HALF-DISCRETE HILBERT-TYPE INEQUALITIES
8799_9789814504973_tp.indd 1
25/11/13 3:47 pm
May 2, 2013
14:6
BC: 8831 -...
20 downloads
879 Views
2MB Size
Report
This content was uploaded by our users and we assume good faith they have the permission to share this book. If you own the copyright to this book and it is wrongfully on our website, we offer a simple DMCA procedure to remove your content from our site. Start by pressing the button below!
Report copyright / DMCA form
HALF-DISCRETE HILBERT-TYPE INEQUALITIES
8799_9789814504973_tp.indd 1
25/11/13 3:47 pm
May 2, 2013
14:6
BC: 8831 - Probability and Statistical Theory
This page intentionally left blank
PST˙ws
HALF-DISCRETE HILBERT-TYPE INEQUALITIES
Bicheng Yang Guangdong University of Education, China
Lokenath Debnath University of Texas-Pan American, USA
World Scientific NEW JERSEY
•
8799_9789814504973_tp.indd 2
LONDON
•
SINGAPORE
•
BEIJING
•
SHANGHAI
•
HONG KONG
•
TA I P E I
•
CHENNAI
25/11/13 3:47 pm
Published by World Scientific Publishing Co. Pte. Ltd. 5 Toh Tuck Link, Singapore 596224 USA office: 27 Warren Street, Suite 401-402, Hackensack, NJ 07601 UK office: 57 Shelton Street, Covent Garden, London WC2H 9HE
Library of Congress Cataloging-in-Publication Data Yang, Bicheng, author. Half-discrete Hilbert-type inequalities / by Bicheng Yang (Guangdong University of Education, China) & Lokenath Debnath (University of Texas- Pan American, USA). pages cm Includes bibliographical references and index. ISBN 978-981-4504-97-3 (hardcover : alk. paper) 1. Inequalities (Mathematics) 2. Mathematical analysis. I. Debnath, Lokenath, author. II. Title. QA295.Y36 2014 515'.46--dc23 2013036829
British Library Cataloguing-in-Publication Data A catalogue record for this book is available from the British Library.
Copyright © 2014 by World Scientific Publishing Co. Pte. Ltd. All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means, electronic or mechanical, including photocopying, recording or any information storage and retrieval system now known or to be invented, without written permission from the publisher.
For photocopying of material in this volume, please pay a copying fee through the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to photocopy is not required from the publisher.
Printed in Singapore
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
Preface
Historically, mathematical analysis has been the major and significant branch of mathematics for the last three centuries. Indeed, inequalities became the heart of mathematical analysis. Many great mathematicians have made significant contributions to numerous new developments on the subject which led to the discovery of many new inequalities with proofs and useful applications in the fields of mathematical physics, pure and applied mathematics. Indeed, mathematical inequalities became an important branch of modern mathematics in the twentieth century through the pioneering work entitled Inequalities by G.H. Hardy, J.E. Littlewood and G. Polya which was first published as a treatise in 1934. This unique publication represents a paradigm of precise logic, full of elegant inequalities with rigorous proofs and useful applications in mathematics. During the twentieth century, discrete and integral inequalities played a fundamental role in mathematics and have a wide variety of applications in many areas of pure and applied mathematics. In particular, David Hilbert (1862-1943) first proved Hilbert’s double series inequality without exact determination of the constant in his lectures on integral equations. Herman Weyl (1885-1955) published a proof of the Hilbert double series inequality in 1908. Subsequently, Isaac Schur (1875-1941) gave a new proof of the Hilbert double series inequality in 1911 with the best possible sharp constant, and also discovered the integral analogue of the Hilbert double series inequality which became known as the Hilbert integral inequality. In 1925, G.H. Hardy (1877-1947) provided the best extension of it by introducing a pair of conjugate exponent which became known as the Hardy-Hilbert inequality. The Hilbert-type inequalities are a more wider class of analytic inequalities with bilinear kernels which include the Hardy-Hilbert inequality as a particular case. v
ws-book9x6
November 7, 2013
vi
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
ws-book9x6
Half-Discrete Hilbert-Type Inequalities
The mathematical theory of inequalities, in general, and the Hilberttype inequalities, in particular, and their applications has grown considerably during the last one century. With the advent of new ideas and proofs, new results and applications, studies are continually being added to the major subject of mathematical inequalities, where these are themselves developing and coalescing. It is becoming more and more desirable for mathematicians to study the Hilbert-type inequalities as a whole. Yet it is increasingly difficult for them to do so since major and important articles often appears in many different journals. The difficulty can be alleviated if a single research monograph containing a coherent account of recent developments, especially, if written to be accessible to both graduate students and research professionals. It is our hope that this monograph will first interest, then prepare readers to undertake research projects on the Hilbert-type inequalities and their applications, by providing that background of fundamental ideas, methods, proofs, and results essential to understanding the specialized literature of this vast area. Many ideas, major results, methods, proofs, and examples presented in this volume are either motivated by, or borrowed from works cited in the Bibliography. We wish to express our gratitude to the authors of their works. The writing of this monograph was also greatly influenced by the famous quotations of David Hilbert and G.H. Hardy as follows: As long as a branch of knowledge offers an abundance of problems, it is full of vitality.
David Hilbert ... we have always found with most inequalities, that we have a little new to add. ... in a subject (inequalities) like this, which has applications in every part of mathematics but never been developed systematically.
G.H. Hardy So, this monograph deals with an extensive account of the theory and applications with numerous examples of any half-discrete Hilbert-type inequalities in a self-contained and rigorous manner using the methods of real and functional analysis, operator theory, the way of weight functions,
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
Preface
ws-book9x6
vii
and special functions. Throughout this book, special attention is given to proofs of the best constant factors of all inequalities. The first chapter deals with recent developments of the Hilbert-type discrete and integral inequalities by introducing kernels, weight functions, and multi-parameters. Included are numerous examples and applications, many extensions, generalizations, refinements of Hilbert-type inequalities involving special functions such as beta, gamma, logarithm, trigonometric, hyperbolic, Bernoulli’s numbers and functions, Euler’s constant, zeta functions and hypergeometric functions. Special attention is given to many equivalent inequalities and to conditions under which the constant factors involved in inequalities are the best possible. Chapter 2 contains some improvements of the celebrated EulerMaclaurin summation formula, optimization of methods of estimating the series and the weight functions. Included are many useful theorems, corollaries, and inequalities with applications involving new inequalities on the Hurwitz zeta function, the Riemann zeta function and the extended Stirling formula. Chapter 3 is devoted to the half-discrete Hilbert-type inequalities with general homogeneous kernels and their many extensions. Included are several equivalent inequalities, operator expressions, and the reverses of the Hilbert-type inequalities with many generalizations, applications and particular examples. The main objective of Chapter 4 is to derive half-discrete Hilbert-type inequalities with a general non-homogeneous kernel, and their extensions. Many equivalent inequalities, and their operator expressions, two classes of reverse inequality, many extensions and particular examples are included in this chapter. Chapter 5 contains two kinds of multi-dimensional half-discrete Hilberttype inequalities with the best possible constant factors. These inequalities are extensions of the two-dimensional cases studied in Chapters 3 and 4. Included are equivalent forms, operator expressions, reverses, proofs of many important theorems with corollaries, and many particular examples. The final Chapter 6 deals with two-kinds of multiple half-discrete Hilbert-type inequalities with the best possible constant factors. Included are equivalent inequalities, operator expressions, the reverses, proofs of major theorems and corollaries, and numerous examples with particular kernels. It is shown that theorems and corollaries of this chapter reduce to the corresponding results of Chapters 3 and 4 as special cases.
November 7, 2013
viii
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
Half-Discrete Hilbert-Type Inequalities
Basically, this monograph is designed as a modern source of many new half-discrete Hilbert-type inequalities with numerous examples and applications. It also provides new results and information that put the reader at the forefront of current research. A large number of research papers and books have been included in the bibliography to stimulate new interest in future advanced study and research. A short index of this book is added in the end to include a wide variety of terms and topics so that they are useful for the reader. Our special thanks to Ms. Veronica Chavarria who cheerfully typed the manuscript with constant changes and revisions. In spite of the best efforts of everyone involved, some typographical errors will doubtlessly remain. We wish to express thanks to Ms. Lai Fun Kwong, Dr. S.C. Lim and the Production Department of the World Scientific Publishing company for their help and cooperation.
Bicheng Yang Guang Zhou, Guangdong P.R. China
Lokenath Debnath Edinburg, Texas U.S.A.
ws-book9x6
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
Acknowledgments
This work is supported by The National Natural Science Foundation of China (No. 61370186), and 2012 Knowledge Construction Special Foundation Item of Guangdong Institution of Higher Learning College and University (No. 2012KJCX0079, in China).
ix
ws-book9x6
May 2, 2013
14:6
BC: 8831 - Probability and Statistical Theory
This page intentionally left blank
PST˙ws
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
ws-book9x6
Contents
Preface
v
Acknowledgments
ix
1. Recent Developments of Hilbert-Type Inequalities with Applications 1.1 1.2
1.3
1.4
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . Hilbert’s Inequality and Hilbert’s Operator . . . . . . . . 1.2.1 Hilbert’s Discrete and Integral Inequalities . . . . 1.2.2 Operator Formulation of Hilbert’s Inequality . . . 1.2.3 A More Accurate Discrete Hilbert’s Inequality . . 1.2.4 Hilbert’s Inequality with One Pair of Conjugate Exponents . . . . . . . . . . . . . . . . . . . . . . 1.2.5 A Hilbert-type Inequality with the General Homogeneous Kernel of Degree −1 . . . . . . . . . . . . 1.2.6 Two Multiple Hilbert-type Inequalities with the Homogeneous Kernels of Degree (−n + 1) . . . . . Modern Research for Hilbert-type Inequalities . . . . . . . 1.3.1 Modern Research for Hilbert’s Integral Inequality 1.3.2 On the Way of Weight Coefficient for Giving a Strengthened Version of Hilbert’s Inequality . . . 1.3.3 Hilbert’s Inequality with Independent Parameters 1.3.4 Hilbert-type Inequalities with Multi-parameters . Some New Applications for Hilbert-type Inequalities . . . 1.4.1 Operator Expressions of Hilbert-type Inequalities 1.4.2 Some Basic Hilbert-type Inequalities . . . . . . . xi
1 1 2 2 4 5 6 9 12 12 12 14 15 18 22 22 23
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
xii
ws-book9x6
Half-Discrete Hilbert-Type Inequalities
1.4.3
1.5
Some Applications to Half-discrete Hilbert-type Inequalities . . . . . . . . . . . . . . . . . . . . . . Concluding Remarks . . . . . . . . . . . . . . . . . . . . .
2. Improvements of the Euler-Maclaurin Summation Formula and Applications 2.1 2.2
2.3
2.4
29
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . Some Special Functions Relating Euler-Maclaurin’s Summation Formula . . . . . . . . . . . . . . . . . . . . . 2.2.1 Bernoulli’s Numbers . . . . . . . . . . . . . . . . . 2.2.2 Bernoulli’s Polynomials . . . . . . . . . . . . . . . 2.2.3 Bernoulli’s Functions . . . . . . . . . . . . . . . . 2.2.4 The Euler-Maclaurin Summation Formula . . . . Estimations of the Residue Term about a Class Series . . 2.3.1 An Estimation under the More Fortified Conditions . . . . . . . . . . . . . . . . . . . . . . 2.3.2 Some Estimations under the More Imperfect Conditions . . . . . . . . . . . . . . . . . . . . . . 2.3.3 Estimations of δq (m, n) and Some Applications . . Two Classes of Series Estimations . . . . . . . . . . . . . 2.4.1 One Class of Convergent Series Estimation . . . . 2.4.2 One Class of Finite Sum Estimation on Divergence Series . . . . . . . . . . . . . . . . . . . . . . . . .
3. A Half-Discrete Hilbert-Type Inequality with a General Homogeneous Kernel 3.1 3.2
3.3
Introduction . . . . . . . . . . . . . . . . . . . . . . . . Some Preliminary Lemmas . . . . . . . . . . . . . . . 3.2.1 Definition of Weight Functions and Related Lemmas . . . . . . . . . . . . . . . . . . . . . 3.2.2 Estimations about Two Series . . . . . . . . . 3.2.3 Some Inequalities Relating the Constant k(λ1 ) Some Theorems and Corollaries . . . . . . . . . . . . . 3.3.1 Equivalent Inequalities and their Operator Expressions . . . . . . . . . . . . . . . . . . . . 3.3.2 Two Classes of Equivalent Reverse Inequalities 3.3.3 Some Corollaries . . . . . . . . . . . . . . . . . 3.3.4 Some Particular Examples . . . . . . . . . . .
25 27
29 29 29 31 32 34 36 36 40 47 50 50 52
57 . . . .
57 58
. . . .
. . . .
58 62 68 70
. . . .
. . . .
70 76 82 97
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
ws-book9x6
xiii
Contents
3.3.5 3.3.6
Applying Condition (iii) and Corollary 3.8 . . . . 101 Applying Condition (iii) and Corollary 3.4 . . . . 115
4. A Half-Discrete Hilbert-Type Inequality with a Non-Homogeneous Kernel 4.1 4.2
4.3
4.4
123
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . Some Preliminary Lemmas . . . . . . . . . . . . . . . . . 4.2.1 Definition of Weight Functions and Some Related Lemmas . . . . . . . . . . . . . . . . . . . . . . . 4.2.2 Estimations of Two Series and Examples . . . . . 4.2.3 Some Inequalities Relating the Constant k(α) . . Some Theorems and Corollaries . . . . . . . . . . . . . . . 4.3.1 Equivalent Inequalities and their Operator Expressions . . . . . . . . . . . . . . . . . . . . . . 4.3.2 Two Classes of Equivalent Reverses . . . . . . . . 4.3.3 Some Corollaries . . . . . . . . . . . . . . . . . . . Some Particular Examples . . . . . . . . . . . . . . . . . . 4.4.1 Applying Condition (i) and Corollary 4.5 . . . . . 4.4.2 Applying Condition (iii) and Corollary 4.2 . . . .
5. Multi-dimensional Half-Discrete Hilbert-Type Inequalities 5.1 5.2
5.3
5.4
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . Some Preliminary Results and Lemmas . . . . . . . . . 5.2.1 Some Related Lemmas . . . . . . . . . . . . . . 5.2.2 Some Results about the Weight Functions . . . 5.2.3 Two Preliminary Inequalities . . . . . . . . . . . Some Inequalities Related to a General Homogeneous Kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.3.1 Several Lemmas . . . . . . . . . . . . . . . . . . 5.3.2 Main Results . . . . . . . . . . . . . . . . . . . . 5.3.3 Some Corollaries . . . . . . . . . . . . . . . . . . 5.3.4 Operator Expressions and Some Particular Examples . . . . . . . . . . . . . . . . . . . . . . Some Inequalities Relating a General Non-Homogeneous Kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.4.1 Some Lemmas . . . . . . . . . . . . . . . . . . . 5.4.2 Main Results . . . . . . . . . . . . . . . . . . . . 5.4.3 Some Corollaries . . . . . . . . . . . . . . . . . .
123 123 123 128 132 134 134 140 146 155 155 160 169
. . . . .
169 170 170 172 175
. . . .
178 178 183 192
. 196 . . . .
205 205 210 219
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
xiv
ws-book9x6
Half-Discrete Hilbert-Type Inequalities
5.4.4
Operator Expressions and Some Particular Examples . . . . . . . . . . . . . . . . . . . . . . . 223
6. Multiple Half-Discrete Hilbert-Type Inequalities 6.1 6.2
6.3
6.4
233
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . First Kind of Multiple Hilbert-type Inequalities . . . . . 6.2.1 Lemmas Related to the Weight Functions . . . . 6.2.2 Two Preliminary Inequalities . . . . . . . . . . . 6.2.3 Main Results and Operator Expressions . . . . . 6.2.4 Some Kinds of Reverse Inequalities . . . . . . . Second Kind of Multiple Hilbert-type Inequalities . . . . 6.3.1 Lemmas Related to the Weight Functions . . . . 6.3.2 Two Preliminary Inequalities . . . . . . . . . . . 6.3.3 Main Results and Operator Expressions . . . . . 6.3.4 Some Kinds of Reverse Inequalities . . . . . . . Some Examples with the Particular Kernels . . . . . . . 1 6.4.1 The Case of kλ (x1 , · · · , xm , xm+1 ) = (m+1 λ i=1 xi ) 6.4.2 The Case of s 1 kλ (x1 , · · · , xm+1 ) = k=1 m λ/s . . λ/s i=1
6.4.3 6.4.4
The Case of kλ (x1 , · · · , xm , xm+1 ) = The Case of kλ (x1 , · · · , xm , xm+1 ) =
xi
+ck xm+1
. . . . . . . . . . . . .
233 234 234 245 248 253 259 259 269 271 276 281 282
. 291
1 (max1≤i≤m+1 {xi })λ
. . . . . 302
1 (min1≤i≤m+1 {xi })λ
. . . . . 311
Bibliography
321
Index
331
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
ws-book9x6
Chapter 1
Recent Developments of Hilbert-Type Inequalities with Applications
“As long as a branch of knowledge offers an abundance of problems, it is full of vitality.” “The organic unity of mathematics is inherent in the nature of this science, for mathematics is the foundation of all exact knowledge of natural phenomena.”
David Hilbert
1.1
Introduction
This chapter deals with some recent developments of Hilbert-type discrete and integral inequalities by introducing kernels, weight functions, and multi-parameters. Included are numerous generalizations, extensions and refinements of Hilbert-type inequalities involving many special functions such as beta, gamma, logarithm, trigonometric, hyperbolic, Bernoulli’s functions and Bernoulli’s numbers, Euler’s constant, zeta function and hypergeometric functions with many applications. Special attention is given to many equivalent inequalities and to conditions under which the constant factors involved in inequalities are the best possible. Many particular cases of Hilbert-type inequalities are presented with numerous applications. A large number of major books and research papers published in recent years are included to stimulate new interest in future study, especially in research on half-discrete Hilbert-type inequalities and their applications. 1
November 7, 2013
12:24
2
1.2 1.2.1
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
Half-Discrete Hilbert-Type Inequalities
Hilbert’s Inequality and Hilbert’s Operator Hilbert’s Discrete and Integral Inequalities
Historically, mathematical analysis has been the major and significant branch of mathematics for the last three centuries. Indeed, inequalities became the heart of mathematical analysis. Many great mathematicians have made significant contributions to many new developments of the subject which led to the discovery of many new inequalities with proofs and useful applications in many fields of mathematical physics, pure and applied mathematics. Indeed, mathematical inequalities became an important branch of modern mathematics in the twentieth century through the pioneering work entitled Inequalities by G.H. Hardy, J.E. Littlewood and G. P`olya [21] which was first published as a treatise in 1934. This unique publication represents a paradigm of precise logic, full of elegant inequalities with rigorous proofs and useful applications in mathematics. It is appropriate to mention a delighted quotation of Anthony Zygmund (1900-1992) “Hardy, Littlewood and P`olya’s book has been one of the most important books in analysis in the last few decades. It had an impact on the trend of research and is still influencing it. In looking through the book now one realises how little one would like to change the existing text.” During the twentieth century, discrete and integral inequalities played a fundamental role in mathematics and have a wide variety of applications in many areas of pure and applied mathematics. In particular, David Hilbert (1862-1943) first proved Hilbert’s double series inequality without exact determination of the constant in his lectures on integral equations. If {am } ∞ and {bn } are two real sequences such that 0 < m=1 a2m < ∞ and 0 < ∞ 2 n=1 bn < ∞, then the Hilbert’s double series inequality is given by 12 ∞ ∞ ∞ ∞ a m bn 2 2 <π am bn . (1.1) m+n n=1 m=1 m=1 n=1 This famous inequality was proved by Hilbert in the early 1900s with the constant 2π in place of π. Several years after Hilbert’s proof, Issai Schur (1875-1941) [66] gave a new proof in 1911 which revealed that (1.1) actually holds for constant π which is the best possible sharp constant. In 1908, Weyl [77] published a proof of Hilbert’s inequality (1.1), and Schur [66] also discovered the integral analogue of (1.1), which became known as the Hilbert’s integral inequality in the form 12 ∞ ∞ ∞ ∞ f (x) g (y) 2 2 f (x) dx g (y) dy , (1.2) dxdy < π x+y 0 0 0 0
ws-book9x6
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
Recent Developments of Hilbert-Type Inequalities with Applications
ws-book9x6
3
∞ where f and g are measurable functions such that 0 < 0 f 2 (x) dx < ∞ ∞ 2 and 0 < 0 g (y) dy < ∞, and π in (1.2) is still the best possible constant factor. A large number of generalizations, extensions and refinements of both (1.1) and (1.2) are available in literature in Hardy et al. [21], Mitrinovi´c et al. [57], Kuang [47] and Hu [34]. Considerable attention has been given to the well-known classical Hardy-Littlewood-Sobolev (HLS) inequality (see Hardy et al. [21]) in the form f (x) g (y) dx dy ≤ Cn,λ,p f p gq , (1.3) λ Rn Rn |x − y| for every f ∈ Lp (Rn ) and g ∈ Lq (Rn ), where 0 < λ < n, 1 < p, q < ∞ such that p1 + 1q + nλ = 2, and f p is the Lp (Rn ) norm of the function f . For arbitrary p and q, an estimate of the upper bound of the constant Cn,λ,p was given by Hardy, Littlewood and Sobolev, but no sharp value is known still now. However, for the special case, p = q = 2n/ (2n − λ), the sharp value of the constant was found as n nλ −1 Γ n−λ Γ 2 λ Cp,λ,n = Cn,λ = π 2 2 λ , (1.4) Γ (n) Γ n− 2 and the equality in (1.3) holds if and only if g (x) = c1 f (x) and f (x) = −d 2 c2 h μx2 − a , where h (x) = 1 + |x| , 2d = (λ − 2n), a ∈ Rn , c1 , c2 , μ ∈ R/ {0}. In 1958, Stein and Weiss [67] generalized the double weighted inequality of Hardy and Littlewood in the form with the same notation as in (1.3): f (x) g (x) dx dy (1.5) ≤ Cα,β,n,λ,p f p gq , Rn Rn |x|α |x − y|λ |y|β where α + β ≥ 0, and the powers of α and β of the weights satisfy the 1 1 1 1 following conditions 1 − p1 − nλ < α n < 1 − p , and p + q + n (λ + α + β) = 2. Inequality (1.5) and its proof given by Stein and Weiss [67] represent some major contribution to the subject. On the other hand, Chen et al. [8] used weighted Hardy-LittlewoodSobolev inequalities (1.3) and (1.5) to solve systems of integral equations. In 2011, Khotyakov [42] suggested two proofs of the sharp version of the HLS inequality (1.3). The first proof is based on the invariance property of the inequality (1.3), and the second proof uses some properties of the fast diffusion equation with the conditions λ = n − 2, n ≥ 3 on the sharp HLS inequality (1.3).
November 7, 2013
12:24
4
1.2.2
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
ws-book9x6
Half-Discrete Hilbert-Type Inequalities
Operator Formulation of Hilbert’s Inequality m
Suppose that R is the set of real numbers and Rm + = (0, ∞) × · · · × (0, ∞), ∞ 1 p p < ∞} and for p > 1, lp := {a = {an }∞ n=1 |||a||p = { n=1 |an | } ∞ p p 1/p L (R+ ) := {f |||f ||p = { 0 |f (x)| dx} < ∞} are real normal spaces with the norms ||a||p and ||f ||p . We express inequality (1.1) using the form of operator as follows: T : l 2 → l2 is a linear operator, for any ∞ ∞ a = {am }m=1 ∈ l2 , there exists a sequence c = {cn }n=1 ∈ l2 , satisfying cn = (T a) (n) =
∞
am , m +n m=1
n ∈ N,
(1.6)
where N is the set of positive integers. Hence, for any sequence b = 2 {bn }∞ n=1 ∈ l , we define the inner product of T a and b as follows ∞ ∞ ∞ ∞ am a m bn bn = . (1.7) (T a, b) = (c, b) = m + n m +n n=1 m=1 n=1 m=1 Using (1.7), inequality (1.1) can be rewritten in the operator form (T a, b) < π a2 b2 ,
(1.8)
where a2 , and b2 > 0. It follows from Wilhelm [78] that T is a bounded operator and the norm T = π and T is called Hilbert’s operator with 1 the kernel m+n . For a2 > 0, the equivalent form of (1.8) is given as T a2 < π a2 , that is, ∞ 2 ∞ ∞ am < π2 a2n , (1.9) m + n n=1 m=1 n=1 where the constant factor π2 is still the best possible. Obviously, inequality (1.9) and (1.1) are equivalent (see Hardy et al. [21]). We may define Hilbert’s integral operator as follows: T : L2 (R+ ) → 2 L (R+ ), for any f ∈ L2 (R+ ), there exists a function, h = Tf ∈ L2 (R+ ), satisfying ∞ f (x) dx, y ∈ (0, ∞) . (1.10) Tf (y) = h (y) = x+y 0 Hence, for any g ∈ L2 (R+ ), we may still define the inner product of Tf and g as follows: ∞ ∞ ∞ ∞ f (x) f (x) g (y) dx g (y) dy = dxdy. Tf, g = x+y x+y 0 0 0 0 (1.11)
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
Recent Developments of Hilbert-Type Inequalities with Applications
ws-book9x6
5
∞ 1 Setting the norm of f as f 2 = 0 f 2 (x) dx 2 , if f 2 , and g2 > 0, then (1.2) my be rewritten in the operator form Tf, g < π f 2 g2 . (1.12) It follows that ||T|| = π (see Carleman [5]), and we have the equivalent form of (1.2) as Tf < π f 2 (see Hardy et al [21]), that is, 2
∞ 0
∞ 0
2 ∞ f (x) dx dy < π 2 f 2 (x) dx, x+y 0
(1.13)
where the constant factor π 2 is still the best possible. It is obvious that inequality (1.13) is the integral analogue of (1.9). 1.2.3
A More Accurate Discrete Hilbert’s Inequality
If we set the subscripts m, n of the double series from zero to infinity, then, we may rewrite inequality (1.1) equivalently in the following form: 12 ∞ ∞ ∞ ∞ a m bn 2 2 <π an bn , (1.14) m+n+2 n=0 m=0 n=0 n=0 where the constant factor π is still the best possible. Obviously, we may raise the following question: Is there a positive constant α (< 2), that makes 1 inequality still valid as we replace 2 by α in the kernel m+n+2 ? The answer is positive. That is the following more accurate Hilbert’s inequality (for short, Hilbert’s inequality) (see Hardy et al. [21]): 12 ∞ ∞ ∞ ∞ a m bn 2 2 <π an bn , (1.15) m+n+1 n=0 m=0 n=0 n=0 where the constant factor π is the best possible. Since for am , bn ≥ 0, α ≥ 1, ∞ ∞
∞ ∞ a m bn am bn ≤ , m + n + α m +n+1 n=0 m=0 n=0 m=0
then, by (1.15) and for α ≥ 1, we obtain 12 ∞ ∞ ∞ ∞ a m bn 2 2 an bn . <π m+n+α n=0 m=0 n=0 n=0
(1.16)
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
6
ws-book9x6
Half-Discrete Hilbert-Type Inequalities
For 1 ≤ α < 2, inequality (1.16) is a refinement of (1.14). Obviously, we have a refinement of (1.9), which is equivalent to (1.16) as follows: ∞ 2 ∞ ∞ am < π2 a2n (1 ≤ α < 2) . (1.17) m + n + α n=0 m=0 n=0 For 0 < α < 1, in 1936, Ingham [39] proved: If α ≥ 12 , then ∞ ∞
∞ am an ≤π a2n ; m + n + α n=0 m=0 n=0
(1.18)
and if 0 < α < 12 , then ∞ ∞
∞ am an π ≤ a2n . m + n + α sin (απ) n=0 m=0 n=0
(1.19)
Note. If we put x = X + α2 , y = Y + α2 , F (X) = f X + α2 and G (Y ) = g Y + α2 (α ∈ R) in (1.2), then we obtain
∞ −α 2
∞ −α 2
F (X) G (Y ) dXdY < π X +Y +α
∞
−α 2
2
F (X) dX
∞ −α 2
12 2
G (Y ) dY
.
(1.20) inequality (1.20) is an integral analogue of (1.18) with G = F . For α ≥ However, if 0 < α < 12 , inequality (1.20) is not an integral analogue of (1.19), because two constant factors are different. Using the improved version of the Euler-Maclaurin summation formula and introducing new parameters, several authors including Yang ([111], [174]) recently obtained several more accurate Hilbert-type inequalities and some new Hardy-Hilbert inequality with applications. 1 , 2
1.2.4
Hilbert’s Inequality with One Pair of Conjugate Exponents
In 1925, by introducing one pair of conjugate exponents (p, q) with 1p + 1q = 1, Hardy [20] gave an extension of (1.1) as follows: ∞ q p If p > 1, am , bn ≥ 0, such that 0 < ∞ m=1 am < ∞ and 0 < n=1 bn < ∞, then ∞ p1 ∞ 1q ∞ ∞ a m bn π p am bqn , (1.21) < π m + n sin n=1 m=1 m=1 n=1 p
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
Recent Developments of Hilbert-Type Inequalities with Applications
ws-book9x6
7
π where the constant factor sin(π/p) is the best possible. The equivalent discrete form of (1.21) is as follows: ⎤p ∞ p ⎡ ∞ ∞ am π ⎣ ⎦ < apn , (1.22) π m + n sin n=1 m=1 n=1 p
#p
"
π where the constant factor sin(π/p) is still the best possible. Similarly, inequalities (1.15) and (1.17) (for α = 1) may be extended to the following equivalent forms (see Hardy et al. [21]): p1 ∞ q1 ∞ ∞ ∞ am bn π p < am bqn , (1.23) π m + n + 1 sin n=0 m=0 m=0 n=0 ∞ n=0
∞
am m + n+1 m=0
p
p
⎡
<⎣ sin
⎤p ∞ π ⎦ apn , π p
(1.24)
n=0
" #p π π where the constant factors sin(π/p) and sin(π/p) are the best possible. The equivalent integral analogues of (1.21) and (1.22) are given as follows: p1 ∞ 1q ∞ ∞ ∞ f (x) g (y) π dxdy < f p (x) dx g q (y) dy , x+y 0 0 0 0 sin πp
∞ 0
∞ 0
⎡
(1.25)
⎤p
p ∞ f (x) π ⎦ dx dy < ⎣ f p (x) dx. π x+y 0 sin p
(1.26)
We call (1.21) and (1.23) as Hardy-Hilbert’s inequality and call (1.25) as Hardy-Hilbert’s integral inequality. Inequality (1.23) may be expressed in the form of operator as follows: Tp : lp → lp is a linear operator, such that for any non-negative sequence ∞ ∞ a = {am }m=1 ∈ lp , there exists Tp a = c = {cn }n=1 ∈ lp , satisfying cn = (Tp a) (n) =
∞
am , m + n+1 m=0
n ∈ N0 = N ∪ {0} .
(1.27)
q And for any non-negative sequence b = {bn }∞ n=1 ∈ l , we can define the formal inner product of Tp a and b as follows: ∞ ∞ ∞ ∞ am am bn bn = . (1.28) (Tp a, b) = m + n + 1 m +n+1 n=0 m=0 n=0 m=0
November 7, 2013
8
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
ws-book9x6
Half-Discrete Hilbert-Type Inequalities
Then inequality (1.23) may be rewritten in the operator form π ap bq , (Tp a, b) < sin πp
(1.29)
where ap , bq > 0. The operator Tp is called Hardy-Hilbert’s operator. Similarly, we define the following Hardy-Hilbert’s integral operator Tp : Lp (R+ ) → Lp (R+ ) as follows: For any f (≥ 0) ∈ Lp (R+ ), there exists a h = Tp f ∈ Lp (R+ ), defined by ∞ f (x) (1.30) Tp f (y) = h (y) = dx, y ∈ R+ . x+y 0 And for any g (≥ 0) ∈ Lq (R+), we can define the formal inner product of Tp f and g as follows: ∞ ∞ f (x) g (y) dxdy. (1.31) Tp f, g = x+y 0 0 Then inequality (1.25) may be rewritten in the operator form as follows: π f p gq . Tp f, g < (1.32) sin πp On the other hand, if (p, q) is not a pair of conjugate exponents, then we have the following results (see Hardy et al. [21]): If p > 1, q > 1, p1 + 1q ≥ 1, 0 < λ = 2 − 1p + 1q ≤ 1, then ∞ p1 ∞ q1 ∞ ∞ a m bn p q ≤K am bn , (1.33) λ n=1 m=1 (m + n) m=1 n=1 where K = K (p, q) relates to p, q, only for 1p + 1q = 1, λ = 2 − p1 + 1q = 1, the constant factor K is the best possible. The integral analogue of (1.33) is given by ∞ p1 ∞ 1q ∞ ∞ f (x) g (y) p q dxdy ≤ K f (x) dx g (y) dy . λ (x + y) 0 0 0 0 (1.34) We also find an extension of (1.34) as follows (see Mitrinovi´ c et al [57]):
If p > 1, q > 1, p1 + 1q > 1, 0 < λ = 2 − 1p + 1q < 1, then ∞ p1 ∞ 1q ∞ ∞ f (x) g (y) p q dxdy ≤ k (p, q) f (x)dx g (x)dx . λ −∞ −∞ |x + y| −∞ −∞ (1.35) For f (x) = g (x) = 0, x ∈ (−∞, 0], inequality (1.35) reduces to (1.34). Leven [52] also studied the expression forms of the constant factors in (1.33) and (1.34). But he did not prove their best possible property. In 1951, Bonsall [2] considered the case of (1.34) for the general kernel.
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
ws-book9x6
9
Recent Developments of Hilbert-Type Inequalities with Applications
A Hilbert-type Inequality with the General Homogeneous Kernel of Degree −1
1.2.5
If α ∈ R, the function k (x, y) is measurable in R2+ , satisfying for any x, y, u > 0, k (ux, uy) = uα k (x, y), then k (x, y) is called the homogeneous function of degree α. In 1934, Hardy et al [21] published the following theorem: Suppose that p > 1, p1 + 1q = 1, k1 (x, y) (≥ 0) is a homogeneous function of degree −1 in R2+ . If f (x), g(y) ≥ 0, f ∈ Lp (R+ ), g ∈ Lq (R+ ),
∞
∞ 1 1 k = 0 k1 (u, 1) u− p du is finite, then we have k = 0 k1 (1, u) u− q du and the following equivalent integral inequalities:
∞ 0
∞
0 ∞
0
k1 (x, y) f (x) g (y) dxdy ≤ k
∞ 0
∞
p1 f (x)dx p
0
p p k1 (x, y) f (x) dx dy ≤ k
∞
q
1q
g (y)dy
,
0
(1.36) ∞
f p (x) dx,
(1.37)
0
where the constant factor k is the best possible. Moreover, if am , bn ≥ −1 −1 p ∞ q p and k1 (1, u) u q 0, a = {am }∞ m=1 ∈ l , b = {bn }n=1 ∈ l , both k1 (u, 1) u are decreasing in R+, then we have the following equivalent discrete forms:
∞ ∞
k1 (m, n) am bn ≤ k
n=1 m=1 ∞ ∞
k1 (m, n) am
n=1
m=1
p ≤ kp
∞
m=1 ∞
p1 apm
apn .
∞
q1 bqn
,
(1.38)
n=1
(1.39)
n=1
∞ 1 For 0 < p < 1, if k = 0 k1 (u, 1) u− p du is finite, then we have the reverses of (1.36) and (1.37). Note. We have not seen any proof of (1.36)–(1.39) and the reverse examples in [21]. We call k1 (x, y) the kernel of (1.36) and (1.37). If all the integrals and series in the right hand side of inequalities (1.36)–(1.39) are positive, then we can obtain the following particular examples (see Hardy et al. [21]): 1 in (1.36)–(1.39), they reduce to (1.25), (1.26), (1). For k1 (x, y) = x+y (1.21) and (1.22); 1 (2). If k1 (x, y) = max{x,y} in (1.36)–(1.39), they reduce the following
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
10
ws-book9x6
Half-Discrete Hilbert-Type Inequalities
two pairs of equivalent forms:
∞
0
∞ 0
∞
0
f (x) g (y) dxdy < pq max {x, y}
∞
p1 f p (x) dx
0
∞
g q (y) dy
q1 ,
0
p ∞ f (x) p dx dy < (pq) f p (x) dx; max {x, y} 0 0 ∞ p1 ∞ q1 ∞ ∞ am bn p q < pq am bn , max {m, n} n=1 m=1 m=1 n=1 ∞ p ∞ ∞ am p < (pq) apn ; max {m, n} n=1 m=1 n=1
(1.40)
∞
(1.41)
(1.42)
(1.43)
in (1.36)–(1.39), they reduce to the following (3). If k1 (x, y) = ln(x/y) x−y two pairs of equivalent inequalities: ∞ ∞ ln x f (x) g (y) y dxdy x−y 0 0 ⎡ ⎤2 p1 ∞ 1q ∞ π ⎦ <⎣ f p (x) dx g q (y) dy , (1.44) 0 0 sin πp
∞ 0
⎛ ⎝
∞
ln
x y
f (x)
x−y
0
∞ ∞ ln n=1 m=1
∞ n=1
⎡
⎞p
⎤2p π ⎦
dx⎠ dy < ⎣ sin
π p
∞
f p (x)dx;
(1.45)
0
⎤2 ⎡ p1 ∞ 1q ∞ b a π m n p n ⎦ <⎣ am bqn , π m−n sin p m=1 n=1
m
∞ ln m n am m −n m=1
p
⎡
⎤2p π ⎦
<⎣ sin
π p
(1.46) ∞
apn .
(1.47)
n=1
Note. The constant factors in the above inequalities are all the best possible. We call (1.42) and (1.46) Hardy-Littlewood-P` olya’s inequalities (or H-L-P inequalities). We find that the kernels in the above inequalities are all decreasing functions. But this is not necessary. For example, we find the following two pairs of equivalent forms with the non-decreasing kernel
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
ws-book9x6
11
Recent Developments of Hilbert-Type Inequalities with Applications
(see Yang [121]):
∞
0
∞
ln xy f (x) g (y) max {x, y} 2 2 < p +q
0
dxdy
p1 f (x) dx
∞
0
∞
⎛ ⎝
0
∞
ln xy f (x) max {x, y}
0
p dx⎠ dy < p2 + q 2
n=1
max {m, n}
, (1.48)
∞
f p (x) dx,
(1.49)
p m am ln
m=1
max {m, n}
n
< p2 + q 2
∞
p1 apm
m=1
∞
g (y) dy
0
n
∞
1q
q
0
⎞p
∞ ∞ m a m bn ln n=1 m=1
∞
p
∞
1q bqn
,
n=1
(1.50) p < p2 + q 2
∞
apn ,
(1.51)
n=1
p where the constant factors p2 + q 2 and p2 + q2 are the best possible. Other types of inequalities with the best constant factors are as follows (see Xin and Yang [88]): ∞ ∞ ln x f (x) g (y) y dxdy x+y 0 0 ∞ p1 ∞ q1 p p f (x) dx g (y) dy , (1.52) < c0 (p) 0
0
∞
⎛ ⎝
∞
0
ln xy f (x) x+y
0
⎞p dx⎠ dy < cp0 (p)
∞ m ∞ ln a m bn n
∞
f p (x) dx;
∞
a2m
< c0 (2) m+n m=1 ∞ 2 ∞ ∞ m am ln n < c20 (2) a2n , m + n n=1 m=1 n=1 n=1 m=1
where the constant factor c0 (p) = 2
∞
(1.53)
0
n−1 n=1 (−1)
∞
12 b2n
, (1.54)
n=1
(1.55)
(
1 2 (n− p1 )
) −
1 2 (n− q1 )
.
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
12
ws-book9x6
Half-Discrete Hilbert-Type Inequalities
Two Multiple Hilbert-type Inequalities with the Homogeneous Kernels of Degree (−n + 1)
1.2.6
Suppose that n ∈ N\ {1}, n numbers p, q, · · · , r satisfying p, q, · · · , r > 1, p−1 + q −1 + · · · + r−1 = 1, k (x, y, · · · , z) ≥ 0 is a homogeneous function of degree (−n + 1). If ∞
∞
k= 0
0
···
∞
0
1
1
k (1, y, · · · , z) y − q · · · z − r dy · · · dz
is a finite number, f , g, · · · , h are non-negative measurable functions in R+ , then, we have the following multiple Hilbert-type integral inequality (see Hardy et al.[21]): ∞
0
≤k
∞
0
···
∞
∞
0
k (x, y, · · · , z) f (x) g (y) · · · h (z) dxdy · · · dz
p1 f p (x) dx
0
∞
g q (y) dy
1q
0
···
∞
hr (z) dz
r1 . (1.56)
0
1
Moreover, if am , bn , · · · , cs ≥ 0, k (1, y, · · · , z) x0 y − q · · · z − r , 1 1 1 1 k (x, 1, · · · , z) x− p y 0 · · · z − r , · · · , k (x, y, · · · , 1) x− p y − q · · · z 0 are all decreasing functions with respect to any single variable in R+ , then, we have ∞ ∞ ∞ ··· k(m, n, · · · , s)am bn · · · cs s=1
n=1 m=1
≤k
∞ m=1
p1 apm
∞ n=1
q1 bqn
···
∞
1
1r crs
.
(1.57)
s=1
Note. The authors did not write and prove that the constant factor k in the above inequalities is the best possible. For two numbers p and q (n = 2), inequalities (1.56) and (1.57) reduce respectively to (1.36) and (1.38).
1.3 1.3.1
Modern Research for Hilbert-type Inequalities Modern Research for Hilbert’s Integral Inequality
In 1979, based on an improvement of H¨ older’s inequality, Hu [33] proved a refinement of (1.2) (for f = g) as follows: ∞ ∞ f (x) f (y) dxdy x+y 0 0 ∞ 2 2 12 ∞ √ 1 f 2 (x) dx − f 2 (x) cos xdx . <π 4 0 0 (1.58)
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
ws-book9x6
13
Recent Developments of Hilbert-Type Inequalities with Applications
Since then, Hu [34] published many interesting results similar to (1.58). In 1998, Pachpatte [58] gave an inequality similar to (1.2) as follows: For a, b > 0, a b f (x) g (y) dxdy x+y 0 0 12 √ a b ab 2 2 (a − x) f (x) dx (b − x) g (y) dy . (1.59) < 2 0 0 Some improvements and extensions have been made by Zhao and Debnath [173], Lu [55] and He and Li [23]. We can also refer to other works of Pachpatte in [59]. In 1998, by introducing parameters λ ∈ (0, 1] and a, b ∈ R+ (a < b), Yang [96] gave an extension of (1.2) as follows: b b f (x) g (y) dxdy λ a a (x + y) 12 ( b a λ4 ) b λ λ 1− ,
0
0
π f (x) f (y) π dxdy < xλ + y λ λ sin 2λ
∞
f 2 (x) dx
0
∞
g 2 (y) dy
12 .
0
(1.61) We can refer to the other works of Kuang in [47] and [48]. In 1999, using the methods of algebra and analysis, Gao [15] proved an improvement of (1.2) as follows:
∞ 0
0
∞
√ f (x) f (y) dxdy < π 1 − R x+y
∞
2
1/2
1 π
∞
f 2 (x) dx
0
∞
g 2 (y) dy
0
2
+
12 , (1.62)
2 π
− , u = (g, e), v = where ||f || = 0 f (x)dx , R = √
∞ ex −x 2π (f, e ), e (y) = 0 x+y dx. We also refer to works of Gao and Hsu in [17]. u g
v f
November 7, 2013
12:24
14
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
ws-book9x6
Half-Discrete Hilbert-Type Inequalities
In 2002, using the operator theory, Zhang [172] gave an improvement of (1.2) as follows: ∞ ∞ f (x) f (y) dxdy x+y 0 0 ∞ 2 12 ∞ ∞ π 2 2 f (x) dx g (x) dx + f (x) g (x) dx . ≤ √ 2 0 0 0 (1.63) 1.3.2
On the Way of Weight Coefficient for Giving a Strengthened Version of Hilbert’s Inequality
In 1991, for making an improvement of (1.1), Hsu and Wang [32] raised the way of weight coefficient as follows: At first, using Cauchy’s inequality in the left hand side of (1.1), it follows that ( 1 ) ( 1 ) ∞ ∞ ∞ ∞ m 4 am b n 1 n 4 = I= am bn m + n m + n n m n=1 m=1 n=1 m=1
∞ 12 ∞ ∞ ∞ m 12 1 m 12 1 . a2m b2n ≤ m + n n m + n n m=1 n=1 n=1 m=1 (1.64) Then, we define the weight coefficient ∞ 1 m 12 , ω (n) = m+n n m=1
n ∈ N,
and rewrite (1.64) as follows: ∞ 12 ∞ I≤ ω (m) a2m ω (n) b2n . m=1
(1.65)
(1.66)
n=1
Setting ω (n) = π −
θ (n) , n1/2
n ∈ N,
(1.67)
where, θ (n) = (π − ω (n)) n1/2 , and estimating the series of θ (n), it follows that
∞ 1 m 12 θ (n) = π − (1.68) n1/2 > θ = 1.1213+. m + n n m=1
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
Recent Developments of Hilbert-Type Inequalities with Applications
ws-book9x6
15
Thus, result (1.67) yields ω (n) < π −
θ , n1/2
n ∈ N,
θ = 1.1213+.
In view of (1.66), a strengthened version of (1.1) is given by ∞ 12 ∞ θ θ . I< π − 1/2 a2n π − 1/2 b2n n n n=1 n=1
(1.69)
(1.70)
Hsu and Wang [32] also raised an open question how to obtain the best value θ of (1.70). In 1992, Gao [14] gave the best value θ = θ0 = 1.281669+. Xu and Gao [91] proved a strengthened version of (1.11) given by ⎧ ⎡ ⎤ ⎫ p1 ∞ ⎨ ⎬ p−1 ⎣ π ⎦ apn − 1/p I< ⎩ ⎭ n + n−1/q sin π n=1
p
⎧ ⎡ ⎤ ⎫ 1q ∞ ⎨ ⎬ q − 1 π ⎣ ⎦ bqn − 1/q × . (1.71) ⎩ ⎭ π n + n−1/p n=1 sin p
In 1997, using the way of weight coefficient and the improved EulerMaclaurin’s summation formula, Yang and Gao ([144], [18]) showed that ⎧ ⎡ ⎤ ⎫ p1 ∞ ⎬ ⎨ 1−γ ⎣ π − 1/p ⎦ apn I< π ⎭ ⎩ n n=1 sin p
⎧ ⎡ ⎤ ⎫ 1q ∞ ⎨ ⎬ 1−γ ⎣ π − 1/q ⎦ bqn × , ⎩ ⎭ π n n=1 sin
(1.72)
p
where 1 − γ = 0.42278433+ (γ is the Euler constant). In 1998, Yang and Debnath [140] gave another strengthened version of (1.11), which is an improvement of (1.71). We can also refer to some strengthened versions of (1.15) and (1.23) in papers of Yang [97], Yang and Debnath [143]. 1.3.3
Hilbert’s Inequality with Independent Parameters
In 1998, using the optimized weight coefficients and introducing an independent parameter λ ∈ (0, 1], Yang [96] provided an extension of (1.2) as follows:
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
16
ws-book9x6
Half-Discrete Hilbert-Type Inequalities
∞ x1−λ f 2 (x) dx < ∞ and 0 < 0 x1−λ g 2 (x) dx < ∞, then ∞ ∞ f (x) g (y) dxdy λ (x + y) 0 0 ∞ 12 ∞ λ λ 1−λ 2 1−λ 2 , x f (x) dx x g (x) dx , (1.73) 0) . (1.74) = tu+v 1 If 0 <
∞ 0
Some extensions of (1.21), (1.23) and (1.25) were given by Yang and Debnath ([98], [141], [142]) as follows: If λ > 2 − min {p, q}, then ∞ ∞ p+λ−2 q+λ−2 f (x) g (y) dxdy < B , λ p q (x + y) 0 0 p1 ∞ 1q ∞ x1−λ f p (x) dx x1−λ g q (x) dx . × 0
0
(1.75) If 2 − min {p, q} < λ ≤ 2, then ∞ ∞ p+λ−2 q+λ−2 a m bn < B , λ p q n=1 m=1 (m + n) 1 p ∞ 1q ∞ × n1−λ apn n1−λ bqn , n=1
(1.76)
n=1
p+λ−2 q+λ−2 ,
a m bn
[99] also proved that (1.76) is valid for p = 2 and λ ∈ (0, 4]. Yang ([100],
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
ws-book9x6
17
Recent Developments of Hilbert-Type Inequalities with Applications
[115]) gave another extensions of (1.21) and (1.23) as follows: If 0 < λ ≤ min {p, q}, then ∞ ∞
a m bn mλ + nλ n=1 m=1 ∞ p1 ∞ q1 π (p−1)(1−λ) p (q−1)(1−λ) q < n an n bn , (1.78) λ sin πp n=1 n=1 and if 0 < λ ≤ 1, then ∞ ∞
a m bn 1 λ + (n + 12 )λ n=0 m=0 m + 2 ∞ p−1−λ p1 q−1−λ 1q ∞ π 1 1 p < an bqn . n+ n+ π 2 2 λ sin p n=0 n=0 (1.79) In 2004, Yang [104] proved the following dual form of (1.21): ∞ p1 ∞ q1 ∞ ∞ a m bn π p−2 p q−2 q < n an n bn . m+n sin π n=1 m=1 n=1 n=1
(1.80)
p
Inequality (1.80) reduces to (1.21) when p = q = 2. For λ = 1, (1.79) reduces to the dual form of (1.23) as follows: ∞ ∞
am bn m+n+1 n=0 m=0 ∞ p−2 p1 q−2 q1 ∞ π 1 1 p < an bqn . (1.81) n+ n+ π 2 2 sin p n=0 n=0 We can find some extensions of the H-L-P inequalities with the best constant factors such as (1.40)-(1.51) (see Wang and Yang [75], Yang [102]– [103]) by introducing some independent parameters. In 2001, by introducing some parameters, Hong [29] gave a multiple integral inequality, which is an extension of (1.21). He et al [28] gave a similar result for particular conjugate exponents. For making an improvement of their works, Yang [101] gave the following inequality, which is a best exn 1 = 1, λ > n − min {pi }, tension of (1.21): If n ∈ N\ {1}, pi > 1, pi i=1
1≤i≤n
November 7, 2013
12:24
18
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
Half-Discrete Hilbert-Type Inequalities
∞ fi (t) ≥ 0 and 0 < 0 tn−1−λ fipi (t) dt < ∞ : (i = 1, 2, · · · , n), then, we have ∞ ∞ n i=1 fi (xi ) ··· dx1 · · · dxn n λ 0 0 ( i=1 xi ) ∞ p1 n i 1 2 pi + λ − n n−1−λ pi < Γ t fi (t) dt , (1.82) Γ (λ) i=1 pi 0 n pi +λ−n 1 is the best possible. In where the constant factor Γ(λ) i=1 Γ pi particular, for λ = n − 1, it follows that ∞ n ∞ i=1 fi (xi ) ··· dx1 · · · dxn n n−1 ( i=1 xi ) 0 0 ∞ p1 n i 1 2 1 < Γ 1− fipi (t)dt . (1.83) Γ (λ) i=1 pi 0 In 2003, Yang and Rassias [147] introduced the way of weight coefficient and considered its applications to Hilbert-type inequalities. They summarized how to use the way of weight coefficients to obtain some new improvements and generalizations of the Hilbert-type inequalities. Since then, a number of authors discussed this problem (see Brneti´c et al. [3]– [4], Chen and Xu [6], Gao [16], Gao et al. [19], He et al. [26]–[27], Jia et al. [40]–[41], Krni´c et al. [43]–[45], Laith [50], Lu [56], Salem [65], Sulaiman [68]–[69], Wang and Xin [74], Xie and Lu [80]–[81], Xu [91], and Yang [110]). But how to give an uniform extension of inequalities (1.80) and (1.21) with a best possible constant factor, this was solved in 2004 by introducing two pairs of conjugate exponents (see Yang [105]). 1.3.4
Hilbert-type Inequalities with Multi-parameters
In 2004, by introducing an independent parameter λ > 0 and two pairs of conjugate exponents (p, q) and (r, s) with p1 + 1q = 1r + 1s = 1, Yang [105] gave an extension of (1.2) as follows: If p, r > 1, and the integrals of the right hand side are positive, then ∞ ∞ f (x) g (y) dxdy xλ + y λ 0 0 p1 ∞ 1q ∞ π p(1− λ −1 p q(1− λ −1 q ) ) r s x f (x) dx x g (x) dx , < λ sin πr 0 0 (1.84)
ws-book9x6
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
Recent Developments of Hilbert-Type Inequalities with Applications
where the constant factor
π λ sin( π r)
ws-book9x6
19
is the best possible.
For λ = 1, r = q, s = p, inequality (1.84) reduces to (1.25); for λ = 1, r = p, s = q, inequality (1.84) reduces to the dual form of (1.25) as follows:
∞
0
<
∞
f (x) g (y) dxdy x+y 0 ∞ p1 π p−2 p x f (x) dx π p
sin
0
∞
q1 g (x) dx .
q−2 q
x
(1.85)
0
In 2005, by introducing an independent parameter λ > 0, and two pairs of generalized conjugate exponents (p1 , p2 , · · · , pn ) and (r1 , r2 , · · · , rn ) with n n 1 1 = pi ri = 1, Yang et al. [149] gave a multiple integral inequality as i=1
i=1
follows: For pi , ri > 1 (i = 1, 2, · · · , n),
∞
∞
n
i=1 fi (xi ) dx1 · · · dxn n λ 0 0 ( i=1 xi ) ∞ p1 n i 1 2 λ pi 1− rλ −1 pi i < Γ t fi (t) dt , Γ (λ) i=1 ri 0
···
where the constant factor
1 Γ(λ)
n
(1.86)
i=1 Γ
λ ri
is the best possible. For n = 2,
p1 = p, p2 = q, r1 = r and r2 = s, inequality (1.86) reduces to the following:
∞
∞
f (x) g (y)
dxdy λ (x + y) p1 ∞ 1q ∞ λ λ p(1− λ −1 p q (1− λ −1 q ) ) r s x f (x) dx x g (x) dx .
0
It is obvious that inequality (1.87) is another best extension of (1.25). In 2006, using two pairs of conjugate exponents (p, q) and (r, s) with p, r > 1, Hong [31] gave a multi-variable integral inequality as follows: If Rn+ = {x = (x1 , x2 , · · · , xn ) ; xi > 0, i = 1, 2, · · · , n}, α, β, λ > 0, n α1
p n− βλ −n α x , f , g ≥ 0, 0 < x ( r ) f p (x) dx < ∞ and x = i
α
i=1
Rn +
α
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
20
ws-book9x6
Half-Discrete Hilbert-Type Inequalities
q(n− βλ s )−n q 0 < Rn xα g (x) dx < ∞, then + Γn α1 λ λ f (x) g (y) dxdy < B , λ n r s βαn−1 Γ α β β Rn Rn + + xα + yα p1 1q βλ p(n− βλ −n q n− −n ) ( ) p q r s xα f (x) dx xα g (x) dx , × Rn +
Rn +
(1.88) n
where the constant factor
Γ
1 α
( )
n βαn−1 Γ( α )
B
λ
λ r, s
is the best possible. In par-
ticular, for n = 1, (1.88) reduces to Hong’s work in [30]; for n = β = 1, (1.88) reduces to (1.87). In 2007, Zhong and Yang [181] generalized (1.88) to a general homogeneous kernel and proposed the reversion. We can find another inequality with two parameters as follows (see Yang [108]): ∞ ∞
a m bn
+ n α )λ p1 ∞ 1q ∞ αλ λ λ 1 p(1− αλ −1 q 1− −1 p q ) ( ) r s , < B n an n bn , (1.89) α r s n=1 n=1 n=1 m=1
(mα
where α, λ > 0, αλ ≤ min {r, s}. In particular, for α = 1, we have ∞ ∞
a m bn λ
(m + n) p1 ∞ q1 ∞ λ λ λ p(1− λ −1 q 1− −1 p q ) ( ) r s
For λ = 1, r = q, inequality (1.90) reduces to (1.21), and for λ = 1, r = p, (1.90) reduces to (1.80). Also we can obtain the reverse form as follows (see Yang [109]): ∞ ∞
a m bn 2
n=0 m=0 (m + n + 1) p1 ∞ 1q ∞ bq 1 apn n 1− >2 , 2 2n + 1 2n + 1 4 (n + 1) n=0 n=0
(1.91)
where 0 < p < 1, p1 + 1q = 1. The other results on the reverse of the Hilbert-type inequalities are found in Xi [79] and Yang [112].
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
Recent Developments of Hilbert-Type Inequalities with Applications
ws-book9x6
21
In 2006, Xin [87] gave a best extension of H-L-P integral inequality (1.45) as follows:
2 ∞ ∞ ln x f (x) g (y) y π dxdy < xλ − y λ sin πr 0 0 ∞ p1 ∞ q1 p(1− λ −1 p q(1− λ −1 q ) ) r s × x f (x) dx x g (x) dx . (1.92) 0
0
In 2007, Zhong and Yang [176] gave an extension of another H-L-P integral inequality (1.40) as follows: ∞ ∞ f (x) g (y) dxdy max {xλ , y λ } 0 0 ∞ p1 ∞ q1 rs p(1− λ −1 p q (1− λ −1 q ) ) r s < x f (x) dx x g (x) dx . (1.93) λ 0 0 Zhong and Yang [177] also gave the reverse form of (1.93). Considering a particular kernel, Yang [118] proved ∞ ∞ a m bn √ √ 3 ( m + n) max {m, n} n=1 m=1 ∞ p1 ∞ q1 p q < 4 ln 2 n 2 −1 apn n 2 −1 bqn . n=1
(1.94)
n=1
Yang [114] also proved that ∞ ∞ a m bn 2
n=1 m=1
(m + an) + n2 <
π 2
− arctan a
∞ apn n n=1
p1
∞ bqn n n=1
1q (a ≥ 0) . (1.95)
Using the residue theory, Yang [123] obtained the following inequality ∞ ∞ f (x) g (y) dxdy (x + ay) (x + by) (x + cy) 0 0 p1 ∞ q1 ∞ p q x− 2 −1 f p (x) dx x− 2 −1 g q (x) dx , (1.96)
0 √ 1√ √ √ √ √ ( a+ b)( b+ c)( a+ c)
0
(a, b, c > 0). The constant factors in
the above new inequalities are all the best possible. Some other new results are proved by several authors including He et al. [27], Li and He [53], Xie [81]–[84].
November 7, 2013
12:24
22
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
Half-Discrete Hilbert-Type Inequalities
1.4
Some New Applications for Hilbert-type Inequalities
1.4.1
Operator Expressions of Hilbert-type Inequalities
Suppose that H is a separable Hilbert space and T : H → H is a bounded self-adjoint semi-positive definite operator. In 2002, Zhang [172] proved the following inequality: 2 T 2 2 2 2 (a, b ∈ H) , (1.97) (a, T b) ≤ a b + (a, b) 2 3 where (a, b) is the inner product of a and b, and a = (a, a) is the norm of a. Since the Hilbert integral operator T defined by (1.10) satisfies the condition of (1.97) with T = π, then inequality (1.2) may be improved as (1.63). Since the operator Tp defined by (1.27) (for p = q = 2) satisfies the condition of (1.97) (see Wilhelm [78]), we may improve (1.15) to the following form: ⎧ ∞ 2 ⎫ 12 ∞ ∞ ∞ ∞ ⎬ am b n π ⎨ 2 2 an bn + a n bn . (1.98) < √ ⎭ m+n+1 2⎩ n=0 m=0
n=0
n=0
n=0
The key of applying (1.97) is to obtain the norm of the operator and to show the semi-definite property. Now, we consider the concept and the properties of Hilbert-type integral operator as follows: Suppose that p > 1, 1p + 1q = 1, Lr (R+ ) (r = p, q) are real normal linear spaces and k (x, y) is a non-negative symmetric measurable function in R2+ satisfying ∞ x r1 k (x, t) dt = k0 (p) ∈ R (x > 0) . (1.99) t 0 We define an integral operator as T : Lr (R+ ) → Lr (R+ ) (r = p, q) , for any f (≥ 0) ∈ Lp (R+ ), there exists h = T f ∈ Lp (R+ ), such that ∞ k (x, y) f (x) dx (y > 0) . (1.100) (T f ) (y) = h (y) := 0
Or, for any g (≥ 0) ∈ L (R+), there exists h = T g ∈ Lq (R+ ), such that ∞ k (x, y) g (y) dy (x > 0). (1.101) (T g) (x) = h(x) := q
0
In 2006, Yang [113] proved that the operator T defined by (1.100) or (1.101) are bounded with T ≤ k0 (p). The following are some
ws-book9x6
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
Recent Developments of Hilbert-Type Inequalities with Applications
ws-book9x6
23
results of [113]: If ε > 0, is small enough and the integral 1+ε
∞ k (x, t) xt r dt (r = p, q; x > 0) is convergent to a constant kε (p) in0 dependent of x satisfying kε (p) = k0 (p)+o (1) (ε → 0+ ), then T = k0 (p). If T > 0, f ∈ Lp (R+ ), g ∈ Lq (R+ ), f p , gq > 0, then we have the following equivalent inequalities: (T f, g) < T · f p gq , (1.102) (1.103) T f p < T · f p . Some particular cases are considered in this paper [113]. Yang [119] also considered some properties of Hilbert-type integral operator (for p = q = 2). For the homogeneous kernel of degree −1, Yang [125] found some sufficient conditions to obtain T = k0 (p). We can see some properties of the discrete Hilbert-type operator in the discrete space in Yang ([116], [120], [122], [124]). Recently, B´enyi and Choonghong [1] proved some new results concerning best constants for certain multi-linear integral operators. In 2009, Yang [129] summarized the above part results. Some other works about Hilbert-type operators and inequalities with the general homogeneous kernel and multi-parameters were provided by several other authors (see Huang [35], Liu and Yang [54], Wang and Yang [76], Xin and Yang [89], Yang [114] and [133], Yang and Krnic [145] and Yang and Rassias [148]).
1.4.2
Some Basic Hilbert-type Inequalities
If the Hilbert-type inequality relates to a single symmetric homogeneous 1 , or |ln(x/y)| ) and the best constant factor kernel of degree −1 (such as x+y x+y is a more brief form, which does not relate to any conjugate exponents (such as (1.2)), then we call it basic Hilbert-type integral inequality. Its series analogue (if exists) is also called basic Hilbert-type inequality. If the simple homogeneous kernel is of degree −λ (λ > 0) with a parameter λ and the inequality cannot be obtained by a simple transform to a basic Hilbert-type integral inequality, then we call it a basic Hilbert-type integral inequality with a parameter. For examples, we call the following integral inequality that is, (1.2) as ∞ 12 ∞ ∞ ∞ f (x) g (y) 2 2 dxdy < π f (x) dx g (x) dx , (1.104) x+y 0 0 0 0 and the following H-L-P inequalities (for p = 2 in (1.40) and (1.45)): 12 ∞ ∞ ∞ ∞ f (x) g (y) 2 2 f (x) dx g (x) dx , (1.105) dxdy < 4 max {x, y} 0 0 0 0
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
24
ws-book9x6
Half-Discrete Hilbert-Type Inequalities
∞
0
∞
x y
ln
f (x) g (y) dxdy < π
x−y
0
2
∞
2
∞
f (x) dx 0
12 g (x) dx 2
0
(1.106) basic Hilbert-type integral inequalities. In 2005, Yang [106] gave the following basic Hilbert-type integral inequality: ∞ 12 ∞ ∞ ln x f (x) g (y) ∞ y dxdy < 8 f 2 (x) dx g 2 (x) dx ; max {x, y} 0 0 0 0 (1.107) In 2011, Yang [134] gave the following basic Hilbert-type integral inequalities: 0
∞
∞
ln xy f (x) g (y) x+y
0
∞ 0
∞
where, c0 = 8
∞ 0
dxdy < c0
arctan
+
0
∞
f 2 (x) dx
∞
12 g 2 (x) dx ,
0
x y
f (x) g (y) dxdy x+y ∞ 12 ∞ π2 f 2 (x) dx g 2 (x) dx , < 4 0 0
(−1)n (2n−1)2
(1.108)
(1.109)
= 7.3277+.
n=1
Yang ([106], [126], [128], [130], [146]) also gave a basic Hilbert-type integral inequality with a parameter λ ∈ (0, 1):
∞
∞
f (x) g (y)
dxdy λ |x − y| ∞ 12 ∞ λ x1−λ f 2 (x) dx x1−λ g 2 (x) dx . (1.110) < 2B 1 − λ, 2 0 0 0
0
Similar to discrete inequality (1.19), the following integral inequality ∞ ∞ f (x) g (y) dxdy λ (x + y) 0 0 ∞ 12 ∞ λ λ 1−λ 2 1−λ 2
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
Recent Developments of Hilbert-Type Inequalities with Applications
Also we find the following basic Hilbert-type inequalities: 12 ∞ ∞ ∞ ∞ a m bn a2n b2n , <π m + n n=1 m=1 n=1 n=1 ∞ 12 ∞ ∞ ∞ a m bn 2 2 <4 an bn , max {m, n} n=1 m=1 n=1 n=1 ∞ 12 ∞ ∞ ∞ ln m b 2 2 2 n am n an bn . <π m−n n=1 m=1 n=1 n=1 It follows from (1.50) with p = q = 2 that ∞ 12 ∞ m ∞ ∞ ln n am bn 2 2 <8 an bn . max {m, n} n=1 m=1 n=1 n=1 In 2010, Xin and Yang [88] proved the following inequality ∞ 12 ∞ m ∞ ∞ ln n am bn 2 2 < c0 an bn , m+n n=1 m=1 n=1 n=1
ws-book9x6
25
(1.112)
(1.113)
(1.114)
(1.115)
(1.116)
∞ (−1)n + where, c0 = 8 n=1 (2n−1) 2 = 7.3277 . Inequalities (1.115) and (1.116) are new basic Hilbert-type inequalities. We still have a basic Hilbert-type inequality with a parameter λ ∈ (0, 4] as follows (see Yang [100]): 12 ∞ ∞ ∞ ∞ λ λ a m bn 1−λ 2 1−λ 2 ,
Some Applications to Half-discrete Hilbert-type Inequalities
In recent years, Draˇcic et al. [11]–[13], Pogany [60]–[61] made some new important contributions to discrete Hilbert-type inequalities with nonhomogeneous kernels using special functions. On the other hand, in 20062011, Xie et al. ([81]–[86]) have investigated many Hilbert-type integral −λ inequalities with the particular kernels such as |x + y| similar to inequality (1.35). In 2010-2012, Yang ([131]–[132]) considered the compositions of two discrete Hilbert-type operators with two conjugate exponents and −λ kernels (m + n) and in 2010, Liu and Yang [54] also studied the compositions of two Hilbert-type integral operators with the general homogeneous kernel of negative degree and obtained some new results with applications.
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
26
ws-book9x6
Half-Discrete Hilbert-Type Inequalities
Hardy et al. [21] proved some results of half-discrete inequalities with the general non-homogeneous kernel in Theorem 351 without any proof of the constant factors as best possible. Yang [107] introduced an interval variable to give a half-discrete inequality with the particular non-homogeneous 1 kernel as (1+u(x)u(n)) λ , and proved that the constant factor is the best possible. In 2011, Yang [135] gave the following half-discrete Hilbert-type inequalities with the best possible constant factor B (λ1 , λ2 ):
∞
f (x) 0
∞
an
n=1
(x + n)λ
dx < B (λ1 , λ2 ) ||f ||p,φ ||a||q,ψ ,
(1.118)
where λ1 λ2 > 0, 0 ≤ λ2 ≤ 1, λ1 + λ2 = λ, ||f ||p,φ = ||a||q,ψ =
∞
1/p ϕ(x)f (x)dx > 0,
0 ∞
p
1/q aqn
> 0,
ϕ(x) = xp(1−λ1 )−1 ,
n=1
ψ(n) = nq(1−λ2 )−1 . Zhong et al. ([174]–[177]) has investigated several halfdiscrete Hilbert-type inequalities with particular kernels. Using the way of weight functions and the techniques of discrete and integral Hilbert-type inequalities with some additional conditions on the kernel, a half-discrete Hilbert-type inequality with a general homogeneous kernel of degree −λ ∈ R is obtained as follows:
∞
f (x) 0
∞
kλ (x, n)an dx < k(λ1 )||f ||p,φ ||a||q,ψ ,
(1.119)
n=1
∞ where k (λ1 ) = 0 kλ (t, 1) tλ1 −1 dt ∈ R+ . This is an extension of the above particular result with the best constant factor k (λ1 ) (see Yang and Chen [138]). If the corresponding integral inequality of a half-discrete inequality is a basic Hilbert-type integral inequality, then we call it the basic half-discrete Hilbert-type inequality. substituting some particular kernels in the main result found in [138] leads to some basic half-discrete Hilbert-type inequalities as follows:
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
Recent Developments of Hilbert-Type Inequalities with Applications
∞
0
∞
f (x) 0
∞
∞
(1.120) (1.121) (1.122)
f (x)
∞ | ln(x/n)|an dx < 16||f ||2 ||a||2 , max{x, n} n=1
(1.123)
f (x)
∞ | ln(x/n)|an dx < c0 ||f ||2 ||a||2 , x+n n=1
(1.124)
0 ∞ 1 ∞ 1
where c0 = 8
∞ π 2 ln(x/n)an ||f ||2 ||a||2 , dx < x−n 2 n=1
27
an dx < 4||f ||2 ||a||2 , max{x, n} n=1
f (x)
∞ an π f (x) dx < ||f ||2 ||a||2 , x + n 2 n=1
ws-book9x6
∞
(−1)n (2n−1)2
= 7.3277+.
n=1
1.5
Concluding Remarks
(1) Many different kinds of Hilbert-type discrete and integral inequalities with applications are presented in this chapter. Special attention is given to new results proved in recent years. Included are many generalizations, extensions and refinements of Hilbert-type discrete and integral inequalities involving many special functions such as beta, gamma, hypergeometric, trigonometric, hyperbolic, zeta, Bernoulli’s functions and Bernoulli’s numbers and Euler’s constant. (2) For more information about Hilbert-type discrete and integral inequalities, the reader is referred to three recent research monograph by Yang ([128], [130], and [134]) who presented many new results on integral and discrete-type operators with general homogeneous kernels of degree of real numbers and two pairs of conjugate exponents as well as the related inequalities. These research monographs and a recent paper by Debnath and Yang [10] also contained recent developments of both discrete and integral types of operators and inequalities with proofs, examples and applications.
May 2, 2013
14:6
BC: 8831 - Probability and Statistical Theory
This page intentionally left blank
PST˙ws
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
Chapter 2
Improvements of the Euler-Maclaurin Summation Formula and Applications
“Since a general solution must be judged impossible from want of analysis, we must be content with the knowledge of some special cases, and that all the more, since the development of various cases seems to be the only way to bringing us at least to a more perfect knowledge.” Leonhard Euler
2.1
Introduction
In 1732, Leonhard Euler (1707-1783) stated the Euler-Maclaurin summation formula which was independently discovered by Euler and Colin Maclaurin (1698-1746) in the period of 1732-1742. This chapter deals with some preliminary results to improve the Euler-Maclaurin summation formula for optimizing the methods of estimation of series and the weight coefficients. Many useful theorems, corollaries and inequalities are discussed. Included are some applications involving new inequalities on Hurwitz’s zeta function restricted to the real axis, the Riemann zeta function and the extended Stirling formula.
2.2
2.2.1
Some Special Functions Relating Euler-Maclaurin’s Summation Formula Bernoulli’s Numbers
We define a function G(x) as follows: G(x) =
x , ex − 1
x∈R
G(0) = lim G(x) = 1 . x→0
29
ws-book9x6
November 7, 2013
30
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
Half-Discrete Hilbert-Type Inequalities
It is obvious that the power series of G(x) at x = 0 possesses a positive convergence radius. Assuming that the sequence {Bn }∞ n=0 is defined by the exponent creation function of G(x), and ∞ xn Bn , G(x) = n! n=0 we obtain ∞ ex − 1 xn 1= Bn x n=0 n!
n ∞ ∞ ∞ 1 B B n k = xn . xn xn = (n + 1)! n! k!(n − k + 1)! n=0 n=0 n=0 k=0 Comparing to the coefficients of xn on two sides of the above equality, it follows that n Bk = 0 (n ∈ N). B0 = 1, and k!(n − k + 1)! k=0 We can obtain the recursion formula of {Bn }∞ n=0 as follows: n−1 Bk B0 = 1, Bn = −n! , n ∈ N. (2.1) k!(n − k + 1)! k=0 Since we have x(ex − 1 + 1) −x = = x + G(x), G(−x) := −x e −1 ex − 1 then, in view of ∞ xn Bn , G(x) = n! n=0 it follows that ∞ xn = x. Bn [(−1)n − 1] n! n=0 n
Comparing the coefficients of xn! on two sides of the above equality, we obtain 1 (2.2) B1 = − , B2k+1 = 0, k ∈ N. 2 By (2.1) and (2.2), we can find the constants of {B2n }∞ n=1 step by step as follows: 1 1 1 1 B2 = , B4 = − , B6 = , B8 = − , · · · . 6 30 42 30 We call Bn (n ∈ N0 = N ∪ {0}) the Bernoulli numbers. In a general way, we also obtain the following formula for the Bernoulli numbers (see Xu and Wang [92]): ∞ (2k)! 1 B2k = (−1)k+1 2k−1 2k , k ∈ N. (2.3) 2 π n=1 n2k
ws-book9x6
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
ws-book9x6
31
Improvements of the Euler-Maclaurin Summation Formula and Applications
2.2.2
Bernoulli’s Polynomials
Suppose that the function Bn (t) is defined by the following exponent creation function: etx G(x) =
∞
Bn (t)
n=0
xn . n!
(2.4)
In the convergence interval of (2.4), we have ∞ n=0
Bn (t)
∞ n ∞ xn t Bn n = etx G(x) = xn x n! n! n! n=0 n=0
n ∞ n n n−k x = Bk t . k n! n=0
(2.5)
k=0
n
Comparing to the coefficients of the term xn! on two sides of (2.5), we get the following formula: n n (2.6) Bn (t) = Bk tn−k , n ∈ N0 . k k=0
We call Bn (t) (n ∈ N0 ) Bernoulli polynomials. In particular, we obtain 1 B1 (t) = t − , 2 1 B2 (t) = t2 − t + , 6 3 1 B3 (t) = t3 − t2 + t, 2 2 1 B4 (t) = t4 − 2t3 + t2 − , · · · , 30 B0 (t) = 1,
and prove the equations that (see Xu and Wang [92]) 1 Bn (t)dt = 0, Bn−1 (0) = Bn−1 , Bn (t) = nBn−1 (t), 0
n ∈ N.
On the other hand, in view of B0 (t) = 1, Bn (t) = nBn−1 (t) and Bn−1 (0) = Bn−1 , n ∈ N, by integration, we find 1 Bn−1 (t)dt, n ∈ N. (2.7) Bn (t) = Bn + n 0
We may use (2.7) to define the Bernoulli polynomials in (2.6). In fact, by mathematical induction, for n = 0, we have B0 (t) = 1. Assuming that (2.6)
November 7, 2013
12:24
32
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
Half-Discrete Hilbert-Type Inequalities
is valid for n, then, for n + 1, it follows that 1 Bn+1 (t) = Bn+1 + (n + 1) Bn (t)dt 0
1 n n tn−k dt = Bn+1 + (n + 1) Bk k 0 k=0 n+1 n + 1 = Bk tn+1−k . k k=0
Thus, the function (2.6) is the root of functional equation (2.7). 2.2.3
Bernoulli’s Functions
For any t ∈ R, we denote [t] the maximal integer that does not exceed t and {t} = t − [t]. Then it follows that Bernoulli functions Pk (t) = Bk ({t})(k ∈ N) are periodic functions with the least positive periodic 1. It is obvious that Pk (t) are of bounded variation in any finite interval. P1 (t) = {t} − 12 is not continuous in the integers, but it is differentiable in the other points. P2 (t) is continuous in R and differentiable in the set of all the non-integers. For k ≥ 3, Pk (t) are continuous and differentiable in R. We can prove that P2k (t) are even functions and P2k−1 (t) are odd functions. In fact, setting H(t, x) = etx G(x), since x xex −x = e−tx x = et(−x) −x , e(1−t)x x e −1 e −1 e −1 we obtain H(1 − t, x) = H(t, −x), and by (2.4), it follows that ∞ ∞ ∞ xn (−x)n xn Bn (1 − t) Bn (t) (−1)n Bn (t) = = . n! n! n! n=0 n=0 n=0 Hence, comparing the coefficients of we obtain
xn n!
on two sides of the above equality,
Bn (1 − t) = (−1)n Bn (t)
(n ∈ N0 ),
and then, it follows that Pn (−t) = Pn (1 − t) = (−1)nPn (t),
n ∈ N.
Equivalently, we may define the Bernoulli functions Pn (t) (n ∈ N) by the following recursion functional equations: 1 P1 (t) = {t} − , 2 t Pn (t)dt, n ∈ N. (2.8) Pn+1 (t) = Bn+1 + (n + 1) 0
ws-book9x6
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
Improvements of the Euler-Maclaurin Summation Formula and Applications
ws-book9x6
33
Since P1 (t) is not continuous at any integer t, then, in view of the integral properties, P2 (t) is continuous at any t, but it is not differentiable at integer t. And then Pn (t) (n ≥ 3) are differentiable on the real axis. Considering the that value of P2 (k) at any integer k, it is obvious 1 1 is the maximum value, and at t = k + P2 (k) = B = , since 6 2 2 P2 k + 12 = 0, then the minimum value of P2 (t) is P2 k + 12 expressed by 12 1 1 1 1 t− = P2 = B2 + 2 dt = − . P2 k + 2 2 2 12 0 The roots of P3 (t) are divided into two classes. One is the set of integers k, that make P3 (k) = B3 = 0. The other class is the set of all k + 12 . In fact, by the definition of Bernoulli polynomial, it follows that 12 1 1 P2 (t)dt = P3 =3 P3 k + 2 2 0 1 2 1 dt = 0. =3 t2 − t + 6 0 Since the points that make the value of P4 (t) are maximum or minimum at the roots of P3 (t), these points are divided into two classes. In a general way, by the Rabbe formula (see Xu and Wang [92], Proposition 98), we have k−1 i n−1 Bn t + Bn (kt) = k , k, n ∈ N. (2.9) k i=0 Setting k = 2, t = 0, we find 1 (2.10) Bn = (21−n − 1)Bn (0) = (21−n − 1)Bn . 2 Hence, both P2n+1 (t) and P3 (t) possess the same two classes roots (see Xu and Wang [92], Proposition 93). Since the positions of the points that make the value of P2n+2 (t) maximum or minimum are the positions of the points that make P2n+2 (t) = 0, then both P2n+2 (t) and P2 (t) possess the same points that make the value maximum or minimum. Since P2n+2 (k) = P2n+2 (0) = B2n+2 , then, by (2.10), we obtain 1 1 1 (2.11) = P2n+2 = − 1 − 2n+1 B2n+2, P2n+2 k + 2 2 2 P2n+2 k + 1 < |B2n+2 | , n ∈ N0. (2.12) 2 In view of the above formulas, we discover that (max P2n+2 (t)) (min P2n+2 (t)) < 0, max P2n+2 (t) = − min P2n+2 (t),
n ∈ N0. .
November 7, 2013
12:24
34
2.2.4
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
Half-Discrete Hilbert-Type Inequalities
The Euler-Maclaurin Summation Formula
Assuming that m, n ∈ N0 , m < n, f (t) is a piecewise smooth continuous function in [m, n], then we have the following formula: n n n 1 f (k) = f (t)dt + f (t)|nm + P1 (t)f (t)dt. (2.13) 2 m m k=m+1
In fact, since P1 (t) = t − k − 12 , t ∈ [k, k + 1), integration by parts gives n n−1 k+1 1 df (t) P1 (t)f (t)dt = t−k− 2 m k=m k
k+1 n−1 1 k+1 = f (t)dt t−k− f (t)|k − 2 k k=m n n−1 1 (f (k + 1) + f (k)) − f (t)dt = 2 m k=m n n 1 = (f (m) − f (n)) + f (k) − f (t)dt. 2 m k=m+1
Hence, we obtain (2.13). In a general way, we have the following Euler-Maclaurin summation formula (see Knopp [51]): Theorem 2.1. Assuming that m, n ∈ N0 , m < n, f (t) ∈ C q [m, n](q ∈ N), then, we have n q n (−1)k Bk (k−1) n f (k) = f (t)dt + (t)|m f k! m k=m+1 k=1 (−1)q+1 n + Pq (t) f (q) (t)dt. (2.14) q! m Proof. We prove (2.14) by mathematical induction. For q = 1 (indicating f (0) (t) = f (t)), since B1 = − 12 , by (2.13), we have (2.14). Suppose that (2.14) is valid for q(∈ N). Then, for q + 1, since Pq+1 (t) = (q + 1)Pq (t), integration by parts, we find n n 1 Pq (t)f (q) (t) dt = f (q) (t) dPq+1 (t) q+1 m m n 1 Bq+1 (q) n f (t)|m − Pq+1 (t)f (q+1) (t)dt. (2.15) = q+1 q+1 m Then substitution of (2.15) in (2.14), it follows that (2.14) is valid for q + 1.
ws-book9x6
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
ws-book9x6
Improvements of the Euler-Maclaurin Summation Formula and Applications
35
Note. If f q (t) is a constant function, then it follows n Pq (t)f (q) (t)dt = 0. m
Since B2q+1 = 0 (q ∈ N), we may reduce (2.14) in the following form: Corollary 2.1. Assuming that m, n, q ∈ N0 , m < n, f (t) ∈ C 2q+1 [m, n], we have n n 1 f (k) = f (t)dt + (f (n) + f (m)) 2 m k=m
+
q B2k (2k−1) n (t)|m + δq (m, n), f (2k)!
(2.16)
k=1
where
n 1 P2q+1 (t)f (2q+1) (t) dt, (2.17) (2q + 1)! m and δq (m, n) is called the residue term of (2q + 1)th order in (2.16). Note. For q = 0, we define that the series on the right hand side of (2.16) is 0. In particular, for q = 0, we have n n n 1 f (k) = f (t)dt + (f (n) + f (m)) + P1 (t)f (t)dt. 2 m m δq (m, n) =
k=m 3
If f (t) ∈ C [m, n], then, we still have n 1 n 1 n f (t)|m + P1 (t)f (t)dt = P3 (t)f (t)dt. 12 6 m m For any r ∈ R and k ∈ N0 , we define the combination number (rk ) as follows (see Qu [64]): 1, k = 0, r = r(r−1)···(r−k+1) k , k ∈ N. k! Example 2.1. Suppose that f (t) = (t + a)l (l ∈ N, 0 < a ≤ 1; t ∈ [0, ∞)). l (i) Then f (t) = i! i (t + a)l−i , for i < l; f (i) (t)4 =* constant, for i ≥ l. In (2.14), for 2q = l or 2q + 1 = l, we have q = 2l and δq (m, n) = 0. By (2.16) (setting m = 0), we find [ 2l ] n l+1 (n + a) B2k 1 l l l (k + a) = (n + a)l−2k+1 + (n + a) + l+1 2 2k 2k − 1 k=0 k=1 ⎤ ⎡ l ] [ 2 B2k 1 l ⎥ ⎢ 1 al−2k+1 ⎦ . (2.18) al+1 − al + −⎣ l+1 2 2k 2k − 1 k=1
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
36
ws-book9x6
Half-Discrete Hilbert-Type Inequalities
For a = cb (0 < c < b) in (2.18), we may deduce a summation formula of an arithmetical sequence with the power of non-negative integer (see Yang [150]), and for a = 1, replacing n by n − 1 in (2.18), we still have (see Yang [151]) n k=1
2.3
[l]
2 1 nl+1 B2k + nl + k = l+1 2 2k
l
k=1
l 2k − 1
nl−2k+1 .
(2.19)
Estimations of the Residue Term about a Class Series
In (2.17), if f (2q−1) (t) is a bounded variation function, then we find the following estimation (see Cheng [9]): n 1 (2q) P2q+1 (t)df (t) |δq (m, n)| = (2q+1)! m n 1 (2q) n (2q) = P2q+1 (t)f (t)|m −(2q+1) P2q (t)f (t)dt (2q+1)! m 1 1 n P2q (t)df (2q−1) (t) ≤ = |B2q |Vmn f (2q−1) . (2.20) (2q)! m (2q)! We next refine (2.20) in the following theorem by adding some conditions. 2.3.1
An Estimation under the More Fortified Conditions
Theorem 2.2. Assuming that Z is the set of all integers, m, n ∈ Z, q ∈ N0 , m < n, g(t) ∈ C 3 [m, n], g (k) (t) ≤ 0 (≥ 0), t ∈ [m, n](k = 1, 3), if there exist two intervals Ik ⊂ [m, n], such that g (k) (t) < 0(> 0), t ∈ Ik (k = 1, 3), then, we have the following estimation (see Yang and Zhu [152]): n 1 P2q+1 (t) g(t) dt δq (m, n) = (2q + 1)! m B2q+2 g(t)|nm , = εq 0 < εq < 1. (2.21) (2q + 2)! Setting n = ∞, in addition, g(∞) = g (∞) = 0, then, we have ∞ 1 P2q+1 (t) g(t) dt δq (m, ∞) = (2q + 1)! m = εq
−B2q+2 g(m), (2q + 2)!
0 < εq < 1.
(2.22)
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
ws-book9x6
Improvements of the Euler-Maclaurin Summation Formula and Applications
In particular, if q = 0, it follows that ∞ ε0 δ0 (m, ∞) = g(m), P1 (t) g(t) dt = − 12 m Proof.
0 < ε0 < 1.
37
(2.23)
In view of (2.12), we have max |P2q+2 (t)| = |P2q+2 (m)| = |B2q+2 | . t∈R
Since |P2q+2 (t)| is a non-constant continuous function, |g (t)| > 0, t ∈ I1 ⊂ [m, n], and g (t) ≤ 0 (≥ 0) in [m, n], then we find n n n ≤ P (t)g (t)dt |P (t)| |g (t)| dt < |B | |g (t)|dt 2q+2 2q+2 2q+2 m m m n = B2q+2 g (t)dt = |B2q+2 g(t)|nm | . m
Hence, there exists a constant εq ∈ (0, 2) such that n P2q+2 (t)g (t)dt = B2q+2 g(t)|nm (1 − εq ).
(2.24)
m
Integration by parts and in view of (2.24), we find n 1 δq (m, n) = P2q+1 (t) g(t) dt (2q + 1)! m n 1 = g(t) dP2q+2 (t) (2q + 2)! m ) ( n 1 n P2q+2 (t)g (t)dt (2.25) = g(t)P2q+2 (t)|m − (2q + 2)! m 1 = [B2q+2 g(t)|nm − B2q+2 g(t)|nm (1 − εq )] (2q + 2)! B2q+2 = εq (2.26) g(t)|nm , 0 < εq < 2. (2q + 2)! In the following, we show that 0 < εq < 1 in (2.26). It is obvious n that both the integral m P2q+1 (t) g(t) dt and the term B2q+2 g(t)|nm keep the same sign by (2.26). Since g (t) and g (t) possess the same property by the same way of obtaining (2.26), it follows that both
n of the sign, P (t) g (t)dt and B2q+4 g (t)|nm also keep the same sign. m 2q+3 Integration by parts, we obtain n n 1 P2q+2 (t)g (t) dt = g (t)dP2q+3 (t) 2q + 3 m ) ( n m 1 n = P2q+3 (t) g (t)dt g (t)P2q+3 (t)|m − 2q + 3 m n −1 P2q+3 (t) g (t)dt. (2.27) = 2q + 3 m
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
38
ws-book9x6
Half-Discrete Hilbert-Type Inequalities
By (2.3), we have B2q+4 B2q+2 < 0 (q ∈ N0 ). In view of g (t)|nm g(t)|nm > 0, that (B2q+4 g (t)|nm ) (B2q+2 g(t)|nm ) < 0 and then
n it is obvious P (t)g (t)dt and B2q+2 g(t)|nm keep the different sign. Hence, by m 2q+3 n (2.27), m P2q+2 (t)g (t)dt and B2q+2 g(t)|nm keep the same sign. Thus, by virtue of (2.24), we find εq ∈ (0, 1), and then (2.21) follows. For n = ∞, in the same way, we obtain (2.22). Note. In Theorem 2.2, (i) if g (t) < 0 (> 0) replaces to g (t) = 0 (t ∈ [m, n]), then, we have n 1 δq (m, n) = P2q+1 (t) g(t) dt (2q + 1)! m B2q+2 g(t)|nm = 0; = (2.28) (2q + 2)! (ii) if g (3) (t) < 0 (> 0) replaces to g (3) (t) = 0 (t ∈ [m, n]), then we have n 1 B2q+2 P2q+1 (t) g(t)dt = (2.29) δq (m, n) = g(t)|nm . (2q + 1)! m (2q + 2)!
n In fact, in view of m P2q+3 (t) g (t)dt = 0, by (2.27), it follows that
n P (t) g (t)dt = 0 and then, by (2.25), we have (2.29). m 2q+2 ln t Example 2.2. We can show that the function g(t) = t−1 , t ∈ k (k) R+ (g(1) = 1) satisfies the conditions of (−1) g (t) > 0 (k = 0, 1, 2, 3). In fact, we have ∞
g(t) =
(t − 1)k ln[1 + (t − 1)] = (−1)k t−1 k+1 k=0
∞ (−1)k k! (t − 1)k = , k+1 k!
−1 < t − 1 ≤ 1,
k=0
and then g (k) (1) =
(−1)k k! (k ∈ N0 ). k+1
In particular, we obtain 1 g (1) = − , 2 It is obvious that g(t) > 0. We find h(t) g (t) = , t(t − 1)2 g (0) (1) = 1,
g (1) =
2 , 3
3 g (1) = − , · · · . 2
h(t) = t − 1 − t ln t.
(2.30)
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
Improvements of the Euler-Maclaurin Summation Formula and Applications
ws-book9x6
39
Since h (t) = − ln t > 0, 0 < t < 1; h (t) < 0, t > 1, then max h(t) = h(1) = 0 and g (t) < 0 (t = 1). In view of g (1) = − 12 , then, we find g (t) < 0 (t > 0). We also obtain J(t) g (t) = 2 , J(t) = −(t − 1)2 − 2t(t − 1) + 2t2 ln t. t (t − 1)3 Since J (t) = −4(t − 1) + 4t ln t and J (t) = 4 ln t < 0, 0 < t < 1; J (t) > 0, t > 1, then, min J (t) = J (1) = 0 and J (t) > 0 (t = 1); J (1) = 0. Hence, J(t) is strictly increasing with J(1) = 0 and then, J(t) < 0, 0 < t < 1; J(t) > 0, t > 1. It follows that g (t) > 0 (t = 1). Since g (1) = 23 , then, we find g (t) > 0 (t > 0). We have L(t) g (t) = 3 , t (t − 1)4 L(t) = 2(t − 1)3 + 3t(t − 1)2 + 6t2 (t − 1) − 6t3 ln t, L (t) = 9(t − 1)2 + 18t(t − 1) − 18t2 ln t, L (t) = 36(t − 1) − 36t ln t,
L (t) = −36 ln t.
Then L (t) > 0, 0 < t < 1; L (t) < 0, t > 1; L (1) = 0 and max L (t) = L (1) = 0. Hence, L (t) < 0 (t = 1) and L (t) is strictly decreasing with L (1) = 0 and then, L (t) > 0, 0 < t < 1; L (t) < 0, t > 1. Therefore, max L(t) = L(1) = 0 and L(t) < 0 (t = 1). It follows that g (t) < 0(t = 1). Since g (1) = − 32 , then, we find g (t) < 0 (t > 0). In view of the above results and (2.21), we have n 1 ln t δq (m, n) = P2q+1 (t) dt (2q + 1)! m t−1 B2q+2 ln n ln m , 0 < εq < 1. (2.31) − = εq (2q + 2)! n − 1 m − 1 Corollary 2.2. Assuming that mi ∈ Z, q ∈ N0 , mi < mi+1 , g(t) ∈ C 3 [mi , mi+1 ], g (k) (t) ≤ 0 (≥ 0), t ∈ [mi , mi+1 ] (k = 1, 3; i = 1, 2, · · · , s), m = m1 , n = ms+1 , if there exist two intervals Ik ⊂ [m, n] such that g (k) (t) < 0 (> 0), t ∈ Ik (k = 1, 3), then, we still have (2.21). Moreover, if g (k) (∞) = 0 (k = 0, 2), then, we have (2.22). Proof. Without loss of generality, assuming that g (k) (t) ≤ 0, t ∈ [mi , mi+1 ] (k = 1, 3; i = 1, 2, · · · , s), g (k) (t) < 0, t ∈ Ik (k = 1, 3), and B2q+2 < 0, by (2.21), it follows that mi+1 B2q+2 i+1 P2q+1 (t) g(t) dt ≤ (i = 1, · · · , s). g(t)|m 0≤ mi 2q + 2 mi
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
40
ws-book9x6
Half-Discrete Hilbert-Type Inequalities
There exists an i, such that the above inequalities keep the strict signs. Hence, we find n 0< P2q+1 (t) g(t) dt m
=
s i=1
mi+1
P2q+1 (t) g(t) dt < mi
B2q+2 g(t)|nm . 2q + 2
Therefore, we have (2.21), and then, the other results hold. By (2.27), we still have n P2q (t) g(t) dt =
n −1 P2q+1 (t)g (t)dt 2q + 1 m m Then, by Theorem 2.2, it follows that
(q ∈ N).
Corollary 2.3. Assuming that m, n ∈ Z, q ∈ N, m < n, g(t) ∈ C 4 [m, n], g (k) (t) ≤ 0 (≥ 0), t ∈ [m, n](k = 2, 4), if there exist two intervals Ik ⊂ [m, n], such that g (k) (t) < 0 (> 0), t ∈ Ik (k = 2, 4), then we have the following estimation: n −B2q+2 εq g (t)|nm , 0 < εq < 1. P2q (t) g(t) dt = (2.32) (2q + 1)(2q + 2) m Setting n = ∞, if in addition, g (∞) = g (4) (∞) = 0, then we have ∞ B2q+2 εq g (m), 0 < εq < 1. P2q (t) g(t) dt = (2.33) (2q + 1)(2q + 2) m 2.3.2
Some Estimations under the More Imperfect Conditions
Corollary 2.4. Assuming that m, n ∈ Z, q ∈ N0 , m < n, g(t) ∈ C 1 [m, n], g (t) ≤ 0 (≥ 0), t ∈ [m, n], if there exists an interval I1 ⊂ [m, n] such that g (t) < 0 (> 0), t ∈ I1 , then we have the following estimation: n 1 P2q+1 (t) g(t) dt δq (m, n) = (2q + 1)! m 2B2q+2 g(t)|nm , 0 < εq < 1. = εq (2.34) (2q + 2)! Setting n = ∞, and g(∞) = 0, then, we have ∞ 1 P2q+1 (t) g(t) dt δq (m, ∞) = (2q + 1)! m −2B2q+2 g(m), 0 < εq < 1. = εq (2.35) (2q + 2)!
