INTERNATIONAL SERIESOF MONOGRAPHSON PHYSICS
109-A.Aharoni: Introductlon to theJ/zdory ofjkrronlnnetigmzle 10s.R.Dobbs:Helîum three 107.R. Wignans: Calorîmetry 106.1.Kubler:Theor.y electron ZZCJPTIIJILCZZI ofitbterant 105.Y Kuzamotoa Y Kitaoka:Znamics electtons ofheapy 104.D. Bardin, G.Passarino: Thes'ltzrldzprtf.àftltftl/l themaking 103.G.C-Branco. L. Lavoura, J.R Silva:CPviolation 102.T. C.Choy: zneï?.f?n theory Effective 101.H.Arnkl-:Mathematical theoryt//gaznflwl-/ielé 100.L. M. Pismen: Vortices fzlnonlînearhelh 99. L.Mcstd:Stellarmagnetism 98. K. H.Bennemann:aNbn/fnelr opticsizzmetals 97. D.Snlzrnann: Atomicphysicz inhotplnmas 96. M-Brambilla:AAetj/ dteory waves ofplnma 95. M. Wakatani: Stellarator andhelîotron (fevfce..g 94. S.Cbt-kmznrn': Physics offerromagnetîsm 93. A.Aharoni: Introduct>n to thetheo6' offerromagnetism t/zeoF.)? 92.l Zinn-lustin: andcriticalphenomena Quanutmfeld 91.R. A.Bertlmann:-dnozna/ie.ç /Wquantumfddtbeory 90. P.K. Gosh:Iontraps 89. E.Siml'nek;Inhomogeneous superconductors 88.S.L. Adler:Quaternionic mechanics quantum crzdfélgtznr?zra/à/fïç 87. RS.Joshi: Globalaapects j;zgravitation tzz?zf cosmolov 86. E.R.Pikez S.Sarkar:Thegzzm/?zrzl theor.y ofradiation 84.MZ.Kresin,H.Morawilas.A.WolftMerhmn-vnn tl/ctpnpe/ztz'ilzitz/r-z?âfkgâ Trsuperconductipity crystall 83.P.G.deGenncl Prost:Thephysica ofliquîd 82.B.H. Bransden, M. R.C.McDowell; Charge exchangeand theJâeory of ion-atomcof/gfon 81. J.Jensen, A.R. Mackintosh: Rareearthmagnetism 80.R.Gasuans, T.T-Wu:Theubiquitousphoton 79. P.Luchini,H. Motz:Undulators Jtzvcr,g andfkee-electron 78. RWeinbergenflclron scatterùq theoy Thephysies 76. H.Aoki,H-Kamimm'a: electrons fadisorderedsystems (Kln/dmclfzlg 75. j. D.Lawson:Tlzephysica beams ofchargedparticle 73..M. Doi,S.E Edwards: dynamks TMJâeo?:y ofpolymer 71.E.L.Wolf:Princàles tunnelûq spectroscopy ofeleetron 70. H-lri-l-lcnischrseznfconlzlcror contacts 69.S.Chandrasekhar: Themathematîcal theotyofblack holes 68.G.R. Satchler: Directnuclearreactiomg 51. C.Mzller:TheJâeor.p ofrelativity 46.H. E. Stanley: Introduction tophase rrlrl-Wzïo?z.ç andcrîticalphenomena ' 32.A. Ab lmgndl?:î'zzz J'r/rlclèle: ofnurlrmr 27.E A.M. Dirac:Princèles mechanics ofquantum 23.R. E.peieris: theotyo-f-çozktç Quantm
lntroduction to the Theory of Ferromagnetism SecondEdition AMIKAM AHARONI TheAic/lardfrorl-çfefn Maznelâg?zz Professor ofTheoretical Emeritus lttstituteofscience Weizmann Israel
OXFO
UNIVERSITY IAKESS
N bookhaç been Jdntcd dîgstazy andlzrolluced $nc s'tandœ'd syccscue in crdt'r &)t'Jbntre ftsctlrzirxgtgtTvnolnlï?
00 IJNIVXMITY Pltv Great Clarendon Street, Oxford OMOP O,dbrd Univezsity Press isa depavtzntm oftlzeUnivey'sity ofOHord. 1tftmhers tlleUnivcsity's ofexcellence in researçhy scholarship, objective andeeducation bypublishing worldwide En OxibrdNewYork Auckland Cape TownDare.sSalaam Hong KongKarachi Kuala Lumpur Madrld Melboume Mexiço City Nairobi NewDelhiShanghai Taipei Toronto Witholeesin A'rgentina AuœiaBrazilChilt Chzech Republic FruceGreeoe Guatemala Hnngmy Korea Pol=dPortug;l Ikly Jaqatt South fin>poreSwlàerland X'bazland Turkey UkaineVietrram Oxfordisa registered tmdemmrk of Oidbrd Univemity Press in theUKandin certasn othercountries Published ilztheUnitedStates byOAord University Press lnc..NewYork
((8ArnsumAharoni1996 ne moralrightsof theauthorbavebeenasserted Crowncopyngh' t material is reproduced under
Class Ucence Number CO1P0O00148
wS:.N thepermission of IWSO andtheQueen's PrinterforScothnd Daobase HghtOAordUnheersity Press (mlker) keprinted 2007 A1lright.s resewed.No maybereyroduced. partofeB-!tpublimdon storedi:l a retrieval or eansmitted. in azzy formor bqany meanq. systema witlhour Universzty Press, tllepriorpermiqsiœn jnwridngof Ogdbrd or aseexsslypermitted bylaw.or undertermsagreed W:.htheappropriatt Tepromphics dghtso ' don.Enquides concprnl'ng reproduction outside thescope of theabove should besenttothekightsDepar%ent, OJCCOM University Press, attheaddrerhs above Youmustnot drculatethisbookin anyotherbinding or cover Andyoumustimpose thissamecondidon on anyacquirer
1S3N 97$-0-19450809*
PREFACE TO THE FIRSTEDITION Thisbookis mainlyintended to beusedas a textbookby fzst-yeargraduatestudents aadadvanced seniorsin physiœ anden#neering. lt is built, however, in suc,h a waythat it em.nalsoserve as a reference bookfor professiolals whoworkon advanced topicsof magnetism, but want to relesh their previousstudies, or lookmore deeply1to thebasisofwhattheyare doing.It isbased on a coursethat 1used to teac.hin the F'einberg Graduate Scàool ofthe Weizmann lnstituteofScience, whichhms beenwidened here, maixlyin tûe part denlêng with micromagnetics. The.emphasis is on explaining thebmsic principles,withoutgoingtoo deeply into anyofthespecialîeldswhichare normallydiscussed in diFerent in themagnetism conferences. prallelsessions Theideaksto Tvebeginners sizeof one book,and as muchcoverage as is possible withina reasonable to havematureresearcàers in one Zeldhaveat leasta glimpse into what otherEeldsare a11 about.Onlyin the particularfeld of micromagnetics into the state-of-the-art did 1 allowmyselfto go somewàat of some more advanced topics,mainlybecause thereis no comprehemsive treatisewhich coversthis sublect, or even anypart of it. 1ztsome ways,tkis bookis nisxn meactto besuc.h an advanced reviewof micromagnetics. But even for 'this I triedto concentrate on theb'msis, andavoidmostof the technical subject detailswhic.h belong in suc,h a treatise.Themore advanced partsare usuzly to thelkterature) whichshouldhelpreseircAers v-ithout #venas references confusing thestudents. This bookis theoretical, but it is by no meansmeantto bereadolly bythosewhowast to become theorists. I havetried to keepin minda11 thosepractisingen#neers andexperimental phydcistswhoonlytoo oflen dogoodexpedmental work,withoutuderstandingihe theorybehsnd it. Theyusuallylookup, andwith too highrespect,to the theozistswhose mainlybecause thesepapersare writtenin paperstheyare unableto read., ac incomprehensible lMguage. 1 hopetheywill beableto readthksbook, asdto flndout that in manycasesthereis nothin.g behindthat obscure presentation, acdthetheoristsonly pretendthat theyknowwhattheyaze doing-Forthîs purpose,theemphasis is alwayson thedisadvantages and the drawbacks of eachtheory,more thanon its advantages, whichin my mindare self-eddent. In particular, Tkeeppointingout the appvowimations whic,h some theorists ignore,or even.try to Mde,clalmlngthat a particular calculation, is ermet. or a prticular resui, that thereader Ttismssumed hasalready takenan undergraduate course on âelds,andis fnmêliarwith Maxwell's equations,andthewaythey are
PREPACE
dedved. Some(batdesnitdynot a11) of that subjed matterksrepeated here,aadpr-nted 1oma de'erentangle,andwhha more maturepointof q'iew.I iope thatthisrepetitionwill helpestablish a betterunderstanding of the ma>etostatics thanksposWble in a typicaluadergraduate course, wlkich rushes to cove'rtNemzrriclzlum, with no time leftto understand it. However, even in ths mostilask mavetostatics,I = mostTy tryiag to to buildthethecayom rathertlun to givethestudenta goodfoundation cocer a lot of ground,or to gointo tàeEnedetus of particularproblems. M%t of this bookusœ chssiGphysicsoaly,because it LsHprwsa-ble to dott otherwise. In spiteof somecblmqbysomeenthusîasts, thue is no quantum-mehanical theoryof magnetsqm whichcoversmore thana minor little cozmerof the subject, and even tlïat is doneby usîagver.rrough I madea spem.1pointto discuss tlle Bohr-van appremations. Leeuwen in section1.3,because it Lsquotedmuchtoo oftenby quantumtheorem, mechaniœ spedœl-les, wholookdownon everybody else,andclpl'mtttat theirsis the onlytmle physics. Thox maaetidanswho do not develop a.a Oerioritycomplex fromtàeseaTgttmenis mar sldpthe detailsof that section. Nobody evertellsthequantum-mechaaical expertsto avoidcertain appremationsusedia their theozy, and.if told,theycouldnot care less.I am tryingto eatourage the classical-mechaniœ theoriststo havethesame a:œtude. Ia theFeberg Graduate School, atl students are rmuiredto takea.a âdvanced coursein Qaantum Mebanics, on whichI couldbaildmy course. is aiypical,a'ndix othe pla- manystadents, mostly TMscmse,howevez, in ensneezlng, schoolwtthoutever beingexposed tm-acà a graduate to aay Forthe beneftof thesestudents, quantummehanics. 1 collectuall the quantlzm-meehnm'cal dismeoninto chapter3. Tke rest of the bookis writtenwitkoutanyessential reference to thisGapter,ande.xn befollowed evemif nhxpter3 is omitted.Tkose whoHow sometkiag 'aboutquantum mechanics shoaldbe ableto beneft from thepreenutioaof the lumic principles in that Gapter.But thosewhodonotknowquantummechanics can easGy do'witkoutit. 1haveIZSH aa unonventional orderof thesubject matter,startingfrom excxaage, tkenaddingtoit theauisotropy, aadindudingtlmeeects,wlzie.k aze usuallystudied withoutany refereace to tàe magnetostatics aayway. Themagnetostalk interactions comeonlyafterthesuperparmagndism. I believe that thisorderis pnqierto followby students thantheorderwkich mostof my colleagues wottldhaverecommended, aadthat R àeelps to grasp theprindplebekndtheequations. Thereferen- are onlymeaatto indicatewherethe reuer mayînd more informatiol whichis relevant to somepoints.Theyare not meaatto mentioawho hebwrite the Mstoryof the subjed,althougà1 sometimes strted that lineofresearch. Therefore, theolderpapeze are not mentioned if they are quotedin newer one, unlessthe olderones contain(='tG
PREFACB
information whichc=not befoundin newer ones.1never couldunderstand thepointofthosewhodtetheoriginalworkofMaxwell, forexnmple, which nobodybothersto look up anmay.I havealsorestdcted a1lcitationsto only.Some students were required to haveat papersin English yearsago-all leasta workngknowledge of otherlpmaages,but thesedaysare passed, andI see no reason to put a list whic,hnobodywill even lookat. It is ratherstrangeto discuss theworksofNéelwithoutcitinganyofhisorigiaal works,or even to discuss theDöringmassin section10-4with no mention ofDöring.But 1preferto doit tkis way,andaaybody wkowaptsto read thepapersofNéelin Frenc,h can easily fnd the necessary references ia the I dte. Afterall,I xrn not dtingall tkeolderpapersin English paperswhic,h either,whic,hcouldeasilymakea list of manythousands. I was tempted modelofeqn to makea,nGceptionizzthe case ofthe DietzeandThomas wilic,k1 discuss in muchdetail)butthenI deddedagainstit. (8.1.1) It maynot seemso to thosewhoare usedto textbooks with hardlzany references at all, but 1tlied to keeptheirnumber as smallas possible, and it is,aftera11, alsoa aide to reseœcllers. Iu as muc,h as po>ible,I nlncjtried to referto reviewsfor broaderaspects ofthe topicdiscussed in thetext, or whic,hare rathe.r to semi-popular artidesi.nPhysicsToday, eas'yto beread to, aadin manycasesthere by beginnersThisnzleis not alwaysadhered is nothingbesides the ozi#nal, anddiëcult-to-read, aiticles.Occasionally 1mayhaveaISO beencarriedaway,anddtedsomemore advanced articles; wkickare deânitely not on theintended levelofthe book.But it shouldbe borneiztmindthat the beginner is not eoectedto reada11 thosearticles, andsomeoftlwmare onlyintended for practisingresearchers whowant to gointo somemore detail. I tried to avoidcitiz.gconference proceedings whicha2enot part of a andalsojoulmals wàichare not easilyavailable in manylibraries, journal, unlesslothing more appropriateis available. For examplea beforeBrown the full accountof what1 referto hereas (171)1 hepublished a published shortversionin 2963Z Appl..JW:>., 34, 1319-20Thereis nothingin the latter whichcannotbefoundin (171), andthereLsno reason to mention it. 'PhenBrowndid the s=e with (508), a short versionof whic,hwas frst published as (50z4. But in this case, the h!11paperis published in an in this case1 alsodted obscure wàicknot manyhave.Therefore, journal, the skortversion(50:1, so that thosewho Onnot :nd (5081 caa at least readsomething.
&''l!7Wm Rehqcoih, Jsrc:l Decembe.r 1995
TO THE SECOND EDITION PREFACE Research nowadays advances vez'y1st, and onlya fewyearsafter this bookhadbeenpublished, of micromagnetics had partsofthepresentation alreadybecome obsolete, andcalledfora revision.Themajor chaages, however, azemostlyconceatrated izltwosections ofchapters 9 and11.Thepart that is intended to be useda,sa te-xtbook andMmostalt thedismzssions of theolder,andmore established, theoretical magnetism remainessentially 'a few unchanged. Mostof therevisionin thispart consistsof correcting typographical errors that1havefailedto noticeeven'inpreparingthesecondprîatingof thefrst edition,or some minorrephrasing. Thereare also several mostlyin updatesandreviseddiscussions of somenew references, topics,suchas resonaacesrthatwere on theborderof thescopeof thefrst ' edition. Ofthetwo majorchanges in micromagnetics, one addresses thesearch for a Qhirdmode''of nudeationin a perfectprolatespheroid. It was a,n unsolved problem at thetime, andits presentation in theprgdousMition s'zasnecessarily cautiousandunbinding. Thezeader was warnedthat the popularsearch forsucha tstllirdmcde':was mostprobablyfutile,butlhad to admitthat therewas no proofthat it couldnot efst. The proofwas published in 1997,andnow thepresentation in section9.4is single-valtted, with a clearercondusion: thereis no point ilz lookingfor sucha 'fthird mode''because it caanotpossibly efstThe second change dealswith theproblemof usingsharpcoMers in computational micromagnetics. lt îseven more dramaticthanthefrst one, because this'question hasbeenhighlycontroversial for more than40years. lt wmsfnally settledlastyearin a satisfactozy muner, by tke late Ale,x Eubertandhis collaborators. reêects tllss Thenew formof section11.3-5 drasticc'hange that Lsgoingto infuencestronglyall micromagnetics rein thecomhgyears. search
Rehmmthv zàmcl July2000
AmiumAharoni
CONTENTS 1 Iutroduction g:t.:L Nomenclature Domains l,2 Weiss Theorem 1.3 TheBohr-vanLeeuwen i,.4 Diamagnesism
2
MolecularField Approxîmation
2.1 Paramagnetism k.2 Ferromagnetism 2.3 Antiferromagnetism 2.4 TheCurie-Weiss Law 2.5 Ferrimagnetism 2.6 OtherCases
1 1 3 6 8
12 12 16 20 22 27 32
3 3.1 3.2 3.3 3.4 3.5
The HeisenbergHnrniltonian SpinandOrbit Exchange Interaction lhtegrals Fuxckanje Delocalzzed Electrons SpinWaves
35 35 36 43
4 4.1 4.2 4.3 4.4 4.5 4.6
Magnetlzatlonvs. Temperature MagneticDomnsns TheLandauTheory CriticalExponents IsingModel LowDimensionality Arrott Plots
60 60 63 66 70 76 80
5 Anisotropy aud Time EFects 5.1 Anisotropy 5.1.1 Uniafal Anisotropy 5.1.2 CubicAnisotropy 5.1.3 Magnetostriction 5.1.4 OtkerCases 5.1.5 Surface Anisotropy, . 5.1.6 Experîmental Methods 5.2 Superparamagnetism 5.3 MagneticVkseosity
48
8à 83 85 86 87 88 89 90 92 100
x
CONTBNTS
TLeStoner-s7ohlfarth lfodel
705
6 Another Ene'rr Teerm 6.1 BasicMagnetostatics 6.1.1 Uniqueness 6.1.2 TriviazEx=ples 6.1.3 UniformlyMagnetizW Ellipsoid 6.2 0rigi.aof Domains 6.2.1 DomainWall 6.2.2 LongandShortRange 6.3 MagneticCharge 6.3.1 Geae'ral DemMnetizatioa 6.4 T/zdts
109 109 I1l 112 114 116 120 122 125 128 131
Basic Micromngnetics Iclassical' Kxchaage TheLandauandIzifshitzWall Magnetostatic Energy Physieally SmallSphere ' 7.3.1. 7.3.1 PoleAvoidaace Prindple 7.3.3 RHprocity 7.3.4 UpperandLowerBounds 7.3.5 PlanarRectrgle
133 133 138 141 142 145 148 149 152
7 7.1 7.2 7.3
8 EnergyMlnlml'zation 8.1 BlochandNéelWalls 8.2 Two-dimensional Walls 8.2.1 Bulk Matfm-nqK 8.3 Brown'sStaticEquations 8.4 Self-consistency 8.5 TheDyn=ic Equation
157 157 165 171 173 179 181
9 The NucleationProblem 9.1 Deinition 9.2 TwoEigenmodes 9.2.1 Coherent Rotadon . 9.2.2 Maretization Curling 9.3 InfniteSlab 9.4 TheThirdMode 9-5 Brown'sParadox 9.5.1 EazdMaterials 9.5.2 SoftMaterials 9.5.3 SmallParticles
183 183 188 188 189 194 200 204 207 209 212
3.0 Analytic Mkromagnetics
215
CONTENTS
X4
10 AnalykicMicromagnetics 10.1 F erromagnetic Raonance 10.2 FirstJntegral 10.3 Voundary Conditions 10.4 WaIIMass 10.5 TheRemauent State 10.5.1Sphere 10.5.2ProlateSpheroid 10.5.3Cube
215
11 Numerical Mictomagnetics A1.1 Magnetostatic Enera 112 Energy Minl'mization 11.3 Comptltational Results 11.3.1DomainWalls 11.3.2Sphere 11.3.3ProlateSpheroid 11.3-4Tln-nFilms 11.3.5Prism 11.3.6Cylinder
238 238 243 250 250 252 255 256 260 266
References
268
215 217 221 222 225 226 231 232
Author Iudex
SubjectIndex
315
CONTENTS
INTRODUCTION )1t $1 Nomenclature It 'idMownfromexperiment that everymaterialwhichis put in a magnetic feld,H, acquizes a maretic moment.The dipolemomentperunit volume defnedas themagnetization, andvdll bedenoted hereby thevectorM11b V mostmaterials M is proportional to the applied freld) H. The relation '
ù thenwritten as
M = xH, andx kscalledthe magnetic awuscegtfàdlïtp of the material. Maxw-ell's equations are usuallywrîttenfor thevector B = Jzc (H+ %M),
insteadof M. Herertn is a notationintroduced by BrownI1)to include dlfferent systems of units.ln pariicular,% = 1 for theS1uztits,whîchaa.e popularin textbooksr while% = 47 for titeGaussian, cgsunits,whichare .mostpopularamongmagneticians: andforwhichp,o= 1. If ecn (1.1.1) is 'Vllilled, it is alsopossible to revite eqn(1.1.2) as B = ;&n,
where = Jttp,r + '/BX) p = p*(1 (1.1.4) ib knoqqz as the magnetic germecàïlït:?. Thematerialis clx--fledmsCparar magnedc' if x > 0, f.6.ys > 1, andas4diamagnetic' if x < 0, i.e. p. < 1. Thereare, howmrerj some mateziats whichdonot ft this classif.cation, in thesematerials the mawetization because M is not proporkonal to tie feld, H. lt maybe,forexmple,non-zero at H = 0.Actually,L6,1 in xpplied is not even a one-valued of H, andits valuedepends jhesematerials fmnction on thehistoryof the applied ûeld.A typicalcaseis shownin Fig. 1.1,which plots$hecomponentof M in the directionof the appliedfeld, MJJ,as a 'function of themagnitude of that feld-Theoutermostloopis knownas the limitingàpstereyf.s c'u'rt)c,andis obtained by applyinga suEciently Iarge deldin one direction,decreasing it to zero, andthenincremsing it to a large valuein the opposite direction.Thecurve is reproducible in .consecutive cyclesof the appliedîeld.
2
DITRODUCTION alplf';rdr S T z'
l
/
Htt
H
I i
I
FIG- 1-1. SGematic representation of the limitinghysteresis curve (or of a typical ferromagnetîc matezial, displaying also the virgin loop) cuz've(dashed), acdone minorloop.Also shownare the remanence, Mrt the saturation Ms?andthe coercivity, Hc. maaetization, Thecurve whichstartsat theoriginisknownas theuivginznc-kn6tïzction curne,ande-anonlybetraced once aler demagnetizing the swple,nxmely bringingit to a stateiztwhichM = 0 at H = 0. Thisdemagnetization may be acMeved by heatingthe snmpleto a hightemperature,andcooling it in zero Eeldjor by cyclingthe appliedfeld with steadilydecrea-sing
then decwreased beforethe limiting amplitudes. Iï the feld is increased, hysteresis cuz'veis reaGed, ar.dthenthe îeldis reversed, a so-called rrànor hysteresis Je@J Lstraced.Oneexaapleof mzc,b a cuzve is shownin Fig. 1.1,but thereis actuallya wholecontinuumof them.With an appropriate historyof the appliedfeld, one can therdoreendat aay point insidethe ltmitinghysteresis loop.J.nparticular,it is possible to reachH = 0 with of MH betweea -l% and mMr,whereMr i.sthe valueof MH any p-alue on tke ll-msting hysteresis cuzwe,at H = O (see Fig. 1.1). It is calledthe or the remanent rncgnetfzctïtm. remanômce It is possible) althoughnot rtuxy necessary, to defnepfarrne-ability for ferromagnetic materials,in orderto pretendthat theyare similazin some mateaiisxay to panmagnetic thereqn(1.1.1) nor eqn (1-1-2) is G'l6lledin fenomagnetic materials.Nevit is quitemlstomaryto introduce permeability at eohezless, some 6.Tctin6 a particularwlueof the applied Eeld,H, as
'WrslssDOMATNS
3
OBHI8II, of Ih a,s or, over a certainrangeof Nalues
(1.$.5)
LBHILII.
(1.1.6)
Jzqff=
ltes =
J.ueithercase:it is possible to a certainapprofmationto applyMaxwell's equations to ferromagnetic materialsin the same way theyare nsedfor materials, withtidseFective hereMis paramagnetic permeabzityHowever, not a constantaiit is in paramagnetic materiaks the whole and formulation ) is at bestusable at a particularappliedfeld. Twootherimportanttermsare azsodefnedon the limitinghystercis curve in Fk.1.1.Oneis the coerci6sy or coertbt)e jbrce,Hctwhic,hLsthe valueof H for whic,hMs = 0: andis actuallya magnetlc fe-ldaadnot a force-Theotheris the satnrationmcpnetïzcfïon, or spontane@'as t'ncgneàïzationtMs,whickwill bedeinedfor themeantimeas thevalueof Ms , or the magnitude of M, ja a vezylargefeld. Thisdefnitionis not accurate, andw'illbemodifedin section 4.1,but it shoulddo for nowThkssatm-ation magnetization is an htrinslc propertyof the material, of thesample, lf properlymeasured. It is a fundion of andis independent temperature, a typicalform of whichis plottedin Fig. 1.2aIn this fgure, Msis normczedwithrespectto its valueat zero temperature.Thetemwith rcpect to theso-called Tc, peratureis normalized C'urïetemperatnret of the materlal, whic.h is the temperatare at whir,hMsbecomes 0 tzfzero cmlbed in this wqsy, the cun'es for diferentferro$eld.Whennozmalized aze verynearlythe same msin Fig- 1.2..X11 ferromaaetsbecome magmets regularpazamagnets at temperatures aboveTc; andas suchtheyhavea non-zero magnetization in the presence of the feld whichis usedfor the mea-surcent.Thisbeaviouris emphasized in Fig. 1.2whichshowsthe curve as aduallymeasured in a smallappliedfeld, at which2)G doesnot Speecexmerimental mlrves for Ni go to zero at the CurietemperatnzeandFecxn beseen,for ava.mple,in Fig.9 of Potterr2).
1.2 WeissDomnins In principle,anytheozyof ferromavetism shouldaddress bothof thaseunusualphenomena, whichare not encountered in othermaterials. It should thus erplainthe hysteresis displpyed in Fig. 1.1 qnd the temperaturedependence of Fig. 1.2,even thoughmost theoreticians workonlyon one andiaore the other.Theydoit evenwhentheycomparethe resultswith azt w'tperiment) whichalmaysinvolves both. It is inevitable, because the generalLuuantitatine problemis too complicated for the presentstate of Howledge. bothphenomena are understood to a certxin extent due Qualitatively, to a,aexplanation alreadygivenbyWeiss in 1907. Weissasumedthat there
WTRODUCTION
1
0.8 7
o' x'.s 0.6 > Nx
D =t I A 0.4 = 0.2
0
'
l
I
0.2
.
1
0.4
I
I
0.6
--u-
.
'
0.B
.'
I
1
nG. 1.2. SpontanYus magnetization, Ms,of a ferromaaet as a functiou of the temperature, T, normnlized to tlkeCurietemperature, Tc.The applied.feld is Msumed to be small,but 5:111,e, msit is in realm-nxm.ements.
Lsa certaininternal(orCmolnruxlar') Eeldin Terromagnetic materials, which trie to alignthemaretic Gpoles oftheatomsagahstthermalfuctuations whicàprefera œmplete disorderof thesedipolœ. As will besœn ia the nextchapter, sucha molecularseld is suRdent to explain thetemperaturo dependence asplottedin Fig. 1.2,andtheparamagnetisan ibovethe Curie 1.hz.-R temperature. However, modelleadsto a cdntdczàà maoetizationM at any sventemperature belowQ. ln orde to explainthe unusual felddependence in Fig. 1.1,WeissMsumed that ferromagnets are madèout of Esmb of thesedomxsns is magnetized to thesaturationvalue' m=y domains. as i!z Fig. 1.2, but the diration of lhe magnetization vectorvazies Ms(T) 1omone domaiuto the other.Themeasured valueof themagnetization is theaverageover thex domains, whic,hcatl be zero in any particue
WEISSDOMAINS
5
diredionwhenthereisan equalnumber of domains pazallel andantiparallel It ca.calsohavea,non-zero value, to thatdiredion. numericazy lessthazt if thisnumberof dominsis not equal.Theappliedmagnetic feld Ms(T), rotatesthema>etizationof theindi'ddtzaldomains intoits own direction, andwhenthisfeld is sulcientlylargeto aligna1ldomains, the measured value beœmes Without going into fne details, it shouldbe average Ms(T)quiteclearthat thisassumption issuëcientto eolain theGeld-dependence '' in Fig. 1.1,at leastqualitatively. . Weissdid not justifyanyof his two azbitrar.g %sumptions, andcould not explaintheoriginof themolecula,r fieldor theefstenceof thedomains. Therewere alsoseveraldiëculti%in implementing his principles for any quantitative estimations. In pazticulasr, usingtheexperlmental valueofthe Curiepoint in sucha theozy,themagnitude of the molccular feld i.tlkron turas out to beof the orderof 106Oe.lt takesa êeldof theorderof 1Oe to rearrange thedomains in ixon,and103Oeto elp'rnlnn.te themaltogether. Howcome that a feld of 106Oeis not suscientto alignclf the magnetic momentsof iron, arzdit takesa.u extra feld of only 103Oeto do ît? And howis it that.even a 1Oeîeld can contributeso verysfgnl-ficantly towards a taskwhic,h a 106 Oefcld Lsnot suëdentto accomplish? theassumpIn spiteof thesedisculties(which v'itl beaddressed later) tionsof Weissazeactuallyvalidaadsound,andcontainthe basicunderstandingof ferromagnetism. The molecularfeld is lmownnow to be a certainapprofmationto a couplingforcebetween spins,whichcan bedehereat diferentlevels. rivedâom more basicprindples, as will beshown in dferentdiredions,is not-evenan TheHstenceof domains, magnetizcd assumption havebeenobseredby several techany more. Th%edömains niques,outzined ia section4.1,andtheir Hstenceis now an established eoerimentallbct.Theonly diference is that they aze lmownnow to be magnetized alongcertaindirections; andare not a-srnndomly orientedas Weisfthought. However, thdr Gstencebeingan experimental factshould not stop us fzomentuizing'tnlqthesedomains e-xist,andan appreciable partof this bookq'i.1l bedcvoted to answerkng thisquestion, a-swellas the questionof whya 106Oeîeld cannotdowhata 1 Oe6e1d can. Eventhoughthebasicproperties of ferromagnets are quantummechanat' a icalby nature:mostof the treatmentherewill use dassical physics) levelwhickcan befollowed by engineering students whodidnot takeany in college. lt is not onlythe choice for thisbook.Most quantummechaakcs ofthe development ofthetheoz'y of ferromagnetism was doneusingclassical concepts only,even in recentyearswhenevezybody knowsthat a classical theorycan at bestbeonly aa approfmationto the true quantumtreatment, eneciallyin magnetism. The reason is that purequantumtheozy hasnot Mvanced yet beyond simplecasu whichare ofverylittle practtcal application. However, beforeadopting tMsclassical approach to ferromap netism,it is necessazy to consider a famousandofken-quoted theoremof
WTRODUCTION
6
to whichcl%sical physic cannotpossiBohrandvan.Leeuwen, accordhg blyleadto magnetism, because in pureclnMical physics the electrons in a mat-rlltldo not interactwith a.n appliedmagneticield.
1.a The Bohr-vazzLeeuw-en Theorem Consider a claôsicai syste,m of N electrons. Theyhave3.6rdegreeof 1e0. dom,andare thereforedescibedby their 3wV coordinates, qq,andtheir electronhasa (negative) chargejd = -!:g1Iu cgs 3N momenta,pé.Eac,h = cv, and units)aa electron whose velodtyis v createsa curzentdensityj a magnetic moment . m =
a
(t
e
ygrx J= sr
(1.3.7)
x v,
at thepositionr in space,wherec is thevelodtyof light. Theimportaat featureisthat this m isa Iinqarfanction ofthevelocityv ofeachpazticular electron. lt mpltnsthat whatever the patteM ofmotionof a11 theeledrons ks,the total magnetkmomentis alsoa linecrfunctionof all the electron velodtiesTherefore, the a-componeat of the total magnetic pomeatof all theelectrons must bea funaionof the form 3N
T)l>=
J
GL(çz , - - - , q'nr )q-i, 2=1
/1.3.8) k
a derivative with respectto timej andwherethe wherethedot designates coeëdents, a(,are functionsof all the coordinates %, but do not depend On R.
Thecanonical etpationsof a classical motionaze J>f
ié= opi,
= 3%
-
&/f
(1.3.9)
t'kï
where
(1.3.10) is the Hnm-lltonian, m. is theelectronmassj A is the vector potential of ' themagnetic feld, andc7 is thepotentialeneroe. Substituting eqn(1.3.9) in e1n(1.3.8)j 3N
= 'rn,.'s
tz'; (ç17, :3.N') aPi - - -
f=z
-
(1-3-11)
If k'Bis Boltxann'sconstant,T is thetemperaturez and
/3=
1
*T
,
(1.3.12)
TI'IEBOM-VANLEELTWEN TROREM
the dassical statisticalaverage whic'hwill bemeasured Ls
Mz =
) pue-Rdqz Je-sdqï
..
. ..
.dqsxdps . . . dpzx . . . dqsxdpï . dpsx
(1.3-13)
Accordingto eqn(1.3-11): the numeratorin eqn(1.3.13) is a sum of terms,eachof whichis proportional to O
#7Y-rté = t'?py Ti
-c -<
X
ZC WY1 ( J-sv Pj m -
*
-
x
(1.3-14)
whic,h'kanishes, because H is proportionalto Wfor largetpgi according to eqn (1.3.10). Therefore, Mz = 0 andthereis no ma>eticmomentat for anyappliedâeld), no matterwhat the any vectorpotential(namely actualmotionof the electrons in the material 1. i.notherwords,thereis no interaction between an appliedmagnetic feld andthe eledronsin any material,iftheseeledrons physics. behave according to thelawsof classical lt meausthat dassical physicscannotaccountfor eitherdiamagnetism or paramagnetism, 1etaloneferromagxetism. Thistheoremis ver.vgeneral, aadits proofis rigorous. Eowever) it do% nöt eliminate all possibilityof usiagclassica,l physics. A11' it elirnl-nates is the use of pureclassical physics, whichnobodyis doingaaywaynowadays. Classical eledronscannotmove in a cirOlar orbit azound the atomicnucleuswithoutradiatingtheir energyand collapsing into the centre.But theoriesonlyuse theresultof qurtum mechanm=y oftoday'sûclassical' icsto forcetheelectron into suchorbits)andcalculate its radiusclassically. Iztfactthiscircularorbit isa11it takesto allowa clmssical theoryof diamagnetism,as will beseenin the next sedioa.Classical eledronsdonot have a spineither.Bat by superimposing the quantum-mechanical conceptof a spin,a classical theoryof ferromagnetism becomes possibie. Actually,in the caseof ferromagnetism it is not even a realclassicaltheory, likethe one whichservesas a limit to quautummechanics in otherfeldsof physics.It is a quasi-classical approach whichtakesthe quantum-meeanical concept of a spinandtreats it c.s %? it 'tller6 c classjcak 'pcctnr.lt essentially uses onlya classical results,whic,h Jormto dressup somequantum-mechanical at frst sightdoesnoteven seemaesthetic. In principleit wouldbe nicerto treat the wholefeld of magnetism in general,aadferromaaetismin particulam, by purequantummechanics. Some books,e.g-Wagner are (3),andmanyof tke research paperswhic.h pubishedeveryyear:adoptthis approach.Eowever, quaatummech=icsis onlyapplicable in a vep-limitedpaztof ferromagnetism. ForG the other in this Iield,thereis just no otherchoice.Theycan beeither problems techniques, ignoredor studiedby the quasi-clusical as usedi!l most of this book.Moreover, calculations classical can givea usdulintaitiveguid-
WTRODUCTION
8
aace whichis suRcient to pzeferthemeven in some of the casesfor which
quantumcalculations are possible but complicatedBesides, mauyof the reported use ratherroughapprofmations, as will be quaatumcalculations that theseapprofmatioas seen5nchapter 3. lt hasnever beenestablished physics. azeanybetterth= the use of classical 1.4 Dinmagnetism Asa,nillustration,diamagnetism will bestudied hereboth1oma qu=tummechanical staadpoint,and1oma quasi-classical approach on whichthe Bohrorbit of an electronis superimposed. Consider frst an isolated,quaatum-mechanical atomwhichha.sZ electrons. Its Hnrnlltonian Ls z
1
a
e
+ other terms, gpï-cA(rç)1
amey.Y!,
7t =
-
(1.4.1 5)
wherethe othertezmsincludeinteractionsbetween the electrons aadthe nucleus, andbetween one electron andanother,whichdonot playa rolein the point underdiscussion. If the appliedmagneticfeld Lsparallelto the z-axis)andis constantin both spaceandtime, thevector potentii is A
and
H 2
-
=
(-p,z, 0),
H
(1.4-16) H
= pt - A(n).= .--lzpv ppzlï (1.4-17) -a ndpis !.! wheref, is the z-component of the orbitalangulaz momentum. Substituting an.d(1.4.17) in eqn(1.4.15), the expectation ecns(1.4.16)
valueof theHarnlltoniu is
1 Z w eHlt ezJJz V = 2z?u + + &2)f+ otherterms, (1.4.18) ps 117 X(2 c zjca (z2 ï=1 -
whichleadsto a magaeticmoment iwv-=
-
('?V= DH
Z
+ p2 )-) &F7zoeH zzrsec 2c (z2 )y E
-
ï=1
. .
(1.4.1 9)
Fora moleof the material,the susceptibility ts :J.Z ;x = o.a =
-
e2x
Z
Cz2&2)ï , nmeaE f=1 +
(1.4.2 0).
.
whereN ts Avogadro's number,namelythenumberof atomsin a mole.
DIAMAGNETJSM
In orderto obtainthe same resultby a quasi-dassical estimation, con-
sidtraa dedronmodngai a ccmstant frequenc.y fzc ia a drrnln:r orbitwith
a radiusr, arounda nuclems wkoseelectzi.c chargeis Srei. In eq'lilibrium theœntrifugal forceon tbeeledronis equalto its Coulomb attrRtionto
thenucleus, namely 2 = n'tevz'r
r2
-
(1.4.21)
.
(1.4.22)
Hence tdc=
3 TIVT
forcej(e/c) If a maoetic field,H, is applied, a Lorentz v x H, is added tc thepredousforca,thefrequeuc'y changes to (tnaztdthenew equilibrium equationbecomes mcto1zz Ze2 lelYrS =
.2
Usingthe notadon alz =
become eqn(1.4-23)
c
Iele
2mec,
(1.4.23) (1.4.24)
Y2 - 2=:7:,- oJ:2 =
0. (1.4.25) SinceLOL<
+
2 + .2 gs (az+ (ac. ogo o
(1.4.26)
Theappli-tâonof tbemagneticîeld has,tkus, shled the fzequency by theamountulzt whichis calledtbeLavmorJreçuencp. mpmnstkat theelectron Thisc'hanze in frequency makes extra*z,/(2x) revolutions tkuscreatingtheadditional cmq'ent per second, J = 2* . -
(1.4.27)
In cgsunits,themaaetic momentLsj/c multipliedby the area unde.r the
orblt,lmmely
(1.4.28) whichlendslo tbe .:a,z,,esusceptibility as in eqn (1.4.20). nl's resultdoes not contradict thegeneral Bohr-maLeeuwen theorem, sneztlmtheorbit assumed because a true clasdcalelectronc'aztnot in tbis
10
INTRODUCTION
tclasicalh It doesshow,however, that correctresultsmay alryo calculation. beobtainedbythis quasi-claasical approach whenit is combined qdthsome artifactsfzomquantummecbanics, suc,h as the electron maintnsning the circularorbit in this case. Ia a sim:-lnm studyof way,thequœsimclassical ferromagnetism isobtained by hcludingtheelectronspiu,withsomeform for the e-xchange interactionbetween thesespins. Beforeconcluding the presentcmse,several commentsare in order.H thefrst place,thepictureof an electron completely localized at the atomic site is oversimplled for most solids,andit certinly do%not applyto metals, occupies certain in wkichthedegenerate Fermigasofthe electrons Landau energybandsthat are splitby themagaeticfdd into the so-called whichis beyond levels. lt isa completely dferentproblem, thescopeof this book.Thecalculation aspresented hereactuallyapplies onlyto noblegases, or othergmses whentheyare ionizeddownto the complete Jnthtte shellj.. cmsesthe materialis completely isotropicjandtherefore V = y2 = Xr2. s Forthœecases)eqn (1.4.20) is usuallyfoundin theliteratureas y: =
-
ezAr rz gzyz r''-'
Z
--x
Tç ? 1(,=1 -a-
(1-4.29)
andtkeT%tof the calculation is theevaluation of Fpl 2 whichksrathersimple for a hydrogen atom,butlessso for othermatedalsThe second point is that the diamagnetism (ie.negativesusceptibm of efsts or in cJJ matedals? includingparamagity) eqn (1.4.20)(1.4-29) nets.Aowever, in paramagnetîc the positive susceptibltyismuch materials in comparison. in cgs'Imits, largerthanthenegative part,whîchis negligible a typical.value for the&st term i'nthesquare brackets of eqnr1.4.19): AEJ, is of the orderof 10-27 term, lctlfzz + v2/(2c)) is of ) whilethe second the orderof IO-ZGSL Thelargestfeld H whicbis physical!y attainable is 106Oe,andeven at that feld the second term of eqn(1.4.19) is aegligible compared withthe frst one. Theonlycasewhenthissecond term (namely the diamagnetism) is measurable is whenthe frst term vaaishes, whicb usuallymeans a closed electronic shell,as i.!lthe noblegases. It shouldbe notedthat a zero contribution of the orbitqlangularmomentum,as for d-electrons, is not suRdent, because the electronspincontribution to the îrst teermwouldnormal!ymakethe secondterm negligible annray. The second term is measurable only whenthe total contribution of orbit and spinto thefrst term vanishes, andthesingle atom does not haveanymagnetc momeutin zero applied when feld. Thisis the c>e of diamagnetism, the magneticmomentof eackatom, andof the ensemble of atomsin the material,is proportionalto theappliedmagnetic feld, andis always in the opposite directionto that of thefeld. Paramagnetic materialshavea non-zero magneticmomenton eac.h of
DLWAGNETISM
11
thdr atoms,whic,h Lsnot caused by,andisindependent of, azkapplied magneticfeld. A magneticâeldarranges thesemomentsizzits own direction, so that tke momentincreases with an increasing magnitude of the feld, is positive.Thediamagnetic, andthe susceptibility negative susceptibility ezstsin thesematerials as well,onlyit is usuallynegligible compared with thepositivesusceptibility part.In the absence of an applied 'feld,the =n.gneticmoments of theiadividualatomsare randomly oriented, so that their ctlcmçeLszero. Iu ferromagnetic matezials the magneticmomentsof the individual atoms interactstrongly with e2.c.11 other.As will be seenin the'followilzg,this interactioncreatesa certaindeveeof ordereven ilz the absence of an appliedâeld-Thisorderis the causeof a non-zero average magnetic momentin zero feld, whicllis the basicdfereacebetween paramagnetism andferromagnetism. Thus,the classifcation of materialscan beexpressed ia termsof the magnetkc momentin zero appliedfeld. In diamagnetic mar terials,thismomentis zero for eachatom;in paramagnetic materials tMs momentis non-zero for eackatom,but averages to ze'ro over m=y atoms; is not zero. andin fezromaaets even the average
2 MOLECULARFIBLD APPROXIMATION 2.1 Parnmagnetksm parn.magnetism lt is necessary to undezstand before trying to understand fezromagnetism, andit is bestto start 1om thesame qumsi-clmssica.l approachwhïchwill bc usefulfor ferromagnetism. A quantum-mechanical theoryof paramagnetism isnot particularly diEcttltto htroduce,butit E3j wi'llnotserve thispurposemsefecdvely. Therefore, we start byconsiderîng an ensemble of atoms,andmssumethateachof themhasa fxedmagnedc momentm. In orderto beusedlater for ferromagnets, we justadoptthe quantum-mechn.nscxl resultthat the magnitude m of this momentm is ggBS,whereg is the so-called tlaandé fador' or lspectroscopic splitting hctor' and ,
jsj:
P,B= 2rzcc isknownmstheBohrmagneton. lt is anotherwayof expressiug cxqn (1.4-19)1 although this,magnitude doesnot evenneedanyjustlcationin thepresent conte:tof paramagnetism. lt mayjustbetakenasa devnition oftheatomic moment.Eowever, thereis anotherquantum-mechanical propertyof the spinnumber,St whichis convenient to adoptwithout considerîng thedetails-lt isthatthecomponent Szcan onlymssumethe2S+ldiscretevalues -S, -S + 1, - - ., S, ï.e.one of theintegralor halfintegralsm2ue.s between -S and+S,in integralsteps. Thesemagnetic moments are assumed to interactwîthan appliedmagnedcield, H, but not to interactwitheachother-Theener>of interaction of a dipolemomentm with theield H is lœoqmto be-m - H. J.fthedirecEonof H is chosen the average component of m in that as thez-n.'r1q, directionat a temperatnzre T is,therefore, accor&ng to theclassical statistics Zm,emMfLf * == (2.1.2) (O%J) Temxnll ' wherep is deznedin eqn(1-3-12)Usingtheabove-mentioned mxgaitude of m in mzt andnotingtheallowed valuesof Sz,
PARAMAGNETISM
with
,:
D
=
S
S
e##R7Sn =
S
C1
=-S
rt=-S
wheretNenotation
13
(2.1.4)
gn,ïf
,r;=
-
(z.1.5)
--..-,
NT
ksusedfor short. Thesum in thedenominator is thewell-known geemetric Kzies .%'
5-2C =
n=-S
1 1 1 - f2d+' f-S - ïS'+l ' = = (1+4+. '+dS) .-g.-'y 1- ( 1- ( .$ ï
(2-1.6)
this eqttadonwith rœpect1z> Diserentiating (' an.drearran#ngv J ,
-1 =
a=-S
jpts ..:% j-s hJ S((.s'+1 'i' s-z q; fsv k ..y 2 qhy 2 h) 1 ( ( -
-
-
-
.
.
.
'
Substituting amd(2.1.7) in eqn(2.1.3), eqns(2.1.6)
S((S+:j-S-1) LS+ 1)(fS j-S) = qsxi= (zlzz) g;tn (:.t 1)(ï-s j,s+-z) -
-
-
-
-
-
zssinh((S + 1).4) 2(S+ 1)sinhtsz?)
fs+z+sss-,- (fs+f-s)
4.1.8)
,
wherez)is defne in eqn(2.1.5). Therdore,
(Szi=
S (sinh + 1)zj- sinhtspl) ((,s' sinhtsz?) coshE(5' + llq) cosht sT? )
(2.1.9)
Tiliseeressioncan besimplledby using$hefoEowing, relar well-lmown tiomsMweemthehyperbolic fcnctions: sin.h((J+
-f-
) lyj (2S
= 2sizh cosh 1)q)sinhtlv?) (z #,) -
,
(z.1.1(j;
25'6-1 = 2sinh !. funll cosk((S + 1/3) . coshtsq) (2.1.11) !y n Also,thelasttarmin thenumeratorofeqn(2.1.9) is transsormed accordiag
(z)
to
= sinh sinhtsz?)
25 + 1 - q. 2 r? 2
=
14
MOLECULAR FTRT.D APPROMMATION
2.9+ 1 sin.hp. . z T Substituting all thesein eqn(2.1.9): anddividingby S, =
sinh
25+ 1
(&) = s
cosh !! z T
(z)
(z) cosh -
28 + 1 28 + 1 c0th as y zz -
1
-
g
(?l. z)
c0th
(2.1.12)
(2.1.13)
.
Recalling thedefaitionof 'cin eqn (2-1.5), thisrelationc.anbewrittenin theform
-
(Sz ')
S ss IET--..S ,
=
.
S
(2.1.14)
WT
wheretheA:nction 25 + 1
= Sa@) as
2S+ 7 COth g-sz
1
z
g,jcoth(z,j,) (2.1.15)
-
is cluledtheBritloninAzlcjitm. Besidès the argument z it alsodepends on thespinnumbert S. Asan illustrationwe shallxlqnconsider separately thepmicalarcase S = 1. The allowed values of Sz in this case are zg= +la, ard thesummaR two values. tionsln eqns(2.1.3) and(2.1.4) are over these Therefore, n.n (Sz.b Ewns -e,zv = .ua '.'.w.
.1.'-nla+ -ae
'-
-
te..7/2= 1.tanh .; -2
eznfl o en,.'g
(j
.
:
:2-1.16)
Thatmeans.
sjy (5'a/= Stanh ggp (2.1-17) YT t insteadofeqn(2.1.14). Thereisno mistake in thisakebra) andactuallythe -
resultsare thesame. R can beprovedby usingtheappropriate relatioas thehyperbolic functioms that thede6nstion in eqn(2-1.15) indeed between leadsto B.ikJx)= ta.nh:c. (2.1.18) Hdwever, this spedalfunctiondoesmakethecase S = i)ratheratypical. Thereaderis thuswnrnedthat a phrase like 'consider for example S = .1.: 2 literature; isencountered often in the but more often than not it rders very to a special case,whichis dl'eerent 1omwhathappens forany otherwulue of S,even thoughsomesaltsA with S = .)doezst. ForsmallN-alues of theargument, c0th z
=
-
1
z
z
+ -3 +
O(zs).
(2.1.19)
PARAMAGNEKSM
15
Substituting in eqn(2.1.15))
1)2 1z Ss(z)= (2S+1252
a = S+ 1 z O(z ) 3,5
-
+
+
0(zs).
(2.1.20)
Therefore, if H is not too large,eqn(2..1.14) becomes
1) = #Jzp,S(.5' (Sz) jsz H ) +
(2.1.21)
whichis of the formof eqn (1.1.1). For most parnmagnets at ordinanr e-an temperatures, no deviations fromthe line.arbehaviour of eqn(2.1.21) bedetected even for the largestpossible feldj H. In the cases for which the magnetization is not proportionat to the Geldat highapplied felds,it is customaryto conservethefotmof cqn (1.1.1) but defnea Geldatorvayp dependent susceptibilits is then referred x(Jf).Thevaluein eqn(2.1-21) to as the initial s'tzscepàflflfsp an%rgiœ DLM' a) (&) = -aC = lim = 1% Xrnîtuz H,--& t').s H...n Z'9JJ r -
(2.1.22)
whereN is tke nMraber ofspkns aud perunit volume?
c
=
-
h-SL'S + lhJ. 23ks (pJzs) -
..
(2.1.23)
The temperature-dependence of the susceptibility i.!l eqn (2.4.22) agrees M'ithexperimentfor a11paramagnetsp ard is lmowuas the C'urieJcv)-Jk beworthmentioning thatralthoughx maydepend on S in paramayaISO magnets, it doesnot depend on the historyof H, as is the case for the ferromagnets whichwill be discussed later.In paramagnets x(S)Lsa welldefned,singlo-valued function. Fora very largeargumentr cothz -+ 1,andeqn(2.1-15) implies
#s(+=) =
+1.
(2.1.24)
It means that at ve,zylargeappliedfeldsthe magnetization saturases aad doesnot keepincreasing with the ield. Thissaturationobviously occurs whenalt thespinsare aligned in the directionof the appiiedîeld,because in theseparnmagnets the e:ed of thefeld ksonlyto change the direction of the individual,fxed magnetic moments.It doesnot chrge theirmagnitudes,exceptfor the small,djamagnetic contribution, mentioned in section 1-4,whichalwaysex-istsj butis usuallyneglcblysmallin parnmagnets. Thissaturationcaanotbeobserved in mostpnmmagnets, because the avallable feldH isnotlargeenough to reachthat region-ltis seen,however)
16
MOLBCULAR FDLD APPROXIMATION
thattheargument in eqn(2.1.14) is SHIT, ratherthaajustH. Therefore, T is small. tMssattzration can beattained at verylOwtemperatures; when It cxn alsobeobserved if S Lslarge,whichcmmbe achievcd by a specia! phenomenon knownas sktpenmramannetésm. In normalmaterials, S is the spinnumberof a singleatom, andis of the orderof 1. However, under certainconditions, whichwill bedescrîbed in section 5.2,Sîstheresultant of the spinsof manyatomswhichare coupled together. In thesecases S can beof theorderof 103or 104) andrathersmallH is snlcient to reac.k saturation. 2.2 Texromagnetism section,whichinteractonly Unliketheparamagnetic atomsof theprevious withan external magnetic feld,theatomicspinsin ferromagnetic materials interactwith eachother,eachof themtr/ng to alignthe othersin its own direction. Thisinteraction between themoriginates fromthequantummechanîcaâ propertiesofspias,whkhwill bediscassed in thenextchapter. Readers whodonot kmow any quantummechaaics maysldpthat chapter, whichis not essential for followingtherest of this book.Theymayjust adoptas an aMomtheefstexceof sucha force,whichtriesto alignspins by the so-called ezchange interaction. Thelatter can beexpressed as an ezcltange between spin Sf artdspin Sy,whichis proportional to e'nerp:y Sï- Sy. Eeld,H, as in Includingthesame eneraof interaction with an applied thecmseof paramkgnetic atoms,thetotal energyof a systemis thus *
E
/
-
-5! 74ysçs.ï Eç ggnsi Rp -
ç/
-
.
(2.2.25)
Kheretheprimeover theErstsup indkatesthatthecaseï = J Lsexcluded, because thespinsdonot interactwith themselves. Exceptforthesemlues, b0thsummationsextendover all the atomicspinsin the material.The coeëcients Jii are calledthe ezcàtmpe fnteprcls, aadcan beeeaatedby methods dœcribed in thenext chapter. It shouldbenotedthat thesignof thesecoeRcients is defnedso that if Jy is positivejNrallelspinshavea lowerenerathan antiparallel ones, whzch is thecmsefor a ferromagnetic interactîon. Vezymanybodiesare involved, andsomeapprofmationts inevitable. In thischapterwe introduce a populaz technique, whichisHownby other it names h otherbranches of physics.In the contextof ferromagnetism is lmownby the name mnlecvlcr althoughmore reneldtpgrozfzrùcàïo'n, centlythename mean Jcldapprozimation is becoming more widelyused. its statisticsin more detail, In thismethod,one spinis tagged for checldng whilethe othersare justreplaced by their me= value(or,rather,their quantum-mechanical expectation Then,aftersome maztipulations, value).
FOOMAGNETISM that partîcularspin is 'untagged, sayingthat on the average it is not any diferentfromtheotherspins,thusobtiningthemeanvalue. Spedqcally, we consider the spinS: mssomething special,andcollect together theenera termsin whichit is hvolved(ortheI-lamiltonlan whiclz actson S:),whenKEthe otherspins,Sj, are replaced by theirmean value,
(S#),
Ei
=
-2 #
' H Jusâ- (%)- J/ZBSC
=
-Sf ' Hf,
(2.2.26)
where
H: = p/zsn + 2
Ju(S,) .
i
(2.2.2 7)
Thefactor2 comu fzomthe fact that the doublesum in eqn (2.2.25) actuallvcontainsthe particularspia iwiee:once underits name Sç,and oncemsoneofthepossibilities irtmlncrningover S#.Equation(2.2.27) means that the total energy) S, is not equalto EySi, anda factorof Zzhasto in the mln!rn ation over the interactions, beintroduced so that theyare not twice. counted interactionbetween the To the presentapprotmation,the exchange spinshmsthustHrnedout to be equiwlentto an interactionof eachspin with an efectiveâeld,Hç, whichis non-zero even whenthe real applied feld H vauisheslt gsessentially the assumption of Weiss,mentioned in section1.2,whkhiswhythise:ectivefieldbecxme knownin theliterature as the Wr61.S molecular N'forerecently;the .56ld. .#eu,or Justihe Wreù.s name of Wekss tendsto beforgotten,andthe nxrne mean $614 seemsto betaldngover. Undereithername, the abovetreatmentcan beregarded at a certainlevelof analysis msjut6cniion of thetmolecula.r fteld':whiclz WeissJustpostulatedarbitrargly. To reachthislevel,we havepostulated arbitrarilythe etstenceof an exckange interacKon of the formdescribed byeqn (2.2.25). A deeper-level callsfor delvsngeqn(2.2.25) justiîcation 1ommore bmsic pzinciples, whichwmbedonein the neadchapter. Theproblem of ferromaaetism hasthusbeenreduced to theproblem of isolatedspinsiateractingwith an appliedfeld, whichis theproblemof paramagnetism treatedin theprevious section. It shouldonlr benotedthat hereis .-.S.H, whezecs in thepre'dous sectionit wp.s-JpsS .H. theenergy the argument Therefore, ofthe Brillouinfunctionin eqn(2.1.14) needsa,n normazization. Whenthat is done,the a-component appropriate of Sz'is seento become
.
(&z)= SBs smg., , whereHLis defnedin eqn(2.2.27).
(2.2.2 8)
NowtheparticularspinSïis nntagged: on avemge thereis no difere-ace between that spinandany otherwhichappearsin the summation in eqn
18
MOLECULAR FVLD APPROXIMATION
Therefore, b0thspinsmaythewrittenwithoutthe index,ï or jt (2.2.27). and'eqn(2.2.28) becomesj aftersubstituting 1omeq.n(2.2.27),
(2.2-29) whichis a transcendental ecpationfor det-lxnl'nl-n g (&).Actually,thisrelationLsnot strictlydefnedwhenwrittenin thisway,because thesummation over j depends on ï. It still caltsfor anotheraumption aboutthis sum, the mostusualofwhichis that JL:iis zero for spinswhichare not nearest andit hasone universak neigizbours in the cz-ystal, non-zero mlue J for neatestneighbours. lt Lscustomary to usethe notation y
/@-F R ';
N J7 M-= )
=
(2.2.30)
S
= 9;iB$f9' J% t '
and
(2.2.31)
QT
2S2 7.
uz#j ,
(2-2.32)
wherep Lsthe numberof nearestneighbours, andthe squaze-bracketed expression is for theabove-mentioned assumption that spinswhichare not neazestneighbours havea zero excàange integralOtherassumptions about somefnite valuesfor the next-nearest neighbours (ofwhic,hrealcasesezdst spinstare alsopossible with the snmealgebra. A);or evenfurther-away An example wi.llbe#venin section2.3.Forthesenotations,eqn(2.2.29) is
11.=
+ aJz). BsLlö
(2-2.33)
Oldertexts usedto elaborate on graphical solutions of thisecpation, but it is not necessary computera numerical solution anymore. Witha modern of ecm(2-2-33) is a tridalmatter,andg e-anbeplottedasa function ofa for solutionlooksmoreor lesslikethe any mlueof h.Fora rathersmallà,,thmis plot in Fig. 1.% with slightvariations depending on the mlue of S.Ia the limit ofvazdshing h,thesolution looksapproximately likethecurve plotted în Fig.2+1.80th thesecurves are plottedusingaztother theory,whichwill bediscussed in section4.6,andare not reallyplotsof the molecularâeld appro-vimation. Theyax'eshownat this stageonly as a demonstration of the qnalitatheshapeof the solutionof eqn(2.2-33)Howeler: for the case h,= 0, whichis the mostinterestingcasefor theorists,thereLsan analytic
FBRROMAGNBTLSM
19
O.8 ;I & 0.6 ,''>
X hv
Q 0.4
r/me FIG.2.1. An approkmate shapeof thesolutionof eqn(2.2.33) for the case lb= 0.Thetemperature: T, is normalized to $heCuriete'mperature, Tc, ' abovewhic,htheonlysolutionof this equationis p = 0. approfmation25! to the shapeof this solution, whic,hcxn be particularly usefulwhenthe molecular feld cuzvehasto becomputedmanytimes,az a part of more comple,x computation, for exxmplein avera#ng over some parameter. Usingthenotadon 'm' =
t = r/zc, /,'(T)/?z(0),
(2.2.34)
the xnxlyticapprolmationLs
(2.2.35) Herea and b are adjustable paraceters,the bestvaluesfor whichare in Table2.1,and tabulated c
=
1+
1 . + 1) 4SLS
(2.2.36)
deviationof the analyticupressionfrom Table2.1lkstsalsothe maMmum theexactsolutionofeqn(2.2.33). Thisaccuracyksadequate for mostpracticalpurposes, espedazly sincethernxxn'mnm of thedeviationalways occurs fozrathersmallvazues of @:forwhichthe accuracyLsusuallylessimportant.
20
MOLECTJLAR FIELDAPPROXLMATION Table 2.1.Theparameters c andbwhic.b should be usedin eqn(2.2.35), andthe matmumrelav tive deviation, D, of tlds equation'homthe solutionof themolecular feld theoretical relation,eqn for diferent N?alues of the sph, S. (2.2.33),
.6'
a
1 -1 *0182x 10-2 ; 1 7.7521 x 10-3 (. 4.5249x 1O-S 2 1.1241 x IO-S 1 2 -7.9838x 10-4 3 -1.5270x 10-3 1 -1.4780x 10-3
b D (%) O*26166 0.695 0.19270 0.708 0.14825 0.519 0.11229 0.277 0,080979 0.356 0.052860 0.535 0.027221 0.677
of As hasbeenmlptioned in section1.2,the temperature-dependence t:e magnethation in zerofeld,asexpressed byeqn(2.2.35) or as plottedin Fig.2.1,isexpected to bevalidi.atheinfzrforof tkernngnetic domains. In practice,measurements are donein suKciently highfelds asazenecessary to remove thosedomains, andare thenextrapolated to H = Oin orde,r to with the theoretical curves, such as the one plottedin Fig.2.1. compare Detailsof thhsprocv *1 beTvenin chapter4. Actually,if H = 0,thereisno directionin spacewhichcxn des.ne thezizïthe6mt place. In reM axiswhichhasbeenusedfor deriving ew (2.2.33) ferromagnets thereis no dilculty, because theyare anisotropit,aadhave a buîlt-inpreferred spindirection.However, for readers whomay wonder aboutit azready at tlsisstage,it is suëcient to assumethat thecaseH = O is theendof a processin whicha inite feld is applied,andthenslowly reduced tozero. Such a process is quiteclose to whatisdoneexperimentally anyway.
2.3 Aotiferromagnetism Theexchange integralsJï.fwere assumed in tke predoussectionto be podtive,so that spinstendto align parallelto e>h other.TllLspositsve valueLsessentiaz for havinga ferromagnetic order,but it is not necessadly so in al1materiazs, andexchxmge htegralsmayalsobenegative. Actually, negativeexchange couplingoccurs in nature more ofienthana positive one. Whentheexchange integralbetween nearestnehghbours is negative, to eathother,which it tendsto align the neighbouring spinsantiparallel can SSO giveriseto a certainorderat lowtemperatures. Suchmaterials.do
ANTVEMOMAGNETISM
21
ezdstjandare cazedantfevromagnets.
Thethcoryof this phenomenon was preseated byL. Néelevenbefore
it was 6.rstobserved e-xpezimemally; see the historyas described in hks Nobellecture($.He con<dered material,madeout of two a coestalline in suc.ha waythat the nearestneighsublattices, whichare constructed bourof rw-vhspinbelongs t,othe otbersublattice, with whic.h it interacts by a.n antifen-omagnetic exchangc coupling,-J, with J > 0. Interactions qrithhrther-away spinshavealsobeenaddedin later studies,butherewe consider onlya relativelysimplecasewhichis only a slightgeneralization of theoriginalNéelassumption ofinteractionbetwee.n nearestneighbours only.Weassumethat,besides thep nearestneighbours in theothersublattice,e.ac.h spinJtlqclinteractswithp' neighbours withinthesame sublattice by a ferromagnetic couplîng? -FJJ.Eowever, in orderto maintaân a basicallyantiferromagnetic case:we alsoassumethat T <<J. Hteractionswith hrther-away spinsare takenhereas zero. Otherpossibilities can azsobefoundin theliterature,includngcases whichcarnotbedescribed bysucha simplesubdivision intotwo sublattices. An outstanding example is Euse,whichdoeshavesuc.htwo sublattice, but with J = J$so that it takc only a smallperturbation(e.g. some to change it fzoma ferromagnet to a,nautiferromagnet, or vice impursties) versa. Weignorethesecaes here,aDddo not try to studyanything more general thanthespecifedassllmptions. of the spin in e.a,e,11 Denodngthe z-componeni sublatticeby Sz amd Sarespectively, theKectiveîeldson eachof themare, according to eqn
(2.2.27))
Ih
=
p/zuz'y'' + !?p'J'(-S ) 2.gJ(x%1' -
(2-3-37)
and
H2 = gyB.ïl+ 2#.F(,%) 2pJf%jSubstituting in eqn(2-2.28), one obtains
=
SBs
S r JJ+ kp'J/h'-S'; )àsT klps
ï,1 apytxs'a , t
(2-.3-38) (2.3.39)
and
(2.3-40) For the caseH = O everythingis symmetzic, and ît Lsre-adilyseen thatthetwo equatbns become thesamebythesubstitution (&)= -(Sa)Therefore, thesolutionis that themagnetization is thesame for b0thsublattica, qnlyin oppositedirections, andeachof themis a solutionof
25 , / J -FpJt(S) , (S)= SBs -t (.p
(2.3.41)
22
MOLRGTLAR FVLD APPROXIMATION
whichLsthessme as wn (2.2.29), or (2.2.33), for H = 0It is thusseen that in zero appliedfeld, the magnetization of each sublàttice in.an antiferromagnetic materialls the snme as that of a ferromagnetic material,with the temperature-dependence as in Fig.2.1.J.a particular,the orderdisappears abovea certaintransitiontemperature, whic,his muivalentto the Curiepoint in ferromagnets, onlyin the case of anxerromagnets tMs transition temperature is called the NQIimfnt ! It must beemphaszzed, however, that a measureent of the total magnetization,(Sï) + (&),giveszero for H = 0- Thusthesemateriolqcould 1om the memsurement of the macroscopic not bediscovered magnetizabeforeNéelcame up tion,whichis whytheir ecdstence was not suspected with tids conceptof two sublattice'andazzantiferromagnetic exGange coupling. Nowadays) the antiferromagnetic orderbelowthe N;e,Itemper-' ature em.n beseen by neutrondxraction,because neutronsinteractqeith the loal magnetization whentheypus tàroughthe czy-stal. lt c,an also besee.nby nuclearmagneticresonanceandby the Mössbauer efect,b0th ofwhichmeasure the magneticmomenton the particulaœ atom in whicx that nucleus is locatedandnot themacroscopic section magnedzation (see ex-iKtence The of antiferromagnetism also be inferred from meamay 4.1). of the speclcheat,whichwill zmtbedl'skcuqe here,or fromthe surement susceptibility above the Néelpoint,to bedescribed in the next section2.4 The Curie-WeissLaw Thesolutionof eqn(2.2-33), is zero in zero applied or (2.3.41), âeldfor any temperature abovea trnnvltionpoint,nxmelythe Curiepointin ferromagnets, andthe N#elpoht in àntiferromagnets. J.nthis regionof T > To,it is Hownfl'omexpeziment that all ferromagnets andantiferzomagnets become regular quiteclearfromtheforegoing, at least parnmagnetsJt isp,lt4n qualitatively, that for a suKciently hightemperature the thermatQuctuationsovercometheexeangeinteraction between thespins,thuseliminating the ferromagnetic or antferromagnetic orderandmaldngthe mate-rial as disordered as a paramagnet. Forthe quantitativestudyof the high-temperatme region,we will considertogetherthe case of ferromagnets andof aatiferromagnets, because the algebra is esseatially the same for b0th,andthereis no point ia 1mrepetitionsActually,we takethe ferroma&ets to bea particular necœsary caseof thetwo-sublattice anliferromagnets, as deînedin the previous section.Fora true antferromagnet we assumed therethat J andJJ are b0th positiveandthat J?m J. But we can alsoincludethe case of a simple = (5'a), ferromagnet as the particularexq- J = 0, (i6',) andHï = H2.It beobtnlnedas the particularcase J < 0, J' = 0. may/3.rstn In the high-temperature regionit is suëcientto approvirnate theBrillouinfunctionby the frst term of a powerserie expansion,as in eqn
TFR CUOWEISS LAW
23
because the argument of lhisfunctionis alwayssmatl.Therefore) (2.1.20), and(2-3240) by eqns(2-3-39) may bereplaced + 1) + 2, ,J, (Sz) (&) = .b'(S 3ksT (gIJnH -
'
a1)yfsgj)
(z<.
2pJ(&)) ,
(?-4-43)
and
(&) =
S(S + ).) + 2, , J, 3ks y. Lgp.v.H (,%) -
ia the magnetizatons of thetwo sublatticeswkichare twolinearequations It is not diEcultto solvesucha set of two equations, but it is not even to doso, because it issuEcientto nHAtopct/scr thetwo equations necessary andsolvefor = (St)+ 'tslottch (Sz)=
Cff - -0gISBT T'(.%oq;x:)a
(2-4-44)
where
c
=
+ 1) ? t zsLs+ 1).(Jp,s) z O = 2S(S , 3ks 31s (.pJ.pJ,) -
.
(a.4 45) .
Therdore, the total magneticmomentis CH
= (Ma)= #;zB(&oza:) z +.a.
(2.4.46)
Thistnznperature-dependence is knownmsthe C'ttrie-Weiss Ic'tp.lt should and for antiferromagnetsj applyb0thfor fGromagnets andindeedit îts expezimezns on b0th types,with some exceptions (7)whichare igaored here-lt is more usuallyexpressed in termsoftheinitial susceptibility, A.t!--
(Mz)U
'XVR Xinitlal= x-.z H
C T + O'
(2.4.47)
thantherelationi.tteqn(2.4.46). In manycmsesthese whichismore general expressions are equivalent. Butsometimes thefrst-orderapproximation to Bs usedin eqns(2-4-42) and(2.4.43) is inodequate for largefelds,.ï1,and it is necessary to applythe Curie-Weiss lawonlyfor smallHIn bolh ferromagnets andantiferromaaets the use of this linearapproimationis certaimly least for small justifed(at Hqabovethe Cuzieor the NV temperature,becamse snboth cases,(Sz/= Ofor H = 0. Since we haveseen that the ferromagnets are the cmseJ = 0, it is clear1om that O < 0 in thœe materials. Forantiferromagnets we have eqn(2.4.45) mssumed that JJ<<J, andeqn(2.4.45) yieldsa posité'tm 0-.
MOLECULAR FXLD APPROXIMATION ferromagnets lt ksthuspossible to tell thedlFerence between andantîferrcmagnets fromthemeasurement oftheinitiltl susceptibility a'bove the transitiontemperature, whentheyarebothpvxmagnets-rrhe Cuzie-Wee Lawin thesetwo typesofmaterials is shownsoematically in Fig.2.2and the deerenœis obdous.Wiq propertyis pmicularlyusefulfor materiazsin whichthe Curieor NV poini is at a very1owtemperature, which is not easyto acces directly.In sucha caseit is prva-ble to determine 9omthehigh-temperature datawhetherthe matprixlksgoingto become ferromareticor antiferromMnetic If thereis no tranat lowtemperature. sitionat all, andthematerialremnlnsparnmxgnetic downto absoluta zero) J = J' = 0-= 0 andthe reciproeof the high-temperature susceptibility shouldexdrapolate to 0 at T = 0. At lowertemperatures; thelinearapprovlmation to Bs is not adGmate. However, it vnn.ystill be ltlr.pz'at thetransitiontemperatureitself,where the disorder thefunctionsare contixuous anda f nite justbegins,because = for S 0 must start Trom small mlues. Therefore, ct the transition (Sa) theset of linearequations and(2.4.43) shouldstill temperature, (2-4-42) havea non-zero solutîon for (,5'z) and (S2) whenS = 0. 'Phecoadidon for sucha solutionis that the deteminantof their coedentsvznishes, nxmely 1 .- C*p'Jl
C*pl C* =
+ 1) 2S(S
6'*yJ Hence Tx
+ 1) ZSLS @J+p,J, )
3t-sTw
.
(2-4-48)
(2.4.49) 3:8 Comparingwiih eqn (2.4.45), ilds resuli means that Tc = IOIfor a simpleferromagnet with in'tarArrkion between nearestndghbours only.Similxrly,Tx = 0-fora Kmpleautiferromagnet with interactionbetween nean estneighbours only,nmely forthe cae J?= 0. If TN# (%thediferenœ between theseexperimental qmlues may betakenas a meuure of J', providedof coursethat the dl'Ference ksrathersmall,so that it fts thebaskc assnmption ofthiscalculation, that T <
.
TEE CUOWEISS LAW
nearct-neighbour interaction.Othercasesmaybestudiedin asimiqarway, but donotnecessadly leadto similarxesults. J.uparticmlar, it isveryeasytc subdivide a simplecubic,or a bcc? into two suchsublatdces, azdhavethe nearestneighbour of eachlatticepointiu the otltcrsublattgcel bui it just cannotbe donefor a.s fcclattke.An fccIatticeis more readilysubdivided into jonrsublattices, in whichthenearestxeighbours oî eacllspiaare ict all otherthreesublattica.Speclcally, one sablattice contalstke points one contains one contains , m), (k,1,,rzl), (k+ la:2+ 1-2 (k+ l.a, Jjm + ),and one contains(k) J+ lzt m + iy))for integralk, lj andm. Numbermg the sublattices in this order,counthgthe nearestneighbours, azldusingthe high-temperature approx-imation for the Brillouhfunction,the equations to be solved asre
j
+ = s(s 1) + 8J(t,5'a) + (,$'a) + (,$.4))) , (2-4-50$ (,6'z) zksr LgP'BH + = s(s 1)LgpeH + 8-7((&)+ (,6's) + (,S4.))2 , (,Sa) (2-4.51) 3,+g.
+ = s(s 1)Lg>BH + 8-7((5'z) + (&)+ (&))q , Lszé 3ksT
(2.4.52)
+ 7.) + (&)+ (&))) + 8-/((5'z) (&) = s(s 3kBz LgP'BH
(2.4.53)
.
it is seenthat By addingtogetherthefrst two andthelasttwo equations, thereare actuallytwo sublattices, .'.= + t.Sa), t,SIr) + (5--k) à (Sï)= (,5:.) (u$'z)
(2.4.54)
with t'qroequationsr
=d
1) = 2SLs+ + 4.7(f&)+ 2(SrI))q (q'h) aur L9IJ'BH
(2-4-55)
+ = zsls 1)LgpeH + 4./(2(,6'z) + (,S11/)) (,S11) asz
(2.4.5é1 k l
-
Thefcclatticehasthusbeensubdivided into tèo sublattices) butwith in the same sublattice numberof neighbours beingdxerentf-romtltelr numberin theothersubhttice. Thisslight(liserence doeschange theforegoingalgebraRepeating thesamecalculations for theinitial susceptibility leadsto thesameCurie-Weiss lawas in eqn(2.4.47), with a
o- =
-
8J5'/u5' + 1) ks
.
(2.4.57)
26
MOLECULAR PIELDAPPROXWAXON
I -,Q
N
Tempemature, T
FJG.2.2. Schematic representation ofthe initialsusceptibiiity of an aatiferromagnet: aboveandbelowtheNle)temperature, TN,andof a ferrothe Curietemperature,To.ForT < TN, a singl+crystal magnetabo've aqtiferromagnet diArtmtparallel,xjj, andperpendicala'r, mayhap-e x-u, susceptibilities5br a ferromagnet, belowTc. x hasno meaning
Repeathgthe same calculationfor the transitiontemperaturey'ields Tc = - 0-, for a ferromagnet, fz. whenJ > % but T.v = O/3for an antiferromagnet, ï.6.wllenJ < 0. lt Lsalsopossible to usea non-zero EeldH in eqns(2.3.39) and(2-3-40)1 solvethemnumericallsandfnd the initial susceptibility of an antifeno the N&I temperature-Forthesetwo muationsms written magnetèe.kzlr here,theresultis = xkaqtzal
(f/tB)2) j J'g
(2.4.58) '
whichdoesnot depend on thetempervtureHowever, e materials cry havean anisotropy, whichr-einbeexpressed that prefers msan internalGeld the magnetization to be orientedalongcertaân czystallorraphic axes. Detailswill beSven in section5-1,but it mayalready be realized thatthe z-direction which%'ehavemo,ed for the quaatizatfon directionmaybeconnected withthe crystallographic axes,audis not necessarily identical with thedirectionofthe applied feld)H. In suchcmsesjthesusceptibilîty in eqn is the JCZUJJeJ susceptibiiits (2.4.58) xjj, in whichthe smallappliedH is in the saae directionas that of the internalîeld. Onemay alsoappiya
FIORTMAGNETISM
27
smallfeld,H, perpendicular to thedirectionofthat internalf eldjandtomputetheperpendicmlar initialsusceptibility, thetemperaturex.t.,obtaining dependence shownseematically in Fig. 2.2.H prindple,b0thx(l andx.s . in a single-crystal sample. may bemeazured H practice,this measurement îs not that simple,because even singlecrystalsamples are oftensubdivided into domains magnetized alongdiserent crystallovaphic axes, andone cn.n onlymeasure some average between the curve for x((andx.zin Fig-2-2.Forexltrnple, in a cubicmaterialwith an equalprobabzlity ofdomains h eachof thethreeaxes,themeasured x 2aX.s. will be lxj! + In a polycrystmlllne sampleone almays meazuresjust a an average of thesetwo curves. Thereforel the detailsof thesecurves do not havemuchuse in comparing qrithexperimentHowever) because b0th in the derivative of x ns. T, aay average or curvK havea discontinuity combynation ofthemwillhavesucha discontinuity. Therefore, theposition ofthis discontynuits or cusp,in theexperimental datais an accuratemeasurementof theNéeltemperature,Tx. Aeumore accuratemeazurement of Tx is obtained fromthe anomalyin the specifcheat,whichis beyondthe scopeof thisbook. J.r.a ferromagnet 0-< 0 and)according t,oeqn(2.4.46), the susceptjbil'IWu-q :'nllnA-ty ity diverges whenthe temperature Tc9om above. approaees the having H is justa manifestation of possibilityof -%% # 'Bfor = 0. when It is temptingto desnea ferromaretas the15n11 t of a paramâgnet -+ co, but such a dvnition does not have moajag. As has already x an;r beenmentioned in section1.1,the relation(1.1.1) is not G4lflledin ferroaadMzis noteven a uniquefundionofH belowTc.Forthesame magnetsl reason,thereis no pointin usinga smallH in eqn(2.2.29) to calculate a susceptibiljty belowTc,in the same way as in an antiferromaaet, yt does not preventtheorists fromcalculating it anzway, but sucha suscepdbility cannotbe me-asured because a largefeld is needed to remove themagnetic sectioa4.1). efect (which domains In principle)theMössbauer mea(see sures the magnetization insidethe domains, as calculated in thl'qchapter) can see the Xect of a smallappliedfeld. In practicethe accmracy of the esectis not sulcientto seeeven the Gectofquitelargefelds. Mössbauez Therefore, thesusceptibility belowthe transitiontemperaturehasa meaningonly in antiferromagnets aadnot in ferromagnets, aadthis is the we.y it ksshownin Fig. 2.2. 2.3 Feuimagnetism Theemxac't cancellation of theoppositemaaetizationin thetwo sublattices is possible onlyfor identical magneticmomentsin b0thlatticepoints-Néel alsothe caseof two sublattices in whichthe magneticmoA considered mentsare not the same. It happens eitherbecause theyare madeofatoms of diserentmaterialsjor because the f.ems are not the same, for exp.mple whenthereis Fe2-F in one sublattice aadFe3+i.nthe other.In suchcase.san
28
MOLBCULAR :&LID APPROKIMJATTON
couplingbetween the two sublattkesleadsto a pactiak antiferzomagnetic o'mcellaéfm of the magneticmomelt.Tberesultingtotal magteti'zation at 1owtemperatuzes is the diferencebetween that of thetwo sublattices, whichis not zero. Someof the mateziazs to whichsucha theoryapplieswere actually knownbeforeNéelcame up with the theory,but they were thoughtto whic'h confttsed beof the same clas as fezromagnets, the issue.lt may beinterestingto note that the oldestpermanentmagnet,knomra already in ancienttimes,is magnetite, FeaO4, whichis a ferrite.As such,it is a fezrimagnet, andnot a ferzomagnet, according t,otheclassifcation of Née,l. It Lsalsointeresting to notethat themolecular feld theoryof ferrimagnets, ilz this sedion,fts verywell(6q the temperatnre-dependence as presented ofMsin magnetite. The nzkrneJcrrfte,s was irst givenio certain matetialsmadcof iron ofdestogetherwith some otherofdes.Néelusedthisaame as the baeis for theclassof matezials whlchhecalledierrimagnets. Thisname f.tsonly theFrenc.h pronundation, but it was alsoadoptedin Engltsh, even though it doesnot Gt this language. ln spokenEnglishthe diferencebetween e-q:nbeheardonlywhenthe empha-sis fenomagnetism andferrimagnetism is put on the wrongsyllable. Westart by generallca-ng thetheoryof antiferromagnetism in ihe hightemperatureregion,for whichthe Brillouinftmctioncan beapprofmated by the linearterm.Weconsidcr the snmnetwo sublattices, with mrcAangc interaction-, J between nearestneighbours only,andassumethat there are p of them,all tn the othersublattice. herewe do not take Howeverj all atomsto bethe same, but MqlgndiFerentquantumnumbers, S1and to the ionson eachsublattice. We alsouse diferentg% respectiveelyj factors,gkandg1tfor the two sublatticcw hThegenernlîezation of thehig, equations(2.4.42) and(2.4.43) is straiglttfozward, leading io temperatare zb,= (S'y
and
szr.-sï + 1',h 2.p.7t..%z)) lgl>ps.à.f 31-,a:2-.-
(2.5.59)
+ 1) = S2(Sa (Sca) 2pJ(Szz)) (2-5-60) aksz Lg1#BH -
.
Usingthe notations
ci
=
+ 1) :2/4 -f- SjLsj --, .
3:s
e;
=
2pJ
+ 1), j sqls.
(2.5.61)
for ï = 1j 2, theseequations become T J$S....o) + 0-1LSaz ),=
CïH , #-x liB
h,. 0-c (S'jz%) + T(Sz z =
L'-CZ':J . (2-5.62) 9211,1.4
F'ENNTMAGNETJSM
29
Thesolutionof this pairof equations is %.pe(&) = T-z
S QT o yag
CzC;O1Ozh,
-
y
(2.5.63)
for i = 1,2, wherethe index% hasbeenomittedfor simplidty:it being tmdezstood that the averages are thoseof the z-components. Therdore, the(initial) susceptibility is x
=
2. 2 + C1)T - 2 C,: C,0-10-2' ! = (C$ gLp.sj%.? H z.= 1 Ta - o.z o-a .
-
(2.5.64)
Thissusceptibility diverges at T = Tc:where Tc
=
v' -----0 l O2! '
(2 5 65) . .
xs is the cxasein ferromagnetsHere,as in ferromagnets, Tc is the Cnrie temperature) above whic,hthemagnetimtion is zero i!l z,e1-0applied f eld. Thelattercan beseen,as in thepredoussedion,bylook-ing for a non-zero
solutionof eqns(2.5.62) withH = 0,the condition for whic,h is Tc 0-l 0-a Tc
=
Oj
(2-5-66)
whosesolutionis eqn (2.5.65). It is =ot a coincidence. Thedivergence of the suscepfibility, in ferromagnets or in fezrimagnetsj oziginates fzomthe vanishingof the same determinant in the denominator whichappearsin thesolutionof thesimultaneous linearequations. the temperature Tcis caxedthlfAzvi7zzcTc,eqn (2.5.64) becomes 1 x
-0
>
(Ct+
T+e
R CcIT (1 e/T) C3+ Cat -
where
(2.5.67).
2 zCcTo . (2.5.68) Cï + G% n='q at a Theasymptote is thusa straightlinewhichcutsthe temperature = nerativexralue, T -e, as is thebehadour of a,nantiferromagnet Fig. (see Tlds 0-is calledthe lmvamqgheiéc Ctlrl: yoént.lt is usuallydiferent 2J3). 9omTe)as can beseen fromeqn(2.5.68). This equationactuallymeans that 0-= TconlywhenCï = 6%.
0- =
FVLD APPROXIMATJON MOLECWAR
30
W
! .
.
z A2 z'#'
#
Z' . .'e
/' .' A
.'
-'.#I
j 1
J
é' A' .W
-6
TQ
l'emperattlre. f' ; Fï(7.2-3. Typicalbehavîour of the imtial susceptibility of a ferrimagnet abovetheferrlmagnetic Curietemperature, 9omeqn Q, as computed
(2.5.64*2.
Equation(2.5-67) is the Curie-Weiss law.Wehavethusseen that this lawis obeyedasymptotically in thecase of ferrimagaets. In thesematerials,the high-temperattre datafor thesusceptibiity looklikethoseof an aatiferromagnetj whentiteyare utrapolatedto lowertemperatures. However, whenthetemperature approaches the flwsmagnetic Curiepoint,Tc, thesusceptibility of a ferrimagnet lookslikethaàof a ferromagnet. Below Tethereis a spontaaeous, non-zero magnetization ilz a zero applied feld, whichis.alsosimilarto a ferromagnet-H that temperature a suscepre#on, but it doesnot haveanyphysicalmen.ning tihity exn alsobecalculatedl because it cannotbemeasured, as ksthecasein ferromagnets. ForT < Tcthis lizteartreatmentbreaksdqwn,andnon-ljnear equations suchas thoseof eqns(2.3.39) haveto besolvednumerically. and(2.3.40) Sivcethetemperature-dependence of themagnetization Lsnot thesamefot thetwo sublattices, the resultsare usuallymore comple.x thanin theZmple caseof antifcromagnets. J.uparticular,it mayhappen that sublattice .?1 has a muchlargerspontaneous magneeation,buta smazer Curietemperature than sublattice B. At 1owtemperatures thetotal magnetization Lsparallel to that of a'1,but at highertempezatures the magnetization of sublattice ..4vaYshes; and the total magnetization is that of sublattice B, which thereis a means that it is oriented in the oppositedirection.Therelore, temperature in between, knowna.sa tompenaztion pofnt,at whichthe
E'EPAIMAGNETISM
'
31
total spontaneous magnetization zem beforereaching inite passesf/lrptœ?i v'alues again.r.:'.L.?.S phenomenon hasindeedbeenobserved in someferrites whereM is a trivalentrare-earth ion. A of thegeneralformulaFesMaola, Manyexperimental dataon all soris of fezzites can befoundix bookson thissubject g8j. The Jfne.rstudyfor the temperatures abovethe Cmiepoint can be eazilyœxtended It is readilyseen fzomthe to more than t'wosublattices. foregoing that themore rneral formfor eqns(2.5.59) and (2.5.60) is
(2.6.6 9) for any number of sublatuces. Usingthe notatioxof Ci as in eqn (2.5.61) Md . 0-ç.f= ?JLL + + 1), y/ (2-5-70) 3/v1 S4(&1)S#(z% andreplacing the average spincomponent by the variable .1:2= .t.?'.i/.$: (siv),
h (2-5.71/
i
the setof equations(2.5.69) becomes
0-çj'zju=
Tz: -
AH.
J
(2.5.72)
Forthe solutionof thisset of ïmulianeous line.arequations R is convenientto use matrixnotation.Let 9 be the matrix whose components aze 0-ç.oand1etI denotethe unit matrix.Let x betlle vectorwhosecomponentsare zi, andlet C1/2 be the veciorwhosecomponents are ç. The setof equations îs then (2.5.72) , (Tf 0)x= C7.,/2.s.
(2.5.73)
trz 4)-1c'/2s
(2.5.74)
-
whoseobvioussolutionis x
w
-
Thesusceptibility is givenby x
--
-
1
1
Jf
i.
k'Kz = -H
xï
L
A,
(2.5.7 5)
andthis sum is the scalarproductof the two vectorsde:nedabove.Substitutingfor x *om eqn(2.5.74),
32
MOLEGJLAR FXLD APPROXIMATION x
=
1 1..a '' . x
# C)
=
C1.',.a. IFJ -
é)-1 C.j,Fa .
(2-5-76)
Thissusceptibility wbenT equalsany one of the eigenvalues diverges of the matrix 0. Thereare materials,suchmsMnO,whichhaveseveral diferentantiferromagnetic patterns,exprcsedby dferenteigenvectors x. Trandtions fromone structureto anotheroccur at the temperaturcfor of whichthe eigenvalues of 0 cross eachother.Fromthe measurements thesetransitionsit is possible to extractthewluesof theJfj whichappear i'nthedeflnx-tion of 0-ii. R is alsoclearthattheJcrlasà eigen=lueof (2.5.70) 6is theferrimagnetic Curietemperature, if thematerialisferrimagnetic, or the Néeltemperature,if thematua,lis =tsferromagnetie below that just transition. Expanding in powersof 1/T,it is seen that at high x of eqn (2.5.76) temperatures X=
C1J2 . J -.ac1./a c1/2 . c1/2 g r:a T F/ T-O ' , -
-'j
(2-5-77)
where
c l/2 . yc 1/2 E 0-çj ()-= c1/2 cl '/wL5 = i.i m CjGj (z. ,5. ,s) . Eçtpy is the plamagneticCuriepoint,as defnedin the foregoing. Wdtteaex.
plicitls
2EgjXjSILSi + 1)&(SJ + 1) . (2.5.79) + 1) 31 SyS2(& Theeigenxalues of the matrix0 are often(butnot always) relatedin some way to thoseof a similarmatrix whoseeigenvectors represeatthe ordered confguration at zero temperature. Detailsare beyond the scopeof this bookandeltn 1)efoundon p- 123of the treatiseof Anderson (9j.
0- =
2.6 Other Cases of themolecular feld approfmationis that it is much Themainadvantage ssmpler than anyotherapprofmationto the quantum-meehanieal Hamiltoaiauizï eqn(2.2.25). Thisadvanvgeis a vez'yimportantone, because a simpletheorycan be extended to indudemore complicated additions, whicha complex theorycannot. izt a betterapprofmationto certna''n For thosewhoare onlyinterested parts of Rg-2.1,obtaledfromeqn(2.2.25)) thèreare inded methods to achieve it, as v'ill beseen in chapter3. Eowever, thesemethods cannotgo beyond wkichmaysometimes bean insuEcient approfmation eqn(2-2-25), to the physicalreality.Tlzemolecularfeld approfmationis sufdently simpleto allowfor otherenergytermsto beaddedto that equation, whîch
OTUR CASES
33
is not usuallypossible in the more sophisticated methods. H these,even thefeld 1:1is oftendropped fromeq.n(2.2.25) beforeanythingofinterest happens. ln many cxq:x-qthe additionalaccuracyof the othermethodsis more thanofsetbrthereduced acmzracycausedby neglecting enerr terms whichare not reallynegligible. Oneexampleis the magnetocustalline anisotropyenero',whichwill bedefnedin section5.1.'nis termj andthebiqnadratic ezchange which . is (101 an enerr term of theform(S1 are to add to very easy Sa)2, eqn underthe molecular feld approfmatiopbut not so exsywith'any (2.2.25) othermethod.Thelatterenergyterm hasbecome ratherpopularrecenûy; because it is quite strong5:11 multilayers. lt hasbeensho'wn(11J that it can arix 9omthickness êuctuations in suchflms, or 9om magnetostatic stzrface interactions dueto (12) roughness, andindeedit hasbeenobseawed in many estems.A more outstanding example is t:e anksûtropic eg(13) change whichis an energyterm (14) oftheformD . (Slx Sz). It triesto to eachother.Obviously, sucha term cannot arrangespinspevendicnlar efst in high-symmetry crystals, because if S1aadSzcmmbeinterchanged bysome smmetry operation, thevectorproductchanges sign,andD must vanish.However, thisterm doesnviqtin some low-symmetry antiferromagneticcrystals,and'bycompeting with the exchange it causesthe direction of neighbouring spinsto beslightlyoq theexactantiferromagnetic direction.Therefore, thereksthena netspontaneous magnetizatiow calledmeak nxis. in a direction perpendicular to theantiferromagaetic Jerrozntzgnetïdrp,, Thiscase is givenherejustas an e'rnm p1eof thosewhichcan easentially betreatedtheoretically by the molecular feld approfmationonly,unless sometrivial form (15) is involved.' Thef4111 detailswill not be#venhere, but theycan befoundin the reviewof Moriya(16) oz in thelaterliterature:
suchas thestudyoforthoferrites by Trevu. (17) As a lgst evxm ple of the usefulness of the molecular feld, we consider thecaseof an impurity,non-magnetic atomin a ferromagnetic lattice.For simplidtyof drawingwe takea tmo-dimensioncl muarelattice,as shown in Fig.2.4,wherethe ceatralatomin theEguredoesnot havea magnetic moment.Theproblem is essentially described byeqns(2.2.27) and(2-2.28), whichwe use herewiththenotationsof eqns(2.2.30) and(2.2.32). Forthe case of interactionbetween nearestneighbours only,and H = 0) these equations are F,i '= Bs , (2-6.80)
1(T)/&j
is over the nearestneighbours. wherethe summation Specifcally, dening (shells' of distaace fromtheimpurityatomlaz in Fig. 2.4jandconsidedng theshellsnextto eachatommsin that Egure,we can write + pslûq p'z = Bs ((2#a n
(2.6.81)
34
MOLECULAR EVLD APPROXTMATION
(lls (()*(1)3(1)*(lls (è)*(è)a(è)1(è)c(è)* (l)s(()1ip (()1(l)s (è)*(è)a(è)1(è)c(è)4 (y),(y).(y)a(y).(y), F1G.2-4. Shellnumbering aroundan impurity'atomîn a twœemensional squarelattke.
+ 2/.z4)a) p,g= Bs ((25: , (2.6.82) etc. Theseequations rzul becnmn-ed far up to a shellwhichis considered enough9omthe impuzityfor its magnetization to bethat of a purefeaa'chem'n'thent'y to include magnet.Numezical computations an extrashelland seeif it makesan appreciable diference, andaddanotherone if it does, until convergence is achieved. This problem was solved(18) as outlined herefor a three-dimensional cubiccystal.It is m'achmore complicated to approach it byaay othermethod. Themolecular feld approzmation alsohasthebig disadvanvge of beandthe possible ing too simple.It ignoresthe actualthermalfuctuations correlations fuctuations of neighbouring spins.Ttcan thusbee.w between pectedto bea goodapprofmationonlyat ratherhightemperatures, where the disorder is high.At lowtemperatuzes, one rxn do muchbetterby consideringsmallexcitationsof the statet'awhic,hall spinsare aligned. This appremation,kaowna.sspin ocre's, xzillbedescribed in the next chapis nt511 higherazzd approaches the Curie ter. Then,whenthe temperature temperature, thermalîuctuationsbecome correlated over the wholelattice.In this critïcftlregionthe bestaccuracyis achieved by the so-called renovmalinabion. whicilwill bediscussed in chapter4. prœzp,
THE HEISENBERG HAYLTONIAN 3.1 Spln aud Orbit ln thepreviouschapterwe haveazways refez'red to themaaethationofthe spin at the atomiclatticesites,whichis justa marmer of spealdng. It is notvez'y accuratefor someferromagnetîc materials tu whic.k thereis alsoa considerable contribution âomtheelectron orbits.However, for thelevelof this bookthe dxerence is mostlysemanticp because we consider thetotal atom,for wkichwe havettsedthespectroscopic maaeticmomentof eac,h splittinghdor (also knownas the Landég-factor),
J(J+ 1)+ S(S+ 1) LLL+ 1), 2J(J+T) -
.ç = 1 +
(3-1.1)
whichrm.n beusedin all cases.Fora purespin,L = 0, J =' S$one obtains g = 2,whichis twiceas muchas for tkecaseof a pureorbit:S'= 0,J = L. The mostdirec'tmeamzrement of this factorg for eac,kmaterialis by Nbxqeoeriment.Iu l13iK a methodHownas theEinstein-de experiment, eltn the sample is suspended ia suc,h a waythat its angular displacement bemeasured to a bighaccuracy. A magneticâeldis appliedto change 119) thesample magnetizatâop therebycllanging thea.:1511% momentumof the atoms,thuscausing a certainrotationof t:e wholesxmple.Thevalueof in marethaton to the g is thenobtained&omthe ratio of the change change ill themechanical angular momentum, andrm.nshowwhichpart of the magnetic momentis dueto the orbitazcontributiom It turnsout that i.nmostof the common ferromagneà the orbitalcontribuuon is negligibly small.Thereason is that theelectricEeldsin thelatticetau'athe planeof theorbitsinto czystallographic directions, thusmab-ngLz average to zero, or at leaztto a smallnumber. In somerare earthsthereis an appredable orbitalcontribution) andto includethemproperlywe should haveaciually useda magnetic momentofglnnsat the latticesite.Howeverj thesecases q'ill beignoredhere,aadwe shalljusttakethe magneticmomentto be as in chapter2. ;&= ggBstwhereJzsis the Bohrmagnetonr It is interestingto note that the orisnal experiment of Einsteinandde Haa.s was donewith a pooraccuracyand1edto the wrongcondusions. It waa repeated by otherswhodarednot publishtheir (better) resull (20) because ofthe highprestigeof Einstein's npvne:audit tookyears'before it thai the correctg ia Feis nearly2, andnot 1. was established
36
THEHEISENBERG EAMILTONIAN
lt is worthnotingthat thespinresponsible for ferromagnetism is that For ofthedshelli.nthetransition metals, andthef shezin thcrare barths. '
a flled shell,the totalspîttisknownto bezero, andtheseshellsare uzkfzlled
in theabove-mentioned materials. The conduction electrons of the outer shellin 170th casu are not boundto their atomsin thesolidstate,butare 1eeto moveandare actuallysharedby thewholeczystaljas is thecasein c!Jmetals.Theseitineraatelectrons docarry with themsomeinteraction between thelocalized spinsat thelatticesites,as willbediscussed in section 3.4.
3.2 ExclmngeInteeraction Besidutheindirectinteractioncvriedbythe conduction dectronsin metals,thezeis a directe'xchange interactionbetween spinsoftheionsat the latticesîtcs:b0thin metalsandin insnlltors.It hasno classical analogue, andis caused by overlap of theelectronâc wave functions in quantummech=ics.It is this part whichis discussed i!l this section. Consider a systemof N electrons whichare boundto 25fatoms.Let theeigenfunctions of a.n electronboundto atomNo. 1,whenthelatter is isolatedfzomthe restof the system,bedcnotedby bhLpïj, wherepï are all thecoordinates of thatelectron,includiag thespin.Since all theatoms are identical, if atom No.2 Lsseparated fromtheothers, an electron bound on'lyat diferentcoordinates, to it wi)lhavethe same setofeigenfunctions: namelymLpgj, andthesameappliesto all theotheratoms. Supp:sethat the M atomsstart froma positionwheretheyare well separated 9om eachother,andthen theyare pushed towards eachother. Whentheseatomsget closertogether,the single-atom levelsstart to become mhed.However: whenthis mifng just starts,theremust st521 be some relationbetween the energylevelsof thewholesystemalzdthoseof the separateatoms.ln particttlar,for atomsat a verylargedistance 1om eackother,theenergylevelsare M u=
+ 1) 1J(2& ï=1
timesdegenerate, if Sgis the spin of the f-th atom. This degeneracy is removed whentheatomsare nearer together, eac,h levelbeingspDtinto u ones. Weassume,however, that theatomsare not yet very closetogether, an.dthehteractionbetween themis snecientlysmall,so thatthissplitting is still smallcompared with the dist=ce beiween the Hlperent original levels.In sucha case theorigoal,atomiclevelsare still distinguishable in thewholespectzum. It is felthtuitively that in sucha case thereshottldbea wayto build the eigenfnmctions approrimation for them) out (orat leasta reasonable
EXCHANGE WTERACTION
37
of the functionsvilspg), even thoughit Lsnot so eny to justifysucha feelingmathematically) cr evento statetkeconditions forit by a rigorous, mathematical defniton.Thesimplest whic.hcan bebuilt up combinatbn fromt/?i(py) is the product
'/
=
- -m (#z) WATIA-v) , W2(#2)
(3.2.2)
aad its permutations. However, this funcdonis not allowed,because it doesnot obeythe Pauliexclusionprinciple,not beingantisymmdricto interchanging two of the electrons. Wemust takea linev.combination of f anctions oftheformof eqn(3-2.2) t,oachielre thenecessary antisymmetryj for whichit is possible to use thedeterminant
# = detgwk) , .
(3.2.3)
.
wheredetlwkla Lsa notationfor
pïLptj t#l(pz) wllps-l wat#tl eacpa) tntpx); = E detlywl !E ) wxt/hl w-vtpal vxlpxlt. '
-
(3.2-4)
-- -
interchanging is equsvalent to izltezchangiug the position anytwo electrons of two columnsin thedeterminant, whichis knowato Teversethe sigm Therefore, theformof eqns(3.2-3) and(3.2.4) is iu accordance with the Pauliexclusion prindple. ' E(wi'll not try to proent the most generalcmse,andwill justassume herethat the set offnnctionsw: is an orthonormal set,even thoughthe conclusions whickwe are goingto drawcan also be provedunderless restzictive conditions. An orthonormal setis one for which = 81.13 wzlpzlybtpzld'rz
(3.2.5)
wherethe asteriskdesignates the complexconjugate, and8 Lsthe Krœ neckersymbol,whichis equalto 1 whenï = j andto O otherwise. '-the integrationin eqn(3.2-5) isover ûll thecoordinates in pz,namelyan integrationover therealspaceanda snmrnationover the1wospindoordinates of theelectron.in practice,the assumption is that wf(p:)= /:(rz)qç((z), whererz are thespacecoordinato,and'ryçare normalized functions ofthe ofthespin,whichmay benamedCspinup' andtspindown'. z-component The latter are alwaysorthogonal, so that our mssumption meansthat (% clsomakean orthonormal set offunctîons. Wealsoassumethat the elcctronsofthe innershellsare tightlybound to theiznucleijandonly the wave functionsof the electrons in the outer
38
THEEEISECERGHAXTOMAN
shellsare Wectedby the iateractionwith electronsof the otheratoms. Obviously, the more shellsthat are takena,s the ùouter'ones, the more accuratethe calculation ié, but usuallyit is not praeticalto extendthe computations to more thanone or twoshells. Wkenthistechnique is used as the so-called Hartree-Foc.k methodfor computing wave functions, one rarelyextends thesecond electrons-Hanycase, g'roupbeyondthevalence the innerelectrons togetherwith the nucleusare takenp.saa ion, which creato a certainpotential at thepositionof thei-th electron. Thepotentials dueto a11 tke M ionsaddup at the positionof the Fth dectronto a clue whic,hwe denote is by Tl.TheHamiltonian of tke systemof N electrons then N 1 N ? ez X= + 'l'o, lh + --' Y'Y (3.2.6) '=' 2fy#=l rii
f= T
where'/fcksthe Hamiltonian operatingon theion cores,rj# is the disfaace between electrons i and#, the primeover the second sum eliminates the caeoe ï = j fromthe summation, and
'/'ff =
-
5,2 .a Vç . 2zn,c + Tl
tk3-2-7)
HereVï operateson the coordinates of the Fth electron. Ushgthis Hamiltonian andthe eigenAlmctions in eqns(3.2.3) defqed and(3.2.4) the energyof this systemLs
*1=
1
+ dTzdm ' . drs. /*S/ dn da - . drN = Nj det-kslsdetkk) . (3.2.8) .
'
Sincethe operatoris linea'r,the integralrxn be written as the sum of integrals over 'thevarious terms,namely N
Si +
zr = f=l
R 2
-
N z
f,J=l
th.i+ Ec,
(3.2.9)
wizerewe havedefned
(3.2.10) (3.2.11)
(3.2.12)
EXCHANGE DTEMCTION
39
Thelasttermin eqn(3.2.9) involves onlytheioncores:anddoesnot interest us herefor the studyof theelectrons. Therefore, we want to evaluate only thefrst two enera terms. . Let us consider frst theEi term: andrecallsome of theproperties of a determhaat. It hasX! termsleachof whichis a productof N wkls.ln the latterproducttherearenevertwofanctionswhichare taken1omeitherthe same row or the same column. Therefore, '/tç,whichcontainsderivatives onlywith respectto theparticularcoordinates p6toperatesonly on one particiar wkLpjjin theabove-mentioned product.Theothertermsm>ybe movedto theleftof 7Q'. Integratingover thecoordinates in thoseterms,the integralvanishes according to theorthogonality assumption in eqn(3.2.5), of all the unlessthe determinaat of w:,containsthecomple.x conjugates termsof pk whichwe movedto theleftof '>ff.Thereis one andonlyone suchterm in detlrglzj for evezyterm of detlwk) whidt fuKlsthiscondition andall theothertermsintegzate to zero. Usually, determinant termsmay be positîveor negative, but hereeachsuchterm in one determinaut is multipliedby thesameterm in theotherdeterminant, so that theproduct is always poàitive. Theintegration over thetermsmovedto theleft is then 1,according to eqn (3.2.5), andwe are thuslefLwîththeintevationover In otherwords, to therightof ?Qpo whichis theonlytermwhichremains Si is madeout of a sum of X! terms,eachof wikic.k hastheJérr?z . e ï Vk (sVï j, tjy. : ' Wkt #i h z r.t,.j
Forgivenk and ï, the functionvkLpj) appearsin LN- 1)!termsof the determinant of eqn(3.2.4)Htegrationof eachof themleadsto identical resultsbecause it doesnot makeany diference whkhof the otlterfunctîons integrates to 1.Therefore, thewholedetnrmînant izteqn(3.2.10) leadsto
(3-2.13) Forreaders whofnd it ratherdilcult to followtheaboveargument: 1 recommend themto wozkout as aa illustrationthe caseof a second-order for which determinant, ,-
-
wztpz)gz,(sa ,t- .,-,,)j ),.:;((,,-,), wwj((,,--), (pa(#z) ! j (('),)) j
,
oa.14)
whichleadsto
G
=
'ztz(n(pz) 'Hzwz(p1)) dn + (p;(pz) )j kwl(p1)
,
(3.2.1 5)
aad similarlyfor Sz. Themore general case should thenbe clearer.
40
THE IGISENBERG HAVIT.TONIAN
Theindexi ia eqn(3-2.13) ksthat of theargumentpqin the integraad. Afterthehtegradon the resultclnnot depend on tYs over thismdable, Ntkular f. Wemay as Aell lxke anyone of theseindices,for tavxmple the fizstone, andwzite J.
