This content was uploaded by our users and we assume good faith they have the permission to share this book. If you own the copyright to this book and it is wrongfully on our website, we offer a simple DMCA procedure to remove your content from our site. Start by pressing the button below!
60 is given in CUNNINGHAlI 23. POLETTI 2 (p. 244-245) gives the number of primes> 5 of each of the 8 possible forms 3011+, (, .. 1, 7, 11, 13, 17, 19,23,29) in each of the 10 successive myriads beyond 10· for k-O, 5, 7,9. Tables of the number of primes of each of the forms 6n± 1, lOn± 1, lOn±3 in the first and second 100 000 numbers, and of the form 411+ 1 and 8n+ 1 in the first myriad appear in KltAITCBIIt 4 (p. 15-16), where also is given the number of primes of the form 512n+ 1 in each 100 000 numbers and in each million from 1 to 101• KltAITCBIK and HOPPENOT 1 give the number of primes of each possible form (modulo m) in each chiliad between 1011 -10' and 1011 for m-4, 6, 8,10 and 12. The same information for the range 1011 to 1011 +10' is given in KltAITCBIK and HOPPENOT 1 and also in KltAITCBIK 12. Twin primes (p, p+2), p>5, are of three sorts, according as p-1On+l, 1011+7 or 1011+9. The number of twin primes of each sort in the 100 000 numbers beyond 10· for k-O, 7 and 9 is given in POLETTI 2 (p. 246). We tum now to lists of primes of the form a-±b- or prime factors of such
IDI
IDI
[44 ]
DESaIPTIVE SmtVZY numbers. These are in large part by-products of factor tables of numbers of this form (described under 81). Under this heading come lists of primes of the form p-al+bl already mentioned under the "quadratic partitions" tables of jl, to which section of the report the reader is again referred. The special case in which b ... 1 is, however, particularly interesting, and more extensive lists of these primes have been prepared. These date from EULER 2, who gave a list of all primes p = a l 1 less than 2 250 000 as well as all values a<15oo for which (al +l)/k is a prime for k-2, 5, and 10. CUNNINGHAM 6 gives lists of all primes beyond 9 ·10' of the forms al + 1 and l (a +l)/2 with a~5000. KILuTCBlK 4 (p. 11) lists the 312 numbers a for which a l + 1 is a prime < 101• WESTERN 1 gives the number of primes of the form a l 1 less than ~ for various values of ~ up to ~-225 000 000 as compared with Hardy's conjectured formula: .68641 Li(~l/l) Many lists of high primes dividing a-±b- appear in Cunningham's BifJOfIJial Ftulorisations. These may be given the following tabular description:
+
+
form ~I+l ~-1
~-,.
s'+y' ~±1 ~+,. ~T±"T ~I+"I
:&'±y' ~10+,,10
~1l±,,1l ~1I+,,11 ~1I±,,1I
limit
no. of primes
v.
225·10' 225·101 10' 1010 1010 1010
4430 4884 472 778 1565 1065
1 1 1 1 2 1
1010 4.10 11 1010 1010 1010 1010 1010
183
3 1 3 2 5 1 2
9
182 87 42 20 172
pages
238-244 245-252 259-260 253-255,281-284 200-210 256-257,261-264, 285-288 196-198,203 258 200-202 211-212 119
258 211-214
Some of these lists have been published separately as follows: form
(a'-I)/(a-l) a'-(a-l)' a4+b4, a'+b'
a'±'" a'±1
limit
16 000 000 1 000 000 1010 1010 25 000 000
reference
CUNNINGHAM 6 CUNNINGHAM 17 CUNNINGHAM 10 CUNNINGHAM 13 CUNNINGHAM 3
We now tum to lists of primes which are binomials other than of the cyclotomic form a- ± b- just considered.
[4S]
DESCRIPTIVE SUllVEY
Lists of primes represented by the binary quadratic form ~I ± Dyt, in which and yare also given, are listed under j,. However, we take this occasion to cite the list of 188 primes of the form ~I+ 1848y' lying between 10 000 000 and 10 100 000 of CUNNINGHAM and CULLEN 1, reproduced in CUNNINGHAM 36 (p. 74-76). Three tables have been published of large primes of the form k·2"+1. KllAlTcmx 4 (p. 53) gives 43 primes of the form k· 2"+ 1 between 2 ·10' and 1011 with 3 ~k< 100. This was later extended in KllAITCmx 6 (p. 233-235) to include all such primes between 10' and 1011 with k
up to n= 11 000. POLET'l'l 4 gives all primes < 121 millions of the form n'+n±1 with a table of their distribution. POLETTI 5 contains a table of nearly 17 200 primes, arranged in increasing order, and extracted from the series n ll +n±l, 2n' +2n± 1, nl +n+41, 41n' +n+l, 6fJ'+6n+31. In attempting to construct quadratic functions containing more primes than Euler's E(n)-n'+n+41, Lehmer and Beeger have suggested
L(n) - n ' + n + 19421, B'(n) - nll + n + 27 941, B"(n) - n' + n + 72491. Poletti has investigated the frequency of primes in all four functions and his results are given in BEEGEll 7 (p. 50), where is found the number of primes represented by each function for n<~, ~-looo(looo)10 000. These facts [46 ]
frg
DESCUPTIVE SnVEY
would suggest that B'(n) and B"(n) are more, and L(n) less, fruitful sources of primes than E(n). POLETTI 7 gives all primes represented by L(n), B'(n), and B"(n) between 101 and 2.107• POLETTI 6 contains primes represented by about 200 different quadratic functions An"+Bn+C, 101
101 for the following polynomials and ranges of n 1 is the index of ideality. In all cases p< 1000. For n large and composite many of the tables pertaining to the subfields are wanting. q. TABLES RELATING TO ADDITIVE Nt1lIBER THEORY Of the many and varied problems of additive number theory, three have been the source of tables. These are the problem of partitions or the representation of numbers as sums of positive integers of no special type, the problem of Goldbach, or the representation of numbers as sums of primes, and the problem of Waring, or the representation of numbers as sums of powers.
2n" + 2n + 1
for
158oo::i! n
23239
lOin' + 20n + 1 for
315
n
~
1542
122n' + 22n + 1 for
286 ::i! n
~
1369
lOn' 26n"
± 6ft + 1 ± IOn + 1
~
~
for
3161
~ n ~
4620
for
1216
~
1774.
n
~
High primes represented by the trinomial 2- ± 2" ± 1 for ~ < a < 27 and many more pairs (~, a) are given in CUNNINGHAK and WOODALL 8. KRAITCmX 9 gives a list of the 94 largest primes known, and in KRAITCmX 10 is a list of 161 primes exceeding 1012• g. TABLES FOR FACILITATING FACTORING AND IDENTIFYING PRIMES Besides factor tables and lists of primes there are tables available for the easy application of known methods of factoring and tests for primality. For instance, the method of factoring depending on quadratic residues, as described by Legendre, makes use of certain lists of linear forms or "linear divisors" of quadratic forms ~'-Dy". These are described in detail under ia. To render this method still more effective, D. N. LElIKER 3, 4 devised the (aclot' slencils. These give in place of the linear forms an actual list of the primes belonging to these forms. More particularly, in D. N. LElIllER 3, all the primes ~ 48593 belonging to linear forms dividing ~2_ Dyt., or what is the same thing, all the primes having D for a quadratic residue are given for I DI < 239. Actually the primes for each D are not printed but are represented by holes punched in a sheet of paper. Since the primes for D=k"Dl are the same as those for Dl, only the D's without square factors, of which there are 195, need be considered. Each of the 195 sheets is ruled in 5000 square cells, 25 to the square inch, 50 columns by 100 rows. A cell, by virtue of its row and column number, represents one of the first 5000 primes p, and if (D/p) = +1, it is punched out. All factors ~ 48593 of a given number N having D as a quadratic residue are among those primes whose corresponding cells are punched out of the stencil for D. Having found a suitable number of quadratic residues D of N, the mere superposition of the corresponding stencils reveals only a few open holes, among which the factors ~48593 of N must then lie. In this way, the discovery of all factors of N (if any) below this limit is reduced to the dis-
l 47]
I covery of a certain number, not exceeding ten or a dozen, of quadratic residues less than 239 in absolute value. Thus the device will handle completely all numbers less than the square of 48611, i.e., 2 363 029 321, and, of course, can be used in factoring much larger numbers. In D. N. LEBKER 4, the same method is used in a different form. Here use is made of Hollerith cards of 80 columns and 10 rows. For each D there are 7 cards of different color, each color dealing with 800 primes. By superposing cards of the same color for different D's, all prime factors of N less than 55079 may be found. Besides extending the number of primes from 5000 to 5600 Elder has extended the range to <250. The new edition has been entirely recomputed by Elder and, in addition to beiDg more reliable, is more convenient to use than the old, especially when N is comparatively small, so that only two or three colors are needed. The tables of D. H. LEBKER 6 and POULET 4 serve to test for primality any number n below 10' in 20 to 25 minutes at most. These tables give lists of composite numbers n for which 2"-2 (mod n) together with a factor of n. The table of Lehmer is restricted to contain only such entries n> 10' as have their least factor >313, while the more extensive table of Poulet contains all possible n's up to 10'. In using the Poulet table one notes first if the given number n is in the table. If so, a factor of n is given. If not, then 2"=2 (mod n) is a necessary and sufficient condition for primality of n. Whether this congruence holds or not can be decided quickly by a method of successive squarings described in D. H. LEBKER 6. In using Lehmer's table, there is the additional possibility that n contains a small factor ;:a; 313. If so, this factor can be quickly discovered by a greatest common divisor process therein described. Factorization methods, depending upon the representation of the given number by quadratic forms such as ~t_,t., ~t.+,t, ~t._JJy2, are greatly facilitated by the use of certain tables cited and described under i 1• The list of 65 ltloneal numbers D (such that the unique representation of n by ~t.+ insures the primality of n) is given for example in MATHEWS 1 and CVNNINGHAII36 (p. ii). SEELBO:r:r 1 contains lists of binary quadratic forms especially devised for factorization purposes. Tables giving the final digits of squares are sometimes used in factoring small numbers. These are cited under i1 and L. A table of this sort, especially designed for representing n by ~±,t. with ~<,<2500, is given in KVLIK 1 (p. 408-418). A table of reciprocals of primes < 10 000 to 8 significant figures with differences is given in PETERS, LODGE and TERNol1Tll, GI:r:rORD 1. This is intended to replace trial divisions by a series of multiplications by the given number, and is useful when the available computing machine has no automatic division or no keyboard. The detailed account of the application of commercial and specially made
IDI
D,.
[48 ]
g-h
DESCRIPTIVE Sl1RVEY
computing devices to the problem of factoring numbers and identifying primes will appear in another report of the Committee: Z.
h. TABLES
01' SOLUTIONS 01' LINEAlI. DIOPHANTINE EQUATIONS AND CONGRUENCES
The solution of the general linear Diophantine equation al~l
+ tJs~J + . . . + a,.~_ =
k
depends ultimately upon the solution of a~
(1)
+ b, =
e
and tables of solutions of such equations with more than 2 unknowns are nonexistent. A solution (~, ,) of (1) gives at once a solution ~ of the linear congruence a~
(2)
- e (mod b)
and conversely, a solution of (2) gives a solution of (1) with , - (e-=)/b. The equation (1), if it has a solution, can be reduced by cancelling common factors of a and b to the case in which a and b are coprime. All solutions (~, ,) of (1) are then given by the formulas ~= kb+~e
, = - ka where k is any integer, and (3)
(~,
+ 'Ie.
,.,) is any solution of ~
+ b7] =
1.
Hence it is sufficient to tabulate a solution of (3) or of the congruence (4)
a~ -
1 (mod b).
CULLE 3 gives a solution of (3) for each coprime pair (a, b) withb
[49 ]
N N
= '1 (mod 2a ) = ,_ (mod Sa)
give when combined
N
EEl
AI'I
+ A I ,_ (mod loa).
The coefficients AI and A_ are tabulated for n:ii 16. For the combination of many linear forms, a problem which arises in many clliferent ways, graphical and mechanical methods are available. These are discussed in another report of this Committee (Z). A special table due to J. L. BELL 1, useful in checking Bernoulli numbers Bt"-NI"jD.,,, gives for each n:ii62 a solution (aa, ba) of the congruence
a.N I+la-l
=
b,.Dt+la-l
(mod q),
where q is any odd prime not in the set of excluded primes there listed.
L CONGRUENCES
01'
THE SECOND DEGREE
i 1• Solutions of quad,alu cong,uences The general quadratic congruence in one unknown may be reduced by a linear substitution to one of the form ~I
(1)
=D (mod m).
When m is not too large, this congruence, when possible, is easily solvedl • Nevertheless, it is very convenient in many applications to have these solutions tabulated. Existing tables are of two sorts: according as m is a power of 10, or a prime (or prime power). Tables of the first sort occur in tables of the endings of squares. KULIK 1 gives for each possible D, the two solutions of ~2EE1D (mod 10'), which are < 2500 from which all solutions may be discovered. Similar tables for the moduli loa and 10' occur in CUNNINGHAM 36 (p. 90-92). Tables of the second sort date from EULER 2, who gave solutions ±~ of ~I
(2)
+ 1 = 0 (mod p-)
(a
~
1)
for all primes p=4k+l up to p-<2000. A table of solutions of (2) with a-I, and p=4k+l
+ ,,2 =
1
Especially if one usea the new stencil device of ROBINSON
[50 ]
1.
DESCUPTIVE SUll.VEY
for all possible congruences of this sort with of the consruence Sl
±
,I
=
p~23. Kl1LIlt
1 gives solutions s
N (mod 1(4).
That is to say, the last four digits of possible numbers s in the equation N - sJ ± ," are given for all possible four-figure endings of N. A similar table for 3-digit endings is given in BIDDLE 1. KllAITCmlt 3 (p. 187-199) gives tables of all solutions a, h, s, " s, , of the congruences s" - ,"" N (mod pa), a"
+ h" .. N (mod pa), s" + no" = N (mod pa)
and "+n,"aN (mod pa) for all possible N (mod pa), where, is any quadratic residue, and n any quadratic non-residue (mod pa) for all primes p < 50, and all pa~ 128, except 121. An abridged table (p. 200-204) gives solutions s of the congruence (3)
for all possible D and for N = 1 and n (mod pa), where n is the least non-residue (mod pa), for p< 100, and for all powers of 2, 3, 5, 7, 11 up to 2", 38, 5', 7" and 11". A short table showing all solutions s of (3) with D- -1 in case certain numbers R are known to be quadratic residues of N occurs in KllAITCmlt 4 (p. 87). The moduli considered are pa_8, 16,32,3,5, 7, 11 and 13, while the values of Rare -1 and ±2, when p is even, and {-l/p)p, when p is odd. A more complete table of the solutions of (3) with D- -1 occurs in KRAITCBIlt 6. Here are found the solutions s for all possible N and for all primes p~67. The table is in two parts, thus separating the two cases (N/p)- ±1. In case (N/p)-+l, half the solutions s are impossible if it is known that (-l/p)p is a quadratic residue of N. CUNNINGHAM 36 (p. 103-123) gives, for all possible N, solutions s of (3) for D- -1,1,2, 3, forallp~41,andp"~64 (a> 1), as well as for the modulus 100. D. H. LEBllER 8 gives, in effect, all solutions s of
as"
+ bs + C 'Y' (mod pa) E
for all possible a, h, c, (mod pa) and for all pa ~ 128 with the exception of 125 and 127. All these tables are, of course, designed for the application of Gauss' method of exclusion and serve to reduce such problems as the representation of a number by a given binary quadratic form to the mere combination of linear forms, and thus to make applicable a certain graphical and mechanical technique fully described under another report of this Committee: Z. [51 ]
DESClUPTIVE
SnVEY
is. Quadratic residues and characters and their distribution There are many small tables of quadratic residues giving for the first few primes p the positive quadratic residues of p arranged in order of their size. The more extensive of these may be described as follows: BUTTEL 1 gives for each p~ 101, the list of its quadratic residues and nonresidues. FROLOV 1 gives quadratic residues for all p ~ 97, omitting, for p ~ 23, those residues which are actual squares. CUNNINGHAM: 36 (p. 100-102) gives quadratic residues and non-residues for all primes p~ 131. KRAITCHIK 3 (p. 205-207) gives quadratic residues for all p < 200. CUNNINGHAM: 36(p. 93-95) gives lists of residues (mod pa) for p < 100, and pa ~ 169. These are arranged in the order of their least positive square roots. Since the even powers of a primitive root of pa are the quadratic residues of pa, while the odd powers are the quadratic non-residues, a table of powers of a primitive root gives in particular a table of residues and non-residues. Such tables were cited and described under cia. Quadratic residues and nonresidues for pa< 1000 are thus obtainable from JACOBI 2. There are several tables of quadratic residues modulo 10k • These are usually described as tables of "square endings," since they give the possible last II digits of squares. These are of two kinds: those which list all the actual endings in order of magnitude, and those tables which enable the user to decide at a glance whether a given ending is a square ending or not. A list of all 159 three-digit square endings appears in SCHADY 1. KULIK 1, SCHADY 1, and THEBAULT 1 list all the 1044 four-digit square endings. In Schady's table with each four-digit ending are given all possible fifth digits. Thus the entries· 2489 and g4676, for example, indicate respectively that any digit may precede 2489, while only even digits may precede 4676. CUNNINGHAM: 1 has a one page table showing at a glance whether a proposed 1, 2, 3, or 4-digit ending is a square ending or not. This table is reproduced in CUNNINGHAM: 36 (p. 89). A similar table of three-digit square endings to the base twelve, due to Terry, appears in E. T. LEHKER 2. A few tables give the values of the Legendre symbol (a/b) of quadratic character. GAUSS 1 gives the value of (a/q) for every odd prime q< 100, and for every prime a< 100, as well as a= -1. This table is extended in GAUSS 4 to q~503 and a
+
[52 ]
DESCJlIPTIVE Sl1JlVEY and for 1al < 239, and 1al < 250 respectively. In fact in the stencil (or stencils) for a the nth cell is punched out or not according as a is or is not a quadratic residue of the nth prime. Finally four tables relating to the distribution of quadratic residues may be cited. GAUSS 3 gives the number of quadratic residues in each of the , intervals of length pI' of the numbers from 1 to p for the following values of, and the corresponding ranges of p: , - 4,
, -
8,
, - 12,
p-4n+l<4OO p < 400 p = 4n + 1
< 275.
For ,,,4 the actual number of quadratic residues in each quadrant is not given, but follows at once from the given values of m by the formula (p-l-(-I)·4m)/8, where k-l, 2, 3, 4, is the number of quadrant. A. A. BENNETT 3 gives the number of consecutive quadratic residues and non-residues for all primes p ~ 317. KllAITcmK: 4 (p. 46) gives for each p~47 the least non-square N. of the form 8n+ 1 which is a residue of all odd primes ~ p. This table is extended to p ~ 61 in D. H. LEmaR 1. D. H. LEmaR 7 gives for each ,<28, the positive integer N r -8n+3 such that - N r is a quadratic non-residue of all odd primes not exceeding the ,th prime pro Also N.>5·10'.
L. Linea, forms dividing ~I-Dy" The term linea, divisor of ~t_Dy2 is due to Legendre, who published the first real tables of such forms. These linear forms are nothing more nor less than the arithmetic progressions in which lie all primes p for which (D/ p) 1, these being the only primes which will divide numbers of the form ~I-Dyt, in which ~ is prime to Dy. The linear forms dividing ~2-k"D1YI are clearly those dividing ~1_Dt.yl, so that tables of these forms deal only with those D's which have no square factor > 1. In general we may speak of the linear divisors of any binary quadratic form f as the set of arithmetic progressions to which any prime factor of a number properly represented by f must belong. The tables of LEGENDRE 1 list the linear forms for each of the reduced (classical) quadratic forms of determinant D for -79~D~ 106.1£ all such forms for a fixed D are taken together we obtain the set of linear divisors of ~t_ Dyt. Legendre's tables are the only ones in which this separation of the linear divisors of ~t_ Dy" is attempted. The tables of CHEBYSHEV 1 really give a part of this information, however; in fact for each D<33 are given the possible forms (mod 4D) of those numbers which are properly represented by the forms ~2_Dy'J. or Dy"_~t.
+
[53 ]
DESCRIPTIVE SURVEY The tables of Legendre were reproduced and extended somewhat by CHEBYSHEV 2, who gave all linear forms dividing Xl- Dy2 for I DI ;:;;; 101, carrying over most of the many errors in Legendre's table. Chebyshev's table is reproduced in CAHEN 1 with more errors. KRAITCmK 3 published a table of linear forms for I DI < 200. When D>O, the form 4D+x is always accompanied by the form 4D-x so that only those x's which are < 2D are given with the understanding that both ± x are to be taken. This table is extended in KRAITCmK 4 where 200 < I D I < 250. These are the only large tables of linear divisors published. Unfortunately all contain numerous errors. D. N. LEHMER 5 extends to I DI =300 and was used by him and Elder in the preparation of the factor stencils (D. N. LEHMER 3,4). Three small tables of linear forms may be cited. LUCAS 4 gives the linear forms dividing x l -Dy 2 for I DI <30. WERTHEIM 5 has a similar table for I DI <23. The table of CAHEN 3 gives linear forms mx+,. (m=2D or 4D) dividing Xl- Dy2 for I DI < 50. This table is peculiar in that the ,.'s are chosen to be absolutely least (mod m) and are arranged according to increasing absolute values. CUNNINGHAM 36 gives a small table of linear divisors and non-divisors of x'-Dy'. That is to say, the forms of primes for which (Dlp)=+l and (Dip) = -1 are listed for I DI < 12. The tables of LEVANEN 2 give for 62 selected binary quadratic forms of negative determinant> -385 the corresponding linear divisors. j. DIOPHANTINE EQUATIONS
01'
THE SECOND DEGREE
The solution of a large number of interesting problems in the theory of numbers, algebra and geometry may be made to depend on Diophantine or "indeterminate" equations. Problems resulting in equations which are of the second degree are particularly interesting, and solutions of such equations have been subjects of a great many tables. These tables fall naturally into three classes: those giving information about the equations (1)
(I
=
± 1, ± 4,
where D is a positive non-square integer, those dealing with the more general equation (2)
Xl -
Dy2 = N,
and those dealing with quadratic equations involving more than two unknowns such as X 2+y2=S2. The equations (1) have long been recognized as fundamental and are known as Pell equations, although the term "Pell equation" is sometimes restricted to the case of (1= 1, and sometimes generalized to cover (2). The equations (1) and those equations (2) for which N < v'D are inti-
[54 ]
DESCKIPTIVE Sl1llVEY mately connected with the continued fraction expansion of which are cited and described under m. jl. The Pell equa#ions
~!_Dy'_(l,
(1=
Vii,
tables of
±1, ±4
Although these equations, especially with (I-I, have a very long history, the first tables of their solutions (~, y) were given by Euler. Since Euler's time the importance of the Pell equation to the theory of binary quadratic forms and of quadratic fields K(VV) has been fully realized and Euler's original tables have been greatly extended. The 1irst sizable table of the solutions of ~I -
Dys:=
±1
appeared in LEGENDRE 1 in 1798. The table extends to non-square D's ~ 1003, except in the second edition of LEGENDRE 1, where D~ 135. The fundamental solution of (3)
~'-Dy'=-1
is given whenever possible, otherwise of
(4)
~I -
Dys =
+ 1.
A glance at the final digits of ~, y and D tells which of these two equations is satisfied by the given ~, y. This table for D ~ 1003 is reproduced in LEGENDRE
I" I,. Table 1 of DEGEN 1 gives solutions of (4) for D~ 1000. Table 2 gives solutions of (3) for all possible D not of the form nl +l, in which case the fundamental solution is obviously the trivial one (~, y) == (n, 1). Unlike Legendre's table, Degen's Table 1 contains also the elements of the continued fraction for VV. CAYLEY 6 may be considered as a continuation of Degen's Table 1 for l000
These are the main published tables of the solutions of (3) and (4). D. H. LEJDlEll 9 gives these solutions for 1700
DESClUPTIVE Sl1JlVEY
and Cunningham give solutions of (4) and also of (3) when possible. The others give solutions of (3) when possible, and otherwise of (4). A special table of NIELSEN 1 gives solutions of (4) for those D's of the form a'+b' for which the expansion of the continued fraction for VD has an odd period with D< 1500. INCE 1 gives solutions of (3) or (4) with D~k'Dl whenever ~2
(5)
-
D,' = + 4
has no coprime solutions (~, ,) for D<2025. The omission of the solutions of (4) when (3) has a solution (~, ,) is not important since the fundamental solution of (4) is in that case (2~'+l, 2~,). The problem of telling "in advance" whether or not (3) is solvable has never been satisfactorily solved. Three small tables give information on this question. SEELING 3 gives the list of all those D's < 7000 for which (3) is solvable. A similar list only for D~ 1021 appears in KRAITcmx 4 (p. 46). NAGELL 1 gives the number B(n) of D's not exceeding n for which (3) has a solution together with the number A(n) of non-squares ~n which are sums of two coprime squares, and also the difference A(n)-B(n) for n .... l00, 500,1000(1000)10 000. Thus far we have been speaking of fundamental (or least positive) solutions of (3) and (4). If (~h '1) is such a solution of (4), the successive multiple solutions of (4) are given by (~., ,.), where ~.
+ v15,. =
(~1
+ v15'1)·
(n = 1,2, ... )
and are connected by the second order re,cursion formulas ~-+1 = 2~1~.
-
~_1
'-+1 = 2~1'. - '_1.
If, on the other hand, (~h 'Yt) is the fundamental solution of (3), then (%t., 'Yt..) and (%t-+h 'Yt-+l) are all the solutions of (4) and (3) respectively. Only two tables give multiple solutions of (3) and (4). CUNNINGHAM 7 gives the 1irst multiple solutions of both equations for D~20. A table of ,. in x!-2/.= +1 is given for n~30 in D. H. LElDIE1l2. Four tables give solutions of (5) and of (6)
~2 -
D,I = - 4.
These are used in constructing automorphs of inde1inite binary quadratic forms, or the units of the real quadratic 1ield K(VJj). Equation (5) is always possible since a solution is (2~, 2,) where (~, ,) is a solution of (4) and by the same device (6) may be solved when (3) is possible. These solutions are uninteresting, however. For some D's (5) and (6) have no coprime solutions. In fact it is necessary that DEO, 4, or 5 (mod 8).
[56 ]
DESClUPTIVE
1dt
SURVEY
The first two cases are uninteresting since, if D- 4Dl, a solution (x, ,,) of (5) or (6) implies and is implied by the solution (x/2, ,,) of (4) or (3) respectively (with D- D1). Therefore tables of the solutions of (5) and (6) are concerned solely with D-5 (mod 8). The first such table is AlumT 2 which gives solutions of (6) when possible, otherwise of (5) if possible for D~ 1005. A similar table for D~997 is due to CAYLEY 1. Solutions of (5) and (6) are given whenever possible with l005
(x'
+ 2, x,,),
«x, + 3x}/2, ,,(x' + 1)/2}
and
«x, + 6x' + 9Xl + 2}/2, ,,(x' + l)(x' + 3x)/2}. If (5) has a fundamental solution (x, ,,) with DeS (mod 8), then that of (4) is «x'-3x}/2, ,,(x'-I}/2). Hence these tables may be used to find solutions of (3) and (4) if necessary. Many writers have suggested methods for solving Pell equations, which avoid the explicit use of continued fractions. It is safe to say however that those methods which are practical for solving isolated equations like, for example, x'-1141,,2= 1 in which x and" have 28 and 26 digits, are equivalent to the continued fraction method. The application of the continued fraction algorithm by modem mechanical methods will be treated in another report of the Committee: Z. j,. Ol]w equalions of lhe form x' ± Dy'- ± N Besides the tables of the Pell equations, there are tables of solutions of the equation
(I)
x' - D,,' - ± N
(N P' 1,4).
These are of two kinds, according as D is positive or negative. In tables of the former kind, N is comparatively small. Those of the latter kind extend over prime values of N up to high limits for a very few negative values of D. An important special case of (1) for D>O is that in which N
[57 ]
DESCllIPTIVE
SOVEY
least positive solution of (1), where ± N are the denominators of the complete quotients in the continued fraction of VfJ taken with alternating signs, so that N < 2VfJ. For larger values of N the continued fraction method is no longer applicable. There remains however the multiplicative property implied by the formula
(x~ - Dy~)(~ - D':' == (XIX' ± DYIY')' - D(XIYt ± XIYI)I known to Brahmagupta. This product to which Cunningham has given the descriptive name "conformal multiplication" enables one to derive from solutionsof I
Xl -
I
DYI
==
Nl
and
I
S'J -
I
D)'2 == N.
a pair of solutions of I
S'J -
I
Dya == NIN••
In particular from the infinity of multiple solutions of x' - Dy' == 1, we can derive an unlimited number of solutions of (1) from a single initial solution. Conformal multiplication is the basis of the extensive tables of solutions of (1) prepared by Nielsen. His largest table is NIELSEN 4 (p. 1-195) which gives small solutions of (1) for N
Ax' - By l == N
which become of type (1) on mUltiplication by A. Three tables of solutions of such equations have been given. solutions (x, y) of
Axt - By' == 2 when possible, otherwise of
==
(AB ARNDT
D),
1 gives
(AB
== D)
DESCBlPTIVE Sl1ltVEY
for all D~ 1003 which have no square factor, nor are primes or doubles of primes of the form 411+1. That pair of factors (A, B) of D is chosen which gives the smallest solution (~, ,). NIELSEN 4 (p. 199-234) gives small solutions (~, ,) of (2) with N < 1000 and AB == D ranging over composite numbers from 10 to 346 with some gaps. This is an extension of the smaller table in NIELSEN 3, where AB==30, 41,51 and 130, mentioned above. Turning now to tables of the second kind in which D is negative, we find that in almost all cases N is a prime. This ill permissible in view of conformal multiplication. These tables give the solutions (~, ,) of ~t+,t==p
(3)
p==4m+l
(4)
~I
+ 2,1 == P
P == 8m + 1,3
(5)
~t
+ 3,1 == P
p==6m+l
+ 27,t == 4p
p==6m+1.
~t
(6)
These representations or "quadratic partitions" (to use Cunningham's terminology) of p are possible if and only if p is of the linear form (or forms) indicated, and when possible, are essentially unique (in (3) it is customary to insist that, be even). These quadratic partitions are chiefly used in determining the character (alp)" for 11==3,4,8, 16 for small bases a, especially a==2, and have been a great aid as a preliminary to finding the exponent of a (mod p). The distribution of quadratic residues (mod p), and certain class number and cyclotomic problems also depend upon these partitions. The first extensive tables of quadratic partitions were published by JACOBI 3 in 1846, and were computed by Zomow and Struve. These give the partitions (3) for p~ 11981, (4) for p~5953 and (5) for p~ 12 007. A table of the partitions of (3) for p~ 10529 occurs in KULIK 1. REUSCHLE 1 gave the partitions (3) and (4) for p~ 12377 and for all those primes p from 12401 to 25 000 of which 10 is a biquadratic residue. The partition (5) is given for p~ 13 669 and for all those primes from 13669 to 50000 of which 10 is a cubic residue. The partition (6) is given for p~5743. CUNNINGHAM: 7 gives all four partitions for p< 100 000. This table is extended from 100 000 to 125 683 in CUNNINGHAM: 36, where also are found several other tables giving quadratic partitions of primes of special form as follows. On p. 56-69 are given the partitions (3), (4) and if possible (5) of all primes of the form 210",,+1, ke;9 up to high limits L depending on k as follows: I L
I
9
10
11
12
13
14
1()1
1.2S·I()1
2.S·I()1
S' 1()1
8.S·I()1
9·1()1
On p. 70-73 are given the partitions (3) and if possible (5) of all primes p of the form 210",,+1, ke;9, 101
jl'"j.
DESCKIPTIVE Sl1ltVEY
A similar table occurs in KKAITCBIK. 4 (p. 192-204) where the partition (3) and if possible (4) and (5) are given for all primes p-2'k+l~ 10 024 961. As a matter of fact a, b, c, are given in the equations Xl
+ (4a)1 = p,
Xl
+ 3(4c)1 -
p.
CUNNINGHA1l36 also gives partitions (3) and (4) whenever possible of all primes between 10· and 101+ 101. The representation of all possible primes p by the idoneal form
p-
Xl
+ 1848,1
for
107
< p < 107 + 10'
appears on p. 74-76. Actually (x, 2,) is tabulated. All solutions (x,,) are given of Sl + ,I = n l and Xl + 3,1 - nl for all possible n<3000 together with the corresponding partition of n when n is composite (p. 77-87). Other tables of quadratic partitions different from (3), (4), (5) and (6)may be given the following tabular description. These give the least solutions (I, u) of II - [)ul = kp for the values of k and D indicated, and for all possible primes p not exceeding the limit L: D
TANNEll2 CUNNINGHAM 7
BICK.KOllE and WESTEllN 1
2 3 5 5 -5, ±6, ± 7, ± 10, 11 11 ±13, ±14 ±15, ±17 ± 19 2
L
i
1 1 4 4 1 4 1,2 1,9 1,4 1
25 10 10 10 10 10 1 1 1 25
000 000 000 000 000. 000 000 000 000 000.
In the last mentioned table, p is restricted to the form 8n+ 1, and I to the form 4x+ 1. This paper also contains a small table giving all the representations of each possible number less than 1000 as the sum of two squares. ja. Equalions in more Ihan 2 unknowns, ralional Iriangles
All but a few tables of this sort have to do with rational triangles, and most of these are lists of rational right triangles. Many such lists have been given in obscure places, and have been superseded by larger lists in more readily available sources. [60 ]
DESClUPTIVE
j.
SURVEY
It is well known that the sides of all integral right triangles are given by the formulas
a = 2mn,
b
= ml -
nl,
h
= ml + nl,
where h is the hypotenuse, and where m and n are integer parameters. If one wishes to exclude the less interesting non-primitive right triangles in which a, b, and h have a common factor one restricts m and n to be coprime, and to be of different parity. There remains only the question of arranging the list of triangles thus generated. Two extensive tables arranged according to values of m and n may be cited. The first, BRETSCHNEIDER 1 gives all primitive triangles generated with n<m~25. With each triangle is given also its area and its acute angles to the nearest 10th of a second. A more extensive list is given in MARTIN 1 (po 301308). This contains864 triangles arranged according to m and n with n < m ~ 65, and is the largest list of rational triangles ever published. With each triangle is given its area. An old list of 200 right triangles was published by SCHULZE 1 in 1778. These are arranged according to the size of the smallest angle of the triangle. The tangent of half this angle is made to assume every rational value between 0 and 1 whose denominator does not exceed 25. The arrangement most frequently used is according to increasing values of the hypotenuse. Such tables for h~ 1109 are given in SAORGIO 1 and SANG 1. The latter gives also the angles to within 1/100 of a second. The most extensive tables with this arrangement are found in MARTIN 2 and CUNNINGHAM: 36. Both these tables give a11477 primitive triangles whose hypotenuses h do not exceed 3000. The Cunningham table is in two parts in which h is respectively prime and composite. This same arrangement is used in KRAITcmK 6 which extends only to h< 1000 however. CUNNINGHAM: 28 (po 19~194) has another table complete to h=2441 with 28 other h's <3000. A table of TEBAY 1 (p. 111-112) gives a list of right triangles arranged according to their area A up to A =934 800. This table is reproduced in HALSTED 1 (po 147-149) with nine additions. BAmER 1 (po 255-258) gives a list of all primitive triangles one of whose legs has a given value <300. A table of KRISHNASWAKI 1 is arranged according to semi-perimeters and lists all primitive right triangles whose semi-perimeters do not exceed 5000. References to other tables of right triangles, mostly small and obscure, are given in MARTIN 2. Several small tables giving special right triangles may be mentioned. MARTIN 1 (p. 322-323) gives 40 right triangles whose legs are consecutive integers and 313 triangles whose hypotenuses exceed one leg by 1 or by 2. BAmER 1 (p. 26~261) gives the values of certain recurring series for u·se in solving such problems. There is also given (p. 259) the list of 67 triangles one of
[61 ]
DESCBlPTIVE SnVEY whose sides is 840. WOEPCKE 1 has given for each of the 33 primitive right triangles with h<205, 12 associated congruent numbers. MARTIN 2 contains many sets of right triangles with special properties too numerous to mention. There are a few tables of rational triangles which are not right triangles. TEBAY 1 (p. 113-115) lists 237 rational triangles arranged according to area, the greatest area being 46 410. This table is reproduced in HALSTED 1 (p. 167170) and amplified in MARTIN 1 by 168 additions. SnolERKA 1 lists all 173 rational triangles with sides < 100. There is also given the area, the tangents of the half angles and the coordinates of the vertices of each of these triangles. SANG 1 gives the list of 137 triangles, one of whose angles is 120°, and whose largest side is less than 1000. CORPUT 1 has listed all primitive rational isosceles triangles (a, a, c) of altitude h, and base angles A, arranged according to a from a - 25 to a < 160 000. The table gives for each triangle the values of Va, c/2, h/24, tan (A/4), Va cos (A/2) and Va sin (A/2). PARADINE 1 gives 1120 triangles, each having integral sides and one integral median. Finally we cite tables of solutions of diophantine equations of the second degree in more than 2 unknowns which do not refer to triangles. CUNNINGHAM 28 (p. 185-189, 194) gave solutions of ~1I-y'-31111 arranged according to y complete to y~ 1591 with 99 more y's <2774. EELLS 1 has tabulated 125 solutions of ~1+yl+lIIl=al for various a's from 13 to 88 621. JOFFE 1 has given a complete list of 347 solutions of this equation for 1
Xl
+ .'h + %I I
I
I
U.
k. NON-BINOMIAL CONGRUENCES OF DEGREE ~3 Very few tables exist in this category. The term non-binomial is used here in its technical rather than its strict sense. That is to say, tables of solutions of such congruences as (~11
_
1)/{~'
~8
- 1) -
+
~,
+ 1 15 0 (mod p)
have been classified under the binomial congruences Cd,) in spite of the fact that it is a trinomial cqngruence of the eighth degree. We may cite here however the table of REUSCHLE 3 which gives not only the primitive solutions of the congruence ~.
- 1 eO (mod p),
but also the solutions of F{~)
where
F{~)
!I!!
0 (mod p)
are the polynomials whose roots are the several sets of "periods" [62 ]
k-I
DESCllIPTIVE SnVEY
of the nth roots of unity (described more fully under 0) for all n-2-100, 105, 120 and 128, and for all p< 1000. Another table having to do with cyclotomy may be cited here also. JACOBI 3 gives for each m
=
g'" (mod p).
where g is a given primitive root of p for 7 ~ P~ 103. This table has been extended by DICK.SON 10 to P< 500, and for those primes between 500 and 700 which are not of the form kq+l, where q is a prime and k-=2, 4, 6,12. The table of FLECHSENBAAR 1 gives for each prime p- 6m+ 1 from 7 to 307 a pair of numbers (b, e) such that
= +1= eP + 1 = be
bp
BANG
1 gives a list of primes
a"
1 (mod p)
+ l)p (mod pi) (e + l)p (mod pi). (b
p- ms+ 1 < 1000 for which the congruence
+ b" -
e"
=0 (mod p)
has solu tions for m ~ 25. A rather special table of KRAITCHIK. 4 gives for each and 7 a number a, and a prime p such that n!
+1
!!!!
n~ 1019,
except 4,5,
(;)--1,
a (mod p).
thus showing that except for n-4, 5, and 7 the diophantine equation n! + 1 _ ml has no solutions (n, m) with n~ 1019.
I.
DIOPHANTINE EQUATIONS OF DEGREE
>2
Actual tables of solutions of Diophantine equations of degree d>2 exist only for d-3 and 4, although short notes giving occasional solutions of fiuch equations with d>4 are scattered throughout the literature on the subject. A list of about 6000 solutions of equations of the form Sl
±
yl -
D.
arranged according to I DI , with I DI ~ 2000, is found in GEIWlDIN 3. A table of all integral solutions (s, y), when possible, of
s· with l~s~101 and number h (v' -D).
