Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.fw001
Host Plant Resistance to Pests
Publication Date: Jun...
166 downloads
1200 Views
5MB Size
Report
This content was uploaded by our users and we assume good faith they have the permission to share this book. If you own the copyright to this book and it is wrongfully on our website, we offer a simple DMCA procedure to remove your content from our site. Start by pressing the button below!
Report copyright / DMCA form
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.fw001
Host Plant Resistance to Pests
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.fw001
Host Plant Resistance to Pests Paul A . H e d i n ,
EDITOR
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.fw001
USDA, Boll Weevil Research Laboratory
As y m p o s i u m sponsored by the Division of Pesticide Chemistry at the 174th Meeting of the American Chemical Society, Chicago, IL, Aug. 31-Sept. 1 , 1977.
62
ACS SYMPOSIUM SERIES
AMERICAN WASHINGTON,
CHEMICAL D.
C.
SOCIETY 1977
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.fw001
Data Library of Congress Host plant resistance to pests. (ACS symposium series; 62 ISSN 0097-6156) Includes bibliographical references and index. 1. Plants—Disease and pest resistance—Congresses. 2. Plant immunochemistry—Congresses. I. Hedin, Paul Arthur. II. American Chemical Society. Division of Pesticide Chemistry. III. Series: American Chemical Society. ACS symposium series; 62. SB750.H67 632'.94 77-13823 ISBN 0-8412-0389-X ACSMC8 62 1-286 1977
Copyright © 1977 American Chemical Society All Rights Reserved. No part of this book may be reproduced or transmitted in any form or by any means—graphic, electronic, including photocopying, recording, taping, or information storage and retrieval systems—without written permission from the American Chemical Society. PRINTED IN THE UNITED STATES OF AMERICA
ACS Symposium Series
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.fw001
Robert F. G o u l d , Editor
Advisory Board Donald G. Crosby Jeremiah P. Freeman E. Desmond Goddard Robert A. Hofstader John L. Margrave Nina I. McClelland John B. Pfeiffer Joseph V. Rodricks Alan C. Sartorelli Raymond B. Seymour Roy L. Whistler Aaron Wold
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.fw001
FOREWORD The A C S
S Y M P O S I U M
SERIES
was founded in 1974 to provide
a medium for publishing symposia quickly in book form. The format of the IN
CHEMISTRY
SERIES
parallels that of the continuing
SERIES
ADVANCES
except that in order to save time the
papers are not typeset but are reproduced as they are submitted by the authors in camera-ready form. As a further means of saving time, the papers are not edited or reviewed except by the symposium chairman, who becomes editor of the book. Papers published in the A C S
S Y M P O S I U M
SERIES
are original contributions not published elsewhere in whole or major part and include reports of research as well as reviews since symposia may embrace both types of presentation.
PREFACE ΤΠΟΓ the past several decades, chemical pesticides including insecticides and herbicides have been the foundation of agricultural pest control. However, the use of these pesticides has come under increasing regula tory control because of their side effects on nontarget species and on the
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.pr001
environment. Moreover, there is evidence of increasing resistance through genetic selection of these pests against chemicals that still are authorized for use. Yet the urgency to control pests becomes greater because man, largely because of his own rampant increase in population, seems to be running a collision course with insects and plant diseases in competition for foods and fibers. During the past 20 years, several new concepts of pest control have evolved.
For insects, these concepts include the agents that modify
behavior and development, such as pheromones, kairomones, and hor mones. Other approaches encompass the biological agents such as viruses, bacteria, and protozoa. Genetic manipulation has been investigated also. There have been efforts to combine various cultural techniques with these aforementioned approaches to develop integrated pest
manage
ment systems. The control of plant diseases has concentrated primarily on prophy laxis, with a lesser emphasis on immunization. T h e three major prophy lactic approaches include: (1)
exclusion of the pathogen by quarantine,
inspection, and certification of seed; (2)
eradication of the pathogen by
crop rotation, sanitation of equipment, elimination of overwintering hosts, eradication of host plant parts, and eradication of alternate hosts; and (3) direct protection by regulating the environment; i.e., moisture, tem perature, insect vectors, spraying and dusting, and treating seed and the soil. T h e control of plant diseases by immunization, as with viruses and host disease resistance, has focused on acquired resistance.
This host re
sistance may be attributed to the plant's morphology, undefined physio logical factors, and/or chemicals that are either present initially or are biosynthesized in response to attack by the disease organism. These alternative approaches
to pest control generally have not
achieved the successes predicted by their original expectations, however. In some instances, the degree of control is not adequate. Often, the pro cedures are too complicated for the grower or pest control agent to use correctly.
Cost is usually higher and, in some cases, excessive. ix
Also,
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.pr001
because these control programs are directed toward individual crops, there may be disincentives for industrial commercial development. The development of host plant varieties has several advantages compared with the other alternative approaches to pest control. There is no complicated technology for the grower to understand, and it is inexpensive, since any increased seed costs will be more than offset by decreased costs for pesticides and their application. Decreased use of pesticides is also desirable for environmental purposes since the spread of pollutants is decreased, and energy requirements to manufacture, distribute, and apply pesticides is lessened. The major disadvantage associated with plant protection by resistant varieties is that because new races arise, germ plasm must be available from which to select new varieties. However, this is not insurmountable because plant breeders have provided successfully a series of rust resistant wheats in response to the new races of the pathogen for at least four decades. Recently, the interest in elucidating some of the chemical aspects of resistance has increased because of: (1) greater interest in the field of host plant resistance as an alternative to our current dependence on pesticides and their role in developing effective integrated pest management programs; (2) some success in recent programs; (3) information derived from basic plant—insect and plant—plant interactions; (4) greater interest by private and public agencies in supplying the support necessary to conduct more basic chemical studies; (5) a greater awareness and interest by natural product chemists of the opportunities for research contributions; (6) better methodology and technology in microchemical techniques; (7) probably most important for the future, the potential Food and D r u g Administration regulation that will require chemical research to document that changes ( toxins, nutritional, etc. ) in the plant from development of resistance to a pest will not be health or nutrition hazards to humans or to other animals that might consume the resistant crop. A l l but two of the chapters in this volume were presented originally at the symposium on "The Chemical Basis for Host Plant Resistance to Pests" at the 174th National Meeting of the American Chemical Society. Seven chapters on plant diseases are followed by nine chapters on insects. It is hoped that this volume will initiate and stimulate work by cooperating groups of chemists, biochemists, entomologists, plant pathologists, plant breeders, and other related scientists. Defining the chemical basis for plant resistance to pests requires a multidisciplinary approach.
U.S. Department of Agriculture Mississippi State, MS August 22, 1977
PAUL A. HEDIN
X
1 Phytoalexins and Chemicals That Elicit Their Production in Plants Ν. T .
KEEN
and B. B R U E G G E R
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch001
Department of Plant Pathology, University of California, Riverside, CA 92521
Since the discovery of phytoalexins by Müller and Börger (1), their number has steadily grown until we now know of at least 64 different chemicals for which structures have been offered and which meet at least some of the criteria for phytoalexins. Although phytoalexins have been isolated from at least 75 species representing 20 families, it is too early to say whether their production is a general feature of higher plants. With the possible exception of Ginkgo (2), phytoalexins have not been reported from plants other than angiosperms and conifers with only a few from the latter. At present, they are most studied in vegetative plants and most often in the Leguminosae and Solanaceae. There are plants in which phytoalexins have been looked for and not found (see 3), but such negative data of course does not establish that they are not made; generally, when intensively searched, plants have been observed to make phytoalexins in response to the proper challenge and with the use of proper extraction techniques. This review cannot be comprehensive and will not recite the known list of phytoalexins since this has been done many time (4-9) ; instead it will hazard to deduce some generalizations about phytoalexins, their properties, biosynthesis, and, of paramount importance, to assess their presumed association with the resistance of plants to infectious plant pathogens. We will also discuss what is known about phytoalexin elicitors—chemicals or stimuli that initiate the biochemical steps ultimately resulting in phytoalexin accumulation. All the known phytoalexins are low molecular weight products of plant biosynthesis that have antibiotic properties to one or several groups of microorganisms. The preformed levels of phytoalexins are generally very low or non-detectable in healthy plant tissue, but they accumulate to high levels at the site of attack of the plant by an invading microorganism. Phytoalexins have at times been called "abnormal metabolites" or "stress metabolites". It is our opinion that these terms are, generally speaking, synonyms, and as such need not be used. Phytoalexins are prime examples of secondary metabolites in plants; they would appear 1
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch001
2
HOST P L A N T RESISTANCE T O PESTS
R=H Coumestrol R = Isopentenyl · Psoralidin :
Figure 1.
R = H Genistein R = OH 2'Hydroxy genistein Phytoalexins from Phaseolus vulgaris
to p r o v i d e one l i k e l y answer t o t h e l o n g - s t a n d i n g search f o r p h y s i o l o g i c functions of these p r o d u c t s — d e f e n s e against p a r a s i t e a t t a c k ( s e e JLO) . To summarize t h i s i n t o a s i m p l e d e f i n i t i o n o f f e r i n g c r i t e r i a f o r phytoalexins, we c o n s i d e r them t o be i n d u c i b l y formed higher plant metabolites that are a n t i b i o t i c to c e r t a i n p o t e n t i a l plant pathogens. We define here some terms appearing i n t h i s paper. Disease r e s i s t a n c e i n p l a n t s i s the r e s t r i c t i o n of development o f a p a t h o g e n i c agent or p a r a s i t e and i t may v a r y i n degree from immunity (no development) to only s l i g h t r e t a r d a t i o n r e l a t i v e to a so-called susceptible reaction. We employ the term incompatible to denote h o s t - p a r a s i t e combinations i n which the plant e x h i b i t s r e s i s t a n c e and compatible to r e f e r to s u s c e p t i b l e r e a c t i o n s of the host. S i m i l a r l y , an incompatible pathogen i s one leading to a r e s i s t a n t p l a n t r e a c t i o n ) w h i l e a c o m p a t i b l e one l e a d s t o a s u s c e p t i b l e host r e a c t i o n .
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch001
1.
K E E N
AND
BRUEGGER
Phytoalexin
Production
in
Phnts
3
The burst i n phytoalexin research i n the l a s t 10 years has e s t a b l i s h e d that many p l a n t s simultaneously make s e v e r a l d i s t i n c t but chemically r e l a t e d p h y t o a l e x i n s . For instance, the green bean p l a n t , Phaseolus v u l g a r i s , produces at l e a s t 9 i s o f l a v o n o i d compounds ( F i g u r e 1) i n r e s p o n s e to v a r i o u s m i c r o o r g a n i s m s or e l i c i t o r s . P h a s e o l l i n i s the best known and has pronounced a c t i v i t y against a broad spectrum of f u n g i , except f o r those that metabolize i t to l e s s t o x i c products. Most of the other bean phytoalexins are a n t i f u n g a l ; however, g e n i s t e i n and hydroxygenis t e i n accumulate along with the other compounds (11), but have only weak a n t i f u n g a l or a n t i b a c t e r i a l p r o p e r t i e s . Do they accu mulate as a mere coincidence of the general a c t i v a t i o n of i s o f l a v o n o i d b i o s y n t h e s i s or do they have a n t i b i o t i c a c t i v i t y to o r g a n i s m s (nematodes? p r o t o z o a n s ? ) t h a t we don't know about? Wyman and Van E t t e n (12) reported that k i e v i t o n e and p h a s e o l l i n i s o f l a v a n possessed pronounced a n t i b a c t e r i a l a c t i v i t y against s e v e r a l pathogenic b a c t e r i a , but coumestrol and p h a s e o l l i n were g e n e r a l l y without e f f e c t . T h i s , however, has been disputed by Lyon and Wood (13) and Pat i l and Gnanamanickam (14) who observed a n t i b a c t e r i a l a c t i v i t y f o r coumestrol and p h a s e o l l i n , r e s p e c t i v e l y . Another p l a n t producing m u l t i p l e , r e l a t e d phytoalexins i s Splanum tuberosum, where at l e a s t eight sesquiterpenoid compounds are known (see Dr. S t o e s s l ' s paper i n t h i s s e r i e s ) . I t should be noted that some of these compounds may o r i g i n a t e due to d i r e c t chemical m o d i f i c a t i o n of others by the challenge microorganism, as Ward and S t o e s s l (15) have r e c e n t l y demonstrated f o r the produc t i o n of 1 5 - d i h y d r o l u b i m i n from l u b i m i n by f u n g i . However, r i s h i t i n , the best known potato phytoalexin, as w e l l as phytub e r i n , lubimin and phytuberol can be e l i c i t e d i n the absence of l i v i n g microorganisms (16), thus negating the p o s s i b i l i t y that they represent s t r u c t u r e m o d i f i c a t i o n s . R i s h i t i n i s a n t i b i o t i c to s e v e r a l f u n g i (17,18), having a E D ^ Q value of about 50 μ g/ml i n v i t r o a g a i n s t P h y t o p h t h o r a i n f e s t a n s , w i t h somewhat h i g h e r concentrations required against other f u n g i . Phytuberin, on the o t h e r hand, e x h i b i t e d a c t i v i t y o n l y a g a i n s t £ . i n f e s t a n s . Solavetivone and anhydro-^-rotunol were a c t i v e against a l l f u n g i t e s t e d ( 1 7 ) , but l u b i m i n was i n a c t i v e a g a i n s t infestans. In potato, green bean, soybean, and a few other p l a n t s pro ducing m u l t i p l e phytoalexins, the r e l a t i v e proportions of the v a r i o u s phytoalexins are not always the same (19,20 and see 21). P r i c e et^ a l . (22) n o t i c e d t h i s f o r the p o t a t o sesquiterpenes and R i c h et. al, (23) o b s e r v e d t h a t l i m a bean r o o t s p r o d u c e d coumestrol and p s o r a l i d i n i n response to the nematode pathogen Pratylenchus s c r i b n e r i , but d i d not accumulate detectable l e v e l s of k i e v i t o n e , e a r l i e r found to be made by the same p l a n t i n response to b a c t e r i a (24). The a n t i b i o t i c p r o p e r t i e s of p h y t o a l e x i n s a r e r o u t i n e l y determined i n i n v i t r o assays, and s e v e r a l t e c h n i c a l and i n t e r p r e t a t i o n a l problems can occur i n these (25,26). Since h i g h l y p u r i f i e d p h y t o a l e x i n s have r e l a t i v e l y low s o l u b i l i t y i n p u r e
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch001
4
H O S T P L A N T RESISTANCE T O
PESTS
water, s o l u b i l i z e r s such as ethanol or other organic solvents are g e n e r a l l y added such that t h e i r f i n a l concentration i s s u f f i c i e n t l y low as not to a f f e c t the assay organism. Some have argued t h a t t h i s r e q u i r e m e n t d e t r a c t s from the p o s s i b l e a c t i v i t y of phytoalexins i n the p l a n t , but we b e l i e v e that the opposite i s more l i k e l y to o c c u r — c o - d i s s o l u t i o n of phytoalexins i n the p l a n t t i s s u e s by r e l a t e d compounds, f a t t y a c i d s , p h o s p h o l i p i d s , s a p o n i n s , e t c . l i k e l y i n c r e a s e s t h e i r i n v i v o s o l u b i l i t y and perhaps t h e i r a c t i v i t y as w e l l . Indeed, evidence i s a v a i l a b l e (27) i n d i c a t i n g t h a t the pea p h y t o a l e x i n p i s a t i n may be more a c t i v e against i n f e c t i n g hyphae of Erysiphe graminis i n v i v o than against the same organism jln v i t r o . As already mentioned, phytoalexins are o f t e n a c t i v e against f u n g i and at l e a s t some of them a f f e c t b a c t e r i a , but what about other p l a n t pests? We know of no case of phytoalexin involvement with r e s i s t a n c e to i n s e c t s , and t h i s i s perhaps to be expected with non-sedentary p e s t s . However, what about aphids, mites, and other more s t a t i o n a r y feeders? In recent work, R i c h et a l . (23) demonstrated that the lima bean (Phaseolus lunatus L.) p h y t o a l e x i n coumestrol e x h i b i t e d a p a r a l y t i c e f f e c t on the nematode pathogen Pratylenchus s c r i b n e r i and as such could account f o r the r e s i s tance of lima beans to t h i s pathogen. Perhaps t h i s portends other cases of phytoalexin mediated r e s i s t a n c e to nematodes, but we do not have information. The r e s i s t a n t or s o - c a l l e d " l o c a l l e s i o n " r e a c t i o n of s e v e r a l p l a n t s t o v i r u s e s r e s u l t s i n s u b s t a n t i a l p h y t o a l e x i n production (28,29), and although i t i s appealing to s p e c u l a t e c a u s a l i t y , we have no d i r e c t e v i d e n c e t h a t they d e l e t e r i o u s l y a f f e c t v i r u s r e p l i c a t i o n , p r o t e i n synthesis and/or v i r i o n assembly. P t e r o c a r p i n o i d compounds have been reported to possess antitumor a c t i v i t y i n animals (30), a f i n d i n g of p o s s i b l e pharmacological s i g n i f i c a n c e . Despite considerable information on the a n t i m i c r o b i a l of a c t i v i t y p h y t o a l e x i n s , we know r e l a t i v e l y l i t t l e c o n c e r n i n g the mechanism of t h e i r t o x i c i t y . U n l i k e some m i c r o b i a l a n t i b i o t i c s and s y n t h e t i c f u n g i c i d e s , p h y t o a l e x i n s do not appear to have d i s c r e e t "biochemical t a r g e t s , " but i n s t e a d , as Van E t t e n and Bateman f i r s t showed (31,32), they l i k e l y f u n c t i o n as n o n s p e c i f i c p l e i o t r o p i c membrane a n t a g o n i s t s . For instance, p h a s e o l l i n (32) c a u s e d i o n l e a k a g e from t r e a t e d fungus c e l l s and g l y c e o l l i n , p h a s e o l l i n , and medicarpin a l s o caused b u r s t i n g of red blood c e l l s (31). S i m i l a r l y , phytuberin and other sesquiterpene phytoalexins f r o m Solanum tuberosum caused r a p i d l y s i s of P h y t o p h t h o r a i n f e s t a n s zoospores (17), an e f f e c t that would seem again to imply membrane antagonism. There i s a l s o evidence that p h a s e o l l i n and other phytoalexins i n c i t e the same e f f e c t s on p e r m e a b i l i t y of the p l a n t c e l l s where they a c c u m u l a t e ( 3 3 , 3 4 ) . It i s therefore appealing to think that the d i s o r g a n i z a t i o n noted to occur i n the h y p e r s e n s i t i v e r e a c t i o n to be discussed could be caused by the extremely high l e v e l s of phytoalexins a c t i n g on the p l a n t c e l l s . I t was suspected that the aplanar c o n f i g u r a t i o n of the pterocarpan
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch001
1.
KEEN
A N D BRUEGGER
Phytoalexin
Production
in
Plants
5
phytoalexins might be e s s e n t i a l f o r t h e i r f u n g i t o x i c i t y (35 ), but Van E t t e n (_360 s u b s e q u e n t l y showed t h a t s e v e r a l 6a-hydroxy pterocarp-6a-enes, which do not show the same c o n f i g u r a t i o n as the corresponding parent 6a-hydroxy pterocarpans, had e s s e n t i a l l y unchanged a c t i v i t y . As noted, s e v e r a l i s o f l a v o n e s ( v i z . g e n i s t e i n and h y d r o x y g e n i s t e i n ) , do n o t p o s s e s s pronounced a n t i f u n g a l a c t i v i t y , but isopentenyl s u b s t i t u t i o n makes them considerably more a c t i v e (37,38). This leads to the s u s p i c i o n that l i p o p h i l i c i t y i s an important c o n t r i b u t o r to a c t i v i t y . B e l l and P r e s l e y (39), obtained data with the c o t t o n Verticillium dahliae host-parasite system that satisfactorily summarizes our view of phytoalexins and t h e i r c o n t r i b u t i o n to c o m p a t i b i l i t y and i n c o m p a t i b i l i t y of plants to c e r t a i n p o t e n t i a l pathogens. We c a l l t h i s r e l a t i o n s h i p the " e q u i l i b r i u m hypothesis," the s a l i e n t point being that any modulator of the h o s t - p a r a s i t e complex p o s i t i v e l y i n f l u e n c i n g pathogen c o l o n i z a t i o n rates but i n d e p e n d e n t o f e f f e c t s on h o s t p h y t o a l e x i n p r o d u c t i o n will promote d i s e a s e s u s c e p t i b i l i t y . S i m i l a r l y , any f a c t o r t h a t p o s i t i v e l y i n f l u e n c e s the l o c a l r a t e of p h y t o a l e x i n p r o d u c t i o n independently of e f f e c t s on pathogen growth w i l l promote disease r e s i s t a n c e . The converse of both tenets produces the corresponding e f f e c t s . To i l l u s t r a t e , B e l l and Presley (39), found that i n c r e a s i n g temperature from 15 to 28 C increased the r e l a t i v e a b i l i t y of cotton plants to produce phytoalexins, and p h y t o a l e x i n p r o d u c t i o n was c o n s t a n t from 28-35 C. However, i n c r e a s i n g t e m p e r a t u r e above 25° d e l e t e r i o u s l y a f f e c t e d the growth r a t e of the fungus pathogen V e r t i c i l l i u m d a h l i a e . This was c o n s i s t e n t with the observation that disease becomes l e s s severe above ca. 25 C i n n a t u r e . Conversely, lowering temperatures caused l e s s phytoalexin production but d i d not adversely a f f e c t the fungus and d i s e a s e became more s e v e r e . S i m i l a r to these r e s u l t s , many i n v e s t i g a t i o n s have shown that treatment of i n f e c t e d p l a n t s with metabolic i n h i b i t o r s that a f f e c t only the p l a n t block phytoalexin production and cause more s u s c e p t i b l e r e a c t i o n s . On the other hand, treatment of p l a n t s with agents that s p e c i f i c a l l y i n h i b i t development of the pathogen would be expected to r e s u l t i n a more r e s i s t a n t r e a c t i o n and t h i s too has been observed e x p e r i mentally. Phytoalexin production i s often associated with a widespread but poorly understood plant disease defense r e a c t i o n c a l l e d the " h y p e r s e n s i t i v e r e a c t i o n " (HR). C l a s s i c a l l y , the h y p e r s e n s i t i v e r e a c t i o n i s observed a f t e r a few hours or a few days f o l l o w i n g i n f e c t i o n by an incompatible race or species of p l a n t pathogen as the d e a t h o r d i s o r g a n i z a t i o n of t h e p l a n t c e l l s i m m e d i a t e l y adjacent to the i n f e c t i o n s i t e concomitant with or preceeding the r e s t r i c t i o n of pathogen development. Despite the f a c t that the HR operates i n response to non-pathogenic members of a l l the known t y p e s o f p l a n t p a t h o g e n s — f u n g i , b a c t e r i a , nematodes, and v i r u s e s — n o p l a u s i b l e explanation as to why i t worked was o f f e r e d u n t i l phytoalexins appeared on the scene. As w i l l be discussed i n
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch001
6
H O S T P L A N T RESISTANCE T O
PESTS
more d e t a i l l a t e r , many h y p e r s e n s i t i v e r e a c t i o n s r e s u l t i n the accumulation of l a r g e q u a n t i t i e s of phytoalexins i n the "hypersens i t i v e area," up to the phenomenal concentration of 10% of the dry weight of t i s s u e (40) ! I t would seem implausible that the c e l l s i n the immediate i n f e c t i o n s i t e could themselves account f o r the r e l a t i v e l y massive b i o s y n t h e s i s r e q u i r e d f o r such high concentrations. T h e r e a r e many n o n - i n f e c t e d h o s t c e l l s s u r r o u n d i n g h y p e r s e n s i t i v e a r e a s , however, and r e c e n t evidence suggests that these m e t a b o l i c a l l y a c t i v e neighboring c e l l s both export b i o s y n t h e t i c intermediates to c e l l s immediately adjacent to the i n f e c t i o n s i t e (41,43) and b i o s y n t h e s i z e phytoalexins and export them i n t o the host c e l l s and i n t e r c e l l u l a r spaces that are a c t u a l l y c o l o n i z e d by the pathogen (41,42,43). This "dumping" of phytoalexins i n t o the h y p e r s e n s i t i v e area may account f o r the very high l o c a l concentrations present and would presumably c o n s t i t u t e a very h o s t i l e l o c a l environment f o r the pathogen. There i s good evidence that phytoalexins are i n f a c t made i n l i v i n g , metabol i c a l l y a c t i v e p l a n t c e l l s (44,45,46) and the h y p e r s e n s i t i v e death of host c e l l s may r e s u l t from the t o x i c i t y of the accumul a t e d phytoalexins (44). The observed e x t r a c e l l u l a r export of phytoalexins i s a l s o c o n s i s t e n t with the common observation that phytoalexins can be e f f i c i e n t l y e l u t e d from i n t a c t p l a n t t i s s u e s by merely p l a c i n g them into contact with water or aqueous ethanol (4,47,48). These s o - c a l l e d d i f f u s i o n techniques are u s e f u l f o r o b t a i n i n g phytoalexins f r e e from most of the i n t r a c e l l u l a r plant metabolites, and i n one case the use of t h i s technique was shown to e l u t e the p h y t o a l e x i n from host t i s s u e at a s u f f i c i e n t r a t e t h a t the n o r m a l l y r e s i s t a n t t i s s u e became s u s c e p t i b l e to the pathogen (47)· K i r a l y , Barna, and Ersek (49,50,134) applied various metab o l i c i n h i b i t o r s to t h r e e n o r m a l l y c o m p a t i b l e h o s t - p a r a s i t e combinations and reported that the i n h i b i t o r s , presumed to a f f e c t only the p a r a s i t e , caused occurrence of the same h y p e r s e n s i t i v e defense r e a c t i o n as i n g e n e t i c a l l y incompatible p l a n t s ; i n one case—the potato-Phytophthora i n f e s t a n s system—they reported that the i n h i b i t o r treated p l a n t s accumulated the phytoalexin r i s h i t i n j u s t as d i d normally incompatible p l a n t s . The authors i n t e r p r e t e d t h e i r d a t a as i n d i c a t i n g t h a t the h y p e r s e n s i t i v e r e a c t i o n and phytoalexin production were t h e r e f o r e only consequences but not c a u s e s of r e s i s t a n c e , and t h a t some unknown mechanism a c t u a l l y accounted f o r r e s i s t a n c e expression. Despite the acceptance of t h i s reasoning by some (51), the l o g i c of K i r a l y and co-workers i s flawed. Disregarding arguments (52,53) of the necessary assumption that the i n h i b i t o r s were only a f f e c t i n g the pathogens, i t i s p l a u s i b l e that i f the pathogens were i n f a c t s p e c i f i c a l l y i n h i b i t e d by the treatments, the r e l e a s e of phytoa l e x i n e l i c i t i n g s u b s t a n c e s from them c o u l d a c c o u n t f o r the observations. By applying the anti-pathogen a n t i b i o t i c s , the authors were then q u i t e simply swinging the e q u i l i b r i u m r e l a t i o n ship of the l a s t paragraph g r o s s l y i n favor of the host. Were the
1.
KEEN
A N D BRUEGGER
Phytoalexin
Production
in
Plants
7
a u t h o r s ' i n t e r p r e t a t i o n c o r r e c t , we would s i m i l a r l y have to dismiss t h e immune s y s t e m i n h i g h e r a n i m a l s as a d e f e n s e mechanism, s i n c e a t t e n u a t e d pathogens and a n t i g e n s from them t r i g g e r i t , j u s t as K i r a l y et a l . reported i n p l a n t s (49,50,134).
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch001
Are P h y t o a l e x i n s Plants?
Really
a Mechanism f o r D i s e a s e R e s i s t a n c e i n
Since Cruickshank's c l a s s i c review (4) brought phytoalexins to the a t t e n t i o n of the s c i e n t i f i c community and f o r c e f u l l y proposed t h e i r r o l e i n disease defense, they have i n e x p l i c a b l y been under a t t a c k by some workers g e n e r a l l y n o t i n v o l v e d i n p h y t o a l e x i n r e s e a r c h on the p r i n c i p l e p r e s u m p t i o n t h a t they a r e m e r e l y spurious products or formed c o i n c i d e n t a l l y to some other as yet undescribed defense mechanism. Enough evidence i s now at hand to attempt a reasonable assessment of the proposed r o l e of phytoa l e x i n s as a d e f e n s e mechanism i n p l a n t s but n o t t o deduce the g e n e r a l i t y of t h i s r o l e . There are two types of r e s i s t a n c e to be considered, general r e s i s t a n c e of a plant species to various organisms that are non-pathogenic on i t and s p e c i f i c r e s i s t a n c e , o c c u r r i n g i n c e r t a i n c u l t i v a r s of a p l a n t species to s p e c i a l i z e d biotypes, or races, of a s i n g l e pathogen species (gene-for-gene systems [54,55,56]). General
Resistance
As with a l l p a r a s i t i e s , those of p l a n t s must possess c e r t a i n c h a r a c t e r i s t i c s that enable them to s a t i s f a c t o r i l y reach the host, p e n e t r a t e and i n f e c t , c o l o n i z e h o s t t i s s u e , e s c a p e d d e f e n s e mechanisms, and f i n a l l y to reproduce and disseminate. F a i l u r e to do any of these p r o p e r l y r e s u l t s i n i n a b i l i t y to p a r a s i t i z e the plant and we say that the p l a n t i s r e s i s t a n t or i s incompatible with the p a r a s i t e . Many mechanisms c l e a r l y can account f o r t h i s that have nothing to do with p h y t o a l e x i n s — s t r u c t u r a l features of the p l a n t such as c e l l w a l l composition, c u t i c u l a r f e a t u r e s , l e a f h a i r s , s t o m a t a l b e h a v i o r , l e c t i n s , i n d u c e d l i g n i f i c a t i o n and s u b e r i z a t i o n , p r e f o r m e d c h e m i c a l i n h i b i t o r s and o t h e r s a r e u n d o u b t e d l y i m p o r t a n t i n e x c l u d i n g a g r e a t many p o t e n t i a l l y pathogenic microorganisms (see 3,10). But there i s s u b s t a n t i a l reason to think that phytoalexins are one of the mechanisms that confer general r e s i s t a n c e , e i t h e r s i n g l y or i n concert with other mechanisms (57)· Cruickshank (4) f i r s t n o t i c e d that s u c c e s s f u l pathogens on pea and bean p l a n t s were g e n e r a l l y l e s s s e n s i t i v e to the phytoa l e x i n s produced by those p l a n t s than were non-pathogens and t h i s has been confirmed by Van Etten (58). This i n d i c a t e d that phytoa l e x i n s were perhaps r e s p o n s i b l e f o r r e s i s t a n c e to t h e nonpathogens, and that the f a i l u r e of the host to produce them i n s u f f i c i e n t quantity or the a b i l i t y of the p a r a s i t e to degrade them c o u l d a c c o u n t f o r the s u c c e s s f u l p a r a s i t e s . We now know of
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch001
8
H O S T P L A N T RESISTANCE T O
PESTS
s e v e r a l examples where s u c c e s s f u l p a r a s i t e s are able to degrade the p l a n t p h y t o a l e x i n s , w h i l e t a x o n o m i c a l l y closely related microorganisms cannot. For instance van den Heuvel (59) showed that three s t r a i n s of the pathogen B o t r y t i s cinerea that were pathogenic on green beans had the a b i l i t y to degrade p h a s e o l l i n , w h i l e two s t r a i n s of the same fungus that were not pathogenic lacked a b i l i t y to s i g n i f i c a n t l y degrade i t . S i m i l a r observations were made by M a n s f i e l d and Widdowson (60), who found that B o t r y t i s fabae, a pathogen of V i c i a fabae p l a n t s , degraded the major plant p h y t o a l e x i n wyerone a c i d much more r a p i d l y than the r e l a t e d non-pathogen B. c i n e r e a . The p r i n c i p l e degradation product was s u b s e q u e n t l y i d e n t i f i e d as r e d u c e d wyerone a c i d and i t had l i t t l e or no a n t i f u n g a l a c t i v i t y . Hargreaves et a l . (61) also o b s e r v e d the d e g r a d a t i o n of a n o t h e r broad bean p h y t o a l e x i n , wyerone epoxide, to wyerol epoxide by 15. cinerea and to dihydrodihydroxy wyerol epoxide by IS. fabae. Again, the degradation products had l e s s a n t i f u n g a l a c t i v i t y than the parent compound, with the B. fabae product being l e a s t a c t i v e . Jones ^ t a l . (62) showed that the pepper pathogen Phytophthora c a p s i c i was much l e s s s e n s i t i v e In v i t r o to i n h i b i t i o n by the pepper phytoalexin c a p s i d i o l than was the non-pathogen of peppers, infestans. No e v i d e n c e was o b t a i n e d f o r d e g r a d a t i o n of c a p s i d i o l by c a p s i c i ; instead the fungus was apparently more t o l e r a n t of the compound. In a d d i t i o n , _P. i n f e s t a n s a l s o e l i c i t e d much greater amounts of c a p s i d i o l i n peppers than d i d .P. c a p s i c i . Thus, i t would seem that two f a c t o r s ( d i f f e r e n t i a l s e n s i t i v i t y and d i f f e r e n t i a l e l i c i t o r a c t i v i t y ) d i s t i n g u i s h the two f u n g i . The work by the Canadian group o f f e r s considerable support f o r the r o l e of c a p s i d i o l i n determining the general r e s i s t a n c e of peppers to _P. i n f estans and t h e i r s u s c e p t i b i l i t y to JP. c a p s i c i . A major l i n e of evidence l i n k i n g phytoalexins with general r e s i s t a n c e i s that c e r t a i n treatments break the normal r e s i s t a n c e of plant t i s s u e s to non-pathogens and concomitantly negate phytoa l e x i n b i o s y n t h e s i s a f t e r i n o c u l a t i o n (53,63). For instance, Chamberlain (64,65) found that treatment of soybean hypocotyls at 44 C f o r 1 hr produced no apparent damage to the p l a n t s , but i t destroyed r e s i s t a n c e to s e v e r a l non-pathogenic fungi along with phytoalexin production, p r o v i d i n g that the plants were i n o c u l a t e d w i t h i n about 24 hr a f t e r treatment. A f t e r 1-2 days, however, r e s i s t a n c e and phytoalexin production were concomitantly r e s t o r e d . A key p o i n t (64) was the f a c t that heat treatment broke r e s i s t a n c e t o some non-pathogens of soybean but not a l l of them, thus implying that phytoalexins are associated with general r e s i s t a n c e to some but not a l l non-pathogens. Yoshikawa (69) followed t h i s w i t h the f i n d i n g t h a t the p r o t e i n s y n t h e s i s inhibitor b l a s t i c i d i n S a l s o rendered soybean p l a n t s s u s c e p t i b l e to s e v e r a l normally non-pathogenic Phytophthora sp. and that the treated p l a n t s d i d not produce the soybean phytoalexin g l y c e o l l i n a f t e r inoculation.
1.
KEEN
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch001
Specific
AND
BRUEGGER
Phytoalexin
Production
in
Plants
9
Resistance
Plant p a t h o l o g i s t s and plant breeders have known f o r almost 80 years that some c u l t i v a r s w i t h i n a plant species have r e s i s t a n c e to c e r t a i n p l a n t pathogens and that t h i s r e s i s t a n c e to disease i s f r e q u e n t l y i n h e r i t e d as a dominant, s i n g l e gene c h a r a c t e r . P r e d i c t a b l y , the i n c o r p o r a t i o n of these s i n g l e genes i n t o agronom i c a l l y d e s i r a b l e c u l t i v a r s of crop p l a n t s has become a mainstay of p r a c t i c a l disease c o n t r o l . The curse of the methodology i s that the pathogens involved f r e q u e n t l y mutate to biotypes or races t h a t a r e p a t h o g e n i c on the r e s i s t a n t p l a n t g e n o t y p e . This r e a c q u i s i t i o n of pathogenicity or v i r u l e n c e has a l s o been found to be i n h e r i t e d as a s i n g l e gene character i n s e v e r a l p a r a s i t e s , and thus l e d F l o r (see 56) to f i r s t f o r m a l l y recognize the complement a r i t y of host r e s i s t a n c e genes and p a r a s i t e v i r u l e n c e genes; t h i s r e l a t i o n s h i p i s c a l l e d gene-for-gene complementarity and e x i s t s i n many plant-pest r e l a t i o n s h i p s (54,55,56). Aside from being a detriment to the permanent use of disease r e s i s t a n c e genes i n p r a c t i c a l a g r i c u l t u r e , the gene-for-gene r e l a t i o n s h i p o f f e r s a s p l e n d i d system f o r the c r i t i c a l t e s t i n g of mechanisms involved i n the b i o c h e m i c a l f u n c t i o n of r e s i s t a n c e genes i n p l a n t s and v i r u l e n c e genes i n p a r a s i t e s . Rowell et a l . (55) f i r s t presented t h i s as the "quadratic check," shown i n Figure 2 f o r comparing one r e s i s t a n c e gene i n the plant and one complementary v i r u l e n c e gene i n the p a r a s i t e . S i n c e i t i s p o s s i b l e to d e v e l o p h o s t and p a r a s i t e l i n e s that are "near-isogenic" except f o r the genes i n question, use of these systems c l e a r l y minimizes the problem of i n t e r f e r e n c e by genes other than those under study (55). Two terms o r i g i n a l l y introduced by Talboys (66) are u s e f u l i n c o n c e p t u a l i z i n g events o c c u r r i n g i n p l a n t - p a r a s i t e i n t e r a c t i o n s , e s p e c i a l l y gene-for-gene systems. The determinative phase denotes those i n i t i a l r e c o g n i t i o n a l events o c c u r r i n g between host and pathogen that determine or d i c t a t e whether the p l a n t w i l l subsequently react i n a compatible or incompatible way. The expressive phase c o n s t i t u t e s those events that are, as we w i l l see, i r r e v e r s i b l y predicated by the determinative phase, and may i n v o l v e r a p i d or slow p h y t o a l e x i n p r o d u c t i o n which i n t u r n may constitute r e s i s t a n c e or s u s c e p t i b i l i t y , r e s p e c t i v e l y . Gene-for-gene h o s t - p a r a s i t e systems have g e n e r a l l y o f f e r e d the most c r i t i c a l and convincing proof that r a p i d phytoalexin product i o n c o n s t i t u t e s a mechanism f o r r e s t r i c t i o n of pathogen growth i n r e s i s t a n t p l a n t t i s s u e — c o n v e r s e l y , phytoalexins are the only mechanism that i s c u r r e n t l y known to e x p l a i n r e s i s t a n c e i n genefor-gene systems, other proposed mechanisms having n e g l i g i b l e experimental support. The e x p e r i m e n t a l p o i n t s t h a t s u p p o r t phytoalexin involvement with r e s i s t a n c e expression i n gene-forgene systems may be summarized as f o l l o w s : ( i ) incompatible r e a c t i o n s r e s u l t i n more r a p i d and higher rates of phytoalexin production than do compatible ones (13,34,41,67,68,70) and a l l races of the r e s p e c t i v e pathogens seem equally s e n s i t i v e to the
10
HOST
PLANT
RESISTANCE T O PESTS
PLANT Rps
Race I ( A
R p s
rps
)
I
c
)
c
c
PARASITE
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch001
Race 3 ( a
R p s
Figure 2. The quadratic check (55); gene-for-gene complementarity as illustrated by the reactions of two alleles of the Rps resistance hcus in soybeans to Phytophthora megasperma var. sojae and two races of the fungus shown with their presumed but unproved virulence genotypes. Reactions: I = incompatible; C = compatible. Resistance in the plant and avirulence in the fungus are shown as dominant characters, a general observation (54;.
phytoalexins i n v i t r o , ( i i ) i n the r e l a t i v e l y few cases i n which l o c a l i z e d l e v e l s of phytoalexins have been assessed e i t h e r by e x t r a c t i o n from s p e c i f i c host c e l l s l a y e r s or h i s t o c h e m i s t r y , they have been shown to reach h i g h l y i n h i b i t o r y l e v e l s to the pathogen at the i n f e c t i o n s i t e s i n incompatible r e a c t i o n (34,40,41,68,70); ( i i i ) a p p l i c a t i o n of m e t a b o l i c i n h i b i t o r s or heat treatments simultaneously block both r e s i s t a n c e and phytoalexin production (53,71); ( i v ) although t e c h n i c a l l y d i f f i c u l t , l i m i t e d data suggest that a p p l i c a t i o n of p u r i f i e d phytoalexins to normally compatible h o s t - p a r a s i t e i n f e c t i o n s i t e s r e s u l t s i n incompatible r e a c t i o n s (27,72). The most e x t e n s i v e l y researched and best understood gene-forgene plant-pathogen system i s the soybean-Phytophthora megasperma v a r . sojae i n t e r a c t i o n , and the evidence s t r o n g l y supports a r o l e f o r phytoalexins i n the expression of r e s i s t a n c e . Plant breeders have found s e v e r a l d i f f e r e n t s i n g l e genes f o r r e s i s t a n c e to the root and hypocotyl i n f e c t i n g fungus, but only one, the dominant Rps gene, has been incorporated i n t o near-isogenic l i n e s . As with a l l gene-for-gene systems, s e v e r a l races of the fungus have been found (9 at l a s t count), and two of these, races 1 and 3, together with the rps and Rps soybean genotypes, f i l l out the quadratic c h e c k f o r t h e h o s t - p a r a s i t e system ( F i g u r e 2 ) . Klarman and
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch001
1.
KEEN
A N D BRUEGGER
Sojagol Figure 3.
Phytoalexin
Production
in
Pfonts
11
Coumestrol Structures of soybean (Glycine max) phytoalexins
Gerdemann (47,74) f i r s t showed t h e p o s s i b l e i n v o l v e m e n t of phytoalexins i n the expression of r e s i s t a n c e due to the Rps gene. They demonstrated that e l u t i o n of the i n f e c t i o n s i t e of incomp a t i b l e i n o c u l a t e d soybean h y p o c o t y l s w i t h water removed the phytoalexins and made the p l a n t s s u s c e p t i b l e . They a l s o chromatog r a p h i c a l l y showed the presence of two phytoalexins i n e x t r a c t s from incompatible r e a c t i n g plants that were not recovered from compatible p l a n t s . Paxton and a s s o c i a t e s showed that phytoalexins were a s s o c i a t e d w i t h r e s i s t a n c e c o n f e r r e d by one a d d i t i o n a l r e s i s t a n c e gene (75) and found that i n o c u l a t i o n with an incomp a t i b l e fungus r a c e l e d to " c r o s s - p r o t e c t i o n " of the p l a n t s against subsequent r e - i n o c u l a t i o n with a normally compatible race. They a l s o noted that a d m i n i s t r a t i o n of two of the soybean phytoa l e x i n s (now known to be g l y c e o l l i n and PA^) t o c o m p a t i b l e h o s t - p a r a s i t e combinations r e s u l t e d i n a r e s i s t a n t r e a c t i o n (72) . B r i d g e and Klarman (76) f o l l o w e d t h i s same l o g i c by showing that u l t r a v i o l e t l i g h t e l i c i t e d g l y c e o l l i n production i n
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch001
12
HOST P L A N T RESISTANCE T O
PESTS
the rps genotype, normally s u s c e p t i b l e to race 1, and that the c o r t i c a l t i s s u e of such UV treated p l a n t s became r e s i s t a n t to the fungus. Klarman and Sanford (77) f i r s t i s o l a t e d the major phytoa l e x i n now thought to be involved i n r e s i s t a n c e expression and Keen et a l . (78) showed that i t e x i s t e d as three isomers by GC-MS. Sims j i t aj.. (79) f o r m u l a t e d the s t r u c t u r e of one of t h e s e as 6a-hydroxyphaseollin, but Burden and B a i l e y (80) subsequently showed that t h i s was i n c o r r e c t and that the isoprene u n i t should be placed on the A r i n g (Figure 3). Lyne et a l . (81) confirmed t h i s and formulated the c u r r e n t l y accepted s t r u c t u r e s f o r the other two g l y c e o l l i n isomers (Figure 3). A l l three of them have s i m i l a r a n t i f u n g a l p r o p e r t i e s and s i m i l a r l y i n h i b i t growth of a l l j \ megasperma races (78). Although the mixed isomers as i s o l a t e d from the plant are a n t i b a c t e r i a l (82), the i n d i v i d u a l isomers have not been tested f o r t h e i r a c t i v i t y . Keen et a l . (83) showed that the i s o f l a v o n e d a i d z e i n and the coumestans coumestrol and s o j a g o l (Figure 3) accumulated c o o r d i n a t e l y with g l y c e o l l i n during the incompatible r e a c t i o n to _P. megasperma var. sojae, but that the f o r m e r compounds p o s e s s e d much l e s s a n t i f u n g a l a c t i v i t y than glyceollin. I n t h e same p a p e r , C-phenylalanine and C - i s o l i q u i r i t i g e n i n were found to be r e a d i l y incorporated i n t o g l y c e o l l i n , t h e r e b y i n d i c a t i n g t h a t the p h y t o a l e x i n i n f a c t r e s u l t s from jie novo s y n t h e s i s and not from d e g r a d a t i o n of a preformed compound a f t e r i n o c u l a t i o n . S i m i l a r to e a r l i e r observ a t i o n s by Rathmell and Bendall (84) i n green beans, Keen ^ t a l . (83) a l s o found that incompatible soybean hypocotyls s p e c i f i c a l l y accumulated i s o f l a v o n o i d s , but not f l a v o n o i d s or other detectable phenols. G e n i s t e i n and PA^ are a l s o regarded as soybean phytoa l e x i n s because they accumulate c o o r d i n a t e l y with g l y c e o l l i n i n r e s i s t a n t r e a c t i o n s (85) and possess at l e a s t weak a n t i f u n g a l activity. Keen (40) showed that g l y c e o l l i n was produced from 10-100 times f a s t e r i n incompatible than i n compatible r e a c t i o n s , d e m o n s t r a t e d t h a t p r o d u c t i o n was s t r i c t l y l o c a l i z e d a t the i n f e c t i o n s i t e i n incompatible hypocotyls, and found that concent r a t i o n s reached exceedingly h i g h l e v e l s (up to 10% of the t i s s u e d r y w e i g h t by 48 h r ) . In common w i t h a l l o t h e r known phytoalexins, there was a ^ a . 10 hr l a g period a f t e r i n o c u l a t i o n before g l y c e o l l i n was detected i n the p l a n t s , but then i t accumul a t e d r a p i d l y i n the incompatible r e a c t i o n s u n t i l 48 hr, at which time the fungus seems dead (86). Yoshikawa jet al. (7JL) have r e c e n t l y made a c r i t i c a l and elegant study of the l e v e l s of g l y c e o l l i n o c c u r r i n g at very e a r l y times a f t e r i n o c u l a t i o n with P. megasperma var. sojae by making freeze microtome s e c t i o n s of soybean hypocotyls and i n t h i s way q u a n t i t a t i n g l e v e l s of the phytoalexin o c c u r r i n g at various c e l l depths from the i n o c u l a t i o n s i t e on the hypocotyls. Their data c o n c l u s i v e l y e s t a b l i s h e s that incompatible r e a c t i o n s are d i s t i n g u i s h a b l e from c o m p a t i b l e r e a c t i o n s a t the e a r l i e s t time of g l y c e o l l i n d e t e c t i o n at about 8 hrs a f t e r i n o c u l a t i o n when the fungus has o n l y i n v a d e d a few h o s t c e l l l a y e r s . G l y c e o l l i n
1.
KEEN
A N D BRUEGGER
Phytoalexin
Production
Fungus growth stops
DNA transcription required until here
Inoculation Increased m-RNA synthesis
Glyceollin synthesis starts m-RNA translation required until here
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch001
13
in Ρ fonts
Γ
4
5
6
Glyceollin reaches 90 Concentration E D
I 8
7
10
HOURS J\
DETERMINATIVE PHASE
V
EXPRESSIVE PHASE
Figure 4. Timing of events occurring in incompatible-reacting soybean hypocotyh inoculated wtih Phytophthora megasperma var. sojae. The determinative phase is de fined as that time required for recognitional events between parasite and plant and for DNA transcription; the expressive phase encompasses translational events and phytoalexin biosynthesis.
production was s t r i c t l y l o c a l i z e d i n the host c e l l s immediately a d j a c e n t t o t h e fungus i n t h e i n c o m p a t i b l e r e a c t i o n s and i t accumulated to s t r o n g l y i n h i b i t o r y levels ( 9 Q concentrations f o r In v i t r o fungus growth) i m m e d i a t e l y b e f o r e t h e time when fungus growth stopped at j ç a . 9 hrs a f t e r i n o c u l a t i o n (see F i g u r e 4). In compatible r e a c t i n g p l a n t s , however, l e v e l s of g l y c e o l l i n never exceeded the E D ^ Q value f o r i n h i b i t i o n of fungus growth i n host c e l l s that were near the growing margin of the invading fungus. This data s t r o n g l y supports the i d e a that g l y c e o l l i n c o n s t i t u t e s an i n h i b i t o r y mechanism i n incompatible h o s t - p a r a s i t e combinations and that the f a i l u r e of the compatible host to make the c h e m i c a l f a s t enough a c c o u n t s f o r i t s s u s c e p t i b i l i t y t o r e s t r i c t the fungus. E D
In o t h e r i m p o r t a n t work Yoshikawa et a l . (87) found t h a t incompatible r e a c t i n g soybean hypocotyls synthesized p o l y ( A ) c o n t a i n i n g mRNA a t 6 times the r a t e of non-inoculated hypocotyls,
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch001
14
HOST P L A N T
RESISTANCE T O PESTS
but that i n o c u l a t e d compatible hypocotyls synthesized mRNA at only 2 times that of the c o n t r o l s . These data r a i s e d the p o s s i b i l i t y that the expression of i n c o m p a t i b i l i t y i s b i o c h e m i c a l l y the r e s u l t of derepressed t r a n s c r i p t i o n of genes coding f o r the enzymes of p h y t o a l e x i n b i o s y n t h e s i s . T h i s has been f u r t h e r s u b s t a n t i a t e d (69) with the f i n d i n g that the t r a n s c r i p t i o n i n h i b i t o r actinomycin D at 10 yg^ml blocked phytoalexin production i n normally incompatible p l a n t s and c o n c o m i t a n t l y r e s u l t e d i n a c o m p a t i b l e r e a c t i o n . However, a p p l i c a t i o n of actinomycin D to the p l a n t s at more than 4 hours a f t e r i n o c u l a t i o n was i n e f f e c t i v e i n r e v e r s i n g r e s i s t a n c e e x p r e s s i o n or g l y c e o l l i n p r o d u c t i o n . S i m i l a r l y , the p r o t e i n synthesis i n h i b i t o r b l a s t i c i d i n S blocked p r o t e i n synthesis i n r e s i s t a n t i n o c u l a t e d hypocotyls and t h i s r e s u l t e d i n only low p h y t o a l e x i n l e v e l s and s u s c e p t i b i l i t y of the p l a n t s , p r o v i d i n g that the i n h i b i t o r was a p p l i e d i n the f i r s t 6 hours a f t e r i n o c u l a t i o n (69). These observations are summarized i n Figure 4 and c o n s t i t u t e an e l e g a n t e l u c i d a t i o n of the m o l e c u l a r events a s s o c i a t e d w i t h r e s i s t a n c e e x p r e s s i o n to I?, megasperma v a r . sojae i n the soybean p l a n t . I f , as appears to be the case i n the soybean-P. megasperma var. sojae h o s t - p a r a s i t e system, i n c o m p a t i b i l i t y of the host to fungus i n f e c t i o n i s due to d e r e p r e s s e d b i o s y n t h e s i s of p h y t o a l e x i n s r e s u l t i n g from s p e c i f i c de novo DNA t r a n s c r i p t i o n , does s p e c i f i c i n d u c t i o n of b i o s y n t h e t i c enzymes i n f a c t o c c u r ? We have no evidence on t h i s except f o r the work of S i t t o n and West (73) with the a n t i f u n g a l and a n t i b a c t e r i a l phytoalexin casbene. S i t t o n and West obtained a c e l l - f r e e system from fungus-challenged c a s t o r bean t i s s u e t h a t s y n t h e s i z e d casbene 20-40 times f a s t e r from l a b e l l e d mevalonic a c i d than comparable e x t r a c t s from healthy plant t i s s u e . Of considerable i n t e r e s t , r a t e s of s y n t h e s i s of other diterpene hydrocarbons was e s s e n t i a l l y the same with both c e l l - f r e e systems. This suggests that casbene b i o s y n t h e s i s i s a consequence of s p e c i f i c i n d u c t i o n of the appropriate b i o s y n t h e t i c enzymes and does not r e s u l t from a general a c c e l e r a t i o n of t e r penoid b i o s y n t h e s i s . With the legume i s o f l a v o n o i d p h y t o a l e x i n s , e a r l y enzymes i n the presumed b i o s y n t h e t i c pathways i n c l u d i n g phenylalanine-ammonia lyase, chalcone-flavonone isomerase, peroxidase and others appear to have no s p e c i f i c r o l e (88,93), and l a t e r enzymes i n the presumed pathways have not been obtained i n c e l l - f r e e extracts. A prime remaining question i n p l a n t pathology i s e l u c i d a t i o n of the s p e c i f i c i t y mechanism(s) i n p l a n t - p a r a s i t e systems that operates between p a r a s i t e and host p l a n t and d i c t a t e s whether the plant w i l l respond i n a compatible or incompatible way. It is most p l a u s i b l e that the host i n such cases s p e c i f i c a l l y recognizes some chemical f e a t u r e ( s ) of the incompatible p a r a s i t e (but not the compatible) and that t h i s i n a yet unknown manner i n t e r a c t s with the host to u l t i m a t e l y r e s u l t i n derepressed phytoalexin product i o n and r e s i s t a n c e . T h i s s u s p i c i o n has generated a great deal of i n t e r e s t and w i l l i n v o l v e the next s e c t i o n .
1.
KEEN
A N D BRUEGGER
Phytoalexin
Production
in
Plants
15
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch001
Phytoalexin e l i c i t o r s Phytoalexin production may be e l i c i t e d i n p l a n t t i s s u e s i n the absence of l i v i n g microorganisms by such agents as heavy metal i o n s (102), UV l i g h t ( 7 6 ) , 3',5' c y c l i c AMP ( 9 ^ ) , v a r i o u s peptides, p r o t e i n s , a n t i b i o t i c s (95) and chemicals of pathogen origin. These chemical agents have been c a l l e d " i n d u c e r s " of phytoalexin production, but we p r e f e r to c a l l them " e l i c i t o r s , " because a l l we c u r r e n t l y know i s that they i n i t i a t e or e l i c i t the production of p h y t o a l e x i n s . The n o n - s p e c i f i c i t y of p h y t o a l e x i n response to such an array of agents has been used as a d e t r a c t i n g argument against the presumed r o l e of phytoalexins i n disease r e s i s t a n c e , d e s p i t e t h e o b v i o u s f a c t t h a t pathogens do n o t r o u t i n e l y l i b e r a t e heavy metal ions, a n t i b i o t i c s , e t c . Further, many of the e l i c i t o r s from pathogens are obtained by such harsh treatments as a u t o c l a v i n g or homogenization, l e a d i n g one to doubt whether they play any p h y s i o l o g i c r o l e i n h o s t - p a r a s i t e i n t e r actions. Few a t t e m p t s have been made to c r i t i c a l l y t e s t t h e a s s o c i a t i o n of e l i c i t o r s with the d i f f e r e n t i a l phytoalexin product i o n that occurs i n gene-for-gene h o s t - p a r a s i t e systems, but l o g i c d i c t a t e s that such s p e c i f i c i t y imparting f a c t o r s must f u n c t i o n during the determinative phase. We w i l l d i s c u s s n o n - s p e c i f i c e l i c i t o r s , those with no d i f f e r e n t i a l e f f e c t s of various genotypes of a p l a n t s p e c i e s , and s p e c i f i c e l i c i t o r s , those which have d i f f e r e n t i a l e l i c i t o r e f f i c i e n c y , depending on the disease r e s i s tance genotype. Among n o n - s p e c i f i c e l i c i t o r s , we recognize b i o t i c e l i c i t o r s as those of pathogen o r i g i n , and a b i o t i c e l i c i t o r s as those from other sources. In attempts to understand the biochemical processes by which p l a n t s i n i t i a t e phytoalexin production, many a b i o t i c chemicals have been used to e l i c i t phytoalexin production i n s e v e r a l plant systems such as pea pods, bean pods and hypocotyls, sweet potato root d i s c s , soybean cotyledons, hypocotyls, suspension c e l l s , and l e a v e s , j a c k bean c a l l u s , p o t a t o t u b e r s l i c e s and cowpea hypocotyls (92,93,94,95,96). Some of the n o n - s p e c i f i c a b i o t i c chemicals that e l i c i t phytoalexin production i n various of these p l a n t s systems are i n o r g a n i c ions as those of mercury, copper and s i l v e r , metabolic i n h i b i t o r s such as sodium azide and cyanide, DNA i n t e r c a l a t i n g a g e n t s such as a c t i n o m y c i n D, m i t o m y c i n C, and a c r i d i n e orange, b a s i c p r o t e i n s and peptides such as protamine, p o l y - L - l y s i n e , and spermine, and p r o t e i n synthesis i n h i b i t o r s such as cycloheximide and puromycin (89,94,101,102). Some of the compounds such as cycloheximide and actinomycin D e l i c i t phytoalexin production a t low concentrations but a t higher concentrations are i n h i b i t o r y (94,95). One of the problems i n f o r m a l i z i n g a general hypothesis f o r p h y t o a l e x i n i n d u c t i o n from data obtained with a b i o t i c e l i c i t o r s i s that not a l l plant species respond to the same chemicals (96); even d i f f e r e n t t i s s u e s w i t h i n the same p l a n t respond d i f f e r e n t l y — f o r example g l y c e o l l i n production can be e l i c i t e d i n soybean cotyledons with K C r 0 , iodoacetate, SDS, ?
?
7
16
H O S T P L A N T RESISTANCE T O
PESTS
CuCl or H g C l , but only K^Cr^O^ iodoacetate, or C u C l elicit phytoalexin production when i n j e c t e d i n t o soybean l e a v e s — S D S or H g C l , while causing n e c r o s i s , do not e l i c i t detectable quant i t i e s of phytoalexins. Since many a b i o t i c e l i c i t o r s a f f e c t DNA s t r u c t u r e and metabolism, s p e c i f i c gene derepression has been hypothesized by Hadwiger as the mechanism by which phytoalexin production i s e l i c i t e d (89). However, s i n c e most e l i c i t o r s have not been shown to act e x c l u s i v e l y on DNA, " s i d e a f f e c t s " could account f o r t h e i r a c t i v i t y . Another idea i s that the a b i o t i c e l i c i t o r s may put the c e l l under " s t r e s s " — t h a t i s , change the n o r m a l p h y s i o l o g i c a l s t a t e of the p l a n t c e l l environment and thereby cause phytoalexin production. Although s p e c i f i c mechanisms are as yet i n d e f i n i t e and perhaps d i v e r s e , the p r e v i o u s l y d i s c u s s e d work of Yoshikawa and a s s o c i a t e s (69,71,87) p o i n t s to i n v o l v e m e n t of s p e c i f i c DNA t r a n s c r i p t i o n with glyceollin e l i c i t a t i o n i n the Phytophthora—soybean system. Reilly (100) a l s o supported t h i s i n experiments with soybean suspension c u l t u r e c e l l s with UV l i g h t as the e l i c i t i n g agent. Exposure of c e l l s to i n c r e a s i n g doses of UV l i g h t r e s u l t e d i n concomitant increases i n thymine dimer formation and g l y c e o l l i n s y n t h e s i s . Photoreversal experiments on UV-treated c e l l s using v i s i b l e l i g h t showed that thymine dimers and g l y c e o l l i n synthesis a l s o d e c l i n e d i n p a r a l l e l . The observed simultaneous e f f e c t s of UV-light and photoreversal on phytoalexin e l i c i t a t i o n and p h y s i c a l DNA permutation point to DNA as the primary e l i c i t o r target of UV l i g h t . 2
2
2
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch001
2
A number of apparently n o n - s p e c i f i c b i o t i c e l i c i t o r s have now been r e p o r t e d . P o l y s a c c h a r i d e s from the c u l t u r e f l u i d of 3 s p e c i e s of C o l l e t o t r i c h u m (two of which were non-pathogens) e l i c i t e d p h y t o a l e x i n p r o d u c t i o n on c o t y l e d o n s of bean p l a n t s (98). A l s o , the c u l t u r e f l u i d of Pénicillium expansum (nonpathogen) e l i c i t e d phytoalexin production on bean hypocotyls and pea pods (84) and N e c t r i a g a l l i g e n a Bres. released proteases that e l i c i t e d benzoic a c i d production i n apples (99). Culture f l u i d s as w e l l as s o l u b l e extracts from the mycelia and c o n i d i a of compatible and incompatible s t r a i n s of C e r a t o c y s t i s f i m b r i a t a e l i c i t e d ipomeamarone, ipomeamoronol, and dehydroipomeamarone i n sweet potato root t i s s u e . The e l i c i t o r was s o l u b l e i n water or 0.02M KC1, heat s t a b l e , d i a l y z a b l e , had no a n i o n i c or c a t i o n i c p r o p e r t i e s and caused c e l l u l a r i n j u r y to root t i s s u e (103). I n c o m p a t i b l e and c o m p a t i b l e r a c e s of Colletotrichum l i n d e m u t h i a n u m r e l e a s e d an e l i c i t o r i n t o c u l t u r e f l u i d s t h a t was l a r g e l y g l u c a n i n n a t u r e (104) and e f f i c i e n t l y e l i c i t e d p h a s e o l l i n production i n green beans. A s i m i l a r e l i c i t o r was a l s o i s o l a t e d from p u r i f i e d m y c e l i a l c e l l w a l l preparations of the fungus. Incompatible and compatible races of Phytophthora megasperma v a r . sojae produce a h e a t - s t a b l e 1,3-glucan that i s an extremely potent n o n - s p e c i f i c e l i c i t o r of the soybean phytoalexin g l y c e o l l i n
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch001
1.
KEEN
AND
BRUEGGER
Phytoalexin
Production
in
Plants
17
(105,106,107). Valent and Albersheim d i s c u s s the work elsewhere i n t h i s volume. S t e k o l l and West (108) r e c e n t l y obtained an e l i c i t o r of casbene synthesis i n castor bean from the non-pathogenic fungus Rhizopus s t o l o n i f e r that, u n l i k e the glucan e l i c i t o r s , was heat l a b i l e . The p a r t i a l l y p u r i f i e d e l i c i t o r appeared to be a g l y c o p r o t e i n of about 23,000 m o l e c u l a r w e i g h t and was a c t i v e a t 0.15 yg/ml. Varns et a l . (96) showed that s o n i c a t e s and homogenates of Phytophthora i n f e s t a n s e l i c i t e d production of phytoalexins i n potato tuber t i s s u e s , but other chemicals that caused n e c r o s i s d i d not n e c e s s a r i l y f u n c t i o n as e l i c i t o r s . L i s k e r and Kuc (16) a l s o observed that potatoes were r e l a t i v e l y i n s e n s i t i v e to some of the a b i o t i c and b i o t i c e l i c i t o r s that were e f f e c t i v e i n leguminous p l a n t s such as p o l y - L - l y s i n e and p o l y s a c c h a r i d e s such as the JP. megasperma v a r . sojae glucan (105). Only autoclaved sonicates and h e a t - k i l l e d fungi having g l u c a n - c e l l u l o s e w a l l s were a c t i v e as e l i c i t o r s of the potato p h y t o a l e x i n s . This perhaps i n d i c a t e s that potato responds to a narrower range of e l i c i t o r s than leguminous plants· Among n o n - s p e c i f i c p h y t o a l e x i n e l i c i t o r s , the f a c t i s emerging that b i o t i c e l i c i t o r s are g e n e r a l l y much more a c t i v e than a b i o t i c e l i c i t o r s — b y s e v e r a l orders of magnitude i n some cases (105,108). Although t h i s may argue f o r a p h y s i o l o g i c r o l e f o r the former, they are produced both by compatible and incompatible pathogen races and s t r a i n s , are often only recovered from fungus mycelium by h a r s h e x t r a c t i o n t r e a t m e n t s , and show no h o s t s p e c i f i c i t y (98,105). A l l t h e s e f a c t o r s would appear t o e x c l u d e a r o l e for n o n - s p e c i f i c e l i c i t o r s i n the determination of gene-for-gene specificity (see a l s o 109) but they s h o u l d n o n e t h e l e s s be u s e f u l i n s t u d i e s of e l i c i t a t i o n mechanisms i n p l a n t s and could be involved i n the c o n f e r r a l of general r e s i s t a n c e . There i s a p a u c i t y of data on s p e c i f i c p h y t o a l e x i n e l i c i t o r s . The b e s t known i s a g e n u s s p e c i f i c e l i c i t o r i s o l a t e d by Cruickshank and colleagues (110). A p o l y p e p t i d e , m o n i l i c o l i n A, was p u r i f i e d from the c u l t u r e f l u i d of M o n i l i n i a f r u c t i c o l a (a non-pathogen o f P h a s e o l u s v u l g a r i s ) and was shown to e l i c i t p h a s e o l l i n a c c u m u l a t i o n i n g r e e n bean, but n e i t h e r e l i c i t e d p i s a t i n i n peas (Pisum sativum) nor phytoalexins i n broad bean ( V i c i a faba) (110). An a c e t o n e p r e c i p i t a t e d s u p e r n a t a n t of the homogenate of R h i z o c t o n i a v e r s i c o l a r (a non-pathogenic fungus asociated with r o o t s o f the o r c h i d L o r o g l o s s u m h i r c i n u m ) e l i c i t e d h i r c i n o l synthesis i n s t e r i l e t i s s u e of the o r c h i d bulb. A s i m i l a r homogenate from R h i z o c t o n i a s o l a n i , a fungus which destroys the bulbs of 1^. hircinum, d i d not e l i c i t the p h y t o a l e x i n — a case of f u n g a l species s p e c i f i c i t y (111). S t r a i n s p e c i f i c i t y was observed i n the Fusarium s o l a n i - p e a system (112). The c u l t u r e f l u i d of a v i r u l e n t Fusarium s o l a n i s t r a i n s e l i c i t e d l a r g e r q u a n t i t i e s of p i s t i n than d i d the c u l ture f l u i d from v i r u l e n t s t r a i n s ; however, the d i f f e r e n c e was
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch001
18
HOST
PLANT
RESISTANCE T O PESTS
apparently due to q u a n t i t i e s of the same rather than d i f f e r e n t types of e l i c i t o r s . Keen (113,114) detected a race s p e c i f i c phytoalexin e l i c i t o r i n c u l t u r e f l u i d s of race 1 of Phytophthora megasperma v a r . sojae but not from race 3 of the fungus (see Figure 2 ) . The p a r t i a l l y p u r i f i e d race 1 f a c t o r e l i c i t e d greater production of the soybean p h y t o a l e x i n g l y c e o l l i n i n Rps genotype soybeans than i n r p s — t h a t i s , the same phytoalexin s p e c i f i c i t y on these genotypes as by the l i v i n g fungus. Despite t h i s i n i t i a l encouragement, the race 1 s p e c i f i c e l i c i t o r has p r o v e d i n s u f f i c i e n t l y s t a b l e t o a l l o w i s o l a t i o n and i d e n t i f i c a t i o n and a genetic cross of the two fungus races designed to c r i t i c a l l y t e s t the a s s o c i a t i o n of the race 1 s p e c i f i c e l i c i t o r with the race 1 phenotype has f a i l e d on t e c h n i c a l grounds (115,116). Proof of involvement of the metabolite i n pathogenesis i s t h e r e f o r e l a c k i n g . Nevertheless, the i n i t i a l success prompted the hypothesis t h a t , i n gene-for-gene systems, the determinative phase i n v o l v e s production of s p e c i f i c e l i c i t o r s by the p a r a s i t e that are unique f o r each dominant a v i r u l e n c e gene and s p e c i f i c r e c e p t o r s by t h e p l a n t t h a t a r e u n i q u e f o r each dominant r e s i s t a n c e gene ( F i g u r e 5 ) . T h i s i s , o r c o u r s e , a molecular c o n c e p t u a l i z a t i o n of the gene-for-gene concept (Figure 2) and there i s nothing b i o l o g i c a l l y unusual about i t . S i m i l a r v e r s i o n s have been proposed p r e v i o u s l y by s e v e r a l workers (104, 109,117,118), and i t should be noted that i t s involvement i n the d e t e r m i n a t i v e phase c o u l d o c c u r i r r e s p e c t i v e of whether t h e expressive phase involved d i f f e r e n t i a l phytoalexin production or some other, as y e t unrecognized mechanism(s) f o r r e s t r i c t i o n of p a t h o g e n growth. The s p e c i f i c e l i c i t o r - s p e c i f i c r e c e p t o r mechanism a l s o i s v i r t u a l l y i d e n t i c a l as a r e c o g n i t i o n system to that c u r r e n t l y proposed f o r c e r t a i n p o l l e n - s t y l e i n c o m p a t i b i l i t y systems i n higher p l a n t s governed by s i n g l e genes (119,120), f o r Rhiζobium-legume s p e c i f i c i t y (see 121), and f o r receptor systems f o r c e r t a i n h o s t - s p e c i f i c p l a n t t o x i n s (122). Also i n common with these systems, the e l i c i t o r s and receptors most l i k e l y are c o n s t i t u t i v e metabolites that are e i t h e r present on the c e l l w a l l or plasmalemma s u r f a c e s o r , i n t h e case of e l i c i t o r s , might be e x t r a c e l l u l a r metabolites. T h i s i s due to the r e l a t i v e l y short t i m e s a v a i l a b l e f o r r e c o g n i t i o n ; f o r example i n t h e s o y b e a n Phytophthora system, events of the determinative phase are con cluded by about 4 hours a f t e r i n i t i a l contact of host and p a r a s i t e (Figure 4 ) . Important recent research by Goodman and co-workers (123), Sing and Schroth (124) and Sequeira's group (125) s t r o n g l y suggests that s p e c i f i c host receptor substances, p o s s i b l y l e c t i n s (104,120), may confer s p e c i f i c i t y i n tobacco, green bean and potatoes to incompatible s t r a i n s of Pseudomonas spp. Although these are not regarded as gene-for-gene systems and the p o s s i b l e r o l e of phyto a l e x i n s i n the expressive phase has not been w e l l i n v e s t i g a t e d , the r e s u l t s demonstrate the s p e c i f i c r e c o g n i t i o n and "attachment"
1.
KEEN
AND
Phytoalexin
BRUEGGER
Production
R = Resistance gene (dominant) r - recessive allele
Host f
Resistance genotype
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch001
[r'r'
r
2
r
Resistance genotype
r
i
NO
W R Specific receptor #1
Specific elicitors#i a#2
A A 1
1
AAH
R R 2
1
1
Τ
2
2
z
RRRR
t
cfo 1
s Resistance genotype R' R R R |
2
Specific elicitor#2
(
Roce | A' A
1
ÛÛ
A 2
r
R
ÛÛ
t
1
Specific receptor #2
Specific elicitor # I
ûûûû I
Resistance genotype
2
Specific receptors
Roce
19
in Plants
Specific # 1 8 receptors #2
c
N
.°..
enVi'.or's (
Race | ο Ό Ά 2 Α 2 |
t
Roce | o ' o ' c f o
v
Parasite
^ Avirulence gene (dominant) a = recessive virulence gene =
Figure 5. Scheme of the specific elicitor-specific receptor hypothesis for determina tion of the hypersensitive reaction in gene-f or-gene plant-parasite interactions, consid ering two resistance loci in the plant and two complementary virulence loci in the parasite. Host resistance genes R and R code either directly or indirectly for specific and unique receptor substances 1 and 2, possibly proteins, that specifically recognize and bind specific phytoalexin elicitors 1 or 2 from the pathogen. The hypothesis assumes that only the domi nant plant resistance alleles make functional receptors. Correspondingly, for the parasite, the virulence genes code for unique specific elicitors that are specifically recognized by the com plementary plant receptors. Only the dominant parasite avirulence alleles make functional gene products. Plant disease resistance (R) (rapid phytoalexin production) will be expressed in any combination that involves production of either specific elicitor and its complementary receptor. On the other hand, absence of a specific elicitor or its specific receptor will lead to repressed phytoalexin production and a susceptible plant response. Thus, as the gene-forgene relationship dictates, in the absence of functional resistance genes in the host or func tional avirulence genes in the parasite, susceptible reactions will be observed, regardless of the genotype of the complementary partner. 1
2
2
20
H O S T P L A N T RESISTANCE T O
PESTS
of incompatible but not compatible b a c t e r i a . With the potato system, Sequeira and Graham (126) have shown that both compatible and incompatible s t r a i n s of Pseudomonas solanacearum possess s t r u c t u r a l features i n t h e i r w a l l s that bind to a potato l e c t i n , but only the compatible s t r a i n s possess an e x t r a c e l l u l a r polysaccharide that "masks" the l e c t i n b i n d i n g elements, thereby l e a d i n g to nonr e c o g n i t i o n and e v e n t u a l l y to s u s c e p t i b i l i t y of the host. Although i t i s not c l e a r whether these f i n d i n g s w i l l be d i r e c t l y a p p l i c a b l e to gene-for-gene h o s t - p a r a s i t e systems, they encourage f u r t h e r research on the s p e c i f i c i t y f a c t o r s hypothesized i n Figure 5.
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch001
Conclusions and Future D i r e c t i o n s We conclude that phytoalexins c o n s t i t u t e a l e g i t i m a t e defense mechanism i n c e r t a i n p l a n t s that i s important i n both general and s p e c i f i c disease r e s i s t a n c e i n c e r t a i n p l a n t s . However, because of the r e l a t i v e l y l i m i t e d r e s e a r c h done, i t i s i m p o s s i b l e to assess how wide-spread phytoalexin-mediated r e s i s t a n c e i s i n the p l a n t kingdom. In the more e x t e n s i v e l y studied examples i n the S o l a n a c e a e and Leguminosae, however, t h e r e i s now c o n c l u s i v e evidence i m p l i c a t i n g p h y t o a l e x i n production with the expression of disease r e s i s t a n c e . We think that i t i s time to take t h i s as a p r o v i s i o n a l dogma, along with the c o r o l l a r y s t a t i n g that s u s c e p t i b i l i t y i s o f t e n due to the f a i l u r e of the p l a n t to make phytoa l e x i n s f a s t enough, and consider how we can use phytoalexins as a v e h i c l e to o b t a i n p r a c t i c a l p l a n t disease c o n t r o l i n the f i e l d . Several approaches to t h i s have surfaced but none i s yet near p r a c t i c a l and most i f not a l l of those devised so f a r are not l i k e l y t o become s o . However, a s t a r t has been made. Since p h y t o a l e x i n s a r e a n t i b i o t i c , one c o u l d c h e m i c a l l y s y n t h e s i z e phytoalexins and apply these to p l a n t s as " n a t u r a l p e s t i c i d e s " . T h i s has been done e x p e r i m e n t a l l y i n one case (127), but the approach i s g e n e r a l l y fraught with p i t f a l l s . F i r s t , most phytoalexins are not r e a d i l y synthesized, many having asymmetric carbons and r e l a t i v e l y l a b i l e f u n c t i o n a l g r o u p s — t h e y would not be cheap to make. Most d i s t u r b i n g , however, i s the f a c t that phytoa l e x i n s a r e not i n n o c u o u s c h e m i c a l s , d e s p i t e b e i n g " n a t u r a l p e s t i c i d e s " . As discussed e a r l i e r , at l e a s t some phytoalexins are membrane antagonists and s e v e r a l of them have been shown to be potent t o x i c a n t s i n mammals ( f o r example, 32,128,129); c l e a r l y they are not the s o r t of thing to be spread around the e n v i r o n ment, e s p e c i a l l y onto food crop p l a n t s . Instead of spraying phytoalexins on p l a n t s , Albersheim (see 130) suggests applying phytoalexin e l i c i t o r s , a n t i c i p a t i n g that the e l i c i t e d phytoalexins would ward o f f p o s s i b l e pathogens. The a p p r o a c h may have m e r i t but would be p l a g u e d by methods f o r applying the e l i c i t o r s and by dosage requirements. The danger i s that as e l i c i t o r doses are increased to l e v e l s p o s s i b l y p r o v i d i n g disease c o n t r o l , one w i l l l i k e l y observe p h y t o t o x i c i t y as a r e s u l t of the phytoalexins produced. As discussed, phytoalexins are
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch001
1.
KEEN
AND
BRUEGGER
Phytoalexin
Production
in
Plants
21
normally a s s o c i a t e d with the n e c r o t i c , h y p e r s e n s i t i v e r e a c t i o n i n p l a n t s ; i n the normal HR, a plant can e a s i l y a f f o r d to l o s e a few of i t s c e l l s to contain pathogens, but what happens i f an a p p l i e d e l i c i t o r causes wholesale h y p e r s e n s i t i v e necrosis? or i f foods t u f f s contain s i g n i f i c a n t q u a n t i t i e s of the e l i c i t e d phytoalexins? A. A. B e l l (unpublished) has suggested a p o t e n t i a l l y u s e f u l approach to harnessing phytoalexins based on the observed f a c t that s e v e r a l p l a n t s make m u l t i p l e , r e l a t e d phytoalexins. Bell suggests that disease r e s i s t a n c e plant breeding programs could attempt t o s e l e c t p l a n t s t h a t p r e f e r e n t i a l l y made f a v o r a b l e p h y t o a l e x i n s toward the pathogen i n q u e s t i o n — f o r instance, against a b a c t e r i a l pathogen, breed f o r genotypes that p r e f e r e n t i a l l y produce potent a n t i b a c t e r i a l phytoalexins; against fungus diseases, s e l e c t f o r p r e f e r e n t i a l production of the most a n t i f u n g a l phytoalexins; perhaps i t would even be p o s s i b l e to s e l e c t p l a n t s making p h y t o a l e x i n s t h a t a pathogen c o u l d not degrade, thereby c o n f e r r i n g general disease r e s i s t a n c e . A f i n a l approach to harnessing phytoalexins i n disease c o n t r o l i n v o l v e s applying chemicals to s u s c e p t i b l e p l a n t s that are n e i t h e r a n t i b i o t i c nor p h y t o a l e x i n e l i c i t o r s , but i n t e r a c t w i t h the p l a n t - p a r a s i t e i n t e r a c t i o n to cause higher production of phytoa l e x i n s by the p l a n t c e l l s and thus impart r e s i s t a n c e . Because of t h i s behavior we propose to c a l l such chemicals " s e n s i t i z e r s " . There are suggestions that such chemicals already e x i s t . For i n s t a n c e , P r i n g and Richmond (131) found t h a t bean p l a n t s i n o c u l a t e d with a normally compatible race of Uromyces p h a s e o l i r e s p o n d e d to t r e a t m e n t w i t h the weakly a n t i f u n g a l f u n g i c i d e oxycarboxin i n the same way as g e n e t i c a l l y r e s i s t a n t p l a n t s , thus implying that oxycarboxin somehow caused i n v o c a t i o n of a normal d e f e n s e r e a c t i o n . Langcake and W i c k i n s (132,133) have shown that 2,2-dichloro-3,3-dimethyl cyclopropane c a r b o x y l i c a c i d c o n t r o l s the b l a s t d i s e a s e caused by P i r i c u l a r i a o r y z a e on compatible r i c e v a r i e t i e s , but acts n e i t h e r as a f u n g i c i d e nor as a phytoalexin e l i c i t o r . However, i n o c u l a t e d p l a n t s that were t r e a t e d with the cyclopropane were f u l l y r e s i s t a n t to the disease, and, u n l i k e u n t r e a t e d i n o c u l a t e d p l a n t s or t r e a t e d but noni n o c u l a t e d p l a n t s , accumulated momilactones A and B, which appear to be phytoalexins i n r i c e . There are s e v e r a l other l e s s w e l l defined but p o s s i b l e examples of s e n s i t i z e r s i n the l i t e r a t u r e , but we do not yet know i f the concept i s sound or i f the required chemicals can be found. I t i s an idea worthy of c o n s i d e r a t i o n , however, s i n c e chemicals such as Langcake's cyclopropane appear r e l a t i v e l y i n n o c u o u s e c o l o g i c a l l y , and do not appear to have d e l e t e r i o u s e f f e c t s on p l a n t s that are not challenged by pathogens. The a u t h o r s ' r e s e a r c h i s Foundation grant BMS 75-03319.
supported
by
National
Science
22
1. 2. 3. 4. 5. 6. 7. Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch001
8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27.
HOST P L A N T RESISTANCE T O PESTS
Literature Cited Müller, Κ. O. and Börger, H. (1940). Arb. Biol. Reichsanst. Land-u. Forstwiss. 23, 189-231. Christensen, T. G. and Sproston, T. (1971). Phytopathology 62, 493-494. Deverall, B. J. "Defence mechanisms of plants." Cambridge Univ. Press. London. (1977), Cruickshank, I. A. M. (1963). Annual Rev. Phytopathol. 1, 351-374. Deverall, B. J. (1972). Proc. Roy Soc. Lond. B181, 233-246. Ingham, J. L. (1972). Botan. Rev. 38, 343-424. Kuc, J. "Phytoalexins", p. 632-652, In Physiological Plant Pathology, Edit, by Heitefuss, R. and Williams, P. H. (1976). Kuc, J. and Currier, W. (1976). Adv. Chem. Ser. 149, 356-368. Wood, R. K. S. (1973). Mitteil. Biologischen Bund. fur Land. u. Fortschaft 154, 95-105. Swain, T. (1977). Annual Rev. Pit. Physiol. 28, 479-501. Biggs, R. T. (1975). Austr. J. Chem. 28, 1389-1391. Wyman, J. and Van Etten, H. D. (1975). Proc. Amer. Phytopath. Soc. 2, 110. Lyon, F. M. and Wood, R. K. S. (1975). Physiol. Plant Pathol. 6, 117-124. Patil, S. S. and Gnanamanickam, S. S. (1976). Nature 259, 486-487. Ward, Ε. W. B. and Stoessl, A. (1977). Phytopathology 67., 468-471. Lisker, N. and Kuc, J. (1977). Phytopathology (in press). Harris, J. Ε. and Dennis, C. (1976). Physiol. Plant Pathol. 9, 155-165. Ishizaka, N., Tomiyama, K., Katsui, N., Murai, A. and Masamune, T. (1969). Pit. Cell Physiol. 10, 183-192. Elliston, J., Kuc, J., Williams, Ε. B., and Rahe, J. Ε. (1977). Phytopathol. Z. 88, 114-130. Keen, Ν. T. p. 268. In "Specificity in Plant Diseases." Ed. by Wood, R. K. S. and Graniti, A. Plenum Press, New York (1976). Stoessl, Α., Stothers, J. Β., and Ward, E. W. B. (1976). Phytochemistry 15, 855-872. Price, K. R., Howard, B. and Coxon, D. T. (1976). Physiol. Plant Pathol. 9., 189-197. Rich, J. R., Keen, Ν. T. and Thomason, I. J. (1977). Physiol. Plant Pathol. 10, 105-116. Keen, Ν. T. (1975). Phytopathology 65, 91-92. Skipp, R. A. and Bailey, J. A. (1976). Physiol. Plant Pathol. 9., 253-263. Bailey, J. Α., Carter, G. Α., and Skipp, R. A. (1976). Oku, H., Shiraishi, T., and Ouchi, S. (1976). Ann. Phytopath. Soc. Japan 42, 597-600.
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch001
1. KEEN AND BRUEGGER
Phytoalexin Production in Phnts 23
28. Klarman, W. L. and F. Hammerschlag. (1972). Phytopathology 62, 719-721. 29. Bailey, J. A. and Ingham, J. L. (1971). Physiol. Plant Pathol. 1, 451-456. 30. Kojima, R., Fukushima, S., Neno, A. and Saiki, Y. (1970). Chem. Pharm. Bull. Japan 18, 2555. 31. Van Etten, H. D. (1972). Phytopathology 62, 795. 32. Van Etten, H. D. and Bateman, D. F. (1971). Phytopathology 51, 1363-1372. 33. Shiraishi, T., Oku, H., Isono, M. and Ouchi, S. (1975) Plt. Cell Physiol. 16, 939-942. 34. El Naghy, M. A. and Heitefuss, R. (1976). Physiol. Plant Pathol. 8, 269-277. 35. Perrin, D. R. and Cruickshank, I. A. M. (1969). Phytochemistry 8, 971-978. 36. Van Etten, H. D. (1976). Phytochemistry 15, 655-659. 37. Fukui, H., Egawa, H., Koshimizu, K. and Mitsui, T. (1973). Agr. Biol. Chem. 37, 417-421. 38. Ingham, J. L., Keen, N. T., and Hymowitz, T. (1977). Phytochemistry (in press). 39. Bell, A. A. and Presley, J. T. (1969). Phytopathology 59, 1141-1146. 40. Keen, Ν. T. (1971). Physiol. Plant Pathol. 1, 265-276. 41. Nakajima, T., Tomiyama, K. and Kinukawa, M. (1975). Ann. Phytopath. Soc. Japan 41, 49-55. 42. Tomiyama, Κ., and Fukaya, M. (1975). Ann. Phytopathol. Soc. Japan 41, 418-420. 43. Imaseki, H. and Uritani, I. (1964). Plt. Cell Physiol. 5, 133-143. 44. Shiraishi, T., Oku, H., Ouchi, S. and Isono, M. (1976). Ann. Phytopath. Soc. Japan 42, 609-612. 45. Mansfield, J. W., Hargreaves, J. Α., and Boyle, F. C. (1974). Nature 252, 316-317. 46. Paxton, J., Goodchild, D. J., and Cruickshank, I. A. M. (1974). Physiol. Plant Pathol. 4, 167-171. 47. Klarman, W. L. and Gerdemann, J. W. (1963). Phytopathology 53, 863-864. 48. Higgins, V. J. and Millar, R. L. (1968). Phytopathology 58, 1377-1383. 49. Ersek, T., Barna, Β., and Kiraly, Z. (1973). Acta Phytopath. Acad. Sci. Hung. 8, 3-12. 50. Barna, B., Ersek, T., and Mashaal, S. F. (1974). Acta Phytopathol. Acad. Sci. Hung. 9, 293-300. 51. van der Plank, J. E. "Principles of Plant Infection". Academic Press, New York. (1975). 52. Kim, W. K., Rohringer, R., Samborski, D. J. and Howes, Ν. K. (1977). Can. J. Bot 55: 568-573. 53. Doke, N., Nakae, Y., and Tomiyama, K. (1976). Phytopathol. Z. 87, 337-344.
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch001
24
HOST PLANT RESISTANCE TO PESTS
54. Day, P. R. "Genetics of host-parasite interaction". Freeman, San Francisco (1974). 55. Rowell, J. B., Loegering, W. Q., and Powers, H. R. Jr. (1963). Phytopathology 53, 932-937. 56. Flor, H. H. (1971). Annual Rev. Phytopathol. 9, 275-296. 57. Heale, J. B. and Sharman, S. (1977). Physiol. Plant Pathol. 10, 51-61. 58. Van Etten, H. D. (1973). Phytopathology 63, 1477-1482. 59. Heuvel, J. van den (1976). Neth. J. Plant Pathol. 82, 153-160. 60. Mansfield, J. W. and Widdowson, D. A. (1973). Physiol. Plant Pathol. 3, 393-404. 61. Hargreaves, J. Α., Mansfield, J. W., Coxon, D. T., and Price K. R. (1976). Phytochemistry 15, 1119-1121. 62. Jones, D. R., Unwin, C. H. and Ward, E. W. B. (1975). Phytopathology 65, 1286-1288. 63. Kojima, M. and Uritani, I. (1976). Physiol. Plant Pathol. 8, 97-111. 64. Chamberlain, D. W. (1972). Phytopathology 62, 645-646. 65. Chamberlain, D. W. and Gerdemann, J. W. (1966). Phytopathology 56, 70-73. 66. Talboys, P. W. (1957). Trans. Brit. Mycol. Soc. 40, 415-427. 67. Bailey, J. A. and Deverall, B. J. (1971) Physiol. Plant Pathol. 1, 435-449. 68. Rahe, J. E. (1973). Can. J. Bot. 51, 2423-2430. 69. Yoshikawa, M. (1977). Plt. Physiol. (submitted). 70. Shiraishi, T., Oku, H., Ouchi, S., and Tsuji, Y. (1977). Phytopathol. Z. 88, 131-135. 71. Yoshikawa, Μ., Yamauchi, Κ., and Masago, H. (1977). Physiol. Plant Pathol. (Submitted). 72. Chamberlain, D. W. and Paxton, J. D. (1968). Phytopathology 58, 1349-1350. 73. Sitton, D. and West, C. A. (1975). Phytochemistry 14, 1921-1925. 74. Klarman, W. L. and Gerdemann, J. W. (1963). Phytopathology 53, 1317-1320. 75. Paxton, J. D. and Chamberlain, D. W. (1967). Phytopathology 57, 352-353. 76. Bridge, M. A. and Klarman, W. L. (1973). Phytopathology 63, 606-609. 77. Klarman, W. L. and Sanford, J. B. (1968). Life Sci. 7, 1095-1103. 78. Keen, N. T., Sims, J. J., Erwin, D. C., Rice, E. and Partridge, J. E. (1971). Phytopathology 61, 1084-1089. 79. Sims, J. J., Keen, N. T., and Honwad, V. K. (1972). Phytochemistry 11, 827-828. 80. Burden, R. S. and Bailey, J. A. (1975). Phytochemistry 14, 1389-1390.
1. KEEN AND BRUEGGER
Phytoalexin Production in Plants 25
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch001
81. Lyne, R. L., Mulheirn, L. J. and LeWorthy, D. P. (1976). JCS Chem. Comm. p. 497-498. 82. Keen, Ν. T. and Kennedy, B. W. (1974). Physiol. Plant Pathol. 4, 173-185. 83. Keen, N. T., Zaki, A. I., and Sims, J. J. (1972). Phytochemistry, 11, 1031-1039. 84. Rathmell, W. G. and Bendall, D. S. (1971) Physiol. Plant Pathol. 1, 351-362. 85. Keen, Ν. T. and Paxton, J. D. (1975). Phytopathology 65, 635-637. 86. Frank, J. A. and Paxton, J. D. (1970) Phytopathology 60, 315-318. 87. Yoshikawa, Μ., Masago, Η., and Keen, Ν. T. (1977). Physiol. Plant Pathol. 10, 125-138. 88. Partridge, J. E. and Keen, Ν. T. (1977). Phytopathology 67, 50-55. 89. Schwochau, M. E., and Hadwiger, L. A. (1969). Arch. Biochem. Biophys. 134, 34-41. 90. Biggs, D. R. (1972). Plt. Physiol. 50, 660-666. 91. Uritani, I., Uritani, M. and Yamada, H. (1960). Phytopathology 50, 30-34. 92. Gustine, D. L. (1976). Fed. Proc. 35, 1552. 93. Munn, C. B., and Drysdale, R. B. (1975). Phytochemistry 14,1303-1307. 94. Bailey, J. A. (1969). Phytochemistry. 8, 1393-1395. 95. Hadwiger, L. Α., and Schwochau, M. E. (1971). Plt. Physiol. 47, 346-351. 96. Varns, J. L., Currier, W. W. and Kuc, J. (1971). Phyto pathology 61, 968-971. 97. Oguni, I., Suzuki, Κ., and Uritani, I. (1976). Agr. Biol. Chem. 40, 1251-1252. 98. Anderson, A. (1976). Proc. Amer. Phytopath. Soc.3,314. 99. Swinburne, T. R. (1975). Phytopathol. Z. 82, 152-162. 100. Reilly, J. J. (1975). Diss. Abstr. B36, 2552. 101. Hadwiger, L. A. & Schwochau, M. E. (1970). Biochem. Biophys. Res. Comm. 38, 683-691. 102. Perrin, D. R., and Cruickshank, I. A. M. (1965). Austr. J. Biol. Sci.18,803-816. 103. Kim, W. Κ., and Uritani, I. (1974). Plt. Cell Physiol. 15, 1093-1098. 104. Albersheim, P., and Anderson-Prouty, A. J. (1975). Ann. Rev. Plt. Physiol. 26, 31-52. 105. Ayers, A. R., Ebel, J., Finelli, F., Berger, Ν. and Albersheim, P. (1976). Plt. Physiol. 57, 751-759. 106. Ayers, A. R., Ebel, J., Valent, Β. and Albersheim, P. (1976). Plt. Physiol. 57, 760-765. 107. Ayers, A. R., Valent, Β., Ebel, J., and Albersheim, P. (1976). Plt Physiol. 57, 766-774. 108. Stekoll, M. (1976). Ph.D. Dissertation, Univ. of California, Los Angeles.
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch001
26
HOST PLANT RESISTANCE TO PESTS
109. Wood, R. K. S. p. 327, In "Specificity in Plant Diseases". Edit. by Wood, R. K. S. and Graniti, A. Plenum, New York (1976). 110. Cruickshank, I. Α. Μ., and Perrin, D. R. (1968). Life Sci. 7, part II 449-458. 111. Nuesch, J. (1963). Soc. Gen. Microbiol. Symp. 13, 335-343. 112. Daniels, D. L., and Hadwiger, L. A. (1976). Physiol. Plt. Pathol. 8, 9-19. 113. Keen, Ν. T. (1975). Science 187, 74-75. 114. Keen, N. T., Partridge, J. E., and Zaki, A. I. (1972). Phytopathology 62, 768. 115. Long, M. and Keen, Ν. T. (1977). Phytopathology 67, 670-674. 116. Long, M. and Keen, Ν. T. (1977). Phytopathology 67, 675-677. 117. Ercolani, G. L. (1970). Phytopathol. Med. 9, 151-159. 118. Hadwiger, L. A. and Schwochau, M. E. (1969). Phytopathology 59, 223-227. 119. Heslop-Harrison, J., Heslop-Harrison, Y., and Barker, J. (1975). Proc. Roy. Soc. B188, 287-297. 120. Linskens, H. F. p. 311, In "Specificity in Plant Diseases." Edit. by Wood, R. K. S. and Graniti, A. Plenum, New York. (1976). 121. Dazzo, F. B. and Brill, W. J. (1977). Appl. Environ. Microbiol. 33, 132-136. 122. Strobel, G. A. (1975). Sci. Amer. 232, 80-89. 123. Goodman, R. N., Huang, P. and White, J. A. (1976). Phytopathology 66, 754-764. 124. Sing, V. and Schroth, M. N. (1977). Science (In press). 125. Sequeira, L., Gaard, G. and De Zoeten, G. A. (1977). Physiol. Plant Pathol. 10, 43-50. 126. Sequeira, L. and Graham, T. C. (1977). Physiol. Plant Pathol. (in press). 127. Ward, E. W. B., Unwin, C. H. and Stoessl, A. (1975). Phytopathology 65, 168-169. 128. Uritani, I. (1967). J. Assoc. Agric. Chemists 50, 105-113. 129. Beradi, L. C. and Goldblatt, L. A. p. 212. In "Org. Const. Plt. Foodstuffs." Liener, I. E. (ed.). Academic Press, New York. (1969). 130. Maugh, T. H. (1976). Science 192, 874-876. 131. Pring, R. J. and Richmond, D. V. (1976). Physiol. Plant. Pathol. 8, 155-162. 132. Langcake, P. and Wickins, S. G. A. (1975). Physiol. Plant Pathol. 7, 113-126. 133. Langcake, P. (1977). Nature 267, 511. 134. Kiraly, Z., Barna, B., and T. Ersek. (1972) Nature 239, 456-458.
2 Role of Elicitors of Phytoalexin Accumulation in Plant Disease Resistance
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch002
BARBARA S. VALENT and PETER ALBERSHEIM Department of Chemistry, University of Colorado, Boulder, CO 80309 Plants are exposed to attack by an immense array of microorganisms, and yet plants are resistant to almost all of these potential pests. Many plant tissues have been observed to respond to an invasion by a pathogenic or nonpathogenic microorganism, whether a fungus, a bacterium or a virus, by accumulating phytoalexins, low molecular weight compounds which inhibit the growth of microorganisms. The production of phytoalexins appears to be a widespread mechanism by which plants attempt to defend themselves against pests (1, 2, 3). The molecules of microbial origin which trigger phytoalexin accumulation in plants have been called elicitors (4). Plants recognize and respond to elicitors as foreign molecules. It is highly improbable that plants have evolved separate recognition systems for every bacterial species and strain and every fungal race and every virus that plants are exposed to. Thus, elicitors are likely to be molecules common to many microbes and, in fact, the one to be described in this paper is a fungal polysaccharide, a polysaccharide which is a structural component of the mycelial walls of many fungi. Most plants produce several structurally related phytoalexins. The most studied phytoalexin of soybeans is glyceollin (5). Lyne et al. (6) have characterized two additional soybean phytoalexins which are structural isomers of glyceollin and which appear to have similar antibiotic characteristics. The synthesis of glyceollin, a phenylpropanoid derivative, is probably initiated from phenylalanine via the reaction catalyzed by phenylalanine ammonia-lyase, but, as yet, no biosynthetic pathway for the production of a phytoalexin has been completely described. Steven Thomas, in our laboratory, has been studying the effect of glyceollin on a variety of microorganisms, for the mechanism by which phytoalexins work is unknown. Glyceollin is a static agent rather than a toxic agent, a trait which seems to be common to many phytoalexins. Glyceollin inhibits the growth, in vitro, of the soybean pathogen, Phytophthora megasperma var. sojae (Pms), the causal agent of root and stem rot. In addition, 27
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch002
28
H O S T P L A N T RESISTANCE
T O PESTS
Steven has found that g l y c e o l l i n w i l l stop the growth of three Gram-negative b a c t e r i a , Pseudomonas g l y c i n e a , Rhizobium t r i f o l i i , and Rhizobium japonicum, of the Gram-positive bacterium, B a c i l l u s s u b t i l i s , and of baker's y e a s t , Saccharomyces c e r e v i s i a e . I n t e r e s t i n g l y , i t requires about 25 yg/ml of g l y c e o l l i n to i n h i b i t by 50% and 100 yg/ml to i n h i b i t by 100% the growth of a l l of these d i f f e r e n t organisms. Thus, i t appears that a p l a n t ' s phytoalexins can p o t e n t i a l l y p r o t e c t the plant from a broad spectrum of microorganisms. G l y c e o l l i n i s accumulated by soybean t i s s u e s i n response to i n f e c t i o n by Pms, the soybean pathogen. G l y c e o l l i n accumulates i n soybean hypocotyls, w i t h i n 9 hours of i n f e c t i o n w i t h Pms myc e l i a , to l e v e l s which are i n h i b i t o r y to the growth of Pms i n vitro. A component of Pms m y c e l i a l w a l l s has been demonstrated to s t i m u l a t e g l y c e o l l i n accumulation at the same r a t e as l i v e Pms mycelia. This observation and other data have convinced us that t h i s m y c e l i a l w a l l component i s r e s p o n s i b l e f o r t r i g g e r i n g g l y c e o l l i n accumulation during i n f e c t i o n by the l i v e fungus; and, t h e r e f o r e , we b e l i e v e that the m y c e l i a l w a l l component i s the n a t u r a l e l i c i t o r of t h i s system. Three d i f f e r e n t soybean t i s s u e s respond to the Pms e l i c i t o r by accumulating g l y c e o l l i n , and these have been used f o r b i o l o g i c a l assays of e l i c i t o r a c t i v i t y . An assay using 8-day o l d cotyledons (seed leaves) was used f o r the p u r i f i c a t i o n of the e l i c i t o r s i n c e t h i s was the l e a s t l a b o r i o u s assay developed (7). A second bioassay uses the hypocotyls (upper stems) of 5-day o l d soybean s e e d l i n g s (7) and a t h i r d assay uses suspension-cultured soybean c e l l s (8). In a l l three assays, the p r o d u c t i o n of g l y c e o l l i n i s p r o p o r t i o n a l to the amount of e l i c i t o r a p p l i e d . The time course of e l i c i t o r - s t i m u l a t e d g l y c e o l l i n accumulation and the amount of e l i c i t o r r e q u i r e d i s very s i m i l a r i n a l l three soybean t i s s u e s . Soybean t i s s u e s are s e n s i t i v e to extremely small amounts of Pms e l i c i t o r . About 10 moles of e l i c i t o r a p p l i e d to a s i n g l e hypocotyl s t i m u l a t e s q u a n t i t i e s of g l y c e o l l i n s u f f i c i e n t to p r e vent the growth of Pms and other microorganisms i n v i t r o . I t i s impressive, too, to observe the e f f e c t s on the growing suspension-cultured soybean c e l l s caused by the a d d i t i o n of submicromolar q u a n t i t i e s of the p o l y s a c c h a r i d e e l i c i t o r . These c e l l s respond to the small amount of e l i c i t o r even though the c e l l s are growing i n the presence of 50 mM sucrose. W i t h i n a few hours, the c e l l s t u r n l i g h t brown. At the same time, the a c t i v i t y i n the c e l l s of at l e a s t one of the enzyme b e l i e v e d to be i n v o l v e d i n the s y n t h e s i s of g l y c e o l l i n , phenylalanine ammonial y a s e , i s g r e a t l y increased. The increase i n a c t i v i t y of the phenylalanine ammonia-lyase precedes the accumulation of g l y c e o l l i n both i n the c e l l s and i n the c u l t u r e medium. The growth of the suspension-cultured c e l l s , as measured by f r e s h weight, stops upon a d d i t i o n of the e l i c i t o r . The c e l l s a l s o stop t a k i n g up ions from the media, which i s another i n d i c a t i o n of the l a c k
2.