*5J
Q = '-''?a .2%
â= l
w-k (Jh )'Hzw,(/;)d'p-:
(3.2.16)
wkic,h Geadyshows that the novmn3l-zation factortakenin eqa(3.2.3) ks Orrect. because the reult ks1 if Nz is replaced by 1. The sum over ï is tims N
x
F! & = N% = i=1
k=k
dn = w*,(#z)>f, wk(#z)
s. >
(3.2.1 Ij
wlzic.h is theenergyof theseelectrons whenthey are separated fromeach . otheranddonot interad. WheathesameMndofalgebra is repeated for khj,it is seemthat the coordinateof iwo electrons are involved in vg = lr#- r#l.Therefore, for eachterm of detgtkoé theaeare two termsin detlfglz! wkichdonot hteconditionof eqn(3.2.5). The grateto rmo by applyingthe orthogonality non-zero termsvzilltims bemade out ofpklpgj andwv (%)andtheircomahmt repeating plexconjugates. Theprevious argument theszme integrals that (N- 1)!la'rnesapplieseqllallywellhere,andso dœstheconclusion theintegraks donot depead on thepaeticular choice of theindicesï andj, whiclkmay as wellbereplazed by 1 and2. Eence ,%bt*'
z*sf''
l'' S'j 2iI.f=Q j
(,2 1 ',2 t ..bv k rx j jo p !wk, (pr))j:)dvj ga 2 kxk/uul ?*ïj
::z. -
-
1 -v ' 2 i:11-' =l -
eg
-' v'%(,1)e-&-' rpz d'''-2(pa)rv.fbs'z.''bt7ns'ok' ... . (3-2.181 '' s . nr''r'.t
Now, leIl@â(n)I2 is the probability that thereis an electronat the coordinates theîrst sumkstheCoulomb intcactionbetweea pï. Therefore, a pair of electrons, summed over all thepairs.Thesecond sumaatbnof integralscannotbegivensucha simpleclassical intarpretadon. It is clear, however, that it somehow comesout of the Coulomb potentialbecause of theuse of a determinaut, wluich meansthat it is dueto the Pau)iprinciple. It rnxythusberegarded as a Mndof korrectîon' to theclassical Coulomb interadionof thefrst sumvnxdom wlzic.h doesnot takeSntoaccouatthe Paaliprindple.Accordingto tltîs prindple,two electrons that havethe
EXCHANGEINTERACTION sitrne spincaanotbein thesitrne position,so that their overlapis smaller thanthat ofclassjcal electrore. Thettegralswhichappearin theseccnd summation of eqn (3.2.18) are calledezchange ïntlrtzlo. The sum itselfis calledtheezchange enerr termlt maybeworthnotingthat theintegralsin theenerr termsthus0btainedherecan beevaluated onlyif atl theftmctions' are known) lpkLpzq whic.his hardlyever the cmse.It is more common to ûnalnate the functionsvklpï)by minimlcingthe total enerr obtainedwhentheseenerr termsare substituted in eqn(3.2.9). Thereare diferenttedmiques for the actualuseof thismethodthatmostlyrh'1m'by certainsimplifbng assumptionswhic.hare introduced beforetheenergyminsml'zation. Theyare a21 knownbythegeneralnaztteof theIlartree-Fcok ThueVII not be method. here. described summationin eln (3.2.18), Consider thesecond whichhasjus'tbeen ducribedastheexchaage Theimportantfeature ofthisenergyterm energy. isthattheintegzations in it containalsosummation over thespinflznctionsSince thesefunctions aa'eorthogonal to eachother,theintegralvrillvanish if the spinsare not parallel. Therefore, this term actuallyrepresents the beiween thestateoftwo parallelspins,audthestatewhen energydigosnmoe W'hen theyare antiparallel. one isinterested onlyin themagneticproperties of thematerial,tMstermmay justmswell bereplaced by a Hitrniltonian whichtriesto holdthespinsparallel(orantiparallel, depending on thesign oftheappropriate to eachother. integral) .Inorderto statethesubstitution of a Hamiltonian more precisely, 1et11: bethewavefunctions of thesystfem of electrons of theM atoms,whenthey are at a very largedistauce fromeachother,nitrnelya certaincombination oftheflznctions of a singleatom (orion). Let + bethetrue eigenfunctions of thesystemwhentheatomsare put closertogether, so that theyinteract meckly, in sucha waythat thedegenerate enerr levelsare split,but not rnz'ved beyondrecognition. It is le#timate to assamethat it is possible to havesome SOI'tof a one-to-onecorrœpondence between 9 and%for this case-M a substitute forthetrue Hamiltonian, '7'f,we wouldliketo havean effective Hamiltoniam, '/fesjso that its matrixelements withrespectto the P'swill bethesxrne msthematrtxelements of theori#nalHamiltonian , with respectto theg's?nitrnely = ('1z1!7.f1ïIJ'k?)- (3-2.19) ('Akl-/ïeel#kr)
parallelandantiparallel spins Obviously, if the enerr drereacebetween is goingto be theabove-mentioned exchange inteval,something that containsthe sum of terms whichare proportionalto sL . sy can do thejob, it is not convenientto wheresy are the spinof eac,helectron.However, andit is bettert,osum fzst over all the dealwithear'helectronseparately, electrons of eachatom (orion)at a latticepoint. Some care in gout
42
TA'fR HELSEIRBRG HAMRTONJAN
tlsissummation in some cases,the 6nedetailsofwhjc.h maybe ne cambefoundiu the thetreatiseof Herring(21), andwill not berepeated here-Thefnal resultis whatis intùtiyelyfelt to bethe =e, namely tkat 'Ha =
JéjSï - s.f,
-
(3.2-20)
i,#=$.
where z
e s q = 2 ,-t,7. dr1dra Z,J? ? k'Jl' (r:)$7;('r2) rà ral (rg/wyfurt./ '
--
-
.
(3.2.21)
The conventson is to keepthe miuussignas in eqn (3.2.18), so that positiveAj mears a ferromMnetic couplingthat tendsto align spini parallelto e,arxk other,whilea negativeAj means an antiferromagnetic coupliug.It shouldbenotedthat in the presentHamiltonlxnSç. Sycan havevaluesbetween -9 and SZ,whereasthe appropriatepari in eqn +4:1,:1% between 0 andLSZ,wllichintroduces an e'xtrafaztorof 2 (3.2.18) in thede6nitionofKn (3.2.21). It shouldalsobenotedthat S: is the t/tll spinof a11the electrons boundto theatom, or ion, at the latticesitei. Foran insulator,thespinis thatof a.lltheelectrons. Fora metal,onlythe electrons of the iunershellsare counted, whichusuallymeansjustthe d electrons in the metals electrons ofa metal NkCo,andFe.Theconduction wanderaroundthe wholecrystalanddonot belongto anylatticesite,and the icnermœt electmnsare takenas one entity together with the nucleus. Sincethe Coulomblteraction is a scalar?the efectiveHnmiltonian must containthescalarproducts of theappropriate spins.Howeverp i.t doe not necessadly mean that eqn(3.2.20) is the onlypossibility. In someway it may beregazded the n%t as only a Ast-orderterm in an expansion, term of whichbeing a
lvI
- S,)2 ..726 ) :,.1(S,J
ét/=l
andevenhigherordersmay beaddedi'aprindple.Ashasalreadybeenmentionedin secdon2.6,thehigher-order term is indeedencountered in some nothingbeyond the îrst term ca!kgenerally physicalsituations.Howeverp beincludedin a quantum-mechanical calculation. is,thus,thejustifcation, TheS'ciscnierp E'amiltordon ofeqn(3.2.20) at a deeper level,for the a%umption ofa forcewhichtriesto alignneighbouringspins.RR>e.U the spi'aoperatorsare replaeed thiR by their eigenvalues, . Hltetiltoni= 10-* to, andjustifes, the &st enera term of eqn(2.2.25). Jt is thusthe baaisfor the theoz.y of the Weiss'molecvlarf eld' apmo-'dmationthat hasbeenttseêthroughout chapter2, andthe bx--Kfor most of the rest of this book.In càapter2 it was alsomssumed that only the
EXCHANGB WTBGMLS interactionis usuallyimportaat,andthis part can also nearest-neighbour bereadilyseenftomeqnrs3.2.21). Sincethe integralinvolvesthe overtap of the wavefanctiopit is quiteclear,even withoutdetailedcomputationsj that its mluemust decreaevezyrapidlywith increui'agdistaace between theions.In particular,J must benegligible for electrons on fartheratoms. Therefore, it is usuallysulcientto consider the exchange interactionbetwee.nnearestneighbours only,as hasbeendonein càapter2It may alsobeaddedthat the treatment hererefezred specifcallyto the so-called Idirect'exchange coupling.H manyof the fezzites discussed in section2.5,thereis no suchdirectcouplingbetween the magnetic' ions, thereLsan antiferzomagnetic couplingbetween thespinof e.g.Fe.Instead, theiron andthat of aa oxygenion?andanotherantiferromagnetic coupling that oxvgenandthespinof anotheriron in the.samemolecule. between This coupling,knownas a s'upevneltange, still tziu to alignthe spinsof thosetwo iron ionsparallel to eachother,a'adis egeetiveky the sxme as a directferzomagnetic interaction. At thelevelofthisbook,it isnot necessary to distinguish between the two. Theintegralin eqn (3.2.21) is symmetricto interchanging t; andj. Therefore, oka= h,izandit Lssulcientto takeonlyhalfthe sum of eqn Thisfeatureallowsus to write theHeisenberg Hamiltonian in its (3.2.20)' moze common form,as
'lfeg= -2
J'lJç,yS:S.y -
i>j
.
(3.2-22)
3.3 'RvthaageHtegrnlq lf the fundionsyq are orthogonal to eachother,addinga tezmwithez/rza r-qn beoected to conkibute a podtivevalue.Thisis indeedthe c%e for electronsin the same atom. In an un6lledshelk electronstendto have parazelspinsas longas that is allowedfor the sxme shell:thuscyeating a largetotal spinS for theshell.Whenthe fanctions are not orthogonal, @j a roughestimation of theackangeintegralJ usuallyleadsto a negative value.Fora problemlikethe hydrogen molecule, thisnegative exGange is of theCoulomb bya simplephysîcal argument: because easyto understand attraction,the two electrons wouldpreferto becloseto b0thnuclei,which theytnn doif theysharethe sameorbit that goesaroundthe tloonuclei. Accordingto the Pauliprindple:the orbit sharingis posdbleonly if the spinsof the twoelectrons are antiparallel. Therdore, thisantiparallel state haxs e1.One a lowerenera thanthe svte in whichthetwo spinsaTe can thusexpect the exchaage electrons integralJçj,for interactionbetween in diferentatoms,to begenerally 1om negatlve. Andindeedcomputations for almostanyreasonable assumption aboutthe functionswo eqn(3.2.21)) integral. leadto a nmatineexcàaage However, h is knownfrom experimentthat Fb, CoaadNi landsome
THEYLSENBERG HASXTONIAN are ferromaaets, andtheexchn.nge integrabforthemmust be earths) pcitive; unh-ke a similartrnmsition metal,e.g.Cujfor whichtheeigenfuncm tions(p4are neazlythesarne, but in whic,hthat integri must benegative. Ttusedto bestated(24) that nobodyhasbeenableto computea positive exchange integralfor Fe.anda negative one for Cu,because ratherlarge positiveandnegativecontributions subtractto a smaller valuethat Lsvery Moremoderncomputations sensitiveto the computational accuracy. (22) of the computed exchange alleadyhavethe zightMgn,but the mannitltde iategralstill difersconsiderably 9om the experimental value.Improving the techniques (23, 24)keps improvingthe results,but not suëcientlyyet. Theaccuracyis certainlynot suëdentto afcountfor the possibilitythat Cumaybecome ferromagnetic undercertainconditions. (25) It is,thus,not possible thevalueof the exdonge inteyet to determine gralin theferromagnetic metalsfrombasicplinciples.Onecan justassnmc theHnxsltonian of eqn(3.2.20), andtakeJu asa parameterwhose valueis obtnsn edby ftting thetheoryto a certainexperimental value(usually the Cuzietemperature). Thetheoretical situationis clearerin thecase of.JerrJrztunE-ls, disc'tussed in section2-5.There,J < %andthebasicinteractionis antiferromaaetic, butthe momentsof the two sublattices donot subtract to zero because they are not equal.The net momentis then Kectively ferromagnetic, in spiteof thenegativeexchange. Thetheoryis alsoquite in the previous clearfor thecaseof theindirectsuperexchaage, mentgoned section. 1n.thoseferrites,one Feionis coupled antiferromagnetically to an to Mother Feion. O itm wiic,hin turn is couplWautifeerromagnetically ksa ferromagnetic couplingbetween thetwo Feions,butthe Thenet eFec't iniegralsare b0thnegaihe. of the However, even tnthesecases)thevalues exchange integralshaveto betaken1omexpeziment, because the theory is not suëciently welldeveloped to yieldreliablevalues. rare
3.4 DelocallzedElectrons The wholeconceptof intezactionbetween electronswîich az'e loi-mlimzo on ionsat latticesitesis at bestvery muchoversimplifed. Afler all, a strongecchange coupling impliesalatgespatial overlap oftheelectron wave fnnctions,whic.h cannotbe reAliz-dif these electrons are strictlyloczllezad. at leasti.athe metalsFe,Co andNi?conduction Moreover, electrons are movingaround, andtheymustalsohteract5.nsomewaywiththe electrons at the latticesites.The pictureis cleare.r whentwo ferromagnetic layers are separated by a non-ferromagnetic metal)andan exchange interaction is carried(26, electrons of the latter. But even in z7lby ihe conduction the ferromagnet itself,some interactionLscarriedby mobileconduction electronsJathecse metals,the3d.ban.d is overlapped ix energyby a much wider4sbaad,anddncebandsare flled to theFemn'' level)the eledrons ;heconduction bandare not a21omthe whicheachatom contribt 4s baad,andare partly the numberof d Le3d band.Thezefore)
DELOCALUED ELECTRONS
45
electrons in the case of rare earths) contributing per atom (orf electrons to the bulkmagnetization is n:f an integralnumber, whichis indeedan ex-perimezt' tal fact.lkhrom theexperîmental saturationmagnetization of these metals) the numberof Bohrmn.gaetons peratomis 0.6for Ni, 1.7for Co! and2.2for Fe.Besidu,themeuuredspecifcheatat 1owtemperatures ia thesematerials showsa biggercontribution fromtheelectrongasthanr-qn bepossibly accounted for by valence electrons (4sin Fe,CoandNi)The theoretical studywkicll is basedon the Heisenberg Exmiltonian, as used throughouttherest ofthisbook,igaores thesedllculties,andjust puts a nondntegral numberofBohrmagnetons at the lattlcesites.Therefore,anothertheoryhasbeendevdoped in parallel,whichassume (28) a completely delocallzed: Fee-electron gas,movingin the prcenceof the fxed background of thepositivelycàarged ionsat the latticesites.Calculatingtheactualenerprb-ds of theseelectrons can accountfor theactual speciâc heat,andcan yieldtheoretical valuesfor the saturationmagnetization%'s.temperaturecurves, likethe one plottedin Fig. 2.1,az wella.s for othertransportandmagaeticproperties in metals. Thistheoryis called eollnctine elecàzrn or itinerantelecfrnn ferromagnetism, ierromagnttism. Theitinerantelectron ferromagnetism iselegant, andsomeofits results for examare easyto followcven wîthoutdetazed computations. Consider p1eCu,with 11electrons are suëcient to fII the peratom.Th%eelectrons 3dshell,anda fdledshelldoesnot haveanynet magnetic moment,because thereis art equalnumberof electrons with spinup andwith spindown.ln the4sshelltheexchange interactionisratherlow,andthedistance between neighbouring levelsis too large.Therefore, Cudoesnot haveanymagnetic moment.In Ni,thereare 10electrons whichhaveto besubdivided between the 3dand4sshells. In.a gasof freeatoms)thereare 8 electrons in 3d,and 2 electrons in 4s-In a solid,because of the ' of bandsup to the same it can beconcluded fromthe eoerimcntalmagnetic enerprleves (Yermy) datathat 9.4electrons peratom azein 3d:and0.6electrons per atomin 4s.ln theunfqled3dshellthe spinsarenot balanced, because theexchange interactionwithinthe atom causesmore spinsto beup than down.The exchaage for the energy enerr galnis more than sulcientto compensate lossdueto theelectrons beingraised to higherlevels in theb=d whenthey cannotuse thelowerones that can onlybe occupied by thosewith an oppositespinto the electrons that are alreadythere.Thedxerence between the moments givesriscto a net magnetic momentof 0.6Bohrmagnetons peratom. Thema-dmum possibleimbalrce in 3diswhen5out of the10electrons enterthê halfb=d with spinup, andthe othez5 splitbetwenthe other half bandwith spindownaadthe 4s.For zLezecwtrons per atom, out of whichz are in 4sandzL- z in 3d)at most5 rztn bewith spinup1leaving zL- z - 5 in 3d with spindown.Thenet magaetic momentis then
THEYLSENBERG HAKTONIAN
46
y'n =
(5 (n -
-
z
-
sljos= i10 (p, zll#s. -
-
(3.4.23)
value TnNi, zt = 10andtr = 0.6,whichLsconcluded 9omtheexperimental of lln = O.6/Is,as hasbeenmentioned alreadyIgnoringthe change in the bandstructureia alloysof Ni with othermetals,andassuming that 0-6 electrons per atom st111 go to the 4s bandin thesealloys,their magnetic momentshouldbe (3-4.24) P,H= (10.6 njpnt whicbagrees quite wellwith experiment for Ni alloys.For example, in alloyingNi with Cu,whichhazJ1electrons the saturation atom, per magnetlzntiondecreases more or lYslinerly with încreasing concentratîon of Cujreanhlmg zero at about60% Cu,in accordance withthis simple relation: Sa'rnsliA.r estimations for the metalitself)andthe efectof some alloying, workwellenough for Co.J.nFethere'are deviations of about2O% Somthe e'xperimental value,whichis not surprisingbecause the assumptionthat the enera bandstructure doesnot change between one element andthe otheris oversimplised. But a lineazrelationstizlworksforsomeironalloys andit Lsofïenpossible to account.fortheexperlmental resultsin some E29), others(30) by very simplemodels. For Mn this argumentbreaksdowm Continuing momentof Mn (withn = 7)should msbefore,the magnetic belargerthanthat of Fe;but actuallythe momentis 0. PureMn is not ferromagnetic, the exchange iu Mn is not strongenoughto raise because electrons to higherenerpe levelsin the band,leavingthelowerenerpe ones whichbecome forbidden(bythe Pauliexclusion for electrons principle) wsththe same spin.After all, eqn (3.4.23) givesthe mcmimnm moment, whichem'n only beachieved for a stvtmgexchange coupling.However, in alloyswithmaterialssuchas Al or Bi, the d-istance thetween the1$4n atoms decreases sulcientlyto incremse theexchange integral,andthesealloysare ferromagnetic. It shouldbequiteclMrfromthisoutlinethat theitinerantelectronthecalculations of theenera ory)with more detGedandmore sppkisticated bands,r-qn beverysuccessfal in interpreting experimental data.For mauy exitrnple) alreadycomputadons whichwouldl:e conddered ratherprimitivetoday(311 showed, as later confrmed by more elaborate ones(22) 32J, contninvezy sharpandnarrow peaks. that the enera bandssometimes in somepropertie maybe encountered whena Therefore, a sharpchange particularcomposition of an alloypasses a certainpeakin theenergy baxtd. Also,transportpropertia,in pazticula,r thegiantmcnetoresistance efect, practicallyonly by the'itiner=t electronpkture) can be interpreted 133) . even thoughlotoliz.xdon doesplay(34) a certainréle. Generally speaking) theitinerantelectrontheoryis quite successful in withthewholecr-gstal. However, it Lsquiteclearthat sucha theory dealing cannothanclle vaziationsin the magnetization, for the simple any sppcàicl
DELOCALIZBD ELECTRONS
47
MagrgltenInkllogauu
Flc. 3.1. Themagaeœaton distributionia a llnit cellofbccPe,as tseen' bz neutrons.Reprodute*om Fig. 3 of (37) by permission. reuonthatthe energyband calmzvonis independent of spàce.Therefore, is the s=e in an amitinerantmodel mustmsslzmethat themagndtiMation thewholespace,whilethereis strongexpezimental evidence to the contrary, namely that themagnetization in a crystalis a functionofspRe.1.u. partictllar,bulk ferromagnets %vebœnshownl)y w.ry manyt-hm'ques wfll bediscussed in section4.1)to besubdivideia* (II-H in (wbich whichthe magnetizadon pointsin derent diruions. 'I'h- eFects, aad the wholeconceptof hysterisks in a.a as ren jn Fkg.1.1,mustbeignored atldtinmnt thmry. Bvenbesidœ tzhe subdivisîon into domains thereis strongexpea'mental evidence agninKtthe itineraatelectrozz theory,some of whicilàasbeen lite'zvlin a popularreviewofS--%MK alongwiththe eezimentalevî(35j, denceagnm.' ';:ha tlzeory' electrons. thatassumespurelylocalized She(35, 36j tried to outljnea combined pictme,in wikichm'rt èf the 3d electrons Ls localized, tàe ot:er part beingidneraat.An even clearerpictureeAn be seenfromFig.3 of (371, reproduced asFig. 3.1here.lt plotsther-ltz of shooting neutronsteough an izoncrystal.Sincetlzeneueonbnx a magnetk moment,it interactswit.hthe moetic EeldwVe passic through thecrystal.TH fgttre kterpretstheexperimemtal neutrondatain termq of themagneticîeld Groughwhie.h thoseneutronsp=. lt is quiteobWous frt)mthe flgurethat some of the maretizxtionis locoed at the lattke site, but it is alqnclearthat this maaetic momentis verymuchsmeared voundth- sitas.ThemaaeticVld distrîbutionis complicated, aadthe
V
THEHEISBNBERG HACTONIAN
pictuzecaanottheeven roughlyapprotmatcd by thenaiveassumption of a pointmaDeticcharge at thelatticesites.Some detailsofthisfgurewere somewhat moeed later(381, buttheydonot change its generalpropertiu. Thereis thusno doubtin anybody's mindthat neitherthe itinerant electrontàeor.vnor the loc-ql:-med eluron one rAn beconsidered to be a complete reality;andthat theyshouldbothbecompictureof thephysical bine into one theorpSucha combined approach maycome somekimey but the presentsituationis that it hnAnot beenseriously tried, on atv dunt quaqtivtivelevek beauseit is justtx diEcult.Workersîn magnetismstickto one theoryor theotherjustbecause tàeyare unableto do thereare still of theseapproaches aay better.Actually,evo withiaeac,h too manyrhimplifyiog assumptions andapmemationswhichare msbadms ignoringthe otherapproach, andare acœpted for lackof anything better. H tMsbook1 Gooseto usetheassumption of laob-vzxd maoeticmoments Rxmz-ltonl-zm on latticesitœ,and theHeisenberg msderived in sedion3.2, because it is theonlywayto includethe variationof themagnetization in is the maintopicof tltis book-It meansusinga non-integral spMe,whic.h nnmberofBohrma&etonsperatom,whichisphysirltny strange butcmmbe zmderstood 1omthe forego-mg Oncesuc.h a non-integral valueis argttment. accepted thereis nothhgwrong |
z
wheref aœetke latticevectors,namelythe vetors fromthe ori#nto the latticepoints.Thisequation is moreor lessequivalent to mn (2.2.25) which hRAalreadybeen';> in chapter%onlythereS were chssicalvectors, whereas heretheydesignate the spinoperators. Thejustlcation mxynot bemsgoodas maybeeetM butit isthebœtwe haveat tbâsstageofthe theory,whichleavea 1otto bedesked. In a way,it is not muchmore than kowever, an nmmmption, to beadopM1om now om It is hoped: that the foregoing for adoptingthisassumption, argumentis suhdentlyczmvincing
SPr WM'E,S
45
wàichat leastis not justan arbitrary,ad hocazsumption as is the Weiss tmolecular feld' usedj.uchapte.r 2. It is customazae to replace the operatorsh@)andSt'/h z by the operators
s+ z
s@)+ j#F) :
=
z
K
s-d
,g(=)- jsLN? '
=
:
4.5.26)
:
for whichthe Hamiltonian becomes
(a; + h-b''') + h(z)5'z, -.V Jzz. j1 gxv &-', q .f,,d/ ?
7t=
(z; J-) gpnHh d
-
.
(3-5-27)
Asisknownfromquantummechanics, forspinsat the aamelatticesite, theoriginalcomponents of thespinSforthesame.4f-.1l'9l thecommutadon relations
r,j.atzl ç&,gg(l) ; gsjv) : : jhspt j(m) stvlj s'jzljjjj,jvjml; k sz(2lj =
'
=
,
=
,
,
(3.5.28)
whilethesecomponents commutefor spinsat diferentlatticesites,anda1l thesecommutation relationsmnishfor,4# .é/. Usingtheserelations; and the defnitions in eqn(3.5-26),
sçz)s.j-= z z = =
=
+ jsjvlj sjztgsztxl ,$vz(,).à + sjmt + ,fsjvt Asvzjph , sjzb jjwl, Asvztrj gs'ztt'l j sçzt ,$R0 ,$,z(t) i?t.s'/l + Sjrlz + ,)szç'llt ?s + z -
s+ ,j.(w) y,s..v z + z z -
(a 5 a:; - -
Hence,
h-b, gszto sz'tjnékz?
(3.5.30)
=
,
.d= .é',
symboljwhichis 1 if whereé'zz, is theKronecker Similarlyz ïfzs z & z = -h%z',5-z+.
andOotherwise.
S71
(
(3-5.31)
Tocomplete the transformation it is necessary to consider also , sz'z (q$k+ q=
) ''') i + ï / 2) s,( )1+ gs-zt'') syt'') .s$j g,s,zC*') ,sj lz11 g-s-zt''z 1 -aa) (a.-5. ,
-
,
u
,
k'
x'.
-'
-
:
.
.
Herethefrst andthelastterm obvriously vanish,andthetwo in themidflle can bceqraluated by substituting fz'oz!i leadingto eqn (3.5.28), + , S-j zz = zôzkz, S/) LS.t -
(3.5.33)
'50
THEHEISENBERG RAMK,TONIAN
relations Actually,thecommutation are not ttsaallywrittenin tbis fo'rm in booksor paperson tbis problem.It Lscastomaryto.writethemin the special(units'in whichh,= 1)andtherefore omit h. It savessomeink to writeequationsin thiswas but in principleit hasa majordisadvantage if andwhenthe resultLsto be exprerxsed in terms of 'realunits.J.fat the qnantity'that one endof the Ypulationthe resultis a tertasameasurable wantsto comparewitheeeriment,it is not always veryclearwhetherthat resulthasto bemultiplied by>.)or dividedby :.21or whateve'r. lt is always machexsierto substitate theparticularvalue>,= 1 if tt is wantedthanto to beginwith.Asa matterofhct, ,patin anothervalueif h'= 1 is assumed theories whichuse A= 1 (orothernon-physical untts,sachas the velocity enn ezstonlyin feldsin whichtheorists of lightc = 1,etc-) comparetheir resultswith eachother's,andthe experiment is far removed. It em'nnever happenin thenormaltrendof physicsl in whichtheoryandexperiment are it is alwaysa betterpolicyto keep erpected to gohandin hand.Therefore) ô,in the equations. Consider now, at eachlatticepoint, aaother operatordefnedas
@), N4 = Sh - .Sz
(3.s.34)
whereS is thespinnnmber ofthe atom (or) rather,the ion) at that lattice site.SinceS5 is the largesteigenwlae of htO, the eigenvalaes nqhof the * . operatorNz e-xpress the digkrence between the mn.rmum possible value, andthe actualvalue,of the z-component of the spinat the latticesite,4. at thelatticepoint Therefore, the nllrnbea's nz are calledthespindedc,titm.& z. Tuet Tru denotetheeigenstate for whichthe spindeviationis zzonnmely
'rtnli Tru
Nzèaz=
(3-5-35)
.
In principlethis eigenstate is a fuactîonof the spjncoordinates at cJJthe latticesites,bat suchan operatorwith a pavticulav vatueof,4operatesonly on thecoordinates whichapplyto tllis patticularf. lt is readilyverifledthat the snmn e kknzis abo an eigenstate of the tX), w hoseeigenvalae operatorSz is h(S-zu). Indeed, byusingthedeânition of eqn(3.5.34), andsubstitating fromeqn(3.5.35), v (z)Ta, = Se tlrvz:=
(SCz,5:)
;;(S zulllI?w. .
-
(3-5-36)
Forotherpropertiesofthis function,consider the expression
sgçz' Jz+ q,.
=
+ ss-bsgçzt (/j# ,5'zj ).Ir ,
a ,.
Substitating for the frst tel'min the curly bracketfzomeqn(3.5.30), and for the second term 1omeqn(3.5.36), this relationbecomes
SPINWAVBS
t;r)(,$'G Sz az ) = )LI'1 s +s z@
vtgj
51
tpazl (.çz+ , ;
(3.5.37)
whichmp-qnsthat 5+% of Sçtl : w is alsoalz eigenstate z . H fact) it is the eigenstate whichhasthe eigenvalue Sincethelatteris the h(S (7u :t)J. eigenvalue of kzaz-l, thestateSg-bqçvu mustleproportional to 9a.-,. Similvly, it r-qn beshownthat the operatorSz-transforms kbnzto something proportional to Taaz. Thebehaviour of theoperatorsSz-arzd&z+ is)thus:similarto thatofthe creationanddestraciion Theycreateor destroyspin(fetlictbtlns. operators. However, thereis a big diference in that thecomautationrelationof the conventional creationanddestruction operatorsis (a, c*q= 1.If therighth=d sideof eqn(3.5.33) wmsa numbevt and Szcouldbenormnlized S/ to makethe commutation relaionequalto 1)but that right-handsideis a'aoperatorandnot a number. Thebestwhichcztn bedoneis to defnethe operators 1 1 s + = cz = S.+ ap Sg: (3-5.38) * , 25h 25h for whichKn (3.5.33) become,s t'Fz z k' .a. %) 1 k'g hz, tzz'q, - = ss z f
.
.
,
(3-5.39)
Nevertheless, it has become customaryto use the apmmimation in tO on the right-han.d whichthe operatorSz sideof eqn(3.5.39) is rephced byits eùenvalue is (39J that repbzu-m by Sh.Thejustifcation gthat operator its eigenvalue is correctto a Ez'st ordeaandintroduces onlya secoad-order error, at 1owtemperatures. Thebasicassumption ksthat in %he regionof interest,almostal1thespinsare parallelto z, andthedevlations are small on the average, namely
z'Jz (O)- -%% (T,.n')<<M.(0). however, that thereis a diserence It shouldtheremarked, between a proof that the neglected term is small at 1ow temperatures, and a çucntitc(39J tiveestimate of howsmallis small.It isemsyto becoavinced that repladng the operatorby its eigenvalue is a goodenoughapprofmation if the temto say up to what experimental peratureis not too high.lt is lesse,as'y or up to whattemperature, suchan approfmationis justiîed. accuracy, Sucha quantétative estimation haanever beendone,nor hasthereever beenanyAuantum-mechauical treatmentof thelow-temperature re#onby Therefore, at the presentstzage of our knowlany otherapprofmation. edge,thereis no choice but ço acceptthis asumptionbecause thereis no otherwayto continuethe calculation. But it must bebontein mindthat unspedfedapprofmationis involvedthe statement a cea'iain, Therefore,
rl'HEREISBNBBRG EAMILTONIAN
52
that a qaaatvm-mechanical is onlytoo oftenmade) theoryis x'nhertwbich entlymore accuratethansopetlzing dadsical îs at (asin chapter2 here) bestunprovedandnncahecked. Repladng the right-hand sideof eqn(3.5.39) byjust(%z',
(3.5.40)
La,, al'l - Jkd',
the operatorsc,zandcz' become the same aqithe conventional destruction =d ceation operators, so that = 'n.:+ 1Ww,a-p; , clk'Ik.n.z
atqn.,=, nt Tnr-z .
(3.5.41)
Moreover, according to thedefnitionin eqn(3.5.35),
(3-5-42)
= Jàtzltzz, -
%$to eqn(3.5.34), so that according
60= $. Sz (S cl(ul.
(3.5.43) fromeqns(3.5.38) in ecn (3.5.27), Substitutin.g and(3.5.43) '>f=
'
-
-
>,z ,&z? + (qtuzl + (S g.s ((uc1, jy z,.f -
ggBS,H (S cltul JR' d -
.''
clc,tl(S (zlzazz )) -
(3.5.44)
.
Forf # d, the operatorscommute,andalarmaythereplaced by czzcl. TJ the names of f andZ are theninterchanged in the summation, thesecond te'cmin eqn(3.5.44) becomes identicalto thefrst one. A similarargument of that equaappliest,othe temnqlinearin S whenopeningthe brackets tion.Theterm wbic,h contalns theproductof foaraz operators isneglected, to eqn(3.5.42) it isa,productoftwo spiudeNiation because according operatorsNz.At lowtemperatures mostofthespinsaze azigned, thedevia,tions from the fully alignedstateare small,andsecond-order termsare negligible.Thisargument can pnltily be made more quantitatîve. Onee-an (39) even add(40) the neglected second-order term as a pertérbation, andf nd oui the raageof validityofthis approimation.It shouldbenoted,though, that unlikethedropping of thesecond-orderterm, the approdmation which hasalreadybeenmadeih replacingeqn(3.5.39) by eqn(3.5.40) cannotbe madequantitative, andthereis not muchpointiu qu=titzing one without the other.Thercsultis : z, ttzl(uzG(ul+ J'lgIJBD,Ha)aA, (3.5.45) 2&jYJ L,t .d
e/g= C - 2zà
-
SPLNWAVES where
c
=
53
?
2 -&2uhE zzz?- gpshHslh d,:J
(3.5.46)
andN is the totalnumber of ion sites,namely Ez. Thebasicassumption is that the groundstatefor a ferrcmagnet is the (l) statein whichall thespinsare alignedabngz. In that state,everySz hasîts max-imum eigenmlue, andthereazeno spindeviationd. Therefore, no cz operatorcan destroyauy deviation ln thisstate,whichis denot. ed by To. ln otherwords,if cz operates on thisstate, Ta,therKult Lszero. Andsinceall the terrns i'a nqn(3.5.45), exceptfor C, havean az on the right-hand sidey (7Y Cjgc = 0(3-5-47) Therefore, = C%tO, S<7O (3.5.48) whic.hmeans that tlle groundstate9:) is an eigenstate of 7t) andthat Ct as defnedin eqn(3.5.46), is the energyof thisstate. Spindeviations at anyparticularlatticeplintare not eigenstates of the Hxmiltzmian because a creationat one latticepoint,f, is accom(3.5.45), paniedby a destruction at another latticepoint,âl. Therefore, theexcited statesare not locxlîzed on any one atom.Theyare madeout of spindeviationswhichare propagated throughoutthewkole czystal.11,s description thuscallsfor a theorywhichinvolves the crystalmsa whole,for whichone shouldtakeadvantage of the periodicdtr/zclureof crystallinesolids.For that purpose,the cz operatorsare expanded in a Fourierseries,as is done :41)in the studyof the normalmddesof the lattice vibrations,or of any otherpropertyof solids.ForN unit cellsi.n.thelattice,andone atomper unit cel.l,the Fourierexpansion is q vsv57 -q
az =
a e
,
+=
tt:
1
-
q
-yq.zj a+ qe
(3-5.49)
wherethe summationLsover all the allowedvectorsq in the Brillouin zone of the redprocallattice,quantized according to periodicboundary conditions. As is the case in any other Fouriear expansion, the invezted expansion is (àq =
1 (Qe-çq.z: .v z
J,.q =
1 -
X-Nz
5L. efq-z.
Fromthe commutation rdation (3.5.40) it is seen that 1-
q jq.(,.,j x ,
=
e-ïq-z 1
x
z,
e'iq'.t' gcz , czepy
(ag 5c) . .
54
'I'HEMISENYBBRG HAIGTONIAN =
1
cj/).z= : , t ï(cj-qq
y Se
(3.5-51)
' because allthetermsin thelastsum unless q = q/, in whichcasethe sum is N. Substituting the Fouzier expansion in the Hamiltonian (3.5.49) usingfor thesummation izzde,x h = .t - L' insteadof L1'andnoting (3.,$.45), that Jzz'is actuallya f-umction of this rekathedïdtanc:l:l between f andf' andnot of ' andd separately, we obtain
'AJ= c -
1
. -.2q.z 2A2,$'J-)J(h) y'yaq,yq'.(z-h) N aqe -
:.11
q
qz
1 gitzhsïl'-y'lcq*e-ïq'' y'lcq,cïq'd (3.5.52) Jl cqzcfq'd + y'l N z .,
'
?
.
qz
q
q'
Thesnlmmxtion over .din botk termsksthe saae as the last sum in eqn which is afterrearraa>g, (3.5.51), justa deltafunction.Therefore,
+ S J(h)(1e-fehl
,>d= C+ E 2:2: q h
-r
c*qcq.
(3.5.53) p/xshlz'j
-
Thus'FJ- C is nearlya setof harmonicosdllators, becausq tzgandckaze readzaudcreationoperatorsln reciprocal y seento act as the destmction Theonlydiference is that the Hamiltoniuof a harmonicosra-lln.tor spacet is * aq + .1, whereaz doesnot containthe 1a.Eackof theze eqn (3.5.53) 2 ' o atoz'sis ckaracterized by a vectorq in reciprocalspace,but theyare nncoupleti to eac,k other,an.deachof themmaybeconsidered independeatly of theothem.Therefore, the energylevelsof e.a,c.11 of the termsin the sum over q of 14- C are thoseof a harmonicoscillator withoutthe 1a.Adding the C term, the enerorlevelsof 'FJare s = c.l-
Ezk, q
(3.5.54)
where + ggjzK Vh J(h)(1 c-fQ'b)
Sq= Aqh 2hS
-.
p
(3.5.55)
whichis theeigenoueof(Iq*cq. andsq is a non-ncgativq integralnumber, This nq maybedefnedas the numberof spin'tparequantatandthe opexcitations. eratorscq andR dutroy andceate suchspinqmave Eachof
SPLNWhR S
55
thce elementary excitatîons is calleda magnon.Theformof eqn(3.5.54) demonstrates againthat C is theenera of thegroundstate,for whichthe numberof maaons,'rsq,is zero for evezyq. Nowthat the energylevelsare known,it is possibleto constructthe l-unction Jurifàifm 1omwhichthephysicalpropertieof a systemin thermal 1tsgeneral,thestadsticalmechanics eqtzîlibrium can bederived. defnition is givenbyeqn(10.14) of (zI24,
z
=
c-pe. 2 N-*' V .x
(3.s.56)
wùerep ksdefnedltt eqn (1.3.12). Thesumrnationis over all theatlowed quantumstatesz:, whoseenergyis &. n'omthis ftmctionone can obtain, the average internalenerr pe.runit volume, fœexample,
ë= ksT2
(3.5-57)
an.dthe speec heatfromits derivative, etc.The average of component themagnetic momeutin the directionof themagnetic fe-tdis
(3.5.58)
lzfy= &-f) T 1ztZ. t'?z.r
-
Iu the caseof eqn(3.5.54) understudyhere,the partltionfunctionis tims Z = e-nC J7 e-nsq7 (3.5.59) Nq whereE%isdeâned in eqn(3.5.55).Tàe notationz:qisjustcarried ove,rhere fromthe foregoing. ActuGy,the summationover eachnq is a sllrn over all the non-negative integers,andhasnotb'lngto dowith any particular valueofq. Therefore, theorderof sum andproducin eqn(3.5.59) may be reversed, andthe summation may becarriedout frst. Thelatteris a sum of a geomeiric,serie,s, leadiugto
f.1
Z = e.-qc
1 q 1- ev- J& zp&.'s Ej;kJ(h) l-u-zq'h
a
.
(3.5.60)
x-plzszl'j -
Hence 1.n Z=
-
c
AT
-
VY
jz-e-iq'hj e .pggvyy
-ypuzsEuJ(h) 1- e
q
According to the defnitionin eqn(3.5.46),
.
(3-5-61)
56
THEHEJSEAIBERG IIAMDTONEAN
0L-C)= ggxîtshr = .K, DH
(3.5.62)
whichis the magnetic momentobtained whenall theN spiasaie aligned alongthefeld direction:z, as is thecaseat zero temperature. Substituting an.d in and carrying out the dfereqn (3-5-62) eqn (3.5-67.) eqn(3.5.58), entiation,
It is possible to continuethisigebra in its general forma little further: but at some stageit will benecessary to specify thepartîcularsymmetry ofthe crystalunderstudy,andit issomewhat clearerto doit at this stage. Othersymmetries can beapproached in a si=ilar 'fashionl butthe 'wvn.rnp1e givcnhererefersspecifcally to a body-centred cubic,sucha6 Fe,with an interactionbetween nearestneighbours only.In this case the summation = ..4/-3/2 over h containsonlytermsfor which1hI .Ais the cube (where for each of which is a unicersal constant, J. The atom at (0,0,0) edge), J(h) l.z haseightnearestneigkisours, at (+a1.) +a1., +.A),so that q .h =
1
+ qv+ çz). -4(+(s
(3.5.64)
Also,this theory'staztedwith certaân approvimatîons whîchaJeonlyjustifed at lowtemperltures, andwe may as wellintroduceanotherone, that themaincontribution isfromlongwavelengths, namelysmallq. Theshort wavelengths havea highenergy, andit takeshightemperatures to e'xdte them.Thisargument can beeasilymadequantitative, because whatis used ' is a powerseriesexpansion, h = ïq . h - 1 (fq- h)2 + 1 - c'Wq'
. . .
(3.5.65)
,
andtheexNnsionmay becarriedout (401 to higher-order termsto check theeFec't of negleciing them.Eerethe series is cut oEfor simplicityat the quadratic term. Since thelinearterm in eqn(3.5.65) obviously sums io zero in thesummationover h, with equalzkterms,the ap>roimatiim we use is .:2 1 1 - e'-fq'h x (q. h)2= - (t/ + q2+ = , V 8 z M g)
(:.5.66)
plustermswhichsum up to 0. Therefore to thisapprofmation, gsS .J..42g2/8 J(h)(1e-îQY) JAt? S h h -
=
,
(3-5-67)
SPmWM?:F..S
57
thereare eightneighbours. because Wealsoset H = 0, as is customary in this Mndof calculation. A11 theoriesof magnetizatîon 'us.temperatu-re dealonly sdth the caseof zero appliedGeld,az hasalreadybeenmentioned in section2.6 andwill be furtherdiscussed in section4-1.Equation(3.5.63) thenbecomes 1
Ma = AG- .çps h q
c
&s yztcça
.y
-
(3.5.68)
Asis thecase in all solid-state calculations, thesummation over q may be replaced byan integralover theBesllouin zonein q-space, provided that the integrand is multiplied(41) by the densityof states,F/(8';r3)? whereF is the volumeof thecrystal.Howeverv sincetheexponentin thedenominator contains(/2,the integrand is ve,rysmallfor hrge valuesof )qr,, audonlya smallezwr rAn beintroduced if the intepationis ex-tended over the whole ofjustover theBrillouinzone. ln a waytbisargument also instead q-space? supplies for the approfmationusedin terminating a fartherJustifcation the sum of eqn(3.5.65) at the quadratic term, because thecontribudon of highe.r ordersin q is rathersmall.Thus u-
.
u,
-
aw g s,v
''
pjs,;.a j 0
q2sin0(Mdp ds . g( p &2712.$'.M2ç2 G)
(3.5.69)
Obviously, the latterapprozmationis justiîed if the coecientof /z1)2 in the exponentis suëdentlylarge.This coeëdentis about3 for iron at room temperature, is alreadyr>therlargefor an cponent.This whie,h valueimpliesthat replacing theBriilouinzone by thewholespace is a good for iron below,andprobablyup to?room temperature. approzmation The integrationover the anglesin eqn(3.5.69) is stralghtforward. H theintegralover q thexadableisreplaced byz = Z$VSJAZV. Also? f or a bccthe volumecan bewritten as F' = NX2/2, andthe numberof atomsr r-q.rltheeliminated a%*3 by usingeqn(3.5.62) xsfc=
= g;&BItSN, J.G(t))
(3.5.70)
to leading
JG(T)= zG(0)
a œ-
1 ks:?* ga'zg gy; gg
J WA s j
g;
z
.
.
(3-5-715 z
Thus,to a frst orderat lowtempeatures thedeviationof themagnetizaat T = 0 is proportional tionfromits Nalue to T3/2l whichis kztown as the Blochlaw.It its e'xperiment for all knownferromagnets. ThisBlochlaw hasbeenderivedhereonly for the particularcase of bcc,but the derimtionis essentially thesame (40) for fccor for simplecubiccrystals, andthe
58
THEHEBPNBERG HAGTOMAN
rœultsdiseronlyi)ya numerical factor.A11thesethreecubiccasesinvolve the scae integra: * vrz gz = W=. 3 t /3.5.72) z- y e .-st.l r t p where('Lsthe Riemaun zetafunction.1.apriadple,the e.xchange integral, Jt cAn beevaluated fromthe Gperimental valueof thecoeRcient of T3/2. this methodnever yieldsthe samevalueof J as that whichis Howevert obtainedfzomtheferromagnetic or the paramaveticCurietemperature, as mentioned is not surprising, because these inchapter2. Thediscrepancy measurementsare doneat dferenttemperatures, azldthereis no reazon to believethat J is independent of the temperature.Evenif thereis no theraioeapansion otheresect) certainlychaages the àisttmabetween the atomswitil changing temperature.Andit is obvious fromthe theozythat the exchange integral,whichdepends on theoverlapof thewave fanctions, must be nery sensitivet,o this distance.It hasalsobeendemonstrated experimentally that b0th J obtainedfrom Tc andJ obtained*om the coesdentoftheT3/2term change considerably whenthed''gtnncesamong atomsare changed'by hydrostatic pressure(43, 44)or byoiherj45jmeans. Pressure is alsoknown(461 to afectthd h e fteldof the Mössbauer effect. cAn be(and ThistheozyoftheSrst-order term at lowtemperatures has exetended to Mgher-order terms, as haz been memtioned duringthe been) foregoing derivation. H particular,Dyson(401 continued the powerseria Gpansion ofeqn(3.5.65) andintroduced themagnon interactionas a Grstorderperturbatioâ,to check whichpowerof T it Gects.Ei's resultis
(3.5.73) with speecexpressions given(40) aj in all three for all thesecoeëdents typesof cubiccrystals. lt is even possible(4$to remove someof the approyimations of Dysonby the use of Greea f4:. nctions,and obtainwhai shouldbein prindplea higheraccuracy.Thediscultyis that the exprsionin eqn(3.5.73) doœnot f.t expezriment. Acmzrate datar-qn befl.tted bettereitàerwith an empiricaldependence of J in on T, (48j eqn(3.5.71) or w1tha term with T2 before(49) the TS/2term. Thedetalâed empirical expression for themagnetization ofironwhiskers ihatîts thewholerange, 9omlow temperatures andup to the Curiepoint (50j, T)1=
wheret =
Mz(T)= A&(0)
(1 tj* -
1
-
pt + Atjjy Cfyyz, -
(3.5.74)
T/Tc,andp, .,4.and.f are constants,expandsto (3.5.75)
SPDI%'hMBS
59
at 1owtemperatures. h hasbeensuggested that theT2term originates (49) fzomcontributions of thecollective electronfromagnetism,andthis idea was made(511 more quantitative later.Therdore, in thiscase, as in many others? theitinerantandlocalized electrontheories mustbe combined togethez beforeextending eithertheoryto a highaccuracy. Also,measuring andctrapolating it to zero tzrliedjèsld is notalwaysvezyaccurate, Ma(T) H somecasestheaccuracyof theerperiespecially at 1owtemperatures. mental datais not even susdentto go beyondthef rst TV2term of the terms are mostlyof interestto theorists Bloch1&,w, andhi.gher-order who their resultswith eprt% other'sandnot with experiments., compare Forantijerromagnets thesituationis muchmore complicated, because even theground stateiànot assimpleandas clearcut asin thecaseof a ferApprozmations mustbeintroduced already for tlœcalculation romagnet. of thespinwaves at the groundlevel,andthe excitationsaze hopelessly complicated. Thereare no conclusions that can becompared witha simple expe-riment, or any obviousimprovement on the molecular feld.approximationpresented in chapter2. Therefore, this wholetheoretical f e1dis beyond thescopeof thisbook. Othertheorieswhichuse theHeisenberg Hamztonian of eqn(3.5.25) are not includedin this chapterbecause theyeitheruse classical physicsj or at lewst can beo'atlined withoutspecifc mentionofquantum-mechanical techniquu.Oneksthemolecular 6eldapprolmation,alreadydescribed in chapter2. Theotherswill beconsidered in the next chapter.Howevar, beforeconcluding thisdiscussion of spinwaves,thereis one importaatconclusionfromtheabovetreatmentthatxmustbeemphasized. The integral in eqn(3.5.69) contxinsthefactorq2in thenumeratoronlyin threedime' nsions.ln two dimensions In thiscxase thefactordq wouldhavebeenqdqdo. theintegrandwith ez - 1 in thedenomlnator will (orin one dimension) dinerge i.!l thevininityof z = 0,namelynear q = 0. Therefore small any perturbation of the groundstatewill growrapidly,removingthe system out of theunpe-rturbed state,even at verylow temperatures wherea21 the approximations andtheabovecalculation is rigorousH other arejustiied words,jerromagnetic orderingù not yt).ufslcin one or tvo tfïaendfondThjs proofthat ferromagnetism for that matter) (orantiferromagnetism, is possible only in threedimensions was alreadygivenby Blochin 1930. It mustbe notedthat it is a fundamèntal propertyjwhichdoesnot depeadon anyapprofmation.The singularityat z = : will bethereeven if theintegralis ove: theBrillouin zone andnot over thewholespace;and the otherapprozmationsonly zequirea su/cientlylow temperature.In practiceferromagnetism hasbeenobserved in some seemingly one. and twœdimensional systems, to be discussed in section4.5.
MAGNETIZATION VS.TEMPERATUM 4.1 Magnetic Domn.-ns Beforecontinuingvththetheories, it seemsnecKsanr to pa,useand explain whythe molecular feld approfmationof chapter2, the spinwave series for 1owtempeaturesof chapter%mswellas cJlothertheorie of Ma(T)) it must seem natural are restrictedto the.caseH = 0. For a beginner to introducea magneticfeld, at lGst msa frst-orderperturbation) and diëcultyin doingso. Thecliëculty indeedthereis no particulart'he-mtical is that includinga magneticfeld without any othermodifcation of the for thereader who Heisenbea'g Hamiltonian (oroftheeaergyof eqn(2.2.25) the hasskppedchapter doe not have physical signiâcance, because 3) any resulkof sucha Glculation cannotbecompazed wiih expem'ment. Thisfact is sometimKforgottenby theorlsts,whichmakes it even more important to keepmentioning it. rlnhe pointis that realfezromagnets at zero appliedîeldsare subdivided into tbraiz?.s whichazemagnetized in diferentdirections. J.notherwordsl thedirectioiof quaatization, between one domain andanotherz, changes The rwon for/theefstenceof thesedomains must obviously bea term of the Hazzltonian whichhasbee,a ncglected so far, but it is too earlyat tlzisstageio specfwhat this term is, andit will be Rrtherdiscussed in section6.2. Howeverj the very efstenceof thesedomaâns is a wellestablished exepeaimental Gactlas hasazready beenmentioned in secdon 1.2.These domains cannotbeignored, because theyare beingobserce.d by several techniquesTheolderobservytions include iheBitterpattern,in whie tiny 531 (52, magnetic pazticles, immersed in a liquid,are attractedto %he high e feld at the ltlallswhichsepazate the domaâns, thusrevealing the location of thesewazls. ln metallicflmswhichare thin enough f or high-enerpe electrons à.)go through,electrons aze deectedby the magnetic feld in the domains whentheypass through them,thusrevevngthe location of these domains. Similarly,the domainstructureon the surfaceclm beseen by that passnear that surface electrons or that aze refected fzomthe surface. Polarized reQected from a magnetized suzûce changes its planeof polir/.t larization(Kerr and its detection reveals 'the dxerent orientations eFect) of the magnetization on the Rndnrte of the variousdomains. lf the sample ls thin enough,the light can passthroughit andthe iotationof its polarization(Faraday insidethese efect)showsthe directionof magnetizatîon
MA G1N 1!J'1'1G DOMAINS .'''..'
'-D
F. ..
.J!'
bLw ..> i
>. *e*'
' '
.
>*
-
'''''''
'>. ...
L. .r. .
.
.' ...
j.h':l I
1
j
'. . !.
x
.
œ '-
r.1
' $.
=.
%
.,,
fk p
'r
f..
z
j '.
ersbnk-q''.'.'
pG
e
.
K
,-'<
I.
w
' .= G;'
'< '.' A' 'Nœ+k .=. $..' :w1Aw.'
. . ..='.,m. e%.. a'
#
1
jt
jax 1
x% >
N
j!
I
.,..,
j. N r ru
I
/ * r
'
.
'
...
.q : .t>
lj
.
1$ <
.
g..-
.4
.=, :'
.'
1:..
@1
.'
I
I.1t
'.. .x'.u.al .wpA.
X' .t.
m.z
>,
.
g
FIG.4.1. Threedferentdomainconûgurations in thesameNi plateletin zero applîedEeld,afterdiferenthistohe.s of applyingandremovhga magnetic Neld.Reproduced fromFig. 9 of (58) by permission. thesedomains. Anothermethodwas basedon scanYngthe magneticEeld near the sampleby a very smallHall probe(531 . Morerecent methods includee.#.passinga currentthroughthesample, andmeasuring theHall efectat dxerentpointz(541 magnetized domains#ve , whereoppositely arz opposites'ignof the Hallvoltage.They alsoincludesœnnsng electxon withpolazized electrons and magnetîc force microscopy microscopy (55) (56) whichallowthestudyof thesedomains almostdownto atomicsize,as well as scanning opticalmicroscopy whichincreases the resolutkon of the (57) Kerr efect.These,andother,techniques thusleaveno doubtthat all bulk ferromagnets are madeout of domains, magnetized in diferentdîrections, untjl a suëcientlylazge*eld Lsappliedto remove them. Obviously, the magnetization measured in zero (or.qmaXl appliedfeld Lsan average of its valuei.n thedferent domams, andhasnotbingto do with tbe theoretical valueof Mz(T). Horxver,the measured valueis not even tlnkue, because thedomainstructureia zero (orsmall) applied âeldis not unique-A goodexn.rnple ksshownin Fig.4.1whichis reproduœd from Fig. 9 of (581. rlx-Ferent domainconfgurations lt showsthreecompletely observed in the same crystal,aftersubjecting it to a diferenthéstory of theapplîed*eld.Thereare m=y otherposskbilities whichare not shown, andwhkchcan give ziseto a diferentvalueof the mecuredremanent magnetization. Actually,in zero Eeldit is possible to measureanyvalueof
62
MAGNETVATION VS.TENJPERA'I'URE
themavetlro.toalxwtwpon -Mr and+Mr, as hasalreadybœnmentioned in.secdon1.1. Theorists whocaïculat.e maaetiza'tion ns. teiperature preferto ignore thœedomazns, because it kstoodlecult to takethemiato account.Their reasoning is tàat whattheycalculate in thesetheoriœ is thema&eœation tozw.ll inséde of thesedomm'nq. Thisquantityls whatwouldhavebtenmeasuredif one domaincouldbeseparated 1omthe othersandexïendeto ''nGnity(59! . Theexplrimentalist's approach is to measureMzzfor 81Fe,reat values H$ then (Ia,V of eMrapolate the downto H = %aadtakethat valueas tEedtdmstion extrapolated of Ms.Thisis tàe properdefnitioa of the spontanec'us 'mcgnetfzcfftrnv Ms,wkichwas somewhat ûl-defned in section1.1.Pzeumably, thisexlrapoladon shouldleadto thevalueofthe magaetization insideeachofthe domains, as in thetheoretiW defmition. . lt mustbeemphmsized thatthefeldsapplu' ia theexwrimentin order to remove thedomains are typicallya sma;perturbation, if added as such to theHeisenberg Hammoni=.For evnmple, ia iroa the îezdnecœe.ary to drlveawaythedomxînR ct vcm tcrnzerct'ure is of tkeorderof l03 Oe, exchange interaction is equivaleat to whilethe a feldof 10G Oe.However, tlds raêodoesaot nec-atily m/un that tbe eect of theapplied feld is msit seemsat frst sight In thefrst place, justa third-digitcorrection) theapplie feld maysometimes belargeeaough to crxàe an apprHable by distoztiMtheatomicelectron magnetizatioa orbits.Sucban eeœtis not included in theHeisenberg Haailtonianthn.txq.qnmesfzxed spinsat thelatticepoints.But even whe,n tbisefc<wt is negligibleo tke mere arrangement ofdornninK kasa ver.glargeeGect on themeasnzre valuc of themagnetization, andthis process ksnot evenEnear.Therefore, in rnxnycmsesa linear lpMingto a wAlxtivety Mrapolationof the feld to zero is not Mequatey largeuaœrtataty ia tàeexperimental valueat zero feld. Thisuncertaint is very oftenof theorde,rof the dilerencebetweea the dxerenttheorie.s wkichare compared with thatexperiment, andit coex-nlywouldnot allow to a ncn-zerc Geld. NeartheCurietemperature thereis aay extrapoh'tion a more reliableextrapoladon teclmique that allowsa suEdently lligh acHown as theWvcttplots,whchq'ill 'l)e,described by a method ia cuzacy secûon4'.6.Howeverj even theretheextrapoladon workssatisfactorzy to zero Gelds only,audthereare no eoerimentaldatafor a smallfeld that rztn theoretically beaddedas a perturbation. It shoildnlnn be'=phasized that atl thesetheories assumean insnéte crystal.Thcreforc, theycaa havea chance of reprœenting the physlcal reality onlyif thesizeof thesedomains is mnch1=#> thantYecmlation whickis the averMedistaac.e of the magJerwfà, over whickfuctuations netization are correlated. Tàisis not alwaysthe caa eeecicllpnear t,ke Curietemperatzzre, whœethe corrdation lengthdiverge. The maaetizationïnaïdea domainc>n in prindplebemeasured, in with the theorehcal efect. accordanc.e deflnstion, by usin.g theM6ssbauer
THELANDAUTHEORY
63
In thisexppn'ment, a rœonantabxrptionof 'praysis obtained whenthe momentum of tke recril is tTanskrred t.o thewholccrystaliastead of the individuat nucleus. Wheneitherthesourceor theabxrberis in a maaetic feld,theeneralevelsof thenudd are splitby theZ-rnan efect,andit Lspossible to determ>-ne 1omthis splittingthevalueof theefediveEeld at thenucleus. In a ferromagnet, thiseeecdve ileld tcalluthe ltvperjne at the nudeus is esentiazyproportionalto the magnitude pf the éezd) ma&etizationoftheatomiqshellaroundthat nucleus. Theesecte-an be onlyin certainisotopœ, one of wikiç:b LsSTFG wllicllis particularly observed coavenient for studyingfezrcmaaets. Sincethishy e feld is proportional to the magnLtnde of themagnetizauonof theatom to whichthisnucleusbelongs, andis independent of the dircckrnn of tke atomicmoeuMtion, contributioms fromtheSI'Fe nucleiin rlieemntdomains az'ethes=e andGd np. Forthe same reaxn, thehyperllne feld in an antife=magnet is thesameas Gat of a ferromagnet. Measuremeat of thehypprfnefeld as a functionof thetemperature thusyields(601 a resultproportionito themaaetizationin Fig. 2.1here, andtlzismeaurememt is indeeeArm'ed out in zero applied feld.lt should benotedthat, evea thoughnsclecrenergylevelsare studied, the nuclear spindœsnot e'nterthecalculation ofthemagnetization: its contribution is compared with that of the s1)1.11 of the electron? leause the Bok negll#ble proportional to the mass. Thenuclear' splnia this mareton is iaversezy experirnentis evntially justa pro%usedto memsurethe magnetization dueto theezccfron spin. Sirnslar datacan beobtained frommeasuring thenuclearmag(61, 62q neticrœonance.Eowever, lyoththeM6ssbauer efectcndthenuclearm'agaeticresonanceexn at bestbeuxd for thephilosophical desnition of khe spontaneous magnetization. The accuracyof Ms(T) mexsm'ed by these trenique is ratherpoorandinadequate. Forgoodquantitativedataone mustrelyon themeasnmment ofMz(.RT) andits extrapolation to H = 0, as in g48) or similarstudies. Thereis thnsno wayto meuure themagnetizationfor H = 0j vith aûyreasonable andtxecalculation of atcuras'y, sucha quantityhasno phyïcalmexnlng,because it caanotpossibly be compared withanyexDriment. 4.2 The LandauTheory The temperaturerangemostpopularamongtheoristsis that of the approachtq and thenear dfrlnA't.y of, the Cnri. temperatarejTe,because in thksregionit is possible to use frst-ordezapproimadolsin powersof Landautheory F - Tcl.TMsattitadestartedwith thephnnnmenolo#cal which applies to all sorts of phase trxndtions of the second knd. lt (63) will bedescribed hereonlyfor thespecïccaseofthemagnelzation going throughtheCuziepoint-Thenotauon
MAGNETIZATION VS.TEMPEMTURS m
=
akJa(T) Mz(0),
t
=
T
Fe:
(4.2.1)
ksusedherefor brevity. Thebasicassumption isthat m Lssmallnear Tc,whichmxlrp-q it possible to expandthethermodynamic potenual msa powerseriein perunitvolume m. Neglecting hkgher-order tra.rmq , andauming that thereis no maaetic feld,thisexpansion ks = ëo(t) + A(t)m2 + #(f)m4. *(f,z?z)
(4.2.2)
Theoddpowers, m audm3, are omitted,because ë mustremainunckanged by a timereversal, wMchohnnges the sigaof m. ThecoeEcients #c, ,t4) andB can in principlebefunctions of otherphysical properties,which are ignored here-In particular,it is asumedthat everything is doneat a constantyzas.s-?zre so that it is ao1necesaryto specify thedependence on whickis aa importantpart of theHndautheoryof othevphase pressure, transitions. Thevalueof m shouldbesuchthat thethermodynamic potentialis a minimum. A ncessaryGmditionis that thefrst derivative vanishes, namdy #+ = 2- (.4(z) + 2maS(t)j= 0. (4.2.3) om Also,in' orderfor the soluuonofeqn (4.2.3) to bea minlrnumaadno$ a mxvivnum, 'thesecond shouldbepMtive, derivative
.!.d24 = A(t)+ rvrsaS(z)> 0. 2 &mn
(4.2.4)
Thesolutionof eqn(4.2.3) for there#onabovetheCuriepoint, t > 1, Ls ofeq.a(42.4), m = 0,andin orderforthissolution to fulêlthermuirement
.4(t)> 0, Theothersolutionofeqn(4.2.3), whicNis validfor t < 1,is X(t), m2 = 2B(t) -
(4.2.5) (4.2.6)
whichyields,whensubstituted in eqn(4.2.4),
:2* = dm2
-
> 0. 4.A(j)
(4.2.7)
Thereforea noting.q.lpn that thelefwhand sideof eqn (4.2.6) is positive,
TEE LANDAUTHEORY < 0, A@)
and
/(t)
65
> 0, for t < 1.
(4.2.8) also 0 is a solutionof eqn (4-2.3)
TMs resultmeans fz'stof all that zrs= in theregiont < 1, but thereit is a memum andnot a nn-nsmnm . The combination of mns(4.2-8) and (4.2.5) alsomeansthat a coneuity of A = 0. Them'mplest at t = 1 requires that .A(1) function(and the ûrst-order approximatîon f or any o*r ftlndion) whic,h can M6l theseconditions is obviously = /41-1), (z> 0j (4.2.9) a1.41) wherett is a constant.Fkomthis rœultit is alreadypossible to draw (631 some conclusîons aboutthe entropy,S = -D%f8T, andthe speclcheat, Cp= T@S/&T), in whichtherctll'rnsout to beujnmpat the Curiepoiat. Lettherenow bea magnetic feld,E, applieto ïhe - 11 energ.g of interactionwiththe magnetization is -M . H mr unit xlume, whic.lz is in the present notation.With -mSMa(0)
h=
IIMx$4,
(4.2.10)
thethermodpmmic potential becomes perunit volume + @(t1)m2 + BLt)m*:mj ë(t,m)= ën(z) -
a>
-
0,
(4.2.11)
wherethesignofa is keptfzomtheforegoing, for thellmt't lt = 0. Bythe sxme token,the si> of S(1) shouldalsobekeptas in eqn (4.2.8). The wrt-nhesis now condition that theSrstderivative . 1 = a h a(ï- 1)m + 2.&(t)m , (4.2.7.2)
è'
whîchis a cubicalgebraic equation fordetezmhing gn,. Abovethe Curietempezatute, the righvhandsideof eqn (4.2.12) is a moaotonically for eve,o-valueof h sncreasing functionof m. Thetefore, thereis a singlesolutionof this equation,andit tendsto 0 for h -+ 0. For T < Tc,nn.mely t < 1, the frst term ol the right handsideof eqn is negative, and theequationhasthreediferentrealsolutions, m, (4.2.12) foza c-ltin re#onof not too large1à1 . Oneof tkesesolutions is easily seento bea memum andnot a Vnimum.Of theothertwo,one hasm aatiparallel to h,tandtherdoze îtsenerr is hecr th= thatof1hesolutîon in whkhm hasthesam: signas à,. the initial susceptibililis According to the dvnitionia eqr.(2-1.22), lim d(Ma)= xiaîual= x-n t'9.J2'
Gr?-
a u. (0)) (Mz ,.-.0 ah ,
(4.2.13)
iù thepreseataovtion.By substituthg 9omthederi=tiveofetm(4.2.7.2) with respectto h, it becomes
66
MAGNMAXON V5.TEUERATUE.E
E.ka(0))2 (4.2.14) c) 6S@)m is zero for t > 1, andis givenby eqn(4.2.6) for t < 1.
1% Mnitzal= h....e 2 (c(t 1)+ '
If h,-+ 0, thenm Thereforev
av.a
-
a. 2
zstt-z jf j > 1' (4.2.15) '91a Jd'a 41 1-1 if t < l . TMsdi-gence of thesnsceptibility for t -+ 0 is thesameas in theCurieWeisslaw,dieussed in section2.4. to Thes'pontaneous magneeationfor t < 1 at zero fe-ld1, accordhg aud(4.2.9), eqns(4.2.6) = Ainivirul
.
/?a(1t4. -
msp =
)
zstj;
(4.2.16)
The magnetization induced by the feld, Nud = xH, is in the present notation h pz rïind = X r , xu ér - . . , (4.2.17) -
CM,COJIOtl f) Mcording to eqn(4.2.15). Thae qurtities are of the sameorderat s/2 âegz (2c(1t)j B z)g
(4.2.18)
Hence,a f.eld>,<<àt is a tweak;feld, in the ron.v.ethatit doesnot change Gethermodynamic pmperties ofthesâmple. hl a feld h,> hi thetherm> dynxmlcproperdes have'valuœ wMc.lz are determined bytheield, andsuch a âeldis thusa tstrong'feld. Of course,thiscriterion ignores the efec'tof the âeldon the measuzed m by rearran#ng thedomes, see sKtion 4.1. It is obvious fromeqn that thetrandtîonEeld,&, vanishœ at the (4.2.18) poiatt = 1)whic.h LsT = Te.Therefore) at the Cnne'poiatanyEeldis a to thisdemltion. strongfeld Mcording 4-3 . CritizmlKxponents Moremodern studiesoftàecrzfcclregion,nltrndythenear-vicinity of the Curiepoint, are based on two generi assumptioas, or eoms. Theftrst one is that the asymptotic behaviour govprnsng the approacà to thecrkdc,i ls a power point (ï.e.the Curietemperature) of all physicalparameters 1awin lt - 11, wheret is as deâned ia eqn(4.2.1). Strictlyspecng,tkis statemeatdoesnot necessatily mpxn that any pazticalar physical quantity is proportional to a certainpowerof j - 11. lt ozllymeus thatit 'aarie.s as that power,whic.his more general than proportionniity.
XTICAL EXPONENTS
67
deflnitionis that if Themathemadcal '
Y Vltv . = A, z-+o lnz
(4.3.19)
lim
Gat flz) variesas P whenz tendsto zero. Tkis statementis writtenas .f(z)- zl as z -+ 0. (4.3.20) Thesimpie.bvt possibility for whicheqn(4.3.19) is fulfzlled is whenfor small we Ay
= (lzl (1+ clz + ocl2 + .), fLz6) (4.3.21) wheze Ct c$, cz, etc-, are constants.However, is alsofulmled eqn(4.3.19) . .
in more complicated cases,for dpwmple if for smallz,
= C 1.a aàtl+ csr'e + .J(&) I zl> ').
(4.3.22) The particularcase whenthe exponentl vaaishes maymeaa that .f(z) tuds to a etmstcntfor z -.+ 0, but it mayalsomean that .fLz4 ct ln z. ' '
In accordance vith this basicassumption, for the l'-m'-tt -+ 1 several edtfccleofmenf,s crïficc! are ddned. 1.zt pvticular, for the (or indiasj ' speciâc heat: ' .x, Cp 11 11-G (4.3.23) for thesponlzmeous magnethation belowT., zrl /x.
(1 t)7, -
(4.3-24)
andfor theinitial susceptibDity, Mniual'xz
(4.3.25) beUSGIto prove(632 that lt
1f 11-t. -
rAn General thermodynxmx'c considerations is the same exponenta for the appronziof t to 1 fromabove or from below,andsimilarlyfox''t-Suchconsideradons alsoimpœecertainrelations betwenthese,andtheother,critic,alexponents. nus, for mvample, the induced magnedzation is
'mindew hx 'w
hl1 tl-'S, (4-3-26) accordîng to eqn(4.3.25). Usingmn (4.3.24)) thefeld at wlzicxA1n'R =n.g-
netizationis of the orderof thespontaneous magnetization is ht '-.z 11 fI#-F'7.
(4.3.27)
Ontheotherhand,at this transitionbetwena strongaada wpztkfeld the enerpp of interaction ofthe feldwith themMneiRation, -:m, shoald
68
'MAGNETIZATION VS.TEMPBRATURE
l)eof theorde,r of thethermalenergy., whichis of tite orderof (1because Cp= -T(:2ë/:T2). Therefore, ht 'w 11 àI2-#-G
ttlcpt (4.3.28)
Combining thisequationwitheqn (4.3.27) leadsto
2/+ 't =
(4.3.29) In principle,the powerlawsin eqns(4.3.23)-(4.3.25) are based(64) on experimental observationsj andare not justan arbitraryassumption. Theexpersmental valuesare (64) the Izaap ;tl 1/3and'y ;:er4/3,whereas dautheorswithitxsparticularly oveximplifed assumption ofeqn(4.2.9), a+
2.
leadsto p = 1/2according to eqn (4.2.16) ande?= l accorêing to eqn J1.lpn Themolecular heldapprozmation gives# = l/2andy = 1, (4.2.15). as will beclarifedin section 4.6,or as can nlgnl)eseenfromeqns(2.2.35) and(2.4.47) respectively. Thisdiscrepancy zlustratetheneedfor a more sophisticated theoretical approach, andindeed theeare more accuratetheoriesofthese, andoftheother,criticalexponents in ferromagnetksm aswell as in othe,r criticalphenomena nea,r thdr phase transitions. It shouldbe noted,however) that in prindpleit ksnot dexr whethea.n eoansionin powersof T - n shouldbevalîdc Iele awayfzomTc.Thevalueof Te b.rtheexchaage integral,J, andthelatter maychange itsdfis deterMned of thethermalerpansion with temperature) at leastbecause whichvarie the atomicdistancesIf J variesV'I;htemperature, rxl doesthe tvlnrer)f valueof Teto wlkicllme==en? at somewhat lowertemperatures seem to lead,thusdistortingtheapparentvalueof thecriticalexponents. Alsol in practiOit is not alwayseasyto resolvethe leading asymptodc term âom entxal data,œpecially whenthe behaviour is of the typeof here-Thenexçorder'correctiolfto theleading terml a little mn (4-322) awayfrt'mvthe Curiemint, may belazgeenoulto cungethe apparent valueof theleading term. are never œncerned with thesediEculties, sayingthat the Theorists measarements shouldberetrictedto thevet'yclose vidnity ofTc,butthat is oftenimpracdcal. It IUAbeennoted(651 that the bestft of #= 1+ '//# v4=1% between 4.2anê4.7in thenear vidity of Tc.A likelyartifad of handlingtheewerimentaldata(66) can looklikea change in thecritical whenTc is approached. lt is betterto use a properequation exponents of state,over a relativelywidetemperaturerange,as explained in section 4.6.It is possible, of coursej to remove most of the experimental data, sayingthat theyare not closeenough to Te,butwhenvez'yf ew pointsare leftto lookat, thedatacan beîtted to nlmostanyvalueof the critcal Unfortunately thereare indeedsomeexperimentalists whoforœ exponent. theirdataby thîstechnique to ft thecurrenttheoretical value,so that in
CRITICAL EXPONENTS
69
this partizmlnr feld it is oftendilcult to Kaywhatthe experimental result is. Ontop of that, thetheoriesalwaysconsîder onlythe tbulk'limit, in whicEthe volnmeof tbe systemis inqnite.Thereis nothingfundnmental ia this approach, whchis onlya matter of conveniencc, but it must be alwaysboraein miadthat it maydistortthe asymptoticbehaviour ver.y considerably. It is aotonlythat thesampleunderstudymustbeverylarge for sucà a theoryto l)ea goodapprozmation to zeality.It is thesizeoï each domainthatmustbelargeenough forsucha theoryto beaccurateenough, aadsucha requiremeat îs hardlyeveermet. Some of the critkal exponents whentheyare obtained fromthe aaalogywith otker mltybemore reliable criticalphenomena that donot bavethe equivalent of a magnetic feld and magnedc domaias. Theseare beyond the =pe of thepresentbook,whch deals onlywithferromagnetism aadnot withgeaeral s'tatistical meckanics. . The secoad of the theoriesof cdtiicalcxpoaentsis basicassamption knownas the sœlinghplmthadtà. It assnmesflrst of all the estenœ of a torrelabion lengf?l
('?x' 1# 11-M, -
(4.3.30)
whickmeasuresthe average distaace over whic.h fuctuationsof the mxgnetization aa'ecorrelated. It f artherassume thatin thecriticalregioajthe dominating temperature-depeadeace of all the phydcalpropertiœof the scaleis systemis onlythroughtheir dependeaœ oa this(. If the leag'th hctoz,theOrzelation increased bya cez'tain lengthshrinlcs bythesamehctor.Thetaperature region,1-1, theniacremses according to eqn(4.3.30), anda11 the phyical propertiewill alsochaage by fuxed powerlaws.Eownamel.y ever, ( -+ x for t -+ 1,axdthe lmledsystemcan 1)e rnnomalized, - be mapped 1:%.,11 on the o oae. T/is procedure is the bmsis of aa importanttool for calmllating the citical exponents) lœowxas the anoz'mclizctiongnmptheory(6:. of criticae:l Theories expoaen'ks use a general spacein d dtmeasions (3 in re.alspace) aada sph vectorwhichhaszzcompoaents (3in reallife). simplecases,smch Exceptfor severalparticnlnmly amthe Isingmodelin oae aadtwo dim-nqions h theaextsection,4.4) or theLandau (discussed theot'yetc-, the mathematickscompEcated. Eowever, it turnsout that theproblem is ver.ymuchsimplifedin theuaphysical coaditions of a very large'rl or d = 4. Therefore, some powerseric havebeendeveloped which sbouldbea goodapprofmationfor a largen aada =all
(4.3.31) These, aswellas more accuratemethods, havebeeareviewed by Fisher(67j aa'dlaterupdated(O)to a certainexteat.Theyare a11 beyondthescope ofthisbook.
70
MGNETJZATION VS.TEMPERATURE
4.4 IsilzgModel A very popalarmethodfor studyingthe Edsenberg Hamiltoniaa is a.a haZalr-uybeensuggested apprrMmationwki/ in the1925doctoral thesis of lsing.Tt is baaedon l.eaving out the non-diagonal terms of the spin alongthe Eelddizection, z. matrix, aad kepingonly t'hecomponents lt meansreplacing Sz. S2= Su%% + Sïvsgp + Stxszzby only.%>Saa. Andsàcethe latter Ommute,it eectivelymeans deRMng |
,
(4.4.32)
whereeverylatticepointis iaracterized by a qnxntnmn'tlzn&rcz. I will onlymeitionin passing thatthereazealsotheoriœwhichdotheopposite: leave out % andkeeponlySzand%.This mssumption, or appremation, here. ksrnlledthe XY-mod.ej aadwill not bedescribed In.pzisciple tkeVingmodelis not a very goodapprofmationforany temperature it hastheadvautage ofstartingdizectly 1om ruge. Eowever, theenerprlevels,andsldpping all the stepsthat leadto themfzomthe .. Hxmotoaiaa, in othermethodsThisconveaient short-cut mcesit possible to coscentrateon the detailsof Ge statisticalmminMlcs.Therefore, the Tm-ng modelis very widelyusedin a vadetyofotherproblems, more than in ferromunetism for whic.h it waz ori ' Forp-vnmple, in a y developed. binnmy alloymnzloof atomsA andB, one can defnefor tke latticepoint.d. theNalueJ'z = + 1 5:thereis an atom ofthe typeA there,aada = - 1if theleis an atomof thetypeB there.If the in%radionis beYeennearest neighbours ozzly, andSJ 'nxz ksthepotentialenergybetwentwonehbours cf typeA aadslml'lxrlyfor:7z.sandvss, it tsreadi)yseenthat theenergy of anydistributionof tàeseatomsis#ve.n by eqn(4.4.32), witk
J= 1 -us 2
-
1 4
1 4
-1)zz - -rss,
(4.4-33)
hasno analogyhere.It ksthuspossible but withcutH whic,h to study atheoretiexlly theorder-disorder transition(amalogous to the Cuzie or Néel At hightemperatures therefs a complete disorder, while temperature). bdowthetraasidon.Ais reglzlarly a neighbour of B for J < 0, andtkere is a separation to re#ons of azmost pure.â.aadalmœtpureB for J > 0. Theleis a slightdx-ference 1omthe ferromagnetic (orantiferromagnetic) case,in wkiekthe directionof the spin r-qJn be rever* at aay atomic dte, whilein tNeoxqeof aa alloy,A cnrnot be converted hto B. ln this casethereis thustheaddtionalconstraintthatthe totaizwecr ofatoms of eRk type mustbecomsmed. However, the mathematical technique is
ISWGMODEL
71
sulcientlysimilarto makeit the same nln.mof probl%s.A =iation of this case includes thepossibilitythat .4 is aa atom whileB is a lattice of the transition1oma solid varxncswhickleadsto thetheezmodynxmscs to a kuidor a gM.Thereare alsootherphysical problems of cooperative phenomena andph%etraasitions for whicàtheIsingmodelis used,wàicà makesit belong tbltn in one on more in a bookon svtisticalmecxanics it is historically ferromagneem. However, a paxtof ferromaretism =d rxnnotbesldpped altogether. Besida,theproblem îasaa easyandelegant solution: at leas't in one dimension, whichis well worthnoting. I wilt restrictthe followhgto interactions betwœnnearestneighbouzs only,andfor the caaeof spinla,for whichduztbof the numbers trz e%n assumee,ithez' the value+1 or the value-1. Thereare some more general studies in theliterature,buttheyare rathercompicated. 1will alsorestrict cbiu'nmadeout of N spias. this sectionto tke case of a one-dimeuional Thespinat thepointt interactswithtke one at &+ 1 andthe one at ; - 1) but slce J is mssumed to be the same,the snm of all the interactioas of spinswith the onebefore themis tEesamemsthe sum of Yteractions witE thespinafterthem.Periodic boundaur conditions are also&sumed here, namelythat thespiaat pointN interactswiththeone at point 1-Equation thusbecomufor tàiscase (4.4.32) N czcz-yz- gIXBH cz. ;=l 2=: N
zr=
E
-2JE
(4.4.34)
This enerr is now substituted in thepartitionftmctionof Ons (3.5.56) and(1.3.12). Forthereade,r whoàassldpped chapter 3, 1will onlyremark thatthepartitionfunctionisa geaeral stadsticimechanics f cnction,made out of tke energylevels,1omwllicàit is possible to deriveall thephysical properties ofa system in thermal equilibrbxm. Fortheeneraofmn (4.4.34) t/is functioais N
Z= crz=:kl
8Jfc'ztrz-yz-hzân j
cpvmzi:lz=l
(4.4.35)
with the aotatkon
K
'rc
2,,/ ksT r
h=
g;kBH . 2kBT -
(4-4.36)
Here* is theBoltzmann constant,axkd i1is hopedtut neitherK nor à,is confused withtheselettersMsed withdiferentmexnings in othersectionsFor the sake'ofemmetry,21ö0't is rewzittenas hcz+ hcz-h: the , because produdovertb.e seccmd termis thesnmeas thatove.rtheftrstone.Equation is then (4.4.35)
MGNETIZATION VS.TEMPERATURE N
Z=
eA'czc-z-hâez-hhez4.t . czztzzbl eN=:k1d=1
(4.4.37)
Themethod used hezetoeœuateZ Lsmorecomplex thanisessentialfor theone-dimensional problemThce is an easiermethod, butit worksonly if h = 0is assumed alreuy at thisstee,andit cauot begenernlîzed to two dimensions withoutcomple.x aumerical computatiomsThemethodwhkh cztn beextendeto two (but not three) dt-mensions Tam goingto descdbe almostwithoutaay change, exceptthat in two dimensions the analytic solutioncan only be #venfor h = 0. Jt is actuallya onedimensional formuhuon ofthefamous Onsageranalyticsolution ofthetwo-dimensionai Lsingmodel,published in 1944.Thissoludonis consideeto bethe real mvhxn''-cs,which brealdhrough, andthebeginning ofallmodera statistical makes it wort,hstudyingThismethodsimplifes Z b.rdevinga 2x 2 matrixwhose elements are = eK*''''+h*l*h<%' (ezlMlcz')
(4.4.38)
WhenJ'zand&z, pa throughthe atlowed Yues +1, the matrh elements keepgoing,in a diferentorder,throughtheelements of theszmt matrix,
M
: A'+2A c-K d-x g-gu
=
(4.4.39)
wherethe orderckosen forthis pazticular presentation is +.+0 +.-.
(
j
.
Now,according to the rulefor mutiplyingmatriees, = (cz1âJ21ca), (4.4.40) )7l(czlzTIca)(c2IATIcs)
trc=uiul
= )7! )7!(,:IMI&c)(,clMIGs)(GalMIl4)
(o-z1M'1tz.<) (4.4.41) )(2tc.zlMzlc'altczlM#4 =
,
tra=+l
etc.It ispossible to introduce thefullforpalism ofmathemaical induction, but even withoutdoingso it shouldbequitee-lfxltz by now that whenthe d-6nltion(4.4.38) Lssubstituted in eqn(4.4.324,
ISINGMODEL
z
=
E
73
, E F1(vzlM1a+z)
trl=t:!:l
(4.4.42)
ex=il z=z
thismatrixmultiplication leadsto z
=
E E
f,zIMN-lIcx) lcrxlMlc.:l
(4.4.43)
.
czzzrilo'x=éL
Thesecond indexofthelastte= is txlctmherea.s1,becanM fortheperiodic boundazy conditions it is thesameas N + 1 whieàappearsin etm(4.4.37). ruleon thetwo rpmxim-ng matricœ UsingagainthematrLxmultiplicadon in eqn(4.4.43), Z=
V! @lIMNIcz)traee(MN).
(4.4.44)
=
(r1=;E1
ThematrixM i.l eqn (4.4.39) is symmetzic: andrxn bediagonal-lmM. However, forthesakeof thoserprers whomaynot befailiar wlth the frst a transformation traœ ofa powerofa matzix,let us consider T whic,h a genealmatrh, M, namely diagonnlî'zm T -z MT =
lz 0 0 Aa
(4.4.45)
-
Multiplyingbothsidesof theequadon on therightby T-IMT leadsto T-LMcT =
lz 0 z-1 up O 12
j
'
.
à0
2
(j j (j ,tjj 2
m
y
(4.4.46)
whicxcamobviously begenerrdx'qed to kigherpowers.Sincethetraze does not change bysucha trxnqformatiozb can bewrittenp.s eqn(4.4.44)
Z = AW 1 + X*')
(4.4.47) wherq1: ald lz are thedgenvalues ofthematrh deGned in eqn(4.4.39). It can besafelyasspxmed that this theoryis onlyusedfœ vezylarge valuesof N, andeven nearlyequalnumbers become very dierentwhen raisedto a WgepowerN. nswfore, if .:: > la , the second termin eqn is negeblecompared with the &st one, as longas thereis no (4.4.47) complete degceracy. It is thussnmcient to take Z = kNz .
(4.4.48)
Fb'xgonn.llming a 2 x 2matzixam eely becvried out analytirlmy. Aecording to eqn(4.4.39) theequationto besolved is
MAGSETIZATION VS.TEAEMTUM eN+2&- A e-K e-K cA-27z-
!
à
)
=
(4.4.49)
0,
whicNl
A2- 2AeXcœh(2:) = 0. + 2sinhtzr)
(4.4.50)
equationfor.à%nK tke largerof whic,h Thisquarlratic two solutions, is the one witha + si& ia fzontof tke square root.Substituthg in eqn(4.4.48),
z
=
6K
N
(j-2-ri+ ezKsinhzoi,' cos%(2à) q )+
(4.4.51)
Tkemagnethation is #vem byetm(3.5.58), M. = EBTulnz =
9IXBNtî 2
yéln
eff
+ cc.q.sizaztah,l + o-ax cos:(2h) .
gIXVNeK sinll(2h,)
=
-.
.
ekKsinb.2(2h,) + e-2X
(4.4.5z)
V
Obviously, thismagnetization vaziskes for h = 0, so that the systemis not ferromagnetic. However, it is tnlmost'ferromagneticl in thesensethat themagnetizatîon all other physical propeies wkich t=d maybederived fzomZt are extremely sensitive to magnedc felds,even whentheseNelds are quite small-This featureis s-n in the sqaareroot in eqn (4.4-52)1 or already in eqn(4.4.51). Tâe6m+term of tMssquareroot vanishes for à.= 0: but alreadyat ratkersmallvaluesof h it bexmesbigger1%n.n the second term.Tke reasonistkat accordhg to eqn (4.4.36), K is smalloïy at Mgh temperatres,whileat 1- temperatures K > 1j whichmakes êK > e-2X. Thezefore, term at 6m-tebut smallapplied îeld the second ia the sqaareroot ksnegligible, thehyperbolic sinefcaacels' betw-n the nnrneratorandthe denominator of mn (4.4.52), andthe magnetization looH'asif it e>apolatesto a 6n5t.e*ue at zero feld.lt maybeeazie.r to seethis efec'tin theinitialsusceptiblty,
f'lMz . -a/z = lim ct 1!Tn aeax + c -ax ) t xukitiaz H....z t'?.?2'x....()(4h
(4.4.53)
afterdropping higherpowers ofh.It isa constantfœh = 0,butfor non-zero h,the xcondterm becomenegeble, andit seemsthat tke susceptibility divergœ msh-n3.
ISINGMODEL
75
Theaverage internalenerr of theelectrons, perunit volume,as given byeqn(3.5.57), is in thiscase
0 z- kszc#/ uz
-
.-z-wtanh
sT) Lk2J ,
(4.4.54)
in zero appliedfeld.TMsenergycontributcto thespecifcheatof a unit volumeof thecrystal 2 0ë cn= gg = knN 2.z sechz c.z
(srl jazj ,
(4.4.55)
functionof the temperature. whichis a continuo'as Studieswhichstart H = 0 (aslsing ori#nally fromthe assumption did)use tids resultas an indirectproofthat theone-dimensional lsing modelpredictsno stable ferromagnetism at anytemperature. Thepointksthatin a transitionfrom orderto disorderthe magneticenerr (especially the uchangeenergy) mustbeconverted into something, so thatit takesan extraheating at the transition,whichmuptappea.r as a jumpin thespecsBc heat.Indeed) even thesimplesttheoriœ(such as the Landautheozyin section4.2) predict a discontinuity of the speclc heatat 7lj andtMsjumpksobserved in all experimental evaluations of thespecifcheatof theelectrons-Yquation peak,but not a discontinuity. givesa rounded (4.4.55) froma more elegant calculation Herethisconclusion was reached ofthe actualmagnetization andinitial susceptibility, in eqns(4.4.52) and(4.4.53). Moreover, thismethodshowed that thestudyof one dimension isnot completelyacademic, because thesystemis talmost' ferromagnetic? whichmust mean that some smallperturbations as may makeit a realfezromagnet, will bediscussed in section4.5.This methodcan alsobeextended with no particular complication to cover theIsingmodelin two dimensions. For zero appliedf eld,that problem hasan analyticsolutionnot onlyfor a or a hexagonal one (6$. Details squarelattice:but even foza rectangular will not begivenhere)buttheresultis thattheIsingmodeldoesgivestable ferromagnetism in two dimensions. H prindplethis resultis wrong,because thetrue Heisenberg En.nn1'1toniau cnnnotsupportferromagnetism in lessthanthreedimensions, as provedat the endof section3.5.Howeverj it only takesa rathersmall modifcationto havereal systemswhichare jerromagnetic because they are 'nearly'one- or two-dimensional) as will bediscussed in thenext section.Forthese cases,theIsingmodel is a veryusefttltheoretical description, andindeedits resultsare in reasonably goodagreement with experiment. It is not as accurateas themore sophisticated theorio,but it appliesto the wholetemperaturerangein one analyticsolution,whichmakesit a convenient tool to use.
76
MAGNETIZATION V$.TEMPEMTURE
In threedimensions, or for a spinlargerthan 1, 2 the Isingmodelcan onlybesolved byapplyiag furtherapproximations, or byusingcomplicated mathematical techniques andcomputations, or b0th (69!. For thesecases theIsingmodelhasno particularadvantage over othertechniques. 4.3 Low Dimensioniity Strictlyspealdng, neithez ferromagnetism nor antiferromagnetism canefst in one or two dimensions, at leastia as muchas the Heîsenberg Hamiltonian, with a11the studyaroundit, is a goodapprovimation to physical reality.The proofof this statementwmsgivenat the endof section3.5, andthe readerwhohasskippedchapter3 shouldjusttaake my wordfor it that sucha rigorousmathematical proofexistsand that it is undeniable, involviagno approfmation.Thereis alsoa dxerentproof(70) whichis bmsed on anotherapproach, but leadsto thesameresult,nn.mely that no spontaneous magnetization sublattice can exist (or magnetization) for the Vnml'ltonian Heisenberg in one or two dimensions. However, it was shown in theprevioussectionthat the lsingmodelfor one dimension is tnearly' ferromagnetic; i.tt the senseexplained there,so tàat even a smallperturbationmay makeit a realferromagnet. Therefore, a systemwhichis only 'nearlyta one-dimensional Isingsystemmaywellbeferromagnetic (oranas longas it is not sirictlyone-dimensionat. Onesuch tiferropagnetic), systemcan bea setof one-dimensional chains,with a strongexchange interactionwithineachof the chins, andwith a weakexchange interaction interactiol can beslllcient, in some amongthe chains.This additional theferromagnetism, whilebeingtoo smallto afectthe cases;to sta'bilize resultsof the one-dimensional calculations. Sucksystemsdo est i.nzeality.Theone moétlystudiedis the crystal whichis madeofmoleculœ of (CHz)4NMnC)a, alsoknownas TMMC,for Jmmnni'um tetramethyl chloride. ln thismaterialthechainsare manganene separate' d by about9â, so that the interchnx'n couplingis (71) at least threeordersof magnitude smallerthantheintrRhain (antiferromagnetic) exckange interaction.For suchmaterials,the theoryof one-dimensional chainsis indeeda goodapproximatëon ruults, (71, 72jto the experimental includingthe memsurements of the susceptibltyand of the speclc (73J hcatof theelectrons subtractingthecontribution of the lattice). Of (after course,thetheoryis not necessarilyjust thelsingmodelandmore complex theories(74, 75)havealsobeendeveloped. ln two dimensions, the lsingmodeldoes#vea stableferromagnetism with a well-defned Curietemperature.A simplephysica: explaaation of whyferromagnetism cannoteOstin one dimension, but can n='Ktia two, ca,n be seen on pages309-10of the book (41! by Ziman,but it cannot chaage thelct that the more generalHeisenberg éamiltoniaa doesnot allowferomagnetism in two dimensions. Obviously, theïsingmssumption that the of-diagonzl elements of the spinsare' negligible is a sufdent
LOWDIMRNKONALITY
77
tllat can stabilizethe ferromlgnetism, perturbation in the sxme wa,yas oth6rpcturbations ca.nSometimes do it. In Kme way 1heIsingmodel, whichallowsinteractionin the z-directionbut not alongthe w or thew directionsj is a particularcase of an anksotmvic ezc&mge, whichis not the rsameas whatis describein sedion2.6underthe sxme nxme. In the is of theform preent contextit mpm.nsthattheGchange smteradion '' (m) (sr) sf(s') + Jasj(z)si,hz), JxS.2 Sj''-=) -1-JgS,q
.
withunequal&, Jv,andJz,andthis assumption is sometimes usedeven in theories aboutcrystalswith a highsmmetrp It hasbeennoted(7OJ that suchan exchange may be suEdentto stabilizeferromaretismin two dimension? However, thiskird of an anisokopic Gchange e.xis-ks only in some theoretical studiu, andthereis no experimental evidence for its possible etstence.Amongotherperturbations whickmayalsodothesp.me, it was shoqm(76) that with the efstenceof a dipolarinteaution(whose a twodimensional systemmay become fmwmcnetic. rangeis insnktelt A magnetic feld mayalsostabilizeferromaaetism, or at leastmakethe systemIookJik: a stableferromagnet. .'nus, theinitial susceptibility of a tw-dimensional systemrxn obey(Ma powerlaw,and divergeahwe a certaintransitiontmmperature, even thoughit doœnot reallybecome an fordinay' ferromagnet belowthat temperature.Thesamewas loted by MerminandWagner whoremarked that theirproofrulesout only. (70J, spontaneous magnetszation, butit 'doesnot exdud.e thepomibilityofother b'ndsof phasetransitions',suchas a divergiag below initial susceptibility ' a certaân temperature. all thosecases?theferromaretismmaybestabilized Besides bya small iateractionbetween thereare also hyers.Asis tEecasein one dimension, crystalswhichare salmost' theyare mMe two-dimensional systas, because of hyel'swith a stzonguchangeinteractîon betw-ntheionsin them,wVe theinteractionbeimeen In suchcrystals(711 thelayemis muchweaker. 73i thetwœdimensional theoryâts theexperimental resultsquitewell. Morecve,theemperimental studyof magnetism in two dimensions is not restricted whichoccur in nature.Shcetheinventkon anymore to materials ofmolecular be-xm epitaxy(AmE), a wholenew classof artifdalstractures hasbeeamadeandstudied. cleansingle-crystal flms These are superthin, downto one atomiclayer) separated bya11 sortsof non-magnetic hy(even Thesehyersare builtup (78) ers of anydesired thickness. intovery regular superstructures whichallowdetailed cxpen-mental andtheoretical (794 (80J studyof boththree-dimensional stmzcinre,andialmost'two-dimensional ones. It Lsa wholenew world,whichallowsthe detaâled studiesof efec% tllat havejustbeenneglected or wrongly evaluated some yearsago,sucx ai thepropertie of thesnrfaces or the exchange interadionscnmeed by theconduction electrons of a non-magnetîc metalliclayerbetween mag-
78
MAGNETIZATJON VS.TEMPERATURE
neticlayers,etc.In particulaz, it is cleaar now that a venrsmalliateradion betwœa uitrathinlayerscan makethewholestucture ferromagnedc (or butstrictly two-dimenskonal monohyers are paramagantiferromaaetic) nets. of magnetization in two dimemsions Kstoriely, theproblem was apby thestudyof thia 62msj cvaporated in vacuam, wllichwas not proached a very hi@vammmin thosedays.Htead of tàemanyJayers with weak interactionbetween thvm,as in themore rv>nt studymeationed in the foreming,tme Glm was mnzeout of atomiclayers5ncoasad,namelywith a RI-,/strongexckaage interaction betw-xttàem.Thequesdon whicxw.xs aadargued wmskowthicksucka layermusth before verymuchdistmsaed it hastbemagaetic propertjes of the bulkmateriala considezable in Until 1964thespinwave theorypredicted reduction thespontaneous maaetizationofîronalr/uz!yat 1û0i, or even at a larger 6eldappremationgavelarger thekness. Caltulations udngthemolecuhz Ms downto a muchsmallcu.r thîckncs,but nobodytookthemmrsously, because tkce classical rcults mast bemuchpoorerthan the quaqtumMswithdecremsing mechecalones.Experimentally, tke decreaseof thickn- wmsevemfmsterthaa the spinwave calculation, aadtheoristsmade efortsto modifjraadcorred theircalcalations i:athatdirection.Thefrst Gceptionwu thecase(8IJ of4lmqmadeina betlervacuum tllaneverybody ekse's, whio gavexdrnos''t thebulkma&etizationin Ni flms madeof only a few atomiclayers.Thisresultftted the molecnlxm âeldapprozmationy whicàa16.0 prokibîtsmagneeationat one atomiclayer,but predic'ts Ms whicbksonlyafew%belowthebulk*ue at tmoa'tomic layeri Obviously, thisexperlment was ignozed, as were Overalwhichfollowed. ' Thereal break-through was a zero-feld Mössbauer efect ent wkicbel-vml'nxted theproblem oîreaching saturatioû forveryàhînflms (82), andthepossîbltyofmagnetizatlon created bythe appliHmagnetic feld. WFewas usedlbut even +at ms not suRdentfor Eighlyenricxed (92%) layer.Theefore, separated memsuring a single were madeo by manylayers ' some uncertainty thickness. SiO,whichiatroduced in d theiraverage Still,theresultswereclearandshowed a verygreatdiscepaacywith a large ' numbe,r of previous ents:for axt iron thickness of 7.5â.the Curie is 83.,$% of its bulk value.The roomrt=peratureh ne temperature feld is only4%belowits bulkvalueat 6k thlckness, anddropsto zero onlyat an average Shickness of4.6A. Tkue resultsare quitecloseto the predichon of theoversimplised molemklar feld approzmation. Thksexperiment raisedmaayhea*ddiseneonsaadarguments. TheoristsGopted,(83) thenew rontts mtherlaicldy,andthe thKreticalspia wave calculations soon ftted them.Eximliztàe:lltnll'em tooklongerto beconthat eced thatall tkeirpreviousresultswezewrong)andkeptarguins(84) thethickness of thenew (82) flms wasnot memsured properly, or t%not somethingelsewmswrongthexe.Theywere onlyconecedaftertheGxperiment
LOWDIMENSIONAJJW
.
79
in whicha ssngle Felayerwasusedaqia sourte, insteadof an absorber. (85) Thisflm was measured in thesamemcuum chamber i.!lwhc-hit hadbeea made, withoutever exposing it to theatmosphere, tkus avoiding ofdation. nr.t:.d Latermod-l4cadons a much higher vacuum, and studied tke e-Q-H (86) oî a slowdeposition rate, or of stoppiagthe deposition for a wbileand thenconthuingit, or of heating thesubstrate, etc.Tàeconclusion fzomall thesestudiewas that thereis no ferromaaetism in thelimit of one atomic layer,but that it take onlya little more thickness thanthat to stabiWe theferrom&gxetismR turnedout that the 61=qin theolderexpersments theyweœeheavilyYdized.To avoid werenot continuous Feflms,because oidation,Alrnsmustlx maderatherquicklyin a mlldentlyhizhvacuam andthendtherkeptin t'hevacuum or covered by a protadivelaye.rMore beingexposed to alr. nus theSiOused(82) for separation turnedout to lx aISO a protection against Odation-If thefzlzms cre allowMto ofdize, tkeybecome sexrateislands ofFezczfclds rathe.rthaua Gmtnuous layer. Titusthemagnetintion losseve,nfor rathe.rœck fllmsvas (8% dueto 87J thesexradoniatoisohtedislands, andnoi theeAect of fllmthinlcnv.The poîntis that smallenough ferromaaedc pxrticlesaàolosethdr magnetizationbyan efec'tknou as snpeoaumagnziLvn whichwill be discassed ilz section5.2. thuspointto the absen& of ferromagA11theoriesand experMents unless netismin two da-mensions, it is stablzedby one of the'waysmendonMin the foregoing. Thereks,howeverjone possible exception. The of Ge electronsplnrconance of Mn2+ionswas tompearatuze-depmzdenc,e measured ia a tlitcrallytwo-dimensional' layerofMn atoms,madeby (88) a cerfxin Gemicalproœss.At about2 1(4the resonance6e1ddecreased abruptly(bymore than103Oewithin0.2K)in a maaner whichis typical of a phasekansidoninto the menkyerxzrlcgnetidzrl mentioned in section 2.6.Asmendonein theforegoing, not eveuthingwhicklooksDkea magnetic is one, aadt'heevideace wouldhavebee,n more convincing witha difea'ent measurement, instead of thespinresonancewhichinvolve a largemavetic feld. However, s%e magnedsm with a veU 1owCm'ie or N&1temperature is not reallyruledout by theforegoing lf arguments. m
MAGNHTIZATION VS.TEMPBMTUEE
80
4.6 Arrott Plots
Theinterpolation techniqtte knownmqthe Arrottplotswas frst snggested orallyby Arrott in a conference with no published pro-dings, thendiswith othe the cuRsed methods used at (togethez time)in aa unpublished series internal reportoftheGeneral ElectricCo.It is based on a powe,r (89) e-xpxnm-on of the BrGlouin function,(2.1.15), whose argument is small in ' thevicinityof theCurietemperature. Thebe ' g of thisexp=sionhas already beengivenin eqn(2.1.20), buthereit is carriedto one more term in theexpansion of the cothlnction, yielding
Ss(z)=
s+ 1 as
j
-
2s2+ 2s + 1 s :r + xsa
gtzsj .
(4.6.56)
Subsdtuting in the molecttlxr feld basîcformula(2.2.33) and eqn(4.6.56) rdumraaging the terms,we obtain h=
3s +1
gs z;j a(
g+
2S2+ 2S+ 1 a' + G#) acsc (?&
(4.6.57)
Nmn.r the Curiepoint, the initîal susceptibility divergœ, wbichmeansthat V/zis small-Therefore,powersof h,hgherthanthefr-rt are neglected. Dividingeqn(4.6.57) by >, the ldt handsideshouldvanishat T = Te, whichmeans that 35 a(Tc)= .%+ 1. (4.6.58) Hence, H = a(T Tc)+ bTM.2, (4.6.59) -
kh
wherea aadè are constants.It is not diëcult to write theseconstants explidtly,in tez'msof the pltumetersof the molecular5.e1d theombut that is not nec-- Theimportantpoint to benotedisthat theyare not functionsof H, Mz or T, anddepend only on the type of ferromagnetîc material Thefrst conclusion fromeqn(4.6.59) ksthat for H = 0, x (Q T)-1 t -?G2 -
andthat
(4.6.60)
cx Mz/Ao: tT'c T)-Z. Xioîtsal (4.6.61) Accordingto the de6niûons in secticn4.3,this means that the critical ecponentsfor t'hemolecular âeldapproomations are /3= 1/2and..f= 1, az statedwithoutproofin that section. Thesecond conclusîon fz'omthat muationis that if expezimental data for Mzat diFerent feldsandtemperatureare plottedas Mzzp.s.HIM..at
AKROTTPLOTS
SI
const=t tempuatures, theyshould bestraightliuesin thekriiicalregiont: namelywhentemperatures are not veryfaz fzomthe Curiepott. The interceptof thue Dneswith the (HjMz)->m's is posîtiveif T > Tc,and negative if T < Te-Theadvantage of this ldndof plottingforan accuraie of Teis verydearandobvious. It shouldonlybenotedthai determination thedatafor1ow îelds,ihatdond ft these stzaightlines, mustbediscarded, because theyrepresent whicxare magnetized itz avezaging over domna-nn d'lerent direciions. Thispointwas Alws-qzly empha-zed in the GEreport whichwaraedthat in theseequatonsMz 'repreentsthemrvqured (894, magnetization of the bulkmaterials onlyif domain alignment is complete', whichmeans avoiding âeldsthat are too small. Evenwhenthee plotsare not siraightlines(because real matersals donot obeythemolecular feld thez'y) theyare still qaiteuseful(902 for detmmiaing theCuriepoht,because of thecleardistinction of theiatvcept for thet=peratnre to beahweor belowTc.However, thereare decultiœ in Hrapolatingmzrves,because thehumaneyecxn onlyreallydealwîth straightlines.Thereare n.lpndiKculties(90) in deddingwhereihe Emit of thelow-fclddata1. Therefore, it was foundGtter (91J to includethe critical ezptmezlt.v of section 4.3, and tzy to ft cll the experimental proper dataîn ihe critkal re#on to the eqnation o.fstate,
H ï/@= z - zc + sfa Q
y.rz 1/# Ml .
(4.6.62)
wherethe parxmetezs so that a plot of Mz1/p 'p:. 'y and p are chosen at a constant T gives a 'set of staigh.t lines.Thisset of plots, (S/MaIVT whickwas giventhenxrne tArrottplots')becaaethestandardtechnique usedby rnn.nyworkers as routine.E8wever, threepointswhichwerc emphuizedin that paper(91) were hter forgotten or ignored, andare worih rewatinghere: 1. Equation(4.6.62) is onlyone of m=y po%ibilities to lteepthe sxrne exponents p and'y at thecriticalregion,andthechoicemay depend on howwidethis regionis dp6ned to be. 2. Thevalues oftheexponenis and âom the p 't cannotbedeternn-nM ft io the experimenial daiaio any decentMcuracy,becaase theft loolcsvezymuchthe skltmeover a widerangeof the valuesof ihœe pxrxmeters3. Thereis no wayto ph-mlnxtethecurvatureof thedaiafor nerylom Jdds.Thebœt way is to ignorethem;see in particularthe data pointsin Fig.3 of that paper,andalso(65). An equatîon of state hasalsob- proposed for the wholerange (50) of temperatures, not onlythe criticalregiowandis #ve,n by mn (3.5.74) here.Fort $:, 1 it becomes the same as eqn(4.6.62), but only for H = 0-
82
MAGNETIZATION VS.TEMPBRATUE.E
Anempiricalgenervzation of eqn(3.5.74) whichshouldapplyto anyEeld zero up to saturation) hasbeenproposed andcompared with (gom (921, someexperimental datafromthe literature.Eowever, thae datadidnotgo than that was not reallyany bettez up to a Mghfeld, andthe agreement whichcouldbeobtained fromeqn(4.6.62). Also,theft was not verygoodl mainlybecause c2îthe experimental datawere usedfor the least-square thelow-felddatashouldhavebeenkeptout of it, because ftting, whereas theyrepresentonly the rearrangement of domains. At any rate,this idea did not catchon, andnobody elsetriedto use that equation for anyother experimental data.It shouldbe noted,though,that bothFig. 1.2andFig. 2.1ia this bookhaveactuallybeenplotte with the use of that fozmulal andwith J = 0.368andc = 1.112. lt was frst notedby Wohlfarth that theArrottplotsshouldbecome (93) curved,if the materialis not homogeneous. Eis approach was ex-tended some featuruof (94jby severalothers,andlaterused(95, 96!to explaân theseplotsin amoIpho'as whichare very heterogeneous infezwromcgnets deed.Nevertheless? this theorywas forgotten., andfor severa.l the ye'az's same curvaturewas attributedto some specialproperties of amorphous materials, predicted by a theozybasedon a ,fzrst-order perturbation of the EeisenbergEamiltonian, whichwassupposed to applyat nerylowmcgnetï: In spiteofa1lthewnma'ngs aginst suchan approach, asemphasized Selds. izb.thepresentsectionandin section4.1, dozens of experimentalists hurriedto produce low-feldArrott plots,to comparewith that non-physical theory.Detailsare beyondthe scopeof this book,but it shouldbenoted thatby introdudng the amorphidtyas a Gaussian distribution ofexchange interactions, an excellent ît to some experimental datawas obtahed(97) providedthat tlte ltv-/eltfdata'tpez'eeîclnded Thistheory FomtheStting. used8 adjustable not a2 ofwhichwere reallynecessary, and parameters, therewaa actuallyno dcculty in keeping, for example, the accepted theoreticalmluesof the criticalexmnentsp and't, whichwouldhavegive,n almostas g*d a ft. It was justa tacticalerror to Gsiston showing, in thesame paper,that the experimental valuesof theseexponents are unreliable,by ftting the datawith very d'Xerentvaluesof # andq. H this feld ofcriticalexponents, theorists got usedto tellingtheexperimentalists the dcorrect'xaluesto whichtheyshouldft their data,whichis against the traditionofphysicsia any otherfeld.Therefore, that thedata showing couldbeftted verywell,f or example, withy = 2.2was takenas a heresy, andneitherthePltysicalSede'tp nor the Jonmal@J ApplodPFzrt/àc.s would publishit. lt was eventually published crd (97jin JotzmclH Magnetism Magnetic Materialsandignoredby everybody.
5 ANISOTROPY AND TIME EFFECTS 5.1 Am*rsotropy.
TheHeisenberg Hxmîltoniaa is completely isotropic,a'adits eaeralevels donot depend in spaœi.x wlzicxtheeryst.al on thedirecdon ismaoetized. measured Throughout theprevious chapters the magnetizadon was consis' 'on is thedizecdon tentlydenoted byMx,wherethez of tb.eapplied feld. lt do%not reily haveanymeaniagin thelirnl'tof zero appëMfeldz for whic,h mostof theœculadons haveb-n done.In fad, theconcleon froma2the calculadons described has so far is thata fcromagnetic a certainmagnetic momentJzjwhose z-cmponentis a certainfunctionof thetemperature. WeHow that at 1owtemperatm'œ mœtof tb.espH are parallelto z, but thisz hasnot beendefnedyet, aadwill beintroduced here. . Eoweverj beforede6nlng tYs direztion, it ksKustrativeto consider the behaviotu ofaferromaaetic Nrdclein thecaseofcomplete isotropy, when a11 direcdons in spaceare equivaleat andthe choiceof z is crsitmrp.At 1owtemperatures, strongGxcAange forcesholdthe spinsparallelto each of thee spinsdefnes other,andthedizection theOectionin spaceofthe magnetic moment>, wkc.llis g)&Btimesthevectorialsum of thespins. Let this Jz beat azt aagle0 to a %ed magneicseldH. Theenerr of theineRtion betw- the feld azdthemagnetizadon ofthe partideis Hownto be -lts'= 0. TheMorey at thermalequLbriumtàeprobability =gle 0 at a temperakzre T is proportional ofhaving a particular to e OS 8 whae yH == z
(5.1.1)
NT ,
andks is the Boltzmann constant.Heace, theaverage for aa ensemble of particles is
(cos p)=
%' eœcoe# ezcthedl sh 9dpd4 (tcosp J2'*' u(h -.0 J= 0 eos9 1.) x = = z,(z), zx 'r lea'xloepl''' û Jolz emcospsu ots ds -
(5.1.2)
where = e-oth z f?(z)
-
1
-
(5.1-3)
is exlledtheLangeein It is readilyseenthat theLangevia function fmction. is thelimit of theBrillouinlnction of eqn(2.1.15) for S -+ x.