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
ws-book9x6
Improvements of the Euler-Maclaurin Summation Formula and Applications
41
In particular, for q = 0, it follows that δ0 (m, ∞) =
∞
P1 (t) g(t) dt = m
− ε0 g(m), 6
0 < ε0 < 1.
(2.36)
Proof. It is obvious that in the conditions of the corollary, we obtain (2.24). Then (2.21) and (2.22) are valid for εq ∈ (0, 2). Setting εq = 2 εq , we have (2.34) and (2.35). We can refine Corollary 2.4 in the following theorem: Theorem 2.3. Assuming that m, n ∈ Z, q ∈ N0 , m < n, g(t) is a monotone piecewise smooth continuous function in [m, n], then we have the following estimation: n 1 P2q+1 (t) g(t) dt (2q + 1)! m 1 2B2q+2 1 − 2q+2 g(t)|nm , = εq (2q + 2)! 2
δq (m, n) =
0 < εq < 1. (2.37)
Setting n = ∞ and g(∞) = 0, then, we have ∞ 1 P2q+1 (t) g(t) dt (2q + 1)! m −2B2q+2 1 = εq 1 − 2q+2 g(m), (2q + 2)! 2
δq (m, ∞) =
0 < εq < 1. (2.38)
In particular, for q = 0, it follows that δ0 (m, ∞) =
∞
P1 (t) g(t) dt = −
m
ε0 g(m), 8
0 < ε0 < 1.
(2.39)
Proof. If g(t) is constant, then, two sides of (2.37) and (2.38) equal to zero (in (2.36), g(t) = 0). In the following, we assume that g(t) is a nonconstant function in [m, n] with g (t) ≤ 0.
m+k (i) If B2q+2 < 0, since g(n) < g(m), m+k−1 P2q+1 (t)dt = 0 (k ∈ N), then, by (2.26), we find
n
P2q+1 (t) g(t) dt = εq m
B2q+2 g(t)|nm 2(q + 1)
(0 < εq < 2),
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
42
ws-book9x6
Half-Discrete Hilbert-Type Inequalities
n
0<
P2q+1 (t) g(t) dt = m
=
n−m
k=1 m+k− 12
P2q+1 (t) [g(t) − g(m + k)]dt
+
=
P2q+1 (t)[g(t) − g(m + k)]dt
m+k−1
m+k−1
k=1
n−m
n−m m+k
m+k
m+k− 12
P2q+1 (t) [g(t) − g(m + k)]dt
[g(m + k − 1) − g(m + k)]
m+k− 12
P2q+1 (t) dt
+
m+k−1
k=1
n−m
αk ,
k=1
(2.40) where αk is defined by m+k− 12 P2q+1 (t) [g(t) − g(m + k − 1)] dt αk = m+k−1
+
m+k
m+k− 12
P2q+1 (t) [g(t) − g(m + k)] dt.
Since g(t) is decreasing, then, it follows that 1 g(t) − g(m + k − 1) ≤ 0, t ∈ m + k − 1, m + k − , 2 1 g(t) − g(m + k) ≥ 0, t ∈ m + k − , m + k . 2 In view of P2q+2 (m + k − 1) = B2q+2 < 0, by (2.11), it follows 1 m + k − that P 2q+2 2 > 0. Hence, P2q+2 (t) is strictly increasing in m + k − 1, m + k − 12 with P2q+2 (t) > 0 and 1 1 . P (t) > 0, t ∈ m + k − 1, m + k − P2q+1 (t) = 2q + 2 2q+2 2 Similarly, we have P2q+1 (t) =
1 P (t) < 0, 2q + 2 2q+2
Hence, we find P2q+1 (t) [g(t) − g(m + k − 1)] ≤ 0, P2q+1 (t) [g(t) − g(m + k)] ≤ 0,
t∈
1 m+k− , 2
m+k .
1 , m + k − 1, m + k − 2 1 t∈ m+k− , m+k , 2 t∈
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
Improvements of the Euler-Maclaurin Summation Formula and Applications
ws-book9x6
43
and then αk ≤ 0. Since g(t) is of non-constant, there exists a positive n−m integer k0 (≤ n − m), such that αk0 < 0, and then, k=1 αk < 0. By (2.11), we still have m+k− 12 n−m [g(m + k − 1) − g(m + k)] P2q+1 (t) dt m+k−1
k=1
=−
m− 12 m−1
P2q+1 (t) dt
n−m
[g(m + k) − g(m + k − 1)]
k=1
( ) 1 1 P2q+2 m − − P2q+2 (m − 1) g(t)|nm 2q + 2 2 ) ( 1 1 =− − 1 B − B g(t)|nm 2q+2 2q+2 2q + 2 22q+1 1 2 1 − 2q+2 B2q+2 g(t)|nm . = 2q + 2 2 In view of (2.40), we find n 1 2 1 − 2q+2 B2q+2 g(t)|nm , 0< P2q+1 (t) g(t) dt < 2q + 2 2 m and then equality (2.35) follows. n−m (ii) If B2q+2 > 0, in the same way, we have k=1 αk > 0. The corresponding result is n 1 2 n 1 − 2q+2 B2q+2 g(t)|m < P2q+1 (t) g(t) dt < 0, 2q + 2 2 m and we still have (2.37). For n = ∞, by the same way, we have equality (2.38). =−
Example 2.3. If m, n ∈ N, q ∈ N0 , 2m < n, ⎧ 1 ⎨ 2m , t ≤ 2m, 1 g(t) = = max{2m, t} ⎩ 1 t , t > 2m, 1 g(t)|nm = n1 − 2m , then, by (2.37) and (2.38), we find n 1 1 P2q+1 (t) dt δq (m, n) = (2q + 1)! m max{2m, t} 1 1 1 2B2q+2 εq 1 − 2q+2 , 0 < εq < 1, (2.41) − = (2q + 2)! 2 n 2m ∞ 1 1 dt δq (m, ∞) = P2q+1 (t) (2q + 1)! m max{2m, t} 1 1 −B2q+2 εq 1 − 2q+2 , 0 < εq < 1. = (2.42) (2q + 2)! 2 m
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
44
ws-book9x6
Half-Discrete Hilbert-Type Inequalities
Corollary 2.5. Assuming that m, n ∈ Z, q ∈ N, m < n, g (t) is a monotone piecewise smooth continuous function in [m, n], then, we have the following estimation: n −2B2q+2 εq 1 P2q (t) g(t) dt = 1 − 2q+2 g (t)|nm , 0 < εq < 1. (2q + 1)(2q + 2) 2 m (2.43) Setting n = ∞, and g (∞) = 0, then, we have ∞ 1 2B2q+2 εq 1 − 2q+2 g (m), P2q (t) g(t) dt = (2q + 1)(2q + 2) 2 m
0 < εq < 1. (2.44)
/ Z, x1 < x2 , g(t) is a Corollary 2.6. Assuming that q ∈ N0 , x1 , x2 ∈ monotone piecewise smooth continuous function in [x1 , x2 ], then, we have the following estimation: x2 I2q+1 = P2q+1 (t) g(t) dt x1 4 * 1 B2q+2 1 − 2q+2 ε0 g(t)|xx21 + ε1 g(x1 ) − ε2 g(x2 ) , (2.45) = q+1 2 where ε0 ∈ (0, 1), εi ∈ (0, 1] (i = 1, 2). In particular, when q = 0, x2 * 14 P1 (t) g(t) dt = (2.46) I1 = ε0 g(t)|xx21 + ε1 g(x1 ) − ε2 g(x2 ) . 8 x1 Proof. by
We define a monotone piecewise smooth continuous function g(t)
Then, we find I2q+1 =
⎧ ⎨ g(x1 ), t ∈ [[x1 ], x1 ), g(t) = g(t), t ∈ [x1 , x2 ], ⎩ g(x2 ), t ∈ (x2 , [x2 ] + 1].
[x2 ]+1
[x1 ]
− g(x1 )
P2q+1 (t) g(t) dt
x1 [x1 ]
P2q+1 (t) dt − g(x2 )
[x2 ]+1
P2q+1 (t) dt. (2.47) x2
By (2.37), it follows that [x2 ]+1 1 2B2q+2 [x ]+1 1 − 2q+2 ε0 g(t)|[x21 ] P2q+1 (t) g (t)dt = 2q + 2 2 [x1 ] 2B2q+2 1 = 1 − 2q+2 ε0 g(t)|xx21 , ε0 ∈ (0, 1). 2q + 2 2
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
ws-book9x6
Improvements of the Euler-Maclaurin Summation Formula and Applications
45
Since, for x1 ∈ / Z, we have 0 < x1 − [x1 ] < 1, and
x1 −[x1 ] 0 <
0
1 2
0
P2q+1 (t)dt
≤ 1,
P2q+1 (t)dt
there exists ε1 ∈ (0, 1] such that x1 P2q+1 (t)dt [x1 ]
x1 −[x1 ]
=
P2q+1 (t) dt = ε1
0
1 2
0
P2q+1 (t) dt
1 P2q+2 − B2q+2 2 B2q+2 1 =− 1 − 2q+2 ε1 . (2.48) q+1 2
1 ε1 ε1 P2q+2 (t)|02 = = 2q + 2 2q + 2
=
ε1 −1−2q − 2 B2q+2 2 2q + 2
Similarly, there exists ε2 ∈ (0, 1] such that
[x2 ]+1
P2q+1 (t) dt x2
1
= x2 −[x2 ]
P2q+1 (t) dt = ε2
1 1 2
ε2 −ε2 P2q+2 (t)|11 = = 2 2q + 2 2q + 2 1 B2q+2 1 − 2q+2 ε2 . = q+1 2
P2q+1 (t) dt 1 P2q+2 − B2q+2 2
Hence, by (2.47) and the above results, we have (2.45).
(2.49)
Note. If x1 , x2 ∈ Z, then we can find ε1 = ε2 = 0 in (2.48) and (2.49). In this case, (2.45) is an extension of (2.37). Corollary 2.7. Assuming that q ∈ N0 , m, n ∈ Z, x ∈ / Z, m < x < n, both g1 (t) (t ∈ [m, x]) and g2 (t) (t ∈ [x, n]) are decreasing (increasing) piecewise smooth continuous functions, and g1 (t), t ∈ [m, x), g(t) = g2 (t), t ∈ [x, n],
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
46
ws-book9x6
Half-Discrete Hilbert-Type Inequalities
then, we have
n
J2q+1 =
P2q+1 (t) g(t) dt B2q+2 1 = 1 − 2q+2 {ε0 (g2 (n) − g1 (m)) q+1 2 + [ε0 − ε1 ](g1 (x) − g2 (x))} , ε0 ∈ (0, 1), and ε1 ∈ (0, 1]. m
(2.50) Setting n = ∞, and g2 (∞) = 0, then, we have ∞ J2q+1 = P2q+1 (t) g(t) dt m 1 B2q+2 1 − 2q+2 {−ε0 g1 (m) = q+1 2 + [ε0 − ε1 ](g1 (x) − g2 (x))} , ε0 ∈ (0, 1), ε1 ∈ (0, 1]. (2.51) In particular, when q = 0, it follows that n 1 J1 = P1 (t) g(t) dt = [ε0 (g2 (n) − g1 (m)) 8 m + (ε0 − ε1 )(g1 (x) − g2 (x))] , ∞ J1 = P1 (t) g(t) dt
(2.52)
m
1 = [−ε0 g1 (m) + (ε0 − ε1 )(g1 (x) − g2 (x))] , ε0 ∈ (0, 1), ε1 ∈ (0, 1]. 8 (2.53) Proof. Define a decreasing (increasing) piecewise smooth continuous function g(t) as follows: g1 (t) − g1 (x) + g2 (x), t ∈ [m, x), g (t) = g2 (t), t ∈ [x, n]. Then, by (2.37) and (2.48), it follows that n x P2q+1 (t) g(t) dt + (g1 (x) − g2 (x)) P2q+1 (t) dt J2q+1 = m m 1 2B2q+2 1 − 2q+2 ε0 = g(t)|nm 2q + 2 2 B2q+2 1 − 1 − 2q+2 ε1 (g1 (x) − g2 (x)) q+1 2
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
ws-book9x6
Improvements of the Euler-Maclaurin Summation Formula and Applications
2B2q+2 2q + 2
1
1−
47
ε0 (g2 (n) − g1 (m) + g1 (x) − g2 (x)) 22q+2 1 B2q+2 1 − 2q+2 ε1 (g1 (x) − g2 (x)) − q+1 2 B2q+2 1 = 1 − 2q+2 {ε0 (g2 (n) − g1 (m)) q+1 2 + [ε0 − ε1 ](g1 (x) − g2 (x))} ,
=
where ε0 ∈ (0, 1),
ε1 ∈ (0, 1].
Hence, we have (2.50). In the same way, we have (2.51).
Note. If x ∈ Z, then, in (2.50) and (2.51), we find ε1 = 0. Hence, for g2 (t) = 0 in (2.52), we have x ε0 ε1 P1 (t) g1 (t) dt = (−g1 (m) + g1 (x)) − g1 (x), (2.54) 8 8 m where x > m;
ε0 ∈ (0, 1) and ε1 ∈ [0, 1];
for g1 (t) = 0 in (2.52) and (2.53), we have n ε0 ε1 P1 (t) g2 (t) dt = (g2 (n) − g2 (x)) + g2 (x), 8 8 x
(2.55)
where x > m;
∞
P1 (t) g2 (t) dt = x
2.3.3
ε0 ∈ (0, 1) and ε1 ∈ [0, 1],
ε1 − ε 2 g2 (x), x ∈ R; ε0 ∈ (0, 1) and ε1 ∈ [0, 1]. 8 (2.56)
Estimations of δq (m, n) and Some Applications
Setting g(t) = f (2q+1) (t) in Theorem 2.4 and Theorem 2.9, we have the following corollaries: Corollary 2.8. Assuming that m, n, q ∈ N0 , m < n, f (t) ∈ C 2q+4 [m, n] with (−1)k f (2q+1+k) (t) ≥ 0 (≤ 0),
t ∈ [m, n]
(k = 1, 3),
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
48
ws-book9x6
Half-Discrete Hilbert-Type Inequalities
and there exist two intervals Ik ⊂ [m, n] such that (−1)k f (2q+1+k) (t) > 0 then, we have
(< 0),
t ∈ Ik
(k = 1, 3),
n 1 P2q+1 (t) f (2q+1) (t)dt (2q + 1)! m B2q+2 f (2q+1) (t)|nm , 0 < εq < 1. = εq (2q + 2)!
δq (m, n) =
(2.57)
Setting n = ∞, and in addition, f (2q+1+k) (∞) = 0 (k = 0, 2), then, we have ∞ 1 δq (m, ∞) = P2q+1 (t)f (2q+1) (t) dt (2q + 1)! m −B2q+2 (2q+1) (m), 0 < εq < 1. (2.58) f = εq (2q + 2)! In particular, when q = 0, it follows that ∞ ε0 f (m), 0 < ε0 < 1. δ0 (m, ∞) = P1 (t)f (t) dt = − (2.59) 12 m Corollary 2.9. Assuming that m, n, q ∈ N0 , m < n, f (2q+1) (t) is a monotone piecewise smooth continuous function in [m, n], then, we have n 1 P2q+1 (t) f (2q+1) (t) dt δq (m, n) = (2q + 1)! m 2B2q+2 1 = εq 1 − 2q+2 f (2q+1) (t)|nm , 0 < εq < 1. (2.60) (2q + 2)! 2 Setting n = ∞ and f (2q+1) (∞) = 0, then, we have ∞ 1 δq (m, ∞) = P2q+1 (t) f (2q+1) (t) dt (2q + 1)! m 1 −2B2q+2 1 − 2q+2 f (2q+1) (m), 0 < εq < 1. (2.61) = εq (2q + 2)! 2 In particular, when q = 0, it follows that ∞ ε0 δ0 (m, ∞) = P1 (t)f (t) dt = − f (m), 0 < ε0 < 1. (2.62) 8 m For q = 0 in Corollary 2.8, in view of (2.13), we have the following corollary: Corollary 2.10. Assuming that m, n ∈ N0 , m < n, f (t) ∈ C 4 [m, n] with (−1)k f (1+k) (t) ≥ 0 (≤ 0),
t ∈ [m, n] (k = 1, 3),
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
Improvements of the Euler-Maclaurin Summation Formula and Applications
ws-book9x6
49
and there exist two intervals Ik ⊂ [m, n] such that (−1)k f (1+k) (t) > 0 (< 0), then, we have n f (k) =
n m
k=m
t ∈ Ik
(k = 1, 3),
ε0 1 f (t)dt + (f (n) + f (m)) + f (t)|nm , 2 12
0 < ε0 < 1. (2.63)
∞ Setting n = ∞ and f (k) (∞) = 0 (k = 0, 2), and both of k=m f (k)
∞ and m f (t)dt are convergent, then, we have ∞ ∞ ε0 1 f (k) = f (t)dt + f (m) − f (m), 0 < ε0 < 1. (2.64) 2 12 m k=m
In particular, when f (m) < 0, the following inequalities follow: ∞ ∞ ∞ 1 1 1 f (t)dt + f (m) < f (k) < f (t)dt + f (m) − f (m). (2.65) 2 2 12 m m k=m
For q = 0 in Corollary 2.4, in view of (2.13), we have the following corollary: Corollary 2.11. Assuming that m, n ∈ N0 , m < n, f (t) is a monotone piecewise smooth continuous function in [m, n], then, we have n n ε0 1 f (k) = f (t)dt + (f (n) + f (m)) + f (t)|nm , 0 < ε0 < 1. (2.66) 2 8 m k=m
∞ ∞ Setting n = ∞ and f (∞) = 0, and both k=m f (k) and m f (t)dt are convergent, then, we have ∞ ∞ 1 ε0 f (k) = f (t) dt + f (m) − f (m), 0 < ε0 < 1. (2.67) 2 8 m k=m
In particular, when f (m) < 0, the following inequalities follow: ∞ ∞ ∞ 1 1 1 f (t)dt + f (m) < f (k) < f (t)dt + f (m) − f (m). (2.68) 2 2 8 m m k=m
Example 2.4. If f (t) = f (t) =
1 (1+t)t1/2
(t > 0), m ∈ N, then, we obtain f (t) > 0,
−1 1 3t + 1 − =− < 0, 2 1/2 3/2 (1 + t) t 2(1 + t)t 2(1 + t)2 t3/2
f (t) > 0, f (t) < 0, and ∞ m
1 dt = 2 arctan (1 + t)t1/2
1 √ m
.
November 7, 2013
12:24
50
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
ws-book9x6
Half-Discrete Hilbert-Type Inequalities
By (2.65), when m ∈ N, we have ∞ 1 1 1 √ √ < 2 arctan √ + m 2(1 + m) m (1 + k) k k=m 1 3m + 1 1 √ .(2.69) √ + + < 2 arctan √ m 2(1 + m) m 24(1 + m)2 m3 Example 2.5. If f (t) = t21+1 (t > 0), m ∈ N, then, we obtain f (t) > 0, f (t) = (t2−2t < 0, +1))2 ∞ 1 π dt = − arctan m. 2 2 m t +1 By (2.68), when m ∈ N, we have ∞ 1 π 1 − arctan m + < 2 2(m2 + 1) k2 + 1 k=m
<
1 m π − arctan m + + . 2 2(m2 + 1) 4(m2 + 1)2 (2.70)
In particular, when m = 1, we find ∞ π 5 1 π 21 + < < + . 4 4 k2 + 1 4 16
(2.71)
k=0
2.4 2.4.1
Two Classes of Series Estimations One Class of Convergent Series Estimation
For n = ∞ in (2.16), by Corollary 2.8 and Corollary 2.9, we have the following theorem: Theorem 2.4. Assuming that m, n, q ∈ N0 , m < n, f (t) ∈ C 2q+1 [m, n], f (∞) = f (2k−1) (∞) =
∞0 (k = 1, 2, · · · , q + 1), δq (m, ∞) is convergent, if both ∞ f (k) and f (t)dt are convergent, then, we have the following k=m m estimation: ∞ q ∞ 1 1 f (k) = f (t)dt + f (m) − B2k f (2k−1) (m) + δq (m, ∞), 2 (2k)! m k=m k=1 (2.72) where ∞ 1 δq (m, ∞) = P2q+1 (t) f (2q+1) (t) dt, (2.73) (2q + 1)! m
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
ws-book9x6
51
Improvements of the Euler-Maclaurin Summation Formula and Applications
and δq (m, ∞) satisfies the following recursion formulas ∞ δ0 (m, ∞) = P1 (t)f (t)dt, m
δq (m, ∞) =
1 B2q f (2q−1) (m) + δq−1 (m, ∞), (2q)!
(q ∈ N). (2.74)
(i) If (−1)k f (2q+1+k) (t) ≥ 0 (≤ 0), t ∈ [m, n] (k = 1, 3), and there exist two intervals Ik ⊂ [m, n], such that (−1)k f (2q+1+k) (t) > 0 (< 0),
t ∈ Ik (k = 1, 3),
then, we have δq (m, ∞) = εq
−B2q+2 (2q+1) (m), f (2q + 2)!
0 < εq < 1 (q ∈ N0 );
(2.75)
(ii) if f (2q+1) (t) is a monotone piecewise smooth continuous function in [m, n], then, we have δq (m, ∞) =
− εq B2q+2 22q+2 − 1 (2q+1) f (m), (2q + 2)! 22q+1
0 < εq < 1 (q ∈ N0 ). (2.76)
1 Example 2.6. If 0 < a ≤ 1, p > 1, f (t) = (t+a) p (t > 0), then, we find k! −p . f (k) (t) = k (t + a)p+k
For m, a ∈ N0 , by (2.22) and (2.75), we have ∞ k=m
1 1 1 = + (k + a)p (p − 1)(m + a)p−1 2(m + a)p −
(−p (−p εq B2q+2 2q+1 ) 2k−1 ) − ,(2.77) 2k (m + a)p+2k−1 2q + 2 (m + a)p+2q+1
q B2k k=1
where 0 < εq < 1. In particular, if a = 1, replacing m + 1 by m, we find (see Yang [153]) ∞ 1 1 1 = + kp (p − 1) mp−1 2 mp
k=m
−
q −p −p B2k (2k−1 ) εq B2q+2 (2q+1 ) − , 2k mp+2k−1 2q + 2 mp+2q+1
0 < εq < 1 (m ∈ N).
k=1
(2.78)
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
52
ws-book9x6
Half-Discrete Hilbert-Type Inequalities
2.4.2
One Class of Finite Sum Estimation on Divergence Series
For m ∈ N0 , setting δq (m) = δq (m, ∞). If F (t) = f (t), then, we define the constant βm by q 1 B2k (2k−1) f βm = −F (m) + f (m) − (m) + δq (m). (2.79) 2 (2k)! k=1
By (2.16), when m < n, we find q n B2k (2k−1) 1 f f (k) = F (n) + f (n) + (n) + βm − δq (n), 2 (2k)! k=m
(2.80)
k=1
where
∞ 1 δq (n) = P2q+1 (t) f (2q+1) (t) dt, (2.81) (2q + 1)! n since δq (∞) = 0, it follows that
n q B2k (2k−1) 1 f βm = lim f (k) − F (n) − f (n) − (n) n→∞ 2 (2k)! k=m
k=1
n
q 1 B2k (2k−1) f (k) − F (n) − f (n) − (n) + δq (n). (2.82) f = 2 (2k)! k=m k=1
∞ ∞ Note. If both k=m f (k) and m f (x)dx are convergent and f (2k−1) (∞) = 0 (k = 1, 2, · · · , q), ∞ then, by (2.79), k=m f (k) = βm + F (∞). Hence, in view of (2.78), we still have (2.72). ln t Example 2.7. If f (t) = t−1 (t > 0), since, for n > 1, we find n n 1 ln t ln u f (t) dt = dt = du 1 (u − 1)u t − 1 1 1 n 1 1 ln u ln u + =− du + du 1 1 u − 1 u n n ∞ 1 (1 − u)k−1 1 du = (ln n)2 + 1 2 k k=1 n k ∞ 1 1 1 2 1− , = (ln n) + 2 k2 n k=1
ln n 1 − f (n) = , n(n − 1) (n − 1)2 3 2 6 6 ln n + 2 f (n) = 3 + − , 2 3 n (n − 1) n (n − 1) n(n − 1) (n − 1)4
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
ws-book9x6
Improvements of the Euler-Maclaurin Summation Formula and Applications
53
then, by (2.79) and (2.75) (for m = q = 1), we have k n ∞ 1 1 ln n ln k 1 1 2 = (ln n) + + 1− 2 k−1 2 k n 2n−1 k=1
k=1
ln n 1 1 − + + β1 12 n(n − 1) 12(n − 1)2 ) ( ε 6 6 ln n 2 3 − + − , + 720 n3 (n − 1) n2 (n − 1)2 n(n − 1)3 (n − 1)4
n k ∞ ln k 1 1 1 1 − − (ln n)2 − β1 = lim n→∞ k−1 2 k2 n k=1 k=1 n ∞ k 1 1 ln n ln k 1 1 − (ln n)2 − = − 1 − k−1 2 k2 n 2n−1 k=1
k=1
1 ln n 1 − + 12 n(n − 1) 12(n − 1)2 ) ( ε 6 6 ln n 2 3 + + − , + 720 n3 (n − 1) n2 (n − 1)2 n(n − 1)3 (n − 1)4 (2.83) where 0 < ε < 1. If n = 3 in (2.83), we find k k ∞ 20 1 2 1 2 − < − , k2 3 k2 3 k=1 k=1 k k k ∞ 20 ∞ 1 2 1 2 1 1 = − − − 1 − k2 3 k2 3 k2 3 k=1 k=1 k=21 ∞ 20 k x 1 2 1 2 >− − dx 2 k2 3 3 20 x k=1 k 20 ∞ 20 2 1 2 1 − dx >− 2 k2 3 3 x 20 k=1 k 20 20 1 2 1 2 =− − . k2 3 20 3
(2.84)
k=1
In view of (2.83) and (2.84), we can obtain 0.539902 < β1 < 0.539976, and then, it follows that β1 = 0.5399+. Example 2.8. If 0 < a ≤ 1, f (t) = f (k) (t) =
1 t+a
(t ≥ 0), F (t) = ln(t + a), then
(−1)k k!. (t + a)k+1
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
54
ws-book9x6
Half-Discrete Hilbert-Type Inequalities
When m = 0 in (2.76), we find (see [154] and [155]) that n β0 = lim f (k) − F (n) n→∞
= lim
n→∞
k=0
n
k=0
1 − ln(n + a) = γ0 (a). k+a
(2.85)
We call γ0 (a) the Stieltjes constant (see Pan and Pan [62]). By (2.80), (2.81) and (2.75), for n ∈ N, we find (see Yang and Li [154]) that n 1 1 = γ0 (a) + ln(n + a) + k+a 2(n + a) k=0
−
q k=1
εq B2q+2 B2k − , 2k 2k(n + a) 2(q + 1)(n + a)2q+2
0 < εq < 1.
(2.86) In particular, for a = 1, replacing n + 1 by n, we have the following estimation of the harmonic series (see Yang and Wang [155]): q n εq B2q+2 1 1 B2k − , 0 < εq < 1, (2.87) = γ + ln n + − 2k k 2n 2kn 2(q + 1) n2q+2 k=1
k=1
where γ (= γ0 (1) = 0.5772156649+) is called the Euler constant. 1 Example 2.9. If s ∈ R\{1}, 0 < a ≤ 1, f (t) = (t+a) s (t ≥ 0), setting ζ(s, a) = β0 , then, by (2.80), (2.81) and (2.75), for n ∈ N, q ≥ 1−s 2 , we have an estimation of the Hurwitz ζ−function ζ(s, a) in the real axis as follows (see Titchmarsh [71]): n 1 1 1 ζ(s, a) = − (n + a)1−s − (k + a)s 1−s 2(n + a)s k=0
−
q k=1
−s −s εq (2q+1 )B2q+2 (2k−1 )B2k − , s+2k−1 2k(n + a) 2(q + 1)(n + a)s+2q+1
0 < εq < 1.
(2.88) In particular, for a = 1, q ≥ 1−s , we have an estimation of the Riemann 2 ζ−function, ζ(s) = ζ(s, 1) in the real axis as follows (see Zhu and Yang [180]): n 1 1 1 − n1−s − s ζ(s) = s k 1−s 2n k=1
−
q −s −s εq (2q+1 )B2q+2 (2k−1 )B2k − , s+2k−1 2k n 2(q + 1) ns+2q+1 k=1
0 < εq < 1. (2.89)
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
Improvements of the Euler-Maclaurin Summation Formula and Applications
ws-book9x6
55
Example 2.10. If 0 < a ≤ 1, f (t) = ln(t + a) (t ≥ 0), and F (t) = (t + a) ln(t + a) − t, then, f (k) (t) =
(−1)k−1 (k − 1)! . (t + a)k
Using (2.80), (2.81) and (2.75), we obtain
n 1 ln(k + a) − n + a + ln(n + a) + n , β0 (a) = lim n→∞ 2 k=0 n n 2 1 ln(n + a) − n (k + a) = ln(k + a) = β0 (a) + n + a + ln 2 k=0
k=0
+
q k=1
B2k εq B2q+2 + , 2k(2k − 1)(n + a)2k−1 2(q + 1)(2q + 1)(n + a)2q+1 (2.90) √
π (see Xie [93]), we find where 0 < εq < 1. Equivalently, since eβ0 (a) = Γ(a) n+a √ n 2 n+a π√ (k + a) = n+a Γ(a) e k=0 q εq B2q+2 B2k , × exp + 2k(2k − 1)(n + a)2k−1 2(q + 1)(2q + 1)(n + a)2q+1 k=1
(2.91) where 0 < εq < 1. In particular, for a = 1, replacing n + 1 by n, we have the following extended Stirling formula (see Knopp [51] and Yang [156]): q n n √ εq B2q+2 B2k exp + . n! = 2πn e 2k(2k − 1) n2k−1 2(q + 1)(2q + 1) n2q+1 k=1 (2.92) When q = 1, we have the following inequality: n n n n √ √ 1 1 1 . < n! < 2πn 1− 2πn exp exp e 12n e 12n 30n2 (2.93)
May 2, 2013
14:6
BC: 8831 - Probability and Statistical Theory
This page intentionally left blank
PST˙ws
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
ws-book9x6
Chapter 3
A Half-Discrete Hilbert-Type Inequality with a General Homogeneous Kernel “One of the properties inherent in mathematics is that any real progress is accompanied by the discovery and development of new methods and simplifications of previous procedures.... The unified character of mathematics lies in its very nature; indeed, mathematics is the foundation of all exact natural sciences.”
David Hilbert
“In great mathematics there is a very high degree of unexpectedness, combined with inevitability and economy.”
G. H. Hardy
3.1
Introduction
This chapter is devoted to half-discrete Hilbert-type inequalities with general homogeneous kernels and their many extensions based on the way of weight functions and techniques of real analysis. Special attention is given to the proofs of the best possible constant factors of half-discrete Hilbert-type inequalities. Included are several equivalent inequalities, operator expressions, and the reverses of the Hilbert-type inequalities with many extensions and particular examples. 57
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
58
ws-book9x6
Half-Discrete Hilbert-Type Inequalities
3.2
Some Preliminary Lemmas
3.2.1
Definition of Weight Functions and Related Lemmas
Lemma 3.1. Suppose that λ, λ1 , λ2 ∈ R, λ = λ1 + λ2 , kλ (x, y) is a non-negative finite measurable homogeneous function of degree −λ in R2+ , satisfying kλ (ux, uy) = u−λ kλ (x, y),
u, x, y > 0,
and v(y) is a strict increasing differentiable function in [n0 , ∞)(n0 ∈ N) with v(n0 ) > 0 and v(∞) = ∞. Define two weight functions ωλ2 (n) and λ1 (x) as follows: ∞ ωλ2 (n) = [v(n)]λ2 kλ (x, v(n))xλ1 −1 dx, n ≥ n0 (n ∈ N), (3.1) λ1 (x) = xλ1
0
∞
kλ (x, v(n))[v(n)]λ2 −1 v (n),
x ∈ (0, ∞).
(3.2)
n=n0
Then we have
ωλ2 (n) = k(λ1 ) =
∞ 0
kλ (t, 1) tλ1 −1 dt =
∞ 0
kλ (1, t) tλ2 −1 dt.
(3.3)
Moreover, we set f (x, y) = xλ1 kλ (x, v(y))[v(y)]λ2 −1 v (y) and the following conditions: Condition (i). v(y) is strictly increasing in [n0 − 1, ∞) with v(n0 − 1) ≥ 0, and for any fixed x > 0, f (x, y) is decreasing with respect to y ∈ [n0 − 1, ∞) and strictly decreasing in an interval I ⊂ (n0 − 1, ∞). Condition (ii). v(y) is strictly increasing in [n0 − 12 , ∞) with v(n0 − 1 2 ) ≥ 0, and for any fixed x > 0, f (x, y) is convex with respect to y ∈ [n0 − 12 , ∞) and strictly convex in an interval I ⊂ (n0 − 12 , ∞). Condition (iii). There exists a constant β > 0, such that v(y) is strictly increasing in [n0 − β, ∞) with v(n0 − β) ≥ 0, and for fixed x > 0, f (x, y) is a piecewise smooth continuous function with respect to y ∈ [n0 − β, ∞), satisfying ∞ n0 1 f (x, y)dy − f (x, n0 ) − P1 (y)fy (x, y)dy > 0, (3.4) R(x) = 2 n0 n0 −β where P1 (y)(= y−[y]− 21 ) is the Bernoulli function of order one (see equation (2.8) in Chapter 2).
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
ws-book9x6
59
A Half-Discrete Hilbert-Type Inequality with a General Homogeneous Kernel
If k(λ1 ) ∈ R+ and one of the above three conditions is satisfied, then we have x ∈ (0, ∞).
λ1 (x) < k(λ1 ), Proof.
Setting t =
(3.5)
x v(n)
in (3.1), since λ = λ1 + λ2 , we find ∞ ωλ2 (n) = [v(n)]λ2 kλ (tv(n), v(n)) (tv(n))λ1 −1 v(n)dt 0 ∞ kλ (t, 1) tλ1 −1 dt = k(λ1 ). = 0
Setting t =
v(n) x
in (3.1), we also obtain λ −1 ∞ v(n) v(n) 1 v(n) λ2 , v(n) ωλ2 (n) = [v(n)] kλ dt t t t2 0 ∞ = kλ (1, t) tλ2 −1 dt, 0
and then (3.3) follows. (i) If Condition (i) is satisfied, then for any n ≥ n0 , we have n f (x, n) ≤ f (x, y)dy, n−1
and there exists an integer n1 ≥ n0 such that n1 f (x, y)dy. f (x, n1 ) < n1 −1
Since v(n0 − 1) ≥ 0 and k(λ1 ) ∈ R+ , we find ∞ ∞ n λ1 (x) = f (x, n) < f (x, y)dy n=n0 ∞
n=n0
n0 −1 ∞
≤
v(n0 −1) x
0
∞
f (x, y)dy = xλ1
= =
n−1 ∞
n0 −1
kλ (1, t) tλ2 −1 dt
kλ (x, v(y))[v(y)]λ2 −1 v (y)dy
(t = v(y)/x)
kλ (1, t) tλ2 −1 dt = k(λ1 ),
and then (3.5) follows. (ii) If Condition (ii) is satisfied, then, by Hermite-Hadamard’s inequality (see Kuang [47]), we have n+ 12 f (x, n) ≤ f (x, y)dy, n ≥ n0 , n− 12
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
60
ws-book9x6
Half-Discrete Hilbert-Type Inequalities
and there exists a positive integer n2 ≥ n0 such that f (x, n2 ) <
n2 + 12 n2 − 12
f (x, y)dy.
Since v(n0 − 12 ) ≥ 0 and k(λ1 ) ∈ R+ , we find λ1 (x) =
∞
f (x, n) <
n=n0 ∞
=
n=n0
n0 − 12
= xλ1 =
∞
∞
n+ 12 n− 12
f (x, y)dy
f (x, y)dy ∞
n0 − 12
v(n0 − 1 ) 2 x
kλ (x, v(y))[v(y)]λ2 −1 v (y)dy λ2 −1
kλ (1, t)t
dt ≤
∞
0
kλ (1, t)tλ2 −1 dt = k(λ1 ),
and then (3.5) follows. (iii) If Condition (iii) is satisfied and k(λ1 ) ∈ R+ , then by the EulerMaclaurin summation formula (see equation (2.14) in Chapter 2) for q = 0, m = n0 , n → ∞, we have λ1 (x) =
∞
∞ 1 f (x, y)dy + f (x, n0 ) + P1 (y)fy (x, y)dy 2 n0 n0 ∞ f (x, y)dy − R(x) = kλ (1, t) tλ2 −1 dt − R(x) ∞
f (x, n) =
n=n0 ∞
=
n0 −β
v(n0 −β) x
≤ k(λ1 ) − R(x) < k(λ1 ),
and then (3.5) follows.
Lemma 3.2. Let the assumptions of Lemma 3.1 be fulfilled and additionally, let p ∈ R\{0, 1}, 1p + 1q = 1, an ≥ 0, n ≥ n0 (n ∈ N), f (x) be a non-negative measurable function in R+. Then (i) for p > 1, we have the following inequalities:
( ∞ ) p p1 v (n) J= kλ (x, v(n))f (x)dx [v(n)]1−pλ2 0 n=n0 p1 ∞ 1 p(1−λ )−1 p 1 ≤ [k(λ1 )] q λ1 (x)x f (x)dx , ∞
0
(3.6)
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
ws-book9x6
61
A Half-Discrete Hilbert-Type Inequality with a General Homogeneous Kernel
and = L
∞
0
≤
[λ1 (x)]1−q x1−qλ1
∞
q kλ (x, v(n))an
n=n0
∞ [v(n)]q(1−λ2 )−1 q k(λ1 ) an [v (n)]q−1 n=n
q1 dx
1q ;
(3.7)
0
(ii) for p < 0 or 0 < p < 1, we have the reverses of (3.6) and (3.7) Note. If an = 0, then aqn = 0, for any q ∈ R\{0, 1}. Proof. (i) For p > 1, by H¨older’s inequality with weight (see Kuang [47]) and (3.3), it follows that ( ∞ )p kλ (x, v(n))f (x) dx 0
0 ∞
≤
0
(
∞
=
kλ (x, v(n)) kλ (x, v(n))
) p )( x(1−λ1 )/q [v (n)]1/p [v(n)](1−λ2 )/p dx f (x) [v(n)](1−λ2 )/p x(1−λ1 )/q [v (n)]1/p
x(1−λ1 )(p−1) v (n) p f (x) dx [v(n)]1−λ2
p−1 [v(n)](1−λ2 )(q−1) dx x1−λ1 [v (n)]q−1 0 p−1 ∞ x(1−λ1 )(p−1) v (n) p ωλ2 (n)[v(n)]q(1−λ2 )−1 = k (x, v(n)) f (x) dx λ [v (n)]q−1 [v(n)]1−λ2 0 ∞ [k(λ1 )]p−1 x(1−λ1 )(p−1) v (n) p = kλ (x, v(n)) f (x) dx. pλ −1 2 [v(n)] v (n) 0 [v(n)]1−λ2 ×
∞
kλ (x, v(n))
Then, by the Lebesgue term by term integration theorem (see Kuang [49]), we have p1 ∞ (1−λ1 )(p−1) ∞ 1 x v (n) kλ (x, v(n)) f p (x) dx J ≤ [k(λ1 )] q [v(n)]1−λ2 n=n0 0 p1 ∞ ∞ (1−λ1 )(p−1) 1 x v (n) p = [k(λ1 )] q kλ (x, v(n)) f (x) dx [v(n)]1−λ2 0 n=n0 ∞ p1 1 p(1−λ1 )−1 p q = [k(λ1 )] λ1 (x) x f (x)dx , 0
and then (3.6) follows.
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
62
ws-book9x6
Half-Discrete Hilbert-Type Inequalities
Hence, by H¨older’s inequality with weight, it follows that
∞ q kλ (x, v(n))an n=n0
)( )q [v(n)](1−λ2 )/p an x(1−λ1 )/q [v (n)]1/p = kλ (x, v(n)) [v(n)](1−λ2 )/p x(1−λ1 )/q [v (n)]1/p n=n0 ∞ q−1 x(1−λ1 )(p−1) v (n) ≤ kλ (x, v(n)) [v(n)]1−λ2 n=n
(
∞
0
∞
× 1−qλ1
=
x
[λ1
kλ (x, v(n))
n=n0 ∞
(x)]1−q
[v(n)](1−λ2 )(q−1) q a x1−λ1 [v (n)]q−1 n
kλ (x, v(n))
n=n0
[v(n)](1−λ2 )(q−1) q a . x1−λ1 [v (n)]q−1 n
Then, by the Lebesgue term by term integration theorem, we have 1q ∞ ∞ (1−λ2 )(q−1) [v(n)] q ≤ kλ (x, v(n)) 1−λ1 a dx L x [v (n)]q−1 n 0 n=n0 ∞ 1q ∞ [v(n)](1−λ2 )(q−1) q = kλ (x, v(n)) 1−λ1 a dx x [v (n)]q−1 n n=n0 0 1q ∞ [v(n)]q(1−λ2 )−1 q = ωλ2 (n) an , [v (n)]q−1 n=n 0
and then, in view of (3.3), we have (3.7). (ii) For p < 0 or 0 < p < 1, by the reverse H¨ older’s inequality with weight (see Kuang [47]) and in the same way, we obtain the reverses of (3.6) and (3.7). 3.2.2
Estimations about Two Series
Lemma 3.3. Let v(y) be a strictly increasing differentiable functions in (y) (> 0) be [n0 , ∞) (n0 ∈ N) with v(n0 ) > 0 and v(∞) = ∞, and vv(y) decreasing in [n0 , ∞). Then, for ε > 0, we have A(ε) =
∞ n=n0
1 v (n) = (1 + o(1)) 1+ε [v(n)] ε
(ε → 0+ ).
(3.8)
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
A Half-Discrete Hilbert-Type Inequality with a General Homogeneous Kernel
ws-book9x6
63
v (y) v (y) 1 Proof. In view of the assumptions, [v(y)] 1+ε (= [v(y)] · [v(y)]ε ) is still decreasing in [n0 , ∞), we find ∞ v (y) 1 1 (1 + o1 (1)) = = dy 1+ε ε ε[v(n0 )]ε n0 [v(y)] ∞ v (n) v (n0 ) ≤ A(ε) = + 1+ε [v(n0 )] [v(n)]1+ε n=n0 +1 ∞ v (y) v (n0 ) ≤ + dy 1+ε 1+ε [v(n0 )] n0 [v(y)] εv (n0 ) 1 1 + = ε [v(n0 )]ε [v(n0 )]1+ε 1 = (1 + o2 (1)) (ε → 0+ ), ε and then, we have equality (3.8).
Lemma 3.4. Let the assumptions of Lemma 3.1 be fulfilled and addition (y) (> 0) be decreasing in [n0 , ∞). If ally, let p ∈ R\{0, 1}, 1p + 1q = 1, vv(y) there exist constants δ < λ1 andL > 0, ) suchthat 1 1 (3.9) kλ (t, 1) ≤ L δ , t ∈ 0, t v(n0 ) then for 0 < ε < min{|p|, |q|}(λ1 − δ), we have 1 v(n) ∞ ε v (n) kλ (t, 1)tλ1 − p −1 dt = O(1)(ε → 0+ ). (3.10) B(ε) = 1+ε [v(n)] 0 n=n 0
Proof.
In view of (3.9), and since v (y) 1 v (y) · = ε λ1 −δ+ q +1 λ1 −δ+ qε v(y) [v(y)] [v(y)] is still decreasing in [n0 , ∞), we find 1 ∞ v(n) ε v (n) tλ1 −δ− p −1 dt 0 < B(ε) ≤ L 1+ε [v(n)] 0 n=n 0
∞ v (n) L = ε ε λ1 − δ − p n=n [v(n)]λ1 −δ+ q +1 0
∞ L v (n) v (n0 ) = + ε ε λ1 − δ − pε [v(n0 )]λ1 −δ+ q +1 n=n +1 [v(n)]λ1 −δ+ q +1 0 ) ( ∞ v (y) v (n0 ) L + dy ≤ ε ε λ1 −δ+ q +1 λ1 − δ − pε [v(n0 )]λ1 −δ+ q +1 n0 [v(y)]
ε [v(n0 )]−λ1 +δ− q L v (n0 ) + = < ∞, ε λ1 − δ − pε [v(n0 )]λ1 −δ+ q +1 λ1 − δ + εq
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
64
ws-book9x6
Half-Discrete Hilbert-Type Inequalities
and then (3.10) follows.
Lemma 3.5. If C is the set of complex numbers and C∞ = C ∪ {∞}, zk ∈ C{z|Rez ≥ 0, Imz = 0}(k = 1, 2, · · · , n) are distinct points, the function f (z) is analytic in C∞ except for zi (i = 1, 2, · · · , n), and z = ∞ is a zero point of f (z) whose order is not less than 1, then for α ∈ R, we have ∞ n 2πi f (x) xα−1 dx = Res[f (z)z α−1 , zk ], (3.11) 2παi 1 − e 0 k=1
where 0 < Im ln z = arg z < 2π. In particular, if zk (k = 1, · · · , n) are all poles of order 1, setting ϕk (z) = (z − zk )f (z), (ϕk (zk ) = 0), then ∞ n π f (x) xα−1 dx = (−zk )α−1 ϕk (zk ). (3.12) sin πα 0 k=1
Proof. find
Using results of Pang et al. [63] on page 118, we have (3.11). We 1 − e2παi = 1 − cos 2πα − i sin 2πα = −2i sin πα(cos πα + i sin πα) = −2i eiπα sin πα.
In particular, since f (z) z α−1 =
1 (ϕk (z) z−zk
z α−1 ), it is obvious that
Res[f (z) z α−1 , −ak ] = zk α−1 ϕk (zk ) = −eiπα (−zk )α−1 ϕk (zk ). Then, by (3.11), we obtain (3.12).
Example 3.1. (i) For kλ (t, 1) = tλ1+1 (λ, λ1 , λ2 > 0, λ1 + λ2 = λ), we find ∞ λ1 1 ∞ 1 1 λ1 −1 t u λ −1 du k(λ1 ) = dt = (u = tλ ) λ t +1 λ 0 u+1 0 π ∈ R+ . = 1 λ sin( πλ ) λ Setting δ =
λ1 2
(< λ1 < λ), it follows that ) 1 1 1 . ≤ δ , t ∈ 0, kλ (t, 1) = λ t +1 t v(n0 )
(ii) For kλ (t, 1) =
1 (t+1)λ
k(λ1 ) =
0
∞
(λ, λ1 , λ2 > 0, λ1 + λ2 = λ), we find
1 tλ1 −1 dt = B(λ1 , λ2 ) ∈ R+ . (t + 1)λ
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
A Half-Discrete Hilbert-Type Inequality with a General Homogeneous Kernel
Setting δ =
λ1 2
ws-book9x6
65
(< λ1 < λ), it follows that ) 1 1 1 t ∈ 0, . kλ (t, 1) = ≤ (t + 1)λ tδ v(n0 )
t (iii) For kλ (t, 1) = tλln−1 (λ, λ1 , λ2 > 0, λ1 + λ2 = λ), we find ∞ ∞ 1 ln t λ1 −1 ln u λ1 −1 t u λ du, (u = tλ ) k(λ1 ) = dt = λ 2 t −1 λ 0 u−1 0 2
π ∈ R+ . = 1 λ sin( πλ ) λ δ
t → 0 as t → 0+ , there exists a Setting δ = λ21 (< λ1 < λ), in view of ttλ ln −1 constant L > 0 such that ) L ln t 1 kλ (t, 1) = λ . ≤ δ, t ∈ 0, t −1 t v(n0 ) s (iv) For s ∈ N, kλs (t, 1) = k=1 ak t1λ +1 (0 < a1 < · · · < as , λ, λ1 , λ2 > 0, λ1 + λ2 = λs), by (3.12), we find ∞2 s 1 k(λ1 ) = tλ1 −1 dt λ ak t + 1 0 k=1 ∞2 s λ2 1 1 u λ −1 du = λ 0 ak + u k=1
=
s s λ2 2 1 π λ −1 a ∈ R+ . k πλ2 a − ak λ sin( λ ) k=1 j j=1(j =k)
(< λ1 < λs), there exists a constant L = (v(n10 ))δ > 0 ) s 2 L 1 1 . ≤ 1 ≤ δ , t ∈ 0, kλs (t, 1) = a k tλ + 1 t v(n0 )
Setting δ =
λ1 2
k=1
(v) For kλ (t, 1) = tλ +2tλ/21 cos β+1 (λ > 0, 0 < β ≤ π2 , λ1 , λ2 > 0, λ1 + λ2 = λ), setting z1 = −eiβ , z2 = −e−iβ , by (3.12), we find ∞ tλ1 −1 k(λ1 ) = dt λ λ/2 t + 2t cos β + 1 0 2λ1 2 ∞ u λ −1 λ/2 du, u = t = λ 0 u2 + 2u cos β + 1 ) ( 2λ 2λ π 1 1 iβ λ1 −1 −iβ λ1 −1 1 (e ) + (e ) = e−iβ − eiβ eiβ − e−iβ sin 2πλ λ =
2π sin β(1 − 2λλ1 ) 1 ∈ R+ . λ sin β sin 2πλ λ
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
66
Half-Discrete Hilbert-Type Inequalities δ
t Setting δ = λ21 (< λ1 < λ), in view of tλ +2tλ/2 → 0 as t → 0+ , there cos β+1 exists a constant L > 0 such that ) 1 1 1 ≤L δ t ∈ 0, kλ (t, 1) = λ . t v(n0 ) t + 2tλ/2 cos β + 1 √ (vi) For kλ (t, 1) = tλ +bt1λ/2 +c (c > 0, 0 ≤ b ≤ 2 c, λ > 0, λ1 = λ2 = λ 2 ), we find ∞ λ 2 ∞ t 2 −1 dt du , (u = tλ/2 ) = k(λ1 ) = 2 + bu + c λ + btλ/2 + c λ u t 0 0 ⎧ π b = 0, ⎪ √c , √ √ 2⎨ 4 2 4c−b √ , 0 < b < 2 c, = 2 arctan b 4c−b λ⎪ √ ⎩ √2 , b = 2 c. c δ
Setting δ = λ4 (< λ1 < λ), in view of tλ +bttλ/2 +c → 0 as t → 0+ , there exists a constant L > 0 such that ) 1 1 1 ≤ L δ , t ∈ 0, kλ (t, 1) = λ . t v(n0 ) t + btλ/2 + c (vii) For k0 (t, 1) = γ/tλ 1 −γ/tλ , (−1 ≤ A < 1, β > 0 (A = 1, β > 1), e −Ae γ > 0, λ1 = −λ2 = −βλ < 0 < λ), in view of the following formula (see Wang and Guo [73]) ∞ 1 e−αu uβ−1 du = β Γ(β) (α, β > 0), (3.13) α 0 we find
t−βλ−1 dt uβ−1 du 1 ∞ = λ 0 eγu (1 − Ae−2γu ) eγ/tλ − Ae−γ/tλ 0 ∞ ∞ 1 Ak e−γ(2k+1)u uβ−1 du = λ 0 k=0 ∞ ∞ 1 k = A e−γ(2k+1)u uβ−1 du λ 0
∞
k(λ1 ) =
k=0
∞ Ak Γ(β) = ∈ R+ . β λγ (2k + 1)β k=0
δ
t → 0 (t → 0+ ), Setting δ = −2βλ < −βλ = λ1 , in view of eγ/tλ −Ae −γ/tλ there exists a constant L > 0 such that ) 1 tδ ≤ L, t ∈ 0, . λ λ v(n0 ) eγ/t − Ae−γ/t
ws-book9x6
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
A Half-Discrete Hilbert-Type Inequality with a General Homogeneous Kernel
ws-book9x6
67
Then, it follows that
) 1 1 1 t ∈ 0, . ≤ L, tδ v(n0 ) eγ/tλ − Ae−γ/tλ λ bt +1 (0 ≤ a < b, λ > 0, λ1 = −λ2 = (viii) For k0 (t, 1) = ln at λ +1 k0 (t, 1) =
−βλ, 0 < β < 1), we find λ ∞ λ −1 ∞ bt + 1 bt + 1 −βλ−1 t dt−βλ ln dt = ln k(λ1 ) = λ+1 λ+1 at βλ at 0 0 ( ∞ ∞ λ ) bλ aλ −1 −βλ bt + 1 (1−β)λ−1 t t − = ln − dt βλ atλ + 1 0 btλ + 1 atλ + 1 0 β ∞ (1−β)−1 aβ (bβ − aβ )π u b − du = . = βλ βλ 1+u βλ sin(βπ) 0 λ bt +1 → 0 as Setting δ = −β0 λ < λ1 (β < β0 < 1), in view of tδ ln at λ +1 t → 0+ , there exists a constant L > 0 such that λ ) bt + 1 1 δ ≤ L, t ∈ 0, . t ln atλ + 1 v(n0 ) Then it follows that ) λ L 1 bt + 1 ≤ . , t ∈ 0, k0 (t, 1) = ln atλ + 1 tδ v(n0 )
(ix) For k0 (t, 1) = arctan tλ (λ1 = −λ2 = −β, 0 < β < λ), we find ∞ 1 ∞ t−β−1 arctan tλ dt = − arctan tλ dt−β k(λ1 ) = β 0 0 ) ( ∞ 1 −β λ λ ∞ (λ−β)−1 =− t dt t arctan t |0 − β 1 + t2λ 0 ∞ λ−β −1 1 u 2λ π ∈ R+ . = du = 2β 0 1+u 2β cos πβ 2λ Setting δ = −β0 < −β = λ1 (β0 < λ), since tδ arctan tλ → 0 as t → 0+ , there exists a constant L > 0 such that ) 1 1 k0 (t, 1) = arctan tλ ≤ L δ , t ∈ 0, . t v(n0 ) (x) For kλ (t, 1) = k(λ1 ) =
1 (max{t,1})λ ∞
(λ, λ1 , λ2 > 0, λ1 + λ2 = λ), we find
1 tλ1 −1 dt (max{t, 1})λ 0 ∞ 1 λ 1 λ1 −1 tλ1 −1 dt + t dt = ∈ R+ . = λ t λ λ2 1 0 1
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
68
ws-book9x6
Half-Discrete Hilbert-Type Inequalities
Setting δ =
λ1 2 (<
λ1 < λ), it follows that
1 1 ≤ δ, kλ (t, 1) = λ (max{t, 1}) t
t ∈ 0,
1 v(n0 )
) .
(xi) For k−λ (t, 1) = (min{t, 1})λ (λ1 , λ2 < 0, λ1 + λ2 = −λ), we find ∞ (min{t, 1})λtλ1 −1 dt k(λ1 ) =
0
=
1
λ λ1 −1
t t
∞
dt +
0
tλ1 −1 dt =
1
Setting δ = −λ (< λ1 ), it follows that λ
k−λ (t, 1) = (min{t, 1})
1 ≤ t = δ t λ
λ ∈ R+ . λ1 λ2
t ∈ 0,
1 v(n0 )
) .
λ min{t,1} (xii) For k0 (t, 1) = max{t,1} (λ > 0, λ1 = −λ2 = α, |α| < λ), we find λ ∞ min{t, 1} tα−1 dt k(λ1 ) = max{t, 1} 0 ∞ 1 2λ tλ tα−1 dt + t−λ tα−1 dt = 2 ∈ R+ . = λ − α2 0 1 Setting δ =
−λ+λ1 2
< λ1 (|δ| < λ), and in view of λ min{t, 1} tδ → 0 (t → 0+ ), max{t, 1} λ min{t,1} ≤ L, and then, there exists a constant L > 0 such that tδ max{t,1} kλ (t, 1) =
3.2.3
min{t, 1} max{t, 1}
λ
L ≤ δ t
t ∈ 0,
1 v(n0 )
) .
Some Inequalities Relating the Constant k(λ1 )
Lemma 3.6. Suppose that λ, λ1 , λ2 ∈ R, λ = λ1 + λ2 , kλ (x, y) is a non-negative finite measurable homogeneous function of degree −λ in R2+ with ∞ k(λ1 ) = kλ (t, 1) tλ1 −1 dt ∈ R+ . 0
Then,
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
A Half-Discrete Hilbert-Type Inequality with a General Homogeneous Kernel
ws-book9x6
69
(i) for p > 1, ε > 0, we have ε ≥ k(λ1 ) + o(1) (ε → 0+ ); k λ1 − (3.14) p (ii) for p < 0, if there exists a constant δ1 > 0, such that k(λ1 + δ1 ) ∈ R+ , then, for 0 < ε< (−p)δ1 , we have ε ≤ k(λ1 ) + o(1) (ε → 0+ ); k λ1 − (3.15) p (iii) for 0 < p < 1, if there exists a constant δ2 > 0, such that k(λ1 − δ2 ) ∈ R+ , then, for 0 < ε < pδ2 , we still have (3.15). Proof. that
(i) For p > 1, by the Fatou lemma (see Kuang [49]), it follows
ε ε , lim+ kλ (t, 1) t(λ1 − p )−1 dt ≤ lim k λ1 − p ε→0 ε→0+ 0 and then we have (3.14). ε (ii) For p < 0, since t− p ≤ 1 (0 < t ≤ 1), we find 1 ∞ ε ε ε = k λ1 − kλ (t, 1) t(λ1 − p )−1 dt + kλ (t, 1) t(λ1 − p )−1 dt p 0 1 ∞ 1 ε kλ (t, 1) tλ1 −1 dt + kλ (t, 1) t(λ1 − p )−1 dt. (3.16) ≤
∞
k(λ1 ) =
0
1
For 0 < ε < (−p)δ1 , we have ∞ (λ1 − pε )−1 kλ (t, 1) t dt ≤ 1
∞
1
kλ (t, 1) t(λ1 +δ1 )−1 dt ≤ k(λ1 + δ1 ) < ∞,
then, by the Lebesgue control convergence theorem, it follows that ∞ ∞ ε kλ (t, 1) t(λ1 − p )−1 dt = kλ (t, 1) tλ1 −1 dt + o(1) (ε → 0+ ). 1
1
Hence, by (3.16), we have (3.15). ε (iii) For 0 < p < 1, since t− p ≤ 1 (t ≥ 1), we find 1 ∞ ε ε (λ1 − pε )−1 = k λ1 − kλ (t, 1) t dt + kλ (t, 1) t(λ1 − p )−1 dt p 0 1 ∞ 1 ε kλ (t, 1) t(λ1 − p )−1 dt + kλ (t, 1) tλ1 −1 dt. (3.17) ≤ 0
For 0 < ε < pδ2 , we have 1 ε (λ1 − p )−1 kλ (t, 1) t dt ≤ 0
1
1 0
kλ (t, 1) t(λ1 −δ2 )−1 dt ≤ k(λ1 − δ2 ) < ∞,
then by the Lebesgue control convergence theorem (see Kuang [49]), it follows 1 1 (λ1 − pε )−1 kλ (t, 1)t dt = kλ (t, 1)tλ1 −1 dt + o(1) (ε → 0+ ). 0
0
Hence, by (3.17), we have (3.15) for 0 < p < 1.
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
70
ws-book9x6
Half-Discrete Hilbert-Type Inequalities
3.3 3.3.1
Some Theorems and Corollaries Equivalent Inequalities and their Operator Expressions
For p ∈ R\{0, 1}, (0, ∞)) and
1 p
+
Ψ(n) =
1 q
= 1, we set two functions ϕ(x) = xp(1−λ1 )−1 (x ∈
[v(n)]q(1−λ2 )−1 , [v (n)]q−1
n ≥ n0
(n ∈ N),
v (n) wherefrom, [ϕ(x)]1−q = xqλ1 −1 and [Ψ(n)]1−p = [v(n)] 1−pλ2 , and then, we define two sets as follows: ∞ 1 p(1−λ1 )−1 p p x |f (x)| dx} < ∞ , Lp,ϕ (R+ ) = f |||f ||p,ϕ = { 0 ∞ [v(n)]q(1−λ2 )−1 ∞ q q1 lq,Ψ = a = {an }n=n0 |||a||q,Ψ = { |an | } < ∞ . [v (n)]q−1 n=n 0
Note. It is obvious that for p > 1, both of the above two sets are the normed spaces. Since for p < 0 or 0 < p < 1, neither of the above two sets is normed space, then we agree on that the above sets with ||f ||p,ϕ and ||a||q,Ψ are the formal symbols. Theorem 3.1. Suppose that λ, λ1 , λ2 ∈ R, λ = λ1 + λ2 , kλ (x, y) is a nonnegative finite measurable homogeneous function of degree −λ in R2+ , v(y) is a strictly increasing differentiable function in [n0 , ∞) (n0 ∈ N) with v(n0 ) > 0 and v(∞) = ∞ ∞ kλ (t, 1)tλ1 −1 dt ∈ R+ k(λ1 ) = 0
and λ1 (x) < k(λ1 ) (x ∈ (0, ∞)). If p > 1, p1 + 1q = 1, f (x), an ≥ 0, f ∈ Lp,ϕ (R+ ), a = {an}∞ n=n0 ∈ lq,Ψ , ||f ||p,ϕ > 0, ||a||q,Ψ > 0, then we have the following equivalent inequalities: ∞ ∞ ∞ ∞ an kλ (x, v(n))f (x)dx = f (x) an kλ (x, v(n))dx I= n=n0
0
0
n=n0
< k(λ1 )||f ||p,ϕ ||a||q,Ψ , (3.18) 1 ∞ )p p ( ∞ J= [Ψ(n)]1−p kλ (x, v(n))f (x)dx < k(λ1 )||f ||p,ϕ , n=n0
0
(3.19)
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
ws-book9x6
A Half-Discrete Hilbert-Type Inequality with a General Homogeneous Kernel
71
and
∞
L=
∞
[ϕ(x)]1−q
0
q kλ (x, v(n))an
1q dx
< k(λ1 )||a||q,Ψ . (3.20)
n=n0
(y) (> 0) is decreasing in [n0 , ∞) and there exist constants Moreover, if vv(y) δ < λ1 and L > 0 such that the inequality (3.9) is satisfied, then the constant factor k(λ1 ) in the above inequalities is the best possible.
Proof. By the Lebesgue term by term integration theorem, there are two expressions for I in (3.18). In view of (3.6) and λ1 (x) < k(λ1 ), we have (3.19). By H¨older’s inequality, we find ) ∞ ∞ ( 1 1 [Ψ(n)]− q I= kλ (x, v(n))f (x)dx [[Ψ(n)] q an ] ≤ J||a||q,Ψ . n=n0
0
(3.21) Then by (3.19), we have (3.18). On the other hand, suppose that (3.18) is valid. We set ( ∞ ) p−1 an = [Ψ(n)]1−p kλ (x, v(n))f (x)dx , n ≥ n0 (n ∈ N). 0
= ||a||q,Ψ . By (3.6), we find J < ∞. If J = 0, Then it follows that J then (3.19) is trivially valid; if J > 0, then by (3.18), we have p−1
||a||qq,Ψ = J p = I < k(λ1 )||f ||p,ϕ ||a||q,Ψ ,
that is,
||a||q−1 q,Ψ = J < k(λ1 )||f ||p,ϕ , and then (3.18) is equivalent to (3.19). In view of (3.7), since [λ1 (x)]1−q > [k(λ1 )]1−q , we have (3.20). By H¨older’s inequality, we find
∞ ∞ 1 1 − I= [[ϕ(x)] p f (x)] [ϕ(x)] p an kλ (x, v(n)) dx ≤ ||f ||p,ϕ L. 0
n=n0
(3.22) Then by (3.20), we have (3.18). On the other hand, suppose that (3.18) is valid. We set
∞ q−1 1−q f (x) = [ϕ(x)] kλ (x, v(n))an , x ∈ (0, ∞). n=n0
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
72
Half-Discrete Hilbert-Type Inequalities
Then it follows that Lq−1 = ||f ||p,ϕ . By (3.7), we find L < ∞. If L = 0, then (3.20) is trivially valid; if L > 0, then, by (3.18), we have ||f ||pp,ϕ = Lq = I < k(λ1 )||f ||p,ϕ ||a||q,Ψ , p−1 ||f ||p,ϕ
that is
= L < k(λ1 )||a||q,Ψ ,
and then, inequality (3.18) is equivalent to (3.20). Hence, inequalities (3.18), (3.19) and (3.20) are equivalent. For 0 < ε < p(λ1 − δ), setting 0, 0 < x < 1, ε f(x) = xλ1 − p −1 , x ≥ 1 and ε
an = [v(n)]λ2 − q −1 v (n),
n ≥ n0 (n ∈ N),
if there exists a positive constant k(≤ k(λ1 )) such that (3.18) is still valid as we replace k(λ1 ) by k, then substitution of f(x) and a = { an }∞ n=n0 , by (3.8), it follows that ∞ ∞ I = an kλ (x, v(n))f(x)dx < k||f||p,ϕ || a||q,Ψ 0
n=n0
∞
=k
x 1
−1−ε
p1 1 1 k dx (A(ε)) q = (1 + o(1)) q . ε
By (3.8), (3.10) and (3.14), we find ∞ ∞ ε λ2 − qε −1 I= [v(n)] v (n) kλ (x, v(n))xλ1 − p −1 dx =
n=n0 ∞ n=n0
v (n) [v(n)]1+ε
1
∞ 1 v(n)
ε
kλ (t, 1)tλ1 − p −1 dt,
t = x/v(n)
1 v(n) ∞ ε ε v (n) (λ1 − p )−1 λ1 − p −1 kλ (t, 1) t dt − kλ (t, 1) t dt = [v(n)]1+ε 0 0 n=n0 ε − B(ε) = A(ε)k λ1 − p 1 ≥ [(1 + o(1))(k(λ1 ) + o(1)) − ε O(1)]. ε it follows that Hence, in view of the above results for I, ∞
1 (1 + o(1))(k(λ1 ) + o(1)) − ε O(1) ≤ εI < k(1 + o(1)) q ,
ws-book9x6
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
A Half-Discrete Hilbert-Type Inequality with a General Homogeneous Kernel
ws-book9x6
73
and then, k(λ1 ) ≤ k (ε → 0+ ). Therefore, the constant factor k(λ1 ) in (3.18) is the best possible. By the equivalency, the constant factor k(λ1 ) in (3.19) and (3.20) is also the best possible. Otherwise, it leads to a contradiction by (3.21) and (3.22) that the constant factor in (3.18) is not the best possible. Note. If we replace the lower limit 0 of the integral to c > 0 in (3.18)(3.20), then Theorem 3.1 is still valid for ∞ ωλ2 (n) = [v(n)]λ2 kλ (x, v(n)) xλ1 −1 dx < k(λ1 ). c
Remark 3.1. If we replace the conditions that k(λ1 ) ∈ R+ , and there exist constants δ < λ1 and L > 0 such that inequality (3.9) is satisfied to the 1 ∈ [λ1 , λ1 + δ0 ), condition that there exist δ0 , η > 0, such that for any λ 1 ) < ∞ (x ∈ (0, ∞)), 1 )(1 − θ (x)) < (x) < k(λ (3.23) 0 < k(λ λ1 λ1 1 where, θλ1 (x) > 0 (x > 0), and θλ1 (x) = O xη (1 ≤ x < ∞), then the constant factor k(λ1 ) in (3.18) is still the best possible. In fact, for 1 = λ1 + ε , we find 0 < ε < qδ0 , λ q
∞ ∞ v (n) λ1 + εq −ε−1 x kλ (x, v(n)) x dx I= ε [v(n)]1−(λ2 − q ) 1 n=n0 ∞ ∞ 1 −ε−1 −ε−1 1−O dx = x λ1 (x)dx > k(λ1 ) x xη 1 1 1 ≥ (k(λ1 ) + o(1))(1 − ε O(1)), ε and then by the same way, we can still show that k(λ1 ) is the best possible constant in (3.18). Remark 3.2. By virtue of Theorem 3.1, (i) define a half-discrete Hilberttype operator T : Lp,ϕ (R+ ) → lp,Ψ1−p as follows: For f ∈ Lp,ϕ (R+ ), we define T f ∈ lp,Ψ1−p , satisfying ∞ T f (n) = kλ (x, v(n)) f (x) dx, n ≥ n0 (n ∈ N). (3.24) 0
Then, by (3.19), it follows that ||T f ||p.Ψ1−p ≤ k(λ1 )||f ||p,ϕ , and then, T is a bounded operator with ||T || ≤ k(λ1 ). Since by Theorem 3.1, the constant factor in (3.19) is the best possible, we have ||T || = k(λ1 ).
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
74
ws-book9x6
Half-Discrete Hilbert-Type Inequalities
(ii) Define a half-discrete Hilbert-type operator T : lq,Ψ → Lq,ϕ1−q (R+ ) as follows: For a ∈ lq,Ψ , we define Ta ∈ Lq,ϕ1−q (R+ ), satisfying Ta(x) =
∞
kλ (x, v(n))an ,
x ∈ (0, ∞).
(3.25)
n=n0
Then, by (3.20), it follows that ||Ta||q.ϕ1−q ≤ k(λ1 )||a||q,Ψ , and then, T is a bounded operator with ||T|| ≤ k(λ1 ). Since by Theorem 3.1, the constant factor in (3.20) is the best possible, we have ||T|| = k(λ1 ). Example 3.2. In view of Remark 3.2, in particular, setting v(n) = n and ψ(n) = nq(1−λ2 )−1 (n ∈ N), define T : Lp,ϕ (R+ ) → lp,ψ1−p as follows: For f ∈ Lp,ϕ (R+ ), we define T f ∈ lp,ψ1−p , satisfying ∞ T f (n) = kλ (x, n)f (x)dx, n ∈ N. 0
Also we define T : lq,ψ → Lq,ϕ1−q (R+ ) as follows: For a ∈ lq,ψ , there exists Ta ∈ Lq,ϕ1−q (R+ ), satisfying Ta(x) =
∞
kλ (x, n)an ,
x ∈ (0, ∞).
n=1
Then, by Remark 3.2, we still have ||T || = ||T|| = k(λ1 ). (i) If kλ (x, n) = x > 0,
1 xλ +nλ
(λ1 > 0, 0 < λ2 ≤ 1, λ1 + λ2 = λ), since for
f (x, y) =
xλ1 y λ2 −1 + yλ
xλ
is decreasing with respect to y ∈ (0, ∞), then, Condition (i) is satisfied. In view of Example 3.1(i), the constant factor in (3.19) and (3.20) (for v(n) = n, n0 = 1) is the best possible, we have π 1 . ||T || = ||T|| = k(λ1 ) = λ sin πλ λ (ii) If kλ (x, n) = x > 0,
1 (λ1 (x+n)λ
> 0, 0 < λ2 ≤ 1, λ1 + λ2 = λ), since for
f (x, y) =
xλ1 y λ2 −1 (x + y)λ
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
A Half-Discrete Hilbert-Type Inequality with a General Homogeneous Kernel
ws-book9x6
75
is decreasing with respect to y ∈ (0, ∞), then Condition (i) is satisfied. In view of Example 3.1(ii), the constant factor in (3.19) and (3.20) (for v(n) = n, n0 = 1) is the best possible, we have (see Yang [135]) ||T || = ||T|| = k(λ1 ) = B(λ1 , λ2 ). (λ1 > 0, 0 < λ2 ≤ 1, λ1 + λ2 = λ), then by (iii) If kλ (x, n) = ln(x/n) xλ −nλ the decreasing property of f (x, y) and Example 3.1(iii), we have 2
π ||T || = ||T|| = k(λ1 ) = . 1 λ sin( πλ ) λ (iv) If s ∈ N, kλs (x, n) = sk=1 ak xλ1+nλ (0 < a1 < · · · < as , λ, λ1 > 0, 0 < λ2 ≤ 1, λ1 + λ2 = λs), then by the decreasing property of f (x, y) and Example 3.1(iv), we have s s λ2 2 1 π λ −1 ||T || = ||T|| = k(λ1 ) = a . k πλ2 aj − ak λ sin( λ ) j=1(j =k)
k=1
1
(v) For kλ (x, n) = xλ +2(xn)λ/2 cos β+nλ (λ > 0, 0 < β ≤ π2 , λ1 > 0, 0 < λ2 ≤ 1, λ1 + λ2 = λ), then by the decreasing property of f (x, y) and Example 3.1(v), we have 2π sin β(1 − 2λλ1 ) . ||T || = ||T|| = k(λ1 ) = 1 λ sin β sin( 2πλ λ ) (vi) If kλ (x, n) =
1 xλ +b(xn)λ/2 +cnλ
√ (c > 0, 0 ≤ b ≤ 2 c, 0 < λ ≤
2, λ1 = λ2 = λ2 ), then by the decreasing property of f (x, y) and Example 3.1(vi), we have ⎧ π √ , b = 0, ⎪ c ⎨ √ √ 2 2 4c−b 4 √ ||T || = ||T || = arctan b , 0 < b < 2 c, 2 4c−b λ⎪ √ ⎩ 2 √ , b = 2 c. c 1 eγ(n/x)λ −Ae−γ(n/x)λ
(−1 ≤ A < 1, β > 0(A = 1, β > (vii) If k0 (x, n) = 1), γ > 0, −1 ≤ λ1 = −λ2 = −βλ < 0 < λ), then by the decreasing property of f (x, y) and Example 3.1(vii), we have ∞ Γ(β) Ak ||T || = ||T|| = k(−βλ) = . β λγ (2k + 1)β k=0
bxλ +nλ ln( ax λ +nλ )
(viii) If k0 (x, n) = (0 ≤ a < b, λ > 0, −1 ≤ λ1 = −λ2 = −βλ, 0 < β < 1), then by the decreasing property of f (x, y) and Example 3.1(viii), we have (bβ − aβ )π . ||T || = ||T|| = k(−βλ) = βλ sin(βπ)
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
76
Half-Discrete Hilbert-Type Inequalities
λ (ix) If k0 (x, n) = arctan nx (λ1 = −λ2 = −β, 0 < β < λ, β ≤ 1), then by the decreasing property of f (x, y) and Example 3.1(ix), we have ||T || = ||T|| = k(−β) =
π . 2β cos( πβ ) 2λ
1 (x) If kλ (x, n) = (max{x,n}) λ (λ1 > 0, 0 < λ2 ≤ 1, λ1 + λ2 = λ), then by the decreasing property of f (x, y) and Example 3.1(x), we have (see Yang [159])
||T || = ||T|| = k(λ1 ) =
λ . λ1 λ2
(xi) If k−λ (x, n) = (min{x, n})λ (λ1 < 0, −1 ≤ λ2 < 0, λ1 + λ2 = −λ), then by the decreasing property of f (x, y) and Example 3.1(xi), we have ||T || = ||T|| = k(λ1 ) = (xii) If k0 (x, n) = α>
− 12 ),
min{x,n} max{x,n}
λ
λ . λ1 λ2
(λ1 = −λ2 = α, |α| < λ ≤ 1 + α,
since for x > 0, λ min{x, y} y −α−1 f (x, y) = xα max{x, y} α−λ λ−α−1 x y , 0 < y ≤ x, = xα+λ y −λ−α−1 , y > x
is decreasing with respect to y ∈ (0, ∞), then Condition (i) is satisfied. In view of Example 3.1(xii), the constant factor in (3.19) and (3.20) (for v(n) = n, n0 = 1) is the best possible, we obtain ||T || = ||T|| = k(α) = 3.3.2
λ2
2λ . − α2
Two Classes of Equivalent Reverse Inequalities
Theorem 3.2. Suppose that λ, λ1 , λ2 ∈ R, λ = λ1 + λ2 , kλ (x, y) is a non-negative finite measurable homogeneous function of degree −λ in R2+ , v(y) is a strictly increasing differentiable function in [n0 , ∞) (n0 ∈ N) with v(n0 ) > 0 and v(∞) = ∞ ∞ kλ (t, 1) tλ1 −1 dt ∈ R+ k(λ1 ) = 0
ws-book9x6
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
ws-book9x6
A Half-Discrete Hilbert-Type Inequality with a General Homogeneous Kernel
77
and λ1 (x) < k(λ1 ) (x ∈ (0, ∞)). If p < 0, p1 + 1q = 1, f (x), an ≥ 0, f ∈ Lp,ϕ (R+ ), a = {an }∞ n=n0 ∈ lq,Ψ , ||f ||p,ϕ > 0, ||a||q,Ψ > 0, then we have the following equivalent inequalities: ∞ ∞ ∞ ∞ I= an kλ (x, v(n))f (x) dx = f (x) an kλ (x, v(n)) dx 0
n=n0
0
n=n0
> k(λ1 )||f ||p,ϕ ||a||q,Ψ , (3.26) ∞ p1 ) ( p ∞ [Ψ(n)]1−p kλ (x, v(n))f (x) dx > k(λ1 )||f ||p,ϕ , J= 0
n=n0
(3.27) and
∞
L=
∞
[ϕ(x)]1−q
0
q kλ (x, v(n))an
1q dx
> k(λ1 )||a||q,Ψ . (3.28)
n=n0
(y) Moreover, if vv(y) (> 0) is decreasing in [n0 , ∞) and there exists a constant δ1 > 0, such that k(λ1 + δ1 ) ∈ R+ , then the constant factor k(λ1 ) in the above inequalities is the best possible.
Proof. In view of the reverse of (3.6) and λ1 (x) < k(λ1 ), for p < 0, we have (3.27). By the reverse H¨older’s inequality (see Kuang [47]), we find ) ∞ ∞ ( 1 − q1 I= kλ (x, v(n))f (x)dx [[Ψ(n)] q an ] ≥ J||a||q,Ψ . [Ψ(n)] n=n0
0
(3.29) Then, by (3.27), we have (3.26). On the other hand, suppose that (3.26) is valid. We set ) p−1 ( ∞ kλ (x, v(n))f (x)dx , n ≥ n0 (n ∈ N). an = [Ψ(n)]1−p 0
Then it follows that J p−1 = ||a||q,Ψ . By the reverse of (3.6), we find J > 0. If J = ∞, then (3.27) is trivially valid; if J < ∞, then, by (3.26), we have ||a||qq,Ψ = J p = I > k(λ1 )||f ||p,ϕ ||a||q,Ψ , that is ||a||q−1 q,Ψ = J > k(λ1 )||f ||p,ϕ , and then, inequality (3.26) is equivalent to (3.27). In view of the reverse of (3.7) and [λ1 (x)]1−q < [k(λ1 )]1−q
(0 < q < 1),
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
78
ws-book9x6
Half-Discrete Hilbert-Type Inequalities
we have inequality (3.28). By the reverse H¨older’s inequality, we find
∞ ∞ 1 1 I= [[ϕ(x)] p f (x)] [ϕ(x)]− p kλ (x, v(n))an dx ≥ ||f ||p,ϕ L. 0
n=n0
(3.30) Then, by (3.28), we have (3.26). On the other hand, suppose that (3.26) is valid. We set
∞ q−1 f (x) = [ϕ(x)]1−q kλ (x, v(n))an , x ∈ (0, ∞). n=n0
Then, it follows that Lq−1 = ||f ||p,ϕ . By the reverse of (3.7), we find L > 0. If L = ∞, then (3.28) is trivially valid; if L < ∞, then by (3.26), we have ||f ||pp,ϕ = Lq = I > k(λ1 )||f ||p,ϕ ||a||q,Ψ , that is p−1 ||f ||p,ϕ = L > k(λ1 )||a||q,Ψ ,
and then, (3.26) is equivalent to (3.28). Hence, inequalities (3.26), (3.27) and (3.28) are equivalent. For 0 < ε < (−p)δ1 , setting f(x) and an as Theorem 3.1, if there exists a positive constant k(≥ k(λ1 )), such that (3.26) is valid as we replace k(λ1 ) by k, then substitution of f(x) and a = { an } ∞ n=n0 , by (3.8), it follows that ∞ ∞ an kλ (x, v(n))f(x)dx > k||f||p,ϕ || a||q,Ψ I = 0
n=n0
=k
∞
−1−ε
x 1
p1 1 1 k dx (A(ε)) q = (1 + o(1)) q . ε
In view of (3.8) and (3.15), we find ∞ λ2 − qε −1 I = [v(n)] v (n)
=
n=n0 ∞ n=n0 ∞
v (n) [v(n)]1+ε
∞ 1
∞ 1 v(n)
ε
kλ (x, v(n))xλ1 − p −1 dx ε
kλ (t, 1)tλ1 − p −1 dt,
(t = x/v(n))
∞ ε v (n) kλ (t, 1) t(λ1 − p )−1 dt 1+ε [v(n)] 0 n=n0 ε 1 = A(ε)k λ1 − ≤ (1 + o(1))(k(λ1 ) + o(1)). p ε ≤
(3.31)
Hence, by (3.31) and (3.32), it follows that 1
(1 + o(1))(k(λ1 ) + o(1)) > k(1 + o(1)) q ,
(3.32)
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
ws-book9x6
A Half-Discrete Hilbert-Type Inequality with a General Homogeneous Kernel
79
and then k(λ1 ) ≥ k (ε → 0+ ). Therefore, the constant factor k(λ1 ) in (3.26) is the best possible. By the equivalency, the constant factor k(λ1 ) in (3.27) and (3.28) is the best possible. Otherwise, it leads to a contradiction by (3.29) and (3.30) that the constant factor in (3.26) is not the best possible. If we replace the lower limit 0 of the integral to c (> 0) in Theorem 3.2 then it follows that ∞ kλ (x, v(n))xλ1 −1 dx < k(λ1 ). ωλ2 (n) = [v(n)]λ2 c
Setting ωλ2 (n) = k(λ1 )(1 − θλ1 (v(n))), c 1 λ2 θλ1 (v(n)) = [v(n)] kλ (x, v(n)) xλ1 −1 dx > 0, k(λ1 ) 0 and
[v(n)]q(1−λ2 )−1 (1 − θλ1 (v(n))), Ψ(n) = Ψ(n)(1 − θλ1 (v(n))) = [v (n)]q−1 we have c v(n) 1 θλ1 (v(n)) = kλ (t, 1) tλ1 −1 dt, k(λ1 ) 0 and the following corollary: Corollary 3.1. Suppose that c > 0, λ, λ1 , λ2 ∈ R, λ = λ1 + λ2 , kλ (x, y) is a non-negative finite measurable homogeneous function of degree −λ in R2+ , v(y) is a strictly increasing differential functions in [n0 , ∞) (n0 ∈ N) with v(n0 ) > 0 and v(∞) = ∞ ∞ kλ (t, 1) tλ1 −1 dt ∈ R+ k(λ1 ) = 0
and λ1 (x) < k(λ1 ) (x ∈ (c, ∞)). If p < 0, p1 + 1q = 1, f (x), an ≥ 0, f ∈ Lp,ϕ (c, ∞), a = {an }∞ , n=n0 ∈ lq,Ψ ||f ||p,ϕ > 0, ||a||q,Ψ > 0, then, we have the following equivalent inequalities: ∞ ∞ an kλ (x, v(n))f (x)dx n=n0
c
∞
f (x)
= c
∞ n=n0
∞
an kλ (x, v(n))dx > k(λ1 )||f ||p,ϕ ||a||q,Ψ , (3.33)
n=n0
[Ψ(n)]
1−p
(
∞
) p p1 kλ (x, v(n))f (x)dx > k(λ1 )||f ||p,ϕ ,
c
(3.34)
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
80
ws-book9x6
Half-Discrete Hilbert-Type Inequalities
and
∞
[ϕ(x)]1−q
c
1q
q
∞
kλ (x, v(n))an
dx
> k(λ1 )||a||q,Ψ .
(3.35)
n=n0
(y) Moreover, if vv(y) (> 0) is decreasing in [n0 , ∞) and there exist constants L > 0, 0 < δ < λ1 , such that k(λ1 + δ) ∈ R+ , and ) c 1 , kλ (t, 1) ≤ L δ , t ∈ 0, t v(n0 )
then, the constant factor k(λ1 ) in the above inequalities is the best possible. Theorem 3.3. Suppose that λ, λ1 , λ2 ∈ R, λ = λ1 + λ2 , kλ (x, y) is a nonnegative finite measurable homogeneous function of degree −λ in R2+ , v(y) is a strictly increasing differentiable function in [n0 , ∞) (n0 ∈ N) with v(n0 ) > 0, v(∞) = ∞, and 0 < k(λ1 )(1 − θλ1 (x)) < λ1 (x) < k(λ1 ) < ∞
(x ∈ (0, ∞)),
where, θλ1 (x) > 0. Setting ϕ(x) = (1−θλ1 (x))ϕ(x), if 0 < p < 1, 1p + 1q = 1, f (x), an ≥ 0, f ∈ Lp,ϕ(R+ ), a = {an }∞ > 0, ||a||q,Ψ > 0, n=n0 ∈ lq,Ψ , ||f ||p,ϕ then, we have the following equivalent inequalities: ∞ ∞ ∞ ∞ I= an kλ (x, v(n))f (x)dx = f (x) an kλ (x, v(n))dx 0
n=n0
0
n=n0
(3.36) > k(λ1 )||f ||p,ϕ||a||q,Ψ , ∞ p1 ) ( p ∞ [Ψ(n)]1−p kλ (x, v(n))f (x)dx > k(λ1 )||f ||p,ϕ, J= 0
n=n0
(3.37) and L1 =
0
∞
1−q [ϕ(x)]
∞
q kλ (x, v(n))an
q1 dx
> k(λ1 )||a||q,Ψ .
n=n0
(3.38) Moreover, if 0) is decreasing in [n0 , ∞) and there exist constants δ2 , η > 0, such 1 that k(λ1 − δ2 ) ∈ R+ and for any λ1 ∈ (λ1 − δ2 , λ1 ), θλ1 (x) = O xη (x ∈ [1, ∞)), then, the constant factor k(λ1 ) in the above inequalities is the best possible. v (y) v(y) (>
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
A Half-Discrete Hilbert-Type Inequality with a General Homogeneous Kernel
ws-book9x6
81
Proof. In view of the reverse of (3.6) and λ2 (x) < k(λ1 ), for 0 < p < 1, we have (3.37). By the reverse H¨ older’s inequality, we find ( ) ∞ ∞ 1 1 [Ψ(n)]− q I= kλ (x, v(n))f (x)dx [[Ψ(n)] q an ] ≥ J||a||q,Ψ . 0
n=n0
(3.39) Then by (3.37), we have (3.36). On the other hand, suppose that (3.36) is valid. We set ( ∞ ) p−1 an = [Ψ(n)]1−p kλ (x, v(n))f (x)dx , n ≥ n0 (n ∈ N). 0
= ||a||q,Ψ . By the reverse of (3.6), we find J > 0. Then it follows that J If J = ∞, then (3.37) is trivially valid; if J < ∞, then, by (3.36), we have p−1
||a||qq,Ψ = J p = I > k(λ1 )||f ||p,ϕ||a||q,Ψ , that is, ||a||q−1 , q,Ψ = J > k(λ1 )||f ||p,ϕ and then (3.36) is equivalent to (3.37). In view of the reverse of (3.7) and [λ2 (x)]1−q > [k(λ1 )(1 − θλ1 (x))]1−q , (q < 0), we have (3.38). By the reverse H¨ older’s inequality, we find
∞ ∞ 1 1 −p p f (x)] [ϕ(x)] [[ϕ(x)] an kλ (x, v(n)) dx ≥ ||f ||p,ϕL. I= 0
n=n0
(3.40) Then, by (3.38), we have (3.36). On the other hand, suppose that (3.36) is valid. We set
∞ q−1 1−q f (x) = [ϕ(x)] kλ (x, v(n))an , x ∈ (0, ∞). n=n0
= ||f ||p,ϕ . By the reverse of (3.7), we find Then, it follows that Lq−1 1 L1 > 0. If L1 = ∞, then (3.38) is trivially valid; if L1 < ∞, then by (3.36), we have ||f ||pp,ϕ = Lq1 = I > k(λ1 )||f ||p,ϕ ||a||q,Ψ , that is p−1 ||f ||p, ϕ = L1 > k(λ1 )||a||q,Ψ ,
and then (3.36) is equivalent to (3.38). Hence, inequalities (3.36), (3.37) and (3.38) are equivalent.
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
82
Half-Discrete Hilbert-Type Inequalities
For 0 < ε < pδ2 , setting f(x) and an as Theorem 3.1, if there exists a positive constant k(≥ k(λ1 )) such that (3.36) is valid as we replace k(λ1 ) by k, then substitution of f(x) and a = { an } ∞ n=n0 , by (3.8), it follows that ∞ ∞ I = an kλ (x, v(n))f(x) dx > k||f||p,ϕ || a||q,Ψ n=n0
0
(
=k
) p1 ∞ 1 1 −1−ε dx (A(ε)) q 1−O x η x 1
1 1 k (1 − ε O(1)) p (1 + o(1)) q . ε By (3.8) and (3.15), we find ∞ ∞ ε ε [v(n)]λ2 − q −1 v (n) kλ (x, v(n))xλ1 − p −1 dx I =
=
=
n=n0 ∞ n=n0 ∞
v (n) [v(n)]1+ε
1
∞
ε
1 v(n)
kλ (t, 1) tλ1 − p −1 dt,
(t = x/v(n))
∞ ε v (n) kλ (t, 1) t(λ1 − p )−1 dt 1+ε [v(n)] 0 n=n0 ε 1 = A(ε)k λ1 − ≤ (1 + o(1))(k(λ1 ) + o(1)). p ε In view of the above results, it follows that 1 1 (1 + o(1))(k(λ1 ) + o(1)) > k(1 − ε O(1)) p (1 + o(1)) q , and then k(λ1 ) ≥ k (ε → 0+ ). Therefore, the constant factor k(λ1 ) in (3.36) is the best possible. By the equivalency, the constant factor k(λ1 ) in (3.37) and (3.38) is the best possible. Otherwise, we can imply a contradiction by (3.39) and (3.40) that the constant factor in (3.35) is not the best possible. ≤
Note. If we replace the lower limit 0 of the integral to c > 0, then Theorem 3.3 is still valid. In this case, we use ∞
ωλ2 (n) = [v(n)]λ2
kλ (x, v(n))xλ1 −1 dx < k(λ1 ).
c
3.3.3
Some Corollaries
Corollary 3.2. (see Yang and Chen [138]) Let the assumptions of Lemma 3.1 be fulfilled and additionally let ∞
λ1 (x) < k(λ1 ) =
0
kλ (t, 1)tλ1 −1 dt ∈ R+ (x ∈ (0, ∞)),
ws-book9x6
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
ws-book9x6
A Half-Discrete Hilbert-Type Inequality with a General Homogeneous Kernel
83
and for −∞ ≤ b < c ≤ ∞, u(x) be a strictly increasing differentiable function in (b, c), with u(b+ ) = 0 and u(c− ) = ∞. For p ∈ R\{0, 1}, 1 1 p + q = 1, we define the function Φ(x) as follows: [u(x)]p(1−λ1 )−1 [u (x)]p−1
Φ(x) =
(x ∈ (b, c)).
If f (x), an ≥ 0, f ∈ Lp,Φ (b, c), a = {an }∞ n=n0 ∈ lq,Ψ , ||f ||p,Φ > 0, ||a||q,Ψ > 0, then (i) for p > 1, we have the following equivalent inequalities: c ∞ an kλ (u(x), v(n))f (x) dx b
n=n0
c
f (x)
= b
∞
∞
an kλ (u(x), v(n)) dx < k(λ1 )||f ||p,Φ ||a||q,Ψ ,
n=n0
[Ψ(n)]
1−p
(
c
(3.41)
)p p1 kλ (u(x), v(n))f (x) dx < k(λ1 )||f ||p,Φ ,
b
n=n0
(3.42) and
c
[Φ(x)]
1−q
b
q
∞
kλ (u(x), v(n))an
1q dx
< k(λ1 )||a||q,Ψ ;
(3.43)
n=n0
(ii) for p < 0, we have the equivalent reverses of (3.41), (3.42) and (3.43).
(y) (> 0) is decreasing in [n0 , ∞) and there exist constants Moreover, if vv(y) δ < λ1 , L > 0, and δ1 > 0 such that inequality (3.9) is fulfilled, and k(λ1 + δ1 ) ∈ R+, then the constant factor k(λ1 ) in the inequalities of (i) and the reverses in (ii) is the best possible.
Proof.
(i) For p > 1, setting x = u(t) on two sides of (3.18), we obtain c ∞ an kλ (u(t), v(n))f (u(t))u (t) dt I= b
n=n0
=
c
∞
f (u(t))u (t)
b
an kλ (u(t), v(n)) dt
n=n0
c
< k(λ1 )
p(1−λ1 )−1 p
[u(t)] b
f (u(t))u (t) dt
p1
||a||q,Ψ .