VALENT
AND
ALBERSHEIM
of growth of these c e l l s
Elicitors
of
Phytoalexin
Accumulation
(8).
The Chemical Nature of the Phytophthora megasperma var. Elicitor.
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch002
29
sojae
The component of the Pms m y c e l i a l w a l l s which stimulates g l y c e o l l i n accumulation by soybean t i s s u e s i s a s t r u c t u r a l p o l y saccharide. The e l i c i t o r was f i r s t found i n the f l u i d of o l d c u l t u r e s of Pms, probably being r e l e a s e d i n t o the c u l t u r e f l u i d by a u t o l y s i s . I t was l a t e r demonstrated that e l i c i t o r - a c t i v e molecules w i t h the same p r o p e r t i e s as the c u l t u r e f l u i d e l i c i t o r could be i s o l a t e d from the m y c e l i a l w a l l s of Pms by a heat t r e a t ment s i m i l a r to that used to s o l u b i l i z e the surface antigens from the c e l l w a l l s of JS. c e r e v i s i a e (_§ _) . The best method f o r obt a i n i n g l a r g e amounts of Pms e l i c i t o r i s p a r t i a l a c i d h y d r o l y s i s of the m y c e l i a l w a l l s . The s e r i e s of o l i g o s a c c h a r i d e s so obt a i n e d are extremely a c t i v e as e l i c i t o r s and possess c h a r a c t e r i s t i c s i d e n t i c a l to the c u l t u r e f l u i d e l i c i t o r . A l l elicitora c t i v e molecules examined have been found to be glucans. Methyla t i o n a n a l y s i s of the p u r i f i e d e l i c i t o r has demonstrated that t h i s glucan i s l a r g e l y a 3-linked polymer with g l u c o s y l branches to carbon 6 of about one out of every three of the backbone g l u c o s y l residues. The e l i c i t o r - a c t i v e glucan i s s u s c e p t i b l e to h y d r o l y s i s by an exo-3-l,3-glucanase i s o l a t e d from Euglena g r a c i l i s (10), i n d i c a t i n g that the Pms m y c e l i a l w a l l glucan i s a 3 - l i n k e d p o l y mer. O p t i c a l r o t a t i o n and NMR s t u d i e s have confirmed that the glucan i s 3 - l i n k e d . This i s not s u r p r i s i n g as other Phytophthora c e l l w a l l s have a q u a n t i t a t i v e l y dominant component which i s a 3-1,3-linked glucan with some branches to carbon 6 (11). Indeed, i t appears that as much as 60% of the m y c e l i a l w a l l of the Pms i s composed of t h i s polymer. The Pms m y c e l i a l w a l l e l i c i t o r has been w e l l c h a r a c t e r i z e d (12) and unpublished r e s u l t s of t h i s l a b o r a t o r y ) . That p o r t i o n of the e l i c i t o r , which i s r e l e a s e d from the w a l l s by aqueous ext r a c t i o n at 121 C, i s heterogeneous i n s i z e with an average mol e c u l a r weight of approximately 100,000. The E. g r a c i l i s enzyme hydrolyzes glucans from the non-reducing end and i s capable of h y d r o l y z i n g the the g l y c o s i d i c bond of 3-linked g l u c o s y l r e s i dues that have other g l u c o s y l residues attached to carbon 6. The product of the exoglucanase-degraded m y c e l i a l w a l l - r e l e a s e d e l i c i t o r i s s t i l l s i z e heterogeneous, but has an average molecular weight of approximately 10,000. This h i g h l y branched glucan f r a g ment r e t a i n s as much a c t i v i t y as the undegraded e l i c i t o r . The predominant g l y c o s i d i c linkages remaining a f t e r extensive exoglucanase treatment are 3-linked, 3,6-linked and t e r m i n a l glucos y l linkages i n a r a t i o of 1:1:1. SmaU amounts of 4-linked and 6-linked g l u c o s y l residues are a l s o present. The evidence that demonstrated that the Pms e l i c i t o r i s a polysaccharide included the f i n d i n g s that the e l i c i t o r i s s t a b l e to a u t o c l a v i n g at 121 C f o r s e v e r a l hours, l a c k s a f f i n i t y f o r
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch002
30
HOST P L A N T RESISTANCE T O
PESTS
both anion and c a t i o n exchange r e s i n s , i s completely s t a b l e to treatment by pronase, and i s s i z e heterogeneous. Periodate treatment of the w a l l - r e l e a s e d e l i c i t o r confirms the polysaccharide nature of the a c t i v e component and demonstrates the e s s e n t i a l r o l e of a branched o l i g o s a c c h a r i d e having terminal g l y c o s y l r e s i dues. Exposing the e l i c i t o r to periodate eliminates almost a l l of the e l i c i t o r a c t i v i t y . On the other hand, i f the p e r i o d a t e degraded polymers are reduced with sodium borohydride and then are subjected to m i l d a c i d h y d r o l y s i s , a considerable p o r t i o n of the e l i c i t o r a c t i v i t y i s regained. Since the 3- and 3,6-linked g l u c o s y l residues l a c k v i c i n y l hydroxyIs and are, t h e r e f o r e , r e s i s t a n t to periodate degradation, i t seems l i k e l y that the p e r i odate has destroyed the e l i c i t o r a c t i v i t y by modifying the t e r minal g l u c o s y l residues of the e l i c i t o r . The e l i c i t o r a c t i v i t y may be recovered a f t e r p a r t i a l a c i d h y d r o l y s i s of the p e r i o d a t e t r e a t e d e l i c i t o r because new terminal g l u c o s y l residues have been exposed and are able to provide the proper s t r u c t u r e of an active e l i c i t o r . The requirement f o r e l i c i t o r a c t i v i t y of a branched o l i g o saccharide i s supported by our observation that 3-linked glucans which l a c k branches to carbon 6 or have only a s i n g l e carbon 6branched g l u c o s y l r e s i d u e , such as l a m i n a r i n , have l i t t l e or no e l i c i t o r a c t i v i t y ( l e s s than one thousandth of the Pms e l i c i t o r ) . Indeed, a s e r i e s of commercially a v a i l a b l e p o l y s a c c h a r i d e s , o l i g o saccharides, methylglycosides, and simple sugars have been t e s t e d for e l i c i t o r a c t i v i t y , and, besides l a m i n a r i n , the only comm e r c i a l l y a v a i l a b l e product found with e l i c i t o r a c t i v i t y was nigeran, a m y c e l i a l w a l l component from the fungus, A s p e r g i l l u s niger. A major goal of our research i s the determination of the d e t a i l e d molecular s t r u c t u r e of the a c t i v e - s i t e of the Pms e l i citor. I t i s expected that t h i s goal w i l l be achieved by the i s o l a t i o n and s t r u c t u r a l c h a r a c t e r i z a t i o n of the smallest p o s s i b l e e l i c i t o r - a c t i v e o l i g o s a c c h a r i d e which can be derived from the glucan e l i c i t o r . This smallest e l i c i t o r - a c t i v e o l i g o s a c c h a r i d e has been produced by p a r t i a l a c i d h y d r o l y s i s of Pms m y c e l i a l w a l l s . The s e r i e s of o l i g o s a c c h a r i d e s obtained by t h i s p a r t i a l h y d r o l y s i s have been p a r t i a l l y r e s o l v e d by high r e s o l u t i o n B i o Gel P-2 g e l permeation chromatography. I t was found that o l i g o saccharides c o n t a i n i n g as few as 7 or 8 g l u c o s y l residues s t i l l retain e l i c i t o r activity. Glucose i s the only detected component of these o l i g o s a c c h a r i d e s . The smallest e l i c i t o r - a c t i v e o l i g o s a c c h a r i d e - c o n t a i n i n g f r a c t i o n s from the P-2 column have been f r a c t i o n a t e d by high pressure l i q u i d chromatography i n t o at l e a s t 5 o l i g o s a c c h a r i d e s . Two of the 5 o l i g o s a c c h a r i d e s obtained by high pressure l i q u i d chromatography can be e l i m i n a t e d by treatment of the mixture of o l i g o s a c c h a r i d e s with the IS. g r a c i l i s exoglucanase. There appears to be l i t t l e l o s s of e l i c i t o r a c t i v i t y by treatment with the exoglucanase. Of the three o l i g o s a c c h a r i d e s remaining (there may
2.
VALENT
A N D ALBERSHEIM
Elicitors
of Phytoalexin
Accumulation
31
s t i l l be one or more a d d i t i o n a l o l i g o s a c c h a r i d e s which have not been detected by the f r a c t i o n a t i o n procedures used), two a c t i v e l y e l i c i t soybean t i s s u e s t o accumulate g l y c e o l l i n . Sufficient q u a n t i t i e s o f these oligomers are now being produced t o t e s t f o r chemical p u r i t y and to permit s t r u c t u r a l c h a r a c t e r i z a t i o n .
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch002
E l i c i t o r s Lack Species S p e c i f i c i t y Our experiments have shown that the e l i c i t o r s of p h y t o a l e x i n accumulation are not the s p e c i f i c i t y determining f a c t o r s i n the Pms-soybean system. Three Pms races (races 1, 2, and 3) are d i s t i n g u i s h e d by t h e i r d i f f e r i n g a b i l i t i e s to i n f e c t v a r i o u s soybean c u l t i v a r s . The e l i c i t o r obtained from each of the three Pms races p u r i f i e s i n e x a c t l y the same manner, and at l e a s t the major s t r u c t u r a l f e a t u r e s of the e l i c i t o r s from the three races a r e i d e n t i c a l (12). The a c t i v i t i e s of the e l i c i t o r s p u r i f i e d from the three Pms races were c a r e f u l l y examined u s i n g the three separ a t e bioassays: the cotyledon assay ( _7), the hypocotyl assay ( 7 ) , and the c e l l suspension c u l t u r e assay ( 8). A l l three assays gave the same r e s u l t s , that i s , the a c t i v i t i e s of the e l i c i t o r s from d i f f e r e n t Pms races are i d e n t i c a l . These f i n d i n g s i n d i c a t e that the three races of Pms a r e e q u a l l y e f f e c t i v e at s t i m u l a t i n g p h y t o a l e x i n accumulation i n t h e i r host soybean tissues. The r e s u l t s of another type of experiment support our conclus i o n that e l i c i t o r s are not r e s p o n s i b l e f o r r a c e - s p e c i f i c r e s i s t a n c e i n the Pms-soybean system. Soybean hypocotyls accumul a t e g l y c e o l l i n when i n o c u l a t e d with l i v i n g mycelia of Pms. The response which i s c h a r a c t e r i s t i c of n a t u r a l i n f e c t i o n s w i t h e i t h e r an i n f e c t i v e or a n o n - i n f e c t i v e race of Pms i s r e t a i n e d with t h i s i n o c u l a t i o n technique. We have compared the r e l a t i v e e f f e c t i v e n e s s of l i v e mycelia and p u r i f i e d e l i c i t o r i n stimulating g l y c e o l l i n accumulation. The r e s u l t i s the f o l l o w i n g : the onset and the r a t e of g l y c e o l l i n accumulation i n s e e d l i n g s i n o c u l a t e d with i n f e c t i v e mycelia was i n d i s t i n g u i s h a b l e from the onset and r a t e of g l y c e o l l i n accumulation i n seedlings i n o c u l a t e d w i t h e i t h e r n o n - i n f e c t i v e mycelia or p u r i f i e d e l i c i t o r . These r e s u l t s demonstrate that d i f f e r e n c e s i n r a t e s of g l y c e o l l i n accumulation i n response to d i f f e r e n t races of Pms do not account f o r the r e s i s t a n c e or s u s c e p t i b i l i t y of v a r i o u s soybean c u l t i v a r s to the Pms races. The a v a i l a b l e evidence does i n d i c a t e that e l i c i t o r s have a r o l e i n r e s i s t a n c e even though they are not determinants of race specificity. The e l i c i t o r i s o l a t e d from Pms i s capable of prot e c t i n g soybean hypocotyls from i n f e c t i o n by an i n f e c t i v e race of Pms i f the e l i c i t o r i s a p p l i e d to the hypotocyls 6 hours p r i o r to i n o c u l a t i o n with Pms. The e l i c i t o r cannot p r o t e c t soybean t i s s u e when a p p l i e d simultaneously with an i n f e c t i v e race of Pms.
32
HOST P L A N T
RESISTANCE T O PESTS
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch002
Phytoalexins are not Capable of P r o t e c t i n g P l a n t s from T h e i r Pathogens A microorganism which has evolved the a b i l i t y to grow succ e s s f u l l y on a p l a n t and thus become pathogenic to that p l a n t must a l s o have evolved a mechanism of a v o i d i n g the t o x i c e f f e c t s of phytoalexins. There are s e v e r a l p l a u s i b l e mechanisms f o r such avoidance by s u c c e s s f u l pathogens. One such mechanism might be simply the a b i l i t y of an i n f e c t i v e s t r a i n of a pathogen to grow away from the area i n which the p l a n t accumulates t o x i c l e v e l s of p h y t o a l e x i n . This p o s s i b i l i t y seems l i k e l y as an explanation f o r the avoidance of the e f f e c t s of g l y c e o l l i n i n soybean p l a n t s by i n f e c t i v e races of Pms. There are other mechanisms by which a pathogen might prevent a p l a n t from stopping the growth of the pathogen by accumulation of p h y t o a l e x i n s . For example, a pathogen might k i l l the p l a n t c e l l s i n the r e g i o n of the pathogen before those c e l l s are capable of s y n t h e s i z i n g the enzymes necessary f o r s y n t h e s i s of the phytoalexin. S t i l l another mechanism by which a s u c c e s s f u l pathogen might prevent a p l a n t from accumulating s u f f i c i e n t phytoalexins might be to repress s y n t h e s i s of enzymes i n v o l v e d i n p h y t o a l e x i n synthesis or e l s e to i n h i b i t the enzymes once they are synthes i z e d . A known mechanism by which pathogens overcome p h y t o a l e x i n i n h i b i t i o n i s m e t a b o l i z i n g the phytoalexins to l e s s t o x i c or uns t a b l e compounds (13, 14, 15, 16). A f i n a l p o s s i b l e mechanism might be the production by the pathogen of p r o t e i n s or other molecules which s p e c i f i c a l l y i n h i b i t the enzymes of the host which s o l u b i l i z e e l i c i t o r s from the m y c e l i a l w a l l s of the pathogen. Evidence suggestive of t h i s type of mechanism has a l s o been obtained (17). E l i c i t o r s are Widespread i n Nature Soybean p l a n t s have evolved the a b i l i t y to recognize and respond to the s t r u c t u r a l 3-glucan of Phytophthora mycelia w a l l s . S i m i l a r 3-glucans are found i n the w a l l s of a wide range of f u n g i . One fungus c o n t a i n i n g such 3-glucans i s brewer's yeast, S_. cerev i s i a e , a non-pathogen of p l a n t s . An e l i c i t o r has now been p u r i f i e d from a commercially a v a i l a b l e e x t r a c t of brewer's yeast (Difco) (M. Hahn, unpublished r e s u l t s ) . The 80% ethanol insoluble f r a c t i o n of the yeast e x t r a c t contains a very a c t i v e e l i c i t o r of g l y c e o l l i n accumulation i n soybeans. Most of the p o l y s a c c h a r i d e i n t h i s 80% ethanol i n s o l u b l e f r a c t i o n i s a mannan. However, yeast e x t r a c t does c o n t a i n small amounts of the 3-glucan. The glucan can be almost completely separated from the mannan by b i n d i n g the mannan to an a f f i n i t y column c o n s i s t i n g of Concanav a l i n A c o v a l e n t l y attached to Sepharose. The glucan can be separated from g l y c o p r o t e i n s by b i n d i n g the p r o t e i n s to s u l f o p r o p y l Sephadex. Both the p u r i f i e d mannan and p u r i f i e d glucan remain contaminated by small amounts (-2%) of arabinogalactan. Ribose,
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch002
2. VALENT AND ALBERSHEIM
Elicitors of Phytoalexin Accumulation
which contaminates the 80% ethanol insoluble fraction, is removed on a DEAE-cellulose column. The elicitor activity of the crude 80% ethanol yeast extract precipitate resides in the glucan component. The small amount of residual activity remaining in the mannan fraction can be attributed to the minor contamination of this fraction by glucan. The glucan is composed of the same glucosyl linkages found in the Pms elicitor. The same quantities of the yeast and Pms elicitor are required to stimulate glyceollin accumulation in soybeans. Our laboratory has obtained other evidence that the elicitorphytoalexin story is a general one. For example, the Pms elicitor stimulates suspension-cultured cells of sycamore and parsley to produce large amounts of phenylalanine ammonia lyase activity (8). In addition, we have obtained evidence that the Pms elicitor stimulates Phaseolus vulgaris, the true bean, to accumulate its phytoalexins (K. Cline, unpublished results). We have already reported (18) that a wall glucan from Colletotrichum lindemuthianum, a pathogen of P^. vulgaris, stimulates P^. vulgaris to produce its phytoalexin. The £. lindemuthianum glucan also stimulates soybeans to produce glyceollin (K. Cline, unpublished results). And, finally, we have recently demonstrated that the Pms elicitor stimulates potato tubers to accumulate their phytoalexins (M. Wade, unpublished results). In summary, elicitors appear to be general in nature, and diverse plants are able to respond to a single elicitor. Elicitors may therefore provide a new way of protecting plants against their pests, for elicitors may activate the plant's own defense mechanism and thereby eliminate some of the need for spraying agricultural crops with poisonous pesticides. Several industrial firms have recognized this potential and have initiated their own research or are supporting out-of-house research on elicitors. Literature Cited 1. 2. 3. 4.
Ingham, J.L., Botanical Rev. (1972) 38, 343. Kuć, J., Ann. Rev. Phytopathol. (1972) 10, 207. Deverall, B.J., Proc. R. Soc. Lond. B. (1972) 181, 233. Keen, N.T., Partridge, J.E. & Zaki, A.I., Phytopathology (1972) 62, 768. 5. Burden, R.S. & Bailey, J.A., Phytochemistry (1975) 14, 1389. 6. Lyne, R.L., Mulheirn, L.J. & Leworthy, D.P., J.C.S. Chem. Commun. (1976) 497. 7. Ayers, A.R., Ebel, J., Finelli, F., Berger, Ν. & Albersheim, P. Plant Physiol. (1976) 57, 751. 8. Ebel, J., Ayers, A.R. & Albersheim, P. Plant Physiol. (1976) 57, 775. 9. Ayers, A.R., Ebel, J., Valent, Β. & Albersheim, P., Plant Physiol. (1976) 57, 760. 10. Barras, D.R. & Stone, B.A., Biochim. Biophys. Acta (1969) 191, 342.
34 11. 12. 13. 14. 15. 16.
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch002
17. 18.
HOST PLANT RESISTANCE TO PESTS Bartnicki-Garcia, S., J. Gen. Microbiol. (1966) 42, 57. Ayers, A.R., Valent, Β., Ebel, J. & Albersheim, P. Plant Physiol. (1976) 57, 766. Higgins, V.J., Physiol. Plant Pathol. (1975) 6, 5. Higgins, V.J., Stoessl, A. & Heath, M.C., Phytopathology (1974) 64, 105. Van Den Huevel, J. & VanEtten, H.D., Physiol. Plant Pathol. ( 1973) 3, 327. Van Den Huevel, J., VanEtten, H.D., Coffen, D.L. & Williams, T.H., Phytochemistry (1974) 13, 1129. Albersheim, P. & Valent, B.S. Plant Physiol. (1974) 53, 684. Anderson-Prouty, A.J. & Albersheim, P. Plant Physiol. (1975) 56, 286.
3 Biochemical Aspects of Plant Disease Resistance and Susceptibility
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch003
DOUG S. KENFIELD and GARY A. STROBEL Department of Plant Pathology, Montana State University, Bozeman, MT 59715
The events that either permit or preclude a pathogenic association between a host and its pathogen can manifest them selves at many different levels of the interaction (1). A complete knowledge of the interaction necessitates elucidation of the molecular events in connection with and pertinent to the genetics of pathogenicity and resistance. The purpose of this report is both to propose and illustrate a few of the possible molecular interactions between host and parasite and to discuss how these interactions relate to resistance or susceptibility in plant diseases. Molecular Interactions The molecular interplay that can occur between a plant and its pathogen can be divided into five categories. The first two categories arise when small molecules from either the pathogen or host interact with one or more structures in the other. The second two occur when the active constituents are macromolecules from either source. Such molecules may exert either positive or negative effects on their targets, and more than one type of interaction can and often does occur in a given disease. A fifth type of interaction may involve the decrease or elevation of the concentration of a normal constituent in either the host or the pathogen as influenced by the other. This is best exemplified in the case of pathogens that may u t i l i z e some constituent which ultimately results in an imbalance in metabolism in the host (2). Parasite-Produced Small Molecules It is conceivable that a small molecule produced by a patho gen could act selectively on a plant and actuate either a suscep tible or resistant reaction. In the latter case, Keen (3.) reported on the presence of a dialyzable compound in culture f i l trates of an incompatible race of Phytophthora megasperma var. sojae that specifically elicited the increased production of the 35
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch003
36
HOST P L A N T RESISTANCE T O PESTS
antifungal phytoalexin hydroxy-phaseollin i n a resistant c u l t i v a r o f soybean but not i n a n e a r - i s o g e n i c , s u s c e p t i b l e c u l t i v a r . Compatible races o f t h i s fungus d i d not produce t h i s e l i c i t o r . W h i l e a t t e m p t s b y some t o r e p e a t t h e s e i n t e r e s t i n g o b s e r v a t i o n s h a v e n o t b e e n s u c c e s s f u l (k), i t seems l i k e l y t h a t s u c h a p h e nomenon does e x i s t somewhere i n n a t u r e . Pathogens a r e a l s o capable o f p r o d u c i n g s m a l l molecules w h i c h a c t a s t o x i n s i n t h e p l a n t , a n d numerous i n s t a n c e s a r e known w h e r e t h e s e t o x i n s e x h i b i t h o s t s e l e c t i v i t y (5.). Charac t e r i z a t i o n o f such t o x i n s i s a v i t a l step t h a t can u l t i m a t e l y l e a d t o t h e d i s c o v e r y o f t h e i r mode o f a c t i o n , b i o s y n t h e s i s , p r e p a r a t i o n b y o r g a n i c t e c h n i q u e s , a n d , most i m p o r t a n t l y , t o serve as t o o l s i n d i s c o v e r i n g t h e m o l e c u l a r b a s i s o f d i s e a s e specificity. A t o x i n w h i c h e x h i b i t s h o s t s p e c i f i c i t y may a l s o be o f v a l u e i n s c r e e n i n g f o r r e s i s t a n t p l a n t s i n a g e n e t i c s o r b r e e d i n g program. Highly v i r u l e n t strains o f A l t e r n a r i a mali, the causal a g e n t o f a p p l e b l o t c h , p r o d u c e a s many a s s e v e n h o s t - s p e c i f i c toxins i n culture while less v i r u l e n t strains lack the a b i l i t y t o p r o d u c e some o f t h e t o x i n s (6_,J_) · The two m a j o r t o x i n s h a v e been c h a r a c t e r i z e d as a l t e r n a r i o l i d e ( c y c l o - [a-hydroxyisovaleryl-a-amino-p-methoxyphenylvaleryl-a-amino-acryl-alanyll a c t o n e ] ) a n d i t s demethoxy d e r i v a t i v e (Q) . R e s i s t a n c e i n a p p l e t r e e s h a s b e e n shown t o be c o n t r o l l e d b y m u l t i p l e d o m i n a n t g e n e s , thus t h i s system o f f e r s e x c e l l e n t o p p o r t u n i t i e s t o e l u c i d a t e t h e attack-counterattack hypotheses o f species e v o l v i n g i n c l o s e a s s o c i a t i o n w i t h one a n o t h e r . A l t e r n a r i a t e n u i s produces a t o x i n c a l l e d t e n t o x i n . This molecule i s also a c y c l i c tetrapeptide with the structure cyclo (L-leucyl-N-methyl-(Ζ)-dehydrophenylalanyl-glycyl-N-methyl-La l a n y l ) (£). The t o x i n e x h i b i t s some s p e c i e s s p e c i f i c i t y a s i t causes c h l o r o s i s i n seedlings o f c e r t a i n species but not o t h e r s , notably t h e Cruciferae (10). Steele, et a l . ( l l ) reported that the a c t i v e s i t e f o r t h i s t o x i n i n s e n s i t i v e plants i s t h e chloroplast coupling factor l ( C F l ) . Evidence supporting t h i s hypothe s i s i s t h a t , i n a s e n s i t i v e s p e c i e s , b o t h CFl-ATPase and t h e c o u p l e d e l e c t r o n t r a n s p o r t s y s t e m (ETS) i n c h l o r o p l a s t s a r e i n h i b i t e d by t e n t o x i n . A l s o , r a d i o - l a b e l l e d t e n t o x i n appears t o b i n d i n a m o l a r r a t i o t o p a r t i a l l y p u r i f i e d CF1 a s m e a s u r e d b y a time-release o f r a d i o - l a b e l l e d tentoxin u t i l i z i n g u l t r a - f i l t r a t i o n techniques. An a f f i n i t y c o n s t a n t o f l O ^ M " was r e p o r t e d f o r t h e t o x i n t o CF1 f r o m a s e n s i t i v e s p e c i e s . I n an i n s e n s i t i v e s p e c i e s , a 2 3 - f o l d i n c r e a s e i n t e n t o x i n was r e q u i r e d t o i n h i b i t C F l - A T P a s e , c o u p l e d - E T S was n o t i n h i b i t e d , a n d t e n t o x i n bound t o t h e p a r t i a l l y p u r i f i e d CF1 w i t h an a p p a r e n t a f f i n i t y o f l e s s than 1 0 % - ! . More c o n v i n c i n g e v i d e n c e o f a d i r e c t i n v o l v e m e n t o f CF1 i s r e q u i r e d . Coincident m i g r a t i o n o f r a d i o a c t i v i t y from b o u n d , l a b e l l e d t e n t o x i n a n d CF1 d u r i n g g e l e l e c t r o p h o r e s i s would be s u b s t a n t i a t i v e e v i d e n c e , as would r e s o l u t i o n o f t h e d i f f e r e n c e s between i n v i v o and i n v i t r o r e s u l t s (12,13). 1
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch003
3.
K E N F i E L D A N D STROBEL
Disease
Resistance
and
Susceptibility
37
T e n t o x i n has b e e n s y n t h e s i z e d a n d a d e s c r i p t i o n o f t h e a c t i v e p a r t o f t h e m o l e c u l e i s b e i n g a t t e m p t e d (ik). Results o f t h i s a p p r o a c h may a i d i n a more r i g o r o u s c h a r a c t e r i z a t i o n o f t h e a c t i v e s i t e i n the p l a n t and allow a f u l l e r understanding o f the b i o l o g i c a l a c t i v i t y o f such c y c l i c t e t r a p e p t i d e s . The H e l m i n t h o s p o r i u m s p e c i e s o f f u n g i c o n s t i t u t e a n i m p o r t a n t g r o u p i n t e r m s o f s p e c i f i c i t y a s many o f t h e m p r o d u c e h o s t s p e c i f i c t o x i n s . H. v i c t o r i a e a n d H. carbonum p r o d u c e p e p t i d y l t o x i n s w h i c h a c t s e l e c t i v e l y o n t h e p l a s m a membrane. The complete s t r u c t u r e s o f n e i t h e r o f these t o x i n s n o r s p e c i f i c s i t e s o f a c t i v i t y have been c h a r a c t e r i z e d , however. S o u t h e r n c o r n l e a f b l i g h t , t h e most d e v a s t a t i n g p l a n t disease epidemic i n recent h i s t o r y , i s caused by Helminthosporium maydis. D i f f e r e n t i a l s u s c e p t i b i l i t y i n corn i s r e l a t e d t o the p r e s e n c e o f T e x a s m a l e s t e r i l e (Terns) o r n o r m a l (N) c y t o p l a s m . P a t h o g e n i c i t y o f the fungus i s determined b y the a b i l i t y t o p r o d u c e a s many a s f i v e d i f f e r e n t h o s t s p e c i f i c t o x i n s ( t o x i n s I-V) w h i c h a p p e a r t o b e t e r p e n o i d s a n d t h e i r d e r i v a t i v e s ( l 5 , l 6 ) . T o x i n p r e p a r a t i o n s h a v e b e e n shown t o s t i m u l a t e t h e o x i d a t i o n o f malate and pyruvate, i n h i b i t p h o s p h o r y l a t i o n , and induce s w e l l i n g of m i t o c h o n d r i a from s u s c e p t i b l e but n o t r e s i s t a n t p l a n t s ( 1 7 ) . S u c h p r e p a r a t i o n s h a v e a l s o b e e n shown t o c a u s e i o n l e a k a g e , r e d u c e ADP c o n t e n t , i n h i b i t r o o t g r o w t h , a n d d i r e c t l y a f f e c t stomatal f u n c t i o n i n g (l8). Toxin preparations i n h i b i t oxidative p h o s p h o r y l a t i o n a n d s t i m u l a t e A T P a s e a c t i v i t y i n Terns b u t n o t Ν m i t o c h o n d r i a (19). While these d i v e r s e e f f e c t s are i n t e r e s t i n g , c r u d e t o x i n p r e p a r a t i o n s were u t i l i z e d i n t h e s e s t u d i e s w h i c h makes i t d i f f i c u l t t o e v a l u a t e t h e f i n d i n g s . Watrud, e t a l . (20) demonstrated t h a t malate dehydrogenase was i n h i b i t e d i n m i t o c h o n d r i a f r o m Terns c o r n b u t n o t i n t h o s e from Ν corn. Upon r u p t u r e o r r e m o v a l o f t h e o u t e r m i t o c h o n d r i a l membrane, h o w e v e r , m i t o c h o n d r i a f r o m Ν c y t o p l a s m became s e n s i tive. T o x i n - b i n d i n g s t u d i e s showed t h a t m i t o c h o n d r i a f r o m b o t h Ν a n d Terns c y t o p l a s m b o u n d t o x i n s I I a n d I , b u t t h a t t h e g r e a t e s t b i n d i n g a c t i v i t y was a s s o c i a t e d w i t h t h e i n n e r m i t o c h o n d r i a l membrane o f Terns m i t o c h o n d r i a . Toxin-binding i n plant extracts was a l s o d e m o n s t r a t e d b y I r e l a n d a n d S t r o b e l ( 21 ) . U t i l i z i n g dextran-coated c h a r c o a l t o adsorb u n r e a c t e d t o x i n from assay m i x t u r e s , t h e y found t h a t e x t r a c t s from a s u s c e p t i b l e corn l i n e (W6ÎA. Terns) c o n t a i n e d a p r o t e i n l o c a l i z e d p r i m a r i l y i n t h e c y t o s o l which binds t o x i n s I and I I w i t h a i n t h e o r d e r o f 10~ The b i n d i n g a c t i v i t y i s r e l a t i v e l y h e a t i n s e n s i t i v e b u t i s destroyed by treatment with papain o r f i c i n . Binding a c t i v i t y was f o u n d i n e x t r a c t s o f b o t h s e n s i t i v e a n d i n s e n s i t i v e c o r n l i n e s , a s w e l l a s o t h e r p l a n t s p e c i e s , t h u s a l l o w i n g no d i r e c t c o r r e l a t i o n between b i n d i n g and r e s i s t a n c e o r s u s c e p t i b i l i t y . M e r t z , e t a l . ( 2 2 ) a r g u e t h a t t h e plasmalemma c o n t a i n s t h e s i t e o f s p e c i f i c i t y f o r t o x i n a c t i o n . They f o u n d t h a t a t o x i n p r e p a r a t i o n c o n t a i n i n g p r i m a r i l y t o x i n I I (10-6 t o lO-^M) i n h i b i t e d K u p t a k e i n l e a f d i s c s a n d a p i c a l r o o t segments o f +
38
HOST P L A N T RESISTANCE T O
PESTS
b o t h Terns and Ν c o r n ; h o w e v e r , a 3 0 - f o l d i n c r e a s e i n t o x i n c o n c e n t r a t i o n was r e q u i r e d t o o b t a i n a s i m i l a r i n h i b i t i o n i n Ν c o r n . I n Terns c o r n , i n c r e a s i n g t h e c o n c e n t r a t i o n o f t o x i n o r t i m e o f t r e a t m e n t , d e c r e a s i n g pH, d e c r e a s i n g t h e e x t r a c e l l u l a r K concen t r a t i o n , and t r e a t i n g w i t h l i g h t a l l i n c r e a s e d t h e i n h i b i t o r y activity. F u r t h e r , s i x g e n o t y p e s o f c o r n w h i c h show d i f f e r e n t d e g r e e s o f s u s c e p t i b i l i t y t o t h e f u n g u s a l s o showed a c o r r e s p o n d i n g d i f f e r e n t i a l i n h i b i t i o n o f K u p t a k e upon t r e a t m e n t w i t h toxin. A s e p a r a t e s t u d y has a l s o r e v e a l e d a d i f f e r e n t i a l s e n s i t i v i t y of potassium uptake i n r o o t s t o t o x i n preparations (23). An a c c u r a t e p i c t u r e o f t h e a c t i v i t y o f t h e s e h o s t - s p e c i f i c t o x i n s i s not y e t p o s s i b l e . D e f i n i t i v e experiments await t h e i d e n t i f i c a t i o n o f t h e i n d i v i d u a l t o x i n s a n d t h e i r u s e a s homo geneous p r e p a r a t i o n s . I t d o e s a p p e a r t h a t m u l t i p l e r e a c t i o n s o c c u r b o t h a t t h e plasmalemma and i n t h e c y t o s o l , b u t t h e s i t e ( s ) of s p e c i f i c i t y remain obscure. H e l m i n t h o s p o r i u m s a c c h a r i c a u s e s e y e s p o t on s u g a r c a n e . This fungus produces a g l y c o s i d e c a l l e d h e l m i n t h o s p o r o s i d e w i t h t h e proposed s t r u c t u r e 2-hydroxycyclopropyl-a-D-galactoside (2k). The p a t h o g e n i c i t y o f t h i s f u n g u s d e p e n d s upon i t s a b i l i t y t o produce h e l m i n t h o s p o r o s i d e . M u l t i p l e t r a n s f e r s o f the patho g e n i c , t o x i n - p r o d u c i n g f u n g u s on s y n t h e t i c m e d i a r e s u l t e d i n a l o s s o f t o x i n p r o d u c t i o n and a t e m p o r a r y i n a b i l i t y o f t h e fungus t o c a u s e t y p i c a l symptoms o n s u s c e p t i b l e l e a v e s (25.). S u s c e p t i b i l i t y i n t h e p l a n t i s governed by t h e presence o f a p r o t e i n i n t h e plasmalemma h a v i n g t h e a b i l i t y t o b i n d h e l m i n t h o s p o r o s i d e ( 2 6 , 2 7 , 2 8 ) , t h i s b i n d i n g b e i n g t h e f i r s t and s p e c i f i c s t e p o f t h e molecular events o f pathogenesis. One mode o f r e s i s t a n c e i n sugarcane i s c o n f e r r e d by t h e i n a b i l i t y o f t h e p l a n t t o b i n d t h e toxin. An o r i g i n a l l y s u s c e p t i b l e c a n e c l o n e was m u t a g e n i z e d v i a i r r a d i a t i o n and t h r e e r e s i s t a n t c l o n e s w e r e o b t a i n e d , e a c h o f w h i c h l a c k e d t h e a b i l i t y t o b i n d t h e t o x i n (2$). In another e x p e r i m e n t , s u s c e p t i b i l i t y t o h e l m i n t h o s p o r o s i d e was t r a n s f e r r e d i n v i t r o t o t o b a c c o and r e s i s t a n t s u g a r c a n e p r o t o p l a s t s b y i n c o r p o r a t i n g t h e t o x i n - b i n d i n g p r o t e i n from s u s c e p t i b l e sugarcane into the normally r e s i s t a n t p r o t o p l a s t s (30). E l u c i d a t i o n of t h i s p a t h o g e n i c i n t e r a c t i o n has had an i m p a c t on s u g a r c a n e b r e e d i n g s i n c e g e n e t i c i s t s c u r r e n t l y spray clones of sugarcane s e e d l i n g s w i t h h e l m i n t h o s p o r o s i d e i n o r d e r t o s o r t out v a r i e t i e s s u s c e p t i b l e t o t h i s world-wide disease (31). +
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch003
+
Plant-Produced Small
Molecules
P h y t o a l e x i n s , a heterogeneous a r r a y o f substances having f u n g i s t a t i c o r f u n g i c i d a l p r o p e r t i e s , h a v e r e c e i v e d m a j o r empha s i s o f compounds i n t h i s c a t e g o r y . The p r o d u c t i o n o f p h y t o a l e x i n s b y p l a n t s upon t r e a t m e n t w i t h v a r i o u s s t i m u l i undoubted l y p l a y s a r o l e i n t h e h o s t - p a r a s i t e i n t e r a c t i o n , and t h i s response i s d e a l t w i t h e l s e w h e r e i n t h i s volume. S p e c i f i c i t y as a t i m e r e l a t e d phenomenon a p p e a r s t o be
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch003
3.
KENFiELD
AND
STROBEL
Disease
Resistance
and
Susceptibility
39
e x h i b i t e d i n t h e i n t e r a c t i o n o f F u s a r i u m graminearurn a n d wheat i n t h e d i s e a s e known as h e a d b l i g h t . Wheat i s s u s c e p t i b l e t o h e a d b l i g h t a f t e r t h e a n t h e r s h a v e emerged and i s r e s i s t a n t p r i o r t o a n t h e s i s o r i f t h e a n t h e r s h a v e b e e n removed. Two r e l a t e d compounds, b e t a i n e and c h o l i n e , have b e e n i s o l a t e d f r o m t h e anthers b o t h o f which s t i m u l a t e t h e iri v i t r o growth o f t h e fungus and i n c r e a s e t h e v i r u l e n c e o f t h e m a c r o c o n i d i a (32). I t i s not known, h o w e v e r , i f r e s i s t a n c e t o h e a d b l i g h t i s a s p e c i f i c r e s p o n s e r e l a t e d t o t h e a b s e n c e o f t h e s e compounds. I n t h e c a s e o f H. s a c c h a r i on s u g a r c a n e i t a p p e a r s as i f a s e c o n d mode o f d i s e a s e r e s i s t a n c e c o u l d a r i s e b y t h e i n a b i l i t y o f t h e p l a n t t o " a c t i v a t e " t o x i n p r o d u c t i o n i n t h e fungus. P i n k e r t o n and S t r o b e l o b s e r v e d t h a t t h e f u n g u s l o s t i t s a b i l i t y t o p r o d u c e t h e t o x i n i f grown f o r an e x t e n d e d t i m e o n s y n t h e t i c media (33). The f u n g u s r e g a i n e d i t s p a t h o g e n i c i t y i f grown o n agar d e r i v e d from s u s c e p t i b l e sugarcane o r i f crude m a t e r i a l from a w a t e r wash o f s u s c e p t i b l e s u g a r c a n e l e a v e s was a d d e d t o t h e s y n t h e t i c media. They i s o l a t e d , i d e n t i f i e d , a n d s y n t h e s i z e d one o f t h e a c t i v a t o r s and i t was shown t o be s e r i n o l , 2 - a m i n o - l , 3 propanediol. E v i d e n c e i n d i c a t e d t h a t s e r i n o l was o f p l a n t o r i g i n a n d , s u b s e q u e n t l y , B a b c z i n s k i e t a l . (3U_) d e m o n s t r a t e d t h a t t h e b i o s y n t h e s i s o f s e r i n o l proceeds v i a s e r i n o l phosphate from dihydroxyacetone phosphate i n a t r a n s a m i n a t i o n r e a c t i o n i n ext r a c t s o f s u s c e p t i b l e s u g a r c a n e . R e s i s t a n t cane d i d not p o s s e s s s e r i n o l , nor t h e m e t a b o l i c pathway f o r i t s p r o d u c t i o n . A second i n d u c e r ( m o l e c u l a r w e i g h t = 700) i s c u r r e n t l y b e i n g c h a r a c t e r i z e d b y U. M a t e r n o f t h i s l a b o r a t o r y . I t i s n o t known how t h e s e compounds a c t t o s t i m u l a t e t h e s y n t h e s i s o f h e l m i n t h o s p o r o s i d e . I t w o u l d a l s o a p p e a r l i k e l y t h a t numerous o t h e r h o s t - p a r a s i t e c o m b i n a t i o n s a r e o p e r a t i n g i n a s i m i l a r mode, a s l o s s o f p a t h o g e n i c i t y d u r i n g extended c u l t u r e i s f r e q u e n t l y observed. The a n t i t h e s i s o f a h o s t - f o r m e d a c t i v a t o r w o u l d be a h o s t formed i n h i b i t o r o f t o x i n p r o d u c t i o n . To o u r k n o w l e d g e , no one h a s y e t d e m o n s t r a t e d t h e e x i s t e n c e o f s u c h a compound. Macromolecules
from
Pathogens
The p r o d u c t i o n o f a m a c r o m o l e c u l e b y t h e p a t h o g e n t h a t confers s p e c i f i c i t y i n the host-parasite i n t e r a c t i o n i s a v i a b l e h y p o t h e s i s , but i s not s u p p o r t e d by s t r o n g e v i d e n c e . Pathogens do p r o d u c e numerous d e g r a d a t i v e enzymes s u c h as c e l l u l a s e s , p e c t i n a s e s , a n d p r o t e a s e s , b u t t h e r e i s no e v i d e n c e f o r h o s t s p e c i f i c i t y b e i n g p r e s c r i b e d b y t h e s e enzymes. A model system i n w h i c h t h e pathogen a p p a r e n t l y c o u n t e r s a p o s s i b l e defense r e a c t i o n by t h e host o c c u r s between C o l l e t o t r i c h u m l i n d e m u t h i a n u m a n d P h a s e o l i s v u l g a r i s (35)· A major component o f t h e f u n g a l c e l l w a l l i s a 3 - 1 , 3 g l u c a n , and P_. v u l g a r i s p o s s e s e s a 3-1,3 g l u c a n a s e t h a t c o u l d pose a t h r e a t t o t h e p a t h o g e n s i n c e i t s w a l l m a t e r i a l c o u l d be d e s t r o y e d . A l b e r s h e i m , e t a l . , i s o l a t e d a p r o t e i n a c e o u s compound f r o m t h e f u n g u s
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch003
40
H O S T P L A N T RESISTANCE T O
PESTS
t h a t i n h i b i t s t h e a c t i v i t y o f t h e h o s t ' s $-1,3 glucanase. These o b s e r v a t i o n s a r e w o r t h y o f b e i n g t e s t e d i n o t h e r s y s t e m s and s h o u l d be f u r t h e r s t u d i e d t o a s c e r t a i n how i m p o r t a n t t h i s phenomenon i s t o p a t h o g e n s p e c i f i c i t y and t h e d e f e n s e r e a c t i o n o f the host. B o t h b a c t e r i a and f u n g i p r o d u c e l a r g e p h y t o t o x i c g l y c o p e p t i d e s w h i c h h a v e b e e n shown t o p o s s e s s some h o s t s p e c i f i c i t y (36^37). F o r i n s t a n c e , R i e s and S t r o b e l i s o l a t e d and c h a r a c t e r i z e d a glycopeptide from Corynebacterium i n s i d i o s u m t h a t causes w i l t i n g i n a l f a l f a (38). The t o x i n i s a g l y c o f u c a n w i t h a m o l e c u l a r w e i g h t o f 5 x 10^. At a c r i t i c a l c o n c e n t r a t i o n of 0 . 0 5 $ , t h e t o x i n was e f f e c t i v e as a s c r e e n i n g t o o l i n s e l e c t i n g a l f a l f a c l o n e s r e s i s t a n t t o C_. i n s i d i o s u m . Phoma t r a c h e i p h i l a , t h e c a u s a l a g e n t o f m a l s e c c o d i s e a s e of c i t r u s , produced a glycopeptide capable of i n d u c i n g v e i n a l n e c r o s i s and v e i n c l e a r i n g f o l l o w e d b y w i l t and l e a f s h e d d i n g in susceptible citrus. The t o x i n has a m o l e c u l a r w e i g h t o f 93,000. Amino a c i d s c o n t r i b u t e 36% o f i t s w e i g h t , w h i c h i s c o n s i d e r a b l y g r e a t e r t h a n e x h i b i t e d by o t h e r p h y t o t o x i c g l y c o p e p t i d e s (39)» The t o x i n c a u s e s d e a t h o f s u s c e p t i b l e l e m o n c a l l u s , b u t has no d e t r i m e n t a l e f f e c t on r e s i s t a n t o r a n g e c a l l u s . T h i s g l y c o p e p t i d e has enormous p o t e n t i a l f o r s c r e e n i n g c i t r u s p r o t o p l a s t s and/or c a l l u s t i s s u e f o r t o x i n r e s i s t a n c e . This t e c h n o l o g i c a l a d v a n c e seems f e a s i b l e s i n c e c i t r u s t r e e s h a v e r e c e n t l y been r e g e n e r a t e d from p r o t o p l a s t s . A h o s t - p a r a s i t e i n t e r a c t i o n t h a t may i n v o l v e a t r a n s f e r o f macromolecules between s p e c i e s i s t h e stem r u s t - w h e a t a s s o c i a tion. T h i s disease i s c h a r a c t e r i z e d by a h i g h degree o f s p e c i f i c i t y a t t h e g e n e t i c l e v e l i n t h a t c u l t i v a r s o f wheat c a r r y genes f o r r e s i s t a n c e (R) and s u s c e p t i b i l i t y ( r ) t o r a c e s o f t h e f u n g u s c o n t a i n i n g c o r r e s p o n d i n g genes f o r v i r u l e n c e ( a ) o r a v i r u l e n c e ( A ) . Of t h e f o u r p o s s i b l e c o m b i n a t i o n s R/A, R/a, r/A, and r / a , o n l y t h e R/A i n t e r a c t i o n l e a d s t o a r e s i s t a n t r e a c t i o n c h a r a c t e r i z e d by l o c a l i z e d n e c r o s i s (ho). R o h r i n g e r , e t a l . (hl k2) p u b l i s h e d e v i d e n c e t h a t a genes p e c i f i c RNA, p o s s i b l y t h e t r a n s c r i p t i o n p r o d u c t o f t h e gene f o r a v i r u l e n c e i n the fungus, i s d i r e c t l y i n v o l v e d i n the r e s i s t a n t r e a c t i o n o f wheat t o stem r u s t . More r i g o r o u s s u p p o r t o f t h i s h y p o t h e s i s i s n e e d e d , h o w e v e r , as t h e s e r e s e a r c h e r s r e c e n t l y reported t h e i r f a i l u r e t o c o n s i s t e n t l y reproduce t h e i r o r i g i n a l r e s u l t s (1+3). One o f t h e b e s t i l l u s t r a t i o n s o f t h e i n v o l v e m e n t o f a m a c r o m o l e c u l e i n p l a n t d i s e a s e s p e c i f i c i t y i s t h e phenomenon o f c r o w n g a l l , a tumorous d i s e a s e o f p l a n t s caused by A g r o b a c t e r i u m t u m e f a c i e n s . A m a c r o m o l e c u l e ( b a c t e r i a l p l a s m i d ) has b e e n i m p l i c a t e d a s t h e k e y f a c t o r i n i n f e c t i o u s A. t u m e f a c i e n s t h a t b r i n g s a b o u t t r a n s f o r m a t i o n o f p l a n t c e l l s (hh). Nevertheless, the u l t i m a t e gene p r o d u c t ( s ) t h a t b r i n g a b o u t t h e a b n o r m a l b e h a v i o r o f t h e p l a n t c e l l r e m a i n s t o be i d e n t i f i e d . I t i s apparent from t h e s e and o t h e r s t u d i e s t h a t t h e f i e l d o f m a c r o m o l e c u l a r i n t e r 9
3.
KENFiELD
AND
STROBEL
Disease Resistance
a c t i o n s b e t w e e n p a t h o g e n s and dial state.
and
41
Susceptibility
t h e i r plant hosts i s i n a
primor-
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch003
Macromolecules from P l a n t s P o s s i b i l i t i e s f o r s p e c i f i c i t y at the macromolecular l e v e l i n p l a n t s i n c l u d e unique or novel c u t i n or c e l l w a l l s t r u c t u r e s , isozymes t h a t d i c t a t e s p e c i f i c i t y , o r even t h e p r o d u c t i o n o f enzymes t h a t d e s t r o y o r a l t e r s p e c i f i c t o x i n s p r o d u c e d by t h e pathogen. E v i d e n c e f o r t h e d i r e c t , s p e c i f i c i n v o l v e m e n t o f any of these macromolecules i n the h o s t - p a r a s i t e i n t e r a c t i o n i s t o be forthcoming. An e x a m p l e o f s p e c i f i c i t y i n p l a n t - d i s e a s e r e s i s t a n c e e s t a b l i s h e d a t t h e m a c r o m o l e c u l a r l e v e l i s t h e H. s a c c h a r i s u g a r c a n e i n t e r a c t i o n w h e r e i n r e s i s t a n c e i s e x p r e s s e d as an a l t e r e d p r o t e i n r e c e p t o r t h a t cannot b i n d t h e h o s t - s p e c i f i c f u n g a l t o x i n (27). From a d d i t i o n a l w o r k on t h i s s y s t e m , i t has become a p p a r e n t t o us t h a t i t i s i n c o r r e c t t o b e l i e v e t h a t t h e m o l e c u l a r e v e n t t h a t c o n f e r s s p e c i f i c i t y a l s o must c o n s t i t u t e the c r u c i a l detrimental e f f e c t i n the disease process. A certain dogma i n p h y t o p a t h o l o g y i s t h a t a h o s t - s p e c i f i c t o x i n must r e p r o d u c e a l l o f t h e symptoms o f t h e d i s e a s e i n c i t e d b y t h e p a t h o gen. This concept formulates a workable b a s i s f o r i s o l a t i n g host s p e c i f i c t o x i n s , b u t i t must n o t be m i s c o n s t r u e d t o mean t h a t t h e s p e c i f i c i n t e r a c t i o n o f a t o x i n w i t h i t s a c t i v e s i t e comprises the e n t i r e molecular events o f pathogenesis. The s p e c i f i c e v e n t may s i m p l y be a p o t e n t i a t o r f o r t h e c r u c i a l e v e n t . T h e s e p o i n t s a r e i l l u s t r a t e d i n t h e H_. s a c c h a r i - s u g a r c a n e system. The b i n d i n g p r o t e i n f o r t h e t o x i n i s l o c a l i z e d on t h e p l a s m a membrane, and a l l s u s c e p t i b l e c l o n e s o f s u g a r c a n e t e s t e d t h u s f a r p o s s e s s an a c t i v e b i n d i n g p r o t e i n . Clones t h a t are r e s i s t a n t possess a p r o t e i n which l a c k s detectable t o x i n b i n d i n g activity. C e r t a i n l i n e s of evidence i n d i c a t e t h a t t o x i n b i n d i n g i s only a potentiating reaction that i s c r u c i a l to s p e c i f i c i t y b u t may be j u s t a k e y t o o t h e r e v e n t s i n t h e c e l l l e a d i n g t o i t s demise. Upon t r e a t m e n t w i t h t h e t o x i n , p r o t o p l a s t s f r o m s u s c e p t i b l e c a n e s w e l l and e v e n t u a l l y b u r s t , t i s s u e f r o m s u s c e p t i b l e c a n e u n d e r g o e s an i m m e d i a t e d r o p i n membrane p o t e n t i a l and shows l e a k i n e s s o f i o n s , t i s s u e ATP l e v e l s d r o p , and photosynthesis d e c l i n e s (k5). Pretreatment with cycloheximide, or elevated t e m p e r a t u r e c a u s e s u s c e p t i b l e l e a v e s t o be r e s i s t a n t (k6). Such t r e a t m e n t s , h o w e v e r , do n o t a f f e c t t h e t o x i n - b i n d i n g a c t i v i t y o f t h e p r o t e i n . The t o x i n a c t i v a t e s ( K , M g ) - A T P a s e a c t i v i t y i n p l a s m a membrane p r e p a r a t i o n s f r o m s u s c e p t i b l e t i s s u e s b u t n o t f r o m h e a t - t r e a t e d t i s s u e s jhj). Arrhenius p l o t s o f heat e f f e c t s on A T P a s e a c t i v i t y and symptom e x p r e s s i o n r e v e a l a s h a r p b r e a k a t 32°C f o r b o t h ( u n p u b l i s h e d ) . A l s o , common i n h i b i t o r s o f ATPase a c t i v i t y c o n f e r r e s i s t a n c e t o s u s c e p t i b l e t i s s u e . I t appears t h a t a s p e c i f i c , h e a t - i n s e n s i t i v e step o f t o x i n +
+ +
42
HOST P L A N T RESISTANCE T O
PESTS
b i n d i n g p r e c e d e s a h e a t - s e n s i t i v e e v e n t c r u c i a l f o r symptom expression. The s e c o n d e v e n t may -well be an a c t i v a t i o n o f p l a s m a membrane ( K , M g ) - A T P a s e a c t i v i t y . That s p e c i f i c i t y r e s i d e s i n the t o x i n - b i n d i n g step i s f u r t h e r s u p p o r t e d by t h e f a c t t h a t s e n s i t i v i t y t o h e l m i n t h o s p o r o s i d e c a n be t r a n s f e r r e d i n v i t r o t o b o t h t o b a c c o and r e s i s t a n t sugarcane p r o t o p l a s t s v i a t r a n s f e r of the b i n d i n g p r o t e i n . The b i n d i n g a c t i v i t y a l o n e i s not s u f f i c i e n t t o promote d i s e a s e symptoms, h o w e v e r , b e c a u s e t o x i n - b i n d i n g a c t i v i t y has b e e n found i n T C A - s o l u b i l i z e d e x t r a c t s o f plasmalemma-enriched f r a c t i o n s f r o m d i v e r s e p l a n t s (See T a b l e I ) . M i n t shows a n e a r l y t w o - f o l d i n c r e a s e i n s p e c i f i c b i n d i n g a c t i v i t y over t h a t from s u s c e p t i b l e sugarcane, yet t o x i n a p p l i e d to mint leaves f a i l s to educe any o b s e r v a b l e symptoms. The t o x i n a l s o f a i l s t o c a u s e an a c t i v a t i o n o f t h e plasma-membrane (ΚΓ*", M g ) - A T P a s e f r o m m i n t (unpublished). I n f a c t , t h e t o x i n does n o t c a u s e symptoms on any o f t h e p l a n t s t e s t e d except s u s c e p t i b l e sugarcane. Note a l s o that while tobacco possesses t o x i n - b i n d i n g a b i l i t y , protoplasts w e r e n o t k i l l e d b y h e l m i n t h o s p o r o s i d e u n t i l t h e y had b e e n t r e a t e d w i t h the b i n d i n g p r o t e i n from sugarcane. C l e a r l y , b i n d i n g a c t i v i t y i s e s s e n t i a l but i n s u f f i c i e n t t o cause d i s e a s e . Y e t a n o t h e r i n t e r e s t i n g o b s e r v a t i o n i s t h a t t h e TCA e x t r a c t s o f a l l t h e p l a n t s t e s t e d c a n b i n d r a f f i n o s e and g a l a c t i n o l ; y e t r e s i s t a n t s u g a r c a n e , p o t a t o , and c o r n l a c k t h e a b i l i t y t o b i n d helminthosporoside. I f , i n t r u t h , what we a r e s t u d y i n g i s a f a c e t o f α-galactoside t r a n s p o r t i n p l a n t s , i t a p p e a r s t h a t a l t e r a t i o n s can o c c u r w h i c h d r a s t i c a l l y a f f e c t l i g a n d s p e c i f i c i t y y e t do n o t i n t e r f e r e w i t h a p p a r e n t l y n o r m a l p h y s i o l o g i c a l f u n c tions. C u r r e n t l y i n o u r l a b o r a t o r y , i s o l a t i o n and c h a r a c t e r i z a t i o n o f t h e b i n d i n g p r o t e i n s f r o m s u g a r c a n e , m i n t , and t o b a c c o a r e i n p r o g r e s s i n an a t t e m p t t o d i s c e r n t h e u n i q u e n e s s o f t h e p r o t e i n f r o m s u s c e p t i b l e s u g a r c a n e and i t s i n v o l v e m e n t i n d i s e a s e specificity. +
+ +
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch003
+ +
Implications What a r e t h e i m p l i c a t i o n s o f m o l e c u l a r r e s e a r c h i n t o t h e s p e c i f i c i t y of p l a n t diseases? C e r t a i n l y a primary goal of plant p a t h o l o g i s t s i s t h e d e v e l o p m e n t o f more e f f e c t i v e c o n t r o l o f plant diseases. A v e r y i m p o r t a n t a p p l i c a t i o n l e a d i n g t o enhance ment o f c o n t r o l m e a s u r e s i s t h e i d e n t i f i c a t i o n o f b i o c h e m i c a l m a r k e r s f o r p l a n t b r e e d e r s t h e r e b y i n c r e a s i n g t h e e f f i c i e n c y and c e l e r i t y o f t h e i r e f f o r t s t o produce d i s e a s e - r e s i s t a n t p l a n t s . C u r r e n t l y i n t h i s l a b o r a t o r y , J . P. B e l t r a n i s c h a r a c t e r i z i n g i n barley cultivars d i f f e r e n t i a l binding a c t i v i t y for a glycosidic t o x i n produced by Rhyncosporium s e c a l i s , the c a u s a l agent o f b a r l e y s c a l d . I f s u c c e s s f u l , t h i s work w i l l p r o v i d e t h e f i r s t b i o c h e m i c a l marker of t o x i n r e s i s t a n c e i n a p l a n t , the g e n e t i c s o f w h i c h have been e x t e n s i v e l y c h a r a c t e r i z e d . A l t e r n a t i v e l y , the i d e n t i f i c a t i o n of molecules a c t i v e i n
3.
KENFiELD
Table I .
A N D STROBEL
Resistance
and
Susceptibility
Binding a c t i v i t y (m m o l e s u b s t r a t e / g p r o t e i n ) G a l a c t i n o l Helminthosporoside Raffinose
0.05
0.19
0.0k
0.16
Mint
1.07
O.Vf
k.l
Tobacco
0.08
0.06
0.2k
Potato
0.06
0.13
<0.005
Beet
0.11
0.05
1.9
Wheat
0.07
0.10
0.012
Barley
0.10
0.0k
0.020
Corn
0.08
0.03
<0.005
susceptible 51NG97 resistant H50-7209
43
α-Galactoside b i n d i n g a c t i v i t y o f t r i c h l o r o a c e t a t e s o l u b i l i z e d , plasma-membrane-enriched f r a c t i o n s .
Source
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch003
Disease
sugarcane
sugarcane
2.7
<0.005
Note: A p e l l e t e n r i c h e d i n p l a s m a membranes was o b t a i n e d a s i n (25). T h i s p e l l e t was h o m o g e n i z e d i n T r i s - H C l , 0 . 0 5 M, pH 7 - 0 c o n t a i n i n g 0 . 5 M t r i c h l o r o a c e t a t e (TCA) a n d i n c u b a t e d a t kC f o r k hours. A f t e r c e n t r i f u g a t i o n a t U 8 , 0 0 0 g f o r 20 m i n u t e s , 0 . 5 m l o f t h e s u p e r n a t a n t was i n c u b a t e d a t 25C f o r 30 m i n u t e s w i t h l^C-ligand (l0 M). The a s s a y m i x t u r e was t h e n chromât ο g r a p h e d o v e r B i o - g e l P - 2 ( 1 . 5 x ^5 c m ) , e l u t i n g w i t h b u f f e r . The f r a c t i o n s e l u t i n g a t t h e v o i d volume were c o l l e c t e d , p l a c e d i n 5 ml o f A q u a s o l , and counted i n a P a c k a r d T r i - C a r b L i q u i d S c i n t i l l a t i o n Spectrometer. T o t a l p r o t e i n was m e a s u r e d a c c o r d i n g t o L o w r y , e t a l . (k6). S p e c i f i c r a d i o a c t i v i t i e s o f t h e l i g a n d s (DPM/ymole) w e r e : r a f f i n o s e - 3 5 1 , 5 0 0 ; g a l a c t i n o l - 3 3 , 7 0 0 ; and h e l m i n t h o s p o r o s i d e - U , 0 0 0 . B o v i n e serum a l b u m i n a n d b o i l e d TCA e x t r a c t s w e r e u s e d as c o n t r o l s . _ i +
44
HOST PLANT RESISTANCE TO PESTS
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch003
specificity may promote a rational approach to development and application of fungicides and herbicides, allowing design of more effective and more selective poisons. This approach is especial ly important in crop systems where weeds are closely related to the commercial plants (i.e. wild oats and wheat) and high degrees of selectivity are required for efficient control. Research on specificity will also increase our knowledge on the basic processes of life. As examples: tentoxin studies may well reveal important events in the phenomenon of uncoupling of oxidation-phosphorylation; aspects of protein-protein inter action in membranes and their effect on active transport are possible extensions of the work on the activity of helminthospo roside; the study of southern corn leaf blight should increase our knowledge of interactions of nuclear and cytoplasmic genes. Acknowledgement s Certain aspects of the research work presented in this report were supported in part by the National Science Foundation Grant PCM 76-19565, a grant from the Herman Frasch Foundation and the Montana Agricultural Experiment Station. Literature Cited 1. Brian, P. W., "Specificity in Plant Diseases", pp.15-26, Plenum Press, New York, 1976. 2. MacDonald, P. W. and Strobel, G. Α., Plant Physiol., (1970), 46, 126-135. 3. Keen, N. T., Science, (1975), 187, 74-75. 4. Ayers, A. R., Ebel, J . , Valent, Β., and Albersheim, P., Plant Physiol., (1976), 51, 760-766. 5. Scheffer, R. P., "Physiological Plant Pathology", pp.247269, Springer-Verlag, New York, 1976. 6. Kohmoto, K., Khan, I. D., Renbutso, Y., Taniguchi, T., and Nishimura, S., Physiol. Plant Pathol., (1976), 8, 141-153. 7. Nishimura, S., Kohmoto, K., Otani, H., Fukami, H., and Ueno, T., "Biochemistry and Cytology of Plant Parasite Inter action", pp.94-101, Elsevier Scientific Publishing Co., New York, 1976. 8. Okuno, T., Ishita, Y., Sawai, K., and Matsumoto, T., Chem Lett, (1974), 635-638. 9. Meyer, W. L., Templeton, G. Ε., Grable, C. I., Jones, R., Kuyper, L. F., Lewis, R. B., Sigel, C. W., and Woodhead, S. H., J. Am. Chem. Soc., (1975), 97, 3802-3809. 10. Durbin, R. D. and Uchytil, T. F., Phytopathology, (1977), 67, 602-603. 11. Steele, J. Α., Uchytil, T. F., Durbin, R. D., Bhatnagar, P., and Rich, D. H., Proc. Nat. Acad. Sci., USA, (1976), 73, 2245-2248. 12. Arntzen, C. H., Biochem. Biophys. Acta, (1972), 283,
3. KENFIELD AND STROBEL 13. 14. 15. 16. 17. 18. Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch003
19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. 32. 33. 34. 35. 36. 37. 38. 39.
45 Disease Resistance and Susceptibility
539-542. Fulton, N. D., Bollenbacher, K., and Templeton, G. Ε., Phytopathology, (1965), 55, 49-51. Rich, D. H., "Specificity in Plant Diseases," pp.l69-l84, Plenum Press, New York, 1976. Karr, A. L., Karr, D. B., and Strobel, G. Α., Plant Physiol., (1974), 53, 250-257. Karr, D. Β., Karr, A. L., and Strobel, G. Α., Plant Physiol., (1975), 55, 727-730. Miller, R.J . and Koeppe, D. Ε., Science, (1971), 173, 67-69. Arntzen, C. J., Koeppe, D. Ε., Miller, R. J., and Peverly, J. H., Physiol. Plant Pathol., (1973), 3, 79-90. Bednarski, Μ. Α., Izawa, S., and Scheffer, R. P., Plant Physiol., (1977), 59, 540-545. Watrud, L. S., Baldwin, J. Κ., Miller, R. J., and Koeppe, D. Ε., Plant Physiol., (1975), 56, 216-221. Ireland, C. A. and Strobel, G. Α., Plant Physiol., in press. Mertz, S. M. and Arntzen, C. J., Plant Physiol., in press. Frick, H., Bauman, L. F., Nicholson, R. L., and Hodges, Τ. Κ., Plant Physiol., (1977), 59, 103-106. Steiner, G. W. and Strobel, G. Α., J. Biol. Chem., (1971), 246, 4350-4357. Pinkerton, F., Ph.D. Thesis, Montana State University, (1976). Strobel, G. Α., J. Biol. Chem., (1973), 248, 1321-1328. Strobel, G. Α., Proc. Nat. Acad. Sci., USA, (1973), 70, 1693-1696. Strobel, G. A. and Hess, W. Μ., Proc. Nat. Acad. Sci. USA, (1974), 71, 1413-1417. Strobel, G. Α., Steiner, G. W., and Byther, R. S., Biochem. Genet., (1975), 13, 557-565. Strobel, G. A. and Hapner, K. D., Biochem. Biophys. Res. Comm., (1975), 63, 1151-1156. Byther, R. S. and Steiner, G. W., Phytopathology, (1972), 62, 466-470. Strange, R. Ν., Majer, J. R., and Smith, Η., Physiol. Plant Pathol., (1974), 4, 277-290. Pinkerton, F. and Strobel, G. Α., Proc. Nat. Acad. Sci. USA, (1976), 73, 4007-4011. Babczinski, P., Matern, U., and Strobel, G. Α., Plant Physiol., in press. Albersheim, P. and Valent, B. S., Plant Physiol., (1974), 53, 684-687. Strobel, G. Α., Ann. Rev. Plant Physiol., (1974), 25, 541-566. Strobel, G. Α., Ann. Rev. Microbiol., (1977), 31, 205-224. Ries, S. M. and Strobel, G. Α., Physiol. Plant Pathol., (1972), 2, 133-142. Nachmias, Α., Barash, I., Solel, Z., and Strobel, G. Α.,
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch003
46
HOST PLANT RESISTANCE TO PESTS
Physiol. Plant Pathol., (1977), 10, 147-157. 40. Flor, H. H., J. Agric. Res., (l946), 73, 335-357. 41. Rohringer, R., Howes, Ν. Κ., Kim, W. Κ., and Samborski, D. J., Nature, (1974), 249, 585-588. 42. Rohringer, R., "Specificity in Plant Diseases", pp.185198, Plenum Press, New York, 1976. 43. Rohringer, R., Howes, Ν. Κ., Kim, W. Κ., and Samborski, D. J., Can. J. Bot., (1977), 55, 851-852. 44. Kado, C. I., Ann. Rev. Phytopathol., (1976), 14, 265-308. 45. Strobel, G. Α., Trends in Biochem. Sci., (1976), 1, 247250. 46. Byther, R. S. and Steiner, G. W., Plant Physiol., (1975), 56, 415-419. 47. Strobel, G. Α., Proc. Nat. Acad. Sci., USA, (1974), 71, 4232-4236. 48. Lowry, O. Η., Rosebrough, N. J., Farr, A. L., and Randall, R. J., J. Biol. Chem., (1951), 193, 265-275.
4 Interactions between Phytophthora Infestans and Potato Host
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch004
DONALD D. BILLS Eastern Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, Philadelphia, PA 19118
The white potato (Solanum tuberosum) was unknown outside of South America until the sixteenth century, but by the nineteenth century, it was widely cultivated in the British Isles, Europe, Russia, and the United States. Ireland, in particular, shifted its agricultural emphasis from cereal grains to the more productive potato with such success that the population of Ireland increased considerably to about 7 million by 1844. In 1845, climatic conditions and widespread growth of the potato in Ireland permitted catastrophic field infection by Phytophthora infestans and resulted in the loss of nearly the entire potato crop in that year and the subsequent year. The results for Ireland were devastating; over one million people died of starvation or diseases associated with malnutrition, and over one million more emigrated. P. infestans, the pathogen responsible for potato late blight, remains the most significant fungal parasite of the potato. The Nature of Late Blight The symptoms of late blight on the potato plant are visible first as dark brown patches on the leaflets, usually near the margin. On the leaflets of varieties that are incompatible with the infecting race of P. infestans, the necrosis is restricted to small spots or flecks that do not enlarge. In a susceptible interaction, the necrotic areas expand, and white mold growth is usually visible along their edges on the underside of the leaflet. If weather conditions remain sufficiently damp, the infection can spread and destroy the entire haulm in a period of several weeks. During the course of progressive infection, spores are spread to other plants by wind, rain, or insects and transferred to the soil and the tubers of infected plants by rain. The means by which late blight is perpetuated are shown in Fig. 1. In the vicinity of potato fields, elimination of cull piles containing blighted tubers is a well-accepted practice for 47 American Chemical Society Library 1155 16th St.N.W. Washington, D. C. 20036
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch004
48
HOST P L A N T RESISTANCE T O
PESTS
c o n t r o l l i n g the spread of i n f e c t i o n from t h i s source, and the s e l e c t i o n of seed tubers as f r e e from i n f e c t i o n as p o s s i b l e i s recognized as a n e c e s s i t y . One b l i g h t e d seed tuber i n 100,000 provides an adequate i n i t i a l inoculum f o r a major epidemic (1). C o n t r o l of the spread of i n f e c t i o n between potato p l a n t s i s dependent upon the use of f u n g i c i d e s such as the e t h y l e n e b i s d i t h i o carbamates and the p l a n t i n g of potato v a r i e t i e s that have some degree of r e s i s t a n c e . In the United States, the use of f u n g i c i d e s to prevent the spread of l a t e b l i g h t g e n e r a l l y i s p r a c t i c e d i n a l l areas except the western s t a t e s where the summer climate i s u s u a l l y dry and unconducive to the development of l a t e b l i g h t . Under current management p r a c t i c e s i n the United States, l a t e b l i g h t decreases the y i e l d of potatoes at harvest by about 4%. Further l o s s e s are encountered i n storage when tubers with minor b l i g h t e d areas become mixed i n a d v e r t e n t l y w i t h sound tubers. P^. i n f e s t a n s does not g e n e r a l l y spread to healthy tubers during storage, but the l o c i of i n f e c t i o n provide footholds f o r secondary b a c t e r i a l i n f e c t i o n s that spread to other tubers and cause s i g n i f i cant l o s s e s (2). Potato Resistance
to Fungal I n f e c t i o n
The potato i s immune to p a r a s i t i z a t i o n by the vast m a j o r i t y of f u n g i ; there are, i n c l u d i n g _P. i n f e s t a n s , only s i x or seven fungal p a r a s i t e s of the p l a n t and tuber that are economically s i g n i f i c a n t (2). The term immunity i s used to denote complete and apparently permanent p r o t e c t i o n against a given p a r a s i t e , whereas r e s i s t a n c e denotes e i t h e r incomplete or impermanent p r o t e c t i o n . P a r a l l e l s have been drawn between immunity and r e s i s t a n c e (1_, 3), but Robinson (_1) suggests that immunity i s outside of the conceptual bounds of p a r a s i t i s m . Perhaps the major d i f f i c u l t y i n c o n c e p t u a l i z i n g immunity i s that no one yet has formulated a research approach that might lead to a d e s c r i p t i o n of the circumstances r e s p o n s i b l e f o r the immune r e l a t i o n s h i p of p l a n t s to f u n g i . Resistance, on the other hand, provides chemically and p h y s i c a l l y observable and measurable phenomena as a b a s i s f o r research. Resistance to fungal p a r a s i t e s commonly i s d i v i d e d i n t o two general c a t e g o r i e s , h o r i z o n t a l r e s i s t a n c e and v e r t i c a l r e s i s t a n c e . H o r i z o n t a l r e s i s t a n c e i s s a i d to provide a constant l e v e l (high, moderate, low, or n e a r l y zero) of i n f e c t a b i l i t y w i t h a l l e x i s t i n g and p o t e n t i a l races of a given fungal s p e c i e s . From the constant l e v e l of i n f e c t a b i l i t y , the term and concept of h o r i z o n t a l r e s i s t ance was formulated by van der Plank (4). I t i s b e l i e v e d that h o r i z o n t a l r e s i s t a n c e u s u a l l y has a polygenic o r i g i n i n the host and that mechanisms r e s p o n s i b l e f o r h o r i z o n t a l r e s i s t a n c e are l i k e l y to be numerous and complex. I f t h i s were not the usual case, minor genetic changes i n a fungal p a r a s i t e would be more l i k e l y to r e s u l t i n new races capable of p a r a s i t i z i n g the host at higher l e v e l s .
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch004
4.
BILLS
Phytophthora Infestans and
Potato
Host
49
H o r i z o n t a l r e s i s t a n c e can be viewed s p e c u l a t i v e l y as a b a r r i e r of p h y s i c a l or chemical defenses which slow fungal i n v a s i o n . U n a v a i l a b i l i t y i n the host of adequate e s s e n t i a l n u t r i e n t s required f o r fungal growth would c o n s t i t u t e a passive form of h o r i z o n t a l r e s i s t a n c e . The concept of h o r i z o n t a l r e s i s t a n c e can a l s o be extended to chemicals a p p l i e d e x t e r n a l l y . The e f f e c t i v e n e s s of new f u n g i c i d e s i s o f t e n temporary because the f u n g i produce new races unaffected by them. Other f u n g i c i d e s , such as Bordeaux Mixture, appear to have " h o r i z o n t a l p r o p e r t i e s " and maintain t h e i r e f f e c t i v e n e s s permanently, i n d i c a t i n g that the f u n g i are unable to produce new races able to t o l e r a t e them. The i n a b i l i t y of f u n g i to circumvent the t o x i c i t y of the " h o r i z o n t a l " d i t h i o carbamate f u n g i c i d e s , which i n h i b i t twenty or more enzymes (5), i s e a s i l y understood. The presence of a " n a t u r a l h o r i z o n t a l f u n g i c i d e " i n host t i s s u e would confer some degree of r e s i s t a n c e , and there i s evidence, c i t e d l a t e r , that the potato tuber contains indigenous compounds with f u n g i t o x i c p r o p e r t i e s . While potato v a r i e t i e s can e x h i b i t v a r y i n g degrees of h o r i z o n t a l r e s i s t a n c e to P^. i n f e s t a n s , most commercial v a r i e t i e s have (and most breeding programs are aimed at producing) v e r t i c a l r e s i s t a n c e ( 1 ) . The term v e r t i c a l r e s i s t a n c e i s derived from the observation that i n some h o s t - p a r a s i t e i n t e r a c t i o n s i n f e c t i o n of a given host v a r i e t y by d i f f e r e n t fungal races can occur at e i t h e r a high l e v e l ( s u s c e p t i b l e or compatible i n t e r a c t i o n ) or a very low l e v e l ( r e s i s t a n t , incompatible, or h y p e r s e n s i t i v e i n t e r a c t i o n ) ( 4 ) . The terms compatible and incompatible are used i n the remainder of t h i s paper. V e r t i c a l r e s i s t a n c e i s o f t e n r e f e r r e d to as a gene-for-gene r e l a t i o n s h i p between host and fungal p a r a s i t e ( 1 ). Obviously, i t i s not the genes but the chemical and p h y s i c a l c h a r a c t e r i s t i c s whose i n h e r i t a n c e i s g e n e t i c a l l y c o n t r o l l e d that e i t h e r match or do not match each other. Albersheim and AndersonProuty ( 6 ) e x t e n s i v e l y reviewed the evidence f o r the existence of g e n e t i c a l l y c o n t r o l l e d r e c o g n i t i o n mechanisms that r e s u l t i n an incompatible response between fungal p a r a s i t e and p l a n t h o s t . A formal c l a s s i f i c a t i o n scheme has been e s t a b l i s h e d to designate the genetic r e l a t i o n s h i p between potato v a r i e t i e s and ]?. i n f e s t a n s races i n terms of c o m p a t i b i l i t y and i n c o m p a t i b i l i t y ( 7 ) . In t h i s widely accepted scheme, potato v a r i e t i e s are described as posses s i n g v e r t i c a l r e s i s t a n c e genes designated as R i , R 2 , R 3 , e t c . A s i n g l e potato v a r i e t y may possess zero, one, or m u l t i p l e r e s i s t a n c e genes. Ρ_. i n f e s t a n s races are described as possessing pathogenici ty genes designated as v^, V 2 , V 3 , e t c . (or as race 1 , race 2 , race 3 , e t c . ) , and a s i n g l e race may possess zero, one, or m u l t i p l e p a t h o g e n i c i t y genes. A potato v a r i e t y having the s i n g l e r e s i s t a n c e gene R 2 i n t e r a c t s i n a compatible manner w i t h P^. i n f e s t a n s races with the V 2 gene and i n an incompatible manner with a l l other races. Such a scheme has great u t i l i t y as a c l a s s i f i c a t i o n system, but i t s e m p i r i c a l nature must be kept i n mind. The designations used have no r e a l meaning apart from the observed i n t e r a c t i o n s between host and p a r a s i t e .
50
HOST P L A N T
RESISTANCE T O PESTS
Not a l l i n v e s t i g a t o r s b e l i e v e that r e s i s t a n c e can be n e a t l y categorized as e i t h e r h o r i z o n t a l or v e r t i c a l . A l s o , both types of r e s i s t a n c e may e x i s t simultaneously i n a s i n g l e c u l t i v a r , although strong v e r t i c a l r e s i s t a n c e u s u a l l y tends to mask h o r i zontal resistance.
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch004
Native P r o p e r t i e s Related to Resistance The potato p l a n t and tuber have n a t i v e p h y s i c a l and chemical p r o p e r t i e s r e l a t e d to r e s i s t a n c e . The epidermis of the f o l i a r p o r t i o n of the p l a n t and the s k i n of the tuber present p h y s i c a l b a r r i e r s to fungal and b a c t e r i a l i n f e c t i o n . A moist environment i s r e q u i r e d to permit spore germination and f u n g a l i n v a s i o n across these primary defenses. The stomata of the l e a f l e t s and the l e n t i c e l s of the tuber represent weak p o i n t s i n the primary defenses, but wounding provides a more immediate f o o t h o l d f o r fungal i n v a s i o n . As described by Kuc and C u r r i e r (8), a number of indigenous compounds which have some degree of f u n g i t o x i c i t y are found a t higher l e v e l s i n the outer few m i l l i m e t e r s of the tuber. These compounds are c h l o r o g e n i c a c i d , c a f f e i c a c i d , g l y c o a l k a l o i d s , and s c o p o l i n . The l e v e l s of c h l o r o g e n i c a c i d (9), c a f f e i c a c i d (10), and g l y c o a l k a l o i d s (11, 12) i n c r e a s e i n mechanically wounded tuber t i s s u e , thus adding, perhaps, some degree of p r o t e c t i o n i n an otherwise v u l n e r a b l e s i t u a t i o n . Rapid s u b e r i z a t i o n followed by formation of a wound periderm i n as l i t t l e as 24 hr (2) i s probably more important as a defense. Scopolin and i t s aglycone s c o p o l e t i n are normally present i n potato tubers. The s c o p o l e t i n content of tubers v a r i e s with the p h y s i o l o g i c a l s t a t e , being highest i n newly-harvested, dormant tubers (13). Mechanical d i s r u p t i o n of tuber t i s s u e does not i n c r e a s e the c o n c e n t r a t i o n of s c o p o l i n , but i n f e c t i o n by P^. i n f e s t a n s , other f u n g i , b a c t e r i a , and v i r u s e s causes s i g n i f i c a n t increases (14, 15). Compounds Produced i n I n f e c t e d Potato T i s s u e The incompatible i n t e r a c t i o n of P^. i n f e s t a n s with potato t i s s u e leads to the production of a number of compounds that are not n a t i v e to the host. Studies have been c a r r i e d out predomin a n t l y with tuber t i s s u e d i s r u p t e d by s l i c i n g p r i o r to i n o c u l a t i o n and care must be e x e r c i s e d i n attempting to e x t r a p o l a t e such f i n d i n g s to events that may t r a n s p i r e i n i n t a c t f o l i a r t i s s u e during f i e l d i n f e c t i o n . Zacharius e t a l . (16) have shown that tuber t i s s u e may not even provide a corresponding compatible or incompatible response when compared to the l e a f l e t s of the same potato v a r i e t y . The terpenoid s t r u c t u r e s that have been i s o l a t e d and charact e r i z e d as products of an incompatible i n t e r a c t i o n between _P. i n f e s t a n s and potato tuber t i s s u e are shown i n F i g . 2. Tomiyama
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch004
4.
BILLS
Phytophthora Infestans and Potato
51
Host
Figure 1. Cycle of Phytophthora infestans in fection of Solanum tuberosum. Points at which the spread of infection may be disrupted effec tively are indicated at 1,2, and 3.
KATAHDINONE
LUBIMIN
DEHYDROKATAHDINONE
ISOLUBIMIN
OXYLUBIMIN
RISHITIN
Ο RISHITINOL
PHYTUBERIN
Figure 2. Compounds produced by the potato tuber host in response to infection. Most of these compounds have dem onstrated fungitoxic properties and are often referred to as phytoalexins.
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch004
52
HOST
PLANT
RESISTANCE T O
PESTS
et a l . i s o l a t e d r i s h i t i n from i n f e c t e d R i s h i r i v a r i e t y potatoes (17), and K a t s u i et a l . c h a r a c t e r i z e d t h i s compound (18). K a t s u i ejt a l . (19, 20) i s o l a t e d and c h a r a c t e r i z e d r i s h i t i n o l . Varns et_ a l . (21) i s o l a t e d phytuberin, and Hughes and Coxon (22) e s t a b l i s h e d i t s s t r u c t u r e . M e t l i t s k i i et a l . (23) f i r s t i s o l a t e d l u b i m i n from a Soviet potato v a r i e t y , Lyubimets, and S t o e s s l et a l . (24) and K a t s u i et a l . (25) determined i t s s t r u c t u r e . K a t s u i et a l . (25) i s o l a t e d and i d e n t i f i e d oxylubimin; Kalan and Osman (26), i s o l u b i m i n . I n v e s t i g a t o r s i n England and i n the U.S. Department of A g r i c u l t u r e (27) simultaneously i s o l a t e d and i d e n t i f i e d katahdinone and dehydrokatahdinone. The t r i v i a l name, katahdinone, was d e r i v e d from the Katahdin potato v a r i e t y from which the compound was i s o l a t e d i n the United S t a t e s . The use of potato tuber s l i c e s i n the above s t u d i e s i s advantageous i n that many potato c e l l s are i n f e c t e d , i n o c u l a t e d s l i c e s can be incubated under c o n t r o l l e d c o n d i t i o n s , and the production of terpenoids i s high per u n i t mass of potato t i s s u e . The production of compounds i n the incompatible i n t e r a c t i o n i n i n t a c t f o l i a r t i s s u e i s more d i f f i c u l t to study because the i n f e c t i o n i s r e s t r i c t e d to very small areas. M e t l i t s k i i et a l . reported lubimin production i n potato l e a f l e t s i n o c u l a t e d with ]?. i n f e s t a n s (28). T h i s suggests, a t l e a s t , that terpenoid production may not be p e c u l i a r to tuber t i s s u e . While the above terpenoids have been i s o l a t e d from incomp a t i b l e i n t e r a c t i o n s between !P. i n f es tans and potato tuber t i s s u e , t h i s i s not the e x c l u s i v e mechanism f o r t h e i r p r o d u c t i o n . Zacharius et a l . (29) reported that r i s h i t i n was produced i n both a compatible i n t e r a c t i o n and an incompatible i n t e r a c t i o n a t a s i m i l a r r a t e during the f i r s t and second days f o l l o w i n g i n o c u l a t i o n . Other r e p o r t s document the production of r i s h i t i n , phytuberin, and lubimin i n potato tuber t i s s u e invaded by E r w i n i a carotovora v a r . a t r o s e p t i c a (30, 31, 32). The formation of terpenoids i n potato tuber t i s s u e c h e m i c a l l y t r e a t e d with NaF was reported by M e t l i t s k i i et a l . (33), but t h i s experiment could not be d u p l i c a t e d by Zacharius et a l . (34). In a d d i t i o n to the production of terpenoids, d e t e c t a b l e changes i n the s o l u b l e p r o t e i n patterns of potato t i s s u e i n t e r a c t i n g incompatibly with ]?. i n f e s t a n s have been r e p o r t e d . In i n f e c t e d tuber t i s s u e , Tomiyama and Stahman found an i n c r e a s e d number of e l e c t r o p h o r e t i c a l l y separable p r o t e i n bands (35). Yamamoto and Konno observed a new p r o t e i n i n l e a f l e t s of the potato p l a n t 6 hr a f t e r i n o c u l a t i o n w i t h an incompatible race of P_. i n f e s t a n s (36). I t i s p o s s i b l e that the incompatible i n t e r a c t i o n r e s u l t s i n the i n d u c t i o n of enzymes not normally present i n the tuber and that such enzymes are the new, observable p r o t e i n s . Further work i s needed to determine the r o l e , i f any, of such proteins i n resistance.
4.
BILLS
Phytophthora Infestans and
Potato
53
Host
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch004
Elicitors C e l l - f r e e fungal preparations that i n i t i a t e an incompatible response i n host t i s s u e have been r e f e r r e d to as e l i c i t o r s or i n d u c e r s . S o n i c a t i o n of P^. i n f e s t a n s mycelia y i e l d s c e l l - f r e e , autoclavable preparations that i n i t i a t e a t y p i c a l incompatible response, i n c l u d i n g terpenoid production and n e c r o s i s , when a p p l i e d to potato tuber s l i c e s . Varns et a l . (37) found that sonicates of both compatible and incompatible races of _P. i n f e s t a n s produced an incompatible response when a p p l i e d to tuber t i s s u e . Glucans i s o l a t e d from Phytophthora megasperma v a r . sojae, a fungal p a r a s i t e of the soy bean p l a n t , were reported by Ayers et a l . to i n i t i a t e an incompatible response i n host t i s s u e s (38). Albersheim and Anderson-Prouty suggested that e l i c i t o r s are carbohydrate-containing molecules f o r which r e c e p t o r s i t e s e x i s t on the plasma membrane of host c e l l s (6). They f u r t h e r conjectured that the s p e c i f i c i t y of the receptor s i t e f o r i t s "matching ' carbohydrate e l i c i t o r may be the b a s i s f o r incompatible i n t e r a c t i o n s as the phenotypic expression of v e r t i c a l r e s i s t a n c e . In other words, receptor s i t e s and e l i c i t o r s may represent the g e n e t i c a l l y determined primary r e c o g n i t i o n f a c t o r f o r a potato v a r i e t y and an incompatible race of _P. i n f e s t a n s . In a recent study, Kota and S t e l z i g demonstrated that prepa r a t i o n s which a c t as e l i c i t o r s caused membrane d e p o l a r i z a t i o n of potato p e t i o l e c e l l s i n l e s s than 1 min f o l l o w i n g exposure (39). These preparations were a s o n i c a t e , a 3-1,3-glucan, and a l i p o p o l y s a c c h a r i d e ( a l l obtained from P_. i n f e s t a n s ) and a p r e p a r a t i o n from ]P. megasperma. Among e i g h t other carbohydrates which are not e l i c i t o r s , only p e c t i n produced d e p o l a r i z a t i o n . This r e p o r t i s supportive of the e l i c i t o r theory of Albersheim and AndersonProuty (6) and the mechanism of a c t i o n of f u n g a l phytotoxins advanced by S t r o b e l (40). In c o n t r a s t to the theory of Albersheim and Anderson-Prouty (6), Ward and S t o e s s l proposed that a r e c o g n i t i o n mechanism (or i n c o m p a t i b i l i t y suppression mechanism) i s i n v o l v e d i n an i n t e r a c t i o n between molecules produced by the fungus and the compatible host (41). M e t l i t s k i i et a l . added another dimension to s p e c u l a t i o n about the incompatible i n t e r a c t i o n by proposing that the potato host produces compounds which induce the formation of compounds by P_. i n f e s t a n s which i n turn induce the incompatible i n t e r a c t i o n i n the host c e l l (42). Keen r e f e r r e d to the e l i c i t o r phenomenon as a derepression of the production of an a n t i f u n g a l compound i n the soy bean host c e l l (43). More work o b v i o u s l y i s needed to determine the nature of the primary events that d e t e r mine c o m p a t i b i l i t y or i n c o m p a t i b i l i t y between host and fungal parasite. 1
54
HOST
PLANT
RESISTANCE T O
PESTS
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch004
The P h y t o a l e x i n Theory Potato tuber t i s s u e i n o c u l a t e d with an incompatible race of Ζ.· i n f e s t a n s was reported to d i s p l a y an incompatible i n t e r a c t i o n when l a t e r i n o c u l a t e d with a normally compatible race (44). This observation l e d to the "phytoalexin theory" (45), which holds that f u n g i t o x i c compounds, p h y t o a l e x i n s , are produced by host c e l l s as a r e s u l t of i n v a s i o n by an incompatible fungus. Kud and C u r r i e r (8) r e c e n t l y reviewed p h y t o a l e x i n s t u d i e s , most of which were conducted with members of the f a m i l i e s Solanaceae (mainly the potato) and Leguminosae. For the potato, the compounds shown i n F i g . 2 are o f t e n r e f e r r e d to as phytoalexins and most of them have demonstrated f u n g i t o x i c p r o p e r t i e s . The f u n g i t o x i c i t y of r i s h i t i n , phytuberin, l u b i m i n , katahdinone, and dehydrokatahdinone was t e s t e d against m y c e l i a l growth of 1?. i n f e s t a n s by Beczner and Ersek (46). At l e v e l s of 25 to 100 ppm i n s o l i d media i n P e t r i d i s h e s , a l l of the compounds e x h i b i t e d moderate to strong i n h i b i t o r y e f f e c t s toward the f u r t h e r spread of 7-day-old c u l t u r e s of P_. i n f e s t a n s t r a n s f e r r e d to the media. Ward et_ a l . (47) reported s i m i l a r i n h i b i t i o n of m y c e l i a l growth with somewhat lower l e v e l s of r i s h i t i n . Ger mination of P_. i n f e s t a n s zoospores was a l s o i n h i b i t e d by s i m i l a r l y low amounts of phytuberin (48), lubimin (49), and r i s h i t i n (50, 51). Since the l e v e l s of phytoalexins able to i n h i b i t pathogen growth i n v i t r o are a t t a i n e d i n many incompatible i n t e r a c t i o n s , i n v e s t i g a t o r s have suggested that phytoalexins p l a y an important r o l e i n i n h i b i t i n g fungal i n v a s i o n (6, 52-57). However, u l t r a s t r u c t u r a l s t u d i e s ( c i t e d l a t e r ) i n d i c a t e observable d i f f e r e n c e s between the compatible and incompatible i n t e r a c t i o n s w e l l i n advance of the production of d e t e c t a b l e l e v e l s of p h y t o a l e x i n s . T h i s does not disprove the theory, s i n c e no one has yet determined the time of appearance or c o n c e n t r a t i o n of phytoalexins i n the microenvironment of the i n d i v i d u a l host c e l l . Conversely, the proof of the theory would r e s t i n determining that phytoalexins are present i n s u f f i c i e n t q u a n t i t i e s e a r l y enough i n the i n f e c t e d , incompatible c e l l to i n h i b i t fungal i n v a s i o n and i n i d e n t i f y i n g the mechanism of i n h i b i t i o n . Hohl and S t o s s e l speculated that phytoalexins i n h i b i t fungal glucanases necessary f o r both f u n g a l growth and d i s r u p t i o n of 0-1,3-glucan b a r r i e r s i n the host c e l l (58). U l t r a s t r u c t u r a l Studies The compatible and incompatible i n t e r a c t i o n s between P^. i n f e s t a n s and potato host c e l l s have been s t u d i e d by scanning e l e c t r o n microscopy and transmission e l e c t r o n microscopy to y i e l d information complementary to biochemical s t u d i e s . Using a scanning e l e c t r o n microscope, Jones et a l . (59) noted sharp boundaries between obviously i n f e c t e d c e l l s near the s u r f a c e and u n i n f e c t e d c e l l s below the s u r f a c e i n the compatible i n t e r a c t i o n
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch004
4.
BILLS
Phytophthora Infestans and
Potato
Host
55
of P_. i n f e s t a n s with potato tuber t i s s u e . In t h i s i n t e r a c t i o n , hyphae penetrated i n t e r c e l l u l a r l y deep i n t o the t i s s u e where i n t a c t , l i v e potato c e l l s remained to support the colony with n u t r i e n t s . A sharp boundary between n e c r o t i c c e l l s and l i v e c e l l s was not observed i n the incompatible i n t e r a c t i o n . In e l e c t r o n microscopy s t u d i e s of the i n f e c t i o n of potato l e a f c e l l s , Shimony and F r i e n d (60) observed p e n e t r a t i o n of host c e l l s by P^. i n f e s t a n s hyphae i n both compatible and incompatible i n t e r a c t i o n s . Although the r a t e of i n i t i a l p e n e t r a t i o n d i d not d i f f e r , they reported v i s i b l e u l t r a s t r u c t u r a l d i f f e r e n c e s between the compatible and incompatible i n t e r a c t i o n s 7 hr a f t e r i n o c u l a t i o n (with p e n e t r a t i o n o c c u r r i n g as l a t e as 4-1/2 to 6-1/2 hr a f t e r i n o c u l a t i o n ) . Between 9 and 12 h r , host c e l l s surrounding the s i t e of i n f e c t i o n on the incompatible v a r i e t y appeared to be dead and fungal hyphae were contained w i t h i n the n e c r o t i c area; a t 24 hr, s e v e r e l y damaged hyphae were observed; a f t e r 48 h r , there were no d e t e c t a b l e l i v i n g c e l l s of e i t h e r fungus or host i n the small l e s i o n . An observed f e a t u r e of both the compatible and incompatible i n t e r a c t i o n s was the formation of a sheath or encaps u l a t i o n surrounding the i n t r a c e l l u l a r hyphae. In a p a r a l l e l u l t r a s t r u c t u r a l study of the incompatible i n t e r a c t i o n between l e t t u c e (Lactuca s a t i v a ) l e a f t i s s u e and a f u n g a l p a r a s i t e (Bremia l a c t u c a e ) , Maclean et_ a l . (61) a l s o observed that death of penet r a t e d host c e l l s preceded the c e s s a t i o n of growth and death of fungal c e l l s by s e v e r a l hours. Hohl and S t o s s e l (58) a l s o reported that f u n g a l hyphae penet r a t e d potato tuber host c e l l s i n both the compatible and incomp a t i b l e i n t e r a c t i o n s . The type of e n c a p s u l a t i o n d e s c r i b e d by Shimony and F r i e n d (60) was observed i n both incompatible and compatible i n t e r a c t i o n s and was r e f e r r e d to as an e x t r a h a u s t o r i a l matrix. Hohl and S t o s s e l , however, reported that the t y p i c a l haustorium found i n the incompatible tuber host c e l l d i f f e r e d from that of the compatible host c e l l by the presence of an a d d i t i o n a l e n t i t y , w a l l a p p o s i t i o n s , which surrounded and encased the haustorium and the e x t r a h a u s t o r i a l matrix. The encasement of h a u s t o r i a has a l s o been reported f o r the incompatible, but not the compatible, i n t e r a c t i o n of Uromyces p h a s e o l i v a r . vignae with host c e l l s of the cowpea (62). In two a d d i t i o n a l s t u d i e s of a Phytophthora pathogen i n compatible and incompatible i n t e r a c t i o n s , the presence of w a l l a p p o s i t i o n s was not reported (63, 64). In s t u d i e s of l e a f t i s s u e of the same two potato v a r i e t i e s employed i n tuber t i s s u e s t u d i e s by Hohl and S t o s s e l (58), Hohl and Suter (65) found that h a u s t o r i a i n both the compatible and incompatible i n t e r a c t i o n s were s i m i l a r and were always surrounded by an e x t r a h a u s t o r i a l matrix and sometimes a l s o by w a l l a p p o s i t i o n s . As a p o s s i b l e explanation f o r the marked u l t r a s t r u c t u r a l d i f ferences i n h a u s t o r i a observed between the two types of tubers but not i n the l e a f t i s s u e s , the authors pointed out that the l e a f l e t s of the two v a r i e t i e s d i f f e r l e s s i n r e s i s t a n c e than the corresponding tubers. Various types of f u n g a l i n v a s i o n of potato l e a f c e l l s
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch004
56
HOST P L A N T
RESISTANCE T O PESTS
ranging from hyphae which penetrated c e l l s and then emerged a t another p o i n t to f u l l y developed h a u s t o r i a were observed by Hohl and Suter. Various degrees of h a u s t o r i a l encasement were a l s o observed as shown i n F i g . 3, and the authors suggested that host c e l l r e s i s t a n c e may be r e l a t e d to the degree of encasement that takes p l a c e . They f u r t h e r noted that hyphae enter the l e a f p r i m a r i l y through stomata but are a l s o a b l e to penetrate epidermal c e l l s or h a i r c e l l s . In the incompatible i n t e r a c t i o n , the p a r a s i t e d i d not penetrate deeply i n t o the host t i s s u e and r a r e l y developed s u f f i c i e n t l y to produce sporangia. While u l t r a s t r u c t u r a l s t u d i e s of compatible and incompatible i n t e r a c t i o n s of IP. i n f e s t a n s with the potato host are not i n complete agreement, common f i n d i n g s have emerged: c e l l penetrat i o n occurs i n both circumstances; i n the incompatible i n t e r a c t i o n , p e n e t r a t i o n occurs to a depth of very few c e l l s followed by death of the host c e l l s and l a t e r death of the f u n g a l c e l l s . Conclusion C e r t a i n aspects of the incompatible i n t e r a c t i o n between P_. i n f e s t a n s and the potato host seem to be reasonably well-documented. A number of compounds w i t h demonstrated f u n g i t o x i c i t y are produced when tuber t i s s u e i s invaded, host c e l l s become n e c r o t i c and f u n g a l c e l l s l a t e r d i e . I d e n t i c a l symptoms i n tuber host c e l l s can be i n i t i a t e d by the a p p l i c a t i o n of c e l l - f r e e preparations of the fungus. However, the observed symptoms of i n c o m p a t i b i l i t y may be f a r removed from the primary event that t r i g g e r s the sequence of known events. The f a c t that f u n g i t o x i c compounds are evolved i s not complete proof that they are, indeed, the cause of incomp a t i b i l i t y i n the complex c e l l - c e l l i n t e r a c t i o n . Gene-for-gene i n t e r a c t i o n s between host and p a r a s i t e can be s y s t e m a t i c a l l y tabulated, but only i n the e m p i r i c a l terms of compatible or incomp a t i b l e . The phenotypic mechanisms i n v o l v e d i n i n t e r a c t i o n s a t the c e l l and molecular l e v e l s remain to be d e s c r i b e d . E l u c i d a t i o n of the molecular b a s i s f o r the s p e c i f i c i t y e x h i b i t e d i n gene-forgene, host-pathogen i n t e r a c t i o n s i s w i t h i n reach and i s an important o b j e c t i v e . Although v a l u a b l e i n f o r m a t i o n has been gained through s t u d i e s with tuber t i s s u e , i t appears that a d d i t i o n a l s t u d i e s w i t h f o l i a r t i s s u e should be emphasized. Phenomena observed i n i n t e r a c t i o n s of P_. i n f e s t a n s w i t h s l i c e d or otherwise d i s r u p t e d tuber t i s s u e cannot be assumed to occur i n f o l i a r t i s s u e . Since r e s i s t a n c e to _P. i n f e s t a n s must be expressed i n the f o l i a r p o r t i o n of the potato p l a n t i n order to break the c y c l e of i n f e c t i o n shown i n F i g . 1, i t i s of primary importance to d e s c r i b e and understand r e s i s t a n c e i n terms of the l e a f l e t s r a t h e r than the tubers. Great emphasis has been placed on understanding v e r t i c a l r e s i s t a n c e i n the potato, while h o r i z o n t a l r e s i s t a n c e has r e c e i v e d comparatively l i t t l e study. Since v e r t i c a l r e s i s t a n c e i s temporary and e f f e c t i v e only u n t i l a new race of P_. i n f e s t a n s capable of
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch004
4.