84
ANISOTROPY ANDTIMEEFFECTS
Theleft-handsideof eqn (5.1.2) is the componentparallelto H of a unit vectori.athe directionof the magnetimation, by the desnitionof the angle9,np.rnely MH == >N (cos 8)c= 2) , (5.1.4)
IMI
ksT
whichprovesthat a2lferromaoetsare actuallyjust paramagnets. And thereis no mistakein thisalgebra: thereare onlytwo diferences between this calculation andthe studyof a gasof paramagnetic atomsin section 2.1.Oneis that thefunction8 is continuous here,whilethismriablehad valuesin section2.1,andthe otheris that the magneticmoment discrete Jz,was that of a singleatom there,whilehereit is the momentof a large numberof atoms,couple'd together. However, thc second dilerenceis only quantitativeandnot qualitative,andthe frst one shouldnot makeany drerence,especially sincethe energylevelsof a largespinnumberS are mriable.lt is thustmtethat veryclosetogetherandlooklikea continuous if therewere no otherenera termbesides the isotropicHeisenberg Hamiltonian,it wouldhavebeenimpossible to measureany magnetism in zero appliedS.eld, and therewouldbe no meaning to a Curietemperature? or critiY exponents, or aayof theothernicefeatures mentioned ànthe previous chapters. Theorists whocalculate thesepropertienever pay attention to the fact that the possibility of measuring that whichtheycalculate is onlydueto an extraenera term,whichtheyalways leaveout. Of courseza magnetization as in eqn(5.1.4), whichis zero in zero appliedfeld,conlradicts notonlyexperiments that produce Fig. 3..1.It is also experience that, for example, theparticlesin in confictwith theeveryday an audioor videotapestaymagnetized anddonot losethe recorded informationwhenthe writingfeld is switched o1.lt is because real magnetic materialsare not isotropicandnot a11ulues of the angle0 are equally probable. Thereare several typesof anisotropy) themostcommon ofwhich is the magnstocrystalline anisotropy,caused bythe spin-orbitinteraction. The electronorbitsare linkedto the crystallographic structure,andby their interactionwith the spinsthey makethe latterJzre/'er to alignalong well-def nedcrystallographic aaes. Thereare therefore directions in space in whichit is easierto magnetize a givencrystalthanin otherdirections. Thediference can beexpressed as a direction-dependent energyterm. smallcompared Themagnetocrystalline with the exenera is usuazly changeenergpThemagnitnde ofMa(T) is determined almostonlybythe exchange, asin the calculations ofthe previouschapters,andthe contribution of theanisotropyis negligible the knownferromagnetic f or almosta11 materials. But thedirection of themagnetization isdetermined onlybythis anisotropy, because the exchange is indiFerent to the directionin space. Therefore, the axis z of the quantiMtiondirectionis alwaysa direction for whichthe anisotropyenera is a minimum.lt hasnothingto dowith
MISOTROPY
85
the directionof the feld H, even if some of thephrasing in theprevious chap%rs have led to the conclttdon that H is pazallel t/o z. ln always may realDfethe Eeldrnxy beappliedat anyangleto the intnvnaldirectionof theanisotropy a'Hs,as hasbe%hiutedat h Fig. 2.2. It may be worthnotingthat theoriu efst for the case of a large aOotropyenergy,whichis aot negli#ble compared with the exGange. Lfsuchmaterials couldbefound,theirmagnethation andeve,ntheir (981 ia diferentdiredons.It Curiepoint(99) wouldbedxerentwhenmeasured shouldalsobenotedthataddinganisotropy is not suëdentyetfor subdtvidingthe(xystalsintothedomaiumentioned ln section4.1.Theexchange tziesto alir a11 the spinspaeallel to eachother,and theanisotropy tries to alignthemalonga certaincrystallographic direction.Together, theytr.g to that directien: andthe diviâion Y'tOdomains to alignall spinsparatlel mustbecaused byret anotherepergyterm)to bediscussed in seuon 6.2. However) once thedomazns are there,the anisotropy termwill try energy to alignthe ma>etizationin e-ac.h of themaiongone of theaxes of its enare thusregularly arrangdalongwell-dezne err minimum.Thedomains directions) andare not randomly oriented, asWeiss ori - y assnmed. eeuationofthe spin-orbitinteacdonfrombasicprindQuantitative plesks(100J possiblel but the accuracyis iaadœmate, as is the casewith tke exchange integzalsTherefore, anisotropy energies are always wriitenas phenomenological Gpressions, whicàare actuallypowerseriesexpansions thattakeintoaccountthecrystalsyznmetrsandtke coeldentsare iaken e>n only be writte,afor a specifc fzomGperiment.Specifcex-prfmlo:as crystallinesmmetur,as Lsdonein thefollowing.
5.1.1 UniazizlXnïsofrom The anisotropy of haagonalcrwb-lal.s is a funciionof onlyone parameter) theangle6 betweea the o-nvn'qandthe dsrection of themagnetization. lt is knownfromexperiment that the eaera Lssymmetricwith respect'to the fzoma powerseries cyplane,so that oddpowersof cosomaybeeh'mlnated expansion fozt:e anisotropy enerr dens,.Its frst twotarmsalwethus Kgmh Ou = -.% cos29 + Kgc>4 $ = -Jqm2 z + z) (5.1.5) wherez is parallelto theczystallographic c-axis,andm is a unit vector paralle.l to the magnetization vector) m
=
M -
IM1
(5.1.6)
The subscript1ùis nrv!w.d here,because this Hnd of anisotropyis usaally referredto as a nniax one. ThecoeEcients Kk and Kg are constants whichdepend on thetemperature. Tkeirvaluearetakenfrom ents. H principlethe expansionin eqn(5.1.5) be carried to Mgher orders, may
ANBOTROPY ANDTM EFFECTS matRn-nh but noneof theHownferromaNeiic seemto requireit. H most =es even the term with Jfa is negligible, andmxnyexperiments mayl)e <
-
ia whichcasethe coeRdent Jfz hasa diferent tlclvethaain the case of = nnlejs Jfc 0, or is small. OnceXz is pro-ly eqn(5.1.5), ntr/kibly rèdgmmed, thedâference bemeen aadmn (5.1.7) is a œnstanit eqn(5.1.5) mpxning: it only anda constantenergyterm doesnot haveany physical meansa shiftin:thedefln-ttion ofthexo energy, whicxksneve important for theproblems disfmmein thisbook.Therefore, thechoiccbetween eqn aad is complelly arbitrary, ms long as the defnitionLs (5.1.5) mn (5.1.7) tn eithercase,bothKï andJfa not switched in themiddleofa calcuhtion. In most hexagonal crystals,thec-nM'q mxyl)e eitherpositiveor negativexm audnot a mxvlmum. is au 6asycds,whichmeaasit Lsaa energyrn-,ninz Ja thesecases,Kz > 0 in eqn (5.1.5) or >xqn Wereare, htlwever, (s-1.7). mater-nlq for whichKz < %aadfor theem thec-ax-kksa hardHs, w1:,1z aû hexagonpl ferriteshaveAlKna ctArLni'n to it. Some easyJlcneperpendiculaz xmountof auisotropy uâtldn(8)theayplane,but it Lsiways smaz,andLs at mcs'tjustbarelymeasrable. It will beignoredhere. 5.1.2 Xbic Xnis/lrop# For c'tzsïc ccstaàtheexpansion shoid l)euachaaged if z Lsreplaced by etc., when the axes z, and z are desned along t:e czystallographic p, y, axes.Again,Vd powers are nlledout audthe lowœt-order combl'nniion whichfts t;e cubicsymmetnr Lsm2z+m2v+m2z)buttllis isjusta constant. Therefore, theexpamsion starts Gt.Nthefourthpowerandis actually 'J;c =
a20,2 0,2.2 .2.2 Kgv,z X1(m2m2 x y +. p z + z z )+ z y
z:
(5.1.8)
whereherethevalues ofJGaadJfaare alsotakenfromexperiments, and theyalsodependon thetemperature.Hereagainthe expaasion maybe carriedto higherorder:butit isnot necœsary for anyknowa ferromaaet. -' ' m4 Some workers prefeto replace theexprerxsion withX1 by 1(zr/ z . + v+ zr4l,but witàoutchangtgthe secondterm with K1. Thissubstau'hon doesnot nloange thecpeEcients, because = k. (5.1.$ mx4+m.*+m.4+2(p12zr:2+,r:2,r:2+,r:2p:2) a x v a x = (m2+w2+w2)2 = z t!l v z v
Cubicmaterialsezst with eithersignfœKï. Fornvxmple,Kz > 0 for Fe, so that the easyaxes are along(100), whileKï < 0 for Ni andthe easy axes are alongthe bodydîagonals, (111).
MTISOTROPY
87
If M is the same everywhere, the aboveexpresions for the eaergy densityhaveto bemultipliedby thevolumeof the c to obtainthe aaisotropy enerw.Ho=ver,if M (orm)is a functionof space,as Lsthe case in some problems discussed in the followiag fin.pters,theeneroris S=
J dr, m
(5.1.1 0)
whee'tp stands foreither'tt/uor 'tt/c(oxanyothe foz.m of anisotzopy, msthe casemaybe) andtheintegrationis over the volumeof theferromMnet. 5.1.3 Mzgnetostriction Thereare o'ther formsof anisotropybeidu the magaetocrystalline one. 0neof themis dueto an Kect whie hadalreadyb- observed in the 19thcentursaad#veathename magnetosyctiow whena ferromagnet is magnethedy it shn'nv (oreq3a11ds) in thedirectioaof themagnetization. StrictlyspduBlng, sac.han ect inml-vdate eventhedeînitionof M as the dipolemomentper unit volume, because the Cunitvolume'itselfchangœ with the magnetizzation, whichchanges wîth the appliedfeld. lt Lsalso quiteclearthat whendomains are maretizedt=dtherdorechange their in dxerentdirections, therecaa bea misft of thecrystnllîne dsmensions) latticeat the boundary between suckdomn.inq, wbicxwouldlèadto azt utra strain energy.Sucheec'tshaveb- studied(101, for some 102) simplecases,butthe problem of themavethationin a delornvble body is outsidethescopeofthis book.Eveni'tsmathemntical formuladon (103) Lsex-tremely complicated aadha,sneve.rb-n Rllly developed; not evenfor the case whenthe sampleLs(104) mMnetkallysa*rated.lt is therefore csumedherethat all bodieare Bid, andall thesemagnetoelaztic efecfs will bejus'toored.Onlythreeremarksmust be madebefore dropping tMssubject. OneLsthat a largepartofthe energyof theinternalmagnetostriction in rAn beexpressed a ferromoedcczystal in thesamemathematical formas anisotropz theuniafal or cubicmagnetocrystalline gîvenin thefœegoing. WhenthecoeEdents A'1andKg are calculated frombasicprinciples, the of thismagnetostriction contribution shouldbeadded. ButwhentheOeEdentsare takenfzomeoeriment, thiscontribudon isalrevyinduded, and nothingis rpmllyVglected bynot mentioning it. Thesecond pointis that it is possible to addanother dimension by mGsuringfezromanetic crystals underpressure.To a îrst-orderapprovl-mation, suc.h - entse%n be xnnlyM 21G5, 1G6a as = extra aaisotrop.y 1fvm. ()f cou-, the eas'y 107) axes of this t-rm depend on the appliedpressure, anddonot necessadly coioddewith the crystallogmphic =e,Sof thematerial.In thesecasu taad alsoin Hme c s withonlyau internalstraân andno external pressure) it mxy beprBmïble to have*th. cubicandunieal anisotropytermsin the
88
AMSOTROPY Ar
TIMEEFFECTS
sxrne nmple.Thethird remarkis that some ftrst-order theoriœe-fst fœ the e;u of internalstraiasat custallineimperfections particulara œrtaindistzibution of dislocadons or impurityatoms(110) and (108, 109) otherddects(111J) on theapproaG to saturation. Thereare alsomany(.:x-
(in
that tlïc introduction pœiments whichshow(112, 113,114) of dislocations andtheirremoval(byaanealing) ha.sa hrgeefecton themea(bym''lBngl withthe largemagnetostriction suredcoercinity. Thiseeedis connected in for whichthereLsa detailedtheoryg115), thevicinityof thedislocations, but it is outside thescopeof thisbook. 5.1.4 Oler Cae.s Otherformsof anisotropy includethe shanecnfsofm.py, originaung from magnetostatic properties, whicxwill be dinntu%ed in section6.1.t'11the case of thx'nmagnetic flmsthereis alsoanotherform,krttvn msindced crlïrezv. It was a very popularsublect in the 195œand1960s,when therewere maayexpersoental investigations of thia ftlms,mostlymade of permuoy,whichis an alloyof about80%Ni and20%Fe.It was then at an oblique angleto thesubstrate, folmdthatwhentheAlm is deposited or whena largemagndic feldLsapplle dlm-ng the (oreven electric(H6J) deposëtion, a uniafal azdsotropy of thefnr'mof ecm(5.1.5) or eqn(5.1.7) developed in the plaaeof the âlm. Applyingand removinga maaetic feld (with or withoutRmmealing thesample) couldalsoinducea uniatal aaisotropy that was usuallyreferred to as a =tatabêe xnl-Kotropy. Thelatter waa also' observed in the bulk (11C andin cobaltlll8). Eowever, in spite of thewideTinterest at the time,theorîginof thesephenomena hasnever beenGxllyestablished. The conduoa'of a 1962review(119) was that the inducedxnl-sotzopy is- very compEcated andit is not fully understood', audin 1964thep was (120) that the problem tis too complexfor a complete quxntivdveeeatment',wVe a 1969paper(121) statedthat - - - is a tthemeclmnl-Km to be iavestigated'. Themcuum usedin mzbject thœe(1a.>was not gxd enough,seesection4-5,andit is quttepo%iblc that cxygenplaye a role(122) ia someof thueefeds.lnhomogeaeities ofr composition aadof phase(124) were shown to be part of i%andthe (123) pfwqx-ble eed of impuritiœwas demonstrated bytheenhancement of (125) thisnniKokopy whenuothermeual was codeposited withthepermalloy. An iaternnlstrxi'nmnyhave-also playeda part.NoneoftheseGectswa,s (126) ever fullyclarifed,nor was thereanyrealadmnce lalr, andsomefeatures ofthe induced anisotropy are noteasyto t.:xpln.''n evenin themore moden eoeriments.It was not so muchtkat thepzoblem was too diEcult,but that mostpeoplejastlostinterestin thuekndsofexperiments, although some are still (127, beingreported. 12%129) 6lmswas that theywere polyAn interestingfeature of the permalloy crystalline,ï-c. they were madeofrsmallcrystalswhose custallographic axes were randomly oriented.Therefore, theyhada localcubicanksotropy
ANSOTROPY
89
whoseeasyaxeswere alsorandomiy oriented,besides theovmrxllunia'dal anisotropy. TMsrandomanisotropy caused a rfmle:tacjura (130, 131) tEedirectionof the magnetization ia eachof thedomxinswiRled mghily aroundits average direction.The theoryof this ripple(orwiggling) was quitestraightforward andwas A.1Mv-n-Bed7331 by ferromaaetic (132): reson=ce. Theexchange andovea'a,z anisotropy tendto keepthemagnetizationin ezmhdomainparallelto the Mm!A.='x1 easyaais:whiletherandom auisotropy tria to tilt it into a diFerentOectionfor eachcrystxllite.The competitbn between themrœultsin theformertwo strongforces. keeping themagnetization directionnearlyconstant,but theyyielda little to theweakerjrandomterm,allowinga smalltilt in eachcrystallite towards thelocdeasyA=-Kof the cubicanisotropy. nen n.mozphons fcrromloets weze ârstmade,it was still takenfor grantedthat the same argument aboutrandomanisotropy in thesmallpermalloy crystnlllte appliœJust ms wellto therandomlocalanisotropy oftheions.Therdore, theeFectshould besimilarg134), namelythereshouldbea ripplestructurewith a (Mrixa'n smearing theory(critidzed alof thecriticalregion.Thenon-phykcal (95) reMytowards theendof section4.6), according to whicxtheoccurrence of a random=isokopy,no matterà/'tcsmalltmust leadto a drastically dxerentqnalitatkne bGaviour,cngneonlylater. Whena certainthink'ness of the Glmis deposited with an anisotropy induced alonga chosen di-ction andthe rest of it is deposited with the xn-lsotropy direction, a spedalformof a sïczïclor. iniucedalongad@erent even tyexdclq13,$) anisotropy is obtplned.Otherspenlnl,artiidal type.sof anisotropy havebeenobtained by depvtion (136) on a scratched substrate.
5.1.5 Snöace Wzzfaoàmzp Thereare several contributions to thisterm, themostimportazd of wltdcà wmssuggested bac,k in 1954by Néel,whopoino out theimportance cf of a ferromagnet. Thespin at the thereducedsymmetzyat the sudace on one sideandnone on the otherside, suore IUA a neazwtneighbour so that the exnbn.nge energytherecannotbethe same aa in the bullc.A non-maveticmetaldepœited on a ferromagnetic one #ves(13*6 138,139) for thesurlce spins,andso does(140q an evemdeerenteavironment the ferromagnets. intmrlœbetw-ntwod@erent Theeasiest cue to considerij that of a thin flm, because in thiscaseit is possible to compute theactual for eacàatomiclayerto a reasonable wave f unctions accuracpCalcalations for a fewatomiclayeers azepossible andshow(80, 141,142) that it LG not onlytheefectof the lat laye on thesurfazeo but it mesrz'ia inwardsto a fewmore. Theproblemis more complicated for othergeometries, andit is not even clearto whate'xetent theresultson thin Glmsare applicable to them.However, froma phenomelfolo#cal pointof view,anysurface enerr of the surfacespinsto be dther paraoelor term shouldbe a tendency perpendicnlnm to thesurface, ia thertme wayas thethinAlrnenerr termis
90
AMSOTROPY MVDTWE EFFECTS
esotropywhœeeasynan'nLs(143, dtherpazuelor perpendicular lz14! to the Slrn plane.Therefore, to a Ot-order approvimation any thezy shouldleadto an enera termof theform
all
1
s. = yft'a (u- m)c #,5,
(5.1.11)
wherem is defnedin eqn(5.1.6), the iatepationis over thesurface of'tàe ferromaoet,andn is a unlt vectorparallelto thenormalmintingout of thesurface. Thecoexde'nt Ks shouldlx *e.n fromexperiment, butthere experiments are not manydear-cut whichmraluate thisparameter, andits valuefor anygive.n ferromavehcmaterialis oftencontzoversial. Theform of eqn(5.1.11) mssumes that the sndarpesoàopy Ls 214x% a geometrical featmethat depends only on the sltapeof the surface. lt is alsopossible to imagine(1461 a surface anisotropycaused by thereduced 'of thespin-orbltinteractionat the surfce.lt can leadto an s'ymmetzy themagnetization at thesurfMe enerr thatdepodsoa tkeanglebetwœn aadthe awtaaographic axe,sof thematerial, beside,or insteadot ew Computations 1om 'Iaalic pzindplpson single-crystal flms (142) (5.1.11). together. Theycouldbe designed to showthe containbothjossibilities GCSC't of eachone separately, andthe quutiox couldalsobeclxrifM by propelydesigned experiments whichhasnot beendoneyet. (791, Thee'nergy term in mn (5.1.11) is thefrst indication in thisbookof a possible spaa-dependence of themagnetizadon. If thesurfReanisotropy prefersa rlleerentdirectionfromtkat of the zlnllkntzrlyy in thebulk,it is concdvable that thema&etizationvectorwi!l poht alongthebulk easy n='q in mostof the graduallyturn into a diferent crystalandwill the.11 directionwhenit approaches the sarfazeOf courseolt exn happenonly if the surfMeYsotropy enea'g.r is largeenoughto compensate for the workthatneeds to bedoneagm'nqt theexchaage whichprdersfull energy, alignment.It is illumimating to think of ftA''Kposslbilit.y eve.nat thisstage because it containssome of theimportut featuresof the magnetœtatic dxerentcasesnl= share Oergythatwmbehtxducedin secîon6.1.These theconamonpropertythat thcsy are automatknllyiaozedia a calcalation that mssumes azkinsnite crystal,whichdoesnot havea surface. 5.1.6 'Eqmvimental Mefzods for measnring Thereare several methods thecoeEdents Kï andKa of the magnetocrystxllln is measured, e anisotropy. Usuallythe total xn-lsotzopy andthe shapeanisotropyof the swple must beknownandsubtracted. Themostcommon methodis knownaa the iorquectzzva the c'rystalis by a feld appliedat dceyre'nt magnetized anglesto the crystallovaphic axa, aad a tomionbnlxnce is usedto measurethe resultiagmechanical torque.'ne applied feldmustl)e(1411 largeenough to removethemagnetic
ANVOTROPY
91
domaîns thememsured valuœ. but not so largethat it afHs (149) (148j Evenau eledrufeld may somdimesafct (1501 the m=ured valuœThe'mathemadcal formof theangulardependence of the torqueis usually knowaas one of theetpwt--onsin theforegoing, or a tfansformation (127) in some caes of them,but the analysisof thedatais alsopossible (151) for whichthe symmetrzLsnot knownin advance. TV methodjs usually appliedto singlecrystalsonly,butuadercertaincondidonsj torquecuzvœ caa (113, determine the distribution of tbe magnitudc of aaisoeopy 152) 61mnYth in a powderwit: racdomdlectionsof easyafs. Measudng dlferentthieaesses rxn alsoyidd (153, 154,155) the snöace Ysotropy. Othermethods haveto relymore heavilyon thetheoretical interpreto tion of whatis measared. Theyinclude; 1. Measurement of themagaetization in largeapplied felds,f.e.in what LsWovaas the approach to .scftlmïftzrz 1n re#on. this re#onit is suëcientto use a lineartheoryby neglecting higherorders(1561 of the magnetlationcomponent perpendicular to the applied îeld, and thereare n.l!m(15% empiricalrules. 2. FerromMnetic resonaaceln thegeometzy of thin Glms.Thetheory is well understood section and (see 10-1), theanalydsof thedata eAn yieldnot onlythebulkxnlgntropy constant,batalso/thatof the ' 154, 159, aisotropy. snrface 15% (143, 160! 3. Thetransnerse initiat suxeptibility, dvnedas Em 8Mn, Xz= JJx..+0 agz -
(5.1.12)
is plotte versusa béaJcîdHA.O1dcalculatitns were based on (161J a certatnmodelof Stoner andWo%lfa.rth, wûichwill bedîscussed in is madeof particles, section5.4.Thismodeln.%cumes that thesample andthat thereis no spacedependence of tke magnetization witàin eachpaztide.Theo1dtheorypredidedcwnçsin this susœptibility whenH. reaches oae of thevalue -KïIMsand+2KïlM>Such in theolderexperiment's. Theywere cuspscouldnoi beseen g1611 laër foundto exist(162, i.ntheformofrounded pealqs 163) (although insteadof c'usps) in fILCUgVaiIIGI ferrites,but not in coarse-grained ones,whicbmustbe subdivided intodomains. Thistechnique Lsquite popula.r nowadays, especially fozmatlrinlqwitk largevaluc of (1641 Kz, for whichit hasbeendescrîbed as 'euy to hxndle'and (16S) ûan interesting alternadve'to othermethodsImprovements in this of Kg as well. method(166) allowtheevaluation 4. Singularitiœ in the zamllessusceptibility were alsopredicteê(161) but not observed, till a more complete analysis 1edto themeae (167) surementof the derizabine of thesuscepdbility, namely&*tMxl0H2z.
92
ANISOTROPY ANDTIMEEFFECTS
Thismethodworks(168) for coarsegrains,wheneachczystallîte conIf this deri=tiveksdetected harmonic tainsdomains. by its second cmm bemeasured. the distributionof anisotropies response, (169) 5.2 Superparnmagnetism Beforeintroducing amother enerprterm,it shouldbeinstructiveto study thechange whichtheintroduction oftheanisotropy madein thecalculation at the beginning of theprevious section.Consider a groupof particles, sa.y TA Kz spheres for example, hadnga uniaxGal anisotropy as in eqn(5.1.7). benesected for simplicit'y, although includingit doesnot rfolly complicate thccalculation. It onlyrequireto choose a specifc valueofK2(K1 forany particularevxm ple.If the magnetic momentp. of a particleis at an anglc8 to the easyafs z, anda magnetic feld H is appliedalongz, i.& at 0 = % thetotal energyis S = XiF sin2$- gKcosot (5.2.13) whereJ'ris thevolume of theparticle.Thisfunctionis plottedia Fig.5.1vs. #.Obviously, theBoltzmann distributioncannotbeusedas in eqn(5.1.2), because not all amgles are equally probablea zzvforb. Thereare two mirdma, one at 8 = Oandone at 8 = Jzïy whose are enerbes
à7l= -gH
alld
(5,2.14)
respectively, withan energybarrierbetween them.In thermalequilibrium, themagnetization will tendto bein the vkinity of theseminima. Actually,for sucha confguration the question is not whatthc thermal equihbrium is, butwhetherthat equilibrium ls reached at a11 undernormal conditions. As a roughapprozmation one can assumethat themagnetization vectorsof theparticlesspendcIl their timein one of the dircctions of themimsma,.and no timeat a2lat an.y directionin between. ((n. thatcase,the numberof particlejumping over thebarrierfromMnimum1 to minimum 2 Lsa functiononlyof theheightof theenerprbarrier,Sm- XgwhereSm Thelattcrcan beevaluated is the energyat the memum (see Fig. 5.1). by equatingto Othe derivative of eqn(5.2.13): sin8(2A%V' cos8+ pHj= 0.
(5.2.15)
en'ergieare given The solutionsinp= 0 leadsto the two minimawhose by eqn(5.2.14). Thcothersolutionjsihemazmum,at = cOS8
yH . 2N17
(5-2-16)
Whenit is substituted in eqn (5.2.13), the cnergyat the maximum is found to be
SUPERPARAMAGNBTISM Jm
93
7
Rz
7
I
JJ
1
Azz
vr
0
FIG.5.1. Theftmaionof eqn(5.2.13) plottedfor p,s'= 0.15JGF. HMs 2 p.2+ zk = Aezy+ 4.Y:7= Aez&r1+ 2A%
.
(5.2.17)
Thesecond relationis obtained 9om thedeinitionof g as the magnetic momentof ev.hof theparticlœ,aadof tke magnetization vectorM as the magneticmcmentper uaitvolume.n1K defnitionmpxns that g = FM, namelyg = Msï'r,sinceM, as defnedin sedion4.1is the ma>tude of cf magnetic domains. M in the absence Therefore, thenumber ofparticlesjumping over thebarzier 1omrnlm-mum 1 tc minimum 2 perunit Mmerxn bewrittenms n2
=
= cste-plkhvjk+Hllçx? f1ze-pfrm-4'àl ,
(5a )8) .
.
wherec1ais a constaat,#is defnedin eqn(1.3.12)j and
Fx
=
2A15r 2TG = .
p.
Ms
.
(5.2.19)
Simjlarly, thenumberofparticles over the barderfromrninianm jumping 2 k) minimum1 per unit timeis L'2l = t;21e-#(:m-8a) .
Az.-#xyv(1-A/Ax)2,
(5z.zc) -
whe.ré cza:is anotherconstRt. Jathe particularcase H = 0 the bmier Ls thesamei.n dtlter Oedion,aadthesetwo constantsmust bethesame.
94
ANISOTROPY ANDTTMAEFFECTS
Jathis c- it is more convenient to consider the relazation time.r, which is the average timeit takesthe systemto jumpfromone miimtlm to the other,insteadof the probability of this jumpper unit ume. Oneis tbe reiprocalof theother,andthe predousequations mayberewdtten(for H = 0)as 1= Ae-. M:,h a = A%V' , (5.2.21) r
*T
whereS îs a constantthat hasthe dîmensions of frequenc'p The original s-' but recently etimateof Ntxel was h = 109 it hxsbecome more cuss-1. Of course, this constantis not necessarily tomarytzl takejz = 10$0 the samefor dsferentferromagnetic materials. Strictlyspenn'og, cw andc2l (orA) are Onstantsonlyif themMne-. tizationem.naot ever be at aztyotherangle0 aadis alwarsin one of the two enea'vTnA'n'xm a. 1$rxn onlyhappen if thezninimahavezero widths. ïn any realisticcaze,thereis a fnite probabltyof spending some cf the time in the virqnl' ty of eithezrninimlxvn , iztwhicbcasethepre-exponential œelcientsctz andcazare functions ofthetemperature andoftheapplied feld H. Eowever, if theminimaare rathernarrow aadthe barrierenera is ratherlargejit em'nbe exwctedthat ezz audozz (or.Jc) haveonly a 'lnenk dependence on T az!d H, whic,h is negëgiblewhen compared withthe ia the exponentialv depMdence andonly a smallerror is ttroducedwhen they are takenas constants.Moregenerally, 'theKxmeOn (5.2Q1) should alsoapplyto othe.rldndsofanisotropy, when.Kzyis replaeod bytheerzerpp Mrrferfor that partimtlarr'xql. Thederivationofthis muationmsK==eda partkular.formfor thebxrrlez%v- &, andit is obvioustllat it doesnot applycs it is to otherbarriers.Strangely enougN, thistrivialsta*menthnd to beemphxqixed because some workers used for oth.er eqn (5.2.21) (:70) xn-tscxtropiu. But if the(mrect enersybarrieris used,eqn(5.2.21) holds, proddedthat theminimaare ratàernarrow andthebarrieris zatherhigh. Tids argument aboutnarrow msnsmxwas mademore quanuutiveby Browa(171j, whoconsidered themagnetization vectoria a pardcleto wigle aroundan enerv minimumfor a wve, thea'jnmp(lomwherever it happens to bethen) to somewhere theotherminimum, thenwiggle around aroundtherebeforejumping again.. it is Rtuatlya nmdor?z 'tze problem andBrownwrotea d'lFerential equadonto descdbe it, andshowed that the of that equationshouldde*rminemore rigorously eigeavalues theabovementioned >la and>zl , or r. Browadid not solvehis dœerential equation. lnsteadhe (171j tried someanalyticapprovimations anda.nuymptoticexpansion, whichhe(172) improvedlater.R'omtheseestimatohe concluded that for a 'lnlid='nl anisotropytheexactsolutionwouldnot l)e drastiezuly dxerent1omwhat is obYnedby tnlringcw andeaaas const=ts)in the rangeofvatues ofthe physical forwlzic,h tlds theozyis usuallyapplied. Numerical soparameters
SIHRPAMMAGNETISM
95
lutionsofBràwa's diferenti/equation for thecmseof uninvixlaaisotropy, in zero (173) oz non-zer: appiedfeldzshowed that mssuminr c12aad (174) caz to beone aadthesame constant is a suldently goodappromntion, fozall practicalpurposes. However, it do%not complicata of any nnnlysis daVif a lzighe.r is used,for whic,h case it is betterto adoptat accuracy lemst theasmptcdcraatt ofBrown,andinsteadofjusta constanth take
.fa= 2./% M,
a rr
for
(5.2.22)
where gyromagnetic ratio.Forthecasewhenevenbetternzvru'razty 'yois thoe is requized, thereare several easy-to-use approximations for thetevnrt (175) numerical solution. Studies of othe,rcaseswere reviewed in (1762. d'eerextin thecaaeof a ctlsicanisotropy. Thesituitionis Ompletely A slightcomplication isencountered i.aa calculation similarto that leadtgto callsfor a solution and(5.2.20) here,whic,h ofa cubicequation eqns(5.2.18) to evaluate9 at thernacrimumenera. But at leastin theparticularcase m'm1 ' to a resultwhicàis VeZ'y H = 0 thesohtioaisstzaightfozwazd, diFerence ilar to eqn(5.2.21) fortheuninvlxlcase,withtheonly that Ahis replaced by A%/4. However, in thiscaœtheassumptioa ofa constanthctor in fzontoftheexponential turnsout to bea badapprrvin/atiom Thereare minimaalongthez-, y- aadz- axes (fora positiveA%) ='11verymany pn-'bilitiesof wiglngazoud<>An% one of thembefore to one of jumping theothezs. Kddently,thiswealthofpossibitiesmakesa big dfereacein the random-wm problem. A numezical solution(177, for cubicma178) dsfewmt10n1theqlmpleNée.l terialsgaveresults whichwere considerably Gponential of eqn(5.2.21). Moreover, thisdiFerenœis m--mt.rable, because fn'rne eztn tàezelaxation beestimated Fomthelino-width of theM6ssbauer . suc,lz m=uzements for diFerentsizœof xme cubicpartidœ spectrum at difezent%mperatures weze (1791 of mn ver.rfar 1omthe prediction aadquitedoseto that whichha.sbeenobteed by thenumerical (5.2.21) solution(1771 of theBrowndîFerential equation.For the accuracyused here,thisdiference will beignored aadeqn(5.2.27) (withKzjnhsteadof s'ucN will be tlsed fcr cubic symmetry too, because detailsare beyond A%) the scopeof tMs book.Thereaze othe,rapprofmations anyway, e.g.the Asumptiontlzatthe Nrtides are spherewith no shapexn'tsotropy is not uadercertaindrcumstances always(170) justiîed.Besidesj theaumption that themavetizationin theNtide is nnlformaaddoesnot depend on itaveaISO jusMedeither.Calculations beenzespacey may not be(180) porte (176) for more complicated cases,suchas the case of a magnetic a='q. These feld appliedat an anglet.otheeasyanisotropy fne detailsare thorougàly described ia (176J andws.llbeîaoredhere. of therelaxation At anyrate, thedependence timeon theparticle:z.e isin theexwaent,aadan exponential dependence is a verystrongone. ln
96
AMSOTROPY ANDTM UFECTS Table s-1 Rvamples of thc relxxxtiontime r of spherical particlc,whoxradiusis R,for twomaterialsat room temperature.
Matedal R (A)
Cobalt Iron
44 36 140 115
r
(s)
.
'6 x 105 0.1 1.5.x 10S 0.07
orderto d=onstratehowstrongit is, nnmerical exoamplœ are gi'ven fortwo materiis,bothat room temperature, f.e.with KT = 4.14x10-14e Nrg and b0thare calculated withtheN1l valueofh = 106s -z . usingeqn(5.2.21) Oneis huagonalcobalt,for whichKï = 3.9x 106erg/cmz. Theothez is mtbicizon,whœeeazyaxes are along(100), for whichXz = 4.7x 10S Thevallzes of thermlnvation timer (inseconds) arelistedin Table erg/cmS. to be a 5.1.,for a cpe-qlnGoiceof the radlusR of theparticle,assumed sphere. Theradiiin the tableare chosen to demonstrate that withina rather' smallraageof partideshetherelxwtiontimerxn chaagelom beiagmnch largerto muchsmaller thana,uarbitrnm-ly chcfe.n time-scale of 100seonds. A aiFerent'vallze of %wouldnot càange the general form,andwouldonly reqlzire theurne poini. A dferent slctly dfezentradiito demonsirate a diWhwmt viue of A%) wouldshifttheradii maaeticmaterial(namely, valueat whicàtMstransiuonoezmm,bat it wouldagainshowthe same featureof quhea sharpchange fom hrge to smnll vallzes of r whenthe particlesizeksdecreased. It maythusbe concludethat thebehaviouz of fezromagnets depends on the particlesize,andmay1>e disectly d-tlereat for dslerentsamplcmadeof the qxmematerlnl.It caa rk!pnbedoncluded thatmeaslzremeuts yielddxeerent ruultsfor thesamesammaysometimes ple,if theydonot takethe same tirne. It is thusnecessazy to takeinto accolzntthe time-scale of theeoeriment,or the experimental time,texp. If r > fexp,no change of the mavetizationcan be.observed duringthe timeof the measurement, andfor all pradicalpnrposuthemagnçœation doe.s not change with Mme-This Lsthe regionof stable#erromcretibpk If a magneticmeasurement takessomething of the orde,rof secondsl it is seen9om Table5.1that for iron madeof particleswhœeraius is û1 cltn beobseaedduzingthe e-xpeHment. leasi150â,no change ln fact, no chxngewitl be observed in suc.ha sampleof iron even if it is kept for severaldays.H thissizerange,almosteverytking mentioned in this sectionmaybeignored. Theonlypointwhichmaynot beWored is that
SUPERPARAMAGNETISM
'
thisstabilityof themagnetization doesnot necessarily hold at the Lome.st m-mimum minimum.lf it is broughtby scmemeanstc the hhh.er energy of Fig. 5.1,it will jlzsts'taythere,practir-qllyfor evea',or =:11it is brought downbyan appropriate application ofa magnetic Eeld.Thisistheessential partofthe hystevewis observed in all feromagnets. Jt is importantto bear in mindthat the etstenceof hysteresis means that it is not suëdentto calculate thelowestenerorof a ferromagnetic system.lt is alwayspossible thata lower-energy stateeists, butit isnot accessible because thesystem is stuckin a higher-energy state. andfor certainexOf course, thescaleof l00 s is justa.nSlustration, periments, oz applications, the scaleTnltyl:e completely diee,rent. '.l'has for '--mple, if R is rcquixed that the information on a maaetic tapeis keptfor veavs,it is neessauto ensure that theparticles in thetapeare largeenough 'r > 108s. J.nstudyug(181, to malce rockmagnetism, 182) it is necessauto takeinto accountthe decayof thema>etizationduring geolo/cal of years.Onthe otherhand, times,whichmay beTnx-llx-ons in Mössbauer eect measumments the (experimental time' is thetime of theLarmorprecession, whichis of theorderof 10-8s. lt is thuspossible that partidœof a œrtainsizemaybe stable for theMKssbauer KeC'tbut unstable for œnventional maaeticmeasurements; andsamplcwhchare stableduringa humanlife-umemay change duriaggKlogical times.The principleis theKxme,butthetime-scale maybediferent,whichmltyshift thetransition,of whichonlya,nAltmpleis give,nin 'Table5.1. In the otheraxtreme,whenthe partidesare smallenoughto malce r < texp:manyfips backandforthof themagnethation occur duringthe timeof the experiment. in zero appliedfeld themexqured, Therefore, aw have eragevaluewill l:ezero. Ia a non-zezofeld, thethtvmalfuctuadons theirwayandoore theanisotropy altogether. Thecalculadon of section 5.1thenappliesandtheaverage mvnedzationis gien by theLangevia ftmction,msin eqns(5.1.1)-(5.1.4). Thebebaviour is tke Kxmeas that of the paramaaeticatomsdiscussed h secdon2.1,with no hysteresis but Fmztb withsaturation,whickis reached whenall thepazticlaale aligned. particlein thissizerangebehaves like a hugeatom,with thespinnumber Sof theorderof 103or even 104,insteadof S of theorderof 1 in conventionalparxmagnets. Sincetheargument çtîtheBrzloninor theLangevin fundion 1s. proportional to SH, saturationksrevhedin suchmaterialsin Eeldswhichare very easyto obtain,whereas in more conventional paro magnets saturationrequires are oftenbeyondthe vezyhighfelds,whic,h capabilityof themostpowerlul available. Forthisreason,thisphemagnets nomenon of thelossofferromagnetism in smallparticlesbecame Hown as s'upeoaumagneilm, whenthe Ssuper? part was takento mean tlarge'as i.n superonductivity. A singlepartideof sucha smallsizecannotbemade'or handled.Exof particles, peziments are therefore carriedout on an ensemble whichin
98
USOTROPYANDTM
EEFRCTS
most cmsc havea widedistributionof particlesizu. SuchNrticleswould gtverise to a superposition of Lamgevh Gmcdons with dferent valuœ of p' = Ms? in the argument, andthemeastu.ed fmrve colzldnot pxsib1ylook111*the Laugevin function.However) sincethe argumentin eqn
contains thefdd .S'as S/T,whenthemeasured maaetizationis (5.1.4) plottedmsa functionof S/T,datafor diFerenttemperaturœ shouldsuperimpose cmtoone curve. Therefore, the superposition of M.e ns. H1T onto one curve, andtàeabsenœ of hysteresis, usedto betakenaa a,aindkationthat the sampleis supeerpaznmn.aetic, evemwhe,a khatcurve did not looklikea Langevin fundion.Withimprovutsdmiquœ forprodueg hasbecome narrow enough fora vezysmallparddœ,theirsizedistribution fancdon(1%) to beobserved, a=dthisindirectazgument is puzeLaagevin not necessaz'y ofsection5.1rAn now besaidtq aay more. Thecalculation %vebeencon6rmed bydirectexpevlment. Of couDe, a Langevin function eltn alnmys beftted to suchdata(184, (oranyotherslzmnxrfanction) 185) for a rathernarrow temperature narrow distriraage,but theremarubly r>n bef tted to suc.h butionof (183) a functionover a midetemwrature h this this experiment is still uniqueiz theliterature. repect rangexl= convinsthetemperature Theargumentof eqn(5.2.21) in the denoMnator. Thedependence is actuallynotJuston theparddesix, but on to sup VjT.Therefoathetransitionfzomstableferromagnetism agnetism, whichis demonstrated ia Table5.1for thec,aseof room temperature)sh-tfks to a smaller pmiclesizewhenthetemperature is decreasedIn measurements of theMH r:- S/T curve, somehysteresis suddenly app/xztm whenthesample at a suEdentlylowtemperatureo becomes a feromaaet. Nattzrally, thedataat thœe1owtemperatures are excluded *om the î186) superpositiom Tke temperatureat whichsuc,h a transidonoccurs,namdy tkat for whichtherelaxation timer Lse>cl to thetime oftkeexpdm'ment tvp, kse-xlled thebWkgn.q ferrlwmtvq Ta. lf thereLsa sizedistributton in thesample, thesametemNaturemaysometees l:eaboveTz for someof theparticluandbelowTs for txe others.Sueha Kxmple maythuslxk snzaaedcfor somellighvtkluœ ofthetemperature T, ferromagnetic at lowvaluecf T, azda mx''rtktacf :0th at iutermedîate T. A demonstrationof thisefecteztn beseenia Fig.3 of (1871, whichplotstheMössbauer efectdatafor the samesample at difexent taperatuzes.At T = 5K there is .a paresix-lines structureof a ferromagnet. At T = 324Kthereis one cenkallineof a paramagnet, amdat thein-betWeen thereis temperatures aa obviousmixqng ofb0th,withthe superparamaaetic portionincreasiag with incremsing temperatmea ' Thispatternksverym'vnslnm to thechanges in theMössbauer spectrum obsewed at thesametemperatarewhentheaveragepaztclesizeîs changed. Ydeed,if tke properties depend on T/F,theefed of cAaaging F should bethesame as that of nhnm#ng T. An illustrationof theefectof vazying ia Fig.3 of (188), theee at a constantT rAn besœn for evnmple which
SWERPARAMAGNETISM
99
actuallyrepresents a materx that is an anhlenmmagnet tandnot a ferfor a largeparticle=-e,por 1owtemperaturœ. Thisexperimeat romagnet) showsthat the argumentusedhereappliesas wellto (aswellas others) whenthepvticle aatiferromxgnets, whicxn.1Mbeeome superparamagnets sizeis Kmailenough for thethermalf uctuations to dip the maaetization ' isquiteobvibackandforthduringthetimeofthe ent. TMsG?.C't ousfzomthe derivation in theforegoing, andit ksn.1Mdpnethat thes=e a'pplies to ferrimagnets, butit tsalways nicerto havean azpezimenfal (186) vprifcationfor anythereticalcondusion. Thesamepatternof a tnansition fromone to sixlineseAn alsobeobtained bytheapplication:189) ofvadous that the f .eldscaze magnetic Eelds. lt lzasalrp-'tdy ben mentioned of SH mnlresit possible to reac,h the eut of all pardcles at easilyattained felds.Therefore, it is possibleglg) to se thewholedevelopmeat fromzzero to partial to a tot/ aliglzment, andthischxngewit,hthe app:edfeld is quitessrnslnm to the paûernGangewith cxanging tempeatureThewidedistribu'tion of particlesizesis mostprobably thernm'n re%on for the gradnddisapp-anceof hysteresis whenthe c'cenueparticlesize dee-rex-Thesharpchxnge predicted bythetheoryiss'mecred in meaeure- ' meatsg190) ofthehysteresis propertiœ(ï.e. remaneace andcoercivity) of Sessentially spheriœ'particles as a function ofiheirmedian diameters. Of course,wheathesample contaias biggeramd smatler pardcliw someofthem be ferromagnets aad some at a certain tempbrature, and pnmmagaets may the measuze propertiœ will thenshowsomesort of a partialhysteresis, as i.atheM6ssbauer eâ'ectdatamGtionedin theforegoing. However, it is possible that part of tlzisgradualchangG at lemstia the comrtn'vity, may ix dueto a dl'FerentKect. Whena particleis rnxaethedalong+z, it txknsa feld H = Hc to reverseits magneœation Fig. 1-1)If a feld (see E < Hc is applied,theee is aa enerr barrier,whic,h is clsozzwporlitmcî to that preven?the reversal, If the particlesizeîsa little above fhc'tlolumet that whic,h allowsa spontaneous Sipj it maylp anyway at a Eeldwkickis somewhat belowthebulkcoercivity. Thereare manytheorioof suc,h a meclmnirn in uncial partide (191) 192,19% or pla/lets (195) andsomeattemptsto takeit into accouat 194) in numerical simuhtions oî 'tàemn.aettzation Thereis even process. (196) some 4x-efm' 'ate (197) for the-tllMnltl fuctuationsovercoming a diferent ldndofenera bxrrier,for the motionof a domainwa2îa biggerparticles whichare subdivided into domains. However, none of thesetheories has ever beensuEciendy developed for even tem-ngl theseefcrts are large or smallfor any rpABstic case. And none of them !mnever rearlled the of wondering abouttheraadom walkof the magnethation whic,h hu asuge beenmentioned oxrlierin lbl-s secdonandwhîchhasnot beenproperly solvedevea for m-mpler cxqx. It slkould ix particularlyemphasized that most of the (eeriments mentionein 1%!K sectionare semi-quatitative, only somefeaturesof the theorpThethKry predidsa 1- of andCIIeCIC
10o
ANISOTROPYAND 'lqA EFFEGTS
theferromaaetksm whentheparticleis smallor thetemperatureis high, But thistheoryremninqquite andt/19plection is ceruînlyconfzhed. crude,andIUAnot beendeveloped into more accurateestimates, because theeare no erperiments thatcallfor a higheraccuracy.Actually, exceptfor ex-periments suckas (179) thereksvery andsomeof thosediscussed ia (1805, theoretical little comparison of experiments with guantitadne predictions of what therelaxationtlmeis andwherethekansitionshouldodcur in realmatezials. Themalnreuon is thata qllxmtitative exxrimentis very dilcult to c'arryout, as *1 bediscussuin thenextsectîon.
'
5-3 MagneticViscosity BetwentheKie,nof supeparamngnetism andthatof stableferomagnetism thereis in prindplea particlesizefor whic.h r is of theorderof texp. According to the ev-trn plein Table5.1it is a very narrow sizerange,and it is usuallyquitadifcult to preparea sxrnple of the necusarysizeto see whathappens thea.For some teeniquesof maldngsmallparticleqthe sizedistribution may wellbelargerthaa thistransitionregion.Moreover, it is aot even always possible to measure the sizeof thee.particles, so muchso that therehavebeenmaaysuggetîoms audattemptsto uœ the superparamagaetic transitionaa a ct-nre for the distributîon(189, 198) or at leastthe anevage memsurements (182, 19$ofthe particlesize.Suc.h obviously callfor a bette,rtheoretical interpretation tha.ntheoversimplled utimate of thepredoussection,WhicA nxqumesthat all thespinswithin e-qzt!t particleàrealiaed.Besides otherchallenges to thisassumption, (180) the mere fnrt thtata largepropordonof the spinsis near thesurhcein suchsmallparticlesshoaldmaknone suspldous of aaytheor.rthat does not take1.a10 accountthe prm'bleefec'tof thesurface anisotropy. In practicethereis very strongevidence 189, (187) 200)201,202)2031 thatthemagnedzation near thesurhceis ofteaquitedsgerent fromthat in theA-nnerpart of theparticle(- alsothelastpasrlgrapk ofsection5.1.5). Iron paMicles in particdarmaybe ofdized,so that theyare Ktuazymade ofan ironcoresrounded bya shellofiron ofde (201, 204,2051, forwhich the'simple theoryof theprevious sectiondoesnot apply.SurfveGect,s =n.y alsobeimplied fromtheobservationtzo6) thatmagnetic propertieof small particles are sometimu sensitive to surfactants adsorbed on thesner.p. It haaalsobeennoticed(207) that the shapeof Ge pmicles =ny not be spherical) andthat they maytead to sticktogetherjformingloagchains whichchange or other aggxzgates, 211,212) therelaxation (208) (209) (210, particlOhavebeendemoastrated timecondderably. InterKtionsbeœeen to beveayimportant in realieasurements, aadthese interactions (213, 214) looklilcea 8ze dkstdbution in aaalysing Mössbauer no.ysometîmes (215) eFCSC't data.Otherefects, sucAas magnetostriction, mayalsobeinterpreted as if they were (215) a sizedistribution. Thereis thuslittle wondethat rAn oftea the particlesizedetermined fzomthe magneticmeasurements
MAGNETIC VISCOSITY
l01
bevery dllerent (216) 1om their directlymeazured sizeralthoughboth sucâmeuurementsav6sometime(2171 consistent, for kuiteuaiformand wemisolated' pariidœ. Comparison in this particularfeld is betwentheoryandexperiment furthercomplicated by the unuownphysical constants,because b0ththe satuzation magnetization 218,219) andthe anisotropy constant(217, (217, of :ne particle dfer fzomthdr bulkvalues. lf theseparameters are 220) forthesmatlparticles,thee is not reallyanydirectevaluation of adjusted what the theoryof the preuoussedionpredicts.TheCurietemperature for smatlpartides(221, fzomwhatit is in the rnlkyn.1Mbe d-lfFerent 222) withintheparticle(223) whichEp bulk,or theremaybesomesmallresons beforethemagnethation of the wholeparhclefips, whenthe Curiepoint is approacked. AndatltheseunHowns aaduncertaindes are supmo-mpceed on a theorywhic.his exiremely sensitive to =ull mistakein the partide size(224), or ia otherphysical msdemonstrated in Table5.1. parameters, ln spiteofa11 thesedMculties, thereis a surpridngly largenumberof experiments in the literaturefor partidesin this narrow reon for wizick r ;4$toxp,even thoughit is not clpxri.amxnyc,ascswhetherit is rally the wholesample, or onlyNrt of it, for whicàthe particle are in this sizerange.In thisre#on of 'r, the meneticpxoperties change whilebeing me%ured, andthisckaage can inprinciple beobserved. Thus,for Altmple, if a magnetïc feldis appliedandthenr-oved, theaverage menehzation decays on a time-scale of theorderofT, whichshouldbepossible to meato a frst order,so tlat ther=anent sure- A decay is usuallyexponential magnetizadon shouldluy-bn.ve according to .M' r (.j)=
e-t/.r, .
(5.3.23)
wheret is thetime-Plttiztgexperimental datato thisrelationeltn yieldthe time,r, or at leut its average valueof theTelnavxtion whenthesystemhas a distribudon ofthe valuœçtîr. . Eowever,nobody evertriesto ft datato eqn(5.3.23), because it istaken forgrantedthat theremustbea widedistribution of tkepartïcie sizelwhich mustcamsea widedistribution ofr, andtke timedecayis actually -
Afr@)=
jo
Mr(0) ,(r)e-'/-dr,
(5.3.24)
whereP is a distributionfunction.O1destimations, andmore recentnumericalcomputations for distribution functîons P, showthat snecisc (225) e-xn beappzoimated undercertaincoaditions by eqn(5.3.M) = & Sh(t/a), Mr(à) -
(5.3.25)
whereC andS aTe constants,andthis functional formksusedto analyse
102
AFRSOTROPY ANDTIMEEEFECTS
>
logtlz-ol FIG. 5.2. Schematic representation of a magnetization decayon a logarithmicscale. practirlulyall experimental data-Mostworkers omit the conslmnta and absorb it in Ct butit is wrongto doso, bec-ause a logadthmisonlydefned foza dimensionless number. It mayalsobeworthnotingthat mostworkezs the integrandas in eqn(5.3.24), do not choose with a distribution of the valuesof r. Theyprefera distribution of theparticlesizesor of theenergy assumption that the relationbetween these barriers,aaduse the dubious parametersand 'r is Hown and established. It is not) accordingto the discussion in theprevioussection. This choiceof the logaatthmic functionis rather strange,because it is not regularfor eithersmallor largevalues of t, andcan certainlynot representthe be ' ' g or the endof the memsurements.' Therealfunction mayat most be linearin lult/al over a ll-mftedrange,whichdoesnot contoân the shortand the longtime. ln pzinciple, it can at mostlooklike the schematic plot in Fig. 5.2,and indeedtMs formis what is observed whendataaa-etAkenover a widerangeof the time. However, (226) m=y e'xperimentalists justassume that the logarithmis the Ctrue'formto be used,andthey do not report (ordo not measure) aqythingoutsidethe can beftted. Cases havebeenreviewed rangeforwhicheqn(5.3.25) (227) in Whic,k the reportedtimerangewas so narrow that it maynot even bein the linearre#onof Fig.5.2,aadin an extremecaseMr was measured at onlyt'tvo'tzcl'ue..s of t, hzordezto determine S of eqn(5.3.25). Thelogarithmis so inconvenient that even if it were an essentia) part of the physical problem, thereshouldbesomeattemptsto avoidit as muchas possible. Usingit as an approfmation,e'an ifit isa goodapprofmation,as complication. is cllurned(225) for certaînc-ases,is a completely unnecessary It hasbeenclaimed(228) that thecriticismof thelogarithmic functionas
lO3
MAGNETIC WSCOSITY
brfu.king downforlargeaztdsmalltis Vcorrect'(.Wc!), becattse eqn(5.3.25) is onlyusedfor a certaintime-window tzzun <mplc.It is a riskyprocedure, especiany sinceit hasYen shownthat at least iclesin thesamesample: large one method produces two groupsof pazj (230) oneswhichare ferromagnetic andsmalloneswlkichare superparamagnetic. of On top of al1thatj a logarithmmay not even bea true representation a widedistribution,bec-ause an cltezwtzfse explanation saysthat a.n (229) apparentlineardependence on log//almay alsobe caused by magneto'is usedfor staticinteractions the As long as particles. among eqn(5.3.25) the analysis of the data,it b impossible to distinguish between thesetwo efects. . Actually,it is noteven necessary to lookfor an approimation whichis it is possible easierto use than thelogarithm)because to (227)carryout Lstaken theintegrationin eqn(5.3.24) rigorously andualyticallyjif P(m) to be theso-called gammadistribution Jurlctforl, 1
P-Z
(-a e-M'IM 'r
P(S azxtp; =
,
(5.3.2 6)
wherer is the gammaftmctiozb and;) andeo are adjustable parameters. Thisfunctionlooksmore or lesslikeanyotherprobabilityftmctiozb as can beseenfromthethreeexamples plottedin Fig.5.3for theparticularchoice scale,the valueof a doesnot haveto of ;) = 2, 3 and4. Onthis reduced bespedfed,but ït will obviously haveto beîf r ïs givenin real unif.sof exn readilybeplottedfor othervalues dme.Graphs of theseparameters, andthiy all lookqualitativelythe same. lt 1s,therefore: to msle#timate use as anyotherdistribution ftmction)andat lemst no convindng argument hmsever beenpresented for theuse of any otherdistributionfunction:the choiceof whichis alsoquite arbitrary.My diserence diferent between efectjwhichis betterleft probabiityfunctionsksat mosta second-order to bestudiedonlyaftera1.1 thefrst-orderesectshavebeenclnrifled.The
AMSOTROPY ANDrrf> KFFECTS
104 n
fC
%
bq
o
Nv
/
l
t'q &
,-
/?
;e
X
ç;'
/
'
4 / I? j: /
&
I/ '
.
.*
r
.-
x
,
'/e
k
-.
x
.
? ,
N
..
e
. ë y
.s
N
2
q
-. *.
Nu Y%
'h' !; -. -q. -
<--
.. .
-.
-xv
.
.e
.h-
h. k
($
c
4
s/ro
5
FltI. 5.3. The gxmmadistributionfuncdonof eqn (5.3.26) plottedfor andp = 4 (dotted ;) = 2 (6111 curve), p = 3 (dashed curve). curve) distribution of enerv barriers, iasteadof tkedistribution ofrelavxdon tima usedhere. For this rx-eetheintqgration cazmotbenltrrled out analytically as is done here. Wheneqn(5.3.26) kssubstitutein eqn(5.3.24) andtheintegratioa is carriedout, theresultks same functionof eqn(5.3.24) was ugM(231) for a
Mr(t )
.
2
..t plk
(j
Mr(0) P@)rc
(y.)
xp a
c
(5.3-27)
whereKp ksthe modïedBèssel functionof thethird lrind. TV f'unctlon Lswell-desned, its properties havebeeninvatigatedfor anyrangeof the parxmeters, andzPKp(z4 hasno sinalarities.Therefore, all sortsof e.xperimental datamaybesttedto this function,aadno separate treatment is needed for largeor [email protected],h a Ettingshould determine t'hetwo parameters,p anda, of the fanctionP of eqn (5.3.26). Theirvallzes then determiae the two pazameters whichare mostsignifnxmt for any physici problem t'hatizwolves Oneof themis the man aayldndof probabilities. nalne,whicbia the caseof eqn(5.3.26) is givenby m =
(5.3.28)
lrb ,
andtheotherLsthercrïcxez,whichin thiscaseis 0.2 =
mj
.
(5.3.29)
TM STONER-WOMFARZH MODBL
105
This importantphysioalinfozmation aboutthe pazticularsystemunder studyis justlœtif eqn(5.3.25) is used. Thepœsibiiitof usingthe gamma distributionfunctionhmssomehow beenignored, andig noteven mentioned in the mostrecentreview(225) of dferentmodels. They(2251 others(232) and insist on choosing some other out the integratioa numerically. Andeven for casesin P('r),and whicxlogtt/a) turnsout to beinadequate, they(225) andothers(228) sugthusconserving theinconvenient and gestusinga Jmcerseriesin loglval, non-physical siagalarlty [email protected] havebeen reviewed in (227). Thereha.sbeenan attempt (233) to plot one universal cuzvefor the decay of the magnetization measured for the same sample at diferenttemperaturœ T. However, even forthat purpose, it was suggested that thedatabeplottedmsa bnction of (T/Tc) wMleR is clear 1:1(Va), that any fundionof that parameterksalsoa Iunction of teTlvo- lt ceems that this 5e1d theobsession with loguthmsis over. crnot advance befoze 5.4 The Stoner-WohlfarthModel Whe,n a fœromagneticpazticleis lazgeenough, allthekime-eedsdœcribed in section5.2are neglisbly small-Nevertheless: suchparticlesmaystill be smallenough for the exchaage spinstightlyparalldto enerr to holda11 eachother,andnot allowthe space-dependence ofthemaaetizationwhich entersonlyat a largerparticlesize.ln tlds =e, a.sin the case studiedin sedion5.%tAeexcxange enerr is a constant,and de not enterthe Thereare then onlythe anisotropyenergyof the energymlnimizations. particleandthe interactionwith the appBed Eeldto beconsidered. It is thenmssibleto use thesame enerr relation a.sin eqn (5.2.13) to solve for the hystaresis curve of thesesvblebut smatl ferromagnetic particlœ.Suciz a calczzlation is knx msthe Stoner-Wohlfavth modet Actually,the originalstudy(2311 of StonerandWohlfxrihassumed a shapeanisotropswhick .111bedMnedin section6.1,andnot the unip.vlxl, crystuinexniuropy as in eqn(5Q.13). Howeverj the mathematics is the same, aadthksmodelwas alsousedlaterfor the cxse of this anisotropy. Moreover, acalculation based on thismodel k beiagwidelyusedà) measure the erpsïilineanisotropy, as mendoned in sectlon 5.1.6. 'ne mm-n mssumpdon of StoncaadWoidarthis that the material is madeup of rathersmallparticles, whichaz'esuëdeùtly separated from elmlkotherso thatinteractions between themare negYbleIfthe magnetic Eeld,H, is appliedat an angleI to theeasyazsof thennia'dalxnlsotropy of the particle,themagnetization vectorwill rotate to a.naagle$ from the Eelddiredion,whichmeansthat the maaetizationvill beat an angle 4- e fromthe easyaHs.Theenergyof thissystemis thesame msix eqn with thechange of the anglœintothe onœ deînedhere,nnmely (5.2.13)7 17= A'zk'sin2(4 0)- /zJ./cosy,
(5.4.30)
l06
Ar TTMRBEFECTS ANISOTROPY
whereF is thevolume, aadwheethemaaeticmomeat(bof thepartide by MsV,as was later donein seGon5.2as well. may lx replaced Stoner andWohlfaztk preferreto usea diferentdïdnitonofthee.ne+ zero, aadreplRed sx bythecosine of thedoublengle.Theyworked with ' thereduced energy, s n = zAtF + const=
cos(2(4 8)) à,cos/j -
-
4
whce
-
MsF. 2A%
h=
(5.4.31)
(5.4.32)
valuu of0 aadàotbemaRelization Forgkven will choosethe augle $whic.b mînstnl'zes this enœrl n=dy the solutionof 1 ...3.8 = + ?zsin $ = 0, t9/ gsin(2(4#)) -
(5-4-33)
provided that thesolutionrepreseats an energy minîmum andnot a maf'as m=. Thisconditicn c.aabee-xpressed = 8))+ Acos/> o. :42 cos(2(4 -
(5.4.34)
Be auseof the muld-valued trigonome'cfunctions, has eqn(5.4.33) always more thaaone solution for a tven?& aud9,andit can happenthat H orderto more thanone of tlve xlutionsrepresenian energy minimum. obtaina uniquesolution., it is necessazyto specify, aadfollow,thehistoryof tàevalueof h for e,ae,h 8.A Klutionwlzic,h starts1oma particularbranch c=not bejustalloweto jumpintoanoier brach. TheJump mustbe at a feld valueat whiG thereis no enerr bnrrierbetween thesebrancke. Tkksimportan.tfeatureis thebasisof thehysteruiswhichis alwayspart ofmMnetism,aadin orderto see howit worksit helpsto lookflrst at the trivial case8 = 0.In thiscaseeqns(5.4.33) and(5.4.34) a2e
(h+ cos/) sin/ =
0 and
+ Acos/> 0. cos(24)
(5.4.35)
Onesoladonof the ârsthalfis cos$ = -h, whiexLsa validsoludonif hnlf. '7%l'sxlution rep=ents an the second 1:1< 1, but it do%not A4161 andhasno physiœl sigGczmce. Theothersolution Ls energymcdrn'um sin4 = % axld 1 + ?zcos 4 > 0.
(5.4.36)
Thecombhation mpltnqthat it is necessary to use $ = 0 for h > -1, aad = zr for à, < 1. $
TIœ STONER-WOIKEAETH MODEL
107
It is thuss-n that the Klutionis uniqueif 1?zI > 1, but in there#on 0 and4 = 'r az'evalidenergyminima. At thispointit is necessary to introduce the âe2d Mstory.If we siart byapplyinga large positiveltt thenreduce thefeld to zero, andhcreaseit in theopposite direction,thephysical systemremains on thebranch ofthesolution4 = 0till bccomes unstable, and thefeld h = -1 isreached. At thisâeldthesolution the systemmustjumpto theotherbrancb, = Note x. ia particular that 4 to eqn(5.4.31) according thereduced enerain tMscJueisn = -1-h,cos44 Onceh pa%ses zero, andbecomes even slightlynegadve; thestate4 = 0haps a higherenerr thanthat with $ = x. However, themaretizationemmnot it is in a rnin-lmtlmenera justjumpinto thelower-enerastate,because Aute, whichmp-xnsthat thereis an energybarriertllat holdsit there.TEe situauon is m'z'nilar to theenera displayed in Fig.5.1.Thesystemis just stuckin the b-lrher-enerrstate till the feld reaches thevalueh = -I, at whic,h thebnarryris removed anda Jump to a lower-enera statebecomes possible. A similar,but reversed, appliœto startingFoma large argumeat in whichr-qmetheotherbrancb tke negative A,A is heldtill thefeld reaches m'moarto the valuelt = 1. Thewholehysteresis curve isthen qnalitatively l'lmitingcmwe plottedia ng. 1.1, audthe coercivitymsdefnedthereis for the reduced feld h = 1, whichmexns Hc = 2KïfMs according to mn ' < 1 both4 = 1à1
(5.4.32) .
If 9 # 0, eqn(5.4.33) hasto besolvednnrneriexllyl but the'general behaviour is rathernimilarto tkecxqeof# = 0whichhasjustbeendescribed. Starting1oma lvge positiveGeld,the solutionwhichstartswith $ = 0, ï.e-cos/= 1, curves downwith deceasing values of h,to lowervaluesof to smaller valuo of tlle component of themaaetizationin c09,nn.mely theâeld.dizectiony Mu = Ms=ss. (5.4.37) At tke poiat wkerethis branchstopsto bea minimum,thereis a jump to a second branch,thus displaying sometMng whichlooksmore or less likeFig. 1.1.Obviously, thejumpoccurswheretheleft h=d ddeof eqn changefrom a msnimam paascthroughzezo,maldngthat branch (5.4.34) to a memum.Thecombination of a zero fortMsmuadontogether with givc riseto several reladons between thekritical'values eqn(5-4.33) g2341 ofh'a'ad4 at whichthejurnpoccurs for a #vea9. It maybe interestingto bok azsoat the otherextremecase whi/ doesnot r.n.llfor a numericaleeuation.Tkis caseis 9 = x/2,ï,e,a îeld perpendicular to theexsyafs of theaïsotropy,whichefectively meaM no anisotropy at a11. In thiscœseeqns(5.4.33) and(5.4.34) become
(5.4.38) In tMscase,the solutioncos4 = h, whicbis a validsoluuonif 1à1 < 1, Lh cos4)sin4= -
O and
-
+ h'cos/> 0. cos(24)
alsofulfls the second half of eqn(5.4.38), andis an e.ne.. minimum.It
108
ANISOTROPY Ar 'lqMEEFFECTS
yieldsa magaeœadon pzoportional to thefeld, as ia a pazamagnet, with no hysteroisald with zero coercivity. At h = +1 it changes ovezto the vond soludon of sin/ = 0,wikicllis the saturationof 4 = 0 or 4 = A'. ATA computhg thehysteresis curvesfor eachfeld angle9, Stoneraad Wolllfnvth(234) computedthe a'verage for a randomdistributionof the anglu0tnamelya collection ofpardcleswith a randomdistributionofthe direction oftheireasyaN:%withrespectto thedirection of the applied îeld. Theresultingc'urve is verym-rnilar to the one shown5nFig.1.4.Actually, ctlrv'escouldb'eaualysed in termsof thissimpletheory, maayexpehmental whichAxq beenwidelyusedover the yeats.Evenmagnetization curvu of thin permalloy fl=n obeyapprovirnately the Stoner-Wohlfarth theory, althoughthe physicalmechanism behndit is not clear. Themainadwrtageof thkstheoryLsthat it is suEcieatlym'mple to addsome e-xtzafeaturuto it. li is jmstas easyto rephcethe random distzibution of 9 by someotherdistribution, fvmtre wherever thezeis aa experimental reason to belîeve that the dhetions oî eas'yxws are more likelyto be,a: in the caaeof au atigne; or a partlyaligaed, maoetic tape. Thec%e of a cubk,ïn:tetzd of a no-lx=u.l,aaisotropy hasalx been worked out (235) in detail.In thiscasethereare more branGes ixaaa in the tmlaMal case,whichmakcu,s it sometimamore diEcultto deideinto which branchto jump.But.thesediEculties caa be handled. A r=dom cubic anisokopybesides aa overall uniafal one hasalsobeenIISM(236) ia the studyof themagnetizatloniripplel mentioned ia secdon 5.1.4.Theparallel a'ndperpendlcular susceptibllities discussed in section5.1.6,havealso (161)j this model.Fkrtherdevelopments beencalculatedffrom anda studyofthe fner details(23% caa even stvt to oFera physical intezpretation for the crp/m-mental rœultsaadtheStoner-Wohlfvth between theory. irersv;ce It may sometimes leM to an understanding of the partsneglected in the thers whic,hare the intervtionsbetween Stoner-Wohlfnvkh theparticles andthepossibilityof somes ependence ofthemagnetization wiiin I eachpartide.Hteractionsof certaingoupsof ellipsoids havealsobeen computed for this model. (2381
6 ANOTHERENERGYTERM 6.1 BasicMagnetostatics Besides theenera terms discussed so far,thereis Motherterm whicbhas not beenmeationed yet, acdit iqiMmeto introduce it. Thisterm is tke mannetostaxc whichori#nates 1om theclassical interactions setf-encrgp material it is desczibed by Mamell's amongthe dipolo.Fora continnotta equations,whicllthe rpmzeris mssumed fo be flns&-llar wità, in theform taughtN) undergraduates, even i.f not necessarily Gmiliarwith the part whichis m-t zelevantfor ferromarets.Froma historicalpointof view it is interedngto notethat this enerr term waspart of theHrlltoniau in the earlystudyçtî(39) spinwaves,wMchincluded the anisotropy a: well. Dyson(401 to someoî the approx-imatîons used(39) fortMsterm, oblected but did not htrMuceanz othe, andsincethensomehow eveubody Just gotnsedto leavingout thiseaerr term. Ixtthe meaztime it is justammedfor simplicitythat thema%rialis continuous, leavingfor the ne-x'tchxpterthestudyof a crystalmadeout of discreteatoms(oz Not atl of ll's equationsare use in ions). the presentdiscussion of a Iemmagnek wi't,hno particularzeferenœ to its electricproperties. Oneoftheequations state that
Vx H
=
0,
(6.1.1)
in tàeabsence of anycurrents,or displacement currents.It should l)enoted, thatthisassumption ofzero currentsdoœnotleadto a rœtrictive, hqwever, paedcular case.Gtis customary in the stadyçtîferzomxgnetksm to separate themagnetic azdtreattheâeldH in eqn(6.1.1) feldsinto two categories as separate fromthe appïied JeldproducHby currentsin coiks-As long as thesetdiferent'feldsare properlysuperimpcee, thee is no lossof generality, andGereis nothingwrongwith tEisctmtrenfcnl notation. Themostgeneral solutionofeqn(6.1.1) is wellknown.ThevectorH is a vadientof a scalar,% calledthepotential. Tàe convention is to defne it with a minussign, H = - %U.
Anotherof Maxwell's equations is V. B
=
0)
(6.1.3)
11û
AIVOTHER ENBRGY TEEM
whereB kstàemannetic fnducfïoG defnedia eqn(1.1.2). Se tb.ebookby Browng1) for thederivaïonof theseequations aadfor a z'igorous deinition ofthe vectorsB andE. It shouldonlyl)eemphasized that it is nmong lo writeV - E = 0,as is donein somebooks.Thelatte.ris equivalent t,oeqn onlyif eqn(1.1.3) holdwwhichis not thecase in ferromagaetism. (6.1.3) Thefaztor% invented byBrown(11 will be usedthroughoutthischapter, as a wayof iatrodaction, in orderto mxlr, thetrnnm'tioa pnmie.r for readers whoiave onlyusedtheS1anîtstill now. H the SIunits,now usedin 21 undergraduate tutbooks,its valueLs% = 1, whilein theGaassiaa, cgs units,usedin all theliteratureon magnetism, % = 47r.Moreconversion factorsare listedin section6.4,and1omthereon, for therestofthebook onlyshecgssystemof unitswûl be:RKM . mltly or wroaglstMssystem of unitsis still lx%tlalmostexclusivezy in all theBterature on rnxretisp, eve.nthoughsome unge of SIis strting to creepinto some of the more reent papers.For =ybodywhowantsto studytMssubject thereis no alternative to gettingusedto tEecgsunits. Substituting rd (6.1.2) izteqn(6-1.3), we obl-qin eqns(1.1-2)
V2Uin = CSV. M,
(6.1.4)
whichshouldbevalidinsidethe ferromaoeticbody(orbees).Outside thisbod.y(orthesebodies) M = 0, so that B = E =d the dz'Ferential equationis Vzuout= 0. (6-1-5) It is alsoHown1omundervaduate textbooYthat Maxwell's equations rmuire*at thecomponeat ofH Nmtllelto thesurfaceo andthecompmeat ofB pezpendiculr to thesurface, are continuous on theboundary of two matezials. Theserequiremeats leadto theboutlazycondtioasthat on the surface of theferzomMnet,
Uin= Wut,
OUw- XFout= 'ysM- zl , sz o
'
(6-1.6)
wheren kstheunit normalto the surfu of the ferromagnedc body(or txknmto bepYtivein theoutwarddirecdoa. Besidethae boundbofes), the potentialU is requiredto beregnlav at inMity, wàich al'y conditionsj meaasthat both IrulandIr2VtJl are bounded as v ...+ = Thisregukxrity œsentially meaas thatthe beàaviour of the potentWat a largedistaace *om themagaetized bodiesis thesame as that ofthe potential of a point cltarge,wlticltrxn beexpected if the maaetizationvanishooutsidea cer. , tain fnite volume. Hsteadof the scalarpotentiazy the problemmaybeformulated mually equationwith boundwellbywritingB = V x A audderivinga diferendal for tàe eectorJoterztfttl this formulation A. However, is 1ary coaditions
111
BASICMAGNETOSTATICS
convenient for the problems dismzssed in tMs book,andwill not be used ' hme havebeen Oncethe d'-Ferential equations and boundarycondisions relve aad U is knownfor the wholespace,H eAn be calculated fxom eltn theabeevaluated Theener-?p as mn (6.1.2).
su
=
1
-y
(6-1.7)
M . H dr,
wherethe iategration will is ove,rthe ferromaaetic bodies.ntq equadon 1nthem'Gnume it mnybe beprovedmore rigorously in thenext chapter. takena.athehteradion ofeMhdiio1ewiththe fieldH created bytheothe.r dipoles, witph a factorà beingiatroduced in orderto avoidcountkgmice ? B aadpf B wit,h.Athe interactionof.â mth )
6.1.1 Unjqnenea Themostimportantfeatureof thesediferentialmuadonsaudboundary coadidons is'thattheir solutionis Sznësze. In orderto provethis stat-ent, that thereare two Snctionsof spaœ,Uï andU1,that fulGlall suppose the equations to (6.1.6) aadare IIOGr at l-nfnity.Thenthe (6.1.4) functioaUz= Uz- Ucaadits derivative must be continnous evewhere, iacludingthe sueceson whichthe normalderivatives of Ift aadVaare T2Uz= 0 evezywhere, discontinuoc. Also,acemding to eqn(6.1.4), wbic,h meaas that for an interalion ove,raay arbitraryvolume,
(TUzph2 dr =
A-. 7V /2 (Jzl Vé7j L . ((Ja i rzra : gr =
drzrs (Ja d.q on I
muality is a maaifestation wherethe second of the divergence theorem, aadthe 1% iateral ksover thesurfacesurrounding the chosen, arbitraz'y vo lmme.' It should benote that sucha use ofthedivergence theorem is not allowefor Ukor Ug,because of the discontinuity expressed byeqn (6.1.6), suv?n whic,hreqm-rtas iategzation ove,r bothfacesof eachdiscontinuity ce. Eowever, according to the presentasumptioa,both Uzaadits normal derivative are coniinuous everywhere, aadthe iategratioas over b0thfMes eachosherbecause of the opposite diredionsof n. cance) for theiutegrati6n isnow allowed :Ifthevolumechosen ia eqn(6.1.8) to whilethe regularity teadto infnity, ds increases as ;P conditionrequire to decrease at leastas r- W, and Uzto decre'xse at lemst as r-l, so ouslon that thesurMe integraltendsto zero. Eence, theintagralof(VG)2othewholespacevazishes. Andsincethe integrand is a squarej whichelmnot be negativeanywhere, TUz must vanisheveawheze,. whic,hmeans tkat Uz=const. But a non-zero constantis not reoarat l'nGnlty.Therefore, Ua= 0 everywhere, andUJx Ua. Thereisthusonlyone possible Klutionto thepotentikproblem ofany
ANOTHER BNERGY TERM
it is never geometry aadanydistributionof themagnetization. Therefore, to t;e intermedia.te or to in other Meps; waya nee#ve jusffy aay solution1.oa potentialproblem. If a certainf'unctionis guused,or arrived at by anyothermexnK,it Lqsuëcientto showthat if fuïls thedlFererltlnl œmations andthe bonndaryczmctitons, because if it is a solutionof the problem,it is alwaystlte solutlonof that moblem-.ltshouldbe noted, however, that wbsle a magnethation distribution determiaea uniqueEeld ouîidethefecomaaet,thereverseis nottnze.A measurement ofthefe-ld outsidea ferromaaetic bodyis no1suldeat (239j to determin.e a unîque magnetization distribution that createsthisfeld.
6.1.2 FHdclEzamples Thetheorem aboutthe uniquemess of thesolutionallowsqlzotiag without proof the potentialfor some simplecaae The proofis h substituting eachofthesefunctions in eqns(6.1.4) to (6.1.6)y andcheckng that it %a ' solutionTheMt caseksasphere, wh-e radiusis .E,uniformly mMnetized along thez-diredion.1.nthiscaae,V . M = 0, andia polarcxrdinatesr, #, and equationbecome 4 the diFerential -
1 ,9
1
,')
ta
,?
:2
1
U -f- s'--u'xlp'lt/sin.sv -V :5..ry # :47 (WW/ZT'Z'V r2
.ra
=
0'
(6'1.9)
b0thinsideandoutside thesphere. Akso, in thiscn> = 01&n (V& and
M . xt = M.
=
Mscos8,
(6.1.10)
because Msis theaagnitudeofM- It can beveriîedby substitution that U=
Ms zosex 3 %
'r
if v S R
a /ra RI
jf z k a
(6.1.11)
Mtilk'fles is czmtinuous at v = .E,haatheappropriate discontinueqa(6-1-9)y ktyof thederivative reqeedbysubstftutiag in eqn(6.1.6), aad eqn(6.1.11) is regularat inoity. Therefore, it is thesolutionof thepotentialproblem l'nddeandoutsidea um*lformly magnethed sphere. ln particular, thepotentialinsidethesphere is actually
Ms
(6-1.12)
Uin= 3 % z. thefeld insidethesphere is Substitutlgiu eqn(6.1.2), = Hv. Hzzn
=
0,
Hzîv=
--
Ms . 3%
(6.1.13)
BASICMAGNETOSTATICS
113
lt is, thus,a nnqorrrt feld, wbichis antiparallel to z. Eowever, the zAndin the presentconter direction%nA no partimzlar for a sphere, meaning it onlydenesthe irection of themagnetization. Thereforep tlte internal sphereLsantiparallel Eeld,ina homogeneously magaetized to the magnethation.It shouldbeclearnow why spheriocl particleswere spedfedia theprevious cxapter. Foranyothergeometue, thedirection ofthisintcraal Geldmaynot beparazel to theeasyanisotropyaMs,whichcomplicates the problem studied there. Themaaetœtaticenem of this uniformlymagnethedsphereis obtzuned is a conby snbstituting thisH in eqn(6.1.7). Sincethe integrand staat,theintevationis onlya multplicntion by the volumeof thespheze, S.g'A3. Therefoathemagnetostatic self-enerrçtîa uiformly magnethed s sphere is 27 Eu = -x.!8Msa. (6-1.14) 9 Thesecond exaapleis an infnitefn'rcttlarc'ylinder whichis uniformly magnetized alongthez-ats, wherethec'ylinde.r axisis dvnedmsz. Arln, V . M = 0 evermhere, andin the cylindricalOordsnatœp, 4, andz the diserentlnxl equationis 1 (7 (7 1 02 03 g p Tp+ --5..S2 + taz x I -
-
pV
J /
D-= 0,
(6.1.15)
is whilethenormalis parallelto p, andthenormnlcomponent
M-n
It
rltn
=
(6.1.16)
M: cos$.
be'vr>6-edby subetutionthat thesolutionforthis caseis Ms
U = 2 nNct)s$ x
p
i.fp %.R
.Ea,j p kfp z p
(6.1.17)
wherethistimeR istherxzh-us ofthecylinder.Theintlrnalîeld insidethe cylinderis Ms H=tv= Hujx= Nx'a= (), (6.1.18) a %, whic,h is alsoa uniformîeld, antiparallel to themagnethation vector.The lengthcîtmgz is enera p6r 'uzzïf
tx
=
'm
RzMsz -% 4
(6.1.19)
is znagnetized is If the samecylînder alongthezdirection,eqn(6.1.15) stûlthediferentialequationto besolved,but in theboundary condidon
ANOTMR ENKERGY TEEM
114
of.mn(6.1.6) oneGouldtalrfR M.n leadsto H = 0 andEu = 0..
=
0. Thesolutionis thenU = 0, which '
6.1.3 UïujrmlyM'tzrletile,d Bllipsoid TheMvxmples of a sphereanda cylinderare particalar cmsesof a moze generaltheorem aboutuniformlymagneuzed elpsoids,whicllwmsalready knownto MaxwellIt will bestatedherewithoutproof. Generallyj thefeld l'nm'dc a unlformlymagtetized ferromaaeticbody Lsnof u/form. Eowever, if andonly if thesurface of iàis bodyLsof a second degree, theinteraalEeldksuniform.This theorem is oftenstated ratherthan to snrfxcesofa second msapplyingonlyt,oellipsoidsj degreeo because atl otherMond-degree surfaces exte'ndto infnlty andAmot be real'tvod in pzactice. to indudethe* Stilkthecpsoid is usuallyunderstood . limitiagcxse of an tnf nstecylinder. WhentheCartean coordl'nates are cllœen alongtheyrfncilcl t?.'rcd of theequation of its snrfnreis a general ellipsoid, 12
z2
:2 + (z)+ (,) (-c)1 -
wîth u s b s c.
(6-1.20)
lt maysometimes benecessaoto de6nez, y, andz ia otherdirectionsj but thertozierissuppivWio knowhowto perform therotationofthe:2:6.3 in this owation,andin the'onesthat follow-If thisellipsoid is unifcrzaly rltn bewzittenas magnetized, thefeld insidethe ellipsoid H$a= -N - M = -.'>D ' M,
(6.1.21)
whereboth D andN = >D are tevors. In the partictllarcxo when M is parallelto one of theprindpalaxes of the Gipsoid,bothD andN are ntlmzera, andbothaze Hownby thename demagnetiping jatocs,or sometimedemamt#zatkon Dceptfor theuseof thelettersD and Actors. univttmxl, N, whichis almost(btzt not quite) it is sometimodilcult $o tellmltioltofthoe dema>etizing hctorsis bejngreferred to. lt should also benotedthat thisfeld (A1r.n Hownas thedemagnetiziag feld)is tkepart ceatedby the magnetizatton. lf thereis alsoa,n appliqdfeld, produM bzsomecurrentsin mernal Oils,tkesefeldssqxm'mpose andhaveto l)e sumrned vectodxlly. It shouldrklsxa benotedthat allthis treatmentapplies onlyto the caseof an dlipsoidwhichis uniformlymagaetized, andnot to of the magnetization. anyotherspatialdistzibution Thelmst partoftMstheorem Lsthat thetraceofthetensorD is 1,which alsompmnsthat thetrz- ofN is %. Therefore, theresultsof theforegoing examples for the sphereand the cyMdereAn beobtined Fom simple For a sphereall thedhetions are equivalent, symmetryconsiderations. andthetbrœdemaaetieg factorsmustbeequal. Therefcre, D. = Du= Da= j, because thetraceof the tensor(which ksthe sum of thesethree
BASICMAGNETOSTATICS
l15
is 1. Substituting ia eqa (6.1-21) lpltdKt,othe sltme resultas numbers) in eqn'(6.1.13).7 Simslarly, for an inâniteGliuder,thereis no sxlrlzxvof '
discontkmity alongz, so that D> = 0. 'I'heothertwo factorsshouldbe equalfor a drcularcross-sedion, so that Dx = Dv = 1a,wàicà leMsto the rwœrne reult az in eqn(6.1.18). Substititing in eqn (6.1.7), the magnetostatic self-energy mn (6.1.21) of a llniformlymagneb-rM volumeis 7, is ellipsoid, whose
(6.1-22) It is the shqpetmiaoey tem, whichis somesort of aisotropy energywhichwas mentioned, but not desned, in section5.1.4. Twoparticularrxq- are of spedalinterest,andbotàare elhpsoids for whichtwoaN:%are equal.Oneis thecmsea = b andc > c twhic,h Lsa kiad of egg-shaped It is calleda prolateglhur/ïd.Theotheris shaped partide). more or lessb'kea disk,or rathera tdyingsaucer', aadis the cmsea < b andb = c. It is calledan oblctecAemïtf.Thespàere, c = b = c, is tke Brnn't of botbIf tw'oaxes are equal,the relatedtwo demagnetiegfadors aae the same. Thus,for a prolatesphezoid N. = Nu,andfor an obla* sphearoid N = Nz.ln thecmseof a prolatespàœoid, be eqn(6.1.22) emznl Werdore: b wmttenas
1 1 , - yv lrya r, + .$f: a + .5r wWz zzaA, Su= -V gkNatMx z - a ; x z o jaoum ) z J1= j-;/'(-?$ j (6..,, a 2 AJ.2 = M.2,wlticà is a constautTbisshapeanisotropy because + pz:F + AJ3 .. fozmas tàe Ast-orderuninavixl energyterm h>' the same mathematical anisotropyterm of section5.$.1,even thoughthe physicaloriginsare dferent.A similarexpression obdouslyapplieslo the cmseof theoblate spheroid, andin dthercmsethis shapeMisotropymay eodstbeside.s .a 11nl'' ,m'n.1 or cubicmaaeto e Misotropyterm,discussed in sedion5.1. Moreovem theeasya='K ofthecystnlllneanisotropy termLsnot necessx.mlly parallel, or related ia anyotherway,to theeasyars oftheshapeanisotropy term,andin pedple therecan beaayauglebetw. - them. dismxne-' Theori#nal Stoner-Wohlfarth model, in sedion5-4,aVumed no crystalll'n e anisokopy, anddealtonlywith tàeshapeanisotropy of (2345 ellipsoids. At &st bothprolateandobla* spheroids were considered) but laterextensions mostlyprolatesphezoids, wlzichare (2401 addrerxsed very common in permxneatmagnet ma*rials.Comparing wiG the eqn(6.1.23) 61.*termof eqn(5.4.30) spheroid allthealgebra it is semzthatfor a pzolate ofsection5.4is unchanged, shouldbereplud by but eqn(5.4.32)
h,=
.
(Xz N.)Ms -
(6.1.p,4)
116
TERM ANOTHER RNERGY
tlzoz.yis nlmnappncable TheStoner-Wo%lfx-h for pazticleswhickhave Wth.a cryeltlllneanda shapeesotropy.Formwmple,it llaciven used for a unixvlxlnnlsotropy with botbTfzand.A-2 superimposed on the (241) usnnllyaume thattheeasyA=-Kisihe skape aaisotropy. Suchcalculations same for botkAnsqotropies. If thereis a ceztainanglebetw- thesetwo axej the problem becomœ a little more complicated, but not prohibidvely SO.
The demagneiiziag factorsin a general ellipsoid depend onlyon the of a, bandc. 'nns, two ellipsoids ratiosc/bands/c, andnot on the palues wkichhavethe >me shape, bnt a. dxerentvolume,havethe sameN or D. Analyticexpressions, albeitin termsofexipticintegralw for are lçnown thefunctional fnrmof thedependence (f thedemaaetizing factorsoa the A:va'r2 raêos.Formulaea raphs,andtableswere publishcd by Osborn (242) aadthemmore ubleswere computed witk a more modern computer (2431 J.ntheparticularcaseofa prolatesphezoidj the %pressions for program. the demagnetizing fadorsare composed frommore e-lemen-fundions. Specifcally, by usingthenotation P=
c/l (>1), #=
19- 1 lp,
(6.1.25)
thedemagxetizhg lctors for a prolatespiteroid become Dz=
1
#
. -
1
1
j-(
ln
1 + (' 1- f
-
1
D==
,
1- Dz . 2 -
(6.1.26)
Fora smallf, a powe,r seriœex-pansion of the logarithm ln tkis equation leadsto 1 1 x 1 #- 1â . D. = =- w + X , (6.1.27) Sr- E' k=z x + a s-.
J.ntMsformit is clearthat in thelimit g -> 1,whichksa sphere, Da= j t as condqded in the foregoing. Demagaesn'ngfelds anddemagncdzhg factorsare alsodefned fornonellipsoivbodies.Thesedefnitionswill begivo in section6.3,afterthe introductioa of themagnetic charge. 6-2 OriG of Domxlms Thestageksnow Rt for a demo>tration that it is the maguetostatic selfwhich is magnetic term responsible fœ the esteace of the domains energy of secdon 4.1)or at leasttkat thisenerr term çrelers the stbdivision of a pardcnlxrlysimpleAma ferromaaeticcrystalinto domains. 1choose ple,wkicâalsoproddesa niceexample of one of the methods of solving potentialpzoblems. It is a somewllz.imodl'4ed versionof a N:elcalculation ofan infnitecircalarcylinderwlzic.h is subdivided into two domains,
ORIGDOFDOMMNS
ll7
R >
z
FIG. 6.1. A cross-section of an izdlliteecular cylinde subdivided into two antîparallel domains.
Tbiscylhderisasslxrned to bemagnels'zzazl alongtherows i!zthe cosssectionplotteditt Fig. 6.1,whichmennqthat themagnedzadon vectoris +1 if y > 0, ï.e. 0 K$:; x
Ms= Ma= 0, Mr = AJk x
-1 if y < 0, ï.e.
g'
K $ K 2x
(6.2.28)
pe 4 in cylindricalcoordinates, with () s $ K 2r. Thestep functionrltn beerpressed by its wemHownFourier erpansion , wherey
=
M.
4
= -xMs
x-.*
+ 1)/) sialtzn ,
.aw za o y x=0
(6.2.29)
whîcltmxkM thenorrnxlcommnent(see Fig.6.1) 2 Mn = Mp= Mmcos$ = -Ms .z'
*
sin((2n2)4)sintzn#)(6.2.30) E 2/. + 1 =0 +
+
wllc.:n the productoî t:e cosineandsînefunctions îsconverted into a sum Thesum in this equationrltn now bebrokendown of two sinefunctions. into two sums, one with singtzlz + 2)4) ando=ewith sin(2n4). H the frst sum the summation indexis changed 1omn to n - 1, andia thesecond sum thesummation c-anstat't 9om n = 1, because the tlrm with n = 0 is . zero anyway-Combining into one snm, again 2 M= = -Ms W
S n=1
1 1 + zs - : sj + 1
sin(2n4).
(6.2.31)
118
ANOTRRR ENERGYTEPM
Addingtogetherthe two fzRtions,andsabstitutingin mn (6.1.6), one of the béuadar.v condidons is
oUQ duout ap
-
dp
=
p=a
%u
a.
-8 =
%u s
n sin(2x/l E'=' ' 2 p, + 1)(2a1) (6.2.32) ( a-z -
whereR is tàeradiasof the cylinder.It is therefore naturalto lookfor a solutoaof theform m
V=
Sin(2R/), JRIGIP)
(6.2-33)
a=1
where'ua aze fanctionswhichhaveto bede-rrnined.Notethat bolause of theuaiqueness of the solution,aay g'uv aboutthe fancdonalformis legitimateif it eventually leadsto a Atnctionwhich6.16ls all thediferential' equations andboundary conditions. H the presentcazeV . M = 0 andeqns(6.1.4) and (6.1.5) are botà T2U= 0. Substituting 1om eqn(6.2.33)1 we obtain
v2/
* =
d2
1 tf
E sà(2z#)mp + p y-p *1 -
4x2
= 0. s w&(p)
-
(6.2.34)
Obviously, b0ththe diferentialeqaatonsandthezegulazity at infnit.yare fulfmedby theRnctions = c,vX %a(p)
if p s JL (p/A)2'è
(6-2.35)
if p k R (2/J')2'&
whezee,aare constaats.Moreover, al1thesefunctionsare contiauous at = .& Substituting th'fza in and substituting the latter in eqa p (6.2.33), it is s- that dl the requiremGts av satisfedforthechoice eqn(6.2.32), Gz=
2'ysM4R '
'
(6-2-3 6)
.
+ hjt-bl1) x(2% -
lt hasthusbeenshownthat thepotentialinsidethe cylinderis 5-
-
-
c-
.e. hM-57 sintax/) (a) cr a=l (ca+ 1)(ax 1)
2-/s
-
'
(6-2.3-4
The'tdemagnetizing) feld insidethistwo-domain cylinderis givenbymn andin particularits z-component is (6-1.2),
Ssr.=
-
(VD,.n -ov =
t'y - s'Y# t'g . Pp p -ay Uin
OS/-
(6.2.38)
OWGU OFDOMUS
Substituting U 1omeqn(6.2.37) andperforming the dxcentiations, x...
-
-
4% .M-
='
zr.-,
,:sia((2p. 1)/J g E + (2,, 1)(a,, :.)(s) =1
x
-
(6.2.39)
.
-
Intlzisca-sethereisalsoa p-component, butitdoesnotenterthecalculation ofthe enerr, because it is maldplied by Muwhichis zero. According to unit the magnctostatic length aloag z is in this cat;e eqn(6.1.7) energy pc Su =
1
-g
'
a
M%H.dS =
--
1 2* 2 0
X n
MxEùpdpdh. (6.2.40)
Substituting for Mz fromeqn(6.2.28) audfor Jo 1omeqn (6.2.39), aad over p, g out theiategration su
<=
2*
sg
f '-JPMJ V (2n+ 1)z(zyj j; jc sinltzn1)4):(/) #, ? R=, ,vw
=
-
-
(6.2.41)
with
+1 10 < 4 s Tr
*@)
(6.2-42)
=
-1 if 'mK 4 K 2?. If this inteval is separated into integrationover the regions/ S ';c and leadlngto 4 k 'lrt the integradonis elementars
su - :>.a zMs, s.
80,
E + y)u(asgz a-=1(z,, -
*
=
2.a2.,/'2 * N .l(
>1
l
1
-
(2n 1)2 (2s+ 1)2 -
'
=
:x.RcMsz (6.2.43) g. .
TNereuer shouldnot beso naivemsto j'lrnpto the condusion that all potentialproblems havesuGa nice,aaalyticsolution.Obviously, oaly suche--tKearechosenfor demonstzadon here, butthereare others. Actually, tMscaseof an ininite cnrlinde,r is usedhereonlybecause it %nAthissimple soludon.Theproblemof a :pAeresubdidded in a (orrelativelysimple) but oaly by a more wayslmila.rto Fig. 6.1%xKalsobeeasolvv (2m1, complu tenbniquewhichis beyondthe scopeof this book.At any rate, the importat condusion is obtnsned by comparing tMs resultwith eqn nxmely (6-1.19),
ne tiorn n r2 fa1 uw two cloluaktira.z rk',
gM
1. 4 >
--
(6.2.44)
l20
ANOTHER ENERGY TERM
Notethat tbisresit doesnot depead on R or Ms.Tkerdore, for any fematerial,ofaaysize,tke magnetostatic romagnetic termb rednad energy by subdividing theczysul1.at0 at leasttwo domains. It is not dîocttlt to extendthis calculatîon to more than two domains, *1#andseethat furthersubdivision caa reduce furthertàemenetostadc 'ëhA's e-xample d a c'yMdermay seemto somereaders enerpuAndin ca'use to bea uniquemqse,a qualtaténe but convincing argttment will begive,n ia the next section,showing that tkis cmseis quitegeneral andtkat the ma>etostatice'nergy prdersa subdivkion into domains in any geometry. However) one energy term prefersthjsco ationdoesnot Justbecause necessarily me= that it e>n always haveits way.Thereaze otkerenerr termswhichmttst beconsidered. Asfar as theMisotropyenerr is concprned, thereis no diference bet'weena nm-fnrmmagnetization shou in.Fig.6.1, andthetwo domains because if z is an easyes, so ks-z. The anisotropywill only dictate that z is parallel to a particular mystallographic direction, andis not just withintke cylinderfor eitherthe uniformmagneeationor any dîrection tke maaetizadon in :$.$m% However, domaintheexckange energyin a ferromaRetprefersndgkboursto haveparzlle.lspins,andin Fig. 6.1tkere is a wholesnrfnzte for whic.ktke neipbouring spsms on eachside()fit are antiparallel to eachother.Therefore, ia orderto crcte ths Gmfguradon workhms to bedoneagainstexckange: .andeven a very ro'ughestimation showsthat this 1- of exchange enera is muchlargerthan the gainin themagnetostaiic oftheconfguration ofFir. 6.1, enerr. Thetotd energy if tàken=cc'àlpasêintheforegoing calculation, is largerthanthat of the uniformmagnetization, andthephysical syste,m will pzefethelattercmse.
6.2.1 Dopz/inGcJl Still,it takesonlya slig;t modiGcahon of theforegoing pictureto change tkeargumeat. Tkemôlnpointisthatthemagaetostxuc forcaare 'vezylong ranged. Theycontrolthebehaviour over hrgedâstanccs, auddonot chaage unstcellsksinserted considerably if a distance of severalhundred between whicll ihe two domains ofFig.6-1.lt is verydeerentfromthee-vbxnge, is a ye.zy short-ungeforce.ït skouldbequiteclearfromchaptez's 2 and3 only.It isa ve.ry thatltGects nearest,or maybenext-nearet,neilbours strongforœbetwœn suc,h butit doœnotcxtendto spinswhich nekkbom-s, are much fartheraway.Withsmallangles betw-nneighbouriqg spins,large chauges of the aagleover a dse-q.nce of manyatomsdonot involvea laz'ge rnxn be very uchangeenergyTherefore, thelossin the e-xchange energk muc,h reduced, if thepictureof Fig. 6.1is approfmately mahtained, but a mallis introduced, in whic,h tke directionof the maretizationvector cxanges gradnally, instead of an abmzpt 1om jumpof tke magnetization tkeoretical treatmentwill be#ve,n in tke $ = 0 to $ = x. A more complete nex'tchapter,but in the meantime t:e maiafeaturescau beunderstood
ORIGINOFDOMMNS
froma simple,semi-quantitative estimation. Whenthe spinoperatorsare approtmated by classical vectol's,as in chapter2, the exchange Andif J ksnon-zero eneraris as in eqn(2.2.25). between aearestneighbours only,
zu =
l
-)7 Jysï sj =z -lsz nekghbours J-I cos$.,t, .
U
(6.2.45)
where4qjLsthe anglebetween S2andSs A one-dimensional structureis considered, in whichplanes with n spinsin eachinteractwith neighbouring planes. Theinteractionof planef is takenonlywith that at ï + 1 andnot with the otherneighbour at f - 1, anda factor2 is introduced instead,ms in the transitionto eqn(2.2.26). Thenthe energylossfzomthe statein whicha1lspinsare alignedis DC.=
1
sin2 $z,grs JS2P.Vjh,;, ? = 4J52a (1 cost/yyyj 2J5'2aV V i i ç i -
(6.2.46)
for smallangles. Let this calculation be appliednow to the case where the directionof the spinschanges from 4 = 0 to zr ove,rN suchplanes. Theanglechange between planesneednot bethesamefor all planes, and a betterscheme will begivenin the next chapter,but for simplidtythis anglef,stakenhereto bethesame. It meansthat in orderto obtaina total = of.lr aherN suchangles, change 4$,.j 'm/Nandthe enera lossis r
2
E (p')
t'sex= Jszn
=
J52ys.m2 . x
(6.2.47)
Theexchange thanthat enerr lossover thiswallis, thus,N timessmazler of one jumpfrom$ = Oto $ = A'. Ob
122
ANOTEER ENERGY TERM
exchaage andaaisotropy ener#es. Theinedtablecondusion fromall thesesemi-qualitative is arguments that none of thesethreeeneraterms (eexchange, Ysotzopyandmagneen.nbenegleted. Siacedomes are aa experimental factin suftcstatic) Nciently' calculation of a bulk largecrystals(a xction 4.1), reaDsdc any all thesethrœeneN terms.Thefoundatlons of ferromagnet mustcontzain sucha theorywill lx givem in n%xpter 7.Eowever, llefoz.e goingintomathematicaldetns3n, it is veryhstructiveto continue a little more with the semi-qualitative discussion aadœtablish more dearlythe pltysialpkcture ofa ferromagnet, andthenatureof theforcesgoverning its behaviour. 6.2.2 Longcld zS%vt Rqnge Everyundergraduate nowadays studiœMzxwell's equations, aadmostof themc-qznquote thefact tkat the electricandmaaetic forcesare IOV is c with distanceas l/r, whic,h rangegbecusethe potentialdecreas% slowdecrease. Howeve,theere are relativelyfew,even amongprofesdonals workngon thetheoryofmagnetism, whoactuallytry to underst=dwhat tMsstatementmeans. Consider thesimplecaseof a uniformlymagnetized empsoid. Thefeld whichis meuuredat a pointhsidethts Gpsoidis #venbyeqn(6-1.21), whereD is determlned by the mtïo:of its axe. Theabsolu*sizedoc not enter.Suppose that this ellipsoidis iHated in sucha way that its Sizeincease:,but its shapeis heldthe same, ï.e-its axialratiosare kept Gmstant-Thenthefeld is still theMme msit waz for thesmallellipsoid, whichis a functionof theaxialratiosonly.If this indationconGues,even in thelimit ofthe dlipsoidextending to l-ndnitsthedemagnetMng Eeldin it still depends on theGa.1ratiosof theanrsace, whichis now aa infnite distaace raqge''in thepruent contextmeaus that away-Thus,the Glong thisrangeactuallyextends all thewayto l'n6osty. Theobvious conclusion is thn.tin f=omagnetismthereis no physical meaning to the limit of an :'ncnx' te cryst/ mitho'u.t c snrfaœ. lt 5snotjust thûtenbnl' calpzoblem thatin6nitecrystalseMnotbemadein renlity.This technicality doesnot causeany docnzltyin o*r feldsof physiœ, where theassumpdon of inonlty can bel-q.lrenas the limit of a crysti which is largecompazed with some sort of a meuuze for the propertiesunder discussion. 1nthis =e, even in thetkeoretical limit ofthecustalactually tending.to -'nGnl-t, the shane of its suece still determineat lemstpart of themagnetostatic Oera term, andsurXe eectscannotbeavoided. Therefore, all calcuhtions ofthetypesdecribedin chapters 3 aad4,whic,h iaore thesurfReby sayingthat theczystaliq infnite,introduce an error. This error wouldnot be importltntif thewholemagnetostatic energy.-. teermwmsz'athe.r small.But it is not-It tsonlytoo oftenpoiatedout that theuehltngeenergydensçty is ordersof magnitude lrger thaathemagnetostaticemergy denray.However, thephydcalsystmmis governed bythe
ORIGNOFDOMUS
123
tofd.lenera andnot byits density. Assvtedseveral timesin theforegoing, theexeangeforcehasa very shortrange.It actsessentially onlybetween neighbouring atoms,so that its eFective rangeLsof the orderof the unit cellof thecrjrstal. Thereforw thetotalexchange energyLsoftheorderofitxs densityintegrated ovezthe volume ofa uztitcell,Themagnetostatic energy densityis small,but havinga longrange,it is integrated over the whole volumeofthecrystal.Fora suldentlylargecrystal,whichcontainsvery manynnn'tcells,the total magnetostatic energyis muchlargerthanthe total exchange It is not Onthe contre,the exchange enera. negli#ble. properties, as in the insideof thedoenera controlsonlythemicroscopic mainwall,butit isthemaaetostaticenergy termwhichmostlydetermines the structureof themagnetization distributionover mostofthe crystal. lt mustbeemphasized againthat a largeerror is introduced not oniy whenthemagnetostatic altogetherr msit is ia mostof energyLsneglected the calculations described in chaptezs 3 an.d4. Sometimes a certainapproimationfor thedipoleinteraction(76, Lsincluded in the spinwave 2.45) theoryof Ms ns. temperature.Andthereview(671 of the renormnlsg-ation citesseveral casesintowhichsuchinteractions havebeen groupcalculations introduced. However, aJJthesecasesmssumean infnite crystalwithouta surface, whichis inadequate. In.ferromagnetism thereis alwaysa surface, evenfor an in6n'lte cnrstal, andit is thesuzface whichis Vsponsible for the ' subdivision into domains. A11the calculations in this sectionwere for cmsesin whichthe only contribution to the maaetostaticenergyterm is 6omthe discontinuity of the derimtive(which depends onlyon the shapeof the surface) because a11 the mvnmples were thosento besuchthat V . M = 0. lf this term is not zero, the solutionofeqn (6.1.4) may bevery diFerenth'omthe cases in thissection,as will befurtherdiscussed in thenext section.Eowever, it c'analreadybestatedherethat although theseotherc'aresex-ist,theyare much1- cornrnonin reallife thxn thosefor whic,h V - M = 0. Thezeason isthat themaintendency ofthemaaetostaticenergy term.isto subdivide largecrystals into domaizts) in eachofwhichV . M = 0. Andeven whenit is not soin the1:m11st onlya smallpartofthespinsare in thewalls,so that theyhavea smallesedon theoverallproperties ofthe crystal.Therefore) a theorywhichintroduces the dipolarinteractionbutleaves out thesurhce treatsa lessimportantterm whileneglectigthemore importantone. However, omittingthis largestenergytezmis not alwaysmsbadas it the magnetostatic may sound..paradofcally) energyterm may oftenbe neglected beœ'tise it is thelargestenergyterm. Thepointis that domn.-tns are arranged to minirnizmthemagnetostatic energy,beingthelargestterm, withvery littleefed fromtheexckange, audonlya minormodifcation by thenmssotropy. Forlargecrystals one mayevendoquitew6.11g246, byne247) altogether. But at theminimum,Cu usuallyreMhes glectingtheexchange a smallvalue, whichmayoftentuz:aout to bemuchsmallerthantheother
124
ANOTHER ENRRGY TERM
M8, M9, Zsoi * enerprtezms;so muchso that it Lsofœnpossible 1M6, theemerrminîmization bya convnradon for whickE'M= 0. approlnmate But this ene-rris onlysmallat the mimjmumaada deviation6om tkat confguratior cAn costa largeamountof maguetœtatfc enera.Therefore, whenciculatingtheenera of the com'etmagnetizadon Eu distzibution, c pricd, a wrong magnetizamayoen. benegleco,but if it is neglected tion distributioa is reached, wàic,h hasa vezylargeEu term. of thisproperty)andbecause MC.II Because domainis homogeneously magndigM,it is ofl-n possible to getawaywithouttheEu term andwith that thewholeczystalis homogeneously thewrongassnmpdon maRetized. Asexplained ilï section4.1,it is posdbleto calculate as if the doMs(T) mnlnqdidnot esq andit worW.But one mustalwaysbearin mindthat it iswrongin prindplez aadthat it worksonlywithsometrickqandonlyfor Emitedapplications. lt is drgerousgroundto stepon, aadit ksneessary pxnlncase for comNtibilitywith theast,oremembe,r this fad andcikcrlc sumpdon of no domm-nK. Thksaumption can never betakenfor gr=ted, andone shouldcertainlynot try to extendit beyond itsnaturalrlmits of validity,wherea dllenmt thKry is required. Forevxrnple, addinga nonthistheoz'y, seesection4.6.Thisapproach has zero maoeticZelddestroys never bœnused for the cakulatiosoî crlticalecponents, andit is not clear at all whether neglctingthe domainstructuredoesor doesnot havea largeefec'ton 't'àese Yculationsfor any speec case. Thisdistinctionbetween a Iong-range anda short-rimge forceksalready suEcient to rlolva (atleastqualitatively) thediëcultywhichI haveldt 1'-Theovnhnnge forcein ironis of theorderof 106Oe,but openin cxapte,r it takc an application of amextrafdd of aboutof 103Oeto wipeout the domains; aadeven a reallynegligible îeld of 1OerAn makea large(11fference to the domainstructure.Wlly cannotthe$06Oeîeld accompish whata mucksmaller f e1dc=? Theausweris that tNeverylvge exn%ange qeldhasa ve,zyshortrangeandonlyenforces smallangluYtw-n ndghbouringspins-lt is not capable of preventing subdivisions into domains ove.r a longrauge.Whena magnetîc feld is applied,it doesncf dowork agalnstcxchange forces.It worksagest magaetostatic forcestwhic.h are of thisorderof 103Oein Fe)in rnrnoviag domes. Andit or rearransng clm Rcomplish it because it is applied over tke wkole andnot only crystak between neighbours. It shoaldbe espvinllynotedthat theargument abouta longanda shortrangeapplieonly$olvge crystals, whicheontaina suëcientlylarge number ofnm'tcells.In smallparticlethe longrangeof Eu dou not make a dferoœ, because tNeintegrationis only cvriedoMc the Bmsted size of the cr-ystal. In spiteof the elnz-ms of some tkeorists that theyomit the magnetostatic the crystalis verylargealldits surface enerr term because isfar away, it aduallyworWfor theopposïte extreme. lt is in swzcll particles that thee-xchange is suëdentlystrongto enforce a uniform maNetization
MAGNETIC CHARGB
..
over thewholecrystaà althoughauisotropy alsoplaysa role,as shownin chapte.r 5.lf sucha particleis a spitere, themagnetostatic enerr doesnot ente.rat all. If it is an elongated ellipsoid,themagnetostatic eaerr plays only therole of a shapeanisotropy,whichaddsto the other anisotropy terms.Ja dther cmse,the e-xnhxnge forcein thesesmallpazticles is too strongto allowsubdivision into domains, or other features of the lazge particle.A tableof typicalnnmerical mluesof theseenergytermsca.n be
lt is, thus,in thesmall,not thelarge,crystaks found,for examplq in (251). where one should lookfor a possible validit.y of thespinwa=theoryandthe criticale-xponeats. But then,superimposhg themssnmption of a.nl-nmm-te sample cannotbea verygoodapprovimation for ver.gsmaz) particles. Suëd%tlys'mallpartkle are, thereforev homogeneously ma>etized in z&o applicd feld. 'Pheyare thencatledin theliteratureMngle-domaén particle.Calculatlgtheenc't sizeat wîich a multi-domain particleturns It.O bebzg a single-domlu'n one is not a simple problem, andwi11 befurther discussed în a later Gapter.At thissta& it will onlybe remarked that semi-qualitative estimations of the enerr of the domninK and the waz betweea them,as doneinthissectioaj are all rightforratherlargeparticla, forwhichthe accuracyis lessimportaat.Nearthe traasition,theenergy bnln.nce îs ratherdelicate,aAda higheraccuracyis needed, eve.nthough in the 1940s this point was ignoredin esl-mations published and195Os. calculation Thefrst rigoroms considered a spheresliced into planes, (252) as rourhlydonein sedion6.2.1here,butcalculated uactly theexchange: nm'sotropy, azldmaretostaticenerges for thnr.n glice.lt rpnrledthevalue of 37nm for the radius%lowwhic.ha cobaltohereis a singledomain, andabove whichit shoulddividetto'two domains. Bve,nthiscalculatîon tcrnedout to beiaaccurate, because it was laterfound(253) that thetotal by meng tNedomains cuzved, enerorin a spherecan befurtherreduœd witha rlindricalsymmetrpThismodifcation reduced thelcriticalradius' for beinga singledomainto 34n= in cobalt. 6.3. Magnetic Chnrge Undergraduate textbooks givea formalsoluuon to thedifereptixl equations andboundavconditio'ns in eqns(6.1.4)-(6.1.6), whichca,nbe etten in the form
rJ(r)= .:*4x
-
V' - :u(r') dm'+ lr - r/ I
n
.