(3.44)
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
84
Half-Discrete Hilbert-Type Inequalities
Replacing t and f (u(t))u (t) by x and f (x) in (3.44), by simplification, we obtain (3.41). On the other hand, setting u(x) = x (x ∈ (0, ∞)) in (3.41), we have (3.18). It follows that (3.41) and (3.18) are equivalent and then both of them with the same best constant factor k(λ1 ). Similarly, we can prove that (3.42) and (3.19), (3.43) and (3.20) are equivalent and with the same best constant factor k(λ1 ). Since (3.18), (3.19) and (3.20) are equivalent, then, it follows that (3.41), (3.42) and (3.43) are equivalent. (ii) For p < 0, in the same way, we have the equivalent reverses of (3.41), (3.42) and (3.43) with the same best constant factor k(λ1 ). Note. Some particular cases about the reverse inequalities were published by Yang [160]–[162]. Remark 3.3. Define the operator T : Lp,Φ (b, c) → lq,Ψ as follows: For f ∈ Lp,Φ (b, c), we define T f ∈ lp,Ψ1−p , satisfying ∞ kλ (u(x), v(n))f (x)dx, n ≥ n0 , n ∈ N. T f (n) = 0
Also, we define the operator T : lq,Ψ → Lp,Φ (b, c) as follows: For a ∈ lq,Ψ , we define Ta ∈ Lp,Φ (b, c), satisfying ∞ kλ (u(x), v(n))an , x ∈ (b, c). Ta(x) = n=n0
Then, by Corollary 3.2, we still have ||T || = ||T|| = k(λ1 ). Example 3.3. Setting u(x) = ln x (x ∈ (1, ∞)), v(n) = ln n, n ≥ n0 = 2, (y) 1 = y ln (> 0) is decreasing for y > 1. then vv(y) y 1 (i) If kλ (ln x, ln n) = (ln x)λ +(ln (λ1 > 0, 0 < λ2 ≤ 1, λ1 + λ2 = λ), n)λ since for x > 1, xλ1 (ln y)λ2 −1 f (x, y) = λ [x + (ln y)λ ]y is decreasing with respect to y ∈ (1, ∞), then Condition (i) is satisfied. In view of Example 3.1(i), the constant factor in (3.42) and (3.43) (for u(x) = ln x, v(n) = ln n) is the best possible, we have π ||T || = ||T|| = k(λ1 ) = . 1 λ sin( πλ ) λ (ii) If kλ (ln x, ln n) = for x > 1,
1 (ln xn)λ
f (x, y) =
(λ1 > 0, 0 < λ2 ≤ 1, λ1 + λ2 = λ), since
xλ1 (ln y)λ2 −1 (x + ln y)λ y
ws-book9x6
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
A Half-Discrete Hilbert-Type Inequality with a General Homogeneous Kernel
ws-book9x6
85
is decreasing with respect to y ∈ (1, ∞), then Condition (i) is satisfied. In view of Example 3.1(ii), the constant factor in (3.42) and (3.43) (for u(x) = x, v(n) = ln n) is the best possible, we have (see Yang [163]) ||T || = ||T|| = k(λ1 ) = B(λ1 , λ2 ). ln[(ln x)/(ln n)] (λ1 > 0, 0 < λ2 ≤ 1, λ1 +λ2 = λ), (iii) If kλ (ln x, ln n) = (ln x)λ −(ln n)λ then by the same way and Example 3.1(iii), we have 2
π ||T || = ||T|| = k(λ1 ) = . 1 λ sin( πλ ) λ s (iv) If s ∈ N, kλs (ln x, ln n) = k=1 ak (ln x)λ1+(ln n)λ (0 < a1 < · · · < as , λ, λ1 > 0, 0 < λ2 ≤ 1, λ1 + λ2 = λs), then by the same way and Example 3.1(iv), we have s s λ2 2 π 1 λ −1 a . ||T || = ||T|| = k(λ1 ) = k πλ2 a − ak λ sin( λ ) k=1 j j=1(j =k)
(v) If kλ (ln x, ln n) = (ln x)λ +2(ln x ln n)1λ/2 cos β+c(ln n)λ (λ > 0, 0 < β ≤ λ1 > 0, 0 < λ2 ≤ 1, λ1 + λ2 = λ), then by the same way and Example 3.1(v), we have π , 2
2π sin β(1 − 2λλ1 ) ||T || = ||T|| = k(λ1 ) = . 1 λ sin β sin( 2πλ λ ) √
1 (ln x)λ +b(ln x ln n)λ/2 +c(ln n)λ λ2 = λ2 ), then by the same
(vi) If kλ (ln x, ln n) =
2 c, 0 < λ ≤ 2, λ1 = 3.1(vi), we have
(c > 0, 0 ≤ b ≤ way and Example
⎧ π √ , b = 0, ⎪ c ⎨ √ √ 2 4c−b2 4 √ ||T || = ||T || = arctan b , 0 < b < 2 c, 4c−b2 λ⎪ √ ⎩ 2 √ , b = 2 c. c
(vii) If k0 (ln x, ln n) = γ(ln n/ ln x)λ 1 −γ(ln n/ ln x)λ (−1 ≤ A < 1, β > e −Ae 0(A = 1, β > 1), γ > 0, −1 ≤ λ1 = −λ2 = −βλ < 0 < λ), then by the same way and Example 3.1(vii), we have ∞ Ak Γ(β) . ||T || = ||T|| = k(−βλ) = β λγ (2k + 1)β k=0 " # b(ln x)λ +(ln n)λ (viii) If k0 (ln x, ln n) = ln a(ln (0 ≤ a < b, λ > 0, −1 ≤ x)λ +(ln n)λ
λ1 = −λ2 = −βλ, 0 < β < 1), then by the same way and Example 3.1(viii), we have (bβ − aβ )π ||T || = ||T|| = k(−βλ) = . βλ sin(βπ)
November 7, 2013
86
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
Half-Discrete Hilbert-Type Inequalities
ln x λ (ix) If k0 (ln x, ln n) = arctan ln (λ1 = −λ2 = −β, 0 < β < λ, β ≤ n 1), then by the same way and Example 3.1(ix), we have ||T || = ||T|| = k(−β) =
π . 2β cos( πβ ) 2λ
(x) If kλ (ln x, ln n) = (max{ln1x,ln n})λ (λ1 > 0, 0 < λ2 ≤ 1, λ1 +λ2 = λ), then by the same way and Example 3.1(x), we have ||T || = ||T|| = k(λ1 ) =
λ . λ1 λ2
(xi) If k−λ (ln x, ln n) = (min{ln x, ln n})λ (λ1 < 0, −1 ≤ λ2 < 0, λ1 + λ2 = −λ), then by the same way and Example 3.1(xi), we have ||T || = ||T|| = k(λ1 ) =
λ . λ1 λ2
min{ln x,ln n} λ (xii) If k0 (ln x, ln n) = ( max{ln ) (λ2 = −λ1 , |λ1 | < λ ≤ 1 + x,ln n} 1 λ1 , λ1 > − 2 ), then, by the same way and Example 3.1(xii), we have
||T || = ||T|| = k(λ1 ) =
λ2
2λ . − λ21
Example 3.4. For 0 ≤ γ1 , γ2 ≤ 12 , setting u(x) = x − γ1 (x ∈ (γ1 , ∞)), (y) 1 = y−γ (> 0) is decreasing for y > 12 . v(n) = n − γ2 , n ≥ n0 = 1, then vv(y) 2 1 (i) If kλ (x− γ1 , n− γ2 ) = (x−γ1 )λ +(n−γ λ (λ1 > 0, 0 < λ2 ≤ min{1, 2 − 2) λ}, λ1 + λ2 = λ), for x > 0, f (x, y) =
xλ
xλ1 (y − γ2 )λ2 −1 + (y − γ2 )λ
is strictly convex satisfying fy2 (x, y) > 0 with respect to y ∈ 12 , ∞ , then Condition (ii) is satisfied. In view of Example 3.1(i), the constant factor in (3.42) and (3.43) (for u(x) = x − γ1 , v(n) = n − γ2 ) is the best possible, we have π . ||T || = ||T|| = 1 λ sin( πλ λ ) 1 (ii) If kλ (x− γ1 , n− γ2 ) = (x−γ1 +n−γ λ (λ1 > 0, 0 < λ2 ≤ 1, λ1 + λ2 = 2) λ), by the same way and Example 3.1(ii), we have (see Huang and Yang [38])
||T || = ||T|| = B(λ1 , λ2 ).
ws-book9x6
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
A Half-Discrete Hilbert-Type Inequality with a General Homogeneous Kernel
ws-book9x6
87
ln[(x−γ )/(n−γ )]
(iii) If kλ (x − γ1 , n − γ2 ) = (x−γ1 )λ1−(n−γ22)λ (λ1 > 0, 0 < λ2 ≤ 1, λ1 + λ2 = λ), then, by the same way and Example 3.1(iii), we have
π ||T || = ||T|| = 1 λ sin( πλ ) λ
2 .
s (iv) If s ∈ N, kλs (x − γ1 , n − γ2 ) = k=1 ak (x−γ1 )λ1+(n−γ2 )λ (0 < a1 < · · · < as , λ1 > 0, 0 < λ2 ≤ min{1, 2 − λ}, λ1 + λ2 = λs), then by the same way and Example 3.1(iv), we have ||T || = ||T|| = k(λ1 ) =
s s λ2 2 π 1 λ −1 a . k πλ2 aj − ak λ sin( λ ) k=1 j=1(j =k)
1 (v) If kλ (x − γ1 , n − γ2 ) = (x−γ1 )λ +2[(x−γ1 )(n−γ λ/2 cos β+(n−γ )λ (λ > 2 )] 2 π 0, 0 < β ≤ 2 , λ1 > 0, 0 < λ2 ≤ min{1, 2 − λ}, λ1 + λ2 = λ), then by the same way and Example 3.1(v), we have
||T || = ||T|| = k(λ1 ) =
2λ1 ) λ . 1 sin( 2πλ ) λ
2π sin β(1 − λ sin β
1 (vi) If kλ (x − γ1 , n − γ2 ) = (x−γ1 )λ +b[(x−γ1 )(n−γ λ/2 +c(n−γ )λ (c > 2 )] 2 √ 4 λ 0, 0 ≤ b ≤ 2 c, 0 < λ ≤ 3 , λ1 = λ2 = 2 ), then by the same way and Example 3.1(vi), we have
⎧ π √ , b = 0, ⎪ c ⎨ √ √ 2 2 4c−b 4 √ ||T || = ||T|| = arctan b , 0 < b < 2 c, 4c−b2 λ⎪ √ ⎩ 2 √ , b = 2 c. c (vii) If k0 (x − γ1 , n − γ2 ) = γ[n−γ2 )/(x−γ1 )]λ 1 −γ[n−γ2 )/(x−γ1 )]λ (0 ≤ A < e −Ae 1, β > 0(A = 1, β > 1), γ > 0, −1 ≤ λ1 = −λ2 = −βλ < 0 < λ ≤ 1), then, for x > 0, x−βλ
f (x, y) = e
γ xλ
(y−γ2 )λ
−γ
λ
− Ae xλ (y−γ2 )
(y − γ2 )βλ−1
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
88
ws-book9x6
Half-Discrete Hilbert-Type Inequalities
is strictly convex. In fact, setting g(x, u) = γ
γ
1
−γ
u
e xλ −Ae xλ
u
, we find
−γ
u λγ xλ + Ae xλ u ) λ (e < 0, gu (x, u) = − x γ −γ (e xλ u − Ae xλ u )2 γ
gu2 (x, u) =
−γ
2( λγ )2 (e xλ u + Ae xλ u )2 xλ γ
−γ
(e xλ u − Ae xλ u )3 γ
γ
−γ
( λγ )2 (e xλ u − Ae xλ u ) xλ
−
γ
−γ
(e xλ u − Ae xλ u )2
−γ
γ
−γ
=
( λγ )2 [2(e xλ u + Ae xλ u )2 − (e xλ u − Ae xλ u )2 ] xλ
=
)2 [(e xλ u + Ae xλ u )2 + 4A] ( λγ xλ
γ
−γ
(e xλ u − Ae xλ u )3 γ
−γ
γ
−γ
(e xλ u − Ae xλ u )3
(0 ≤ A ≤ 1),
>0
and then, gy2 (x, (y − γ2 )λ ) > 0 (0 < λ ≤ 1). Hence, fy2 (x, y)
4
−βλ
= x
g x, (y − γ2 )
λ
(y −
* γ2 )βλ−1 y2
> 0,
y∈
1 ,∞ . 2
Then Condition (ii) is satisfied and in view of Example 3.1(vii), we have ||T || = ||T|| = k(−βλ) =
∞ Γ(β) Ak . β λγ (2k + 1)β k=0
λ
λ
b(x−γ1 ) +(n−γ2 ) (viii) If k0 (x − γ1 , n − γ2 ) = ln[ a(x−γ λ λ ] (0 ≤ a < b, 0 < 1 ) +(n−γ2 ) λ ≤ 1, −1 ≤ λ1 = −λ2 = −βλ, 0 < β < 1), then, by the same way and Example 3.1(viii), we have
(bβ − aβ )π ||T || = ||T|| = . βλ sin(βπ) x−γ1 λ ) (λ1 = −λ2 = −β, 0 < β < (ix) If k0 (x − γ1 , n − γ2 ) = arctan ( n−γ 2 λ, β ≤ min{1, 2 − λ}), then by the same way and Example 3.1(ix), we have π . ||T || = ||T|| = 2β cos( πβ 2λ ) 2 3, v (y) v(y)
Example 3.5. For a ≥
setting u(x) = ln ax (x ∈ ( a1 , ∞)), v(n) =
= y ln1 ay (> 0) is decreasing for y > 32 . ln an, n ≥ n0 = 2, then 1 (λ1 > 0, 0 < λ2 ≤ min{1, 2 − (i) If kλ (ln ax, ln an) = (ln ax)λ +(ln an)λ λ}, λ1 + λ2 = λ), since for x > 0, f (x, y) =
[xλ
xλ1 (ln ay)λ2 −1 + (ln ay)λ ]y
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
A Half-Discrete Hilbert-Type Inequality with a General Homogeneous Kernel
ws-book9x6
89
is strictly convex satisfying fy2 (x, y) > 0 with respect to y ∈ 32 , ∞ , then Condition (ii) is satisfied. In view of Example 3.1(i), the constant factor in (3.42) and (3.43) (for u(x) = ln ax, v(n) = ln an) is the best possible, we have π . ||T || = ||T|| = 1 λ sin( πλ λ ) (ii) If kλ (ln ax, ln an) = (ln a21xn)λ (λ1 > 0, 0 < λ2 ≤ 1, λ1 + λ2 = λ), by the same way and Example 3.1(ii), we have (see Chen and Yang [7]) ||T || = ||T|| = B(λ1 , λ2 ). ln[(ln ax)/(ln an)] (λ1 > 0, 0 < λ2 ≤ 1, λ1 +λ2 = (iii) If kλ (ln ax, ln an) = (ln ax)λ −(ln an)λ λ), then by the same way and Example 3.1(iii), we have
2 π ||T || = ||T|| = . 1 λ sin( πλ λ ) s (iv) If s ∈ N, kλs (ln ax, ln an) = k=1 ak (ln ax)λ1+(ln an)λ (0 < a1 < · · · < as , λ, λ1 > 0, 0 < λ2 ≤ min{1, 2 − λ}, λ1 + λ2 = λs), then, by the same way and Example 3.1(iv), we have s s λ2 2 π 1 λ −1 a . ||T || = ||T|| = k(λ1 ) = k πλ2 aj − ak λ sin( λ ) j=1(j =k)
k=1
1 (ln ax)λ +2(ln ax ln an)λ/2 cos β+(ln an)λ
(v) If kλ (ln ax, ln an) = (λ > 0, 0 < π β ≤ 2 , λ1 > 0, 0 < λ2 ≤ min{1, 2 − λ}, λ1 + λ2 = λ), then by the same way and Example 3.1(v), we have 2π sin β(1 − 2λλ1 ) . ||T || = ||T|| = k(λ1 ) = 1 λ sin β sin( 2πλ ) λ (vi) If kλ (ln ax, ln an) = (ln ax)λ +b(ln ax ln1 an)λ/2+c(ln an)λ (c > 0, 0 ≤ √ b ≤ 2 c, 0 < λ ≤ 43 , λ1 = λ2 = λ2 ), then by the same way and Example 3.1(vi), we have ⎧ π √ , b = 0, ⎪ c ⎨ √ √ 2 4c−b2 √ 4 arctan , 0 < b < 2 c, ||T || = ||T|| = b 4c−b2 λ⎪ √ ⎩ 2 √ , b = 2 c. c (vii) If k0 (ln ax, ln an) = γ[ln an)/ ln ax]λ 1 −γ[ln an)/ ln ax]λ (0 ≤ A < e −Ae 1, β > 0(A = 1, β > 1), γ > 0, −1 ≤ λ1 = −λ2 = −βλ < 0 < λ ≤ 1), then by the same way and Example 3.1(vii), we have ∞ Ak Γ(β) ||T || = ||T|| = k(−βλ) = . β λγ (2k + 1)β k=0
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
90
ws-book9x6
Half-Discrete Hilbert-Type Inequalities λ
λ
b(ln ax) +(ln an) (viii) If k0 (ln ax, ln an) = ln[ a(ln ] (0 ≤ a < b, 0 < λ ≤ 1, ax)λ +(ln an)λ −1 ≤ λ1 = −λ2 = −βλ, 0 < β < 1), then by the same way and Example 3.1(viii), we have (bβ − aβ )π ||T || = ||T|| = . βλ sin(βπ) ln ax λ (ix) If k0 (ln ax, ln an) = arctan( ln an ) (λ1 = −λ2 = −β, 0 < β < λ, β ≤ min{1, 2 − λ}), then by the same way and Example 3.1(ix), we have π . ||T || = ||T|| = 2β cos( πβ 2λ )
Note. (1) For γ1 = γ2 = 0 in Example 3.4(i)-(ix), we obtain the corresponding results in Example 3.11; for a = 1 in Example 3.5(i)-(ix), we obtain the corresponding results in Example 3.3. Since For u(x) = x − γ1 , v(n) = n − γ2 or u(x) = ln ax, v(n) = ln an in Example 3.1(x)-(xii), the corresponding f (x, y) is not convex, so we cannot use Condition (ii) to derive some similar results. (2) For a ≤ 12 , setting u(x) = ln(x−a) (x ∈ (a+1, ∞)), v(n) = ln(n−a),
(y) 1 = (y−a) ln(y−a) (> 0) is decreasing for y > 32 . In this n ≥ n0 = 2, then vv(y) case, we can still obtain some similar results of Example 3.5(i)-(ix). By the same way, we still have
Corollary 3.3. Let the assumptions of Theorem 3.2 be fulfilled and additionally, u(x) is a strictly increasing differentiable function in (b, c), with u(b+ ) = 0 and u(c− ) = ∞. For 0 < p < 1, 1p + 1q = 1, setting Φ(x) = Φ(x)(1 − θλ1 (u(x))) (x ∈ (b, c)), if f (x), an ≥ 0, f ∈ L (b, c), p,Φ
a = {an}∞ > 0, ||a||q,Ψ > 0, then, we have the following n=n0 ∈ lq,Ψ , ||f ||p,Φ equivalent inequalities: c ∞ an kλ (u(x), v(n))f (x)dx b
n=n0
c
=
f (x) b
∞
∞
an kλ (u(x), v(n)) dx > k(λ1 )||f ||p,Φ ||a||q,Ψ ,
n=n0
[Ψ(n)]1−p
( b
n=n0
c
(3.45)
)p p1 kλ (u(x), v(n))f (x) dx > k (λ1 )||f ||p,Φ , (3.46)
and
c b
[Φ(x)]
1−q
∞
n=n0
q kλ (u(x), v(n))an
q1 dx
> k(λ1 )||a||q,Ψ .
(3.47)
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
A Half-Discrete Hilbert-Type Inequality with a General Homogeneous Kernel
ws-book9x6
91
v (y) (> v(y)
0) is decreasing in [n0 , ∞) and there exist constants 1 ∈ (λ1 − δ2 , λ1 ), η, δ2 > 0, such that k(λ1 − δ2 ) ∈ R+ and for any λ 1 θλ1 (x) = O xη (x ≥ 1), then the constant factor k(λ1 ) in the above inequalities is the best possible. Moreover, if
In view of Remark 3.1, Corollary 3.1 and Theorem 3.3, we still have Corollary 3.4. Suppose that λ, λ1 , λ2 ∈ R, λ = λ1 + λ2 , kλ (x, y) is a non-negative finite measurable homogeneous function of degree −λ in R2+ , v(y) is a strictly increasing differentiable function in [n0 , ∞) (n0 ∈ N) with v(n0 ) > 0 and v(∞) = ∞, u(x) is a strict increasing differentiable (y) (> 0) is decreasing function in (b, c), with u(b+ ) = 0 and u(c− ) = ∞, vv(y) 1 ∈ in [n0 , ∞), and there exist constants δ0 , η > 0, such that for any λ 2 = λ − λ 1 ), (λ1 − δ0 , λ1 + δ0 )(λ 1 )(1 − θ (x)) < (x) < k(λ 1 ) < ∞ (x ∈ (0, ∞)), 0 < k(λ (3.48) λ1 λ1 1 where, θλ1 (x) > 0 (x ∈ (0, ∞)), and θλ1 (x) = O xη (x ∈ [1, ∞)). (i) For p > 1(p < 0), p1 + 1q = 1, f (x), an ≥ 0, f ∈ Lp,Φ (b, c), a = {an}∞ n=n0 ∈ lq,Ψ , ||f ||p,Φ > 0, ||a||q,Ψ > 0, if p > 1, then we have the equivalent inequalities (3.41), (3.42) and (3.43), with the best constant factor k(λ1 ); if p < 0, then we have the equivalent reverses of (3.41), (3.42) and (3.43), with the same best constant factor k(λ1 ). (ii) For 0 < p < 1, p1 + 1q = 1, if f (x), an ≥ 0, f ∈ Lp,Φ (b, c), a = {an }∞ ∈ l , ||f || > 0, ||a|| > 0, then we have the equivalent q,Ψ q,Ψ n=n0 p,Φ inequalities (3.45), (3.46) and (3.47) with the same best constant factor k(λ1 ). In particular, for λ = 0, λ1 = α, λ2 = −α in Corollary 3.1, Theorem 3.3 and Corollary 3.2, setting Φ0 (x) =
[u(x)]p(1−α)−1 (x ∈ (b, c)), [u (x)]p−1
Ψ0 (n) =
[v(n)]q(1+α)−1 (n ≥ n0 , n ∈ N), [v (n)]q−1
0 (x) = (1 − θα (u(x)))Φ0 (x), we have the following corollary: and Φ Corollary 3.5. (see Yang and Krnic [157]) Suppose that k0 (x, y) is a nonnegative finite measurable homogeneous function of degree 0 in R2+ , ∞ k(α) = k0 (t, 1)tα−1 dt ∈ R+ (α ∈ R), 0
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
92
ws-book9x6
Half-Discrete Hilbert-Type Inequalities
v(y) is a strict increasing differentiable function in [n0 , ∞)(n0 ∈ N) with v(n0 ) > 0 and v(∞) = ∞, u(x) is a strict increasing differentiable function in (b, c), with u(b+ ) = 0 and u(c− ) = ∞. If p > 1, or p < 0, p1 + q1 = 1, f (x), an ≥ 0, f ∈ Lp,Φ0 (b, c), a = {an }∞ n=n0 ∈ lq,Ψ0 , ||f ||p,Φ0 > 0, ||a||q,Ψ0 > 0, then (i) for p > 1, we have the following equivalent inequalities: ∞
c
an
k0 (u(x), v(n))f (x) dx b
n=n0
∞
c
f (x)
= b
∞
an k0 (u(x), v(n)) dx < k(α)||f ||p,Φ0 ||a||q,Ψ0 , (3.49)
n=n0
[Ψ0 (n)]
1−p
(
c
)p p1 k0 (u(x), v(n))f (x)dx < k (α)||f ||p,Φ0 ,
b
n=n0
(3.50) and
∞ 0
[Φ0 (x)]
1−q
∞
1q
q k0 (u(x), v(n))an
dx
< k (α)||a||q,Ψ0 ; (3.51)
n=n0
(ii) for p < 0, we have the equivalent reverses of (3.49), (3.50) and (3.51).
(y) Moreover, if vv(y) (> 0) is decreasing in [n0 , ∞) and there exist constants η < α, L > 0, and δ1 > 0, such that
k0 (t, 1) ≤ L
1 tη
t ∈ 0,
1 v(n0 )
) ,
(3.52)
and k(α + δ1 ) ∈ R+ , then the constant factor k(α) in the inequalities of (i) and the reverses in (ii) is the best possible. Corollary 3.6. Let the assumptions of Corollary 3.5 be fulfilled. If 0 < ∞ p < 1, p1 + 1q = 1, f (x), an ≥ 0, f ∈ Lp,Φ 0 (b, c), a = {an }n=n0 ∈ lq,Ψ0 , ||f ||p,Φ 0 > 0, ||a||q,Ψ0 > 0, then we have the following equivalent
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
ws-book9x6
A Half-Discrete Hilbert-Type Inequality with a General Homogeneous Kernel
inequalities: ∞ an
93
c
k0 (u(x), v(n))f (x) dx b
n=n0
∞
c
f (x)
= b
∞
an k0 (u(x), v(n))dx > k(α)||f ||p,Φ 0 ||a||q,Ψ0 , (3.53)
n=n0
[Ψ0 (n)]
1−p
(
c b
n=n0
)p p1 k0 (u(x), v(n))f (x)dx > k(α)||f ||p,Φ 0 , (3.54)
and
∞ 0
0 (x)] [Φ
1−q
∞
q k0 (u(x), v(n))an
1q dx
> k(α)||a||q,Ψ0 . (3.55)
n=n0
(y) (> 0) is decreasing in [n0 , ∞) and there exists a conMoreover, if vv(y) stant δ2 > 0, such that k(α − δ2 ) ∈ R+ , then the constant factor k(α) in the above inequalities is the best possible.
Corollary 3.7. Suppose that k0 (x, y) is a non-negative finite measurable homogeneous function of degree 0 in R2+ , ∞ k0 (t, 1) tα−1 dt (α ∈ R), k(α) = 0
v(y) is a strictly increasing differentiable function in [n0 , ∞)(n0 ∈ N) with v(n0 ) > 0 and v(∞) = ∞, u(x) is a strictly increasing differentiable func (y) tion in (b, c), with u(b+ ) = 0 and u(c− ) = ∞, vv(y) is decreasing in [n0 , ∞), ∈ (α−δ0 , and there exist constants δ < α and δ0 , η > 0, such that for any α α + δ0 ), 0 < k( α)(1 − θα (x)) < α (x) < k( α) < ∞, (x ∈ (0, ∞)), 1 where, θα (x) > 0 (x ∈ (0, ∞)), θα (x) = O xη (x ∈ [1, ∞)).
(3.56)
(i) If p > 1, 1p + 1q = 1, f (x), an ≥ 0, f ∈ Lp,Φ0 (b, c), a = {an }∞ n=n0 ∈ lq,Ψ0 , ||f ||p,Φ0 > 0, ||a||q,Ψ0 > 0, then we have the equivalent inequalities (3.49), (3.50) and (3.51), with the best constant factor k(α). (ii) If p < 0, then we have the equivalent reverses of (3.49), (3.50) and (3.51) with the same best constant factor k(α). (iii) If 0 < p < 1, p1 + 1q = 1, f (x), an ≥ 0, f ∈ Lp,Φ 0 (b, c), a = {an }∞ ∈ l , ||f || > 0, ||a|| > 0, then, we have the equivalent q,Ψ0 q,Ψ0 0 n=n0 p,Φ
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
94
ws-book9x6
Half-Discrete Hilbert-Type Inequalities
inequalities (3.53), (3.54) and (3.55) with the same best constant factor k(α). For v(x) = u(x) = x (x ∈ (0, ∞), n0 = 1, in Corollary 3.15, setting ϕ(x) = xp(1−λ1 )−1 (x ∈ (0, ∞)), ψ(n) = nq(1−λ2 )−1 (n ∈ N), we have ∞ ω(λ2 , n) = nλ2 kλ (x, n)xλ1 −1 dx = k(λ1 ), n ∈ N, (3.57) 0
∞
(λ1 , x) = xλ1
kλ (x, n)nλ2 −1 ,
x ∈ (0, ∞),
(3.58)
n=1
and the following corollary: Corollary 3.8. Suppose that λ, λ1 , λ2 ∈ R, λ = λ1 + λ2 , kλ (x, y) is a non-negative finite measurable homogeneous function of degree −λ in R2+ , 1 ∈ (λ1 −δ0 , λ1 +δ0 )(λ 2 = there exist constants δ0 , η > 0, such that for any λ 1 ), λ−λ 1 , x) < k(λ 1 ) < ∞ (x ∈ (0, ∞)), 1 )(1 − θ (x)) < (λ 0 < k(λ λ1 where, θλ1 (x) > 0 (x ∈ (0, ∞)), and θλ1 (x) = O x1η (x ∈ [1, ∞)).
(3.59)
(i) For p > 1 or p < 0, 1p + 1q = 1, f (x), an ≥ 0, f ∈ Lp,ϕ (R+ ), a = {an }∞ n=1 ∈ lq,ψ , ||f ||p,ϕ > 0, ||a||q,ψ > 0, if p > 1, then we have the following equivalent inequalities: ∞ ∞ an kλ (x, n)f (x)dx 0
n=1
∞
=
f (x) 0
∞
an kλ (x, n) dx < k(λ1 )||f ||p,ϕ ||a||q,ψ ,
n=1
∞
1−p
(
[ψ(n)]
0
n=1
∞
(3.60)
)p p1 kλ (x, n)f (x) dx < k (λ1 )||f ||p,ϕ , (3.61)
and
∞
[ϕ(x)] 0
1−q
∞
q kλ (x, n)an
1q dx
< k(λ1 )||a||q,ψ ,
(3.62)
n=1
with the best constant factor k(λ1 ); if p < 0, then we have the equivalent reverses of (3.60), (3.61) and (3.62), with the same best constant factor k(λ1 ).
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
ws-book9x6
A Half-Discrete Hilbert-Type Inequality with a General Homogeneous Kernel
95
(ii) For 0 < p < 1, 1p + 1q = 1, setting ϕ(x) = (1 − θ(x))ϕ(x), if f (x), an ≥ 0, f ∈ Lp,ϕ(R+ ), a = {an }∞ > 0, ||a||q,ψ > 0, then, n=1 ∈ lq,ψ , ||f ||p,ϕ we have the following equivalent inequalities: ∞ ∞ an kλ (x, n)f (x)dx 0
n=1
∞
=
f (x) 0
∞
an kλ (x, n) dx > k(λ1 )||f ||p,ϕ||a||q,ψ ,
n=1
∞
1−p
(
∞
[ψ(n)]
0
n=1
(3.63)
)p p1 kλ (x, n)f (x) dx > k(λ1 )||f ||p,ϕ, (3.64)
and
0
∞
[ϕ(x)]
1−q
∞
q kλ (x, n)an
1q dx
> k (λ1 )||a||q,ψ ,
(3.65)
n=1
where the constant factor k(λ1 ) is the best possible. Note. As a particular case of (3.60), we may refer to a half-discrete Hilbert-type inequality with the homogeneous kernel of degree −4μ as 1 k4μ (x, n) = μ μ 2 (ax + bn ) (cxμ + dnμ )2 where 1 a, b, c, d > 0, bc = ae, and 0 < μ < 2 and a best constant factor as ( ) bc + ae ln(ae) − ln(bc) 2 , − μ(bc − ae)2 ae − bc ae + bc which was published by Xie [83]. If we replace the lower limit 0 of integral to c > 0, then, the results of Corollary 3.8 is still value for p > 1 and 0 < p < 1. For p < 0, we may refer to Corollary 3.13 for v(n) = n, n0 = 1. In particular, for λ = 0, λ1 = α, λ2 = −α, in Corollary 3.21, setting ϕ0 (x) = xp(1−α)−1 (x ∈ (0, ∞)), ψ0 (n) = nq(1+α)−1 (n ∈ N), we have ∞ ω(−α, n) = n−α k0 (x, n)xα−1 dx = k(α), n ∈ N, (3.66) 0
(α, x) = xα
∞
n=1
k0 (x, n)n−α−1 ,
x ∈ (0, ∞),
(3.67)
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
96
ws-book9x6
Half-Discrete Hilbert-Type Inequalities
and the following corollary: Corollary 3.9. Suppose that k0 (x, y) is a non-negative finite measurable homogeneous function of degree 0 in R2+ , ∞ k0 (t, 1)tα−1 dt (α ∈ R), k(α) = 0
there exist constants δ0 , η > 0 such that for any α ∈ (α − δ0 , α + δ0 ), α, x) < k( α) < ∞(x ∈ (0, ∞)), (3.68) 0 < k( α)(1 − θα (x)) < ( where, θα (x) > 0 (x ∈ (0, ∞)), θα (x) = O x1η (x ∈ [1, ∞)). (i) For p > 1 or p < 0, p1 + 1q = 1, f (x), an ≥ 0, f ∈ Lp,ϕ0 (R+ ), a = {an }∞ n=1 ∈ lq,ψ0 , ||f ||p,ϕ0 > 0, ||a||q,ψ0 > 0, if p > 1, then we have the following equivalent inequalities: ∞ ∞ an k0 (x, n)f (x) dx 0
n=1
∞
∞
f (x)
=
0
an k0 (x, n) dx < k(α)||f ||p,ϕ0 ||a||q,ψ0 ,
n=1
∞
[ψ0 (n)]
1−p
(
∞ 0
n=1
(3.69)
)p p1 k0 (x, n)f (x)dx < k(α)||f ||p,ϕ0 , (3.70)
and
∞ 0
1−q
[ϕ0 (x)]
∞
q k0 (x, n)an
1q dx
< k(α)||a||q,ψ0 ,
(3.71)
n=1
with the best constant factor k(α); if p < 0, then we have the equivalent reverses of (3.69), (3.70) and (3.71), with the same best constant factor k(α). 0 (x) = (1 − θα (x))ϕ0 (x), if f (x), (ii) For 0 < p < 1, p1 + 1q = 1, setting ϕ ∞ an ≥ 0, f ∈ Lp,ϕ0 (R+ ), a = {an }n=1 ∈ lq,ψ0 , ||f ||p,ϕ0 > 0, ||a||q,ψ0 > 0, then, we have the following equivalent inequalities: ∞ ∞ an k0 (x, n)f (x) dx n=1
0
∞
f (x)
=
0 ∞
∞
an k0 (x, n) dx > k(α)||f ||p,ϕ0 ||a||q,ψ0 ,
n=1 1−p
[ψ0 (n)]
n=1
( 0
∞
(3.72)
)p p1 k0 (x, n)f (x) dx > k (α)||f ||p,ϕ0 , (3.73)
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
ws-book9x6
A Half-Discrete Hilbert-Type Inequality with a General Homogeneous Kernel
97
and
∞
0
[ϕ 0 (x)]
1−q
∞
q k0 (x, n)an
q1 dx
> k(α)||a||q,ψ0 ,
(3.74)
n=1
where the constant factor k(α) is the best possible.
3.3.4
Some Particular Examples
Applying Condition (i) and Corollaries 3.8-3.9, we have 1 Example 3.6. We set kλ (x, y) = A(max{x,y})λ +B(min{x,y}) ((x, y) ∈ λ R2+ ; 0 < B ≤ A, λ1 > 0, 0 < λ2 < 1, λ1 +λ2 = λ). There exists a constant 1 ∈ (λ1 − δ0 , λ1 + δ0 ) ⊂ 0 < δ0 < min{λ1 , λ2 , 1 − λ2 } such that for any λ 2 = λ − λ 1 ∈ (λ2 − δ0 , λ2 + δ0 ) ⊂ (0, 1). For x > 0, (0, λ), λ
xλ1 y λ2 −1 A(max{x, y})λ + B(min{x, y})λ ⎧ ⎨ xλ1 yλ2 −1 , 0 < y ≤ x, λ +By λ = Ax ⎩ xλ1λyλ2 −1λ , y > x
f (x, y) =
Ay +Bx
is strictly decreasing with respect to y > 0. We find
∞
1 tλ1 −1 dt + B(min{t, 1})λ 0 ∞ 1 1 1 1 −1 λ t dt + = tλ1 −1 dt λ λ+B A + Bt At 0 1 1 1 1 1 −1 2 −1 λ λ t dt = + t B A 0 1 + A tλ k ∞ 1 1 B = tλk tλ1 −1 + tλ2 −1 dt − A 0 A k=0 ∞ k 1 B 1 − tλk+λ1 −1 + tλk+λ2 −1 dt = A A 0 k=0 ∞ k B 1 1 1 − ∈ R+ , = + 1 2 A A λk + λ λk + λ
1 ) = k(λ
A(max{t, 1})λ
k=0
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
98
Half-Discrete Hilbert-Type Inequalities
and obtain
∞
nλ2 −1 A(max{x, n})λ + B(min{x, n})λ n=1 ∞ y λ2 −1 > xλ1 dy A(max{x, y})λ + B(min{x, y})λ 1 1 )(1 − θ (x)) > 0, = k(λ λ1 1 1 λ y λ2 −1 dy x θλ1 (x) = > 0. 1 ) 0 A(max{x, y})λ + B(min{x, y})λ k(λ For x ≥ 1, it follows that 1 xλ1 y λ2 −1 dy 0 < θλ1 (x) = 1 ) 0 Axλ + By λ k(λ 1 λ2 −1 xλ1 y dy ≤ k(λ1 ) 0 Axλ 1 1 ≤ , = 2 λ 2 xη Ak( λ ) λ x Ak( λ ) λ 1 2 1 that is θλ1 (x) = O x1η (η = λ2 − δ0 > 0). By Condition (i), it follows that ∞ xλ1 nλ2 −1 1 ). 1 , x) = < k(λ (λ λ + B(min{x, n})λ A(max{x, n}) n=1 Hence, we obtain (3.59). 1 By Corollary 3.8, for kλ (x, n) = A(max{x,n})λ +B(min{x,n}) λ (0 < B ≤ A, λ1 > 0, 0 < λ2 < 1, λ1 + λ2 = λ), if p > 1, we have equivalent inequalities (3.60), (3.61) and (3.62); if p < 0, we have equivalent reverses of (3.60), (3.61) and (3.62); if 0 < p < 1, we have equivalent inequalities (3.63), (3.64) and (3.65). All the inequalities are with the same best constant factor k ∞ λ 2k + 1 B . (3.75) k(λ1 ) = − A A (λk + λ1 )(λk + λ2 )
1 , x) = xλ1 (λ
k=0
λ
(min{x,y}) Example 3.7. We set k0 (x, y) = A(max{x,y}) ((x, y) ∈ λ +B(min{x,y})λ 2 R+ ; 0 < B ≤ A, λ > 0, max{−λ, λ − 1} < α < λ). There exists a constant 0 < δ0 < min{λ − α, λ + α, α − λ + 1}, such that for any < λ. For x > 0, α ∈ (α − δ0 , α + δ0 ), max{−λ, λ − 1} < α α−1 (min{x, y})λ xα y − f (x, y) = λ A(max{x, y}) + B(min{x, y})λ α λ−α−1 x y , 0 < y ≤ x, Axλ +By λ = xλ+α y −α−1 y>x Ay λ +Bxλ
ws-book9x6
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
A Half-Discrete Hilbert-Type Inequality with a General Homogeneous Kernel
ws-book9x6
99
is strictly decreasing with respect to y > 0. We find ∞ (min{t, 1})λ 1 ) = k(λ tα−1 dt A(max{t, 1})λ + B(min{t, 1})λ 0 ∞ 1 1 1 λ+ α−1 t dt + = tα−1 dt λ λ+B A + Bt At 0 1 1 1 1 λ+ α−1 λ− = (t + t α−1 )dt λ A 0 1+ B t A k 1 ∞ 1 B α−1 α−1 tλk (tλ+ + tλ− )dt = − A 0 A k=0 k 1 ∞ B 1 α −1 α−1 − = (tλk+λ+ + tλk+λ− )dt A A 0 k=0 k−1 ∞ B 1 1 1 − ∈ R+ , + = A A λk + α λk − α k=1
and then, we obtain ∞
α−1 (min{x, n})λ n− A(max{x, n})λ + B(min{x, n})λ n=1 ∞ α−1 (min{x, y})λ y − > xα dy A(max{x, y})λ + B(min{x, y})λ 1 = k( α)(1 − θα (x)) > 0, 1 α−1 xα (min{x, y})λ y − dy θα (x) = > 0. k( α) 0 A(max{x, y})λ + B(min{x, y})λ
( α, x) = xα
For x ≥ 1, it follows that 0 < θα (x) = ≤
α
x k( α)
xα k( α)
1
0
y
1
0 λ− α−1
Axλ
α−1 y λ− dy λ Ax + By λ
dy
1 1 ≤ , λ− α Ak( α)(λ − α )x Ak( α)(λ − α )xη that is θα (x) = O x1η (η = λ − α − δ0 > 0). By Condition (i), it follows that ∞ α−1 (min{x, n})λ n− ( α, x) = xα < k( α). A(max{x, n})λ + B(min{x, n})λ n=1 =
Hence, we obtain (3.68).
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
100
Half-Discrete Hilbert-Type Inequalities λ
(min{x,n}) By Corollary 3.9, for k0 (x, n) = A(max{x,n}) λ +B(min{x,n})λ (0 < B ≤ A, λ > 0, max{−λ, λ − 1} < α < λ), if p > 1, we have equivalent inequalities (3.69), (3.70) and (3.71); if p < 0, we have equivalent reverses of (3.69), (3.70) and (3.71); if 0 < p < 1, we have equivalent inequalities (3.72), (3.73) and (3.74). All the inequalities are with the same best constant factor k−1 ∞ 2λ k B − . (3.76) k(λ1 ) = A A (λ2 k 2 − α2 ) k=1
Example 3.8. (See He and Li [22]). (min{x,y})β 2 We set kλ (x, y) = (max{x,y}) λ+β ((x, y) ∈ R+ ; λ + 2β > 0, λ1 > −β, −β < λ2 < 1 − β, λ1 + λ2 = λ). There exists a constant 0 < δ0 < 1 ∈ (λ1 − δ0 , λ1 + δ0 ) ⊂ min{λ1 + β, λ2 + β, 1 − β − λ2 }, such that for any λ (−β, λ + β), λ2 = λ − λ1 ∈ (λ2 − δ0 , λ2 + δ0 ) ⊂ (−β, 1 − β). For x > 0,
(min{x, y})β xλ1 y λ2 −1 (max{x, y})λ+β ⎧ λ +β−1 ⎨ y 2 , 0 < y ≤ x, 1 xλ+β−λ = ⎩ xλ1 +β , y>x
f (x, y) =
y λ+β−λ2 +1
is strictly decreasing with respect to y > 0. We find ∞ (min{t, 1})β λ1 −1 1 ) = k(λ t dt (max{t, 1})λ+β 0 ∞ 1 1 tλ1 +β−1 dt + tλ1 −1 dt = λ+β t 0 1 1 1 + ∈ R+ , = 1 + β 2 + β λ λ and then, we have ∞ (min{x, n})β nλ2 −1 (max{x, n})λ+β n=1 ∞ (min{x, y})β y λ2 −1 1 λ >x dy (max{x, y})λ+β 1 1 )(1 − θ (x)) > 0, = k(λ λ1 1 1 λ (min{x, y})β y λ2 −1 x θλ1 (x) = dy > 0. 1 ) 0 (max{x, y})λ+β k(λ
1 , x) = xλ1 (λ
ws-book9x6
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
A Half-Discrete Hilbert-Type Inequality with a General Homogeneous Kernel
ws-book9x6
101
For x ≥ 1, it follows that 1 λ2 +β−1 xλ1 y 0 < θλ1 (x) = dy k(λ1 ) 0 xλ+β 1 1 ≤ , = 2 +β λ k(λ )(λ + β)x k(λ1 )(λ2 + β)xη 1 1 2 that is, θλ1 (x) = O xη (η = λ2 + β − δ0 > 0). By Condition (i), it follows that ∞ (min{x, n})β nλ2 −1 1 , x) = xλ1 1 ). (λ < k(λ (max{x, n})λ+β n=1 Hence, we obtain (3.60). (min{x,n})β By Corollary 3.8, for kλ (x, n) = (max{x,n}) λ+β (λ + 2β > 0, λ1 > −β, −β < λ2 < 1−β, λ1 +λ2 = λ), if p > 1, we have equivalent inequalities (3.60), (3.61) and (3.62); if p < 0, we have equivalent reverses of (3.60), (3.61) and (3.62); if 0 < p < 1, we have equivalent inequalities (3.63), (3.64) and (3.65). All the inequalities are with the same best constant factor 2β + λ k(λ1 ) = . (3.77) (β + λ1 )(β + λ2 ) In particular of this example, for (i) β = 0, kλ (x, n) = > 0, λ1 > 0, 0 < λ2 < 1, λ1 + λ2 = λ); (ii) λ = −β, k−β (x, n) = (min{x, n})β (β > 0, λ1 > −β, −β < λ2 < 1−β, λ1 +λ2 = −β); min{x,n} β ) (β > 0, λ1 > −β, −β < λ2 < (iii) λ = 0, k0 (x, n) = ( max{x,n} 1 − β, λ1 + λ2 = 0), we obtain respectively some results of Example 3.2 (viii)-(x). Note.
1 (λ (max{x,n})λ
3.3.5
Applying Condition (iii) and Corollary 3.8
1 2 Theorem 3.4. We set kλ (x, y) = (x+y) λ ((x, y) ∈ R+ ; 0 < λ < 5, 0 < λ1 < 3, 0 < λ2 < 2, λ1 + λ2 = λ). There exists a constant 0 < δ0 < 1 ∈ (λ1 − δ0 , λ1 + δ0 ) ⊂ min{λ1 , λ2 , 3 − λ1 , 2 − λ2 }, such that for any λ (0, 3), λ2 = λ − λ1 ∈ (λ2 − δ0 , λ2 + δ0 ) ⊂ (0, 2). We find ∞ 1 1 ) = 1 , λ 2 ) ∈ R+ . k(λ tλ1 −1 dt = B(λ λ (t + 1) 0 In the following, we show that ∞ xλ1 nλ2 −1 1 , x) = 1 ), (3.78) 1 )(1 − θ (x)) < (λ < k(λ 0 < k(λ λ1 (x + n)λ n=1 1 (x ≥ 1; η = λ2 − δ0 > 0) . (3.79) θλ1 (x) > 0(x > 0), θλ1 (x) = O xη
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
102
ws-book9x6
Half-Discrete Hilbert-Type Inequalities
1 = λ , λ 2 = λ R > 1, 1 + 1 = 1 , it follows that λ 2 = Setting λ R S R S and 0 < λ < min{2S, 5}. λ 1 S −1 , we show that (1) For g(x, y) = (x+y) λ y r(x) =
1 0
1 g(x, y)dy − g(x, 1) − 2
∞ 1
P1 (y)gy (x, y) dy > 0.
In fact, since 0 < λ < 2S, it follows that
1
g(x, y)dy = 0
= = =
=
>
>
1 (S+λ)(2S+λ)
≥
1 12S 2
λ S
(3.80) and
S 1 1 λ 1 λ S −1 dy = y dy S λ λ λ 0 (x + y) 0 (x + y) 1 1 λ S +S y S dy λ λ+1 λ(x + 1) 0 (x + y) 1 S2 1 λ S + dy S +1 λ(x + 1)λ S + λ 0 (x + y)λ+1 S S2 + λ λ(x + 1) (S + λ)(x + 1)λ+1 λ S 2 (λ + 1) 1 y S +1 dy + λ+2 S+λ 0 (x + y) 2 S S + λ λ(x + 1) (S + λ)(x + 1)λ+1 1 λ S 3 (λ + 1) dy S +2 + (S + λ)(2S + λ) 0 (x + y)λ+2 S S2 + λ λ(x + 1) (S + λ)(x + 1)λ+1 S 3 (λ + 1) + (S + λ)(2S + λ)(x + 1)λ+2 S S2 S(λ + 1) + + . λ λ(x + 1) (S + λ)(x + 1)λ+1 12(x + 1)λ+2 1
For x > 0, we find gy (x, y) = =
−λ y)λ+1
λ y 1− S
(x + −[1 + (λ/R)]
λ
(x + y)λ y 2− S
+
−
1 − (λ/S) λ
(x + y)λ y 2− S λx
λ
(x + y)λ+1 y 2− S
.
<2
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
ws-book9x6
A Half-Discrete Hilbert-Type Inequality with a General Homogeneous Kernel
103
Since 0 < λ < 5, we find λx < 5(x + 1) (x > 0) and using equations (2.74) and (2.75) in Chapter 2 (for m = q = 1), it follows that ∞ P1 (y)gy (x, y) dy − 1 ∞ ∞ [1 + (λ/R)]P1 (y) λxP1 (y) dy = dy − (3.81) λ λ 2− S λ (x + y) y (x + y)λ+1 y 2− S 1 1 ∞ [1 + (λ/R)]P1 (y) dy = λ (x + y)λ y 2− S 1 ⎧
⎫ ∞ ⎨ ⎬ λx λx 1 + − P (y) dy 3 λ ⎩ 12(x + 1)λ+1 ⎭ 6 1 (x + y)λ+1 y 2− S y
λ(x + 1) − λ 5(x + 1) 1 + (λ/R) + − >− 12(x + 1)λ 12(x + 1)λ+1 720 ) ( (λ + 1)(λ + 2) 2(λ + 1)(2S − λ) (2S − λ)(3S − λ) × + + (x + 1)λ+3 S(x + 1)λ+2 S 2 (x + 1)λ+1 λ −1 1 λ − ≥ + λ 12 12S (x + 1) 12(x + 1)λ+1 ) ( 7 1 24 6 . (λ + 1) − + + 144 (x + 1)λ+2 (x + 1)λ+1 (x + 1)λ In view of − 12 g(x, 1) =
−1 , 2(x+1)λ
by (3.80) and the above results, we obtain
S2 S(λ + 1) S + + λ λ+1 λ(x + 1) (S + λ)(x + 1) 12(x + 1)λ+2 1 1 λ λ 1 + − − − λ 2 12 12S (x + 1) 12(x + 1)λ+1 ) ( 1 24 6 7(λ + 1) − + + 144 (x + 1)λ+2 (x + 1)λ+1 (x + 1)λ 2 S h(λ) 1 λ 1 + = − − λ 24λS(x + 1) S + λ 12 6 (x + 1)λ+1 λ+1 7 S − + , 12 144 (x + 1)λ+2
r(x) >
where, h(λ) = 2λ2 − 15Sλ + 24S 2 (0 < λ < 2S). We find h (λ) = 4λ − 15S < 8S − 15S < 0, h(λ) > h(2S) = 2(2S)2 − 15S(2S) + 24S 2 = 2S 2 > 0, S2 λ 1 S S 1 S−1 − − > − − = > 0, S + λ 12 6 3 6 6 6
(3.82)
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
104
ws-book9x6
Half-Discrete Hilbert-Type Inequalities
S 7 1 7 and 12 − 144 > 12 − 144 > 0. Then, by inequality (3.82), it follows r(x) > 0. (2) In view of
f (x, y) =
xλ1 y λ2 −1 = xλ1 g(x, y), (x + y)λ
by (3.4) and (3.80), we have R(x) = xλ1 r(x) > 0. By Condition (iii), it follows that
1 , x) = xλ1 (λ We find
0
1
∞ nλ2 −1 1 ) − R(x) 1 ). = k(λ < k(λ λ (x + n) n=1
1 λ y S −1 dy < (x + y)λ
0
1
S 1 λ −1 y S dy = , xλ λxλ
and by (3.81) and (2.22) in Chapter 2, it follows that ∞ − P1 (y)gy (x, y)dy 1 ∞ ∞ [1 + (λ/R)]P1 (y) λxP1 (y) dy − = λ λ dy (x + y)λ y 2− S (x + y)λ+1 y 2− S 1 1 λx <0+ . 12(x + 1)λ+1 Then, by (3.80), we have r(x) <
S 1 λx − + . λxλ 2(x + 1)λ 12(x + 1)λ+1
Setting θλ1 (x) =
( ) λ 1 1 R(x) + xR > 0, 1 ) (x + 1)λ k(λ
we find 1 , x) > (λ 1 , x) − (λ By (3.83), for x ≥ 1, we obtain
λ
xR 1 )(1 − θ (x)) > 0. = k(λ λ1 (x + 1)λ
( ) 1 xλ λ θλ1 (x) ≤ x θλ1 (x) = 0 < x x r(x) + 1 ) (x + 1)λ k(λ ) ( λxλ+1 1 xλ S + < + λ 1 ) λ 2(x + 1) 12(x + 1)λ+1 k(λ ) ( 1 λ S 1 , as x → ∞, + + → λ 2 12 k(λ1 ) λ2 −δ0
λ S
(3.83)
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
A Half-Discrete Hilbert-Type Inequality with a General Homogeneous Kernel
ws-book9x6
105
that is, θλ1 (x) = O x1η (x ≥ 1; η = λ2 − δ0 > 0). Hence we show that (3.78) and (3.79) are valid. 1 By Corollary 3.8, for kλ (x, n) = (x+n) λ (0 < λ < 5, 0 < λ1 < 3, 0 < λ2 < 2, λ1 + λ2 = λ), if p > 1, we have equivalent inequalities (3.60), (3.61) and (3.62); if p < 0, we have equivalent reverses of (3.60), (3.61) and (3.62); if 0 < p < 1, we have equivalent inequalities (3.63), (3.64) and (3.65). All the inequalities are with the same best constant factor (3.84) k(λ1 ) = B(λ1 , λ2 ). ((x, y) ∈ R2+ ; 0 < λ1 < 1, λ2 = Example 3.9. We set k1 (x, y) = | ln(x/y)| x+y 1−λ1 ). There exists a constant 0 < δ0 < min{λ1 , λ2 , 1−λ1 }, such that for 1 ∈ (λ1 −δ0 , λ1 +δ0 ) ⊂ (0, 1), λ 2 = λ− λ 1 ∈ (λ2 −δ0 , λ2 +δ0 ) ⊂ (0, 1). any λ There exists a constant δ1 > 0, such that η = λ2 − δ0 − δ1 > 0. By the Lebesgue term by term integration theorem, it follows that ∞ | ln t| tλ1 −1 k(λ1 ) = dt t+1 0 ∞ 1 (− ln t) tλ1 −1 (ln t) tλ1 −1 dt + dt = t+1 t+1 0 1 1 ∞ = (− ln t) (−1)k tk+λ1 −1 + tk+λ2 −1 dt 0
= =
=
∞ k=0 ∞ k=0 ∞
k=0 1
(−1)k
(− ln t) tk+λ1 −1 + tk+λ2 −1 dt
0 1
(−1)k
(− ln t) tk+λ1 −1 + tk+λ2 −1 dt
0
(−1)
k=0
k
1 1 + 2 1 ) 2 )2 (k + λ (k + λ
∈ R+ .
δ0
| ln t| → 0 (t → 0+ ), we still find Since tδ0 k1 (t, 1) = t t+1 − ln t 1 k1 (t, 1) = (t ∈ (0, 1]; L > 0). ≤ L δ0 t+1 t In the following, we show that ∞ | ln nx |nλ1 −1 λ1 −1 1 ) (n ∈ N), (3.85) 2 , n) = nλ2 dx < k(λ ω(λ x x+n 1 1 )(1 − θ (x)) 0 < k(λ λ1
1 , x) = xλ1 < (λ
∞ | ln nx |nλ2 −1 1 ) (x ≥ 1), (3.86) < k(λ x+n n=1
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
106
ws-book9x6
Half-Discrete Hilbert-Type Inequalities
and
0 < θλ1 (x) = O
1 xη
(x ≥ 1; η = λ2 − δ0 − δ1 > 0).
(3.87)
(1) For n ∈ N, putting t = nx in the integral of (3.85), we find ∞ ∞ | ln t| λ1 −1 | ln t| λ1 −1 1 ), dt < dt = k(λ t t ω(λ2 , n) = 1 t + 1 t + 1 0 n and then (3.85) follows. (2) For g(x, y) = | ln(x/y)| y λ2 −1 (x, y ≥ 1), in the following, we prove x+y that ∞ 1 1 g(x, y)dy − g(x, 1) − P1 (y)gy (x, y)dy > 0. (3.88) r(x) = 2 0 1 In fact, putting t = xy , we obtain 1 1 | ln(x/y)| λ2 −1 y g(x, y) dy = dy x+y 0 0 x1 1 − ln t λ2 −1 t dt = xλ1 0 t + 1 x1 1 − ln t λ2 −1 t > dt 1 λ 1 +1 x 0 x 1 ln x 1 + . = 2 2 1+x λ λ 2
(3.89)
is decreasing with respect to y, we set two For x, y ≥ 1, since ln(y/x) y−x decreasing functions for y ∈ [1, ∞) as follows: h1 (x, y) =
1 x)y λ1 +1
+
2x ln(y/x) x)2 y λ1
(y − x)(y + 1 ln(y/x) ln(y/x) λ h2 (x, y) = + . (y − x)(y + x)y λ1 (y − x)y λ1 +1 (y +
+
1 x ln(y/x) 2λ (y − x)(y + x)y λ1 +1
,
λ2 −1 For 1 ≤ y < x, g(x, y) = − ln(y/x) , it follows that y+x y
gy (x, y) =
−1
+
ln(y/x)
(y + x)y λ1 +1 (y + x)2 y λ1 = h2 (x, y) − h1 (x, y);
for y ≥ x, g(x, y) =
ln(y/x) y+x
+
1 ln(y/x) λ (y + x)y λ1 +1
y λ2 −1 , we find gy (x, y) = h1 (x, y) − h2 (x, y).
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
A Half-Discrete Hilbert-Type Inequality with a General Homogeneous Kernel
ws-book9x6
107
We define two functions h(x, y) and h(x, y) as follows: h2 (x, y), 1 ≤ y < x, h(x, y) = h1 (x, y), y ≥ x, h1 (x, y), 1 ≤ y < x, h(x, y) = h2 (x, y), y ≥ x. Since −gy (x, y) = h(x, y) − h(x, y), (2.39) in Chapter 2, it follows that ∞ ε0 P1 (y) h(x, y) dy = (−h1 (x, 1) + h1 (x, x) − h2 (x, x)) 8 1 x P1 (t)dt + (h1 (x, x) − h2 (x, x)) 1x ε0 1 1 = P1 (t)dt (ε0 ∈ (0, 1)), + −h1 (x, 1) + 1 +1 1 +1 λ λ 8 2x 2x 1 ∞ ε − P1 (y)h(x, y)dy = − 0 (−h2 (x, 1) + h2 (x, x) − h1 (x, x)) 8 1 x − (h2 (x, x) − h1 (x, x)) P1 (t)dt 1 x 1 ε 1 + = 0 h2 (x, 1) + P1 (t)dt (ε0 ∈ (0, 1)). 8 2xλ1 +1 2xλ1 +1 1 Then, by equation (2.48) in Chapter 2 (for q = 0), we have x ε1 P1 (t)dt = − (ε1 ∈ [0, 1]), 8 1 and
−
∞ 1
P1 (y)gy (x, y)dy ∞ ∞ P1 (y) h(x, y)dy − P1 (y)h(x, y)dy = 1 1 ε0 ε0 1 1 + −h1 (x, 1) + h2 (x, 1) + = 8 8 2xλ1 +1 2xλ1 +1 ε1 =− (ε0 ∈ (0, 1), ε0 ∈ (0, 1), ε1 ∈ [0, 1]). (3.90) 8xλ1 +1
Since, we have −h1 (x, 1) +
1 2xλ1 +1
≤ −h1 (x, x) +
1 2xλ1 +1
< 0,
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
108
ws-book9x6
Half-Discrete Hilbert-Type Inequalities
then, by (3.90), we obtain ∞ 1 1 1 − −h1 (x, 1) + − P1 (y)gy (x, y)dy > 8 2xλ1 +1 8xλ1 +1 1 x ln x −1 + = 8(1 + x) 4(1 − x)(1 + x)2 1 x ln x 1 λ − + . (3.91) 4(1 − x)(1 + x) 16xλ1 +1 ln x , in view of (3.88), (3.89) and (3.91), (i) for Since − 12 g(x, 1) = − 2(1+x) ln x 1 ≤ x < 2, x−1 ≤ 1, we find
r(x) >
ln x 2 (1 + x) λ
+
1 2 (1 λ 2
+ x)
−
ln x 1 − 2(1 + x) 8(1 + x)
1 x ln x λ 1 x ln x − − − 2 4(x − 1)(1 + x) 4(x − 1)(1 + x) 16xλ1 +1 ( ) ln x 1 1 1 1 ≥ + − − 2 2 (1 + x) 8(1 + x) 1+x λ 2(1 + x) λ 2 −
1 x 1 x λ − − 2 4(1 + x) 4(1 + x) 16xλ1 +1
1 x 1 x 1 − − − − 1 + x 8(1 + x) 4(1 + x)2 4(1 + x) 16 5 7 1 − = + 2 8(1 + x) 4(1 + x) 16 1 1 7 5 + = > 0; > − 8(1 + 2) 4(1 + 2)2 16 114 ≥
x ≥ −2, by (3.92), we have (ii) for x ≥ 2, − x−1
ln x 1 ln x 1 − − + 1 + x 2(1 + x) 8(1 + x) λ2 (1 + x) 1 ln x ln x 1 λ − − − 2 2(1 + x) 2(1 + x) 32
2 ln x 7 7 1 1 λ ≥ + − − + 2 x+1 λ 2 6 8(1 + x) 32 ( ) 7 1 7 ln x √ + − > 0. 2− ≥ x+1 6 8(1 + 2) 32
r(x) >
Hence, (3.88) follows.
(3.92)
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
ws-book9x6
A Half-Discrete Hilbert-Type Inequality with a General Homogeneous Kernel
109
(3) In view of
xλ1 | ln(x/y)| λ2 −1 y = xλ1 g(x, y), x+y by (3.4) and (3.88), we have R(x) = xλ1 r(x) > 0. By Condition (iii), it follows that ∞ | ln(x/n)|nλ2 −1 1 , x) = xλ1 x+n (λ f (x, y) =
n=1
1 ) 1 ) − R(x) < k(λ = k(λ We find
1
g(x, y)dy = 0
1 xλ1 x1
<
1 x
0
− ln t λ2 −1 t dt t+1
(− ln t) t
0
2 −1 λ
dt =
(x ≥ 1).
1 ln x + λ2 λ22
1 , x
and by (3.90), we obtain ∞ 1 1 h2 (x, 1) + P1 (y)gy (x, y) dy < − 8 2xλ1 +1 1 1 ln x 1 λ ln x + + = . 8(x − 1)(1 + x) 8(x − 1) 16xλ1 +1 Hence by (3.88), it follows that
1 1 ln x ln x 1 1 λ λ + R(x) = x r(x) < x − 2 2 x 2(1 + x) λ λ 2
1 ln x λ 1 ln x . (3.93) + + + 8(x − 1)(1 + x) 8(x − 1) 16xλ1 +1
Setting θλ1 (x) =
1 1 ) [R(x) k(λ
ln x + xλ1 x+1 ] > 0, we obtain
λ1 1 , x) > (λ 1 )(1 − θ (x)) > 0. 1 , x) − x ln x = k(λ (λ λ1 x+1 For η = λ2 − δ0 − δ1 > 0, by (3.93), we find ( ) 1 x1−δ1 ln x 2 −δ1 η 1−δ1 λ x θλ1 (x) = r(x) + 0 < x θλ1 (x) ≤ x 1 ) x+1 k(λ
x1−δ1 ln x 1 x1−δ1 ln x 1 ln x 1 + + − < 2 2 xδ1 1 ) 2(1 + x) 8(x − 1)(1 + x) λ λ k(λ 2 1 x1−δ1 ln x λ x1−δ1 ln x x1−δ1 + + → 0 (x → ∞), + 8(x − 1) x+1 16xλ1 +1
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
110
ws-book9x6
Half-Discrete Hilbert-Type Inequalities
that is, θλ1 (x) = O x1η (x ≥ 1; η = λ2 − δ0 − δ1 > 0). Hence, we show that (3.86) and (3.87) are valid. (x ≥ 1, n ∈ By the Note of Corollary 3.8 (c = 1), for k1 (x, n) = | ln(x/n)| x+n N;0 < λ1 < 1, λ2 = 1 − λ1 ), if p > 1, we have equivalent inequalities (3.60), (3.61) and (3.62); if p < 0, we have equivalent inequalities (3.33), (3.34) and (3.35)(for v(n) = n, n0 = 1); if 0 < p < 1, we have equivalent inequalities (3.63), (3.64) and (3.65). All the inequalities are with the same best constant factor
k(λ1 ) =
∞
( k
(−1)
k=0
) 1 1 + . (k + λ1 )2 (k + λ2 )2
(3.94)
Example 3.10. (See Yang and Chen [126]). | ln(x/y)| 2 We set kλ (x, y) = (max{x,y}) λ ((x, y) ∈ R+ ; λ1 > 0, 0 < λ2 < 1, λ2 + λ1 = λ ≤ 4). There exists a constant 0 < δ0 < min{λ1 , λ2 , 1 − λ2 }, 1 ∈ (λ1 − δ0 , λ1 + δ0 ) ⊂ (0, λ), λ 2 = λ − λ 1 ∈ (λ2 − such that for any λ δ0 , λ2 + δ0 ) ⊂ (0, 1). Since λ2 − δ0 > 0, there exists δ1 > 0, such that η = λ2 − δ0 − δ1 > 0. It follows that 1 ) = k(λ
∞ 0
1
| ln t|tλ1 −1 dt (max{t, 1})λ
∞
(ln t)tλ1 −1 dt tλ 0 1 1 1 1 λ2 1 λ1 1 −1 2 −1 λ λ = (− ln t)(t +t )dt = (− ln t)d t + t 1 2 λ λ 0 0 1 1 1 λ2 1 λ2 −1 1 λ1 −1 1 λ1 t + t t + t dt = (− ln t) + 1 2 1 2 λ λ λ λ 0 0 =
=
(− ln t)tλ1 −1 dt +
1 1 + ∈ R+ . 2 λ1 λ22
Since tδ0 k1 (t, 1) =
tδ0 | ln t| (max{t,1})λ
→ 0 (t → 0+ ), we still find that
k1 (t, 1) = − ln t ≤ L
1 tδ0
(t ∈ (0, 1]; L > 0).
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
ws-book9x6
A Half-Discrete Hilbert-Type Inequality with a General Homogeneous Kernel
In the following, we show that ∞ | ln nx |nλ1 −1 λ1 −1 2 λ 1 ) (n ∈ N), ω(λ2 , n) = n x dx < k(λ (max{x, n})λ 1 1 )(1 − θ (x)) 0 < k(λ
111
(3.95)
λ1
∞ | ln nx |nλ2 −1 1 ) (x ≥ 1), (3.96) < k(λ λ (max{x, n}) n=1 1 0 < θλ1 (x) = O (3.97) (x ≥ 1; η = λ2 − δ0 − δ1 > 0). xη
1 , x) = xλ1 < (λ
(1) For n ∈ N, putting t = nx in the integral of (3.95), we find ∞ | ln t| tλ1 −1 ω(λ2 , n) = dt 1 (max{t, 1})λ n ∞ | ln t| tλ1 −1 1 ), dt = k(λ < (max{t, 1})λ 0 and then, inequality (3.95) follows. (2) Setting g(x, y) =
| ln(x/y)| y λ2 −1 λ (max{x, y})
(x ≥ 1, y > 0),
in the following, we prove that 1 ∞ 1 g(x, y)dy − g(x, 1) − P1 (y)gy (x, y)dy > 0. r(x) = 2 0 1
(3.98)
In fact, putting t = xy , we obtain 1 1 x1 1 ln(x/y) y λ2 −1 g(x, y)dy = dy = (− ln t) tλ2 −1 dt λ λ 1 x x 0 0 0 1 1 = ln x + . (3.99) 2 xλ 2 λ λ For x, y ≥ 1, we set four positive decreasing functions with respect to y ∈ [1, ∞) as follows: 1 ) x ln(y/x) , + (1 + λ (y − x)y 2+λ1 ln(y/x) 2 ) , h2 (x, y) = (1 − λ λ x (y − x)y 1−λ2 1 ) ln(y/x) , h1 (x, y) = (1 + λ (y − x)y 1+λ1 h1 (x, y) =
1
y 2+λ1
November 7, 2013
12:24
112
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
ws-book9x6
Half-Discrete Hilbert-Type Inequalities
and h2 (x, y) =
1 xλ y 2−λ2
2 ) + (1 − λ
ln(y/x) xλ−1 (y
− x)y 2−λ2
.
Then, for 1 ≤ y < x, g(x, y) = − ln(y/x) y λ2 −1 , it follows that xλ gy (x, y) =
−1 xλ y 2−λ2
2 ) + (1 − λ
(y − x) ln(y/x) xλ (y − x)y 2−λ2
= h2 (x, y) − h2 (x, y);
for y ≥ x, g(x, y) = ln(y/x)y −λ1 −1 , we find gy (x, y) =
1 y 2+λ1
1 ) − (1 + λ
(y − x) ln(y/x) (y − x)y 2+λ1
= h1 (x, y) − h1 (x, y). We define two functions h(x, y) and h(x, y) as follows: h2 (x, y), 1 ≤ y < x, h(x, y) = h1 (x, y), y ≥ x, h (x, y), 1 ≤ y < x, h(x, y) = 2 h1 (x, y), y ≥ x. By equation (2.39) in Chapter 2, it follows that ∞ ε0 h2 (x, 1) + P1 (y) h(x, y)dy = (− h2 (x, x) − h1 (x, x)) 8 1 x h1 (x, x)) P1 (t)dt +( h2 (x, x) − 1 ε0 1−λ 1−λ x − h2 (x, 1) + = P1 (t)dt (ε0 ∈ (0, 1)), + 8 xλ1 +2 xλ1 +2 1 ∞ ε P1 (y)h(x, y)dy = − 0 (−h2 (x, 1) + h2 (x, x) − h1 (x, x)) − 8 1 x P1 (t)dt −(h2 (x, x) − h1 (x, x)) 1 ε 1+λ 1+λ x = 0 h2 (x, 1) + P1 (t)dt (ε0 ∈ (0, 1)). + 8 xλ1 +2 xλ1 +2 1 h(x, y) − h(x, y), and by equation (2.48) in Chapter 2 Since −gy (x, y) = (for q = 0), x ε1 (ε1 ∈ [0, 1]), P1 (t)dt = − 8 1
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
A Half-Discrete Hilbert-Type Inequality with a General Homogeneous Kernel
we find −
1
∞
P1 (y)gy (x, y)
ws-book9x6
113
∞ dy = P1 (y)h(x, y)dy − P1 (y)h(x, y)dy 1 1 ε0 1−λ − h2 (x, 1) + = 8 xλ1 +2 1+λ ε1 ε0 . − h2 (x, 1) + + λ +2 1 8 x 4xλ1 +2 (3.100) ∞
Since we have 1−λ 1−λ − h2 (x, 1) + ≤ − h2 (x, x) + < 0, xλ1 +2 xλ1 +2 then, by equality (3.100), we find ∞ 1 1−λ 1 − h2 (x, 1) + − P1 (y)gy (x, y)dy > − λ λ +2 1 8 x 4x 1 +2 1 2 ) ln x 1−λ 1 (1 − λ 1 + = − λ − λ−1 − . +2 λ λ 8x 8x (x − 1) 8x 1 4x 1 +2 (3.101) ln x For − 12 g(x, 1) = − 2x λ , 0 < λ ≤ 4 and 0 < λ2 < 1, in view of (3.98), (3.99) and (3.101), we obtain
2 ) ln x 1 ln x 1 (1 − λ 1+λ ln x + − λ − λ − λ−1 − 2 2 xλ xλ 2x 8x 8x (x − 1) 8xλ1 +2 λ λ 2
2 )x ln x 5 1 1 7 (1 − λ ≥ λ (1 − ) ln x + − − x 2 8 8(x − 1) 8 ( ) x ln x 1 ln x 1 . (3.102) + − ≥ λ x 2 4 8(x − 1)
r(x) >
(i) If 1 ≤ x < 52 , then,
x ln x x−1
≤ 2, by (3.102), we have 1 ln x 1 1 r(x) > λ > 0; + − x 2 4 4
(ii) if x ≥ 52 , then,
≤ 53 , by (3.102), we have 1 ln x 1 5 ln x r(x) > λ > 0. + − x 2 4 24 x x−1
Hence, (3.97) follows for x ≥ 1.
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
114
ws-book9x6
Half-Discrete Hilbert-Type Inequalities
(3) In view of
f (x, y) =
xλ1 | ln(x/y)| λ2 −1 y = xλ1 g(x, y), (max{x, y})λ
by (3.4) and (3.98), we have R(x) = xλ1 r(x) > 0. By Condition (iii), it follows that
1 , x) = (λ
∞ xλ1 | ln(x/n)|nλ2 −1 (max{x, n})λ n=1
1 ) − R(x) 1 ) (x ≥ 1). = k(λ < k(λ By equality (3.100), we obtain ∞ 1 1+λ h2 (x, 1) + P1 (y)gy (x, y)dy < − 8 xλ1 +2 1 2 ) ln x (1 − λ 1+λ = + . λ 8x (x − 1) 8xλ1 +2 Hence, inequality by (3.98), it follows that ( 1 ln x 1 1 1 λ λ ln x + − λ R(x) = x r(x) < x λ 2x λ2 x λ2 ) (1 − λ2 ) ln x 1+λ + . + 8xλ (x − 1) 8xλ1 +2 + lnx ) > 0, we obtain Setting θ (x) = 1 (R(x) λ1
1 ) k(λ
(3.103)
x λ2
1 , x) > (λ 1 , x) − (λ
ln x
1 )(1 − θ (x)) > 0. = k(λ λ1 xλ2 For η = λ2 − δ0 − δ1 > 0 (δ1 > 0), by (3.103), since x ≥ 1, we obtain 1 ln x 0 < xη θλ1 (x) ≤ xλ2 −δ1 θλ1 (x) = xλ−δ1 r(x) + δ1 1 ) x k(λ
1 ln x 1 1 ln x < + + δ1 δ1 2 x 2x k(λ1 ) λ2 λ2 2 ) ln x 1+λ (1 − λ + + δ1 → 0 (x → ∞), 8x (x − 1) 8x2−λ2 +δ1 that is, θλ1 (x) = O x1η (x ≥ 1; η = λ2 − δ0 − δ1 > 0). Hence, we show that (3.96) and (3.97) are valid. | ln(x/n)| By the Note of Corollary 3.8 (c = 1), for kλ (x, n) = (max{x,n}) λ (x ≥ 1, n ∈ N; λ1 > 0, 0 < λ2 < 1, λ2 + λ1 = λ ≤ 4), if p > 1, we have
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
ws-book9x6
A Half-Discrete Hilbert-Type Inequality with a General Homogeneous Kernel
115
equivalent inequalities (3.60), (3.61) and (3.62); if p < 0, we have equivalent inequalities (3.33), (3.34) and (3.35)(for v(n) = n, n0 = 1); if 0 < p < 1, we have equivalent inequalities (3.63), (3.64) and (3.65). All the inequalities are with the same best constant factor 1 1 (3.104) k(λ1 ) = 2 + 2 . λ1 λ2 3.3.6
Applying Condition (iii) and Corollary 3.4
Example 3.11. (See Yang [158]) 1 2 We set kλ (x, y) = xλ +y λ ((x, y) ∈ R+ ; λ1 > 0, 0 < λ2 < 2, λ1 + λ2 = λ). There exists a constant 0 < δ0 < min{λ1 , λ2 , 2 − λ2 }, such that for any 1 ∈ (λ1 − δ0 , λ1 + δ0 ) ⊂ (0, λ), λ 2 = λ − λ 1 ∈ (λ2 − δ0 , λ2 + δ0 ) ⊂ (0, 2). It λ follows that
∞ (λ1 /λ)−1 tλ1 −1 u dt = du λ t +1 λ(u + 1) 0 0 π ∈ R+ . = 1 /λ) λ sin(π λ
1 ) = k(λ
∞
For γ < 1, it is obvious that ∞ 2 , n) = (n − γ)λ2 ω(λ
xλ1 −1 dx 1 ) (n ∈ N). = k(λ λ x + (n − γ)λ 0 In the following, we show that, for + 1 + 3λ 2 + 2λ 1 < 1, 1 ) = 1 − 1 λ γ ≤ γ(λ 1 4 it follows that 1 )(1 − θ (x)) 0 < k(λ λ1 ∞
xλ1 (n − γ)λ2 −1 1 )(x > 0), < k(λ λ + (n − γ)λ x n=1 1 (x ≥ 1; η = λ2 − δ0 > 0). 0 < θλ1 (x) = O xη (1) Setting 1 , x) = < (λ
(3.105) (3.106)
(y − γ)λ2 −1 (x > 0, y > γ), xλ + (y − γ)λ in the following, we prove that ) ( 1 ∞ 1 1 λ R(x) = x g(x, y)dy − g(x, 1) − P1 (y)gy (x, y)dy > 0. 2 γ 1 (3.107) g(x, y) =
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
116
ws-book9x6
Half-Discrete Hilbert-Type Inequalities
In fact, we obtain 1 g(x, y)dy = γ
1
γ
1 (y − γ)λ2 −1 dy = xλ + (y − γ)λ xλ1
0
1−γ x
tλ2 −1 dt , 1 + tλ
(3.108)
−1 λ 2
− 12 g(x, 1) = − 12 x(1−γ) λ +(1−γ)λ , and 2 − 1)(y − γ)λ2 −2 λ(y − γ)λ2 +λ−2 (λ + [xλ + (y − γ)λ ]2 xλ + (y − γ)λ 2 − 1)(y − γ)λ2 −2 λ[(y − γ)λ + xλ − xλ ](y − γ)λ2 −2 (λ =− + [xλ + (y − γ)λ ]2 xλ + (y − γ)λ 2 + 1)(y − γ)λ2 −2 (λ − λ λxλ (y − γ)λ2 −2 =− + . xλ + (y − γ)λ [xλ + (y − γ)λ ]2 2 < 2, we have Then by equation (2.39) in Chapter 2, for λ > 0, λ ∞ ∞ 2 + 1)(y − γ)λ2 −2 (λ − λ − P1 (y)gy (x, y)dy = P1 (y) dy xλ + (y − γ)λ 1 1 ∞ λxλ (y − γ)λ2 −2 − P1 (y) λ dy [x + (y − γ)λ ]2 1 2 + 1)(1 − γ)λ2 −2 1 (λ − λ >− + 0. (3.109) 8 xλ + (1 − γ)λ Then, by (3.107), (3.108) and (3.109), setting ) ( 1 1−γ + (λ + 1) (1 − γ)λ2 −2 , A= 1 2 8 we have 1−γ x tλ2 −1 dt Axλ1 R(x) > h(x) = − . (3.110) 1 + tλ xλ + (1 − γ)λ 0 1 ), Since, for γ ≤ γ(λ + 1 2 + 2λ 1 , λ1 + 3λ 1−γ ≥ 1 4 1 1 2 λ B(γ) = (1 − γ)2 − (1 − γ) − (λ + λ1 ) ≥ 0, 2 8 1 then, we find 1 xλ1 −1 )λ2 −1 (1 − γ)( 1−γ λAxλ1 +λ−1 Aλ x h (x) = − + − λ [xλ + (1 − γ)λ ]2 xλ + (1 − γ)λ x2 [1 + ( 1−γ x ) ]
gy (x, y) = −
2 λ
= −[(1 − γ)
1 ] − Aλ
< −B(γ)
xλ1 −1 λA(1 − γ)λ xλ1 −1 − xλ + (1 − γ)λ [xλ + (1 − γ)λ ]2
(1 − γ)λ2 −2 xλ1 −1 <0 xλ + (1 − γ)λ
(A, λ > 0).
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
A Half-Discrete Hilbert-Type Inequality with a General Homogeneous Kernel
ws-book9x6
117
By (3.110), it follows that R(x) > h(∞) = 0(x > 0). Hence, (3.107) holds. (2) In view of f (x, y) = xλ1 g(x, y), by (3.4) and Condition (iii), it follows that ∞ xλ1 (n − γ)λ2 −1 1 , x) = 1 ) − R(x) 1 ) (x > 0). (λ = k(λ < k(λ xλ + (n − γ)λ n=1 By (3.109), we still obtain ∞ 1 λxλ (1 − γ)λ2 −2 − P1 (y)gy (x, y)dy < , 8 [xλ + (1 − γ)λ ]2 1 and by (3.107), it follows that λ 1 1 − γ 2 (1 − γ)λ2 −1 xλ1 1 λxλ+λ1 (1 − γ)λ2 −2 − . (3.111) R(x) < + 2 x 2[xλ + (1 − γ)λ ] 8 [xλ + (1 − γ)λ ]2 λ Setting
1 2 −1 λ λ 1 (1 − γ) x θλ1 (x) = R(x) + λ > 0, 1 ) x + (1 − γ)λ k(λ we find 1 2 −1 λ λ 1 , x) > (λ 1 , x) − x (1 − γ) 1 )(1 − θ (x)) > 0. (λ = k(λ λ1 xλ + (1 − γ)λ For η = λ2 − δ0 > 0, x ≥ 1, by (3.111), we obtain
1 xλ (1 − γ)λ2 −1 2 2 λ λ η x R(x) + λ 0 < x θλ1 (x) ≤ x θλ1 (x) = 1 ) x + (1 − γ)λ k(λ λ 1 xλ2 1 − γ 2 (1 − γ)λ2 −1 xλ < − 1 ) λ 2 x 2[xλ + (1 − γ)λ ] k(λ 1 λx2λ (1 − γ)λ2 −2 xλ (1 − γ)λ2 −1 + + λ → constant (x → ∞), 8 [xλ + (1 − γ)λ ]2 x + (1 − γ)λ that is, θλ1 (x) = O x1η (x ≥ 1; η = λ2 − δ0 > 0). Hence, we show that (3.105) and (3.106) are valid. Setting u(x) = x − γ (x > γ), by Corollary 3.4, for + 1 λ1 + 3λ21 + 2λ1 , γ ≤1− 4 1 kλ (u(x), v(n)) = (x−γ)λ +(n−γ) λ (x > γ, n ∈ N;λ1 > 0, 0 < λ2 < 2, λ2 + λ1 = λ), if p > 1, we have equivalent inequalities (3.41), (3.42) and (3.43); if p < 0, we have equivalent reverses of (3.41), (3.42) and (3.43); if 0 < p < 1, we have equivalent inequalities (3.45), (3.46) and (3.47). All the inequalities are with the same best constant factor π . (3.112) k(λ1 ) = λ sin(πλ1 /λ)
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
118
Half-Discrete Hilbert-Type Inequalities
3 Note. If√0 = γ ≤ γ(λ1 ) = 1 − 14 (λ1 + 3λ21 + 2λ1 ), then we find that 0 < λ1 ≤ 12 ( 57 − 5) = 1.27+ and 0 < λ = λ1 + λ2 < 1.27+ + 2 = 3.27+ , and we get some results similar to Example 3.2(i). But the conditions are different. β
(min{x,y}) 2 Example 3.12. We set kλ (x, y) = (max{x,y}) λ+β ((x, y) ∈ R+ ; 0 < 2β + λ ≤ 4, λ1 > −β, −β < λ2 < 1 − β, λ1 + λ2 = λ). There exists a constant 1 ∈ (λ1 − 0 < δ0 < min{β + λ1 , β + λ2 , 1 − β + λ2 }, such that for any λ 2 = λ − λ 1 ∈ (λ2 − δ0 , λ2 + δ0 ) ⊂ (−β, 1 − β). δ0 , λ1 + δ0 ) ⊂ (−β, λ + β), λ It follows that ∞ 2β + λ (min{t, 1})β λ1 −1 1 ) = ∈ R+ . t dt = k(λ λ+β 1 )(β + λ 2 ) (max{t, 1}) (β + λ 0
For 0 ≤ γ < 1, it is obvious that ∞ (min{x, n − γ})β xλ1 −1 2 λ 1 ) (n ∈ N). ω(λ2 , n) = (n − γ) dx = k(λ (max{x, n − γ})λ+β 0 In the following, we show that 8
2 + β λ 2(λ + 2β + 1) 2 ) = 1 − − 1 ∈ (0, 1), 1+ γ(λ 2 + β 4 λ 2 ), and for 0 ≤ γ ≤ γ (λ 1 , x) 2 )(1 − θ (x)) < (λ 0 < k(λ λ1 ∞ xλ1 (min{x, n − γ})β 1 ) (x > 0), (3.113) (n − γ)λ2 −1 < k(λ λ+β (max{x, n − γ}) n=1 1 (x ≥ 1; η = λ2 + β − δ0 > 0). 0 < θλ1 (x) = O (3.114) xη
=
2 ) > 0 is equivalent 2 ) < 1. We find that γ(λ (1) It is obvious that γ(λ to 2(λ + 2β + 1) −1< 2 + β λ
4 2 + β λ
2 −1
,
or λ + 2β + 5 8 − + 1 > 0. 2 2 + β (λ2 + β) λ Setting y =
1 2 +β λ
(> 1),
f (y) = 8y 2 − (λ + 2β + 5)y + 1 (y ≥ 1),
ws-book9x6
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
ws-book9x6
A Half-Discrete Hilbert-Type Inequality with a General Homogeneous Kernel
119
since, f (1) = 4 − (λ + 2β) ≥ 0(λ + 2β ≤ 4), we find f (y) = 16y 2 − (λ + 2β + 5) ≥ 16 − (λ + 2β + 5) > 0(y ≥ 1), 2 ) > 0. then, it follows that f (y) > f (1) = 0(y > 1), that is, γ(λ (2) Setting g(x, y) =
(min{x, y − γ})β (y − γ)λ2 −1 λ+β (max{x, y − γ})
(x > 0, y > γ),
2 ), in the following, we prove that, for 0 ≤ γ ≤ γ(λ ) ( 1 ∞ 1 R(x) = xλ1 g(x, y)dy − g(x, 1) − P1 (y)gy (x, y)dy > 0. 2 γ 1 (3.115) In fact, we obtain x−λ−β (y − γ)λ2 +β−1 , γ < y < x + γ, g(x, y) = xβ (y − γ)−λ1 −β−1 , y ≥ x + γ, h1 (x, y), γ < y < x + γ, −gy (x, y) = h2 (x, y), y ≥ x + γ, 2 − β)x−λ−β (y − γ)λ2 +β−2 , h1 (x, y) = (1 − λ 1 + β + 1)xβ (y − γ)−λ1 −β−2 . h2 (x, y) = (λ For 0 < x < 1 − γ, y ≥ 1 ≥ x + γ, by (2.22) in Chapter 2, we have ∞ ∞ P1 (y)gy (x, y)dy = P1 (y)h2 (x, y)dy − 1
>−
1 + β + 1)xβ (λ 12(1 − γ)λ1 +β+2
1
>−
1 + β + 1)xβ (λ 8(1 − γ)λ1 +β+2
;
(3.116)
for x ≥ 1 − γ, by equation (2.38) in Chapter 2 (for ε0 ∈ (0, 1), ε1 ∈ [0, 1]), we find ∞ − P1 (y)gy (x, y)dy 1
ε0 = (−h1 (x, 1) + h1 (x, x + γ) − h2 (x, x + γ)) 8 ε1 − (h1 (x, x + γ) − h2 (x, x + γ)) 8 ) ( 2β + λ ε0 2β + λ 2 +β−2 λ −λ−β + (1 − λ2 − β)x =− (1 − γ) + ε1 λ +2 1 8 x 8xλ1 +2
λ2 +β−2 1 2β + λ 2 − β) (1 − γ) > − (1 − λ − . λ +β 2 8 x 8xλ1 +2
(3.117)
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
120
ws-book9x6
Half-Discrete Hilbert-Type Inequalities
We still find 1 − g(x, 1) = 2
− 21 (1
For 0 < x < 1 − γ, 1 x+γ g(x, y)dy = γ
1
2 +β−1 λ
(y − γ) xλ+β
γ
=
xβ , (1−γ)λ1 +β+1 2 +β−1 1 λ − γ) , xλ+β
− 12
1 2 + (λ
β)xλ1
+
0 < x < 1 − γ,
(3.118)
x ≥ 1 − γ.
1
dy +
xβ (y − γ)−λ1 −β−1 dy
γ+x
1 1 + (λ
β)xλ1
−
xβ 1 + β)(1 − γ)λ1 +β (λ
; (3.119)
for x ≥ 1 − γ, 1 g(x, y)dy = γ
1
1
x
γ
(y − γ)λ2 +β−1 dy = λ+β
(1 − γ)λ2 +β . 2 + β)xλ+β (λ
(3.120)
2 ), (i) For 0 < x < 1 − γ, 0 ≤ γ ≤ γ(λ 8
2 + β λ 2(λ + 2β + 1) 1+ 1−γ ≥ −1 , 2 + β 4 λ it is obvious that A(γ) = (1 − γ)2 −
2 + β 1 λ (1 − γ) − (λ 2 + β)(λ1 + β + 1) ≥ 0, 2 8
and then, by (3.115), (3.116), (3.118) and (3.120), in view of 0 < x < 1 − γ, 2 > 0, it follows that 1 > 0 and β + λ β+λ R(x) >
>
1 2 + β λ
1
+
1
−
xβ+λ1
1 + β)(1 − γ)λ1 +β (λ 1 + β + 1)xβ+λ1 xβ+λ1 (λ − − 2(1 − γ)λ1 +β+1 8(1 − γ)λ1 +β+2
+
1 + β λ
1
−
(1 − γ)β+λ1
1 + β)(1 − γ)λ1 +β (λ 1 + β + 1)(1 − γ)β+λ1 (1 − γ)β+λ1 (λ − − 2(1 − γ)λ1 +β+1 8(1 − γ)λ1 +β+2 A(γ) = ≥ 0; (λ2 + β)(1 − γ)2 2 + β λ
1 + β λ
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
ws-book9x6
A Half-Discrete Hilbert-Type Inequality with a General Homogeneous Kernel
2 ), in view of (ii) for x ≥ 1 − γ, 0 ≤ γ ≤ γ(λ
1 x2
≤
121
(1−γ)λ2 +β−2 , xλ2 +β
we still find
1 (1 − γ)λ2 +β 1 − (1 − γ)λ2 +β−1 R(x) > 2 +β λ λ 2 x 2 +β (λ2 + β)x
λ2 +β−2 1 2β + λ (1 − γ)λ2 +β−2 2 − β) (1 − γ) − (1 − λ − 8 8 xλ2 +β xλ2 +β
= A(γ)
(1 − γ)λ2 +β−2 ≥ 0. 2 + β)xλ2 +β (λ
Hence, (3.115) follows for x > 0. (3) By (3.4) and Condition (iii), it follows that 1 , x) = k(λ 1 ) − R(x) 1 ) (x > 0). (λ < k(λ Setting
1 λ β x 1 (min{x, 1 − γ}) λ −1 > 0, R(x) + (1 − γ) 2 θλ1 (x) = 1 ) (max{x, 1 − γ})λ+β k(λ
we obtain
λ1 β 1 , x) > (λ 1 , x) − x (min{x, 1 − γ}) (1 − γ)λ2 −1 (λ (max{x, 1 − γ})λ+β 1 )(1 − θ (x)) > 0. = k(λ λ1
For x ≥ 1 ≥ 1 − γ (γ ≥ 0), by (3.117), we still obtain ∞ 2β + λ − P1 (y)gy (x, y)dy < , 8xλ1 +2 1 and by (3.115), (3.118) and (3.120), it follows that
1 2β + λ 1 (1 − γ)λ2 +β − (1 − γ)λ2 +β−1 + . R(x) < λ +β 2 + β)xλ2 +β 2 8x2 x 2 (λ
(3.121)
For η = λ2 + β − δ0 > 0, x ≥ 1 ≥ 1 − γ, it follows from (3.121) that
0 < xη θλ1 (x) ≤ xλ2 +β θλ1 (x) # 1 " λ2 +β = R(x) + (1 − γ)λ2 +β−1 x 1 ) k(λ ( 1 1 (1 − γ)λ2 +β < − (1 − γ)λ2 +β−1 2 λ2 + β k(λ1 ) ) 2β + λ 2 +β−1 λ + + (1 − γ) → constant (x → ∞), 8x2−λ2 −β
November 7, 2013
122
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
Half-Discrete Hilbert-Type Inequalities
namely, θλ1 (x) = O x1η (x ≥ 1; η = λ2 + β − δ0 > 0). Hence we show that (3.113) and (3.114) are valid. Setting u(x) = x − μ(x > μ), by Corollary 3.4, for 8
λ2 + β 2(λ + 2β + 1) 1+ −1 , 0 ≤ γ ≤ γ(λ2 ) = 1 − 4 λ2 + β and kλ (u(x), v(n)) =
(min{x − μ, n − γ})β , (max{x − μ, n − γ})λ+β
(x > μ, n ∈ N; 0 < 2β + λ ≤ 4, λ1 > −β, −β < λ2 < 1 − β, λ1 + λ2 = λ), if p > 1, we have equivalent inequalities (3.41), (3.42) and (3.43); if p < 0, we have equivalent reverses of (3.41), (3.42) and (3.43); if 0 < p < 1, we have equivalent inequalities (3.45), (3.46) and (3.47). All the inequalities are with the same best constant factor 2β + λ . (3.122) k(λ1 ) = (β + λ1 )(β + λ2 )
ws-book9x6
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
ws-book9x6
Chapter 4
A Half-Discrete Hilbert-Type Inequality with a Non-Homogeneous Kernel “... we have always found, even with the most famous inequalities, that we have a little new to add.” G. H. Hardy
“There is no branch of mathematics, however abstract, which may not some day be applied to phenomena of the real world.” Nikolai Lobatchevsky
4.1
Introduction
The main objective of this chapter is to derive a half-discrete Hilbert-type inequality with a general non-homogeneous kernel and its extensions using the way of weight functions and methods of real analysis. The best possible factors involved in inequalities are also determined. Included are equivalent inequalities and their operator expressions, two classes of reverse inequality, many extensions and particular examples.
4.2 4.2.1
Some Preliminary Lemmas Definition of Weight Functions and Some Related Lemmas
Lemma 4.1. Suppose that α ∈ R, h(t) is a non-negative finite measurable function in R+ , v(y) is a strictly increasing differentiable function 123
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
124
ws-book9x6
Half-Discrete Hilbert-Type Inequalities
in [n0 , ∞)(n0 ∈ N) with v(n0 ) > 0 and v(∞) = ∞. Define two weight functions ωα (n) and α (x) as follows: ∞ h(xv(n))xα−1 dx, n ≥ n0 (n ∈ N), (4.1) ωα (n) = [v(n)]α α (x) = xα
∞
0
h(xv(n))[v(n)]α−1 v (n),
x ∈ (0, ∞).
(4.2)
n=n0
Then, we have
ωα (n) = k(α) =
∞
h(t) tα−1 dt.
(4.3)
0
Moreover, we set f (x, y) = xα h(xv(y))[v(y)]α−1 v (y) and use the following conditions: Condition (i) v(y) is strictly increasing in [n0 − 1, ∞) with v(n0 − 1) ≥ 0, and for any fixed x > 0, f (x, y) is decreasing with respect to y ∈ [n0 − 1, ∞) and strictly decreasing in an interval I ⊂ (n0 − 1, ∞). Condition (ii) v(y) is strictly increasing in [n0 − 21 , ∞) with v(n0 − 21 ) ≥ 0, and for any fixed x > 0, f (x, y) is convex with respect to y ∈ [n0 − 12 , ∞) and strictly convex in an interval I ⊂ (n0 − 12 , ∞). Condition (iii) There exists a constant β > 0, such that v(y) is strictly increasing in [n0 −β, ∞) with v(n0 −β) ≥ 0, and for any fixed x > 0, f (x, y) is a piecewise smooth continuous function with respect to y ∈ [n0 − β, ∞), satisfying n0 ∞ 1 R(x) = f (x, y)dy − f (x, n0 ) − P1 (y)fy (x, y)dy > 0, (4.4) 2 n0 n0 −β where, P1 (y)(= y − [y] − 12 ) is the Bernoulli function of 1-order equation (2.8) in Chapter 2. If k(α) ∈ R+ and one of the above three conditions is satisfied, then, we have α (x) < k(α) (x ∈ (0, ∞)). Proof.
