GLOBAL THEORY OF A SECOND ORDER LINEAR ORDINARY DIFFERENTIAL EQUATION WITH A POLYNOMIAL COEFFICIENT
To YASUKU crocus, tulip, lilac, iris, peony and a book.
NORTH-HOLLAND MATHEMATICS STUDIES
18
Global Theory of a Second Order Linear Ordinary Differential Equation with a Polynomial Coefficient
YASUTAKA SIBUYA School of Mathematics, University of Minnesota, Minneapolis
1975
-
NORTH-HOLLAND PUBLISHING COMPANY AMSTERDAM OXFORD AMERICAN ELSEVIER PUBLISHING COMPANY, INC. - NEW YORK
0 NORTH-HOLLAND
PUBLISHING COMPANY
- 1975
All rights raerved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the copyright owner.
ISBN North-Hdland: Series: 0 7204 2600 6 Volume: 0 7204 2609 x ISBN American Elsevier: 0 444 10959 5
Publishen: NORTH-HOLLAND PUBLISHING COMPANY - AMSTERDAM NORTH-HOLLAND PUBLISHING COMPANY, LTD. - OXFORD Sole distributon for the U S A . and Canada:
AMERICAN ELSEVIER PUBLISHING COMPANY, INC. 52 VANDERBILT AVENUE NEW YORK, N.Y. 10017
Library of Congress Cataloging in Publleation Data
Sibuya, Yasutaka, 1930Global theory of a second order linear ordinary differential equation with a polynomial coefficient. (North-Holland mathematics studies j 18) Bibliography: p. Includes index. 1. Differential equations--Numerical solutions. 2. Asymptotic expansions. I. Title. QA3 72. S47 515' -352 75-23049 ISBN 0-444 10959-5
-
Printed in The Netherlands
INTRODUCTION
"he general theory of asymptotic s o l u t i o n s a t an i r r e g u l a r singular
p o i n t i s one of many remarkable achievements of the research concerning l i n e a r ordinary d i f f e r e n t i a l equations i n t h e complex domain.
However, i n
t h e case when d i f f e r e n t i a l equations contain a u x i l i a r y parameters, t h e gene r a l theory has not been completed with regard t o the behavior o f asymptot i c s o l u t i o n s a s functions of these parameters. ena (i.e
A s f o r t h e Stokes phenom-
. t h e r e l a t i o n s among asymptotic s o l u t i o n s ) , the research has been
conducted so far only i n various p a r t i c u l a r cases. I n applications, t h e r e are s e v e r a l well-established asymptotic methods based on i n t e g r a l representations of solutions.* methods are s a t i s f a c t o r y .
I n most cases, these
Nevertheless, the theory of d i f f e r e n t i a l equa-
t i o n s a t irregular s i n g u l a r p o i n t s has been given a number of opportunities t o show i t s s t r e n g t h i n a p p l i c a t i o n s , even when i n t e g r a l representations o f s o l u t i o n s are available.**
It i s needless t o say t h a t , i f no i n t e g r a l rep-
r e s e n t a t i o n i s a v a i l a b l e which i s s u i t a b l e f o r the t r a d i t i o n a l methods, the theory of d i f f e r e n t i a l equations must be u t i l i z e d .
The theme o f t h i s book
i s t o e x h i b i t such methods. Throughout this book, t h e d i f f e r e n t i a l equation (A)
d2y/dx2
- ( xm+ a1xm-l + ...t am-l x t
a ]y= 0
m
is t h e main subject. The differential equation ( A ) i s a l i n e a r ordinary d i f f e r e n t i a l equation of second order with a polynomial c o e f f i c i e n t . The p o i n t a t i n f i n i t y i s an i r r e g u l a r s i n g u l a r p o i n t , and t h e r e a r e no other s i n g u l a r p o i n t s . The q u a n t i t i e s al, .,a are a u x i l i a r y parameters. m Apparently, the g e n e r a l i t y o f problems i s s a c r i f i c e d i n this book by res t r i c t i n g t h e s u b j e c t t o the d i f f e r e n t i a l equation ( A ) It i s , however, a n t i c i p a t e d t h a t this penalty would be counter-balanced by depth and v a r i ety of expositions.
..
.
* See, f o r example, L. Sirovich [ 4 3 ] . ** See, f o r example, F.W.J. Olver [31].
vi
INTRODUCTION
The d i f f e r e n t i a l e q u a t i o n
does n o t admit i n t e g r a l r e p r e s e n t a -
(A)
t i o n s o f s o l u t i o n s except f o r s p e c i a l c a s e s such as
(i.e.
(i; y ” - ( x t a l ) y = ’ 3
m=l )
,
(i.e.
m=2 )
2 y”- (x + y x t a 2 ) y = 0
(ii)
(iii) y11-xmy=o
,
,
and (iv)
.
y ” - (x2Pt cxp-l)y=o
These f o u r c a s e s belong t o t h e realm of c o n f l u e n t hypergeometric functions.* For example, t h e s o l u t i o n s of e q u a t i o n ( i )a r e given i n terms of A i r y ’ s
i n t e g r a l , and t h e s o l u t i o n s of e q u a t i o n (ii)a r e given i n terms of para( C f . S e c t i o n 8, Chapter 2 . )
bolic cylinder functions.
I n this book, t h e
a t t e n t i o n i s focussed on t h e g e n e r a l case of t h e d i f f e r e n t i a l e q u a t i o n ( A ) . The ambition of t h e a u t h o r i s t o e x p l o r e a t e r r i t o r y which has n o t been vigorously c ul t i v a t e d . In Chapter 1, t h e d e f i n i t i o n and v a r i o u s p r o p e r t i e s of asymptotic expansions are summarized.** o ( g ( x ) ) and as
x
Throughout this book, t h e n o t a t i o n s
f ( x ) = O ( g ( x ) ) as
tends t o
xo
, and
that
x+x
mean t h a t
0
f(x)/g(x)
f(x)/g(x)
is bounded as
x
f(x) =
tends t o zero tends t o
xo
,
respectively. I n Chapter 2, a f u n c t i o n bm(x,al,. s o l u t i o n of t h e d i f f e r e n t i a l e q u a t i o n ( I ) bm(x,a)
(11) b,(x,a)
is entire i n
(x,y
.. , a m ) (A)
is i n t r o d u c e d a s a unique
such t h a t
,...,am) , and
admits an asymptotic r e p r e s e n t a t i o n b,(x,a)
Ex
rm
-3
m
[1+ Z B $
uniformly on each compact set i n
N=l
lexp{-Em(x,a)}
m9
(al,.
i t y i n any d i r e c t i o n i n t h e open s e c t o r t
..,a m )-space
as
larg x \ < & n
’
x
tends t o in f in -
, where $m+2-2h) 1
2
mt2-2h bh ( a ) x
lLh<$mtl and
* **
For c o n f l u e n t hypergeometric f u n c t i o n s , s e e F.C. Tricomi [ 4 6 ] . A . E r d h l y i [ 9 ] and W. Wasow [ 4 7 ] c o n t a i n much more i n f o r m a t i o n concerni n g asymptotic expansions.
INTRODUCTION
v ii
(m: odd)
The q u a n t i t i e s
b (a)
The q u a n t i t i e s
B
h
a r e polynomials i n
al,
,
....a m '
and defined by
.
a r e a l s o polynomials i n a l , . . , a The function m,N m ' bm(x,a) i s a generalization of Airy's i n t e g r a l and parabolic cylinder functions. The main problem of Chapter 2 i s the existence and uniqueness of
bm(x,a)
.
This i s the simplest example of r e g u l a r perturbations of
asymptotic s o l u t i o n s a t i r r e g u l a r s i n g u l a r p o i n t s . I n Chapter 3, the d i f f e r e n t i a l equation yll- [oxH1
is considered as o i s reduced t o
(B)
+ xm+ alx m-1 + ...+ am-lx
tends t o
.
(A)
.
At
, the
- --&?y,... m+l
I&-2
Idmtl( omf3x,o
mt3,0
d i f f e r e n t i a l equation
m+3,0
-- 2
,g
--mt2 --mfl bmtl(o,o
c=O
~ = oy
It is shown t h a t
1 (a)
0
ta
m)
*a'
-- 2
mt3a1,
... ,E m+3am )
tends t o
b,(X,y,
(PI as
e++O
.
*
*,am>
bm(O,al,...,a m F'unction
(a)
i s a s o l u t i o n of the d i f f e r e n t i a l equation
This function i s highly s i n g u l a r a t
s=O
,
(B).
even though the c o e f f i c i e n t of
.
o=0 The problem of Chapter 3 is an example of a very d i f f i c u l t problem of per-
t h e d i f f e r e n t i a l equation
(B)
does not have any s i n g u l a r i t y a t
t u r b a t i o n s a t irregular s i n g u l a r points.
( C f . Section 11.)
I n Chapter 4 , asymptotic estimates of t h e function
as h for
tends t o i n f i n i t y are derived. O<s<+
,
Ixl+la,l+
fixed p o s i t i v e number.
...+I
These estimates a r e v a l i d uniformly
aml
, where
R
i s an a r b i t r a r y but
This problem i s an example of s i n g u l a r perturba-
t i o n s a t irregular s i n g u l a r p o i n t s .
The estimates o f Chapter 4 are
viii
INTRODUCTION
obtained f o r all d i r e c t i o n s i n h-plane. i n Chapter 10, t h e d i f f e r e n t i a l e q u a t i o n
x
y ” - 2 ( X-X1)
(c) i s considered as
1
tends t o
i n f i n i t y i s fixed.
...( x-xm)y = 0
(x-x,)
.
-b
The q u a n t i t i e s
The d i r e c t i o n i n which
.., xm
xl,.
X
tends t o
are a l s o f i x e d complex num-
3 e main problem i s t o d e r i v e asymptotic e s t i m a t e s o f s o l u t i o n s o f
bers.
+-
i n such a way t h a t t h e estimates are v a l i d uniformly for x i n t h e m a x i m a l domains. The method i s based on t h e i d e a s due t o A . Erdglyi. M. Kennedy and J . L . McCregor [lo], and M . A . Evgrafov and (C)
X
as
tends t o
M.V. F e d o r w [ll]. ‘The problems of Chapters 2 , 3 , 4 and 10 e x h i b i t f o u r p r o t o t y p e s of perturbations a t i r r e g u l a r singular points.
Some of t h e methods u t i l i z e d
i n t h e s e c h a p t e r s would be a l s o u s e f u l i n more g e n e r a l c a s e s .
The d i f f e r e n t i a l e q u a t i o n K=u where
c
2
= expc-mt2 i n ]
-k
x
,
(A)
i s i n v a r i a n t by t h e t r a n s f o r m a t i o n
k
Z = G (a) = ( w
-k -2k -mk al,w a2,...,w am)
,
.
This means t h a t t h e m t 2 f’unctions -k k ( k = 0, ,mtl) b,,,(x,a) = h m ( u x,G ( a ) )
. ..
(6)
a r e s o l u t i o n s of tion o f
(A)
(A)
b
m ,k
b
The s o l u t i o n
i n the sector
sk: since
.
2k
m,k
R
l a r g x - mt2 n I < - m+2
tends t o zero as
i s c a l l e d a subdominant solu-
,
t e n d s t o i n f i n i t y i n Sk
x
.
These subdorn-
i n a n t s o l u t i o n s a r e r e l a t e d by t h e connection formulas
bm,k ( x , a ) = s ( a ) b m , k + l ( X , a )t Ek(a)bm k+,(xYa)
(D)
I n Chapter 5 , t h e q u a n t i t i e s t i o n s o f parameters
al,
%(a)
...,am .
and
ck ( a )
-
are i n v e s t i g a t e d as f’unc-
i n Chapters 6 , 7 and 8, t h e main concern i s s i n g u l a r boundary v a l u e problems i n t h e complex p l a n e .
The d i s t r i b u t i o n of e i g e n v a l u e s and t h e
completeness p r o p e r t y of eigenf’unctions are s t u d i e d i n Chapter 6.
In
Chapter 7, a r e l a t i o n betueen zeros and e i g e n v a l u e s i s demonstrated.
The
s u b j e c t of Chapter 8 i s based on a profound work of R. Nevanlinna [27].
His work i s concerned with t h e following problem:
Let Y 1 ’ ” ” Y q 922
, and
surface R
let
nl,
be q ...,nq
d i s t i n c t p o i n t s on t h e Riemann s p h e r e , where b e D o s i t i v e integers.
of t h e Riemann s p h e r e such t h a t
Construct a c o v e r i n g
INTRODUCTION
ix
(a) R
i s simply connected,
(b) R
admits no s i n d a r p o i n t s o t h e r than e x a c t l x n
y
branch-points over the base point
j ' -
where
j j = l , ...,q
1oRarithmic
.
Nevanlinna showed t h a t such a covering s u r f a c e exists i f and only i f e i t h e r (81)
q=2,
(b')
q>2
n = 1 , n = 1 ,or 2 nj
,
,
9 p= Z n j =1 j '
where
Furthermore, he showed t h a t such a covering surface R equivalent t o the complex plane. R
x-plane onto function
f
.
z = f(x)
Let
i s conformally
be a conformal mapping from
Then, Nevanlinna a l s o showed t h a t t h e Schwarzian of the
i s a polynomial i n
x
of degree
zation of t h e d i f f e r e n t i a l equation
(A)
p-2
.
This is a characteri-
i n terms of covering surfaces of
I n Chapter 8, an i n t e r p r e t a t i o n of Nevanlinnafs work
the Riemann sphere.
i s given by the following r e s u l t :
Let co,. ( a f f ) ck # ck+l (b")
the s e t
..,c mtl
be given points on t h e Riemann sphere.
..,mtl; cmt2 =
(k= 0,. [co,.
..,c
IUtl
CJ
7
Assume t h a t
and
contains a t l e a s t t h r e e d i s t i n c t p o i n t s on
)
t h e Riemann sphere.
5 ,...,am
Then, t h e r e e x i s t
such t h a t the d i f f e r e n t i a l equation
two l i n e a r l y independent s o l u t i o n s y,(x)
y,(x)
(A)
has
s a t i s f y i n g the con-
ditions
Y+) y2(x)
-+
"k as
The converse i s a l s o t r u e .
x-)-
in %
.
(k = 0 , . .,mtl)
.
( C f . Theorem 39.1, Section 39.)
Allen Weitsman and David Drasin of Purdue University showed t h e author the importance o f Nevanlinna 1s contribution. I n Chapter 9, a converse problem i s solved with regard t o t h e connect i o n formulas
(D)
by u t i l i z i n g the r e s u l t s of Chapters 5 and 8.
A more
general problem which was proposed by G. D. Birkhoff 1.4 and 5 1 i s a l s o summarized. Chapters 2 and 7 a r e based on the a u t h o r ' s j o i n t works with Po-Fang Hsieh of Western H c h i g a n University. Mullin of TRW, Washington D . C . .
Chapter 3 explains a work of F'rank
The content of Section 26 of Chapter 5 i s
based on a work o f Herman Gollwitzer of Drexel University.
48 of Chapter 8 summarize a recent work of I v a r -en
Sections 47 and
of Norway.
Some
INTRODUCTION
X
p o r t i o n s of Chapters 5 , 9 and 10 have never been published b e f o r e .
in 1958, t h e a u t h o r worked o u t a s i m p l i f i c a t i o n o f a second o r d e r linecir orciinary c i i i f e r e n t i a l e q u a t i o n a t a t r a n s i t i o n p o i n t .
'The m o t i v a t i o n was t o g e n e r a l i z e t h e r e s u l t s of R.E.
Sibuya [ 3 2 ) , )
Y. Langer
YcKelvey [ 2 3 ] by u t i l i z i n g a method based on t h e g e n e r a l i d e a
[ 2 2 ! and R.W.
of' b!.
(Cf.
Wcuhara.
An e x c e l l e n t guidance f o r t h i s r e s e a r c h was a l s o found i n
m e x p o s i t o r y paper by W . Wasow [ 4 8 ] .
As t h e main r e s u l t , a t r a n s f o r m a t i o n
w a s constructed s o t h a t t h e g e n e r a l case was reduced t o t h e d i f f e r e n t i a l equation parameter. n = l rmd
(A)
, where
the coefficients
5 , ...,a m
a r e f u n c t i o n s of another
'fie r e s u l t s o? Langer and McKelvey were reproduced as t h e c a s e s m=2
respectively.
mation was n o t c l e a r f o r
However, t h e u s e f u l n e s s of such a t r a n s f o r -
a23 owing t o t h e f a c t t h a t t h e i n f o r m a t i o n of
t h e g l o b a l behavior o f s o l u t i o n s o f t h e d i f f e r e n t i a l e q u a t i o n easily available for
m23 .
(A) was n o t
Thus, t h e a u t h o r was motivated toward t h e
r e s e a r c h concerning t h e d i f f e r e n t i a l equation
(A)
.
A s u b s t a n t i a l improve-
ment of the r e s u l t mentioned above was obtained i n 1973 as an a p p l i c a t i o n o f t h e r e s u l t s which had been accumulated through t h i s r e s e a r c h .
Si'mya [ 4 0 ] .)
( C f . Y.
These s p e c i a l t o p i c s are n o t included i n t h e p r e s e n t book.
The r e s e a r c h of t h e a u t h o r has been guided and encouraged by P r o f e s s o r b s u o ' M a r a and many o t h e r g r e a t t e a c h e r s and f r i e n d s .
For t h e b a s i c
guide-line and many u s e f u l i n f o r m a t i o n s concerning this r e s e a r c h , t h e a u t h o r i s indebted t o P r o f e s s o r Walfgang Wasow.
The a c t i v i t y with Profes-
s o r ' d i l l i a m A . H a r r i s , Jr. has k e p t t h i s r e s e a r c h going i n a v e r y p l e a s a n t
atmosphere
Ir, t h e s p r i n g o f 1969, t h e a u t h o r gave a series of l e c t u r e s on t h e d i f f e r e n t i a l equation
(A)
, at
t h e U n i v e r s i t y of C a l i f o r n i a , Los Angeles.
Then, he s t a r t e d p u t t i n g materials t o g e t h e r i n t o a "bookf1. A p a r t of t h e manuscripi, was w r i t t e n a t t h e U n i v e r s i t y of Edinburgh, S c o t l a n d , i n t h e s p r i n g of 1971.
A complete manuscript was f i n i s h e d a t Mathematics Research
Center, t h e U n i v e r s i t y of Wisconsin-Madison, i n t h e academic year 1972/73, during t h e a u t h o r ' s s a b b a t i c a l l e a v e from t h e U n i v e r s i t y o f Minnesota.
The
manuscript was examined a t l e a s t by P r o f e s s o r Tosihusa Kimura, P r o f e s s o r Masahiro Iwano, Dr. l v a r Bakken, and P r o f e s s o r Walfgang Wasow.
Following
t h e i r advice and comments, t h e manuscript was r e v i s e d s o t h a t t h e book might become more r e a d a b l e .
changed $hree times. author
tG
For example, t h e t i t l e o f this book has been
P r o f e s s o r R E . O'Malley, Jr. k i n d l y i n t r o d u c e d t h e
Dr. E. F'redriksson of North-Holland P u b l i s h i n g Company.
The
xi
INTRODUCTION
camera copy was b e a u t i f u l l y typed by M s . Kathryn L. Nelson.
The author
wishes t o express his s i n c e r e appreciation t o his teachers and f r i e n d s f o r t h e i r guidance, encouragement, advice, comments, and helps.
This research has been supported by the University o f Minnesota, t h e University o f Wisconsin, t h e University of C a l i f o r n i a , t h e National Scienoe Foundation, the United S t a t e s Navy, t h e United S t a t e s Army, and t h e Science Research Council a t the University o f Edinburgh through various f a c i l i t i e s and funds.
YASUTAKA SIBUYA Roseville June 1975
This Page Intentionally Left Blank
CONTENTS Introduction
V
Chapter 1 Asymptotic expansions
.
1 2
..................................
Definition of asymptotic expansions
.
Uniqueness of asymptotic expansions
. 4. 3
Properties o f asymptotic expansions Summation o f formal power series
5.
1
..........................
.......................... .......................... .............................
Asymptotic expansions o f functions depending on parameters
1 2
3 10
...
.................... 6 . An existence theorem ......................................... 7 . Subdominant s o l u t i o n s ......................................... 8 . Case m = l and case m = 2 ................................... 9 . Proof of Theorem 6.1 ......................................... 1 0 . h o o f of Lemma 9.1 ........................................... Chapter 3 A r e l a t i o n between l,jm and l,jmtl ...................... 11. Remarks on perturbations of asymptotic s o l u t i o n s ............. 12 . Main problem ................................................. 13 . Asymptotic s o l u t i o n s a t x = + ............................... 2 1.4. Case when F(x. = e x + x .................................... 15 . A generalization of Zernike's method ......................... 16 . A subdominant s o l u t i o n of equation (15.2) .................... 17 . Proof of Theorem 12.1 ........................................ Chapter 2
D e h t i o n of subdominant s o l u t i o n s
6)
Chapter 4
. 19 . 20 .
Asymptotic behavior o f
um(x.a )
as
a
m
tends t o i n f i n i t y
................................................. ...................... Estimates i n the s e c t o r \arg X 1 I n - po ...................... Estimates i n the s e c t o r larg A - nI 5 po ChaDter 5 Stokes m u l t i p l i e r s ..................................... 21 . Preliminary r e s u l t s .......................................... ................................... 22 . Case m = l and case m = 2 23 . Properties a t a = O ..........................................
18
24
.
25
.
Main p r d l e m
Asymptotic behavior of Stokes m u l t i p l i e r s as infinity Case when
15 15 17 22 26 32 42 42
45 48
51 56 59 61
65 65
66 76 82 82 87
90
am tends t o
..................................................... + a .....................................
P(x, A ) = x3
12
100 101
CONTENTS
XiV
................................................. 27 . A functional equation ........................................ .......... Chapter 6 A boundary value problem i n the complex plane 28 . tioundary conditions .......................................... 29 . D i s t r i b u t i o n of l a r g e eigenvalues ............................ 26
30
.
General case
.
A imique s o l u t i o n o f a non-homogeneous boundary value problem
.
Estimate of
..
................................. 31.. Estimate of R ( b ) g : P a r t I1 ................................ 33 . P r i n c i p a l p a r t s of R(X)g a t i t s poles ...................... 34 . A completeness property of eigenfunctions .................... Chapter 7 D i s t r i b u t i o n of zeros .................................. 35 . A r e l a t i o n between zeros and eigenvalues ..................... 30 . Main theorem ................................................. 37 . Proof of Theorem 36.1: P a r t 1 ............................... 38 . Proof o f ‘Beorem 36.1: P a r t 11 .............................. 31
3iapter 8
R(A)g : P a r t I
.
.
40
41 .
. 43 .
42 &$
.
. 46 . 47 . 48 .
45
..................................................... A general boundary v a l u e problem ............................. Associated fliemann s u r f a c e s .................................. Construction o f a covering s u r f a c e P ........................ Remarks on non-uniqueness and s i n g u l a r i t i e s of s o l u t i o n s ..... A remark on t h e g e n e r a l c a s e ................................. An a p p l i c a t i o n of a l i n e complex ............................. Proof of Theorem 40.1 ........................................ Proof of Theorem 39.1 ........................................ Local uniqueness ............................................. A sketch of t h e proof of Theorem 47.1 ........................
Chapter
2
50 .
51
.
. 53 . 52
54
55
. .
128 128 129
133 140
14.4 147
149 152 152
154 156
161
166 166 172
176 181 185
186
191 1% 197
198
Subdominant s o l u t i o n s admitting a prescribed Stokes
................................................... Main problems .................................................. Case m = l and case m = 2 ................................... Problem 49.1 a t a = O ........................................ Problem 49.2 a t a = O ........................................ Problem 49.1: t h e general case .............................. Problem 49.2: t h e general case .............................. phenomenon
49 .
122
A general boundary value problem and a s s o c i a t e d Riemann
surfaces
39
112
Subdominant s o l u t i o n s admitting a prescribed Stokes phenomenon
201 201 203 204 207 211 215 220
xv
CONTENTS
56
.
A g e n e r a l problem of G.D.
Birkhoff
...........................
225
....
Chapter 10 Subdominant s o l u t i o n s of t h e d i f f e r e n t i a l equation 2 y" .a ( x - x ~ ) (x.x, ) (x - x ~ y ) =0
... 57 . Subdominant s o l u t i o n s ........................................ 58 . Formal s o l u t i o n s of t h e a s s o c i a t e d R i c c a t i equation .......... 59 . Asymptotic s o l u t i o n s i n a canonical domain as X tends t o infinity ..................................................... 60
.
. 62 .
61
Asymptotic s o l u t i o n s i n a canonical domain as infinity Fkamples of
x
..................................................... Stokes curves and canonical domains .............. h
.................................................. 63 . Simple t r a n s i t i o n p o i n t problems i n unbounded domains ........ .................................. 6 4 . A method due t o T.M. Cherry 65 . Asymptotic s o l u t i o n s i n t h e domain Bo ....................... 66 . Remarks on t h e case when n c o n t a i n s o n l y one o f t h e t h r e e 5
and
xo
242
249 253 261 266 269 272
62 i n t h e neighborhood of t h e simple
.......................................... 67 . Examples ..................................................... ........................................................ References Index ............................................................. transition point
236
tends
to infinity
0'
233
tends t o
Asymptotic r e p r e s e n t a t i o n s of subdominant s o l u t i o n s as
sectors 6
233
279 281 285 289
This Page Intentionally Left Blank
CHAPTER 1 ASYMPTOTIC EXPANSIONS
1. Definition of as.ymptotic expansions. B
L e t us consider a closed s e c t o r
i n x-plane which i s defined by
where
,
8: a l a r g x l b
(1.1)
a
and
b
d e r a function
1x1 2
M ,
are realnumbers", and
f(x)
M i s a p o s i t i v e number.
which i s holomorphic i n
be a formal power series i n
x
-1
B
.
Consi-
Let
whose c o e f f i c i e n t s a r e complex numbers.
D e f i n i t i o n 1.1: We c a l l t h e formal series (1.2) an asymptotic expansion
of
f(x)
N
,
as
x
tends t o i n f i n i t y i n
B if, f o r every non-nepative i n t e -
t h e r e exists a p o s i t i v e number
%
such t h a t
(1.3)
for
xEB
.
A closed s e c t o r
open s e c t o r 8 '
(defined by (1.1))i s c a l l e d a subsector of an
defined by aI<arg x
(1.4)
,
1x1 > M I
,
if
at
(1.5)
,
M>M1
.
1.2: We c a l l t h e formal s e r i e s (1.2) an asymptotic expansion of f(x)
x
tends t o i n f i n i t y i n an open s e c t o r
fil
(defined by (1.4))if
the formal series (1.2) i s en asymptotic emansion of
.
f(x)
x
tends
* b - a may be l a r g e r than 2n If b - a > 2n , the domain &Imust be regarded a s a domain on the Riemann surface determined by l o g x
.
ASYMPTOTIC EXPANSIONS
2
t o i n f i n i t y i n every closed subsector of
gl
.
W e s h a l l use the notation
(1.6)
z
f(x)
cNx-N
(x+m
in
Q)
N=o t o i n d i c a t e t h a t t h e s e r i e s on t h e right-hand s i d e i s an asymptotic expansion o f tion,
f(xj
x
as
tends t o i n f i n i t y i n the s ecto r
B
.
I n t h i s nota-
i s e i t h e r c l o s e d o r open.
;6
W e have d e f i n e d asymptotic expansions of f u n c t i o n s o n l y i n t h e case
x
when
tends t o i n f i n i t y .
I n t h i s c h a p t e r we s h a l l e x p l a i n v a r i o u s
p r o p e r t i e s of asymptotic expansions a l s o o n l y i n this c a s e . expansions o f f u n c t i o n s as
x
tends t o a p o in t
xo
Asymptotic
can be d e f i n e d and
d i s c u s s e d i n a similar manner without any e s s e n t i a l m o d i f i c a t i o n . 2.
I n t h i s s e c t i o n , we s h a l l prove
UniQueness o f asymptotic expansions.
t h e uniqueness o f an asymptotic expansion o f a f u n c t i o n as infinity
x
tends t o
. If
THEOREM 2.1:
m
( 2.1)
c
f(x)
cN"-N
N=o
and -
m
(2.2)
c
f(x)
-N yNx
N=O
then -
cN = yN
(2.3)
Proof:
(N=0,1,2,
...) .
We can assume without l o s s o f g e n e r a l i t y t h a t
g
i s a closed
sector.
Assumptions ( 2 . 1 ) and ( 2 . 2 ) mean t h a t , f o r every non-negative
integer
N
,
%
t h e r e are two p o s i t i v e numbers
I
f(x)
-
N C c ~ x 15 - ~ KNIxI
and
4 such t h a t
-N-1
k=o
and
for x E
for
xE
(0
.
Therefore
.
For
N=O
, we
get
co=yo
.
If we assume t h a t
c =y
P
P
for
PROPERTIES
p = 0,1,
..., N - 1
, then
and hence we g e t
3.
cN= yN
.
This proves Theorem 2 .l.
ea p ( x ) = Z cNx-N and -1 N=o The sum and t h e yNx-N be two formal power series i n x
P r o p e r t i e s o f a s n m t o t i c expansions. 0)
q(X)
= X
3
Let
.
N=o product of t h e s e two formal power s e r i e s a r e defined by 0
P ( x ) + q ( x ) = 2 (CN+yN)x-N N=o
(3.1) and
(3
=
.a
p(x)q(x)=
respectively.
N=o k=o
Furthermore, i f Pj(X) =
( 3-3)
N
x ( r.
m
c
CjNX
.
-N
(j = 1,2,. .)
N=o x -1 such t h a t
are formal power series i n c
( 3- 4 )
jN
for
=O
N=0,1,
* . * 9 n j'
and l i m n.
(3.5)
j + m
=a
,
J
then t h e sum o f t h e s e formal power s e r i e s w
m
x
c p (x) = x ( cjN)x-N N- j=i j=1 j
(3.6)
i s defined by
p j
m
.
m
Zc a r e sums of a f i n i t e number o f j =1 j N owing t o assumptions ( 3 . 4 ) and ( 3 . 5 ) .
Note t h a t t h e c o e f f i c i e n t s
Let us now consider a f u n c t i o n ables "hen
zk-%)
( zl,
...,zk) .
Assume t h a t
F( zl,
...,zk)
F i s holomorphic a t
(al,...,%)
.
.. , a , ) . ( zl-al, .. ,
(al,.
Set
(3.7) where
...+$ .
141 =tl+
NOW l e t us consider
k
jN
o f s e v e r a l complex v a r i -
F can be represented by a convergent power s e r i e s i n
i n a neighborhood of
c
formal power series
,
ASYMPTOTIC EDANSIONS
4
W
i R
x - ~
.
..
( j = 1, , ,k)
p.(x)=a.+ C c J N=l
(3.8)
By u t i l i z i n g t h e d e f i n i t i o n s given above, we can d e f i n e a formal
power series i n
x
-1
by
(3.9) We s h a l l denote by For example, i f
. . ., pk ( x ) )
F(pl(x),
p(x) = Z
t h e formal power series ( 3 . 9 ) .
i s a formal power series s a t i s f y i n g t h e
cNx-"
N=o condition
then
l/p(x)
denotes t h e formal power s e r i e s d e f i n e d by
Note t h a t
1/z = 1/[ co+( z-co) ] = co-1[ l+co -1( z-co) 3 -1
= c -1 z c-co-1( Z - C , ) ] N N=o 0)
(Z-C,)
N
N=o
F(zl,
Assume t h a t
...,zk )
i s holomorphic a t
(al,
...,%)
and t h a t
(3.11)
where j = 1 , ...,k
i s a c l o s e d s e c t o r d v e n by
B
8: a L a r g x L b
,
IxI2M
,
1x1 2
.
Let us c o n s i d e r a s e c t o r . . #
8: a l a r g x l b
Then, if (3.11) -
.
MI > 0 is s u f f i c i e n t l y larae, we have F(fl(x)
where t h e
Mt
p.(x) J
*
-
*
,fk(X))
'F ( P l ( x )
*
,Pk(X))
(X+
in
d .
0)
denote t h e formal power series on t h e right-hand sides of
PROPERTIES
Proof:
for
as
Since
xE
x
5
?i
if
MI > 0 i s s u f f i c i e n t l y l a r g e .
.
tends t o i n f i n i t y i n
Then (3.12) implies t h a t
Furthermore,
N -h f.(x)-a.= z c x + ~ ( x - ~ ) J h=l j h
as
x
tends t o i n f i n i t y i n
B
as
x
tends t o i n f i n i t y i n
B
I)
Assume t h a t
.
Therefore
-.
By u t i l i z i n g the d e f i n i t i o n of F ( p l ( x ) , . . . , p k ( x ) ) we can complete the proof o f Theorem 3.1. The following r e s u l t s a r e s p e c i a l cases of Theorem 3.1:
where
8
i s e i t h e r open o r closed.
11) Assume t h a t
Then
6
ASYMPTOTIC EXPANSIONS
6 i s a closeil s e c t o r
where
Let us consider a s e c t o r
Then, i f
cofO
M' i s s u f f i c i e n t l y large, we
and t h e p o s i t i v e number
have m
-N l / f ( x ) ~1," c cNx N=o
*
(x+m
~
j
LB) .
in
W e s h a l l now t u r n t o a j u s t i f i c a t i o n of term-by-term
i n t e g r a t i o n and
d i f f e r e R t i a t i o n of asymptotic expansions. T I I E O M 3.2:
Assume t h a t
3 .i3) where
B
i s e i t h e r open o r c l o s e d .
(3.14) where t h e p a t h of i n t e g r a t i o n should be taken i n Proof:
We assume without l o s s of g e n e r a l i t y t h a t
.
B rD
i s a closed s e c t o r .
Since
we have
hrthermore
sm[
N
x N
ch5-hld5=
h=2
h=2
c
h x-h+l -h+l
This proves Theorem 3 . 2 .
THEOW 3.3:
6
be a closed s e c t o r d e f i n e d by
rD: a L a r g x l b
where &
i;i
gi&
b
,
1x1
are real numbers and
t h e i n t e r i o r of
rD :
LM , M
i s a p o s i t i v e number.
Denote
7
PROPERTIES
fit:
,
a<arg x< b
1x1 > M
.
Assume t h a t f(x)
m
=
c
.I
&
(x+=
"$-A
0)
.
N=o m
-N-1 f l ( x ) 5 I: (-N)cNx N-
where Proof:
fl(x)
(x+m
denotes t n e d e r i v a t i v e of
f(x)
&
fit)
,
with respect t o
x
.
Let us put N
P,(X) =
z
ChX
-h
h=o
and = f ( x ) -pN(x) We must show t h a t
-N-2)
%(x) = O ( x
s u b s e c t o r of t h e open s e c t o r sector
9
.
gl
'
as
x
tends t o i n f i n i t y i n a closed
To do t h i s , l e t us c o n s i d e r a closed
defined by
where a<;<E
%>M.
Set
.,
If
M
8 = min(a"- a , b - b)
.
i s s u f f i c i e n t l y l a r g e , we can use t h e Cauchyfs i n t e g r a l r e p r e s e n t a -
ti on
(3.15) where
rx
i s a c i r c l e d e f i n e d by
rx: !%-XI
= 1x1 s i n 8
.
( S e e Fig. 3 . 1 )
ASYMPTOTIC EXPANSIONS
8
U %
\ \
\
\
0 Fig. 3.1. In f a c t , i f sector
&
&
f o r every x i n the closed s e c t o r on the c i r c l e Tx i f x E 9 , vhere
independent o f
is i n t h e closed -B . rxHence lEN(s)l 5
is s u f f i c i e n t l y l a r g e , t h e c i r c l e
x
.
Furthermore, we have
KN
i s a p o s i t i v e constant
151 2 (1- s i n 8 ) l x I
on t h e
-N-3
we can d e r i x e from t h e i n t e g r a l r e p r e s e n t a t i o n (3.15) t h e following e s t i mate: l%(x)l
This proves Theorem 3 . 3 .
sin
e )-N-1
(sin d l x l
-N-2
for
x
~
.i
9
PROPERTIES
One of the most important applications of asymptotic expansions i s
found i n the study of asymptotic evaluation of zeros of various functions. I n such a problem, t h e following theorem* is very u s e f u l .