D~1024
yl
= D
is given in [63 ]
BRUNNER
1 together with the class
I
DESCKIPTIVE
SOVEY
Rational solutions of such equations are given in BILLING 1. "Base points" are given here from which all rational solutions of
I I ;1! 3, 1;1! I B I ;1! 3 I B I ;1! 25 I A I ;1! 50
yl = X. - Ax - B
1 ;1! A
yl=xl-B yl
= Xl -
Ax
may be generated. KULIK 1 gives solutions (x, y) of n==xl_yl
and
n==xl+,1
for all possible odd n not exceeding 12097 and 18907 respectively. The rare table of LENlIAllT 1 gives, for more than 2500 integers A < 100 000, solutions of
x' + yl == As' in positive integers. A small table of solutions of this equation for each of the 22 possible A's ;1! 50 is given in F ADDEEV 1. Two tables of Delone relate to the integral solutions of the binary cubic (1)
with a negative discriminant D. DELONE 1 gives all solutions (x, ,) of (1) for all non-equivalent equations with -300
+ Dyl + D'.' -
3Dxy. == 1,
like the Pell equations, has an infinity of solutions. A table of solutions (x, " .) for each positive non-cube D< 100 is given in WOLFE 1. A list of 16 solutions of
in OETTINGER 1 may be cited. CUNNINGHAM 28 (p. 229) gives 44 solutions of
x' - " ==
.1
and (p. 234-235) solutions of
for c;1! 100. A. A. BENNETT 1 gives a table of solutions of what is in effect a ternary cubic equation
[ 641
DBSOIPTIVE
l-m
Sl1ltVEY
arccot
~1
+ arccot
~I
== arccot Y1 + arccot YI.
All solutions are given in which 0<~1+~<25. Finally the quaternary cubic equations "±~'±y'±s'==O
are considered in RICHKOND 1. All solutions (I, ~, y, s) in which the variables do not exceed 100 are given. Turning to quartic equations we find only a few tables. CUNNINGHAM: 15 gives all solutions (~, y, I) of ~.
+ y' == 1M'
in which the right member does not exceed 107, and all solutions in which ~-1, and y< 1000. CUNNINGHAM: 28 gives two or more solutions of
± ky' == ± Sl
~.
k
~
100 (p. 230, 236),
and of ~. -
k~lyl
+ y' == Sl
k < 200 (p. 232-233).
<>EnINGEll 1 gives 16 solutions of ~I
- yl == S4.
VEJlEBRiusov 1 tabulates all non-trivial solutions of
,
~
, , ,
, ,
+y +1 == 2a+Y1+ll
in which the variables do not exceed 50. This table is reproduced in VEREBRiusov2. m.. DIOPHANTINE CONTINUED FRACTIONS
A number of useful tables of the continued fraction developments of algebraic irrationalities have been published. Most of them refer to the regular binary continued fraction 1 1 1 8 == qo+- ql + ql + q. + ... and, of these, nearly all refer to the case in which 8 is a pure quadratic surdVD. If we write ~o == 8 == qo 1/~1
+
~l == q1
2:"
== q"
+ 1/~1 + 1/~"+1
[65 ]
m
DESCRIPTIVE SnVEY
then the x.. are called complete quotients, and the q.. incomplete (or partial) quotients of 8, and 8
1
= qo+ql +
1 1 ql + ... + XII
for every k > O. In case 8=YD the complete quotient XII takes the form XII
= (VD + p ..)/Q..
where P .. and Q.. are integers such that O~P..
0< Qi: <
2v'D.
Several tables give Q.. as well as qi:. The numbers Q.. are important in many applications, especially in connection with the question of solving the equation Xl -
Dy'l.
= N.
The numbers Pi: are less useful, and have (with one exception) never been tabulated. They may be obtained from the Q's by the formula t
p .. = D - Q..Qi:-l and have been used for solving quadratic congruences (mod D). All three sequences Pi:, QI:, ql:, are periodic for k>O. The main tables of the continued fraction development of YD are DEGEN 1, CAYLEY 6, and WmTFORD 1. Each table gives both ql: and Q.. up to the middle of the period, about which point the period is symmetric. The table of DEGEN 1 extends from D- 2 to D- 1000, that in CAYLEY 6, which was computed by Bickmore, from D-l001 to D-1S00, while that of WmTFoRD 1 extends from 1501 to 2012. The table of SEELING 2 gives for D ~ 602 the first half of the period of the partial quotients ql:, but not QI:. In addition it gives in each case the number of terms in the period of the continued fraction, a function about which little is known. Lists of D's are given which correspond to periods of given length and type. Those D's < 7000, which have an odd number of terms in the expansion of YD, are listed in SEELING 3. A tabular analysis of the continued fraction for YD arranged according to the length of the period is given for D< 1000 in KRAITCmx. 6, where also is given a similar analysis of (-1+V4A+1)/2 for A <100. Only the partial quotients are given. [66 ]
DESClUPTIVE SnVEY
m
The table of ROBEllTS 1 gives partial quotients only for the expansion of Vii for D a prime of the form 4n+ 1 not exceeding 10 501. Another special table is that of VON TmELIlANN 1, which gives partial quotients for ViiI where both p and q are primes of the form 4k+ 1, and pq<10 000. The trivial cases pq_~2+1, ~1±4 are excluded. The table is in two parts, the first of which contains expansions with an odd number of terms in the period. NIELSEN 1 gives for D< 1500 and the sum of two squares both q" and Q" for the expansion of Vii in case the period has an odd number of terms. A small table of the partial quotients in the first half of the period for Vii is given in PEnON 1 and extends to D< 100. INCE 1 gives in effect p" and Q., but not g. in the expansion of VD for all D<2025 of the form D-4k+2, 4k+3, and without square factors. These occur in the first cycle of reduced ideals. Thus for D- 194, the first cycle given is 1, 13,.... 25, 12,.... 2, 12 This may be taken to indicate that P. and Q. have the values
p"
o o
1
2
3
4
S
6
7
8
13
12
12
13
13
12
12
13
1
2S
2
2S
1
2S
2
2S
1
The other cycles, if they exist, correspond to certain irregular continued fractions for VD. For D-4n+l the corresponding information is given for (l+Vii)/2. Those convergents A..IB. to continued fractions which satisfy the equation A.I-DBI- ± 1, ±4 occur in tables of the Pell Equation as described under j1. Other convergents are given only rarely. A small specimen table in CAYLEY 6 gives all convergents in the first period of Vii for D< 100. SEELING 1 gives expansions of many higher irrationalities such as -VD for D-2, 3, 4, 6, 7,9, 10, 15 and several other numbers of the form D1/" up to k - 13. Since by a theorem of Lagrange none of these expansions can be periodic the entire expansions cannot be given, so that only the beginnings of the expansions are found. Complete as well as partial quotients are given. Daus has published three tables of the expansion of cubic irrationalities in a ternary continued fraction Uacobi's algorithm). Such expansions are ultimately periodic. In place of partial quotients q. we have partial quotient pairs (p", g.) which determine the expansion. DAUS 1 gives a table of partial quotient pairs in the expansion of -VD for D~30. Similar expansions of the largest root of the cubic equation ~I
+ q~ - , [67 ]
0
I q I ~ 9, 1 ~ ,
~ 9
m-D
occur in DAUS 2. DAUS 3 gives expansions of cubic irrationalities in certain cubic fields with a minimal basis. The fields are defined by a root 8 of the cubic equation ~.
-
p~
+q -
0
in which (1, 8, 81) is not a basis. NON-LINEAR FOlUIS, THEIR CLASSES AND CLASS NUMBERS The theory of forms, especially of binary quadratic forms, has a number of applications in other parts of the theory of numbers. Tables having to do with the application of forms have been cited under other sections of this report, in particular under b l , el, f l , g, la, j, 1, 0 and p. There remains however a large number of tables without view to immediate exterior application, giving information about the theory of forms itseU. To the amateur number-theorist, not an expert in the arithmetical theory of forms, most of the tables about to be described will doubtless appear to be sterile, if not useless. If so, the writer has been successful in his classification of these tables, as the tables here described are of interest mainly to experts. Existing tables refer to four sorts of forms: binary quadratic, ternary quadratic, quaternary quadratic, and binary cubic forms. The theory of binary quadratic forms arose from the problem of solving Diophantine equations of the second degree, and early tables reflect this origin. We have on the one hand the tables of the Pell equations D.
~2 -
Dyl -
± I,
fully described under j" and on the other hand tables for the representation of a large number N by the form described under g, I" la, and jt. This latter problem was at once seen to be a key to the question of factoring large numbers N and it was with this application in mind that Gauss began his epoch-making investigation into the theory of binary quadratic forms. Among the many by-products of this research three may be mentioned as being the source of tables described elsewhere. These are the theory of the number of representations of a number by a binary quadratic form, the representation of cyclotomic functions as binary quadratic forms, and the theory of quadratic fields. Tables of the functions E(n), H(n) and J(n) have been cited under bt and are contained in GLAISHER 15, 17, 18,19,24,25 and 26. These functions are related to the number N(n= f(~, of representations of n by the binary quadratic form f(~, y) as follows:
y»
[68 ]
DESCllIPTIVE
SUltVEY
D
+ ,I) ... 4E(n) ~I + 2,1) - 21(n) (n odd) ~I + 3,1) - 2B(n) (n odd). ~I
N(n ... N(n N(n -
GLAIsn:R 19 also contains a table of the function G(n) - N(n - (6~)1
+ (6, + 1)1) -
N(n - (6~
+ 2)1 + (6, + 3)1)
for n - 12k+ 1 ~ 1201. Tables of the coefficients of the polynomials Y(~) and Z(~) in the representation of the cyclotomic function 4(~p
-
1)/(~
- 1) _
yl(~)
- (-
l)ho-1)/lpZl(~)
and related tables are cited under 0 and begin with GAUSS 1. The theory of quadratic fields is of course very closely related to that of binary quadratic forms, their difference being largely one of nomenclature. Hence many of the tables cited under p are instances of tables related to binary quadratic forms. Tables of reduced binary quadratic forms begin with LEGENDRE 1. Table I gives all reduced forms
a,l + 26,s -
"I
of determinant A - 61 +ac for all possible A ~ 136. Table II gives similarly reduced forms L,I
with
0<MI-4LN~305.
+ M,. + NSI (M odd)
Tables III, IV, VI, and VII list the reduced forms
a,t + 26,s + cst of determinant A - 61 - ac with -106 ~ A ~ 79 together with the corresponding linear forms of the odd divisors of ,I-aut (as described under 1,). Similarly Table V gives for the reduced forms L,I
+ M,s + NSI
with a-4LN-MI or LN-MI/4, according as M is odd or even, for 0
Gauss must have constructed extensive tables of reduced forms but never published any. He in fact considered the pUblication of such tables as unnecessary since any isolated entry can be so easily obtained directly. rus table of the classes of binary quadratic forms to be cited presently was published posthumously. CAYLEY 2 tabulated the representatives of each class of forms of nonsquare determinant D with their characters and class group generators for
[69 ]
DESCRIPTIVE
D
SmtVEY
I DI < 100 together with 13 irregular determinants D between -100 and -1000 noted by Gauss. For D>O, the periods of the reduced forms are given. This table was continued from D- -100 to D- - 200 by COOPER 1. CAHEN 3 gives a table of primitive classes of positive definite forms of discriminant D<200 omitting those cases in which there is but a single class. There is a similar table for indefinite forms of discriminant > - 200. WlUGHT 1 has given an interesting table of reduced forms a~l+ 2by+cyl of determinant -~ with ~~150, and 800~~~848 arranged so that band c can be read on entering the tables at a, ~. The values of b are periodic functions of ~ for each fixed 4. This table has been extended to ~~ 1200 in Ross 1. Two tables of indefinite binary quadratic forms are included in Ross 1. The "basic" table gives reduced forms (a, b, -c) with OO
of Euler are such that each genus contains but a single class. The idoneal ~'s have been given in numerous places such as MATHEWS 1 and KllAITCHIlt 6 (p. 119). Besides these idoneal forms, SEELHOI'I' 1 has given 105 others for which each reduced form in the principal genus is of binomial type a~l+cyl to be used for factoring as mentioned under ,. Forms of practical use in fac[70 ]
DESCBIPTIVE SUltVEY
D
toring are not confined to definite ones. CHEBYSHEV 1 has given for each indefinite form ~t-Dyt (0
pyl
+ 2qy. + ".t.
c = pr - qt
and expresses each of these as a sum of three squares of linear forms. SEEBER 1 gave the first table of reduced ternary forms. This gives the classes of positive ternary forms of odd Gaussian determinant -D for D<25. This table was revised by EISENSTEIN 1 who gave the characters and classes in each genus. EISENSTEIN 2 gives a table of primitive reduced positive ternary forms of determinant - D for all D < 100 as well as D- 385. EISENSTEIN 3 lists all automorphs of positive ternary forms. These are given also in DICKSON 6 (p.179-180). BORISOV 1 gave a table of properly and improperly primitive reduced (in the sense of Selling) positive ternary forms for all determinants from 1 to 200, assigning to each representative form a type and the number of automorphs. Tables, due to Ross, of reduced (in the sense of Eisenstein) positive ternary forms, both properly and improperly primitive of determinant d~50, giving also the number of automorphs, occur in DICKSON 6 (p. 181-185). Forms without "cross product" terms are listed separately. With each form is given the number of automorphs. This table has been extended to d<2oo by JONES 1. JONES and PALL 1 list all 102 so-called regular forms f-a~'+byt+CJt. These are reproduced in DICKSON 9 (p. 112-113) where also are given in each case the numbers not represented by f. A special table giving certain arithmetic progressions and generic characters of reduced positive ternary forms whose Hessian does not exceed 25 appears in HADLOCK 1. Only three tables of indefinite ternary forms have been published. The first is due to EISENSTEIN 3 and lists non-equivalent indefinite forms whose determinants have no square factors and are less than 20. MUKOV 1 tabulated reduced indefinite ternary forms, not representing zero, of determinant ~ 50. This table was recomputed and extended to determi[ 71 ]
DBSCllIPTIVE SUllVEY
D-o
nants ~83 by Ross and appears in DICKSON 6 (p. 150-151). A similar table for determinants 4n ~ 124 occurs in Ross 1. CILUVE l1ists all positive quaternary quadratic forms reduced in the sense of Selling of determinants ~ 20. A similar table of such forms reduced in the sense of Eisenstein for determinants ~ 25 is given in TOWNES 1. There are a few tables of binary cubic forms, all with negative discriminants. Two of these by DELONE 1, 2 have been described under 1. ARNDT 3 gave all reduced binary cubics of negative discriminant - D, their classes and characteristic binary quadratic forms for all possible D < 2000. CAYLEY 3 reproduced part of this table in revised form. His table gives the reduced forms with their order, characteristic and composition for the following values of the discriminant D:
o> D -
4k
>-
400 and
0
>D-
4k
+ 1'~
- 99
and D= -4k, k-243, 307, 339, 459, and 675. MATHEWS 2 contains a table due to Berwick of all non-composite reduced binary cubics with discriminant - D, D< 1000. o. TABLES RELATED TO CYCLOTOMY The problem of dividing the circle into an equal number of parts, or what is the same thing, the study of the roots of the binomial equation %"-1 would seem at first sight to have little connection with tables in the theory of numbers. Gauss was the first to recognize, however, the intimate connection between cyclotomy and various branches of number theory, when he showed that the construction of regular polygons by Euclidean methods depends ultimately on the factorization of Fermat's numbers 21-+1. A list of the 32 regular polygons with an odd number of sides known to be constructible with ruler and compasses is given in KIlAITCIDK 4 (p. 270). The theory of cyclotomy is of much wider application to number theory, however, and tables described under bit b l, d, 81, ft, jl, jl, D, P and fb either depend upon cyclotomy or are of use in its applications. We have in fact already introduced in various connections the cyclotomic polynomial
Q..(%) -
II (%. -
1)"(""),
'1 ..
where I' is MObius' function and 8 ranges over the divisors of n, which has for roots all the primitive nth roots of unity. This polynomial is often loosely spoken of as "the" irreducible factor of %"-1, and is often written as X .. and F ..(%). Tables of coefficients of Q..(%) are scarce. REUSCHLE 3 gives Q..(%) for n-3-100, 105, 120 and 128 with the exception of n-4k+2 for which Qu+.(%) -QU+l( -%). SYLVESTER 1 gives Q..(%) for all n~36. KRAITCIDK 7 gives, for all products n of two or more primes not exceeding 105 (except 77). [72 ]
o
DESCRIPTIVE SU1lVEY
the coefficients of Q.(%) or of Q.( -%)-Q,.(%) according as n-4k+l or 4k+3, and for n- 2pq~ 102, those of Q,.(%). The need for tables of Q.(%) is not acute since for any particular n, Q..(%) may be readily found from the application of one or more of the following formulas: Q,(%) _ %p-1 + %rt + ... + %+ 1 (1)
Q.(%) - Qa.(%-) Q••(%) - Q.( - %), (n odd)
Q••(%)
= Q.(%.)/Q.(%)
where n - nom and no is the product of the distinct prime factors of n, and where n is not divisible by the prime p. Several tables give data on the "j-nomial periods" of the primitive nth roots of unity where .(n)-,·j. The most elaborate such table is REUSCBLE 3, which gives for every divisor j of .(n) the set of fundamental relations between the j-nomial periods which express the product of any two of them as a linear combination of the periods for n-l-100, 105, 120, 128, except n=4k+2. In most cases the irreducible equation of degree, satisfied by the periods is given also, though when n is composite and , is large this equation is not given. SYLVESTEll 1 gives the polynomials whose roots are the binomial periods '1-«+,.-1, where « are the primitive nth roots of unity, for all n~36, and 12 other polynomials whose roots are thej-nomial periods,j>2, for n-ls, 21, 25, 26, 28 and 33. D. H. LEHlIEll 3 contains a table of all irreducible polynomials of degree ~ 10, "hose roots are of the form «+«-1+2, where « are the primitive nth roots of unity, n~4k+2. CA1tEY 1 contains tables of the coefficients in the linear expressions for the squares and products of two j-nomial periods of imaginary pth roots of unity for all primes p<sOO and for e- (p-l)/j-3, 4, and S. T ANNEll 1 gives for each p- 10.+ 1 < 1000 the quintic equation for the five (p-l)/s-nomial periods. Many tables give the representation of Q.(%) as a quadratic form. The first of these is due to Gauss, who discovered the polynomials Y,(%) and Z.(%) of degrees (P-l)/2 and. (p-3)/2 respectively such that (2)
•
•
4(%. - 1)/(% - 1) - Y.(%) - (- 1)(P-l)/'pZ.(%).
These are tabulated in GAUSS 1 for p~ 23. Dirichlet and Cauchy later pointed out that (2) can be generalized to the case of p, replaced by a composite number n, as follows: (3) where n is a product of distinct odd primes. (A quadratic form ensts in the
[73 ]
o
DEscaIPTIVE SUIVEY
case of a perfectly general n, as may be seen at once from (1) by replacing s in (3) by ± sa). Tables giving Y.(%) and Z.(%) may be given the following tabular description, where by "general" we mean prime or the product of distinct odd primes (the trivial case of p-3 is usually not given). reference
rauge of"
character of "
GAUSS 1 MATHEWS 1 KlWTcmK 2 (p. 3) KlWTcmK 4 (p. 126) HOLDEN 1, 2 POCKLINGTON 1 LUCAS 2 GOUWENS 1 TEEGE 1 KRAITCmK 7 (p. 2-4) GRAVE 1 GRAVE 2 GOUWENS 2
p~23
prime prime prime prime general prime general prime general general prime prime prime
p~31
p~37 p~37
n~57
(with gaps)
41~p~61
n-5--41,61 67~p~97 n~101 n~101 23~p-4fn+3~131
29~p-4n+l~197 101~p~223.
For some reason Gauss and his followers failed to discover another quadratic form representing Q.(%) which is, for some applications, more important than (2) or (3). The existence of polynomials T.(%) and U.(%) such that I
I
Q.(%) .... T.(%) - (- 1)(a- I >lIn%U.(%) was discovered 70 years after Gauss' discovery of (2) by Aurifeuille. Tables of the coefficients of T. and U.. were first published by LUCAS 2 for odd n~41 not divisible by a square, as well as for n-57, 69 and 105. LUCAS 3 gives in effect the coefficients of the polynomials V.(%) and W .. (%) such that •
I
V.(%) - n%W.(%) -
{Q.(%) Q••(%)
if n = 4k if n = 4k
+1 + 2,
or 3
for all n~ 34, having no square factor. This table was reproduced by CUNNINGHAJ( 23 with the additional entries for 34
I
Qc.(%) = R.(%) - 2n%5.(%) for odd n~35, as well as n-39, 51 and 57. The importance of Aurifeuille's formula lies in the fact that for suitably chosen %, Q.(%) becomes the difference of two squares, and hence decomposable into rational factors.
[74 ]
DESClUPTIVE SaVEY
p
p. TABLES RELATING TO ALGEBRAIC NUKBER THEORY Algebraic number theory, like the theory of forms, is a rather technical subject. The more extended parts of the theory are so ramified that tables are apt to be little more than mere illustrations of theorems. In fact, manyarticles on the subject contain numerical illustrations too numerous, too special and too diverse to permit description here. Although these numerical illustrations serve to make more real the abstract subject matter being considered, they cannot fairly claim to be described as useful tables. Tables described under other sections of this report are of use in parts of algebraic number theory. In fact, the theory of binary quadratic forms is practically identical with quadratic field theory, and many tables relating to the former subject (described under n) are applicable in the latter, and conversely. Other sections containing tables useful in various parts of algebraic number theory are b l , b., d, el, f., ii, j, 1, m and o. Other useful tables, more algebraic than number theoretic, such as tables of irreducible polynomials (mod p), modular systems, Galois field tables, class invariants, singular moduli, etc. will be described in another report of this committee under G. Higher Algebra. Tables relating to algebraic numbers may be classified according to the degree of the numbers considered. Many tables pertain to quadratic number fields. The tables of SOKKER 1 contain tables of both real and imaginary quadratic fields K(Vi5) for < 100, and not a square, giving in fact for each such D a basis, discriminant, principal ideal, the classes of ideals, genera and characters. The fundamental unit is given when D>O. A more comprehensive account of real quadratic fields is given by the table of INCE 1. This table gives data on the fields K(v.) for allm<2025 having no square factor. Ideals (a, b+CII), where CII=V. for m a 2, 3 (mod 4) and CII- (1+v.)/2, when m= 1 (mod 4), are written simply a, b. Reduced ideals fall into classes of equivalent ideals, and the ideals in anyone class form a periodic cycle which is palindromic. The table lists the first half of these cycles. In addition the table gives the number of genera in the field, and the number of classes in each genus, their generic characters and finally the fundamental unit t-~+yV;ii or (~+yV;ii)/2, also written in the form (.. +"",)I/II, whenever possible. The table of SClLU'PSTEIN 1 gives the class number of real quadratic fields whose discriminant isa prime p(=41+1) for p<12 000, 1()1
IDI
[75 ]
p
DESCllIPTIVE SUIVEY
was extended to all prime and composite moduli in K(v'=I), whose norms do not exceed 100, by G. T. BENNETT 1. BELLAVlTIS 1 contains a table of powers (a
+ i6)" (mod p, S' + 1)
of a primitive root a+ib for p-4m+3~67, for k-r(p+l), 1(P-l) and 1(P-l)+l, where r= 1,2, ... (P-l)/2, 1= 1,2, ... (p+l)/4. The table of VORONO· 1 gives for each prime p<200, a pair of companion tables, one of which gives the powers (mod p) of a primitive root E-a+ib, where i'eN (mod p), N being the least positive quadratic non-residue of p. The other table gives the index of that power of E whose real part is specified and whose imaginary part is positive. GLAISHER 17 has tabulated three functions which depend on "primary" Gaussian numbers, that is, numbers of the form (- 1) (0+6-I)/I(a
±
i6)
where a> 0 is odd and 6 is even. Let S,,(n) denote the sum of the kth powers of the primary Gaussian numbers whose norm is n. Glaisher denotes the functions Sl(n) and SI(n) by x(n) and '-(n) respectively. In fact x(n) is tabulated for odd n< 1000, and for all primes and powers of primes < 13 000, while A(n) is tabulated for n < 100. The function So(n) is designated by E(n), several tables of which are described under bs. Tables relating to cubic fields are much less numerous than those for quadratic fields. The tables of REID 1, 2 are in two parts. Part 1 gives for each reduced cubic equation
s· + ps
+q=
0,
I p I ~ 9, 1 ~ q ~ 9
the discriminant of the field thus defined, the class number, a basis and a system of units as well as the factorization of certain small rational primes in the field. Part II gives the same information for 19 other cubics of the general form
as'
+ b + cs + d l
(6 ~ 0).
The tables of DAUS 2, 3 (described under m) give the units in the cubic fields under consideration. DELONE 1, 2 give information about units of cubic fields of negative discriminant. In particular DELONE 2 lists all fields with discriminant - D with D<172. Extensive tables of relative cubic fields are given in ZAPOLSx.UA 1. Quartic field tables are all of special type. DELONE, SOllINsm and BILEVlCH 1 give a list of all totally real quartic fields with discriminant not exceeding 8112. With each such field is given a basis.
[76 ]
DESCRIPTIVE SURVEY The tables of TANNER 1, 2 refer to the quartic field defined by w, a primitive 5th root of unity. These give the "coordinates" qi of the "simplest" complexfactor few) == qa + qlW + qtw l + qtw' + q"". of a prime p-=IOn+l as well as the coordinates of the "simplest primary" factor and the "reciprocal" factort/f(w), the latter being such thatt/f(w)t/f(w- 1) . . p. In TANNER 1, p< 1000 while in TANNER 2 the information is given for p<10 000 except that the reciprocal factor is tabulated only for 10oo
ql. Theory of partitions Tables relating to partitions are of two types according as the parts contemplated are or are not restricted in some way as to size or number. We take up the unrestricted partitions first. The actual partitions of a number n into the parts 1, 2, ... , n, giving for n- 5, for example, the 7 entries (11111), (1112), (113), (122), (14), (23), (5) occur as arguments of tables of symmetric functions and other algebraic tables to be considered in another report of the Committee under G. Higher Algebra. We may cite here, however, a table of all partitions of n for n~ 18 due to
[77 ]
DESClUPTIVE SaVEY
CAYLEY 4. The parts 1, 2,3, ... are represented by the letters a, b, e, ... and the 7 entries under n- 5 thus appear as ai, alb, ale, ab·, ad, be, e. The theory of partitions is concerned more with the mere number pen) of partitions rather than the actual partitions themselves. The function pen) increases so rapidly that Cayley's table could not be carried much farther. For n-30, for example, it would have 5604 entries. The first real table of pen) occurs as a by-product of the table of EULEll 3 and is there denoted by n(·) and tabulated for n~59. This table was not extended until 1917 when the analytic researches of Hardyand Ramanujan made it desirable to examine the magnitude of pen) for large n. MacMahon accordingly computed pen) for n~ 200, his table being published by HARDY and RAKANUJAN 1. GUPTA 1 has given pen) for n~300 and for 301~n~600. The complete table for n ~ 600 is reproduced in GUPTA 7. Two tables give values of pen) (mod p). GUPTA 3 gives pen) (mod 13) and (mod 19) for n~ 721. MACMAHON 1 lists those values of n~ 1000 for which pen) is even. Thanks to recent investigations the asymptotic series of Hardy and Ramanujan now offers an effective and rellable method of obtaining isolated values of pen). This series contains certain coefficients A ..(n), tables of which, as functions of n, are given in HAJl.DY and RAKANUJAN 1 for k ~ 18. D. H. LEHKEll 5 contains a table of actual values of A ..(n) for k ~ 20, and for all n, (since A ..(n+k) - A ..(n» , the number of decimal places being sufficient for computing pen) for n up to three or four thousand. This table is reproduced in GUPTA 7. In investigating an approximate formula for pen), HAJl.DY and RAKANUJAN 1 have given the value of .9 Log10 pen) - v'10
+n
for n-l0" and 3·10" (k-O, 1, ... , 7). The generating function for pen) is the modular function f(~)
==
•
II (1 -
~.)-1
•
+L
==
1
L•
.,.(n)~·
p(n)~·.
The coefficients of the related function ~{j(~) }-14
==
_1
have been studied to some extent and are given for n ~ 30 in RAKANUJAN 2. Turning now to tables of the number of partitions in which the parts are restricted in some way we find two tables of the function q(n) which may be regarded either as the number of partitions of n into distinct parts or as the
[78]
DEscmPl'IVE
StJRVEY
number of partitions of n into odd parts, so that g(S} - 3. The first table is due to Darling and is published in HARDY and RAKANUJAN 1 (Table V), and gives q(n} for n~l00. WATSON 1 extends this table to n~400, and gives for the same values of n the function qo(n}, which denotes the number of partitions of n into distinct odd parts. UKEDA 1 gives for n ~ 100 the values of the function 1 • ml.{n} -1: pen} _1 where p.(n} denotes the number of partitions of n into exactly m parts. A small table of CAYLEY 5 gives for n~ 100 the number of partitions of n into the parts 2, 3, 4, 5, and 6. Other tables of restricted partitions are double entry tables. The first of these is EULER 3, which gives the number n (.) of partitions of n into parts ~ m, or what is the same thing, the number of partitions of n into not more than m parts for n~S9, m~20. The differences n(·)-n(.-1) are also tabulated. The table of GUPTA 7 gives the number en, m} of partitions of n in which the smallest part is precisely m, so that p{n}-{n+l, 1}. Table II {p. 21-79} gives en, m} for n~300 and 2~m~ [n/S). On p. 81 is a table giving the number of partitions of n into parts exceeding [n/4) for n~300. A small table of TAIT 1 gives the number of partitions of n into parts ~ 2 and ~rfor n~32 and r~ 17. GIGLI 1 gives the number N .(r) of partitions of n into precisely r distinct parts not exceeding 10 for r~ 10 and all possible values of n. The subject of partitions is of course not to be confused with the so-called quadratic partitions discussed under j., giving the actual partitions of numbers into several squares, all but one being equal. In this connection we may cite a table of GAUSS 3 having to do with the number R{n} of representations of n as a sum of two squares. Gauss tabulates the sum A
1: R{n}
for A - Ie· 10·, Ie ~ 10, m - 2,3, and 4.
This is also the number of lattice points inside a circle of radius v'A.
q.. Goldbach's problem Goldbach's, as yet unproved, conjecture is that every even number > 2 is the sum of two odd primesi > 1. Tables have been constructed to test the validity of this conjecture as well as to obtain some information as to the order of magnitude of the number G(s} of representations of 2s as a sum of two primes. CANTOR 1 gives all decompositions of 2n into a sum of two primes by listing 1
Some writers admit las a prime, however.
[79 ]
DESCRIPTIVE SU.VEY
the lesser of the two primes in each case for 2n~ 1000. The number of such decompositions is also given. HAUSSNEll 1 gives the same information as CANTOll 1, but for 2n~3000, and in addition gives the number of decompositions of 2n- P1+,. (P1 11) for 2n~5000. As an auxiliary table the values of P(n)-2P(n-2)+P(n-3) and of pen), the number of odd primes ~n, are given for each odd n~5000. PIPPING 1 lists for each even number 2n~5000 the smallest and largest primes < n which enter into the representation of 2n as a sum of two primes, together with the value of G(2n), the number of pairs of primes (P1, /11) such that P1 /11- 2n, the pairs (P1, /11) and (/11, P1) being reckoned as distinct if
+
Plif& /11. PIPPING 2 gives G(2n) for 2262~2n~2360, 4902~2n~5000 and 29982 080 together with the corresponding values of two approximating functions. PIPPING 3 gives G' (2n), the number of decompositions of 2n as a sum of two primes in Haussner's sense in which 2n=- P1+"- /1I+P1 are reckoned as one decomposition, for the same values of 2n as occur in PIPPING 2, and also the values of G(2n) for 120 072~2n~ 120 170. HAUSSNEll 4 has a table of the number of representations of 2n as a sum of two numbers divisible by no prime ~ pr, where Yr < 2n < Yr+1 for 2n ~ 500, and eleven other values of 2n between 4000 and 4166. STACKEL 1 has a similar table due to Weinreich for n-6k~16800. PIPPING 4 has a table of those even numbers 2n which exceed the largest prime less than 2n- 2 by a composite number for 5000~ 2n~ 60 000. With each such number 2n is given the least prime P such that 2n-p is also a prime. GllAVE 3 gives G' (2n) for 2n~ 1500. Two tables give verifications of Goldbach's conjecture at isolated points up to high limits. • CUNNINGHAM 10 has tested the conjecture for even numbers 2n of the form k· 2-, k-l, 3, 5,7,9,11, ~ 2n ~ 30
12-,20-, 2·10-,6-, 10-, 14-, 18-, 22-, 2"(2- ± 1) and also 2·k", k=-3, 5,7,11 and 2(2"±r), r~ 11 and odd, up to, in some cases, 2n~ 200 000 000. SHAH and WILSON 1 give the number of decompositions of 2n into the sum of two primes, and also into the sum of two powers of primes for 35 values of 2n from 30 to 170 172. A curious table of SCHEllK 1 expresses the nth prime p.. in terms of all previous primes as a sum of the form ,,-1
p.. = 1 + 1: f.P. 10-1
where
e:-l for k
f_1=
1 or 2.
[80 ]
DESCKJPTIVE StJRVEY
q.. Waring's problem
The eighteenth century conjecture of Waring that every number is the sum of at most 9 positive cubes, at most 19 fourth powers and so on, has given rise to a large number of tables. The Waring problem has been generalized in many ways, but almost all tables refer to the problem of representing numbers as sums of positive Ith powers. These tables are of two sorts: basic tables dealing with the representation of numbers from 1 to N as sums of some limited number of Ith powers, and special tables giving such information for miscellaneous ranges of numbers between certain high limits. Tables of this latter type are more recent and owe their existence to attempts to connect with results obtained analytically proving a "Waring theorem" for all large numbers, say n> N, and thus to prove the Waring theorem completely. The practical importance of many of these tables has been greatly reduced due to refinements in the analytical methods and a consequent lessening of the number N, a process which is likely to continue in the future. Tables relating to Waring's problem for Ith powers naturally classify themselves according to the value of I, and begin with 1=3. Tables of this sort for cubes date from 1835, when ZORNOW 1 gave the least number of cubes required to represent each n~ 3000, together with the number of numbers between" and (r+ 1)1 which are sums of no fewer than a specified number of cubes, for 1 ~ r ~ 13. This table was recomputed and extended by Dase to n~ 12 000, and published in JACOBI 4. Besides the corresponding distribution tables there is also the list of those numbers ~ 12 000, which are sums of 2 cubes and sums of not less than 3 cubes. The table of STERNECX 3 gives the minimum number of cubes required to represent every number ~ 40 000 as a sum of cubes. There also appears a table of the number of numbers in each chiliad which require a specified number of cubes from 1 to 9. A. E. Western has made a special study of the numbers represented as a sum of 4 or 5 cubes. In particular, he has determined for each n=91+4 <810 000, whether the number of representations by 5 cubes is 0, 1 or > 1. These results, and others for selected ranges between 4·10' and 4·10' are summarized in WESTERN 2, where the densities of the various numbers in various ranges are given and compared with empirical formulas. DICKSON 12 is a manuscript table extending STERNECX 3 from 40 000 to 270 000. DICKSON 13 is a manuscript table of the sum of 4 cubes from 270 000 to 560 000. From 300 000 on the minimum number of summands required to represent such numbers is indicated. A small table of Ko 1 gives the representation of every n~ 100, except 76 and 99, in the form ~+"+2", where~, y, and J are integers, positive, nega[81 ]
DESCJUPTIVE
SURVEY
tive or zero. The cases n- 6k are omitted from the table, since in this case we have (~, y, s)=(k+l, k-l, -k). Three tables on fourth powers may be mentioned. BRETSCHNEIDER 2 gives "minimum decompositions" for numbers n:i84 =4096. If $ is the least number of biquadrateswhose sum is n then all decompositions involving $ biquadrates are given. Those numbers n whose minimum decompositions are derived merely by adding 14 to those of the preceding number are omitted from the table. A second table lists all numbers representable by $, but no fewer than $ biquadrates for $= 2, 3, 4, ... , 19. A more elaborate table for the same range is D. H. and E. T. LElIKER 1. This gives all decompositions of each number :i 4096 into a sum of not more than 19 biquadrates. A table sufficient for finding one minimum decomposition into fourth powers for 4096
3" - 1,,2"
+ r",
quantities which are important in Waring's problem for nth powers. Gupta has published 4 tables dealing with the representation of numbers by sums of like powers of primes. In this case 1 is counted as a prime. GUPTA 2 has a table showing that every number :i 100 000 is a sum of not more than 8 squares of primes. GUPTA 6 has a special table for this problem of [82 ]
all integers :;a 2000 of the form .o4-(P1_1)/120, B-(P1_49)/120, C-.o4+B, where p is a prime. GUPTA 4 gives the least number of cubes of primes required to represent each number :;a 11' -1331, and a list of 150 numbers between 11' and 20 828 which require 6 or fewer cubes of primes. GUPTA 5 gives tables showing that every number :;a 20 875 (except 1301) is a sum of not more than 12 cubes of primes. Waring's problem with polynomial summands is responsible for a number of special tables due to Dickson and his pupils. The summands in question are polygonal numbers and certain cubic functions. For polygonal numbers we may cite DICUON 5, ANDERSON 1, GAKBE 1, and for cubics, BAXER 1, and lIABEJlZETLE 1.
[83 ]
D
BmLIOGRAPHY M. ALLlAl1KE. 11• Tables jusqu'tl n=- 1200 des Faaorielles '" Dicompodes en F"'eurs Premiers eI en Faaorielles PremUres, Louvain, 1928, 481 p. [ea, 13-481.] Librariu: MiU, NN, RPB
Is. Also in Louvain,
Universit~, Laboratoire d' Astronomie et de Goodesie, Pflblications, v. 5, no. 56,1929, p. 1-380 (identical with the same pages above); v. 6, no. 61, 1930, p. 101-201 (identical with p. 381-481 above).
M. R. ANDEllSON 1. Representation as a Sum of Multiples of Polygonal Numbers (Diss. Chicago), Chicago, 1936, ii+54 p. [q•.] Librariu: CU, CaM, CaTU, CoU, CtY, DLC, IC], ICU, IU, laU, MdB], MCM, MiU, MnU, MoU, NjP, NN, NNC, NeD, OCU, OU, PU, RPB, TxU, WU
H. ANJEMA. 1. Table des Diflisews de Ious Nombres depuis 1 jusqu'tl 10 000, Leyden, 1767, 302 p. [e1.] In the same year there were also editions with prefaces and title-pages in Dutch, German, and Latin. Librariu: MiU, NN, RPB
R. C.
ARCHIBALD.
1. "Mersenne's numbers," Scripta Math., v. 3, 1935, p. 112-119.
F.
[a: ea.]
ARNDT.
1. "Untersuchungen tiber einige unbestimmte Gleichungen zweiten Grades
und Uber die Verwandlung der Quadratwurzel aus einem Bruche in einen Kettenbruch," Archi" Math. Ph,s., v. 12, 1849, p. 211-276. U., 249-276.] 2. "Beitrage zur Theorie der quadratischen Formen," Archi" Math. Ph,s., v. 15, 1850, p. 429-478. U.·, 47H78.] 3. "Tabellarische Berechnung der reducirten biniiren kubischen Formen und Klassification derselben fUr aIle successiven negativen Determinanten (-D) von D-3 bis D-2000," Archi" Math. Ph,s., v. 31,1858, p. 335-448. [D,351-448.] R.
J. BACKLUND. 1. "'Uber die Differenzen zwischen den Zahlen die zu den n ersten Prim-
zahlen teilerfremd sind," Suomen Tiedeakatemia, Helsingfors, Toimuuksia (Annales), s.A., v. 32, no. 2, 1929, p. 1-9. [hI.]