M%'% î l ds? - v'
lr
l
'
(6.3.48)
whereV' containsderivatives with respectto tîe components of rJ, the frst integri is over the fromagneticbodies,thesecond integralis over theirsueces,and:rt is theoutwardnormal. ia thesensethat mz rxn forget Thissolutiondoesnot solvetheproblem aboutthe df erentialequations. lt is Ch;Geasierto solvethe diferemtial
126
ANOTEER ENERGY TERM
muations,as in the evnmples Xvenin theprevioussection,thamtocarzy out theineradons in thisequadom As a nicezlustration) thereader may for a homogeneusly tzy to obtainthe solutionofeqn(6.1.11) maaetie s'phere by carryingout tke in+grations ia mn (6.3.4E). It is certainlypossibleto do it, because tke two mressioc are rnxthematically idotical. But theîntegrationis denitelynot trlvial.Actually,more ofteatkannotl aualyticintevationfromtkis solutionis rathc mzmbersome andnot emsy to perform,unlesssometraasformation is frst appliedto ât the particular cmseIt isnot very'IK-GIIfor mlmerical integration eitheer, exceptfor certain spedalcmses,because mostof the contribution to theintegr=dis usuazly 1omthevidnity of the singulim-ty at F = r, whereit is not emsy to atte an adequate is aa integration acccas'y.Msq tkefrst term in eqn(6.3.V) over thevolume, whichis a tkree-fold întegration. In orderto calttnlxte the in eqn(6.1.2), andtkensubstituted energy,thew<mlthM to besubstitutM in eqn(6.1.7), witic.h involvœ anoier tkree-fold intevation.lt mayiange in the near future:butrightnow a six-foldnumerkalintegration to anydecentaccuracy is beyond tke ca-bility of M-Ktingcomputers) even tkougll htegrationsof thissort (254) Mn6bœncvriedout. ,tlme six-fold Tkis formxlsolutionis more uspfnlwhe.n$hesrst integralvanishes, andthereis onlythe second one with a twmfoldintegration. Theenergy calculatîon theninvolvœ onlya four-fold integratp andif one or t'woofthese intecationseltn beexm-ed outxnnlytirltllyjtkenumerical problem becomes quîtemxnageable. But the mœt importaatapplication of eqn (6.3.48) is buedon its qnalitaténe propertiœ:whichallowan insightinto what the magnetostatic Mthoutactuallydoingauycalculations. Thîs enerr prefers possibilityof udngphyïcal ttuition is dueto the formalIorrnof tke integrals ia eqn(6.3.48), wlkic.à contain1/r.Thishctoralsoappearsîn the electrostatic potentialof a point chcrge, whichallowsthellrnt integralto beintezweted of a rolwme as the potentialdueto a spatialdistzibutîon charge, with a chargedensity-V . M. Sl-ma-larly, tke sexndintegralcan beccsideredmsif it was Gpressîng the potentialdueto a suviat.e cllorge wbosesurflmedensity is M .n. Ofcourse,thesecàarges donot Hst. Ma.ny boobek-plaân thatthe diFerence betwenelectrostatic andmaaetostadcs is that thereis no ma>eticchrgeoandthat theseintegralsikaveonlya mathematical anddonot expressanypkydc.al meaningj reality.However, it is neve.rnecessvyfor any nseW mathematical tool to kavea physical meaning. Thereis no mnl physical ckargeo but tke mathematical identîty lxztwœn thœeintegrals makes andthosewhic.à involvea charge ît possible to usethe Howledgeabout a realcbnzge to guess tke quazit,ative propehies of the magnetostatic potential. pxzth Ia partlcular, we knowthat sirnl-lar càakrges zepel other-Therdorej a volume Otribution of sucha chvger-qJnbesusteed onlyif it is held by otherforces.Lelt to itself,the chargœanmkerein the volumewill repelepm.b othe as far as they eztn, wbichis a11the way to the surface.
CRARGE MAGNETIC ++++
-
+ +
-
+
-
+ +
-
127 ++--
l tt --++
(a.)
(b)
(c)
FIG.6.2. Sckematic represotationofthesurface charge in a particlemagnetized alongthelongandtheshorta'dslandtheMme particlesubdi,' videdinto two antiparaltel donosns.
Therefore, themaaetostaticenera termby i/elf will prde to avoidthe volumecharge altogether andcreateonlya domainstrudurewith a chnrge it can onlycome on theoutersurface. If thereis ny volnmechargeat a11, certaintrpesof out ofa compromise withanother term, within enera e-g. the wallbetween domes.Because the maaetostaticterm is usuallythe largœtforcein secientlylargec , andmostof the magnetization structureis ananged to ft th%tarm, a volumecharge will baardly evu be However, encountered. it mustalways bebon'rpin mindthat if a stzucture whichinvolves a volumec'harge îs introduced into a (wtain calnnlxtionj themaaetostadc cAarge is sof negb-rible. It is energydueto this volume cftenconvenient to introduce sucha structu'reia œrtainproblems, andit is uezytemptingthento forgetaboutthevolumecharge andarxsumethat it probablydoœnot havea largeeect. It i%therefore, to wart necessary it Lsnot age thatif thevolnmeGargedoœnot enter othercalculations, because it is negli#bly small,but because it is Ntremely large.It is only to a small byavoid-lng ît that themagnetœtatic emeracan beminimized value,andif thiscàaxge is allowed to creepîn,Su e-xn increase enormously. A slmilnr argttment applies to thesurface charge as well. Consider, for evnmple, theexw-q shown ia Fig.6.2.Tbesingle-domain structurein (a)hms theO'rne rhltege is spreG densitas theone in (b).But in (a)thischarge overalargerareathan in (b).nerefore,theenera of thecase(b)issmatler thanthat of case(a).ForGpsoids,this rctllt can alsobeobtainedfrom
128
ANOTHER ENERGY TERM
theHown analydcsolution,according to whichthe demagnetizing Mtor is smallest alongthelongest aHs,and tendsng to zero in thelimit of an infnitecylinder.Howevez, the concluhon fromFig. 6.2is easierto see,and it alsoapplies to otberbodies, andnot onlyto ellipsoids. J.ncase(c)thetotal surhcecurge isthe sxmeas in cmse(b).However, thesubdivision into two domm-ns malces some of thenegafvecharge from thebottomsudace move to thetop, replaclgpart of thepositivecharge attract p-qmb therethatis movedto thebottom.Since unlikecharles oiher, andits eaera ls smallerthanthatof thestructurein (c)is morefavourable) thestrudurein (b).Again,thisconclusion obviously appliœto anyshape of themagnetic pazticle, andnotonlyto theeltipsoid shownseematically in Fig. 6.2.Akso, thesnmeargument appliesto furthersubdivision intomorc thantwodomains. It maythusbeconcluded tkatthemagnetostatic energy term prcfersa domain covgurationover a uniformmagnetizathon for any ferromagnetic body,and tàat it wouldratherconeue th'-qsubdividon indefnitely, unlesstopped bythecompetitionwith theotherenera terms. Therefore, a uniformmaaetizatione.stn only est eitherin suEdently smallparticlc,or in a ctystalto whicha suEciently Iargemagnetic feld is applied. A largemagnedc feld can wipeout thedomains androtatathe ' mavetizadonto it,sown direction. Beforecondudhg thisdiscusdon of eqn(6.3.V) it. will beremarked for thesakeofcompleteness thatthisformalsolutionis nlnnusel fortwoother eventhoughtheseare usuallyEsted in undergraduate tebooks. purposes, Oneksthat dn (6.3.48) ksan pvlKteace tkeorem. It proves t'hattkereis at leastone solutioù to theset of eqns(6.1.4) to (6.1.6), thuscompleting tke proofgivenin section6.1that'iltiqRt ofequationscannotkavemorc than one solutiomThesecond remarkis that eqn(6-3.48) provesthe principle of sneoosition.Sinceeverything is linearin thoseintegrals,it is always posdbleto calculate separately, even by dif-nt methods, thepoteltial creatdby diferentpartsof the charge,andthenaddthemtogethen 6.3.1 Gene, Dernagnedzctïon A cmseof spedalpracticalinterestts a homogeneously magnetized body. Thedomaincovgurationin zero, or small,appnHfeld is ver.ycomplicted andvezyrliecult to reproduce. It variesfzomone umpleto another, and even for the same Kstmple it depends on the Mstoc of the appliedEeld Fig. 4.1)In orderto ezzibrate meuurements,one must stxaz't with (see somet%lng whicheztn berelatedto the matezial, andnot to any spexc sample. Thebestcaseis a samplein a suldentlylargefeld,for whichone can at leasthopethatthemagnetization is heldparatlel parallel) (orxlmost fo tke direction oftlzefeldthroughout Gewholeumple-However, thefeld is not thesameas thefeldout,sideo insidea ferromagnet andthed'-Ference thedema>etizing' A (called feld)is a Gnctionof theshn6of thesample. of thisdemagnetization mustbekubtracted r=onableestimate in orderto
MAGNEXCCHARGE
l29
removetheefectsof theparticular sample andrenrrbtheintrinsicproperties ()f the matedal.Therefore, the de6nition of this feld, givenonlyfor an
ellipsoid in the previoussection,is extended hereto othe.rbodia. la a uniformlymagnetized bodygV . M = 0, and the ftrs'tintegral izteqn(6.3.48) mnishes.Substituting thesecond term in eqn(6.1.2), the feld inside thé ferromagnetic materiaz is (demaaetizing)
s
=
-
7Jxv (M j .
.n
:$s jv s g
'
)
,
(6.3.49)
was lmlcen out of the inteaal,because it is assumed to be a constcnt. Forthesamereason, M can bemovedto theleft cî the digerentiations,so thateqn(6.3.49) essentially meansthat tuz!hcomponent of E Lsa Iinecrhmction of thecomponents, M., Mv,andMz-Also,mn (6.1.:) is in this case, 1 Sv = -yM . Hd'z; (6.3.50)
whereM
whereagaintheconstantM is movedin lont of the integral.Thesetwo m
8v = -7 2
'
s . k5.f2Zr -l'td'p + Alax%1'x + ,), kz (x5 ,
. .
(6.3.51)
whereNzzetc.are constantsthat depend onlyon theshape of the partidelt isalwayspossible to rotatetheazxesso that tlds quadratic formbecomes the same as eqn (6.1.22). The htter is, thus,the most generalfo= of the ma>ctostaticenergyof a 'unvoonly rrzognefz'zed ferromagnetic body,' whichappliesto auyshape,andnot onlyto ellipsoidsMorKver,by using theproperiie of the functionl/s it exn readizy beshown(1,255) that i'a thediagonnll'',M formof eqn(6.1.22) all threecomponents N=,Nv andNz are non-negative numbers, whosesum (whîch isthetraceofthe tensor.N)is as far msthe ener&is concerned, magnetized any unifozmly %. Therefore, ferromagnedc bodybehavein thesamewayas an ellipsoid whichhasthe Thisstatementis Hownas the Brown-Morrish theozem. samevolume. It shouldbeparticuhrlynotedthat this theorem do%not even reqlzire a simplyeonnected body,andappliu evento a bodythat contes ccdtied. Ofcouzse,smmetzyconsiderations maybeusedjustas in thecase of an factorsdlipsoid.Porexample, a cube musthavelhree eqnaldemagnething thedemagnetizing lctor ofa cubeis thesameasthatof a sphea.e Therefore, whichhasthesamevolume, if that cubeis nnl'formlymagnetized. Eoweverv sucha statementhmsnothingto dowith the quetioa of whethera cube can be brought to thisstate of beinguniformlymagnetlzed, ahdhowto
130
ANOTHERENERGY TBRM
do it. lt is generallyassumed that a suëdentlylvge, nniform applied feldca.n bringtlzemagnetkzation in thecubeto be neazly ulform, but it t-qk'es non-uniform ield to makethecubecompletely nniformly a special, maretized. . Themii.adferencebetween a.n.ellipsoid andany othe,rbodyis that thedemagnetizing seldinsidean ellipsoid is nnfonn, namelyit is theMme at everypointinsidetheellipsoid, whicNis not tnzefor anynon-ellipsoidal shapeAlthoughthe energyof the latter is the sameas that of a certain eEipsoid, tàis energyis an aveageover a certainEelddistribution. For non-ellipsoidal bodies in a largeapplied feld,Happl, it is still customazy to dezne a dœnmetizing hctor,N, andtaketheinteraalf.eldas Hqo'= mpp:- NM,
(6.3.52)
because it is the oalywayto eb'msnx+ theefed of theshapeof thesamin nonple andwuztlktheintrinsicpropertiœof the ma+rial.However, ellimoidalbodiœit ksonlya,a approzmatiopandit #ves onlyan average of tkeia-aa.l Eeld.Onlyin an eltipsoid istheaverage tke =trne as thefeld . at evezypoint. ln pedple, thedema>etizing hctors(namely, thecomponents ofthe tensor .N)can be calculated by evaluating the potentialof.thqsllrfnace in eqn (6.3.48) for tke particulargxmetry,substituegin ecm clzarge to fnd the âeld, andthen t ' the appropriate (6.1.2) averageof that feld. Twodferentdenltionsofaveragœ are IISMin pradice.One11- a feld average ove,rthewholevolume of t:e sample, leadingto a demagnedemagn' - fRtor. The tizinghdor whichis calledthe magnetomet6c otherdefaitioais an average ove,r the middlecoss-section of the crystal perpendictzlaz to the frecdonof the appliedîeldj lsuzlingto whatis eAn knowaas thescllidticdemunetldng hctor.Some oftlt- calcttlations becarriedotztanalydcally, andsomecallfor a numerical eeuation,with or withoutcertaiaappremations. Detltllqofsucheeuations2andtablœokbothknds of demagaetidng factors,can befoundin the hteratuze, andare outsidethe scopeof tks book-.Nospeec evxmplewill begiven here,andonly severalleadiag rderencœwill bementioned. Tablœof bothdemagnetizing hctorsin a extending to infrectangttlar prismGst for thecmseof L1) one dimension nits andfor thecmseof (2ö6) one square coss-section. Fora Mite cirfu'ln.r cylinderthereare tablœ(256, a longreviewwith formulae, tables and 257), vaphs (258J, aada sophle-cated computational scheme ThereLsa (2594. spccialstudyof singleor doublethin ilms (26% andthereare also 2614 some theorems of a more generalnature,andan attempt(264) (26% 263) at a Nrst-order correctionf or tke cmseof a slizlztlynon-unifoz'm maaetizadondistributionAndthereis alsoa detaileddiscussion of certaân (2651 ' drawbzmlrq in practicalapplications.
UNXS
l21
6.4 Units Oldertutbooksusedtke cgssystemofunits,ia whic,h thebasicunitsare thecentimetrw Môdezntextbooks for undergraduate gramaadsecond. àa,'eswitc'hed to thesystem calledS1,for Systènte zhferxafoorlcl completely d'Unçtls, andit eztn safelybeassumed thatthereaderksmore Gml'll-ar with it thanwith thecgs.lt maythus seemsimplerto adoptthe SI unitsfor thisbookmswell.However, righdyor wzongly, pradicallyall themodern *-11usestheso-called literatureon magnehsm Gaussi=cgsestemofupits. Andtke readermu'stbecome fxvn'linrwith it, if onlyin orderto beableto zeadal1this'pqblished literature. For Mrne people,convertingiX:II Si units has become an obsession, on a rdigious conviction to abozsh heresyaadmakeeverybody bordering use the Strue'units.However, thereis no way of ignoringthe fMt tllat thereare manyreseamhers whohavenot beenconvez'ted, andit sexs that theywill not befor m=y yearsto comû ln any caseothe use of units is onlya matterofconveniuce, oz as Brown(266) phzaEed it: Cdimensions are thetvention of man, aadman Lsat libertyto aœignthemin anywayhe pleases, as longas heîs coasisteat throughoutany one mterrelated setof nlm deoes,anddescribes calculations'. nis tuton-nl(266) thehistoryot is lu-rhlyrecommended. , systems oflmsts',au.dit.sreading Thebestsource for the demitionsof the Gaurvqian ; andits conversion to SI; is theappendhto theI.U.P.A.P. report(267J on units. 1 will onlystao briey the impoexntconversion fadors,in wordsan.d tAt a.llcœts, not as a table,accordiag to the goodadviceofBrown(2662: avoidconversion tables;withthem,youaever knowwhether to multiplyor divide-'Andtàen,fortàerestofthebook,onlythe Gan--nncgssystemwill beused.EveatheVtor 'ys ofBrownwbâch hasbeenusedia thischapter aadi'nsection1-1will not beca'riedany farthez.It will bereplaced Som then%t Gapterby thecgsvalueof47r. Thecgsunit of maretic Eeld,Jfj is thexsted (Oe). TheS1unit is 1 A/m=47 x 10-3Oe.Or 1Oera 79.6A/m.TheOeis theRœmemsGb/cm, wherethegilbez't(Gb) ksthe cgsAlnltfor themagneticpotential,U. The of A hasto be latterksmeasuxed bytheampere(A)in SI,andthenumber of Gb. multiplied by 0.4*to obtaiathenumber Themagnetic iadudion,AIMHownas themagnetic Qttxdensity, Bt is measured in gaurxs (G)in theegssystem.ln this system,H andB have the same dim<mKions andsome yearsagoH was also (see mn (1.1.2))j measured in gauss.However, ie ttnl'tsnow havedxerentnxmes. TheSI unit is Wb/mz) alsorxlledthetœla(T),aad1T = 104G. Thepermeability numberin thecgssystem,andp.z JIis a dsmpnm-oaless ofeq.a(1.1.2) should JustbereplMedby thenamber1.ln S1,forwhicàeqn is written,thepezmeability of :1* spaceis Jzo= 4r x 10-UH/m. In (1.1.2) thissystemtherelatinspermeability: isalsoused,as defnedin yr = pjgnt
132
ANOTHER ENERGYTERM
Thevalueof Jzris equalto tltat of the cgsp.. eqn(1.1.4). The magnetizatiûn, M, sometimes cazedthe tloltlrpzmagnetization, ksthe dipolemomentper unit volume. J.IIcgsit is measured in emu, or even thoughemu is not reallya lznit.inany senseof the word. emu/cm3, Thenumberin emu/cmS kasto be multiplied by 1O3 to conveztit to A/m. Oftea4zrMis specledinsteadof M, andthenit is measured in G az B is, see eqn (1.1.2). J.fM is dividedby the densityof tkematersxal, it is knownas themass magnetization) andmeasured byemu/g in theGaussian system.Jt hasthe sqme numerical vaiueas A.mz/kg, whichîs tke SI unit. Thesusceptibility andpermeability aze dimensionless numbers in thecgs 1. system) andthe permeability ofthe vacuum Lsnumerically factorsD andN are dimensionless botk in cgs Thedemagnetization andSI,but thereis thefactor47 in N as dvnedin thischapter by tke t'wovaluesof% . Theazisotropy constantK, defnedin chapter5, hastke dimension ofan enerprdensity, namelyenergyperunit volume.J.ncgsit is memsmed by erg/mnz, andin SI thetmit is J/m3, wlzich equals10erg/cmZ. A11 theotkerconversion factorsskouldbeobviousnow, andit is hopedthat the reader 'on. égV re themout.
BASICMICROMAGNETICS lt can beconcluded fzomthe laztchapterthat thereisno wayto neglect any anisotropy, one of the threeenergyterms?exchange, andmagnetostatic, anda11 threemust be takeninto accountin any realistictheory of the rnnagnetization processu-Et wouldhavebeen niceif theothertermscouldbe addedto theEeisenberg Hamiltoniaa, at leastas a perturbation. But this Hamiltoniancannoteven besolvedquantummechanically witho'atthese termsunlessquiteroughapprofmations Therefore, until are introduced. a bettertheorycan be developed, the onlyway is to fneglect'quantum mechanics, ignorethe atomicnatureof matter,anduse classical physicsin a continnous medium. Suchaclassicaltheory hasbeendeveloped in parallelwiththequartum1tshistoryis mechanical studies of aVs(T) whichjustignoremagnetostatics. toldin (2682, 9om thestart with a 1:35paperof LandauandLifshitzon the works structureof thewallbetween two antiparallel domains, andseveral of Brownin 1940-1.Browngavetbistheorythe name micromagnetics, because what he hadin mindat frst was the studyof the detallsof the wallswhichseparatedomnins, a-sdistinguished fromthe domaintheory, whichconsidered thedomains, but tookthe wallsto bea negligible part of the microscopic details misleading, because space.Thename is somewhat of the atomicstructureare ignored,andthe materialis considered h'oma macroscopic point of viewby taldngit to be continuous. Partof theclassical approach is to replace thespjnsby classical vectors, whichhasalreadybeendonein chapter2. But on top of that, a classical thèorywhichcxn beusedtogetherwith Maxwell'sequations musthavea classical the quantum-mechanical exchange energyterm that cnn replace interaction,in thelimit of a conïinuo'as material 7-1 lcbssical' Exchange Asseen in section6.2.1,the exchange enerpramongspinscan bewritten in termsof the aztglez spin4andspinj, a-sin eqn(6.2.45). As 4:,jbetween hasbeen'explained there:theanglesbetween neighbours are expected to bealmays small:because theexchange forcesare vezystrongover a short Forsmall14ço.I R is range,andwill not allowany largeazigleto develop. possible to use thesaae approfmationas in theparticularcaseof parallel planeswith w,spinsin each,leadâng to eqn(6.2.46/ andwrite
BASICMJCROMAGNETICS
l34
%x % % K%
%
S:
Flc. 7.1. Schematic representation of tlle CIIaINin tlle anglebeœeen neighboadng spinsï andj, audthepositionvectors: between them.. 6..K= JS2
j F) 4? %,j
nighbotuv
and aftersubtracting-the ofthestateia whichall spinsare aligaed) emergy whiG isJusedas a reference statein tùis calculation. It me=s redefning whicllis alwayslegitimatwprovided that thezero cf tbeexchange energy, it is doneconsistentlyForsmxnugles, 1401 = lw - mjl,where m k a tznïtvectorwilicllLs parallelto tlle localspindirecdon Fig. 7-1). Notethat this defnition (see alsomeans that m Lsparalle,l to thelocaldiretion of the magnetization vedor, M) andit is actuallzthe samem as in eqn(5-1.6) whenever M is ' a continuoms 1% wlzicllis dvned not onlyat thelatticepoints.For sucha vadable,theGrsvorder erpansion in a Taylorseriesis
lmï mJl= l(s#V)mI,
(7.1-2) wlleress is tlle posiîontlecferpointiag9omlatticepoint ï to j (see Fig. Substituting in 7.1). eqn(7.1.1), s = JS2 (7.1.3) ((syV)m!2 -
-
.
f
5(
wherethesecond snrnmationis over tlle posiuonvectorsfromlatticepoint ç to all its neighbours. Forexample, for a simplecubiclatticewith a lattice consuntc, this snm Lsover the .W.z vectorssy = c(+1, +l, +1).This snzmmation iz readilycarriedout for a11thz'etypesof cubiclattice,and it is seea that theyall leadto the sxme expression, anddifer only in a multipûcative factor. t:e mmrnationover ï to aa integralover the ferromagnetic Chan#ng body,tlle resultis thatfor cubiccrystalstheexeange enerr is
LCLASSICAL' BXCHANGE xc
=
1 -ac
sz
,
z
135 sc
+ r.7', + 'vTmz)j $,?ul tkvzrlz?
where
C=
,
,
2JS2 a
c7
is theedgeof the unit cell,andc = 1p2 and4 for a simplecubic,bcc andfcc respecdvely. close-pafked cystal, suchaz cobalt, Fora hexagonal summationover thesç vectorsleadsto the same resultas in eqn (7.1.4)A onlywith 4xN2J52 a
'
C=
a.
,
(7.1.6)
wherea is the distance between nearœtneighbours. For lowersymmetries, hasto besomewhat modled. But eqn(7.1.4) for mostcasesof any practicalinterestthis equationcnn beVkenas a goodapprovimation for theexchange energpin asmuchas the assumption of a continuous materialis a goodapproimationto physicalre/ity. The constantC is thenVkenas one of the physicalparameters of thematerial, whose valueisobtained byftting theresultsof thetheoryto one ofthemeaexpressions surements. Of course, it ccn beobtained lom the theoretica,l integr'alJ is lmown. in eqn(7.1.5) or eqn(7.1.6), whenever theexchange However, J depends on the temperature, as explained in sectfon 3.5,and thcmlueof J near Tc is not usefulfor micomagnetics calculations which for this are usuallyapplied at, or near, room temperature. Thebestvalues ezchanne constantC are usuallyobtainedfromferromagnetic resonance. Theorderof magnitude for b0thFeandNi is C ra 2 x 10-6 erg/c. The factorl2 in the defnitionof C in eqn (7.1.4) is quite arbitrary, andwas introduced byBrown(145) in orderto avoida factorof 2 in the dxerentialequationswhichminimizethe energy;ard whichwill be introducedin section8.3.Manyworkerspreferto write the energyia eqn lz anddefnea dxerentconstantof thematerial; withouttheGactor (7.1.4) = A, whereC 2.4.It ofiencausesconfusionbecause 30thA andC are referred to as the fexchange constantof the material'andit is not always dearwhichofthetwo ksusedin anyparticularcalculation. TheexGange is avery powerful andusefultoolfor energyofeqn(7.1.4) solviagproblems in whichtàedirectionofthemagnetization vectorvaries lom one point to anotherin the crystal.Rs sizeis assumed to beMs(T) everywhere, as discussed in. section4.1.This energyterm is zero for the case of atired magnetization, whenall the derivatives vanksh, whichis the wayits zero hasbeendefnedhere.It is largefor largespatialvariations, witic,his whatone expectsthe cxchange withlargederivatives, energyto try to avoid.However, thereare certainlimitationsfor theapplication of thisenergyexpression whichmustbeemphashed. Asis thecase with any theory,one shouldnever be c-arried awayand try to applythis theory
136
BASICMICROMAGNETICS
the naturi vazidityofits apprnxn'mations. beyond It is therefore important to specify whatthese liets are. ne most olwiousrestziction is connected with thebmsic assalmption of a continuous material,whichcan onlybevalidas longas anychzuacteristic lengthit dealswithis ver.glargecompared with thesizeof a unit celtIt is not sometbing whicbeztn begttarauteed in advance. It is Just necessary to bearin mindthatif any micromagnetics calcdationcomesup with a pazameter that hasa dimension oflength,thevult is reliableonlyif this quaatityîs mucxlazgerthaatheunit cells. Thesecond, and1- obvious, nmitationis that tketemperature is not too high.In chan#ng over 1omtEespinsat thelatticepointsto a contkmous vadable, M, themMnitudeof tàisvectorM comesout automatiœly msa constaatover the wkolecystal.lt is alsoan expmm'mental Lattthat the magnitude of M withinthe domainsLsa Gmstantof the materiak as diseussed in section whic,hdepends only on the temperatuze, Ms(T): thepictureoffzxu spts at thelattice pointsis not a good 4.1.Eowever, approvlmation to realmaterials, as d-lpztussed in cbapte,r 3, andtheexperimentalfnzttthat
(7.1.7)
lMl= Ms(T)
isonlytnzeas a.uaverage over a ratherlargevolume-lt cnannot bestridly so at everypointwhenthereisenough thermat ductuation to make a diference between one pointandanother. Forhc.kof a bettermodel,' tEetheoz'y of micromagnetics assqmesthateqn (7.1.?) holdsewer-/zeraTherdore, this theory,as it isy.cazmotbecarriedall thewayto theviclnlty ofTc,where even smalllocdfeldsmaychange tàemavitudeof M. of thetheory,Gforeit can beappliedto Thenecœsazy modiications lligh temperatures, are not vezydear,even thoughtherehavebeensome it. Thebiggeststepia this directionwas that of attemptsto geneaollze that in theprœence ofthermalfuctuations, the who showed Minnaja (269) uchaageeaergydensityin eqn(7.1.4) shouldbereplaced by 'tpe=
C ava
a
a+ (VMv)+ (VMa)j g(VA&) a
,
(7.1.8)
whereM is the maaitudeof the vectorM andis a fudion of space. However, did not dothenext necessary step,whichis to replace Minnaja whicbshould tbisM. by auotherreladon, beusedto detlrmlne eqn(7.1-7) andit lefthimMt.htoo muchchoice Msnnaja jMstignoredeqn(7.1.7) (269) of possible solutions for the diferentialequations, whichcannotdofor a should(270) geneYtheorpA true genemlivAtion ofmicromaNetics replace whic,ktendsto it în thelimit of1owtemperatures) bysomething mn (7.1-7) andhasa betterphysical mennsng at hightemperatures. Thispart hasnot lxsendoneyet, aadan attxpt to xlve a speel cxase(271) was not very succeqfnl; lt waslatersuggested andwasneve,reendedto otherproblems.
ICLASSICAL' EXCMNGE
137
that eqn(C.1.7) bemodifedat hightemperatures by addingan extra (272)
is prchporkional to (lM1 andthisform energytezmwhosedensity Ms)2j
was used(272) to solvea certainproblemuzzder some approadmations. Jt that theseapprofmationswere not reallyneeded wa: noted(273) for that solution,but therewmsno furthezdevelopment of this idea. In the cmseof nvclection,whic.hwill be discussed in chapter9, eqn ca.nactuallybe ignored, for reasonswhichwill beexplainedthere. solvedhishigh-temperature equations for thLscase of nucleMinnaja (269) whlchis legitimate. ation(inan infnite plate), Similarnucleation at Mgh the case nite temperatures was thencalculated for of an inf cylsnder. (274;
(7.1.7)
It shouldalsobenotedthat theapprofmationusedhereisvalidonlyfor smalïcngle.s between neighbouring spsns.Since the exchange is thelargest forceover a shoztrange,it ca.nbeexpected thattheseangles are generllly this generalrule doesnot excludesome exvery smallindeed.However, ceptionsin unusualcases,sucha,sa corner wheretkemagnetization must turn arounddueto some constraintson otherenergytnrrrm.Formally,a discontinuous jumpof an anglecallsfor an in4nite exchange energy,if eqn is taken to be literallycorrect.But the point is that it shouldnot (7.1.4) betakento beliterallycorrect.ThisequationLs,afterall, onlyan approxHation to eqa(6.2.45), andthe lattet hasno infnities.Eveneqn (7.1.1) flnt'te,andapprofmating is always it by somethîng that becomes infnite only means that the approfmationis not applicable for that pazticular case,whic.h mustbestudiedby othermethods.. It cmn bearguedthat an occasional angularjumpin someplacemeans that a particularpalrof spinshasa muchhigherenergythan any other pairin thecrystal,whichdoesnot seemlikean energyznfnfzntlm. Howevery this argumentcannotr'ulco'atthe possibilitythat this arrangement will be aa energyminimumundersome spedalconditions,and it certainly doesnotJustiàtaldngthe apparentînfnity of theexchange too seriously. Thispoint hasoftenbeenoverlooked andledjfor ecample, to special (2704 in solutions for a certain tsingular' point a particular type of a domain (275) wall.Thatsolutionrnlm'mt-zes onlythe exchange because thisterm energy, . tgoes to in4nity for'r -+ Oproportional to 1/r2, andexceeds a1lotherenergy terms'.EvenBrown,whowas alwaysverycaœeftzl with hisdefnitions, made heruledout a certain this mistake,andin a footnoteon p. 67of (145j enerr'. confguration, because it 'wouldentailinf niteexchange Thisproblem is a zealone, for certainspecial cases,but it hasno general solution, anda certainattempt(2761 to solveit hasessentially failed.There îs no altpaativeto the use of eqn (7.1.4) for mostproblems, and some specialtechniques for specialproblems. It shouldonly be bornein mind that thereare casesfor whichthegeneralzule Ols, a'adshouldnot beused. ln thesummationover the positiönvectorss: that 1edto eqn (7.1.4), it was implicitlyassumed that all of themare insidethe crystal.Whenthe latticepoint ï is on thesuzface, some of theseneighbours maybe missing,
BASICMICROMAGNETIV
l38
aadthesum mxy comeup dxerentthanat intemallatticepoints.It is not a serious problemp aadfor all pradicalpurposes it is suKcient to keepeqn a,sit iq assumiag it applies everywhere, aûdaddaaothe.r eaerr term (7.1.4) only.Actually, whichasectsthesarface tMsmndi4cation oftNeGcàaage near the snrfnr- is onlyone of several conkibutions to the s'ttrface (145) tmï.sotrppp tcmj alzeuy mentioned in section 5.1.5. enevgy Thefnrmof eqn(7.1.4) is partscularly stlitedoalyto Cmesiaa coordinates.It cVsfor certaân tmnsformations in cx-forwhlcEothercoordiaate systems are prefœable for auy reasom It is not verjrdiëcult to carryout ihesetrxnKformations, but it is euier if they cxn be avoided altogether. Kxchaage For thispurposeit whs suggested that tNe demsity enerc (27% 1xreplaced i.xeqa(7.1.4) by m.
=
C M)z + (Vx M)zj , aw E(V '
(7.1-9)
because for a vectorof %edmagnitude thedifezucebetw-n thisemprsionaadtNeone ia eqn(7.1.4) is (277) a divergence ofa certG vector.The volumeintegralover thelatte.reltn betraasformed to a snrfn.ce inteaal, by usingthe divergence t/eorem.TherdorwthisdiNrencezedefnes only anisokopyterm,aaddoesnot cbœnge thesudace theexchange enerr in thebulk,aadin tNefo= of eqn(7-1.9) it is easierto chaage to a diferent coordinate system.This suggetion,however, hasnever beeaasedby anybody else,andwill not l)eusedheredthem 7.2 The Izudaa and Lifshitz Wall .&sa frst illussration fœtNeuse ofthisdassical exchange enerr, a bette,r solutionwill be give,a heaefor thebœt strudureof tNewall betweea =tiparalleldomains.Thiswall hasalreadyb-n dincussed in section6.2.1) butvery roul appremationsw&e usedtherelwhichcan at bestdemonstmtethefeasibility ofits evlqtence. A much betterapproach is to rnlnlrnlze theenerr of tNeproblem,usingthesameappremationswhiclz were frst introduced ia 1935. (268) For thsspurpose,conslder aa insnite crystal,witichhasa uniandal xnsnotropy oftNetypeof eqn(5.1.7). Thedomains will arraagethemselves witb theirmagnethation parallelandantilmmllel to the easyxnsnotropy n.='swhichiô defnedkereas the z-a='K tsRsection5.1). Wedefnethe z-n='K alongtNedirvson ia whichthe magnetization chugesfromtke -z- to the +z-directionv namezy frommz = -1 to mg = +l, wherem is defnedby eqn(5.1.6). m tilts out of In the wallbetw-n the domains, the z-direction, whichc,anbeeithertowardsz or towards y. Houver,aa m. whichis a functiimof :r mexnma non-zero V . M and #ves riseto a largemaRetœtatic Obdously, theenerr is lowerif eneo contribution. mz = 0: andonly mu aadmg are 10 to be functions of s. Combiaing
THELANDAUANDLIFSHXTZ WALL
13S
the anisotropyenergydensity1om eqn(5.1.7) with theexchange enera densityfzomeqn(7.1.4), the total energydensity for this caseLs 'tn =
2 Jrzw dmz z ' + (jz (Lz
1 .1-Kgmî+ -C KLmz s. . y a
(7.2.10)
Themagnetostatic V . M z'x %so that there enera is left out, because is no volume charge, andthesurface chargeLsneglected bytheassumption ofan ûinfnite'crystal.Thereaderhasalreadybeenwarnedin section6.2.2 that suchan assumption hasno physicalmeaning, andthat leaving out the sudace chargebysuchan argumentis never justïed.However, thiskaowledgennme muchlater,andfor manyypltrseverybody was convinced that thisapprofmationwas 6llly justifedj at leastfor bulkmaterials. Actually, thereare still manywhobelieve,againststrongevidence, that at leastthe hereis a goodappro-xn'm ationto thewallsin veryhrge energycalculated crystals.Nowit is knownthat the approfmationLsnot reallyJu' stifed, andthat themagnetization structurein a wall dou not lookat a11 likethe one calcalated in thissection. Still,thisstructureis veryimportantfroma historicalpointof view,beingthe frst studyin micromagnetics. It is also a niceandeasyproblem to solve) andas suchit makes a goodîntroduction to the more dihcult problems ofmicromagnetics. is 11 The vectorm is a 'uzùifvector,whichmeans that its magnitude +m2 = 1.Theeasiest such constraint is defne and77z2 to enforce a to way z F an angle,%by therelation mz
=
cos: and
mv
=
sin0.
(7.2.11)
Substituting ln eqn(7.2.10)) andintegratingtheenergydensity over x, the total energyperunit area in thevz-plane is
(7.2.12) TheEulerdiFerential equationfor miuimizîng thisintegralLs C
+9 2Xzsin0coso zlffzsina 0cos#= 0, a -
-
(7.2-13)
with the boundary condition
.
dr
= I .+.oo
û.
(7-2.14)
It is easyto integratesuchan equationonce,andobtnlnwhatis lœown
14O
BASICMICROMAGNETICS
as a Svsi ïntvml
lt can beaeievedfor example bymitipyng thediferenllxlequation by d8/dz aadiategzating oMc z. Ther-lt is l ds 2 -C Aezsina 8 - Kasin4 $ = const, 2 d.'r
(7.2.15)
wherethe right handsideis an intagrationconstant.Thisintegrationis theorem(2701, whie,h will beproved actuvya particularcaseof a general in section10.2,according to whicàall one-dimensional problems in static micromagnedcs haveat lMst one 6mt integral. Theintegration constantcan bedetermined lom thecondition that the separating maaetizedaloagLz. It structuremust bea OCJJ two domnlmK impliesthat sin# = 0 at z = +txh,andwhenthis condidon is suuituted in eqn(7.2.15), togetherwith eqn(7.2.14), tMs conenntis s-n to be0. Hence dê= ftru z + :?./ 1 -h sin $ sin0. (7-2-16) gzt T' c T zk% for eitherchoîœ of thesi> in front lntegratîon of thssequationis obvious of tlle squarerootvandone of the branches is cos$ =
1 + n tzmh@/J)= mz, 'F1+ mtaah2 (z/J) .
-
J=
j/'2A%,
N=
Kz.
-
.K'l
(7.2.17)
Actually,insteoofz theargum%t shouldcontaân tr - z:, wherezo ksthe seondintegradonconstaatof the originalsecond-order diferentialequation.However, theorigiadoesnot haveanymen.nipg in an ïXJP,A crystal, andzo maybeomitted. Thewallerldr.orztn alsobecalculated analytirolly, by substituting eqn in eqn(7.2.1$, andcarr.ying oqt the integration.Thewallenergy (7.2-17) is thusfoundto be perunit wv a.Z'I?A s=
Fr -1 n azfzc + + arc--antz-)s , L
W
)
(7.z18)
.
whic,k depends onlyon t'heAninokopy andGchn.nge constants of themateriakThespontaneous magnetîzation, Ms,does not enter,because it is only ltM connected 1:ee.11 with themagnetostatic term which eliminated erlerr 1omtke present calculafon. Thœreueldly, the magnetization in eqn (7.2.17) becomes parallelto +z onlyat infnity,andthewall IUAaa in6nitewidth,but of course this ' inînity need'not betakentoo seriously. Thescaleof z in this equation is 6 = Cj2Kïtat lemstwhenx is smal),andthln expression is usually defnedmsthe mallWdfYAnyremsonable denstionof the widthas the
MAGNETOSTATIC ENERGY
l41
distanceove.rwhichmostof the rotationâom mz = -1 to mx = +1 ukes plve, wttlleadto something of theorderofthisquaatityA moreaccurate is s'iveain (27$. deNnition If theanisotropy is cubic,as is t:e case,for raxmple,in iron or nickel, thereare threeeasyaxes alongthe threecubicaxu. ThemMnetization in some of thedomains is at 900andin some at 180*to the one in the domm-n Fig.4.1). Thestructureandenera of boththe neighbouring (sœ 90*an.dthe 180*wxllqhavebeencalculated (r9)in a similarwa,yto the cakulation in thissection,at lemst for a negli#ble Xa.Theresultsare also m-mllarto theforegoing. etœtriction,whichhasbeenadded(2791 as a uninNn-nl Anisotropy superimposed on the cubicone, hassome efect on thewallstructure,but its efecton its enera is negli#ble. Thecalculation of theenergies of thedferentwallsis thelwq-qis of what becpme knownE145) as the domaintàeory.ln calculathgthe eaerar of dxezentconfgurations of domains,thewallsllet-wsvm the.mare takn to havea zero width,as in the calculation of the magnetostatic enera of thetwo domnsns in section6.2.But thentheenea'aof tphe wallsis added, usingupressions suchas theone fortheunlim-al aaisotropy in eqn(7.2.18) here,andmultiplyingby thewallarea according to theassumed geometry. Thistecxniqueazows the comparison of the total enerorof a11soz'tsof confgurations, in an attemptto fnd (5% theonewhose energyk lower 279) thanthat of the others.It is even possible to addthe interactionof each confguration witha.aappliedmagnetic feld andtry to followtheoretically 1hewholehysteresks c'urve.For largeand complusystems it is theonly theory,andthesestùdies still continue today-Forsmallpardclo (28% 2811 thereare betterandmore reDable .methods, whie.hwill bedecribedin iapter 9, butthistechnique is beingused(282, for themmswell.More 283) aboutwallswillbegivenin chapter theozy ofthedomm'n %butmœt delzu-lK thescopeofthisbook.Onlybefore conduding thissection,the are outside readermust be waamed not to be msqled by the elegaace of the solution into believing that thecalculation presentM hereîsthefnal resultfor the wallstructureor its energy'. Evena Iargecrystalendssomemheat andthe structnrepresented herecreate muchtoo muchchargeon the surface. Thkscxargetdemaretizes'thewall and distoztsits s/apeto reduceits ma>eœtadcenera,andthisdistortionpropagat% into theinternalparts of thewall.Theresulting structurebecomes quitecomplex, andeztnnot be expressed by a one-dl'mensional ftmctionof spaze.Thewhole problemthem becomes muchmore complicated than theone presented here,but then complication is inevivblein ferromaretism.
7.3 MagnetostaticEnerr Themagnetostatic inkoduced in section6.1,mseqn enerr term hasb'een but it lm.qnot beenprove there.lt will be put hereon a sounder (6.1.7), tlun the bmsis ent Zventhere.In orderto satisfythosewhomay
142
BASICOCROMAGMTICS
fee.luneasyabouta mere acceptance ofMaxwelps equations mstheyare, it is necessaryto start fromtheatomicnatureof real'mxtedals, whichwas not even Hownat thetime of M>xwell. Theapprovlmation of a coneuous materialis inevitable at the end,but it is importaatto nodcethatit is not inednced as an arbitrarymssumption. It comesas a well-justifed approlmationfor thelirnt't of vadualvariauonover a more justifed thanthatfor theexchange tRrm, as will beseenizlthefollowing. 7.3.1 PhysiallySmcz! Splttrt Consider a latticemadeof magnedc clipole,with the magneticmom'ent th at thelatticepnint ï. Let h..betàefeld intensityat tàelatticepoint ï dueto all the otlterdipolœ.Ia theabsence of thermalfuctuations,the poteatialenera of thiq is 1 Cu= -j' Y!1%- Y', (U-3-19) 1
wherethefactor1 thesurnmation containsea.c.1z of 2 is introdux because theinteeractiolks tWce:once as theinteraction ofthedipole6with thefeld dueto .handonœ as that ofthe dipole.i wtthtke feld dueto ï. Let a sphere bedrawnaroundthelatticepoint f- If its z'adius R is large wit,htheunit cellof the maœial,all the dipolesoutsidethis compared spheze maybe takenas a continuumfor Yculatingthefeld whiclzthey œeateat thispardcalar point,ï. Therefore, thefeld lu at thispointmay beeviuatMby tnlclngtheield dueto a continuous matarialeverywhere, subtntcting fromit thefeld dueto a continuous materialinsidethis sphere, andaddiqgthefeld dueto thedîscetedipoles witMnthe samesphere. Theirst ofthesetermsis thefeld calculated in section6.11omMmxwell's It will be denoted equadons. fromnow on by H', in orderto keepthe novtionH for theapplied âelddueto curren?ia some exteaalcoils.Az hasalreadybeenexplained izlsedion6.1,thesetwo feldsmaybetakenas separa*ent-idœ andtheasuperimmsed. It is necessary to subtractfrop this feld H' the contribution of a continuous mMnetization insideth1 sphere. If this magnetizadon doesnot varqg very mucàinsidethesphere, thelatterNeldis approzmately thedemagnetizing feldofa homogenmusly magnetized sphez'e, givenby etw (6.1.1.3), namely-(4?/3)M. Hencl 42: hs'= H' + M + ht.,
7-
whereh?is the conkibutionof thedipoluinsidethesphere.
' -
(7.3.20)
MAGNETOSTATIC ENERGY
143
'àheuse of the demagnetizing feld is jalh-ia-êed if 'tàeradiusR of the sphereis smazcompared with thescaleover whicàthedirectionof the magneœation can betnlrnnas a const=t, or at mostas a linaarllnction is not in conlct ofspaœ-ltis necessav to mnw sarethat thisassumption wit,hthefrst asstxmption, that R is muchlrger thaathelatticeconstant ofthematerial.Thesecond requkement is that R is smallcompared with thesœenlled ezthange Jenvl/j, wàic.kis the lengthover whichM cllaagœ, namelysometMng of the orde.rcf theLzandau and Lifshitzwall width, with C x 2 x 10-6 erg/mzz aud Cf2Kï.Fora typicalcaseof permalloy, thiswazwidthis ahmtl00am,amely about300unit Kk ;4$104ezg/cap, cells,andaboutthesamenumber applies to iron.ln thesem-rt- it is indeed valueof R, 611611img possible to defnean intermedln.te bothrmuirement for beingsuEdentlyhrgeandmzRdently small,whichis n.sawnlly referred to as a pltysicazy Jzncllsphere. It shouldbe e'mphasieM agna'n that this ' possibûiv ofde sucha physienlly smallsphere is dueto thee-xchaage lwqng thespinsalmostaIig'IIC'd over verystrongover a shortzange,keepîng distaacœ of theorderof a unit (e- Thereare casœof certainrare earths, or thdr alloys,for whic,h Kï is muc,h largerandthe exchange lengthis onlya fewlatticeconKunts.In thœecmsesthecontîauum approach is aot andit is aeceasazy to coasider a fnite Gaagein thedirection justiâed, (284) of M 1omone latticepointto thenexk . Thelastterm in eqn(7.3.20) is a sum over feldsdueto dipoles, Jz. 3(../ riylri.f -..-.J, (c.:.).a:.) a+ s Irïjl Irzgl jTéi2<2 where z'Liis thevectorpottin.g1omlattke miat f to latticepointj. ln a physically Kvnxll spherey gj is Rtually a constant,whichdoesnot depend on #.In thksrzuej it is pvible to write, for examplej the z-component of thefeld in Cartelmcoordinatœ as -
(= hz
à,' G=
-
g. Lj
za +
+ lAvyij+ #ùx.r.f.ïl 3ze(#..a4y
(7.3.22)
.
r.s
ij
U the crystalàasa cubicsymmetry,a snrn over a sph'ere of the termwith because thereis an equalcontribution 1om ajtwj or with zijzzi vaaishœ the positiveandnegativeterm, =d. actuallythis statementis true for almostaay othersymmetry.àlso,for a cubics'mmetrstr, y andz are interchaageable, andtherefore .s'?,
&?
z?
1
z ? + y? lj + z .?é 1
zi uaz .y.. = y'yv.aj. y..y y.yrq,JeJm .y'y r'F rq 3 <J xj
PIJ
..y3
.-w g
: w.
%
rqr.g.zz;
Thnsthetotalsnm in eqn(7.3.22) is zero, andsois aayothercompoaeat of
BASICMICROMAGNBTIV
144
In a nonmbicsmmetry the sum is not zero,butit isobdous eqn(7.3.21). fromtheformofeqn(7.3.22) that pz ca.nbetakenin frontofa sum wllic.k is justa numbec, andthesameis kue for the othercomponeztts. Onthe whole,underthe anmption tkat M maybeapprozmated by a constant srnzzlspkereo insidethephysically h;is a liaearfunctionofthecomponents ofthisM, with coeRcients whichdep%donlyon the crye-xll'oesymmetry. ln otherwords, 14= A . M , (7.3.24)
whereA Lsa tensorwhichdepends on theczystalline symmetryandwhich vanishes for a cubicsmmetzy.Substitlzegcxqas and(7.3.20) in (7.3.24) andchan#ng thesam to a.nintegzal, themagnetoMatic eqn(7.3.1$, energy Su =
1
-g
M . Ht +
4/
SM + A
-
M dn
(7.3.25)
wheretke intwation is ove.rthe ferromagnetic body. It must be aphmsized that tke approfmationof a physically small sphere doesnot reallyrequirethat M is a constantinside'iltiq sphereA c'hxnge will notmakeany Jfnecr overthe dlrnensions ofthesphere dxerenœ to theforegoing, it is easyto seeby smmetry considerations that bfvm.mse its contzibntion is zero. A genernllmation of the foregoing derivation (285) considered the caseofa quadratic change over tkesphere, andshowed that îts contribution is alsozero for a suEciently Mghczystalline symmetry. For thecontzibution term is not zero, blztR a lowersmhetz'y, of a quadratic IUAbeenslloW(2851 to be negYbly smallfor all casesof interest.The proofof this theoremcan be summarized qualltatively by thefollowiig of themagnetization is ratherslow,theforegoing vgument:if the change kscozrect.If it is not slow,themaaetceaticenergymay be assnmed to besmallcompared witkthe achangeenergy, anda certainmistake in the smallerterm doesnot aeec.t the total enerr. Thephysically smallsphere also be genernl-lqed to be a,n ellipsoid, but thks gencxliqation does may (285) not haveany reeal eeecton the proent calemlxtlon. Themiddletermin eqn(7.3.25) containsM . M, whichis theconstant M'zs that depends onlyon the temperature,anddoesnot depend on the spatëal distributionof M. Therefore, it is omitted,whicxonlymeans redecning the zero ofthe magnetostatk energyandhasno H'H on energ.g msnlmiqations. Thelmstterm Lsa.n energydensttM . A . M which%M tke s=e formalformoftke anisotropy izzsection enerr densitydiscqssed 5.1.Therefore, it maybeincluded in theanixtropyenergyinstead of here. lt is particularlyconvenient to .doso because the anksotropy constankin m-t ca- are takenfromthe eerimental values,whichalready inclvde this term.It shouldonlybenotedthatwhenthe sph-orbitinteraction is calculated fl'ombmsic principles, ihis termshouldbeaddedto the nanlting esotropy. Themagnetostatic energyhasthusbeenskownto be
MAGNETOSTATIC ENERGY
s.
=
-)/ M s' d.,
l45
(7.3.26)
.
whic.kis thesame=pressionalreadyusedir chapter6 withoutproof. M was the cmsewith theexckange DaII sphere energsthe physirmlly ksassumed hereto beeatirelyinsidetheferromMnetic body,andthis assumption fils forlatticepoiatsnear thesurfnce-Here,p' az'tofthenecessary correction ksalreadyiacluded in thesurfnnecltvge,Tvenin section6.3as part of tEechssical Theresi of this error Gectsonly enera calculatlon. spinswkic.hare qlzitecloseto the surfRe,ard can be expressed V (145) a term |
F
=
H' + 47rM,
(7.3.27)
heremsB?in whiclthasalreadyben defnedin eqn(1.1.2). lt is denoted orderto emphasize thatit is onlythepart ofB whicàis relatedto H?,aad not to theappliedfeldH. According fo eqa(6.1.2))
JH? B'dr JB' Mudr j (V (t7B') U%.B')dr, (7.3.28) .
=
-
.
=
-
.
-
wherethe secoad equalityis an identity,aadthe intevation is Msumed to be over a largeenoughvolumeto containall the ferromagnetic bodies.
146
BASICMICROMAGNETICS
w.ninhe vcordingto eqn (6.1-3), tmrrnin thelast exprœsion Thesecond andthe5.rs-t termrxn betraasformed according to thedivergence theorem. Hence, H! . B'dm= - n . UB/dS, (7.3.29)
wheze n is thenormal.Now,theboundo conditions of Maxwell's equar donsaure a contiauit.y of bothU aadB= evezywhere. Therefore, the integrals whenevaluaMon b0thsidesofaay surfaceof a surface cance) ferromagnedc body,andthe rïgbt-hand sideof eqn(7.3.29) is au iategral over tkeoutsidesurface of thevolume whichhmsYn assumed to contain a2 thesebodies. If tMs snrfxceis allowedto tendto infnity, outsideall B#= H#= -VU, whichtendsto zeroat leastas fmsta: l/r2 ferromagnets theboundazy coaditions in section6.1). Therefore, UBstendsto zero (see at lf'xqt as 1/0,wMleds incremses as rZ, andthe wholeintegralon the right-hand sideof eqn(7.3.29) tendsto 0 at înAnity,wMc,h mpltns that
H' . B'd'r = 0. a1lspaco
(7.3.30)
Thistheoremis of some interet in its own right.But it is x.lKnn-ful fora transformation of theexpression Tortlle maenetxtaticenergpït is whic.h ae-etinebysubstituting in eqn(7.3.30), yields ma (7.3.27) = 0. H!. (H'+ 4rM)d'r
all syace
(7.3.31)
Brexlclng thisixtegraliato a mym oî two integrals,it is seenthat the one witic.h'containsM is proportional to the integralfor the magaetostatic To beginwith, the htegralin eqn (7-3.3:) Lsover enea'rin eqn (7.3.26). a.!lspace,whichhclude Nrts in whichthereaxeno ferromagnetic bodiu. However, M = Oin thosepartsofspace,andthe.rdonot contribute to the seondpart oftheintegral.Therefore, thissecond integralis alsoover the ferromagnetic bodies) as is theintegral ia eqn(7.3.26). Qemrrrm#ng,
Su= - 1
Szadr81 ul spacc
(7-3.32)
This formof writing themagnetostatic the polz eaerRdemonstrates cfoïdcntz Theintisgraad is positiveevezywhere, whichmakes the zdnesplc. positive.The smallest valuefor tMs magnetostatic possible enerarazways whenH' is lden-... enera term is zero, azdthis
MAGNETOSTATIC ENERGY
147
a magnetization with no divergence ca.n be parallelto the surfaceHowever, the prindpleis that this eneraterm triesto achieve confgurations with as little chazge Thisprindplehasalreadybeenusedin as possible.
the qualitativearguments 11/section6.3,whichshowed, for example, that alongits longestafs, etc.Howan ellipsoidwouldratherbe magnetized ever, in that sectionthisargument was a little premature, because a cleve.r readermayhavewondered whyavoidthecharge ratherthaa thinkofsome sophisticated with a combination ofa positiveandnegative arrangementé charge, whose be lower than that of no charge at a11. Onlynow, enerr may aflertheproofof eqn(7.3.32), with an integraad whichis always positive) it shouldbeclearthat sucha fsophisticated' caanotefst. arrangement Thereis still anotherformto express the magnetostatic energytermj whichis alsoderivedfromeqn(7.3.30), whichcan bewrittenas '
(B' 4xM)B'dv = .
-
(7.3.33)
0,
+1space
in accordance with eqn(7.3.2/0. Rearrangingz andusingeqn(7.3.27) again, k -
1
B'I
B' c dr = 1
i'
au spaco
M . B'd.r=
1
i'
M
-
(H'+ 4'mM)d'r, (7.3.34) o
r
wheretheintevationson the righthandsideare (wer thevolumes in which M # 0. Substituting fromeqn(7.3.26), 1 B,a dr = -1'M + 2* 8* wllspaco
-
.&fadr.
(7.3-3 5)
Andsince/./2is the constantAfos ,
(7.3.36) where'Z is the volumeof the ferromagnetic body,or bodies. It mustbeemphasized againthat an energy calculatedfrom eqn (7.3.36) for any pazticular case is goingto yieldexactlythesame numerical value as the energycalculated from eqn (7.3.32), because thesetwo equations are mathematically identical.However, themsnussignin eqn(7.3.36) does not allowany pltysical interpretation ofwhat confgurations ofthe magnetizationthis eaerr term prefers, whichca.neven come closeto thesimple pictureof poleavoidauce impliedby eqn(7.3.32). lt can besaidthat the ,2 magnetostatic term prefers the B enera average to beas largeas possible,but thisstatementdoesnot helpat all to seethe actualpreferable distributionof the feld B;, or that of h1:.lt hasbeenclaimed(286) that
148
BASICMICROMGNETICS
B' hmsa more hmsto beprefen'ed over eqn (7.3.32), because eqn (7.3.36) diredphysical thanH/, whichis essendally thesame mssaying meaning thatsurface or volume charge should=ot beusedbecause thereis no physicalmeaning to thischarge. a puremathematical Sometimes concepteAn bemore convenient, andallowa betterphysix intuitionintotheproblem, thana truephysiY approMh. Thesamedisadvantage of a lMk of physitzal Jdlrsn intuitionapplies to otherforms(287q of themagnetostatic term. energy Beginaers whichis just maywondewhythefrst term i.aeqn(7.3.36), a constant,is not omittedby redef Tn-ng the enerr zmo, mshmsalready beendoneseveraltimesin this book.Of course, it is quitele#umate to dosq as longmstYs new defnitionis usedtonsltently.However? it is not it is not usefnl,ald will onlymisleadpeopleto bezeve donebecause that B' to beas lazgeas possible themavetostaticenerr prefers evenrwhere. Redl6m-ng thezero wûlnot change themathemativfact tàat wbatever B' is, the newlydefnedenergycannotpcebly bemore negadve than -2rcMs2ïzr, whichis the enerr of a conouration withno volumeor surfacechargein thenew system.Defniuonsare chosen to be helpfuly and confasing deim-dons are betteravoided, even îf theyare quitel4gitimate in prindple. 7.3.3 rociiy A vezymwerfaltool for calculatingthe maaetœtaticenegyof œrtnx'n confgurations can be obtained Foma gen-mrwzkdon of eqn(7.3.30). Consider two distributions of mMneœation in spaœ,Mz andMa. Let themaoéticfeld prodqced by Mç,for ï = 1,2respectively, and1et H)be = 4xMç. Uing the proof used to it is + sxrne prove eqn (7.3.30)9 B) Ht readilyen that
H'z. B'adr= :111 space
. B'zdm H?a = 0.
rzllspace
(7.3.37)
TEepropertiesof thefunctions msed for provingeqn(7.3.30) were that E' Lsa gruient ofa potentialwhicltis continuous everywhere andis regular at infnity, andthat B'G is everywhere, ar.dall thesepropeties . continuous are aâso fulflledby H(aadBt separally.Therefore, theproofis theKnme, andia thesamewaymswritin.geqn(7.3.31) it kspfwNlble to conclade that l both H'z- (H1+ 4'rM2)g'r = 0 (7.3.38) a11 epace
and Rc'.
a11 splce
= 0. (H1+ 4rM1)d'r
(72.39)
?
Subtracting 'th- two muations,tàe part with Hl . 1%is common to b0th ' etpre%ions andcaacels, leaving
ENERGY MAGNETOSTATIC
149
(7.3.40) '
Of course,it is never actuallynecessary to integrateover thewholespace, ande-ach integralis over the volumein whichits integrand is not zero. This equationis knownms the r#llrodty theorem, andis very useful in solvingmagnetostatic problems. The integralsin eqn(7.3.40) are partsof the integralin eqn(7.3.26), if M1 andMa are parts of thetotal magndization distribution,M, andthe theoremis truefor auyarbitrary subdivision of the magnetization into thesetwo entitiu. Thereforep an appropziatechoice of the wayin whic,hM is subdivided into Mz andMa of themagnetostatic may oftensimplt theevaluation eneza.Of course, thischoicehasto beftted to the particularcase understudy:andthere are no guideznes to faetate the decision. An example of this use of the theorem reciprocity will begivenin the derivation of theBrowndiferential equations in section8.3. theozem isnot limitedto Mz andMawhich Jnprinciple,theredprocsty addup to thetotal magnethation distribution, M. Theproofof this theorem is quitegeneralo andappliesalsoto casesin whichMl andMa overlap in somepart of thespace. Eowever, nobodyhasever usedthistheoremfor suchan overlap.Themostdirectapplication of the theoremis for the case in whichM1 aadMa are the magnetizations in t'woseparatebodies, and is interpreted to mean that the interaction of the magnetizaeqn(7.3.40) tion izt one bodywith the feld cre-ated by that of the otherbodyis the sitrne as the interactionof the magnetization of the second bodywith the feld cre-ated by thedrst one. Themost common evnm pIe (288) Lsin the calculation of the energyof interactionbetween a recording headandthe bits it recordson a discor tape,or in calculating the signalon the reading headjwhichînvolves thesameintegralasin eqn(7.3.40). It is rathezeasyto knowthefeld dueto themagnetization in thehead,andthemagnetization distributionin the recorded fape.lt is muchmore diëcult to estimatethe îeld dueto the recorded tape aadthe magnetization distributionin the head.Equation(7.3.40) makesit possible to How theinteractionwithout the more 35fB evaluating cult part. Brown(1q haslistM this reciprocitytheoremas onlyone of several theorems to whichh4 gavethe general name of reciprocitytheorems. M the othersare lesscommon, andlessapplied,5nthe literature,andare outside the scopeof this book. 7.3.4 VyyerandLoverSdtlnds Whenit is diEcultto evaluate the magnetostatic energyexactly,it may oftenbesuëcienttohavea reliable estimate for its value.Anappremation is reliableonlywith a goodestimateof the may do,but a'a approvimation error involved. J.nprinciple,thebestestimateis obtainedwhentheexact
BASICOCROMAGMTICS'
150
valuecan beput between twobounds, esperzxllywhen thesetwobounds do not dlfer verymuchfromeachother.Somekime suc,h bounds are foundby a certltin t:1c,1: wlzich ksapplicable onlyto a particularproblem. However, 'Brown(2891 for mavetostaticenegycalculations, a rather hasdevised general methodfor fnding bothan upperboundanda lowerbound.J.f properlyused, theseboundsmaybesuhdentlyclosetogether, so that the exactvaluemaynoi be needed. Thee bounds will beswcfedhere,but theproos that they are indeeda lowerandan upperboundis diferent 1omthe one orisnally pr-ntv by Brown.Thelatterwas not very easy to followor to unders/-xnd. Let M betheactualdkstdbution for whickthe magnetostatic energy is to l)ecalculated, andlet H?bethetrue feld dueto t%u magnetization. LetHl = -V . t: bethefeld dueto some othevdistribution, whic.N will be specïedlater.Obviously, Ev >- Es = Sxt-
l , H:/.. 8x .u xpa.rk
-
-
H ,)z dr,
(7.3.41)
wherethe inequatityresultsfzomsubtraztiag an inteval whicbcannot bencgative,because the brzmlrets in the in*gran; ofthesquaze. Opeming usingGrsteqn(7.3.32) theneqn(7.3.27), aadomittingthe 'all space'whieh is impliedfromnow on for all theintegrals in thissection,
su -
sl
.n' d.r (2Hk Hl2) -
-
sl
dv. (B' 4,mM)Hkj g2y,q .
-
-
(7-3.42)
to eqn Thepazt of theintegralwhichcontna-ns Hk. B' is zero according that Note the proof of that equation rmuized oaly that (7.3.37). H) is a gradientof a potzmtalwhichis conthuousandregularat inflnity. It is not even necessazy that this poteatialis dueto any realmagnetization distribudon. Therefore, bywritiagthispotentialeelidtly andsubstituting i.n eqn(7.3.42) eqn(7.3.41)
su z su -
dp, /M.vlaz- sl /(v+)2
(7.3.43)
wherethefzrs'tineih ove,rthefromagneticbody(orbodias), andthe second integralîs over thewholespace. Thisretzlt provides a lowerboundto thecorrectmaaetostatic enerr Cv ofa givenmagnetization distribution M, in termsof an arbi-vy functîon of spaze:+. Theonlylimitationon tke arbitrar.g Goiceof + is that only it is coneuouseverywherw aadthat it is regularat inCnliy,because thœepropertieswere usedin theproofof eqn(7.3.43)A discontinuity of tàe dezivative is allowed, aadmay beintroduced anywîereHowever, it is not usuallysuEcientto havejusta lowerbound,whichmay becozrect
MAGNETOSTATIC BNERGY
but not useful.Afterall, a zero is alsoa lowerboundto the magnetostatic positiveaccording to eqn(7.3.32), but this lower enerr, whichis always bounddoesnot helpto solvemanyprèblems. A usefullowerboundtsone for whichCnis not verydxerentfromCu,whichis intuitivelyunderstood to be more lgelywhen41,is chosen to haveat leastsome ofthe features U. It shouldbenotedthat expected 1omtherealpotentialof theproblem, if 41,= U, the inequalityin eqn(7.3.43) becomes atl equuty,according to and (7.3.3$. Therefore, the bestchoice shouldalwaysbea eqns(7.3.26) 41, whichapproam 'matesjor at leastimitates,U. Thus,for evnmple, it somehowdoesnot seemrightto choose a function+ whichhasa discontinuous derivative insidetheferromagnetic body,even if sucha choice is allowed in prindple,am.d even thoughit hasnever beenprovedto bea wrongchoice. At anyrate, sucha choicehasnever beentriedin any of theapplications of thistheorem iu the literature,ms citedia (288j. In practicalapplications, Cu is not known,andit is impossible to determinehowgoodthe choiceof 41,is by checking whethersz is closeto Su. Thereforej a lowerboundby itselfdoesnot helpat all, andthe only criterionfor theuseftllressof 4 is whenan upperboundcan alsobefound that is not very diFerentfzomSz-Onlyin sucha case e--inone claimthat theexactenergyvalueCuis suhcientlywell deternzined, because it must .' !) bebetween thesetwo values. The importance ofBrown s bounds are thus in thecombinadon of 30thof them,andnot in eachof themby iiself. To obtalnan upperbound,a positiveintegralis addedto the true energy,Su) in theform 1 Cu f f's = Cu + B, 2 drt (7.3.44) 8* (B1 ) whereBz is a,narbitraryvectorialfunction ofspace.It can beseen1omthe proofof the relations usedin thisderivationthat it is suhdentto require that B: is contiauous everywhere, andthat V . Bz = 0. Asis thecase with .ï',thisB1 doesnot haveto beconnected with the realB' of theproblem, but it helpsif they are not too diferent.Substituting fl'omeqn (7.3.36), opening the brackets, andushgeqn(7.3.211, 1 2 - 2B1. l's = 2.mM.27 + (Rz+ 4rMjdr. (7.3.45) 8x gB1 According to eqn(7-3.37), for whicha11 it takesto assume(asmentioned is that Bz is continuous andthat its divergence is zezq above) I'M< En= 2rMs2y+ 1 Byc dr B1 .M dr, (7.3.46) 8,r wherethe last integralis ove,rthe ferromagnetic body,andthe one before it is over thewholespace.Asbefore,V'is the volumeoftheferromagnetic
152
BASICMICROMAGNETICS
body(orbodie). And,aqin thecaseof thelowerboundin eqn(7.3.43), the ixequality becomuan equalityif B: = B' dueto theactualmagnetization M. distributioa Bz = TheconstraintV . B1 = Ois enlrllyimplemented by càoosing V x A, in whichcxe thevedorpoteatialA is almostcompldely arbitram it isvezyeasyto takecare of therequircment of continuityin any because analyts.c model. lt is alwayspreferred to defnesomeadjustable paraïeters i.nboththescalarpotendal 'I' aadthevectorpoteatial A, andmnvlmleeàk aadminimîze SBwith respectto theseparameters. Thisl-Aniqueensure tkat thebestupperandlowe:bounds are obtainedfor anycNoxnfunctional formof thesefunctionsof spMe.With some htuition,or some luck,the cnoughto makeit unnecessaty to go upperaadlowerbotmds maybeclckse intothe Ompatations of theactualmagnetostatic enerr, andsomesuch cmseshavebeenreported(288J. A dferentcmsewi.llbegivenln section 10.5.1. H this section,integrals over theferromagnetic body(orbodie) aud ttegralsover the wholespacewere trp-qtelon an equalbGs, even using thesamesymbol for both-ln pmdicethereis averybigdiference between thae two integalswhenit comestzl numerical computations. Because of thelong-raage natureof themagnetostatk potentials, theintegration outsidetheferromagnetic bodyconverges andit isnecessm to use veryslowly, times the volume of the ferromagnet before the result can apprHmany matean integration to in6nity.It mustalways l)eboraein mindthat when two expresbions azeidentical mathEmatirnlly: aad e.g.as azeeqns(7.3-26) their computation shoddonly converge epenttt4ll: to the >me (7-3.32), nlzmerical rault for thesameproblem. lt doesztt?tmean that theytaketke Rxmetimeto compute the rx-laeresult.BeAuseof theslowcorvergence, sacha numericalintegration outsidetheferromagnet haqnevc beenconsideredpzactical5na=yof tke applicadons of this theore,m reporfe PM! so faz,with onlyone exception whiG will bediscussed in section11.3.4. Tncfmz!,thepotentialwas always takenmsa ftmctionat fo= for whichat leasttàecontributionto J(V+)2dr oz J B2zd'r from the m,rt outsidetke ferromagnet couldbe carriedout aqazytkal'ly. Moredetailsrltn befound in the references citedin (2881, and it can only beMdedthat thereis a certainsuggestion for a-rathergeneralnlnKsof Nnctions whic.heztn (290) beusedfor thispurpose, b0thfor the scalarpotential* aadfor thevector potentialA. 7.3.5 PlanarJ?ectangle It hmsakeadybeenmentioned in section6.3that theformalsolution ofeqn involves integrations whichrAn beveryrarelycarried out xnnlyti(6.3.48) cuy. Themainreasonis that thenllrneratoris a Tnndionofr' only,while thedenominator involves r - rJ. These expressions are rlsmcult to mix,even for rathersimplefunctions.
MAGNETOSTATX BNBRGY
153
i.:zparticularthecmseof a ferromagnetic bodyin theformof Consider prism,-'c %z i %-ù K y K b and-e %z K c. Thepoteatialdte to thevolume charge;namelytheîrst tntegralin eqn(6.3.V), can be wdtten in Cartesian coordinatums a
5
a
r
= '-JWS Lvoluma
..c
x
q.
x? . z/ *'.p? *'z') 4%a. M(x? œ q%l' + am @vz - + z, -
t'!'h.?s * xfa''1.'4'1a')
::7r'
(z z')2+ (# y')2+ (z ztjz
-.ô -.
-
-
-
'
dzzdyz dzJ.,
(72.47)
wherem is defnedin eqp(5.1.6). Intevatiagby partsjthefrst te= with with respect to the seœnd term withrespectto &?,etcuit is omzlox' XL bdweentke lt'mits-4, andd,,etcpcancel seentàat all theGmrusions the appropriate termsof thepotentialof thesurface ckarge, namelythesecozd iutegralin eqa (6.3.48). For tàe reGerwhohasnever t'ied this b'ndof exerdselI highlyrecommend followingthedetailsof the laatstatement, wàickis thebet wayto understand the meaning of thenormaln. At any rate, theresultis tàat the totalpotctial dueto bothsufaceandvolume cEarge is t)
c
&r(z, y, z)= el/k ..c
-:
e, -a
y', z')+ Ly ytjnhilz'tfnz'j + (z z')ma(z/, /, F) (z ,'zJ)mx(z/, ' 2 tr + + z')2)2/2 ( #')2 (z E@ ) # x dW d/ dz'. (7.3-48) x
-
-
-
--
-
-
-
If m is madeout of (rather htegralpowersof z', f andz', all the small) integrations in thisequationcan becnm-ed out analytically. Forprnztta'cally ànyotherfundionof thesevuablesit ksimpœdble to doanytldng analytic intoa unless themixturein thedenominator can Kmehow betm.nqformed productof functions of x andz', andso fortà. Nogeneral trazsformation of this sort ksknownfor thegeneral, threedjmensional Howeve,a generaltwmAormation integralin eqn (7.3.48). is knownfor the two-dimensional rmse, whem m doesnot depend cn z, whichcan beeitherbecausd thesnmpleLsa vezythin fhn , withc -/ 0, or because thesample is very longin one dîmension, andc --+ cx). H the two-dimendonal caseitis knownfromanyundergraduatetextbook thatthe potentiiof a unit charge is1og(Va)2, instead ofthethree-dimensional 1/r ()feqn (6-3.48). Repeating theforegoing întegratîon uscdin tàe derivation bypartsfor therectangle -4, K z K c, -5 K y K bleadsto
154
BASICMCROMAGNBTIG 6
*
U(m, &)= 2Ms -i
+ (v y'tmvlz', @ z')ru(z',&') :/) dm, ##, (z z , )a + Ly v,;c -
-
'
-.
-
-
.
(7.3.49)
H thisclmett is possible to usethewemuownLaplcetrxnxformj *
og ja.g/ j 1* = v'ltle-lm-m cœ((p (7.3.50) 0 @ F)2+ (y F)2 aadzewriteeqn (7.3.49) insidethe (andsîmllxrlyfor t:e secondterm), -
-
-
-
r--xngtei'athe form
G ''-
: ; -(Z...m).& yytgtj#l +. 'CN'2(3 AV)d
X e-(v-v#)z g#l
-
y
c,
pmjtzz/ljj -
-v)zg#t gzz Jj' (zl, #Jy-(T/ 'NV ' .
y
mvtz) , ylj (g*aogj.;
TH expression was ori/nally derived astheliml'tk -> 0of a periodic (291) z-depeadence of theformcostkz), directlyfzomtheA:11 three-dimensional potentialin mn (7.3.V). It shouldbenotedthat brpztMng theintegrals ft)r a?> z andz' < z taald m'mllxrly 'value for yt)is dueto theabsolute in mn is validonlyfor the a) that the resultpresented ia mn (7.3.51) (7.3.50), poteadalinddetherectangle. If dther z or ?/Lsoutsidetheferromagnetic rectangle, tkis breakngdowninto two integralshasto be modifed,and HiFerentexwessioas haveto beîtted according to thequadr=toqtdde tke rectangle for whichthe potentsal is calnnln+M . These distiactions are not usuallynecœrarsbecause the potentialin therectxangle, -c S tz %a and-5 S y S b,is snmdentfor calculatingthemagnetostatîc enera. Repladng a double integalbya tripleonemaynotsea a goodst of eqn(7.3.51) ()#ereqn(7.3.49) at a frzt glance. However, theadvanvge ksthat theformercontainstrigonometzic andexponential fanctionswhich are readilyupressed msprodncts, namelya,functionof zl timesa ftmction of z, andsimilrly for y and6 In a productone ishighlylikelyto beable to performbotkîntegrations analydcally, for a widevarietyof hncdons m, whichcannotbe haadled in the formwhichcoatainsz - z? in eqn For the maaetostaticenerr in two dimensions thereis a foar(7.3.49). foldintegration, whichis transformedherekztoa fve-foidone. But if four analytically, the nnmeric.al out ofthefve caa beperfozmed integration of . the remiaing 11z*g1-a2 over t is muchsimplerthan a four-foldnumcical founduseftzl in thecalculation ineration.rnis ttenique hasiadeedbeeu . oî several casœ,dtedin (288)
MAGNETOSTATIC ENERGY
l55
Thesubsdtution in theenerr will only be demonstraM herûfor the particularcaseof a maRetization whichdoesnot depend on y. Ia thiscae, aftercarryingout thûintûçationover yl in eqn(7.3.51),
Dk@, #)= Mfs
:-(:-v): - :-(y+v)t
x
2
-.
'cutz?le-(z-xz)tdzt
mc (z,)e-(xr-m)v aqy
r
&' xs((z z')t)mv@') -
1
0
siatsfl + 2cosLyt) t -. -
a
(7.3.52)
cg.
According to eqms(7.3.26) and(6.1.2)j tite magnetostatic enerc of sucha one-dHensional magnetization structurein a rectangle is SM=
1
j.
1 M . TU dS= -Ms 2
b
*
t3rJl= 8Um dzdw a.@)dz + mv@) % (7.3-53)
-,
-.
-
Substituting fzomeqn(7.3.52), aad Du= 2j%f.
œ'
2
-z
.3
tz
x
(btj
-
J
2 , zmstrcl t Emxtzlq
u.
' :. .n-zbt (z')e Iz. a Iz gm, a,g+ t
'nzz r
-@
X
sia2
over y, g out theintegrations
-
c
-.
j' mv(z')c.ltz
-
.-.o
rzzs. z % )
t
a. az'tfzj
z/l4
(7.3.54)
Thiseoressioncan besimplifedbynotingthat. =
0
cosltzz')à) -
t
,
jl
-
.-zyf (jj e
;
*
.z
c
sinztôt) e-jzwxyjt a; j
(ya.55)
because eachofthee ecpressions can befoundin tablesof inteval transformsas beingequalto 1
i' log 1+
452
@ z')2 -
.
lt is nöt adeableto use the lattûr expresionbdoreiategrating ove,r andz' for specïcmagnetization covgurations. Howcxver, eqn (7.3.55) allowscombining thetwo expressions together. By subsdtuting it andthe knownintagral z
156
BASICMICROMAGNETICS
1 sia2@)df 'iQ=
=
t2
gb
(7.3.56)
in eqa(7.3.54), oae obtains
X 1 (5-256 C' CE'.'ls':. = a j 2:%f g -a. -
-
J
.r r z f z làq-m.I,tJrlrnp@ crslkz ) -
-.
J*
&. dz(It+ 2r5 (mz@))2 rutzlms (z'))dz' (7.3.57)
The azvanuge of tikisiateaal over oae witk z - z/ iasidea logarithm shonldl)equiteobvions. Thiserpressioa will beusedin sectioa8.1for the ealenlxtion domainwalls of the mMnetostatic energyof one-dimemsîonal in thia flmq.
8 ENERGYMINIOZATION 8.1 Bloch and Ndel Wnllq Themostpopularcaseof minimizingall threeenergyterms(namely, the exchange, tke uisotropy andthemagneiostatic is the studyof eneagies) thestntdure andenerr of thewall between antiparazel domains in thin ilms. TheIzandau andT'A'RM#,z iz gecion7.2assume an soludondesczibed lnBn-&ta cnrstal,in whichit kspossible to get awaywith no magnetostatic If the crystalis lnite, this wallstrudure continsa enerr contribzltion. non-xro normalYmponentof themagnetization on thesurhce,andthe smvfnne cbargemust taken1to account.Moreover, ensuing be enerr ofthe can NH Z'eI:O nlrpadyin 1955that theenerr of thissufMecharge than betx largein the caseof verythin flms,whichhavemore suzface volume.FbrtMs zeason,N&.Isuggested a dferentstructurefor thewall in vet'y thin fzlms,in whichthesurfacechaueis replaced by a volume that thetotal enerr couldindeedbereduced by such Garge,audshowed a trxndormatkon. of a wallstructureia thin Elmswill bedœcibedherefor Thisproblem showa in F$g. is infnitain b0ththez- and thegeometry 8.1.A platewltic,h domxins z-drectkons hasa thckness 25in thetll-dz'wrtaon. Twoautipxrallel havetheirmagnethation along+z, whichis alsoassume to bea.nemsy ais for a unieal anisotzopy, aadthewa11 betwenthe,moccupies there#on -a S z K a. Thewall is Msumed, katlu-Ksection,to beone-dimensional, namelym is assumed to bea functionof z only.
F
b
'-'b
>X
@Z ea
a
F1G-8.1. Thegeometry of a domainwallia thin îlms.
l58
ENERGY MIMMIZATION
Oneway to approach this proble.m is to n- the solutionfor thebnlk wall structm.ein eqn (7.2.17), andcalculateits maRctostaticenerafor the'Oseof a fnite b shou ia Fig.8.1. ()f coarse,it shouldbetakeninto atcotmttVt thebMllrMrudaremaybemodifedfora fnite thicHess, and it is betterto havea modelwith one or more paramcters andrnlnsm-tz,m thetotal enerawithrespectto thesepnmmeters. Themodelshouldonly tendto the structureof eqn(7.2.17) in the Brnlt b .-> x. However, the calculation ofthiseneratel'mfor tkisparticnlnm wallstnlcturee%nonlybe doneby a Nlntvely complicted(292J numez'ical comptttation.Therefore, two methods havebeenusedfor resolvingthis dllcultjr. In one method cer-x-n approimadozus for the maRetostaticenera are introduced, and theothermethod usesflmctional formsforwhiG themMnetostatic enerr rltn be calculated aualyticallyj andwhichappwxjmate for a eqn(7-2.1.7) eAn befoundin theliterature large5.Examplœ of 170th methods dtedin aa.d(2923. lgxqâ HereI chooseto mustratethe problemby one of the modelsof the second type.lt was fa.s'tpropœed byDietzeandThomasin a pape cited ia (288) and(292), th= e-xtended to more adjustable parameters byothers. The orîgînatpaperis i.n Germaa,but.it is not imporunéfor thereHe.r to look it up, because the calculation of themaRetostaticenergygivea ltereusesa completely diferentmethod fromtheone #ven there.Onlythe resultis thesame. This modelassumesthat tàez- andv-components of thelmlt vectorm are 2 cos('.i
= e sir/ mvtz) : +s
q = mwtzl tzo+ ''z;a , .
,
(8-:t.T)
wàereq is an adjustable determjnes the wall paraeter, wllichœsentially width.Here4ksaaotherparameterwhichis introduced in orderto treat mnlrfwmy = 0)and4 = xI2(which togetherthe cases4 = 0 (which makes mz = 0).nese cxq- were studied separately in theoenalpaper of DietzeaadThomas, as wellin all othermodels of a one-dimeasional wall-It shouldbenotedthat in thc case4 = x/2thevolumecbxrgein the wallvaaishes, but thereis a surface chargeon v = +5. Thiscmsehasbeen #venthe name of the BWhvpcll.Onthe otherhand,in thecase 4 = 0 thereis a volumeeàarge in the walkandno sttrface chaœge. This caseLs exlledtheN&l =cll. Foranyvalueof $,thedefin-ttion of theunit vectorm is completHby the requkements that m2> + m2M+ a2z; = lj andthat at theendG thewall, wherethedomains Fig.8.1). Heace, be#n,mzt+xl= +1 (see 2ç2+ z2 . (8.1.2) c cxn becalenlnkzvl Themaaetostaticenerr ofthis wallconfguration 9om m
= 'ma(z)
z + :rz
BLocH ANo NàBL wALLS
159
for theNrticularcasea = x, whichis impliedbyeqns(8.1.1) eqn(7.3.57) aud(8.1.2). Forthektegrationsover z andWit ksonlynecessary to use 'x' -x
E'*
statzj) = 0: 2 + z2 &
q
-x
costràl gz=
'r -. e-.
2 + ZQ
(8.1.3)
,
g
ç
and 4
-
J--Lq,aazzlz q
'*
-
T -2
'x'
z qzz + ca'dan -q e + z2
Subsdtuting a1ltheserodxuonsin mn pernn't lengthin thez-drectionis
-
--
u,: (8.1.4) 2 '
the magnetostatic enezgy (7-3.57), ço .-24:
J
su = zlrplMszçcosz 4+ 2x2Ms2g2(sin2 $ - cos2$jJ0
*
j
dt. (1 c-2&) -
(8.1.5)
The raaining integradonover t is a wemuownLaplacetrausform, to bewHttenin a.aanalytic whicàallows thewholeexpression closed form. Howevery in thestudyofdomainwallsit is custome to dealwith thewall enera perunit wall arewdenotedbxgy, ratherthauwitheperrper unit walllemgth. la thecaseofFig.8.1,it Lsnecessary to diddetke FaEenergy perunitlengthby the61mthickness, 2%to obtaintheeaeraperunit wall area. Theefore, >=
SM= .,2.v,2qcozz 4+ 25
-b -jQ (sin24cos24)1% 1+ -
q
1 (8.1.6) .
ln particular,for theBlochwa,llwit: 4 = x/2,thisenerr is proportîonal 'k>(:X)log(1 + 5/:),wkichtendsto zero for b -.+ x, aadrtmuà-nn im'tm for 5 -+ 0. For the NIeIwallzwit,h$ = 0, the menetostaticGergy is proportional to 1 - (:/$1og(1 + bjqj,whic.btendsto zero for b --y 0. and remainsfnite for b -+ x. It Lsthusqualitativelyclpxrthat if thereare no othertypesof wn.llq,the NV 5vall shouldest for thin Slms(h which the enerr of a surface càalzekshrger thanthat of a volumechaœge) , and theBlocàwallshouldtakeover for thic.kflmq,for whichtheenergyof a snrfv- charge becomusmaller th= that of a volnmecharge. Theother eneraterms to be considered aTetlle exc%xnge and the Ysotropy.Theenerg densityfor theformeris #venby e1n(7.1.4), whkh becomes, 0e.r substltuttgFomeqns(8.1.1) and(8.1-2) azdcazrying out the diferentiadons with respet to z, 1
qzu= -C 2
dmw .
dz
+
dmu
&
+
dm.z d:r
=
2Cq z2.I2(, 29z + z a: , + Lq2 ) (8. 1..7)
BNERGY MINIMIZATION
160
whereC is the exchange constaqtdefnedin section7.1.Notethat thks Apression is independent of the parameter $, whichwas enteredin the fo= sin24 + cos24. Theintegrationis obvious,andthe (.= e energy perunit wallarea of thismodelis
%x 1 5 'yox= - 2à = -25 -s
x -x
g'c = -(W2 m6dzdy c
(8.1.8)
I).
Aasnmnsng that theanisotropy is uniax-ialj whosee%ya'dsksparalleltp
zbtheanlsotropy is #venbyeqn(5.1.7)9 whicE will beused enera density herefor thecaseof a negzgible Xa.Forthepartknlnm consguration in eqn
thiseaerr densityis (8.1.1) 'tpu=
q4 (qc + :nz )z
2 ..h- 2 = A'z Xh lmz ?'??,vl
(8.1.9)
SuVtitutingin eqn(5.1.10), theanîsotropy enerUper unitwall area is w
?lm= 1 = 26 23 -,
=
A'qK: .
(8.1.10)
v?u&dv- = v
-
7
-w
Aswas thecmsewiththeexchauge tprrn, thisexprvion doesnotdepend minimleingthe total wallenerr with respKt to $ is $. Therdore, Mhieved by ' ' ' ' themagnetostatic term only.Andsince*'yM/:4 is proportional to sin4cœ in 4,thereare onlythetwo solutionsmendoned tàefore&ing:the Blochwall,cos$ = 0, whickàasa sur.far,e charge but no volumechargeandwhose totalwallenerr per unit wallarea is on
':&!=
vcc
x + (./j 1)+ OJt', , -
cz-vzzz'' b s log 1+ ) q -
(8.1.11)
,
au.dtheNéelwall,sin$ = 0, whicAhasa vohmechargebut no surface cbn.rge andwhose total wv energyper unit wallarea is ..)x=
rrC
q
: : sg (V%1zI + Jr....g Si + c c kzz, ,q y o 2 -
.
) .y.( t.l
.
(ao1-yz ;
Note that the exchaqge enerr term is trying to makethe wallwidth, q, as largemsit can, whilethe Ysotropyenerr term is tryingto makeq ms smazas it cltn . Thistendency is more general thanthepartic'ular model discussed here,audf'kstàegeneml,qualitativeiscussionîn section6.2.1. Theroleof tàe ma&eutatic enerr term is lessobvious because of the dependence 2è.TMSfeatureis alsorathertypical, oa theflm tMclmess, in that the magaetostatic and energyterm is usuatly yttitecomplicatM,
BLocHANDNtBbwM,l,s
- .
l61
it is not easyto s- its tendency andpreferences. J.nthe presentcmse,the onlyobvious featureLsthat 7Mprdersa largeqt if bIqis constaat.But tlis statementis not helpfulbecause b1qis not a constant.Evenin tids Mmplecase, theonlywayto fnd out the role of efu is to ml'm'rnsze the total watlenerr for deerentvaluesof Ms andtry to seethe tendency. nere is no mMneticfeld in thiscalculation, whic,h is justmeantto fnd thestaticstructureof a wallin zero appliedEeld.It is not dilcult to add a.ninlraction with a feld to this model) but the mainefectof applyhga feld is to makethewallmovesomewhere else,whichis a diferentproblem: Theparxmeterq is determined by minimizingthe wallenergyin either or eqn(8.1.12). It is nrhieved byequatingto zero the derivative c'qn(8.1.11) of thewall enera with respectto q, whicxlen'qto the transrvmdental equation C (H n' q
1)=
AK+ A.u,z2-1 1og + ! 2 b q
(1 )
-
q q+ s
(8.1-13)
,
for theBlochwu, andto
C
(H 'n'q
-
1 + 1)= X-.-!2 g'u:
+ + q 1log(1 q q+ i -9)
-
,
(8.1.14)
for theN&l wall.Theseequations haveto besolvedfor q as a faacdonof b,andthentheemc'pv r-qn l)ecalculated fromGm(8.1.11) or mn (8.1.12)j by substituthgthecomputed q. Thesolutionoftheseequations is straightforwaxd onlyin thelimit b-> O for the Niel wall,or b -.+ (x) for the'Blochwall.ln b0ththOecasesthe maaetostaticenergyOntributionvanishes, andthesolutionof dthe,reqn or ks (8.1.13)eqn(8-1-14) q=
2c
v(W2 1). .tAl
(8.1.15)
-
.
Substituting i'amn (8-1.11) or eqn(8.1.12), hm,m = nm %
=
c
2crz(X2 1). -
(8.1.1 6)
Thiswall energyis 'a'tx/i 1)/2= 1.011timestheenera of theLandau andLifshitzwall,eqn(7.2.18), whichhasb-n obtained as a solution ofthe Eulerewationof the problem. lt mpAnsthat eqn(7.2.18) is theabsolute minimum for theenerprofall possible one-dimensional wv s'trucwturO in an klnite 5lmthiclmess. A diferemce of only1%fromthisabsolute mYmum, and/or any wal'ue o.ft?Iephysicalpcrcmeïer4,certinly makesthepre-t modela very goodapprozmation, at leastfor verythick Kms.Also,the
162
ENERGY YY/AAON
20
10
1$'
! l
--'
i ! ï Nëel S N
15 '
F a
tr A, o iw 121 = .
1 '
7 ...
''v..x.
x
--.
..
O Cl
-'.x
N
7 r
rn
.-*
w
.-.
..-.
...
..
..-
.-.
<'
-
**
-
4
jc 5
, njoaty
-!
.> ox-w
'-'<
5 q rr
u: ;.
C2
w
pw
gj tzç > u
I
c)
q
=:ö
.Z
j
>
k !
p. ()
-
I
0
I
I
.
I
100
.
..
.
,
11
i.
2OO
.
,.
I
3O0
Pilm thickness, 26 (nm) FIG.8.2. ThedomaHwallwidth,q (dœshu aademergy curvœl, perunit wallaremJ, for BlochaadN&I wallsiu thin permalloy S=s. wall widthwhiehcaa bedeèned by q in eqn (8.1.16) is not signKexntly dxerentfromthe widthobtized1omeqn(7.2.17). Foranyfnite Glmthintmœs and (8.1.14) haveto besolved >ns (8.1.13) nnmerically, aada nurneric,al solutioncan onlybe performed for sptmiic valuœof the physical parametersAs aa Awmple,I choœe theparameters êlmq,namely usuallyusediu thestudyof pqrrnatloy C = 2x 10-6erg/cj Kï = 10Derg/cm3, and Ms = 800emu. For thœeGuesj the compu%d valuœof thewall widthparamde,r line plottedia Fig. q aze thedashed 8.2as fnnctionsof thefll= thieWess, 2è.Onceq isHownforeitherofthœe wallsjits mlue rltm besubstituted ia eqn(8.1-11) or (8.1.12), forcompnting tàe wallene-rgy unit wall oz respectivdy. The per a2%'ys erx enerryvalues thuscomputed are plottedmsthe6111 cuzvesin Fig.8.2. Deerentone-dimen/onal models were publisked, aadtheyatl yielded for the >me valuesof thephysieal parameters. One..w very Kt'=t'larzesults) of the obvloustheoreticalconclus-ions Fom Fig. 8-2,whie,hhasalready in theforeming,îs that one shouldexpectN&l ben statedqualitatively wallsin vezytkin Sms,aadthe,nat a certainflm thinkncsthereshould
BLocHAxo N/;>:L wxtrs
l63
bea shao tmndtionto Blochwalls.Thissharptrusitions did not s-rn triedto workout a cerœnmted mallaround right,andseveral workers tke transitionbe>eentàe Nlel andtàe Blochwallre#onsNoneof tàese models worked, andtheya11collapsed in the:same way that tke present modelin eqn(8.1-1) did.In tàe beoning, thismodelcontained an Gtra parameter, wldreh could kave values for wàic.k the wall is partly N&l $, andpartlyBloch.However, tke enerr minimivnàion retained onlytàe two Yues Oandrj2, anddid not allowaay mixlng.Tàesame àappened for wbbcà Mybodytzied.Latertherewas a general proofg%lo) that anymodel thesamemustàappento anyone-dimKsional model,andtherec4.n beno mixedwall in one ds=ension. 'I'MstkYr= doesnot nerxqm'lyinvalidate certainsemi-quantitative aboutthepossibilityofa mixet arguments (293) but not strictlyonmdimensîonak wG. Experlmen#mlly, 't'àetransidon 9oma Nlel to a Blocàwallls not sharp. It is prwmlble to disdnguisà entallybetween tke wa11 structurein tMn flms,identledas a Néelwall,andthewa11 structurein tkic.kfll'rns(or tàe re#ons in bulkmaterials), identfedas a Blochwall.Howevery between whereone or tke otheris observed, tàereLsa ceexin reson of Alnathicknessœin wàicàa tàirdtypeofwallis obsened. Thisthirdtype,whichhas beennamedtàe cm=-tiewalbàms(52, a verycomplicated structure. 294) It is defaitelynot a one-dimensional structure,b6x:a,11it àasan obvious periodicii'y in thez-direction ofFig.8-1.Tàereàavebeenseveral attempts 296, 297, to work out a theoretiv modeel for tàe magneœation (295, 2981 xtisfactory structurein thiscross-tîewall, butnone ofthemcouldproduce z'e-cnlts. Morevent computations tàe madea largeadmacetowards (299) understanding of thiswallstrudure,andcompared hvourably(3œ) wità ex-periment. However, theyhavenot reallysolvedtàis problem comple*ly, andthefne detailsof thecross-tie wallstrudureare not verywellkztown yet.
TàedetxilK oftàeN&,Iwa11 structureare not ve& Fe.IIHowneither.In 1965,Browntriedto avoidthechoice tàe largenumber oftàe tàenamong efsiing models fortheBlochandN:elwalts.Hetàougàttàat àeconldfnd thestructurewitk thelowestpossible zniaimization 0e.1v by a nnrnerîcal of all mssibleone-dimensional co rations,usiuga method whichwill bedecribedin Gapter11.HeandMsstudct, Leonte, solvedE301) this proble,m for the Blochwall in pe=nlloy Xlas, but tàey couldnot fnd tàe computations sucha structurefor tàeNGIwall,because justdid not btturnedoutthat the Néelwallàasa verylong'tG', wàicbkeeps converge. g witk fartàeriteradons. LaterOmputations, reviewed in (295j, foundvariousadhocsolutions fortàeproblemofcmvergence oftàe tail, buttàesesolutions onlyproduce a converglng result.Tàcydo not necœsxrllysolvethepàysicalproblem, andit is not cleazat all if theseconverog solutions Rtua'llypresenta pàysically validwallstructuze-In tàe îrst placejthenecessity for special
164
BNERGY MINMZATION
which tricksbyitselfshouldberegarded msa smptom of a deeper problem, doesaot goawaywh%the emptomis removed. Secondly) detailsof the
computed wazstructuredonot quiteagree(302) with expeziment. Thirdly, the wholeone-dimensional approach ls bmsed on theassnmption thatmg is zero everywheze, eventhoughthemagneticîeld in this dirrtion,8Uj%, is not zero, whic.k somehow doesnot soundright,as noted(29% already, 295) togethc wit,hsome otherdetails.Besîdes, thereis too big a diference between the tailsobtained for thesamephysical parameters, witha slightly dieerent flm thickness, as in curves c andbia Fig.3 of (3031, andit looks theora (304) according strangeat best.Ontop ofthat, thereis a general to wkic,halIone-dimensionk magnetization structuroare unstable. It is quitepnqm-ble that thesedl-lcultiesare not serious,aadai least thereis no expedmental proofthat something is baniœlly or theoretical wrongwiththetheozyoftheonedimensional NH walt.Thetheore,m about instabihty of a1lone-dimendonal structureswas neve,rtnkm veryseriously by anybody,not even by theauthorsof the originalpaper.Forthe particularcase of tke LandauandLifshi't,z one-d'zvnensional wall,theywrote tHt it tderiveits justifcation FomShree-dimensional considerations (K4) implidtin the initial statementof the formallyone-dlmensionat problem'. Theybazlonlya very mild critldsmof otherwall Gculations.On p. 93 of his book(1<j, Brownstill justifMtheLandauandLifshitzwallcalculations, but was more ex-plicit in statingthat the calculadons of walls in thin flms are essentially invalidated by this theorem. He wrotethat theyneeéed jnstiâcation, withoutwlzicàtheyfmustberegarded msmere guesses'. Hoèever, thisGtidsm was Just Everybody elsein those Wored. daysregarded thistheoremas a mere formalityanda nuisance, andmost peoplethtnkso even today.Theyconsider it az sometbing equivalent to the mathematîcal proofthat magnetism czmnotHst iu two dimensioas, wkiclzdoesnot preventa theoretical studyof two-dimendoaal systems, andita comparison with experiments on nprly two-dMensional umplew msdiscussed in section4.5.Theybelieve that theseone-dimensional Nël walls,alooughformallywrong,aze a vezygoodapprozmaiion for thereal threedMensional wallstrudure-Therefore, no serioasattempt%Meve.r beenmadeto checkthispoint)andall that is knownaboutNG.Iwallshms not changed sincethe review(2951 whichlistedthe bestone-dimenm'onal modelsthat werc all geaernlszations of eqn(8.1.1) with.moreparameters. to allowmv' to bea fttnctionofyt instèad of Theresultsofaa attempt(294 'ne mostxcent numerical computations just0,were notveryencoura#ag. nlm start with aa c priod assumpiion onlyon z of dependence (299 ! 302) of Ftg.8.1. tn view of all tke indications mentioned here,EE donot consider this approach to besatisfadozy. Althoughthereis no clear-cutevidence forit, the solutionmaybein allowinganotherdimensson. Since the strudureof wallsinvolves whichchangaperiodicazly in z of theGoss-tie a handedness
TWO-DIMBNSIONAL WALLS
l65
Fig. 8.1,a real Néelwallmay alsoitavethis periodidty.This calculation hasnot beentriedyet. 8.2 Two-aimensionalWalls Thetheoremmentioned in theprevious section, abouttheinstabilityof all one-dimensional ferromaaetic coafguradons, alsoapplies, in principle,to thecaseoftheBlochwa11. Moreover, whilethepossibility of a-dependeace statedin theprevious section is onlya spemklation fortheNéelwall,thereis ebxnge strongexperimental evidence 305,306,307) that suchapedodic (52, of thehandedness dœse-rutin Bloc.hwalls,eve.nin bnllrœystals. There that this periodic change is alsoa ratherconvincing argument(295, 308) reduœs thewallenergy,at leastwithrespectto theonmdlmensional Bloch wall.Still,the CFeCI of thisz-dependence on thewallenerr, andon its structurein theothe dimeasions, hasnot beenfu'tlyinvestigated yet. The whichhasnever beeajustledin any way,is that the usualassumptionl z-dependence îs a minor perturbaûon, whkhOectsonlya smallpart of a longwall,audeltn beignored withoutmakinga sezious mistake. However, for the Blochwall therewas alsoa rathercommon fraollng that tkeremust a wa.yto reducethe magnetostatic enersyby allowinga vaziation of themaaeœationalongy of Fîg.8.1.Brownin particularuscd tkis idea,but neitherhenor anybody elsehada to goaroundadvertksing goodmoddto try it on. Thefrst published suggestion in was (dted (2952) sclzeme a perturbation of the one-dimensional wall,whichhasnever been walls,wbich actuallycarried out. Thentherewere obsmatiomq of covzzled Alms,separated are thewallsîn a sample madeof two fcromagnetic by a thînlayerof a non-magxetk materbl. Therekqa strongmagnetostatîc interaction,eectingcertahexperimental reqlts, betwœna wa11 in the to is Justaboveone in the lowc layer.Somerderencœ upperlayerwllic,h bothexperiments andtheoryare givenin g295), butthe detnshare outside the seopecf thîsbook.It is suEdentto mentionhe.rethat the theozyof this phenomenon models in whichthe magnetization usd two-dsmensional ia thewxllqwa: a ftmctionofb0thz andy. Thepurp- was to formclosed Joöp.v ofthemagnetîzation vectoz,whiclz donot havea volumecbarge,and to hit thesurfafes at smallaagles, thusredudngthe surfRenhntge. lt thenoccurred to methat thesnmemodel,in the limit ofthethiekmess oftheseparating layertendingto zero, ynn.ybeusedfor the wallstntcture i.aone flm. Theonlydiference between à,single wall anda pair ofcoupled wallsis that in the latterit is prv-ble to drawclosedloopswhose radius shrlnlrstozeroat thecenta where thereisno ferromagnetic matczial. Such mall-radiusloopsinvolvea very largeexchange energyin a singlelayer, whose eowtre is xlg.nferromagnetic. 1solved thisdiEcultyby deêning a small transitionregionat thewallcentre,Ic;l< zo, in whichthemagnetizatîon changed more gradually thanin thecoupled walls,thusavoidingthelarge excAange Tbis zn was left as a withrespectto whichthe parameter eaer&.
ENERGY MTXIZATION
166
Two more adjastable pnmvneters wea'esuae enezr was minirnTzed. (:*9j,butnever tried. e.a,lly: Splvn-: for thegeometryof Fig.8.1themodel(309) %sumed that for IzI< zn, Tllx =
-
mz
sin
=
X# N)
Sm
*7
-
zzo
m. = COS
?
cos
rcz
22c
c.
(%; 2à j
X-F 25 ,
( )
(8.2-17)
whilefor lz1> z(b mz = mv =
zn.
=
sin (Izr zoj gla, (:!J?) j jzzjsech txnh cos (IzI zaj gj(Iz$zclj gsm (-7j) (8.2.48) c.c .--jzj (w* + seehigwX (IzI zolj (Izl zpj (-0 25) z ttaaip -secz
-
,
-
-
,
-
-
.
Notethat . Thismodel obeystheconstraint 'm,Z+ m,2+ I F
= 1 zn,y
(8.2.19)
everywhere. Themagneœadon is condnuous everzwherc, includingat I = ézo. = * It represents a wallh thesensethat mz +1 forz = +x* Thereis no suzface charge, becusevd,./= 0 for y = ::E:è, but thereis ' a volume Garge.Thus,this modeldoe not goalongwitNthe rule arguedin sedion6.3:acmrdjng to whicha xmrfltcechargeshould be preferred over a vobme e in bulkmaterials. Thestructureofthiswallmodelksshownin.Fig.8.3,fortNeparticular cae 61mwhosethickneuis 2000l., with thevalueof zo wkicll of a permalloy rniminnl'ze,s the emerg.g for thesepartictïlxrparameters. h thisfkgure, only m. andrz?,vare plottM. Thecomponent ma is perpendiciarto theplaae is largewherethe sizeof tkeplottedarrows of theplot,aadits magnitude is smal),andviceversa. Theortnal publkation(309) of this modeldidnot containthis fgttz'e: because titismethodofplottingmagnetization structuro wasonlyilwented later:in thethesisof Leonte.It shows is decreased howthevolumecharge by formingnpxrlydtred loops,in whicàthe headof eackarrow nearly followsthetail of the one beforeit. ThksHndof magaetl-don structure *
$'e''$'e' !' TWO-DIMENSIONAL WALLS 1 4 t t z .' ,, ,. .- I 1 p /' J .e ,' .e ... ... l l l z' z z e .' .... ... l l i I : g' # z' .- ...
l l l l j l ) / I1l I
167
x x h : # 4 , ... %.. w x h. h v $ ! ! I - - ..w .% x q. hk & l t I ..- ... .h, .x x. x A N l ! f / z z .e' .e. ... - .-. x x. x 's N ! î t # .' ,.' /' z .e, - - ... .... w x x N. l I # / /' z z ,,e .e. ... ..- .w x N h. h. l 7 z z .' ..- - -u. x x sk N h ! / z ,' e .e. - '-- x x h' ' .. 1 i ?' '$. t --......-= ...- o-.t.-1-e -
y
..
! !. $ I f ï l 1 ! t t t t ! 1@
l 1l l l l)iI t l JI l l .-..1. -L..).--1-.-l--.2--I--' -1--1--1-..1J--t-rIt$hNNNxx----zz,//Jll zxalyqkxwxxv-xzz//?,! ).. . liïhk%uNx----zz////,! x . ... ... .u .. . .. a- n.- - - r -j- -t -(.. ..j j **jevj- *q.j-( -( j p *(e..'j. wt jl r l t T ï k'. . . - - ' ' , J ? l l I t 1 '.. h. -'e e .' ,' / 1 k $ ï'$ ï 1 ! t l t1 .k % w - .-e .,' ' r ! ? ? 1 @ l ) ï 'k.N N t s. -.- - - .-- ,,' I l ï ï N 'k x I l $ '$ '$ N ''. N -.. -) 1 i l i -
-'- .'' t $ hkN 'x N NhN. -- -'' '-- .,' $ ï N N N x 'hs-... .w - ..- ,,' i h N N N %.'h 'x ... ..p. .,e ..' I I . N l x. w h. .. *. ,. . l A Ai % h %. h. .h. .. .@.* ...... -
-
zN.apca 2
z' ! t / t z' t t l ! e' .//' ' /' / ? f e' e' ./' z / / f .e' z .,' ..'
l 1 !
t
.e ,: #' z : # l I . 1 e e / I z p .r .e' a 2 # I .