LIBOREM 3 .&:
9"
Let two s e c t o r s B
be given by
61: a i a r g x l b
,
1x1 LM
Z:
,
1x1 2R
and z i a r g x
Assume t h a t
respectively. (i) f ( x )
i s holomorphic i n
(ii) f ( x )
tends t o zero as
(iii) a < a " < g < b ,
(iv) b - a l n
Then, if
61 ; x
B ;
tends t o i n f i n i t y i n
GLM;
. i s s u f f i c i e n t l y large, t h e mapping defined by y=x(l+f(x))
i s univalent i n Proof:
i.
I n the same way as w e did i n the proof of Theorem 3.3, we can
prove t h a t xfl(x)+O where
as x+w
p
and
line-segment
L
joining p
Note t h a t , i f
p
q
and
(3.16)
5
Idy/dx-lI and
q
are i n
q
on
L
51/3 and
g
in
P
1pI
.
Hence
y(p) = y ( q )
have
s
.
If a
(dy/dx)dx=O
L
IpI
.
and
lql
.
are sufficiently
Furthermore
,
and
follows from (3.16) t h a t
*
, we
is i n L
x
.
and t h a t
is i n
on
with respect t o
f ( x)
B , and
are i n
q
l a r g e , then every point
to
Z ,
in
are points i n
Suppose t h a t
p
x+w
f l ( x ) denotes the d e r i v a t i v e of dy/dx+l
if
as
For example, see T. Klmura [ 21; p .216].
lql
are s u f f i c i e n t l y l a r g e .
It
ASYMPTOTIC EXPANSIONS
10
Hence
.
p=q
i s s u f f i c i e n t l y l a r g e , t h e mapping
This means t h a t i f
y = x ( l t f(x))
i
i s univalent i n
.
4 , Summation of formal power s e r i e s .
I n many i n s t a n c e s of a p p l i c a t i o n of
asymptotic expansions, i t i s required t h a t we construct a function which admits a preassigned power s e r i e s a s i t s asymptotic expansion.
In this
The idea i s t o modify the given
s e c t i o n we s h a l l p r e s e n t such a method*.
formal s e r i e s i n such a way t h a t we o b t a i n a convergent s e r i e s by which a desired function i s d e f i n e d .
m:If Proof:
Re[z]
W e s h a l l begin with the following two lemmas.
, then
Il-eZ1
.
Note t h a t z
l-eZ=J
ecq ,
0
where the path of i n t e g r a t i o n i s t h e line-segment j o i n i n g assumption gration.
Re[z]< 0
implies
I ec I 5 1
Hence
Re[C]LO
f o r every
c
f o r every
6
z
to
0
.
on t h e path o f i n t e -
on the path of i n t e g r a t i o n .
This,
i n t u r n , implies t h a t
&!"A 1.2:
L e t a closed s e c t o r
g&
a
b
Re[eiep]<-6
.**
M
i s a p o s i t i v e number.
p,S, and a r e a l number
p
,
a p ( a r g xP(bp xE9
M ,
f o r every
For any p o s i t i v e number
f o r every
1x1 2
a r e real numbers and
t h e r e exist two Dositive numbers
Proof:
be given by
,
P: a ( a r g x ( b
where
B
, we IxpI
x
g
8
.
have
k#
Therefore, i f we s e t and
p = n/[ 2 ( b-a) ]
*+*See, f o r example, W. Wasow [47; As t o powers of x , w e use t h e
8 = n - p( a+b)/2
pp 40-43]. definition r x =exp[r(loglxl + i arg x ) ] for any complex constant r
.
The
,
8 such t h a t
SLTPATION OF
FORMAL POWER
SERIES
11
i t follows t h a t % = n - ~ ~ a r g [ e i ' x p ] < n +P
4
for
xEQ
.
I n other words, we have
for
xE &
.
Therefore, u t i l i z i n g the assumption:
6 > 0 so that
find
Re[ei8xP]<-6
for
x€B
o - -,+n 2
1212 @ > 0 , we
.
can
NOW we s h a l l prove the following theorem.
THEOREM L.1:
L e t a closed s e c t o r 8 61: a l a r g x L b
where
g&
a
b
,
be given by
1x1 2
a r e r e a l numbers and
M , M i s a p o s i t i v e number.
m,k t
a formal power s e r i e s
be given. where the f(x)
Proof: p(x) f(x)
cN a r e complex numbers.
which i s holomorphic i n
Then t h e r e exists a function
&
As i t was mentioned above, we s h a l l modify the given formal s e r i e s
s o a s t o obtain a convergent series by which the desired function w l l l be defined.
As t h e f i r s t s t e p , l e t us choose a sequence
(bN]
of p o s i t i v e numbers s o t h a t the s e r i e s
i s uniformly convergent f o r
1 XI 211 .
As the second s t e p , set
W
f (x) = 2
c ~ " - ~ [ exp(bNeiexP) l]
,
N=o where
8 and p are constants given by Lama 4.2. Re[vie2]<-%b<
0
for x € &
Observe t h a t
,
6 is a l s o a constant given by Lemma 4.2. Therefore, by v i r t u e of Lemma 4 . 1 , we have
where
I1-exp(bNeie~)I
for x E B
,
ASYMPTOTIC EXPANSIONS
12
'his means t h a t
f ( x ) is well defined and holomorphic i n
s t e p , we s h a l l prove (4.1). cN x - " ~
.
8
As t h e l a s t
To do this, n o t e t h a t
- exp(seiexP) 3
cNx-*
(x
N
, we
I t follows t h a t , f o r every p o s i t i v e i n t e g e r
N Z chx-h [ l - e x p ( b h e
-+= i n
.
s>
have
N
i* xP ) ] " = C
h=o
(x+w
ChX -h
in
8)
.
h=a
Furthermore, m
Z
chx-h [l-exp(bheie$)]=O(x
hd+1
No
Let
be a p o s i t i v e i n t e g e r such t h a t
f(x)=
-N-l+p
.
p
in
(x+-
8)
.
Then
N+No -h C chx [ l - e x p ( b heiexp)] h=a (D
- exp( bhsiep)
f r ,
]
h'N+No+1
=
N+No
z
ChX
-h
-N-No-l+p to(x )
(x+= i n
9)
.
h a Since
p-No
and
, we
N+No> N
have
N -N-1 f ( x ) = 2: c h x - h + ~ ( x h-
Tbe i n t e g e r
N
(x+-
in
Q)
.
being a r b i t r a r y , t h e asymptotic expansion (4.1) i s estab-
lished.
5.
h V m Dt o t i c
coefficients constants.
expansions o f functions dependinp on parameters. cN of t h e asymptotic expansion of
In many cases, however,
s = (el, sector, the notation
i l i a r y parameters
..., k ) . E
f
means t h a t t h e r e exist p o s i t i v e numbers that
f(x) have been complex
a s well a s
%
In the case when
(5.1)
(x+-
in
So f a r t h e
may depend on auxfi
i s a closed
o m i f o n d s for eEn)
% , independent
of
E
, such
13
FUNCTIONS DEPENDING ON PARAMFXERS
for
xEB
,
r E C l and
N)_O
.
If
B i s an open s e c t o r , notation (5.1)
means t h a t the asymptotic expansion i s uniform on each closed subsector of
B
,
Theorems corresponding t o Theorems 2.1, 3.1, 3.2 and 3.3 can be proved
a l s o i n this general case.
Now we s h a l l s t a t e a theorem which i s a refinement of Theorem 4.1.
TlJEoREM 5 . 1 : Let a closed s e c t o r B be Riven by
,
8: a l a r g x ( b
where a
gnJ
b
1x1 2
M ,
a r e r e a l numbers and M
i s a p o s i t i v e number.
&,
let
m
I: c ~ ( E ) x -be ~ Riven, where c N ( e ) a r e bounded
a formal power series
N=O
...,ck)
and holomomhic i n c = (el, t h e r e e x i s t s a function
i n a domain n & I s - mace. which i s holomorphic f o r x E & g&
f(x,c)
and -
a,
z
f(x,e)
cN(c)x-N
(x+-
in
uniformly for
cE 0 ,
c~n),
N=O
The proof of this theorem i s l e f t t o the readers.*
I n order t o s t a t e another theorem which is useful i n a p p l i c a t i o n s , we
f(x,c)
s h a l l assume t h a t
be holomorphic f o r
x E 8
,
161
5 6 , where
8
is a closed s e c t o r given by
,
8: a ( a r g x ( b
1x1 L M
,
t h e q u a n t i t y 6 i s a p o s i t i v e constant, and
101
that
where c N ( s ) a r e supposed t o be holomorphic f o r
=maxlej) j
181
(6
.
.
Assume a l s o
Let
and
be t h e Taylor's expansions of
*
See, f o r example,
f
and
cN r e s p e c t i v e l y i n t h e domain
K.O. F r i e d r i c h s [12; pp 152-153,BI.
14
ASYMPTOTIC EXPANSIONS
I €1 2 6 .
We s h a l l prove t h e following theorem.
THEOREN 5 -2: Under t h e assumptions s t a t e d above, w e have (5.2)
Proof:
.
(t1,...,$)
f o r e v e r y index Put
...,k )
c.(f3.) = p e x p [ i e . ] J
J
(j=1,
J
and
where
p
i s a f i x e d p o s i t i v e number.
.
p56
Assume t h a t
Then
and
2n C
M1.. .2,
=
...s2n
k
c,(e(G))exp[-i
0
Z &.0.]de, j=1 J J
0
... dok .
Since N
r ( X , E ( e )=) z h=o as
x tends t o i n f i n i t y i n
ch(e(e))x-h + o ( X - ~ - ' ) uniformly f o r
$J
...,k) ,
05e.52n J
(j=l,
we o b t a i n ( 5 . 2 ) .
DEF'INI TION 5.1:
xE
B,
c-sDace.
E
E
Let
coefficients g(x,4#O
for
Assume t h a t
, where
8
f(x,E)
g(x,c)
be holomorphic f o r
0 i s a domain i n
i s a s e c t o r i n x-plane and
m
C c ~ ( E ) x - be ~ a formal power series i n N=o cN(e) a r e holomorphic and bounded i n 0
.
x E B & €En . W
f(X,E)
Eg(x,c)
z
cN(")x-N
(x+-
in
x
-1
whose
Assume t h a t
8)
N-
uniformly with r e s p e c t t o
E
E means ~ that W
f(x,o)/g(x,s)
Z N=O
CN(E)X-N
(x+m for -
& uniformly
E E n).
CHAPTER 2 DEFINITION OF SUBDOMINANT SOLUTIONS
6.
An existence theorem.
(6
y"
0 1 )
Let us consider a d i f f e r e n t i a l equation
- P(x)y = 0
2
( y " = d y/dx
2
,
where
m-1 + a xm-2 t p ( x ) = x m t ax and
al,
...,am
1
2
...+am-1 x t a m
I n t h i s chapter we s h a l l define
a r e complex parameters.
.
subdominant s o l u t i o n s of the d i f f e r e n t i a l equation (6 .l)
The d e f i n i t i o n
i s based on a theorem expressing t h a t c e r t a i n solutions s a t i s f y i n g asympt o t i c conditions a t i n f i n i t y e x i s t .
Such s o l u t i o n s a r e characterized by
asymptotic conditions a t I n f i n i t y , and we must e s t a b l i s h t h e i r a n a l y t i c p r o p e r t i e s with respect t o the parameters
shall s t a t e such an existence theorem.
al,
...,am .
I n this s e c t i o n , we
We s h a l l a l s o present c e r t a i n I n Section 8,
important p r o p e r t i e s of subdominant s o l u t i o n s i n Section 7 .
we s h a l l i d e n t i f y subdominant s o l u t i o n s with known f'unctions when m = l and
2
.
mOR.EM 6 .L: The d i f f e r e n t i a l equation (6.1) has a s o l u t i o n
(6.3)
Y=l"(x,al,""am)
such t h a t ( i ) bm(x,a) i s an e n t i r e function of
(x,al,
...,am) ;
(ii) Qm(x,a) admits an asymptotic r e p r e s e n t a t i o n 7
(6.4) uniformly on each compact s e t i n
*
(al,. ..,a m )-space as
x
tends t o
This chapter i s mainly based on Po-Fang Hsieh and Y. Sibuya [17].
16
SUBDOMINANT SOLUTIONS
i n f i n i t y i n any closed s u b s e c t o r of t h e open s e c t o r
(6.5) where -
(6.6)
Em(x,a) =me2
rm
9
h,N and
then the Q u a n t i t i e s
'N'= l %,Nx
2
are polynomials i n
m,N
rm and A
.;I-' m
(al,
...,am) .
If we put
1
are given, r e s p e c t i v e l y , b-y
m,N
1
(6.8)
1 F( mt2-N)
L(me2) mtl
2
(m: odd) ,
1
-m - b
4
(m: even)
,
$1
and -
~ 1( m t 2 - 2 h ) i(mt.2-N)
mtl
'
(6.9)
=
N = l Am,Nx
1 l
of
b t h e n a o r e , the d e r i v a t i v e b;(x,a)
2 mt2-2h bhx
b m ( x , a ) with r e s p e c t t o
x
admits an asymptotic r e p r e s e n t a t i o n 1
1
( 6 .lo) uniformly on each compact set i n
.. , am )-space
(al,.
i t y i n any closed subsector of t h e open s e c t o r
...,
polynomials i n
as
x
tends t o i n f i n -
( 6 . 5 ) , where
.
are -
crn,N
(a1, am ) The only s i n g u l a r p o i n t o f t h e d i f f e r e n t i a l equation (6.1) i s
Furthermore,
P(x)
is linear i n
(6.1) i s an e n t i r e function of
.
( a l , , .,a )
e n t i r e functions o f
(al,.
Therefore a s o l u t i o n o f
...,
(x,al, am ) i f i t s i n i t i a l values a r e Since the s o l u t i o n b m ( x , a ) i s defined
.
m by the asymptotic condition (6.4) a t
I t must be proved.
.. , a m ) .
x
property ( i )i s n o t e v i d e n t .
= O J ,
The asymptotic r e p r e s e n t a t i o n (6.10) o f
derived from the asymptotic r e p r e s e n t a t i o n (6.4) of
manner.
l,jm
-r
m
exp[Em(x,a)b m ( x , a )
.
Then
+
F ' =[-r x -1 E;(x,a) t b ; ( x , a ) / t m ( x , a ) ] F
m
b;
can be
i n t h e following
Set
F =x
x=w ,
,
SUBDOMINANT SOLUTIONS
17
and hence [ F h m ( x , a ) h $ x , a ) = F ' t rmx-lF- EA(x,a)F Note t h a t (6.4) means
1
-P Bm,N~
W
Z
F"1+
.
N=l Therefore, by v i r t u e of Theorem 3 . 3 we have 7
-$NF f Z Z ( -N)Bm,Nx 1 -2 N=l QD
1
Hence
where
m,N
are
Thus we o b t a i n (6.10)
.
Set
P(x) = ( x - xl)
(6 .ii) where
kl,.
5 , ...,am
..,X m
( x - A,).
. . ( x - Am)
,
are r o o t s of the polynomial P(x)
are symmetric polynomials i n
.
It i s known that
. . . , I m ' Therefore t h e s o l u t i o n b m ( x , a ) i s an e n t i r e function of ( x , h l , . .,h ) which i s
(Al
symmetric with r e s p e c t t o B m,N
and
C m,N
A1,
,...,Am) .
.
The q u a n t i t i e s
a r e symmetric polynomials of
(Al,
m
rm
.. . , A m ) .
,
,
Am,N
I n the next s e c t i o n , we s h a l l d e f i n e subdominant s o l u t i o n s of (6.1) by
u t i l i z i n g Theorem 6.1.
We s h a l l a l s o p r e s e n t c e r t a i n important p r o p e r t i e s A proof o f Theorem 6 . 1 will be given i n Sections
o f subdominant s o l u t i o n s .
9 and 10. 7.
Subdominant s o l u t i o n s . ?=ei'x
where
(7.1)
Let us change t h e independent v a r i a b l e
by
,
8 i s a real number. d2y/&2
x
The d i f f e r e n t i a l equation ( 6 . 1 ) , then, becomes
- e-i(&2)'Q(%)y
=0
where
m
Am-h ~ ( 2 =P+ ) z ei m 8hx h=l
Therefore, i f we choose 0
so that
.
SUBDOMINAN T SOLUTIONS
18
the function
is
ii
This means t h a t , i f w e s e t
s o l u t i o n of ( 7 . 1 ) .
('?.zj
w=exp[i
2 R+2
bm,k!x,al
,...,am ) = bm ( w -k x,w -k a l , w
and
(7.3) k
where
is an i n t e g e r , t h e
-2k
a2
,...,w -mk a,) .
are s o l u t i o n s of ( 6 . 1 ) .
Q,,,(x,a)
In
particnlar
.
bm,,(x,a) =bm(x,a)
'fie following theorem i s a d i r e c t consequence of Theorem 6.1.
?a:
m O R E M
The s o l u t i o n
\a
satisfies t h e f o l l o w i n g conditions: m,k i s a n e n t i r e f u n c t i o n o f ( x , a l ,..., am) ;
(i! bm,,(x,a)
b
( i i ) bm,,(x,a)
I
m,k
(x,a)
admit asymptotic r e p r e s e n t a t i o n s
b,,,(x,a)~Ym(w
(7.4) y;,,(x,a)
-k su
-k
x,w
-k
-k
-k x,o
Y ; ( W
uniformly on each compact set i n
-2k
al,w
(al,
al,w
a2
,...,w -mk am) ,
-2k a2,
...,am )-space
...,w
as
-mk
x
am' tends t o infin-
i t y i n any closed s u b s e c t o r o f t h e open s e c t o r
l a r g x - - 2k m+2
(7.5)
where tively
& Y;
Ym
1'
3n
<m+2
9
are t h e right-hand members o f ( 6 . 4 )
.
Let
%
be t h e open s e c t o r d e f i n e d by
I arg
(7.6)
x
2k - mt2 -
TI
<m~2
-
and l e t
%
be t h e c l o s u r e of
(7.7) Sector (7.5) i s
2.k l a r g x-- m+2
s-l\
'I
V - Y %+1
9
Sk : TI
2-mt2
.
*
(See Fig. 7.1.)
(6.10) respec-
SUBDOMINANT SOLUTIONS
19
0 H g . 7.1. The m+2 s e c t o r s ( 7 .a)
-
, where
k=0,1,.
..,m-tl
(mod. m+Z)
cover x-plane completely.
DBINITI ON 7.1: zero as
x
I f a s o l u t i o n of t h e d i f f e r e n t i a l eauation (6.1) tends t o
%.
of t h e d i f f e r e n t i a l equation (6.1) tends t o i n f i n i t y as i t y along any d i r e c t i o n i n t h e s e c t o r
be dominant i n the s e c t o r
%
% , then
x
%
,then If a s o l u t i o n
tends t o i n f i n i t y a l o any ~ d i r e c t i o n i n the s e c t o r
t h i s s o l u t i o n i s s a i d t o be subdominant i n the s e c t o r
tends t o i n f i n -
this s o l u t i o n i s s a i d t o
.
Since
the solution Therefore,
b,
bm,k
i s subdominant i n
8,
and dominant i n
i s subdominant i n
%
and dominant i n
and
8-1
.
8,-1 and %+1
.
SUBDOMIN AN T SOLUTIONS
20
b m,o and b
The two s o l u t i o n s i s subdominant
bm,o m,l of (6.1) be subdominant i n go = ~
Y(X)
where
c
and
c1
subdominant i n
8,
0
a r e l i n e a r l y independent, s i n c e
, the
go
i s dominant i n
, and
.
Let a s o l u t i o n y ( x )
set
~ b C 1~b m , l, ~ + 9
a r e independent of
Y(X)
THEOREM 7.2:
bm,l
and
q u a n t i t y c1
=cobm,o9 co Ym
x
.
Since the s o l u t i o n
must be zero.
y(x)
is
Hence
.
The s o l u t i o n bm(x,a) i s t h e only s o l u t i o n of (6.1) which
s a t i s f i e s all of the resuirements l i s t e d i n Theorem 6.1.
Urn
The uniqueness of
.
implies a s i m i l a r uniqueness of
m,k As an application of the uniqueness of b m ' we s h a l l prove another theorem which we s h a l l u t i l i z e a t various places i n the following chapters. THEOREM 7.3 :*
Let x,
,...,am
and X be complex v a r i a b l e s . the function bm(x,a) s a t i s f i e s the i d e n t i t y
(7.9)
s , a1
bm(x+s,al,.
..,a m-1'
= Km(x,al,. where Km, -
.
ul,. .,u
respectively,
&
m
am+X)
..,a m )bm (s,ul,. ..,"m-l,um+X)
a r e independent of
{'
and (x+s)m+al(x+s)m-l+
m m-1 = s +up Aa a function o f
Proof:
9
and a r e defined,
, even) ,
(m: odd)
exp[-Em(x,a)]
(7.11)
X
s
r
Km =
( 7 .lo)
Then
s
,
(m:
...+ am-l(x+s) + am
+ '..+um-ls+um
l,jm(x+s,al,
.
...,am-1' am+A)
s a t i s f i e s the
d i f f e r e n t i a l equation d2y/ds2
(7.12)
- [ sm+ulsm-1 +
...+
s + u m +Xly = 0
and lim y = 0
( 7 -13)
S++=
where
lim
mean8 t h a t t h e l i m i t i s taken a s
S-+*
*
See Y . Sibuya [34; p 561.
s
tends t o i n f i n i t y al ong
SUBDOMINANT SOLUTIONS
t h e p o s i t i v e r e a l a x i s i n s-plane. of
bm(x,a)
, we
(7J 4 )
Therefore, by v i r t u e of t h e uniqueness
have
..,a m-1' am+A)
bm(x+s,al,.
= Km bm ( s , u ly...,u m-1' um+X) Km
where
21
i s independent o f
s
.
,
.
W e s h a l l compute Km
F r o m (6.4) and (7.14) we d e r i v e
r
+
( x + c ~ )1~ [O((x-ts)
--12
) ]exp[ -Em(x+s ,al, 1
--
F
...,a m-1'
am+A)
...,um-1' um+A)] r i s a polynomial i n (al, ...,am-1' m (ul,...,um-1' um+ X ) . If m i s odd,
3
= Kms m [ l + O ( s 2 )]exp[-E,(s,u1, as
s tends t o
+m
, where
?m i s a polynomial i n have r = F merefore m and
m--r.
Km= l i m
am+)i) we
+ Em(s,uA)1 ,
exp[-Em(*s,aA)
S-)*
where
aX = ( a l
,...,am-1'
am+X)
(6.9) implies A m , N = O
^A
where
m,N
if
and
N i s odd,
a r e polynomials i n
,...,um-1'
\=(ul
Therefore a s
(x,al,
-
l(ntt-2) m+l
Em(s,uh) where/
Since
m,N
Km
are polynomials i n
..,m+l)
when m
i s odd. m
, and
hence
$,Ns
N=l
...
I$,= 1
.
1
,
-r
m
, we
$(m+2-N)
( u ~ , , um-1' um +X)
i s even, we have r = -m-b m -4
where
+
+-
Set
9
.
Then
i s f i n i t e and d i f f e r e n t f r o m zero, we must have
( N =1,2,.
If
=*2~
Observe t h a t
tends t o
s
...,am-l,am+X) .
2 2
.
um+ A )
-
n
*m,N = %,N This proves Theorem 7 . 3 f o r the case
1
-
=--m-b
4
-
1 m-1 [1+ I: anx-"+ ( a +X)x-m ]2 =1+ WI: bhx-h m h=l n=l
22
SUBDOMINANT SOLUTIONS
and
m-1 [lt
z
uns
-n
-I
m
-m 2 t (um+A) s ] = 1+ Z bhs-h
n=l Since
k,N=Oi f
N
h=l
i s odd, w e have l ( m t 2 ) mil 2
Emk+s,%) = z s where
m,N
a r e polynomials i n
' N'= l Am,Ns
2
(x,al,
...,am-1'
$mt2-N) 1
+E,(X,+
.
a ti)
m
Hence
m Kmexp[Em(x,y)]= l i m exp[ Z s++ N=l t
(bl
I t i s not d i f f i c u l t t o prove t h a t
8.
Case m = 1
and case
Ai(x) =
(8.1)
m = 2
1 2ni
~ 1( w 2 - N )
(i m,N -^A m,N )s
-bl
F1
)log s ] = 1
.
Zm+l
Em(x,ak)= E m ( x , a )
.
.
.
I t i s known t h a t Airy's i n t e g r a l
exp(xt-t3/3)dt
s a t i s f i e s t h e d i f f e r e n t i a l equation y" - q r = 0
(8.2) where
r
is t h e path of i n t e g r a t i o n which i s given by F i g . 8.1.4
Fig. 8.1.
*
See, f o r example, W.Wasow [ 47; pp 124-126 3.
9
CASE m = l
23
ANDCASE m=2
Equation (8.2) i s a s p e c i a l case of equation (6.1), where al=O
.
I n case
m=l
, we
w=exp[i
have 2
m+l=2
,
m=l
and
m + 2 = 3 and
.
n]=exp[i2n/3]
Therefore t h r e e s e c t o r s
-
s-~:
Iw g
X+
2d3i 9 / 3
so : lw XI 5 d 3 81 : I a r g x - 2n/31 2 n/3
,
9
cover t h e x-plane.
(See Fig. 8.2.)
Fig. 8.2.
The t h r e e s o l u t i o n s l$1,-1
’
a r e subdominant i n Sel , Q1,O and 1$1,1 Also, i t i s known t h a t Airy’s i n t e g r a l (8.1)
So , and S1 , r e s p e c t i v e l y . admits an asymptotic representation*
as
x
tends t o i n f i n i t y i n
Ch
h = (-1)
8-1vgov81
eP
where
5 4 ~ ~ ~ 1~ h ~’ - - )
.
i s subdominant i n 8, Since a i ( x + a , ) satisf i e s equation (6.1) f o r m = l , t h e uniqueness of implies t h a t This m e a n s t h a t
Ai(x)
(8.4)
bl(x,al) = A A i ( x + y)
*
urn
.
See, f o r example, M. Abramowitz and I . A .
S t e p [l; p448, 10.4.591.
2L
SUBDOMINANT SOLUTIONS
I t f o l l o w s from ( 8 . 4 ) t h a t
I
,
'11,-1(x,a,) = W;;lli(u(x+ a l ) )
b
(8.5)
190 1 9 1
(x,a,) =Z&Ai(x+al)
,
(x,a,) =2J;;Ai(w-'(xt
a,))
.
I d e n t i t y ( 7 . 9 ) means, i n this c a s e , t h a t Ai(xt s+ al+h) = ~ i ( s + u ~ + A ,) where
a1 = x t a 1 ' I t i s a l s o known t h a t t h e i n t e g r a l
1
r(2-a) TJ(a,x) =
(8.6)
2ni
1
1 2
e
'
a-2 t
7
1 2 exp(xt-Tt )dt
C
s a t i s f i e s t h e ? i f f e r e n t i a l equation y"-
(8.7) where
1 2
(7t
4
a)y=O
,
C is t h e p a t h o f i n t e g r a t i o n which i s given by F'ig. 8.3.*
F'ig. 8.3. A s i s w e l l known, i n t e g r a l (8.6) admits an asymptotic r e p r e s e n t a t i o n
u n i f o r d y on each compact set i n a-plane as c l o s e d s u b s e c t o r o f t h e open s e c t o r :
larg
x
XI
tends t o i n f i n i t y I n any
< 3n/4 .**
I t is e a s i l y
verified that
* %*
See, f o r example, M. Abranowitz and I . A . See I b i d . , p 689, 19.8.1.
Stegun [l; p 687, 19.5.11.
CASE m = l
1 1 2 y = u(Fa2 - ~5,4
(8.9)
AND
x+
.
r: ml-2
25
1 F ~) )
s a t i s f i e s equation (6.1) for m = 2 1 I n case m = 2 , we have ~ + = l 2 w=exp[i
CASE m = 2
,
m+2=4
and
n]=i
Therefore, f o u r s e c t o r s
cover x-plane.
(See Fig. 8.4.)
Flg. 8.4.
The four s o l u t i o n s I$
S-l
,
8,
,
81
,
'
2,-1 and 82
,
.
a r e subdominant i n
U(a,x) implies t h a t s o l u t i o n (8.9) i s subTherefore, by v i r t u e of t h e uniqueness of ,$l , w e have
t a t i o n (8.8) o f t h e i n t e g r a l dominant i n So
' h,l '
and b , 2 r e s p e c t i v e l y . Also, t h e asymptotic represen-
b,o
(8 .lo) It follows from (8.10) t h a t
SUBDOMINANT SOLUTIONS
26
If w e denote
by
D,,(x)
t h e Whittaker's p a r a b o l i c c y l i n d e r f u n c t i o n , we
have U(a,x) = D
,(x) -a--
.*
2
I d e n t i t y ( 7 . 9 ) , i n this c a s e , can be derived from t h e following identities: 2
u =x + a x t a 2 1 2 '
u1=2x+al,
~ ( , fci ( x + s + F1 al)) where
=U(C
1 1 2 1 1 2 2=2-zal=zu2-P1
,Ji(s+;;ul)) 1
.
i s an a r b i t r a r y complex q u a n t i t y .
c
To the knowledge of t h e author, t h e r e are no well-known functions
with which
9.
can be i d e n t i f i e d f o r
Proof o f Theorem 6.1.
( 9 .I)
u'=A(x)u
m23
.
Equation (6.1) i s equivalent t o t h e system
,
where
u =
[j
,
A(x)
By the change of v a r i a b l e s u = [ 10 system ( 9 -1) i s reduced t o ~
*
~~
See, f o r example, M. Abramowitz and I . A . S t e p [l; p 687, 19.3.71.
'
PROOF OF THEOREM 6.1
27
where
3
A0 = [ and
(al,
pN
9
a r e two-by-two matrices whose components a r e l i n e a r i n
...,am ) .
Let us s e t
t o obtain dw/d5
where components o f ( a y . , am1
9
Let
p
and
we have
Hence, i f we s e t
we get
B(5)
y
=
5-l
a r e polynomials i n
and
-B ( 5 )
,
=S*’B(S)w
[i
I]
+ O(5-l)
and l i n e a r i n
.
be unknown q u a n t i t i e s , and l e t us s e t
28
SUBDOMINAN T SOLUTIONS
i
(9.2)
Y(S) = + ) +
,
B1WP
dP/@ = Smf1[
e2( 5 ) + a2 ( 5 )P - y ( 5 ) p I .
Equations ( 9 . 2 ) a r e e q u i v a l e n t t o
(9.3) W e s h a l l determine p
by t h e second e q u a t i o n of
be given by t h e f i r s t equation o f (9.3).
(9.3) and then y
In o r d e r t o determine
p
will
, we
s h a l l use the following lemma.
9.1:
f
are linear i n
,
h
(al,,..,a
g
m)
.
be polynomials i n
5-l
whose c o e f f i c i e n t s
Suppose t h a t
(9.4)
as
5
tends t o i n f i n i t y , where
( 5 ,a1,
pendent of
(9.5)
...,am) .
dp/dS
ho
i s a non-zero c o n s t a n t which i s inde-
Then t h e d i f f e r e n t i a l e q u a t i o n
=5&’[f(5)
h ( 5 ) p + d5)P21
-k
has a unique formal s o l u t i o n 9)
= 2 pNC-N
(9.4)
7
N =1
where t h e Q u a n t i t i e s pN are Do1.ynomiaI.s i n E m a t i o n ( 9 . 5 ) admits a s o l u t i o n
(al,.
p(5)
..,am )
.
s a t i s f ~ n pt h e f o l l o w i n g con-
d itions:
(ii
For each p o s i t i v e c o n s t a n t
constant
6
t h e r e e x i s t s a p o s i t i v e number
holomomhic with r e s p e c t t o
where r
6
(S,al,.
. .,am)
N
ri 6
such t h a t
p(5)
is
for
t a k e a l l v a l u e s i n a domain 0<6<6,,
6,
and each s u f f i c i e n t l y small p o s i t i v e
r
O < r < b ,
being a small p o s i t i v e number;
(ii) p ( 5 )
admits t h e f o r m a l s o l u t i o n
uniformly on each compact s e t i n
(al,
fj(S)
...,%)- space as 5 t e n d s t o i n f i n
i t y i n any c l o s e d s u b s e c t o r of t h e open s e c t o r
( 9-8)
Iarg
h o + (m+2)arg
a s i t s asymptotic expansion
51 < $
.
6.1
PROOF OF THEOREM
We s h a l l prove Lemma 9.1 i n Section 1 0 .
29
In this s e c t i o n we s h a l l
To do t h i s , we s h a l l apply Lemma 9.1
prove Theorem 6.1 by using Lemma 9.1. t o t h e second equation of ( 9 . 3 ) , where
f(5) = B2(9
?
By v i r t u e of the d e f i n i t i o n of
~ ~ ( = 5o(5-l) )
- a1(5)
h(S) =a,W
p,, and B,
al, a2,
,
~ ~ ( =0(5-~) 5 )
,
g(s) = -B,(5)
5
, we a2(5)
Therefore a l l requirements i n Lemma 9.1 are s a t i s f i e d . h =4 0
.
-
have
- a l ( < ) = A + o(s-') In p a r t i c u l a r ,
!&is means t h a t t h e second equation o f (9.3) admits a s o l u t i o n
p( 5 ) s a t i s f y i n g the following conditions: ( i ) For each p o s i t i v e constant r and each s u f f i c i e n t l y small p o s i t i v e constant
t h e r e e x i s t s a p o s i t i v e number
6
holomorphic with r e s p e c t t o
...,am )
(S,al,
Nr,6
such t h a t
p(5)
is
i n t h e domain
(9.7')
r
where
and
take a l l values i n t h e domain
6
(ii) we have m
uniformly on each compact s e t i n
..,a m )-space
(al,.
as
5 tends t o i n f i n -
i t y i n any closed subsector of t h e open s e c t o r
where
3n
I =g
(9.81)
51 < 2(&2)
pN are polynomials i n
3
(al,.
..,a m ) .
Set
(9 .lo) Then y ( 5 )
y(5)
=.,(sf
-F B1(5)P(S)
i s holomorphic i n domain (9.7 1 Q)
(9.11)
y ( s ) z-2+ 2 YNS N=l
uniformly on each compact set i n
)
, and
w e have
-N (al,
...,am )-space
as
tends t o
i n f i n i t y i n any closed subsector of t h e open s e c t o r ( 9 . 8 ' ) , where t h e a r e polynomiah i n
(al,.
.., am ) .
yN
.
SUBDOMINANT SOLUTIONS
30
Let
and
Then s e t (9.12)
and
If we c a ~ prove t h a t
u ( x ) i s an e n t i r e function of (x,al, t h e proo;' of Theorem 6.1 w i l l be completed. To do this, l e t
...,am )
, then
@ ( x ) be t h e
two-by-two matrix such t h a t 0 1 ( x ) = A ( x ) 4 ( x ), 0 ( O ) = l 2 where
l2 i s the two-by-two i d e n t i t y m a t r i x .
I t i s known t h a t
@ ( x ) and
.. .,a m ) , and u ( x ) =I ( X I 4 (xo)-%xo) .
are entire i n
#(x)-l
Let
,
0
(al,.
. . , am ) 0
(x,al,
be f i x e d but a r b i t r a r y , and consider a small neighbor-
...,
of this p o i n t i n t h e (a1, a )-space. Choose xo so t h a t the rn 1 2 is i n domain ( 9 . 7 ' ) f o r every ( a l , . . . , a m ) € V p o i n t (xo,al,. . , a m/ This means t h a t u ( x o ) i s holomorphic i n V Hence u ( x ) i s e n t i r e i n
hood
V
-
.
'
.
.
m1 * Let us now compute
h a 1 , ...,a
r
m
E(S)
and t h e d e f i n i t i o n o f
and A m,N we d e r i v e
i n ( 6 . 4 ) and (6.6).
1
m' = ?m+2
(9 -14)
i(mt2) m t l
yN
- 2 mt2-N N=l
A d i r e c t computation shows t h a t
1 z(mt2-N)
From (9.13)
PROOF OF THEOREM 6.1
31
(9.15)
Hence
-1
= -2[X^mp(X)] 2 -?S1 -m-2+ o(5-m-3)
-
set
.L
aD
[x-%(x)] 2 =1+. 2 bhx-h ,
h=l
This i s the same as ( 6 . 7 ) of “Heorem 6.1. Then we get c
I
for N = 1 , 2
(N: odd)
0
,
,...,Wl , and 1 m
(m: o d d )
(m: even)
,
.