E. BAHlER. 1. Recherche M ithodique eI Propriitb des Triangles Recla.ngles en N ombres [85 ]
BmLIOGIlAPlIY
BAit-BEE
Emws, Paris, 1916, vii+266 p. U., 255-261.]
LibrtIriu: ICU, ro, NjP, PU, RPB, TzU, WU
F. E.
BAXEll.
1. A COfIkibution 10 the Wa,ing P,oblem for Cubi& Fulldions (Diss. Chicago), Chicago, 1934, ii+39 p. [q•. ] Libraries: CU, CaM, CaTU, COU, CtY, DLC, IC], ICU, lEN, ro, IaU, MdB], MR, MiU, MnU, MoU, NjP, NN, NNC, OCU,OU, PU, RPB, TzU, WU
A. S. BANG. 1. "Om tal af formen a-+b--c-"," MateMatisk Tidss.ift, B, 1935, p. 4959. [k. 57-58.]
E.
BAllBETTE.
1. Let Sommu de pu- Puissances Distincles
~gales
t1 une pu. Puissance,
Li6ge, 1910, 154p.+app. [b7, app.] Libraries: IC], ro, MR, NjP, PU
P. BAllLow. 1. New Mathemati&al Tables, London, 1814, lxi+336 p. [el*, 1-167.] LibrtIriu: CPT, CaM, CaTU, COU, CtY, DLC, lEN, MB, MCM, MH, MiU, NbD, NNC,RPB
N. G. W. H. BEEGEll 1. "Quelques remarques sur 1es congruences ' ....1&1 (mod pi) et (p-l) 1-1 (mod pi)," Messenger Math., v. 43, p. 72-84, 1913. [d.*, 77-83.] 2. "On the congruence (p-l)la-l (mod pi)," Messenger Math., v. 49, p. 177-178, 1920. [b.*, 178.] 3. "On a new case of the congruence 2....1 _1 (mod pi)," Messenger Math., v. 51, p. 149-150, 1922. [b.: dl.] 4. "On the congruence 2....1 == 1 (mod pi) and Fermat's last theorem," Messenger Math., v. 55, p. 17-26, 1925. [b., 18-25: dl, 18-25.] 51. Additions and Corrections to" Binomial Factorisations" by A. J. Cunningham, Amsterdam, 1933, 12 p. [ea.] Hectographed copy. Libraries: RPB
Sa. Reprint in revised form by the London Mathematical Society: Supple-
6. 7. 8. 9.
mem to Binomial Factorisations by the late Lt.-Col. Allan J. C. Cunningham, R.E. Vols. I to IX, London, 1933, 12 p. Libraries: RPB "On some numbers of the form 6·s± 1," Annals of Math., s. 2, v. 36, 1935, p. 373-375. [ea.] "Report on some calculations of prime numbers," Nieflw Archief •• Wiskunde, s. 2, v. 20, 1939, p. 48-50. [b.: fl.] "On the congruence 2....1 _1 (mod pi) and Fermat's last theorem," Nieflw Archief •• Wiskunde, s. 2, v. 20, 1939, p. 51-54. [b., 53-54: dl, 53-54.] Primes between 61 621 560 and 61 711 650 and between 999 999 001 and 1 000 119 119. Manuscript in possession of the author. [fl.]
[86 ]
BmLIoGllAPHY
BEL-Bm
E. T. BELL. 1. "Class number and the form xy+,s+u," 1921, p. 103-116. [n, 116.]
T~hokfl
Math.
J"., v.
19,
]. L. BELL. 1. "Chains of congruences for the numerators and denominators of the Bernoulli numbers," Annals of Math., s. 2, v. 29, 1927, p. 109-112. [h.]
G. BELLAVITIS. 1. "Sulla risoluzione delle congruenze numeriche, e sulle tavole che danno i logaritmi (indies, degli interi rispetto ai vari moduli," R. Accad. Naz. d. Lincei, CI. d. sci. fis., mat. e nat., M emorie, s. 3, v. 1, 1877, p. 778-800. [e, 790-794: p, 796-800.) A. A. BENNETT. 1. "The four term Diophantine arccotangent relation," Annals of Math., s. 2, v. 27, 1925, p. 21-24. [1.] 2. "Table of quadratic residues," Annals of Math., s. 2, v. 27, 1926, p. 349356. [Is, 350-356.] 3. "Consecutive quadratic residues," Am. Math. So., v. 32, 1926, p. 283-284. [Is, 284.]
B..u.,
G. T. BENNETT. 1. "On the residues of powers of numbers for any composite modulus real or complex," Royal So. London, Phil. Trans., v. 184A, 1893, p. 189-336. [p,298-336.] M. BERTELSEN, see
GRAil
2.
W. E. H. BERWICK. [See also MATHEWS 2.) 1. Integral Bases (Cambridge Tracts no. 22), Cambridge, 1927. 95 p. [4., 68.] Libraries: CPT, CU, CaM, CaTU, COU, CtY, DLC, ICJ. lEN. ro, !&AS, !aU, MclBJ, MCY, MIl, MiU, MoU, NhD, NjP, NN, NNC, nu. NeD, OCU. OUt PBL, RPB, TxU,WU
C. E. BICKIIORE. [See also CAYLEY 6.] 1. "On the numerical facton of a--l," Messenger Math., v. 25, p. 1-44, 1895. [es·, 43-44.] 2. "Sur les fractions decimales p6riodiques," NOfIfJ. Annales d. Math., s. 3, v. 15, 1896, p. 222-227. [es·, 224-227.] C. E. BICKKORE and O. WESTERN. 1. "A table of complex prime factors in the field of 8th roots of unity," Messenger Malh., v. 41, p. 52-64,1911. U., 56-64: p, 56-64.]
D. BIDDLE. 1. "On factorization," Messenger Math., v. 28, p. 116-149,1898-9. fl. 134147: iI, 134-147.] [87 ]
BIL-BUR
K. K.
BIBLIOGllAPHY
BILEVICH, see DELONE, SOIlINSJ[II
and
BILEVICH.
G. BILLING. 1. "Beitrige zur arithmetischen Theorie der ebenen kubischen Kurven yom Geschlecht eins," K. Vetenskaps Societeten i Upsala, NOfJtJ Acta, s. 4, v. 11, no. 1, 1938, 165 p. (also with special title page, diss. Upsala). [1,159-163.]
G.
BISCONCINI.
1. "Soluzioni razionali delle equazioni indeterminate di tipo ~+.r:+ ... U., 31-32.]
+~-~h" Perioduod. MtJI., s. 3, v. 4,1907, p. 28-32.
E.
BORIsov.
1. 0 Privetlenii poloshihl'nyU 'roJnuhnykh lntJdrtJIichnykh form po sposobu SeUingtJ, s prilosheniem ItJblilsy privetlennykh form dlw "sieu opretlielilelel 1 do 200. [On the reduction of positive ternary quadratic forms by Selling's method, with an appended table of reduced forms for all determinants from 1 to 200] (Master's Diss. St. Petersburg), St. Petersburg, 1890, 108+tables, 116 p. [n*, 35-116, tables.]
0'
Li1wariu: RPB
H. BOKlt. 1. Periodische DesimtJlbrilche,_ Berlin 1895,41 p. [d,*, 36-41.] Ullrtwiu: IU, MH, RPB
C. A. BUTSCHNEIDEK. 1. "Tafel der pythagoriiischen Dreiecke," Archi" MtJlh. Phys., v. 1,1841, p. 96-101. Ua, 97-99.] 2. "Zerlegung der Zahlen bis 4100 in Biquadrate," In.f. d. reine u. tJngett1. MtJlh., v. 46,1853, p. 1-28. [q.*,3-12.] O. BKUNNEK.
1. LiJsungseigenschtJflm der Kubischen DiophtJnlischen Gleichung r- T - D, (Diss. ZUrich), ZUrich, 1933,91 p. [1,83-89.] Librariu: CtY, DLC,IU, NNC, RPB, WU
J. C. BURCKRARI>T. 1. TtJble des Diviseurs pour Tous les Nombres du Premier Million, ou plus emclemenl, depuis 1 t11 020 000, tJ"ec les nombres premiers qui s'y
"enI, Paris, 1817, viii+114 p. [d"
114: e1.]*
'1'0.
Librariu: CU, CtY, MIl, NN, NNC, RPB
2. TtJble des Diviseurs pour Tous les Nombres du DernUme Million, ou plus emclemenl, depuis 1 020 000 t1 2 028 000, tJ"ec les nombres premiers qui s'y'rouf1enl, Paris, 1814, 112 p. [e1*'] Lilwariu: CU, CtY, IaAS, MH, NN, NNC, OCU, RPB
3. TtJble des Diviseurs pour Tous les N ombres d" Troisume Million, 0" plus e%tJCIemenl, dep"is 2 028 000 t1 3 036 000, tJ"ec les nombres premiers q"i s'y'rouf1enl, Paris, 1816, 112 p. [e1*'] Lilwariu: CU, CtY, IaAS, MH, NN, NNC, RPB
[ 88]
BUT-CAU
BmLIOGJlAPlIY
P. BUTTEL. 1. "tiber die Reste der Potenzen der Zahlen," Archi, Malh. Phys., v. 26, 1856, p. 241-266. fda, 250-253: is, 244-246.]
E.
CAHEN.
1. £'Umenls de la Th~orie des Nombres, Paris, 1900, xii+408 p. [d1·, 375390: da·, 375-390: f1, 370-374: i,., 391-400.] Lilwariu: CU, CaM, CaTU, COU, CtY, IC], ICU, lEN, IU, InU, MdB], MD, MCM, MH, MiU, MnU, NhD, NjP, NNC, NeD, OCU, OU, PBL, PU, WU fJ'h~orie
2.
des Nombres, v. 1, Paris, 1914, xii + 408 p. [e1,378-381.]
Lilwariu: CPT, CU, CaM, CaTU' CoU, CtY, DLC, IC], ICU, lEN, ro, IaAS, KyU, MdB], MCM, MH, MiU, MoU, NjP, NN, NNC, NeD, OCU, OU, PBL, PU, RPB, TzU,WU Th~orie des Nombres, v. 2, Paris, 1924, %+736 p. [d1·, 55-56: da·, 39-54: i,., 380-382: j1, 267: n, 588-590.]
3.
Lilwariu: CPT, CU, CaM, CaTU' CoU, CtY, DLC, IC], ICU, lEN, ro, IaAS, KyU, MdB], MCM, MiU, MoU, NjP, NN, NNC, NeD, OCU, OU, PBL, PU, RPB, TzU, WU
G. CANTOK. 1. "Verification jusqu'a 1000 du tMor~me empirique de Goldbach," Ass. Fran~. pour l'Avan. d. Sci., Comples ReMus, v. 23, pt. 2, 1894, p. 117134. [Ib, 117-134.]
F. S.
CAllEY.
1. "Notes on the division of the circle," Quarlerly In. Malh., v. 26, 1893, p. 322-371. [0,367-371.]
R. D.
CAKKICHAEL.
1. "A table of mUltiply perfect numbers," Am. Math. So., Bull., v. 13, 1907, p. 383-386. [a, 385-386.] 2. "A table of the values of m corresponding to given values of .(m)," Am. In. Malh., v. 30, 1908, p. 394-400. [b1·.]
R. D. CUKICHAELand T. E.
MASON.
1. "Note on multiply perfect numbers, including a table of 204 new ones and the 47 others previously published," Indiana Acad. Sci., Proc., v. 21, 1911, p. 257-270. [a, 260-270.] G.S.CAU. 1. Synopsis of Elementary Resulls in Pure M alhemalics, London, 1886, xuvii+935 p. [e1, 7-29.] Lilwariu: CPT, CU, CaTU, COU, CtY, DLC, IC], ICU, InU, IaAS, IaU(l880), MB, MH, MiU, MnU, MoU, NhD, NIC, NNC, NeD, PBL, PU,.WU
A. CAUCHY. 11• "MtSmoire sur diverses formules relatives a l'alg~bre et a la thtSorie des nombres," Inst. d. France, Acad. d. Sci., Comples ReMus, v. 12, 1841, p. 813-846. [b1, 846.] I •• Oeuvres, Paris, s. 1, v. 6, 1888, p. 113-146. [b1, 145.] Lilwariu: CPT, CU, CaM, CaTU' COU, CtY. DLC, IC], lCU, lEN, IU, InU, IaAS,
[89 ]
BIBLlOGJtAP!lY
laU, KyU, MelD], MD, MCM, MH, MiU, MIlU, NbD, NjP, NN, NNC, nu, NeD, OCU,OU,PU,RPB,lXU,WvU,~
21. "McSmoire sur la rcSsolution des cSquations indcStermincSes du premier degrcS en nombres entiers," Exercises d' Analyse eI de P hysiq," M alhlmaliq,", v. 2, 1841, p. 1-40. [bt, 36-40.] LiIIrariu: CPT, CU, CtY, ICU, IU, IaAS, laU(I840), MD, MH, MIlU, NbD, NN, NNC, OCU,RPB
2s. Deflwes, s. 2, v. 12, 1916, p. 9-47. [bl, 43-47.] LilwtJriu: CPT, CU, CaTU, Cou, CtY, DLC, ICU, lEN, IU, InU, IaAS, laU, KYUt MelD], MD, MCM, MH, MiU, MIlU, NbD, NjP, NN, NNC, nu, NeD, OCU, OUt PU,RPB,lXU,WvU,~
A.
CAYLEY.
11. "Note sur 1'!Squation xl-Dyl- ±4, D-5 (mod 8)," In. f. d. rei. fl. angew. Malh., v. 53, 1857, p. 369-371. U., 371.] 11. CoUecletl Malhemalical Papers, Cambridge, v. 4,1891, p. 40-42. U.·,42.] 21. "Tables des formes quadratiques binaires pour les dcSterminants ncSgatifs depuis D- -1 jusqu'a D- -100, pour les dcSterminants positifs non carrcSs depuis D-2 jusqu'a D-99 et pour lea treize dcSterminants ncSgatifs irreguliers qui se trouvent dans Ie premier millier," In.f. d. rei. fl. angew. M alh., v. 60, 1862, p. 357-372. [n, 360-372.] 21• Col'ecletl Malhemalkal Papers, v. 5, 1892, p. 141-156. [n·, 144-156.] 3•. "Tables of the binary cubic forms for the negative determinants -0 (mod 4), from -4 to -400; and -1 (mod 4), from -3 to -99; and for five irregular negative determinants," Qurlerly In. Malh., v. 11, 1871, p. 246-261. [n, 251-261.] 31• CoUectetl M alhemalkal Papers, v. 8, 1895, p. 51-64. [n, 55-64.] 4t. "Specimen of a literal table of binary quantics, otherwise a partition table," Am. In. Malh., v. 4,1881, p. 248-255. [qt, 251-255.] 4s. Collecletl Malhemalkal Papers, v. 11,1896, p. 357-364. [qt, 360-364.] 51. "Non-unitary partition tables," Am. In. Malh., v. 7, 1885, p. 57-58. [ql.] St. CoUecletl Malhemalkal Papers, v. 12, 1897, p. 273-274. [q1.] 6t. "Report of a committee appointed for the purpose of carrying on the tables connected with the pellian equation from the point where its work was left by Degen in 1817," Br. Ass. Adv. Sci., Reporl, 1893, p. 73120. Ut, 75-119: jl, 75-80: m, 75-119.]· 6.. Co"ecletl Malhemalkal Papers, v. 13, 1897, p. 430-467. U1' 434-466: jl, 434-441: m, 434-441, 443-466.] LibrtJriu (for v. 4, S, 8,11,12,13): CPT, CU, CaM, CaTU, CtY, DLC, IC], ICU, IUt IaAS, laU, MelD], MB, MCM, MH, MiU, MIlU, MoU, NbD, NjP, NN, NNC, nu, NcD,OCU,OU,PU,RPB,WvU,~
71. "Report of the committee •.. on mathematical tables" [theory of numbers], Br. Ass. Ad. Sci., Report, 1875, p. 305-336. 71• CoUecletl M alhemalkal Papers, v. 9, p. 461-499. E. M. CKANDLEK. 1. Waring's Theorem for FOfl"h Powers (Diss. Chicago), Chicago, 1933, iv+62 p. [qa, 12-61.]
[90 ]
BIBLlOGllAPBY
Lilwariu: CU, CtY, DLC,IC],ICU,IEN,IU, laU, MIl, MiU, MoU, NjP, NN, NNC, NCO,OCU,OU,PU,RPB,TxU,~
L. CHAB.VE. 1. "Table des formes quadratiques quaternaires positives rMuites dont Ie dtSterminant est tSgal ou inftSrieur 20," Inst. d. France, Acad. d. Sci., Compus Rendus, v. 96, 1883, p. 773-775. [D.]
a
P. L.
CHEBYSHEV.
11• "Sur les formes quadratiques," In. d. M til"., s.l, v. 16,1851, p. 257-282. [ia*, 273-274: D, 273-274.] 11.0euflf'es, St. Petersburg, v. 1, 1899, p. 73-96. [ia, 88-89: D, 88-89.] Lilwariu: CU, CaM, CtY, DLC,IC], ICU,IU, IaAS, MdB], MCM, MIl, MiU, MnU (1907), NhD, NjP, NN, NNC, NCO, OCU, PU, RPB, TzU, ~
21. Teorifa Sravnenil [Theory of Congruences], (Diss. St. Petersburg), St. Petersburg, 1849, ix+iv+281 p. [d1, 235-264: da*, 235-264:ia*,265-279.] Librariu: RPB
21. Second ed., St. Petersburg, 1879, viii+iii+iii+223+app. 26 p. [d1, app. 3-18: da, app. 3-18: ia, app. 19-26.] Librtwiu: CU, IC], ICU, MH, MoU, NN
2•. Third ed., St. Petersburg, 1901, xvi+279 p. [d1, 235-264: da, 235-264: ia, 265-279.] Librariu: RPB
2,. Theorie der CongrfUnletJ, German transl. by H. SCBAPIllA, Berlin, 1889, xviii+314+app. 32 p. [d1, app. (r21: da*, app. (r21: ia*, app. 22-31.] Lilwtwiu: CU, CtY, DLC, ICU, IU, laU, MdB], MIl, MiU, NhD, NjP, NNC, OU, RPB,~
2.. Teoria delle CongrfUnle, Italian transl. by I. MASSAlUNI, Rome, 1895, xvi+295 p. [d1, 248-287: da*, 248-287: ia*, 288-295.] Lilwtwiu: IU, RPB
L.
CHERNAC.
1. Crilwum Aril"melicum, sive Tabula, conlinens Numef'oS Primos a composilis segregalos, OCCflf'f'enUs in Serie nUmef'orum ab unilau progredienlium, usf- ad decks cenkna millia, eI ullra /uuc, ad ,igi",i millia (1 020 (00). NUmef'is composilis per 2, 3, 5, non dividuis, adscriPli sunl divisores simplices, non minimi lanlum, sed omnino omnes, Deventer, 1811, ui+l020p. [el*'] Librariu: CtY, MIl, MiU, NN, RPB
I.
CHOWLA.
1. "The representation of a positive integer as a sum of squares of primes," Indian Acad. Sci., Proc., sect. A, v. 1, 1935, p. 451-453. [fl,453.] A. E. COOPEll. 1. "Tables of quadratic forms," Annals of Mal"., s. 2, v. 26, 1925, p. 309316. [D.]
J. G. VAN DEll COllPUT. 1. "Tafel der primitiven gleichschenkligen Dreiecke mit rationalen Winkel[91 ]
BIBLIOGJlAPBY halbierenden und mit Schenkeln kleiner als 160 000," Akad. v. Wetensch., Amsterdam, P,oc., tJjtleeZing 1JiJIuu,kunde, v. 35, 1932, p. 5154. [j" 52-53.] T. G. CKEAX, see CUNNINGHAK and CUAX, CUNNINGHAM, WOODALL and CUAl[. A. L. CULLE. 1. "Table des racines primitives etc. pour les nombres premiers depuis 3 jusqu'a 101, procMtSe d'une note sur Ie calcul de cette table," In. j. d. ,eine u. tJngew. M tJlh., v. 9, 1832, p. 27-53. [d1*, 52-53, d., 36-51: dc, 36-51: d" 36-51.] 2. Encykloplttlische DtJ,slellung der Theorie der ZtJhlen und einiger tJnderer
dtJmil in Verbindung slehender tJniJlylischer Gegemlitnde ,u, BejIWderung und tJllgemeineren Verb,eilung des Sltldiums der ZtJhlenleh,e durch den iJjfenllichen und SeZbsl-Unlerrichl eZemenltJ, und leichl ftJSslich florgel'tJgen, v. 1 [no more publ.], Berlin, 1845, xxvi+387 p. [d~, 387: d., 371-386: dc, 371-386: d" 371-386.] Pages 1-368 of this work are mainly reprinted from In.j. d. ,eine u. tJngew. MtJlh., v. 27-29. Lillrariu: etY, MD, MH, NN, RPB
3. "Tafel der kleinsten positiven Werthe von ~1 und St in der ganzzahligen Gleichung tJ1St-tJt~1+1," In. f. d. ,eine u. tJngew. MtJlh., v. 42, 1851, p. 299-313. [bit 304-313: h, 304-313.]
J. CULLEN, see CuNNINGHAK and CULLEN. A.
J.
C. CuNNINGHAM. 1. "On finding factors," Messenger MtJlh., v. 20, p. 37-45, 1890. [it, 40.] 2. "On 2 as a 16-ic residue," London Math. So., P,oc., s. 1, v. 27, p. 85-122, 1896. [4., 118-122.] 3. [High primes], London Math. So., P,oc., s. 1, v. 28, p. 377-379, 1897. [f., 378.] 4. A BintJ'y CtJnon, London, 1900, viii+172 p. [d., 172: 4,*, 1-171.] Lillrariu: CaTU, etY, DLC, IU, MdBJ, MB, MH, NNe, RPB, WU
5. "Period-lengths of circulates," Messenger MtJlh., v. 29, p. 145-179, 1900. [be, 166-179: dc, 166-179.]* 6. "High primes p-4cal+l and 6c.I+l, and factorisations," QUtJ,lerly In. MtJlh., v. 35, 1903, p. 10-21. [f., 19-21.] 7. QUtJtlrtJIic PMlilions, London, 1904, xxiii+266 p. [as·, 1-256: flo 1-256: f., 1-256: jl, 260-266: )••, 1-259.] Lillrariu: CU, cou, etY. DLC, leu. IU, MdBJ. MD, MR, NNe. RPB, WU
8. "On high Pellian factorisations," Messenger MtJlh., v. 35, p. 166-185, 1906. [as, 185.] 9. "Evidence of Goldbach's theorem," Messenger Malh., v. 36, p. 17-30, 1906. [Qt, 29-30.] 10. "High quartan factorisations and primes," M usenger M tJlh., v. 36, p. 145-174,1907. [f.*, 168-174.]
[ 92)
CUN
BIBLIOGllAPHY
11. "On hyper-even numbers and on Fermat's numbers," London Math. So., Proc., s. 2, v. 5, 1907, p. 237-274. [da, 268-274.) 12. "On binal fractions," M alh. GaseUe, v. 4, 1908, p. 259-267. [e, 266-267.) 13. "High sex tan factorisations," Messenger Math., v. 39, p. 33-63, 97-128, 1909. [f" 58-63, 125-128.) 14. "Number of primes of given linear forms," London Math. So., Proc., s. 2, v. 10, 1911, p. 249-253. [f., 251.) 15. "tquation indcSterminee," L'lnlerm~diaire d. Malh., v. 18, 1911, p. 4546. [I.) 16. "Determination of successive high primes (fourth paper)," Messenger Malh., v. 41, p. 1-16, 1911. [fl.) 17. "On quasi-Mersennian numbers," Messenger Malh., v. 41, p. 119-146, 1911-12. lea, 143-145: f., 144.) 18. "On tertial, quintal, etc. fractions," Math. GaseUe, v. 6, 1911, p. 63-67, 108-116. [e, 110-116.) 19. "On Mersenne numbers," Int. Congress Mathems., Cambridge, 1912, Proc., Cambridge, 1912, p. 385. [ea.) 20. [Note on large primes), Sphin% Oedipe, v. 8, 1913, p. 95. [fl,) 21. "Factorisation of N"'(y'=F2) and (2"=Fl)," Messenger Math., v. 43, p. 34-57,1913. [dc, 52-53: ea, 53-57.) 22. "Roots (y) of y,P'" =F 1;;;;;; 0 (mod pt)," Messenger M alh., v. 43, p. 148-163, 1914. [dc, 156-163.) 23. "On the number of primes of same residuacity," London Math. So., Proc., s. 2, v. 13, 1913, p. 258-272. [d., 265-272: f., 264.) 24. "Factorisation of N-(Y.=Fl) and (~.=FY-.)," Messenger Math., v. 45, p. 49-75, 1915. [dc, 66: ea, 72-74: 0*,57.) 25. "Factorisation of N-(%·=Fy-)," Messenger Math., v. 45, p. 185-192. 1916. [ea, 190-192.) 26. "Factorisation of N & N'-(%"=Fy")+(%=Fy), &c. [when %-y-l)," Messenger Malh., v. 49, p. 1-36, 1919. [ea, 23-30.) 27. "Factorisation of %"±y" etc., when %-y-n," Messenger Math., v. 52, p. 1-34, 1922. [ea, 28-34.) 28. Binomial Fadorisalions, v. 1, London, 1923, xcvi+288 p. [dc, 1-95: ea. 97-236: f., 1-95, 237-288: i 1, 1-21: j., 185-194: I, 229-236.)* LilwtJriu: CU, CtY, ICU, IU, NjP, NN, NNC, PU, RPB, WU
29. Binomial FacIo1'isalions, v. 4 [Supplement to v. I), London, 1923, vi+ 160 p. [d,*: f,*: il, 1-18.) LilwtJriu: CU, CtY, leu, ro, NjP, NN, NNC, PU, RPB, WU
30. Binomial Faclorisalions, v. 2, London, 1924, lxxix+215 p. [dc, 1-104: ea, 105-199: f., 1-104, 201-214.)* LilwtJria: CU, CtY, ICU, ro, MH, NjP, NN, NNC, RPB, WU
31. Binomial Faclorisalions, v. 6 [Supplement to v. 2), London, 1924, 103 p. [de: f •. )* LilwtJriu: CU, CtY, leu, ro, MH, NjP, NN, NNC, RPB, WU
32. Binomial Faclorisalions, v. 3, London, 1924, lxix+203 p. [d., 1-152: ea, 153-195: f., 1-152, 196-203.)* LilwtJriu: CU, CtY, leu, ro, NjP, NN, NNC, RPB, WU
[ 93]
BIBLIOGRAPHY
CUN
33. Binomial Fadorisaliom, v. 5, London, 1924, Ixxii+120 p. [dc, 1-101: es, 103-118: f., 1-101, 119, 120.]* LiIwariu: CU, CtY, lCU, ro, NjP, NN, NNC, RPB, WU
34. Binomial Faclorisalions, v. 7 [Supplement to v. 3, 5], London, 1925, 117 p. [de: f•. ] Librariu: CU, ICU, ro, NjP, NN, NNC, RPB, WU
35. "Determination of successive high primes (fifth paper)," Musenger Mat"., v. 54, p. 1-19, 1924. [el, 8-19: fl*' 5-7.] 36. QUtJll,alie and Linea, Tables, London, 1927, xii+170 p. [d., 125-133: es, 1-87, 162-170: fl, 1-87: f., 1-87: I, ii:h, 134-161: i l, 90-92,96-99, 103-123: it, 89, 93-95, 100-102: L, 124: j., 1-87.] Librariu: CU, CtY, lCU, ro, NjP, PU, RPB
37. "Factorisation of Y"=Fl, [y>12]," Messenger Mal"., v. 57, p. 72-80, 1927. [es*, 75-80.] 38. Binomial Faclorisalions, v. 8, London, 1927, iv+237 p. [de: f•. ]* Librariu: CU, lCU, NjP, RPB
39. Binomial Faclorismions, v. 9, London, 1929, vii+167 p. [d.: f•. ] Librariu: CU, RPB
40. "On Haupt-exponent tables," Messenger Mal"., v. 33,1904, p. 145-155: v. 34, 1904, p. 31. 41. (a) "Factor-tables. Errata," (b) "Quadratic partition tables.-Errata," Messenger Mal"., (a) v. 34, p. 24-31, 1904; v. 35, p. 24, 1905j (b) v.34, p. 132-136, 1905. 42. "Theory of numbers tables--errata," Messenger Mal"., v. 46, 1916, p. 49-69.
A.
J. C. CUNNINGHAM: and T. G. CREAX. 1. Fundamenlal Congruence Solutions Gilling One Root (E) of Every Cong,uence + 1 (mod p and pt) for AU P,imes and Powers of P,iMU <10 000, London, 1923, xviii+92 p. [dc, 1-91: es, 1-91.]
r!!!l
Librariu: CU, CtY (1922), ICU, IU, NjP, NNC, RPB, WU
A. J. C. CUNNINGHAM: and J. CULLEN. 1. "On idoneal numbers," Br. Ass. Adv. Sci., Report, 1901, p. 552. [f•.] A. J. C. CUNNINGHAM and T. GOSSET. 1. "4-tic and 3-bic residuacity tables," Messenger Mal"., v. 50, p. 1-30 1920. [d., 26-29.] A.
J. C. CUNNINGHAM: and H. J. WOODALL. 1. [Solution of problem 14305], Mal". Quesl. 83-94. [d., 93-94: es, 86-92.] 2. "Determination of successive high primes," 1900, p. 646. [fd 3. "Determination of successive high primes Adv. Sci., Report, 1901, p. 553. [fl.] 4. "Determination of successive high primes." 165-176,1902. [fl.]
[94]
Ed. Times, v. 73, 1900, p.
Br. Ass. Adv. Sci., Report, (second paper)," Br. Ass. Messenger Mal"., v. 31, p.
CW-DAl1
BIBLIOGJlAPHY
5. "Determination of successive high primes (second paper)," Messenger Malh., v. 34, p. 72-89, 1904. [f•. ] 6. "Determination of successive high primes (third paper)," Messenger Malh., v. 34, p. 184-192, 1905. [f•. ] 7. "Haupt-exponents of 2," Quarterly In. Malh., v. 37, 1905, p. 122-145, [ds·, 142]; v. 42, 1911, p. 241-250, [d" 248-249: d" 250); v. 44, 1912, p. 41-48,237-242, [d.·, 45-47,240-241: d" 48, 242]; v. 45, 1914, p. 114125, [d., 120-124: d., 122-125]. 8. "ffigh trinomial binary factorisations and primes," Messenger M alh., v. 37, p. 65-83,1907. [es, 78-82.] 9. FactorisationofQ- (2'+q) and (q.2'+ 1)," Messenger Malh., v. 47,1917, p. 1-38. [d" 28-34: 81, 35-38.] 10. Fad01'isa'ion oj y"+ 1, y- 2, 3, 5, 6, 7, 10, 11, 12 up to High Powers (n), London, 1925, xx+24 p. [es·.] LNW~:CU,CoU,ru,MoU,RPB
A. J. C. CUNNINGJIAJI, H. J. WOODALL and T. G. CREAK. 1. Haup' &POtN1lls, Residue-indues, Primili,e Roo" and Standard Congruences, London, 1922, viii + 136 p. [dt, 1-32,97-136: d., 33-96: es, 1-32, 97-136.]· LNWariu: CU, ICU, ru, MIl, NjP, RPB, WU
2. "On least primitive roots," London Math. So., Proc., s. 2, v. 21, 1922, p. 343-358. [d.·, 345, 350-358.] H. B. C. DAllLING, see lLuDy and RAKANl1JAN 1. Z. DASE. [See also JACOBI 4.] 1. Facloren-Tajeln jilr alle Zahlen der subenten Million, oder genauer ,on 6 000 001 bis 7 002 000, mil den darin '01'kommenden Prim,ahlen, Hamburg, 1862, iv+ 112 p. [~•.] Librariu: CU, CtY, DLC, MelD], MB, MR, NN, NNC, PU, RPB
2. FaclO1'en-Tajeln jilr aile Zahlen der achlen Million, oder genafief' ,on 7 002 001 his 8 010 000, mil den darin '01'kommenden Prim,ahlen, Hamburg, 1863, p. ii+113-224. [e.·.] . Librariu: CtY, MelD], MB, MIl, NNC, PU, RPB
3. Fact01'en-Tajeln jil, aile Zahlen der neumen Million, oller genafief' ,on 8 010 001 bis 9 000 000, mil den darin '01'kommenden Primsahlen [completed by H. R. Rosenberg], Hamburg, 1865, p. i+225-334. [~•.] Librariu: CtY. MelD]. MB. MIl. PU. RPB
P. H. DAl1S. 1. "Normal ternary continued fraction expansions for the cube roots of integers." Am. In. Malh., v.44, 1922, p. 279-296. [m,296.] 2. "Normal ternary continued fraction expansions for cubic irrationalities," Am. In. Malh., v. 51, 1929, p. 67-98. [m, 91-98: p, 91-98.] 3. "Ternary continued fractions in a cubic field," T8hoku Math. In., v. 41, 1936, p. 337-348. [m, 347-348: p, 347-348.] [95 ]
DAV-DIC
BIBLIOGllAPBY
H. T. DAVIS. 1. Tables of lhe Higher Malhemalkal Functions, v. 2, Bloomington, 1935, xiii+391 p. [fl' 249-250.] Lilwariu: CPT, CU, CaM, CaTU, COU, CtY, DLC, ICU, lEN, ro, InU, 1aAS, IaU, KyU, MCM, MH, MiU, MnU, NhD, NjP, NN, NNC, NeD, OCU, OU, PU, RPB, TzU
W. DAVIS. 1. "Les nombres premiers de 100 000 001 1.2, v. 11, 1866, p. 188-190. [fl·.]
a 100 001
699," In. d. M alh.,
C. F. DEGEN. 1. Canon PelliantU si,e TabuItJ simplkissimam aeqfllJlionis celelwalissimae i'''''a%'+l solutionem, pro singulis numeri dali ,aloribtU ab 1 tUque ad 1000, in numeris raiiontJlibtU iisdemque inlegris edibens, Copenhagen, 1817, xxiv + 112 p. ril, 3-112: m, 3-106.]· Lilw4riu: CtY, MIl, NhD, RPB
B. N. DELONE. 1. "Ueber den Algorithmus der Erhohung," Leningradskoe Fiziko-Matematicheskoe Obshchestvo, Zhwnal, v. 1, 1926-27, p. 257-;266; Russian abstract, p. 267. [1,266: a, 266.] 2. "Darstellung der Zahlen durch binire kubische Formen," Int. Congress Mathems., BolognG, 1928, Alii, v. 2, Bologna, 1928, p. 9-12. [1,11: a, 11.] B. N. DELONE, I. S. SOKINSXIf and K. K. BILEVICH. 1. "Tablitsa chisto veshchestvennykh oblastei 4-go poriadka" [Table of totally real fields of degree 4], Akad. Nauk. S.S.S.R., Leningrad, Bull., s. 7, no. 10, 1935, p. 1267-1297. [p, 1295-1297.] E. DESIlAltEST. 1. Th~orie des N om6res. Trait~ de I' Analyse Ind~termin~e du second degrl d detl% ineonnues suivi de I' applkalion de ceUe antJlyse d la recherche des rtJCines primitives avec une table de ces r(JCines pour lous les nomlwes premiers compris enlre 1 ell0 000, Paris, 1852,308 p. [dl, 298-300: d.·, 308: d" 308.] Li1w4riu: IC], ICU, IU, MB,
MH, MiU, NNC, RPB
L. E. DICKSON. 1. "A new extension of Dirichlet's theorem on prime numbers," Musenger Malh., v. 33, p. 155-161, 1904. [f., 158-161.] 2. "Theorems and tables on the sum of the divisors of a number," QfltJrlerly In. MoJh., v. 44, 1913, p. 264-296. [at 267-290: bs·, 291-296.] 3. "Finiteness of the odd perfect and primitive abundant numbers with n distinct prime factors," Am. In. MoJh., v. 35,1913, p. 413-422. [a, 420422.] 41• History o!lhe Theory of Num6ers, v. 1 (Carnegie Inst. Publ. 256),Washington, 1919, xii+486 p. [a, 45-46.] Lilw4riu: CU, CPT, CaM, CaTU, COU, CtY, DLC, IC], ICU, lEN,
[96 ]
ro, InU, IaAS,
DIe
BIBLIOGRAPHY
laU, KyU, MdB], MB, MIl, MiU, MnU, MoU, NhD, NjP, NN, NNC, NRU, NeD, OCU,OU,PBL,PU,RPB,TXU,WvU,~
'04,. Reprint, New York, 1934, xii + 486 p. [a, 45-46.] LaW~:CPT,CU,COU,RPB,WvU
5. "All positive integers are sums of values of a quadratic function of ~," Am. Math. So., Bull., v. 33, 1927, p. 713-720. [qa, 718-719.] 6. Sltulies in lhe Theory of Numbers, Chicago, 1930, x+230 p. [n·, 150-151, 179-180,181-185.] LaW~: CPT, CU, CaM, CaTU, CtY, DLC, IC], ICU, lEN, IU, InU, laAS, laU, KyU, MH, MiU, MnU, MoU, NjP, NN, NNC, NRU, NeD, OCU,OU, PBL, PU, RPB,TXU,~
7. Minimum Decompositions into Fiflh PO'Wef"S, London, 1933. (Br. Ass. Mathematical Tables, v. 3), vi+368 p. [qa.] LaW~:
CU, IU, NhD, NNC, PBL, RPB
8. Researches on Warin,'s Problem (Carnegie Inst. Publ. 464), Washington, 1935, v+257 p. [q••] LaW~: CU, CPT, CaM, CaTU, CoU, CtY, DLC, IC], ICU, lEN, IU, InU, 1aAS, laU, KyU, MdB], MB, MH, MiU, MnU, MoU, NhD, NjP, NN, NNC, NRU, NeD, OCU,OU,PBL,RPB,TXU,WvU,~
9. Modern Elementary Theory of Numbers, Chicago, 1939, viii+309 p. [n, 58,79, 112-113.] LiJJrariu: CPT, CU, CaM, CtY, DLC, IC], ICU, 1aAS, laU, InU, lIB, MIl, MiU, MnU, MoU, NhD, NjP, NN, NNC, NRU, NeD, OU, RPB, ~
10. Table of the unique solution ~ of 1+,,,=,- (mod p) for a given n, and a given primitive root, of the prime p, Manuscript. [k.] Libr~:ICU
11. Table of minimum decompositions into fifth powers of the integers from 839 000 to 929 000, 1 466 800 to 1 600 000, Manuscript. [Ila.] Libr~:ICU
12. Table of minimum number of cubes required to represent each integer from 40 000 to 270 000, Manuscript. [q•. ] Libr~:ICU
13. Table of sums of four cubes from 270 000 to 560 000, Manuscript. [q•.] Libr~:ICU
14. History of Ihe Theory of Numbers (Carnegie Inst. Pub!. 256), Washington, v. 1, 1919; v. 2,1923; v. 3,1927. Reprint, 3 v., New York, 1934. In these volumes are references to tables supplementary to those mentioned in the report. A list of such references, arranged according to classifications of this report, follows (see Introduction): • v. 1, ch. I, no. 42. b" v. 1, ch. V, DO. 94• .,. v. 1, th. I, no. 363. b. v. 1, ch. IV, DO. 29. c v. I, th. VI, DOl. 8,9. 4, v. I, th. VII, DOl. 2, 4, 55. de v. 1, ch. VI, nOl. 8, 9. de v. I, ch. VII, nOl. 54, 105: th. VIII, nOl.
80,94.