.
lx Flc. 8.3. Theassumed structureof theflrs'ttwo-dimensional domainwall ' in permalloyEl=s msdescribed by eqns(8.2.18) and(8.2.19). is preferredby the magnetosutic work wlkichmust energy,but involves be doneagainsttheexchange to enera, whichprefersthemagnetization bealigned.It is especially notedin the fgurethat if theregionwith zo Lsremoved, a circularvortex with a very smallradiusis formedat the centre,whichis betteravoided because it involvœa very largeexchange of this extrakansitionregionksan artifdal, ad enera. Theintroduction Jztpc solutionoriginatingfrom the adoptionof a modelfor doublewalls, wkthno exchange at the centre.Thephysical systemcan fnd betterways to avoidthis largeexchange at thecentre. The ex and anisokopyener#es of this modelwere calculated Themagnetostatic analytically. term was expressed as a oneenera (309) dimensional inteval, whichwouldbetrivial to computenowadays. However, computersin those dayswere not whattheyare now, andinsteadof computingthisintegral,it vxks onlyproved that theterm whic.h contaîned it was nenativeTherefore, bydroppîng that termthemagnetosVtic energy was increased andthetotzal wallenerprthuscalcuhted was an 'apper b/und to the wall energywhichcan be obtained by sucha wa!lstructure.Such an upper bound was adequate to demonstrate the necessîty of this second dimension, because even theupperboundfor thiswallenera was already smallerthanthecomputed possible considerably lowcwst enera for a g301)
MMMWATION ENBRGY
168
onedimensional wall. Ia a way)thisdemonstration was a waste,because by thetimeR was published LaBontewaz already concluding hisdoctoraltbuis, in whiehhe Tn'-m-tdeveloped a method(tobe desebedin ehapter11)for numerical miem.tion of thetotal wallenerc,composed of the exchange, auisotropy, aadmagnetostadc terms,of two-dt-melsional magnetization condgtzrations. Hecomputed thestrudureandenera of twœdt-menional wallsbythisnumericalminîmization, whichwas muc.h bettertba.nthiscrudemMel-The olly usefnlness ofthemodelwas thatit gaveHubertthe idea(248) to constructtwoemensional *a11skucture withzezo magnetostatic He energy. introduced theconstraints thatmg = Ooa y = HzàofFig.8.1arltlthat num amv +=0 dz oy
(8.2.20)
evezywhere. 'nese conditions were Kforcedby choosing a scalaz function = = with .A const on +b, and defning the components of m by A@, y), y ru
=
tz?.4@,:) mv = aA>,y) , , %
t-s
(a a.al) -
matters, withm,z beingdeîned bytheconstrintofeqn(8.2.1S). Tosimplià Hubert2248, ckose a fundional form for which eertain 24% X@,:), containedcertainadlustable Thœe fundionswereeveûtually defned htnctions. numerically fz'ozpoiatto pointdadngthe enerr minimization process. Forhisdoctoralthois,lmRnnte solved theproblem oftheBlochwalli.n permalloyflmq, butat thattimehewasstillusingsymmetry considezations to reducethe computation time.Hc actuallycomputed only the quarter z > 0 andy > 0 of the equivalent of Fig. 8.3,assmming that the rest of thewallcan beobtained by Gklngthe m'lrrfar imagesof this quarter, whichLsthe same mssnmpdon usedto makethemodelskownizzFig. 8.3. However, whenhegraduated, andwentto workfor CDCcompanshehad unli=itedcomputertimeat Msdisposal, whichwas umlsmnlin thosedays. Tberefore, heallowed thecomputerto lookatall fourquartersçtîthewall, aadfound(310) tha.tthe wall enerr couldbe vezymuckreduced by a structurewllie,à is rptësymmekic alongz. Whenviewedfzomthedomaia on it,sright',the wall lxks deerentiaa whenviewed fzomthe domain on its left.Thisresultwas unexpected, because one wouldtendto mssnme that tEereis no built-in directionatits audthe wall caanotp=ibly telt whichis rightandwhic,h is left.Eowevez, it twrnsout that theazmmetric with structureallowsthe magnetizaïon to buildnearlycomplete vortices, mltksng the 6.11drcleat the a very smallmn.aetosuticeaerr, 'tvitho'ui centre,with its largeexckauge eneY. It is a bettersohtionthan the od ltocavoidaace of that smallcircleby thetpointrMuce' d into Fig. 8.3. The approHmation ofzero menetostaticenera usedby Hubertalso
TWO-DIMENSIONAL WALLS
l69
1ed(248, to an asymmetric wall,andits wholestructuretllrnedout 249) to be very Mmilarto that computed by LaBonte. The tosalwazenergy Vculatedby thesetwo methodswmsalso ver.vnearly the same, whick showsthat mlnt*mlAing onlythe magnetostatic energy,as donebyEubert, is a goodapprovlmniion to minMizingthe total wall energy,as doneby Leonte. This resultdemonstrates that the magnetostatic enerr is the leadingenerr term in suëciently largcsamples, whichis theconcluston alreadyreached in section6.2-2-It shouldbeemphmsized againthat it is mnsnlythe magnetœtatk the complex enerr term whichdetermines skuctureof the mMnetizadon in the wall (oria anyothermagnetization slzuctureiu bnllrmaterials), whilethe exchange a,ndazisotropyenergy termsonlyplaythetoleofsmallpuurbations-However, onœ thisstntcture is determined, themagnetostatic fromit become eneraterm computed mmsin the the of Leonte for small. In computations permalloy very (310J 2000 lo the ma&etostatic thicknœs between 1000 and tqnn =ied ramge between 5% and3%of the total wallenegy.For the thinnc flm with a thiclmess of 500â, the contribution of tMs tqnn was 12% but at this of the Blochwall becomadoubtfal,because thicHesstàe minimization experiments showthat the crosmtie wallalteadytn.kescver- Experiments on M platelets show(311) a strongdependence on z of Fig.8.1in theBlocE wall,already in thetàicHess the occurraœ of Goss-tie rangeapprovhing walls,andan even more complutansition hasbeenobserved in aa (3121 alsoafcmts FNAI alloy.lt is reasonable to assumethat this z-depeadeace the z- andv-structureof the wall,aadprobably its energytoo, in tàat thickness but the appropriate theoc hasnot beenworkedout. H re#on, tho reson of 11l=thinltmv it thusseems.that the calculations of LaBonte else,in andof Hubertars unreliable, andshouldbereplaced bysomething th- dimensioas, wbicEis not knownyet. Forthickcrilrnsvthe azymmetric two-dimensional wallas computed by Leonteor Hubetksh goodagrYmentwith electron Mcroscope studies of thesew=llq,at leastto withinthe Mcuracyof theseexeperiments. Actuazy, some wall asmmetr.ye.xn alteadybe seen in olderpictures(3134 which were published beforethesetheories,butat that timetkis asrmmekywas ignored.Whenmote atïeationwas paidto this detail,a vez'ypronounced etry,quttesîmoarto the one predicted by the theou:wmsseen 5.a 180*walls(314, 3151316) in vaziousmatedals. Suchan asymmetry has alsobeenscen (3171 în 90Qdomainwalk,wbicEare outddethe scopeof this book.:(nthesemeasurements electrons are shotthrongh the 61-, aad measureonlythe average ofthe maaetizationin their path,namelythe alongy of Fig.8.1.However, in somecasesseveral are tn.ken average pazsœ withihe sampletilted (318, at deerentazgles. Thislozwhnx-que allows 319) a betterl*k into the v-dependence of the magnetization, because several dxerentaverages a'remeasared. Theazcttracy is notblgh,butto withinthis it seemsthat thecomputations of Eubertor EaBonte accuracy #vea good
170
ENERGY MTNTMTZATION
Elm thinknus.It is description of theobset'vuwallsin this iatermediate not soforthethianer61nu,wherethe theorydoesnot ât theexperirnent, as hmsalreadybeanmendoned. Apdit enmnot becll
TWO-DIMENSIONAL WALLS
defnitionsof the magnetkation components takemanylines.Thismodel tnrnedout (3224 to bea suRdently goodapproxsmation for compadng with electron microscopy data:butwas not goodenough for obtaining theOer detailsof the theoretical t'wo-dimensional walls. 8.2.1 BnlkMaterials Abovea certpin fllm tlzicknessy even the highest-voltage electrons cannot penetratethroughthe sample,andthereis no wayof kaowingwhatthe domainwalllookslike.It is possible to shootneutronsthroughthe sample? butthe accuracy of neutrondoactionisjustsuëcientto seethedomains, not the detailsof thewalls. Ixkthe theoreticalmodels for whichthe n.nîsotropy enera term can be calculated analytically this term inareases withincreastg (309, 322), enera 61mthicHess.' 11lx'n Thisterm Lsnegligible for permalloy whosethickness is around103â forwhichmostofthe studies havebeencarried out. Howeverj for a muchlargertàickness this increase*1 makethe n.nl'sotropy term largerthan theotherterms,andthetotal wall energywill start (30% 322) to increasewith increasing Gickness. Computations basedon the model of Hubertalsoshow(315) tàat, at leastin one cmse,the total wallenergy with tcremsing61m passesthrougha rninimum,then starts to increase thicaess.It seemsthat it isgoingthe wayof the aaalyticmodels, namely 6lm'thicHess.Since the wall enerarwi'll keepincreasing wità increasing the one-dimensional Blochwall enera plottedin Fig. 8.2decreases with lllTmthickness) Gcreasing theremust be a certainthickness abovewhich the enerorof thetwo-dimensional wall'rûl become largerthanthat of the one-dimensional wall.Therefore, thetwo-dimensional Blochwallsdescribed heremust ceaseto exist,andchange into something else,abovea certa'in flm thickness, bothfor a cubicandfor a uniatal materialFor a longtime it was takenfor grantedthat at a suldently large thickness the wallwill change into the one-dimensional Blochwallof section 8.1)whicheventually tendsto the LandauandLikhitzwallof section 7.2in the bulk.For this reason the modelofJakubovics was specii(321) callydesigned to containthe one-dimensional Blochwall as a particular case for certainvaluesof the parameters, mnlcingsure that if thereis a transitionto thiswallit will come out of the computations. Sucha transition*omthetwo-dimensional wallto theone-dimensional one wmsactually computed for a largeincrease of theanisotropyconstaat.It couldnot (3214 be calculated for an increasein the 6J.mthicHess,because the requirementof computertimeandmemoryincreases very rapidlywithincreasing fllm thickness, anda11the computerrcsourcesare usedup beforesucha transitionis eve,napproached. Thesamediëcultyof limitedcomputertimeandmemoryalsoapplies to Leonte-typecomputations. The thickestflms studiedtheoretically so far (323) are iron f 1msa f ew ynkthick.H themthe wali structureis still
172
ENERGY MYNIZATION
predomin=tlythat of the tkin flms?with no wayof seng any posdble transition tcwards a one-dimensional strudure.Near theedgedf thestudied regionthereseemsto be (323) a dfereatldnd of asymmetry, whichmay takeover at a stlll largerdlmthickaess, but it s'titlha.qa slightlylzighe energythan thai of the Lvonte-typethin mTnstructure.Actually,the these i'wos'tructurœ Lsso smallthatthecomputer between enerr dference canbesiuckforever in thehigher-eaenn siatewhenthecomputatioxs start 1omkt At this stageit Ssnot clearwhetherthis otherwallstructureis 1lazger inde going1.otakeover at ptal' flm thickaesses andwhether it will eventually into something simzarto theLandau andLifshitzwally develop completely diferent.Some or ënto somethhg computations were aISO (324) carriedoutfor 10itm thickppvrnnnoy Elms,but t*ey useda veryroughgrid, withthesubdivision beingan ordez ofmagnitude largerthltnin muyother computatlons. Therefore, tke resultsof thesecomputations azeunreliable. tezmwhichis 21%of the Budes,theyyield(324) a maretœtatic emergy totazwall enerr. It is suspiciously largerthania maayof the othertwodimensional wallcomputations, aadseemstoindicate axkhadequateenera
msnimiqation. By analysing the polarizatioa of the electrons in a srztnn'mg electron microscope lt is possible to memsurethe magnetization of the l%i (55) fewatomiclayersnear the surlce. Suchexpevimental dataclevly show that near the surfacethe domainwa2lookslike a Néxel wall, 326) (325, in the sgmqethat themagndization thereksnearlypnmllelto thesarfMe. Thisruult is not surprising,because in ihe todsmensional will discussed in theforegohg' tEemagneMzation alsoapproaches thesurfaceat a very smallangle(see Fig.8.3). At anyratej it shouldbedearto thereaderby now khxttke mavetostaticemerrwill not allowanyothe,r approach to the surface, even if thecrystalis vezylargeandthevast malority of thespirs are very faz1omthe surface. Theworkinghypothusin Malysingsuch '
data 1326) is that ia a suëciOtlythick saple thewall is essemtially the Blochwallthroulou.t mostof thetMckness, oledimensional but whenit approaches the surface it changufzomthe Blochtypeto the N&1type, whenthemagnetizatioa slowlytnrnsaroundâomthev- to the z-direction of Fig. 8.1.DetaileLaBonte-oe computations bothfor iron 327) (32% and for permalloy supportthis pîctux, andare in goodagrementwith measured details oft:e surface partofthewall.Theyaboprovethatcll the wall nidtltia bulkmaterialshavemeasured olderm-urements of domain onlythewidthof thesurface part of thewall,whic.h is vez.ydlFerentfrom thewall widthin the bul.kof the material.Eo-ver, suchOmputadons azelimite to rplxtivelythin lms, because oflimitedcomputerresources, azready mentionMin theforegoing. Theproblemof whatthe wallreally looksIiP.einsidebulkmaterialshasnot reallybeensolved yet. Thewazleaerr in bulkmaterlnlsisnot knowneither.TheLandau and Lifshitzresultof Kdion 7.2is still ofte,nusedfor analyshgdomalncoafg-
BROWN'S STATICEQUATIONS
urations,but it is aot cleari.fit is a goodapproximation. By usinga certain analysis(32% wall energies can be obtained from experimental data 329), on domain widths,andthis memsurement is even oftenusedfor evaluating the exchange constantof the material However, LaBonte-typc computationsfor thin flms involveno approfmation,exceptfor leavingout the thirddlmension, andmust therefore beat leasta rdiableupperboundto thc realwall energy.And yet, wall energies measured by thsstechnique 61msare (270) f or thin permalloy considerably lcrlcr thanthis theoretical hasnever beenaccouated for, andit does upper bound.This discrepancy seem to indicatetkat something is wrongwith the analysisof the datain thistechnique, andcastssome doubtson thevaluespublished for thebulk. Finazly,it will onlyberemarked that thereis a vastexperimental and theoretical literatureon wallswhichare not straightlines,in particular wallsin thefol.mof a closed drcle,arounda circulardomaln., knownmsa b'abble domcïrl. Forsucha circle,even a one-dimensional wall suchas the one in section8.1mustbe expressed in the two dimensions of the drcle, anda two-dimensional wa2las in (330) is too complicated to be discussed in tbisbook.Somereferences cxn befoundin (2882.
8.3 Brown's Static Equations Numerical computations as described in theprevioussectionare relatively new, andaJe still limitedto relatively simplecases.Wit,hpresentcomputers it is not even possible to :nd the lowest-enerrconfguration of a single wall,let alonea wholestructureof domains separated bywallsz or anyother true three-dimensional magnetization distribution. Forsuchproblems it is still necessary to lookfor aaalyticsolutions, or at leastworHblemodels. In as muchaa the wall energyis Howa, it is possible to comparethe total enerr of certaindomainconfgurations, andfnd the one whichhas the lowestenergy.This technique is the bmsis for what is knownas the for manycases.However, domaintheory,whichhmsbeenusedsuccessfully in principleit hastwo seriousdrawbacks. Thefrst one is that comparing the ener#es of difereatconîgurations alwayscarriestherisk of ignoringanotherconîguration, whichmayhavea still lowerenerr than a11the ones beingconsidered. If the basicstructuze can be takenfrom experiment, or if it is doneby somebody with a high physical intuition,it mayworkout But the probabilityof a correctguess is never very high, andmanywrongresultshavebeenobtainedby this howall sorts of method.It hasalreadybeenseen in theprevioussections one-dimensional models were compazed wit,heachother,till it turnedout that thewallenergyèa'abeverymuchreduced whena variationis allowed in thesecond dimension. Manyotherexamples alsoest, andit is always a risk whichmustbe bornein mind.J.nprinciple,a'n.yenerr calculated for àny particularmodel,with or without minsmization wit,hrespectto someadjustable parameters, shouldberegarded as an 'tzppcr boundfor the
1;4
EIVERGY MTNTMTZATION
actualene-rgy mMmum.We mMmumcxnnotbelargerthan theenergy of any specialoase, but tNereis alwaysthe possibilityiat the lowesttion, whic.N is not includedin encgymlnsmumLsin a dferentco the assumed model.Theestimateis 'reallyrliable oalyif a Iowerbund e%n AIMbefound, those in whichemr.pthetzuemfnlrnummustbebetween
bounds. Thesecond dMcultyis thatone is not alkaysia*res'ted ia thelowœtof thehrstereiswhichis part of thestudyofferroenergystate,because in thesimpleczse discussed iu sectioa5.4,the ma>ets.As *n atready actualmasnefsexuon state maydepend on the historyof theapplied feld, andeven thoughlower-enera statesmay>='qt,theyaa inacessible due to an enerr barrierbetwe%themandthe praent state.IIk suchcaaes, comparing is meaaingles. ener#es Rr thue renArmsBrownset out to eoress the energyminîmlxation rigorously, witham eyeto perfovl'ngit in a waytàat wouldtn.kethehysteresis into account.A ftrststepiu thisd''rt?M'on A'n.q alreadybeendemonstratedizt theLandauandLifshitzwallin section7.%wheret;e enerr minivnsvlttion is doneby solvingtheEulerdlWerential equation whichIeads to tàe lowot possibleene,zvminimumfor the assumed form of the total e,neru.h that c%etherewaEno hystereis,because no magneKc âeld wasallowed, andthe eistenceof the wallwas assmmèd, c yritvi Brown's ideawas to bavethemost goeralEuler df erentMequationby a pure =iational Xculation,so that the nviKtence of the wall (orof any otàer magnetization wouldbetheze,sdt oft;e calmzlation,witbout confguration) havingto asstkmeit beforehand. It was this theorythat Browno ' ' y nxmednbicxmagneiica, althougllthe name wa.s Iater exiended to mean in whic.N the atomicstruetureof matterLsi'gnored any sort of calculadon andthemagnedzation vectorLstakenas a continuoas ftmctionofspRe. Consider, iezefore,a ferromagnetic bodyof any shape,in whichthe maRetizadon is anyfnnctionof space. ThetotalenergyfortMsparticular is male of the cxcAange theanisotropy up enezaas ia eqn(7.1.4), m(r) ald al interadion energsthe magnetostatic enerr ms in eqn (7.3.26), withan applied magnetic îeld, Hy, wMchkssometimtscalledtheZ-maa enera term,namely s - ,-+s-+. -
+su
1 -M . n , - M . m 2
-
(v-,)- + tv--laj +w g(v-.)/ (vc +
dr +
ws ds,
(8.3.22)
wheretàelasttermof the volnrneintegralis thehteractionof M with H. outofthedenitionofM, andas used manytimesiu thisbook, although not in thisform.Theftrstintegralis overtheferromaaetic bods
'as it *mu
175
BROWN'S AATIC EQUATIONS
andthe second one is over itz surXe.'Both thevolumeaudthesurface Anl-qotropy deasityare left unspecedat tàisstee, but theyare ene.rgy simplefunctions, whicheztn beone or more of thecasesspecedia section r-stn alsobeadded, 5.1.Magnetostrictioa but it is neglected in this book, as mentioncd in section5.1:Gceptfor cxseswhicheztn bewrittenin t:e formof an anisotropytermaudare theeforeindudedin 'ttu. if m(r)ksHowmTheproblem This Gpression determines thee,ae,.r& that hereis to determiaè so this enerr is a min'lmnm.Brown(14.51 mtr) mlmlrnlqed tMseme'raiu several ofwhichis to consider a ways,them-mplut its valuem:, boundby mall variationofthemagnetizxtîon vectoraround theconstraint that 1hema>tude ofm mustbe1. Thefrst two Cartesian cxvdsnatacan theabeexpressed as mx = rtm(0)+ e'u, mv = zn,(0)'+ 6v, (8.3.23) y
where'tz and'p a.re anyNnctions of spaœ,ande is lImnll.Thethird comby theconstrrdmt that m is a Alnitvector.To a frt ponentis determined orderia e, it can bewzittenms /1
c,a -
jf'l
(o) = mz
'.'l
z
. .
-
:
+ + cm)mato 2ctma$ol.?, + mvtglo.) Lmzïz; ,,tzlLmçlb' y =
-
(0)k? mu(0) v + wzv = m.(o): mz(0)
1- e
where l
eA:
(01 'r4x u + mv(0) t?
=
(()) TN.z
.
-
(s a z4; . .
(8.3.25)
. .
Thevazitionoftheexchange termdueto thisxriadon of m is eaergy &s.-
+
f2
+ cu)J2 + + ,v?)j2 eA)j2 gv(,p,r gv(,pp) / (gv(mp) dr (vu) tvag))2(v,p,;n))2 .cj((vz,d)) (v.r4c))2) +
-
-
=
-
d.r (vz?)(v,qo)) tvmioll (và)) .
-
.
.
(8.3.26)
,
to a frst orderin T.However, arxmding to thedivergeace theorem, for any two functions J aadF,
dr J(VJ).(VF) j (V(FVJ) FVMdv jFxygds-jnzfd (8.3.27) =
.
-
=
ENERGY MINIMCATION
1V6
wheren is thenormalto thesnrfa-. Usingtkisrehtionth'eetimesin eqn forthethreeprodttcts of tàisformwhickocftnr there,thevariation (8.3.26) of the excxaage enerr becomu
(0) mx(0%. /0)n tqznh rQ) ow(0) t'gmv 'u + rzj w ds + tî'rz Dn zngol t':hz
J& = c C
-E
o,
'
-
?01
(Zl
-1
.p,v2m(0l 'pV2.m,(2)---..-.1.--t.....-1V2snYl o:y. . m + p (o)
c
-
mz
(g.g.28;
Fortheoriation of theMisotropyenergyit is suEcientat thisstage to useeqn(8.3.24) in a ftst-ozde,r Taylorexpansion,
8%= =
dr J(tu(m)watzzzcll -
c
u
(0).tz+ my(0)'p rrzx --
t'guu f'l'tn 'g (0)+ iyvast Pms r -
-
a(e) z
dwa . : dzj (8.3.29: drntol o.
andm'nn-larly for themlrfAzte anisotzopy term. The=iation of themagnetostatic energyterm 5sa Jr'iori #venby
='-)J((M+ :M) (H'+ JH?)M H?)dr,
JfM
-
-
.
(8.3.30)
where$Bl Lsthefeld dueto thesmallma>etizationvaziationz-M.If this feld hadto becalculated by any of themethods usedto calculate magnetostaticfelds, thiKproblem wouldhavebeeome hopelessly complicated. Hcwever, it ic nofnecessary to calculate thisfeld in orderto eviuatethe in eqn(8.3.30), to use therecïprocilp întegzal because it is posslble tlseocm ofeqn(7.3.40), whichen-qlzres ihat in thepruent case
JM /$'N''dr JH/ J'Md'n =
'
-
(8.3.31)
Substituting in mn (8-3.30)1 andleavingout the eeztmiorder term, f:M =
-
ïT'.&T&dr,
(8.3.32)
whichhasthcsxme formmsthevaziation oftheinteraction Mrith theapplied feld, Hk.Usingfor boththesetermsthespecifcwiation in eqns(8-3-23) and(8.3.24), one obtains
BRDWN'S AATICEQUATIONS
(o)11V 'm.y (:)* , Fow
h = -egzfs Szzu é (SM + SsL, + II-:)a?; Hz -
-
>1,o;
dw,
(8.3.33)
where H = J:'f.+ W.
(8.3.34)
At a ndnlmnm, the variadonçtîthe total e'nez'r,comprising all the abovomentioned terms, shouldvaaishfor any càpice of 'u aud 4J.This rmuirement means that the coedentsof 1ùand't) in thevolume inteval shouldeachmnxs'lb andthe ume applies to thecoecientsin the surface ' integral.Addingup all the appropriate terms,andomittingtheiadexC0' whichis not necessary muationsin the anymore: leadsto two diFerentird ferromaaeticbody,andto two bozmdar.y condidons on its surface. The boundary conditions on thesurface aa'e
&mx. dn
5
.
Dzu... ru 8%% = g + t'??z ' 0mz mz &rtz '
znx (imz m.z
(8-3.35)
and
êmv ... ma.z pmz (%p 8t?, = ô. s ... m..z + 8n mz on 0mu mx 0mx Tke twodiferentialequaîonsare C
C :72saz
-
mz Vamz azJ
mw
+ Ms Sz - -Hz my
-
.
W'a TrG Dnlx = O +yrzw mz ômz
(g.z.z.jq
=d mu c T mz ma
6' V2m& -
+ Ms Fr -
(8.3.3 6)
m. m ma
-
P*7x rzv omu= + 0. ômv mz xa
(8.3.38)
It looœas if mz playsa spedalrolehere,unlilcemx or mv, but it is oaly a mattcr of cltoiœwhic.N two of the threecomponents to use frst in eqn Thesymmetryrxn be seen if cqn (8.3.37) is multipned by mv (8.3-23). andsubtrvtedfromeqn(8.3.38) multipliedby m=, which. leadsto a third equadon ofthesameform:
c
Aa
t'hrx= 0. +M, (mv&-nvamj-mvovv +mx (mrvzmz m.v2mv) &mv . -
(8.3.39)
threeequations can bewritteaYgether,in vectornotation,ms These m x
CV2m+ MsR Dmzb= 0, êm -
(8.3.40)
178
RNRRGY OIMXZATION
where('ea/dm is a notationfor a vector whose Cartesian coordinates are aadomwlomp. Thevectornotationis eazier for transptna/dgrya, omulomu misleadinp'lt forminginto othercoorinatesystems, but it is somewhat shouldberemembered that thereare onlytwo independent equatioms, and tke third one is only a linearcombination of the othertwo, dueto the constmint(mI= 1. TheseGuationsare knownas Brown'sdiferentialequations. They as phraedin (331), that in equilibzium thetorqueLszero everymeazh wheare, andthat themagnetization is parallelto aa eeetivefeld,
C Hos= -V z m+H Ms
-
1 u&v . Msdm
-
(8-3-41)
SinceM x M = 0)anyarbitraryvectorpropordonxlto M A'xybeMdedto He.ewithoutGangingtàercult. In pxrfa-nnlnr thereis no dxerence (:t311, between ushgE andB = H + 4rM. Brou's equations haveto besolved together with solvingforH#,whic,ll is paztofeqn(2.3.34), bysoleg eithc thediferentixlGuationsin sedion 6.1or thettegralsin section6.3.The.solutioas of the wholeset contain ' * ia prtdple a11possible but not only the mimimn-The enerr mpm-ma,aad condition thatthevadationvaxishes LsalsoRtlfmed %remera enztll it is ne-sary to clzMk soludon for beinga memum or a minimum. Therepm xlg.nthe boundaryconitionsof eqns(8.3.35) and(8.3.36)) for whicha liaexrœmbination rmMbe added in thesame way as to the thre equations Hiierentialequahons. A11 can thenbewritteuin a similar vedor notationas m x
C
't%-+ dm
=
0,
(8.3.42)
on thesurfaceIn theparticnln'rcxqewhenthesurface is as in eqn energy
nrkmely if (5.1.11))
'tt)s=
1
yff, (n m), , .
(8.3.43)
one shouldsubstitute in eqn(8.3.42)
o'w.= Ks (n. m)no ('?m
(8.3-44)
whickis theformusedby Brown(145), aadby others(332). Other,specinl cases,suchas (146)) wîll beignored kere.If thereis no surhceanisotropy, whichis theassumption madein mostofthe theoretiWcalculations, the = 0, which combination ofeqn(8.3.42) withtheédentity m - 8nïl8n holds for auyvectorwhose magaitude is constant,leadsto Xnlnn= 0.
SELF-CONSISTENCY
l79
8.4 Sez'-rxm6kx-
.
1 a,rn2 .V2m= -V 2
sa -
z-
2
; (Vmz,I (Vmp) (Vzp,z) '
(8-4.45)
in whicàthefrst termvaaishes asthederivative ofa constant,aadthe rœt is proportional to t:e exchange Thetotal inteval is thea enerr densîty. -
zék+
M . H-
m
.
t'hu 1 dm + mz
ç'hvx - CVz mz - MZHZ dr = 0. Dm.
(8.4.46)
Comparing with mn (8.3.22), it ksseenthat thetotal energy of the system may alsobewrittenas :7=
1 2
-
4.
+ -2
2'*a- m 1 znz
'
okcuM ' H. dr + dzzl
aultvc 77z r'nz Dmz .
-
MsNz d'r.
ws &V
(8.4-47)
180
ENERGY YNNIZATION
This energy expression containsonlya simphfed formofthe exchange in aûd only that part of the magnetostatic whichisincluded energy, energy tban Hz of thelasttermof eqn(8.4.47). It is tlmsmuchdum-rar 1.ocompu'te it cannotbe usedas a substitute theintevalin eqn(8.3.22). However, for applies only because kt k) magneeation structure whicbfnl6l eqn(8.3-22), Brown'sequations. Whatit can beusedfor ksas a mexsure of howdosea particular model,or a particnlarminimizadon underconstrets, is to the trueenergy mYmumwhic,h is a solutionof Brown's equationg. Fora good model,theenergy ccmputed lomeqn(8.4.47) mustbeapprematelyequal to that computed fromeqn (8.3.22). If theseener#es are vea'ydlFerent, the model$sa badappror-matiom as hasGen foundwheatMscriterion was fm-k appliM (333) to the then-used modelsof Néelwalls.Thetwo values ofthiswallenergyHiFeered by a,norderofmagnitude at certaân flm whicbshowMthat themodelsusedfor thtswallcalculation thiclmesses, wezeverytbad approfmations, at leastin that raugeofft)mtkicHesses. lt is thuspossible to use tke dfaence,or ratio, of the energes computedfromeqn(8.4.47) andfrommn (8.3.22) msa quntitatinemeasure for thevalidityofthemode.l or thexxtvuznptionsusedin anymicromagnetic calculation. If thesenqmlwmare very diferent,thiscalculation is wrong If theyare reasonably closeto ozmhother,thecalandmustl)e discardM. culationhasa goodchance ofbeingcorrectandxlf-consistent, anda good approfmationto thcrealenerr minimum.It is onlyachxnce,because tMs criterionis onlya necessary, not a suëcient,condition for thecalculation In thefrst placejBrown'smqationsare aISO to becorrbct. fuKlledby the mnxn-ma,audnot onlythe conditions enera minima.Also,the botmdary havenot beenusedin theabove deivationof eqn(8.4.47), anda solution the boundary is not ofBrown'smqatbnswhicbdoesnot G,1A1 conditions necessarlly minlmum.However, an energy a solutionobtained by auysort ofenergy minirnization is notverylikelyto becloseto a realrrladm'um, aad at anyrate, it is alwaysbetterto havea necconditionfor mllvninating somewrongcasestun to haveno critezion at all, andso haveno idea Axqanymeaniag whetherthecalculation at all. lt shouldbeparticularly conusnsseccdderivatives notedthatmn (8.4.47) in theterm witzljVRmx, andas suchis verysensitive to thedevilsof themaaetizadonstructure, whichmakes thiscxlterion of self-conMstzncy qniteGectivev TMs criterionwas irst suggested for a mrticular case of eqn (333) wbiG applie onlyto a 180*domainwall in a f1mwkichhaaa (8-4.47) un-la'dal A.nlmtropy-ln thisparticularcase,thereis neitherà.uappliedfeld nor surface anisoàopy, andthefrst twotea'msin thefrst lineofeqn(8.4.47) canceleachother,so that thewholefrst lineof thiseqqadon vankshes. It was thenextended to a cubicsymmetc 1323J, azdto a 90*domalnwallj îrst in one dimension andtheain two dimensions A non-zero (335). (a34) applied f e1d(336) aada movingwall (3371 weere alsoconsidered. Otherselfegt, whichdtherare not useful(295) consistency tets n.1Rn or applyonly
T11E DYNAMICEQUATION to the specifccase (334) of one dimension.
8.5 The DynnmlcEquation TheUme-dependence of the ma&etization can beobtaineddirectly1om the quantnm-mechxm-cal for a precession of themaretization (axpresdoa thetermsin thebrackets in amaaeticfeld,byconsidering ofeqn(8.3.40) as an e'edtfse magnetic feld. Othermethodscan alsobe used(145) to derivethesxmeresult,which$s dt
=
-,yoM x 'zft
&
ezf=
V zm + Ho + H , -
27
wheret is thetime, %
=
1 Aa
Kdm , (8.5.48)
Jzel
(a s.4s) .
2m.c
is the rzomagnetic ratio,already mentioned in section5.2,andg is the tLandéfactor',alreadymentioned in section2.1.ln some lum-, Brown's staticequationscan be considered as a particularcase of eqn (8.5.49), givingthestaticequilibrium whenthereis no ckaqge in time-Thebouadau conditions hereare thesxme as in the static=e, nxmelyeqn(8.3.42) . Thisequation repreentsaa uadxmped precession of themagnetization, whic.lleAn continue for ever. Eowever, actualchanges of the magnetizatîon to decayia a Mite time. Asis the casewith are knownfromexperiment the anisotropy in atioa 5.1,thednzn phg cannotbedezived theoretically Yrrn. One frombasicprinciples, andisJustaddedas a phenomenologie iato wayto addit is to modif.g eqn(8.5. .48) dM =
-kà- --V;M x
dM .l4-pdt
(8.5.50)
,
where, is a phenomenolofcal dxmping pazameter. Thisformof the equationis dueto Gilbert.H is actuallyequieent to aa olderformof LandauandLifsbltz(145, whicNcan thedmived 3381, as follows. First M . Lsappliedto vth sidc of eqn (8.5.50). The righthandsidevanishes, andtherefore M - Rvldt= 0. TV resultmfuznsthat = %fromwhic,h it followsthat .MQroznnsn s a con-m.ntdmingthe dMnjdt motion,andthisconstantcan beidentledwith Ms1. The.a M x is applied to Mt,IIMdes of eqn(8-5-50), ustg the generalrulefor a cross-product of = 0. Theresaltis a coss-prodnct aadM - ?1M/d,t
M x
X
=
-yz M x
(M x x)
-
vcMszq-a-.
Substituting the right-hand sideof tlzksequationfor M andreaz-ranging, lpxz!s to (8.5.50),
x
-(8.5.51)
dM/dtin eqn
ENERGY MTMMUATION
182 =
-GM x N
+ IM x
(M x m ,
(8.5.5 2)
where é
'%'; I
'la. = 1 -L. 2 : i2 ' 't' z?-R''' s Q
and
h=
2 %. pT . o'2.42 l -Fo zV2 s
(8-5-53)
Equation(8.5.52) is theolderformof Lrdau andLifshitz,whichsome still preferto use, bessdes otherforms(339) whichalsoeldst.lt can beseen muivalent fromthederivation herethat tketwo formsa'remzthnmzbicdly if the physical constants are modifed accordinê to eqn (145, 338) (8.5.53). The physicalinterpretation ksnot verydxerenteither,if the damping îs small.Fora largedampingthereare somepracticalreasons (340) to prefer the Gilbertformof eqn(8.5.50).
9 THE NUCLEATION PROBLEM It isverydrë'c'ultto xlve anynon-linear d''Ferential Nuation,andit is even more dlmcultto cllœse the appropriate physical cmseamongthevadous solutions wlzichsuch= equationmayhave.Thezefore, bdoreirying any solation ofBrown'sdeerential equauons, it seemed desirable to ddne&st thepossiblebraach on which therequired solution maybe.Forthispurpose a solutionwas AM sought of a set of lineardiferentialequations, to be denedin section9.1,wlzichbecame knownmsthenucleadon problem. Thksproble.m was misunderstood by many6omthe very be#nning, an.dcsvenmore so later,wh= Dicomaaeticsbecame popularamongthe zp-rchcs ofdi#talrecording. Ndtherthepurpose nor thetechniques or theresuluof tàenuclGtionproblemseemto havebeenproperlyfollowed, audthereis a largenumberoî m017quotations andmisrepreentations ofthisproblemin thelitarature.Theolderpapersare oalytoo oftenJust presumed to saythe exactopposite of what they zpxllydé,whichmay l:e dueto the hct that the writersof thesepapersreportedonlycertaia detxllqjMsuming that themaincsumpdonswere wellHown.Theywere actuallyknownto thesmallnumberof spedalists worM-mg on themat $he time,because practienlly evebodyelsejust ignoredthem,but theywere unHown,andtherefore misintarpreted., wheatheEeldwas zevived later. that havebeen 1 will try to clariàheresome of the wrongczmcepts attaeedto ihestudiesofnucleation. Eowever, even before defnhgwhat thisproblem 1s,it is worthmentionhgwhatit is not. Thelin-xn'zxdonof the equations is not = approzmation, andshould not be (:0zd1)*with HiFerentprobla of the appraclsf./ saimrakion the physically completely ia a matezial whichcontinspoht, lineyor planeimperfections. Thelatter calrtnlxtions, whic,llare outsidethe scopeoftlzisbook,are mathematically sl'mîlnrto the nucleation problem,because theyuse the same linearized diFerential equations with dferentboundary They (although conditions). rtïxriMnlyplayedaa importantanda crudalrole (145, ia the initial 268) dcvelopment of miœomagnetics in general.But they havenothingto do with txenucleadon discussed in this chapter. . 9.1 Doënltion Let a ferromagndic bodybeErstput ia a magnetic îeld wkicàis large exough to saturateit in thisfeld'sdizecfon. Let thisîeld bethenreduced slowly, to avoiddynamic efects.If necessary, the feldis decreased to zero,
184
THENUCLEATION PROBLBM
V
(a) .= (b) > (c)
FIG.9.1. Twomechanical aaaloguo of thenucleadon probiemthenincreased slowlyin the oppodtedirection.At somestageduringthis alongthe originaldirectionof the applied process,thestateof saturadon Geldmust stop to be stable,andsome change muststart to takeplace, because the samplc must eventually be saturatein theopposite tafte.r a1l) direction.Thefeld at whichtheorighalsaturated statebecomeunstable, andazkvsort of a chauge in tEemagnethadon conîgmration ca,ntnstglczt is calledthe ncleationflelï The name is somewhat misleading, because 'nucleationl seems to imply that something happens at a particular (341) point,arounda certainn'uelenn, wher= in thepresentcontext,thisterm is usedforsomething all over thecrystal.Brownarg'ued whichmayhappen all Mslife againstths use of theword,buthehadnothingbetterto ofem aadthename stuckandwas meed by everybody, including Brownhimself. Theimportantpointis that thisnudeationhaaan uambiguous meaning, whichis azdefnedbytheforegoing thatthe procv. lt mustbeemphzmlzM defnitioncontalsthe historyof the applied îeld,whichmustbethec%e in any defmition involvingthehrsteresis whicbLspart of fenomagnetismne coaceptoknudeation feld is analogous to thecriticalforcewhkh is neto benda beamin theGperimentshownschematically on the right-handsideof Fîg. 9.1,whîc,hîs partly hoed on (341jIf an mlxxtfa-c beamis pushed fromb0thsidesby a force(reproented by thearrows), as shown in (a), nothinghappens at ârst-Withan ïncreadrlg force,a 'criticap valneisr-Mbed,at whicbthebeamsuddenly buckles to a particular shape, whicbis an eigenflmction ofa (Main dxerentialequation, as showain (b). H theanalogous case ofa ferromagnetic crystalnothinghappens whenthe feld is Grst'lnduced till a certainvalueof thefeld - thenudeaiionfeld is reached, whenthe magnethation suddealy lbucldes', or Ganges in anotherway;andthisczaage is alK aa eigenfunction ofcertaân deerentlnl equations, as will 1>e seenin thefollowing. It mustbeparticulazly emphasizedthat duringthis6rststage,whennotkinghappensj theremaywellbe stateswhoseenergyis looerthan thatof thesatnrated state,buttheyaze not accessible to thesystem.Thispœssibility hasalreadybeeneacountered
DEFINITION in the caseof the Stoner-Wohlfarth modelin section5.4,andis further illustratedby the second mechanical analogue on theleft-hand sideof Fig. the saturatedmagnetizadon 9.1.In thebeginning stateis the only energy xminimum, andis amalogous to the ûttleball phcedat a singledepression of a sm00thsurfaceWhenthe feld passeszero, the saturatedstate in the opposqte directionalreadyhasa lowerminimum,and the situationis analogous to the ballplacedon the surface shownin (a):thereis already a lowerpit, but theball cannotroll there,because of the energybarrierin between. Thisballcmn roll downonlywhenthe surface ksfurtherdistorted the barrier,as in (b),whichis analogous intoremoving to the nucleation for magnetization reversal to start. Therefore, a particular justchoosing magnetization as a functionof space,andprovingthat its energyis lower thaa that of the saturatedstate (orany otherstatelfor that matter) is completely meaasngless, anddoesnot provethat the magnetization will actuallychoose that state.It mustbeshownthat the lower-enera stateis accessible to the system,andthat the situationis not as in Fig.9-1(a). It shouldalsobenotedthat the surface on whichthe ball is placedin Fig.9.1is actuallya representation of a multi-dimensional surhcein the functionspace,andin the actualcase of magnetization reversalthereare pathsforthis ball.Therefore, showing that a particularpath manypossible is blocked by a barrierdoesnot mean anytidngeither)because theremay bea wayaroundit. ln principle,C!Jpossible functionsmustbeconsidered. Fortheelasticbeamshown in Fig.9.1,all theharmonics of a givensolution are usuallyalsosolutions of thediferentialequation withits boundary conditions. Anexample is shownschematically in (c), andthereis generally a wholesetof suchsolutions. ln thecaseof thisbeam,alIthesehigher-order solutions havelargereigenmlues, namely needa largerappëedforce,than the basicsolutionof Fig.9.1(b).In this case, none of the othersolutions haveany physicalmeaning, as can be seenfz'omthe followingargument. Suppose it takesa certainforceFz for the beamto bucldeas in (b),and taka a forceTk > Fz to createthe deviation supposethat ii theoretically of (c).In orderto applythe forceF:, it ksnecessa't'y to passthroughthe application of the forceFz, at whichtimethe beamalreadychanges into the confguration . By the time F2 is rcached, the initial conditioas (b) (a) do not efst any more, anda theoreticaltransitionfrom(a)to (c)at the forceFacannotberealized. Thehigher-order solutionsmayapplyin.oà/zer c'ases,e.g.if the beam is tkampe.d at its centrein sucha waythat (b)cannot takeplace,or if the hrger forceis appliedvery fast,whendynamicconditionsmay preventthe formationof (b).Forthe nucleation problem as formulated here,thehigherharmonics haveno physical meaning, beiause theycannotbeachieved. By thesame token,in the caseof magnetization onlythe lcrges't nucleation feldhasa physical meaning. lf something starts to reverseat a feld Hz,the reversal will continueon that path,andanother nucleation whichcan theoretically takeplaceat H, < Rhdoesnot have
186
THENUCLEAXON PROBLEM
of a saturatedstateany more, an.dhmsno pkysical the Mtial conditions meaning. Fozanycaseof nudeadon it is thusnecessazy to fnd onlytke hrgestposibledgenvalue oftke appropziate dxerentialequations. Thenucleation a: a stactofthereversak is studiedby Ifseadprocess, zingBrown's equadons denedin section 8.3,namely byleeaving out dftkese equations tke higker-thaa-linear powersof tke maRetîzationcomponents ia the dizections perpendicular to tke appliedGeld.TMs Bnezm-zation is n/t = appremation.Jt is only a manifœtation of the requlementof cxmtinuïfr. Everychaage of the magneeadon structuremust siart witk a ' smallckaage. everything Thereforey is bnearin tke b g. Theideais that onœ tke correcteigenfnncdon is known,it is going for the nucleation to bepossible to studyt/e zest of tke process by soleg tke non-linea.r equations for tke cmsewhichstartswith thisparticulareigenfnnction, and notmoveintke anxrk tllmugkall sorl of mathematically possible solutions whlchhaveno physical meanlng. Tkelixpxrlxtion of Brown'sequations <11not be donehcrefor the mostgeneral case.Jnstead, tke fozowing restzictive assumptions will frst bemade. 1. 'Pheappliu maveticfeld, H., Lshomogeneous, aûdis paraltelto an easyn='s of eithercubicor nm'a='x1 aaisotropy. Tkis mssumption of nucleadon so far.In peciple, wxs madein clî studies publsshed a theorycouldnlM bedeuopedforothermagnetic 6.e1ds, but it has never beentzied-Tkexcondpart of assumption 1 follows, because it e= be shown tkat it is imp-ible to reMh saturationin any fnite, komogeneous feld in a dlectionwhicxis not aa easyJt='K. If z Ls ckosenas the dirlctkonof the magnetic feld, it is readilysœn that to a fus'torderin ma an.dmx, -
0- +
=
zp,: 0mz
-zA%ru,
(9.1.1)
wherem staadsfor either'u?uof mn (5.1.7) or 'lz?oof eqn (5.1.8)In eitkercaseaKg is noéneglededj as it hazbeenin some other calculations ia tMs book.In spiteof thepresentauon tkea'e ia (342), isjustno Grst-order term in tàe expresions witk Kz, andit doa not enterthe rzzaczetïtm problem. A similazexpression applies for mv2. Thesampleis aa ellipsoid,andtke feld Lsappliedparalldto one of its majoraxes. The &st part of assumption 2 is hevitableif a komogeneous feld is assumed, because is the onlyinsidean elltpsoid demagnethsng Geldhomogeneous, sa section6.1.3Thesecond part is not essentlnl,an.dksonlymtroduced herefor thesakeof m'mplîcity., . Some calculations havebeenreporte (343, 3M,34,5,346j for a feld applied at an aagle to a majorikx5K, butonlyfora Tez'.y' limite number of casey wMchwiz beiaored kere.According to section6.1.3,the
DEFNTION
l87
demagnetizing f e1dat the saturate state, beforenucleation, is a constant,aadisparatlel to z. Txezdore, thetoti îeldof eqn(8.3.34) whichka.sto beusedin Brownhs equations is Vx =
OU . 01'
&= =
(??J
OU Hz = Hu- NaM, , .
az (9.1.2) whereNz is thedemagnething factori'a thez-dizection, in the sat'lrxlzx,l state bdorenndeationjaadU is the potentialdueto the startingdekiat,ion fromsaturationy andisof theorderofvzz an.dmv. 3. Thematedalis homogeneoust and%Mno KnrfMeaaisotropy. Onlya fcsw cmseswith a non-zerosurface Ysotropy (146, 347,348), or with certaininhomogeneitie 350,351,352), were ever s'tudied, aad (34% b0th*1 be ignore here.Onlysome of theirimplications will be brieâydisrmnqtvl in Gapters10 and 11.As mentioned at theendof sœtion8.3,thebolmdarz conditions are in this case -
-
-
-
%
0mt Dn
,
=
0mv = 0 >
(9.1.3)
on thesurface. ) Usinga11 thue assumptions in eqns(8.3.37) and(8.3.38), andoYtting all termswàic,h are higher thanliaearin mz or mj or U, includfnp a term S'UCX aa mzu, whichis alsosecond orderwhenLrzs of theorderof mz or mu, yieldsthe dlFerentiimuations
((7V22r: -
-
.Ah - -
m J'pfs mx = ât'a (k-To Nzasfalj os
(9.1.4)
and
alhn -%Ix (9.1.5) oy insidetheferromareticbody-MM oftheearlicrstudic startedwithaa in theanisotropy extra term of the formgïgmzmw enerr daits whlc,it addedaaotherterm to 0c.11 of theseKuaKons. But thenthisterm was takento bezero at a laterstage,andat any rate it is not usuallypart of anyanisotropy enera. Theseequadons haveto besolvedtogether with eqn (9-1.3) msthe conditions, aad simttltaneously with the ecuations and boundao botmdyy condittons, to (6.1.6) wlzichdefnethepotentialU.Forthelin/xrlmed (6-1-4) cee of onlyXst-ordervrmK in mx andniy,thediferentialequations c I(7V -
-
2Jf1- Ma(Fa Nzx%fs )jmy -
=
are
Vzr7u= 4xMs 0mz+ 0mv 0z oy with the boundary conditions
,
VaZutl:= 0,
(9.1.6)
THENUCLEATION PROBLEM
l8S
&Uu' - OU ---*Xt = 4*.Km' zl , (9-1-7) on, on on thesudace, as we.ll at infnity. AII these astheregulvityoftke potential eqnations haveto besolved for all poaibleeigeneuesof theapplied ield, S'a,aadthenthelargest of tkemhasto bechosenAshasbamexplxined in theforegoing, allowed valueforHu hasa physical meaning. onlythelarges't
Oin= U'out ,
9.2 Two Eigenmodes Bron wroie this set of linearized equations(353, in 1940for the 3541 sakeofaaotherproblc. Only17yearslaterdidheformulate themas the nucleation problem andrealizethat two analydcsolutions couldbe (355) cirfmlnrcyliader. It writtenrightaway)b0thfora spkereandfor an -mGnita actuallyturaedout that one of themcouldbegenerstlt'zed to anyellipsoid, andtheothercouldbegenernll-qed to an ellipsoid of revolutkon, namelyone wkickhastwo equalaxes.Tkese twomodeswill bedermibed hereErst,in ihis more generalform,Vfore addrving the problemof otherpfwwlble dgenfundions, whickBrown(3554 presented at the tMe as a gapin the theory.As hasalreadybeenIrentioned in the previous=tiop onlythe largesteigenvalue hasa physical meeng, so that any one eigenfunchon doesnot mpnmver.ymuch. S.2.1 Coberent Jbtafi/n JTb0th'rzzzandmy arc constats, eqn(9-1.3) isGàlfmed. Thevolumeearge V2U= %b0thinside is zero, andeqn (9.1.6) for thepotentialbecomes andoutside. Jt thusreduces to theproblem ofa komogeneously magnetizad elpsoiddiscussed in section6.1.3,whichleadsto a homogeaeous âeld inside,with
Pon= Lsz-vvmv r r and PLV= wNvMxzr7v, t'iz ou
(9-2.8)
whereN. aadNv are the appropriatedemagnething factors.Equations A.rm and in tkis case (9.1.4) (9.1.5) -2.R-1 + Hx+ (N.Ms -
m. Nz)Ms
=
Q.R'I + Sa+ iu.s -
mv = 0. LNvNz)Ms (9.2-9) -
Theseequations aze all tkat is left in tMs casefromthewholeset ofthe cmn takeplaceonce theyare ftzlMed. lizm-m'Rz.vl equations, andnudeation of whattMsGcnlxtionis all about,thestari wms Tor=ind thereader a saturated state m. = mv = 0 at a largepositiveH=,whichwas later reducMthrotlgh0, andstartedinceasingin theoppositedirection.The reversal wkenHx rpmrhes nudeationa a magneiqation becomes possible a valuethat allowsa (small) deviation1om the saturatedstate.lt ea,n
TWOEIGENMODBS
189
happen whentheseequadons can befxllilled/oriheSrstàfrnzwith either mz # %or 'rr/v # 0. Therdore) thisnucleation is aiievedwkentheapplied feld Nazeackes a Yuethat makes one ofthesquare brnrketsof eqn(9.2.9) x .pass throughzero. lf theellipsoidhmsa symmetryfor revolvhgaroundz, whickmeans that Nu = Ny, the eigenvalue is the mnmefor rotationin them- or in thep/-diretion.If theyare not the sxme, therotationwill be towardsthelonner=-!R, because it hasa larger(less eigenvalue negative) thazta rotationin theotherdiredion.Suppose aMsis z, namely theIonge,r N. < Nukthenthe nucleation is for my = 0 andtxltoqplacewhenH. . reaches the nudection éel:valueof
2A'z + Ms. (9.2.10) M. (Nz Nz) ln thismodethemavedzationrotatesin the sxrne angleevermhere throughthe Gpsoid,andit is thereforeHown a.sthe coherent rotation mode.Thenxme Srotation in nnlsonlwas alnntried (356j for a while,but it did not catchon. Actually,it is JusttheStoner-Woblfn.rk% model,studied in section5-4for themore general caqeof a feld appliedat an angleto the xvkq-In $hepxesent cmsetheseldid parallelto theeasyads, wMch is eas.y 0 = 0 in the notationof that section.In section5.4it was assumed that therewas onlya crystallinexnl'sotropy, with no shapeanksokopy, which essentially means a sphere. Forthat ca'le it was seenthat at zero =gle, the valueof thefrst term in eqn nothinghappens till thefeld renzthes hereTh% in sedion 6.1.3, the second term ofthenucleation feld (9-2.10) wasintroduced for thecaseof an elllpsoid withoutMisotropy,namelywith is for thecomblationofbothesotropy terms, .JQ= 0.Herey mn (9.2.10) but oulyfor thecmsewhen theeasyaxes of b0thate plkenllel to theapplied feld.H this case,their'values are justadded togeiher,at l/uAtdmingthe start of thedeviation 1omsaturation. TheStoner-Wohlfxeh model,whichstartedas a model namelyaa a pœtulated structm'eof t:e mavetizationin space,hasthusbeenskownto be a mode,unmelyan eigenfnnction of Brown'sequatio=.As such,it is a realenergy msnimum, andnotjustaa arbitraryconfgaration forcomparing as in the domaintheory,whiGBrowntried to avoid(see sedion ener#es It is not the endof theroadyet, becauxlhlK modewill actnallybe 8.3)usedby the physicalsystemonlyin cues in whickit is the modewitht:e lpxqtnegative uutleationNeld.In orderto fnd out if it is, all the other modes mustbeinvestgated, aadcompared with thismode. Hn =
-
9.2.2 Magnetizztion Jurlfn.q Anothermodewlzic,k Brown(355) fouxdto bea soluhonof theliaeltriv>d xt ofequations appliaonlyto an ellipsoid of revolution, or at l/mAt nobody hastziedto generalize it to any otherellipsoid. ln cylindrical coordinata Hownmsth'ecurlingmodeis thesolutîonof p, z and4,whathasbecome
'rEE NUCLEATION PROBLEM
190
Brown'sequations for whiciz m.
=
cos/, Qa= -Fçp,z)6n$,TP.P= F(#.,#
= 0. D-out
(9.2.11)
It is an arbitrarysetofconstrlu'n?on thesoludoa, whose onlyjustifcation is that it nwrka,namely that sucha solution doesezst for an.yellipsoid of stlldent to substitute revolution.. 1.nozderto seethatit does, it isobviously theseconstrintsin eqns(9.1.3) to (9.1-7) andseethat thm.e is a solution to the constrained set. Substituting thuseqn(9.2.11) ia eqns(9.1.4) and it is that they are fnlfllled if sen Wth (9-1.5), az
-! ta - 1
qclv,s +
+
.,?z
v v
;
-
zs,
-
Ms(Hu NzMsà F(p,z)= 0.
(9.2.12)
Equakon(9.2.6) isobvioulyfnl4lled,andso iseqn(9.1.7% eventhonghthe lattexAlkkes a little thinkingaboutto see that eqn(9-2.11) actuuy leads to m . n = Oon thesurfreof anyellipsoid of revolution. Thepoht is that according to thisdeGm-tion ofF, tkisF is actuvy thecomponent ofm in thedirectionofthe coordinate $,namdym4. Tkiscommnentis parallel to the surlcei.nany bodywhichhasa cylindzical smmetrsin particular an ellipsoid of revolution. Therefozey the onlymuationwhichis still left fromtheori#nal xt is eqn(9.1.3). in it yieldstheboundary Substitution condition 0F = 0, (9.2.13) on thesuAce,wheren is thenormalto thesurhœ.
Theassumption qf mn (9.2.11) hasthusreduced thethree-dimensional problemto a tweimensionalone, wldc.his not diEcultto solvein the ellipsoidal coordsnate system.However, sincetkesecoor&atesmaybetoo adv=cedforsomereaders, thesolutionwill beexpressed drstforthe two almost cmsesofa spkere andan t-nAnite circularc'yBnder, studied, ori#nally simult=eously, botàby Brown(355) aadby Ftmie'l cl (356J. Thereis, however, a big diferencebetween the twowhichhasben forgotten during theyears,andwhiG is worthemphaaizing. Brownstartedfromthedilerentialequations, andguessed a pmicular Klutionfor a spheeaadfor aa in6nl-teeylinder. Frei6i al startedfroma particula.r functîonal lrm for the magnetization, andcompared its enea'a withGat of some othermpdëls. In theirpaper,theypresentetlhecurling modeasan arbitrarymodel fora sphere andforan in6niteVlinder,because they did not How iat it wms the same soludonof Brcwn'sequationq published byBrowna fewmonths eearner. Since Browndid not givea name to this mode,au.dsincepeoplensuallyfeelthat whensomething is given a name theyunderstand it bettœ,thepaperof n'e.iet cl (356:, in whic.h thename 'curling'was fzrstixvemted, became muchbdterHownandcitu
TWOEIGENMODES
19l
thanthe paperof Brown(3551. In histalksandpublications, Brownkept emphasizing the strange coinddence of the samesolution beingworked out simitaaeouslyandindependently in two places,but henever mentioned 'this diference between a reversal modethat obeyshis equations, anda it was so obvious mere model,probably because to Mm,andto everybody elseat the time.Theunintentional resultwas that too manypeoplewere lef4with tàeimpression that (3555 wasjustthe samems(3561) andwasnot worthreading. Thus,too manybooksaadreviewsgivea schematic picture of whatthe curling(lookslike'; usuallyonlyin a.n infnite cylinder,but not themathematical defnitionof thefunction,as #venhere.Andpapers withall sortsof models havebeen,andstill are, published for magnetization reversal in whic,h theycomparetheirswith thetcurlingmodel',e.g.E35'C. It isimpossible to convince themthat the curlingis not a modei,aadcp.nnot betreatedon the same levelas their arbitracymodels.lt is a nucleation reversal mode,whichis a solutionof Brown'sequations, andas suchcxn onlybecompared with otherreversalmodessuchas coherent rotationor theothermodes discussed in section9.4. 9.2.2.1 InfniteCylindcwr For an infnite cyDnder the norrnaln to the surhceis parallelto thecoordinate and it is only to consider necessary p, F whichdoesnot depend on z. Eqn (9.2.12) is thewell-knoWn diierential equation for theBesselfunctions. It hastwo solutions, one of whichis not regula,r at p = 0,andcannotbeusedmsa solution. Theotherone is
F
G
Jzlkp),
(9.2.14)
wldchis a solutionof eqn(9.2-12) providedthat
Ck1+ 2.&% + MsHu= Oj
(9.2.15)
wheretbe term withNz hasbeenomitted,because Nz = 0 for an infnite c'ylinder: seesection 6.1.3.Theboundary condition(9.2.13) isalsofnlflled,
dh @p) dp
=
pzza
0,
(9.2.16)
whereR is the radiusof the cylinder. Equation(9.2.16) hasan l'446115 te number of solutions, out of whichonly the smalLest one hasto be considered, because thelargerones leadto a more negative nucleation feld, whichcxn never takeplaceif a lessnegative one efsts. Let çz be thesmallest root of
dJz(ç)= 0 dq
(9-2.:7)
THENUOLEATION PROBLKM
l92
Lst21= 1.8412)Thenthenucleation feldfor titismodeis,accorrling (which tc eqn(9.2.15),
H.v=
-
2A% (k21 . Mk R-zMs
(9.2.18)
-
Compariug with eqn(9.2.10), andtazng into accounttàatfor an l'nfna-te c'ylinde,r N= = 2* andNz= 0,it is *e,11thatiJtberei: no ofhermode, magreve-l ill a.a'-n*nitecylinder rotation nedzation should start by coherent if JL< &, audby curliugif R > J?.owkere ,/''t('F Bm= f,ll h/ Ms / -2x '
(g g .jg; '
-
because it is always tke largatJo whic,hcounts:msexplained in xction 9.1.This svtementis not true if thereksa third modewith a still larger eigeneuefor Sa.Thispossibzity will befurtherdiscussed in sedion9.4. R'e,iei c! (356) iatroduced tberedlmed rcdi'tla, s=
R
I G z?o= l j , 2M,
with
-,
a
(9.2.20)
j/
andthisnotationwas laterusedin manypaperson micromagnetics. ln t/is novtion, thetumoverfzomcoherent.rotation to czzrliug is at the reduced radius R ez ss 1.8412 7e,1.039. Se= -X = (9.2.21) 9.2.2.2 SphsreThesecondcaseconsidered by Brown(355) andbyFrei ei al (356) was that of a sphere. For this case,thecylindzical coozdmates to the spherkalccordinata r and0j with 4keptthe p and z are changed transforms same.In thesecoordhates, into eqn(9.2.12)
:2 -2 t'i 1 02 + + + 0r2 r'W ;s0e 4r -2Aï - Ms S'a- 'y'Ma
gc
k
because N>=
cos 0 ê r a syao y
-
F(m, #)=
0v
1
p--r-w.s m (9.2.22)
of this equationis 4*/3for a sphere.Oneof the solutioms
F
(x j1(k'r) giu.#,
(9.2.23)
whereJzis thespherical Besselfunction,whichcan n.1Mbeexprased in termsof thetrigonometric functions,
.i @)=
sinz oa
-
cos n . X
(9-2-24)
TWOBIGENMODES
193
It is seento bea soludozb provided tkat 4x c:2 + 2A% Ms + Ms Na-
Y
=
0.
(9.2.25)
Actually, Brown(355) alsocomddered othersolutions of thesameequation, buttheyhada smallc(î.c.more negative) nudeation îeld thantheoneill andmss'uc'll a2eof no interestThewholeeigenmlue spectrum eqn(9.2.25), isleft to be discussed iztsedion9.4. Theboundary condition(9.2.13) ksfttldlledif
djj.(kr)
=r
dr
r ua
(9.2.26)
0,
whereR hereisthe radiusof the sphere. Tbisequation hasa,zlln6nt'teaumberofsolutions, out ofwhichonlythe malleatone hasto beconsidered. ' Let qzbethe smcilestroot of
4'/1(c) = ()
(g.2.27)
.
*
is q, ;4$2.0816). Theathenucleation Eeldforthksmode1, Rcordixg (which to eqn(9.2.25): 41 Hn = 2A% Cd + yMs. (9.2.28) Ms AzMs Compxring with eqn (9.2.10), andtxMnginto accout that Nn = Nx for -
. -
- -
sphere,it k seen that f thereis m) othermtlde, magnetizatâon reverx ia a sphere should start by coherent rotationif R < &, aadby cuz'ling if .R> J?,c, where h 3C & = Ms (9.2.29) 47, wid.c,h for aa infnite c'ylinder. H the is rathersimilarto the exwession notationof Fre,iet c1(356J, thetllrnoverfromcohezent rotatiotto turling in a sphere radius is at tke reduced a
3 R = Sc= --1 qz -2r
3 2.08162/
(9.2.30) & 9.2.2.3Bllipsoid0/Revolnkion 80th earlystudiesof curlingg355, 356) =
=
1.438.
that this ruult cou)dbe utendu to a prolatespheroid: fœ speculated wlkic,h thecurDng nucleatîon feld shouldbe
fzk=
-
'arq -
Ms
Cq2 + NzMx, Ras.i s
(9.2.31)
THE NUCLEAXON PROBLBM
194
wkereR ksthe snmi-axis of theellîpsoid in a directionperpendicular to t:e f e1ddirectson z, andq is a parame/r whose valueis between qï andqz. and(9.2.13) in termsof theellipsoidal harmbniœ, Bysolvingeqns(9.2.12) it was' latezshownthat equ(9.2.31) is indeed thenucleadon âeldfor this mode,bothfor a prolateaadfor aa oblatespheroid. TheNrameterq is a onlyon theaspectratio,zp,,namely geometrical factor,whichdepends the ratio of theellipsoidal axK, anddoesnot depend on theproperdœ of the ma/rial. 1tsvalueis a monotonic-ally decrexm-ng functionof m, whicàvaries for a prola,tfspheroid between thelimits of qnfor thesphere with m = 1, cylinder,wit,hm = x . It usedto betaken1oman aadqzfor theA-nGm-te plotof q r,s. m, butnow ît can beobtained old,andnot 'vez'yaœuratey (358) fzomthefollcwingpolynomsxl, is correctto îve si/zifrltnt digits, whic,h .11381/-2 + .54072/+4 q = 1.M120+ .48694/m .50149/m.3 .l72/mS.
(9.2.32)
Foraa oblatesphezoid, monotonically with decemsing q keps increasing r?z(359), fzomqgfor thespherey to thevalueqs = 2.115in theBmt'tof an inlnite platewith rrz -+ 0. Thecàange in thiswholereson isj thus,very small,anda eozustant valuea q ra 2-1Cscorredto within1%foraayoblate spheroid. Or,?/x ra 1.4ma.yben!uvl(3591, whichis correctto within2%. Compaz'ing witheqn(9.2.10): it is seenihat foraayeLpsoid eqn(9-2.31) of revolution, nucleation mustbeby coherent rotadonfor=a11rxzll-i) and by cuzlingfor largeronu) andthe Ccriticap radiusfor g between thue two modes is
Rc= q Ms -q
/r--c
-c Az ,
or
5--2
Se= q = , hz
(9.2.33)
pzovided that thereksno tMrdmodewh- nuclGtionNeldis large. ThecurMgmodeis zmtreallylsmitedto c,ax of drfmlarsymmdry. For the caaeof a prism, whic,hîs infnite i.a the zzirection,but has a rectangnlar cross-section i.athezp-plane, the.curling is ddned(359) as the mx is an evenftwctionin tr andan oddfunction reversal modefor whlc.h in y, aad.rzv is aa eveaNnctionin y aadan oddftmcuonin z. Thepotential for tMs modeis not zero, andneitheris the magnetostatic enerar,but it AlKnyieldsa nucleation feld whichhasa term with an essentially 1/R2
zependence-
9.3 Tmeo&* te Slab It hasbeenshown in section 9.l thatthe onlysolutionofBrown'slinexrszed muationswhich%nAaayphysici molkn-tng isthe one whichhasthe largœt. nucleadon âeld.Thetwo modes described in the previoussectiondo not me= verymucànnlœsthewholedgenxmlue spectrumis analysed, andit is shownthat all theotherpœsible modeshavea smalle,r eigenvalueThe
INFNTE SLAB
'
l95
6mt of suc,h studieof thewholespectrumwas for thecaseof an ivnite c'ylinder. It showed the existence of a thrd mode,but eliminate a,ll (360) poebilitiesof a fourthone- Thisc%e is atypical,andits resulî are not in thenext section. as condudve as othercces, whichv,ill bediscussed 1tsalgebra ksalsorathercomplicated fora start-Therefore, tNepAdple ofcoverhgthewholeeigenvalue spectrumwill bednmonstrated Nereby a detaâled studyof an infniteplane,mspresented in (3614. Thisc%e is also atypical,andits xsultsare zatherambiguous andof no particularinterœt whenever ''n6nity as usually.happens an is mssumed îa maretostatic (362), is the same as in themore complicated problems. However, the zrletàW rxdaax,andit is pxqier to undeataad thismethodbyconsideriag thissimple rxqo fm$. Therefore, consider a platewhic,h is iaâaitfin boththez- andtheyirections,and Mendsover the flnz'teraage-: S z S c in thedirection of theappliedâeli In an inf nite material,anynon-divergent Gtnctionof coasideration for spacemust be a periodicfunctioa.With an appropziate thesymmetrypropertieof etms(9.1.4)-(9.1.6), thispcriodicity meaasthat themostgeneral solutionrztn bewrittenin theform
A(z)SA:'Z zc)eostnp&ô), mu = S(z) coslàz*o)sintzzv #c), U = 'utzlcostàz zn)costnv#0), mz =
-
-
-
-
-
-
(9.3.34) (9.3.35) (9.3-36)
wherek andn are realnumbers, and.4, B ande, are functions whiexhave to lx determinedSubstituting i.a eqns (9.1.4)-(9.1.6), andnoting that Nz = 4* for an snflniteplate,Wan- Nz = Nv = 0,
c P 02
(
-
:.2-
C Oc ,- ka dz
-
tfz P dzg -
.42
s2
-
-
-
nz
2A-z- MstSa-
4xK) A(z)= -kMs'uis(z), (9.3.37) 2.&%plk(Nw 4xMs) Blzj= -sMa>a(z), (9.3.38) = 4xMs(kz1(a) sS(z)) , (9.3.39) 'tqatz) -
-
.
-
Jz kl .p.2 ,tteut(z)= 0. (9.3.40) dz2 Theboundary conditions are obtnln edby suMtitutin.g thesxrneequatioas, in eqns(9.1.3) and(9-1-7)The6m-+two conditions are (9.3.34)-(9.3.36), -
(IA dz
-
A= sc
-
1
=
-
dB = 0. dz a=+.
(9.3.41)
196
THENUCLEATION PROBLEM
Theotherboundary conditions are easierto incorporate if it is notedfrst thateqn(9.3.40) hasonlytwopossible solutions, one of whic,lldivergcat infnity.I1sonly solutionwhicàis realar at '-ninit.gks cout =
vse k.+o-(ezp) ,
(g.z.4a;
wheretheuppersignappliesto thereon z > c andthelowe signappliœ to there#on z < -G andwhe.re F+and7- are twointegrationconstaats. Substitutin.g thkssolutionîn theret of theboundazy conditionsl theyare seento be = Fc!z w'uzlicl ,
and
dwn = ry ka + na i,. :i: , dz 7mukc
(asgsggl
whichcompletcthe reduction of theImJIMdœeratialequauons to a set of or ' ones,i.aone dimension. Thecohexent rotationmodeis theparticularcmsek = p, = vzin= 'tlout= 0, with eitherW= 0 andB = const,or B = 0 and.4 = const,according to the defnitioni.nsection9.2.1.It rAn be verKedby su%titutionthat thiscmseLshdeeda solutionof a2theforegoiug equations, andthat the nudeationfeld is the same Br rotationin the A-direction or in the :> direcdon, andîs H= = - 2fG + 4rMsj (9.3.44) Ms for Nz = 0 azkd Nv = 4çr.But whichis a particùlarca% of eqn(9.2.10), this eigenvalue is degeaerate not onlywith respectto thedirectionof the rotation.If the infmiteslabistakenas thelsnn-tof a,nobla* spheroid for wikichR -+ x, eqn (9.2.31) for the nucleation by cnrlin,gnlnntendsto the same valuemsin eqn(9.3.44). Thepoint is that an infnity is never wemdeved h magnetostatic problems, andit mustbespecifedtheliml't of whîchshapethisinfnity is.ln a 6nlte body,a coherent rotauoninvolve doingworkaYnstthe magnetostatic for= dueto thesmfacenhn.rge on the <detowardswhichthe magnetization rotates,but doesnot ilwolve because all the spinsa:e aligaedparallelto evfhzmge, any workagaimst eachother.On the otherhand,the curliugmodedo%workagalnstexthereis a spatialdelmdence change forces, because of tkemagnethation, but doe not involveanyworkagainstmagnetostatîc forcesbecause there Lsneithersorfnzwnor volnmecharge.In this atypicalcase of an infnite slab,theexcAange contributlon to the curlingwnisha because theradius in ininlte,whilethemagnetostatic contributkon to the coherent rotation vaaishes because thereis no smozwin f/hedirectton of rotationwhenthe plateeex'tends to infnity in the zpplMe.ln this case,the onlybarrieris dueto the anisotropyenergy, whichis thescm.efor 50thmode, aadthe eigeneuetums out to containonlytheA'1term--Howevem it is obdous
INFINITI SLAB
that the vanishing of onetermis not the samemsthat of theother,andthe realphysical limit depends on thewayof approach to thisinfnits as often happens in manyproblems in magnetîsm. 1.xz spiteof all the azguments in the conclusion that onlycoherent rotationtakesplacein thisplate (3611, is only dueto the separation of 'variables in Cartesian coordinates, which impliesapproaching the infnity msthe limit of a growingsquareplate.If it is approached a,s the limit of a growingoblatespheroid, the modeat . inûnityis the curlingmode. Beforeproceeding, it shouldalsobementioned that the argument about the periodidtyis not strictly corrcct,althoughit hasbeenusedi.nother studies, in particularfor the cmse(360) of a.'!linfnite circularcylinder.In prindpleit kspossible to imaginesome sort ofa loczzlïze mode, whichdoes not spreadall over the slab,aadsucha modeneednot be periodic.It is notpossîble to buildsucha modeby theseparation ol vadables technique, as usedin writing eqns(9.3.34)-(9.3.36), but this shortcoming doesnot ruleoat thepossible necessarily efstenceof a locnlszed mode.Thisproblem will befurtherdiscussed in thenext section.Hereit is suldent to saythat the inadequacy of the separation variableinto a functionof z timesa of the infnite dâmension of functionof y, etc., is anothermanifestation the sample.The problemi.s ndt encountered in any Eniteellipsoid) for witicha11 the possible modescan bewrittenmsa seriesin the spheroidal wave function, andit is notnecessary to supezimpose anyextraassumption whichis equivalent to thepresentassumption of periodidty.If theinfnity is approached as an appzopriate limit of a fnite particle,the resultsa're betterdeûned than they aze whenthe start is 1om a particlewhichis infnstein one or more dimensions. As hasbeenmentioned already, thereis no meaaing to infnity in magnetism, andit is always to specià necessa'ry in whichwaythis infnity is approached. laeaving this problemof inûnityfor the meantime,andaccepting eqns msthemostgeneral caase, sucha setof threesecond-order (9.3.37)-(9.3.39) diferentialequations shouldhavea solutionwith six arbitraryintegration constaats.Therefore, anysolutjonwhichhassuchsix constartsis themost general one. I.aparticular, if it is shovnto bea solution,it is sulcientto takea solutionof the form 6
A(z)= V Az'elLsn , S(z)= f=1
6
6
SçeJ
= 'fzutzl
:=1
ULela',
(9-3-45)
where/.sà aresixcomplex numbersy provided that sixout of the18constants A'l B6,aadUi are jndependent of the others.Substituting in eqn(9.3-45) thediferevtialequations(9.3.37)-(9.3.39), it is seen that theconditions for it beinga solutiona're
T% NUCLEATION PROBLEM
l98
:2 2) 2A% M: (JQ 4*Ms)j m + lMsw = 0, (9.3.47) (CLybx w = 4xMs(kA nBè (9.3.48) (p1P n2) -
-
-
-
-
.
-
-
-
.
For ear.ltvalueof 1 K f K 6 theseare tkœ homogeneous equations i.aA, m andvo andGe condition for themto havea non-zerosolution Thisdetonnina.n is that the determinant of the coecientsvauishes. t is a third-order polynomial in pl, andaa sucxshoddllavesix (complex) roots eAn be used for ;ti. Foreachof theseroots,eqns(9.3.46)-(9.3.43) to solve for two out of the tlzreeconstants.&, Sf aadkz: in termsof the th-lrd one, thusleaeg sîxarbitrary intevationconstants, widchmezas that eqa' is themœtgeneral soludon, audcontains all po%ible mode.These (9.3.45) sLxconstants,with the t'woadditional oaes 'k%, shouldnow beeœuated bythermuirement of fulflling theeilt muations for theboundary conditionsin eqns(9.3.41) and(9.3.43). Thereare dght homogenecms equations for determînlng theseeightconstants,andthecondition for a non-zeror,oof the coeEdents vaaishes. Equatingthis lutionis thltt the de#orlm-nxnt detprngnn.n values for theappliedfeldHx, ï to zero thenyieldstheallowed aadtheseare theeigeneuaofthe problem. Suchan akebra is not triviak. but it is stMghdorward in pedple. Moreover, thepresentcmseof an ln4nlteplateis particularly simplein that it can all becvziedout analytkally.Thetàird-orderdeterminant can be factorie- (361) into a quadratic auda linearequationin Jz?: six , anda11 roots rltn be mltten in a closed fozm.The resultLs (361q that all otàer mcdeshavea more negativenudeationfeld thaa the coherentrotatioa mode) andas suchcan beignoredas beingphysicldlyunatteable. Thedetailsof thae othersolutioas wlll not begivenhere,because it is nlm simplerto employ a technique wlzicN has proved a mwerful (362q vea'z *ol h othe.x cxses. Themethod Lslomed on calculating aa uppe-rbound feld ofa certe mode)namelya valuewhichis proved to the nudeation to be lvgex than or eq'aalto the t=e nucleationâeldof that mode.If th2 upperboundis foundto be smaller(ï.&more negakive) thau that of anothermode,the actualnucleation is not âeldof theErstmodetwhicil hrgerthanits uppe.rbound) is certxinlysmallerthan that ofthe second mode.Andsiaœonlythe largestnucleationfe-ldhnqa physical meaaing, Neldthan that of any modewhichLsshownto havea smGernucleation aaothermodeksof no iaterest,andmaybesafelyleft out. Evenwhentwo modahàvethesame nucleation seldone of the.mmayusuallybeleft out. lzvm, Onewayto calculate an upperboud isto dropa vsiiine ezte-rgy thusdecremshg theenergybarrier,aadmeng thereverskpxm'e thauit rpallyis.In thepresentcmseit is czmvenient to obtainan upperboandto a setof modœl)y dropphgthe mMnetostatic termj whichis knownv enezgy section7.3.2). to bea non-negahve term tsee lt ksclearfzomthe derivation ofBrown'sequations in secdon 8.3that droppiag themxgnetostaiic enerr te= is equivalent to writing'ttuz= 0 on thevisbt-hand sideof eqns(9.3.37)
INFNTB SLAB
199
and(9.3.38), aadignoriageqns(9.3.39) and(9.3.43), befmthesubsKtuThe dllerentialmuationsfor A(#and#(a)nm then tkonof eqn(9.3.45). ideadcal, andeitherone of themmaybeusedfœthe upperbound. Foz lmmple,w1t,h 4(a)= 0 t'hemostgeneralsolutioaLs = Bzegz+ fac-e BLz)
1
(9-3-49)
with thetwo arbitraryconstantsBï andB,. It is a xlution provided that G'(p2k2 -
-
'rz2)zft'y -
= 0. Aqzf, LHu 4rrMsl
-
-
(9.3-50)
Substituting in theboundazy conditîons, yieltks eqn(9.3.49) eqn(9.3-41), = s #$(Jhep'c sae-mc) (.s,c--- ac/'c)= c.
(9.3.51)
Thesetwo equaKons havea common non-zero sohtionif andoalyif the det>rvn-nant ofthe coeëdenàofBï aadSz veshes,namely = 0, g tstme e-zJzcl
(9.3.5z)
whosemostgemea'al solutton is g
=
'mzCY
2c j
(9.3-53)
wkerem is an integer.Substituting in eqn (9-3.50), theupperbonndfor thenucleation feld is
2.% C =2:r2 + kl + $7,2 . Hzxu:u4gr.K Mu Ma zlc72 -
-
(9.3.54)
Theleastnegative oftheseeigenvalues is theoae for wlkic.h m = k = n = 0, Dd for this modeeqn(9.3.54) îs theume msmn (9.3.44) of themherent rotation. It haathusbeenproved thatan upperboundforall othermodes islarger th= or eqnalto thetnte nudeation Geldof the coherentrotationmode. Therdore, forthiscaseofan inGnite plate,tlzecoherent rotationis themode wMchhastheIeastnegatîve feld. It izasnot btvmproved that aucleation thereis no othermodewhichhmst'hesqme nucleation feld as that ofthe coherent rotationjandthereisno justlcation to theclnx-m in (361) thattàis Gculationprovuthatonlycoherent rotatione-q.ntakeplace in s-ac,h a plate. H fact,it hAAalrevy ben demonstrated in the foregoing thatthecurlhg modedoeshavethes=e nucleation rotation,aadtlds feld aa thecoherent degeaeracy leavessomeambiguity a.sto whicah modeq'ill takephcein a realphysical situation.Themainideaof lixertHscTng the equadons wmsto
20O
PROBLBM THENUCLEATION
know1omwbie.b aoa-liner modeto staz'ta numezical solutionof Brownss eqqaiions out oftheverymanypossibilitîes. Fortidspurpœe, degenerac'y of the Imcleaïonmode is undeeable,because it allowsmore thnn one poôsibility t,oproceed lom. Howevez, in thksrespecttke caseofan infnite pla* Lsnot representative, because thereLslessambiguityia any fnite empsoid. Tkeaumption of an infnity is problematic of anyway,because tke necessity to assumea periodidty,aleadymeationed in theforegoug. 9.4 The Third Mode Usiugm'rnl-larmethodsto 'thoseoutliaedin the predoussection,h was 6mt provedfor a spherw andlatarfor aay oblatespheroid(359), that the coherent rotationandthe curlingare tke only pfwmible nucleation modes. Curling'Ae.Splce above a certe dze,aadcoheremt rotationbelowit, wkeretheblrnoverfromone to the otheris givenby eqn (9.2.33). Tkere Onnotpo%iblybeanycompetition 1oma thirdmodeo because forall other modesthenucleation Eeldksmore negativethaufor thcxse two. Theonly in the b-mltof a.n A-n4m-te abiguity is encountered plate,for whicllthe curDng andthecohereat rotationtendto thesameeigenvalueo as(ILSCIUR'U:!;I in theprevioussection.But even fœthat limit, thereis no tkird mode)if tke in6nlt.yis approachufroman oblatespheroid with .R-+ x . tkeremaybea thirdmode,whichwill beaamed Fora prolatespheroid, for lackofa more approphate name- Thename buckling was 6m-: bncklçng, applied to a particularmodel, suggested together witk'the model for (&%) cur ling forthe'particuzu caseof aztinfnitecrlinder.Its nucleation f eldwas laterfoud (360) 1 bea goodapprovlmadon to that of a third nucleation modethat was skownto ezst in an infnite cyliader,aadwbiczh was given the samenamc. Actuallylthis modeturaedout to bealwayseasierthan the coherent rotationin au infaite cyHder(360), so that iu sucka cyliztderiere rAn onlyi)e buckling Mow a certainswize, andcurlingaboveit, witkoutaaytkird pfwmibility. Tke Grststudy(359) ofthewholeeigeneue showed that coherent rotationcould spetrnm of a Bnitepfolatespherofd bethceaaiest modein someregionof sizeandelongation, but didnot rule out thepossibility that tEebuckllngwouldtakeover in anotkerrange.It didrule out, however, thepossibGtyofa lonrthmùde, so that it coaldbe dvni*ly statedtkat none buttkœetEreemodes shouldbeconsidered for prola* witk no surfKe anisotropy. any sykeroid Otherlimltson the possible moda were fouadlaterj but tkey were stzlambiguous, until a recentevaluation gavetheresultsreproduced (363) in Pig. 9-2kere.It plots regionsin wlzic,hmodesmay beallowedin a prola* spheoidwith an aspectratio m aada radiusR in the directbn perpGdicular to tke appliedGeld,plottedin terms of the reduced radius Sdefnedia m K 500therecan onlybedthercurlingor For (9.2.20). eqnas shownin thefgurej.andas is the6a,%for all obhte coherent rotatlon, spheroid? Forlarge,r m, thethirdmodeis not completely mZIM out. It may
THETHYD MODE
201
1-5
CURUNG
COHERENT ROTATION
100/ga
FIG. 9.2, The possiblenucleationmodesin a prolatespheroidwith a.u aspectratio (major to minorJt='Kl m, anda reduced semi-minor a'ds,SA defnedin eqn(9.2.20). Onlycurlingor coherent rotationare physically in the regionsso marked. eists at possible lf a third mode(buckling) all,it ca.nonlybein thelittle quasi-triangle, aroundthequestionmark, for thedefldtionofn. Copied fzom(3634. computed for 'a,= 13.Seete-xet in takeplace,for alimitedsizerange,in thesmalltrhagularregionmarked F'ig.9.2.Thisre#on is the bestthat ca.nbeobtainedfor n = 13,where'p,) the orderof theLegendre polynomial usedfor thecalculation, isessentially an arbétrcnparameter.Its choiceis onlyDmitedby the dilculty, which increases with 'p,,ofachieving in the computations. a suldent accuracy An elongation ofmore than 500:1cmnnot bereached in practice,andits thebu ' is notvery diferent1om studyis purelyacademic. Moreover, the coherentrotation,for the inGnitecylinder,m -+ x, with smallradi.i beforethe curlingtakesover. Thereis someuncertaintyin this conclùsion, because ofthe infnity,whiG is never a 'goodassumption in magnetismlt implied(360) that the eigenmode of an înfnite cylinder must bepûriodicin the z-direction. Therefore, the possibilityof a diferent,localized modeis
202
THENUCLEATION PROBLEM
still leftopen,as it was in the studyof theinfinp'teplatein section9.3.But nnll'kxthel-n6niteplatejthe 1-n4n$ te cylHderrnnnot beapproached 6oma mode'mxleqy knoum solution for a fnite cpsoid. Obdously, if a loeltlized thethizdmode,namedlbuckling' in Fig.9-% mus'tbesimllnrto Gat one, andnot to the knowa(36Q) buclrllng in a.ainvite cylinder.If no loe-qXeAlmodeefsts in azt infnite cylinder,the bucblingmodeksm-t probably ofthel'nllntety, aaddx not exis-t in aayfniteellipsoid. justa manifestation Some attemptsto fnd a modelfor sucha modein = infnitecylinderfailed, wlzic,h in prtdple doesnot proveaaytkin:one wayor the other.Themost r-nt attempt(3Gq is wrongbecause it uses wrongapprozmation? The is (365) muchlargerthauthetermswhichare taken enerr ttvrn it neglects into atrount- However, a loMll-g,p.d modeof a similarnaturemaystzl be ptebleobut onlywithinthequui-triangular bounds shownin Fig.9.2. At any rateothe mckqtimportantpoint is that therezsno othermode for a.nellipsoidofrevolution, andthat this statementhasbeenrigozously Thereis no pott in tzyiagto provedandtheproofcltnr ot bec'hallenged. reversal postulate otker mode, Gcause it mustleadto a higherenerr any barrier,namelya more negative nucleation feld,tllaa at lemst one of these modewunlessthereis somemistakein the calculauon of the othe,rmodeNevertheless, therewereverymaqysuGattemptsto lookforothermodœ, the presentation eddentlybecause oftbis stat-ent in the oririnnlpapers wasnotdearenough to beunderstood. Theconfusion seemsto havealready startedwlth Fig.3 of one of the frst redews(366J on elongated particles, whicNput togethera sGemxtic representation of lourreversal'modes. The the dîFerence, e of that review(366) did explzu'n but whenthis fgure wmscopied to manyreviews andbooks,it was usedout ofcont>t. lt then ledsomepxple to believe that thereare actuallyfourmodels for reversal, whichmaybeusedon an equalbmsis, not payiagattention to their diflent geometries. These models are thecoherent rotation,bu , andcurlingy mentioned in the foregoing, plusa fourthone rnlledIanning. Historicalzy, themagnetization fnrningmodelwas the flrs'taevpt to reverml,in orderto calfmlxte maaetization any formof a non-coherent explm'n whytheStoner-Wohlfnr'th modeldidnot agreewithexpeziment on (m-rtain materials.ltc=e at the<mewhenGeneral Electricwas developing theproduction of elongated fne pardcles for whatwas latersoldunderthe commercM name of Lodexma>etwaadit was notedthat theseparticlu this shapewas were shaped more or less111*peanuts.Therefore, (366) approzmated by a lin-xr trthna-n ofspheresl whichtoucheachotherat (36% a pointso tbnxtGereis no exchnange spheres, but there interactionbetweea ksa magnetostatic interactionbetween them.For tMs exq-, a modelwaa proposed in whichthemagnetization rotaœ coherently kztw-11 ofthe(367j spheres, buttheangleof rotationmaybed-eereatforthe diArent sphere. Thismodelwas called'non-symmetric fanning'.However, computez's were not avHable in thosedays,andcomputation ofthedsF-nt angles by hand '
THETOD MODE
203
was ratherelaborate. Therefore, it was foundadequate to studyonly (367) an cppraimationcalledtsymmetdc fanning',în whichthereis only one acgle,with one halfof the spheres rotatingat that angle,andthe other halfat minusthesameangle.Eventhisapprofmation was shown to beeasierto reversethanby coherent rotation,whichis not surprishgfor
(3671
.
thisparticulargeometry. Obviously, thenon-symmetric fanning,whichis equieentto thebucklingmodein a cylinder,mustbeeven easierthanthe symmetric fanning, because theenerr is mt'nsmlzed over more parameters, with the symmetdcfanningbeinga particularcase of the iore general minimization. Thismodewas studiedin more detailfor a chainofonly t'tvo spherewith a unl'ar'a1 Gsotropywhoap easyaxisis parallelto thechain a'ds (3681 is actuallyjustan additine to thenucleation Eeldia aJJ (which andthenucleation feldfor magnetization curlingin a chaînofany modœlz lengthhasbeenevaluated bya perturbation scheme. Theproblemof (344) the wholeset of modesin sucha chainof spheres hasnever beenfully solved, but it seems that the resultshottldbevery similarto that of an namelythat the reversal is by curlingabovea certainradius, ellipsoid) Gnningfor a smaller andbynon-symmetric radius,witk vezylittle ckance of any othermode.H any case,the reversalmodes for an elpsoid,and thosefor a chainof sphereq are for dxerentbodyshapes. Theycannotbe compared witheachother,or mhedtogetherin any otherk'ay. Nevertheless, it was quitepopularfor some time to compére the (36% valuestprédicted by eachof theknownmechanisms of fanning,buckling, andcurling'with some experimental results,in orderto ândout which of theseEmechanisms' takesplacein a give,nexperiment.No attention w.xspaidto thediFerent involved,andactuallytherewas not geometries even an attemptto defneany particular even whenspecifcpicgeometry, microscope turesof thesample were aelable. These transmission electron particles whkhcould showed ofa ratherirregularshape, (TEMlphotos (369) certaânly not be described as ellipsoids. Theylookmore like distortedelJe-ss lipsoids, buttheycan muc,h beapprofmated by the pictureof a chain of spheres. However, the realshapewas not even mentioned in thequasîtheoretical hterpretations, whic,h considered it ae a part oftheadjustable parameters, stating,for example, that (370) certainexperimental results llayin therangeconsistent with thechaizsof-spheres andprolateellipsoid models' ! Thediscussed modes were not verywelldefnedeither, with more attentionpaidto thename thanto anysort of a mathematical defnitiop andnucleationGelds usedin thesecomparisons were, more oftenthannot, thoseof curlingin an insnjte cplï/zder With thisapproach there (36% 371qis little wondcrthat too manyworkersfelt freeto inventandproposeall sortsofnew reverx models(372) èinadditionto theesting models ofcoherentrotation,fanning,buckling, andcurling',anddemanded that these new models betreatedon thesamefootingas the tefsting'ones. A dxerentparticleshapecan be easilyima#ned to support modes
204
PROBLEM Tc NUCLEATION
whichare dsFerent fzomthosementioned here.But no new shaN was ia thue sindies, Msnmed andfor thesamegeometry othermodes caanot takeplazeif properlycalculated. lt shouldlyeespecially notedthat it is not secientfora reversal modeto bavea lowerenerv tlzinthe satura/d state.States withlowerenerr doGst as Kon asihe applied âeldreverses its direciion,buttheyare not necœsnn-ly Rcesible,as explained in xction 9.1-Oneshonldbecarefulto govia enerr minimaon a well-deîned path, andnot to useapprom'mations, whichcan leadto largeerrors, as theyhave in thesemodes.Thee new modesesseutially nAsmmed the ume chainof spkeres, butconsidered a vagaenes aboutthe geometry as an excusefor in the calculations. Thekuass-curling' aadkuasipoorapprovlmations buckh'ng' were particularly ill-defned,andwere hardlymore Gan (370) appropriateto thee case justnames, it beingsvted that tcalculations are ve.rydilcult'. The Knove.l reversal mechanism' named'êipphg', (372), fanaingin couldbethe sameas what usedto be rztllednon-symmetric a chaînof spheres, if doneproperlyaadwith no extra approimations or inconskstendes, suc,h as a total thickncs,T, of tEeTGzlly developed wall'in the chaiwwhichis allowed to belargear than the total number of spheres. ln an invitedtalk at a conference I tzied to point out thesedLs(373) tortedconcepts,but Kncwleat lemstwas not convinced by ihesearrzments.Eepublsshed a lreply'whic: stakdthat thei.r shape (3741 all thereults for an Gipsoid, %,'m of thepartidesinvalidated andallowed to legislate curlingout of efstence,audto choose othermodeat wi11. The recderwill hopefully understltnd that thisapproach leadsnowhere. There are more appropriate of spheres studieof cltn.ims wiihanisotropy or (375j) of spheres wllichare cut beforejoining togeoer(376) <) that theytouch GCXotherover a ratherwidearea,,andnot onlyat one point,andthus resemble betterthe pe=ut-shaped pvticles.Therels alsoa theoryfor a nhlu'nofdisks(3711, andone for a chainof oblatespheroids whic,hare (378!, evenbetterapprofmations for tbsKskape.Yd none of tke.m hasencounteredany new mode,aadthey a11 come backto the'old' moda.In order to condude tbisdiscuHon it will only bementioned that eventhe angalat dependence whichwas so emphaaized in (374), as we,ll msthat of (3711, was dl-lerentapproach. later azcouated for (379) by a completely The dataof Knowle were ftted to a Stoner-Wohlfne: model,with a cubicmaaetoctystxll-me anisotropy superimposed on the shape anisotropy ofa prolate spheroid, andwhe.nthe demaretizingfeld wmsintroduced, it led (379) to azt texcelleni agreement'. Otherpossibilitie(368, 380,381) haven.lgnbeen œnsidezed. R doe happenquiteoften(3821 that thesame experimeavl dataft dferenttheories. 9.5 Broml's Paradox Themnsnrexsonfor the tfatilel search for otherreversal modeis Gat in spiteof all therigourin the qvaluation oî thenudeation felds,the results
BROWN'S PARADOX
205
donot agreewîth eoeriment,in particulaz for the caseof bulkmatedals. Mthough the nacleafon feld is a tàeoretical conceptwhichis aot usually memsured, it ksnot evemnecœsary to continuethe calculation beyondthe muclGtionpointin orderto seethat this theorycauot apeewit; etperiment,andthat something is basicatly îeld vrongwith it. Thenucleation E= is deîned5nsection9.1.:: the feld at whic.ksome ckaagefusts'tcr.ts in the previously saturated state.Thecoerdvity(orcoerdveforce) H
Ce - NzMs. Sc k ----1+ azvs 2A
x
(9.5.55)
The right-haad whennucleation sidemqy benegative, occurs already at = positiveâelds.For example,for '-wm at rxm temperature2Kï(Ms 560Oe,aad4xMs= 21600G. If the elpsoidis a sphere, Mth.Nz = 47/3, thefrst aad addup to -6640Oe.Themiddle 1 thelasttermof mn (9.5.55) term is positive, butit is ceriminlynegligible for a sulcientlylargeR, and the z'ight-hand sideof mn (9.5.55) is negative. In sucha case all that the ixequalitystatesis that the posiiineSkis largerthana negadvenumber) whic.kis an emptystatement.EFectively it meansthat the calculation of H=is inadequate to tell anythingaboatS< in sucha cmse.St froma largepositivefeld,a reversalalready nucleateat a podtiveappliedâeld, bdorea zero feld is reached. It is then necessary to solvethe non-linear Brou's equations for smallerpositivefelds,afternudeation, andfollow thesolution downto negative feldsti11-Sc Lsreached. Nostatementabout the theoretical valueof Hcis wlid lxforethlscalculation is carriedout. However, if the ironcystal is an elongated prolatespheroid instead of Nz caa bemuchsmazer a sphere) (ittendsto zero for an infnite cylinder), andthe wholeNXM.tprrn noy beomenegligibly small.;.athis casethe is positive. themiddleterm is positive right-haad <deofeqn(9.5.55) Since ironbodiesSc 2 560Oe. it eztn bestatedthat for ve,ryelongated anyway, Foriron whiskeest with dixmeters whichare veryelongated paztidaindeed,
206
'PHE NUGUATION PROBLEM
of severilm aada lengthoftheorde.r of 1 cm, theexwrimentalvaluefoz Hcis nsually0.1Oeor less,wllic.h Lsa ve.rylargediscrepaacy. lt kslœown ia tàelitaratuze as Btomn's Nrtotrlor Brown'sc-rcivity paradox. lroais giveaheremsa zepresentadve oka chssof mat-n'xhwkic.lt.6 called:o#magnetic mzedcl:anddeoedas materials fœ whic.h .R% < The othez exi-me is matezials . for wlzichKz >. 'ZMI, andthksclmss JrM; isHownbythename of Mrd mcgnedc materials. Thereis ao 1awofnature whichpreveatsmaiarialsfom beingin betweea theseextremecases,but suckmatezials are not behgproduced or invœtigated, beceause theydonot haveaaypracticatappicatioa. Softma/rialsare usedwherethe coercivit.gis preferredto be as smallas poggible, e.g.in motorsor trusformers, wherea hlgkpermeability andlowlosses aTezmuired. Hardmaterials are msed in applica/ons whic.lk requirethemagnetizatioa to befxedfor a loag dmeaftertheczystalilM beenmagaetized, suchas in permaaentmagnets. materixlK,sueah Recording as 'PFeZO3, aa'ei!l fhe latter categoryp but for themit is prp-f-mad that themagaetizing feld for writingthedataskould not behtge.'Thereforq theyare madewltlz a Kï wlzichis rathe,rlarge, butnot too large.Suchmateri/sare sometimerderredto mssemi-hatd ' acgnedcmcfedcfxs. H hardmateziab, is even more outstaading tbxn in Browa'sparadox softoaes,becauseit appzes to anyelliped,aadnotonlytoelonotedones. = 16600Oe,and Forev-tmplej ia R-tpezzozâ at room temperature 2A'1/Ms = largœt in yrMs .1500 G. The possible *ue for Nz any cpsoid is 4r, fœ an inHte platewith the feld perpendicular to the plate.Evenfor thksvalue,andjustnotingthat the middleterm in eqn(9.5.55) is posiîive withoutchenldng whatits mluemay be,this ixeqnxlity>ys that Ho à 12000Oe.Theexperlmental smlue for Beelcow partidesof theordezof l>m is 3 000Oe.Slmonr discrepandes are eacoune in practicallyany magnetic mateM,wheathecrystalsizeis hrgeeaoul. It shouldbe particnlnmly notedthat thisdiscrepancy, or paradcx, caan befozmulated withoutanyof theYculatioasin theprevious secdons) aad wouldhaveappliedeven if all that algebza was wrong-The valueof the hasnot even beeausedhere,exceptfor its middleterm in eqn (9.5.55) beingpositive,so that all tke detailsofthecurlingmodedonot exte,rtàe rgnment.At leastthesamediscrepancywoddhaveapplie if thecoherent rotatioawmstheeasiatmodep because it is in theterm withJt%wkic.lt is Tnnlw dirvfnrecommon to c!Jtevetsaz modes.Otkermodes even this may terms,suchastheNz term iu eqa(9.2.10) pancyworsebyhavingadditional for thecoherotrotation,but theterm with Kz is certainlyalwaysthere. For thl'n reason, inventiagnew modescaaaothelpremove the paradox) ev= if atl the discussion in =tion 9.4was wrong.Actually,tke problem wmsalready Hownb6jor6 all the foregoing calmzlations of nucleation felds. Mreadyin 1945Browa13831 hadnotedthat thebarrierfor nucleation of is ai lecast tkat of theanisotropy any sort of a reversal ezezutwbichis
BROWN'S PAEADOX
207
theErstterm in eqn(9.5.55), theexeungeaadmagnetostauc justbecause terms are alwan positive. Even this nnt-sotropy œm byitselfis too eaerpr ' coercivityis considerably smallerthanit, in large,andthee-xpersmental all bnlkferromagnetsMoreovezz even the valaœ ofthe coerdvityneednot benKtvlin ordc to rmllh'z-theparadox. Equaïon(9.5.55), or already eqn nacleation impliesa negaiine feldj but domains can 1)e observed (9.2.31), already in zero applied âeld(see sedion4.1). It hasben shownin ution 6.2that the estenceof thesedomMnR is favorableenergetirAlly) but a lowe.r to enter.As ha: enera is not a sulcientconditlonfor the domalns alzeMybeenuplznm-qed in section9.1,the ezstenceof a lowez-enera stateis not suEcieat Torthesystemto beableto repnhthat state. . Theremsonsfor thisparadox are ratherwellunderstood, qualiiaiinelk, andwill belistedseparately forhardandforSOA matlm'm.Eowever, More gotg 1.nt0 thesedetails it must1)e emplxizedthatthediscepandes azetx largeto betakenligbtly.Until thetheozyis modise to takeinto account qnanutazively tke Gectswhic,h cause thtsparadox, everythingdiscussed eAn onlybeapplied in this chapte.r to Enepartîcles. Noneof thisstudyof nucleation can serve a=y usevpurposewhen it comesto czystals which to suppol a subdivision are largeenough înto manydomains. For them it is possible to get awaywitha theorywhichiaores all of this càapte,r d tlte question of howdomains enterinto thecystalz'andtakesit for grantethat theyare thereif theirestencereduces theenira.Theories whic,h onlycompare of vadousconfgurations, sucha,stheone in energies section6.2,or that of domainwallstmtduresi.ll chapter 8, workverywe.ll ' in thisrefon,aadeztn beusedto interpretall xrts of %ta1data. t?y'n.rn A particularlynice p1eis the shape of tlzervfwtxlled N&1spikes,which are formed(384) near non-magaetic inclusionsOncetheirgeneralshape is xuumed,an eaera mlnlmlzaxtion leads(385) to a.ttthe6nedetailsofthdr stracture,with a perfectR to experiment. Suchtheoriaare still being applied(=) , aadtheyare actuallyinevitable, as longmsthepresent theory c=not beextended to takecare of the defects whic,h will be spfvq4ed in wthe followlguStill,thissituationdoesnot jusGydiscarding tMscàapter altogether, muchlessdiscarding the wkoletheoryof micoma&etiœ, as hasbeeasuRested on dubious goulds,discussed in (382). Thenucleation theorydoes for smallpardcle,andthemodiîcations agreewithexpeziment whicàare necto mnlcm it >ee |
9.5.1 HardJrflterilld Wkenopticaliytransparentplatesof BaFelzozs are saturated in a large feldpaadthe feld is thenruuced,domasns appearalreadyat a positive appEed Eeld.Eowev/m it hasbeennoted(38% that thesedomains donot in theMmple.Thezsem to emerge radîallyfroma wellappearanywhere deine (nucleadolcentre'whicàîs alwaysat the same spot in a given
208
THENUCLEATION PROBLEM
crystal,for vadouscyclîngof the ield.ln somecrystals, no domains were obsened at zeroapplied îeld,aadtheyonlyappeared to seveeral hours up (:'&)nfl,erthefeld kadbtamswitchedof. In some cases,domainsnuclo atedonly aftera negatveGeldof -1000 to -2000Oewas appied:389). theseobservations Obviously, seem to indicate that the domes nudeate valueis reached onlyat thosepoin? in the CY:aI beforethetheoretioal whiclzmaybe,for evpmple, wherethereis somesortofa defect, aa impurity atomor a dislocation. Thenat'umofthee ddectshrmnotbeendetermined, exceptforone casein whicxtke nucleatlon centrecouldbeidentled(389) with a craclc in the crystal-Similarnucleation centreswere produced (390) Some domains iu MnBifllmql)yprickngthemwitha non-magnetic needle. nudeate(3911 at the ehe.a of a plate, These experiments maymeaa thatthepededparssof thecrystalobey thenucleation theorsandthat nothhgwouldhavenucleated if tt were not for theseimperfectspots.Of couzse,oncc thedomains nudeateat one of thesecentres,thereis no extraenerr barrierjandit is ver.yeas)rforthem to spreH all ove,rthe crystal,whenthe state of subdivision into domains hasa lowerenera thztn the saturatedstateeven for the perfectpartsof the crystal.A modelwas proposed(392) in whic.hthenucleation centre were assnme.d to be dislocation lineqandtheirefet was assumed to be a highlocalstres that couldeedivelybetakenas a localJouednp of the anîsotropy constant,K:- Nothingspecifccan bedonewitlloutatleastsome indicatioa of$heamouatofthisreduction, aadtàesizeover whc.hit may Gxtemd but theseparameters are not lœown. It is x1mnot possible (3j32, to knowwhat tle domains actuallylooklike ia the earlystagesof their formation, andan attemptto studytikisstMe(394) in one materln.lcould onlyreportthat theinitiat growthof thedomaîns pro-ds tx rapidlyfor observatiomFor theseremsons,suc,lz a calculation, or its modifcations (395) can onlybe descxibed as a semimuaatitative evaluationlnsteadof 396J, thedillocation lines,thedefects but in dther mayaduallybeplanar(396, r'lm resolve caseit sems (392) tkat su& a mraztunism Brown'sparadAin hardmaterials,at leastfor partkle whichare aot muchlargerthan the sizeat whichdomains start to beenergetically favourable, atthough a more quantktative theorr is still needed. Thereare alsosome e-X.IIe-IiII'eIA on - andann-wkh-ng hardmatpvlnln, whose resul?are g112, 113,114,398) in qnxlitativeaveementwithtltispicturefor theroleofdislocations. is reversedj Fozmuchlargercystals,theroleof dislocations andthere are both theoretical 400,4011 andexperimental in40%404) (399, (402, dicadons that the c-rdvit.y of bulk materinlshcreaseswith increasing numberof defects) probablybecause they holdthe domaiawallsanddo not let themmove fzeely whenthe fleldis nbltnged. Therehavebceaseveralattempts2405) to separate themechanisms of nucleating a domahao of movingits walàbut thediferencehasnot bee,n very well œtab(4œ) Smoreworkis needed lished.Or,as coacluded in a review(4Wj, to make
BROVWYPARADOX
209
interpretations unambiguous'. Theproblem is particularly compllcated by whic,hdonot start with a suëdentlylargeappliedfeld for experiments drivingthedomains whic,ilare actuallymiaway,andreportmeasurements theyare presented they nor loops.Sometimes as suc,h butsometimes (403), are not, as in several examples listedin (373, 382,392), To repeatjustone case, in certainMnBicrystalsthedomalns completely disappeared at (408) whenthefeld was reduced an applied feld of 5000Oe,andreappeared to a smaller, but still positive,value.Whensucha crystalwas once put in a feld of 20000Oe,thedomains disappeared andnever appeared againwith any cyclingof thefeld. In some othercases,it hasbeenstatedthat the tnucleation feld depends on the valueof previously appliedpositivefeld andt;e crystalimperfecuon' so that the nucleation thusmeasured (4091, hasobviously nothingto dowith the nucleation as def.nedin section9.1: or with Brown's paradox.Similarobseneations 411,412), andothers (410, dted in (407), showthat manyexperiments donot start fl'omsaturation. cnn onlybe Onthewholejthe magnetization reversal in bulkhardmagnets crystalline saidto depend on defects, whichare notincludedin the theory, andthat Brown'sparadox wûl beresolved whentheyc,r6 lduded. 9.5.2 SojtMstezicg lf a longiron whiskeris heldin a suëciently largemagneticf eld,andan oppositefeld is apphedto a smallpart of it, it is possible to studythe reversalof tbm part of thewhisker,whilethe rest of it is heldsaturated parallelto its longaMs.By picldngthe signal9om the reversing part, it is possible to determine thefeld at whichthe reversal juststarts,namely the nucleation f.eld,f or dxerentpactsalongthewhisker. Thisexperiment and its later modifcation obtained nucleation ields whichwere (413) (414) quitecloseto thetheoreticalvalueof -560Oe(fora very longiron coestal at room temperature) at some partks of selected whiskers. ln otherparts of the samewhisker:lessnegative valuesof Hn.were measured, obviously the crystalwas lessperfectin thoseregions. Unlikehardmaterials, because for whichthe natureof the defects at the nucleation centresis not Mown, for softmaterials it hazbeenestablished that reversed domains nucleate wherethesurfxce is rough.Thef rst demonstration of this conclusion (414) was an electropolishing of the whisker, whichresulted ln a complete change ofthewholenucleatioa of pattern.A more directproofwas aa observation thesurfxceof the whiskerbyan opticalmicroscopeIt (415) a good showed correlation between thevolumeof the surface defectsandthe dxerence thetheoreticalandexperimental between Hn in that vidnity. roughness Surface mustbeimportantin anyferromagnet, buti.na soft materialthemagnetostatic largeby defnition.There enerr is particularly is thusa Iargeefectdueto the surface chargecreated at the polts where themagnetization ofthesaturated stateisnot parallelto thesurface, which must bethe case wherethesurface is not smooth.This chargegivesrise
2lû
TM NUCLBATION PROBLBM
whie,h to a demagnetiegEeldin that re#on, reduces locallythe energy harrier,thusatlowing domaâns to nucle.a* there.Andit is quiteeasyto be conviuced that a local1A111 or a localvalley hms approfmately ihesame (372) Gect-A Kim5lardemagnetization, dueto a similarsMrfn ce charge, shoutd alsooccm near voidsandknclusionsinsidethe crystal,whicà llavealsobeea demonstratH to intmd withwalls.Nucleation at suchinternal (416, 41% defe? is xlg.npossiblw espem'zzly in lessperfu samples. Evenin whiskers) whichare particnlxrlygoodcrystals, therewere xme cmseswherea local reduction in Wklcouldnot bemssigaed to anysurface imperfection (415) andmusthavebeendueto an iuternalvoid.Theopposite never occ=ed, snrûcedefedcouldbeseeaon at lemst aadwkenever a major one of the foursnHves of a whisker,therewasalwaysa rnînirnnrnia Isklthere. Thistotal dependenœ ofthesurface in a largecrystal on the fnedetails must seem straageat frst sigkt,especially to somebody whois usedto t%înkiag in termsof thetheriesin thefrst fewchapters ofthis book.tn thosetheozies, a suedentlylargecrystal(and sometimes evenquitesmall are justassumed to extendto ''nGnltswith no smface at a11.The ones) lnatzzrap approltn% is thatthesurhe.e can àavea strong eKH onlyforsmall cystalwbut it is Sexpected to be.l= impoztaat,thelazgertheczystap as Iwrote(4181 in one of my earlierpapers,before I understood thenatureof theproblem. Thepointwhiclmustberemembered is thatfor spmdently largecustalsthemuld-domain sute hmsa lowe,r enerr tha.nthat of the singlodome one, but theoretically thedomains cannotnucleate beforea certainnegativefeld is reached, because of an ener bxvra-c on the way. bxrrleris liftad at anypointin the crystalor on its surhce,it Oncet%5K Lseasyfor themto propagate all over the crystal,as seenexzmm'mentally and Gcause thdr estenee reduces the enera eve,aitl the pezfect (419), pvts. Therefoaaay mewwx-mentof the wholem'ys'tat will measurethe nucleatknpzopertyof the morstpoht (3821, ï.e. the point at whichthe crystalis Gethest fzombehgperfect.TheXectis the sameas in pullînga ehnln,with a stenzh'ly increasiag forœ.Thewholechai.a breaks at iheforce wlzichLssuEdeatto bm.;tlr its m-kestlinlc,even if a,llthe otherBnksare muchstronger. Tke onlyway to mecure the propertiesof otherlinlcnis to pull themone at a tîmey whilepreventing theotherslom beingpulled. Andthb onlywa,yto Endthetrue nucleation îeld of theperfedlysmoot: wMsker is to measureone regionat a time,whilepreventing the domnsns fromentering theotherparts,by kœpingtkemirt a saturating feld, as is doaeiadeed1413, 414,41SJ in the uperimentof DeBlois. 1.nthissenseit caa besaidthat theex-periment ofDeBloisprovesthat the nucleationtheorydoc agreewith exwrHent for the perfectcrystals assumed in thetheory,andthereis no paradox.For l%sperfectcrystalslthe tkeor.yshould bemodïedto takeinto McounttheeeectofimperfecwdonG wlzichhasnot beendoneyet. Moredetailswere revealed in twoextensions of thisetmeriment. h one (420) a localfeld wasapplied to dferentregions
BROWN'S PARADOX
21l
of a thin flm, andthe shamof the develophg dome was obsewed. In anothe,r whiskers the unde,r stress wm'e studied by same tchnique of (421) DeBlois,andthenucleation feld at tgood'pointswas Bundto become more negative with inœeaingstr-, whic,h is equivalent to iztfrrpnm'ng the anisotropy constant,.&i.Thereis a frst theoretical steptowardsa better analyisofthedatain the1= perfec'tpats ofthew%lqklrin theex-pen'ment ofDeBlois(422), anda stadsdcal corrqlation betweea thepzobablty (4234 offndsnga defedandtNevalues of Hn measured by DeVlois.But none of thesestudieshazbeencxrrledZ'krenoughfor a quaatitative theoryof imperfedcrystazs. thereare As is the caze i.!lhardmaterialsdiscussed in the foregohg, alK theoriesfor softmaterials analyse whicà iaore nudeafon, aad try to ' ental(Ia.'t.a oa H'zFere'at memsurements, in particularcoerdvities, of the crystalas a whole-Theyusume that the domains are azre-ady there, pinn'lng thesethKries andconsider oftheizwallsbycrystcne defects-For thereis not reallymuchHilerencebetween llardandsoftmaterials,except forthe numerical parameters wllicàaze used.Sometîeoriesstill use the of one wall pinnedto one defet (424), assumption whileothersconside,r thestatisticalaspects(425, ok defects, randomly distributed in 426) many pnnhdomain.Vazious modelshaveb- proposed 428, 429, for (427, 430) ' thephniug.Theyall Mseratherroughapprovimadons. of De Blois'cannot#ve nœe is one pointon wlzic.k the experknent a clpm.r and whicà therefore remains obscure. It Lsthequestionof namRwer, whetherthe edge(ortip)of the whisker,wllichcannotbeaccessed by the teGnique ofDeBlois,behaves d-lFerently thanotherregions. Thisquestion hasalreadybeen in (392) in conaection withsomesuggestions for iscussed resolving Brown'sparadoxby the argumentthat realcustalsare never saturatedto start wîth;andsomeuns@mdomaîns reme npltr the edgœ, w'herethe demaoething âeld(fornon-ellipsoidal is veU 1ar&.Of shapes) (xptme, thereis a largenmountof evidence, ha already some of wlzicà beenmeafonedin theforegohg: that thefeld usedin manyexperiments isnot suRcient to saturatethe sample, andthesepublished resultsconfuse the l'aqne.Butthereare thosewhoclaimthat no satarationis possible in Jrincfpl:for some bodies(such with a sharpcoraer &sa prismor a plate), at theedge,whieà at thetime is a diferentmatteraltogethemMy argument was that on a,n atomicscale, a sharpcorac doc not haveanymore (392) meaning than a zounded one (see Fig. 3.1). Theareforq the approfmation of an ellipsoid is at leastas goodas that of a prism,aada saturationia a 4nitefeld shoaldbeposdble in prirciplefor realparticlew although highe,z âeldsth= are usuallyconddereadmuatemayhaveto beused.My view . is e111 the samejbut the opposite is justas legitimate; aadthereare those whoprder to consider a pHsm,whichlAke,san ''n6mlte âeldto saturate andfor whichtherecan beno audeation alsosection On11H* tsee 10.5.3). basis,thereksa modelg431) for domnins that enterfzomthe corne,rof a
THENUCLEATION PROBLEM
plate,even in Mrd materials. 9.5.3 SmallParlîcte.d . ag' Al1the foregoing Gmlaaatiozus of 'mltkthe theorydoesnot ree withmost exwrimeents donotchangethefact thatthetheoTyproented in tlzischap*r is not usefulfor mœtpracticalcases.nerefore,thist'heory wxs amddered fora longtimeto belst a rmriodty,whichcouldat mostinterestsomepure theorists,or may bc appliMto extzemely unusualldndsof experiments. Andin spiteofall thegreathopesof Bzownandothersin thebeginning of havingone theorythat can exple everytMng, it isundemiably a complete faa-lure for bulkmaterials-lt should beobvious 1omtheabove analysis that untila bigimprovement isincorporated, thisthmr.gcan at mœtbeapplied to smallparticles, belowthe valuefor whichsubdidsions into domes reduce the total energy. If the nncleation Lsaot that of reversed domains, the mct shapeofthe czystalbecomes lessimportant,andb0ththeKeL't of costalllnedefec'ts andthe probabltyofthe Gstenceare vezymu& zedaced. Forsachcases,thenucleation theoryhasa chance to workwe11. H a way it exn be saidthat it worksindeedin a relaévelynarrow sizeregionof tsmallparticles'.This reon Lsbœtdened 1om a plot, of theremanenceandcoercivityns. pn:rklcle size. sucàas Fig. 1 of (190), in thesmaller Thesg properdes lhn.ve 1owvalues dueto superparamagnetism pvticles,aaddueto subdivision into domes in tEelargerones, with a theory memum in between. H the vicinityof this maximmm,nudeation upapxywozks, ind sincethesmazest particlesare elirnA-nnuted, it meaasin m*t cxq- that tie theoryof the curlingmodeayeeswith experimental data.Examples of suchagrœment havebeenlistedin redews(270, 35% and it will only be repeated llerethat the coerdvityof verz 37%392), elongated niekllparticles was found(432J to beqaitewellapprofmated by a D-.ftr ynction of VR2at two temperatures. A linearfundionof 1/12 wmsalsoobserved in tEecoercivityof alumite,although thepnrkseles (4335 were not ellipsoidsy andeven in cnbes of cobalt-doped 'pFeaoa:4341. The latterEt was ori ' y praented(434) as dperhaps fortuitoash, but it now seemsto bea realpart of a pattern.Tkisexample, acdothers,provethat the iheoryworkson the wkoleix tMssizeraage,au.dmayat mostneed someslight modifcations, whentheMer details aretakeaintoaccount.The datasuggotyas a zoughcitarion,tAatthe theoryworks'wellif themiddle tarm of eqn(9.5.55) is largerthanthefrst one, audbreaks dopnwheuthe frst term becomœ large.Thisruleksdemonkzated by the experlrnental coercivity(434 of whislrom. It is clœeto the theoretical =lue for curling nucleation at smallradii,batwhentheXz term becomes dominant, the coerdvitykeeps decreasing, ordersofmagnitude belowthetheoretical value. However,sucha comparison of Hs with Hc doesnot reallyshowan to saythat in thissizere/onthereis no agreaent,andit is morc aczturate bigdiscrepancy tha.nto saythat it fts. TheMreement(4:$6) betweea other
BROWN'S PARADOX
213
propertia, calmzlated 1omthecurllngmode,aadthe experimentaz data, is n1msai-qualitative. Sucbfts usedto beconsidered goodenough when it waz discult to makesmallparticlœ,andwhenexpeziments were done .on a largenumber of particlestogethez, wllic,hinvolvedthe crudalOtor of sizedistribution. Andeven with the mozerecentcontzollMdispersion thue ksstzl the dimcultyof interactionsamongtheparticlœ.This (43-1, problemhmsnever beensolved, andis still studied(438j for the case of a regulararray of particle,or by cerinn'n averaging(4395 schemes. The formertheoryshouldcertainlybecomparewith expezimen'ts g440, 441) on suchan artifdal, regulararray-But it is unrealistic wheninterpreting experiments on disordered powders, msis deemonstrated by more rigorous calculations 443,444) on imo iateractingdipoles) wbichdo not ft (44% Suc.h calculations thelocal-feld conceptcan probably bea goV baésfor studyingparticleswkc.hhave(445) a;n oddshape, but theycaa obviously not beextended to interactions withina randomensemble of particle. enn beevaded insteadof being Nowadays, thisproblem of interactioas ' solved, because more andmore mfuxurementsare performed on a single particle1369, 446,447,448,44% 450,451,45% 453,454,455,456J. For theseerperiments, fàesqrni-quantitative compadson of H.nwithSeis not goodenoughany more, an.dit shouldbe possible to tzy a more detaâled comparison. In particular,a goodthKry is aeeded for the coerdvityin Kipsoids,preferably somewhat distortedelliyeids.It shouldl)enote that theccerdvityis not onlyan import=t pnmmetez h i? own right.It ksohe oî t;e 'lmryJet12 parztmeters fromwkic,h tkewkolehysseresis curve can l)e constracv. (457, 458) Theori/nalid% was to conthuewith the solutionof the non-llnear muations,on- thenudeationis determined, andît is possible to identify tlle brazmh on whichto proceed. It q'asnot donebecause thedi>gr-ment witàexperiment for bulkmaterials that therewas no gavefheimpression pointin continuing: whenalready H,%wmswrong.Smallpardcles were not available exmerimentally at that tkme,andthewitolef eldwas considered TheOmebnnlr imprazticalwas whe.n thesizeof recording particlœbecnme smallenough, andtheo1d theorysuddenly f tted manyexperimental data. But at that time manyof the originalpapersw&e alreadyforgotten, or misunderstood: andthenew theoretical approwi didnot procedtheway it couldhave.There'wutoo muc,h èfortput intosndingothermodes that wouldft better:andtoolittle efbztput intonecessazy modifcationsin the cttrlingmodethat œuldbeappliHto realparticles. Andin particulvthere isstillno attemptto dowhatBrownmeantio bethenextstepto startwith, namely to fnd out whathappens Jm. thebegkming, theze c/fernucleahom is no change whilethefeld Lsreduced 1oma largepositivevallze, through negativevalue, zero, anddownto a certaân whensomething nucleate.Aher lâat, thelinearequations are not validanymore, andthenext stepshould beto solvethenon-linear equations for more pzgctircfelds,andfollowthe
214
'1'HENUCLEATION PROBLEM s'
rest of themagnetization hysteresis. In tMs solution,theone that is to be chosen oui of m=y possibilities is the one whic,lk teadsto the nucleation
eigenmode wheaH= -+ Hg%. Rxperlments are readynow for a goodtheory, ' butthispart is s'till .. . the An attemptto dojusttut part (459) for a particttlarcasemissed rnnsnpoint,andafterfndingthenudeation feid,H=,theseauthorssolvH the non-linear equations for IS'I< ISkI. They24591 foundthat tàeeneo ofthe curlingmodei.!lQzis r=ge offeld is largerthaathat of thennlf'ormly mMnetiznl statevwilic,hLsnot surprisinpM it meansis tbatnothlngwill happen in the rangelS'I< ISkl, wkichis essenteythc desnitionofthe f eldin section9.1.Theyshouldhavesolved for H < -tSk!, in nudeaéon orderto 6ndout whathappeas c/er nudeation.Thereare iadeedin the literaturesomeworksin whii the eneo is calculated for IS'I< ISkI, but they (460, look for the energybarrier,whickis a deeren.t problem, 461) in sedion9.4,whichis alsoa or try to Sada localmode,as mentionH aieewmtproblem. A xludon of the non-liapm.r equationswmsonlytried for an infnite whicbis an atyplcalcmse.H that caeit wasfoundthatthere cylinder(360), was one jumpfzommturationalong+z to one along-z, andHc = -Hn. Fora sphere(462) and4ora fnite cylinder(463, thea'eare onlysome 464) apprczimations to the kruecuzlingmodeafternudeahon. Thebehaviour ofaa ''n4nste plxo wmsonlystudied(465) at thefrst stageafternucleation. Nothingbpnbeendonefor a more general ellipsoid, andlt is still needed.