BILLS
Phytophthora Infestans and Potato
Host
Canadian Journal of Botany
Figure S. Diagram of haustorial development of Phytophthora infestans on potato leaves, (a) Early penetration of host wall with incipient extrahaustorial matrix formation between host wall and host plasmalemma (hp), (b) Haustorium ensheathed by extrahaustorial matrix and collared by wall appositions at its neck, (c) Progressive encasement of haustorium (ha) by wall appositions (wa). The host plasma membrane (hp) may double-over on itself at the interface of the extrahaustorial matrix (ema) and the wall apposition, (d) Fully encased haustorium with compressed extrahaustorial matrix. Haustorial development may terminate at (b), (c), or (d), probably reflecting rising degrees of host cell resistance (65).
57
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch004
58
HOST PLANT RESISTANCE TO PESTS bypassing the resistance mechanism evolves, additional studies aimed at identifying the physical and chemical features of the potato that contribute to horizontal resistance seem in order. Despite the extensive efforts that have been devoted to breeding potato varieties resistant to P_. infestans, potato growers must rely heavily on the use of fungicides to control late blight. Environmental and economic considerations discourage the continued use of conventional fungicides and encourage further research to understand the chemical basis for potato plant re sistance to P_. infestans. Robinson (1), critical of the unholistic approach to disease resistance, pointed out that the disciplines involved have concentrated too heavily upon their particular interests. Effective teams that include plant breeders, plant pathologists, microscopists, and chemists will probably have the greatest impact in the further conceptualization of resistance and the practical application of the concepts to the development of varieties with improved resistance. Literature Cited 1. Robinson, R. A. "Plant Pathosystems," pp 15-54, SpringerVerlag, Berlin, Heidelberg, New York, 1976. 2. Burton, W. G. "The Potato," pp 97-107, 248-253, H. Veenman and Zonen, Ν. V., Wageningen, Holland, 1966. 3. Plank, J. E., van der. "Principles of Plant Infection," p 216, Academic Press, New York-London, 1975. 4. Plank, J. E., van der. "Plant Diseases. Epidemics and Control," p 349, Academic Press, New York-London, 1963. 5. Day, P. R. "Genetics of Host-Parasite Interaction," p 238, W. H. Freeman and Co., San Francisco, 1974. 6. Albersheim, P., and Anderson-Prouty, A. J., Ann. Rev. Plant Physiol. (1975) 26, 31-52. 7. Black, W., Mastenbroek, C., Mills, W. R., and Peterson, L. C., Euphytica (1953) 2, 173-178. 8. Kuć, J., Currier, W. "Mycotoxins and Other Fungal Related Food Problems," Advances in Chemistry Series 149, pp 356-368, American Chemical Society, Washington, D.C., 1976. 9. Sakuma, T., and Tomiyama, Κ., Phytopathol. Soc., Jap. (1967) 33, 48-58. 10. Kuć, J., Henze, R. E., and Ullstrup, A. J., J. Amer. Chem. Soc. (1956) 78, 3123-3125. 11. McKee, R., Ann. Appl. Biol. (1955) 43, 147-148. 12. Locci, R., andKuć,J., Phytopathology (1967) 57, 1272-1273. 13. Korableva, N. P., Morozova, Ε. V., and Metlitskii, L. V., Dokl. Akad. Nauk SSSR (1973) 212, 1000-1002. 14. Clarke, D. D., Phytochemistry (1969) 8, 7. 15. Clarke, D. D. and Baines, P. S., Physiol. Plant Pathol. (1976) 9, 199-203. 16. Zacharius, R. M., Osman, S. F., Heisler, E. G., and Kissinger, J. C., Phytopathology (1976) 66, 964-966.
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch004
4. BILLS
Phytophthora Infestans and Potato Host
17. Tomiyama, K., Sakuma, T., Ishizaka, Ν., Sato, Ν., Katsui, Ν., Takasugi, Μ., and Masamune, T., Phytopathology (1968) 58, 115-116. 18. Katsui, N., Murai, Α., Takasugi, M., Imaizumi, Κ., and Masamune, T., Chem. Commun. (Sect. D) (1968), 43-44. 19. Katsui, N., Matsunaga, Α., Imaizumi, Κ., and Masamune, T., Tetrahedron Lett. (1971) No. 2, 83-86. 20. Katsui, N., Matsunaga, Α., Imaizumi, K., and Masamune, T., Bull. Chem. Soc. Jap. (1973) 45, 2871-2877. 21. Varns, J., Kuć, J., and Williams, Ε. B., Phytopathology (1971) 61, 174-177. 22. Hughes, D. L., and Coxon, D. T., J. Chem. Soc., D. (1974), 822-823. 23. Metlitskii, L. V., Ozeretskovskaya, O. L., Chalova, L. I., Vasyukova, Ν. I., and Davydova, Μ. Α., Mikol. Fitopatol. (1971) 5, 263-271. 24. Stoessl, Α., Strothers, J. B., and Ward, E. W. B., J. Chem. Soc., D. (1974), 709-710. 25. Katsui, N., Matsunaga, Α., and Masamune, T., Tetrahedron Lett. (1974) No. 51-52, 4483-4486. 26. Kalan, Ε. B., and Osman, S. F., Phytochemistry (1976) 15, 775-776. 27. Coxon, D. T., Price, K. R., Howard, B., Osman, S. F., Kalan, Ε. Β., and Zacharius, R. M., Tetrahedron Lett. (1974) No. 34, 2921-2924. 28. Metlitskii, L. V., Ozeretskovskaya, O. L., Vasyukova, Ν. I., Davydova, Μ. Α., Savel'eva, O. H., and D'yakov, Yu, T., Mikol. Fitopatol. (1974) 8, 42-49. 29. Zacharius, R. M., Osman, S. F., Kalan, Ε. Β., and Thomas, S. R., Proc. Am. Phytopath. Soc. (1974) 1, 63. 30. Lyon, G. D., Physiol. Plant Pathol. (1972) 2, 411-416. 31. Lyon, G. D., Lund, B. M., Bayliss, C. E., and Wyatt, G. M., Physiol. Plant Pathol. (1975) 6, 43-50. 32. Beczner, J., and Lund, B. M., Acta Phytopathologica Academiae Scientiarum Hungaricae (1975) 10, 269-274. 33. Metlitskii, L. V., D'yakov, Yu. T., Ozeretskovskaya, O. L., Yurganova, L. Α., Chalova, L. I., and Vasyukova, Ν. I., Izvestiya Akad. Nauk SSSR, Ser. Biol. (1971), 399-407. 34. Zacharius, R. M., Kalan, Ε. B., Osman, S. F., and Herb, S. F., Physiol. Plant Pathol. (1975)6,301-305. 35. Tomiyama, Κ., and Stahmann, M. Α., Plant Physiol. (1964) 39, 483-490. 36. Yamamoto, M., and Konno, K., Plant and Cell Physiol. (1976) 17, 843-846. 37. Varns, J. L., Currier, W. W., and Kuć, J., Phytopathology (1971) 61, 968-971. 38. Ayers, A. R., Ebel, J., Valent, B., and Albersheim, P., Plant Physiol. (1976) 57, 760-765. 39. Kota, D. Α., Stelzig, D. Α., Proc. Am. Phytopathol. Soc. (1977) 4, in press.
59
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch004
60
HOST PLANT RESISTANCE TO PESTS
40. Strobel, G. Α., Scientific American (1975) 232, 81-88. 41. Ward, E. W. B., Stoessl, Α., Phytopathology (1976) 66, 940941. 42. Metlitskii, L. V., D'yakov, Yu. T., and Ozeretskovskaya, O. L., Biol. Abs. (1974) 58, No. 5, 2978. 43. Keen, N. T., Science (1975) 187, 74-75. 44. Müller, Κ., and Borger, H., Arb. Biol. Reichsanst. Land Forstwirt, Berlin (1940) 23, 189-231. 45. Müller, Κ., and Behr, L., Nature (1949) 163, 498-499. 46. Beczner, J., and Érsek, T., Acta Phytopathologica Academiae Scientiarum Hungaricae (1976) 11, 59-64. 47. Ward, E. W. B., Unwin, C. Η., and Stoessl, Α., Can. J. Botany (1974) 52, 2481-2488. 48. Varns, J. L. "Biochemical Response and its Control in the Irish Potato (Solanum tuberosum) -Phytophthora infestans Interactions," Ph.D. Thesis, Purdue University, Lafayette, Indiana, 1970. 49. Metlitskii, L. V., and Ozeretskovskaya, O. L., Fitoalexini. Akad. Nauk, SSSR, Nauka, Moskva, pp 176, 1973. 50. Tomiyama, Κ., Ishizaka, N., Sato, N., Masamune, T., and Katsui, N. "Biochemical Regulation in Diseased Plants or Injury," pp 287-292, Phytopath. Soc., Japan, Tokyo, 1968. 51. Ishizaka, N., Tomiyama, Κ., Katsui, N., Murai, Α., and Masamune, T., Plant Cell Physiol. (1969) 10, 183-192. 52. Keen, N. T., Physiol. Plant Pathol. (1971) 1, 265-275. 53. Rahe, J. E., Kuć, J., Chuang, C. M., and Williams, Ε. B., Neth. J. Plant Pathol. (1969) 75, 58-71. 54. Sato, N., Kitazawa, Κ., and Tomiyama, Κ., Physiol. Plant Pathol. (1971) 1, 289-295. 55. Skipp, R. Α., Physiol. Plant Pathol. (1972)2,357-374. 56. Bailey, J. Α., and Deverall, B. J., Physiol. Plant Pathol. (1971) 1, 435-439. 57. Frank, J. Α., and Paxton, J. D., Phytopathology (1970) 60, 315-318. 58. Hohl, H. R., and Stossel, P., Can. J. Bot. (1976) 54, 900912. 59. Jones, S. B., Carroll, R. J., and Kalan, Ε. B. "Scanning Electron Microscopy, Part 2, Proceedings of the Workshop on Scanning Electron Microscopy and the Plant Sciences," pp 397404, IIT Research Institute, Chicago, Illinois, 1974. 60. Shimony, C., and Friend, J., New Phytol. (1975) 74, 59-65. 61. Maclean, D. J., Sargent, J. Α., Tommerup, I. C., and Ingram, D. S., Nature (1974) 249, 186-187. 62. Heath, M. C., and Heath, I. B., Physiol. Plant Pathol. (1971) 1, 277-287. 63. Klarman, W. L., and Corbett, Μ. Κ., Phytopathology (1974) 64, 971-975. 64. Hanchey, P., and Wheeler, Η., Phytopathology (1971) 61, 33-39. 65. Hohl, H. R., and Suter, Elisabeth, Can. J. Bot. (1976) 54, 1956-1970.
5 Biosynthetic Relationships of Sesquiterpenoidal Stress Compounds from the Solanaceae
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch005
ALBERT STOESSL and E. W. B. WARD Agriculture Canada, Research Institute, University Sub Post Office, London, Ontario, Canada N6A 5B7 J. B. STOTHERS Chemistry Department, University of Western Ontario, London, Ontario, Canada N6A 3K7 Rishitin (I) was reported as a phytoalexin of potatoes (1) and tomatoes (2) in 1968 and was the first sesquiterpenoidal stress compound to be isolated and characterized from the Solanaceae. In the 9 years since, some 20 other, structurally more or less closely related sesquiterpenes have been described from potato, aubergine, thornapple, sweet pepper, and tobacco species (Tables I - V) (3 - 19). All of these compounds are produced essentially only under stress conditions, that is, after infection of the plant with fungi, bacteria, or viruses, or through wounding, exposure to UV, or treatment with deleterious substances. Not all, however, are necessarily phytoalexins because some lack the antifungal activity which is requisite for that function. In addition, several other compounds (Table VI) (20 - 22) which are structurally and biogenetically closely related to the stress metabolites, have been obtained in very low amounts from cured tobacco leaves. Because of this special circumstance, it is largely unclear whether these are stress compounds which were formed through undetected infection, or through other stress processes in the ageing or curing of the leaf, or whether they may have been present as normal constituents of the healthy tissue. In any event, their structures render them relevant to the present discussion. All bicyclic compounds in Tables (I - VI) are either eudesmanes or can be regarded as derived from eudesmanes by plausible rearrangements. Except for the single case of rishitinol (II), the rearrangements can be represented formally as proceeding through intermediates with C-4 and C-5 as cationic migration termini. Such a formal intermediate (XXVII) and its relationship with some of the metabolites are set out in Scheme 1. It is also notable that the bicyclic compounds, again with the exception of rishitinol, carry oxygen atoms on one or more of carbons 1 to 4 but none on carbons 6 to 9. Rishitinol is oxygenated at C-8, a position which corresponds to a carbon atom which is also oxygenated in the acyclic nerolidol derivatives XIV and XV from eggplant. These close structural relationships must reflect largely common biogenetic origins and pathways, and also, since they are 61
62
H O S T P L A N T RESISTANCE T O PESTS
Table I .
Splanum tuberosum s t r e s s
metabolites
15
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch005
rishitin (I) (1,2)
rishitinol ( I I ) (3)
phytuberin ( I I I , R=Ac) (4,5) phytuberol (IV, R=H) (6,2)
lubimin (V, R=H) (8,9)
15-dihydrolubimin (VII) (11)
15-dihydro-10-epilubimin (IX, R=CH 0H) (11)
hydroxylubimin (VI, R=OH) (10)
isolubimin (X) (12)
10-epilubimin ( V I I I , R-CHO) (11)
2
solavetivone (XI) (13)
anhydro-3 - r o t u n o l (XII) (13)
5.
STOESSL
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch005
Table I I .
Table I I I .
E T AL.
Sesquiterpenoidal
Stress Compounds
from
Solanaceae
Solanurn melongena s t r e s s m e t a b o l i t e s (9)
Datura stramonium s t r e s s m e t a b o l i t e s (10)
lubimin (V, R=H) hydroxylubimin (VI, R=0H)
germacrene-A-diol (XVII)
capsidiol (XVIII)
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch005
64
H O S T P L A N T RESISTANCE T O
Table V.
Nlcotlana stress metabolites
OH
HO
capsidiol (XVIII) (17)
glutinosone (XX) (18)
*possibly of fungal o r i g i n ; biogenetic d e r i v a t i o n uncertain
quiesone* (XXI) (19)
PESTS
5.
STOESSL
Table VI.
Sesquiterpenoidal
E T AL.
Stress Compounds
from Solanaceae
65
Nlcotiana sesquiterpenes not proven as stress compounds
HO
1-keto-a-cyperone (XXI) (20)
solavetivone (XI, R^R^H) (21)
11,13-dihydroxysolavetivone* (XXVI)
3-ot-hydroxysolavetivone* (XXIII, R^ctH, R =H
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch005
2
3-3-hydroxys ο1ave t ivone * (XXIV, Rj=BH , R =H 2
13-hydroxysolavetivone* (XXV, R =H, R =0H)
OPP XXIX
XXVIII
τ
OH XIV, XV
T
XIII, XXII Scheme 1.
*occur and i s o l a t e d as glucosides (22)
I, XX
XVIII, xix
Biogenetic interrelations of sesquiterpenes from the Solanaceae
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch005
66
HOST P L A N T RESISTANCE T O
PESTS
unique to the Solanaceae, a considerable degree of genetic specialization. Several more or l e s s e q u i v a l e n t schemes which set out p o s s i b l e b i o g e n e t i c routes i n greater though s p e c u l a t i v e d e t a i l were discussed p r e v i o u s l y (23). The examples shown i n Scheme 2 i l l u s t r a t e the stereochemical features of such p r o p o s a l s . A key element i s the germacrenediol (XVII, R=OH) from Datura stramonium and i t s h y p o t h e t i c a l monohydroxy analogue (XVII, R=H). As judged by molecular models, these compounds are f l e x i b l e and can r e a d i l y adopt conformations which would allow them to be converted to the b i c y c l i c metabolites, both of Datura and other Solanaceae, by the pathways i n d i c a t e d . The Scheme i s only i l l u s t r a t i v e and the i n termediacy of other, d i f f e r e n t l y s u b s t i t u t e d germacrenes i s not excluded and i s probable f o r at l e a s t some of the Solanaceae metab o l i t e s . In general, however, a f u n c t i o n of germacrenes as b i o genetic precursors of b i c y c l i c sesquiterpenes has long been p o s t u l a t e d and i s widely accepted (24) . Many of the features of these suggested pathways should be q u i t e r e a d i l y s u s c e p t i b l e to experimental t e s t and some progress i n t h i s d i r e c t i o n has been made. Thus, Brooks and a s s o c i a t e s have u t i l i z e d acetate, d o u b l y - l a b e l l e d with ^ C , to demonstrate that c a p s i d i o l i s formed from a c e t a t e , v i a mevalonate, with the p o s t u l a t e d methyl migration from the C-10 to the C-5 p o s i t i o n i n a presumably eudesmanoid precursor (28). An a l t e r n a t i v e proposal invoking a two-fold rearrangement v i a a s p i r o - i n t e r m e d i a t e (29) was thereby e l i m i n a t e d . In an analogous experiment with Datura stramonium, we could show (30) that the germacrenediol (XVII) and the v e t i s p i r a n e s , lubimin (V) and hydroxylubimin ( V I ) , i n c o r p o r a t e d l,2-13c -acetate P a t t e r n which conformed p r e c i s e l y to the p o s t u l a t e d b i o g e n e t i c pathways. Our more recent work has a l s o r e l i e d almost e x c l u s i v e l y on the use of l,2-^^C2-acetate, and a b r i e f o u t l i n e of the e s s e n t i a l s of t h i s powerful and r e l a t i v e l y new methodology (31 - 34) may be i n order. Unlike carbon-12, carbon-13 has a magnetic moment and can undergo energy t r a n s i t i o n s which can be observed i n an NMR s p e c t r o meter. However, because the magnetic moment of carbon-13 i s s m a l l e r and a l s o because of the low n a t u r a l abundance (1%) of the i s o t o p e , the s e n s i t i v i t y f o r i t s d e t e c t i o n i s only about 1/6000 of that f o r protons. This problem has been l a r g e l y overcome, through the advent of F o u r i e r transform spectroscopy around 1970, and l^C-NMR s p e c t r a can now be obtained r o u t i n e l y on 10-20 mg samples, but smaller amounts can s u f f i c e i f necessary. The low n a t u r a l abundance of C has emerged as a b l e s s i n g because i t i s the necessary c o n d i t i o n f o r the use of the isotope as a t r a c e r . In b i o s y n t h e t i c s t u d i e s , t h i s can be e x p l o i t e d with great advantage because any incorporated l a b e l can be observed d i r e c t l y i n the NMR spectrum which w i l l define the molecular s i t e s as w e l l as the extent of i n c o r p o r a t i o n . Low l e v e l s of i m p u r i t i e s i n the product u s u a l l y w i l l n e i t h e r mislead nor i n t e r f e r e i n the determination. Thus, the !3c-NMR methodology obviates both the i n
2
1
a
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch005
5.
STOESSL E T AL.
τ
XI
Scheme 2.
Sesquiterpenoidal
Stress Compounds
τ
VII, IX
Stereochemistry of possible routes to bicyclic Solanaceae
from
Solanaceae
τ
XX
sesquiterpenes
of
68
H O S T P L A N T RESISTANCE T O
r i g o r o u s p u r i f i c a t i o n requirements of r a d i o a c t i v e t r a c e r methods and p a r t i c u l a r l y , a l s o the o f t e n d i f f i c u l t , m a t e r i a l - and timeconsuming degradative procedures which are needed to l o c a t e the i n c o r p o r a t i o n s i t e s of radio-atoms. ^ Both s i n g l y - and d o u b l y - l a b e l l e d C-acetate are much used because of t h e i r ready a v a i l a b i l i t y commercially i n 90% i s o t o p i c p u r i t y . I n c o r p o r a t i o n from s i n g l y - l a b e l l e d acetate i s detected by intensity-enhanced s i g n a l s from the i n c o r p o r a t i o n s i t e s . The s i g n a l s of a proton-noise decoupled spectrum are s i n g l e t s and an enhancement of ca 20% U a 0.2 percent enrichment) can be detected. The use of doubly l a b e l l e d , C - a c e t a t e o f f e r s the f u r t h e r advantages of somewhat g r e a t e r s e n s i t i v i t y and of p r o v i d i n g more s t r u c t u r a l i n f o r m a t i o n . Carbon-13 has a spin-quantum number I=h and t h e r e f o r e continguous -^C atoms w i l l be spin-coupled much l i k e protons. In unenriched molecules, such coupling i s normally not detected because of the very low i n c i d e n c e (ca 1 χ 10"^) of ad j a c e n t 13c atoms. S i m i l a r l y , except when enrichment i s of the order of s e v e r a l atom percent, i n c o r p o r a t i o n of s i n g l y - l a b e l l e d acetate a l s o does not l e a d to e a s i l y observed s p i n - s p i n m u l t i p l e t s of d i r e c t l y bonded carbons. However, d o u b l y - ^ c - l a b e l l e d acetate, i f i t i s i n c o r p o r a t e d i n t a c t and without subsequent s c i s s i o n , must n e c e s s a r i l y give r i s e to a s p i n - s p i n system which, i n a proton-noise decoupled 13ς;_^^ spectrum, w i l l appear as a p a i r of doublets. In p r a c t i c e , the s p e c t r a of b i o s y n t h e t i c a l l y enriched molecules w i l l e x h i b i t t r i p l e t s because the doublets from i n c o r porated acetate w i l l be superimposed on the s i n g l e t s from n a t u r a l abundance l ^ C atoms . The outer components of t r i p l e t s are r e f e r r e d to as s a t e l l i t e s . T h e i r s e p a r a t i o n i s the coupling con stant J and, as i n the case of protons, i t s magnitude i s char a c t e r i s t i c f o r the p a i r of coupled atoms. The i n t e n s i t y of the s a t e l l i t e s r e l a t i v e to the c e n t r a l peak of the t r i p l e t i s a f u n c t i o n of the enrichment. A r e l a t i v e i n t e n s i t y of about 5% f o r each s a t e l l i t e w i l l r e a d i l y s u f f i c e f o r d e t e c t i o n and w i l l cor respond to roughly 0.14% enrichment at each s i t e . The same s p e c t r a may a l s o contain enhanced s i n g l e t s unaccompanied by s a t e l l i t e s . These i n d i c a t e carbon atoms derived from acetate u n i t s that were cleaved by e i t h e r degradation or rearrangement during the b i o s y n t h e t i c process. Some of these p o i n t s are n i c e l y i l l u s t r a t e d by c o n s i d e r i n g the b i o s y n t h e s i s of f a r n e s y l pyrophosphate (XXVIII), the accepted common precursor of sesquiterpenes i n g e n e r a l . The pathway, which was e l u c i d a t e d i n remarkable d e t a i l Ç35, _36) and before the CNMR methodology had become a v a i l a b l e , i s represented i n Scheme 3. A noteworthy feature i s the high degree of s t e r e o s p e c i f i c i t y which i s c h a r a c t e r i s t i c of each of the i n d i v i d u a l steps shown and which i s maintained a l s o i n subsequent transformations. Another feature, p a r t i c u l a r l y r e l e v a n t i n the present context, i s that the t r a n s formation of mevalonate i n t o isopentenylpyrophosphate i n v o l v e s the l o s s of carbon dioxide from one of i t s 3 c o n s t i t u t i v e acetate u n i t s . F a r n e s o l , being b u i l t up from 3 isoprene r e s i d u e s , w i l l 1 3
2
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch005
PESTS
5.
STOESSL
ET
AL.
Sesquiterpenoidal
from Solanaceae
69
t h e r e f o r e comprise 6 i n t a c t acetate r e s i d u e s , shown i n the scheme by heavy bonds, and 3 lone carbon atoms derived from C-2 of mevalonate and i n d i c a t e d by heavy dots. In the l^C-NMR spectrum of f a r n e s o l b i o s y n t h e s i z e d from d o u b l y - l a b e l l e d acetate, the atoms l i n k e d by heavy bonds t h e r e f o r e would e x h i b i t t r i p l e t while the lone carbons w i l l show s i n g l e t absorption. This p a t t e r n w i l l be maintained i f the f a r n e s o l undergoes subsequent s u b s t i t u t i o n and c y c l i z a t i o n r e a c t i o n s without rearrangement or carbon l o s s , that i s , i f i t i s converted i n t o sesquiterpenes which obey Ruzicka's isoprene r u l e . T h i s i s e x a c t l y what i s observed, f o r instance i n the b i o s y n t h e t i c study (30) of the germacrenediol (XVII) from D. stramonium. The l^C-NMR P enriched compound i s shown i n F i g . 1 and e x h i b i t s a l l the expected f e a t u r e s . D o u b l y - l a b e l l e d acetate i s p a r t i c u l a r l y w e l l s u i t e d f o r studying the b i o s y n t h e s i s of sesquiterpenes which do not obey the isoprene r u l e . This i s i l l u s t r a t e d by the already c i t e d study of c a p s i d i o l by Brooks and coworkers (28) and by the recent work with the potato sesquiterpenes (37) which i s now to be des c r i b e d i n some d e t a i l . To induce the b i o s y n t h e s i s of the sesquiterpenes, f r e s h l y cut potato s l i c e s were i n o c u l a t e d with spore suspensions of M o n i l i n i a f r u c t i c o l a i n one experiment, and of Glomerella c i n g u l a t a i n another. The i n o c u l a t i o n s i t e s c o n s i s t e d of hemis p h e r i c a l w e l l s of ca 1 cm. radius cut i n t o the s l i c e s w i t h a melon b a i l e r . Each r e c e i v e d 2 ml of spore suspension and ^Csodium acetate, of about 90% i s o t o p i c p u r i t y at both C - l and C-2, was added a day l a t e r , at the r a t e of 0.5 mg i n 0.2 ml water per w e l l . The l i q u i d contents of the w e l l s were c o l l e c t e d a f t e r another day and e x t r a c t e d with ether. The product so obtained was chromatographed over a l a r g e column (1 g/mg e x t r a c t ) of s i l i c a as used f o r TLC (but not a c t i v a t e d by h e a t i n g ) . E t h e r - l i g h t p e t r o l 1:1 or methanol-chloroform 5:95 are s u i t a b l e s o l v e n t s . The m a t e r i a l s obtained i n t h i s b a s i c f r a c t i o n a t i o n were then f u r t h e r p u r i f i e d as necessary by one or more column or p r e p a r a t i v e TLC s e p a r a t i o n s . In t h i s manner, the i n t e r a c t i o n of the potatoes with M. f r u c t i c o l a y i e l d e d the compounds l i s t e d i n Table VTI, i n the amounts i n d i c a t e d . In t h e i r ^C-NMR P » isolates e x h i b i t e d the expected l a b e l l i n g p a t t e r n s . For example, r i s h i t i n ( I ) , the main component of the product, gave r i s e to 5 p a i r s of t r i p l e t s and 4 s i n g l e t s , e n t i r e l y c o n s i s t e n t with the o x i d a t i v e l o s s of C-15 i n i t s formation ( F i g . 2). In t h i s spectrum, two other features can be observed which were seen a l s o i n the s p e c t r a of a l l the metabolites which we examined. F i r s t l y , i n t e n s i t i e s of the s a t e l l i t e s r e l a t i v e to each c e n t r a l peak are a l l of the same order of magnitude, implying that the enrichment l e v e l i s roughly the same at a l l s i t e s . This i s c o n s i s t e n t with r a p i d de novo s y n t h e s i s without recourse to already present metabolic pools. Secondly, although an a l l y l i c s h i f t e q u i l i b r a t i o n of the s i d e chain double bond between the 11, 12 and 11, 13 p o s i t i o n s can be envisaged as e a s i l y o c c u r r i n g throughout the b i o s y n t h e t i c sequence, s
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch005
Stress Compounds
e
c
t
r
u
m
o f
s
t
n
e
e c t r a
a
1
1
t
n
e
70
H O S T P L A N T RESISTANCE T O PESTS
OH CI^-COS Co A
H0 C
C0 H
2
2
H
R
H
H
s
H
R
s
3-hydroxy-3-methylglutarate
a n t l
..
U
+
«η"
H«
/*·
PPO
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch005
Hp
H
R
Η
1 R
H
Hp
s
H
H
H R
IPP
H
3
. S
H
H
H
H
R
H
H
S R
H
H
R . S
S
R
\
•
PPO
syn ; inversion
H
R
s
R
Hp H
8
H
R
Hp
geranylpyrophosphate
Scheme 3.
Biosynthesis of farnesol
\ — /
Figure 1.
C NMR spectrum of 2,3-dihydroxygermacrene (XVII) biosynthesized from 1,2- C-acetate
13
13
5.
STOESSL E T A L .
Sesquiterpenoidal
Stress Compounds
from Solanaceae
Table VII ^ C-Labelled Compounds from the Potato - M o n i l i n i a fructicola interaction. Compound
y i e l d (mg)*
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch005
r i s h i t i n (I) lubimin (V) e p i l u b i m i n (VIII) hydroxylubimin (VI) dihydroepilubimin (IX) phytuberin ( I I I )
69 15 3 8 4 <1
* a f t e r f i n a l p u r i f i c a t i o n ; from 120 l b s potatoes
<SkOH T
Ji
CDCI
Figure 2.
3
C NMR spectrum of rishitin biosynthesized from 1,2- C-acetate
13
13
71
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch005
72
HOST
PLANT
RESISTANCE T O PESTS
the s p e c t r a show that such scrambling does not, i n f a c t , occur. Thus, the only carbon detectable as coupled t o C - l l i s o l e f i n i c and, s i m i l a r l y , the s i g n a l from the i s o p r o p e n y l methyl group i s of s i n g l e t character only. The spectrum o f lubimin i n F i g . 3 i l l u s t r a t e s the case o f a metabolite which e x h i b i t s the normal t r i p l e t s and 3 s i n g l e t s a l though a molecular arrangement d i d intervene i n i t s b i o s y n t h e s i s . Again, t h i s i s the expected r e s u l t because the bond broken i n the rearrangement was between two acetate residues and not w i t h i n one. E n t i r e l y analogous s p e c t r a were obtained a l s o from hydroxylubimin (VT) and from 10-epi- and 15-dihydro-10-epilubimin (VII and I X ) . The l a s t two compounds have not been p r e v i o u s l y Reported. T h e i r s t r u c t u r e s followed r e a d i l y from t h e i r % - and C-NMR s p e c t r a and i n passing, i t may be noted that the -^C- coupling patterns were themselves u s e f u l i n the s t r u c t u r e e l u c i d a t i o n . The b i o g e n e t i c o r i g i n o f the two compounds has not been c l a r i f i e d but p o s s i b l y , e p i l u b i m i n (VIII) i s formed v i a the e n o l i s a t i o n o f the aldehyde group o f lubimin (V). I t may then give r i s e to the d i hydro compound IX by r e d u c t i o n . However, the a l t e r n a t i v e pathway, from a germacrene to dihydroepilubimin (IX) and hence to lubimin (V) v i a e p i l u b i m i n ( V I I I ) , appears e q u a l l y a t t r a c t i v e . The mother l i q u o r s from which d i h y d r o e p i l u b i m i n (IX) had separated a l s o contained a l i t t l e 15-dihydrolubimin ( V I I ) . The amount was too s m a l l to allow i t s i s o l a t i o n but i t s presence was i n d i c a t e d by chromatography and e s t a b l i s h e d by the ^H-NMR spectrum of the mother l i q u o r s which was the composite o f the s p e c t r a o f pure VII and IX. Again, i t i s not c l e a r whether dihydrolubimin (VII) precedes lubimin (V) b i o g e n e t i c a l l y o r i s formed from i t by r e d u c t i o n . Formally, a t l e a s t one o f the two dihydro-compounds must be a p r e c u r s o r o f l u b i m i n but p o s s i b l y only i n an enzymebound form. I t i s , indeed, conceivable that the four compounds p a r t i c i p a t e i n a dynamic e q u i l i b r i u m . This problem i s r e c e i v i n g further attention. The l a s t compound from the potato - M. f r u c t i c o l a i n t e r a c t i o n which needs to be discussed i s phytuberin. Its predicated b i o s y n t h e s i s i s shown i n Scheme 4. I n the M. f r u c t i c o l a experiment, only a very s m a l l amount, l e s s than 1 mg, was produced but t h i s s u f f i c e d to give a - ^ c - N ^ r spectrum i n which the 5 p r e d i c t e d , enr i c h e d s i n g l e t absorptions were v i s i b l e . However, the t r i p l e t s r e s u l t i n g from l a b e l l e d carbon p a i r s and n a t u r a l abundance were too weak to be observed. Because o f the unusual nature o f the b i o s y n t h e t i c route to phytuberin, a more e x p l i c i t l y informat i v e spectrum was d e s i r a b l e and i t i s f o r t h i s reason that we turned to an i n c o r p o r a t i o n experiment w i t h the potato - Glomerella c i n g u l a t a system. Other experiments had shown that t h i s cons i s t e n t l y f u r n i s h e d phytuberin i n good y i e l d s . The metabolites which were i s o l a t e d are l i s t e d i n Table V I I I . Phytuberin ( I I I ) was obtained i n g r a t i f y i n g amount and gave the spectrum shown i n F i g . 4. The spectrum i s e n t i r e l y c o n s i s t e n t with the p o s t u l a t e d rearrangement of the carbon skeleton o f a
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch005
5.
STOESSL E T AL.
Sesquiterpenoidal
Stress Compounds
CD2CI 147
from Sofonaceae
2
109
Figure 3.
C NMR spectrum of lubimin biosynthesized from
13
l 2- C-acetate y
13
H I I I o r IV
Scheme 4.
Postulated biosynthesis of phytuberin
73
74
HOST P L A N T RESISTANCE T O PESTS
l 3
Table VIII C - L a b e l l e d Compounds from the Potato - Glomerella cingulata interaction.
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch005
Compound r i s h i t i n (I) lubimin (V) e p i l u b i m i n (VIII) dihydrolubimin (VII) s o l a v e t i v o n e (XI) phytuberin ( I I I ) phytuberol (IV)
y i e l d (mg)* 53 27 79 19 39 11
* a f t e r f i n a l p u r i f i c a t i o n ; from 64 l b s potatoes
J Figure 4.
C NMR spectrum of enriched phytuberin
13
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch005
5. STOESSL ET AL.
Sesquiterpenoidal Stress Compounds from S
eudesmane precursor, and in particular, with the scission of a C-l - C-2 bond and reattachment of C-2 to C-5 via oxygen. En tirely analogous results were obtained from phytuberol (desacetylphytuberin; IV) which was isolated in the same experiment. The spectra do not provide evidence other than that pertaining to the making and breaking of skeletal bonds and many of the details of this intriguing biosynthesis remain to be studied. Experiments to this end are in hand. Finally, a few words about the other metabolites isolated from the cingulata interaction. The spectrum obtained from rishitin (I) did not differ in any essential respect from that discussed earlier. Lubimin (V) was isolated only in admixture with small amounts of epilubimin (VIII) and of a third, as yet unidentified component, but the spectrum of the mixture incorpo rated all the features observed earlier in the enriched pure samples of V and VIII. The spectrum of solavetivone (XE) , a com pound which was not detected in the M^ fructicola interaction, showed, as expected, the same coupling pattern as that shown earlier for lubimin and this pattern could also be seen in the spectrum of dihydrοlubimin (VII). The high yield in which VII was isolated from the potato Gj_ cingulata interaction contrasts strongly with its trace occurence in the fructicola experiment and is, without doubt, to a large extent a consequence of its formation from V by the fungus. The reduction of V to VII is carried out readily by G>_ cingulata and several other fungi in pure culture (38). However, this conversion does not appear to take place in M. fructicola cultures. For this reason, the occurrence of traces of VII in the potato fructicola inter action suggests that VII is formed by potato enzymes as discussed earlier. This problem, too, should be amenable to solution by further tracer studies. Footnotes An example of the conformational mobility of germacrenes was seen by Yamamura and coworkers in the cyclization of acoragermacrone by chemical means to both cis- and trans-decalins (25;. However, in laboratory cyclizations, 1(10):4-germacrenes usually exhibit strong conformational preferences which lead to transdecalins (26) and, as was pointed out (26) , Yamamuras results are not unambiguous. Nevertheless, when enzyme-bound in bio synthetic reactions, the compounds may well adopt conformations that are not favoured in the laboratory. Certainly cis-decalins, inclduing cis-eudesmanes, occur in nature. The problem is briefly but lucidly discussed in a recent monograph (27). Commercially available l,2- C2~acetate always contains an appreciable amount of singly labelled (both 1- and 2-) acetate, which will be incorporated at the same rate and will also con tribute to the singlet absorption. Literature Cited ( 1) Tomiyama, K., Sakuma, T., Ishizaka, Ν., Sato, Ν., Katsui, N., Takasugi, Μ., and Masamune, T. Phytopathology (1968) (58), 1
13
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch005
76
HOST PLANT RESISTANCE TO PESTS
115. ( 2) Sato, Ν., Tomiyama, Κ., Katsui, Ν., and Masamune, T. Ann. Phytopathol. Soc. Japan (1968) 34, 344. ( 3) Katsui, Ν., Matsunaga, Α., Imaizumi, Κ., Masamune, T., and Tomiyama, K. Tetrahedron Letters (1971) 83. ( 4) Varns, J. L., Kuć, J., and Williams, Ε. B. Phytopathology (1971) 61, 174. ( 5) Coxon, D. T., Price, K. R., Howard, Β., and Curtis, R. F. J. Chem. Soc. Perkin I (1977) 53. ( 6) Currier, W. W. Diss. Abstr. Intern. B. (1975) 36, 685. ( 7) Price, K. R., Howard, Β., and Coxon, D. T. Physiol. Plant Path. (1976)9,189. ( 8) Ozeretskovskaya, O. L., Vasyukova, Ν. I., and Metlitskii, L. V. Dokl. Bot. Sci. (1969) 187-189, 158. ( 9) Stoessl, Α., Stothers, J. B., and Ward, E. W. B. Can. J. Chem. (1975) 53, 3351. (10) Stoessl, Α., Stothers, J. B., and Ward, E. W. B. J. Chem. Soc. Chem. Commun. (1975) 431. (11) Stoessl, Α., Ward, E. W. B., and Stothers, J. B. in pre paration. (12) Kalan, Ε. B. and Osman, S. F. Phytochemistry (1976) 15, 775. (13) Coxon, D. T., Price, K. R., Howard, B., Osman, S. F., Kalan, Ε. Β., and Zacharius, R. M. Tetrahedron Letters (1974) 2921. (14) Stoessl, Α., Unwin, C. Η., and Ward, E. W. B. Phytopathol. Z. (1972) 74, 141. (15) Birnbaum, G. I., Stoessl, Α., Grover, S. Η., and Stothers, J. B. Can. J. Chem. (1974) 52, 993. (16) Ward, E. W. Β., Stoessl, Α., and Stothers, J. B. Phyto chemistry, in press, 1977. (17) Bailey, J. Α., Burden, R. S., and Vincent, G. G. Phyto chemistry (1975) 14, 597. (18) Burden, R. S., Bailey, J. Α., and Vincent, G. G. Phyto chemistry (1975) 14, 221. (19) Leppik, R. Α., Hollomon, D. W., and Bottomley, W. Phyto chemistry (1972) 11, 2055. (20) Roberts, D. L. Phytochemistry (1972) 11, 2077. (21) Fujimori, T., Kasuga, R., Kaneko, Η., and Noguchi, M. Phytochemistry (1977) 16, 392. (22) Anderson, R. C., Gunn, D. Μ., Murray-Rust, J., Murray-Rust, P., and Roberts, J. S. J. Chem. Soc. Chem. Commun. (1977) 27. (23) Stoessl, Α., Stothers, J. B., and Ward, E. W. B. Phyto chemistry (1976) 15, 855. (24) Parker, W., Roberts, J. S., and Ramage, R. Quart. Rev. (1967) 21, 331. (25) Iguchi, Μ., Niwa, Μ., and Yamamura, S. Tetrahedron Lett. (1973) 1687, 4367, and references there cited. (26) Sutherland, J. K. Tetrahedron (1974) 30, 1651. (27) Coates, R. M. Fortschr. Chem. Org. Naturstoffe (1976) 33,
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch005
5. STOESSL ET AL.
Sesquiterpenoidal Stress Compounds from
73. (28) Baker, F. C., Brooks, C. J. W., and Hutchinson, S. A. J. Chem. Soc. Chem. Commun. (1975) 293. (29) Dunham, D. J. and Lawton, R. G. J. Amer. Chem. Soc. (1971) 93, 2075. (30) Birnbaum, G. I., Huber, C. P., Post, M. L., Stothers, J. B., Robinson, J. R., Stoessl, Α., and Ward, E. W. B. J. Chem. Soc. Chem. Commun. (1976) 330. (31) Stothers, J. B. "Carbon-13 NMR Spectroscopy" Academic Press, New York, 1972. (32) Grutzner, J. B. Lloydia (1972) 35, 375. (33) Séquin, V. and Scott, Α. I. Science (1974) 186, 101. (34) McInnes, A. G. and Wright, J. L. C. Accts. Chem. Res. (1975) 8, 313. (35) Cornforth, J. W. Angew. Chem. Internat. Edn. (1968)7,903. (36) Cordell, J. A. Chem. Rev. (1976) 76, 425. (37) Stoessl, Α., Ward, E. W. B., and Stothers, J. B. Tetra hedron Lett. (1976) 3271. (38) Ward, E. W. B. and Stoessl, A. Phytopathology (1977) 67, 468.
6 Activated Coordinated Chemical Defense against Disease in Plants
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch006
JOSEPH KUĆand FRANK L. CARUSO Department of Plant Pathology, University of Kentucky, Lexington, KY 40506 It has been repeatedly demonstrated that plants are protected against disease by using procedures that are essentially identical to those used to immunize animals (1-9). Plants inoculated or treated with cultivar nonpathogenic races of pathogens, avirulent forms of pathogens, non-pathogens, heat-attenuated pathogens and high molecular weight products of infectious agents are protected against disease caused by subsequent infection by pathogens (1, 2, 4-6, 10-23). Recovery from disease or limited disease caused by a pathogen also systemically protect plants against disease caused by subsequent infection by the same pathogen or occasionally unrelated pathogens (4, 5, 17, 24-26). It is also evident that infectious agents elicit the accumulation of antibiotic chemicals (phytoalexins or stress metabolites) around sites of infection, and in resistant interactions these substances often rapidly attain concentrations that inhibit development of many infectious agents (1, 18, 27-32). Clearly, the elicitation of disease resistance in a animals and plants is not baseduponthe introduction of new genetic information for resistance into all cells of the host. The basic metabolic mechanisms are present and the success and versatility of the immune response in animals is based upon its rapid expression. It is not clear, however, that the immune response in plants depends upon the activation of a mechanism in the host which is unique for its role in defense against disease, and, which in turn, is elicited by structural components or metabolites unique to the infectious agents. Though the literature reporting induced resistance in plants dates back at least 100 years (33, 34), the reports of the successful control of plant disease in the field using the technique are very recent. This is puzzling since iimunization rapidly became and still frcms the basis of preventative medicine against infectious disease in animals. The review by Chester (34), though critical of experimental procedures in many reports he cited, did include reports that complete or partial immunity to disease occurred in seme plants after recovery frcm seme diseases. Hypovirulent strains of tobacco mo78
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch006
6.
K U C A N D CARUSO
Chemical
Defense
against
Disease
79
saic virus have been employed i n the Netherlands (35), Japan (36) and the U.S.S.R. (personal communication) t o control the disease caused by virulent strains of the virus on tcmato. A mechanism to explain this protection has not been established. Chestnut tree blight, incited by Endothia parasitica, has v i r t u a l l y made the American Chestnut extinct. Recently, limited biological control of the disease has been attained by inoculating plants with a hypovirulent strain of the fungus (37, 38). The mechanism f o r the protection i s not understood. I t i s possible that hypovirulence i s determined by a transmissable factor, possibly a virus. Thus, virulent strains of the fungus may become hypovirulent. I t i s uncertain, however, whether the suppression of virulence i t s e l f i s solely responsible for the protection or whether the suppressed hypovirulent strains of the pathogen also e l i c i t a defense reaction i n the chestnut soon enough and with s u f f i c i e n t magnitude to control development of the fungus. Plants susceptible t o flgrobacterium tumefaciens, the incitant of crown g a l l , are protected frcm the disease by prior inoculation with the nonpathogen A^ radiobacter (39, 40). This has proven a practical means for protection against the disease. The mechanism for protection i s uncertain. Evidence exists for a chemical antagonism due to a bacteriocin produced by A^ radiobacter as well as compétitive blocking of i n f e c t i b l e binding sites by A^ radiobacter (39, 41). Perhaps more than one mechanism explains the protection. Two plant-pathogen interactions (green bean - Colletotrichum 1 i ndemuthianum and cucurbits - Colletotrichun lagenarium) have received considerable attention i n our laboratory. In both the activation of chemical defense appears part of the plant's r e s i s tance mechanism to disease, and, i n both, protection against d i sease can be e l i c i t e d by methods which resentole immunization i n animals. Protection of green bean (Phaseolus vulgaris L.) against Colletotrichum lindpmuthianum Protection of green bean against bean anthracnose, caused by C. lindemuthianxam, was f i r s t demonstrated by infecting the hypocot y l s of bean cultivars, resistant to seme but not a l l races of the fungus (Figure 1) with cultivar nonpathogenic races of the organism. The inoculated plants were then l o c a l l y (inducer inoculum and challenge inoculum applied to the same site) and systenically (inducer inoculum and challenge inoculum applied to different sites) protected from disease caused by subsequent infection with cultivar pathogenic races of the fungus (12, 42, 43). Symptoms on protected plants were microscopically and macroscopically i n d i s tinguishable from the normal resistance reactions produced i n response to inoculation of a cultivar with a cultivar nonpathogenic race (12). I t i s apparent, therefore, that i f a cultivar has resistance to a race of a pathogen, i t could be made resistant t o a l l races of the pathogen.
80
H O S T P L A N T RESISTANCE T O PESTS
A large number of bean cultivars are, however, susceptible t o a l l known races o f lindentuthianum (44, 45), and the question remained whether these were susceptible because of an absolute lack of resistance mechanisms, or the i n a b i l i t y t o e l i c i t resistance soon enough and with sufficient magnitude to contain an infectious agent. Evidence existed t o support the l a t t e r p o s s i b i l i t y (46).
SUSChPl'JBTXITY
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch006
Infection with cultivar pathogenic race of pathogen (Challenge) I
RESISTANCE Infection witri cultivar nonpathogenic race of pathogen (Inducer A) or nonpathogen of bean Colletotrichum l a genarium (Inducer B)
BEAN CULTIVAR SUSCEPTIBLE TO SOME BUT NOT ALL RACES OF THE PATHOGEN œLLETOTRICTUM IJNDEMOTîIANUM Infection with inducer A^or Β followed i n 18 hr^by challenge Inducer A or Β and challenge a t same s i t e (local protection) I
RESISTANCE Figure 1.
Inducer A or Β and challenge on separate sites (systemic protection)
RESISTANCE
Elicitation of resistance in a cultivar of bean susceptible to some but not all races of Colletotrichum lindemuthianum
Hypocotyl tissue of even completely susceptible cultivars i s re sistant close t o and within the root zone (nonexpanding mature t i s sue) . An effective resistance mechanism i s functional i n this t i s sue and the c l a s s i f i c a t i o n of a c u l t i v a r as susceptible t o C^ l i n demuthianum i s based only on the reaction of hypocotyl tissue d i s tant from the root zone. Further experiments i n our laboratory demonstrated that cultivars of bean susceptible t o a l l races o f C. lindemuthianum (Figure 2) were locally and systemically protected against the disease by infection with C^ lagenarium, a pathogen of cucurbits, prior t o infection with the pathogen of bean (13). C. lagenarium was equally effective i n inducing systemic protection i n cultivars susceptible t o a l l races of C^ linriprnuthianum as i n cultivars resistant to one or more races o f the pathogen (Figure 1). Protection induced by races of C\_ lagenarium was generally
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch006
6.
K U C A N D CARUSO
Chemical
Defense
against
81
Disease
not e l i c i t e d as rapidly nor as extensively as protection e l i c i t e d by cultivar nonpathogenic races of lindenuthianum. However, l i k e protection e l i c i t e d by lindemuthianun, systemic protection e l i c i t e d by lagenarium became effective e a r l i e s t i n the most mature region of the hypocotyl. The challenge fungus developed i n protected tissue t o the same extent as i n tissue protected by c u l t i v a r nonpathogenic races of lindemuthianun. Protection e l i cited by lagenarium protected against a l l races of lindemuthianum tested as did protection e l i c i t e d by cultivar nonpathogeni c races of lindemuthianum. These observations suggest that the same mechanisms may be involved i n protection e l i c i t e d by both fungi. Additional evidence for the a b i l i t y to activate a r e s i s tance mechanism i n cultivars susceptible to a l l races of lindemuthianum was obtained by heat-attenuating cultivar pathogenic races of the pathogen (Figure 2) i n host tissue prior to the expression of symptoms (47). Such plants were protected from d i sease caused by infection with the same or other cultivar pathogenic races of the fungus. This experiment also suggested that fungal components or metabolites, even i n cultivar pathogenic races, can e l i c i t resistance. I t i s evident, therefore, that resistance mechanisms exist and can be activated i n bean cultivars resistant to seme and susceptible to other races of lindemuthianum as well as i n cultivars susceptible to a l l races of the pathogen. I t i s also evident that even cultivar pathogenic races have the chemical potential to e l i c i t resistance.
SUSCEPTIBILITY Infection wAh any race of the pathogeji (challenge) BEAN CULTIVAR SUSCEPTIBLE TO ALL RACES OF THE PATHOGEN œLIETOTRICHUM LINDEMUTHIANUM Challenge followed by heatattenuation i n host and rechallenge with the same race or other race of pathogen
t
RESISTANCE
Figure 2.
Infection^with nonpathogen of bean Colletotrichum lagenarium (inducer) followed i n 18 hr by ctellenge |
Inducer and challenge a t same s i t e (local protection)
Inducer and challenge on separate sites (systemic protection)
RESISTANCE
:JIANCE RESI!
Elicitation of resistance in a cultivar of bean susceptible to all races of Colletotrichum lindemuthianum
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch006
82
H O S T P L A N T RESISTANCE T O
PESTS
Systemic protection e l i c i t e d by c u l t i v a r nonpathogenic races of lindemuthianum and by C\_ lagenariim may be mechanistically similar to the resistance of mature tissue (14, 15). The nature and extent of fungal development i n these tissues i s similar and heat treatment p r i o r to infection with the inducer fungus markedly reduced systemic protection and mature tissue resistance. Heat treatment d i d not reduce the effectiveness of race-specific r e s i s tance to 1 i ndemuthianxjm^ resistance to lagenarium or l o c a l protection e l i c i t e d by these fungi. Though phytoalexin accumulation may explain race-specific resistance of bean cultivars to C\_ lindemuthianum as well as induced l o c a l protection by C\_ lindemuthianum or C. lagenarium, i t does not i t s e l f explain systemic protection (16]". Phaseollin and other phytoalexins were not detected i n systemically protected unchallenged tissue, and became apparent i n systemically protected challenged tissue only when restricted collapse and browning of host c e l l s became evident. I t i s possible, therefore, to separate two facets of the induced resistance phenomenon: (1) the chemical agents including phaseollin and other isof lavcnoid phytoalexins which accumulate around the s i t e of infection and which contribute to the inhibition of fungal development; (2) the signal which commits c e l l s removed from the s i t e of an inducing inoculation (systemic protection) to resistance. Further evidence indicates resistance i n bean cannot be attributed solely to the accumulation of phytoalexins (16). qossypii, C. phcmoides and trifolii, ronpathogens of bean, did not cause hypersensiteve browning of host c e l l s and did not e l i c i t the accumulation of phaseollin, phaseollidin, phaseollinisoflavan, kievitone or other phytoalexins detectible by the bioassays employed. Conidia of these fungi germinated and formed appressoria on the host surface, but development i n the host was rapidly restricted. Though C\_ t r i f o l i i did not e l i c i t phytoalexin accunulation or c e l l collapse, i t was extremely effective i n e l i c i t i n g l o c a l but not systemic protection against a l l races of lindemuthianiin (13). Though bean tissue infected with lindemuthianum accumulated high levels of phaseollin, high levels of phaseollinisoflavan and l i t t l e or no phaseollin accumulated i n tissue infected with lagenarium. I t appears that chemical defense against anthracnose i n bean includes the following considerations: (1) production or release of a signal which catmits c e l l s of even susceptible cultivars to resistance; therefore, susceptible plants have the potential for resistance i f i t i s expressed soon enough and with s u f f i c i e n t magnitude. (2) c u l t i v a r nonpathogenic races of a pathogen, as well as some nonpathogens of bean, can produce or e l i c i t production of t h i s signal. (3) systemically protected unchallenged tissue does not contain isof lavcnoid phytoalexins. (4) phytoalexins are not detected i n a l l reactions between nonpathogens and bean.
6.
K U C A N D CARUSO
Chemical
Defense
against
Disease
83
(5) the fungus influences which phytoalexins accumilate. (6) induced protection i s not evident before spore germination, appressorium formation and penetration into the host.
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch006
Protection of cucurbits against Colletotrichum lagenarium - aspects of the phenomenon Recent work i n our laboratory using the interaction of cucurb i t s with the pathogen C\_ lagenarium has supported the work with the interaction of bean and the pathogen C^ lindemuthianum. Infection of a cotyledon or f i r s t true leaf (leaf one) of cwcumber with Cj_ lagenarium systemically protected tissue above (developed or not yet developed) against disease caused by the pathogen (£). Physical damage or chemical injury did not e l i c i t protection. Susceptibility i n this interaction i s characterized by the formation of large but defined lesions. Since many such lesions may form on leaves, stems and f r u i t of cucurbits, the growth of plants and their productivity, as well as the quality of f r u i t , are adversely affected. Nevertheless, the eventual r e s t r i c t i o n of lesion development suggests the presence of a mechanism f o r resistance i n susceptible plants. Whether the mechanism which r e s t r i c t s the development of lesions i s identical to that which i s systemically induced by the pathogen i s unknown, but s i m i l a r i t i e s are evident and w i l l be discussed later. Systemically induced protection against the pathogen by the pathogen i s evident as a delay i n symptom expression and a reduction i n the number and size of lesions (5). Infection of leaf one vtfien the second true leaf was one fourth to one t h i r d expanded, systemically protected plants for 4-5 wk. A second or booster inoculation 3 wk after the f i r s t inoculation extended the time of protection into the f r u i t i n g period. Protection was e l i c i t e d by and effective against six races of the fungus and was evident not only with more than 20 susceptible cultivars but also with two cultivars which express some reisitance t o the pathogen. Resistance i n these two cultivars i s expressed, as i s systemic induced resistance, by a delay i n symptom appearance and a reduction i n the number and size of lesions. A single lesion on leaf one produced significant protection (Figure 3). Protection was evident on the second leaf 72-96 hr after inoculating leaf one. Excising leaf one 72-96 hr. after inoculating leaf one did not reduce protection of leaf two. Leaf two was protected i f excised 96-120 hr. after leaf one was inoculated. I t i s evident that i t i s not necessary for the inducer to be present once protection has been i n i tiated and protection continues to be expressed i n a l l developing leaves for 4-5 wk. I t i s also evident that the protected leaf need not be attached to the plant t o maintain protection. The pattern of protection i n watermelon and muskmelon resembles that i n cucumber (48, 49). Infection of the cotyledons or f i r s t true leaf of four cultivars o f watermelon and four c u l t i v a r s of muskmelon with C^ lagenarium systemically protected the plants
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch006
84
HOST P L A N T RESISTANCE T O
PESTS
from disease caused by subsequent infection with the pathogen. Protection was noted as a reduction i n the number and size of l e sions, and plants remained protected 4 wk. after the protecting inoculation. Race 1, 2 and 3 of the fungus e l i c i t e d protection and a single lesion on leaf one e l i c i t e d significant protection. In three separate f i e l d t r i a l s , cucuirber plants were protected against a challenge inoculation with lagenarium by a p r i o r inoculation with the pathogen (50). Protection of watermelon was evident i n two t r i a l s and indications were that muskmelon could also be protected. Lesions on protected plants were reduced i n number and size as compared to lesions on unprotected plants (Figure 4). Though chemical or physical injury without the presence of an infectious agent did not e l i c i t protection, protection against C. lagenarium was also e l i c i t e d by the infection of cotyledons with tobacco necrosis virus (TNV) (17) and the infection of leaf one with the bacterial incitant of angular leaf spot, Pseudcmonas lachrymans (51). Infection with lagenarium also protected cucumber against disease caused by P^ lachrymans, and plant breeders have observed that cultivars are either resistant to both or susceptible to both pathogens (personal communication). Infection with lagenarium did not protect plants against TW and TOV did not protect against TOV. The above data support the hypothesis that even susceptible plants have effective mechanisms for disease resistance i f they can be expressed soon enough and with sufficient magnitude. Induced resistance can be systemic and of quite long duration. The phenomenon of systemic induced protection i n plants and immunization i n animals are similar at least i n outward appearance, and the phenomenon suggests a new approach for the practical control of disease i n plants. Mechanisms for induced systemic protection Investigators i n the f i e l d may argue about which i s the i n i t i a l or most important mechanism f o r disease resistance (or susceptibility) i n plants. Such arguments may be f r u i t l e s s i n that too or more d i s t i n c t mechanisms may be operative and the presence of both mechanisms and their coordination may determine the specif i c i t y of the interaction. Interactions i n which phytoalexins accumulate but the plant i s judged susceptible may be due to a lack of or inadequacy i n a second mechanism. The second mechanism may be the presence or induced production of agglutinins. An extremely stimulating and thought-provoking paper by U r i tani and colleagues (52) presents data which support this contention. They report that resistance of sweet potato root to nonpathogenic isolates of fimbriata i s based on at least two mechanisms. In the i n i t i a l stage of infection, agglutinating factors i n host c e l l s may agglutinate spores and germinating hyphae thereby localizing the fungus i n the host. In the second stage, both
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch006
6.
K U C A N D CARUSO
Chemical
Defense
against Disease
Figure 3. The effect of the number of lesions on leaf one on the protection of leaf two of cucumber against Colletotrichum lagenarium
Figure 4. Protection of cucumber against Colletotrichum lagenarium by Colletotrichum lagenarium in the field. The area of lesions per leaf eight days after the inoculation of leaf two is given in parentheses.
85
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch006
86
HOST P L A N T
RESISTANCE T O PESTS
pathogenic and nonpathogenic strains of the fungus e l i c i t the accumulation of furanoterpenoids i n host tissue. The duplication i s that the speed of development o f the pathogenic strain exceeds the acxwmulation of fungitoxic levels of furanoterpenoids due to a lack of agglutination, whereas spread of the nonpathogenic strain i s limited by agglutination which allows furanoterpenoids to accumulate to fungitoxic levels i n and around the s i t e of interaction between host and fungus. This concept i s consistant with our investigations of the systemically induced resistance of craaimber to lagenarium by lagenarium. There i s no evidence that the systemic aœimilation of c l a s s i cal phytoalexins i s alone responsible for the systemic protection of cucurbits. A chloroform-soluble inhibitor of the growth of C. lagenarium has been obtained from tissue surrounding lesions on protected and unprotected plants. The inhibitor may be important i n restricting lesion development and account for the normally res t r i c t e d lesions characteristic of cucurbit anthracnose. Spore germination and appressorium formation are not inhibited on protected plants, but development from the appressoria appears reduced i n protected plants. In a series of tests, penetration from appressoria was 20 to 40% and from less than 1 to 5% i n unprotected and protected plants, respectively. The presence of preformed agglutinins appears closely associated with resistance of cucumber to scab incited by Cladosporium cucumerinum (53). Studies also indicate an agglutinating factor accumulates i n unchallenged plants systemically protected by lagenariun. I t i s possible, therefore, that at least three mechanisms contribute to acquired r e s i s tance of cucurbits to C\_ lagenarium. One mechanism r e s t r i c t s penetration into the host, a second agglutinates developing hyphae i n penetrated tissue to minimize spread, and the t h i r d i s the production of c l a s s i c a l phytoalexins around the s i t e of infection. I t i s entirely possible that s t i l l a fourth mechanism may be operative. The agglutinins may also react with extracellular hydrolyt i c enzymes or toxins produced by infectious agents thereby neut r a l i z i n g their "synptom-causing" a c t i v i t y . The systemic nature of the protection of lagenarium by lagenarium resembles the systemic e l i c i t a t i o n of protease inhibitors i n wounded plants (5457), though injury does not i t s e l f e l i c i t protection. Injury of leaves of plants representing several plant families or the introduction of extracts from injured tissues into plants i s s u f f i c i e n t to e l i c i t the systemic accumulation of protease inhibitors. The character of the protein i n responding tissues markedly changes and as much as 12% of the protein i n affected tissues i s protease inhibitor with a high content of d i s u l f i d e cross linkages. We are investigating the relationship between the production of extrac e l l u l a r proteases by the pathogen and the induction of protease and other enzymatic inhibitors i n systemically protected plants. The systemic e l i c i t o r of protease aœunulation reported by Ryan and his colleagues i s s t i l l uncharacterized but the implications of this "long distance" ccnmunicaticn are profound i n r e l a -
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch006
6.
K U C A N D CARUSO
Chemical
Defense
against
Disease
87
tien to disease resistance and p r a c t i c a l control of disease. Seve r a l possible ingredients of a defense system become apparent: (1) a rapid "long distance" system of ccitmunicaticn (2) presence and/or e l i c i t a t i o n of protein or glycoprotein enzyme inhibitors and agglutinins (3) presence and/or e l i c i t a t i o n of c l a s s i c a l lew molecular weight phytoalexins. Hew far apart i n basic metabolic mechanisms are the immune systems i n plants and animals? Genes for resistance and susceptibility can control the presence or absecce of any one of the mechanisms and the rates of the mechanisms. In a coordinated defense against disease, any one or two mechanisms for resistance may be active, but i f a third i s inactive, i t may become the limiting factor for resistance and the plant i s susceptible. Plants with mechanisms for resistance, therefore, can i n fact be susceptible. Induced resistance may be based on the marked activation of a mechanism, which i s not limiting to defense, to a level that overcomes the limitation of a deficient factor, e . g . , phytoalexins accumulate rapidly enough and with suff i c i e n t magnitude to eliminate the need of an agglutinin. In other situations, induced resistance may activate a deficient or limiting factor i n the coordinated mechanisms. The key to disease resistance i n plants i s the functioning of multiple mechanisms for resistance and the key concept i n understanding their interaction i s one of "coordinated defense". Of course the infectious agent also influences the effectiveness or coordination of host defense. The active contribution of the infectious agent makes the interaction extremely complex but at the same time increases many fold the p o s s i b i l i t i e s for s p e c i f i c i t y . This i s paper 77-10-124 of the Kentucky Agricultural Experiment Station, Lexington, Kentucky 40506. The authors' work reported i n this manuscript was supported i n part by a grant from the Herman Frasch Foundation and grant 316-15-51 of the Cooperative State Research Service of the United States Department of Agriculture.
Literature Cited 1. Kuć, J. Annu. Rev. Phytopathology (1972) 10, 207-232. 2. Kuć, J. World Rev. of Pest Control (1968) 7, 42-55. 3. Hammerschmidt, R., Acres, S., Kuć, J. Phytopathology (1976) 66, 790-794. 4. Kuć , J . , Shockley, G., Kearney, K. Physiol. Plant Pathology (1975) 7, 195-199. 5. Kuć, J . , Richmond, S. Phytopathology (1977) 67, 533-536. 6. Matta, A. Annu. Rev. Phytopathology (1971) 9, 387-410. 7. Ross, A. Proceed. Internatl. Conf. Plant Viruses (1966) July, 127-150. 8. Yarwood, C. Proceed. Natl. Acad. Sci. U.S.A. (1954) 40, 374374-377. 9. Yarwood, C. Phytopathology (1956) 46, 540-544. 10. Bell, Α., Presley, J. Phytopathology (1969) 59, 1147-1151.
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch006
88
HOST PLANT RESISTANCE TO PESTS
11. Deverall, B. "Defense Mechanisms in Plants" 110 p., Cambridge Univ. Press, London, 1977. 12. Elliston, J., Kuć, J . , Williams, E. Phytopathology (1971) 61, 1110-1112. 13. Elliston, J., Kuć, J . , Williams, E. Phytopathol. Z. (1976) 86, 117-126. 14. Elliston, J . , Kuć, J . , Williams, E. Phytopathol. Z. (1976) 87, 289-303. 15. Eliston, J . , Kuć, J . , Williams, E. Phytopathol. Z. (1977) 88, 43-52. 16. Elliston, J . , Kuć, J . , Williams, Ε., Rahe, J. Phytopathol. Z. (1977) 88, 114-130. 17. Jenns, Α., Kuć, J. Physiol. Plant Pathol. (1977) In press. 18. Kuć, J. "Specificity in Plant Disease" pp. 253-271, Plenum Press, N.Y. 1976. 19. Kuć, J . , Currier, W., Elliston, J . , McIntyre, J. "Biochemistry and Cytology of Plant-Parasite Interaction" pp. 168-180, Elsevier, N.Y. 1976. 20. Lovrekovich, L., Farkas, G. Nature (1965) 205, 823-824. 21. Main, C. Phytopathology (1968) 58, 1058-1059. 22. McIntyre, J . , Kuć, J . , Williams, E. Physiol. Plant Pathol. (1975) 7, 153-170. 23. Heale, J. B., Sharman, S. Physiol. Plant Pathol. (1977) 10, 51-61. 24. Braun, J . , Helton, A. Phytopathology (1971) 61, 685-687. 25. Randall, R., Helton, A. Phytopathology (1976) 66, 206-207. 26. Cruickshank, I., Mandryk, M. J. Australian Inst. Agric. Sci. (1960) 26, 369-372. 27. Kuć, J. "Encyclopedia of Plant Physiology" Vol. 4, pp. 632652, Springer-Verlag, Berlin, 1976. 28. Kuć, J . , Currier, W., Shih, M. "Biochemical Aspects of Plant -Parasite Relationships" pp. 225-257, Academic Press, London 1976. 29. Kosuge, T. Annu. Rev. Phytopathology (1969) 7, 195-222. 30. Stoessel, Α., Stothers, J . , Ward, E. Phytochem. (1976) 15, 855-872. 31. Ingham, J. Botan, Rev. (1972) 38, 343-424. 32. Cruickshank, I., Biggs, D., Perrin, D. J. Indian Botan. Soc. (1971) 50A, 1-11. 33. Bernard, N. Ann. Sci. Natl. Bot. (1909) 1, 1-196. 34. Chester, K. S. Quart. Rev. Biol. (1933) 8, 129-154, 275-324. 35. Rast, A. Agricultural Research Report of the Inst. of Phyto pathol. Res., Wageningen, The Netherlands (1975) 834, 1-76. 36. Komochi, S., Goto, T., Oshima, N. J. Hort. Assn. Japan (1966) 35, 269-276. 37. Anagnostakis, S., Jaynes, R. Plant Dis. Reptr. (1973) 57, 225-226. 38. Van Alfen, Ν., Jaynes, R., Anagnostakis, S. Science (1975) 189, 890-891. 39. New, P., Kerr, A. J. Applied Bacteriol. (1972) 35, 279-287.
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch006
6. KUC AND CARUSO
Chemical Defense against Disease 89
40. Kerr, A. J. Applied Bacteriol. (1972) 35, 493-497. 41. Lippincott, Β., Lippincott, J. J. Bacteriol. (1969) 97, 620-628. 42. Rahe, J., Kuć, J., Chuang, C., Williams, E. Phytopathology (1969) 59, 1641-1645. 43. Skipp, R., Deverall, B. Physiol. Plant Pathol. (1973) 3, 299-313. 44. Bannerot, H. Ann. Amel. Plantes (1965) 15, 201-222. 45. Goth, R., Zaumeyer, W. Plant Dis. Reptr. (1965) 49, 815-818. 46. Leach, J. Minn. Agric. Expt. Sta. Techn. Bull. (1923) 14, 1-41. 47. Rahe, J. Phytopathology (1973) 63, 572-577. 48. Caruso, F., Kuć, J. Phytopathology In Press. 49. Caruso, F., Elliston, J., Kuć, J. Proc. Amer. Phytopathol. Soc. (1976) 3, 259. 50. Caruso, F., Kuć, J. Phytopathology In Press. 51. Caruso, F. Proc. Amer. Phytopathol. Soc. (1977) In Press. 52. Uritani, I., Oba, K., Kojima Μ., Kim, W., Ohuni, I., Suzuki, H. "Biochemistry andCytologyof Plant-Parasite Interaction" pp. 239-252, Elsevier, N.Y. 1976. 53. Hammerschmidt, R., Kuc , J. Proc. Amer. Phytopathol. Soc. (1977) In Press. 54. Peng, J., Black, L. Phytopathology (1976) 66, 958-963. 55. Ryan, C. Annu. Rev. Plant Physiol. (1973) 24, 173-196. 56. Gustafson, G., Ryan, C. J. Biol. Chem. (1976) 251, 7004-7010. 57. Walker-Simmons, M., Ryan, C. Plant Physiol. (1977) 59, 437439.
7 Biochemical and Ultrastructural Aspects of Southern Corn Leaf Blight Disease
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch007
PETER GREGORY, ELIZABETH D. EARLE, and VERNON E. GRACEN Department of Plant Breeding and Biometry, Cornell University, Ithaca, NY 14853
The study of southern corn leaf blight disease is of major economic and scientific value. The economic importance of this fungal disease was dramatically emphasized in 1970 when it reached nearly epidemic proportions in the U.S.A., resulting in severe losses for corn growers. Scientifically, research on the disease may result in novel and major gains in plant pathology, plant breeding and higher plant genetics. The main aims of this paper are to critically describe the present state of biochemical and ultrastructural knowledge about the mechanism of the disease, to highlight the most important gaps in our knowledge and to discuss some of the ways in which these gaps can be filled. General Characteristics of Southern Corn Leaf Blight Disease The causal organism of southern corn leaf blight disease is the fungus Helminthosporium maydis Race Τ (HmT). This is one of several members of the genus Helminthosporium to produce host -specific toxins. HmT and the toxin(s) from HmT (HmT toxin) only affect corn which contains the Texas (T) source of male sterile cytoplasm. Plants containing the non-male sterile (N) or the C or S types of male sterile cytoplasms are resistant to the fungus and insensitive to HmT toxin (1,2). Nuclear genes which restore Τ cytoplasm to male fertility (Rf genes) may slightly modify the disease reaction and toxin response of corn varieties containing the Τ cytoplasm (3,4). Nuclear genes other than Rf genes can affect the HmT disease reaction (5,6,7) with some inbred lines exhibiting a higher level of resistance in Τ cytoplasm than others. In all cases, however, each inbred is more susceptible in Τ than in Ν cytoplasm. Toxin sensitivity of different inbred lines in Τ cytoplasm also varies but there is no apparent correlation between nuclear control of toxin sensitivity and the degree of disease resistance (8). It is of considerable interest that another race of H. maydis, Race 0, produces a toxin but shows no specificity for Τ cytoplasm ( 9. ) . Η. maydis Race Τ might essentially represent a Race 0 90
7.
GREGORY
ET
AL.
Southern
Corn
Leaf Blight
i s o l a t e that has accumulated a d d i t i o n a l s p e c i f i c t o x i n production ( 9 ,10). The s p e c i f i c a l l y damage Τ cytoplasm i n the gives southern corn l e a f b l i g h t disease model system i n p l a n t pathology.
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch007
E f f e c t s of HmT
Disease
91
genes f o r cytoplasmf a c t that HmT t o x i n can absence of the fungus (11) great p o t e n t i a l as a
Toxin on Τ Cytoplasm
Treatment with HmT t o x i n produces morphological, p h y s i o l o g i c a l , u l t r a s t r u c t u r a l and biochemical changes i n Τ cytoplasm m a t e r i a l . Table I l i s t s these e f f e c t s , seen i n systems ranging i n complexity from whole p l a n t s to s u b c e l l u l a r f r a c t i o n s . The e f f e c t s l i s t e d are s p e c i f i c f o r Τ cytoplasm; Ν cytoplasm m a t e r i a l i s e i t h e r u n a l t e r e d by any t o x i n c o n c e n t r a t i o n t e s t e d or i s a f f e c t e d l e s s than Τ cytoplasm at a given c o n c e n t r a t i o n . Non s p e c i f i c e f f e c t s (e.g. carbohydrate leakage (12)) are not i n c l u d e d i n Table I. I t can be seen i n Table I that the timing, s e n s i t i v i t y and degree o f s p e c i f i c i t y of the d i f f e r e n t e f f e c t s vary considerably. The r e l a t i v e importance o f the r e p o r t e d e f f e c t s i s d i f f i c u l t to evaluate. Some e f f e c t s , such as i n h i b i t i o n of r o o t growth and changes i n i s o l a t e d mitochondria, have been observed by many workers; others have been documented only by work from a s i n g l e l a b o r a t o r y or even by a s i n g l e p u b l i c a t i o n . Comparison of work i n d i f f e r e n t l a b o r a t o r i e s i s d i f f i c u l t because no standard pro cedures f o r p r e p a r a t i o n and assay of HmT t o x i n e x i s t . Many d i f f e r e n t schemes f o r t o x i n production and p u r i f i c a t i o n are i n use (Table I I ) . Toxin a c t i v i t y i n the i n i t i a l t o x i n source i s i n f l u e n c e d by c u l t u r e c o n d i t i o n s and the f u n g a l i s o l a t e used, but the i n i t i a l t o x i n a c t i v i t y i s r a r e l y r e p o r t e d . The e f f e c t i v e n e s s of the p u r i f i c a t i o n procedures, the l e v e l of p u r i t y a t t a i n e d and the amount of n o n s p e c i f i c m a t e r i a l remaining are u s u a l l y d i f f i c u l t to assess. The use of d i f f e r e n t corn l i n e s i n d i f f e r e n t s t u d i e s or even as the source of Ν and Τ cytoplasm i n a g i v e n experiment (17) causes f u r t h e r c o m p l i c a t i o n s . In s p i t e o f problems i n i n t e r p r e t a t i o n and comparison, s t u d i e s of t o x i n e f f e c t s on Τ cytoplasm serve s e v e r a l purposes. 1) They provide convenient c r i t e r i a f o r i d e n t i f y i n g Τ cytoplasm and Τ cytoplasm components i n many d i f f e r e n t systems, a t the f i e l d l e v e l , i n seed or p o l l e n populations or i n c e l l c u l t u r e s . Usually, only Τ cytoplasm m a t e r i a l i s s e n s i t i v e to t o x i n . Other male s t e r i l e and non-male s t e r i l e cytoplasms are r e s i s t a n t . Pro cedures that a l t e r the usual response of Ν and Τ cytoplasm to t o x i n may y i e l d m a t e r i a l which w i l l f u r t h e r understanding of the d i f f e r e n c e between the two cytoplasms. Because c a l l u s from Τ cytoplasm seeds u s u a l l y f a i l s to grow on n u t r i e n t medium c o n t a i n ing t o x i n , the t o x i n r e s i s t a n t c a l l u s o c c a s i o n a l l y seen i n Τ cytoplasm c u l t u r e s i s easy to i s o l a t e f o r f u r t h e r a n a l y s i s (25, 29). Biochemical and genetic a n a l y s i s o f such t o x i n - r e s i s t a n t T c a l l u s i s now i n progress i n our l a b o r a t o r y and i n s e v e r a l other laboratories. S i m i l a r l y f a i l u r e of Τ cytoplasm p r o t o p l a s t s to !
T
92
HOST P L A N T RESISTANCE T O PESTS
Table I .
E f f e c t s of H. maydis Race Τ t o x i n on Τ cytoplasm material
Toxin a p p l i c a t i o n ( i f not i n ambient s o l u t i o n
Effect
Timing
References
P L A N T S sprayed
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch007
injected stem
into
p i p e t t e d onto l e a f who r 1 , imma ture t i s s u e , punctured w i t h needle
l e s i o n formation
3-6 days
(13)
chlorosis, necrosis of leaves
2-4 days
c h l o r o t i c streaks
2-5 days
(10,14,15)
24-48hours
(1,15,16, 17,18)
(13,4(0
S E E D L I N G S i n h i b i t i o n of r o o t growth
30 min
(il)
i n h i b i t i o n of u r a n y l uptake i n t o vacuoles of r o o t c e l l s
21-28 hours
(19)
s t i m u l a t i o n of e l e c t r o l y t e leakage
1-4 hours
(iZ)
u l t r a s t r u c t u r a l damage to mitochondria i n root c e l l s
15-120 min
(20)
90 min f a i l u r e of root mito chondria to respond to deoxyglucose treatment d e p o l a r i z a t i o n of mem brane p o t e n t i a l d i f ference of root c e l l s D E T A C H E D l e a f f l o a t e d on toxin
2-5 min
L E A V E S - L E A F
water soaking
(21)
(22)
D I S C S 3-4
days
(1)
i n j e c t e d i n t o l e a f / l e s i o n formation
3 days
(23)
a p p l i e d to p u n c t u r e / l e s i o n formation
12 hours 48 hours
(24)
3 days
(18)
cut end i n t o x i n
chlorophyll retention i n dark
(11)
7.
Southern
GREGORY E T A L .
Table I .
Corn
Leaf Blight
93
Disease
(cont.)
Toxin a p p l i c a t i o n ( i f not i n ambient s o l u t i o n )
Timing
Effect
a
3 days
References
leaf piece floated on t o x i n
chlorophyll i n dark
leaf
i n h i b i t i o n o f dark C0 fixation
9-10 hours
i n h i b i t i o n of l i g h t C0 fixation
9 hours
(18)
i n h i b i t i o n of l i g h t CO f i x a t i o n
15-60 min
(26)
stimulation of elec t r o l y t e leakage
7-23 hours
(27)
discs
retention
(25) (15,18)
2
leaf
discs
2
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch007
cut end i n t o x i n
2
cut end i n t o x i n
3 hours
(19)
vacuum i n f i l t r a s t i m u l a t i o n o f e l e c t r o - 2 hours t i o n of l e a f pieces l y t e leakage
(12)
epidermal peels f l o a t e d on t o x i n
inhibition ο f l i g h t stimulated Κ uptake by guard c e l l s
3 hours
(26)
cut end i n t o x i n
i n h i b i t i o n of trans piration
3 hours
(19)
5-60 min
(26)
I S 0 L A T E D
R O O T S
s t i m u l a t i o n of e l e c t r o l y t e leakage i n h i b i t i o n of uptake t o x i n present during a e r a t i o n of roots
8 6
Rb
i n h i b i t i o n of develop ment o f augmented R b uptake
2 hours (12) (10 min i n 1 expt) 90 min
(Z)
2 hours
(28,47)
28 days
(25,29)
86
C A L L U S i n agar medium
i n h i b i t i o n o f growth
P O L L E N (from Τ cytoplasm p l a n t s w i t h TRf genes) i n agar medium
i n h i b i t i o n of germin a t i o n and p o l l e n tube growth
2 hours
(30)
HOST
94
Table I .
PLANT
RESISTANCE T O PESTS
(cont.) Timing
References
i n h i b i t i o n of volume increase
1 day
(31)
collapse
1-3 days
(31.32)
u l t r a s t r u c t u r a l damage to mitochondria
5-60 min
(20.33)
Effect
Toxin a p p l i c a t i o n ( i f not i n ambient s o l u t i o n )
P R O T O P L A S T S
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch007
I S O L A T E D
M I T O C H O N D R I A
uncoupling o f o x i d a t i v e phosphorylation s t i m u l a t i o n o f NADH oxidation
(34-39) (15,23,34 35,37,38 40,41)
i n h i b i t i o n of malatepyruvate o x i d a t i o n
(15,34,35 37,38,40 41)
i n h i b i t i o n o f a-ketoglutarate oxidation
(37,41)
p a r t i a l i n h i b i t i o n of succinate oxidation ( i n sucrose o r KC1 assay media)
(15_,34,35 38)
stimulation of succinate o x i d a t i o n ( i n mannitol or sucrose assay media)
(41,42)
s t i m u l a t i o n of ATPase activity
(38,41)
a c t i v a t i o n o f cytochrome oxidase
(41)
a c t i v a t i o n of s u c c i n a t e cytochrome C reductase 32 Ρ acinhibition of cumulation
(41)
increase i n l i g h t trans mit tance ( s w e l l i n g )
(17,38) (17,23,34 43)
7.
GREGORY E T A L .
Table I .
Southern
Corn Leaf
Blight
95
Disease
(cont.)
Toxin a p p l i c a t i o n ( i f not i n ambient s o l u t i o n )
Effect
Timing
3
References
(33,43)
u l t r a s t r u c t u r a l changes (swelling, disruption of inner membranes) M I C R O S O M E S +
i n h i b i t i o n of K stimulated ATPase
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch007
a
30-60 min
(44,45)
are noted approximate time from exposure to t o x i n u n t i l e f f e c t s and/or measured e f f e c t s seen w i t h i n seconds o r a few minutes
HOST P L A N T RESISTANCE T O PESTS
96 Table I I .
Toxin Preparations Used i n P h y s i o l o g i c a l , Biochemical and U l t r a s t r u c t u r a l Studies Processing
i n f e c t e d leaves
b o i l i n g water e x t r a c t i o n
(30)
methanol e x t r a c t i o n , d i a l y s i s
(11)
methanol e x t r a c t i o n
(14)
methanol, e t h y l acetate ex traction
(12)
methanol, e t h y l acetate ex t r a c t i o n , chromatography (chloroform-methanol), e t h y l acetate e l u t i o n
(37,39,40, 41,44,45)
H. maydis race Τ mycelium + agar c u l ture medium
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch007
References
I n i t i a l Toxin Source
(abridged)
H. maydis race Τ mycelium + c u l t u r e filtrate
chloroform e x t r a c t i o n o f ground mycelium and c u l ture f i l t r a t e
H. maydis race Τ c u l ture f i l t r a t e
none
(18)
(.3,11,13,16, 46)
dialysis desalting,
(1,34) ultrafiltration
(17,23,26, 43,70)
desalting, u l t r a f i l t r a t i o n , p a r t i a l Sephadex p u r i f i c a t i o n
(17)
f r e e z e d r y i n g , methanol ex traction
(19)
e t h y l acetate e x t r a c t i o n
(29)
methanol-water, chloroform extraction methanol-water, butanol extraction chloroform
extraction
(8,15,38)
(28,47)
(7,20,31, 32,33)
7.
GREGORY E T A L .
Southern
Corn
Leaf Blight
97
Disease
1
s u r v i v e t o x i n treatment may permit d e t e c t i o n of 'T p r o t o p l a s t s whose response to t o x i n has been a l t e r e d by genetic manipulations l i k e p r o t o p l a s t f u s i o n or o r g a n e l l e t r a n s f e r . 2) They provide a v a r i e t y o f assays f o r HmT t o x i n a c t i v i t y . S e n s i t i v e bioassays are e s s e n t i a l both f o r rigorous s t u d i e s o f t o x i n a c t i o n and f o r t o x i n p u r i f i c a t i o n procedures. E v a l u a t i o n of a s i n g l e t o x i n p r e p a r a t i o n i n assays i n v o l v i n g succinate, NADH or m a l a t e - d i c h l o r o phenol indophenol (DCPIP) r e s p i r a t i o n by i s o l a t e d mitochondria and dark C 0 f i x a t i o n by l e a f d i s c s showed a q u a n t i t a t i v e i n h i b i t i o n by the t o x i n (15). Moreover, these assays are 5-10X as s e n s i t i v e to t o x i n as the s e e d l i n g root growth assay and 20-100X as s e n s i t i v e as l e a f l e s i o n assays (15). I n h i b i t i o n of p r o t o p l a s t s u r v i v a l i s a l s o 5-10X as s e n s i t i v e to t o x i n as s e e d l i n g root growth (32). E l e c t r o l y t e leakage i s one o f the l e a s t s e n s i t i v e bioassays (18, 19). 3) They provide information about the mode of t o x i n a c t i o n i n Τ cytoplasm c e l l s . The slower e f f e c t s l i s t e d i n Table I are probably secondary e f f e c t s , f a r removed from the i n i t i a l i n t e r a c t i o n of t o x i n with Τ cytoplasm. Primary e f f e c t s should be r a p i d , h i g h l y s p e c i f i c f o r Τ cytoplasm and a t l e a s t as s e n s i t i v e to t o x i n as l a t e r e f f e c t s . I t should a l s o be p o s s i b l e to r e l a t e the primary e f f e c t s to the observed cytoplasmic i n h e r i t a n c e o f t o x i n s e n s i t i v i t y . Both mitochondria and plasma membranes have been i m p l i c a t e d as primary s i t e s o f e a r l y t o x i n a c t i o n .
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch007
2
Evidence f o r the Plasma Membrane as a S i t e of Toxin A c t i o n Some p h y s i o l o g i c a l s t u d i e s suggest that plasma membranes and mi tochondrial membranes are a f f e c t e d by HmT t o x i n . Evidence f o r plasma membrane e f f e c t s i s based on observations t h a t a f t e r t o x i n treatment e l e c t r o l y t e leakage occurs (12,17,19,27), Κ or R b uptake i s i n h i b i t e d (7,28,47), l i g h t - s t i m u l a t e d K+ movement i n t o guard c e l l s i s i n h i b i t e d (26), p a r t i a l d e p o l a r i z a t i o n o f the plasma membrane p o t e n t i a l d i f f e r e n c e occurs (22), and K*" stimu l a t e d ATPase from corn root microsomes i s i n h i b i t e d (44,45). This l a t t e r p o i n t i s s i g n i f i c a n t because microsomal p r e p a r a t i o n s from oat roots contain fragments o f plasma membranes ( 4 8 ) . Because some o f these e f f e c t s occur w i t h i n minutes a f t e r t o x i n treatment (12,22) and because of the t o x i n e f f e c t on micro somal K stimulated ATPase, i t has been suggested that HmT t o x i n acts d i r e c t l y on plasma membranes. However the importance o f some of the observations i m p l i c a t i n g plasma membranes i s ques t i o n a b l e because of the weak s p e c i f i c i t y f o r Τ cytoplasm (28,47), the p r e l i m i n a r y nature o f the r e p o r t (22), the i n a b i l i t y o f other workers to repeat the microsomal ATPase r e s u l t s (49), and the high l e v e l s o f crude t o x i n o f t e n needed. There i s the f u r t h e r problem o f i n t e r p r e t i n g cytoplasmic i n h e r i t a n c e o f d i f f e r e n t i a l membrane s e n s i t i v i t y . When a h i g h l y a c t i v e , Τ c y t o p l a s m - s p e c i f i c chloroform e x t r a c t a b l e t o x i n i s used, no u l t r a s t r u c t u r a l damage to plasma membranes of Τ p r o t o p l a s t s i s seen a t times when m i t o c h o n d r i a l d i s r u p t i o n i s +
86
+
98
HOST P L A N T
RESISTANCE T O PESTS
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch007
apparent (20,33). Although crude HmT c u l t u r e f i l t r a t e caused plasma membrane damage i n Ν and Τ corn (50), the l a t t e r u l t r a s t r u c t u r a l e f f e c t s could be due to the presence o f contaminants i n HmT crude f i l t r a t e . I t seems p o s s i b l e that some o f the observed plasma membrane e f f e c t s may r e s u l t from p r i o r m i t o c h o n d r i a l i n a c t i v a t i o n . We cannot e l i m i n a t e the p o s s i b i l i t y that r a p i d and s p e c i f i c e f f e c t s on plasma membranes occur but are below the l e v e l o f u l t r a s t r u c t u r a l r e s o l u t i o n , although we a l s o have p r e l i m i n a r y f r e e z e - e t c h data that f a i l s to d e t e c t plasma membrane damage with chloroform-extracted t o x i n (50). At present, i t appears that s p e c i f i c i t y of HmT t o x i n f o r Τ cytoplasm r e s i d e s i n i t s i n t e r a c t i o n with mitochondria. I d e n t i f i c a t i o n of the d i f f e r e n c e s between Ν and Τ mitochondria which l i m i t the e f f e c t of t o x i n to Τ mitochondria and the mechanism o f a c t i o n o f HmT t o x i n on Τ mitochondria i s o f c o n s i d e r a b l e i n t e r e s t . Evidence f o r Mitochondria as a S i t e o f Toxin A c t i o n The cytoplasmic i n h e r i t a n c e o f t o x i n s e n s i t i v i t y suggests that an a l t e r e d m i t o c h o n d r i a l o r c h l o r o p l a s t genome i s i n v o l v e d . A c h l o r o p l a s t s i t e seems u n l i k e l y both because no e f f e c t of t o x i n on enzyme a c t i v i t i e s i n i s o l a t e d c h l o r o p l a s t l a m e l l a e has been observed (26) and because non-green t i s s u e s l i k e roots and c a l l u s are very s e n s i t i v e to t o x i n . Several l i n e s o f evidence p o i n t to the mitochondria as an important and p o s s i b l y primary s i t e of HmT t o x i n a c t i o n . E f f e c t s of HmT Toxin on I s o l a t e d Mitochondria. Evidence f o r an e f f e c t o f HmT t o x i n on m i t o c h o n d r i a l physiology comes from s e v e r a l r e p o r t s o f toxin-induced a l t e r a t i o n i n r e s p i r a t i o n r a t e s with s e v e r a l s u b s t r a t e s and uncoupling o f o x i d a t i v e phosphoryla t i o n i n mitochondria i s o l a t e d from corn c o n t a i n i n g Τ cytoplasm (Table I, Table I I I ) . Evidence f o r HmT toxin-induced s t r u c t u r a l changes comes from l i g h t transmittance and u l t r a s t r u c t u r a l s t u d i e s which have shown that i s o l a t e d Τ mitochondria s w e l l a f t e r t o x i n treatment (Table I ) . Toxin treatment o f i s o l a t e d mitochondria a l s o r e s u l t s i n damage to c r i s t a e and l o s s of matrix d e n s i t y (Table I ) . Outer m i t o c h o n d r i a l membranes appear to be u l t r a s t r u c t u r a l l y u n a f f e c t e d by HmT t o x i n . These m u l t i p l e e f f e c t s of HmT t o x i n are very r a p i d (Table I ) . Mitochondria i s o l a t e d from Τ corn w i t h nuclear genes f o r f e r t i l i t y r e s t o r a t i o n (TRf) a r e a l s o s e n s i t i v e to t o x i n (23,37), but a longer time i s r e q u i r e d f o r complete i n h i b i t i o n o f malate o x i d a t i o n than when Τ mitochondria are used. The HmT t o x i n e f f e c t s are s p e c i f i c f o r Τ (and TRf) mitochondria. Even very high concentrations of t o x i n have no e f f e c t s on mitochondria i s o l a t e d from p l a n t s with Ν cytoplasm (Table I , Table I I I ) . However, the removal o f the outer membrane of Ν mitochondria r e s u l t s i n sen s i t i v i t y o f the inner membranes to t o x i n as shown by i n h i b i t i o n of malate-DCPIP r e s p i r a t i o n (70).
7.
GREGORY E T A L .
Table I I I .
Southern
Corn
Leaf Blight
99
Disease
E f f e c t of HmT Toxin on R e s p i r a t o r y A c t i v i t i e s of Root Mitochondria from T-cytoplasm and N-cytoplasm Corn Rate of r e s p i r a t i o n (nmol 02/min/mg p r o t e i n )
Substrate
W64A(T) NADH
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch007
Malate + pyruvate
State 3
243
273
State 4
79
88
+ Toxin
407*
88
State 3
80
98
State 4
20
21
+ Toxin Succinate
W64A(N)
21
0*
State 3
175
193
State 4
86
69
+ Toxin
150*
69
* A d d i t i o n of ADP o r the uncoupler 2,4-dinitrophenol (40 μΜ) d i d not s t i m u l a t e the r a t e o f oxygen uptake by Τ mitochondria a f t e r treatment with HmT t o x i n . Ν mitochondria remained well-coupled i n the presence of HmT t o x i n .
Oxygen uptake was measured with a Clark-type oxygen e l e c trode (Yellow Springs Instrument Company) i n 3 ml of a medium c o n t a i n i n g 0.4 M sucrose, 10 mM KC1, 2.5 mM M g C l , 4 mM Κ Η Ρ 0 , 20 mM HEPES, pH 7.4, χ mg/ml bovine serum albumin and 0.4 mg of mitochondria i s o l a t e d from roots of 3-day-old W64A(T) or W64A(N) s e e d l i n g s . Other a d d i t i o n s , as i n d i c a t e d , were 1.5 ymol NADH, 30 ymol malate plus 30 ymol pyruvate, 30 ymol s u c c i n a t e , and 33 yg HmT t o x i n (from a p r e p a r a t i o n which caused 50% i n h i b i t i o n of r o o t growth o f W64A(T) seedlings a t a c o n c e n t r a t i o n o f 0.65 yg/ ml). State 3 rates were measured a f t e r a d d i t i o n of 150 to 300 nmol of ADP, and State 4 r a t e s a f t e r subsequent exhaustion of the added ADP. HmT t o x i n was added during State 4 r e s p i r a t i o n . 2
2
4
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch007
100
H O S T P L A N T RESISTANCE T O
PESTS
E f f e c t s of HmT Toxin on Mitochondria i n s i t u . Although the evidence f o r r a p i d , s e n s i t i v e and s p e c i f i c e f f e c t s of HmT t o x i n on i s o l a t e d Τ mitochondria i s c l e a r , the argument f o r mitochondria as the primary s i t e of t o x i n a c t i o n i n i n t a c t c e l l s has been weakened by a f r e q u e n t l y c i t e d r e p o r t that r e s p i r a t i o n and ATP content of s e e d l i n g t i s s u e are not s p e c i f i c a l l y a f f e c t e d by t o x i n i n time periods during which some i n h i b i t i o n of root growth can be detec ted (17). Unfortunately the method f o r measuring r e s p i r a t i o n was not given and the t i s s u e s assayed were s e e d l i n g shoots, f o r which no r a p i d growth i n h i b i t i o n by t o x i n was described. Toxin penetra t i o n i n t o the i n t a c t 2.5 cm detached shoots used may have been a l i m i t i n g f a c t o r i n the experiment. Recent u l t r a s t r u c t u r a l s t u d i e s (20,33) by our group should r e s o l v e the apparent c o n t r a d i c t i o n between t o x i n e f f e c t s on i s o l a t e d mitochondria and mitochondria i n s i t u . A f t e r t o x i n t r e a t ment of roots and mesophyll p r o t o p l a s t s of Τ corn, the f i r s t u l t r a s t r u c t u r a l e f f e c t s observed were changes i n the mitochondria s i m i l a r to those seen i n t o x i n - t r e a t e d i s o l a t e d mitochondria. F i f t e e n minutes exposure of roots to t o x i n r e s u l t e d i n some damage to the mitochondria of c e l l s i n the root cap and elongation zone. By two hours, many root mitochondria showed s w e l l i n g , r e d u c t i o n i n c r i s t a e and l o s s of matrix d e n s i t y (Figure 1 ) . HmT t o x i n had no e f f e c t on mitochondria i n Ν roots (Figure 1). Mitochondria w i t h i n mesophyll p r o t o p l a s t s from Τ corn were a f f e c t e d even more r a p i d l y and at lower t o x i n concentrations probably because pene t r a t i o n problems were minimized (33). Some p r o t o p l a s t mitochon d r i a were damaged w i t h i n 5 minutes and by 30 minutes, almost a l l of the p r o t o p l a s t s were a f f e c t e d . P r o t o p l a s t s t r e a t e d with t o x i n f o r 30 minutes and then washed thoroughly and c u l t u r e d a l l c o l l a p s e d w i t h i n a few days, l i k e p r o t o p l a s t s continuously exposed to t o x i n . The r a p i d t o x i n damage to the p r o t o p l a s t s was apparent l y i r r e v e r s i b l e (32). Toxin p a r t i a l l y p u r i f i e d by chloroform e x t r a c t i o n had no e f f e c t on mitochondria i n Ν p r o t o p l a s t s , even when high concentrations were used (33). Plasma membranes and other components of Ν and Τ p r o t o p l a s t s looked normal a f t e r 60 minutes exposure to chloroform e x t r a c t a b l e t o x i n . Physiological and biochemical studies of p r o t o p l a s t s c o n t a i n i n g mitochondria damaged by b r i e f t o x i n treatments have not yet been done; however, i t seems l i k e l y that r a p i d t o x i n e f f e c t s on mitochondrial func t i o n s i n v i v o w i l l be detected, perhaps even before u l t r a s t r u c t u r a l damage i s apparent. R e v e r s i b i l i t y o f Toxin A c t i o n There i s some evidence which suggests that HmT t o x i n a c t i o n i s r e v e r s i b l e . Arntzen e t a l . (17) i n a study on Τ corn seedlings showed that roots t r e a t e d with t o x i n f o r one hour and then r e t u r n ed to a t o x i n - f r e e medium grew more slowly than the c o n t r o l f o r approximately 6 hours, then s t a r t e d to grow f a s t e r , and by 10 hours were growing as v i g o r o u s l y as the c o n t r o l s . The degree to
GREGORY
E T A L .