SUBDOMINANT SOLUTIONS
32
This proves ( 6 . 8 ) o f Theorem 6 .l. We can prove ( 6 . 9 ) i n a s i m i l a r manner. Notice t h a t (6.6) o f Theorem 6.1 can be w r i t t e n as 1 Em(x,a) =-mt2
I n parti-cular
bhT
Z
-1
--1
-h
d7
.
-1
=x 4~1o +( x-2 ) 1 e q [ -273/2 - a1x2]
b,(x,al) and
_I
3
_I
I
i
--1
-
1
L
---( --aa ) 2 2 2 8 1 b2(x,y,a2) = x
These r e s u l t s agree with those i n Section 8.
.
Let us compute B m,N
To do this, set
X
(9.16)
Y = z eW[J p(T)dTl
7
0
where
1 I
p ( x ) =-xTpl[l+
bhx-h]
Z
.
l(h
2
t a ( x ) 2 I t ['p 1 ( x ) t ' p ( x )
I t i s easy t o see t h a t
- P(x) 12 = 0
.
,
A
rq(x) = x q -2+ O(x-1) ] 2
p'(x) + p ( x )
,
$4
- P(x) = x
[ z r m tO(x-1) 3
.
Hence we can f i n d a unique formal s o l u t i o n 1 r OD m z = x [1+ Z B m,? 1' N=l
-2
where the
Bm,N
a r e polynomials i n
(al,
...,am ) .
in order t o complete t h e proof of Theorem 6.1, we s h a l l prove Lema
9.1 i n the next, s e c t i o n . 10.
Proof of Lemma 9.1.
As t h e f i r s t s t e p of t h e proof of Lemma 9.1, w e
s h a l l construct a formal s o l u t i o n (9.6) of equation ( 9 . 5 ) . write (9.5) as S4-ldp/d5
=f(S)
+ h ( 5 ) p + g(S)p2
.
To do t h i s ,
PROOF OF LFNMA 9.1
33
Upon s u b s t i t u t i n g t h e formal series (9.6) i n t o ( 9 . 5 ) , we o b t a i n hoPN=fPN(P1,"'9PN-l;
%
a19"*Ya
m)
...,
.,.,
(N21)
,
.
This proves the pN-l; al, am ) (pl, e x i s t e n c e of a unique formal s o l u t i o n , and i t s c o e f f i c i e n t s pN a r e eviwhere
i s a polynomial i n
d e n t l y polynomials i n
( al,
...,am) .
Let s=- ho
ml-2 mt25
(10.1)
*
I n s-plane, consider a c i r c l e
1.
(10.2)
=M
and two p o i n t s
6 i s a small p o s i t i v e constant and M i s a posi-
on c i r c l e (10.2), where t i v e constant.
s =sl
and
$- 6
at
s=st
2 . sector:
Let
s = s2
s=si
T1
and
be t h e tangents t o c i r c l e (10.2) a t
, r e s p e c t i v e l y . Let T1 i n t e r s e c t t h e l i n e : , and l e t T2 i n t e r e e c t t h e line: a r g s = 6 - $ 8
L e t us denote by
(10.4)
T2
lug
91
6 tM
arg s = at
t h e Riemann domain which contains t h e
<3-6, Isl>M1
f o r a s u f f i c i e n t l y l a r g e p o s i t i v e constant
and which i s bounded by the
MI
following arcs:
(10.5)
(See Fig. 10.1.)
A t each p o i n t
s
of
8
6 ,M
we can c o n s t r u c t a s t r a i g h t
line
(10.6)
ie
a=s+re
(O
s o t h a t U n e (10.6) i s contained i n 86,M, and
SUBDOMINANT SOLUTIONS
34
U
Is1 = M
-7r
S
\
/s;
Fig. 10.1.
PROOF OF LEMMA 9.1
let 1 1p - 6 ) .
(10.7)
LEMMA 1.0.1: constants
(See F i g . 10.1.)
Let p o s i t i v e constants
s u f f i c i e n t l y small, while
M6 9 P
and -
Lo
p
35
6
p
is arbitrary.
be dvem. where
6
Then t h e r e exist p o s i t i v e
such t h a t
0
(10.8)
sE8 6,M6,p where
Lo
i s independent of
s t r a i g h t l i n e (10.6) -*Proof-
’
I n case
1.1
, and
p
.
2 1.
t h e path of i n t e g r a t i o n is t h e
f o r every p o i n t on t h e s t r a i g h t l i n e (10.6) i t
i s easy t o prove (10.8).
In f a c t we can s e t
.
L0 = [ s i n ( $ ) l - l
(See Fig. 10.2.)
10.2. Let us consider (10.8) under t h (10.10)
1. >
min
( s + wie
assumption tha
I
.
KT<+
(See Fig. 10.3.)
ie
= s+zp, I I I
LO Flg. 10.3.
36
Let
SUBDOMINANT SOLUTICPJS
so = s t Toeie
derive
T ~ 0>
.
I sol =
be such t h a t
min
Is+
i0 I
78
.
From (10.10) w e
%T
If w e s e t
we g e t
where
.
p=7-Iso-s(
Set
.
po=-Iso-sl
Then
2
ls12=D2+po
,
7=C1-p0
9
and
Set
1
Y(t) =(D2t t Then
and
Choose
M
6,P
s o large t h a t
2
TP t ) e
1 cose
J+-=(D2+C1 2 ) -2pe-p c o s 0 dC1 t
-
PROOF OF LEMMA 9.1
since
D> M
sE8
for
6,P
69M6,p
a
1
cos 8 2 s i n ( p )
We a l s o have
37
.
Hence
cos
e t p->- t
1 s i n ( 716 )
.
D2tt2 Therefore dY( t ) / d t and we obtain
> [$ sin($) 1
y(w0)
]Y(t)
1
< ep 0 s i n ( 2 6 ) [ Y ( o )
t
-1,
(3
1
1
-3 s i n ( 2 6 )
sin($))-'[e
2 0
- 111
.
< 3 [ sin($) 1-l
This completes the proof of Lemma 10.1. W e s h a l l now complete t h e proof of Lamma 9.1 by using Lemma 10.1.
do t h i s , consider a s e c t o r 8 i n the
( al,
...,a m )-space
? - p l a n e and a domain
To
;Qr i n the
which a r e defined r e s p e c t i v e l y by 8: l a r g ho+ (mt2)arg
53 ,
51
151 2n
and pr:
lall t
...+(%I
,
R i s a fixed p o s i t i v e constant. I t i s known t h a t t h e r e e x i s t s a function fir( 5) s a t i s f y i n g t h e following conditions:*
where (i)
cr(5) i s holomorphic i n (?,al
E ;Qr i (ii) fir(%) zfi(5)
,
,...,am )
d$r(S)/d?zdP(5)/dS
for
(5+=
SE8
and
(al
,...,am )
8 uniformly i n
in
Set P=qfPr(S) Then (10.11)
ddd?
=?mt1[wr(5)
Lbr(5)
=f(<)t h ( 5 ) $ r ( s ) t
+ h r ( 5 ) q + wr(5)q 2
I
9
where
Xr(S) = h ( ? ) + 2g(S)Cr(5) wr(?)
+%
=ids)
ds)br(5)2-5-m-1dbr(5)/d5 ,
a
See Theorems 4.1, 5.1 and 3 . 3 of Chapter 1.
9
;Qr).
SUBDOMINANT SOLUTIONS
38
W e have pJ5)
(10.12)
20
9
,
hr(S) =hot0(5-1)
$1
Br)
.
i s due t o t h e f a c t t h a t t h e asymptotic
(S+W
q(5) GO 8'
uniformly i n
r( 5 ) i s a formal s o l u t i o n o f (9.5). p
W e s h a l l construct a solution
where
8
,
=0(5-3
The asymptotic property of expansion $(s) o f $ , ( 5 )
(10.13)
in
(5+m
q
8'
in
denotes t h e i n t e r i o r o f
of (10.11) such t h a t
8
Br)
uniformly i n
.
,
To do this, we s h a l l consider an
i n t e g r a l equation
where
s
=-&ho mt2 25
Y
ho p o=-mt2
Then t h e i n t e g r a l equation (10 .I.,$)
2
becomes
S
(10.15)
q(s)
=$ J O
2
[ p , ( ~ ) -+ i r ( ? I ) q ( 7 )+ v r ( s ) q ( q )
le
s-u
do
.
W
W e s h a l l consider the i n t e g r a l equation (10.15) i n a domain (10.16)
s€
where constants
r
(a1,
9
and
6
...,a
Ear
y
a r e f i x e d , and t h e constant
M
w i l l be speci-
M must s a t i s f y t h e condition: M 2 I ho(fl%m+2). The path o f i n t e g r a t i o n is given by t h e s t r a i g h t l i n e (10.6). By v i r t u e of t h e asymptotic p r o p e r t i e s (10.12) of p r ( 5 ) , k r ( 5 )
fied l a t e r .
and
vr(c)
The constant
, we
have
1wr(5)1 5 L 1 5 r 2 ,
iL15r1
L is a p o s i t i v e c o n s t a n t .
i n domain (10.16), where lw(<)[
l:rwl
9
Ivr(5)1 IL151-1 Assume t h a t
i n (10.16), and s e t
~ ( 5 =h ) l S[pr(7) t X",(T)w(q) + ~ y ( l ] ) w ( ' ? l ) ~ ~. e ~ ~ d ~ o
Then
w
PROOF OF LEMMA 9.1
39
where
' L lhol
,
C =-[2+1/MI] O
Then
L L(1+2/M1)
Iv ( s 11 I +li i n (10.16), where [lwl-w.J
w1-w211 denotes
sup(wl(5)-w2(5)1
i n (10.16).
Thus, we can prove t h e existence of a s o l u t i o n ( q ( s ) (<151-'
i n (10.16).
I n o r d e r t o prove t h a t
q(5) q(5)
asymptotic condition (10.13), l e t us consider a function
such t h a t s a t i s f i e s the
w(5)
such t h a t
I w ( 5 ) 1 C_%151-N i n (10.16), and set
From the asymptotic property (10.12) of i n (10.16), where
4 i s a positive
-N-1
~ ~ ( ,5 we) g e t ( p r ( 5 ) 1 ihI51
constant.
Then
-N-1 Iv(5)I ~ ~ 1 1 5 1 i n (10.16) by using
Therefore we can prove an estimate Lemma 10.1.
Set
P(5) = q ( 5 ) + " p ( 5 )
(10.17)
This i s a s o l u t i o n o f (9.5).
*
If s o l u t i o n (10.17) i s independent of
r
and
6 , then t h e proof of Lemma 9.1 will be completed. be a s o l u t i o n of (9.5) which s a t i s f i e s a l l requirements i n the statement
To see this, l e t
of Lemma 9.1 i n the domain
(10.18) and l e t
p2(5)
be such a s o l u t i o n i n t h e domain
p1(5)
40
SUBDOMINANT SOLUTIONS
(10.19) If w e choose
6
,
i n a s u i t a b l e way, t h e domain
.
’
sE86,M
(10.20)
2
r
and
M
(al,
’
‘“,PI2
(a1,. .,am) E Br
i s c o n t d n e d i n domains (10.18) and (10.19).
4 5 ) =p,(S) -Pz(S)
Set
*
Then
=Srn+lJ(5)u(5) ,
du(!)/dS where
J ( 5 ) = h ( S ) + g(S)[pl(!) + p2(5) 1 u(5)
We s h a l l i n v e s t i g a t e
i n domain (10.20).
. Since
pl(S)
and
p2(5)
s a t i s f y the same asymptotic condition i n (10.20), we have
u(5)
(10.21)
ZO
s ~ uniformly , ~
in
(s+-
in
.
B ~ )
We a l s o have
J ( 5 ) =ho+0(5-’) Let
so
be an a r b i t r a r y p o i n t of
(s+=
in
s6,M, and
‘6,M
Br)
unifody in
.
set
Then
where
1
o ~ ~ , i l te b 7 , and for
s-6,M If
u(S,)#O
,
then
u(5)
=
0
.
tends t o i n f i n i t y as
i s a contradiction, since u
Thus wa g e t u(5)
t20
t
tends t o
+=
.
This
s a t i s f i e s t h e asymptotic condition ( 1 0 . 2 1 ) .
i n (10.20).
This completes t h e proof of Lemma 10.1.
PROOF OF
Remark:
0
LEMMA 9 -1
Theorem 6.1 has been generalized t o the d i f f e r e n t i a l equation: 2
x yfl-p(x)y=o
,
m
P ( x ) = x +alx
by F.E. Mullin [25; Theorem I on p.53,
m-1
-t . . . + a m
CHAPTER 3 Idwl
A RELATION BETWEEN Qm
11. Remarks on p e r t u r b a t i o n s of asymptotic s o l u t i o n s ,
*
Let us consider a
second order d i f f e r e n t i a l equation o f t h e form (11.1)
+ EQ(x)I y = o
y " - [P(x)
9
.
Q(x) a r e polynomials i n x Let us denote by p q t h e degrees of P(x) and Q ( x ) with r e s p e c t t o x , and s e t where
P(x)
Urn x"P(x)
and
= Po
,
lim x - ~ Q ( x ) =Qo
, and
k=max[p,q]
.
If we s e t
X-r-
X-bo
equation (11.1) i s equivalent t o u'=A(x,c)u
(11.2) Let us change
x
and
u
.
by
Then system (11.2) becomes
(11.3)
dv/d5 = tktlB( 5 , c ) v
,
where
*
The main p a r t of t h i s chapter i s based on F.E. Mullin [ 2 5 ] .
and
REMARKS ON PERTURBATIONS
6(c)
(11.5)
if P L 4
Po+O(d
=
p
if
CQO
9
.
!Ibis shows t h a t t h e leading c o e f f i c i e n t matrix o f
[
(11.6)
p< q
0 if
B(5,e) :
:]
6Fo)
has two d i s t i n c t eigenvalues & eigenvalue
43
.
<
if
p2q
, but
i t has a multiple
L e t us now consider a system of t h e general form
k
(11.7)
,
v l = x B(x,s)v
k i s a non-negative i n t e g e r , x i s a complex independent v a r i a b l e , c i s a complex parameter, v i s a n n-dimensional vector, and B is an n-by-n matrix. Assume t h a t t h e components o f B(x,c) are convergent power where
series i n c=O
x-l
, and
whose c o e f f i c i e n t s a r e holomorphic i n a neighborhood of
set
(11.8) a r e n-by-n matrices whose components are holomorphic i n where t h e %(e) a neighborhood of c = O I n t h e case when t h e leading c o e f f i c i e n t matrix
.
Bo(0)
matrix
has
n mutually d i s t i n c t eigenvalues, t h e r e exists an n-by-n
P(x,E)
(i) P(x,c)
such t h a t
and
are convergent power series i n x
P(x,E)-’
c o e f f i c i e n t s holomorphic i n
c
at
-1
with
c=O ;
(ii)’A(x,c) = P ( ~ , o ) - ~ B ( x , r ) P ( x , t ) i s diagonal..
The diagonal components of column vectors of unknown q u a n t i t y
(11.9)
P(x,c) v WI
A(x,t)
a r e eigenvalues of
are eigenvectors of
by v = P ( x , e ) w
k = [ x A(x,c)
, WB
and t h e
B(x,E)
.
B(x,c)
By changing the
obtain
- P ( x , ~ ) - ~ d P ( x , c ) / d x ] w.
Fix any d i r e c t i o n .arg x = 8
.
Then i n the x-plane, and set x = teie P(x,C)-ldP(x,e)/dx is i n t e g r a b l e a s t tends t o t = Therefore, a s f a r a s t h e asymptotic behavior o f s o l u t i o n s of system (11.9) ( a s t tends t o
.
ia
) i s concerned, t h e system
(11.lo)
k z l = x A(x,t)z
w i l l give a reasonable approximation.
Actually, we can prove the following
w
A RELATION
BETWEEN Idm AND
theorem:
has n mutually d i s t i n c t i s given i n x-plane. arg x = 8 matrix p1 , p2 , M , co and an n-bJ-n
Assume t h a t the matrix
11.1:*
Bo(0)
eiRenvalues, and t h a t a d i r e c t i o n : t h e r e exist p o s i t i v e constants T(x,c)
such t h a t
( i ) the components of
- P ~ I . ~ I -X~
(11.11) (ii)
T(x,c)
T(X,E)
a r e holomorphic i n the domain
1 x 1 2 ~ ,
- m ,
IEIIE~
;
admits an a s m p t o t i c expansion W
(11.12)
as
x
T ( x , c ) 5 2 Th(c)x-h h=o tends t o i n f i n i t y i n the s e c t o r
(11.13)
-Plsarg
uniformly f o r (iii)
X - m ,
IcI s c 0 ;
the matrices
T (8) h
are holomorphic f o r
1 E ] L e o , g&
&
To(0)
non-singular; (iv)
the transformation
(11.u)
v = T(x, a ) z
takes system (11.7)
(11.10).
By u t i l i z i n g this theorem we can c o n s t r u c t n
l i n e a r l y independent a r g x =I3
s o l u t i o n s of system (11.7) i n a neighborhood of the d i r e c t i o n :
s o t h a t they are smooth with r e s p e c t t o t h e parameter asymptotic expansions are a l s o smooth i n
c
(11.1) belongs t o this category i f
.
p>,q
.
E
and t h a t t h e i r
The d i f f e r e n t i a l equation
Notice a l s o t h a t Theorem 6.1
i s , i n some way, regarded a s a s p e c i a l case of Theorem 11.1, although, i n Theorem 6.1, some global p r o p e r t i e s of s o l u t i o n s with r e s p e c t t o
x
and
...,
s e v e r a l parameters
(al, am ) a r e s t a t e d a s a d d i t i o n a l r e s u l t s . There i s no general r e s u l t which i s a p p l i c a b l e t o the case when
Bo(0)
has multiple eigenvalues.
an example when
p
.
The d i f f e r e n t i a l equation (11.1) i s such
I n order t o i l l u s t r a t e d i f f i c u l t i e s i n such a
case, l e t us consider (11.1)under the assumption t h a t
*
p
.
If
E#O
,
See Po-Fang Hsieh and Y. S i b u p [ U J . We do n o t present t h e proof of
this theorem i n this book.
The q u a n t i t i e s
e x p l i c i t l y i n terms of eigenvalues o f
p1
and
p,
can be determined
.
For more information, see, Bo(0) f o r example, Y. Sibuya [ 3 9 ; Section 3 , pp 158-1661, Y. Sibuya [ 3 3 ] , Y.
Sibuya [ 3 7 ] and W. Wasow [47; pp 49-87].
See a l s o Section 56 (Chapter 9 ) .
MAIN PROBLEM
45
t h e matrix
has two d i s t i n c t eigenvalues c =0
0 at
value
.
which reduce t o a m u l t i p l e eigen-
Two eigenvalues of t h e matrix B ( 5 , c )
Applying fieorem 11.1 a t
E#
o , we
of (11.3) a r e
can c o n s t r u c t a transformation
v=T(E,c)z which takes (11.3) t o
'i(s , E ) a r e h+(S,o)
where
powers-of
.
5-l
i s a two-by-two diagonal matrix whose diagonal components
T(5,c)
The components of
.
admit asymptotic expansions i n
Set m
If we expand
X*(~,C)
i n powers of
5-l
--1 s i o n s are polynomials i n 1
, the
c o e f f i c i e n t s of such expan-
(except f o r t h e leading c o e f f i c i e n t which
1
fI
is
2 2 f 24, c ) .
B(5,c)
Since t h e components of t h e matrix
such s i n g u l a r i t i e s a t a l l , t h e q u a n t i t i e s
.
Th(c)
do not have
ought t o have s i n g u l a r i -
This means t h a t t h e asymptotic expansion of T(5,r) i n 5 -1 i s n o t smooth a t c = O W e can a l s o show t h a t , i f we t r y t o expand T(5,e) i n powers of s , c o e f f i c i e n t s will have s i n g u l a r i t i e s
ties i n
E
.
powers of
at
s=m
.
I n t n i s chapter we s h a l l consider a problem which f a l l s within
this category. 12.
Main problem.
Consider a boundary-value problem
y " - [Exmtl+P(x)]y=O (12.1)
Y(0) = 1 Y(X)-,O
where (12.2)
c
,
o<x<+=
,
, (x-,+-)
9
i s a real p o s i t i v e parameter, and m-1 P(X) = x m + y x
+ ...+ am-lx+
am
.
4.6
For
bm AND Umtl
A RELATION BE’I”
E
=0
, the
boundary-value problem (12 .l) i s reduced t o y”-P(x)y=O
(12.3)
1
Y(0) = 1
,
o<x
,
y(x)+O
(x+t-)
.
Problem (12.3) has a s o l u t i o n
(12.5)
um(0,a1,
a
*,am)# 0
-
011 the o t h e r hand, note t h a t , i f we change t h e independent v a r i a b l e
x
by
problem ( 1 2 .l) becomes
Since
problem (12.7) has a s o l u t i o n
(12.8)
Y =
Therefore problem (12 .l) has a s o l u t i o n
1 -mt2 --m+l (12 .lo)
Y =
smt3x, c &3,e &3al, mt2 --mtl
--
bmtl(O,c &3,c
If and only i f (12.9) i s s a t i s f i e d .
&?al,
2 --
...,s &3a m ) 2 --
...,e mt3am
The right-hand member of (12.10) has
47
MAIN PROBLEM
an e s s e n t i a l s i n g u l a r p o i n t a t
s=O
.
Nevertheless, we can prove t h e
following theorem:
=RE24
l
a
For piven p o s i t i v e numbers Ro
p o s i t i v e number
co
6,
, there
exists a
such t h a t
if -
(12.12)
1 mS
lim e +-I
1 m+2 --at1 -- 2 uhl( sm+3x,s m+3,c &3a1,. ..,s m+3am) lim Q --m+2 --m t l -- 2 ++O 7
(12.144)
6
U e 1 h M3,, m+3al,
(12.14) are v a l i d uniformly for
...,c M3am)
1
,b
A RELATION BETWEEN
48
0
bMl
26,
lll,(O,al,...,am)l where
AND
i s an a r b i t r a r y compact set i n x-plane.
c o r o l l a r y i s l e f t t o the readers a s an e x e r c i s e .
The proof of t h i s W e s h a l l p r e s e n t the
proof o f Theorem 12.1 i n t h i s chapter.
13.
x =
Asymptotic s o l u t i o n s a t
equation y f f - F ( x , € ) y = o,
(13.1)
.
i-
Let us reduce t h e d i f f e r e n t i a l
P(X,€)
m+l =€x tP(x)
,
to (13.2)
u ' =A(x,E)u
,
By t h e transformation u=T(x,E)G
,
system (13.2) i s taken t o
where
(x,C )
.
i s a s c a l a r function, and
C
1-
h( x ,G ) = zP(x, c)-%
I
In order t o simplify ( 1 3 . 3 ) , set ( 134 )
where matrix.
z = v t g(x,s)& g(x,c)
,
From (13.3) and (13.4) we d e r i v e
i s a two-by-two
constant
ASYMPTOTIC SOLUTIONS
we get
and
c = Then
and
(13.5) where
(13.6)
[;
-3 .
49
A RELATION BETWEEN Qm
50
AND
By u s i n g t h i s f a c t , w e s h a l l prove t h e following lemma.
€d!mLLL
bers.
Let
Ro
Po
9
and
el
be a r b i t r a r y but f i x e d p o s i t i v e num-
Suppose t h a t I
(13 -10)
O < p o q l
.
Then the d i f f e r e n t i a l e q u a t i o n ( 1 3 . 1 ) admits two s o l u t i o n s y2(x, g j
(i) (X,E
the ,al,
yl(x,c)
and
satisf-ying t h e f o l l o w i n g conditions: (j = 1 , 2 )
yj(x,c)
.. , , a m )
a r e holomorphic with r e s p e c t t o
f o r e v e r y complex v a l u e of
x
and f o r
( c,al,
...,am)
t h e domain
(ii)
the
y.(x,r) 3
f o r real v a l u e s o f
( j =1,2) p o s s e s s t h e asymptotic r e p r e s e n t a t i o n s
x
.
I f a r e a l p o s i t i v e number
large, Re[P(x) 3 2 for
l m
7
xo
is sufficiently
&
ASYMPTOTIC SOLUTIONS
Hence
(13.14) and
(13.15) for
xo
(13.16)
< x <+-
o
+ ...+I
Let u s now estimate
I
9
arg
,
'
.
am[( R o
h(x,c)
€1
g(x,s)
and
g'(x,E)
i n domain (13.16).
Note t h a t lF'(x,c)l i n domain (13.16) i f
< (mt1)l
anXm-l
xo i s s u f f i c i e n t l y l a r g e .
IP'(x,€)P(x,4-11 f o r (13J 6 ) .
€lXrn+
Hence
5 [(mel) + Re EI +
4mlx-1
Since
1 we o b t a i n (13.17) and
(13.18)
i n domaln (13.16)
.
Furthermore,
and hence
1
-2-p (13.19)
I g ' ( x , o ) I (L1x
f o r (13.16)' where
5
i s a positive constant.
Consider the matrix
S(X,E) defined by (13.6), and denote by
IlS(x,€)II t h e sum of a b s o l u t e values o f components of
(13.6)' (13.17)' (13.18) and (13.19) imply t h a t 1 -2--m (13- 2 0 )
IlS(X'E)II
2
S(x,e)
.
Then
52
A
i n domain (13.16) i f
xo
RELATION BETWEEN l,jm
b&l
AND
i s s u f f i c i e n t l y l a r g e , where
L2
i s a positive
constant. L e t us now consider system (13.5), and s e t
v=
[
r:]
'
s(x,e) l+g(x,d2
-i
S1&X
,€)
1
s21(X,€
S12(X,€) SZ2(X, €
1
Then system (13.5) i s w r i t t e n as
-1
k-
2 v ' =P(x,c) Vl+ Sll(X,€)V1+
(13.21)
s12(X,€)V2
-1
v ' = - P ( x , € ) 2 v 2 t s21(x,€)v1t s22(x,"v2
9
.
Estimates (13.18) and (13.20) imply t h a t
uniformly f o r (13.11).
f o r (13.16), i f
xo
Furthermore, estimate (13.15) y i e l d s
i s sufficiently large.
If we u s e t h e s e e s t i m a t e s , i t i s n o t d i f f i c u l t t o show t h a t , i f i s s u f f i c i e n t l y l a r g e , t h e r e e x i s t s a two-by-two m a t r i x
(i) T(x,c) (ii) l i m X+Sm
i s well-defined i n domain (13.16); T(x,c) =
1' 1'
l o I!
(iii)t h e t r a n s f o r m a t i o n
Hence
uniformly f o r (13.11);
T(x,G)
xo such t h a t
-
CASE WHEN P(X,€) = E X 2 + x
i s a fundamental matrix of system 1 3 . 2 ) . Lemma 13.1. The Wonskian of t h e two s o l u t i o n s dent
Df
x
.
53
This completes t h e proof of
y1(x,c)
and
y2(x,e)
i s indepen-
Observe t h a t t h e asymptotic formulas (13.12) and (13.13)
yield
Hence
i n domain (13.16). The s o l u t i o n y ( x , ~ ) i s subdominant along t h e p o s i t i v e r e a l a x i s 2 i n x-plane. Notice t h a t t h e asymptotic formulas (13.13) a r e , i n a c e r t a i n
.
and y; i n terms of ? ( x , c ) It 2 i s p o s s i b l e t o f i n d more t e r n s i n these expansions so t h a t w e obtain b e t t e r sense, beginnings of expansions of
r e p r e s e n t a t i o n s of
y2
f i n d the behaviors o f
yz
f i n d a r e the behaviors of
.
y;
and
y
This, however, does not mean t h a t we can
and
y;
as
c
y2
and
y;
as
-P ( x , s )
tends t o zero. (What we w i l l tends t o i n f i n i t y . )
In
t h e following s e c t i o n s , we s h a l l construct a d i f f e r e n t r e p r e s e n t a t i o n of a sub/dominant s o l u t i o n i n such a way t h a t we can f i n d the behavior of the subdominant s o l u t i o n a s
.+!,I
Case when
e
tends t o zero.
2 F(x,g) = e x + x
.
I n 1931, F. Zernike [ 5 0 ] s t u d i e d t h e
d i f f e r e n t i a l equation
(14.1)
y"-
[€X2t x ] y = O
.
He sought t h e s o l u t i o n s a t i s f y i n g t h e conditions
and he showed t h a t , f o r s m a l l the f u n c t i o n
w(x)
0
, such
a s o l u t i o n may be approximated by
satisfying
w ~ ~ - X w = O,
(14.3)
i
w(0) = 1
,
w(x)+O
(x+scD)
.
I n f a c t , he was a b l e t o obtain t h e following r e s u l t :
54
A RELATION
The f u n c t i o n
%: -
BETWEEN Idm
AND Idrntl
y ( x , ~ ) s a t i s f . y i n g (14.1)
and
(14.2) admits
an asymptotic r e p r e s e n t a t i o n
(14 -4)
Y(X,E)
uniformly i n
x
%P(X,€)W(X)+ s q ( x , s ) w ' ( x )
r e a l and p o s i t i v e as
r e a l a x i s , where
p(x,~)g & -
c o e f f i c i e n t s a r e polynomials i n
q(x,E) x
8
t e n d s t o zero along t h e p o s i t i v e
a r e formal power s e r i e s i n
E
whose
.
E v i d e n t l y Z e r n i k e l s problem i s a s p e c i a l c a s e of t h e problem of t h i s chapter.
We s h a l l g e n e r a l i z e t h e method i n his proof of Theorem 14.1
t h a t we may u s e i t i n t h e proof of Theorem 12.1.
Keeping this purpose i n
mind, ue s h a l l e x p l a i n how t o c o n s t r u c t t h e formal power series and
q(x,e)
p(x,s)
i n this section.
Se i,
Y =P(X,E)W(X and der.ive
and
Upon i n s e r t i n g t h e s e r e s u l t s i n t o (l4.1),w e g e t c
e q u a t i o n s ( 1 4 . 6 ) become
x
See F. Zernike [ 501.
SO
-
55
Then (14.8) y i e l d s a system o f equations ”
r
(14.9) and
(n=1,2,
...) .
System (14.9) i s equivalent t o (:o
(14.911
-- q”’(x)+ 2xq;(x) + qo(x) - x2 = 0 , 2p;(x) + q & ( x )= 0 .
Also, system (14.10) is equivalent t o
( n = 1 , 2 , ...)
.
and s u b s t i t u t e (u.11i) n t o t h e f i r s t equation o f (14.9l) t o d e r i v e
- x
This i m p l i e s
r=2
, and
2
=o.
hence 1 2
.
q o ( x ) =-x 5 The second equation of (14.9’) y i e l d s
where
co
i s a constant.
The constant
co
i s determined by t h e
A RELATION BETWEEN Idm AND
56
requirement t h a t
l,u
y(0) =1 or
or
g o , € ) + q(O,r)w'(O) = o
(14.12)
.
Condition (14.12) i s e q u i v a l e n t t o (n=O,1,2
pn(0)+qn(O)wt(O)= O Since
po(0) = c o
, we
qo(0)=O
and
POW
have
co=O
,...) .
, and
hence
1 =-7
Assume . t h a t polynomials
po( x ) ,
...
found by (14.9) and (14.10) f o r
x)
n(h-1
,
qo(x),
. ..,qh-l(x)
have been
t o g e t h e r with ( 1 4 . 1 2 ) . Then
inserting
i n t o t h e f i r s t e q u a t i o n o f (l4.101) f o r
0551.
where
, uniquely.
ch
n=h
, we
find
The second e q u a t i o n o f ( U + . l O I ) ,
r
and
qh,j
,
then, yields
i s a c o n s t a n t which i s determined by C h t
qh(o)wl(o) = 0
.
Thus we can f i n d a formal s o l u t i o n Y =p(x,g)w(x) + cq(x,s)w'(x)
of equation (l4.1) which s a t i s f i e s t h e c o n d i t i o n P(O,E)W(O)+ e q ( o , € ) w ' ( o ) = 1 I n s t e a d of completing t h e proof o f Theorem 14.1, we s h a l l g e n e r a l i z e this method of Zernike i n t h e n e x t s e c t i o n .
15. A g e n e r a l i z a t i o n o f Zernike I s method. the d i f f e r e n t i a l equation
(15.1)
y" - [ axw1
+ P( x) ]y = 0
t o an e q u a t i o n of t h e form (15.2)
w It- ( P ( x ) t ES ( x
by a formal t r a n s f o r m a t i o n
,6) 3 w = 0
I n this s e c t i o n we s h a l l reduce
A GENERALIZATION
(15.3) Acre
y = p(x,e)w+ c q b , e)w'
S
,p
polynomials i n
(x,a)
with r e s w c t t o x
9
w e formal power series in
and q
.
, and
57
E
whose coefficients a r e
furthermore S is a pol.momial of degree
From (15.2) and (15.3) we derive yl =pf(x,c)w+ p(x,e)w'+ eql (x,c)w I t cq( x, B ) w"
= {p'(X,6) -+ Sq(X,G)[P(X)+ ES(X,E)I}W
+ and
equations (15.5) become
[P(X,E)
+ cq'(x,c) Iwl
m-2
A FlELATION BETWEEN ldm AND
58
b ~ l
(15.7)
Set
(15.9)
( n = 1 , 2 , ...)
.
Let us consider an e q u a t i o n
1 -7X"'+ 2P(X)X't P ' ( x ) X t Y
(15 .lo) where
X
and
mials i n
(al,
Y
a r e unknown q u a n t i t i e s , and
...,am )
and
yo#O
m-2 Y(x) =
(15.11)
z
Y,X
.
Set
m-2-h
h=o
If N < m-1
, set X(x)
(15.12) and, i f
(15.13)
NLm-1
N-k = z Ykx k=o
3
0
, set x(x) =
N-Ill+l
z
h=o
3"N-Wl -h
yo,
9
...,yN
a r e given polyno-
A SUBDOMINANT SOLUTION
59
Then (15.lo) i s equivalent t o
(15
N Y(x) = z k=o
.u)
YkX N-k
if
,
N<m-1
and
+ m]Xo = y o , [ 2(N-mtl-k) + "1% = yk t p k [2(N-mtl)
(15 -15)
Yh=YN-mt2+ht% if
, where
N>m-1
(i)
cpk
i s a polynomial i n
(al
i s a polynomial i n
..., N - m t l )
( h = 0 , 1 , **.,m-2)
,...,am,Xo, ...,$-1)
are i n t e g e r s ; ( i i ) Qh
( k = 1,
(a1,
,
9
whose c o e f f i c i e n t s
...,am,Xo, ...,sJ-mtl) whose c o e f f i c i e n t s
are integers. I n this manner w e can determine
qn(x)
and
Sn(x) ,
t i o n of (15.8) and the second equations o f (15.9) determine
, respectively.
pn(x)
The q u a n t i t i e s
pn(x)
.
( n = 0,1,. .)
The second equaand p,(x) contain a r b i -
t r a r y constants which we will f i x by t h e conditions pn(0) = 0
(15.16)
16.
( n = 0,1,.
..) . Let u s write
A subdominant s o l u t i o n of equation (15.2).
S ( X , E ) as
m,U s(x,c)=
z
m-h sh(c)x
h=2 where
(16.1)
.
.
S are polynomials i n (a1,. .,a ) The power series (16.1) h,n m a r e formal. However, by using Theorem 5.1 (Chapter 1), w e can f i n d m-1
and t h e
functions
Ph(a,c)
(i) the
8,
where
, cl
Ro
( i t ) the (16.3)
ph
(h=2,
...,m)
such t h a t
a r e holomorphic i n t h e domain:
and
PO
a r e a r b i t r a r y but f i x e d p o s i t i v e numbers;
s a t i s f y t h e asymptotic conditions
A RELATION
60
uniformly f o r
€1 < P o
law
BETWEEN bm AND
+ ...+lamI L R o
lall
-
as
tends t o zero i n t h e s e c t o r
c
We s h a l l consider t h e d i f f e r e n t i a l equation (15.2) w i t h
(16.A) If we s e t
{
=
(16.5)
(h=l)
+:
,
€Bh(a,d
(h=2,
...,m)
,
we obtain a s o l u t i o n
(16.6)
w = f ( x , a , c ) =bm(x,al(a,c),
of (15.2)
.
.. . , a m ( a , c ) )
This s o l u t i o n i s c e r t a i n l y subdominant along t h e p o s i t i v e real
axis i n x-plane.