4. v. 1, ch. I, no. 54: ch. UI, no. 235. [97 ]
III v. 1, ch. XDI. .. v. 1, ch. I, nOl. 89, 139: ch. VI, DOl. 14,
f, f. I b L
Jt
26,35,37,50,109, 141:ch. XVI:ch. xx, no. 27. v. 1, ch. VI, DO. 13: ch. XUI. v. 3, ch. I, DO. 16. v. 1, ch. XIV, DO. 37. v. 2, ch. D, DO. 41. v. 3, ch.1, DO. 20. v. 2, th. XU, DOl. 65, 72, 82, 99, 102,
DIN-EUL
BIBLIOGllAPBY
107, 135,273. v. 2, th. XVI, DOl. 1,70,77: v. 3, ch. I, DOl. 16, 94. Js v. 2, ch. IV, DOl. 42, 96, p. 189-190: ch. V, DOl. 16,31,48,59: ch. VIII, Do.41. t v. 1, th. VIII, DOl. 136, 137. Lilwariu: See " above.
Js
I v. 2, ch. xx, DOl. 56, 58: ch. xxn, Do.I07. m v. 2, ch. XU, DOl. 145, 232, 273. D v. 3, ch. I, DOl. 18, 126: ch. n, no. 31: ch. IV, DOl. 14, 15: ch. V, DO. 196 (p. 150): ch. IX, DO. 20. ql v. 2, ch. m, DOl. 9, 32,77.
L.L.DINES. 1. "A method for investigating numbers of the form 6i s± 1," AnMls of MtUh., s. 2, v. 10, 1909, p. 105-115. [ft*, 111-115.]
w. P. DUB.I'EE. 1. Factor table for the 16th million, Manuscript, compiled 1923-29. For a complete account of the table see Scripta Math., v. 4, 1936, p. 101. [~*: fl.] Lilwariu: Am. Math. So., New York City.
W. C. EELLS. 1. [Solution of a problem], Am. MtUh. Mo., v. 21, 1914, p. 271-273. [j,.] G. EISENSTEIN. 11. "Neue Theoreme der haheren Arithmetik," In. f. d. rline fl. angew. Math., v. 35,1847, p. 117-136. [n, 136.] I,. MtUhematische Abhantllflngen, Berlin, 1847, p. 177-196. [n, 196.] Lilwariu: CPT, CU, CaM, CoU, CtY, ICU, lEN,IU, MD, MIl, NbD, NjP, NNC, NeD,OCU, RPB, WU
2. "Tabelle der reducirten positiven temiren quadratischen Formen, nebst den Resultaten neuer Forschungen tiber diese Formen, in besonderer R ticksicht auf ihre tabellarische Berechnung," J n. f. d. rline fl. angew. Math., v. 41, 1851, p. 141-190. [n, 169-190.] 3. "Anhang zu der 'Tabelle der reducirten positiven temiren quadratischen Formen, etc.' im vorigen Hefte," In. f. d. nine fl. angew. M tUh., v. 41, 1851, p. 227-242. [n.]
J. D. ELDEll, see D. N. LEHKEll3t. E. B. ESCOTT. [See also POULET 5.] 11. "The converse of Fermat's theorem," Messenger Malh., v. 36, p. 175176, 1907. [d., 176.]
It. French transl. by J. FITZ-PATJUCIC, "L'Inverse du th~r~me de Fermat," Sphin~ Oetlipe, v. 2, 1907, p. 146-148. [de, 147-148.] L.EULEll. 11. "De numeris amicabilibus," OpflScflla Varii Argumenti, Berlin, v. 2, 1750, p. 23-107. [a, 105-107: bt, 27-32: es, 27-32.] Lilwariu: DLC, IC], ICU, IU, MdB], MH, NjP, NN, RPB
I,. CommenttUiones Arithmeticae, St. Petersburg, v. 1, 1849, p. 102-145. [a, 144-145: bt, 104-109: es, 104-109.] [98]
FAD-GAU
BIBLIOGRAPHY
Libraries: CU, ICU, KyU, MdB], MIl, NN, NNC, RPB
I •. OpertJ OmnitJ, Leipzig, s. 1, v. 2, 1915, p. 86-162. [a, 159-162: bt, 90-95:
ea,90-95.] Libraries (abo for .. I, v. 3): CU, CaM, CtY, DLC, IC], ICU, lEN, IU, IaAS, laU, MdB], MIl, MiU, MnU, NhD, NjP, NN, NNC, NeD, OCU, PU, RPB, TxU, WU
1,. French transl. in Sphin% Oedipe, v. 1, 1906, Supplement, p. i-Ixxvi. [a, l::av-Ixxvi: bt, iv-xi: ea, iv-xi.]· 21. "De numeris primis valde magnis," Acad. Sci. Petrop., NoW Commenlarii, v. 9 (1762-3),1764, p. 99-153. [es, 128-153: f., 123-127: ii, 112-117.] la. CommenltJliones ArilhmelictJe, v. 1, 1849, p. 356-378. [ea, 369-378: f., 367-369: ii, 362-364.] 2•• Opera Omnia, s. 1, v. 3, 1917, p. 1-45. [ea, 26-45: f., 22-25: ii, 13-17.] 2,. French transl. in Sphin% Oedipe, v. 8, 1913, p. 1-12, 21-26. [ea, 11-12, 21-26: f., 10-11: ii, 7.] 31. "De partitione numerorum," Acad. Sci. Petrop., NOfJi Commenla,U, v. 3 (1750-1), 1753, p. 125-169. [ql, 165-169.] la. Commenlaliones ArilhmelictJe, v. 1, 1849, p. 73-101. [ql, 97-101.] 3•. OpertJ Omnia, s. 1, v. 2, 1915, p. 254-294. [q., 290-294.] D. K. FADDEEV. 1. "Ob uravnenii [on the equation] %'+,,·-AI·," Akad. Nauk S.S.S.R., Leningrad, Fiz-mat. Inst. imeni V. A. Stekloff, Trud", v. 5,1934, p. 2540. [1,40.]
A.
FLECHSENBAAR.
M.
1. "Die Gleichung %"+,,"-1".0 (mod n·)," Z. f. fIftJIh. richl, v. 40, 1909, p. 265-275. [t, 275.]
fl.
tUJIvI. Unler-
hOLOV.
1. "Sur les rEsidus quadratiques," Ass. Fran~. pour I'Avan. d. Sci., Compus Rendtu, v. 21, pt. 2, 1892, p. 149-153. [it, 158-159.]
E.R.GnBE. 1. New Waring theorems for extended polygonal numbers (Master's thesis, Chicago), Chicago, 1937, i+13 p. Manuscript. [q•. ] Librariu: ICU
K. F. GAUSS. 11. Disqflisiliones ArilhmetictJe, Leipzig, 1801, xviii+668+app. 10 p. [e, 56: cia, 1-2: i., 3-4: 0, 638, 665.] LibrGriu: CtY, DLC, lEN, IU, laU, MB, MIl, MiU, NN, NNC, PU, RPB, TxU
Is. Werke, v. 1, GlSttingen, 1863, second ed.,11870, 474 p. [e, 470: cia, 468: it, 469: 0, 357, 463.] Libraries: I ecI. CU, CaM, CtY, IC], ICU, NN, RPBi
n eeL CPT, CaM, CaTU, CtY,
1 In all double entries under GaUlS, we have not given separate numbers to articles in the firat and IIeCOnd editions of GaulS' W"ie, v. 1-2, where the page numbers are identical in GAUSS
1-7.
[99 ]
G:tJt
BIBLIOGRAPHY DLC, lEN, IaAS, IaU, IU, KyU, MdB], MD, MH, MiU, NhD, NjP, NNC, NeD, OCU,OU, PU, RPD, TzU, WU
la. Recherches Aruhm~tiques, French transl. by A. C. M. POULLET-DELISLE, Paris, 1807, xxii+502 p. [c, 501-502: cia, 497-498: i 2, 499-500: 0,469, 489.] Libraries: CaTU, CtY, DLC, IC] (1910), lCU, InU, MD, MH, MiU, NhD, NNe, NeD (1910), PU, RPD
I •. Untersuchungen aber hohere Aruhmetik, German transl. by H. MASER of the Disquisuiones (p. 1-448,451-453), with "Zusatze" (p. 449-450) and "Abhandlungen" and Gauss "Nachlasse" with "Bemerkungen" (p. 455~95), Berlin, 1889, xiii+695 p. [c, 453: cia, 451: is, 452: 0, 428, 448.] Libraries: CU, ICU, IU, MH, MiU, MnU, NNC, PU, RPD, TxU
21• "Theoria residuorum biquadraticorum," Gesell. d. Wiss. z. Gottingen, Commentationes •.. recentior-es, Cl. math., v. 6, 1828, p. 27-56; v. 7, 1832, p. 89-148. [d" 35-37: p, 131-133.] 2•. Werke, v. 2, 1863, second ed., 1876, p. 65-92, 93-148. [d., 73-75: p, 132134.] Libraries: I ed. CU, CaM, CtY, IC], ICU, NN, NNC, RPDj n ed. CPT, CaM, CaTU, CtY, DLC, IU, InU, laAS, IaU, KyU, MdB], MD, MH, MiU, NhD, NjP, NNC, NeD, OCU,OU,PU,RPD,TzU,WU
3. "De nexu inter multitudinem classium, in quas formae binariae secundi gradus distribuuntur, earumque determinantem," W erke, v. 2, 1863, second ed., 1876, p. 269-291. [is, 287-291: q1, 271.] 4. "Tafel des quadratischen Characters der Primzahlen von 2 bis 997 als Reste in bezug auf die Primzahlen von 3 bis 503 als Theiler," W erke, v. 2, 1863, second ed., 1876, p. 400-409. [it.] 5. "Tafel zur Verwandlung gemeiner BrUche mit Nennern aus dem ersten Tausend in Decimalbruche," Werke, v. 2, 1863, second ed., 1876, p. 412-434. [c.] 6. "Tafel der Frequenz der Primzahlen," W erke, v. 2, 1863, second ed., 1876, p. 436-443. [fl·'] 7. "Tafel der Anzahl der Classen binllrer quadratischer Formen," Werke, v. 2, 1863, second ed., 1876, p. 450-476. [n·.] 8. "Tafel zur Cyklotechnie," Werke, v. 2, 1863, p. 478-495, second ed., 1876, p. 478-496. [es.] 9. "Indices der Primzahlen im hOhern Zahlenreiche," Werke, v. 2,1876, p. 506. [Not in first ed.] [p.] 10. "HUlfstafel bei Auflosung der unbestimmten Gleichung A -lxx+g" vermittelst der Ausschliessungsmethode," W erie, v. 2, 1876, p. 507-509. [Not in first ed.] [i~.] A. G:bARDIN. 1. "Table des nombres dont 10 est racine primitive et nombres de la forme lon-I," Sphinx Oedipe, v. 3, p. 101-112, 1908. [dt , 107-110: d., 107110: el, 104-106.] 2. "Table des residus quadratiques," Sphinx Oedipe, v. 9, p. 21-22, 1914. [i1 : it.] 3. "Congruences 2)"-1=0 (mod p), Sphinx Oedipe, v. 9, p. 20, 1914. [d•. ] [100 ]
BIBLIOGJlAPHY
GIP-Gu
4. "Au sujet d'un probleme de Fermat," L'Interm6diaire d. Math., v. 22, 1915, p. 111-114. [es, 112-113.] 5. "Sur 1'6quation %I±yl_ ±a," SphifJ% Oetlipe, v. 10, p. 53-57, 65-70, 83-88, 1915; v. 11, p. 4-8, 22-27, 38-43, 55-59, 71-76, 8~88, 1916; v. 12, p. 8-12, 21-24,38-40,54-56, 71-74, 1917. [1.] 6. "Factorisations quadratiques et primalitcS, 1," Sphin% Oetlipe, v. 27, 1932, 96+app. 7 p. [f" app.] 7. Table of the Pel1 Equation. Manuscript in the possession of the author.
01.] E. GIFI'OKD. [See also PETEKS, LODGE and TEKNOtJTH, GII'I'OO.] 1. Primes and Fadors, Manchester, 1931, v+99 p. [el·.] LUr~:CU,DLC,NbD,NN,RPB
D. GIGLI. 1. "Sul1e somme di n addendi diversi presi fra i numeri 1, 2, ... , m," Circolo Mat. d. Palermo, Rentliconli, v. 16, 1902, p. 280-285. [Ql, 284.]
J. GUISHEK. 1. Faclor Tablefor lhe FOfWthMiUion, Containing the Least Fador of EfJery Number Nol DifJisible by 2, 3, or 5 between 3 000 000 and 4 000 000, London, 1879.52+112 p. [el·, 1-112: fI, 40-45, 48-52.] LUr~:
CU, CtY, DLC, ICU, IU, MdBJ, MB, MH, NbD, NN, NNC, PU, RPB
2. Faclor Table for the Fifth Million, Containing lhe Leasl Fador of EfJery Number Not DifJisible by 2, 3, or 5 between 4 000 000 and 5 000 000, London, 1880, 11+112 p. [e~, 1-112: f 1, 6-10.] LUr~:
CU, CtY, DLC, lCU, IU, MD, MH, NN, NNC, PU, RPB
3. Factor Table for lhe Si%lh MiUion, Containing Ihe Leasl Faclor of EfJery Number Nol DifJisible by 2, 3, or 5 between 5 000 000 and 6 000 000, 1-112: fh 10-64, 71-76,80-88.] London, 1883, 103+112 p.
rei·,
LUr~:
CU, CtY, DLC, lCU, IU, MB, MH, NbD, NN, NNC, PU, RPB
J. W. L. GLAISHEK. 1. "On the law of distribution of prime numbers," Br. Ass. Adv. Sci., Report, 1872, Sectional Trans., p. 19-21. [fl'] 2. "Preliminary account of the results of an enumeration of the primes in Dase's tables (6,000,000 to 9,000,000)," Cambridge Phil. So., Proc., v. 3, p. 17-23, 1876. [f1, 21-23.] 3. "Preliminary account of an enumeration of the primes in Burckhardt's tables (1 to 3,000,000)," Cambridge Phil. So., Proc., v. 3, p. 47-56,1877. [fh 54-56.] 4. "On circulating decimals," Cambridge Phil. So., Proc., v. 3, p. 185-206, 1877. [bl, 204-206: c, 204-206: d" 204-206.] 5. "On the value of the constant in Legendre's formula for the number of primes inferior to a given number," Cambridge Phil. So., Proc., v. 3, p. 296-309, 1877. [fl.] 6. "On the enumeration of the primes in Burckhardt's and Dase's tables," Br. Ass. Adv. Sci., Reporl, 1877, Sectional Trans., p. 20-23. [fl'] [101 ]
GLA
BIBLIOGRAPHY
7. "On long successions of composite numbers," Messenger Malh., v. 7, p. 102-106,171-176,1877-8. [f1, 104, 105, 171-176.] 8. "An enumeration of prime-pairs, " Messenger M alh., v. 8, 28-33, 1878. [fl.] 9. "On certain special enumerations of primes," Br. Ass. Adv. Sci., Report, 1878, p. 470-471. [f1 : f t .]* 10. "Note on the enumeration of primes of the forms 4n+l and 4n+3," Br. Ass. Adv. Sci., Report, 1879, p. 268. [fl'] 11. "Report of the committee ... on mathematical tables," Br. Ass. Adv. Sci., Report, 1879, p. 46-57. [f" 47-49.] 12. "Separate enumerations of primes of the form 4n+ 1 and of the form 4n+3," Royal So. London, Proc., v. 29, 1879, p. 192-197. [f" 195-197.] 13. "Report of the committee ... on mathematical tables," Br. Ass. Adv. Sci., Report, 1880, p. 30-38. [fl,] 14. "Report of the committee ... on mathematical tables," Br. Ass. Adv. Sci., Report, 1881, p. 303-308. [fl'] 15. "On the function which denotes the difference between the number of (4m+l)-divisors and the number of (4m+3)-divisors of a number," London Math. So., Proc., s. 1, v. 15, p. 104-122, 1884. [bs, 106: n, 106.]* 16. "Report of the committee ... on mathematical tables," Br. Ass. Adv. Sci., Report, 1883, p. 118-127. [fl.] 17. "On the representations of a number as the sum of four uneven squares, and as the sum of two even and two uneven squares," Quarterly In. Malh., v. 20,1885, p. 80-167. [b" 164-165: f" 151-154: n, 164-165:p, 151-154.] 18. "On the square of Euler's series," London Math. So., Proc., s. 1, v. 21, p. 182-215, 1889. [bs, 190-192: n, 190.] 19. "On the function which denotes the excess of the number of divisors of a number which =1, mod 3, over the number which =2, mod 3," London Math. So., Proc., s. 1, v. 21, p. 395-402, 1890. [bs, 402: n, 402.] 20. "On the sums of the inverse powers of the prime numbers," Quarterly In. Malh., v. 25, 1891, p. 347-362. [fl , 353.] 21. "On the series 1/32 -1/5'+1/7 2 +1/11'-1/13'- ... ," Quarterly In. Malh., v. 26, 1893, p. 33-47. [es,47.] 22. "Table of the values of i -I- t ... (x-l)/x, the denominators being the series of prime numbers," Messenger Malh., v. 28, p. 2-15, 1898. [fl.] 23. "Congruences relating to the sums of products of the first n numbers and to other sums of products," Quarterly In. Malh., v. 31, 1900, p. 135. [bt, 26-28.] 24. "Table of the excess of the number of (3k+ I)-divisors of a number over the number of (3k+2)-divisors," Messenger Malh., v. 31, p. 64-72, 1901. [bs, 67-72: n, 67-72.] 25. "Table of the excess of the number of (8k+ 1)- and (8k+3)-divisors of a number over the number of (8k+5)- and (8k+ 7)-divisors, " Messenger Malh., v. 31, p. 82-91, 1901. [bs, 86-91: n, 86-91.] 26. "On some asymptotic formulae relating to the divisors of numbers," Quarterly In. M alh., v. 33, 1902, p. 1-75, 180-229. [bs, 42, 193,204,213.] ( 102]
GOL-GRA
BIBLIOGRAPHY
27. Nflmber-Divisor Tables (Br. Ass. Mathematical Tables, v. 8), Cambridge 1940, x+l00 p. lbt, 2-71: bt, 2~, 72-100: 81, 2-63.} B. GOLDBERG. 1. Primsahlen- flM Fadoren-Tafeln eon 1 bis 251 647, Leipzig, 1862, 285
p. [et·.} Librllriu: RPB
•
2. Res'" flM Quo'ienl-Rechnflng, Hamburg, 1869, 138 p. [dl, 97-138.} Librllriu: NNe
V. GOLUBEV. 1. Factor table of the eleventh and twelfth millions. Manuscript. [el.} LibrIIriu: Stekloff 1Dst., MOICOW. H. GOODWYN. 1. The Fird Cenlenary of a Series of Concise aM Useful Tables of AU ,he Complele Decimal Quo'ien's which can arise from dividing a flnu, or any whole nflmber less 'han each divisor, by all in'egers from 1 1024. To which is now atltled a labular series of complele decimal quo'ienls for all ,he proper vulgar frac'ions of which, when in 'heir lowed lerms, nmber ,he numeralor nor ,he tlenominalor is grealer 'han 100; wilh ,he eqflivalen# vulgar frac'ions prefixed, London, 1818, xiv+18; vii+30 p. [bl: c.]
'0
LibrarNl: etY (specimen 1816), RPB
2. A Tabular Series of Decimal Quo'ienls for All Proper Vulgar Frac'ions of which, when in 'heir lowes' 'erms, nei'her 'he nflmeralor nor ,he denominalor is grealer 'han 1000, London, 1823, v+ 153 p. [bl: c.] Librllriu: Ie]
3. A Table of Circles arisingfrom 'he Division of a Unu, or Any O'her Whole 1024, being aU 'he pure decimal Nflmber, by AU 'he 1megers from 1 qflo'ienls ,hal can arise from Ihis source, London, 1823, v+ 118 p. [c.}
'0
Libraries:
T. GOSSET. [See also CUNNINGHAM: and GOSSET.] 1. "On the law of quartic reciprocity," Messenger Malh., v. 41, p. 65-90, 1911. [d" 84-85.] C. GOUWENS. 1. "The decomposition of 4(x p -l)/(x-l)," Am. Malh. Mo., v. 43, 1936, p. 283-284. [0·.] 2. "The decomposition of 4(x p -l)/(x-l)," Iowa Acad. Sci., Proc., v. 43, 1936, p. 225-262; v. 44, 1937, p. 137-138. [0.]
J. P. GRAM:. 1. "UndersflJgelser angaaende maengden af primtal under en given graense," K. Danske Vidensk. Selskabs, Skrifler, s. 6, v. 2, p. 183-288, 1884. [b., 268-286: fs, 268-288.] 2. "Rapport sur quelques calculs enterpris par M. Bertelsen et concernant les nombres premiers," Acta Malh., v.17, 1893, p. 301-314. [f1,312-314.] [ 103}
GRA-1IAll
BIBLIOGRAPHY
D. O. GRAVE. 1. "Pro prosti ~isla vjdu p - 411+3," [On the primes of the form 4n+3], Vseukrajins'ka Akad. Nauk, Kief, Zurnal mat. ciklu (anno 3), v. 1, no. 4, 1934, p. 91-95. [0·,93-95.] 2. "Pro dejaki kvadrati~ni polja," [On certain quadratic fields], Vseukrajins'ka Akad. Nauk, Kief, Zumal mat. ciklu (anno 3), v. 1, no. 4, 1934, p. 97-112. [0·,98-109.] 3. Traklal s Algebrichnogo Analisu, v. 2, Kiev, 1938,400 p. [d1·,362-391: eL, 362-391: el·, 325: q"., 19-22.] LibrGriu: CU, CtY, DLC, NN, NNC, RPB H. GUPTA.
1. "A table of partitions," London Math. So., Proc., s. 2, v. 39, 1935, p. 142-149; v. 42, 1937, p. 546-549. [q1.] 2. "Decompositions into squares of primes," Indian Acad. Sci., Proc., sect. A, v. 1, 1935, p. 789-794. [qa, 7~794.] 3. "On a conjecture of Ramanujan," Indian Acad. Sci., Proc., sect. A, v. 4,1936, p. 625-629. [ql, 626-629.] 4. "Decompositions into cubes of primes II," Indian Acad. Sci., Proc., sect. A, v. 4, 1936, p. 216-221. [qa, 217-220.] 5. "Decompositions into cubes of primes," T'hoku Math. In., v. 43,1937, p. 11-16. [qa, 12.] 6. "On a conjecture of Chowla," Indian Acad. Sci., Proc., sect. A, v. 5, 1937, p. 381-384. [qa,382-384.] 7. Tables of Partitions, Madras, The Indian Mathematical So., 1939, vi+82 p. [q1, 8-81.] LibrGriu: IU, RPB
M. HABEllZETLE. 1. Representation of large integers by cubic polynomials (Master's thesis, Chicago), Chicago, 1936, iii+27 p. Manuscript. [q,.) Libraries: ICU
E.
H. HADLOCK.
1. "Progressions associated with a ternary quadratic form," Am. In. Math., v. 57, 1935, p. 274-275. [n.] M. HALL. 1. "Slowly increasing arithmetic series," London Math. So., In., v. 8,1933, p. 162-166. [b., 166: e", 166.] G.
B.
HALSTED.
1. M elrical Geometry, and Elementary Treatise on M ensuralion, Boston, 1881, vii+232 p. [ja·, 147-149, 167-170.] LibrGriu: CPT, CU, lEN, IU (1900), InU (1883), laAS, MiU, MnU, NjP, NNC (1900), NcD,RPB
and J. E. LITTLEWOOD. 1. "Partitio numerorum III: On the expression of a number as a sum of
G. H. HARDY
[104 ]
HAll-Hott
BIBLIOGRAPHY
primes," Ada Malh., v. 44,1923, p. 1-70. [ft, 39, 43, 44, 63: CIt, 39.] 2. "Some problems of partitio numerorum VIII," London Math. So., Proc., s. 2, v. 28, 1928, p. 518-542. [qa, 540-542.]
G. H. HAm>y and S. RAKANU]AN. 11. "Asymptotic formulae in combinatory analysis," London Math. So., Proc., 5.2, v. 17,1918, p. 75-115. [q1·, 112-115.] 11. Collected Papers of Sriflivasa Ramafllljafl, Cambridge, 1927, p. 276-309. [q1·,306-309.] Lilwariu: CPT, CU, CaM, CoU, CtY, DLC, ICU, ro, IaAS, IaU, MdB], MCM, MIl, MiU, NhD, NjP, NN, NeD, OCU, OU, PU, RPB, WU
R. HAUSSNER. 1. "Tafeln fUr das Goldbachsche Gesetz," K. Leop. Carol Deu tschen Akad. d. Naturforscher, Abhandlllngen, v. 72, no. 1, Halle, 1897. [qt, 25-178, 181-191,195-210.] 2. "Reste von 2-1-1 nach dem Teiler pi fUr alle Primzahlen bis 10 009," Archivfor Malh. og Nalunidenskab, v. 39, no. 2, 17 p., 1925-6. [be, 6-17: dl ,6-17.] 3. "'Uber numerische L6sungen der Kongruenze 11-1-1 eO (mod p2)," In.f. d. reifle 11. aflgew. Malh., v. 156, 1926, p. 223-226. [be, 226.] 4. "Untersuchungen Uber LUckenzahlen und den Goldbachschen Satz," In.f. d. reine 11. aflgew. Math., v. 158, 1927, p. 173-194. [CIt, 193-194.] M. A. HEASLET, see USPENSICY and HEASLET. H. HERTZER. 1. "Periode des Dezimalbruches fUr 1/p, wo peine Primzahl," Archiv Malh. Phys., s. 3, v. 2, 1902, p. 249-252. [dt.] H. HOLDEN. 1. "On various expressions for h, the number of properly primitive classes for a determinant - p, where p is a prime of the form 4n+3," Messenger Malh., v. 35, p. 73-80, 1905. [0, 79-80.] 2. "On a property of the function Z in the transformation 4Xp= ys -(-I)
J. HOttEL. [See also LEBESGUE 2.] 1. Tables Ar"hm~'iques, Paris, 1866,44 p. [e, 41-44: da, 3()-40.] Lilwariu: CU, MIl, RPB
[105 ]
BIBLIOGJL\PBY
HUS-JAC
M. HUSQUIN. 1. "ttude statistique des nombres premiers," Sphinx, Brussels, v. 4,1934, p. 147. [fl.} E. L. INCE. 1. Cycles of Reduced Ideals in Quadralic Fields. (Br. Ass. Mathematical Tables, v. 4) London, 1934, xvi+80 p. [jl: m: p.} Librariu: CoU, CtY, IU, NNC, RPB G.INGHIllAIII.
11. Elementi di Matematiche, Florence, v. 1, 1832. [el'] Librariu:
I,. Corso Elemenlare di M atematiche pflre, riordinale per Cflrtl di G. A nIonelli ed. E. Barsa",i, Florence, v. 1, 1856. [el.} Libraries:
I•. Table des Nombres Premiers el de la D~composilion des Nombres de 1 Ii 100 000 ... sflivietlela Table des Bases des Nombres Tessar~ens de 1 Ii 20 000, Paris, 1919, xi+35 p. [el·'] Librariu: NjP, NN, NNC, RPB
K. G. J. JACOBI. 11. "Beantwortung der Aufgabe s. 212 dieses Bandes." In. angew. Malh., v. 3, p. 301-302,1828. [d,.] I,. Gesammelle Werke, Berlin, v. 6, 1891, p. 238-239. [d,.]
f.
d. rtine
fl.
ro, laAS, laU, KyU, MdBJ, MB, MCM, MH, MiU, MnU, NhD, NjP, NNC, NeD, OCU, OU, PBL, PU, RPB, TzU, WU
Librariu: CU, CaM, CaTU, COU, CtY, DLC, ICJ, ICU,
2. Canon Amhmelicfls, sive tabulae qflibus exhibtnlflt' pro singulis nflmtris primis vel primorflm poltstatibus infra 1000 nflmeri ad dalos indices eI indices ad datos nflmtros perlinenles, Berlin, 1839, xl+248 p. [d1, 1-248: d., iii-v: d., 1-248.]· Librariu:CPT,DLC,IaAS,MH,MiU,MnU,NhD,NN,PU,RPB
31• "'Vber die KreistheUung und ihre Anwendung auf die Zahlentheorie," In.f. d. reine fl. angew. Math., v. 30, p. 166-182, 1846. U,·, 174-180: It, 181-182.] 3..0puscula Malh., Berlin, v. 1, 1846, p. 317-334. Ut·, 32~332: k, 333334.] Lilwariu: laAS, MH, MiU, NhD, PU, RPB
3a• Gesammelle Werke, Berlin, v. 6, 1891, p. 254-274. [jt·, 265-271: k, 272274.] ~. "'Vber die Zusammensetzung der Zahlen aus ganzen positiven Cuben; nebst einer Tabelle fUr die kleinste Cubenanzahl, aus welchen jede Zahl bis 12 000 zusammengesetzt werden kann," In. f. d. reine fl. angew. Malh., v. 42, p. 41-69,1851. [qa, 62-69.] 4..0puscula Malh., v. 2, 1851, p. 361-389. [qa, 382-389.] 4.. Gesammelte Werke, v. 6, 1891, p. 322-354. [qa, 34~354.]
[106 ]
JOP-KOR
BIBLIOGRAPHY
S. A. JOI'I'E. 1. Solutions of
~·+Y·+12_WI.
Manuscript in possession of the author.
Librllf'iu: RPB (copy)
E. DE JONCOl1B.T. 1. De N atflra eI Praeclaro fUfI Simplicissimae Speciei Nflmerorflm Trigonaliflm, The Hague, 1762, viii+36+224+7 p. [b7, 1-224.) Librllf'iu: NN, RPB
B. W. JONES. 1. A Table of Eisenstein..,.edfICed Positive Ternary-Quadratic Forms of Delumina'" ~200 (Nat. Research Council, Bull. no. 97), Washington, Nat. Acad. Sci., 1935,51 p. [11.) Librllf'iu: CU, CaTU, CtY, DLC, IC], lEN, ro, IaAS, MdB], MB, MCM, MIl, MiU, MnU, NjP, NN, OCU, OU, PBL, RPB
B. W. JONES and G. PALL 1. "Regular and semi-regular positive, ternary quadratic forms," Acta Math., v. 70, 1939, p. 165-191. [11, 190-191.]
C. F. KAUSLER. 1. "De Numeris qui semel vel pluries in summam duorum quadratorum resolvi possunt," Akad. Nauk, S.S.S.R., Leningrad, Nova Acta, v. 14, ad annos 1797-8, p. 232-267, 1805. [b7, 253-267.]
J.
KAVAN. 11• Roalelad Vltlle,ch Cisel Cel,ch 042 do 256 000" Prvolinilele and on the second title-page : Tabula OmnwfU a 2 fUque ad 256 000 N flmeris 1 ntegris Om1Jes Divisores Primos Pra.ebens (Observatorium Publicum, Stara nala, Bohemoslov), Prague, 1934, xi+514 p. [fl.] Librllf'iu: CU, CaM, lCU, NjP, NNC, RPB
1•• Faclor Tables giving Ihe Complele Decomposition into Prime Factors oj All Nflmbers flP 10256 000 .... With prefaces by B. Sternbeck and K. Petr, and introduction by Arthur Beer. London, 1937, xii+514 p. [f1.1 Librllf'iu: MiU, NN, NNC, RPB
F. KEsSLER, see BORX. C.Ko. 1. "Decompositions into four cubes," London Math. So., In., v. 11, 1936, p. 218-219. [qa, 219.]
A. N. KollXIN. 1. "0 raspredelenii tselykh chisel po prostomu modullu i
0 dvuchlennykh sravneniakh s tablitseru pervoobraznykh kornel i kharakterov k nim otnosiishchikhsii., dh&. prostykh chisel men'shikh 4000" [On the distribution of integers with respect to a prime modulus and on binomial congruences with a table of primitive roots and of characters corresponding
[ 107)
BIBLIOGRAPHY
to them for all primes less than 4000], MtJlemalicheskil Sbornik, v.27, 1909, p. 28-115, 121-137. [d., 121-137: cla, 121-137: es, 121-137.] M. KRAITCmx.
1. "Tables," Sphin~ Oetlipe, May 1911, NumEro SpEcial, p. 1-10; v. 6, 1912, p. 25-29,39-42, 52-55. [d.: d •. ] 2. D~composilion de a-±b- en Fackurs dans Ie Cas 0# nab est un Carr~ Parfait avec une Table des Dkompositions Numtriques pour Toutes les Valeurs de a et b I nf«ieurs d 100, Paris, 1922, 16 p. [es, 9-16: 0·, 3, 6.] Libraries: CU, CtY, ro, IaAS, NjP, NeD, PP, RPB
3.
Th~orie des Nombres, v. 1, Paris, 1922, ix+229 p. [da·, 214-217: d., 208213: es, 218-222: i.·, 187-204: is, 205-207: ta·, 164-186.]
Libraries: CU, CaM, CoU, CtY, ICU, ro, laAS, MdBJ, MCM, MIl, MnU, MoU, NjP, NN, NNC, OCU, OU, PBL, PU, RPB, WU
4. Recherches sur la Thttwie des Nombres, v. 1, Paris, 1924, xvi+272 p. ~., 23:df, 55-58, 61, 131-145:d/, 53, 55, 63-65, 131-204:cla·,69-70, 216-267: de, 62-63: d,·, 39-41,59-63: es·, 12-14,20,24-26,77-80,92: f.·, 10, 14-16, 131-191: fl·, 9-12, 15-16, 53, 192-204: h, 27, 69: i., 46, 87: i., 46: ta·, 205-215: j •• , 46, 48-50: is·, 48-50, 192-204: It, 39-41: 0·,88,93-129, 270.)
Libraries: CU, CoU, CtY, lCU, PBL, PU, RPB, WU
ro, IDU, laAS, MIl, MiU, NjP, NN, NNC, OCU,
5. "Sur les nombres de Fermat," Inst. d. France, Acad. d. Sci., Comptes ReMus, v. 180, 1925, p. 799-801. [es.] 6. Th~orie des Nombres, v. 2, Paris, 1926, iv+251 p. [d.·, 233-235: es·, 221232: f., 233-235: i.·, 156-166: ja·, 241-242: m·, 3()-71: D, 119.] Lilwariu: CU, CaM, CoU, ICU, ro, InU, laAS, MdBJ, MCM, MIl, MiU, MnU, MoU, NjP, NNC, NeD, OCU, OU, PBL, PU, RPB, WU
7. Recherches sur la Thtorie des NomiJres, v. 2, Paris, 1929, xv+l84 p. ~,
152-159: es, 84-150,152-159: 0,2-4,6.]·
Libraries: CtY,lnU, laU, MiU, NjP, NN, PU, RPB
8. "Factorisation de 2'-+1," Sphin~, Brussels, v. 2,1932, p. 84-85. [es.] 9. "Lesgrands nombrespremiers," Malhemalica, Cluj, v. 7, 1933, p. 92-94. [f.·, 93.] 10. "Sur les nombres premiers," Sphin~, Brussels, v. 3, 1933, p. 100-101. [f•. ]
11. "Courrier du Sphinx," Sphin~, Brussels, v. 4,1934, p. 48. [es.] 12. "Les grands nombres premiers," Deuxi~me Congr~s Int. d. REcrEation Math., Comptes ReMUS, Brussels, 1937, p. 69-73. [e.: f •.] 13. "Factorisation de 2-± 1," Sphiu, Brussels, v. 8,1938, p. 148-150. [es.] M.
KRAITcmx and S. HOPPENOT. 1. "Les grands nombres premiers," 166; v. 8, 1938, p. 82-86. [e.: f •. ]
Sphin~,
Brussels, v. 6, 1936, p. 162-
A. A. KmsHNASWA)(I. 1. "On isoperimetrical pythagorean triangles," Tbhoku Malh. In., v.27, 1927, p. 332-348. (ja, 344-347.]
[ 108)
BIBLIOGRAPHY
KUL-LEB
J. P. KULIK. 1. Tajeln tler Quadrat- und Kubik-ZaIIlen aller natiirlichen Zohlen bis Hunderl Tausend, nebsl ihrer AnweMung ouj die Zerlegung grosser Zahlen in ihre Fale'oren, Leipzig, 1848, vii+460 p. [f., 405-407: g, 408418: ii, 408-418: jl, 405-407: 1,407-408.] Li1wMU': MIl, NNC, RPB
2. "Ober die Tafel primitiver Wurzeln," In. j. d. reine u. angew. Math., v. 45, 1853, p. 55-81. [d1, 55: cia, 56-81.] 3. Magnus Canon Divisoru", pro O",nibus Numeris per 2, 3, u5 non Divisibilibus, el nu",eroru", pri",oru", inlerjacenliu", ad Millies cenlena ",ilia accuralis ad 100 330 201 usque, 8 manuscript volumes, deposited in the Vienna Academy of Sciences in 1867, the second of which was missing in 1911. [el.] Kulik had died in 1863. Accounts of this manuscript have been given by J. Petzval in Akad. d. Wiss., Vienna, ",ath.-natw. Kl., Si',ungsb., v. 53, 1866, p. 460-462; and by D. N. LEHKERl,cols. IX, X, XIII, XIV, and D. N. LEHKER 2, cols. XI, XII. A photostatic copy of that part of Kulik's table which extends from 9 000 000 to 12 642 600 is in the possession of D. H. Lehmer.
c. A. LAISANT. 1. "Les deux suites fibonacciennes fondamentales (u.), (v.). Table de leurs termesjusqu' &n .... 120," Enseignemenl Math., v. 21, 1920, p. 52-56. [b., 53-56.]
F.LANDRY. 1. D~co",posilion des No",bres 2·± 1 en leurs Facleurs Pre",iers de n-l, d n-=64, ",oins qfliJlre, Paris, 1869,8 p. [es, 6-7.] Li1wGriu: RPB
H. P. LAWTHER. 1. "An application of number theory to the splicing of telephone cables," A",. Math. Mo., v. 42,1935, p. 81-91. [dc, 90.] V. A. LEBESGUE. 11. Tables Diverses pour la D~composilion des Nombres en leurs Facleurs Pre",iers, Paris, 1864, 37 p. [el, 18-37: f 1, 12.] Li1wGriu: CU, MIl, MiU, RPB
I •. So. d. Sci. Phys. et Nat. d. Bordeaux, M~",oires, v. 3, 1864, p. 1-37. [el, 18-37: f 1, 12.] 2. "Tables donnant pour la moindre racine primitive d'un nombre premier ou puissance d'un premier: 1° les nombres qui correspondent aux indices: 20 les indices des nombres premiers et inferieurs au module," [computed by Hotiel]. So. d. Sci. Phys. et Nat. d. Bordeaux, M~",oires, v. 3, 1864, p. 231-274. [e, 271-274: d a, 260-274.]