10 ANALYTICMICROMAGNETICS ln thisckapteraadthene.u one,mious topicsin micromagnetîcs, outsîde thenucleation problem, will bedecribM.The subddsioniato Annlytic in thetwo Aaptersis ratherartlcial andquitearaadnumeriYstndies between bikary.ln mostcasesthaeis no realdistinction analyticsolutions of b0th.. aadImmerital ones, andm=y physicalproblems use a ml-vkzzre Nevertheless, 1oma (Iidvdc mint of viewto keepthem it seemsdesirable asseparatû cbaptars. 10.1 FerromagneticResonance Thebmsic equationg thisrvnance is eqn(8.5.48), or ratherone ofits modifcadons as eithereq.n(8.5.50) because thereis oz eqn(8.5.52), iways damping s. TheGperimental setup,always hwolves in rpml aa applicauon atloaalmost of a larr DCfeldJzkwhtchholdsthemagaeth. parallel to its direction) z. It mp--avm that thecomponents perpendicular to z are rathersmall)andmaybetakento a frst orderonly,msLsthecmsewith thenudeadon. Besides the DCfeld, thereis aISO an AC feld at a given fzequency) uz, whîc,h dticldes' the magnetization into a peziodic motionat thisfzequenc'y witha smallamplitude. Oneis tàenlooldngfor a reonance of ih%motionat the lequencyu7, whenthe appliedDCfeld Sa passes tàroughtheappropriate valuewhichcorresponds to u?beingthefrequency of one of thenaturaloscadonsof thesystem. eztn beexpresed If theAC feld is sinusoidâ), its time-dependence by a factorcï*'z1 andtke same factore= then beinserted into the steady statesolution of mz andmy. Thelinpxn'zAtion of theequations for mA11 znz andmy LsmathematicaEy the nme msfor the nudeation problem ia sedion9.1,for thesâmevqnvn pdonsusedthere,namelythat the sample is aa ellimoid,aadthat the feld Lsappliedalongone of its majoraxes, wllichis alsoazzemsyn='n for eithera uniazalor a cubicanisokopy, etc. Forthiscase,andwhenthedamping of eqns(8.6.60) or (8.5.52) Lsomitted for simpidty,it ksseenthat theequationsof motionfor the amplitndest mxmely wheathefMtore*f is omitte, are
C
z-
VsV '
aad
2Jf1
rzz Ms + N>MS m
i;/ Jo
zn.y=
8Uïm 0x ,
(10.1.1)
ANALYTIC MTCROMAGNETICS
216
C ;
V;V
-
zffz + N.M. - Sa Ms
ms
+
ïte mx 'M
=
OUv= 0y ,
(10.1.2)
whereall ihe notations are thesame as in section8.5. Thebounde conditions arethenxm e asin thecaseofnudeation, and on thewholethe nudeation proble,m asa particulr caase maybe regarded oftheresonuce problem, for theparticular valueu?= 0.Thereis,however, one big dl-/erence in that the nucleaïon hasa physical meaaing onlyfor themodewhichhmsthelargesieigenvalnw a: discussed in chapter9. J.u the caseof the resonance, @J! the mMescaa be udt.fvl in pzindqle, if theconditions are right,andtheefstenceof one modedo%not ertmmnte t'heothers.And mzmydl#erentmodœhavelndeedbeenstudied anyof entallyin thesnmesample. In spiteof the shm-lxrityy reonxnce modes havebeenstudied without payingmqch attentionto therelationto thenucleation pzobleam Yfozeand afterthispointhadbeendiscussed byBrowmh someways,thetheory (341) of ferromagnetic resonanceis more general th= theequations givenhere, because it somefsmaiacludes otherterms,suchas a s'urhce anisotropp e-p in (158, 466,467J. R n.1Mhasto takeinto accounta more general formof lba.nis usedin thisbook,because thedynxmx'c Max-well's equations Xecis of eddycurrentsandskindepthare important(468) at thehigltfrequemcies usedin theseexpersmenis, whereas theyaze negligible iztsuuc nudeatiom H mosi cases,however, thegeometvis Bmitedto Gat of an inqniteplate equations is Omposed of (4691 , for whichthe solutionof the diferential sinusoidal variatiö'xus, msin =tion 9.3here.Beidesihesesinusoidal mod% rotatioamode thetheoryof resonaax zvwcorizes onlythecoherent (4701, in whîchboih mz aad Aown'msthe tttniformmode'iu tkis contexi), mv aze constants. The non-coherent modc in a.n ellipsoid, knownmsthe magnetostaiic modest withouttheexcbange are onlystudied enera (471), by writing C = 0 in eqns(10-1.1) and (10.1.2), mnn-ngtkem algebraic hsteadofdferentialequadons. Thisapproimaiionis Justifed as longms the ex-perimeatal Rnmples are ratherlargelanda roughestMaiion(472) Aowedthat theneglected exchange term was indeed for the she nesigible IXS?I of spherœ tiken.However: smallerspherewere made(473) later,and ihey were foundto sqppoz'tnew resonancemodœ(4'F3), wkichdewndon tàeparticlesizetandwhic.h havenot beenobservM in larger.parkklesIn suchsmallsphez%j' the exnbxnge bccomes dominant,aad energy it is necessar.y t8 xlve the difeential equationsizt the same way aasin chapter 9. As a ftrs'tstep,this problem wa,ssolved for veoesmallspheres, forwhichthemagnetostatic withtheexchnxnge termis neglkblecompared of For the case a cylindrical symmetrs the whole problemcan be energp solvedanalytically, andtheresultis (472J thesameas thecurlingmode.h particular, in thesemodes, for whichthen=e emcltange rrlod>hasbeen snggeted(4721, thereis a termpropordonal to 1/.R2 in tkeresonanceield.
FITLST INTEGILAL
lt shouldbeparticulatlyemphashed againthat highermodesca.nalsobe excited,andthat theirresonancecan alsobeobserved, unlikethecaseofthe nucleation feld, forwhichonlytheleastnegativeeigenvalue hasa physical xmeaning. Forthe usualsinusoidal variationin a plate,the highermodes Forthe curling are the harmonics, with integralmultiples of thelequency. fromthe largerroots of exchange modes, the highermodesare obtained whichshouldmakethememsyto distinguish. eqn(9.2.26), Recently, resonancesthat maybe assigned to suchrootswere observed in small spheres, but the size-dependence waz not that of kjRI.Sur- . (474) faceanisotropyisa verylîkelycausefor thedference, beingdemonstrated to be ableto makethe theoryagreewith experiment. If it is the (475j reazon, it must alsobetakeninto accountin the nucleation theory.The developed resonancetheory,however, isnot suëciently yet to ruleout othez possibilities, epeciallyin theintermediate sizerange,for which30thmagnetostaticand exchange may be important.H thisrange,some ener#es exchange modesmaybemix.edtogether,andlesseasyto tell aprt. Also, the modeswithout a cylindricalsymmetrswhichhavenot beencalculated,may overlapthe othermodesin the same experiment, espechlly at still smallersizes,whena curlingconiguration involvesa vezylargeexchangeenergy.The theoryof thesemodeshasalsobeenextended(4761 to include,for exnample, damping,whichis lefi out in eqns(10.1.1) amd But this extension did not address tlle mode mifng, or the case (10.1.2). withouta cylindrical symmetry.Before suldently smallparticlescouldbe made,this theorywas onlya mathematical exerdse. But now that such pazticles are available, thesegapsin the theoryshouldbeinvestigated. 10.2 First hdegral It hasbeenmentioned several timesin this bookthat the mssumption of magnetization confguration, in a.n infnite crystal,is a one-dimensional this assumption is quiterisky aadmay leadto seriouserrors. However, madeanywayin manycalculations: whetherJustifed or not. ln some of thesecas thereksno othertheory,andtheycannotbejustîgnored. Besides thedomainwalldîscussed in chapter 8, one-dimensional models havebeenusedin a.nattemptto findthe eS'e'I;t of planarcrystn.lllne defects on nucleation and coercivity.The physicat propertiesin a certainregion were assumed to be diferent9om thosein the rest of the material,and Brown'sequations were solved separately in theperfectandia theimperfect regions,andthenmatched together.Thisproblem was irst solved for (47% a defective constantwaz diferentfzom re#onin whichonlytheanisotropy that in the bulk,aûdlaterextended to a modifcation of theexchange (478) constantC and the saturationmagnetization, Ms,besidœ the anisotropy constantXz. Theformerwas laterused(4794 to explainthe coercivityof a hardYateriat.Thesam6 modelwaz revivedfor the caseof a wall whichis assumed to bealready in thedefective region,iastead of its beingnucleated
218
ANMZYTIC OCROMAGXTICS
there.Thecoerdvityin thiscaseis det,ermimM by thepinningofthat wall to thedefect) whichi.smathematielmy thes=e problem msin thed-lFerent physical caqeof t'henucleation. Retzltswere reportedfor a regionfn which vth C audA'zwere mod-t6ed andfor a casein whicâonlyC 2480) 4811, of spMe.Thereis alsoa case of was chauged, as diFerentfnnctions(4821 a fzlm(4832 with a =iable thiclmeœ, for whichthemathematiœ is still essentially thesame. With the new interestin multëplefllmK, the samz onedimensional modelhasbeenllm.Mfor studyizgstrongly coupled ftlms.In tb.iscasethere the of dlFerent are ae two regioms are flms wkth (which compositions) thephyfcalconst=ts C,MsandKzbeingdlFerentforeachof theregions.' Because ofthecoupling, thesolutionin one regionshouldpasssmoothly to that in the oier region,so that the mathematical problemis ldenticalto that of (478), although thesemodelsare alwaysrdnvented withoutpa'ying attentionto tîe previous work.Rmaltsha'vebeenreportedfor two flms, enzt% of whichis œsentially saturated, vdthonlya transitionlayerbetween thembdnga functionof spRe(484), an.dfor a cmseof 1111 variationover eRhofthetwo ftlms(485J, a variaïonfortwo 'Flmswithan mswellas s'uch antiferromagnetic coupling. Detils will not l>e#venherefor any of (486) tkesecases,andit will onlyl:erqrnnmked thatthemssumption ofone dsmensionmay be too restrictivefor describing situadon in many thephysical of theproblems to whie s'ue,h modelsare applied.Evem a largeXl173 ends sanewhe%aadit %nAbeennoted(48% that the efectsof theedges may sometimes beverylargeandvnn invalidate theone-dimensîonat approach. Anmvxmpleis in Fig.10-1-In (a)thema>etization shown schematicvy is parallelto the 11lnlplane,m'eating a charge on thesurfve. 'WhGthe bardmaterialtA' is magaetized to theright,the Gelddueto its surface materialtB' e>n bein a negative chargepointsto theleft, andthe SOf't Eeldwhenthe applied feld is pMtive.In (b)theflms a2enot continuous andone matarialTpenetrates' throughthe otherone (which tun happen in practice). Theappliedfeld andthe magneœation are perpendicular to tàe flm, but the surfaœcbargeof 1A'can st111 crea* a feld at $B' fdd. Suchcasescan #ve in tlœoppositedizection to that of the applied cm've whic.h is qualitatively diferent(487) a magaetizptinn fromthe one exn also(4884 calculated byneglecting thœeefecksSurhceroughness cause a m'mlnar demaoeœation.
Nevertheless, doezst in whichthisusumptsion suc.h calm:lmtions ofone dimeasionality Lsmade. Md once it is made,one maymswellA-xlre advaamicromagnedcs whichis tageof a particularpzopertyof one-dimendonal onlylittle known,although it caa fadlstatetheres'tof thecalculation ve,zy it shouldbenotedthat ima condderably. Beforespe' * thistheorem, true one-dimeaslonal cmse,Le.whenM andU are functions of only(say) z, eqn(6.1-4) becomes .
FHBTMVTEGRAL
A ---)
219
+ + +
yI ---TA
B
-
A ---A
-
Iy
+ + +
(a)
(b)
FIG.10.1.Theedgeof a multjlayer f)m madeofa hardmaterhltA>and Surface for thelayers a xft materialCB'. charge is shownschematicuy parallel(a)or xrpendicular(b)to the
(f2V. !.y= .-z.d m 4xMs ,
(10.2.3)
wlticltis zeadily integrated to
Au
.
=
4rKmx.
(10.2.4)
Theconstantofintegrationdepeads on thegometrs but it eAn alwaysl)e absorbed into thedemagnetidng fRtor. Thewholeterm in eqn(10-2.4), whemsubstitutedia eqn (8.3.34) and then usedin Brown'sequations unim-alanisokopyterm.Therefore, has the form of a (8.3.37)-(8.3.39), thewùolemaaetostatic0e.1.&mayl)eleft otlt fn c *1%6 drsd-dfmerlsiorlcl cdcmlaiion, audhdudedonlyas a modifcation of tkeanisotropy. Tàisfeatnre did not appearin thedomin wallsin thin flms discussed in chapter was not a true one-dimensional 8, bœause in that cxqethecalculation one, withthe magnetostatic oa the enerr of thesurfaceazong 2/superimposed assumption ofno dependence on y. However, heretheterm ofeqn(10.2.4) will bewrittensenrately,andnot indudedin theazisotropy, in orderto
ANMYTICMICROMAGNETICS
220
emphasize its eisteaceSubstltuting in eqns(8.3.37)-(8.3.38), fœthe c%ewheam doesnot on y or z, depead aelmz
C' dx9
rng tAm,z . + rrsa dz;
-
-
l'nz Mk .s.x .xxjssmz - ru uy
ov= zn.z ê'tsw = 0, +:mz mz Onzz
(10.2-5)
..
aad c
g2ru fvnu- m...x Aa rN.0m.= + us Jz; m--y.g a *2 mz dmz mz êm,+ mz dmx q .
-
(10.2.6)
whereH now containsat most some demagnetizlng fartorsbesidœ the appliedfeld Eo, andmssuchîs a corl-dcntwhichdo%not depend on z. now theerprexqion Consider 1 .A= -.C 2
d'mna gwzxa dmz a M - H + + + #.z dz dz
lf thisexwession is Werentiated MY,N respedto z,
Ya
-
z 2r va s m..
(10.2.7)
one should use
dmz doa,= 0m=dmz o'trudmv d'tpw + e 0mz dz 0mv ti'r + dmz (â j
(10.2-8)
because on :r onlyvia t:e components ofm. Substitating for 'ttu depMds thesecond dezivativœ of rrzx andmv 1om<ns (10.2.5) and(10.2.6), it is to seenthat thecoeëdent of d2ma/*2 is proportional tlm. drrsg dmz= -1- d a + my + rr;x(zn), (2.,5 tf's dz 2 lLc'
mz-
-
-
m2 = 1. Also,the sam,efactormultipliesH. and whic.h is zero because aad on the whole it is seentîat t'llpa/gmx, =
0,
.A= coastant,
(10.2-9)
forany functionm whichfuïls eqns(10.2.5) and(10.2.6). In otherworcks, X is a Srstïnfcprc! ixkone dimensioa. of Brown'scquations nin expression wms6mt proved(489) to befrst integralfor the partirtnlnm case of a Mm-aialxniqotropy, andthengeneryzzed fœ a-ny (270) anisotropy. lt %nAnot bee,n generalized to more tltp.none dimension: but
BOUNDARY CONDITIONS
221
it appliesas wdtte.nhereto cll publjshed onc-dimensional modelsof the diferentphysical problems, with constantC, ffz andMst fncltldïn.ç the casesof theseeonsunts ehaaging abruptlyfxomone
10.3 Boudary Condltlons togetherthesoluhons i.a dfereent as mentioned in the Matrlu-ng re#ons, previous section,usuallymelmthatboththemagnetization andits normal thetwo1:/:)%ofmaterials. deziwïveare continuous on thesurfvebetween TMScondiûon is quiteobvious whereMsis thesameon b0thsidesofthat surface, bacause theexiangeis very strongover shortrange(see section andthisenergy te= prefers neighbouring spînsto beparalleltoeach 6.2.2) othcr. WhenMs is not the same for thetwo materiah the same purpose is served if boththe d-ction of the magnetization vectorandits no=a! derivadve azecontiauous on tàeboundau. h one-dimensional calculations, msin the predoussection, thisrequirement meansthat the anglebetween themMnetization andthez-ads is conthuousandsm00th.Thiscondition kasbeenusedin almos.t a11 the calculations of th1 sort, ucept for (4&S) in whichan angledlcontinuitywaa usumed,andwas deâned i.ztterms coupEng of a certaânunknownprametermeasadng theexftbx-nge at the interface. Thisapproacâ wascriticized in (48% as bdngtoo drutic a cxaageIt may,however) benecesaryto taV into accountthepossibltythat the evhxngecoupling at theixtprlnzne between two materials, beingdiferent 1omtYat witlkinenzthof the materials, add an extra term to the may boundazy condition there.
222
ANALYTICYCROMAGNETICS
Theconeuityproblemis not limltedto t%in61nu.R isalsoenountared materixh,suchasmagnetic i.nothe,r alloysin wàich tyws ofheterogeneous coppositions of thealloymayedst(492, lYonsof dieewmtchemical 49% in thesamesample.Another exnmple is theso-called tcobalt-modiied' 494) p-FeaOa, ia whichparticl%of1%1K ferricoxideare coatedbyalayerofcobalt Jtlqn%stzmed f-'te. Thetheoryin thisc.ase(34% a consinuity of the 350) magneœadon drectionandits derivative on the boundary between the ey-Feaoa aadtheCoFezozl. Agaizbit d- not provethat otàerboundo condktions shouldnot beused. Onepcssible conditions betwœn suc.h two wayto modifytheboundary materials is to postulatea Mndof surfn- integral,of the geaeral (492) fozmof an exchange htegrallwlziclzis supplsedto manifœt thed'-eerent exn%xnge on that snrfnce. Forthe caseof no oth.er surfaze anisotropytum, s'tzch a postulate leadsto theboundaryconditions
Cï
Ms x
3MI -
-
rlaM:
x
Ma = g;
(10-3.10)
52 ôlvz - .R';aMcx ML = 07 Mc x (10.3.11) x'kf'z drpa 2 consunt %)Md Ma on t;e surhcewhichxllaratesMz (with exchange consunt&z). Herenz andr?,aare thenormalsfromdther (witkexchaage sideof the interhce,andJt'zzksa Nrameterof tlzetheorp Theseboundary condttions havethea4IVa,IZta,D that theyreduce to the conventional for the Bnn'tof a boundo between a ones of eqn (8.3.42) ferromagnet anda non-fezwmagnet of a stzr(Ma= 0),in the abseace fm anixkopy.Theyhavethedindvantage that theydonot reduce (2702 in the limit Mz = Mz whenthe to some tzi.vùal continuityrequirement mlrfnzteinsidûtheferromagnet. bounde is jnstan arbitrazy In thisb'mit = 0, Mt x Mz = 0aandeqn(10.3-10) or (10.3.11) leadsto M x 0V(0n whichis an impossible requiremeut for everyarbitrau surfaœinsidethe ferromaaet. lt Lsnon-physical to havea special formforcnlytheboundary surface, witiclzmnNstt tmposstble to adoptthese boundary conditions. The physical problem,however, Lssttll therwandmore appropriate botmdary conditions maystill haveto bedeveloped. 10.4 WaII Mass Themotionof a realwallthroughan implrfnctmaterial is quitecomplicated,aad outsidethe scopeof œs book.Discussion is limitedhereto thecase otanideal,stminhtwall (xxnlslce tàe bubblewall,wilichis (495) a dieerentproblem), moeg in a perfectcrystalwith a pedectlysmooth surxe. Ev%in thiscase,thewallstructurecannotbethesameas thatof . a svlonary wall,because of two r-ons. Oneis the Xectof the applied
WALLMASS
223
feld whiGdrivesthe watl,aztdthe otheris the gyrouuxneticeEect,as muationin sectioa8.5.Onlythe second eeressed by thedynamic one will bedescribed here;andonlyfor an undamped, uniformmotion. All earlywozkon thispzoblem) suc,h as (4962, startedfromthespecifc '%sumption ofa one-dsmemsioaal wallconfguration. Eveniu thework(49% whicNcouldbereadilyexteuded to thre dimensions, acdin its extensions 499,500), theactualcxamplewerethoseofa oae-dimensional .wa11. ln (498, theseworks it was notedthat7t ofeqa(8-5.48) thevariatîon of wmsae which should also be dea.r fzom the deRity, w, quite dirivation tlje-enerr 'ofBzown'sequationsin sectioa8.3.Therdbre,if M is replaced by iz ' .
rlirection,wbicknn.n be upressedbyits poiarandn.ezimuthal angleq0 and is actually 4,eqn(8.5.48) c'p (j'. 'yn J'tn sin9 = ' dt uk' Jstj-8 ,
do - Jj.JY Wsin#uu Ms %-$ and '
-2-
'
(10-4.12)
whereJ designates the variationalderivati've. ln the particularcx* of a uniform motionat a velodty'nizïthez-directioa, thederivative withzespect to the timemaybe expressed as a derivatlve with respectto z, according
'j;(:)
(1 d8 = -vand ds= -v-. d4 (10.4.13) dt da (b- dà exn berewrittem In thisparticularcaseit is seen (501) Oat eqn(8.5.48)
'
é' .wheze
j'
= = Lm '?rzl y (0 '?rzl -
-
0,
(10.4.14)
Ms% # cosd-. (10.4.15) dz 'p .' ThisresultmpAnsthatthedynamics of a uniform motioncan betakeninto :: azcrqatbar minimîclagthe iatagralof 'w - 'tt)zinsteadofthe Ecuir-izr.tzatiou Qfthe integralofw in thestaticexsf!. Consider splvn'6cally thecase of a moeg domainwall,whichhasthe sHe staticsac in iapter 8, andwith the samegeometryms'defnedby ' Fig.8.1.It witl nlM bea-qmlmedthat tàewall structuredoœnot dejend 6nz. ln tln's cmseatheforegoing conclusion meansthat theenera per unit *a2 area of a uniformlymovingwallcan betxt'nnas that ofthe s'tatioaac *al1,plusa dynamic f,cr)):(501), 01
em=
$
--
=
b
x
25 -&
-x
l
mjdzdy,
(10.4.16)
where'u?zis defnedin eqn(10.4.15). fzom4 and# to the more Chan#ng conventional Cadesian coordinatœ of m, thisdynamic enera terme-qn be writtenas
224 %
ANALYTIC MICROMAGNETICS -
M% -c5,'â
b
*
+-7'e,mv drzz dz
m
J,/--mz
m.
omu dzd''. dz
(10.4.':)
SucN a mim-rnimzttion oftheintegralof %v-'d)z îsequivalent to minimhing the Izagrange function,dzlnGlas the pot'ential tke Mnetic enerr znf'n'?zs i.a mechamics. Therefore, it is convenieat to defne a 'tllall rpad: mwau, energy, so that theldneticenerc is equalto 1a-q*2, an.dwrite this wall mass perunit wallJkenaas 2J0 = 'rawall
:) ,
(10.4.1S)
is no$nec-qm-ly afterrninimw' imgtheLagrange fuetion.Thisexpresdon independent of t), andthe mmssmay depend on the velodty.It is often Tsnnbeapprofmated found(502, that the bAbxviour by 503) 0<1I
=
T4D
1
-
@/,?7x)2
(10.4.19)
at leastforrather1ow velocities. Themasszn,oin thellrnit%-.+ 0 isknown a%the Döringmass, afterDöringwhohadpredictMthe efstenceof suG a mass alr<mz!y in 1948.It shouldbeemphasized that thewal!maœ in thin fzlmsLsa realentity,ud experiments on wallmotionindeed skow(504) a behaviour similarto that of a particlewith aa inerkialmnAsit is dpnr(501j Whenwritten in.theformof eqn(10.4-17) that this kineticeneràr, audtherefore alsothe mass, is identicclly ze- for all onedimensional dozal wallmodelsof secdon8.1,becaase eithermz or mv is identically zero in a1lofthem,whichmxkp-q theintegrand alwazs zero. Manyworkersmanaged to obtainnon-zero valuesof mass fzomtheseonedimensional wall modelsjbut it vzmsonlybecause theydid rt/t use ecn In particular,Sehlömann notedthat eqn(10.4.15) was also (10-4.17). (499) 'anotherposdblechoiœ'for ms, whichhepreferred to wzitein a diferent form.Thereare, of courset otherformsin wlkiehto writmthe Lavaage function,butthemint is thattheyshould all leadto thesamewallstructure If they do not leadto tke samc andenergsafterpropermimlmlqation. reult, one shouldnotjustchoose them,but realizethat thediferent among resultsmeaztthat it is not an enera minimum.Thelogicis theume as in theself-consistency cheaks in section8.4,andindœdit shouldbeclear fxomcxapter8 that even the stadconodimensîonal wallis no'la proper approzmation for a m'-nimal enera wallstracturein 61ms.Still,a recent lookiato somerelationsbetween thedigereafsnl ecuations gcesback (505) to the pictureofan esseatxyone-dimensional wall. It cau alsobeseea fromKn (10-4.17) that theldneticenerr andthe mass will both m:n-'K% whenever mx is a.a oddfunction of y, whilerzv andmz are even functionsof y. rrnu'nsymmekyis foundizka11 tàe twodimensional stationarywallsin zero appliedGeld,andit mpst therefore
TII-RMMANENT STATE
.
225
beconcluded that an additionalasymmetryin y is addedwhenthewatl moves. Suchaa asymmetzy is indeedfoundin thestudyof Hubert(249) ()fa domainwallh4a non-zero feld. It ksaISO foundin thecomputations of movîngwallstructureswhichwill bedesHbed in thenex-tchapter. Fœ llniqreMon, models of movingwallshavebeenconstructH(50% with 5œq thisMndof azymmetry in theA-direcdon. 10.5 The Remanent State Anargumc'ai presented in section 6.2wmsmeantto convince thertmoder that thetotaleneraof sulcientlylargepartidesis reduced by subdivision into domains in zero applied îeldywhi)efor a smallprtide theexnhugeis too strongto allowit, andthe particleshouldremaina uniformlymagnetized domnln'.Thestudyof mtpepramagnetlmin section5.2is based Csingle assumption, that suEciently smallpmiclesare always on an even stronger This x'anmptionis actuallya little ioo strongfor uniformlymagneœed. etismis not always thispumose,beeause dueto a coherent superpar It hasbeendemonstzated rotationof themMnctization. that under (180) certaincircumstances, thethermalQuduations caa excitea back
226
ANALYTICYCROMAGNETICS
10.5.1 Spltere Thetotalenerg.y ofthedîFerentcoMgurations considered hereisthe slme as in eqn(8.3.22), exceptforCuwhichis omittedherejbecause thepresent Yculationis for H. = 0. Theintegrations are over a sphere whoseradius i.s.2.lt isalsoassumed here,as in thecalculations ofBrown(507, that 508), thesurface auisotropy kszero. Experimentally, thisanisotropy Lsnot zero in manycmses,suchas g2OO, 201)202,475) alsoendof section11.2). (see H the single-domain state;namely whenthe sphere is uniformlymagnetizedin a directionparallelto an easya'dsof the anisotropyenergy; éle= éla= 0, andthe total enerr is the magnetostatic term. Thelatter hasalreadybeencalculated for a uniformlymagnetized in (6.1.14). sphere Therefore, for thisstate, 8x2 X3MZ. (10-5.20) s 9 the otherpossible with this Theenergyof a11 stateshasto be compared expression. Forthe energyof thoseotherstates,lowerandupperboundsfor Cu in are calculated, according to the generk ideaofthetechnique described section7.3.4,although theparticulartrick usedherefor thelowerbound is not mentioned there.For fndiuga lowerbound,the constraintof eqn Ls replaced by themeakerconstraint, (7.1.7)
î?7 = 'V u aeorm
='
z d.p= + mva + mz) (mz2
'
zc=
4*
y+t
(10.5.21)
wheretheintegration is ove,rthesphere, and't;is thevolumeofthesphere. Thisconstraintallowsfuncdonsof spacewhichare not allowedby the lt mmnnsthatthesearch for a minimum strongerconstraintofeqn(7.1.7). is donein a largergroup.Therefore, a minimumfoundfor the weaker constrxintmay lx dueto a fanctionwhichdcesnot belongto theoriginal group,in whichcase this minimumis lomerthanthelowestminimumin theori#nal theweaker constrintalso group.It cnnnotbehigher,because coversal1thefanctions whichare allowedbythestrongerone. Forcalculating thelowerbound,theanisotropy enezais alsoomitted. Whethercubicor uniax-ial, the anisotropy term is alwayspositiee, energy andit is legitimate to omit a positiveenera term for calculating a lower bound,because suchomission decre%es khetotal energy.Enerorrn-pnimizationunderconstraintis carried out by thestandard useof Lagrrgian multipliers,leading to thethreedsferential equations 47r z + zjma = Mx for a = z, y, or zt g&V2 (10.5.22) 3 (m(x), wherel is a constantLagrangian multiplier,and
THBREMANENT STATE 1 = mzdv, (znzz) k? -
17n t ;m 'h ' y/
1..
.
r
w .,!y Jg,
227
(1.0-5-231 ?
Theboundaryconditions are 0m%= :mv = 0mz= (10.5.24) ar dr Jr 0) on '. Theconstantà andanyotherintegrationconstantsmustbeadjusted so kthattheconstraintin eqn(10.5.21) is satisfed. Multiplyingtheequationwith a = z of eqn(10.5.22) by m.t theone with a = y by mv, andthe one with a = z by mz , adding,integrating theorem andeqns(10.5-21) and 4ver thesphere:andusingthedivergence the enera of eackof thesolutionsof theseequationscan be (10.5.24), brittenas 1 = l'llh fkoa-zaaiorm (10.5.25) ...
.
y,
thet'atiooftkeenergyof seealsosection 8.4.Comparing witheqn(10.5.20),
to that oftheuniformly ofthesedWerential equations anyof thesolutions magnetized stateis 3,L J?-= - . (10.5.26) 4$,r xl.fZs htegratingnow 'a-qztb ofthemuationsin (10.5.22) over thesphe're, and usingeqn(10.5.24) andthe defnitionsin eqn(10.5.23)) '
l
-
Lmn; (A4-/ (mv) (zrzz) 4-J 4/Ms2) Ms2) Ms2) (10.5.27) T
1.îtzn.zl # 0 or
=
=
-
,k-
=
0.
# 0 or (zrzz) # 0, thisequationmeansthat LmvL .ï =
4/
wM,a,
(10.5.28)
whichaccording to eqn (10.5.26) meansthat the energyof suchstatesis qnal to that ofthe uniformlymagnetized state.It rltn thusbe concluded thattheenergycan besmaller thanthat oftheuniformly magnetized state onlyif = (Tn'?/) = (Tn'a) = 0(Tn'm) (10.5.29) With the substitutionfrom eqn (10.5.29), the equations in (10.5.22) are linearandhomogeneous diferentialequations, whosesolutionis well regularsolution known. Onecztn write,for exwple,formz themostgenezal in theform m.z =
/), Ain.iknbur/RtkkgLo,
(10.5.30)
where.âis a constantwhichhasto beadjusted to satisfyeqn(10-5-21), j.x Bessel isa spherical f anctions, Fs,sis a spherical harmonic, andknyuis the
228
ANALYTTC MICROMAGNWICS
= 0.Thelattercondltion rth solutionof dJa(z)/dz is necessary to satisfy it is san that all theequations wkichinvolvemz aze eqn(10.5.24), aad fulftlled,with A of eqn(10.5.22) beingcxqunl to one ofthe dgenvaluu
2%9#=
ceRIM yg
(10-5.31)
)
for atl allowedvaluu n and v. Hbwever, according to eqn (10.5.25), the mlm-rn =vn the smallest with A, andfor thelowest-eaerr energyincrpzmes ' l shouldbeiaken,whichis (7q2 ,).= /22 ' (10.5.32) whereh = 2.0816 is the swmlledf root of eqn(9.2.27). Notethat forthis solutionthe othercomponentmustbe mz = mv = 0, because anyothex solutionof eqn (10.5.22) is not compatible with the snme 1. A slmiln.r solution 5spossible formz or rzv instead ofmz, butits eairais the sae. Tkerefore, the smallestenergyfor alt possible ftmctionswhic.hsolveikjs is givenby mn (10.5.32). lower-bound problem Subsdtuting in eq=(10.5.26), it is seenthat R > 1: namelythelowest state,if enerais that ofthe nnifovmlymagnetized
cqk> 47Msa
(10.5.33)
-
YY
lt hasthusbvn provedthat the lowest-enerrstate is one of a uniform magnethation for a sphere whoseradiusR fnl6ls l . 017O A$ R < Rc0= .tcMsj/ k-é- u s
/-3c
-
(10.5.34)
lt shouldbenotedthat, even withoutan upperbound,tMsrauit already that thenniformlymagnetized stateis theone whkb prove the statememt hasthe lowet eaergy', for 'sttEdentlysmall'spheres. For a quantitative evaluadon of bowsmil SshlfBciently small'is,aalupperboundis alsoneedM. ForWeulating an upperbound,it is Erstxtoted that for aayreal (508) ' numbers mx, zrla aadmal whose add t,o 1) xparœ up 2m2
T'V y +
m2m2 +yn,2m2 = v z
z
z
0,20,2 ,.2 0,2 (m4 (m2 z + m2) x + :r v + a4) u p < z + u. (10.5.35) -
Therefore, a cubicanlotropyenergyis alwaysMcller than a txrn-azal with thesamefft . Sinceit is always the aaisotropy to ïncrwlae ie#timate total enerprin calculaiinga'n upperbound,any upperboundwhicàis calcnlxted for a um-av-al anisotropsoftheform'tsa = Jfztmzx + m2), v is also validfor the(1,9eofa cubicaisotropywith ihe >me valueofA%.
THEREMANENTSTATE
229
The teclmique for Yculatingan upperboundin Gis case is bazed on resGcting theeneram'-nlma-em.tion to a palticularclassof'hmctions, or evento one particular function.Suc:a restrictionmaydalirnn'n atethespatial variationfor whiclz the energyis thelowestmknimum, so that ihe lowest energyof the specialrestrictedclassis largerthan the realminimum.1t crnot besmaller,andnn.n ai mostl)e equalto therealminimmm, when the lowest-enera statehappens to beiacluded in theretricted nln-qs. In ihis respect,a computation suchas in (2521, whic.hrnI'=,'m1+zx theenera of al1magnetization confgurations that can be obtainedby slidngthe sphere, is alsoazt uppexbound,because it considers a pardcularclassof functions. For thepreseatproblem, Brown(507, considered two ldnds 508) of functionsOneis a roughimitadonofthe curlingmode, rtv =
0,
ma =
1-
p 2 R , -
1- m,2,
m6 =
(10.5.36)
coordénates. Thesecond wherep, 4,andz are theeplinddca.l one is a rough imitadonof a two-domain structure,with a wallbetween ihem,takenas mv = m.
=
sin(Ps ),
mv = cos mv =
for
0, , (Ps)
for for
0)
?z<
-
z>
z<
h,
(10-5.37)
h
whereh,is a parametewith respectto whic.h theenera is minimized. An upperboundto theenerr can becalculated analytically(5084 for tozw.ll of theseparticnlv fhnctions.Afœ Kmparingthis energywith that of eqn (10.5.20), the resultis that the lowest-enerrstateis that of a non-uniform maretizationif R > Scz, wheneqn (19.5.36) is used,or if R > Sez,wheneqn(10.5-37) is used,where Sc, =
4.52927-C
,
5.6150A% .v/4xM:
(10.5.38)
providedthat ihe expression underthesquareroot is positive,and 9
+ 8wvM' &.a= 8 ;) , a (T'lft% t3t>'2)M, -
-
fr =
0.785398. (10.5.39)
Sincetwoseparate functionsare nsed,thesmallerofthe two radii maybe used,andit is possible to statethata suEcient condition for a nonluniform magnetization stateto havethelowéstenerr is that R > min (Sc$ . j Sez) Equation is usefulonlyfor small'values of A'z-ltis meaniagless (10.5.38) audinvalidif JGLsso largethat the exprt-on underthe squareroot
ANALYTICYCROMAGNETICS
230
becomes negadve.Bven whenthisexpression îsstill positivejbutsmall,this equationis not usdulbecause it leadsto a verylargeRcz. Therefore, eqn with 'mM.1 is applicable onlyto softmaterialsl <<Jf'zlleavingonly (10.5.38) for largermluesof Kï. In practiceit tmrnsout that thelatter eqn(10.5.39) is not veryusefuleitherfor verylargevaâues of Jf'z,andc,anleadto an Rcg whichis ordersof mn.gnitude largerthan Roo.Knowingthat the turaover froma uniformto non-unif orm statekssomewhere between RczaadRe:is as goodas knowizg thkstransitionto within 10%or so for ver.gsmallJG, because thee radiiare that closetogether. Thesituationis quitedxerent, . however, for very largevaluesof Jf'l, for whichthe preent calculation leavesan uncertaktyia the orderof mn.gnitude, obviouslybecause the lowe,r boundRecof eqn(10.5.34) is too small.A boundwhic,hneglects Kz cannotbe expected to be closeto the correctNalue whenXz is large. Thereare someindicationsthat for softmaterials the lowerboundis closeto the e'xactvaluejwhileb0thexpressions for the upperboundlead to too largebounds,aadshouldbe replaced by betterone. In certain computations, to be described in section11-3.2, on one caaseof a uniafal anisotropy and two cases of a cubic anisotropy: thecomputed val(253) (5091 ueswere muchcloser to thelowerboundthanto theupperboundof Brown. In prindple,theresultsof thesecomputations are onlyupperbounds, becausetheyapplya certainconstraint, anddonotreallymlnlmlzetheenerr of al1possible functions.Theycan only bepresented as goodapprofmationsto the tzue,three-dHensional structureàccc'lzsc the upperbounds they leadto are very closeto the lowerboundof Brow'n-Thereare azso experimental dataobtaked(510) 1omneutrondepohrization whichshow a deartraasitionfrom one to two domains in Mno.eZn0.asF'ea.0sO4This transitionis quitecloseto thelowerboundof eqn(10.5.34), andveryconsiderably belowtheupperbound.Ofcourse)theparticlesin thisexperiment hada ratherirregularshape(510), andwere certainlynot spheres. Thereis alsoanotheranalyticupperbound,eve,nthoughit hasnot beenpresented as such.It startedfroman attempt to approzmate the confguration of the curlingmodein a sphereafter the nucleation stage, but was thenactuaâly used(462) to fnd the remanentstate,andfor some estimations of superparamagnetism by curling-It ia an upperbound (2.80) for the enerprof the remanentstate,as is any calculation whichresthcts the rniniml-so.tion of theenerr to any classof functions. H this particular case,the assumptions are (1804 m,
=
0,
m.z =
cos20: + (1 gc(r)) gzLrb -
m4 =
1-
m2z,
(10.5.40)
with respect. wheregz is a functionof the radialsphericalcoordinate, to = 1to avoid whichthe enerais mlnlmlzed, botmdby the constraint#0(0) discultiesat thecentre.Wlze.,n this assumption issubstituted in theexpressionsfor the enerr, a diferentialequationcan bewritten(462) for Jo(m)
T% REMANENT STATE
23l
whicbmlnivnsmœ thee-xchange, anisotropyandmagnetostatic energies. ThisdlFerential equation hmstb besolved numerically, whichisa much éasiertaskth= a numerical solutionof the wholeproblem:because only a one-dimenïonal, ordinazy d-eerential equation is tvolved.Still,it is not as eas)rto ux mstheforegoing resultof Brown,whichcan l:e expressed in a closed form.Computation hasonly beencarriedout for the caseof l,1n1>='al cobalt,for whiG thecriticalradiuswas oalyslightlylargerthaa k.hatcomputed for allp-ible dependence on r and0. Thefunctional (253) for thismodelwas al= quiteim''lxr to that computed in to= computed It is made of two e#lïnddeallp symmceic domrdns, mavetized in (253). copposite directions, andseparated by a spedalMndofwall.
10.5.2Prolates'gher/ïd Browa'slowerboundto a prolatespheroid(511) .denersllrdng is quite ssrairyhtforward. A1lit actuallytxlrp-q is to usespheroidal wave Ganctions, in ',spheroidal coordinatesj insteadof thespherical onœ nsedin theprevious rsedion. Thecaze considered hereis a prolatespheroid for whichtheeasy r, ;t='E ofthe itnlqotropy %pazallel to thelongn.=-Kof thespheroid, wlticàis 't,alte,n as thez-ais- Thesemi-xvis of tàis s'pheroid atongc; or y is denoted 'b.yR, aadthedemagnetMng faztoralongz twhich replacœ 4r/3of the is deaoted by Nm. The result Ls that the ldwœt-energy state 'sphere) (511) forsucAa spheroid, in zero appliedâeld,is one of a tmiform'maaetization, èhenever C R < .&: = q .- , (10.5.4:) Ms Jfz Fhereq Lsthe pnmmeterdeâned in section9.2.2.3fozaucleation by the Eurling modein a prolatespheroid, withan analyticapprofmation in eqn Actually, Ls identical to for Nz except eqn eqn (9.2.32). (10.5.41) (9.2-33), there w hic.h hasbœnreplavd b,yNz here.Thisdiference shoaldbeobvimagnetization stateheze is compared witk a oms,b-.use thenon-uniform unifnrmmagneuzation alongthez-directionj whereas thecuzEng modein sedon 9-2.2.3 is comparewith a coherent rotationiztthez-direction. It shouldbeemphasl-mzw.d that this resaltappliesto theremanentstate only.If a partideis uniformly maaetizedin zero applied Geld, it doc not necessarily folbw that it wi.llremnsnso whe.n a âeldis applied, andit does ùùtnecessadly followthat it will reverseits magnetization bythemherent In spiteof thes5m-11A.r1 ty in themathematiciexprpnqions for t.rotationmode. , the tcriticalsize'for chaaging ove,rfromone stateto Mother,or fxomone modeto another, remanentstatesaudmagnetization reversal modesare dieerentphysicaz problems-ln particmlar, thelowut-eaerastateina #ve,n . fieldmay not even l:e reached duringcfarfrmstages of tbemagneœation reversal asexplained in Gapter 9. It is quil posdble, audpvnm plœ process: ' were giventhere,that a lower-enerastateezsts,but the systemcannot reachit because of an energybarriezin betwœn, audit gets4stuck'in a '
232
ANALYTICMICROMAGNEWCS
higher-enera one. Besides, the diference betw-n Nx andNy exn bevec
signifcant fcrelcngated elpscids.
Z-Z'Mbe foundin (5114, wlhic,h A plot of CJV.W shouldgivean idea of thevalues iavolved for not-to-longatedellipsoids. For = aspectratio of aboqt3 or larger,that plot Lsnot aec-aty, because qï! Nz becomes a remsonably goodapprofmationfor qlvm, wheret)z = 1.8412is (51:) thelimitingvalueof q for an '-n4n-'te in section9.2.2.:. c'ylizder, as dezned Aaqpperboqndhasnot beencalculated, nor is it necessary for înding out whatthe sitqationis for typicalpartida usedin practicalrecordiag materixlK.Thus,forevxmpleo qj x ra 3.1for an aspectratioof8:!, which with yieldsa lcriticapdixmeir of at lpxAt2./%;4$150nm, for magnetite C = 1.34x 10-6 erg/cm aadMs = 480emu. Othere-xltrnplœ are g511) n!o.din rrrding aISO givenin (511), vdtktheconclusion that cll particles median.'> segle domnln'in zero appliedfeld, in as muchas theîrshape by that ofan ellipsoid. A more recentmaten'rtlfor maybeapprozmated perpendicular recordhg(512j is madeof aa arrayof parallel nicltelpx-lb.rs, with a uoifnrmdiamete.r anddîem:nce. Usingfor nîckelMs= 484emuand C = 2 x 10-6erg/c,for particlœwith a distmeter of 35nm anda height of 120nm, eqn (10.5.41) yieldsa critical radiusof about50nm, so that thererltn beao doubtthat theseparlclesare uniformlymagneeed in z&o appliv GeldThksestimate isYreadysaëcientto makesure ihat the othe,rsample(512) with a dinae*r of 75nm is alsomadeout of single domains, whichwouldhave1*e.ntrqeev% if ît were thespxrneapect ratio, andis evenmorg sn vith thelargeraspectratio for thisspxrnple. Foranellipsoid whicxisnot ver.gdiferent1oma sphere: thereis alsoan etpansion arotmdthelowerboundfor a sphere. ThiseNmndon is not (513J for ellipsoîdc, now that a rigoroms solutionis Hownfor prolate necessav spheroîds, audit shouldnot bediEcultto extend to oblatespheroids as well.It may bepo%ible, howev&,to adoptsuchaa expaasion for shapes whchare not ezipsoidal at all,as is thecasein reeal pardclo.
10-5.3 Cnbe Mostcomputations on the remanentstateof a: cubet=d othershapes), in the sizerangewhichis normallydm4nuto bea Sfzieparticle',wlll be discussed in the nextGapter.Forthe pmicularcase of a cube,thereis a seeMngly complete study(514) ofall possiblefunctioas of space, whichcmn beexpressed by cutthgthe cubeinto slices. TMScomputation is rigorous withsniî own lamework, slicing but theconstraintofa one-dimenional makestàecriticalsizetàusobtained onlyan qppe,rbound. Thereis alsoanotherproblemwith sue.h computations for a cube,or actuallyforanynon-ellipsoidal body.Thed-agnetizingfeld insidesuch bodiœis not homogenmus whenthey are uniformlymagnetized, andit seemsthat theEeldcomponents Nrpendicular to themagnetization vector Yust eaforce some non-nniformit'y.Moreover, for a unilormlymagnethed
THEREMAMNTSVATE
=
cube(ora fnite c'ylinda,or any otherbodywhichhasa sharpcorner) - thedemagne Eeldis formallyinsnite at thecozners.Theintegrated nlnlrnthat it is wrong mngneuutic enera is Enite,but some (431, 515) to use this Eniteenera as in (514J, because the localinfnite Ecldwlll never allowa uniformlymagnettzed confguration. This clztimhasbeen œntroversial f or manyyears,because it cltn alsobesaid(3921 that a sharp corneris onlyan approzmation whichcannotest on an atomicscale,auy more thana smooth, empsoidal surfacec-an(see alsosection11.3.S). Thecalculadon described in tMssedionis restricted to an unusualcase ofa cubemadeof a smallnumberof atoms,in an attemptto undezstaad thetransitionto the atomiclimit, bypatticularlyavoiding the use of the of a conttuousmaterialas htroducedin chapter7. It has approvimation already inthat chapter thatthisapprovlmation musibrpltlc beenmentioned do= if thetheorytries to de.alwith dis-taacœ of the orderof a unit cell, andit is alwayspossible that even tensofunit e.qllK maybetoo smallfor usingsafelytheapp-vimations of micromagnetics. It maybenecessazy to start wondpn-ng aboutusingthisthezy for casœwherethe wholesizeof thepardcleis oalya fewtensofunit cells? as are some of the venesmall partideswhichare alremzly beingstudiedeoezimentally. Aadit may sked ' ' some lilt on, or at lemst indicationto, thesolution #vesomepre of the quœtionofwhat a sharpcorne monnsin smallparticlesTheatoec llmit in thepresentcont- doesnot Gtendas fa.raq an attemptto start with a modelwhichmayreproduce themagnetization as in Fk.3-1-Nobodyhu ever approacxe depicted thispart oftheproblem. Also,it Lsnot practicalto studyhundreds of latticesitesby themethod whichis d-ribed hexe,andonlyninespinsare used,in whatis supposed to be an iadicationof what happens with the others.Allowingtheamal fuctuadons in s'uck a smalltpvticle' wouldhavemade themtoo strongfor thiscase,thusdistorthgthephysical pictureforsomewhat large.r padicles. thermalagitation is notused, Therefore, nor isthereuy attemptto change theclassîcal spinsinto quantum-menharical onœ, whichshouldbe donein the atonzic1''m5t.Thespinsare left to be the nln.qs'ical vectorsusedin micromavetiœ,because the mn-m purposeis to studythe limit of the =nll sphere. x-nvnptionof a physir-qlly The modelLsthusmadeout çtîpoiatspiaswhichare locnllzed i'athe latticepohtsofa bccunit cell,whose cubeedgeis a. Onlyninesuchspins are considered, whckcomplete one unit celkThefrst one of thesespinsis locatedat thebodycentrez whichis takenas the point(0,0,0) in Cartuian = cœrdinates. Theotherekhtare at 1zcm,whea'e pç (+1,+1, +1)is the positionvectorfor theïth spin.Thenumbezing ofthespiasis Rcordingto thescheme shownin Fig. 10.2. The exchange interaction is x-nmedto benon-zero onlybetween nearest ùeighboursj wkichmpxnKbetweenSzandthe othereightsphs.The exchangeeaerr is takenas theexprœsion in eqn(2.2.25)., but J isreplaced
ANALYTICXCROMAGLIETICS
234
FIG. 10.2.Thenumbering sckeme of ninespinsarranged ia a bcclattice. by the more flrnlliar exchange constant,C, accozding to thedefnitionin leading to eqn(7.1.6), = :2c..
-
C 9 ?a1ï=2 mu zzuj -
(10.5.42)
.
theunit vectorin thedirection of the pertmit volume,wherezzu denotes i-th spin.A similarexpression was alsousedia a calculation wkich (332) ignoredthemaaetostaticenergyterm, but did havean interactionwith an applied feld. Tkat case (332) assumed a surfveanisotropy, without in thebody.Hereonlya volumecubicanisotropy is used, anyanîsbtropy withoutXa,whichleadsto theanisotropy enera perunit volume, 9
Eu= A-z i=1
2 2 ''Hrzsrz:. 2 2 + mamj. ; a rn.: * m6
.
(10.5.43)
,
H practice(516) it turnedout thafthis equatîon,as written, was useful onlyfor positiveKï, namelyfor the easyaxes along(1001. ForKk < 0, whichmeanseasyaxes alongg1:11), theaccuracy of computation fromthis relationwas ratherpoor.A muchbetteraccuracycouldbeobtained by rotatingtheaxesto z', y' andF, with z' alongg111) oftheoziginal axesz, in thesecoordinate. &,andz, andviting eqn(10.5.43) The magnetostatic enerorîs takenas the interactionof dipolesat the
Tc REMANENT STATE
235
latticesiteswiththe dipolarfeld ofeqn(7.3.21), before the introduction of the physically smallsphere. Thisenerr is written in termsof the vectors Pï j
=
Pï - PJ1
(10.5.44)
Fherepy = (+1,+1, +1)is the positionvectorfor the f-th spin,already mentioned above.With this notation,the maRetostatic energy,per unit volume,in thepartiçularlatticeassumed hereLs
su =
82$.J2,a 9 m: . mj ' ' pf,j)(my p;,,.)+ s: - 3(mf a s 81 ï=2 .2+y lpi,j.l lpi-j'l #=
w''herethe termfor ï
=
1 is written separately, andis
(10.5-45) (10.5.46)
Thetotal enera of this systemwas minirlézed numerically for the 18 directions of the ninespinsfor C = 1.73x 10-6 erg/cmj andfor eithe,r MS = l7ooemu/cms aadKï = 4.7x 1O5erg/cm3 1 or MsV 484emu/cm3 = 104 these éndKï -4.5 x Thefrst of caseshasihephysical erg/cm3. cspamrneters of iron,aadthe second one hasthoseof nickel,usedin spkte .ofthefazt that realnicke,lEasaxl fcc andnot bccstructure.Foreitkerof . these largerthan cases,the exchange enera is manyordersof magnitude ''theotherenera terms,if a realisticvalueis USHfor thelatticeconstant, c.. Sucha big dxerence makesit very docult to obtainany reasonable in calculating the total energy,andaayattemptto rnl'nlrmlzethe 'accuracy lènergy encouaters a largenoise.Thetrick used(5161 for the mlimization ' was to stazt with al unphysicvy largevalueof the cubeedgea, for which ' theexchange largerthan enera was onlyfouror fve ordersofmagnitude kïheotherenera terms.Forsucha case,theenergy minlmlzation couldbe carriedout with a su/cient accuracy.The valueof a was then reduced, àztdthe enera was miaimizedagain,usiagas a start the valuesof the 18anglesobtained for the previousc. This procedure was repeatedp and 6yelimiuatiugthenecessity to computethe enera for angl%whichwere ratherfar fromthe minimum,it allowed a,a extrapolation ofthe minimum signlcantlatticeconstantc, of severalâ. energystateto the physically , . Theresult that thelowest-enerrstatewas not for positiveJf.1was (516) one of uniformmaaetization. It was a statein whichmz. = 1,but mu for ï''> 1 was not exadly1, althoughtheywere all vez'ynearly1. Theactual lowest-energy confguration couldbeexpressed by one angle,because to a *zy highaccuracyithadzns. = ms. = msm= m8. = mzv = m4v = mzv = = m4. = mr. = mg. = mcy = m5u = m%u= rzgv, with 148 M andma. '
236 rzzz = .-maz
ANALYTJC MICROMAGNETICS
10-*.Fornegative ofapprovsrnately X'z,txe same relations
cocrdinxte were cbteed in thetransformed systemz?, #r, a'ndF with z'
alongtheeasynxn'sto thenn-lqotropy. Theangles werean orderofmagnitude smallerthanfor the Xet> 0 cxse,whichis to beexpec%d because of the same fattor in the assumed values fozM2. H Iealsto a dferenceof two ! 1omsaturation,1 ordersof magnitude in the average deviatzon (mz). ït hasthus beenprovedthat thereis no cubewhicàis smallenough for the nniformlymaaetizedstate to bethe one with tkelowestenergy, in spiteof thefact that over shoz'trangesthe Gxch=ge enerais xveral ordersof magnitude large,rthnn theotkerenermrterms.ln otherwordq the Wndamental theorem'of Brown,whichhazb-m rsgorously proved for a spîereandfor a prolatespheroid, d- not holdfor a cabe,aadwill obviouslr not holdfor an erensionofa cubeto a prksm. Themathemadcal dtfeencebetween a sphere anda cubeis that tke demagnetizing Geldofa nniformly magnetized sphereis homogeneous, wlkilethat of a cubeis not. ln a uniformly magnethed cube,thezeisalways a tzansverse demagnetidng Geld, whichmaybevez'ysmallcompared with theexch=gefeld, but it is never zero-Therefoaat leastwhentheanglechange continuously anddo values,thereis always not havecertaindiscrete a s 'hght, batfnite, tilt out of theuniformlymagnetized state.Thephyhcal sigecaaceofthcseefl'et is not vez'yclear,aadis quttecontroversial, depending on theviewof whether ksa betterapprotmationfor the behaviour of a small a cubeor a sphere magnetic paticle in reallsfe. Of eonme,,it ksnot thematterof the extremely smalldeviationfrom saturation, whièh is negli#blefor dmcsta11 applications. Thecontroversy is ofBrown,described in seon 9.5.Thesamereasoning abouttheparadox abouta non-uniform demagnething Eddappliesalsoto a saturationby the application of a magneticEeld,and leadsto the conclusion that a cubecxn never bestridly Mturatedby any ânite,'//ZWJO= feld. And if the crystaldoesnot start 1om mturation,the wholeargument of sedion 9.5 may not be valid. Thispossibilityfor thezuolutionof the parHox badbeem longkfore tkis calculation of thecube,andhad suggested (515) alreadybeendiscussein theoldrcviciw(œ2j ofthe paradox.It hasbeen strengthened bymanyobservations 518,519) of domes at thetip of :517, whlRknzs, whchare not drivenawayby the appliedfeld. Thesetwo problmmq aa not quite thesame, andthereis a diference between a slightly incomplete sataratioain thevichity of the corners, aad a wholereversed domain there.These reve.rsed domldnna2enndoubtedly real,but theyoalyapplyto lave crystals, andtheîredstence may only mMn. thatsome smplesmustbeput in a largerfeld before measuring the nucleation, as dkscussed in section9.5.Theslightdeviations at the edges mayor maynot besuëdentto st.artthenudeation processlom, andthe cubeXculationdoesnot reallycbangethiscontrcversial issue.It is still the sameo1dproblemofwhichis a betterapprozmadon for wwtlparticles,
TlIB REMANRNT STATE
237
aadit shouldbe rememberetltat micromagnetics resultsdoagreewith cerlma-n e'xllerimemts on mcll partides:including particlc with very odd supes.Tkeoretically, t%enudeation problemwas alsosolved for kn4m'tely longprisms,whichhavea square(5201 or a recvngular(291, cross521) section. However, an l-n6nit.y is alwayssuspicious in theseproblems, andat theproblem not solves, ofthe axtyrate,theinlnity in thiscaseonlyevades, approRhisdiscussed in saturation neartheHges.A morerecentnumerical section11.3.5. that tNeeAI:tof$heedges It hmsdemonstzated on nnmezical resultsis negvble, provided the discretizaûon is suëcientlyEne. to address A moxcationof the cubecalculation was 'USM the (522) problemof wheier the minMaleneranon-llniformstate ksdueto the highsymmetuof the cabe.!(norderto breakthissymmetry, spinnumber 9 of Fig.10.2was moved fzomthe positionp: = -(1,1,1)to -A(:,1,1), with l havingeitherthevalueàaor thevalue1.25.Forb0th cmse.s tkerestllt em-, but b0th for lazgea w&e quitediferentfzomtàoKf or the previous ofthemextramlatedto thesame resultsas beforefor realisticvaluœof several i for a.
11 NUMERICALMICROMAGNETICS 1.zt all thenumezixcamputations in mitzomaaetics, neazlyall the computertimeis spenton computingthe magnetostatic energyterm for the ' dl'Ferentmaaedemiînn coMgurations whicha2ebeingtried.It must be that thisfeatureis independotof thecomputational method, emphuized andis a rstqnltoftheinevitable factthatthemmetostaticenera is defned by a six-foldintegral,as explained in section6.3,wher- all otherenergy terrnqinvolveonlya three-fold inteeon. Fortàisrenmnnit is important to choose an eEdentandRfrective method for computing themagnetostatic term,whileaaynumerical Anxlysis methodwilldofor theothertarms.The deseptionwill, therdore, start fromthisterm. 11.*1 Maaetostatic Ene-rr Manyof thenumerical computations aze based on themethoddeveloped and byLcontej for computing irst a onedimensionat domainwall(301), thena twodimensional one g310). In two dimpnsions, the wallstructureis assumMto beindependent of the dimension z of Fig.8.1.Thewall re#on, I=IS a and1,1S è, of the z&-plane is dividedintoNz x Nv square prims, of<de
l
=
25 = -2a . Nv N. -
(11.1.1)
ThelatterrelationlMits thepazameters to thf- whichrxekkisf.r bNz= lNv, but tikislimitationdoesnot Gectthegeaerality of the method,becauœ thewidth 2/, rxn 1xextended arbitrarilyinto thedomx.inK. ne badcmssumption isthat witkin e-xrtb of theprisms,-c,+ IL K z S -c + (f + 1)A, -b'+ JL S tr S -: + (J+ 1)A,themaaetizatioadoesnot nnn Fora constantmxgnetization iaeachprism,thesrstterm in eqn(6-3-48) wan-qhes, whilen .M ia thesecond term is a constant,widchcnn bemoved in frontof theintegral-Thehtegrandthencontainsa.nalgebraic Rnction, whœeintevalis HI)= ia prhciple-ltis thuspossible to obtaiaan anazytic exprœsion forthecontribution of tuztbpzismto themagnetostatic potential, andthewholepotential isthesummation of thesecoatributions over alltheprisms.lt shouldbenotedtàatthisl-%nlquetransforms a volumocharge if it eists, to that of surhcechargeon the four sudaces contribution, a the prisms.If the magnetization doesnot changebetween one prism
MAGNETOSTATIC ENERGY
239
pad îts neighbour, the contributionof a positivechargeon one sideof the sudace between themwill beexactlycancelled bythe contributîon of the negative chargeon the othersideof the samesurfaceBut if thereis somechange, the diference between thesesurhcecharges to a expresses, ''frst orderin smallquantities,the contributionof the spatialderivative of whicheventually to the contribution ;:6f the magnetization, converges theârstintegralin eqn(6.3.48). Oncethe totalpotentialLsknown,it caa .%. e substituted in eqn (6.1.2), andthen in eqn (6.1.7), to înd the total hagnetostatic enera. The latter integrationcan be exprusedagainas ahotàersummation of the integrationove,reacàof the prisms,whichcan .àzso becarriedout aaalytically, once M Lsmovedin lont of the integral sign.Theresultis (3104 that the magnetostatic energyperunit walllength in the z-d/ectionLs .
: FM =
L2
m Nu
Nv l m
a 2 J)+ MvLI, J)1+ .j.J'=1 5-2 )7 -4m(JJ, , J E J7 x >z(J, J?=l -
J=t J=l
'
-
-
J?)(J&(.J, JIMwLT, J') MuLI, J)MuLI', J%+ Cm(.J T, J -
J/)l.&Jz (J,J)Mv (.r, J/)+ Mu(./,JjMA (J:,J/))
-
,
(11.1.2)
The whereAmandCmareeuluatedfromthe above-mentioned integralsqxpressions for thesecoelcientshavebeenevaluated, andare given,in transformations havebeenimplemented in orderto (3. 10).Somealgebraic lake thesecoeEdents more suitable for accurate numerical computations. 1TJ heyare listedin tbisimproved fnshionin (5234. It shouldbe particularly , émphasized that theaccuracyof thesecoeEcients is veryimportantfor a 'ereliable computation. Experience shows that evena rathersmallinaccuracy in the coeldentscaa,n leadthe wholecomputation astray,andendup in Cacompletely Anotherway to increase the accuracy wrongconfguration. i,s.to combine togetherthe contributions fromtwo neighbouring prisms, the subtraction of nearlyequalnumbers. thusavoiding Thedetailsof tids modifcation are described in (5244. The four-timessumnaation in eqn (11.1.2) wouldbecome six (which timesizkthreedimensions) is a manifestation of the long-range natureof magnetostatic interaction.Everychange of the magnetization in any one prismWects the energyevaluation for all theotherprisms..A.s hmsalready khi!kpropertymakesthe computation beenmentioned, Umemuchlarger than it is for the other energyterms,but thereis no way to avoidit. Therewere certainatt/m pts, reviewed in (27(1, to approvlmate this longinteraction by a local îeld. They were not successful, andonlyledto range '.intolerable znistaku.It is Justimpossible to substitute a short-range force .
240
MICROMAGNETICS NUMERICAL
for a long-range one, ucept for a spedalcasewhichwill be disolqqfvl i:a Section 11-3.4. Themos'timportaatadvaatage of this method,namelyof writing tîe magnetœtatic is that the coecients enerr in the formof eqn (11.1.2), .A,aandCmneednot beeYuatedover andover againwith everyitcation of themsn'lmlzation andstored,onlyoncea process-Theyare computed, beforethe aztualcomputation starts.Any othermethod involves at least some computaticn whichhasto benztnqed equieentto thesecoeEcients, iteration.Thlsrepetion mxnr timesov& do%make out againfor evea'y Therefore, all othermethods whichhaveever b- usedj a big dxerence. ald whic.h ve reviewed in (2881, eitherusean împossibly longcomputation time or gointo rougkapprofmations, or b0th. Computhg X,xaadCmonlyoncealsomeansthat onlynegligible &mpu*r <meis swnt on them.Therefore, it doesnot makeanydîFerence if theyare easyor d-llcultto compute, nor is thereanyreason to tzy to save tx'tain appremations,or sometîmeon theircomputation byintrodudng otherhaccuracies. ln spite'ofthat, therelzavebeenmitnycompuvtions, alsoreviewed in (9M), iawhicxtheiategration evertheprismfacuwas just replaced by theâeldof a dipoleat its centre.TMKpresumed simpMcadon leads to the samerestlltof eqn(11.1.2) with sliltly diferentvalueof .4m andCm.lt is not a bignumerical diference in the coeedents, but it can rnnve(288) a bigdifereace in the reults. Andit is completely unnecesary whentheexpressions for w4,m andCmare kaownandpublished, andit is to store them oace and for all on the MorYver, no troubleat a11 computer. ( that it doesnot makea diference that they manyantkorsArmso convinœd donot eve,nmendonif theyusethecorrectcoecieni of TmRoatea or only an approzmation for them.It is thusdilcult to evaluate properlymany themwit,henn% of thereults in theliterature,or to compare other. Thes=e vgumentrnn J2mn beappliedto anotherapprozmation, used in manytwo- andthree-dimensional compqtaïons. Ia this appremation, theiategration is replaced over themuare(ortke cube) by the.feldat its cemtre,dueto the charge on the snGltcesatoundit. Again,this method leadsto thesamerelationas ix eqn(11.1.2), onlywith somewhat dferent values TMsapprozmarof ArzandCm, andagahit is quitemmecesar-r. tion has13ee.11 by rqnimingtbat it is easyto ckangeit Fom justifed(299) a cubeto othergeomeGesBut to mehat leasttit seemsvery strange to intoa'calculation iatroduce an inaccuracy onlybecause it is easyto.introinto aaother calculation. lt is true, ofcourse,that ducethe>me inaccuracy themGhodof TaaBonte is retrictedto one particala'r geometry, andwhen anothergeometzy is needed, it is necxury to workout thoseintegrals 1om thebeginning. lt mayalsobe.necessary to ur.- certaiaapprofmations for geometries for whichtheseintegralsHve not beeaevaluated. But thereîs no renqnnat all to iatroduce haccuracies into cazesfor whichtheaccurate coeEcients are alteady known.
MAGNETOSTATIC ENVRGY
241
The generxh-mation of this methodto three dimensions, with prisms replaced by cubes: enables computation in three-dimensional bodiœ, suck as prïsms.Tîecoeldemts for writingthe magnetostatic Hteractioxsxmong
cubes) andthemagnetostatic A subdivision enerr term,are listed5n(525). 1nt0cubeswas n.ltknurvalfor the studyof fnite drcularcylinders (526), discnq.-din section11.3.6.Whenthe surfacedetai.ls are not importantz or whenthe cubesare smallenough, suc.h a subdivHon can beusM ia prindplefor othershapes as well.Anothergenernlîzation of this method yields(52% the coeëcients for a periodicdomzu-n wall j but only for an. essentially Go-dimensional casein wlzic,h thezeïs no dependence on y of Fig.8.1.It n.lpnindicated(52% a hrgesavingin computing thefour-fold summationsr whichnxn be usedin the cmseof eqn(11.1.2) as well. Tta-e.p Fora sphere: theA111 three-dimensionxl hasnot b*n worke out, buttwo simpliîedcasesezst, for 'twodifereatphysicalassumptions. One is a one-dimensional case, in whiG the sphere is sliced(2524 into planes coordinates. Theotherproblem alongthedirectionof one of theCaztesiam is twodimensional, havinga cylindricalsymmetu |
I
-
Nn J-1 #. N.
su =
3 caca g, ,)m.(.r,,.z,) v X E 57X'!ALI,J,1,, J, )zn.( ''S'r J-2 Jzwzz=zz'w.z
+
BLI,J,I', J')znr(J, (J',J')+ C(I,J,I ', J?)m:(J, J)rzr(J', J') Jtmo
+
otz,J,z?,J'jmoq,
x
zrwg', J)m.(r,J)+ GX,J,J')rp,p(.r, J) J)+ FLI,J,JJ)rw(f,
x
mol1.,
x'
J))2 (m.(z,
N. Ne Ne
..rz')m,.(z, o gstz, Jlmdtzz,,zzlj
J)j
+ 2sin
.
y'l)-!y! J=l J=1O=1
+
N.
1 N.
(zz 1) (go -) (J,)E,.,(.r2 à),E.,sia(W -
J+
-
(11.1.4)
242
NMRICAL YCROMAGNETICS
Thecoefdents,obtained 9om integrations over thesurfaces ofthequasitoroids,are listedill (2531, with the typos correctedin (527J. Theyare expressed as slowly-convergent sez'iain Legendre polynorn-lnls, butthenthe is not importantfor coecientswhichare computed onlyonce, convergence before startiagthetime-consuming minimizations-Taldng Mojsin0instead maàes to catr.'/out all of Mo as a constantin eackquasi-toroid it possible the Gtegrations analyticxlly, but of courseit htroduces a certainerror by neglecting thevariationof sin0 over therangeof sucha toroid.H principle, this error is negligible if the subdivision is suëdentlyfne. In practiceit yieldsquitea Mghaccuracyeven for moderate No, as hasbeenchecked ' by usingthis methodfor computing the magnetostatic energyof several for wkichthe resultcaa n.1mbe evaluated Mnlytically. conkurations Thereis no otherthree-dimensional bodyfor whichthesecoecients kavebeencalculated, mostlybecause the expressions become long and mzmbersome. A beginzdng of a calculationfor a fnite circularcylinder, whichhasnever beencarriedas far as yieldinga practicalfozmof the coeGdents, is foundin (259). Of course, it is alwaysposdbleto compute a11 thesecoeEdents numerically foranygivenbodyskape,storethemand Actually,sucha numerical thenuse themf or minimizingthe total enerae. clnl'rnsn computation hmsbeencarried out fora cube(263), gthat it is simpler to doit this way,talthough complicated ralytic formsfor theinteraction For a dferentgeometry, thismethodhasonly energyeztn beobtained'. beenusedin one case, Jscussed at the endof tMssection.Mostof those who carzyout suchcomputations still preferrougherappro-xn'mations, or methods'. completely diferentnumericalanalysis As hasalreadybeenmentioned, othermethods are impractically time Thispoint mustbeemphasized consuming. again,because computational pacHges are available nowadays that can beusedto computemagnetic îelds without even knowingwhatthey contain.Also,thereare special conferences on magnetic feld computations, andfor several yearsnow the proceedings of eackof themhasbeena thickerbookthanthis one is. Most rxn onlybeusedfor of theseprograms, aadstudiesof improved methods, 111ne,M' magnetics: whickmeans that theyworkonlyfor cascsin which is valid,butthereare alsomanystudies in whichthemagnetjc eqn(1.1.3) feld is computed for ferromagneiic materials.Someof themobtainthe withthe potentialobtained eitherbya numerical feld H fromeqn(6.1.2), withtheir boundary solutionofthediferentialequations conditions ofeqns or bya zmmerkal Otegrationof eqn(6.3.48). Othersobtain (6.1.4)-46.1.6), B fzomthevectorpotenual, briefymentioned in section 6.1,which%Mnot beenusedin this book.Eowever, a2 thesemethodsare devised2528) for computing the îeldofa givenmagnetizahon confguration oalyoncmMostof themcan alsobeextended, withoutdieculty,to thecomputationof the ma>etostatic energyof a Tvenstructure,but onlyif it Lsdoneonce. 1na this energymust becomputed typicalenergyminimization, tkousands of
BNBRGY MWJMIZATION
243
times,fzoma magnetization distributionwhichkeepschanging withevery iteration.Present-day are too slowfor this task)exceptfor those computers khoare readyto spend(529: Sseveral to many'CPUweeks on solving sucha problem. Improving thetechnique didnot change thistime-scale (530) 531j buëciently to makeit more usefal. thenumedcalanalysks technique hasreturaed ?. In one recentcase (532j to the ideaof LaBonte, of computing(and a1lthe coeëcients for storing) themagnetostatic energyterm beforestartingthe actualiterativeprocess of the enera Dinimization.It hasnot beenpresented as such,although the authorsshouldhaveHown aboutthis idea,andthe computations alreadycarriedout by usingit in mauyproblems. 1nthis case)the b%ic discretization element is a tetrahedron) for whichthe LaBontecoeEdents numerically bytwo dxerentmethods. It is clnsmed to pre computed (532) bea veurgeneralmethod,but it hasonly beenusedfor a certainprism, with the alreadyzknown coe/cients,couldhave ,forwhichcubicelements, beenusedjustas well 1 .2 Enerr M'nlmlzat on Calculation of theotherenera termsis straightforward. Fortheanisotropy of densities suchas eqn(5.1.5) or (5.1.8) is just vnera term, integration broken intoa sum ofintegrals over individualprisms(orcutes). Andsince 1hemagnetization is assumed to bea constantin eachof thesesu'bdivisions, eachintegrationis equalto the area of theprism,or thevolumeof thecube.'I'hesameappliesto the enera of interactionwith an applied feld) if used. Theexchange after energycan be obtaaeddirectly9omeqn (6.2.45)) bubtracting the energyof the uniformstate, as is donein eqn (6.2.46). T.hereis no contribution 1om the bodyof the subdivisions, wherethe neighbours are parallel to eachother.Therefore, thetotal exchange energy i'sthe sum over a11the surfxcesbetween neighbouring subdivisions) of an eoression similarto eqn(10.5.42): whichis derived directlyfromthetheory kb. f Chapter 2. LaBonte(310) didnot doit thisway.lnstead,hestartedfrom theclassical expreasion ofeqn(7.1.4), andapprovimated it for smallangle, practicany workingout the derivation in section7.1backwazds. Theresult, however, is the same. For curvedsubdivisions, suchas the quasi-toroids ùsed(253) for a spherejthe procedure is essentially the same. It is also thespmefor a one-dimensional study(53% of an 534) infnite cylinder,in whichthe magnetization depends only on p. It hasbeenpresented as a 'newtechnique, andnamed the latomiclayermodel',in orderto (Iistinguish that theseauthorsunderstand to applyonly to ij 1ommicromagnetiœ, ThelattercasealsoIeft out themagnetostatic analyticcalculations. energy ''tèrmaltogether, becauxthey dealonly with the curlhg lmodel'. ' , Theforegoing shouldbea su/cientoutlinefor writingthe total enera t in a form whichca.n be coded as a computersubroutine. Thereare very eEcientcomputerprograms for minimizingan expreasion in a subroutine
244
NUMERICAL MICROMAGNETICS
whichdepends on several parxmeters, andit may seemat frst sightthat tkereshouldbenb diicultyin Iainimizing thetotalOergpEowever, these whh zespectto a rehtivelysmall programsare limitedto ml-m-rnization numberof parameters, usuallyoftheorderof 10.TheyOnnot beusedfor m'pnl'roizizg theenerr with respectto the maretizationvectorin p-qzth of the discrete in the presentcontext,because is subdivisions thdr numbe,r typkallyin the rangeof thousands or tensof thousuds,audeven morein theliteratuzefor the minimization Thereare two methods iœlf, au.d in bothof themthe expresionfor the enerais frst usedto compute the eFective magnetic Eeld,desned h eqn(8-3.41), at eathofthesubdivisions. Thisfeld, Hem, is essentiuythederimdve of the eaerr with respectto thelocalmaaetizauonvector,andrxn be evaluated numerically for each of thesubdivisions directly1omtheenergyexprasâion, withoutgoingback to the do6nstion in eqn (8.3.41). ln one method, u>d in e-g.(253, 310,3231 326,327,337,524) andothers, themaretizationvectorin 1nn% subdivision is zotatedto the dizection of tkisfeld,mn',atthat position-After swepingthrough allthesubdivisions, themxr-mum angleofthisrotationi.aanyone of themis compared with a by presettolerance. Theprocv of rotatingthesetof m(J, poht point J) thegrid is continued uatiltMsmnvl-rnntmaugleis smallertlmn throughout the required toleranœ, at whichstageeqn (8.3.40) is obviously fulved to withinthistolpmnce. It can beshowathat in thismethodtheenergyalways decreases fromone iterationto thenert. Thispropertyis an advaatage for relativelysim' p1eenergymanifolds, andat leastit ca= never go wrongif therei.s onlyone miMmum. lt maybea disadcantage if thereare at least two energy them,in whichcmsea minima,with a certainbazrie.r between staz'tin the vicinityof thehigherminimnvn thereywithout may converge evez crossing over to thelowerminimum. The othermethod:used1, for exxmple,(299, andin many of 324) the numericalcomputations whichwill lx d-lpztussed latervis to solvenumade>lly the dynamic equation(8.5.50) or oae of its vadations discussed in section8.5.For staticproblems, suchmsthestructureof a stationaxy domldnwall,or the remanentstate of a pazticle,a dxmpingparxmeter for induhonin that equationis ehosen arbitrarily.Themainadvantkage of thismethodis that it ksreadilyadapted(32% for realdynxmicproblems, suchas a moeg waz,or thevariationof themagnetization aftera mxgneticfeld ksapplied.Forstddly staticmagnetization coafgurations, this methoddoesnot seemto haveany admntage over the previous one, or at leastnone %J'xbeenclaimed in any ofthe publications desczibing it. lt betime xnsuming,becaceintermediate stagœevolved in time mayn.ltkn are of no particularinteestin this b''ndof computation. In an improved. variationof this method(532) equadon is m'ittenfor eve.ry , the dynnamle one of tbesubdividons separately,' aadnot for thewholesample,andthe is adlusted in ezach iterationto bemslargeae possible) as longas time-step
ENERGYMTNIMIZATION
245
theenergyis not allowed to increcac in any singlestep.Sincethispurpose is automatically aeievedbythe othermethod, in the foregoing, descdbed the advanvgeof this methodis doubtfulat best:for any statîcproblem. Of course, it is irreplaceable whenthe realdynamics is sought,exceptfor the case of a wa2lmovinguriformlyat a constantspeed,for whichthe statictechniques can be applied, aasdiscussed iztsection10-4,andas done in, forfwvitmple,(3371 . Thebestdescription of the detailsof integratin.g the timodependent equationcxn befoundin (5351, anda comparison of the . diferentmethods for this integrationis givenin (536) . ln eithercasejtheboundary conditions haveto beenforced by choosing specialrulesfor the magnetization in the subdivisions on the surface. For exampleo whena domainwatlis supposed to endin a domainon bothsides, in thefrst andthelastrow of prismsis alwayskeptS'XE':I themagnetization = O in the appropriatedirections The boundazy conditiont'?M/t'?n .g310q. can beenforced by addingextrasubdivisions justoutsidethe materiallin is (5374 whichthe magnetization a mirrorimageof thosejustinside,or by other(310) methods. Theconvergence ofeithermethodis quiteslow.lt hasbeennoted(538) that a muchhsterconvergence can be achieved vez.yofkenby grouping subdivisions to be changed togetherat eachiteration, insteadof setting the magnetization in one subdivision at a time.Therefore, the number of iterations,and hencethe computationtime, cnn be muchreduced,if a certainpatteracan beîdentîfled, for a cooperative magneticchange, or a mode,in a largegroup.This method,however, hasonly beenusedin a specialcase (538) of a domainwall motion,for whichit is rathereaEyto identifythepartsof the wall,andmakethemmove together.ldentWing therelevantCmodes' in othercaEesis not that simple,andit still takesa deeper studybeforethismethodmaybemore generally used. A more dratic approach of thisknd is to grouptogetherseveral ofthe subdivisions pevmanentlv and treat themas one entity:by aEsuming that themagnetization is alwaysthesame în eachmembcr of thegroup.lf done for the wholesample, this assumption onlymeans a crudemesh,whichis easierto solvethan a fne mesh,but leadsto a loweraccuracy.However, whenthis technique is usedselectively, it maysave computations without losingthe accuracy.lt was actuallyused(323) izt the computationof the domainwallin very thic,kflms, for whichit can be safelyassumed that the magnetization variesmuchmore rapidlynear the surfaces than in the middleof theflm. Therefore, a fztesquaremeshwas taken(3234 onlynear the surhees. Fartherawayfzomthesurfaces) several squareswere grouped together into ratherelongated rectangles. Ofcourse,thereisa bigdlFerence between thequalitativestatementthat thevaziationis more rapid'near the sudace, andthe quandtadve choice of a particularsizefor the rectangles awayfrom the surhce.This particularcase was justifedby its passing it at leastbetterthan the self-consistency test of section 8-4,whichmakes
246
NUMERICAL MICROMAGNETICS
some# ld guesse, whichare alsobeingpublished. Butthistest nltn' oalybe appliedaftera1lthecomputations are done.Thereshould besomewayfor . a quantitative of the use of this technique, preferably before',. justlcation startiagthemainpart oftheiterations, butthispart hasnever beendone. Thisdrawback is onlyone of several unknown andunestablished points. audassumptîons whichare justbeingusedin micromagnetics computations withno justifcation. ln theolddays,whencomputerresourceswere limited andexpensive, programmt-ng usedto beapproached muchmore carelllly than in more recentyears.lt wmstaken for granted)for exn.rnple: that a by mmniag at lemst one case whichcltn besolved programmustbechecked Malytically,andcompadng the results.Of course,it is not practicalaay more to doit for everyproblem, butsomesortof checkng is essential, even i
if the full three-dimensional problemis studiedwithoutapprozmations, assumptions' butevenmore so whensome Ssimplifylg are introduced. The otherextremeof havingno checks at all is toodangerous, andits restlltsare never reliable. Thecomputeris a veryusefulandmwerfultooltandit cAn do'wonders if properlyused.Butit is certainlynotasubstitutefor thinking: andit istoocommon amistaketo letthecomputermake all thedecisions. It bnAbecome muchtoo eas'ynowadays to writea programandrun it, so that oneoftenwonders if certainpublished resultsrefectsomephysical realits or are merelytheeFect of an overlooked error in theprogramming, or in thelogicleadiagto that program.It mayalsobejustdueto an approxy mationwhichtheprogrn.rnmer doesnot stopto thinkabout,or whichmay havebeencopiedfzomanotherwork,in whichthat approzmation isjustifed, andyet maynot bejastifedin thenew contextofanotherparticpllxr problem. Several suchdllcultiesic thepaœticular cmseof micromagaetics computations, whichstiz awaita solution,are listedhere.Someof them or even solved, in someof thestudies. But they mayhavebeenaddressed, are not mentioned in thepublicatioas, whichmay bebecause manyofthe resultsate beingpublished in conference proceediags withstrictlyenforced sizelimits,in whichthemostinteresting pal't is oftenomitted.
1. Thesizeof subdivisions is chosen arbitrarilyin most of thereported computations, andin manycasesthis sizeis not even mentioned, as criterionis known, if it merean unimportant parn.rneter. Noclear-cut but thereis an obviousguidelinebetween two lsmits.On the one hand,themeshshould not betoofne,sothattheapprozmation of a continuous materialpdiscussed in Chapter7,isstill valid.Ontheother fne to allowthemagnetostatic hand,themeshshouldbesuEciently eneraterm to developfully thecomplicated structuresthatit usuatly pzefers. If thesubdieionsare too crude,themagnetostatic energy is too high,insteadof becoming negligible as it normallyisrbesides thepossible introduction ofdiscontinuities, andconverging (53% 5401 to (541) a wrongresult.A cntdesubdivision for may be adequate
ENERGY MINMZATION
247
ca:essuchas (542, are studiM 5V),whenthewalksaadthedomains
withoutthedetvs of thewalls.But it Lsceztpimly not justledwhen the wall detvs are neede,suchas in (324) wherea 10m thick 'l= is dividedinto 128prisms,makingtheprismsizeabout'?8nrn. TlzisprismsizeLscn orderOJ magniinde largertha.nin someof the predousworks,andit is onlyusedin orderto elximsomerœultsfor thickerSlmsthanever studiedGfore.Thisarticle(3242 dou not even commenton tMscxoice of theprlm ssze, andit ha.s otherfault.s too, suchas.not even mentioning whetherthemngnetostatic enerr term is computed as in.sedion11.1,or by someapprozmation. ThesafestmethodLsto computefor a certninmesh,thensub. divideit furtherandrepeatthe computations, to sœ the efect of thefne.rmœh.ThisproMureis almoststandard in lesscomplicated computations. Thusfor vamplein (530J the accure wmscàecke fordferentmeshes by eompxhng tlle Eeldof a saturated sphere with theknownanalyticrcult. Thischeckis certnx'nly muchbette.rthan theâeldof a Mturated no check at all, but it is inadequatej because spheze not be a good memsm.e for the feld ofthemore complex may confgurations. Fœthe actualenera mlnlmlem.tion in (530) ele, 2639 mentswerejustGosen, withoutkying anyothersubdivsion. h a Ititz modelfor a sphere, for wbichthe magnetœtadc enera was solved analydcally, andoalyGeexcxange term was computed numerically, it wmspossible to start witha 31x31subdivision, thenincemse (M0) it to 33x33,andfmazyuse 66x66.A muchpreferable approach is a systemauc studyof the Kect of subdivision Mze,msdonei.atwo andthree(545) dimensions, but it is not alwayspracticalfor (544) problems in whic,hthecompute.r resocces azepushed to their mafThus,a mnrn lîmlt mstqkonhappens in maaetostaticcomputations. detailed studyoftheArzturacy hasbeenreNrtedforsome numerical computations of theLoonte eneldents,but ne- of the (532, 546) itself.Of courseit Lsimportantto mnlre sure complexmsnîrns'zmtion that Ge cœëdentare accurate,but it is not suëdent-Evenin a c%e suchms(532) whic,h is compared directlywithexperiment, it is alsonecessary to check that therestof thetheoryis doneproperlylt to allornateGtweena cox- anda fne may beadvantageous (54% mesh,butthemnin pointis to endup with a suKdently 5nemeshz 2. The approvhto A'n6nltyis never welldefnednttmerically. It r.n:n onlybeexpected from to betakensuldeatlyhr themainbodyof the computations, but thereis no clear-cut guidplsne on howfar is suldentlyfar-Agaia, it is necessazy to try more tlzanone wzue,and a check hmsnotbeenreported in anypublicadon. H domain yet sueA wallœmputadons, for uampleo thedomains are expected to start at 2 = :i:a of Fig. 8.1,wherea should belargeenough to allowa G'11
NUMERICAL MICROMAGNETIOS
spreadof thewall.And yet, thisa is justGosenarbitrarily,without askngwkether it islargeenougkl andwitkouttryingt/oseetheelec't ofusinza latge.rc. In a numerical rlution oftke rl-earential equadons tphebehaviour at infnity is an Hportantboundary (6.1.4)-(6.1.6), condition, but shonldthesnfnit.gbetalcenas 5 timest'heradkus of theferromaaetic body,or 50times,or what?H studying a spheze, it Lsmentîoned that thepotentialne not becomputed onlyin the sphere, but alsoin a dmuch largersurrounding re#onoffreespaœ; butno indicationss llger'. Forthe 15292, #venon howlazgeis Cmuc,h adualcomputations, 2639dements were used in thesphere, and7534 outside, andif aly othernumbers were tried,theywere not reported. in seckon8.4,are veary 3. Self-consistency tests,suchas those diMussed Mportantto c,he that the resultsmakesenœ,andare not merely theresultof somemistxkMyor ofwrongappzozmations. Usingthem is theonlyknownwayto dxa'm that for a certainrazgeof theilm tMckness, theneseded third dimemsion cannotchaage t'hecomputed tw>dimensional wall enerprvery œnsiderably. No improvement of thisinformation, ève,n thecomputational accuracy byitselfrxn reveal i.f thosecomputations are 100% reliableand 1eefromerrors. The dx-lcult.y ksthat thesetmtshaveonly bee.ndeveloped for static,or for nnt-forzlzly movhg,domainwalls.It is, thereforev lmportantto develop similr testsfor othercaso, andto ure the es-ting tests wherever theyapplpAny publication in whichthe self-consistency test is ignoredshouldbe suspctedandnot reliedupon.Thetest is ocntïtcffre, andan articlesucàas (3021, whichonly >ys that the resultswere 'tested'this way,vithout specifying the ruulting nnTrnbersj looksstraageat best. 4. Theway computational resultsare presented is the most diëcult probl= in trying to extrac'tMormation1ompublished results.The stm.ndard methMfor preenthg twœdimensional wallsksby plots suchas theone in Fig. 8.3.Theydonot revealall the fmedetails, but at leasttheygivea goodideaof themainstructure.Forthr* dimensional structures,this methodis desnitelynot goodenougk but no betterway hasbeendeveloped yet. Thethree-dimenshonal picturœmadeout of twœdimensional arrows in (529, are incom531) prehensible. Evenreladvely simplestructures,suchas thoseof (526), or of otherswhich wlll bediscussed in thenext section,are not mucà clearer,althoush a cuà1548) can sometimes helpto seemore details. Sucxplot are relativelyeasyto followin the or= presentations in colzfeences, whendiferentdirecdons are shownin deerentcolonvst but thesecolours az'eusuallylpstin the publkshed procrMvh-nr. The problemwill be at leastpartiallysolved if thee fgurœare pnblished ia cololmbut thereseem'to besometechnic/deculties,whic.h also
ENERGY MINIMIZATION
249
apply to the presentation of certainexperimental results,suchas Although there are already several publications in colour,e.g. (549j. 551,552), ihey are still quite rare, andthe wholeproblemneeds (550, a more drasticsolution. Actually,the bestwayto presentnumerical resultsis to buildan analyticapproximation to them,as discussed in section8.2.Thismethod,however, is ver.ydecult, andhashardly ever beenused. 5. Theconvergence criterîonfor termînating theiteratîonsLsthelemstdefnedparameter in micromagnetks computatîons. Dxerentauthors use dxerentcriteria,andtheirvaluesseem to be chosen arbitrarily. Thereis never any attemptin the publication to just# the value usedin a particularstudy,andin mn.nycmsesthis numberis not even mentioned there.At a frst glance it mightseem that a rather largevalueof thîs criterionis adequate if only a roughestimation is wanted,but experience showsthat this criterionshouldbem'tzcà smallerthan the requbed relativeaccuracyof structureor enera.In to a structurewhich manycasesa choiceof1say,10-4mayconverge can be changed drasticallyif the computationis continued with a criterionof 10-6.In one (unpublished) case, the energy convergence of the systemchanged by about3%whenthe maxlmumanglewas changed 1om 10-4to 10-6.lt maynot befhe same changei.l other cases,but themere factthat it cazzhappenshouldwarn workezs that they must bevery carefal.Morethan one valueshouldalwaysbe tried,andit is wrongto rely on any one guess. 6. Theeventual checkofevezytheoryin Physicsis its agreement with experiment. J.uthecmseof micromagneticsf however, sucha checkks thanhelpful.It should oftenprematurej andmaybemore misleading bebornein mindthat thistheory,in its presentform,is very much oversimpl/ed, neglectiag importaatfadorssuchas magnetostrktion, surfaceroughness andcrystxllineimperfections, discussed in section 9.5.Theefec'tof surface anisotropy is not knowpbut it islikelyto affed stronglythe experimcntal data.TheseXectsare ignored(553) in mostnumericalcomputations, althoughtheyare easierto introduce therethan into the analyticstudies. Therefore, an agreement of the resultswith someexperiments is likelyto bea mere coincidence (554) that only covers some computational errors, espedally sincethese computations oftenmakean arbitraryandunjustifed choiceof other such as the Jl.nl'sotropy and exchange constants.The parameters, (553) real challenge of computations at this stageis to do themcorrectly for an idealparticlebeforeconsidering realparticles. Because of a11thesedilcultiœ anduncertainties, manyof the results
(5541
.n théliteratureare doubtfal.ln the next sectionlsome resultsthat reem more rellablethanotherswill besummarized, but even theseresults
250
NUMERICAL MICROMAGNWICS
withnewer reseaz'ck. Detils whichcannotbegivenherec>n '. maychange l)efoundin the citedpttblications. 11.3 ComputationalResults 11.3.1 DomainW'tzlùs Mostof the computationz resultsfor statiG180*walks havealrpmz!y %en ltstedi:asection8.2,andwill onlylxabrie:yredewed kere-Thereis ùeithe,r Gperimentat nor theretâcalinformation ou the wallstructureoz energ in bulk materixlK.We Yt Gimation of thewallenergyin tke bulku' ' 1ntC still based on theone-dimensional calrm on of theLandau andLifskiiz wall,dœcribed in sedion7.%whiey is most probably wrong.Computer reourcw are e%austed at aa ironGl= tkinbness of about3 to 4 Jzmand. tkereLsno wayto tell whatkappens for a large tidckness. At abouttltnxt tkirvnerxs theres= to l)ea kansition(3D) 1oma thin 6lm confgurall1epthelette,rtC' to a tion, wherethecurve on whichMz = 0 is shaped HlFereatconfguration lîkethe letterCS'. for whichthat cmwe is shaped lf tkis transitioneists, it maybean hdicationfor thewatlstructurein the bulk.Howe-, even in thetMckestGlmswhichcouldbecomputed, there was no Gangeover fromGe C- to tke S-typestructure-Theener#es of tkesestructura bdngverynearlythes=e at t%hthickness, eitherone of themcouldbeobtained, depending on the symmetryof tke startkg
conîguration (323). For aa intermediate tkckness,betw- that of a fewJzmaxd that of abottt0.1Jzmj or somewhat less,thesituationisqaitecleaz-There are xme two-ap'menskonal computations ofthewallstmctureandener, 'whic.à#ve 't the resultsmsdescribed in section8.2.Thereis n3= a thr enKional computation in this thicHus region,nxmelyup to a tlzio.knvof E (555) 5OOnrn whëc.h is taken to bealzeady tbulk'.But tkis studyusœ a rough ? . apprormation forthemaretostaticenetv, andvery=de subdivisions. Forstill tkinnerflms,a three-dimensional computation beomesessental, but none of tke published resul?is dear-cut, because theyare basedon. an approzmation for the maretostaticenergytm that ca,n (52% be avoided now. Ia particular:no computatkon skowsa transîtionfromthe Blockwall to tke crosmtie wallat a thickness whkh may becompatible with tke experimental olerntions on metallicElms.A changeover from the two-dimensional BloGwallto a symmetricNéelwallwas sought(556) butnot found.Instp-'td of a well-deâned transitionjthecomputatkons (5565 enountereda widethielrnesregionin wikic.h noae of thcsetwo strttctures was stable.Thisrpvnltis not surprising in viewof the fact that cross-tie wallsare observed in thni sizere#on, bat this structurecannotappeamin a computation whicàis constrxlned to be two-dimensional. lgnoringtMs ex-pedmental fac't,some otkerexplanation was soughtin (5561, with an that tramsidon by an applicationof a magnetic feld. attemptto enforce
COMPUTATIONAL RESULTS ;'
In the case of ferrites,the periodicityalongz of Fig. 8.1 is usually rgplaced by a ldnkin the wall,whic,h is 1% pronounced thanthecross-tie jsructureof permvoyflms.Forthis case, manymore detailshavebeen andcompared withexpeziments but onlyfor a smallpart éùmputed (5571, i'f 'the wall; in the vicinityof the changeof wallchiralityalongz. Some 1è. o-dimensional computations point the way on howto take 559) (558, :4 t'dtoaccountthe dependence on the thizddimension, z, bysumming over 'éhe periodicityalongthat direction.However, thesecomputations didnot yeàllyaddress theproblemof a cross-tie wall,andwere only donefor the '#priodicstructureHownas the tstrongstripedomnsns'. Thetheoryof the Xéelwallin very thinflms is not very cleareither.In particulaz, thereis .Ep of sucha wall whic.h obeysaayself-consistency test.A computation A wallmustdevelop aa e-x-tra asymmetrywhenit moves,as explained is section 10-4. This asymmetr.g can be clearlyseen in numerical solutions L such as These computations have also been done dseqn (8.5.52) (56% 561). for the case of a two-dimensional wall movingthrougha regionin $62) b'' hichthe anisotropy constantchanges, as in ssm-lln.r, butone-dimensional, )7' c)51. culationsdiscussed in section10.2.Thesestudies,as weEas the one ir'hick addruses the efed of eddycurrentzon the wallmotion (5634) are .;f. twœdimensional in rather thin iestricted to oneor structures flms. The . 'J. fnclusions abouta thinkness of 1#m; for exxmple,ire not basedon (5634 Theyare actuallyobtalned bqmputations at this:1mthickness. byscalhg 6hé. physicalparameters of the material,andcomputingfor 0.1yzt flm i:ickness, size, without payingany attentionto the changîng subdivision )7 or convergence criterion,or any of the otherpointsIistedi:l the previous iection. A muchhigheraccuracyfor thickerfllmswas repoted (337) ) but f,hatstudywasonlyforuniformlymovingwalls,audcouldnot beextended fztllargevelocides.It couldnot be extended to vezythick Alrnneither, because of the same limitationsof the computerresources,mentioned in itke foregoing f or thecaseof a staticwall.A dynn,rnic studyof a 2yzmthîck , X'lmshowed(5644 a transitionfzomthe ;C, to the LS) sjjapeoj jjje wau btwjmcture, mentioned in theforegoing, but this resultwas obtainedwith a Similarly, studiesof the motion(565, of a part of a 1.ndesubdivision. 566) wallis alsosubject to the above-mentioned limitations iwhree-dimensional hterestingtrick (567) isto apply forthestaticsofsucha wall.A particularly eriodic feld to the computed wall to stabilize its iodic structure. ,*)p. pe llt'. .kshasbeenmentioned in sectfon 8.2,a verygoodapprofmationforthe jh flm thic-kness cmn be obtained byenforcing #all structurein intermediate than any iero magnetostatic are muchfmster energy.Suchcomputations in this chapter,but theyinvolvethe problemof ijf the othersdescribed G'ttingT' . M = Otogetherwith the constraint1Mi= Ma-Ia a mriation usedfor three-dimensional computations, the frst $f this method(5684, sïonstraint V - M = Owas mainvinedat eachgrid point, but the second = Ms, wmsnot. Instead,iM1 was allowed to change fzomone tme,1M1 .'