Setting t = xv(n) in (4.1), we find α−1 ∞ t 1 h(t) ωα (n) = [v(n)]α dt v(n) v(n) 0 ∞ h(t) tα−1 dt = k(α), = 0
(4.5)
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
ws-book9x6
A Half-Discrete Hilbert-Type Inequality with a Non-Homogeneous Kernel
125
then, (4.3) follows. (i) If Condition (i) is satisfied then for any n ≥ n0 (n ∈ N), it follows that n f (x, y)dy, f (x, n) ≤ n−1
and there exists an integer n1 ≥ n0 , such that n1 f (x, y)dy. f (x, n1 ) < n1 −1
Since v(n0 − 1) ≥ 0 and k(α) ∈ R+ , we find ∞ ∞ n λ1 (x) = f (x, n) < f (x, y)dy n=n0 ∞
n=n0
=
n−1
∞
f (x, y)dy = xα
n0 −1 ∞
h(xv(y))[v(y)]α−1 v (y)dy,
n0 −1 ∞
= xv(n0 −1)
h(t)tα−1 dt ≤
(t = xv(y))
h(t)tα−1 dt = k(α),
0
then, (4.5) follows. (ii) If Condition (ii) is satisfied, then by the Hermite-Hadamard’s inequality (see Kuang [47]), it follows that n+ 12 f (x, y) dy, n ≥ n0 , f (x, n) ≤ n− 12
and there exists a positive integer n2 ≥ n0 , such that n2 + 12 f (x, n2 ) < f (x, y)dy. n2 − 12
Since v(n0 −
1 2)
≥ 0 and k(α) ∈ R+, we find ∞ ∞ n+ 1 2 f (x, n) < f (x, y)dy λ1 (x) = n=n0 ∞
n=n0
=
n0 − 1 ∞2
= ≤
f (x, y)dy = xα
xv(n0 − 12 ) ∞
0
then, (4.5) follows.
n− 12
∞ n0 − 12
h(t)tα−1 dt,
h(t)tα−1 dt = k(α),
h(xv(y))[v(y)]α−1 v (y)dy
(t = xv(y))
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
126
ws-book9x6
Half-Discrete Hilbert-Type Inequalities
(iii) If Condition (iii) is satisfied and k(α) ∈ R+ , then by the EulerMaclaurin summation formula (see equation (2.16) in Chapter 2) ( for q = 0, m = n0 , n → ∞), we have λ1 (x) =
∞
f (x, n)
n=n0 ∞
∞ 1 f (x, y)dy + f (x, n0 )+ P1 (y)fy (x, y)dy 2 n0 n0 ∞ ∞ f (x, y)dy −R(x) = h(t)tα−1 dt−R(x), (t = xv(y)) =
=
n0 −β
xv(n0 −β)
≤ k(α)−R(x) < k(α),
then, (4.5) follows.
Lemma 4.2. Let the assumptions of Lemma 4.1 be fulfilled and additionally, p ∈ R\{0, 1}, 1p + 1q = 1, an ≥ 0, n ≥ n0 (n ∈ N), f (x) is a nonnegative measurable function in R+ . Then (i) for p > 1, we have the following inequalities: ∞ ) p p1 ( ∞ v (n) J= h(xv(n))f (x)dx [v(n)]1−pα 0 n=n0 ∞ p1 1 p(1−α)−1 p q ≤ [k(α)] α (x)x f (x)dx , (4.6) 0
and = L
0
≤
∞
[α (x)]1−q x1−qα
∞
q h(xv(n))an
n=n0
∞ [v(n)]q(1−α)−1 q k(α) an [v (n)]q−1 n=n
q1 dx
1q ;
(4.7)
0
(ii) for p < 0 or 0 < p < 1, we have the reverses of (4.6) and (4.7). Proof. (i) For p > 1, by H¨older’s inequality with weight (see Kuang [47]) and (4.3), it follows that ) p ∞ ( (1−α)/q ) ( ∞ x [v (n)]1/p h(xv(n))f (x)dx = h(xv(n)) f (x) [v(n)](1−α)/p 0 0 ) p ( [v(n)](1−α)/p dx × (1−α)/q x [v (n)]1/p
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
A Half-Discrete Hilbert-Type Inequality with a Non-Homogeneous Kernel
≤
∞
h(xv(n)) 0
=
ws-book9x6
127
x(1−α)(p−1) v (n) p f (x)dx [v(n)]1−α p−1 ∞ [v(n)](1−α)(q−1) h(xv(n)) 1−α dx × x [v (n)]q−1 0
p−1 ωα (n)[v(n)]q(1−α)−1 [v (n)]q−1 ∞ x(1−α)(p−1) v (n) p × h(xv(n)) f (x)dx [v(n)]1−α 0
[k(α)]p−1 = [v(n)]pα−1 v (n)
∞
h(xv(n)) 0
x(1−α)(p−1) v (n) p f (x)dx. [v(n)]1−α
Then by Lebesgue term by term integration theorem (see Kuang [47]), we have p1 ∞ (1−α)(p−1) ∞ 1 x v (n) J ≤ [k(α)] q h(xv(n)) f p (x)dx 1−α [v(n)] 0 n=n0 p1 ∞ ∞ (1−α)(p−1) 1 x v (n) p = [k(α)] q h(xv(n)) f (x)dx [v(n)]1−α 0 n=n0 ∞ p1 1 = [k(α)] q α (x)xp(1−α)−1 f p (x)dx , 0
then (4.6) follows. Still by H¨older’s inequality with weight, it follows that
∞ q ∞ ( (1−α)/q ) x [v (n)]1/p h(xv(n))an = h(xv(n)) [v(n)](1−α)/p n=n0 n=n0 q [v(n)](1−α)/p an × (1−α)/q x [v (n)]1/p q−1 ∞ x(1−α)(p−1) v (n) ≤ h(xv(n)) [v(n)]1−α n=n 0
∞
×
n=n0
h(xv(n))
[v(n)](1−α)(q−1) q a x1−α [v (n)]q−1 n
∞ x1−qα [v(n)](1−α)(q−1) q = h(xv(n)) 1−α a . 1−q [α (x)] x [v (n)]q−1 n n=n 0
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
128
ws-book9x6
Half-Discrete Hilbert-Type Inequalities
Then by the Lebesgue term by term integration theorem, we have ≤ L
0
∞
∞
n=n0
q1 [v(n)](1−α)(q−1) q h(xv(n)) 1−α a dx x [v (n)]q−1 n
1q [v(n)](1−α)(q−1) q = h(xv(n)) 1−α a dx x [v (n)]q−1 n n=n0 0 q1 ∞ [v(n)]q(1−α)−1 q = ωα (n) an , [v (n)]q−1 n=n ∞
∞
0
and then, in view of (4.3), we have (4.7). (ii) For p < 0 or 0 < p < 1, by the reverse H¨ older’s inequality with weight (see Kuang [47]) and in the same way, we obtain the reverses of (4.6) and (4.7). 4.2.2
Estimations of Two Series and Examples
Lemma 4.3. Assuming that v(y) is a strictly increasing differentiable func (y) (> 0) is tion in [n0 , ∞)(n0 ∈ N) with v(n0 ) > 0 and v(∞) = ∞, if vv(y) decreasing in [n0 , ∞), then for ε > 0, we have A(ε) =
∞ n=n0
1 v (n) = (1 + o(1)) 1+ε [v(n)] ε
(ε → 0+ ).
(4.8)
Lemma 4.4. Let the assumptions of Lemma 4.1 be fulfilled and addi (y) tionally, let p ∈ R\{0, 1}, p1 + 1q = 1, vv(y) (> 0) be decreasing in [n0 , ∞)(n0 ∈ N) and there exist constants δ > α and L > 0, such that h(t) ≤ L
1 tδ
,
(t ∈ [v(n0 ), ∞)).
(4.9)
Then, for 0 < ε < min{|p|, |q|}(δ − α), we have B(ε) =
∞ n=n0
v (n) [v(n)]1+ε
∞ v(n)
ε
h(t)tα+ p −1 dt = O(1)
(ε → 0+ ).
(4.10)
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
ws-book9x6
A Half-Discrete Hilbert-Type Inequality with a Non-Homogeneous Kernel
Proof.
In view of (4.9), we find ∞
0 < B(ε) ≤ L =
L δ−α−
n=n0 ∞
v (n) [v(n)]1+ε
ε p n=n0
L = δ−α−
ε p
≤
L δ−α−
ε p
=
L δ−α−
ε p
∞
129
ε
tα−δ+ p −1 dt
v(n)
v (n) ε
[v(n)]δ−α+ q +1
∞ v (n) v (n0 ) + ε ε [v(n0 )]δ−α+ q +1 n=n0 +1 [v(n)]δ−α+ q +1 ( ) ∞ v (n0 ) v (y)dy + ε δ−α+ qε +1 [v(n0 )]δ−α+ q +1 n0 [v(y)]
ε v (n0 ) [v(n0 )]α−δ− q < ∞, + ε δ − α + qε [v(n0 )]δ−α+ q +1
and then (4.10) follows. 1 Example 4.1. (i) For h(t) = 1+t λ (0 < α < λ), since ∞ π 1 k(α) = tα−1 dt = ∈ R+ , λ 1 + t λ sin π( αλ ) 0
setting δ =
λ+α 2
> α (δ < λ), we find h(t) =
(ii) For h(t) =
1 (1+t)λ
∞
k(α) = 0
setting δ =
λ+α 2
1 1 ≤ δ tλ + 1 t
(t ∈ [v(n0 ), ∞)).
(0 < α < λ), since 1 tα−1 dt = B(α, λ − α) ∈ R+ , (1 + t)λ
> α (δ < λ), we find h(t) =
1 1 ≤ δ λ (1 + t) t
(t ∈ [v(n0 ), ∞)).
ln t tλ −1
(0 < α < λ), since )2 ( ∞ π ln t α−1 t k(α) = dt = ∈ R+ , tλ − 1 λ sin( πα ) 0 λ
(iii) For h(t) =
δ
t ln t setting δ = λ+α 2 > α (δ < λ), we find tλ −1 → 0 (t → ∞), and there exists a constant L > 0, such that 1 ln t ≤ L δ (t ∈ [v(n0 ), ∞)). h(t) = λ t −1 t
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
130
Half-Discrete Hilbert-Type Inequalities
s (iv) For s ∈ N, kλs (t, 1) = k=1 ak t1λ +1 (0 < a1 < · · · < as , λ > 0, 0 < α < s), by (3.12), we find ∞2 s 1 tαλ−1 dt k(αλ) = λ+1 a t k 0 k=1 ∞2 s 1 1 u(s−α)−1 du = λ 0 ak + u k=1
s π aks−α−1 = λ sin(πα) k=1
s 2 j=1(j =k)
1 ∈ R+ . ak − aj
> αλ (< sλ), since t kλs (t, 1) → 0 (t → ∞), there exists Setting δ = a constant L > 0, such that s 2 1 L kλs (t, 1) = ≤ δ (t ∈ [v(n0 ), ∞)). a k tλ + 1 t s+α λ 2
δ
k=1
(v) For h(t) = tλ +2tλ/21 cos β+1 (0 < β ≤ π2 , λ > 0, 0 < α < 1), by Example 3.1(v), we find ∞ tαλ−1 k(αλ) = dt, (u = tλ/2 ) λ λ/2 cos β + 1 t + 2t 0 2 ∞ u2α−1 du = 2 λ 0 u + 2u cos β + 1 2π sin β(1 − 2α) = ∈ R+ . λ sin β sin(2πα) δ
t Setting δ = λ (> αλ), since tλ +2tλ/2 → 1 (t → ∞), there exists a cos β+1 constant L > 0, such that 1 1 (t ∈ [v(n0 ), ∞)). ≤ L h(t) = λ tδ t + 2tλ/2 cos β + 1 √ (vi) For h(t) = tλ +bt1λ/2 +c (c > 0, 0 ≤ b ≤ 2 c, α = λ2 > 0), we find ∞ λ λ 2 ∞ t 2 −1 dt du k = = , (u = tλ/2 ) 2 λ λ/2 2 t + bt + c λ 0 u + bu + c 0 ⎧ π √ , b = 0, ⎪ c √ √ 2⎨ 4 4c−b2 √ = arctan , 0 < b < 2 c, b 4c−b2 λ⎪ √ ⎩ 2 √ , b = 2 c. c
Setting δ = λ > L > 0, such that h(t) =
λ 2,
since
tδ tλ +btλ/2 +c
1 ≤L λ t + btλ/2 + c
→ 1(t → ∞), there exists a constant
1 tδ
(t ∈ [v(n0 ), ∞)).
ws-book9x6
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
ws-book9x6
A Half-Discrete Hilbert-Type Inequality with a Non-Homogeneous Kernel 1 eγtλ −Ae−γtλ
(vii) For h(t) = 0, α = βλ), we find k(α) =
131
(−1 ≤ A < 1, β > 0(A = 1, β > 1), γ, λ >
1 ∞ tβλ−1 dt uβ−1du = λ λ γu λ 0 e (1 − Ae−2γu ) eγt − Ae−γt 0 ∞ ∞ 1 Ak e−γ(2k+1)u uβ−1 du = λ 0 k=0 ∞ ∞ 1 = Ak e−γ(2k+1)u uβ−1 du λ 0 ∞
k=0
∞
Γ(β) Ak = ∈ R+ . λγ β (2k + 1)β k=0
Setting δ = β0 λ > βλ = α (β0 > β), since exists a constant L > 0, such that e
γtλ
tδ ≤L − Ae−γtλ
tδ λ λ eγt −Ae−γt
→ 0 (t → ∞), there
(t ∈ [v(n0 ), ∞)).
Then it follows that
1 1 h(t) = γtλ (t ∈ [v(n0 ), ∞)). λ ≤ L −γt tδ e − Ae λ bt +1 (0 ≤ a < b, λ > 0, α = −βλ, 0 < β < 1), we (viii) For h(t) = ln at λ +1 find λ ∞ λ −1 ∞ bt + 1 −βλ−1 bt + 1 ln dt = ln k(α) = t dt−βλ λ+1 λ+1 at βλ at 0 0 ( ∞ ∞ λ ) λ λ −1 −βλ bt + 1 (1−β)λ−1 t t − = ln − dt βλ atλ + 1 0 btλ + 1 atλ + 1 0 ∞ (1−β)−1 β aβ (bβ − aβ )π u b − du = . = βλ βλ 1+u βλ sin(βπ) 0 λ
bt +1 Setting δ = −β0 λ > −βλ = α(0 < β0 < β), in view of tδ ln( at λ +1 ) → 0 (t → ∞), there exists a constant L > 0, such that λ bt + 1 ≤ L (t ∈ [v(n0 ), ∞)). tδ ln atλ + 1
Then it follows that h(t) = ln
btλ + 1 atλ + 1
≤
L tδ
(t ∈ [v(n0 ), ∞)).
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
132
Half-Discrete Hilbert-Type Inequalities
(ix) For h(t) = arctan t1λ (0 < α < λ), we find ∞ 1 π tα−1 arctan λ dt = k(α) = πα ∈ R+ . t 2α cos( ) 0 2λ Setting δ = α0 ∈ (α, λ), since tδ arctan t1λ → 0 (t → ∞), there exists a constant L > 0, such that 1 1 (t ∈ [v(n0 ), ∞)). h(t) = arctan λ ≤ L δ t t (x) For h(t) =
1 (max{1,t})λ
∞
k(α) = 0
setting δ =
λ+α 2
(0 < α < λ), since
λ 1 tα−1 dt = ∈ R+ , λ (max{1, t}) α(λ − α)
> α (δ < λ), we find
h(t) =
1 1 ≤ δ (max{1, t})λ t
(t ∈ [v(n0 ), ∞)).
(xi) For h(t) = (min{1, t})λ (−λ < α < 0), since ∞ λ k(α) = (min{1, t})λtα−1 dt = ∈ R+ , (−α)(α + λ) 0 setting δ =
α 2
> α (−λ < δ < 0), there exists a constant L > 0, such that 1 h(t) = (min{1, t})λ ≤ L δ (t ∈ [v(n0 ), ∞)). t
min{1,t} λ (xii) For h(t) = ( max{1,t} ) (λ > 0, −λ < α < λ), since λ ∞ 2λ min{1, t} k(α) = tα−1 dt = 2 ∈ R+ , max{1, t} λ − α2 0
setting δ =
4.2.3
λ+α 2
> α (−λ < α < δ < λ), we find λ 1 min{1, t} ≤ δ (t ∈ [v(n0 ), ∞)). h(t) = max{1, t} t
Some Inequalities Relating the Constant k(α)
Lemma 4.5. Suppose that α ∈ R, h(t) is a non-negative finite measurable function in R+ with ∞ k(α) = h(t)tα−1 dt ∈ R+ . 0
Then
ws-book9x6
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
A Half-Discrete Hilbert-Type Inequality with a Non-Homogeneous Kernel
ws-book9x6
133
(i) for p > 1, ε > 0, we have ε ≥ k(α) + o(1) (ε → 0+ ); k α+ (4.11) p (ii) for p < 0, if there exists a constant δ1 > 0, such that k(α−δ1 ) ∈ R+ , then, for 0 < ε < (−p)δ1 , we have ε (4.12) ≤ k(α) + o(1) (ε → 0+ ); k α+ p (iii) for 0 < p < 1, if there exists a constant δ2 > 0, such that k(α+δ2 ) ∈ R+ , then for 0 < ε < pδ2 , we still have (4.12). Proof.
(i) For p > 1, by Fatou’s lemma (see Kuang [49]), it follows that ∞ ε (α+ pε )−1 , lim h(t)t dt ≤ lim k α + k(α) = p ε→0+ ε→0+ 0 and then we have (4.11). ε (ii) For p < 0, since t p ≤ 1 (1 ≤ t < ∞), we find 1 ∞ ε ε ε = k α+ h(t)t(α+ p )−1 dt + h(t)t(α+ p )−1 dt p 0 1 ∞ 1 (α+ pε )−1 h(t)t dt + h(t)tα−1 dt. (4.13) ≤ 0
For 0 < ε < (−p)δ1 , we have 1 ε (α+ p )−1 h(t)t dt ≤ 0
1
1 0
h(t)t(α−δ1 )−1 dt ≤ k(α − δ1 ) < ∞,
then by the Lebesgue control convergence theorem (see Kuang [49]), it follows that 1 1 ε h(t)t(α+ p )−1 dt = h(t)tα−1 dt + o(1) (ε → 0+ ). 0
0
Hence, by (4.13), we have (4.12). ε (iii) For 0 < p < 1, since t p ≤ 1 (0 < t ≤ 1), we find 1 ∞ ε ε (α+ pε )−1 = k α+ h(t)t dt + h(t)t(α+ p )−1 dt p 0 1 ∞ 1 ε h(t)tα−1 dt + h(t)t(α+ p )−1 dt. ≤ 0
For 0 < ε < pδ2 , we have ∞ ε h(t)t(α+ p )−1 dt ≤ 1
(4.14)
1
1
∞
h(t)t(α+δ2 )−1 dt ≤ k(α + δ2 ) < ∞,
then by the Lebesgue control convergence theorem, it follows that ∞ ∞ (α+ pε )−1 h(t)t dt = h(t)tα−1 dt + o(1)(ε → 0+ ). 1
1
Hence, by (4.14), we have (4.12) for 0 < p < 1.
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
134
ws-book9x6
Half-Discrete Hilbert-Type Inequalities
4.3
Some Theorems and Corollaries
4.3.1
Equivalent Inequalities and their Operator Expressions
We set two functions ϕ(x) = xp(1−α)−1 (x ∈ (0, ∞)) and [v(n)]q(1−α)−1 Ψ(n) = (n ≥ n0 , n ∈ N), [v (n)]q−1
v (n) wherefrom, [ϕ(x)]1−q = xqα−1 and [Ψ(n)]1−p = [v(n)] 1−pα . 1 1 For p ∈ R\{0, 1}, p + q , we define two sets as follows: 1
Lp,ϕ (R+ ) = ⎧ ⎨ lq,Ψ =
⎩
f ; ||f ||p,ϕ =
∞
p(1−α)−1
x 0
a = {an }∞ n=n0 ; ||a||q,Ψ =
|f (x)| dx p
p
<∞ ,
∞ [v(n)]q(1−α)−1 |an |q (n)]q−1 [v n=n
q1
0
⎫ ⎬ <∞ . ⎭
Note. It is obvious that for p > 1, both of the above two sets are the normed spaces. For p < 0 or 0 < p < 1, neither of the above two sets is the normed space, and we agree on that the sets with the normed expressions of ||f ||p,ϕ and ||a||q,Ψ are the formal symbols in these cases. Theorem 4.1. (see Yang [170]) Suppose that α ∈ R, h(t) is a non-negative finite measurable function in R+ , v(y) is a strict increasing differentiable function in [n0 , ∞) (n0 ∈ N) with v(n0 ) > 0 and v(∞) = ∞, ∞
k(α) = 0
h(t)tα−1 dt ∈ R+
and α (x) < k(α) (x ∈ (0, ∞)). If p > 1, 1p + 1q = 1, f (x), an ≥ 0, f ∈ Lp,ϕ (R+ ), a = {an}∞ n=n0 ∈ lq,Ψ , ||f ||p,ϕ > 0, ||a||q,Ψ > 0, then we have the following equivalent inequalities: ∞ ∞ ∞ ∞ an h(xv(n))f (x)dx = f (x) an h(xv(n))dx I= 0
n=n0
0
< k(α)||f ||p,ϕ ||a||q,Ψ , ∞ ( 1−p [Ψ(n)] J= 0
n=n0
and
∞
1−q
[ϕ(x)]
L= 0
n=n0
(4.15) p1 ) p ∞ h(xv(n))f (x)dx < k(α)||f ||p,ϕ , (4.16)
∞ n=n0
q h(xv(n))an
1q dx
< k(α)||a||q,Ψ .
(4.17)
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
A Half-Discrete Hilbert-Type Inequality with a Non-Homogeneous Kernel
ws-book9x6
135
(y) Moreover, if vv(y) (> 0) is decreasing in [n0 , ∞) and there exists constants δ < λ1 and L > 0, such that (4.9) is satisfied, then the constant factor k(α) in the above inequalities is the best possible.
Proof. By the Lebesgue term by term integration theorem (see Kuang [49]), there are two expressions for I in (4.15). In view of (4.6), since α (x) < k(α), we have (4.16). By H¨older’s inequality, we find ) ∞ ∞ ( 1 1 h(xv(n))f (x)dx [[Ψ(n)] q an ] ≤ J||a||q,Ψ . (4.18) [Ψ(n)]− q I= n=n0
0
Then, by (4.16), we have (4.15). On the other hand, suppose that (4.15) is valid. We set ( ∞ )p−1 an = [Ψ(n)]1−p h(xv(n))f (x)dx , n ≥ n0 (n ∈ N). 0
Then it follows that J p−1 = ||a||q,Ψ . By (4.6), we find J < ∞. If J = 0, then (4.16) is trivially valid; if J > 0, then, by (4.15), we have ||a||qq,Ψ = J p = I < k(α)||f ||p,ϕ ||a||q,Ψ , that is, ||a||q−1 q,Ψ = J < k(α)||f ||p,ϕ , and then, (4.15) is equivalent to (4.16). In view of (4.7), since [α (x)]1−q > [k(α)]1−q , we have (4.17). By H¨older’s inequality, we find
∞ ∞ 1 1 − [[ϕ(x)] p f (x)] [ϕ(x)] p an h(xv(n)) dx ≤ ||f ||p,ϕ L. (4.19) I= 0
n=n0
Then, by (4.17), we have (4.15). On the other hand, suppose that (4.15) is valid. We set
∞ q−1 1−q h(xv(n))an , x ∈ (0, ∞). f (x) = [ϕ(x)] n=n0
Then, it follows that L = ||f ||p,ϕ . By (4.7), we find L < ∞. If L = 0, then (4.17) is trivially valid; if L > 0, then, by (4.15), we have q−1
||f ||pp,ϕ = Lq = I < k(α)||f ||p,ϕ ||a||q,Ψ , that is, p−1 = L < k(α)||a||q,Ψ , ||f ||p,ϕ
and then, (4.15) is equivalent to (4.17).
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
136
ws-book9x6
Half-Discrete Hilbert-Type Inequalities
Hence, (4.15), (4.16) and (4.17) are equivalent. For 0 < ε < p(δ − α), setting f(x) and an as follows: f(x) =
ε
xα+ p −1 , 0 < x ≤ 1, 0, x > 1, ε
an = [v(n)]α− q −1 v (n),
n ≥ n0 ,
if there exists a positive constant k(≤ k(α)), such that (4.15) is still valid as we replace k(α) by k, then substitution of f(x) and a = { a n }∞ n=n0 , by (4.8), it follows that ∞ ∞ an h(xv(n))f(x)dx < k||f||p,ϕ || a||q,Ψ I= 0
n=n0
1
=k
−1+ε
x 0
p1 1 1 k dx (A(ε)) q = (1 + o(1)) q . ε
By (4.8), (4.9) and (4.10), we find 1 ∞ ε ε [v(n)]α− q −1 v (n) h(xv(n))xα+ p −1 dx I =
=
n=n0 ∞ n=n0 ∞
v (n) [v(n)]1+ε
(4.20)
(t = xv(n))
0
v(n)
ε
h(t)tα+ p −1 dt
0
∞ ε v (n) h(t)tα+ p −1 dt − = 1+ε [v(n)] 0 n=n0 ε = A(ε)k(α + ) − B(ε) p 1 ≥ [(1 + o(1))(k(α) + o(1)) − εO(1)]. ε
∞
ε α+ p −1
h(t)t
dt
v(n)
(4.21)
Hence, in view of (4.20) and (4.21), it follows that 1
(1 + o(1))(k(α) + o(1)) − εO(1) < k(1 + o(1)) q , and then k(α) ≤ k(ε → 0+ ). Therefore, the constant factor k(α) in (4.15) is the best possible. By the equivalency, the constant factor k(α) in (4.16) ((4.17) is also the best possible, otherwise, it leads to a contradiction by (4.18), (4.19) that the constant factor in (4.15) is not the best possible.
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
A Half-Discrete Hilbert-Type Inequality with a Non-Homogeneous Kernel
ws-book9x6
137
Note. If we change the upper limits, ∞ of the integral to c > 0, then Theorem 4.1 is still valid. In this case, c ωα (n) = [v(n)]α h(xv(n))xα−1 dx < k(α). 0
Remark 4.1. If we replace the conditions that k(α) ∈ R+ , and there exist constants δ > α and L > 0, such that (4.9) is fulfilled to the condition that ∈ (α − δ0 , α], there exist δ0 , η > 0, such that for any α α) < ∞, 0 < k( α)(1 − θ(x)) < α (x) < k(
(4.22)
where θ(x) = O(x ) (0 < x ≤ 1), then the constant factor k(α) in (4.15) is still the best possible. In fact, for 0 < ε < qδ0 , α = α − εq , we find
1 ∞ v (n) α− εq ε−1 x h(xv(n)) x dx I= ε [v(n)]1−(α− q ) 0 n=n0 1 1 = xε−1 α (x)dx > k( α) xε−1 (1 − O(xη ))dx η
0
0
1 ≥ (k(α) + o(1))(1 − εO(1)), ε and then by the same way, we can still show that k(α) is the best possible constant factor of (4.15). Remark 4.2. In view of Theorem 4.1, (i) define a half-discrete Hilbert-type operator T : Lp,ϕ (R+ ) → lp,Ψ1−p as follows: For f ∈ Lp,ϕ (R+ ), there exists a T f ∈ lp,Ψ1−p , satisfying ∞ h(xv(n))f (x)dx, n ≥ n0 , n ∈ N. (4.23) T f (n) = 0
Then, by (4.16), it follows that ||T f ||p.Ψ1−p ≤ k(α)||f ||p,ϕ and then T is a bounded operator with ||T || ≤ k(α). Since by Theorem 4.1, the constant factor in (4.16) is the best possible, we have ||T || = k(α). (ii) Define a half-discrete Hilbert-type operator T : lq,Ψ → Lq,ϕ1−q (R+ ) as follows: For a ∈ lq,Ψ , there exists a Ta ∈ Lq,ϕ1−q (R+ ), satisfying Ta(x) =
∞
h(xv(n))an ,
x ∈ (0, ∞).
(4.24)
n=n0
Then, by (4.17), it follows that ||Ta||q.ϕ1−q ≤ k(α)||a||q,Ψ and then T is a bounded operator with ||T|| ≤ k(α). Since by Theorem 4.1, the constant factor in (4.17) is the best possible, we have ||T|| = k(α).
November 7, 2013
12:24
138
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
Half-Discrete Hilbert-Type Inequalities
1 Example 4.2. If v(n) = ln n, h(x ln n) = (ln en x )λ (0 < α < λ, α ≤ 1), since for x > 0, xα f (x, y) = (ln y)α−1 (1 + x ln y)λ
is decreasing with respect to y ∈ (1, ∞), then Condition (i) is satisfied. In view of Example 4.1(ii), the constant factor in (4.16) and (4.17) (for v(n) = n, n0 = 1) is the best possible, we have ||T || = ||T|| = k(α) = B(α, λ − α). If h(x ln n) = e(ln 1nx )λ (λ > 0, 0 < α ≤ 1), then by the same way and Example 4.1(v), we have 1 α ||T || = ||T|| = Γ( ). λ λ In particular of Remark 4.2, setting v(n) = n and ψ(n) = nq(1−α)−1 (n ∈ N), we define an operator T : Lp,ϕ (R+ ) → lp,ψ1−p as follows: For f ∈ Lp,ϕ (R+ ), there exists a T f ∈ lp,ψ1−p , satisfying ∞ T f (n) = h(xn)f (x)dx, n ∈ N. 0
Also we define an operator T : lq,ψ → Lq,ϕ1−q (R+ ) as follows: For a ∈ lq,ψ , there exists a Ta ∈ Lq,ϕ1−q (R+ ), satisfying Ta(x) =
∞
h(xn)an ,
x ∈ (0, ∞).
n=1
Then by Remark 4.2, we still have ||T || = ||T|| = k(α). We set some particular kernels as follows: 1 (i) If h(xn) = 1+(xn) λ (0 < α < λ, α ≤ 1), since for x > 0, f (x, y) =
xα y α−1 1 + (xy)λ
is decreasing with respect to y ∈ (0, ∞), then Condition (i) is satisfied. In view of Example 4.1(i), the constant factor in (4.16) and (4.17) (for v(n) = n, n0 = 1) is the best possible, we have π ||T || = ||T|| = k(α) = . λ sin π( αλ ) (ii) If h(xn) =
1 (0 (1+xn)λ
< α < λ, α ≤ 1), since, for x > 0,
f (x, y) =
xα y α−1 (1 + xy)λ
ws-book9x6
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
A Half-Discrete Hilbert-Type Inequality with a Non-Homogeneous Kernel
ws-book9x6
139
is decreasing with respect to y ∈ (0, ∞), then Condition (i) is satisfied. In view of Example 4.1(ii), the constant factor in (4.16) and (4.17) (for v(n) = n, n0 = 1) is the best possible, we have ||T || = ||T|| = k(α) = B(α, λ − α). ln(xn) (iii) If h(xn) = (xn) λ −1 (0 < α < λ, α ≤ 1), then by the same way and Example 4.1(iii), we have (see Zhong [181]) )2 ( π ||T || = ||T|| = . λ sin π( αλ ) s 1 (iv) If h(xn) = k=1 ak (xn) λ +1 (0 < a1 < · · · < as , λ > 0, 0 < α < s, αλ ≤ 1), then, by the same way and Example 4.1(iv), we have s s 2 π 1 ||T || = ||T|| = aks−α−1 . λ sin(πα) ak − a j k=1
j=1(j =k)
1 (xn)λ +2(xn)λ/2 cos β+1
(v) If h(xn) = (λ > 0, 0 < β ≤ π2 , 0 < α < 1), then by the same way and Example 4.1(v), we find 2π sin β(1 − 2α) ∈ R+ . ||T || = ||T|| = λ sin β sin(2πα) √ 1 (vi) If h(xn) = (xn)λ +b(xn) c, 0 < α < λ2 ≤ 1), λ/2 +c (c > 0, 0 ≤ b ≤ 2 then, by the same way and Example 4.1(vi), we have ⎧ π √ , b = 0, ⎪ c ⎨ √ √ 2 2 4c−b 4 √ arctan b , 0 < b < 2 c, ||T || = ||T || = 2 4c−b λ⎪ √ ⎩ 2 √ , b = 2 c. c (vii) If h(xn) = γ(xn)λ 1 −γ(xn)λ (−1 ≤ A < 1, β > 0(A = 1, β > e −Ae 1), γ, λ > 0, α = βλ ≤ 1), then by the same way and Example 4.1(vii), we have ∞ Ak Γ(β) . ||T || = ||T|| = β λγ (2k + 1)β k=0 " # b(xn)λ +1 (viii) If h(xn) = ln a(xn) (0 ≤ a < b, λ > 0), α = −βλ (0 < β < λ +1 1), then, by the same way and Example 4.1(viii), we have (bβ − aβ )π ||T || = ||T|| = . βλ sin(βπ) 1 (ix) If h(xn) = arctan (xn) λ (0 < α < λ, α ≤ 1), then, by the same way and Example 4.1(ix), we have π . ||T || = ||T|| = π 2α sin 2 (1 − αλ )
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
140
Half-Discrete Hilbert-Type Inequalities
1 (x) If h(xn) = (max{1,xn}) λ , 0 < α < λ, α ≤ 1, then, by the same way and Example 4.1(x), we have (see Yang [166]) λ . ||T || = ||T|| = α(λ − α) (xi) If h(xn) = (min{1, xn})λ (0 < −α < λ ≤ 1 − α), then by the same way and Example 4.1(xi), we have (see Yang [166]) λ . ||T || = ||T|| = (−α)(λ + α) λ min{1,xn} (|α| < λ ≤ 1 − α, α < 12 ), since, for x > 0, (xii) If h(xn) = max{1,xn} λ min{1, xy} α f (x, y) = x y α−1 max{1, xy} α+λ λ+α−1 x y , 0 < y ≤ x1 , = α−λ α−λ−1 y , y > x1 x
is decreasing with respect to y ∈ (0, ∞), then Condition (i) is satisfied. In view of Example 4.1(xii), the constant factor in (4.16) and (4.17) (for v(n) = n, n0 = 1) is the best possible, we have 2λ . ||T || = ||T|| = k(α) = 2 λ − α2 4.3.2
Two Classes of Equivalent Reverses
Theorem 4.2. Suppose that α ∈ R, h(t) is a non-negative finite measurable function in R+ , v(y) is a strictly increasing differentiable functions in [n0 , ∞)(n0 ∈ N) with v(n0 ) > 0 and v(∞) = ∞, ∞ h(t)tα−1 dt ∈ R+ k(α) = 0
and α (x) < k(α) (x ∈ (0, ∞)). If p < 0, p1 + 1q = 1, f (x), an ≥ 0, f ∈ Lp,ϕ (R+ ), a = {an }∞ n=n0 ∈ lq,Ψ , ||f ||p,ϕ > 0, ||a||q,Ψ > 0, then, we have the following equivalent inequalities: ∞ ∞ ∞ ∞ I= an h(xv(n))f (x)dx = f (x) an h(xv(n))dx n=n0
0
0
> k(α)||f ||p,ϕ ||a||q,Ψ , ∞ ( [Ψ(n)]1−p J= n=n0
0
n=n0
(4.25) 1 )p p ∞ h(xv(n))f (x)dx > k(α)||f ||p,ϕ , (4.26)
ws-book9x6
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
A Half-Discrete Hilbert-Type Inequality with a Non-Homogeneous Kernel
and
L=
∞
[ϕ(x)]1−q
0
∞
q h(xv(n))an
ws-book9x6
141
1q dx
> k(α)||a||q,Ψ .
(4.27)
n=n0
(y) (> 0) is decreasing in [n0 , ∞) and there exists a conMoreover, if vv(y) stant δ1 > 0, such that k(α + δ1 ) ∈ R+ , then the constant factor k(α) in the above inequalities is the best possible.
Proof. In view of the reverse of (4.6) and α (x) < k(α), for p < 0, we have (4.26). By the reverse H¨older’s inequality (see Kuang [47]), we find ) ∞ ∞ ( 1 − 1q [Ψ(n)] h(xv(n))f (x)dx [[Ψ(n)] q an ] ≥ J||a||q,Ψ . (4.28) I= n=n0
0
Then, by (4.26), we have (4.25). On the other hand, suppose that (4.25) is valid. We set ( ∞ )p−1 1−p h(xv(n))f (x)dx , n ≥ n0 , n ∈ N. an = [Ψ(n)] 0
Then, it follows that J p−1 = ||a||q,Ψ . By the reverse of (4.6) and the assumption, we find J > 0. If J = ∞, then (4.26) is trivially valid; if J < ∞, then, by (4.25), we have ||a||qq,Ψ = J p = I > k(α)||f ||p,ϕ ||a||q,Ψ , that is ||a||q−1 q,Ψ = J > k(α)||f ||p,ϕ , and then, (4.25) is equivalent to (4.26). In view of the reverse of (4.7), since [α (x)]1−q < [k(α)]1−q , we have (4.27). By the reverse H¨older’s inequality, we find
∞ ∞ 1 1 −p p I= [[ϕ(x)] f (x)] [ϕ(x)] h(xv(n))an dx ≥ ||f ||p,ϕ L. (4.29) 0
n=n0
Then, by (4.27), we have (4.25). On the other hand, suppose that (4.25) is valid. We set
∞ q−1 1−q h(xv(n))an , x ∈ (0, ∞). f (x) = [ϕ(x)] n=n0
Then it follows that Lq−1 = ||f ||p,ϕ . By the reverse of (4.7), we find L > 0. If L = ∞, then (4.27) is trivially valid; if L < ∞, then, by (4.25), we have ||f ||pp,ϕ = Lq = I > k(α)||f ||p,ϕ ||a||q,Ψ , s.t. p−1 ||f ||p,ϕ = L > k(α)||a||q,Ψ ,
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
142
Half-Discrete Hilbert-Type Inequalities
and then, (4.25) is equivalent to (4.27). Hence, inequalities (4.25), (4.26) and (4.27) are equivalent. For ε > 0, setting f(x) and an as Theorem 4.1, if there exists a positive constant k(≥ k(α)), such that (4.25) is valid as we replace k(α) by k, then substitution of f(x) and a = { an }∞ n=n0 , by (4.8), it follows that ∞ ∞ an h(xv(n))f(x)dx > k||f||p,ϕ || a||q,Ψ I = 0
n=n0
1
=k
−1+ε
x 0
p1 1 1 k dx (A(ε)) q = (1 + o(1)) q . ε
By (4.8) and (4.12), we find I =
= ≤
∞ n=n0 ∞ n=n0 ∞ n=n0
ε
[v(n)]α− q −1 v (n) v (n) [v(n)]1+ε
v (n) [v(n)]1+ε
1
ε
h(xv(n))xα+ p −1 dx,
(t = xv(n))
0
v(n)
ε
h(t)tα+ p −1 dt
0 ∞
ε
h(t)tα+ p −1 dt
0
ε 1 = A(ε)k(α + ) ≤ (1 + o(1))(k(α) + o(1)). p ε Hence, in view of the above results, it follows that 1
(1 + o(1))(k(α) + o(1)) > k(1 + o(1)) q , and then k(α) ≥ k(ε → 0+ ). Therefore, the constant factor k(α) in (4.25) is the best possible. By the equivalency, the constant factor k(α) in (4.26) ((4.27)) is the best possible, otherwise, we can imply a contradiction by (4.28)((4.29)) that the constant factor in (4.25) is not the best possible. If we change the upper limit ∞ of the integral to c(> 0) in Theorem 4.2, then it follows that c α ωα (n) = [v(n)] h(xv(n))xα−1 dx < k(α). 0
Setting ωα (n) = k(α)(1 − θα (v(n))), ∞ 1 θα (v(n)) = [v(n)]α h(xv(n))xα−1 dx > 0, k(α) c
ws-book9x6
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
A Half-Discrete Hilbert-Type Inequality with a Non-Homogeneous Kernel
ws-book9x6
143
and [v(n)]q(1−α)−1 ψ(n) = ψ(n)(1 − θα (v(n)) = (1 − θα (v(n))), [v (n)]q−1 we have θα (v(n)) =
1 k(α)
∞
h(t) tα−1 dt,
cv(n)
and the following corollary: Corollary 4.1. Suppose that c > 0, α ∈ R, h(t) is a non-negative finite measurable function in R+ , v(y) is a strictly increasing differentiable functions in [n0 , ∞)(n0 ∈ N) with v(n0 ) > 0 and v(∞) = ∞, ∞ k(α) = h(t) tα−1 dt ∈ R+ 0
and α (x) < k(α)(x ∈ (0, c)). If p < 0, p1 + 1q = 1, f (x), an ≥ 0, f ∈ Lp,ϕ (0, c), a = {an }∞ , ||f ||p,ϕ > 0, ||a||q,ψ > 0, then, we have the n=n0 ∈ lq,ψ following equivalent inequalities: c ∞ an h(xv(n))f (x)dx 0
n=n0
c
f (x)
= 0
∞
c
an h(xv(n))dx > k(α)||f ||p,ϕ ||a||q,ψ,
(4.30)
) p p1 h(xv(n))f (x)dx > k(α)||f ||p,ϕ ,
(4.31)
n=n0
[ψ(n)]
1−p
(
c 0
n=n0
and
∞
[ϕ(x)]1−q
0
∞
q h(xv(n))an
1q dx
> k(α)||a||q,ψ.
(4.32)
n=n0
(y) (> 0) is decreasing in [n0 , ∞) and there exist constants Moreover, if vv(y) δ1 > 0, L > 0 and δ > α, such that k(α − δ1 ) ∈ R+ , and 1 (t ∈ [cv(n0 ), ∞)), h(t) ≤ L δ t
then, the constant factor k(α) in the above inequalities is the best possible. Theorem 4.3. Suppose that α ∈ R, h(t) is a non-negative finite measurable function in R+ , v(y) is a strictly increasing differentiable function in
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
144
ws-book9x6
Half-Discrete Hilbert-Type Inequalities
[n0 , ∞)(n0 ∈ N) with v(n0 ) > 0 and v(∞) = ∞, k(α) = R+ and
∞ 0
h(t)tα−1 dt ∈
0 < k(α)(1 − θ(x)) < α (x) < k(α) (x ∈ (0, ∞)). Setting ϕ(x) = (1 − θ(x))ϕ(x), if 0 < p < 1, p1 + 1q = 1, f (x), an ≥ 0, f ∈ Lp,ϕ(R+ ), a = {an }∞ > 0, ||a||q,Ψ > 0, then, we have the n=n0 ∈ lq,Ψ , ||f ||p,ϕ following equivalent inequalities: ∞ ∞ ∞ ∞ an h(xv(n))f (x)dx = f (x) an h(xv(n))dx I= 0
n=n0
0
> k(α)||f ||p,ϕ ||a||q,Ψ , ∞ ( [Ψ(n)]1−p J= 0
n=n0
and
L= 0
∞
1−q
[ϕ(x)]
n=n0
(4.33) 1 )p p ∞ h(xv(n))f (x)dx > k(α)||f ||p,ϕ , (4.34)
∞
q h(xv(n))an
1q dx
> k(α)||a||q,Ψ .
(4.35)
n=n0
(y) Moreover, if vv(y) (> 0) is decreasing in [n0 , ∞) and there exist constants η, δ2 > 0, such that θ(x) = O x1η (0 < x ≤ 1) and k(α + δ2 ) ∈ R+ , then the constant factor k(α) in the above inequalities is the best possible.
Proof. In view of the reverse of (4.6) and α (x) < k(α), for 0 < p < 1, we have (4.34). By the reverse H¨ older’s inequality, we find ) ( ∞ ∞ 1 1 h(xv(n))f (x)dx [[Ψ(n)] q an ] ≥ J||a||q,Ψ . (4.36) I= [Ψ(n)]− q n=n0
0
Then, by (4.34), we have (4.33). On the other hand, suppose that (4.33) is valid. We set ) p−1 ( ∞ an = [Ψ(n)]1−p h(xv(n))f (x)dx , n ≥ n0 (n ∈ N). 0 p−1
= ||a||q,Ψ . By the reverse of (4.6) with the Then it follows that J assumptions, we find J > 0. If J = ∞, then (4.34) is trivially valid; if J < ∞, then, by (4.33), we have ||a||qq,Ψ = J p = I > k(α)||f ||p,ϕ ||a||q,Ψ , that is ||a||q−1 , q,Ψ = J > k(α)||f ||p,ϕ
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
ws-book9x6
145
A Half-Discrete Hilbert-Type Inequality with a Non-Homogeneous Kernel
and then, inequality (4.33) is equivalent to (4.34). In view of the reverse of (4.7), since [α (x)]1−q > [k(α)(1 − θ(x))]1−q (q < 0), we have (4.35). By the reverse H¨ older’s inequality, we find
∞ ∞ 1 1 −p p [[ϕ(x)] f (x)] [ϕ(x)] h(xv(n))an dx ≥ ||f ||p,ϕL. (4.37) I= 0
n=n0
Then, by (4.35), we have (4.33). On the other hand, suppose that (4.33) is valid. We set
∞ q−1 1−q f (x) = [ϕ(x)] h(xv(n))an , x ∈ (0, ∞). n=n0
Then it follows that Lq−1 = ||f ||p,ϕ. By the reverse of (4.7) and the assumption, we find L > 0. If L = ∞, then (4.35) is trivially valid; if L < ∞, then, by (4.33), we have ||f ||pp,ϕ = Lq = I > k(α)||f ||p,ϕ||a||q,Ψ , that is p−1 ||f ||p, ϕ = L > k(α)||a||q,Ψ ,
and then, (4.33) is equivalent to (4.35). Hence, inequalities (4.33), (4.34) and (4.35) are equivalent. For ε > 0, setting f(x) and an as Theorem 4.1, if there exists a positive constant k(≥ k(α)), such that (4.33) is valid as we replace k(α) by k, then, substitution of f(x) and a = { an } ∞ n=n0 , by (4.8), it follows that ∞ ∞ an h(xv(n))f(x)dx > k||f||p,ϕ|| a||q,Ψ I = 0
n=n0
) p1 1 1 1 −1−ε 1−O x dx (A(ε)) q η x 0
(
=k
1 1 k (1 − εO(1)) p (1 + o(1)) q . ε By (4.8) and (4.12), we find 1 ∞ ε α− εq −1 [v(n)] v (n) h(xv(n))xα+ p −1 dx I=
=
=
n=n0 ∞ n=n0
v (n) [v(n)]1+ε
0
v(n) 0
ε
h(t)tα+ p −1 dt
(4.38)
(t = xv(n))
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
146
ws-book9x6
Half-Discrete Hilbert-Type Inequalities ∞
≤
n=n0
v (n) [v(n)]1+ε
∞
ε
h(t)t(α+ p )−1 dt
0
ε 1 = A(ε)k(α + ) ≤ (1 + o(1))(k(α) + o(1)). p ε
(4.39)
Hence, in view of (4.38) and (4.39), it follows that 1
1
(1 + o(1))(k(α) + o(1)) > k(1 − εO(1)) p (1 + o(1)) q , and then, k(α) ≥ k(ε → 0+ ). Therefore, the constant factor k(α) in (4.33) is the best possible. By the equivalency, the constant factor k(α) in (4.34)((4.35)) is the best possible, otherwise, we can imply a contradiction by (4.36) ((4.37)) that the constant factor in (4.33) is not the best possible. Note. If we change the upper limit ∞ of the integral to c > 0, then Theorem 4.3 is still value. In this case, c h(xv(n))xα−1 dx < k(α). ωα (n) = [v(n)]α 0
4.3.3
Some Corollaries
Corollary 4.2. Let the assumptions of Lemma 4.1 be fulfilled and additionally, let ∞ h(t)tα−1 dt ∈ R+ (x ∈ (0, ∞)), α (x) < k(α) = 0
and for −∞ ≤ b < c ≤ ∞, u(x) be a strictly increasing differentiable function in (b, c), with u(b+ ) = 0 and u(c− ) = ∞. For p ∈ R\{0, 1}, 1p + q1 = 1, we set Φ(x) =
[u(x)]p(1−α)−1 (x ∈ (b, c)). [u (x)]p−1
If f (x), an ≥ 0, f ∈ Lp,Φ (b, c), a = {an}∞ n=n0 ∈ lq,Ψ , ||f ||p,Φ > 0, ||a||q,Ψ > 0, then (i) for p > 1, we have the following equivalent inequalities: c ∞ an h(u(x)v(n))f (x)dx b
n=n0
c
=
f (x) b
∞ n=n0
an h(u(x)v(n))dx < k(α)||f ||p,Φ ||a||q,Ψ , (4.40)
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
ws-book9x6
147
A Half-Discrete Hilbert-Type Inequality with a Non-Homogeneous Kernel
∞
[Ψ(n)]1−p
(
(4.41)
b
n=n0
and
) p p1 h(u(x)v(n))f (x)dx < k(α)||f ||p,Φ ,
c
c
1−q
[Φ(x)] b
∞
q h(u(x)v(n))an
1q dx
< k(α)||a||q,Ψ ;
(4.42)
n=n0
(ii) for p < 0, we have the equivalent reverses of (4.40), (4.41) and (4.42). (y) Moreover, if vv(y) (> 0) is decreasing in [n0 , ∞) and there exist constants δ < λ1 , L > 0, and δ1 > 0, such that (4.9) is satisfied and k(α − δ1 ) ∈ R+ , then the constant factor k(α) in the above inequalities is the best possible. Proof.
(i) For p > 1, putting x = u(t) in two sides of (4.15), we have c ∞ I= an h(u(t)v(n))f (u(t))u (t)dt b
n=n0
=
c
f (u(t))u (t) b
∞
an h(u(t)v(n))dt
n=n0
c
< k(α)
[u(t)]p(1−α)−1 f p (u(t))u (t)dt
p1
||a||q,Ψ .
(4.43)
b
Changing t and f (u(t))u (t) to x and f (x) in (4.43), by simplification, we obtain (4.40). On the other hand, setting u(x) = x(x ∈ (0, ∞)) in (4.40), we have (4.15). It follows that (4.40) and (4.15) are equivalent and then both of them are with the same best constant factor k(α). By the same way, we can prove that (4.41) and (4.16) ((4.42) and (4.17)) are equivalent and with the same best constant factor k(α). Since (4.15), (4.16) and (4.17) are equivalent, then it follows that (4.40), (4.41) and (4.42) are equivalent. (ii) For p < 0, in the same way, we have the equivalent reverses of (4.40), (4.41) and (4.42) with the same best constant factor k(α). Example 4.3. Define an operator T : Lp,Ψ (b, c) → lq,Ψ as follows: For f ∈ Lp,Φ (b, c), there exists a T f ∈ lp,Ψ1−p , satisfying c h(u(x)v(n))f (x)dx, n ≥ n0 , n ∈ N. T f (n) = b
Also we define an operator T : lq,Ψ → Lp,Φ (b, c) as follows: For a ∈ lq,Ψ , there exists a Ta ∈ Lp,Φ (b, c), satisfying ∞ h(u(x)v(n))an , x ∈ (b, c). Ta(x) = n=n0
Then, by Corollary 4.2, we still have ||T || = ||T|| = k(α).
November 7, 2013
148
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
Half-Discrete Hilbert-Type Inequalities
For examples, (1) setting u(x) = ln x(x ∈ (1, ∞)), v(n) = ln n, n ≥ (y) 1 n0 = 2, then vv(y) = y ln y (> 0) is decreasing for y > 1. (i) If h(ln x ln n) = 1+(ln x1 ln n)λ (0 < α < λ, α ≤ 1), since for x > 0, f (x, y) =
xα (ln y)α−1 1 + (x ln y)λ
is decreasing with respect to y ∈ (1, ∞), then, Condition (i) is satisfied. In view of Example 4.1(i), the constant factor in (4.41) and (4.42) (for u(x) = ln x, v(n) = ln n, n0 = 2) is the best possible, we have ||T || = ||T|| = k(α) = (ii) If h(ln x ln n) =
1 (1+ln x ln n)λ
f (x, y) =
π . λ sin π( αλ )
(0 < α < λ, α ≤ 1), since for x > 0,
xα y α−1 (1 + x ln y)λ
is decreasing with respect to y ∈ (1, ∞), then, Condition (i) is satisfied. In view of Example 4.1(ii), the constant factor in (4.41) and (4.42) (for u(x) = ln x(x > 1), v(n) = n, n0 = 1) is the best possible, we have (see Yang [169]) ||T || = ||T|| = k(α) = B(α, λ − α). ln(ln x ln n) (iii) If h(ln x ln n) = (ln (0 < α < λ, α ≤ 1), then by the same x ln n)λ −1 way and Example 4.1(iii), we have ( )2 π . ||T || = ||T || = λ sin π( αλ ) 1 (iv) If h(ln x ln n) = sk=1 ak (ln x ln (0 < a1 < · · · < as , λ > n)λ +1 0, 0 < α < s, αλ ≤ 1), then by the same way and Example 4.1(iv), we have
||T || = ||T|| =
π aks−α−1 λ sin(πα) s
s 2
k=1
j=1(j =k)
1 . ak − a j
(v) If h(ln x ln n) = (ln x ln n)λ +2(ln 1x ln n)λ/2 cos β+1 (x > 1, n ∈ N\{1}; λ > 0, 0 < β ≤ π2 , 0 < α < 1, αλ ≤ 1), then, by the same way and Example 4.1(v), we find ||T || = ||T|| =
2π sin β(1 − 2α) ∈ R+ . λ sin β sin(2πα)
ws-book9x6
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
A Half-Discrete Hilbert-Type Inequality with a Non-Homogeneous Kernel
(vi) If h(ln x ln n) = α=
λ 2
1 (c (ln x ln n)λ +b(ln x ln n)λ/2 +c
ws-book9x6
149
√ > 0, 0 ≤ b ≤ 2 c, 0 <
≤ 1), then by the same way and Example 4.1(vi), we have ⎧ π √ , b = 0, ⎪ c ⎨ √ √ 2 2 4 4c−b √ arctan b , 0 < b < 2 c, ||T || = ||T || = 2 4c−b λ⎪ √ ⎩ 2 √ , b = 2 c. c
(vii) If h(ln x ln n) = γ(ln x ln n)λ 1 −γ(ln x ln n)λ (−1 ≤ A < 1, β > 0(A = e −Ae 1, β > 1), γ, λ > 0, α = βλ ≤ 1), then, by the same way and Example 4.1(vii), we have ∞ Γ(β) Ak . ||T || = ||T|| = λγ β (2k + 1)β k=0 # " b(ln x ln n)λ +1 (0 ≤ a < b, λ > 0, α = −βλ, 0 < (viii) If h(ln x ln n) = ln a(ln λ x ln n) +1 β < 1), then, by the same way and Example 4.1(vii), we have
(bβ − aβ )π . βλ sin(βπ)
||T || = ||T|| =
(ix) If h(ln x ln n) = arctan (ln x 1ln n)λ (0 < α < λ, α ≤ 1), then by the same way and Example 4.1(ix), we have π . ||T || = ||T|| = 2α cos( πα 2λ ) (x) If h(ln x ln n) = (max{1,ln1 x ln n})λ (0 < α < λ, α ≤ 1), then, by the same way and Example 4.1(x), we have ||T || = ||T|| =
λ . α(λ − α)
(xi) If h(xn) = (min{1, ln x ln n})λ (0 < −α < λ ≤ 1 − α), then, by the same way and Example 4.1(xi), we have ||T || = ||T|| = (xii) If h(xn) =
min{1,ln x ln n} max{1,ln x ln n}
λ
λ . (−α)(λ + α) (|α| < λ ≤ 1 − α(α < 12 ), then by the
same way and Example 4.1(xii), we have ||T || = ||T|| = k(α) = (2) For 0 ≤ γ1 , γ2 ≤ n − γ2 , n ≥ n0 = 1, then,
1 2 , setting u(x) v (y) 1 v(y) = y−γ2 (>
λ2
2λ . − α2
= x − γ1 (x ∈ (γ1 , ∞)), v(n) = 0) is decreasing for y > 12 .
November 7, 2013
150
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
Half-Discrete Hilbert-Type Inequalities
(i) If h((x − γ1 )(n − γ2 )) = λ}), since for x > 0, f (x, y) =
1 (0 1+(x−γ1 )λ (n−γ2 )λ
< α < λ, α ≤ min{1, 2 −
xα (y − γ2 )α−1 1 + xλ (y − γ2 )λ
is strictly convex satisfying fy2 (x, y) > 0 with respect to y ∈ 12 , ∞ , then, Condition (ii) is satisfied. In view of Example 4.1(i), the constant factor in (4.41) and (4.42) (for u(x) = x − γ1 , v(n) = n − γ2 ) is the best possible, we have π . ||T || = ||T|| = λ sin( πα ) λ (ii) If h((x − γ1 )(n − γ2 )) = [1+(x−γ11)(n−γ2 )]λ (0 < α < λ, α ≤ 1), by the same way and Example 4.1(ii), we have ||T || = ||T|| = B(α, λ − α). ln[(x−γ1 )(n−γ2 )] (iii) If h((x − γ1 )(n − γ2 )) = (x−γ (0 < α < λ, α ≤ 1), then λ λ 1 ) (n−γ2 ) −1 by the same way and Example 4.1(iii), we have π ]2 . ||T || = ||T|| = [ λ sin π( αλ ) s 1 (0 < a1 < · · · < (iv) h((x − γ1 )(n − γ2 )) = k=1 ak [(x−γ1 )(n−γ λ 2 )] +1 as , λ > 0, 0 < α < s, αλ ≤ 1), then by the same way and Example 4.1(iv), we have s s 2 1 π aks−α−1 . ||T || = ||T|| = λ sin(πα) ak − a j k=1
j=1(j =k)
1 (v) If h((x − γ1 )(n − γ2 )) = [(x−γ1 )(n−γ2 )]λ +2[(x−γ λ/2 cos β+1 (λ > 1 )(n−γ2 )] π 0, 0 < β ≤ 2 , 0 < α < 1, αλ ≤ min{1, 2 − λ}), then, by the same way and Example 4.1(v), we find
2π sin β(1 − 2α) ∈ R+ . ||T || = ||T|| = λ sin β sin(2πα) 1 (vi) If h((x − γ1 )(n − γ2 )) = [(x−γ1 )(n−γ2 )]λ +b[(x−γ (c > λ/2 +c 1 )(n−γ2 )] √ λ 2 0, 0 ≤ b ≤ 2 c, 0 < α = 2 ≤ 3 ), then, by the same way and Example 4.1(vi), we have ⎧ π √ , b = 0, ⎪ c ⎨ √ √ 2 4c−b2 4 √ arctan b , 0 < b < 2 c, ||T || = ||T || = 4c−b2 λ⎪ √ ⎩ 2 √ , b = 2 c. c
ws-book9x6
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
A Half-Discrete Hilbert-Type Inequality with a Non-Homogeneous Kernel
ws-book9x6
151
(vii) If h((x − γ1 )(n − γ2 )) = γ[(x−γ1 )(n−γ2 )]λ 1 −γ[(x−γ1 )(n−γ2 )]λ ( −1 ≤ e −Ae A < 1, β > 0 (A = 1, β > 1), γ, λ > 0, α = βλ ≤ 1), then, by the same way and Example 4.1(vii), we have ||T || = ||T|| =
∞
Ak Γ(β) . β λγ (2k + 1)β k=0
λ
b[(x−γ1 )(n−γ2 )] +1 (viii) If h((x − γ1 )(n − γ2 )) = ln{ a[(x−γ }(0 ≤ a < b, λ > λ 1 )(n−γ2 )] +1 0, α = −βλ, 0 < β < 1), then, by the same way and Example 4.1(viii), we have
||T || = ||T|| =
(bβ − aβ )π . βλ sin(βπ)
1 ]λ (0 < α < λ, α ≤ (ix) If h((x − γ1 )(n − γ2 )) = arctan[ (x−γ1 )(n−γ 2) min{1, 2 − λ}), then, by the same way and Example 4.1(ix), we have π ||T || = ||T|| = . 2α cos( πα ) 2λ (3) For a ≥ 23 , setting u(x) = ln ax(x ∈ a1 , ∞ ), v(n) = ln an, n ≥ n0 =
(y) = y ln1 ay (> 0) is decreasing for y > 32 . 2, then vv(y) (i) If h(ln ax ln an) = 1+(ln ax1 ln an)λ (0 < α < λ, α ≤ min{1, 2 − λ}), since for x > 0,
f (x, y) =
xα 1+
xλ (ln ay)λ
(ln ay)α−1
is strictly convex satisfying fy2 (x, y) > 0 with respect to y ∈ ( 32 , ∞), then, Condition (ii) is satisfied. In view of Example 4.1(i), the constant factor in (4.41) and (4.42) (for u(x) = ln ax, v(n) = ln an) is the best possible, we have π . ||T || = ||T|| = λ sin π( αλ ) (ii) If h(ln ax ln an) = (1+ln ax1 ln an)λ (0 < α < λ, α ≤ 1), by the same way and Example 4.1(ii), we have ||T || = ||T|| = B(α, λ − α). ln(ln ax ln an) (iii) If h(ln ax ln an) = (x−γ (0 < α < λ, α ≤ 1), then by the λ λ 1 ) (n−γ2 ) −1 same way and Example 4.1(iii), we have π ||T || = ||T|| = [ ]2 . λ sin( πα ) λ
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
152
Half-Discrete Hilbert-Type Inequalities
s 1 (iv) If h(ln ax ln an) = k=1 ak (ln ax ln (0 < a1 < · · · < as , λ > an)λ +1 0, 0 < α < s, αλ ≤ 1), then, by the same way and Example 4.1(iv), we have ||T || = ||T|| =
π aks−α−1 λ sin(πα) s
s 2
k=1
j=1(j =k)
1 . ak − a j
1 (λ (ln ax ln an)λ +2(ln ax ln an)λ/2 cos β+1
> 0, 0 < β ≤ (v) If h(ln ax ln an) = 0 < α < 1, αλ ≤ min{1, 2 − λ}), then, by the same way and Example 4.1(v), we find π , 2
2π sin β(1 − 2α) ||T || = ||T|| = ∈ R+ . λ sin β sin(2πα) 1 (c > 0, 0 ≤ b ≤ (vi) If h(ln ax ln an) = (ln ax ln an)λ +b(ln ax ln an)λ/2 +c √ λ 2 2 c, 0 < α = 2 ≤ 3 ), then, by the same way and Example 4.1(vi), we have ⎧ π √ , b = 0, ⎪ c ⎨ √ √ 2 4 4c−b2 √ arctan b , 0 < b < 2 c, ||T || = ||T || = 4c−b2 λ⎪ √ ⎩ 2 √ , b = 2 c. c
(vii) If h(ln ax ln an) = γ(ln ax ln an)λ 1 −γ(ln ax ln an)λ (−1 ≤ A < 1, β > 0 e −Ae (A = 1, β > 1), γ, λ > 0, α = βλ ≤ 1), then, by the same way and Example 4.1(vii), we have ∞ Γ(β) Ak . β λγ (2k + 1)β k=0 : 9 b(ln ax ln an)λ +1 (0 ≤ a < b, λ > 0, α = (viii) If h(ln ax ln an) = ln a(ln λ ax ln an) +1
||T || = ||T|| =
−βλ, 0 < β < 1), then, by the same way and Example 4.1(viii), we have ||T || = ||T|| =
(bβ − aβ )π . βλ sin(βπ)
(ix) If h(ln ax ln an) = arctan[ (ln ax1ln an) ]λ , 0 < α < λ, α ≤ min{1, 2 − λ}, then, by the same way and Example 4.1(ix), we have π . ||T || = ||T|| = 2α cos( πα 2λ ) Note.
For a ≤
1 , 2
setting u(x) = ln(x − a)(x ∈ (a + 1, ∞)), v(n) =
(y) 1 = (y−a) ln(y−a) (> 0) is decreasing for ln(n − a), n ≥ n0 = 2, then vv(y) 3 y > 2 . In this case, still can obtain some similar results of Example 4.15, (1)-(3)(see Yang [137]). By the same way, we still have
ws-book9x6
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
A Half-Discrete Hilbert-Type Inequality with a Non-Homogeneous Kernel
ws-book9x6
153
Corollary 4.3. Let the assumptions of Theorem 4.2 be fulfilled and additionally, let u(x) be a strictly increasing differentiable function in (b, c), with u(b+ ) = 0 and u(c− ) = ∞. For 0 < p < 1, p1 + 1q = 1, setting Φ(x) = Φ(x)(1 − θ(u(x)))(x ∈ (b, c)), ∞ if f (x), an ≥ 0, f ∈ Lp,Φ (b, c), a = {an }n=n0 ∈ lq,Ψ , ||f ||p,Φ > 0, ||a||q,Ψ > 0, then we have the following equivalent inequalities: c ∞ an h(u(x)v(n))f (x)dx b
n=n0
c
f (x)
= b
∞
[Ψ(n)]
c
an h(u(x)v(n))dx > k(α)||f ||p,Φ ||a||q,Ψ , (4.44)
n=n0
1−p
(
c b
n=n0
and
∞
1−q [Φ(x)]
b
) p p1 h(u(x)v(n))f (x)dx > k(α)||f ||p,Φ ,
∞
q h(u(x)v(n))an
(4.45)
1q dx
> k(α)||a||q,Ψ .
(4.46)
n=n0
(y) Moreover, if vv(y) (> 0) is decreasing in [n0 , ∞) and there exist constants η, δ2 > 0, such that θ(x) = O(xη )(0 < x ≤ 1) and k(α + δ2 ) ∈ R+ , then, the constant factor k(α) in the above inequalities is the best possible. In view of Remark 4.1, Corollary 4.2 and Corollary 4.3, we still have
Corollary 4.4. Suppose that α ∈ R, h(t) is a non-negative finite measur ∞ able function in R+ , k(α) = 0 h(t)tα−1 dt, v(y) is a strict increasing differential function in [n0 , ∞)(n0 ∈ N) with v(n0 ) > 0 and v(∞) = ∞, u(x) is a strict increasing differential function in (b, c), with u(b+ ) = 0 and (y) (> 0) is decreasing in [n0 , ∞), and there exist constants u(c− ) = ∞, vv(y) η, δ0 > 0, such that for any α ∈ (α − δ0 , α + δ0 ), α) < ∞ (x ∈ R+ ), 0 < k( α)(1 − θ(x)) < α (x) < k(
(4.47)
where θ(x) = O(x ) (x ∈ (0, 1]). (i) For p > 1(p < 0), p1 + 1q = 1, f (x), an ≥ 0, f ∈ Lp,Φ (b, c), a = {an }∞ n=n0 ∈ lq,Ψ , ||f ||p,Φ > 0, ||a||q,Ψ > 0, if p > 1, then, we have the equivalent inequalities (4.40), (4.41) and (4.42), with the best constant factor k(α); if p < 0, then we have the equivalent reverses of (4.40), (4.41) and (4.42), with the same best constant factor k(α). η
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
154
ws-book9x6
Half-Discrete Hilbert-Type Inequalities
(ii) For 0 < p < 1, p1 + 1q = 1, if f (x), an ≥ 0, f ∈ Lp,Φ (b, c), a = {an }∞ > 0, ||a||q,Ψ > 0, then, we have the equivalent n=n0 ∈ lq,Ψ , ||f ||p,Φ inequalities (4.44), (4.45) and (4.46) with the same best constant factor k(α).
∞ For v(x) = u(x) = x(x ∈ (0, ∞)), n0 = 1, k(α) = 0 h(t)tα−1 dt in Corollary 4.4, setting ϕ(x) = xp(1−α)−1 (x ∈ (0, ∞)), ψ(n) = nq(1−α)−1 (n ∈ N), we have ∞ h(xn)xα−1 dx = k(α), n ∈ N, (4.48) ω(α, n) = nα 0
∞
(α, x) = xα
x ∈ R+ ,
h(xn)nα−1 ,
(4.49)
n=1
and the following corollary: Corollary 4.5. Suppose that α ∈ R, h(t) is a non-negative finite measurable function in R+ , and there exist constants η, δ0 > 0, such that for any α ∈ (α − δ0 , α + δ0 ), 0 < k( α)(1 − θα (x)) < ( α, x) < k( α) < ∞
(x ∈ R+ ),
(4.50)
where θα (x) = O(x ) (x ∈ (0, 1]). η
(i) For p > 1(p < 0), p1 + 1q = 1, f (x), an ≥ 0, f ∈ Lp,ϕ (R+ ), a = {an }∞ n=1 ∈ lq,ψ , ||f ||p,ϕ > 0, ||a||q,ψ > 0, if p > 1, then we have the following equivalent inequalities: ∞ ∞ an h(xn)f (x)dx 0
n=1 ∞
f (x)
= 0
∞
[ψ(n)]1−p
0
∞
an h(xn)dx < k(α)||f ||p,ϕ ||a||q,ψ ,
(4.51)
) p p1 h(xn)f (x)dx < k(α)||f ||p,ϕ ,
(4.52)
n=1
(
∞ 0
n=1
and
∞
[ϕ(x)]1−q
∞
q h(xn)an
1q dx
< k(α)||a||q,ψ ,
(4.53)
n=1
with the best constant factor k(α); if p < 0, then we have the equivalent reverses of (4.51), (4.52) and (4.53), with the same best constant factor k(α).
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
A Half-Discrete Hilbert-Type Inequality with a Non-Homogeneous Kernel
(ii) For 0 < p < 1,
1 p
+
1 q
ws-book9x6
155
= 1, setting
ϕ(x) = (1 − θα (x))ϕ(x) (x ∈ R+ ), if f (x), an ≥ 0, f ∈ Lp,ϕ(R+ ), a = {an }∞ > 0, ||a||q,ψ > 0, n=1 ∈ lq,ψ , ||f ||p,ϕ then, we have the following equivalent inequalities: ∞ ∞ an h(xn)f (x)dx 0
n=1 ∞
f (x)
= 0
∞
[ψ(n)]
∞
an h(xn)dx > k(α)||f ||p,ϕ ||a||q,ψ ,
(4.54)
) p p1 h(xn)f (x)dx > k(α)||f ||p,ϕ,
(4.55)
n=1
1−p
(
∞ 0
n=1
and 0
∞
1−q [ϕ(x)]
∞
q h(xn)an
1q dx
> k(α)||a||q,ψ ,
(4.56)
n=1
with the same best constant factor k(α). Note. (i) If we change the upper limit ∞ of the integral to c > 0, then, the results of Corollary 4.5 is still value for p > 1 and 0 < p < 1. For p < 0, we may refer to Corollary 4.1 for v(n) = n, n0 = 1. (ii) We referred to some reverses with the particular kernels in Yang (see [166], [167], [168]).
4.4 4.4.1
Some Particular Examples Applying Condition (i) and Corollary 4.5
1 Example 4.4. We set h(xy) = A(max{1,xy})λ +B(min{1,xy}) ∈ λ ((x, y) 2 R+ ; 0 < B ≤ A, λ > 0, 0 < α < min{1, λ}). There exists a constant 0 < δ0 < min{α, 1 − α, λ − α}, such that for α ∈ (α − δ0 , α + δ0 ) ⊂ (0, 1), α < λ. For x > 0,
f (x, y) = =
xα y α−1 A(max{1, xy})λ + B(min{1, xy})λ xα y α−1 , 0 < y ≤ x1 , A+B(xy)λ α−1 xα y , A(xy)λ +B
y>
1 x
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
156
Half-Discrete Hilbert-Type Inequalities
is strictly decreasing with respect to y > 0. We find ∞ 1 k( α) = tα−1 dt λ + B(min{1, t})λ A(max{1, t}) 0 1 ∞ 1 1 α −1 = tα−1 dt t dt + λ λ At + B 0 A + Bt 1 1 1 1 α−1 (tα−1 + tλ− ) dt = λ A 0 1+ B t A k ∞ 1 1 B α−1 tλk (tα−1 + tλ− ) dt = − A 0 A k=0 k 1 ∞ B 1 α −1 α−1 − = (tλk+ + tλk+λ− ) dt A A 0 k=0 k ∞ 1 1 B 1 ∈ R+ , + = − A A λk + α λk + λ − α k=0
and obtain ∞
nα−1 A(max{1, xn})λ + B(min{1, xn})λ n=1 ∞ y α−1 > xα dy A(max{1, xy})λ + B(min{1, xy})λ 1 = k( α)(1 − θα (x)) > 0,
( α, x) = xα
where
1 xα y α−1 dy θα (x) = > 0. k( α) 0 A(max{1, xy})λ + B(min{1, xy})λ For 0 < x ≤ 1, it follows that 1 xα y α−1 dy 0 < θα (x) = k( α) 0 A + B(xy)λ 1 α−1 y xα xα xη ≤ dy = ≤ , k( α) 0 A Ak( α) α Ak( α) α namely, θα (x) = O(xη )(η = α − δ0 > 0). By Condition (i), it follows that ( α, x) =
∞
xα nα−1 < k( α). A(max{1, xn})λ + B(min{1, xn})λ n=1
Hence, we obtain (4.50). 1 By Corollary 4.5, for h(xn) = A(max{1,xn})λ +B(min{1,xn}) λ (0 < B ≤ A, λ > 0, 0 < α < 1), if p > 1, we have equivalent inequalities (4.51), (4.52)
ws-book9x6
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
A Half-Discrete Hilbert-Type Inequality with a Non-Homogeneous Kernel
ws-book9x6
157
and (4.53); if p < 0, we have equivalent reverses of (4.51), (4.52) and (4.53); if 0 < p < 1, we have equivalent inequalities (4.54), (4.55) and (4.56). All the inequalities have the same best constant factor: k ∞ λ B 2k + 1 k(α) = − . (4.57) A A (λk + α)(λk + λ − α) k=0
Remark 4.3. For c > 0, since for δ ∈ (α, λ), tδ h(t) → 0 (t → ∞), there exists a constant L > 0, such that 1 1 h(t) = ≤ L (t ∈ [c, ∞)). λ λ A(max{1, t}) + B(min{1, t}) tδ By Corollary 4.1, for p < 0, v(n) = n, n0 = 1, ∞ 1 h(t)tα−1 dt, θα (n) = k(α) cn we still have (4.30), (4.31) and (4.32) with the same best constant factor. λ
(min{1,xy}) ∈ Example 4.5. We set h(xy) = A(max{1,xy}) λ +B(min{1,xy})λ ((x, y) R2+ ; 0 < B ≤ A, λ > 0, −λ < α < min{λ, 1 − λ}). There exists 0 < δ0 < min{λ, λ + α, λ − α, 1 − λ + α}, such that for α ∈ (α − δ0 , α + δ0 ) ⊂ (−λ, λ), α < α + (1 − λ + α) = 1 − λ. For x > 0, (min{1, xy})λxα y α−1 f (x, y) = A(max{1, xy})λ + B(min{1, xy})λ xλ+α yλ+α−1 , 0 < y ≤ x1 , A+B(xy)λ = α−1 xα y , y > x1 A(xy)λ +B is strictly decreasing with respect to y > 0. We find ∞ (min{1, t})λ tα−1 dt k( α) = A(max{1, t})λ + B(min{1, t})λ 0 ∞ 1 1 1 λ+ α−1 t dt + = tα−1 dt λ λ+B A + Bt At 0 1 1 1 1 λ+ α−1 α−1 = (t + tλ− ) dt λ A 0 1+ B t A k ∞ 1 1 B α−1 α−1 tλk (tλ+ + tλ− ) dt = − A 0 A k=0 k 1 ∞ 1 B α−1 α−1 (tλk+λ+ + tλk+λ− ) dt = − A A 0 k=0 k−1 ∞ B 1 1 1 − = ∈ R+ , + A A λk + α λk − α k=1
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
158
Half-Discrete Hilbert-Type Inequalities
and then we obtain
∞
(min{1, xn})λ nα−1 A(max{1, xn})λ + B(min{1, xn})λ n=1 ∞ (min{1, xy})λ y α−1 > xα dy A(max{1, xy})λ + B(min{1, xy})λ 1
( α, x) = xα
= k( α)(1 − θα (x)) > 0, where
1 (min{1, xy})λ y α−1 dy xα > 0. k( α) 0 A(max{1, xy})λ + B(min{1, xy})λ For 0 < x ≤ 1, it follows that 1 λ λ+ xα x y α−1 dy 0 < θα (x) = k( α) 0 A + B(xy)λ α 1 λ+ y α−1 xλ+ ≤ dy k( α) 0 A θα (x) =
α xη xλ+ ≤ , Ak( α)(λ + α ) Ak( α)(λ + α ) namely, θα (x) = O(xη ) (η = λ + α − δ0 > 0). By Condition (i), it follows that ∞ (min{1, xn})λ nα−1 ( α, x) = xα < k( α). A(max{1, xn})λ + B(min{1, xn})λ n=1
=
Hence, we obtain (4.50). (min{1,xn})λ (0 < B ≤ By Corollary 4.5, for h(xn) = A(max{1,xn}) λ +B(min{1,xn})λ A, λ > 0, −λ < α < min{λ, 1 − λ}), if p > 1, we have equivalent inequalities (4.51), (4.52) and (4.53); if p < 0, we have equivalent reverses of (4.51), (4.52) and (4.53); if 0 < p < 1, we have equivalent inequalities (4.54), (4.55) and (4.56). All the inequalities have the same best possible constant factor k−1 ∞ B 2λ k − k(α) = . (4.58) A A λ2 k 2 − α2 k=1
Remark 4.4. For c > 0, since for δ ∈ (α, λ), tδ h(t) → 0(t → ∞), there exists L > 0, such that (min{1, t})λ h(t) = A(max{1, t})λ + B(min{1, t})λ 1 ≤ L δ (t ∈ [c, ∞)). t
ws-book9x6
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
A Half-Discrete Hilbert-Type Inequality with a Non-Homogeneous Kernel
ws-book9x6
159
By Corollary 4.1, for p < 0, v(n) = n, n0 = 1, ∞ 1 θα (n) = h(t)tα−1 dt, k(α) cn we still have (4.30), (4.31) and (4.32) with the same best constant factor. β
(min{1,xy}) 2 Example 4.6. We set h(xy) = (max{1,xy}) λ+β ((x, y) ∈ R+ ; λ + 2β > 0, −β < α < min{λ + β, 1 − β}). There exists a constant 0 < δ0 < min{β + α, λ + β − α, 1 − β − α}, such that for α ∈ (α − δ0 , α + δ0 ) ⊂ (−β, λ + β), α < 1 − β. For x > 0,
(min{1, xy})β xα y α−1 (max{1, xy})λ+β xα+β y α+β−1 , 0 < y ≤ x1 , = xα−λ−β y α−λ−β−1 , y > x1
f (x, y) =
is strictly decreasing with respect to y > 0. We find ∞ (min{t, 1})β α−1 t dt k( α) = (max{t, 1})λ+β 0 ∞ 1 1 α−1 α−1 tβ+ dt + t dt = λ+β t 0 1 1 1 = + β+α λ+β −α λ + 2β = ∈ R+ , (β + α )(λ + β − α ) and then, we have ∞ (min{1, xn})β nα−1 α ( α, x) = x (max{1, xn})λ+β n=1 ∞ (min{1, xy})β y α−1 > xα dy (max{1, xy})λ+β 1 = k( α)(1 − θα (x)) > 0, where
1 xα (min{1, xy})β y α−1 dy > 0. k( α) 0 (max{1, xy})λ+β For 0 < x ≤ 1, it follows that xα+β 1 α+β−1 0 < θα (x) = y dy k( α) 0 θα (x) =
=
xη xα+β ≤ , k( α)( α + β) k( α)( α + β)
November 7, 2013
12:24
160
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
ws-book9x6
Half-Discrete Hilbert-Type Inequalities
namely, θα (x) = O(xη )(η = α + β − δ0 > 0). By Condition (i), it follows that ( α, x) = xα
∞ (min{1, xn})β nα−1 < k( α). (max{1, xn})λ+β n=1
Hence, we obtain (4.50). (min{1,xn})β By Corollary 4.5 with the Note, for h(xn) = (max{1,xn}) λ+β (λ + 2β > 0, −β < α < min{λ + β, 1 − β}), if p > 1, we have equivalent inequalities (4.51), (4.52) and (4.53); if p < 0, we have equivalent reverses of (4.51), (4.52) and (4.53); if 0 < p < 1, we have equivalent inequalities (4.54), (4.55) and (4.56). All the inequalities have the same best constant factor k(α) =
λ + 2β . (β + α)(λ + β − α)
(4.59)
1 Remark 4.5. (1) In particular, (i) for β = 0, h(xn) = (max{1,xn}) λ (λ > 0, 0 < α < min{λ, 1}); (ii) for λ = −β, h(xn) = (min{1, xn})β (β > 0, −β < min{1,xn} β α < min{0, 1 − β}); (iii) for λ = 0, h(xn) = ( max{1,xn} ) (β > 0, −β < α < min{β, 1 − β}), we imply respectively some results of Example 4.2 (x)-(xii).
(2) For c > 0, since for δ ∈ (α, λ + β), tδ h(t) → 0(t → ∞), there exists a constant L > 0, such that 1 (min{t, 1})β ≤L δ (t ∈ [c, ∞)). h(t) = (max{t, 1})λ+β t By Corollary 4.1, for p < 0, v(n) = n, n0 = 1, ∞ 1 h(t)tα−1 dt, θα (n) = k(α) cn we still have (4.30), (4.31) and (4.32) with the same best constant factor. 4.4.2
Applying Condition (iii) and Corollary 4.2
Example 4.7. We set h(xy) = 1+x1λ yλ ((x, y) ∈ R2+ ; λ > 0, 0 < α < min{2, λ}). There exists a constant 0 < δ0 < min{α, λ − α, 2 − α}, such that for α ∈ (α − δ0 , α + δ0 ) ⊂ (0, 2), α < λ. It follows ∞ α−1 α/λ)−1 1 ∞ u( t du dt = k( α) = λ 1+t λ 0 u+1 0 π ∈ R+ . = λ sin(π α /λ)
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
A Half-Discrete Hilbert-Type Inequality with a Non-Homogeneous Kernel
ws-book9x6
161
For γ < 1, it is obvious that ∞ xα−1 dx α ω( α, n) = (n − γ) = k( α) (n ∈ N). 1 + xλ (n − γ)λ 0 In the following, we show that, for 3 1 α + 2(λ + 1) α−α 2 ) < 1, γ ≤ γ( α) = 1 − ( 4 it follows that 0 < k( α)(1 − θα (x)) ∞ xα (n − γ)α−1 < k( α) (x > 0), (4.60) < ( α, x) = 1 + xλ (n − γ)λ n=1 where (4.61) 0 < θα (x) = O(xη )(0 < x ≤ 1; η = α − δ0 > 0). α−1
(y−γ) (1) Setting g(x, y) = 1+x λ (y−γ)λ (x > 0, y > γ), we prove that ) ( 1 ∞ 1 g(x, y)dy − g(x, 1) − P1 (y)gy (x, y)dy > 0. (4.62) R(x) = xα 2 γ 1 In fact, we obtain 1 1 (1−γ)x α−1 1 (y − γ)α−1 dy t dt g(x, y)dy = = λ λ α x 0 1 + tλ γ γ 1 + x (y − γ)
1 (1 − γ)α−1 1 − g(x, 1) = − , 2 2 1 + xλ (1 − γ)λ and
(4.63)
λxλ (y − γ)α+λ−2 ( α − 1)(y − γ)α−2 + λ λ 2 [1 + x (y − γ) ] 1 + xλ (y − γ)λ
gy (x, y) = −
λ[1 + xλ (y − γ)λ − 1](y − γ)α−2 [1 + xλ (y − γ)λ ]2
=−
+
( α − 1)(y − γ)α−2 1 + xλ (y − γ)λ
(λ − α + 1)(y − γ)α−2 λ(y − γ)α−2 + . 1 + xλ (y − γ)λ [1 + xλ (y − γ)λ ]2 By (2.37), for λ > 0, α < 2, =−
−
∞
1
=
1
P1 (y)gy (x, y)dy
∞
P1 (y) −
(λ − α + 1)(y − γ)α−2 dy 1 + xλ (y − γ)λ ∞ 1
P1 (y)
λ(y − γ)α−2 dy [1 + xλ (y − γ)λ ]2
+ 1)(1 − γ)α−2 1 (λ − α >− + 0. 8 1 + xλ (1 − γ)λ
(4.64)
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
162
ws-book9x6
Half-Discrete Hilbert-Type Inequalities
Then, by (4.62), (4.63) and (4.64), setting 1−γ 1 A=[ + (λ − α + 1)](1 − γ)α−2 , 2 8 we have (1−γ)x α−1 Axα t dt − . R(x) > h(x) = λ 1+t 1 + xλ (1 − γ)λ 0 3 Since for γ ≤ γ( α), 1 − γ ≥ 14 [ α + 2(λ + 1) α−α 2 ], we have B(γ) = (1 − γ)2 −
(4.65)
α α (1 − γ) − (λ − α + 1) ≥ 0, 2 8
then, we find h (x) =
(1 − γ)α xα−1 λ(1 − γ)λ Axα+λ−1 + 1 + xλ (1 − γ)λ [1 + xλ (1 − γ)λ ]2 −
A αxα−1 1 + xλ (1 − γ)λ
= [(1 − γ)α − A α] + > B(γ)
xα−1 1 + xλ (1 − γ)λ
λ(1 − γ)λ Axα+λ−1 [1 + xλ (1 − γ)λ ]2
(1 − γ)α−2 xα−1 >0 1 + xλ (1 − γ)λ
(A > 0).
By (4.65), it follows that R(x) > h(0) = 0(x > 0). Hence, (4.62) holds. (2) In view of f (x, y) = xα g(x, y), by (4.4) and Condition (iii), it follows that ∞ xα (n − γ)α−1 ( α, x) = 1 + xλ (n − γ)λ n=1 = k( α) − R(x) < k( α)(x > 0). By (4.64), we still obtain ∞ 1 λ(1 − γ)α−2 P1 (y)gy (x, y)dy < , − 8 [1 + xλ (1 − γ)λ ]2 1 and then, by (4.62), it follows that (1−γ)x α−1 xα (1 − γ)α−1 t R(x) < dt − 1 + tλ 2[1 + xλ (1 − γ)λ ] 0 +
λxα (1 − γ)α−2 . 8[1 + xλ (1 − γ)λ ]2
(4.66)
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
A Half-Discrete Hilbert-Type Inequality with a Non-Homogeneous Kernel
Setting θα (x) =
1 [R(x) k( α)
+
xα (1−γ)α−1 ](> 0), 1+xλ (1−γ)λ α
ws-book9x6
163
we find
x (1 − γ)α−1 1 + xλ (1 − γ)λ = k( α)(1 − θα (x)) > 0.
( α, x) > ( α, x) −
For η = α − δ0 > 0, 0 < x ≤ 1, by (4.66), we obtain 1 1 0 < η θα (x) ≤ α θα (x) x x ) ( (1 − γ)α−1 1 1 R(x) + = k( α) xα 1 + xλ (1 − γ)λ (1−γ)x α−1 (1 − γ)α−1 1 t dt 1 − < k( α) xα 0 1 + tλ 2[1 + xλ (1 − γ)λ ] λ(1 − γ)α−2 (1 − γ)α−1 + + 8[1 + xλ (1 − γ)λ ]2 1 + xλ (1 − γ)λ → constant as x → 0, namely, θα (x) = O(xη )(0 < x ≤ 1; η = α − δ0 > 0). Hence, we show that (4.60) and (4.61) are valid. Setting u(x) = x − μ(x > μ), by Corollary 4.2 for 3 1 γ ≤ 1 − [α + 2(λ + 1)α − α2 ], 4 1 h(u(x)v(n)) = 1 + (x − μ)λ (n − γ)λ (x > βμ, n ∈ N; λ > 0, 0 < α < min{2, λ}), if p > 1, we have equivalent inequalities (4.40), (4.41) and (4.42); if p < 0, we have equivalent reverses of (4.40), (4.41) and (4.42); if 0 < p < 1, we have equivalent inequalities (4.44), (4.45) and (4.46). All the inequalities have the same best constant factor π k(α) = . (4.67) λ sin(πα/λ) β
(min{1,xy}) 2 Example 4.8. We set h(xy) = (max{1,xy}) λ+β ((x, y) ∈ R+ ; 2β + λ > 0, −β < α < min{λ + β, 2 − β}). There exists 0 < δ0 < min{α + β, λ + β − α, 2 − β − α}, such that for α ∈ (α − δ0 , α + δ0 ) ⊂ (−β, λ + β), α < 2 − β. It follows that ∞ (min{1, t})β tα−1 dt k( α) = (max{1, t})λ+β 0 λ + 2β ∈ R+ . = (β + α )(λ + β − α )
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
164
ws-book9x6
Half-Discrete Hilbert-Type Inequalities
For 0 ≤ γ < 1, it is obvious that ∞ (min{1, x(n − γ)})β xα−1 ω( α, n) = (n − γ)α dx (max{1, x(n − γ)})λ+β 0 = k( α)(n ∈ N). In the following, we show that, for 3 1 γ ≤ γ( α) = 1 − [β + α )(1 + λ + 2β) − (β + α )2 ], + 2(β + α 4 0 < k( α)(1 − θα (x)) < ( α, x) ∞ xα (min{1, x(n − γ)})β (n − γ)α−1 < k( α) (x > 0), (4.68) = λ+β (max{1, x(n − γ)}) n=1 where 0 < θα (x) = O(xη ) (0 < x ≤ 1; η = α + β − δ0 > 0).
(4.69)
(1) Setting g(x, y) =
(min{1, x(y − γ)})β (y − γ)α−1 (max{1, x(y − γ)})λ+β
(x > 0, y > γ),
in the following, we prove that, for γ ≤ γ( α), ) ( 1 ∞ 1 g(x, y)dy − g(x, 1) − P1 (y)gy (x, y)dy > 0. (4.70) R(x) = xα 2 γ 1 In fact, we obtain g(x, y) =
γ < y < x1 + γ, xβ (y − γ)α+β−1 , α −λ−β−1 x (y − γ) , y ≥ x1 + γ,
−gy (x, y) =
−λ−β
h1 (x, y), γ < y < x1 + γ, h2 (x, y), y ≥ x1 + γ,
− β)xβ (y − γ)α+β−2 , h1 (x, y) = (1 − α h2 (x, y) = (1 − α + λ + β)x−λ−β (y − γ)α−λ−β−2 . For 0 < x1 ≤ 1 − γ, y ≥ 1 ≥ x1 + γ, by equation (2.23) in Chapter 2, we have ∞ ∞ P1 (y)gy (x, y)dy = P1 (y)h2 (x, y)dy − 1
1
1 (1 − α + λ + β)(1 − γ)α−λ−β−2 12xλ+β 1 > − λ+β (1 − α + λ + β)(1 − γ)α−λ−β−2 ; (4.71) 8x
>−
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
ws-book9x6
165
A Half-Discrete Hilbert-Type Inequality with a Non-Homogeneous Kernel
for
1 x
> 1 − γ, by (2.47) (ε0 ∈ (0, 1), ε1 ∈ [0, 1]), we find ∞ P1 (y)gy (x, y)dy − 1 ε0 1 1 −h1 (x, 1) + h1 (x, + γ) − h2 (x, + γ) = 8 x x 1 1 ε1 − h1 (x, + γ) − h2 (x, + γ) 8 x x ) ( ε1 2β + λ 2β + λ ε0 (1 − α − β)xβ (1 − γ)α+β−2 + α−2 + =− 8 x 8 xα−2 1 2β + λ − β)xβ (1 − γ)α+β−2 − > − (1 − α . (4.72) 8 8xα−2
We still find ⎧ ⎨
1 − g(x, 1) = ⎩ 2 For 0 <
1 x
− 21 xβ (1 − γ)α+β−1 ,
1 x
− 12 x−λ−β (1 − γ)α−λ−β−1 , 0 <
> 1 − γ, 1 x
≤ 1 − γ.
≤ 1 − γ, we have
1
g(x, y)dy
γ 1 x +γ
=
xβ (y − γ)α+β−1 dy +
γ
= for
1 x
1 1 γ+ x
(y − γ)α−λ−β−1 dy xλ+β
1 (1 − γ)α−λ−β 1 + − ; (β + α )xα (β + λ − α )xα (β + λ − α )xλ+β
(4.73)
> 1 − γ,
1
1
g(x, y)dy = γ
xβ (y − γ)α+β−1 dy =
γ
(i) For 0 <
1 x
≤ 1 − γ,
1−γ ≥
(1 − γ)α+β xβ . α +β
(4.74)
γ ≤ γ( α),
3 1 [β + α + 2(β + α )(1 + λ + 2β) − (β + α )2 ], 4
it is obvious that A(γ) = (1 − γ)2 −
1 β+α (1 − γ) − (β + α )(1 + λ + β − α ) ≥ 0, 2 8
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
166
ws-book9x6
Half-Discrete Hilbert-Type Inequalities
and then, by (4.70), (4.71), (4.72) and (4.73), in view of 0 < follows that R(x) >
1 x
≤ 1 − γ, it
1 1 (1 − γ)α−λ−β + − α β+α β+λ−α (β + λ − α )xλ+β−
(1 − γ)α−λ−β−1 (1 − α + λ + β)(1 − γ)α−λ−β−2 − λ+β− α α 2x 8xλ+β− α −λ−β α 1 (1 − γ) 1 (1 − γ)λ+β− + − > β+α β+λ−α β+λ−α 1 λ+β− α α −λ−β−1 − (1 − γ) (1 − γ) 2 1 α + λ + β)(1 − γ)α−λ−β−2 (1 − γ)λ+β− − (1 − α 8 A(γ) = ≥ 0; (β + α )(1 − γ)2 −
(ii) for find
1 x
α > 1 − γ, γ ≤ γ( α), in view of x2 < xβ+ (1 − γ)α+β−2 , we still
α (1 − γ)α+β xβ+ 1 α (1 − γ)α+β−1 R(x) > − xβ+ α +β 2 1 α − β)xβ+ − (1 − α (1 − γ)α+β−2 8 2β + λ β+ − x α (1 − γ)α+β−2 8 α xβ+ (1 − γ)α+β−2 ≥ 0. = A(γ) α +β
Hence, (4.70) follows for x > 0. (2) By (4.4) and Condition (iii), it follows that ( α, x) = k( α) − R(x) < k( α)
(x > 0).
Setting θα (x) =
) ( 1 xα (min{1, x(1 − γ)})β α −1 (1 − γ) > 0, R(x) + k( α) (max{1, x(1 − γ)})λ+β
we obtain xα (min{1, x(1 − γ)})β (1 − γ)α−1 (max{1, x(1 − γ)})λ+β = k( α)(1 − θα (x)) > 0.
( α, x) > ( α, x) −
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
A Half-Discrete Hilbert-Type Inequality with a Non-Homogeneous Kernel
For 0 < x ≤ 1, it is obvious that lim
1
+β x→0+ xα
α
1 θα (x) xα+β β
ws-book9x6
167
is continuous in (0, 1]. Since
x (min{1, x(1 − γ)}) (1 − γ)α−1 = (1 − γ)α+β−1 , (max{1, x(1 − γ)})λ+β 1 xα g(x, y)dy lim +β x→0+ xα γ = lim+ x→0
(1 − γ)α+β xβ (1 − γ)α+β = , β x ( α + β) α +β
and
∞ xα (− P1 (y)gy (x, y)dy) +β x→0+ xα 1 ( ) 2β + λ 1 ε0 (1 − α − β)xβ (1 − γ)α+β−2 + α−2 = lim+ β − 8 x x→0 x ε1 (2β + λ) + 8xα−2 ε0 = − (1 − α − β)(1 − γ)α+β−2 , 8 then, by (4.70), we find 1 1 0 < η θα (x) ≤ α+β θα (x) → constant, as x → 0+ , x x namely, θα (x) = O(xη ) (0 < x ≤ 1; η = α + β − δ0 > 0). Hence, we show that (4.68) and (4.69) are valid. Setting u(x) = x − μ(x > μ), by Corollary 4.2, for # 3 1" γ ≤ 1− β + α + 2(β + α)(1 + λ + 2β) − (β + α)2 , 4 (min{1, (x − μ)(n − γ)})β h(u(x)v(n)) = (max{1, (x − γ)(n − γ)})λ+β (x > μ, n ∈ N; 2β + λ > 0, −β < α < min{λ + β, 2 − β}), if p > 1, we have equivalent inequalities (4.40), (4.41) and (4.42); if p < 0, we have equivalent reverses of (4.40), (4.41) and (4.42); if 0 < p < 1, we have equivalent inequalities (4.44), (4.45) and (4.46). All the inequalities have the same best constant factor λ + 2β . (4.75) k(α) = (β + α)(λ + β − α) lim
Remark 4.6. If we add the condition 2β + λ ≤ 1 in the above example, then it follows that γ( α) > 0. Setting y = β + α ∈ (0, 2), then, γ( α) > 0 is equivalent to G(y) = y 2 − (5 + λ + 2β)y + 8 > 0.