E. LEBON. 1. Table de Caracluis'iques de BtJSe 30 030 donna"', en un sew Coup d'Oeil, [109 ]
LEG-LEH
BIBLIOGllAPHY
lu FacIe"" PremUrs des Nombres Premiers aflec 30 030 d Inflrietlrs 4l 901 800 900, v. 1, pt. 1, Paris, 1920, xxii+56 p. [e., 1-56.] Lilwariu: ICJ, MH, NhD, NjP, NN, NNC, UB, WU
A. M. LEGENDRE. 11. Essai sur la Thlorie du Nombru, Paris, 1798, xxiv+472 p.+app. [flo 17: la·, Tables III-VII: U, Table XII: 11, Tables I-XI.] Lilwariu: CU, CaTU, lCU, !nU, MB, MH, NNC, PU, UB
I •. Second ed., Paris, 1808, xxiv+480 p.+app. [fl, Table IX: la·, Tables III-VII: jl, Table X: 11, Tables I-VIII.] Lilwariu: CPT, CtY, DLC, ICU, lEN, IaAS, MB, MCM, MH, NJP, NN, NNC, OCU, PBL, UB, TzU
I•. Third ed., Paris, 1830, v. 1, xxiv + 396 p.+app. [f1' Table IX: la·, Tables III-VII: jl·, Table X: 11, Tables I-VIII.] Lilwariu: InU, MdBJ, MB, MH, NhD, NeD, PU, UB
1,. Fourth ed., Paris, 1900, identical with the third. Lilwariu: CU, CaM, ICU, IU, MH, MiU, MnU, NNC, UB, WU
la. Zahlenlheorie, German transl. of third ed. by H. MASER, Leipzig, 1886, v. 1, xviii+442 p. [f1, 429: la, 394-414: jlo 430-441: 11, 390-428.] Lilwariu: DLC, MH, MiU, UB
1•. Second German ed., identical with first except for title-page, 1893. Lilwariu: IaAS, laU, OCU
D. H. LEHMER. 1. "The mechanical combination of linear forms," Am. Malh. Mo., v. 35, 1928, p. 114-121. [i., 121.] 2. "On the mUltiple solutions of the Pe1l equation," Annals of Malh., v. 30, 1928, p. 66-72. [e., 72: jlo 72.] 3. "On the factorization of Lucas functions," T'hok" Malh. In., v. 34, 1931, p. 1-7. [0, 2-3.] 4. "Note on Mersenne numbers," Am. Math. So., Bull., v. 38, p. 383-384, 1932. [e.•. ] 5. "On a conjecture of Ramanujan," London Math. So., In., v. 11, 1936, p. 114-118. [ql·, 117-118.] 6. "On the converse of Fermat's theorem," Am. Malh. Mo., v. 43, 1936, p. 347-354. [de, 349-351:" 349-351.] 7. "On the function ~I+~+A," Sphin~, Brussels, v. 6, 1936, p. 212-214. [is.] 8. Solutions of ~'+bx+CEy' (mod p-). Manuscript in the possession of the author. [i1.] 9. Tables of solutions oh'-Dy'- ± 1, 1700
Lu-Lrr
BIBUOGllAPHY
[ql.] Only ten copies made. LibrGriu: RPB, The Carnegie IDstitution
D. N. LEHKER. 1. Factor Table jor the First Ten Millions conloining ,he Smalles' Factor oj
Ef/ery N'IImber No' Divisible by 2, 3, 5, or 7 behoeen ,he Limits 0 ond 10 017 000 (Carnegie Inst. Publ. 105), Washington, 1909, x+478 p. [81.] LilwGriu: CPT, CU, CaM, CaTU, COU, CtY, DLC, IC], ICU, lEN, m, InU, laAS, laU, KyU, MdB], MB, MeII, MB, MiU, MnU, MoU, NhD, NjP, NN, NNC, NRU, NclO,OU,PBL,PU,RPB,WvU,~
2. List oj Prime N'IImbers jrom 110 10 006 721 (Carnegie Inst. Publ. 165), Washington, 1914, xvi+133 p. [ff.] LibrGriu: CPT, CU, CaM, CaTU, COU, CtY, DLC, IC], lCU, lEN, m, InU, laAS, laU, KyU, MdB], MB, MCM, MIl, MiU, MnU, NhD, NjP, NN, NNC, NRU, NeD, OCU,OU,PBL,PU,RPB,1XU,~
3,. Factor Stencils, (Carnegie Inst.), Washington, 1929,24 p. +295 stencils [fl : g: i l .]· LibrGriu: CPT, CtY, IC], m, InU, laU, MdB], MH, NhD, NjP, OCU, PBL, PU, RPB 3s. Factor Stencils, revised and extended by J. D. ELDER, (Carnegie Inst.), Washington, 1939,27 p. +2135 stencils. [f.: g: is.] LibrIJriu: CPT, CU, IC], IU, NhD, NjP, NNC, PU, RPB
4. Table of linear divisors of st.-Dyt. for IDI <317. Manuscript in the possession of Prof. D. H. LEBKER. [la.] E. T. LEHMER. [See also D. H. and E. T. LUKER.] 1. "Note on Wilson's quotient," Am. Molh. Mo., v. 44, 1937, p. 237-238. [b•. ] 2. "Terminaisons des carrEs dans la base 12 et autres bases," Sphiu, Brussels, v. 9, 1939, p. 51-54. [is, 51.] W.LENBART. 1. "Useful tables relating to cube numbers," Moth. MisceUa..y (Gill), supplement to v. 1, 1838, p. 1-16. [1.] S. LEVANEN. 1. "Om talens delbarhet," [On the divisibility of numbers], Finska Vetenskaps-Socleteten, Ojf/ersigt aj FlJrhantlli..gar, v. 34, p. 109-162, 1891-2. [da, 138-161.] 2. "En metod fiSr upplosande af tal i factorer," Finska Vetenskaps-Societeten, Ojf/ersigt aj FlJrhontllingar, v. 34, p. 334-376, 1892. [la*, 356370.] N. J. LmoNNE.
1. Tables de T OtIS les DifJiseurs des N ombres calc'llUes "puis'll" j'llSq'll'tl cent deus mille, Paris, 1808, 39+ccxviii p. [81, i-cnxi.] LibrGriu: NNC, RPB
J. E. LITTLEWOOD, see HARDY and LITTLEWOOD. [111 ]
LoD-MAT
BIBLIOGRAPBY
A. LODGE, see MILLER and LODGE; also PETERS, LODGE and TEIlNOUTH, GUI'OIlD.
t. LUCAS. 1. Theorie des fonctions num~riques simplement p~riodiques," Am. In. M alh., v. 1, 1878, p. 184-239, 289-321. [es, 294-299.] 2. "Sur les formules de Cauchy et de Lejeune Dirichlet," Ass. Fran~. pour l'Avan. d. Sci., Comptes Rendus, v. 7, p. 164-173, 1878. [0·, 165, 168.] 3. "Sur la s~rie r~currente de Fermat," BtMleUino d. Bibliografia e d. SIori4 (Boncompagni), v. 11, 1878, p. 783-798. [0·, 786.] 4. "Sur la theorie des fonctions num~riques simplement p~riodiques," NoufJ. COf'resp. Malh., v. 4, 1878, p. 33-40. ria, 38-39.] 5. Th~orie des Nombres, Paris, 1891, xxxiv+520 p. [bl , 395.]
ro, InU, IaAS, IaU, KyU, MdB], MD, MH, MiU, MoU, NhD, NjP, NN, NNC, NRU, NeD, OCU, OU, .
Lilwariu; CPT, CU, CaM, CaTU, CoU, CtY, IC], ICU, lEN, PDL,PU,RPD,TzU,~
P. A. MACMAHON. [See also lLuDy and RAKANUJAN 1.] 1. "The parity of pen) the number of partitions of n, when n~ 1000," London Math. So., In., v. 1, 1926, p. 226. [q1.] A. MARKOV. 1. "Table des formes quadratiques ternaires ind~finies ne repr~sentantes pas z~ro pour tous les d~terminants positifs D;3; 50," Akad. N auk S.S.S.R., Leningrad, cl. phys.-malh., M~moires, s. 8, v. 23, no. 7, 1909, 22 p. [D.] A. MARTIN. 1. "Rational scalene triangles," Malh. Magasine, v. 2, p. 275-284, 1904. [j,,284.] 2. "Table of prime rational right-angled triangles," Malh. Magasine, v. 2, p. 297-324, 1910. [jl, 301-308, 322-323.] 3. "On rational right-angled triangles," Int. Congress Mathems., Cambridge, 1912, Pro,., v. 2, Cambridge, 1912, p. 40-58. [js, 57-58.] T. E. MASON. [See also CARUlCHAEL and MASON.] 1. "On amicable numbers and their generalizations," Am. Malh. Mo., v. 28, 1921, p. 195-200. [a, 19~197.]
G. B. MATHEWS. 1. Theory of Numbers, Cambridge, Part 1,1892, vii+323 p. [g, 263: 0,218.] Facsimile reprint, New York, 1927. LiIII'ariu: CPT, CU, CaM, CaTU, Cou, CtY, IC], ICU, lEN, IU, INU, IaAS, IaU,
MdB], MD, MCM, MH, MiU, MnU, NhD, NjP, NN, NNC, OCU, OU, PDL, PU, RPD, WvU.WU
2. "On the reduction and classification of binary cubics which have a negative discriminant," London Math. So., Pro,., s. 2, v. 10, 1912, p. 128138. [D, 137-138.] [ 112]
BIBLIOGKAPBY
MAT-NAG
I. V. MATIES. 1. "Terminatiunile cuburilor periecte si a rldlcinilor lor," [Endings of perfect cubes and their roots], GaJela Mal., v. 41, 1936, p. 332-338. [d., 336.] M.E.MAUCH. 1. Extensions of Waring's theorem on seventh powers (Doctoral diss; Chicago), Chicago, 1938, iii+21 p. Manuscript. [ql.) Lilwariu: leu
W. MEISSNER. 1. "Ueber die Teilbarkeit von 2p -2 durch das Quadrat der Primzahl p-l093," Akad. d. Wiss., Berlin, Silsflngsb., v. 35, 1913, p. 663-667. [bt, 666-667: dt, 666-667.] 2. "Ueber die L6sungen der Kongruenz ~p-l!i511 (mod pta) und ihre Verwertung zur Periodenbestimmung mod p.," Berliner Math. Gesell., SitJflngsb., v. 13,1914, p. 96-107. [dt, 104--105.] C. W. MERRIFIELD. 1. "The sums of the series of the reciprocals of the prime numbers and of their powers," Royal So. London, Proc., v. 33, 1881, p. 4--10. [fl*' 10.] F. MERTENS. 1. "Uber eine zahlentheoretische Function," Akad. d. Wiss., Vienna, maln.-natw. Xl., Sillflngsb., 2a, v. 106,1897, p. 761-830. [b., 781-830.]
J. C. P. MILLER. 1. "Table of the inverse totient function," manuscript table in possession of the author. [bl.]
J.
C. P. MILLER and A. LODGE. 1. "Super- and sub-multiples," manuscript tables in possession of J. C. P. Miller. [e..]
N.B.MITRA. 1. "The converse of Fermat's theorem," Indian Math. So., In., v. 15, 1923, p. 62-68. [de, 64--66.) C.MOREAU. 1. "Sur quelques th~or~mes d'arithm~tique," NOfIfJ. Annales d. Main., s. 3, v. 17, 1898, p. 293-307. [bl, 303-307.] R. E. MORITZ. 1. "The sum of products of n consecutive integers," Univ. of Wash., Publ. Main., v. 1, no. 3, 1926, p. 29-49. [bl, 44--49.] T. NAGELL. 1. "Uber die L6sbarkeit der Gleichung ~I- Dyl- -1," ArkifJ. Aslronomi Den F,sik, v. 23, no. 6, 1933, p. 1-5. Ut, 2.)
[113 ]
f. Mal.,
Nm-PEJl
BIBLIOGllAPBY
N. NIELSEN. 1. "Recherches sur certaines 6quations de Lagrange de formes sp6ciales," K. Danske Vidensk. Selskab, Copenhagen, M alh.1,siske M etltlelelser, v. 5, no. 4, 1923, p. 1-95. Ul, 87-93: jl, 87-93: m, 9G-93.} 2. "Sur Ie genre de certaines 6quations de Lagrange," K. Danske Vidensk. Selskab, Copenhagen, Malh.1,siske Medtlelelser, v. 5, no. 5, 1923, p. 172. UI, 58-72.} 3. "Sur l'op6ration it6rative des 6quations de Lagrange," K. Danske Vidensk. Selskab, Copenhagen, Malh.1,siske Metltlelelser, v. 6, no. 1, 1924, p. 1-98. U.,85-96.} 4. Tables Numh-iques des £qualions de Lagrange, Copenhagen and Paris, 1925, xvii+400 p. Us.} Librtwiu: CPT, CU, CtY, IaAS, NjP, RPB
5. Recherches Nummques s.., Cerlaines FMmes Quatlraliques, Copenhagen, 1931, xi+ 160 p. U,.} LibrWI: CPT, CU, DLC, IC], lCU, IU, laU, MIl, MiU, NjP, NN, RPB
R. NIEWIADOKSKI. 1. "Zur Fermatschen Vermutung," Prace Mal. Fis., v. 42, 1935,p. 1-10., [d •. ] L. OETTINGEJl. 1. "Cber das Pell'sche Problem und einige damit zusammenhingende Probleme aus der Zahlenlehre," Archi". Malh. Ph,s., v. 49,1869, p. 193222. U" 217-222: 1, 221-222.} M.OSTJlOGJlADSXY. 1. "Tables des racines primitives pour tous les nombres premiers au dessous de 200, avec les tables pour trouver l'indice d'un nombre donn6, et pour trouver Ie nombre d'apr~s l'indice," Akad. Nauk S.S.S.R., Leningrad, M ~moires ••. Sci. malh., ph,s. eI naI., s. 6, v. 1, 1838, p. 359-385. [dl: d •.]· G. PAGLIEJlO. 1. "I numeri primi da 100 000 000 a 100 005 000," R. Accad. d. Sci. d. Torino, Aui, v. 46, 1911, p. 76fr770. [fl·, 769.}
G. PALL, see JONES and PALL. C. G. PAIlADtNE. 1. Table of 1120 triangles with integral sides, and at least one integral median. Manuscript in the possession of the author. [j•.] J. PEJlOTT. 1. "Sur la sommation des nombres," Bull. d. Sci. Malh., s. 2, v. 5, pt. 1, 1881, p. 37-40. Ibl' 39-40.] O. PEJlJlON. 1.. Die Lehre "on den Kel"nbrikhen, Leipzig and Berlin, 1913, xii+520 p. Ul, 101: m, 101.] [114 ]
PET-POL
BIBLIOGllAPBY
Librariu: CPT, CU, CoU, ClY, DLC, ICU, lEN, IU, IDU, laU, KyU, MdB], MIl,
MiU, MoU, NhD, NjP, NN, NNC, OU, PBL, PU, RPB, TzU, WU
11. Second ed., Leipzig and Berlin, 1929, xii+524 p. (jl, 101: m, 101.] Librariu: CPT, CaTU, ClY, ICU, IU, IaAS, MdB], MCM, MIl, MiU, MnU, NjP,
NNC,
mu, NeD, OCU, PU, RPB, WU
J. PETEJlS, A. LODGE and E. J. TEltNOUTB, E. Gur:rOltD. 1. Facltw Table Giving lhe Complele Decomposilion oj all Nflmbus less Ihan 100 000 (Br. Ass. Mathematical Tables, v. 5), London, 1935, xv+291 p. eel, 2-288: g, 285-291.] Librariu: CU, IU, NNC, RPB
J. PETEltS and J. STEIN. 1. Anhang to J. Peters' ZehnsleUige Logarilhmenlajel,
v. 1, Berlin, 1922,
[separate pagination], uviii+195 p. [81, 75-82.] Librariu: CU, RPB
S. S. PILLAl. 1. "On Waring's problem," Indian Math. So., In., n.s., v. 2, 1936, p. 16-44. [q., 40-44.] N. PIPPING. 1. "Neue Tafeln fUr das Goldbachsche Gesetz nebst Berichtigungen zu den Haussnerschen Tafeln," Finska Vetenskaps-Societeten, Commenlaliones p~,sico-malh., v. 4, no. 4,1927,27 p. [CIt, 7-23, 25.] 2. "Uber Goldbachsche Spaltungen grosser Zahlen," Finska VetenskapsSocieteten, Commenlaliones physico-malh., v. 4, no. 10, 1927, 15 p. [CIt, 12-14.] 3. "Die Goldbachschen Zahlen G(%) fUr %-120 072-120 170," Finska Vetenskaps-Societeten, Commenlaliones physico-malh., v. 4, no. 25, 1929, 6 p. [ql.] 4. "Die Goldbachsche Vermutung und der Goldbach-Vinogradowsche Satz," A.bo, Finland, Akademi, Ada Malh. eI Phys., v. 11, no. 4, 1938, p. 1-25. [CIt, 9-25.] H. C. POCJO.INGTON. 1. "An algebraical identity," Nalflre, v. 107, 1921, p. 587. [0.] L. POLETTI. [See also BEEGElt 8.] 1. Resullali Tetwico-Pralici di flna Ratlicale M otlificasione del Crivello di Eraloslene, Parma, 1914,47 p. [fl , 31-47.] Librariu: CU
2. TOTJole di Nflmeri Primi enlro Limili DiTJersi e TaTJole Affini, Milan, 1920, xx+294 p. [el·, 12()-186: fl·, 3-118, 235-247: fl' 249-255.] Librariu: CU, ICU, MdB], MiU, NjP, NNC, RPB, WU
3. "Liste des nombres premiers de la forme quadratique 5n' +5n+ 1 de n-1415-2200," Nieflw ArchiejTJ. Wiskflntle, s. 3, v.16,pt. 2,1929, p. 2730. [fl.] [115 ]
POL-POlJ
BIBLIOGRAPHY
4. "I.e serie dei numeri primi appartenente aile due forme quadratiche (A) nl+n+ 1 e (B) n l +n-l per l'intervallo compreso entro 121 millioni, e cioe per tutti i valori di n fino a 11 000," R. Accad. N az. d. Lincei, Cl. d. sci.fis., mol. e. nol., Memorie, s. 6, v. 3,1929, p. 193-218. [f., 197218.] 5. "Elenco di numeri primi fra 10 milioni e 500 milioni estratti da serle quadratiche," R. Accad. d'ltalia, Rome, Cl. d. sci. fis., mol. enol., Memorie, Malemolica, v. 2, no. 6,1931, p. 5-107. [f., 22-107.] 6. "Atlante di oltre 60 000 numeri primi fra 10 milioni e tre miliardi stratti da serie quadratiche." Manuscript deposited with Consiglio Nazionale delle Ricerche Pratiche in Rome. [f•.] 7. List of primes between 10" and 2 ·10" represented by n'+n+a,a -19421, 27941, 72 491. Manuscript in possession of the author, and D. H. Lehmer. [f•.] L. POLETTI and E. STUUNI. 1. "I.e serie dei numeri primi entro i primi centomilia n. succ. oltre cento milioni, e Ie serie dei n.p.da 14285717 a 14 299 991.-Quadri sinottici sui fenomeni di frequenza dei n.p. entro i primi centomilia n. succ. della serie naturale situati oltre 0, 10, 100, 1000 milioni," R. 1st. Lombardo d. Sci. e I.ettere, Rentliconti, v. 61,1928, p. 140-176. [fl.] 21. "I.e serie dei numeri primi appartenenti aile due forme quadratiche (2nl 2n-l) e (2n2+ 2n+ 1) entro 250 milioni," Int. Congress Mathems. Bologna, 1928, AUi, v. 2, Bologna, 1928, p. 113-133. [f., 119, 122-133.] 2.. [Same title], R. 1st. Lombardo d. Sci. e I.ettere, Rentliconti, v. 62,1929, p. 723-759. [f., 737-759.]
+
K. POSSE. 1. "1iLblitsa pervoobraznykh komei ikharakterov k nim otnosfashchikhsfa, dlia prostykh chisel mezhdu 4000 i 5000," [Table of primitive roots and of characters pertaining to them for prime numbers between 4000 and 5000], MtUemolicheskil Sbornik, v. 27, 1909, p. 175-179. [dJ.: cla: e..] 2. "Tablifsa pervoobraznykh komei i kharakterov k nimotnosiashchikhsfa, clli& prostykh chisel mezhdu 5000 i 10000," [Table of primitive roots and of characters pertaining to them for prime numbers between 5000 and 10000], MtUemtUicheskil Sbornik, v. 27, 1909, p. 238-257. [dl: d.: e..] 3. "Expose succinct des resultats principaux du memoire posthume de Korkine, avec une table des racines primitives et des carac~res, qui s'y rapportent, ca1culee par lui pour les nombres premiers infeneurs 1 4000 et prolongee jusqu' 15000," Acla MoIh., v. 35,1911-12, p. 193231. [dl : d.: e..] 4. "Table des racines primitives et des carac~res qui s'y rapportent pour les nombres premiers entre 5000 et 10000," Acla MoIh., v. 35,1911-12, p. 233-252. [dl: cla: e..] P. POULET. 1. "Note sur les multiparfaits," Sphiu Oedipe, v. 20,1925, p. 2-4, 85-93. [a.] [116 ]
RAil-RoB
BIBLIOGJlAPlIY
2. La Cluuse ou N Dflibru, v. 1, Brussels, 1929, 72 p. [a·, 14-25, 4fr50, 5365,68-72.] Lilwariu: RPB
3. La Chasse au Nombres, v. 2, Brussels, 1934, 188 p. [b., 38-51, 94-109, 168-184: es, 38-51, 94-109, 168-184: 0, 161.] Lilw4riu: RPB 4,.. "Table des nombres compoSlSs v~rifi.ant Ie th~or~me de Fermat pour Ie
module 2 jusqu'a 100 000 000," Deuxi~me Congr~s Int. d. Rkr~ation Math., COfIJPW RendtU, Brussels, 1937, p. 74-84. [de, 77-84: g, 77-84.]· 04,. [Reprinted in] Sphiu, Brussels, v. 8, 1938, p. 42-52. [de: g.]. 5. "Des nouveaux amiables," Sphiu, Brussels, v. 4, 1934, p. 134-135. [a.] S. RAKANuJAN. [See also IlAllDyand RAKANl1JAN.] 11. "Highly composite numbers," London Math. So., Proc., s. 2, v. 14, 1915, p. 347-409. [ba., 358-360.] 1•. CoUecletl Papers, Cambridge, 1927, p. 78-128. [ba, 87-88.] Lilw4riu: CPT, CU, CaM, CoU, CtY, DLC, lCU, IU, IaAS, laU, MdBJ, MCM, KII,MiU, NhD, NjP, NN, NeD, OCU, OU, PU, RPB, WU
21. "On certain arithmetical functions," Cambridge Phil. So., Trans., v. 22, no. 9, 1916, p. 155-184. [q1, 174.] 2.. Collecletl Popers, 1927, p. 13(r162. [Q1, 153.]
L. W. REID. 1. Tafel der KlassentJuahlen f~r kflbische ZohlklJrper (Diu. Gattingen), Gattingen, 1899, viii+76 p. [p, 12, 6()-75.] Lilwariu: CU, CtY, KII, NjP, NNC, NIC, OCU, PU, RPB
2. "A table of class numbers for cubic number fields," Am. J n. JIath., v. 23, 1901, p. 68-84. [p, 75-84.]
K. G.
REUSCHLE.
1. Jlathematische AbhantUung, enluUUntl: Neue ZohlenIheorelische Tabellen (Programm), Stuttgart, 1856, 61 p. [d1·, 42-53: d.·, 42~1: d., 23-41: e.., 18-22, 42~1: f., 23-28, 32-38: j.., 23-41.] Libr4riu: DLC, NNC, RPB
2. [Tables of the decomposition of primes into complex factors], Preuss. Akad. d. Wiss., JlOMIsberichle, 1859, p. 488-491, 694-697; 1860, p. 9()199, 714-735. [p.] 3. Tafeln Comple%er PriflSl(Jhlen welche atU Wut'leln der Einheit gebiltlet sind, Berlin, 1875, vi+671 p. [d,: k: 0: p.]. Lilw4riu: CtY, ICU, IU, MdBJ, KII, MiU, NhD, NjP, PU, RPB
H. W. RICBlIOND. 1. "On integers which satisfy the equation" ± %' ± yl ± JI - 0," Cambridge Phil. So., Trans., v. 22, p. 389-403, 1920. [1,402.] C. A. ROBERTS. 1. "Table of the square roots of the prime numbers of the form 4m+ 1 less
[117 ]
ROB-SEE
BIBLIOGRAPHY
than 10 000 expanded as periodic continued fractions," M oJ". M aKa-
line, v. 2, p. 105-120, 1892. [m·, 106-120.J R. M. ROBINSON. 1. Stencils for solving x2 aa (mod m), Berkeley 1940, 14 p. [it.J A. E. Ross. [See also DICKSON 6.J 1. Quadratic form tables. Manuscript tables produced under the direction of A. E. Ross, Number Theory Laboratory, St. Louis University. (Available in Inicrofilm.) [n.J E. SANG. 1. "On the theory of commensurables," Royal So. Edinburgh, Trans., v. 23, 1864, p. 721-760. [j", 757-76O.J - . SAORGIO. 1. "Sur Ie probleme, un nombre entier etant donne pour l'un des cates d'un triangle rectangle trouver toutes les couples des nombres aussi entiers qui avec Ie cOte donne forment ce triangle," R. Accad. d. Sci. d. Torino, M emorie, v. 6, 1792, p. 239-252. [ja, 243-245.J
L. SAPOLSKY, see ZAPOLSUIA.
M. L. N. SAllllA. 1. "On the error term in a certain sum," Indian Acad. Sci., Proc., s. A., v. 3,1936, p. 338. [hi·, 338.J - . SCHADY. 1. "Tafeln fur die dekadeschen Endformen der Quadratzahlen," J n. f. d. reine u. angew. MoJh., v. 84,1878, p. 85-88. [it, 87-88.J
K. SCHA:r:rSTEIN. 1. "Tafel der Klassenzahlen der reellen quadratischen Zahlk0fRer mit Prhnzahl DiskriIninante unter 12 000 und zwischen 100 000-101 000 und 1 000 000-1 001 000," MoJ". Ann., v. 98, 1928, p. 745-748. [p.J H. F. SCHERlt. 1. "Bemerkungen uber die Bildung der PriIDZahlen aus einander," In.f. d. reine u. angew. M oJ"., v. 10, 1833, p. 201-208, 292-293. [fl , 208: q" 292293.J
J.
C. SCHULZE. 1. Neue und Erweilerte Sammlung Logarithmischer, Trigonomelrischer "nil Anderer lum Gelwauch der MoJnemoJik Unenlbehrlicher Tafeln, Berlin, 1778, v. 2,49+319 p. [j,., 308-311.J LilwtJriu: ICU, lEN, MiU, NjP, NN, NNC, PBL, RPB
L. A. SEEBER. 1. Untersuchungen fiber die Eigenschajlen der Positiven TernIJren QuadroJiscnen Formen, Freiburg, 1831, 248 p. [n, 220-243.J LilwtJriu: NN
[118 ]
BIBLIOGllAPBY
SEE-SOli
P. SEELHOI'I'. 1. "Prtifung gr6sserer Zahlen auf ihre Eigenshaft als Primzahlen," Am. In. Malh., v. 7, 1885, p. 264-269, [g, 267-269: D, 267-269]; v. 8, 1886, p. 26-38, [g, 29-38: D, 29-38]. P. SEELING. 1. "Verwandlung der irrationalen Gr6sse ~ in einen Kettenbruch," Archi" Malh. Phys., v. 46, 1866, p. 80-120". [m, 102-120".] 2. "Ueber periodische KettenbrUche fUr Quadratwurzeln," Archi" M alh. Phys., v. 49, 1869, p. 4-44. [m, 24-38.] 3. "Ueber die Aufl6sung der Gleichung %t-Ay'_ ±1 in ganzen Zahlen," Archi" Malh. Phys., v. 52,1871, p. 40-49. [jl, 48-49.]
N. M. SHAH and B. M. WILSON. 1. "On an empirical formula connected with Goldbach's theorem," Cambridge Phil. So., Proc., v. 19, 1919, p. 238-244. (g" 240.] W. SHANKS. 1. "On the number of figures in the period of the reciprocal of every prime number below 20 000," Royal So. London, Proc., v. 22, 1874, p. 200210. [4,·, 203-210.] 2. "Given the number of figures (not exceeding 100) in the reciprocal of a prime number, to determine the prime itself," Royal So. London, Proc., v. 22, 1874, p. 381-384. [es.] 3. "On the number of figures in the period of the reciprocal of every prime number between 20 000 and 30 000," Royal So. London, Proc., v. 22, 1874, p. 384-388. [4,·,385-388.] 4. "On the number of figures in the period of the reciprocal of every prime between 30 000 and 120 000," Manuscript table deposited in the Archives of the Royal Society of London (see CVNNlNGJIAJI 40, p. 148149). [dt.] R. C. SHOOK. 1. Concerning Waring's Problem/or SUlh Powers (Diss. Chicago), Chicago, 1934, ii+38 p. [q,.] Li1w4riu: CU, CaM, CaTU, CoU, DLC, ICJ, ICU, lEN, W, laU, MdBJ, MH, MiU, MnU, MoU, NjP, NN, NNC, NeD, OCU, OU, RPB, TzU
W.
SIJIEllU.
1. "Die rationalen Dreieck.e," Archi" Malh. Phys., v. 51, 1870, p. 196-241. [j., 225-240.] O. SIMONY. 1. "Cber den Zusammenhang gewisser topologischer Thatsachen mit neuen Satzen der h6heren Arithmetik und dessen theoretische Bedeutung," Akad. d. Win., Vienna, malh.-nalw. Kl., SUI.ngsb., v. 96, 1887, p. 191-286. [fl , 218-224, 252-280.]
I. S. SOKINsm, see DELONE, SOKINsm and BILEVICH.
[ 119]
SOll-Sm.
BIBLIOGRAPHY
J. SOKJIEll. 11. Vorlesungen aber ZahlenlheorU, Leipzig and Berlin, 1907, vi+361 p. [p., 346-361.] UbrGriu: CPT, CU, CtY, ICJ, ICU, lEN,
NN,OCU, PU, RPB, WU
ro, MdBJ, MH, MiU, MoU, NhD, NjP,
It.lmrotluclitm d la TII~orie du Nomlwes AlgOwiquu, French transl., revised and augmented, by A. LEvy, Paris, 1911, x+376 p. [p., 361-373.] UbrGriu: CU, CaTU, CoU, CtY, ICU,
ro, mU, MiU,
NjP, NN, NNC, OU, PU,
RPB,TzU
F. W.
SPAllXS.
1. Uni,ersal Quatlralic Zero Forms in Four Variables (Diss. Chicago), Chicago, 1931, i+49 p. [q,.]
ro, laU, KyU, MdBJ, MH, MiU, MnU, MoU, NjP, NN, NNC, NeD, OCU, OU, PU, RPB, TzU, WU
LilwGriu: CU, CoU, CtY, DLC, ICJ, ICU, lEN,
P. STICXEL. 1. "Die Lilck.enzahlen r-ten Stufe und die Darstellung der geraden Zahlen als Summen und Differenzen ungerader Primzahlen," Heidelberger Akad. d. Wiss., SilJungsb., malll.-Mtw. Kl., 1917, no. 15,52 p. [f1, 29: q" 52.]
H. W. STAGEll. 1. "On numbers which contain no factors of the form p(kp+l)," Calif., Univ., Publ. in M alII., v. 1, no. 1, 1912, p. 1-26. [f1, 19-26.] 2. A SylO'W Faclor Table of lhe Firsl 12 000 Numbers, giving lhe Possible Number of SylO'W Subgroups of a Group of Gi,en Order belween lhe Limils o antl12 000 (Carnegie Inst. Publ. 151), Washington, 1916,xii+120p. [el, 1-120: fl' x-xii.]
ro, mU, IaAS, laU, KyU, MdBJ, MB, MCM, MH, MiU, MnU, MoU, NhD, NjP, NN, NNC, NRU, NeD, OCU, OU, PBL, PU, RPB, TzU, WvU, WU
UbrGriu: CPT, CU, CaTU, CoU, CtY, DLC, ICJ, ICU, lEN,
J. STEIN, see PETEllS and STEIN. R. D. VON STEllNECX. 1. "Empirische Untersuchung tiber den Verlauf der zahlentheoretischer Function er(n) .. ~:-1"(~) im Intervalle von 0 bis 150 000," Akad. d. Win., Vienna, malll.-Mtw. Kl., SilJungsb., 2 a, v. 106, 1897, p. 835-1024. [h,., 843-1024.] 2. "Empirische Untersuchung tiber den Verlauf der zahlentheoretischer Function er(n) - ~:-11'(~) im Intervalle von 150 000 bis 500 000," Akad. d. Win., Vienna, malII.-nalw. Kl., Silsungsb., v. 110, section 2a, 1901, p. 1053-1102. [ba, 1059-1102.] 3. "Cber die kleinste Anzahl Kuben aus welchen jede Zahl bis 40 000 zusammengesetzt werden kann," Akad. d. Wiss., Vienna, malll.-Mtw. Kl., Silsungsb., v. 112, section 2a, 1903, p. 1627-1666. [q,., 1640-1666.] 4. "Die zahlentheoretische Function er(n) bis zur Grenze 5 000 000," [120 ]
STI-SYL
BIBLIOGllAPHY
Akad. d. Wiss., Vienna, molh.-natuI. Kl., Smllngsb., 2 a, v. 121, 1912, p. 1083-1096. [b., 1085.] 5. "Neue empirische Daten Uber die zahlentheoretische Function eT(n)," Int. Congress Mathems., Cambridge, 1912,Proc., v.l, Cambridge, 1912, p. 341-343. [b" 342.] T. J. STIELT]ES. II. "Bijdrage tot de theorie der derde- en vierde-machtsresten," Akad. v. Wetensch., Amsterdam, Verdagen, a/duling nallI.kllnde, sect. 1, s. 2, v. 17, 1882, p. 338-417. [d" 396-397.] It. French transl., "autori. par I'auteur": "Contribution 1la thoorie des residus cubiques et biquadratiques," ArcMfles N~erlandaisu d. Sci. &acles el Nol., The Hague, v. 18, 1883, p. 358-436. [d" 415-416.] la.OeufWu, Groningen, v. 1, 1914, p. 145-209. [d" 192-193.] (French trans!. p. 210-275. [d" 257-258.])
E. STtJJlANI, see POLETTI and STtJJlANI. E. SUCHANEK. 1. "Dyadische Coordination der bis 100 000 vorkommenden Primzahlen zur Reihe der ungeraden Zahlen," Akad. d. Wiss., Vienna, molh.-naIw. Kl., Smllngsb., v. 103, 1894, p. 443-610. [fl, 452-554.]
A. SUGAR. 1. A new universal Waring theorem for eighth powers (Master's thesis, Chicago), Chicago, 1934, iii 10 p. Manuscript. [qa.]
+
Lilwariu: lCU
M. SUllYANARA YANA. 1. "Positive determinants of binary quadratic forms whose class number is 2," Indian Acad. Sci., Proc., s. A, v. 2, 1935, p. 178-179. [n.] C. S. SUTTON. 1. "An investigation of the average distribution of twin prime numbers," In. 0/ M oIh. and Physics, Mass. Inst. Tech., v. 16, 1937, p. 1-42. [fl ,4-6, 34-42.]
J. J.
SYLVESTER. II. "On certain ternary cubic-form equations," Am. In. MoIh., v. 2, 1879, p. 280-285,357-393; v. 3, 1880, p. 58-88, 179-189. [0·,367-368,380.] It. Collected Papers, Cambridge, v. 3, 1909, p. 312-391. [0,326-327,338.] 21. "On the number of fractions contained in any 'Farey Series' of which the limiting numberisgiven," Phil. Mag., v.15, 1883, p. 251-257; v. 16, 1883, p. 230-233. [b1·.J 2,. Collected Papers, v. 4, 1912, p. 101-109. [bl, 103-109.J Lilwariu: v. 3, 4, CPT, CU, CaM, CaTU, CoU, CtY, DLC, IC], ICU, ro, InU, laAS (not v. 4), laU, KyU, MdB], MB, MCM, MR, MiU, MnU, NhD, NjP, NN, NNC, NeD, OCU, OU, PU, RPB, TzU, WU
[121 ]
TAI-Uu
BIBLIOGllAPJIY
P. G. TAIT. 11. "On knots," Royal So. Edinburgh, Trans., v. 32, 1887, p. 327-342. [fb, 342.] Is. Scientific Papers, Cambridge, v. 1, 1898, p. 318-334. [ql,334.] Li1wariu: CPT, CU, CaM, CaTU; CtY, DLC, ICJ, ICU, laU, MdBJ, MB, MR, Mnu. MoU, NhD. NjP. NlC, NNC. NeD. OCU, OU, RPB, WvU, WU
H. W. L. TANNEll. 1. "On the binomial equation %p-l- 0: quinquisection," London Math. So., Proc., s. 1, v. 18, 1887, p. 214-234. [0, 229-230: p, 229-230.] 2. "Complex primes formed with the fifth roots of unity," London Math. So., Proc., s. 1, v. 24, 1893, p. 223-272. Us, 256-262: p, 256-262.]· P. L. TCHEBYCHE:r, see CHEBYSHEV. S. TEBAY. 1. Elenu,"s of Menstwalion, London and Cambridge, 1868, viii+115 p. [j•• , 111-115.] Li1wariu: MB. RPB
H. TEEGE. 1. Ueber die (P-l)/2 glietlrigen GafUsc/un Periotlen in der Lehre ,on tier K,eisleU"ng"M ihre BeJiekngen J" anderen Teilen der HiJwen A",h",eli" (Diss. Kiel), Kiel, 1900,38 p.+app. [0·, app.] Li1wariu: CU, CtY, DLC, IU. MB, MnU, NjP, NN, NNC, OU, PU, RPB. WU E.
J.
TEllNOlJTH, see PETEllS, LODGE and TEllNOlJTH, GI:r:rOllD.
G. S. TEllllY, see E. T. LEHKEll 2.
V. THEBAlJLT. 1. "Sur les carres parfaits," Supplement to Malhesis, v. 48, Oct., 1934,22 p. [is.] M. VON TmELKANN. 1. "Zur Pe11schen Gleichung," Malh. Ann., v. 95, 1926, p. 635-640. [m, 637-640.] S. B. TOWNES. 1. "Table of reduced positive quaternary quadratic forms," Annals oj Malh., v. 41,1940, p. 57-58. [n.]
J. TllAVEllS. 1. "Perfect numbers," Malh. Gazelle, v. 23, 1939, p. 302. [a.] P. L. TSCHEByscdw, see CHEBYSHEV.
K.
UKEDA.
1. "Zur Beziehung zwischen partitio numerorum und Kemanregung," [122 ]
USP-WER
BIBLIOGRAPHY
Tokyo, Inst. Physical and Chemical Research, Scientific Papus, v. 34, 1938, p. 629--636. [ql.]
J. V. USPENsJtyand M. A. HUSLET. 1. Elementa,y N"miJu Theory, New York and London, 1939, x+484 p. [d., 477-480.] Lilwariu: CPT, CU, CaTU, COU, CtY, DLC, IC], ICU, lEN, IU, InU, laAS, IaU, KyU, MB, MCM, MH, MnU, NhD, NjP, NN, NNC, NeD, OCU, RPB, WU
L. VALB.O:r:r. 1. "Congruences 2%'-1 =0 (mod p)," Sphinx Oedipe, v. 9, 1914, p. 73. [d,.] H. S. VANDIVER. 1. "On Bernoulli's numbers and Fermat's last theorem," D"ke Malh. In., v. 3, 1927, p. 569-584. [es, 576.] G.
VEGA.
It. Sam,,""ng Malhemaliscw Tafeln, Slereolyp-AusgaiJe. Ersler AU,",k led. by J. A. H6LSSE], Leipzig, 1840, xxiii+681 p. [ei*, 360-423: fl*' 424-454.] Lilwariu: DLC, ICU, NN, NNC
I •. Zweiler AU,",k, Leipzig, 1849, xxiii+84Op. [el*, 360-423: fl*' 424-454.] Lilwariu: CU, CtY, MiU, NhD, OU, RPB
A. VEB.EBllIUSOV. 1. "tquation ind6termin6e," L'InlumUaire d. Malh., v. 21, 1914, p. 153-
ISS. [1*, 154-155.] 2. "Ob uravnenii [on the equation] %'+y'+s'-.~"+y"+s"," Malemalicbukil Shornik, v. 30, 1916, p. 325-343. [1,343.] G. F. VORONOI. 1. 0 #Sw'lkh algebraicheskikh chislakh samiMhc"ikh 01 kornlQ waveneniiG 3-1 supen., [On algebraic integers depending on a root of a cubic equation] (Master's diss. St. Petersburg), St. Petersburg, 1894, ix+158 +30 p. [p, app. 1-30.] Lilwariu: CU, lCU, MH, MoU, RPB
G. N. WATSON. 1. "Two tables of partitions," London Math. So., P,oc., s. 2, v. 42,·1937, p. 55(}-556. [ql.] W. WEINB.EICH, see STACKEL.