.
' '
251
252
NMRICAL OCROMAGNETICS
point to another, with an eventual towardsthe same laterignored, andneverusedage. Somecomputaïolsof domin wallstructuzeslkavenlnnbeenutended for looldnginto theaualysis of magnetic forcemiezoscopy data.ln (MF'M) one extreme(569, 5701 themeuuredmagnetic confzgration was lzkken 571) as Onstaat,aadtheresulting maaeticconâguration in theAGMtip was computed. ln theothe,r extzeme(572) the fne detailsof a two-zimensional wallwere computed, - into accountthefeld dueto the measurlgtip, but thedetalls ofthetip magnetization were neglected. TMsmagnethation was assumed to becoastantwithintheLspheriœk tip, andv?msallowed only one degree of freHom, for it,sdirectlon to bezotated in sucha waythat the total enerr of tip aadsample is a minimum.Such aal approimationmay bejustifed by m-urements ofthemagnetic feldin thevidmityofa sltam MFMtip, whichseemto bewellapprox-imated bya (dipolar) feld of (5734 Of course,thesemeasurements a sphere. were made withouta sample, and of whai happens whenthesampleis nœby.Moze mar not beindicaove detailedcomputations of a.nenerr minimumofthetotal energy, allowing a mriablemagnetic dlen-bution in boththe sample andthetip, are hinted at h Ref-19of (572), but neitherthedetils of thecomputations, nor tkeir resulk,were ever pubishM. The conclusion Fom(572) was that the m-mnurementhmsa negli#ble eFecton themeasured that tàeestence pattera.Anoppositeconclusion, ofthememuring tip hasa verylargeefecton themeasared magnethation pattern,wmsre,VACSII in 15311 . Tkerexsonfor these diserentcondudons is not Hown. Finazy,it shouldbeemphasized that this discussion h%beenlimited to a 180*wall,ignoringotherwallslsuchas 90Oonas.Wkenthelatterare straightlines,theircomputation is rathersimilarto thosepresctedhereThereis alsoa largenumber of worHon thestatics(330) aaddynnxnsœ of euaedwll.1lq, whichare outsidethescopeof thisbook. (574) 11.3.2 Sphm Thetheoretical remanentstateofa ferromagnetic sphere hasbeendiscussed in section10.5.1. It was provedtherethat belcwa œztainTcritical'Teusj thelowesteneraris thatofthe uniformlymagnetizestate,but thisradius wmsonlygiventheremsa reliable lowerbound.Theaaalytically Ycuhted had upperboundstnrnedout to l)e muchtoo large;an.dtheirevaltiation to be doneby nnmerical methods. Usingthemethod dacribedin sKtion11.1)of subdividing a sphere into the qnMi-toroids def.nedby eqn (11.1.3), the lowu-energyconfguration was computed forone case (2532 of a uninm-al xnîmotropy aadtwo cmses(509) . of a cubicn.nisotropy. Ttshouldbeemphmsized that becusethesecomputar tionsare constrxx-ned to cylindrir4lly smmetric confgrations,thc result is in prindplean upperboundto theenerr of clJpossible confgurations.
COMPUTATIONAL RESULTS
253
Therefore, the criticalradîuswhkh theyimplyis alsoan upperboundto the true ra dius. ln thetwo computed caies for cubicmaterials , the upper boundsthusobtained were onlyabout40%hrger thanthe lowerbounds. Together they thusdeinethe criticalradiusto within the accuracywith whichthevaluesofthephysicalparameters are known. Forunieal cobalt, however, thediferenceis muchlarger.The computed upperbound(253) of 34.1nmis smaller thana11upperboundscomputed Vfore,butit is stîll threetîmesthevalueof 11.5nmj whicheqn(10.5.34) yselds forthephysical of this material.It is still a roughestlmation,andit is not clear para.rneters whathappens i'n the case of very largeanisotropies: for whichtheupper andlowerbounds of Brownare particuhrlydiferentfromeachother. Themagnetization confguration justabovethecriticalradsusis made essentially of two curveddomains, althoaghthe wordmaynot beproper in this context,because the $wa11' between thesedomalns extendsover an of thesphere. appreciablepart Thesedomains havea cylindrical symmetry, not onlyin thecomputations for whichthissymmetuis assumed, butalso wîth no constraints: in a full, three-dimensional compuvtion(52% at 531j leastin as muchas it is possible to see i.n.the published confguration. lt seems that the wholeconfguration is very well approfmatedby the Rîtz model(462), as defnedin eqn (10.5.40). The latter was originally desîgned to studythe magnetization reversalby the curlsngmode (462j beyondthe nucleation feld. But sincethe studyof'curlinghadalready beenforgotten,thisconfguration was presented lusa new typeycalled (529) a tvortex'structure.Theabove-mentioned two domains shouldbeimagîned as oppositely magnetized, in directions parallelto an easyanisotropy ao-ds, andthewall between themis mostlymagaetized in circles. If the anisotropy mnishes, theinnerdomain is tmiformlymagnetized, in thedirectionz of thepreviously appliedfeld,or very nearlyso. Theouter domainis mostlymagnethed in circles,namelyMç is azmost equalto Mst with a smalltilt towardsz. ln both domains,the cylindricalcomponent Mpis very small.The average Mz in the remaneatstateis quitecloseto Mn for a radiusJustabovethe critkal value,and is ratherlargeeven for conssderably largerradii.Al1thisdescription is actuallybased onlyon those whichassume a cylindlicalsymmetry(5754 computatîons to start withp the resultsof the111,three-dimensional because computations (529, 531) are not veryclearin the published The latter were tîme-consuming fkures. computations, whichapproached the sphere as a limit of a polyhedronwith forwhichit was diëcultto obtaina suëcientaccuracy for verymanyfaces, parxrneters known9omthe analyticanalysis, suchas the nucleation feld. whether lt shouldbenoted,though,that it is still an openquestion (576) a sphere is a betterapprofmaiionthan a polyhedron for therealphysical situation,whenStcomes to verysmâllparticles) whichdonot containvery manyatoms. Thedirection z doGnot haveany meaning whenboththefelda=dthe
254
NUMEMCALMCROMAGNBTICS
anisotropy are zero. Therefore, thedesczibed two-domain structurehasthe sam:energyfor any direction;andcnn berotatedfromone directionto aaotherwithoutazky a,n infnitesimal magnetkx enerprbarrier.Therefore; feld shouldbeableto tura a largepart of the magnetization into that feld'sdirection.1.notherwords,the initialsusceptibility îs infnite,at lemst theoretkally.Suc,h a.n infnity (ora very largevaluein a non-ideal cmse) couldbevery usefulfor transformers, or readheads, if it were possible to makea suëcientlygoodapprovimation for suchsmalljandisotropic, spheres in real life. This ideais not a complete fazdasy, now that ve,t'y mtn.llparticles, withan almostspherical shape; havebeenmnrle(473, 474). Their=isotropyis not zero, andtheymaynot besmallenough yet, bit suchfurtherstepsmaystill bepossëble. For sucha,n isotropicsphere, if it is smallerthan the criticalsizeof thenucleation shouldbe bycoherent rotation.Thenudeation'' eqn (9.2.29), âeldfor this modeis 0 according to eqn(9.2.10), because Kï = 0 and Nz = Nz. In this case,the Stoner-Wohlfazth modelof section5.4should apply,with all thearguments as presented there.Thewholemagnetization curve then.consists of threebranches. First thereLsthe IineMz = Ms, of a saturationin the ea-direction, fl'oma hishfeld downto zero feld. At H = 0 thereis one jumpto a saturationin the -z-direction,whkh is followed by thebranchMz = -Ms for al1negative felds.Tlziscurve is reversible; namelyit is followed againfor a feld increasing fzomnegative valueiThecoercivity is thuszero; theremanot magnethation equazs Msl andtheinitial susceptîbility is izdnite. If theradiusofthe sphere isjustabovethat cdticalsize,theremanent. state consistsof the two domainsdescribed in the foregoing, for which Mr = (Ma) andthemn.gnetization cuzve < Ms.Thereis still no hysteresis, is completely reversible, according to thecollective information fromRitz models(462, andnumerlcal computations 531,575). The 54%57% g52% saturationMz = Ms is followed 1om thehighfeld, downto thecurlklg nucleation feld of eqn (9.2.28)7 wbichis positi'lle in this case of Kï = 0. Thenthereis a cuzve,whichis nearlybutnot quitea stzaight line,leading fromthenucleation Eeldto a positiveremanencevalue,Mr. At H = 0 there is one jumpto -Mr, andthenegativepart of the Inagnetization curve is symmetricto its positivepart.The coercivityis thuszero, andtheinitial susceptibility is still infnite)althoughtheinitialjumpbringstheaverage magnetization only to Mr, andnot all the way to Ms.With increasing radius,H,vincremses, a.ndMr decremses, until at somesizethelinefromthe = 0-Forthissizej nucleation pointlead.s to thepoint(Mz) azkd largerones; 'Fnste: theinfnity disappears, theinitialsusceptibility becomes tendingto = and Mr 0. . . 4*/3, Thetheoryis muchlessdeveloped for Kï # 0, anddefnitelyneeds more studies. Thereaz'everyfewcomputations andevenfozthemmost (529) 53117 of the detailshavenot beenpublishedTheyare a11for a sphere whose '
COIXUTATIONAL RESULTS
255
gs 0-2.It seemsthat whena uniafal anisotropy radiuskssuchthat Mr1Ms lsiaddedto this sphere,in sucha my that the nucleationfeld is still Mr v=ishes.It i.s ratherdiëcult to understand thereason for this Jositive, lkfect, andevenmore diëcultto Endouti:fthisbehaviouz Lstypicaal, or îf it Amplies onlyto a specialcase.Thereisno hysteresis aroundH = 0 in these tomputed curves, andthe coerdvityis zero. Thereis, however, a certain kysteresis loopfor numerically large,positiveandnegative, appliedEelds, pearthe nucleationandthe approackto saturation.A similarhysteresis in single-crystal ironJlr?.s . lt wms fear saturationhasbeenobserved (578) 'then presented as a vers6cation of a certaintheoryof phasetransitions, that thishysteresis should onlyezst for cubicanisotropy, yhichpredicted Thetheoretical ààdonlyfor a feldappliedin the (111) direction. efstence bf this phenomenoq in unlnMalspheres defnitelyprovesthat theremay ube mechanisms otherthan thisphasetransitionthat ean accountfor its thedetailshavenot beenworked out. 6. bsermtion, but :.. M theseresultsjas wellas /1 of chapter9: are lirnitedto the case ùfxzerosudace Hsotropy.The latter rnnyplay a,n importantrolein real butitz theoryhasnot beensuëdentlydeveloped yet.Exceptfor jarticles, only beenstudied ipme approfmationsfor trivial cases,the spherehzp.q for a certainfo= of surface anisotropy. Fozthis cmse,the nucleation .,746) 6,e1d by thecurlingmodecan beemluated analytically. lt ictuallyinvolves changing onlythe valueof q2in eqn (9.2.28). Aùothermode, (06,553) the coherent rotationwhkh is not an eigenmode once sucha,ll r'èpladng Hisotropyksintroduced, rztlledfor a numericalcomputation(579) of Hn. M athematicmllyj this modeis somewhat equivalent to the bucklingmode 1 z'il nxte prolatespheroids, if thereis sucha a:a'n 11 cylinder , or in elongated lodein them-Forlackofa bettername,thismodernn.y, therefore, becalled Surface anisotropy hasalsobeenincluded in somecomputations bpclrlz'ngthey were carriedout for of the wholehysteresis curve. Formally (348) shapes,but sincethe magnetostatic éiveraltwo- andthree-di=ensional k'nerr was not incltt ded, theastualshapecannotreallyplayanysignl6cant role.Besideits inclusion i'a the exchange ruonance modes, mentioned in 10.1)su'rface anisotropy hasalsobeenincluded in a recentstudy S,èction of the unifoz.m mode. (580)
1.1-3.3 Prolatûs'.pàcrtétf Mothing equivalent to eqn(11.1.4) hasbeendesigned for anyellipsoidother rihana sphere,whichmakesit dilcult to computeany of its properties. Forthe prolatespheroid thereLssome, but very limited,guidance 1om nnnlyticcazculations. It is knownthat the uniformlymagnetized stateis ihelowest-energy remanentstatebelowa certainsize,but only the lower houndof eqn(10.5.41) caa be give,n for that size,andno reliableupper Thenucleation hasbeenprovedto beby boundhasever beencalculated. coherentrotationor by curling.The possibilityof a third modeha: not
256
NUMEMCAL MICROMAGNETICS
1:*e.11 ruledout, butit was shownthat it may onlyeist for unpractically longandnarrow prolatespheroids, in theregionwitha question markia Fig.9.2.Fortke same surface anîsotror as in thesphere, its e-E'Hon the onlytheeue of qin eqn(9.2.31). nurlingnucleation ield is (553) to modi'f.r Thereaze onlytwo numerical studie (531, of prolatespheroids, 581) andonlyfor an mspect ratioof 2:1.ney usedtime-consuming methods to compu*the hysteresis curve for several particular radii,with andwithcut anisotropyThenucle-ation Geldincreased by exactly2A%/Ms from (581) = 0 but tàe coercivity incren.qd!d $tsvaluefor Jtez bylessthan 2I%(Ms>=' s, c, t'I'iC.II is reportedaq Clleah= 0.04, Thesmallest semi-major = 0.04. whicàis probably mpltntto beC/(4andthe dtqcretizatlon sizeusedin tYs work. 11.3.4 nïzzFilms Some computations hysteresis curves try to accountfor the exp'm-rnental of thin %lms,andrelatethe.mto some measurable properties. Oneway of non-interacting particles. to do it is to condderthe fzlmas a collection
COMPWATIONAL RESULTS
257
By pretending that the'wltolehysteresis curve of eachpartideis knownt a certainaverage 'over thedistribution oftheparticles.Such is computed computations, sometimes reproduce the meastredproperties, e.g. (5821, at leastqualitatively. Of course, thisprocessis not limitedto thin flms, andhasbeenusedforothersystems of particles, including(2144 models for interacting particles. ln thiscontextit is nlscïworthnotinga computational scheme for fndingthewholemagnetization confguration in a thin (5834 flm fromexperimenul dataofLorentzmicroscopy, andof themeasurement of themagnetic feld patternoutside the61m. Othercomputations are concmrned with thedomains in thin flms,and are done on a roughscale whichcannottakeintoaccountthewallsbetween the the domains. For this particularpurpose,it is convenient to ex-pand magnetization in a Fourierseries(584!,
M(r)= J'lpkefk'f, k
(11.3.5)
where k hascertaindiscrete values in thezv-plane, suchmsa.nz-component of theformznr/.f?x for integralvaluesof .?z.The coeEcients gk may bc constants or fanctions of z, andin eithercasethe solutionof thepotential problemfxomthe dferentialequationsof section6.1,by expanding the potentialin a similarFourierseries, is vezymuchsimplifed.ThediEculty is thatit is usuallyimpossible to flt theexpansion in eqn (11.3.5) withthe constraintof eqn(7.1.7). For this remson,this methodcouldactuallybe usedonlywhenthewallswere takento bestepfunctions(.%41, or in some similarapplicatioas reviewed in (2884: A similartechnique hasalsobeenusedin many othercomputations whichimposea falseperiodicity, in orderto use thefastFourier transforms whichreduce(550) the computationtime by a very largefaztor.It has beenargued(550) thatthisapprofmationisjustifed for a two-dimensional 'the efectiverangeof demagnetizing feld is comparable system,because to thef1mthiftkness'. This argument sounds quiteconvincing, butit would havebeenmore convincing if therewmsany cascfor whicha computation usingthefastFouriertransformwas compared quantitatively with a more rigorouscomputation of thesame case.In a mriation (542) of themethod, the potentialis expanded in a Fourierseries,but the magnetization is not. Theex-pansion is usedto eliminatethe potentialoutside,Uoutyand formulatethewholeproblem withinthe(infnite) ferromagnetic 6)m,with theboundaryconditions expressed as an integralover theupperandlower surfaces of theflm. But even thisformulation is actuallyapplicable onlyto a perîodîe domainstructure,for whichthepotentialis reallyperiodic.Or at leastit hasonlybeen usedfor sucha periodicconfguration, in a crudecomputation(542) of domains, that oversimplifœ thestructureof mesEed ln a certainstudy(585) thewallsseparating thosedomains. of very thin
258
NMRICM MCRONIAGNETICS
fllm s, it was foundadequate to aegledthe magnetostatic energyaltogether,
exceptfor restrictingthe magnetization to bein the planeof thefilm. Anothermethod,whichis alsoconfined to two dimensions onlùtakes advantzage of theupperboundto themagnetostatic enerr in eqa (7.3.46). In prindple,the magnetostatic by thisupper energytermcaa bereplaced bound,and the total enerr czm be minimizedwith respectto both M andA. Mà-niml'zation with respectto A makesthe upperboundconverge leads towardsthe true magnetostatic this mimsrnleatton energy.Therefore, to thetrue minimalenerr confguration, whileA becomes thetrue vector potentiaz of the problem.Theadvantage of thistechnique (fzstsuggcted in (586) out by theseauthorsfor any particularcmsel' , but never carried is that the sk-foldintegraz for the magnetostatic by enera is replaced a three-fold one, whichshouldreducethe computation time enormously. Increasing the numberof variables fromthe two tdependentcomponents of M to thefve components of bothM andA Lsa smazl priceto payfor this whichdoesnot callfor evaluating localization of the problem, interactions points.Thedisadvantage, azready discussed amongdferentdiscretization in section7.3.4,is that eqn(7.3.46) containsa.c ttegral over thewhole thettegrationover a muchlaiger space,whichin practicemeansc-arrying volumethan the sample, thusincreasing the numberof grid pointsfar beyondthoseusedin more conventional methods. This dllcalty makes this methodimpracticalfor almœtacythree-dimensional problem. IIl two dimensions, however, the htegralover theoaterspacemaybeevaluated by a conformal mapping of it, mahngthis methodpcactiolandconvenient. It hmsthusbeenused,for example, in thestudy(587) of theefectof Gchange couplingacrossgrainboundaries of the nucleation feld of a 6lm. A particularlypopularcomputationaz methodsubdivides the:lm into eithertwo-dimensional hexagons columns. or three-dimensionaz hexagonal fzomeach Thehexagonal 'grains'are mssumed to be somewhat separated other,so thatthe exchaage coupling between themkssmallerthanit Lsin a continuous flm- H practiceit actuallymeansthat the expression for (588) the exchange neighbouring grainshnmthe sumefunctionaz energybetween formas described in section11.1for subdividing thesample into prismsor cubesOf course, a hexagon hasmore neighbours to interactwith than a thisdxerencein the summation,the only dseerence square.But besides is that the numericalvalueof the exchange constant,C, is takento be somewhere between0 and the experimentaz vazue for a continuous 61m. Theactualmluefot this efectiveC is oftenpickedat rndomj although it is possible to estimateit frommemsurements of the domainwall L5891 for the tensordescribing the magnetostatic energpThecoeEcients eneror havebeenemluatedAnnlytically by integraingthe surface charge, (5901 on the facesof the hexagons, in a similarwayto that usedfor the prisms discussed in section11.1,butmanycomputations usean approfmation for
thosecoeëcients.
COAUTATIONALRESWTS
259
Thismoddwas usedfor two- andthrodl-men-qional computations of :0th thestaticsandthe dynamics of magnetization patterasthat donot involvethefne detna-lK of thewallsbetween Theseinclude, the domains. /orevnmplez themagndization ripple,or theformation andrealrangement .T if dominsandothercovgurations, andtheirefed on thefhll hysteresis 111n1, for the whole ms well as a dmulationof the magnetic recording purve The detzu-lK of these computatlons, and all their results, are fully jroc-. 8, esMbedin (5881. Thtsdetaileddescription, however, doesnot giveany Yformation on thechoiceof the discretizaton sîzea ox of the con-gence criterionfor tke distributionia spacm It doesspecifytàat thestep sizein chaage fïmewaschœen so thatthe mxvimumrelative of themagneeation 10-4. is nlgn rin that step at approximately lt mendonMtdhata - was kept - 'ï'$ . . consguration Lhaaetization was accepted as a rnxnzmumoalyaaertrying .'jI qio' addto tt smallrandomperturbations, andcheckiug thatit evolvHbnrlr ïyto the initiallyobtained. confguration. Tt is a aicecheckon the validity ,èf'ihemiaimization whichshouldbeadopted by otherworkersac processl into a saddlepointin the # ell,bemuseit guaraxtt- arainstconnerging 'énerr mxnifold. lt doesnot -guarantee, the computations however, against -1 . . rntnlrnum lower minimum is avdilable, a high-eaergy when a ienverogiato Vpefn'nllysincethce computahons are not madeto starq fzoma wellsûeEned nucleationTheuse of this subdivision iato hengons. coatinues, 'è..g.izïstudying(591: theefectof va.iabouudarieor of (592J a r:mdom ln-lnotropy. It was alsoeended (593) to elongateàe-gons. Some computations addrasthemxNctlzatîon confguration insidesucb Ahe-xagon or a one-dsmensîonal stacb-ng 595,596,59% ofm-rnx-lxv (5942, (551, bengons. Thereare alsccomputations of rvxrtltnptlar partidu madeout bfthin ilrns (531, 599,600)601,6021, or a pcïr (6(k% of 604,605,606) 59% mc,llrectaqgle,aad=ious othertwo-dimensional shapeas. A class by (6074 ttr-mlf are plxna:r 609,610) for which arraysof tbln 6lm particlu gzlz.kl, 60% are beingcompared with expezimental studie,andthe jhecomputations articlœ,however, are not '>.,' meatsenmKto bequitegood.Thepublished .V te yet for dzawing equa any conclusions. Suchcompuvtionsof rect ar particles usedto becritichedbysome workers, because theyignored the insnite dema>etiegseldat thecor'àûrs. nis dilculty wa solvebythedemonstntion thatthecoz'ne.rs (544) l'Vve a negligible efecton thecomputed mavetizationcovguradon, if tliesubdivision is sAtmciently fne.It hasaduallybeenclm'med before(392) iàkatit takesonlv of the oxdGof aa atomicsizeto reohœ that *- a deviadon ). . lTàâzllty by a rathersmallvalue,but theargumeat remaiaecontrowrmx'lzàhe new approvî 2544) provu tkat it vmsnot even necasazyto godownto 7 .? Jr.atomic ee, andsubdivisions smallerthanthe $exckange length of the 'mxe were adequate for removingthe divergence at the corners. Such àlresult mayse= strange,butan analytkmodel(611q gaveit a plausible pliyicaleolzmation,not onlyfor a twodimenskonal corner but alsofor the .
260
NUMRICALMICROMAGNETIG
thrn-q dimensional one dkquu-q.qdvl in thenex'tsection. Tfit werepMdble to saturate a plxnztr tîe enerr needed to keep square, it saturated wouldhavebeenisotropic(see thearamentsin secuon6.3.1)Thevery slightdeviations fzomsaturation,however, do dependon the direction, anisotropy ixtsquarœ,as found thuscausinga tcovgurational' b0thin computations andin erperiments on some thin flms. (612) 11.3.5 Prism hs mentionein section10.5.3,Brown'sr'fundxmeatal theorem'doesnot holdfor a cube,aadthereis no m'vp belowwhicàther-anent stateof a cubevill bethe uniformlymMnetized one. Actlmlly,this condusion could haveben drawnd-l-ctlyfrom eqns(8.3.37) and(8.3.38), whic.h inclcde,in principle, a11 theminimnm state,'rzza= 1 and enerastates.lf tkehlnsfoz.m mz = mv = 0, is substituted in theseequations,it is seen tîat ther cau befulflledonlyif S'z = Hv = 0. Andtheserelationse.xn onlybefulWlled 5feitherthe bodyis au ellipsoid,or theappliedfe'ld is not homogeneous. Eowever, this propertyof a cubewas not seriously discussed lml;ilsome computadons revealed the equilibriumstatesof sucha cube,and (6134 madetheproblemquantitative. Beforediscussing th- result, a semanticpointneeds to be clarled. WoenBrown(520) lookedinto ihe nucleation in an l'M4nitely longprism, he notedthat all ihe possible eigenfunctîons couldbearranged in groups, according to thesymmetryclmss of theOmponentszrz. andn6. ThisdmsXcation waq tho extended for the case of a rectangular prism, (2912 -a K z f % -b S y K à, with z exiending all the wayto l'n4nity.In particular, thenucleation modefor whichm. is an evenfunctionin z and an oddfunctionia y, whilemu is oddin z a'adeven in ybwas #venthe name kurling',because it is basically madeout of a ma&etization vector whichgoesaroundthe prismiû quasi-dzclœ. It is topologically theume structureas Gat ofthecurlingmodein a sphere, or in otherellipsoidsThe modefor whichm. is oddin m andeven ï.ay, whilemv is even in z and oddin y, lxks 1% thevedors describing the:ow out of a centre.lt wms all the above-mentioned giventhenxme fanticurling'l because symmetries are opposlte to thoseofthecurlingmode-For somereaders it maybeeasier to visualize this structureby followingtheequations forthecomponotsof t>e ma etc., as sped6ed ixï section 10.5.3. When same mMnetizamw , tion structura were rediscovered œsmssible minimalenergystatu (613) in zexoappliedEeld,it was somehow felt necessary to #ve.themnew namœ. Oneof therp-œenns to drawa distinctive rnxyhavebeenan attempt(613) linebetween thesclassical' micromagneticsy andthenew, numerical studiesthat the nxme tcurling'was 'œmmonly Thestatedjustifcation was (613) takento mean the reversal mode'andas suchit did not ft msa nn.mefor a state.Therefore, thecurlingwas renamed theLvortexconfguration'axd theanticqrling was renztmed theTowez'state.I never czmld âgureout why
COMPUTATIONAL RESULTS
261
two magnetization confgurations that lookthe sarnecannotbe calledby thesamename,butthe newnameshavestuckin themeantime aad (576)) are commonly usedby many. ' The zesultof thesecomputations was that in zero appliedfeld the lowest-enera svte was that of the anticurling, or vortex,belowa certain size.Thisstatementwas formulated in (613) the morc cautiously , because waz not really sulcieni for small cubes, but the result was accuracy very in section10.5.3, confrmedin thestudy(S16j described andthenin (545q. Of coursej the actualconfguration in extremelysmallparticlesis of vez'y' little interest,because the systemwill not stay thereanmay.For a vezy smallsize,the superparamagnetism of section5.2shouldtakeplace. ln this structurezthe deviation 1om the eazy-es directionz is only for the magnctization near tze corners of thecube.Fora sulcientlyf ne meshv themagnetization is (5451 parallelto z, with negligible deviations, at a distance of one exchange lengthfroma corner. Withincreasing cubesize, the magnetization at the cubecorners tilts hrther in the radialdirectionj but the magnetization insidethe cubeis still not asected, so that the Mais small.Abovea certainsize,thelowest-energy decreMe in theaverage statebecomes that of curllng,or vortex,with a sharpdecrease in the (6134 phasediagramof the magnetization Mz. A detailedandcomplete average structuresf or diferentanisotropyconstantsanda still largersize,is given in (545), andsomeresultsfor diferentprismsare reportedin (614) . the minimalenergyfower) lf a largeGeldis appliedin thez-direction, tilts more towardsz, but con:guration shrinY, nxrnelythe magnetization it never saturatesby completely closingthisstructure. Therefore, it was considered to gointo the nucleation of chapter 9, andtheRII unnecessary hysteresis it1 curve was computed by applyinga largefeld, reducing (613$ thenreversing ît, andminimizing thc totalenergyfor eachfeld. Therewaz no attemptto check whetherthecoercivitythusobtasned depended on the vaiueof theinitial,Csaturating' feld?or at leastno suchcheck was reported. Ofcourse, it is formallytrue that it is not absolutely to look necessary into the nucleation evolving if thereis no saturation,anda continuously magnetization confguration art be computed. However, it is too risk'yat bestto use this approach. The non-lineardiferentialequationshavean ' enormousnumberof solutions, not all of whichare minimalenerarstates. These solutions belongto diferenibraachc,wkichare intermixed together in the non-linear case, andcan only be separated andresolved whenthe equationsare lincnn-zcd. 1.nmy mind,allowingthe computerto decideon howto stayon one branch,andat whichpoint to jumpto anotherbranch, involves a too-optimistic viewof the abilityof the computer. I believe that it is betterto studyellipsoids, f or whichthe demagnetizing feld is better defned,at leaztas a frst stage,until the basicproblems are understood. But even in problems in whichline-artz' ation in orderto fnd a nucleation modecan beavoided, or doesnot efst, it mustbe somehow introduced
262
NUMEMCAL NHCROMAGNFWCS
bdorethesolutioncAn beconsideremeanimgful. anmay,as a check, Theproblem of whetherthe sharpcozaerof a cube(orsimllla bodic) bnnanyphysicalmeaning hmsbeenhigblyconkoversial for a longtime.It 545,565) is settlednow bythe estemati'cstudic (5M, tàatjustf its use if 'thediscretization is suldentlyfne. R is not clear,however, whethera ' suEciently fne discretization is indeedusedin all the published studiœ, andthereare otheruncertainties there.Evenif curved bodies maybetoo dccult to dealwith in thecomputationsy it is possible for evnmple to put rounded bodies, wktha Howndemagnething feld: at thecozaers,wioout complicatinê 'tàer%t of the calculation. Fozelongated prismsit is possible to taperofthe edges, whic,h willn.1Mmakethemlookmore likem=y ofthe realpartidesas %en in the eleceoamicroscope. Theremayalsobe other but none of themwas ever tried.It is mx-tnly waysto indudenudeation, bexusemostpYpleare happyto getrid of theaudeation problem, which theyconsider to l)e an unnecessary auisanceIt is not. It is an import=t guideon whereaadon whichbranchto start the computations. It is an vential part for thcsewhowan.tthel computations to havea physiœ meaaing, aadto allowan insisllt on howto continue 1omthere.It is a nuisanœonlyfor thœewhowant to computesometldng fast enough for proentiqgat thenext confprenœ, aaddonot waatto bebothered bythe necpmm-ty to checkthe validityofthdr results. Evenin computations ofa simplecubeas dp-qrtrl-bed in theforegoiag, in whichthepartklenever satarates,magnetization co tioasdonot just keepevolving continuously-There azestlll (613, 615,616J œrtzu-ntswitnhz-ng modes': and1donotseewhytheymustbedl-eingukshed fzomthelclxquical' nucleation modes whichare decribedi.achapter9. For nvxrnple, in very smallcubes,the b>ic structureof the'fower'stateis mainul'neduring the reversal, but in orderto switch,this :owe,.r hmsto dosefrst. Fora smallfeld appliedin thenegative directiony thetendency ofthefoweris to open(613) further:whic.h makœit more diëcultto reverse.It tztkasa still more negativefeld to maketNestructuresuddenly close,andswitch into the directionof thefeld. Forlargercubes,thisfoweropen until it -ons. In eithercase,tkereks suddenly intothecurlingco jumps (613) a clpumcut bxvzler, an.d aztually ît îs quîte obdous that thereis no eaergy hysteuiswithouta barrier.Givingthe proccs a diserentname, suchas nucleation ajumpor a switcà,do%not changethehct that a well-defned Moreover, proceqconfnedto a pnirticulr =dG hasjustbeendescribed. this modemust bethe frst one encountered whenthe êeldLschanged, wkichmeansthe feld fœwhicNtheenerr barrierjustfattens,msin .Fig. 9.1.Evadingthisissue,andlettiagthecomputerdecideon theJump, may lruzl to the correctresult,butit is certainly not guaranteed to doso. . v Someof the reported rœults(613) for the verysmallparticlesare not muclzdœerent 1om thoseobtained by the Stoner-Wo%lfnrth model,desebedin section5.4,for ellipsdds. A closerlook(544, revealed that 616)
COUUTATIONALRESULTS
263
theirswitching is actuallyby anothermode,whichdoesnot efst in ellipidids,andwhichwas giventhe name splayingmode.lt shouldbehelpful the closeness itt includethis modein computations because to the known coherent rotationmodemaybetakenas some sortof a checkofthe comandthemaîndxcalties,however, are Ejuter program.Themainproblems, in the studyof the biggerparticles, for whichthereare sometimes trather qèmplicated magnetization andmuchmore care must con:gurations' (6131, be exercised before determining thejumpintoor out of suchstates. , is evenstrongerin studies Thisnecessity to beverycarefal of elongated t rprismsmadeof little cubes,thoroughly reviewed i.xt(61$, as well a,sin the othercmsesmentioned in that review.It alsoappliesto othercomputations pfbodieswithsharpcorners, suchas two interactingcubes(618, and 6191, thecylinderswhichare discussed in thenext sectiomTherehavealsobeen of elongated ikore recentcomputations prisms,andindeedit seems (554) : thattheyhavenot ben donecarefully, andtherefore leadto wrongresults. thenucleation feld always helpsin removing seriousmistakes, r Knowing butit shouldbenotedthat it maynotalwaysbesuëcient. Fornvp.rnple,in khecomputations of a sphere, onlythebe#nnjng discussed in section11.3.2, ofcurliageltn bechecked against the analyticresultfor thenucleation feld. Aftertlzis start, the structurechanges continuously, till a certainfeld Ls reached at whichthereis a jump,andthecurlingconfgulation is replaced b.y something else.Forthe locationof the latterjumpthere'isno analytic andcomputations in that vicinityneedthe samecare whichisneeded juide, lbrtheftrstjumpîna cubeor a prism.Ofcourse, a programthat reproduces correctly theErstjump ismore likelyto bereliableforcomputing thesecond oneas well,butone r-n.nneverbe sure. It should bebetterto havesomething analogo'as to thenucleation theory,whichwoulddetermine the beginning pfa new mode,even whenit startsfroma complexconfguration. ' Iu prindple,the nucleation problem neednot bedefned(as in chapter startingfromthe saturated state.It is the only 9.) in termsof a deviation çasewhichhasbeenstudiedin detailso far, butit Lsnottheonlypossiblty. T.. herewereactuallysomeinitial attemptsat ofa crudeanalytictreatment byrotation 4fothercasestoo.In one case,thehysterciscurve started(3432 6'f the magnetization alongthe Stoner-Wohlfarth curve: andjumping to èurlingfromthere.Therewas no searchfor othermodes, a=dtheprocess the Jump started wmsnot very diferentfromthoseof chapter9, because ibma uniformly-magnetized state,even if it was not thesatuzated state. stabititywas checked byconsiderîng smalldeviations Jnanothercase (304), fromone-dimensionat maaetîzation structures.Suchstructuzes werefound . to bealways unstable,andto justcollapse, so that it was not necessary to létudythe detailsof thecollapse. Thereîsno specialdimculty, however, in developing a more general thefroma non-uniform magnetization state,sayMc(r)ory, of a tnucleation; U'ne wayLsto adda smallperturbation, so that bothMo(r)and dMz(r),
264
NUMEMCAL MIGAOMAGNETICS
of Brown'ssvtic equations + wMl($ are soludons withthe Mc(r) (8.3.40)
appropriate bcundary ctmditiona. By substituthg bnthMn andM0+ Mt in thee equations,andleavingout evezytmrmwlkichjs highertka.athe frst orderi.ne, it is pceble to obtaina setof lineardiArentialequations with boundaryconditions 4ordetermizdng Mz(r).It is thenpossible,ia prindple,to look for the wholeeigenvalue spectrumof theseequations, in thesame way msia scme cues in Gapter9. TheEeldvzue at wkich anothermode<11start to Enudeate' wi!l thenbedeterrn-xmed by thesrstenovzntered eigeneue-Amotàerway,s-tudied în more deta'il,Lsto (620) start fromtheexpression for theenergy,workout the fa'stvadationthat givestheeqnill-brium sta*s as in thederimtionof Brown'sequations, but proceed alsoto tke second variation,whic,hdetermines thestabilityof tàat A jumpbecomes possible whenthesecond variationvanishes, equilibrium. l<mz!s to tàe sxmediferentialmuations.A matrix notation(612J wizic.k caa helpsolvethe linenriqed muations.H eithercase,the kmowledge of the Eeldat whichthejumpshouldoccur can beusedto guidethecomputeras to whereto lookfor tkisjumpor trandtiont,oanotherconEgmation. ThediEcultyisnot in wridngdowntheequationq butin solvingthem. Tàereis no casefor whic.h tàe startingconâguration, beforethejump,is knownin a closed form,œccept whenit Lstheuiformly magnethed state. Q'heerefore, the onlyvay rightnow is to incorporate into thecomputational Tnucleation' of anothermagnekbmiion programthe searchfor a possible Forthispurposeit isne confrzraticp. to usesuldentlysmallEeldstem(ortime-sleps whereapplicable), andto avoîdall sortsof short-cuts ald approadmadons. Otherwise, theOmputationmaylnst skipsuc.h ajump andcontinue elsewhere. Then,whe,n a jumpLsencountered, theprovam shouldgo s''l dentlybackandrcstart tracingfzomGere,usingevemfner criterionhmsalrtuz!ybeendissteps,anda fner mesh.Thecoavergence cussed in suion 11.2,but it must beemphasized againàerethat starting to computein aaother âeldbeforethe structurein a givenfeld is proptrly eAn leadto meaninglvresnlts. And)abovea11) completed everyprovam shouldcontaina spech:searc.h for posëble rmddle points,with a check for tkepossîbîlity of a jumpthere. If anyof thepublished workscontm'ned any of thesemeasures,tàeywerenot mentkoned in thepublications. Theprecautionstaken by (588) werealready mentioned in sectioa11-3,4. was accepted as a minsma2energy Therea magneeationcovguration state,onlyaftertryingto addto it smallrandom perturbauons, an.dcheckbackto tkeinitiallyoblmx'nM TMsmethod ingthatit evolved confgurauon. cimostdoeswhata nnvnerical nudeationtheoryshouldbedoing,but the R was designœl at least way (or reported) justavoidedC!Jsaddlepoints. Suc.h avoidance will not do,because 5.nthe physical problemmsoutlined kere,a saddlepoiat may be a tchance'for the meetHtion to escape Fomthe branchit is onj to a lower-eaera one- Thecomputcrshouldbe valuewkickdoesnot answer the provxmmedinemzi to stopat eachf e1d
COMPUTATIONAL RESULTS
265
abovmmentioned citerion,lookvound,andcheckwhetherthepoint mxy 1Mone 1omwhicbit is possible 'togo to a lower-eneroconfGration. lf it isya Jump to the new branchshouldVke place.lt may not be easy to formulate this SlooMng vound' i.ua programmer's language, but it rman andshonldbedonein any computationfor whic,hthe nucleation is not invœtigxted =alyticatly.TMsgenerxllzation of the oldnucleation theory, in a numerical form,is eqnallyapplicable for a sphereor for a cube,or it will slowdownthe production of anyothershape.If it %implemented, results,but it will produce only reliableones.lt rnay l:e possible to skp this stage,abovea certn'-npvticle size,if an unprovedconjecture (621j, basedon the results(615) ofsome cubecomputations, isfoundto .begenerallytrue. Wesuggestioa is that to a frst-orderapprofmationthe (621j curMgnucleaticn feld cf anyregttlarbodydepends onlyon the nolnmo. Its dependence on shapeis onlythroughthe demagnctivang fuor. H is alsoessential to try to obtal 1omsnchcomputadons more th= a very smallchange Justthenumeric/valuefor one particularrxv. It A-xlres in a programdesigned for a tperfectlpvticle, to mxlrn it n.lgnapplicable forfndinjout t:e eFectof defects. Thksefectwas discussed in chapter 9: but thezelt was based more on guusœth= on fnzre, anda bdte.rstudyis needed. ln a recentcomputaticn theelœwt of mlrfnzte roughncs was studied by removing certalncubicelemeatts (622) (ormn.lrin g themnon-magnetic), in a particuhrpattamalonga fromagneticbar.1.zlanotherdmulatîon eitheron (6232 (ofa thin f1m)justone suchcubewas madenon-maaetica thesurfaze or at theflm cenke.In bothcasesthisdrnuhtionçtîa,nimperfecëonwas foundto makea signifcaatdxexence to the result,but b0th usedrathercrudesubdivHons. It is possible to use thesametechnlque, of creatingan insidefvcid'or a fscratch'on the surfaœ by removtgsomeof thelittle cnbe,for a deeper andmore detailed simulation of the DeBlois experiment..ln the xzne way,a dx-Ferent valueofJfz,or ofany oftheother physlrmlparxmetersy can beexm-ly assigned for some part of the cubeor pm-mm, andso on. Actuatly,cll the modelsfor ezplaining the paradox of Browmwhichnever rfmnhed conclusive result,s by analytic ciculation, any cau be vezyreadilystudied by sncha slightmodifcation of the efsting agnl-n that without Howing computerpropnms.It must be emphasized theegectof imperfuionsjanycomparison with eoerimentcf thecomputationalresnltsfor ltd-t particlesis meaningless andmisleadtg. No seriousefort hasever beenput into this sort of simulation,but it seemsto be theonlkwayof gainingsome realphydcalinformation about thetmlenatureof themagnetization in realparticles,anda physprocœs icalindghtintohowto proceed fromthere.Hsteadof suchan attemptto solvetherealproblem, theDterature is jnstgettingVed up wlth resultsof computations of m=y diferent aaduhcorrelated. e-q-qœ whichinvolve dfercmmlp.ldzl emta:dunspedfed arbitraryassurptions.'.F'.MK method nowhere, andthesituationcannotimprovea,slongas peopleholdtkemistaken idea
266
,
NIMRICAL MICROMAGNBTICS
that suchcomputations are in a Hi/erentclassof a ïnew' micromagnetics; whichshouldnot beconfused with the old, (classical' micromagnetics. It is quitepossible that suchan efort to solvethe problemof real particles. will run out of computerresourcesYfore rsuzrh-tn g a sizefor whichsome' thingof jnterestmayhappen,aswas the casewiththe attemptto compute. correctlythe domainwallstructurein thickflms.However, if this limit 1s.. reached it will at lemstbeknownhowfar meaningful computations rnnybe pushed. Thereare other Xectswhichneeda more seriousconsideration thanJ is givento them.Forex=ple, eddycurrentsare known(6241 to bevery importantforlarge,metnllicparticlG.Theycannotplayan Mportantrolè in smazlparticlesor ver.ythin Slms,but a more ésczztïjcti'tœ estimateof. the limit to whichtheymay beneglected is still missing. The problem of a materialin whichtwo difereatphases are mixedtogether, knownas a nanocomposite either.In particular)it Lsnot magnet,hmsnot beensolved clearwhat boundary conditions shouldbeusedin the interface(see secSome informationcxn beobtained tion10.3). ftomnumerical computatons batthereLsno clear-cut theory.Also,computations of theenerr (625, 626), barrierfor a superparamaretic transitionare still done(176, 196)627,628) separately. Jnprindpletheyshouldbecombined with the computation of the statk hysteresis, tnblng111t0 accountthe possibiliiythat thermi a#tation mayhelpthestaticjump,thusreducing the coercivity. 11.3.6 Cklinder PractiYly a11the discussion of the cubesandprismsin section11.3.5 appliesalsoto the studyof a inite circularcylinder.It is ltstedseparately herefor two reasons.The frst one is that for this caseof a fnite cylinder thereis an analyticproof(629) that the uniformlymagnetized stater-qn never bethelowest-enera statein zero feld.At somestage I triedto prove the opposite,1omsome upperandlowerboundsas in section10.5.1.ln the evaluation of thelowerbound1 usedeqn(7.3.43) with a certainvector H'' insteadof the V9 as writteniato the equationhere.I did not notice that the vectorH'' whicà1 usedcouldnot bethe gradientof a potential, because V x Hn was not zero. Thismistakewas poiatedout in (6291, and I havealreadyreportedit in (5761, but I fnd it necessary to emphasize it again. Thesecond reason is the needto mention a perturbation scheme 26304 for calculatingthe deviations of the lfower)structure1om the uniform magnetization in the cyljmder. Dieerentanalyticapproimationsare derivedfor a dat andfor a,n elongated clinder,andtheplottedspatialvaziationsin bothcases tunl out to be in fair agreement with thoseof the numericicomputation(526) for a cylinder.Thesubdivision of thelatteris into >5e.,$, andit seemsto bea rathercrudeone. It is not clearfl'omthe presentation whichare supposed to be more accurate,the analyticor the
COAWATIONALRESUZTS
267
numerical results.But themethod is certainlyunique,aadtheattemptto namerical resits in a.u analyticformshouldbe encouraged. A represent jimilar analytic approfmation was alsoGCXII for a prism. (631) ' Eventhemostrecentexperiments on elongated c'ylinders, suchas (632, for the theory cylindez'. d33J, bvk htemretation to old of aa It is insnqtc go uèrtzu'nly not n=ssatyto dosotespHallyfortheaaguhrdependence ofthe pucleation Eeld,forwhicàthetheoryof a fnite ellipsoid woaldhave (345) experlrnentrepohed(6341 bln betterto apply.A particularlyinteresting thattheaagulazdependence oftheswitching feld hadsomeofthefeatures ofthecurlingmode,but was kdepeadent of themwofthecylinder. H spite bfthe discussion in (634), it shouldbeobdous1omGapter9 that a sizeNdependent modeaadthe curlingmodeare mutuallyGclusive,because ikecurlingdœsworkagalnstexchaagej whic.h vazies as S-2. Detnllq Hve kot bMngiven,andit is quia possiblethat thissizeindependence is a is muck i œaltofuslg R in a regionfor whichthef.rstte= ofeqa(9.2.18) in eqn(9.2.31), largert11%the second term, or Kirnilarly mscarl be seen If it is a KZJsizeindeppn/lencej in Fig.1 of (392J. it is a real challenge to tEebrists to fnd, byanalytkor aumedcal methods, whatreversalmodeis measured in thisexperlrnent.
REFERENCES 1. Brown,W. F. Jr. (1962). Mqgnetostatic Principlcs fn Fenmmagnetism
(North-Holland, Amsterdam).
2. Potter,H- H. (1934). The magneto-caloric esectandother magnetic phenomena in iron, Proc .!bP.Soc.London, Ser.Aj 146, 362-83. 3. Wagner, D. (1972). Introdnction J()theThezrp translated V Magneiismn by F. Cap(Pergamon Press,Odord). Determination 4. Wood,D. W- andDalton,N. W. (1966). of e'xchange interactions in Cu(Nm):Ck.2HaO andCuKaCk.2HaO, Pr4c.Phys.Snc., 8C,755-65. 5. Aharoni,A. (1981)B%dl. Amer.Phvs.Stlc.,26)1218. 6. Néel,L. (19t1). Magnetism andlocalmolecula.r feld,Science, 174,98592. 7. van Vpeck, J- H. (1973). formula x = C/(T+ Ljt the mostoverworked in the hkstory of pammaredsm,Physico,, 6%177-92. 8. Smit,J.andWijn,H. P.J. (1959). FewitestWiley, NewYork). W. (1963). 9. Anderson,,p. Theoryofmagneticezchange ïnlcrccfinns; .&change in insylators andscrnictlnducànrs, in SolidSfclePhysicsedited by F. SeitzandD. Turnbull(Academic Press,NewYork), Vol. 14jpp. 99-214. Heisenberg 10. Brown,H. A. (1971). ferromagnet with biquadratic exchange, Phys-Ren.B, G 115-21. 11. Slonczewsld, J. C. (1991) . Fluctuation mechanism forbiquadratic e.'.
REFERENCES
x
269
18.van deBraak,E-P. andCaspezs, W. J.(196*4. Thelocalmagnetization Z. Phys., ofan incomplete ferromagnet, 200,270-86. 19. Scott,G. G. (1951). me%urement of the orroA precisemechiml'cal magnetic ratioin iron, Phys.Se'p.,82, 542-7. 20. von Baeyer, H. C. (1991). Einstmin at tàe benG,TheSclnceay publishe by tlheNewYorkAc-qzl . of Sdenœs, 12-14. Novemlvgecember, 21. Herring,C. (1963). Dired ezcàcn,e be*een'tpell-leycrcfed atonss,in Magnetomeditedby G. T. EadoandH. SuM(Academic Prces,New Vol.E B, pp. 1-181. York), 22. Wang,C. S-,Prange,R. E. andKorenman) V. (1982). in Magnetisrn iron andnickel,Phys-Ren.B, 25,5766-77. 23-Salcuma, A. (1999). Theoretical studyon theexchange consvntsofthe traasitionmetalsystemsj IEEETmn,s.Magnetkh35,3349-5424. Mryasov, 0. N.:Gubauov, V. A. andLiisrhtenstein,A .I. (1992). Spiralspin-densitrwave statesin fcc iron: Lin-mmmuln-tin-orbitals bandstructureapprovh,Phys.Ren.B, 45, 12330-6. 25. Garda,N., Cr%po,P., H-rnando,A., Bovier,C., Serughetti, J. and Duval,E. (1993). Maaeticproperties of Cu-doped poroussilicagels:A possible Cuferromagnet, Phys.Ren.B, 47, 570-3. 26. Laag,P., Nordström, L., Zeller,K andDHerichs,P.H. (1992/ Jt!l ïnifïo calcalations of theuchangecoupMgof FeandComonolayas in Cu,Phys.Ren.faeïi,71,1927-30. 27. Ertckson: R. P. (1994). Temperatmodepeudent non-Heiseuberg exchange couplingd ferromagnetic la-s, Z AJJI.Phys.,75, 6163-8. 28.Herring,C. (1966). E=hangeinieractionsamongïffnertmtelectrons, in Magnetomeditedby G.T- 'Rmzlo andH. Suhl(Academic Press,New ' VokWYork), 29.Arajs,S. (1969). Ferromagnetic behaviorof iron alloyscontxlning andtantalum)Phys.,stlrt.sol.,31,217-22. molybdenum, manganese 30. Bardos, D. l.1Beeby, J.L. axtdAldred,A.T. (1969). Maaeticmoments i.n.bodyKeniered cubicFe-Ni-Alalloys,Phys.Sew-, 1771878-81. 3l. Wohlfarthj E. P. andCorawell, J.F- (1961)Crlticalpointsamdferromaaetism,Phys.Ser.Le*, T, 342-3. 32.Tawik R. A. andCallaway, J. (1973). Enera bandsin ferzomagnetic iron, Phys.Ren.S, T, 4242-52. 33.Zhaag,S.,Levy,P. M- andFert,A. (1992). Conductiviiy andmagnetoresistance of ma&eticmultilayered skucturea Phys.Sew.B, 45, 8689702. 34.Zhang,S.andLevy,P.M. (1994). EFects of domains on giantmaretoresistancej structure,Phys.Se'p.B, 50,6089-93. 35.Stexrm,M. B. (1978). 'Wjtyis iron ferromaRetic'?, Phys.Todcp: April, 34-9. 36. Steamm, M. B. (1972). Mode.lfa theoriginof ferromagnetism in Fe, Phys.Ser.B$6, 3326-31.
270
REFERENCES
37.Shull,C. G. andMook,H- A. (1966). Distrîbution of internalmagnez tizationin izon,Phys.Aer.Lett-t16, 184-6. 38. Duf, K. J.andDaz,T. P.(1971). Electron statesin ferromaxetic iron. IL Wave-function properties,Phys.Rev.B, 3, 2294-306. Fielddependence 39. HolsteipT. andPrimakog, H. (1940). of theinkinsic domainmaaetizationof a ferromagnet, Phys.Rew,58, 1098-113. 4O.Dyson,F. J. (1956). General theoryof spin-wave interactions: Phys.' .Rep., 102,1217-3% qndThermodynamic behavior of an idealferrornn.gnet, Phys.Rev.,102, 1230-44. 41. Ziman,J. M. (1965). Prfncfyle.s Solids(Cnmbridge oj à/lcTheory@/' Univ.Press,Cambridge). 42.Mayer,Joseph EdwardandMayer,MariaGoeppert(1950). Statisticak Mcc/lcrlfc..s New (Wi1ey, York). 43. Kouvek J. S.andWilson,R. H. (1961). Magnetization of iron-nickel alloysunderhydrostatic Phys.,32, 435-41. pressure,J, A1@. 44. Samara? G. A. andGiardini,A. A. (1969). Efect of pressureon the Néeltemperature of magnetite, Phys.Rev.,186,577-80. 45. mayk M.,Wojtowicz) P.J., Abrahltms, M. S.,Harvey,R. L. andBuioccizi,tC.J. (1971). Efect of latticeexpansion on theCurietemperature of granalarnkckel flms,Phys.fztt, 364.,477-8. 46. Abd-Elmeguid, M. M. andMicklitz)H. (lg8zl-Eigh-pressure Mössbauer studies ofamorphous audcrystall-lne FeaBand(Feo.a.5Nio.z.$)sB, Phys. RemBt 25, 1-7. 47.Potapkov,N. A. (1974). ofthemagnetizationfor the Onthecalcalation Heisenberg modelat lowtemperature, Phys.stat. sol.(V,64, 395-401. z18.Mdred,A. T. (1975). Temperature dependence of the magnetization of rickel,Phys.Ae'tuB, 11, 2597-601. 49- Argyle,B. Eu Charap? S.H. andPugk,E. W. (1963). Deviations 1om Ttl2 lawfor magnetization offerrometals: N$Fe,andFe+ 3%Si,Phys. Revn132,2051-62. 5O.Arrott, A. S.andHeinrich,B. (1981). Applicationof magnetization measurements izliron to hightemperaturetkermometrsJ. A1vl.Phys., 52j 2113-1551. Ynmada, The 1owtemperataremagnetization of ferroHideji(1974). . magneticmetals,J. Phys.F, 4, 1819-31. 52. Craik,D. J. andTebble, R. S.(1961). Magnetic domains, Repts.Prtw. Phys.,24, 116-66. 53-Carey,R- andlsaac;& D. (1966). MannetLc domainsandï'cc/lrlfç'ue.s Press, NewYork). jor thdr ö,serpcfforl (Academic 54. Oaiski,K., Tonomura, H. andSakurai,Y. (1979)Meazurement of maaetic potentialistribution andwallvelodtyin amorphous flms,J. A.p.pJ. Phys.,50, 7624-6. 55.Scheinfein, M. R.,Unguris,J.,Kelley,M. H.yPierce,D. T. andCelotta, R. J. (1990). Scanning electronmicroscopy with polarizationanalysis
REFERENCES
27l
,. Rev.Sci.Jnstrlzzp.., 61, 2501-26. (SEMPA), 56. Schönenberger) C. aadAlNarado, S.F. (1990). Understanding magnetic :' forcemicroscopyj Z. Phys..R80, 373-83. 57.SilNa, T. J., Schultz, S.andWeller) D- (1994)Scanming near-feld opti:' calmicroscope in opticallyopaque for theimagingof magnetic domains .. materials, Appl.Phys.fefl., 65, 658-60. Ferromagnetic andstructuralpropertiu of ,58.De Blois,R. W. (1966). nearlyperfectthl'n nickelplatelets,J. F'cc.Sd. Tec?ln&., 3, 146-55. 59. Grilths, R. B. (1966). Spontaneous magnetization in idealized fertomagnets, Phys.Seru152,240-6. 50.van derWoude,E. andSawatzky, G. A. (1974)Mössbauer efectin ironanddiluteiron basedalloys,Phys..Jb#s-, 1.2C,335-74. 61.Feldmaan, D.)Kirchmayr, H. RuSchmolz, A. andVeliceskuj M. (1971). . Magnetic materialsanalysisby nuclearspectrometry: A jointapproach to Mössbauer efectandnuclearmagnetic resonance,IEEE D'cns.Magnetïcs,7, 61-91. ' 62. medi,P. C. (1977). Temperature dependence of themagnetization of nickelusing@1Ni NIs1lk, Phys.Ren..P,15,5197-203. : 63.Landauj L. D. andLifshitzjE. M. (1980). Statistical P/lpsicez Part,f, 3rdedition(Vol. 5 of Course nenreffcal Pressj ol Physics), (Pergamon '' Chapter XIV. 1 O.dbrd) 64.Heller;P. (1967). Experimental investigations of criticalphenomena, ' Repts.Prog.Phys.,30, 731-826. Noakes, J. E. andArrott, A. (1968). Magnetization of nickelnear its :165criticaltemperaturelZ Alvl. .FW:p., 39, 1235-6. 2.66. locusto determ-lne Arrott, A. (1971). Problemof usingkn-mk-point the : : Htical e'xponent ptJ. .AJJJ.Phys.,42, 1282-3. '.667. Fisher,M. E. (1974). Therenormalisation groupin thetheoryof critical ' behaNior, Revs.âfoderrz Phys-, 46, 597-616. ('t8.Pfeuty,P. andToulouse, G.(1977). Intvodndion to t herenormalization and to critical phenomena New gro'tz.p tWGey, York). ' 69.Newell Onthetheoryof theIsing 1 G. F'.andMontroll ) E. W. (1953). ' modelofferromagnetism, Revs.JlbtferrlPhys.t25)353-89. Absence of ferromagnetism 70.Mermin,N. D. andWagner)H. (1966). or anxerromagnetism i.aone- or two-dimensional isotropicHeisenberg models, Phys.Ser.Ieit., 17, 1133-6. C'1. Hone,D. W. andRichazds) P. M. (1974). One-aadtwo-dimensional magnetic systems,Wnncc;Rev.MaterialScf.,4, 337-63. 72.Birgeneau, R. J. andShirane, G- (1978). Magnedsm in one dimension, Phts. Today, December, 32-43. A. R. (1974). Experiments on sîmple 73.deJongh,L. J. andMiedema, magnetic modelsystems,XAan.Phys.,2%1-260. 74.Tomita,H. andMashiyama, H. (1972). Sph-wave modesin a Heisenberglinearchainof classical sphs,Prog.Theoret. Phys-,48, 1133-49.
272
REEBRENCES
75.Balucanit U.,Pixi,M. G.,Tognetti, V. andRettori,A. (1982). Classical one-dimensional ferfomzgnds in a magnetic âeld:Staticaaddynnmic properties, Phys.R6n.B, 26, 4974-86. interactions 76.Yafet)Y.,Kwo,J. andGyora,E.M. (1986). bipole-dipole Phys..Retl. andtwodimensional magnetism, Bk33, 6519-22. 77. Staaley, of a phue tranH. E. andKaplan,T. A. (1966). Possibility sitionfor the two-dîmensional Heisenbcrg model,Phys.Jlzv-Lett-t17, 913-15. 78-Falicov,L. M. (1992)Metxlb-c maaetic superlatticew Phyn.Tpdcv, October) 46-51. 79.Heindch, B. andCochran, J. F. (1993). Utrathinmetallicmagnetic flms; magnedc nm-sotropiœ andexchange hteractions, atdt,qn. Phym, 42,523-639. 80. Fkeemar, A. J. andWu,R.-Q.(1992). Maaetismîn man madematerials,J. M. M. M.S104-7,1-6. of nicke,l mmsof 81.Neugebaue. C-A. (1959). Saturation magnetization thinkn- l%sthan 100â, Pkys.Ae1)., 116, 1441-6. 82. Lee,E. L., Bolduc,P. E. andVîoletjC. E. (1964). etic ordering in ultrathinironmnts, Phys.Ren.fz11.,13)800-2. aadcriticaltbinlrness 83.Rlvtle,C. (1967). MaRetîextioa ofthin nlckelflms versustheirthicknœs, Phys.fzlt, 25.A.1 358-9. 84. Zinn, W. (1971). Mössbauer KPC'tstudie on magnehcthin flms, Czech. J. Phys.B, 21, 391-406. 85.Zuppero,A. C. andHofFman, R. W. (1970). Mössbauer spectraof 7, 118-21. monohyer jzonq1mK, J. Fac.Sd. Tecànolu 86. Vnarma, M. N. andHofrman, R. W. (1971). I7EVMössbauer emission spectraofthiniron tlrns J. .4.p,1. Phys-t42, 1727-9. 87. Hdlenthal,W. (1968). Superparamagnetic eects in thin fllrns,IEEE Tmnd.Magnetia,G 11-14. 88. Pomerantz, M. (1978). Ex-perim=tal evidence for magnetic ordeeg in two-dz-m a literaz.y ensional magnetjSolidSt. ctrrszrs-, 2T, 1413-16. See alsoPhvs-T/datw January1981,pp. 20-1. 89. Konvel,J. S.(195'4. Methods for 'determsning theCurietemperature ' SleclricRenearclt ofa ferromagnet, General f4z.ReportNo.57-R1,-1799. 90.Arrott, A. (1957). Cdterionfor ferromavetismfromobservadons of ' Pltys.Scr., 108,1394-6. magnetic isotherms, 91. Arrott,A. an.d NoAkttq, J-E- (1967). Approtmateequationofstatefor nickelneaxits criticaltemperature, Phys.Scr.Lett-,14)78*9. the Ourie 92- Aharoni,A. (1985). Useof high-felddnM.for det-nm-nx-ng temperature, Z Appl..P?IVJ., 57j 648-9. 93- Wohlfxrth,E. P- (1971). Eomogeneous andheterogeneous feromagneticalloyslJ. & Phys.(PaHs) Cozoq.C1,32, 636-7. 94.Brommer, P.E. (1982). Magnetic properties ofiahomogeaeous wealdy feromagnettc materials) Physicat 113B,391-9.
REFERENCES
273
95. Aharoni,A. (1984). Amorphicity, heterogeneity, andthe Arrott plots, J. Açpl.JWF.)56; 3479-84. 96.Yeung,L, Roshko, R. M. andWilliams,G. (lg86l.Arrott-plot criterion - . for ferromagnetism in disordered systems, Phys.Ren.f, 34, 3456-7. 97. Aharoni,A. (1986). A possible interpretation of non-linear Arrottplots, J. M. M. .)f.)58, 297-302. 98. Callen,E. R. andCallen,H. B. (1960). Anisotropic magnetization, Z Phys.Càczp.. Solids,16j 310-28. 99. Catlen, E. R. (1961). Anisotropic Curietemperature,Phys.Scr,,124, 1373-9. 100.Mori,N. (1969)Calculation of ferromagnetic anîsotropy energies for Ni andFemetals,J. Phys.Soc.Jc.pan, 2T, 307-312. Kleman,M. (1969). on thefom 101., lnfcenceof internalmagnetostriction mationof periodicmagnetization confgttrations, Phélos. Mc,p., 19, 285' 303. 102.Jirik, Z.andZelen#, M. (1969). lnfuenceof magnetostriction on the domainstructureof cobalt,Czech. J. Phys..R19, 44-7. $03.Brown,W. F. Jr. (1966). Mcgnetoelastic Interactions(SpringerVerlag,Berlin). 104.Maugin,G. A. (1976). A continuumtheoryof deformable ferrimagconstitutivetheneticbodies. 1.Fieldequations, & I1.Thermodynamics, ory, J. Math.Phys-t17, 1727-51. 105.Bartel,L. C. (1969). Theoryof strain-induced anisotropyandthe rotationof the maaetizationin cubicsinglecrystals,J. Appl.Physn 40, 661-9. 106.Bartel,L. C. (1969). ApproAmate solutionfor thestrain-induced deviatîonof the magnetization from saturationin polycystallinecubic ferrites,J. Appl.Pltys.,40, 3988-94. 107.Wayne,R. C., Samara, G. A. andLeFever,R. A. (1970). Efects of pressureon the magnetization of ferrites:Anomalîes dueto 'strasninduced anisotropy in poroussamplosj J- Appl.Ja/zgsej 41, 633-40. 108.Kronmsiller, H. (1967). Thecontribution of dïslocations to the magnetocrystazine processes, enerr andtheirefecton rotationalhysteresis J. Appl.Phys.,38) 1314-15. Köster)E.andKronmûller, H. (1968). 109.GessingeraH., Magnetostrictive crystalline of dislocations in Ni single crystals and anisotropyof energy theapproach to saturation,J. Appl.Phys.,39, 986-8. 110.Aharoni,A. (1970). Approach to magnetic saturationin thevidnity of impurityatoms,Phys..Rezc. B, 2, 3794-805. 111.Malozemof Lawsof approach to magneticsaturation , A. P. (1983). for interactingandisolatedspherical andcylindrical defects in isotropic magnetostrîctive media,IEEE Nuns.Magnetics, 19, 1520-3. 112.Ric'hter, H. G. andDietrich, H. E. (1968). On themagnetic properties of fne-milledbariumandstrontiumferrite,IEEE Trcns.Mcrctfcs, 4,
274
REFERENCES
263-7. 113.Hoselitzp K. andNolan,R. D. (1969). Anisotropy-feld distribution in ' bariumferritemicropowders, J. Pltys.D, Ser.2, 2, 1625-33. 114.Haneda, K. andKojima, H. (1974). Efect ofrn'lllingon theintrinsic coerdvityofbariumferritepowders, J. Xrne.r. Ce.zrcsnïc Soc-,57,68-71. 115.Seeger, A. (1966)The efect of dislocations on the magnetization curves of ferromagnetic crystals,J. de.FW:>. Colloq.C3,21 68-: (Paris) 77. 116.'Fllrsch, A. A., Allslea,E. andF'riedman, N. (1969). Maaeticanisotl induced byan electricfeld, Pltys..I,ctt.,28A, 763-4. ropy 117.Lewis,B. (1964). Thepermalloy problemandmagneticannealing in bulknickel-iron alloys,Bcit. J. .4J)PI. Pltys.t15, 407-12. 118.Sambongi, T. and Mitui, T. (1963). Magneticanne/ingegectin cobalt,k Phys.Soc.Jcptm,18, 1253-60. M. (1962). 119.Thkxhashi, Inducedmagneticanisotropyof emporated flrns formedin a magnetic f eld,J. A1vl.Phys,33, 1101-6. 120.Lewis,B- (1964). Thepermalloy problem andazdsotropy în nkkeleon magnetic flmq,Brit. J. .4.PJI. Phys,15,531-42. 121.Hibino,M. andMaruse,S. (1969)Rotatable magnedc aaîsotropy h electron-microscope specimens of perm/loy,Japan.J. .4.PPI. Phys.)8, 366-73. 122.Cohen, M. S.,Huber,E. E. Jr.,Weiss, G.P.andSmith,D. 0. (1960). Investigations into theori#nof anisotropy in oblique-inddence ûlms,Z ' Appl..FW:>.V 31, 2915-2S. ' 123.Torok,E. J. (1965). Origi.na'adGectsof localregionsof complex biaxialanisotropyin thin ferromagnetic fhlmswith unsaxial anisotropy, Z Appl.Pltys.,36, 952-60. 124.Kenchp J. R. andSchuldt,S.B. (1970). Concernsng theorisnof uniatal magneticanisotropy i.uelectrodeposited permalloy 61mqJ. AlvL .P?z:.s.: 41, 3338-46. Oblique-inddence 125.Cohen,M. S. (1967). magneticanisotropyin coalloySlms,J. AIVl-ph:q.s.1 deposited 38, 860-9. 126.Wt-ll-tn.m s, C. M. (1968). Efectsof 3Heirradiationon anisotropy-feld inhomogeneity andcoerciveforcein thin permalloy Slms,J. APpl..P?z:>., 39, 4741-4127.Yaegashi, S.)Kurihara.T. andSegawa, H. (1993). Epitaxialgrowth andmagneticproperties of Fe(211), J. Appl-.JW:.s., 7494506-12. 128.OnorH.) Ishida,M., Rzjinaga, M-, Shishido, H. a'adInaba,H- (1993). Tex-ture, microstructure, andmagneticproperties of Fe-coalloy'GlvIK formedby sputteringat an obliqueangleof knddence, J. AP#.Phys.t W., 74, 5124-8;& Michijima, M.,Hayashi, HoKyoho,M., Nakabayazhi, anisotropy Komoda,T. andKira T. (1999). Oblique-incidence in very 35y3442-4. thinNi-Fef lms,IEEE(Eiuns. Magnetias, 129.Johnsop K. E., Mirzamnxnî, M. andDoerner,M. F. (1995). In-plane
RBEERENCES
275
naninotropy ia tàin-lmmea: Physical originsoforienvtionratio,IEEE Kuv. Magnetics, 31, 2721-7. of rippleBrma130.Spain,R. J. aadPuc%xlslox L B- (1%4). Merhxnv-qm '. 'tionin thiz flms,J. Appl.JW>.,35,824-5. 2.31. Malmse, S.and Hibino)M- (1%$. Tàe ripplecontr>t in Lorentz . Mages of magxetictàin 6lgnsZ. lnge'tp-Phys-,2T,183-7132.Callen,H.B., CorenjR.L. andDoyle,W. D. (1965). Maaetszxtion rippieandarcticfoxes,J. Appk.Phys-,36, 1(164-6. J. H. (1970). Maaetization-dpple intprnalfeldsin thin mag$33.Hopea', x ndic Elmsmeasured by ferromagnetic resonance,J. Appl.Phys.t41, E . $331-3. 134.Rie-hxrds, P.M. (1974/ neld dependence of magnetization in mndom fccfenomaaets,MP Conjerence Proœdings, No.18,Part 1, 600-4. N. (1966). RFective triaMaln.niqotropy in triple-layered tkin (''135.Th Almq,Japan. . Cmagnetk J. .âJJl.Plzys-,5, 1148-56. :136. Viscriap1.(1970)Magnetic properties of cobalttbin EmsdepVted ' on a scratched substrate, ThinSolidFflrms, 6, R2(1-4. $37.HoRann, F. (1970). Dynlrnicp- ' iaducedby aickellayerson . . permalloy flms, Phys.kct. sol.t41j 807-13. M. H.,V= Leeuwen, R. A. an.dPalco,C. 138.Engel,B. N., Wiedmaan, M. (7.993).Anomalous 'mxgnetic anisotropy ia ultrvne kaisition metals, ' '. PhysSer.B, 48, 9894-7. 139.Engel,B. N., medmxnn,M. E. andFalco,C. M. (1994). Overlayœinduced perpendicnlar anisotropyin ultrathinCoflms, J. Appl.#â#s.: k T5j 6401-5. 1.40J. (1991). OntàeEofmnnnboundaryconditions at tke 1.nBxrnas tarface betweOtwo ferromaaets, J. M. M. M.j 102,319-22. Bmnnett, A. J. andCooper, B. R. (1971). 741. Oribnof magneuccsurface ' aaisotropy'' of thl'nferromagnetic flms,Phys.Ser.B, 3, 1642-9. ' 1142. Cinal,M.,Edwards, D. M. aadMatàon, J. (1994)- eto e .2.Mssotropy ia ferromagnctic flms, Phys.Ser.B350, 3754-60. 143.Schul'z, B.andBaberscve, K. (1994). Crossovafrom h-planeto pez' 'pendicttlar magnetization in ultrathinM/Cu(001) ElmsyPhys..ll.eP. B3 . .; 50, 13467-71. 144.W'lllekel,W.,Knappmlmn, S.,Gehringp B- aztdOcpen, H.P. (1994). Temperaturœinduœd maaetic anisotropies in Co/cu Phys.Sep. (1117), ' B, 50, 16074-7145.Brown,W. F..Jr. (1963). Mécromagnetia NewYork). (Hterscience, 146.Aàaroni, A. (198'4Surfaceanisotzopy in micromagnetics, J. Appk. Physn61, 3302-4. :47. Baron,R. B- andHofhnan, R. W. (1970/ Saturation magnetisation ' Glmq,Z Appl.Phys-, 41, 1623-32. 'andperpendicular anisotropy ofnie-kel TnBuenc,e of domn.ims 148.SievelJ. D. andVoigt,C. (1976)on the mltgnedctorquein cubiccrystals, Phys.stat.sol.(a),37,205-9..
.
276
REPERBNCYS
149.V-nnaa, J., n'ansea J. J. M. andRathenau, G. W. (1963). Depen-
dence ofmagnetocrystallhe anirtropy(m feldskrength, Z Plqs.LWem.
Solïds, 24, 947-51. 150.Rado,G.T. andFerraG J.M. (1975). Blectricfelddependence of the magnetic nnl-sotropy Phys.Re'P. B, 12, 5166-74. eqerr in magnetite, 151.Abelmrmn,L., V.,Lodder, C-aadPopma,T. J.A. (1993). Kxmberslcz anisotropy, Analysis oftorquemeasurements on flmsw1tlloblique kEE Tmns.Mcgneticy, 29, 3022-4. 152.Flanderw P. J.andShtrik-man, S.(1962). Experimental determinadon oftheanisctropyaleribudonin ferromagndic powders, J. Appl.#n,g,s., 33, 216-19. Magnetic sate..e 153.Gradmann, U.,Berghoh, R. andBergter,E. (1984). aaisetropies ofcle= Ni (411) surfRœandof Ni tllll/metal interflmG, . IEEE JhznsMannetia,20, 1840-5. 154.GrHmaam, U. (1986). Magneticsurface Jmisctrcpieq J. M. M. V, 54-7, r.13-6. 15$.Saknrai,M. (1994). MagneticJmisotropy of epitxvlnlFe/Pt(001), Phys.Act;.B, 50, 3761-6156.Ho,K.-Y., Xiong,X.-Y., ZM, J. andGeng,L.-Z. (1993). Measurementof Gective magnetic Jmisotropy of uanocrystnllin e F&Cu-Nb-Si-B xlft magnetîc alloysjJ. Appl.Phys.,74, 6788-90157.Dionne:G.F. (1969). Determhation of magnetic Mksotropy andporo
REFBRENCBS
277
164.Asti, G. (1994). Singularities in themagnetization proc-es of bigh anisotropy materialsj IEEETmnaMnn6tkst30,991-6. G. (1993). Determination of magnetcxnisotropyl)y 165.Zimmermann, - an application transversesusceptibility mexsurements to NdFeB,J. AJJJ.Phys.,73, 8436-40. G.andHempel, K. A. (1994). 'Iïltnqv/rxsusceptibility 166.Zimmermann, andmagneticanisotropy of CoTi-doped bariumhcxaferrite singlecrystals, J. Appl.Phys.,76t 6062-4. 167.Asti, G.andBolzoni,F- (4986). Singular pointdetection ofdiscontinuous magnethation proccses,J. .I.ml Phys.,58, 1924-34. 168.Asti, G=Bolzoni,F. andCabmssi, R. (1993). Singular pointdetection in mulddomm'n sxmples, J. Appl.2:W:.:., 7%323-33. 169.Gn.MQ-Arrl-bas, A., Bnmnflivân,J. M. and Herzer,G. (1992). feld distzibution in nmorphous ferromagnetic alloys1om Anisotropy seccmd harmonic J. Wyyl. Phys.g 71, 3047-9. rœponse, 170.Aharonk A. (1994)Elongatesuperparxmagnetic particleqJ. Appl. Plqs-z75, 5891-3. 171.Brown,W. F- Jr- (1963). Thermalîuctuations of a singledomain particle,Phys.Set).,1.30,1677-86. 172-Browa,W. F. Jr. (1977). Timeconstani of superpazamagnetic par. ticles,Physicg8+888, 1423-4Altamni, A. nermal agitation of single domazn particles, 173. (1964). Phys.J?zv., 135,A447-9. 174.Ahazoni, A. (1969). Efect(yfa mMneticfeld on the superparxrnagaeticzelaxation time,Phys.Seru177,793-6. 175.Cofey,W. Tn Cregg, P. J.)'Crothers, D. S.F., Waldron,J. T. and approvllnate Wicksteadr A. W. (1994). Simple formulae for themagnetic relaxationtimc of singledomain ferromagaehc partidœwith nm-nvial anisotropy, J. M. M. .M.,131,L301-3. 176.Geoghegan, L. J., Qfey,W. T. andMulligan, B. (1997). Difernntial recurrence relations for non-eally symmetricrotationalFokkmr-planck equations, Adrcn.Chem. Phys-,100,475-641177.Aharoniv A. (1973). Relaxation time of supezpnmmagaedc pxrtz-cles withcubicxxnssotropy? Phys.Ser.B, 7, 1103-7. 178.Aharoni,A. aadEisenstein, 1. (1975). Theoretixmlnvxtionkimesof largesuperparxmagnetic particlœwith cubicxnisotropy,Phys.Ren.B, :t:t, 514-19. 179.Krop,K., Korecld, J., ânkrowsk, J.andKarasW. (1974). Therelaxationtimeofsuperparamagnetic particles as determined fromMössbauer spectra,Int- J. Alknefism, 6, 19-23180.Eisenstmim, 1.andAhxroni,A. (1976). Magnetization curlingin superparamagnetic spheres, Phys.Ser.B, 14, 2078-95. 181.Dunlop,D. J. (1976). Thermal fuctuationanalysis: A new technique in rockmagnetlsm, J. Geophys. S4.%-, 81,3511-17.
278
REFERENCES
182.Dunlop,D. J. (19r/). Eocœxs hkh-fdelity tape recorders, IBEE, Trc-. Magnetics, 13, 1267-71. 183.Yatsuya, S.,Hayashi,T., àlrokH.) Nxknmura, E. aad Alcira,T. Magnetic properties ot extremely fne pa,rtidc ofizonprepved (1978)b.rvacuum evaporation on r oil substratej JapawJ. ZJJI Pltys-, 17, 355-9. 184.Giessea, A. A. v. d. (196:1. Magaedc propertieofultzadne iron (m) M-de-hydzate partide made1omiron (EE1) ofde-hydrate gels,JLPltys. Cherru î'olidh28,343-6. 185.GoldOb,R. B. aadPattoa,C. E. (1981). Superparn.magnetism and spin-glusFeez.tng in niftlml-manganœe alloys,Phys.SetuB, 24,1360-D. 186.Wirtz,G. P. andFine,M. E. (1967). SuperparamVnettc mxaesiofnrm'te precipitates Fcmdilutesoludons ofironin Mgo,J. Appl.Phys-, 38,3729-37. 187.Mgrup,S.(1990). Mössbaue.r efectin smallpaœticles, Int, .S'?/p&Wne 60,959-74. 188.Shinjo, T. (1990). Mössbauer eect in aatiferrtmaaetic fne particles, J. Pltys.Soc.Jclwn,21,917-22. 189.Dormnnn. J. L.,norani,D-au.dTronc,E.(1997). Mmagsetic relaxadon in fne-pazticle systems, Wdran. Cltem.#à:.s.,98,283-494. 190.Kneller,E. F. andLuborsky,F- E- (1963). Particlesizedependence of cxrcivity andremanenceof single-domain partides,J. Appl.Phys-, 34,656-8191.Gaunt,P. (1968)TNetemperaturedependence of singledomainparticleproperties, Philos.Mcp.,17,263-6. 192.Jofe,L (1969). The temperatmedependence of the coercivityof a randomarrayof ttn-lnan'al singledomainparticleq& .PAN.S. C,2, 153741. 193.Ml='a, J.,Figiek H-andKrop,K- (lg7ll.Thetemperature dependence of tlle maaetizationof a single-domxin partide am-mbly, Actc Pltys. Polow,A39, 71-81. 194.Vidoza,R. H. (1989). Predctedtîme dependence of the switchixg feld for magndicmaterials, Pltys.Sct).L6tt.,63,457-60. 195.Heuberger, R. andJofe,L (1971). MaReticpropertiœof xKqemblies of MngledomainGptical platelets,J- Phys.%4, 805-10. 196.Lyberrers, A. and Chantrell, R. W. (1990). Calculation of the size dependence ofthecoerdveforceinfnepartides, IBBBD'cns.hlàgnctcs, 26, 2119-21. 197.Gaunt,P. (1973). Thermallyacdva/d domaz'n wall motion,IEEE Trcv. Magneticst 9, 171-3atzd 198.Jacobs, 1.S.amdBean,C. P. (1963). Finemrticleqsthin JJm.s œltangecnlotrozv, in Magnetùm editedby G-T. Mdo andH. Suhl Pzess, NewYork), Vol. :D:7 (Aodemic pp.271-350.
REPBRENCES
279
199.deBimss R. S.andFprnlm des,A. A. R. (1990). Ferromagnetic resoin a paltial)yc'rystnllîemd metalnanœ evidence for superparxrnagnetism lic glmss, Phys.Ren.S142, 527-9. 200.CoeyyJ. M. D. (1971). Noncollinpxr spinarrangeement in ultrvne ferrimagnetic crystallites, Phys..2/zv. Ls''lt,27j 1140-2. 201.Morrish,A. H. andHaneda, K. (1981). Magnetic structureof small NiFeaO4 particlc,J. Appl.Pkys-,52, 2496-8. A. H. (1988). Noncollinpxr magnedc strttc202.EanedwK. andMozvlsk ture of CoFeaO: smallparticles: J. Appl.Phys.,63,4258-60. 203.Linderoth, S.,HendriHen, P. V., Bydker,Fu Wells,S.,Davi%,K., Charles, S-W- andM/rup, S-(1994). On spin-canfng in maghemite 75, 6583-5partides,& Aml. Phys-, 204.Gangopadhyay, SoHadjipanayis, G- C., Dale,B.j Sorensen: C. M., Klabundw K. J., Papuhhymioul V. andKostlHs A. (1992). Magnetic pmpertiesofultrafneiron particles, Pltys-J/r. B, 45,9778-87205.Gangopadhyayvs., G.C.,Sorensen, C.M.andKlab%de, Eeipn.nlkyis, K. J. (1993). Magnetism in ultrvne FeandCoparticle,IEEE Tmns. Magnntics, 2%2602-7. 206.Berkowitz, A.E.:Laîut,J. A.andVanBuren, C.& (1980).Properti% of magnetic duidparticlajIEEE Tmns.Magnetics, 1.6,184-90. 207.Tasald,' A., Sakutaro) T.) Lda,S.,WmI N. andCyeda, R. (1965)Magneticpropertiaof fvomagneticmetalfne pmicle'sprepared by evaporation in argongms,Japan. & Appl.JW>.,4, 707-17. 208.Taaxlrx,T. andTamagavau N. (1967). Maaetic propertiesof Fe-co alloysfne particla,Japan. J. Appl.Ph>.j 6) 1096-100. of single209.Waring,R. K. (1967)Magnetîc iateradions in assemblies domainpartidc- Theefectof areegation:J. Appt.P/1>.,38, 1005-4. D. R. (1987). Rective volume .1210.Rodé,DuBertrxm,H. N. andn'edMn) of iateracthgpartides,IBBBAcns.Magnetics, 23,2224-6'Thmrrnal 211.Lyberatos, A. andChantrell, R. W. (1993). fuctuaqons ia a palrof magnetostatically coupled particla,& dp#-Physn73, 6501-3. 212.Lyberatos, A. (1994). Activadonvolume ofa pairofmagaetostatially coupled pazticles, J. Appl.Phys-,75,5704-6. 213. O'Grady, K., E1-H1'1o, M. and Chaatrell: R. W. (1993). ThecharRterisahonof intez-action eects in :ne particlesystems,IEEE fhmd. . Magnetia, 29, 2608-13214.Myrup,S. aadAoncoE. (1994). Superparamagnetic relaxationof . weakly internztt-lng particles, Phys.Aer.Lett.,6T,3172-5. TnfluOceof unequal 215.Rlmcourt,D-G.andDn.nl-els, J.M. (1984). magnetizatondiredionprobabilitiaon tkeMössbauer of superparas'pectra magnetic particles,PhysïScr.Bv29, 2410-14. 216.Nunes,A. C. andYu, Z.-C.(1987). Dactionnh-on of a water-bmsed . fenofuid,J. M. M. M., 65,265-8. 217.Chen,J. PuSorensen, C. M.,Mabunde, K. J. andRnHjipanayis, G.
280
REFERENCES
C.(1994). Magnetic properties ofnanophase cobaltparticles synthesized ' h înversed micelles, Z W.p.pl. 76,6316-18. P%&., 218.Abdedo,C.R. andSelwood, P. W. (1961). Temperature dependence of spontueousmaaetizadonin superpazamagnetic nickel,J. Apçl. Phys.,32,2295-305. 219.Billas,1. M. L.? Becker,J. A., Châteh-t'n, A. and deHeer,W. A. Magnetic moments of iron dusters with 25to 700atomsacd (1993). theizdependenœ on temperatuze, Pltys.Ren.feftwn, 4067-70. 220-Btmn,C. P-,Livingston, J. D. aaldRodbell, D. S.(1959). Tkeaaisotropy of very szn.all cobaltparticles, J. Phys-Scdïum,20, 29>301. 221.Du,Y.-w-,Xu, M.-x., Wu,J., Shi,Y.-b.,Lu, H.-x.aadXue,R--h. Magnetic propertiuof ttltrnfnenickelparticles, J. Apçt.Phys., (1991). 70,5903-5. 222.Kulkxrni,G.U., Kaunan,K. R.,Arnnarka,mlliv T. andRao,C.N. R. the Particlemize efects on value of of MnFezO4: Bvideace for Q (1994). sczding, fnite-size Phys.Set?.B, 49, 724-7. 223-Lednsons L M., LubamM. aad Shtrlkmn,h Mössbauer , S. (1969). studies on &Fenear theCurietemperature, Phys.Sev.,177,864-71. 224.Gaunt,P. (1960). Correction to a egle domnz-n .calctzlation, Pnm. SozpSx Londont 75, 625-6. 225.Chxntrell, R- W.j Lyberatow A.,E1-Hi1o, M. an.dO'Grady, K. (1994). Models of slowrelration in particulate andthinflrn materials, Z A,#. Physn76,6407-12. %6. Street,R. aadCrew,D. C.(1999). Ructuationaftereectin magneMc matedals, IBBB7iuas.Magneiia,35: 4407-13. 227.Aharoni,A. (1992). resonanceandmagnetic viKodty, Susceptibility Phys.Ren.B, 46, 543*41. 2M. Berkov,D. V. (1992). On the conceptof tàe magnetic viscossty: aaalytk empression for thetime dependent magnetization, J. M. M. M., 1.1.1, 327-9. 229.Dahlberg, E. D., Lottis, D. K-,Wbite,R. M.yMaen, M. aadEngle, B. (1994)Ublquktous nonexponemtial dec.ay: Theefect of long-raage couplinr'lJ. Allt Phys,76, 6396-400. 230.F'igielv E- (1975). Thetemperature g'rovùh of tkecoerdveforcefor an usemblyof skgledomnlnpazticles, Phys-Zeff-,53A, 25-.6. 231.Charap, S.H. (1988). Magnetic visenqity ix recordin: media,Z Appl. Phys-,63,2054-7. 232.Chxrnberlin, R. V. (1994). Mvscopic modelfortheprimarzresponse of mngneticmateriaks, J. Appl.JG2M., 76, MOI-6. Magnetic 233.Eabarta, A., IglesiasO.j BalcqllK, L1.andBadia,F. (1993). r-lnmtionin smampartide estems:T 1a(t/a) Kaling,Phys.Ren.B,48, 10240-6234.Stoner, E. C.andWohlfarth, E- P. (19V). A mebxnismof maaetic hysteresis in heterogeneous alloys,Philos-Acns- Roy.Soc.Londont
REEERENCES
281
A240:599-642. Reprinted in IEEE Trcns.Magnetica, 27,3475(1991) 518. 235.Lee,E. W. andBîshop,J. E. L. (1966). Magnetic behaviour of singledomainparticles, Proc.Phys.S/cu89, 661-75. B. F. (1967). cubiccrystalline 236.Hagedorn, Efectofa randomly oriented anisotropyon StonemWohlfarth magnetichysteresis loops,J. A,,1. Phys.t3%263-71. 237.Zimmermann, G. (1995)Transverse susceptibilityof particulate 77)2097recording mediain differentremanencestates,J. Appl.P%s., 101. 238.Vos,M. J., Brott, R. L., Zhu:J.-G.andCarlson, L. W- (1995). Computedhystereisbehaviorandinteractionefectsin spheroidal particle asscmblies) IEEE TrazksMagnetics, 29, 3652-7. 239.Mallinson, J. C. (1981). Onthe properties oftwo-dimensional dipoles andmagnetized bodies) IEEETmnd.Magnetia,17)2453-60. 240.Oda,H.)Hirai: H.,Kondo,K., andSato,T. (1994). Magnetic propertiesof shock-compacted Mgh-coercivity magncts with a nanometer-sized microstructure, J. X,,1, Phys.,76,3381-6. 241-Kronmiiller,H., Durst,K.-D.andMartinek,G. (1987). Angulardependence of thecocrdve feld in sintered FerrNdzsBa magnets, J. M. M. M., 691149-57. 242.OsborwJ. A- (1945). Demaguetizing factorsofthe general ellipsoid, Phys.S6'1?., 67,351-7. 243.Cronemeyer, D. C-(1991). Demagnetization factorsfor generalellipsoids:J. X,,1. Phys-,7%2911-14. 244.Aharoni,A. (1980). Magnetostatic sphereg energyofa ferromagnetic J. Appl..Pà,v,s., 5195906-8. 245.Leoni:F. andNatoli,C. (1971.). Ferromagnetic stabilityandelemenwith dipolarintertary excitations in a S = l2 Heisenberg ferromagnet actionby the Green's fttnctionmethod,Phys.&.t?.B, d, 2243-8. 246.Bryant,P. andSuhl,H. (1989). Micromagnetics belownturation)Z Alvl. Phys.,66, 4329-37. 247.Desimone, A. (1994). Magnetization and magnetostriction curves 'frommicromagnetics, J. APPl-Phys.,76,7018-20. 248.Hubert)A. (1969). Stray-feld-fzee magnetization confgurations: Phys.stat.,sJ1., 32, 51S-34. 249.Hubert)A. (1970). Stray-feld-gee andrelateddomainwallconfgurationsin thin magneticf lms,Phys.stat.soln38, 699-713. 250.van denBerg,H. A. M. (1987). Domaân structurein Kft ferroma' gnetic thin fll= objects, J. Alvl. Phys-,6l, 4194-9. 251.Hn>'n,A. (1970). Theoryof the Heisenberg Physsuperparamagnet, Se'l?. B, 1A3133-42. 252.Stapper, C. H. Jr. (1969). Micromagnetic solutions for ferromagnetic spheres, J. Appl.Phys.,40: 798-802.
282
REFERENCES
253-Aharoni,A. andJakubovics, J. P. (1986). Cylindricalmagnetic domainsin smallferromagnetic spheruwith llnl'nn' al anisotropy,Pltilos. Mag.Sj 53, 133-45. 254.Moyssides, P. G. (1989). Calculation of the sixfoldintegralsof the Biot-savart-Lorentz force1awin a closed circuit,andCalculation of the sidoldintegrals of theAmpereforcelawin a closed circuit, andExpezimentalvezifcation of theBiot-saurt-Lorentz andAmpere f orce lawsin , a closed circuit,revisited,IEEE Tra-. Magneticst 25,4298-321. 255.Brown,W. F. Jr. andMorrish,A. H. (1957). Efectof a cavityon a single-domaîn magneticparticle,Phys.Scp.,105, 1198-201. 256.Joseph, R. 1.(1976). Demagnetizing factors'innonellipsoidal snmples - a review,Geopltysics, 41, 1052-4257.Joseph, R. 1.(1966). Ballisticdemagnetizing factorin uniformlymn.gnetizedcylîndezq J. A1@. Pltys.,37) 4639-43. 258. Chen,Du-xing,Brug,J. A. andGoldfarb, R. B. (1991). Demagnetizing factoz's for cylinders, IEEE Acrld.Magnetics, 27, 3601-19. 259.Hegedus, C. 1.,Kadat,G.andDellaTorre,E. (1979). Demagnetizing ' matrices for cylindrkcal bodies, J. Inst.Math.AJJJfCG 24, 279-91. 61=s, 260.Coren,R. Iz.(1966). Shapedemagnetizing efectsin permalloy J. AJJJ.Phys,3C,230-3. 261.Dove,D. B- (1967). Demagnetizing feldsin thin magnetic flms, Bell Sys.Tech.J., 46, 1527-59. 262.Moskowitz, R. andDellaTorre,E. (1966). Theoretix Mpectsof demagnetization tensors,IEEE Fzan:.Magnetics, 2, 739-44. 263.Yan,Y. D. andDellaTorre,E. (1989). Onthecomputation of particle demagnetizing felds,I.EBBTrarl:.Magnetics, 25,2919-21. 264.Joseph, R. 1.andSchlömann, E. (1965)Demagnetizing feld in nonellipsoidal bodies,J. AIVLPltys.,36, 1579-93. 265.Brug,J.A. andWolf,W. P. (1985). Demagnetizing feldsin magnetic meaemrements. 1. Thindiscs,andIL Bulk andsurface imperfections, J. WJJI.Pltys.,57, 4685-701. 266.Brown,W. F. Jr. (1984). Tutozialpaperon dimensions andunits, IBBB Trtm:.Magrtetics, 20, 112-17. P- (1987)units,nomenclature 267.Cohen,E. R. andGiacomo, Symbolsj ' andfundamental constants in physics, Docament Physica, I.U.P.A.P.-ZS, 146A, 1-68.In particular;Appendix. Non-slsystems of quantitiesand units,pp. 62-8. 268.Brown,W. F- Jr. (1978). Domains, micromagnetics, andbeyond) reminiscences andassessmentw J. XJPJ. Pltys.t49, 1937-42. N. (1970). 269.Vnnaja, Micromagnetics at Mghtemperatuze, Pltys.,R6't). . B, 1, 1151-9270.Aharoni,A. (1971). Applicatîons of micromagnetic, CRCCdt-Rens. sblidSfateSci.,1, 121-80. '
REPERENCES
:
283
271.Aharons A. (1982). Domx-lnwallsat hightempeatures,J. A1@. Pltys,53,7861-3. 272.Battensperger, W.aadHfzl==,J.S.(1988)Phenomenological theory offerromagae? withoutaaisotropy, PhysXev.B, 38,8954-7. 273.Aharoni, A. (198$. VcromagnetiV aadthepheaomenological theory of fezzomagnets, Pltys.Jtew. Bt 40,4607-8. 274.Voltairms, P-A-,Massztlxq, C.V. aadLagads, 1.E. (1992). Nucleation feld of theinqm-teferromeettcdrcularcylinderat hightemperature, Motbl.Compnt. Mtderfrùp, 16,59-75. 27$.Döring,W. (1968). Pointshgularities in micomagnetîsm, J. AJJI. Phys.,39, 1006-7. 276.Aharoni,A. (1980). Exchange pointsor lines,J. enera near Appl..Pà,?M., 51, 3330-2. CI. Arrott,A. S.,EeinrichlB. andBloombeg,D. S. (4981). Micromagneticsof magnetization IEEE Acns. pzocessein tmoidalgeometrles, Magrtetoa, 10,950-3. 278.Jakubovics, J-P-(1978$ Commenis on thedeVitionof ferzomenedc domm'n wallwidth,Plönos. Mc#.S, 38,401-6. 279.Kittel, C- (194$. Phydcaltheoryof ferromagnetic domm'ns, Rens. Modez'n Pltys-,21, 541-83. 280,Hausez, H- (1994). Energeticmo-del of ferromagi etic hysteresis, J. ' .âJTl . Physn75,2584-97. 281-Hauser,H. (1995). Enezgedc modelof ferromagnetic hystewan-R 2: Maaetbationcalculations of (110)(001) Fesiskets bys'tatis'tic domain behavior, J. AppI.Phys.,7%,2625-33. 282.Sato,M., Lshii,Y. andNA1'.qM, H- (1982)Magnetic domm'n structu-s anddomainwVs in ironfne particle, & W.pJ1. Pltys.,s3, 6331-4. 283.SatoyM. aadLshik Y. (1983). Cridcalsize of cobaltMe particles witlznnfxvialmagnedc xnkctropy,J. Appl.Phys,54, 1018-20. 234.Egami,T. aadGralmm,C. D. Jr. (1971). Domaia wallsin ferromagneticDy audTb, J. Ap#.Phys.,42, 1299-300. 285.Adxm,Gh.aadCozdovd,A. (1971). Newapproach to Lorentzap43, 4763-7. pwm-mxdon in miczomagnetism, J. Appl.Phys., 286.O'DV, T. H. (1974). Mlgnebie f'aààled SKtion j London), (Mxn'nl11An 2-1-3prindplesfor three-dlmensîonal 287.Kotiuga,P. R. (1988). Vnn-xtional magnetostatcs based on helidty,J. APPLPhpd., 63, 3369-2. 288.Aharoni,A. (1991). Magnetœtatic IEEBTmas. energycalenlxtions, . Mqnetich2T,3539*7. 289.Brown,W. E. Jz. (1962). Approimatecalcuhtionof maaef-tatk ' energie,J-Pltys.Sx Japan, 17j Suppl.B-1,54*2. '. 290.Ahn.roni, A- (1991). Usdulupperandlowerbotmds io ihemagnetostaticself-eaer&, IBBBzh,z?.s. Magnetics, 27)4793-5. 291-A%nmnijA. (1963). Upperandlowerboundsfor thenucleation feld
284
RBFERENCES
izt an infmiterectangular ferromagndic cylinêer,& XJJI.Phys-,34, 1. 292-Aharozli, A. (1966)Enera of one-dimensionï wallsin ferzdomn.in Phym,37,3271-9. magnetkGlms,J. .4J)p1. 293-Torok,B. J., Olson,A. L. and Oredson, H. N. (1966). Aaasition bdweenBlockandNiel=lls, J. WJyl.Physs; 36, 1394-9. wallsin tlzinNi-Fe6lms,J. AnL 294.Middethoek, S. (1963). Domm'n Pz,psw, 34, 1054-9295.A-hazoni, A. (1971). Domaa'n wallsandmicromagnetics, J- dePhys. Colloq.C1,32, 966-71. (Paris) Evaluation of tke 0e.:& per unlt snece in a 296-Mlnmaja, N. (1971). coss-tiewallaJ. dePhys.(Paris) Colloq.C1,32, 406-7. 297.Schwee, L. J. audWatson, J. 1f. (1973). A new modelfor cross-tie wnllq ushgpatabollccoordinates, IEEE z7?-.vMannetoh9, 5S1-4. 298.Knqinepld, Thestructureaadenerc of cross-tie R. (1977). domain walls,WcfcPhys.Pofon.,A51, 647%7. n-mect 299.Npnuni, Y.,Uesnhx N. (1989). solution ofthe , Y. andEayashi, Lmldau-lusfqhx-tzmGilbert equationfor micromagnetic-s, Japan.J. WJJI. Phys.t28,2485-507. 300.Ploessl, 1t., Ckapmanj J. N.,Thompson, A. Mu Zweck,J. andHofHvutigationof themicromagnetic structureofcross-tie mamH. (1993). wallsin permazoy, J. A>L Phys-,73, 2447-52. 301.Brown,W. F. Jr. andLaBonte, A. E. (1965). Structureandenera ofoncudimenional wallsin feromagnetic thin flms,J. WpplPhvs., 36, 1380-6Magnetic 302.Berger, A. audOepen, E. P.(1992). domltinwpllKin ultrathin fœcobaltf111> Pltys.&r. B, 45, 12596-9. 303-medel,H. axkêSeger,A. (197î). Micromagnetic treatmentof NV wazs,Phys.s-loz.sol.('5J, 46, 377-84. 304.Browa,W. F. Jr. andShtrikman, S.(1962). Stabslity of one-dimensionalferromaveticmicaxystruciuze, Phys..Re'no 125,825-8. 305.Sktrilcrnan, S-and'Deves, D. (1S60). FinestructureofBlocïwalls,J. AJJLPhys-,31, 1304. 306-EartmanwU. andMeadey of subdivideê H. H. (1986). Observation 1805Blochwallconfgurations on ironwhiskers, J. Apg#à?/*.,59,41238. 307.Hartmann, U- (1987). NH re/onsin 180*Blockwalls,Phys..R6'/;. B, 36,2328-30. 308.Janak,J. F. (1967). Structureandenera of thepehodic BlocAwall, J. Appl.Phys-, 38,1789-93. 309.Aharoni,A. (1967). Two-dimensional mode-l for a domal wall, Z WJJI.Phys-,38, 3196-9. A. E. (1969). Two-dimensional Bloch-iype domainwallsin 310.LaBonteo ferromagnetic 6lms,J. Appl..FWrs., 40,2450-8.
REFERENCES
285
311.Harrison,C. G. aad Leaver,K. D. (1973). The analydsof twdimensional domat wallstructurc byLo-ntz microsepy, Phys..s,1atsol.(a),15, 415-29. 312.Schwellinger, P. (1976). Theanalyslof magnetic domainwalls'tructures ia the transitionregionof NéelandBlochwallsby LorentzxniPltys.stat.sol.(a),36, 335-44. croscopy, 313.Hothersall, D. C. (1969). Theinvestigation of domainwallsin thin sectionsof iron by the electron interference methodjPhçlos.Mcg-,20, 89-112. 314.Hotàersall, D. C. (1972). Electronimaguoftwo-dimeadonal domain wallsjPhys.dflt. sol.(b),51,529-36. 315.Tsultxhnm,S. andKawakatsuj H. (1972). Asymmetric 180*domain wallsin singlecestalironfHs, J. Phys.Soc.Jclcn:32)1493-9. 316-Suzuld,S. andSuznka-, K. (1977). Domainwatlstnlduresin single crntal Fe61mK, IBEE Aarl-s. Mann6ticsn 13)1505-7. 317.Tsnlrx%ara, S. andKawautsu,H. (1972). Maaeticcontrastandin90odomzu'n wallsin tàick iron flms, J. Phys.Soc.Jczcn,32, nh-ned 72-8. 318.RxrriKnn,C-G. (1972). Lorentzelectron imagesof tilted 180*magnedcdomzn-n walls,Phys..5et-,41Aj 53-4. 319.Gr-n , A. andLeave,K. D- (1975). Evidence for msymmetrical Nfsel walksobserved by Mrentzmicroscopy, Phys.stat. sol.(a),2T, 69-74. 320.Tsukxhxrao S. (1984). wallstructureobservation by deAsymmetric fectionpatttenin transmismon Lorentzmicroscopy, IEEE Duna.May neticG20, $876-8. 321.Jakubovics) J.P. (1978), Application oftheanalyticrep=entationof of wall Blochwallsia thin ferromaRetic 1msto calculations of'changœ structures withincreasing anisotropy, Philos.Mcg.B, 3C,761-71. 322.Aharoni,A. (1975). Two-Amendonal domainwalhin ferromaaetic Sms.1.General theorpII. Cubicanisotropy. 1f1.Uniafalanisotzopyj J. Appl.Phys.,46, 908-16aad1783-6. 323.Aharons A. andJxlcubodcs, J. P. (1991). MMneticdomainwattsin thickironflms, Phys.Ren.Sj 43, 129*3. 324.Humphrey, F. B. andRedjdal, M. (1994). Domm-n wall stzudurein bulk mxgnetic materia,Z M. M. M-,133, 11-15. 325.Oepen, H. P.andKirschner, J. (1989). Mavetizadondieibution of 180*domainwallsat Fb(100) single-crystal surfaces, Phys.Aep.L6tt., 62,819-22. M. R.,Ungtlris, J.,Celotta, R. J. andPiezce, D. T. (1989). 326.Scheinfein, Infuenceofthe sudace on magnetic domain-wall microstructure, Phys. Sew.Lett-,63, 668-71M. R.,Unguris, J., Blue,J. L., Coakley, K- J., Pierce,D. 327-Schm-nfein, T., Celotta) R. J. andRyan,P. J. (1991). Micromagnetics of domain wallsat sueces,Phys.Ser.Bg43, 3395-422-
286
REPERBNCES
Derivation d magnetic 328.Craik,D. J. andCooper: P.V. (1972). parametezsfromdomnintheoryandobservationj J. Phys.D, 5, L37-9. 329.Cooper, P.V. andCraik,D. J. (1973). Simpleapproxi=ations to the magnetostatic of domaias in uninm'al platelets, Phys. D, 6, J. enerr 1393-402. 330.Ploessl, R., Chapman, J. N., Scheinfeia, M. R., Blue, J. Ln Mansuripur, M. andHopman,H. (1993)structureofdomains Micromagnetic in Co/ptmultilayers. 1.lnvestigations ofwall structure,J. Alvl. Phys.t 74, 7431-7. 331.Bloomberg, D. S.a=dArrott, A. S. (1975). Hcromagnetics andmagnetostatics ofan iron singlecrystalwhisker,Canad. J. Phys-,53,145471. Mn.gnetic 332.Dsm-ltrov, D. A. andWysin,G. M. (1995). propertic of sphezical fccclusterswith radta.lsurfaceanisotropyp Pltys.&w. S, 51, 11947-50. 333.Aharoni,A. (1968). Memsure of self-consistency in 1800domainwall models,Z AlvL Physn39, 861-2. 334.Aharoni,A. andJakubovics: J.P. (1991). 90Owallsin bulkferromagneticmaterials,J. Alvl. Phys.,69,4V7-9. . ,'. 335.Aharoni,A. andJakubovics, J.P.(1991). Self-consistency ofmagnetic ' domaân wallcalculatiozb A14l.#/;pd.êzc/-,59, 369-71. 1 336.Ahazozs A. andJakubovics, J.P. (1993). GeneraDzed self-consistency '. J. Alvl. Phys.t73,3433-40. test of wall computations, 337.Aharoni,A. aadJakubovics, J. P. (1993). Movingtwœdimensional domainwalls,IEEE Trans.Magnetics, 29, 2527-9. 338-Brown,W- F. Jr. (1979). Thermalêuctuations offne ferromagnetic particlc, IEEE T/wzu.Magnetics, 15, 1196-208. 339. Callen,H- B. (1958). A ferromagnetic dramical equation,J. Phys. Chem. Solqdst 4, 256-70. 340.Mnllt'nson, J. C. (1987). OndampedUromagnetic precession, IEEE Trcns.Magnetics, 2312003-4. 341.Brov, W. F. Jr. (1959). Micromagnetics, domains andresonance, Z Alvl. Phys.,30, 62S-9S. 342.Chang,C.-R.(1991). Micromaaeticstudies of coherent rotationwith quaruccrystallineanisotropy, J. A1@. Phys-,69,2431-9. 343.Sktrikman, S.andTreves, D. ($959). Thecoercive forceaadrotational of elongated ferromaaetkparticles,J. Phys.Radium,20, hysteresis 286-9. 344.Akaroni,A. (1969). ofmagnetization reversal in ESDmngNucleation nets,IBEE Trans.Magnetics, 5, 2ô7-10. Angulardependence 345.Aharoni,A. (1997). of nucleationbycurlingin a proiatespheroid, J. Alvl. Phys.t82, 1281-7. curlingin an infnite cylinderwith a 346.lsàiivY. (1991). Magnetization unînvlnl magnetocrystalliae anisotropy, -J.Alvl. Physn70,3765-9.