Since b m ( x , a ) i s e n t i r e i n (x,al function f ( x , a , g ) a s a power s e r i e s i n
,...,am 1 , we can express t h e (cP,, ...,e~,) . S e t
(16.7)
where
(p1 = p 2 + . . . + p m
and t h e
-.
fm (x,a) ,P2’ * ’Pm
are entire i n
(x,a)
.
From (16.7) we d e r i v e
(16.8) If we s e t
al
(h=l)
,
ch(a,B) = { ah + r eieh where
r
...,m) , t h e oh a r e real v a r i a b l e s ,
(h=2,
i s an a r b i t r a r y p o s i t i v e number and
then
(16.9)
f
mYP2’.
..tPm( x , a )
Therefore, the power s e r i e s (16.7) and (16.8) a r e uniformly convergent for O<x<+=,
(16.lo)
1811 +
*.. bmI9,
O
Y
9
lw!K E I I P o
’
61
PROOF OF THEOREM 12.1 Now i t i s n o t d i f f i c u l t t o show t h a t the s o l u t i o n f tives f 1 admit asymptotic expansions
and i t s deriva-
m
as
tends t o zero i n the s e c t o r
t
(16 -13) where
lug e k P o
fn(x,a)
(16 J 4 ) uniformly f o r
9
are entire i n
i
(x,a)
fn(x,a) I 0
,
f,:(x,a) 5 0
,
I all + ...+IamI
, and ( n = 1 , 2 , ...) as
x
,
tends t o
i-
.*
Note t h a t
of the asymptotic expansions of bh a r e polynom-. the c o e f f i c i e n t s S h,n i d s i n (al,. ..,a m ) , although the ph a r e not n e c e s s a r i l y e n t i r e i n (al,...,a 17.
m)
-
Proof of meorem 12.1.
The r e s u l t s of Sections 15 and 16 y i e l d a
fopmal s o l u t i o n
y = d x , E 1f ( x , a , E 1 + sq(x, E 1f 1 (x,a , c )
(17.1)
o f t h e d i f f e r e n t i a l equation (15.1).
~~
~~
*
Set
~~~
Cf. Theorems 3.1 and 5 . 2 of Chapter 1.
bm
A RELATION BEWEEN
62
AND
Furthermore, m
YN(x,E) ' b m ( x , a ) +
n
C
n=l
(17.6) ?~(X,E)
n
+ c
gU;(x,a)
E yN,,(x,a)
E
9
y;,,(x,a)
n=l
tends t o zero i n s e c t o r (16.13), where t h e
uniformly f o r (16.12) as
E
yN,?(x,a)
(x,a)
are entire i n
'0
( 1 7 .7) uniformly f o r Since 6
'
Y $ , ~ ( x , ~ 0)
9
...t laml L R o
+
lal/
p(x,c)
, and
and
q(x,c)
as
x
tends t o
so0
.
s a t i s f y (15.4) a s formal power series i n
,
(17.8)
yi(x,c)
= where
P N ( x , ~ ) and
holomorphic i n powers of
E
N t2
6
p(x) ]fN(x,
€1
[PN(x,c)f(x,a,c)+ QN(x,c)f'(X,a,E)l
QN(x,g)
(a,€) as
- [Exm t 1
are polynomials i n
x
9
whose c o e f f i c i e n t s a r e
f o r (17.5) and admit asymptotic expansions i n
t e n d s t o zero i n s e c t o r (16.13), uniformly f o r
E
[all t
...+ l a m [< R o .
Set
(17.9)
y=YN(x,C)t
i n t h e d i f f e r e n t i a l e q u a t i o n (15 .l) t o d e r i v e
(17 .lo)
z"
- [ exm+'+
~ ( x1z) = -g
N+2
[p,(x, e ) f ( x , a , c) + %(x,s)fl(x,a,E)l
The d i f f e r e n t i a l e q u a t i o n (17.lO) (17.11)
2
has a s o l u t i o n
= Z,(X,E) N+2
=?
X
[Yz(X,€)
[
X
where
yl(t,€)DN(t,C)dt 0
.
THEOREM 12.1
PROOF OF
and
and
yl
solution
63
y2 a r e the s o l u t i o n s of (15.1) given by Lemma 13.1.
z N ( x , € ) i s holomorphic f o r every complex value o f
i n domain (17.5).
The
x and
(a,€)
Furthermore, w e can prove t h a t
,
Ilm €-N-2zN(x,€) = o (17.13) x+sol l i m €-N-2z$(x,
=o
€)
X++J
uniformly f o r
(a,o)
i n domain (17.5).
I n f a c t , we can prove (17.13)
without any d i f f i c u l t y , i f we use the formulas
-1 -
-4
--1
-1
5,
2 y1(x,e)y2(5,c) =[If o(l)]~(X,e) P ( 5 , o ) 4eXP[-s P ( S , c ) dS1
(17.l.44)
,
X
and y i ( x , e ) y 2 ( 5 , s ) = [1+o ( 1 ) (17.15)
i
-I P ( x , -1c ) ~ ~ --(1S“,x~P)[ -~~5,P ( s , c ) -12d s l -1
y1 ( x, ) y; ( 5 ,
= [-1t ( 1)IF( x,
-1
j4 F ( 5 , )heXp[-
d
,
-1
fP-
( s , ) 2ds I
,
X
together with the estimate (17.16) Formulas (17.l.4) and (17.15) a r e d i r e c t consequences of Lemma 13.1, and x and 5 tend t o $.a (19.16) i s v a l i d f o r s u f f i c i e n t l y l a r g e p o s i t i v e values of x
they a r e v a l i d uniformly f o r (17.5) a s
. .
Estimate
Thus w e constructed a s o l u t i o n (17.17)
y=$N(x96) =fN(x,6)
of t h e d i f f e r e n t i a l equation (15.1).
zN(x96)
This s o l u t i o n i s subdominant along
the p o s i t i v e r e a l a x i s i n the x-plane uniformly f o r (17.5).
Furthermore,
(17.6) and (17.13) imply t h a t
(17.18)
s ~ ( x , E=)b m ( x , a ) + o ( c )
uniformly f o r (16.12) a s
,
*~(x,E)= ~ ; ( x , a ) + O ( E )
tends t o zero i n s e c t o r (16.13).
6
Therefore,
we can complete the proof of Theorem 12.1 by using the uniqueness of the subdominant s o l u t i o n
bmtl
.
Theorem 12.1 i s not a complete generalization of Zernikels r e s u l t (Theorem+!,.I .1)
.
Zernike derived an asymptotic representation (14.4)
.
W e
derived only formulas (12.13) and (12.l.4). However, i n the proof o f Theorem 12.1, we derived a c t u a l l y an asymptotic representation a f t h e solut i o n of the boundary-value problem (12.1).
F.E. Mullin [25] generalized
44
bm AND 4wl
A RECATION BE’I”
Z e r n i k e l s result t o a d i f f e r e n t i a l e q u a t i o n o f t h e form
(17.19)
xPyf’-[ E P ( x ) +Q ( X , B ) ] Y = ~
in t h e c a s e when p = 2 and t h e c o e f f i c i e n t s o f
, where
P(x)
Q(x,g)
and
are holomorphic i n
than two, Z e r n i k e f s method must be modified. of t h e formal power series
p(x,c)
r a t h e r than polynomials i n
x
.
a r e polynomials i n
Q(x,e )
and
E
.
If
p
x
i s greater
For example, t h e c o e f f i c i e n t s
q(x,e)
must be r a t i o n a l f u n c t i o n s
(See F.E. Mullin [25; p 193.)
CHAPTER 4 ASYMPTOTIC EZHAVIOR OF Um(x,a) @ am TENDS TO I N F I N I T F
I n this chapter we s h a l l study t h d d i f f e r e n t l a l equa-
18. Main Droblem. ti on y"
(18.1)
- [ xm + alx m-1 1x1
f o r large value of
+
...+ ammlx + am+A]y=O
, W e s h a l l d e r i v e asymptotic estimates of t h e
function
(182)
Ilm(x+sYalY ..*,'Fin-pm+ A )
for large set i n
.
I A 1 , where
(x,al,
(x,al,. .,am) i s assumed t o be I n a given compact am )-space. The v a r i a b l e s is r e s t r i c t e d t o a r a y i n
...,
the s e c t o r
8,: l a g
<=. n
XI
By v i r t u e of Theorem 7 . 3 (Section 7, Chapter 2 ) , It i s s u f f i c i e n t t o
consider
(18.3)
Um(s,al, ***,am-19am+ A)
i n s t e a d of (18.2).
(18.4)
Let us denote by P(x,A)
m m-1 x +alx
+ ...+am-lx+am+X
t h e polynomial
.
men, t h e d i f f e r e n t i a l equation (18.1) I s equivalent t o t h e system
(18.5)
u'=A(x,X)u
where
*
'Ns chapter I s mainly based on Y. Sibuya [ 3 4 ] .
66
ASYMPTOTIC B M A V I O R OF Um(x,a)
As i n Section 1 3 (Chapter 3 ) , the transformation
1
(18.6)
reduces sys t e m ( 18.5 ) t o
(18.7)
v ' =B(x,b)v
with
(18.8) where
19.
Estimates i n t h e s e c t o r
larg A1
5 TT-
p,
.
In this s e c t i o n we s h a l l
consider t h e d i f f e r e n t i a l equation (18.1) i n the domain
(19 .li
Ro
where that
p,
and
1
larg A (
In- Po
9
o(_x<scD,
tall
Po
+
. . a +
laml 'Ro
f
a r e a r b i t r a r y but f i x e d p o s i t i v e c o n s t a n t s .
is s u f f i c i e n t l y small. ro and
There e x i s t two p o s i t i v e numbers po
and
Ro such t h a t lP(X,A)l
(19.2)
W e assume
Ip(x,a)l
2rolxI m
2r0x
l=-g[P(x,h)ll
9
,
i n - 21
Po
Mo
which depend only on
Iarg L I
ESTIMATES I N
TI
- p,
67
f o r (19.1),i f 1 h 1 2Mo
(19.3)
*
In f a c t , t h e r e exists a p o s i t i v e number
m
Jarg[x +alx
for x l x ,
,
(all
+ ...+I
m-1
xo
such t h a t
+ ...+am]l < - p1 2 0
aml L R o
.
Therefore, i f
X ~ X ,
, we
have
I arg[P(x,h) 31 In - Po for (19.1).
(See Flg. 19.1.)
Furthermore, i f
Mo
i s sufficiently large,
we have
1 arg[P(x,X) 3 I L f o r (19.1) i f
2Mo and
1
17
- ?Po
O<x(xo
.
(See Fig. 19.2.)
-%Pe
CFT
c-T --
A - plane fig. 19.1.
68
ASYMPTOTIC BEHAVIOR OF um(x,a)
satisfies (19.3). Then, t h e r e exists a p o s i t i v e constant l m 1 m
A
.
1112Mo
9
l a g AII"-Po
9
and o<x
m
15,IXl
9
t h e r e exists a p o s i t i v e constant
a a
2-
IP(X,UI
such t h a t m x
9
50
since p ( x , a ) =Ixl[$mtp -1alx-m-1
+ ...+w-ma
,
+eie]
m
Thus (19.2) holds i n domain (19.1) i f
h
s a t i s f i e s (19.3) and
Mo i s
sufficiently large.
Assume (19.1) and (19.3).
get
Then, i f
Mo i s s u f f i c i e n t l y l a r g e , we
-2-Zp 1
where
S(x,X)
i s matrix (18.9);
x)_l
for
O<x<xo
for
x2l
for
O(_x<xo
,
, ,
IlS(x,X)(l i s t h e sum of absolute values
S ( x , l ) ; g(x,X)
of components of
,
for
i s t h e function which i s given by the
K i s a p o s i t i v e constant which depends only and Ro ; xo i s a real p o s i t i v e v a r i a b l e ; K(xo) i s a p o s i t i v e
second equation of (18.10);
on
p,
constant which depends only on xo independent of
X
,
we can d e r i v e
, p,
and
Ro
.
Since
is
(19.4) from (19.2) without any d i f f i -
culty. Estimates (19.4)
P'(x,h)
imply t h a t t h e two q u a n t i t i e s
69
as
1 tends t o i n f i n i t y i n the secto r
(19.8)
l a g A1 I n - P o
9
Consider system (18.7), and a e t 1 X (19-9)
v=w
-2
exp[-l P(T,X) d ~ .] 0
Then 1
70
ASYMPTOTIC BEHAVIOR OF Um(x,a)
If
-19.1:
Mo> 0
i s s u f f i c i e n t l y l a w e , system (19.12) has a solu-
tion -
i n t h e domain defined bx (19.1)
and
( i ) C1(x,A)
(19.15)
as
C (x,h) 2
lal[ t
w ( x , h ) = 1 t G2(x,h)
(19.3) such t h a t
tend t o zero uniformly f o r
...t l a m [I R o
,
O<x
tends t o i n f i n i t y i n t h e s e c t o r
(19.8)
l u g hl 9 - P 0 ; G2(x,X)
(ii) ,Sl(x,h)
as -
, and
y ( x , X ) =G1(x,h)
(19-14)
tends t o
x
Sa,
tend t o zero uniformly f o r
.
This lemma implies t h a t system (18.7) has a s o l u t i o n v(x,X)
=[
Gl(X,A)
]
-1
X
exp[-J
1-tG2(x,X)
.
P(T,A)~~T] 0
S u b s t i t u t i n g this s o l u t i o n of (18.7) i n t o (18.6), we o b t a i n a s o l u t i o n of equation (18.1) of t h e form
--1
I
(19.17)
where
Fl(x,X)
( i ) Fl(x,h)
-1
X
y(x,X) = [ l t Fl(x,A) ]P(x,A) 4 e ~ [ - Jp ( ~ , A ) ~ d ,~l
-
l o X 1 y ’ ( x , X ) = [-1+ F2(x,A)1P(x,h)4exp[-J P ( T , A ) ~ ~ T,I 0
and
and
F2(x,h) F2(x,X)
s a t i s f y t h e following conditions: tend t o zero uniformly f o r (19.15) a s
A
tends
t o i n f i n i t y i n s e c t o r (19.8); (ii) Fl(x,A)
tends t o
+
Since
and
.
F2(x,h)
tend t o zero uniformly f o r (19.16) as
-1
2 Re[P(.r,h) ] > 0
positive real axis.
Hence
bm(x,al
, solution y(x,A)
,...,am-1’
(19.17) i s subdominant along t h e
i s a constant m u l t i p l e of am t A )
.
We s h a l l determine this constant m u l t i p l i e r . ( 19.18)
x
bm(x,al
To do this, set
,...,am-1’ am +A)=tm(al ,...,am-1’
a +A)y(x,h)
m
.
ESTIMATES IN
As
x
tends t o
+a0
, we
Im g
5 n-
71
po
have
i -&
where
A(
(m: odd)
,
and -h h=l The q u a n t i t i e s
bh
and
Section 6 , Chapter 2.)
If
r
m
a r e polynomials i n
al
,...,am-1’
a +?,
m
m i s odd,
Theref ore (19.20)
t m ( al , . . . , a m-1’ am + A )
h=l
(m: odd) If
m is even,
Theref ore,
.
.
(Cf.
ASYMPTOTIC BEHAVIOR OF bm(x,a)
72
c)
( 19.21
Cm(al,
...,am-1'
am + h )
(m: even) Set
-
f i P ( ~ , h )2 -
T
h(al, ".,a
1- h 7
- $ n tCt l )
\T
] d ~
h=l
0
(19.22)
7
.
(m: odd)
,
m+A) = h=l
0
(m: even) m=l
In p a r t i c u l a r , i f
.
,
J(m+ 2) = 3/2 2
and hence (19.23)
%(al+A)=J
--1
1.1
$Q
[ P ( T , A ) 2 - ' f 2 - L (2 ~
1+ A ) T
0
If
(19-24)
la1 2Mo
9
larg X I 9 - P o
9
and Mo i s s u f f i c i e n t l y l a r g e , t h e r e are no singular poin i n the s e c t o r
9
of
P(
0 5 a r g T<arg A or 02-g
T2-g
A
.
Therefore, by v i r t u e of t h e behavior of t h e integrand of (19.23) a t and
, we
can change T=ht
t o obtain
T
by (O(_t<+)
T=O
ESTIMATES IN
=
2 ,
73
( a r g A 1 I n - po
[ ( t + 1+ A-’al)
1 1 - t2- $( 1+ A-’al)
--1 t
]d t
.
0
Observe t h a t
uniformly f o r
(al,A)
t
as
tends t o
-1 1- . (t+$t
as
tends t o
.
i-n
, and
+cD
that
-2.
t 2 = O ( t 2,
Hence
1 1
2,
1
% ( a l + h ) = h 2 [ J ( ( t + 1 ) 2 2- -5t t1
-5)dt+O(h-’)]
0
uniformly f o r
al
as
X
tends t o i n f i n i t y i n s e c t o r (19.24).
1 1
-t=
[(t+1)2-t
2
1
-2-5 ]at=--2 1
3
0
Notice t h a t
.
Thus
2 \
uniformly f o r
al
If
, we
m=2
as
h
tends t o i n f i n i t y i n s e c t o r (19.24).
have
5(m+2) I =2 ,
,
P(T,A)=(T 2 +a17+a2)+h 1
and hence i-
(19.26)
-1
L2(al,a2+ A ) =J [ p ( T , h 1 2
-
0
If
A
i s i n s e c t o r (19.24), and
*
.
Mo i s s u f f i c i e n t l y l a r g e , t h e r e a r e no
-1 s i n g u l a r p o i n t s of
1 1 2 -(a + A ) --a 2 2 7 - p1T+1 1
P ( T , ~ )i ~ n the s e c t o r
ASYMPTOTIC BEHAVIOR OF Um(x,a)
74
or
.
1
O>_arg 7 2 , a r g A Therefore, we can change -1 2 T=A t
T
by (O
t o obtbin
1 1 2 1 1 1 1 -(a + A ) --a + O l 2 2 2 2 1 2 2 = J [ ( k t t x a1 t+a 2+ A ) - A t - -2a1 ']k2dt
-1-
0
'
xLtt 1
+
2
= Xs [ ( t tl+alX
-1
-1
2
-1 -1 2 t + A a2) - t
- -A12 2al
0
1t k-4
-
$a2
- Fl) 1 2
2
t+
x
--1 2
]dt
Observe t h a t
1 -1 2 -2 -1 2 [ ( t t l + A alt+h a2) - t
+co
J
1,A-j-a 1 1 2 2 2 2-25) Idt t + l
-a:1-2a1 -
0
= o(1) uniformly f o r (19.27) as
X
la11
+
la21
Go
tends t o i n f i n i t y i n s e c t o r (19.24).
uniformly f o r (19.27) a s
I n the same way, f o r
A
Hence,
tends t o i n f i n i t y i n s e c t o r (19.24)
m 2 3 , we
.*
get
u -+a) = h 2 m[~p)+"11 1
(19.29) uniformly f o r
Lm(al,
...,am-1' am
I all + .. .+ I a,1 5 Ro
(19.24), where
*
See also Section 23 (Chapter 5 ) .
O(X
as
h
tends t o i n f i n i t y i n sector
.
75
1
1
?P [ ( t m + 1 ) 2 -]td t > O .
SCD Lm (O)=S 0
Thus, we have proved t h e following theorem.
mORW 19.1: Assume t h a t
where Ro -
I
1 In- Po larg 1
9
O<X<+,
1J.
+
lam[I R o
. . a +
9
a r e a r b i t r a r y but fixed p o s i t i v e constants. t h e r e e x i s t s a p o s i t i v e constant Mo such t h a t , if A1 2Mo , po
I
um(x,al,...,a
m
(i) P ( x , ~ = ) x
+ alx m-1 151+
as
X
(1.)
...+ am-lx+
am+ 1 ;
tend t o zero uniformly f o r
...+lam[<
F2(x,A) laJ+
x
am + A )
R ~,
tends t o i n f i n i t y i n the s e c t o r
(iii) Fl(x,h)
as -
+
F2 ( x , h )
(ii) Fl(x,A)
m-1’am + A )
...,am-1’
b;(x,al,
where -
Then,
tends t o
-@
a * . +
05x<+a,
1 arg 1I 5 n -
;
tend t o zero uniformly f o r IamI < R o
9
lwg
A I In- Po
;
2
‘ii1( a1+ a )
p,
-1 2 2 =exp[-TA ( ~ + o ( A ) ) I
,
7
14 2Mo
76
ASYMPTOTIC BEHAVIOR OF l,j,(x,a)
uniformly f o r ( a r g hl ( n - p,
20.
Iall t ... t I aml < R o as
X
tends t o i n f i n i t y i n t h e s e c t o r
, where
Estimates i n t h e s e c t o r
l a r g 1-nl (p,
.
Consider the d i f f e r e n t i a l
equation (18.1) f o r
where
Ro
and
a r e a r b i t r a r y but f i x e d p o s i t i v e c o n s t a n t s .
PO
Let us
assume t h a t n
O < P 0 < X
(20.2)
W e s h a l l again denote by
*
P(x,k) polynomial (18.4).
?'here e x i s t two p o s i t i v e numbers
Ro
, such
ro and
Mo
, which
depend only on
that
for (20.1) i f
bl 2 M o
(20.4)
-
' h i s can be proved i n t h e same way as w e proved t h e f i r s t and second ine-
q u a l i t i e s of (19.2). men, i f
(20.5)
where
Assume t h a t (20.1), (20.2) and (20.4) a r e s a t i s f i e d .
Mo is s u f f i c i e n t l y l a r g e , we g e t
I
S(x,A)
1
-2-7l
for
521 ,
IIS(X,A )I1 5 K(So)
for
OlS15,
1 g ( x , h ) I 2%
for
521 ,
for
OL555,
IIS(X,X )I1 L K5
IxI -1-F 1
1 g(x,h )I A m o ) I A 1 i s matrix (18.9);
of components of
S(x,X) ; g(x,X)
-2 9
2
-2
IlS(x,l)ll
9
is the sum of a b s o l u t e values
i s t h e function given by t h e second
ESTIMATES I N equation of (18.10);
5,
5 po
l a r g A-nl
77
i s a p o s i t i v e constant which depends only on
K
i s a r e a l p o s i t i v e variable;
5, and Ro way as we derived (19.4). depends o n l y on
.
Ro ;
K(FO) i s a p o s i t i v e constant which Estimates (20.5) can be derived i n the same
Consider system (19.11), and l e t us transform (19.11) t o a system of i n t e g r a l equations which i s s i m i l a r t o (19.12).
However, i n t h e p r e s e n t
case, t h e path o f i n t e g r a t i o n i s taken along the l i n e
I'*>
(20.6)
(055<+-J) *
x = 5 exP[i
We s h a l l f i r s t d e r i v e an e s t i m a t e of
ii
arg[P(x,X) d x ] along l i n e (20.6).
Set P(x,X) = x m [ l + Q ( x ) ] + and n = a r g [ l + Q(x)] There e x i s t s a p o s i t i v e number
. xo
, which
depends only on
for (20.7) Theref o r e ,
f o r (20.7)
if x
i s on l i n e (20.6).
Hence, f o r such
x
, we
get
Since + n I xn t a r g
n<--n
m+2 we have
Po
A<&+=<$,
Ro
, such
that
ASYMPTOTIc BEHAVIOR OF
78
n
sin(-$ arg A ) m+2 where
bo
urn(
X,
a)
< -6, ,
i s a p o s i t i v e c o n s t a n t depending only on
p,
.
Therefore,
N X ) = o ( l a l 1/m) as
X
tends t o i n f i n i t y i n the s e c t o r
(20.9)
IT-
po<arg ? , < n
.
I t i s easy t o s e e t h a t , i f
Mo i s s u f f i c i e n t l y l a r g e , Im:P(x,X)exp(i&) ] > o
(LO.lL?)
for n
x = 5 exp[i- 2(mt2)1
(20.11)
i
r - p0 Larg h l n la1\ t
... + l a m ]I
52Tl(h)
?
,
lXl,Mo
R ~
9
,
.
Let us Yonsider a system o f i n t e g r a l equations
x
m
where
(x,?,,al,
.. .,a,)
i s i n domain (20.11), and t h e p a t h of i n t e g r a t i o n
i s taken along l i n e ( 2 0 . 6 ) . X
Re[J
(20.13)
1
r
From (20.10) we d e r i v e
-1 P ( ~ , ? ) ~ d
t f o r (20.11), i f
0 = 5 exp[i- 2(;)1 Hence, if Mo
(1x1 L
Slltl)
-
i s s u f f i c i e n t l y l a r g e , system (20.12) has a s o l u t i o n
w,(x,X)
(20.14)
,
=Gl(x,X)
w,(x,X) = 1 t G2(x,h)
f o r (20.11) such t h a t ( i ) G1(x,X)
and
(20.15) as
5
G2(x,b)
tend t o zero uniformly f o r
n- ~ ~ 5 a 1X - g< n
tends t o
i-
,
)A[
LM, ,
)all + . . - + laml I R ~
;
( i i ) t h e r e a r e two p o s i t i v e numbers
L
and
u
such t h a t .
1 a r g A-nl 5 po
ESTIMATES IN
(20.16)
,
IGl(x,h)l I L I A ( - '
79
IG2(x,X)I <_LIAl-D
f o r (20.11). Consider system (19 .ll) f o r n
1
(20.17)
x = s exp[i- Z(lnt2)I n - p0sarg
air
la1( -t ...+
Ia,I
'
0<_55'V(A)
l ~ u0 l , '-Ro
9
t o estimate s o l u t i o n (20.U) for (20.17). Changing
-1 x = J x )m7 exp[i&l
(20.18)
3 sin(&targ
w5{-
X)
s i n (n) 4 1
we d e r i v e
by
9
where
( 2 0 -19)
x
l1 E
'
-12
-1 dwl/d.r = Ih~exp[i&][ZP(x,h)
wl+ sll(x,X)wl-t s12(x,~)w21,
-1
(20.20)
dwJdT= ( a ( m e x p [ i ~ l [ ~ 2 1 ( ~ , h ) w s22(x,X)w21 l+ from (19.11). respect t o
A
Since (20.19) i s an i n t e r v a l which i s bounded uniformly with
, it
(20.21)
Mo
follows t h a t
11
IGl(x,A)(
here
f o r (20.17),
,
+
} l + G 2 ( x , h ) l I L 1 exp[c(hl
?GI
L1 and c are c e r t a i n p o s i t i v e numbers.
Thus, i f
i s s u f f i c i e n t l y l a r g e , we obtain a s o l u t i o n
--1 y(x,X) =[I+ Fl(x,X)IP(x,X) 4exp[-J
-l
{
(202 2 )
-12
X
P(t,X) dt1
oX
1
2 y'(x,X) = [-1+ F2(x,X) ] P ( ~ , h ) ~ e x p [ - S P ( t , h ) dt! 0
of the d i f f e r e n t i a l equation (18.1) such t h a t
11
(i) L2
+ l ~ ~ ( x , h< ) lL
IF~(X,A)~
and
c
3-
exp[cla12 ~ m~
f o r (20.1) and (20.4), where
a r e c e r t a i n p o s i t i v e numbers;
(ii) Fl(x,A)
and
F2(x,A) tend t o z e r o uniformly f o r
lall
+
,
...+lam[ I R ~
ASYMPTOTIC BEHAVIOR OF l,jm(x,a)
80
as
5
,
tends t o
i-= if
i s f i x e d i n t h e domain
A
n-po<arg A l n
, l A l >-Mo .
By using the same method a s i n Section 1 9 , we can prove t h e following theorem.
mom 20.1:
Assume t h a t
1
( 2 02 3 )
where Ro
n-polarg A l n
,
I*>
x = 5 exp[i
blI+
* a * +
055<+-
9
I,.\
IRo
9
a r e a r b i t r a r y but f i x e d p o s i t i v e numbers.
p,
Suppose t h a t
n O < P O < E
E,t h e r e
e x i s t s a p o s i t i v e number
n-
tm a r e
(v)
m23
~ ~ 5 -A g I ~,
Mo such t h a t , if 1x1 2Mo
,
la1 2Mo ;
similar t o those i n Theorem 19.1,
and i n p a r t i c u l a r ,
f
11
-3-
m1
for
ESTIMATES IN
Iarg
A-nl
5 po
81
for -
lal[ +
where
g&
...+
Iaml L R o
,
TI-
po<arg
,
X ~ T I
E are c e r t a i n p o s i t i v e numbers.
We can derive a similar r e s u l t f o r
- n < a r g A(-.+
po
.
From Theorems 7.3, 19.1 and 20.1, we can conclude t h a t t h e function bm(x,al,...,a i s an e n t i r e f h c t i o n o f order
m-1’ am + I )
$+:
with r e s p e c t t o
h ,
CHAPTER 5 STOKES MULTIPLIERS
21.
Preliminary r e s u l t s .
I n t h i s c h a p t e r , ve s h a l l i n v e s t i g a t e connection
Id
formulas f o r t h e subdominant s o l u t i o n s
m,k
(x,a)
.
As a p r e p a r a t i o n , we
s h a l l make a few remarks.
LBM 21.1:
The f u n c t i o n
m,k
(x,a)
admits an as.ymptotic r e p r e s e n t a t i o n
(21.1)
x tends t o i n f i n i t y i n
uniformly on each compact set i n a-space as closed s u b s e c t o r of t h e open s e c t o r s
any
%y%v%+l , where (m:
odd) ,
(m:
even)
(21.2) k+l -m+ (-1) bl
.
T+l
Proof:
Lemma 21.1 follows from Theorem 7.1 i n t h e following way.
Let us
set
rm= rm( a)
bh = tj(a )
and
t o i n d i c a t e t h e dependence of t h e s e q u a n t i t i e s on
.
(al,. .,a m )
l e t us s e t
(21.3)
G(a) = ( w
-1a l , w -2 a 2 , .
. .,w -m am)
and (21.4)
k
G (a) = ( w
-k
al,w
-2k
a2,
...,w -mk am) .
Then, i t i s n o t d i f f i c u l t t o show t h a t
(21.5) Therefore
bh(Gk(a)) =w-&bh(a)
(h=1,2y...)
.
.
Also,
PRELIMINARY RESULTS
,
(m: odd) (21.6)
1-5-
(-1)k bl
,
(m: even)
=pl(a) and
k k x,G ( a ) ) ~ ( - 1 Em(x,a) )
-k
Em(”
(21.7)
.
I t i s e a s y t o d e r i v e (21.1) and (21.2) from ( 7 . 4 ) , (21.6) and ( 2 1 . 7 ) .
In
p a r ti c u l ar ,
.
k r =rm(G (a)) m,k
(21.8)
The two s o l u t i o n s bm,ktl(x,a) Therefore,
Set
*
bm,k (X
(21.9)
) = $( a
9
)urn,k + l (
i s a connection formula f o r -This % ( a ) a r e t h e Stokes m u l t i p l i e r s multipliers
Ck(a)
THEOREM 21.1:
-Ck(a)
and
Set c(a) =Co(a) ,
( 2 1 .lo)
Then, c(a)
and
, for
9
a)
’-‘k ( a )urn,k+2(
9
a)
and t h e c o e f f i c i e n t s
um,k
with r e s p e c t t o
(iii) t h e f u n c t i o n
a s functions of
and
*
Ck(a)
and and
,
‘(a) =
...,am .
...,am ’ -Ck(a) = ? ( G k (al, a)) ;
?(a)
-
al,
-c(a) =C0(a) .
a r e entire i n
?(a)
(ii) $ ( a ) = C(Gk(a))
(21.11)
\dm,ktl ( x , a )
We s h a l l s t u d y , i n this c h a p t e r , v a r i o u s p r o p e r t i e s of t h e Stokes
b m ,k+2
(i)
a r e l i n e a r l y independent.
i s a l i n e a r combination o f
bm,,(x,a)
bm,k+2(X,a)
and um,kt2(x,a)
*
has t h e following form:
{::
1-2w(a)
(m:
odd) ,
(m:
even) ,
where (21.12)
Proof:
w(a) = b l
ptl
(a)
.
Let us s e t bm,k (
(21-13)
9
a)
um,h(
9
a)
Wk,h(a) bA,k(x, a )
u;,
h(x, a )
It i s e a s y t o v e r i f y t h a t t h e right-hand member of (21.13) i s independent
84
STOKES MULTIPLIERS
of
x
.
Since
it follows t h a t
(21.15)
(21.16) Since
and a r e l i n e a r l y independent, t h e Wonskian W1,2(a) m,l does n o t v a n i s h f o r any a Therefore, C(a) and t ( a ) are e n t i r e i n Q
.
a
.
‘This proves ( i ) . To prove ( i i ) ,n o t e t h a t
( 2 12 7 )
Um,k(x,a) =Irm(w
-k
k
x,G ( a ) )
.
(Cf. ( ’ 7 . 3 ) . )
Then, i t f o l l o w s from (21.14) t h a t ( 2 1 .la)
k k b m , k ( x , a ) = C ( C (a) )Um,k+l(x,a) + “ C G (a))Ym,k+2(x9a)
*
“ h e r e f o r e , ( i i )of Theorem 21.1 f o l l o w s from ( 2 1 . 9 ) and ( 2 1 . 1 8 ) .
To prove ( i i i ) ,observe t h a t
r
--
(21.20)
W
0,1
(a) =
1 Xp
r
--
m,lx m++
O(x 2 ) ]
-r
x m , o [ol(+ x 2)]
--1 r m q - l + O ( x 2)]
W
1 --1 -r -mtr w m,l X mJ[l+O(x
53
9
PmLIMINARY RESULTS
85
u l , . . .,u a r e polynomials i n ( x , a ) , and indepenm . ( C f . Theorem 7.3 .) Let us denote ul,. .., um by u1 ( x ,a) ,. ..,urn( x ,a) . ~e t (21.24) u ( x , a ) = (u,(x,a) ,...,um(x,a)) . Proof: -
The q u a n t i t i e s
dent of
s
Then, i t follows from (21.22) t h a t
\( w-kx,Gk( a ) ) = w-&\(
( 2 1-25)
x, a )
...,m) .
(h=l,
Hence (21.26)
Gk ( u ( x , a ) ) =u(w-kx,Gk(a))
.
Observe that (21.l4) y l e l d s (21.27)
b m ( x t s,a) = C(a)bm(w-1 (x+s) ,G(a)) t E(a)bm(u-2 ( x t s ) ,G2(a)
.
Therefore, it follows from Theorem 7.3 t h a t (21.28)
~,(x,a)y,(s,ui
= c m m ( u - l x , G ( a j )y,(u
+ where
Km(x,a) i s given by (7.10).
-1s,u(w -1x,G(a
1)
-2 2 -2 "Ca)Km(w x,G (a))bm(w ~ , u ( w - ~ x , G ~ ( a,) ) )
By v i r t u e of (21.26), we can write
(21.28) as ( 2 12-91
Therefore, (21.23) follows from (21.291,
(7.10) and (21.7).
the proof of Theorem 21.2.
lIiWU2Ld
If we set
then (21.31)
where l2 is
s,,(a)Sm(a).
..sl(a)so(a) = l2 ,
the two-by-two i d e n t i t y matrix.
This completes
STOKES MULTIPLIERS
86
Proof':
The connection formulas (21.9) can be w r i t t e n a s
'%,k ( x , a ) ,kjrn,k+l(x,a)1
(21.32;
[bm,k+l( X a ) ,Urn, k+2 ( x , a ) lsk (a
. . ., m t l ) .
( k = 0,1, Xcte t h a t
b m (x,a)
i s single-valued i n
(x,a) -space.
= bm,o ( x , d ,
(21.33:
Hence
-
Um,m+3(x,a)= b m , , ( x , a )
'Theref:re, h
,
=
O
( x , a ) ,bm,l(x,a)
1
.
[Um , 0 i x , a ) ,
~ ~ , ~ ( xlsmt,(a)srn(a). . a ) .sl(a)so(a)
.
This proves 'Theoren; 21.3. THEOREM 21.4:
For each f i x e d
(21.34)
Proof:
, there
e x i s t s an i n t e g e r
k
such t h a t
.
i$(a,#O
Suppose for a c o n t r a d i c t i o n t h a t
ck(a ) = 0
( 2 1 *15:' f o r some fixed
a
.
...,mtl)
(k=0,1,
bm,k
Then, i t follows from (21.9) t h a t
a r e l i n e a r l y dependent. (i) m
a
and
Hence,
must be even, ( h = 0,
(ii)
. . . ,?)1
a r e l i n e a r l y dependent,
Ulcl
.. .,?)1
iiii) brn,zh+l
( h = 0,
a r e l i n e a r l y dependent.