G. WERTHEIII. 1. Elememe du Zalllenlheorie, Leipzig, 1887, ix+381 p. [d1, 116.] Lilwariu: CPT, CU, CaM, DLC, IC], ICU, IU, InU, IaU, KyU, MH, MiU, MoU, NjP, NNC, pu, RPB, WU 2. "Tabelle der kleinsten primitiven Wurzeln g alIer ungeraden Primzahlen
punter 3000," Ada Malh., v. 17, 1893, p. 315-319. [di*.] [123 ]
WES-WOL
BIBLIOGJlAPlIY
3. "Primitive Wurzeln der Primzahlen von der Form 2-q+l in welcher q-l oder eine ungerade Primzahl ist," Z. f. malil. fl. MhD. Unlerriclrl, v. 25, 1894, p. 81-97. [d1, 97: fl' 84, 86-88, 90-91, 95-96.] 4. "Tabelle der kleinsten primitiven Wurzeln g aller Primzahlen , zwischen 3000 und 5000," Acla MalII., v. 20, 1896-7, p. 153-157. [dl'.] 5. AnfanBsgrlln4e der ZallknlelJre, Brunswick, 1902, xii+427 p. [d1, 406411: d., 412-419: h, 411: it, 422: la, 421: j1, 420.] Lilwtwiu: CU, CaM, CoU, ICJ, ICU, RPD
ro, MdBJ, MD, MIl, MiU, MoU, NjP, NNe,
A. E. WESTON. 1. "Note on the number of primes of the form nl + 1," Cambridge Phil. So., P,oc., v. 21, 1922, p. 108-109. [fl.] 2. "Computations concerning numbers represented by 4 or 5 cubes," London Math. So., In., v. 1, 1925, p. 248-250. [q•.] 3. "Note on the magnitude of the di1ference between successive primes," London Math. So., In., v. 9, 1934, p. 276-278. [ft, 278.] 4. Tables of products of small primes. Manuscript in possession of the author. [a-.]
o. WESTERN, see BIC~OIlE and O. WESTERN 1. E. E. WBITI'ou. 1. Tile PeU Bqtlalitm (Diu. Columbia), New York, 1912, 193 p. [11, 102112: m, 164-190.]* Lilwtwiu: CU, DLC, ICU, PU,RPD,WU
ro, IDU, MdDJ, MD, MCM, MIl, MiU, NN, NNC, PDL,
2. "Some solutions of the Pellian equation s'-AyI- ±4," Annals of MalII., s. 2, v. 15, p. 157-160, 1913-14. [11, 158-160.]
A. WIEPEJUCH. 1. "Zur Darstellung der Zahlen a1s Summen von 5" und 7- Potenzen positiver ganzer Zahlen," Malil. Ann., v. 67, 1909, PI 61-75. [q.*, 74-75.) B. M. WILSON, see SHAH and WILSON. F. WOEPCD. 1. "Sopra la teorica dei numeri congrui," Annali d. MalII., s. 1, v. 3,1860, p. 206-215. (jl, 214-215.] 2. "Recherches sur plusieurs ouvrages de Uonard de Pise dkouverts et publies par M. Le prince Balthasar Boncompagni et sur les rapports qui existent entre ces ouvrages et lea travaux mathematiques des arabes," Accad. Pontif. d. Nuovi Lincei, Rome, Alii, v. 14, 1860-1, p. 211-227, 241-269. (j., 266-267.] C. WOLFE. 1. "Ontheindeterminatecubicequations·+D,I+IJI.. -3Dsys-l,"Calif., Univ., Ptlbl. in MalII., v. 1, no. 16, p. 359-369,1923. [1.) [ 124)
Woo-ZUC
BmLIOGllAPBY
H. J. WOODALL. [See also CUNNINGBAK and WOODALL, CUNNINGBAK, WOODALL and CREAX.] 1. "Mersenne's numbers," Manchester Lit. and Phil. So., Memoirs aM Proc., v. 56, 1911-12, no. 1, 5 p. [es, 2, 3, 5.]
H. N. WRIGHT. 1. "On a tabulation of reduced binary quadratic forms of a negative determinant," Calif., Univ., Publ. in Mal"., v. 1, no. 5, 1914, p. 97-114 +app. [n, app.]
K.C. YANG. 1. Various generalizations of Waring's problem (Diss. Chicago),Chicago, 1928, iii+43 p. Manuscript. [q•• ] Librariu: ICU
L. ZAPOLSXAlA [ - SAPOLSXY]. 1. Ueber die Theorie der relaliv-abel'schm-cubisc"en ZalllklJrper (Diss. GlSttingen), Gottingen, 1902~ vii+481+vi p.+35 plates. [p.] Librariu: CU, CoU, ICJ, lCU,
ro, NN, NNC, OCU, PU, RPB
A. R. ZODOW. [See also JACOBI 3.] 1. "De compositione numerorum e cubis integris positivis," In. f. d. rei", fl. angew. Main., v. 14, 1835, p. 276-280. [q., 279-280.]
H. S. ZUCXEllKAN. 1. A Universal Waring's theorem for thirteenth powers (Master's thesis Chicago), Chicago, 1934, ii+20 p. Manuscript. [q•.] Librariu: ICU
[125 ]
m ERRATA MNDT2. IDIert 397 3447:173
1.
BAK.LOW
•
•
rad
465 1431 1917 2140 2799 2862
2956 3580 3718 3834 4280
3·5·31 31·53 31·71 21-5-107 31'311 2·31·53 21·739 21·5·179 2·11·131
4364 5598 5798 5912 6517
2 '3', 71
7160 7322
21·5·107
7436
6660
6786 6868
rad
21·1091 2·31·311 2·13·223 21·739 71'19 21·31·5·37 2·31·13·29 21·17 ·101 21·5·179 2·7·523 21·11·131
•
rad
7668
21·31·71 5·1559 2'3947 2"31 21·11·181 2'·5·107 2·31·139 21·1091 21·2311 51·7·53
7795
7894 7936
7964 8S6O
8618 8728 9244 9275
(CUJOONOIWI 41(a). p. 27) BEEGElll.
,
fOr 5947 3936 16614 2768
109 109 179 197 BEEGEll
,
2.
127 127
167 173 211 211
BICltKOllE
•
47
16 2 49
16 20
'"
rad
5934 3717
15427 2668 (MEIsslma 2, p. 96)
f.
rad
,
W- 51 .,-107 W-115 W- 16
71 117 21
223 223 227
106
241
.,- 90
121
263 271 271
+
f.
rad
.,- 56
167
+ W- 34
196
+
+77 + (BEEOn)
1. f.
cohmua
2"-1 5--1 6"-1 6"-1 12"-1 12"-1 12"-1
2251 11439 5·7 883·s 26OS3 s
2697· s
rad
2351 11489 7 s 260753 5I·s
2377·3697· s (Como:NOIWI, JI"""", JI. . v. 26. 1896. p. 38)
[127 ]
BICXKOU: 2-BnCXlIARDT 1,
[cis)
EKllATA
BICXKOU: 2. I
43037 1344 62821 03132 98373 S04 0068S 44932 21107 80706 61761 (Hu:rzn, .A.rclm MtJIIt. Pllys., .. 3, v. 13, 1908, p. 107)
29 33 M BORISOV
1.
•
foe
BORX
read
(3,8,9, -4, -1,0) (3,8,10, -4, -1,0) (7,7,5,0, -1, -2) (7,7,5,0, -1, -3) crONES 1, p. 6; see also Scripla MtJIIt., v. 4, 1936, p. 11M)
184 193
1.
I
1753 41221 41651 42491 43051 45767
,
I
,
I
3 5 7 7 7 7
46229 46489 48679 49069 49787 49801
7 4 38 9 62 8
49831 50221 51341 51767 53327 57191
I
,
78031 82307 84067 84653 85639 86923
10 14 6 2 6 22
, 110 9 17 181 13 38
I
,
87881 87973 89041 90067 93151
40 6 28 6 10
(CUmnNGIWI 40, p. 154) BRETSCHNEIDER 2. pqe
4 5 6 7 8 10 11 12
Dumber
foe
read
977 1134 1289 1610 2067 2323
0,6,0,11 0,0,1 3,0,5,5,1 0,0,9,11 0,1,3,2, not listed
2384 2516 2532 3025 3522 3541 3603 3723 4011
0,4,0,49,1 0,1,0,0,0,4 0,2,0,0,0,4 0, 6, 1, 1,0, 1 0,2,3,0,2 0,4,0,1,2 0, 0, 3, 3, 0, 1 0, 0, 10, 2, 0, 1, 1 5,0,0,1
pqe
table
16 22
VI
0,6,0,1,1 0,0,14 3,0,5,1,1 0,0,9,1,1 0, 1, 3, 2, 0, 1 3, 0, 0, 4, 0, 1 0, 1, 3, 3, 0, 1 0, 4, 0, 4, 0, 1 0,1,0,0,4 0,2,0,0,4 0,6, 1, 1,0, 2 0, 0, 2, 3, 0, 2 0, 0, 4, 0, 1, 2 0, 0, 3, 3, 0, 2 0, 0, 10, 2, 0, 0, 1 5,0,0,1,6
°
for
read
3424 379
XVIII
3524 479 (ClwmLEJt 1, p. 10)
BncXlIARDT 1, I
911 1213 1597 1831 1951
[dl ). foe
read
I
450 1212 266 915 390
455 202 133 30S 195
1979 1993 2311 2437 3467 [ 128)
for
read
1978 1976 1992 6M 231 462 2436 1218 1733 3466 (SIlAND 1, p. 202)
ElUlATA
BUllCXlIAlU>T
2-CAREN 1, [dJ
1, [8t]. 9899
•
for blank
307849 446021 446023
11 573 197
•
rad
19 211 577 193
854651 854647 895339
for prime
rad
7
7 7
prime
17
(D. N. I.EBKD I, col. :Ii) BUllCXlIAlU>T
2.
•
for
1019681 1037051 1130023 1130323 1138027 1207517 1233473 1249843 1250111 1270471 1307377 1330001 1359233 1397647 1411679 1412047 1420847 1459699 1496693 BUllCElLUDT
•
2S42283
2619887
CAREN 1, [d1]. 377 384
384 387 389
prime
prime prime blank
881 11 229
37 23 57 223 1013 1123 277 589 11 13 97
prime
499 prime
449 11
for prime
rad
1504741 1556257 1588633 1618087 1619173 1623703 1627081 1748209 1782899 1785169 1787471 1793023 1793029 1857997 1916683 1936159 1979687 1984891 1996399
13 17
7 53 prime
1019 prime prime
587 prime
7 prime
for
rad
41
7 37 17
prime
23 1069
prime
prime
151 151 167 19 1151 149 7
7
prime
prime
7 41 193
prime prime
169 101 1153 147
14 prime
1123 73 797
prime
47 prime
83 67 (D. N. I.E.mI.u. 1. col. :Ii)
3.
2012603 2071301 2077529 2114693 2193923 2214413 2214931 2222417 2501261 2511893 2518817
PIP
•
read
17 53 881
69 prime
103 1429 31 31 1129 prime
2 17 1197 7
•
2755189 2763907 2768683 2868407 2882699 2891813 2903591 2913833 2915899 2954939 2976227 2976881 3026279
887 79 131 7 1433 37 37 1123 7 29 7 1193 17
, 59 137 137 173 191
rad
63 1213 449
163 1297 prime prime
683
19 23 1699 13 7 13 547
blank
2 1697 29 prime prime S49
311 79
prime prime (D. N. 1.Emm.. 1. coL :Ii)
for
rad
57 8 62
56
96 fIJI'"
[129 ]
for
3 67 76 175
CABEN
3, [dJ
1, [d,]. pqe
375 379 380 380
382 385
386 386 386
389 389 389
ERlIATA
,
table
&rI.
17 79 101 101 109 149 157 163 163 193 193 193
I I N N N N N I I I I N
15 6 41 81 25 101 118 72
for
92 58
78 24
rad
3
2
34
4J
74 62
72 67
66
(b
82 22 131 137 161 191 144
92
33 137 133 191 161 184
rad
1, [1,]. Contains all errors of Cm:BYSBEV 2., and also 4
31 74 CABEN
3, [d,]. pqe
40 40 40
41 41 42 43
45 45 45
45 46 46
47 47 47 47 48 48
49 50 50 50
for
rad
D
for
27
+ 29
47 77 101
879
79
283
285
3, [d1].
Ok
404s
pqe
,
for ,
rad
55 56
1021 2161
7 14
23
,
table
17 19 23 37 41 59 79 101 101 103 103 109 109 131 131 131 131 139 139 149 157 163 163
I I N I I I I N N I I I N I I I I I N N N I I
aqumeDt
15 19 9 31 27 30
6 41 81 26 89
14 25 37 65 85
113 9 136 101 118 72 92
[ 130]
10
for
rad
3 5
2
90
20
37 2 32
27 5 33
34
43
74 11 37 ,,3
72 67 10 27 73
66
(b
62
33 117 102 1 08
57 82 22 131 137
23
112 107 10 98 37 92
33 137 133
CAKlUCHAEL 2-CAYLEY
ERllTA
1.
3, [cis].-continued pap
51 52 52 52 52 52 52 52 52 52 52 52 52 52 52 53 53 53 53
,
table
arpament
for
read
167 179 181 181 181 181 181 181 181 181 181 181 181 181 181 191 193 193 193
N I N N N N N N N N N N N N N N I I N
1M 109 56 66 76 86
84 133 17 61 155 109 93 174
162 113 170 67 102 4 25
92
15 139 9 11 114 79 177 52 191 161 184
96
106 116 126 136 146 156 166 176 170
111
32 19 1M 120 26 72 51 161 191 144
58
78 24
3, ria].
•
for
-30
-55 7 -2 -47, -57
26 -29 -31 -33 -34 35
•
read
±S3
± 9 55 - 7 -3 47,65 -13 ±17
for
read
12,35 -33 -39 35
-38
-39 -42 -43 -43
13, -35 -23 -19 31 - 5 41
-46
CAllKICHAEL 2.
for
41(.)
w.t
read
1785,3570
768 792
2384
2388
1043,2086
880
1043,2086 1309,2618 1467,2934
888 960
972 CAYLEY
(GJ..\ISI[U 27, p. vii)
1,. D
253 597 64S
917
for
read
1177: 74 7949:399 203: 8 1181: 31
1861 :117 9749:399 127: 5 1181: 39
[ 131 ]
CAYLEY 2rC!mBYSJlEV CAYLEY
....
2..
111411 the 10111 bar under 1,0,17 PtII' 2, 0, 5 "-4, 0, 5 PtII' 7, -1,7 "-5, -1,7 It"", a short bar under 0, 40 It"", a short bar under 0, 8 In c:oJa. of I, .. """ ++ in 1. 1, - - in L 2,,,,,,, +- inL 3. in I. 4 CGIICII all entries in coL of Ie PtII' 2, -1,19 "NIl 3, -1,19 1""" a short bar under 0,88 I",,,, a short bar under 0, 11 In col. of I, !"'" +, -, -.I + in lines 1, 2, 3, 4 L 2, the penod should be ~, 5, - 2, 5, 2 L. 3, the period, thus - 3, 5, 4, 3, - 7, etc. L 2, the period should be 2, 5, -8,3,4,5, -4, 3, 8, 5, -2, 5, 8,3, -4,5,4,3, -8,5, 2 In col. of .. """ in 1. I, in I. 2 CGIICII the entries in col. of Ie L. I, the ~od should be I, 8, -11 8, I L 2,ItII' J, 7, -14 "NIl 3,7, -I. (ColooNOILUI 42, p. 59-60)
-17
-20
-34 -40 -40 -40
-+
-40
145 145 147 147 147 149 149 149
-56
-88 -88 -88 29 37 41
150 150 151 152
....
......
D
144 144 144 145 145 145
CAYLEY
2., [cia]
"""'$1
+
50 50 65 91
+
6,..
•29
76 76 76 109
CnBYSHEV
,
CHEBYSHEV
13 17 109
nH
f.
1, -6,5, -3,2, -1
1, -4,5, -5,4, -1 146246 s, 'I 'I, s 4-1361 4-136161 98787 71121 28467 93128 64853 64042 (ColooNGIWI 42, p. 67 and D. H. I..I:mmJt 11, p. 550)
1014 1051 1361 1366
1., [fa). 2" [ela). table
I I N
upmmt
12 15 25
for
nH
6 (alto in 21)
3 66
~}(pecu1iar to 2.)
2" [fa). f_
sI+ 42,sI+ 61,sI+ 66'}' sI+ 70y1 sI+ 74,' sI+ 77,sI+ 86)' sI+ 89,sI+ 91,sI+101,-
m.t
delete
157 215 71 239
159
159,237 87 345 115,297 281,309,317,325,333
[ 132)
77 233 89 119, 143, 297 89 354 7,189 287,305,313,321,329
EBATA
ClmRNAC
l-CULLE 1, [d.]
2., [ia).-cofJti"tIId '-t
delete
21,131 107,141 25,323 33,55,73,89,97,267 275,297,309 161,219 71, 79, 87, 95, 309 317,325,333
23,129 103,145 91,257 17,63, 115, 143, 175 189,221,245,249,347 29,351 75,83,91,99,305 313,321,329
bm
sI- 38,sIsI- 87,sI- 91,-
62,-
sI- 95,sI-I0l,-
AD these errors (ezc:ept the misprint in sI+89)") occur also in 2, and 2. while none is in 2.. ClmRNAC
1.
L. J. COIDtIB found (PETDS, LoooE and TuNoum, GIDOlID I, p. iz) misprints in the factors of 66 011-11·17·353 and (in some copies) of 44393-103·431. RPB has two editiona of this table, one with the comet factors, and one with the factors 10· 3431. 19697
19699 38963 39859 65113
68303 ~
68987 76769 354029 469273
494543 S4S483 580807 637447
769469 783661
795083 795089 795091 931219 CoLLE
aathorib'
fIctan
DUlber
prime prime 47·829 23 ·1733 19·23·149 167·409 rai8e each line of factors one line up 149·4:63 7 ·11· 997 13 '113 . 241 7·7·61·157 7· 31· 43·53 prime prime prime prime prime prime 67 '11867 11·11·6571 29 . 163 ·197 (C11NNINoIWI41, V. 34, p. 26 and v. 35, p.
CummrCIWI CummrOBAII C11NNINOIWI
BlaCmAllDT BlaCmAllDT BlaCmAllDT BlaCmAllDT CummrOIWl CummrOIWl
BlaCmAllDT CummrOIWl CummrOIWl
BlaCmAllDT B~
BlaCmAllDT BlaCmAllDT BlaCmAllDT BlaCmAllDT BlaCmAllDT B~
BlaCmAllDT 24; B1J1!CKRUDT I, p. 1)
1, [d1].
pqe
coL
52 8 52 57 52 57 65 52 52 65 Same errors in Cuwt 2, Tafel m.
IIDe
101 61 67 83 89
[133 ]
NId
101 61 67 89 89
CtTNmNGHAM
....
CtoonNGHAM
4, [da}-28
EIlllATA
4, fda].
10
~
. . . . . .t
139 547 773
1-1
104 120 122
839
s-4JS s-699 s-315
8SJ
R
127 147
859 947
s-526
60
CUNNINGHAM
NId
far
2·69 102 873 541
2·3·23 192 73 548
g: 776
{~
R
{:: 770 {910 920
(CUlnmfOIWl 42, p. 68)
S.
pap 174, table of pII- +t (mod 71, I" pU-60 f'fIIIl SOJO pap 177, table of ".-+1 (mod SJI) f'fIIIl
752,895,1689,460,413,1586,1656,925,1777,2029,521,1341. table of rD- -1 (mod SJI) f'fIIIl 2057,1914,1120,2349,2396,1223,1153,1884,1032, 780,2288, 1~ (CUlnmfolWl, JLIII",. JLGIII., v. JO, 1900, p. 60, v. 43, 1914, p. ISS)
CUNNINGHAM
7, [e.]. NId
far
~
87481
8·27·81·5 4·27·5·179
8·5·27·81 4·5·27·179
96661
7, [Js). 1"""_1' II and b for
,-45289, 5S63J, 70289, 77549, 79609, 80809, 95101. ,-60169, f'fIIIl..t, B-37,I40j L, JL-383, 59.
CuNNINGHAM
10.
pap 169/" 1-8124461 f'fIIIl 8124161 Ctl'NNINGIIAlI
(CUlnmfOIWl 42, p. 69)
(CUJlNIMOIWI, JLIII",.,. JLGIII., v. 40, 1910, p. 36)
24, [0].
,,-42, c:oef&c:ientl in Q, f'fIIIll, 7, 15, 14, I, -12, -12, I, 14, 15, 7, 1.
....
CUNNINGIIAlI
B
B
143 152 163 217 281
284
28.
• 1 line
7
far
15 3'·2' 984 12 71 6
.,.,.., 20 155 393 14877921
NId
257 61 ·3J041J 114877921 7681·40609·5927J4049 12708841 12705841 12084217 12004217 (WOODALL and Buon 5j errata marked with "B," Buon)
[134 ]
EJUlATA
CUNNINGHAM 29-CUNNINGHAM
and
WOODALL 7,
[ela]
CUNNINGHAM 29.
p. 86 in headiq,l'" (,'+1) rHIl b'+1)
(CmorINOJWI 39) CUNNINGHAM 30.
,
•
pqe
145 183 183 185 193 193 214
far
51 2 72 32 75' 125
7' 81 49 64
9
nacI
4.193051 10730221 15543281 180801 10S4S971 25437261 25613261
4193051 10730021 1143281 100801 151· 211· 331 125437261 25813261 (BUGaS)
CUNNINGHAM 31.
p. 81, prime 9901,/", SOO4 ,1Gtl SJ04
(CUlOIINGJWI 39) CUNNINGHAM 32. pqe
far
166 174
12207171 98068S09 15801871
189
nacI
15450197 127·211· 3697 15801571 (BUGaS)
CUNNINGHAM 33.
pap: 112 bottom/", 29105· •• rHIl 39105· •• pap: 115 '1-2, ,-12,/'" 29105 ••• rHIl 39105 ••• CUNNINGHAM 35,
.
(BUGaS)
[fJ.
pap: 7I", 19487569 rHIll9487579 pap: 71",19487969 ,1Gtl19487959 (BUGa) CUNNINGHAM 37. pqe
,
far
nacI
80
22
4·121
5·97
80
28
28481
24481
o. C. P. Mu.tu) CUNNINGHAM 38.
p. 125, line 3 from bottom,/", 38014 ,1Gtl 38012
(CUlOIINCIWI 39) CUNNINGHAM
and
WOODALL 7,
[ct.].
I", ,-2241 ,1Gtl 2341
I'" ,-40152 ,1Gtl 40153 I'" (bis) rHIl44089
,-44029
f", ,-27551/'" .-10,1Gtl
.-50.
(C11NNINGJWI and WOODAu., II".,.", II• ., v. 54, 1924, p. 73)
[135 ]
CtnnuNGHAM
and
WOODALL IO-DASE
CUNNINGHAM
and
WOODALL
~
3 14 16 II 22 II 23
EJtllATA
10.
• 155
2"-1
19 2S 2S 22
12"-1 12"+1
CUNNINGHAK, WOODALL
2 far
and
read
."""
31 48713705353 4871370S333 daeU 29251 daeUentry 6836860537 68368660537 (Errata marked with -II," J. C. P. Mu.I.u)
CltEAX
1.
pace 26, ,-&Dll,for ,-13 ,.,-14 pace 108, ,-14009, base 7,for -8, ntMl -824 pace 120, ,-I9fX1!J,for ,-+29, -29 ntMl,-+23, -23. (Ct1NNINGBAII and WOODALL, 11111,,,.,.114, v. 54, p. 180) CUNNINGHAM, WOODALL
and
CKEAX
2.
pace 353, ,-&Dll,for ,-13, ,.,-14 pace 356, ,-I9fX1!J,for ,-+29, -29, ,.,-+23, -23.
(WOODALL) DASE
1. read
DIUlIbel'
fOIl
6027133 6036637 6075451 6403117
blank blank
prime
21 9
421 7
DASE
Damber
7
6408679 6722999 6736t09
far
33
217 7
read
83 127 71
(D. N. LEmma I, coL n1
2.
DIUlIbel'
fOI'
read
DIUlIbel'
far
read
7022623 7040029 7047113 7047413 7110881 7141793 7220819 7224053 7295077 7295081 7324523 7345979 7346279 7366739 7384631 7385993 7410421 7412899 7430573 7489961 7548199 7556273 7556573 7576799 7601003 7601303
prime prime
1913 1627
1997
prime
prime prime prime
2539 1811 1783
prime prime prime prime prime
1997 1861 2617 1877 2143 2683
7614461 76804S1 7732871 7741093 7790J81 78D2999 7810963 7820201 7845427 7855549 7856147 7857343 7860931 7861517 7861529 7863323 7864519 7865117 7866911 7868107 7887931 7918819 7927501 7933649 7941047
1143 2683
prime
prime
2467
l&Dl
prime
prime
l&Dl 23 2179 1933 179 13 2089 181 353 1949
13 prime prime
173 23 prime prime
5S3 prime
1949 prime
prime
prime
149 2437
2437
prime
41 prime prime prime prime prime
29 prime prime
101 prime prime
107 prime prime prime prime
67 31 prime prime prime
prime
2311 2179 1847 1831 1901 13 13 13 13 2383 13 13 13 13 13 13 367 131 1879 2341 1831
(D. N. Laoa:Jt I, col m1
[136 ]
EUATA DASE
DASE 3-DAVIS
1
3.
The entries for 8236079 and 8245589 are given correctly in some copies and incorrectly in others. Two copies, one correct and one incorrect, are in RPB. Dumber
for
read
Dumber
for
read
8057743
prime prime prime prime prime prime prime prime prime prime 23 41 prime prime prime prime 73 prime prime prime prime prime 79 7 prime 97 prime prime 1613
2617 2617 2617 2617 2617 2617 181 181 181 2617 73 11 2617 7 2617 2617
8513101 8523569 8525317 8528803 8536319 8S60057 8560207 8562461 8593507 8626981
prime prime prime prime
2617 2617 877 2617 11
8068211 8083913 8136253 8162423 8167657 8167987 8169797 8170159 8209529 8236079 8245589 8277571 8282197 8288OJ9 8293273 8318393 8324677 8340379 83S0847 8382251 8397953 8409631 8409917
8418889 8427193 8429357 8431151 8431169 8450293
prime
prime prime 1361 233 227 769 1123
8456059
8477669 8477671 8478889 8486449 8491187 8496181 8499737 8499763
prime
829 227 prime
8SOO8S3
8507867
W.
DAVIS
13
31 prime 23 43
41 prime
8633483
8636011 8638717 8654419 8670121
11
prime prime prime prime 233 prime prime prime prime prime 2627 prime 5171 49 prime prime prime prime prime prime prime
8684609 8684903 8685823
43
2617 2617 2617 2617 2617 379 17 2617 67 2617 1613 prime 2617 239 1361 prime prime 277
8696291 8711993 8717227 8748631 8754887 8759099
8783693 8783699 8788069
8790503 8795737 8821907
8827141 8869013 8874247 8916119 8930137 8931821 89649.01 8965801 8984161 8995513 8995517
S69
1223 829 prime 277 2617
prime
11
2617 43 13 11
2617 31 2617 2617 2617 233
prime 2617 2617 2617 2617 2617 1627 2617 571 149 2017 2617 2617 2617 2617 2617 2617 2617 1049 2617 11
1949 prime 13 11 13 prime 2617 2767 prime prime 2767 (D. N. LEmma 1, col. zii)
1.
tUleU 10'+0013,0391,0657,0723, 1221, 1353, 1549, 1647. (CmooNOILUl
[137 ]
and WOODALL 5, p. 78)
DEGEN I-DESKAUST DEGEN
1, [de]
EBATA
1.
A
IU
8S3 929
/", 10th entry of upper line 14, '"" 15. 30, 2, 11, I, 2, 3, 2, 7, 5, (2.2), I, 29, 5, 40, 19, 16, 25, 8, 11, (23, 23) ,-756 s-I591SOO7379898047S819 ,-1890739959518J902088CK99780706260 s-4S99 ,-18741545784831997880308784340 s- 2609429220845977814049 ,-1030662S7SS0962737720 s-I0499986568677299849 s-337 s-7293318466794882424418960 s- 235170474903644006168 ,-147834442J96SJ6759781499589 s-27SS61 ,-1978918171151724J03297174O s-224208076
2J8 277 421 437 613 641
653 672 751 82J
919 94S 949 951
(D. H. LEllllU.ll) DESKAUST
.,
3 277 317 397 409
449 787 1409 1657 1733 1889 1997 2087 2087 32SJ 3373 3413
1, [ct.] .
far
IU
2 2 2 1 2 1 1 6 4 32 4
2 4 4 4 2 14 2 44 3 2 16 2
12 6 4
7 6 4 2
:}
Primes misprinted:
, 3517 3541 3547 3637 3677 37fIJ
3821 3911 4049 4397 4621 4651 4943 5081 5107 5407 5479
far 2 59 1 1 4 4 2 1 4
28 1 2 2 2 1 6 1
IU
4 177 2 4 2 2 1 2 2 14 5 1 1 4 2 3 2
, 5519 5557 5827 6101 6277 6287 6781 flJ97
7001 7127 7481 7561 7717 7741 7841 7853 8011
far 4167 5871 8421
far
IU
1 4 1 2 2 2 1 2 2 14 2 2 2 3 20
2 6 2 5 4 1 5 4 4 7 10 4 4 9 140 2 3
6
, 8087 8093 8101 8219 842J 842J 8521 8609 8681 8893 8999 9067 9187 9397 9521 9629 9649 9941
for
2 1 1 2
~} 24 18 2 2 1 1 1 2 10 2 8 1
IU
1 2 5 1 1 12
8 10 4 2 2 2 116 1/'i
1 16 5
IU
4157 4871 6421 (CmnmroJWI 40, p. 151)
[138 ]
EJUlATA
DICUON
DICUON
2,
2,
[bs]-GAUSS
6
[bs].
Table m, add 2750, 2990, 3250, 3430. Table V for
NId
233 158,135
223 135,158
.(.)
224 240 289
117(1f)
.(.)
1440 (atl4) 1524 1536 1620 (atl4) 1776 2400 2448 2736 2880
288
372
305
196 1069 993
468
1170 1248 1344
814,735
1368
1404
198 933 S46 735,814 1165
NId
for
1068 1513 1587
1195 704, 1083, 1523 1023 1513 1022, 1095, 1329 1064 1515 1582 1434
TABLE VI ,,(If)-2SD,/or 106 ,.108 add "(If) -399 196, 242 add "(If) -1374 914, 1373
tltJIM entries under 1124, 1134, 1304 and 1524. TabieVU add "(If) -1134 S44 ,,(If)-I862/or 1571 rIGtl1573 tltJIM entries under 372, 399, 1151, 2860. (GLUlIIID 27, p. vii) DICKSON
6.
page 184, tl-47,/or 1, 3, 6, -1,0,0,.1,3, 16, -1,0, O.
OO!1E8 1, p.6) DINES
1.
page 114 range 10 tltJIM 53
(BEEGu6) DUUEE
1, [el].
If-lS48S303lor prime , . 109
.<-)
facton of .(.)
71•
329554457
371 61' i""" 79 ""'" 791 ""'" 791
52060
1123 . 293459 21·5·19·137 21·31·1861 2f·5 3·71·43 2'·5·3121
•
GAUSS
230764 SD
6321 499360
(P011LBT 2, p. 10)
6.
CoDtaiDa many errors.
[139 ]
GAUSS
7
GAUSS
7.
ElUtATA
fN,GIlN tleImItifIMIII ~
451 451 451 451 451 451 451 452 452 452 452 452 453
m
4S3
454 454 4S4 4S4 4S4 4S4
455 455 455 455 456 456
456 456 456
456 456
456 457 457 458 459 459 459 459 460 460
461 461 461 461 462
462
ceaL
5 5 5 6 6 6 7 9 10 10 10 12 13 14 14 16 16 17 18 18 18 19 19 20 21 22 22 22 22 23
24 24 24 25 27 29
61 61 61 61 62 62 92
92 92
94 96 96
n..t
f.
4599 II. 468 IV. 4 48S 4 IV. S44 IV. 4 547 9 I. 9 557 II. 647 25 I. 894 6 IV. 931 II. 9 933 IV. 3 993 4 IV. 1116 9 IV. 1261 10 II. 27 1367 I. 1396 IV. 7 1508 8 IV. 1598 8 IV. 1683 9 II. 1701 IV. 9 1725 4 Vill. 1796 10 IV. 9 1836 IV. 1872 4 VIII. 1940 8 IV. 5 208S VIII. centas 2 (at top) 2188 9 II. 2196 12 IV. 2180 16 IV. 2204 11 IV. 2331 12 IV. 2304 IV. 8 4 2320 Vill. 4 2448 (~-) VIII. 2636 II. 33 2900 12 IV. 6032 8 VIII. 6068 24 IV. 27 6075 (-3-> II. IV. 12 6084 8 6148 IV. 6176 IV. 20 9104 (-2-) 32 IV. 4 9108 VnI. 9156 Vill. 8 12 9324 Vill. 9513 (-2-> Vill. 8 9554 40 IV.
[140 ]
II. IV. IV. IV. I. II. I. IV. II. IV. IV. IV. IV. I. II. IV. IV. II. IV. VnI. II. IV. VIII. IV. VIII.
9 4 5 4 9 13 23
7 9 4 3 6 5 25 14 8 8 6 9 4 20 9
"
10 4
459 468
(-3-> (-2->
48S S44
547 557 647 894 931 933 993 1116 1261 1367 1396 1508 1598 1683 1701 1725 1796 1836 1872 1940
(-2-> (-3->
(-3-)
(~->
(-2-)
(-3-) (-2-) (-3-) (-2-)
208S
centas 22
II. IV. IV. IV. IV. IV. Vill. VIII. II. IV. VIII. IV. II. IV. IV. IV. IV. VIII. VIII. VIII. VIII. IV.
9 12 16 13 12 8 4 4 33 12 8 24 27 12 8 20
32 4 8 12 8 40
2188 2196 2180 2204 2331 2304
2320 2448 2636
(-3-)
(-2-> (-2-> (-2-) (-2-) (-2-) (-2->
6032
(~-) (-~)
6068
(-2->
2900
6075
(~)
6084
(-2-) (-2-) (-2-)
6148 6176 9104 9108 9156 9324 9513 9554
(-2-) (-2-) (-2-) (-2->
E. GID02D
EBATA GAl1SS
1
7-conli",,"
....
10-- tleImIflflMlb _to
475 475 475 475 475 475 475 475 475 476 476 476
E. GU:F02D N
121 4193 8477 20567 21329 22331 26413 26443 26567 28733 28873 289
29351 30523 3OS89
32131 32671 39931 39937 43589 46711 47081 50059
NId
for
99 G IV. I G IV. 1 136 GVIn. ISO 1 G IV. 1 156 1 174 G ll. [at head of table] omitted omitted 229 G ll. I G IV. 1 8SO G IV. 1 88S G IV. 1 904
I 2 2 2 2 3 3 3 3 9 9 10
G G G G G G G G G G G
2 2 1 2 1 ezcidunt3 IV. I ll. 1 1 n. IV. 2 2 IV. IV. 2 IV. IV. IV. IV. IV.
99 136 ISO 156 174 208 209 227 8SO
885
904 (CtnolINOIWI 42, p. 55-56)
1. for
llXll 7X559 7X7X173 121X157 7XllX227 127 X 163 61 X 233 31X2S3 31X257 S9X4S7 13 X 2201 too low 71X5S9 121 X 233 IJ1X781 llX127X23 37X8S3 73XS47 7X6197 71 X 6673 23 X23 X89 103 X 443
NId
117X599 71X173 131X1S7 7XllX277 137 X 163 61X433 31X8S3 31X8S7 59X487 13X2221 71xS99 131 X 233 IJ1X181 llX23X127 37 X883 73XS47 7X13X479 7X6673 2JlX89 113X443
N
for
NId
S4353 5S3 575S3 613 64643
13X3IX113 too low 67X889 too low 113XS09 29 X 2099 too low 31X3251 19X3719 17X43XI0l 11 X 19X241 17X51X79 19X3IX113 7XI0369 73XI039 6SXl231 29X3007 13X6161 13X6167 17xS303 17XS894 19X29X281 17Xl4293
13X37X1l3
6S069 660
69781 71801 75293 76879 79237 79439 79583 82081 82477 87203 90493 90571 91681 99433 99731 100051
67X8S9 127XS09 31X2099 31X2251 19X3779 17X43XI03 l1X29X241 17XS9X79 19X37X113 7Xl1369 79XI039 67Xl231 29X3IX97 13X6961 13X6967 17XS393 17XS849 19X29X181 7X14293
(This previously unpubUshed list of errata was fumished by L J. COIDIE after comparison with PETus, LoDGE and TnNOlJTB, GIPI'O:ID I, and is believed to be complete. Dr. CoIDIE notes also the following two errors in Mrs. GIPI'O:ID'S -Errata":/w -9307" MJ493; GjW
S0519,/w 71XI039, ,1Gtl7lXI031.)
[141 ]
J. GLAISHER 1, [e,J-GOLDBERG 1 J. GLAISHER 1, [8t). Dumber
for
3039709 3043027 3063523 3081121 3081733 3082109 3083273 3083561 3085219
5 1 127 1 46 5 1 1 57 1
3089489
3093503 3230309 3230317 3230321
J.
blank 53
prime 1721
GLAISHER DIUIIb.
GLAISHER
53 13
3234043 3347717
1277 31 467
3464011 3539017
3539021 3543737 3563659 3621197 3621199 3776569 3776579 3826601 3826607 3903341
53
17 13
577 13 7 59 1721 prime
for
ned
Dumber
1 1 1
11 11
4801751 4905281
13
4986869
for
GLAISHER
ned
7 13
3 1
11
(D. N. LEIDmIt 1, col. xi)
9.
Second million, first myriadfor 391,362 MMl390,363; third million, third myriadfor 349,344 ,1DIl350,343.
W. L.
GLAISHER
pap
5 5 6 7 9 13 15 26
(GLAISBEIt 12, p. 193)
15.
page 106, imm E(802) - 2, E(922) - 2. page 107, column ·sum of values" at ~ for 73 ,1DIl 75 at 900-999 for 79 ,1DIl 81 GOLDBERG
ned
prime 167 4 41 prime 29 (D. N. LEIDmIt 1, col. xi)
for 23
DIUIIb.
J.
ned
57 157 199 109 223 233 prime 1699 1699 prime 181 prime 1 11 prime 1097 1097 prime 1789 prime prime 1789 373 prime prime 373 19 13 (D. N. LEmmIt 1, col. xi)
3, [ell. 5S80421 5581823 5581829
J. W. L.
for
Dumber
ned
2, [ell.
4610243 4782811 4793477
J.