Southern
Corn
Leaf
Blight
Disease
101
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch007
7.
Figure 1. Ultrastructural effects of chhrοform-extractable HmT toxin on mitochondria in the region of elongation of susceptible (W64A(T)) and resistant (W64A(N)) corn roots. Experimental conditions are exactly as described in Ref. 20. Treatments were (A) W64A(T), treated for 2 hr with chloroform-extractable toxin; (B) W64A(T), no toxin added; (C) W64A(N), treated ior 2 hr with chloroform-extractable toxin; (D) W64A(N), no toxin added. The calibration bar represents 0.1 μ in each case.
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch007
102
H O S T P L A N T RESISTANCE T O PESTS
w h i c h t h e r o o t s grew a f t e r t h e t o x i n t r e a t m e n t was d e p e n d e n t o n t o x i n c o n c e n t r a t i o n ( 1 7 ) . H a l l o i n e£ a l (12) t r e a t e d l e a v e s o f Τ c o r n w i t h t o x i n f o r 3 h o u r s a n d t h e n washed t h e l e a v e s f o r 1 h o u r i n t o x i n - f r e e medium. The t o x i n - t r e a t e d l e a v e s showed much h i g h e r r a t e s o f e l e c t r o l y t e l e a k a g e t h a n t h e u n t r e a t e d controls. I n t e r p r e t a t i o n of t h i s l a t t e r data i s d i f f i c u l t be c a u s e i t was n o t s t a t e d w h e t h e r t h e i n c r e a s e d r a t e was d i f f e r e n t f r o m t h e r a t e s o b t a i n e d f o r l e a v e s c o n t i n u o u s l y grown i n t o x i n . R e c e n t e x p e r i m e n t s i n o u r l a b o r a t o r y (32) showed t h a t w a s h i n g o f Τ c o r n p r o t o p l a s t s , f o l l o w i n g 30 m i n u t e t r e a t m e n t s w i t h chloroform-extractable t o x i n , d i d not prevent p r o t o p l a s t c o l lapse. I n t h e same s e t o f e x p e r i m e n t s T - c o r n p r o t o p l a s t c o l l a p s e was p r e v e n t e d b y w a s h i n g t h e p r o t o p l a s t s a f t e r 15 m i n u t e t o x i n t r e a t m e n t s . Two l i n e s o f e v i d e n c e s u g g e s t t h a t t h e e f f e c t o f HmT t o x i n o n o x i d a t i v e p h o s p h o r y l a t i o n i n i s o l a t e d Τ m i t o c h o n d r i a i s r e v e r s i b l e . F i r s t l y , w i t h NADH a s t h e s u b s t r a t e , t h e d e g r e e o f t o x i n - i n d u c e d i n h i b i t i o n o f m i t o c h o n d r i a l ATP formation increases with increasing toxin concentration; the h y p e r b o l i c nature o f the curves suggests r e v e r s i b i l i t y o f t o x i n binding (38). Secondly, t o x i n - t r e a t e d Τ mitochondria recovered most o f t h e i r p h o s p h o r y l a t i n g c a p a c i t y when t o x i n was removed by w a s h i n g t h e m i t o c h o n d r i a w i t h t o x i n - f r e e medium ( 3 8 ) . The d a t a o n r o o t s , p r o t o p l a s t s , a n d i s o l a t e d m i t o c h o n d r i a s u g g e s t t h a t HmT t o x i n does n o t b i n d f i r m l y t o t o x i n - s e n s i t i v e s i t e s i n Τ c e l l s , but r a t h e r t h a t an e q u i l i b r i u m e x i s t s between bound a n d unbound t o x i n . Speculations Mitochondria
o n t h e M e c h a n i s m o f T o x i n - I n d u c e d Damage t o Τ
The mechanism b y w h i c h HmT t o x i n damages Τ m i t o c h o n d r i a i s unknown. A l t h o u g h HmT t o x i n i n d u c e s m u l t i p l e e f f e c t s i n Τ m i t o c h o n d r i a (Table I , Table I I I ) i t i s t h e o r e t i c a l l y p o s s i b l e that a l l of the observed e f f e c t s r e s u l t from a s i n g l e , p r i m a r y e f f e c t caused by a s i n g l e type of t o x i n molecule. A l i k e l y primary e f f e c t i s a t o x i n - i n d u c e d i n c r e a s e i n t h e i o n p e r m e a b i l i t y o f t h e i n n e r mem branes o f Τ mitochondria. Toxin-induced i o n leakage might occur i n one o f t h r e e ways. F i r s t l y , t h e t o x i n c o u l d a c t a s a n i n n e r m i t o c h o n d r i a l mem b r a n e d i s r u p t a n t a s s u g g e s t e d b y Gengenbach elt a l (35) o n t h e basis of u l t r a s t r u c t u r a l data. Such a c t i o n w o u l d r e s u l t i n e x t e n s i v e s t r u c t u r a l damage, i n a d d i t i o n t o c a u s i n g i n c r e a s e d i o n p e r m e a b i l i t y , a n d s h o u l d l e a d t o l e a k a g e o f i n n e r membrane m a t r i x components s u c h a s m a l a t e d e h y d r o g e n a s e . However, r e c e n t e x p e r i ments i n our l a b o r a t o r y (42) h a v e shown t h a t t o x i n t r e a t m e n t does not induce leakage o f malate dehydrogenase from Τ m i t o c h o n d r i a ( T a b l e I V ) . One c r i t i c i s m o f the l a t t e r e x p e r i m e n t i s t h a t o n
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch007
7.
GREGORY
E T A L .
Southern
Corn
Leaf
Blight
Disease
103
a d d i t i o n of t o x i n , malate dehydrogenase could have leaked from the Τ m i t o c h o n d r i a l inner membrane but may have been h e l d w i t h i n the mitochondria by the outer membrane. Secondly, the t o x i n may a c t as a c l a s s i c a l uncoupler and promote the passage of protons through the Τ m i t o c h o n d r i a l inner membrane by a c t i n g as a l i p o p h i l i c weak a c i d . A t h i r d p o s s i b i l i t y i s that the t o x i n i s an ionophore and induces increased p e r m e a b i l i t y of Τ m i t o c h o n d r i a l inner membranes to one or more types of c a t i o n by complexing w i t h the appropriate c a t i o n t o form a l i p i d s o l u b l e complex which can pass through the inner membrane. Whichever mode of a c t i o n i s c o r r e c t , we w i l l be faced with e x p l a i n i n g why Ν mitochondria are completely r e s i s t a n t to HmT t o x i n . At present we do not know whether the inner or the outer m i t o c h o n d r i a l membrane mediates r e s i s t a n c e . A p o s s i b l e r o l e of the outer m i t o c h o n d r i a l membrane i n r e s i s t a n c e was suggested by Watrud £t a l (70) because removal of the outer membrane from Ν mitochondria y i e l d e d a t o x i n - s e n s i t i v e inner membrane p r e p a r a t i o n as judged by t o x i n i n h i b i t i o n of the malate-DCPIP r e a c t i o n . I n t e r p r e t a t i o n of t h i s l a t t e r experiment should be cautious be cause the technique used to prepare the inner membranes i n v o l v e d osmotic s w e l l i n g and s h r i n k i n g of mitochondria i n combination with h i g h speed discontinuous sucrose gradient c e n t r i f u g a t i o n . The l a t t e r procedure could w e l l have damaged the i n n e r membranes and no p h y s i o l o g i c a l data were presented to the contrary (70). Consequently, i t i s p o s s i b l e that t o x i n s e n s i t i v i t y of the inner membranes of Ν mitochondria (70) was due to a b n o r m a l i t i e s brought about by the inner membrane i s o l a t i o n technique r a t h e r than the removal of the outer m i t o c h o n d r i a l membrane per se. Much c a r e f u l work on whole mitochondria and on subm i t o c h o n d r i a l f r a c t i o n s i s needed before we can d i s c o v e r the nature of HmT t o x i n a c t i o n on Τ mitochondria and the l a c k of t o x i n a c t i o n on Ν mitochondria. T h i s work i s a f o c a l p o i n t of our present experiments because i t i s l i k e l y to r e v e a l the biochemical b a s i s of southern corn l e a f b l i g h t d i s e a s e .
Comparative Biochemistry of Mitochondria from Ν and Τ Cytoplasms The A c t i o n of Chemicals (Other than HmT Toxin) on Ν and Τ Mitochondria. S e v e r a l chemicals known to induce one or more responses s i m i l a r to those of HmT t o x i n have been a p p l i e d to Ν and Τ mitochondria. Q u a n t i t a t i v e d i s t i n c t i o n s between Ν and Τ mitochondria have a r i s e n from these experiments. The f o l l o w i n g chemicals were used: Valinomycin. Valinomycin (VAL) s t i m u l a t e s NADH o x i d a t i o n and s w e l l i n g i n mitochondria under c e r t a i n r e a c t i o n c o n d i t i o n s by a c t -
104
HOST
Table IV.
RESISTANCE T O PESTS
E f f e c t o f HmT Toxin on the Release o f Malate Dehydro genase (MDH) from Τ Mitochondria
Treatment
MDH a c t i v i t y (nmol NADH oxidized/min) Supernatant
None
+ HmT Toxin
+ T r i t o n X-100 Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch007
PLANT
MDH a c t i v i t y r e l e a s e d i n t o supernatant % of t o t a l a c t i v i t y Mitochondria
190
3,200
6%
150
2,400
6%
150
3,600
4%
190
3,600
5%
3,600
50
99%
3,500
20
99%
Mitochondria from W64A(T) r o o t s (about 0.5 mg p r o t e i n ) were suspended i n 3 ml o f 0.4 M sucrose, 10 mM KC1, 2.5 mM M g C l , 4 mM KH P0 , 20 mM HEPES, pH 7.4 (Medium A) c o n t a i n i n g 1.5 ymol NADH and 300 nmole ADP. As i n d i c a t e d , HmT t o x i n (33 yg) o r the d e t e r gent T r i t o n X-100 (to a c o n c e n t r a t i o n o f 0.15%) were added. A f t e r i n c u b a t i o n f o r 5 min a t room temperature the samples were cent r i f u g e d a t 18,000 xg f o r 18 min a t 25°. Each p e l l e t was sus pended i n 0.5 ml o f M e t ï u m A, and s o l u b i l i z e d with T r i t o n X-100 (0.15%) to r e l e a s e the t o t a l enzyme a c t i v i t y . Appropriate a l i q u o t s of the supernatants and p e l l e t s were assayed f o r MDH a c t i v i t y i n 3 ml o f 0.4 M sucrose, 20 mM HEPES, 0.25 mM NADH, 1 mM oxaloacetate, 1 mM KCN, pH 7.4. The o x i d a t i o n of NADH was monitored by the change i n absorbance a t 340 nm. 2
2
4
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch007
7.
GREGORY
ET AL.
Southern
Corn
Leaf Blight
Disease
105
ing as a Κ - s p e c i f i c ionophore (51). VAL induced s i m i l a r respons es i n Ν and Τ mitochondria with respect to o x i d a t i o n o f exogenous NADH and m i t o c h o n d r i a l s w e l l i n g , although the l a t t e r was more marked i n Ν mitochondria a t low VAL concentrations (38,43). Gramicidin D. Gramicidin (GRAM) causes s w e l l i n g i n KC1 o r NaCl media, uncouples o x i d a t i v e phosphorylation, and stimulates NADH o x i d a t i o n i n KC1 o r sucrose media (52). GRAM caused more s t i m u l a t i o n o f NADH o x i d a t i o n by Τ mitochondria than by Ν mito chondria, although GRAM-induced s w e l l i n g of Ν mitochondria was always s l i g h t l y greater than that i n Τ mitochondria (43). 2,4-Dinitrophenol (DNP) uncouples o x i d a t i v e phosphoryla t i o n . DNP caused dramatic s t i m u l a t i o n o f NADH r e s p i r a t i o n i n both Ν and Τ mitochondria. However, a t high l e v e l s o f DNP, the s t i m u l a t i o n was s i g n i f i c a n t l y higher f o r Τ mitochondria than f o r Ν mitochondria (43). Bednarski e t a l . (38) could not detect s i g n i f i c a n t d i f f e r e n c e s between Τ and Ν mitochondria i n s e n s i t i v i t y to DNP. Sodium azide i s a terminal oxidase i n h i b i t o r . The degree of i n h i b i t i o n of NADH o x i d a t i o n by sodium azide was the same f o r Ν and Τ mitochondria (43). N i g e r i c i n (NIG) plus Κ causes uncoupling i n mitochondria. Τ mitochondria were m o r e s e n s i t i v e than were Ν mitochondria to uncoupling by NIG plus Κ (38). D e c e n y l s u c c i n i c A c i d . D e c e n y l s u c c i n i c a c i d (DSA) causes m i t o c h o n d r i a l s w e l l i n g by mediating membrane d i s r u p t i o n . DSA t r e a t ments a l s o s t i m u l a t e exogenous NADH o x i d a t i o n and r e s u l t i n l o s s of o x i d a t i v e phosphorylation (53). DSA s t i m u l a t e d NADH o x i d a t i o n a t low concentrations but caused i n h i b i t i o n a t higher concentra t i o n s . The Ν and Τ mitochondria responded s i m i l a r l y to DSA with respect to NADH o x i d a t i o n . However, DSA caused c o n s i d e r a b l y more s w e l l i n g i n Ν mitochondria than i n Τ mitochondria (43). Calcium ( i n the presence and absence o f phosphate). Calcium i n the absence o f i n o r g a n i c phosphate stimulated NADH o x i d a t i o n i n Ν mitochondria somewhat more than i n Τ mitochondria. Calcium plus phosphate induced s i m i l a r s t i m u l a t i o n s o f NADH o x i d a t i o n i n the Ν and Τ mitochondria (43). D i g i t o n i n . D i g i t o n i n i s a saponin which can d i s r u p t b i o l o g i c a l membranes. A t low concentrations d i g i t o n i n i s s e l e c t i v e f o r s t e r o i d - r i c h membranes. Evidence f o r t h i s s e l e c t i v i t y comes from the f i n d i n g o f Schnaitman et^ al^. (54) that the outer membrane o f r a t l i v e r mitochondria i s more d i g i t o n i n - s e n s i t i v e than the inner membrane. These authors suggested that as d i g i t o n i n i s known to combine with c h o l e s t e r o l (a major membrane s t e r o i d i n animals) on a 1:1 b a s i s , i t was p o s s i b l e that the outer m i t o c h o n d r i a l mem branes were higher i n c h o l e s t e r o l than the inner membrane. Sub sequent s t u d i e s with guinea p i g l i v e r mitochondria showed that the s t e r o i d content o f the outer m i t o c h o n d r i a l membrane was s i x times more concentrated, on a p r o t e i n b a s i s , than i n the inner membrane (55) . Gregory e_t aJU (56) have r e c e n t l y s t u d i e d the r e s p i r a t o r y e f f e c t s o f low concentrations o f d i g i t o n i n on N, C, +
HOST P L A N T RESISTANCE TO
106
PESTS
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch007
and Τ mitochondria (Figure 2 ) . The Τ mitochondria were dramati c a l l y more d i g i t o n i n - s e n s i t i v e than the Ν o r C mitochondria, as i n d i c a t e d by i n h i b i t i o n o f malate and s u c c i n a t e r e s p i r a t i o n and uncoupling o f o x i d a t i v e phosphorylation (Figure 2 ) . There were a l s o d i f f e r e n c e s between the Ν and C mitochondria with r e s p e c t to d i g i t o n i n s e n s i t i v i t y (Figure 2 ) . These data were thought (56) to r e f l e c t d i f f e r e n c e s i n membrane s t e r o i d composition between the N, Τ and C mitochondria. I t was noted (56) that the d i g i t o n i n e f f e c t s were somewhat s i m i l a r to those o f HmT t o x i n on Τ mitochon dria. The data o u t l i n e d above showed that compounds other than HmT toxin can produce d i f f e r e n t i a l e f f e c t s on v a r i o u s inner mem brane f u n c t i o n s i n Ν and Τ mitochondria and thus s t r o n g l y sup ports the concept that those mitochondria d i f f e r with r e s p e c t to membrane s t r u c t u r e .
0
2
4
6
.8
1.0
1.2
14
16
18
20
Digitonin Concentration (mg digitonin/mg mitochondrial protein) Figure 2. Effects of digitonin on respira tion and oxidative phosphorylation in mito chondria isolated from W64A(N), W64A(T), and W64A(C) roots. Experimental condi tions are found in Ref. 56.
7.
GREGORY
ET
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch007
Chemical
AL.
Southern
Corn
Leaf Blight
Disease
107
Composition o f Ν and Τ Mitochondria.
N u c l e i c A c i d s . Levings and P r i n g (57) have shown that Ν and Τ cytoplasms d i f f e r with respect to m i t o c h o n d r i a l DNA (mt DNA). In these experiments, mt DNA was i s o l a t e d from the Ν and Τ cytoplasms of s e v e r a l corn l i n e s . The mt DNA's were subjected to r e s t r i c t i o n enzyme fragment a n a l y s i s using each of the r e s t r i c t i o n endonucleases Eco RI (52,58) , H i n D I I I (57.,5j0 , Bam I (57), and Sal I (57). Each of these enzymes cut DNA a t d i f f e r e n t sequence s p e c i f i c s i t e s and each y i e l d e d d i s t i n c t i o n s between the mt DNA from Ν and Τ cytoplasms (57). In a d d i t i o n , i t was shown (57) that the male s t e r i l e cytoplasms other than T, namely S, C and EP, d i f f e r e d with r e s p e c t to mt DNA. As these d i f f e r e n c e s may have been due to contaminating DNA from n u c l e a r , b a c t e r i a l or v i r a l sources, Levings and P r i n g (58) were c a r e f u l to confirm the i d e n t i t y of t h e i r mt DNA preparations by using buoyant d e n s i t y determinations i n n e u t r a l cesium c h l o r i d e and showing that t h e i r mt DNA p r e p a r a t i o n s appeared as a s i n g l e band with a buoyant d e n s i t y of 1.706 g/cm which i s c h a r a c t e r i s t i c of higher p l a n t mt DNA (59). In a d d i t i o n , the upper and lower DNA bands obtained from cesium c h l o r i d e - e t h i d i u m bromide g r a d i e n t s were i n agreement with the expected value f o r mt DNA. There was no i n d i c a t i o n of n u c l e a r DNA contamination because the upper and lower DNA bands on cesium c h l o r i d e - e t h i d i u m bromide gradients were i n d i s t i n g u i s h a b l e from each other and, i n any case, r e s t r i c t i o n enzyme fragment a n a l y s i s of the complex nuclear DNA does not y i e l d d i s t i n c t bands which c o u l d be confused with mt DNA bands (58). The p o s s i b i l i t y of contamination o f the mt DNA prepara t i o n s by v i r a l DNA was not r u l e d out (58). Previous work i n v o l v i n g buoyant d e n s i t y a n a l y s i s o f mt DNA's on n e u t r a l cesium c h l o r i d e had f a i l e d to demonstrate d i f f e r e n c e s between Ν and Τ cytoplasms (60). D i f f e r e n c e s between the mt DNA o f suscep t i b l e and r e s i s t a n t c e l l s are a p r e r e q u i s i t e f o r t h e o r i e s i n v o l v i n g Τ mitochondria as primary f a c t o r s i n c y t o p l a s m i c a l l y i n h e r i t e d s u s c e p t i b i l i t y to southern corn l e a f b l i g h t d i s e a s e . Whether or not the observed mt DNA d i f f e r e n c e s are a s s o c i a t e d with d i f f e r e n c e s i n disease s u s c e p t i b i l i t y remains to be seen. 3
Proteins 1. Subunit f i n g e r p r i n t s o f t o t a l m i t o c h o n d r i a l p r o t e i n . The use of high r e s o l u t i o n two-dimensional e l e c t r o p h o r e s i s i n our l a b o r a t o r y has f a i l e d to show q u a l i t a t i v e d i f f e r e n c e s between N, C and Τ mitochondria with r e s p e c t to t o t a l p r o t e i n subunits (61). The a n a l y t i c a l technique, developed by O ' F a r r e l l (62), i n v o l v e s s e p a r a t i o n of m i t o c h o n d r i a l p r o t e i n according to i s o e l e c t r i c p o i n t by i s o e l e c t r i c f o c u s i n g i n the f i r s t dimension, followed by s e p a r a t i o n according to molecular weight by sodium dodecyl s u l f a t e e l e c t r o p h o r e s i s i n the second dimension. The
108
HOST P L A N T RESISTANCE T O
r e s u l t i s a " f i n g e r p r i n t " of the mitochondrial p r o t e i n subunits. The technique i s h i g h l y r e p r o d u c i b l e so that each spot on one separation can be matched with a corresponding spot on a d i f ferent separation. In a d d i t i o n the technique can r e s o l v e p r o t e i n s d i f f e r i n g i n a s i n g l e charge (62). In our experiments, v i s u a l i z a t i o n of the p r o t e i n f i n g e r p r i n t s was by means of s t a i n ing r a t h e r than by autoradiography which i s more s e n s i t i v e . I t i s therefore very p o s s i b l e that one or more p r o t e i n s were un detected i n our experiments and that q u a n t i t a t i v e d i f f e r e n c e s e x i s t between the p r o t e i n s of N, C and Τ mitochondria. Future experiments i n our laboratory i n v o l v i n g a combination of auto radiography and two-dimensional e l e c t r o p h o r e s i s of mitochondrial p r o t e i n s which are l a b e l l e d with e i t h e r C or S , w i l l f a c i l i t a t e b e t t e r s e n s i t i v i t y and q u a n t i f i c a t i o n of the system. 2. Cytochromes. P r i n g (63) has reported that Τ mitochon d r i a contain a f u l l complement of cytochromes a + a$ b and c as detected by d i f f e r e n c e spectra at 25°C. I t has a l s o been shown that Τ cytoplasm contains 7-12% more cytochrome b than does Ν (63) and that TRf mitochondria contain s l i g h t l y more c y t o chrome a + a 3 than do Ν mitochondria (64) i n each of f i v e inbred lines. Small d i f f e r e n c e s i n cytochrome b and c content of Ν and TRf mitochondria were noted, but these d i f f e r e n c e s were not ap parent f o r a l l of the inbred l i n e s t e s t e d (64). S t e r o i d s . Q u a n t i t a t i v e and q u a l i t a t i v e determinations of m i t o c h o n d r i a l s t e r o i d s i n our l a b o r a t o r y have y i e l d e d no r e p r o d u c i b l e d i f f e r e n c e s between Ν and Τ cytoplasms (65). Lack of r e p r o d u c i b i l i t y may be a f u n c t i o n of v a r y i n g p u r i t y among the d i f f e r e n t mitochondrial preparations. The experiments i n v o l v e d e x t r a c t i o n of a crude s t e r o i d p r e p a r a t i o n from the i s o l a t e d mito chondria, p u r i f i c a t i o n of the s t e r o i d s by s i l i c i c a c i d column chromatography, followed by GLC of the f r e e s t e r o i d s . Three major s t e r o i d s were found i n the Ν and the Τ mito chondria: campesterol, s t i g m a s t e r o l and s i t o s t e r o l . The i d e n t i t y of these compounds was confirmed by GLC-mass spectroscopy i n c o l l a b o r a t i o n with Dr. S. F. Osman, ARS-USDA, Eastern Regional Research Center, Wyndmoor, Pa. A minor s t e r o i d was a l s o found, but the i d e n t i t y of t h i s compound i s not known at present. The f a c t that Ν and Τ mitochondria are d i f f e r e n t i a l l y s e n s i t i v e to d i g i t o n i n (56) as explained p r e v i o u s l y , suggests that f u r t h e r experiments i n v o l v i n g f r a c t i o n a t i o n , p u r i f i c a t i o n , and s t e r o i d analyses of inner and outer m i t o c h o n d r i a l membranes may y i e l d d i f f e r e n c e s between these mitochondria. I t i s of i n t e r e s t that s t e r o l d i f f e r e n c e s have been found between Ν and Τ t a s s e l s during development (66). llf
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch007
PESTS
3 5
9
Studies on the Molecular S p e c i f i c Toxin
Structure of H. maydis Race Τ Host
The exact molecular s t r u c t u r e of HmT
t o x i n i s not yet known
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch007
7.
GREGORY
E T
AL.
Southern
Corn
Leaf
Blight
Disease
109
and there i s disagreement as to which c l a s s of compounds HmT t o x i n belongs. Our current information on HmT t o x i n s t r u c t u r e c o n s i s t s of p u b l i s h e d data by Karr e_t a l . ( 2 4 ) and a recent personal com munication from J . M. Daly of the U n i v e r s i t y o f Nebraska (67). Karr e t a l . ( 2 4 ) i s o l a t e d f i v e t o x i c compounds from crude HmT culture f i l t r a t e . I t was p o s t u l a t e d that the t o x i c compounds were terpenoids, e x i s t i n g f r e e or as g l y c o s i d e s , ranging i n molecular weight from 350 to 600 and a chemical assay f o r HmT t o x i n was developed (68). This work i n v o l v e d f r a c t i o n a t i o n and p u r i f i c a t i o n of the t o x i c components i n combination with a l e a f puncture b i o assay f o r t o x i n a c t i v i t y i n each f r a c t i o n . The f r a c t i o n s which e x h i b i t e d a c t i v i t y i n the bioassay were analysed f o r chemical s t r u c t u r e by chemical t e s t s , chromatography, mass spectroscopy and nuclear magnetic resonance a n a l y s i s . The chemical assay f o r HmT t o x i n was a g e n e r a l i z e d t e s t f o r terpenoids using s u l f u r i c a c i d - a c e t i c anhydride reagent. The involvement of the f i v e t e r penoid compounds i n HmT t o x i n s p e c i f i c i t y i s open to q u e s t i o n . A subsequent comparison (69) of the chemical assay d e s c r i b e d by Karr ejt a l . (68) to measure the f i v e terpenoid t o x i n components i n p a r t i a l l y p u r i f i e d preparations r e v e a l e d that both HmT and HmO (which does not produce a h o s t - s p e c i f i c toxin) produce compounds s i m i l a r to the toxins i d e n t i f i e d by Karr e t a l . ( 2 4 ) . Consequently i t i s p o s s i b l e that the f i v e terpenoid compounds c h a r a c t e r i z e d by Karr ejt S L L . ( 2 4 ) are not a s s o c i a t e d w i t h the h o s t - s p e c i f i c a c t i v i t y of HmT t o x i n . I t i s i n t e r e s t i n g , however, that when Watrud et a l . (70) t r e a t e d Τ mitochondria w i t h a mixture of toxins I and I I (see r e f e r e n c e 2JL f ° terminology), the c h a r a c t e r i s t i c r e sponses were e l i c i t e d . Another problem i n the work of Karr e t a l . ( 2 4 ) d e r i v e s from the use o f the i n s e n s i t i v e l e a f puncture b i o assay i n the assessment of t o x i c a c t i v i t y of the v a r i o u s f r a c t i o n s (15,69). I t i s p o s s i b l e that one or more of the discarded f r a c tions contained non-terpenoid h o s t - s p e c i f i c t o x i n a c t i v i t y . r
A non-terpenoid s t r u c t u r e f o r HmT t o x i n has been proposed r e c e n t l y by Kono and Daly (67). Some d e t a i l s of the s t r u c t u r e have not been f i n a l i z e d , but a great deal of u s e f u l i n f o r m a t i o n has been gained. The molecule has an e m p i r i c a l formula of 2 9 5 0 ° 9 (542 daltons) and i s extremely a c t i v e a g a i n s t Τ corn, causing complete n e c r o s i s of the f i r s t true l e a f a t l e v e l s as low as 5 to 10 ng. The t o x i c i t y of the molecule was s p e c i f i c f o r Τ corn as no t o x i c e f f e c t was observed on Ν corn or on other p l a n t s p e c i e s . The use of a very s e n s i t i v e t o x i n bioassay, i n which dark C 0 f i x a t i o n by corn l e a f d i s c s was measured (18) insured that no b i o l o g i c a l l y a c t i v e t o x i n f r a c t i o n s were discarded p r i o r to s t r u c t u r a l a n a l y s i s . In aqueous s o l v e n t s the m a t e r i a l chromatographed as a s i n g l e d i f f u s e spot, but i n mixtures of methanol and non-polar organic compounds a major and two minor components with host s p e c i f i c i t y were observed. These a d d i t i o n a l compounds were probably isomeric o r homologous because a c e t y l a t i o n of t o x i n r e s u l t e d i n the formation of a t e t r a a c e t a t e of e m p i r i c a l formula C37H58O13 (710 daltons) which a l s o r e s o l v e d i n t o a major and two C
H
2
HOST P L A N T
110
RESISTANCE T O PESTS
minor components. The IR, NMR and UV s p e c t r a of two of the a c e t y l a t e d d e r i v a t i v e s could be d i s t i n g u i s h e d only by the e x t i n c t i o n c o e f f i c i e n t i n the UV. There were i n s u f f i c i e n t amounts o f the t h i r d component to make comparisons. C and proton NMR of the major a c e t y l a t e d d e r i v a t i v e support the e x i s t e n c e of four hydroxyl groups and f i v e carbonyl groups i n the o r i g i n a l t o x i n . On the b a s i s of IR, C and proton decoupling NMR and mass s p e c t r a of the component i s o l a t e d i n the l a r g e s t y i e l d , two p o s s i b l e s t r u c t u r e s have been proposed f o r HmT t o x i n (Figure 3). Work to determine the exact s t r u c t u r e of the molecule i s s t i l l i n pro gress. Whether the s i n g l e p u r i f i e d t o x i n molecule of Kono and Daly (67) mimics the m u l t i p l e m i t o c h o n d r i a l e f f e c t s induced by crude t o x i c f i l t r a t e and c h l o r o f o r m - t o x i n i s a c r i t i c a l and ex c i t i n g question. 1 3
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch007
1 3
Concluding Remarks Mechanism o f Southern Corn Leaf B l i g h t Disease. In our o p i n i o n present data suggests that a major component (and perhaps the primary component) of southern corn l e a f b l i g h t disease i s the HmT toxin-induced damage of mitochondria i n s u s c e p t i b l e (T c y t o plasm) corn. This o p i n i o n i s based on two major pieces of exper imental evidence. F i r s t l y , s e v e r a l groups have shown that i s o l a t e d s u s c e p t i b l e Τ mitochondria (but not the r e s i s t a n t mito chondria) are s e v e r e l y damaged by HmT t o x i n . The p h y s i o l o g i c a l m a n i f e s t a t i o n of t h i s damage, should the damage a l s o occur i n s i t u , would l e a d to the death of corn c e l l s which c o n t a i n Τ cytoplasm. Secondly, u l t r a s t r u c t u r a l s t u d i e s by our group have shown that HmT t o x i n can damage Τ mitochondria i n s i t u and that t h i s damage i s s i m i l a r to that observed i n t o x i n - t r e a t e d , i s o l a t e d Τ mito chondria. However, i t i s of extreme importance to e l u c i d a t e whether or not HmT t o x i n a f f e c t s Τ m i t o c h o n d r i a l physiology i n v i v o , because a t present there i s no c o n c l u s i v e evidence i n t h i s area. S e n s i t i v e measurements o f i n v i v o r e s p i r a t i o n and phos p h o r y l a t i o n i n t o x i n - t r e a t e d corn p r o t o p l a s t s are i n progress i n our l a b o r a t o r y and may have great relevance to the nature of southern corn l e a f b l i g h t d i s e a s e . The cytoplasmic i n h e r i t a n c e of s u s c e p t i b i l i t y to the disease may a l s o be c o n s i s t e n t w i t h the mitochondria (which c o n t a i n DNA) being of primary importance. Should the t r a n s f e r of r e s i s t a n t (N) mitochondria to s u s c e p t i b l e (T) p r o t o p l a s t s r e s u l t i n a c o n f e r r i n g of r e s i s t a n c e to these p r o t o p l a s t s , there w i l l be l i t t l e doubt that mitochondria are a major f a c t o r i n the r e s i s t a n c e of corn to southern corn l e a f b l i g h t d i s e a s e . This experiment i s i n progress i n our l a b o r a t o r y . The Use of the Southern Corn Leaf B l i g h t System i n Studies on M i t o c h o n d r i a l Genetics i n Higher P l a n t s . L i t t l e i s known about the m i t o c h o n d r i a l genetics of higher p l a n t s . Although asexual genetic manipulation such as p r o t o p l a s t f u s i o n and o r g a n e l l e t r a n s f e r can b r i n g together cytoplasmic components from d i v e r s e c e l l types, few m i t o c h o n d r i a l markers are a v a i l a b l e i n higher
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch007
7.
GREGORY
E TA L .
OH
α.
O H
Corn Leaf
Ο
Ο
Ο
Ο
Blight
O
H
Ο
111
Disease
O H
Ο
Ο
/WWWWWWA OH
Figure 3.
Southern
O H
O H
Ο
Ο
O H
Ο
Two possible structures for HmT toxin recently proposed by Kono and Daly
(67)
112
HOST PLANT RESISTANCE TO PESTS
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch007
plants. Because HmT toxin rapidly and specifically destroys both Τ cytoplasm protoplasts and Τ mitochondria within protoplasts (20,31,32,33) the toxin will be a useful probe for following mitochondrial transfers. The response of protoplasts and mito chondria to HmT toxin after fusion of Ν and Τ cytoplasm proto plasts, or after transfer of isolated Ν mitochondria to Τ proto plasts, may answer several important questions: can "foreign" mitochondria be transferred to a different cytoplasm?; can such mitochondria survive, function, replicate, and alter the survival of host protoplasts?; do mitochondria carry all the genetic material that determines cytoplasmic response to toxin? Tech niques developed using HmT toxin as a probe for successful genetic manipulations with mitochondria may facilitate a new experimental approach to the study of mitochondrial genetics in higher plants. Literature Cited 1. Hooker, A.L., Smith, D.R., Lim, S.M., Beckett, J.B., Plant Dis. Rep. (1970) 54, 708. 2. Smith, D.R., Hooker, A.L., Lim, S.M., Beckett, J.B., Crop Sci. (1971) 11, 772. 3. Gracen, V.E., Grogan, C.O., Plant Dis. Rep. (1972) 56, 432. 4. Berquist, R.R., Peverly, G., Plant Dis. Rep. (1972) 56, 112. 5. Hallauer, A.R., Martinson, C.A., Agronomy J. (1975) 67, 497. 6. Lim, S.M., Plant Dis. Rep. (1974) 58, 811. 7. Caunter, I.G., Ph.D. thesis, 1977, Cornell University, "A Genetic Study of Nuclear Controlled Resistance to Southern and Yellow Leaf Blights in Maize" (Zea mays L.). 8. Payne, G.A., Yoder, O.C., Phytopathology (1977)67,in press. 9. Lim, S.M., Hooker, A.L., Genetics (1971) 69, 115. 10. Yoder, O.C., Gracen, V.E., Phytopathology (1975) 65, 273. 11. Lim, S.M., Hooker, A.L., Phytopathology (1972) 62, 968. 12. Halloin, J.M., Comstock, J.C., Martinson, C.A., Tipton, C.L., Phytopathology (1973)63,640. 13. Gracen, V.E., Forster, M.J., Sayre, K.D., Grogan, C.O., Plant Dis. Rep. (1971) 55, 469. 14. Turner, M.T., Martinson, C.A., Plant Dis. Rep. (1972) 56, 29. 15. Yoder, O.C., Payne, G.A. Gregory, P., Gracen, V.E., Physiol. Plant Path. (1977) 10, 237. 16. Wheeler, H., Williams, A.S., Young, L.D., Plant Dis. Rep. (1971) 55, 667. 17. Arntzen, C.J., Koeppe, D.E., Miller, R.J., Peverly, J.H., Physiol. Plant Path. (1973) 3, 79. 18. Bhullar, B.S., Daly, J.M., Rehfeld, D.W., Plant Physiol. (1975) 56, 1. 19. Wheeler, H., Ammon, V.D., Phytopathology (1977)67,325. 20. Aldrich, H.C., Gracen, V.E., York, D., Earle, E.D., Yoder, O.C., Tissue and Cell (1977) 9, 167. 21. Koeppe, D.E., Malone, C.P., Miller, R.J., Plant Physiol. (supp.) (1973) 51, 10.
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch007
113 7. GREGORY ET AL. Southern Corn Leaf Blight Disease 22. Mertz, S.M. Jr., Arntzen, C.J., Plant Physiol. (supp.) (1973) 51, 16. 23. Watrud, L.S., Hooker, A.L., Koeppe, D.E., Phytopathology (1975) 65, 178. 24. Karr, A.L. Jr., Karr, D.B., Strobel, G.A., Plant Physiol. (1974) 53, 250. 25. Earle, E.D., unpublished. 26. Arntzen, C.J., Haugh, M.F., Bobick, S., Plant Physiol. (1973) 52, 569. 27. Gracen, V.E., Grogan, C.O., Forster, M.J., Can. J. Bot. (1972) 50, 2167. 28. Frick, H., Bauman, L.F., Nicholson, R.L., Hodges, T.K., Plant Physiol. (1977) 59, 103. 29. Gengenbach, B.G., Green, C.E., Crop Sci. (1975) 15, 645. 30. Laughnan, J.R., Gabay, S.J., Crop Sci. (1973) 13, 681. 31. Pelcher, L.E., Kao, K.N., Gamborg, O.L., Yoder, O.C., Gracen, V.E., Can. J. Bot. (1975) 53, 427. 32. Earle, E.D., Gracen, V.E., Yoder, O.C., Gemmill, K.P., submitted to Plant Physiol. 33. York, D.W., unpublished. 34. Miller, R.J., Koeppe, D.E., Science (1971) 173, 67. 35. Gengenbach, B.G., Miller, R.J., Koeppe, D.E., Arntzen, C.J., Can. J. Bot. (1973) 51, 2119. 36. Krueger, W.A., Josephson, L.M., Hilty, J.W., Phytopathology (1974) 64, 735. 37. Barratt, D.H.P., Flavell, R.B., Theoretical and Applied Genetics (1975) 45, 315. 38. Bednarski, M.A., Izawa, S., Scheffer, R.P., Plant Physiol. (1977) 59, 540. 39. Peterson, P.Α., Flavell, R.B., Barratt, D.H.P., Theoreti cal and Applied Genetics (1975) 45, 309. 40. Flavell, R., Physiol. Plant Path. (1975)6,107. 41. Peterson, P.Α., Flavell, R.B., Barratt, D.H.P., Plant Dis. Rep. (1974) 58, 777. 42. Matthews, D.E., unpublished. 43. Gengenbach, B., Koeppe, D.E., Miller, R.J., Physiol. Plant. (1973) 29, 103. 44. Tipton, C.L., Mondal, M.H., Uhlig, J., Biochem. Biophys. Res. Comm. (1973) 51, 725. 45. Tipton, C.L., Mondal, M.H., Benson, M.J., Physiol. Plant Path. (1975)7,277. 46. Gracen, V.E., Forster, M.J., Grogan, C.O., Plant Dis. Rep. (1971) 55, 938. 47. Frick, H., Nicholson, R.L., Hodges, T.K., Bauman, L.F., Plant Physiol. (1976) 57, 171. 48. Hodges, T.K., Leonard, R.T., Bracker, C.E., Keenan, T.W., Proc. Nat. Acad. Sci. U.S.A. (1972) 69, 3307. 49. Scheffer, R.P. IN Biochemistry & Cytology of Plant-Parasite Interaction [K. Tomiyama, J.M. Daly, I. Uritani, H. Oku and S. Ouchi, eds], p. 118, Elsevier Scientific Publishing Company, 1976.
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch007
114
HOST PLANT RESISTANCE TO PESTS
50. Gracen, V.E., unpublished. 51. Hanson, J.B., Bertognolli, B.L., Shepherd, W.D., Plant Physiol. (1972) 50, 347. 52. Miller, R.J., Dumford, W.S., Koeppe, D.E., Plant Physiol. (1970) 46, 471. 53. Koeppe, D.E., Miller, R.J., Plant Physiol. (1971) 48, 659. 54. Schnaitman, C., Erwin, V.G., Greenawalt, J.W., J. Cell Biol. (1967) 32, 719. 55. Parsons, D.F., Yano, Y., Biochem. Biophys. Acta (1967) 135, 362. 56. Gregory, P., Gracen, V.E., Yoder, O.C., Steinkraus, N.A., Plant Sci. Lett. (1977) 9, 17. 57. Levings, C.S. III, Pring, D.R., Proc. 31st Annu. Corn and Sorghum Res. Conf. (1976) 110. 58. Levings, C.S. III, Pring, D.R., Science (1976) 193, 158. 59. Wells, R., Ingle, J., Plant Physiol. (1970) 46, 178. 60. Shah, D.M., Levings, C.S. III, Crop Sci. (1974) 14, 852. 61. Gemmill, R., Gregory, P., unpublished. 62. O'Farrell, P.H., J. Biol. Chem. (1975) 250, 4007. 63. Pring, D.R., Plant Physiol. (1975) 55, 203. 64. Watrud, L.S., Laughnan, J.R., Gabay, S.J., Koeppe, D.E., Can. J. Bot. (1976) 54, 2718. 65. Gregory, P., unpublished. 66. Comita, J.J., Klosterman, H.J., Phytochem. (1976) 15, 917. 67. Kono, Y., Daly, J.M., personal communication. 68. Karr, D.B., Karr, A.L., Strobel, G.A., Plant Physiol. (1975) 55, 727. 69. Yoder, O.C., Gracen, V.E., Plant Physiol. (1977) 59, 792. 70. Watrud, L.S., Baldwin, J.K., Miller, R.J., Koeppe, D.E., Plant Physiol. (1975) 56, 216.
Acknowledgements The experiments performed in our laboratory were supported in part by grant 75002 from the Rockefeller Foundation. We gratefully acknowledge the help of Dr. D.E. Matthews, H. Pham, and D.W. York in the preparation of this paper.
8 Host Plant Resistance to Insects
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch008
A. C. WAISS, JR., B. G. CHAN, and C. A. ELLIGER Western Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, Berkeley, CA 94710
In order to use chemical insecticides more advantageously, systems for integrated pest management were recommended in 1975 by the National Academy of Sciences (1,2), U. S. Department of Agriculture (3) and the Entomological Soc. of America (4). Among the various alternatives to chemical insecticides, the use of insect resistant plants, in combination with good cultural practice, is perhaps the most effective, convenient, economical and environmentally acceptable method of insect control. In addition, it is a method that is completely compatible with both chemical and other biological control measures. Host Plant Resistance (HPR) to Insects Since many excellent reviews (5, 6, 7, 8, 9) have been written on the subject of plant-insect interactions, no attempt will be made in this paper to fully review past literature. Rather, we will use a few selected examples stressing the problems that may be encountered by chemists working in this relatively unexplored area of research, as well as future research needs of this very important field. Host plant resistance (HPR) has been recognized since the early 1800's. Because plants, which are generally immobile, lack a circulatory system, the existence of the classical antigen-antibody immune system would not be possible. Through evolutionary processes plants have elaborated an array of "secondary metabolic products" of which many function in HPR. From the standpoint of natural selection in evolution HPR is a preadaptive characteristic of plants. Before being cultivated by man, plants, co-evolving with insects, either intrinsically possessed or have developed means of surviving attack by arthropods. Although the first significant economic contribution by HPR to agriculture occurred in 1890, this was the successful grafting of European grape vines onto resistant root stock from North America (10) to save the French wine industry from Phylloxera vitifolia (Fitch), the potential of 115
HOST P L A N T RESISTANCE TO
116
H P R as an insect
control method,
however,
PESTS
w a s not fully-
a p p r e c i a t e d u n t i l t h e m i d I960's p a r t l y d u e to t h e a v a i l a b i l i t y of e c o n o m i c a l ,
effective and persistent
insecticides which had
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch008
b e e n i n t r o d u c e d s o m e two d e c a d e s e a r l i e r . W h i l e o v e r a m i l l i o n s p e c i e s of i n s e c t s e x i s t , o n l y a f e w t h o u s a n d m a y be c l a s s i f i e d a s p e s t s ; a n d , of t h e s e , o n l y a b o u t 500 s p e c i e s p r o d u c e a p p r e c i a b l e e c o n o m i c d a m a g e . The g e n e r a l a s y n c h r o n y i n s p a c e a n d t i m e b e t w e e n the g r o w t h a n d d e v e l o p m e n t of p l a n t s a n d i n s e c t s , c a u s e d b y b o t h g e o g r a p h i c a l a n d o t h e r e n v i r o n m e n t a l f a c t o r s i s the m a j o r e s c a p e m e c h a n i s m of the h o s t . T h e " e m p h e r m e r a l i t y " (9) o r l a c k o f " a p p a r e n c y " (8) o f m a n y d e c i d u o u s a n d a n n u a l p l a n t s c a u s e s f u r t h e r s e l e c tive p r e s s u r e against s p e c i a l i z e d h e r b i v o r e s . In n a t u r e , H P R p r o v i d e s s t i l l a n o t h e r d e f e n s e f o r p l a n t s to m a i n t a i n e c o l o g i c a l balance with their predators. T h r e e m e c h a n i s m s to a c c o u n t f o r t h e insect damage were p r o p o s e d by P a i n t e r 1. N o n p r e f e r e n c e - In c o - e v o l u t i o n , to t h e i r h o s t s t h r o u g h s o u r c e a t t r a c t a n t s position stimulants. N o n p r e f e r e n c e is a t h e s e s t i m u l a n t s o r , o f t e n , the p r e s e n c e physical deterrents.
p l a n t ' s r e s i s t a n c e to ( Π , 12): insects have adapted and feeding and o v i r e s u l t of the l a c k of of c h e m i c a l a n d
2. T o l e r a n c e - T h i s i s t h e a b i l i t y o f c e r t a i n p l a n t s t o w i t h stand insect attack without a p p r e c i a b l e l o s s in v i g o r or c r o p yield. 3. A n t i b i o s i s - T h i s c o m p r i s e s t h e d e f e n s i v e m e c h a n i s m of p l a n t s a g a i n s t t h e i r p e s t s t h r o u g h a d v e r s e i n f l u e n c e o n g r o w t h , s u r v i v a l o r r e p r o d u c t i o n of the i n s e c t s b y m e a n s of chemical or morphological factors. H P R in Non-Agricultural
Plants
F o r c e n t u r i e s p l a n t s h a v e b e e n k n o w n to p o s s e s s i n s e c t i cidal activities. Nicotine and other tobacco alkaloids were e x p o r t e d f r o m A m e r i c a a s e a r l y a s 1690 f o r i n s e c t c o n t r o l (13). O t h e r n a t u r a l i n s e c t i c i d e s s u c h a s t h e p y r e t h o i d s a n d r o t e n o i d s h a v e b e e n u s e d i n the M i d d l e E a s t a n d f a r e a s t e r n t r o p i c s s i n c e a n c i e n t t i m e (14, 15). A r e c e n t r e v i e w (16) c i t e d n e a r l y 1500 s p e c i e s o f p l a n t s c o n t a i n i n g t o x i c a n t a n d pest control agents. D e t a i l e d s t u d i e s of h o s t p l a n t r e s i s t a n c e h a v e b e e n c o n f i n e d a l m o s t e x c l u s i v e l y to n o n - a g r i c u l t u r a l p l a n t s . The i n t r i c a t e r e l a t i o n s h i p b e t w e e n the o a k t r e e a n d i t s p r i m a r y p r e d a t o r , the w i n t e r m o t h , h a s b e e n e x p l a i n e d b o t h i n t e r m s of e s c a p e i n s p a c e a n d t i m e a s w e l l a s b y c h e m i c a l a n t i b i o s i s (8, 17). A p p a r e n t l y t h e q u a n t i t y o f p o l y p h e n o l i c t a n n i n a n d iFs p r e c u r s o r s , c h a n g i n g f r o m 0. 5% o f t h e d r y l e a f w e i g h t i n A p r i l , to 5% i n S e p t e m b e r , c o r r e s p o n d to r e l a t i v e i n f e s t a t i o n a n d g r o w t h of the a d a p t e d p e s t . S i m i l a r i l y , the
8.
wAiss E T A L .
Host Plant Resistance
117
to Insects
distribution of polyphenols helped to explain host plant resistance of creosote bush, L a r r e a tridentata (9), bracken fern, P t e r i d i u m a g u i l i n u m (18) and several other plants ( 3 7 ) . T h e subject of antifeedants, repellents and deterrents, and the role of alkaloids and terpenoids in insect control will be presented by other speakers in this symposium and so will not be treated here.
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch008
HPR
in A g r i c u l t u r a l
Crops
T h e main reason for the recent surge of interest in H P R to insects for crops of economic importance is due to the fact that over 50% of the approximately 5 0 0 million lbs of pesticides applied to U n i t e d S t a t e s cropland are insecticides (2). W h i l e they are essential to agricultural production at the present t i m e , these c h e m i c a l s present serious questions in regard to environmental quality, public health, and the existence of many species of animals. T h e severe restriction on the use of D D T , aldrin, dieldrin, chlordane and heptachlor increases the need for alternatives. A l t h o u g h , at present, over 1 0 0 insect resistant cultivars are grown in the U S A ( 13, 1 4 ) , little has been reported on the nature of resistance at the chemical or molecular level. H P R is an inheritable characteristic of plants; knowledge about its chemical basis would play an immense role in plant breeding and genetic engineering in the future. T h e following examples represent the challenge, and frustrations for chemists working in a biological field and illustrate the tremendous need for a multidisciplinary approach to solving this problem. R e s i s t a n c e of C o t t o n to T o b a c c o B u d w o r m ,
Heliothis
virescens ( F . ) I n the early 1 9 0 0 ' s it was suggested that the presence of dark internal glands in G o s s y p i u m plants was a s s o c i a t e d w i t h resistance to insects
22). G o s s y p o l ,
I,
isolated f r o m these glands, was considered to be the main c o n t r i b u t i n g f a c t o r against tobacco budworm, v i r e s c e n s (F) (23,
24,
25,
26).
Heliothis
C e r t a i n morpKôTôgTcâT c h a r a c -
teristics as observed in glabrous and nectariless strains, also appeared to add to cotton's defense against t h i s insect ( 2 7 ) . A glandless variety of cotton was developed in 1 9 5 9 (.28) that c o n t a i n s no gossypol ( 2 9 ) . A l t h o u g h glanded cottons, in general, s h o w h i g h e r r e s i s t a n c e to H e l i o t h i s ( 3 0 ) , recent studies indicate
that a similar level of resistance could be found in certain glandless varieties as well ( 3 1 , 3 2 ) . It is l o g i c a l to assume therefore that if gossypol-free cotton w e r e indeed resistant to H e l i o t h i s attack there may exist yet other resistance factors. S u c c e s s i v e solvent extraction of cotton flower buds (squares) in our laboratory (33) has indicated that while hexane extractables (containing gossypol) were toxic ( T a b l e 1 ) , the subsequent
HOST P L A N T RESISTANCE T O PESTS
118
methanol extract was even m o r e active. A n appreciable level of t o x i c i t y a l s o a p p e a r s i n t h e e x h a u s t i v e l y e x t r a c t e d r e s i d u e . E t h e r p r e c i p i t a t i o n of the m e t h a n o l e x t r a c t , f o l l o w e d b y c h r o m a t o g r a p h i c separation on Sephadex (G-25) gave a p u r i f i e d t o x i c f r a c t i o n , i d e n t i f i e d a s c o n d e n s e d t a n n i n , II.
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch008
CHO OH
OH CHO
Table
1
B i o a s s a y of s u c c e s s i v e s o l v e n t e x t r a c t s f r o m cotton b u d s ( T e x a s -254) w i t h H e l i o t h i s v i r e s c e n s (F).
Extract
L a r v a l weight
3 ,
Hexane Acetone Methanol Water Residue Control
(mg)
48 280 1 260 1 267
Solvent extract f r o m 6 g. synthetic
flower
o f d r i e d f l o w e r b u d a d d e d t o 30
g of
diet.
A v e r a g e w e i g h t o f 10 l a r v a e
after
14 d a y s a t
28 ° C .
W h e n c o t t o n t a n n i n w a s a d d e d a t 0. 1 to 0 . 3% t o a n a d e q u a t e s y n t h e t i c d i e t , the l a r v a l w e i g h t of t o b a c c o b u d w o r m w a s r e d u c e d c o r r e s p o n d i n g l y ( T a b l e II). T h e r a t e of p u p a t i o n , p e r c e n t of l a r v a e p u p a t i n g a n d p e r c e n t of m o t h e m e r g e n c e f r o m p u p a e w e r e r e d u c e d e v e n t h o u g h the l a r v a e w e r e f e d w i t h t a n n i n d u r i n g o n l y p a r t o f t h e g r o w t h p e r i o d (7 d a y s ) . In n a t u r e r e d u c t i o n o f l a r v a l w e i g h t a n d v i g o r u n d o u b t e d l y e x p o s e s the i n s e c t s to f u r t h e r p r é d a t i o n , diseases, and other mortality factors and, thereby, d i m i n i s h e s d a m a g e to the h o s t p l a n t .
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch008
Table
II
T h e r e s i d u a l e f f e c t of c o t t o n t a n n i n a n d t a n n i c ment
on l a r v a l weight,
days
to p u p a t i o n ,
p e r c e n t e m e r g e n c e of H e l i o t h i s v i r e s c e n s
Treatment
Mean larval weight
(%
i n diet)
Cotton 0. 0. 0. 0.
0. 0. 0. 0.
0 1 2 3
after 7 days
treat-
(F)
Days
to
%
reach pupating
3 ,
pupal stage " 3
Emergence"
tannin
0 1 2 3
Tannic
% Larval
in m g
acid
percent pupation and
299 160 84 37
81 69 50 63
14. 9 15. 2 17.4 18. 1
100 91 75 80
290 15 14 15
75 69 38 31
14.9 19. 1 19. 8 19. 8
100 82 83 40
acid
L a r v a e w e r e t r a n s f e r e d to a d a q u a t e s y n t h e t i c d i e t a f t e r d a y s on t a n n i n o r t a n n i c a c i d c o n t a i n i n g d i e t .
7
120
HOST P L A N T RESISTANCE T O PESTS
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch008
W h i l e t h e e x a c t m o d e of t a n n i n ' s t o x i c a c t i o n t o H . v i r e s c e n s h a s not b e e n e l u c i d a t e d , t h e r e i s l i t t l e d o u b t that the phenolic function is involved. T a n n i c acid, a polygallic acid e s t e r of g l u c o s e h a v i n g o r t h o - p h e n o l i c g r o u p s s i m i l a r to t h o s e of c o t t o n t a n n i n p r o d u c e s s i m i l a r a n t i b i o t i c a c t i v i t y . Methylat i o n of b o t h t a n n i n a n d t a n n i c a c i d w i t h d i a z o m e t h a n e d r a s t i c a l l y r e d u c e s t h e i r t o x i c i t y to t h e i n s e c t ( 2 3 ) . T h e a n t i b i o t i c a c t i o n of c o n d e n s e d t a n n i n f o u n d i n c o t t o n a g a i n s t H . v i r e s c e n s is not s u r p r i s i n g s i n c e tannin i s w e l l r e c o g n i z e d a s a r e s i s t a n c e f a c t o r i n the o a k t r e e a g a i n s t the o a k m o t h , O p e r o p h t e r a b r u m a t a , (17) a n d i n a l f a l f a a g a i n s t t h e alfalfa w e e v i l , H y p e r a postica, ( 34)» In t h e s e i n s t a n c e s t a n n i n w a s s u s p e c t e d to h a v e r e d u c e d t h e a v a i l a b i l i t y o f n u t r i e n t to t h e i n s e c t b y i n t e r a c t i n g w i t h p r o t e i n a n d d e a c t i v a t i o n o f d i g e s t i v e a n d o t h e r e n z y m e s ( 8 , 9, 35). O u r w o r k w o u l d h a v e b e e n m u c h s i m p l i f i e d at this p o i n t if the t a n n i n c o n t e n t s i n c o t t o n f l o w e r b u d s ( s q u a r e s w e r e i n d i r e c t r e l a t i o n to t h e d e g r e e o f s u s c e p t i b i l i t y o r "resistance". In f a c t , f r e e z e d r i e d s q u a r e p o w d e r s f r o m b o t h " r e s i s t a n t " a n d " s u s c e p t i b l e " v a r i e t i e s s h o w e d a p p r e c i a b l e t o x i c i t y at l e s s than 10% e q u i v a l e n t w e i g h t o f f r e s h p l a n t m a t e r i a l i n t h e s y n t h e t i c d i e t (29, 31, 36). P r e l i m i n a r y e x p e r i m e n t s i n o u r l a b o r a t o r y i n d i c a t e that one o r m o r e o f t h e f o l l o w i n g f a c t o r s m a y h e l p to e x p l a i n t h e a p p a r e n t l y h i g h t o x i c i t y i n c o t t o n a n d d i f f e r e n t i a t e the l e v e l of resistance among them: 1. T h e d e g r e e of p o l y m e r i z a t i o n i n t a n n i n a n d t o x i c i t y i n s y n t h e t i c d i e t m a y b e i n c r e a s e d b y e x p o s u r e to a i r o x i d a t i o n , t h e r e b y o v e r s h a d o w i n g the d i f f e r e n c e b e t w e e n " r e s i s t a n t " a n d "susceptible" varieties. 2. T h e p r e s e n t m e t h o d f o r t a n n i n a n a l y s i s (37) i s i n n â c u r a t e a n d a s it d o e s n o t d i f f e r e n t i a t e d i f f e r e n t m o l e c u l a r s i z e s of t a n n i n . 3. P r e s e n t k n o w l e d g e of the f e e d i n g b e h a v i o r of H . virescens is inadequate. It i s s u s p e c t e d , a t t h e p r e s e n t t i m e , that f i r s t i n s t a r l a r v a e f e e d on the y o u n g t e r m i n a l l e a v e s f o r s e v e r a l d a y s b e f o r e m i g r a t i n g to t h e f l o w e r b u d ( 3 8 ) . As y o u n g l a r v a e a r e m o r e s u s c e p t i b l e to t o x i c a n t s ( 3 9 ) , a more c a r e f u l o b s e r v a t i o n of f e e d i n g b e h a v i o r a n d a c c u r a t e a n a l y s e s of g o s s y p o l , t a n n i n , o r o t h e r t o x i c a n t s a n d s y n e r g i s t s a s w e l l a s a n t a g o n i s t s i n the t e r m i n a l l e a v e s s h o u l d be m a d e . Prelimi n a r y e x p e r i m e n t s i n d i c a t e that y o u n g c o t t o n l e a v e s c o n t a i n l i t t l e o r n o g o s s y p o l but s u b s t a n t i a l a m o u n t s of c o n d e n s e d t a n n i n . 4. E s t i m a t i o n s o f t a n n i n c o n t e n t s (40) i n f l o r a l p a r t s s h o w a s m u c h a s 4 - f o l d d i f f e r e n c e b e t w e e n the a n t h e r w h e r e l a r v a e of the s e c o n d o r o l d e r i n s t a r f e e d (38), a n d the total f l o w e r b u d T h i s o b s e r v a t i o n m a y h e l p to e x p l a i n t h e e x c e s s i v e t o x i c i t y o f the t o t a l s q u a r e i n the s y n t h e t i c d i e t a n d the l a c k of c o r r e l a t i o n b e t w e e n g o s s y p o l (35) a n d t a n n i n c o n t e n t w i t h r e s i s t a n c e of cotton v a r i e t i e s .
8.
WAiss E T A L .
Host
Plant Resistance
to Insects
121
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch008
5. T h e p o s s i b i l i t y of i n d u c e d r e s i s t a n c e c a n n o t be ignored. T h e i n c r e a s e d c o n c e n t r a t i o n of p h e n o l i c s a n d o t h e r phytoalexins in plants after fungal attack has been well d o c u m e n t e d (42, 43). T h e p r o f i l e a n d b i o s y n t h e s i s of p o l y p h e n o l s i n P i n u s r a d i a t a a r e r e p o r t e d to b e a f f e c t e d b y t h e a t t a c k o f t h e w o o d w a s p , S i r e x n o c t i l i o (44). 6. Significant v a r i a n c e in insect feeding behavior on d i f f e r e n t c u l t i v a r s m a y o c c u r d u e to d i f f e r e n c e s i n c h e m i c a l attractants or morphological factors. R e s i s t a n c e o f C o r n to E u r o p e a n c o r n b o r e r , O s t r i n i a n u b i l a l i s ( H ) . - T h e m o s t c e l e b r a t e d c l a s s i c a l e x a m p l e of H P R i n a n e c o n o m i c c r o p i s c o r n ' s c h e m i c a l d e f e n s e a g a i n s t the f i r s t g e n e r a t i o n of c o r n b o r e r . It w a s e s t a b l i s h e d t h a t 2, 4dihydroxy-7-methoxy-l, 4-benzoxazin-3-one (DIMBOA), IV, w a s r e s p o n s i b l e f o r the i n h i b i t o r y e f f e c t o n c o r n b o r e r (45, 46. 4:7). D I M B O A i s the e n z y m a t i c h y d r o l y s i s p r o d u c t of i t s n a t u r a l g l y c o s i d e , III, a n d i s l i b e r a t e d w h i l e t h e i n s e c t f e e d s o n t h e w h o l e t i s s u e of c o r n . D i r e c t c o r r e l a t i o n b e t w e e n the a g e of p l a n t (48), a n d c o n c e n t r a t i o n of 6 - m e t h o x y - 2 - b e n z o x a z o l i n o n e , ( M B O A ) , V , a m o r e s t a b l e d e g r a d a t i o n p r o d u c t of D I M B O A , a n d r e s i s t a n c e to f e e d i n g , h a s b e e n f i r m l y e s t a b l i s h e d (49).
IDE
R = GI
1Z
R= H
-j-
M u c h plant damage by c o r n b o r e r , h o w e v e r , is inflicted by the s e c o n d b r o o d l a r v a e f e e d i n g o n the p o l l e n , s i l k , c o l l a r , a n d sheath. E v i d e n c e i n d i c a t e s that s o m e f a c t o r s , o t h e r than D I M B O A , a r e r e s p o n s i b l e f o r r e s i s t a n c e to 2 n d - g e n e r a t i o n b o r e r s (50, 51). In a d d i t i o n , it h a s b e e n e s t a b l i s h e d that r e s i s t a n c e to 1st a n d 2 n d g e n e r a t i o n s of the E u r o p e a n c o r n b o r e r i n m a i z e i s not c o n f e r r e d b y the s a m e g e n e s . P r e l i m i n a r y e x p e r i m e n t s i n o u r l a b o r a t o r y i n d i c a t e that the c a u s a t i v e agent f o r 2 n d - b r o o d r e s i s t a n c e m a y be m u c h m o r e p o l a r than D I M B O A . R e s i s t a n c e of c o r n t o c o r n e a r w o r m , H e l i o t h i s z e a ( B ) . It i s g e n e r a l l y a c c e p t e d that the a d u l t m o t h s of c o r n e a r w o r m l a y s t h e i r e g g s o n the c o r n s i l k . A s the l a r v a e h a t c h a n d g r o w , they f e e d a n d t r a v e l t o w a r d the h u s k , a n d e v e n t u a l l y i n f l i c t i n g d a m a g e
122
HOST P L A N T RESISTANCE T O PESTS
to t h e k e r n e l s . It w a s o b s e r v e d i n t h e e a r l y p a r t o f t h i s c e n t u r y t h a t t h e r e s e e m e d to b e a p o s i t i v e c o r r e l a t i o n b e t w e e n l o n g , tight h u s k s a n d e a r w o r m r e s i s t a n c e i n c o r n (52), perhaps b e c a u s e of i n c r e a s e d p r o b a b i l i t y of c a n n i b a l i s m (L2), o r p r o l o n g e d e x p o s u r e to l e t h a l toxicants(_53). Chemical antibiosis w a s d e m o n s t r a t e d i n l y o p h i l i z e d c o r n s i l k a n d p l a n t e x t r a c t s (54, 55). Table
III
Bioassay
of s u c c e s s i v e
Zopalote
Chico) with Heliothis Z e a
solvent extracts f r o m c o r n silk (B.)
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch008
Sequential extracts
(var.
a
L a v a l wt
Hexane
515
Acetone Methanol Hot water Residue Control
468 98 65 45 567
(mg)
a Ave. corn
of 10 l a r v a e f e d f o r s i l k / 3 0 g. diet.
11 d a y s w i t h e x t r a c t s f r o m 6 g .
Table The
effect
IV
of m e t h y l a t i o n o n t h e t o x i c i t y
fraction f r o m corn silk (var.
Z.
of e x t r a c t a n d
Methanol Methanol, Water Control
before methylation
Chrom.
on L H - 2 0
purified
C h i c o ) to H e l i o t h i s Z e a ( B .
L a r v a l wt Extract
of
)
a
(mg) after
methylation
88 50
243 562
20 581
579 581
A v e r a g e o f 10 l a r v a e f e d f o r 12 d a y s w i t h e x t r a c t s o r f i e d e x t r a c t s . f r o m 5 g o f l y p h o l i z e d c o r n s i l k / 3 0 g of synthetic diet.
puri-
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch008
8.
wAiss E T A L .
Host
Plant Resistance
123
to Insects
S u c c e s s i v e solvent: e x t r a c t i o n of s i l k s f r o m s e v e r a l c o r n v a r i e t i e s showed toxic m a t e r i a l s in both methanol and water e x t r a c t s , a s w e l l a s i n the r e s i d u e a f t e r w a t e r e x t r a c t i o n ( T a b l e III). T h e t o x i c f a c t o r i n the m e t h a n o l e x t r a c t w a s p u r i f i e d b y chromatographic separation. T h e t o x i c i t y of b o t h the m e t h a n o l and water f r a c t i o n s was d r a s t i c a l l y reduced by m e t h y l a t i o n with diazomethane (Table IV). P r e s e n t e v i d e n c e i n d i c a t e s that t h e s e toxic compounds a r e p o l y p h e n o l s . H P R to i n s e c t s i n o t h e r a g r i c u l t u r a l c r o p s . - R e s i s t a n c e of S u n f l o w e r s to s u n f l o w e r m o t h , H o m e o s o m a e l e c t e l l u m , ( Η ) , h a s b e e n r e p o r t e d to b e a s s o c i a t e d w i t h t h e i n a b i l i t y o f t h e i n s e c t t o p e n e t r a t e the s e e d c o a t of the r e s i s t a n t v a r i e t i e s (56). Recently two d i t e r p e n e a c i d s , t r a c h y l o b a n - 1 9 - o i c a c i d (VI) a n d ( - - ) - l 6 k a u r e n - 1 9 - o i c a c i d (VII), i s o l a t e d f r o m s u n f l o w e r f l o r e t s w e r e s h o w n to p o s s e s s l a r v a c i d a l a c t i v i t y to s u n f l o w e r m o t h a n d s e v e r a l o t h e r L e p i d o p t e r a s p e c i e s (57, 58). W h i l e the c o n c e n t r a t i o n of t h e s e a c i d s v a r i e d w i t h a g e a n d v a r i e t y of s u n f l o w e r , t h e i r c o n t r i b u t i o n to t h e h o s t d e f e n s e m e c h a n i s m h a s n o t y e t been fully elucidated.
3ΖΓ
3ΠΕ
In a d d i t i o n to t h e p r e v i o u s e x a m p l e s , g e r m p l a s m o f m a n y o t h e r c r o p s w h i c h a r e r e s i s t a n t to i n s e c t s h a s b e e n i d e n t i f i e d ( 19, 20, 59). S o m e of the m o r e p r o m i n e n t e x a m p l e s a r e l i s t e d i n Table V . While morphological or physical characteristics may b e i n v o l v e d i n the h o s t - i n s e c t r e l a t i o n s h i p s i n s o m e o f t h e s e c a s e s , c h e m i c a l a n t i b i o s i s h a s b e e n s u g g e s t e d to h a v e t h e d o m i n a n t r o l e f o r t h e p l a n t s ' r e s i s t a n c e to t h e i r p r e d a t o r s . It t h u s a p p e a r s that t h e r e i s f u n d a m e n t a l n e e d f o r the p a r t i c i p a t i o n of the c h e m i s t i n t h i s i m p o r t a n t a r e a of r e s e a r c h .
124
HOST P L A N T RESISTANCE T O PESTS
Table Some c o m m e r c i a l
crops
that e x i b i t r e s i s t a n c e
Crop
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch008
Alfalfa B a r l e y and other Corn Cotton Potato Rice Soy Wheat
V to i n s e c t
attack.
Insect
cereal
grains
Alfalfa aphids and weavil Greenbugs Western rootworm L y g u s bug Potato beetle and leafhopper R i c e borer and hoppers M e x i c a n bean beetle and potworm H e s s i a n fly and greenbug
Concluding Remarks R e l a t i v e l y l i t t l e e f f o r t h a s b e e n i n v e s t e d i n e s t a b l i s h i n g the u n d e r s t a n d i n g o f c r o p p l a n t s ' r e s i s t a n c e to i n s e c t s a t t h e chemical and cellular l e v e l . T h e f e e d i n g b e h a v i o r of i n s e c t s a n d o t h e r h o s t - p r e d a t o r i n t e r a c t i o n s i n m o s t of the e c o n o m i c a l l y i m p o r t a n t c r o p s n e e d to b e t h o r o u g h l y e s t a b l i s h e d . T h e k n o w l e d g e of H P R a t t h e c h e m i c a l l e v e l i s i m p e r a t i v e n o t o n l y i n p r o m o t i n g m o r e r a p i d a n d e f f e c t u a l d e v e l o p m e n t of i n s e c t r e s i s t a n t c u l t i v a r s b u t , a l s o , to m o n i t o r t h e p r e s e n c e a n d d i s t r i b u t i o n of t h e s e c h e m i c a l s . T o m o s t of u s c h e m i s t s , t h e i s o l a t i o n o f a n i n s e c t g r o w t h i n h i b i t o r , antifeedant, o r other toxicant f r o m a plant is not un s u r m o u n t a b l e , p r o v i d i n g a convenient and r e l i a b l e b i o a s s a y is a v a i l a b l e to m o n i t o r t h e p u r i f i c a t i o n p r o c e s s . T o e l u c i d a t e the d e l i c a t e b a l a n c e b e t w e e n a n i n s e c t a n d i t s h o s t i n the f i e l d i s a m u c h m o r e f o r m i d a b l e task. F r o m our experience in studying the n a t u r e of H P R , w e f e e l that the f o l l o w i n g s u g g e s t i o n s m a y be w o r t h c o n s i d e r i n g b y s c i e n t i s t s i n t e r e s t e d i n t h i s a r e a of research. 1. S i n c e the c h e m i c a l b a s i s f o r H P R i n v o l v e s the c h e m i c a l i n t e r a c t i o n s b e t w e e n two b i o l o g i c a l s y s t e m s , the h o s t p l a n t a n d its p r e d a t o r , a c l o s e l y c o o r d i n a t e d m u l t i d i s c i p l i n a r y a p p r o a c h to t h e i n v e s t i g a t i o n c a n n o t b e o v e r - s t r e s s e d . It i s i m p e r a t i v e that the c h e m i s t d e v e l o p s a n a p p r e c i a t i o n f o r the a l m o s t i n f i n i t e v a r i a b i l i t y a n d c o n s t a n t c h a n g e i n the p l a n t ' s c h e m i c a l c o m p o sition d u r i n g its growth, d e v e l o p m e n t , and s t r e s s , as w e l l as t h e i n s e c t ' s a b i l i t y to d e v e l o p , e v o l v e , a n d c o e x i s t w i t h i t s h o s t , g u i d e d a n d s t i m u l a t e d b y the p l a n t ' s u n i q u e c o m b i n a t i o n of c h e m i c a l s f o r f o o d , s h e l t e r , a n d r e p r o d u c t i o n . A biological s y s t e m is a d y n a m i c one, and in each i n s e c t - h o s t plant i n t e r action there exists a special biological relationship.
8.
WAISS E T A L .
Host
Plant Resistance
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch008
Thus, solely chemical approaches inadequate.
125
to Insects to t h e s e i n v e s t i g a t i o n s
are
2. T h e e s t a b l i s h m e n t of a n a p p r o p r i a t e , c o n v e n i e n t a n d r e p r o d u c i b l e b i o a s s a y p r o c e d u r e i s a p r e r e q u i s i t e to t h e s u c c e s s o f H P R research. A l t h o u g h , b y w a y of e x a m p l e , the b l a c k a r m y w o r m has been used extensively in bioassays for feeding deter r e n t s a n d o t h e r a l l e l o c h e m i c s , the a p p r o p r i a t e i n s e c t s h o u l d b e u s e d i n the s t u d y of p l a n t - i n s e c t s i n t e r a c t i o n . While gossypol i n c o t t o n , f o r e x a m p l e , i s t o x i c to s e v e r a l l e p i d o p t e r o u s i n s e c t s , it i s a f e e d i n g s t i m u l a n t f o r t h e m o n o p h a g o u s c o t t o n b o l l w e e v i l A n t h o n o m u s g r a n d i s Β . (60) A c o n v e n i e n t p r o c e d u r e to i n c o r p o r a t e p l a n t e x t r a c t s a n d p u r i f i e d f r a c t i o n s i n t o s m a l l q u a n t i t i e s of d i e t i s y e t to b e f o u n d , a l t h o u g h s e v e r a l s y n t h e t i c d i e t s f o r Lepidoptera have been reported. In a d d i t i o n , t h e r e i s s t i l l n e e d for i m p r o v e m e n t in bioassay p r o c e d u r e s for other arthropods such as C o l e o p t e r a (beetle), D i p t e r a (flies and mosquitos), H e t e r o p t e r a (true bugs) and A r a c h n i d s ( s p i d e r s ) . 3. T h e d e v e l o p m e n t of g c - m a s s s p e c t r o m e t r y h a s g r e a t l y f a c i l i t a t e d the p u r i f i c a t i o n a n d i d e n t i f i c a t i o n of v o l a t i l e o r g a n i c c o m p o u n d s i n the l a s t d e c a d e . A t present, i m p r o v e d techniques a r e n e e d e d f o r s e p a r a t i o n a n d p u r i f i c a t i o n of h i g h e r m o l e c u l a r weight polar compounds. T e c h n i q u e s of p r o t e i n , a n d o t h e r h i g h p o l y m e r c h e m i s t r y m a y be m o d i f i e d a n d e m p l o y e d h e r e . 4. F r o m o u r e x p e r i e n c e w i t h c o t t o n ' s r e s i s t a n c e to b o l l w o r m s ( H e l i o t h i s s p p . ) w e f e e l that u n l e s s the a n t i b i o t i c f a c t o r ( g o s s y p o l i n t h i s c a s e ) i s l o c a t e d i n the p l a n t p a r t i n w h i c h i n s e c t feeding actually o c c u r s , and is present in an effective concentra t i o n at the t i m e of i n s e c t d a m a g e , the p r e s e n c e of a t o x i c a n t i n "resistant" varieties (glanded lines) and absence in " s u s c e p t i b l e " c u l t i v a r s ( g l a n d l e s s l i n e s ) m a y not be s u f f i c i e n t p r o o f f o r the toxicants role in H P R . 5. It m a y b e u s e f u l t o c o n s i d e r , i n H P R r e s e a r c h , t h a t o n a s c a l e o f 0 to 10 ( F i g u r e 1), w h e r e 10 r e p r e s e n t s a p l a n t t o t a l l y i m m u n e to c e r t a i n s p e c i f i c i n s e c t a t t a c k a n d " 0 " r e p r e s e n t s a plant w h i c h supports m a x i m u m insect growth, d e v e l o p m e n t , and reproduction, resistance and susceptibility are relative phenom e n a r a n g i n g b e t w e e n the t w o e x t r e m e s .
"Susceptible"
<
Total
susceptibility Figure 1.
"Resistant"
>
Immunity
Relative scale of insect growth and plant*s response
126
HOST P L A N T RESISTANCE T O PESTS
B y d e f i n i t i o n , a p l a n t i s n o l o n g e r a h o s t to a n i n s e c t w h e n it i s t o t a l l y i m m u n e to i t s e n e m y ' s a t t a c k . O n e s h o u l d not e x p e c t , t h e r e f o r e , i n H P R r e s e a r c h to f i n d a t o x i c a n t o n l y i n t h e " r e s i s t a n t " v a r i e t i e s (a q u a l i t a t i v e p h e n o m e n o n ) b u t , r a t h e r , m o r e often a v a r y i n g concentration (quantitative difference) of a n t i b i o t i c f a c t o r i n " r e s i s t a n t " a n d " s u s c e p t i b l e " l i n e s , com plicated further by both insect b e h a v i o r and plant d e v e l o p m e n t . Literature
1.
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch008
2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21.
Cited
Smith, Ε. H. "Pest Control Strategies for the Future". National Academy of Sciences, Washington, D. C. 1972. Kennedy, D., chairman, "Pest Control: An Assessment of Present and Alternative Technology" 5 vol., National Academy of Sciences, Washington, D. C. 1975. Klassen, W. in "Insect, Science and Society" (D. Pimentel, ed.) Academic Press, New York, 1975. Glass, Ε. H. "Integrated Pest Management: Rational Potential, Needs and Implementation" Entomological Soc. Amer. Baltimore, MD, 1975. Beck, S. D., Ann. Entomol. Soc. Amer. (1965) 53 207 Van Emden, H. F. and May, M. J. in "Insect-Plant Relationship" H. F. Van Emden, ed. ) Wiley, 1973. Kogan, M. In "Introduction to Insect Pest Management (W. H. Luckmann and R. H. Metcaff, ed. ) Wiley, New York 1975. Feeny, P. in "Recent Adv. in Phytochem. - Biochemical Interaction Between Plants and Insects" (J. W. Wallace and R. L. Mansell, ed.), Plenum, New York, 1976. Rhodes, D. F. and Cates, R. G., ibid. Balachowsky, A. S. "La Lutte Contre les Insects Payot", Paris, 1951. Painter, R. Η., J. Econ, Entomol. (1941) 34:358-67. Painter, R. H. "Insect Resistance in Crop Plants, MacMillan, New York, 1951. Schweltz, I. in "Naturally Ocurring Insecticides" (M. Jacobson and D. G. Crosby, ed. ) M. Dekker, Inc. 1971. Matsui, M. and Yamamoto, I. In ibid. Fukami, H. and Nakajima, M. In ibid. Jacobson, M. "Insecticides from Plants - A Review of the Literature 1954-1971". Agric. Handbook No. 461. Feeny, P. O. J. Insect. Physiol. (1968) 14, 805-17. Lawton, J. H. in "The Biology of Bracken" (F. H. Perring ed.) Academic Press, New YOrk 1976. Gallun, R. L., J. Environ. Quality (1972) 1 259-65 Schalk, J. M. and Ratcliffe, R. H. Bull. Ent. Soc. Am. (1976) 3. 7-10. Quaintance, L. L. and Brues, C. T. USDA Bur. Entom. Bull. (1905) 50:150.
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch008
8.
wAiss E T A L .
Host Vlant Resistance
to Insects
127
22. Cook, O. F. USDA Tech Bull. (1906) 88. 23. Adams, R., Geissman, T. A. and Edwards, J. D. Chem. Rev. (1960) 60, 555-74. 24. Bottger, G. T., Sheehan, Ε. X. and Lukefahr, M. J., J. Εcon. Entomol. (1964) 57, 283-5. 25. Lukefahr, M. J. and Mattin, D. F. Ibid (1969) 59, 176-9. 26. Lukefahr, M. J. and Houghtaling, J. E. ibid. (1969). 27. Lukefahr, M. J., Houghtaling, J. E. and Cruhm, D. G. ibid. (1975) 68, 743-6. 28. McMichael, S. C. Agron. J. ( 1959) 51 630. 29. Waiss, A. C., Jr., Chan, B. G., Benson, M. and Lukefahr, M. J. J. Ass. Off. Anal. Chem., in press. 30. Lukefahr, M. J., Noble, L. W. and Houghtaling, J. E. J. Econ. Entomol. (1966) 59, 817-20. 31. Shaver, Τ. Ν., Garcaa, J. A., and Dilday, R. Η., Environ. Entomol. (1977) 6, 82-4. 32. Malm, N. R., et al., Am. Rep., Agric. Exp. Station, Las Cruces, N. Mexico (1976). 33. Chan, B. G., Waiss, A. C., Jr., and Lukefahr, M. J. Insect. Physol., in press. 34. Bennett, S. E. J. Econ. Entomol. (1966) 58, 372-3. 35. Pridham, J. Β., "Enzyme Chemistry of Phenolic Compounds". MacMillan. New York. 1963. 36. Shaver, T. N. and Lukfahr, M. J. J. Econ. Entomol. (1971) 64, 1274-7. 37. Swain, T. and Hillis, W. E. J. Sci. Food Agri. (1959) 10, 63-68. 38. Private communication from Drs. M. J. Lukefahr and W. L. Parrott. 39. Shaver, T. H. and Parrott, W. L. J. Econ. Entomol. (1970) 63, 1802-4. 40. Data to be published. 41. Lukefahr, M. J., Shaver, Τ. Ν., Cruhm, D. E. and Houghtaling, J. E. Beltwide Cotton Prod. Res. Conf. Proced. 1974. 42. Levin, D. A. Amer. Naturalist (1971) 105, 157-81. 43. Ingham, J. L. Bot. Rev. (1972) 38 343-417. 44. Hillis, W. E. and Inone, T. Phytochem. (1968) 7, 13-22. 45. Beck, S. D. J. Insect Physiol. (1957) 1, 158-77. 46. Beck, S. D. and Stauffer, J. F. Ann. Entomol. Soc. Amer. (1957) 50, 166-70. 47. Klun, J. A., Tipton, C. L. and Brindley, T. A. J. Econ. Entomol. (1967) 60, 1529-33. 48. Beck, S. D., Ann. Rev. Entom. (1965) 10, 207-32. 49. Klun, J. A., and Brindley, T. A. J. Econ. Entomol. (1966) 59, 711-8. 50. Sulivan, S. L., Gracen, V. Ε. and Ortega, A. Environ. Entomol. (1974)3,718-20. 51. Russell, W. Α., Guthrie, W. D., Klun, J. A. and Grindeland, R. J. Econ. Entomol. (1975) 68, 31-34.
128
52. 53. 54.
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch008
55.
HOST P L A N T RESISTANCE T O PESTS
Colling, G. N. and Kempton, H. H. J. Agr. Res. (1917) 11, 549-72. Guthrie, W. D. and Walter, Ε. V. J. Econ. Entomol. (1961) 54, 1248-50. McMillan, W. W., Wiseman, B. R. and Sekul, A. A. Am. Entomol. Soc. Amer, (1970) 63, 371-78 Straub, R. W. and Fairchield, M. L. J. Econ. Entomol. (1970) 63 1901-3.
9 The Effects of Plant Biochemicals on Insect Growth and Nutritional Physiology J O H N C.
REESE
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch009
Department of Entomology, 237 Madison, W I 53706
Russell Labs, University of Wisconsin,
In terms of their effects on insects, plant biochemicals may be divided into nutrients and non-nutrients. Nutrients have received a great deal of attention over the years. They were even thought to be the basis for host plant specificity at one time. Research in recent decades has shown, however, that most species of insects do not differ greatly in their qualitative requirements for nutrients. Thus, although the host plant obviously has to satisfy the nutritional requirements of the insect, it does not seem likely that the insects' nutritional requirements play more than a minor role in host plant specificity (1). Non-nutrients, or allelochemics (non-nutritional chemicals produced by an organism of one species, and which affect the growth, health, behavior, or population biology of another species (2)), can be extremely important factors in host plant resistance. I will concentrate my discussion of the effects of these allelochemics on insect growth and nutritional physiology, how these non-nutrients may be interacting with nutrients, and on recent work I have done in Dr. Beck's laboratory at the University of Wisconsin on the effects of various allelochemics and dietary moisture levels on insect nutritional physiology. Current Areas of Active Research. Plant Apparency. Recent investigations have indicated that evolutionary strategies in plant defense mechnisms may be based on host plant specificity as well as on the population densities and successional status of the plant species (3-5). Within a particular ecosystem, some species of plants will be predictable or apparent in both time and space (i.g. an oak tree). These plants can be easily found by herbivores. Other species are less predictable (and thus less apparent) and so are less likely to be found by herbivores. The predictable species are probably subjected to greater feeding pressure by herbivores and tend to contain high concentration of dosage-dependent (quantitative) inhibitors of digestion and assimilation. These substances are 129
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch009
130
HOST P L A N T RESISTANCE T O
PESTS
u s u a l l y not h i g h l y t o x i c , but slow the growth of i n s e c t s . The l e s s apparent species tend t o contain lower concentrations of more h i g h l y t o x i c ( q u a l i t a t i v e ) a l l e l o c h e m i c s . Insects tend to be more l i k e l y to evolve d e t o x i f y i n g mechanisms f o r these substances, and so to become adapted or s p e c i a l i z e d f o r feeding on c e r t a i n s p e c i e s . Such p l a n t species r e l y mainly on escape as a defense a g a i n s t the adapted species of i n s e c t s . The t o x i n s and d e t e r r e n t s i n these p l a n t s are most e f f e c t i v e a g a i n s t the nonadapted g e n e r a l i z e d feeders. Unfortunately, our a g r i c u l t u r a l p r a c t i c e s have taken many p l a n t s t h a t probably evolved under the unapparent category (and so contain the chemical defenses charact e r i s t i c o f t h i s group) and have made these p l a n t s h i g h l y p r e d i c t a b l e and t h e r e f o r e apparent by p l a n t i n g them i n huge f i e l d s and by p l a n t i n g the same species year a f t e r year on the same ground. Perhaps a p r o d u c t i v e d i r e c t i o n f o r host p l a n t r e s i s t a n c e research would be to attempt to i n c r e a s e concentrations o f dosage-dependent f a c t o r s c h a r a c t e r i s t i c of apparent p l a n t s i n agronomically accept a b l e v a r i e t i e s o f our crop p l a n t s . Metabolic E f f e c t s . Such hypotheses as the p l a n t apparency hypothesis are examples of a general s h i f t i n emphasis from b e h a v i o r a l e f f e c t s toward metabolic e f f e c t s . For a number of years the token s t i m u l i (6) theory o f host s e l e c t i o n formed the b a s i s o f a g r e a t d e a l o f research. A rough i d e a o f the research emphasis i n p a s t years can be gained by comparing the approximately 400 references c i t e d by Hedin e t a l Ç 7 ) i n t h e i r compil a t i o n o f b e h a v i o r a l chemicals, to the approximately 100 r e f e rences c i t e d by Beck and Reese (1) i n t h e i r compilation of chemicals having metabolic e f f e c t s . Despite t h i s approximately four-to-one r a t i o o f work on b e h a v i o r a l aspects to work on metabolic e f f e c t s , there are r e a l l y very few good examples o f a r e s i s t a n c e v a r i e t y u t i l i z i n g a b e h a v i o r a l chemical f o r i t s r e s i s tance mechanism (8). Chronic E f f e c t s Hypothesis. For s e v e r a l years I have been t e s t i n g the hypothesis that some a l l e l o c h e m i c s may have, i n a d d i t i o n to immediate e f f e c t s on s u r v i v a l and feeding behavior, s u b t l e c h r o n i c e f f e c t s , even at low concentrations, on r a t e of growth, u t i l i z a t i o n of food and pupation (1, 9-12). In other words, I have been i n t e r e s t e d i n the things Feeny would c a l l "dosage-dependent" f a c t o r s . The i n h i b i t i o n o f growth may be due t o an i n h i b i t i o n o f i n g e s t i o n , a s s i m i l a t i o n , or e f f i c i e n c y of conversion o f a s s i m i l a t e d o r ingested food. The more b i o l o g i c a l l y a c t i v e compounds r e l i e d on i n h i b i t i o n of v a r i o u s combinat i o n s o f the above processes f o r t h e i r e f f e c t s . The r e s u l t s o f these experiments w i l l be d i s c u s s e d i n more d e t a i l i n a l a t e r section. Insect D i e t e t i c s . Over the years, each o f the major ideas concerning host p l a n t s p e c i f i c i t y ( n u t r i t i o n , token s t i m u l i , and metabolic e f f e c t s ) have played r o l e s i n broadening our understanding of the biochemical b a s i s (or b e t t e r , bases) of p l a n t -
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch009
9.
REESE
Plant Biochemicals
and
Insect
Growth
131
insect interactions. In general, each idea was considered more or l e s s separate from each of the others, and c e r t a i n l y most research p r o j e c t s have been l a r g e l y based on only one of these ideas. We are now s t a r t i n g to recognize that any given p l a n t i n s e c t i n t e r a c t i o n must s u r e l y depend upon a l l of these f a c t o r s (If 13, 14, Γ7). Under the concept of i n s e c t d i e t e t i c s (15, 16) i t i s recognized that the feeding i n s e c t must i n g e s t food "that not only meets i t s n u t r i t i o n a l requirements, but t h a t i s a l s o capable of being a s s i m i l a t e d and converted i n t o the energy and s t r u c t u r a l substances required f o r normal a c t i v i t y and develop ment" (1). Therefore, i n s e c t d i e t e t i c s encompasses i n s e c t n u t r i t i o n i n the c l a s s i c a l sense, any a l l e l o c h e m i c e f f e c t s on feeding behavior, the e f f e c t s of any a l l e l o c h e m i c s on s u r v i v a l , and the e f f e c t s of any compounds which have chronic a f f e c t s on growth, development, or reproduction. A l l of these aspects are c r u c i a l to a given p l a n t - i n s e c t i n t e r a c t i o n . A d e l e t e r i o u s e f f e c t i n any one o f these areas could cause a p l a n t to become more r e s i s t a n t to the attack of i n s e c t s . These d i f f e r e n t areas of i n s e c t d i e t e t i c s undoubtedly i n t e r a c t with each other i n ways unknown to us a t present. Some of these i n t e r a c t i o n s may prove to be very important i n host p l a n t r e s i s t a n c e research of future years. In a d d i t i o n t o p h y s i o l o g i c a l i n t e r a c t i o n s between d i f f e r e n t aspects of i n s e c t d i e t e t i c s , there may be some important b i o l o g i c a l i n t e r a c t i o n s i n r e l a t i o n to the permanence of a r e s i s t a n t variety. There are some outstanding examples of r e s i s t a n t v a r i e t i e s r e t a i n i n g t h e i r r e s i s t a n c e over long periods of time. Such e x c e p t i o n a l l y s t a b l e r e s i s t a n t v a r i e t i e s must s u r e l y have a number of r e s i s t a n c e mechanisms such that the l i k e l i h o o d of a r e s i s t a n t i n s e c t biotype a r i s i n g i s lessened. A r e s i s t a n t c u l t i var probably has a greater p r o b a b i l i t y of r e l a t i v e permanence, i f i t contains a l l e l o c h e m i c s which a f f e c t both behavior and metabolism. Thus b e h a v i o r a l errancy i s punished by metabolic e f f e c t s (17, 18). Such e f f e c t s may come from the same or d i f f e r e n t compounds. For an i n s e c t to counteradapt to such a s i t u a t i o n would r e q u i r e at l e a s t two mutations, one b e h a v i o r a l and one metabolic. I n t e r a c t i o n s between A l l e l o c h e m i c s and N u t r i e n t s . Allelo chemics may i n t e r a c t with e s s e n t i a l n u t r i e n t s of i n s e c t food. Indeed, many of the d e l e t e r i o u s metabolic or chronic e f f e c t s of p l a n t a l l e l o c h e m i s may be due p r i m a r i l y to v a r i o u s i n t e r a c t i o n s between a l l e l o c h e m i c s and n u t r i e n t s . Except f o r a few examples that w i l l be discussed l a t e r , l i t t l e work has been done on the i n t e r a c t i o n s between a l l e l o c h e mics and n u t r i e n t s i n i n s e c t s and the p o s s i b l e u t i l i z a t i o n of such knowledge i n host p l a n t r e s i s t a n c e . More i n v e s t i g a t i o n s have been conducted on v e r t e b r a t e s . A b r i e f review of some of t h i s work may prove to be u s e f u l i n g i v i n g us clues as to how c e r t a i n a l l e l o c h e m i c s i n h i b i t i n s e c t growth. H a t f i e l d (21) has reviewed s e v e r a l examples from the v e r t e brate l i t e r a t u r e i n which there seemed to be i n t e r a c t i o n s between
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch009
132
HOST P L A N T RESISTANCE T O
PESTS
a l l e l o c h e m i c s and n u t r i e n t s . Chestnut tannins have been found to reduce the a v a i l a b i l i t y of l y s i n e i n various d i e t s . I n t e r a c t i o n s between gossypol, cyclopropene f a t t y a c i d s , and p r o t e i n have been reported. A l l e l o c h e m i c s may serve as antioxidants and thus p r o t e c t c e r t a i n n u t r i e n t s from o x i d a t i o n (22), so i n t e r a c t i o n s are not always negative. Various t o x i c f a c t o r s , e s p e c i a l l y enzyme i n h i b i t o r s , from soybeans have been known f o r many years (23). Some of these f a c t o r s render c e r t a i n elements such as nitrogen or s u l f u r unavailable. Since s e v e r a l of these f a c t o r s are heat l a b i l e , and so i n many cases are r e a l l y not much of a problem i n human n u t r i t i o n (24), such f a c t o r s might prove e s p e c i a l l y u s e f u l i n r e s i s tance programs. U n l i k e many p o t e n t i a l r e s i s t a n c e f a c t o r s , t h e i r d e l e t e r i o u s e f f e c t s might be f e l t p r i m a r i l y by the i n s e c t p e s t s , r a t h e r than by the human consumer. This i s an area that c e r t a i n l y warrants f u r t h e r research. Phytate i s a compound which can be found i n r e l a t i v e l y high amounts i n cottonseed meal (23). I t may form complexes with such minerals as z i n c , thus rendering them unavailable to monogastric animals. C e r t a i n p r o t e i n s may a l s o be complexed by phytate. Experiments i n which cottonseed meal was t r e a t e d with the enzyme phytase suggest t h a t there are i n t e r a c t i o n s between phytate and such things as phosphorous and gossypol. The i n t e r a c t i o n s between dicoumarol i n sweet c l o v e r hay and vitamin Κ have been known f o r a number of years. Supplementing the d i e t with vitamin Κ can lessen the hemorrhagic e f f e c t s of the dicoumarol (23). From the preceding d i s c u s s i o n of i n t e r a c t i o n s between a l l e l o chemics and n u t r i e n t s i n v e r t e b r a t e s , i t i s apparent that ento mologists may p r o f i t from t e s t i n g some o f the same types o f hypo theses t h a t have been t e s t e d with v e r t e b r a t e s . C e r t a i n l y , some o f the d e l e t e r i o u s e f f e c t s of p l a n t a l l e l o c h e m i c s may be due,to i n t e r a c t i o n s between the a l l e l o c h e m i c and some n u t r i e n t . Several such i n t e r a c t i o n s have already been demonstrated. For example, c e r t a i n a l l e l o c h e m i c s resemble c e r t a i n n u t r i e n t s so c l o s e l y t h a t they may compete m e t a b o l i c a l l y . L-Canavanie i s q u i t e s i m i l a r to L-arginine. I t s t o x i c i t y (25-29) may be due to the formation of d e f e c t i v e canavanyl p r o t e i n s . L-Canavanine and various other amino a c i d analogues may a l s o a c t as i n h i b i t o r s o f i n s e c t repro d u c t i o n (30), p o s s i b l y through t h i s same mechanism. C e r t a i n a l l e l o c h e m i s may i n t e r f e r e with n u t r i e n t s by b l o c k i n g their availability. This seems to be the case f o r oak l e a f tan n i n s . The tannins apparently form a complex with p r o t e i n s such t h a t the p r o t e i n s are l e s s a v a i l a b l e to winter moth (Operophthera brumata) l a r v a e (31, 32). S i m i l a r l y , the " d i g e s t i b i l i t y - r e d u c i n g " f a c t o r s i n creosote r e s i n s seem to somehow block d i g e s t i b i l i t y (5). Recently, i n t e r a c t i o n s between c e r t a i n diterpene acids and c h o l e s t e r o l have been demonstrated (20). The p a r t i a l r e v e r s a l of growth i n h i b i t i o n i n the presence of r e l a t i v e l y l a r g e amounts o f c h o l e s t e r o l suggested to these workers that these diterpene a c i d s (e.g. levopimaric acid) a f f e c t the i n s e c t s ' hormonal system.
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch009
9.
REESE
Plant Biochemicals
and
Insect
Growth
133
As i n the vertebrate l i t e r a t u r e discussed above, protease i n h i b i t o r s have been shown to have d e l e t e r i o u s e f f e c t s on various i n s e c t s . Most have d e a l t with t r y p s i n i n h i b i t o r s . Ryan (33) and Ryan and Green (34), have reviewed t h i s subject i n d e t a i l . B i r k and Applebaum (35) s t u d i e d the e f f e c t s of soybean t r y p s i n i n h i b i t o r s on development and p r o t e i o l y t i c a c t i v i t y of T r i b o l i u m castaneum. Su e t a l (36) found that r e l a t i v e l y high doses of soybean t r y p s i n i n h i b i t o r caused i n c r e a s e d a d u l t m o r t a l i t y i n S i t o p h i l u s oryzae. A p a r t i c u l a r l y e x c i t i n g aspect of t h i s area o f research i s the p o s s i b i l i t y that the p l a n t may be able t o produce much higher l e v e l s of enzyme i n h i b i t o r s a f t e r being attacked. T h i s feature gives the p l a n t an adaptive advantage (and an agronomic advantage) i n that i t does not expend energy f o r the synthesis o f such m a t e r i a l s u n t i l they are a c t u a l l y needed f o r defense. Green and Ryan (37.) made the e x c i t i n g d i s c o v e r y t h a t the wounding of the leaves of potato o r tomato p l a n t s by a d u l t Colorado potato b e e t l e s induces a r a p i d accumulat i o n o f protease i n h i b i t o r . Further, t h i s response was not confined t o immediate area o f the attack, but spread to other p a r t s o f the p l a n t . Recently, some work has been done on the e f f e c t s of s p e c i f i c a l l e l o c h e m i c s on a s s i m i l a t i o n of food (passage across the gut w a l l ) , e f f i c i e n c y of conversion of a s s i m i l a t e d food i n t o i n s e c t t i s s u e , and e f f i c i e n c y o f conversion of ingested food. A reduct i o n i n n u t r i t i o n a l i n d i c e s , such as those mentioned above, r e s u l t i n g from the i n g e s t i o n o f d e l e t e r i o u s a l l e l o c h e m i c s may be due to a number o f f a c t o r s , most of which r e l a t e i n one way or another to i n t e r a c t i o n s between a l l e l o c h e m i c s and n u t r i e n t s . For example, some d e l e t e r i o u s a l l e l o c h e m i c s may b i n d to a s p e c i f i c n u t r i e n t . They may a l s o bind to and i n a c t i v a t e d i g e s t i v e enzymes o r membrane c a r r i e r p r o t e i n s . A l l e l o c h e m i c s with hydroxyl groups on adjacent carbon atoms may chelate c e r t a i n e s s e n t i a l minerals. The l i t e r a t u r e d e a l i n g with the e f f e c t s o f s p e c i f i c a l l e l o chemics on these n u t r i t i o n a l i n d i c e s reamins sparse, but i s i n c r e a s i n g . Shaver e t a l (19) found t h a t gossypol decreased a s s i m i l a t i o n by bollworm l a r v a e , H e l i o t h i s zea, but had no measurable e f f e c t on u t i l i z a t i o n by tobacco budworm l a r v a e , H_. v i r e s c e n s . E r i c k s o n and Feeny (18) t e s t e d the hypothesis t h a t the l a r v a l feeding niche of P a p i l i o polyxenes a s t e r i u s i s p a r t i a l l y bounded by a l l e l o c h e m i c s which are not r e q u i r e d f o r p e r c e p t i o n o f host or non-host p l a n t s . They demonstrated t h a t s i n i g r i n , or one o f i t s breakdown products, reduced a s s i m i l a t i o n but d i d not reduce the e f f i c i e n c y with which a s s i m i l a t e d food was converted i n t o t i s s u e . Dr. Beck and I have examined the e f f e c t s of a number of p l a n t a l l e l o c h e m i c s on growth and development o f black cutworm (Agrotis i p s i l o n ) l a r v a e (1, 9-12). We have shown that growth i n h i b i t i o n may be due to i n h i b i t i o n of e i t h e r a s s i m i l a t i o n , or e f f i c i e n c y of conversion of a s s i m i l a t e d food, or a combination of both. I n h i b i t i o n of e i t h e r o f these processes w i l l , o f course, i n h i b i t the e f f i c i e n c y of conversion of ingested food. The s p e c i f i c r e s u l t s o f these experiments w i l l be summarized i n a l a t e r s e c t i o n .