REFERENCSS
287
347.Soohoo, R.F. (1963). General exchangeboundary conditions audmtrhcexnlmtropyenerr of a ferromaaet,Phys.Ren.,131,594-601. ' M8.Dimitrov,D.A.andWysin,G.M.(1994).Xfects ofsurface ulsotroa on hystezeis in fne magnetic paztida,Phys.Ren.B, 43, 3395.+2. 349.Aharoni,A. (lg87l.Ma>etizatîon curMgin coated partidœ) J. APPL Phys.,62, 2576-7. 350.Aharoni,A. (1988). etizatlonbueldlng ix elongatHparticleof (-te kon olde, J. AppLJWp,s., 63j 4625-8. 351..Skornel'-, R.,MEIC,K.-E.,Wendhauxn, P.A.P.aadCoey,J.M. D. rev'
288
REFERENCES
366.Imborsky, F. E. (1961)Devdopment of elongated particlemagnez, J. XJTJ. Phys.t 32,I;1 S-83S. 367.Jacobs, 1. S.andBmnn, C-P. (1955). An approack to elongated fneparticlernxgnets, Phys..Ret;., 100,1060-7. 368.Kubo,O.,Ido,T. ao.dYokoyama, H- (1987)Maaethationreversal forbariumferriteparticulate media, IEEETmns.Mannetics, 23,3140-2. 369-Knowlu,J. E. (1981). Magnetlc propertioofindividualazicularparticle, AEE M. Mannetées, 1.T,3008-13. 370.Knowle,J. E. (1984). The measurement of the anisotropyfeld of sîngletitape'particles,IEEE Trcns.MMnetia,20, 84-6371.Xaneko, M. (1981). Magnetizatton reversal meGanism of nicke,l alu17, 1468-71. ' miteflmsyIEEE >v- Mannetics: 372.Wnowle,J. E. (1986). Magnetization revemal by lpping,in acicular partîdesof c-Feaoz,J. M. M. M., G1,121-8. 373.Aharoni,A. (1986). Pedectandimpmz'fepartides,IEEE Tmns. Magaetks. 22, 478-83374.Knowle, J. & (1988)A replyto ltperfect andimperfectparticles'' , IEEETzuns. Maretics,24, 2263-5. 375.lfuq P. C. (1988). Chain-of-spheres calculation on the Oezcividœ of elongald fme partideswith both magnetocystamne and shape anisotropy, J- Appl..Pà,w., T6,6561-3. 376.IshiitY. andSato,M. (1986). eticbehaviom of elongated sin#e model,J. Appl.Physn59, 880-7. domaiaparticlesby càainof spheres 377-Isizii,Y., Anbo,E-jNisMda, K. andMizuno, T. (1992). Magnetization behaviozs in a càainof discs,J. Appl.JWgs., 71, 829-35. rev/rKldmechanism 378.Han,D. audYang,Z. (1994). Magnetization of tlle chainof two obhteellipsoids, J. Appl..Pà&s., T5,4599-604. 379.Rlmek,P.F. andEallcver, H- (1994). Coercivi, ty andswitching feld of shgledomm'n of thedemagno J-Thozparticlesunderconsideration tizingfeld, J. Appl.Physpt 76,6561-3. FAeds of demagnedzation 380.Huang,M. andJuds J. E. (1991). âelds of coerdvityof longitudinal on theangulardependcnce thin51mmedia, IEEErn-tmqs. Magnetics, 2T,5049-51. 381.Stephason, A. andShao, J- C.(1993). T:e aagular dependence ofthe remanentcoerdvityof gnmma, ferricoAdeftape'partidœ,IEEE Acnqs. Maqnetics, 29, 7-40. 3'82.Aharoni,A. (1995)Aveement Phys. between theoryande-xperiment, Today, June,33-7. 383.Browa,W. F. Jz.(1945). VirtuO andwoxlrnesses of the domzu-n concept,Rens. MtozwPhys.,17, 15-19. 384.Smitk,A. F. (1970). Domnrm wallinteractions withnon-magaetic includons observed by Imentzmscoscopy, J- Phys.2% 3, 1044-8385.Davis,P. F. (1969). A theoryof theshapeof spike-like maGetkdomains,J. Phys.D, 2, 515-21..
REFERENCES
28S
386.Salta., C.,Shiild,K. andShinagawa, K. (1990). Simuhtionof domasn structurefor magnetic thinflrfts in = applied feld, J. Xy/. Phys., 68, 263-5. 387.Kooy,C. andEnz,U. (1960). Experimental andtheozetical studyof thedomain confguration in thin hyersofBaFezzolg, PltilipsRes.Self.su 15,7-29. 388.Kojima, H. andGoto,K. (1962). Newremanentstructuzeof magnetic domains in BaTelcoza, J. Phys.Soc.Japan,1t', 584. 389.Kolima, H. and GotoyK. (1965). Remanent domainstructuresof Buewozg,J. Alvl. Pltys.,36, 538-43. 390.Kusunda, T. and Honda,S.(1974). Nucleation and demagnetization by needlepricldngin MnBiGlms, Alvï. Phys.faett.,24,51*19. 391.Shimada, Y- andKojima, H. (1973). Bubblelatticeformationin a magnetic unia'dalsingle-cystalthin plate,J. Appl.Phys.,44, 5125-9. 392.Aharoni,A. (1962). Theoretical search for domainnucleation, Rens. Modcrrz Pltys.,34,227-38. 393.Middleton,B.K. (1969). Thenucleation andreversalof magnetization in highf eldsto form cylindricaldomainsin thin magneticflms, IEEE Trcn.s. Magnetics, 10,931-4. . Nucleation 394.Backman, K. (1971) andgrowthof magnetic domains in particles,IEEE Tmzzs. 7, 647-50. smallSCO,S Magnetics, 395.Onoprienko, L. G. (1973). Fieldof nucleation i.na ferromagnetic piate wit,ha localvariationin the magneticanisotropyconstant,So'tzPhys.S/f.?;d Statet1:, 375-8. 396.Déportes, J., Givord,D., Lemaire,R. andNagai,H. (1975). Onthe coercivityof Scos compounds, IEEETrtzn.s. Magneticst 11, 1414-16. 397.Rntnam,D. V. andBuessem, W. R. (1970). Onthe natureof defects in bariumfenite platelets, IEEE Trczz.s. Manneijcs, 6, 610-14. reversalprocess 398.HanedatK- and Xojima, H. (1973). Magnetization in chemicallyprecipitatedandordinarypreparedBaFezaozg: J. Appl. Phys.,44, 3760-2. 399. Seeger, A., Kronmûller, H.,Rieger,H. andTrâuble, H. (1964). Efect of lattice defects on the magnethation curve of ferromagnetsr J. XJJJ. Phys.,35) 740-8. 400.Kronmiiller,H. andHilzinger,H. R. (1976). Hcoherent nucleation of in Cossm reversed domains permanent magnets, J. M. M. M., 2, 3-10. 401.Kronmiiller, H- (1978). Micromagnetism in hardmagnetic materials, J. M. M. M., t', 341-50. 402.Eevinstein, H. J.,Guggenheim, H. J. andCapiqC.D. (1969). Domain wall dislocation intervtion in RbFeFa, J. Alvl. Pltys.,40, 1080-1. Domain-wall 403. Zijlstra, H. (1970). in Smcos powders, J. Appl. proc&ses ' Pltys.,41A4884-5. 404.Fidler,J. andKronmver,H. (1978). Nucleation andpinningof magneticdomains at Cozsmz precipitates in Cossm cystals,Phys.stat.sol.
290
EEFEEENCES
(Q,56,545-56. 405.Becker,J- J- (1972). Temperature dependence of coerdveforce aad ' nûcleating 8,520-2feldsin Ccssm)IBBBTrtrkç.Magnetia, 406.Mccurrie,R. A. andMiRIICI., R- K- (1975). Nucleation andpinning mechazdsms in.sinteredSmCosmagnets, IEEEAtm.$-Mannetics, 11y 1408-13. 407.Lsvingstonj J. D. (1987). Nudeationfelds of permn.nent rnnaets, ' IEEETrcns.Magneiécs, 23, 2109-13. 408. Slmr,Y. S.,Shtoltzp E. V. aad Mxrgolina,V. 1. (196Q). Mn,gnetic structureof smzkllmonocrystnlh-ne pn.rtlcles of MnBialloys,Sov.Phys.-' J.BYT, 11, 33-.7. 409.HondwS.,HcKlœwa,Yo Konishi,S-andKusunèa, T. (1973). Mn.gneticprol=tlesofsingleczystalMnRi platelet,Japan.J. AJJI.Phys., ' 12, 1028-35. W. of sudace 410.Sevle,C. hfuence conditions on thecoerdve (1973). forceof Smcosparrklde,IEEE Tmas.Magnetics, 9, 164-7. T. and Ollkrmln. Mqretizationreversal 411.TfnAnyaman in , M. (1976) Gdcossingtecrystals,Appl.Phys.fettv,28,635-7. M. aadWxkxizK. (1977). 412.KisAz-rnrxin, Magneticproperties of MnBi pvticles,J. 4,,1. Phys-, 48, 4640-2. 413.DeBlois,R- W. an.dBe-xn, C. P. (1959). Nucleation of ferromagnetic domat-ns i.nh'onwhiskers, J. Appl.Phys-,30,2255-6S. 414.De Blois,R-. W. (1961). Ferromagnetic nudeationsourœs on kon whiskw-,J. A1@. Phys.,32, 1561-3. Nucleadon 415.Aharoni,A. andNeeman, E. (1963). of ma&etisation reversalin ironwhiskers, Phs.fetl., 6, 241-2. Some hctorsin the e.lmya.='K ma>ethationof . 416.Wade,R. E. (1964). ' 4lms, Philos.Md,,ç., permazoy 10,49-46. 417.Bostatoglo, O.,Liedtke,R.andOmlmxnn A. Mlcoscopical , (1974). test of currenttheories ofmaaeticwa2motion,Phys.stat. sol.(a),24, 109-13. forœcaused 418.Akaronk A- (1960). RHuctionin coercive by a certna'n type of impedection, Phys.Aetn,119, 127-31. uder the efectof timcudependent 419.'Dueba,A. (1971). lron whiskers felds,Phys.stat. sol.(k,43) 157-62wall motion,anddo420.Schuler, F. (1962). Maaetic mms:Nudeation, mldn morpholo&, J. Appl..4:Wv.$., 33)1845-50. Self,W. B. andEzdwvds, z1'21P. E. (1972). Efec'tof tensilestresson the domldn-nucleation GeldofironwOkers,J. WJJI.Phys.,43, 199-202. 422.Aharoni,A. (1968). Theory oftheDeBloisexperiment. 1.Theefectof the smallcoil,IL Surhceimperfection 5nan inGnitecoit,& 111. Electof.. imperfectioms, J. Appl. Phys., 30, 5846-54) & 41, 2484-90. neipboriag 423-Btown,W. F. Jr. (1962). Statistical aspectsof feromagnetic nucleation-feld theorsJ. .4,,1.Phys-,33,3022-5.
REFERENCES
29l
424.Aharoni,A. (198$. Domainwallpinningat planardefects) J. Appl. Pltysp, 58, 2677-80. 425.Dietze,H. D. (1962). Statistical theoryof coerdvc f dd, Z Pltys.Soc. ' Japan, 1T, Suppl. m1, 663-5. '' 426.Rln-nger,H. R.aadKronmver,H. (1976). Statistical theoryofthe ' pinningof Blockwallsby rudomly distributeddefeds,J. M. M. M., 21 11-17. 427.Dietze, H.D. (1964)Tàeor.y ofcoercive forcefor randomly distributed latticedelctsandpredpitations, kondens. Mcterse, 2, 117-32. .G. J. (1969). Wampianing modelof 428.Baldwin,J. A. Jr. andCulleer, magnedc hysteresis, Z [email protected], 40, 2828-35. 429.Baldwin,J. A. Jr. (1971). Ma&etic h sksin simplematerials.1. Theory& 11.Experiment. J. Appl-Pltys.,42, 1063-76. ' 430.Baldwin) J.A. Jz.(1974).Do ferromMnet,s iïavea true xerdveforce ?, ' J. Appl.JWp.s., 45,4006-12. Eolr,A. (1970). 431. Fozmation of reversed domltînA in plate-shaped ferri/ ' partides, J. Appl.Phys.,41, 1095-6. 432.Nembach, EuChow,C.K. andStöclrnl, D. (1976). Ceedvityof singlewlres,J. M. M. M., 3, 281-7domainnlcke,l 433.Huysmans, G.T. A., Lodder,J. C.audWakui,J. (1988). Magneiizaïoncuzlingin perpendicular izonparticlearraystalnrn' ltqmea),J. 64,2016-.21Ap#.JW#d., 434.EMlc,D. F. andMxllsnqom J. C. (1967). Onthecoerdvityofcbnezoô ' particlew J. Appl. Pàvs-a 38, 99>7. ' 435.Luborsky, F. E- audMordock,C. R. (1964). Maredzaïonz'eversal .. in nlrnostperfet whiskers, & Appl.Pltys.t35, 2055-66. ' reversal 436.Ouclzi,K. au.dI S.-I.(1987). Siudiesofmagnetization menhnniKm recordt'ng of perpendicula,r media by hysterœis loss measure' ment,IEEE Tmnd-Magneticsk 23t 180-2. 437.Cherlmnui, R-, Nogu8,M= Dormann, J. L., Prens P., Tronc,E= Jolivet,J.P.,Fiorrm-lD. andTesta,A. M. (1994). Staticmagnedc propt feld of ertiesat lowandmednïm particleswith controlled gamma-Fema dispersion, IEEEAtmd.Magnetétnh 30, 1098-100. 438.L;'.rn,J. (1992). Magnetichysteruisof a rectangular latticeof iateractingsingle-domrdn ferromagnetic spheru,Z Ap#.Pàvde, T2,B'F.#2-& 439.Wizth?S. (1995). Magnetization reversalin systemsof intez-acting magnetically-hard particles, J. Appl.J7?1:.s., T%3960-4. 44o. Smyth? J. F., Schultz, S., K-rn, D., Sckmid, H. andYee,D- (1988)' Hysteruisof submicron permalloy pnzrticttlate arrays,J. Appl.Pltys-,63, 4237-9. 441.Smythp J. F.,Schultz, S.A-, S.:Fredldn,D. lt., Kern,D. P., Rishton, Snbrnx' d, H.,CalilM. andKoehleer, T. R. tlggll-Hysteresis i:aDthographic Experlment 69, particles: andiheorsJ. Ap#.Pltys., arraysofpermalloy 5262-9.
292
REFERENCES
442.Brown,W. F. Jr. (1962). FailureoftEelocal-feldconceptfor hysteresiscalcdations) 1.XJ/J.Pltys.,33, 1308-9. 443.Bertram,H-N. andMalliason,J- C. (1969). Theoretical coerdvefeld for an iateraztâng MisotropicdipoleIlatrofarbitrarybondangle, J. Ap#. , Phys-,40, 1301-2. Mxlllnqon, C. 444.Bertram,E. N- and J. (1970). Switching dynamics for an interactingdimlepai.rof arbitrarybondaage, J. AmL Phys-,41, 1102-4. 4+5.Berkowitz, A. E., N'x11, E. L. andFlaaderst P. J. (1987). Microstnzcof ture 'PFAO,partida; A roponseto Andresset a; IEEE Thana. 23, 3816-19. Magnaics, 446.Zijlstra, E. (1971). Hysterœis measurements of Rcosmicr>particles, J. dePltys.(Paris) Colloq. C1,3211039-40. 447.Beeker, J.J. (1971). Magnetintiondiscontinuities in cobalt-rareearth partidewJ. A1@l. JWv&,42, 1537-8. 448.Mccurrie,R. A. andWlllmore,L. E. (1979). Barkhausen discontinuities,nucleationt aadplnning of domm'n wallsh etcbed miczoparticles of Smcos,J. Xyyl.Phys-,50,3560-4. 449.Roos,K, VoigkC.,Dederir%s H. aadEemm!c K. A. (1980). Magnœ tizationreverul in microparticles ofbariumflrrïte, J. M. M. M., 15-18, 1455-6. 450.Ss.ll-tng, C.)Scxultz: S.,Mcndyen,1.aAdOzxkl,M. (1991). Memsuriag the coercivityof individualsab-micron ferromagnetic partidœby Lorentzmicrcscops IEEE Jiuas.Magnetîa,27, 518*6. T., Zhu,J.-G.andJudy,J. E. (1993). 451.Chang, Methodfor irvestigatpro>rue of isolated ing therevezsal barsum ferriteEnepaztklesutiliz73, 6716-18) ing maaeticforcemicroscopy J. [email protected]., & IMEF'M a) ' WvKdorfer,W., Ma!11' D. and Beaozt, A. Sia 6 y, (200). gle nanoparticle teclmiqnes, 87, 5094-6. measurement Z Ap#.PJzgM.) 452.Prenf,P.,Aonc,E., Jolivet,J--P.jLicge, J.,Cherlmzauï, Ru Norzès, D. (1993). Magnetic properties of isoM.,Dormltnn,J. L. andFiorxm-, latedepFezoz particlesv IEEETrcas.Magrtet-,29,2658-60. M., Gibson, G. A. andSckultzo S.(1993/ of V3. Lederman, Observadon thermnlswitching particle,J. Xyyl.Phks-,73, of a singleferzomagnetîc 6961-3. 454.LedRrman, M-, Sckultz,S-aad OzG',M. (1994). Measurement of revemxlin hdividualegle-domain the dynamics ofthemagnetization ferromagnetic particles, Phys.Ser. Zetf-,73, 1986-9. M. 455.Iederman,M.,R'edldn,D. K, O%arr,R., Schultz, S.a=dOzn.lr5, of therznn) the of Measurement switching of mxgnetization single (1994). domin partidœ,J. AI@l-JW?M., 75, 6217-22. 456.Salling,C., O'Barr,lt.j Schaltz,S., Mcpadyen, 1. and Ozn.lr5, M. Hvotigationof the mrtgnetization reversal modefozindividual (1994). ellimoidalshgledomnsn particlesofepFezoav J. A1@l. PJz(?M., T5,7989-
REFERENCES
293
Wu Barbara, 92; &' Orozco, E- B., W/rnqdorfer, B., Benozt, A., Mailly, D. andThiaole,A. (2000). Uniform rotationofmagnetization measured in singlenanometer-sized particles,J. Appl.#z,p.s-, 87,5097-8. 457.Dionne,G.F., Weiss,J. A. andAllen,G-A. (1987). Hysteresis loops J. moddedfromcoerdvity,anisotropyand microstructure parameters, XTAJ. Phys.,61,3862-4. Sofl polycrystalline magnetization curves) Z 458.Arrott, A. S.(1987). A.;@l. Phys.,61, 4219-21. 459.Chang,C.-R.,Eee,C. M. andYang,J.-S.(1994). Magnetization ctlrling revezsal for an infnite hollowcrlinder,Phys.Rev..R50, 6461-4. 460,Broz,J. S.,Braun,H. B.,Brodbeck, O.,Baltensperger, W. andHelman, Z S.(1990). Nucleation of magnetization reversal via creationof pairsofBlochwalls,Pltys.Rev..I,etl.,65, 787-9. 461.Aharoni,A. andBaltensperger, W. (1992). Spherical and cylindrical nucleation centersin a bulkferromagnet, Phys.Ses.B, 45, 9842-9. 462.Eisenstein, 1. and Aharoni,A. (1976). Magnetization curlingin a sphere, J. Appl.Phys.,4T,321-8. 463.Arrott, A. S.,Hdnrich,B. andAharoni,A. (1979). Pointsingularities andmxretizationreversal in id/olly softferromagnetic cylindersjIEEE Trano.Mannetics, 15, 1228-35. 464.lshii,Y. andSato,M. (1989). Magnetization curlingin a înite cylinder,J. Appl.Physn65,3146-50. 465.Muller:M. W. andYang,M. H. (1971). Domainnucleation stability, IEEE Trcns.Monneiics, T, 705-10. 466.Fbait,Z. (1977). FMR in thin permalloyElmswith smallsurhce anisotropy, Physéca, 86-888,1241-2. 467.Frait,Z.andFraitov/u D. (lg8ol-Ferromagnetic resonanceandsurface anisotropyin iron singlecrystals,J. M. M. M., 15-18)1081-2. 468.Rado,G. T. (1958). Efectof clectronkmean freepath on spinlwave resonancein ferromagnetic metals,J. Appl.Phys.,29, 330-2. 469.DeWn.mes, R. E.andWolfram, T. (1970). Dipole-exchange spinwaves in ferromagnetic Glms,J. Appl.Phys.,41j 987-93. 470.Ament,W. S.andRmrlo,G.T. (1955). Electromagnetic cfectsof spin metals,Phys..Re'p., 1558-66. wave ruonance in fenomagnetic 471.Walker,L. R. (1958). Resonant modesof ferromagnetic spheroids, J. A.p.pl. Phys.,29, 318-23. 472.Aharoni,A. (1991). Exchange resonance modesin a ferromagnetic sphere,J. Appl.Phys.,69, 7762-4. 473.Viau, G., Rxvel,F., Acher,O.)Fiévet-vincent, F. and Fiévet,F. Preparation of sphericaland and microwavecharacterization (1994). monodisperse Coaolvjso particles,J. A.p.pl. Phys-,'r6, 6570-% & (1995), Preparation andmicrowave characterizatkon of spherical andmonodisJ. M. M. M., 140-d, 377-8. perseCO-Niparticles, 474.Viau,G.,Fiévet-vincent, F.,Fiévet,F.: Toneguzzo, F., Rxvel,F. and
%4
REFERENCES
Acàer,0. (1997). Sizedependoce ofmicrowave permeability chf spherica). Ph., ferromagnetic partides,J. APPLPà#a., 81,2749-54; & Toneguzzo, Acher,O.,Viau,G.,Fiévet-vincent, F. andFiévet,F. (1997) . Obser> tionsofvcbnmgeresonance modes on submicromete.r sized ferromagnetic pattcles,J. Appl.Phys., 81,5546-8. ' 475. Abnmoni, A. (1997). EfH of surface anîsotropy on the exchange resJ. Apyl..FWps.: , onancemodes, 81j 830-3. 476.Voltairms, P.A. aadMuo-qlnn, C.V. (1993). Size-depeadent resonaace modesin ferroma>etic spherœ, J. .&JtM- .:J-,124,20-6. 477.Abraham) C. aadAharoni,A. (1960). Lineardecease in the magnenansRntropy, tocrystalline Pltys..Rev., 120,1576*. 478.Abrcamt C. (1964). Modelfor loweriagthe nudeationfeld of ferro- . ' matem-nls, mMnetic Phys.2*., A1269-72. 479.Wchtcr,E. J. (1989). of tlzeangulardependeace Modelcalculation of the switcMng feld of impedmtferromaguedc paztidewith spedal referenœ to barinmferrite,Appl..P?ùp.s.j 65,3597-601. 480.'mlmingez: H. R. (1.977). The infuence of pllmardefeds on thecoecive ' . matemnls, feld ofhardmagnetic Alvê.Physv, 12,253-60. 481.Jatau)J. A. audDellaTorre,E. (1993). Onedimensioztal eaera barriezmodelfor coerdvity, ;3, 682*31. Apf. .FWN., 482.D-11n. Torre,E. andPerlov,C. M. (1991). A onedimensional model for wallmotioncoerdvityin magneto-optic media,J. Apg .FWp&, 69, cAV. Coerdvityof magneticdo483-Dieh, Y.-C.andM=suzipur,M. (1995). matuwallmotlonaear tkeedge ofa terrace,Z Appl.J'àps., 73,6829-31. 484.Mergek D. (1993)Ma>etic reversat processes in excxange-coupled doublelayers,J. Appl..P?ù!p., 74, 4072-80. V5. Smith,N. aadCain,W- C. (1991). Micromagnetic modelof an exchange 69, 2471-9. coupled NFe-Tbcobilayer,J. APPL fWp.&., J. and Gm-mbezg, P. (1991). 486-Bldrrhx.4, Onthe staticmaNdizationof doubleferromagnetic layerswith =ttferromagnetic inter-layer couplhg in an externalmagnetic feld, J. M. M. M., 98,57-9. V7. Marozti,A. (1994). Exchange aaisotropy in 6lmg,audtheproble,m of invertedhysteresis loopsjJ- A,,l. Pltys-,T6,69D-9. 488.Ckang, C.-R.(1992). Iafuenc,e of roughaess on magnetic surXeanisotropyia zzltrat%x'n flms, J. Appl.Physn72,596-600. 489.Aharoni,A. (1961). statein onedimtmm-onal InicromaaetRemanent iœ,Phs.Jlzw.1 123,732-6. 490.Maroni,A. (1.993). Analyticsolutionto theproblem ofmaaeticfllms mtrfhceAnkotropy,Phs.Se'p.R 4T, 8296-7. with a perpeadicular 491.Aharoni,A. andJxknbovica, J. P. (1992). One-dimensionat domex : wallsin bnllrmagnetic materials) Z M. M. M-)10+7, 353.-4. 492.GoMsche, Micromaaeticboundary conditions i.ninhomoF. (1970). alloys, Acta Jhps. Polons, A3;, 515-19. geneous
REFERENCES
'
.
'
295
493.Skomsld, R. (1998). Hcromagnetic lor-nl-wmtion, J. A1@. Phys-,83, 6503-5;&zSkomsld, R-,Liu, J. P.andSellmyer, D. J. (1999)Quasicoherentnucleation modein two-phase nanomagnets, Phys.Sct?.Bt 60, 7359-65. 494.Yaug,J.-S.andChang, C.-R.(1995). Grm'nsizeesectsin.nanostructuredtwo-phase maaets, IEEETmns.Mannetics, 31, 3602-4. 495.Hubert,A. (1975). Staticsanddynnamics of domainwal.lsin bubble matedals,J. A14I.Phys.,46, 2276-87. 496-Rado,G.T. (1951). Ontheinertiaof oscillating ferromagnetic domah walls,Phys.Revn83, 821-6. E. (1.971). 497.Schlömann, Structure of movingdomainwallsin magnetic materials,AJJJ.Phys.icttu 19) 274-.6. Dynamics 498.Slonczewsk, J. C. (1972). of magneticdomainwalls,fnt. J. Mannetism, 2, 85-97. 499.Schlömann, E. (1972). Massandcriticalvelocityof domainwallsin thin magneticflms,J. A1@. Phys,43, 3834-42. 500.Slonczewskil J. C. (1973). Theoryof domain-wall motionin maRetic ftlmsandplatelets, J. Appl.Pà,:.s., 44, 1759-70. 501.Aharoni,A. (1974). Critiqueon thetheoric of domainwall motion in ferromagnets, Phyn.Lett.,50A, 253-4. 502.Aharoni,A. andJakubovics, J. P. (1979). Movingdomainwallsin ferromagnetic f 1mswith parallelaaisotropy, Philos.Mag.'B, 40,22331. 503.Aharoni,A. andJakubovics, J. P. (1979). Theoretical wall mobility i.asoftferromagnetic f lms,IEEE Acas,Magnetécst 15,1818-20. 504.Konishi,S,)Ueda,M. andNnWta,H. (1975). Domainwall mass in permalloyfllms,IEEE Trctzs. Magrtetica, 11; 1376-8. 505.Stankiewicz, A., Maziewskk A.zIvanov,B. A. andSafaryanj K. A. Onthecalculation of magnetic domainwallmass, IEEETrcnd. (1994)Mannetics, 30, 878-80. 506.Aharoni,A. (1976). Tw-dimensional domainwallsin ferromagnetic f lms.JV.Wallmotion,J. A1@. Phys.,4T,3329-36. 507.Brown,W. F. Jr. (1968). Thefundamental theorem offne-ferromagnetic-particle theory,J. A1@. Phym,39, 993-4. 508.Brown,W. F. Jr. (196$. Thefundnarnental theorem of thetheoryof f ne ferromaaeticparticles,Ann.NY Adcd.Sci.,147,461-88. 509.Aharoni,A. andJakubovics, Cyhndrical domains in small J.P.(1988). IEEETrcrzs. ferromagnetic spheres withcubicanisotropy, Mannetics, 24, 1892-4. 510.van derZaag,P.J., Ruigrok,J. J. M., Noordermeer, A., vau Delden, M. H. W. M.,Por,P.T.yRekveldt, M. ThmDonnet,D. M. andChapman, J. N. (1993). Theinitial permeability of polycrystalline Mnzn ferrites: Theinfuenceofdomainan.dmicrostructure, J. A.p.pI. Physn74,4085-95.
296
RETBRENCVS
511.Akaroni,A. (1988). Elongated single-domain ferromagnetic particles, J. .XJ.PJ. Pb.ys., 63, 5879-8% 64,;k330). (Erratnm; 512.Chou,S. Y., We'i,M. S.,Kraus,P. :R-and Fkcher,P. B. (1994). Single-domasn magnedc pilln:rarrayof 35nm diameter and65Gbits/imz density densityqu=tnm maaeticstorage, for ulfrahigh J- Appl..FW:,s., T6,6673-5. 513.Afanms'ev, A. M., Manykn,E. A. andOnLshcàenko, E. V. (1973). Magnetic strudure ofsmallweakly nozuspkezical ferromaoeticpnriicles, Sov.Phys.-sslid Slctq14, 2175-80. A micromagnetic 514.Enldn,R. J- andDunlop,D. J. (1987). studyof pseudosingle-domain remxnencein magnetite, J. Geophys. .Res., 92, 12726-40. 515.Shtrilcman) S. andTreves, D. (1960). Ontheresohtion of Brown's paradox, J. Appl.Phys.,31, 72+.3S. 516.Aharoni,A. (1991). The conceptof a single-domain particle,IEEE lhria. Magnetics, 27, 4775-7. 517.Fowler,C. A. Jr.,Fryer,E- M.artdAeves,D. (1961). Domain structuresin iron wbiqYmas o by theKerrmethod, J. Appl.JWp:., 32, 296S-7S. ' Some propertieof ironwhiskers, Phys. 548-Trucba,A. (1971). magnedc ,stcksd. (a),5, 115-20. 519.Eartmann, U. (1987). Originof Brown'scoerdveparadcxin perfet ferromagnetic erystals, Phys.Sev.S, a6, 2331-2. 520.Brown,W- E. Jr. (1962). Nndeation Celdof an infai/ly longsquaze ferromagnetic prism,J. Appl..FW:M., 33,3026-31; 34, 10041. Xrratum: 521.Browx,W. F. Jr. (1964). Somemagnetostahc andmicrom' agnetic propertiaofthein6nite rectangulrbax,J- Appl..FW:,.,35,2162-6. 522-Aharoni,A. (1992). Modifcation of thesaturated magnctization state, B, 45, 1030-3. Phys Set?. HteractionofBlock-wall 523.Jakubovics, .1.P. (1991). paizsin th-tnferroGlms,J. Appl.JWly-v magnetic 69, 4029-39. 524.Mh-ltat,5.,Thiaville,A.and'Ian'tllouck P. (1989). Néelltnestrnctures audenergies in nniafal ferromagnets with q=ah'tyhctorQ>1,J. M. M. Mn82, 297-308. 525.Sn%xbes, M- E. andAharozti,A. (1987). Magnetostatic intervtion of IEEE feldsfùr a three-dimpnm-onal ferromaaetic cubes, Acns. aaay Magnetics, 23, 3882-8. 526.Usov,N. A- andPexschany, S.E. (1993). Magnetization curlingia a fne cylinddcal particleo J. M. M. M., 118,L290-4. 527.Aharoni, A. (1998). Pedodic Wallsh Vez'y Thinn'lmg,J. Ph.ys-: Jondens.Mctler,10,9495-505. 528.Cendes, Z- J. (1989). UnlocMag the ma#cof Maxwell's equationsj AEE S,ecxm, April,29-33.
REFERENCES
297
529.Predkin, D. R. andKoehler,T. R. (1988). Numerical micromagnetics ofsmazi particles: 24,2362-7. IEEETrtmd. Màgnetics, 530.Predkin,D. R. and Koehler,T. R- (1990). Hybridmethodfor comh' putingdemagnctizing 'felds,IEEETrczu.Magnetics, 26, 415-17. 531.Fredldn, D. R. andKoehler,T. R. (199û). Xà énétiomkromagnetic calculations for particles, J. Appl.Physn67, 5544-8. 532.Chen)Wn R'edldn)D. R. an.dKoehlerjT. R. (1993). A new fnite element methodin micromagnetics, IEEETrczu.Magnetics, 29, 21248. 533.Andrâ,W. andDanan,H. (1987). Magnetization reversalby curling in tnrmqof the atomiclayermodel,Phys.siat. sol. (a)t102,367-73. 534.Andrâ,W., Appel,W. andDaaaa, H. (1990). Marctîzationreversal in cohalt-surface-coated iron-oxide particles, IBEEFhczz.s. 26, Mognetics, 231-4. 535.Hayashi, N., Naletani,Y. and Inoue)T. (1988). N'umerical solution of Landau-lzifshitz-Gslbert equationwith two spacevariablefor vertical Blochlines,Japan.J. AJJJ.Physn27, 366-78. 536.Hayashi, N.,Inoue,T., N'akatani, Y. andFukushima) H. (1988). Direct solutionof Landau-Lifshitz-Gilbert equationfor domainwallsin thin permalloy flms, IBBE Tvans. Magnetics, 24, 3111-13. 537.Mfiller-pfeifer,S., Schneider, M. an.dZinn, W. (1994). Imagingof magneticdomainw'allsin iron with a magnetic forcemicroscope: A numericalstudy,Phys.Ae'p.B, 49, 15745-52. 538.Jatau,J. A. and DellaTorre,E. (1993). A methodolor for mode pushingin coerdvitycalculations, IBEETmns.Magnetics, 29, 2374-6. K. andSubramaniam, 539.Ratnaleevaa, S.,Hoole,H., Weeber, S.(1991). Fictitiousminimaof objectfunctions, Anite elementmeshes, and edge elements in electromagnetic devicesynthesis) IEEE Trcns.Magnetich 27,5214-16. 540.Aharoni,A. (1984). Magnetization distributionin an ideallysoft sphere,J. A.p.plPhys.,55, 1049-$1. .B.B. andCendesz ofiterative 541.Shynankumar: Z. J. (1988). Convergence methods for nonlinear magneticfeld problems, IEBE Trc.nd. Magneiics, 24, 2585-7. 542.VinllsvpA., Boileau,F., Klein,R., Niez,J. J. an.dBarasy P. (1988). of micromagnetic A new methodfor 6nite element calculation problems, IBEE Trans.Mcpneficd, 24, 2371-4. R. Mu Hebbert, R. S.and Schwee, Micro543.DelVecchio, L. J. (1989). magnetics calculationfor two-dimensional thin-flm geometries usinga fnite-element formulation, IEEE Trcnd.Magneiics, 29,4322-9. K. andHubert,A. (1998). 544.(Rave, Wu(Ramstöck, Coraersan.dnucleation in micromagnetics, J. M. M. M., 183,329-33. 545.Rave,W.,Fabian: K. andHubert,A. (1998). Magneticstatesof small cubicparticleswith uniaxialanisotropy, J. M. M. M., 190,332-48.
298
REFBRENCV
546.Blue:J. L. andScàeinfein, M. R- (1991). Usiagmultipoles decreasœ. computation timefor magnetostatic self-enerr,IEEEfip,v. Magnetich 27:4778-80. 547.Hirano,S.aadEayxskiz N. (2000). Acceleration ofLaBontels iteration by maltigridmethod,J- AppL.JWpa., 87, 6552-4. 548.Schrd,T., Fiscàer,R., Fîdler,J. andKronmûller, E. (1994). Twm andthr ' enhonalcalculations of rare- ' of remanence enhaacement earthbased composite J. AppLPhysn76, 7053-8magnets, 549.Tonomurw tionof Quxlinesby electron A. (1993). O holography, ' IEBB Trara.Magneticst 29, 2488-93. Micromag-' 550.Giles,K, Alexopoulos, P. S.andMansuripur, M. (199$. Glmcobalt-lumed netiœcf 1%A'n mediafor maaeticrecordsng, Conwni.' Phys.,6: 5>70. . 551-U%n1rx,Y.: Nnlgttm.niy Y. aadHxyaski, N. (1993). Microma&etic computationof damphgconstaatefec'ton switching mechaaism of a hexagonalplateletpnrla-cle, Japan.Z Appl.JWp&,32, 1101-78. . 552.Gome,R-D., Adly,A. A.,Mayergez,L D. andBarke,E. R. (1993). Magnetîc forœscazn-lmg tunnelmznicrœcopy: Theory and experimentp g Magnetics, 29, 2494-9. IEEEl'hczu. 553.AbnroG,A. (1999). Incoherent magnetization reversals in elongated J. M. M. .#J.,196-T,786-90. parttclœ, 554.Ahxroï, A. (1999). Critiqueon the numerîcalmicromagnetics of nano-particles: J. M. M. Mn203,33-6. 555-Guq G. andDellaTorre,E. (1994). 3-D micromagaetic modeling of domaincondgurations ia SOA maoetic matehals, J. Appl.Phys.,75j 5710-12. 556.Guo,Y.-M. aad Zhu,J.-G.(1992). intra-wall Aazsitionsbetween structuresin permalloytbin GIRK,IEEE Trcns.Manneticst 28, 291921. 557.'nonoloud, P-andMiltat, J. (1987). Néellinesi!l ferrioagnetic gvnet epiayers withorthorhombic anisotropy andrMted maaethation,J. M. M. M., 66, 194-212. 558.Labmtne, M- azdMiltat,J. (1S90). Vcomagnetics of strcmgstripe domains in Nico tàinflms, IEEEA'tzzu. Magneticm 22, 1521,-3559.Labrtme, M. andMiltat, J. (1S94). of Strongstripesas a paradîgm quui-topological hystereais, J. Xyyî.Physu;5, 2156-68. 560.Yun.n H. N. (1991). Domainwallstructureand , S.W. andBertrxm, dynamics ia thin Elms,IEEE Aczùs.Magnetics, 24, 5511-13. 561.Yuan,S.W. andBertram,E. N. (1991). Domain-wall dyzpmictraasitionsin thin qlnw, Plqs. &v. B, 44, 12395-405. 362.Yuan,S.W. andBertram,E. N. (1992). hkomogeneitiœ andcoerr thsn Rms,IEEEJè-lns.Magnetia, 28,291*18. dvity ofsoftpezmalloy 563.Yuan,S.W. andBertram)H. N. ($993). Eddycurrentdxmpingof thin 6lm domainwalls,IEEENczza. Magnetics, 29, 2545-17.
REFERENCES
299
564.Yuar,S.W. andBertramlH. N. (1993). Domain-wall dynamics Ln thick permalloy flms, J. Appl.Phys.,73, 5992-4. 565.Nh-lvt, J., Laska.j V., Thiaville,A. ard Boileau? F. (1988). Direct studies ofNéel(orBloch) l.inedynamics, J, d6Phys.(Pa.rîs) Colloq.C% 49,1871-5. F. B. (1992). Dynnmîcs of magnetic 566.Bagnérés, A. andHumphrey, domainwalls'withlooselyspaced verticalBlochlines,IBBBAuna.Map netics,28, 2344-6. 567.Theile,J.,Kosinsk,R- A. andEngemann, J. (1986). Numerical computationsof verticalBlochline motionin the presence of a periodic in-planemagnetîc feld, J. M. M. M.,62, 139-42. 568.Leaver,K. D. (1975). Thesynthesis ofthree-dimensional stray-feldfreemagnetîzation distributions, Phys.stat. sol.4c.), 27,153-63. 569.Mansuripur, M. (1989). Computation of feldsandforceson mxgnetic forcemicrœcopy, IBBBAcn:. Magnetics, 25, 3467-9. 570.Oti, J. 0. andRâce, P. (1993). Micromagnetic simulations oftunneling stabilized magneticforcemicroscopy) J. Wppl.Phys.,73, 5802-.4571.Tomlinson, S.L., Hoon,S.R., Farley,A. N. andValera, M. S.(1995). Fluxclosurei'nmagnetic forcemicroscope tips, IBBB T'mc.Magnûtics; 31, 3352-4572.Aharoni,A. andJnkubovics, J. P. (1993). Efect of iheMFM tip on the memsured magnetic structuze,J. Appk.Phys.,73, 6498'-500. holog573.Matteucci, GuMucdni,M. andHartmann, U. (1993)Electron microscopy raphyin thestudyoftheleakage îeld of magneticforce sensor tips,Appl.Phys.fcttu 62, 1839-41. 574.Hnyashi,N. andAbe,K- (1976). Computer simulation of magnetic bubbledomainwall motiop Japan.J. Appt.Phys.,1.5:1683-94. 575.Aharoni,A. andJakubodcs, J. P. (1990)Approachto saturationin smallisotropicspheres) J. M. M. M.,83, 451-2. 576.Aharoni,A. (1993). Theremanentstateof fne particles,IBBBT'mns. Magnetics, 29,2596-601. 577.Aharoni,A. (1981)Maaetizationcurve of zero-anîsotropy sphere, Z Appl.Pltys-,52,933-5. F. :.t Prinz,G.A., Krebs,J. J. andHathaway, 578.Itachfbrd) K.B. (1982). Veridcation of frst-ordermagnetic phase transitionin singlecrystaliron flms, J. Wppl.Phys.,53, 7966-8. surface 579.Aharoni,A. (1988). Nucleation i'na ferromagnetic spherewith n'nlKotropy, J. Appl.Phys.,64.16434-8V. PuBacri,J.-C.,Gueau,F., Gendron, F.,Perzynski, 580.Shilov, R. and Ferromagnetic Rnskher, Yu.L. (1999). resonarcein fetritenanoparticles : with uniaMal surface anisotropy, J. Appl.Phys;85,6642-7. 581.FkedldpD. R. an.dKoehler,T. R. (1989). Numericalmicromagnetics: Prolatespheroids, IBBB Acns.Mannetics, 25,3473-7.
300
REFERENCES
Y. andIwmsald, 582-Nxlrnmura, S.-i.(19:'4. Ma>ethationmoddsof Cofôr tàe of perpendiculn.r recording Crftlm computer simulatiôn magnetic . IEEE Trcpa. Magndics, 23, 153-5. procea, 583-Beardsley, 1.A. (1989). Rœonstructioa ofthemaaethationin a thin 'mrnby a combination ofLorentzmicroscopy andextemlnl feld measurement,IEEE D-azu. Magnetits,25,671-7. A. andAdam,Gh.(1971)584.Corciovei, A generalapproaGto thecalculadonof themagnetostadc eaergyin ibin ferromeneticfllms,&r. Atùm. Phys.,16, 275-89. 585.Arrott, A. S. (1990). Micromagnedcs of ultrat%x-n 6.1ms andrnrfnzte, J. Apnl..PAp:., 69, 5212-14. 586-Asselin,P. and Thiele,A. A. (1986). On the feld Lagrangians in mimomaretiœ, IBBBlliuas,Magnetics, 22,:876-80. 587.Sclzref,T., Schmidts, H- F., Fidler,J- audKronmilœ,E- (1993). Nucleation feldsaadsain boundariu in hardma>eticmaterials, IBEE Aapa.Magnaich29, 2878-80. 588.Bertrxm,E. N. aadZhu,J.-G.(1992).' Fundamental rpagnetizctfon in tltinJlmrecording medïa, in SolidStafePhyskseited by lwocesses E. Ehrenreich andD. Turnbull(Academic Press,NewYork), Vol. 46, 271-371. pp. 589.Muller,M- W. andlndeck,R. S.(1994). tntergranular e'xchange coupling,J. Appl.#?ù#:.j T5,2289-90. rev-mld in cobalt-phosphomzs 590.Eughes,G. F. (1983). Magnethauoa Elms,Z Apg #A&d., 54, 5306-13. 591.Schze:, T., Sehmidts, E. kn-,ndler, J. andKronmîiller, H. (1993). Nucle-ation of reversed at grainMundariu,J. Appl..Pà#s., T3, domains 6510-12. 592.MuramO., Saito,K., Nautani, Y. and Eayashi, N. (1993). Computersimulation ofmaaetizationstatesin a maaeticthinîlm consbtcoupledvxlns with randomlyorientedcubic inj of magnetostaticallz nntsotropy, J. An1. #?ù2M., 73,6513-15. ,$93.Zhao,Y- andBertrxm,E. N. (1995)MHomagnetic modeling ofmagia t-ured tbin4lm media,J. Açpl.'hp.s.,77,6411-15. neticanisokopy 594.Càaag, T. andZhu,J.-G.(1994). Angulazdependencû measurezment of individualbariumfqrrn-te recordingparticlesnear the sin#e domain size,J. Appl..Pà#s., 75, 5553-5. Y. andEayashi, N. (1991). cal595.UesaW Y., Nxlcettani, Micromagnetic culadonof appliedfdd efed on switching mechanism of a hexagonal plateletparticle,Japan.J. Apyî.Phys.,30, 2489-502Y., Eayashi,N. andUen.1rn., Y. (1991)simMla596.Nxk-ettani, Computer tion ofmaaetizationreversal of haxgonalplatdetparticle:. mehxnlsms TEfec't of matedalparameters, Japan.J. Aypl.Pltys.,30, 2503-12. 597.Uesalc,Y.j Nnkxtani, Y. and Hayuhi?N. (1993). Computation of switc%lng felds of stacked magnetichexagonal partide *1t,1tdiferent
REFERENCES
&1
heights,J. M. M. M., 124,341-6. 598.Fredkin, D. R.,Krmbler, T. R., Smyth, j. F. andSc-hultz, S.(1991). Magnetization reversal in permalloy partkles:Micromagnetic computations,J. Appl.Phys.,69, 5276-8.' 599.n'edbln,D. R. andKoehler, T. R. (1990). Numerical micromagnetics: Redanalarparuelepipeds, IEEE Tkkzrls. Mcgnetics, 26, 1518-20. 600.Koehler,T. R., Yang,B., Chen,W. audFredldn, D. R. (1993). Simuladonofmagnetoresistive in a smallpermalloy strip, J. Appl. response Phys.,T3,6504-6. 601.Köehler,T. R. andWilliltrns, M. L. (1995). Micromagnetic modeling MR.head,IEEE Tiuzu.Magnetics, of a singleelement 31, 263+.41. 602.Champion, E. andBertram,E. N- (1995). TheCN'eC't of inteGccdispersionon noiseandhystercisiu pprmxnent M.Relemaaet stabilized ments,IEEE Trc-. Mannetics, 31, 2642-.4. 603.Yuan,S. W. andBertram,E. N. (1994). Vcomagndics of GMB hpmzs, spin-valve J. Appl.Phys.,T5,6385-7. 604.Lu, D. andZhu,J.-G.(1995). Micromagnetic analysisof permanent magnetbiased narrow trackspin-valve hevs, IEEE Acas.Magnetécs, 31,2615-17. 605.Beech, R. S.,Pohm,A. V.andDaulton,J. M. (1995). Sknuhdoaof sub-micron GMPmemorycells,IEEE rnurl&Mngnetics, 31, 3203-5. 606.Russek, S.E., Cross, R. W.,Sand=,S.C.andOti,J. 0. (1995). Size Gectsin submicron GM'Rdevica,IEEE Acrzs.Mannetéa, 31, Nœe/Ag 3939-42. 607.Frvlcin,D. R. andKœhlcr,T- R. (1987). Numerical micromagnetics by theSnitedementmethod,IEEETrcnd.Magnotîcs, 23, 3385-7. 608.Koehler,T. R. andFkekin, D. R. (1991). Mictomagnetic modeling of p-nlloy partielœ:Thickness eects, IEEE Tmns.Mzgrtetécs, 27, 4763-5. 609-Chen,W., Dedkn, D. R. andKoehler,T. R. (1992). Micromagnetic stndiesof inter ' permnlloypartîdes,IEEETkandMagnetia,28, 3168-70. 610-Ynan,S.W., Bertrltrn.E. N., Smyth,J. F. andSchultz,S. (199$. Sizeeectsof switchingGelds of thin permalloy particles,IEEE Trcrls. Manne6cs, 28,3171-3. 611-Tbiaville,A., Tomc,D. andMiltat, J. (1998). Oncorner slnrnlarities in micromagnetics. Phys..sfûf.sol.(a),U0 125-35. R. R andWelland, M. E. (1999). Analyticmicromagnetiœ 612.Cowburn, 86, 1035-40. of near singledomainparticles,J. Appl..Phv,s., 613.Schabes, M. E. and Bertram,E. N. (1988). Magnetization procesin ferromagnetic cubes,J. Apf. .FW!p., 64, 1347-57. 614.Usov,N. A. aadPeschany, S. E. (1992). Modelingof equlbrinm magnetization structuresin :ne fmomagneticpartideswit; uninvinl anisotropy, J. M. M. M., 110,L1-5.
302
REFERBNCKS
615-N-elk .&.J. aadMprrill,R. T. (1998). ThecurHgnudeadon mode ...'.' iu a ferromaNetic cube,Z Appl..FWv&, 84,4394-402. 616-Hubert,A- audRave,W. (1999). Systematic analysks of micromap. ' netic switching Phys.stat. sol.('iJ, 211,815-29. processœ, 617.Schabes, M. E. (1991). MicromMnetic theou of non-nnsfnrmmagz. netizationprocesses izl magneticrecording particleyJ. M. M. z@k 95, 249-88. 618.Spratt,G-W. D., Uesnlzt, Y., Nnbxtzm'l N. (1991). , Y. andHayashi, 'I'wohteractingcubicparticles: Efect of placemeat on switcbl'ng feld andmaaetizationreversalmechanism, ZEB Trcas.Magnztics, 27: ' 4790--2. 619.Uesau,Y.j Nxlcettnn-l, Y. andHayaslli, N. (1993). Computez simulation of s'witching f eldsaadmaNezation statesof interactingcubic particles: Cascwithfeldsappliedparallelto tke easyaxes, andparalle,l . to the hardaxes?J. M. M. M., 123,209-18lnd 337-58. Yu-B- andPescbany, 620.Usov? N. A.) Grebenschikov, S.E. (1993). Criterionfor stabilitof a nonuniform micromaaetic state,Z'.Phs.B, 87, 18>9. 621-Aharoni,A. (1999). CurliagreverOlmodeia nonellipsosdal ferromagneticparticles, J- AppL#A>.,86, 1041-6. 622.Gadboks, J- audZhu,J.-G.(1995). Efectof edgeroughness in naao- . '. scalemagnetic bazswitehing, IEEBTm-. Magnetic.h 3113803-4. ' 623.Komime, To Mitsui,Y. andSltG'lnK. (1995). MicomaNetics of soft . thl'nGlmsin presenœ magnetic of defects, J. Appl.Physn78,7220-5. 624.Jiles,D. C. (1994). Dequency dependence ofhysteresis mzz'ves in con- . ductingmagnetic material,J. An#.Phys.,T6,5849-55. 625.Schrez, T. aadFidler,J. (1999). of nanocomFinstaelementmodeling positemagnets, IEBB Trcns.Magnetics, 35) 3223-8. 626-Dkunaga,E., Kuma,J. aadKanai,Y. (1999/ Efectof strengt;of intergrainexGangehteraction on magnetic propertioofnanocomposite 35, 3235-40. maoeta,IBEED'czz:.Magnetics, Yu. P.,Mlmsawe,E. S. 627.Cofey,W. T., Czotkez's, D. S.R, Kalmykov, andWazdron, J. T. (1994). Exactanalyticformia for txe correladon t''rne of a single-domm-n particle)Phys.zeu.B, 49, 1869ferromaNetic 82. 628.Lyberatos, A., Earl, J. andCkantrell,R. W. (1996). Modelof Gerrevlmnl in thin fllrnnof amophous mallyactivatedmagnetization rarer eartbtransidon-metal alloyslPhys.&p. B, G3,5493-504. 629.Usov,N. A. (1993). Ontheconceptofa sinse-domxin nonelllpsoidal pnrside,Z M. M. M.,125,E7-13. 630.Usov,N. A. andPeschxny) S.E. (1994). Flowerstatemicromagnetic structre in fne cyliadriYparticlœjJ. M. M. M., 130,27,$-87. 631.Usov,N. A. andPescbany, S.E. (1994). yalower statemlcromagnetic structuresin a Sneparallelepiped aada fat cylinder,J. M. M- M., 135,
REFERENCES
'
303
111-28. 632.0.m.rr,R. andSealiz,S.(1997). Switœng feld studies ofindividnal singledomaiaNi columnsJ. Appt PAvse, 81, 5458-60. 633.' Wacquant, F.) Denolly, S.,Giguerre: A-, Nœières, J.-P.,Givord,D. V. (1999). axdMazauric, Magnetic propezties of naaometicFe wires obtained by multlpleextrusions, IEEETrn-. Magnntics, 35,3484-6. 634.Lederman, M.,O'Barr1 R. andSdmltz,S.(1995). Fixperlrneatat study ofindividualferomagnetic sub-micron cylinders, IBBBTmas.Magnetica,31,3793-5.
364
RBFBRSNCBS
AUTHORWDEX Then'ambers tu squarebrvlretsare therderence numbers. TEeyare followedby the pa> numbers. Abd-Elmeguid, M. M., (46) 58 Abe.K., (574) 252 Abeledo, C.R., (218) l0: Abolmxnn, tj., I1sl)91. Abralmrnj 217,221, (478) C.$ (477) 217,2l8 Abrahxmm, M, S.,(45) 58 Aclzer.O.j (4731 216,254, (474) 217, 254 Adxm,Gh.,(285) 144,(584) 257 Aiy, A. Ao (552) 249 Afanas'ev. A. M., (5132 232 82y(95)82z Aharoai,A., (5)19, (921 89, (97)82, (110) 88, 1146) 90,178,187,255,(161q 91,1082 94,95, (173) 95,(1742 95, I170J 95. (178) 95, I180J 95, (177) 1K, 225,2309(227) 102,103, 119,(253) 125,225, 105,(244) 230,231,241-244, 25% 25% (270) 136,137,14% 173,212,220, 14% 222,239, (271) 136,(273) 137, . 137,(288) 149,151,15% (276) 1,54,1.$8, 173,240,257, (290) 152, (2911 154,2371 260,(292) 158, (295) 163-165, 1809(309) 166,167,:.712322) 170,171,(323) 171:172, 180,244,245,250, 180,(334) 180,181,221, (333) 180,:336) 180,(337) 1.80, (335) 244,245,2511(344) 186.203, 186,2671(349) 187,222, (3451 194,(359) 13501 187,2=, (358) 194,200,212, (360) 195,197, 200-202, 214) (3621 195,19% 200,201,(365) 202, (373) (363q 204,20% 212, (382) 204,207, 209,21p, (392) 208-212, 233, 209,210, 236:25%2617(415) 210,(422) 211,(424) 211, (418) 2141(462) 214,230,253, (461) 2549(4635 214, (472) 216,217, 217:226, (477) 2171227.1 (47S) 218,219,221, (489) 220, (4.871
221,(490) 221 (491J 221,(501) 223,224,(502) 224,(503) 214, 22%(506) 22%(50$230.252, 234.235, I5llq231,,232, (51.6q. 261,(522) 237,(525) 241,(527) 241924% 246,247, 250, (540) 254,(553) 249,255,256, (554) 249,263,(572) 252, (575) 253. 254,(576) 253,261:266, 1577) 254, (5791 255,(6211 265 Ah-tlea;E., (:16) 88 Akira., T-, :183) 98 Akoh? E., (183) 98 Mdred,A. T., (3G) 44) (4% 58?63 Aluopoios,b. S., (,550) 249,25? All=?G.A., (457) 213 Mvarado, S.F., (56)61 Amemt, W. S.j (470g 2l6 Anbo:E., 2377) 204 AndetmmP.W-, (9)32 W., (533) A'adrëz 243 24%(534j Appel,W., (5M) 243 S-. 529) 46 . Arajs, 1e., B. E., (49) 58,59 Arzott,A-, (65)68.81) (66)68, (901 8l, (91) 81 Arrott, A. S-, (501 58,81, (1591 91, 1:$8,(3312 213, :277) 17% (458) 257 214,(585) (463) 101 Aruztarkavalli, T., (222) Asselîn.P-, (586) 258 Asti, G.. (164) 9l: (1.67J 91, (168J 92
K., (143) 90,91 Baberschke, Bvhmau,K-, (394) 208 255 Bxri, J.œ.. (580) BxalxzE., (233) 105 Bagnérl,A-z (566) 251 Rsaceng., u., (2ayzps 211,(429) 211, maldwln, J. A. Jr., (428) 2l1 (430j Baltenspcger, -W'.)(2721 137,:460) 214: 2l4 (461J Balucani, U., (751 76
306
AUTHOREOM
Bssv-xndbarrm, 5. M.j (169J 92 Baras,P., (542) 257 24% Barbaza, B.. (456) 213 Bardx,D. L, (30J 46 Barnaâh J-. (140) 89, (486) 2l8 Baron,m B., 2147) 90 L. C-, (lo5j87, (l06q 87 Bartek Bm-'m C.P., (198) 101,(367) 10%(220) 203,(413) 209,2l0 20% Beardsley, 1.A.y 2583) 257 Bodqer, J. A-, (219) 10l Rvler, J. 1-, (405) 20B.:447) 213 Beeby, J. L-, (30) 44 Bey , m S., (60% 259 89 BenalttA. J.z(141) Benoit,A-, (451) 213,(4.56) 213 Berger,A., (302) lM. 24& Bergboh, m, (153) 91 Bergter, E., (153) 91 Bœkow D.V., (228) 102,l05 Bekowie,A. B., (206) 100.(445) 213 Bea'tr.una H. N., (210) 100,(35:)191.. 213. (444) 213,(560) 251. (+43J 251,(562) 251,(563) 251. (s61) 251, (588) 258,259,264: (s64) 259::603) 259, 25%:602) (s93) 260-263 25%:613) (6101 Bsllms, 1,M. Lp (219) t01 Birgeneau, R.J., (72) 76 Bishop,J. E. L., (235) 108 Bissell,P. R., (163) 91 Bloomberg, D. S., (277) 138,(331) l78 Blueo J. L., (327) 172,244,(330) 173, 252,(546) 247 Bwlker,P., (2032 100 Boûeau, 171., 247p257,(565) 251, (5421 262 Bolduc, P. B., (82) 78,79 Bolzonit F., (l6TJ 91. (168J 92 O., 14:/) 21O Bfvtaqioglo, Bovier.C., (25) 44 Braun,E. B.. (35% 191, (364) 202, 214 . (460) Brebeck,0., (460) 214 Brommer. P.B.. (94) 82 Brott,K 1,.,(238) l08 Brown,E. A.. (10) 33 Bxpwn,W. F. Jr., !1)1, 110,129,130, 149, (103) 87, (145) 90,135: 137,138,141,145,164.17% 178, 181-183.(171) 94, (172) Q4, 129.(266) 131,(268) 133, (255)
138,(289) 150.183.(301) 163, 167.238. (&4)164.263, (338) 181,182. (3411 184,216,(353) 188,(355) 188-193. 18%(354) 206.(423) 211.(442) 213, (383) 225,226,229, (508) 226, (507) 228,229,(520) 237,260,(521) 237 Broz,J.S., (460) 2l4 Brug,J. A., (258) 130.(265) 130 Bryaut,P., (2461 123,124 Buessem, W. Ru (3971 208 Buiocchi, C. 7.j (451 58 Burke,B.Ra (5522 249 Ra (168) 92 Cabnxxk
Cxln,W. C.?(4855 218,221 caz,M.t (441) 213,259 46 CilawayàJ., (32) C
Z. J., (528) Gende.m 246 24%25411 nhxmherlim m M.k(232) 105 E., (602) 259 Cbxmpion, C--m, (342) Clzang, 186, (3524 187, 214,(488) 218,(494) 222 (459) Chaug, T., (451) 213,(5941 259 Citautwmj m W., (163) 91, (196) 99z 265,(211) 100,(213) 100,(2251 101,10% 103,105 Chapmau, J. N., (300) 163,(330) 172, 252,(510) 23:
Charap,S.H., (491 1:4 5%5%7311 Charles, S.W-, (203) 100 Châtelain, A., (219) l01 Chen,Du-xing,(258) l30 Chen,J. P., (217) 10l Cùen,W-s (5321 243,244,24.7,(6001 259,(61)9) 259 Clzenz, L.-Z., :156) 91 Cherkaoui, 213, (452) 213 R,, (437) Y Chou,S. Y-, (5121 232 Chow,c. K,, (432) 2l2 89,90 lXnal,M., (1421 Coakley, K. J., (327J 172,244
AUTHORWDEX
.
307
Cochranr J. F., (792 77,9%(159) 91 Diozme, G-F., (15% 9l, (457) 2l3 M. :F'.t1129) 88 Coey,J. M-D., (200) 100,22%(351J Doemer, 230 18'r Inanet,D. M,, (5l0J Co&ey, W. T., 1174 Döring,W., (275) 137 95 9%(176) c'oh0, B. m , (26% 131 Dormxnn , J. 1,., (18$99,100.(437) Coho,M. S.?1122) 88, 1125) 88 213 21.% (452) Cooper, B. a., (1411 89 Dove,D. B., 12613 l30 Doyle,W. D., (132) 89 Coopec P.V., (328) 173,(3292 l73 Coxiovei, A., (285) 144,f584) 257 Du,Y.-wo (221J l0l Cozen, lk. L., (132) 89, (260J 130 Duft-, 48 K. J., (382 J. >n'.,(31) Dumrenll 33 46 , K.: (13j Cornwelk Cowburn, m P., (612) 260,264 Dualop, D. J., (181) 97, (182) 97,100 Crx-tlc, D- J-. 152) 60,141,163,165, 232,233 (5141 173:(329) 173 Darst,K.-D., (2415 116 (3?A Duvaly E., (25) 44 Cregg, P-J., (1751 95 F. J.. E401 52y56-58, Crespo, P-, (2s) 44 Dyson, l09 Crew,D.c., (226) l02 Czxm4vneyerx D.C-, (243J 1l6 Eagle,D. :F'.,(4344 2l2 Czws,R. W.y (606) 259 Fadware, D. M,h(142) 89,90 Crothem, D-S.F., (175) 95 Edwards, P.L., (421) 2ll Ctlller,G.J., (428) 211 Bgxmi,T., (2841 143 Blsrzm,41'.o1n 95, gl80) 95.100, , 1., (178) 103 225,230, (462) 214,230 Dulberg,E. D., (229) El-mlq M.. (213) 101-103, Dale,B., (204) J100, (225) 1.00 l05 DaltoaN.W., (4;14, 18 , Engel, B. N., (138) 89, (139) 89 Duu, H., (533) 243 24%(5%) Engemann, J-, (567: 25l Dxm-elst J. M.,1215J 1* 48 Enrle,.F,.y(2294 103 . D-, T. P., (38) pnlrln, .it. Jv (514) 232,233 Daehton,J. M., (6055 259 Rn'x.U. (:$8% 207 Davio,K.) (203) 100 Brdœ,Pw (15)33 Davl,P. :F'.,(385) 207 Briclfson, R.P., 12% 44 deBiasi,m S., (199) l00 DeBlois,R-W-, 158) 6l, 14131 209, 247,261,262 210,1414) 2l0 Fabian, K., :5452 20% Dedezicàs, H.z1:149) 89 2l3 nlco, C.M., (138) *9, (13% DedeHGs, P.H., (26J 44 Falicov', L- M.z (7:J77 deHeer,W. A., (219) l0l Fharlez', A. Nu (571) 252 deJongh, L. J., (731 Felamxnn 63 76,77 , D., 161) DezaTorre,E., (259) 130,242, (262) Fea-nandez A- A. X..,(l*J 7.* 130, (263) :3c, 242,(481j 218, Farz-az'i, J. M., (I50J 91 218,221,(5381 46 245,(555) FertjAo (331 (482) 250 248, (5871 Fidler,J., (404) 208,(548) De-lV-cn-hlo, m M., Is431 247 258, (591) 266 25%(625) De-moktitov, S., (12! 217, 33 FMvet,F., (473) 254, (4741 21% S., (6332 267 254 Deaony, D4portes, J., (396! 208 Flévewvmcoty F., 1473) 216:25* (474) 217,254 Desimone, A., (2472 123 DeWxmo,m E., 1469) 2l6 H., (193) 103 9%(230) Fige-l, Dîetzich, H.B., (112) Finea M. E., (186) 88,208 9%99 211,(427) 2ll Fiorani,D., 2189) 99,l0D,(43.21 213, Dietze,H. D., (425) D-zrm-trov, D. A-, (332) :.78,234.:(3484 2l3 (452j 187,25,5 Fiscàer, P. B., 1512) 232
AUTHOR &EX
308 Fl=her,m,
248 (548J
Fisher, M.E., (6C6%l23
Planders, P. J-, (15:)91, (445) 2l3 Forl>.r'-', F., (361) 195,197-199 Fowler, C. A. Jr-, (51.7) 236 216.(467) 2l6 Frait,Z., (466) 2l6 &aitovâ,D., (46% R-anse, J. J. M., (149) 91 n'edkln,D. R= (210) 100,(441) 213, 259,1455) 213,(529) 243,248, 253,254,(530) 243,247,(531) 2431 248,253,254,256,25% (532) 256, (598) 243,244,247,(581J 259,(6071 259,(599) 259,r6ô0) 259,(608) Q59,(6091 259 n'-rnan, A. J-, (:0)77y89 R'ek,& H., (161) 9ly108. (356) 189193,200 A., El58) 91h216 Diedmnnn, Friedman, N., (116) 88 k'Yytp B.M-, (5171 236 M-s(1282 88 PURMG H., (626) 266 n'lcnaagay H., (536) nzkushlmw 245 204 F'ulmek. P. F., (379)
Gadbois, J., (627) 265 Gangop-Hhyay, S., (204, 1t% ) 100,(205) GaZ'CIG N., EQ5) 44 Garcla-Arribas, A., (169) 92 Gaunt,P., :191) 99,(197J 99,:2241 101 Gaeau,F., :580) 255 Geîrsng, B., (1441 90 tn.rm dwm, y'., (s80) 255
L. J., (176) Geogheram 95 H-, (109) Gessinger, 88 Gracomo, P., :267) l3l A. Ao E44) 58 Giardius Gibson,G-A.. (4531 213 Gi-en, A- A. v. d.z(184) 98 Gipzerre, A.. (6331 267 Gllu, m, .(550) 249,257 Givord,D., (396) 208,(633) 267 Goedmhe, F., (492) 222 Goldfarb, E- B., (1S51 98, (258) 130 Gome,m D., (5524 249 Goto.K.z (%8) 208 20%(389) GrMmxnn, U., (153) 9l, (154) 91 C.D. Jr., (284) 143 Grahxm, Grebensnhz-kov, Yu.B-, (620) 264 Green, A., (319) 169 62 GHGths, R.B ., (594
Griinberg, Pn Ll2)33
Grfmterg, P.,(4861 218
Gubuov,V. A., (24) 44. Gvggenheim, H. J., (402) 208 Guo,G., (555) 250 250 GuorY.-M.,(556) GyorràE.M., 576) 77,t23
Rxd?-ipxnxyis, G. C., (204) 1(D, (205) l0l 10%(217) Hagedora, B.F-, (236) l08 Hxbn9A.? g251) 12s Hall,E. L., (445j 2l3 HauyD,z(378) 204 E'anedav K., Il14J 88,208. (201j 100, 226,(202! 100,2264(39,% 208 HnrrlMtbC.G., (3llJ16%(318) 169 I'Iartmxnn, U., (306) 165. 1.6% (3071 236,15735 252 (519) HarvemR.t., (4s)58 Hathaway, K. B., (578) 255 Eauser, H.y(280) 141,(281) 141s(3792 204 Haynth-v, E., (1281 88 Hayashi. N., (1352 89, (2992 163,164, 240,l,44, (535) 245,(536) 245, 247(551.) 249.25%(574) (5474 252, (592J 259, (595)259, 259,(5971 259,(618) 263, (5961 263 (619) Hayashi, T., (183) 98 Hebbert, m S:, (543) 247 Hegedus. C. J., (259) 130,242 Eeinricl,B., :502 58,81, (79) 7%S0, 91, (2771 135,(4631 214 (159) Hellenthal, W., :87) 79 Heller,P., (64) 68 Helmans J- S., (2721 137.(460) 2l4 Hempel, K- Ao (166) 91,(449) 2l3 Eendrsksen, P.V%(203) 100 E'mnlozb M., :13)33 Eernzt'n do,A., (251 44 Eerdng,C., (21) 42.44z(28) 45 Herzzea-, G-, (:69) 92 Heubelm-r, R., (195) 99 Eiblo, Mo (121) 89 8%(1371 Hicken, R. 5.b(1q0q 91 N-deinger, H. R., :4(xj208, (426) 211, Ql8 (480) Rirai,H-, (2404 ll5 mrano,S., (547) 247 Eirsch,A. A., (116) 88
AUTHOR MEX Ho,K.-Y., (156) 91
Eoare, A.,
91 (163q
Hogmnnn 89 : F'., (1371
Hofltman, H., (300) 173,252 16%(330) R..W., (85) 79, (1471 Hofrrnan, 79, r86) 90 Holstein, T-, (39) 5l, 52,l09 Holz,A., (431) 211,233 Honda, S., (3901 208.(409) 209 Hone,D. W., (71q 76,77 Hoole,H., (539) 246 Hoon,S.R-, (57:1 252 Hoper, J. H., (133) 89 Hoselitz, .K.. gll3q 88s91,208 Hosokawa, Y., (409) 209 Hothersall, D. C., (3131 169,(3141 l69 Hsieh,Y.-C.P04831 2l8 Huang, 204 M., (380) Huber,E. E-Jr., (1221 88 Hubert,A., (248) 124,168,169, (249) 124,168,169.225, (495J 222, 247,259.262, (545J 247, (5441 261,262,(6162 262 Hughes, G-.F'.,(590) 258 F. 4-, (324) 172,244,247, Humpbrey, 25l (566j
Huysmans, G-X'.A.,
212 (433)
ldo,T., (3681 203.204 O., (233) l05 lglesias, . lida,S.s(207) 100 Inaba,H-, (128) 88 Indeck., R.-S., (58% 258 Inoue,T., (535) 245, (536) 245 Isaac, E-D., (531 60,61 Isbida,M.p(128) 88 Isbii,Y.p (282) 141, (283) 141,225, 186,225,(376) 204,(377; (346) 204, (464) 2l4 Ivrmov, B. A., r5051 224 S-I.,(436) 2l2 Iwasaks Iwaspka-, S-h-,(582) 257 Jacobs, 1.S= :198J 100,(367) 202,203 Jakubovic-sy J- P., (2531 :.25,22% 230, 231,241-244, 253,(278) 141, 25% 171,172, 170,171,(323) (321) 244,245,250, (334) 180, 18% 181,221: (335j 180, (336) 180, 180,244,245,2511(49:1 (3371 224, (503) 221, :502) 224,225, 230,252,(523) 239,(572) (5092 252,(575) 25%254
309
Jaualc, J. F., (308) 165 Jatau, 2.A.t (481q 2:.8,(538) 245 Jnes., D- C., (624) 266 87 Jirlk, Z., (102) Jofe,1-,(192J 99, (195) 99 Jobnson, 1f.E., (129) 88 Jolivet,J. P.j (437) 21.3 JoliveqJ.-P-,(452) 213 Josepb, A. L, (256) 130, (257) 130, l30 (264J JudsJ- H., (380) 204, (451) 213 Kadar,G., (259) 130.242 V., 7511 91 Kambersk#, Kanai,Y., (626j 266 Kaneko, M., (371j 203,204 Kannaz,K. R., (222) 101 Kaplan,T. A., (771 77 Kare, W., (2.79) 95,100 Ifauynma,T., (41lq 209 Kawakatsu, H., (3151 169,17:.,(3171 l69 Kelley,M-1.r.,(55) 61,172 88 Kench,J- R-, (124) Kez'ns D., (440) 2l3 Ket'n,D. R, (441) 21:$,259 Kiz'a,T., (128) 88 Kircbmayr. H. R..,(61) 63 Kirachner, l72 J., (325) Kishimoto, M., (412J 209 Kittql, C., (279) 14l Klabunde, K. J., (204) 100,(205) 100, 101 (217) Klein,R., (542) 257 24*6 Klemaa,M., g1011 87 Knappmann, S.?(144) 90 Kneller, B. F-, (190q 99y2l2 Knowles, J. E., (369) 203,213,(370) 203. 204,(372q 203,204, (374) 204 Koehler, T. R-, (441) 213,259,(529) 243, 248,253,254, (530) 243,247, 243,248,253,254,256, (531J 259, (532J 243,244,247, (581j 256,(598J 259,(5991 259: (600j 259,(6071 259,(608) 25%(601) 259.(6091 259 H-, (114q 88,208, (388j 208: Kojima, 208,(3911 208,(398) 208 (3891 Komëne, T., (623) 265 Komoda, T., (128) 88 Kondo,1f., (240) 115 Konishi,S., (409J 209,(5041 224 Kooy,C-, 2387) 207
31Q
AUTHOR PYEX
Korvlr-x, J-, (1.79) 95,1(i0 'V'-, 222) Korenrnaa? 44z46 Konln'x!.z6a ; m1 (298) Kom-o
168-170, 238,239,243-245 :310) Labrane? M., (558) 251,(55$251 :. &, :r4) 137 Lagaris? Eaizut, J. A.? (206) 100 Lxm, 5., (4382 213 taudaujL. D., (63) 63,65j67 Laog,Pu (26) 44 251,262 LaxkxjMn (5651 Leaver. K. Dp (31.1) 169, (319) 16% 251 (5681 M.j (4532 Ledcrrnau, 2131(454) 21% 267 (454213,(634) LeejCvM., (459) 214 Lee,B. L.z (821 78,79 Lee,E. W., (2351 108 Iepeve'ry m Au (107) 87 R., (3%) 208 I-< F., (245) 123 ImIZk Lcviason) L. M., (223) 101 Izevinsem-n, II- 5., (402) 208 P. M., (33) Txwvy, 46, (34) 46 1,ew1,B., El17) 88, (120) 88 Lv-Mhtensêm-n, A . I., (24) 44
Liedtke. lt.. (417) 210 Lahitz, B. M.) (63) 63,65,67 Linde-roth, S., (203) lX
N.u,1. P., (351) 187,(493) 222 Livagey J., (452) 213 Livlngslon, 101,(40F) 208, J.D., (220) 209 Odder,C., (151) 91.,(433J 212 (mttîs,D. K., (229) l03 Lu, D., (604) 259
Lu, E.-x.#(221) l0l LubawM.j (223) 101 lmbotvlqy', E. &, (190) 99,212, (366) 212 20%(435) Lyberatos, A., /96)99j265,(2T1) 100, 100j (225) 101-103, 105 (212)
Mccltrrie,m A., (4X)208,(448) 213 McpadymLt (450) 213,(456) 213 Po (13) 33 Masn, Mx'zllyy D.y :45:1 213 21%(456) Mnll-knqmn, 7.C., (239) 112, (340) 18% 212y(443) 2î3 (434) 2:.%(444) A. P.j (1.11) 88 Miozemoë Mnosuripur, M.. (330) 173.252, (483) 218,(550) 257)(5692 252 24% E. A., (513) MaayMn. 232 . V. I., (408) 20S Martliztaa Martmek,G., (M1!116 Mxv-no-ra, S., (121) 88, (131) 89 Kfzmhiyama. 76 E-, (741 Mxqstnlo,C-V., (274) 217 13'62476) A/Gf'hom J., (142) 8S,90 MatsomM., (22% l03 Matt/mzcci, G., (5'5.1) 252 Maugîn, 87 G.A., (104) Maye,Jœcph Mwaz'd,(42) 55 Mayer, MariaGoeppez't, (42)55 Mayergoyv, 1.D-, (552) MS Mazauric, 261 M., (633) Mazjewakil A.z (505) 224 Mendey E'.K, (306) l65 Mcrgcl,D.p:4841 218 Mermln, N.D., (701 'r6,77 Mernm 262,265 , R.T., (6154 M., (1282 88 Micbijima, Mickiitz,H., (46) 58 Middelhoek, S., (294) 163 Middletony B-K, (393) 208 Miedemao A. m) (731 76,77 239,244, (557) Miltat,J., (524) 351, 251,(559) 251, (565) 251, (5581 262,(611) 259 N., (269) 136,137::296) 163, Minnajal 195,197-199 (361)
AUTHORHEX )
Mlv-zxmnnnl-, M., 1129) 88
Mitchelly R..K.p (4061 208 Mitsui,Y., :623) 265 Mitui,T., (ll8J88 MizjajJ-, (193) 99 Mizuno,T., (377j 204 Moutroll,E.W., (69) 75z76 Mook,H. A.I (37) 47 Morelock, CwR., (435) 2l2 Mori,N-, Ll00j 85 ' Moriyap T., (1.4) 33, (16) 33 A. E., 1201) Morrish, 100.226, (202) l00p226:2255) l29 Mlrup, S.a (187) 98, 100,(203) l00r l00p257 1214) Moskowitzo R., (262) l30 Moyssides, P. G., (254) l26 Mrymsovh 0. N.r (244 44 Muccini,M., (573) 252 Msllery K.-H.y(351) 187 Muller,M. W., (465J 214, (589) 258 Mûller-pfezfer, S., (5371 245,252 Mulligan, B.p(176) 95 Murata,O., (592J 259 Myrtle,K., :159) 91 Nagai? E., (396) 208 T., (128) Nxlrxbayashi, 88 Nalcac, E., 1282) l4l Nn.lexmura, E., (1834 98 Nxknmurw Y., (582) 257 Nxkxtaa H., 1504j 224 Nn.lextanit Y-, (299) 163,164,240,244, 245, 1551) 245,(536) (535) 24% 259,(592) 259,(595) 25%(596) 259,(618) 263,(619) 25%(597) 263 Nwtoli,C., (2452 123 Néel,L., (6)2l, 27;28,31 Neem=,E., (415) 209,21Q Emj1432J 212 NembacK Neagebauer, C.A., g81) 78 Newell,A. J., (6151 262:265 Newell,G.F., (69) 75.76 Niez,J. J., (5422 247:257 Nssuida.; K., (377) 204 Noaku)J-B-, (65) 68,8k?(91) 82. M.p(437) Nogués, 213:(4524 2l3 Nolan)R.D., (113) 88,9lp208 Noordermeerh A., (510) 230 44. Nordstrôm? L., (26) Nozièru:5--P.,(633) 267
3l1
Nunes, A. C., (216) l0l O?Barr, R., (455) 213, (456) 21.3,(632) 267,(634j 267 Oda,E., (240) ll5 O1De11, T. E-j (2861 147 Oelmann, A., (417) 2l0 Oepen, H. P., (144) 90, (302) 164,248, l72 (325) 100,(225) 101-103, O'Grady: K-, 1213q l05 Ohkosb.iy M.zg4llq 209 Olsonz A. L., (293) 163,l64 Onishchenko, E-V., (513) 232 Ozdshi; K.p(54) 61 88 Ono,Ea (128) Onoprieakoz L. G.I (395) 208 Oredsont H.N.y (2931 163,l64 Orozcot E-B.j (456) 2l3 91 Ortb.y Tb..z(163) Osbomy J.A., (242) ll6 OtipJ.O., (5701 252:16061 259 OucbijK., (436) 2l2 Ozn.lcz213, (4542 213, (453) , M., (450) 213,(456) 2l3 v., (204) 7.00 Papacftkwzziou,
Paretip L., (162) 91 Pattoâ,C.E., (1854 98 Pelzl,J., (163) 91 Perlov,C-u., (482) 218,22l Pet-zynski, R., (580) 255 P<xnrhanyr S->)., (526) 241,248,266, 261,(620) 264:L6301 266, 1614) 267 (631) Petersp A., :163) 91 Pfeuty, P., (68) 69 Pierce,D. T., (55) 6lp1727(326) 172, 244, (3272 172:244 PinipM. Gw:75)76 Ploessl, R.p(300) 173,252 16%:330) Pomerrmtz, M., (88) 79 259 Pohm,A- M.t (605) Popma, T. J. A.t (151) 91 Por,P. T., (510) 230 Potapkov, N- A., (471 58 Potter,H. H., (2)3 Prange, R. E., 122) 44,46 P., (437) 213,(4521 2l3 Prenq Prima.kof, H., (395 51,52,l09 Pn-,a=, G. x., (578) 255 Puchalsloz, I., B., (l30j89
312
AUTHOR MEX
Tbugb, B. W., (49)58,59
Sato,T., (2404 l15
Sawatzky, G.A-, (6B) 63 241, (613) Schabes, M. E., (525) 260263 26% $17) Qvbford,F.J., (578) 255 Scheiufeiu, M. Ru (55)6:% 172, (326) p.'aa o, G.T., (150) 9l, (160) 91y(468) 172,244: 2327) 172,244, (3301 21.6,(4701 216,(496) 223 173,,252,(546) 247 Rzu-lrbe.r, Yu.L., (5801 25& Smblgmxonj B., (M4)130, (49% 223, 'Rxmstyck, 1f., (544) 247,259,262 223,224 (499) Raacourt,D. G-, (215) 7.00 213,259 Schmid, H., (440J 21%(441) Rao,C. N. R., (222) 101 Schmldts, E. F., (587) 259 25% (5911 W., Rathqaau, G. 91 (149) Schnekder, M., (537) 245,252 S., (539) 246 Nxtnajev=, Scbmolz, A., I6lj 63 Ratnxm,D. V., 397) 208 C.z(561 61 RaverW., (544) 247,259,262, (545) rehBnezzberger, Pmhwm, T., 248, 258, 1I.T-, (1581 9lI 2l6 Qu>oh,
262 247,261,262)(616) Ravel,E.. (473) 216,254, (474) 217, 254 Rayl,M., (4b!58 Reale, C., (831 7%79 172,244,247 M., (324) Rsxqidal, Roveldt,M-T1z..(510) 230 Rettori,A., (75) 76 P.Mu (71) 76,'r6 (1341 89 Richvds, Richter, H.G.. (112) 88,208,(479) 2l7 Rice,P., (570) 252 Riedel, E., 23031 l64 medi,P- C-, (62). 63 meger,M.. (399) 208 mslztozu S.A.: (441) 213,259 101 Rodbell.D. S., (220) Rodé,D., (210) 100 33 Rodmvq,c., r13) Roos,R., (449) 213 Roshko, 82 R- M., (96) J. J.M., E510J Ruigrok 230 Thwse-k, S.B., (606) 259 RramP. Jw (327) 172.244
Sacchi, G-, :361) 195,197-199 S 224 , K. A., (505) 259 Saito,K., (5921 R.*.!rx, C., (386) 207 Sakuma; A., (234 44. Sakttrai, M., (155) 91 Sakarai, Y., :54) 61 Sakutaro, T., (2071 100 S - , C., (450) 213,(456) 213 -. sxmao 58, g1:7) 87 , G.A., (44) Sxmboagi, T-, (1lE) 88 Sanders, S. C.. (606) 259 Sako,M., (282) 141, (283) 141,225, 204,(464) 2l4 (376)
(5VJ (58% (591J
259, (625) 266 S.B., (1241 88 Schtudq Schaler, F., (420) 210 rszmnnery ;. x., 1122 :.k% >hultz, S., (5%61, gz140l 213, (441) 213,259, (4m) 213,(453) 213, 213,(455) 213,(456) 213, (454) 2671 259,(6101 259,(6321 (598) 267 (634) Scbnl'z, B.. (143) 90.91 L. J-, (2971 247 Schwee, 163,(5431 Sdzweninger, P-, (3l2J l69 Scott,G.G., gl9)35 Searle, c. W., :41.0) 2o9 Seeger, A., g1;.5) 88,(3031 164,(399) 208 Segavas H., (1272 88,91 2ll Self,W. B., (421) Pwmmye, D. J.1(351) 187, (493) 222 Selwood, P.W., (2182 10I Semglzettio J-, :25) ,t4 204 Sbx, J. C., (381) Slzi,Y.-b-.g221j 101 shllkaK.j (386) 207,k62z) 26s Shlw,V. P., (580) 255 SMmada. Y., (3912 208 SA-marawa, K., 2386) 207 T., (188) 98 Shlnjo, Shirane, G., (r2)76 Shieido.H., (128) 88 Atoltz, B. Vu (408) 209 Sbtrikmam S., :152) 91, El6l) 9l, 108, 1641 263)(305) 101,(304) (223) 165.(3431 186,263,(356) 189193.200. (360) 195,197,200. :02, 214, (515) 233.236 Shull,C. Go (37) 47 Shur,Y. S., (408) 209
DYEX AUTHOR Shyambumar, B. B.. (541) 246 J. D., (148) Sievtrt, 91 Sllva,T- 1., (57) 61 Skomski, Ro (351) 187,(4931 222 J. C., 71)33, (498) 223. Slonczewsks 223 (500) J., g8) Snu-t, 3l, 86 Smith,K F., (384) 207 th, D. O., (122) Srm88 Smith, N.; (V51 218,221 213,(4411 213,2599 SmyttJ-F-) (440) 259,(61(1 259 (59s) Sollis, P.M., (163) 91 Soohoo, R.F., (347) l87 Sorensen, C. M., (204) 100, 10%(205) I0l (217) Spaia, R. 5., (130J 89 Spratt,G-W. D., :618) 263 Strmk-sewicz, A.. (505) 224 stxnley, 'H.E., (77) 77 Stapper, c. E., Jr-. (2s2) 125,225,229, 24l
Stennw, M. B., (35) 47 4*6(36) 204 Stephenson, A.y :381) St3ckel, D., :432) 2l2 Stoner, E- C., :234) 108,1:.5 10% 10-6 Street, R., (226) :.02 Subramaniazu, S., (539) 246 Suhl,E., (246) 1M,124 Suzuld, K., (316) l69 l69 SuakkS., (316) Tx'kxb aabi,M., (1l9q 88 Tnmagawa, N., (208) 100 Tan-yx,T., (208) 100 'raq4ald, A.) (207) 100 Tawn,R. A., (32) 46 Tebble, E..S.. (52) 6t)y141,163,165 Testa,A. M., (4371 2l3 Tlzeilet J., (5671 251 q'iitiadlle, A., (456) 213,(524) 239,244, 251,262,(6112 259 (:651 Thiele,A-A., (586j 258 Tlmmpxn,A- M-, (300J 163 Tognetti, V., (75) 76 TomM,D.. (6llq259. Tomltw11.,(74) 76 Tomlinxn,S.L.y (571) 252 Tonegtuzo, F., (474) 217:254 Tonomura, A-. (549j 249 'Ibnomura, E-, (54) 61 Torok,E. J., (123) 88, (293) 163,l64
313
G., (68) 69 Toulouse, Thuble.g E., (799j 208 'p'eve.s, 33, El611 D., (17) 9l. 108.(305) 165,(343) 186,263,(356) 189200, (515) 2331 2361(517) 19% 236 Tronc,E., (:.89) 99,100,(214) 100,257, 213,(4524 213 (437) Ttouilload, P., (5241 239,244,(557) 25l 'Ihzeba,A., (419) 210:(518J 236 . Tsuuba'aj S., (315) 16%1770 (37.7) 170 16%(320) E-. (12)33 Tsyznbal, 91 Ttlrilli, G., (1621 Uedap M., :504) 224 Ue=-kn.j Y., (299) 1K3,164,240,244, 249,259,(595) 259,(596) (5511 259.(618) 263.(619) 25%(597) 263 172, Unguris, 5.$ :55)61,l72, 2326) 244 (327) 172,244 Usov,N. A., (526) 241,Q4% 266,(6144 261,(620! 264,(629) 266,(630) 266,(631) 267 UyedwR., (207) l00 Valez'a, M-S., (571) 252 Vnnmurer, C- E-, (206) 100 von de Brnxlr,E. P.. (18) 34 M.TI.W-M.?2510) van Delden, 230 vaa denBerg,H-A. M., (250) l24 vaa de Woxde, B-, (60) 63 P. J., (510) 230 vwo de Zaagy V= Leeuwew 89 A. A., (138) vaa Vleck, J. E., ;7123 Varma,M. L9'.,(861 79 Veerman, J., g149) 91 Velîœsku, M-, g61) 63 V - A., (542) 247,25? Viau,G., (473) 217,254 2161 254,(474) Victorwm 11.,(194) 99 Violet,C-E-, (82) 78,79 Viscian,1., (1364 89 Voigt,C., (148) 91, 2449) 213 Voltxlram, P. A-, (274) 137,(476) 217 von Baeye-r, H. C., (20J 35 Vos,M. J., (238) 108 wvquxnt, >*., (633) 267
Wua, N., (2071 100 Wue, R..H.j (416) 210
3i4
AUTHORDYEX
Wagner, D., g3) 7, 12 Waaerl H., F(( 76,77 W=1=299 , 1t., (4121 Wakui,J., (433) 212 Waldron, 95 J. T., (175) Walker,L. R-t (471) 2l6 Wang,C.S., (22) 44,46 Waring,m K., (209J 100 Watsen, J. K., (297) l63 Wayae, R. C., (1074 87 Wecber, K., (s39) 246 Wd,M. S.h (512) 232 WeissjG. P., (122) Weiss,J. A., (457! 213 Welland, M. E., (612) 260,264 Weller,D., (57) 61 Wells,S., (203) 100 Wendbausen, 187 P.A. P., (351) W., (4511 213 Wcrnsdorfer, 213,(456) White,R.M., (229) 103 Wickstead, A. W., (1751 95 Wiedmasa, M. H., 738)89, (139) 89 ' WijnjH.P. J., (8131,86 Willinms, C.M., (126) 88 Willinms, G., (96) 82 W-tzinmq, M. L-, (601! 259 WiHmoreh L. E., (4484 213 Wilson,m H., (43) 58 Wirtit, S., (439) 213 Wirtz,G.P., (1861 98,99 Wohlfartit:B- P., (31)46. (93)82, 105,107,108,1:.5 (2344 Wolfrnm, 1%-t 216 (469) P. J., (451 58 Wojtowicz, Wolf,W. P., (265) 130 Wood,D. W., (4)l4, 18 Wu,c. Y.y (158) 9l, 2l6 wu, J., (221) l01 Wu,R.-Q.,(80) 11,89 WulGekel, W., (144) 90 WysîpG.M., (332) 178,234,(348) 187:
2S5 Xiong,X.-Y.:(156) 91 Xu, M.-x., (221) 101 Xue,R.-b.,(221) l01 Yaegasbi, S.j (127J Vj 91 Yafet, Y., (76) 7T,123 Yxmadas H.s(51) 59 Yan,Y. D., :263) 130,242 Yang,B., 2600) 259 214,(494) Yaag,J.-S.,(352) 187,(459) 222 Yang,M. H., (465) 214 Yang,Z., (378) 204 98 Yatsuya, S., (183) Yee,D.j (440) 213 Yelon,A.h(158) 91,216 Yeung, 1.p(96) 82 Yokoynmw H., (368) 203,204 Yu,Z.-C.,(2161 101 Yuxn, S.W., (5601 251, (5611 251, 251,(563! 251,(564) 251, (562) 259,(610) 259 (603) M., (102) 87 Zelenr',
Zener,R., (26j44 Zitang,S., (33)46,(34)46 Z'hx, Y., (593) 259 Zhzso J., :156) 91 Zhu,J.-G.,(2381 108, (451) 213,(556) 250:(588) 259,264,(5945 259, 259,(622) 265 (604) E., (403) 208,20%(446) 213 Zijlstra, Zimau., 7.M., (41) 53j57,76 91, (166) 9l, Zirnvnprvnx'nrt , G.: (1651 108 (237) 78t (537) 245, Zinn,w., (12)33, 2844 252 iukrowski, J., (179) 95,100 zuppero,A. C., (85) 79 Zweck, J., (300) :63
SUBJECTINDEX alumitez 212 amoxphous materials, 82,89 aagular momeatump 8, 1Oa 35 anjsotropy, 26p83p84,87, 94,97,109, . 125,181: 189:204,220,253, 254,256,26O a'rtifdal,89 constpmt, 91.,10:1., 132,140,7.44,7.70, 217,218,221, 1719 208,21,1, 249,251,261,265 cvbict'86,87, 89,95. 108,115,141, 180,186,204,215:226,228, 230,234,252,255 91,92 distributioa, easyaxis,85-87,89-92,96p105,107, 108,113,115,116,121,138, 141,160,203,21.5: 226,231, 236,253,26l easyplane,86 33,84h85,87, 105,115,120eaergy, 123,125,133,139,144,145, 157,159:160,167-171, 174176,187,196:207,219,226, 231,234,243 hardaxss,86 iaduced, 88,89 magaetocrystalliae, 84, 8%9Oa105, 115,116,189 r=dom,89,91,108,259 rovtable,88 shape, 88z95,105,115,116,125,189, 2O4 suzface, 89-91:100,138,145,:7.76, 178,180:187,200,216,217, 222,226,234,249,255,256 uaiaxial,85,88r89p92, 94,99,105, 108,115:116,138,141,157, 160,180,186,203,215,219221,226,228,230,252,255 anticursing mode,260:261 aatife-rromagnet, 20-24:26-30,32,33, 42-44,59,63z7O,76,78,79, 99,218 Arrott plots,62,80-82
Bal-ker:ilozv, 206:207 Bitterpattera,60
Blochlaw,57-59 blockiagtempcature,Tz, 98 Bohrmaaetoa,Jzs,l2, 35,45,48r63 Boltr'selectroaorbit,7-10 Bohr-va.a Izeeuwer Geo-m 6 9 's coastantz Boltvnxnn kB?6,7l, 83 Brillouiafunctloaz 14,l7z22z24z25,28, 8Op 83,97 Brillouiazoaej 53,57,59 Browa's..t,lt 110,114,129,131,l32 Browa'sequatioas, 173,178-181, 183, 186,187,189-191, 194:198, 200:205,217,219,220,223, 225:264 Brown'sftmdameatal theoremj225, 236,26O Browa'sparadox, 204-211, 236,265 Brown'supper& lowe,rbouads,149, 226:253:258 Brown-Morrish theorcm, l29 Bsn=ceBrillouiafuactba buckliag mode,200-203, 205,255 sec TMMC ICHaNNMACIA,
Co,sezcobalt
cobalt,42-46,96z125,135,212:222, 231,253 coercive force,sez coerdvity coercivity paradox,sr.r Brown'spazw dox coercivity, Hcb2, % 88,99)107,108, 205-208, 211-213, 217,218: 254-256, 261,266 CoFea O41222 cohereat rotatioamodey 188,189,191.194,196-203: 205,206,216, 225:231,254-256, 263 compeasatioa poiat,30 complex 37p39,40 coajugate, coaductioa elcxctrons, 36,42,,t14: 48,W copper,44-46 correlatioa leagthz 62,69 citical expoaeats, 66-69,80-82:84, 124,125 criticaliadex,Jcc criticalexpoaeats criticalresoa, 34,66,69; 8l, 89
SUBJECT EfDEX
316
?' cryatp.llln c imperfections, Jeaimperfec-
tions
Cu,4e.ecopper Oku'le law,15 temperature, Te,3-5,l0, 22-24,26, 29-31,34& 44158y62-68,70z 76z78-81,&i, 85,101,7.36 forrlmagnetic, 29,30,32 pxarnagnetic, 29t32,58 Curiepoint,aeeCurie,temperature Cude-Wdss law',22-25,:$0,66 curlingco dom217,256,2*-263 curllg mode,189-.$94, 196,197,199206,212-214, 2164 225,224231,243,253-2561 260,263, 267 26% delocaliyed, Je.4. îtinerantelectrons demAtrneklez-xà-s on, demagrzetO t 2, 128, 141,210,2l8 factor,114-116,128-130, 132,187, 188,219,220,231,265 yssllx-ttîc 130 ma>etometric 130 âeld, 114,116.118,122,128-.130, 142,143,186,181,204,210, 211:232,233,236,257,2$9, 261,262r zI1%m= diamxgnet, retirn, 1,7, 8, 10, 11I15 . dipole, 4, 77,79,109,111.123,142,:43, 145,213,234,240 moment1, l2, 87y132,l42 dislocation, 88z208 distrîbutlon augles, l08 aniwtropy,se,t anisotropy Bolemxnn 92 dislocatlons, 88 :02-104 enerr barriers, lme-tîon, 101,l03 103-105 gnmma, paztides, 257 relaxation tîme,101s 102,104 size,98-102,2l3 wîdth,l03 domainwall,6c,99,120,121,123,12$. 127,133,137,1.38, 140,l41j 156,157,179,180,207.208, 210,217,219,221,223-225, 231,238,241,244,245,247, 248,250-253, 256-2$9, 266
250 Block157-:63,165,168-172,
cw--tie,163,164,169,2$0,251 LaudauandLifsbitz,133,138,143, 174, 157,161,164,171,172,, 250
mx-cql222,224
Nlel. 1$7-165, 172,180,250,25l domains confguratiom 61y1201128,141,173, 225 znaaeticz 5,20,;7, 47,60-63,66,69, 81,82,85,87,89,9l) 93)99, 116,118,120-125, 127,128, 136,138,158,171,207-212, 225,229-231, 236.238,245, 247,258,254,256,257,259 Wes, deeWeissl domains 'rnaq.q Döring , 224 experiment, S&-nmtein-de Enx.q 35 electron spinrœonaace,79 entmps65 Buse,21 excbxnge, 112, 16,17,20-22,28I33,36I 43-46,62,76-79,82-85,89, 120,124,133.137,196,202: 221,225:2.33, 258 anisotropic, 33p77 biqunzdrxtic, 33 claaslcal, 133 oonstantz 135,140,160,170,17% 217, 218,221,222,234y249,258 direct,36,43 enera,16y4l, 45,75,84,85,89,90, 105,120-123, 125,133,134, $37-1391 144,1V, 157,159, 160,165,16:-170,174-176, 179,180,207,216,217,2,31, 233,235,236,2431 247,258 clx-kalj 1.34-136, 1381 142,243 indirxt, 36,48,77 integrzz, 16,18y20,24j41z43,44,4s, 48,58,68,85>135,222 259,26l lengtk1431
faanyng model,202-204 Fxvxaay 60 eFeck Fe,ecelron Fe3 O4,28,232 57Fe 163,78 FesMaots31 >A,.rml rws,10
SUBJECT JQDEX Ferrrl1 1eve1, 44j45
ferzicozdc,sc 7-:Fienoa fmvimagnet, 27-30, 32#44,99 ferrlte.28,3l, 43,44,86,91,25l 'ee Balhelaolg bazium? cobaltse.eCoFezO4 Mn-zu,se.eMno.6Zn().:$sFoz.:sO* ferromagnedc resonancey89, 9l, 135, 215-217 feldp2l6 modes, 216,217,255 fowerstate,260-26% 266 Fouder series, 53,54,117,257 p-factor, seeLand;fxrrenr
'yœecm, 206,212,222
Hallelect,HaIIprobe,61 Hamiltonian, 6,8, l7, 32,38,41,42,53, 54,?0,l09 Eeisenberg, 35,42-45,48,59z60& 62) 70,75,1%79y82-84,133 Hartree-Foclt, 38,41 Fe, sc coerdvity Hcisenbcrg Harnl-ltoniazla >eeHrnarr,''lto
ni= homogeneous magnetization se.emagnetizaiion, uniform hydrog=,10,43 h e seld,63,78 hysfzresis. 3, 47,97-99.106,108,174, 184,21G 262 254-25% lizrztlngcuz-ve,1-3, 105,107,108, 141,213,214,255-257, 259, 261,263,266 zninorloop:2 Ycurve, 2
imperfections, 88, 183,209,210)249, 265 impurlts2l, 33,34,88:208 initialsuscqptibility, se.rsusceptibility: initial iron,3, %27,35,47,-.4*/, 56,57.62,,J8, 79,86,E8,96,100,124,135, 141,143,169,171,172,205, 206,209,215,250,255 whisker, 58,209-212, 236 Isiagmodql,69-71,76,77 onmdimensional, see onœdlmcnsionalIsiagmodel two-dimenionalz ,ee tw-dimensionalIsingmodq)
317
itjnerut electmnsj 3%44-48,59 âB, .:e Boltmzrmn's constan Kerrefect,*, 61 kinedceergy,22*
Kmnûcker smbol,37,49
2,2,4 Lagrugefunction, Landd factor,1%28z35,18l Landau levcls,10 tbeoryof phax Mndtions,63,64. 68,69,75 Langevln 83,97,98 function, Laplace tr=sform,154,159 Larmorpreceslon, 97 spin,l0, 36,44,46.48,59,62, locxlixqd 233 magnet:m,76 low-dimln
M, zeemarqtszation maaeiicforcqmicroscopy, aee.mlcros*W znaveticmomeuto ly 5-12.l5y22,23. 27,28,33,35,44*8, 55& 56& 83.84,92,93,l06 orbiia),35 magnedc viscodty, 100 magnedte, see:F'eaO4 magnetization co don,137:141,147:148,155, 160:163:165,168,173,174, 184,189,207,-217, 225,226, 242,244, 229,230,238,2391
250,252,253,257-259, 24% 261-265
curv'e?108,218,254
84,85.87,89,90,92,94; dircctlon, 97, 99, 100,105-107, 113, l20z128,137,138,140,141, 143,147,157.167,172,178, 181,189,196,215,218,219, 222,231,253,254,258 distribution, 47, 112,1147 123,124, 130,144,148-150, 152,173, 2V, 252,259 procex,9û,133,225,231,265 r 191-.193, 202y 99,185:188, 204,206,207,209,225,231, 253 ripple,89,108:259
'
318
SDJECTINDEX
87, 90, 91s105, sNce dependence, 1.08) 165,169,174)185:190, 196)243 stmcturea127,139,155,163,164, 166-170, 180,186,189,242, 2467 248-251, 256,260-264 uniform? 95s1.12-115) 120,122,124, 125,728-130, 135,1.42,185, 188,2099 214,225-228, 231233,235,236,252,253,255, 260,263)264)266
magnetizations N.:
83,84,91,98,107,157, components, 171,l86 rem=ent, Mrp2, 61, 99: 101,212, 254)255 saturatioa, Mal2-4: 30v31, 33p45I 46,57-60,62,63)66,67,7578j 101,106,112,120,123, 136,140,217,218,221,254, 255 vector,1,4, 26,46y85y87,90,92-94. 96, 105)112)113,117,120, 134-136) 1d19, 165)174,175, 221,232,244,260
magnetocrysvlline anisotropy? 4ee aaîsotropy,maaetom-ystnlline magnetostatic 90,109:1t1, 113)115,116, energy', 119-129, 133,7.38-142: 1+1150,152,154-161, 165,167170,7.72,174,176,180,194, 198,207,209,216,217,219, 226,231,233-235, 238-243, 246,247,250)251:255)258 force? 120,124,145,196 interaction, 103,165,202)239,241 potential,109-112,116,118,119, 122,126,128,130:131,148, $50-154, 187:188:194,238, 239)242)248)257)266 problems? 145)149-151,173) 176, 195,196)241)243:247:257, 258 magnetostrictiow 87,88,100,141,:75: 249 55,58 magnon, 32,46)76,79 m=ganese, Ma:twell's equations? 1,3: 109,110,122, 133,:42, 7.46: 216 MBE,77 me= feld, Jcc molecular feld
MFM,scc microscopy, maaeticforce microscopy Loreatzelectrom 169,171,257 magnetic force, MPM,61I252 optical,61,209 nz--annln 61,l72 g e:ectroaj traasmislioa elqctron,203)262 Mn,s6v maagaaesq [email protected], 230 MrlRi,2:8,209 Mno,32 molecular beaaepitaxy,ze.eMBE molecular Eeld.4, 5, 12,16-18,20,28) 32-34,zlz.j49,59,60,68,7% 80,81 Mö>bauer œect,22,27,58j 62j63,78, 95,97-100 Mrl Jeemaretisation,remanent saturation AGlsa magnetizationv Néel spikes,207 temperature, TN$22-24,26,27,32) 70I 79 theoryof aatsferromagtàetîsm, 21,22 theoorof ferrimagnetism, 27)28 theoryof surfMe anisotropy, 89 Néelpoint,se.eNéelI temperatttre neutrondepola.rsz-xtionz 230 neutroadiAaction, 22.47,171
Ni, sr.znicakel nickel,%42-46,61,7%86)8%135)141, 169:212:232:235 NMR,scc nuclear maaeticrœonance nuclearmagnetic rœonattce)22,63 nudeation, 137,183-189, 191,194)196) 200)201,205,207-218, 230, 231)236,237,254-256, 259265 centre,208,209 feld, 1841185,1899191-194,196, 198-200, 202-207) 209-211: 214)217:253-256) 258,263) 265,267 revm-sal modes 11Jcc underthe mode Ilnmey
obhtespheroidv 115:194:196:197)200, 204,232 one-dimenshonal Isingmodely 71v72,75v76 maaetism,75I76
SUBJECT DDEX orbitalmareticznoznent. ae,emaretic moment,orbital ortNoferrite, 33 orthonorrnpl set,37 oxide,28z32,78,79,100,222 1-4 7 parxmmet,pnvxmxgaetîqm
.'
10-12,15-17,22,24t27,78, 84,97-99,l08 partitionfunctjon ! 55,7137,40,43,46 Pauuexclumoa prmdple, 143,162,163, oyyVj 89, 1G81 166-169, :71-173,251 pveablt, lj 2, 131,132,206 planarcrygtxlllnedefects, 2l7 poleavojdauce prindple,145,l46 potential encgy',142,224 magnetOtaticj lel mMaet*tatic pptential prohte spheroidy 115,116,193,194, 200,201,204,205,231,232, 236,255,256 rve o-xr:h, 31,35,36,44,4a5, 143
reiprocity,148,149,l76 relaxation timej94..-96, 98:l00j l0l Browm94,95 Néeely 94,96 remaaoce, Jee mognethatioG remanent
remormallzation groupj34h694l23 Ynxnœ
electronspin,se.eelectronsphzochnnn çe
fromagnetictac ferromagneic resonance
nuclearmagnetic, J* auclear mMnedcnenaace modew modeAamqs revewal 4* ander ripplestmcture,sa magnetluO-on ripple nr'nlm' potezttsal) ,c< magnetosvtic pos s
' '
tentii bypotbub69 electaron micoscopy, ;co mi-
self-coniutency, 179,180,221,224,245) 248,25l self-eergy', zcc mxretostatic energy SîO,'?*,79
319 ;'
speM' 22j27,45,55z65,67:75, c hea.t.y 76
spheroida! coordknates, 23l mve functions, 23l spY,5, 7. l0, 12,14-18, 2*22, 24,25t 41-43,45,46,483l, 33..47, 53,56z63,69-71) 76,79,8385,89,97,100,105,120,123, 133,134,136,137,143,145, 172,196,221,233-235, 237
devlatioa, 5O,51,53 operator,50,52
waxea,34,48,54,56,59,6O,78,109,
123,125 spin-orbitintemcfon,84,85,90,l44 spontaueous mMaetiexlrion, aeezzzagnetizytion,satutation Stonee-Woîtfarth model,9ly 105-108, 115,116,185,189.202,204, 254,262,263 supere.x supe
,
43,44
tiyrrn,l6, 7%92-100, 103,212,22% 230,261,266 se=epdbility, 1,'8-11)l5, 22A 91,108, ' 132 iaitial?15,23-27,29-32,65-67,74-. 77,80y9l, 254 T., se Curietempœature T>, &es micrvopy, traasmuion electron 'MC, 76 Tw, 4eeN&1,temperature transidon metal)36,44 two-dimensional 1s1R modely 72,75s76 maretism,75-77,79,l64 AAnlfonn mametizatiom Jeemagnetization,Mniform valencey 3%45 vectorpotential, 110,152,242,258 vortexc ation,253,260,26l wal:aot domainwall weakferroma&et-tsmv 33179 wyu'sa 3-5,17 domdns? 3-5,85 Geld,aeemn:rwnlxlz.r âeld XY-model, 70 Zeemxn qsqcts 63