EJlllATA
(GLAISBEIt 25, p. 66, and 27, p. 185)
1. for
ned
4367 5387 5939 5369 7973 10667 12237 21687
4267 4387 5039 5569 7073 10867 13237 22687
for
pap
27 38 39 K 40 K
22669 33347 34389 54571 34093 40 43 37517 43 K 39547 37899 43
[ 142 ]
ned
23669 33247 34289 34571 35093 37417 37547 37799
pap
44
47 48 50 51 54 55 56
K K K K
for
38139 41193 42953 42507 45641 56939 48627 38793
ned
38239 41093 42053 43507 4S041 46939 48629
48793
GOLDBEB.G
EDATA GOLDBERG
.... 60 60 67 70 75 75 76 76 76 77 78 80 81 83 83 86 87 91 93 94 96 97 98 100 lOB lOB 109 109 114 115 118 118 121 123 123 123 124 126 133 134 139 145 145 146 153 154 154 154 154 156 157 157 158 159
1-CDflli,.twl for
NId
53313 32861 58159 91321 65599 63813 69529 69553
52313 52861 59159 61321 65699 65813 66529 66553
69883
66883
K 67751 K 69401 70627 71197 12889 73919 K 65371 76051 79729 82481 92733 K 34757 K 35183 K 68333 K 67653
67651 68401 70727 71297 72889 73019 75371 76951 79829 82181 82733 84757 85183 86333 87653
95079
95077
K K K K K
95329 93917 96123 KI99409 KI06967 204027 104287 106181 408127 KI03373 K408S21 409241 119857 117438 418367 112419 138159 KI38161 KI38419 K434819 1254:09
185673 125809 126241 K127461 198541 188871 439001 KI38849
95429 95917 96023
100409 100967 104027 104387 106183 IOB127 108373 108521 109241
110857 117433 118367 122419 128159 128161 128419 134819 1354:09
135673 13S809 136241 137461 138541 138871 139001
139849
....
159 162 166 167 168 169 170 172 176 178 182 186 187 189 191 192 193 194 194 195 196 196 197 198 201 202 204 204
206
207 207 207 20B 209 210 210 210 211 211 211 212 212 215 218 218 219 220 222 223 223 223 224 225 225
far
NId
Kll0111 K443269 146437 K147979 K147959 148781 K4:4:9797 131409 K4:SS357 156691 Kl66SS9 K463763 164776 166872 169703 166813 K176407
140111 143269 146537 147079 147859 148789 14:9797 151409 155357 156697 160559 163763 164779 166873 168703 169813 170407 171083 171587 172121 172751 172927 173581 174877 177527 178687 179641 180377 181511 182539 182711 182849 183407 184673 185213 185431 185471 185837 186373 186697 187139 187157 189367 192511 192769 193681 194339 196213 196993 197017 197129 197881 198439 198791
171084:
K151587 472121 172754 172929 K473581 K177877 K777527 K478687 K179141 4:80377 191511 KI62539 K162711 182848 188407 134673 195213 175431 4:854:71 155837 168373 86697 187138 157157 189364 792511 192760 198681 191339 106213 KI97993 196017 191129 147881 198434 188791
[143 ]
....
for
1
NId
225 KI88973 227 200834 228 Dl1583 229 251893 231 253539 233 D3S933
198973 200831 201583 201893 203539 205933
234:
206638
206639
234 235 236 236
207001
207007 207463 207947 208073 208661 209323
236
237 237 238
238 239 239 240 240 240 241 242 244 245 247 253 255 256 2S6 258 259 259 259 260 261 262 262 262 262 263 263 264 264 264 264 264 265 265 265 266 267 267 268
907463
207943 298073 K298661 209329 D0034:1 D10263 K510S03 D40733 110767 411673 211781 211791 312407 212914 215301 246733 517811 223278 225470 325863 225597 227668 223329 228403 258673 K329531 230928
231311 D81361 221467 321793 KS31863 232250
332739 332801 238877 232801 333077 293741 D34:043 294:091 233067 236112 K336221 336507
209341
210269 210503 210733 210767 211673 211771 211781 212407 213913 215303 216733 217811 223273 225479 225863 225997 227669 228329 228409 228673 229531 230923 231317 231361 231467 231793 231863 232259 232739 232801 232877 232901
233077 233741 234:04:9 234091 235067 236113 236221 236S07
GOLDBDG
1--ctmli"ued
for 268 K337031 269 337671 270 238061 271 238971 273 240820 241()()1) 273 273 241274
NIAI
~
DIUIIb.
5951 8891 9571 9937 11429 13559 17651 18361 19907 20009 22919 23047 23441 24173 27347 28259 29597 29971 32477 37631 48719 50813 51209 52693 53011 53021 53041 53071 53293 53731 53761 5S033 58729 I:. 58993 59807 61807 63631 64199 64277 I:. 65639 71623 I:. 74191 74461 76729
237031 237671 238081 238981 240829 241007 241271
--=ted factan
11·541 17·523 17·563 19·523 11·1039 7·13·149 19·929 7·43·61 17·1171 11·17·107 13·41·43 19·1213 11·2131 23·1051 23·29·41 7·11·367 17·1741 17·41·43 47·691 11'·311 11·43·103 71·17·61 41·1249 23·29·79 7·7573 37·1433 29·31·59 73·127 137·389 prime 37·1453 11·5003 11·19·281 11·31·173 11·5437 19·3253 17·19·197 43·1493 17·19·199 7·9377 67·1069 131·439 19·3919 2771
EBllATA
far ~ 273 241468 274 241840 275 245143 277 244241 277 1:.241811 278 K34S381 278 245497
Damber
77371 1:.79679 80357 81617 84797 86483 89987 90419 I:. 90721 I:. 91877 93547 94001 94831 94987 95567 96301 96631 96883 96937 I:. 97481 I:. 98099 1:.99769 99997
101857 102283 104303 105473 1:.105919 1:.105961 108619 108809 109939 111523 113627 1:.114733 114959 116093 118559 118859 119287 119669 119843 121033
NIAI
241469 241849 243143 244249 244811 245381 245407
--=ted factan
71·1579 17·43·109 107·751 17·4801 19·4463 197·439 291·107 7·12917 257·353 79·1163 139·673 23·61·67 11·37·233 43·471[43·47 in some copies] 227·421 23·53·79 71·1361 17·41·139 31·53·59 43·2267 263·373 19·59·89 191· 277 7·14551 29·3527 37·2819 29·3637 11·9629 17·23·271 7·59·263 53·2053 17·29·223 229·487 371·83 171· 397 13·37·239 17·6829 7·16937 13·41·223 7·17041 11'·23·43 37·41·79 11·11003
[ 1441
280 283 284 284
285
NIAI
far
~
278 279
24S407 246917 347043 249917 K280789 250937 1:.221387
Dumber
122483 123763 124763 1:.127801 128527 128851 133429 134QS7 138319 1:.138761 1:.139621 1:.139829 140519 141187 142769 143311 144859 1:.145597 146189 146591 147017 147389 147581 148613 149593 149603 152573 1:.154447 154813 155011 155489 156263 157117 157453 1576\53 158273 1S8S03 158899 160261 160283 160693 161299 162667 165997
24M97 246017 24700 249919 250789 250931 251387
--=ted factan
53·2311 23·5381 17·41·179 227·563 71·43·61 269·479 29·43·107 7·11·1741 11·1949 7·43·461 17·43·191 67·2087 83·1693 59·2393 11·12979 7·59·347 11·13·1013 19·79·97 29·71' 17·8623 13·43·263 11·13399 7·29·727 353·421 227·659 prime 271·563 41·3767 23·53·127 379·409 61·2549 307·509 59·2663 19·8287 11'·1303 163·971 31·5113 13·17·719 43·3727 29·5527 13·47·263 23·7013 47·3461 13·1131
GOUWENS1
EBATA
1-conli"ued
GOLDBERG
corrected facton
Dumber
166249 166573 169907 170951 172231 172339 172891 174247 174643 176879 Kl77467 K179183 179467 179597 179711 181561 182117 182177 182399 182527 184423 184937 186083 186313 186517 187537 187829 191423 191839 192203 192449 193781 195151 K195671 196301 196411 197041 197501
83'2003 11·19· 797 131'1297 11·15541 29·5939 23·59·127 23·7517 163·1069 7'61'409 73·2423 prime
59'3037 197·911 11·29·563 7·25673 47'3863 13·14009 prime
7· 71·367 349·523 311·593 173·1069 53·3511 211·883 37.711 7·73·367 31·73·83 107·1789 41·4679 11'101·173 223·863 7'19'31·47 11·113·157 7·27953 7·29·967 59·3329 13·23·659 23·31,277
corrected facton
Dumber
198053 198401 198547 198617 198947 200167 203917 204853 204901 207107 207167 207413 207557 K208349 210217 211459 K213251 213793 213871 215101 215171 215441 K215729 216581 216737 217039 217897 219209 219379 219859 220087 220439 220993 221029 K223109 223459 K224647 224719 224729
23· 79·109 71·4049 367'541 31·43·149 7·97·293 11·31·587 7· 29131 11"1693 171· 709 71·2917 223'929 211·983 7·149·199 89·2341 7·59·S09 103'2053 107·1993 439·487 7'30553 17·12653 11·31·631 17·19·23·29 31·6959 19·11399 73·2969 171· 751 193·1129 223·983 431·509 43·5113 7·23·1367 17·12967 223·991 83·2663 471·101 11)1,619 277 ·811 11·31·659
Dumber
corrected facton
K225121 225877 K225899 225901 226249 226279 227689 228967 229471 229537 229579 229907 230261 231601 232427 K233263 233927 235093 235801 236099 236281 K237949 238271 239603 K240329 241399 242611 242791 K245743 246863 247019 247109 247751 247979 248029 249241 251587 K251593
13·17317 107· 2111 223·1013 13 ·17377 61·3709 41·5519 7'.11·2957 101'2267 11'23·907 7 'll" 271 7·32797 149·1543 19·12119 311 .241 13·19·941 19·12277 223'1049 17 ·13829 37·6373 229·1031 277·853 17·13997 11·21661 7·13·2633 17 '67 '211 283'853 19·113' 97·2503 397'619 43·5741 19·13001 29·8521 7'35393 17·29'503 97·2557 47·5303 7·127'283 43·5851
prime
(Practically all corrections in this list were given in Dr. JIif KAvAN's MS. list, but those without a -K" were first given, 1~5, in CoNmNollAll41, KAvAN added 94 new corrections. Mr. H. J. WOODALL has pointed out that 54131-7· 11 '19· 37; the broken type for the first factor makes it uncertain.) GOUWENS
1.
1-97, itl Y jfJf' 446 read 466.
[145 ]
GRAVE l-HAlmY GRAVE
1.
and
RAKANU]AN 11,
,
2.
read
,-,M ,-
+35 - 1 +4 - 5 +69
for coeIIidIDt 01
read
y"
353 10M 353
~ ~
,
113 157 197 GRAVE
E:RJtATA
fcx coeIIidIDt of
59 59 67 71 79 GRAVE
I,
,-T'
3, [41).
page 377, 1-131, .flI.,57 page 380,1-149, 32, tUleH 35
""m
3, [ell. page 330, ,,-9899
,til' - ,eatl19
3, [q.). p.21-22 A
1230 1232 12M 1236 12<40 1242 12" HALSTED
lot:
read
56 27 26 41 36 42 23
55 29 25 42 M
A
1252 1254 1272 1274 1396 1398
"
22
for
read
24
23 51 <40 26 24 45
SO 41 25 25
"
1.
page 149"tII' 330,644,725, 107226 ,eatl333, 644, 725, 107226; alao change order of entry. page 149"tII' area 8635SO ,eatl9J.4800 (MA1TIN 2, p. 309,321) page 167"tII' 21, 61, 65,420 ,eatl14, 61, 65, 420 HARDY
and
RAKANU]AN 11,
I,.
Table I. l!;,g UII.lI/".'tII' -27/32 ,eatl 5/32 log CIlU.a/n. 27/32,eatl -5/32 Table n. In Au'tII' -'fr/90 ,eatl8fh:/90
,0'
In A1I'tII' +27'fr/32,eatl -5'Jr/32 ,til' Au(II)-O (".1, 2, 3,5,7 (mod l1»,eatl Au(II)-O (".1, 2,3,5,8 (mod 11» ,til' AlI(n)-O (11.0 (mod 2» ,eatl A1I(II) never vanishes ,til' AU(II) never vanishes,eatl Au(.)-O (".1, 2 (mod 5».
(D. H. LEIDIltK 5, p. 118)
[ 146)
HAUSSNER
EJUlATA HAUSSNER
•
670 1014 1026 1038 1040 1060 1106 1108
1126 1136 1146 1164 1170 1184 1186 1232 1244 1284
1. for
ned
413
313
S06 83
S03
103 19
omit
m-t
103 171
281 47
97 131
157
1454
2402
53 691 903
43
47
24
25
24 39
38
30
151 5
22 46 60 26 25 58 29
137
36
613 47 499 601
181 41
233 829 171 147
223 929 179 149 389
67 1097 233
30
27
37 28
36 29 52 58 36 5S
37 28 53 59 37 54
32
31 35
34
433 67
82 28
1061,1069, 1091
81 27 60 72
17 53
37 71 75
36 72 76
337
41 73
40 74
223 1193
1071 1192
20 20 29 23 47 61 27 26 S9
227
1091 223 17
233
41 887 227
227
227 489
18 19
23
631 SOl
2404
2406 2442 2444 2446 2448 2470 2472
42 40
97
IS68
2304
41 38
193,277 593
1380
1584 1606 1664 1690 1696 1722 1726 1790 1808 1818 1824 1840 1842 2020 2026 2050 2102 2UM 2136 2142 2228 2238 2262
433
17
577 83
ned
131,337
393 433 587 89
for.-
1061 1193
[147 ]
59
75
1
IIAU8SNEIl.
I-continued
•
2508 2510 25JO 2532 2584 2598 2606 2616 2630 2636 2646 2654 2656 2664 2666 2674 2684 2688 2692 2698 2802 2804 2808 2810 2814 2856 2870 2900
ERRATA read
for
m-t
omit
for.-
229 233
223
229 1213 1061,1093,1213
read
75 44 56 68
74 4S
55 71
1223
1123
5
70 36 71 45 35 80 36 42 72
157 157 487 313 313 733 733 733 733
46 34
81 35 41 73 37 48 43 89
36
571
49 42 90
571 571 151
71 35 72
251 571
72 36 91
139 1217
SO
73
63 52
1217 139 2956
42 73 35 90 51 97
4J
11
96
2856 1427
64
51
(Table II)
•
1026 1038 1108 1136 1146
1184 1186 1232 1244 1284 1380 1454 1568 1584 1606 1690 1696 1790 1808 1818 1824 1840
for
read
41 38 24 24 39 18 19 30 22
42
46 60
26 25 58 29 36 27 36 29 52 58 36
40
25 23 38 20 20 29 23 47 61 27 26 59 30 37 28 37 28 53 59 37
•
1842 2102 2104 2142 2228 2238 2262 2404 2406 2442 2446 2448 2508 2510 2530 2532 2598 2606 2616 2630 2636 2646
for
read
55 32
54
34
81 27 60
72 37 71 75 41 73 75 44 56 68 70 36 71 45 35 80
[148 ]
31 35 82 28 59 75 36 72 76 40
74 74 45 55 71 71 35 72 46 34
81
•
2654 2656 2664 2666 2674 2684 2688 2698 2802 2804 2808 2810 2814 2870 2900 3036 JOJ8
3102 3108 3112 3210 3228
for
read
36 42 72 36 49 42 90 43 72 36 91
35 41 73 37 48 43
SO
96
63 52 91 45 93 101 47 110 84
89
42 73 35 90 51 97 64
51 92 44 92 100 46
111 86
HERTlER
EJUlATA llAuSSNER
•
3264 3268 3288 3332 3352 3392 3408
3418
3480
3492 3528 3584 3588 3594 3598 3610 3612 3614 3616 3646 36S8 3688
3710 3712 3714 3724 3772 3774
3804 3808
3810 3814 3818 3828 3840
3844 3846
3852 3882 3954 3958 4008
I
I-continued for
n..t
88 47 77 56 44 45 87 49 122
89 46 78 55 45 46
84
103 57 107 90 57 67 111 54 47 51 46 45 80
48 94 60
55 102 94 6S 129 48 45 108 127 51 97 93 97 101 52 106
86
SO 123 85 104 56 108 89 58 66 112 53 48 52 47 46 79 49 93 62 54 103 93 64 130 49 44 109 128 SO 98 94 98 100 53 105
•
4018 4056 4098
4100 4104 4110 4114 4144 4172 4178 4188 4190 4198
for
n..t
6S 108 101
66 109 102 67 104 139 61 64 62 53 104 64 53 16S 105 54 56 123 106 53 132 100 68 144 55 103 48 107 114 108 70
68
105 138 60 63
4428
61 54 103 6S 52 164 104 55 55 122 105 54 133 101 67 143 56 102 49 106 113 110
4438
68
"" 4470
61 124 148 56 76 116
4200 4206
4216 4222 4242
4248 4258 4284 4308
4310 43SO 4352 4374 4388
4398 4422
4446
4474 4522 4608
4618 4628 4638 4640
4642 4662
58 60
107 71 64 135
60
125 147 57 77 117 57 59
108 70 6S 136
•
4664
4674 4690 4692
4708 4710 4718 4724 4734 4736 4738 4740 4746 4754 4764 4782 4792 4808
4814 4816 4818 48S4 4884
4894 4900
4902 4904·
4908 4914 4916 4918 49.20 4930 4942 4944
49SO 4956 4972 4986 4990 4996 SOOO
for
71 122 96
119 66 147 61 58 119 59
56 151 138 61 113 107 61 52 62 73 128 113 125 61 95 121 58 104 149
read
69
123 95 120 6S 148 60
57 120 58 57 154 139 60
114 108 60
51 61 75 129 114 126 60
94 123 59
103 ISO
53
54
56 152
57 153
83
84
72 121 166 143 67 116
73 122 167 145 68 117
83
84
62 76
63
(PIPPINO
77 I, p. 2-5)
HERTlER 1.
1-101009 read 1-16 tIdtll-l06321, 1-4, and 1-109873, 1-7.
[149 ]
(CmnmtOIWl 40, p.
155)
INGHmAIO
1.
INGHIlLUlI
1•.
ERRATA
In these tables a prime number is denoted by a dot (.). The following 55 primes (p. 17 is not considered) do not have a dot clearly printed:
1867 36191 55127 69959 78191 95279
3593 41257 56809 72901 84347 97231
5879 41983 57131 75619 90947 98101
10909 46747 56993 77081 91129 99523
14243 47629 61223 79337 95813 98867
12479 42169 63149 82207 91757
17393 43063
64433 82241 92387
21001 43579 61291 82507 92959
29819 44159 70001
35831 47699
83003
83231
93559
94463
69463
(Mrs. Jui KAVAN) pqe
Dumber
fex
1 3 5 7 7 8 9 9 11 13 13 15 15 15 16 16 16 19 19 19 19 20 20 20 20 21 21 21 21 21 21 21 21 22 22 22 22 22 22 22 22 22 23 23 23
4241 8249 15707 18703 B23641 B20159 B29327 B29427 B30S31 B36843 B36943 842431 847507 47539 842583 44579 45383 48457 51377 B53693 B53793
1 -3 13 39 77 18 3
73 113 59 47 19
13
3 3 3
B55101 B55201 5S609 55473 55573 B55793 B5S893 55979 B59069 B5946J B59563 B61129 61329 62321 62421 B65703 65723 B6S847 65939 B65947 B60471 B60571 60587
3 15 7 37 17
,
19 37 33 3
read
3 7 7 223 3 7 3 42
62087 B72001 66481 68353 68771 68871 B70467 B70567 72209 B74607 B74707 B74907 75009 76221 76321 76701 76801 77819 78041 74351 74367 74773 75471 75571 B77699 B77799 B77999 80837 82739 B84047
25 25 25 25 25 25 26 26 26 26 26 26 26 26 26 26 26 27 27 27 27 27 27 27 27 28 28 28 29 29 29
151 137 97 13 47 83
3 7 3 7
3 7 3 3
Dumber
23 24
3 N-49 3 3 3 7 3 3
pqe
3 7
JO JO
3 7 3 3 7 3
31 31 31 31 31 31 32
2J3
7 3 7 43
83099
83357 B83573 84641 B86849 84157 84653 B85377 B8S477 89881 89979 B91839
J3
33 33
[ 150]
B90287 91887
for
43 39 18 19 3 7 3 103
read
47 89 19 29 3 3 7 163 3
3 7 7 3 3 17 3 148 13
3 3 3 7 3 7 149 3 23 3
3 3 3 3 129 11 3 11 7 17 83 213 1 7 3 1 13
N-58 117 7
229 17 23 7 53 7 23 3 7 11
3 3 N-59 17 3
EJlllATA
JACOBI
INGBIllAIII
2, [dtJ-31t 3s
lr-conlinued
pqe
DIUIIber
33 33 34 34 34
91987 96089 96109 B96749 B96849
for 3 27
read
pqe
DIUIIber
7 7 13
34 35 35 35 35
98941 B96173 B96273 B964S9 97183
3 3
for 103 3 7 137
read
163 7 3 3 157
(The errata marked with -B- were given by T. BAJlINAOA in RmM JLaIftf. HuliJffIIv. 3, 1921, p. 27-these and the others (except four by Dr. COIDtIE) were found by Dr. JIif KAVAN. There were errors in BAJlINAGA'S errata for 5S609 and 55709, and the correction for 42583 was not given. Errors on p. 17, duplicating p. 16, not oonsidered.) A~,
2, [cia].
JACOBI
contaiDs the same errors as Bt1KCKIIAKDT 1 [IL)
Numben
,
aqameat
61 62 64 82 225 228 234
449 457 463 557 243 361 841
219 453 134 503 12 131 192
374 325 2 427 206 169 233
364 320 29 437 208 165 223
193 193 193
929 929 929
Col.I Col. I Col.I
91 92 93
90 91 92
pqe
63
461
76 77 219
523 523 997
read
for
Value (p-l) 24 p-l p-l p-l p-l
pqe
IDcIIceI aqameat
116 139 222 224 228 228 228 232 234
677 757 25 169 361 361 361 729 841
35 565 14 33 122 216 353 196 353
237
961
CoLN
for 368 168 8 41 43 87 144 204 394 { 61 61
read
308 468 6 71 93 78 174 304 694 61 62
Cancel this correction in Jacobi'. oorrigenda 245 571 109 190 109
2'
3·87 3·87 2'
,
JI·29 JI·29
2' (CtrNmNolWl42, p. 59, and VANDIVD)
JACOBI
31, 3s, partly corrected in 3a,
[M. Table U of CA, B)
Table I of C., 6)
read p- 2357; 3253; 3469; 3529; 5693; ifUIeGtl D/2457; 2253; 3459; 2529; 5093;
, 197 2713
6997 11173
, 5261
8609
0miIIiau, Table I
•
1 3 39 97 CorrIpada of ., 6
•
19 47
read 3631; 6427; ifUIeGtl qf 2631; 6433;
,
•
883
14 52 74 42
•
B
17
6427
4 80
11311
106
5
, 6481
70
0miIIiau, Table U A
CorrIpada of A, B A
41
3
B
40
80 (CtrNmNOIWI 41, p. 132-133)
[151 ]
ERRATA
KAvAN 11, lrKRAITCBIK 3, [fa] KAVA.N 11, 11. pap 3%, N -15280 for 2" 3 ·191 ,1IMl2" 5· 191 pap 39, argument left hand column,for 1800 ,1IMl1870
O. C. P. Muna)
KRAITCBIK 2, [0]. pap 6, ,,-%9 for X ,lIMll, 15,33, 13, 15, ••• , 15, 13, 33, 15, 1
KRAITCBIK 3, [da]. pap 214, N-l99,for ,-197 ,1IMl127 pap 215, N-%93, col. 37,for 23 ,1IMl2J0.
3, [ill. pagel
188-189
N
far_.
read_.
73 89 233 265
167 191 21 233 243 21
157 91 11 253 193 11
38S
489
-
pqe
193 195 195 199 199
17 31 31 47 47
read_.
far_.
N
49 193 21 167 21
601 641 745 841 1001
69 191 11
157 11
N
far
nad
9 5 5 6
1- 3 4- 8 1-11 1-10 1-19
1- 6 4-11 1- 8 1-11 1-22
34
[fa]. D
+ 38 -38 - 42 - 42 +69 - 86 -102 -103 -103 -lOS -106
-107 -109
-110 -110 -113 +122 -138 -141 +146 -146 -149 +151
for
59 116 55 159 55 89 147 67 177 57 73 191 333 39 207 397 195 163 413 77 77 367 183
D
read
53 117 53 157 53 87 145 79 179 67 71 193 103 49 217 171 199 169 415 119
+157 -157 +165 :-166 -173 +174 -181 -181 -181 -185 +190
+191 +191 +193 -193 -193 +194 -194 -197 +199 -199 -199
303 365
189
( 152]
for
107 471 112 473 655 203
359 491 719 661 119 173 271 155 541 617 41 453 191 309 309 iDaert
read
109 5%9 113 477 309
61 357 461 721 253 197 175 275 1%9 155 231 47 455 199 257
257 371
EBATA
KlWTCHIX
KRAITCHIX
4, [d.]
3 [iaJ-conlinued Correct Tables for D- ± 182 D--112
D-+112
728a± 1 37 61 85
103 135 157 187 227 253 307 337
9 41 69 87 107 141 159 197 233 265 311 341
15 43 71 89 109 145 171 199 235 269 317 347
19 51 73 93 113 149 173 201 237 285 319 353
25 55 81 97 115 151 179 211 239 289 333 359
33 728_+ 1 59 27 83 61 101 81 121 99 155 123 181 149 183 225 241 219 297 243 267 335 285 361 317 339 369
409
435 489
519 549 575 613
3 31 67 85 101 127 157 191 223 251 269 289 323 341 379 415 447 493 523 551 577 621 671
9 33 69 89 109 131 163 197 225 253 271 291 327 353 381 417 451 499
529 557 591 625 673 709
11
37 73 93 111 139 167 201 233 255 275 295 331 355 383 419 467 501 535 563
23 41 75 95 113 141 173 207 237 263 279 297 333 361 393 421 471 515 541 569
25 47 79 97 121 145 181 215 241 265 283 303 337 363 407 423 479 517 543
573
593 599 603 641 645 657 675 677 683 669 711 713 723 685 699 (D. H. LEJoma, Am. Math. So., Bull. v. 35, p. 866-867) KlWTCHIX
4, [d1J.
paps 55-58, 61 art.
129 129 129 129 129 130 130 130 130 130 130 130 130 131 132
-
3 3 3 3 3 5 5 5 5 5 5 5 5 6 7
delete
iDIert
2003
5347 7867
2383 5153 1753 5167 5347 6793 7867
.
art.
132 133 133 133 133 133 133 133 133 133 133 133 133 133 133
9043
9413 9967 2083 2383 5153
9043
9413 9967 6337 8089
5167 1753
[153 ]
-
7 10 10
delete
2593
11 11
12 13 13
17 17 19 19 23 29 29
7841 8231 1559
1511 5711 8191
iDIert
2593 6337 6793 1511 8231 7841 8089 8191 1559 5711
KRArrcmJt 4, [de]
EauTA
4, [dtl-conlinued primes misprinted art.
nId
far
128 129 129 135 135
3213 3203 6251 6151 6877 fHl7 2093 2099 8763 8663 (CmrNINOIWI and WOODALL, Ma,.,.,., MtJIi., v. 54, 1924, p. 181)
4, [d1].
.
pages 131-145
,
9257 10369 10487 10631 10639 11251 11491 12007 12703 12973 13841 14281 14407 14449 15277 15601
15679 16061
16111 16249
for ,.
nId,.
2
3 13 -2 -2 -2 13 7 13 3 14 6 19 19 22 6 23 11 12 7 17
11
2 2 2 7 -7 3 -3 6 3 13 7 11 5 7 -7 7 -5 11
,
for ,.
16633 16921 16927 17209 17293 17401 18049 18121 18233 18307 18397 19081 19477 19843
5 13 3 7 6 7 7 7 5 7 5 7 5 -7
,
nId,.
for,.
24181 25261
15
17 6 14 7 11 13
6 6 15 11 10 3 7 35 -10 2 3 6 -5
25309
25321 25759 26083 26161 26317 26431 26641 26681 26701 27031 27109 27241 27281 27409 27427 27457
23
3 11 6 17 6 19 12 11
30
nId,.
17 7 13 19 -10 7 13 6 3 7 6 22 6 7 17 6 13 -10 7
13 3 3 11 -7 23 10 2 3 5 3 6 7 17 (ClJlOlINOIWI and WOODALL, Ma,.,.,,, MtJIi., v. 54,1924, p. 185) 20011
3
21283 21787 22279 23609 24007
4, [dl ]. pages~
art.
138 138 139 139 140 140 140 140
, 577 797
fors
nlds
107 S69
lOS
blank
S69 769
241
for,
nId,
for mocI
457 449
449 457 3
blank
nId mocI
S63
3
blank
S68
2 284
141
(ClJlOlINOIWI and
882 893 883 892 WOODALL, Ma,.,.,. MGUt., v. 54, 1924, p. 183)
[154 ]
KllArrcmx 4, [dtJ
EUATA
4, [da]-cOfJlifftwl pages 131-14S
,
few
read
947 1609 9257 10487 10631 10639 18451 18859 22279 2494J 26641 27551 29671 31649 31849
2 4 1 1 1 1 15 2 1 1 1 10 1 16 1
1 8 2 2 2 2
2S 1 2 2 2 SO 2 32 2
,
"of"" 2
34519 34543
34897 35671 36847 J6929 37529 42187 49033 S0951 53609 58679 61057 61631 63671
,
few
read
,
797 15601
2 4
4 40
21739 22343
few
read
1 1 2 1 1 1 1 1 1 1 1 1 1 1 2
6 2 16 2 2 2 2 3 2 2 2 2 2 2 10
, 65543 68099 71503 74143 74729 77041 78259 80239 90019 93871 97849 98S4J 998J9
99871 2S0867 2SS071
,,'01 .... 10
for
,
read
for
read
1 2 1 1 4 1 2 1 6 7 1 1 1 1 2 1
2 1 2 2 8 2 1 2 3 70 2 2 2 2 1 2
few
read
25667 1 2 2 3 1 25759 1 2 2 (CtnnnNOBAK AlO) WOODALL, Jla. ., . JlaIl., v. 54,1924, p. 184)
4, [dt]. page 219
N-293, col. 37,/tw 2J f'IIJIl2JO N-S09, col. 47,/tw 270 f'IIJIl207.
4, [cia). pages S9-64 art.
134 134
134 134 134 134 134 134 134 134 136 137 137 137 137
.... 2 2 2 2 2 2 2 2 2 2 10 10 10 10 10
•2
for
read
1999 3773
1993 3793 4S8J
2 blank 2 omit 5279 2 7669 7f119 3 9739 9723 3 1999 6 1993 14 6959 6957 17 1427 1429 6557 6SSJ 56 2 7273 7243 7351 6 7551 6 7573 omit 12 7573 blank 76 4673 4637 (CmomfOBAK and WOODALL, Jla. ., . JlaIl., v. 54, 1924, p. 182)
[155 )
KLuTcmJ[ 4, [e.J
4,
E&JlAl'A
res].
•
pICe
24 24 24 25
160287 160287 174081 8SOOIJ 12097
177
4, [f1]. page 10, art. 23,frw 961
read
far
163 163 177 253
20
150287 150287 184081 blank
12037
,_963
4, [fl]. pages 131-191 far ,
17623 27289 65331 68097 69041 74141 78257 80241 92957 100557 103383. 104797 106183 106263 106657 113443
read,
17923 C 27299C 65831 C 68099 C 69941 C 74143C 78259 C 80251 C 92857C 100559 103387 104707K 106181 106273 106957K 113453
far ,
116537 118047 126069 136643 138153 147797 150167 153429 169443 171837 172083 174479 174973 176387 176679 179063
read,
for,
read,
far,
read,
116437K 118043 126079 136649 138157 147793 150169 1SJ929K 169343K 171937K 172093 174469 174673K 176389 176699 179083
179489 179989K 234381 234383 183253 183259 234899 234893 192111 19%611K 240171 240173 192669 192667 258723 258733 194747 194749 262101 262103 262251 %62253 201213 201233 204527 204557 263757 263759 204713 204719 274343 274349 280551 280561 205011 205111K 209577 209579 281133 281153 210961 210967K 283511 283501K 211019 211039 284687 28t689 211613 211619 286559 286S89 215151 215153 290969 290999 292891 292841 221901 221909 295557 295553 224949 224947 227847 227947 (CUNNINOJWI and WOODALL, Mumt,,, MaIII., v. 54,1924, p. 184, and:KurrcmE 7, p. 182)
4, [fl]. page 15, art. 30, lrIIIJrclllm,. entries 2115 and 2414. page 11, i1lSlrl1736, 2646, 2960.
Table II forP
128441 414259 498629 938353
read
itu",
[156 ]
125441 414209 498689 932353 P-3911681
ItaArrcmK 7, p. 182)
ERllATA
KRAITCHIE.
6, [ela]
4, ria]. D
for
+211 -217 -218 +222 -222 -226 -226 -226 +227 -229
287 319 533 99 483 375 385 387 241 197
read
289 317 535 95 485 373 395 397 261 199
D
for
+230 -233 -241 -241 -241 -246 -247 -249 -249
23 915 607
33 925 357
flJ7
flJ3
731 387 105 197 301
733 389
read
449
695 799
4, [h]. page 49, A -61, D-4,lor -39,4 read -39,S. page SO, A -76, D-l,lor 577fIJ read 57799 (5. A. Joffe).
4, [jt]. pap
192 193 193 197
,
for ..
15361 890881 918529 inserl 3911681
15 234 115
read
30
179 215 385 (Kv.rrcmx 7, p. 182)
4, [0]. page 88, ,,-29,lor X read I, 15,33,13, IS, ••. , IS, 13,33,15,1. KRAITCmE.
6, [ela].
page 233, add entry k-115, ,,-20,j-4
6, [8,]. page 224, k -115, ,,- 20,for 379 read prime
6, [ill. page 159, p-59, ,,-23,lor s-14 read %-15 page 159, p-59, ,,-44,lor %-14 read %-17
6, [ja]. page 242, line 1, column 4,Ior ,-541 read ,-841
6, [m] • read
.of
19 45 296 498 514 590 649 700 725
2, 1,3
1,2,2 4,1,7 3,6,22 1,2,22 3,2,4 2,9, I, 2,3, I, 1,2, 1,4, I, 16,6,3,4 (29 termes) 2,5,2,1, I, I, I, 12 (15 termes) 1,12,2
[ 157 ]
KuITClUlt 7, [bl!
ElUlArA
6, [m].-cominued read
A
813 994 SJ9
808 814 927 939 116 369 415 999
1,1,18 1,1,8 4,1,1,1 2,2,1,5,1, I, 1, 1, 13 (17 termes) I, I, 7, I, I, 1,5, 18, I, 5, 2, I, 1,4 (27 termea) 2,4,5,3 1, I, I, 4, 20 (9 termes) I, 3, 2, 1, 4 4, 1,3, 2, 7,4 (11 termea) 2, I, 2, 4, 6, I, 1,3 I, I, I, 1,5,6, I, 5, 2 (17 termea) (JtLurc:mE 7, p. 182-183)
KuIrcmlt 7, [bs]. page 153, column
<1'+1)/2, 1-79,for 233 r_433
7, [81]. pqe
IiDe
84 86,87 88 88 95
,.-67 94,114,150
96
0-26
97
a-18
97
a-24
97
a-42
97
a-44
97
a-61
98 99 99 99
a-52 a-75 a-8S 0-40
100
a-23
105
a-58
105
a-68 a-19 0-19 60 s-79 s-19 a-l0 1- 11
106 106 127 137 140 143 144
for
read
19370721
193707721 i1llel',b,tJ primitive factors 3153 5153 1851· • ·521 394783681· 46908728641 thldtJ entry
,.-56
,.-120 ,.-41 0'-1 0-1 last oU-l 0-1 aU-l a-I a'-1 0'-1 a'-1 0'-1 first first
0'+1 0'+1 a1l+1 "+1 0'+1 "+1
2641
8641
61
601
13467047
134367047
5942675703
5942675707
13
19
603870199
903870199
152987077 10922367593 193 338839937
152787077 109' 22367593 163 7879999
2711117
271·1117
41·941
41941
106177
196117
537 35533211573 106117
8 N M M
537 341·334661 ifUtIf'I 51329
[158 ]
5237 35533 . 211573 196117 s-81 5237 541·534661
ERllATA
7,
[~].-contintwl for
colwDD
pap
nIId
20754361 207544361 338839937 7879999 N s-40 1377 2377 s-12 11 s-l, 2,3 a-I, 2, 3 middle of page 99151 991651 a- 1 first 233 433 p-79 (BuGER, Nieuw ArcMefv. Wisktlltd., 1.2, v. 16, no. 4,1930, p. 42;)
a- 6
145
146 147 149 149 153
7, [0]. page 2, ,,-41,for Y-l, I, 1,4" •• ,ead I, 1,2,4" •. page 3, ,,-97,for Y-l, I, 5, 9,17,30,40,69, ... ,ead 1, 1, 5, 9,17,30,44,69, •••
KllAITcmJt 9. 760765 • • • 549767 • • • 160242 • • • (BUGn, Mallremotiea,
38 52 71
LEGENDRE form
760965 .•• 549797 •.• 166242 ••• Cluj, v. 8, 1934, p. 212)
11, [is]. read
for
1'-29u'
form
7
3
1'-61141
23 21 129 131 see below
1'-62t11
103
1'-38u'
read
for
DO.
1'+77"'
for
read
89 113
61 101
149 257
153 237 115
7 107
1'+101",
305 313 321 329 1'-6114I ,ead 122,,± 1,3,5,9, 13, 15, 19,25,27,39,41,45,47,49,57. (D. N. UIIKEK, Am. Math. So., Bull., v. 8, 1902, p.
1'-77t11
53 255
137 171
11, [j1]' read
N
133 214 236 301 307 331 343 J44 355 365 397
N
s-2588599 s-695359189925 ,-47533775646 s-561799 ,-339113108232 s-88529282 s-2785589801443970 s-I30576328 ,-7050459 ,-561
718 722 753 771 801 806 809
,-50676 s-3458 s-20478302982 ,-1027776565
833 851
8S6
[ 159]
read
s- 8933399183036079503 s-22619537 ,-841812 ,-11243313484 so. 2989136930 ,-107651137 s- s00002000001 ,-17666702000 s-6166395 s-433852026040 ,-15253424933 s-9478657 s-8418574 s-695359189925
309 317 325 333
401-402)
LEGENDllE 11,
I., lJ.]-l.,
1 4,
ria]
ERliTA
lJ,J.-comiflued
532 613 619 629 655 664 673 694
N
read
N
526
s-&tOS6091546952933775 ,-3665019757324295532 s-2588599 s-481673579088618 s-51721351055328293O ,-20788566180548739 s-785O s-737709209 ,-28824684 ,-66007821 s-48813455293932 s-38782105445014642382885 ,-1472148S90903997672114
read
,- 23766887823 s-348345108 s-I9442812076 ,-658794555 s-9314703 ,-314356 ,-260148'19646t0241948S0378 s-561799 s-I4942 ,-481 s-8835999 s-l060905
865 871 878 886 944 965
995 1001
(D. H. I.u:Jma 11, p. 548-549) LEGENDllE
I., [ia]. for
3
f_
read
7
for
read
77". 89 61 101 77". 113 23 21 77". 113 117 129 131 77". 119 153 see below 77". 149 159 77". 257 237 ,.+ 7W 102 103 103 107 P+ 91". 7 115 P+I01,,305 99 69 309 ,.+101". 313 317 53 137 P+ 101". 321 325 255 171 P+I01". 329 333 P-61'" ",tMl122.±1,3,5,9, 13, 15, 19, 25,27,39,41; 45, 4.7, 49, 57 (D. N.l.Jtmma, Am. Math. So., Bull., v. 8,1902, p. 401-4(2) LEGENDRE 1., 14 form "-1~
[ia]. for
P-3W P-3W P-51'" P-61'"
1-62'"
103
P-7~
99
P-77'" P-77,,·
53 2S5
form
read
51x S6z 127 123 21 23 131 129 13 31 see LEGENDRE 1_
P-~
P+ P+ P+ P+ P+ P+
for
215
P+ 61".
107
P+ 77".
119
159
P+ 77". P+ 91".