November 7, 2013
168
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
Half-Discrete Hilbert-Type Inequalities
Since G (y) = 2y−(5+λ+2β) is increasing with G (2) = 4−(5+λ+2β) < 0, and G (y) < 0(y ∈ [0, 2]), then, we find G(y) > G(2) = 2[1 − (λ + 2β)] ≥ 0. In this case, for γ = 0 (< γ( α)), we can get some results of Example 4.7.
ws-book9x6
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
ws-book9x6
Chapter 5
Multi-dimensional Half-Discrete Hilbert-Type Inequalities
“... in a subject (inequalities) like this, which has applications in every part of mathematics but never been developed systematically.”
G. H. Hardy
“A great discovery solves a great problem but there is a grain of discovery in the solution of any problem. Your problem may be modest; but if it challenges your curiosity and brings into play your incentive faculties, and if you solve it by your own means, you may experience the tension and enjoy the triumph of discovery.”
George Polya
5.1
Introduction
This chapter deals with two kinds of multi-dimensional half-discrete Hilbert-type inequalities using the way of weight functions and techniques of real analysis. These inequalities are extensions of the two-dimensional cases studied in Chapters 3 and 4. The best possible constant factors are proved. Included are equivalent forms, the operator expressions, the reverses and many particular examples. 169
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
170
ws-book9x6
Half-Discrete Hilbert-Type Inequalities
5.2
Some Preliminary Results and Lemmas
5.2.1
Some Related Lemmas
Lemma 5.1. (see Wang and Guo [73]) If m ∈ N, α, M > 0, Ψ(u) is a non-negative measurable function in (0, 1], and m m α α , DM = x ∈ R+ ; xi ≤ M i=1
then, we have m 1 xi α M m Γm α1 m ··· Ψ Ψ(u)u α −1 du. dx1 · · · dxm = mΓ m M α DM 0 α i=1 (5.1) Lemma 5.2. Suppose that m, s, n(0) ∈ N, α, β > 0, v(t) is an increasing differentiable function in [n(0) , ∞) with v(n(0) ) > 0 and v (t) is decreasing in [n(0) , ∞). We set α1 m |xk |α (x = (x1 , · · · , xm ) ∈ Rm ), ||x||α = ||v(y)||β =
k=1 s
β1 (y = (y1 , · · · , ys ) ∈ [n(0) , ∞)s ),
β
(v(yk ))
k=1
where s
[n
(0)
(0) (0) [n , ∞) = , ∞) × · · · × [n , ∞) . s
Then, for ε > 0, we have J(ε) =
1 α , = m−1 Γ m εα {x∈Rm ;||x|| ≥1} α α + Γm α1 −m+ε , J(ε) = ||x||α dx = εαm−1 Γ m {x∈Rm α + ;||x||α ≤1} Γm
−m−ε ||x||α dx
and H(ε) =
n∈Ns (0) n
||v(n)||−s−ε β
s 2 k=1
v (nk ) =
Γs
(5.2) (5.3)
1 β
εβ s−1 Γ( βs )
+ O(1),
(5.4)
where ni ∈ Nn(0) = {n(0) , n(0) + 1, · · · } (i = 1, 2, · · · , s), n = (n1 , n2, · · · , ns ).
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
Multi-dimensional Half-Discrete Hilbert-Type Inequalities
Proof.
For M > 1, setting Ψ(u) as follows: Ψ(u) = 0(u ∈ (0, M −α )); 1 Ψ(u) = (u ∈ [M −α, 1]), (M u1/α )m+ε
by (5.1), since ||x||α ≥ 1 means that m xi ( )α ≥ M −α , M i=1
we find
m xi Ψ ( )α dx1 · · · dxm J(ε) = lim ··· M→∞ M DM i=1 M m Γm ( α1 ) 1 m = lim Ψ(u)u α −1 du m M→∞ αm Γ( ) 0 α m m 1 1 M Γ (α) 1 m = lim u α −1 du m 1/α )m+ε M→∞ αm Γ( ) −α (M u M α 1 Γm ( α1 ) −ε 1 = m m lim u α −1 du ε M→∞ α Γ( α ) M M −α Γm ( α1 ) α 1 = m m lim 1− ε , α Γ( α ) M→∞ ε M
and then (5.2) is valid. In view of (5.1) (for M = 1), it follows that m α1 (−m+ε) α J(ε) = xi dx {x∈Rm + ;||x||α ≤1}
Γm ( 1 ) = m αm α Γ( α )
1
u
i=1
1 α (−m+ε)
n
u α −1 du =
0
Γm ( α1 ) . εαm−1 Γ( m ) α
Hence, (5.3) is valid. By the decreasing property of [v(t)]−1 and v (t), we have
H(ε) = c0 +
||v(n)||−s−ε β
n∈Ns (0) n +1
≤ c0 +
∞
n(0)
···
s 2
v (nk )
k=1 ∞ n(0)
||v(y)||−s−ε β
s 2 k=1
v (yk )dy1 · · · dys ,
ws-book9x6
171
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
172
ws-book9x6
Half-Discrete Hilbert-Type Inequalities
= c0 +
∞
···
v(n(0) )
= c0 + c 1 +
∞
1
Γs ( β1 )
(uk = v(yk )(k = 1, · · · , s))
∞ v(n(0) )
···
∞
1
||u||−s−ε du1 · · · dus β
||u||−s−ε du1 · · · dus β
+ c0 + c 1 , εβ s−1 Γ( βs ) ∞ ∞ s 2 ··· ||v(y)||−s−ε v (yk )dy1 · · · dys , H(ε) ≥ β =
n(0)
n(0)
∞
=
v(n(0) )
=
···
k=1 ∞
v(n(0) )
Γs ( β1 )
(uk = v(yk )(k = 1, · · · , s)) ||u||−s−ε du1 · · · dus β
+ c1 ,
ε β s−1 Γ( βs )
and then, we obtain (5.4).
5.2.2
Some Results about the Weight Functions
Definition 5.1. Suppose that m, s, n(0) ∈ N, α, β > 0, λ1 , λ2 ∈ R, H(t, u) 2 , H(t, u)uλ2 −s is deis a non-negative finite measurable function in R+ creasing with respect to u ∈ R+ and strictly decreasing in an interval I ⊂ (n(0) , ∞), v (t) > 0, v (t) ≤ 0 (t ∈ (n(0) − 1, ∞)) with v(n(0) − 1) ≥ 0. Define two weight functions ω(n) and (x) as follows: ω(n) = (x) =
Rm +
H(||x||α , ||v(n)||β )
H(||x||α , ||v(n)||β )
n∈Ns (0) n
||v(n)||λβ2 1 ||x||m−λ α
dx (n ∈ Nsn(0) ), (5.5)
s 2 ||x||λα1 v (nk ) (x ∈ Rm + ). (5.6) 2 ||v(n)||s−λ β k=1
If the expression
1
lim M λ2
M→∞
0
1
H(||x||α , M v β )v
λ2 β
−1
dv = a ∈ R+ ,
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
ws-book9x6
173
Multi-dimensional Half-Discrete Hilbert-Type Inequalities
then applying (5.1), we get the following results: m xk α 1 H M [ ( ) ] α , ||v(n)||β ω(n) = lim M→∞ D M M k=1
×
M m Γm ( α1 ) m M→∞ αm Γ( ) α
= lim
0
||v(n)||λβ2
m
dx
1 α α m−λ1 k=1 (xk /M ) ] } λ 2 1 ||v(n)||β 1 m H(M u α , ||v(n)||β ) u α −1 du 1 (M u α )m−λ1
{M [
1 λ1 Γm ( 1 ) 1 = m αm ||v(n)||λβ2 lim M λ1 H(M u α , ||v(n)||β )u α −1 du; (5.7) M→∞ α Γ( α ) 0 ∞ ∞ s 2 ||x||λα1 ··· H(||x||α , ||v(y)||β ) v (yk )dy1 · · · dys , (x) < 2 ||v(y)||s−λ n(0) −1 n(0) −1 β k=1 = ≤
v(n(0) −1)
Rs+
(uk = v(yk )(k = 1, · · · , s))
∞
···
∞ v(n(0) −1)
H(||x||α , ||u||β )
||x||λα1
H(||x||α , ||u||β )
du 2 ||u||s−λ β 1 λ2 1 λ2 lim M H(||x||α , M v β )v β −1 dv,
Γs ( β1 ) ||x||λα1 = M→∞ 0 β s Γ βs ∞ ∞ ··· H(||x||α , ||v(y)||β ) (x) >
= =
||x||λα1 du1 · · · dus 2 ||u||s−λ β
n(0)
n(0)
∞
s 2 ||x||λα1 v (yk )dy1 · · · dys , 2 ||v(y)||s−λ β k=1
(uk = v(yk )(k = 1, · · · , s)) ∞
||x||λα1 ··· H(||x||α , ||u||β ) 2 ||u||s−λ v(n(0) ) v(n(0) ) β ||x||λα1 H(||x||α , ||u||β ) du 2 ||u||s−λ Rs+ β
du1 · · · dus
−δ0
=
(5.8)
{u∈Rs+ ;0<||u||α ≤1}
Γs ( β1 ) ||x||λα1 s β Γ βs
H(||x||α , ||u||β )
(
lim M λ2
M→∞
−δ0
0
1
0
||x||λα1 du 2 ||u||s−λ β
1
1
H(||x||α , M v β )v 1
H(||x||α , v β )v
λ2 β
−1
λ2 β
−1
dv
) dv
(0 < δ0 ≤ 1). (5.9)
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
174
Half-Discrete Hilbert-Type Inequalities
In particular, for β = 1, if ∂ (H(t, u)uλ2 −s ) < 0, ∂u
∂2 (H(t, u)uλ2 −s ) > 0 ∂u2
(u ∈ R+ ),
and v (t) > 0, v (t) ≤ 0, v (t) ≥ 0 (t ∈ (n(0) − 12 , ∞)), with v(n(0) − 12 ) ≥ 0, then we can find that ∂ ||v(y)||1 > 0, ∂yi
∂2 ||v(y)||1 ≤ 0, ∂yi2
and H(||x||α , ||v(y)||1 ) =
s 2 ||x||λα1 v (yk ) 2 ||v(y)||s−λ 1 k=1
s H(||x||α , v(y1 ) + · · · + v(ys ))||x||λα1 2 v (yk ) (v(y1 ) + · · · + v(ys ))s−λ2 k=1
is strictly decreasing and strict convex with respect to any yi ∈ (n(0) − 1 2 , ∞)(i = 1, · · · , s). By Hermite-Hadamard’s inequality (see Kuang [47]), it follows that
1 (x) = <
H(||x||α , ||v(n)||1 )
n∈Ns (0)
∞
n(0) − 12
···
n
∞ n(0) − 12
s 2 ||x||λα1 v (nk ) 2 ||v(n)||s−λ 1 k=1
H(||x||α , ||v(y)||1 )
s 2 ||x||λα1 v (yk )dy1 · · · dys , 2 ||v(y)||s−λ 1 k=1
(uk = v(yk )(k = 1, · · · , s)) ||x||λα1 = ··· H(||x||α , ||u||1 ) du1 · · · dus 2 ||u||s−λ v(n(0) − 12 ) v(n(0) − 12 ) 1 ||x||λα1 ≤ H(||x||α , ||u||1 ) du 2 ||u||s−λ Rs+ 1 1 ||x||λα1 λ2 lim M H(||x||α , M v)v λ2 −1 dv, (5.10) = (s − 1)! M→∞ 0 1 (x) >
∞
∞
n(0)
···
∞
n(0)
∞
H(||x||α , ||v(y)||1 )
||x||λα1 2 ||v(y)||s−λ 1
s 2
v (yk )dy1 · · · dys ,
k=1
(uk = v(yk )(k = 1, · · · , s))
ws-book9x6
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
ws-book9x6
175
Multi-dimensional Half-Discrete Hilbert-Type Inequalities
∞
= =
v(n(0) )
Rs+
···
∞ v(n(0) )
H(||x||α , ||u||1 )
H(||x||α , ||u||1 ) −δ0
=
||x||λα1 (s − 1)!
||x||λα1 2 ||u||s−λ 1
M→∞
du
{u∈Rs+ ;0<||u||α ≤1}
( lim M
||x||λα1 du1 · · · dus 2 ||u||s−λ 1
1
λ2
−δ0
1
0
||x||λα1 du 2 ||u||s−λ 1
H(||x||α , M v)v λ2 −1 dv
H(||x||α , v)v
0
H(||x||α , ||u||1 )
λ2 −1
) dv (0 < δ0 ≤ 1).
(5.11)
Two Preliminary Inequalities
5.2.3
Lemma 5.3. Let the assumptions of Definition 5.1 be fulfilled and additionally, let p ∈ R\{0, 1}, p1 + 1q = 1, a(n) = a(n1 , · · · , ns ) ≥ 0(n ∈ Nsn(0) ), f (x) = f (x1,··· , xm ) be a non-negative measurable function in Rm + . Then (i) for p > 1, we have the following inequalities: ⎧ p ⎫p1 s ⎨ ||v(n)||pλ2 −s 2 ⎬ β v (n ) H(||x|| , ||v(n)|| )f (x)dx J1 = k α β ⎩ ⎭ [ω(n)]p−1 Rm s + n∈N
≤
k=1
n(0)
p1
p(m−λ1 )−m p (x)||x||α f (x)dx
Rm +
,
(5.12)
and
J2 =
≤
⎧ ⎨ ⎩
Rm +
1 −m ||x||qλ α [(x)]q−1
⎧ ⎨ ⎩
n∈Ns (0) n
⎛ ⎝
n∈Ns (0)
⎫ 1q ⎬ H(||x||α , ||v(n)||β )a(n)⎠ dx ⎭ ⎞q
n
q(s−λ2 )−s
ω(n)||v(n)||β
s 2
k=1
1−q v (nk )
⎫ 1q ⎬ aq (n) ; (5.13) ⎭
(ii) for p < 0, or 0 < p < 1, we have the reverses of (5.12) and (5.13).
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
176
ws-book9x6
Half-Discrete Hilbert-Type Inequalities
Proof.
(i) For p > 1, by H¨ older’s inequality (see Kuang [47]), we have p
Rm +
H(||x||α , ||v(n)||β )f (x)dx
⎧ ⎨
⎡
⎤ p1 s (m−λ1 )/q 2 ||x|| α = H(||x||α , ||v(n)||β ) ⎣ v (nk ) f (x)⎦ (s−λ2 )/p ⎩ Rm ||v(n)|| + k=1 β ⎡ ⎤ ⎫p −1 s (s−λ )/p p ⎬ 2 ||v(n)||β 2 ⎦ dx ×⎣ v (nk ) (m−λ1 )/q ⎭ ||x||α k=1 s (m−λ1 )(p−1) 2 ||x||α ≤ H(||x||α , ||v(n)||β ) v (nk )f p (x)dx 2 ||v(n)||s−λ Rm β + k=1 ⎧ s 1−q ⎫p−1 (s−λ )(q−1) 2 ⎨ ⎬ 2 ||v(n)||β × H(||x||α , ||v(n)||β ) v (n ) dx k m−λ ⎩ Rm ⎭ ||x||α 1 +
2 = [ω(n)]p−1 ||v(n)||s−pλ β
v (nk )
k=1
×
s 2
k=1
−1
Rm +
H(||x||α , ||v(n)||β )
(m−λ )(p−1)
1 ||x||α 2 ||v(n)||s−λ β
s 2
v (nk )f p (x)dx.
k=1
Then by the Lebesgue term by term integration theorem (see Kuang [49]), it follows that ⎧ ⎨ H(||x||α , ||v(n)||β ) J1 ≤ ⎩ Rm s +
n∈N
n(0)
⎧ ⎨ =
⎩
=
⎫ p1
s (m−λ1 )(p−1) 2 ⎬ ||x||α p × v (n )f (x)dx k 2 ⎭ ||v(n)||s−λ β k=1
Rm + n∈Ns (0) n
Rm +
⎫1
s (m−λ1 )(p−1) 2 ⎬p ||x||α p H(||x||α , ||v(n)||β ) v (nk )f (x)dx 2 ⎭ ||v(n)||s−λ β k=1
p1
p(m−λ1 )−m p (x)||x||α f (x)dx
and hence, we obtain inequality (5.12).
,
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
ws-book9x6
177
Multi-dimensional Half-Discrete Hilbert-Type Inequalities
Still by H¨older’s inequality, we have ⎛ ⎝
⎞q
H(||x||α , ||v(n)||β )a(n)⎠
n∈Ns (0) n
⎧ ⎨
s p1 ⎤ (m−λ1 )/q 2 ||x|| α = H(||x||α , ||v(n)||β ) ⎣ v (nk ) ⎦ (s−λ2 )/p ⎩ ||v(n)|| s n∈N (0) k=1 β n ⎡ ⎤⎫q −1 (s−λ )/p p s ⎬ 2 ||v(n)||β 2 ⎦ ×⎣ v (n ) a(n) k (m−λ1 )/q ⎭ ||x||α k=1 ⎧ ⎫q−1 s (m−λ1 )(p−1) 2 ⎨ ⎬ ||x||α ≤ H(||x||α , ||v(n)||β ) v (n ) k 2 ⎩ ⎭ ||v(n)||s−λ s β ⎡
n∈N
k=1
n(0)
×
(s−λ2 )(q−1)
H(||x||α , ||v(n)||β )
||v(n)||β
n∈Ns (0) n
=
[ω(x)]q−1
1 −m ||x||qλ α n∈Ns (0)
1 ||x||m−λ α
1−q
s 2
aq (n)
v (nk )
k=1
H(||x||α , ||v(n)||β )
n
(s−λ2 )(q−1)
×
||v(n)||β
1 ||x||m−λ α
s 2
1−q v (nk )
aq (n).
k=1
Then, by the Lebesgue term by term integration theorem, it follows that J2 ≤
⎧ ⎨ ⎩
Rm + n∈Ns (0)
H(||x||α , ||v(n)||β )
n
(s−λ2 )(q−1)
×
=
⎧ ⎨ ⎩
n∈Ns (0) n
||v(n)||β
1 ||x||m−λ α
1−q
s 2
v (nk )
k=1
⎫ q1 ⎬ aq (n)dx ⎭
(s−λ2 )(q−1)
Rm +
H(||x||α , ||v(n)||β )
||v(n)||β
1 ||x||m−λ α
×
s 2
k=1
1−q v (nk )
dx ⎫1 ⎬q q a (n) ⎭
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
178
ws-book9x6
Half-Discrete Hilbert-Type Inequalities
=
⎧ ⎨
q(s−λ2 )−s
ω(n)||v(n)||β
⎩
n∈Ns (0)
s 2
1−q v (nk )
k=1
n
⎫1 ⎬q aq (n) , ⎭
and we have proved inequality (5.13). (ii) For p < 0, or 0 < p < 1, by the reverse H¨ older’s inequality with weight and in the same way, we obtain the reverses of (5.12) and (5.13).
5.3
Some Inequalities Related to a General Homogeneous Kernel
5.3.1
Several Lemmas
As the assumptions of Definition 5.1, if λ ∈ R, kλ (t, u) is a finite homogeneous function of degree −λ in R2+ , H(t, u) = kλ (t, u), λ1 + λ2 = λ, then (5.5) and (5.6) reduce to the following weight functions: ω(λ2 , n) = (λ1 , x) =
Rm +
kλ (||x||α , ||v(n)||β )
||v(n)||λβ2 1 ||x||m−λ α
kλ (||x||α , ||v(n)||β )
n∈Ns (0) n
dx(n ∈ Nsn(0) ),
(5.14)
s 2 ||x||λα1 v (nk ), (x ∈ Rm + ). 2 ||v(n)||s−λ β k=1
(5.15) For k(λ1 ) =
ω(λ2 , n) =
∞ 0
kλ (t, 1)tλ1 −1 dt ∈ R+ , by (5.7), (5.8) and (5.9), we find
Γm ( α1 ) ||v(n)||λβ2 αm Γ( m ) α 1 λ1 1 λ1 × lim M kλ (M u α , ||v(n)||β )u α −1 du, M→∞
=
Γm ( α1 ) m−1 α Γ( m α)
0
(u = (||v(n)||β t/M )α )
∞ 0
= K(α, m, λ1 ) =
kλ (t, 1)tλ1 −1 dt
Γm ( α1 ) k(λ1 ); αm−1 Γ( m α)
(5.16)
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
ws-book9x6
179
Multi-dimensional Half-Discrete Hilbert-Type Inequalities
1 Γs ( β1 ) λ2 1 λ λ 1 2 ||x||α lim M (λ1 , x) < kλ (||x||α , M v β )v β −1 dv, s M→∞ 0 βsΓ β
=
Γs ( β1 ) ∞ kλ (t, 1)tλ1 −1 dt s s−1 0 β Γ β
(v = (||x||α /M t)β )
Γs ( β1 ) k(λ1 ), (5.17) = K(β, s, λ1 ) = β s−1 Γ βs ( 1 Γs ( β1 ) λ2 1 ||x||λα1 lim M λ2 (λ1 , x) > kλ (||x||α , M v β )v β −1 dv M→∞ 0 β s Γ βs ) 1 λ2 1 kλ (||x||α , v β )v β −1 dv −δ0 0 ∞ kλ (t, 1)tλ1 −1 dt = K(β, s, λ1 ) − δ0 ||x||α
= K(β, s, λ1 )(1 − θ(||x||α )) > 0,
(5.18)
where δ0 θ(||x||α ) = K(β, s, λ1 )
∞
||x||α
kλ (t, 1)tλ1 −1 dt > 0
(0 < δ0 ≤ 1).
Lemma 5.4. Suppose that m, s, n(0) ∈ N, α, β > 0, p ∈ R\{0, 1}, 1p + q1 = 1, λ1 , λ2 ∈ R, λ1 + λ2 = λ, kλ (t, u) is a finite homogeneous function of degree −λ in R2+ , kλ (t, u)uλ2 −s is decreasing with respect to u ∈ R+ , and strict decreasing in an interval I ⊂ (n(0) , ∞), v (t) > 0, v (t) ≤ 0 (t ∈ (n(0) − 1, ∞)), with v(n(0) − 1) ≥ 0. If there exist constants δ0 > 0 and η > λ1 , such that for any δ ∈ [0, δ0 ], k(λ1 ± δ) =
∞ 0
kλ (t, 1)t(λ1 ±δ)−1 dt ∈ R+ ,
and kλ (t, 1) ≤ L
1 tη
(t ≥ 1; L > 0),
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
180
ws-book9x6
Half-Discrete Hilbert-Type Inequalities
then, for any 0 < ε < |q|δ0 , we have λ1 −m− pε s 2 ||x|| α = I(ε) kλ (||x||α , ||v(n)||β ) v (nk )dx s−(λ2 − εq ) m {x∈R+ ;||x||α ≥1} n∈Ns ||v(n)||β k=1 (0) n
Γs ( β1 ) Γm ( 1 ) = m−1 α m s−1 s (k(λ1 )+o(1))(1−εO1 (1))(ε → 0+ ). εα Γ( α ) β Γ( β ) (5.19) Proof. = I(ε)
In view of (5.15), we find
{x∈Rm + ;||x||α ≥1}
−m−ε ||x||α
kλ (||x||α , ||v(n)||β )
n∈Ns (0) n
×
λ1 + qε
||x||α
s 2
s−(λ2 − qε ) ||v(n)||β k=1
v (nk )dx
ε −m−ε ||x||α (λ1 + , x)dx q ε −m−ε ||x||α (1 − θ(||x|| ≥ K(β, s, λ1 + ) α ))dx q {x∈Rm ;||x|| ≥1} α + Γm ( 1 ) ε −m−ε ||x||α (1 − θ(||x|| = m−1 α m k(λ1 + ) α ))dx, α Γ( α ) q {x∈Rm ;||x|| ≥1} α + =
{x∈Rm + ;|x||α ≥1}
where θ(||x|| α) =
δ0 K(β, s, λ1 + qε )
∞ ||x||α
kλ (t, 1)tλ1 −1 dt
(0 < δ0 ≤ 1).
Since M u1/α = ||x||α ≥ 1, we find
∞ δ0 kλ (t, 1)tλ1 −1 dt K(β, s, λ1 + εq ) Mu1/α ∞ δ0 L tλ1 −η−1 dt ≤ K(β, s, λ1 + εq ) Mu1/α
u1/α ) = 0 < θ(M
λ1 −η
δ0 LM λ1 −η u α = , (η − λ1 )K(β, s, λ1 + εq ) −m−ε ||x||α (1 − θ(||x|| α ))dx {x∈Rm + ;||x||α ≥1}
= lim
M→∞
···
Ψ DM
m xi α i=1
M
dx1 · · · dxm
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
Multi-dimensional Half-Discrete Hilbert-Type Inequalities
= lim
M→∞
M m Γm ( α1 ) αm Γ( m α)
M m Γm ( α1 ) = lim m M→∞ αm Γ( ) α = = =
1
ws-book9x6
181
m
Ψ(u)u α −1 du
0
1
u1/α )) m (1 − θ(M u α −1 du (M u1/α )m+ε
M −α 1 m 1 Γ (α) 1 u1/α ))u −ε α −1 du (1 − θ(M lim M→∞ M ε M −α αm Γ( m ) α 1 " # −ε λ1 −η Γm ( α1 ) 1 λ1 −η α O(u ) u α −1 du 1 − M lim M→∞ M ε M −α αm Γ( m ) α Γm ( α1 ) (1 − εO1 (1)) (ε → 0+ ). εαm−1 Γ( m α)
(5.20)
By Lemma 3.6, we have ε = k(λ1 ) + o(1) (ε → 0+ ), k λ1 + q and then it follows that Γs ( β1 ) Γm α1 ε k λ1 + I(ε) ≥ (1 − ε O1 (1)) s q εαm−1 Γ m α β s−1 Γ β Γs ( β1 ) Γm ( α1 ) (k(λ1 ) + o(1))(1 − ε O1 (1)). s−1 Γ( s ) εαm−1 Γ( m α)β β By (5.2), we still have m 1 −m−ε ≤ Γ ( α ) k λ1 + ε ||x||α dx I(ε) m ;||x|| ≥1} αm−1 Γ( m ) q {x∈R α α + =
Γs ( β1 ) Γm ( α1 ) (k(λ1 ) + o(1)). s−1 Γ( s ) εαm−1 Γ( m α)β β Thus, we have (5.19). =
In particular, for β = 1, if ∂ ∂2 (kλ (t, u)uλ2 −s ) < 0, (kλ (t, u)uλ2 −s ) > 0 (u ∈ R+ ), ∂u ∂u2 v (t) > 0, v (t) ≤ 0, v (t) ≥ 0 (t ∈ (n(0) − 12 , ∞)), with v(n(0) − 12 ) ≥ 0, then, in view of (5.14) and (5.15), we set the following weight functions: ||v(n)||λ1 2 ω1 (λ2 , n) = kλ (||x||α , ||v(n)||1 ) dx (n ∈ Nsn(0) ), (5.21) m−λ1 ||x|| Rm α + 1 (λ1 , x) =
n∈Ns (0) n
kλ (||x||α , ||v(n)||1 )
s 2 ||x||λα1 v (nk ) (x ∈ Rm + ), 2 ||v(n)||s−λ 1 k=1
(5.22)
November 7, 2013
182
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
ws-book9x6
Half-Discrete Hilbert-Type Inequalities
and by (5.16), (5.10) and (5.11), we find Γm ( 1 ) ω1 (λ2 , n) = K(α, m, λ1 ) = m−1 α m k(λ1 ); (5.23) α Γ( α ) 1 ||x||λα1 λ2 kλ (||x||α , M v)v λ2 −1 dv lim M 1 (λ1 , x) < (s − 1)! M→∞ 0 1 (5.24) = K(1, s, λ1 ) = k(λ1 ), (s − 1)! and ( 1 ||x||λα1 (λ1 , x) > lim M λ2 kλ (||x||α , M v)v λ2 −1 dv (s − 1)! M→∞ 0 ) 1 λ2 −1 kλ (||x||α , v)v dv −δ0 0
1 = k(λ1 )(1 − θ1 (||x||α )) > 0, (s − 1)! where δ0 (s − 1)! ∞ θ1 (||x||α ) = kλ (t, 1)tλ1 −1 dt > 0 k(λ1 ) ||x||α By the same way of Lemma 5.4, we still have
(5.25) (0 < δ0 ≤ 1).
Lemma 5.5. Suppose that m, s, n(0) ∈ N, α > 0, p ∈ R\{0, 1}, 1p + 1q = 1, λ1 , λ2 ∈ R, λ1 + λ2 = λ, kλ (t, u) is a finite homogeneous function of degree −λ in R2+ , satisfying ∂2 ∂ (kλ (t, u)uλ2 −s ) < 0, 2 (kλ (t, u)uλ2 −s ) > 0(u ∈ R+ ), ∂u ∂u v (t) > 0, v (t) ≤ 0, v (t) ≥ 0 (t ∈ (n(0) − 12 , ∞)), with v(n(0) − 12 ) ≥ 0. If there exist constants δ0 > 0 and η > λ1 , such that, for any δ ∈ [0, δ0 ], k(λ1 ± δ) =
∞
0
kλ (t, 1)t(λ1 ±δ)−1 dt ∈ R+ ,
1 (t ≥ 1; L > 0), kλ (t, 1) ≤ L η t then, for any 0 < ε < |q|δ0 , we have = I(ε) kλ (||x||α , ||v(n)||1 ) and
{x∈Rm + ;||x||α ≥1} n∈Ns (0) n
λ1 −m− pε
×
||x||α
s−(λ2 − qε )
||v(n)||1
s 2
v (nk )dx
k=1
Γm ( α1 ) = (k(λ1 ) + o(1))(1 − εO1 (1)) ε(s − 1)!αm−1 Γ( m ) α
(ε → 0+ ). (5.26)
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
ws-book9x6
183
Multi-dimensional Half-Discrete Hilbert-Type Inequalities
5.3.2
Main Results
For p ∈ R\{0, 1}, p1 +
1 q
= 1, we set two functions
1 )−m ϕ(x) = ||x||p(m−λ α
and
Ψ(n) =
q(s−λ2 )−s ||v(n)||β
s 2
(x ∈ Rm + ), 1−q
(n ∈ Nsn(0) ),
v (nk )
k=1
wherefrom 1 −m [ϕ(x)]1−q = ||x||qλ , α
and [Ψ(n)]1−p = ||v(n)||βpλ2 −s
s 2
v (nk ).
k=1
We also set 1 )−m ϕ(x) = (1 − θ(||x||α ))||x||p(m−λ , α
and 1−q 1 −m [ϕ(x)] = (1 − θ(||x||α ))1−q ||x||qλ , α
where θ(||x||α ) =
δ0 K(β, s, λ1 )
∞
kλ (t, 1)tλ1 −1 dt > 0
||x||α
(0 < δ0 ≤ 1).
We define two sets as follows: ⎧ ⎫ p1 ⎨ ⎬ m 1 )−m ||x||p(m−λ |f (x)|p dx <∞ , Lp,ϕ (R+ ) = f ; ||f ||p,ϕ = α ⎩ ⎭ Rm + ⎧ ⎧ ⎨ ⎨ q(s−λ2 )−s lq,Ψ = a; ||a||q,Ψ = ||v(n)||β ⎩ ⎩ s n∈N
n(0)
×
s 2 k=1
1−q v (nk )
⎫ ⎬ |a(n)|q <∞ . ⎭ ⎭ ⎫ 1q ⎬
Note. For p > 1(q > 1), the above two sets with the norms are normed linear spaces. For 0 < p < 1(q < 0) or p < 0(0 < q < 1), we still use the sets with ||f ||p,ϕ and ||a||q,Ψ as the formal symbols. We have the following theorem:
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
184
ws-book9x6
Half-Discrete Hilbert-Type Inequalities
Theorem 5.1. Suppose that m, s, n(0) ∈ N, α, β > 0, p ∈ R\{0, 1}, 1p + 1q = 1, λ, λ1 , λ2 ∈ R, λ1 + λ2 = λ, kλ (t, u) is a finite homogeneous function of degree −λ in R2+ , kλ (t, u)tλ2 −s is decreasing with respect to u ∈ R+ and strictly decreasing in an interval I ⊂ (n(0) , ∞), v (t) > 0, v (t) ≤ 0 (t ∈ (n(0) − 1, ∞)), with v(n(0) − 1) ≥ 0, ⎞ p1 ⎛ 1q Γs ( β1 ) Γm ( α1 ) ⎝ ⎠ k(λ1 ), (5.27) K(λ1 ) = αm−1 Γ( m ) α β s−1 Γ βs
∞ where k(λ1 ) = 0 kλ (t, 1)tλ1 −1 dt ∈ R+ . If f (x) ≥ 0, a(n) ≥ 0, f ∈ m Lp,ϕ (R+ ),a = {a(n)} ∈ lq,Ψ such that ||f ||p,ϕ > 0, ||a||q,Ψ > 0, then (i) for p > 1, we have the following equivalent inequalities: I= kλ (||x||α , ||v(n)||β )a(n)f (x)dx Rm + n∈Ns (0) n
(5.28) < K(λ1 )||f ||p,ϕ ||a||q,Ψ , 1 ⎧ ⎫ p p ⎨ ⎬ 1−p [Ψ(n)] kλ (||x||α , ||v(n)||β )f (x)dx J1 = ⎩ ⎭ Rm s + n∈N
n(0)
< K(λ1 )||f ||p,ϕ , and
⎧ ⎨ J2 =
⎩
(5.29) ⎛
Rm +
[ϕ(x)]1−q ⎝
n∈Ns (0)
⎫ 1q ⎬ kλ (||x||α , ||v(n)||β )a(n)⎠ dx ⎭ ⎞q
n
< K(λ1 )||a||q,Ψ ;
(5.30)
(ii) for p < 0, we have the reverses of (5.28), (5.29) and (5.30); m (iii) for 0 < p < 1, if f (x) ≥ 0, a(n) ≥ 0, f ∈ Lp,ϕ(R+ ), a = {a(n)} ∈ lq,Ψ such that ||f ||p,ϕ > 0, ||a||q,Ψ > 0, then we have the following reverse equivalent inequalities: I= kλ (||x||α , ||v(n)||β )a(n)f (x)dx Rm + n∈Ns (0) n
(5.31) > K(λ1 )||f ||p,ϕ ||a||q,Ψ , ⎧ p ⎫ p1 ⎬ ⎨ J1 = [Ψ(n)]1−p kλ (||x||α , ||v(n)||β )f (x)dx ⎭ ⎩ Rm s + n∈N
n(0)
> K(λ1 )||f ||p,ϕ ,
(5.32)
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
ws-book9x6
185
Multi-dimensional Half-Discrete Hilbert-Type Inequalities
and J2 =
⎧ ⎨ ⎩
⎛
Rm +
1−q ⎝ [ϕ(x)]
n∈Ns (0)
⎫ 1q ⎬ kλ (||x||α , ||v(n)||β )a(n)⎠ dx ⎭ ⎞q
n
> K(λ1 )||a||q,Ψ . (5.33) Proof.
(i) For p > 1, by (5.12) and (5.13), for H(||x||α , ||v(n)||β ) = kλ (||x||α , ||v(n)||β ),
ω(n) = ω(λ2 , n) and (x) = (λ1 , x), in view of (5.16), (5.17) and the assumptions, we have (5.29) and (5.30). By H¨older’s inequality, we have I= kλ (||x||α , ||v(n)||β )a(n)f (x)dx n∈Ns (0) n
=
Rm +
[Ψ(n)]
−1 q
n∈Ns (0) n
Rm +
1
kλ (||x||α , ||v(n)||β )f (x)dx {[Ψ(n)] q a(n)}
≤ J1 ||a||q,Ψ .
(5.34)
Then, by (5.29), we have inequality (5.28). On the other hand, assuming that (5.28) is valid, setting p−1 a(n) = [Ψ(n)]1−p
Rm +
kλ (||x||α , ||v(n)||β )f (x)dx
(n ∈ Nsn(0) ),
then, we have ||a||q,Ψ = J1p−1 . By (5.12) and the assumption of 0 < ||f ||p,ϕ < ∞, we have J1 < ∞. If J1 = 0, then (5.29) is trivially valid; if J1 > 0, then by (5.28), it follows that ||a||qq,Ψ = J1p = I < K(λ1 )||f ||p,ϕ ||a||q,Ψ , ||a||q−1 q,Ψ = J1 < K(λ1 )||f ||p,ϕ , then, (5.29) follows. Hence, (5.28) and (5.29) are equivalent. By H¨older’s inequality, we still have ⎧ ⎫ ⎨ ⎬ −1 1 I= {[ϕ(x)] p f (x)} [ϕ(x)] p kλ (||x||α , ||v(n)||β )a(n) dx ⎩ ⎭ Rm s + n∈N
n(0)
≤ ||f ||p,ϕ J2 .
(5.35)
November 7, 2013
186
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
ws-book9x6
Half-Discrete Hilbert-Type Inequalities
Then, by (5.30), we have (5.28). On the other hand, assuming that (5.28) is valid, setting ⎛ ⎞q−1 f (x) = [ϕ(x)]1−q ⎝ kλ (||x||α , ||v(n)||β )a(n)⎠ (x ∈ Rm + ), n∈Ns (0) n
then, we have ||f ||p,ϕ = J2q−1 . By (5.13) and the assumption of 0 < ||a||q,Ψ < ∞, we have J2 < ∞. If J2 = 0, then (5.30) is valid trivially; if J2 > 0, then by (5.28), it follows that ||f ||pp,ϕ = J2q = I < K(λ1 )||f ||p,ϕ ||a||q,Ψ , p−1 = J2 < K(λ1 )||a||q,Ψ . ||f ||p,ϕ
Thus, (5.30) follows, and (5.28) and (5.30) are equivalent. Hence, (5.28), (5.29) and (5.30) are equivalent. (ii) For p < 0 (0 < q < 1), by the reverses of (5.12) and (5.13), for H(||x||α , ||v(n)||β ) = kλ (||x||α , ||v(n)||β ), ω(n) = ω(λ2 , n) and (x) = (λ1 , x), in view of (5.16), (5.17) and the assumptions, we have the reverses of (5.29) and (5.30). By the reverse H¨older’s inequality, we have I ≥ J1 ||a||q,Ψ .
(5.36)
Then, by the reverse of (5.29), we have the reverse of (5.28). On the other hand, assuming that the reverse of (5.28) is valid, setting a(n) as (i), then we have ||a||q,Ψ = J1p−1 . By the reverse of (5.12) and the assumption of 0 < ||f ||p,ϕ < ∞, we have J1 > 0. If J1 = ∞, then the reverse of (5.29) is valid trivially; if J1 < ∞, then by the reverse of (5.28), it follows that ||a||qq,Ψ = J1p = I > K(λ1 )||f ||p,ϕ ||a||q,Ψ , ||a||q−1 q,Ψ = J1 > K(λ1 )||f ||p,ϕ . Thus, the reverse of (5.29) follows. Hence, the reverses of (5.28) and (5.29) are equivalent. By the reverse H¨older’s inequality, we still have I ≥ ||f ||p,ϕ J2 .
(5.37)
Then, by the reverse of inequality (5.30), we have the reverse of (5.28). On the other hand, assuming that the reverse of (5.28) is valid, setting f (x) as (i), then we have ||f ||p,ϕ = J2q−1 . By the reverse of (5.13) and the
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
Multi-dimensional Half-Discrete Hilbert-Type Inequalities
ws-book9x6
187
assumption of 0 < ||a||q,Ψ < ∞, we have J2 > 0. If J2 = ∞, then the reverse of (5.30) is trivially valid; if J2 < ∞, then by the reverse of (5.28), it follows that ||f ||pp,ϕ = J2q = I > K(λ1 )||f ||p,ϕ ||a||q,Ψ , p−1 = J2 > K(λ1 )||a||q,Ψ . ||f ||p,ϕ Thus, the reverse of (5.30) follows and then, the reverses of (5.28) and (5.30) are equivalent. Hence, the reverses of (5.28), (5.29) and (5.30) are equivalent. (iii) For 0 < p < 1(q < 0), by the reverses of (5.12) and (5.13), for H(||x||α , ||v(n)||β ) = kλ (||x||α , ||v(n)||β ), ω(n) = ω(λ2 , n) and (x) = (λ1 , x), in view of (5.16), (5.18) and the assumptions, we have (5.32) and (5.33). By the reverse H¨older’s inequality, we have (5.38) I ≥ J1 ||a||q,Ψ . Then, by (5.32), we have (5.30). On the other hand, assuming that (5.30) is valid, setting a(n) as (i), then we have ||a||q,Ψ = J1p−1 . By the reverse of (5.12) and the assumption of 0 < ||f ||p,ϕ < ∞, we have J1 > 0. If J1 = ∞, then (5.32) is trivially valid; if J1 < ∞, then by (5.31), it follows that ||a||qq,Ψ = J1p = I > K(λ1 )||f ||p,ϕ||a||q,Ψ ,
||a||q−1 . q,Ψ = J1 > K(λ1 )||f ||p,ϕ Thus, (5.31) follows. Hence, (5.30) and (5.31) are equivalent. By the reverse H¨older’s inequality, we still have I ≥ ||f ||p,ϕJ2 . (5.39) Then, by (5.33), we have (5.31). On the other hand, assuming that (5.31) is valid, setting f (x) as follows: ⎛ 1−q ⎝ f (x) = [ϕ(x)]
⎞q−1 kλ (||x||α , ||v(n)||β )a(n)⎠
,
n∈Ns (0) n
x ∈ Rm +,
then, we have ||f ||p,ϕ = J2q−1 . By the reverse of (5.13) and the assumption of 0 < ||a||q,Ψ < ∞, we have J2 > 0. If J2 = ∞, then, (5.33) is trivially valid; if J2 < ∞, and then, by (5.31), it follows that ||f ||pp,ϕ = J2q = I > K(λ1 )||f ||p,ϕ||a||q,Ψ , p−1 ||f ||p, ϕ = J2 > K(λ1 )||a||q,Ψ . Thus, (5.33) follows and then (5.31) and (5.33) are equivalent. Hence, (5.31), (5.32) and (5.33) are equivalent.
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
188
ws-book9x6
Half-Discrete Hilbert-Type Inequalities
Theorem 5.2. As the assumptions of Theorem 5.1, if there exist δ0 > 0, and η > λ1 , such that for any δ ∈ (0, δ0 ], ∞ k(λ1 ± δ) = kλ (t, 1)t(λ1 ±δ)−1 dt ∈ R+ , 0
and
kλ (t, 1) ≤ L
1 tη
(t ≥ 1; L > 0),
then, the inequalities in Theorem 5.1 have the same best possible constant factor K(λ1 ) given by (5.27). Proof.
a(n) as follows: For 0 < ε < |q|δ0 , we set f(x), 0, 0 < ||x||α < 1, f(x) = λ1 −m− pε ||x||α , ||x||α ≥ 1, λ2 − qε −s
a(n) = ||v(n)||β
s 2
v (nk ), n ∈ Nsn(0) .
k=1
(i) For p > 1, if there exists a constant k(≤ K(λ1 )), such that (5.28) is still valid as we replace K(λ1 ) by k, then, in particular, it follows that = kλ (||x||α , ||v(n)||β ) a(n)f(x)dx < k||f||p,ϕ || a||q,Ψ . I(ε) Rm + n∈Ns (0) n
(5.40) Since by (5.2) and (5.4), we have p1 −m−ε ||f||p,ϕ = ||x||α dx =
|| a||q,Ψ
p1 Γm ( α1 ) , εαm−1 Γ( m ) {x∈Rm α + ;||x||α ≥1} ⎧ ⎫ 1q ⎧ ⎫ q1 s ⎨ ⎬ ⎨ Γs ( 1 ) ⎬ 2 β + O(1) = ||v(n)||−s−ε v (nk ) = , β ⎩ ⎭ ⎩ εβ s−1 Γ s ⎭ n∈Ns (0) k=1 β n
then, by (5.19) and (5.40), it follows that Γs ( β1 ) Γm ( α1 ) (k(λ1 ) + o(1)) (1 − εO1 (1)) s αm−1 Γ( m α ) β s−1 Γ β
Γm ( α1 ) αm−1 Γ( m α)
⎧ p1 ⎨
⎫ 1q ⎬ Γs ( β1 ) + εO(1) , ⎩ β s−1 Γ s ⎭ β
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
ws-book9x6
189
Multi-dimensional Half-Discrete Hilbert-Type Inequalities
and then K(λ1 ) ≤ k (ε → 0+ ). Hence, k = K(λ1 ) is the best possible constant factor of (5.28). By the equivalency, the constant factor in (5.29) and (5.30) is the best possible. Otherwise, we can get a contradiction by (5.34) and (5.35) that the constant factor in (5.28) is not the best possible. (ii) For p < 0, if there exists a constant k ≥ K(λ1 ), such that the reverse of (5.28) is still valid as we replace K(λ1 ) by k, then, in particular, it follows by (i) that Γs ( β1 ) Γm ( α1 ) (k(λ1 ) + o(1))(1 − εO1 (1)) s αm−1 Γ( m α ) β s−1 Γ β
>k
Γm ( α1 ) αm−1 Γ( m α)
⎧ p1 ⎨
⎫ 1q q1 ⎬ Γs ( β1 ) + εO(1) , ⎩ β s−1 Γ s ⎭ β
and then K(λ1 ) ≥ k (ε → 0+ ). Hence, k = K(λ1 ) is the best possible constant factor of the reverse of (5.28). By the equivalency, the constant factor in the reverse of (5.29) (the reverse of (5.30)) is the best possible. Otherwise, we can get a contradiction by (5.36) ((5.37)) that the constant factor in the reverse of (5.28) is not the best possible. (iii) For 0 < p < 1, if there exists a constant k ≥ K(λ1 ), such that (5.31) is still valid as we replace K(λ1 ) by k, then in particular, it follows that = I(ε)
Rm + n∈Ns (0)
kλ (||x||α , ||v(n)||β ) a(n)f(x)dx
n
a||q,Ψ . > k||f||p,ϕ|| Since, by (5.20), we have
||f||p,ϕ =
=
{x∈Rm + ;||x||α ≥1}
p1 −m−ε ||x||α (1
− θ(||x||α ))dx
p1 Γm ( α1 ) , (1 − εO1 (1)) εαm−1 Γ( m α)
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
190
Half-Discrete Hilbert-Type Inequalities
then it follows that Γs ( β1 ) Γm ( α1 ) (k(λ1 ) + o(1)) (1 − εO1 (1)) s αm−1 Γ( m ) α β s−1 Γ β
>k
Γm ( α1 ) (1 m−1 α Γ( m α)
⎫ 1q ⎧ p1 ⎨ ⎬ Γs ( β1 ) + εO(1) , − εO1 (1)) ⎭ ⎩ β s−1 Γ s β
and then K(λ1 ) ≥ k (ε → 0+ ). Hence, k = K(λ1 ) is the best value of (5.31). By the equivalency, the constant factor in (5.32), (5.33) is the best possible. Otherwise, we can get a contradiction by (5.38) ((5.39)) that the constant factor in (5.31) is not the best possible. For β = 1, we set Ψ1 (n) =
q(s−λ2 )−s ||v(n)||1
s 2
1−q v (nk )
(n ∈ Nsn(0) ),
k=1
wherefrom 2 −s [Ψ1 (n)]1−p = ||v(n)||qλ 1
s 2
v (nk ).
k=1
We also set p(m−λ1 )−m , ϕ 1 (x) = (1 − θ1 (||x||α ))||x||α
and 1 −m [ϕ 1 (x)]1−q = (1 − θ1 (||x||α ))1−q ||x||qλ , α
where
δ0 (s − 1)! ∞ kλ (t, 1)tλ1 −1 dt (0 < δ0 ≤ 1). k(λ1 ) ||x||α By (5.21)-(5.25), in the same way of Theorem 5.1 and Theorem 5.2, we have θ1 (||x||α ) =
Theorem 5.3. Suppose that m, s ∈ N, α > 0, p ∈ R\{0, 1}, 1p + 1q = 1, λ, λ1 , λ2 ∈ R,λ1 + λ2 = λ, kλ (t, u) is a finite homogeneous function of degree −λ in R2+ , satisfying ∂ ∂2 (kλ (t, u)uλ2 −s ) < 0, (kλ (t, u)uλ2 −s ) > 0 (u ∈ R+ ), ∂u ∂u2 1 1 (0) (0) v (t) > 0, v (t) ≤ 0, v (t) ≥ 0(t ∈ (n − , ∞)), with v n − ≥ 0, 2 2 1q p1 m 1 Γ (α) 1 K1 (λ1 ) = k(λ1 ), (5.41) m m−1 α Γ( α ) (s−1)!
ws-book9x6
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
Multi-dimensional Half-Discrete Hilbert-Type Inequalities
ws-book9x6
191
∞ where k(λ1 ) = 0 kλ (t, 1)tλ1 −1 du ∈ R+ . If f (x) ≥ 0, a(n) ≥ 0, f ∈ m Lp,ϕ (R+ ), a = {a(n)} ∈ lq,Ψ1 such that ||f ||p,ϕ > 0, ||a||q,Ψ1 > 0, then, (i) for p > 1, we have the following equivalent inequalities: kλ (||x||α , ||v(n)||1 )a(n)f (x)dx Rm + n∈Ns (0) n
⎧ ⎨ ⎩
and
< K1 (λ1 )||f ||p,ϕ ||a||q,Ψ1 ,
(5.42)
< K1 (λ1 )||f ||p,ϕ ,
(5.43)
p ⎫ p1 ⎬ kλ (||x||α , ||v(n)||1 )f (x)dx ⎭ Rm +
[Ψ1 (n)]1−p
n∈Ns (0) n
⎧ ⎨ ⎩
⎛ Rm +
[ϕ(x)]1−q ⎝
⎫ q1 ⎬ kλ (||x||α , ||v(n)||1 )a(n)⎠ dx ⎭ ⎞q
n∈Ns (0) n
< K1 (λ1 )||a||q,Ψ1 ;
(5.44)
(ii) for p < 0, we have the reverses of (5.42), (5.43) and (5.44); m (iii) for 0 < p < 1, if f (x) ≥ 0, a(n) ≥ 0, f ∈ Lp,ϕ(R+ ), a = {a(n)} ∈ lq,Ψ1 such that ||f ||p,ϕ1 > 0, ||a||q,Ψ1 > 0, then we have the following reverse equivalent inequalities: kλ (||x||α , ||v(n)||1 )a(n)f (x)dx Rm + n∈Ns (0) n
⎧ ⎨ ⎩
> K1 (λ1 )||f ||p,ϕ1 ||a||q,Ψ1 ,
p ⎫ p1 ⎬ kλ (||x||α , ||v(n)||1 )f (x)dx ⎭ Rm
[Ψ1 (n)]1−p
n∈Ns (0) n
+
> K1 (λ1 )||f ||p,ϕ1 , and
⎧ ⎨ ⎩
Rm +
(5.45)
⎛ [ϕ 1 (x)]1−q ⎝
n∈Ns (0)
(5.46)
⎫ 1q ⎬ kλ (||x||α , ||v(n)||1 )a(n)⎠ dx ⎭ ⎞q
n
> K1 (λ1 )||a||q,Ψ1 . (5.47) Moreover, if there exist δ0 > 0 and η > λ1 , such that for any δ ∈ (0, δ0 ], ∞ kλ (t, 1)t(λ1 ±δ)−1 dt ∈ R+ , k(λ1 ± δ) = 0
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
192
ws-book9x6
Half-Discrete Hilbert-Type Inequalities
and
kλ (t, 1) ≤ L
1 tη
(t ≥ 1; L > 0),
then, the above inequalities have the same best possible constant factor K1 (λ1 ). Some Corollaries
5.3.3
If w(t) is a strictly increasing differentiable function in (b, c) (−∞ ≤ b < c ≤ ∞), with w(b+) = 0, w(c−) = ∞, p(m−λ1 )−m Φ(x) = ||w(x)||α (
m 2
w (xi ))1−p ,
i=1
and Φ(x) = (1 − θ(||w(x)||α ))Φ(x), setting x = w(X) = (w(X1 ), · · · , w(Xm )) in the inequalities of Theorem 5.1, after simplification, replacing m f (w(X)) i=1 w (Xi ) by f (x), we have: Corollary 5.1. Suppose that m, s, n(0) ∈ N, α, β > 0, p ∈ R\{0, 1}, 1 + 1q = 1, λ, λ1 , λ2 ∈ R, λ1 + λ2 = λ, kλ (t, u) is a finite homogeneous p function of degree −λ in R2+ , kλ (t, u)uλ2 −s is decreasing with respect to u ∈ R+ and strictly decreasing in an interval I ⊂ (n(0) , ∞), w(t) is strictly increasing in (b, c), with w(b+) = 0, w(c−) = ∞, and v (t) > 0, v (t) ≤ 0 (t ∈ (n(0) − 1, ∞)), with v(n(0) − 1) ≥ 0, ⎛ ⎞ p1 1q s 1 m 1 Γ ( ) Γ (α) β ⎝ ⎠ k(λ1 ), (5.48) K(λ1 ) = αm−1 Γ( m ) s−1 α β Γ s β
∞
where k(λ1 ) = 0 kλ (t, 1)tλ1 −1 dt ∈ R+ . If f (x) ≥ 0, a(n) ≥ 0, f ∈ Lp,Φ ((b, c)m ), a = {a(n)} ∈ lq,Ψ , such that ||f ||p,Φ > 0, ||a||q,Ψ > 0, then, (i) for p > 1, we have the following equivalent inequalities: kλ (||w(x)||α , ||v(n)||β )a(n)f (x)dx (b,c)m n∈Ns (0) n
⎧ ⎨ ⎩
n∈Ns (0)
< K(λ1 )||f ||p,Φ ||a||q,Ψ ,
[Ψ(n)]1−p
(b,c)m
kλ (||w(x)||α , ||v(n)||β
f (x)dx)p
(5.49) ⎫1 p ⎬ ⎭
n
< K(λ1 )||f ||p,Φ ,
(5.50)
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
ws-book9x6
193
Multi-dimensional Half-Discrete Hilbert-Type Inequalities
and
⎧ ⎨ ⎩
⎛ [Φ(x)]1−q ⎝
(b,c)m
n∈Ns (0)
⎫ 1q ⎬ kλ (||w(x)||α , ||v(n)||β )a(n)⎠ dx ⎭ ⎞q
n
< K(λ1 )||a||q,Ψ ;
(5.51)
(ii) for p < 0, we have the reverses of (5.49), (5.50) and (5.51); m (iii) for 0 < p < 1, if f (x) ≥ 0, a(n) ≥ 0, f ∈ Lp,Φ (R+ ), a = {a(n)} ∈ lq,Ψ , such that ||f ||p,Φ > 0, ||a||q,Ψ > 0, then we have the following reverse equivalent inequalities: kλ (||w(x)||α , ||v(n)||β )a(n)f (x)dx (b,c)m n∈Ns (0) n
< K(λ1 )||f ||p,Φ ||a||q,Ψ ,
⎧ ⎨ ⎩
n∈Ns (0)
(5.52) 1 ⎫ p p ⎬ 1−p [Ψ(n)] kλ (||w(x)||α , ||v(n)||β )f (x)dx ⎭ (b,c)m
n
> K(λ1 )||f ||p,Φ , and
⎧ ⎨ ⎩
(b,c)m
⎛ 1−q ⎝ [ϕ(x)]
n∈Ns (0)
(5.53)
⎫ 1q ⎬ kλ (||w(x)||α , ||v(n)||β )a(n)⎠ dx ⎭ ⎞q
n
> K(λ1 )||a||q,Ψ .
(5.54)
For w(x) = x in (5.49)-(5.54), we reduce (5.28)-(5.33). Hence, Theorem 5.1 and Corollary 5.1 are equivalent. We can conclude that the constant factor in the above inequalities is the best possible by adding some conditions as follows: Corollary 5.2. As the assumptions of Corollary 5.1, if there exist δ0 > 0 and η > λ1 , such that for any δ ∈ (0, δ0 ], ∞ k(λ1 ± δ) = kλ (t, 1)t(λ1 ±δ)−1 dt ∈ R+ , 0
and 1 (t ≥ 1; L > 0), tη then the inequalities in Corollary 5.1 are all with the same best possible constant factor K(λ1 ). kλ (t, 1) ≤ L
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
194
ws-book9x6
Half-Discrete Hilbert-Type Inequalities
For v(t) = t, n(0) = 1 in Theorem 5.1 and Theorem 5.2, setting q(s−λ2 )−s
ψ(n) = ||n||β
(n ∈ Ns ),
we have Corollary 5.3. Suppose that m, s ∈ N, α, β > 0, p ∈ R\{0, 1}, p1 + 1q = 1, λ, λ1 , λ2 ∈ R, λ1 + λ2 = λ, kλ (t, u) is a finite homogeneous function of degree −λ in R2+ , kλ (t, u)uλ2 −s is decreasing with respect to u ∈ R+ and strict decreasing in an interval I ⊂ (1, ∞), ⎛ ⎞ p1 1q s 1 m 1 ( ) Γ Γ (α) β ⎝ ⎠ k(λ1 ), K(λ1 ) = (5.55) αm−1 Γ( m ) s−1 α β Γ s β
∞
where, k(λ1 ) = 0 kλ (t, 1)tλ1 −1 dt ∈ R+ . If f (x) ≥ 0, a(n) ≥ 0, f ∈ m Lp,ϕ (R+ ), a = {a(n)} ∈ lq,ψ , such that ||f ||p,ϕ > 0, ||a||q,ψ > 0, then (i) for p > 1, we have the following equivalent inequalities: kλ (||x||α , ||n||β )a(n)f (x)dx < K(λ1 )||f ||p,ϕ ||a||q,ψ , Rm + n∈Ns
[ψ(n)]1−p
p p1
Rm +
n∈Ns
(5.56)
kλ (||x||α , ||n||β )f (x)dx
< K(λ1 )||f ||p,ϕ , (5.57)
and
Rm +
[ϕ(x)]1−q
q kλ (||x||α , ||n||β )a(n)
1q dx
< K(λ1 )||a||q,ψ ;
n∈Ns
(5.58) (ii) for p < 0, we have the reverses of (5.56), (5.57) and (5.58); m (iii) for 0 < p < 1, if f (x) ≥ 0, a(n) ≥ 0, f ∈ Lp,ϕ (R+ ), a = {a(n)} ∈ lq,ψ , such that ||f ||p,ϕ > 0, ||a||q,ψ > 0, then we have the following reverse equivalent inequalities: kλ (||x||α , ||n||β )a(n)f (x)dx > K(λ1 )||f ||p,ϕ||a||q,ψ , Rm + n∈Ns
n∈Ns
[ψ(n)]1−p
Rm +
p p1 kλ (||x||α , ||n||β )f (x)dx
(5.59) > K(λ1 )||f ||p,ϕ, (5.60)
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
ws-book9x6
195
Multi-dimensional Half-Discrete Hilbert-Type Inequalities
and Rm +
1−q
[ϕ(x)]
q kλ (||x||α , ||n||β )a(n)
q1 dx
> K(λ1 )||a||q,Ψ .
n∈Ns
(5.61) Moreover, if there exist δ0 > 0 and η > λ1 , such that for any δ ∈ (0, δ0 ], ∞ k(λ1 ± δ) = kλ (t, 1)t(λ1 ±δ)−1 dt ∈ R+ , 0
and 1 (t ≥ 1; L > 0), tη then, the above inequalities are all with the best constant factor K(λ1 ). For v(t) = (t − ξ)γ (0 < γ ≤ 1, 0 ≤ ξ ≤ 12 ), n(0) = 1 in Theorem 5.3, setting kλ (t, 1) ≤ L
q(s−λ2 )−s
Ψξ (n) = ||(n − ξ)γ ||1
(n ∈ Ns ),
we have some more accurate inequalities of Corollary 5.3 (for β = 1) as follows: Corollary 5.4. Suppose that m, s ∈ N, α > 0, p ∈ R\{0, 1}, 1p + 1q = 1, λ, λ1 , λ2 ∈ R, λ1 + λ2 = λ, kλ (t, u) is a finite homogeneous function of degree −λ in R2+ , satisfying ∂ (kλ (t, u)uλ2 −s ) < 0, ∂u K1 (λ1 ) =
∂2 (kλ (t, u)uλ2 −s ) > 0 (u ∈ R+ ), ∂u2 q1 p1 Γm ( α1 ) 1 k(λ1 ), (5.62) αm−1 Γ( m (s − 1)! α)
∞ where k(λ1 ) = 0 kλ (t, 1)tλ1 −1 dt ∈ R+ . If f (x) ≥ 0, a(n) ≥ 0, f ∈ m Lp,ϕ (R+ ),a = {a(n)} ∈ lq,Ψξ such that ||f ||p,ϕ > 0, ||a||q,Ψξ > 0, then
(i) for p > 1, we have the following equivalent inequalities: kλ (||x||α , ||(n − ξ)γ ||1 )a(n)f (x)dx
Rm + n∈Ns
< K1 (λ1 )||f ||p,ϕ ||a||q,Ψξ , 1−p [Ψξ (n)] n∈Ns
< K1 (λ1 )||f ||p,ϕ ,
(5.63) p p1 Rm +
kλ (||x||α , ||(n − ξ)γ ||1 )f (x)dx (5.64)
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
196
ws-book9x6
Half-Discrete Hilbert-Type Inequalities
and
Rm +
[ϕ(x)]1−q
q kλ (||x||α , ||(n − ξ)γ ||1 )a(n)
1q dx
n∈Ns
< K1 (λ1 )||a||q,Ψξ ;
(5.65)
(ii) for p < 0, we have the reverses of (5.63), (5.64) and (5.65); (iii) for 0 < p < 1, if f (x) ≥ 0, a(n) ≥ 0, f ∈ Lp,ϕ (Rm + ), a = {a(n)} ∈ lq,Ψξ , such that ||f ||p,ϕ > 0, ||a||q,Ψξ > 0, then we have the following reverse equivalent inequalities: kλ (||x||α , ||(n − ξ)γ ||1 )a(n)f (x)dx Rm + n∈Ns
> K1 (λ1 )||f ||p,ϕ1 ||a||q,Ψξ ,
[Ψ1 (n)]1−p
Rm +
n∈Ns
(5.66) p p1
kλ (||x||α , ||(n − ξ)γ ||1 )f (x)dx
> K1 (λ1 )||f ||p,ϕ1 ,
(5.67)
and
Rm +
[ϕ 1 (x)]1−q
q kλ (||x||α , ||(n − ξ)γ ||1 )a(n)
1q dx
n∈Ns
> K1 (λ1 )||a||q,Ψξ .
(5.68)
Moreover, if there exist δ0 > 0 and η > λ1 , such that for any δ ∈ (0, δ0 ], ∞ kλ (t, 1)t(λ1 ±δ)−1 dt ∈ R+ , k(λ1 ± δ) = 0
and
kλ (t, 1) ≤ L
1 tη
(t ≥ 1; L > 0),
then, the above inequalities are all with the same best possible constant factor K1 (λ1 ). 5.3.4
Operator Expressions and Some Particular Examples
As the assumptions of Theorem 5.1, for p > 1, setting 1 )−m ϕ(x) = ||x||p(m−λ α
(x ∈ Rm + ),
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
Multi-dimensional Half-Discrete Hilbert-Type Inequalities
and
Ψ(n) =
q(s−λ2 )−s ||v(n)||β
s 2
ws-book9x6
197
1−q v (nk )
(n ∈ Nsn(0) ),
k=1
we define a first kind of multi-dimensional half-discrete Hilbert-type operm ator with the homogeneous kernel T1 : Lp,ϕ (R+ ) → lp,Ψ1−p as follows: For m any f ∈ Lp,ϕ (R+ ), there exists a T1 f , satisfying T1 f (n) = kλ (||x||α , ||v(n)||β )f (x)dx(n ∈ Nsn(0) ). (5.69) Rm +
By (5.29), we can write ||T1 f ||p,Ψ1−p < K(λ1 )||f ||p,ϕ , and then T1 f ∈ lp,Ψ1−p . Hence, T1 is a bounded linear operator with the norm (see Tailor and Lay [72]) ||T1 f ||p,Ψ1−p ||T1 || = sup ≤ K(λ1 ). m ||f ||p,ϕ f ( =θ)∈Lp,ϕ (R+ ) Also we define a second kind of multi-dimensional half-discrete Hilbert-type m operator with the homogeneous kernel T2 : lq,Ψ → Lq,ϕ1−q (R+ ) as follows: For any a ∈ lq,Ψ , there exists a T2 a, satisfying kλ (||x||α , ||v(n)||β )a(n)(x ∈ Rm (5.70) T2 a(x) = + ). n∈Ns (0) n
By (5.30), we can write ||T2 a||q,ϕ1−q < K(λ1 )||a||q,Ψ , m and then T2 a ∈ Lq,ϕ1−q (R+ ). Hence, T2 is a bounded linear operator with ||T2 a||q,ϕ1−q sup ≤ K(λ1 ). ||T2 || = ||a||q,Ψ a( =θ)∈lq,Ψ By Theorem 5.2, it follows that Theorem 5.4. With the assumptions of Theorem 5.1, T1 and T2 are defined by (5.69) and (5.70). If there exist δ0 > 0 and η > λ1 , such that, for any δ ∈ (0, δ0 ], ∞ kλ (t, 1)t(λ1 ±δ)−1 dt ∈ R+ , k(λ1 ± δ) = 0
and
kλ (t, 1) ≤ L
1 tη
(t ≥ 1; L > 0),
then, we have ||T1 || = ||T2 || = K(λ1 ) =
Γm ( α1 ) m−1 α Γ( m α)
q1
⎞ p1 Γs ( β1 ) ⎝ ⎠ k(λ1 ). β s−1 Γ βs ⎛
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
198
Half-Discrete Hilbert-Type Inequalities
With the assumptions of Theorem 5.3, for p > 1, setting 1 )−m ϕ(x) = ||x||p(m−λ α
and
(x ∈ Rm + ),
Ψ1 (n) =
q(s−λ2 )−s ||v(n)||1
s 2
1−q
v (nk )
(n ∈ Nsn(0) ),
k=1
we define a first kind half-discrete operator with the homogeneous kernel m and multi-variables T1 : Lp,ϕ (R+ ) → lp,Ψ1−p as follows: 1 m For any f ∈ Lp,ϕ (R+ ), there exists a T1 f , satisfying kλ (||x||α , ||v(n)||1 )f (x)dx(n ∈ Nsn(0) ). (5.71) T1 f (n) = Rm +
By (5.43), we can write ||T1 f ||p,Ψ1−p < K1 (λ1 )||f ||p,ϕ , 1
and then, T1 f ∈ lp,Ψ1−p . Hence, T1 is a bounded linear operator with the 1 norm ||T1 f ||p,Ψ1−p 1 sup ≤ K1 (λ1 ). ||T1 || = ||f || p,ϕ f ( =θ)∈Lp,ϕ (Rm ) + Also we define a second kind half-discrete operator with the homogeneous m kernel and multi-variables T2 : lq,Ψ1 → Lq,ϕ1−q (R+ ) as follows: For any a ∈ lq,Ψ1 , there exists a T2 a, satisfying T2 a(x) = kλ (||x||α , ||v(n)||1 )a(n) (x ∈ Rm (5.72) + ). n∈Ns (0) n
By (5.44), we can write ||T2 a||q,ϕ1−q < K(λ1 ) ||a||q,Ψ1 , m and then T2 a ∈ Lq,ϕ1−q (R+ ). Hence, T2 is a bounded linear operator with
||T2 || =
||T2 a||q,ϕ1−q ≤ K1 (λ1 ). ||a||q,Ψ1 a( =θ)∈lq,Ψ sup
By Theorem 5.3, it follows that Theorem 5.5. As the assumptions of Theorem 5.3, T1 and T2 are defined by (5.71) and (5.72). If there exist δ0 > 0 and η > λ1 , such that for any δ ∈ (0, δ0 ], ∞ kλ (t, 1)t(λ1 ±δ)−1 dt ∈ R+ , k(λ1 ± δ) = 0
ws-book9x6
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
ws-book9x6
199
Multi-dimensional Half-Discrete Hilbert-Type Inequalities
and
kλ (t, 1) ≤ L
1 tη
(t ≥ 1; L > 0),
then, we have ||T1 || = ||T2 || = K1 (λ1 ) =
Example 5.1. We set kλ (t, u) = then, we find that
Γm ( α1 ) αm−1 Γ( m ) α 1 (t+u)λ
q1
1 (s − 1)!
p1 k(λ1 ).
(λ > 0, λ1 > 0, λ2 ≤ s),
∂2 (kλ (t, u)uλ2 −s ) > 0 (u ∈ R+ ). ∂u2 For δ0 = 12 min{λ1 , λ2 }, δ ∈ (0, δ0 ], we find ∞ (λ1 ±δ)−1 t k(λ1 ± δ) = du = B(λ1 ± δ, λ2 ∓ δ) ∈ R+ , (t + 1)λ 0 and 1 1 λ + λ1 ∈ (λ1 , λ)). ≤ η (t ≥ 1; η = kλ (t, 1) = λ (t + 1) t 2 ∂ (kλ (t, u)uλ2 −s ) < 0, ∂u
(i) For v(t) = ln t(t ≥ 2 = n(0) ), v(n(0) − 1) = 0, setting 1 )−m ϕ(x) = ||x||p(m−λ α
and
Ψ(n) =
q(s−λ2 )−s || ln n||β
(x ∈ Rm + ),
s 2 1 nk
1−q (n ∈ Ns2 ),
k=1 m Lp,ϕ (R+ )
we define an operator T1 : → lp,Ψ1−p as follows: ), there exists a T1 f , satisfying For any f ∈ Lp,ϕ (Rm + 1 T1 f (n) = f (x)dx (n ∈ Ns2 ). λ (||x|| + || ln n|| ) α β Rm + m
We also define an operator T2 : lq,Ψ → Lq,ϕ1−q (R+ ) as follows: For any a ∈ lq,Ψ , there exists a T2 a, satisfying 1 a(n) (x ∈ Rm T2 a(x) = + ). (||x|| + || ln n||β )λ α s n∈N2
Then by Theorem 5.4, we have ||T1 || = ||T2 || =
Γm ( α1 ) αm−1 Γ( m α)
1q
⎞ p1 Γs ( β1 ) ⎝ ⎠ B(λ1 , λ2 ). β s−1 Γ βs ⎛
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
200
Half-Discrete Hilbert-Type Inequalities
(ii) For v(t) = ln(t−γ)(t ≥ 2 = n(0) ; γ ≤ 12 ), v(n(0) − 12 ) = ln( 32 −γ) ≥ 0, setting p(m−σ)−m ϕ(x) = ||x||α
and
Ψγ (n) = || ln(n −
q(s−σ)−s γ)||1
s 2 k=1
1 nk − γ
(x ∈ Rm + ), 1−q (n ∈ Ns2 ),
m we define an operator T1 : Lp,ϕ (R+ ) → lp,Ψγ1−p as follows: m For any f ∈ Lp,ϕ (R+ ), there exists a T1 f , satisfying 1 T1 f (n) = f (x)dx (n ∈ Ns2 ). λ m (||x|| + || ln(n − γ)|| ) α 1 R+
Also we define an operator T2 : lq,Ψγ → Lq,ϕ1−q (R+ ) as follows: For any a ∈ lq,Ψγ , there exists T2 a, satisfying 1 a(n)(x ∈ Rm T2 a(x) = + ). (||x||α + || ln(n − γ)||1 )λ s m
n∈N2
Then, by Theorem 5.5, we have 1q p1 m 1 Γ ( ) 1 α ||T1 || = ||T2 || = B(λ1 , λ2 ). αm−1 Γ( m (s − 1)! α) (iii) For v(t) = ln κt(t ≥ 2 = n(0) ; κ ≥ setting 1 )−m ϕ(x) = ||x||p(m−λ α
and
Ψκ (n) =
q(s−λ2 )−s || ln κn||1
2 3 ),
v(n(0) − 12 ) = ln κ( 32 ) ≥ 0,
(x ∈ Rm + ),
s 2 1 nk
1−q (n ∈ Ns2 ),
k=1
we define an operator T1 : For any f ∈
m Lp,ϕ (R+ ),
T1 f (n) =
Rm +
m Lp,ϕ (R+ )
→ lp,Ψκ1−p as follows: there exists T1 f , satisfying
1 f (x)dx (||x||α + || ln κn||1 )λ
(n ∈ Ns2 ).
m We also define an operator T2 : lq,Ψκ → Lq,ϕ1−q (R+ ) as follows: For any a ∈ lq,Ψκ , there exists a T2 a, satisfying 1 a(n) (x ∈ Rm T2 a(x) = + ). (||x|| + || ln κn||1 )λ α s n∈N2
ws-book9x6
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
Multi-dimensional Half-Discrete Hilbert-Type Inequalities
ws-book9x6
201
Then, by Theorem 5.5, we have 1q p1 Γm ( α1 ) 1 ||T1 || = ||T2 || = B(λ1 , λ2 ). αm−1 Γ( m (s − 1)! α) Example 5.2. We set kλ (t, u) = we find (see Yang [134])
1 2
< λ ≤ 1, λ1 > 0, λ2 ≤ s), then
∂2 (kλ (t, u)uλ2 −s ) > 0 ∂u2
∂ (kλ (t, u)uλ2 −s ) < 0, ∂u For δ0 =
ln(t/u) (0 tλ −uλ
(u ∈ R+ ).
min{λ1 , λ2 }, δ ∈ (0, δ0 ], we obtain ∞ (ln t)t(λ1 ±δ)−1 k(λ1 ± δ) = dt tλ − 1 0 ∞ (ln v)v (λ1 ±δ)/λ−1 1 dv = 2 λ 0 v−1
2 π = ∈ R+ , λ sin π( λ1λ±δ )
and kλ (t, 1) = where t ≥ 1; η =
λ+λ1 2
1 ln t ≤ L η, tλ − 1 t
∈ (λ1 , λ), L > 0.
(i) For v(t) = ln t(t ≥ 2 = n(0) ), v(n(0) − 1) = 0, setting ϕ(x) and m Ψ(n) as Example 5.1(i), we define an operator T1 : Lp,ϕ (R+ ) → lp,Ψ1−p as follows: m For any f ∈ Lp,ϕ (R+ ), there exists a T1 f , satisfying ln(||x||α /|| ln n||β ) T1 f (n) = f (x)dx (n ∈ Ns2 ). λ − || ln n||λ m ||x|| R+ α β We also define an operator T2 : lq,Ψ → Lq,ϕ1−q (Rm + ) as follows: For any a ∈ lq,Ψ , there exists a T2 a, satisfying ln(||x||α /|| ln n||β ) a(n) (x ∈ Rm T2 a(x) = + ). λ − || ln n||λ ||x|| α β n∈Ns 2
Then, by Theorem 5.4, we have ||T1 || = ||T2 || =
Γm ( α1 ) αm−1 Γ( m α)
q1
⎞ p1 2 Γs ( β1 ) π ⎝ ⎠ . λ sin π( λλ1 ) β s−1 Γ βs ⎛
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
202
ws-book9x6
Half-Discrete Hilbert-Type Inequalities
(ii) For v(t) = ln(t−γ)(t ≥ 2 = n(0) ; γ ≤ 12 ), v(n(0) − 12 ) = ln( 32 −γ) ≥ 0, setting ϕ(x) and Ψγ (n) as Example 5.1(ii), we define an operator T1 : m m Lp,ϕ (R+ ) → lp,Ψγ1−p as follows: For any f ∈ Lp,ϕ (R+ ), there exists a T1 f , satisfying ln(||x||α /|| ln(n − γ)||1 ) f (x)dx (n ∈ Ns2 ). T1 f (n) = λ − || ln(n − γ)||λ ||x|| Rm α 1 + m Also we define an operator T2 : lq,Ψγ → Lq,ϕ1−q (R+ ) as follows: For any a ∈ lq,Ψγ , there exists T2 a, satisfying
T2 a(x) =
ln(||x||α /|| ln(n − γ)||1 ) a(n) (x ∈ Rm + ). λ − || ln(n − γ)||λ ||x|| s α 1 n∈N 2
Then, by Theorem 5.5, we have
||T1 || = ||T2 || =
Γm ( α1 ) m−1 α Γ( m ) α
1q
1 (s − 1)!
p1
π λ sin π( λλ1 )
2 .
(iii) For v(t) = ln κt(t ≥ 2 = n(0) ; κ ≥ 23 ), v(n(0) − 12 ) = ln κ( 32 ) ≥ 0, set1−p ting ϕ(x) and Ψκ (n) as Example 5.1(iii), we define T1 : Lp,ϕ (Rm + ) → lp,Ψκ m as follows: For any f ∈ Lp,ϕ (R ), there exists a T1 f , satisfying T1 f (n) =
+
Rm +
ln(||x||α /|| ln κn||1 ) f (x)dx ||x||λα − || ln κn||λ1
(n ∈ Ns2 ).
We also define an operator T2 : lq,Ψκ → Lq,ϕ1−q (Rm + ) as follows: For any a ∈ lq,Ψκ , there exists a T2 a, satisfying T2 a(x) =
ln(||x||α /|| ln κn||1 ) a(n) (x ∈ Rm + ). λ − || ln κn||λ ||x|| s α 1 n∈N 2
Then by Theorem 5.5, we have ||T1 || = ||T2 || =
Γm ( α1 ) αm−1 Γ( m α)
1q
1 (s − 1)!
p1
π λ sin π( λλ1 )
2 .
Example 5.3. We set k0 (t, u) = e−η(u/t) (η > 0, λ1 = −σ < 0, λ2 = σ ≤ s), then, we find that ∂ (k0 (t, u)uσ−s ) < 0, ∂u
∂2 (k0 (t, u)uσ−s ) > 0 (u ∈ R+). ∂u2
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
Multi-dimensional Half-Discrete Hilbert-Type Inequalities
For δ0 = 12 σ, δ ∈ (0, δ0 ], we have ∞ k(−σ ± δ) = e−η(1/t) t−σ±δ−1 dt = 0
=
1 η σ±δ
∞
ws-book9x6
203
e−v v σ±δ−1 dv
0
1 Γ(σ ± δ) ∈ R+ , η σ±δ
and k0 (t, 1) = e−η(1/t) ≤ L
1 tη
where t ≥ 1; L > 0, η = − 12 σ > −σ. (i) For v(t) = ln t(t ≥ 2 = n(0) ), v(n(0) − 1) = 0, setting ϕ(x) and Ψ(n) as Example 5.1(i), we define an operator T1 : Lp,ϕ (Rm + ) → lp,Ψ1−p as follows: m For any f ∈ Lp,ϕ (R+ ), there exists a T1 f , satisfying T1 f (n) = e−η(|| ln n||β /||x||α ) f (x)dx(n ∈ Ns2 ). Rm +
m
We also define an operator T2 : lq,Ψ → Lq,ϕ1−q (R+ ) as follows: For any a ∈ lq,Ψ , there exists a T2 a, satisfying e−η(|| ln n||β /||x||α) a(n) (x ∈ Rm T2 a(x) = + ). n∈Ns2
Then, by Theorem 5.5, we have ||T1 || = ||T2 || =
Γm ( α1 ) αm−1 Γ( m α)
q1
⎞ p1 Γs ( β1 ) 1 ⎝ ⎠ σ Γ(σ). η β s−1 Γ βs ⎛
(ii) For v(t) = ln(t−γ)(t ≥ 2 = n(0) ; γ ≤ 12 ), v(n(0) − 12 ) = ln( 32 −γ) ≥ 0, setting ϕ(x) and Ψγ (n) as Example 5.1(ii), we define an operator T1 : 1−p as follows: Lp,ϕ (Rm + ) → lp,Ψγ For any f ∈ Lp,ϕ (Rm + ), there exists a T1 f , satisfying T1 f (n) = e−η(|| ln(n−γ)||1 /||x||α ) f (x)dx(n ∈ Ns2 ). Rm +
m Also we define an operator T2 : lq,Ψγ → Lq,ϕ1−q (R+ ) as follows: For any a ∈ lq,Ψγ , there exists T2 a, satisfying T2 a(x) = e−η(|| ln(n−γ)||1 /||x||α) a(n) (x ∈ Rm + ). n∈Ns2
November 7, 2013
204
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
Half-Discrete Hilbert-Type Inequalities
Then, by Theorem 5.5, we have 1q p1 Γm ( α1 ) 1 1 ||T1 || = ||T2 || = Γ(σ). m m−1 α Γ( α ) (s − 1)! ησ (iii) For v(t) = ln κt(t ≥ 2 = n(0) ; κ ≥ 23 ), v(n(0) − 12 ) = ln κ( 32 ) ≥ 0, setting ϕ(x) and Ψκ (n) as Example 5.1(iii), we define an operator T1 : 1−p as follows: Lp,ϕ (Rm + ) → lp,Ψκ For any f ∈ Lp,ϕ (Rm + ), there exists a T1 f , satisfying T1 f (n) = e−η(|| ln κn||1 /||x||α ) f (x)dx (n ∈ Ns2 ). Rm +
We also define an operator T2 : lq,Ψκ → Lq,ϕ1−q (R+ ) as follows: For any a ∈ lq,Ψκ , there exists a T2 a, satisfying e−η(|| ln κn||1 /||x||α ) a(n) (x ∈ Rm T2 a(x) = + ). m
n∈Ns2
Then by Theorem 5.5, we have 1q p1 Γm ( α1 ) 1 1 ||T1 || = ||T2 || = Γ(σ). σ αm−1 Γ( m ) (s − 1)! η α γ
(min{t,u}) Example 5.4. We set kλ (t, u) = (max{t,u}) λ+γ (λ ≥ 0, γ ≥ 0, λ1 + λ2 = λ, λ1 + γ > 0, λ2 + γ > 0). For λ2 + γ ≤ s, we find
(min{t, u})γ uλ2 −s (max{t, u})λ+γ γ+λ −s 2 u , 0 < u ≤ t, tλ+γ = tγ , u>t uλ+γ−λ2 +s
kλ (t, u)uλ2 −s =
is decreasing with respect to u ∈ R+ and strictly decreasing in an interval of (1, ∞). For δ0 = 12 min{λ1 + γ, λ2 + γ}, δ ∈ (0, δ0 ], we obtain ∞ (min{t, 1})γ λ1 −1 t dt k(λ1 ± δ) = (max{t, 1})λ+γ 0 1 1 = + ∈ R+ , γ + λ1 ± δ γ + λ2 ∓ δ and kλ (t, 1) =
(min{t, 1})γ 1 1 = λ+γ ≤ η , (max{t, 1})λ+γ t t
where t ≥ 1; η = 12 (λ1 + λ + γ) ∈ (λ1 , λ + γ).
ws-book9x6
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
Multi-dimensional Half-Discrete Hilbert-Type Inequalities
ws-book9x6
205
For v(t) = ln t(t ≥ 2 = n(0) ), v(n(0) − 1) = 0, setting ϕ(x) and Ψ(n) as Example 5.1(i), we define an operator T1 : Lp,ϕ (Rm + ) → lp,Ψ1−p as follows: For any f ∈ Lp,ϕ (Rm ), there exists a T f , satisfying 1 + (min{||x||α , || ln n||β })γ f (x)dx (n ∈ Ns2 ). T1 f (n) = λ+γ (max{||x|| , || ln n|| }) α β Rm +
Also we define an operator T2 : lq,Ψ → Lq,ϕ1−q (Rm + ) as follows: For any a ∈ lq,Ψ , there exists a T2 a, satisfying (min{||x||α , || ln n||β })γ T2 a(x) = a(n) (x ∈ Rm + ). (max{||x||α , || ln n||β })λ+γ s n∈N2
Then, by Theorem 5.4, we have ||T1 || = ||T2 || =
q Γm ( α1 ) αm−1 Γ( m α)
1
⎞ p1 Γs ( β1 ) 2γ + λ ⎝ ⎠ . s (γ + λ1 )(γ + λ2 ) β s−1 Γ β ⎛
Remark 5.1. (i) We can still write some particular inequalities with the norms as the best possible constant factors in the above examples by using Theorem 5.1 and Theorem 5.3. (ii) In particular, for m = s = 1 in the theorems and corollaries of this chapter, we get ⎞ p1 ⎛ 1q s 1 m 1 ( ) Γ Γ (α) β ⎝ ⎠ = 1, αm−1 Γ( m ) s−1 α β Γ βs and imply some corresponding results of Chapter 3.
5.4
5.4.1
Some Inequalities Relating a General Non-Homogeneous Kernel Some Lemmas
With the assumptions of Definition 5.1, if h(u) is a non-negative finite measurable function in R+ , H(t, u) = h(tu), λ1 = λ2 = σ ∈ R, then (5.5) and (5.6) reduce to ||v(n)||σβ s ω(σ, n) = h(||x||α ||v(n)||β ) (5.73) m−σ dx (n ∈ Nn(0) ), ||x|| α Rm + (σ, x) =
n∈Ns (0) n
h(||x||α ||v(n)||β )
s 2 ||x||σα v (nk ) (x ∈ Rm + ). (5.74) ||v(n)||s−σ β k=1
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
206
ws-book9x6
Half-Discrete Hilbert-Type Inequalities
For k(σ) =
∞
ω(σ, n) =
= = (σ, x) <
h(t)tσ−1 dt ∈ R+ , by (5.7), (5.8) and (5.9), we find 1 m 1 Γ (α) 1 σ σ σ lim M h(M u α ||v(n)||β )u α −1 du, ||v(n)|| β m m M→∞ α Γ( α ) 0 (u = (t/||v(n)||β M )α ) 1 ∞ Γm ( α ) h(t)tσ−1 dt m−1 α Γ( m ) 0 α Γm ( 1 ) (5.75) K(α, m, σ) = m−1 α m k(σ); α Γ( α ) 1 Γs ( β1 ) 1 σ σ σ h(||x||α M v β )v β −1 dv, ||x||α lim M M→∞ β s Γ( βs ) 0 0
=
β s−1 Γ
s β
= K(β, s, σ) = and (σ, x) >
Γs ( β1 )
(v = (t/||x||α M )β )
Γs ( β1 )
∞
h(t)tσ−1 dt
0
Γs ( β1 ) k(σ), β s−1 Γ βs (
||x||σα β s Γ( βs )
lim M
1
σ
M→∞
0
(5.76)
1
− δ0
= K(β, s, σ) − δ0
||x||α
σ
h(||x||α M v β )v β −1 dv
0
1
1 β
h(||x||α v )v
σ β −1
) dv
h(t)tσ−1 dt
0
= K(β, s, σ)(1 − θ(||x||α )) > 0, where δ0 θ(||x||α ) = K(β, s, σ)
||x||α
0
(5.77)
h(t)tσ−1 dt > 0 (0 < δ0 ≤ 1).
Lemma 5.6. Suppose that m, s, n(0) ∈ N, α, β > 0, p ∈ R\{0, 1}, 1 1 p + q = 1, σ ∈ R, h(u) is a non-negative finite measurable function in R+ , h(u)uσ−s is decreasing with respect to u ∈ R+ and strict decreasing in an interval I ⊂ (n(0) , ∞), v (t) > 0, v (t) ≤ 0(t ∈ (n(0) − 1, ∞)), with v(n(0) − 1) ≥ 0. If there exist constants δ0 > 0 and η < σ, such that for any δ ∈ [0, δ0 ], ∞ k(σ ± δ) = h(t)t(σ±δ)−1 dt ∈ R+ , 0
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
ws-book9x6
207
Multi-dimensional Half-Discrete Hilbert-Type Inequalities
and
h(t) ≤ L
1 tη
(0 < t ≤ 1; L > 0),
then, for any 0 < ε < |q|δ0 , we have σ−m+ pε s 2 ||x|| α = h(||x||α ||v(n)||β ) v (nk )dx I(ε) s−(σ− εq ) m {x∈R+ ;||x||α ≤1} n∈Ns ||v(n)||β k=1 (0) n
=
Γm ( α1 ) εαm−1 Γ( m α)
Proof. = I(ε)
Γs ( β1 ) (k(σ) β s−1 Γ( βs )
+ o(1))(1 − εO2 (1))(ε → 0+ ).
In view of (5.77), we have
−m+ε ||x||α
{x∈Rm + ;||x||α ≤1}
h(||x||α ||v(n)||β )
n∈Ns (0) n
×
s 2
σ− qε
||x||α
s−(σ− εq )
||v(n)||β
v (nk )dx
k=1
=
(5.78)
{x∈Rm + ;|x||α ≤1}
ε ≥ K(β, s, σ − ) q
−m+ε ||x||α (σ
{x∈Rm + ;||x||α ≤1}
Γs ( β1 ) ε k(σ − ) = q β s−1 Γ βs
{x∈Rm + ;||x||α ≤1}
δ0 K(β, s, σ − εq )
||x||α
≤
δ0 K(β, s, σ − εq ) δ0 L K(β, s, σ − εq )
(0 < δ0 ≤ 1).
u1/α
h(t)tσ−1 dt
σ−η
=
−m+ε ||x||α (1 − θ(||x|| α ))dx,
h(t)tσ−1 dt
0
Since u1/α = ||x||α ≤ 1, we find 1/α ) = 0 < θ(u
−m+ε ||x||α (1 − θ(||x|| α ))dx
where θ(||x|| α) =
ε − , x)dx q
0 u1/α
tσ−η−1 dt 0
δ0 Lu α , (σ − η)K(β, s, σ − εq ) −m+ε ||x||α (1 − θ(||x|| α ))dx {x∈Rm + ;||x||α ≤1}
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
208
ws-book9x6
Half-Discrete Hilbert-Type Inequalities
···
=
Ψ DM
= = = = =
Γm ( α1 ) αm Γ( m α)
m
xi
α
dx1 · · · dxm
i=1
1
m
Ψ(u)u α −1 du
0
1 1/α )) m Γm ( α1 ) (1 − θ(u u α −1 du m αm Γ( α ) 0 (u1/α )m−ε 1 Γm ( α1 ) 1/α )]u αε −1 du [1 − θ(u m m α Γ( α ) 0 1 Γm ( α1 ) σ−η ε [1 − O(u α )]u α −1 du αm Γ( m ) 0 α Γm ( α1 ) (ε → (1 − εO1 (1)), εαm−1 Γ( m α)
0+ ).
(5.79)
By Lemma 4.5 in Chapter 4, we have ε k(σ − ) = k(σ) + o(1) (ε → 0+ ), q and then, it follows that Γs ( β1 ) Γm ( α1 ) ε k(σ − )(1 − εO2 (1)) I(ε) ≥ s εαm−1 Γ( m ) q s−1 α β Γ β
=
Γm ( α1 ) εαm−1 Γ( m α)
Γs ( β1 ) (k(σ) β s−1 Γ( βs )
+ o(1))(1 − εO2 (1)).
By (5.76) and (5.3), we still have m 1 −m+ε ≤ Γ ( α ) k(σ − ε ) ||x||α dx I(ε) m ;||x|| ≤1} αm−1 Γ( m ) q {x∈R α α + Γs ( β1 ) Γm ( α1 ) (k(α) + o(1)). s−1 Γ( s ) εαm−1 Γ( m α)β β Then we have (5.78). =
In particular, for β = 1, if d2 d (h(u)uσ−s ) > 0 (u ∈ R+ ) (h(u)uσ−s ) < 0, du du2 and v (t) > 0, v (t) ≤ 0, v (t) ≥ 0 (t ∈ (n(0) − 12 , ∞)), with v(n(0) − 12 ) ≥ 0, in view of (5.73) and (5.74), we set the following weight functions: ||v(n)||σ1 s ω1 (σ, n) = h(||x||α ||v(n)||1 ) (5.80) m−σ dx (n ∈ Nn(0) ), ||x|| α Rm + 1 (σ, x) =
n∈Ns (0) n
h(||x||α ||v(n)||1 )
s 2 ||x||σα v (nk )(x ∈ Rm + ), (5.81) ||v(n)||s−σ 1 k=1
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
ws-book9x6
209
Multi-dimensional Half-Discrete Hilbert-Type Inequalities
and by (5.75), (5.10) and (5.11), we find Γm ( α1 ) k(σ); αm−1 Γ( m ) α 1 σ lim M h(||x||α M v)vσ−1 dv
(5.82)
ω1 (σ, n) = K(α, m, σ) = 1 (σ, x) <
||x||σα (s − 1)! M→∞
0
k(σ) , = K(1, s, σ) = (s − 1)!
(5.83)
and (σ, x) >
||x||σα (s − 1)! ( σ lim M M→∞
=
0
1
h(||x||α M v)v
σ−1
dv − δ0
0
)
1
h(||x||α v)v
σ−1
k(σ) (1 − θ1 (||x||α )) > 0, (s − 1)!
dv
(5.84)
where
δ0 (s − 1)! ||x||α h(t)tσ−1 dt > 0 θ1 (||x||α ) = k(σ) 0 By the same way of Lemma 5.6, we still have
(0 < δ0 ≤ 1).
Lemma 5.7. Suppose that m, s ∈ N, α > 0, p ∈ R\{0, 1}, 1p + 1q = 1, h(u) is a non-negative finite measurable function in R+ , σ ∈ R, satisfying d2 d (h(u)uσ−s ) < 0, 2 (h(u)uσ−s ) > 0 (u ∈ R+ ), du du v (t) > 0, v (t) ≤ 0, v (t) ≥ 0 (t ∈ (n(0) − 12 , ∞)), with v(n(0) − 12 ) ≥ 0. If there exist constants δ0 > 0 and η < σ, such that for any δ ∈ [0, δ0 ], ∞ k(σ ± δ) = h(t)t(σ±δ)−1 dt ∈ R+ , 0
and
h(t) ≤ L
1 tη
(0 < t ≤ 1; L > 0),
then, for any 0 < ε < |q|δ0 , we have ε σ−m+ p s 2 ||x||α I(ε) = h(||x||α ||v(n)||1 ) v (nk )dx ε s−(σ− q ) {x∈Rm ;||x|| ≤1} s α ||v(n)|| + n∈N (0) k=1 1 n
Γm ( α1 ) (k(σ) + o(1))(1 − εO2 (1))(ε → 0+ ). = ε(s − 1)!αm−1 Γ( m ) α
(5.85)
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
210
5.4.2
ws-book9x6
Half-Discrete Hilbert-Type Inequalities
Main Results 1 p
For p ∈ R\{0, 1},
+
1 q
= 1, we set two functions
p(m−σ)−m ϕ(x) = ||x||α
and
Ψ(n) =
q(s−σ)−s ||v(n)||β
s 2
(x ∈ Rm + ), 1−q
v (nk )
(n ∈ Nsn(0) ),
k=1 qσ−m wherefrom [ϕ(x)]1−q = ||x||α , and [Ψ(n)]1−p = ||v(n)||βqσ−s We also set
s k=1
v (nk ).
p(m−σ)−m , ϕ(x) = (1 − θ(||x||α ))||x||α
and 1−q qσ−m = (1 − θ(||x||α ))1−q ||x||α , [ϕ(x)]
where δ0 θ(||x||α ) = K(β, s, σ)
||x||α
0
h(t)tσ−1 dt > 0 (0 < δ0 ≤ 1).