By u t i l i z i n g t h e asymptotic r e p r e s e n t a t i o n s o f i n f i n i t y , we can conclude t h a t
kj m,o
bm,l
and
bm,k
as
x
tends t o
admit r e s p e c t i v e l y t h e
asymptotic r e p r e s e n t a t i o n s
--2 7
J.
r
( x , a ) = x m ' o [ lO(x t
as
x
tends t o i n f i n i t y i n any d i r e c t i o n i n x-plane.
Since m
(6.9) .)
)]exp{-Em(x,a)]
i s even, t h e f u n c t i o n
,
( C f . Lemma 21.1.)
Em(x,a) i s a polynomial i n
x
.
(Cf.
Therefore, two f u n c t i o n s
,
bm,o ( x ,a ) exp {Ern(x a ) } are e n t i r e i n
x
.
and
b,, l(x, a ) exp {-Em(x, a
3
m e asymptotic r e p r e s e n t a t i o n s (21.36) imply t h a t t h e s e
CASE m = l
AND
87
CASE m = 2
two e n t i r e functions must be polynomials i n
, and
that
r
and m,o However, this i s impossible, s i n c e
must be non-negative i n t e g e r s .
x
r m,l
1 'm,o+ 'm,l=-?
*
This completes t h e proof of Theorem 21.4.
m=l
22. al
.
and case
.
m=2
m=l
If
, there
i s o n l y one parameter
If we s p e c i a l i z e Theorem 21.2 t o this case, we have
.
C(al+ x) = c(a,)
(22.1) Therefore,
i s independent of
C(a,)
21.1 t h a t S ( a 1 ) =c(al)
(22.2) where
-Ck(al)
.
Then i t follows from Theorem
(k=0,1,2)
=-w
9
.
w = e x p { T2 n i l
(22.3)
9
al
I d e n t i t y (21.31) becomes
Then, we g e t c(al) = l + w
(22.5)
. m a :In (22.6)
case
m=l
2 ( = -w )
,
C,(al)=l+w
and -
-$(al)
(22.7)
.
( = -w 2 )
(k=0,1,2)
=-w
(k=0,1,2)
.
In particular, (22.8)
This i s a well-known formula f o r Airy's i n t e g r a l
Ai(x)
.
M. Abramowitz and L.A. S t e p [l; p . 446, 10.4.7].) If
m=2
w0
are two parameters
w=exp{-
(22.9)
If
, there
2
4
ni}=i
set
(22 .lo)
1 1 2 b = - a --a 2 2 81'
.
a1 and
a2
, and
( C f . ( 8 . 5 ) , and
STOKES MULTIPLIERS
88
then (22.11)
bl
(a) = b
.
P+l Therefore,
-C(a1'a 2 ) = - u ' - ~ ~ =(-i)exp{-bni] .
(22.12)
( C f , meorem 21 .1,) If we s p e c i a l i z e
1 2 1 E ( x , a ) =-x + ax m 2 2 1
(22.13)
, we
(6.6),(6.9) and (21.22) t o t h e case m = 2
get
,
and
(22.14) If we choose
x
u1=2x+al,
2 u = x + a 1x + a2 ' 2
so that
, then
u2 = 2 b
ul=O
,
>
I
-
L
E ( x , a ) =--a m 8 1
*
Therefore, i t follows from Theorem 21.2 t h a t 1 z
.
C(a a ) = C ( 0 , 2 b ) e x p { a } 1' 2 4 1 Furthermore, Theorem 21.1( ( i i ) )implies t h a t (22.16j
1
C(0,2b) = Co(0,2b) = C2(0,2b)
1
(22.17)
9
C(O,-2b) = C1(0,2b) = C (0,2b
3
Then, by u t i l i z i n g Theorem 21.3, we o b t a i n C (0,Zb) C( 0 , -2b) = ( 21) COS (bn
(22.18)
I n f a c t , i d e n t i t y (21.31) becomes A=A-~
,
where
This means t h a t C(0,2b)C(O,-2b) =
(22 .lSl)
2ni
r(5-tb ) r (12 - b)
The asymptotic r e p r e s e n t a t i o n s of
8-y To"&,, and Slug2"
8-1 ,
m,o respectively.
s e c t o r s cover x-plane completely. and i s v a l i d as
l~
and bm,2 Since m = 2
(Cf. Fig. 8.4.)
are valid i n
, these
two
Therefore, i f
are l i n e a r l y dependent, t h e asymptotic r e p r e s e n t a t i o n of x
tends t o i n f i n i t y i n any d i r e c t i o n i n x-plane.
IJ
m, 0 Hence, t h e
CASE m = l
AND CASE m = 2
89 x , and
e n t i r e function
(x,a)exp{E ( x , a ) ) becomes a polynomial i n m m,o becomes a non-negative i n t e g e r . Note t h a t
r m,o
(22.19)
This means t h a t , i f Similarly, i f
C(0,2b) = O
-(z-b) 1
, then
C(O,-2b) = 0
Therefore, (22.18’)
1 , then -(2+ b)
i s a non-negative i n t e g e r .
implies t h a t , i f we set
1 --ni
&
the function of
b
.
f(b)
, and
i s entire i n b
f(b)
i s one
L+L1 2 m
Therefore, the f’unction
,
does not vanish f o r any values
Note t h a t
. log f ( b ) must be l i n e a r i n
f ( b ) = e x p ( a b + p)
(22.201) a
C(0,2b)r($+b)
Furthermore, the remark given a t the end of Chapter 4 implies t h a t
t h e order of
where
e
f ( b ) =-
(22.20)
i s a non-negative i n t e g e r .
and
p a r e constants. 1
(22.21)
a = l o g 2 - -2 n i ,
b
, i.e.
, In the next s e c t i o n , we s h a l l show t h a t
p=o
*
I f we accept this r e s u l t here, we have proved the following theorem.
THEOREM 22.2:
In case m = 2
, 1 1
(22.22)
where (22 .lo)
i
bFle C0 ( a1 ’a2 ) = C 2 ( a1 , a 2) = 2 e
-in(-b--) 2 4
2n
r($b)
-k2i n ( L2 s t4l )
Cl(al,a2) = C3(a1,a2) = 2-be 4 l e
.. Co(al,a2)
’
J-
2n 1 r(2-b)
9
-bni
= E 2 ( a1’a2) = ( - i ) e
-Cl(al,a2) = C.. ( a
bni 3 1’a 2) = ( - i ) e
9
,
1 1 2 b=p2-rl.
Formulas (22.22) can be a l s o derived from the well-known connection formul a s of parabolic cylinder functions.
( C f . (8.11), and M . Abramowitz and
I . A . S t e p [l; p . 687, 19.4.6 and 19.4.71.)
90
STOKES MULTIPLIERS
23.
Properties a t
a=O
, we
.* If we
a=O
obtain
$(O) =C(O)
(23.11
,
s p e c i a l i z e ( i i ) o f Theorem 21.1 f o r
-% ( O ) = t ( O )
,
(k=O
,...,m t l ) .
'Then, (iii) of Theorem 21.1 i m p l i e s t h a t
-
(23.2;
(k=O,
c?((O)=-w
...,m f l ) .
h r t h e r m o r e , i t follows from 'keorem 21.4 t h a t
.
C(0) # o
(23.3)
We s h a l l prove t h e f o l l o w i n g theorem. 'THEOREM 73.1: (23.7)
At
a=O
,
k(0) =-w
(k=O,
...,m t l )
arl 0
(23.4)
(k=O,
$(O)=ltw
Proof:
W e s h a l l prove t h a t
(23.5)
c(0) = l + w
...,mtl) .
.
Then, t h e proof o f Theorem 2 3 . 1 will be completed.
Observe t h a t
(23.6)
Hence ( 2 3 .?!
and
'.' This
s e c t i o n i s p a r t i s i l y based on Y. Sibuya [LO].
PROPERTIE AT
-1
(0)= ( w
W
(23.8)
091
a=O
91
- ~)~,(O,O)bl$(O,O)
Formula (21.21) implies t h a t
1
?n
w091(0)=zW4 # O .
(23.9)
Therefore, (23.5) follows from (23.61, t h e proof of Theorem 23.1.
(23.7) and (23.8).
This completes
I n c i d e n t a l l y , we have a l s o derived
1
ym(O,O)y;(O,O)
(23 .lo)
Next, we s h a l l i n v e s t i g a t e t h e d e r i v a t i v e s of
Assume t h a t
THEOREN 23.2:
I?%
and (23 -1 2)
Proof:
If
m
(23 -13)
.
= 2Wi;me1(1-w )-1#0
m23
C(a)
and
?((a)
at
a=O
.
m i s odd.
#o
(j=2,
...,m) .
a=O
j
i s , odd, formula (21.21) becomes 1
w
(a)=2w
P
,
0 9 1
and hence
1
TI-1
( 23.13 ‘ )
w1 9 2 ( a ) = 2 w 4
This means t h a t
W
192
.
(Cf. (21.19) .)
i s independent o f
(a)
c i e n t t o i n v e s t i g a t e t h e d e r i v a t i v e s of
W
a
092
.
(a)
Therefore, i t i s s u f f i -
.
set
aym( 0,a )
(23
Observe t h a t
cpjw=
aa j
Q; ( 0,a) 9
qj(a) =
aa
j
( C f . (21.15),.)
L e t us
STOKES MULTIPLIERS
92
and hence (23.16)
...,m) .
( j =1,
I n the same w a y , i t follows from (23.13) t h a t -1
(23.17)
(W
_-
- w )bi(o,o)cpj( 0 ) + (W (j=1,
j =1
If we s p e c i a l i z e (23.17) far
G2- l ) y m ( O , O ) Since m 2 3
, it
(23 .lE)
, we
...,m) .
get
q o )=0
*
follows t h a t
bm(O,O)$,(0)
=O
.
Then, by s p e c i a l i z i n g (23.16) f o r
awe;$)
j =1
(a=O = 0
, we
get
.
This proves ( 2 3 . 1 1 ) .
Then
D. =(w -1 - l ) ( l - u - ' ) ( u - j - ' J
(23.20)
-l)(w-1 - w - j ) z 0
for
j=2,
(23.21)
...,m .
This lceans t h a t , if
f o r some
j
of (23.21), then
Urn'(O,O)Cpj(O)
=o
9
ym(o,o)$j(o) = o
.
Therefore, (23.10) implies t h a t , if (23.22) holds for some
we must have
j
of (23.21),
PROPERTIES AT
( 2 32.3)
cpj(0)=O
,
a=0
93
f o r such
$.(O)=O
J
.
j
We s h a l l prove t h a t (23.23) i s impossible f o r any j
, where
j = 1,
To do this, l e t us s e t
m ~ , ( x , a ) =I)(x) +
i n t h e neighborhood of
a=O
za T
j =1 j j
( x ) + o(lall
2
, where
It is easy t o v e r i f y t h a t
where
Theref ore,
lim q ( x ) = o x-) so, Urn q j ( x ) = O x-) +o,
Furthermore,
Observe t h a t
,
l i m 7jI(x)=O X-)
,
+=
,
Urn T l ( x ) = O j
X-++
.
+ ...+
2
)
,
...,m .
9.L
STOKES MULTIPLIERS
I'hese tuo l i f f e r e n t i a l e q u a t i o n s imply t h a t d- [r r , l ( X ) y j ( x )- T ( x ) y ; ( x ) l =-X"-jy(x) 2 -dX
,
heme
an.!
i-
- r : f ( O ) Q . ( O ) =-J xm-j1,(.)2dx
TI(OjTy0)
(23.24,
J
Nsu, i t can be proved w i t h o u t
sm
J
.
0
any d i f f i c u l t y t h a t
x m - j ~ ( x ) 2 d x # 0.
is
Tn f e c i , i: cm be shown t h a t
y(x)/T(O)
i s real-valued f o r
x20
.
T h e r e f c r e , i f ' +,he right-hand member o f (23.24) i s z e r o , w e must have 7(
jo = L' f o r a l l
Tor m y
j
.
.
x>O
'I'his i s i v p o s s i b l e .
Hence (23.23) i s i m p o s s i b l e
'This proves : 2 3 . 1 2 ) , and t h e proof' o f Theorem 23.2 i s com-
pl-eted. D'cserve t h a t (23.24) can be w r i t t e n a s
anli th;t
(23.25)
cJ#-1
?'here:'ore,
(j=l,
...,m ) .
by g t i l i z i n g (23.17) and (23.24
I)
,
we can e x p r e s s t h e q u a n t i t i e s
b p , o ) c 3 j ( o ) , ldm(o,o)tj(o: i n terms o f t h e i n t e g r a l
J'
+ = .
X ~ - ~ ~ ~ (2dx X , .O )
0
The f u n c t i o n b m ( x , o )
s a t i s f i e s the d i f f e r e n t i a l equation
m
y"-x y = 0
(23.26,'
and t h e ooundary c o n d i t i o n ( 2 3 .a'
y+O
as
X-C+
.
Henze
(23.281 where is
~i
b,(x,O)
H(l'(5) P
=C~~ P H ( ~ ),( S )
i s t h e Hankel f u n c t i o n of t h e first k i n d o f o r d e r
c o n s t a n t , and
p
,
c
PROPERTIES AT
8
=0
95
The d i f f e r e n t i a l equation (23.26) has been studied by various experts .%
Let us consider the case when m 2 2 and m is even.
-c(a) =
( 2 3 -29)
-w
1-2v ( a )
In t h i s case
9
where v ( a ) =bl
(23.30)
(a)
.
( C f . (21.11) and (21.12) .)
P+l If
LEMMA 23.1:
ah=O
(23 -31)
-
Proof-
( al,
The q u a n t i t i e s
..., am )
for
h=l,
bh(a)
...,i12n , m12 + 2 ,...,m
a r e defined by (6 .7 ).
,
This means t h a t i f
s a t i s f i e s condition (23.31), we obtain 1 -j 2
abh(a)
7c
= z -
-h
[1+ Hence ( 23.32) follows.
THEOREN 2 3 . 1: Assume t h a t
YI
(23.33)
and,
m)_2
m is even.
a=O = O ’
if m 2 4 ,
#o
(23.34)
Proof:
(j=2
,...,y1 , 1p 2 ,...,m) .
m is even, we have 1 -r 3 - v (a) Wo,l(a) = 2~ m,l= 2u4 9
Observe t h a t , i f
and
*
~~
~
~
See, f o r example, C . A . Swanson and V.B.
Headley [ 4 4 ] .
96
STOKES MULTIPLIERS
and
la=O
( C f . Lemma 23.1.)
Note a l s o t h a t
W, , ( a ) C(a) =
w l' , p
-
(Cf. ( 2 1 . 1 5 ) . )
Therefore, we can prove Theorem 23.3 i n e x a c t l y t h e same way a s w e proved Theorem 23.2.
The details a r e l e f t t o t h e r e a d e r s .
The method given above does n o t y i e l d any i n f o r m a t i o n about t h e derivative of
Cia) with r e s p e c t t o
a
.
The method i s based on t h e
t h r e e formulas:
(Cf. ( 2 3 . 1 6 ) , (23.17) and ( 2 3 . 2 4 ' ) . ) become
In c a s e
j =1p l
, these
formulas
PROPERTIES AT
a=O
97
and (1111 )
respectively.
F'urthemore, i n this case, w e have
These r e s u l t s are n o t enough t o derive any conclusion about t h e d e r i v a t i v e of
C(a)
with r e s p e c t t o
.
al
P1
Let us go back t o Theorem 22.2 f o r case m = 2 t h e proof of this theorem i n Section 22.
.
W e did not complete
We must prove (22.21). To do
t h i s , set
1 C(0,2b) =&
(23.35)
erieaHP1
.
r (h)
( C f . (22.20) and (22.201).)
S p e c i a l i z i n g Theorem 23.1 f o r m = 2 , w e o b t a i n
Since
1 =A , i t r(2)
(23 -37)
follows from (23.35) and (23.36) t h a t
ep=1,
or
B=O.
Therefore,
( 23 -35
C(0,Zb) =&
1 ri cab,,, 1 . e
r($w
Py d i f f e r e n t i a t i n g both s i d e s of (23.35'1 with r e s p e c t t o we d e r i v e t h e following formula:
b
at
b=O
,
98
STOKES MULTIPLIERS
y
where
If
i s Euler’s c o n s t a n t .
a
= log 2 -
1
pi , then
(23.38) gives the a2 a t a = 0 Note
.
value of the d e r i v a t i v e of C(a) with r e s p e c t t o 1 The value given by (27.38) involves E u l e r ’ s t h a t , i n t h i s case, -2m t l = 2 constant. This i n d i c a t e s the d i f f i c u l t y of computing the d e r i v a t i v e of
.
C(a)
w i t h respect t o
at
a
a-0
i n general.
+l In order t o f i n d
a
, we
s h a l l use results obtained i n Chapter
we s p e c i a l i z e Theorem 19.1 f o r
m=2
, we
4.
get
and (23.40)
b;(x,al,a2+
A)
-1
X
A
= C 2 ( 5 , a2tX)[-1+F2(x,X) ]P(x,X)‘exp{-S
-1
2 p ( T , l ) dT1
.
0
Here,
2 ( i ) P(x,A) = x + alx+ a2 + X ; (ii) Fl(x,A) and F2(x,h) tend t o zero uniformly f o r /all + lazl I R o as
x
9
tends t o i n f i n i t y i n t h e sector:
(iii) Fl(x,X)
and
F (x,h) 2
x
(iv)
tends t o
Sa3
the q u a n t i t y
(23 -111) where (23.42)
larg A1
5.-
Po ;
tend t o zero uniformly f o r
1a-J + l a 2 \ ‘-Ro
as
OlX<+=
9
larg XI
57-
Po
9
1k1
; “C(al,a2t A )
has the form*
^c2 ( a1 ,a 2 t h ) =expCL2(al,a2+
A)
3 ,
1 1 2 -1 -(a +x) - -a += 2 1 2 2 ’JdT L2(al,a2+A) =J [ P ( T , ~ ) - T - p1T+ 1 0
L e t us s e t x=O
,
al=O,
Then
’’ C f .
2Mo
(19.21) and (19.26).
a2=0,
X=2b>O
.
.
If
PROPERTIES AT a = O
L2(0,2b)=J
*
2
[(T
-I2
t2b)
b
-T--]dT rt 1
99
,
0
and
lim F1(0,2b) = O
,
l i m F2(0,2b) = O
b++-
b-+*
.
Observe that
where l i m F(b) = O b+-b
.
Furthermore, [1p + v ( a )
I
wl,2(a) =2w
becomes
FI i ( b - i )
(0,2b)= 26 (23.44) 192 Therefore, it follows from (21.15), (23.43) and (23.44) that
W
( 23.45 )
From (23.35') and (23.451, we obtain
100
STOKES MULTIPLIERS
(23.46) A straight-forward computation y i e l d s
1
L2(0,2b) = 2 b { & t
2 t log b ) ] 4 2 l o g 2 - - 4( l o g
(23.47)
,
and hence 2L2(0,2b) = b { l t log 2 - l o g b]
(23 4 ' 7 ' )
.
Furthermore, r (1 2 t b ) =&
(23.48)
exp{b l o g (1~ t b ) - b - 21 ][lt0(b-1)]
=&(1t O(b-'))exp{b
l o g b - b)
.
Therefore, from (23.46), (23.47I ) and (23.48), w e g e t 1
a=log2-ni 2
.
This completes t h e proof of Theorem 22.2. Asymptotic behavior of Stokes multipliers a s
24.
a,,,
tends t o i n f i n i t x .
Let us s e t c(a,A) = C ( a l
(24.1)
,...,am-1'
am t h )
.
In Sections 25 and 26, w e s h a l l prove the following theorem.*
.
THEORplu.1: Assume t h a t
m23
( I ) the Stokes multiplier
c(a,x)
c(a,A) =exp{K(l-w
(24.2)
admits an asymptotic r e p r e s e n t a t i o n
lti % )A
(1t 0(1))}
uniformly f o r (24.3)
as
la11
A
...+Ia,I
Go
tends t o i n f i n i t y i n the s e c t o r
-2.
(24- 4 ) where
+
boIarg X ( 2 n - 2 -
Ro
b0
,
i s an a r b i t r a r y b u t fixed p o s i t i v e number,
6,
i s an a r b i t r a r y
but f i x e d s m a l l p o s i t i v e number and 7
7
(24.5) 0
*
Cf.
Y. Sibuya [ 3 5 ] , and H. Gollwitaer and Y. Sibuya [13].
101
(11) c ( a,X) a l s o admits an asymptotic r e p r e s e n t a t i o n 2 11 1+- -tc(a,A) =exp{K(l-w m)A2 y l + o ( l ) ) )
(24.6)
2 11 -1-2; t expEK(1-w m)A (1+0(1))] A
uniformly f o r (24.3)
tends t o i n f i n i t y i n the s e c t o r
(24.7)
The n o t a t i o n
o(1)
Therefore, (24.2) and (24.6) give us an information about the
asymptotic behavior of
25.
A
The two s e c t o r s (24.4) and (24.7) cover A-plane com-
tends t o i n f i n i t y . pletely.
denotes a q u a n t i t y which tends t o zero a s
c(a,X)
P(x,X) = x3 t A
Case when
as
.
X
tends t o i n f i n i t y i n any d i r e c t i o n .
To i l l u s t r a t e our method, we s h a l l consi-
d e r t h e d i f f e r e n t i a l equation (25.1)
ytt
i n t h i s section. (25.2)
- (2+ x ) ~ o=
Set f(x,A) =U3(x,0,0,A)
The f u n c t i o n f(x,A) perties. (i) f
.
is a s o l u t i o n of (25.1), and has t h e following pro-
(Cf. Theorems 6.1 and 19.1.) and
f
admit t h e asymptotic r e p r e s e n t a t i o n s
I
uniformly on each compact set i n A-plane a s
x
tends t o i n f i n i t y i n any
closed subsector of t h e open s e c t o r lug
(25.4) (ii) f
and
f
The constant K
I
XI
i
a l s o admit t h e asymptotic r e p r e s e n t a t i o n s
i s given by
102
STOKES MULTIPLIERS
1 2
sro
( ( t 3 t1 ) 2 -t 2 ) d t
K=J
(25.61
.
0
i5.e q u a n t i t i e s
Fl
and
F2
tend t o z e r o uniformly f o r
0 5x < b as
1
tends t o i n f i n i t y i n t h e s e c t o r
(25.7) where
la%
q
In-Po
I h l ,No
9
i s an a r b i t r a r y b u t f i x e d p o s i t i v e number, and
po
t i v e n m b e r depending on uniformly f o r ( 2 5 . 7 ) as If
9
m=3
,
x
the sector larg
(25.8)
.
po
The q u a n t i t i e s
tends t o
9
SCo
F1
and
Mo
i s a posi-
F2 tend to zero
.
i s given by
"-2k71 <: TI ,
2nd 2 w =exp(i-TI]
(25.9) The f i v e s e c t o r s each s e c t o r (25 .lo)
-
5
%
9 ,a
.
(k=0,1,2,3,4)
cover x-plane.
subdominant s o l u t i o n i s given by
y=f(w-kx,w-3ka)
.
F i g . 25.1.
( C f . F i g . 25.1.)
In
fo(x,X) =c(A)fl(x,X) - wf2(x,h)
(25.12)
Here, we used (21.11) f o r m = 3
-C(a)
=-w
.
, i.e.
.
The main problem i n this s e c t i o n i s t o derive
( C f . (21.15) and (23.13’) .)
t h e asymptotic representations of
c(X)
X
as
tends t o i n f i n i t y .
Note t h a t Wonskians (25.13) a r e independent of x (A) a t w0,2
x=O
w
.
-6 = w -1
If w e s e t
’
--1 f(0,X) = [ 1 + 0 ( l ) ] X (25.16) fl(0,X) = [ - l + o ( l ) ] A
A
(25.19)
tends t o i n f i n i t y .
x=0
i n ( 2 5 . 5 ) , we g e t
2
‘exp{Kh
61
,
2
exp {KA6]
tends t o i n f i n i t y i n s e c t o r (25.7).
hold as
W e s h a l l compute
, i.e.
where we used the i d e n t i t y
as
.
Therefore, i n t h e s e c t o r
W e can w r i t e s e c t o r (25.17) as
- y + p o < a r g XLn-po
.
(See Flg. 25.2.)
STOKES MULTIPLIERS
104
I:
A- pQane
3 --T
5
Flg. 25.2. I n this s e c t o r ,
as
tends t o i n f i n i t y .
A
Hence
-1 (25.21)
as
5 5
c(A) =w2[1+ o(l) ] e x p { ~ ( l w-6)h61 + tends t o i n f i n i t y i n (25.19)
A
.
The method used i n s e c t o r (25.19) does n o t apply o u t s i d e t h i s s e c t o r For example, l e t us c o n s i d e r a s e c t o r d e f i n e d by (25.22)
- n t p,<arg
A<-$-
po
.
(See f i g . 25.3.)
A-plane
Fig. 25.3.
105
In s e c t o r (25.22), we have larg
(25.23)
AI
5n-
Po >
I.rg[w%lt
n p0-
~
Hence, (25.16) and
--1
I
=ft(O,wl*A) =[-l+o(l)]wA4 exp[Kw 3 X6 ]
f'(0,w''A)
hold as
A
222
=f(0,;4h) =[It o ( l > ~ w -4 ~exp[Kw ~ 3 61 , -1 lo5
f(O,w-'A)
( 2 5 .Y)
a
If (25.16) and (25.24)
tends t o i n f i n i t y i n s e c t o r (25.22).
are i n s e r t e d i n t o (25.15), we g e t
lo2 (1) = o ( l ) e x p [ K ( l + w 3 )X 6 1 012
W
This estimate is not s a t i s f a c t o r y .
.
In order t o get a b e t t e r estimate
we
s h a l l use t h e following f o e a s :
(25- 2 5 )
I
f(0,A)
= 1 7 [ ~ ( o , ~+~wIf ()0 , w 2 uI C(W
f '(0,A) =-
A>
I
[wf l(o,W%)
+ fl(0,w2A) I ,
c(w3A)
which are derived from (25.12) by replacing A
(25.25) i n t o (25.151, we get (25.26) where A(k) =
(25.27)
and B(A) =
(25.28)
It i s n o t d i f f i c u l t t o prove t h a t A ( A ) =wu0,~(w3a) ,
(25.29) To estimate
A(?)
, we
assume t h a t
3
by w X
.
Upon i n s e r t i n g
STOKES MULTIPLIERS
-
A plane
In s e c t o r (25.30) we have l=g[w 3A J (~T I -
(25.31)
Po
1arg[w%11
P,
.
Hence, (25.24) and
-2 -1 52 f(0,w3X) = [ l + o ( l ) ] w % exp[Xw2X6] , 21
(25.32) €[(Q,w3X)= [-l+ o(l) hold as
A
25
1 ~ 5 exp[h2X61 ,~
tends t o i n f i n i t y i n s e c t o r (25.30).
If (25.24) and (25.32)
a r e i n s e r t e d i n t o (25.27), we g e t
g
2 (25.33)
as
A
A(h) = 2w4[l -k o(l) ]exp[X(w tends t o i n f i n i t y i n Sector (25.30).
3 s e c t o r (25.30), the q u a n t i t y w X
- l)h
as
A
2 1
tends t o i n f i n i t y i n s e c t o r (25.30).
1 ( A )= 2 W 4 [ [ l t d
092
or
13
is i n s e c t o r (25.19). Hence
c(w3X) = w 2 [ l t o ( l ) ] e x p [ - X ( l t w
W
1
Wthermore, i f
-1 (25.34)
s6
-6
6 )A ]
Therefore,
lo o(1) ]exp[K(w
5 2
-6
+ w )A
2 1 -6 6 + [ l + o ( l ) ] e x p [ K ( l + w ) A 11
6
1
is i n
CASE WHEN
P(x,A) = x 3 + h
-
i 2 5
1 c(A) = w z { [ l +
(25.35)
107
-6
o(l)]exp[K(w
- w6 ) A 6 1 1 2
-6
+ [ 1 + o ( l ) I e x p [ K ( 1 + ~ )A as
tends t o i n f i n i t y i n s e c t o r (25 .30)
A
arg A
The neighborhood of the d i r e c t i o n s e c t o r s (25.19) and (25.30).
.
6
11
=-$
I n order t o estimate
is n o t covered by i n the neigh-
(X)
W 092
borhood of t h i s d i r e c t i o n we use the following formulas:
(25.36)
I
= 1 2 [ f (0,w2A) + w f ( O,wh)
f(O,w5)
J
,
c(w A ) f ‘(0,w-lA)
=y [wf ‘(0,w2A) + f ‘(0,WA) 1 , 4 w
A)
which a r e derived from (25.25) by replacing
A
by
w-~A
.
Upon i n s e r t i n g
(25.36) i n t o (25.15) we g e t
I n the same way a s we derived ( 2 5 . 2 9 ) , w e g e t
..
2
(25.39)
= L 4,
In order t o estimate
@A)
( 25 -40)
B(A) = W W ~ , ~ ( A )
, we
-TT+p o < m g
-7
..
.
assume t h a t
n
X i - 5-
po
.
( C f . Fig. 25.5.)
d(25.40)
~
c -
A- Plane Fig. 25.5.
STOKES MULTIPLIERS
108
In s e c t o r (25.4O), w e have (25 -41)
lmg
Ln-
P,
IardwAIl
9
5.- P,
-
Hence, (25.16) and
52. 11 % 4 exp[& 6x 6 I ,
I
f(0,wX) = [I+o ( 1 ) 1w
(25-42)
11
fl(o,wa) = [-i+ o ( i ) 1w%4
hold a s
tends t o i n f i n i t y i n (25.40)
X
.
Ii 6 6 exp[Kw a I , Thus
i.z
2
B(A)
(25.43)
6 6
3
= 2 W 4 [ l t o(l)]exp[K(ltw ) X
as
tends t o i n f i n i t y i n s e c t o r (25.40). Furthermore, i f 2 (25.4O), the q u a n t i t y w X i s i n (25.19). Hence c
1
as
5
tends t o i n f i n i t y i n (25.40)
.
z
2 5 (1tw6)w3=-(1+w-6)
(25.45)
A
is in
c c
Observe t h a t
.
P u t t i n g everything together, we g e t again (25.35) a s
X
tends t o i n f i n i t y
.
i n (25.40)
Thus we obtain (25.21) as
1
-
1 2 1 c(X) =w2[1+o(l)]exp[K(1+w-6 ) A 6 ] tends t o i n f i n i t y i n the s e c t o r
c
-2
+ as
A
c
6 6 [ 1 t o ( l ) ] e x p [ K ( 1 t w ) h 13
tends t o i n f i n i t y i n the s e c t o r
(25.46) (See Fig. 25.6.)
-n-$+Po<arg
1s:-
p,
.
Sectors (25.19) and (25.46) cover a-plane completely.
3
CASE WHEN P ( x , h ) = x + h
log
Mg. 25.6. Now, we s h a l l investigate t h e r e l a t i o n between the two asymptotic formulas (25.21) and (25.35) i n the common p a r t of the two s e c t o r s (25.19) and
(25.46).
To do this, l e t us f i n d the term i n formula (25.35) which domiSuch a term can be found i f w e examine t h e real p a r t of
nates t h e o t h e r . the quantity
2 2
(25.47)
2 2
2 2 2
‘6 6 6 K ( l + w 6 ) A 6 = K ( ~ + w - ~ ) A ~ - K (- ww ) A
i n s e c t o r (25.46).
Observe t h a t
I 6
(25-48)
arg(l+w )
= 6n
.
Hence, i n (25.46), (25.49) This implies that
F
STOKES MULTIPLIERS
110
i n s e c t o r (25 .46).
Therefore, if b 0 > 0
i s g i v e n , we have
-1 (25.51)
c(h) =w
2
2
5 2
-6 6 6 [ l + o ( l ) ] e x p [ K ( w - w )A ]
and
1 2 5 -6 6 c(A) = w 2 [ 1 t o(l)JexpCK(1 t w ) A 3
(25.52)
as
tends t o i n f i n i t y i n t h e s e c t o r
A
(25.53)
-r-+n+
p 0 < a r g 11-9tio
and i n the s e c t o r
-4+ 5 t i o ~ a r g1515- p, ,
(25.54) respectively.
(See F i g . 25.7.)
The common p a r t o f s e c t o r s (25.19) and
(25.46) i s contained i n s e c t o r ( 2 5 . 5 4 ) .
Thus w e found t h e r e l a t i o n between
t h e twc asymptotic formulas (25.21) and (25.35) i n t h e common p a r t o f
(25.19) and ( 2 5 . 4 6 ) . T
Mg. 25.7. Now, l e t u s make t h e f o l l o w i n g o b s e r v a t i o n .
(25.55)
-+ n
p,<arg
A52n-$-
6,
Assume t h a t
.
5
Then - n - $ n t p o 5 a r g [ w - 5 ~ ~ < - $ - 6, and hence t h e q u a n t i t y
wV5A
-1
,
i s i n s e c t o r (25.53).
5
Therefore
2-32
c ( h ) =w2[1+o(l)]exp[K(w -6 - w 6 ) w 6 k 6 ]
as
1
t e n d s t o i n f i n i t y i n sector (25.55).
Since
CASE WHEN
and
2-3
6 6 =w w w we g e t again (25.56) as
A
-? =w
P(x,X) = x 3 + A
111
-:-;2 , =-w
w
-6
-
1 5 2 c(A) = w 2 [ l + o ( l ) ] e x p [ K ( 1 + w-6 ) A 6 1 tends t o i n f i n i t y i n (25.55)
.
Thus we have proved the following
result: The q u a n t i t p
admits an asymptotic representation
c(A)
-1 2 2 c(A) = w 2 [ l + o ( l ) ] e x p [ K ( l + w-6 ) A 6 1 as
A
tends to i n f i n i t y i n t h e s e c t o r
-?+b 0 5 a r g A ( 2 n - y -
b0
.
Furthermore, asymptotic formula (25.35) i s v a l i d a s
?,
tends t o
i n f i n i t y i n the s e c t o r (25.57)
IargA+?l
Therefore, i n the s e c t o r (25.58)
larg A
- 2n+$-J IS, ,
we have (25.59)
-1
5 2
c(X) = w 2 { [ 1 +
o(l)]exp[K(l+ w-6 ) h6 1
5 2 + [ 1 + o ( l ) ] e x p [ K ( 1 + w6 )A 6 1)
as
X
tends t o i n f i n i t y .
is i n s e c t o r (25.57).
Note t h a t , i f
X
i s i n s e c t o r (25.58),
Thus, by u t i l i z i n g formula (25.35) f o r
c(w'~A) , we g e t (25.59). 24.1 f o r P(x,X) = x 3 + A
.
=
By using these results, we can prove Theorem
I n this s e c t i o n , we used formulas such as
f ( 0,A) =
c(X)
LJ%
3c ~ ( o , ~+wf(0,w2A)) ~A) , c(w A )
STOKES m T I P L I E R S
112
These formulas are analogous t o a well-known formula f o r t h e gamma function: n
= sin(nA)
r(h)r(i- k )
(25.60)
The asymptotic r e p r e s e n t a t i o n of
.
r(h) :
which i s known as S t i r l i n g ' s formula i s v a l i d as
A
tends t o i n f i n i t y i n
the s e c t o r
.
Jarg A/ < n
Formula (25.60) y i e l d s t h e asymptotic r e p r e s e n t a t i o n of
T(1)
i n the
sector
I a r g - nl IPo As a matter of f a c t , we were n a t u r a l l y l e d t o formula
t o compute t h e Stokes m u l t i p l i e r s o f
(25.60) when we t r i e d
i n Section 22.
y,(x,al,a2)
(Cf.
(22.18) and ( 2 2 . 1 8 ' ) .)
If we examine the method of this s e c t i o n , we n o t i c e t h a t t h e estimate of
e s t i m a t e s of Wo,3jh)
26.
( A ) , while t h e 092 i n (25.30) and (25.40) are based on t h e estimates o f
i n s e c t o r (5.19) i s based on t h e e s t i m a t e of
c(X)
c(A)
W
*
General c a s e .
In this s e c t i o n , we s h a l l consider t h e d i f f e r e n t i a l
equation y " - P(x,X)y= 0
(26 -1)
,
where
m
P(x,h) =x
m23
We assume t h a t (26.2)
.