297 7
237 115
P+101". '+101'137 P+101". 171 P+I01". (D. N.l.Jtmma, Am. Math. So., Bull., 69
[160 ]
read
309 317 321 325 333 329 v. 8,1902, p. 401-t(2) 305
313
LEHKER 4-LucAs
N
3
N ~-2143295 ~-9801
94
116
667
,-4147668
749
~-1084616384895 ~-7293318466794882424418960
149
,-9305
751
271
809
308
~-115974983600 ~-351
479
,-136591
629
~-785O
823 1001
s-433852026040 s- 235170474903644006168 s-I060905 (D. H. LElDlEll 11, p. 550)
D. H.
LEmlER
_
4.
11-233, 241 to nezt higher c:lasaificatioDL
D. H.
LEmlER
5.
fIJI' A.(II) , . A.(II+5)
D. N.
LEHKER
2.
pap
cal.
11 14 99
D. N.
13 30 20
LEmlER
IiDe
for
reid
1
8151 51 224
8051 47
55 heading
724
31•
In D. N. I..u:JIu 3t about 1200 errors of this edition have been corrected.
(J. D. ELDu) LEVANEN
2.
D- -77,11JI' 297 ,1114237 LUCAS
2.
table of
pap
cal.
Y,Z
165 165 165 165 168 168 168 168 168 168 168
Y
Yl,ZI
luof.
23 11 21 19 7 23 33 29 41
Z Z Z Zl Zl
Yl Y1 Y1
_4
for
•.• -7-2) [1+3) [1+1+1) [1+1-1-2) [1+1) [ .. ·1+7] [ .•• -32-19) [1+15+33+15+··· [1+21+57+·, •
••• -7-4) [1+0) [1-1+11 [1+0-1+1) [1-1)
[ .. ·1-71 [ •.• -32-59) [1+15+33+13+15+··· [1+21+67+·· •
:} 1"",_" the linea of 11-41 and 69
Zl Zl
(CummtOJWI 42, p. 65)
LUCAS
3.
table of
pap
cal.
llDeof.
Y,Z
6 6 6
Y Y Y
22 33 29
[ 161]
for
+~
-1~+
+15sUy1
reid +11~
-59~-
+13sUy1 (CtnooNoJWI 42, p. 65)
MEUDIELD l-PoULET MEUDIELD
2
EuATA
1.
page 10, _-3,far 17096· ••• ,_17476· ••.
1.
OSTIlOGllADSlty
D_ben ,
upmat
127
for
105 116 108 78 155
137 181 193
PAGLIEII.O
107 31
108
88 94
87 64 174
IDdiceI .
,
read
......t
71
71
173
83 167 173 181
16 26 25 57 57 16 26
for
read
15 22 8 128 72 165 172
22 15 80
28
92 172 165 OACOBI 2, p. 243)
1.
U . 100 004 539 (Huou) POLETTI
2,
Dumber
[81].
9299
9401 12299 13181 17303 18193 18271 19339 20293 2SOO9
Damber
read
for
667 1771 2S63 5239 5243 8483
26243
23·29 7·11·23 11·233 131·31 71·107 17·499 17·547 7·17·79 71·251 71·269 11"13 7·23·113 111 .151 83'233 7·13·223
23·39 7 ·11 . 13 11·223 131·21 71·207 7·499 15·547 7·17·19 71·51 71·69 111 .13 7·23·313 111 .251 82·233 7 '13 . 123 29·281
26527 29729 30667
33M3 34561 34621 35329 37939 42511 42601 43423 44671 46699
48739 49067
89'281
for
7·23163 41·467 7·13·137 7·13·137 7'13·173 11·19'107 83·389 71·103 13·3449 7·6063 12·29·113 171·251 11·31·141 41·67·17 47·17·61 139·343
read
7·23'163 41·647 7·31·137 7'13'337 7·13'373 17'19'107 89'389 71·103 11·3449
7·6073 13·29·113 173·251 11'31'131 17·41·67 17·47·61 139'353
2, [f1]. pap
POULET pap
15 68 70 70 72
read
for
7 19 31 63 97 97-98 98 101 101
9867 44903 82863
9967 44909 82963 186883 100 000 963
186833 100 000 961 U.lO-~2271,4291,4909,
7129,8709,8793,9891, 10011
f"'''' 100 010 017 U . 101~46617, 50307, 55293, 70327, 86809, 94219 f"'''' (Boou, 101~2149, 47989, 53053, 94881 Boll. III Jlal. (COJITI), v. 21, 1925,
p.lsv~
aDd S. A. Jonz)
2. IiDe
D
for
2
read
2"3'·5··· 2'·31·5··· 11 from bottom (3 -5015299) (2·5·15299) 6 3412776 3212776 last correct entry is 290504024 (2" 17·41· 53 . 983) 5 from bottom, 50th term should be 1635524 result incorrect (Po1JJ.BT 3, p. 187-188)
[162 ]
EllllATA POULET
POULET 4.-REuSCHLE
1, [dtJ
4t.
pqe
lID.
77 78
31 35 49 2 28
79 81
3 16 16
read
831045 976587
9 5 10 8 1 3 3 1,2 5 6
44
82 83 83
for
coJ.
831405 976487 109 4177 953673 877421 39016741 ·56052361 631 729073 577
409
4178 953683 887421 390J6841 SM'"
739073 578
(POULET4t) POULET
4,.
page 51, 1M'" ·56052361 631. (BEEGD)
RAKANuJAN It. page 360, iM'" 293 318 625 600 (R.uwroJAN
,
mbprInted primeI pqeI 42-{;1 for I read
read_-
3221 3251 3301 3361 3739 3881
10
5457 3901 7923 11491 (bls) 12511 (bls) 12801
6 6
22 7 13
4231
4729
3457 3907 7927 11497 12541 12809 14731
b~
2 3
4099
1.. p. 339)
17 11
4969
(WUTIIEDI
4, p. 153)
1, [tit]. pages 42-46 I
bale
179 193 311
7 6 2
311 311
3 5
311
10
313
2
367
7
409 457
6 7
463
7
S03
5
523
2
•
178
,
•
523 739 757 821 821 821 919 939 947 997 997
2 155 155 155 155 156 61 17 114 154 S02
6 24 4 3
997
1
[163 ]
bale
3 6 7 5 6 7 7 3 3 2 5 6
•
58
369 189 410 410 410
•
9 2 4
1 369
2 332 332 332
REUSCHLE
1, [de]
EKIATA
1, [ds]-cominued base 2 ~
1487 1613 1747 2053 2161 2293 2473 2677 2753 3079
•
743 52
•
2 31 1
2052 1080 2292 618 2676 1376 1539
~
3169 3191 3221 3251 3259 3301 3739 3881 3919 4051
ISM
55 644 6SO
•
534 388 1959
•
4098
58 5 5
4139 4271 4339 4391
5 7 10
4S97 4663
4138 305 1446 2195 1532 777 475 2415 624
1086 660
~
4099
81
4751 4831 4993
•
1
10
base 10 ~
1163 2687 3301 3347 3671 3fN1
3797 3851 4139 4157 4391 4397 4637 5647 5779 6133 6299 6359 6373 6379 6421 6491 6529 6581 6761 6763 6899
•
581
•
2686 3300
1673 367 1232 949 770 4138 2078 2195 314 61 1882 5778 1533 94 3179 1062 2126 2140 1298 1088 1316 1690 161 6898
10 5
~
7129 7561 7823 7923 7927 8387 8521 8681 8689
14 76 1 67
5 6 5 4 42
8893 8929 9151 9277 9613 9661 10343 10433 10597 11047 11113 11173 11423 11491 11801 11839 12043 12071
•
594 1890 7822
• 4 1
not prime
7926 599 710 868 2172 2223 144 1525
1 14 12 10 4 62
4638
267 1380 10342 10432 5298 11046 3704 5586 11422 766 2950 5919 2007 355
[164 ]
36
1 15 4 6 34
~
12119 12149 12289 12301 12421 12637 12721 12791 12853 13151 13487 13553 13627 13687 13697 13729 13757 14081 14221 14533 14551 14731 14741 14827 14929 14983
•
•
384
32 5
6OS9 12148 2460
12420 3159 2120 6359 459 1315 13486 1936 6813 4562 13696 3432 362 1760 2844
519 485 14730 14740 2471 1866 4994
2
28
10 7
38 8 5 28 30 1 1 6 8
REl1SCBLE 1, [81]-1, U.]
EBATA
1, [e.]. paps42~1
Errata occur in factors of (I-I) for p-
101 601 937 977 1597 1879 1973 2029 2237 2309 2347 2503
2539 2617 2777
3989 4231
7687 7723 7927 7937 8039 8447 8461
4397
2969
4409
3259 3547 3697 3719 3739 3793 3797 3877
5647 5897 6379 6389
8S63
6581 6763 6823 7669
8747 8893
11827 11887 11933 11953 12097 12113 12289 12487 12539 12553 12613 12757 (CuNmNoJWI 40, p.
10651 10831 10903 10939 11071 11383 11549 11597 11677 11681 11719 11813
9(K9
9257 9277 9349 9781 9901 10039 10093 10151 10369 10343 10427
8969
8971
12853 12923 12959 13553 13687 14149 14593 14713 14731 14779 151-153)
1, (j.]. 23-32 ~iD'
pages for
17136 25183 5579 26459 30763 51051 32553 406S9 49277
, 313 5011 56S3 8293 8707 9871 10957 12211 12823 16561 18301
,
n.t
17137 25189 25579 26479 30703 31051 32353 40759 49279
A
11 56
19 91 92 38 47 56
106 127 7
883
11311 12553 12739 12967 12973 12979 13477 13537 19891 20443 21499
u...t omIIIioaI A
B
,
4 106 101 8 110 65 76 107 113 104 100 68
17 5 28 65 17 54 49 26 16 55
25453 25747 27631 32353 33037 34519 35437 37699 39181 43201
59
44S63
~iDL.1L
A
B
95 160 166 175 65 38 65 68 191 1 200
74 7 5 24 98 105 102 105 30 120 39
,
139 397 1123 2317 2713
B
,
8 25 42 2 9 53 54 55 23 12 78
18427 18481 18S53 19423 19477 20071 21391 22651 23557 25147 26317
A
B
100 127 35 130 35
53 28 76 29 78 65 5 75
86
146 76 37 140 145
86
43 42
4339 5437 5503
omissioD
47
[165 ]
7
,
A
B
27691 29059 29179 30529 35257 37363 37507 38449 45307 45361
104 128 152 23 53 20 160 193 212 193
75 65 45 100 104 111 63 20 11 52
26, 31, omil the DOD-primes 6433 and 41197 paps 26, 27, ins".' asterisk after p-8167, 8317 paps 29-32, omiI the primes 16561, 18301, 18481,23557,35257,45307,45361
pages
1 4 11 11 3 13 6 4 2
35 79 103 107 128 146 148
883
.
IL
34
4003
75 ~iDA.B
L
23
REUSCHLE
3
EKIATA
1, [jl]-continueil pages 32-41 Primes misprinted-Table IVa, page 34;/(Jf' 3459 ,e4Il3469 Table 1Vb, page 4O;/(Jf' 29893 ,e4Il23893 Primes wrongly inserted-Table 1Vb, pages 39, 40; om4I12697, 16981, 19381, 21101 with their II, b as (10//1),--1
Table IVe, page 41; om4Il6649 with its c, d, as (10//I)c--1 Asterisks omitted or BupedluousTable IVa, b, pages 33-41, inserl one * after /1-733,2213,2477,2677,2729,3169,3373, 6997,11117,14293,14929,17317,20357,21613,21649,22277, 23293, 24733 Table IVa, pages 34-38, inserl two ** after /1- 2161, 12289 Tables IVa, b, pages 33-40, om4I the * after /1-1213, 2437, 16649, 22093 Table IVa, pages 34-38, tlmil one * after /1-2129,6761,7561,8521,8689,11801, 12329 Table IVe, page 41, ins'" one • after /1-14081, 15601, 15641, 15761, 17489, 17729, 19489, 24809, 24889 Table IVe, page 41, tlmil the· after /1-13729,14321,15361,16249,17209,17449,18329, 19289,20681,23561 Table IVa, pages 32-38 Table IVe, page 41 c:orrI&mda in c, II
Tables IVa, b, pages 32-41 corripnda in II, • ~
II
197 11173 12269 12301 12373 12973 15493 16253 17077 17117 17929 18517 21493 22129
1 97 13 99 103 83 97 37 119 91 125 119 87 15
•
14 42 110 SO 42 78 78 122 54 94 48 66 118 148
~
II
4421
6S 115 31 43 129 135 105 147 101 131 155
14009 15361 16249 17317 18289 19489 21613 23197 23561 24281
,
•
14 28 120 120 26 8 92 2 114 80 16
c
II
2 24
6S53
3 25 55 55
6653 7481 8969 11057 11113 11329 12049 12097 12161 12281
57 63 105 49 31 41 107 63 27
46 50 4 66 72 72 18 64 76
17 1777 4177
14009
24 42
14081 14369 14929 17489 17729 19001 19489 23929
69 117 111 121 99 111 123 133 139
omission 22129 77
68 14 32 12 62 52 44 30 48 90
(CUNNINOIWI 41, p. 134-135)
REUSCHLE pqe
2 8 8 8 8 193
199 226 239 239 273 273 28S 285 285 285 28S
3. ~,.
5 11 11 11 11 15 21 39 45 45 57 57 63
63 63
63 63
table
I I I I I I I I I I I I I I I I I
~
691
199
for
read
a-+220 01-- 69 73
+320
199 331
01-'--
661
01--214 /1- 881 wl - - 44 /1- 541 wG-+ 71 ,.,..-+223 ~-- 7
881 463 541 631
631 457 457 379 757
cA-+
55
JI-+230
631
ti'- -132 ti'-+202 r.1A-- 26
757 883
,.,..-+
-60 - 78 +85 -204 811 - 14 547 (in 3 places) +121 -11
-
6
-227 -112 -202
-24
JI--203
-183
18
-355
[166 ]
nth.
ROBERTS I-SAllKA
EUATA REUSCHLE
3-cominued >.,16 32 128 128
pqe
446 450 461 461 476 495 513 513 513 513 533 635 643 643 643
,
aalb.
read
f«
40 48 48 48 48 56 96 100 100 100
I I I I I I I I I I I I I I I
A,_
table
,
f«
read
aalb.
601 751 821 881 491
5-a'+2at 12+2a+Sa'+9a' 4+4a-4al+3czI 4-Sa+SczI czI+3czI
5-czl+2at 12+2a+8aI+9a' 1+4cr+4aI+3czI 4-Sa'+SczI Ctlncel this entry
TANNU TANNElt TANNU TANNU
547
2-a+2czI+2czI
czI+3czI
6ht ).-43 [at top) Tab. VI. p-2, 7, 11,31 f(a) -l-czl-czI ).-89 [at top) [line 4) 107·409 ""+,,,-14-0 ""-2w'+4-0 Tab. VI. [line 2)
8""1 ).-67 Tab. VIII. p-2, 7, 11, 13,31 f(a) -l-czl+czI WESTERN ).-49 103·409 WESTERN ""-",-14-0 ""-3w'+4-0 Tab. IV.
24
pqe
table
3 3 3 3 5
5 7
I I I I I
5
7
I
29
V
5 5
5
37 106 108 108 176 187 249 282 487 511 511 S46 621 628
43 67 67 25 49 51 57 28 44 44 56
VI VI I
113 257 641
7fIJ 601 641 97 337 337 337 673 577 701 601 601
401
VI, 1
m
VI IV, 1 IV, 4
68 76
"'-- 43 "'-+ 85 ';'--275 w"- -138 til--306 ';1-+324 ';7 __ 10 ""--174 til-+ 57 ",1--154 , ; t - - 83 ,./1--197 ';1--353 , ; t - - 46 ","-+341
1
-48 + 15 -305 - 38 +295 -317 -11 +163 + 38 -153
-85
Cu.u:
-196 +348 - 26 +241
p-4Om-5, +7
p-44m-5, +7
""-49-0 n=68 [at top) n-76 [at top)
""+49-0
BICXIIOJlE, WESTERN BICXIIOJlE, WESTEllN WESTIWf
n-88 n-88 (CtoonNGIIAII42, p. 61-62)
ROBERTS
1.
page 107, n-1553, col. 2n+l,for 17,144 15 in denominators, tlfler 9,144 (3, 3). page 108, n-1777, col. 2n+l,for 61,144 43 in denominators, tlfler 27 rl44 2, (1, 1). (CUNNINGIIAII 42, p. 66)
SANG 1. page 760, add entries 576 744
SAllKA
943 817
1.
AD entries contain last figure errors.
[167 ]
1105 1105
SCHULZE I-SHANKS SCHULZE
1, 3
EllUTA
1. nacI
for
6° 12 12 13 15 16 17 17 21 21 23
24 25 26 33 35
403' 581 4 40 SO 25 10
11 24 16 24 28 35
56 44 13 38 33 55 45 22 32 14 35 25 59 25 23 54
2 44
38° 50 55 61 61 64 68 74 75 78 79 79 81 81
for
12° l' 413 41 8 30 30 37 42 44 28 603046 70 30 28 71 40 31
21' 41 6 10 55
56 45
70 39 72 56 48
45 12 8 35 12 49
2833 2 29 57 32 39 21 16 38 54
78
38° 50 55 61 61 64 68 70 72 74 75 78 79 79 81 81
44 50 56 2 43
21' 41 6 9 55
W 32 20 30
39 56 33 45 38 37 21 56 18 48 39 45 0 11 16 7 10 36 40 12 9 49 44 nacI
....
pap.
II
nacI
for
6° 43' W 12 1 5 124049 13 25 11 15 11 21 16 15 37 17 29 32 17 56 403 21 14 22 21 34 7 23 46 38 24 31 46 25 36 31 26 59 29 33 23 55 35 3 4
pap.
bJp.
bu•
317
308
76
317
33 207
23 203 183 929
193 949
468
476
fortu ...
nacI
fortu ...
nacI
0,2608691 0,2941179 0,3076938 0,3157363 0,5909001
0,2608696 0,2941176
0,6086965 0,6956526 0,7058823 0,7619047 0,9523809
0,6086957 0,6956522 0,7058824 0,7619048 0,9523810
0,3076923 0,3157895 0,5909091
(BU7SCJDfEIDD
SHANKS
I, p. 100)
1, 3. for,
nacI
2670 9199 11137 11559 12539
2671 6199 15137 15559 18539
,
f
4517 5779 6311 6917 10193 10753 14437 19423 19553
2258 5778 3155 3458 1456 512 7218 6474 19552
,
19777 19841
,
f
6592 64
20071
3345
20143 20353 20359 21277 21821 22013
20142 6784 10179 1182 21820 5503
[168 ]
'-t, 6311 6917 19553 22013 22963
22963 23041 23599
24443 25667 25759 2S999 27427 27739
'-t, 25999 28949 29243 29387
f
,
f
11481 9554 28663 1152 28687 28686 437 28751 575 12221 28843 759 28949 28948 12833 14621 12879 29243 12999 29387 2099 14721 13713 29443 29527 1554 27738 (CtOOIDfGJIAII 40, p. 153)
ERllATA SOMMER
11, 11•
in K(v'31)
t)
f}
]I ]I
ftJ1' (3,1-V-31) (3, 1+ v' -31)
J
(1)
read
1
1
(H. H. MITCHELL) VON STERNECX
1.
page 969
•
106553 106554 106555 1065S6 106557 106558 VON STERNECX
for
nail
-28 -29 -30 -30 -31 -30
-26 -27 -28 -28 -29 -28
•
for
106561 106562 106563 106564 106565 106566
read
-28 -27 -26 -26 -25 -26
-30 -29 -28 -28 -27 -28 (VON STEIlNECIt 2, p. IOS8)
3.
,,-32822ftJ1' 4 read 3 (DlCUON
SYLVESTER
•
11• for
nail
-1 +1 +211 +1 10lIl
9 10 14 18 19 22 22
9, p. 125)
+1 -1 -211 -1 -20lIl .-1 +311
+1
-311
•
23 25 29 30
for J6uI
-SN 28111
"-9u'+ ...
31 -411 33 -1 36 9u' (D. H. LEBIIEJt, A"nals of JlIll1l.,
nail
3611' +511 28111 +1 .,.+",-411'-411+1 -811 +1 9ut II.
2, v. 31, 1930, p. 436)
SYLVESTER 21, 21•
,,-683ftJ1' 536 read 336. (GI.AISlIU. 27, p. vii) TANNER
2.
page 257, in reciprocal factor of p=2161,ftJ1' fa-14, read 24 page 258, the prime 3371 ill miIIIIing. 1m'" line ,
X
Y
3XY
IImplclt
primary
3371
127
23
2
3,1,1,2,6
0, 5, 4, 2, 8
reciprocal
..
Q
6, 8, 46, 15, 16 55 42, p. 66)
(CtrNNINGBAK
TEBAY
1.
page 111,ftJ1' 34,143,145,1716 read 24,143,145,1716
(HALSTED 1) page 112,ftJ1' 330, 644, 725, 107226 read 333, 644, 725, 107226 abo change order of entry. page 112,ftJ1' area 863 S50 read 934 800
(M,uTIN 2, p. 309, 321) page 113,ftJ1' 21, 61, 65, 420 read 14, 61, 65, 420
[169 ]
ToGE l-WmTPoJtD
1
EUATA
1.
TEEGE
in 11-41, c:oe1Iicient of s' in I,ffll' 1 ,1IJIl 2 in 11-97, coefficient of s' in I,ffll' 4O,1IJIl 44
N
fldon
N
27293 33293 41779
7·7·557 13·13·197 41·1019 17·3259 7·7·11·103 17 ·3359
82943
SS403 55517 57103
fKton
7'17'17'41 37·2459 11·8467 13·7309 11·8693
90983 93137 95017
95623
(CmooNOIWI 41. P. 27)
11,
I., [f1]•
.,." 173279. i,."" 177347 (CBDNAC 1; correction of the comspondiDg table in Vep·. Tald", v. 2, Leiplig,l797. Mprinted in VEOA 1" 1..) VEKEBJlroSOV
1. 32. 19, 1: 49,28, 3:
WEJlTHEIK
Lo,~,tnIIIfINII'iIt:M
read
29,26. 1 41,37,6
32,19.1: 49,28,3: .,."" 44,12,2:
29.26.11 41,37.36 38,36,8
2•
.,." uteriak on 1-1213, 1993,2437,2729 ."",'uteriak OD 1-2731, 2887
,
~
316
1013 1021 2161 2593 2999
318 319
....
WEJlTHEIK
-,-
4.
154
155
, 3181 3191 3631 3967 4111 4657 4751
(WUTJIEIIl 4, p. 157) read
2 7 14 10 7
3 10 23 7 17
-,-
read
11 17 21 13 17 5 37
7 11 15 6 12 15 19
WmnOJtD 1 [m]. A
1733 1822 1852
1963
The 6th partial quotient should be 3 and Dot 2. The 23d partial quotient and denominator of the 23d complete quotient are missing. They are 1 and 54 respectively. The 29th partial quotient should be 20 and DOt 16. The entry here should be:
[170 ]
ElUlATA WmnoB.D
l-e_,.. 44
1549
1566 1615 1669
Wml'ERICU
3 27
3 22
1 51
2 29
3 23
2 38
29 3
9 9
1 66
4 17
1
(3) (26)
,-12223 09542 82674 74959 34242 68334 6380508818 07626 31786 81966 09867 28279 63220 ,-308792110 ,-81732 , - 572 8471732803 87374 12405 68998 80229 34138 39259 82496 64340 (D. H. I.JcmID 11, p. 548, 550)
WIE:rERICU 1.
pqe75 nul
for
232 .•• 239 240 ••. 250 264 ••• 271 272 ••• 282 291. •. 303 304 ••• 314 323 ••. 335 336 ••• 346 355 ••• 367 368 ••• 378 387 ••• 399 400 ••• 410
17 ••. 24 8 ••• 18 18 ••. 25 9 •.• 19 3 ... 15 10 .•. 20 4 .•• 16 11 ••. 21 5 •.. 17 12 ••• 22 6 ••. 18 13 ••• 23
232 •.. 238 239 ••• 250 264 ••• 270 271. •• 282 291. •• 302 303 ••• 314 323 ••• 334 335 ••• 346 355 ••• 366 367 •.• 378 387 ••. 398 399 ••• 410
[171 ]
17 ••• 23 6 ••. 17 18 ••• 24 7 .•. 18 3 ••• 14 8 ••• 19 4 ••• 15 8 ••. 20 5 ••. 16 10 ••• 21 6 ••• 17 11 ••• 22
INDEX B~t15,26,27,88,128,129,133,151
AbwmUntnwnbms5,8 Algebraic nwnbms 75-77 fields 28, 35,75-77 Aliquot aeries 6 Alliaume 36, 85 Amicable nwnbers, 5, 8 Ancieraon83,85 Anjema 9, 25, 85 An:cotangent identities 34, 65 Archibald 5, 29, 85 Arndt57,SS, 72,85,127 Asymptotic formulaa 9, 40, 41, 45, 78 Aurifeuille 34, 74
Buttel19, 52, 89
Backlund 7, 85 Bahler 61, 85 Bater 83, 86 Baug63,86 Barbette, 11,86 Barinaga 151 Barlow 25, 86, 127 Bue12 Basis 68,76 Seeger 10, 16, 21, 33, 36, 38, 39, 46, 86, 127, 134,135,139,159,162,163 Bell, E. T. 70, 87 Bell, J. L. SO, 87 Bellavitis 12, 76, 87 Bennett, A. A. 52, 53, 64, 87 Bennett, G. T. 76, 87 Bernoulli nwnbms 10, 36, SO polynomials 10 Berteisen40 Berwick 21, 72, 87 Bickmore 30, SS, 60, 66,77,87,127, 128, 167 Biddle 51, 87 Bi1evich 76, 96 Billing 64, 88 . Binary cubic forms 72 quadratic forms 8, 48, 5J-a), 68-74 scale of notation 12, 37 Binomial coefficients 11, 36 congruence 7, 12-24,37 equation 28, 69, 72-74 Biscondni 62, 88 Borilov 71, 88, 128 Bork 15, 88, 128 Bralunagupta 58 Bretschneider 61, 82, 88, 128, 168 British Ass. Tables 97, 103, 106, 115 Bl'UJIDel' 63, 88
Cahen 13, 14, 18,25,54, 55, 70, 89,129-131 Cantor 79, 80, 89 Carey 73, 89 Carmichael 5, 6, 89, 131 Carr, 26, 89 Cauchy 7, 73, 89, 90 Cayley 2, SS, 57,66,67,69,70, 72,78, 79,90, 131,132 CeUro41 Chandler 82, 90, 128 Characters generic 70, 71, 75 higher 22, 23, 59 quadratic 17,47,48,51-54 Charve 72, 91 Chebyshev 13, 18, 40, 41, 53, 54, 71, 91, 130, 132,133 Chemac: 26, 91,133,170 Chawla 42, 91 Class nwnber 59, 63, 70, 75 Computing machines 13, 18, 48-51, 57 Comrie 133, 141 Congruences, binomial 7, 12-24; 37 linear 49, SO higher DOn-binomial 62, 63 quadratic 50-54, 66 Continued fractioDi 55-SS, 65-68 Cooper 70, 91 Corput 62, 91, 92 ~14-16,20,33,94,95, 136, 166, 167 Clelle~13,20,49,92,133
Cubic Diophantine equations 63-6S fields 35, 68, 76 forma 64, 72 Cullen 46, 94 Cunningham 10, 12-16, 18-23, 27-34, 36, 38, 39,43-52,54-56,58-62,64,65,74,80,9295,127, 128, 132-138, 141, 145, 149, 151, 154-156, 161, 165-170 Cyclotomic fields 77 polynomials 28, 69, 72-74 CycloUDny28,59,62,63,69, 72-74, 77 Darling 79, 95 Due 26, 27, 81, 95, 136, 137 Daus 67,68,76,95 Davis, H. T. 43, 96 Davis, W. 39, 96, 137 Decimals, periodic 11, 12, 15, 30
[ 173]
INDEX
Degen 55, 66, 96, 138 De10ne 64, 72, 76, 96 Desmarest 14, IS, 23, 96, 138 Dickson 2, 5, 6, 8, 24, 44, 63, 71, 72, 81-83, 96-98, 139, 169 Dines 46, 98, 139 Diophantine equations, cubic 63-6S linear 49-SO quadratic ~2, 66 quartic 6S Dirichlet 73 Divisors, linear 53, 54 number of 8-9 sum of 8-9 Durfee 27, 41,42,98, 139
Eella 62, 98 Eisenstein 71, 72,98 Elder 48, 54, Ill, 161 Elliptic functions 8, 71 Escott 5, 24, 98 Euler 5, 8, 9, 13, 31, 33, 43, 45, 46, SO, 55,70, 78,79,98,99,139 Euler's totient function ~ (n) 6, 7, 13, 16, 20, 28,73 Exclusion 51 ' Exponent 11, 13, 1~17, 31, 59 Factor tables 24-39 Factorization methods 47, 48, 68, 70, 71 Factors of :z. ± 1 28-31 1()OO±128,30 G"± 1 28,30-33 G" ±".. 28, 34, 35, 43, 44 Lucas functions 35, 36 other binomials 36 special numbers 36-37 Faddeev 64, 99 Farcy series 8 Fermat's last theorem 10, 21, 22 numbers 28, 59, 72 quotient 10 theorem, converse of 23, 24 Fibonacci series 10, 17, 28, 35 Fidds,~bnUc28,35, 7~77
cubic 35, 68, 76 cyclotomic 77 quadratic 57, 69, 75, 76 quartic 76, 77 FIgUrate numbers 11 Fitz-Patriclt 98 Flechsenhaar 63, 99 Forms, binary cubic 72 binary quadratic 8, 48, 5~, 68-74 linear 47, 49, SO, 53, 54 quaternary quadratic 72 quartic 6S ternary quadratic 71, 72
Frolov 52, 99 Functions, elliptic 8, 71 modular 71, 78 numerica16-11,2S symmetric 10, 77 Garbe 83, 99 Gauls 11, 12, 17, 22, 32, 34, 41, 50-53, 68, 69, 70,72-74,75,79,99,100,139-141 G&ardin 21, 23, 30, 33, 46, 47, SO, 55, 63, 100, 101 Gifford 24-26, 48, 101, 115, 133, 141 Gigli 79, 101 GJaisher, J. 26,27,37,40,42,101, 142 GJaisher, J. W. L. 6-10, 12, 16, 25, 33, 40-44, 68,69, 76, 101-103, 131, 139, 142, 169 Goldbach's Problem 79-80 Goldberg 14, 26, 103, 142-145 Goldschmidt 41 Golubev 27,103 Goodwyn 8, 12, 16, 103 Gosaet 23, 94, 103 Gouwens 74, 103, 145 Gram, 9, 40, 43, 103 Grave 13, 18,26, 74,80,104,146 Gupta 78, 79, 82, 83, 104 Haberzetle 83, 104 Hadloclt 71, 104 Hall 10, 35, 104 Halsted 61, 62, 104, 146, 169 Hardy 43, 45, 78, 79, 82, 104, lOS, 146 Haussner 10, 16,80, lOS, 147-149 Heas1et 18, 123 Henderson 24 Hertzer IS, lOS, 128, 149 Hessian 71 Highly composite numbers 8 Holden 74, 105 Hollerith cards 48, SO Hoppenot 21, 27, 33, 39, 42, 44, lOS, 108 Hofld 12, 18, lOS, 109 Husquin 41, 42, 106 Ideals 67,75 Idoneals 46, 48, 60, 70 Indeterminate equations 49-50, S4--«; Index 12, 17-20, 75, 76 Index of perfection 5 Ince 56, 57, 67, 75, 106 Inghirami 26, 106, ISO, 151 Inverse totient 6 Inversion function" (n) 7,9, 10, 28, 72 Ivanov 34 Jacobi 13-15, 18, 19,21,52,59,63,67,81, 106, 151,162 Joffe 62, 107, 162 Joncourt 11, 107
[ 174 ]
hmEX Jones 71, 107, 128, 139 ltaualer 11, 107 KavAn 25,107,145,151,152 Karin, Mrs. 150 KeaIer 15, 107 Ito,81,107 Korkin 14, 19, 107 Xraitchik 6, 8, 10,14,1~17,19, 22, 23, 27-37, 39,42-47,49-57,60,61,63,66,70,72,74, 108,152-159 lCriabnaswami 61, 108 Kulik 13, 14, 19, 26, 27, 37, 48, ~52, 59, M, 109 Kummer 77 Lagrange 57, 67
Laisant 10, 109 Landry 29, 109
Lawther 22, 109 12, 18,26,37, 109 Lebon 36, 109 Legendre 40, 41, 43, 47, S3-55, 69, 71, 110, 159-161 ~e
Legendre~~boI17,43,44,47,51-54,63
Lehmer, D. H. 10, 24, 29, 35, 36, 46, 48, 51, 53, 55, 56, 73, 78, 82, 109-111, 132, 138, 146, 153, 160, 161, 169, 171 Lehmer, D. N. 27, 37, 40, 44, 47, 48, 52, 54, 109, Ill, 129, 136, 137, 142, 159-161 Lehmer, E. T. 10,52,82,110,111 Lenhart 64, 111 Levlnen 19,54, Ill, 161 Uvy 120 Lidonne 26, 111 Linear cougruences 49, SO Diophantine equations 49, SO divisors 53, 54 forms 47, 49, SO, 53, 54 Littlewood 43, 82, 104 Lodge 24, 25, 37, 48,113,115, 133, 141 . Logarithms 37 Logarithmic integrals 40, 4S Lucas 6, 10, 17,29,33,35,54,74, 112, 161 Lucas' functions 28, 35 MacMahon 78, 112 Markov 71, 112 Martin 61, 62, 112, 146, 169 Maser 100, 110 Mason 5, 6, 89,112 Masearini 91 Mathews~, 70, 72, 74, 112 Mlties 22, 113 Mauch 82, 113 Mechanical computing 13, 48-51, 57 Meiaae140 :MeiIaner 10, 16, 21, 113, 127 Merrifield 43, 113, 162
Meneane numbers 28, 29 Mert.eIII7,9,113 Miller 6, 37, 113, 135, 136, 152 Mitchell 169 Mitra 24, 113 MiSbius inversion function 7, 9, 10, 28, 72 Modular functions 71, 78 Moreau 7,113 Moritz 10, 113 Multiply amicable numbers 5, 8 perfect numbers 5, 8 NapIl 56, 113 N"teIIen 56,58,59,67,114 N"tewiadomsIr.i 22, 114 Norm 28, 35, 75, 76 Numbers, abundant 5 8 aIpbraic: 7~77 amicable 5, 8 Bemoulli 10, 36, SO Fermat 28, 59, 72 figurate 11 highly composite 8 Meneane 28, 29 multiply amicable 5, 8 multiply perfect 5, 8 perfect 5 pol)'lODal83 IIOCiabie 6 triaDguJar 11
Number of divisors 8, 9 Numerical functions 6-11. 25 Oettinger 58, 64, 65,114 Ostrogradslr.y 13, 18, 114, 162
Pagliero 39,114,162 PaJl71,107 Paradine 62, 114 Partial fractions 11 Partitions 77-79 Partitions, quadratic 23, 44, 45, 59, 60, 79 Pe1l equation 32, 35, 54-59, 66, 67 Perfect numbers 5 Periodic dec:imals 11, 12, 15, 30 Perott, 7, 114 Perron SS, 67,114, 115 Peters 24, 25, 36, 48, 115, 133, 141 Petzval109 Pi1lai 82, 115 Pierce 35 Pipping 80,115,149 PocIr.liDgton 74, 115 Poletti 26, 38-40, 43, 44, 46, 47, 115, 116, 162 Pol)'lOn, regular 72 Pol)'lODal numbers 83 Polynomials, BemouIIi 10 c:ydotomic 28, 69, 72-74
[175 ]
hmEX POIIIe 14, 19, 116 Poulet 5,6, 10,24,35,48, 116, 117, 139, 162, 163 Poullet-De1isle 100 Power residue 12, 13, 22, 23 Powers of a primitive root 17-19, 75, 76 Primality tests 48 Prime pairs 42-44 Primes, distribution of 40-43, 46 identification of 48 lists of 37-39 of special form 43-47 Primitive root 11-19, 22, 52,76 Quadratic characters 17, 47, 48, 51-54 coagruences SO-54, 66 Diophantine equatioDS 54-62, 66 fields 57,69,75,76 forms 8, 48, ~, 68-74 partitioDS 23, 44, 45, 59, 60, 79 residues 43, 44, 47, 48, 52, 53, 59 Quartic Diophantine equations 65 fields 76, 77 forms 65 Quaternary quadratic forms 72 Ramanujan 8, 78, 79, 105, 117, 146, 163 Rank of apparition 17 Reciprocity, Law of 52 RecurriDg eeries 10, 17,35,36,56,61 Reid 76,117 Residue, higher 12, 13, 22, 23, 59 quadratic 43, 44, 47,48, 52, 53,59 Residue-indu 11, 13, 15-17,23 ReuIchle 13-16, 20,23,29,30,32,59,62,72, 73, 77, 117, 163-167 IUchmond 65, 117 Jljemann 40, 41 lUemann hypothesis 9 Roberts 67,117, 118, 167 RobilllOn SO, 118 ROIeDberg 95 Rolla 70-72, 118 SaDg 61, 62, 118, 167 Saorgio 61, 118 Sapolsky see Zapolskall Sarma 7, 118, 167 Schady 52, 118 SchatJstein 75, 118 Schapira91 Scherk 44, SO, 118 Schulze 61, 118, 168 Seeber 71, 118 SeeIhoff 48,70,119 Seeling 56, 66, 67, 119 Se11ing 71, 72 Shah SO, 119
Sbanks15,30, 119, 128, 168 Shook 82, 119 Sieve proceu 26,27,31,46 Simerka 62,119 Simony 37,119 Sociable numbers 6, 8 SonlinUil 76, 96 Sommer 75, 120, 169 Sparks 82, 120 Square endiDgs 48, 52 Stickel 43, SO, 120 Stager 25, 40, 120 Stein 36, 115 Stencils 26, 27, 47, 48, SO, 53 Stemeck 7, 9, 81, 120, 121, 169 Stie1tjes 22, 121 Struve 59 Sturani 38, 39, 46, 116 Suchanek 37, 121 Sugar 82, 121 Sum of divisors 5, 8, 9 of products of consecutive integers 10 of powers 10 Suryauarayaua 70, 121 Sutton 43, 121 Sylvester 6,7, 72, 73, 121, 169 Symmetric functions 10, 77 Tait 79,122 Tanner 60,73,77,122,167,169 Tchebychef see Chebyshev Tebay 61, 62, 122, 169 Teege 74,122,170 Ternary quadratic forms 71, 72 Ternouth 24, 25, 48, 115, 133, 141 Teny52,122 1"h6bault 52, 122 von ThielmaDD 67,122 Totient 6,7, 13, 16,20,28, 73 Townes 72, 122 Travers 5, 122 Tria.DguIa.r numbers 11 Triangles, ratioual 60-62 right 60-62 Tachebyschew see Chebyshev Twin primes 42-44 Umeda 79, 122 Units 57,75,76 Uspensky 18, 123 Valroff 22,123 Vandiver 36, 123, lSI Vega 26, 38, 123, 170 VerebmllOv 65,123,170 Vorono! 76,123 Waring's problem 81-83
[ 1761
INDEX Watson 79, 123 Weinreich 80, 123 WenbJ'UIICIW see VerebrfiUov Wertheim 14, 18, 49, 52, 54, 55, 123, 124, 163,
170 Western, A. E. 37, 42, 45, 81, 124 Western, O. 60, 77, 87, 167 Whitford 55, 57, 66, 124, 170, 171 Wteferich 82,124, 171 Wilson 80, 119 Wilson', quotient 10
Woepc:ke~, 124 Wolfe 64,124 Woodall 14.-16, 22, 23, 27-31, 36, 38, 39, 47, 94-95, 125, 134.-137, 145, 154.-156 Wright 70, 125
YIlII82, 125 ZapoJabf1 76, 125 Zomow 59, 81, 125
Zuc:lterman 82, 125
[ 177]