134
HOST P L A N T RESISTANCE T O
PESTS
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch009
P o t e n t i a l of N u t r i t i o n a l Index Techniques As discussed i n the previous s e c t i o n , n u t r i t i o n a l index techniques have been used i n f r e q u e n t l y to demonstrate p o s s i b l e n u t r i e n t - a l l e l o c h e m i c i n t e r a c t i o n s or mechanisms by which d e l e t e r i o u s p l a n t compounds may i n h i b i t herbivore growth. P l a n t feeding i n s e c t s c e r t a i n l y do not grow e q u a l l y w e l l on a l l p l a n t s o r p l a n t t i s s u e s , even when there are no apparent b e h a v i o r a l b a r r i e r s to t h e i r feeding. The d i f f e r e n c e s are much greater than can be explained i n terms o f p o s s i b l e d i f f e r e n c e s i n n u t r i e n t content as such o f the d i f f e r e n t p l a n t t i s s u e s . I t seems l i k e l y , t h e r e f o r e , that a l l e l o c h e m i c s c h a r a c t e r i s t i c s of various p l a n t species exert strong i n f l u e n c e s on the growth and development of insects. The n u t r i t i o n a l i n d i c e s I found most u s e f u l are a s s i m i l a t i o n (AD), e f f i c i e n c y o f conversion of a s s i m i l a t e d food (ECD), and e f f i c i e n c y o f conversion o f ingested food (ECI). _ amount ingested (mg) - feces amount ingested (mg) ECD
=
ECI =
— weight gain (mg) amount ingested (mg) - feces
(mg)
χ
1 Q Q
χ
1 Q Q
χ
1 Q Q
(mg)
weight gain (mg) amount ingested (mg)
AD (approximate d i g e s t i b i l i t y ) measures the a s s i m i l a t i o n of food and i s termed "approximate" because i t does not s u b t r a c t the weight o f waste products i n the feces or such metabolic products as the p e r i t r o p h i c membrane (38) and exuviae from the t o t a l weight o f the feces. ECD measures the e f f i c i e n c y with which a s s i m i l a t e d food i s converted i n t o i n s e c t t i s s u e . This index w i l l decrease as the p r o p o r t i o n of a s s i m i l a t e d food metabolized f o r energy increases (38). ECI measures the o v e r a l l a b i l i t y of the i n s e c t to convert ingested food i n t o t i s s u e (38). N u t r i t i o n a l i n d i c e s f o r i n s e c t s on host and non-host p l a n t s vary a great d e a l . Using the southern armyworm, Prodenia e r i d a n i a , Soo Hoo and Fraenkel (39, 40) compared the feeding behavior, growth, s u r v i v a l , and n u t r i t i o n a l i n d i c e s o f the i n s e c t on p l a n t t i s s u e s r e p r e s e n t i n g 32 f a m i l i e s . Most of the p l a n t s t e s t e d were fed upon, but host s u i t a b i l i t y was q u i t e v a r i e d , ranging from normal r a p i d larvae growth to complete m o r t a l i t y . N u t r i t i o n a l i n d i c e s were determined f o r l a r v e feeding on f r e s h p l a n t t i s s u e s representing 12 d i f f e r e n t p l a n t f a m i l i e s . AD ranged from 36% on a "poor" host t o 73% on a "good" host. ECD values ranged from 16% to 57%; ECI values ranged from 10% to 38%. Waldbauer (41) determined n u t r i t i o n a l i n d i c e s o f the tobacco homworm, Manduca s ex t a , l a r v a e on both host p l a n t s and on non-
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch009
9.
REESE
Plant Biochemicals
and
Insect
Growth
135
host p l a n t s . In the l a t t e r case, the larvae were induced to feed on non-host p l a n t t i s s u e s by removing the sense organs that enable the i n s e c t to d i s t i n g u i s h host p l a n t s from non-host p l a n t s . The use o f n u t r i t i o n a l i n d i c e s as a b a s i s f o r comparing host p l a n t u t i l i z a t i o n by a phytophagous i n s e c t being reared on d i f f e r e n t host p l a n t s has some l i m i t a t i o n s (38). V a r i a t i o n s i n water and f i b e r contents may r e s u l t i n v a r i a t i o n s i n the i n d i c e s (39-42) (see l a t e r s e c t i o n o f t h i s paper). A r e l a t i v e l y low AD might be the r e s u l t of high f i b e r content of the d i e t , but might a l s o be due t o wound-induced p r o t e o l y t i c enzyme i n h i b i t o r s (34, 37) which would reduce the d i g e s t i b i l i t y of the food. A low ECD c o u l d r e s u l t from a n t i m e t a b o l i t e s present i n the d i e t a r y m a t e r i a l , but could a l s o be produced by unfavorable amino a c i d r a t i o s t h a t would prevent the synthesis of normal s t r u c t u r a l p r o t e i n s . Plant m a t e r i a l c o n t a i n i n g acute t o x i n s preclude the determination of meaningful n u t r i t i o n a l i n d i c e s because the larvae would sicken and/or d i e during the experimental p e r i o d . Accordingly, nu t r i t i o n a l i n d i c e s are u s e f u l i n a p r e l i m i n a r y assessment o f host p l a n t u t i l i z a t i o n , but are not s u f f i c i e n t t o i d e n t i f y the s p e c i f i c f a c t o r s i n f l u e n c i n g the e f f i c i e n c y o f that u t i l i z a t i o n . The e f f e c t s o f chemical p l a n t f a c t o r s , i n c l u d i n g both a l l e l o c h e m i c s and n u t r i t i o n a l f a c t o r s , on the e f f i c i e n c y of d i e t a r y u t i l i z a t i o n can best be i n v e s t i g a t e d by i n c o r p o r a t i n g them i n t o a standardized a r t i f i c i a l d i e t and then determining n u t r i t i o n a l i n d i c e s . In t h i s way chemical f a c t o r s can be studied with much l e s s equivoca t i o n . A l s o , by using the technique o f p e r f u s i o n o f known amounts o f a compound i n t o p l a n t m a t e r i a l , most o f the l i m i t a t i o n s discussed above can be avoided. E r i c k s o n and Feeny (18) were q u i t e s u c c e s s f u l i n t h e i r use o f t h i s technique. They demonstrated t h a t P a p i l i o polyxenes a s t e r i u s larvae ate j u s t as much wen fed on p l a n t t i s s u e perfused with s i n i g r i n as when fed c o n t r o l t i s s u e . The s i n i g r i n i n h i b i t e d a s s i m i l a t i o n , though. In a d d i t i o n t o the n u t r i t i o n a l index experiments d i s c u s s e d above, I a l s o s t u d i e d the e f f e c t s o f a l l e l o c h e m i c s on some other aspects o f d i e t e t i c s o f the black cutworm. The i n s e c t s were reared on an a r t i f i c i a l d i e t (43). A l l e l o c h e m i c s were added at known concentrations. A number of p l a n t a l l e l o c h e m i c s with p o s s i b l e allomone f u n c t i o n s were t e s t e d over a 10,000-fold range o f concentrations f o r e f f e c t s on l a r v a l s u r v i v a l , growth, pupation r a t e , and pupal weight. I f i n c o r p o r a t i o n of a compound i n t o the d i e t r e s u l t e d i n a s t a t i s t i c a l l y s i g n i f i c a n t c o r r e l a t i o n between i t s d i e t a r y concentration and one of the above parameters, then the n u t r i t i o n a l i n d i c e s were determined f o r that compound a t 3.75 χ 10 M. A more d e t a i l e d d e s c r i p t i o n of the methods used f o r these experiments are described elsewhere (9). The experimental r e s u l t s (Table I) (summarized from Reese and Beck (9-12) p l u s some m a t e r i a l being prepared f o r p u b l i c a t i o n ) show a number o f things. p-Benzoquinone ( F i g . 1) reduced the amount o f i n g e s t i o n and a s s i m i l a t i o n . The reduced a s s i m i l a t i o n appeared t o be compensated f o r by an increase i n ECD. The i n t e r a c t i o n of these two parameters r e s u l t e d i n an o v e r a l l ECI
HOST P L A N T RESISTANCE T O
136
Table I.
E f f e c t s o f some a l l e l o c h e m i c s on black cutworm s u r v i v a l , weight at 10 days, pupation at 28 days, pupal weight, pupation at 35 days, i n g e s t i o n , dry weight gain, AD, ECD, and ECI. + indicates s i g n i f i c a n t c o r r e l a t i o n between compound concentration and parameter measured f o r s u r v i v a l , weight, 28-day pupat i o n , and 35-day pupation. + i n d i c a t e s s i g n i f i c a n t d i f f e r e n c e between experimental and c o n t r o l i n s e c t s f o r i n g e s t i o n , dry weight gain, AD, ECD, and ECI. Survival
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch009
PESTS
10Day Wt.
p-Benzoquinone Dur oqui none
+
28Day Wt.
Pupal Wt.
+
+
+
+
+
+
+
+
35Day Pup.
+
Ingestion
Dry AD ECD Wt. Gain
+
+
+
+
+
+
+
+
+
Hydroquinone Catechol L-Dopa
+
+
+
+
+
Dopamine Chlorogenic Acid Resorcinol
+
Phloroglucinol +
+
G a l l i c Acid
+
+ +
% +
+
p-Coumaric A c i d
+ +
Cinnamic A c i d
+
+
Ferulic Acid Benzyl A l c o h o l Pyrogallol Orcinol
+ +
+
+
+
+
+
ECI
Plant Biochemicals
REESE
P-BENZOQUINONE
and Insect
HYDROQUINONE
Growth
ρ - C O U M A R I C ACID OH
CINNAMIC A C I D
V Ο
DUROQUINONE
BENZYL A L C O H O L
FERULIC
ACID
Ο
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch009
H
3
c A c H
3
PHLOROGLUCINOL
CATECHOL OH
J\0H
V
GALLIC
CHLOROGENIC
ACID
ACID H C I ^ \ 0 H
J\PH
V
Y
C O O H
^CH-COO
y h
o
Figure 1.
\çoo \ _ / ° h
Plant allelochemics bioassay ed with black cutworm larvae (duroquinone is probably not found in phnts)
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch009
138
HOST P L A N T
RESISTANCE T O PESTS
that was s i m i l a r t o the c o n t r o l l a r v a e . The reduced form o f pbenzoquinone, hydroquinone, showed l i t t l e b i o l o g i c a l a c t i v i t y . Catechol i n h i b i t e d ECD, r e s u l t i n g i n a low ECI, while the amount ingested was not a f f e c t e d . L-Dopa a l s o exerted no e f f e c t on i n g e s t i o n , but i n h i b i t e d both AD and ECD. I n t e r e s t i n g l y , the s t r u c t u r e s o f both c a t e c h o l and L-dopa i n c l u d e hydroxyl groups l o c a t e d on adjacent carbon atoms. No compound that we have t e s t e d to data that i n c l u d e d t h i s s t r u c t u r e has had any e f f e c t on i n g e s t i o n . A l s o , compounds having t h i s s t r u c t u r e may a c t as c h e l a t i n g agents, thus b i n d i n g some e s s e n t i a l mineral or t r a c e element. L-Dopa might a l s o be a c t i n g as some type o f competitor with t y r o s i n e o r phenylalanine. L-Dopa without the carboxyl group (dopamine) had no d e t e c t a b l e b i o l o g i c a l a c t i v i t y . Thus, having hydroxyl groups on adjacent carbon atoms c e r t a i n l y d i d not guarantee a c t i v i t y . R e s o r c i n o l had no apparent e f f e c t on the n u t r i t i o n a l i n d i c e s ; the data suggest the reduced growth was mainly due to a reduced r a t e o f i n g e s t i o n . P h l o r o g l u c i n o l (with one more hydroxyl group than r e s o r c i n o l ) ( F i g . 1) i n h i b i t e d growth mainly through a r e d u c t i o n o f ECD and thus a reduced ECI. O r c i n o l , d i f f e r i n g from p h l o r o g l u c i n o l i n having a methyl group s u b s t i t u t e d f o r a hydroxyl group ( F i g . 1), showed no b i o l o g i c a l a c t i v i t y . Although cinnamic a c i d i n h i b i t e d pupation i n the p r e l i m i n a r y t e s t s , i t had no e f f e c t on the n u t r i t i o n a l i n d i c e s . p-Coumaric a c i d , s t r u c t u r a l l y s i m i l a r t o cinnamic a c i d , a f f e c t e d only pupal weight and ECD. F e r u l i c a c i d showed no apparent a c t i v i t y . Benzyl a l c o h o l i n h i b i t e d pupation, and i n h i b i t e d ECD s l i g h t l y . P y r o g a l l o l i n h i b i t e d growth, apparently through an accumulation o f s t a t i s t i c a l l y i n s i g n i f i c a n t e f f e c t s on v a r i o u s , parameters such as i n g e s t i o n and ECI. The a d d i t i o n o f a carboxyl group t o get g a l l i c a c i d lessened the a c t i v i t y , at l e a s t i n terms o f growth. Duroquinone was i n c l u d e d i n these experiments because o f i t s s t r u c t u r a l s i m i l a r i t i e s to the p l a n t compound, p-benzoquinone, although I am not aware o f duroquinone having been reported to occur i n p l a n t t i s s u e s . Duroquinone i n c r e a s e d AD but s t r o n g l y i n h i b i t e d other parameters. Growth was e x c e p t i o n a l l y slow i n the presence of duroquinone. In r e l a t i o n to the chronic e f f e c t s hypothesis, i t i s i n t e r e s t i n g t o note t h a t o f 37 compounds t e s t e d (not a l l shown i n Table I due t o incomplete n u t r i t i o n a l index d a t a ) , only 10 compounds reduce s u r v i v a l ( t o x i c i t y ) , whereas 25 compounds reduced growth, pupation, o r pupal weight. Thus, the chronic e f f e c t s hypothesis i s supported. I t h i n k t h a t n u t r i t i o n a l index data are extremely u s e f u l i n s t a r t i n g t o i d e n t i f y p h y s i o l o g i c a l processes i n f l u e n c e d by p l a n t a l l e l o c h e m i c s , p a r t i c u l a r l y i f the chemicals are t e s t e d s i n g l y under d e f i n e d experimental c o n d i t i o n s . Unfortunately, t h i s type o f data does not e l u c i d a t e s p e c i f i c biochemical modes o f a c t i o n . A l s o , i t does not e l i m i n a t e the p o s s i b i l i t y of a d d i t i o n a l o r nonn u t r i t i o n a l e f f e c t s . However, n u t r i t i o n a l index techniques w i l l s u r e l y help us make progress i n these d i r e c t i o n s . In a d d i t i o n ,
9.
REESE
Plant Biochemicals
and
Insect
Growth
139
these techniques have already shown t h a t growth can be i n h i b i t e d by p l a n t a l l e l o c h e m i c s i n d i f f e r e n t ways. A l s o , they c l e a r l y demonstrate t h a t the n u t r i t i o n a l physiology ( " d i e t e t i c s ) of i n s e c t s can be i n f l u e n c e d by n o n - n u t r i t i o n a l substances.
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch009
I n t e r r e l a t i o n s h i p s o f N u t r i t i o n a l Indices and D i e t a r y Moisture Levels Recently, I examined the i n t e r r e l a t i o n s h i p s between various growth-related parameters and the e f f e c t s of d i e t a r y moisture l e v e l s on these parameters. Although water i s o f obvious importance to animal n u t r i t i o n , l i t t l e q u a n t i t a t i v e work has been done on how water intake a f f e c t s the dynamics of growth. Storedproducts i n s e c t s have remarkable a b i l i t i e s to conserve water (44), while a number of phytophagous i n s e c t s s u f f e r d e l e t e r i o u s e f f e c t s i f d i e t a r y moisture i s not r e l a t i v e l y high (38, 41, 45). House (46) found t h a t as the n u t r i e n t s o f food were d i l u t e d by water, C e l e r i o euphorbiae larvae tended to eat more. House d i d not f i n d s t a t i s t i c a l l y s i g n i f i c a n t d i f f e r e n c e s i n the e f f i c i e n c i e s o f conversion o f ingested food between the c o n t r o l and experimental i n s e c t s over the range o f moisure l e v e l s he t e s t e d . However, I c a l c u l a t e d the c o r r e l a t i o n c o e f f i c i e n t between percentage of n u t r i e n t s ( i n g r e d i e n t s other than agar, c e l l u l o s e f l o u r , water, and f o l i a g e e x t r a c t ) and the mean e f f i c i e n c y of conversion of ingested food i n House's experiment, and I found i t to be negative and h i g h l y s i g n i f i c a n t . Soo Hoo and Fraenkei (39, 40) suggested t h a t water content o f the d i e t was important to e f f i ciency of conversion i n Prodenia e r i d a n i a ; d i l u t i o n o f the d i e t caused an apparent increase i n e f f i c i e n c y . Feeny (_3) found t h a t e f f i c i e n c y of conversion o f a s s i m i l a t e d food decreased with decreasing moisture o f the r e s p e c t i v e food p l a n t s o f various lepiodopterous l a r v a e . Hoekstra and Beenakkers (47) suggested t h a t p a r t o f the d i f f e r e n c e i n e f f i c i e n c i e s of conversion f o r Locusta m i g r a t o r i a were due to d i f f e r e n c e s i n moisture content o f the d i f f e r e n t species of p l a n t s they were fed. S c r i b e r (48) r e c e n t l y i n v e s t i g a t e d the e f f e c t s of v a r i e d moisture l e v e l s i n host leaves on Hyalophora c e c r o p i a l a r v a e . He, too, found t h a t lower moisture l e v e l s decrease the e f f i c i e n c y o f conversion of food i n t o biomass, as w e l l as the e f f i c i e n c y o f conversion o f the c a l o r i c content and the e f f i c i e n c y o f conversion o f the n i t r o genous content of the food. The f o l l o w i n g abbreviations w i l l be used i n t h i s s e c t i o n : IFrWtL — DWG DWE FWE DML uWF
— — — — —
i n i t i a l f r e s h weight o f larvae (weight o f larvae at beginning o f experiment) dry weight gain dry weight eaten f r e s h weight eaten percent dry matter of larvae at end o f experiment dry weight o f feces
H O S T P L A N T RESISTANCE
140
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch009
DMF DMD
— —
T O PESTS
percent dry matter o f feces at end o f experiment percent dry matter o f d i e t at beginning o f e x p e r i ment
A stock c u l t u r e o f the b l a c k cutworm was maintained using the methods of Reese e t a l (43) as modified by Reese and Beck (j)) . C o r r e l a t i o n c o e f f i c i e n t s were c a l c u l a t e d between a l l p o s s i b l e combinations o f p a i r s o f growth-related parameters from the cont r o l s o f p u b l i s h e d and unpublished a l l e l o c h e m i c experiments (ji12). The mean values from each o f 18 experiments were used i n t h i s p o r t i o n o f the study. In each o f these 18 experiments, there were 20 l a r v a e i n each group and the experiments were performed from the 10th through the 20th day o f l a r v a l l i t e . In a second s e r i e s o f experiments, the d i e t a r y moisture l e v e l s were v a r i e d . There were 20 larvae i n each c o n t r o l group and 20 l a r v a e i n each experimental group. The experimental p e r i o d was again from the 10th through the 20th day o f l a r v a l l i f e . Remaining d e t a i l s o f the n u t r i t i o n a l index techniques employed have been d i s c u s s e d e a r l i e r i n t h i s paper. I n t e r r e l a t i o n s h i p s o f I n d i c e s . IFrWtL v a r i e d from e x p e r i ment t o experiment, apparently due t o s l i g h t v a r i a t i o n s i n r e a r i n g c o n d i t i o n s and v a r i a t i o n s w i t h i n the p o p u l a t i o n ; the importance o f running p r e c i s e c o n t r o l s along with experiments i s apparent. In such a s i t u a t i o n , i t would be reasonable t o expect t h a t l a r v a e t h a t s t a r t e d the experiment a t a h e a v i e r weight would have a h i g h e r DWE, DWG, and DWF during the experiment. T h i s i s c l e a r l y shown i n Table I I . Likewise, i t would be reasonable t o assume that DWG (other f a c t o r s being e q u a l ) , should be d i r e c t l y p r o p o r t i o n a l to DWE. T h i s too proved to be the case (Table I I and F i g . 2) and confirmed the work of Kogan and Cope (42) who used Pseudoplusia i n c l u d e n s feeding on soybeans. Kogan and Cope presented the l i n e a r r e g r e s s i o n c h a r a c t e r i s t i c s f o r the r e l a t i o n s h i p they found between DWE and DWG. I used these c h a r a c t e r i s t i c s to c a l c u l a t e DWG values i n our cutworm experiments ( F i g . 2 ) . The DWG v a l u e s c a l c u l a t e d from the Kogan and Cope r e g r e s s i o n were higher than those f o r the b l a c k cutworm. T h i s i n d i c a t e s t h a t P_. includens was more e f f i c i e n t a t converting soybeans i n t o i n s e c t t i s s u e than the b l a c k cutworm was a t converting the a r t i f i c i a l d i e t used i n my experiments. Since IFrWtL and DWG were p o s i t i v e l y c o r r e l a t e d , and since IFrWtL and DWF were p o s i t i v e l y c o r r e l a t e d , i t i s reasonable to suspect t h a t a r e l a t i o n s h i p might e x i s t between DWG and DWF. T h i s was the case, as shown i n Table I I . Dr. Beck and I have s t a t e d (9) that i t may not be necessary to use s p e c i f i c i n s t a r t s f o r n u t r i t i o n a l index experiments, espec a l l y when c o n t r o l s are always run. I t was t h e r e f o r e i n t e r e s t i n g t h a t there was no s i g n i f i c a n t c o r r e l a t i o n between IFrWtL and any of the three n u t r i t i o n a l i n d i c e s (AD, ECD, and E C I ) ; i n f a c t , the c o r r e l a t i o n s were e x c e p t i o n a l l y low (Table I I ) . In other words, as long as the experiments were s t a r t e d with 10 day o l d l a r v a e ,
ECD
AD
DMF
DWF
DWG
DML
DWE
IFrWtL
Table I I .
+0.866 ***
DWE
* ** ***
+0.611 **
+0.541 *
DML
+0.703
+0.912 ***
+0.795 ***
DWG
+0.892 ***
+0.652
+0.958 ***
+0.822 ***
DWF
•
+0.004 -0.291
+0.126 -0.828 ***
-0.142
+0.749 ***
+0.001
+0.166
-0.311
+0.331
+0.236
-0.072
-0.093
ECI
-0.344
+0.209
+0.206
-0.065
-0.076
ECD
-0.106
-0.151
-0.037
-0.001
AD
-0.397
+0.179
-0.453
-0.409
DMF
< 0.05 l e v e l .
(17 degrees o f freedom i n each case) between p a i r s o f n u t r i -
indicates s t a t i s t i c a l significance at Ρ s i g n i f i c a n c e a t Ρ < 0.01 l e v e l . s i g n i f i c a n c e a t Ρ < 0.0005 l e v e l .
Coefficients of correlation t i o n a l index parameters.
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch009
^
;s-
s? 3
| ο
•—I
a
g
2
S*
g3
*α §
g w w
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch009
HOST P L A N T RESISTANCE
D W E (g) Figure 2. Refotionship between DWG and DWE in black cutworm larvae. Kogan and Cope 1974 line refers to line calculated from data in Ref. 42.
T O PESTS
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch009
9.
REESE
Plant Biochemicals
and
Insect
Growth
143
d i f f e r e n c e s i n weight (and i n i n s t a r s ) w i t h i n the range s t u d i e d , had no apparent r e l a t i o n s h i p to AD, ECD, o r ECI. A s i m i l a r l a c k of r e l a t i o n s h i p s i s suggested by Kogan and Cope (42). They found ECI t o be roughly s i m i l a r from day 6 through day 12, when c a l c u l a t e d i n terms o f f r e s h weights. I t was more e r a t i c when c a l c u l a t e d i n terms o f dry weights, but there was s t i l l l i t t l e apparent trend up o r down, as the i n s e c t grew. A l l o f these l i n e s o f evidence suggest t h a t e f f i c i e n c y changes l i t t l e d u r i n g the l o g phase o f growth. T h i s f u r t h e r strengthens our proposal (9) t h a t i t i s during t h i s l o g phase that i t i s a p p r o p r i a t e to conduct experiments on growth-reducing d i e t a r y f a c t o r s . AD i n c r e a s e d as ECD decreased (Table I I ) . In other words, as more food was a s s i m i l a t e d , a s m a l l e r p r o p o r t i o n of the a s s i m i l a t e d food was converted i n t o i n s e c t biomass. Since ECI depends d i r e c t l y upon a s s i m i l a t i o n and the e f f i c i e n c y with which a s s i m i l a t e d food i s converted, t h i s compensating mechanism had the e f f e c t o f decreasing the v a r i a b i l i t y of ECI. ECI had a range of o n l y 7.6 percentage p o i n t s , while ECD and AD had ranges o f 39.5 and 19.0 percentage p o i n t s , r e s p e c t i v e l y , over the 18 e x p e r i ments. DML and DMF I n t e r r e l a t i o n s h i p s . Larvae that s t a r t e d the experimental p e r i o d at a h e a v i e r weight tended to end the e x p e r i ment a t a higher DML (Table I I ) . I t would appear from t h i s t h a t black cutworm larvae may have some a b i l i t y to conserve moisture. T h i s i s s u b s t a n t i a t e d by the f a c t that DML f o r c o n t r o l s was u s u a l l y around 16%, whereas DMD a t the beginning o f experiments was u s u a l l y c l o s e to 21%. A l s o , i t f i t s w e l l with the f a c t t h a t many i n s e c t s i n c r e a s e i n percent dry matter as they i n c r e a s e i n age (49, 50). Given that b l a c k cutworm l a r v a e can apparently conserve moisture when feeding on a d i e t o f 21% DMD, how much a b i l i t y do they have to maintain a constant moisture l e v e l when fed d i e t s o f v a r y i n g moisture l e v e l s ? T h i s and other questions prompted us to vary the d i e t a r y moisture l e v e l . The r e s u l t s o f these experiments w i l l be d i s c u s s e d i n a subsequent s e c t i o n . Considering the r e l a t i o n s h i p between IFrWtL and DML, and c o n s i d e r i n g the r e l a t i o n s h i p s between IFrWtL and DWE, DWG, and DWF, i t was not s u r p r i s i n g to f i n d p o s i t i v e c o r r e l a t i o n s between DML and DWE, DWG, and DWF (Table II) . DMF, however, was appar e n t l y independent o f any other parameter, i n c l u d i n g DML. This was somewhat unexpected, since i f there were a r e g u l a t o r y mechanism f o r DML, one would assume t h a t i t would operate by absorbing v a r i o u s amounts o f water from the hindgut. I n t e r e s t i n g l y , DML and DMF were both very p r e c i s e parameters i n any given experiment. Standard e r r o r o f the mean values were almost always l e s s than 1% and were u s u a l l y l e s s than 0.5%. The range o f DMF values over the 18 experiments was 15.1 percentage p o i n t s , while the range o f DML values was only 3.4 percentage p o i n t s . Compared t o the wide i n d i v i d u a l v a r i a t i o n o f such things as l a r v a l weight, t h i s v a r i a t i o n i n DML seemed e x c e p t i o n a l l y
144
HOST P L A N T RESISTANCE T O
PESTS
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch009
small. We have a l s o noted t h a t i n c e r t a i n o f our a l l e l o c h e m i c experiments, DMF and DML seemed to be among the most s e n s i t i v e parameters. In some experiments i n which parameters ( i . g . DWG) were not s i g n i f i c a n t l y d i f f e r e n t from the c o n t r o l s , DMF or DML showed s i g n f i c a n t d i f f e r e n c e s . A l s o , such small v a r i a t i o n over many experiments i m p l i e s t h a t black cutworm larvae have the a b i l i t y to regulate DML. To i n v e s t i g a t e t h i s p o s s i b i l i t y and to t r y to answer questions discussed e a r l i e r , a s e r i e s o f e x p e r i ments were performed i n which the experimental i n s e c t s were fed on d i e t s o f varying moisture content. E f f e c t s of Various D i e t a r y Moisture L e v e l s . FWE was not a f f e c t e d by d i l u t i o n with water ( F i g . 3). U n l i k e C e l e r i o euphorbiae larvae (46), black cutworm larvae seem to have l i t t l e a b i l i t y t o compensate f o r a d i l u t i o n of the d i e t . D i e t s d r i e r than the c o n t r o l s were consumed much more p o o r l y ( F i g . 3). With FWE remaining e s s e n t i a l l y constant f o r the d i l u t e d d i e t s , the a c t u a l DWE n e c e s s a r i l y decreased with i n c r e a s i n g moisture from the c o n t r o l l e v e l ( F i g . 4 ) . With d i e t s d r i e r than the c o n t r o l s , DWE a l s o decreased. Thus, the optimal moisture content i n terms o f DWE was a d i e t s l i g h t l y d r i e r than the c o n t r o l s . DWF followed a s i m i l a r p a t t e r n . As DMD increased, ECD decreased over the e n t i r e range of concentrations t e s t e d ( F i g . 5 ) . Note t h a t the optimal DMD i n terms o f ECD i s not at a l l c l o s e to the c o n t r o l (100%) l e v e l . These data confirmed what Feeny (3), S c r i b e r (48), and House (46) found with other lepidopterous l a r v a e . I f e e l t h i s i s a s i g n i f i cant f i n d i n g s i n c e Feeny (_3) and S c r i b e r (48) used d i f f e r e n t p l a n t s (among which water content happened to v a r y ) , or the water content o f a p l a n t was changed a r t i f i c i a l l y . In e i t h e r case, many other biochemical f a c t o r s may a l s o have been d i f f e r e n t . In my experiments, a standardized d i e t was used, t h e r e f o r e , I was confident when I changed the d i e t a r y moisture l e v e l , that t h i s was the only t h i n g t h a t was v a r i e d . In a d d i t i o n , I was able to study moisture l e v e l s above the optimal growth l e v e l , as w e l l as those below t h i s l e v e l . As might be expected from the r e l a t i o n s h i p between ECD and ECI, ECI was a l s o i n v e r s e l y p r o p r t i o n a l to DMD ( F i g . 6 ) . As discussed above, ECD and AD were i n v e r s e l y p r o p o r t i o n a l to each other; t h i s apparently had a s t a b i l i z i n g e f f e c t on ECI. In the experiments i n which d i e t a r y moisture was v a r i e d , ECD was i n v e r s e l y c o r r e l a t e d with DMD, so i f AD and ECD were r e l a t e d to each other, one would expect DMD and AD to be c o r r e l a t e d . This was not the case. Thus, over a winde range o f d i e t a r y moisture l e v e l s , the compensating mechanism between ECD and AD apparently does not operate a t a detectable l e v e l . A l s o , the f a c t that AD was not a f f e c t e d by d i e t a r y moisture was i n i t s e l f somewhat s u r p r i s i n g , s i n c e one would think t h a t the moisture content o f food would have some e f f e c t on how r e a d i l y i t passes across the gut w a l l .
9.
REESE
Plant Biochemicals
and Insect
145
Growth
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch009
120 r
40
60
80
100
120
140
160
DMD (% of Control) Figure 3.
Effect of DMD on FWE laroae
in black cutworm
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch009
HOST P L A N T RESISTANCE T O PESTS
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch009
9.
REESE
Plant Biochemicals
and
Insect
Growth
147
Growth depends upon a combination o f how much an organism eats and how e f f i c i e n t l y t h a t m a t e r i a l i s converted i n t o t i s s u e . T h i s i s c l e a r l y demonstrated and q u a n t i f i e d by our data. Figs. 4 and 6 show the r e l a t i o n s h i p between DMD and DWE, and between DMD and ECI, r e s p e c t i v e l y . The r e l a t i o n s h i p of DMD and DWG ( F i g . 7) can be viewed as a r e s u l t a n t o f F i g s . 4 and 6. On low DMD d i e t s , the l a r v a e ate l e s s , but converted i t more e f f i c i e n t l y , g i v i n g net DWG values t h a t were somewhat lower than the c o n t r o l s . Had the i n f l u e n c e o f a higher ECI and a b i l i t y o f the l a r v a e to regulate moisure l e v e l s to some extent (discussed i n a l a t e r section) not been f a c t o r s , the curve f o r the moist d i e t s i n F i g . 7 might have followed the dashed l i n e more c l o s e l y . This dashed l i n e was c a l c u l a t e d on the b a s i s of the three p o i n t s between 80% and 100% DMD. For d i e t s d r i e r than the c o n t r o l s , both ECI and DWE dropped sharply, and combined to give g r e a t l y reduced growth. Note t h a t although the optimal DWE was a p o i n t above the c o n t r o l s (higher DMD than c o n t r o l s ) , t h a t the optimal DWG was q u i t e c l o s e to the c o n t r o l s , due to the i n f l u e n c e s of ECI. The d i e t developed e m p i r i c a l l y by Reese e t a l (43) was thus shown to be very c l o s e to the optimum i n terms o f moisture l e v e l . These experiments were o r i g i n a l l y conducted f o r the purpose of i n v e s t i g a t i n g the a b i l i t y o f black cutworm larvae to deal p h y s i o l o g i c a l l y with various d i e t a r y moisture l e v e l s . As has been shown, d i e t a r y moisture has s t r i k i n g e f f e c t s on growth and e f f i c i e n c y of conversion, as w e l l as r e l a t e d parameters. I t a l s o had r a t h e r p r e c i s e e f f e c t s on DMF, as shown i n F i g . 8. Fecal percent dry matter i n terms o f percent of the c o n t r o l s , was e s s e n t i a l l y the same as d i e t a r y dry matter ( F i g . 8). The dashed l i n e i n F i g . 8 i l l u s t r a t e s the s i t u a t i o n i f DMF were e x a c t l y equal to DMD, i n terms o f percent of the c o n t r o l s . The larvae seemed t o have l i t t l e a b i l i t y to regulate dry matter compared to many stored-products i n s e c t s . Nevertheless, evidence f o r a c e r t a i n amount o f water conserving a b i l i t y i s presented i n F i g . 9. Note the p o s i t i o n o f the curve i n r e l a t i o n to the dashed l i n e , which shows the s i t u a t i o n i f DML were e x a c t l y equal to DMD, i n terms o f percent of the c o n t r o l s . The f a c t that the observed data f a l l s above the dashed l i n e f o r low dry matter d i e t s , but lags behind the dashed l i n e f o r d r i e r d i e t s , i n d i c a t e d a degree of r e g u l a t o r y a b i l i t y . A l s o , when viewed i n terms of a c t u a l DML and DMD values (rather than i n terms of percent o f c o n t r o l s ) , DML was always s l i g h t l y lower than DMD, demonstrating some a b i l i t y to conserve water. The a b i l i t y i s not very great, though, as i n d i cated by the f a c t that as DMD increased, DML a l s o increased over the range o f d i e t a r y moisture l e v e l s t e s t e d . Apparently the mechanism was not p u t t i n g excess moisture back i n t o the gut tract. I f t h i s were happening, the feces from larvae on low dry matter d i e t s should have been much lower i n dry matter. From these data the mechanism seems to be a water conservation mechanism i n the sense of maintaining DML lower than DMD, but not a r e g u l a t o r y mechanism i n the sense of maintaining a constant DML over a range o f DMD values.
American Chemicaf Society Library 1155 16th St. N. W. Washington, D. C. 20036
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch009
HOST P L A N T RESISTANCE
Figure 7.
Effect of DMD on DWG in black cutworm larvae. Dashed line based on three points closest to it.
160
ο
140
5
120
H
CO
Φ
I g
100
fi*
80
60
4
0
60
80
100
120
140
160
% Dry Matter of Diet (% of Control) Figure 8. Effect of DMD on DMF in black cut worm larvae. Dashed line represents situation if DMF equaled DMD, in terms of percent of control.
T O PESTS
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch009
9.
REESE
Plant Biochemicals
and Insect
Growth
Figure 9. Effect of DMD on DML in black cutworm larvae. Dashed line represents situation if DML equaled DMD, in terms of percent of control.
149
HOST P L A N T
150
RESISTANCE T O PESTS
Moisture l e v e l i s c e r t a i n l y an important f a c t o r i n p l a n t i n s e c t i n t e r a c t i o n s . Black cutworm l a r v a e , although h i g h l y polyphagous, are undoubtedly capable of s u c c e s s f u l l y l i v i n g only on p l a n t s with f a i r l y high moisture l e v e l s . Outbreaks of t h i s p e s t are a s s o c i a t e d with f l o o d s and unusually wet years. T h e i r a b i l i t y to r e g u l a t e t h e i r moisture l e v e l i s l i m i t e d . Moisture l e v e l may be a u s e f u l f a c t o r i n host p l a n t r e s i s t a n c e . I f t h i s proves to be the case, i t would c e r t a i n l y s i m p l i f y some o f the problems encountered i n biochemically-based r e s i s t a n c e , i n which we must be concerned with p o s s i b l e e f f e c t s of these biochemicals on l i v e s t o c k and man. I b e l i e v e t h i s area of research warrants f u r t h e r study.
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch009
Concluding Remarks T h i s summary o f i n t e r a c t i o n s between p l a n t biochemicals and i n s e c t d i e t e t i c s i s c e r t a i n l y not complete or comprehensive. I t does p o i n t out some o f the c u r r e n t areas o f research. More important, I hope that i t may stimulate more work i n areas where our knowledge i s s t i l l l a c k i n g depth. We know l i t t l e about the e f f e c t s o f a l l e l o c h e m i c s on the a s s i m i l a t i o n and conversion processes i n the gut and body t i s s u e s o f the i n s e c t . Nor do we have a very broad understanding o f the e f f e c t s o f a l l e l o c h e m i c s on amino a c i d u t i l i z a t i o n i n p r o t e i n s y n t h e s i s and other synthet i c pathways i n the developmental and reproductive physiology of the i n s e c t . The n u t r i t i o n a l index techniques discussed i n t h i s paper o f f e r a beginning, but only a beginning. Nutritional i n d i c e s can serve as i n d i c a t o r s i d e n t i f y i n g some o f the aspects t h a t should be s t u d i e d i n d e t a i l with biochemical techniques. Acknowledgement T h i s research was supported by the College o f A g r i c u l t u r a l and L i f e Sciences, U n i v e r s i t y o f Wisconsin and by a research grant (PCM 74-24001) t o Dr. Stanley D. Beck from the N a t i o n a l Science Foundation. I would l i k e to thank Dr. Dale M. N o r r i s f o r h e l p f u l suggestions f o r improving t h i s manuscript. I a l s o thank H o l l y Beermann f o r t e c h n i c a l a s s i s t a n c e . Literature Cited
1. Beck, S. D., Reese, J. C., Recent Adv. Phytochem, (1976), 10, 4192. 2. Whittaker, R. H., pp. 43-70, "Chemical Ecology", Sondheimer, E., Simeone, J. B., Eds., Academic Press, New York, 1970. 3. Feeny, P. P., pp. 3-19, "Coevolution of Animals and Plants". Gilbert, L. E., Raven, P. H., Eds., University of Texas Press, Austin, 1975. 4. Feeny, P. P., Recent Adv. Phytochem., (1976), 10, 1-40. 5. Rhoades, D. F., Cates, R. G., Recent Adv. Phytochem, (1976), 10, 168-213.
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch009
9.
REESE
Plant Biochemicals
and Insect Growth
151
6. Fraenkel, G. S., Science, (1959), 129, 1466-1470. 7. Hedin, P. Α., Maxwell, F. G., Jenkins, J. Ν., pp. 494-527, "Proceedings of the Summer Institute on Biological Control of Plant Insects and Diseases", Maxwell, F. G., Harris, F. Α., Eds., University Press of Mississippi, Jackson, 1974. 8. Kogan, Μ., pp. 103-146, "Introduction to Insect Pest Manage ment", Metcalf, R. L., Luckmann, W., Eds., John Wiley and Sons, New York, 1975. 9. Reese, J. C., Beck, S. D., Ann. Entomol. Soc. Am., (1976a), 69, 59-67. 10. Reese, J. C., Beck, S. D., Ann. Entomol. Soc. Am., (1976b), 69, 68-72. 11. Reese, J. C., Beck, S. D., Ann. Entomol. Soc. Am., (1976c), 69, 999-1003. 12. Reese, J. C., Beck, S. D., pp. 217-221, "The Host-Plant in Relation to Insect Behaviour and Reproduction", Jermy, T., Ed., Plenum Press, New York, 1976. 13. Kogan, M., pp. 211-227, "Proc. XV Internat. Congress Ent.", Packer, J. S., D. White, Eds., 1977. 14. Beck, S. D., Ann. Rev. Entomol., (1965), 10, 207-232. 15. Beck, S. D., pp. 1-6, "Insect and Mite Nutrition", Rodriguez, J. G., Ed., North Holland Publishing Co., Amsterdam, 1972. 16. Beck, S. D., pp. 290-311, "Proceedings of the Summer Insti tute on Biological Control of Plant Insects and Diseases", Maxwell, F. G., Harris, F. Α., Eds., University Press of Mississippi, Jackson, 1974. 17. Beck, S. D., Schoonhoven, L. Μ., "Breeding Plants Resistant to Insects", Maxwell, F. G., Jennings, P. R., Eds., John Wiley and Sons, New York, (In Press). 18. Erickson, J. Μ., Feeny, P. P., Ecology, (1974), 55: 103-111. 19. Shaver, T. N., Lukefahr, M. J., Garcia, J. Α., J. Econ. Entomol., (1970), 63: 1544-1546. 20. Elliger, C. Α., Zinkel, D. F., Chan, B. G., Waiss, A. C., Jr., Experientia, (1976), 32: 1364-1365. 21. Hatfield, Ε. E., pp. 171-179, "Effect of Processing on the Nutritional Value of Feeds", National Acad. Sci., Washing ton, D. C., 1973. 22. Cheeke, P. R., Nutrition Reports Internat., (1972), 5: 159-170. 23. Stephenson, E. L., pp. 67-71, "Effect of Processing on the Nutritional Value of Feeds", National Acad. Sci., Washington, D. C., 1973. 24. Liener, I. E., J. Food. Sci., (1976), 41: 1076-1081. 25. Rosenthal, G. Α., Janzen, D. H., Dahlman, D. L., Science (1976), 192: 256-258. 26. Vandersant, E. S., Chremos, J. H., Ann. Entomol. Soc. Am., (1971), 64: 480-485. 27. Isogai, Α., Chang, C., Murakoshi, S., Suzuki, Α., Tamura, S., J. Agr. Chem. Soc. Japan, (1973a), 47: 443-447. 28. Isogai, Α., Murakoshi, S., Suzuki, Α., Tamura, S., J. Agr. Chem. Soc. Japan, (1973b), 47: 449-453.
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch009
152
HOST
PLANT
RESISTANCE
TO
PESTS
29. Dahlman, D. L., Rosenthal, G. Α., Comp. Biochem. Physiol., (1975), 51A: 33-36. 30. Hegdekar, D. Μ., J. Econ. Entomol., (1970), 63: 1950-1956. 31. Feeny, P. P., J. Insect Physiol., (1968), 14: 805-817. 32. Feeny, P. P., Ecology, (1970), 51: 565-581. 33. Ryan, C. Α., Ann. Rev. Plant Physiol., (1973), 24: 173-196. 34. Ryan, C. Α., Green, T. R., Recent, Adv. Phytochem., (1974), 8: 123-140. 35. Birk, Y., Applebaum, S. W., Enzymologia, (1960), 22: 318326. 36. Su, H. C. F., Speirs, R. D., Mahany, P. G., J. Georgia Entomol. Soc., (1974), 9: 86-87. 37. Green, T. R., Ryan, C. Α., Science, (1972), 175: 776-777. 38. Waldbauer, G. P., Adv. Insect Physiol., (1968), 5: 229288. 39. Soo Hoo, C. F., Fraenkel, G., J. Insect Physiol., (1966a), 12: 693-709. 40. Soo Hoo, C. F., Fraenkel, G., J. Insect Physiol., (1966b), 12: 711-730. 41. Waldbauer, G. P., Entomol. Exp. Appl., (1964),7: 253-269. 42. Kogan, Μ., Cope, D., Ann. Entomol. Soc. Am., (1974), 67: 66-72. 43. Reese, J. C., English, L. M., Yonke, T. R., Fairchild, M. L., J. Econ. Entomol., (1972), 65: 1047-1050. 44. Fraenkel, G., Blewett, Μ., Bull. Entomol. Res., (1944), 35: 127-139. 45. Waldbauer, G. P., Entomol. Exp. Appl., (1962), 5: 147-158. 46. House, H. L., Canad. Entomol., (1965), 97: 62-68. 47. Hoekstra, Α., Beenakkers, A. M. T., Entomol. Exp. Appl., (1976), 19: 130-138. 48. Scriber, J. Μ., Oecologia (Berl.), (1977), 28: 269-287. 49. Wigglesworth, V. B., "The Principles of Insect Physiology", 741 pp., Methuen and Co. Ltd., London, 1965. 50. Beck, S. D., Hanec, W., J. Insect Physiol., (1960), 4: 304-418.
10 Isolation and Identification of Toxic Agents from Plants MARTIN JACOBSON
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch010
Biologically Active Natural Products Laboratory, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD 20705
Methods, techniques, and instrumentation for the improved, rapid isolation and identification of physiologically active plant constituents are available today that were lacking 25, 10, or even 5 years ago. The time period between the isolation of a pure compound and its complete identification has often been frustratingly protracted, but that period has recently been narrowed. Perhaps one of the classical examples of the lengthy time span between isolation and complete structural determination is the case of the well known insect toxicant pyrethrum, whose active components—the pyrethrins, cinerins, and jasmolins—were isolated in 1910-1916 by Staudinger and Ruzicka (1), in 1944 by LaForge and Barthel (2), and in 1965 by Godin et al. (3), respectively; however, their complete structures were not obtained until years after they were isolated. No attempt has been made here to present a comprehensive review of a l l of the methods useful for isolating and identifying pesticidal toxicants from plants. Rather those methods that are most generally useful and those pesticidal compounds that are perhaps of major interest are treated. These include pyrethrum, rotenoids, nicotine and nicotinoids, other well-known alkaloids such as those from Veratrum, unsaturated isobutylamides, bitter substances (especially insect feeding deterrents), fungal peptides, gossypol, mycotoxins, and insect growth regulators. The first section treats the isolation and general methods of structure elucidation for the toxicants in each of these categories; the second section cites additional information for each of the most significant methods. For further general reference your attention is directed to the two recent volumes by Nakanishi et al. (4_,5) entitled "Natural Products Chemistry" and to "Naturally Occurring Insecticides" (6) edited by Jacobson and Crosby. Pyrethrum The term "pyrethrum" usually refers to the dried flower heads
153
154
HOST P L A N T RESISTANCE
T O PESTS
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch010
or to an e x t r a c t o f the d r i e d heads of Chrysanthemum c i n e r a r i i f o l i u m V i s , (family Compositae). The a c t i v e components are t o x i c to house f l i e s , mosquitoes, cockroaches, l i c e , and a number of stored product s p e c i e s . I s o l a t i o n . P a r t i t i o n o f a petroleum ether s o l u t i o n of p e t r o leum ether e x t r a c t from d r i e d flower heads between the hydrocarbon and nitromethane, followed by passage o f the nitromethane s o l u t i o n through a short column of a c t i v a t e d c h a r c o a l gives an a c t i v e conc e n t r a t e of 90% p u r i t y or above (7). Molecular d i s t i l l a t i o n can then be used to p u r i f y and d e c o l o r i z e the concentrate (8). The i n s e c t i c i d a l a c t i v i t y o f pyrethrum i s a t t r i b u t e d to the a c t i o n of 6 c o n s t i t u e n t s , namely p y r e t h r i n s I and I I , c i n e r i n s I and I I , and jasmolins I and I I . P y r e t h r i n I and c i n e r i n I are f a i r l y e a s i l y separated from p y r e t h r i n I I and c i n e r i n I I by column chromatography on alumina or s i l i c a g e l , and good s e p a r a t i o n may a l s o be obtained by paper and t h i n - l a y e r chromatography (TLC) (9). I d e n t i f i c a t i o n . The p y r e t h r i n s and c i n e r i n s form c r y s t a l l i n e 2,4-dinitrophenylhydrazones and are f u r t h e r i d e n t i f i e d by degradat i o n , b y d r o g e n o l y s i s , o z o n o l y s i s , u l t r a v i o l e t (UV), i n f r a r e d (IR), and n u c l e a r magnetic resonance (NMR) spectroscopy, and o p t i c a l r o t a t i o n (9). The j a s m o l i n s are i d e n t i f i e d by UV, IR, and NMR spectroscopy (10). Rotenone and Rotenoids T h i s group of compounds comprises mainly rotenone, though i t i n c l u d e s minor amounts of deguelin, tephrosin, t o x i c a r o l , sumat r o l , malaccol, and e l l i p t o n e . The m a t e r i a l s are obtained from v a r i o u s p a r t s ( u s u a l l y the r o o t s ) o f species of D e r r i s , Lonchocarpus, Tephrosia, and Mundulea (family Leguminosae). They a c t as contact o r stomach poisons f o r aphids, house f l i e s , and v a r i o u s species of chewing i n s e c t s . I s o l a t i o n . The a c t i v e compounds are obtained by e x t r a c t i n g the crushed, d r i e d root w i t h ether or methylene c h l o r i d e , followed by overnight c o o l i n g of a carbon t e t r a c h l o r i d e s o l u t i o n of the concentrate at 0°. The carbon t e t r a c h l o r i d e s o l v a t e of rotenone c r y s t a l l i z e s out and i s f i l t e r e d o f f and taken up i n t r i c h l o r o ethylene. When t h i s s o l u t i o n i s d i l u t e d w i t h methanol, n e a r l y pure rotenone separates out and can be f u r t h e r p u r i f i e d by c r y s t a l l i z a t i o n from t r i c h l o r o e t h y l e n e . I s o l a t i o n of rotenone from seeds i s s i m p l i f i e d i f the seeds are d e f a t t e d with petroleum ether p r i o r to e x t r a c t i o n w i t h ether (11). The r e s o l u t i o n of r o t e n o i d mixtures can be e f f e c t e d by column chromatography, but the use of a l k a l i n e alumina must be avoided s i n c e i t causes r a c e m i z a t i o n ; n e u t r a l or a c i d grades of adsorbents must be used. Countercurrent d i s t r i b u t i o n (CCD) i s u s e f u l f o r d e a l i n g w i t h i n t r a c t a b l e gums, and paper, TLC, and
10.
JACOBSON
Toxic Agents from
Plants
high-performance l i q u i d chromatography (11,12).
155
(HPLC) have also been used
I d e n t i f i c a t i o n . The s t r u c t u r e s are i d e n t i f i e d by chemical degradation and by the use of IR and NMR spectroscopy, and o p t i c a l r o t a t o r y d i s p e r s i o n (ORD). The o p t i c a l l y a c t i v e forms of rotenone are much more t o x i c to i n s e c t s than the racemic form (13).
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch010
N i c o t i n e and N i c o t i n o i d s N i c o t i n e and n o r n i c o t i n e occur i n the leaves o f the tobacco p l a n t , N i c o t i a n a tabacum L. Although these compounds were used to a c o n s i d e r a b l e extent as i n s e c t stomach poisons before the ad vent of DDT, they are seldom used as i n s e c t i c i d e s today i n the United States. Anabasine, obtained from the roots of Anabasis a p h y l l a L. and N. glauca Graham (tree tobacco), i s e x t e n s i v e l y used i n the Soviet Union to combat t h r i p s , mites, aphids, l e a f hoppers, s a w f l i e s , l i c e , and mosquitoes (14). N. tabacum and N. glauca are members of the f a m i l y Solanaceae, and A. a p h y l l a i s i n the f a m i l y Chenopodiaceae. I s o l a t i o n . The t e r t i a r y amine, n i c o t i n e , was f i r s t obtained i n pure form i n 1828 by steam d i s t i l l i n g the b a s i f i e d ether ex t r a c t of tobacco leaves (15). Although n i c o t i n e sometimes occurs i n the p l a n t i n the f r e e s t a t e , i t i s u s u a l l y present as the monoa c i d i c base of c i t r i c or m a l i c a c i d (16). Anabasine i s obtained by mixing ground tree tobacco w i t h ether and d i s t i l l i n g the a l k a l i n e e x t r a c t . Since t h i s compound and n o r n i c o t i n e have a secondary amino Ν group, they may be separated from n i c o t i n e by c o n v e r t i n g them to N - d e r i v a t i v e s . I d e n t i f i c a t i o n . The s t r u c t u r e s of n i c o t i n e , n o r n i c o t i n e , and anabasine were determined by degrading the molecules w i t h a c i d s , as w e l l as by TLC and ORD. Natural nicotine i s levorotatory; d e x t r o r o t a t o r y n i c o t i n e i s much l e s s t o x i c to i n s e c t s (16). Other A l k a l o i d s The major i n s e c t i c i d a l a l k a l o i d s other than those from t o bacco are j e r v i n e , veratramine, cevine, genuine, zygadenine, and p r o t o v e r i n e ; they are present i n many s p e c i e s of Veratrum and Zygadenus, and i n s a b a d i l l a (Schoenocaulon o f f i c i n a l e A. Gray), members of the f a m i l y L i l i a c e a e . I s o l a t i o n . The a l k a l o i d s are e x t r a c t e d from the powdered p l a n t with a c i d i c a l c o h o l o r an o r g a n i c s o l v e n t w i t h o r without ammonia. The i n d i v i d u a l a l k a l o i d s are separated by f r a c t i o n a l c r y s t a l l i z a t i o n , chromatography on alumina, s i l i c a g e l , k i e s e l guhr, or an ion-exchange r e s i n * or by CCD (17).
156
HOST P L A N T RESISTANCE
T O PESTS
I d e n t i f i c a t i o n . The veratrum a l k a l o i d s are i d e n t i f i e d by i n f r a r e d and NMR spectroscopy, and by mass spectrometry (MS).
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch010
Unsaturated Isobutylamides A number of i n s e c t i c i d a l isobutylamides of unsaturated, a l i p h a t i c , s t r a i g h t - c h a i n C-10 to C-18 acids have been i s o l a t e d from p l a n t s of the f a m i l i e s Compositae and Rutaceae. Although most of these compounds, which are h i g h l y t o x i c to f l i e s and mosquitoes, have been i d e n t i f i e d , and i n some cases s y n t h e s i z e d , others have been only p a r t i a l l y c h a r a c t e r i z e d . They possess two p r o p e r t i e s i n common w i t h one another and with the p y r e t h r i n s pungency, and r a p i d knockdown and k i l l of f l y i n g i n s e c t s . Examples of these compounds are a n a c y c l i n from Anacyclus pyrethrum DC, s p i l a n t h o l from S p i l a n t h e s spp., a f f i n i n from H e l i o p s i s longipes (A. Gray) Blake, s c a b r i n and h e l i o p s i n from H. scabra Dunal., e c h i n a c e i n from Echinacea a n g u s t i f o l i a DC, and h e r c u l i n from Zanthoxylum c l a v a - h e r c u l i s L. (18). I s o l a t i o n . These compounds are i s o l a t e d by the same procedures a p p l i c a b l e to the p y r e t h r i n s ; namely, by p a r t i t i o n of a petroleum ether e x t r a c t of the p l a n t between t h i s s o l v e n t and nitromethane followed by passage of the nitromethane s o l u t i o n through a c t i v a t e d charcoal and e i t h e r high-vacuum d i s t i l l a t i o n of the f i l t r a t e or column chromatography on alumina or s i l i c a g e l
(18). I d e n t i f i c a t i o n . The s t r u c t u r e s are determined by h y d r o l y s i s to the component amine and a c i d m o i e t i e s and by UV, IR, and NMR spectroscopy, and MS (18). Bitter
Substances
The limonoid b i t t e r p r i n c i p l e s are a c l a s s of C 2 6 t r i t e r p e n e s b e l i e v e d to a r i s e i n p l a n t s of the Meliaceae and Rutaceae f a m i l i e s as o x i d a t i o n products o f t e t r a c y c l i c t r i t e r p e n e s . They i n c l u d e such i n s e c t i c i d e s and feeding d e t e r r e n t s as l i m o n i n , n o m i l i n , melianone, nimbin, a z i d i r o n e , nimbalide, and s a l a n n i n ; melianone occurs i n M e l i a azedarach L. and the others occur i n neem, A z a d i r a c h t a i n d i c a (L.) Juss. Other limonoid b i t t e r p r i n c i p l e s are r a t h e r p l e n t i f u l among the Simaroubaceae. Limonoids o c c u r r i n g among the Meliaceae show, i n general, much g r e a t e r s t r u c t u r a l v a r i a t i o n and complexity than those i n the Rutaceae. The chemist r y of the b i t t e r substances was w e l l reviewed by Korte (19) i n 1959 and by Dreyer (20) i n 1968. I s o l a t i o n . Column chromatography of the f l a v o n o i d s and pept i d e s w i t h v a r i o u s types of packings has been compared (21). The most r e c e n t l y described method f o r s e p a r a t i n g f l a v o n o i d s and p i g ments from c i t r u s o i l s i n v o l v e s g e l permeation chromatography
10.
JACOBSON
Toxic
Agents from
Plants
157
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch010
followed by t h i n - l a y e r chromatography (22). One o f the most potent i n s e c t f e e d i n g d e t e r r e n t s , a z a d i r a c h t i n , occurs i n v a r i o u s p a r t s (mainly the seed k e r n e l s ) of A. i n d i c a . Although f i r s t i s o l a t e d from neem i n 1968 (23,24) by tedious column chromatography o f the ethanol e x t r a c t , i t was ob tained i n much higher y i e l d by Nakanishi's group a t Columbia U n i v e r s i t y (25) i n 1974 by means of a s i n g l e column chromatogra phy of the e x t r a c t on s i l i c a g e l followed by p r e p a r a t i v e t h i n l a y e r chromatography. I d e n t i f i c a t i o n . Limonin, the major limonoid i n c i t r u s seeds, has been known f o r over 100 years and, as a reasonably a c c e s s i b l e m a t e r i a l , has been the most e x t e n s i v e l y s t u d i e d member o f the limonoids. I t s s t r u c t u r e determination was reported i n 1960 and confirmed soon afterward by X-ray c r y s t a l l o g r a p h i c s t u d i e s on the iodoacetate of e p i l i m o n o l . The s t r u c t u r e determination o f many limonoids subsequently i s o l a t e d has followed the same p a t t e r n , that i s , degradation, IR, and NMR spectroscopy, and MS, as w e l l as ORD (20). The determination o f the exceedingly complex s t r u c t u r e o f a z a d i r a c h t i n would not have been p o s s i b l e without the simultane ous use of p a r t i a l l y r e l a x e d F o u r i e r transform and continuous wave decoupling carbon-13 NMR techniques (25). Toxic Fungal Peptides Isolation. I n s e c t i c i d a l peptides such as p h a l l o i d i n , p h a l l o i n , amanitin, and amanin were i s o l a t e d from Amanita pantherina (Fr.) Quelet (deadly a g a r i c ) and A. muscaria ( F r . ) S. F. Gray ( f l y a g a r i c ) as described by Wieland (26) and Eugster (27). The mushrooms were steeped i n methanol, the steepate was evaporated to a small volume, and the p r e c i p i t a t e d i n o r g a n i c sub stances were f i l t e r e d o f f . The f i l t r a t e was f r e e d o f s o l v e n t , d i s s o l v e d i n water, t r e a t e d with l e a d acetate and f i l t e r e d ; the f i l t r a t e , f r e e d o f l e a d with s u l f u r i c a c i d , was s a t u r a t e d with ammonium s u l f a t e a t pH 4 to p r e c i p i t a t e the p e p t i d e s . These toxic peptides are separable by p a r t i t i o n chromatography f o l l o w i n g t h e i r s e p a r a t i o n i n t o l i p o p h i l i c and h y d r o p h i l i c f r a c t i o n s by treatment with methyl e t h y l ketone-acetone-water (20:6:5). Paper and TLC are a l s o s a t i s f a c t o r y . Amanitin i s separable i n t o i t s α-, 3 - , and γ- forms (26). The peptides o f A. muscaria, which are h i g h l y t o x i c to house f l i e s and mosquitoes, may a l s o be i s o l a t e d by chromatography of an a l c o h o l i c e x t r a c t on a column o f Dowex 50 o r Amberlite IR-120 ( H ) , washing f i r s t with water and then with 2N formic a c i d . P u r i f i c a t i o n on Amberlite IRC-50(H ) y i e l d s i b o t e n i c a c i d and muscazone; d e c a r b o x y l a t i o n of i b o t e n i c a c i d gives muscinol. E l e c t r o p h o r e s i s may a l s o be used. An improved method g i v i n g l a r g e r y i e l d s o f the t o x i c compounds i n v o l v e s chromatography of a butanol e x t r a c t of the fungus on alumina, i n which water-saturated +
158
HOST P L A N T
RESISTANCE T O PESTS
butanol i s used as s o l v e n t (27). I d e n t i f i c a t i o n . The peptides a r e i d e n t i f i e d by degradation, by UV, IR, and NMR spectroscopy, and by MS (27). Gossypol
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch010
Gossypol i s a yellow c o l o r i n g matter o c c u r r i n g i n species o f the genus Gossypium that i s r e s p o n s i b l e f o r the r e s i s t a n c e o f c e r t a i n v a r i e t i e s o f cotton, G. hirsutum L. (family Malvaceae) to cotton i n s e c t s such as the b o l l w e e v i l . I t i s a l s o t o x i c to r a t s , guinea p i g s , and r a b b i t s , but not to c a t t l e f e e d i n g on cottonseed meal. I s o l a t i o n . Cottonseed k e r n e l s are e x t r a c t e d with petroleum ether to remove the o i l , and the gossypol i s then e x t r a c t e d with ether. A d d i t i o n o f a,cetic a c i d to the ether s o l u t i o n gives a c r y s t a l l i n e g o s s y p o l - a c e t i c a c i d complex (28). I d e n t i f i c a t i o n . Gossypol was i d e n t i f i e d by degradation and combination o f v a r i o u s forms o f spectroscopy, i n c l u d i n g MS (28). Mycotoxins The most important o f the mycotoxins today i s a f l a t o x i n , which i s found i n peanuts, cottonseed, and s t o r e d products contaminated w i t h the common mold A s p e r g i l l u s f l a v u s L i n k . Soon a f t e r attempts were made to i s o l a t e a f l a t o x i n i t became c l e a r that a t l e a s t 4 major a f l a t o x i n s , as determined by t h i n - l a y e r chromatography o f the b l u e - and g r e e n - f l u o r e s c i n g compounds, were involved; these were designated a f l a t o x i n s B-^, G^, and G 2 . At l e a s t 8 minor a f l a t o x i n s a r e now known. The a f l a t o x i n s a r e h i g h l y t o x i c to warm-blooded animals feeding on contaminated f o o d s t u f f s ; they are a l s o c a r c i n o g e n i c . I s o l a t i o n . A r a p i d procedure f o r s e p a r a t i n g the a f l a t o x i n s i n r o a s t e d peanuts u t i l i z e s t h i n - l a y e r p l a t e s coated w i t h Adsorbo s i l No. 1 and the s o l v e n t system benzene-ethanol-water (40:6:3) (29). E s p e c i a l l y recommended f o r the s o l v e n t e x t r a c t i o n o f a f l a toxins from mold-damaged commodities i s the use o f the azeotrope of 2-propanol-water (87.7:12.3) (30). I d e n t i f i c a t i o n . The a f l a t o x i n s are i d e n t i f i e d by chemical degradation, UV, IR, and NMR spectroscopy, and fluorometry. An e x c e l l e n t , e n t e r t a i n i n g d i s c u s s i o n o f the e n t i r e a f l a t o x i n problem, i n c l u d i n g methods f o r i s o l a t i o n and i d e n t i f i c a t i o n , appeared t h i s year i n a r e p o r t by G o l d b l a t t (31). Insect Growth Regulators ( J u v e n i l e Hormones)
10.
JACOBSON
Toxic Agents from
Plants
159
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch010
Many species of p l a n t s have been extracted and t e s t e d f o r the presence of j u v e n i l e hormone (JH)-mimicking a c t i v i t y (see references 32^ and 33 f o r recent reviews). These compounds have profound e f f e c t s on many species of i n s e c t s when a p p l i e d to the l a r v a l or pupal stage; i f a d u l t s do develop from such species they are almost always deformed i n one or s e v e r a l ways and may be incapable of feeding and(or) reproducing. The c l a s s i c a l example of a p l a n t - d e r i v e d i n s e c t juvenoid i s the s o - c a l l e d "paper f a c t o r " (juvabione) reported by Slama and Williams (34) i n 1965 and subsequently i s o l a t e d by Bowers e t a l . (35) from the wood of balsam f i r , Abies balsamea (L.) M i l l , (family Pinaceae). Juvabione was i d e n t i f i e d as the methyl e s t e r of todomatuic a c i d f o l l o w i n g chromatographic i s o l a t i o n . I s o l a t i o n . A more recent example of a juvenoid obtained from a p l a n t i s echinolone [(+)-(E)-10-hydroxy-4,10-dimethyl-4,lldodecadien-2-one], i s o l a t e d from the roots of the common American coneflower, Echinacea a n g u s t i f o l i a DC ( f a m i l y Compositae) (36). Echinolone was obtained i n pure form by p a r t i t i o n i n g a pentane ext r a c t of the roots between pentane and nitromethane, s e p a r a t i n g the pentane-soluble p o r t i o n i n t o n e u t r a l , a c i d i c , and b a s i c f r a c t i o n s , and chromatographing the n e u t r a l f r a c t i o n on successive columns of F l o r i s i l , s i l i c a g e l , and s i l v e r n i t r a t e - c o a t e d s i l i c a g e l p r i o r to p r e p a r a t i v e gas chromatography. Identification. Echinolone was i d e n t i f i e d by IR and NMR spectroscopy, MS, microozonolysis, and ORD measurements (36). Insect Growth Regulators
(Molting Hormones)
The best-known examples of these compounds are the p o l y hydroxy s t e r o l ecdysone and i t s analogs i s o l a t e d from i n s e c t s and p l a n t s (37). Treatment of i n s e c t pupae with these compounds causes g r e a t l y a c c e l e r a t e d growth and development that r e s u l t i n premature breaking of diapause and, i n some cases, g i a n t a d u l t s , c o n d i t i o n s that are detrimental to the normal l i f e of the i n s e c t . Isolation. Since the polyhydroxy s t e r o l s are h i g h l y s o l u b l e i n p o l a r s o l v e n t s and s p a r i n g l y s o l u b l e i n nonpolar s o l v e n t s , the p l a n t m a t e r i a l s are extracted with a l c o h o l s . P u r i f i c a t i o n of the e x t r a c t s i s obtained by a combination of p a r t i t i o n , l i q u i d chromatography, p r e p a r a t i v e TLC, and c r y s t a l l i z a t i o n . CCD i s a l s o used. A mixture of e c d y s t e r o l s that i s d i f f i c u l t to separate may be a c e t y l a t e d to g i v e a mixture of acetates whose s e p a r a t i o n may be much e a s i e r , a f f o r d i n g pure acetates from which the f r e e ecdys t e r o l s can be regenerated by h y d r o l y s i s (38). The i s o l a t i o n of e c d y s t e r o l s i s now most commonly c a r r i e d out by TLC on s i l i c a gel-coated p l a t e s o r by column chromatography on Amberlite XAD-2 with gradient e l u t i o n by using 30 to 70% ethanol while monitoring the eluates by absorption at 254 nm (38).
160
HOST P L A N T
RESISTANCE T O PESTS
A s i m p l i f i e d procedure f o r f r a c t i o n a t i n g p l a n t m a t e r i a l s by s e q u e n t i a l e x t r a c t i o n w i t h methanol-chloroform-water and phenola c e t i c acid-water mixtures gives water-soluble, low molecular weight compounds w i t h l i t t l e chemical damage (39). Identification. S t r u c t u r a l e l u c i d a t i o n of ecdysone w i t h UV, IR, and NMR spectroscopy r e s u l t e d i n a p a r t i a l s t r u c t u r e , which was completed only with the help of i t s X-ray d i f f r a c t i o n p a t t e r n and MS. A comprehensive review of ecdysone chemistry i s that by Horn (37).
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch010
A d d i t i o n a l Information on Methods of I s o l a t i o n and
Identification
Thin-Layer Chromatography. New procedures f o r s e p a r a t i n g compounds by programmed m u l t i p l e development TLC e q u i v a l e n t to 5,000-8,000 t h e o r e t i c a l p l a t e s have r e c e n t l y been d e s c r i b e d (40). The usual s o l v e n t system i s e t h y l acetate-ethylene d i c h l o r i d e (1:10). The most recent book on TLC i s that e n t i t l e d "HPTLC. High Performance Thin Layer Chromatography, e d i t e d by Z l a t k i s and K a i s e r , which j u s t appeared (41). 11
High-Performance L i q u i d Chromatography (HPLC). Hostettmann et a l . (42) have very r e c e n t l y reported a method f o r o b t a i n i n g pure compounds d i r e c t l y from crude p l a n t e x t r a c t s by f i l t r a t i o n of a hexane e x t r a c t through a column of s i l i c a g e l with e t h e r hexane (1:1) followed by p r e p a r a t i v e HPLC on s i l i c a g e l w i t h ether-hexane (1:9) and two runs with e t h y l acetate-hexane (1:4). This procedure r e q u i r e d only 2-3 hours compared w i t h conventional column chromatography, which r e q u i r e d 2 weeks. No degradation of unstable compounds was observed. HPLC on s i l v e r n i t r a t e - c o a t e d s i l i c a g e l (43) and a reverse phase method on μ Bondapak C-18 (44) i s of value i n s e p a r a t i n g c i s and trans isomers of unsaturated compounds. I n f r a r e d Spectroscopy. The a p p l i c a t i o n of IR spectroscopy to the i d e n t i f i c a t i o n of n a t u r a l products was reported by Cole (45) i n 1956. The use o f F o u r i e r transform IR i n research has brought new and extended c a p a b i l i t i e s i n s p e c t r a l s e n s i t i v i t y and resolution. V i b r a t i o n a l frequency assignments were p u b l i s h e d i n book form by S i l v e r s t e i n e t a l . (46) i n 1974, by Bellamy (47) i n 1975, and by Pearse and Gaydon (48) i n 1976. NMR Spectroscopy. In 1939, Linus P a u l i n g (49) published a review on the c o n f i g u r a t i o n and e l e c t r o n i c s t r u c t u r e o f molecules w i t h a p p l i c a t i o n to n a t u r a l products. T h i s may be considered the forerunner of the use o f NMR f o r the s t r u c t u r a l determination of n a t u r a l products. In 1965, Jackman (50) reviewed the use of NMR spectroscopy f o r determining e m p i r i c a l formulae, the c l a s s e s of
10.
JACOBSON
Toxic
Agents from
Plants
161
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch010
protons i n a molecule, the sequence of groups i n a molecule, r e l a t i v e stereochemistry, and conformation as a p p l i e d to n a t u r a l products. 23 The use of C NMR spectroscopy has helped immensely i n determining n a t u r a l products s t r u c t u r e , s i n c e the -^C n u c l e i are u s u a l l y completely decoupled from a l l o f the n u c l e i by the use of double resonance. The spectrum i s thus simply a s e r i e s o f s i n g l e t s corresponding to each v a r i e t y of carbon atom present. Textbooks on NMR spectroscopy o r i e n t e d toward organic chemists are those by Stothers (51) and by Levy and Nelson (52), both publ i s h e d i n 1972, by Levy (53) i n 1974 and 1975, and by Muellen and Pregosin (54), published i n 1977. Mass Spectrometry. In 1966, Biemann (55) published a review of MS as a p p l i e d to n a t u r a l products, e s p e c i a l l y v a r i o u s types of alkaloids. S t e r o i d s have been very thoroughly i n v e s t i g a t e d by t h i s technique by D j e r a s s i ' s group, and the i n f o r m a t i o n gained has helped considerably with the complicated e l e c t r o n impact i n duced fragmentation r e a c t i o n s o f organic molecules. The p o l y c y c l i c nature o f many p h y s i o l o g i c a l l y a c t i v e n a t u r a l products p r a c t i c a l l y excludes simple fragmentation processes and r e q u i r e s cleavage of a number o f bonds f o r the production o f a fragment. However, c o n s u l t a t i o n of a v a i l a b l e t a b l e s o f f r e q u e n t l y encountered fragment ions and c o l l e c t i o n s o f mass s p e c t r a f o r the c l a s s of compound under c o n s i d e r a t i o n makes s t r u c t u r a l determination much e a s i e r . F i e l d d e s o r p t i o n and e l e c t r o n impact MS are recent innovations of considerable importance. An e x c e l l e n t book f o r a i d i n i n t e r p r e t i n g mass s p e c t r a i s that published by M c L a f f e r t y (56) i n 1973. A novel r e p r e s e n t a t i o n of data o b t a i n a b l e from doublef o c u s s i n g mass spectrometers has been developed. I t can d i s p l a y on a s i n g l e three-dimensional s u r f a c e the normal mass spectrum together with peaks due to a l l metastable t r a n s i t i o n s o c c u r r i n g i n the instrument. Developed by Drs. Macdonald and Lacey, o f the C.S.I.R.O. D i v i s i o n of Entomology i n Canberra, A u s t r a l i a , t h i s three-dimensional r e p r e s e n t a t i o n i s more s e n s i t i v e to molecular s t r u c t u r e than any o f the two-dimensional r e p r e s e n t a t i o n s commonly used by mass s p e c t r o m e t r i s t s (57). An e x c e l l e n t review o f m i c r o a n a l y t i c a l methodology u s e f u l i n i d e n t i f y i n g unsaturated compounds i s that published i n 1975 by Beroza (58). I t includes b r i e f d i s c u s s i o n s of s p e c t r a l a n a l y s i s , chemical reagents u s e f u l i n determining f u n c t i o n a l groups, ozonol y s i s to determine double bond p o s i t i o n , and carbon-skeleton chromatography. Disclaimer The use of trade or p r o p r i e t a r y names does not n e c e s s a r i l y imply the endorsement of these products by the U.S. Department of Agriculture.
162
HOST P L A N T RESISTANCE
T O PESTS
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch010
Literature Cited
1. Staudinger, Η., and Ruzicka, L. Helv. Chim. Acta (1924), 7, 177-83. 2. LaForge, F. B., and Barthel, W. F. J. Org. Chem. (1944), 9, 242-9. 3. Godin, P. J., Sleeman, R. J., Snarey, Μ., and Thain, Ε. M. J. Chem. Soc. (C) (1966), 332-4. 4. Nakanishi, Κ., Goto, T., Ito, S., Natori, S., and Nozoe, S., eds., "Natural Products Chemistry," vol. 1, 562 pp., Academ ic, New York (1974). 5. Nakanishi, Κ., Goto, T., Ito, S., Natori, S., and Nozoe, S., eds., "Natural Products Chemistry," vol. 2, 586 pp., Academ ic, New York (1975). 6. Jacobson, Μ., and Crosby, D. G., eds., "Naturally Occurring Insecticides," 585 pp., Marcel Dekker, New York (1971). 7. Barthel, W. F., and Haller, H. L. U.S. Patent 2,372,183 (1945). 8. Elliott, M., Olejniczak, J. S., and Garner, J. J. Pyrethrum Post (1959), 5(2), 8-11. 9. Crombie, L., and Elliott, M. Fortschr. Chem. Org. Natur stoffe (1961), 19, 120-64. 10. Matsui, M., and Yamamoto, I. In reference 6, pp. 3-70. 11. Crombie, L. Fortschr. Chem. Org. Naturstoffe (1963), 21, 275-325. 12. Freudenthal, R. I., Emmerling, D. C., and Baron, R. L. J. Chromatog. (1977), 134, 207-10. 13. Fukami, Η., and Nakajima, M. In reference 6, pp. 81-97. 14. Feinstein, L., and Jacobson, M. Fortschr. Chem. Org. Natur stoffe (1953), 10, 423-76. 15. Spaeth, Ε., and Kuffner, F. Fortschr. Chem. Org. Naturstoffe (1939), 2, 248-300. 16. Schmeltz, I. In reference 6, pp. 99-116. 17. Narayanan, C. R. Fortschr. Chem. Org. Naturstoffe (1962), 20, 298-371. 18. Jacobson, M. In reference 6, pp. 137-76. 19. Korte, F., Barkemeyer, Η., and Korte, I. Fortschr. Chem. Org. Naturstoffe (1959), 17, 124-82. 20. Dreyer, D. L. Fortschr. Chem. Org. Naturstoffe (1968), 26, 190-244. 21. Ward, R. S., and Pelter, A. J. Chromatog. Sci. (1974), 12, 570-4. 22. Wilson, C. W., III, and Shaw, P. E. J. Agr. Food Chem. (1977), 25, 211-4. 23. Butterworth, J. Η., and Morgan, E. D. Chem. Commun. (1968), 23-4. 24. Butterworth, J. H., Morgan, E. D., and Percy, G. R. J. Chem. Soc. Perkin Trans. (1972), 1, 2445-50. 25. Zanno, P. R., Miura, I., Nakanishi, Κ., and Elder, D. L. J. Am. Chem. Soc. (1975), 97, 1975-7.
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch010
10.
JACOBSON
Toxic Agents
from
Pfonts
163
26. Wieland, T. Fortschr. Chem. Org. Naturstoffe (1967), 25, 214-50. 27. Eugster, C. H. Fortschr. Chem. Org. Naturstoffe (1969), 27, 261-321. 28. Adams, R., Geissman, Τ. Α., and Edwards, J. D. Chem. Rev. (1960), 555-74. 29. Waltking, A. E., Bleffert, G. W., Chick, Μ., and Fogerty, M. Oils Oilseeds J. (Bombay) (1975), 28(2), 32-3. 30. Rayner, E. T., Koltun, S. P., and Dollear, F. G. J. Am. Oil Chem. Soc. (1977), 54, 242A-4A. 31. Goldblatt, L. A. J. Am. Oil Chem. Soc. (1977), 54, 302A-9A. 32. Jacobson, M. Mitt. Schweiz. Entomol. Ges. (1971), 44, 73-7. 33. Jacobson, M., Redfern, R. E., and Mills, G. D., Jr. Lloydia (J. Nat. Prod.) (1975), 38, 455-72. 34. Slama, Κ., and Williams, C. M. Proc. Natl. Acad. Sci. U.S. (1965), 154, 411-14. 35. Bowers, W. S., Fales, Η. Μ., Thompson, M. J., and Uebel, E. C. Science (1966), 154, 1020-2. 36. Jacobson, M., Redfern, R. Ε., and Mills, G. D., Jr. Lloydia (J. Nat. Prod.) (1975), 38, 473-6. 37. Horn, D. H. S. In referency 6, pp. 333-459. 38. Hikino, H., and Hikino, Y. Fortschr. Chem. Org. Naturstoffe (1970), 28, 256-312. 39. Laird, W. M., Mbadiwe, Ε. I., and Synge, R. L. M. J. Sci. Food Agr. (1976), 27, 127-30. 40. Jupille, T. H. J. Am. Oil Chem. Soc. (1977), 54, 179-82. 41. Zlatkis, Α., and Kaiser, R. E., eds., "HPTLC. High Pressure Thin Layer Chromatography," 240 pp., Elsevier, New York (1977). 42. Hostettmann, Κ., Pettei, M. J., Kubo, I., and Nakanishi, K. Helv. Chim. Acta (1977), 60, 670-2. 43. Heath, R. R., Tumlinson, J. H., Doolittle, R. E., and Proveaux, A. T. J. Chromatog. Sci. (1975), 13, 380-2. 44. Warthen, J. D., Jr. J. Am. Oil Chem. Soc. (1975), 52, 151-3. 45. Cole, A. R. H. Fortschr. Chem. Org. Naturstoffe (1956), 13, 1-69. 46. Silverstein, R. M., Bassler, G. C., and Morrill, T. C. "Spectrometric Identification of Organic Compounds," 3rd ed., pp. 73-119, Wiley, New York (1974). 47. Bellamy, L. J. "The Infra-red Spectra of Complex Molecules," 3rd ed., 433 pp., Wiley, New York (1975). 48. Pearse, R. W. B., and Gaydon, A. G. "The Identification of Molecular Spectra," 4th ed., 408 pp., Halsted (Wiley), New York (1976). 49. Pauling, L. Fortschr. Chem. Org. Naturstoffe (1939),3,20335. 50. Jackman, L. M. Fortschr. Chem. Org. Naturstoffe (1965), 21, 275-325. 51. Stothers, J. B. "Carbon-13 NMR Spectroscopy," Academic, New York (1972).
164
HOST P L A N T RESISTANCE
T O PESTS
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch010
52. Levy, G. C., and Nelson, G. L. "Organic Carbon-13 Nuclear Magnetic Resonance for Organic Chemists," Wiley, New York (1972). 53. Levy, G. C. (ed.), "Topics in Carbon-13 NMR Spectrometry," Wiley, New York, vol. 1 (1974); vol. II (1975). 54. Muellen, Κ., and Pregosin, P. S. "Fourier Transform NMR Techniques," Academic, London (1977). 55. Biemann, K. Fortschr. Chem. Org. Naturstoffe (1966),24,198. 56. McLafferty, F. W. "Interpretation of Mass Spectra," 2nd ed., W. A. Benjamin, New York (1973). 57. Lacey, M. J. and Macdonald, C. G. "Organic Mass Spectro metry," 1977, in press. 58. Beroza, M. J. Chromatog. Sci. (1975), 13, 314-21.
11 Insect Antifeedants and Repellents from African Plants I. KUBO and K. NAKANISHI
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch011
Department of Chemistry, Columbia University, New York, NY 10027
There is little doubt t h a t the tropical flora which a r e c o n s t a n t l y exposed t o a t t a c k by v a r i o u s p a r a sites such as v i r u s e s , b a c t e r i a , p r o t o z o a n s , f u n g i , and i n s e c t s a r e c o n f r o n t e d w i t h much h a r s h e r c o n d i t i o n s f o r survival than their temperate c o u n t e r p a r t s . T h i s necessarily leads to efficient built-in defense mechanisms and it is presumably f o r this r e a s o n t h a t tropical flora o f f e r a rich and intriguing source f o r isolating natural products possessing attractive pesticidal or medicinal properties. The results o u t l i n e d in the f o l l o w i n g stem from the s t u d i e s initiated in 1974 and more s y s t e m a t i c a l l y i n mid-1975 a t the I n t e r n a t i o n a l C e n t r e o f I n s e c t P h y s i o l o g y and E c o l o g y (ICIPE), N a i r o b i , Kenya. The g e n e s i s o f this unique c e n t e r goes back t o 1968 when C a r l D j e r a s s i (1) proposed a p l a n f o r establishing an international institute i n a d e v e l o p i n g country and Thomas R. Odhiambo, P r o f e s s o r o f Entomology a t the U n i v e r s i t y o f N a i r o b i , responded enthusiastically to initiate an i n s e c t o r i e n t e d institute in Nairobi. ICIPE was i n a u g u r a t e d in e a r l y 1970 w i t h generous s u p p o r t from the U n i t e d N a t i o n s Development Program, various o t h e r f o u n d a t i o n s , and f e d e r a l governments. Of a total of about 130 p e r s o n n e l c u r r e n t l y a t the C e n t r e , 25 are R e s e a r c h S c i e n t i s t s (post P h . D . ' s ) , m o s t l y b i o l o g i s t s , from a l l over the w o r l d who come f o r a p e r i o d o f s e v e r a l y e a r s t o be engaged i n b a s i c and i n t e r d i s c i p l i n ary s t u d i e s o f a r t h r o p o d s o f a g r i c u l t u r a l and m e d i c a l importance. An u n u s u a l system adopted a t ICIPE i s t h a t of V i s i t i n g D i r e c t o r s o f R e s e a r c h . These 10-15 VDR's from v a r i o u s i n s t i t u t i o n s t h r o u g h o u t the w o r l d pay one t o s e v e r a l v i s i t s a y e a r t o the C e n t r e t o c o n s u l t and d i r e c t (?) the r e s e a r c h . The C h e m i s t r y u n i t has had two R e s e a r c h S c i e n t i s t s (ex-members, D r s . D . L . E l d e r , T . G e b r e y s u s , W . F . Wood, I . Kubo, G . D . P r e s t w i c h ; and
165
166
HOST P L A N T RESISTANCE T O
PESTS
c u r r e n t members, Drs. A. Maradufu and K. W i l s o n ) and one S e n i o r T e c h n i c i a n , A. Chapya; the two VDR's have been J . Meinwald and K. N a k a n i s h i . The s t u d i e s on p l a n t c o n s t i t u e n t s comprise one h a l f o f the work c a r r i e d o u t by the C h e m i s t r y u n i t , the o t h e r h a l f b e i n g s t u d i e s on i n s e c t pheromones and d e f e n s e s e c r e t i o n s (2) .
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch011
Bioassay
of Phagostimulants
and
Antifeedants
Two s p e c i e s o f the A f r i c a n armyworm, Spodoptera exempta and S. l i t t o r a l i s , were m a i n l y employed f o r the b i o a s s a y s , e i t h e r by e l e c t r o p h y s i o l o g y o r by t h e l e a f d i s k method. The monophagous S. exempta has l o n g been known as a major graminaceous c r o p p e s t i n E a s t and South A f r i c a , whereas the polyphagous S. l i t t o r a l i s i s a major c o t t o n p e s t . Other s p e c i e s o f the genus Spodop t e r a are d i s t r i b u t e d t h r o u g h o u t the w o r l d and c o n s t i t u t e a major p e s t . However, most o f the a n t i f e e d a n t s i s o l a t e d so far appear t o be s p e c i f i c t o c e r t a i n i n s e c t s . F o r i n s t a n c e , w a r b u r g a n a l (see below) (_3) r which i s one of the most p o t e n t a n t i f e e d a n t s a g a i n s t S. exempta was h a r d l y a c t i v e a g a i n s t Manduca s e x t a (tobacco hornworm) and S c h i s t o c e r c a vaga (vagrant g r a s s h o p p e r ) ( 4 ) . Hence two i n s e c t s w h i c h seem t o have complementary t a s t e senses are c u r r e n t l y used i n our l a b o r a t o r y , namely, E p i l a c h n i a v a r i v e s t i s (Mexican bean b e e t l e ) and S. e r i d a n i a ( s o u t h e r n armyworm) . The most r e v e a l i n g b i o a s s a y f o r f o l l o w i n g phago s t i m u l a n t s and d e t e r r e n t s i s t h a t o f e l e c t r o p h y s i o l o g y w i t h the e i g h t s e n s i l l a a t the t i p o f t h e m a x i l l a r y p a l p ( 5 ) . These c o r r e s p o n d t o t h e t a s t e buds and a r e shown Γη F i g u r e 1 ( s c a n n i n g e l e c t r o m i c r o g r a p h ) . As d e p i c t e d s c h e m a t i c a l l y i n F i g u r e 2, a m i c r o e l e c t r o d e i s i n s e r t e d i n t o the m a x i l l a r y p a l p and another i n t o one of the s e n s i l l u m . The t i p o f the s e n s i l l u m i s b r o u g h t i n t o c o n t a c t w i t h a f i l t e r paper impregnated w i t h t h e t e s t s o l u t i o n , and the s c o r i n g , w h i c h i s r e c o r d e d as i m p u l s e s p e r second, i s done w i t h an o s c i l l o s c o p e . The maximum number o f i m p u l s e s t h a t can be evoked i s o f the o r d e r o f 200. The f u n c t i o n s o f t h e e i g h t s e n s i l l a appear t o d i f f e r b u t the d e t a i l s have n o t y e t been c l a r i f i e d (5) . Most of the compounds d e s c r i b e d i n t h i s a r t i c l e were i s o l a t e d by f o l l o w i n g the f r a c t i o n a t i o n w i t h more conventional bioassays. The l e a f d i s k method i s shown i n F i g u r e 3 (see 6) . L e a f d i s k s made w i t h a 20 mm cork b o r e r a r e immersed f o r 2 seconds i n the t e s t a c e t o n e s o l u t i o n ; immersion f o r l o n g e r than 2 seconds s h o u l d be a v o i d e d because the p h a g o s t i m u l a n t s (see below) are ex t r a c t e d out. These a r e p l a c e d i n a P e t r i d i s h w i t h con-
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch011
11.
KUBO
A N D NAKANISHI
Insect Antifeedants
and
Repellents
167
Figure 1. Scanning electromicrograph (X1650) of tip region of African armyworm (Spodoptera exempta) larva. The maxillary palp of eight sensilla are seen.
Spodoptera exempta
Feeding
Stimulants
sucrose inositol adenosine
Figure 2.
Schematic of electrophycological experiment with sensilla
168
HOST P L A N T RESISTANCE T O PESTS
Spodoptera exempta S. littoralis (African army worms)
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch011
Zea mays "~
Test
Ten Insect larvae I
Observation Acetone or Hexane
2, 4, 6, 8, 10, 12, 24, 48 hours Control disks were eaten usually within 2 hours (CHOICE Test)
Figure 3.
The leaf disk bioassay—a "choice" method
t r o l l e a f d i s k s and t e n t h i r d i n s t a r l a r v a e o f S. exempta. T h i s c o n s t i t u t e s a " c h o i c e " t e s t , whereas d e l e t i o n o f t h e c o n t r o l d i s k s c o n s t i t u t e s a "no c h o i c e " test. The s c o r i n g i s c a r r i e d o u t o v e r a p e r i o d o f up t o 2 days depending on t h e a n t i f e e d a n t p o t e n c y . A l t e r n a t i v e l y , t h e sample s o l u t i o n c a n be a p p l i e d d i r e c t l y o n t o s e v e r a l l e a v e s o f p l a n t i n a p o t and scored against c o n t r o l leaves. A f u r t h e r method o f b i o a s s a y i s t o c o a t t h e sample on s t y r o f o a m l a m e l l a e and measure t h e w e i g h t d i f f e r e n c e between u n t r e a t e d l a m e l l a e . The e l e c t r o p h y s i o l o g i c a l method has c l a r i f i e d t h e sugar r e c e p t o r s on S. exempta l a r v a l s e n s i l l a (j>) , and by f o l l o w i n g s y s t e m a t i c f r a c t i o n a t i o n s , two o f t h e p h a g o s t i m u l a n t s c o n t a i n e d i n maize l e a v e s have been i s o l a t e d and c h e m i c a l l y c h a r a c t e r i z e d as s u c r o s e and adenosine ( 7 ) . An i m p o r t a n t f i n d i n g from t h e sugar
11.
KUBO
AND
NAKANISHI
Insect Antifeedants
and
Repellents
169
r e c e p t o r e x p e r i m e n t s i s the f a c t t h a t a few c o n t a c t s o f the s e n s i l l a w i t h f i l t e r paper impregnated w i t h p o t e n t a n t i f e e d a n t s such as w a r b u r g a n a l l e a d t o i r r e v e r s i b l e l o s s o f t a s t e r e s p o n s e ; i n a d d i t i o n , the a n t i f e e d a n t a c t i v i t y o f w a r b u r g a n a l i s i n h i b i t e d by a d d i t i o n o f an e q u i m o l a r amount o f the S H - c o n t a i n i n g L - c y s t e i n e (1).
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch011
Antifeedants F o r the sake o f s e l f - d e f e n s e , i t i s not a t a l l s u r p r i s i n g t h a t p l a n t s would c o n t a i n i n s e c t a n t i f e e d a n t s , as w e l l as p e s t i c i d e s and r e p e l l e n t s (7a). S i n c e t h e l i f e cycle o f an i n s e c t i s deranged i f the up-take o f exogenous m o u l t i n g hormones (ecdysones) f a r exceeds the b i o s y n t h e t i c l e v e l , t h e wide o c c u r r e n c e i n p l a n t s o f compounds w i t h m o u l t i n g hormone a c t i v i t y (phytoecdysones) ( 8 ^ , 1 0 ) presumably i s a l s o a s e l f - d e f e n d i n g e v o l u t i o n a r y development. W i t h the u n d e r s t a n d i n g t h a t the term f e e d i n g i s not c l a r i f i e d w i t h i n s e c t s , i . e . , i t may i n v o l v e b i t i n g and/or swallowing f a c t o r s , we would l i k e t o b r o a d l y d e f i n e i n s e c t a n t i f e e d a n t s as s u b s t a n c e s which when t a s t e d can r e s u l t i n c e s s a t i o n o f f e e d i n g e i t h e r t e m p o r a r i l y o r permanently depending upon p o t e n c y (3>) · Some n a t u r a l l y o c c u r r i n g a n t i f e e d a n t s which have been p u b l i s h e d a r e : g l y c o s i d e s o f s t e r o i d a l a l k a l o i d s , d e m i s s i n e (11), s o l a c a u l i n e (12), t o m a t i n e (13), l e p t i n e s I and I I (14); r i n g A enone and/or r i n g D a r o m a t i c s t e r o i d s , the n i c a n d r e n o n e s and o t h e r s (15, 16,Γ7,19^); j u g l o n e (5-hydroxynaphthoquinone) (19); the i s o q u i n o l i n e a l k a l o i d i s o b o l d i n e (6); p h e n y l p r o p a n o i d s (20); germacrane s e s q u i t e r p e n e s s h i r o m o d i o l and s h i r o mol (21,22) ; e n t - c l e r o d a n e and c l e r o d a n e d i t e r p e n e s , c l e r o d e n d r i n (23) , c a r y o p t i n and o t h e r s (24), and the h y d r o x y l a t e d s t e r o i d m e l i a n t r i o l (25). The c o l l e c t i o n s i n E a s t A f r i c a were c a r r i e d o u t on the b a s i s o f i n f o r m a t i o n g a t h e r e d from books (26,27) and e s p e c i a l l y from l o c a l p e o p l e on i n s e c t - r e s i s t a n t plants. In f a c t , some o f the p l a n t s a r e w i d e l y used t o c o n t r o l pest i n s e c t s or f o r medicinal purposes. The e x t r a c t i o n s were f o l l o w e d by b i o a s s a y s , and s t r u c t u r e s were d e t e r m i n e d by a c o m b i n a t i o n o f v a r i o u s s p e c t r a l methods combined o c c a s i o n a l l y w i t h c h e m i c a l r e a c t i o n s . a) A z a d i r a c h t i n from Leaves and B e r r i e s o f A z a d i r achta"""Indica ( I n d i a n neem t r e e ) and tlaLia, a z e d a r a c h (28). The t r e e s o c c u r commonly i n I n d i a and E a s t and West A f r i c a and are w i d e l y used f o r chewing s t i c k s f o r c l e a n i n g the t e e t h and as a remedy a g a i n s t m a l a r i a . The S c h i s t o c e r c a g r e g a r i a ( d e s e r t l o c u s t ) a n t i f e e d a n t m e l i a n t r i o l (25) was i s o l a t e d from the l e a v e s . Azadir a c h t i n was a n o n c r y s t a l l i n e compound reknown f o r i t s
170
HOST P L A N T RESISTANCE T O
PESTS
very strong antifeedant p r o p e r t i e s a g a i n s t S. g r e g a r i a , i . e . , 100% i n h i b i t i o n of feeding i s caused by 40 y g / l , o r when impregnated on f i l t e r paper by 1 ng/cm AcO' (29,20). A l t h o u g h p a r MeOOC t i a l s t r u c t u r e s and the c o r r e c t molecular formula Azadirachtin 35 44°l6 forwarded (29), c o m p l e x i t y o f the s t r u c t u r e e l u d e d e l u c i d a t i o n w i t h o u t t h e usage o f CMR. The s t r u c t u r e i s based on e x t e n s i v e NMR s t u d i e s on a z a d i r a c h t i n and i t s 14-monoa c e t a t e ( p r o b a b l y formed by a c y l m i g r a t i o n from 7-OH), i n p a r t i c u l a r the t e c h n i q u e o f simultaneous p a r t i a l l y r e l a x e d F o u r i e r t r a n s f o r m (PRFT) and o f f - r e s o n a n c e d e c o u p l i n g , which was used f o r the f i r s t t i m e . It is a l i m o n o i d c o n t a i n i n g a c l e a v e d C r i n g and an u n s t a b l e d i h y d r o f u r a n moiety. I t i s one o f t h e most p o t e n t a n t i f e e d a n t s a g a i n s t S. exempta ( r o u g h l y o n e - h a l f o f the warburganal p o t e n c y ) . The s t r u c t u r e i s t o o complex t o be s y n t h e s i z e d on a p r a c t i c a l l e v e l b u t s i n c e the y i e l d i s q u i t e h i g h (we were a b l e t o o b t a i n 800 mg from 300 g o f seeds) and the t r e e i s easy t o c u l t i v a t e , p r a c t i c a l usage o f the neem t r e e may not be o u t o f the q u e s t i o n . b) X y l o m o l i n from U n r i p e F r u i t s o f X v l o c a r p u s mpluccënsls. Roem. (Meliaceae) ( 3 1 , 3 Τ Π The u n r i p e f r u i t s (weighing about 200 g) COOCH. are b i t t e r b u t the r i p e f r u i t s a r e t r e a s u r e d by ..OCH^ E a s t A f r i c a n s and are r e p u t e d t o have a p h r o d i s i a c p r o p e r t i e s . Since a l l o f the s k e l e t a l p r o t o n s are c o n t i g u o u s , PMR e l u c i d a t e d the e n t i r e Xylomolin p r o t o n system. The con f i g u r a t i o n s a t c h i r a l c e n t e r s a r e based on the f a c t s t h a t no J v a l u e s were l a r g e r than 3 Hz, and n e i t h e r NOE nor W-type c o u p l i n g s c o u l d be o b s e r v e d . Presence o f the a c e t a l i c methoxyl group was deduced from the p r e s ence o f a d o u b l e t o f q u a r t e t s s i g n a l i n the undecoupled CMR spectrum; t h i s i s due t o a d d i t i o n a l c o u p l i n g o f the methoxyl carbon t o 3-H. I t i s a s e c o i r i d o i d with a s t r u c t u r e c l o s e l y r e l a t e d t o s e c o l o g a n i n , the o r i g i n o f the t e r p e n o i d d e r i v e d m o i e t i e s i n i n d o l e a l k a l o i d s . It i s possible that xylomolin i s a progenitor of alkaloids which may be c o n t a i n e d i n the r i p e f r u i t s b u t t h i s has n o t been i n v e s t i g a t e d . The a n t i f e e d a n t l e v e l i s moder2
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch011
C
H
w
e
r
e
11.
