2DQG+FRQWHQWRIDWPRVSKHULFZDWHUYDSRXUVSDQQLQJ PRUH WKDQ WZR GHFDGHV 'XULQJ WKH V WKH LVRWRSLF FRPSRVLWLRQ RI DWPRVSKHULF PRLVWXUHQHDUWKHJURXQGZDVIXUWKHULQYHVWLJDWHGDOWKRXJKWKHVHVWXGLHVZHUHXVXDOO\ ORFDOLQFKDUDFWHUDQGOLPLWHGLQWLPH7KHSDVWVHYHUDO\HDUVKDYHVHHQDUHQDLVVDQFHRI LQWHUHVWLQLVRWRSLFVWXGLHVRIQHDUJURXQGDWPRVSKHULFPRLVWXUHVWLPXODWHGPRVWO\E\ WKHQHHGIRUEHWWHUXQGHUVWDQGLQJRIWKHLVRWRSLFVLJQDWXUHVRISUHFLSLWDWLRQDQGWKHOLQNV EHWZHHQWKHZDWHUDQGFDUERQF\FOHVZLWKLQWKHVRLOSODQWDWPRVSKHUHGRPDLQ 0RVWREVHUYDWLRQVRIWKHLVRWRSLFFRPSRVLWLRQRIDWPRVSKHULFZDWHUYDSRXUFDUULHG RXWWRGDWHKDYHEHHQSHUIRUPHGDWJURXQGOHYHOZLWKPRLVWXUHEHLQJVDPSOHGZLWKLQWKH SODQHWDU\ERXQGDU\OD\HU9HU\ODUJHVKRUWWHUPYDULDELOLW\RIWKHLVRWRSLFFRPSRVLWLRQ RI QHDUJURXQG ZDWHU YDSRXU KDV EHHQ GHWHFWHG GD\WRGD\ YDULDWLRQV RI + DQG 2 FRQWHQW UHFRUGHG DW PLGODWLWXGH FRQWLQHQWDO VLWHV DUH RIWHQ RI WKH VDPH PDJQLWXGH DV VHDVRQDOFKDQJHVDQGDUHWLJKWO\OLQNHGWRZHDWKHUFKDQJHVUHÀHFWLQJWKHSDVVDJHRI DLUPDVVHVZLWKGLIIHUHQWUDLQRXWKLVWRULHV7KLVYDULDELOLW\LVSDUWLFXODUO\SURQRXQFHG GXULQJ WKH ZLQWHU PRQWKV 7KH LVRWRSLF FRPSRVLWLRQ RI DWPRVSKHULF ZDWHU YDSRXU UHFRUGHGQHDUWKHJURXQGGXULQJWKHVXPPHUPRQWKVUHÀHFWVDVLJQL¿FDQWFRQWULEXWLRQ RI WUDQVSLUHG PRLVWXUH ZLWK WKH LVRWRSLF VLJQDWXUH UHÀHFWLQJ WKH PL[WXUH RI VXPPHU DQGZLQWHUSUHFLSLWDWLRQ7KLVKDVDGDPSLQJHIIHFWRQWKHVKRUWWHUPLVRWRSHYDULDELOLW\ LQGXFHGE\V\QRSWLFFKDQJHVGXULQJVXPPHU ,VRWRSLFFRPSRVLWLRQRISUHFLSLWDWLRQ &OHDUO\ WKH UHVHUYRLU RI DWPRVSKHULF ZDWHU YDSRXU FRQVWLWXWHV WKH SULPDU\ VRXUFH PDWHULDOIURPZKLFKSUHFLSLWDWLRQLVIRUPHG7KHDYDLODEOHGDWDVXJJHVWWKDWWKHLVRWRSLF FRPSRVLWLRQ RI PRQWKO\ SUHFLSLWDWLRQ ZKLFK LV WKH EDVLF W\SH RI GDWD EHLQJ FROOHFWHG ZRUOGZLGHSURSHUO\UHÀHFWVWKHPHDQLVRWRSLFVWDWXVRIWKHDWPRVSKHULFZDWHUYDSRXU UHVHUYRLUZLWKLQWKHSODQHWDU\ERXQGDU\OD\HUGXULQJWKHVHWLPHLQWHUYDOV:KLOVWWKLV KROGVIRUPRGHUDWHFOLPDWHVLWPD\QRWEHWKHFDVHXQGHUVHPLDULGDQGDULGFRQGLWLRQV ,QFRQWUDVWWRWKHOLPLWHGQXPEHURIREVHUYDWLRQVUHODWLQJWRWKHLVRWRSLFFRPSRVLWLRQ RI DWPRVSKHULF ZDWHU YDSRXU D VL]HDEOH DPRXQW RI GDWD RQ WKH LVRWRSLF FRPSRVLWLRQ RI SUHFLSLWDWLRQ LV QRZ DYDLODEOH 2YHU PRUH WKDQ IRXU GHFDGHV SUHFLSLWDWLRQ VDPSOHV KDYH EHHQ PHDVXUHG WKURXJK YDULRXV UHVHDUFK SURMHFWV DQG PRQLWRULQJ QHWZRUNV DW WHPSRUDO VFDOHV UDQJLQJ IURP VLQJOH PLQXWHV IUDFWLRQ RI LQGLYLGXDO UDLQ HYHQW WR PRQWKO\FRPSRVLWHVDPSOHV$PRQJWKHYDULRXVLQLWLDWLYHVWRFKDUDFWHULVHWKHLVRWRSLF YDULDELOLW\LQSUHFLSLWDWLRQDWJOREDODQGUHJLRQDOVFDOHVWKH*OREDO1HWZRUNIRU,VRWRSHV LQ 3UHFLSLWDWLRQ *1,3 MRLQWO\ RSHUDWHG E\ WKH ,QWHUQDWLRQDO $WRPLF (QHUJ\ $JHQF\ ,$($ DQG WKH :RUOG 0HWHRURORJLFDO 2UJDQL]DWLRQ :02 LV E\ IDU WKH ODUJHVW XQGHUWDNLQJKWWSLVRKLVLDHDRUJ 7KHQHWZRUNZDVODXQFKHGLQZLWKWKHSULPDU\ DLPRISURYLGLQJEDVLFLQIRUPDWLRQDERXWWKHLVRWRSLFFRPSRVLWLRQRISUHFLSLWDWLRQRQWKH JOREDOVFDOH )LJXUH VXPPDULVHV WKH PDMRU SURFHVVHV DQG PHFKDQLVPV FRQWUROOLQJ WKH LVRWRSLF FRPSRVLWLRQ RI DWPRVSKHULF ZDWHU YDSRXU DQG SUHFLSLWDWLRQ LQ WKH WURSRVSKHUH 7KH\
'$5/,1*%$7+*,%621$1'52=$16.,
342!4/30(%2% a KM 42/0/30(%2%
#,/5$ &/2-!4)/. 2!)./54 02/#%33
(/2):/.4!, 42!.30/24
(/2):/.4!, 42!.30/24
a KM 452"5,%.4 -)8).'
%6!0/2!4)/. /&