Then we define two sets as follows: ⎧ ⎫ p1 ⎨ ⎬ m p(m−α)−m ||x||α |f (x)|p dx <∞ , Lp,ϕ (R+ ) = f ; ||f ||p,ϕ = ⎩ ⎭ Rm + ⎧ ⎧ ⎨ ⎨ q(s−σ)−s lq,Ψ = a; ||a||q,Ψ = ||v(n)||β ⎩ ⎩ s n∈N
n(0)
×
s 2 k=1
1−q v (nk )
⎫ ⎬ |a(n)|q <∞ . ⎭ ⎭ ⎫ 1q ⎬
Note. For p, q > 1, the above two sets with the norms are normed linear spaces. For the other cases, we still use them as the formal symbols. We have the following theorem: Theorem 5.6. Suppose that m, s, n(0) ∈ N, α, β > 0, p ∈ R\{0, 1}, 1 + 1q = 1, σ ∈ R, h(u) is a non-negative finite measurable function in p R+ , h(u)uσ−s is decreasing with respect to u ∈ R+ and strict decreasing
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
Multi-dimensional Half-Discrete Hilbert-Type Inequalities
ws-book9x6
211
in an interval I ⊂ (n(0) , ∞), v (t) > 0, v (t) ≤ 0(t ∈ (n(0) − 1, ∞)), with v(n(0) − 1) ≥ 0, ⎞ p1 ⎛ 1q s 1 m 1 Γ ( ) Γ (α) β ⎝ ⎠ k(σ), K(σ) = (5.86) αm−1 Γ( m ) s−1 α β Γ βs
∞ where k(σ) = 0 h(t)tσ−1 dt ∈ R+ . If f (x) ≥ 0, a(n) ≥ 0, f ∈ m Lp,ϕ (R+ ),a = {a(n)} ∈ lq,Ψ such that ||f ||p,ϕ > 0, ||a||q,Ψ > 0, then (i) for p > 1, we have the following equivalent inequalities: I= h(||x||α ||v(n)||β )a(n)f (x)dx < K(σ)||f ||p,ϕ ||a||q,Ψ , (5.87) Rm + n∈Ns (0)
J1 =
⎧ ⎨
n
[Ψ(n)]1−p
⎩
n∈Ns (0) n
p ⎫ p1 ⎬ h(||x||α ||v(n)||β )f (x)dx ⎭ Rm
+
< K(σ)||f ||p,ϕ , and
⎧ ⎨ J2 =
⎩
Rm +
⎛ [ϕ(x)]1−q ⎝
n∈Ns (0)
(5.88) ⎫ 1q ⎬ h(||x||α ||v(n)||β )a(n)⎠ dx ⎭ ⎞q
n
< K(σ)||a||q,Ψ ;
(5.89)
(ii) for p < 0, we have the reverses of (5.87), (5.88) and (5.89); (iii) for 0 < p < 1, if f (x) ≥ 0, a(n) ≥ 0, f ∈ Lp,ϕ (Rm + ), a = {a(n)} ∈ lq,Ψ , such that ||f ||p,ϕ > 0, ||a||q,Ψ > 0, then, we have the following reverse equivalent inequalities: h(||x||α ||v(n)||β )a(n)f (x)dx > K(σ)||f ||p,ϕ||a||q,Ψ , (5.90) I= Rm + n∈Ns (0)
J1 =
⎧ ⎨ ⎩
n
[Ψ(n)]1−p
n∈Ns (0) n
p ⎫ p1 ⎬ h(||x||α ||v(n)||β )f (x)dx ⎭ Rm +
> K(σ)||f ||p,ϕ, and J2 =
⎧ ⎨ ⎩
Rm +
⎛ 1−q ⎝ [ϕ(x)]
n∈Ns (0)
(5.91) ⎫ 1q ⎬ h(||x||α ||v(n)||β )a(n)⎠ dx ⎭ ⎞q
n
> K(σ)||a||q,Ψ .
(5.92)
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
212
ws-book9x6
Half-Discrete Hilbert-Type Inequalities
Proof.
(i) For p > 1, by (5.12) and (5.13), for H(||x||α , ||v(n)||β ) = h(||x||α ||v(n)||β ),
ω(n) = ω(σ, n) and (x) = (σ, x), in view of (5.75), (5.76) and the assumptions, we have (5.88) and (5.89). By H¨older’s inequality, we have h(||x||α ||v(n)||β )a(n)f (x)dx I= n∈Ns (0) n
=
Rm +
[Ψ(n)]
n∈Ns (0) n
−1 q
1
Rm +
h(||x||α ||v(n)||β )f (x)dx {[Ψ(n)] q a(n)}
≤ J1 ||a||q,Ψ .
(5.93)
Then by (5.88), we have (5.87). On the other hand, assuming that (5.87) is valid, and setting p−1 a(n) = [Ψ(n)]1−p
Rm +
h(||x||α ||v(n)||β )f (x)dx
(n ∈ Nsn(0) ),
then, we have ||a||q,Ψ = J1p−1 . By (5.12) and the assumption of 0 < ||f ||p,ϕ < ∞, we have J1 < ∞. If J1 = 0, then (5.88) is trivially valid; if J1 > 0, then by (5.87), it follows that ||a||qq,Ψ = J1p = I < K(σ)||f ||p,ϕ ||a||q,Ψ , that is, ||a||q−1 q,Ψ = J1 < K(σ)||f ||p,ϕ . Thus, (5.88) follows. Hence, (5.87) and (5.88) are equivalent. By H¨older’s inequality, we still have ⎧ ⎫ ⎨ ⎬ −1 1 {[ϕ(x)] p f (x)} [ϕ(x)] p h(||x||α ||v(n)||β )a(n) dx I= ⎩ ⎭ Rm s + n∈N
n(0)
≤ ||f ||p,ϕ J2 .
(5.94)
Then, by (5.89), we have (5.87). On the other hand, assuming that (5.87) is valid, and setting ⎞q−1 ⎛ h(||x||α ||v(n)||β )a(n)⎠ (x ∈ Rm f (x) = [ϕ(x)]1−q ⎝ + ), n∈Ns (0) n
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
ws-book9x6
213
Multi-dimensional Half-Discrete Hilbert-Type Inequalities
then, we have ||f ||p,ϕ = J2q−1 . By (5.13) and the assumption of 0 < ||a||q,Ψ < ∞, we have J2 < ∞. If J2 = 0, then (5.89) is trivially valid; if J2 > 0, then by (5.87), it follows that ||f ||pp,ϕ = J2q = I < K(σ)||f ||p,ϕ ||a||q,Ψ , that is, p−1 ||f ||p,ϕ = J2 < K(σ)||a||q,Ψ .
Thus, (5.89) follows, and then (5.87) and (5.89) are equivalent. Hence, (5.87), (5.88) and (5.89) are equivalent. (ii) For p < 0 (0 < q < 1), by the reverses of (5.12) and (5.13), for H(||x||α , ||v(n)||β ) = h(||x||α ||v(n)||β ), ω(n) = ω(σ, n) and (x) = (σ, x), in view of (5.75), (5.76) and the assumptions, we have the reverses of (5.88) and (5.89). By the reverse H¨older’s inequality, we have I ≥ J1 ||a||q,Ψ .
(5.95)
Then, by the reverse of (5.88), we have the reverse of (5.87). On the other hand, assuming that the reverse of (5.87) is valid, setting a(n) as (i), then we have ||a||q,Ψ = J1p−1 . By the reverse of (5.12) and the assumption of 0 < ||f ||p,ϕ < ∞, we have J1 > 0. If J1 = ∞, then the reverse of (5.88) is valid trivially; if J1 < ∞, then by the reverse of (5.87), it follows that ||a||qq,Ψ = J1p = I > K(σ)||f ||p,ϕ ||a||q,Ψ , that is, ||a||q−1 q,Ψ = J1 > K(σ)||f ||p,ϕ . Thus, the reverse of (5.88) follows, and then the reverses of (5.87) and (5.88) are equivalent. By the reverse H¨older’s inequality, we still have I ≥ ||f ||p,ϕ J2 .
(5.96)
Then, by the reverse of (5.89), we have the reverse of (5.87). On the other hand, assuming that the reverse of (5.87) is valid, and setting f (x) as in (i), then we have ||f ||p,ϕ = J2q−1 . By the reverse of (5.13) and the assumption of 0 < ||a||q,Ψ < ∞, we have J2 > 0. If J2 = ∞, then the reverse of (5.89) is valid trivially; if J2 < ∞, then, by the reverse of (5.87), it follows that ||f ||pp,ϕ = J2q = I > K(σ)||f ||p,ϕ ||a||q,Ψ , that is, p−1 ||f ||p,ϕ = J2 > K(σ)||a||q,Ψ .
November 7, 2013
214
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
ws-book9x6
Half-Discrete Hilbert-Type Inequalities
Hence, the reverse of (5.89) follows, and then, the reverses of (5.87) and (5.89) are equivalent. Hence, the reverses of (5.87), (5.88) and (5.89) are equivalent. (iii) For 0 < p < 1 (q < 0), by the reverses of (5.12) and (5.13), for H(||x||α , ||v(n)||β ) = h(||x||α ||v(n)||β ), ω(n) = ω(σ, n) and (x) = (σ, x), in view of (5.75), (5.77) and the assumptions, we have (5.91) and (5.92). By the reverse H¨older’s inequality, we have I ≥ J1 ||a||q,Ψ .
(5.97)
Then, by (5.91), we have (5.90). On the other hand, assuming that (5.90) is valid, and setting a(n) as in (i), then, we have ||a||q,Ψ = J1p−1 . By the reverse of (5.12) and the assumption of 0 < ||f ||p,ϕ < ∞, we have J1 > 0. If J1 = ∞, then, (5.91) is valid trivially; if J1 < ∞, then, by (5.90), it follows that ||a||qq,Ψ = J1p = I > K(σ)||f ||p,ϕ ||a||q,Ψ , that is, ||a||q−1 . q,Ψ = J1 > K(σ)||f ||p,ϕ Thus, (5.91) follows, and then (5.90) and (5.91) are equivalent. By the reverse H¨older’s inequality, we still have I ≥ ||f ||p,ϕ J2 .
(5.98)
Then, by (5.92), we have inequality (5.90). On the other hand, assuming that (5.90) is valid, and setting f (x) as follows: ⎛ 1−q ⎝ f (x) = [ϕ(x)]
⎞q−1 h(||x||α ||v(n)||β )a(n)⎠
n∈Ns (0)
(x ∈ Rm + ),
n
then, we have ||f ||p,ϕ = J2q−1 . By the reverse of (5.13) and the assumption of 0 < ||a||q,Ψ < ∞, we have J2 > 0. If J2 = ∞, then (5.92) is valid trivially; if J2 < ∞, then, by (5.90), it follows that ||f ||pp,ϕ = J2q = I > K(σ)||f ||p,ϕ ||a||q,Ψ , that is, p−1 ||f ||p, ϕ = J2 > K(σ)||a||q,Ψ .
Thus, (5.92) follows, and then (5.90) and (5.92) are equivalent. Hence, (5.90), (5.91) and (5.92) are equivalent.
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
ws-book9x6
215
Multi-dimensional Half-Discrete Hilbert-Type Inequalities
Theorem 5.7. With the assumptions of Theorem 5.6, if there exist δ0 > 0 and η < σ, such that, for any δ ∈ (0, δ0 ], ∞ h(t)t(σ±δ)−1 dt ∈ R+ , k(σ ± δ) = 0
and
1 h(t) ≤ L η (0 < t ≤ 1; L > 0), t then, the inequalities in Theorem 5.6 have the same best possible constant factor K(σ). Proof.
a(n) as follows: For 0 < ε < |q|δ0 , we set f(x), σ−m+ pε , 0 < ||x||α < 1, ||x||α f(x) = 0, ||x||α ≥ 1, σ− qε −s
a(n) = ||v(n)||β
s 2
v (nk ),
n ∈ Nsn(0) .
k=1
(i) For p > 1, if there exists a constant k(≤ K(σ)), such that (5.87) is still valid as we replace K(σ) by k, then, in particular, it follows that I(ε) = h(||x||α ||v(n)||β ) a(n)f(x)dx < k||f||p,ϕ || a||q,Ψ . (5.99) Rm + n∈Ns (0) n
Since, by (5.3) and (5.4), we have p1 −m+ε ||f ||p,ϕ = ||x||α dx = {x;||x||α ≤1}
|| a||q,Ψ =
⎧ ⎨ ⎩
n∈Ns (0) n
||v(n)||−s−ε β
s 2 k=1
Γm ( α1 ) εαm−1 Γ( m α)
p1
⎫ 1q ⎬ v (nk ) ⎭
⎫ q1 ⎬ Γs ( β1 ) + O(1) = , ⎭ ⎩ εβ s−1 Γ s β ⎧ ⎨
then, by (5.78) and (5.99), it follows that Γs ( β1 ) Γm ( α1 ) (k(σ) + o(1))(1 − εO2 (1)) s αm−1 Γ( m α ) β s−1 Γ β ⎧ ⎫ 1q p1 ⎨ ⎬ Γs ( β1 ) Γm ( α1 ) , + εO(1)
,
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
216
ws-book9x6
Half-Discrete Hilbert-Type Inequalities
and then K(σ) ≤ k (ε → 0+ ). Hence, k = K(σ) is the best value of (5.87). By the equivalency, the constant factor in (5.88) ((5.89)) is the best possible. Otherwise, we can get a contradiction by (5.93) ((5.94)) that the constant factor in (5.87) is not the best possible. (ii) For p < 0, if there exists a constant k(≥ K(σ)), such that the reverse of (5.87) is still valid as we replace K(σ) by k, then, in particular, by (i), it follows that Γs ( β1 ) Γm ( α1 ) (k(σ) + o(1))(1 − εO2 (1)) s αm−1 Γ( m α ) β s−1 Γ β
>k
p Γm ( α1 ) αm−1 Γ( m α) 1
⎧ ⎨
⎫ 1q ⎬ Γs ( β1 ) + εO(1) , ⎩ β s−1 Γ s ⎭ β
and then, K(σ) ≥ k(ε → 0+ ). Hence, k = K(σ) is the best value of the reverse of (5.87). By the equivalency, the constant factor in the reverse of (5.88) (the reverse of (5.89)) is the best possible. Otherwise, we can get a contradiction by (5.95) ((5.96)) that the constant factor in the reverse of (5.87) is not the best possible. (iii) For 0 < p < 1, if there exists a constant k(≥ K(σ)), such that (5.90) is still valid as we replace K(σ) by k, then in particular, it follows that = h(||x||α ||v(n)||β ) a(n)f(x)dx > k||f||p,ϕ|| a||q,Ψ . I(ε) Rm + n∈Ns (0) n
By (5.79), we have ||f ||p,ϕ = =
{x∈Rm + ;||x||α ≤1}
p1 −m+ε ||x||α (1 − θ(||x||α ))dx
p1 Γm ( α1 ) . (1 − εO2 (1)) εαm−1 Γ( m ) α
Then, we obtain Γs ( β1 ) Γm ( α1 ) (k(σ) + o(1))(1 − εO2 (1)) s αm−1 Γ( m α ) β s−1 Γ β
>k
⎧ ⎫ 1q p1 ⎨ ⎬ Γs ( β1 ) Γm ( α1 ) (1)) , + εO(1) (1 − εO 1 ⎩ β s−1 Γ s ⎭ αm−1 Γ( m α) β
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
ws-book9x6
217
Multi-dimensional Half-Discrete Hilbert-Type Inequalities
and then K(σ) ≥ k(ε → 0+ ). Hence, k = K(σ) is the best value of (5.90). By the equivalency, the constant factor in (5.91) and (5.92) is the best possible. Otherwise, we can get a contradiction by (5.97) and (5.98) that the constant factor in (5.90) is not the best possible. For β = 1, we set Ψ1 (n) =
s 2
q(s−σ)−s ||v(n)||1
1−q
(n ∈ Nsn(0) ),
v (nk )
k=1
wherefrom [Ψ1 (n)]1−p = ||v(n)||1qσ−s
s 2
v (nk ).
k=1
We also set p(m−σ)−m ϕ 1 (x) = (1 − θ1 (||x||α ))||x||α ,
and qσ−m , [ϕ 1 (x)]1−q = (1 − θ1 (||x||α ))1−q ||x||α
where θ1 (||x||α ) =
δ0 (s − 1)! k(σ)
∞
h(t)tσ−1 dt
||x||α
(0 < δ0 ≤ 1).
By (5.87)-(5.93), in the same way of Theorem 5.6 and Theorem 5.7, we have Theorem 5.8. Suppose that m, s ∈ N, α > 0, p ∈ R\{0, 1}, 1p + 1q = 1, σ ∈ R, h(u) is a non-negative finite measurable function in R+ , satisfying d (h(u)uσ−s ) < 0, du
d2 (h(u)uσ−s ) > 0 du2
(u ∈ R+ ),
v (t) > 0, v (t) ≤ 0, v (t) ≥ 0 (t ∈ (n(0) − 12 , ∞)) with v(n(0) − 12 ) ≥ 0, K1 (σ) =
Γm ( α1 ) m−1 α Γ( m α)
1q
1 (s − 1)!
p1 k(σ),
(5.100)
∞ where k(σ) = 0 h(t)tσ−1 du ∈ R+ . If f (x) ≥ 0, a(n) ≥ 0, f ∈ Lp,ϕ (Rm + ), a = {a(n)} ∈ lq,Ψ1 , such that ||f ||p,ϕ > 0, ||a||q,Ψ1 > 0, then
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
218
ws-book9x6
Half-Discrete Hilbert-Type Inequalities
(i) for p > 1, we the following equivalent inequalities: have h(||x||α ||v(n)||1 )a(n)f (x)dx Rm + n∈Ns (0) n
< K1 (σ)||f ||p,ϕ ||a||q,Ψ1 ,
⎧ ⎨ ⎩
p ⎫ p1 ⎬ h(||x||α ||v(n)||1 )f (x)dx ⎭ Rm +
[Ψ1 (n)]1−p
n∈Ns (0) n
< K1 (σ)||f ||p,ϕ , and ⎧ ⎨ ⎩
⎛ Rm +
[ϕ(x)]1−q ⎝
n∈Ns (0)
(5.101)
(5.102)
⎫ q1 ⎬ h(||x||α ||v(n)||1 )a(n)⎠ dx < K1 (σ)||a||q,Ψ1 ; ⎭ ⎞q
n
(5.103) (ii) for p < 0, we have the reverses of (5.101), (5.102) and (5.103); m (iii) For 0 < p < 1, if f (x) ≥ 0, a(n) ≥ 0, f ∈ Lp,ϕ(R+ ), a = {a(n)} ∈ lq,Ψ1 such that ||f ||p,ϕ1 > 0, ||a||q,Ψ1 > 0, then we have the following reverse equivalent inequalities: h(||x||α ||v(n)||1 )a(n)f (x)dx Rm + n∈Ns (0) n
(5.104) > K1 (σ)||f ||p,ϕ1 ||a||q,Ψ1 , ⎧ p ⎫ p1 ⎬ ⎨ [Ψ1 (n)]1−p h(||x||α ||v(n)||1 )f (x)dx ⎭ ⎩ Rm s + n∈N
n(0)
> K1 (σ)||f ||p,ϕ1 , and ⎧ ⎨ ⎩
Rm +
⎛ [ϕ 1 (x)]1−q ⎝
n∈Ns (0)
(5.105)
⎫ 1q ⎬ h(||x||α ||v(n)||1 )a(n)⎠ dx > K1 (σ)||a||q,Ψ1 . ⎭ ⎞q
n
(5.106) Moreover, if there exist δ0 > 0 and η < σ, such that for any δ ∈ (0, δ0 ], ∞ h(t)t(σ±δ)−1 dt ∈ R+ , k(σ ± δ) = 0
1 h(t) ≤ L η (0 < t ≤ 1; L > 0), t then, the above inequalities are all with the same best possible constant factor K1 (σ).
and
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
ws-book9x6
219
Multi-dimensional Half-Discrete Hilbert-Type Inequalities
5.4.3
Some Corollaries
If w(t) is a strictly increasing differentiable function in (b, c)(−∞ ≤ b < c ≤ ∞), with w(b+) = 0, w(c−) = ∞, then 1−p m 2 p(m−σ)−m w (xi ) , Φ(x) = ||w(x)||α i=1
and Φ(x) = (1 − θ(||w(x)||α ))Φ(x), setting x = w(X) = (w(X1 ), · · · , w(Xm )) in the inequalities of Theorem 5.7, after simplificam tion, replacing f (w(X)) i=1 w (Xi ) by f (x), we have Corollary 5.5. Suppose that m, s, n(0) ∈ N, α, β > 0, p ∈ R\{0, 1}, 1p + q1 = 1, σ ∈ R, h(u) is a non-negative finite measurable function in R+ , h(u)uσ−s is decreasing with respect to u ∈ R+ and strict decreasing in an interval I ⊂ (n(0) , ∞), w(t) is strict increasing in (b, c), with w(b+) = 0, w(c−) = ∞, v (t) > 0, v (t) ≤ 0 (t ∈ (n(0) − 1, ∞)), with v(n(0) − 1) ≥ 0, ⎞ p1 ⎛ 1q Γs ( β1 ) Γm ( α1 ) ⎝ ⎠ k(σ), K(σ) = (5.107) αm−1 Γ( m s−1 α) β Γ βs
∞ where k(σ) = 0 h(t)tσ−1 dt ∈ R+ . If f (x) ≥ 0, a(n) ≥ 0, f ∈ m Lp,Φ ((b, c) ), a = {a(n)} ∈ lq,Ψ , such that ||f ||p,Φ > 0, ||a||q,Ψ > 0, then (i) for p > 1, we have the following equivalent inequalities: h(||w(x)||α ||v(n)||β )a(n)f (x)dx (b,c)m n∈Ns (0) n
< K(σ)||f ||p,Φ ||a||q,Ψ ,
⎧ ⎨ ⎩
[Ψ(n)]1−p
n∈Ns (0)
(5.108) p ⎫ p1 ⎬ h(||w(x)||α ||v(n)||β )f (x)dx ⎭ (b,c)m
n
< K(σ)||f ||p,Φ , and
⎧ ⎨ ⎩
(b,c)
⎛ m
[Φ(x)]1−q ⎝
n∈Ns (0)
(5.109)
⎫ 1q ⎬ h(||w(x)||α ||v(n)||β )a(n)⎠ dx ⎭ ⎞q
n
< K(σ)||a||q,Ψ ;
(5.110)
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
220
ws-book9x6
Half-Discrete Hilbert-Type Inequalities
(ii) for p < 0, we have the reverses of (5.108), (5.109) and (5.110); m (iii) for 0 < p < 1, if f (x) ≥ 0, a(n) ≥ 0, f ∈ Lp,Φ (R+ ),a = {a(n)} ∈ lq,Ψ , such that ||f ||p,Φ > 0, ||a||q,Ψ > 0, then we have the following reverse equivalent inequalities: h(||w(x)||α ||v(n)||β )a(n)f (x)dx (b,c)m n∈Ns (0) n
> K(σ)||f ||p,Φ ||a||q,Ψ ,
⎧ ⎨ ⎩
n∈Ns (0)
(5.111) 1 ⎫ p p ⎬ 1−p [Ψ(n)] h(||w(x)||α ||v(n)||β )f (x)dx ⎭ (b,c)m
n
> K(σ)||f ||p,Φ ,
(5.112)
and ⎧ ⎨ ⎩
⎛ m
(b,c)
1−q ⎝ [ϕ(x)]
⎫ 1q ⎬ h(||w(x)||α ||v(n)||β )a(n)⎠ dx ⎭ ⎞q
n∈Ns (0) n
> K(σ)||a||q,Ψ .
(5.113)
If w(x) = x, (5.108)-(5.113) reduce to (5.87)-(5.92). Hence, Theorem 5.7 and Corollary 5.5 are equivalent. We can conclude that the constant factor in the above inequalities is the best possible by adding some conditions as follows: Corollary 5.6. With the assumptions of Corollary 5.5, if there exist δ0 > 0 and η < σ, such that, for any δ ∈ (0, δ0 ], ∞ h(t)t(σ±δ)−1 dt ∈ R+ , k(σ ± δ) = 0
and
h(t) ≤ L
1 tη
(0 < t ≤ 1; L > 0),
then, the inequalities in Corollary 5.5 have the same best possible constant factor K(σ). For v(t) = t, n(0) = 1 in Theorem 5.6 and Theorem 5.7, setting q(s−σ)−s
ψ(n) = ||n||β we have the following corollary:
(n ∈ Ns ),
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
ws-book9x6
221
Multi-dimensional Half-Discrete Hilbert-Type Inequalities
Corollary 5.7. Suppose that m, s ∈ N, α, β > 0, p ∈ R\{0, 1}, p1 + 1q = 1, σ ∈ R, h(u) is a non-negative finite measurable function in R+ , h(u)uσ−s is decreasing with respect to u ∈ R+ and strictly decreasing in an interval I ⊂ (1, ∞), ⎛ ⎞ p1 1q Γs ( β1 ) Γm ( α1 ) ⎝ ⎠ k(σ), K(σ) = (5.114) αm−1 Γ( m ) s−1 α β Γ βs
∞ where k(σ) = 0 h(t)tσ−1 dt ∈ R+ . If f (x) ≥ 0, a(n) ≥ 0, f ∈ m Lp,ϕ (R+ ),a = {a(n)} ∈ lq,ψ such that ||f ||p,ϕ > 0, ||a||q,ψ > 0, then (i) for p > 1, we have the following equivalent inequalities: h(||x||α ||n||β )a(n)f (x)dx < K(σ)||f ||p,ϕ ||a||q,ψ , Rm + n∈Ns
[ψ(n)]1−p
Rm +
n∈Ns
(5.115)
p p1 h(||x||α ||n||β )f (x)dx
< K(σ)||f ||p,ϕ , (5.116)
and
Rm +
[ϕ(x)]1−q
q h(||x||α ||n||β )a(n)
1q dx
< K(σ)||a||q,ψ ;
n∈Ns
(5.117) (ii) for p < 0, we have the reverses of (5.115), (5.116) and (5.117); (iii) for 0 < p < 1, if f (x) ≥ 0, a(n) ≥ 0, f ∈ Lp,ϕ (Rm + ), a = {a(n)} ∈ lq,ψ , such that ||f ||p,ϕ > 0, ||a||q,ψ > 0, then, we have the following reverse equivalent inequalities: h(||x||α ||n||β )a(n)f (x)dx > K(σ)||f ||p,ϕ||a||q,ψ , Rm + n∈Ns
[ψ(n)]1−p
n∈Ns
and
Rm +
1−q
Rm +
[ϕ(x)]
(5.118)
p p1 h(||x||α ||n||β )f (x)dx
> K(σ)||f ||p,ϕ, (5.119) q
h(||x||α ||n||β )a(n)
1q dx
> K(σ)||a||q,Ψ .
n∈Ns
(5.120)
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
222
ws-book9x6
Half-Discrete Hilbert-Type Inequalities
Moreover, if there exist δ0 > 0 and η < σ, such that for any δ ∈ (0, δ0 ], ∞ k(σ ± δ) = h(t)t(σ±δ)−1 dt ∈ R+ , 0
and
h(t) ≤ L
1 tη
(0 < t ≤ 1; L > 0),
then, the above inequalities hold with the same best possible constant factor K(σ). For v(t) = (t − ξ)γ (0 < γ ≤ 1, 0 ≤ ξ ≤ 12 ), n(0) = 1 in Theorem 5.8, setting q(s−σ)−s
ψξ (n) = ||(n − ξ)γ ||1
(n ∈ Ns ),
we have some more accurate inequalities of Corollary 5.7 (for β = 1) as follows: Corollary 5.8. Suppose that m, s ∈ N, α > 0, p ∈ R\{0, 1}, 1p + 1q = 1, σ ∈ R, h(u) is a non-negative finite measurable function in R+ , satisfying d (h(u)uσ−s ) < 0, du K1 (σ) =
d2 (h(u)uσ−s ) > 0 (u ∈ R+ ), du2 1q p1 Γm ( α1 ) 1 k(σ), αm−1 Γ( m ) (s − 1)! α
(5.121)
∞ where k(σ) = 0 h(t)tσ−1 dt ∈ R+ . If f (x) ≥ 0, a(n) ≥ 0, f ∈ Lp,ϕ (Rm + ), a = {a(n)} ∈ lq,Ψξ , such that ||f ||p,ϕ > 0, ||a||q,Ψξ > 0, then (i) for p > 1, we have the following equivalent inequalities: h(||x||α ||(n − ξ)γ ||1 )a(n)f (x)dx Rm + n∈Ns
< K1 (σ)||f ||p,ϕ ||a||q,Ψξ ,
[Ψξ (n)]1−p
n∈Ns
Rm +
(5.122) p p1
h(||x||α ||(n − ξ)γ ||1 )f (x)dx
< K1 (σ)||f ||p,ϕ , and
Rm +
[ϕ(x)]
1−q
(5.123) q
h(||x||α ||(n − ξ) ||1 )a(n) γ
1q dx
n∈Ns
< K1 (σ)||a||q,Ψξ ;
(5.124)
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
ws-book9x6
223
Multi-dimensional Half-Discrete Hilbert-Type Inequalities
(ii) for p < 0, we have the reverses of (5.122), (5.123) and (5.124); m (iii) for 0 < p < 1, if f (x) ≥ 0, a(n) ≥ 0, f ∈ Lp,ϕ (R+ ), a = {a(n)} ∈ lq,Ψξ such that ||f ||p,ϕ > 0, ||a||q,Ψξ > 0, then, we have the following reverse equivalent inequalities: h(||x||α ||(n − ξ)γ ||1 )a(n)f (x)dx Rm + n∈Ns
> K1 (σ)||f ||p,ϕ1 ||a||q,Ψξ ,
[Ψ1 (n)]1−p
Rm +
n∈Ns
Rm +
(5.125) p p1
h(||x||α ||(n − ξ)γ ||1 )f (x)dx
> K1 (σ)||f ||p,ϕ1 , (5.126) q 1q [ϕ 1 (x)]1−q h(||x||α ||(n − ξ)γ ||1 )a(n) dx n∈Ns
> K1 (σ)||a||q,Ψξ .
(5.127)
Moreover, if there exist δ0 > 0 and η < σ, such that, for any δ ∈ (0, δ0 ], ∞ k(σ ± δ) = h(t)t(σ±δ)−1 dt ∈ R+ , 0
and
h(t) ≤ L
1 tη
(0 < t ≤ 1; L > 0),
then the above inequalities have the same best possible constant factor K1 (σ). 5.4.4
Operator Expressions and Some Particular Examples
With the assumptions of Theorem 5.6, for p > 1, we set p(m−σ)−m ϕ(x) = ||x||α
and
Ψ(n) =
q(s−σ)−s ||v(n)||β
s 2
(x ∈ Rm + ), 1−q
v (nk )
(n ∈ Nsn(0) ),
k=1
and we define the first kind of multi-dimensional half-discrete Hilbert-type operator with the non-homogeneous kernel T1 : Lp,ϕ (Rm + ) → lp,Ψ1−p as follows:
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
224
ws-book9x6
Half-Discrete Hilbert-Type Inequalities
For any f ∈ Lp,ϕ (Rm + ), there exists a T1 f , satisfying T1 f (n) = h(||x||α ||v(n)||β )f (x)dx (n ∈ Nsn(0) ). Rm +
(5.128)
By (5.88), we can write ||T1 f ||p,Ψ1−p < K(σ)||f ||p,ϕ , and then, T1 f ∈ lp,Ψ1−p . Hence, T1 is a bounded linear operator with the norm ||T1 f ||p,Ψ1−p ||T1 || = sup ≤ K(σ). m ||f ||p,ϕ f ( =θ)∈Lp,ϕ (R+ ) Also we define the second kind of multi-dimensional half-discrete Hilbertm type operator with the non-homogeneous kernel T2 : lq,Ψ → Lq,ϕ1−q (R+ ) as follows: For any a ∈ lq,Ψ , there exists a T2 a, satisfying T2 a(x) = h(||x||α ||v(n)||β )a(n) (x ∈ Rm (5.129) + ). n∈Ns (0) n
By (5.89), we can write ||T2 a||q,ϕ1−q < K(σ)||a||q,Ψ , and then, T2 a ∈ Lq,ϕ1−q (Rm + ). Hence, T2 is a bounded linear operator with the norm ||T2 a||q,ϕ1−q ||T2 || = sup ≤ K(σ). ||a||q,Ψ a( =θ)∈lq,Ψ By Theorem 5.7, it follows that Theorem 5.9. With the assumptions of Theorem 5.6, T1 and T2 are defined by (5.128) and (5.129). If there exist δ0 > 0 and η < σ, such that for any δ ∈ (0, δ0 ], ∞ h(t)t(σ±δ)−1 dt ∈ R+ , k(σ ± δ) = 0
and
h(t) ≤ L
1 tη
(0 < t ≤ 1; L > 0),
then, we have ||T1 || = ||T2 || = K(σ) =
Γm ( α1 ) m−1 α Γ( m α)
1q
⎞ p1 Γs ( β1 ) ⎝ ⎠ k(σ). β s−1 Γ βs ⎛
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
Multi-dimensional Half-Discrete Hilbert-Type Inequalities
ws-book9x6
225
With the assumptions of Theorem 5.7, for p > 1, we set p(m−σ)−m ϕ(x) = ||x||α
and
Ψ1 (n) =
q(s−σ)−s ||v(n)||1
s 2
(x ∈ Rm + ), 1−q
v (nk )
(n ∈ Nsn(0) ),
k=1
and we define the first kind half-discrete Hilbert-type operator with the m non-homogeneous kernel and multi-variables T1 : Lp,ϕ (R+ ) → lp,Ψ1−p as 1 follows: m For any f ∈ Lp,ϕ (R+ ), there exists a T1 f , satisfying T1 f (n) = h(||x||α ||v(n)||1 )f (x)dx (n ∈ Nsn(0) ). (5.130) Rm +
By (5.102), we can write ||T1 f ||p,Ψ1−p < K1 (σ)||f ||p,ϕ , 1
and then, T1 f ∈ lp,Ψ1−p . Hence, T1 is a bounded linear operator with the 1 norm ||T1 f ||p,Ψ1−p 1 sup ≤ K1 (σ). ||T1 || = m ||f || p,ϕ f ( =θ)∈Lp,ϕ (R+ ) Also we define the second kind half-discrete Hilbert-type operator with the m non-homogeneous kernel and multi-variables T2 : lq,Ψ1 → Lq,ϕ1−q (R+ ) as follows: For any a ∈ lq,Ψ1 , there exists a T2 a, satisfying h(||x||α ||v(n)||1 )a(n) (x ∈ Rm (5.131) T2 a(x) = + ). n∈Ns (0) n
By (5.103), we can write ||T2 a||q,ϕ1−q < K(σ)||a||q,Ψ1 , m and then, T2 a ∈ Lq,ϕ1−q (R+ ). Hence, T2 is a bounded linear operator with the norm
||T2 || =
||T2 a||q,ϕ1−q ≤ K1 (σ). ||a||q,Ψ1 a( =θ)∈lq,Ψ sup
By Theorem 5.9, it follows that
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
226
ws-book9x6
Half-Discrete Hilbert-Type Inequalities
Theorem 5.10. With the assumptions of Theorem 5.9, T1 and T2 are defined by (5.130) and (5.131). If there exist δ0 > 0 and η < σ, such that, for any δ ∈ (0, δ0 ], ∞ k(σ ± δ) = h(t)t(σ±δ)−1 dt ∈ R+ , 0
and
h(t) ≤ L
1 tη
(0 < t ≤ 1; L > 0),
then, we have ||T1 || = ||T2 || = K1 (σ) = Example 5.5. We set h(u) =
Γm ( α1 ) αm−1 Γ( m ) α
1 (1+u)λ
q1
1 (s − 1)!
p1 k(σ).
(0 < σ < λ, σ ≤ s), then we find
d2 (h(u)uσ−s ) > 0 (u ∈ R+). du2 For δ0 = 12 min{σ, λ − σ}, δ ∈ (0, δ0 ], ∞ (σ±δ)−1 t du k(σ ± δ) = (1 + t)λ 0 = B(σ ± δ, λ − σ ∓ δ) ∈ R+ , d (h(u)uσ−s ) < 0, du
and h(t) =
1 1 ≤ η λ (1 + t) t
0 < t ≤ 1; η =
σ <σ . 2
(i) For v(t) = ln t (t ≥ 2 = n(0) ), v(n(0) − 1) = 0, setting p(m−σ)−m ϕ(x) = ||x||α
and
Ψ(n) =
q(s−σ)−s || ln n||β
(x ∈ Rm + ),
s 2 1 nk
1−q (n ∈ Ns2 ),
k=1
we define an operator T1 : Lp,ϕ (Rm + ) → lp,Ψ1−p as follows: m For any f ∈ Lp,ϕ (R+ ), there exists a T1 f , satisfying 1 T1 f (n) = f (x)dx (n ∈ Ns2 ). λ m (1 + ||x|| α || ln n||β ) R+ m
Also we define an operator T2 : lq,Ψ → Lq,ϕ1−q (R+ ) as follows:
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
Multi-dimensional Half-Discrete Hilbert-Type Inequalities
ws-book9x6
227
For any a ∈ lq,Ψ , there exists a T2 a, satisfying 1 T2 a(x) = a(n) (x ∈ Rm + ). (1 + ||x||α || ln n||β )λ s n∈N2
Then, by Theorem 5.7, we have ||T1 || = ||T2 || =
Γm ( α1 ) αm−1 Γ( m α)
q1
⎞ p1 Γs ( β1 ) ⎝ ⎠ B(σ, λ − σ). β s−1 Γ βs ⎛
(ii) For v(t) = ln(t−γ) (t ≥ 2 = n(0) ; γ ≤ 12 ), v(n(0) − 12 ) = ln( 32 −γ) ≥ 0, setting ϕ(x) as in (i) and s 1−q 2 1 q(s−σ)−s Ψγ (n) = || ln(n − γ)||1 (n ∈ Ns2 ), nk − γ k=1
m we define an operator T1 : Lp,ϕ (R+ ) → lp,Ψγ1−p as follows: m For any f ∈ Lp,ϕ (R+ ), there exists a T1 f , satisfying 1 T1 f (n) = f (x)dx (n ∈ Ns2 ). λ (1 + ||x|| || ln(n − γ)|| ) α 1 Rm +
Also we define an operator T2 : lq,Ψγ → Lq,ϕ1−q (R+ ) as follows: For any a ∈ lq,Ψγ , there exists a T2 a, satisfying 1 T2 a(x) = a(n) (x ∈ Rm + ). λ (1 + ||x|| || ln(n − γ)|| ) α 1 s m
n∈N2
Then, by Theorem 5.8, we have 1q p1 m 1 Γ ( ) 1 α B(σ, λ − σ). ||T1 || = ||T2 || = αm−1 Γ( m ) (s − 1)! α (iii) For v(t) = ln κt (t ≥ 2 = n(0) ; κ ≥ 23 ), v(n(0) − 12 ) = ln κ( 32 ) ≥ 0, setting ϕ(x) as in (i) and s 1−q 2 1 q(s−σ)−s (n ∈ Ns2 ), Ψκ (n) = || ln κn||1 nk k=1
we define an operator T1 :
m Lp,ϕ (R+ )
→ lp,Ψκ1−p as follows: m For any f ∈ Lp,ϕ (R+ ), there exists a T1 f , satisfying 1 f (x)dx (n ∈ Ns2 ). T1 f (n) = λ m (1 + ||x|| || ln κn|| ) α 1 R+
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
228
Half-Discrete Hilbert-Type Inequalities
m Also we define an operator T2 : lq,Ψκ → Lq,ϕ1−q (R+ ) as follows: For any a ∈ lq,Ψκ , there exists a T2 a, satisfying
T2 a(x) =
n∈Ns2
1 a(n) (x ∈ Rm + ). (1 + ||x||α || ln κn||1 )λ
Then, by Theorem 5.8, we have ||T1 || = ||T2 || =
Γm ( α1 ) αm−1 Γ( m α)
Example 5.6. We set h(u) = d (h(u)uσ−s ) < 0, du For δ0 =
1 2
1q
ln u (0 uλ −1
1 (s − 1)!
p1
B(σ, λ − σ).
< σ < λ ≤ 1, σ ≤ s), then we find
d2 (h(u)uσ−s ) > 0 (u ∈ R+). du2
min{σ, λ − σ}, δ ∈ (0, δ0 ], ∞ (ln t)t(σ±δ)−1 dt k(σ ± δ) = tλ − 1 0 ∞ 1 (ln v)v (σ±δ)/λ−1 = 2 dv λ 0 v−1
2 π = ∈ R+ , λ sin π( σ±δ ) λ
and h(t) =
1 ln t ≤L η λ t −1 t
0 < t ≤ 1; η =
σ < σ, L > 0 . 2
(i) For v(t) = ln t (t ≥ 2 = n(0) ), v(n(0) − 1) = 0, setting ϕ(x) and m Ψ(n) as in Example 5.5(i), we define an operator T1 : Lp,ϕ (R+ ) → lp,Ψ1−p as follows: m For any f ∈ Lp,ϕ (R+ ), there exists a T1 f , satisfying ln(||x||α || ln n||β ) f (x)dx (n ∈ Ns2 ). T1 f (n) = λ−1 (||x|| || ln n|| ) α β Rm + Also we define an operator T2 : lq,Ψ → Lq,ϕ1−q (Rm + ) as follows: For any a ∈ lq,Ψ , there exists a T2 a, satisfying T2 a(x) =
n∈Ns2
ln(||x||α || ln n||β ) a(n) (||x||α || ln n||β )λ − 1
(x ∈ Rm + ).
ws-book9x6
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
ws-book9x6
229
Multi-dimensional Half-Discrete Hilbert-Type Inequalities
Then, by Theorem 5.10, we have ||T1 || = ||T2 || =
q Γm ( α1 ) αm−1 Γ( m ) α
1
⎞ p1 ( )2 Γs ( β1 ) π ⎝ ⎠ . λ sin π( σλ ) β s−1 Γ βs ⎛
(ii) For v(t) = ln(t − γ) (t ≥ 2 = n(0) ; γ ≤ 12 ), v(n(0) − 12 ) = ln( 32 − γ) ≥ 0, setting ϕ(x) and Ψγ (n) as in Example 5.5(ii), we define an operator m T1 : Lp,ϕ (R+ ) → lp,Ψγ1−p as follows: For any f ∈ Lp,ϕ (Rm + ), there exists a T1 f , satisfying ln(||x||α || ln(n − γ)||1 ) T1 f (n) = f (x)dx (n ∈ Ns2 ). λ−1 (||x|| || ln(n − γ)|| ) α 1 Rm + Also we define an operator T2 : lq,Ψγ → Lq,ϕ1−q (Rm + ) as follows: For any a ∈ lq,Ψγ , there exists a T2 a, satisfying T2 a(x) =
n∈Ns2
ln(||x||α || ln(n − γ)||1 ) a(n) (x ∈ Rm + ). (||x||α || ln(n − γ)||1 )λ − 1
Then, by Theorem 5.8, we have 1q p1 ( )2 Γm ( α1 ) 1 π . ||T1 || = ||T2 || = αm−1 Γ( m ) (s − 1)! λ sin π( σλ ) α (iii) For v(t) = ln κt (t ≥ 2 = n(0) ; κ ≥ 23 ), v(n(0) − 12 ) = ln κ( 32 ) ≥ 0, setting ϕ(x) and Ψκ (n) as Example in 5.5(iii), we define an operator T1 : 1−p as follows: Lp,ϕ (Rm + ) → lp,Ψκ m For any f ∈ Lp,ϕ (R+ ), there exists a T1 f , satisfying ln(||x||α || ln κn||1 ) f (x)dx (n ∈ Ns2 ). T1 f (n) = (||x|| || ln κn|| ) − 1 α 1 Rm + Also we define an operator T2 : lq,Ψκ → Lq,ϕ1−q (Rm + ) as follows: For any a ∈ lq,Ψκ , there exists a T2 a, satisfying T2 a(x) =
n∈Ns2
ln(||x||α || ln κn||1 ) a(n) (||x||α || ln κn||1 ) − 1
(x ∈ Rm + ).
Then, by Theorem 5.10, we have ||T1 || = ||T2 || =
Γm ( α1 ) αm−1 Γ( m α)
1q
1 (s − 1)!
p1 (
π λ sin π( σλ )
)2 .
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
230
Half-Discrete Hilbert-Type Inequalities
Example 5.7. We set h(u) = e−ηu (η > 0, 0 < σ ≤ s), then we find d (h(u)uσ−s ) < 0, du
d2 (h(u)uσ−s ) > 0 (u ∈ R+). du2
For δ0 = 12 σ, δ ∈ (0, δ0 ], we have ∞ e−ηt tσ±δ−1 dt = k(−σ ± δ) = 0
=
1 η σ±δ
1 η σ±δ
∞
e−v vσ±δ−1 dv
0
Γ(σ ± δ) ∈ R+ ,
and h(t) = e−ηt ≤ L
1 tη
(0 < t ≤ 1; L > 0, η =
1 σ < σ). 2
(i) For v(t) = ln t (t ≥ 2 = n(0) ), v(n(0) − 1) = 0, setting ϕ(x) and m Ψ(n) as in Example 5.5(i), we define an operator T1 : Lp,ϕ (R+ ) → lp,Ψ1−p as follows: m For any f ∈ Lp,ϕ (R+ ), there exists a T1 f , satisfying T1 f (n) = e−η||x||α|| ln n||β f (x)dx (n ∈ Ns2 ). Rm +
m
Also we define an operator T2 : lq,Ψ → Lq,ϕ1−q (R+ ) as follows: For any a ∈ lq,Ψ , there exists a T2 a, satisfying T2 a(x) = e−η||x||α|| ln n||β a(n) (x ∈ Rm + ). n∈Ns2
Then, by Theorem 5.10, we have ||T1 || = ||T2 || =
Γm ( α1 ) αm−1 Γ( m ) α
q1
⎛
⎞ p1 Γs ( β1 ) 1 ⎝ ⎠ σ Γ(σ). s η β s−1 Γ β
(ii) For v(t) = ln(t − γ) (t ≥ 2 = n(0) ; γ ≤ 12 ), v(n(0) − 12 ) = ln( 32 − γ) ≥ 0, setting ϕ(x) and Ψγ (n) as in Example 5.5(ii), we define an operator 1−p as follows: T1 : Lp,ϕ (Rm + ) → lp,Ψγ m For any f ∈ Lp,ϕ (R+ ), there exists a T1 f , satisfying T1 f (n) = e−η||x||α || ln(n−γ)||1 f (x)dx (n ∈ Ns2 ). Rm +
m Also we define an operator T2 : lq,Ψγ → Lq,ϕ1−q (R+ ) as follows:
ws-book9x6
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
Multi-dimensional Half-Discrete Hilbert-Type Inequalities
ws-book9x6
231
For any a ∈ lq,Ψγ , there exists T2 a, satisfying e−η||x||α || ln(n−γ)||1 a(n) (x ∈ Rm T2 a(x) = + ). n∈Ns2
Then, by Theorem 5.8, we have 1q p1 Γm ( α1 ) 1 1 Γ(σ). ||T1 || = ||T2 || = m m−1 α Γ( α ) (s − 1)! ησ (iii) For v(t) = ln κt (t ≥ 2 = n(0) ; κ ≥ 23 ), v(n(0) − 12 ) = ln κ( 32 ) ≥ 0, setting ϕ(x) and Ψκ (n) as in Example 5.5(iii), we define an operator m T1 Lp,ϕ (R+ ) → lp,Ψκ1−p as follows: m For any f ∈ Lp,ϕ (R+ ), there exists a T1 f , satisfying T1 f (n) = e−η||x||α || ln κn||1 f (x)dx (n ∈ Ns2 ). Rm +
Also we define an operator T2 : lq,Ψκ → Lq,ϕ1−q (Rm + ) as follows: For any a ∈ lq,Ψκ , there exists a T2 a, satisfying T2 a(x) = e−η||x||α|| ln κn||1 a(n) (x ∈ Rm + ). n∈Ns2
Then, by Theorem 5.10, we have 1q p1 m 1 ( ) Γ 1 1 α ||T1 || = ||T2 || = Γ(σ). σ αm−1 Γ( m ) (s − 1)! η α Example 5.8. We set h(u) = 0, σ + γ > 0). For σ + γ ≤ s, we find
(min{1,u})γ (max{1,u})λ+γ
(λ ≥ 0, γ ≥ 0, λ + γ − σ >
(min{t, u})γ σ−s u (max{t, u})λ+γ γ+σ−s u , 0t λ+γ−σ+s u is decreasing with respect to u ∈ R+ , and strictly decreasing in an interval I ⊂ (1, ∞). For δ0 = 12 (σ + γ), δ ∈ (0, δ0 ], we have ∞ (min{t, 1})γ σ±δ−1 k(σ ± δ) = t dt (max{t, 1})λ+γ 0 1 1 + ∈ R+ , = γ+σ±δ λ+γ−σ∓δ and 1 (min{1, t})γ = tγ ≤ η , h(t) = λ+γ (max{1, t}) t where 0 < t ≤ 1; η = σ2 < σ. kλ (t, u)uλ2 −s =
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
232
Half-Discrete Hilbert-Type Inequalities
For v(t) = ln t (t ≥ 2 = n(0) ), v(n(0) − 1) = 0, setting ϕ(x) and Ψ(n) as in Example 5.5(i), we define an operator T1 : Lp,ϕ (Rm + ) → lp,Ψ1−p as follows: m For any f ∈ Lp,ϕ (R+ ), there exists a T1 f satisfying (min{1, ||x||α || ln n||β })γ T1 f (n) = f (x) dx (n ∈ Ns2 ). (max{1, ||x||α || ln n||β })λ+γ Rm + m
Also we define an operator T2 : lq,Ψ → Lq,ϕ1−q (R+ ) as follows: For any a ∈ lq,Ψ , there exists a T2 a, satisfying (min{1, ||x||α || ln n||β })γ a(n) (x ∈ Rm T2 a(x) = + ). (max{1, ||x||α || ln n||β })λ+γ s n∈N2
Then, by Theorem 5.9, we have ||T1 || = ||T2 || =
Γm ( α1 ) m−1 α Γ( m α)
1q
Γs ( β1 ) β s−1 Γ( βs )
p1
2γ + λ . (γ + σ)(λ + γ − σ)
Remark 5.2. (i) We can still write some particular inequalities with the norms as the best possible constant factors in the above examples by using Theorem 5.6 and Theorem 5.8. (ii) In particular, for m = s = 1 in the theorems and corollaries of this chapter, we can obtain corresponding results of Chapter 4.
ws-book9x6
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
ws-book9x6
Chapter 6
Multiple Half-Discrete Hilbert-Type Inequalities
“As long as a branch of science affords an abundance of problems, it is full of life; want of problems means death or cessation of independent development. Just as every human enterprise prosecutes final aims, so mathematical research needs problems. Their solution steels the force of the investigator; thus he discovers new methods and view points and widens his horizon.” David Hilbert
“... we have always found, even with the most famous inequalities, that we have a little, new to add.” G. H. Hardy
6.1
Introduction
This chapter is devoted to two kinds of multiple half-discrete Hilbert-type inequalities which are derived by using the weight functions and techniques of real analysis. These inequalities are generalizations of the double cases mentioned in Chapters 3 and 4. The best possible constant factors involved in the inequalities are proved. Included are the equivalent forms, the operator expressions, some kinds of reverses, many theorems and corollaries, and many examples with particular kernels. We also consider many lemmas related to weight functions in subsections 6.2.1 and 6.3.1. A large number of corollaries dealing with equivalent inequalities is presented in Section 6.4. 233
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
234
ws-book9x6
Half-Discrete Hilbert-Type Inequalities
6.2
First Kind of Multiple Hilbert-type Inequalities
6.2.1
Lemmas Related to the Weight Functions
Lemma 6.1. If m ∈ N, pi ∈ R\{0, 1}, λi ∈ R(i = 1, · · · , m + 1), m+1 1 i=1 pi = 1, then we have the following expression: ⎡ ⎤ p1 i m+1 m+1 2 2 λj −1 ⎦ (λi −1)(1−pi ) ⎣ A= xi xj = 1. (6.1) j=1(j =i)
i=1
Proof.
We find A=
m+1 2
⎡ i −1)(1−pi )+1−λi ⎣x(λ i
m+1 2
i=1
=
m+1 2
(λi −1)(−pi )
[xi
1
] pi ⎝
m+1 2
m+1 2
i ⎝ x1−λ i
m+1 2
⎞ p1
i
λ −1 ⎠
xj j
j=1 ⎞m+1
⎛
i=1
=
i
λ −1 xj j ⎦
j=1
⎛
i=1
=
⎤ p1
i=1
1 pi
λ −1 ⎠
xj j
j=1
m+1 2
i x1−λ i
i=1
m+1 2
λ −1
xj j
= 1.
j=1
Thus, (6.1) follows.
Definition 6.1. If m ∈ N, λ ∈ R, kλ (x1 , · · · , xm+1 ) is a measurable func, satisfying for any u > 0 and (x1 , · · · , xm+1 ) ∈ Rm+1 , tion in Rm+1 + + kλ (ux1 , · · · , uxm+1 ) = u−λ kλ (x1 , · · · , xm+1 ), then, we call kλ (x1 , · · · , xm+1 ) the homogeneous function of degree −λ in . Rm+1 + m+1 Lemma 6.2. If m ∈ N, λi ∈ R(i = 1, · · · , m + 1), i=1 λi = λ, kλ (x1 , · · · , xm+1 )(≥ 0) is a homogeneous function of degree −λ in Rm+1 + such that k(λm+1 ) = H(m + 1) ∞ ∞ m 2 λ −1 ··· kλ (u1 , · · · , um , 1) uj j du1 · · · dum , = 0
0
j=1
(6.2)
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
Multiple Half-Discrete Hilbert-Type Inequalities
ws-book9x6
235
then, for i = 1, · · · , m, we still have ∞ ∞ H(i) = ··· kλ (u1 , · · · , ui−1 , 1, ui+1 , · · · , um+1 ) 0
0
m+1 2
×
λ −1
uj j
du1 · · · dui−1 dui+1 · · · dum+1 = k(λm+1 ).
(6.3)
j=1(j =i)
Setting uj = um+1 vj (j = i, m + 1) in H(i), we find ∞ ∞ H(i) = ··· kλ (v1 , · · · , vi−1 , u−1 m+1 , vi+1 , · · · , vm , 1)
Proof.
0
0
i ×u−1−λ m+1
m 2
λ −1
vj j
dv1 · · · dvi−1 dvi+1 · · · dvm dum+1 .
j=1(j =i)
Setting vi = u−1 m+1 in the above integral, we obtain H(i) = H(m + 1) = k(λm+1 ) (i = 1, · · · , m). In the following of this chapter, we agree on that m ∈ N, pi ∈ m m+1 1 R\{0, 1}, λi ∈ R(i = 1, · · · , m+ 1), p1 = i=1 p1i = 1 − pm+1 , i=1 λi = λ, and kλ (x1 , · · · , xm+1 )(≥ 0) is a finite homogeneous function of degree −λ in Rm+1 . + Lemma 6.3. If k(λm+1 ) ∈ R+ , there exists a constant δ0 > 0, such that for any m ∈ N and 0 < ε < δ0 min1≤j≤m+1 {|pj |, |p|}, ε k(λm+1 + ) p ∞ ∞ m 2 (λj − pε )−1 j = ··· kλ (u1 , · · · , um , 1) uj du1 · · · dum ∈ R+ , 0
then, we have
0
j=1
ε = k(λm+1 ) + o(1) (ε → 0+ ). k λm+1 + p
Proof. We prove (6.4) by mathematical induction. For m = 1, by Lemma 3.7, we have ∞ (λ1 − pε )−1 ε 1 k λ2 + = kλ (u1, 1)u1 du1 p 0 ∞ = kλ (u1, 1)u1λ1 −1 du1 + o(1) 0
= k(λ2 ) + o(1) (ε → 0+ ).
(6.4)
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
236
ws-book9x6
Half-Discrete Hilbert-Type Inequalities
Assuming that (6.4) is valid for m = n − 1, then, for m = n, since n ε ε λn+1 + + λj − = λ, p j=1 pj by the Fubini theorem (see Kuang [49]), we have ∞ ∞ ∞ ε k λn+1 + = ··· kλ (u1 , · · · , un , 1) p 0 0 0 n−1 2 (λj − pε )−1 (λn − pεn )−1 j uj du1 · · · dun−1 un dun × j=1
∞
∞
···
= 0
0
×
n−1 2
= 0
0
j
∞
du1 · · · dun−1 uλnn −1 dun + o1 (1) kλ (u1 , · · ·
(λj − pε )−1 j
uj
, un , 1)uλnn −1 dun
∞
= 0
···
×
∞
0 n−1 2
kλ (u1, · · ·
λ −1
uj j
)
du1 · · · dun−1 + o1 (1)
j=1
(
0
0 n−1 2
kλ (u1 , · · · , un , 1)
∞
···
×
0
(λj − pε )−1
uj j=1 ∞ ( ∞
∞
, un , 1)unλn −1 dun
)
du1 · · · dun−1 + o2 (1) + o1 (1)
j=1
= H(n + 1) + o(1) = k(λn+1 ) + o(1)(ε → 0+ ). Hence, we prove that (6.4) is valid for any m ∈ N.
Definition 6.2. If n ∈ N, xi ∈ R+ (i = 1, · · · , m), we define weight functions ωi (xi ) and m+1 (n) as follows: ∞ ∞ ∞ ωi (xi ) = xλi i nλm+1 −1 ··· kλ (x1 , · · · , xm , n) ×
0
n=1 m 2
λ −1
xj j
j=1(j =i)
m+1 (n) = n
λm+1 0
∞
dx1 · · · dxi−1 dxi+1 · · · dxm ,
···
0
∞ 0
kλ (x1 , · · · , xm , n)
m 2
λ −1
xj j
(6.5) dx1 · · · dxm .
j=1
(6.6)
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
ws-book9x6
237
Multiple Half-Discrete Hilbert-Type Inequalities
In particular, for λm+1 = λ2 , replacing the kernel kλ (x1 , · · · , xm , n) by kλ (nx1 , · · · , nxm , 1) in (6.5) and (6.6), we can still define another weight functions wi (xi ) (xi ∈ R+ ; i = 1, · · · , m) and w m+1 (n) (n ∈ N) as follows: ∞ ∞ ∞ λ wi (xi ) = xλi i n 2 −1 ··· kλ (nx1 , · · · , nxm , 1) 0
n=1
× λ
λ −1
xj j
dx1 · · · dxi−1 dxi+1 · · · dxm ,
j=1(j =i)
w m+1 (n) = n 2
0
m 2
∞
0
···
∞ 0
kλ (nx1 , · · · , nxm , 1)
m 2
λ −1
xj j
dx1 · · · dxm .
j=1
Lemma 6.4. For n ∈ N, we have m+1 (n) = k(λm+1 ). If k(λm+1 ) ∈ R+ , kλ (x1 , · · · , xm , y)y λm+1 −1 is decreasing with respect to y ∈ R+ and strictly decreasing in an interval I ⊂ (1, ∞), then, for any i = 1, · · · , m, we have 0 < k(λm+1 )(1 − θi (xi )) < ωi (xi ) < k(λm+1 )
(xi > 0),
(6.7)
where θi (xi ) =
1 k(λm+1 )
1/xi λm+1 −1 × um+1 0
×
m 2
∞ 0
···
λ −1 uj j du1
∞ 0
· · · dui−1 dui+1 · · · dum dum+1 > 0. (6.8)
j=1(j =i)
Note. For m = i = 1, θi (xi ) =
kλ (u1 , · · · , ui−1 , 1, ui+1 , · · · , um+1 )
1 k(λm+1 )
1/xi 0
λ
m+1 um+1
−1
kλ (1, um+1 )dum+1 .
Moreover, if there exist constants α, L > 0, such that ∞ ∞ Ai (um+1 ) = ··· kλ (u1 , · · · , ui−1 , 1, ui+1 , · · · , um+1 ) 0
×
0 m 2
λ −1
uj j
α−λ
du1 · · · dui−1 dui+1 · · · dum ≤ Lum+1m+1 ,
j=1(j =i)
(6.9) then, we still have θi (xi ) = O
1 xα i
(xi > 0; i = 1, · · · , m).
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
238
ws-book9x6
Half-Discrete Hilbert-Type Inequalities
Note. For m = i = 1, Ai (um+1 ) = kλ (1, um+1 ). Proof.
Setting xj = nuj (j = 1, · · · , m) in (6.6) gives ∞ ∞ m+1 (n) = nλm+1 nm ··· kλ (nu1 , · · · , num , n) 0
0
×
m 2
(nuj )λj −1 du1 · · · dum
j=1
= H(m + 1) = k(λm+1 ). Using the decreasing property and Lemma 6.2, for i = 1, · · · , m, we have ∞ ∞ ∞ λm+1 −1 ωi (xi ) < xλi i xm+1 ··· kλ (x1 , · · · , xm , xm+1 )dxm+1 0
0
m 2
×
λ −1
xj j
0
dx1 · · · dxi−1 dxi+1 · · · dxm
j=1(j =i)
= H(i) = k(λm+1 ) (uj = xj /xi (j = i)),
∞ ∞ ∞ λm+1 −1 λi xm+1 ··· kλ (x1 , · · · , xm , xm+1 ) ωi (xi ) > xi 1
0
m 2
×
λ −1 xj j dx1
0
· · · dxi−1 dxi+1 · · · dxm dxm+1 ,
j=1(j =i)
∞
= 1/xi
λ
m+1 um+1
−1
∞
0 m 2
×
(uj = xj /xi (j = i))
···
∞
0
kλ (u1 , · · · , ui−1 , 1, ui+1 , · · · , um+1 )
λ −1 uj j du1
· · · dui−1 dui+1 · · · dum dum+1
j=1(j =i)
= k(λm+1 )(1 − θi (xi )) > 0, where θi (xi ) is given by (6.8). Moreover, by (6.9), we have 0 < θi (xi ) =
1
1/xi
λ
m+1 Ai (um+1 )um+1
k(λm+1 ) 0 1/xi α−1 um+1 dum+1 =
−1
dum+1
L L . k(λm+1 ) 0 αk(λm+1 )xα i Thus, θi (xi ) = O x1α (xi > 0; i = 1, · · · , m). ≤
i
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
ws-book9x6
239
Multiple Half-Discrete Hilbert-Type Inequalities
Lemma 6.5. Suppose that λm+1 = λ2 , k(λm+1 ) ∈ R+ , and λ kλ (yx1 , · · · , yxm , 1)y 2 −1 is decreasing with respect to y ∈ R+ and strictly decreasing in an interval I ⊂ (1, ∞). Then, we have w m+1 (n) = k(λm+1 ), and for any i = 1, · · · , m, 0 < k(λm+1 )(1 − θi (xi )) < wi (xi ) < k(λm+1 ) (xi > 0), (6.10) where
xi ∞ ∞ 1 λ −1 i θi (xi ) = ui ··· kλ (u1 , · · · , um , 1) k(λm+1 ) 0 0 0 m 2 λj −1 uj du1 · · · dui−1 dui+1 · · · dum dui > 0. (6.11) × j=1(j =i)
Note. For m = i = 1, θi (xi ) =
1 k(λm+1 )
xi 0
uλi i −1 kλ (ui , 1)dui .
Moreover,if thereexist constants α, L > 0 such that ∞ ∞ B1 (ui ) = ··· kλ (u1 , · · · , um , 1) 0
0
m 2
×
λ −1
uj j
i du1 · · · dui−1 dui+1 · · · dum ≤ Luα−λ , i
(6.12)
j=1(j =i)
then, we have
θi (xi ) = O(xα i ) (xi > 0; i = 1, · · · , m). Note. For m = i = 1, B1 (ui ) = kλ (ui , 1).
Proof. Setting uj = nxj (j = 1, · · · , m) in w m+1 (n) (see Definition 6.2), simplifying, we find w m+1 (n) = k(λm+1 ). Using the decreasing property and Lemma 6.4, we have
∞ ∞ ∞ λ λi 2 −1 xm+1 ··· kλ (xm+1 x1 , · · · , xm+1 xm , 1) wi (xi ) < xi 0
0
m 2
×
λ −1 xj j dx1
0
· · · dxi−1 dxi+1 · · · dxm dxm+1 ,
j=1(j =i)
= xλi i
∞
(− λ −1)
xm+12
0
= xλi i
∞ 0
0 m 2
×
j=1(j =i) ∞
∞
(xm+1 = x−1 m+1 )
···
∞ 0
λ −1 xj j dx1
−1 kλ (x−1 m+1 x1 , · · · , xm+1 xm , 1)
· · · dxi−1 dxi+1 · · · dxm dxm+1
···
0
kλ (x1, · · · , xm , xm+1 )
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
240
ws-book9x6
Half-Discrete Hilbert-Type Inequalities m+1 2
×
λ −1
xj j
dx1 · · · dxi−1 dxi+1 · · · dxm+1
j=1(j =i)
= H(i) = k(λm+1 ) (uj = xj /xi (j = i)),
∞ ∞ ∞ λ −1 λi 2 xm+1 ··· kλ (xm+1 x1 , · · · , xm+1 xm , 1) wi (xi ) > xi 1 0 0 m 2 λj −1 × xj dx1 · · · dxi−1 dxi+1 · · · dxm dxm+1 . j=1(j =i)
Setting uj = xm+1 xj (j = i) in the above integral, simplifying, and putting ui = xm+1 xi , we find
∞ ∞ ∞ λi −1 ui ··· kλ (u1 , · · · , um, 1) wi (xi ) > xi 0 0 m 2 λj −1 × uj du1 · · · dui−1 dui+1 · · · dum dui j=1(j =i)
= k(λm+1 )(1 − θi (xi )) > 0,
where θi (xi ) is given by (6.11). Moreover, by (6.11) and (6.12), we have xi 1 B1 (ui )uλi i −1 dui 0 < θi (xi ) = k(λm+1 ) 0 xi L Lxα i i ≤ uλi i −1 uα−λ dui = , i k(λm+1 ) 0 αk(λm+1 ) that is, θi (xi ) = O(xα ) (xi > 0; i = 1, · · · , m). i
Lemma 6.6. Suppose that there exists a constant δ0 > 0, such that, for i = λ, k(λ i ∈ (λi − δ0 , λi + δ0 ) (i = 1, · · · , m + 1), m+1 λ m+1 ) ∈ R+ . any λ i=1 m+1 −1 λ is decreasing with respect to y ∈ R+ , then, for If kλ (x1 , · · · , xm , y)y 0 < ε < δ0 min1≤j≤m+1 {|pj |, |p|}, we have ∞ ∞ ∞ (λm+1 − p ε )−1 m+1 I(ε) = ε n ··· kλ (x1 , · · · , xm , n) n=1 m 2
×
1
(λj − pε j
xj
)−1
1
dx1 · · · dxm = k(λm+1 ) + o(1)(ε → 0+ ). (6.13)
j=1
Proof. δ0 ),
i = λi − ε (i = 1, · · · , m), λ m+1 = λm+1 + ε ∈ (λi − δ0 , λi + For λ pi p
kλ (x1 , · · · , xm , y) y
λm+1 − p
ε m+1
−1
(= kλ (x1 , · · · , xm , y)y λm+1 −1 y −ε )
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
ws-book9x6
241
Multiple Half-Discrete Hilbert-Type Inequalities
is decreasing with respect to y ∈ R+ . By the decreasing property, we find ∞ ∞ ∞ λm+1 − p ε −1 I(ε) ≥ ε xm+1 m+1 ··· kλ (x1 , · · · , xm , xm+1 ) 1
×
1
∞
=ε 1
x−ε−1 m+1
j
xj
×
∞
···
1 xm+1
m 2
1
x−ε−1 m+1 ×
∞
···
0
m 2
uj j=1 m ∞ 1
i=1
Ai (xm+1 ) =
0
∞
···
0 j
∞ 0
×
du1 · · · dum dxm+1 kλ (u1 , · · · , um , 1) du1 · · · dum dxm+1
∞
1
x−1 m+1 Ai (xm+1 )dxm+1 ,
1/xm+1
0 m 2
kλ (u1 , · · · , um , 1)
x−1 m+1 Ai (xm+1 )dxm+1
m
ε = k(λm+1 + ) − ε p i=1
∞
(λj − pε )−1
−ε
where
1 xm+1
j
uj
dx1 · · · dxm dxm+1 , (uj = xj /xm+1 ) ∞
(λj − pε )−1
j=1 ∞
1
(λj − pε )−1
j=1
≥ε
m 2
∞
···
0 (λj − pε )−1 j
uj
∞ 0
kλ (u1 , · · · , um , 1)
du1 · · · dui−1 dui dui+1 · · · dum .
j=1
∞
Without loss of generality, we estimate follows: ∞ 0< x−1 m+1 Am (xm+1 )dxm+1 1
∞
= 1
x−1 m+1
×
1/xm+1
∞
0
0 m 2 j=1
···
(λj − pε )−1
uj
j
1
∞ 0
x−1 m+1 Am (xm+1 )dxm+1 as
kλ (u1 , · · · , um , 1)
du1 · · · dum−1 dum dxm+1
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
242
ws-book9x6
Half-Discrete Hilbert-Type Inequalities
1
1/um
x−1 m+1 dxm+1
= 0
1
×
m 2
1
0
(− ln um ) ×
∞
j
0
m 2
···
∞
···
∞ 0
kλ (u1 , · · · , um , 1)
du1 · · · dum−1 dum
kλ (u1 , · · · , um , 1)
0
(λj − pε )−1
uj
∞
0
(λj − pε )−1
uj
j=1
=
j
du1 · · · dum−1 dum .
(6.14)
j=1 1 } < δ0 , since Setting α > 0, such that max{α + |pεm | , α + ε |p| limum →0+ uα (− ln u ) = 0, there exists a constant M > 0, such that m m m
0 < uα m (− ln um ) ≤ Mm (um ∈ (0, 1]). In view of (6.14) and (6.2), we find ∞ x−1 0< m+1 Am (xm+1 ) dxm+1 1 ∞ ∞ ∞ ≤ Mm ··· kλ (u1 , · · · , um , 1) 0
0
×
0
m−1 2
(λj − pε )−1 (λm − αpm +ε )−1 j pm uj um du1
· · · dum−1 dum
j=1
ε = Mm k λm+1 + α + < ∞. p Thus, m i=1
∞
1
x−1 i Am (xm+1 )dxm+1 = O(1).
Hence, we have
I(ε) ≥ k λm+1 + ε 1 −
We still obtain I(ε) ≤ ε
∞
n
−ε−1
n
λm+1 +ε− p
ε m+1
×
m 2 j=1
∞
···
(λj − pε )−1
xj
− εO(1).
pm+1
0
n=1
1
j
∞ 0
kλ (x1 , · · · , xm , n)
dx1 · · · dxm
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
ws-book9x6
243
Multiple Half-Discrete Hilbert-Type Inequalities
ε k λm+1 + = ε 1+ n p n=2 ∞ ε −ε−1 ≤ ε 1+ y dy k λm+1 + p 1 ε . = (ε + 1) k λm+1 + p ∞
−ε−1
Hence, by (6.4), we have (6.13).
Lemma 6.7. Suppose that λm+1 = λ2 , there exists a constant δ0 > 0, such i = λ, i ∈ (λi − δ0 , λi + δ0 ) (i = 1, · · · , m + 1), m+1 λ that, for any λ i=1 k(λm+1 ) ∈ R+ , and
kλ (yx1 , · · · , yxm , 1) y λm+1 −1 is decreasing with respect to y ∈ R+. Then, for 0 δ0 min1≤j≤m+1 {|pj |, |p|}, we have 1 1 ∞ λ − ε −1 =ε I(ε) n 2 pm+1 ··· kλ (nx1 , · · · , nxm , 1) n=1 m 2
×
0
(λj + pε )−1 j
xj
<
ε
<
0
dx1 · · · dxm = k(λm+1 ) + o(1)(ε → 0+ ). (6.15)
j=1
Proof.
By the decreasing property, we find
∞ λ 1 1 ε 2 − pm+1 −1 I(ε) ≥ ε xm+1 ··· kλ (xm+1 x1 , · · · , xm+1 xm , 1) 1
×
0
m 2
(λj − pε )−1
xj
j
0
dx1 · · · dxm dxm+1 uj = xm+1 xj (j = 1, · · · , m)
j=1
∞
=ε 1
x−ε−1 m+1
xm+1
···
0
×
m 2
xm+1
0
kλ (u1 , · · · , um , 1)
(λj + pε )−1
uj
j
du1 · · · dum dxm+1
j=1
≥ε
1
∞
x−ε−1 m+1
0
∞
··· ×
∞ 0
m 2 j=1
kλ (u1 , · · · , um , 1)
(λj + pε )−1
uj
j
du1 · · · dum dxm+1
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
244
Half-Discrete Hilbert-Type Inequalities
−ε
m 1
i=1
= k(λm+1 − ε + where
Bi (xm+1 ) =
∞ 0
×
m 2
pm+1
0
(λj + pε )−1 j
∞ 0
xm+1
uj
1
i=1
x−1 m+1 Bi (xm+1 )dxm+1
m ∞
)−ε
∞ ∞
···
ε
∞
···
x−1 m+1 Bi (xm+1 )dxm+1 , (6.16)
∞ 0
kλ (u1 , · · · , um , 1)
du1 · · · dui−1 dui dui+1 · · · dum (1 ≤ i ≤ m).
j=1
∞
Without loss of generality, we estimate follows: ∞ x−1 0< m+1 Bm (xm+1 )dxm+1 1
∞
= 1
x−1 m+1
∞
xm+1
×
∞
∞
(λj + pε )−1 j
uj
j=1
um
= 1
m 2
0
···
1
×
x−1 m+1 dxm+1 m 2
0
kλ (u1 , · · · , um , 1)
∞ 0
j
x−1 m+1 Bm (xm+1 )dxm+1 as
du1 · · · dum−1 dum dxm+1
(λj + pε )−1
uj
∞
1
···
∞ 0
kλ (u1 , · · · , um , 1)
du1 · · · dum−1 dum
j=1
∞
= 1
ln um ×
∞
0 m 2
···
∞
0
kλ (u1 , · · · , um , 1)
(λj + pε )−1
uj
j
du1 · · · dum−1 dum .
j=1
Setting α > 0, such that max{α +
ε |pm | , α
+
ε |p| }
< δ0 , since
lim u−α m ln um = 0,
um →∞
there exists a constant Mm > 0, such that 0 < u−α m ln um ≤ Mm (um ∈ [1, ∞)).
ws-book9x6
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
ws-book9x6
245
Multiple Half-Discrete Hilbert-Type Inequalities
In view of (6.2), we obtain ∞ 0< x−1 m+1 Bm (xm+1 )dxm+1 1 ∞ ∞ ∞ ≤ Mm ··· kλ (u1 , · · · , um , 1) 0
0
0 m−1 2
×
(λj + pε )−1 (λm + αpm +ε )−1 pm j um du1
uj
· · · dum−1 dum
j=1
ε < ∞, = Mm k λm+1 − α − p and then, by (6.16), we have ≥ k λm+1 − ε − εO(1). I(ε) p By Lemma 6.4, we still obtain
∞ λ ε −ε−1 2 +ε− pm+1 I(ε) ≤ ε n n n=1 m 2
×
0
(λj + pε )−1 j
xj
= ε 1+
∞
n
−ε−1
∞ 0
n=2
× ≤ ε 1+
···
dx1 · · · dxm ,
j=1
∞
m 2
···
∞ 0
(uj = nxj (j = 1, · · · , m))
∞ 0
kλ (u1 , · · · , um , 1)
(λj + pε )−1
uj
kλ (nx1 , · · · , nxm , 1)
j
du1 · · · dum
j=1
ε y −ε−1 dy k(λm+1 − ) p 1 ε = (ε + 1)k(λm+1 − ). p ∞
Then, by (6.4), we have (6.15). 6.2.2
Two Preliminary Inequalities
Lemma 6.8. If fi (xi )(i = 1, · · · , m) are non-negative measurable functions in R+ , then
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
246
ws-book9x6
Half-Discrete Hilbert-Type Inequalities
(i) for pi > 1(i = 1, · · · , m + 1), we have the following inequality: J=
∞
n
pλm+1 −1
∞
0
n=1
×
···
m 2
∞ 0
kλ (x1 , · · · , xm , n) p p1
fj (xj )dx1 · · · dxm
j=1
≤ [k(λm+1 )]
1 pm+1
m 2 i=1
∞
0
p (1−λi )−1 ωi (xi )xi i fi (xi )dxi
p1
i
; (6.17)
(ii) for 0 < p1 < 1, pi < 0 (i = 2, · · · , m+1), or for pi < 0 (i = 1, · · · , m), 0 < pm+1 < 1, we have the reverse of (6.17). Proof. (i) For pi > 1(i = 1, · · · , m + 1)(p > 1), by H¨ older’s inequality with weight (see Kuang [47]) and (6.1), we have
∞ 0
⎧ ⎨ =
⎩
···
∞
0
∞ 0
···
×
kλ (x1 , · · · , xm , n)
m 2
p fi (xi )dx1 · · · dxm
i=1 ∞
0 m 2
kλ (x1 , · · · , xm , n) ⎡ i −1)(1−pi ) λm+1 −1 ⎣x(λ n i
⎡ × ⎣n(λm+1 −1)(1−pm+1 )
m 2
⎤p
λ −1 ⎦
xj j
j=1
∞ 0
×
···
m 2 i=1
⎡
∞ 0
i
λ −1 xj j ⎦
fi (xi )
j=1(j =i)
i=1
≤
⎤ p1
m 2
1 m+1
dx1 · · · dxm
⎫p ⎬ ⎭
kλ (x1 , · · · , xm , n)
⎣xi(λi −1)(1−pi ) nλm+1 −1
m 2 j=1(j =i)
⎤ pp
i
λ −1 ⎦
xj j
fip (xi )dx1 · · · dxm
⎧
∞ ∞ ⎨ pm+1 (1−λm+1 )−1 λm+1 × n ··· kλ (x1 , · · · , xm , n) n ⎩ 0 0
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
ws-book9x6
247
Multiple Half-Discrete Hilbert-Type Inequalities
⎫ pm+1 ⎬ p
×
m 2
λ −1
xj j
j=1 p pm+1
=
[ωm+1 (n)] npλm+1 −1 ×
m 2
⎡
∞
0
dx1 · · · dxm
···
∞ 0
⎭
kλ (x1 , · · · , xm , n)nλm+1 −1
⎣xi(λi −1)(1−pi )
⎤ pp
m 2
i
λ −1 ⎦
xj j
fip (xi )dx1 · · · dxm .
j=1(j =i)
i=1
Since ωm+1 (n) = k(λm+1 ), by the Lebesgue term by term integration theorem (see Kuang [49]), we find ⎧ ⎪ ∞ ∞ ∞ ⎨ 1 pm+1 J ≤ [k(λm+1 )] ··· kλ (x1 , · · · , xm , n)nλm+1 −1 ⎪ 0 ⎩ n=1 0 ⎫ p1 ⎡ ⎤ pp ⎪ i m m ⎬ 2 2 λj −1 ⎦ (λi −1)(1−pi ) p ⎣ xi × xj fi (xi )dx1 · · · dxm ⎪ ⎭ i=1 j=1(j =i) ⎧ ⎪ ∞ ∞ ⎨ ∞ 1 = [k(λm+1 )] pm+1 ··· kλ (x1 , · · · , xm , n)nλm+1 −1 ⎪ 0 ⎩ 0 n=1 ⎫ p1 ⎡ ⎤ pp ⎪ i m m ⎬ 2 2 λj −1 ⎦ (λi −1)(1−pi ) p ⎣ × xj fi (xi )dx1 · · · dxm . xi ⎪ ⎭ i=1 j=1(j =i) In view of
m
1 i=1 (pi /p)
= 1, still by H¨older’s inequality, we obtain ⎧ ⎡ ∞ m ⎨ ∞ 2 1 λi pm+1 ⎣ xi nλm+1 −1 J ≤ [k(λm+1 )] ⎩ 0 n=1 i=1 ∞ ∞ m 2 λ −1 × ··· kλ (x1 , · · · , xm , n) xj j 0
0
⎤
j=1(j =i) p (1−λi )−1 pi fi (xi )dxi
× dx1 · · · dxi−1 dxi+1 · · · dxm ⎦xi i
= [k(λm+1 )]
1 pm+1
m 2 i=1
∞
0
and then, inequality (6.17) follows.
⎫ ppp i ⎬ ⎭
p (1−λi )−1 pi ωi (xi )xi i fi (xi )dxi
p1
i
,
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
248
Half-Discrete Hilbert-Type Inequalities
(ii) For 0 < p1 < 1, pi < 0 (i = 2, · · · , m + 1), or for pi < 0 (i = 1, · · · , m), 0 < pm+1 < 1, by the reverse H¨older’s inequality (see Kuang [47]) and the same way, we obtain the reverse of (6.17). For λm+1 = λ2 , replacing kλ (x1 , · · · , xm , n) by kλ (nx1 , · · · , nxm , 1) in Lemma 6.8, we still have Lemma 6.9. Suppose that λm+1 = λ2 , fi (xi ) (i = 1, · · · , m) are nonnegative measurable functions in R+ . Then (i) if pi > 1 (i = 1, · · · , m + 1), we have the following inequality: ⎧ ⎛ ∞ ∞ ∞ ⎨ pλ −1 ⎝ 2 n ··· kλ (nx1 , · · · , nxm , 1) J1 = ⎩ 0 0 n=1 ⎞p ⎫ p1 m ⎬ 2 fj (xj )dx1 · · · dxm ⎠ × ⎭ j=1 p1 m ∞ 2 1 i p (1−λi )−1 ≤ [k(λm+1 )] pm+1 wi (xi )xi i fi (xi )dxi ; (6.18) i=1
0
(ii) if 0 < p1 < 1, pi < 0 (i = 2, · · · , m + 1), or pi < 0 (i = 1, · · · , m), 0 < pm+1 < 1, then, we have the reverse of (6.18). 6.2.3
Main Results and Operator Expressions
In the following, we set two functions: p (1−λi )−1 ϕi (xi ) = xi i (xi ∈ R+ ; i = 1, · · · , m), pm+1 (1−λm+1 )−1 (n ∈ N). and ψ(n) = n The spaces Lpi, ϕi (R+ ) and lpm+1, ψ with the norms ||fi ||pi, ϕi and ||a||pm+1, ψ are defined by ∞ p1 i ϕi (xi )|fi (xi )|pi dxi <∞ , Lpi, ϕi (R+ ) = fi ; ||fi ||pi, ϕi = 0
lpm+1, ψ
⎧ ⎫ ∞ p 1 ⎨ ⎬ m+1 = a = {an }; ||a||pm+1,ψ = ψ(n)|an |pm+1 <∞ . ⎩ ⎭ n=1
Theorem 6.1. Suppose that pi > 1 (i = 1, · · · , m + 1), there exists a i ∈ (λi − δ0 , λi + δ0 ) (i = 1, · · · , m + 1), constant δ0 > 0 such that, for any λ m+1 i=1 λi = λ, ∞ ∞ m 2 −1 λ m+1 ) = k(λ ··· kλ (u1 , · · · , um , 1) uj j du1 · · · dum ∈ R+ , 0
0
j=1
ws-book9x6
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
ws-book9x6
249
Multiple Half-Discrete Hilbert-Type Inequalities
and kλ (x1 , · · · , xm , y) y λm+1 −1 is decreasing with respect to y ∈ R+ and strictly decreasing in an interval I ⊂ (1, ∞). If fi (xi ) ≥ 0, fi ∈ Lpi, ϕi (R+ ) (i = 1, · · · , m), an ≥ 0, a = {an }∞ n=1 ∈ lpm+1, ψ , ||fi ||pi, ϕi > 0, ||a||pm+1, ψ > 0, then, we have the following equivalent inequalities: ∞ ∞ ∞ m 2 I= an ··· kλ (x1 , · · · , xm , n) fj (xj )dx1 · · · dxm 0
n=1
0
j=1
< k(λm+1 )||a||pm+1, ψ
m 2
||fi ||pi, ϕi ,
(6.19)
i=1
and J=
⎧ ∞ ⎨ ⎩
⎛ npλm+1 −1 ⎝
∞
0
n=1 m 2
×
j=1
< k(λm+1 )
m 2
···
∞ 0
kλ (x1 , · · · , xm , n)
⎞p ⎫ p1 ⎬ fj (xj )dx1 · · · dxm ⎠ ⎭
||fi ||pi, ϕi ,
(6.20)
i=1
where the constant factor k(λm+1 ) in the above inequalities is the best possible. Proof. By (6.17) and the assumptions, since i (xi ) < k(λm+1 ), we have (6.20). By H¨older’s inequality (see Kuang [47]), we obtain
∞ ∞ ∞ −1 ··· kλ (x1 , · · · , xm , n) (ψ(n)) pm+1 I= 0
n=1
×
m 2
0
1
fj (xj )dx1 · · · dxm [(ψ(n)) pm+1 an ]
j=1
≤ J||a||pm+1, ψ .
(6.21)
Then, by (6.20), we have inequality (6.19). Assuming that (6.19) is valid and setting an = npλm+1 −1
∞
0
···
∞
0
kλ (x1 , · · · , xm , n) ×
m 2 j=1
p−1 fj (xj )dx1 · · · dxm
(n ∈ N),
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
250
ws-book9x6
Half-Discrete Hilbert-Type Inequalities
then, we have J p−1 = ||a||pm+1, ψ . By (6.17), we have J < ∞. If J = 0, then (6.20) is trivially valid; if J > 0, then, by (6.19), it follows that p
= J p = I < k(λm+1 )||a||pm+1, ψ ||a||pm+1 m+1, ψ
m 2
||fi ||pi, ϕi ,
that is,
i=1 p
−1
||a||pm+1 = J < k(λm+1 ) m+1, ψ
m 2
||fi ||pi, ϕi ,
i=1
and then, inequality (6.20) follows. Hence, (6.19) and (6.20) are equivalent. an as follows: For 0 < ε < δ0 min1≤j≤m+1 {pj , p}, we set fi (xi ) and 0, 0 < xi < 1, (i = 1, · · · , m), fi (xi ) = (λi − pε )−1 i , xi ≥ 1 xi an = n
(λm+1 − p
ε m+1
)−1
, n ∈ N.
If there exists a constant k(≤ k(λm+1 )), such that (6.19) is valid as we replace k(λm+1 ) by k, then, by (6.13), we find k(λm+1 ) + o(1) = I(ε) ∞ an =ε n=1
∞ 0
···
∞
0
kλ (x1 , · · · , xm , n)
×
m 2
fj (xj )dx1 · · · dxm
j=1
< εk|| a||pm+1, ψ = εk 1 +
m 2
||fi ||pi, ϕi
i=1 ∞ n=2
< εk 1 +
1
∞
1
p
1 m+1
n1+ε dy y 1+ε
m p 2 1 i 1
ε
p
1 m+1
i=1 m 2 i=1
1 ε
p1
i
1
= k(1 + ε) pm+1 ,
and then, k(λm+1 ) ≤ k (ε → 0+ ). Hence, k = k(λm+1 ) is the best constant factor of (6.19). By the equivalency, the constant factor k(λm+1 ) in (6.20) is still the best possible. Otherwise, it leads to a contradiction by (6.21) that the constant factor in (6.19) is not the best possible.
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
ws-book9x6
251
Multiple Half-Discrete Hilbert-Type Inequalities
Theorem 6.2. For λm+1 = λ2 , replacing kλ (x1, · · · , xm , y) y λm+1 −1 by
kλ (yx1, · · · , yxm , 1) y λm+1 −1 , in this case, let the assumptions of Theorem 6.1 be fulfilled. Then, we have the following equivalent inequalities with the same best constant factor k(λm+1 ) : ∞ ∞ ∞ m 2 an ··· kλ (nx1 , · · · , nxm , 1) fj (xj )dx1 · · · dxm 0
n=1
0
j=1 m 2
< k(λm+1 )||a||pm+1, ψ
||fi ||pi, ϕi ,
(6.22)
i=1
and
∞
n
pλ 2 −1
0
n=1
×
m 2
∞
···
∞
0
kλ (nx1 , · · · , nxm , 1)
p p1
fj (xj )dx1 · · · dxm
< k(λm+1 )
j=1
m 2
||fi ||pi, ϕi .
(6.23)
i=1
Proof. We only prove that the constant factor in (6.22) is the best possible. The other parts of the proof are omitted. an as follows: For 0 < ε < δ0 min1≤j≤m+1 {pj , p}, we set fi (xi ) and (λi + pε )−1 i , 0 < xi ≤ 1, (i = 1, · · · , m), fi (xi ) = xi 0, xi > 1 an = n
(λ 2 −p
ε m+1
)−1
, n ∈ N.
If there exists a constant k(≤ k(λm+1 )), such that (6.22) is valid as we replace k(λm+1 ) by k, then, by (6.15), we have k(λm+1 ) + o(1) = I(ε) ∞ m ∞ ∞ 2 an ··· kλ (nx, · · · , nxm , 1) =ε fj (xj )dx1 · · · dxm n=1
0
0
< εk|| a||pm+1, ψ = k 1+
m 2 i=1
∞ n=2
< εk 1 +
1
||fi ||pi, ϕi p
1 m+1
n1+ε
∞ 1
j=1
dy y 1+ε
m p 2 1 i 1
ε
p
i=1 m 2
1 m+1
i=1
1 ε
p1
i
1
= k(1 + ε) pm+1 ,
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
252
ws-book9x6
Half-Discrete Hilbert-Type Inequalities
and then, k(λm+1 ) ≤ k(ε → 0+ ). Hence, k = k(λm+1 ) is the best possible constant factor of (6.22). Remark 6.1. With the assumptions of Theorem 6.1, we define a first kind of multiple half-discrete Hilbert-type operator with the homogeneous kernel
T :
m 2
Lpi, ϕi (R+ ) → lpm+1,ψ1−p
i=1
as follows: m For any f = (f1 , · · · , fm ) ∈ i=1 Lpi, ϕi (R+ ), there exists a T f, satisfying ∞ ∞ m 2 T f (n) = ··· kλ (x1 , · · · , xm , n) fj (xj )dx1 · · · dxm (n ∈ N). 0
0
j=1
(6.24) Then, by (6.20), it follows that ||T f ||p,ψ1−p < k(λm+1 )
m 2
||fi ||pi, ϕi ,
i=1
and then, T f ∈ lp,ψ1−p . Hence, T is a bounded linear operator with ||T || ≤ k(λm+1 ). Since the constant factor in (6.20) is the best possible, we have ||T f || 1−p m p,ψ = k(λm+1 ). (6.25) ||T || = sup m f ( =θ)∈ i=1 Lpi, ϕi (R+ ) i=1 ||fi ||pi, ϕi With the assumptions of Theorem 6.2, we define a first kind of multiple half-discrete Hilbert-type operator with the non-homogeneous kernel m 2 Lpi, ϕi (R+ ) → lpm+1,ψ1−p T1 : i=1
as follows: m For any f = (f1 , · · · , fm ) ∈ i=1 Lpi, ϕi (R+ ), there exists a T1 f, satisfying ∞ ∞ m 2 T1 f (n) = ··· kλ (nx1 , · · · , nxm , 1) fj (xj )dx1 · · · dxm (n ∈ N). 0
0
j=1
(6.26) Then, by (6.23), it follows that ||T1 f ||p,ψ1−p < k(λm+1 )
m 2 i=1
||fi ||pi, ϕi ,
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
ws-book9x6
253
Multiple Half-Discrete Hilbert-Type Inequalities
and then, T1 f ∈ lp,ψ1−p . Hence, T1 is a bounded linear operator with ||T1 || ≤ k(λm+1 ). Since the constant factor in (6.23) is the best possible, we have ||T1 || =
6.2.4
||T1 f ||p,ψ1−p m = k(λm+1 ). i=1 ||fi ||pi, ϕi i=1 Lpi, ϕi (R+ ) sup
f ( =θ)∈
(6.27)
m
Some Kinds of Reverse Inequalities p (1−λ1 )−1
For ϕ1 (x1 ) = x11 θ1 (x1 ) =
1 k(λm+1 )
,
1/x1
0
λm+1 −1 um+1
∞
0
×
···
m 2
∞ 0
kλ (1, u2, · · · , um+1 )
λ −1 uj j du2
· · · dum dum+1 ,
j=2
and for λm+1 = λ2 , θ1 (x1 ) =
1 k(λm+1 )
0
x1
u1λ1 −1
0
∞
··· ×
∞
0 m 2
kλ (u1, · · · , um , 1)
λ −1 uj j du2
· · · dum du1 .
j=2
We also set two functions Φ1 (x1 ) = (1 − θ1 (x1 ))ϕ1 (x1 ), and 1 (x1 ) = (1 − θ1 (x1 ))ϕ1 (x1 ). Φ For pi < 1(pi = 0), the spaces Lpi, ϕi (R+ ) and lpm+1, ψ with ||fi ||pi, ϕi and ||a||pm+1, ψ are not normed spaces. But we still use them as the formal symbols in the following: Theorem 6.3. Suppose that 0 < p1 < 1, pi < 0 (i = 2, · · · , m + 1), i ∈ (λi − δ0 , λi + δ0 ) there exists a constant δ0 > 0, such that, for any λ m+1 (i = 1, · · · , m + 1), i=1 λi = λ, ∞ ∞ m 2 −1 λ m+1 ) = ··· kλ (u1, · · · , um , 1) uj j du1 · · · dum ∈ R+ , k(λ 0
0
j=1
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
254
ws-book9x6
Half-Discrete Hilbert-Type Inequalities
and kλ (x1, · · · , xm , y) y λm+1 −1 is decreasing with respect to y ∈ R+ and strictly decreasing in an interval I ⊂ (1, ∞). There exist constants α, L > 0, such that (6.9) is satisfied for i = 1, and α−λ
A1 (um+1 ) ≤ L um+1m+1 (um+1 ∈ R+ ). If f1 (x1 ) ≥ 0, f1 ∈ Lp1, Φ1 (R+ ), ||f1 ||p1, Φ1 > 0, fi (xi ) ≥ 0, fi ∈ Lpi, ϕi (R+ ), ||fi ||pi, ϕi > 0 (i = 2, · · · , m), an ≥ 0, a = {an }∞ n=1 ∈ lpm+1, ψ , ||a||pm+1, ψ > 0, then, we have the following equivalent inequalities with the same best possible constant factor k(λm+1 ): ∞ ∞ ∞ m 2 I= an ··· kλ (x1 , · · · , xm , n) fj (xj )dx1 · · · dxm 0
n=1
0
j=1
> k(λm+1 )||a||pm+1, ψ ||f1 ||p1 ,Φ1
m 2
||fi ||pi, ϕi ,
(6.28)
i=2
and
J=
∞
n
pλm+1 −1
0
n=1
×
m 2
∞
···
∞ 0
kλ (x1 , · · · , xm , n)
p p1
fj (xj )dx1 · · · dxm
> k(λm+1 )||f1 ||p1 ,Φ1
j=1
m 2
||fi ||pi, ϕi .
i=2
(6.29) Proof.