KUBO
A N D NAKANISHI
Insect Antifeedants
and
Repellents
171
12
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch011
Ar-I
Ar-H
Ar — III
a t e , i . e . , 100 ppm a g a i n s t S. exempta; i t s t r o n g l y i n h i b i t s the r e s p i r a t i o n o f r a t l i v e r mitochondria. c) A j u g a r i n s from Aiucra remota ( L a b i a t a e ) Leaves (33). As quoted above, o t h e r c l e r o d a n e a n t i f e e d a n t s have been i s o l a t e d p r e v i o u s l y (23,24) . However, i t i s i n t e r e s t i n g t o note t h a t b o t h a n t i p o d a l s k e l e t o n s a r e a c t i v e , as e x e m p l i f i e d by c l e r o d e n d r i n (23), an e n t c l e r o d a n e d i t e r p e n e , and c a r y o p t i n (24), a c l e r o d a n e diterpene. The a b s o l u t e c o n f i g u r a t i o n o f t h e a j u g a r i n s ( e n t - c l e r o d a n e ) was d e t e r m i n e d (3J3) by c o n v e r s i o n t o a 6-keto compound and comparing i t s CD w i t h a r e f e r e n c e compound d e r i v e d from c l e r o d i n (24). The a n t i f e e d a n t a c t i v i t y i s 100 ppm a g a i n s t S. exempta. d) H a r r i s o n i n from Leaves o f H a r r i s o n i a a b v s s i n i c a O i v (Simarubaceae) ("Msabubini" o r "Mpapura-doko" i n T h i s shrub i s used w i d e l y i n E a s t Swahili) (34) A f r i c a n f o l k remedies i n c l u d i n g treatment f o r bubonic p l a g u e , hemorrhoid, snake b i t e , etc. The chopped r o o t (650 g) gave 70 mg o f h a r r i s o n i n and 25 mg o f obacunone, a r e l a t e d limonoid b i t t e r p r i n c i p l e (35, 36). The s t r u c t u r e was d e t e r mined by e x t e n s i v e NMR s t u d i e s , e s p e c i a l l y CMR (PND, PRFT and 28H undecoupled) and comparisons o f peaks w i t h t h o s e o f obacuHarrisonin
172
HOST P L A N T RESISTANCE T O
TESTS
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch011
none. A l t h o u g h i t was not c l e a r whether the h e m i k e t a l f u n c t i o n a t C-7 was an a r t e f a c t o r n o t , subsequent s t u d i e s have shown t h a t the n a t u r a l p r o d u c t i s a 6,7alpha-diketone. The S. exempta a n t i f e e d a n t a c t i v i t y i s 20 ppm; i t a l s o e x h i b i t s a n t i b i o t i c a c t i v i t y (5 yg/ml a g a i n s t B a c i l l u s s u b t i l i s ) (37) and c y t o t o x i c i t y (2.2 yg/ml, KB t e s t ) (WT. e) P o l y g o d i a l , U g a n d e n s i d i a l and Warburganal from the Bark o f W a r b u r a i a s t u h l m a n n i i and W. u a a n d e n s i s (39).
Polygodial
Warburganal
Ugandensidial
The b a r k s o f b o t h t r e e s are t r e a s u r e d i n f o l k m e d i c i n e and a l s o as f o o d s p i c e . W. s t u h l m a n n i gave the known p o l y g o d i a l (40,41,42) i n moderate y i e l d w h i l e W. ugand e n s i s gave the known u g a n d e n s i d i a l (43) and new warburganal. The y i e l d o f the l a t t e r two are n o t o n l y low b u t t h e y are d i f f i c u l t t o s e p a r a t e , even by h p l c , from a n o t h e r c o n s t i t u e n t and t h i s l e d t o c o n f u s i o n i n s t r u c t u r a l s t u d i e s . Of the t h r e e , w a r b u r g a n a l i s by f a r the most a c t i v e a n t i f e e d a n t (0.1 ppm a g a i n s t S. exempta), b u t more e x t e n s i v e s t u d i e s w i l l have t o depend on s y n t h e t i c m a t e r i a l because o f the l i m i t e d q u a n t i t y . Some s t r u c t u r e / a c t i v i t y s t u d i e s c a r r i e d o u t w i t h the simple p o l y g o d i a l i n d i c a t e d t h a t the a c t i v i t y was l o s t when one o r b o t h a l d e h y d e s were r e d u c e d t o h y d r o x y l groups o r o x i d i z e d t o c a r b o x y l groups. E p i m e r i z a t i o n o f the e q u a t o r i a l 9B-CHO t o the more s t a b l e a x i a l 9a-CHO a l s o r e s u l t e d i n l o s s o f a c t i v i t y (the e q u a t o r i a l epimer p r o b a b l y owes i t s i n s t a b i l i t y t o d i p o l e - d i p o l e r e p u l s i o n between the two aldehyde f u n c t i o n s ) . These r e s u l t s i n c o n j u n c t i o n w i t h the b l o c k i n g o f a n t i f e e d a n t a c t i v i t y upon a d m i n i s t r a t i o n o f an e q u i m o l a r amount o f c y s t e i n e (1) s u g g e s t t h a t a t l e a s t p a r t o f the a n t i f e e d a n t a c t i v i t y i n the case o f S. exempta i s c a u s e d by M i c h a e l type a d d i t i o n o f the e l e c t r o p h i l i c a n t i f e e d a n t t o a n u c l e o p h i l i c t e r m i n a l i n the r e c e p t o r s i t e , and t h a t , as shown by the h i g h a c t i v i t y o f war-
11.
KUBO
A N D NAKANISHI
Insect Antifeedants
and
Repellents
173
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch011
b u r g a n a l , t h e s t r u c t u r a l c o m p l e x i t y o f w h i c h i s i n between those o f t h e o t h e r two, t h e s t e r i c r e q u i r e m e n t of the receptor s i t e i s f a i r l y s e l e c t i v e . Interestingly, the a n t i f e e d a n t s a g a i n s t t h e armyworm t a s t e s p i c y t o the human tongue. f) I n f l e x i n from Leaves o f i s o d o n i n f l e x u s ( L a b i a teae) (44) and Isodomedin from Leaves o f I. s h i k o k i a n u s v a r intermedins. (45) . These two compounds^ were i s o l a t e d
AcO
AcO
inflexin
4
isodomedin
from Japanese s o u r c e s b u t a r e quoted here because t h e y b o t h e x h i b i t a n t i f e e d a n t a c t i v i t y as t e s t e d a g a i n s t t h e A f r i c a n armyworm. They a r e a l s o c y t o t o x i c , t h e l e v e l s o f i n f l e x i n and isodomedin b e i n g L D 5.4 yg/ml and 4.0 yg/ml, r e s p e c t i v e l y . They a r e e n t - k a u r e n o i d d i t e r p e n e s with c l o s e l y r e l a t e d structures. g) C r o t e p o x i d e from Leaves o f C r o t o n m a c r o s t a c h y s (46). The a n t i f e e d a n t p r i n c i p l e was i s o l a t e d a c c o r d i n g t o t h e b i o a s s a y w i t h S. exempta and t h e s t r u c t u r e was d e t e r m i n e d by d e t a i l e d NMR and o t h e r methods. To o u r s u r p r i s e the s t r u c t u r e was t h a t l_IQ o f c r o t e p o x i d e (47,48, 49), a compound e x h i b i t ing tumor-inhibitory, a n t i l e u k e m i c and a n t i 0 biotic activity. The c y t o t o x i c i t y and a n t i OGluc feedant a c t i v i t y are b o t h dependent, a t l e a s t p a r t i a l l y , on t h e r e a c Crotepoxide t i o n between t h e n u c l e o 5 0
'Mr
HOST P L A N T RESISTANCE
174
T O PESTS
p h i l i e r e c e p t o r and e l e c t r o p h i l i c moiety o f t h e a c t i v e m o l e c u l e ; i s o l a t i o n o f t h e same m o l e c u l e b y two t o t a l l y d i f f e r e n t b i o a s s a y s proves the s i m i l a r i t y i n c e r t a i n a s p e c t s o f t h e s e two s e e m i n g l y d i f f e r e n t a c t i v i t i e s . h) Unedoside from t h e bark o f Canthium e u r o i d e s (50). Structure determination o f the antifeedant contained i n t h i s Ο p l a n t t u r n e d o u t t o be t h e known u d e s i d e which had been CHoOC i s o l a t e d from A r b u t u s unedo (51) · ,OAc
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch011
OAc
Unedoside
i ) Prep LC o f Crude P l a n t E x t r a c t s ( 5 2 ) .
3
EtOAc/hexane 1=4
1 ·' mixture (19) 4 : mixture (l80mg) OCHj
5 : pure compound (40 mg)
[<3
ι CH,
2 : germacrone
3 : dihydrochelerythrine
6: N-methylflindersine Helvetica Chimica Acta
Figure 4.
Direct obtention of pure compounds from crude plant extracts by preparative liquid chromatography (52)
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch011
11.
KUBO
AND
NAKANISHI
Insect Antifeedants
and
Repellents
175
The r e s u l t s shown i n F i g u r e 4 were o b t a i n e d w i t h a Waters Prep LC-500 system. The d r i e d bark (150 g) o f the I n d i a n and A f r i c a n m e d i c i n a l p l a n t F a g a r a c h a l y b e a ENGL. (Rutaceae), which e x h i b i t e d a n t i f e e d a n t , a n t i b a c t e r i a l and a n t i f u n g a l a c t i v i t y was e x t r a c t e d w i t h hexane. The 3.5 g o f s t i c k y o i l r e m a i n i n g a f t e r evap o r a t i o n o f the s o l v e n t was p r e f i l t e r e d t h r o u g h 100 g o f s i l i c a g e l and the f i l t r a t e was i n j e c t e d d i r e c t l y i n t o the p r e p LC. Peaks 1 (1 g o f a m i x t u r e o f n o n - p o l a r m a t e r i a l s ) and 2 (850 mg o f pure germacrone) were e l u t e d i n 6 min. The remainder was c o l l e c t e d as one f r a c t i o n , and was rechromatographed by p r e p LC employing a more p o l a r s o l v e n t system, upon which peaks 3 (120 mg o f d i h y d r o c h e l e r y t h r i n e ) , 4 (180 mg o f a m i x t u r e o f s e v e r a l components), 5 (40 mg o f pure compound, s t r u c t u r e t o be p u b l i s h e d , r e f . S3) and 6 (125 mg o f N - m e t h y l f l i n d e r s i n e ) were o b t a i n e d i n a n o t h e r 25 min. The e n t i r e o p e r a t i o n was a c h i e v e d i n 2 h o u r s as compared t o 2 weeks r e q u i r e d by c o n v e n t i o n a l open column chromatography employing a v a r i e t y o f c h r o m a t o g r a p h i c c o n d i t i o n s i n c l u d ing gradient elution. The more p o l a r f r a c t i o n s a r e a l s o b e i n g s u b m i t t e d t o p r e p LC. T h i s d i r e c t a p p l i c a t i o n o f p r e p LC t o crude p l a n t e x p i a n t s c l e a r l y r e s u l t s i n g r e a t s h o r t e n i n g o f the t e d i o u s e x t r a c t i o n p r o c e d u r e . Furthermore, the reduced time on the column m i n i m i z e s d e t e r i o r a t i o n o f sample on the column. F o r example, the r e l a t i v e amount o f d i h y d r o c h e l e r y t h r i n e (peak 3) o b t a i n e d from a r e g u l a r open column o p e r a t i o n was much l e s s . Acknowledgment T h i s r e s e a r c h has been s u p p o r t e d by NIH G r a n t AI 10187 (to K. N . ) a n d U.N. Development Program ( t o I C I P E ) . We a r e g r e a t l y i n d e b t e d t o our c o l l e a g u e s c i t e d i n the r e f e r e n c e s , namely, Dr. V. B a l o g h - N a i r , Dr. D.L. E l d e r , Dr. K. Hostettmann, Y.-W. Lee, I . M i u r a , M. P e t t e i , Dr. F. P i l k i e w i c z , S. T a n i s , F. Yeh, Dr. P. Zanno (Columbia U n i v e r s i t y ) and A. Chapya, and Dr. W.-C. Ma (ICIPE). We a l s o acknowledge the c o l l a b o r a t i o n w i t h P r o f . T. Kubota and h i s group ( K i n k i U n i v e r s i t y and Osaka C i t y U n i v e r s i t y ) . Literature Cited
1. Djerassi, C., Bull. Atomic Sci. (1968) 24, 22. 2. Meinwald, J., Prestwich, G., Kubo, I., and Nakanishi, Κ., Science, in press. 3. Kubo, I., Lee, Y.-W., Pettei, M., Pilkiewicz, F., Nakanishi, K., J.C.S. Chem. Comm. (1976), 1013.
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch011
176
HOST P L A N T RESISTANCE
T O PESTS
4. These bioassays were carried out by Dr. G.B. Staal and K.J. Judy, Zoecon Corporation. 5. Ma, W.-C., unpublished results. However, see ICIPE Annual Reports (1974), p. 7-11, and (1975), p. 2230 for preliminary accounts. These Annual Reports are available on request to Librarian, ICIPE, P.O. Box 30772, Nairobi, Kenya. 6. cf. Wada, K. and Munakata, K., Agr. Food Chem. (1968), 17, 471. 7. Ma, W.-C. and Kubo, I., unpublished results. cf. ICIPE Annual Reports (1975), p. 22-30 for prelimin ary account. 7a. Jacobson, M. and Crosby, D.G. ed., "Naturally Occur ring Insecticides", Marcel Dekker Inc., New York (1971). 8. Reviews: Hikino, H. and Hikino, Y. in Zechmeister, L. ed., "Fortschritte der Chemie Organischer Natur stoffe" Springer Verlag (1970), 28, 256. 9. Horn, D.H.S. in Ref. 7a, p. 330. 10. Nakanishi, Κ., Pure and Applied Chem. (1971), 25, 167, and XXIII rd Intern. Congress Pure and Applied Chem. (1971), Vol. III, 29. 11. Kuhn, R. and Guhe, Ζ., Z. Nat. Forsch. (1947), 26, 467. 12. Schreiber, K., Zuchter (1957), 27, 289. 13. Buhr, R., Toball, R., and Schreiber, K., Ent. Exp. Appl. (1958), 1, 209. 14. Kuhn, R. and Low, I., Chem. Ber. (1961), 94, 1096. 15. Bates, R.B. and Eckert, D.J., J. Am. Chem. Soc. (1972), 94, 8258. 16. Begley, M.J., Crombie, L., Ham, P.J., and Whiting, D.A., J.C.S. Chem. Comm. (1972), 1108. 17. Begley, M.J., Crombie, L., Ham, P.J., and Whiting, D.A., J.C.S. Chem. Comm. (1972), 1250. 18. Bates, R.B. and Morehead, S.R., J.C.S. Chem. Comm. (1974), 125. 19. Gilbert, B.L. and Norris, D.M., J. Insect Physiol. (1968), 14, 1063. 20. Isogai, Α., Murakoshi, S., Suzuki, Α., and Tamura, S., Agri. Biol. Chem(1973), 37, 889. 21. Wada, K., Enomoto, Y., and Munakata, K., Agr. Biol. Chem. (1970), 34, 941. 22. Wada, Κ., Enomoto, Υ., and Munakata, K., Agr. Biol. Chem. (1970), 34, 946. 23. Kato, N., Shibayama, S., Munakata, Κ., and Katayama, C., J.C.S. Chem. (1971), 1632. 24. Hosozawa, S., Kato, N., and Munakata, K., Tetrahed ron Letters (1974), 3753. 25. Lavie, D., Jain, M.K., and Shpan-Gabrielith, S.R., Chem. Comm. (1967), 910.
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch011
11.
KUBO
A N D NAKANISHI
Insect Antifeedants
and Repellents
177
26. Watt, J.M. and Breyer-Brandwijk, M.G., "Medicinal and Poisonous Plants of Southern and Eastern Africa", E.S. Livingstone Ltd., Edinburgh and London (1962). 27. Kokwaro, J.O. "Medicinal Plants of East Africa", East African Literature Bureau, Nairobi (1976). 28. Zanno, P.R., Miura, I., Nakanishi, K., and Elder, D.L., J. Am. Chem. Soc. (1975), 2, 1975. 29. Butterworth, J.H., Morgan, E.D., and Percy, G.R., J. Chem., Soc. Perkin Trans. (1972), 1, 2445. 30. Morgan, E.D. and Thornton, M.D., Phytochem. (1973), 12, 391. 31. Kubo, I., Miura, I., and Nakanishi, K., J. Am. Chem. Soc. (1976), 98, 6704. 32. According to Trof. D.A.H. Taylor, i t should be X. granatum. However, the literature is confused and the identity is being checked. 33. Kubo, I., Lee, Y.-W., Balogh-Nair, V., Nakanishi, K., and C hapya, Α., J.C.S. Chem. Comm (1976), 949. 34. Kubo, I., Tanis, S.P., Lee, Y.-W., Miura, I., Nakanishi, K., and Chapya, Α., Heterocycles (1976), 5, 485. 35. Arigoni, D., Barton, D.H.R., Corey, E.J., Jeger, O., Caglioti, L., Dev, S., Ferrini, P.G., Glazier, E.R., Melera, Α., Pradham, S.K., Schaffner, K., Sternhell, S., Templeton, J.E., and Tobinaga, S., Experientia (1960), 16, 41. 36. Kubota, T., Matsuura, T., Tokoroyama, T., Kamikawa, T., and Matsumoto, T., Tetrahedron Letters (1961), 325. 37. Kindly measured by Dr. M. Taniguchi, Osaka City University. 38. Kindly measured by Dr. F.J. Schmitz, University of Oklahoma. 39. Kubo, I., Lee, Y.-W., Pettei, Μ., Pilkiewicz, F., and Nakanishi, K., J.C.S. Chem. Comm. (1976), 1013. 40. Barnes, C.S. and Loder, J.W., Austral. J. Chem. (1962), 15, 222. 41. cf. also Ohsuka, Α., Nippon Kagaku Zasshi (1962), 83, 757. 42. Synthesis: Kato, T., Suzuki, T., Tanemura, M., Kumanireng, A.S., Ototani, N., and Kitahara, Y., Tetrahedron Letters (1971), 1961. 43. Brook, C.J.W. and Draffan, G.H., Tetrahedron (1969), 25, 2887. 44. Kubo, I., Nakanishi, K., Kamikawa, T., Isobe, T., and Kubota, T., Chem. Letters (1977), 99. 45. Kubo, I., Miura, I., Nakanishi, K., Kamikawa, T., Isobe, T., and Kubota, T., J.C.S. Chem. Comm. (1977), in press.
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch011
178
HOST PLANT RESISTANCE TO PESTS
46· Kubo, I., Miura, I., and Nakanishi, K., to be published. 47. Kupchan, S.M., Hemingway, R.J., and Smith, R.M., J. Org. Chem. (1969), 34, 3898. 48. Synthesis: Oda, K., Ichihara, Α., and Sakamura, S., Tetrahedron Letters (1975), 3187. 49. Synthesis: Demuth, M.R., Garrett, P.E., and White, J.D., J. Am. Chem. Soc. (1976), 98, 634. 50. Kubo, I., Miura, I., and Nakanishi, Κ., unpublished results. 51. Geisman, T.A., Knaack, W.F.Jr., and Knight, J.O., Tetrahedron Letters (1966), 1245. 52. Hostettmann, K., Pettei, M.J., Kubo, I., and Nakanishi, K., Helv. Chim. Acta (1977), 60, 670. 53. Yeh, F., Miura, I., Hostettmann, Κ., Kubo, I., and Nakanishi, K., to be published.
12 Antifeedant Sesquiterpene Lactones in the Compositae T O M J. MABRY and JAMES E. GILL Department of Botany, University of Texas, Austin, T X 78712 WILLIAM C. BURNETT, JR. and SAMUEL B. JONES, JR.
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch012
Department of Botany, University of Georgia, Athens, GA 30602
Most of the known 700 or so sesquiterpene lactones are characteristic constituents of many members of the Compositae, occurring only infrequently in a few other higher and lower plants (1,2)· Whether or not the a , β-unsaturated γ-lactone function present in most of these terpenoids i s responsible f o r their antifeedant properties i s not known; however, this functionality has been implicated i n most of the other biological activities known f o r these substances: e.g. antitumor, cytotoxicity, contact dermatitis, and antifungal properties. Since we recently described i n detail the role of sesquiterpene lactones i n plant-animal interactions (2), the present account w i l l only summarize our specific findings concerning the way the germacranolide glaucolide-A (I) controls the level of feeding of insects and mammals on members of the genus Vernonia (3) and our general conclusions concerning the function of sesquiterpene lactones as antifeedants. In connection with establishing the antifeedant and growth inhibition properties of glaucolide-A (I), a germacranolide-type sesquiterpene lactone from Vernonia (Compositae), six species of Lepidoptera as well as two species of mammals were u t i l i z e d i n a series of laboratory and f i e l d tests with V. gigantea and V. glauca, both of which contain glaucolide-A, and with V. f l a c c i d i f o l i a , a species which does not produce any sesquiterpene lactones. Some of the major findings of these tests are summarized i n Table I and Figure 1. Insect Antifeedant Tests All of the six lepidopterous larvae used i n testing the feeding deterrent properties of glaucolide-A i n the laboratory tests are sympatric with the species of Vernonia tested and three of them, the yellowstriped armyworm, (Spodoptera ornithogalli), cabbage looper (Trichoplusia n i ) , and the yellow woollybear (Diacrisia virginica), feed i n nature on Vernonias containing glaucolide-A; a fourth species, the saddleback caterpillar
179
HOST P L A N T RESISTANCE T O PESTS
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch012
180
( S i b i n e s t i m u l e a ) , feeds on V. f l a c c i d i f o l i a , a species l a c k i n g glaucolide-A. Two g e n e r a l i s t feeders, the f a l l and southern armyworms (Spodoptera e r i d a n i a and j>. f r u g i p e r d a ) , were not detected on Vernonias i n the f i e l d . The l a b o r a t o r y t e s t s e s t a b l i s h e d two trends (Table I ) : firstly, when the i n s e c t s had a choice of Vernonia f l a c c i d i f o l i a l e a f m a t e r i a l prepared i n the form of a p e l l e t with and without added g l a u c o l i d e - A , a l l the larvae p r e f e r r e d the d i e t without the sesquiterpene lactone; secondly, when the l a r v a e were o f f e r e d a choice of f r e s h leaves of g l a u c o l i d e - A species versus f r e s h leaves of V. f l a c c i d i f o l i a , they tended to e x h i b i t the same feeding patterns observed i n nature (4). That i s , except f o r the y e l l o w s t r i p e d armyworm, those species observed i n the f i e l d on Vernonias containing g l a u c o l i d e - A p r e f e r r e d these same p l a n t s over V. f l a c c i d i f o l i a i n the l a b o r a t o r y ; similarly, the one species observed on V. f l a c c i d i f o l i a under n a t u r a l conditions s t i l l p r e f e r r e d t h i s species i n the l a b o r a t o r y . Two g e n e r a l i s t feeders, the southern and f a l l armyworms, always avoided the g l a u c o l i d e - A p l a n t s . In t e s t s with the f a l l armyworm l a r v a e , i t was f u r t h e r determined that l e v e l s of about 1% g l a u c o l i d e - A ( i n a p e l l e t ) gave maximum deterrence; t h i s i s roughly the quantity of l a c t o n e m a t e r i a l synthesized i n the leaves of many sesquiterpene l a c t o n e - c o n t a i n i n g Compositaes.
Q
Glaucolide-A (Vernonia) (i)
L a r v a l Growth I n h i b i t i o n Tests Newly hatched larvae of the southern, fall, and y e l l o w s t r i p e d armyworms, cabbage looper, and yellow woollybear were reared on d i e t s c o n t a i n i n g g l a u c o l i d e - A i n amounts ranging up to 0.5%. The growth of the three armyworms was g r e a t l y reduced (Figure 1) and the r e d u c t i o n i n growth f o r the f a l l and southern armyworms was considerably greater than the decrease i n feeding. Moreover, except f o r the yellow woollybear, the
12.
MABRY ET A L .
Table I*
Antifeedant
Sesquiterpene
Lactones
181
Insect Antifeedant Tests
D i e t Preference i n Laboratory
Leaf Glaucolide-A Species
P e l l e t Choice
Choice V.
flaccidifolia
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch012
Insects:
V. f l a c . With Added Glauco lide-A
V. f l a c . Without Glauco lide-A
Observed on Glaucolide-A Vernonias 1. 2. 3.
Yellow Woollybear Cabbage Looper Yellowstriped Armyworm
χ (usually)
X
X
X X
X
X
*
X
X
X
X
Not Observed On Glaucolide-A Vernonias 1. 2. 3.
Saddleback Caterpiller Fall Armyworm Southern Armyworm
*Not t e s t e d ; c u l t u r e d i e d .
HOST P L A N T RESISTANCE
T O PESTS
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch012
182
Figure 1. Relative size of larvae reared on diets containing glaucolide-A. Top insect fed on control diet without added lactone; others were fed on diets containing 1/8%, 1/4%, and 1/2% ghucolide-A by dry weight. (A) Fall armyworm; (B) southern armyworm; (C) yellow-striped armyworm; (D) cabbage looper; (E) yellow woolybear.
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch012
12.
MABRY ET
AL.
Antifeedant
Sesquiterpene
Lactones
183
presence of g l a u c o l i d e - A i n the d i e t s increased the number of days to pupation f o r a l l species. Reduced survival was e s p e c i a l l y evident f o r the southern and f a l l armyworms during the e a r l y l a r v a l i n s t a r s (6). A l t o g e t h e r , the growth i n h i b i t i o n t e s t s demonstrated that glaucolide-A i s detrimental to c e r t a i n stages i n the l i f e c y c l e of s e v e r a l lepidopterous l a r v a e . In a separate s e r i e s of experiments, i t was a l s o e s t a b l i s h e d that except f o r the f a l l armyworm, the presence of g l a u c o l i d e - A on the leaves of Vernonias d i d not deter o v i p o s i t i o n by the species of Lepidoptera tested (7). Having e s t a b l i s h e d that g l a u c o l i d e - A could deter the feeding of some but not a l l i n s e c t larvae i n l a b o r a t o r y t e s t s , both t r a n s p l a n t garden and n a t u r a l f i e l d p l o t s of Vernonias were observed f o r the r e l a t i v e amounts of herbivory with respect to those p l a n t s which do and those p l a n t s which do not produce sesquiterpene lactones. S u r p r i s i n g l y , i n a l l cases, Vernonia f l a c c i d i f o l i a was fed upon l e s s than g l a u c o l i d e - A containing species, a result f o r which we do not yet have a s a t i s f a c t o r y explanation; however, we b e l i e v e that t h i s p u z z l i n g observation must be viewed i n l i g h t of the mammalian antifeedant experiments described below. Mammalian Antifeedant
Tests
At the outset, i t may be noted that cows avoided a l l Vernonias presumably on the b a s i s of having p r e v i o u s l y determined by t r i a l and e r r o r that most of these morphologically similar plants were b i t t e r (due to the presence of sesquiterpene lactones)· Eastern c o t t o n t a i l r a b b i t s and the w h i t e t a i l deer were both found to feed p r i m a r i l y on Vernonia f l a c c i d i f o l i a , not the g l a u c o l i d e - A species i n c o n t r o l l e d t e s t s . Moreover, both avoided the V. flaccidifolia a f t e r i t s leaves had been coated with glaucolide-A; i n this l a t t e r test, the deer would t a s t e the coated V. flaccidifolia, detect the b i t t e r compound, and then refuse to eat the p l a n t . I t was d i f f i c u l t to monitor mammalian feeding in the f i e l d s i n c e the g l a u c o l i d e - A species are apparently not eaten at a l l by mammals; i n c o n t r a s t , we assume on the b a s i s of our c o n t r o l l e d feeding experiments with deer and r a b b i t s that V. f l a c c i d i f o l i a i n the f i e l d would be totally consumed i f encountered. From the laboratory i n s e c t feeding t e s t s , i t i s evident that g l a u c o l i d e - A can deter the feeding and induce growth r e d u c t i o n of some but not a l l i n s e c t l a r v a e . Nevertheless, i n the f i e l d i t s absence from Vernonia f l a c c i d i f o l i a d i d not r e s u l t i n heavier feeding by i n s e c t s r e l a t i v e to V. gigantea and V. glauca (8). It i s of i n t e r e s t to note that the two species of Vernonia i n North America l a c k i n g sesquiterpene lactones, V. flaccidifolia and V. p u l c h e l l a , are a l s o species with r e s t r i c t e d ranges; we
184
HOST
suggest that mammalian feeding may account ranges and s m a l l p o p u l a t i o n s i z e s .
PLANT
RESISTANCE T O PESTS
f o r these
restricted
Summary
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch012
In summary, g l a u c o l i d e - A apparently p r o t e c t s such species as Vernonia gigantea and V. glauca against a l l sympatric animals and some i n s e c t s . In c o n t r a s t , V. f l a c c i d i f o l i a has no chemical p r o t e c t i o n against mammals but nevertheless has evolved a s t i l l unknown but s a t i s f a c t o r y defense against insects. Most sesquiterpene lactones are b i t t e r suggesting that many members of t h i s c l a s s of n a t u r a l products serve as mammalian a n t i f e e d a n t s . Nevertheless, insect antifeedant p r o p e r t i e s must have been important i n the widespread s e l e c t i o n of sesquiterpene lactones i n the l a r g e s t of f l o w e r i n g p l a n t f a m i l i e s , the Compositae. Acknowledgement s Part of the research described here was supported by the N a t i o n a l Science Foundation (Grant DEB 76-09320 to T.J.M. ; GB-20687A and GB-39712 to S.B.J.), N a t i o n a l I n s t i t u t e s of Health (Grant HDO 04488 t o T.J.M.), and the Robert A. Welch Foundation (Grant F-130 to T.J.M.). Literature Cited
1. Yoshioka, H., Mabry, T. J., and Timmermann, Β. Ν., "Sesquiterpene Lactones", Univ. of Tokyo Press, Tokyo, 1973. 2. Burnett, W. C., Jr., Mabry, T. J. and Jones, S. B., Jr., "The Role of Sesquiterpene Lactones in Plant-Animal Coevolution", in "Biochemistry of Plant-Animal Coevolution", J. B. Harborne, ed., Academic Press, London, (in press). 3. Burnett, W. C., Jr., "Sesquiterpene Lactones -- Herbivore Feeding Deterrents in Vernonia (Compositae)". Ph. D. Dissertation, University of Georgia, Athens, 1974. 4. Burnett, W. C., Jr., Jones, S. B., Jr., Mabry, T. J., and Padolina, W. G., Biochem. Syst. Ecol., (1974), 2:25-29 . 5. Burnett, W. C., Jr., Jones, S. B., Jr., and Mabry, T. J., Taxon (in press), (1977a). 6. Burnett, W. C., Jr., Jones, S. B., Jr., and Mabry, T. J., Amer. Midl. Natur. (in press), (1977b). 7. Burnett, W. C., Jr., Jones, S. B., Jr., Mabry, T. J., and Betkouski, M. F., Oecologia (submitted), (1977c). 8. Burnett, W. C., Jr., Jones, S. B., Jr., and Mabry, T. J., Plant Syst. Evol. (submitted), (1977d).
13 Insect Antifeedants of Spodoptera Litura in Plants KATSURA
MUNAKATA
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch013
Laboratory of Pesticides Chemistry, Nagoya University, Nagoya, Japan
I.
Introduction
The feeding behaviour of insects can be divided into four steps: (1) host plant recognition and orientation, (2) initiation of feeding, (3) maintenance of feeding and (4) cessation of feeding. Antifeedant i s concerned with steps (2) and (3). The term a n t i -feedant i s difined as a chemical that i n h i b i t s feeding but does not kill the insect d i r e c t l y , the insect remaining near the treated leaves and dying through starvation. Gustatory repellent, feeding deterrent and rejectant are synonymous with antifeedant. Studies of the natural phenomenon of antifeeding (no consumption of plant material by insect) could reveal the presence of new antifeeding substances i n plants, and provide correlations between chemical structure and antifeeding a c t i v i t i e s . Antifeeding could be of great value i n protecting crops from noxious insects as an alternative insect control means to insecticides. There are many investigations on synthetic chemicals which have insect antifeeding a c t i v i t y , but i n this lecture the author would l i k e to discuss the natural antifeeding substances contained i n plants. The host s e l e c t i o n i n phytophagous i n s e c t s i s governed by the presence or absence o f a t t r a c t a n t s and r e p e l l e n t s i n p l a n t s [ 1 ] . For example, Buhr, T o b a l l and Schreiber [2] reported that some o f the a l k a l o i d glycosides i n p l a n t s o f Solanaceae acted as r e p e l l e n t s to the larvae o f the Colorado potato b e e t l e , Leptinotarse decemlineata Say. 2-Phenylethy-isothiocyanate from e d i b l e p a r t s of t u r n i p ( B r a s s i c a rapa L.) and 5-allyl-l-methoxy-2, 3-methylenedioxybenzene o r m y r i s t i c i n from e d i b l e p a r t s o f parsnip (Pastinaca s a t i v a L.) have been shown t o act as n a t u r a l l y occuring antifeedants [3,4]. Moreover, one o f the r e s i s t a n t f a c t o r s i n corn p l a n t s t o the European corn borer, Pyrausta n u b i l a l i s (Hubner), was i d e n t i f i e d as 6-methoxybenzoxazolinone [5]. A waxy f r a c t i o n from the e x t r a c t s
185
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch013
186
HOST P L A N T RESISTANCE T O
PESTS
of wood o f West Indian mahogany showed a high termite r e p e l l e n c y [ 6 ]. Rudman and Gay [7j noted t h a t 2-methyl-, 2-hydroxymethyl- and 2-formy-anthraquinones present i n the extracts o f teak heart-wood were a l l e f f e c t i v e i n i n h i b i t i n g termite a c t i v i t y . The a l k a l o i d a l g l y c o s i d e s , such as l e p t i n e II and I I I , demmissine and tomatine, i n h i b i t e d feeding o f tomato b e e t l e s [8]. Jermy [ 9 ] s t u d i e d e x t e n s i v e l y the b o t a n i c a l d i s t r i b u t i o n of a n t i f e e d i n g substances i n p l a n t s of 4 3 f a m i l i e s i n r e l a t i o n to eight i n s e c t s p e c i e s , and suggested t h a t there was a fundamental d i f f e r e n c e i n the f u n c t i o n of chemoreceptors r e a c t i n g upon deterrents . The seeds of neem, the Indian l i l a c , M e l i a azadirachta L. or M e l i a i n d i c a , have been shown to contain an a n t i f e e d i n g substance against locust [10]. The a c t i v e p r i n c i p l e was i s o l a t e d and the chemical s t r u c t u r e of the t r i t e r p e n o i d , named m e l i a n t r i o l , was e s t a b l i s h e d . However, the other antifeedant, named a z a d i r a c h t i n , from the same tree was i s o l a t e d and i t s p a r t i a l s t r u c t u r e apart from m e l i a n t r i o l was reported by Butterworth and h i s group[11], and the whole s t r u c t u r e was s p e c t r o s c o p i c a l l y e l u c i d a t e d by Nakanishi and h i s group,[12] who a l s o reported e x t e n s i v e l y army worm antifeedants from the"east a f r i c a n Warburgia p l a n t s to be the known p o l i g o d i a l , ugandensidiol, and the new warburganal which e x h i b i t very strong a n t i f e e d i n g a c t i v i t y e s against A f r i c a n army worms [ 1 3 ] An extensibe survey f o r chemicals which as feeding deterrents against the tobacco cutworm, Spodoptera l i t u r a , has been conducted at the Laboratory of P e s t i c i d e Chemistry, Nagoya u n i v e r s i t y , Nagoya Japan. The Tobacco cutworm i s a noxious pest o f sweet potatoes, sugar cane, c r u c i f e r s , t a r o , and legumes, and c o n t r o l of t h i s worm i s very important to Japanese a g r i c u l t u r e . However, c e r t a i n plants have feeding-deterrent a c t i v i t y and thus r e s i s t a n c e against t h i s pest. E x t r a c t s o f these p l a n t s were i n v e s t i g a t e d i n research d i r e c t e d toward the i s o l a t i o n and i d e n t i f i c a t i o n o f the a c t i v e principles. II.
Screening Method and A c t i v i t i e s of Plant
Extracts
Leaf d i s c s were punched out with a cork b o r e r from leaves of s u s c e p t i b l e food p l a n t s , u s u a l l y sweet potato, Ipomoea batatas. The d i s c s were immersed i n acetone s o l u t i o n s of t e s t samples or i n pure acetone as a c o n t r o l . A f t e r a i r - d r y i n g , the d i s c s were placed i n polyethylene dishes with t e s t l a r v a e , u s u a l l y t h i r d i n s t a r , o f the tobacco cutworm. About h a l f the area o f the c o n t r o l d i s c s was u s u a l l y eaten w i t h i n 2 h r , at which time the consumed areas o f a l l d i s c s were measured by Dethier's method [14]. The consumed area of t r e a t e d d i s c s expressed as a percentage o f the consumed area of c o n t r o l d i s c s was used as an index of the a n t i f e e d i n g a c t i v i t y of the samples. A l s o , i n some cases the minimum concentration o f t e s t samples needed to cause 100% a n t i f e e d i n g a c t i v i t y was determined[15 ] . Many kinds of plant leaves were c o l l e c t e d , and t h e i r benzene e x t r a t s were assayed f o r t h e i r i n s e c t a n t i f e e d i n g a c t i v i t i e s by
13.
MUNAKATA
Antifeedants
11
of Spodoptera Litura
the l e a f - d i s k method" as above. i n Table I.
187
The screening r e s u l t s are shown
Table 1. A n t i f e e d i n g a c t i v i t i e s o f p l a n t l e a f e x t r a c t s (cone. 5% acetone soin.) Family
Species
Araceae
Magnoliaceae Menispermaceae
Symplocarpus f o e t i d u s Nutt. forma l a t i s s i m u s Makino Hedera rhombea Sieb. et Zucc. A r i s t o l o c h i a Kaempferi W i l l d . A r i s t o l o c h i a d e b i l i s Sieb. e t Zucc Dianthus japonicus Thunb Sambucus S i e b o l d i a n a Blume. Euonymus j a p o n i c a Thunb. Euonymus oxyphylla Mig. Cephalotaxus drupacea Sieb. et Zucc Chloranthus s e r r a t u s Roem. e t S c h u l t . C l e t h r a B a r b i n e r v i s Sieb. e t Zucc A c h i l l e a s i b i r i c a Ledeb. Crepidiastrum Keiskeahum Nakai Siegesbeckia pubescens Makino Erigeron l i n i f o l i u s Willd. P e t a s i t e s japonicus Miq Helwingia j a p o n i c a D i e t r . Elaeagnus g l a b r a Thunb. Enkianthus perulatus C.K. Schn Euphorbia S i e b o l d i a n a Morr. Rt Decne. Sapium japonicum Paz et K. Hoffm keiskea j a p o n i c a Miq Teucrium viscisum Blume var. Miquelianum Makino Lamium album L. var. Barbatum Franch. et Sav. Cinnamomum Camphora Sieb. Parabenzoin praecox Nakai. L i t s e a glauca Sieb Benzoin umbellatum Rehd Benzoin obtusilobum 0. Kuntze Pisum sativum L. var. arvense P o i r . Pueraria Thunbergiana Benth. Ophiopogon japonicus Ker. Gawl. Smilax China L. Magnolia obovata Thunb. Stephania j a p o n i c a Miers.
Moraceae Osmundaceae Phytolaccaceae
Ficus C a r i c a L. Osmunda Japonica Thunb. Phytolacca esculenta Van Houtte
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch013
A r a l i ace ae Aristolochiaceae Caryophyllaceae Caprifoliaceae Celastraceae Cephalotaxaceae Chloranthaceae Clethraceae Compositae
Cornaceae Elaegnaceae Ericaceae Euphorbiaceae Labiatae
Lauraceae
Leguminosae Liliaceae
Activity
HOST P L A N T
188
RESISTANCE T O PESTS
Table 1. Continued Piperaceae Polypodiaceae
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch013
Ros aceae Rutaceae Saxifragaceae
Styracaceae Theaceae Verbenaceae
Vitaceae
III.
P i p e r Futokadzura Sieb. e t Zucc Coniogramme intermedia h i e r o n Cyrtomium falcatum L. P r e s l Cytomium Fortunei J . sm. Polypodium Thunbergianum Makino Pteridium aquilinum Kuhn. Agrimonia E u p a t o r i a L. var. p i l o s a Makino Boenninghausenia a l b i f l o r a . Reichb. Hydranbea macrophylla Seringe subsp. s e r r a t a Makino var. acuminata Makino. Hydrangea macrophylla Seringe subsp. s e r r a t a Makino var. angustata Makino Styrax j a p o n i c a Sieb. et Zucc. Eurya j a p o n i c a Thunb. Caryopteris d i v a r d c a t a Maxim. C a l l i c a r p a j a p o n i c a Thunb Lantana camara L. V i t e x t r i f o l i a I,, var. r o t u n d i r o l i a Ampélopsis Bre v i p edunculat a Trautv.
A n t i f e e d i n g substances
i n Plants
A. Antifeedants from Cocculus tri1obus DC Cocculus t r i l o b u s DC, which i s w e l l known as the host p l a n t o f Japanese f r u i t - p i e r c i n g moths, Oraesia excavata B u t l e r and 0.. emarginata F a b r i c i u s , i s s c a r c e l y attacked by other i n s e c t s i n nature. Therefore, i t was assumed that C. t r i l o b u s contained t o x i n s or feeding i n h i b i t o r s against other i n s e c t s . Two a l k a l o i d s were i s o l a t e d as c r y s t a l l i n e forms from the f r e s h leaves o f t h i s p l a n t . An i n s e c t i c i d a l a l k a l i o d was named c o c c u l o l i d i n e ( I I ) , and an a n t i f e e d a n t a l k a l o i d was i d e n t i f i e d as i s o b o l d i n e (I) by the comparison o f i t s p h y s i c a l p r o p e r t i e s with those o f an authentic sample. The authors proposed s t r u c t u r e II for cocculolidine. To determine t h e t h r e s h o l d concentration o f i s o b o l d i n e f o r f e e d i n g i n h i b i t i o n , s e r i a l acetone d i l u t i o n s o f pure i s o b o l d i n e were a p p l i e d t o leaves o f Euonymus japonicus Thunberg, and the t r e a t e d leaves were submitted t o the l e a f - d i s c t e s t with Abraxas miranda B u t l e r . The feeding r a t i o s were near zero at concent r a t i o n s o f 200 p.p.m. o r g r e a t e r ; at concentrations o f 100 and 10 p.p.m. the feeding r a t i o s were 40-59% and 48-126%, r e s p e c t i v e l y .
13.
MUNAKATA
Antifeedants
of Spodoptera Litura
189
Œ 0 3
N-CH3
HO
CH3O
0
OH
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch013
(I)
Isoboldine
(II) C o c c u l o l i d i n e
The l e a f - d i s c t e s t with Spodoptera l i t u r a F. was conducted with 100 and 200 p.p.m. acetone s o l u t i o n s o f pure i s o b o l d i n e . Leaves o f sweet potato, one o f the many host p l a n t s o f t h i s i n s e c t , were used as feeding d i s c s . This a l k a l o i d showed feeding i n h i b i t o r y a c t i v i t y at 200 p.p.m. The l e a f - d i s c t e s t with 0_. excavata e a t i n g leaves o f £ . t r i l o b u s was conducted using 500 and 1000 p.p.m. acetone s o l u t i o n s o f pure i s o b o l d i n e , but the i n s e c t s ate up t h e t r e a t e d l e a f d i s c s . These f a c t s suggest an i n t e r e s t i n g h o s t i n s e c t i n t e r r e l a t i o n s h i p about the c o n s t i t u e n t s i n host p l a n t s [16]. B.
Antifeedants o f Parabenzoin triloburn Nakai (=Lindera t r i l o b a Blume) 1
Leaves o f £ . t r i l o b u m ('Shiromoji i n Japanese) are n o t attacked by t h e larvae o f Spodoptera l i t u r a . The crude e x t r a c t a l s o showed a n t i f e e d i n g a c t i v i t y i n the l e a f - d i s c t e s t . The a c t i v e antifeedant m a t e r i a l was benzene-extractable, n e u t r a l , and e l u t e d by 30% ether i n n-hexane from a s i l i c a - g e l column. Two a c t i v e compounds were i s o l a t e d from the e x t r a c t and named shiromodial d i a c e t a t e (III) and shiromodiol monoacetate (IV) and t h e i r chemical s t r u c t u r e s were assigned as (III) and (IV),[1718]
(III) Shiromodiol (IV) Shiromodiol
d i a c e t a t e . R =R2=Ac monoacetate. Ri=H;R2-Ac 1
H O S T P L A N T RESISTANCE T O PESTS
190
The t h r e s h o l d concentration o f IV was about 0.125% and 0.033% i n acetone when t e s t e d with :S. l i t u r a and Abraxas miranda, r e s p e c t i v e l y [17]. C. Antifeedants
from O r i x a japonica Thunberg
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch013
This p l a n t has long been used t o i n s e c t - p r o o f books i n Japan, and a f t e r p r e l i m i n a r y assessment o f a n t i f e e d i n g substances f o r tobacco cutworm, Spodoptera l i t u r a F., the benzene e x t r a c t o f the leaves showed a n t i f e e d i n g a c t i v i t i e s . The a c t i v e p r i n c i p l e s i n the leaves were separated and i d e n t i f i e d as i s o p i m p i n e l l i n , bergapten and kokusagin. These and r e l a t e d compounds were assayed f o r a n t i f e e d i n g a c t i v i t i e s , and i t was revealed that i s o p i m p i n e l l i n and bergapten are r a t h e r potent [19]. D. A n t i f e e d i n g substances i n Clerodendron tricotomum Thunberg In 1962 T. Miyake i n v e s t i g a t e d a n t i f e e d i n g a c t i v i t i e s o f the hot water e x t r a c t s from the f r e s h leaves o f various p l a n t s . E u p r o c t i s pseudoconspersa Strand and C i c a d e l l a v i r i d i s L i n n . , and p a r t i c u l a r l y the e x t r a c t s o f Clerodendron tricotomun Thunberg (Verbenaceae), showed a strong a n t i f e e d i n g a c t i v i t y [20]. We have r e i n v e s t i g a t e d the matter and found that benzene e x t r a c t s from a i r - d r i e d leaves o f £. tricotomum Thunberg showed d i s t i n c t a n t i f e e d i n g a c t i v i t y f o r the larvae o f tobacco cutworm, Spodoptera l i t u r a F. In order t o i s o l a t e and i d e n t i f y the a c t i v e p r i n c i p l e present i n the s p e c i e s , a systematic chemical a n a l y s i s monitored by l e a f - d i s c t e s t was undertaken. P u r i f i c a t i o n by column chromâtagraphy over alumina and s i l i c a gel gave two c r y s t a l l i n e s named c l e r o d e n d r i n A and B. Clerodendrin A and Β were determined as (VI) [21] and (VII) [22], both having a clerodon s k e l e t o n [23], from the chemical and s p e c t r o s c o p i c evidence. The absolute c o n f i g u r a t i o n o f c l e r o d e n d r i n A was con firmed as (VI) by x-ray c r y s t a l l o g r a p h y o f the p-bromobenzoate chlorohydrin d e r i v a t i v e [21], The s t r u c t u r e o f c l e r o d i n (V), a b i t t e r p r i n c i p l e o f the Indian bhat t r e e , Clerodendron infortunatum, had been e s t a b l i s h e d i n 1961 [2i]~! Clerodendrin A and B, having s l i g h t l y b i t t e r t a s t e , showed 100% a n t i f e e d i n g a c t i v i t i e s at 300 and 200 p.p.m. concentrations, r e s p e c t i v e l y [24]. C l e r o d i n e x h i b i t e d a 100% a n t i f e e d i n g a c t i v i t y at 80 P.P.M. These diterpene dervatives having a clerodon skeleton showed b i t t e r t a s t e . However, there seems t o be no l i n e a r r e l a t i o n s h i p between the b i t t e r t a s t e and the a n t i f e e d i n g a b i l i t y f o r the i n s e c t l a r v a e , s i n c e the p o l y o l d e r i v a t i v e s with weak a c t i v i t i e s showed s l i g h t l y b i t t e r t a s t e , whereas the methanol adduct d e r i v a t i v e , which does not manifest a marked b i t t e r n e s s , showed the strongest a n t i f e e d i n g a c t i v i t y at 15 p.p.m. Furthermore, i t was r e v e a l e d t h a t the larvae d i d not b i t e the t r e a t e d leaves, and e v e n t u a l l y starved to death, when the concentration o f the t e s t s o l u t i o n was r a i s e d above twice the concentrations showing the 100% a n t i f e e d i n g
13.
Antifeedants
MUNAKATA
(VI) R = H
of Spodoptera L i t u r a
(VII) R - R = same groups in ( )
1
1
CH
191
4
a
3
s
(V)
VI
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch013
• R
2
R
3
= C H CCO2
5
OAc = R = Ac 4
a c t i v i t i e s with the exception o f the p o l y o l and acetate d e r i v a t i v e s . Although the exact mode o f a c t i o n has not been p i n p o i n t e d , both by s m e l l and b y t a s t e are p o s s i b l e . Clerodendrin A and Β d i d not i n h i b i t feeding o f the larvae o f C a l o s p i l o s miranda a t concentrations below 5000 p.p.m. and the larvae o f the European corn b o r e r , O s t r i n i a m u b i l a l i s Hubner, showed 100% a n t i f e e d i n g a c t i v i t i e s a t the c o n c e n t r a t i o n o f 5000 p.p.m. The p r i n c i p l e a l s o prevented feeding o f the larvae o f o r i e n t a l tussock moth, E u p r o c t i s s u b f l a v a Bremer, at the l e v e l o f 1000 p.p.m. These l i m i t e d r e s u l t s suggest that these compounds may act as antifeedants f o r the larvae o f polyphagous r a t h e r than monophagous i n s e c t s . f
1
!
1
E. A n t i f e e d i n g substances i n Verbenaceae A f t e r the discovery o f i n s e c t a n t i f e e d i n g substances from Clerodendron p l a n t s , c o n s t i t u e n t s o f Vervenaceae p l a n t s have i n t e r e s t e d us f o r screening o f i n s e c t a n t i f e e d a n t s . Plants o f the family Vervenaceae, three i n Japan, 13 i n Taiwan, were c o l l e c t e d , and t h e i r benzene e x t r a c t s were subjected t o the l e a f - d i s c t e s t o f tobacco cutworm. The a n t i f e e d i n g a c t i v i t i e s o f the benzene e x t r a c t s are shown i n Table 2_. Caryopteris d i v a r i c a t a , C a l l i c a r p a j a p o n i c a , Clerodendron f r a g r a n s , Clerodendron calamitosum, Clerodendron cryptophyHum showed strong a n t i f e e d i n g a c t i v i t i e s at One percent concentration i s the l e a f - d i s c t e s t . Table. 2
A n t i f e e d i n g a c t i v i t y o f Verbenaceae p l a n t s
Species Caryopteris d i v a r i c a t a C a l l i c a r p a japonica Clerodendron fragrans
Activity (leaf) (leaf) (leaf)
+ + + + + + + + + + + +
HOST P L A N T RESISTANCE T O
192
Table 2.
Continued
C. inerme C. paniculatum C. calamitosum C.
cryptophyllum
C. paniculatum var. a l b i f l o r a C a l l i c a r p a formosana Duranta repens
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch013
PESTS
Lantana camara Lippia nodiflora Premna i n t e g r i f o l i a V i t e x negundo V. t r i f o l i a Verbena o f f i c i n a l i s
(stem) (stem) (leaf) (stem) (leaf) (stem) (leaf) (stem) (stem) (leaf) (stem) (leaf) (stem) (reaf) (whole plant) (leaf) (stem) (stem) (seed) (whole plant)
+ + + + +
+ + + + + + + + + + +
-
+ +
-
+ + +
-
From these plants many clerodon compounds were i s o l a t e d and t h e i r chemical s t r u c t u r e s were i n v e s t i g a t e d . The e x t r a c t o f Caryopteris d i v a r i c a t a Maxim showed a strong a n t i f e e d i n g a c t i v i t y f o r the l a r v a e , and e i g h t a n t i f e e d i n g diterpenes having a clerodon s k e l e t o n - c l e r o d i n (I) [23], c a r y o p t i n ( I I ) , dihydroclerodin-I(V), dihydrocaryoptin (VI), c l e r o d i n hemiacetal ( V I I ) , c a r y o p t i n hemiacetal ( V I I I ) , c a r y o p t i o n o l (IX) and d i h y d r o c a r y o p t i o n o l (X)-were i s o l a t e d and i d e n t i f i e d [25,26]. Clerodendron fragrans gave no strong a n t i f e e d a n t s , but a weak a n t i f e e d a n t p h y t o l i n a high concentration (0.2% y i e l d on d r i e d b a s i s ) was i s o l a t e d from the a c t i v e f r a c t i o n s , and i d e n t i f i e d as p h y t o l . £. calamitosum gave a new antifeedant named 3 - e p i c a r y o p t i n
13.
MUNAKATA
Antifeedants
193
of Spodoptera L i t u r a
(XI) , and from £. cryptohpyHum clerodendrin-A (XII) [23] was i s o l a t e d and i d e n t i f i e d t o be the a n t i f e e d i n g substance [27]. I t i s i n t e r e s t i n g that the compounds c o n t a i n i n g the clerodon s k e l e t o n are found i n both Clerodendron and Caryopteris s p e c i e s . Moreover, i t i s i n t e r e s t i n g i n view o f biogenesis t h a t 3-epi c a r y o p t i n r a t h e r than c a r y o p t i n i s observed i n £. calamitosum. The 11 a n t i f e e d i n g substances and one d e r i v a t i v e obtained were t e s t e d against the larvae o f S_. l i t u r a at d i f f e r e n t concentr a t i o n s . The a n t i f e e d i n g a c t i v i t y was embodied as the concentration of sample s o l u t i o n which e x h i b i t e d the 100% a n t i f e e d i n g a v t i v i t y w i t h i n the defined time (2h) (Table 3 ) .
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch013
Table
3. A c t i v i t i e s o f Verbenaceae antifeedants against S_. l i t u r a
Compound
p.p.m.
Compound
Phytol Caryoptin Dihydrocaryoptin Caryoptin hemiacetal Clerodin Dihydroclerodin-1
5000 200 80 200 50 50
C l e r o d i n hemiacetal Caryoptinol Dihydrocaryoptinol 3-Epicaryoptin Clerodendrin-A 3-Epidihydrocaryoptinb
a
a
p.p.m. 50 200 100 200 200 100
a: The concentration o f the sample s o l u t i o n showing the 100% a n t i f e e d i n g a c t i v i t y w i t h i n 2h. b: C a t a l y t i c r e d u c t i o n product o f X. The a n t i f e e d i n g a c t i v i t i e s o f a s e r i e s o f c l e r o d i n d e r i v a t ives are much stronger than those o f the c a r y o p t i n d e r i v a t i v e s . The d i f f e r e n c e i n the a c t i v i t i e s may be a t t r i b u t e d t o the presence of 33-acetoxyl group i n r i n g A. I t can be concluded that the f u n c t i o n a l groups i n r i n g A c o n t r i b u t e g r e a t l y t o the a n t i f e e d i n g a c t i v i t y o f these diterpenes. In a d d i t i o n , the feeding t e s t was allowed t o continue f o r 6h and more at the c o n c e n t r a t i o n showing the 100% a n t i f e e d i n g a c t i v i t y w i t h i n 2h. The t e s t leaves t r e a t e d with the a n t i f e e d i n g diterpenes were not b i t t e n a f t e r 24h and more, and the larvae e v e n t u a l l y starved t o death. Therefore , the term absolute antifeedant i s a p p l i c a b l e t o these diterpene compounds. The term r e l a t i v e a n t i feedant i s used o f compounds r e t a r d i n g the feeding o f larvae only f o r the defined time. F.
Antifeedants
i n Parabenzoin praecox and Piper
futokazura
The benzene e x t r a c t s o f Parabenzoin praecox gave two k i n d of i n s e c t a n t i f e e d i n g substances and they were i d e n t i f i e d as (+)epieudesmin (I) and (+)-eudesmin ( I I ) . P i p e r futokazura a l s o gave two compounds and they were i d e n t i f i e d t o be isoasaron (III) and
HOST P L A N T RESISTANCE T O
194
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch013
a new compound named piperenone ( I V ) , and a n t i f e e d i n g are shown i n Table 4. [28,29],
Ar=
Table 4.
Concentration
a)
o f sample s o l u t i o n
IV (%)
— 1
I II III IV
activities
3,4-Dimethoxyphenyl
A n t i f e e d i n g A c t i v i t i e s of I, I I , III and
Comp.
PESTS
0.5
+ + +a) + + + + + +
++ + + + + +
0.1 + + +
0.05 + + +
0.01 +
0.005
0.001
+
+ + + + + + + + + Feeding r a t i o =
Consumed amount of sample disk Consumed amount of c o n t r o l disk + + + (0-10%), + + (10-30%), + (30-50%) , - ( 50%).
I and I I , which are epimers, showed 90-100% a n t i f e e d i n g a c t i v i t i e s at d i f f e r e n t concentration of 0.05 and 1%, r e s p e c t i v e l y . I l l showed 90-100% a n t i f e e d i n g a c t i v i t i e s at 0.5% and IV a t 0.005%. These s t r u c t u r e s are phenyl propanoids. The whole absolute s t r u c t u r e o f IV was recognized by X-ray c r y s t a l l o g r a p h y and chemical experiments. [30,311 IV.
Conclusions
Many n a t u r a l products of p l a n t s possess i n s e c t a n t i f e e d i n g activity. These compounds probably p l a y a r o l e as r e s i s t a n c e f a c t o r s , p r o t e c t i n g the plants against i n s e c t attack. Based on our continuous experience with i s o l a t i o n and i d e n t i f i c a t i o n o f i n s e c t antifeedants from p l a n t s we have i d e n t i f i e d many new n a t u r a l products having i n s e c t a n t i f e e d i n g a c t i v i t i e s . We have noted s e v e r a l general c h a r a c t e r i s t i c s of these compounds:
Antifeedants
of Spodoptera Litura
195
13.
MUNAKATA
1.
Some compounds show r e l a t i v e and others show absolute a n t i feeding a c t i v i t y . The b i t t e r t a s t e o f a compound may have no r e l a t i o n t o i t s antifeeding a c t i v i t y . N a t u r a l l y occuring antifeedants may be systemic i n p l a n t s and decomposable i n the environment-both advantageous c h a r a c t e r istics . Compounds having i n s e c t a n t i f e e d i n g a c t i v i t y can and should be used as genetic index substances i n s e l e c t i v e breeding programs f o r i n s e c t - r e s i s t a n t p l a n t v a r i e t i e s .
2. 3.
4.
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch013
Thus, there are two ways i n which i n s e c t c o n t r o l may be e f f e c t e d by i n s e c t a n t i f e e d i n g substances: 1. 2.
The development o f powerful s y n t h e t i c i n s e c t antifeedants The development o f r e s i s t a n t crop v a r i e t i e s t h a t n a t u r a l l y i n c o r p o r a t e the a n t i f e e d i n g substances
When used f o r i n s e c t pest management antifeedants might be e s p e c i a l l y advantageous because they c o n t r o l the i n s e c t s i n d i r e c t l y through s t a r v a t i o n , and they may not be harmful t o p a r a s i t e s , p r e d a t o r s , and p o l l i n a t o r s . I f crops were sprayed with e f f i c i e n t a n t i f e e d a n t s , perhaps the pests would t u r n from the crops t o weeds. REFERENCES
1. A.J. Thorsteinson, Ann. Rev. Entomol. 5, 193 (1960) 2. H.Buhr, R.Toball and K.Schreiber, Ent. Exp. Appl. 1, 209 (1958) 3. E.P. Lichtenstein, R.M. Strong and D.G. Morgan, J.Agric. Fd. Chem. 10, 30 (1962) 4. E.P. Lichtenstein and J.E. Casida, J. Agric. Fd. Chem. 11, 410 (1963). 5. E.E. Smissman, J.B. Lapidus and S.D. Beck, J. Amer. Chem. Soc. 79, 4697 (1957). 6. C.F. Asenjo, L.A. Marin, W, Torres and A, Campillo, Chem. Abstr. 53, 22707 (1959). 7. R. Rudman and F.J. Gay, Hortzforschung, 15, 117 (196) 8. F. Strarchoe and I. Loaw, Ent. Ezp. Appl. 4, 133 (1961) 9. T. Jermy, Ent. Exp. Appl. 9, 1 (1966) 10. D. Lavie, M.K. Jain and S.R. Shpan-Gabrielit Gabrielith, Chem. Comm. 1967, 910 11. J.H. Butterworth, E.D. Morgan and G.R. Percy, J.C.S. Perkin 1, 2445 (1972). 12. P.R. Zanno, I.Miura, K. Nakanishi, and D.L. Elder, J. Am. Chem. Soc., 97 1975 (1975). 13. I. Kubo, Y.N. Lee, M. Pettei, F. Pilkiewicz, and K. Nakanishi, J.C.S. Chem. Comm. 1013 (1976) 14. V.G. Dethier. Chemical Insect Attractants and Repellents, P. 210. Blakiston; Philadelphia (1974).
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch013
196
HOST P L A N T RESISTANCE
T O PESTS
15. K. Munakata. 1970. Insect antifeedants in plants. In Control of Insect Behaviour by Natural Products. D.L. Wood, R.M. Silverstein, and M. Nakajima, Eds. New York, Academic, pp. 179-187. 16. (a) K. Wada and K. Munakata, Agric. Biol. Chem. 31, 336 (1967) (b) K. Wada, S. Marumo and K. Munakata, Agric. Biol. Chem. 31, 452 (1967) (c) K. Wada, S, Marumo and K. Munakata, Agric. Biol. Chem. 32, 1187 (1968). (d) K. Wada and K. Munakata, J. Agric. Fd. Chem. 16, 471 (1968) 17. K. Wada, Y. Enomoto, K. Matsui and K. Munakata, Tetrahedron Letters. No. 45, 4673 (1968). (b) K. Wada and K. Munakata, Tetrahedron Letters, No 45, 4677 (1968). (c) K. Wada, K. Matsui, Y. Enomoto, O. Ogiso and K. Munakata, Agric. Biol. Chem. 34, 942 (1970). (d) K. Wada, Y. Enomoto and K. Munakata, Agric. Biol. Chem. 34, 947 (1970). 18. R.J. McClure, G.A. Sim. P. Caggon and A.T. Mcphail, J.C.S. Chem. Comm. 128 (1970). 19. T. Yajima, K. Tsuzuki, N. Kato and K. Munakata, Abstract of Papers, Annual Meeting of the Agricultural Chemical Society of Japan, Tokyo, April, 1969, P.145. 20. T. Miyake, Private communication. 21. N. Kato, S. Shibayama, K. Munakata and C. Katayama, Chem. Commun. 1632 (1971). 22. Ν. Kato and K. Munakata Unpublished results. 23. D.H.R. Barton, H.T. Cheung, A.D. Cross, L.M. Jacman and M. Martin-Smith, Proc. Chem. Soc. 76 (1971); J. Chem. Soc. 5061 (1961); D.A. Sim, T.A. Hamor, I.C. Paul and J.M. Robertson, J. Chem. Soc. 75 (1961); I.C. Paul, D.R. Sim, T.R. Hamor and J.M. Robertson, J. Chem. Soc. 4133 (1962) 24. N. Kato, M. Takahashi, M. Shibayama and K. Munakata, Agric. Biol. Chem. 36. 2579 (1972). 25. S. Hosozawa, N. Kato and K. Munakata, Phytochemistry, 12, 1833 (1973). 26. S. Hosozawa, N. Kata and K. Munakata, Agric. Biol. Chem. 38, 823 (1974). 27. S. Hosozawa, N. Kato, K. Munakata and Yuh-Lin Chen, Agric. Biol. Chem. 38, 1045 (1974) 28. K. Matsui, K. Wada and K. Munakata, Agr. Biol. Chem., 40, 1045 (1976). 29. K. Matsui and K. Munakata, Tetrahedron Letters, 1905 (1975). 30. K. Matsui and K. Munakata. Agr. Biol. Chem., 40, 1113 (1976). 31. K. Matsui, Y. Katsube and K. Munakata, Bull. Chem. Soc. Japan, 49, 62 (1976).
14 Natural Insecticides from Cotton (Gossypium) ROBERT D. STIPANOVIC, ALOIS A. BELL, and MAURICE J. LUKEFAHR
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch014
N a t i o n a l C o t t o n P a t h o l o g y Research L a b o r a t o r y , U. S . D e p a r t m e n t of A g r i c u l t u r e , A g r i c u l t u r a l Research Service, C o l l e g e Station, TX 77843
Resistance has been defined as the a b i l i t y of a plant to prevent, restrict or retard partially the injurious effects of a pest (1, 2). The mechanisms of resistance are defined as: a) tolerance -- the plant suffers only slight injury despite a pest population that severely damages a susceptible plant (1,2); b) nonpreference -- the plant is unattractive for feeding, reproduction, or shelter (1); c) antibiosis -- the plant adversely affects the biology or ecology of the pest because of toxic chemicals in the plant tissue (1); and d) hypersensitivity -- the plant inactivates and localizes the invading pest by rapid morphological and histochemical changes that cause the invaded tissues to die prematurely (2, 3). A plant breeder may employ any or a l l of these mechanisms in order to obtain the most desirable agronomic characteristics. H i s t o r i c a l l y , plant lines have been improved by performance and observations in the f i e l d . Until recently there was no concerted effort to understand the chemical bases of pest resistance. However, as early as 1906 Cook suggested that "oil glands" in the cotton plant might be involved in resistance to cotton insects (4). Although the term "antibiosis" had not been coined, Cook recognized this mechanism of pest resistance in cotton. Heliothis Resistance in Cotton. In the early 1960s, the resistance of the Heliothis complex (cotton bollworm, H. zea and tobacco budworm, H. virescens) to insecticides was recognized. In 1965 research was initiated to discover new sources of host plant resistance to these pests. Wild race stocks and "backyard" plantings from Mexico, Central and South America, and the Caribbean Islands were investigated. Over 1200 different races of Gossypium hirsutum were tested of which 78 had some resistance. In general, resistance among races increased with increasing numbers of glands and with increasing gossypol content (5^ 6).
197
198
HOST P L A N T RESISTANCE
T O PESTS
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch014
Gossypol ( I ) , a d i m e r i c s e s q u i t e r p e n o i d found i n cottonseed pigment glands, was u s u a l l y measured i n leaves or flower buds by the s p e c t r o p h o t o m e t r y method of Smith [7). T h i s procedure i s based on the r e a c t i o n o f a n i l i n e with gossypol, which presumably
I
occurs by a condensation r e a c t i o n o f the amine group o f a n i l i n e with the aldehyde group i n gossypol. A y e l l o w c o l o r i s produced and the e x t i n c t i o n o f l i g h t a t 445 nm i s measured. A n i l i n e i s not a s p e c i f i c reagent f o r g o s s y p o l , because i t w i l l r e a c t with other aromatic aldehydes, g i v i n g products which are a l s o y e l l o w i n c o l o r . Pigment glands are l o c a t e d i n most t i s s u e s o f the c o t t o n p l a n t , i n c l u d i n g f o l i a r p a r t s and the seed (8, 9). They are absent from the seed coat xylem. In the f o l i a r p a r t s , the glands are l o c a t e d below the epidermis and hypodermis. The " o i l " i n these glands i s composed o f low molecular weight, v o l a t i l e terpenoids t h a t s o l u b i l i z e higher molecular weight pigments such as gossypol. C e r t a i n Heliothis-resistant cotton v a r i e t i e s c o n t a i n more pigment glands than s u s c e p t i b l e v a r i e t i e s . The r e s i s t a n t v a r i e t i e s , thus, are c a l l e d high glanded or high gossypol c o t t o n s (5, 6, 10, 11). The t o x i c i t y o f gossypol to Heliothis spp. was demonstrated (9_, ]Vj, and gossypol t h e r e f o r e was considered the a c t i v e com ponent i n the glands o f the c o t t o n flower bud and b o l l . Most commercial v a r i e t i e s o f c o t t o n c o n t a i n 0.5% gossypol i n f l o w e r buds (dry weight), as measured by the method o f Smith (_7). In l a b o r a t o r y t e s t s , 1.2% gossypol s i g n i f i c a n t l y i n h i b i t e d l a r v a l growth and development o f Heliothis (12). Recently, c e r t a i n w i l d or p r i m i t i v e cottons were found t o e x h i b i t more i n s e c t i c i d a l a c t i v i t y than could be accounted f o r by the gossypol c o n c e n t r a t i o n alone. The t o x i c a c t i v i t y was generally a s c r i b e d to " X - f a c t o r s " (13, 14, 15J. The " X - f a c t o r s " have been i d e n t i f i e d as the s e s q u i t e r p e n o i d s , hemigossypolone ( I I ) and hemigossypolone-7-methyl e t h e r ( I I I ) , and the d e r i v e d t e r p e n o i d s , heliocides Η (IV), H (V), H (VI), H (VII), B (VIII), B (IX), B (X) and B ( X I ) . The "H" and "B" d e s i g n a t i o n s i n d i c a t e t h a t these compounds were f i r s t found i n G. hirsutwn and G. barbadense cottons, respectively. χ
3
4
2
3
h
x
2
14.
Natural
STiPANOvic E T A L .
Insecticides
199
from Cotton
D e t e c t i o n , I s o l a t i o n and L o c a t i o n o f the H e l i o c i d e s i n R e s i s t a n t Cottons.
Heliothis
Freeze d r i e d (0.5 gm) whole cotton flower buds are ground i n a blender and e x t r a c t e d with EtOAcrHex (1:3). T h i s e x t r a c t i s spotted d i r e c t l y on S i gel p l a t e s and developed with Et 0:Hex: HC00H (15:84:1). The p l a t e s a r e then sprayed with p h l o r o g l u c i n o l reagent (equal volumes o f 5% p h l o r o g l u c i n o l i n 95% EtOH and cone. HC1) t o detect t e r p e n o i d aldehydes. Hemigossypolone, hemigossy pol one-7-methyl ether and gossypol form magenta t o maroon c o l o r s , and t h e h e l i o c i d e s form orange c o l o r s . S u s c e p t i b l e normally glanded c u l t i v a r s o f G. hirsutum c o n t a i n h e l i o c i d e s H H , H , H , hemigossypolone and gossypol. The r e s i s t a n t high glanded c u l t i v a r s o f G. hirsutum contained t h e same compounds but the c o n c e n t r a t i o n s , p a r t i c u l a r l y o f H and H^, a r e as much as three times higher than t h a t found i n s u s c e p t i b l e normally glanded cotton (16). The f o l i a r p a r t s o f g l a n d l e s s cottons do not c o n t a i n t e r p e n o i d aldehydes. Thus t h e t e r p e n o i d aldehydes appear t o be l o c a t e d s p e c i f i c a l l y i n t h e glands. Unpublished histochemical t e s t s con f i r m t h i s . I t i s o f i n t e r e s t t o note t h a t g l a n d l e s s cottons a r e h i g h l y s u s c e p t i b l e t o Heliothis spp. and many other i n s e c t s (17). G. barbadense cottons form methyl ether d e r i v a t i v e s o f gossypol and i t s b i o s y n t h e t i c precursors i n root bark (18, 19, 20). G. barbadense a l s o s y n t h e s i z e s t e r p e n o i d methyl ethers i n i t s f o l i a r t i s s u e s . For example, the G. barbadense c u l t i v a r Seabrook Sea I s l a n d contained hemigossypolone-7-methyl ether and the methy l a t e d h e l i o c i d e s B and B i n s l i g h t l y higher c o n c e n t r a t i o n s than hemi gossypol one, h e l i o c i d e H and H^. H e l i o c i d e s were prepared i n q u a n t i t y from young b o l l s (2-3 days-old) and b r a c t s o f f i e l d grown p l a n t s . T i s s u e s were l y o p h i l ized and ground t o powder i n a blender. The powder was e x t r a c t e d and h e l i o c i d e s were p u r i f i e d by chromatography as p r e v i o u s l y described (2Ί, 22). 2
l s
2
3
4
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch014
x
x
4
x
C h a r a c t e r i z a t i o n o f Cotton
Terpenoids.
S t r u c t u r e Determination. S p e c t r o s c o p i c methods (UV, IR, MS, ^-NMR and C-NMR), X-ray c r y s t a l a n a l y s i s , and s y n t h e s i s were employed i n determining t h e s t r u c t u r e s o f h e l i o c i d e s from c o t t o n . H e l i o c i d e H (V) was the f i r s t C - t e r p e n o i d analyzed (23). I t was s y n t h e s i z e d by a D i e l s - A l d e r r e a c t i o n o f hemigossypôTone and myrcene. The product which c r y s t a l l i z e d was i d e n t i c a l (UV, IR, MS, m.p., mixed m.p.) t o h e l i o c i d e H from pigment glands. The C-NMR data i n d i c a t e d t h a t t h e s i d e chain was l o c a t e d as shown in V. To prove t h i s , t h e dibromide was prepared and submitted to X-ray c r y s t a l a n a l y s i s ( F i g . 1). T h i s u n e q u i v o c a l l y establ i s h e d t h e p o s i t i o n o f the s i d e chain and proved t h a t the c y c l o hexene r i n g was c i s - f u s e d . Because h e l i o c i d e H was s y n t h e s i z e d from hemigossypolone, t h e X-ray c r y s t a l a n l a y s i s a l s o proved t h a t ld
2
25
2
13
2
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch014
Figure 1.
The confirmation of the dibromide derivative of heliocide H by x-ray crystal analysis
2
as determined
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch014
14.
Natural
STIPANOVIC E T A L .
Insecticides
from
Cotton
201
hemigossypolone i s a para-napthoquinone with hydroxyls at C6 and C7 (24, 25). The mother l i q u o r s from the D i e l s - A l d e r r e a c t i o n o f hemigossypolone and myrcene y i e l d e d another C 5 - t e r p e n o i d which was i d e n t i c a l (UV, IR, MS, m.p. and mixed m.p.) to h e l i o c i d e H from pigment glands (21). The C-NMR spectrum o f h e l i o c i d e H was very s i m i l a r t o t h a t o f h e l i o c i d e H but i n d i c a t e d a d i f f e r e n c e in the l o c a t i o n o f the s i d e c h a i n . That i s , the major chemical s h i f t changes were at the methylene carbons o f the cyclohexene r i n g , and were i n a d i r e c t i o n commensurate with the s i d e chain l o c a t e d as shown i n s t r u c t u r e VI. H e l i o c i d e s Η χ and H were s y n t h e s i z e d by the D i e l s - A l d e r r e a c t i o n o f hemigossypolone with t r a n s - 3 - o c i m e n e (22). H e l i o c i d e s Hi and Hi+ do not r e v e r t to s t a r t i n g m a t e r i a l a t room temperature 2
3
13
3
2
k
( i . e . , they do not undergo the r e v e r s e D i e l s - A l d e r r e a c t i o n ) . T h e r e f o r e , they are the products of a k i n e t i c a l l y c o n t r o l l e d r e a c t i o n that proceeds through an e n d s - t r a n s i t i o n s t a t e g i v i n g a cis-fused product (26J. Further, trans-1-substituted butadienes and quinones form adducts i n which the diene s u b s t i t u e n t i s trans to the bridgehead s u b s t i t u e n t s on the quinone r i n g (27, 28). Thus h e l i o c i d e s H and H have ois-fused r i n g systems with transoid isopentenyl s i d e chains as shown f o r s t r u c t u r e s IV and VII. 2
k
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch014
202
HOST P L A N T RESISTANCE
T O PESTS
13
The C-NMR s p e c t r a o f h e l i o c i d e s H and H were compared t o those o f h e l i o c i d e s H and H . On t h e b a s i s o f these comparisons h e l i o c i d e s H i and Hi+ were assigned s t r u c t u r e s IV and V I I , r e s p e c t ively. H e l i o c i d e s B (VIII) and B (XI) are found i n G. barbadense [Seabrook Sea Island 12B2 (SBSI)]. They were synthesized by t h e D i e l s - A l d e r r e a c t i o n o f hemigossypolone-7-methyl ether ( I I I ) and trarcs-3-ocimene (29). The s t r u c t u r e s were assigned by comparing x
2
4
3
x
4
the C-NMR s p e c t r a o f h e l i o c i d e s B i and B with h e l i o c i d e s Hi and Hi+. H e l i o c i d e s B (IX) and B (X) have been s y n t h e s i z e d from hemigossypolone-7-methyl ether ( I I I ) and myrcene. These compounds are a p p a r e n t l y not found i n SBSI, b u t they have been t e n t a t i v e l y i d e n t i f i e d i n F progeny from c r o s s e s o f G. hirsutum and G. 13
4
2
2
barbadense ( 3 0 ) .
3
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch014
14.
Natural
STiPANOvic E T A L .
Insecticides
from
Cotton
203
*H-NMR Screening Techniques. To breed p l a n t s which c o n t a i n the most e f f e c t i v e mixture o f t e r p e n o i d aldehydes, a r a p i d method o f screening was d e s i r a b l e . We have developed a ^-NMR technique t h a t d i f f e r e n t i a t e s most o f the t e r p e n o i d aldehydes and estimates t h e i r c o n c e n t r a t i o n s i n crude e x t r a c t s . The aldehyde proton o f the quinones, h e l i o c i d e s and gossypol appear i n the region between 6 10 and 12. Examples o f the H-NMR (6 10 t o 12) o f e x t r a c t s from a high gossypol, G. hirsutum cotton (HG-6-1-N) and a G. barbadense cotton (SBSI) are shown i n F i g . 2 and F i g . 3, r e s p e c t i v e l y . Acetone was used as the s o l v e n t because i t gave the best peak r e s o l u t i o n . Pure terpenoids were added t o the crude e x t r a c t s t o determine which compound(s) corresponded t o each peak. H e l i o c i d e s H , H , B , and B could not be r e s o l v e d completely from each other by t h i s technique. However, the other h e l i o c i d e s , quinones and gossypol are a l l r e s o l v e d , and t h e i r c o n c e n t r a t i o n s may be e s t i mated. U n f o r t u n a t e l y , the chemical s h i f t s o f the peak change s l i g h t l y with i n c r e a s e s i n c o n c e n t r a t i o n ; consequently, r e s o l u t i o n i s i n v e r s e l y p r o p o r t i o n a l t o the c o n c e n t r a t i o n . X
2
2
3
3
X
TLC Screening Techniques. The H-NMR method o f screening p l a n t progeny r e q u i r e s about 3 gm o f f r e e z e d r i e d powder. A TLC method t h a t r e q u i r e s a s i n g l e l e a f has been developed (17_). T h i s method uses f r e s h terminal l e a v e s , a l l o w i n g t e r p e n o i d q u a n t i t a t i o n before f l o w e r i n g . A three-man team can screen 240 progeny/day. An e x t r a c t from the l e a f i s spotted on a S i gel p l a t e and developed with Hex:Et 0:HC00H (84:15:1). The s e q u e n t i a l appearance o f the compounds going up the p l a t e are gossypol, hemigossypolone (R^ ca. 0.30), h e l i o c i d e s H , H and H (mixed as one s p o t ) , hemigossypolone-7-methyl e t h e r mixed with h e l i o c i d e Ηχ, h e l i o c i d e s B , B , and Bi+ (mixed as one s p o t ) , and h e l i o c i d e Βχ. The i n d i v i d u a l spots are v i s u a l i z e d by spraying with p h l o r o g l u c i n o l reagent. Gossypol forms rose spots, hemigossypolone and hemigossypolone-7methyl ether form magenta t o maroon c o l o r s , and the h e l i o c i d e s give orange spots. T h i s method separates h e l i o c i d e s H and H from h e l i o c i d e s 2
2
3
4
2
2
3
3
HOST P L A N T RESISTANCE T O PESTS
204
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch014
Acetone Solvent
Figure 2. *H NMR (B 10-12) of an ethyl acetateihexane (1:3) extract of freeze dried 3-4-day-old both with bracts from G. hirsutum. G -gossypol; HGQ = hemigossypolone; H H , H , H = heliocide H H , H and Hj>. ly
2
3
k
u
.
—ι— 12
2
s>
10
Acetone Solvent
MHGQ.
Figure 3. 'H NMR (8 10-12) of an ethyl acetate ihexane (1:3) extract of freeze dried 3-4-day-old bolls with bracts from G. barbadense. MG = 6-methyl ether derivatives of gossypol; G = gossypol; HGQ = hemigossy polone, MHGQ = hemigossypolone-! methyl ether, B H B , H = helio cide B H B H . u
u
u
h
ly
ky
MG G HGQi
k
k
ι 12
r
π
r 10
14.
STiPANOvic E T A L .
Natural
Insecticides
from
205
Cotton
X
B and B . Thus, the H-NMR and TLC screening techniques, when used together, give good e s t i m a t i o n s o f the h e l i o c i d e s present. 2
3
Occurrence. Hemigossypolone and the h e l i o c i d e s H i , H , H , and H^ occur i n both upland cottons (G. hirsutum) and Egyptian cottons (G. barbadense). Most commercial v a r i e t i e s o f upland cotton which were screened by the TLC technique above contained l a r g e r q u a n t i t i e s o f h e l i o c i d e s H and H than o f h e l i o c i d e s Hi and Ηΐψ. The methyl ether d e r i v a t i v e s , hemigossypolone-7-methyl ether and h e l i o c i d e s B i and Bi+, were found i n the G. barbadense c o t t o n , SBSI, which d i d not c o n t a i n h e l i o c i d e s H , H , B and B . Apparently SBSI does not s y n t h e s i z e myrcene i n the f o l i a r glands and t h e r e f o r e h e l i o c i d e s H , H , B and B are not produced. When F p l a n t s from crosses between G. hirsutum and G. barbadense were screened by the TLC technique, spots corresponding to h e l i o c i d e s H , H , B and B were observed from some progeny, but the i d e n t i t y o f these compounds has not been confirmed. Gossypol i s present i n both s p e c i e s . I t s methyl ether d e r i v a t i v e s , 6-methoxygossypol and 6,6'-dimethoxygossypol, are probably present at l e a s t i n G. barbadense, but t h i s has not been confirmed. 2
2
3
2
2
3
3
2
3
2
3
3
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch014
2
2
3
2
3
D i s t r i b u t i o n o f H e l i o c i d e s and Related Compounds i n Plant T i s s u e . E x t r a c t s have been prepared from v a r i o u s t i s s u e s o f g l a n d l e s s and glanded G. hirsutum
and G. barbadense,
and q u a l i t y and
quantity
o f t e r p e n o i d aldehydes were compared by t h i n l a y e r chromatography. Only glanded l e a v e s , stems, and flowers y i e l d e d t e r p e n o i d aldehydes i n d i c a t i n g t h a t the terpenoids are l o c a l i z e d i n the pigment glands. This has been confirmed by the histochemical t e s t s developed by Mace, et a l . (31_, 32, 33). Terpenoid content v a r i e s c o n s i d e r a b l y i n q u a n t i t y and q u a l i t y depending on t i s s u e , age, and whether the p l a n t i s healthy or diseased. Other v a r i a b l e s , such as temperature, s u n l i g h t , and photoperiod, are p r e s e n t l y being i n v e s t i g a t e d . The d i s t r i b u t i o n of terpenoids among parts and t i s s u e s of h e a l t h y , mature p l a n t s o f G. hirsutum and G. barbadense i s shown i n Table I. In pigment glands, the methylated terpenoids occurred i n G. barbadense but not G. hirsutum. J u v e n i l e p l a n t s o f G. hirsutum* however, contained methylated terpenoids i n the epidermis and c o r t e x o f healthy roots and i n parenchyma c e l l s o f diseased s t e l e and hypocotyl (18, 19^, 30, 32). Terpenoid quinones, and t h e i r heli ocide d e r i v a t i v e s , were the primary components i n glands o f stems, l e a v e s , and green parts o f flower buds. N e i t h e r the quinones nor the h e l i o c i d e s were found i n t i s s u e s t h a t lacked c h l o r o p h y l l (e.g. p e t a l s and stamens) or were s h i e l d e d from l i g h t (e.g. embryos, s t e l e , and phloem). In h e a l t h y p l a n t s , a p p r e c i a b l e amounts o f gossypol or i t s methyl ether d e r i v a t i v e s were found o n l y i n embryos, bark (phloem), p e t a l s , and stamens. More than 95% of the terpenoids i n seeds o f G. hirsutum were gossypol and i t s methyl ether d e r i v a t i v e s . In healthy g l a n d l e s s p l a n t s , terpenoids were
HOST P L A N T RESISTANCE
206
T O PESTS
Table I. Major t e r p e n o i d aldehyde components i n pigment glands i n different tissues o f cultivated cotton.
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch014
Tissue Seed: Embryo Coat Stems : Cortex Phloem^ Xylem Leaves: Cotyledonary True
Upland Cotton
Egyptian Cotton
{G. hirsutum)
{G. barbadense)
no glands
G, MG, DMG no glands
H , H3, ( H i , Hi+) G no glands
Bi
2
G HGQ, H , H , ( H i , 2
3
9 Bit, H i , Hit G, MG, DMG no glands
G, MG, DMG HGQ, MHGQ, B B^, Hi Hit B i , Bit, H i , Hit
HI+)
l f
9
Petiole Flowers: B r a c t s and c a l y x P e t a l s and stamens Pollen Ovary and stigma
H»
(Hi,
H3,
2
Hi+)
H , H3, ( H i , H4) G no glands HGQ, H , H3, ( H i , Hit) 2
2
Roots : Cortex^ PhloenT Xylem
B i , Bit, H i , Hit G, MG, DMG no glands HGQ, MHGQ, B B , Hi » Hit l9
4
G, MG, DMG G, MG, DMG no glands
G G no glands
A b b r e v i a t i o n s : G=gossypol; MG=6-methoxygossypol; DMG=6,6'-dimethoxygossypol ; H i , H , H , Η , Βχ, and Bi =heliocides Ηχ, H , H3, Hit, i > and B ; HGQ=hemigossypolone; and MHGQ=hemigossypolone7-methyl e t h e r . Parentheses i n d i c a t e t h a t these components were prominent i n o n l y a few c u l t i v a r s . M o s t o f the t e r p e n o i d s i n t h i s t i s s u e were i n t h e epidermis o r phelloderm o f the r o o t r a t h e r than i n glands. ^Glands do not occur i n the phloem o f s e e d l i n g s , but develop as the p l a n t ages. 2
B
4
e
3
4
+
2
14.
STIPANOVIC E T A L .
Natural
Insecticides
from
207
Cotton
t o t a l l y absent from a l l t i s s u e s , except the outer c e l l s o f the root bark. We compared the g l a n d u l a r t e r p e n o i d s from leaves o f 24 Gossypium and three Cienfuegosia s p e c i e s . The r e s u l t s f o r the Gossypium s p e c i e s are shown i n Table I I . The t e r p e n o i d quinones and the h e l i o c i d e s were m i s s i n g i n most D genome c o t t o n s , and i n the t h r e e Cienfuegosia s p e c i e s . These compounds were present i n o n l y t r a c e amounts i n A f r i c a n c o t t o n o f the Ε genome. Methylated terpenoids o c c u r r e d i n the B, C, F, AD and AD genomes, but were absent i n the A, D, E, and AD genomes. G. vaimondii, G. davidsonii, and G. klotzsohianum possessed unique t e r p e n o i d s m i s s i n g in the other s p e c i e s . 2
3
2
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch014
B i o s y n t h e s i s o f the Terpenoids. H e i n s t e i n , e t a l . have shown t h a t gossypol i s b i o s y n t h e s i z e d from a c e t a t e via the i s o p r e n o i d pathway (34, 35). They i s o l a t e d an enzyme system from homogenates o f c o t t o n r o o t s t h a t s t e r e o s p e c i f i c a l l y i n c o r p o r a t e d s i x molecules o f mevalonate-2- C i n each molecule o f g o s s y p o l . The b i o s y n t h e s i s was via a s p e c i f i c c y c l i z a t i o n o f ois, c i s - f a r n e s y l pyrophosphate. Veech, e t a l . showed t h a t peroxidase c a t a l y z e s the c o u p l i n g o f hemigossypol to form gossypol (36). Thus, cis, c i s - f a r n e s y l pyrophosphate i s a l s o a b i o s y n t h e t i c p r e c u r s o r to hemigossypol. The proposed steps i n t e r p e n o i d b i o s y n t h e s i s are shown i n F i g . 4. Enzymatic reactions appear to be i n v o l v e d i n the formation o f desoxy-6-methoxyhemigossypol (dMHG, F i g . 4) from desoxyhemigossypol (dHG), and i n the o x i d a t i o n o f hemigossypol (HG) or methoxyhemigossypol (MHG) to hemigossypolone (HGQ) and hemigossypolone-7-methyl e t h e r (MHG), r e s p e c t i v e l y . dHG and dMHG spontaneously o x i d i z e to HG and MHG in the presence o f a i r (20), and myrcene and £rarcs-3-ocimene r e a c t with the quinones, HGQ and MHGQ, a t room temperature without c a t a l y s t s to form h e l i o c i d e s (21_, 22, 29J. Thus, an enzyme may not be r e q u i r e d f o r these l a t t e r r e a c t i o n s . ll4
Antibiosis. When c o t t o n s without pigment glands ( g l a n d l e s s ) were d i s c o v e r ed and developed i n the I960's (37J, i t was found t h a t many i n s e c t s which d i d not a t t a c k glanded c o t t o n almost completely destroyed g l a n d l e s s s t r a i n s . These o b s e r v a t i o n s s t i m u l a t e d s t u d i e s on the importance o f pigment glands i n host p l a n t r e s i s t a n c e . A review o f the importance o f pigment glands i n host p l a n t r e s i s t a n c e ha been p u b l i s h e d (17). The t o x i c i t y o f glanded f l o w e r buds to i n s e c t s has been c o r r e l a t e d with t h e i r gossypol content ( 6 ) . However, the gossypol content was determined by the a n i l i n e method. As mentioned p r e v i o u s l y , t h i s i s a n o n s p e c i f i c reagent f o r aromatic aldehydes. It i s now known t h a t many compounds c o n t a i n i n g aromatic aldehyde groups are present i n the glands, and these g i v e r e a c t i o n products
herbaoeum arboreum anomalum sturtianum australe biokii thurberi harknessii armourianum davidsonii klotzsohianum raimondii gossypioides trilobum stooksii somalense inoanum longioalyx hirsutum barbadense tomentosum +
tr tr tr tr tr tr tr tr tr
+
tr tr tr tr
+
-
-
+ +
-
++
tr
+++ ++
-
+++ ++ ++ ++ +++ +
-
+ + +
tr tr tr ++
(f
HG
2
-
++
-
+++ ++ ++ ++
++ + ++ +
4
+
-
-
tr
-
+++
++
tr tr
++
tr
+
+++
-
tr
-
tr
-
tr
+
tr
-
+ ++ +++
2
W
+ ++
+++
x
H
++ + ++ +++ + +++
HGQ d
++ + ++ ++
+
tr
-
-
++
++
-
++
tr
+
tr
-
-
+
-
+ +++
-
Bi
tr
-
tr tr
+ ++
-
-
-
of Terpenoids^ MHGQ
a
MHG
Relative Concentration
Species
3
3
£+++ = l a r g e intense s p o t ; + = small but d i s t i n c t s p o t ; and t r = t r a c e on t h i n l a y e r chromatograms. I d e n t i t i e s and s t r u c t u r e s o f the abbreviated chemicals are given i n Table I . ^Spots c o n t a i n up to three compounds, g o s s y p o l , 6-methoxygossypol, 6,6'-dimethoxygossypol. Spots c o n t a i n up to three compounds, h e l i o c i d e s H , H , and H . ^.Spots c o n t a i n up to three compounds, h e l i o c i d e s B2, B , and B^. •^U = u n i d e n t i f i e d t e r p e n o i d s .
3
2
X
Fi AD AD AD
^
2
8
6
5
3
3
2
2
3
2
G. G. G. G. G. G. G. G. G. G. G. G. G. G. G. G. G. G. G. G. G.
Species
Type
Ai A Bi Ci c C, Di D D -l D -d D -r D D D Ei E
Gossypium
Terpenoid Content o f Pigment Glands i n Young Leaves of Gossypium
Genome
Table I I .
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch014
tr tr
-
tr
-
tr
-
tr
++
-
B 2
e
-
+ ++ +++
-
-
U
f
Figure 4.
Proposed pathway for biosynthesis of terpenoid aldehydes in cotton
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch014
1
3 ο ο ο
Ο
ce
S:
δ*
I
>
M H
η
§
H
t—»
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch014
210
H O S T P L A N T RESISTANCE T O
PESTS
t h a t i n t e r f e r e with the measurement o f gossypol. Thus, previous measurements o f gossypol, e s p e c i a l l y i n green t i s s u e , a r e l a r g e l y erroneous. We a r e attempting t o bioassay a l l o f t h e h e l i o c i d e s , quinones, gossypol, and gossypol-methyl ethers f o r t h e i r t o x i c i t y t o t h e tobacco budworm (#. virescens), pink bollworm [Pectinophora gossypiella), and t h e b o l l weevil (Anthonomus grandis). T h i s work i s incomplete, but the r e s u l t s t o date f o r the tobacco budworm and pink bollworm are given i n Table I I I . S y n e r g i s t i c e f f e c t s o f these compounds a r e being s t u d i e d . The b o l l weevil has been i n s e n s i t i v e t o gossypol, t h e h e l i o c i d e s , and the quinones a t c o n c e n t r a t i o n s up t o 0.2% (net weight). The p r e l i m i n a r y data t h a t we have i n d i c a t e t h a t a l l o f the t e r p e n o i d aldehydes a r e about e q u a l l y t o x i c t o the l a r v a l stage o f the pink bollworm. G. barba dense i s more r e s i s t a n t t o the bollworm (#. zea) than G. hirsutum (35). H e l i o c i d e s i n G. barbadense a r e formed o n l y from ocimene and are more than 50% methylated. H e l i o c i d e s Η χ and Βχ (from ocimene) are more t o x i c t o tobacco budworms than H e l i o c i d e s H o r H (from myrcene). Thus, q u a l i t a t i v e d i f f e r e n c e s i n h e l i o c i d e s between G. hirsutum and G. barbadense may be r e s p o n s i b l e f o r differences i n resistance. 2
3
Genetics o f Methyl Ether Formation i n Glands. We have made p r e l i m i n a r y s t u d i e s o f the g e n e t i c s o f t e r p e n o i d methyl ether formation. Methyl ether formation was determined by e s t i m a t i n g c o n c e n t r a t i o n s o f hemigossypolone and hemigossypolone7-methyl ether. These are major t e r p e n o i d s i n j u v e n i l e l e a v e s , flower buds, and young b o l l s , and a r e precursors t o the h e l i o c i d e s . Three v a r i e t i e s o f G. hirsutum (Acala SJ-1, CAM-1 and Stonev i l l e 213) were crossed r e c i p r o c a l l y with G. barbadense (SBSI). One-half expanded terminal leaves o f the G. hirsutum v a r i e t i e s contained hemigossypolone but no hemigossypolone-7-methyl ether. S i m i l a r leaves o f G. barbadense contained s l i g h t l y more hemi gossypol one-7-methyl ether than hemigossypolone. The segregation o f hemi gossypol one-7-methyl e t h e r i n Fx and F progenies a r e shown in Table IV. Hemigossypolone-7-methyl ether and h e l i o c i d e s Βχ and B always occurred together among more than 2000 F progeny. The r e s u l t s i n d i c a t e t h a t terpenoid methyl ether formation i n pigment glands i n progeny from G. hirsutum X G. barbadense i s c o n t r o l l e d by a s i n g l e r e c e s s i v e locus f o r which we have proposed the symbol tmx (29). While t e r p e n o i d methyl ether formation i n G. hirsutum i s not expressed i n pigment glands (Table IV), i t i s p a r t i a l l y expressed (about 20% o f t h a t i n G. barbadense) i n diseased xylem (33) o r cambium (18). F u r t h e r , n e a r l y 50% o f a l l terpenoids i n j u v e n i l e t i s s u e s o f G. hirsutum [7-day-old h e a l t h y r a d i c a l s (19.) o r 7-dayo l d i n f e c t e d hypocotyls (30)] a r e present as methyl e t h e r s ; t h i s i s t h e same percentage as i n G. barbadense. We conclude t h a t G. hirusutum has a s t r u c t u r a l gene, t h a t gives i t the same b a s i c 2
4
2
14.
sTiPANOvic E T A L .
Table I I I . E D
Natural
Insecticides
a
50
V a l u e s f o r Heliothis
Pectinophora
virescens
ED H.
50
2
3
x
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch014
2
3
2.5 Π.2 3.9 4.6 N.E. 10.5 N.E. 0.8
ED50. gossypiella
b
vtresaens
(ymoles/g d i e t ) χ
and
gossypiella.
Compound
Heliocide Η Heliocide H Heliocide H Heliocide B , Heliocide B & B Hemigossypolone Methoxyhemigossypolone Gossypol
211
from Cotton
P.
0
(ymoles/g diet) 0.8 2.4 — —
e
—
1.4 —
1.8
C o n c e n t r a t i o n r e q u i r e d t o reduce l a r v a l growth by 50%. ^Two-day-old l a r v a e were placed on media (Vanderzant-Adkisson d i e t ) at t h e beginning o f the experiment; a f t e r 7 days on amended media, a l l l a r v a e were returned t o r e g u l a r media. ^Amended d i e t ingested f o r d u r a t i o n o f l a r v a l stage. ^Added t o the d i e t as a mixture o f h e l i o c i d e s B and B (67% B , 33% B ) . ^Compounds had no a p p r e c i a b l e e f f e c t on i n s e c t growth a t a c o n c e n t r a t i o n o f 2.5ymoles/g d i e t . 2
3
2
3
a
Table IV. Genetics o f Terpenoid Methyl Ether F o r m a t i o n i n Crosses Between V a r i e t i e s o f G. hirsutum (ASJ-1, CAM-1, and S-213) and G. barbadense (SBSI). Fi
Cross
MHGQ
F2
No MHGQ
MHGQ
No MHGQ
Ratio
Number o f P l a n t s ASJ-1 X SBSI SBSI X ASJ-1 CAM-1 X SBSI SBSI X CAM-1 S-213 X SBSI SBSI X S-213
0 0 0 0 0 0
30 30 30 30 30 30
86 124 91 82 71 99
263 263 376 377 355 354
1/3.06 1/2.12 1/4.13 1/4.60 1/5.00 1/3.58
Mean
0
30
92
331
1/3.59
'The presence o f hemigossypolone-7-methyl ether (MHGQ) i n o n e - h a l f expanded terminal leaves was noted as a marker f o r methyl e t h e r formation. Terpenoid methyl ethers o r i g i n a l l y were present o n l y i n t h e G. barbadense parent.