+ alx m-1
+
...+
f(x,a,k)
+a)
.
is a s o l u t i o n of (26.1), and has t h e following
p r o p e r t i e s .*
(i) f
' Cf.
a d
f'
.
Set
f ( x , a , A ) =hm(x,a1, .-.,am-1ya
The function
+ am+ X
admit t h e asymptotic r e p r e s e n t a t i o n s
Theorems 6.1 and 19.1.
GENERAL CASE
113
--1
r
f ( x , a , i ) = x m[l+ O(x 2)]exp{-Em(x,a)}
--12
(26.3)
+rra
f '(x,a,A) = x
uniformly on each compact set i n
,
[-1+O(x ) ]exp{-Em(x,a) I (a,h)
,
- space
a s x tends t o i n f i n i t y i n v- u 8-1 8, g1 ;
any closed subsector of t h e open s e c t o r
-1
(26 - 4 )
-12
X
.
I f i ( x , a , h ) = ^ C ( a , h ) [ - l t F2(x,A)]P(x,X)4 exp[-s P ( T , 1 $ d ~ ] 0
The q u a n t i t i e s
Fl(x,X) lal[ t
and
F2(x,A)
...+lam[I
tend t o zero uniformly f o r
R ~,
o<x<+=
Ia r g
h tends t o i n f i n i t y i n the sector: t i t i e s a l s o tend t o zero uniformly f o r
as
as
x
tends t o
Sa,
.
A1
5.-
po
.
These two quan-
The q u a n t i t y ^c(a,X) admits t h e asymptotic repre-
senta ti on 11
2-G( 1 + o ( 1 ) ) I Ic(a,X) =expCn
(26.5) uniformly f o r
lyl+
(26.6) as
* a * +
bmIso I a r g X I In -
tends t o i n f i n i t y i n the sector:
?,
m 2 3 , the
given by ( 2 4 . 5 ) .
Since
pendent of
am
The p o s i t i v e numbers Ro
f i x e d , and
Mo
.
sectors
% ,a
Em(x,a) and po
and po . -go,Ro...,-gmtl cover x-plane
K
is
rm are inde-
are a r b i t r a r y but completely.
I n each
subdominant s o l u t i o n of (26.1) i s given by
where we used t h e i d e n t i t y w -*=wa ( 2 6 . 6 ) , then
and
, where
depends on
The m + 2 sector
quantities
po
k
G (a)
.
Note t h a t , i f
i s a l s o i n domain (26.6)
.
a
i s i n domain
STOKES MULTIPLIERS
14
Set
wj ,,(.,A)
(26.8) We s h a l l compute
.
%,o(a,h)
W
(26.9)
I;
=
f . (x,a,A)
fk(x,a,h)
f!(x,a,h)
f$x,a,h)
It follows from (21.21) t h a t
( a , b ) =-2w d a )
9
190
where
.!p
p(a)
,
(m: odd)
1
(26 . l o )
I-
;;“-bl
(m: even)
(a)
P1 Rext, denote by (26.11)
.
To t h e sector i n A-plane which i s defined by n-z8 ntpo(arg A2n-p
.
0
I t i s easy t o s e e t h a t
A E To i f and only i f
(26.12)
I n - Po
J a r g hl
Hence i n
To
I ~ g [ w 2 - ” h l lc_n- Po
9
we can use asymptotic formulas (264 ) . By s e t t i n g
x = 0 in
(26.4) , we get
--1 (26.13)
i
fo(O,a,A) = [ I +O
( I ) J ~ ‘t(a,~)
,
-1
f;(o,a,A) = [-1-to ( l ) I ~ ~ ^ C ( ~, , X )
uniformly f o r (26.6) a s
X
tends t o i n f i n i t y i n
To
.
f 2 ( x 7 a , h )= f(w-‘x,C2(a) ,w4b) = f ( w - 2 x , C
Also, since 2
,
( a ) ,w-*‘A)
ue obtHin
(26 .U)
I
--1
L-L f2(0,a,X) = w 4
2[1+ o ( l ) ] h ‘t((c2(a)
1.
-2-* 1 1 f;(O,a,A)
uniformly for (26.6) a s
2[-1+ o ( 1 ) ]A4t(G2(a) ,w2-y),
=w X
,u2-”h) ,
tends t o i n f i n i t y i n
To
.
Therefore, in
we g e t
1 1
3--
W as
h
290
(a,A) =-2w4
tends t o i n f i n i t y .
2[1to ( l ) ] t ( a , k ) t ( G 2 ( a ) ,w2‘%)
Hence (26.5) implies t h a t
2 (26.15)
W270(a,h)= e x p [ K ( l - w
1 1
)A 2-G(1+0(1))1
,
To
,
115
GENERAL CASE
A
uniformly f o r (26.6) a s identity:
w
, where
To
tends t o i n f i n i t y i n
we used an
(2-m)(+) 1$ 2 m =-w
I n general, denote by
w
T k = {A;
(26.16) I n the s e c t o r
Tk
(26.17)
, we
the s e c t o r i n A-plane which i s defined by
Tk 2k
AETo)
.
have
.
n ]-~Po ~ a r p [ w ~ + ~ - mI X
Since
k 2k -Ic k 2(k-2)+2-m~) = f ( w k x , ~(a),w A ) = f ( w X , G (a),w Y
f,(x,a,A)
we get
--1
+
fk(O,a,A) = w &(m+2-2k) 4 [ 1 o( 1)]A
1
(26.18) fi(o,a,A) = w uniformly f o r (26.6) a s
X
-k--(mt2-2k)
4
E( Gk(a) , w 2(k-2)+2-y) -1
9
4- k 2(k-2)+2-\) [-1t o ( 1 ) ]A C ( G ( a ) ,w
tends t o i n f i n i t y i n
.
Tk-2
9
Hence i f
l a r g X I I n - Po
(26.19) i n a subsector of
Tk-2
, we
get (k-l)(lt:)
(26.20)
)A
%,o(a,A) = e x p [ K ( l - w
uniformly f o r (26.6) a s
X
(1+0(1))3
tends t o i n f i n i t y i n t h i s subsector o f
Tk-2
,
where we used an i d e n t i t y :
Observe t h a t condition (26.16) i s equivalent t o n - 8 S - 2 .
po<arg
aLn-2-
Therefore condition (26.19) i s s a t i s f i e d i n
- n < n - n8- m < n - $ ( n m+2 mt2
This means t h a t (26.19) i s s a t i s f i e d i n
Tk
.
po
Tk i f and only i f
.
for
(m: odd) (26.21)
(m: evsn)
,
.
i s even, s e c t o r (26.19) i s completely covered by those s e c t o r s Tk
If
m
If
m i s odd, l e t u s denote by
-T
t h e s e c t o r which i s defined by
.
STOKES MULTIPLIERS
116
(26.22) The s e c t o r
-T
i s a l s o given by -n+ p o ( a r g
(26 2 2 1 )
Then
\in---$+2 m l
.
1 (k = 0,1,..,$m-3))
yk
cover s e c t o r (26.19) completely.
and
m = 3 , the sector
Ncte t h a t , i f
.
po
is given by
T
-n+ po<arg A L E -
5
and this is t h e same a s ( 2 5 . 4 0 ) .
( C f . Fig. 25.5.)
Thus we proved the lemma below. &M )! A
(I)
26.1: J .
.
CL( a) ( a , h ) =-2w
W,
where -
m>_3
Assume t h a t
9 0
even)
(m:
A
uniformly f o r (26.6) =
{
.
(111)
if
+2
2,3,. .,fm-3) 1 293, *
Tk -
tends t o i n f i n i t y i n
*
-,?+
1
m is odd, (11) holds i n
-T
;
, where
(m:
odd) ,
(m:
even)
1 k=$m+3)
; a
The s e c t o r
is completely covered bx
1To,T1,. . .,T1
7-1
respectively. Let us set
if -
m
i s even
,
117
GENERAL CASE
(26 2 5 )
fo(x,a,x) = c(a,\)fl(x,a,X)
The q u a n t i t i e s solution and
(26 2 6 ) Theref o r e ,
Note t h a t (26.28) Hence
Since
we g e t
or (26 - 2 9 )
where
and
c"(a,A)
.
a r e the Stokes m u l t i p l i e r s of the
f o Kith r e s p e c t t o the two l i n e a r l y independent s o l u t i o n s
f2.
(26 2 7 )
c(a,A)
+ E(a,b)f2(x,a,\)
.a),i t
From (26
follows t h a t
fl
STOKES MULTIPLIERS
118
;(a) =
(26.30)
i0 bl
,
(m: odd) (m: even)
(a)
,
F+l
This r e s u l t is the same as (21.11). Furthermore,
(26.31)
c ( a , a ) =C(al,
...,am-1’am + I ) .
Therefore, i n order t o prove Theorem 24.1, we s h a l l compute t h e matrix
From the i d e n t i t y
i t follows t h a t
Then,
(26.36)
Let
US
write ( 2 6 . X ) as
Then, Lemma 26.1 implies t h a t 2 Nk(a,A) =exp[K(l-w
(26.37)
uniformly f o r (26.6) as
h
2,3,. (26.38) k = ( 2,3,.
11 ) X 2; ( l + o ( l ) ) ]
tends t o i n f i n i t y i n
1 ..,$m-3)
+2
k E Tk-2
, we
(m: odd)
1 1 . .,?+
Note t h a t formula (26.37) i s independent of d e r i v e from (26 .?7)
Tk-2
(m: even) k
.
Since
,if ,
. 2
w X
ET
k-3
for
119
GENEIW, CASE
A
uniformly f o r (26.6) a s
tends t o i n f i n i t y i n
.
Tk-2
Formulas (26.37) and (26.35) y i e l d 2
(26 -40)
in
c(a,A) =exp[K(l-
.
To
11
%) A %(1+o ( 1 ) ) 1 w
Also, formulas (XI.%), (26.37) and (26.39) y i e l d
2 11 (26 4)
c(a,A) =exp[K(1- w
)A
2+ t exp[K(w
5%
(1+o ( 1 ) )
l< -w
)A
2
1
(l+o(l))]
for k 2 3 and s a t i s f y i n g (26.38). Formula (26.41) is ? when m is odd. Let ua consider a small s e c t o r 0 given by
in %,2 valid i n
l w h-nl
(26.42)
For A € 3
, we
get
A
E
.
~ ~ ‘ 3 E3 To and
W
for
also
Hence i n
(G‘’(a) , w - ~ A ) f 0 092 we can use (26.33) with k = -1
(a,A) =wW
-1,l
i.l
.
Thus we g e t
Lemma 26.1 y i e l d s
and
in
fJ
.
Furthermore, we can prove without any d i f f i c u l t y t h a t
W in 0
, although
(G-’(a),w 093
-
2 -1--
2h)=exp[K(w
m
-w
2 3 11 1+. m 2m )A
this i s not a consequence of Lemma 26.1.
(l+o(l))]
Thus, in 8
,
STOKES MULTIPLIERS
120
11
2
c(a,h) =exp[K(l-
( 26 44)
+
:')i'E(l+
o(1))j
2 311 -I--
exp[K(l-w
?A2
.
m(l+o(l))]
A complete formula f o r t h e aymptotic behavior of
c(a,h)
as
A
tends t o
i n f i n i t y i s given by (26.4O), (26.41) and (26 .u). If we can determine t h e dominant term i n each of them, w e can complete t h e proof of Theorem 24.1. Let us consider f i r s t t h e s e c t o r i n h-plane given by
(26 4 5 )
-&t me2
.
6 , I a r g h l n - po
Since
for
m23
small.
, the
sector
To
i s contained i n (26.45) i f
P a r t ( I ) of Theorem 24.1 h o l d s i n
6o
To , ( C f . (26.40) .)
remaining p a r t of s e c t o r (26.45) which i s n o t covered by (26.41) h o l d s .
i s sufficiently
To
In the
, formula
Let us p u t A=(w
m
-l)h
.
Then 2 4 a r g ~ = a r g [m ~- I ] +mt2 = arg
1 2 mt2 =7+++arg m 2 m
=1T t[2v tmt2 -
h
arg A ]
.
(See f i g . 26.1.)
m 2 . m
5L
FpW 2+
'W
/
Fig. 26.1.
m ...
GENERAL CASE
121
Observe t h a t
8 6 , i a r g h i n - z t po
-mt2 I t
,
i n the p a r t of s e c t o r (26.45) outside t h e s e c t o r
To
.
Hence
This means t h a t
1 mt2 ~ t - 6 2m
l? mt2 < a r g A l n - m t - 2mpo
0-
'
and hence
Re[A]< 0
.
Therefore, ( I ) of Theorem 24.1 holds i n s e c t o r ( 2 6 . 4 5 ) . Let us consider s e c t o r ( 2 6 . 4 2 ) .
In t h i s s e c t o r , we have (26.44). Let
us put A=[w
=1 F 2t n2- n + asr g m
m
2
.
~ =1? + F a r g A
m
This means t h a t Re[ A ] i n (26 .42)
.
<0
Hence, ( I ) o f Theorem 24.1 holds i n (26.42)
.
Now, l e t us consider t h e s e c t o r defined by
(26 -46)
6,
n t po<arg A(2n-&-
.
I n s e c t o r (26.46),
(26.47)
-n
t po 5 arg[w-(mt2)A
3 < -&n
- 6,
.
Therefore, we derive from (26 41) c(a,A) = c ( a , w- ( m t Z )
= exp[K(l- w
m
-1 m t 2 ) 2 1 4 )w
2n 2 , m
(1+o ( 1 ) )
1
1+2 (mt2)2 A+& m m-w )w an x2 Y1.r 41)) 1
2 4
+exp[K(w
-1-2 m L& 2m =exp[K(l-u )h ( l t o ( l ) ) ] t exp[K(l-w
2 1 1
7%
)h
(lt0(1))].
STOKES MULTIPLIERS
122
Here we used an i d e n t i t y :
If we s e t again 2 1 1 -1--+-
l$ A=[w
m]i2
-w
,
then
i n ( 2 6 . 4 6 ) . Hence Re[Al< 0 i n ( 2 6 . 4 6 ) . This means t h a t (I) of Theorem 24.1 h o l d s i n s e c t o r (26.46). Thus we prove? (I) o f Theorem 24.1 i n s e c t o r ( 2 4 . 4 ) .
We can prove (11) of
Theorem 24.1 i n s e c t o r ( 2 4 . 7 ) , i f we u s e (26.41) and the f a c t t h a t
1 a r g [ w-(mt2)h
] - $1
5 60
ir. (2,!+.?). This completes t h e proof of Theorem 24.1. 27.
A f u n c t i o n a l e q u a t i o n . % I n S e c t i o n 25 , w e s t u d i e d t h e s o l u t i o n
(27 -1)
f l x , h ) =u3(x,o,o,A)
of the d i f f e r e n t i a l equation
y"- ( x3 t A)y=O
( 2'7 . 2 )
.
In p a r t i c u l a r , we d e r i v e d t h e asymptotic r e p r e s e n t a t i o n s (25.56) and (25.59) of t h e Stokes m u l t i p l i e r
[
C(A)
(27.3) Then (27.41
S(X) = S(,A)
-w
.
c(X)
a3
Set
'
s a t i s f i e s the condition
6
2
S(LJ%)S(W X)S(w4h)S(w h ) S ( X ) =12
'iWs i s a s p e c i a l c a s e of ( 2 1 . 3 1 ) . ug=u-2
,
w6 = w
Since
,
u5 = 1
. i n this c a s e , we have
w4zw-1 .
A s t r a i g h t - f o r w a r d computation shows t h a t (27.4) i s e q u i v a l e n t t o
*
This s e c t i o n i s based on Y. Sibuya and R.H.
Cameron
[@I.
P
v
n
0
I
0
II
x
3
P
3 PJ
P.
c
0
c+
rn
2a
c+
Y
v
-
h
P
P
h
5
-1
03 v
N 4
-
Y.
c+
0
u
.
h
.6
v
w
&
% N
h
rt
Y
v
P a
3
&I P
0
n
v
Y
2IE a
h
(D
5
0
v
m
N 4
h
P
w
5
m
m
P.
v
Y
0
Y
P
0,
m
E
v
h
0
II &
v
+
2
V
7
V
>
N 4
h
5. Y
V
03
N 4
h
a
€
N
N
Y
v
Y
N
E
h
0
v
7
E
h
E,
II
u
I E
v
Y
&
h
0
v
Y
P
El
h
0
r---l U
I E
v
Y
0 ,--.
Y
I
N
w
€
h
0
-
1
P
N
W
STOKES MULTIPLIERS
124
?he two c o n s t a n t s t h e o t h e r hand,
cp(A)
w t
-1
2 -2 w tw
and
LJ
On
are s o l u t i o n s of (27.8).
d e f i n e d by (27.7) i s a n o n - t r i v i a l e n t i r e s o l u t i o n
I t should be n o t i c e d t h a t (27.8) does n o t have any n o n - t r i v i a l
of ( 2 7 . 8 ) .
polynomial s o l u t i o n s .
Furthermore, a s t r a i g h t - f o r w a r d computation shows
t h a t i t i s impossible t o determine a n o n - t r i v i a l e n t i r e s o l u t i o n as a power Note t h a t (27.8) i n v o l v e s two terms
s e r i e s s a t i s f y i n g (27.8).
.
~p(u-’A)
cp(wh)
This means t h a t (27.8) i s an e q u a t i o n of t h e second o r d e r .
and
In
o t h e r words, w e can e x p e c t t h e e x i s t e n c e of a s o l u t i o n o f (27.8) which c o c t a i n s two a r b i t r a r y q u a n t i t i e s . L e t us w r i t e t h e e n t i r e f u n c t i o n
d e f i n e d by (27.7) i n t h e form
cp(k)
c p ( A ) = G o ( z ) t XG1(z) + A 2G2(z) t X 3G 3 ( z ) tA4G4(z)
(27 -9)
where t h e q u a n t i t i e s
are entire i n
Gj(z)
z
=A5
.
,
,
S i n c e cp(0) = G o ( 0 )
we have
i27.1C)
G o ( 0 ) =w2 t w -2
.
Set 2 -2 H ( z ) = 1 t (w t w ) G 0 ( z )
(27.11)
is an e n t i r e f u n c t i o n of
. which i s n o t i d e n t i c a l l y equal t o
,Then,
K(z)
zero.
Let us prove t h e f o l l o w i n g theorem.
THEOREM
27.1:
The f u n c t i o n
z
d e f i n e d bx (27.7) admits a r e p r e s e n t a -
cp(h)
tion (27.12)
cp(~)
= a l l + (1t a
2
)
[ w2S( A)tw
-2
~ ( A ) T ~ ( A -)
v( A)-1 ][ w-‘5(
B2 3
9
A)tw2q( h ) -11
where ( 2 7 J3)
a = w t w
-1
P = W2t
,
w
-2
Proof: Let (27.15)
where that
2)
X.(z) J
are entire i n
z
and
z =A5
t n + - ) + a 2 x p t 2 x p ++x4(z) , . Then equation (27.8) i m p l i e s
A HJNCTIONAL EQUATION
By computing
Xo,X1,X2,X3
and
X
4
125
i n terms of Go,G1,GZ,G3 and G
4 we
obtain
(27'16-0)
Go(a)+Go(z)2t
~sG,(z)G
(a) +azGZ(z)G 3(z) = 1
4
,
and
If we i n s e r t (27.17) and (27.18) i n t o
(27.19) we g e t
and hence
(27.16-O) , and
use t h e i d e n t i t y 2 2 1-Go( z)-Go( z )=~(l+aGo( a)) (1+ pG0( z)) = H( z)(l+a -a H( z ) )
,
STOKES MULTIPLTERS
126
= -(:+I)-
l)(w5tw-111-l)(w
-1t
+wV-l)
. .
'vle ( c a e a s i l y d e r i v e ( 2 7 . 1 2 ) from ( 2 7 . 2 0 ) , ( 2 7 . 2 1 ) , (27.22) and (27.23) ?'his completes t h e proo:' ue dic, n o t u s e
that
M(z)
of Theorem 27.1.
(27.16-1) and (27.16-4).
In t h e proof o f Theorem 27.1, A c t u a l l y , by u t i l i z i n g t h e f a c t
i s n o t i d e n t i c a l l y e q u a l t o z e r o , w e can d e r i v e t h e s e two
r e l a t i o n s from (27.16-0), (27.16-2) and (27.16-3).
I t i s e a s y t o show t h a t t h e right-hand member of (27.12) r e p r e s e n t s a solut3.on of' ( 2 7 . 8 ) which c o n t a i n s two a r b i t r a r y q u a n t i t i e s
.
X-4T)(A)
and
This means t h a t (27.8) admits n o n - t r i v i a l r a t i o n a l s o l u t i o n s
and n o n - t r i v i a l meromorphic s o l u t i o n s . s u i t a b l e way o f choosing entire in
l-'S(k)
h
.
A-'S(X)
and
However, we have n o t found any A-%(h)
so t h a t
cp(h)
becomes
The e x i s t e n c e of a n o n - t r i v i a l e n t i r e s o l u t i o n of (27.8) i s
known, 'cut it, is s t i l l n o t c l e a r why (27.8) admits such a s o l u t i o n .
:1 i s known t h a t t h e gamma f u n c t i o n i s t r a n s c e n d e n t a l l y transcendental.
In o t h e r words, t h e gamma f u n c t i o n does n o t s a t i s f y any a l g e b r a i c d i f f e r e n t i a l e q u a t i o n s . This f a c t can be proved by u s i n g t h e d i f f e r e n c e equation:
r(At 1)= U ( k )
d e n t a l l y transcendental? either.
only."
Is t h e f u n c t i o n c p ( A )
a l s o transcen-
Me do n o t have any answer t o this q u e s t i o n ,
I t should be n o t i c e d t h a t we can n o t prove o r d i s p r o v e t h e t r a n -
scenden t a l transcendency of rp( x) by u s i n g (27.8) only, s i n c e ( 2 7 . 8 ) =hits non-trivial r a t i o n a l solutions. By s p e c i a l i z i n g i d e n t i t y (21.31) for m = 3
i. l i e b e r b a c h [3; pp 325-3281.
, we
can d e r i v e
A FIINCTIONAL EQUATION
(27.24)
NS
,TI) + N U S
,W-T’ I)
~ ,q) S= 1
F
127
,
where (27.25)
F(S,T]) =w2C(0,S,TI)
-
If we regard t h e right-hand member o f ( 2 7 . 1 2 ) as a f u n c t i o n of
this r a t i o n a l f u n c t i o n s a t i s f i e s equation ( 2 7 2.4)
.
and
‘Tl
,
CHAPTER 6 A BOUNDARY VALUE PROBLEM I N THE COMPIXX PLANE
28.
Soundary conditions.
L e t us consider an eigenvalue problem
m m-1 y - [ x t a 1x (Pjk)
(x-t-
YE0
+ ...t a m ] y = h y , i n % and i n 8.) J
i n x-plane, where 2kll s: [ a r g x--[m-2
sj: l a r g In c e r t a i n cases problem
x - 2 1
<&.
(P. )
becomes t r i v i a l .
Jk
For example, if k = j
,
all values of h are eigenvalues, w h i l e t h e r e are no eigenvalues i f k =j t 1 I n t h i s chapter, w e s h a l l study problem ( P ) In o t h e r
.
092
.
words, we s h a l l study t h e eigenvalue problem
(28.1;
y”-P(x)y=Xy
,
YE5
,
where (28.2)
and
m m-l P ( x ) = x t a1x t
...+am ,
5 i s t h e set o f a l l e n t i r e functions o f x which s a t i s f y t h e condi-
tions
628.3) as
*
x
ymo tends t o i n f i n i t y i n t h e two s e c t o r s
This chapter is based on Y. Slbuya [ 3 8 ] .
LARGE EIGENVALUES
s2: 1 a r g x -&+ <& I.
(28.5)
129
(See Fig. 28.1.)
Fig. 28.1. I n this chapter, we a s s m e t h a t
al,
I n the case m = 1 , the s e c t o r s
...,am-
a r e given constants.
go , S1
s2
and
cover x-plane com-
p l e t e l y , and there i s no s o l u t i o n which i s subdominant i n Therefore t h e r e i s no eigenvalue of problem (28.1) the s e c t o r s
- - So,
al, 8,
and
a3
.
So
I n the case
cover x-plane, and i f
y
S2
.
m=2
,
and
i s an eigen-
function of problem (28.1), we must have (28.6)
x
as
1 2 1 y(x)expEp + T ~
X I=OW
tends t o i n f i n i t y i n any d i r e c t i o n , where r=-L+k2-L(a + I ) 2 8 1 2 2
.
Since the left-hand m e m b e r of (28.6) i s e n t i r e i n y ( x ) = [ a polynomial i n In f a c t , these polynomials i n Furthermore, the eigenvalues
x
A
xlexp[-Y
x
, we
must have
\
- kia1x]
.
are given i n terms of Hermite polynomials.
must s a t i s f y t h e condition
-&+ L2 &(a + 1) = a 2 81-2 2
non-negative i n t e g e r .
Completeness of eigenfunctions and an expansion theorem i n terms of eigenfunctions are well-known i n this case.* problem (28.1) f o r
29.
*
m23
I n this chapter, we s h a l l study
.
D i s t r i b u t i o n of l a m e eigenvalues.
As w e d i d i n Section 26, l e t us
See, f o r example, E.C. Titchmarsh [45; Chapter IV, gd.2, pp 73-75].
A BOUNDARY VALUE PROBLEM
130
set
and i ,212 -1)
where
,w
-2k
a2,
.. .,w -mk am)
and
2 ~ : = e x p [ i - - n ]. mt2 Then
f2 a r e subdominant s o l u t i o n s o f
and
f',,
y" - P(x)y = xy
i 29.2) in
8,
and
s2 ,
respectively.
( 2 8 . 1 ) a r e z e r o s of t h e Wronskian
T h e r e f o r e , t h e e i g e n v a l u e s of problem
,
W (a,X) 092
where
(29.3) Ey v i r t u e of Theoren 24.1,
l-el
i29.4)
W
092
(a,A) = e x p [ K ( l - w
1+2 m 2m )A
(1+0(1))1
uniforrny f o r
as X
tends t o i n f i f i i t y i n t h e s e c t o r
-4, mt2 bO(arg~<2n-&-
(29.6)
,
bo
and
11
2
1+W
(29.7;
092
(a,A) =exp[K(l-w
m)h
(l+o(l))1
-1-2.
L++1.
t exp[K(l-w
uniforn;ly f o r ( 2 9 . 5 ) a s
tends t o i n f i n i t y i n the sector
larg A - ( 2 n - b ) l 5 b o
( 2 9 .S)
Here,
1
b0
m)12 m(l+O(l))]
.
i s an a r b i t r a r y small p o s i t i v e number,
l a r g e p o s i t i v e number, and
Ro
i s an a r b i t r a r y
LARGE EIGENVALUES
SCD
(29.9)
K'J
-l
s n [ t m + l ) ' -t2 ] d t > 0
131
.
0
In order t o d r i v e (29.4
and ( 2 9 . 7 ) , we use t h e i d e n t i t y
(29 .lo)
(cf.
( 2 6 . 3 4 ) , (26.35) and Lemma 26.1 .)
The asymptotic formula ( 2 9 . 4 )
implies t h a t l a r g e eigenvalues of Problem (28.1) do not l i e i n s e c t o r (29.6)
.
By u t i l i z i n g the asymptotic formula (29.7) i n s e c t o r ( 2 9 . 8 ) , we s h a l l
To do this, l e t us f i n d r o o t s o f t h e equation
l o c a t e l a r g e eigenvalues.
=O
We s h a l l prove the following theorem.
i n sector (29.8).
THEOFEM 29.1:
If
M i s a s u f f i c i e n t l y l a r g e p o s i t i v e number, t h e einen-
values o f problem (28.1) which a r e i n t h e domain
where p
(A1
2M
takes a l l s u f f i c i e n t l y l a r g e p o s i t i v e i n t e g e r s ,
l i m v =O p+im p
(29.13)
.
Furthermore, these einenvalues a r e simple. Proof:
Equation (29.11) i s equivalent t o
or
11
( 2 9 -14)
where
q
3( 2 i K ) s i n ( $ r ) h 2m ( lo+ (1)) =(2q+l)in
i s an a r b i t r a r y i n t e g e r .
Observe t h a t
,
a r e d v e n by
132
BOUNDARY VALUE PROBLEM
A
i n s e c t o r (29. 8 ) .
If w e s e t
11 2m
-I--
(25.15 1
p=-k
,
p=-q,
equation (29 -14) becomes 2p-1) n ) L [ ~ + F ( ~ L )( ] = 2 ’ 2K s i n ( 2 )
(29.16) where
i s holomorphic i n t h e s e c t o r
F(b)
l*g
(29.17)
f o r large
IpL(
4 26;
, and E m F(p) = 0
as
tends t o i n f i n i t y i n s e c t o r ( 2 9 . 1 7 ) , and
p
p
i s a positive integer.
aYy v i r t u e o f Theorem 3 . 4 , equation (29.16) h a s a t most one r o o t i n t h e
sec’or
(69.18)
l a w PI
< 6;
56;
9
ICL12Mo
9
Mo i s a s u f f i c i e n t l y l a r g e p o s i t i v e number. Let u s f i n d t h e r o o t of e q u a t i o n (29.16) i n s e c t o r ( 2 9 . 1 8 ) . Take Mo s o l a r g e
if
O < 6:
and
that (29.19)
.
i n s e c t o r (29.18) Denote by a t h e right-hand member of ( 2 9 . 1 6 ) , and 1 P assume t h a t -a i s i n s e c t o r (29.18). S et 2 P 1 (29.20) P p = S ~ P { I F ( w ) I ;l a r g 56: 1b1 2 p p ) 1 Assume t h a t p i s s o l a r g e t h a t p 5- sin[b:] Assume a l s o t h a t P 2 sin g r l < l men t h e d i s c d e f i n e d by
.
PI
7
2
.
(29.21)
i s i n t h e domain i29.22) Furthermore, on t h e c i r c l e
we have
.
A NON-HOMOGENEOUS BOUNDARY VALUE PROBLEM
133
I P - apl - I PI I N P ) I 2 I P - apl - I P I Pp 2 l w - a P( ( 1 - P P ) - P p a p 1- P
--pa
>O
- p a
1-2PpPP
P P
.
Hence by u t i l i z i n g t h e Rouchhls theorem we can f i n d the r o o t o f equation Denoting this r o o t by
(29.16) i n d i s c (29.21).
p
P
, we
have
and hence
This completes t h e proof of Theorem 29.1.
30.
A uniaue s o l u t i o n of a non-homogeneous boundary value problem.
In
t h i s s e c t i o n we s h a l l consider a boundary value problem
Y ~ ~ - [ P ( x ) + ~ ~ Y ,= ~~( x€ ) 5 g, E 5 .
(30.1) Let us s e t
m
-
fo(s,a,A)g(t)d5
fZ(X,a,i)J
,
X
where t h e p a t h of i n t e g r a t i o n of t h e f i r s t i n t e g r a l i s taken i n t h e s e c t o r
g2 f o r l a r g e sector
8,
nant i n
151
, while
for large
8,
and
S2
1x1
t h e p a t h of t h e second i n t e g r a l i s taken i n the
.
, respectively,
E ( h ) g i s w e l l defined, t h a t and t h a t
Since
gE 3
, and
f o and
f 2 are subdomi-
i t i s n o t d i f f i c u l t t o prove t h a t
E ( i ) g i s an e n t i r e f u n c t i o n i n
(x,a,h)
,
E ( 1 ) g i s a s o l u t i o n o f t h e d i f f e r e n t i a l equation
p - [P(x) + A ] Y = W
.
(a,a)g(x) 092 I n this s e c t i o n , we s h a l l prove t h e following theorem.
(30.3)
30.1:
If Wo,2(a,X)#0 , t h e boundary value problem (30.1) has a
uniaue s o l u t i o n
(30.4) To prove this theorem, i t is s u f f i c i e n t t o prove t h a t
134
A BOUNDARY VALUE PROBLEM
(30.5)
E(hjgE 5
and f o r every f i x e d ( a , i ) . Let us denote by SE a s e c t o r i n x-plane which i s d e f i n e d by g€ 3
f o r every
where
2
i s a small p o s i t i v e number.
Assume t h a t
,
( a ,A
,
e
I t i s eveident t h a t
and a p o s i t i v e i n t e g e r
KN
firid twc: p o s i t i v e c o n s t a n t s
and
N
zcC80
are fixed.
.
We s h a l l
such t h a t
F$
(30.6) fcr
!30.7'
larg
XI
l2
I--
This will then prove t h a t
€
I X l q J
9
E(X)g-O
in
So
.
As t h e first, case,* we assume t h a t
(30.8)
Wo,2(a,A)
In t h i s case,
and
f0
are subdominant i n
=o
-
f2 are l i n e a r l y dependent, and hence
S o u S2
.
For each
xE
zc , l e t u s
f0
denote by
and y(x)
f2
the
ray derined by
ie
(30.9; where
y(x): < = x + s e e=arg x
(30.10)
.
(O<s
( S e e F i g . 30.1.)
,
Then
E(X ) g = f o ( x , a , X ) J f 2 ( 5 , a , X ) g ( S ) d S
C m
-+ fo!x,a,X)J f 2 ( 5 , a , a ) g ( ~ ) d ~ X
- f2(x,a,A)J
m
fo(S,a,i)g(<)dS X
i s a p a t h which s t a r t s from i n f i n i t y i n t h e s e c t o r
where
K8
-
I(
and
i$i
.
and
, and
t h e p a t h o f t h e second and t h e
(See F i g . 30.2.)
By u s i n g (30.10) we can f i n d
approaches i n f i n i t y i n t h e s e c t o r
third i n t e g r a l s i s y ( x )
So
g2
easily.
To prove Theorem 30.1, we do n o t need t o c o n s i d e r this c a s e .
A NON-HOMOGENEOUS
BOUNDARY VALUE PROSLEM
135
Fig. 30.1.
Fig. 30.2. Next, assume t h a t
(30.11) I n this case,
w092( a , h ) # O . fo
t i o n s of Chapter 5 , ( 3 0 -12)
and fo
f2 a r e l i n e a r l y independent.
If we use the nota-
can be w r i t t e n a s
fo(x,a,X) = c ( a , h ) f l ( x , a , h ) - w 1-2G( a ) f 2 (x, a ,A )
,
136
A BOUNDARY VALUE PROBLEM
and
c(a,h)
i s given by (29.10).
( C f . (26.25)’ (26.29), and (26.31).)
From (29 .lo) and ( 3 @.11) we derive
( 30 As
c(a,A)#O
x
*
tends t o i n f i n i t y i n
-
% ’
(30.15) where
(m: odd)
1
(30.16)
m
1 -=b
4
(a)
,
(m: even)
,
I
(: mf2-2h) 2 mt2-2h bh ( a ) x
$1 1
2 Em(x,a) =me2
( 3 0.1‘7 )
+
:
9
l
Note t h a t the q u a n t i t i e s
as
x
Em(x,a) and
-
Sc
tends t o i n f i n i t y i n
bl
ptl ( a )
a r e independent o f
rm = {?+2b1
(m: even)
(a)
P1 ( C f . Lemma 21.1.)
as
f2(x,a,A) = w tends t o i n f i n i t y i n
x
,
sE
c =E;m(x,a)
-
.
r m c ( a , ~ ) xm[l+
*
Let us consider a new v a r i a b l e (30.21)
,
Therefore, from (30.12)’ (30.15) and (30.18),w e derive 2v ( a ) -1-i
(30.20)
m
, where (m: odd)
( 30.19)
a
6
defined by
--1 2 O(X
) I ~ X P [ E ~ ( X I, ~ )
A NON-HOMOGENEOUS BOUNDARY V L U E PROBLEM
137
By v i r t u e o f Theorem 3 . 4 , the right-hand member of (30.21) I s univalent f o r
-
(30.22) If
Mo
XES,
1x1 2 M O > O
9
I s sufficiently large.
-
as: l a r g
( 30.23)
i n <-plane.
If
T >0
9
Consider a s e c t o r
c l q 1n -
mt2
- s 2
ICI 2 5
9
I s s u f f i c i e n t l y l a r g e , the s e c t o r
I n t h e image of domain (30.22) by mapping (30.21). s u f f i c i e n t l y l a r g e , the Image of the domain
( 3 0-24)
-
xE83s
9
1x1 2%
by mapping (30.21) i s contained i n
Be
. 1
as
x
tends t o I n f i n i t y I n
zc .