By the reverse of (6.17), since 1 (x1 ) > k(λm+1 )(1 − θ1 (x1 )), and i (xi ) < k(λm+1 ),
in view of the assumptions made, we have (6.29). By H¨older’s inequality, we obtain
∞ ∞ ∞ −1 ··· kλ (x1 , · · · , xm , n) I= (ψ(n)) pm+1 n=1 m 2
×
0
0
1
fj (xj )dx1 · · · dxm [(ψ(n)) pm+1 an ] ≥ J||a||pm+1, ψ . (6.30)
j=1
Then, by (6.29), we have inequality (6.28). Assuming that (6.28) is valid, setting an as follows: an = npλm+1 −1
∞
0
···
∞
0
kλ (x1 , · · · , xm , n) ×
m 2 j=1
p−1 fj (xj )dx1 · · · dxm
(n ∈ N),
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
ws-book9x6
255
Multiple Half-Discrete Hilbert-Type Inequalities
then, we find J p−1 = ||a||pm+1, ψ . By the reverse of (6.17), we have J > 0. If J = ∞, then (6.29) is trivially valid; if J < ∞, then by (6.28), it follows that p
||a||pm+1 = J p = I > k(λm+1 )||a||pm+1, ψ ||f1 ||p1 ,Φ1 m+1, ψ
m 2
||fi ||pi, ϕi , that is,
i=2 p
−1
= J > k(λm+1 )||f1 ||p1 ,Φ1 ||a||pm+1 m+1, ψ
m 2
||fi ||pi, ϕi .
i=2
Thus, inequality (6.29) follows. Hence, (6.28) and (6.29) are equivalent. For 0 < ε < δ0 min1≤j≤m+1 {|pj |, p}, we set fi (xi ) and an as follows: 0, 0 < xi < 1, (i = 1, · · · , m), fi (xi ) = (λi − pε )−1 i xi , xi ≥ 1 an = n
(λm+1 − p
ε m+1
)−1
,
n ∈ N.
If there exists a constant k(≥ k(λm+1 )) such that (6.28) is valid, as we replace k(λm+1 ) by k, then, by (6.13) and Lemma 6.4, we have k(λm+1 ) + o(1) = I(ε) ∞ ∞ ∞ m 2 an ··· kλ (x1 , · · · , xm , n) =ε fj (xj )dx1 · · · dxm n=1
0
0
j=1
> εk|| a||pm+1, ψ ||f1 ||p1 ,Φ1 = εk
p
∞
1
n=1
n1+ε ∞
> εk 1 +
1
= k(ε + 1)
1 pm+1
m 2
||fi ||pi, ϕi
i=2 1 m+1
dy y 1+ε
(
p
)1 m 1 1 dx p1 2 1 pi 1−O xα x1+ε ε 1 i=2 1 p1 2 m 1 1 1 pi − O(1) ε ε
∞ 1
1 m+1
(1 − εO(1))
i=2
1 p1
,
and then, k(λm+1 ) ≥ k(ε → 0+ ). Hence, k = k(λm+1 ) is the best possible constant factor of (6.28). By the equivalency, the constant factor k(λm+1 ) in (6.29) is the best possible. Otherwise, it leads to a contradiction by (6.30) that the constant factor in (6.28) is not the best possible.
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
256
ws-book9x6
Half-Discrete Hilbert-Type Inequalities
Theorem 6.4. Suppose that 0 < p1 < 1, pi < 0(i = 2, · · · , m + 1), λm+1 = λ i ∈ (λi − δ0 , λi + δ0 )(i = , there exists a constant δ0 > 0 such that for any λ 2 m+1 1, · · · , m + 1), i=1 λi = λ, ∞ ∞ m 2 −1 λ m+1 ) = k(λ ··· kλ (u1 , · · · , um , 1) uj j du1 · · · dum ∈ R+ , 0
0
j=1
and kλ (yx1 , · · · , yxm , 1) y λm+1 −1 is decreasing with respect to y ∈ R+ and strictly decreasing in an interval I ⊂ (1, ∞). There exist constants α, L > 0, such that (6.12) is satisfied for i = 1, · · · , m, and i B1 (ui ) ≤ L uα−λ (ui ∈ R+ ) (i = 1, · · · , m). i
If f1 (x1 ) ≥ 0, f1 ∈ Lp1, Φ 1 (R+ ), ||f1 ||p1, Φ 1 > 0, fi (xi ) ≥ 0, fi ∈ Lpi, ϕi (R+ ), ||fi ||pi, ϕi > 0 (i = 2, · · · , m), an ≥ 0, a = {an }∞ n=1 ∈ lpm+1, ψ , ||a||pm+1, ψ > 0, then, we have the following equivalent inequalities with the same best possible constant factor k(λm+1 ): ∞ ∞ ∞ m 2 an ··· kλ (nx1 , · · · , nxm , 1) fj (xj )dx1 · · · dxm 0
n=1
0
j=1
> k(λm+1 )||a||pm+1, ψ ||f1 ||p1, Φ 1
m 2
||fi ||pi, ϕi ,
(6.31)
i=2
and
∞
n
pλ 2 −1
∞ 0
n=1
··· ×
> k(λm+1 )||f1 ||p1, Φ 1
∞
0
m 2
kλ (nx1 , · · · , nxm , 1) p p1
fj (xj )dx1 · · · dxm
j=1 m 2
||fi ||pi, ϕi .
(6.32)
i=2
Proof. We only prove that the constant factor in (6.31) is the best possible. The other parts of the proof are omitted. For 0 < ε < δ0 min1≤j≤m+1 {|pj |, p}, we set fi (xi ) and an as follows: (λ + ε )−1 i pi , 0 < xi ≤ 1, (i = 1, · · · , m), fi (xi ) = xi 0, xi > 1 an = n
(λ 2−p
ε m+1
)−1
,
n ∈ N.
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
ws-book9x6
257
Multiple Half-Discrete Hilbert-Type Inequalities
If there exists a constant k(≥ k(λm+1 )) such that (6.31) is valid as we replace k(λm+1 ) by k, then, by (6.15), we have k(λm+1 ) + o(1) = I(ε) ∞ m ∞ ∞ 2 an ··· kλ (nx, · · · , nxm , 1) =ε fj (xj )dx1 · · · dxm 0
n=1
0
j=1
> εk|| a||pm+1, ψ ||f1 ||p1, Φ 1 = εk
p
∞
1
n=1
n1+ε ∞
> εk 1 +
1
m 2
||fi ||pi, ϕi
i=2 1 m+1
dy y 1+ε
(
p
1
0 1 m+1
1
(1 −
dx O(xα 1 )) 1−ε x
) p11 2 m p1 1 i i=1
ε
p1 2 m p1 1 1 1 i − O(1) ε ε i=2
1
= k(ε + 1) pm+1 (1 + εO(1)) p1 , and then, k(λm+1 ) ≥ k(ε → 0+ ). Hence, k = k(λm+1 ) is the best value of (6.31). Similarly, we still have Theorem 6.5. Suppose that pi < 0 (i = 1, · · · , m), 0 < pm+1 < 1, there i ∈ (λi − δ0 , λi + δ0 )(i = exists a constant δ0 > 0, such that, for any λ m+1 1, · · · , m + 1), i=1 λi = λ, m+1 ) = k(λ
∞ 0
···
∞ 0
kλ (u1, · · · , um , 1)
m 2
−1 λ
uj j
du1 · · · dum ∈ R+ ,
j=1
and kλ (x1, · · · , xm , y) y λm+1 −1 is strictly decreasing with respect to y ∈ R+ and strictly decreasing in an interval I ⊂ (1, ∞). If fi (xi ), an ≥ 0, fi ∈ Lpi, ϕi (R+ ) (i = 1, · · · , m), a = {an }∞ n=1 ∈ lpm+1, ψ , ||fi ||pi, ϕi > 0, ||a||pm+1, ψ > 0, then, we have the following equivalent reverse inequalities with the same best possible constant factor k(λm+1 ): ∞ n=1
an
∞ 0
···
∞ 0
kλ (x1 , · · · , xm , n)
> k(λm+1 )||a||pm+1, ψ
m 2
fj (xj )dx1 · · · dxm
j=1 m 2 i=1
||fi ||pi, ϕi ,
(6.33)
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
258
ws-book9x6
Half-Discrete Hilbert-Type Inequalities
and
∞
n
pλm+1 −1
∞ 0
n=1
m 2
×
···
∞ 0
kλ (x1 , · · · , xm , n) p p1
fj (xj )dx1 · · · dxm
j=1 m 2
> k(λm+1 )
||fi ||pi, ϕi .
(6.34)
i=1
Theorem 6.6. Suppose that pi < 0(i = 1, · · · , m), 0 < pm+1 < 1, λm+1 = λ i ∈ (λi − δ0 , λi + δ0 ) , there exists a constant δ0 > 0 such that for any λ 2 m+1 (i = 1, · · · , m + 1), i=1 λi = λ, m+1 ) = k(λ
∞ 0
···
∞ 0
kλ (u1, · · · , um , 1)
m 2
−1 λ
uj j
du1 · · · dum ∈ R+ ,
j=1
and kλ (yx1 , · · · , yxm , 1) y λm+1 −1 is decreasing with respect to y ∈ R+ and strictly decreasing in an interval I ⊂ (1, ∞). There exist constants α, L > 0, such that (6.12) is satisfied for i = 1, · · · , m, and i (ui ∈ R+ ; B1 (ui ) ≤ Luα−λ i
i = 1, · · · , m).
If fi (xi ), an ≥ 0, fi ∈ Lpi, ϕi (R+ ) (i = 1, · · · , m), a = {an }∞ n=1 ∈ lpm+1, ψ , ||fi ||pi, ϕi > 0, ||a||pm+1, ψ > 0, then, we have the following equivalent inequalities with the same best possible constant factor k(λm+1 ): ∞
an
n=1
∞ 0
···
∞
0
∞ n=1
×
m 2 j=1
n
pλ 2 −1
0
m 2
fj (xj )dx1 · · · dxm
j=1
> k(λm+1 )||a||pm+1, ψ
kλ (nx1 , · · · , nxm , 1) m 2 i=1
∞
||fi ||pi, ϕi ,
···
fj (xj )dx1 · · · dxm
∞ 0
(6.35)
kλ (nx1 , · · · , nxm , 1)
p p1 > k(λm+1 )
m 2 i=1
||fi ||pi, ϕi .
(6.36)
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
ws-book9x6
259
Multiple Half-Discrete Hilbert-Type Inequalities
6.3
Second Kind of Multiple Hilbert-type Inequalities
6.3.1
Lemmas Related to the Weight Functions
Definition 6.3. If ni ∈ N(i = 1, · · · , m), xm+1 ∈ R+ , we define weight functions ωi (ni ) and m+1 (xm+1 ) as follows: ∞ ∞ ∞ ∞ λm+1 −1 ωi (ni ) = nλi i xm+1 ··· 0
···
nm =1
∞
ni+1 =1 ni−1 =1 m 2
kλ (n1 , · · · , nm , xm+1 )
n1 =1
dxm+1 , (6.37)
j=1(j =i)
∞
λ
m+1 m+1 (xm+1 ) = xm+1
λ −1
nj j
···
nm =1
∞
kλ (n1 , · · · , nm , xm+1 )
n1 =1
m 2
λ −1
nj j
. (6.38)
j=1
In particular, for λm+1 = λ2 , replacing the kernel kλ (n1, · · · , nm , xm+1 ) by kλ (xm+1 n1 , · · · , xm+1 nm , 1) in (6.37) and (6.38), we can still define another weight coefficients wi (ni )(i = 1, · · · , m) and w m+1 (xm+1 ) as follows: ∞ ∞ ∞ ∞ λ 2 −1 xm+1 ··· wi (ni ) = nλi i 0
···
nm =1
∞
ni+1 =1 ni−1 =1
kλ (xm+1 n1 , · · · , xm+1 nm , 1)
n1 =1 λ 2
w m+1 (xm+1 ) = xm+1
∞ nm =1
m 2
λ −1
nj j
dxm+1 ,
j=1(j =i)
···
∞
kλ (xm+1 n1 , · · · , xm+1 nm , 1)
n1 =1
m 2
λ −1
nj j
.
j=1
Lemma 6.10. Let the assumptions of Definition 6.3 be fulfilled and additionally, let ∞ ∞ m 2 λ −1 ··· kλ (u1 , · · · , um , 1) uj j du1 · · · dum ∈ R+ , k(λm+1 ) = 0
0
j=1
(6.39) λ −1 be decreasing with respect to yj ∈ R+ and kλ (y1 , · · · , ym , xm+1 )yj j strictly decreasing in an interval Ij ⊂ (1, ∞) (j = 1, · · ·, m). Then, we have (i) 0 < k(λm+1 )(1 − θm+1 (xm+1 )) < m+1 (xm+1 ) < k(λm+1 ),
(6.40)
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
260
ws-book9x6
Half-Discrete Hilbert-Type Inequalities
where θm+1 (xm+1 ) = 1 −
1 k(λm+1 )
∞ 1/xm+1
×
···
m 2
∞ 1/xm+1
λ −1
uj j
kλ (u1 , · · · , um , 1)
du1 · · · dum > 0;
(6.41)
j=1
(ii) for m = 1, ω1 (n1 ) = k(λ2 ); for m ≥ 2, i = 1, · · · , m, we have 0 < k(λm+1 )(1 − θi (ni )) < ωi (ni ) < k(λm+1 ) where θi (ni ) = 1 −
1 k(λm+1 ) ×
∞ 1 ni
m+1 2
···
λ −1
uj j
∞ 1 ni
(ni ∈ N),
(6.42)
kλ (u1 , · · · , ui−1 , 1, ui+1 , · · · , um+1 )
du1 · · · dui−1 dui+1 · · · dum+1 > 0.
(6.43)
j=1(j =i)
Moreover, if there exist constants α, L > 0, such that for i = 1, · · · , m + 1, ∞ ∞ Ai (uk ) = ··· kλ (u1 , · · · , ui−1 , 1, ui+1 , · · · , um+1 ) 0
×
0 m+1 2
λ −1
uj j
du1 · · · dui−1 dui+1 · · · duk−1 duk+1 · · · dum+1
j=1(j =i,k)
≤
k Luα−λ (uk k
∈ R+ ),
(6.44)
then, we have
θm+1 (xm+1 ) = O
and
θi (ni ) = O
Proof.
1 nα i
1 xα m+1
, (xm+1 > 0),
(n ∈ N; i = 1, · · · , m).
(i) By the decreasing property, it follows that ∞ ∞ λm+1 m+1 (xm+1 ) < xm+1 ··· kλ (x1 , · · · , xm , xm+1 ) 0
0
×
m 2
j=1
λ −1
xj j
dx1 · · · dxm .
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
ws-book9x6
261
Multiple Half-Discrete Hilbert-Type Inequalities
Setting xj = xm+1 uj (j = 1, · · · , m) in the above integral, by (6.39), we find ∞ ∞ λm+1 m m+1 (xm+1 ) < xm+1 xm+1 ··· kλ (xm+1 u1 , · · · , xm+1 um , xm+1 ) 0
×
m 2
0
(xm+1 uj )λj −1 du1 · · · dum = k(λm+1 ).
j=1
By the decreasing property, we still have ∞ ∞ λm+1 ··· kλ (x1 , · · · , xm , xm+1 ) m+1 (xm+1 ) > xm+1 1
1
× =
∞ 1 xm+1
···
m 2
λ −1
xj j
dx1 · · · dxm
j=1 ∞ 1 xm+1
kλ (u1 , · · · , um , 1)
m 2
λ −1
uj j
du1 · · · dum
j=1
= k(λm+1 )(1 − θm+1 (xm+1 )) > 0, where θm+1 (xm+1 ) is defined by (6.41). (ii) For m = 1, we find ∞ kλ (n1, x2 )xλ2 2 −1 dx2 ω1 (n1 ) = nλ1 1 0 ∞ = kλ (u1, 1)u1λ1 −1 du1 = k(λ2 ); 0
for m ≥ 2, i = 1, · · · , m, by the decreasing property and Lemma 6.2, we have ∞ ∞ ··· kλ (x1 , · · · , xi−1 , ni , xi+1 , · · · , xm , xm+1 ωi (ni ) < nλi i ×
0 m+1 2
0
λ −1
xj j
dx1 · · · dxi−1 dxi+1 · · · dxm+1 , uj = xj /ni (j = i)
j=1(j =i)
= H(i) = k(λm+1 ), ωi (ni ) > nλi i
∞ 1
···
∞ 1
×
kλ (x1 , · · · , xi−1 , ni , xi+1 , · · · , xm , xm+1 ) m+1 2 j=1(j =i)
λ −1
xj j
dx1 · · · dxi−1 dxi+1 · · · dxm+1
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
262
Half-Discrete Hilbert-Type Inequalities
∞
= 1/ni
···
∞
1/ni
kλ (u1 , · · · , ui−1 , 1, ui+1 , · · · , um+1 ) m+1 2
×
λ −1
uj j
du1 · · · dui−1 dui+1 · · · dum+1
j=1(j =i)
= k(λm+1 )(1 − θi (ni )) > 0, where θi (ni ) is given by (6.43). Moreover, we have 1 0 < θm+1 (xm+1 ) = [k(λm+1 ) k(λm+1 ) ∞ ∞ m 2 λ −1 − ··· kλ (u1 , · · · , um , 1) uj j du1 · · · dum ] 1/xm+1
≤
1 k(λm+1 )
where
1/xm+1
m 1/xm+1 k=1
Am+1 (uk ) =
∞
0
0
···
∞ 0
j=1
ukλk −1 Am+1 (uk )duk ,
kλ (u1 , · · · , um , 1) m 2
×
λ −1
uj j
du1 · · · duk−1 duk+1 · · · dum .
j=1(j =k)
By (6.44) (for i = m + 1), it follows that m 1/xm+1 L k uλk k −1 uα−λ duk 0 < θm+1 (xm+1 ) ≤ k k(λm+1 ) 0 k=1
mL = , αk(λm+1 )xα m+1 and then
1
(xm+1 > 0). By (6.43), (6.44) and the same way, we have θi (ni ) = O n1α (n ∈ N; i = i 1, · · · , m). θm+1 (xm+1 ) = O
xα m+1
Lemma 6.11. Let the assumptions of Definition 6.3 be fulfilled and additionally, let λm+1 = λ2 , k(λm+1 ) ∈ R+ , and λ
kλ (xm+1 y1 , · · · , xm+1 ym , 1) yj m+1
−1
be decreasing with respect to yj ∈ R+ and strictly decreasing in an interval Ij ⊂ (1, ∞) (j = 1, · · · , m). Then
ws-book9x6
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
ws-book9x6
263
Multiple Half-Discrete Hilbert-Type Inequalities
(i) we have m+1 (xm+1 ) < k(λm+1 ), 0 < k(λm+1 )(1 − θm+1 (xm+1 )) < w
(6.45)
where θm+1 (xm+1 ) = 1 −
1 k(λm+1 )
∞
∞
···
xm+1
×
kλ (u1 , · · · , um , 1)
xm+1 m 2
λ −1
uj j
du1 · · · dum > 0; (6.46)
j=1
(ii) for m = 1, w1 (n1 ) = k(λ2 ); for m ≥ 2, i = 1, · · · , m, we have 0 < k(λm+1 )(1 − θi (ni )) < wi (ni ) < k(λm+1 ) (ni ∈ N),
(6.47)
where θi (ni ) = 1 −
1 k(λm+1 ) ×
m+1 2
∞ 1 ni
···
λ −1
uj j
∞ 1 ni
kλ (u1 , · · · , ui−1, 1, ui+1 , · · · , um+1 )
du1 · · · dui−1 dui+1 · · · dum+1 > 0.
(6.48)
j=1(j =i)
Moreover, if there exist constants α, L > 0, such that for i = 1, · · · , m + 1, inequality (6.44) follows. Thus, k (uk ∈ R+ ), Ai (uk ) ≤ Luα−λ k
then, we have θm+1 (xm+1 ) = O(xα m+1 ) (xm+1 > 0), and θi (ni ) = O(n−α i ) (n ∈ N; i = 1, · · · , m). Proof.
(i) By the decreasing property, it follows that λ
2 w m+1 (xm+1 ) < xm+1 ∞ ∞ m 2 λ −1 × ··· kλ (xm+1 x1 , · · · , xm+1 xm , 1) xj j dx1 · · · dxm .
0
0
j=1
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
264
ws-book9x6
Half-Discrete Hilbert-Type Inequalities
Setting uj = xm+1 xj (j = 1, · · · , m) in the above integral, we find ∞ ∞ w m+1 (xm+1 ) < ··· kλ (u1 , · · · , um , 1) 0
0
×
λ −1
uj j
du1 · · · dum = k(λm+1 ),
j=1
λ
2 w m+1 (xm+1 ) > xm+1
m 2
∞ 1
···
∞ 1
kλ (xm+1 x1 , · · · , xm+1 xm , 1) ×
∞
∞
···
= xm+1
kλ (u1 , · · · , um , 1)
xm+1
m 2
λ −1
xj j
dx1 · · · dxm
j=1 m 2
uj λj −1 du1 · · · dum
j=1
= k(λm+1 )(1 − θm+1 (xm+1 )) > 0, where θm+1 (xm+1 ) is given by (6.46). (ii) For m = 1, since λ2 = λ2 = λ1 , we find ∞ λ1 w1 (n1 ) = n1 kλ (x2 n1 , 1)xλ2 2 −1 dx2 0 ∞ = kλ (u1 , 1)u1λ1 −1 du1 = k(λ2 ); 0
for m ≥ 2, i = 1, · · · , m, by the decreasing property, we find ∞ ∞ ∞ ∞ λi λi wi (ni ) < ni ··· wi (ni ) < ni ··· 0
0
0
0
×kλ (xm+1 x1 , · · · , xm+1 xi−1 , xm+1 ni , xm+1 xi+1 , · · · , xm+1 xm , 1) ×
∞
= 0
wi (ni ) >
nλi i
∞ 1
λ −1
xj j
dx1 · · · dxi−1 dxi+1 · · · dxm+1
j=1(j =i)
···
m+1 2
∞ 0
kλ (u1 , · · · um , 1)
λ −1
uj j
du1 · · · dum = k(λm+1 ),
j=1
···
m 2
∞ 1
× kλ (xm+1 x1 , · · · , xm+1 xi−1 , xm+1 ni , xm+1 xi+1 , · · · , xm+1 xm , 1) m+1 2 λ −1 × xj j dx1 · · · dxi−1 dxi+1 · · · dxm+1 . (6.49) j=1(j =i)
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
Multiple Half-Discrete Hilbert-Type Inequalities
ws-book9x6
265
Setting uj = xj /ni (j = i, m + 1), um+1 = (xm+1 ni )−1 in (6.49), it follows that ∞ ∞ wi (ni ) > ··· kλ (u1 , · · · , ui−1 , 1, ui+1 , · · · , um+1 ) 1/ni
1/ni
m+1 2
×
λ −1
uj j
du1 · · · dui−1 dui+1 · · · dum+1
j=1(j =i)
= k(λm+1 )(1 − θi (xi )) > 0, where θi (xi ) is given by (6.48). Moreover, by inequality (6.44), we have
1 k(λm+1 ) 0 < θm+1 (xm+1 ) = k(λm+1 ) ∞ ∞ m 2 λj −1 ··· kλ (u1 , · · · , um , 1) uj du1 · · · dum − xm+1
≤
1 k(λm+1 )
where Am+1 (uk ) =
0
∞
xm+1
m xm+1 0
k=1
···
∞ 0
j=1
uλk k −1 Am+1 (uk )duk ,
kλ (u1 , · · · , um , 1) ×
m 2
λ −1
uj j
du1 · · · duk−1 duk+1 · · · dum .
j=1(j =k)
By inequality (6.44) (for i = m + 1), it follows that 0 < θm+1 (xm+1 ) m xm+1 mLxα L m+1 k uλk k −1 uα−λ duk = ≤ , k k(λm+1 ) αk(λ ) m+1 0 k=1
and then
θm+1 (xm+1 ) = O xα m+1 (xm+1 > 0).
By (6.48), (6.44) and the same way, we have θi (ni ) = O(n−α i ) (n ∈ N; i = 1, · · · , m). Lemma 6.12. Suppose that there exists a constant δ0 > 0, such that for i = λ, k(λ i ∈ (λi − δ0 , λi + δ0 )(i = 1, · · · , m + 1), m+1 λ m+1 ) ∈ R+ . any λ i=1 If λ
kλ (y1 , · · · , ym , xm+1 )yj m+1
−1
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
266
ws-book9x6
Half-Discrete Hilbert-Type Inequalities
is decreasing with respect to yj ∈ R+ (j = 1, · · · , m), then, for 0 < ε < δ0 min1≤j≤m+1 {|pj |, |p|}, we have I1 (ε) = ε
∞ 1
×
m 2
λm+1 − p
xm+1
ε m+1
∞
−1
nm =1 (λj − pε )−1 j
nj
∞
···
kλ (n1 , · · · , nm , xm+1 )
n1 =1
dxm+1 = k(λm+1 ) + o(1)
(ε → 0+ ). (6.50)
j=1
Proof.
By the decreasing property, we find ∞ ∞ ∞ λm+1 − p ε −1 I1 (ε) ≥ ε xm+1 m+1 ··· kλ (x1 , · · · , xm , xm+1 ) 1
1
×
m 2
1
(λj − pε )−1 j
xj
dx1 · · · dxm dxm+1 .
j=1
In view of the proof of Lemma 6.6, we have ε − εO(1). I1 (ε) ≥ k λm+1 + p Since we have
∞ λm+1 +ε− p ε −ε−1 m+1 I1 (ε) ≤ ε xm+1 xm+1 1
0
× =ε 1
∞
m 2
···
∞ 0
(λj − pε )−1 j
xj
kλ (x1 , · · · , xm , xm+1 )
dx1 · · · dxm dxm+1
j=1
∞
x−ε−1 m+1 k
ε ε λm+1 + dxm+1 = k λm+1 + , p p
then, by (6.4), we have (6.50).
Lemma 6.13. Suppose that λm+1 = λ2 , and there exists a constant δ0 > 0, i = λ, i ∈ (λi − δ0 , λi + δ0 )(i = 1, · · · , m + 1), m+1 λ such that, for any λ i=1 m+1 ) ∈ R+ . If k(λ λ
kλ (xm+1 y1 , · · · , xm+1 ym , 1) yj m+1
−1
is decreasing with respect to yj ∈ R+ (j = 1, · · · , m), then, for 0 < ε < δ0
min
{|pj |, |p|},
1≤j≤m+1
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
ws-book9x6
267
Multiple Half-Discrete Hilbert-Type Inequalities
we have I1 (ε) = ε
λ ε 2+p
−1
xm+1 m+1
0
∞
× ×
1
∞
···
kλ (xm+1 n1 , · · · , xm+1 nm , 1)
nm =1 n1 =1 m 2 (λj − pε )−1 j
nj
dxm+1 = k(λm+1 ) + o(1)(ε → 0+ ). (6.51)
j=1
Proof.
By the decreasing property, we find
I1 (ε) ≥ ε
1
xm+1
0
×
(λ 2 +p
m 2
1
=ε 0
)−1
j
xj
≥ε
0
×
m 2
∞
0
(λj − pε )−1 j
uj
1
kλ (xm+1 x1 , · · · , xm+1 xm , 1)
∞
···
kλ (u1 , · · · , um , 1)
xm+1 m 2
(λj − pε )−1 j
uj
du1 · · · dum dxm+1
j=1
xε−1 m+1
∞
∞
xε−1 m+1
xm+1
1
···
dx1 · · · dxm dxm+1 , (uj = xm+1 xj (j = 1, · · · , m))
×
∞
1
(λj − pε )−1
j=1
ε m+1
···
∞ 0
kλ (u1 , · · · , um , 1)
du1 · · · dum dxm+1 − ε
j=1
m i=1
0
1
x−1 m+1 Bi (xm+1 )dxm+1
m 1 ε −ε = k λm+1 + x−1 m+1 Bi (xm+1 )dxm+1 , p 0 i=1
(6.52)
where Bi (xm+1 ) =
∞ 0
×
···
m 2
∞
0
xm+1
j
∞ 0
0
(λj − pε )−1
uj
···
∞ 0
kλ (u1 , · · · , um , 1)
du1 · · · dui−1 dui dui+1 · · · dum
(1 ≤ i ≤ m).
without loss of generality,
we estimate
j=1
For i
=
1,
···,
m,
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
268
∞ 1
ws-book9x6
Half-Discrete Hilbert-Type Inequalities
x−1 m+1 Bm (xm+1 ) dxm+1 as follows: 1 x−1 0< m+1 Bm (xm+1 )dxm+1 0
1
= 0
x−1 m+1
0
0
×
1
m 2
1
∞
···
0
(λj − pε )−1 j
uj
j=1
= 0
∞
xm+1
x−1 m+1 dxm+1
∞ 0
um
1
0
(− ln um )
∞ 0
du1 · · · dum−1 dum dxm+1
∞ 0
m 2
kλ (u1 , · · · , um , 1)
(λj − pε )−1 j
uj
du1 · · · dum−1 dum
j=1
···
···
× =
kλ (u1 , · · · , um , 1)
∞ 0
kλ (u1 , · · · , um , 1) ×
m 2
(λj − pε )−1 j
uj
du1 · · · dum−1 dum .
j=1
Setting α > 0 such that
max α +
ε ε ,α + |pm | |p|
< δ0 ,
since limum →0+ uα m (− ln um ) = 0, there exists a constant Mm > 0, such that 0 < uα m (− ln um ) ≤ Mm (um ∈ (0, 1]). We find
1
x−1 m+1 Bm (xm+1 ) dxm+1 0 ∞ ∞ ∞ ≤ Mm ··· kλ (u1 , · · · , um , 1)
0<
0
0
×
0
m−1 2
(λj − pε )−1 (λm − αpm +ε )−1 pm j uj um du1
· · · dum−1 dum
j=1
ε < ∞. = k λm+1 − α + p Hence, by (6.52), we have
ε I1 (ε) ≥ k λm+1 + − εO(1). p
(6.53)
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
ws-book9x6
269
Multiple Half-Discrete Hilbert-Type Inequalities
We still have
1 λ ε 2 + pm+1 −1 I1 (ε) ≤ ε xm+1 0
×
0
m 2 j=1 ∞
= 0
∞
(λj − pε )−1 j
xj
···
∞ 0
···
∞ 0
kλ (xm+1 x1 , · · · , xm+1 xm , 1)
dx1 · · · dxm dxm+1 , uj = xm+1 xj (j = 1, · · · , m)
kλ (u1 , · · · , um , 1) ×
m 2
(λj − pε )−1
uj
j
du1 · · · dum
j=1
ε = k λm+1 + . p Then, by (6.53) and (6.4), we have (6.51). 6.3.2
Two Preliminary Inequalities (j)
Lemma 6.14. If anj ≥ 0 (nj ∈ N; j = 1, · · · , m), then (i) for pi > 1(i = 1, · · · , m + 1), we have the following inequality: ∞ pλm+1 −1 ∞ ∞ xm+1 J1 = · · · kλ (n1 , · · · , nm , xm+1 ) [ωm+1 (xm+1 )]p−1 n =1 n =1 0 m 1 p p1 m 2 a(j) dxm+1 × nj ≤
m 2
∞
p (1−λi )−1
ωi (ni )ni i
ni =1
i=1
p1 pi (a(i) ni )
j=1
i
;
(6.54)
(ii) for 0 < p1 < 1, pi < 0 (i = 2, · · · , m+1), or for pi < 0 (i = 1, · · · , m), 0 < pm+1 < 1, we have the reverse of (6.54). older’s inequality, (6.37) Proof. (i) For pi > 1 (i = 1, · · · , m + 1), by H¨ and (6.38), we have ⎛ ⎞p ∞ ∞ m 2 ⎝ ⎠ ··· kλ (n1 , · · · , nm , xm+1 ) a(j) n nm =1
=
⎧ ⎪ ∞ ⎨
⎪ ⎩ nm =1
n1 =1
···
∞ n1 =1
j
j=1
kλ (n1 , · · · , nm , xm+1 )
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
270
ws-book9x6
Half-Discrete Hilbert-Type Inequalities
×
m 2
⎡ i −1)(1−pi ) λm+1 −1 ⎣n(λ xm+1 i
⎤ p1
m 2
i
λ −1 ⎦
a(i) ni
nj j
j=1(j =i)
i=1
⎡ (λ
m+1 × ⎣xm+1
m 2
−1)(1−pm+1 )
⎤p
⎫p ⎪ ⎬
1 m+1
λ −1 ⎦
nj j
⎪ ⎭
j=1 ∞
≤
···
nm =1
×
m 2
∞
kλ (n1 , · · · , nm , xm+1 )
n1 =1
⎡
i −1)(1−pi ) λm+1 −1 ⎣n(λ xm+1 i
i
λ −1 ⎦
m+1 p (a(i) xm+1 ni ) ⎪ ⎩
nj j
j=1(j =i)
i=1
⎧ ⎪ ⎨
⎤ pp
m 2
p
(1−λm+1 )−1
p ⎤ ⎫ pm+1 ⎪ ⎬ λ −1 λm+1 × ⎣xm+1 ··· kλ (n1 , · · · , nm , xm+1 ) nj j ⎦ ⎪ ⎭ nm =1 n1 =1 j=1 ⎧ ⎪ ∞ ∞ p−1 ⎨ [ωm+1 (xm+1 )] = · · · kλ (n1 , · · · , nm , xm+1 ) pλm+1 −1 ⎪ xm+1 ⎩ nm =1 n1 =1
⎡
∞
×
∞
m 2
m 2
⎡
m 2
λm+1 −1 ⎣ni(λi −1)(1−pi ) xm+1
i
λ −1 ⎦
nj j
j=1(j =i)
i=1
⎫ ⎪ ⎬
⎤ pp
p (a(i) . ni ) ⎪ ⎭
Then, by ⎧ the Lebesgue term by term integration theorem, we obtain ⎪ ∞ ∞ ∞ ⎨ J≤ ··· kλ (n1 , · · · , nm , xm+1 ) ⎪ ⎩ 0 nm =1 n1 =1
×
m 2
⎡ λm+1 −1 ⎣ni(λi −1)(1−pi ) xm+1
=
⎪ ⎩ nm =1
···
×
⎤ pp
i
λ −1 ⎦
nj j
p (a(i) ni ) dxm
j=1(j =i)
i=1
⎧ ⎪ ∞ ⎨
m 2
∞ n1 =1
m 2 i=1
∞ 0
⎫ p1 ⎪ ⎬ ⎪ ⎭
kλ (n1 , · · · , nm , xm+1 )
⎡ λm+1 −1 ⎣ni(λi −1)(1−pi ) xm+1
m 2 j=1(j =i)
⎤ pp
i
λ −1 ⎦
nj j
p dxm (a(i) ni )
⎫1 p ⎪ ⎬ ⎪ ⎭
.
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
ws-book9x6
271
Multiple Half-Discrete Hilbert-Type Inequalities
m
Since J1 ≤
m 2
1 i=1 (pi /p)
∞ ni =1
i=1
= 1, still by H¨older’s inequality, it follows that
∞
=
m 2
i=1
∞
···
nm =1
×
∞
∞
···
ni+1 =1 ni−1 =1
∞ n1 =1
p (1−λi )−1
ωi (ni )ni i
ni =1
pi (a(i) ni )
0
m 2
(λ −1)(1−pi ) λm+1 −1 ni i xm+1
p1
∞
kλ (n1 , · · · , nm , xm+1 ) λ −1 nj j dxm
p1 pi (a(i) ni )
i
j=1(j =i)
i
.
Hence, inequality (6.54) follows. (ii) For 0 < p1 < 1, pi < 0 (i = 2, · · · , m + 1), or for pi < 0 (i = 1, · · · , m), 0 < pm+1 < 1, in view of the assumptions and by the same way, we obtain the reverse of (6.54). In particular, for λm+1 = λ2 , we still have (j)
Lemma 6.15. If λm+1 = λ2 , anj ≥ 0 (nj ∈ N; j = 1, · · · , m), then (i) for pi > 1 (i = 1, · · · , m + 1), we have the following inequality: ⎧ pλ ⎨ ∞ 2 −1 xm+1 J2 = ⎩ 0 [m+1 (xm+1 )]p−1 ⎛ ×⎝
∞
∞
···
nm =1
kλ (xm+1 n1 , · · · , xm+1 nm , 1)
n1 =1
m 2
⎞p ⎠ dxm+1 a(j) nj
j=1
≤
m 2 i=1
∞
ni =1
p (1−λi )−1 (i) pi i (ni )ni i (ani )
⎫ p1 ⎬ ⎭
p1
i
; (6.55)
(ii) for 0 < p1 < 1, pi < 0 (i = 2, · · · , m + 1), or for pi < 0 (i = 1, · · · , m), 0 < pm+1 < 1, we have the reverse of (6.55). 6.3.3
Main Results and Operator Expressions
In the following, we set the functions: p (1−λi )−1
ψi (ni ) = ni i p
(1−λ
)−1
(ni ∈ N; i = 1, · · · , m),
m+1 m+1 (xm+1 ∈ R+ ). The spaces Lpm+1, ϕ (R+ ) and ϕ(xm+1 ) = xm+1 and lpi, ψi with the norms ||f ||pm+1, ϕ and ||a||pi, ψi are defined in Chapter 3.
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
272
ws-book9x6
Half-Discrete Hilbert-Type Inequalities
Theorem 6.7. Suppose that pi > 1 (i = 1, · · · , m + 1), there exists a i ∈ (λi − δ0 , λi + δ0 ) (i = 1, · · · , m + 1), constant δ > 0 such that for any λ m+1 0 i=1 λi = λ, ∞ ∞ m 2 −1 λ m+1 ) = k(λ ··· kλ (u1, · · · , um , 1) uj j du1 · · · dum ∈ R+ , 0
0
j=1 λ −1
is decreasing with respect to yj ∈ R+ and and kλ (y1 , · · · , ym , xm+1 ) yj j strictly decreasing in an interval Ij ⊂ (1, ∞)(j = 1, · · · ,m). If f (xm+1 ) ≥ 0, (i) (i) f ∈ Lpm+1, ϕ (R+ ), ||f ||pm+1, ϕ > 0, ani ≥ 0, a(i) = {ani }∞ ni =1 ∈ lpi, ψi , (i) ||a ||pi, ψi > 0 (i = 1, · · · , m), then, we have the following equivalent inequalities: ∞ ∞ ∞ m 2 I= f (xm+1 ) ··· kλ (n1 , · · · , nm , xm+1 ) a(j) nj dxm+1 0
nm =1
< k(λm+1 )||f ||pm+1, ϕ
n1 =1
m 2
j=1
||a(i) ||pi, ψi ,
(6.56)
i=1
∞
J= 0
×
m 2
∞
pλm+1 −1 xm+1
p a(j) nj
···
nm =1
p1
dxm+1
∞
kλ (n1 , · · · , nm , xm+1 )
n1 =1
< k(λm+1 )
j=1
m 2
||a(i) ||pi, ψi ,
(6.57)
i=1
where the constant factor k(λm+1 ) in the above inequalities is the best possible. Proof. By (6.40), (6.42), and (6.54) and the assumptions, we have (6.57). By H¨older’s inequality, we obtain ⎡ ⎤ ∞ ∞ ∞ m −1 2 +λm+1 p ⎣xm+1 ⎦ I= ··· kλ (n1 , · · · , nm , xm+1 ) a(j) nj 0
nm =1
n1 =1
1 p −λm+1
×[xm+1
j=1
f (xm+1 )]dxm+1 ≤ J||f ||pm+1, ϕ .
(6.58)
Then, by (6.57), we have inequality (6.56). Assuming that (6.56) is valid, setting ⎛ ⎞p−1 ∞ ∞ m 2 pλm+1 −1 ⎝ ⎠ ··· kλ (n1 , · · · , nm , xm+1 ) a(j) , f (xm+1 ) = xm+1 nj nm =1
n1 =1
j=1
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
ws-book9x6
273
Multiple Half-Discrete Hilbert-Type Inequalities
then, we find J p−1 = ||f ||pm+1, ϕ . By (6.54), we have J < ∞. If J = 0, then (6.57) is trivially valid; if J > 0, then, by (6.56), it follows that ||f ||ppm+1 = J p = I < k(λm+1 )||f ||pm+1, ϕ m+1, ϕ
m 2
||a(i) ||pi, ψi ,
that is,
i=1 −1 = J < k(λm+1 ) ||f ||ppm+1 m+1, ϕ
m 2
||a(i) ||pi, ψi ,
i=1
and then, inequality (6.57) follows. Hence (6.56) and (6.57) are equivalent. (i) ani as follows: For 0 < ε < δ0 min1≤j≤m+1 {pj , p}, we set f(xm+1 ) and 0, 0 < xm+1 < 1, f(xm+1 ) = (λm+1 − p ε )−1 m+1 xm+1 , xm+1 ≥ 1, (λi − pε )−1
a(i) ni = ni
i
,
ni ∈ N
(i = 1, · · · , m).
If there exists a constant k(≤ k(λm+1 )) such that (6.56) is valid as we replace k(λm+1 ) by k, then, in particular, by (6.50), we have k(λm+1 ) + o(1) = I1 (ε) ∞ ∞ ∞ m 2 ··· kλ (n1 , · · · , nm , xm+1 ) a(j) f(xm+1 ) =ε nj dxm+1 0
nm =1
< εk||f||pm+1, ϕ
m 2
n1 =1
|| a(i) ||pi, ψi
i=1
p 1 2 ∞ m 1 m+1 < εk 1+ ε 1 i=1
j=1
p1 p 1 2 m ∞ i 1 m+1 1 = εk 1+ ε n1+ε ni =1 i i=1 1 m 2 1 dy pi = k (1 + ε) pi , y 1+ε i=1
and then, k(λm+1 ) ≤ k (ε → 0+ ). Hence k = k(λm+1 ) is the best possible constant factor of inequality (6.56). By the equivalency, the constant factor k(λm+1 ) in (6.57) is still the best possible. Otherwise, it leads to a contradiction by (6.58) that the constant factor in (6.56) is not the best possible. Theorem 6.8. Suppose that pi > 1, λm+1 = λ2 , there exists a constant i ∈ (λi − δ0 , λi + δ0 ) (i = 1, · · · , m + 1), δ0 > 0 such that, for any λ m+1 = λ, λ i i=1 ∞ ∞ m 2 −1 λ m+1 ) = k(λ ··· kλ (u1, · · · , um , 1) uj j du1 · · · dum ∈ R+ , 0
0
j=1
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
274
ws-book9x6
Half-Discrete Hilbert-Type Inequalities λ −1
and kλ (xm+1 y1 , · · · , xm+1 ym , 1) yj j is decreasing with respect to yj ∈ R+ and strictly decreasing in an interval Ij ⊂ (1, ∞) (j = 1, · · · ,m). (i) If f (xm+1 ) ≥ 0, f ∈ Lpm+1, ϕ (R+ ), ||f ||pm+1, ϕ > 0, ani ≥ 0, a(i) = (i) ∞ {ani }ni =1 ∈ lpi, ψi , ||a(i) ||pi, ψi > 0(i = 1, · · · , m), then, we have the following equivalent inequalities with the same best constant factor k(λm+1 ) : 0
∞
f (xm+1 )
∞
∞
···
nm =1
kλ (xm+1 n1 , · · · , xm+1 nm , 1)
n1 =1
×
m 2
a(j) nj dxm+1
j=1
< k(λm+1 )||f ||pm+1, ϕ
m 2
||a(i) ||pi, ψi ,
(6.59)
i=1
and
∞ 0
pλ 2 −1
xm+1
∞
···
nm =1
∞
kλ (xm+1 n1 , · · · , xm+1 nm , 1)
n1 =1
×
m 2
p a(j) nj
p1 dxm+1
j=1
< k(λm+1 )
m 2
||a(i) ||pi, ψi .
(6.60)
i=1
Proof. We only prove that the constant factor in (6.59) is the best possible. The other parts of the proof are omitted. (i) ani as follows: For 0 < ε < δ0 min1≤j≤m+1 {pj , p}, we set f(xm+1 ) and λ ( 2 + p ε )−1 m+1 x , 0 < xm+1 ≤ 1 , m+1 f (xm+1 ) = 0, xm+1 > 1 λi − pε −1
a(i) n i = ni
i
,
ni ∈ N(i = 1, · · · , m).
If there exists a constant k(≤ k(λm+1 )), such that (6.59) is valid as we replace k(λm+1 ) by k, then, by (6.51), we have k(λm+1 ) + o(1) = I1 (ε) ∞ ∞ ∞ m 2 f(xm+1 ) ··· kλ (xm+1 n1 , · · · , xm+1 nm , 1) a(j) =ε nj dxm+1 0
nm =1
n1 =1
j=1
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
ws-book9x6
275
Multiple Half-Discrete Hilbert-Type Inequalities
< εk||f||pm+1, ϕ
m 2
|| a(i) ||pi, ψi
i=1
p 1 2 ∞ m 1 m+1 1+ < εk ε 1 i=1
∞ p1 m i 2 1 1 1 pm+1 = εk( ) ε n1+ε i=1 ni =1 i 1 m 2 1 dy pi =k (1 + ε) pi , y 1+ε i=1
and then, k(λm+1 ) ≤ k(ε → 0+ ). Hence, k = k(λm+1 ) is the best possible value of (6.59). Remark 6.2. With the assumptions of Theorem 6.7, we define a second kind of multiple half-discrete Hilbert-type operator with the homogeneous m kernel T : i=1 lpi, ψi → Lp, ϕ1−p (R+ ) as follows: For any a = (a(1) , · · · , a(m) ) ∈ m i=1 lpi, ψi , there exists a T a, satisfying Ta(xm+1 ) =
∞ nm =1
···
∞
kλ (n1 , · · · , nm , xm+1 )
n1 =1
m 2
a(j) nj
(xm+1 ∈ R+ ).
j=1
(6.61) Then, by (6.57), we have ||Ta||p,ϕ1−p < k(λm+1 )
m 2
||a(i) ||pi, ψi ,
i=1
and then, Ta ∈ Lp, ϕ1−p (R+ ). Hence, T is a bounded linear operator with ||T|| ≤ k(λm+1 ). Since the constant factor in (6.57) is the best possible, we have ||Ta||p,ϕ1−p = k(λm+1 ). (6.62) ||T|| = sup m (i) a( =θ)∈ m i=1 ||a ||pi, ψi i=1 lpi, ψi With the assumptions of Theorem 6.8, we define a second kind of multiple half-discrete Hilbert-type operator with the non-homogeneous kernel T1 : m i=1 lpi, ψi → Lp, ϕ1−p (R+ ) as follows: m For any a = (a(1) , · · · , a(m) ) ∈ i=1 lpi, ψi , there exists a T1 a, satisfying T1 a(xm+1 ) =
∞ nm =1
···
∞
kλ (xm+1 n1 , · · · , xm+1 nm , 1)
n1 =1
a(j) nj
j=1
(xm+1 ∈ R+ ). Then, by (6.60), we have ||T1 a||p,ϕ1−p < k(λm+1 )
m 2
m 2 i=1
||a(i) ||pi, ψi ,
(6.63)
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
276
ws-book9x6
Half-Discrete Hilbert-Type Inequalities
and then, T1 a ∈ Lp, ϕ1−p (R+ ). Hence, T1 is a bounded linear operator with ||T1 || ≤ k(λm+1 ). Since the constant factor in (6.60) is the best possible, we have ||T1 || =
6.3.4
||T1 a||p,ϕ1−p m = k(λm+1 ). (i) m i=1 ||a ||pi, ψi i=1 lpi, ψi
sup
a( =θ)∈
(6.64)
Some Kinds of Reverse Inequalities p (1−λ1 )−1
For ψ1 (n1 ) = n11 tions
p
m+1 and ϕ(xm+1 ) = xm+1
(1−λm+1 )−1
, we set func-
Ψ1 (n1 ) = (1 − θ1 (n1 ))ψ1 (n1 ), 1 (n1 ) = (1 − θ1 (n1 ))ψ1 (n1 ), Ψ Φ(xm+1 ) = (1 − θm+1 (xm+1 ))ϕ(xm+1 ), and m+1 ) = (1 − θm+1 (xm+1 ))ϕ(xm+1 ), Φ(x where θ1 (n1 ), θ1 (n1 ), θm+1 (xm+1 ) and θm+1 (xm+1 ) are given by (6.43), (6.48), (6.41) and (6.46). For pi < 1(pi = 0), the spaces lpi ,ψi and lpm+1 ϕ (R+ ) with ||a(i) ||pi ,ψi and ||f ||pm+1, ϕ are not normed spaces. But we still use them as the formal symbols in the following: Theorem 6.9. Suppose that 0 < p1 < 1, pi < 0 (i = 2, · · · , m + 1), i ∈ (λi − δ0 , λi + δ0 ) there exists a constant δ0 > 0, such that for any λ m+1 (i = 1, · · · , m + 1), i=1 λi = λ, m+1 ) = k(λ
∞ 0
···
∞ 0
kλ (u1 , · · · , um , 1)
m 2
−1 λ
uj j
du1 · · · dum ∈ R+ ,
j=1 λ −1
is decreasing with respect to yj ∈ R+ and and kλ (y1 , · · · , ym , xm+1 ) yj j strictly decreasing in an interval Ij ⊂ (1, ∞) (j = 1, · · · , m). There exist constants α, L > 0 such that (6.44) is satisfied for i = 1, and 1 A1 (uk ) ≤ Luα−λ k
(uk ∈ R+ ; i = 1, · · · , m + 1). (1)
If f (xm+1 ) ≥ 0, f ∈ Lpm+1, ϕ (R+ ), ||f ||pm+1, ϕ > 0, an1 ≥ 0, a(1) = (1) (i) (i) (1) {an1 }∞ ||p1, Ψ1 > 0, ani ≥ 0, a(i) = {ani }∞ n1 =1 ∈ lp1, Ψ1 , ||a ni =1 ∈ lpi, ψi ,
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
ws-book9x6
277
Multiple Half-Discrete Hilbert-Type Inequalities
||a(i) ||pi, ψi > 0 (i = 2, · · · , m), then, we have the following equivalent inequalities with the same best possible constant factor k(λm+1 ): ∞ ∞ ∞ m 2 f (xm+1 ) ··· kλ (n1 , · · · , nm , xm+1 ) a(j) I= nj dxm+1 0
nm =1
n1 =1
> k(λm+1 )||f ||pm+1, ϕ ||a(1) ||p1, Ψ1
j=1 m 2
||a(i) ||pi, ψi ,
(6.65)
i=2
and
⎧ ⎨ J=
⎩ ⎛
×⎝
∞ 0
∞
pλ
m+1 xm+1
···
nm =1
−1
∞
kλ (n1 , · · · , nm , xm+1 )
n1 =1
⎞p
m 2
⎠ dxm+1 a(j) nj
j=1
> k(λm+1 )||a(1) ||p1, Ψ1
m 2
||a(i) ||pi, ψi .
⎫ p1 ⎬ ⎭ (6.66)
i=2
Proof. By (6.40), (6.42), the reverse of (6.54) and the assumption, we have (6.66). By the reverse ⎡ H¨older’s inequality, we obtain ⎤ ∞ ∞ ∞ m −1 2 +λ m+1 p ⎣xm+1 ⎦ I= ··· kλ (n1 , · · · , nm , xm+1 ) a(j) nj 0
nm =1
n1 =1
j=1
1 p −λm+1
×[xm+1 f (xm+1 )]dxm+1 ≥ J||f ||pm+1, ϕ . (6.67) Then, by (6.66), we have (6.65). Assuming that (6.65) is valid, and setting f (xm+1 ) as follows: ⎛ ⎞p−1 ∞ ∞ m 2 pλm+1 −1 ⎝ ⎠ f (xm+1 ) = xm+1 ··· kλ (n1 , · · · , nm , xm+1 ) a(j) , nj nm =1
n1 =1
j=1
then, we find J = ||f ||pm+1, ϕ . By the reverse of (6.54), we have J > 0. If J = ∞, then, (6.66) is trivially valid; if J < ∞, then, by (6.65), it follows that = Jp = I ||f ||ppm+1 m+1, ϕ p−1
> k(λm+1 )||f ||pm+1, ϕ ||a(1) ||p1, Ψ1
m 2
||a(i) ||pi, ψi ,
i=2 −1 = J > k(λm+1 )||a(1) ||p1, Ψ1 ||f ||ppm+1 m+1, ϕ
m 2 i=2
||a(i) ||pi, ψi ,
that is
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
278
Half-Discrete Hilbert-Type Inequalities
and inequality (6.66) follows. Hence, (6.65) and (6.66) are equivalent. (i) ani as follows: For 0 < ε < δ0 min1≤j≤m+1 {|pj |, p}, we set f(xm+1 ) and 0, 0 < xm+1 < 1, f(xm+1 ) = λm+1 − p ε −1 m+1 , xm+1 ≥ 1, xm+1
a(i) ni
λi − pε
−1
= ni , ni ∈ N(i = 1, · · · , m). If there exists a constant k(≥ k(λm+1 )), such that (6.65) is valid as we replace k(λm+1 ) by k, then, in particular, by (6.50) and Lemma 6.4, we have k(λm+1 ) + o(1) = I1 (ε) ∞ ∞ ∞ m 2 ··· kλ (n1 , · · · , nm , xm+1 ) a(j) =ε f (xm+1 ) nj dxm+1 0
i
nm =1
> εk||f||pm+1, ϕ || a(1) ||p1, Ψ1
n1 =1 m 2
j=1
|| a(i) ||pi, ψi
i=2
p1 m ∞ p1 p 1 ∞ 1 2 i 1 1 m+1 1 1 = εk 1−O α 1+ε 1+ε ε n1 n1 n n1 =1 i=2 ni =1 i p1 p1 m p 1 ∞ ∞ 1 2 i 1 1 1 m+1 1 + = εk − O(1) ε n1+ε n1+ε n1 =1 1 ni =2 i i=2 1 p 1 ∞ p1 2 ∞ m 1 1 m+1 dy dxi pi 1+ > εk − O(1) ε y 1+ε x1+ε 1 1 i i=2 1
= k(1 − εO(1)) p1
m 2
1
(ε + 1) pi ,
i=2
and then, k(λm+1 ) ≥ k (ε → 0+ ). Hence, k = k(λm+1 ) is the best constant factor of inequality (6.65). By the equivalency, the constant factor k(λm+1 ) in (6.66) is still the best possible. Otherwise, it leads to a contradiction by (6.37) that the constant factor in (6.65) is not the best possible. Theorem 6.10. Suppose that 0 < p1 < 1, pi < 0 (i = 2, · · · , m + i ∈ 1), λm+1 = λ2 , there exists a constant δ0 > 0, such that for any λ m+1 (λi − δ0 , λi + δ0 ) (i = 1, · · · , m + 1), i=1 λi = λ, ∞ ∞ m 2 −1 λ m+1 ) = k(λ ··· kλ (u1 , · · · , um , 1) uj j du1 · · · dum ∈ R+ , 0
0
j=1
ws-book9x6
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
ws-book9x6
279
Multiple Half-Discrete Hilbert-Type Inequalities λ −1
and kλ (xm+1 y1 , · · · , xm+1 ym , 1)yj j is decreasing with respect to yj ∈ R+ and strictly decreasing in an interval Ij ⊂ (1, ∞)(j = 1, · · · ,m). If there exist constants α, L > 0, such that (6.44) is satisfied, and k Ai (uk ) ≤ Luα−λ (uk ∈ R+ ; i = 1, · · · , m + 1), k then, we have the following equivalent inequalities with the same best possible constant factor k(λm+1 ): ∞ ∞ ∞ m 2 f (xm+1 ) ··· kλ (xm+1 n1 , · · · , xm+1 nm , 1) a(j) nj dxm+1 0
nm =1
n1 =1
j=1
> k(λm+1 )||f ||pm+1, ϕ ||a(1) ||p1, Ψ1
m 2
||a(i) ||pi, ψi ,
(6.68)
i=2
and
∞ 0
pλ 2 −1
∞
xm+1
···
nm =1
∞
kλ (xm+1 n1 , · · · , xm+1 nm , 1)
n1 =1
×
m 2
p a(j) nj
p1 dxm+1
j=1
> k(λm+1 )||a(1) ||p1, Ψ1
m 2
||a(i) ||pi, ψi .
(6.69)
i=2
Proof. We only prove that the constant factor in (6.68) is the best possible. Other parts of the proof are omitted. (i) ani as follows: For 0 < ε < δ0 min1≤j≤m+1 {|pj |, p}, we set f(xm+1 ) and 0, 0 < xm+1 < 1, f(xm+1 ) = λm+1 − p ε −1 m+1 xm+1 , xm+1 ≥ 1,
a(i) ni
λi − pε
−1
= ni , ni ∈ N(i = 1, · · · , m). If there exists a constant k(≥ k(λm+1 )), such that (6.68) is valid as we replace k(λm+1 ) by k, then, in particular, by (6.51), we have k(λm+1 ) + o(1) = I1 (ε) ∞ ∞ ∞ m 2 ··· kλ (xm+1 n1 , · · · , xm+1 nm , 1) a(j) f(xm+1 ) =ε nj dxm+1 0
nm =1
> εk||f||pm+1, ϕ || a(1) ||p1, Ψ1
i
n1 =1 m 2
j=1
|| a(i) ||pi, ψi
i=2
p1 m ∞ p1 p 1 ∞ 1 2 i 1 1 1 1 m+1 1−O = εk ε nα n1+ε n1+ε 1 1 n =1 i=2 n =1 i 1
i
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
280
ws-book9x6
Half-Discrete Hilbert-Type Inequalities
p1 p1 m p 1 ∞ ∞ 1 2 i 1 1 1 m+1 1 + = εk − O(1) ε n1+ε n1+ε n1 =1 1 ni =2 i i=2 1 p 1 ∞ p1 2 ∞ m 1 dy dxi pi 1 m+1 1+ > εk − O(1) ε y 1+ε x1+ε 1 1 i i=2 1
= k (1 − εO(1)) p1
m 2
1
(ε + 1) pi ,
i=2
and then, k(λm+1 ) ≥ k(ε → 0+ ). Hence, k = k(λm+1 ) is the best constant factor of (6.68). Similarly, we still have: Theorem 6.11. Suppose that pi < 0(i = 1, · · · , m), 0 < pm+1 < 1, there i ∈ (λi − δ0 , λi + δ0 ) (i = exists a constant δ0 > 0 such that for any λ m+1 1, · · · , m + 1), i=1 λi = λ, ∞ ∞ m 2 −1 λ ··· kλ (u1 , · · · , um , 1) uj j du1 · · · dum ∈ R+ , k(λm+1 ) = 0
0
j=1 λ −1 yj j
is decreasing with respect to yj ∈ R+ and and kλ (y1 , · · · , ym , xm+1 ) strictly decreasing in an interval Ij ⊂ (1, ∞) (j = 1, · · · , m). If f (xm+1 ) ≥ (i) (i) 0, f ∈ Lpm+1, Φ (R+ ), ||f ||pm+1, Φ > 0, ani ≥ 0, a(i) = {ani }∞ ni =1 ∈ lpi, ψi , (i) ||a ||pi, ψi > 0 (i = 1, · · · , m), then, we have the following equivalent reverse inequalities with the same best possible constant factor k(λm+1 ): ∞ ∞ ∞ m 2 f (xm+1 ) ··· kλ (n1 , · · · , nm , xm+1 ) a(j) nj dxm+1 0
nm =1
n1 =1
j=1
> k(λm+1 )||f ||pm+1, Φ
m 2
||a(i) ||pi, ψi ,
(6.70)
i=1
and
∞ 0
pλ
−1
m+1 xm+1 [1 − θ(xm+1 )]p−1
∞ nm =1
···
∞
kλ (n1 , · · · , nm , xm+1 )
n1 =1
×
m 2
p a(j) nj
p1 dxm+1
j=1
> k(λm+1 )
m 2 i=1
||a(i) ||pi, ψi .
(6.71)
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
ws-book9x6
281
Multiple Half-Discrete Hilbert-Type Inequalities
Theorem 6.12. Suppose that pi < 0(i = 1, · · · , m), 0 < pm+1 < 1, i ∈ λm+1 = λ2 , there exists a constant δ0 > 0 such that for any λ m+1 (λi − δ0 , λi + δ0 ) (i = 1, · · · , m + 1), i=1 λi = λ, ∞ ∞ m 2 −1 λ m+1 ) = ··· kλ (u1 , · · · , um , 1) uj j du1 · · · dum ∈ R+ , k(λ 0
0
j=1
λ −1 , xm+1 ym , 1)yj j
and kλ (xm+1 y1 , · · · is decreasing with respect to yj ∈ R+ and strictly decreasing in an interval Ij ⊂ (1, ∞)(j = 1, · · · ,m). If f (xm+1 ) ≥ 0, f ∈ Lpm+1, Φ (R+ ), ||f ||pm+1, Φ > 0, then, we have the following equivalent inequalities with the same best constant factor k(λm+1 ): ∞ ∞ ∞ m 2 f (xm+1 ) ··· kλ (xm+1 n1 , · · · , xm+1 nm , 1) a(j) nj dxm+1 0
nm =1
n1 =1
j=1
> k(λm+1 )||f ||pm+1, Φ
m 2
||a(i) ||pi, ψi ,
(6.72)
i=1
and
∞ 0
pλ
−1
2 xm+1 ˜ m+1 )]p−1 [1 − θ(x
∞ nm =1
···
∞
(xm+1 n1 , · · · , xm+1 nm , 1)
n1 =1
×
m 2
p a(j) nj
p1 dxm+1
j=1
> k(λm+1 )
m 2
||a(i) ||pi, ψi .
(6.73)
i=1
6.4
Some Examples with the Particular Kernels
In the following, we still assume that m ∈ N, pi , p ∈ R\{0, 1}, λi ∈ R(i = m 1 1 1 1, · · · , m + 1), m+1 i=1 λi = λ, p = i=1 pi = 1 − pm+1 . In the following Corollaries 6.1 to 6.21, we set p (1−λi )−1 ϕi (xi ) = xi i (xi ∈ R+ ; i = 1, · · · , m), ψ(n) = npm+1 (1−λm+1 )−1 (n ∈ N), 1 (x1 ) = (1 − θ1 (x1 ))ϕ1 (x1 ), where Φ1 (x1 ) = (1 − θ1 (x1 ))ϕ1 (x1 ) and Φ
∞ 1/x1 ∞ 1 λm+1 −1 um+1 ··· kλ (1, u2 , · · · , um+1 ) θ1 (x1 ) = k(λm+1 ) 0 0 0 m 2 λj −1 × uj du2 · · · dum dum+1 , j=2
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
282
ws-book9x6
Half-Discrete Hilbert-Type Inequalities
and θ1 (x1 ) =
1 k(λm+1 )
x1
u1λ1 −1
0
∞
0
···
∞
0 m 2
×
kλ (u1 , · · · , um , 1)
λ −1 uj j du2
· · · dum du1 .
j=2
In the following Corollaries 6.4 to 6.24, we set p (1−λi )−1
(ni ∈ N; i = 1, · · · , m),
ψi (ni ) = ni i ϕ(xm+1 ) =
pm+1 (1−λm+1 )−1 xm+1
(xm+1 ∈ R+ ),
Φ(xm+1 ) = (1 − θm+1 (xm+1 ))ϕ(xm+1 ) m+1 ) = (1 − θm+1 (xm+1 ))ϕ(xm+1 ) Φ(x
(xm+1 ∈ R+ ), (xm+1 ∈ R+ ),
1 ) = (1 − θ1 (n1 ))ψ(n1 ), where Ψ(n1 ) = (1 − θ1 (n1 ))ψ(n1 ) and Ψ(n ∞ ∞ 1 θm+1 (xm+1 ) = 1 − ··· kλ (u1 , · · · , um , 1) k(λm+1 ) 1/xm+1 1/xm+1 m 2
×
λ −1
uj j
du1 · · · dum ,
j=1
and θm+1 (xm+1 ) = 1 −
1 k(λm+1 )
∞
···
xm+1
∞
kλ (u1 , · · · , um , 1)
xm+1 m 2
×
λ −1
uj j
du1 · · · dum .
j=1
6.4.1
The Case of kλ (x1 , · · · , xm , xm+1 ) =
1 m+1 ( i=1 xi )λ
Lemma 6.16. If λ, λi > 0 (i = 1, · · · , m + 1), and 1 kλ (x1, · · · , xm+1 ) = m+1 , ( i=1 xi )λ then, we have k(λm+1 ) = =
∞ 0
···
1 Γ(λ)
0
m+1 2 i=1
∞
m
λ −1
u j mj=1 j du1 · · · dum ( j=1 uj + 1)λ
Γ(λi ).
(6.74)
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
ws-book9x6
283
Multiple Half-Discrete Hilbert-Type Inequalities
Proof.
For M > 0, we set DM = {(u1 , · · · , um )|ui > 0,
m ui i=1
M
≤ 1}.
In view of the assumptions with reference (see Yang [131], (9.18)), we have m m ui 2 λ −1 ··· ψ uj j du1 · · · dum M DM i=1 j=1 1 m λ−λm+1 2 M = Γ(λi ) ψ(u)uλ−λm+1 −1 du. (6.75) Γ(λ − λm+1 ) i=1 0 Setting ψ(u) =
1 , (Mu+1)λ
by (6.75), we find m λj −1 uj j=1 k(λm+1 ) = lim ··· du1 · · · dum m ui λ M→∞ DM [M i=1 ( M ) + 1] 1 λ−λm+1 −1 m M λ−λm+1 2 u = lim Γ(λi ) du, (v = M u) M→∞ Γ(λ − λm+1 ) (M u + 1)λ 0 i=1 ∞ λ−λm+1 −1 m 2 v 1 Γ(λi ) dv = Γ(λ − λm+1 ) (v + 1)λ 0 i=1 ( ) m 2 Γ(λ − λm+1 )Γ(λm+1 ) 1 Γ(λi ) = Γ(λ − λm+1 ) i=1 Γ(λ) =
m+1 1 2 Γ(λi ), Γ(λ) i=1
then, inequality (6.74) follows.
With the assumptions of Lemma 6.16, if λm+1 < 1, then, we set δ0 = i ∈ (λi − δ0 , λi + δ0 ) (i = min1≤i≤m+1 {λi , 1 − λm+1 } > 0. For any λ m+1 1, · · · , m + 1), i=1 λi = λ, it follows that λi > 0 (i = 1, · · · , m + 1), m+1 < λm+1 + δ0 ≤ λm+1 + 1 − λm+1 = 1, λ ∞ ∞ m λj −1 u mj=1 j k(λm+1 ) = ··· du1 · · · dum λ ( u 0 0 j=1 j + 1) =
m+1 1 2 Γ(λi ) ∈ R+ , Γ(λ) i=1
1 1 λm+1 −1 λm+1 −1 and (yx1 +···+yx and both expressions (x1 +···+x λ y λ y m +y) m +1) are strictly decreasing with respect to y ∈ R+ . Then, for 1 kλ (x1 , · · · , xm , xm+1 ) = m+1 ( i=1 xi )λ
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
284
ws-book9x6
Half-Discrete Hilbert-Type Inequalities
in Theorems 6.1 and 6.2, it follows that Corollary 6.1. Suppose that pi > 1, λi > 0 (i = 1, · · · , m + 1), λm+1 < 1. If fi (xi ) ≥ 0, fi ∈ Lpi, ϕi (R+ ), ||fi ||pi, ϕi > 0 (i = 1, · · · , m), an ≥ 0, a = {an }∞ n=1 ∈ lpm+1, ψ , ||a||pm+1, ψ > 0, then (i) we have the following equivalent inequalities with the best possible m+1 1 constant factor Γ(λ) i=1 Γ(λi ): ∞ ∞ m ∞ fj (xj ) mj=1 an ··· dx1 · · · dxm ( j=1 xj + n)λ 0 0 n=1 m Γ(λm+1 ) 2 < Γ(λi )||fi ||pi, ϕi ||a||pm+1, ψ , (6.76) Γ(λ) i=1 and
∞
npλm+1 −1
∞
0
n=1
<
···
∞ 0
m
j=1 fj (xj )dx1 · · · dxm m ( j=1 xj + n)λ
p p1
m Γ(λm+1 ) 2 Γ(λi )||fi ||pi, ϕi ; Γ(λ) i=1
(6.77)
(ii) for λm+1 = λ2 (< 1), we have the following equivalent inequalities m with the same best possible constant factor Γ(λ/2) i=1 Γ(λi ) : Γ(λ) ∞ ∞ m ∞ fj (xj ) mj=1 an ··· dx1 · · · dxm λ ( nx j + 1) 0 0 j=1 n=1 m Γ(λ/2) 2 < Γ(λi )||fi ||pi, ϕi ||a||pm+1, ψ , (6.78) Γ(λ) i=1 and
∞ n=1
n
pλ 2 −1
∞ 0
···
∞
m
0
fj (xj )dx1 · · · dxm m ( j=1 nxj + 1)λ
p p1
j=1
Γ(λ/2) 2 Γ(λi )||fi ||pi, ϕi . Γ(λ) i=1 m
<
In view of (6.9) and (6.12), for 1 , kλ (x1 , · · · , xm , xm+1 ) = m+1 ( i=1 xi )λ
(6.79)
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
ws-book9x6
285
Multiple Half-Discrete Hilbert-Type Inequalities
we find, for m ≥ 2, A1 (um+1 ) =
∞ 0
≤ = and
B1 (ui ) = ≤
=
0
(1
0
···
m
∞
∞
0
(1 m
λj −1 j=2 uj du2 · · · dum λ + m+1 j=2 uj ) m λj −1 du2 · · · dum j=2 uj m λm+1 −α + j=2 uj )λ+α−λm+1 um+1
Γ(λ1 + α) i=2 Γ(λi ) α−λm+1 (um+1 ) (0 < α < λm+1 ), Γ(λ + α − λm+1 )
∞
0 ∞ 0
∞
···
··· ···
∞ 0 ∞ 0
m
λ −1
j j=1(j =i) uj m du1 · · · dui−1 dui+1 · · · dum ( j=1 uj + 1)λ m λj −1 du1 · · · dui−1 dui+1 · · · dum j=1(j =i) uj m ( j=1(j =i) uj + 1)λ+α−λi uλi i −α
Γ(λm+1 + α) Γ(λ + α − λi )
m 2
i Γ(λj )(uα−λ ) (0 < α < λi ); i
j=1(j =i)
for m = 1, we can still obtain the same results. By Theorems 6.3 and 6.4, it follows that Corollary 6.2. Suppose that 0 < p1 < 1, pi < 0 (i = 2, · · · , m + 1), λi > 0 (i = 1, · · · , m + 1), λm+1 < 1. If f1 (x1 ) ≥ 0, f1 ∈ Lp1, Φ1 (R+ ), ||f1 ||p1, Φ1 > 0, fi (xi ) ≥ 0, fi ∈ Lpi, ϕi (R+ ), ||fi ||pi, ϕi > 0 (i = 2, · · · , m), an ≥ 0, a = {an }∞ n=1 ∈ lpm+1, ψ , ||a||pm+1, ψ > 0, then (i) we have the following equivalent inequalities with the same best posm+1 1 sible constant factor Γ(λ) i=1 Γ(λi ): m ∞ ∞ ∞ fj (xj ) mj=1 an ··· dx1 · · · dxm ( j=1 xj + n)λ 0 0 n=1 > and
∞
m+1 m 2 1 2 Γ(λi )||a||pm+1, ψ ||f1 ||p1 ,Φ1 ||fi ||pi, ϕi , (6.80) Γ(λ) i=1 i=2
npλm+1 −1
0
n=1
>
∞
···
∞ 0
p p1
m
fj (xj ) mj=1 dx1 ( j=1 xj + n)λ
· · · dxm
m+1 m 2 1 2 Γ(λi )||f1 ||p1 ,Φ1 ||fi ||pi, ϕi ; Γ(λ) i=1
i=2
(6.81)
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
286
ws-book9x6
Half-Discrete Hilbert-Type Inequalities
(ii) for λm+1 = λ2 (< 1), f1 ∈ Lp1, Φ 1 (R+ ), ||f1 ||p1, Φ 1 > 0, we have the following equivalent inequalities with the same best possible constant factor Γ(λ/2) m i=1 Γ(λi ) : Γ(λ) ∞
an
n=1
∞ 0
m
∞
fj (xj ) mj=1 dx1 · · · dxm ( j=1 nxj + 1)λ 0 m m 2 Γ(λ/2) 2 > Γ(λi ) ||a||pm+1, ψ ||f1 ||p1, Φ ||fi ||pi, ϕi , 1 Γ(λ)
···
i=1
i=2
(6.82) and
∞
n
pλ 2 −1
∞ 0
n=1
···
0
Γ(λ/2) > Γ(λ)
p p1
m
∞
fj (xj ) mj=1 dx1 ( j=1 nxj + 1)λ
m 2
Γ(λi ) ||f1 ||p1, Φ 1
i=1
· · · dxm
m 2
||fi ||pi, ϕi . (6.83)
i=2
By Theorems 6.5 and 6.6, we still have Corollary 6.3. Suppose that λi > 0, pi < 0 (i = 1, · · · , m), 0 < pm+1 < 1, 0 < λm+1 < 1. If fi (xi ), an ≥ 0, fi ∈ Lpi, ϕi (R+ ), ||fi ||pi, ϕi > 0(i = 1, · · · , m), a = {an }∞ n=1 ∈ lpm+1, ψ , ||a||pm+1, ψ > 0, then (i) we have the following equivalent reverse inequalities with the best m+1 1 possible constant factor Γ(λ) i=1 Γ(λi ): ∞
an
n=1
0
∞
∞
m
∞
fj (xj ) mj=1 dx1 · · · dxm ( j=1 xj + n)λ 0 m Γ(λm+1 ) 2 > Γ(λi )||fi ||pi, ϕi ||a||pm+1, ψ , (6.84) Γ(λ) i=1
···
and
∞
n
pλm+1 −1
0
n=1
>
···
∞ 0
fj (xj ) mj=1 dx1 ( j=1 xj + n)λ
m Γ(λm+1 ) 2 Γ(λi )||fi ||pi, ϕi ; Γ(λ) i=1
p p1
m
· · · dxm (6.85)
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
ws-book9x6
287
Multiple Half-Discrete Hilbert-Type Inequalities
(ii) for λm+1 = λ2 < 1, we have the following equivalent inequalities with m the same best possible constant factor Γ(λ/2) i=1 Γ(λi ): Γ(λ) ∞
an
n=1
∞ 0
m
∞
fj (xj ) mj=1 dx1 · · · dxm ( j=1 nxj + 1)λ 0 m Γ(λ/2) 2 > Γ(λi )||fi ||pi, ϕi ||a||pm+1, ψ , Γ(λ)
···
(6.86)
i=1
and
∞
n
pλ 2 −1
∞ 0
n=1
···
p p1
m
∞
j=1 fj (xj )
m dx1 · · · dxm ( j=1 nxj + 1)λ
0
Γ(λ/2) 2 Γ(λi )||fi ||pi, ϕi . Γ(λ) i=1 m
>
(6.87)
By Theorems 6.7 and 6.8, we have Corollary 6.4. Suppose that pi > 1, 0 < λi < 1 (i = 1, · · · , m), λm+1 > (i) 0. If f (xm+1 ) ≥ 0, f ∈ Lpm+1, ϕ (R+ ), ||f ||pm+1, ϕ > 0, ani ≥ 0,a(i) = (i) (i) {ani }∞ ni =1 ∈ lpi, ψi , ||a ||pi, ψi > 0 (i = 1, · · · , m), then (i) we have the following equivalent inequalities with the best possible m+1 1 constant factor Γ(λ) i=1 Γ(λi ):
∞
f (xm+1 )
0
∞
m
∞
(j)
anj m j=1 dxm+1 ( j=1 nj + xm+1 )λ nm =1 n1 =1 m Γ(λm+1 ) 2 < Γ(λi )||a(i) ||pi, ψi ||f ||pm+1, ϕ , Γ(λ) ···
(6.88)
i=1
and ⎧ ⎨ ⎩
0
∞
pλm+1 −1 xm+1
∞
nm =1
···
∞ n1 =1
m j=1
(j)
anj
m ( j=1 nj + xm+1 )λ
Γ(λm+1 ) 2 Γ(λi )||a(i) ||pi, ψi ; Γ(λ)
⎫ p1 ⎬
p dxm+1
⎭
m
<
(6.89)
i=1
(ii) for λm+1 = λ2 , we have the following equivalent inequalities with the
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
288
ws-book9x6
Half-Discrete Hilbert-Type Inequalities
best possible constant factor
∞
0
m
Γ(λ/2) Γ(λ)
∞
i=1
∞
Γ(λi ): m
(j)
anj m j=1 f (xm+1 ) ··· dxm+1 λ ( x j=1 m+1 nj + 1) nm =1 n1 =1 m Γ(λ/2) 2 (i) < Γ(λi )||a ||pi, ψi ||f ||pm+1, ϕ , Γ(λ)
(6.90)
i=1
and
⎧ ⎨ ⎩
∞
pλ 2 −1
∞
xm+1
0
···
nm =1
∞ n1 =1
m j=1
(j)
anj
⎫1 ⎬p
p
m ( j=1 xm+1 nj + 1)λ
Γ(λ/2) 2 Γ(λi )||a(i) ||pi, ψi . Γ(λ) i=1
dxm+1
⎭
m
<
(6.91)
In (6.44), for 1 kλ (x1 , · · · , xm , xm+1 ) = m+1 , ( i=1 xi )λ we find, for m ≥ 2, ∞ ··· Ai (uk ) = 0
∞ 0
m+1 2
×
1 m+1 ( j=1(j =i) uj + 1)λ λ −1
uj j
du1 · · · dui−1 dui+1 · · · duk−1 duk+1 · · · dum+1
j=1(j =i,k)
≤ =
∞ 0
···
∞
m+1 j=1(j =i,k)
0
Γ(λi + α) Γ(λ + α − λk )
m+1 2
λ −1
uj j du1 · · · dui−1 dui+1 · · · duk−1 duk+1 · · · dum+1 m+1 ( j=1(j =i,k) uj + 1)λ+α−λk uλk k −α k Γ(λj )(uα−λ )(0 < α < λk ); k
j=1(j =i,k)
for m = 1, we can still find the same result. If 0 < λi < 1(i = 1, · · · , m), λm+1 > 0, then, we set δ0 = i ∈ (λi − δ0 , λi + δ0 )(i = min1≤i≤m {λm+1 , λi , 1 − λi } > 0. For any λ m+1 m+1 > 0, 0 < λ i < λi + δ0 ≤ 1, · · · , m + 1), i=1 λi = λ, we find that λ 1(i = 1, · · · , m), m+1 ) = k(λ
m+1 1 2 Γ(λi ) ∈ R+ , Γ(λ) i=1
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
ws-book9x6
289
Multiple Half-Discrete Hilbert-Type Inequalities −1 λ
−1 λ
j 1 1 and both (y1 +···+ym y j and (xm+1 y1 +···+x λ yj +xm+1 )λ j m+1 ym +1) strictly decreasing with respect to yj ∈ R(j = 1, · · · , m). Then, by Theorems 6.9 and 6.10, it follows that
are
Corollary 6.5. Suppose that 0 < p1 < 1, pi < 0(i = 2, · · · , m + 1), 0 < λi < 1(i = 1, · · · , m), λm+1 > 0. If f (xm+1 ) ≥ 0, f ∈ Lpm+1, ϕ (R+ ), (1) (1) (1) ||f ||pm+1, ϕ > 0, an1 ≥ 0, a(1) = {an1 }∞ ||p1, Ψ1 > 0, n1 =1 ∈ lp1, Ψ1 , ||a (i) (i) ∞ (i) (i) ani ≥ 0, a = {ani }ni =1 ∈ lpi, ψi , ||a ||pi, ψi > 0 (i = 2, · · · , m), then (i) we have the following equivalent inequalities with the same best posm+1 1 sible constant factor Γ(λ) i=1 Γ(λi ): m (j) ∞ ∞ ∞ j=1 anj f (xm+1 ) ··· dxm+1 m λ ( n 0 j=1 j + xm+1 ) nm =1 n1 =1 m+1 m 2 2 1 > Γ(λi ) ||f ||pm+1, ϕ ||a(1) ||p1, Ψ1 ||a(i) ||pi, ψi , (6.92) Γ(λ) i=1 i=2 and
⎧ ⎨ ⎩
∞
0
pλ
m+1 xm+1
−1
∞
···
nm =1
>
1 Γ(λ)
m+1 2
∞ n1 =1
m
m ( j=1 nj + xm+1 )λ
Γ(λi ) ||a(1) ||p1, Ψ1
i=1
m 2
⎫1 ⎬p
p
(j)
j=1 anj
dxm+1
⎭
||a(i) ||pi, ψi ;
(6.93)
i=2
(ii) for λm+1 = λ2 , we have the following equivalent inequalities with the m same best possible constant factor Γ(λ/2) i=1 Γ(λi ): Γ(λ) m (j) ∞ ∞ ∞ j=1 anj f (xm+1 ) ··· dxm+1 m ( j=1 xm+1 nj + 1)λ 0 nm =1 n1 =1 m m 2 Γ(λ/2) 2 > Γ(λi ) ||f ||pm+1, ϕ ||a(1) ||p1, Ψ1 ||a(i) ||pi, ψi , (6.94) Γ(λ) i=1 i=2 and
⎧ ⎨ ⎩
∞ 0
pλ 2 −1
∞
∞
m
p
(j)
j=1 anj
⎫ p1 ⎬
dxm+1 λ ⎭ ( m j=1 xm+1 nj + 1) m m 2 Γ(λ/2) 2 > Γ(λi ) ||a(1) ||p1, Ψ1 ||a(i) ||pi, ψi . (6.95) Γ(λ)
xm+1
nm =1
···
n1 =1
i=1
i=2
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
290
ws-book9x6
Half-Discrete Hilbert-Type Inequalities
By Theorems 6.11 and 6.12, it follows that Corollary 6.6. Suppose that pi < 0, 0 < λi < 1(i = 1, · · · , m), λm+1 > (i) 0, 0 < pm+1 < 1. If f (xm+1 ) ≥ 0, f ∈ Lpm+1, Φ (R+ ), ||f ||pm+1, Φ > 0, ani ≥ (i) (i) 0, a(i) = {ani }∞ ni =1 ∈ lpi, ψi , ||a ||pi, ψi > 0 (i = 1, · · · , m), then (i) we have the following equivalent reverse inequalities with the same m+1 1 best possible constant factor Γ(λ) i=1 Γ(λi ): m (j) ∞ ∞ ∞ anj m j=1 f (xm+1 ) ··· dxm+1 ( j=1 nj + xm+1 )λ 0 nm =1 n1 =1 m Γ(λm+1 ) 2 (i) > Γ(λi )||a ||pi, ψi ||f ||pm+1, Φ , (6.96) Γ(λ) i=1 and pλm+1 −1 ∞ xm+1 [1 − θm+1 (xm+1 )]p−1 0
∞ p p1 m (j) ∞ j=1 anj m × ··· dxm+1 λ ( j=1 nj + xm+1 ) n =1 n =1 m
1
Γ(λm+1 ) 2 > Γ(λi )||a(i) ||pi, ψi ; Γ(λ) i=1 m
(6.97)
(ii) for λm+1 = λ2 , f (xm+1 ) ≥ 0, f ∈ Lpm+1, Φ (R+ ), ||f ||pm+1, Φ > 0, we have the following equivalent inequalities with the same best possible m constant factor Γ(λ/2) i=1 Γ(λi ): Γ(λ) m (j) ∞ ∞ ∞ anj m j=1 f (xm+1 ) ··· dxm+1 ( j=1 xm+1 nj + 1)λ 0 nm =1 n1 =1 m Γ(λ/2) 2 > Γ(λi )||a(i) ||pi, ψi ||f ||pm+1, Φ (6.98) , Γ(λ) i=1 and ⎧ pλ ⎨ ∞ 2 −1 xm+1 ⎩ 0 [1 − θm+1 (xm+1 )]p−1
×
∞
nm =1
∞
···
n1 =1
m
(j)
j=1 anj
m ( j=1 xm+1 nj + 1)λ
Γ(λ/2) 2 Γ(λi )||a(i) ||pi, ψi . Γ(λ)
⎫ p1 ⎬
p dxm+1
⎭
m
>
i=1
(6.99)
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
Multiple Half-Discrete Hilbert-Type Inequalities
ws-book9x6
291
Remark 6.3. (i) If, in (6.24), we set 1 kλ (x1 , · · · , xm , n) = ∞ , ( j=1 xj + n)λ then, in view of Corollary 6.1 and equality (6.25), we have ||T || = k(λm+1 ) =
m+1 1 2 Γ(λi ). Γ(λ) i=1
If, in (6.26), for λm+1 = λ2 (< 1), we set 1 kλ (nx1 , · · · , nxm , 1) = ∞ , ( j=1 nxj + 1)λ then, in view of Corollary 6.4 and equality (6.27), we have Γ(λ/2) 2 Γ(λi ). Γ(λ) i=1 m
||T1 || = k(λm+1 ) = (ii) If, in (6.61), we set
1 , kλ (n1 , · · · , nm , xm+1 ) = ∞ ( j=1 nj + xm+1 )λ then, in view of Corollary 6.4 and equality (6.62), we have ||T|| = k(λm+1 ) =
m+1 1 2 Γ(λi ). Γ(λ) i=1
If, in (6.63), for λm+1 =
λ 2,
we set
1 , kλ (xm+1 n1 , · · · , xm+1 nm , 1) = ∞ ( j=1 xm+1 nj + 1)λ then, in view of Corollary 6.4 and (6.64), we have ||T1 || = k(λm+1 ) =
6.4.2
The Case of s kλ (x1 , · · · , xm+1 ) = k=1
Γ(λ/2) 2 Γ(λi ). Γ(λ) i=1 m
m
i=1
1 λ/s xi λ/s +ck xm+1
Lemma 6.17. If s ∈ N, 0 < c1 < · · · < cs , λ, λi > 0(i = 1, · · · , m + 1), and s 2 1 m kλ (x1, · · · , xm+1 ) = , λ/s + c x λ/s x i k m+1 i=1 k=1
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
292
ws-book9x6
Half-Discrete Hilbert-Type Inequalities
then, we have
∞
∞
m
λ −1
j j=1 uj ··· du1 · · · dum m λ/s + c ) k 0 0 k=1 ( i=1 ui m s m s π i=1 Γ( λ λi ) λ = β(λm+1 ) = s πs Γ( λ (λ − λm+1 )) sin[ λ (λ − λm+1 )] s s 2 s 1 (λ−λm+1 )−1 × ckλ . (6.100) cj − ck
k(λm+1 ) =
s
j=1(j =k)
k=1
In particular, for λm+1 = λ2 , s m m s s π 2s −1 λ i=1 Γ( λ λi ) λ ck β = 2 Γ( 2s ) sin( πs 2 ) k=1
Proof.
s 2 j=1(j =k)
1 . cj − ck
(6.101)
For M > 0, setting DM = {(u1 , · · · , um )|ui > 0,
and ψ(u) =
i=1
s
k(λm+1 ) = = =
= =
1 k=1 Mu+ck ,
s m λ s m λ s m λ s m
m ui
∞ 0
···
lim
M→∞
lim
M
m
≤ 1},
by (6.75) and (3.12), we have
M→∞
M
m
s λ λj −1 dv1 · · · dvm j=1 vj λ/s s m , (vi = ui ) ( v + c ) k 0 k=1 i=1 i s m λ λj −1 j=1 vj s m vi ··· dv1 · · · dvm DM k=1 [M i=1 ( M ) + ck ] m 1 λs (λ−λm+1 )−1 s s λ (λ−λm+1 ) u du i=1 Γ( λ λi ) s , s Γ( λ (λ − λm+1 )) 0 k=1 (M u + ck )
∞
(v = M u) s (λ−λ m+1 )−1 λ
s ∞ v i=1 Γ( λ λi ) s dv s λ Γ( λ (λ − λm+1 )) 0 k=1 (v + ck ) s m m s π i=1 Γ( λ λi ) λ s πs Γ( λ (λ − λm+1 )) sin[ λ (λ − λm+1 )] s s 2 s (λ−λm+1 )−1 × ckλ k=1 j=1(j =k)
1 c j − ck
= β(λm+1 ), and then (6.74) follows.