212
H O S T P L A N T RESISTANCE
T O PESTS
p o t e n t i a l f o r methyl ether formation as i s found i n G. barbadense. However, methyl ether formation i s not expressed i n f o l i a r pigment glands o f G. hirsutum because o f the product o f the r e g u l a t o r a l l e l e TMj. The patterns o f terpenoids found i n leaves (Table I I ) suggests t h a t the tmj homozygote occurs u n i v e r s a l l y i n D, E, and AD genome c o t t o n s . X
Search f o r New Compounds Involved i n Host P l a n t Resistance. Table II i n d i c a t e s new compounds observed i n G. davidsonii, and G. raimondii. The s t r u c t u r e and biochemical a c t i v i t y o f these compounds must be s t u d i e d . Crosses o f these species with G. hirsutum o r G. barbadense might lead t o a d i f f e r ent s e r i e s o f compounds t h a t could i n c r e a s e host p l a n t r e s i s t a n c e .
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch014
G. klotzsohianum,
Conclusion. Cotton leaves and flower buds c o n t a i n several t o x i c t e r p e n o i d aldehydes. The c o n c e n t r a t i o n o f these compounds vary among races and s p e c i e s . We are p r e s e n t l y i n v e s t i g a t i n g which compound o r mixture o f compounds i s the most e f f e c t i v e i n s e c t i c i d e f o r v a r i o u s cotton pests. The b i o s y n t h e t i c pathway l e a d i n g t o these compounds i s being s t u d i e d . Genes t h a t c o n t r o l c r i t i c a l branches i n t h i s pathway are known, and we are a p p l y i n g t h i s knowledge i n a breeding program aimed a t i n c o r p o r a t i n g e f f e c t i v e n a t u r a l i n s e c t i c i d e s i n t o an a c c e p t a b l e agronomic l i n e . A s p e c i f i c example i s found i n h e l i o c i d e s Hi and Hi+. Our present data i n d i c a t e s t h a t these may be the most t o x i c h e l i o c i d e s in G. hirsutum. They are formed from t:rans-3-ocimene and hemigossypolone. H e l i o c i d e s H and H3, formed from myrcene, a r e l e s s e f f e c t i v e t o x i n s , and t h e i r formation leads t o lower l e v e l s o f i n s e c t i c i d a l a c t i v i t y . SBSI produces trans-3-ocimene, with l i t t l e or no myrcene, because i t produces o n l y h e l i o c i d e s H i , Hi+, B i and Bit. Therefore a s p e c i f i c gene t h a t d i r e c t s the s y n t h e s i s o f trans3-ocimene r a t h e r than myrcene would seem t o be o p e r a t i n g . I f t h i s gene r a t h e r than the gene a l l o w i n g the s y n t h e s i s o f myrcene could be i n c o r p o r a t e d i n t o an acceptable agronomic l i n e , the r e s i s t a n c e to Heliothis should be i n c r e a s e d . Furthermore, the quinones a r e not as t o x i c as h e l i o c i d e s Hi and Hi+. T h e r e f o r e , a v a r i e t y o f cotton t h a t produced l a r g e r q u a n t i t i e s o f trans-3-ocimene a l s o would be d e s i r a b l e because t h i s would i n c r e a s e the c o n c e n t r a t i o n o f h e l i o c i d e s and decrease the c o n c e n t r a t i o n s o f quinones. One aspect t h a t appears t o be beyond g e n e t i c c o n t r o l i s t h e r a t i o o f h e l i o c i d e s Hi t o Htf. The r e a c t i o n o f the quinone with trans-3-ocimene appears t o occur i n a nonenzymatic f a s h i o n and t h i s r a t i o appears t o remain almost constant i n a l l v a r i e t i e s tested. Our understanding o f the s t r u c t u r e s and b i o s y n t h e s i s o f t h e cotton terpenoids i s a l l o w i n g us t o p r e d i c t what can and can n o t be accomplished t o i n c r e a s e host p l a n t r e s i s t a n c e by genetic 2
14.
Natural
STIPANOVIC E T A L .
Insecticides
from
Cotton
213
manipulation o f the p l a n t . Acknowledgements: We thank J . K. C o r n i s h , G. W. T r i b b l e , M. E. Bearden and J . G. G a r c i a f o r e x c e l l e n t t e c h n i c a l a s s i s t a n c e . We are g r a t e f u l to Dr. Ron Grigsby f o r high r e s o l u t i o n mass measurements and Dr. Daniel O'Brien f o r C-NMR s t u d i e s t h a t were i n v a l u a b l e i n our structure determinations. 13
LITERATURE CITED
1. Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch014
2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19.
Painter, R. H., "Insect Resistance in Crop Plants," MacMillan, New York, NY. 1951. B e l l , Α. Α., "Biological Control of Plant Insects and Diseases," F. G. Maxwell and F. S. Harris, Ed. 403-461. The University Press of M i s s i s s i p p i , Jackson, Miss. 1974. Muller, K. O., "Plant Pathology," Vol. 1, J. G. Horsfall and A. E. Diamond, Ed. 469-519. Academic Press, New York, NY. 1959. Cook, O. F., U. S. Dept. Agric. Bur. Plant Ind. Bul. No. 88 (1906) 87. Bottger, G. T., Sheehan, E. T., Lukefahr, M. J . , J. Econ. Entomol. (1964) 57, 283. Lukefahr, M. J . , Bottger, G. T., Maxwell, F., Proc. Beltwide Cotton Prod. Res. Conf., Jan. 11-12, Memphis, Tenn. (1966) 215. Smith, F. H., J. Am. Oil Chem. Soc. (1958) 35, 261. Reeves, R. G., Beasley, J. O., J. Agric. Res. (1935) 51, 935. Stanford, Ε. Ε., Viehoever, Α., J. Agri. Res. (1918) 13, 419. Lukefahr, M. J . , Marlin, D. F., J. Econ. Entomol. (1966) 59, 176. Bottger, G. T., Patana, R., J. Econ. Entomol. (1966) 59, 1166. Lukefahr, M. J . , Shaver, Τ. Ν., Parrott, W. L., Proc. Belt wide Cotton Prod. Res. Conf., Jan. 7-8, New Orleans, LA (1969) 81. Lukefahr, M. J . , Houghtalling, J. E., Cruhm, D. G., J. Econ. Entomol. (1975) 68, 743. Leigh, T. F., Proc. Beltwide Cotton Prod. Res. Conf., Jan. 78, New Orleans, LA (1975) 140. Niles, G. Α., Proc. Beltwide Cotton Prod. Res. Conf., Jan. 57, Las Vegas, Nev. (1976) 168. B e l l , Α. Α., Stipanovic, R. D., Proc. Beltwide Cotton Prod. Res. Conf., Jan. 5-7, Las Vegas, Nev. (1976) 52. B e l l , Α. Α., Stipanovic, R. D., Proc. Beltwide Cotton Prod. Res. Conf., Jan. 10-12, Atlanta, GA (1977) in press. B e l l , Α. Α., Stipanovic, R. D., Howell, C. R., F r y x e l l , P. Α., Phytochem. (1975) 14, 225. Stipanovic, R. D., B e l l , Α. Α., Mace, M. E., Howell, C. R., Phytochem. (1975) 14, 1077.
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch014
214
HOST P L A N T RESISTANCE
T O PESTS
20. Stipanovic, R. D., Bell, Α. Α., Howell, C. R., Phytochem. (1975) 14, 1809. 21. Stipanovic, R. D., Bell, Α. Α., O'Brien, D. H., Lukefahr, M. J., Phytochem. (1977) in press. 22. Stipanovic, R. D., Bell, Α. Α., O'Brien, D. H., Lukefahr, M. J., J. Agric. Food Chem. (1977) in press. 23. Stipanovic, R. D., Bell, Α. Α., O'Brien, D. H., Lukefahr, M. J., Tetrahedron Letters (1977) 567. 24. Stipanovic, R. D., Bell, Α. Α., Lukefahr, M. J., Gray, J. R., Mabry, T. J., Proc. Beltwide Cotton Prod. Res. Conf., Jan. 57, Las Vegas, Nev. (1976) 91. 25. Gray, J. R., Mabry, R. J., Bell, Α. Α., Stipanovic, R. D., Lukefahr, M. J., J. Chem. Soc., Chem. Comm. (1976) 109. 26. Creiger, R., Becher, P., Chem. Ber. (1957) 90, 2516. 27. Bloom, S. Μ., J. Org. Chem. (1959) 24, 278. 28. Martin, J. G., Hill, R. K., Chem. Rev. (1961) 61, 537. 29. Bell, Α. Α., Stipanovic, R. D., O'Brien, D. H., Lukefahr, M. J., Phytochem. (1977) in press. 30. Unpublished observations. 31. Mace, M. E., Bell, Α. Α., Stipanovic, R. D., Proc. Beltwide Cotton Prod. Res. Conf., Jan. 7-9, Dallas, TX, (1974) 46. 32. Mace, M. E., Bell, Α. Α., Stipanovic, R. D., Phytopathol. (1974) 64, 1297. 33. Mace, M. E., Bell, Α. Α., Beckman, C. H., Can. J. Bot. (1976) 54, 2095. 34. Heinstein, P. F., Smith, F. H., Tove, S. B., J. Biol. Chem. (1962) 237, 2643. 35. Heinstein, P. F., Herman, D. L., Tove, S. B., Smith, F. H., J. Biol. Chem (1970) 245, 4658. 36. Veech, J. Α., Stipanovic, R. D., Bell, Α. Α., J. Chem. Soc., Chem. Comm. (1976) 144. 37. McMichael, S. C., Agron. J. (1960) 52, 385.
15 Role of Repellents and Deterrents in Feeding of Scolytus Multistriatus D A L E M . NORRIS
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch015
642
Russell Laboratories, University of Wisconsin, Madison, W I 53706
Bark beetles i n the genus: Scolytus (Family: Scolytidae) not only "attack" suitable host trees for production and maturation of progeny, but also feed facultatively (i.e., such feeding i s not obligatory) i n the twigs of vigorously healthy hosts. Findings reported in this paper relate especially to phytochemicals (allomones) i n non-host trees which repel the species, Scolytus multistriatus, from alighting on such healthy plants and/or deter feeding on their tissues. Such repellent and deterrent chemicals of non-host species of trees combined with attractants, arrestant and feeding-stimulant chemicals of healthy hosts (especially Ulmus spp., family: Ulmaceae) are major determinants of the beetle arrival at, and acceptance of, host elm twigs for feeding (1). Though the complete complement of allomonic allelochemicals in species of plants may be complex and variable among individuals and plant parts (2), our study of certain allomones against S. multistriatus i n ten genera of trees i n nine families of dicotyledonous angiosperms revealed apparently similar structural and/or electrochemical molecular characteristics among the identified chemicals. I t i s intriguing and perhaps significant that most of these plant defense chemicals would seem capable of interacting with the lipoprotein neural membrane receptors for the potent allomone, juglone (5-hydroxy-1,4-naphthoquinone, Figure 1), which have been isolated and partially characterized from antennae of S. multistriatus and Periplaneta americana (3-10). Because of the hundreds of allomonic chemicals of non-host plants which an insect species may encounter, a specific receptor macromolecule for each chemical messenger obviously i s genetically untenable. This now obvious situation thus encourages hypotheses of mechanisms for sensory neural receptor-chemical messenger interactions which allow numerous messenger ligands to interact with a given receptor macromolecule i n a "quantal" manner. We (11) proposed such an unifying working hypothesis based on our early experimentation with the "juglone-type" receptor and on much supportive data from other areas of receptor neurobiology. Our continued experimental testing of this hypothesis has yielded
215
Figure 1. Molecular structures of studied allomones from non-host tree species and kairomones from host Ulmus americana for Scolytus multistriatus
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch015
15.
NORRis
Repellents and Deterrents
in
217
Feeding
encouraging data. The manners i n which the allomones reported i n t h i s paper seem t o support the hypothesis w i l l be discussed.
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch015
Table I. Non-Host Trees* Examined For Allomones Against Scolytus m u l t i s t r i a t u s Feeding Botanical Family
Genus
Species
Common Name
Aceraceae
Acer
negundo saccharinum
Boxelder S i l v e r maple
Hippocastanaceae
Aescuius
octandra
Yellow buckeye
Juglandaceae
Carya
cordiformis ovata
Bitternut hickory Shagbark h i c k o r y
Juglans
nigra
Black walnut
Oleaceae
Fraxinus
americana
White ash
Magnoliaceae
Magnolia
Cucumber t r e e acuminata (typical) var. acuminata
Rosaceae
Ma lus
pumila
Apple
Salicaceae
Populus
deltoïdes
Eastern cottonwood
Fagaceae
Quereus
macrocarpa alba
Bur oak White oak
Leguminosae
Robinia
pseudoacacia
Black
*Taxonomy taken from
locust
(12).
Methods Of Phytochemical
Analyses
Procedures used i n our i n i t i a l e x t r a c t i o n , p u r i f i c a t i o n and i d e n t i f i c a t i o n o f chemicals from t i s s u e o f non-hosts (Table I) and hosts ( i . e . , Ulmus), and t h e i r bioassay with i n s e c t s p e c i e s , have been d e t a i l e d (13-18). More recent i n v e s t i g a t i o n a l s o employed chemical methods d e t a i l e d , o r c i t e d , by Harborne (19). Our recent bioassay methods remained the same as i n e a r l i e r s t u d i e s . A schematic view o f the p e t r i - d i s h assay chamber used i n our bark b e e t l e bioassays termed "Assay #1" and "Assay #2" i s shown i n F i g u r e 2. Assay #1 was a simple feeding-choice t e s t between two uniform d i s c s of e l d e r b e r r y stem p i t h (presented on the " f l o o r " of the chamber); one d i s c u s u a l l y had been soaked i n the s o l v e n t and the other i n s o l v e n t p l u s candidate chemical o r f r a c t i o n o f crude e x t r a c t from a p l a n t t i s s u e . Assay #2 evaluated the v o l a t i l e p r o p e r t i e s o f candidate e x t r a c t s , f r a c t i o n s o r pure chemicals. Such a treatment was a p p l i e d t o one o f two p i t h d i s c s p o s i t i o n e d on the l i d of the p e t r i d i s h (Figure 2) such t h a t one was l o c a t e d d i r e c t l y above each o f the two p i t h d i s c s on the f l o o r o f the chamber as used i n Assay #1. The other d i s c on the
218
H O S T P L A N T RESISTANCE T O
PESTS
l i d was t r e a t e d with s o l v e n t . In Assay #2, both lower d i s c s were uniformly t r e a t e d with 0.1 M sucrose, which i s a feeding stimu l a n t f o r our t e s t bark b e e t l e s . The d i f f e r e n c e i n b e e t l e feeding on the lower d i s c under the t r e a t e d upper d i s c versus on the one under the upper s o l v e n t - t r e a t e d d i s c was measured.
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch015
E f f e c t s Of E x t r a c t s Of Non-Host Carva And S.. m u l t i s t r i a t u s Feeding
Juglans Trees On
Our i n i t i a l s t u d i e s focused on species of Carya (Table I ) , and t h e i r chemical c o n s t i t u e n t s which prevent multistriatus alightment on, and feeding i n , t i s s u e s of h i c k o r i e s (14, 15). The aglycone, juglone (5-hydroxy-l,4-naphthoquinone, Figure 1), was shown to keep £3. m u l t i s t r i a t u s o f f Carya c o r d i f o r m i s and Carya ovata (Figure 3, Table I I ) . This allomone occurs mostly as a-hydrojuglone-4-3-D-glucoside i n i n t a c t healthy c e l l s i n Carya. However, some f r e e naphthoquinone i s p e r c e p t i b l e even by human o l f a c t i o n i n the atmosphere surrounding vigorous h i c k o r i e s . I f c e l l s are ruptured, the p l a n t becomes p h y s i o l o g i c a l l y s t r e s s e d as during drought, or the p l a n t experiences a m i c r o b i a l l y caused disease, a d d i t i o n a l amounts of juglone are r e l e a s e d i n t o the atmosphere. I t would seem t h a t such a d d i t i o n a l releases of t h i s potent a l l o mone during i n i t i a l predator or p a r a s i t e attack, or other environmentally induced adverse c o n d i t i o n s may exemplify the dynamic nature of a p l a n t s p e c i e s allomonic chemistry. Our f i e l d observ a t i o n s and experiments have shown t h a t once a Carya t r e e becomes i r r e v e r s i b l y diseased, i t no longer can release juglone f o r defense. At t h i s p o i n t , secondary predators and p a r a s i t e s which a t t a c k dying t r e e s of s e v e r a l species appear on the p l a n t . It would seem that such secondary herbivores are not confronted by s i g n i f i c a n t amounts of the allomones which d e f e n s i v e l y serve healthy species of p l a n t s , Carya spp. i n t h i s p a r t i c u l a r example. More recent s t u d i e s of the type described f o r the Carya spp. have been conducted on Juglans n i g r a , black walnut (Table I ) , another r e p r e s e n t a t i v e of the f a m i l y : Juglandaceae. Juglone i n Juglans n i g r a a l s o proved t o be the major allomone against S. m u l t i s t r i a t u s feeding. 1
Molecular P r o p e r t i e s P o s i t i v e l y C o r r e l a t e d With Allomonic A c t i v i t y Of 1,4-Naphthoquinones. To i n v e s t i g a t e the molecular p r o p e r t i e s of 1,4-naphthoquinones i n v o l v e d i n making them a l l o monic against S_. m u l t i s t r i a t u s , the order of r e l a t i v e deterrency and i n h i b i t i o n of feeding of 2,3-dichloro-; 2-methyl-; 2-hydroxy-; 5-hydroxy-; 5,8-dihydroxy-; and the unsubstituted 1,4-naphthoquinone was determined. Results i n d i c a t e d t h a t the allomonic a c t i v i t y of 5-hydroxy1- > 5,8-dihydroxy- > unsubstituted 1,4- > 2hydroxy- > 2-methyl- > 2,3-dichloro-. With the s o l e exception of 2,3-dichloro-1,4-naphthoquinone, t h i s order of r e l a t i v e allomonic a c t i o n of the t e s t e d 1,4-naphthoquinones c o r r e l a t e d p o s i t i v e l y with the order of t h e i r r e l a t i v e combined redox p o t e n t i a l and
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch015
15.
NORRis
Repellents
and Deterrents
in
Feeding
219
Figure 2. Photograph of top and bottom of petri dish chamber used to bioassay extracts and pure chemicals for effects on Scolytus multistriatus feeding. Assay No. 1 used only two pith discs on floor of chamber. Assay No. 2 involved four discs: two on the floor (L ) and two on the lid (\J ). d
d
Figure 3. Inhibition of Scolytus multistriatus feeding on pith discs treated with Ulmus americana extract by addition of 2 X 10~ M luglone. (A) Feeding on Ulmus extract; (B) inhibition of feeding by adding Juglone. Solvent-treated control discs are in lower row of "A" and "B." 3
HOST P L A N T RESISTANCE T O PESTS
220
Table I I . Mean Feeding (Mm ) By 25 Scolytus m u l t i s t r i a t u s In 48 Hours on P i t h Discs Treated With A Standard Ulmus americana Bark E x t r a c t , F r a c t i o n s * Of Carya ovata Twig Bark E x t r a c t , Commercial Juglone Or Combinations
Treatment T.L.C , Band (R 0 ,60-0.80) Of C. ovata E x t r a c t (=Juglone) + Ulmus E x t r a c t
Feeding (Mm ) Treated** Control
Rating
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch015
f
Band R 0.60-0.80 Of £. ovata E x t r a c t Was Highly I n h i b i t o r y
0.8
f
Ulmus E x t r a c t
44.5
Highly
T.L.C. Bands (R 0.0-0.60, 0.80-1.00) Of £. ovata E x t r a c t + Ulmus E x t r a c t
40.2
Distillate (=Juglone) Of C. ovata E x t r a c t + Ulmus E x t r a c t
0.2
bG
0
Bands (R 0.0-0.60, 0.80-1.00) Of C. ovata E x t r a c t Were Non-inhibitory
ad
0
D i s t i l l a t e Of C. ovata E x t r a c t Was Highly I n h i b i t o r y
0.4
Highly
0.0
£. ovata Residue Was Highly Stimulatory
0.0
Juglone was Highly I n h i b i t o r y
0.0
Juglone Was Highly I n h i b i t o r y
Ulmus E x t r a c t
39.2
Residue A f t e r D i s t i l l a t i o n Of £. ovata E x t r a c t
34.8
-3 Juglone (2 χ 10 M) Re-Crystallized From T.L.C. Band R 0.60-0.80 + Ulmus E x t r a c t
0.3
Commercial Juglone (2 χ 10 M) + Ulmus E x t r a c t
0.4
Stimulatory
b C e
ef
adg
adgh
Stimulatory
•Methods p r e v i o u s l y d e t a i l e d by G i l b e r t et_ a_l. (14, 15) . **Values not followed by the same s u p e r s c r i p t l e t t e r s are s i g n i f i c a n t l y d i f f e r e n t at Ρ < 0.01 p r o b a b i l i t y .
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch015
15.
NORRis
Repellents
and
Deterrents
in
Feeding
221
hydrogen-bonding c a p a b i l i t i e s . Hydroxyl s u b s t i t u t i o n ( s ) , with the i n t r a - and i n t e r - m o l e c u l a r hydrogen-bonding c a p a b i l i t i e s which they b r i n g t o the 1,4-naphthoquinone molécule, u n f a i l i n g l y made the naphthoquinone more r e p e l l e n t , or i n h i b i t o r y to feeding, than the r e l a t i v e redox p o t e n t i a l p r e d i c t e d . Two examples are (1) 2methyl- has a s l i g h t l y h i g h e r ( i . e . , more negative) redox potent i a l than 2-hydroxy-, but 2-hydroxy- proved more r e p e l l e n t and i n h i b i t o r y ; and (2) the unsubstituted 1,4- has a h i g h e r redox p o t e n t i a l than e i t h e r 5,8-dihydroxy- or 5-hydroxy-, but both of the l a t t e r chemicals were more r e p e l l e n t and i n h i b i t o r y t o S_. m u l t i s t r i a t u s . The 2,3-dichloro-1,4-naphthoquinone showed the l e a s t r e p e l l e n c y and i n h i b i t i o n of feeding even though i t has a higher redox p o t e n t i a l than the unsubstituted 1,4-naphthoquinone. Our t o t a l s t u d i e s suggest t h a t t h i s weak r e p e l l e n c y and i n h i b i t i o n to S_. m u l t i s t r i a t u s are probably a t t r i b u t a b l e t o the redox potent i a l of the naphthoquinone being so high t h a t only l i m i t e d revers i b l e energy exchange between the messenger and receptor could occur. T h i s i n t e r p r e t a t i o n gains f u r t h e r support from the e x p e r i mentally determined f a c t that 2,3-dichloro-1,4-naphthoquinone i s not s i g n i f i c a n t l y (P < 0.05) r e p e l l e n t or i n h i b i t o r y t o P e r i p l a neta americana. A l l of the other above-mentioned naphthoquinones not only are a l s o r e p e l l e n t and i n h i b i t o r y t o t h i s very d i f f e r e n t i n s e c t P_. americana, but the order of t h e i r r e l a t i v e allomonic a c t i v i t y i s the same as against iS. m u l t i s t r i a t u s . Thus i t would appear t h a t quinones which are allomonic to p a r t i c u l a r species of i n s e c t s , or other organisms, must have a redox p o t e n t i a l ( i . e . , energy-sharing o r -exchanging c a p a b i l i t y ) w i t h i n a f i n i t e range. Such s p e c i e s - c h a r a c t e r i s t i c l i m i t s on the redox range w i t h i n which i t s chemical sensing system may exchange i n f o r m a t i o n a l energy with i t s environment may serve a major r o l e i n the chemical e c o l o g i c a l o r d e r i n g of species d i s t r i b u t i o n s and d e n s i t i e s . Our s t u d i e s (14, 15, 20) comparing the b e h a v i o r a l e f f e c t s of juglone on S_. m u l t i s t r i a t u s , f o r which Carya spp. are non-hosts; and on the close b e e t l e r e l a t i v e Scolytus quadrispinosus, f o r which Carya are major hosts, o f f e r encouraging f u r t h e r evidence that such s p e c i e s c h a r a c t e r i s t i c l i m i t s on the redox range of chemical sensing systems operate i n h e l p i n g t o determine i n s e c t - h o s t p l a n t i n t e r a c t i o n s . S. quadrispinosus feeds r e a d i l y on amounts of the potent allomone, juglone, which k i l l m u l t i s t r i a t u s . D i f f e r i n g capab i l i t i e s f o r d e t o x i f y i n g juglone probably e x i s t i n these two Scolytus s p e c i e s , but the primary chemical sensing systems must d i f f e r electrochemically. E l e c t r o c h e m i c a l D i f f e r e n c e Between An Allomone And A Kairomone For Scolytus m u l t i s t r i a t u s . In conjunction with the aforementioned experimental e v a l u a t i o n s of various 1,4-naphthoquinone s as allomones against S_. m u l t i s t r i a t u s , the simple q u i none, p-benzoquinone (Figure 1), a l s o was bioassayed. In the same study the c l a s s i c a l redox couple of p-benzoquinone, ρ-hydroquinone (Figure 1) ( i . e . , 1,4-dihydroxybenzene), was evaluated. These
222
H O S T P L A N T RESISTANCE T O PESTS
combined s t u d i e s (JL, 21, 22) showed t h a t ρ-hydroquinone i s a s i g n i f i c a n t kairomone ( i . e . , feeding stimulant) f o r S_. m u l t i s t r i atus, and p-benzoquinone i s an allomone. Thus, i n t h i s i n s e c t the e l e c t r o c h e m i c a l d i f f e r e n c e between an allomone and a kairomone i s the d i f f e r e n c e between accepting or donating (or v a r i o u s l y shar ing) one o r two e l e c t r o n s and protons (Figure 1 ) .
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch015
Flavonoids As Allomones And Kairomones To Scolytus m u l t i s t r i a t u s Feeding The compound (+)-catechin-5-3-D-xylopyranoside was reported (24) as a feeding stimulant i n Ulmus f o r S_. m u l t i s t r i a t u s . Our s t u d i e s (25) o f phytochemical stimulants o f S_. m u l t i s t r i a t u s feed i n g i n d i c a t e d that the f l a v o n o i d aglycone, (+)-catechin (Figure 1), from Ulmus americana a l s o promoted feeding. Such a f l a v a n - 3 o l i n v o l v e s the most h i g h l y reduced C u n i t ( i . e . , propane u n i t ) found i n f l a v o n o i d s (23, 26). The d i f f e r e n t l e v e l s o f o x i d a t i o n among the types o f f l a v o n o i d s are expressed i n the unit that j o i n s the "A" and "B" r i n g s . Thus, the f l a v a n - 3 - o l s (catechins) and dihydrochalcones are the most reduced, and the f l a v o n o l s are the most o x i d i z e d (Table I I I ) . Table I I I . Oxidation S t a t e s * In The C Of F l a v o n i d s
Units Of D i f f e r e n t Types
F l a v o n i d Name
Structure o f
Flavan-3-ols
A-CH -CHOH-CHOH-B
Hydrochalcones
A-CO-CH -CH -B
Chalcones
A-CO-CH=CH-B
Flavanones
A-CO-CH -CHOH-B
Unit
2
2
2
2
Leucoanthocyanidins
A-CHOH-CHOH-CHOH-B
Flavones
A-CO-CH -CO-B
Anthocyanidins
A-CH -CO-CO-B
Benzalcoumaranones
A-CO-CO-CH -B
Flavanonols
A-CO-CHOH-CHOH-B
Flavonols
A-CO-CO-CHOH-B
*Taken from Geissman
2
2
2
(23).
In a l l the s t r u c t u r e s i n Table I I I , the A r i n g i s assumed t o c a r r y an o-hydroxyl group which engages i n r i n g closure t o form the chromanol, chromanone, e t c . , r i n g . E n o l i z a t i o n , l o s s o f the elements o f water o r f l a v y l i u m s a l t formation are processes t h a t do not a f f e c t o x i d a t i o n l e v e l . Thus, f l a v o n e s , anthocyani-
15.
NORRis
Repellents
and Deterrents
Feeding
223
dins and benzalcoumaranones, o f q u i t e d i f f e r e n t s t r u c t u r e s , a l l possess the equivalent of two -CO- and one "CH^- groups. Based on data presented i n Table IV, the r e l a t i v e l y reduced, non-carbonyl-bearing f l a v a l - 3 - o l , (+)-catechin, s i g n i f i c a n t l y stimulated m u l t i s t r i a t u s feeding. When mixed with a standard amount (5 mg/ml) o f benzene e x t r a c t a b l e s from U. americana twig bark and phloem, c a t e c h i n had an a d d i t i v e e f f e c t on b e e t l e feedi n g . Moving t o two non-host-derived dihydrochalcones, p h l o r e t i n from Malus pumila and 2 ,6 -dihydroxy-4'-methoxy dihydrochalcone from Populus deltoïdes, n e i t h e r stimulated a s i g n i f i c a n t (P < 0.05) amount o f feeding. Upon a d d i t i o n t o the Ulmus e x t r a c t , each compound s i g n i f i c a n t l y (P < 0.01) reduced the amount o f feeding (Table I V ) . Thus, thèse two r e l a t i v e l y reduced f l a v o n o i d s , but each with a carbonyl group, c l e a r l y i n h i b i t e d feeding on Ulmus e x t r a c t ; whereas, the comparably reduced (+)-catechin, without the carbonyl, stimulated feeding. These d i f f e r e n c e s i n e f f e c t s o f comparably reduced f l a v o n o i d s , f l a v a l - 3 - o l s and hydrochalcones, may be explained by (1) d i f f e r e n c e s i n the d i s t r i b u t i o n s o f charge i n the r e s p e c t i v e molecules and/or (2) an unique f u n c t i o n a l group ( i . e . , carbonyl) on the C (propane) p o r t i o n of the molecules. Swain (27) commented that the carbonyl group i n f l a v o n o i d s does not show the general r e a c t i o n s o f such groups with keto reagents, except Grignard reagents. However, these Grignard r e a c t i o n prop e r t i e s perhaps make them comparable t o the p r e v i o u s l y discussed simple quinone, p-benzoquinone; and c e r t a i n 1,4-naphthoquinones which are i n h i b i t o r y t o S_. m u l t i s t r i a t u s feeding. The carbonyl a t C^ o f the propane p o r t i o n o f these f l a v o n o i d s i s s i t u a t e d as an a , 3-unsaturated ketone with regard t o r i n g A o f the f l a v o n o i d molec u l e . T h i s apparently i s the primary common chemical s t r u c t u r a l c h a r a c t e r i s t i c which makes these f l a v o n o i d s and the discussed quinones deterrents and i n h i b i t o r s o f S_. m u l t i s t r i a t u s . The hydroxyl s i t u a t e d a t C on the A r i n g a l s o i s s u f f i c i e n t l y c l o s e to the C^ carbonyl t o allow i n t r a m o l e c u l a r hydrogen bonding between the hydrogen o f the hydroxyl and the C^ carbonyl. Our s t u d i e s o f the e f f e c t s of various s u b s t i t u e n t groups on the a l l o monic a c t i v i t y o f 1,4-naphthoquinones have c l e a r l y shown that such adjacent hydroxyIs enhance the a c t i v i t y o f such quinones. Thus, there would seem t o be t h i s important hydroxyl s i t u a t i o n i n c e r t a i n allomonic naphthoquinones and f l a v o n o i d s . 1
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch015
in
,
3
5
I f we next consider two f l a v o n o i d s , kaempferol as i s o l a t e d from Robinia pseudoacacia and q u e r c e t i n as i s o l a t e d from Quercus macrocarpa, which are among the most h i g h l y o x i d i z e d f l a v o n o l s (Figure 1, Table IV) , they showed l e v e l s o f i n h i b i t i o n o f S^. m u l t i s t r i a t u s feeding, when mixed with the Ulmus e x t r a c t , which were s i g n i f i c a n t l y (P < 0.05 o r 0.01) greater than those caused by the two t e s t e d hydrochalcones. The a d d i t i o n a l l e v e l s o f o x i d a t i o n i n the f l a v o n o l s p l u s the apparently important carbonyl and adjacent hydroxyls probably e x p l a i n t h e i r g r e a t e r allomonic e f f e c t s under these t e s t c o n d i t i o n s .
HOST P L A N T RESISTANCE T O PESTS
224
Table IV. Mean Feeding (Mm ) By 25 Scolytus m u l t i s t r i a t u s Adults In 48 Hours On P i t h D i s c s Treated With A Standard E x t r a c t Of Ulmus americana Twig Bark, A Known F l a v o n i d Or Combination Of Both
Flavonid
Molar Concentration
(+)-Catechin
2 X 10"
(+)-Catechin + Ulmus E x t r a c t
2 X 10"
3
—
Ulmus E x t r a c t Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch015
3
2 X 10"
Phloretin + Ulmus E x t r a c t
2 X 10" J
1
,
—
Ulmus americana
24. 3
a
0.0
Ulmus americana
52.4
b
0.0
39.3°
0.0
d
Ma l u s pumila
4.3
Malus pumila
22.6
—
36.4
0.0
0.0 0.0
Cf
I
2 ,6 -Dihydroxy-4 -methoxy dihydrochalcone 1
Feeding (Mm ) Treated* Solvent
— 3
Phloretin
Ulmus E x t r a c t
Plant Source
2 X 10"
3
Populus deltoïdes
0.0
d
3.1 *
1
2 ,6 -Dihydroxy-4' -methoxy dihydrochalcone + Ulmus Extract Ulmus E x t r a c t
2 X 10" J
—
Kaempferol
2 X 10"
Kaempferol + Ulmus E x t r a c t
2 X 10~
Populus deltoïdes
— 3
3
a e h
0.0
34.8
C f ±
0.0
Robinia pseudoacacia
o.o
Robinia pseudoacacia
14. 3
Ulmus E x t r a c t
gj
0.0
k
0.0
37.6 3
Quercetin
2 X 10"
Quercetin + Ulmus E x t r a c t
•3 2 X 10"
Ulmus E x t r a c t
20.6
—
C f i l
Quereus macrocarpa
o.o
Quereus macrocarpa
16.1^ 35.7
C f i l
0.0 0.0
g j m
0.8 °
0.0
*Values not bearing the same s u p e r s c r i p t l e t t e r are s i g n i f i c a n t l y d i f f e r e n t from each other (P < 0.05).
15.
NORRis
Repellents
and Deterrents
E f f e c t s Of C e r t a i n Coumarins And P h e n o l i c s t r i a t u s Feeding C
Acids
On S_. m u l t i
C
Compounds c o n t a i n i n g t h e ^ ~ 3 p h e n y l p r o p a n e u n i t a r e a b u n dant i n phytochemistry. Coumarins a r e phenylpropanoid i n origin, a n d a r e f o r m e d b y r i n g c l o s u r e o f a g ~ 3 compound s u c h a s ohydroxy cinnamic a c i d . The c o u m a r i n , a e s c u l e t i n , from t h e n o n h o s t A e s c u l u s o c t a n d r a p r o v e d t o b e a p o t e n t a n t i f e e d a n t f o r S_. m u l t i s t r i a t u s ( F i g u r e 1, T a b l e V ) . F r a x e t i n , a coumarin i s o l a t e d from the non-host Fraxinus americana, a l s o y i e l d e d s i g n i f i c a n t a n t i f e e d a n t e f f e c t s on m u l t i s t r i a t u s ( F i g u r e 1, T a b l e V ) . I t i s i n t e r e s t i n g and apparently c h e m i c a l l y s i g n i f i c a n t t h a t t h e p h e n o l i c a c i d s o-hydroxy- and ρ-hydroxy- c i n n a m i c a c i d a l s o were v e r y i n h i b i t o r y t o S_. m u l t i s t r i a t u s f e e d i n g ( T a b l e V) . Because t r a n s - c i n n a m i c a c i d ( T a b l e V) s i g n i f i c a n t l y s t i m u l a t e d S_. m u l t i s t r i a t u s f e e d i n g , t h e p r e s e n c e o f a h y d r o x y l on t h e b a s i c c i n n a m i c a c i d s t r u c t u r e c h a n g e d t h e e f f e c t s o f t h e m o l e c u l e on b e e t l e f e e d i n g from s t i m u l a t o r y t o i n h i b i t o r y . T h u s , among t h e t e s t e d c o u m a r i n s a n d c i n n a m i c a c i d s , t h e h y d r o x y l a n d i t s e f f e c t on t h e o v e r a l l c h a r g e d i s t r i b u t i o n i n t h e m o l e c u l e may d e t e r m i n e f e e d i n g a c t i v i t y with t h i s s p e c i f i c insect. C
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch015
225
in Feeding
C
In view o f o u r p r e v i o u s l y p r e s e n t e d evidence t h a t t h e e f f e c t s o f v a r i o u s f l a v o n o i d s upon S_. m u l t i s t r i a t u s f e e d i n g c o r r e l a t e w i t h (1) t h e r e l a t i v e d e g r e e o f o x i d a t i o n , e s p e c i a l l y i n t h e C , p r o p a n e , u n i t ; a n d (2) t h e p r e s e n c e o r a b s e n c e o f p a r t i c u l a r l y a c a r b o n y l a n d / o r one o r more h y d r o x y l s , common f u n c t i o n a l g r o u p a n d e l e c t r o c h e m i c a l p r o p e r t i e s s e e m i n g l y e x i s t among t h e s e s t u d i e d a l l o m o n i c chemicals i n c l u d i n g t h e simple quinone, p-benzoquinone, and t h e 1,4-naphthoquinones. B a s e d on o u r b e s t u n d e r s t a n d i n g o f t h e f u n c t i o n a l group a n d e l e c t r o c h e m i c a l p r o p e r t i e s o f t h e c h e m o s e n s o r y n e u r a l membrane receptor i n m u l t i s t r i a t u s a n d P e r i p l a n e t a a m e r i c a n a (_5, 1JL) f o r 1,4-naphthoquinones, t h i s r e c e p t o r mechanism s h o u l d o p e r a t e i n v i v o and i n v i t r o with the other allomonic chemicals discussed thus f a r i n t h i s chapter. To i l l u s t r a t e f u r t h e r t h e a p p a r e n t i m p o r t a n c e o f u n s a t u r a t i o n i n a carbon s i d e c h a i n and o f t h e charge d i s t r i b u t i o n i n p h e n o l i c s f o r d e t e r m i n i n g w h e t h e r a m o l e c u l e s t i m u l a t e s o r i n h i b i t s IS. multistriatus feeding, i t i s s i g n i f i c a n t that protocatechuic acid ( T a b l e V) was s t i m u l a t o r y . P r e v i o u s l y p u b l i s h e d d a t a (_1, 18, 22) a l s o showed t h a t s e v e r a l p h e n o l i c s s i m i l a r t o p r o t o c a t e c h u i c a c i d (e.g., p r o c a t e c h u i c aldehyde, v a n i l l i n , s y r i n g a l d e h y d e and ph y d r o x y b e n z a l d e h y d e ) s t i m u l a t e S_. m u l t i s t r i a t u s f e e d i n g . Likewise the C l i g n a n , α c o n i d e n d r i n , f r o m Ulmus s t i m u l a t e d f e e d i n g . I t i s a a i m e r o f C^-C^ u n i t s w i t h a l o w e r d e g r e e o f u n s a t u r a t i o n i n t h e C^, p r o p a n e , p o r t i o n s t h a n i s p r e s e n t i n t h a t u n i t o f t h e i n h i b i t o r y ρ-hydroxycinnamic a c i d .
H O S T P L A N T RESISTANCE T O PESTS
226
Table V. Mean Feeding (Mm ) By 25 Scolytus m u l t i s t r i a t u s Adults In 48 Hours On P i t h Discs Treated With A Standard E x t r a c t Of Ulmus americana Twig Bark, A Coumarin, A Phenolic A c i d , A Lignan Or Com binations Molar Concentration
Chemical Aesculetin
2
X
10"
Aesculetin + Ulmus E x t r a c t
2
X
10"
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch015
Ulmus E x t r a c t
3
o.o
Aesculus octandra
12.6
-a
2
X
10"
Fraxetin + Ulmus E x t r a c t
2
X
10"
Ulmus E x t r a c t
3
b
0.0
34.9°
0.0
Fraxinus americana
4.i
0.0
Fraxinus americana
19.3
—
—
o-Hydroxy cinnamic a c i d
2
X
10~
o-Hydroxy cinnamic a c i d + Ulmus E x t r a c t
2
X
10" J
Ulmus E x t r a c t
3
3
X
10~
2
X
10" J
36.0°
Commercial
10.3
—
0.0
Θ
o.o
Q
2
a d
Commercial
—
ρ-Hydroxy cinnamic a c i d
(Mm ) Solvent
0.0
a
•u
—
3
Feeding Treated*
Aesculus octandra
—
Fraxetin
ρ-Hydroxy cinnamic a c i d Ulmus E x t r a c t
Plant Source
f
0.0
a d g
0.0
bh
0.0
C f l
0.0
a d g j
0.0
38.1
Commercial
o.o
Commercial
14.8
+
Ulmus E x t r a c t
—
—
trans-cinnamic acid
2
X
io~
Protocatechuic acid
2
X
10"
2
X
α-Conidendrin* *
10"
3 3 3
bk
35.2
Commercial
24.8
Commerical
27.i
Ulmus
16.8
e f ± 1
0.0 0.4
em
0.6
m p
0.9
e k n q
0.3
•Values not followed by the same s u p e r s c r i p t l e t t e r are s i g n i f i c a n t l y d i f f e r e n t (P < 0.05). **A l i g n a n , a dimer o f C -C
units.
15.
NORRis
Repellents
and
Deterrents
in
227
Feeding
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch015
A l k a l o i d s In Non-Host Species As Allomones For Scolytus striatus
muJLti-
About 15-20% of a l l v a s c u l a r p l a n t s contain a l k a l o i d s (28). Our primary d e f i n i t i o n of an a l k a l o i d i s a b a s i c , nitrogen-con t a i n i n g compound. Further d e s c r i p t i v e c h a r a c t e r i s t i c s which we a s c r i b e to " a l k a l o i d s " are (1) by-products of p r o t e i n metabolism which are (2) methylated on e i t h e r n i t r o g e n or, when present, on hydroxyl groups and so removed from general metabolism. They are more or l e s s t o x i c substances which act p r i m a r i l y on the nervous system. These p h y s i o l o g i c a l p r o p e r t i e s make them prime candidates as allomones against i n s e c t s such as S_. m u l t i s t r i a t u s . Our s t u d i e s of major allomones i n non-host Acer negundo, Acer saccharinum and Magnolia acuminata var. acuminata against S_. m u l t i s t r i a t u s feeding revealed two types of a l k a l o i d a l deterrents and a n t i f e e d a n t s , the i n d o l e substance gramine (Figure 1, Table V I ) , from the Acer spp; and the b e n z l i s o q u i n o l i n e d e r i v a t i v e s , such as magnoline (Figure 1), from the Magnolia sp. (Table V I ) . I t i s b e l i e v e d t h a t the q u i n o l i n e a l k a l o i d s are formed from i n d o l e p r e c u r s o r s (29). 2 Table VI. Mean Feeding (Mm ) By 25 Scolytus m u l t i s t r i a t u s Adults In 48 Hours On P i t h Discs Treated With A Standard E x t r a c t Of Ulmus americana, A Known A l k a l o i d Or Combination Of Both
Alkaloid
Molar Concentration
Gramine
2 X ίο"
Gramine + Ulmus E x t r a c t
2 X 10
Ulmus E x t r a c t
Acer
negundo
0. o
3
Acer
negundo
21. 4
—
—
Magnoline
2 X ίο"
Magnoline + Ulmus E x t r a c t
2 X ίο"
3
—
Feeding (Mm ) Treated* Control
3
3
Ulmus E x t r a c t
Source P l a n t Genus Species
0.0
b
0.0
39. 8°
0.0
a d
0.4
30. 4
e
0.0
38. 6
C f
0.0
Magnolia acuminata var. acuminata
5. 2
Magnolia acuminata var. acuminata —
a
*Values not followed by the same s u p e r s c r i p t l e t t e r are c a n t l y d i f f e r e n t (P < 0.05 or 0.01).
signifi
Our l i m i t e d s t u d i e s of a l k a l o i d s as i n h i b i t o r s of feeding by _S. m u l t i s t r i a t u s do not allow s i g n i f i c a n t s p e c u l a t i o n or a hypo t h e s i s about t h e i r s t r u c t u r a l chemical p r o p e r t i e s r e s p o n s i b l e f o r the observed i n h i b i t i o n of £. m u l t i s t r i a t u s feeding; however, Horowitz (30) d i d r e p o r t the i n t e r e s t i n g observation that forming the n i t r o g e n oxime d e r i v a t i v e ( i . e . , =N-0H) of the carbonyl group
228
HOST P L A N T RESISTANCE T O
PESTS
i n aglycones of c e r t a i n f l a v o n o i d s d i d not a b o l i s h the b i t t e r t a s t e of these compounds. Thus, some i n h i b i t o r y a l k a l o i d s , f l a v o noids, coumarins, naphthoquinones and simple p-benzoquinones may have r a t h e r s i m i l a r s t r u c t u r a l chemical c h a r a c t e r i s t i c s which are c o n t r i b u t o r y t o t h e i r feeding deterrency and i n h i b i t i o n against £. multistriatus.
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch015
General D i s c u s s i o n Our reported research f i n d i n g s on some apparent common molec u l a r c h a r a c t e r i s t i c s found among a r a t h e r d i v e r s e group of phytochemicals which r e p e l and/or i n h i b i t feeding by S_. m u l t i s t r i a t u s suggest that they a l l may i n t e r a c t with our demonstrated "quinone" receptor i n the chemosensory primary neurons i n the i n s e c t . This view seems to be supported s i g n i f i c a n t l y by the f i n d i n g s of Horow i t z (30). Horowitz (30) d i s c u s s e d the r o l e s of f r e e d i s a c c h a r i d e s , aglycones and the corresponding g l y c o s i d e s i n the e l i c i t a t i o n of t a s t e sensations i n humans. His evidence i n d i c a t e d t h a t the d i s s a c h a r i d e s , neohesperidose or r u t i n o s e , need to be attached to an aglycone to e l i c i t intense t a s t e . The next c o n s i d e r a t i o n , i n view of our r e s u l t s reported from assays with S_. m u l t i s t r i a t u s , i s the r o l e ( s ) of the aglycone. Regarding the s t r u c t u r e of the aglycone, the carbonyl and i t s a s s o c i a t i o n with a,3-unsaturation and an adjacent hydroxyl seemed s t r o n g l y c o r r e l a t e d with s i g n i f i c a n t i n h i b i t i o n of S_. m u l t i s t r i a t u s feeding. P h l o r e t i n , which has the carbonyl and an adjacent hydroxyl, was the l e a s t i n h i b i t o r y of t e s t e d f l a v o n o i d s . Adding a,3-unsaturation u n f a i l i n g l y increased the e f f e c t s on g u s t a t i o n . Removal of the carbonyl (e.g., catechin) r e s u l t e d i n s i g n i f i c a n t s t i m u l a t i o n r a t h e r than i n h i b i t i o n of i n s e c t feeding. Horowitz (30) concluded that there was s c a r c e l y any information regarding the r o l e of the carbonyl group of f l a v o n o i d s i n e l i c i t i n g the t a s t e response i n humans. However, he reported t h a t removal of the carbonyl from the a g l y cone ( i . e . , reducing i t to hydroxyl) seemed t o cause the t a s t e of b i t t e r n e s s to disappear. These p r e v i o u s l y reported f i n d i n g s with humans thus would seemingly agree w e l l with our demonstrated importance of the carbonyl group or a f u n c t i o n a l l y comparable nitrogenous group, with appropriate a s s o c i a t e d molecular unsaturation and hydroxyls, i n aglycones which promote r e p e l l e n c y o f , or feeding i n h i b i t i o n i n , S_. m u l t i s t r i a t u s . There seems to be an encouraging amount of evidence t h a t the "quinone" receptors demonstrated i n our s t u d i e d species of i n s e c t s i n t e r a c t as chemoreceptors with many, i f not most, of the other s t u d i e d allomones. Acknowledgments T h i s research was supported by the College of A g r i c u l t u r a l and L i f e Sciences, the Wisconsin Department of Natural Resources;
15.
NORRis
Repellents
and Deterrents
in
Feeding
229
and by research grants Nos. GB-6580, 8756, 41868 and BNS 74-00953 from the N a t i o n a l Science Foundation.
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch015
Literature
Cited
1. Norris, D.M., Baker, J.E., Borg, T.K., Ferkovich, S.M., Rozental, J.M., Contrib. Boyce Thompson Inst., (1970), 24, 263274. 2. Rice, E.L., "Allelopathy", p. 353, Academic Press, New York, 1974. 3. Norris, D.M., Ferkovich, S.M., Rozental, J.M., Baker, J.E., Borg, T.K., Science, (1970), 170, 754-755. 4. Ferkovich, S.M., Norris, D.M., Experientia, (1972), 28, 978979. 5. Rozental, J.M., Norris, D.M., Nature, (1973), 244, 370-371. 6. Rozental, J.M., Norris, D.M., Life Sciences, (1975), 17, 105110. 7. Singer, G., Rozental, J.M., Norris, D.M., (1975), Nature, 256, 222-223. 8. Norris, D.M., Bull. Entomol. Soc. Amer., (1976), 22. 27-30. 9. Norris, D.M., Symp. Biol. Hung., (1976), 16, 197-201. 10. Norris, D.M., Rozental, J.M., Samberg, G., Singer, G., Comp. Biochem. Physiol., (1977), in press. 11. Norris, D.M., Experientia, (1971), 27, 531-532. 12. Little, E.L., "Check List of Native and Naturalized Trees of the United States (Including Alaska)", Agric. Handbook, 41, p. 472, U.S. Govt. Printing Office, Washington, D.C., 1953. 13. Norris, D.M., Baker, J.E., J. Insect Physiol., (1967), 13, 955-962. 14. Gilbert, B.L., Baker, J.E., Norris, D.M., J. Insect Physiol., (1967), 13, 1453-1459. 15. Gilbert, B.L., Norris, D.M., J. Insect Physiol., (1968), 14, 1963-1068. 16. Baker, J.E., Norris, D.M., Ann. Entomol. Soc. Amer., (1968), 61, 1248-1255. 17. Baker, J.E., Norris, D.M., Ent. exp. appl., (1968), 11, 464469. 18. Meyer, H.J., Norris, D.M., J. Insect Physiol., (1974), 20, 2015-2021. 19. Harborne, J.B., "Phytochemical Methods", p. 278, Chapman and Hall, London, 1973. 20. Goeden, R.D., Norris, D.M., Ann. Entomol. Soc. Amer., (1964), 57, 743-749. 21. Norris, D.M., Nature, (1969), 222, 1263-1264. 22. Norris, D.M., Ann. Entomol. Soc. Amer., (1970), 63, 476-478. 23. Geissman, T.A., pp. 213-250, "Comprehensive Biochemistry", 9, Florkin, M. and Stotz, E.A., Eds., p. 265, Elsevier, Amsterdam, 1963. 24. Hoskotch, R.W., Chatterji, S.K., Peacock, J.W., Science, (1970), 167, 380-382.
230
HOST P L A N T RESISTANCE T O PESTS
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch015
25. Meyer, H.J., "Ph.D. Thesis", p. 246, University of Wisconsin, Madison, 1974. 26. Swain, T., "Chemical Plant Taxonomy", p. 543, Academic Press, London, 1963. 27. Swain, T., pp. 211-245, "Chemistry and Biochemistry of Plant Pigments", Goodwin, T.W., Eds., p. 583, Academic Press, London, 1965. 28. Hegnauer, R., pp. 389-427, "Chemical Plant Taxonomy", Swain, T., Ed., p. 543, Academic Press, London, 1965. 29. Relijk, J., Pharm. Weekbl., (1958), 93, 625. 30. Horowitz, R.M., pp. 545-571, "Biochemistry of Phenolic Compounds", Harborne, J.B., Ed., p. 618, Academic Press, London, 1964.
16 Behavioral and Developmental Factors Affecting Host Plant Resistance to Insects P. A. HEDIN and J. N. JENKINS Boll Weevil Research Laboratory, Agricultural Research Service, U.S. Department of Agriculture, P. O. Box 5367, Mississippi State, MS 39762
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch016
F. G. MAXWELL Department of Entomology and Nematology, University of Florida, Gainesville, F L 32604
Plants that are inherently less severely damaged or less infested by a phytophagous pest under comparable environments in the field are termed "resistant" (1, 2). Painter(2); Beck (3); Maxwell et a l . (4); and Maxwell (5) have reviewed the development of resistant host plant varieties. While considerable success has been achieved in breeding for resistance to certain key insect pests, often l i t t l e is known about the chemistry of resistance. There are several reasons for this paucity of knowledge about the chemical bases. First, plant breeders have been able to make selections successfully without chemical analyses for guidance. Second, micro-techniques for identifying chemical resistance factors have only been fairly recent developments. Third, resistance as expressed in the field most often involves not only physical and biochemical factors, but also frequently complex interrelationships among the insect, the plant and the environment. Fourth, we have not had the necessary basic behavioral information on the insect pest to devise adequate chemical and biological assay techniques to properly assess the response of insects to various chemical fractions and compounds derived from plants. Recently, the interest in elucidating some of the chemical aspects of resistance has increased because of several factors: (1) greater interest in the field of host plant resistance as an alternative to our current dependence upon pesticides, and the accompanying recognition that resistance can play an important role in the development of effective integrated pest management programs; (2) degree of success registered through recent programs; (3) information derived from basic insect-plant interactions from host plant resistance programs that contributes materially to the field of insect behavior and control methodology; (4) greater interest by private and public agencies in supplying the support necessary to conduct more basic chemical studies; (5) a greater awareness and interest on the part of natural product chemists of the opportunities for research contributions in the field; (6) advent of better methodology 231
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch016
232
HOST P L A N T RESISTANCE T O
PESTS
and technology i n microchemical techniques and (7), probably most important f o r the f u t u r e , are the new Food and Drug A d m i n i s t r a t i o n r e g u l a t i o n s that w i l l n e c e s s i t a t e chemical research to document that changes ( t o x i n s , n u t r i t i o n a l , etc.) made i n the p l a n t through development of r e s i s t a n c e to a pest w i l l not c o n s t i t u t e a hazard to the h e a l t h or n u t r i t i o n of humans and other animals that might consume the r e s i s t a n t crop. These r e g u l a t i o n s w i l l have a tremendous impact on r e s e a r c h of i n s e c t - p l a n t i n t e r a c t i o n s , and more s p e c i f i c a l l y i n s e c t behavior, chemical ecology, and a p p l i e d i n s e c t c o n t r o l . We have approached the subject of the chemical b a s i s of i n sect r e s i s t a n c e i n p l a n t s i n the f o l l o w i n g areas: (1) a d i s c u s s i o n of those chemicals a f f e c t i n g the preference or nonpreference toward the p l a n t f o r feeding and o v i p o s i t i o n , i . e . those that e l i c i t an a t t r a c t i v e , r e p e l l e n t , feeding, o v i p o s i t i o n , or det e r r e n t response; (2) an examination on a s e l e c t e d b a s i s of some t o x i n s , growth i n h i b i t o r s and other a n t i b i o t i c f a c t o r s i n c e r t a i n p l a n t s that a f f e c t the s u r v i v a l of i n s e c t s ( a n t i b i o s i s ) ; and (3) an examination of some important n u t r i t i o n a l f a c t o r s i n p l a n t s t h a t a f f e c t s u r v i v a l and development of i n s e c t s ( a n t i b i o s i s ) . T h i s review i s not intended to be comprehensive, but to present s e l e c t e d current work i n the f i e l d . For a d d i t i o n a l i n f o r mation a t t e n t i o n i s d i r e c t e d to r e p o r t s of i n s e c t a n t i f e e d a n t s and t o x i c agents by other c o n t r i b u t o r s to t h i s book. B i o l o g i c a l l y A c t i v e Compounds i n P l a n t s A f f e c t i n g Insect
Behavior
Components i n p l a n t s that d i r e c t the i n i t i a l s e l e c t i o n by i n s e c t s such as a t t r a c t a n t s , feeding and o v i p o s i t i o n s t i m u l a n t s , r e p e l l e n t s , and feeding and o v i p o s i t i o n deterrents a f f e c t the mechanism of r e s i s t a n c e d e f i n e d as preference or nonpreference by P a i n t e r (1). Although they are not included i n t h i s r e p o r t , other i n s e c t behavior and development agents such as sex pheromones, kairomones, and hormones may be d i r e c t l y or i n d i r e c t l y obtained from p l a n t s . We have surveyed the l i t e r a t u r e and attempted to c a t e g o r i z e the c l a s s e s of chemicals that are i n v o l v e d i n the v a r ious i n s e c t responses. The r e s u l t s , which have been tabulated i n Tables I - VI, i n c l u d e the type of response, the i n s e c t , the host, the compounds or c l a s s e s of compounds i f known, and the i n v e s t i g a t o r s . The information i n Table 1 demonstrates that i n most cases, feeding stimulants are comprised of chemicals that f a l l i n t o what have been grouped as secondary p l a n t substances (6), that i s , these substances are l a r g e l y thought to possess no primary f u n c t i o n s (as n u t r i e n t , or energy source) i n the p l a n t or i n the i n s e c t . When the known feeding stimulants were c l a s s i f i e d by chemical s t r u c t u r e , 21 were g l y c o s i d e s , 15 were a c i d s , 9 were f l a v o n o i d aglycones, 6 were carbonyls, 5 each were phospholipids and t e r penoids, and 21 were miscellaneous c l a s s e s . When these feeding stimulant c l a s s e s were f u r t h e r subdivided by i n s e c t order, some-
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch016
16.
HEDIN E T
AL.
Behavioral
and
Developmental
Factors
233
what more s p e c i f i c preferences were suggested. Among the Lepidopt e r a , 8 g l y c o s i d i c feeding stimulants were reported, along with 4 aglycones that could become g l y c o s i d a t e d ; there were 11 m i s c e l laneous c l a s s e s . Among the Coleoptera, 10 a c i d s , 7 g l y c o s i d e s , 4 f l a v o n o i d aglycones, and 4 terpenes were reported. There were a l s o 10 miscellaneous. In the order Homoptera, both compounds reported were g l y c o s i d e s . In the order Orthoptera, a c i d s , and t h e i r e s t e r s and s a l t s , were most p r e v a l e n t . These compounds accounted f o r 8 of the 14 l i s t e d c l a s s e s . In r e p o r t s on i n s e c t feeding s t i m u l a n t s , no study has prov i d e d c l e a r evidence that any conipound a c t s i n d i v i d u a l l y . Furthermore, when a " g l y c o s i d e , " "sugar," or "purine" has been i m p l i c a t e d , i t has o f t e n been questionable whether the a c t i v i t y could have been maintained a f t e r rigorous p u r i f i c a t i o n . In a d d i t i o n , when pure compounds have been demonstrated to give a c t i v i t y (7^, 8 ) , s e v e r a l compounds might have been i s o l a t e d from the same source, each of which could have e l i c i t e d some a c t i v i t y or synergized the a c t i v i t y of the compound. The concept of host-plant s p e c i f i c i t y i m p l i e s that i n s e c t s can d i s c r i m i n a t e f l a v o r s . Therefore, though i n s e c t s almost c e r t a i n l y do sometimes respond to a s i n g l e dominant compound, probably i n a much l a r g e r number of s i t u a t i o n s , no dominant compound e x i s t s . Consequently, an adequate response more l i k e l y r e q u i r e s a complicated p r o f i l e of compounds. One i n s e c t that feeds as a r e s u l t of a complicated, and probably s e q u e n t i a l , p r e s e n t a t i o n of s t i m u l i i s the silkworm. (Bombyx mori L . ) . V o l a t i l e substances i n c l u d i n g c i t r a l , l i n a l y l a c e t a t e , l i n a l o o l and t e r p i n y l acetate a t t r a c t the l a r v a e to the mulberry leaves. B i t i n g f a c t o r s such as 3 - s i t o s t e r o l - 3 - g l u c o s i d e , l u p e o l , i s o q u e r c e t r i n , morin, and 2 , 2,4'S^-pentahydroxyflavone cause i n i t i a t i o n of p l a n t consumption. Swallowing f a c t o r s such as s i t o s t e r o l , s u g a r , s i l i c a , c e l l u l o s e , and potassium phosphate were demonstrated. From these r e s u l t s , the substances c o n t r o l l i n g the f e e d i n g behavior of silkworm l a r v a e were d e s c r i b e d , but these substances are not found e x c l u s i v e l y i n mulberry l e a v e s , and are i n f a c t r a t h e r common i n green l e a v e s . The preference f o r mulberry leaves may depend on the amounts and p r o p o r t i o n s of these compounds and on the absence of r e p e l l e n t s . A r e p e l l e n t e f f e c t could be demonstrated by adding raw soybean cake or powdered m i l k to a mulberry l e a f p r e p a r a t i o n . E x t r a c t i o n of these a d d i t i v e s with methanol removed the r e p e l l e n t components (9). Work conducted at the B o l l Weevil Research Laboratory i l l u s t r a t e s some of the complexities of feeding stimulant r e s e a r c h . Feeding-stimulant components e x t r a c t a b l e w i t h petroleum e t h e r , chloroform, acetone, and chloroform-methanol from c o t t o n buds (Gossypium hirsutum L.) appear to belong to s e v e r a l major groups that cause feeding a c t i v i t y i n the b o l l w e e v i l , Anthonomus grandis Boheman, (10, 11, 12, 13, 14). However, i s o l a t i o n a l e f f o r t s f r e q u e n t l y r e s u l t i n a d i s s i p a t i o n of feeding a c t i v i t y that cannot be f u l l y regenerated by recombination, i n d i c a t i n g a breakdown i n the chemical s t r u c t u r e of some components during p u r i f i c a t i o n . f
stimulants.
Bombyx mori (L.) Diabrotica v i r g i f era LeConte Diabrotica longicornus (Say) Musca domestica L. Anthonomus grandis Boheman Anthonomus grandis
(Say)
(132) Guanine, monophosphate (8j g l y c o s i d e , f l a v o n o i d s (133), (135) Gossypol, a-ketogluta- (13) r i c a c i d , malonic a c i d , v a n i l l i n , formic a c i d , l a c t i c a c i d , £-malic a c i d , q u e r c e t i n , β-sitosterol, succinic acid, v a l i n e , quercetin-7glucoside, quercetin-
Yeast Cotton Cotton
B o l l weevil
6 2
Unknown
3 0
Corn, Zea mays
N
(6) (132)
H
Cl7 29°10 glycoside: C H 0 ( ? ) Unknown
Mulberry Corn, Zea mays L.
Silkworm Western corn rootworm Northern corn rootworm House f l y B o l l weevil
potato
(123), (131)»
Colorado beetle
Leptinotarsa decemlineata
Phospholipid, chlorogenie a c i d , g l y c o s i d e
Pappae capensis (wild plum) Potato leaves
Plum moth
(127) (128) (129)
Umbelliferae
Black s w a l l o w t a i l
P a p i l i o polyxenes asterius S t o l l Serrodes p a r t i t a (F.)
(126)
Cruciferae Sinigrin & related g l u c o s i d e s , glucocapparin, g l u c o i b e r i n Carvone, methyl c h a v i col, coriandrol Quebrachitol
Cruciferae
P i e r i s b r a s s i c a (L.)
(134),
(130), (131)
Reference (126)
Compound Sinigrin
Imported cabbageworm Cabbageworm
P i e r i s rapae (L.)
Plant
Common name
Insect
Feeding
S c i e n t i f i c name
Table I.
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch016
Insect
Smaller European elm bark b e e t l e Smaller European elm bark b e e t l e
Tobacco hornworm Diamondback moth
Scolytus m u l t i s t r i atus (Marsham) Scolytus m u l t i s t r i atus (Marsham)
Manduca sexta (L.) Plutella xylostella (L.) (Curt.)
shuckworm
Hickory
Corn earworm (Bollworm) Corn earworm Spruce budworm
Squash bug
Monarch b u t t e r f l y
Dock b e e t l e
Elm l e a f b e e t l e
B o l l weevil
Common name
Laspeyresia caryana
Anasa t r i s t i s (DeGeer) H e l i o t h i s zea (Boddie) H e l i o t h i s zea Choristoneura fumiferana (Clemens)
Anthonomus grandis Boheman Galla Pyrrhalta xanaena l u t e o l a ( S h i l l e r ) (Muller) Gastrophysa cyanea (Melsheimer) Danaus plexippus (L.)
contd.
S c i e n t i f i c name f
Compound
Tomato Cruciferae
Elm
Corn, Zea mays L. White spruce, P i c e a glauca (Moench) Pecan, Carya i l l i n o e n s i s (Wang) K. Koch Elm
Dock, Rumex o b t u s i f o l i u s L. Milkweed, A s c e l p i u s s y r i a c a L. Pumpkin, C u r b i t a pepo L. Corn, Zea mays L.
(139) (140) (141)
(142)
(143) (144)
Unknown Sugars, amino a c i d s Unknown
Unknown
Unknown (+)-catechin-T-B-Dxylopyranoside Lupeyl cerotate Glycoside Sinigrin, Sinalbin, Glucocheirolin
(40) (145)
(137)
(138)
(137)
(136,
(14)
Reference
Glycoside
Unknown
Unknown
3 -glucoside, cyanidin-3-glucoside Pheophytin a, Cotton Pheophytin b Gossypium sp. Ulmus americana L., Unknown American elm
Plant
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch016
Insect Common name
Epilachna v a r i v e s t i s Mexican bean Mulsant beetle Epilachna f u l v o s i g n a t a suahelorum (Weise) Ceratomia catalpae C a t a l p a sphinx (Boisduval) Melanoplus b i v i t t a t u s Twostriped (Say) grasshopper Camnula p e l l u c i d a Clearwinged (Scudder) grasshopper Operophtera brumata Winter moth (L.) Nygmia phaeorrhoea Browntailed moth (Donovan) Malacosoma n e u s t r i a A Tent c a t e r p i l (L.) lar E u p r o c t i s chrysorrhoea (L.) Periophorus p a d i Malacosoma americanE a s t e r n tent urn (F.) caterpillar Gastrophysa v i r i d u l a (DeGeer) Hylemya antiqua Onion maggot (Meigen) Gonioctena a Willow b e e t l e v i t a l l i n a e (L.) D i a b r o t i c a undecimSpotted cucumber punctata howardi beetle (Barber)
S c i e n t i f i c name
(126) (151)
Tannins Tannins Tannins Glycoside Amygdalin Oxalic acid Allyl
Salicin Curcurbitacins
Oak Oak Rosaceae Rosaceae Polygonaeae sp. Onion Willow var. Cucurbitaceae sp.
rumix
(131),
Unknown, C a t a l p o s i d e
sulfide
(153),
(152)
(126) (126)
(150)
(150)
(150)
L e c i t h i n , p h o s p h a t i d y l (147) inositol L e c i t h i n , p h o s p h a t i d y l (147), i n o s i t o l , amyl acetate Tannins (149)
(146)
essential o i l
Solanum campylacant hum L. Catalpa, C a t a l p a bignonoides Corn, soybeans, other p l a n t s Corn, soybeans, other p l a n t s Rosaceae, E r i c a ceae S a l i c i n a e Oak
(50)
Reference
Phaseolunatin,
Compound
Phasaeolus sp.
Plant
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch016
Hypera p o s t i c a (Gyllenhal) Scolytus m u l t i s t r i atus (Marsham)
a Geometrid moth
Aplocera p l a g i a t a (L.) Calophasia l u n u l a (Hufnagel) Heliothis virescens (F.) weevil
Smaller European elm bark b e e t l e
Alfalfa
Tobacco budworm
a n o c t u i d moth
Smaller European elm bark b e e t l e
Scolytus m u l t i s t r i atus (Marsham)
Cereal leaf beetle a Chrysomelid beetle
Cabbage aphid
Ulmus americana (L.)
Corn k e r n e l s & s i l k s , cotton buds & flowers Alfalfa
Linaria
Hypericum
Alligatorweed Alternanthera phylloxeroides, Amaranthaceae Elm, Ulmus americana
(158)
(163)
Adenine s a l t s , nucleotides (+)-catechin-5-alphaD-xylopyranoside, Lupeyl c e r o t a t e
(164)
(162)
(161)
(160)
Unknown
Unknown
C u t i c u l a r waxes
p_-hydroxyacetophenone, (159) o_-hydroxybenzyl a l c o h o l , 2,-hydroxybenzaldehyde
7-alpha-L-rhamnosyl6-methoxyluteolin
a Grasshopper
Poekilocerus bufonius (Klug) Brevicoryne b r a s s i c a e (L.) Oulema melanopus (L.) Agasicles hygrophilia (Nov.) Selmar and Vogt
diets
p r o t e i n s , sugars, (122) wheat germ, o i l , s a l t s , phospholipids, l e c i thins (155) Milkweed, A s c l e p i u s C a l o t r o p i n s y r i c a (L.) Mustard o i l , g l y c o (156) sides Sucrose (157) Laboratory
Cabbage looper
Reference
Trichoplusia n i (Hubner)
Compound
Plant
Common name
S c i e n t i f i c name
Insect
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch016
Corn, c o t t o n , tomato, sorghum Corn, cotton, tomato, sorghum Wheat germ, yeast
F a l l armyworm
Corn earworm (bollworm) Tobacco budworm
Spodoptera f r u g i p e r d a ( J . E. Smith) Spodoptera l i t o r a l i s (Boisdural) H e l i o t h i s zea (Boddie) Heliothis virescens (F.) T r i b o l i u m con fus urn ( J . DuVac) Solenopsis r i c h t e r i Forel
Bran, o l i v e s , peanuts, m i a o u l i Host p l a n t s
a Desert
Schistocerca gregaria Forskal Acrididae
Grasshopper, s e v e r a l species
locus
General
Twostriped grasshopper
Melanoplus b i v i t t a t u s (Say)
General
Sweetclover weevil a Grasshopper
Sitona c y l i n d r i c o l l i s Fahraeus Chorthippus curtipennis (Harris)
Confused f l o u r beetle Black imported f i r e ant B o l l w e e v i l , cabbage looper, ground beef Sweetclover
Anise, Coriander, celery, angelica, citrus Corn, c o t t o n , tomato, sorghum Cotton
Black s w a l l o w t a i l
P a p i l i o polyxenes asterius (Stoll)
a n o c t u i d moth
Plant
Common name
Insect
S c i e n t i f i c name (165)
(166)
Anethole, a n i s i c aldehyde Unknown
(169)
Unknown
(172)
Ascorbic acid, t h i a (170) mine, b e t a i n e , monosodium glutamate Amides, a n i s i c a c i d , (120) benzoic a c i d , ammonium s a l t s , p e n t y l acetate, plant phospholipids, wheat germ o i l Unknown (171)
Adenosine
(143)
Unknown, P a l m i t i c acid Linoleic acid, l i n o Trilinolein
(168)
(166)
Unknown
T e r p i n e o l , c i t r o n e l l o l (167) pinene Unknown (166)
Reference
Compound
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch016
Phrydiuchus t o p i a r i u s (Germar) Gastrophysa cyanea Melsheimer Calophasia l u n u l a (Hufnagel) Pectinophora gossyp i e l l a (Saunders) Dsydercus k o e n i g i i (F.) H e l i o t h i s zea (Boddie) Diatraea grandios e l l a (Dyar) Chalcodermus aeneus Boheman)
C l e n i c e r a aeripennis d e s t r u c t o r (Brown) C a l l i p h o r a spp.
Red
corn,
Southwestern corn borer Cowpea c u r c u l i o
Southern pea
other
16 host
Corn earworm
cotton bug plants
Cottonseed
Pink bollworm
^-sitosterol, Stigmasterol Eicosenoic acid
sucrose, glucose, raffinose water e x t r a c t s
volatiles
Pyridine
Toadflax, L i n a r i a vulgaris Gossypium sp.
extract
Water e x t r a c t
Rumex c r i s p i s
P r a i r i e grain wireworm
Reference
(182)
(181)
(179) ,
(178)
(177)
(161)
(176)
(175)
(180)
g l u c o t r o p a c o l i n , g l u - (127) coapparin, g l u c o i b e r i n , g l u c o c h e i r o l i n , progort r i n , glucosinalbin, s i n i g r i n , glucoerucin Water e x t r a c t , t r i o (121. 173) lein Hypericin (174)
Compound
Unknown
Plant B r a s s i c a sp., Capparidaceae, Nasturtium trogacolum majus (L.) Germinating r y e seed Hypericum sp. (St. Johns wort) S a l v i a sp.
Cabbageworm
P i e r i s brassicae
(L.)
Common name
Insect
S c i e n t i f i c name
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch016
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch016
240
HOST P L A N T RESISTANCE T O PESTS
T h i s i n a b i l i t y to regenerate f u l l feeding a c t i v i t y by recombina t i o n i s e s p e c i a l l y true f o r many of the TLC systems s t u d i e d . Since recombination or f o r t i f i c a t i o n of f r a c t i o n s by sugars and b u f f e r s o f t e n rejuvenated part of the a c t i v i t y , e f f o r t s were d i r e c t e d to formulating an a c t i v e feeding mixture from known cotton c o n s t i t u e n t s , common metabolites, and compounds inducing primary mammalian sensations of t a s t e and odor (13). Of 286 com pounds bioassayed i n d i v i d u a l l y , 52 e l i c i t e d s u b s t a n t i a l a c t i v i t y , and 14 of these p r e v i o u s l y had been reported i n c o t t o n . They i n clude gossypol, α - k e t o g l u t a r i c a c i d , malonic a c i d , v a n i l l i n , formic a c i d , l a c t i c a c i d , £-malic a c i d , q u e r c e t i n , 3 - s i t o s t e r o l , succinic acid, valine, quercimeritrin, quercetin^'-glucoside, and cyanidin-3-glucoside. The i n s e c t was found to express p r e ference f o r sweet, sour, and c o o l i n g t a s t e p r o p e r t i e s , but odor preferences were d i f f i c u l t to e s t a b l i s h . Sixteen c a r b o x y l i c a c i d s , 8 a l c o h o l s , 8 carbonyls, 8 phenols, and 10 amides or amines were among the most s t i m u l a t o r y . When the a c t i v e components were f a c t o r e d on the bases of t a s t e and molecular weight, i t became apparent that sweet substances having molecular weights above 200 were c o n s i s t e n t l y w e l l accepted. Since most of these com pounds were d i - or t r i t e r p e n o i d s or s t e r o i d s , hydroxylated, and much l e s s sweet than the sugars, t h e i r a c t i v i t y may be associated w i t h t h e i r p r e d i c t e d low r a t e of desorption. The most favored molecular weight f o r sour and s a l t y compounds was below 150. B i t ter deterrent compounds were concentrated i n the 100-200 range. Pungent compounds of 150-200 were most d e t e r r e n t . From a review of b i o l o g i c a l l y a c t i v e substances i n host p l a n t s a f f e c t i n g i n s e c t behavior, a frequency t a b l e was prepared r e l a t i n g feeding s t i m u l a t i o n and/or a t t r a c t a n t s and deterrents and/or r e p e l l e n t s to molecular s t r u c t u r e . The l e a d i n g a t t r a c t i v e compounds were: 8 a c i d s a t t r a c t i v e to 1 u n a t t r a c t i v e ; monoterpene hydrocarbons, 9 to 2; d i - or t r i t e r p e n o i d s and s t e r o i d s , 23 to 1; e s t e r s and a l c o h o l s , each 7 to 0; and n u c l e o t i d e s and tannins, each 5 to 0. The l e a d i n g r e p e l l e n t compounds were: 14 a l k a l o i d g l y c o s i d e s u n a t t r a c t i v e to 1 a t t r a c t i v e ; and l a c t o n e s , 7 to 1. Flavonoid, cyanogenic, and other u n c l a s s i f i e d g l y c o s i d e s were normally stimulatory, 17 to 6. The t a s t e s of the stimulatory sub stances were sour, c o o l i n g , semisweet, and s a l t y , and the stimu l a t o r y odors appeared to be f l o r a l , musky, pepperminty, and camphoric. Repellent substances such as the lactones had b i t t e r t a s t e s and s t r o n g l y pungent odors. P l a n t A t t r a c t a n t s . When the known a t t r a c t a n t s were c l a s s i f i e d by chemical s t r u c t u r e (Table 2 ) , 22 were terpenes, 8 were a l c o h o l s , 4 each were e s t e r s , a c i d s , and s u l f u r c o n t a i n i n g , and 2 were p h e n o l i c s . There were 3 that possessed l i t t l e v o l a t i l i t y and probably were m i s c l a s s i f i e d as a t t r a c t a n t s . When these a t t r a c t a n t s were f u r t h e r subdivided by i n s e c t order, somewhat more s p e c i f i c preferences were suggested. Among the Coleoptera, 17 terpenes, 3 ketones, 2 a l c o h o l s , 2 a c i d s , and 5 miscellaneous
Silkworm
Silkworm
B o l l weevil
Bombyx mori (L.)
Bombyx mori (L.)
Anthonomus grandis Boheman Anthonomus grandis Boheman
Chilo suppressalis Asiatic rice (Walker) stem borer L i s t r o d e r e s c o s t i r o s - Vegetable w e e v i l t r i s obliquus (Klug)
B o l l weevil
Silkworm
Imported cabbageworm Black s w a l l o w t a i l
P a p i l i o polyxenes asterius Bombyx mori (L.)
P i e r i s rapae L.
Insect Common name
Attractants.
S c i e n t i f i c name
Table I I
Stoll
Gossypium
Gossypium
R i c e , Oryza s a t i v a L. C r u c i f e r a and Umbelliferae
Cotton, sp. Cotton, sp.
Mulberry, Morus a l b a L.
Mulberry, Morus a l b a L.
Mulberry, Morus a l b a L.
Umbelliferae
Cruciferae
Plant isothiocyanate (183)
Reference
leaf alcohol 3-hexenol
3 - b i s a b o l o l , 3-carophyllene oxide, £ρ inene, 1imonene, 3-carophyllene, t r i me thy lamine , ammonia Oryzanone
(194)
(193)
(16) (192)
Carvone, methyl c h a v i - (184) Coriandrol 2-hexenol, 3-hexenol, (185) 3-gamma-hexeriol, (186) α-3-hexenal C i t r a l , t e r p i n y l ace (187) (7) t a t e , l i n a l y l acetate (188), (189) linalool Isobornyl a c e t a t e , (190) b u t y l a l c o h o l , isoamyl a l c o h o l , a,3-hexenal, c i s and trans-3-y-hexenol, l i n a l o o l Unknown (191)
Allyl
Compound
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch016
Tobacco hornworm
Diamondback moth
Large milkweed bug Banana root borer
Manduca sexta (L.)
Plutella xylostella (L.)
Oncopeltus f a s c i a t u s (Dallas) Cosmopolites sordidus (Germar) Gastrophysa v i r i d u l a (DeGeer) Malacosoma americanum (F.) Hylemya antiqua (Me i gen)
Eastern tent caterpillar Onion maggot
Hickory shuckworm
Laspeyresia caryana ( F i t c h )
weevil
Vegetable
Insect Common name
Listroderes costirostris obliquus (Klug)
S c i e n t i f i c name
(126)
(126)
(198)
(197)
(125)
(196)
(142)
A l l y l s u l f i d e , n-pro - (151) p y l d i s u l f i d e , n-propyl mercaptan, methyl
Amygdalin
Oxalic acid
Polygonaeae rumix sp. Rosaceae
P r o g o i t r i n , glucoc o u r i n g l i n , glucoer u c i n , glucotropac o l i n , gluconastertium, gluconapin Unknown
Amyl s a l i c y l a t e
Unknown
Unknown
Onion
Reference
mustard o i l , i s o t h i o cyanates; methyl, e t h y l , a l l y l , i s o b u t y l , nb u t y l , phenyl, b e n z y l , 3-phenylethyl, a naphthyl Coumarin (195)
Compound
Banana
Milkweed seed
Sweet c l o v e r , Melilotus o f f i c i a n a l i s L. Pecan, Carya i l l i n o e n s i s (Wang) K. Koch Jimson weed, Dat u r a stromonium Cruciferae
Plant
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch016
Blastophagus p i n i p e r d a (L.)
A d r i s tyrannus amurensis (Staudinger) Chrysopa septempunctata (Wesmael)
Musca domestica L.
Reticulitermes flavipes (Kollar) Dendroctonus pseudosugae Hopkins
Pine b e e t l e
a lacewing
House f l y
Pinus d e n s i f l o r a , Pinus s i l v e s t r i s
Matatabi, A c t i n i d i a polygama (Miq.)
Decayed wood by L e n z i t e s trabea Douglas f i r , Pseudotsuga menziez e i Mirb. Franco Mushroom, Amarita muscaria L. Grapes
A l l y l isothiocyanate (202) mustard o i l s , g l y c o s i d e s
C r u c i f e r a e spp.
Striped f l e a beetle Eastern subterranean t e r m i t e Douglas f i r beetle
Methyl eugenol
Fruit
Oriental f r u i t fly a f l e a beetle
(206)
I r i d o d i o l , m e t a t a b i o l , (207) 5-hydroxymatatabiether, 7-hydroxydehydromatatabiether, allomatatabiol Benzoic a c i d (208) a-terpineol
Neutral v o l a t i l e
(205)
(204)
alpha-Pinene
1,3-Diolein
(203)
Essential o i l
(201)
(200)
O i l of c i t r o n e l l a
Fruit
a fruit f l y
(200)
(199)
Reference
O i l of c i t r o n e l l a
d i s u l f i d e , Isopropyl mercaptan Volatiles
Compound
Fruit
Banana
Plant
a fruit f l y
a fruit f l y
Insect Common name
melanogaster (Meigen) Dacus d i v e r s u s (Coquillett) Dacus zonatus (Saunders) Dacus d o r s a l i s (Hendel) Phyllotreta c r u c i f e r a e (Goeze) ]?. s t r i o l a t a (F.)
Drosophila
contd.
S c i e n t i f i c name
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch016
Dendroctonus pseudosugae Hopkins Dendroctonus brevicomis LeConte Scolytus multistriatus (Marsham) E o p i l l i a japonica (Newman)
Ips p i n i (Say)
Hypera p o s t i c a (Gyllenhal) Bruchophagus r o d d i (Gussakbvsky) Hylobius p a l e s (Herbst) L o b l o l l y pine stem
Pales w e e v i l
Japanese b e e t l e
Western pine beetle Smaller European elm bark b e e t l e
Monoterpenoid(s) , eugenol, anethole, alpha-pinene Terpenes
Seed pod e x t r a c t
Ammonium dihydrogen phosphate, Diammonium hydrogen phosphate, ammonium s u l f i d e Unknown
Volatiles
Ethanol
Compound
Geraniol, C i t r o n e l l o l
Douglas f i r , Terpenes Pseudotsuga menziez e i Mirb. Franco Pinus ponderosa " O l e o r e s i n , " a-pinene (Laws) Decaying hardwood Syringaldehyde,
Pinus r e s i n o s a
Alfalfa
A l f a l f a seed
Pine engraver beetle Douglas f i r beetle
Alfalfa
a desert l o c u s t
A l f a l f a weevil
Grasses
Cabbage maggot
Hylemya b r a s s i c a e (Wiedemann) Schistocerca g r e g a r i a (Forskal)
0
Western hemlock Tsuga h e t e r o p h y l l a (R.) Sargent Cabbage
Plant
Ambrosia b e e t l e
Insect Common name
Gnathotrichus s u l c a t u s (LeConte)
S c i e n t i f i c name
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch016
(219)
(218)
(217)
(216)
(215)
(214)
(213)
(212)
(210) , (211)
(36)
(209)
Reference
fruit
cucumber
Oriental moth
Spotted beetle
Grapholitha (Laspeyresia) molesta Busck Diabrotica undecimpunctata howardi Barber Kalotermes f l a v i c o l l i s (Fab.); Zootermopsis nevadensis (Hagen); Heterotermes i n d i c o l a (Wasmann) Reticulitermes Leptinotarsa decemlineata (Say) Bruchophagus r o d d i Gussakovsky
Colorado potato beetle A l f a l f a seed chalcid
Termites
Codling moth
Laspeyresia pomonella (L.)
a checkered beetle
a checkered beetle
sphegeus
Insect Common name
Thanasimus undatulus (Say)
Enoclerus (Fab.)
S c i e n t i f i c name
Alfalfa
Potato
leaves
Cucumis melo (L.) Cucurbitae f o e t i dissima (HBK.) Wood i n f e c t e d Basidomycetes
Douglas f i r , Ponderosa pine, grand f i r Douglas f i r , Ponderosa pine, grand f i r
Plant
-pmene,
(220)
(220)
Reference
(123)
(224)
(104)
3-Carotene, n i a c i n , (33) Vitamin D 2 , c h o l e s t e r o l , d i e t h y l s t i l b e s t e r o l , DL-
Alcoholic extract
V a n i l l i c a c i d , £-hydroxy-benzoic a c i d , £-coumaric a c i d , pro tocatechuic a c i d , f e r u l i c acid
Cucurbitacins
e s t e r s , o i l of c l o v e s , (221), (128) o i l of c i t r o n e l l a , a l c o h o l s , a c i d s , propionates, pine t a r o i l , Anethole, terpene, a l c o h o l s , T e r p i n y l acetate (222) T e r p i n y l acetate (223)
a-pmene, limonene
α-pinene, 3-pinene, limonene
Compound
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch016
Apis m e l l i f e r a L. Trichoplusia n i (Hubner) Hypsipyla g r a n d e l l a (Zeller) Ithomia i p h i a n a s s a Doubleday Chrysopa carnea Stephens Heliotropium indicum L.
a butterfly
common green lacewing
Cedrela odorata
a mahogany shoot
General
Corn
(232)
(230) (231)
(229)
(226)
Tryptophan
(234)
P y r r o l i z i d i n e a l k a l o i d s (233)
l e a f acetone e x t r a c t
Geraniol Phenylacetaldehyde
Essential o i l
(228)
Turpentine, smoke
Ostrinia nubilalis
(227)
E l d e r , Sambucus n i g e r (L.) Wood
Costelytra z e a l a n d i c a (White) Cerambycid sp.
a grass grub beetle Wood boring beetles European corn borer Honey bee Cabbage looper
Ether e x t r a c t , methyl ketones Essential o i l
(225)
Rice grains
Cotton a-pinene
aspartic acid, L-proline, h i s t i d i n e , Pangamic a c i d Ether extract. (178)
Reference
Compound
Plant
Pinus sp. and others
Insect Common name
Dysdercus k o e n i g i i a red cotton bug (F.) Hylotrupes b a j u l u s House b e e t l e s (L.) H. a t e r Bark b e e t l e s Paykull S i t o p h i l u s oryzae (L.) Rice weevil
S c i e n t i f i c name
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch016
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch016
16.
HEDiN E T A L .
Behavioral
and
Developmental
Factors
247
were r e p o r t e d . A p a r a l l e l w i t h the compounds reported as sex a t t r a c t a n t s f o r i n s e c t s of t h i s order i s t h e r e f o r e suggested. Among the Lepidoptera, 6 e s t e r s , 2 g l y c o s i d e s (probably improp e r l y i d e n t i f i e d as a t t r a c t a n t s ) , 2 a c i d s , and 5 a l c o h o l s were reported. In our l a b o r a t o r y , Minyard ôt a l . (15) found 3 - b i s a b o l o l to be present i n the highest concentration of any p o l a r compound i n the cotton bud e s s e n t i a l o i l . I t was not p r e v i o u s l y reported i n nature, but has subsequently been found by our group to be present i n s e v e r a l other malvaceous o i l s . However, 3 - b i s a b o l o l alone i s only about 50% as a t t r a c t i v e i n the l a b o r a t o r y olfactometer b i o assay as a hot water e x t r a c t of c o t t o n . By f r a c t i o n a t i o n and b i o assay of the cotton bud e s s e n t i a l o i l , s e v e r a l other components were i d e n t i f i e d that were a t t r a c t i v e i n t h e i r own r i g h t and that improved the a c t i v i t y of 3 - b i s a b o l o l ; they included 3-carophyllene, ft-limonene, α-D-pinene, and 3-caryophyllene oxide (16). Subse quently, a - b i s a b o l o l (17) and bisabolene oxide (18) have been i d e n t i f i e d as other c o n t r i b u t i n g a t t r a c t a n t s . Feeding Deterrents. A l k a l o i d g l y c o s i d e s have been among the most frequent compounds reported as feeding d e t e r r e n t s . Kuhn and Low (19) found s e v e r a l of these compounds i n Solanaceae and i m p l i c a t e d them as d e t e r r e n t s against the Colorado potato b e e t l e L e p t i n o t a r s a decemlineata (Say). More r e c e n t l y , Harley and Thorsteinson (20) have shown the deterrency of t h i s c l a s s a g a i n s t two-striped grasshopper Melanoplus b i v i t t a l u s (Say) nymphs. L i c h t e n s t e i n et a l . (21) i s o l a t e d 2 - p h e n y l e t h y l i s o t h i o cyanate from the t u r n i p as an antifeedant of vinegar f l i e s . Two r e s i s t a n c e f a c t o r s i n corn p l a n t s , 6-methoxybenzoxazolinone (22) and 2,4-dihydroxy-7-methoxy-l,4-benzoxazine-3-one (23) were shown to be e f f e c t i v e against the European corn borer O s t r i n i a n u b i a l i s (Hubner). Rudman et a l (24) showed that 2 anthraquinones present i n teak heartwood i n h i b i t e d termite a c t i v i t y . Several other i n t e r e s t i n g compounds i n c l u d e juglone (25), azadirachten (26), nepet a l a c t o n e (27) c o c c u l o l i d i n e and i s o b o l d i n e (28), and 2 s h r i o modial acetates (29) . When the known feeding d e t e r r e n t s were c l a s s i f i e d by chemical s t r u c t u r e (Table 3 ) , 19 r e l a t e d a l k a l o i d s or a l k a l o i d g l y c o s i d e s a f f e c t i n g 5 i n s e c t s were reported. The other c l a s s e s and t h e i r frequencies were 4 l a c t o n e s , 4 quinones a f f e c t i n g 2 i n s e c t s , 5 h e t e r o c y c l i c r i n g compounds, 1 i s o t h i o cyanate, and 1 a c i d . While 7 orders of i n s e c t s were s t u d i e d , a l l of the r e p o r t s except 12 i n v o l v e d Coleoptera. Although Beck (3) and Munakata (30) s t r e s s the concept that feeding d e t e r r e n t s do not d i r e c t l y k i l l the i n s e c t , most of those reported are i n f a c t b i o l o g i c a l poisons. Two r e p r e s e n t a t i v e com pounds f o r which LD^Q values were given i n the Merck Index were the a l k a l o i d g l y c o s i d e tomatin (25 mg/kg i . p . and 500 mg/kg o r a l i n mice) and n o r n i c o t i n e (23.5 mg/kg i . p . i n r a t s ) . The a l k a l o i d aglycones would be expected to be more t o x i c . Most of these com pounds are b i t t e r to humans, and some s i m i l a r perception apparAmerican
Chemical
Society Library
1155 16th St, N- W. Washington, D. C.
20036
H O S T P L A N T RESISTANCE
248
m m m m co en en co
vO
ω o
en
/""Ν
CN
en
β 0)
n ω
/—N
«4-1
m en
CU
CN
Ρ*
CN
T O PESTS
C N
C M
C M
C N
m
ι
*
/-N
ON rH
mi
r>»
CJNICOJCO
i—l| C M f C M
oo
mi
C O C O C O C O C N
C N
C M
O
*
<î-
C O I
CNICN J
CMICMI^
C M
OOI
001
oo I
C N ]
C N |
C N |
I
β
C N
•H β
cd
O
rH
N
O CO
u
N β
β
β
43
rH β
β
43 rH
cd
Ό β β
Ο Ρ-
Β ο
υ
1
β •H CO CO
rH
β
o
CU
u Ό 43
6
rH
•H
ω Ρ
β
β
O
Ό
W
rH
β
eu
·Η
rH
rH rH
O O O O O W H w W
Ë
M cd
43
en*
u β
cd
rH Pu.
CO
•
ο ω
Β cd C
•
CO
β
g
β CU
U
U
ω
Ό
00 β
u υ ω
o CJ
eu Pu Η
M
M
eu
Φ CO
B
CJ
O
Η Cd
QJ CU
Ο
O
a,
eu
o
o
>
Ό
cd eu cd eu rH 5-i r H ο 4J O 4-» τΗ α) r H CU ο ω O eu CJ 4 3
rH CJ
eu
rH •H
&
>
eu
eu eu
rH •H
rH 43
cd 4-1 eu
&
4-» eu eu eu eu co
>
rH rH
00
O
eu
pq
>
Ο
CO β rH β CJ
Ή rH
β CJ
I
cd eu
(3. u o eu u u β o 43 w
eu
•H
ex 1
4-1
4-»
•H β
•H β
U
MH
cd
/—N
CJ
CJ
β
o
•H
U
CU •H
co β rH β
00 β
•H
o
U U
CJ α CJ O Q o Q CJ CJ
00 β
u
O
CO β rH β CJ CJ
O O
β
rH •H
r4 4-»
U
eu
CO β 43
rH •H
4-i
rH •H
e> u
co β 43
rH •H
M O eu > co ο β H 4J
>> 4J
C O
co
w
ο
β
u eu C J ο β U O «H o CJ Ό Ο T3
β 43
o u M ptf co S
β
co
o 4-» cd 4-i o
C M
43
4-1 o
B
M
MH
cd
43
4J O
B
/-Ν
cd co
çu cd
u
•H MH
•H •P
β
eu
rH 4=>
•H
H
C/3
cd
o β
43
4-1 eu g
CO
β
•
vO
Χ
Ο
cd 4-» Ο
•H
ω
ΜΗ / - Ν
PL.
β
M'
u
cd co
cd cd 4-> 4J cd cd cd cd CO ω co eu M
β
β
cd •Η cd •H 4-1 r H 4-1 r H Ο Β o CU β β eu
•Η
•H
o
4-> ο eu 4-1 eu <υ
Ό
ω
Ό
β
cd
Si co co β
eu cd
β
β o
cd 4-1 cd
cd 4J cd
β cd eu
43
O PQ
co eu M eu o μ 4J co
β •rH 00
> cd U
eu
U
cd eu
cd T3 β
cd
•H
β
er
u
I
MH <4H
β
o
4-i
O •M cd 4-» O
CO
* O
CU β
•H U •H
43
ο 4J cd 4-» Ο Ρ-.
4-1
ι
1
6
O
CO
I
o
I
g
u eu
Ο) Ό
ι
£ ~
I
O
β
o
O
β CO •Η
Π3
β
•H r4
β
cd · Η
Ή
Ο Ό 4-» β β Ο cd cd cd cd cd cd
!>>
•H
CJ rH β 3 «H
•H
CO
u
43
Ο
er
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch016
ω
o
O
43
O
xi O !•» 43
cd
1
cd
O
o 43
cd r H cd CO r H •H 4-> •H cd 4-> co β co • X β cd pq PQ Pu eu eu M cd cd
u
o
u
O
43
<
Nornicotine d i p i c r a t e (20) s o l a n i n e , tomatine, d i g i t o n i n , saponin, santonin, i n d i c a n e d i o e g i n , hecogenein, lucenine Sinigrin (244) Juglone
Catnip, Nepeta cataria
C r u c i f e r a e spp. Carya ovata bark
Black s w a l l o w t a i l butterfly Smaller European elm bark b e e t l e
(243)
Coumesterol
Alfalfa
P a p i l l o polyxenes asterius S t o l l Scolytus m u l t i s t r i a t u s (Marsham)
(243)
Coumesterol
Spotted a l f a l f a aphid Twostriped grasshopper
(27)
Nepetalactone
Phytophagous insects Pea aphid
diets
(25)
(242)
(181)
Catnip, Nepeta cataria Alfalfa
Cabbage looper
Trichoplusia n i (Hubner) Two ant species (Formicadae) Acyrthosiphon pisum (Harris) Therioaphis maculata (Buckton) Melanoplus b i v i t t a t u s (Say)
Podocarpus h a l l i i
Corn, other
(122)
Laboratory
House f l y
Musca domestica L.
(30)
(28)
Reference
Shiromodiol d i a c e t a t e , (29) Shiromodiol monoacetate L-Dopa (241)
Cocculolidine, isoboldine Clerodendrin A
Compound
C h o l e s t e r y l acetate C h o l e s t e r y l myristate Cholesteryl oleate Hallactones A & Β (Norditerpenelactones) Ascorbic acid
Southwestern corn borer
Southern armyworm
Cocculus t r i l o b u s (DC) Clerodendron tricotomum (Thunb. Parabenzoin t r i l o b u m Nakoe Mucana sp. seeds
Plant
Spodoptera e r i d a n i a (Cramer Diatraea gradiosella Dyar
piercing
piercing
Insect Common name
(F.) a f r u i t moth Spodoptera l i t u r a (F.) a f r u i t
Spodoptera l i t u r a
S c i e n t i f i c name
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch016
0
a vinegar f l y
Drosophila melanogaster Meigen Chrysomelidae pieridae
beetles
Blister
Epicauta spp.
Corn earworm H e l i o t h i s zea (Boddie) Schizaphis graminum Greenbug (Rondani) Drosophila pachea Patterson and Wheeler Epicauta f a b r i c i i Ashgray b l i s t e r (LeConte) beetle Epicauta v i t t a t a (F.) Striped b l i s t e r beetle Epicauta p e s t i f e r a Margined b l i s t e r Werner beetle
a desert l o c u s t
Insect Common name
Schistocerca g r e g a r i a (Forskal)
S c i e n t i f i c name
(Blood of b l i s t e r beetles) Turnip ( B r a s s i c a rap a L. Various
Sweet c l o v e r
Sweet c l o v e r
Sweet c l o v e r
2-phenylethyl cyanate Tomatine Demissine Capsaicin N-Atropine Scopalamine Morphine Sparteine
isothio-
Pilocereine (248) Tophocereine Coumarin, cis-Hydroxy- (249) coumaric a c i d glucoside Coumarin, cis-o-Hyd rοxy coumaric a c i d glucoside Coumarin, cis-o-Hy(249) droxy-coumaric a c i d glucoside Cantharidin (250)
Senita c a c t i
alcohol
Benzyl
(251)
(21)
(247)
(245) (171) (246)
Small grains
(26)
Reference
Unknown
Azadirachtin,
Compound
Neem t r e e , A z a d i rachta i n d i c a melia, Azerdarach s c i l l a maritima Corn s i l k s
Plant
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch016
16.
HEDIN E T
AL.