I n c-plane, l e t us consider a s e c t o r
where
Note t h a t
08
i s contained
Also, if M 2 > 0 I s
A BOUNDARY VALUE PROBLEM
138
--CFT2 m+2
-T Fig. 30.3. To prove Theorem 30.1, w e s h a l l use the following lemma.
-
JJEliA 30.1: L e t p be a aiven p o s i t i v e constant. sufficiently large,
c2
are
positive
Assume t h a t Lemma 30.1 has been proved.
the unique point
such t h a t
M1=Em(xo,a)
(30.31) W e write
xo
E(A)g
in t h e form
,
-
xoE 8 ,
m, if q>0
constants independent o f
In x-plane, we s h a l l consider
I xol 2Mo
.
A NON-HOMOCENEOUS BOUNDARY VALUE PROBLEM
139
( 30.32)
Denote by I n order t o estimate the second and t h i r d i n t e g r a l s i n the right-hand member of (30.32) f o r
x€g
mate of form (30.6) f o r
, we
x€g
M2> 0 i s s u f f i c i e n t l y l a r g e .
.
use Lemma
30.1.
Then we obtain an e s t i -
Notice t h a t domain (30.24) i s i n
This proves t h a t
E(A)g 0 i n
s p l t t t i n g t h e i n t e g r a l d i f f e r e n t l y we can a l s o prove that 82
, and
hence
E(X)gE 5
Proof of Lamma 30.1: u t i l i z i n g (30.27).
By
E(1)gSO i n
The first estimate of (30.30) can be derived by In f a c t ,
=[ssm I c t s eie
7
Y(7)
cos Bl)ds]le-cI
ll-pexp(-s
0
r,(c)
=J
0
(30.36)
.
if
.
Itl-’]e -t l l d t l
(30.34)
8,
s
T+Te
ie,
P
exp[(s-
y t se
i92
T)COS
C12]ds
.
UO
A BOUNDARY VALUE PROBUN
and
This completes the proof of Lemma 30.1.
W e s h a l l denote, h e r e a f t e r , t h e right-hand member of ( 3 0 . 4 ) by R ( h ) g ; t h a t is,
(30.38)
31. Estimate o f R ( h ) g : P a r t I . R(A)g
f o r large
1x1
.
I n t h i s s e c t i o n w e s h a l l estimate
The following formula f o r
i s t h e basis of
E(h)g
our estimates: 2
t-
2
2
f2(x+ w s,a,A)g(x+ w s)ds
E(X)g = w fo(x,a,A)[ 0
i31.2)
i
2
-
f 2 ( x + w s,a,A) =urn(w 2x+ s,w
= um(w -2 x + s,w -2al,
-2 al,
...#-2b-Jlarn-l,w
...,w-2
m-1 ,O? am+\ )
-2mam+w2-”X)
.
From Theorem 7.3 we d e r i v e
where ( x + s ) m + a l ( x ts)m-lt
(31- 4 )
...+a m - , ( x + s ) t a m
= 9m + u19m-1 + . . . + ~ - l s + u m and Km(x,a)=
(31.5)
c'
, ,
(m: odd)
(m: even)
exp[-Em(x,a)]
.
Let us u t i l i z e Theorem 19.1 t o derive
where (i)
F ( s , x ) = s m + u pm-1 lull
h
(iii)
+ ...+
,
s
(iv)
;
O<s<+=
t o i n f i n i t y i n t h e sector: l a g X I -tends F1(s,h) tends t o zero uniformly f o r
lull + .**+IumI< R o as
x
tends t o zero uniformly f o r
(ii) ;,(s,X)
as
+ ...+um,ls+umt
tends t o Ro
and
9
l a g XI
I n - po ;
2.-
are a r b i t r a r y p o s i t i v e numbers, but
number depending on Ro
and
po
.
I n t h e same manner, we can derive -2 -2(m-1) Um(S,W ul,. .,w %-1 ,w-%
.
= C,(W A
-2 ul,
...,u-%
m
Mo
i s a positive
9
-2
m-1 uls
+ ...+w
m +w2-?)
--
1 1 +u2-mx)[lt~l(g,x)]^P(s,A)4expk$(o,b?du],
m
0
where (i) i ( s , x ) = s t w
1x1 2Mo
;
SCD
po
9
Po
m-1
A BOUNDARY VALUE PROBLPl
(ii) %,(s,X)
tends t o zero uniformly f o r
lull t as
X
,
O<s<+
tends t o
-b
Assume t h a t
...+ 1uml < - R ~,
~ a r g [ w ' - Y ~5.~
Po
, 1 x 1 2~~
.
gE3
1x1
(31- 8 )
;
tends t o zero uniformly f o r
lull + s
,
l a r g [ ~ ~ - ~5.l ] ( p,
tends t o i n f i n i t y i n t h e sector:
(iii) tl(s,A)
as
...+ \ u r n \< R o
, and
that
+ [all t ...t
and
(31.9)
l u g A1 I n - P o
ro and
where
~ a r g [ w ~ - Y5.~ t Po
9
are a r b i t r a r y but f i x e d p o s i t i v e numbers.
p,
(31.1), ( 3 1 . 2 ) , (31.3), (31.6) and (31.7), (31.10)
, Then from
we derive
E(A)g
1
where
= Km(x,a)Km(w -2 x,C 2 (a))Cm(ul, A
...,um+X)Cm(w-2 ul,. . . , ~ ? % t w ~ - % )
.
A
Mo such i s i n t h e domain defined by (31.8) and
From (31.10) w e conclude t h a t t h e r e exists a p o s i t i v e number t h a t , if
l a ( 2Mo
and
(x,a,i)
(31.91, we have ( W g I IC,/N,(~,~J)\
(31.12) where
C,
la1
--1 2
is a p o s i t i v e number depending only on g , ro and
Now we shall prove t h e following theorem.
po
.
ESTIMATE OF R(A)g
where
ro
143
are a r b i t r a r y but f i x e d p o s i t i v e numbers.
po
Mo g&
e x i s t p o s i t i v e numbers
C1 such t h a t ,
if
1A1
Then t h e r e
2Mo , we
have
--2 1
(31.13) Proof:
I R ( M
IC,lAl
*
I n o r d e r t o prove t h i s theorem, we must estimate
=I
...,w-aa -2 -2 x,w al, ...
urn(w-'x,
...,am+A
b;(x,al,.
we
In f a c t ,
shall use Theorem 7.3 and Theorem 19.1.
I,,,(x , al,
*.
-
w $;(w
..,a +A) m
w-'a
1'
+w2-mX) m +w2-IR) m
uniformly f o r (31.8) a s A tends t o i n f i n i t y i n s e c t o r (31.91, where Nm, and $ a r e the same a s i n formulas (31.11), (31.6) and (31.7), respectively.
Notice t h a t
P(0,A) = \ [ l + o ( l ) ]
,
F(0,A) = w 2 ? [ l + o ( l ) ]
3m-2)
( 3 1 -14)
W
092
( a J ) = N m (x,a,l)2w
[1+0(1)1
.
Hence
-
Therefore, by v i r t u e of (31.12), we can complete the proof of Theorem 31.1. Sector (31.9) i s given by (31.9')
- n + m-2 2 ~ +p o I a r g \ I n - po
.
I n Section 26 this s e c t o r was denoted by To (26.11) and (26.12).) (See Fig. 31.1.)
.
(Cf.
A BOUNDARY VALUE PROBUN
A- plane
Flg. 31.1. 32.
Estimate o f
estimates of
R ( h ) g : P a r t 11.
R(A)g
(32.1) W e remark t h a t
I n t h i s s e c t i o n , we s h a l l derive some
outside the sector
m-2 - n t 2 r t posarg h i n - p o mt-2
.
R(X)g I s meromorphic i n A-plane, and t h a t almost a l l o f
i t s poles a r e located i n a s m a l l sector (32 - 2 )
1-g
A - (2n-4n)) mt2
56,
.
( C f . Theorem 29.1.)
The d i r e c t i o n (32.3)
arg ~ = 2 n - &
is the b i s e c t o r of t h e e x t e r i o r of s e c t o r (32.1).
N g . 32.1.
(See F i g . 32.1.)
W e s h a l l first prove the following lemma.
UMMAlAl:
Assume t h a t
.
(al,. .,a m
i s fixed.
m, i n the
sector
rr-p,(argh(_nt21T-+po, m-2 mi-2
(32.4)
there exists a family of a r c s (32.5)
such t h a t (a) the h q ( t ) tions
a r e continuous functions of
t
which s a t i s f y t h e condi-
-
(32.6)
(b) no a r c of family (32.5) i n t e r s e c t s i t s e l f ; ( c ) on each a r c of familx (32.5) we have
1 1
d-
(32.7)
where C
y
a r e 'Dositive constants indewndent o f
Fig. 32.2.)
Mg. 32.2.
t
q
.
(See
146
A BOUNDARY VALUE PROBLEM
Ey v i r t u e of Theorem 3 . 4 , w e can f i n d a s u f f i c i e n t l y l a r g e p o s i t i v e number
M,
such t h a t
( 3 2 .lo)
H(h)
i s univalent i n t h e s e c t o r
larg X - ( 2 n - h ) I
Lad,< go ,
1x1 2 M o
.
The image of s e c t o r (32.10) by t h e mapping
6 =H(X)
(32.11)
contains
R
ray
if
( so 5 s < -tQ)
6 =-is
(32.12)
is sufficiently large.
so>O
Furthermore, t h e r e e x i s t s a family of
wcs
k =P
32.13)
q
(0(_7<1),
(7)
q=1,2,
...
such t h a t ( a ! ) the tions
y q ( ~ ) are continuous functions of
T
which s a t i s f y t h e condi-
(05711) 9 uniformly f o r
I =g[wq(
1
7)
1 - (2n - &)
01~51 ,
1 < 6;
0 ) J = 2 n - 5 - 6;
,
arg[ cLq 1 ) 3 = 2 n - 5 + 6 ; ;
(bj)
no a r c of family
(cl)
w e have
32.13) i n t e r s e c t s i t s e l f ;
(0<7<1)
,
PRINCIPAL PARTS OF R(k)g
(01~11) ,
M H ( I L ~ ( T ) )1J = (No+q)n -~where
No
147
is a s u f f i c i e n t l y l a r g e p o s i t i v e i n t e g e r independent of
T
and
q .
On a r c s (32.13), t h e function exp[ H( A ) ] values, s i n c e
takes purely imaginary
Theref o r e Iexp[H(X)]+lI > 1
on a r c s (32.13).
Hence, from ( 3 2 . 8 ' ) we d e r i v e (32.7) on a r c s (32.13).
Outside s e c t o r (32.10), we can use s u i t a b l e c i r c u l a r a r c s t o complete t h e proof of Lemma 32.1. I n s e c t o r (32.4) we can e s t a b l i s h an estimate
11
3IE(X)gl I C l e x p h 1 l 4 I 2 m1
( 3 2 -14) IXI
f o r large
,
where
C1 and y1
.
g, x, a, and
only on
a r e p o s i t i v e constants which depend
I n f a c t , we can derive (32.14) from ( 3 1 . 1 ) , po by u t i l i z i n g Theorems 19.1 and 20.1. Thus w e proved the
(31.2) and (31.3) following theorem.
Assume t h a t
(x,al,
...,am )
i s f i x e d , and t h a t
be an a r b i t r a r y (but f i x e d ) s m a l l p o s i t i v e constant.
po
gE 5
.
Then i n s e c t o r
(32.4), t h e r e e x i s t s a family of a r c s (32.5) such t h a t (a)
the A 9( t )
a r e continuous i n
t
and s a t i s f y conditions (32.6);
(b)
no arc of family (32.5) i n t e r s e c t s i t s e l f ;
(c)
on each a r c of family (32.5)
11
3IR(h)g(x)l I C 2 exp[Y21h12
(32.15) where
and
C2
Po
y2
a r e p o s i t i v e constants which depend only on
R(X)g
f i n d t h e p r i n c i p a l p a r t s of zeros of
W (a,X) 092 W e s h a l l assume t h a t
, and
g , x, a
*
3 3 . P r i n c i p a l p a r t s of
h
9
let
.
a t i t s poles.
I n this s e c t i o n , w e s h a l l
R(X)g a t i t s poles.
Poles of
R(h)g a r e
Hence they are the eigenvalues of problem (28.1) (al,
...,a m )
is fixed.
Let
p
.
be a f i x e d value of
A BOUNDARY VALUE PROBLEM
be t h e T a y l o r ' s expansions of
Since
f o , fl
and
f2
f o , fl and
a r e subdominant i n
f2
at
so, S1
h =p
and
respectively. S2
, respectively,
we have
( h = 0,1,2, if
p
i s a zero of
w092 ( a , a )
of m d t i p u c i t y
n-1
(33.6) where
f(x,a,p;i)
p
is a zero of
W
=
x
h=o
(a,a)
0,2
f
o,h
...,n-1) n
.
L e t u s set
h (x,a,y)(A -IA) ,
of m u l t i p l i c i t y
n
.
Then
A C0MPLE”ESS PROPERTY
(33.7)
E 3;
f ( .,a,p;A)
149
,
and
E( X ) g = -W
(33.8)
C
.
f(5,a,p;X)g(S)d5+ O ( l h - ~ ( ~ ,)
C starts from i n f i n i t y i n 8, , and approaches i n f i n i t y i n Formula (33.8) y i e l d s t h e p r i n c i p a l p a r t of R(h)g
where the path g2
2G( a ) -1 f(x,a,p;A)J
(See Flg. 30.2.)
a t a zero
p
W
of
(a,h)
of m u l t i p l i c i t y n
092
.
I n p a r t i c u l a r , the
following theorem has been proved.
Assume t h a t
:1.3 -
i s a zero of
p
W ( a , h ) of m u l t i p l i c i t y n 092 s a t i s f i e s the conditions
~
Then p i s n o t a pole of (33.9)
R(h)g
g
S,fo,h(s,a,e)g(5)d5=0
where C i n a2 .
9
h=0,1,
is a path s t a r t i n g from i n f i n i t y i n 8,
The functions
Hence, i f
p
f
(x,a,p)
0 *h
J
fo(5,a,P)g(5)ds
C
Notice t h a t
9
and approachinn i n f i n i t y
a r e given by
i s a simple r o o t of
(33-11)
...,n-1
.
W
092
(a,h)
, condition
(33.9) becomes
=o
i s an eigenfunction corresponding t o t h e eigenvalue
fo(x,a,p)
34. A comDleteness property of eiaenfunctions. I n t h i s s e c t i o n , w e s h a l l prove t h a t , i f gE 5 and condition (33.9) i s s a t i s f i e d l by g f o r every zero
p
of
W
092
, then
(a,X)
g(x)
f
0
.
We s h a l l prove the following theorem. Sumose t h a t
of
gE3;
...,am)
. m, I;f
R(X)g i s an e n t i r e function
X f o r a fixed (al, and f o r every x must be i d e n t i c a l l y eaual t o zero.
Proof:
(34.1)
By v i r t u e of Theorem 31.1, we g e t --1
, the
function
g(x)
A BOUNDARY VllLUE PROBLEM
150 for
(34.2) where
-n+ 2
po
m- 2
~ po< + arg A I n - Po
g , x, a
and
.
po
Po
9
Mo, C1 a r e p o s i t i v e con-
i s a small p o s i t i v e c o n s t a n t , and
stants depending o n l y on
ILI
9
Furthermore, by u t i l i z i n g
Theorem 32.1, we g e t
1 1
3-
(34.3)
I R ( M SC,
exp[y21AI2
m1 C2 and y2 are p o s i t i v e
on t h e family o f a r c s d e f i n e d by (32.5), where g , x, a
numbers depending o n l y on
and
po
.
Let us apply t h e Phragm6n-LindelEf Theorem t o
(34.4)
pOIarg hln+ 2
n-
~ P,
1112%
+
9
satisfies ( 3 4 . 1 ) f o r ( 3 4 . 2 ) .
R(X)g
Lle have shown t h a t
m- 2
5
choose p o s i t i v e c o n s t a n t s
C3
and
i n the sector
R(h)g
Hence, i f w e
i n a s u i t a b l e way, we g e t
--1 (34.5) on t h e boundary of ( 3 4 . 4 ) . g, x, a
and
.
po
(34.6)
m-2< C< m
and consider
-1
( 34 -10)
i n ( 3 4 . 4 ) , where
c
depend o n l y on
3
so t h a t
1 m+2 -4-) m-2
Set
3
i s an a r b i t r a r y p o s i t i v e number.
Observe t h a t
Hence,
1 m+2 2 m-2 i a -c(-) (expbe A 6,
1 mt2
11 5 e x p t - c q
is a positive constant.
have
( 34 -11)
C
and
c
be s u f f i c i e n t l y s m a l l .
F(X) = [R(h)g]A2exp[c ei a 12
i n s e c t o r ( 3 4 . 4 ) , where
i n sector (34.4).
9
n
po> 0
where we must assume t h a t
(34.8)
The two c o n s t a n t s
Choose a p o s i t i v e c o n s t a n t
I F(h)l l C 3
4 Since
1
9
1 mt2 > pC(m-2)
$+$ , we
151
A COMPLETENESS PROPERTY
.
on (34.5) for l a r g e
q
boundary of (34.4).
Hence (34.11) i s v a l i d i n domain (34.4) f o r an a r b i -
t r a r y p o s i t i v e number
Also, (34.5) and (34.10) y i e l d (34.11) on the
c ,
Letting
6
tend t o zero, we g e t
(34.12) The two estimates (34.1) and (34.12) imply t h a t
i n domain (34.4).
R(?,)g = 0
(34 - 1 3 )
as an e n t i r e f'unction of
?,
.
, we
Since (34.13) is true f o r every x
g(x)=--$R(A)g]d2
[P(x)+X]R(h)g'O
get
.
dx This completes the proof of Theorem 3.4.1. If, f o r a given
(al,. ..,am)
,
Wo,2(a,?,)
does not have any multiple
zeros, then the eigenfunctions of problem (28.1) a r e complete i n sense t h a t , i f
5 i n the
g E 3; and
J
f0(5,a,v)g(t)dS = 0
C
, then
f o r every eigenvalue
g(x)=O
.
Theorem 29.1 implies t h a t , i n
general, t h e r e exist a t most a f i n i t e number of multiple zeros of
W
(a,X)
092
.
Thus we obtain t h e theorem below.
W-
Suppose t h a t
f i n i t e number of functions
al,. gh
..,a m
in
are fixed.
Then t h e r e exist a
3 such t h a t , i f a function
g
3
s a t i s f i e s the conditions
then g
must be i d e n t i c a l l y equal t o zero.
The f b c t i o n s gh are d e r i v a t i v e s of bm(x,al,...,a w i t h respect t o
X
m-1' am + A )
a t m u l t i p l e zeros of
same as i n Theorem 33.1.
W
0,2
(a,X)
.
The path
C
i s the
CHAPTER 7
DISTRIBUTION OF ZEROS*
35.
A r e l a t i o n between zeros and eigenvalues.
(35.1) where
Let us consider
d2y/dt2- [ q ( t ) -h]y=O t
i s a real variable,
is a parameter, and
A
q(t)
i s a real-
valued function s a t i s f y i n g
Let
denote t h e s o l u t i o n of (35.1) s a t i s f y i n g t h e i n i t i a l condition
'p(t,k)
y(0) = o
(35.3) Let
N(h)
.
lim q(t)=+ t +-w
(35.2)
,
y'(0) =1
be t h e number of zeros of
i t i s known t h a t
N(X) Xl
. rp
i n the interval:
O< t < +
.
Then
has i n f i n i t e l y many p o i n t s of d i s c o n t i n u i t y
....
,
and $0
0
f o r every j
2541.) As A
.
2 rp(t,X.) d t < * J
(See, f o r example, E.A.
tends t o
h.+O J
, one
Coddington and N. Levinson [7; p .
of t h e zeros of
cp
goes t o
-4-
.
In
this chapter, w e s h a l l d e r i v e a similar result f o r subdominant s o l u t i o n s of
t h e d i f f e r e n t i a l equation (6.1)
.
Let us denote by
(354 )
Y =cp(x,al,.
.
.,a
m1
t h e unique s o l u t i o n of the d i f f e r e n t i a l equation
( 691)
*
y"
- P(x)y = 0
?his chapter i s based on Po-Fang Hsieh and
Y. Sibuya [19].
ZEROS AND EICEMTALUES
153
which s a t i s f i e s an i n i t i a l condition
where
(6.2)
m m-1 P(x)=x + a x +...+am 1
We suppose t h a t
u
(al,
...,am) .
and
a r e f i x e d complex numbers independent of
The function cp(x,a)
1.
(35.6)
.
+IPJ f o
is entire i n
.
(x,a)
We assume t h a t
*
Then
f o r every
.
(x,a)
Suppose t h a t 0
(35.8)
0
(P(xo,al,.
*
,am) = 0
*
Then (35.7) implies t h a t 0
’
(35.9)
cp (Xo 9 a1
9
...,am0 ) # o .
Therefore, we can f i n d a neighborhood
...,
z(al, am ) such t h a t ( i ) z(al,. .,am) i s holomorphic i n (ii)
.
0
z(al,
z(al,
V ;
0 ;
,...,am),al ,...,am ) = O V
.
This is a consequence of the i m p l i c i t function
We s h a l l a l s o denote by
..., am )
the s o l u t i o n In general,
and a function
...,am ) = x
identically i n theorem.
... , am ) 0
(a:,
0
(iii) cp(z(a,
of
of
V
in
( al,
“a1,.
...,am )-space.
..,am)
We c a l l
the a n a l y t i c continuation z( al,
...,%)
a zero of
. The s o l u t i o n cp(x,a) may have more than one zero. “(al, ...,a ) may be multiple-valued i n (al, ...,a )-space. m m cp(x,a)
Our main concern i n t h i s chapter i s t o c h a r a c t e r i z e subdominant s o l u t i o n s of (6.1) i n terms of s i n g u l a r i t i e s of zeros of cp(x,a) with r e s p e c t t o (al,.
..,am) .
..,am) may be multiple-valued, we s h a l l define a singul a r i t y of z(al,. ..,am) i n the following way: A zero “(al, ...,%) has a s i n d a r i t y a t ( c l , ...,am) i f there Since
z(al,.
exist a continuous curve (35 .lo)
C: (a1
,...,am 1 = ( f l ( t,..., ) fm(t))
(05 t <1)
154
DISTRIBUTION OF ZEROS
and a branch
...,am )
z(al,
(1) l i m f . ( t ) = c t+l j (2)
t h e branch
such t h a t
...,m)
( j =1,
z(al,
...,am )
,
t h i s a n a l y t i c c o n t i n u a t i o n breaks down a t Suppose t h a t
z(al,
...,am )
(cl,
...,cm) .
admits a s i n g u l a r i t y a t
t h a t t h i s s i n g u l a r i t y i s d e f i n e d by a curve (35.10).
...,am ) = -
l i m z(al,
(35.11)
Otherwise, t h e r e would be a sequence such t h a t Cp
'(xl,c)
l i r n a'n) -c n-++
.
fo
as
a
a(n)=(ain),
l i m z ( a ( n ) ) =xl#= n - +Sm
and
C
Hence t h e curve
36.
(cl,
...,cm) , and
Then
tends t o
along
c
..., ( n ) ) . Then
.
C
( n = 1 , 2 , ...)
z(a)
,
rp(xl,c)=O
would n o t d e f i n e a s i n g u l a r i t y a t
Note That i n t h i s argument w e must u s e t h e branch
singuiarity a t
,
can be continued a n a l y t i c a l l y a l o n g C
c
.
which d e f i n e s t h e
.
c
If we u s e t h e same n o t a t i o n s as i n S e c t i o n 7, t h e
Main theorem.
s e c t o r i n x-plane d e f i n e d by 2k larg x - n I m+2
(36.1) i s denoted by
8
k '
<Jmt2
The c l o s u r e o f
2k
(36.2)
-
(36.3)
k
The s e c t o r s
i.e.
% , where
. .., e l
(mod m+Z)
0,1,
cover x-plane completely.
,
n 5-m+2
(arg x - 7 1 ms2
%.
i s denoted by
Sk
A s w e d e f i n e d i n S e c t i o n 7, a s o l u t i o n
(6.1) i s s a i d t o be subdominant i n
%
tends t o i n f i n i t y i n any d i r e c t i o n
arg x = e
2k
le - m T I
(36.4)
,
<=-
if
y(x)
y(x)
t e n d s t o z e r o as
of
x
such t h a t
n
I n t h i s c h a p t e r w e s h a l l prove t h e following theorem.
36.l.:
If a z e r o
..,cm)
exists
k
such
z ( a l , . ..,am)
~f
...,am )
cp(x,a)
(cl,
...,cm)
of t h e s o l u t i o n
cp(x,a)
admits a
in (al,. ..,a m )-space, then i s subdominant i n % f o r some k . Conversely, i f t h a t (p(x,cl, ...,c ) i s subdominant i n \ , t h e n a m
singularity a t a p o i n t cp(x,cl,.
z(al,
admits a s i n m l a r i t y a t
(cl,.
there zero
..,cm) .
'he proof of this theorem w i l l be given i n S e c t i o n s 37 and 38. p r e p a r a t i o n for t h e proof, w e s h a l l make a f e w remarks on subdominant
As a
MAIN THEOREM
solutions.
155
W e know t h a t t h e d i f f e r e n t i a l equation (6.1) has t h e subdomi-
nant solution s
(36.5)
m)
Y=ldm,k(X,al,
which s a t i s f y t h e following conditions: (i) the
(ii)
bm,k(x,a)
the
m,k
admit asymptotic r e p r e s e n t a t i o n s *
(x,a)
ldm,k(x,a)
(36.6)
(x,a) ;
are entire i n
=lJ
--
-krm,k x rm,k [1+O(x 2)]exp[(-l)k+1Em(x,a)]
uniformly on each compact s e t i n
(al,.
..,am )-space
i t y i n any closed s u b s e c t o r of t h e open s e c t o r s
2bh
1
2
$W2)
Em ( x , a ) =-mf2 x
(36.8)
as
+ z
x
u-u 'k-1 %
tends t o in f in -
s+l' where
Z(mt2-2h) 1 7
mt2-2h
l
2n w=exp{i) mf2
(36 - 9 )
. .
( x , a ) i s subdominant i n % m,k i s subdominant i n Sk i f and o n l y i f cp(x,a)
The s o l u t i o n ld cp(x,a)
l i n e a r l y dependent. in
Hence t h e s o l u t i o n and Qm,k(x,a)
I n o t h e r words, t h e s o l u t i o n cp(x,a)
are
i s subdominant
Sk i f and o n l y i f
(36 .lo)
%A,k(o,a)
Let u s denote by later that
Fk(a)
Fk(a)
- &m,k(O,a)
=0
.
t h e left-hand member of (?6.lo), W e s h a l l show
i s not i d e n t i c a l l y equal t o zero.
Therefore, t h e r e a l
dimension of t h e a n a l y t i c s e t defined by (36.11)
Fk(al,.
.
..,am ) = 0
i s a t most 2 m - 2 Theorem 36.1 claims t h a t s i n g u l a r i t i e s of zeros of t h e s o l u t i o n cp(x,a) with r e s p e c t t o ( a l , . .,a ) a r e contained i n t h e m union of a f i n i t e number of t h e a n a l y t i c sets defined by (36.11), where t h e k are given by ( 3 6 . 3 ) . This means t h a t , even i f w e remove t h e s e
.
156
DISTRIBUTION OF ZEROS
s i n g u l a r p o i n t s from nected s e t .
( a l , . . . , a )-space, we s t i l l have an arc-wise con-
m
Therefore, zeros of t h e s o l u t i o n
cp(x,a)
..
I v e r s e n ' s p r o p e r t y as f u n c t i o n s of
have t h e so-called
.
In o t h e r words, t h e (al, . , am ) zeros can be continued a n a l y t i c a l l y from an a r b i t r a r y p o i n t t o another
a r b i t r a r y p o i n t along a curve which l i e s i n a g i v e n neighborhood of a pre(See M g . 36.1.)
s c r i b e d curve j o i n i n g t h e s e two points.*
This a n a l y t i c
c o n t i n u a t i o n may break down a t t h e end p o i n t of t h e c u r v e .
37.
Proof of Theorem 36.1:
...,cm)
(cl, v(x,a)
.
In t h i s s e c t i o n , we assume t h a t
i s a s i n g u l a r p o i n t o f a zero
z(al,
...,am )
of t h e s o l u t i o n
W e want t o show t h a t t h e r e e x i s t s
dominant i n
Sk
.
k such t h a t cp(x,c) As w e remarked i n S e c t i o n 3 5 , l i m z ( a ) =as
t o c along t h e curve t h e r e exist an i n t e g e r
.
( n =1,2,. .)
(37.1)
Part I.
C
h
.
which d e f i n e s t h e s i n g u l a r i t y a t c and a sequence a ( n ) = (a?', .,a ( n ) ) m
..
i s suba
tends
Hence
such t h a t l i m a( n ) = c n + sco
,
z(a("))
E S ~
. ,
( n =1,2,. .)
and (37.2)
*
lim z ( a ( " ) ) n + Sa,
In g e n e r a l , a f u n c t i o n
equation
F(f,a) = 0
f(al,
, where
T. Nishino [29; p . 601.
=a
F
.
...,am )
which i s i m p l i c i t l y d e f i n e d by an
i s e n t i r e , has t h e I v e r s e n t s p r o p e r t y .
See
PROOF OF THEORpi 36.1 i s subdominant i n one of the t h r e e s e c t o r s
We s h a l l prove t h a t rp(x,c)
.
and %+,
157
I n other words, we s h a l l prove t h a t
c
satisfies
one of the t h r e e equations (37.3)
Fh-l(c> = O
,
Fh(c) = O and
Fh+l(c) = O
.
L e t us d e r i v e a contradiction from the assumption t h a t
#'
Fh-
(37 -4)
Fh(c) f
9
o
9
Fh+l(c) #
'
Set
(37.5 Then (37.6
k
where
C (a)
(37.7)
i s defined by (21.4). Furthermore, -r (Cf. (21.211.) Wo(a) =2w m,l
.
Lst us set
Assumption (37.4) implies t h a t (37.11)
Y,(C)#O
>
YZ(C)#O
Hence t h e r e exists a neighborhood (37.12)
v,(a)#o
f o r every a E V
.
Denote by
;O
,
9
V
of
v,(a)#o
,
q(c)#O c
@#O
*
such t h a t
~ , ( a ) # o, k2(a)#o
Assume t h a t the closure o f
6 ,M
9
V
i s compact.
a s e c t o r i n x-plane which is defined by
( 3 7 -13)
6 i s a small p o s i t i v e number, and M i s a l a r g e p o s i t i v e number. The s e c t o r B i s contained i n ah Therefore, by u t i l i z i n g the asymp 6 ,M t o t i c representations (36.6) o f ( x , a ) , we obtain
where
.
m,k
DISTRIBUTION OF ZEROS
158
a€ V
uniformly f o r if M
as
x
tends t o i n f i n i t y i n
'6,M
This means t h a t ,
*
is sufficiently large,
(37.15)
for large
z(a(n') E
%
.
( n = 1 , 2 , . .)
n ,
l i m z( a ( n ) ) =a n++ z(a(n):! a r e contained e i t h e r i n t h e s e c t o r
Since
2h-1 l a r g x - ~ n 56 l
(37.17) f3r l a r g e
n
.
and
,
1x1 L M
,
the points
,
(See Fig. 37.1.)
0 2h-1
m+2
Fig. 37.1. W e s h a l l prove t h a t , i f
cannot contain any p o i n t s
M i s s u f f i c i e n t l y l a r g e , s e c t o r (37.16)
z(a(n))
.
S i m i l a r l y , we can a l s o prove t h a t
s e c t o r (37.17) cannot contain any p o i n t s large.
z(a("))
, if
M
i s sufficiently
This will l e a d u s t o a c o n t r a d i c t i o n .
L e t us f i n d t h e zeros of t h e s o l u t i o n
cp(x,a)
i n s e c t o r (37.16).
do t h i s , we s h a l l use the asymptotic r e p r e s e n t a t i o n s (36.6) o f
for
k=h
equatior.
and h + 1
, and
formula (37.8).
To
Qmlk(x,a)
From (37.8) w e d e r i v e an
PROOF OF THEOREM 36.1
159
(37.18) and R1
There e x i s t two p o s i t i v e numbers Ro
such t h a t
(37 -19)
, s i n c e (37.12) holds f o r ( x , a ) imply t h a t of U m,k
aEV
for
tations
uniformly f o r
a€V
as
x
.
Also, the asymptotic represen-
tends t o i n f i n i t y i n s e c t o r (37.16), where
r=r m,h+l-rm,h
(37.21)
aEV
r ” = h r + rm,h+l
’
*
Set
and
Then equation (37.18) i s equivalent t o (37.22) where
,
g(x,a) =(2nN)i+ $(a) N
is an a r b i t r a r y i n t e g e r .
Let u s set
Then from (37.20)
we derive
l i m H(x,a) = O
uniformly f o r
a€V
as
x
Now i t i s easy t o prove t h a t t h e
tends t o i n f i n i t y i n s e c t o r (37.16).
image o f s e c t o r (37.16) by the mapping (37.23)
u=g(x,a)
(for every fixed
a
in
V)
contains a s e c t o r (37
.a)
i n u-plane, where
Img
-6
~ - 17 1 5-69
1.
i s a s u f f i c i e n t l y small p o s i t i v e number,
s u f f i c i e n t l y l a r g e p o s i t i v e number, and in V
2z and
% is a
a r e independent o f
.
Denote by U(N)
the set i n u-plane which c o n s i s t s of p o i n t s
a
160
DISTRIBUTION OF ZEROS
(2nN)i+ $ ( a )
, where
(aEV)
i s a positive integer.
N
s u f f i c i e n t l y small.
UCN)
Observe t h a t , i f
i s sufficiently large.
(37.24).
N
and
l i m g ( x , a ) ==
U(N)
U(N) rp(x,a)
as
i n (37.24), i f
.
NfNI
i n s e c t o r (37.16) a r e tends t o i n f i n i t y i n
x
g ( z ( a ( n ) ) ,a‘n) )
i s i n s e c t o r (37.16) and
z(a(”))
is
V
i s contained i n s e c t o r
aEV , i t follows t h a t
s e c t o r (37.16)uniformly f o r f o r some
a r e mutually d i s j o i n t i f
U(N1)
Pathermore, s i n c e the zeros of
s o l u t i o n s o f (37.22), and
Then. i f
E U(N)
].(a
(4 )I
i s sufficiently large.
Assume t h a t t h e r e a r e i n f i n i t e l y many Then (37.2) implies t h a t t h e r e exist two positive integers
and
N
z(a(”))
i n s e c t o r (37.16).
z ( a ( n ) ) and
, and
z ( a( n ’ ) )
two
such t h a t
NI
(i) N # N ~ ;
,
(ii) g ( z ( a ( ” ) ) , a ( ” ) )E U ( N )
U(N’)
c
to
.
a=a(t) a(n’)
(OLtLl)
, where
W e assume t h a t
long
€18
.
t
,
a ( 1 ) = a( n ’ )
, where
U(N(t))
Note t h a t t h e curve a
and t h a t
rl
joins
tends t o
C
terminates a t along C
c
Iz(a(t))(
a(tl)
(ii) z ( a ( t ) ) i s (iii) N ( t l ) # N ( t 2 )
Let
r2
i p
to
Consider
.
z(a(t))
As
g ( z ( a ( t ) ) , a ( t ) ) of
.
c
, and
rl
that
z(a)
tends
Hence we can assume t h a t
is s u f f i c i e n t l y l a r g e .
a(t,)
of
To
Assumptions
( i ) and
such t h a t
;
s e c t o r (37.16) f o r
t l < t < t 2;
.
be the image of
rl
joins g ( z ( a ( t l ) ) , a ( t l ) ) t o
by
tradicts the f a c t that
u=g(z(a(t)),a(t))
g(z(a,(t)),a(t,))
dz(a(tl)),a(tl)) i s i n U(N(tl)) Since a l l U(N) a r e d i s j o i n t , I’2
37.2.)
.
i s a p o s i t i v e i n t e g e r depending
N(t)
( i i ) imply t h a t there e x i s t s a subarc
(i)
which j o i n s
C
i s the curve which defines the s i n g u l a r i t y a t
z ( a ( t ) ) i s i n s e c t o r (3’7.16), t h e p o i n t
t o i n f i n i t y as a(t)E V
C
be a subarc of t h e curve
a(0) = a ( n )
u-plane must be i n on
and
U(N)
are i n (37.24).
ro:
Let a(n)
, where
g ( z ( a ( ” ’ ) ) , a ( ” ’ ) )E U ( N 1 )
.