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
ws-book9x6
293
Multiple Half-Discrete Hilbert-Type Inequalities
With the assumptions of Lemma 6.16, if λm+1 < 1, then, we set i ∈ (λi − δ0 , λi + δ0 ) δ0 = min1≤i≤m+1 {λi , 1 − λm+1 } > 0. For any λ m+1 (i = 1, · · · , m + 1), i=1 λi = λ, it follows that λi > 0 (i = 1, · · · , m + 1), m+1 < λm+1 + δ0 ≤ λm+1 + 1 − λm+1 = 1, λ ∞ ∞ m λj −1 uj du1 · · · dum sj=1 m ··· k(λm+1 ) = β(λm+1 ) = λ/s + c ) k 0 0 k=1 ( i=1 ui m s s m π i=1 Γ( λ λi ) λ = s πs Γ( λ (λ − λm+1 )) sin[ λ (λ − λm+1 )] s s 2 s m+1 )−1 1 (λ−λ × ckλ ∈ R+ , cj − ck j=1(j =k)
k=1
and both s 2 m
1
λ/s + c y k i=1 xi
k=1
y λm+1 −1 and λ/s
s 2 k=1
1 y λm+1 −1 λ/s + c (yx ) i k i=1
m
are strictly decreasing with respect to y ∈ R+ . Then, for s 2
kλ (x1 , · · · , xm , xm+1 ) =
1 λ/s + c x λ/s x k m+1 i=1 i
m
k=1
in Theorems 6.1 and 6.2, it follows that Corollary 6.7. Suppose that s ∈ N, 0 < c1 < · · · < cs , pi > 1, λi > 0 (i = 1, · · · , m + 1), λm+1 < 1. If fi (xi ) ≥ 0, fi ∈ Lpi, ϕi (R+ ), ||fi ||pi, ϕi > 0(i = 1, · · · , m), an ≥ 0, a = {an }∞ n=1 ∈ lpm+1, ψ , ||a||pm+1, ψ > 0, then (i) we have the following equivalent inequalities with the best possible constant factor β(λm+1 ): m ∞ ∞ ∞ fj (xj ) mj=1 λ/s s an ··· dx1 · · · dxm + ck nλ/s ) 0 0 k=1 ( i=1 xi n=1 m 2 < β(λm+1 ) ||fi ||pi, ϕi ||a||pm+1, ψ , (6.102) i=1
and
∞
n=1
n
pλm+1 −1
0
∞
···
< β(λm+1 )
∞ 0
m 2 i=1
m
fj (xj )dx1 · · · dxm s m λ/s + c nλ/s ) k k=1 ( i=1 xi
p p1
j=1
||fi ||pi, ϕi ;
(6.103)
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
294
ws-book9x6
Half-Discrete Hilbert-Type Inequalities
(ii) for λm+1 = λ2 < 1, we have the following equivalent inequalities with the same best possible constant factor β( λ2 ): m ∞ ∞ ∞ j=1 fj (xj ) s m an ··· dx1 · · · dxm λ/s + c ] k 0 0 k=1 [ i=1 (nxi ) n=1 2 m λ <β ||fi ||pi, ϕi ||a||pm+1, ψ , (6.104) 2 i=1 and
∞
n
pλ 2 −1
∞
0
n=1
···
∞ 0
m
fj (xj )dx1 · · · dxm s m λ/s + c ] k k=1 [ i=1 (nxi )
p p1
j=1
2 m λ <β ||fi ||pi, ϕi . 2 i=1
(6.105)
In (6.9) and (6.12), for kλ (x1 , · · · , xm , xm+1 ) =
s 2
i=1 xi
k=1
we find, for m ≥ 2, ∞ A1 (um+1 ) = ··· ≤ ≤
λ/s
,
+ ck xm+1
λj −1 j=2 uj du2 · · · dum s m λ/s + c uλ/s ) 0 0 k m+1 k=1 (1 + i=2 ui m λj −1 ∞ ∞ uj m j=2 ··· du2 · · · dum λ/s (1 + i=2 ui + c1 um+1 λ/s )s 0 0 m λj −1 ∞ ∞ du2 · · · dum j=2 uj 0
···
α−λ
λ/s
m
∞
0
= Aum+1m+1 where
1
m
s
(λm+1 −α)
c1λ
(1 +
m
i=2
s
ui λ/s )s− λ (λm+1 −α) 1 × λm+1 −α um+1
(0 < α < λm+1 ), m
λ −1
uj j du2 · · · dum λ/s , (vi = ui ) m s s− λ (λm+1 −α) λ/s 0 0 c1 (1 + i=2 ui ) s ∞ ∞ m λ λj −1 s m−2 dv2 · · · dvm (λ) j=2 vj = s (λ ··· m s −α) s− m+1 (1 + i=2 vi ) λ (λm+1 −α) 0 0 c1λ m ( λs )m−2 Γ s − λs (λ − λ1 − α) 2 sλi ) < ∞, = s (λ Γ( m+1 −α) Γ(s − s (λ λ m+1 − α)) cλ λ ∞
A=
1
···
∞
j=2
s λ (λm+1 −α)
i=2
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
ws-book9x6
295
Multiple Half-Discrete Hilbert-Type Inequalities
and B1 (ui ) = ≤ ≤
∞
0 ∞ 0 ∞ 0
≤
∞
0
··· ··· ···
m
∞ 0
m
∞
j=1(j =i)
0
m
∞
···
i = Buα−λ i
m
du1 · · · dui−1 dui+1 · · · dum m λ/s + c ) k k=1 ( i=1 ui λ −1
uj j du1 · · · dui−1 dui+1 · · · dum m ( i=1 ui λ/s + c1 )s λ −1
uj j du1 · · · dui−1 dui+1 · · · dum m s ( i=1 ui λ/s + c1 )s− λ (λi −α) 1 × uiλi −α
j=1(j =i)
0
λ −1
uj j s
j=1(j =i)
λj −1 du1 · · · dui−1 dui+1 · · · dum j=1(j =i) uj m s λ/s ( j=1(j =i) uj + c1 )s− λ (λi −α) uλi i −α
∞ 0
(0 < α < λi ),
where
∞
B= 0
=
···
∞ 0
m
s m−1 s
λj −1 du1 · · · dui−1 dui+1 · · · dum j=1(j =i) uj , m s λ/s ( j=1(j =i) uj + c1 )s− λ (λi −α)
λ/s
(vj = uj /c1 )
λ
c1 s− λ (λ−λm+1 −α) ∞ × ···
m
s
λ −1
vjλ j dv1 · · · dvi−1 dvi+1 · · · dvm m s ( j=1(j =i) vj + 1)s− λ (λi −α) 0 0 m s m−1 s Γ(s − λs (λ − λm+1 − α)) j=1(j =i) Γ( λ λj ) λ = < ∞. s Γ(s − λs (λi − α)) c1 s− λ (λ−λm+1 −α) ∞
j=1(j =i)
For m = 1, we can still find some similar results. By Theorems 6.3 and 6.4, it follows that Corollary 6.8. Suppose that s ∈ N, 0 < c1 < · · · < cs , 0 < p1 < 1, pi < 0(i = 2, · · · , m + 1), λi > 0 (i = 1, · · · , m + 1), λm+1 < 1. If f1 (x1 ) ≥ 0, f1 ∈ Lp1, Φ1 (R+ ), ||f1 ||p1, Φ1 > 0, fi (xi ) ≥ 0, fi ∈ Lpi, ϕi (R+ ), ||fi ||pi, ϕi > 0 (i = 2, · · · , m), an ≥ 0, a = {an }∞ n=1 ∈ lpm+1, ψ , ||a||pm+1, ψ > 0, then (i) we have the following equivalent inequalities with the same best possible
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
296
ws-book9x6
Half-Discrete Hilbert-Type Inequalities
constant factor β(λm+1 ): ∞ ∞ ∞ s an ··· 0
n=1
m fj (xj ) mj=1 λ/s dx1 · · · dxm ( x + ck nλ/s ) k=1 i=1 i
0
> β(λm+1 )||a||pm+1, ψ ||f1 ||p1 ,Φ1
m 2
||fi ||pi, ϕi ,
(6.106)
i=2
and
∞
n
pλm+1 −1
∞
0
n=1
···
∞ 0
m
fj (xj )dx1 · · · dxm m s λ/s + c nλ/s ) k k=1 ( i=1 xi
> β(λm+1 )||f1 ||p1 ,Φ1
p p1
j=1
m 2
||fi ||pi, ϕi ;
(6.107)
i=2
(ii) for λm+1 = λ2 < 1, f1 ∈ Lp1, Φ 1 (R+ ), ||f1 ||p1, Φ 1 > 0, we have the following equivalent inequalities with the same best possible constant factor β( λ2 ): m ∞ ∞ ∞ j=1 fj (xj ) s m an ··· dx1 · · · dxm λ/s + c ] k 0 0 k=1 [ i=1 (nxi ) n=1 m 2 λ >β ||fi ||pi, ϕi , (6.108) ||a||pm+1, ψ ||f1 ||p1, Φ 1 2 i=2 and
∞
n
pλ 2 −1
∞ 0
n=1
>β
···
∞ 0
p p1
m
j=1 fj (xj ) s m λ/s k=1 [ i=1 (nxi )
m 2 λ ||f1 ||p1, Φ ||fi ||pi, ϕi . 1 2 i=2
+ ck ]
dx1 · · · dxm (6.109)
By Theorems 6.5 and 6.6, we still have Corollary 6.9. Suppose that s ∈ N, 0 < c1 < · · · < cs , λi > 0, pi < 0(i = 1, · · · , m), 0 < pm+1 < 1, 0 < λm+1 < 1. If fi (xi ), an ≥ 0, fi ∈ Lpi, ϕi (R+ ), ||fi ||pi, ϕi > 0 (i = 1, · · · , m), a = {an }∞ n=1 ∈ lpm+1, ψ , ||a||pm+1, ψ > 0, then (i) we have the following equivalent reverse inequalities with the best possible constant factor β(λm+1 ): m ∞ ∞ ∞ fj (xj ) s mj=1 λ/s an ··· dx1 · · · dxm + ck nλ/s ) 0 0 k=1 ( i=1 xi n=1 m 2 > β(λm+1 ) ||fi ||pi, ϕi ||a||pm+1, ψ , (6.110) i=1
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
ws-book9x6
297
Multiple Half-Discrete Hilbert-Type Inequalities
and
∞
n
pλm+1 −1
∞
0
n=1
> β(λm+1 )
···
m 2
m
∞
fj (xj )dx1 · · · dxm s m λ/s + c nλ/s ) k k=1 ( i=1 xi
p p1
j=1
0
||fi ||pi, ϕi ;
(6.111)
i=1
(ii) for λm+1 = λ2 (< 1), we have the following equivalent inequalities with the same best possible constant factor β( λ2 ): m ∞ ∞ ∞ j=1 fj (xj ) s m dx1 · · · dxm an ··· λ/s + c ] k 0 0 k=1 [ i=1 (nxi ) n=1 2 m λ >β ||fi ||pi, ϕi ||a||pm+1, ψ , (6.112) 2 i=1 and
∞
n
pλ 2 −1
∞
0
n=1
···
∞ 0
m
fj (xj )dx1 · · · dxm s m λ/s + c ] [ k k=1 i=1 (nxi )
p p1
j=1
2 m λ >β ||fi ||pi, ϕi . 2 i=1
(6.113)
By Theorems 6.7 and 6.8, we have Corollary 6.10. Suppose that s ∈ N, 0 < c1 < · · · < cs , pi > 1, 0 < λi < 1(i = 1, · · · , m), λm+1 > 0. If f (xm+1 ) ≥ 0, f ∈ Lpm+1, ϕ (R+ ),||f ||pm+1, ϕ > (i) (i) (i) 0, ani ≥ 0, a(i) = {ani }∞ ni =1 ∈ lpi, ψi , ||a ||pi, ψi > 0(i = 1, · · · , m), then (i) we have the following equivalent inequalities with the best possible constant factor β(λm+1 ): m (j) ∞ ∞ ∞ j=1 anj f (xm+1 ) ··· dxm+1 s m λ/s + c xλ/s ) 0 k m+1 nm =1 n1 =1 k=1 ( i=1 ni m 2 < β(λm+1 ) ||a(i) ||pi, ψi ||f ||pm+1, ϕ , (6.114) i=1
and ⎧ ⎨ ⎩
∞ 0
pλ
m+1 xm+1
−1
∞
···
nm =1
< β(λm+1 )
m 2 i=1
∞ n1 =1
m s
m
k=1 (
||a(i) ||pi, ψi ;
i=1
⎫ p1 ⎬
p
(j)
j=1 anj
λ/s
ni λ/s + ck xm+1 )
dxm+1
⎭
(6.115)
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
298
ws-book9x6
Half-Discrete Hilbert-Type Inequalities
(ii) for λm+1 = λ2 , we have the following equivalent inequalities with the best possible constant factor β( λ2 ):
∞
f (xm+1 )
0
∞
···
nm =1
m
∞
m
s
n1 =1
k=1 [
(j)
j=1
anj
i=1 (xm+1 ni )
λ/s
+ ck ]
dxm+1
2 m λ (i) <β ||a ||pi, ψi ||f ||pm+1, ϕ , 2
(6.116)
i=1
and ⎧ ⎨ ⎩
∞
pλ 2 −1
∞
xm+1
0
···
nm =1
<β
∞
m s
m
k=1 [
n1 =1
i=1 (xm+1 ni )
⎫ p1 ⎬
p
(j)
j=1 anj
λ/s
+ ck ]
dxm+1
2 m λ ||a(i) ||pi, ψi . 2
⎭
(6.117)
i=1
In (6.44), for 1 , m λ/s + c xλ/s ) k m+1 k=1 ( i=1 xi
kλ (x1 , · · · , xm , xm+1 ) = s we find, for k = m + 1(m ≥ 2), Ai (uk ) =
∞ 0
···
m+1
∞ 0
s
l=1 (1
+
λj −1 j=1(j =i,k) uj m λ/s + c uλ/s ) l m+1 j=1(j =i) uj
×du1 · · · dui−1 dui+1 · · · duk−1 duk+1 · · · dum+1 ≤
∞ 0
···
∞
m+1
(1 +
0
k = Cuα−λ k
λ −1
uj j m
j=1(j =i,k)
du1 · · · dui−1 dui+1 · · · duk−1 duk+1 · · · dum+1
j=1(j =i,k)
uj λ/s + c1 um+1 )s− λ (λk −α) ukλk −α λ/s
s
(0 < α < λk ),
where C=
∞ 0
···
0
∞
m+1
λj −1 du1 · · · dui−1 dui+1 · · · duk−1 duk+1 · · · dum+1 j=1(j =i,k) uj . m s λ/s (1+ j=1(j =i,k) uj λ/s +c1 um+1 )s− λ (λk −α)
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
ws-book9x6
299
Multiple Half-Discrete Hilbert-Type Inequalities
λ/s
Setting vj = uj λ/s (j = i, k, m + 1), vm+1 = c1 um+1 in the above integral, we obtain s m+1 ∞ λ λj −1 ( λs )m−1 ∞ j=1(j =i,k) vj C= ··· s s/λ s− λ (λk −α) (1 + m+1 0 0 c1 j=1(j =i,k) vj ) ×dv1 · · · dvi−1 dvi+1 · · · dvk−1 dvk+1 · · · dvm+1 m+1 s m−1 s 2 ( ) Γ(s − λ (λ − λi − α)) s = λ s/λ Γ( λj ) < ∞. s Γ(s − λ (λk − α)) λ c 1
j=1(j =i,k)
Similarly, we can find that α−λ Ai (um+1 ) ≤ C1 um+1m+1 (0 < α < λm+1 , m ≥ 2), and the same result in the case of m = 1. If 0 < λi < 1(i = 1, · · · , m), λm+1 > 0, then, we set δ0 = i ∈ (λi − δ0 , λi + δ0 )(i = min1≤i≤m {λm+1 , λi , 1 − λi } > 0. For any λ m+1 1, · · · , m + 1), i=1 λi = λ, we find that λm+1 > 0, 0 < λi < λi + δ0 ≤ 1(i = 1, · · · , m), k(λm+1 ) = β(λm+1 ) ∈ R+ , and both s s −1 −1 λ λ 1 1 m yj j and y j are λ/s k=1 m k=1 λ/s (xm+1 yi )λ/s +ck j i=1
yi
+ck xm+1
i=1
strictly decreasing with respect to yj ∈ R (j = 1, · · · , m). Then, by Theorems 6.9 and 6.10, it follows that Corollary 6.11. Suppose that s ∈ N, 0 < c1 < · · · < cs , 0 < p1 < 1, pi < 0(i = 2, · · · , m + 1), 0 < λi < 1(i = 1, · · · , m), λm+1 > 0. If f (xm+1 ) ≥ 0, (1) (1) f ∈ Lpm+1, ϕ (R+ ), ||f ||pm+1, ϕ > 0, an1 ≥ 0, a(1) = {an1 }∞ n1 =1 ∈ lp1, Ψ1 , (i) (i) (1) (i) ∞ (i) ||a ||p1, Ψ1 > 0, ani ≥ 0, a = {ani }ni =1 ∈ lpi, ψi , ||a ||pi, ψi > 0(i = 2, · · · , m), then (i) we have the following equivalent inequalities with the same best possible constant factor β(λm+1 ): m (j) ∞ ∞ ∞ j=1 anj dxm+1 f (xm+1 ) ··· m s λ/s + c xλ/s ) 0 k m+1 nm =1 n1 =1 k=1 ( i=1 ni > β(λm+1 )||f ||pm+1, ϕ ||a(1) ||p1, Ψ1
m 2
||a(i) ||pi, ψi ,
(6.118)
i=2
and ⎧ ⎨ ⎩
0
∞
pλ
m+1 xm+1
−1
∞
nm =1
···
∞ n1 =1
> β(λm+1 )||a(1) ||p1, Ψ1
m s
m
k=1 (
m 2 i=2
i=1
λ/s
ni λ/s + ck xm+1 )
||a(i) ||pi, ψi ;
⎫ p1 ⎬
p
(j)
j=1 anj
dxm+1
⎭
(6.119)
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
300
ws-book9x6
Half-Discrete Hilbert-Type Inequalities
(ii) for λm+1 = λ2 , we have the following equivalent inequalities with the same best possible constant factor β( λ2 ): m (j) ∞ ∞ ∞ anj s m j=1 dxm+1 f (xm+1 ) ··· λ/s + c ] k 0 k=1 [ i=1 (xm+1 ni ) nm =1 n1 =1 m 2 λ ||f ||pm+1, ϕ ||a(1) ||p1, Ψ1 >β ||a(i) ||pi, ψi , (6.120) 2 i=2 and ⎧ ⎨ ⎩
∞
pλ 2 −1
xm+1
0
∞
···
nm =1
∞
m s
n1 =1
m
k=1 [
anj
i=1 (xm+1 ni )
⎫ p1 ⎬
p
(j)
j=1
λ/s
+ ck ]
m 2 λ ||a(1) ||p1, Ψ1 >β ||a(i) ||pi, ψi . 2
dxm+1
⎭
(6.121)
i=2
By Theorems 6.10 and 6.12, it follows that Corollary 6.12. Suppose that s ∈ N, 0 < c1 < · · · < cs , pi < 0, 0 < λi < 1(i = 1, · · · , m), λm+1 > 0, 0 < pm+1 < 1. If f (xm+1 ) ≥ 0, (i) (i) f ∈ Lpm+1, Φ (R+ ), ||f ||pm+1, Φ > 0, ani ≥ 0, a(i) = {ani }∞ ni =1 ∈ lpi, ψi , (i) ||a ||pi, ψi > 0(i = 1, · · · , m), then (i) we have the following equivalent reverse inequalities with the same best possible constant factor β(λm+1 ): m (j) ∞ ∞ ∞ j=1 anj dxm+1 f (xm+1 ) ··· m s λ/s + c xλ/s ) 0 k m+1 nm =1 n1 =1 k=1 ( i=1 ni m 2 (i) > β(λm+1 ) ||a ||pi, ψi ||f ||pm+1, Φ , (6.122) i=1
and
0
∞
pλ
−1
m+1 xm+1 [1 − θm+1 (xm+1 )]p−1
∞ ∞ × ··· s
nm =1
> β(λm+1 )
n1 =1 m 2
m m
k=1 (
||a(i) ||pi, ψi ;
i=1
j=1
i=1
p
(j)
anj
λ/s
ni λ/s + ck xm+1 )
p1 dxm+1 (6.123)
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
ws-book9x6
301
Multiple Half-Discrete Hilbert-Type Inequalities
(ii) for λm+1 = λ2 , f (xm+1 ) ≥ 0, f ∈ Lpm+1, Φ (R+ ), ||f ||pm+1, Φ > 0, we have the following equivalent inequalities with the same best possible constant factor β( λ2 ): m (j) ∞ ∞ ∞ anj s m j=1 f (xm+1 ) ··· dxm+1 λ/s + c ] k 0 k=1 [ i=1 (xm+1 ni ) nm =1 n1 =1 2 m λ (i) >β ||a ||pi, ψi ||f ||pm+1, Φ (6.124) , 2 i=1 and⎧ ⎨ ⎩
0
pλ
∞
−1
2 xm+1
[1 − θm+1 (xm+1 )]p−1
×
∞
···
nm =1
∞ n1 =1
m s
m
anj
λ/s i=1 (xm+1 ni )
k=1 [
⎫ p1 ⎬
p
(j)
j=1
+ ck ]
dxm+1
2 m λ >β ||a(i) ||pi, ψi . 2 i=1
⎭
(6.125)
Remark 6.4. (i) If in (6.24), we set 1 , m λ/s + c xλ/s ) ( n i k m+1 k=1 i=1 then, in view of Corollary 6.1 and equality (6.25), we have kλ (x1 , · · · , xm , n) = s
||T || = k(λm+1 ) = β(λm+1 ). If, in (6.26), for λm+1 =
λ 2
< 1, we set
kλ (nx1 , · · · , nxm , 1) = s
m
k=1 [
1
i=1 (xm+1 ni )
λ/s
+ ck ]
,
then, in view of Corollary 6.1 and equality (6.27), we have ||T1 || = β( λ2 ). (ii) If, in (6.61), we set 1 , m λ/s + c xλ/s ) k m+1 k=1 ( i=1 ni then, in view of Corollary 6.4 and (6.62), we have ||T|| = k(λm+1 ) = β(λm+1 ). kλ (n1 , · · · , nm , xm+1 ) = s
If, in (6.63), for λm+1 = λ2 , we set kλ (xm+1 n1 , · · · , xm+1 nm , 1) = s
m
k=1 [
then, in view of Corollary 6.4 and (6.64), we
1
λ/s + c ] k i=1 (xm+1 ni ) λ have ||T1 || = β( 2 ).
,
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
302
6.4.3
ws-book9x6
Half-Discrete Hilbert-Type Inequalities
The Case of kλ (x1 , · · · , xm , xm+1 ) =
1 (max1≤i≤m+1 {xi })λ
Lemma 6.18. If λi > 0 (i = 1, · · · , m + 1), kλ (x1, · · · , xm+1 ) =
1 , (max1≤i≤m+1 {xi })λ
then, we have k(λm+1 ) =
∞
···
0 m+1 2
=λ
i=1
m
∞ 0
j=1
λ −1
uj j
(max1≤j≤m {uj , 1})λ
du1 · · · dum
1 . λi
(6.126)
Proof. We prove (6.126) by mathematical induction (see Yang [128]). For m = 1, we find ∞ u1λ1 −1 k(λ2 ) = du1 (max{u1 , 1})λ 0 1 ∞ λ1 −1 u1 = u1λ1 −1 du1 + du1 uλ1 0 1 1 1 λ = + = , λ1 λ − λ1 λ1 λ2 and then (6.126) follows. Assuming that (6.126) is valid for m = n − 1, then, for m = n, we have n λj −1 ∞ ∞ j=1 uj k(λn+1 ) = ··· du1 · · · dun (max1≤j≤n {uj , 1})λ 0 0 ) ∞ ∞ ( ∞ uλnn −1 = ··· dun (max1≤j≤n {uj , 1})λ 0 0 0 ×
n−1 2
λ −1
uj j
du1 · · · dun−1 .
j=1
Since, we find
∞
0
uλnn −1 dun (max1≤j≤n {uj , 1})λ
max1≤j≤n−1 {uj ,1}
= 0
uλnn −1 dun (max1≤j≤n {uj , 1})λ
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
ws-book9x6
303
Multiple Half-Discrete Hilbert-Type Inequalities
∞
+ max1≤j≤n−1 {uj ,1}
max1≤j≤n−1 {uj ,1}
= 0
uλnn −1 dun (max1≤j≤n {uj , 1})λ
uλnn −1 dun (max1≤j≤n−1 {uj , 1})λ ∞
+ max1≤j≤n−1 {uj ,1}
uλnn −1 dun uλn
(max1≤j≤n−1 {uj , 1})λn (max1≤j≤n−1 {uj , 1})λn −λ = + λn (max1≤j≤n−1 {uj , 1})λ λ − λn λ 1 = , λn (λ − λn ) (max1≤j≤n−1 {uj , 1})λ−λn then, by the assumption of m = n − 1, it follows that ∞ ∞ n−1 λj −1 du1 · · · dun−1 λ j=1 uj k(λn+1 ) = ··· λn (λ − λn ) 0 (max1≤j≤n−1 {uj , 1})λ−λn 0 =
λ(λ − λn ) λn (λ − λn )
n+1 2 i=1(i =n)
n+1 2 1 1 =λ , λi λi i=1
and then (6.99) follows.
With the assumptions of Lemma 6.17, if λm+1 < 1, then we set δ0 = i ∈ (λi −δ0 , λi +δ0 )(i = 1, · · · , m+ min1≤i≤m+1 {λi , 1−λm+1 } > 0. For any λ m+1 m+1 < λm+1 + 1), i=1 λi = λ, it follows that λi > 0(i = 1, · · · , m + 1), λ δ0 ≤ λm+1 + 1 − λm+1 = 1, m λj −1 ∞ ∞ j=1 uj m+1 ) = ··· du1 · · · dum k(λ (max1≤j≤m {uj , 1})λ 0 0 =λ
m+1 2 i=1
1 ∈ R+ , i λ
1 and both (max1≤i≤m y λm+1 −1 and (max1≤i≤m1 {yxi ,1})λ y λm+1 −1 are {xi ,y})λ strictly decreasing with respect to y ∈ R+ . Then for
kλ (x1 , · · · , xm , xm+1 ) =
1 (max1≤i≤m+1 {xi })λ
in Theorems 6.1 and 6.2, it follows that Corollary 6.13. Suppose that pi > 1, λi > 0(i = 1, · · · , m + 1), λm+1 < 1. If fi (xi ) ≥ 0, fi ∈ Lpi, ϕi (R+ ), ||fi ||pi, ϕi > 0(i = 1, · · · , m), an ≥ 0, a = {an }∞ n=1 ∈ lpm+1, ψ , ||a||pm+1, ψ > 0, then
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
304
ws-book9x6
Half-Discrete Hilbert-Type Inequalities
(i) we have the following equivalent inequalities with the best possible m+1 constant factor λ i=1 λ1i : m ∞ ∞ ∞ j=1 fj (xj ) an ··· dx1 · · · dxm λ (max 1≤i≤m {xi , n}) 0 0 n=1 m 2 1 λ < ||fi ||pi, ϕi ||a||pm+1, ψ , (6.127) λm+1 i=1 λi and
∞
n
pλm+1 −1
∞
0
n=1
···
λ
<
λm+1
∞
m j=1
fj (xj )dx1 · · · dxm
p p1
(max1≤i≤m {xi , n})λ
0
m 2 1 ||fi ||pi, ϕi ; λ i i=1
(6.128)
(ii) for λm+1 = λ2 (< 1), we have the following equivalent inequalities 1 with the same best constant factor 2 m i=1 λi : ∞ ∞ m ∞ j=1 fj (xj ) an ··· dx1 · · · dxm (max1≤i≤m {nxi , 1})λ 0 0 n=1 m 2 1 <2 ||fi ||pi, ϕi ||a||pm+1, ψ , (6.129) λi i=1 and
∞
n
pλ 2 −1
∞ 0
n=1
<2
···
0
∞
m
j=1 fj (xj )dx1 · · · dxm
p p1
(max1≤i≤m {nxi , 1})λ
m 2 1 ||fi ||pi, ϕi . λi i=1
(6.130)
In (6.9) and (6.12), for kλ (x1 , · · · , xm , xm+1 ) = we find, for m ≥ 2, ∞ ··· A1 (um+1 ) = 0
≤
∞
···
∞ 0 ∞
1 (max1≤i≤m+1 {xi })λ
m j=2
,
λ −1
uj j
du2 · · · dum (max2≤j≤m+1 {1, uj })λ m λj −1 du2 · · · dum j=2 uj λ
−α
m+1 (max2≤j≤m {1, uj })λ+α−λm+1 um+1 m λ + α − λm+1 2 1 α−λm+1 = (u ) (0 < α < λm+1 ), λ1 + α λi m+1
0
0
i=2
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
ws-book9x6
305
Multiple Half-Discrete Hilbert-Type Inequalities
and
B1 (ui ) = ≤
∞
0 ∞
··· ···
∞ 0 ∞
m
j=1(j =i)
λ −1
uj j
du1 · · · dui−1 dui+1 · · · dum
(max1≤j≤m {1, uj })λ
m
j=1(j =i)
λ −1
uj j
du1 · · · dui−1 dui+1 · · · dum
(max1≤j =i≤m {1, uj })λ+α−λi uλi i −α 2 m λ + α − λi 1 α−λi = (u ) (0 < α < λi ). λm+1 + α λj i 0
0
j=1(j =i)
For m = 1, we can still find the same results. By Theorems 6.3 and 6.4, it follows that Corollary 6.14. Suppose that 0 < p1 < 1, pi < 0 (i = 2, · · · , m + 1), λi > 0(i = 1, · · · , m + 1), λm+1 < 1. If f1 (x1 ) ≥ 0, f1 ∈ Lp1, Φ1 (R+ ), ||f1 ||p1, Φ1 > 0, fi (xi ) ≥ 0, fi ∈ Lpi, ϕi (R+ ), ||fi ||pi, ϕi > 0(i = 2, · · · , m), an ≥ 0, a = {an }∞ n=1 ∈ lpm+1, ψ , ||a||pm+1, ψ > 0, then (i) we have the following equivalent inequalities with the same best posm+1 sible constant factor λ i=1 λ1i : m ∞ ∞ ∞ j=1 fj (xj ) an ··· dx1 · · · dxm (max1≤i≤m {xi , n})λ 0 0 n=1 >λ
m+1 2 i=1
and
∞
n
pλm+1 −1
m 2 1 ||a||pm+1, ψ ||f1 ||p1 ,Φ1 ||fi ||pi, ϕi , λi i=2
∞
0
n=1
>λ
···
m+1 2 i=1
∞ 0
m j=1
fj (xj )dx1 · · · dxm
(6.131)
p p1
(max1≤i≤m {xi , n})λ
m 2 1 ||f1 ||p1 ,Φ1 ||fi ||pi, ϕi ; λi i=2
(6.132)
(ii) for λm+1 = λ2 (< 1), f1 ∈ Lp1, Φ 1 (R+ ), ||f1 ||p1, Φ 1 > 0, we have the following equivalent inequalities with the same best possible constant factor m 2 i=1 λ1i : m ∞ ∞ ∞ j=1 fj (xj ) an ··· dx1 · · · dxm (max1≤i≤m {nxi , 1})λ 0 0 n=1 m m 2 1 2 >2 ||fi ||pi, ϕi , (6.133) ||a||pm+1, ψ ||f1 ||p1, Φ 1 λi i=1
i=2
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
306
ws-book9x6
Half-Discrete Hilbert-Type Inequalities
and
∞
n
pλ 2 −1
∞
···
m j=1
fj (xj )dx1 · · · dxm
p p1
(max1≤i≤m {nxi , 1})λ 0 m m 2 1 2 ||f1 ||p1, Φ >2 ||fi ||pi, ϕi . 1 λ i=1 i i=2 0
n=1
∞
(6.134)
By Theorems 6.5 and 6.6, we still have Corollary 6.15. Suppose that pi < 0, λi > 0(i = 1, · · · , m), 0 < pm+1 < 1, 0 < λm+1 < 1. If fi (xi ), an ≥ 0, fi ∈ Lpi, ϕi (R+ ), ||fi ||pi, ϕi > 0(i = 1, · · · , m), a = {an }∞ n=1 ∈ lpm+1, ψ , ||a||pm+1, ψ > 0, then (i) we have the following equivalent reverse inequalities with the same 1 best possible constant factor λ m+1 i=1 λi : ∞ ∞ m ∞ j=1 fj (xj ) an ··· dx1 · · · dxm (max1≤i≤m {xi , n})λ 0 0 n=1 m 2 1 λ > ||fi ||pi, ϕi ||a||pm+1, ψ , (6.135) λm+1 i=1 λi and
∞
npλm+1 −1
∞
0
n=1
>
···
λ λm+1
∞ 0
m
j=1 fj (xj )dx1 · · · dxm
p p1
(max1≤i≤m {xi , n})λ
m 2 1 ||fi ||pi, ϕi ; λ i i=1
(6.136)
(ii) for λm+1 = λ2 (< 1), we have the following equivalent inequalities m with the same best possible constant factor 2 i=1 λ1i : m ∞ ∞ ∞ j=1 fj (xj ) an ··· dx1 · · · dxm (max1≤i≤m {nxi , 1})λ 0 0 n=1 m 2 1 >2 ||fi ||pi, ϕi ||a||pm+1, ψ , (6.137) λi i=1 and
∞ n=1
n
pλ 2 −1
∞ 0
···
>2
0
∞
m j=1
fj (xj )dx1 · · · dxm
(max1≤i≤m {nxi , 1})λ
m 2 1 ||fi ||pi, ϕi . λi i=1
p p1
(6.138)
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
ws-book9x6
307
Multiple Half-Discrete Hilbert-Type Inequalities
By Theorems 6.7 and 6.8, we have Corollary 6.16. Suppose that pi > 1, 0 < λi < 1(i = 1, · · · , m), λm+1 > (i) 0. If f (xm+1 ) ≥ 0, f ∈ Lpm+1, ϕ (R+ ), ||f ||pm+1, ϕ > 0, ani ≥ 0, a(i) = (i) (i) {ani }∞ ni =1 ∈ lpi, ψi , ||a ||pi, ψi > 0(i = 1, · · · , m), then (i) we have the following equivalent inequalities with the best constant 1 factor λ m+1 i=1 λi : m (j) ∞ ∞ ∞ j=1 anj f (xm+1 ) ··· dxm+1 (max1≤i≤m {ni , xm+1 })λ 0 nm =1 n1 =1 m 2 1 λ (i) < ||a ||pi, ψi ||f ||pm+1, ϕ , (6.139) λm+1 i=1 λi and ⎧ ⎨ ⎩
∞
0
pλ
m+1 xm+1
−1
∞
···
nm =1
<
m
∞ n1 =1
λ λm+1
⎫ p1 ⎬
p
(j)
j=1 anj
dxm+1
(max1≤i≤m {ni , xm+1 })λ
m 2 1 (i) ||a ||pi, ψi ; λi i=1
⎭
(6.140)
(ii) for λm+1 = λ2 , we have the following equivalent inequalities with the m best possible constant factor 2 i =1 λ1i : m (j) ∞ ∞ ∞ j=1 anj f (xm+1 ) ··· dxm+1 max1≤i≤m {xm+1 ni , 1})λ 0 nm =1 n1 =1 m 2 1 <2 ||a(i) ||pi, ψi ||f ||pm+1, ϕ , (6.141) λ i i=1 and
⎧ ⎨ ⎩
0
∞
pλ 2 −1
xm+1
∞
···
nm =1
<2
m
∞ n1 =1
(j)
j=1 anj
dxm+1
max1≤i≤m {xm+1 ni , 1})λ
m 2 1 (i) ||a ||pi, ψi . λi i=1
⎭ (6.142)
In (6.44), for kλ (x1 , · · · , xm , xm+1 ) =
⎫ p1 ⎬
p
1 (max1≤i≤m+1 {xi })λ
,
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
308
ws-book9x6
Half-Discrete Hilbert-Type Inequalities
we find, for m ≥ 2, Ai (uk ) =
∞ 0
···
m+1
∞ 0
j=1(j =i,k)
λ −1
uj j
(max1≤j =i≤m+1 {uj , 1})λ
× du1 · · · dui−1 dui+1 · · · duk−1 duk+1 · · · dum+1 λj −1 ∞ ∞ m+1 du1 · · · dui−1 dui+1 · · · duk−1 duk+1 · · · dum+1 j=1(j =i,k) uj ≤ ··· (max1≤j =i,k≤m+1 {uj , 1})λ+α−λk uλk k −α 0 0 =
λ + α − λk λi + α
m+1 2 j=1(j =i,k)
1 α−λk (u ) (0 < α < λk ). λj k
For m = 1, we can still find the similar result. If 0 < λi < 1(i = 1, · · · , m), λm+1 > 0, then we set δ0 = i ∈ (λi − δ0 , λi + δ0 )(i = min1≤i≤m {λm+1 , λi , 1 − λi } > 0. For any λ m+1 i < 1(i = 1, · · · , m), 1, · · · , m + 1), i=1 λi = λ, we find λm+1 > 0, 0 < λ m+1 ) = λ k(λ
m+1 2 i=1
1 ∈ R+ λi
−1 λ
−1 λ
j 1 and both (max1≤i≤m 1{yi ,xm+1 })λ yj j and (max1≤i≤m {x λ yj m+1 yi ,1}) strictly decreasing with respect to yj ∈ R+ (j = 1, · · · , m). Then by Theorems 6.9 and 6.10, it follows that
are
Corollary 6.17. Suppose that 0 < p1 < 1, pi < 0(i = 2, · · · , m + 1), 0 < λi < 1(i = 1, · · · , m), λm+1 > 0. If f (xm+1 ) ≥ 0, f ∈ Lpm+1, ϕ (R+ ), (1) (1) (1) ||p1, Ψ1 > 0, ||f ||pm+1, ϕ > 0, an1 ≥ 0, a(1) = {an1 }∞ n1 =1 ∈ lp1, Ψ1 , ||a (i) (i) (i) ani ≥ 0, a(i) = {ani }∞ ∈ l , ||a || > 0(i = 2, · · · , m), then pi, ψi pi, ψi ni =1 (i) we have the following equivalent inequalities with the same best posm+1 sible constant factor λ i=1 λ1i :
∞ 0
f (xm+1 )
∞ nm =1
···
∞ n1 =1
m j=1
(j)
anj
(max1≤i≤m {ni , xm+1 })λ
dxm+1
m+1 m 2 1 2 >λ ||a(i) ||pi, ψi , (6.143) ||f ||pm+1, ϕ ||a(1) ||p1, Ψ1 λi i=1
i=2
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
ws-book9x6
309
Multiple Half-Discrete Hilbert-Type Inequalities
and ⎧ ⎨ ⎩
∞
0
pλ
m+1 xm+1
∞
−1
···
nm =1
n1 =1
>λ
m
∞
m+1 2 i=1
⎫ p1 ⎬
p
(j)
j=1 anj
(max1≤i≤m {ni , xm+1 })λ
dxm+1
2 1 (1) ||a ||p1, Ψ1 ||a(i) ||pi, ψi ; λi
⎭
m
(6.144)
i=2
(ii) for, λm+1 = λ2 , we have the following equivalent inequalities with m the same best possible constant factor 2 i=1 λ1i :
∞
∞ 0
f (xm+1 )
···
nm =1
2 > λ1
m
∞ n1 =1
(j)
j=1
anj
(max1≤i≤m {xm+1 ni , 1})λ
m 2 1 ||a(i) ||pi, ψi λ i=2 i
dxm+1
||f ||pm+1, ϕ ||a(1) ||p1, Ψ1 ,
(6.145)
and ⎧ ⎨ ⎩
∞
pλ 2 −1
xm+1
0
∞
···
nm =1
m
∞ n1 =1
(max1≤i≤m {xm+1 ni , 1})λ
m 2 2 1 (i) > ||a ||pi, ψi λ1 i=2 λi
⎫ p1 ⎬
p
(j)
j=1 anj
||a(1) ||p1, Ψ1 .
dxm+1
⎭ (6.146)
By Theorems 6.11 and 6.12, it follows that Corollary 6.18. Suppose that pi < 0, 0 < λi < 1(i = 1, · · · , m), λm+1 > 0, 0 < pm+1 < 1. If f (xm+1 ) ≥ 0, f ∈ Lpm+1, Φ (R+ ), ||f ||pm+1, Φ > 0, (i) (i) (i) ani ≥ 0, a(i) = {ani }∞ ni =1 ∈ lpi, ψi , ||a ||pi, ψi > 0(i = 1, · · · , m), then (i) we have the following equivalent reverse inequalities with the same m+1 best possible constant factor λ i=1 λ1i :
∞ 0
f (xm+1 )
∞
···
nm =1
>
λ λm+1
∞
m j=1
(j)
anj
dxm+1 (max1≤i≤m {ni , xm+1 })λ m 2 1 (i) ||a ||pi, ψi ||f ||pm+1, Φ , (6.147) λi
n1 =1
i=1
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
310
ws-book9x6
Half-Discrete Hilbert-Type Inequalities
and
∞
0
−1
pλ
m+1 xm+1 [1 − θm+1 (xm+1 )]p−1
∞ ∞ × ···
nm =1
>
λ λm+1
m
n1 =1
p
(j)
j=1
anj
dxm+1
(max1≤i≤m {ni , xm+1 })λ
m 2 1 ||a(i) ||pi, ψi λi
p1
;
(6.148)
i=1
(ii) for, λm+1 = λ2 , f (xm+1 ) ≥ 0, f ∈ Lpm+1, Φ (R+ ), ||f ||pm+1, Φ > 0, we have the following equivalent inequalities with the same best possible m constant factor 2 i=1 λ1i : m (j) ∞ ∞ ∞ j=1 anj dxm+1 f (xm+1 ) ··· (max1≤i≤m {xm+1 ni , 1})λ 0 nm =1 n1 =1 m 2 1 (i) >2 ||a ||pi, ψi ||f ||pm+1, Φ (6.149) , λi i=1 and ⎧ ⎨ ⎩
∞ 0
pλ
−1
2 xm+1
[1 − θm+1 (xm+1 )]p−1
×
∞
···
nm =1
m
∞ n1 =1
>2
dxm+1
(max1≤i≤m {xm+1 ni , 1})λ
m 2 1 (i) ||a ||pi, ψi . λi
Remark 6.5. (i) If in (6.24), we set 1 (max1≤i≤m {xi , n})λ
,
then, in view of Corollary 6.12 and (6.25), we have ||T || = k(λm+1 ) = λ
m+1 2 i=1
if, in (6.26), for λm+1 =
λ 2
1 ; λi
< 1, we set
kλ (nx1 , · · · , nxm , 1) =
⎭
(6.150)
i=1
kλ (x1 , · · · , xm , n) =
⎫ p1 ⎬
p
(j)
j=1 anj
1 (max1≤i≤m {nxi , 1})λ
,
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
Multiple Half-Discrete Hilbert-Type Inequalities
ws-book9x6
311
then, in view of Corollary 6.13 and (6.27), we have m 2 1 ||T1 || = k(λm+1 ) = 2 . λi i=1 (ii) If, in (6.61), we set 1 , (max1≤i≤m {ni , xm+1 })λ then, in view of Corollary 6.16 and (6.62), we have m+1 2 1 ||T || = k(λm+1 ) = λ ; λi i=1 kλ (n1 , · · · , nm , xm+1 ) =
if, in (6.63), for λm+1 = λ2 , we set 1 , (max1≤i≤m {xm+1 ni , 1})λ then, in view of Corollary 6.16 and (6.64), we have m 2 1 ||T1 || = k(λm+1 ) = 2 . λ i i=1 kλ (xm+1 n1 , · · · , xm+1 nm , 1) =
6.4.4
The Case of kλ (x1 , · · · , xm , xm+1 ) =
1 (min1≤i≤m+1 {xi })λ
Lemma 6.19. If λi , λ < 0 (i = 1, · · · , m + 1), 1 , kλ (x1, · · · , xm+1 ) = (min1≤i≤m+1 {xi })λ then, we have m λj −1 ∞ ∞ j=1 uj k(λm+1 ) = ··· du1 · · · dum (min1≤j≤m+1 {uj , 1})λ 0 0 = (−1)m λ
m+1 2 i=1
1 . λi
Proof. We prove (6.151) by mathematical induction. For m = 1, we find ∞ u1λ1 −1 k(λ2 ) = du1 (min{u1 , 1})λ 0 1 λ1 −1 ∞ u1 = du1 + u1λ1 −1 du1 λ u 0 1 1 1 1 −λ = + = , −λ + λ1 −λ1 λ1 λ2
(6.151)
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
312
ws-book9x6
Half-Discrete Hilbert-Type Inequalities
and then, (6.151) follows. Assuming that (6.151) is valid for m = n − 1, then, for m = n, we have
∞
λ −1
j=1
uj j
du1 · · · dun (min1≤j≤n {uj , 1})λ ) ∞ ∞ ( ∞ uλnn −1 = ··· du n (min1≤j≤n {uj , 1})λ 0 0 0
k(λn+1 ) =
0
···
n
∞
0
×
n−1 2
λ −1
uj j
du1 · · · dun−1 .
j=1
Since, we find ∞ 0
uλnn −1 dun (min1≤j≤n {uj , 1})λ
min1≤j≤n−1 {uj ,1}
= 0
uλnn −1 dun (min1≤j≤n {uj , 1})λ ∞
+
min1≤j≤n−1 {uj ,1} min1≤j≤n−1 {uj ,1}
= 0
uλnn −1 dun (min1≤j≤n {uj , 1})λ
unλn −1 dun uλn ∞
+ min1≤j≤n−1 {uj ,1}
uλnn −1 dun (min1≤j≤n {uj , 1})λ
−(min1≤j≤n−1 {uj , 1})λn (min1≤j≤n−1 {uj , 1})λn −λ + = λn − λ λn (min1≤j≤n−1 {uj , 1})λ λ 1 = , λn (λn − λ) (min1≤j≤n−1 {uj , 1})λ−λn then, by the assumption of m = n − 1, it follows that ∞ ∞ n−1 λj −1 du1 · · · dun−1 λ j=1 uj k(λn+1 ) = ··· λn (λn − λ) 0 (min1≤j≤n−1 {uj , 1})λ−λn 0 =
λ(λ − λn )(−1)n−1 λn (λn − λ)
and then, (6.151) follows.
n+1 2 i=1(i =n)
n+1 2 1 1 = (−1)n λ , λi λi i=1
With the assumptions of Lemma 6.18, if λm+1 < λ + 1, then we set i ∈ (λi − δ0 , λi + δ0 = min1≤i≤m+1 {−λi , λ + 1 − λm+1 } > 0. For any λ
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
ws-book9x6
313
Multiple Half-Discrete Hilbert-Type Inequalities
m+1 δ0 )(i = 1, · · · , m + 1), i=1 λ i = λ, it follows that λi < λi + δ0 ≤ 0(i = 1, · · · , m + 1), λm+1 < λm+1 + δ0 ≤ λ + 1, m λj −1 ∞ ∞ j=1 uj m+1 ) = k(λ ··· du1 · · · dum (min1≤j≤n−1 {uj , 1})λ 0 0 = (−1)m λ
m+1 2 i=1
and both
1
(min1≤i≤m {xi ,y})λ
1 ∈ R+ , i λ
y λm+1 −1 , and
1 (min1≤i≤m {yxi ,1})λ
strictly decreasing with respect to y ∈ R+ . Then, for 1 kλ (x1 , · · · , xm , xm+1 ) = (min1≤i≤m+1 {xi })λ in Theorems 6.1 and 6.2, it follows that
y λm+1 −1 are
(λ < 0)
Corollary 6.19. Suppose that pi > 1, λi < 0(i = 1, · · · , m + 1), λm+1 < λ + 1. If fi (xi ) ≥ 0, fi ∈ Lpi, ϕi (R+ ), ||fi ||pi, ϕi > 0(i = 1, · · · , m), an ≥ 0, a = {an }∞ n=1 ∈ lpm+1, ψ , ||a||pm+1, ψ > 0, then (i) we have the following equivalent inequalities with the best possible 1 constant factor (−1)m λ m+1 i=1 λi : m ∞ ∞ ∞ j=1 fj (xj ) an ··· dx1 · · · dxm (min1≤i≤m {xi , n})λ 0 0 n=1 m (−1)m λ 2 1 < ||fi ||pi, ϕi ||a||pm+1, ψ , (6.152) λm+1 λi i=1 and
∞
n
pλm+1 −1
0
n=1
<
∞
···
∞ 0
m j=1
fj (xj )dx1 · · · dxm
p p1
(min1≤i≤m {xi , n})λ
m (−1)m λ 2 1 ||fi ||pi, ϕi ; λm+1 λi
(6.153)
i=1
(ii) for, λm+1 = λ2 (− 12 < λ < 0), we have the following equivalent 1 inequalities with the same best possible constant factor, 2(−1)m m i=1 λi : m ∞ ∞ ∞ j=1 fj (xj ) an ··· dx1 · · · dxm (min1≤i≤m {nxi , 1})λ 0 0 n=1 m 2 1 m < 2(−1) ||fi ||pi, ϕi ||a||pm+1, ψ , (6.154) λi i=1
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
314
ws-book9x6
Half-Discrete Hilbert-Type Inequalities
and
∞
n
pλ 2 −1
∞ 0
n=1
···
∞
m j=1
p p1
(min1≤i≤m {nxi , 1})λ
0
< 2(−1)m
fj (xj )dx1 · · · dxm
m 2 1 ||fi ||pi, ϕi . λi
(6.155)
i=1
In (6.9) and (6.12), for kλ (x1 , · · · , xm , xm+1 ) =
1 (min1≤i≤m+1 {xi })λ
(λ < 0),
we find, for m ≥ 2, A1 (um+1 ) =
∞
0
≤
∞
··· ···
∞ 0 ∞
m j=2
λ −1
uj j
du2 · · · dum (min2≤j≤m+1 {1, uj })λ m λj −1 du2 · · · dum j=2 uj λ
m+1 (min2≤j≤m+1 {1, uj })λ+α−λm+1 um+1 m 2 1 α−λm+1 λ + α − λm+1 (−1)m−1 = (u ), λ1 + α λi m+1 i=2
0
0
−α
where, 0 < α < min{−λ1 , λm+1 − λ}, B1 (ui ) = ≤
∞
0 ∞
··· ···
∞ 0 ∞
m
j=1(j =i)
m
λ −1
uj j
du1 · · · dui−1 dui+1 · · · dum
(min1≤j≤m {1, uj })λ
j=1(j =i)
λ −1
uj j
du1 · · · dui−1 dui+1 · · · dum
(min1≤j =i≤m {1, uj })λ+α−λi uλi i −α m 2 λ + α − λi 1 α−λi = (u ), (−1)m−1 λm+1 + α λj i 0
0
j=1(j =i)
where 0 < α < min{λi − λ, −λm+1 }. For m = 1, we can obtain some similar results. By Theorems 6.3 and 6.4, it follows that Corollary 6.20. Suppose that 0 < p1 < 1, pi < 0(i = 2, · · · , m + 1), λi < 0(i = 1, · · · , m + 1), λm+1 < λ + 1. If f1 (x1 ) ≥ 0, f1 ∈ Lp1, Φ1 (R+ ), ||f1 ||p1, Φ1 > 0, fi (xi ) ≥ 0, fi ∈ Lpi, ϕi (R+ ), ||fi ||pi, ϕi > 0(i = 2, · · · , m), an ≥ 0, a = {an }∞ n=1 ∈ lpm+1, ψ , ||a||pm+1, ψ > 0, then
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
ws-book9x6
315
Multiple Half-Discrete Hilbert-Type Inequalities
(i) we have the following equivalent inequalities with the same best posm+1 sible constant factor (−1)m λ i=1 λ1i : m ∞ ∞ ∞ j=1 fj (xj ) an ··· dx1 · · · dxm (min1≤i≤m {xi , n})λ 0 0 n=1 > (−1)m λ
m+1 2 i=1
and
∞
n=1
npλm+1 −1
0
∞
m 2 1 ||a||pm+1, ψ ||f1 ||p1 ,Φ1 ||fi ||pi, ϕi , (6.156) λi i=2
···
> (−1)m λ
∞
0 m+1 2 i=1
m j=1
fj (xj ) dx1 · · · dxm
p p1
(min1≤i≤m {xi , n})λ m 2 1 ||f1 ||p1 ,Φ1 ||fi ||pi, ϕi ; λi i=2
(6.157)
(ii) for λm+1 = λ2 (− 12 < λ < 0), f1 ∈ Lp1, Φ 1 (R+ ), ||f1 ||p1, Φ 1 > 0, we have the following equivalent inequalities with the best possible constant 1 factor 2(−1)m m i=1 λi : m ∞ ∞ ∞ j=1 fj (xj ) an ··· dx1 · · · dxm (min1≤i≤m {nxi , 1})λ 0 0 n=1 m m 2 1 2 m > 2(−1) ||fi ||pi, ϕi , (6.158) ||a||pm+1, ψ ||f1 ||p1, Φ 1 λi i=1 i=2 and
p p1 ∞ ∞ m ∞ λ j=1 fj (xj )dx1 · · · dxm p 2 −1 n ··· (min1≤i≤m {nxi , 1})λ 0 0 n=1 m m 2 1 2 m > 2(−1) ||fi ||pi, ϕi . (6.159) ||f1 ||p1, Φ 1 λi i=1 i=2 By Theorems 6.5 and 6.6, we still have Corollary 6.21. Suppose that pi < 0, λi < 0(i = 1, · · · , m), 0 < pm+1 < 1, λm+1 < min{0, λ + 1}. If fi (xi ), an ≥ 0, fi ∈ Lpi, ϕi (R+ ) (i = 1, · · · , m), a = {an }∞ n=1 ∈ lpm+1, ψ , ||fi ||pi, ϕi > 0, ||a||pm+1, ψ > 0. then (i) we have the following equivalent reverse inequalities with the same m+1 best possible constant factor (−1)m λ i=1 λ1i : m ∞ ∞ ∞ j=1 fj (xj ) an ··· dx1 · · · dxm (min1≤i≤m {xi , n})λ 0 0 n=1 m (−1)m λ 2 1 > ||fi ||pi, ϕi ||a||pm+1, ψ , (6.160) λm+1 λi i=1
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
316
ws-book9x6
Half-Discrete Hilbert-Type Inequalities
and
∞
n
pλm+1 −1
∞
0
n=1
···
∞ 0
m j=1
fj (xj )dx1 · · · dxm
p p1
(min1≤i≤m {xi , n})λ
m (−1)m λ 2 1 > ||fi ||pi, ϕi ; λm+1 i=1 λi
(6.161)
(ii) for λm+1 = λ2 (− 21 < λ < 0), we have the following equivalent m inequalities with the same best constant factor 2(−1)m i=1 λ1i : m ∞ ∞ ∞ j=1 fj (xj ) an ··· dx1 · · · dxm (min1≤i≤m {nxi , 1})λ 0 0 n=1 m 2 1 > 2(−1)m ||fi ||pi, ϕi ||a||pm+1, ψ , (6.162) λi i=1 and
∞
n
pλ 2 −1
∞ 0
n=1
···
∞
0
> 2(−1)m
m j=1
fj (xj )dx1 · · · dxm
p p1
(min1≤i≤m {nxi , 1})λ m 2 1 ||fi ||pi, ϕi . λ i=1 i
(6.163)
By Theorems 6.7 and 6.8, we have the following Corollary 6.22. Suppose that pi > 1, λi < 0(i = 1, · · · , m), λm+1 < (i) min{0, λ + 1}. If f (xm+1 ) ≥ 0, f ∈ Lpm+1, ϕ (R+ ), ||f ||pm+1, ϕ > 0, ani ≥ 0, (i) (i) a(i) = {ani }∞ ni =1 ∈ lpi, ψi , ||a ||pi, ψi > 0(i = 1, · · · , m), then (i) we have the following equivalent inequalities with the best possible m+1 constant factor (−1)m λ i=1 λ1i : m (j) ∞ ∞ ∞ j=1 anj f (xm+1 ) ··· dxm+1 (min1≤i≤m {ni , xm+1 })λ 0 nm =1 n1 =1 m (−1)m λ 2 1 (i) < ||a ||pi, ψi ||f ||pm+1, ϕ , (6.164) λm+1 λ i=1 i and ⎧ ⎨ ⎩
0
∞
pλ
m+1 xm+1
−1
∞
nm =1
<
···
∞ n1 =1
m
(min1≤i≤m {ni , xm+1 })λ
m (−1)m λ 2 1 (i) ||a ||pi, ψi ; λm+1 λi i=1
(j)
j=1 anj
⎫ p1 ⎬
p dxm+1
⎭
(6.165)
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
ws-book9x6
317
Multiple Half-Discrete Hilbert-Type Inequalities
(ii) for λm+1 = λ2 (− 21 < λ < 0), we have the following equivalent 1 inequalities with the best possible constant factor 2(−1)m m i=1 λi : m (j) ∞ ∞ ∞ j=1 anj f (xm+1 ) ··· dxm+1 λ (min 1≤i≤m {ni xm+1 , 1}) 0 nm =1 n1 =1 m 2 1 < 2(−1)m ||a(i) ||pi, ψi ||f ||pm+1, ϕ , (6.166) λi i=1 and
⎧ ⎨ ⎩
∞
0
pλ 2 −1
xm+1
∞
···
nm =1
m
∞ n1 =1
< 2(−1)m
⎫ p1 ⎬
p
(j)
j=1
anj
(min1≤i≤m {ni xm+1 , 1})λ
dxm+1
m 2 1 (i) ||a ||pi, ψi . λi
⎭ (6.167)
i=1
In (6.44), for kλ (x1 , · · · , xm , xm+1 ) = we find, for m ≥ 2, ∞ ··· Ai (uk ) = 0
∞ 0
m+1 2
×
1 (min1≤i≤m+1 {xi })λ
(λ < 0)
1 (min1≤j =i≤m+1 {uj , 1})λ λ −1
uj j
du1 · · · dui−1 dui+1 · · · duk−1 duk+1 · · · dum+1
j=1(j =i,k)
and
≤
∞
···
∞
m+1
j=1(j =i,k)
λ −1
uj j
(min1≤j =i,k≤m+1 {uj , 1})λ+α−λk uλk k −α ×du1 · · · dui−1 dui+1 · · · duk−1 duk+1 · · · dum+1 m+1 2 λ + α − λk 1 α−λk (−1)m−1 = (u ), λi + α λj k 0
0
j=1(j =i,k)
where 0 < α < min{λk −λ, −λi }. For m = 1, we can obtain a similar result. If λi < min{0, 1 − λ}(i = 1, · · · , m), λm+1 < 0, then, we set δ0 = i ∈ (λi − δ0 , λi + δ0 ) min1≤i≤m {−λm+1 , −λi , 1 − λ − λi } > 0. For any λ m+1 i < min{0, 1 − λ} (i = 1, · · · , m + 1), i=1 λi = λ, we find λm+1 < 0, λ (i = 1, · · · , m), m+1 ) = (−1)m λ k(λ
m+1 2 i=1
1 ∈ R+ λi
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
318
ws-book9x6
Half-Discrete Hilbert-Type Inequalities
1 λj −1 and both (min1≤i≤m1yi ,xm+1 )λ y λj −1 and (min1≤i≤m {x are λy m+1 yi ,1}) strictly decreasing with respect to yj ∈ R+ (j = 1, · · · , m). Then by Theorems 6.9 and 6.10, it follows that
Corollary 6.23. Suppose that 0 < p1 < 1, pi < 0(i = 2, · · · , m + 1), λi < min{0, 1+λ} (i = 1, · · · , m), λm+1 < 0. If f (xm+1 ) ≥ 0, f ∈ Lpm+1, ϕ (R+ ), (1) (1) (1) ||f ||pm+1, ϕ > 0, an1 ≥ 0, a(1) = {an1 }∞ ||p1, Ψ1 > 0, n1 =1 ∈ lp1, Ψ1 , ||a (i) (i) (i) ∞ (i) ani ≥ 0, a = {ani }ni =1 ∈ lpi, ψi , ||a ||pi, ψi > 0(i = 2, · · · , m), then (i) we have the following equivalent inequalities with the same best posm+1 sible constant factor (−1)m λ i=1 λ1i : m (j) ∞ ∞ ∞ j=1 anj f (xm+1 ) ··· dxm+1 (min1≤i≤m {ni , xm+1 })λ 0 nm =1 n1 =1 m+1 m 2 1 2 m ||f ||pm+1, ϕ ||a(1) ||p1, Ψ1 > (−1) λ ||a(i) ||pi, ψi , (6.168) λ i i=1 i=2 and
⎧ ⎨ ⎩
∞ 0
pλ
m+1 xm+1
−1
∞
···
nm =1
∞ n1 =1
> (−1)m λ
m+1 2 i=1
m
(j)
j=1 anj
⎫ p1 ⎬
p dxm+1
(min1≤i≤m ni , xm+1 )λ
m 2 1 (1) ||a ||p1, Ψ1 ||a(i) ||pi, ψi ; λi i=2
⎭ (6.169)
(ii) for, λm+1 = λ2 , we have the following equivalent inequalities with m the same best possible constant factor 2(−1)m i=1 λ1i : m (j) ∞ ∞ ∞ j=1 anj f (xm+1 ) ··· dxm+1 (min1≤i≤m {xm+1 ni , 1})λ 0 nm =1 n1 =1 m 2(−1)m 2 1 (i) > ||a ||pi, ψi ||f ||pm+1, ϕ ||a(1) ||p1, Ψ1 , (6.170) λ1 λi i=2
and
⎧ ⎨ ⎩
0
∞
pλ 2 −1
xm+1
∞
nm =1
>
···
∞
(j)
j=1 anj
p
⎫ p1 ⎬
dxm+1 ⎭ (min1≤i≤m {xm+1 ni , 1})λ m 2 1 ||a(i) ||pi, ψi ||a(1) ||p1, Ψ1 . (6.171) λi
n1 =1
2(−1)m λ1
m
i=2
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
ws-book9x6
319
Multiple Half-Discrete Hilbert-Type Inequalities
By Theorems 6.11 and 6.12, it follows that Corollary 6.24. Suppose that pi < 0, λi < min{0, 1 + λ}(i = 1, · · · , m), λm+1 < 0, 0 < pm+1 < 1. If f (xm+1 ) ≥ 0, f ∈ Lpm+1, Φ (R+ ), ||f ||pm+1, Φ > (i) (i) (i) 0, ani ≥ 0, a(i) = {ani }∞ ni =1 ∈ lpi, ψi , ||a ||pi, ψi > 0(i = 1, · · · , m), then (i) we have the following equivalent reverse inequalities with the same 1 best possible constant factor (−1)m λ m+1 i=1 λi : m (j) ∞ ∞ ∞ j=1 anj f (xm+1 ) ··· dxm+1 λ (min 1≤i≤m {ni , xm+1 }) 0 nm =1 n1 =1 m (−1)m λ 2 1 (i) > ||a ||pi, ψi ||f ||pm+1, Φ , (6.172) λm+1 λi i=1 and
∞
0
−1
pλ
m+1 xm+1 [1 − θm+1 (xm+1 )]p−1
∞ ∞ × ···
nm =1
(−1)m λ > λm+1
n1 =1
m j=1
p
(j)
anj
(min1≤i≤m {ni , xm+1 })λ
m 2 1 ||a(i) ||pi, ψi λ i i=1
;
p1 dxm+1 (6.173)
(ii) for, λm+1 = λ2 , f (xm+1 ) ≥ 0, f ∈ Lpm+1, Φ (R+ ), ||f ||pm+1, Φ > 0, we have the following equivalent inequalities with the same best possible 1 constant factor 2(−1)m m i=1 λi : m (j) ∞ ∞ ∞ j=1 anj dxm+1 f (xm+1 ) ··· (min1≤i≤m {xm+1 ni , 1})λ 0 nm =1 n1 =1 m 2 1 m (i) > 2(−1) ||a ||pi, ψi ||f ||pm+1, Φ , (6.174) λ i=1 i and⎧ ⎨ ⎩
0
∞
pλ
−1
2 xm+1
[1 − θm+1 (xm+1 )]p−1
∞ ∞ × ··· nm =1
> 2(−1)m
n1 =1
m
(j) j=1 anj
(min1≤i≤m {xm+1 ni , 1})λ
m 2 1 (i) ||a ||pi, ψi . λi
i=1
⎫ p1 ⎬
p dxm+1
⎭
(6.175)
November 7, 2013
320
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
ws-book9x6
Half-Discrete Hilbert-Type Inequalities
Remark 6.6. (i) If, in (6.24), we set kλ (x1 , · · · , xm , n) =
1 (min1≤i≤m {xi , n})λ
(λ < 0),
then, in view of Corollary 6.19 and (6.25), we have ||T || = k(λm+1 ) = (−1)m λ
m+1 2 i=1
if, in (6.26), for λm+1 =
λ , 2
1 ; λi
we set
kλ (nx1 , · · · , nxm , 1) =
1 (min1≤i≤m {nxi , 1})λ
(λ < 0),
then, in view of Corollary 6.19 and (6.27), we have ||T1 || = k(λm+1 ) = 2(−1)m
m 2 1 . λ i=1 i
(ii) If, in (6.61), we set kλ (n1 , · · · , nm , xm+1 ) =
1 (min1≤i≤m {ni , xm+1 })λ
(λ < 0),
then, in view of Corollary 6.22 and equality (6.62), we have ||T|| = k(λm+1 ) = (−1)m λ
m+1 2 i=1
if, in (6.63), for λm+1 =
λ , 2
1 ; λi
we set
kλ (xm+1 n1 , · · · , xm+1 nm , 1) =
1 (min1≤i≤m {xm+1 ni , 1})λ
(λ < 0),
then, in view of Corollary 6.22 and (6.64), we have ||T1 || = k(λm+1 ) = 2(−1)m
m 2 1 . λi
i=1
Remark 6.7. Putting m = 1 in the theorems and corollaries of this chapter, we obtain the corresponding results of Chapters 3 and 4.
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
Bibliography
This bibliography is not by any means a complete one for the subject. Most of them consist of research papers and books to which reference is made in the text. Many other selected books and papers related to material of the subject have been included so that they may serve to stimulate new interest in future study and research.
[1] B´enyi A. and Oh Choonghong, Best constants for certain multilinear integral operator, Journal of Inequalities and Applications, Vol. 2006, Art. ID28582: 1–12. [2] Bonsall F. F., Inequalities with non-conjugate parameter, J. Math. Oxford Ser., 2:2 (1951) 135–150. [3] Brneti´c I. and Peˇcari´c J., Generalization of Hilbert’s integral inequality, Math. Ineq. & Appl., 7:2 (2004) 199–205. [4] Brneti´c I., Krni´c M. and Peˇcari´c J., Multiple Hilbert and Hardy-Hilbert inequalities with non-conjugate parameters, Bull. Austral. Math. Soc., 71 (2005) 447–457. [5] Carleman T., Sur les equations integrals singulieres a noyau reel et symetrique, Uppsala, 1923. [6] Chen Z. Q. and Xu J. S., New extensions of Hilbert’s inequality with multiple parameters, Acta Math. Hungar., 117:4 (2007) 383–400. [7] Chen Q. and Yang B. C., On a more accurate half-discrete Mulholland’s inequality and an extension, Journal of Inequalities and Applications, 70 (2012) doi:10.1186/1029-242X-2012-70. [8] Chen W., Jin C., Li C., and Lim J., Weighted Hardy-Littlewood-Sobolev Inequalities and Systems of Integral Equations, Discrete and Continuous Dynamical Systems, Supplement Volume: (2005) 164–172. [9] Cheng Q. X., Basic on real variable functions and functional analysis, Beijing: Higher Education Press, 2003.
321
ws-book9x6
November 7, 2013
322
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
Half-Discrete Hilbert-Type Inequalities
[10] Debnath, L. and Yang, B.C., Recent developments of Hilbert-type discrete and integral inequalities with applications, Internat. Jour. Math. and Math. Sci., 2012 (2012) 1–30. [11] Draˇcic B. Ban, and Pog´ any T. K., Discrete Hilbert type inequality with non-homogeneous kernel, Appl. Anal. Discrete Math., 3:1 (2009) 88–96. [12] Draˇcic B. Ban, Peˇcari´c J., and Pog´ any T. K., On a discrete Hilbert type inequality with non-homogeneous kernel, Sarajevo J. Math., 6:1 (2010) 23–34. [13] Draˇcic B. Ban, Peˇcari´c J., Peric I., and Pog´ any T. K., Discrete multiple Hilbert type inequality with non-homogeneous kernel, J. Korean Math. Soc., 47:3 (2010) 537–546. [14] Gao M. Z., A note on Hilbert double series theorem, Hunan Mathematical Annal, 12:1-2 (1992) 143–147. [15] Gao M. Z., On the Hilbert inequality, J. Anal. Appl., 18:4 (1999) 1117– 1122. [16] Gao M. Z., A new Hardy-Hilbert’s type inequality for double series and its applications, The Australian Journal of Mathematical Analysis and Appl., 3:1 (2005) Art.13: 1–10. [17] Gao M. Z. and Hsu L. C., A survey of various refinements and generalizations of Hilbert’s inequalities, J. Math. Res. Exp., 25:2 (2005) 227–243. [18] Gao M. Z. and Yang B. C., On the extended Hilbert’s inequality, Proc. Amer. Math. Soc., 126:3 (1998) 751–759. [19] Gao M. Z., Jia W. J. and Gao X. M., On an improvement of Hardy-Hilbert’s inequality, J. Math., 26:6 (2006) 647–651. [20] Hardy G. H., Note on a theorem of Hilbert concerning series of positive term, Proceedings of the London Mathematical Society, 23 (1925) 45–46. [21] Hardy G. H., Littlewood J. E., and P` olya G., Inequalities, Cambridge University Press, Cambridge, 1934. [22] He B., On a Hilbert-type integral inequality with a homogeneous kernel in R2 and its equivalent form, Journal of Inequalities and Applications, 2012, 94 (2012) doi:10.1186/1029-242X-2012-94. [23] He B. and Li Y. J., On several new inequalities close to Hilbert-Pachpatte’s inequality, J. Ineq. in Pure and Applied Math., 7:4 (2006) Art.154: 1–9. [24] He B. and Yang B. C., On a half-discrete inequality with a general homogeneous kernel, Journal of Inequalities and Applications, 2012, 30 (2012) doi:10.1186/1029-242X-2012-30. [25] He L. P., Gao M. Z. and Jia W. J., On a new strengthened Hardy-Hilbert’s inequality, J. Math. Res. Exp., 26:2 (2006) 276–282. [26] He L. P., Jia W. J. and Gao M. Z., A Hardy-Hilbert’s type inequality with gamma function and its applications, Integral Transforms and Special functions, 17:5 (2006) 355–363. [27] He B., Qian Y. and Li Y. J., On analogues of the Hilbert’s inequality, Comm. in Math. Anal., 4:2 (2008) 47–53. [28] He L. P., Yu J. M. and Gao M. Z., An extension of Hilbert’s integral inequality, Journal of Shaoguan University (Natural Science), 23:3 (2002) 25–30.
ws-book9x6
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
Bibliography
ws-book9x6
323
[29] Hong Y., All-side generalization about Hardy-Hilbert integral inequalities, Acta Mathematica Sinica, 44:4 (2001) 619–626. [30] Hong Y., On Hardy-Hilbert integral inequalities with some parameters, J. Ineq. in Pure & Applied Math., 6:4 (2005) Art. 92: 1–10. [31] Hong Y., On multiple Hardy-Hilbert integral inequalities with some parameters, Journal of Inequalities and Applications, Vol. 2006, Art. ID 94960: 1–11. [32] Hsu L. C. and Wang Y. J., A refinement of Hilbert’s double series theorem, J. Math. Res. Exp., 11:1 (1991) 143–144. [33] Hu K., A few important inequalities, Journal of Jianxi Teacher’s College (Natural Science), 3:1 (1979) 1–4. [34] Hu K., Some problems in analysis inequalities, Wuhan: Wuhan University Press, 2007. [35] Huang Q. L., On a Multiple Hilbert’s inequality with parameters, Journal of Inequalities and Applications, Volume 2010, Article ID 309319, 12 pages. [36] Huang Q. L. and Yang B. C., On a multiple Hilbert-type integral operator and applications, Journal of Inequalities and Applications, Volume 2009, Article ID 192197, 13 pages. [37] Huang Q., Yang B. and Debnath L., A multiple more accurate HardyLittlewood-P` olya Inequality, Le Matematiche (accepted 2012). [38] Huang Q. L. and Yang B. C., On a more accurate half-discrete Hilbert’s inequality, Journal of Inequalities and Applications, 106 (2012), doi:10.1186/1029-242X-2012-106. [39] Ingham A.E., A note on Hilbert’s inequality, J. London Math. Soc., 11 (1936) 237–240. [40] Jia W. J., Gao M. Z. and Debnath L., Some new improvement of the Hardy -Hilbert inequality with applications, International Journal of Pure and Applied Math., 11:1 (2004) 21–28. [41] Jia W. J., Gao M. Z. and Gao X. M., On an extension of the Hardy-Hilbert theorem, Studia Scientiarum Mathematicarum Hungarica, 42:1 (2005) 21– 35. [42] Khotyakov M., Two proofs of the sharp Hardy-Littlewood-Sobolev inequality, Bachelor Thesis, Mathematics Department, LMU Munich (2011). [43] Krni´c M. and Peˇcari´c J., General Hilbert’s and Hardy’s inequalities, Math. Ineq. & Appl., 8:1 (2005) 29–51. [44] Krni´c M., Tomovski Z., and Peˇcari´c J., Hilbert inequalities related to generalized hypergeometric functions, Balkanica N.S., 22 (2008) 307–322. [45] Krni´c M., Gao M. Z., Peˇcari´c J. and Gao X. M., On the best constant in Hilbert’s inequality, Math. Ineq. & Appl., 8:2 (2005) 317–329. [46] Kuang J. C., On new extension of Hilbert’s integral inequality, J. Math. Anal. Appl., 235 (1999) 608–614. [47] Kuang J. C., Applied inequalities, Jinan: Shandong Science Technic Press, 2004. [48] Kuang J. C., New progress in inequality study in China, Journal of Beijing Union University (Natural Science), 19:1 (2005) 29–37.
November 7, 2013
324
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
Half-Discrete Hilbert-Type Inequalities
[49] Kuang J. C., Introduction to real analysis, Hunan Education Press, Chansha, China, 1996. [50] Laith E. A., On some extensions of Hardy-Hilbert’s inequality and applications, Journal of Inequalities and Applications, volume 2008, Article ID 546828, 14 pages. [51] Knopp K., Theory and application of infinite series, Londen: Blackie & Son Limited, 1928. [52] Levin V., Two remarks on Hilbert’s double series theorem, J. Indian Math. Soc., 11 (1937) 111–115. [53] Li Y. J. and He B., On inequalities of Hilbert’s type, Bull. Austral. Math. Soc., 76 (2007) 1–13. [54] Liu X. D. and Yang B. C., On a new Hilbert-Hardy-type integral operator and applications, Journal of Inequalities and Applications, Volume 2010, Article ID 812636, 10 pages. [55] Lu Z. X., Some new inverse type Hilbert-Pachpatte inequalities, Tamkang Journal of Mathematics, 34:2 (2003) 155–161. [56] Lu Z. X., On new generalizations of Hilbert’s inequalities, Tamkang Journal of Mathematics, 35:1 (2004) 77–86. [57] Mitrinovi´c J. E., Peˇcari´c J. E., and Fink A. M., Inequalities involving functions and their integrals and derivatives, Boston: Kluwer Acaremic Publishers, 1991. [58] Pachpatte B. G., On some new inequalities similar to Hilbert’s inequality, J. Math. Anal. Appl., 226 (1998) 166–179. [59] Pachpatte B. G., Mathematical inequalities, Elsevier B. V., Netherland, 2005. [60] Pog´ any T. K., Hilbert’s double series theorem extended to the case of nonhomogeneous kernels, J. Math. Anal. Appl., 342:2 (2008) 1485–1489. [61] Pog´ any T. K., New class of inequalities associated with the Hilbert’s double series theorem, Appl. Math. E-Notes, 10 (2010) 47–51. [62] Pang C. D. and Pang C. B., Basic on analysis number theory, Beijing: Science Press, 1990. [63] Pan Y. L, Wang H. T and Wang F. T., On complex functions, Science Press, Beijing, 2006. [64] Qu W. L., Combination mathematics, Beijing: Beijing University Press, 1989. [65] Salem S. R., Some new Hilbert type inequalities, Kyungpook Math. J., 46 (2006) 19–29. [66] Schur I., Bernerkungen sur Theorie der beschrankten Bilinearformen mit unendlich vielen veranderlichen, Journal of Math., 140 (1911) 1–28. [67] Stein E.M. and Weiss G., Fractional integrals in n-dimensional Euclidean space, J. Math. Mech., 7 (1958) 503–514. [68] Sulaiman W. T., On Hardy-Hilbert’s integral inequality, J. Ineq. in Pure & Appl. Math., 5:2 Art.25 (2004) 1–9. [69] Sulaiman W. T., New ideas on Hardy-Hilbert’s integral inequality (I), Pan American Math. J., 15:2 (2005) 95–100.
ws-book9x6
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
Bibliography
ws-book9x6
325
[70] Sun B. J., Best generalization of a Hilbert type inequality, J. Ineq. in Pure & Applied Math., 7:3 Art.113 (2006) 1–7. [71] Titchmarsh E. C., The theory of the Riemann Zeta-function, Oxford: Clarendon Press, 1986. [72] Tailor A. E., Lay D. C., Introduction to functional analysis, New York: John Wiley & Sons, 1980. [73] Wang Z. Q. and Guo D. R., Introduction to Special Functions, Science Press, Beijing, 1979. [74] Wang W. H. and Xin D. M., On a new strengthened version of a HardyHilbert type inequality and applications, J. Ineq. in Pure & Applied Math., 7:5 Art.180 (2006) 1–7. [75] Wang W. H. and Yang B. C., A strengthened Hardy-Hilbert’s type inequality, The Australian Journal of Mathematical Analysis and Applications, 3:2 (2006) Art.17: 1–7. [76] Wang A. Z. and Yang B. C., A new Hilbert-type integral inequality in the whole plane with the non-homogeneous kernel, Journal of Inequalities and Applications, 2011, 2011:123, doi:10.1186/1029-242X-2011-123. [77] Weyl H., Singulare integral gleichungen mit besonderer berucksichtigung des fourierschen integral theorems, Inaugeral-Dissertation, Gottingen, 1908. [78] Wilhelm M., On the spectrum of Hilbert’s matrix, Amer J. Math., 72 (1950) 699–704. [79] Xi G. W., A reverse Hardy-Hilbert-type inequality, Journal of Inequalities and Appl., Vol. 2007, Art.ID79758: 1–7. [80] Xie H. and Lu Z., Discrete Hardy-Hilbert’s inequalities in Rn , Northeast. Math., 21:1 (2005) 87–94. [81] Xie Z. T., A new Hilbert-type inequality with the kernel of 3 -homogeneous, Journal of Jilin University (Science Edition), 45:3 (2007) 369–373. [82] Xie Z. T., A Hilbert-type integral inequality with non-homogeneous kernel and withe the integral in whole plane, Journal of Guangdong University of Education, 31:3 (2011) 8–12. [83] Xie Z. T., A new half-discrete Hilbert’s inequality wit the homogeneous kernel of degree -4μ, Journal of Zhanjiang Normal College, 32:6 (2011) 13–19. [84] Xie Z. T. and Zheng Z., A Hilbert-type inequality with parameters, J. Xiangtan Univ. (Natural Science), 29:3 (2007) 24–28. [85] Xie Z. T. and Zheng Z., A Hilbert-type integral inequality whose kernel is a homogeneous form of degree -3, J. Math. Anal. Appl., 339 (2007) 324–331. [86] Xie Z. T. and Zheng Z., A new Hilbert-type integral inequality and its reverse, Soochow Journal of Math., 33:4 (2007) 751–759. [87] Xin D. M., Best generalization of Hardy-Hilbert’s inequality with multiparameters, J. Ineq. in Pure and Applied Math., 7:4 Art.153 (2006) 1–8. [88] Xin D. M. and Yang B. C., A basic Hilbert-type inequality, Journal of Mathematics, 30:3 (2010) 554–560. [89] Xin D. M. and Yang B. C., A Hilbert-type integral inequality in the whole plane with the homogeneous kernel of degree -2, Journal of Inequalities and Applications, Volume 2010, Article ID 401428, 11 pages.
November 7, 2013
326
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
Half-Discrete Hilbert-Type Inequalities
[90] Xu J. S., Hardy-Hilbert’s inequalities with two parameters, Advances in Mathematics, 36:2 (2007) 189–198. [91] Xu L. Z. and Guo Y. K., Note on Hardy-Riesz’s extension of Hilbert’s inequality, Chin. Quart. J. Math., 6:1 (1991) 75–77. [92] Xu L. Z, Wang X. H., Methods on mathematical analysis and examples, Beijing: Higher Education Press, 1985. [93] Xie Z. T., A generalization of Stirling formula, Mathematical Practice and Cognition, 36:6 (2006) 331–333. [94] Xie Z. T. and Zeng Z., A new half-discrete Hilbert’s inequality with the homogeneous kernel of degree -4μ, Journal of Zhanjiang Normal College, 32:6 (2011) 13–19. [95] Yang B. C., A note on Hilbert’s integral inequalities, Chinese Quarterly J. Math., 13:4 (1998) 83–86. [96] Yang B. C., On Hilbert’s integral inequality, J. Math. Anal. Appl., 220 (1998) 778–785. [97] Yang B. C., On a strengthened version of the more accurate Hardy-Hilbert’s inequality, Acta Mathematica Sinica, 42:6 (1999) 1103–1110. [98] Yang B. C., A general Hardy-Hilbert’s integral inequality with a best value, Chinese Annals of Mathematics, 21A:4 (2000) 401–408. [99] Yang B. C., On a generalization of Hilbert’s double series theorem, Journal of Nanjing University-Mathematical Biquarterly, 18:1 (2001) 145–151. [100] Yang B. C., On a general Hardy-Hilbert’s inequality, Chinese Annals of Mathematics, 23A:2 (2002) 247–254. [101] Yang B. C., On a multiple Hardy-Hilbert’s integral inequality, Chinese Annals of Mathematics, 24A:6 (2003) 743–750. [102] Yang B. C., On a new inequality similar to Hardy-Hilbert’s inequality, Math. Ineq. Appl., 6:1 (2003) 37–44. [103] Yang B. C., On a new Hardy-Hilbert’s type inequality, Math. Ineq. Appl., 7:3 (2004) 355–363. [104] Yang B. C., On new extensions of Hilbert’s inequality, Acta Math. Hungar., 104:4 (2004) 291–299. [105] Yang B. C., On an extension of Hilbert’s integral inequality with some parameters, The Australian Journal of Math. Analysis and Applications, 1:1 Art.11 (2004) 1–8. [106] Yang B. C., A new Hilbert-type integral inequality and its generalization, Journal of Jilin University (Science Edition), 43:5 (2005) 580–584. [107] Yang B. C., A mixed Hilbert-type inequality with a best constant factor, International Journal of Pure and Applied Mathematics, 20:3 (2005) 319– 328. [108] Yang B. C., On best extensions of Hardy-Hilbert’s inequality with two parameters, J. Ineq. in Pure & Applied Math., 6:3 (2005) Art. 81: 1–15. [109] Yang B. C., A reverse of the Hardy-Hilbert’s type inequality, Journal of Southwest China Normal University (Natural Science), 30:6 (2005) 1012– 1015. [110] Yang B. C., On the way of weight function and research for Hilbert’s type
ws-book9x6
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
Bibliography
[111] [112] [113] [114] [115] [116] [117] [118] [119]
[120] [121] [122]
[123] [124] [125]
[126]
[127]
[128] [129]
ws-book9x6
327
integral inequalities, Journal of Guangdong Education Institute (Natural Science), 25:3 (2005) 1–6. Yang B. C., On a more accurate Hardy-Hilbert’s type inequality and its applications, Acta Mathematica Sinica, 49:3 (2006) 363–368. Yang B. C., On a relation to Hardy-Hilbert’s inequality and Mulholland’s inequality, Acta Mathematica Sinica, 49:3 (2006) 559–566. Yang B. C., On the norm of an integral operator and applications, J. Math. Anal. Appl., 321 (2006) 182–192. Yang B. C., A bilinear inequality with the kernel of -2-order homogeneous, Journal of Xiamen University (Natural Science), 45:6 (2006) 752–755. Yang B. C., A dual Hardy-Hilbert’s inequality and generalizations, Advances in Math., 35:1 (2006) 102–108. Yang B. C., On the norm of a self-adjoint operator and applications to Hilbert’s type inequalities, Bull. Belg. Math. Soc., 13 (2006) 577–584. Yang B. C., A new Hilbert-type inequality, Bull. Belg. Math. Soc., 13 (2006) 479–487. Yang B. C., A new Hilbert-type inequality, Journal of Shanghai Univ. (Natural Science), 13:3 (2007) 274–278. Yang B. C., On the norm of a self-adjoint operator and a new bilinear integral inequality, Acta Mathematica Sinica, English Series, 23:7 (2007) 1311–1316. Yang B. C., On the norm of a Hilbert’s type linear operator and applications, J. Math. Anal. Appl., 325 (2007) 529–541. Yang B. C., A Hilbert-type inequality with two pairs of conjugate exponents, Journal of Jilin University (Science Edition), 45:4 (2007) 524–528. Yang B. C., On a Hilbert-type operator with a symmetric homogeneous kernel of -1-order and applications, Journal of Inequalities and Applications, Volume 2007, Article ID 47812, 9 pages. Yang B. C., A Hilbert-type integral inequality with the kernel of -3-order homogeneous, Journal of Yunnam University, 30:4 (2008) 325–330. Yang B. C., On the norm of a linear operator and its applications, Indian Journal of Pure and Applied Mathematics, 39:3 (2008) 237–250. Yang B. C., On the norm of a certain self-adjoint integral operator and applications to bilinear integral inequalities, Taiwan Journal of Mathematics, 12:2 (2008) 315–324. Yang B. C., A basic Hilbert-type integral inequality with the homogeneous kernel of -1-degree and extensions, Journal of Guangdong Education Institute, 28:3 (2008) 1–10. Yang B. C., On a Hilbert-type operator with a class of homogeneous kernels, Journal of Inequalities and Applications, Volume 2009, Article ID 572176, 9 pages. Yang B. C., Hilbert-type integral inequalities, Bentham Science Publishers Ltd., 2009. Yang B. C., A survey of the study of Hilbert-type inequalities with parameters, Advances in Mathematics, 38:3 (2009) 257–268.
November 7, 2013
328
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
Half-Discrete Hilbert-Type Inequalities
[130] Yang B. C., On the norm of operator and Hilbert-type inequalities, Beijing: Science Press, 2009. [131] Yang B. C., On an Application of Hilbert’s inequality with multiparameters, Journal of Beijing Union University (Natural Sciences), 24:4 (1010) 78–84. [132] Yang B. C., An Application of the reverse Hilbert’s inequality, Journal of Xinxiang University (Natural Sciences), 27:4 (1010) 2–5. [133] Yang B. C., A new Hilbert-type operator and applications, Publ. Math. Debrecen, 76:1-2 (2010) 147–156. [134] Yang B. C., Discrete Hilbert-type inequalities, Bentham Science Publishers Ltd., 2011. [135] Yang B. C., A half-discrete Hilbert-type inequality, Journal of Guangdong University of Education, 31:3 (2011) 1–7. [136] Yang B. C., A Hilbert-type integral inequality with the non-homogeneous kernel on the plane, Journal of Guangdong University of Education, 31:5 (2011) 5–10. [137] Yang B. C., A new half-discrete Mulholland-type inequality with parameters, Ann. Funct. Anal., 3:1 (2012) 142–150. [138] Yang B. C. and Chen Q., A half-discrete Hilbert-type inequality with a homogeneous kernel and an extension, Journal of Inequalities and Applications, 2011, 124 (2011), doi:10.1186/1029-242X-2011-124. [139] Yang B. C. and Chen Q., A half-discrete Hilbert-type inequality with the non-monotone kernel, Journal of Jilin University (Science Edition), 50:2 (2012) 167–172. [140] Yang B. C. and Debnath L., On new strengthened Hardy-Hilbert’s inequality, Internat. J. Math. & Math. Soc., 21:2 (1998) 403–408. [141] Yang B. C. and Debnath L., On a new generalization of Hardy-Hilbert’s inequality, J. Math. Anal. Appl., 233 (1999) 484–497. [142] Yang B. C. and Debnath L., On the extended Hardy-Hilbert’s inequality, J. Math. Anal. Appl., 72:2 (2002) 187–199. [143] Yang B. C. and Debnath L., A strengthened Hardy-Hilbert’s inequality, Proceedings of the Jangjeon Mathematical Society, 6:2 (2003) 119–124. [144] Yang B. C. and Gao M. Z., On a best value of Hardy-Hilbert’s inequality, Advances in Math., 26:2 (1997) 159–164. [145] Yang B. C. and Krni´c M., Hilbert-type inequalities and related operators with homogeneous kernel of degree 0, Mathematical Inequalities & Applications, 13:4 (2010) 817–839. [146] Yang B. C. and Liang H. W., A new Hilbert-type integral inequality with a parameter, Journal of Henan University (Natural Science), 35:4 (2005) 4–8. [147] Yang B. C. and Rassias T. M., On the way of weight coefficient and research for Hilbert-type inequalities, Math. Ineq. Appl., 6:4 (2003) 625–658. [148] Yang B. C. and Rassias Th. M., On a Hilbert-type integral inequality in the subinterval and its operator expression, Banach J. Math. Anal., 4:2 (2010) 100–110. [149] Yang B. C., Brnet´c I., Krni´c M. and Peˇcari´c J., Generalization of Hilbert
ws-book9x6
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
Bibliography
[150]
[151]
[152]
[153]
[154]
[155] [156] [157]
[158] [159] [160]
[161]
[162]
[163] [164] [165]
[166]
ws-book9x6
329
and Hardy-Hilbert integral inequalities, Math. Ineq. & Appl., 8:2 (2005) 259–272. Yang B. C., A new formula for evaluating the sum of d-th powers of the first n terms of an arithmetic sequence, Journal of South China Normal University, 1 (1996) 129–137. Yang B. C., The formula about the sum of powers of natural numbers relating Bernoulli numbers, Mathematical Practice and Cognition, 4 (1994) 52–56. Yang B. C. and Zhu Y. H., Inequalities on the Hurwitz Zeta-function restricted to the axis of positive reals, Acta Scientiarum Naturalium Universitis Sunyatseni, 36:3 (1997) 30–35. Yang B. C., The evaluating formulas on the convergence p-series relating Bernoulli numbers, Journal of Guangdong Education Institute, 3 (1992) 19–27. Yang B. C. and Li D. C., Estimation of the sum for -1-th powers of the first n terms of an arithmetic sequence, Natural Science Journal of Hainan Teachers College, 10:1 (1997) 19–24. Yang B. C. and Wang G. Q., Some inequalities on harmonic series. Journal of Mathematics Study, 29:3 (1996) 90–97. Yang B. C., Some new inequalities on step multiply, Journal of Guangdong Education Institute, 22:2 (2002) 1–4. Yang B. C. and Krni´c M., A half-discrete Hilbert-type inequality with a general homogeneous kernel of degree o, Journal of Mathematical Inequalities, 6:3 (2012) 401–417. Yang B. C., On a more accurate half-discrete Hilbert’s inequality, Journal of Beijing Union University (Natural Sciences), 26:2 (2012) 63–68. Yang B. C., On a half-discrete Hilbert-type inequality, Journal of Shantou University (Natural Sciences), 26:4 (2011) 5–10. Yang B. C., A more accurate half-discrete reverse Hilbert-type inequality, Journal of Hunan Institute of Science and Technology (Natural Sciences), 24:4 (2011) 1–6. Yang B. C., On two classes of more accurate half-discrete reverse Hilbert’s inequalities, Journal of Xinxiang University (Natural Science Edition), 29:1 (2012) 9–14. Yang B. C., A half-discrete reverse Hilbert-type inequality with a homogeneous kernel of positive degree, Journal of Zhanjiang Normal College, 32:3 (2011) 5–9. Yang B. C., On a half-discrete Mulholland’s inequality and its extension, Thai Journal of Mathematics, (2012) (to appear). Yang B. C., A half-discrete Hilbert’s inequality with a non-homogeneous kernel, Journal of Zhanjiang Normal College, 32:6 (2011) 5–11. Yang B. C., A half-discrete Hilbert-type inequality with the nonhomogeneous kernel, Journal of Xinxiang University: Natural Science Edition, 28:5 (2011) 385–387. Yang B. C., On a half-discrete reverse Hilbert-type inequality with a non-
November 7, 2013
330
[167]
[168]
[169] [170]
[171]
[172] [173] [174] [175]
[176]
[177]
[178]
[179]
[180]
[181]
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
Half-Discrete Hilbert-Type Inequalities
homogeneous kernel, Journal of Inner Mongolia Normal University (Natural Science Edition), 40:5 (2011) 433–337. Yang B. C., A half-discrete reverse Hilbert-type inequality with a nonhomogeneous kernel, Journal of Hunan Institute of Science and Technology (Natural Science), 24:3 (2011) 1–4. Yang B. C., A more accurate half-discrete reverse Hilbert’s inequality with the non-homogeneous kernel, Journal of Guangdong University of Education, 32:3 (2012) 1–7. Yang B. C., On a best extension of a half-discrete Hilbert-type inequalities, Jordan Journal of Mathematics and Statistics, 5:4 (2012) 267–281. Yang B. C., A half-discrete Hilbert-type inequality with a non-homogeneous kernel and two variables, Mediterranean Journal of Methematics, 2012, doi: 10.1007/s00009-012-0213-50 online first. Zeng Z. and Xie Z. T., On a new Hilbert-type integral inequality with the integral in whole plane, Journal of Inequalities and Applications, Volume 2010, Article ID 256796, 8 pages. Zhang K. W., A bilinear inequality, J. Math. Anal. Appl., 271 (2002) 288– 296. Zhao C. J. and Debnath L., Some new type Hilbert integral inequalities, J. Math. Anal. Appl., 262 (2001) 411–418. Zhong W. Y., A mixed Hilbert-type inequality and its equivalent forms, Journal of Guangdong University of Education, 31:5 (2011) 18–22. Zhong J. H. and Yang B. C., On an extension of a more accurate Hilberttype inequality, Journal of Zhejiang University (Science Edition), 35:2 (2008) 121–124. Zhong W. I. and Yang B. C., A best extension of Hilbert inequality involving several parameters, Journal of Jinan University (Natural Science), 28:1 (2007) 20–23. Zhong W. I. and Yang B. C., A reverse Hilbert’s type integral inequality with some parameters and the equivalent forms, Pure and Applied Mathematics, 24:2 (2008) 401–407. Zhong W. Y. and Yang B. C., On Multiple’s Hardy-Hilbert integral inequality with kernel, Journal of Inequalities and Applications, Vol. 2007, Art.ID 27962, 17 pages, doi:10.1155/2007/27. Zhu Y. H, Yang B. C., Accurate inequalities of partial sums on a type of divergent series, Acta Scientiarum Naturalium Universitis Sunyatseni, 37:4 (1998) 33–37. Zhu Y. H., Yang B. C., Improvement on Euler’s summation formula and some inequalities on sums of powers, Acta Scientiarum Naturalium Universitis Sunyatseni, 36:4 (1997) 21–26. Zhong W. Y., A mixed Hilbert-type inequality and its equivalent forms, Journal of Guangdong University of Education, 31:5 (2011) 18–22.
ws-book9x6
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
Index
equivalent forms, 169 equivalent inequalities, 10, 23, 70, 77, 79, 80, 83, 90–96, 122, 134, 140, 143, 146, 153, 154, 184, 191, 192, 194–196, 211, 218–222, 249, 251, 279, 284–287, 289, 290, 293, 296, 298, 299, 301, 304, 305, 308, 309, 313, 316, 318 equivalent integral inequalities, 9 equivalent reverse inequalities, 280, 286, 290, 300, 306 equivalent reverses, 83, 91, 92, 122, 140 Euler, 29 Euler constant, 15, 27, 54 Euler-Maclaurin summation formula, 6, 29, 34, 60, 126
Bernoulli’s functions, 27, 32, 58, 124 Bernoulli’s numbers, 27, 29, 30 Bernoulli’s polynomials, 31, 33 best constant factor, 17, 91, 96, 100, 101, 115, 117, 122, 157, 160, 163, 167, 195 best possible constant factor, 137, 158, 169, 188, 189, 193, 205, 215, 218, 220, 222, 223, 258, 277, 279, 280, 284–287, 289, 290, 293, 296, 298–301, 304–306, 308, 309, 313, 316, 318 beta function, 16 bounded linear operator, 197, 198, 224, 225, 252 Carleman, 5 Cauchy’s inequality, 14 conjugate exponents, 6, 8, 18, 19 constant factor, 189, 193, 216, 220, 232 convergent series estimation, 50
Fatou lemma, 69, 133 Gao, 13 general homogeneous kernel, 20
Debnath, 13, 15, 16 decreasing functions, 106 decreasing property, 171 differentiable function, 91–93, 123, 140, 143, 153, 170, 192, 219 discrete Hilbert’s inequality, 5 discrete Hilbert-type operator, 23 divergence series, 52 Draˇcic, 25
H-L-P integral inequality, 21 half-discrete Hilbert-type inequalities, 25 half-discrete Hilbert-type inequality, 26, 57, 95, 123 half-discrete Hilbert-type operator, 73, 137, 197, 223, 225 Hardy, 2, 3, 6, 57, 123, 169, 233 Hardy-Hilbert inequality, 6 331
ws-book9x6
November 7, 2013
12:24
332
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
Half-Discrete Hilbert-Type Inequalities
Hardy-Hilbert’s integral inequality, 7 Hardy-Hilbert’s integral operator, 8 Hardy-Hilbert’s operator, 8 Hardy-Littlewood-P` olya’s inequalities, 10 Hardy-Littlewood-Sobolev inequality, 3 Hermite-Hadamard’s inequality, 59, 125, 174 Hilbert, 2, 57, 233 Hilbert space, 22 Hilbert’s double series inequality, 2 Hilbert’s inequality, 2, 4–6, 14 Hilbert’s integral inequality, 2 Hilbert’s integral operator, 4 Hilbert’s operator, 2, 4 Hilbert-type inequalities, 12, 18, 20, 22, 23, 57 Hilbert-type inequality, 12, 25 Hilbert-type integral inequalities, 26 Hilbert-type integral inequality, 23, 24 H¨ older’s inequality, 61, 71, 126, 127, 135, 176–178, 185, 212–214 homogeneous function, 9, 12, 179, 182, 184, 190, 192 homogeneous functions, 234 homogeneous kernel, 23, 57, 95, 178, 197, 198, 252, 275 Hu, 3 Hurwitz ζ-function, 54 Hurwitz’s zeta function, 29 imperfect conditions, 40 inner product, 4 Issai Schur, 2 kernel, 9, 138 Krnic, 23 Kuang, 3, 13, 125–127, 135 Lebesgue control convergence theorem, 69, 133 Lebesgue term by term integration theorem, 61, 127, 176, 177 Littlewood, 2
Lobatchevsky, 123 measurable function, 22, 126, 132, 143, 170, 172, 175, 205, 206, 209, 210, 219, 221, 222, 234, 245 measurable homogeneous function, 79, 80, 91, 93, 96 Mitrinovi´c, 3, 8 multiple half-discrete Hilbert-type inequalities, 233 multiple Hilbert-type integral inequality, 12 multiple integral inequality, 19 non-homogeneous kernel, 223–225, 252 norm, 22, 225 norm linear spaces, 183 normed linear spaces, 210 operator, 84, 138, 147, 199–204, 226, 228–232 operator expressions, 70, 169, 248 operator form, 4, 5 P` olya, 2, 169 Pachpatte, 13 piecewise smooth continuous function, 46 Pogany, 25 Rassias, 18 recursion formulas, 51 reverse equivalent inequalities, 184, 191, 193, 221, 223 reverse H¨ older’s inequality, 62, 77, 81, 128, 141, 144, 186, 187 reverse inequalities, 76, 253, 276 reverses, 169, 175 Riemann ζ-function, 54 Riemann zeta function, 29 smooth continuous function, 34, 44 Stieltjes constant, 54 Stirling formula, 29, 55
ws-book9x6
November 7, 2013
12:24
BC: 8799 - Half-Discrete Hilbert-Type Inequalities
333
Index
weight coefficient, 18 weight functions, 58, 123, 124, 172, 178, 181, 208, 234, 236, 259 Weyl, 2
ws-book9x6
Yang, 15, 16, 18, 84, 110, 115 Zhang, 14 Zygmund, 2