Behavioral
and
Developmental
Factors
251
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch016
e n t l y occurs with i n s e c t s . R e p e l l e n t s . Beck (3) d e f i n e s a r e p e l l e n t as a substance that e l i c i t s an o r i e n t e d response away from the apparent source. The property of v o l a t i l i t y i s thus i n f e r r e d f o r the candidate com pound. Another group of r e p e l l e n t s i n c l u d e s the defense s e c r e t i o n s . However, they are b i o s y n t h e s i z e d by i n s e c t s r a t h e r than by p l a n t s , so they have not been i n c l u d e d . Some of the compounds reported (Table 4) were myrcene and limonene (31) and b u t y r i c a c i d and coumarin (33). Several others that were reported as r e p e l l e n t s have no a p p r e c i a b l e vapor pressure and t h e r e f o r e should have been reported as feeding d e t e r r e n t s . Any r e p e l l e n c y pro bably should have been a t t r i b u t e d to i m p u r i t i e s i n the i s o l a t e d f r a c t i o n . They i n c l u d e anacardic a c i d (34), tannic a c i d (35), and s h i k i m i c a c i d , p y r i d o x i n e , s u c c i n i c a c i d , malic a c i d , betaine, and xanthophyll (33). Twelve a p p r e c i a b l y v o l a t i l e compounds were reported; they i n c l u d e : 4 hydrocarbons, 3 a c i d s , 2 phenols, 2 terpenes and 1 a l c o h o l (Table 4). The p a u c i t y of work on n a t u r a l l y occur r i n g i n s e c t r e p e l l e n t s i s apparent. However, s i n c e many p l a n t s that are r e s i s t a n t to i n s e c t s have c h a r a c t e r i s t i c odors, i t i s p o s s i b l e that a number of others e x i s t . The v a s t l y im proved c a p a b i l i t y f o r i d e n t i f i c a t i o n of v o l a t i l e compounds, i . e . , i n t e g r a t e d gas chromatography-mass spectrometry and h i g h l y s e n s i t i v i t y nuclear magnetic resonance spectrometry, could f a c i l i t a t e expanded r e s e a r c h on r e p e l l e n t s i n the next few years. O v i p o s i t i o n Stimulants. Many of the compounds reported as o v i p o s i t i o n stimulants (Table 5) were a l s o i d e n t i f i e d as feed i n g stimulants or a t t r a c t a n t s (Tables 1 and 2 ) , but not neces s a r i l y f o r the same i n s e c t s . More o v i p o s i t i o n stimulants were reported f o r D i p t e r a than f o r any other order. T h i s may r e f l e c t the r e l a t i v e s i m p l i c i t y of the bioassay as compared with that f o r other orders. The cabbage maggot Hylemya b r a s s i c a e (Wiedemann) was stimulated by s i n a g r i n and 3-phenylethylamine (36). Matsumoto and Thorsteinson (37) reported that the onion maggot was stimu l a t e d by η-propyl d i s u l f i d e , methyl d i s u l f i d e , methyl d i s u l f i d e , η-propyl mercaptan, and n-propanol. ( S u l f i d e s and mercaptans are found i n high concentrations i n onions.) The c a r r o t r u s t f l y P s i l a rosae (F) was stimulated by methyl isoeugenol and ( E ) - t r a n s l,2-dimethoxy-4-propenylbenzene (38). The mosquito was reported by P e r r y and Fay (39) to be stimulated by 3 e s t e r s ; e t h y l a c e t a t e , methyl propionate, and methyl b u t y r a t e . In Lepidoptera, a p a r t i a l l y c h a r a c t e r i z e d g l y c o s i d e f o r the tobacco hornworm Manduca sexta (L.) (40), a l l y l i s o t h i o c y a n a t e f o r the diamond back moth P l u t e l l a z y l o s t e l l a (L.) (41) and two p a r t i a l l y c h a r a c t e r i z e d growth r e g u l a t o r s f o r the European corn borer (42) were reported.
O
(Forskal)
Hypera p o s t i c a (Gyllenhal) Bruchophagus r o d d i (Gussakovsky)
gregaria
____________________
weevil
A l f a l f a seed chalcid
Alfalfa Alfalfa
Alfalfa
corn
Western pine beetle a desert l o c u s t
Dendroctonus brevicomis LeConte Schistocerca
termite
General,
Anacardic
Cashew, Anacardium o c c i d e n t a l e L. Ponderosa pine
a
(211) (32) (172) (35)
η-valeric a c i d isovaleric acid, Unknown Tannic a c i d
B u t y r i c a c i d , coumarin, (33) s h i k i m i c a c i d , pyridoxi n e , s u c c i n i c a c i d , xant h o p h y l l , malic a c i d , betaine
(31)
(34)
Myrcene, limonene
acid
(254)
NIC-2, C
N i c a n d r i a sp.
Tobacco hornworm
7
Alcohol C22H27O
N i c a n d r i a sp.
O
(131)
Essential o i l
4 0
(252) (253) (139)
Nicotine
H
(235)
Capsaicin
2 8
(235)
Tomatin
Tomato, _S. esculentum M i l l . Pepper, _3. capsicum Tobacco, N i c o t i a n a tobacum L. Corn, Zea mays L.
Colorado potato beetle Colorado potato beetle Colorado potato beetle Corn earworm (Bollworm) Tobacco hornworm
Plant
Leptinotarsa decemlineata (Say) Leptinotarsa decemlineata (Say) Leptinotarsa decemlineata (Say) H e l i o t h i s zea (Boddie) Manduca sexta (Johna.) (L.) Manduca sexta (Johna.) (L.) R e t i c u l i t e r m e s sp.
Common name
S c i e n t i f i c name
Reference
Insect
Repellents.
Compound
Table IV.
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch016
S c i e n t i f i c name
Redwood i n s e c t s
Assorted
Insect Common name Clerodendrum tricotomum Thunb. Coast Redwood
Plant Clerodendrin A (diterpene) P h e n o l i c compounds
Compound
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch016
(256)
(255)
Reference
a desert l o c u s t
Carrot r u s t f l y
Schistocerca gregaria (Forskal)
P s i l a rosae
Tobacco budworm
Heliothis virescens (F.) C ryp t o rhynchus l a p a t h i L.
Poplar and willow borer
European corn borer Yellowfever mosquito
Ostrinia nubilalis (Hubner) Aedes aegypti (L.)
(F.)
Onion maggot
Cabbage maggot
Colorado potato beetle Tobacco hornworm Diamondback moth
Hylemya antiqua (Me i gen)
Leptinotarsa decemlineata (Say) Manduca sexta (L.) Plutella xylostella (Curt) Hylemya b r a s s i c a e (Wiedemann)
Insect Common name
Oviposition stimulants.
S c i e n t i f i c name
Table V.
Lecithin
Compound
N
Poplar
Unknown
Tomato g l y c o s i d e , C_7H290_o Brassica nigra A l l y l isothiocyanate L. & other C r u c i f e r a e Swede, B r a s s i c a e S i n i g r i n , betaphenylnapus L. ethylamine, a l l y l isothiocyanate Onion η-propyl d i s u l f i d e , , methyl d i s u l f i d e , np r o p y l mercaptan, npropyl alcohol Commiphora myrrha alpha-Pinene, b e t a p inene, 1imonene, eugenol Carrot leaves Methyl isoeugenol t r a n s 1,2-dimethoxy-4-propenylbenzene Zea mays "Gibberellin-like" a c y t o k i n i n , other — e t h y l a c e t a t e , methyl propionate, methyl butyrate Tobacco Unknown
S. tuberosum
Plant
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch016
(258)
(257)
(39)
(42)
(38) , (38)
(44)
(37)
(36)
(40) , (131) (41)
(43)
Reference
16.
HEDiN E T A L .
3
w CO
PQ
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch016
CO
β β Ο
& Β ο
C J
CO β •Η ω β CO
Ο co ω CO
CO
CO
rO Ο
CO
-β
o β
/—s (1)
Β CO β
α
•Η
4Η
•Η
4-»
β α)
CO
β -β ο β ο
CO
•Η
0 rH rH
CO
C J
υ
CO
• v_v
CO •H
CO
β ω β •Η -β ϋ
Behavioral
and Developmental
Factors
HOST P L A N T RESISTANCE T O
256
In Coleoptera, l e c i t h i n was reported f o r the Colorado potato b e e t l e (43). In Orthoptera, 4 terpenes were reported f o r the so c a l l e d desert l o c u s t S c h i s t o c e r c a g r e g a r i a (Forskal) (44). In Coleoptera, saponins were reported f o r a m u l t i v o l t i n e bruchid Callosobruchus c h i n e n s i s (L.) (45). A l l data on the o v i p o s i t i o n stimulants are summarized i n Table 5. There were a l s o r e p o r t s on feeding i n c i t a n t s , f l i g h t t e r m i n a t i o n stimulants, swallowing f a c t o r s , mating f a c t o r s , growth f a c t o r s , and an o v i p o s i t i o n d e t e r r e n t ; these data are included i n Table 6. β-Sitosterol, 3 - s i t o s t e r o l g l u c o s i d e , l u p e o l , i s o q u e r c i t r i n and 2 ,3,4 ,5,7-pentahydroxyflavone were reported as feed i n g i n c i t a n t s f o r the silkworm l a r v a e (_7, 4_, _7, 48, 49) . Phaseol u n a t i n and l o t a u s t r i n , cyanogenic g l y c o s i d e s , were reported as as feeding i n c i t a n t s f o r the Mexican bean b e e t l e Epilachna v a r i v e s t i s (Mulsant) (50). Coumarin was reported as a f l i g h t t e r mination agent f o r the sweet c l o v e r w e e v i l Sitona c y l i n d r i c o l l i s (Fahraeus) (51). C e l l u l o s e , s i l i c a and potassium phosphate were reported as swallowing f a c t o r s f o r the silkworm l a r v a e (7), and p r o t e i n , l e u c i n e , and guanosine-5'-monophosphate as swallowing f a c t o r s f o r the mosquito (52). trans-2-Hexenal was reported as a mating f a c t o r f o r the p o l y phemus moth Antheraea polyphemus (Cramer) (53, 54). Chlorogenic a c i d was described as a growth f a c t o r f o r the silkworm l a r v a (55), and some p a r t i a l l y c h a r a c t e r i z e d sapogenic aglycones were r e ported as o v i p o s i t i o n d e t e r r e n t s f o r the bruchid. The compounds reported f o r these miscellaneous c a t e g o r i e s are the same as, or s i m i l a r t o , those reported e a r l i e r as a t t r a c t a n t s , feeding s t i m u l a n t s , and d e t e r r e n t s . 1
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch016
PESTS
f
Toxins and Growth Not a l l of the chemical c o n s t i t u e n t s of p l a n t t i s s u e are con ducive to i n s e c t growth and w e l l - b e i n g . Plant defense against u t i l i z a t i o n by i n s e c t s i n c l u d e s an a r r a y of a l k a l o i d s , phenols, f l a v o n o i d s , and other substances, many of which may a l s o have feeding deterrent or r e p e l l e n t p r o p e r t i e s as discussed i n the previous s e c t i o n s . Analogs of i n s e c t hormones that have been found i n p l a n t t i s s u e a l s o may c o n t r i b u t e to host p l a n t r e s i s tance; however, they w i l l not be included i n t h i s d i s c u s s i o n . No attempt w i l l be made to c i t e every reported p l a n t t o x i n , or other growth i n h i b i t i n g chemical. Rather, a few r e l a t i v e l y w e l l understood p l a n t - i n s e c t i n t e r a c t i o n s have been s e l e c t e d f o r d i s c u s s i o n . They i n c l u d e the benzoxazolinone compounds with European corn borer i n maize; Gossypol with H e l i o t h i s zea (Boddie) and H e l i o t h i s v i r e s c e n s (F.) i n cotton and saponins and protease i n h i b i t o r s a f f e c t i n g s e v e r a l i n s e c t s i n legumes and stored legume seeds. European Corn Borer. The r e s i s t a n c e of maize v a r i e t i e s to the growth and s u r v i v a l of European corn borer l a r v a e was shown
Sweet c l o v e r weevil Silkworm
House f l y
Sitona c y l i n d r i c o l l i s Fahraeus Bombyx mori (L.)
Musca domestica (L.)
Laboratory d i e t
Melilotus o f f i c i a n a l i s L. Mulberry
F l i g h t Termination
(7) ~~
C e l l u l o s e , water ext r a c t , s i l i c a , potassium phosphate Protein, ^-leucine, Guanosine-5 -monophosphate
(52.)
(51)
Coumarin
1
(178)
Lipids
f
Cottonseed
f
(123)
Colorado potato beetle Red cotton bug
Leptinotarsa decemlineata (Say) Dysdercus k o e n i g i i (F.)
Mulberry Mulberry
(7) (49)
(47) (50)
(46)
Reference
Potato leaves
Phaseolus sp.
Mexican bean beetle Silkworm Silkworm
Epilachna v a r i v e s t i s Mulsant Bombyx mori (L.) Bombyx mori (L.)
Beta-sitosterol, b e t a - s i t o s t e r o l glucoside, lupeol Phaseolunatin
Compound
isoquercitrin 2 ,3,4 ,5,7-pentahydroxyflavone Alcoholic extract
Mulberry
Feeding I n c i t a n t s
Plant
Silkworm
Insect Common name
Bombyx mori (L.)
S c i e n t i f i c name
Table VI. Miscellaneous
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch016
Callosobruchus c h i n e n s i s (L.)
a bruchid
Silkworm an a l f a l f a aphid
Bombyx mori (L.) ? Alfalfa
Growth F a c t o r
Oak leaves
Mating Factor
Plant
Soybeans
O v i p o s i t i o n Deterrent
polyphemus moth
Insect Common name
Antheraea polyphemus (Cramer)
S c i e n t i f i c name
Sapogenin
chlorogenic acid Unknown
trans-2-hexenal
Compound
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch016
(45)
(55) (117)
(53)
Reference
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch016
16.
HEDiN E T A L .
Behavioral
and Developmental
Factors
259
to be the r e s u l t of feeding deterrency and/or growth i n h i b i t i o n exerted by benzoxazolinone compounds i n c e r t a i n t i s s u e s of young p l a n t s (_3, 22, 56) . Beck (3) covers i n some d e t a i l the r e s e a r c h that l e d to the d i s c o v e r y of r e s i s t a n t f a c t o r s A, B, and C. R e s i s t a n t f a c t o r A was i d e n t i f i e d as 6-MBOA (6-methoxybenzoxazolinone) (22). Klun (57) found a strong c o r r e l a t i o n between the amount of 6-MBOA produced by 11 maize inbreds a t the whorl stage of development and the f i e l d r a t i n g of r e s i s tance of the inbreds to the f i r s t - b r o o d European corn b o r e r . H i g h l y r e s i s t a n t inbreds y i e l d e d 10 times more 6-MBOA than h i g h l y s u s c e p t i b l e inbreds. He a l s o suggested that a p r e cursor o f 6-MBOA may be more b i o l o g i c a l l y a c t i v e than 6-MBOA. Klun e t a l . (23) i n a followup study evaluated 2,4-dihydroxy7-methoxy-2H-l,4-benzoxazin-3-one (DIMBOA) which V i r t a n e n (58) and Wahlroos and V i r t a n e n (59) had reported as the precursor of 6-MBOA. When DIMBOA was incorporated i n the d i e t , i t i n h i b i t e d l a r v a l development and caused 25% m o r t a l i t y . I t was concluded that DIMBOA i s a chemical f a c t o r i n the r e s i s t a n c e of corn to f i r s t - b r o o d European corn b o r e r . The adequacy of DIMBOA i n accounting f o r d i f f e r e n c e s i n l e v e l s o f r e s i s t a n c e was s t u d i e d i n 11 inbreds and t h e i r d i a l l e l combinations by Klun e t a l . (60). L e a f - f e e d i n g r a t i n g s were obtained under a r t i f i c i a l i n f e s t a t i o n and whorl-leaf samples analyzed f o r DIMBOA. The c o r r e l a t i o n between DIMBOA and r e s i s tance to l e a f feeding was 0.89 a t the inbred l e v e l and 0.74 a t the h y b r i d l e v e l . The v a r i a n c e f o r general combining a b i l i t y accounted f o r 84% o f the v a r i a t i o n i n r e s i s t a n c e r a t i n g s and 91% of the v a r i a t i o n i n c o n c e n t r a t i o n i n DIMBOA. E f f o r t s to f i n d r e s i s t a n c e to second-brood borers i s i n progress. Pesho e t a l . (61) i d e n t i f i e d s e v e r a l inbred l i n e s possessing an acceptable l e v e l of r e s i s t a n c e . Scott and Guthrie (62) reported a s p l i t - p l o t study c o n t r a s t i n g chemicals and r e s i s tance as c o n t r o l measures f o r second-brood b o r e r s . The r e s i s t a n t X r e s i s t a n t crosses e x h i b i t e d a 4% y i e l d r e d u c t i o n , the y i e l d of the s u s c e p t i b l e X s u s c e p t i b l e cross was reduced by 12%. The chemical and genetic bases o f second-brood borer r e s i s t a n c e i n corn remain unknown. Feeding s t u d i e s have not i m p l i c a t e d DIMBOA i n second brood r e s i s t a n c e . H e l i o t h i s spp. H e l i o t h i s zea, the bollworm, and H e l i o t h i s v i r e s c e n s , the tobacco budworm, are g e n e r a l l y r e f e r r e d to as the bollworm complex. Both species feed on a wide range of host p l a n t s (63, 64). A f r e e exchange of hosts occurs between cotton and other host p l a n t s as reported i n a study i n M i s s i s s i p p i (63) . In a l l species o f the genus Gossypium, lysigenous gossypol glands i n the p l a n t p a r t s above-ground have contents known to be t o x i c to nonruminant animals i n c l u d i n g i n s e c t s . Three cotton gland pigments, gossypol, q u e r c e t i n , and r u t i n , were incorporated i n t o the standard bollworm d i e t and found by Lukefahr and M a r t i n (65) to decrease l a r v a l growth. They sug-
HOST P L A N T RESISTANCE T O PESTS
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch016
260
gested that p l a n t breeders might s e l e c t f o r cotton p l a n t s with higher pigment content as a mechanism of r e s i s t a n c e . High gossypol cotton l i n e s (gossypol content 1.7% i n X-G-15) have been found i n the dooryard cottons (66) . Shaver and Lukefahr (67) found i n d i e t a r y s t u d i e s that n a t u r a l l y o c c u r r i n g f l a v o n o i d p i g ments have p o t e n t i a l as sources of r e s i s t a n c e to H e l i o t h i s spp. larvae. O l i v e r e t a l . (68) found that glanded cotton d i e t s caused a 21-31% r e d u c t i o n i n feeding by a l l ages of l a r v a e and that the e f f i c i e n c y of food conversion was decreased. Shaver e t a l . (69) a l s o found that food u t i l i z a t i o n by H. zea, but not H. v i r e s c e n s , was reduced by a d i e t c o n t a i n i n g high gossypol c o t t o n . L a r v a l weight gains of both species were a l s o reduced by feeding the high gossypol d i e t . There are two r e c e s s i v e genes, _ l 2 and &I3 that produce cotton p l a n t s devoid of gossypol glands i n the p l a n t and seed (70). In a study of l a r v a l feeding by H e l i o t h i s on 14 p a i r s of glanded and glandless cotton l i n e s , weight gains were greater by those f e e d i n g on the g l a n d l e s s member of each p a i r (71, 72). In f i e l d s t u d i e s , l a r v a e feeding on glandless l i n e s were l a r g e r , but the damage to the p l a n t was not s i g n i f i c a n t l y greater (68, 73). However, the glandless l i n e s i n some v a r i e t y backgrounds tended to r e c e i v e more damage than the glanded counterpart i n both these s t u d i e s . Thus, these authors suggest a c a r e f u l c o n s i d e r a t i o n of the v a r i e t y - g l a n d l e s s i n t e r a c t i o n . Wilson (74, 75) found that H. v i r e s c e n s l a r v a e a t 6 days of age could d i s c r i m i n a t e among the 9 genotypes of the two glandless genes. T h e i r preference was i n v e r s e l y r e l a t e d to gossypol content of the 9 genotypes. He a l s o suggests that i t might be p o s s i b l e to s e l e c t seedlings by counting pigment glands i n the p e t i o l e and cotyledon. Through cooperative e f f o r t s of s e v e r a l s c i e n t i s t s across the U. S. Cotton B e l t , breeding l i n e s w i t h adequate gossypol l e v e l s to confer good f i e l d r e s i s t a n c e to H e l i o t h i s have been developed. Gossypol and r e l a t e d terpenoids are a l s o r e l a t e d to disease r e s i s t a n c e i n c o t t o n . Gossypol and four r e l a t e d terpenoid a l d e hydes, 6-methoxygossypol, 6,6 -dimethoxygossypol, hemigossypol and 6-methoxyhemigossypol, were i d e n t i f i e d i n r o o t s of 1-wk-old A c a l a 4-42 cotton seedlings (76). Histochemical procedures r e vealed the l o c a l i z a t i o n of these terpenoids i n the epidermis and i n s c a t t e r e d c o r t i c a l parenchyma c e l l s of the healthy tap r o o t . These compounds may be r e l a t e d to r e s i s t a n c e of cotton to V e r t i c i l l i u m d a h l i a e . Since gossypol and r e l a t e d terpenoids are absent from the f i r s t 3 cm of healthy root t i s s u e and s i n c e the root cap zone appears to be the primary p o i n t of the fungus i n f e c t i o n , the fungus probably does not contact these terpenoids when i t f i r s t penetrates the r o o t . Minton (77) reported that the root knot nematode (Meloidogyne i n c o g n i t a a c r i t a ) penetrated the r o o t s of Auburn 56 and Rowden cotton seedlings p r i n c i p a l l y w i t h i n the a p i c a l 2 cm of the tap r o o t . T h i s area of r o o t i n 1-wk-old seedl i n g s of these v a r i e t i e s i s f r e e of gossypol and r e l a t e d t e r T
16.
HEDiN E T A L .
Behavioral
and
Developmental
Factors
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch016
penoids (78). T h i s root t i p zone may be c a u s a l l y r e l a t e d to s u s c e p t i b i l i t y to nematode p e n e t r a t i o n .
261 the
Legume Insects. Applebaum and Βirk (79) , reviewing the n a t u r a l mechanisms of r e s i s t a n c e to i n s e c t s i n legume seeds, c i t e d the i s o l a t i o n of a T r i b o l i u m l a r v a l protease i n h i b i t o r from the soybean. They noted that T r i b o l i u m protease i n h i b i t o r s are pre sent i n legume species that are normally regarded as s u s c e p t i b l e to damage by T r i b o l i u m spp. and that the a c t i v i t i e s of these i n h i b i t o r s are i n v a r i a b l y s p e c i f i c on T r i b o l i u m i n v i v o and i n v i t r o . They suggest that s e l e c t i o n and breeding of seed v a r i e t i e s (e.g., groundnuts or chickpeas) c o n t a i n i n g higher concentrations of the s p e c i f i c T r i b o l i u m protease i n h i b i t o r s would a f f o r d at l e a s t par t i a l r e s i s t a n c e to damage i n storage, without being detrimental to human or animal n u t r i t i o n . Applebaum and Guez (80) found a s p e c i f i c heteropolysaccharide comprising about 1% of the h a r i c o t bean that was respon s i b l e f o r r e s i s t a n c e to the bruchid b e e t l e . Higher concentrations of t h i s f a c t o r a l s o impart r e s i s t a n c e to a second bruchid b e e t l e , Acanthoscelides obtectus (Say), a major pest of h a r i c o t beans (80). Saponins are t r i t e r p e n o i d g l y c o s i d e s that occur i n legume seeds and p l a n t s i n c l u d i n g soybean. F i v e aglycones have been i s o i s o l a t e d and t h e i r chemical s t r u c t u r e s have been determined (81). These and r e l a t e d saponins a l s o occur i n checkpeas, garden peas, broad beans, h a r i c o t beans, l e n t i l s and groundnuts (82). A c o r r e l a t i o n was a l s o reported between the t o x i c i t y of c e r t a i n legume saponin f r a c t i o n s to Callosobruchus spp. l a r v a e , and the r e l a t i v e r e s i s t a n c e of these d i f f e r e n t legume seeds to i n s e c t damage (82). Saponins have a l s o been implicated as p o s s i b l e f a c t o r s f o r r e s i s t a n c e i n a l f a l f a to white grubs (83), pea aphid, potato l e a f hopper and c e r t a i n other a l f a l f a i n s e c t s (84, 85). Hanson et a l . (86) showed that most a l f a l f a (Medicago s a t i v a L.) populations s e l e c t e d f o r high saponin concentration had more pea aphid (Acyrthosiphon pisum (Harris) r e s i s t a n c e than those with low sap onin concentration. Pedersen et a l . (87) , however, found that the f o l i a g e and root saponin concentrations of s i x pea aphid r e s i s t a n t and f i v e pea a p h i d - s u s c e p t i b l e a l f a l f a v a r i e t i e s were not s i g n i f i c a n t l y c o r r e l a t e d with i n s e c t damage. There was s i g n i f i c a n t negative c o r r e l a t i o n of pea aphid r e s i s t a n c e with root saponin content, but there was a s i g n i f i c a n t p o s i t i v e c o r r e l a t i o n between c l o v e r root c u r c u l i o (Sitona h i s p i d u l u s (F.)) damage and f o l i a g e saponin content. There was no evidence that breeding f o r r e s i s t a n c e to pea aphids had changed the f o l i a g e saponin concentration, but i t appeared to r e duce the amount of saponin i n the r o o t s . The apparent c o n f l i c t between the r e s u l t s of Hanson et a l . (86) and Pedersen et a l . (87) might be explained by the work of Horber et a l . (84) who studied saponin components from Dupuits
HOST P L A N T RESISTANCE T O
262
PESTS
and Lahontan a l f a l f a . Lahontan contained more soyasapogenol A than Dupuits, but medicagenic a c i d predominated i n Dupuits. Medicagenic a c i d was found to be r e s p o n s i b l e f o r t o x i c p r o p e r t i e s i n a l l assays. Presence or absence of medicagenic a c i d seemed to e x p l a i n most of the d i f f e r e n c e s i n b i o l o g i c a l a c t i v i t y of ext r a c t s of Dupuits and Lahontan c u l t i v a r s . Increased m o r t a l i t y of potato l e a f hopper Empoasca gabae ( H a r r i s ) and pea aphid nymphs was r e l a t e d to not only i n c r e a s i n g saponin concentration, but a l s o to the kind and o r i g i n of saponins host c u l t i v a r . One of the best known cases of saponins being i m p l i c a t e d i n disease r e s i s t a n c e i s r e s i s t a n c e of oats (Avena s a t i v a L.) to t a k e - a l l disease (Gaeumannomyces graminis (Sacc.) Arx and O l i v i e r ) i n which the t r i t e r p e n o i d saponin c a l l e d "Avenacin" has been i d e n t i f i e d as the causative agent (88). Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch016
1
N u t r i t i o n a l Factors of Insects
i n P l a n t s A f f e c t i n g S u r v i v a l and
Development
The i n s e c t i s dependent on the p l a n t f o r much more than n u t r i e n t s : Chemostimulation, p h y s i c a l f a c t o r s , and a s a t i s f a c t o r y microenvironment are a l l i n t e r a c t i n g f a c t o r s which play a r o l e i n determining whether a p l a n t may be s u s c e p t i b l e or r e s i s t a n t (3). A r e s i s t a n t p l a n t i s not n e c e s s a r i l y n u t r i t i o n a l l y inadequate, and more f r e q u e n t l y than not, n u t r i t i o n does not appear to be a primary f a c t o r . P a i n t e r (2) suggested that some instances of r e s i s t a n c e may be a t t r i b u t e d to the complete absence of s p e c i f i c n u t r i e n t s required by the i n s e c t ; however, to our knowledge, there i s no absolute documented evidence of t h i s form of r e s i s tance. The opposite o p i n i o n has been expressed by Fraenkel (6). T h i s view was based on the unproven assumption that a l l p l a n t s are capable of meeting any i n s e c t ' s n u t r i t i o n a l needs. We know now from subsequent research that the r o l e of n u t r i t i o n a l f a c t o r s i n p l a n t r e s i s t a n c e i s f a r too complex to f i t e i t h e r of these views (_5, 89). Although r e s i s t a n c e mechanisms i n v o l v i n g host n u t r i t i o n a l s t a t u s may be q u i t e p r e v a l e n t , they are most d i f f i c u l t to prove because the r e s i s t a n c e may be due to the amount of some f a c t o r that i s present or the requirement f o r some obscure t r a c e f a c t o r that i s absent. A p o t e n t i a l disadvantage of genetic manipulation of the n u t r i t i o n a l q u a l i t y of the i n s e c t ' s host i s that a p l a n t developed so that i t would be n u t r i t i o n a l l y inadequate f o r the i n s e c t might a l s o be e q u a l l y inadequate f o r man or the animals that would u t i l i z e the crop. A d d i t i o n a l l y , the p l a n t may not be acceptable to FDA r e g u l a t i o n s r e s t r i c t i n g major changes i n n u t r i tional factors. For the purposes of t h i s d i s c u s s i o n , the r e l a t i o n s h i p of n u t r i t i o n a l f a c t o r s to r e s i s t a n c e w i l l be reviewed i n r e l a t i o n ship to two mechanisms of r e s i s t a n c e — a n t i b i o s i s and preference. Antibiosis.
A n t i b i o s i s i s the adverse e f f e c t of a p l a n t ( i n
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch016
16.
HEDIN
ET
Behavioral
AL.
and
Developmental
Factors
263
t h i s context) on some aspect of the i n s e c t ' s b i o l o g y (1, _, 90). More o f t e n t h i s type of r e s i s t a n c e stems from t o x i n s or other such a n t i b i o t i c agents (see previous s e c t i o n ) . From a n u t r i t i o n a l standpoint, although there are few documented examples, a n t i b i o s i s may occur f o r one or more of the f o l l o w i n g reasons (90): (1) the absence or d e f i c i e n c y i n the p l a n t of some n u t r i t i o n a l m a t e r i a l s such as v i t a m i n s , e s s e n t i a l amino a c i d s or s p e c i f i c s t e r o l s ; and (2) the imbalance i n a v a i l a b l e n u t r i e n t s , e s p e c i a l l y sugar-protein or sugar-fat r a t i o s . Sugar content of p l a n t s may be very important to i n s e c t p e s t s , u s u a l l y because of feeding s t i m u l a t i o n , but i t may a l s o be l i m i t i n g f o r proper growth and s u r v i v a l . For example, low l e v e l s of s o l u b l e sugar content i n the host p l a n t of the cabbage aphid Brevicoryne b r a s s i c a e (L.) l i m i t s r e p r o d u c t i o n and d e v e l opment of winged forms i n the aphid (91). Akeson et a l (92) demonstrated the importance of glucose, f r u c t o s e and sucrose l e v e l s i n sweetclover ( M e l i l o t u s ) leaves to s u c c e s s f u l feeding and n u t r i t i o n of the sweetclover w e e v i l (Sitona c y l i n d r i c o l l i s Fahraeus). C e r t a i n pentoses i n the bean, Phaseolus v u l g a r i s , have been shown to i n h i b i t the growth of the b r u c h i d Callosobruchus c h i n e n s i s (L.) (93). Some i n s e c t s requirements f o r sugars may vary with age. Reduction i n sugar content of the p l a n t at the more c r i t i c a l stages may cause r e s i s t a n c e . For example, l a r v a e of European corn borer, O s t r i n i a n u b i l a l i s , r e q u i r e glucose u n t i l the f o u r t h i n s t a r and are capable of minutely d i f f e r e n t i a t i n g between d i f f e r e n t concentrations (94). Knapp et a l . (95) a l s o showed that the bollworm, H e l i o t h i s zea, could d i s c r i m i n a t e between concent r a t i o n s of sugars and that the sugar balance was important i n the r e s i s t a n c e of c e r t a i n l i n e s of corn to t h i s i n s e c t . Most phytophagous i n s e c t s studied thus f a r have shown the same q u a l i t a t i v e requirements f o r amino a c i d s as the r a t . In pea aphid r e s i s t a n t p l a n t s of Pisum sativum L., lower concentrat i o n s of amino a c i d s occur i n r e s i s t a n t than i n s u s c e p t i b l e l i n e s (96, 97). S i m i l a r l y , Colorado potato b e e t l e l a r v a e were shown to grow f a s t e r with higher s u r v i v a l r a t e s on young potato f o l i a g e than on l e a f f o l i a g e , presumably because of a more f a v o r a b l e amino a c i d content i n the younger t i s s u e (98). The s i l k s of c e r t a i n corn l i n e s r e s i s t a n t to the corn earworm (bollworm) a l s o have lower concentrations of amino a c i d s than those of s u s c e p t i b l e l i n e s (99). I t has not been shown, however, that lowered amounts of c e r t a i n amino a c i d s were the p r i n c i p a l f a c t o r s i n r e s i s t a n c e i n e i t h e r of the previous cases. Van Emden and Bashford (100) found that the green peach aphid Myzus p e r s i c a e (Sulzer) s e l e c t s f o r important amino a c i d s i n i t s host, e s p e c i a l l y i n r e l a t i o n to t i s s u e age. Van Emden (101) f u r t h e r d e f i n e d the r o l e of c e r t a i n amino a c i d s i n host determination and s e l e c t i o n by aphids. P a r r o t t et a l . (102) conducted an extensive t e s t f o r q u a l i t a t i v e and q u a n t i t a t i v e d i f f e r e n c e s i n amino a c i d s of the v a r i o u s 1
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch016
264
HOST P L A N T RESISTANCE T O PESTS
species of Gossypium i n the hopes of f i n d i n g a species that would be d e f i c i e n t or v o i d of an e s s e n t i a l amino a c i d r e q u i r e d f o r development of the b o l l w e e v i l . Unfortunately, no q u a l i t a t i v e and no great q u a n t i t a t i v e d i f f e r e n c e s were found. Benepal and H a l l (103) studied the f r e e amino a c i d s i n p l a n t s of B r a s s i c a o l e r a c e a v a r . c a p i t a t a L. as r e l a t e d to r e s i s t a n c e to the cabbage looper T r i c h o p l u s i a n i (Hubner) and the imported cabbageworm P i e r i s rapae L. and found p i p e c o l i c a c i d and t y r o s i n e present i n s u s c e p t i b l e v a r i e t i e s though they were not detected i n r e s i s t a n t varieties. In a s i m i l a r study with Cucurbita pepo L. v a r i e t i e s and squash bugs Anasa t r i s t i s (DeGeer), t o t a l f r e e amino a c i d s and t o t a l s o l u b l e Ν were higher i n s u s c e p t i b l e than i n r e s i s t a n t p l a n t s (104). Most i n s e c t s u t i l i z e d i e t a r y f a t or f a t t y a c i d s f o r energy, f o r a source o f metabolic water, and f o r b u i l d i n g reserves of de pot f a t and glycogen. The body f a t of i n s e c t s i s a f f e c t e d q u a n t i t a t i v e l y and q u a l i t a t i v e l y by the host on which they feed. Plants that do not provide s u f f i c i e n t amounts of f a t s i n the i n s e c t s ' d i e t may have a d e t r i m e n t a l e f f e c t on the i n s e c t s b i o l o g y . Mature l a r v a e and pupae of bollworm ( H e l i o t h i s zea), contained more f a t when the l a r v a e were reared on a h i g h - f a t , dough-stage corn than on lower-fat, milk-stage corn although the i o d i n e and s a p o n i f i c a t i o n numbers of the corn l i p i d s a t both stages r e mained almost constant (93) . C h o l e s t e r o l has been used i n most chemical d i e t s developed f o r p l a n t feeding i n s e c t s (105), although i t i s not the c h a r a c t e r i s t i c s t e r o l of the higher p l a n t s . Grison (106) observed that egg production r a t e s of the Colorado potato b e e t l e , ( L e p t i n o t a r s a decemlineata), were p o s i t i v e l y c o r r e l a t e d with the phospholipid content of the potato f o l i a g e ; senescent f o l i a g e was d e f i c i e n t i n phospholipids r e q u i r e d f o r egg produc t i o n . C a r n i t i n e , l y s i n e , l i n o l e i c a c i d , and i n o s i t o l are other examples of substances reported to a f f e c t the b i o l o g y of p a r t i c u l a r i n s e c t s , when a d e f i c i e n t amount i s present (90). Dadd (107) speculated that a d e r i v a t i v e common to both carotene and v i t a m i n A c o n s t i t u t e d a growth f a c t o r f o r S c h i s t o c e r c a and Loousta spp. Waites and G o t h i l f (108) stated that when thiamine, r i b o f l a v i n , p y r i d o x i n e , calcium pantothenate, f o l a c i n , b i o t i n , and n i a c i n were i n d i v i d u a l l y omitted from the d i e t , high mortal i t y of the almond moth l a r v a e , Cadra c a u t e l l a (Walker), r e s u l t e d . There a r e many other s i m i l a r s t u d i e s that have been done that show the importance of vitamins and r e l a t e d compounds i n the d i e t s of i n s e c t s . Unfortunately, few s t u d i e s have been done that i n v o l v e the a n a l y s i s of the i n s e c t host p l a n t . One of the few s t u d i e s conducted i n recent years i s that of Hudspeth et a l . (109) who surveyed a c r o s s - s e c t i o n of cotton l i n e s f o r v i t a m i n C content. Vitamin C i s necessary f o r b o l l weevil development. Tremendous q u a n t i t a t i v e d i f f e r e n c e s were evident among the i n v e s t i g a t e d cotton l i n e s , but l i n e s c o n t a i n i n g very small q u a n t i t i e s of Vitamin C were found to support e x c e l l e n t b o l l weevil growth and development. Whether i n a host p l a n t , s y n t h e t i c d i e t , or 1
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch016
16.
HEDiN E T A L .
Behavioral
and
Developmental
Factors
265
other n u t r i t i o n a l substrate, the importance of the d i e t a r y pro p o r t i o n of r e q u i r e d n u t r i e n t s may be of greater importance than t h e i r absolute q u a n t i t i e s (110, 111). Such n u t r i e n t r a t i o s may a l s o i n f l u e n c e to some extent feeding behavior, of the i n s e c t , and they are almost c e r t a i n to be important f a c t o r s i n the e f f i c iency of conversion of ingested food i n t o energy and i n s e c t t i s sues · There i s much evidence i n the l i t e r a t u r e on the importance of minerals i n p l a n t s as they r e l a t e to r e s i s t a n c e . P l a n t s d e f i c i e n t i n minerals needed by i n s e c t s may i n a d d i t i o n contain a t y p i c a l concentrations of organic compounds that can a f f e c t the growth or reproductive c a p a c i t y of the i n s e c t s feeding on them. Barker and Tauber (112) reported that the pea aphid e x h i b i t s lower reproductive c a p a c i t y on p l a n t s d e f i c i e n t i n Ca, Mg, Ν, P, and K. A l l e n and Selman (113) found that the number of eggs l a i d by the twospotted s p i d e r mite, Tetranychus u r t i c a e (Koch), was not a f f e c t e d f o r at l e a s t 7 days on l e a f d i s c s from p l a n t s that r e c e i v e d excess amounts of Fe, Mn, Zn, or Co; a l s o a wide range of Fe i n the leaves appeared to be t o l e r a t e d by females without a f f e c t i n g the q u a n t i t y of eggs l a i d . The l a c k of Fe or Zn i n d i e t s f o r the green peach aphid, Myzus p e r s i c a e , increased the percentage of a l a t e s formed, whereas l a r v a e deprived of Ρ d e v e l oped mainly to apterae (115). The imported cabbageworm, P i e r i s rapae, has been observed to be a f f e c t e d i n d i f f e r e n t ways on leaves d e f i c i e n t i n Ν, Ρ, K, and Fe (113). Branson and Simpson (116) allowed corn l e a f aphid, Rhopalosiphum maidis ( F i t c h ) , to feed on sorghum p l a n t s grown un der high and low l e v e l s of n i t r o g e n . Results showed that more than twice as many aphids were to be found on p l a n t s r e c e i v i n g n i t r o g e n than on n i t r o g e n - d e f i c i e n t p l a n t s . K i n d l e r and Staples (117) studied the e f f e c t of excess, medium, and d e f i c i e n t amounts of Ca, Mg, Ν, Κ, P, and S on spotted a l f a l f a aphid, Therioaphis maculata (Buckton), feeding on a l f a l f a clones r e s i s t a n t and susc e p t i a b l e to the aphid. None of the treatments made the suscep t i b l e clone more r e s i s t a n t . Resistance was s i g n i f i c a n t l y de creased but not eliminated when the r e s i s t a n t clone had d e f i c i e n t l e v e l s of Ca or Κ or excess l e v e l s of Mg or N, but r e s i s t a n c e was s i g n i f i c a n t l y increased i n p l a n t s with d e f i c i e n t l e v e l s of P. S u l f u r d i d not a f f e c t r e s i s t a n c e . S i m i l a r s t u d i e s conducted by Rodrignez et a l . (118) with s u s c e p t i b l e and r e s i s t a n t strawberry clones with d i f f e r e n t Ν l e v e l s demonstrated s i g n i f i c a n t c o r r e l a t i o n between f o l i a g e Ν and mite i n j u r y . Studies of the s u r v i v a l of European corn borer l a r v a e on r e s i s t a n t and s u s c e p t i b l e corn p l a n t s s u p p l i e d d i f f e r e n t l e v e l s of Ν and Ρ showed that increased Ν d i d not a f f e c t degree of r e s i s t a n c e , but amount of Ν i n the s o i l i n f l u e n c e d sur v i v a l i n the f i e l d . In general, p a r a l l e l t e s t s of r e s i s t a n t and s u s c e p t i b l e p l a n t v a r i e t i e s under d i f f e r e n t f e r t i l i t y c o n d i t i o n s show that r e s i s t a n t and s u s c e p t i b l e p l a n t s tend to be a f f e c t e d i n the same
266
HOST P L A N T RESISTANCE T O PESTS
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch016
way. Under no c o n d i t i o n s o f s o i l f e r t i l i t y has a r e s i s t a n t p l a n t been s u s c e p t i b l e o r a s u s c e p t i b l e one become h i g h l y r e s i s t a n t . Because each species of i n s e c t , each host p l a n t s p e c i e s , and o f t e n each type of s o i l c o n s t i t u t e s a separate problem, no general con c l u s i o n regarding the importance of p a r t i c u l a r n u t r i e n t elements can be made. However, i t i s well-known that c e r t a i n p l a n t s p e c i e s and v a r i e t i e s have the a b i l i t y t o e x t r a c t and u t i l i z e v a r i o u s chemicals from the s o i l with greater e f f i c i e n c y than other species and v a r i e t i e s . I f the increased absorption and use of the element c o n t r i b u t e s to r e s i s t a n c e , the a b i l i t y may be a basis for resistance. Preference. Preference o r nonpreference i s defined as the e f f e c t o f those chemical o r morphological host p l a n t c h a r a c t e r i s t i c s and i n s e c t responses that lead away from the s e l e c t i o n and use of a p a r t i c u l a r p l a n t f o r food, o v i p o s i t i o n , s h e l t e r , or a combination of the three (90). The morphology o f the host p l a n t may a f f e c t the n u t r i t i o n of the i n s e c t i n the f o l l o w i n g ways; (a) i t may l i m i t the amount of feeding because of texture, shape, or c o l o r , which would reduce the amount o f n u t r i e n t s being ingested, and (b) i t may l i m i t the d i g e s t i b i l i t y and u t i l i z a t i o n of the food by the i n s e c t . Some p l a n t substances may p l a y a dual r o l e i n that they stimulate as w e l l as being e s s e n t i a l n u t r i t i o n a l l y (119, 120, 121, 122, 123, 124, 125). P r o t e i n s , sugars, phospholipids, i n o r g a n i c s a l t s , m i n e r a l s , v i t a m i n s , e t c . , are examples of m a t e r i a l s that many times f u n c t i o n i n dual r o l e s by a c t i n g as feeding stimulants or suppressants and a l s o being e s s e n t i a l f o r proper development. E s s e n t i a l o i l s , g l y c o s i d e s and other secondary substances a r e u s u a l l y involved more i n a s i n g l e r o l e — a t t r a c t i o n and feeding stimulation. Literature Cited
(1) Painter, R. H. "Insect Resistance in Crop Plants." 520 pp. Macmillin, New York (1951). (2) Painter, R. H. Ann. Rev. Entomol. (1958) 3, 267-290. (3) Beck, S. D. Ann. Rev. Entomol. (1965) 10, 207-232. (4) Maxwell, F. G., Jenkins, J. Ν., Parrott, W. L. Advances in Agronomy (1972) 24, 187-265. (5) Maxwell, F. G. "Insect and Mite Nutrition" 702 pp. (ed. J. G. Rodriguez). North Holland Publ. Co., Amsterdam. (1972). (6) Fraenkel, G. Science (1959) 129, 1466-1470. (7) Hamamura, Υ., Hayashiya, Κ., Naito, Κ., Matsuura, Κ., Nishida, J. Nature (1962) 194, 754-755. (8) Robbins, W. Ε., Thompson, M. J . , Yamamoto, R. T., Shortino, T. J. Science (1965) 147, 628-630. (9) Hamamura, Y. "Control of Insect Behavior by Natural Prod ucts", pp. 55-80 ed. by D. L. Wood, R. M. Silverstein and
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch016
16.
HEDiN E T A L .
Behavioral
and Developmental
Factors
267
M. Nakajima. Academic Press, New York (1970). (10) Hedin, P. Α., Thompson, A. C., Minyard, J. P. J. Econ. Entomol. (1966) 59, 181-185. (11) Struck, R. F., Frye, J . , Shealy, Y. F., Hedin, P. Α., Thompson, A. C., Minyard, J. P. J. Econ. Entomol. (1968) 61, 270-274. (12) Struck, R. F., Frye, J . , Shealy, Y. F., Hedin, P. Α., Thompson, A. C., Minyard, J. P. J. Econ. Entomol. (1968) 61, 664-667. (13) Hedin, P. Α., Miles, L. R., Thompson, A. C., Minyard, J. P., J. Agr. Food Chem. (1968) 16, 505-513. (14) Temple, C., Roberts, E. C., Frye, J . , Struck, R. F., Shealy, Y. F., Thompson, A. C., Minyard, J. P., Hedin, P. A. J. Econ. Entomol. (1968) 61, 1388-1393. (15) Minyard, J. P., Thompson, A. C., Hedin, P. Α., J. Org. Chem. (1968) 33, 909-11. (16) Minyard, J. P., Hardee, D. D., Gueldner, R. C., Thompson, A. C., Wiygul, G., Hedin, P. A. J. Agr. Food Chem. (1969) 17, 1093. (17) Hedin, P. Α., Thompson, A. C., Gueldner, R. C., Minyard, J. P. Phytochemistry (1971) 10, 1693-1694. (18) Hedin, P. Α., Thompson, A. C., Gueldner, R. C., Ruth, J. M. Phytochemistry. (1972) 11, 2118-2119. (19) Kuhn, R., Low, I. Angew. Chem. (1957) 69, 236. (20) Harley, Κ., Thorsteinson, A. J. Canadian J. Zool. (1967) 45, 305-319. (21) Lichtenstein, E. P., Strong, F. M., Morgan, D. G. J. Agr. Food Chem. (1962) 10, 30-33. (22) Smissman, Ε. Ε., Lapidus, J. P., Beck, S. D. J. Amer. Chem. Soc. (1957) 79, 4697. (23) Klun, J . , Tipton, C., Brindley, T. J. Econ. Entomol. (1967) 60, 1529-1533. (24) Rudman, P., Gay, F. J. Hotzforschung (1961) 15, 50-53. (25) Gilbert, Β., Baker, J . , Norris, D. J. Insect Physiol. (1967) 13, 1453-1459. (26) Gill, J . , Lewis, C. Nature (1971) 232, 402-403. (27) Eisner, T. Science (1964) 146, 1318-1320. (28) Wada, Κ., Munakata, K. J. Agr. Food Chem. (1968) 16), 471-474. (29) Wada, Κ., Enomoto, Y., Matsui, Κ., Munakata, K. Tetrahedron lettre. (1968) 45, 4673-4676. (30) Munakata, K. "In Control of Insect Behavior by Natural Products", pp. 179-87. ed. by Wood, L., Silverstein, R. Μ., and Nakajima., N. Academic Press, New York (1970). (31) Smith, R. H. Science (1966) 12, 63-68. (32) Goodhue, D. Nature (1963) 197, 405-406. (33) Kamon, J. A., Frank, W. D. Univ. of Wyoming Agr. Exp. Sta. Bull. 413. 35 pp. (1964). (34) Wolcott, G. M. J. Econ. Entomol. (1949) 42, 273-275. (35) Bennett, S. E. J. Econ. Entomol. (1965) 58, 372.
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch016
268
HOST PLANT RESISTANCE TO PESTS
(36) Traynier, R. M. M. Nature (1965) (207, 201-208. (37) Matsumoto, Υ., Thorsteinson, A. J. Appl. Entomol. Zool. (1968) 3, 5-12. (38) Berentes, J., Staedler, E. Z. Naturforsch. B. (1971) 26, 339-340. (39) Perry, A. S., Fay, R. W. Mosquito News (1967) 27, 175183. (40) Yamamoto, R. G., Fraenkel, G. Ann. Entomol. Soc. Amer. (1960) 53, 499-503. (41) Gupta, P. D., Thorsteinson, A. J. Entomol. Exptl. & Appl. (1969) 3, 305-314. (42) Schurr, K. Adv. Front & Plant Sci. (1970) 24, 147. (43) Grison, P. Academse aes Sciences Compt. Rend. (1958) 227, 1172-1174. (44) Carlisle, D. Β., Ellis, P. E., Betts, E. J. Insect Physiol. (1965) 11, 1541-1558. (45) Applebaum, S. W., Gestetner, B., Bik, Y. J. Insect Physiol. (1965) 11, 611-616. (46) Hamamura, Y., Hayashiya, K., Naito, K. Nature (1961) 190, 880-881. (47) Nayar, J. Κ., Fraenkel, G. Ann. Entomol. Soc. Amer. (1962) 56, 174-178. (48) Goto, M., Kamada, M., Imai, S., Murata, S., Fejrta, Ε., Hamamura, Υ., Takeda Ken. Nempo (1965) 24, 55-65. (49) Hayashiya, Κ., Naito, Κ., Nishida, J., Hamamura, Y. Nippon Nogei Kagaku Kaishi (1963) 37, 735-737. (50) Klingenburg, M., Bucher, J. Ann. Rev. Biochem. (1960) 29, 669-708. (51) Heidweg, Η., Thorsteinson, A. J. Entomol. Exptl. & Appl. (1961) 4, 165-177. (52) Yamamoto, R. T., Jensen, E. J. Insect Physiol. (1967) 13, 91-98. (53) Reddiford, L. Science (1967) 158 , 139-140. (54) Reddiford, L. Μ., Williams, C. M. Science (1967) 155, 589-590. (55) Kato, M., Yamada, H. Life Sci. (1966) 5, 717-722. (56) Smissman, Ε. Ε., Lapidus, J. P., Beck, S. D. J. Org. Chem. (1957) 22, 220. (57) Klun, J. A. Diss. Abstr. (1965) 26, 3544. (58) Virtanen, A. I. Soum. Kemistilehti (1961) B34, 29-31. (59) Wahlroos, O., Virtanen, A. I. Acta Chem. Scand. (1959) 13, 1906-1908. (60) Klun, J. Α., Guthrie, W. D., Hallauer, A. R., Russell, W. A. Crop Sci. (1970) 10, 87. (61) Pesho, G. R., Dicke, F. F., Russell, W. A. Iowa State J. Sci. (1965) 40, 85-98. (62) Scott, G. E., Guthrie, W. D. Crop Sci. (1967)7,233235. (63) Snow, J. W., Brazzel, J. R. J. Econ. Entomol. (1965) 58, 525-526.
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch016
16. HEDIN ET AL.
Behavioral and Developmental Factors
(64) Snow, J. W., Brazzel, J. R. Mississippi Farm Res. (1966) 29, 6-7. (65) Lukefahr, J. J., Martin, D. F. J. Econ. Entomol. (1966) 59, 176-179. (66) Lukefahr, M. J., Houghtaling, J. E. J. Econ. Entomol. (1969) 62, 588-591. (67) Shaver, T. Ν., Lukefahr, M. J. J. Econ. Entomol. (1969) 62, 643-646. (68) Oliver, B. F., Maxwell, F. G., Jenkins, J. N. J. Econ. Entomol. (1970) 63, 1965-1966. (69) Shaver, T. Ν., Lukefahr, M. J., Garcia, J. A. J. Econ. Entomol. (1971) 63, 1544=1546. (70) McMichael, S. C. Agron. J. (1960) 52, 385-387. (71) Lukefahr, M. J., Nobel, L. W., Houghtaling, J. E. J. Econ. Entomol. (1966) 59, 817-820. (72) Oliver, B. F., Maxwell, F. G., Jenkins, J. N. J. Econ. Entomol. (1971) 64, 396-398. (73) Jenkins, J. Ν., Maxwell, F. G., Lafever, H. N. J. Econ. Entomol. (1966) 59, 352-356. (74) Wilson, F. D. Crop Sci. (1971) 11, 268. (75) Wilson, F. D. Crop Sci. (1971) 11, 419. (76) Stipanovic, R. D., Bell, Α. Α., Howell, C. R. Phytochem. (1975) 14, 1809-1811. (77) Minton, N. A. Phytopathology (1962) 52, 272-279. (78) Mace, M. Ε., Bell, Α. Α., Stipanovic, R. D. Phytopathology (1974) 64, 1297-1302. (79) Applebaum, S. W., Birk, Y. "Insect and Mite Nutrition". 702 pp. (J. G. Rodriguez, ed.) North Holland Publ. Co., Amsterdam (1972). (80) Applebaum, S. W., Guez, M. Entomol. Exptl. et Appl. (1972) 15, 203-207. (81) Birk, Y. "Toxic Constituents of Plant Foodstuffs". (I. Ε. Liener, ed.) pp. 169-210. Academic Press, Ν. Y. (1969). (82) Applebaum, S. W., Marco, S. Birk, Y. J. Agr. Food Chem. (1969) 17, 618-622. (83) Horber, E. Intl. Cong. Entomol. XII Proc. pp. 540-541. (1965). (84) Horber, E., Leath, K. T., Berang, B., Marcarian, V., Hanson, C. H. Entomol. Exptl. & Appl. (1974) 17, 410-424. (85) Roof, Μ., Horber, E., Sorensen, E. L. Central Branch Entomol. Soc. Amer. (1972) 27, 140-143. (86) Hanson, C. Η., Pedersen, M. W., Berrang, Β., Wall, M. E., Davis, Κ. H. "Antiquality Components of Forages". 140 pp. Special Publ. No. 4. Amer. Soc. of Agron., Madison, Wisconsin. (1973). (87) Pedersen, M. W., Sorensen, E. L., Anderson, M. J. Crop Sci. (1975) 15, 254-260. (88) Maizel, J. V., Burkhardt, H. J., Michell, H. K. Biochem. (1964) 3, 424-426. (89) Beck, S. D. "Proceedings of the Summer Institute on
270
(90) (91) (92) (93) (94) (95)
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch016
(96) (97) (98) (99) (100) (101) (102) (103) (104) (105) (106) (107) (108) (109) (110) (111) (112) (113) (114) (115) (116)
HOST PLANT RESISTANCE TO PESTS Biological Control of Plant Insects and Diseases". 647 pp. (F. G. Maxwell and F. A. Harris, eds.) University Press, Jackson, Miss. (1972). Painter, R. H. "Principles of Plant and Animal Pest Control". pp. 64-99. Natl. Acad. Sci. Publ., Washington, D. C. (1969). Evans, A. C. Ann. Appl. Biol. (1938) 25, 558-572. Akeson, W. R., Gorz, H. J., Haskins, F. Α., Manglitz, G. R. J. Econ. Entomol. (1968) 61, 1111-1112. Friend, W. G. Ann. Rev. Entomol. (1958) 3, 57-74. Beck, S. D. J. Insect Physiol. (1957) 1, 158-177. Knapp, J. L., Hedin, P. Α., Douglas, W. A. J. Econ. Entomol. (1966) 59, 1062-1064. Auclair, J. L. Ann. Rept. Entomol. Soc. Ontario (1957) 88, 7-17. Srivastana, P. Ν., Auclair, J. L. Canadian Entomol. (1974) 106, 149-156. Cibulz, A. B., Davidson, R. H., Fisk, F. W., Lapidus, J. B. Ann. Entomol. Soc. Amer. (1967) 60, 626-631. Knapp, J. L. Diss. Abs. (1966) 26, 4918. Van Emden, H. F., Bashford, M. A. Entomol. Exptl. & App. (1971) 14 Van Emden, H. F. (ed.) "Insect/Plant Relationships." Halsted (Wiley), New York. 216 pp. Symposia of the Royal Entomol. Soc. of London, No. 6 (1973). Parrott, W. L., Maxwell, F. G., Jenkins, J.Ν.,Hardee, D. D. Ann. Entomol. Soc. Amer. (1969) 62, 261-264. Benepal, P. S., Hall, C. V. Ann. Soc. Hort. Sci. Proc. (1967) 91, 425-430. Benepal, P. S., Hall, C. V. Amer. Soc. Hort. Sci. (1967) 91, 353-359. Vanderzant, E. S., Reiser, R. J. Econ. Entomol. (1956) 49, 4-10, 454-458. Grison, P. A. Entomol. Exptl. & Appl. (1958) 1, 73-93. Dadd, R. H. Nature (1957) 179, 427-428. Waites, R. E., Gothilf, S. J. Econ. Entomol. (1969) 62, 301-305. Hudspeth, W. Ν., Jenkins, J. Ν., Maxwell, F. G. J. Econ. Entomol. (1969) 62, 583-584. House, H. L. Entomol. Exptl. & Appl. (1969) 12, 651-659. House, H. L. J. Insect Physiol. (1971) 17, 1125-1238. Barker, J. S., Tauber, O. E. J. Econ. Entomol. (1954) 47, 113-116. Allen, M. D., Selman, I. W. Bull. Entomol. Res. (1957) 48, 229-242. Cannon, W. Ν., Terriere, J., Terriere, L. C. J. Econ. Entomol. (1966) 59, 89-93. Raccah, B., Tahori, A. S., Applebaum, S. W. J. Insect Physiol. (1971) 17, 1385-1390. Branson, T. F., Simpson, R. G. J. Econ. Entomol. (1966)
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch016
16. HEDIN ET AL.
271 Behavioral and Developmental Factors
59, 290-293. (117) Kindler, S. D., Staples, R. J. Econ. Entomol. (1970) 63, 938-940. (118) Rodriguez, J. G., Chaplin, E. E., Stolitz, L. P., Lasheen, A. M. J. Econ. Entomol. (1970) 63, 1855-1858. (119) Beck, S. D., Hanec, W. J. Insect Physiol. (1958) 2, 8596. (120) Thorsteinson, A. J. Ann. Rev. Entomol. (1960) 5, 193-219. (121) Davis, G. R. F. Arch. Intern. Physiol. Biochem. (1965) 73, 177-187. (122) Gothilf, S., Beck, S. D. J. Insect Physiol. (1967) 13, 1039-1953. (123) Hsiao, T. H., Fraenkel, G. Ann. Entomol. Soc. Amer. (1968) 61, 485-493. (124) Ishikawa, S., Hirao, T., Arai, N. Entomol. Exptl. & Appl. (1969) 12, 544-554. (125) Nayar, J. Κ., Thorsteinson, A. J. Canadian J. Zool. (1963) 41, 923-920. (126) Verschaeffelt, E., Proc. Acad. Sci. Amsterdam (1910) 13, 536-542. (127) David, W. A. L., Gardiner, B. O. C. Entomol. Exptl. & Appl. (1966) 9, 247-255. (128) Detheir, V. G. "Chemical Insect Attractants and Repell ents." 289 pp. The Blakiston Co., Philadelphia. (1947). (129) Hewitt, P. H.,Whitehead,V. B., Read, J. S. J. Insect Physiol. (1969) 15, 1929-1934. (130) Cauvin, R. Annales de L.I.N.R.A. (1952) 3, 303-308. (131) Yamamoto, R. T., Fraenkel, G. Nature (1959) 184, 206207. (132) Derr, R. F., Randall, D. D., Kieckhefer, R. W. J. Econ. Entomol. (1964) 57, 963-965. (133) Keller, J. C., Maxwell, F. G., Jenkins, J. N. J. Econ. Entomol. (1962) 55, 800-801. (134) Maxwell, F. G., Jenkins, J. Ν., Keller, J. C., Parrott, W. L. J. Econ. Entomol. (1963) 56, 449-454. (135) Jenkins, J. Ν., Maxwell, F. G., Keller, J. C., Parrott, W. L. Crop Sci. (1963) 3, 215-219. (136) Keller, J. C., Davich, T. B. Personal Communication (1964). (137) Keller, J. C., Davich, T. B. J. Econ. Entomol. (1965) 58, 165. (138) Detheir, V. G. Biol. Bull. (1937) 72, 7-23. (139) Starks, K. J., McMillian, W. W., Sekul, Α. Α., Cox, H. C. Ann. Entomol. Soc. Amer. (1965) 58, 74-76. (140) Jones, R. L., McMillian, W. W., Wiseman, B. R. Ann. Entomol. Soc. Amer. (1972) 65, 821-824. (141) Heron, R. J. Canadian J. Zool. (1965) 43, 247-269. (142) Howell, G. S., Jr., Maxwell, F. G., Nevins, R. B. Ann. Entomol. Soc. Amer. (1969) 62, 240. (143) Loschiavo, S. R. Ann. Entomol. Soc. Amer. (1965) 58, 526-588.
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch016
272
HOST P L A N T RESISTANCE T O PESTS
(144) Doskotch, P. Μ., Mikhail, A. A. Lloydia (Cinci) (1973) 35, 473. (145) Thorsteinson, A. A. Canadian J. Zool. (1953) 31, 52-72. (146) Stride, G. O. J. Insect Physiol. (1965) 11, 21-22. (147) Thorsteinson, A. J., Nayar, J. K. Canadian J. Zool. (1963) 41, 931-935. (148) Parker, J. R. Minnesota Agr. Exp. Sta. Bull. 214 (1924). (149) Lagerheim, G. Entomol. Tidskv. (1900) 21, 209-232. (150) Grevillius, A. Y. Bot. Centralbl. Beihefte 18 Abt. II. (1905) 22. (151) Peterson, A. J. Econ. Entomol. (1924) 17. 87-94. (152) Kearns, H. G. H. Ann. Rept. Agr. Hort. Sta., Long Ashton. 199 (1931). (153) Chambliss,O.Υ., Jones, C. M. Science (1966) 153, 13921393. (154) DaCosta, C. P., Jones, C. M. Science (1971) 172, 11451146. (155) Euw, J., Fishelson, L., Parson, J., Rechstein, T., Rothschild, M. Nature (1967) 214, 35-38. (156) Wensler, R. Nature (1962) 195, 830-1. (157) Panella, J. S., Webster, J. Α., Zabik, M. J. J. Kansas Entomol. Soc. (1974) 47, 348-357. (158) Zielske, Α., Simons, J., Silverstein, R. Phytochemistry (1972) 11, 393-396. (159) Baker, J., Norris, D. Entomol. Exptl. & Appl. (1968) 11, 464-469. (160) Harris, P. Canadian Entomol. (1967) 99, 1304-1310. (161) Harris, P. Canadian Entomol. (1963) 95, 105. (162) Guerra, Α., Shaver, T. J. Econ. Entomol. (1968) 61, 1393-1399. (163) Hsiao, T. J. Insect Physiol. (1969) 15, 1785-1790. (164) Dosthotch, R., Chatterji, S., Peakcock, J. Science (1970) 167, 380-382. (165) Ehrlich, P. R., Raven, P. H. Scien. Amer. (1967) 216, 104-113. (166) McMillian, W. W., Starks, K. J. Ann. Entomol. Soc. Amer. (1966) 59, 516-519. (167) Khalifa, Α., Rizk, Α., Salama, H. S., El-Sharaby, A. F. J. Insect Physiol. (1973) 19, 1501-1509. (168) Vinson, S. B., Thompson, J. L., Green, Η. B. J. Insect Physiol. (1967) 13, 1729-1736. (169) Beland, C. L., Haskins, F. Α., Manglitz, G. R., Gorz, H. J. J. Econ. Entomol. (1973) 66, 1037-1039. (170) Thorsteinson, A. J. Canadian Entomol. (1955) 87, 49-57. (171) Chauvin, R., Mentzer, C. Bull. Offic. Natl. Anti-Acrid. (1951) 1, 5-14. (172) Mulkern, G. B. Ann. Rev. Entomol. (1967) 12, 59-78. (173) Davis, G. R. F. Canadian, J. Zool. (1961) 39, 299-303. (174) Rees, C. J. C. Ph.D. dissertation, Univ. of Oxford, England. (1966).
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch016
16.
HEDIN
E T A L .
Behavioral
and Developmental
Factors
273
(175) Andrea, L. USDA Spec. Rept. (1964). (176) Force, D. C. Ann. Entomol. Soc. Amer. (1966) 59, 11191125. (177) Parrott, W. L., Shaver, T. Ν., Keller, J. C. J. Econ. Entomol. (1968) 61, 1766-1767. (178) Saxena, Κ. N. Proc. XII Intl. Cong. Entomol., London, p. 24. (1964). (179) Wiseman, B. R., McMillian, W. W., Burton, R. L. J. Georgia Entomol. (1969) 4, 15-22. (180) Allen, G. E., Pate, T. L. J. Invertebr. Pathol. (1966) 8, 129-131. (181) Chippendale, G. M., Reddy, G. P. V. Experientia (1974) 28, 485-486. (182) Rymal, K. S., Chambliss,O.L. J. Am. Soc. Hort. Sci. (1976) 101, 722-724. (183) Hovanitz, W., Chang, V. C. S. J. Res. on the Lepidoptera (1963) 2, 281-288. (184) Detheir, V. G. Amer. Naturalist (1941) 75, 61-73. (185) Guenther, E. "The Essential Oils" Vol. 2, D. Van Nostrand Co., New York. (1949). (186) Watambe, T., Nature (1958) 182, 325-326. (187) Hamamura, Y. Nature (1959) 183, 1746-1747. (188) Horie, Y. J. Sericult. Sci. Japan (1962) 31, 258-264. (189) Ito, T. Bull. Sericult. Exptl. Sta. (Tokyo) (1961) 17, 119-136. (190) Iwanari, Y. Sanshigakj Zasshi (1974) 42, 403-405. (191) Keller, J. C., Maxwell, F. G., Jenkins, J. Ν., Davich, T. B. J. Econ. Entomol. (1963) 56, 110=111. (192) Folsom, J. W. J. Econ. Entomol. (1931) 24, 827-833. (193) Munakata, Κ., Saito, T., Ogawa, S., Ishii, S. Bull. Agr. Chem. Soc. Japan (1959) 23, 65-67. (194) Matsumoto, Y., Sugiyama, S., Ber. Ohara Inst. Land. Biol. (1969) 11, 359-364. (195) Matsumoto, Y. A. Japan J. Appl. Entomol. Zool. (1962) 6, 141-149. (196) Morgan, A. C., Lyon, S. C. J. Econ. Entomol. (1928) 21, 189-191. (197) Feir, D., Beck, S. D. Ann. Entomol. Soc. Amer. (1963) 56, 224-229. (198) Cuille, J. Inst. Fruits et Agrumes Coloniaux, Ser. Tech. (1950) 4. (199) Wright, R. H. Nature (1965) 207, 103-104. (200) Howlett, F. M. Trans. Entomol. Soc. London (1912) pp. 412-418. (201) Howlett, F. M. Bull. Entomol. Res (1915) 6, 297-305. (202) Feeny, P. P., Paauwe, K. L., Demong, N. J. Ann. Entomol. Soc. Amer. (1970) 63, 832-841. (203) Watanabe, T., Casida, J. E. J. Econ. Entomol. (1963) 56, 300-301. (204) Heikkenen, H. J., Hruitfiord, B. F. Science (1965) 150.
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch016
274
HOST P L A N T RESISTANCE T O PESTS
1457-1459. (205) Muto, T., Sugawara, R. Fr. Agr. Biol. Chem. (Japan) (1965) 29, 949-955. (206) Saeto, T., Munakata, K. "Control of Insect Behavior by Natural Products", pp. 225-235, ed. by D. L. Wood, R. M. Silverstein and N. Nakajima. Academic Press, New York (1970). (207) Sakan, T., Issac, S., Hyeon, S. "Control of Insect Behavior by Natural Products", pp. 237-247, ed. by D. L. Wood, R. M. Silverstein and N. Nakajima. Academic Press, New York. (1970). (208) Kangas, E., Pertunnen, V., Oksanen, H., Rinne, M. Ann. Entomol. Fenn. (1965) 31, 61-73. (209) Cade, S., Hruitfiord, B., Gara, R. J. Econ. Entomol. (1970) 63, 1010-1015. (210) Kennedy, J., Moorehouse, J. Entomol. Exptl. and Appl. (1969) 12, 487-503. (211) Haskell, P. T., Paskin, W. J., Moorehouse, J. E. J. Insect Physiol. (1961) 8, 53-78. (212) Byrne, H. D., Steinauer, A. L. Entomol. Soc. Amer. (1966) 59, 303-309. (213) Tingey, W. M., Nielson, M. W. J. Econ. Entomol. (1974) 67, 219-221. (214) Thomas, H., Hertell, G. J. Econ. Entomol. (1969) 62, 383-386. (215) Seybert, J., Gara, R. Ann. Entomol. Soc. Amer. (1970) 63, 947-950. (216) Johnson, Ν., Belluschi, P. J. Forestry (1969) 67, 290295. (217) Vite, J., Pitman, G. Canad. Entomol. (1969) 101, 113117. (218) Meyer, H. J., Norris, P. M. Ann. Entomol. Soc. Amer. (1967) 60, 858-859. (219) de Wilde, J. Ghent. Land. Hog. Med. (1957) 22, 335-347. (220) Harwood, W. G., Rudinsky, J. A. Tech. Bull. 95, Agr. Exp. Sta., Corvallis, Oregon. 36 pp. (1966). (221) Eyer, J. R., Rhodes. J. Econ. Entomol. (1931) 24, 702711. (222) Madsen, H. F., Falcon, L. A. J. Econ. Entomol. (1960) 53, 1083-1085. (223) Brunson, M. H. J. Econ. Entomol. (1955) 48, 390-392. (224) Becker, von. Holzforschung (1964) 18, 168-172. (225) Perttunen, V. Ann. Entomol. Fennici (1957) 23, 101-110. (226) Honda, Η., Yamamoto, I., Yamamoto, R. App. Entzool. (1969) 4, 23-31. (227) Osborne, G.O.,Hoyt,C.P. N. Zealand J. Sci. (1968) 11, 137-139. (228) Gardiner, L. M. Canada Dept. Agr. Forest Biol. Bimonthly Prog. Rept. 13 (1957) 1-2. (229) Moore, R. H. Proc. Oklahoma Acad. Sci. (1928) 8, 16-18.
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ch016
16.
HEDIN
E T A L .
Behavioral
and Developmental
Factors
275
(230) Free, J. B. J. Apic. Res. (1962) 1, 52-54. (231) Creighton, C. S., McFadden, T. L., Cuthbert, E. R. J. Econ. Entomol. (1973) 66, 114-115. (232) Gara, R. I., Allan, G. G., Wilkins, R. M., Whitmore, J. L. Z. Angew Entomol. (1973) 72, 259-266. (233) Pliske, T. E., Edgar, J. Α., Culvenor, C. C. J. Chem. Ecol. (1976) 2, 255-262. (234) Van Emden, H. F., Hagen, K. S. Environ. Entomol. (1976) 5, 469-473. (235) Schreiber, K. Entomol. Exptl. & Appl. (1958) 1, 28-37. (236) Kuhn, R., Gauhe, A. Z. Naturforsch (1947) 2, 407-409. (237) Kuhn, R., Low, I. "Origins of Resistance to Toxic Agents" pp. 122-132. Academic Press, New Oork (1955). (238) Akeson, W. R., Haskins, F. Α., Gorz, H. J. Science (1969) 163, 293-294. (239) Maxwell, F. G., Parrott, W. L., Jenkins, J. Ν., Lafever, Η. N. J. Econ. Entomol. (1965) 58, 985-988. (240) Beck, S. D., Smissman, Ε. E. Ann. Entomol. Soc. Amer. (1960) 53, 755-762. (241) Rehr, S. S., Janzen, D. Η., Feeny, P. P. Science (1973) 181, 81-82. (242) Russell, G. B., Fenemore, P. G., Singh, P. Chem. Commun. (243) Loper, G. M. Crop Sci. (1968) 8, 104-105. (244) Erickson, J. Μ., Feeny, P. Ecology (1974) 55, 103-111. (245) Butterworth, J. Η., Morgan, E. D. J. Insect Physiol. (1971) 17, 969-977. (246) Straub, R., Fairchild, M. J. Econ. Entomol. (1970) 63, 1901-1903. (247) Juneja, P. S., Gholson, R. Κ., Burton, R. L., Starks, K. J. Ann. Entomol. Soc. Amer. (1972) 65, 961-964. (248) Kircher, H. W., Heed, W. Β., Russell, J. S., Grove, J. J. Insect Physiol. (1967) 13, 1869-1874. (249) Gorz, H. J., Haskins, F. Α., Manglitz, G. R. J. Econ. Entomol. (1972) 65, 1632-1635. (250) Carrel, J., Eisner, T. Science (1974) 188, 755-757. (251) Levinson, Η. Z. Experientia (1976) 32, 408-411. (252) Buhr, H. Zuchter (1954) 24(7/8), 185-193. (253) Trouvelot, B. Entomol. Exptl. & Appl. (1958)1,9-13. (254) Bates, P. B., Morehead, S. R. Chem. Commun. (1974) 4, 125-126. (255) Kato, Ν., Shibayama, Μ., Munakata, K. J. Chem. Soc. Perkin Trans. (1973) i(7), 712-719. (256) Ediz, S. H. Ph. D. Thesis, Univ. Microfilm. 74-14, 358. (1974). (257) Deutsch, R. G. M.S. Thesis, Texas A&M Univ., 35 pp. (1968). (258) Cadahia, A. Boln. Serv. Plagas (1965) 8(16), 115-125.
INDEX Antifeedant ( s ) ( continued )
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ix001
A Abies balsamea Abraxas miranda Acanthoscelides obtectus Acer negundo Acer saccharinum Acids, nucleic
159 188 261 227 227 107
Activities of plant extracts
186
261
Acyrthosiphon pisum
Aesculetin
Aesculus octandra
African armyworm African plants Agricultural crops
216
225
166,167 165 117
Agrobacterium radiobacter Agrobacterium tumefaciens Agrotis ipsiton Ajuga remota Ajugarins
79 40, 79 133 171 171
Aldehyde, terpenoid 206, 209 Alfalfa 40,124 Alkaloids 155,227 glycosides 247 Allelochemics 129 effects of on assimilation of food .... 133 effects of on black cutworm survival 136 interactions with nutrients 131 plant 137 Allomone(s) 215 electrochemical difference between kairomone and 221 non-host trees examined for 217 Alternaria mali Alternaria tenuis Amanita muscaria Amanita pantherina
36 36 157 157
Amino acids
263
Anabasis aphylla Anacyclus pyrethrum
155 156
Analyses, methods of phytochemical
217
Anasa tristis
264
Antheraea polyphemus Anthonomus grandis
256 239
Anhydro-/?-rotunol
62
Antibiosis 116,207,262 Antifeedant(s) 166 activities of plant leaf extracts 187 from African plants, insect 165 from Clerodendron tricotomum from Cocculus trilobus
190 188 277
from Orixa japonica in Parabenzoin praecox of Parabenzoin trilobum in Piper futokazura
190 193 189 193
sesquiterpene lactones
179
against S. litura, verbenaceae
193
of Spodoptera litura in plants, insect 185 tests, insect 179,181 tests, mammalian 183 from verbenaceae 191 Antifungal phytoalexins 3, 36 Antifungal properties 12 174
Arbutus unedo
Armyworm, African
166,167
158
Aspergillus flavus
Assimilation of food, effects of allelochemics on Attractants, plant Aubergenone
133 240-246 63 156,169
Azadirachta indica
169,170
Azadirachtin
Β Bacillus subtilis
28,172
Bark beetle 219 Bark, Carya ovata twig 220 Bark, Ulmus americana twig .220,224, 226 Barley 43,124 Bean, Colletotrichum lindemuthianum
80, 81
Bean phytoalexins Beet Beetle, bark Behavioral factors affecting host plant resistance to insects p-Benzoquinone Bicyclic sesquiterpenes, stereochemistry of Binding activity of trichloroacetatesolubilized fractions, a-galactoside Biochemical marker of toxin resistance Biochemistry of mitochondria from Ν and Τ cytoplasms, comparative .. Biologically active compounds in plants affecting insect behavior .... Biosynthetic relationships of sesquiterpenoidal stress com pounds from the solanaceae
3 43 219
231 216 67 43 42 103 232 61
278
H O S T P L A N T RESISTANCE T O PESTS
Bitter substances 156 Blight disease mechanism of southern corn leaf 110 southern corn leaf 90 nature of late 47 Boll weevil 211 Bollworm 211,259 239
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ix001
Bombyx mori L
Borer, corn
121
Botrytis cinerea Brassica oleracea Brassica rapa Bremia lactucae Brevicornyne brassicae
8 264 185 55 263
Brewer's yeast Budworm, resistance to cotton to tobacco Budworm, tobacco
32
117 211, 259
C 264
Cadra cautella
Calcium
Callicarpa japonica Callosobruchus chinensis
Callus
Calospilos miranda Canthium euroides Capsicum frutescens stress
metabolites Capsidiol C NMR spectrum of 2,3-Dihydroxy germacrene enriched phytuberin farnesol lubimin rishitin
105 191 261 256, 263
93
191 174
64 63,64
1 3
Carya cordiformis ovata
twig bark trees, non-host
Caryopteris divaricata
70 74 69 73 71 218 218
220 218 191
Catechin
216
Celerio euphorbiae Ceratocystis fimbriata
144 16
Chemicals that elicit their production in plants Chemicals on Ν and Τ mitochondria, action of Chestnut tannins Chloroform-extractable HmT toxin on mitochondria Chromatography high-performance liquid liquid thin-layer
1 103 132 101 160 174 160
Chronic effects hypothesis
130
Chrysanthemum cinerariifolium CicadeUa viridis
154 190
Clerodendron calamitosum cryptophyllum fragrans infortunatum tricotomun
191 191 191 190 190
Citrus trees
40
Cocculolidine 189 Cocculus trilobus, antifeedants from .. 188 Colletotrichum
hgenarium
protection of cucurbits against
79
83
Colletotrichum
lindemuthianum 16,33,39,79 elicitation of resistance of bean to .80, 81 Compatible hypocotyls, inoculated ... 14 Complementarity, gene-for-gene 9,10 Compositae 179 Composition of Ν and Τ mito chondria, chemical 107 Conversion assimilated food, efficiency of 134 dietary moisture effects on growth and efficiency of 147 ingested food, efficiency of 134 Corn 43,124 borer 121,256,265 resistance of corn to 121 ear worm 122 resistance of corn to 121 leaf blight disease, southern 37 biochemical and ultrastructural aspects of 90 mechanism of 110 silk 122 Corynebacterium
Cotton
insidiosum
G. barbadense G. hirsutum
40
118,124 204 204
heliothis resistance in 197,199 natural insecticides from 197 tannin 118,119 terpenoids 199 aldehyde components of cultivated 206 tobacco budworm, resistance to 117 toxicity in 120 Coumarin(s) 225,226 Coumestrol 2,11 Crops, HPR in agricultural 117 Crops that exhibit resistance to insect attack 124 Crotepoxide 173 Croton macrostachys
173
Cucurbita pepo L
264
Cucumber leaf
85
279
INDEX
Cucurbits against lagenarium,
Colletotrichum
protection of
83
Cutworm, black 135,140 larvae, black 137,145,148,149 survival, effects of some allelochemics on 136 Cytochromes 108 Cytoplasm, comparative biochemistry of mitochondria from Ν & Τ 103 Cytoplasm, effects of H. maydis Race Τ toxin on Τ 91,99 Daidzein Damage to Τ mitochondria, mecha nism of HmT toxin-induced stress metabolites
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ix001
11 102 66
stramonium
Decenylsuccinic
Echinacea angustifolia Edothia parasitica
63 105
acid
Defense system 87 against disease in plants, chemical 78 Dehydrogenase, NADH 102 Densities, population 129 Depolarization, membrane 53 154
Derris
Deterrents, feeding
247-250
of Scolytus multistriatus Diacrisia virginica
215 179
Dibromide derivative of heliocide 200 Diels-Alder reaction 199 Diet(s) 147,181-183 insect 130 moisture levels 144 effects on growth and efficiency of conversion 147 interrelationships nutritional indices and 139 Digitonin 105 15-Dihydrolubimin 62 2.3- Dihydroxy germacrene, C NMR spectrum of 70 2.4- Dihydroxy-7-methoxy-l,4benzoxazin-3-one 121 11,13-Dihydroxysolavetivone 65 3,4-Dimethoxyphenyl 194 2,4-Dinitrophenol (DNP) 105 Disease chemical defense against 78 headblight 39 mechanism of southern corn leaf blight 110 resistance 2,78 elicitors of phytoalexin accumu lation in plant 27 phytoalexins as a mechanism for .. 7 and susceptibility, plant 35 southern corn leaf blight 90 Disk, leaf 166,168 1 3
122 156,159 79
Electrochemical difference between an allomone and a kairomone Electrophysiology Elicitor(s) abiotic biotic chemical nature of the Phytoph thora megasperma
D
Datura
Ε Earworm, resistance in corn
221 166 53 15 15
var. sojae ....
non-specific phytoalexin accumulation in plant disease resistance Pms receptor hypothesis specific species specificity specific Empoasca
gabe
Epilachna
varivestis
27 28,33 19 31 15 262
Enzyme(s) inhibitors
39 132
10-Epilubimin Equilibrium hypothesis Erwinia carotovora Erysiphe graminis
var. atroseptica
Ether formation in glands, methyl Eudesmanes Euonymus Euproctis Euproctis
29
15 1,15
japonicus pseudoconspersa subflava
European corn borer resistance of corn to
166,256
62 5
....
52 4
210 61 188 190 191
256, 265 121
F Fagara
chalybea
Farnesol, biosynthesis of Farnesyl pyrophosphate Fatty acids Feeding deterrents Feeding stimulants Flavonid(s) oxidation states of Food effects of allelochemics on assimilation of efficiency of conversion of ingested Fraxinus
americana
175
70 68 264 247-250 232-239 224 222 133 134 139 225
Fungi 32 infection, potato resistance to 48 peptides, toxic 157 phytoalexins 3 Fungicides 44 Furanoterpenoids, accumulation of ... 86 Fusarium
graminearum
39
H O S T P L A N T RESISTANCE T O PESTS
280
HmT toxin ( continued ) Gaemannomyces
262
graminis
Galactinol 43 α-Galactoside binding activity of trichloroacetate-solubilized fractions 43 Gene(s) 9,87 nuclear 90,98 -for-gene plant-parasite interactions 19 Genistein 2 Germacrene(s) 66 conformational mobility of 75 Germacrene-A-diol 63 Germacrenediol 66 Glands, methyl ether formation in 210
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ix001
Ghucolide-A Glomerella
179,181,182 69,75
cingulata
interaction with potato 72, 74 Glutinosone 64 Glyceollin 11,72 Glycine max ( soybean ) phytoalexins, structures of 11 Glycosides, alkaloid 247 264
Gossypium
198,204,206
barbadense
158,197, 204, 206,239 terpenoid content of 208 Gossypol 117,158,198, 259, 260 hirsutum
Gramicidin
105
D
Gramine 216 Green bean, (Phaseolus vulgaris L.) phytoalexins 3 Green bean, protection of 79 Growth dietary moisture effects on 147 inhibition tests, larval 180 regulators (juvenile and molting hormones), insect 158,159 toxins and 256 H Harrisonia
abyssinica
Headblight disease Heliocide ( s ) dibromide derivative of in heliothis resistant cottons in plant tissue, distribution of Heliopsis Heliothis
39
200 199 205 156
longipes
resistance in cotton
virescens
171
197,199 118,119,133,256, 259
121,133,256,259 Race Τ (HmT) toxin 37,90,96 damage to Τ mitochondria, mechanism of 102
zea
Helminthosporium
maydis
effect on Τ cytoplasm 91-95 mitochondria 98,100,101 oxidative phosphorylation of 102 release of malate dehydrogenase (MDH) 104 respiratory activities of root mitochondria 99 structures Ill studies on the molecular structure of 108
Helminthosporium
sacchari—
sugarcane interaction Helminthosporoside High-performance liquid chromatography (HPLC) Homeosoma
41 43 160
electellum
Hormones, juvenile Hormones, molting Host cell resistance compounds, potato tuber interactions between Phytophthora infestans and potato
parasite systems plant resistance agricultural crops insects new compounds in nonagricultural plants receptor substances resistance genes specificity specific toxins Ή NMR screening techniques p-Hydroquinone 13-Hydroxy capsidiol 2' Hydroxy genistein 5-Hy droxy- 1,4-naphthoquinone (juglone) 9-Hydroxynerolidol 2' Hydroxy phaseollin isoflavin
9
117 115,231 212 116 18 9 129 36,108 203 216 64 2
Hypersensitive area Hypersensitive reaction Hypocotyls inoculated compatible inoculated with Phytophthora megasperma
56 51 47
Hylemya brassicae Hyper postica
var. sojae, soybean
soybean Hypothesis, chronic effects Hypothesis, equilibrium
123
158 159
215 63 2 251 120
6 5
14 13
28, 31 130 5
I Immunization Incompatible interaction
78 53
281
INDEX
Index ( ices ) interrelationships of parameters, nutritional techniques, nutritional Infection, potato resistance to
L 140 141 134 48
Infection of Sohnum tuberosum, Phytophthora infestans
Inflexin Infrared spectroscopy Ingested food Inhibitors, enzyme Insect(s) antifeedant(s) from African plants
51
173 160 139 132
Leptinotarsa decemlineata
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ix001
of Spodoptera litura in plants .....
165 185
tests 179,181 attack, crops that exhibit resistance to 124 behavior, biologically active com pounds in plants affecting 232 dietetics 130,262 factors affecting host plant resistance to 231 growth 125,129 host plant resistance (HPR) to .. 115 regulators ( juvenile hormones ) .. 158 regulators (molting horomnes) .. 159 Insecticide(s) 117 from cotton, natural 197 Interaction, potato-GZomereZZa cingulata 72,74,75 Interaction, potato-MoniZinia fructicola Ipomoea batatas
Isoboldine Isobutylamides, unsaturated Isodomedin
69 186
189 156 173
Isodon inflexus 173 Isodon shikokianus var. intermedius .. 173
Isolated roots 93 Isolation of toxic agents from plants .. 153 Isolubimin 62 J Juglans nigra
Juglans trees, non-host carya Juglone Juvenile hormones, insect growth regulators
218
218 215,216 158
Κ Kaempferol Kairomone (-)-16-Kauren-19-oic acid 1-Keto-a-cyperone Kievitone
Lactones, antifeedant sesquiterpene .. 179 Larvae, black cutworm ....137,145,148,149 Larval growth inhibition tests 180 Late blight, nature of 47 Leaf disk 92,166,168 extracts, antifeeding activities of plant 187 infected 96 Legume insects 261
216 221 123 65 2
Lettuce leaf tissue Lignan Liquid chromatography high-performance
185,247,264
Locusta Lonchocarpus
Lubimin C NMR spectrum of 13
55 226 174 160 264 154
62, 63 72,73
M Macromolecules from pathogens Macromolecules from plants
39 41
Magnolia acuminata var. acuminata .. 227
Magnoline 216 Malate 99 dehydrogenase (MDH), effect of HmT toxin on the release of .... 104 oxidation 102 Malus pumila
Mammalian antifeedant tests Manduca sexta
Mass spectrometry Medicago sativa L Mehnoplus bivittalus Melia azadirachta
azedarach
indica Meloidogyne incognita acuta
223
183 166,251
161 261 247 186
156,169 186 260
Membrane(s) depolarization plasma site of toxin action Metabolic effects Metabolites plants stress
53 98 97 130 72 1 78
Methanol, toxic materials in 6-Methoxy-2-benzoxazolinone 2' Methoxy phaseollin isoflavin Methyl ether formation in glands
123 121 2 210
Capsicum frutescens Datura stramonium Sohn tuberosum Sohnum melongena
64 63 62 63
H O S T P L A N T RESISTANCE T O PESTS
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ix001
282 Methylation, effect of 122 Microsomes 95 Minerals 265 Mint 43 Miscellaneous factors 257,258 Mitochondria action of chemicals on Ν and Τ 103 chemical composition of Ν and Τ .. 107 comparative biochemistry of Ν and Τ cytoplasms 103 effect of HmT toxin on 98-101 genetics in higher plants 110 isolated 91,94 mechanism of HmT toxin-induced damage to Τ 102 membranes 97 protein 107 respiration, Τ 102 site of toxin action, evidence for ... 98 Moisture 143 effects on growth and efficiency of conversion, dietary 147 Molecule(s) interactions 35 parasite-produoed 35 plant-produced 38 structure of HmT toxin, studies on .. 108 Molting hormones, insect growth regulators 159 Monilinia
69, 75
fructicoh
interaction, potatoMoth oak resistance of sunflowers to winter
69, 71 120 123 116 154 158 263, 265
Mundulea Mycotoxins Myzus persicae
Ν
1,4-Naphthoquinones
218
sesquiterpenes stress metabolites
tabacum
NADH ( nicotinamide adenine dinucleotide, reduced) . dehydrogenase oxidation by toxin respiration Nicotine Nicotinoids :
Nigericin
(NIG)
Nitrogen Nonagricultural plants, HPR in Nonpreference
Ο Oak leaf tannins moth tree Oligosaccharides
99 132 120 116,120 30, 31
Operophtera
120,132
brumata
Oraesia emarginata Oraesia excavata Orixa japonica, antifeedants Ostrinia mubihlis Ostrinia nubialis
188 188
from
190
191 247, 263
Oviposition stimulants 251, 254,255 Oxidation states of flavonids 222 Oxidative phosphorylation 102,105,106 effects of digitonin on respiration and 106 9-Oxonerolidol 63 Ρ Papilio polyzenes asterius Parabenzoin praecox, antifeedants
Parabenzoin
trilobum,
133
in 193
antifeedants of
155
65 64
Parasite interactions, gene-for-gene plant- .. -produced small molecules systems, host— virulence genes
155
Pastinaca
16
Nectria galligena Nicotiana glauca
NMR screening techniques, Ή 203 spectrometer 66 spectroscopy 160 Nucleic acids 107 Nutrient(s) factors in plants affecting survival and development of insects ... 262 indices and dietary moisture levels, interrelationships of 139 index parameters 141 index techniques 134 interactions between allelochemics and 131 physiology 129
97,99,102 102 102 105 155 155 105
265 116 116
sativa
Pathogen(s) macromolecules from protection of plants from system, plant-
Pénicillium
expansum
Periphneta
americana
Peptides, toxic fungal
Pesticides Phagostimulants Phaseollidin Phaseollin
189
19 35 9 9 185
39 32 10 16
157
215,225
169 166 2 2
INDEX
Plant(s) (continued) effects of on insect survival and development 262 extracts, activities of 37,186 phytoalexins from 2 macromolecules from 41 protection of green bean 79 Phenolic acid 226 metabolites 1 effects on S. multistriatus 225 mitochondrial genetics in higher .... 110 Phloretin 216 -parasite interactions, gene-for-gene 19 Phoma tracheiphih 40 -pathogen system 10 phytoalexins and chemicals that Phosphorylation, oxidative 102,105,106 elicit their production in 1 Phylloxera vitifolia 115 phytoalexins as a mechanism for Physiology, nutritional 129 Phytoalexin ( s ) 78 disease resistance in 7 -produced small molecules 38 accumulation in plant disease protection from their pathogens 32 resistance 27 repellents from African 165 antifungal 3,36 resistance bean 3 and chemicals that elicit their to insects 115,231 production in plants 1 new compounds in host 212 in nonagricultural 116 classical 86 response to insect growth 125 elicitors 1,15 fungal 3 specificity, host 129 green bean 3 tissue, distribution of heliocides in .. 205 mechanism for disease resistance vegetative 1 in plants 7 Plasma membrane(s) 98 potato 3 site of toxin action, evidence for the 97 251 soybean 3,11, 27 Plutelh zylostella 28, 33 theory 54 Pms elicitor 31 toxic effects of 32 Pms-soybean system 93 Phytochemical analyses, methods of .. 217 Pollen Polygodial 172 Phytophthora 117 capsici 8 Polyphenols, distribution of infestans 3,48,53,57 Population densities 129 Phaseolus lunatus L vulgaris L
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ix001
283
4 33, 39, 263
infection of Sohnum tuberosum ..
51
potato host, interactions between 47 megasperma 10,27,35,53 elicitor, chemical nature of the ... 29 soybean hypocotyls inoculated with 13 Phytuberin 62, 72 biosynthesis of 73 C NMR spectrum of enriched 74 Phytuberol 75 13
Pieris rapae Pinus radiata Piper futokazura, antifeedants in Pisum sativum
264,265 121 193 263
Plant(s) allelochemics 137 antifeedant( s ) 165,185,187,188,191 apparency 129 attractants 240-246 biochemicals, effects of 129 chemical defense against disease in 78 disease resistance, elicitors of phytoalexin accumulation in 27 disease resistance and susceptibility 35 effects of on insect behavior 232
223
Populus deltoïdes
Potato interaction
43,124
with Glomerella cingulata
with M. fructicola
with Phytophthora infestans
leaves phytoalexins resistance to fungal infection tuber tissue Pratylenchus scribneri
74
69,71,72 47
57 3 48 50-54, 69 3
Protection, induced systemic Protein, mitochondrial Protoplasts
84 107 94
Pseuaomonas glycinea Pseudoplusia includens Psila rosae
28 140 251
Pyrausta nubihlis
185
Psoralidin
Pyrethrum, toxicant Pyruvate
2
153 99 Q
Quercetin
216
284
HOST P L A N T RESISTANCE T O PESTS
223
Quercus macrocarpa
Quiesone
64 R
Race-specific resistance Raffinose Reaction, hypersensitive Receptor hypothesis, specific Receptor substances, host Repellent(s) African plants
31 43 5 19 18 251-253 165
feeding of Scolytus multistriatus ....
Resistance
215
87,120
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ix001
bean to Colletotrichum linde
muthianum, elicitation of 80, 81 biochemical marker of toxin 42 compatible 2 corn 121,122 cotton, Heliothis 117,197,199 disease 2, 78 elicitors of phytoalexin accumulation 27 phytoalexins as a mechanism for .. 7 and susceptibility 35 fungal infection, potato 48 host cell 56, 231 incompatible 2 insects 4,115 attack, crops that exhibit 124 behavioral factors affecting host plant 231 developmental factors affecting host plant 231 mechanisms of 262 new compounds in host plant 212 properties related to 50 race-specific 9,31 sunflowers 123 Respiration Τ mitochondrial 102 NADH 105 oxidative phosphorylation, effect of digitonin on 106 root mitochondria, effect of HmT toxin on 99 succinate 106 Reversibility of toxin action 100 Rhizobium japonicum Rhizobium trifolii Rhopalosiphum maidis Rhyncosporium secalis
Rice Rishitin C NMR spectrum of Rishitinol 13
Robinia pseudoacacia
Root growth
28 28 265 42
124 61, 62 71 62 223
91
Root mitochondria, effect of HmT toxin on respiratory activities of .. 99 Rotenoids 154 Rotenone 154 S 28
Saccharomyces cerevisiae
Saponins Scale of insect growth and plant's response, relative Schistocerca gregaria vaga Scolytus multistriatus
Screening techniques Ή NMR plant extracts TLC Seedlings Sesquiterpenes biogenetic interrelations of biosynthesis of lactones, antifeedant
261
125 264 169, 256 166 215, 225
203 186 203 92 65 69 179
nicotiana
stereochemistry of bicyclic stress compounds from the solana ceae, biosynthetic relationships of Shiromodiol diacetate Shiromodiol monoacetate Silk, corn Sirex noctilio Sitona cylindricollis Sitona hispidulus Sitophilus oryzae Sodium azide
65
67
61 189 189 122
121 262, 265 261 133 105
Sojagol Solanaceae, biosynthetic relationships of sesquiterpenoidal stress compounds Solanum melongena stress metabolites
11
61 63
Sohnum tuberosum phytophthora infestans infection of
3 51
stress metabolites 62 Solavetivone 62, 65 Southern corn leaf blight disease 37 biochemical and ultrastructural aspects of 90 mechanism of 110 Soy 124 Soybean(s) (Glycine max) 10,132,140 hypocotyls 13,28,31 phytoalexins 3,27 structures of 11 system, Pms— 31 trypsin inhibitor 133 Species specificity, elicitor 31
285
INDEX
Tolerance 116 Toxin(s) agents from plants 153 binding activity 37,42 corn silk 122 cotton 120 effects of HmT on Τ cytoplasm 92-95 mitochondria 98-102 oxidative phosphorylation 102 Spodoptera release of malate dehydrogenase 104 eridania 166,180 effects of phytoalexins 32 exempta 166 evidence for the plasma membrane frugiperda 180 as a site of action 97 littoralis 166 fungal peptides 157 litura 185,186 growth and 256 ornithogalli 179 host-specific 36 Stereochemistry of bicyclic mechanism of 4 sesquiterpenes 67 molecular structure of HmT 108 Steroids 108 NADH oxidation by 102 Stimulants, feeding 232-239 preparation ( s ) 96, 97 Stress compounds from the solanaceae 61 production 39, 91 Stress metabolites 78 purification 91 Structures, HmT toxin 108, 111 resistance, biochemical marker of .. 42 Substances, bitter 156 structures, HmT Ill Succinate 99 treatment 100,102 oxidation 102 123 respiration 106 Trachyloban-19-oic acid Sugarcane 38,43 Tree(s) citrus 40 interaction with H. sacchari 41 examined for allomones, non-host .. 217 Sunflower moth, resistance of sun non-host carya and juglans 218 flowers to 123 oak 116,120 Survival of insects, nutritional factors 261 in plants affecting 262 Tribolium castaneum 133 Susceptibility 87,120 plant disease resistance and 35 Trichloroacetate-solubilized fractions 43
Spectrometer, NMR Spectrometry, mass Spectroscopy, infrared Spectroscopy, NMR Spectrum, C NMR 2,3-dihydroxy germacrene enriched phytuberin lubimin rishitin
66 161 160 160 69 70 74 73 71
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ix001
1 3
Trichoplusia
Tannic acid Tannin(s) chestnut cotton oak leaf
119,120 118,120 132 118,119 132
Tephrosia
Terpenes Terpenoid(s) aldehyde components of cultivated cotton aldehydes, biosynthesis of biosynthesis of the content of Gossypium
cotton
Tetranychus Therioaphis
urticae maculata
Thin-layer chromatography screening techniques Tobacco budworm resistance of cotton to
179, 264
ni
Trypsin inhibitor, soybean
Τ
154
256 260 206 209 207 208
199 265 265
160 203 43 211,259 117
133
U
Ugandensidial
172
Ulmus
americana twig bark Ultrastructural studies Unedoside Uromyces
phaseoli
215
220, 224, 226 54,101 174
var. vignae
55
V Valinomycin Veratrum
Verbenanceae, of
antifeeding activity
103 153
191,193
Vernonia
flaccidifolia gigantea glauca pulchella
Vertebrates
179,181 179 179 183
131
HOST P L A N T RESISTANCE T O PESTS
286 Verticillium Vicia
5,
dahliae
260 8
fabae
Vitamins
264
X Xylocarpus
moluccensis
W
Warburganal Warburgia stuhlumannii ugandensis
Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0062.ix001
Water, toxic material in Weevil, boll Wheat
172 186
Y Yeast, brewers
172 172
123 211 40, 43,124
170 170
Xylomolin
32 Ζ
Zanthoxylum Zygadenus
chva-herculis
156 155