.
The curve
T,
Note t h a t
and g ( z ( a ( t , ) ) , a ( t , ) ) is i n U(N(t2)). must go o u t s i d e of U ( N ) mis con-
g ( z ( a ( t ) ) , a ( t ) )E U ( N ( t ) )
Hence s e c t o r (37.16) cannot contain any ficiently large.
.
(t,
if
.
(See Fig.
M
i s suf-
PROOF OF T H E O M 36.1
161
a- space 38.
hoof of Beorem 36.1:
.
i s subdominant i n
cp(x,c)
point of a zero
...,
Fk(a,, a,) case k = O
tion
Part 11.
.
In this section, we aesume t h a t
We want t o show t h a t
.
z ( a ) of the solution cp(x,a)
i s a singular
c
We s h a l l f i r e t show t h a t
is not i d e n t i c a l l y equal t o zero.
We s h a l l consider the
The general case can be treated i n the same way. The funcFo(a) i s defined by the left-hand member of (36.10) with k = O
.
Hence
(38.1)
=abA(o,a)
- Nm(O,a)
.
By v i r t u e of Theorem 7 . 3 ,
(38.2)
b,(x+ s,al, ...,am) =$(x,al,.
where
=
(38.3)
i’
.*,am)4m(s,ul,. ..,%)
,
(m: odd)\
exP[-Em(x,a) 3
,
(m: even)
,
and
..+ am-l(x+
( x + slm+ al(x+ s)m-l+ ,
(38.4)
= 8m +uls m-1 Hence, i f
s) + am
.
+ ...+L$&+%
Fo(a) were i d e n t i c a l l y equal t o zero, i t would follow t h a t
(38.5) This means that
@;(x,a>
- Rm(x,a) = O
for all
(x,a)
.
DISTRIBUTION OF ZEROS
162
However,
b m ( x , a ) admlts t h e asymptotic r e p r e s e n t a t i o n ( 6 . 4 ) .
Thus,
(38.6) i s impossible. I n Section 37 we proved t h a t t h e s i n g u l a r i t i e s of zeros of t h e solution
a r e contained i n t h e union o f a n a l y t i c s e t s which a r e defined,
rp(x,a)
r e s p e c t i v e l y , by F k ( & l , * . - y am ) = o
(38.7) where the
9
a r e given by ( 3 6 . 3 ) .
k
s e t s a r e a t most
.
2m-2
The r e a l dimensions of these a n a l y t i c
Hence, a s we mentioned before, w e s t i l l have an
arc-wise connected s e t , even i f we remove these s i n g u l a r p o i n t s from
... , a m)-space.
(al,
Our assumption implies t h a t
F (c)=O h
(38.8)
.
W e can f i n d a continuous curve
(38.9) in
a=a(t)
( a17...,a
m
(O
)-space such t h a t
(i) a ( l ) = c ;
(ii) F k ( a ( t ) ) # O f o r for a l l
k
05 t
given by ( 3 6 . 3 ) .
This means t h a t t h e
not s i n g u l a r p o i n t s of zeros of t h e s o l u t i o n Since
( 3 8 .lo)
\d
m,h
and
bm,h+l
Fh+l(c!#O
a(t)
cp(x,a)
( 0 5 t <1) a r e
.
a r e l i n e a r l y independent, i t follows t h a t
.
Similarly,
(38.11)
Fh-l(c)#o
By v i r t u e of (37.8) and ( 3 7 . 9 ) , t h e r e a r e t h e following two r e p r e s e n t a t i o n s
PROOF OF THEOREM 36.1
163
Let us f i x a s e c t o r (38.15) i n x-plane, where
M i s a p o s i t i v e number.
Then, by v i r t u e of (38.14) and
t h e f a c t t h a t l,j ( x , a ) i s dominant i n %-1 and 8h+1 , t h e s o l u t i o n m,h r p ( x , a ( t ) ) does not vanish on t h e boundary of s e c t o r (38.15) f o r l - p l t < l ,
is s u f f i c i e n t l y l a r g e and p is a s u f f i c i e n t l y small p o s i t i v e numNote t h a t , i f M i s b e r , where t h e choice of p may depend on M if
M
.
s u f f i c i e n t l y l a r g e , t h e function (38.16) does n o t vanish on s e c t o r (38.15).
This i s due t o the asymptotic property
Fig. 38.1.
164
DISTRIBUTION OF ZEROS
On the other hand, t h e r e are i n f i n i t e l y many zeros of t p ( x , a ( t ) ) i n 2htl 2h-111 and a r g x =the neighborhood of the two d i r e c t i o n s a r g x = m t2 m+ 2 for l - p l t < l This i s due t o the f a c t t h a t y l ( a ( t ) ) # O , y , ( a ( t ) ) # O ,
.
pl(a( t ) )# O
,
p 2 ( a (t ) )# O
for
the same method a s i n Section 37.
05 t <1
.
These zeros can be located by
This means t h a t
has i n f i n i t e l y many zeros i n s e c t o r (38.15).
cp(x,a(t))
(1- p < t < l )
These zeros must leave s e c t o r
(38.15) a s t tends t o one. Since they cannot go across t h e boundary of s e c t o r (38.15), they must tend t o i n f i n i t y i n s e c t o r (38.15). Therefore, c
i s a s i n g u l a r point of these zeros of the s o l u t i o n
cp(x,a)
.
This
completes the proof of Theorem 36.1.
Let cpI(x,a)
and
rp2(x,a)
be two s o l u t i o n s o f (6.1) s a t i s f y i n g the
i n i t i a l conditions Y(0) =I
,
y'(0)
=o
and y(0)
respectively.
Then
=o , cp(x,a)
Y'(0) = 1 can be u r i t t e n a s
rp(x,a) = w 1 ( x , a )
The condition
i s equivalent t o
On the other hand, the condition rP,(X?C)
-
m'-
lim 2 x , c x-b-
i s equivalent t o
-a
+ b2(x,a)
.
PROOF OF THEOREM 36.1
165
Therefore, we can r e s t a t e Theorem 36.1 i n terms of the r a t i o 'pl( X ,
a)
cp,o
*
I n general, l e t
yl(x,a)
t i o n s o f (6.1).
Then we can s t a t e a theorem concerning the r a t i o
and
y2(x,a)
be two l i n e a r l y independent solu-
Yl(x,a)
y,o which i s more general than Theorem 36.1. t h e readers as an exercise.
Such a generalization is l e f t t o
CHAPTER 8 A GENERAL BOUNDARY VALUE PROBLEN AND ASSOCIATED R I E M A " SURFACES*
39.
A general boundary value problem.
m
(39.1)
y " - [x +alx
m-1
t
Let v ( x , a , s , l )
be t h e s o l u t i n
f
...+a m ] y = O
which s a t i s f i e s the i n i t i a l condition Y ' ( 0 ) =TI
.
=v(x,a,l,O)
,
(p2(x,a) = d x , a , o , 1 )
Then cp(x,a,<,l) =gcpl(x,a) t Qp2(x,a)
.
If w e use the two l i n e a r l y indepen-
Y(0) = s
(39.2)
9
In p a r t i c u l a r , s e t
(39.3)
cP+,a)
dent s o l u t i o n s tp2(x,a)
b m,k ( x , a )
, respectively,
and
bm,k+l(x,a)
, we
.can write
1
cp,(x,a)
and
i n t h e following forms:
(39.4)
and
(39.5)
where
*
This chapter i s mostly based on R . Nevanlinna [ 2 7 ] and G . Elfving 181. 3 , pp. 289-3031 and E. Hille [16; Appendix D.3, pp. 654-6581.
See a l s o R . Nevanlinna 128; Chapter X I , 4$2 and
A GENERAL BOUNDARY VALUE PROBLEM
as
x
.
tends t o i n f i n i t y i n
x-plane completely, t h e r e a r e
167
-
-
80,...,Sm+l cover
Since the s e c t o r s
m t 2 functions
(39.8) which a r e defined by ( 3 9 . 7 ) .
The main problem of t h i s s e c t i o n a s w e l l a s
i n the remaining p a r t of t h i s chapter i s as follows:
PROBLEM 39.1:
Find necessary and s u f f i c i e n t conditions t h a t , f o r niven
m+2 points
bers
al
...,cmtl
co,
,...,am, S,,
on the Riemann sphere, there exist complex num-
TI,
5,,
such t h a t
TI2
(39.9) and -
dX,a,51,Q (39 .lo)
for
cp ( x , a 9 5,f
k=0,1,.
7,)
-t
'k
as
x-t=
in %
..,mtl .
This problem can be r e s t a t e d i n terms of the m + 2 functions (39.8) i n the following way: Flnd necessary and s u f f i c i e n t conditions t h a t , f o r niven
39.1':
mt2
points
co,
...,cdl
admits a s o l u t i o n
(al,
on the Riemann sphere, the system of eauations
that ... , a m , S l , ~ 2 , ~ l , ~ 2such )
(39.9) i s s a t i s f i e d .
Condition (39.9) means t h a t the two s o l u t i o n s cp(x,a,S1,V1)
are l i n e a r l y independent.
cp(x,a,S2,q2)
represents e i t h e r a complex number o r co,
...,c d l
A point m
.
c
and
on the Riemann sphere
We do not assume t h a t
are d i s t i n c t p o i n t s .
The following lemma gives us a necessary condition f o r the existence of a s o l u t i o n of system (39.11) which s a t i s f i e s condition (39.9).
after,
IIa
s o l u t i o n of system (39 .u)11 means a s o l u t i o n s a t i s f y i n g (39.9)
39.1:
.
In order t h a t t h e r e exist a s o l u t i o n of system (39.11), i t i s
necessary t h a t (39.12)
Here-
ck#\+l
where c H 2 = c o .
(k=O,l,...,*l)
9
168
A C m R A I , BOUNDARY VALUE PROBLEM
Proof:
Let us regard
(39 -13)
as p o i n t s on the Riemann sphere.
Then i f
c = cj+l
f o r some k
, and
if
t h e r e i s a s o l u t i o n of (39.11), we must have
(39 -14)
f o r such k
f k ( a ) =fk+l(a)
.
However, ( 3 . 1 4 ) i s impossible, s i n c e
(x,a) m,k This proves Lemma 39.1.
l i n e a r l y independent.
and
ldm,k+l(x,a)
are
The following lemma w i l l present a less obvious necessary condition. 39.2:
In order t h a t t h e r e exist a s o l u t i o n of system (39.11), i t i s
necessary t h a t the s e t
{c,,
. ..,c mtl )
contains a t l e a s t t h r e e d i s t i n c t
points.
The necessary condition (39.12) implies t h a t the s e t
Proof:
contains a t l e a s t two d i s t i n c t points.
set
{co,
...,cmtl ]
Lemma 39.1,
(39.15)
(c,,
...,c mtl ]
Assume f o r a c o n t r a d i c t i o n t h a t the
c o n s i s t s of e x a c t l y two p o i n t s .
Then by v i r t u e of
m must be even, and
[
c0=c2=c4= c1=c3=c5=
... = c & = ... = cm-2 = cm ...=
'
-
c 2 h + l - ' ' ' = c m-1 - 'm+l
*
This means t h a t
( a ) ldm,2h('x, a )
( h = 0,
1 ...,@
a r e l i n e a r l y dependent,
and (b)
bm,2h+l( x, a )
( h = 0,
Thie is impossible.
. ..,-)12
a r e l i n e a r l y dependent.
( C f . the proof of Theorem 21.4.)
Lemmas 39.1 and 39.2 give us two necessary conditions f o r the existence o f a s o l u t i o n of system (39.11).
We s h a l l show t h a t these two condi-
tions are also s u f f i c i e n t .
THEQRpi 39L: In order t h a t t h e r e exist a s o l u t i o n of system (39.11), is necessary and s u f f i c i e n t t h a t (i) % # ~ k + ~( k = O , and (ii) the s e t f c O ,
-
...,mt1;
...,cU t t l )
In the case
m =1
Theorem 39.1 means t h a t
, we
cmt2= co)
9
contains a t l e a s t t h r e e d i s t i n c t p o i n t s . have
co, c1
m + 1= 2 and
c2
, and
hence condition (ii)of
are d i s t i n c t p o i n t s on t h e
it
A GENERAL BOUNDARY V A L E PROBLEM
Riemann sphere.
169
Also, i n this case, t h e three points
, since
on the Riemann sphere a r e d i s t i n c t for every value of
a
of
Therefore, f o r each
41,k(x,a)
fixed value of
(k =0,1,2)
, there
a
T(f) =
a r e l i n e a r l y independent.
any two
e x i s t s a transformation
-
5,f v1 5 9 - 92
9
Slv,
- 529,f
0
9
such t h a t ck=T(fk(a))
(k=0,1,2)
.
This proves t h a t conditions (i)and (ii)of Theorem 39.1 are s u f f i c i e n t i f m=l
.
I n o r d e r t o i n v e s t i g a t e the case m = 2 , l e t us make t h e following observation. M r s t of a l l , by using t h e n o t a t i o n f k ( a ) defined by
(39.13), we can write (39.11) a s (39.11') Furthermore, i f we use the d e f i n i t i o n Um,k(x9a) Of
bm,k
(x,a)
(39 -16)
, we
'bm(W -k X,G k ( a ) )
obtain
fk(a) = w
-kf(Gk ( a ) )
..
(k = 0,1, .,mtl)
,
(39.17)
(39 -18)
Gk ( a)
I n the case m = 2
= ( w-kal, w-=a2,
...,"-*am
,
w = exp
L+i
1
.
,
(39.19)
where U(a,x) this case,
i s given by i n t e g r a l (8.6).
(Cf.(8.10) .)
Therefore, i n
( 39.21)
and
GENERAL BOUNDARY VALUE PROBLEM
A
170
c
3
(39 2 2 )
c0 =
o,
is a r b i t r a r y .
cl=l,
c2=m
’
Condition (i) of Theorem 39.1 r e q u i r e s t h a t
c3#0,
.
I t i s easy t o see t h a t t h e case when
co
, c1
and
a r e d i s t i n c t points 2 on the Riemann sphere can be reduced t o t h e s p e c i a l case (39.21). c
System (3.1l1) becomes, i n this case,
Prom Hence
(Eo) w e g e t T1=51fo(a)
( 5 ) ylelds 5, 5,
-= Thus we obtain from
*
,
and from
(E2) we g e t T2=5,f2(a)
f1W - f2b) flM -fob) ’ (E,)
t h e following equation:
See, f o r example, M. Abramowitz and I . A . S t e w [l; p. 687, 19-3-51.
.
A GENERAL BOUNDARY VALUE PROBLEM
I
171
r
[
Jn
Ut(b,O) =-
1 1 -b-'2 % ( a + + b )
Therefore, from (39.20) and (39.24), i t follows t h a t
(39 -25)
f(0,a2) =-+
Furthermore, i f
m=2
I
, we
r(2 + 1- a )
r(-+4 42
have
.
w = e x p [ i2- n ] = i
L
.
Hence (39.16) y i e l d s
.
1 f3(0,a2) = itan[--n(l4 a2)]f(0,a,)
I n deriving (39 2 6 1 , we have u t i l i z e d t h e well-known formulas
and s i n [ -1- n ( l + az) J = c o s [1 - n ( l - a2) J
4
4
.
I n s e r t i n g (39.26) i n t o (39.23), we obtain
I
-
}
2 1 i t a n [1 - n ( l - a2) ]
(39 2 7 )
1 l + it a n [ - n ( l - a 2 ) ]
=c3.
4
This equation has r o o t s f o r every value of c
3
=m
.
Note t h a t
i
and
c = O and 3 -iare the P i c a r d ' s exceptional values f o r c3
except f o r
.
This shows t h a t , i n t h e case m = 2 , conditions ( i )and (ii) of Theorem 39.1 a r e a l s o s u f f i c i e n t . F'urthermore, i f we regard a2 a s a tan x
c , we can show t h a t 3 p o i n t s of this function .* h c t i o n of
c =O
3
and
8
are logarithmic branch-
* me author obtained this information from Professor Tosihusa Kimura, University of Tokyo. At c =1, t h e r e a r e s i n g u l a r i t i e s o f d i f f e r e n t type. 3 See Section 42.
A GENERAL BOUNDARY VALUE PROBLEM
172
The proof of Theorem 39.1 f o r
m23
i s not simple.
We s h a l l explain
how t o prove the s u f f i c i e n c y of conditions ( i )and ( i i )of Theorem 39.1 i n
t h e following seven s e c t i o n s . 40.
In order t o f i n d a much deeper meaning
Associated uemann s u r f a c e s .
o f Problem 39.1, l e t u s set
F(x) =
(4o.U
cp( x , a
,I,
,vl)
c p b , a ,5,, T2)
and
where
a,
5
and
a r e f i x e d so t h a t
71
W e shall prove the lemma below.
m: The ( i ) F(x) (ii)
kction
Ft(x)
(v)
F(x)+%
as
F(x)
f.F9x3
i s eaual t o (40.5) Proof:
-2[x
m
i s simple;
x tends t o i n f i n i t y i n
the Schwarzian of
(40.4)
s a t i s f i e s t h e followinn conditions: over x-plane;
x
does n o t have zeros i n x-Dlane;
(iii) every pole of
(iv)
F(x)
i s meromorphic i n
% , where
k=0,1,
...,In+,
;
F(x) :
=( #j
- 51 (F*F” j2
x
+ alx m-1 + ...+ am] , h,
{F,x)=-2[x
m +alxm-1
+ ...+am] .
We have shown ( i v ) already i n Section 39.
Conditions (i)and (iii)
.
are immediate consequences of d e f i n i t i o n (40.1) of F(x) Property ( v ) of the Schwarzian of F(x) can be derived by a s t r a i g h t - f o w a r d cornputation.* Property (ii)can be proved by u t i l i z i n g the formula FI(x)
=
,T,)cp(x , a , 5,
cp I ( x ,a
The numerator i s the Wronskian of Wonskian i s independent of ‘ h i s completes the proof of
*
x
,
91,)
-d
x , a ,5,,
Tll)rd(x,a 9 5,,T2)
[cp ( x 9 a A,, 1,) l2 cp(x,a,12,v2) and qdx,a,cl,Til) This and hence this i s equal t o ‘Ills2- T25,
.
Ismma 40.1.
See, f o r example, E. Hille [16; Appendix D.1, Theorem D . 1 . 1 ,
p.
6481.
.
ASSOCIATED RIEMA" SURFACES
173
Let us denote by
(40.6)
x=G(z)
t h e i n v e r s e function of (40.7)
z=F(x)
Since G ( z )
z a s a point on t h e
i s not single-valued, we must regard
Riemann surface face R
.
R
of t h e inverse function of
.
F(x)
This Riemann sur-
i s conformally equivalent t o x-plane, and such a conformal mapping
i s given by ( 4 0 . 7 ) .
i s simply connected, and t h a t R i s of parabolic type. The Riemann surface R can be regarded as a coveri n g surface over the Riemann sphere. Properties (ii)and (iii)o f F(x) R
This means t h a t
does n o t have any algebraic branch-
imply t h a t t h e covering surface R
p o i n t s Furthemore, property ( i v ) means t h a t branch-point over each base p o i n t
k
such t h a t
and
ck
jfk
, the
\
.
R
Even i f
admits a logarithmic
cj=ck
f o r some
logarithmic branch-points corresponding t o
a r e d i s t i n c t on t h e covering surface
branch-points l i e over the same base p o i n t
R
cj =\
these r e s u l t s i n the following lemma.
.
and
j
c
j
These two logarithmic
.
We s h a l l summarize
LO.* The coverinn surface R which i s defined by the i n v e r s e funct i o n o f F(x) s a t i s f i e s the conditions below: (i) R i s conformdly equivalent t o x-plane; (ii) R does not have any s i n n u l a r points o t h e r than the loaarithmic branch-points over the base points co,cl, cm t l
...,
Remark 1: Property (ii)of the surface R
follows from t h e f a c t t h a t the
transcendental s i n g u l a r i t i e s of the inverse of a meromorphic function a r e t h e asymptotic value8 of t h e meromorphic function a s
x
tends t o i n f i n i t y .
The following lemma shows t h a t F(x) does not have t h e P i c a r d ' s exceptional values. Note t h a t the P i c a r d ' s exceptional values of a mero-
Remark 2:
morphic h c t i o n must belong t o t h e s e t o f i t s asymptotic values as x tends t o i n f i n i t y . A point
(40.8)
xo
of x-plane
F(x) = \
i f and only i f
(40.9)
b,&(Xo,a)
=o
*
s a t i s f i e s the eauation
A GENE2U.L BOUNDARY VATXI3 PROBLEM
174
Proof:
If we use t h e n o t a t i o n s given by (39.31, (39.4) and (39.51, w e can
write
CP(X,~,S,TI)
as
(40.10)
where
(40.11) and
(40.12)
Observe t h a t
(40.14) and
( 40.15 ) Note t h a t t h e two s o l u t i o n s cp(x,a,S1,T1) independent.
, there
q(x,a,s2,l2)
are linearly
A straight-forward computation proves Lemma 40.3.
‘fie Stokes m u l t i p l i e r s a
and
exists an i n t e g e r
%(a) k
have t h e property t h a t , f o r each fixed
such t h a t
%(a) # O
.
( C f . Theorem 21.4.)
Therefore, by the same method as i n Section 37, we can prove t h a t bm(x,a)
has i n f i n i t e l y many zeros for each f i x e d
not have t h e P i c a r d ’ s exceptional values. below.
LO.&
a
.
This proves t h a t F ( x ) does Thus, we have proved t h e lemma
F(x) does n o t have t h e P i c a r d ’ s exceptional v a l u e s .
‘The main i d e a of t h e proof of Theorem 39.1 i s t o e s t a b l i s h t h e converse of Lemma 40.2. R. Nevanlinna [ 271 considered t h e following problem.
yI,. . . , y
PROBLEM LO.1: sphere, where
922
,
a coverinn s u r f a c e R (i) R and -
be q and l e t nl,
q
d i s t i n c t p o i n t s on t h e Riemann
...,nq
be p o s i t i v e i n t e p e r s .
of t h e Riemann sphere such t h a t
is s i m l ~connected,
Construct
175
ASSOCIATED RIEMANN SURFACES
admits no sinmilar points other than e x a c t l y n
(ii) R
j
logarithmic
.
where j =1,...,q j'Assume t h a t t h e r e exists such a covering surface R f o r a given d a t a
branch-points over t h e base p o i n t y
(yl,
...,yq;
.
Then Nevanlinna a l s o proved t h e theorem below.* nl,. ..,n ) q The coverinp: surface 62 i s conformally equivalent t o the Furthemore, &t g(x)
complex plane.
be a meromomhic function such t h a t
z =g(x)
(40.16)
i s a conformal mapping from x-plane onto R
of
g(x)
.
Then the Schwarzian
i s a pobnomial i n x whose degree i s q p = 2 n. j=1
(40.17)
p- 2
{g,x]
, where
.
Theorem 40.1 explains the r e l a t i o n between Problems 39.1 and 40.1.
i s known that**
It
g ( x ) i s represented by a r a t i o of two l i n e a r l y indepen-
dent s o l u t i o n s o f 1
y" t z{g,x}y = 0
(40.18)
{g,x} i s a polynomial i n
Since
. x
of degree p - 2
, equation
(40.18) can
be reduced t o
(40.19)
i f w e replace
by
x
cx
, where
c,al,. ..,a
numbers. I n the case p = 2
, we
q=2,
P-2
are s u i t a b l e complex
must have
n =n =1. 1 2
Furthermore, by using t h e d i f f e r e n t i a l equation
yll-y=O
, we
can conclude
that (40.21) where
Lt
and
i
g ( x ) -IL+
as
Re[x]-*+
g ( x ) +L-
as
Re[x]+-=
-
L
covering surface R
, ,
a r e c e r t a i n points on t h e Riemann sphere.
Since the
s a t i s f i e s condition (ii)of Problem 40.1, i t follows
that
*
**
The main i d e a of the proof o f Theorem 40.1 i s i l l u s t r a t e d i n Section 45.
See, f o r example, E. Hille [16; Appendix D.1, Theorem D.l.l, p. 6481.
A GENERAL BOUNDARY VALUE PROBLEN
176
(40.23)
p> 2
In the case
(40.24)
or L =y
, we
..
k = 0,1,. ,p-1,
Theref ore,
-
So,
, we
...,SPm1
L =y + L =y - 1
.
have
.
2x
or
g(x) = e
have as
and
gk, a r e
( 4 0- 2 5 )
=m
-2x
g(x)+ck
and the s e c t o r s
2
g(x) = e
either
{
L =y
y1 = 0 and y
In p a r t i c u l a r , i f
where
{
either
(40.22)
%,
x-*m i n co,
..., cP-1
are p o i n t s on t h e Riemann sphere.
t h e same a s w e defined i n Section 7 with cover x-plane completely.
ck E I y l ,
and t h e r e e x i s t , f o r each
-.,Y,I j
-
(k = 0 ,
, exactly
n
-
*
Pp-1)
.
Furthermore, 9
distinct indices
j
m=p- 2
k
such t h a t
k' - Y j ' W e s h a l l prove t h e s u f f i c i e n c y of conditions (i)and (ii)of Theorem
39.1 by constructing a s u i t a b l e covering s u r f a c e 62 over t h e Riemann sphere. W e s h a l l explain such a method by u t i l i z i n g a very simple case. The proof f o r the g e n e r a l case i s similar, and will be l e f t t o t h e readers.*
a. Construction
.
of a coverinp s u r f a c e R
In t h i s s e c t i o n and s e c t i o n s
&, 45, and 46, we s h a l l consider the case when (41J)
m=3
and
(41.2)
i
c0 =
o,
cl=l, c2=1+i, c3=i, c,+ =1+i
,
and w e s h a l l prove t h e e x i s t e n c e o f a s o l u t i o n of system (39.11). t h a t the q u a n t i t i e s
co, cl,
c2, c3
(ii)of Theorem 39.1.
*
see, for example, G. a f v i n g [ 81.
and
c
4
Note
s a t i s f y conditions (i)and
177
A COVERING SURFACE
Let us consider a pentagon whose v e r t i c e s a r e denoted by A3
and
A
4 '
{Ao,A1,%,A3,A4] (41.3) where
(See Fig. 4 1 . 1 . )
A o , A1,
A2,
from t h e s e t
=%
(k=0,1,2,3,4)
a r e given by ( 4 1 . 2 ) . In this s e c t i o n , we s h a l l construct a
ck
covering s u r f a c e 62,
over t h e Riemann sphere such t h a t
i s a simply connected and open Riemann surface;
(ii) Ro A.
c(A)
i n t o t h e Riemann sphere by c(%)
(i) Ro
Define a mapping
contains a domain which is homeomorphic t o t h e pentagon
%%SA4
i n such a way t h a t each v e r t e x
mic branch-point of
Ro
over t h e base p o i n t
%
corresponds t o a l o g a r i t h c ( %)
, and
t h a t t h e orien-
t a t i o n i s preserved; (iii) Ro admits no s i n a u l a r p o i n t s o t h e r than the f i v e loearithmic branch-points described i n (ii)
.
Flg.
41.1.
There a r e f o u r d i s t i n c t p o i n t s (41.4)
0 ,
1 , l+i,i
.
Consider t h e square on the FEemann sphere {co,c1,c2,c3,c4] whose v e r t i c e s are a t t h e f o u r p o i n t s (41.4). (See Fig. 4 1 . 2 . )
i n the set
Fig. 0.2.
A G m R A L BOUNDARY VALUE PROBLEM
178
This square d i v i d e s t h e Riemann sphere i n t o two domains D1 assume t h a t t h e p o i n t a t i n f i n i t y belongs t o
D2
.
triangle
AoA3A4
'I"nis s u b d i v i s i o n y i e l d s a t r a p e z o i d
.
The f o u r v e r t i c e s
Ao,
A3
A,,
A3
and
,
3'
of t h e t r a p e -
Similarly
of t h e t r i a n g l e a r e l o c a t e d on t h e
A
4
boundary i n t h e counter-clockwise s e n s e .
, c(%)
A
and a
zoid a r e l o c a t e d on t h e boundary i n t h e counter-clockwise s e n s e . the three vertices
to
A,
AoA1A2A3
and
A1,
We
(See F i g . 41.2.)
Let us subdivide t h e pentagon by t h e line-segment j o i n i n g (See n g . 41.1.)
.
D2
and
On t h e o t h e r hand, t h e f o u r
,
c(A ) = i a r e t h e ver3 t i c e s of t h e square on t h e Riemann s p h e r e which i s given by F i g . 41.2.
points
c(A1) = O
=1
c(AZ) = l + i and
These f o u r p o i n t s are l o c a t e d on t h e boundary o f clockwise s e n s e . c ( k ) = 1t i
4
Similarly, the three points
a r e l o c a t e d on t h e boundary of
D1 i n t h e counter-
c(Ao) = O
,
c(A3) = i
, and
i n t h e counter-clockwise
D2
This o b s e r v a t i o n shows t h a t mapping (41.3) can be extended t o a
senee.
homeomorphism from t h e pentagon onto t h e Riemann sphere c u t a l o n g t h e a r c c o n s i s t i n g o f t h r e e line-segments 1
,
lfi
SO
and
lti
to
i
L1
, L2
L3
which j o i n
Since
LyLyL3
and
, respectively.
0
to
1
,
i s a c u t on
t h e Riernann sphere, each of t h e s e t h r e e line-segments r e p r e s e n t s two l i n e segments. where
D2
i
For example,
1 9 1
.
L1
r e p r e s e n t s two line-segments
, and , L2,2 , and
i s on t h e boundary o f
Similarly, we define
41.3.)
.
L2,1
D1
L
192 L 311
L 191 and L 1 , 2 ' i s on t h e boundary o f
'
L3,2
.
(See F i g .
l+i
2 . 3 '
I.
4.2
1
F i g . 41.3. Let u s denote by the vertex
A. to J The homeomorphism from t h e pentagon onto t h e Riemann
4, .
s p h e r e , c u t along
(41.5)
L"L'L
Aj-%
t h e line-segment j o i n i n g t h e v e r t e x
, maps
t h e l i n e segments
1 2 3 - - $'L1 ' 4%' A2A3 ' A3A4'
and
ALAo
A COVERING SURFACE
179
e i t h e r onto
L1,l’ L2,1
(41.6)
’
U
L3,1
L3,2
9
9
a d
L2 , 2
’
L1,2
r e s p e c t i v e l y , o r onto
(41.7)
’
5’2
’ L3,2 ’
L2,2
L3,1
’ and
’
L2,1‘%,1
In order t o preserve t h e o r i e n t a t i o n , we must choose ( i J . 6 )
respectively.
a s t h e image of the f i v e line-segments (41.5).
The end-points of these
five arcs ( u . 6 ) are
(41 -8)
0
The p o i n t
D1
, 1 , lti , i , and
l+i appears twice.
, while
l+i
.
The first p o i n t
lii i s on t h e boundary of l+i i s on the o t h e r s i d e of t h e c u t . Thus
t h e second p o i n t
these two p o i n t s w i l l eventually represent two d i s t i n c t p o i n t s over t h e
same base p o i n t
l+i
.
The next s t e p i s t o a t t a c h a s u i t a b l e domain along each of the f i v e a r c s (41.6) so t h a t t h e f i v e p o i n t s (iJ.8) points.
become logarithmic branch-
For example,
Such s u i t a b l e domains a r e c a l l e d logarithmic-ends.
consider t h e a r c
.
L2,yL1,2
I n order t o c o n s t r u c t a logarithmic-end
along this a r c , we s h a l l u s e countably many copies of the Riemann sphere which is c u t along
.
L2v5
We denote by
S
( j =1,2,.
j of t h e Riemann sphere each of which i s c u t along an a r c
is a copy of
LyL1
which a r e copies of two a r c s
‘j ’2
4
j
and
.
S
The surface
, where
4,
j ’2 i s on t h e boundary of
D
j
j’2
4,
j
‘
these copies
.
Lj has two domains D
, respectively.
D1 and D2
..) j
The c u t
C
j i s on t h e boundary of
(See Fig. 41.4.)
The a r c and
D
&
j
j,2
represents D
j
.
, and
ir-----
0
I , Fig. 41.4.
S1 t o L2,yL1,2 by i d e n t i f y i n g C 191 with L z , y a l s o a t t a c h Sj+l t o S by i d e n t i f y i n g Cj+l,l with &tJ,2 9
W e attach
j
4,2. We
A GENERAL BOUNDARY VALUE PROBLESI
180
where
j =1,2,
L2,2 "L 1,2
.
....
I n this manner, w e can a t t a c h a logarithmic-end along
This process i s t o p o l o g i c a l l y equivalent t o a t t a c h i n g an open
semi-disc t o t h e pentagon
-
along
Ao4%A3A4
A4Ao
.
(See Fig. 41.5.)
Fig. 41.5. I n order t o c o n s t r u c t a s u i t a b l e L1,l * w e s h a l l again consider countably many logarithmic-end along this a r c , Let us next consider t h e arc
- ....
.
We denote by 3 ( j =1,2, ) L, j these copies of the Riemann sphere, each o f which i s c u t along an a r c .t
copies o f the Riemann sphere, c u t along The a r c
-
l:
and
i s a copy of t h e a r c
J-
, where
4
j' ,1 j ,2 i s on t h e lower s i d e o f
L, I
.
,j ,1
t,
j
.
The c u t
.c",
j
r e p r e s e n t s two a r c s
J
i s on t h e upper siae of
-
j
(See Mg. a . 6 . )
, while
j ,2
N
Fig. 0 . 6 .
we j o i n
9,
to
by i d e n t i f y i n g
by i d e n t i f y i n g i to S j+l,2 'j+l j w e can a t t a c h a logarithmic-end along
Ao% .
.
d
with L,l 1,2_ and 4, ,1 , where
%,1
.
We a l s o a t t a c h
j = 1,2,
. ...
Thus
This process i s again topo-
l o g i c a l l y equivalent t o a t t a c h i n g an open semi-disc t o t h e pentagon
Ao%%A3A4
along
(See Fig. 41.5.) S i m i l a r l y , w e can c o n s t r u c t a
logarithmic-end along each o f t h r e e o t h e r a r c s of ( a . 6 ) .
Thus w e
REMARKS construct a covering surface Ro
181
which s a t i s f i e s conditions ( i ) ,(ii) and
(iii).
42.
Remarks on non-uniaueness and s i n w l a r i t i e s of s o l u t i o n s .
I n the
preceding s e c t i o n , we constructed a covering surface sphere s o t h a t
Ro
over the Riemann Ro s a t i s f i e s the t h r e e conditions ( i ) ,(ii) and (iii)
.
I n this s e c t i o n , we s h a l l present some examples which will show t h a t such covering surfaces are not unique.
Example I:
which is c u t along
(l)"L(l)u L1,l 2,l
S(l) and S ( 2 ) o f the Riemann sphere The c u t on S(') represents two a r c s
Consider two copies
eLyL3
L3,1 and
s e n t s two a r c s
.
(')"
( 2 ) WL(2) +2) 2,1 3 , 1
%,1
L ( l ) and L(2) are copies o f j ,k j ,k (See Fig. 42.1.)
, while
(')"
4,2 L2,2
L
Lg,2
( 2 ) " ~ ( ~( 2) ) ~ 4,2 2,2 L3,2
and j,k
the c u t on
'
where
i
j=1,2,3
I
.
and
S(2)
repre-
The two a r c s k=1,2
.
l+i
Fig. 42.1.
.
(2)uL(2)u (2) Thus we have constructed a covering s u r f a c e Q over 2 , l L3,1 the Riemann sphere. There e x i s t s a homeomorphism from t h e pentagon
'1,l
Ao%A2A
A
34
onto
(42.1)
such t h a t t h e images of f i v e line-segments
- - - ' 0 %
' %% ' 2'3'
' 3'4'
and
Eo 4
are respectively
(42 *2)
Ey a t t a c h i n g s u i t a b l e logarithmic-ends t o Q along t h e f i v e arcs (42.2), we can construct a covering surface 61 which s a t i s f i e s the same conditions
A GENERAL BOUNDARY VALUE PROBLEM
182
(I), (ii)and (iii)a s t h e s u r f a c e Ro
.
from Ro EkamDle A ~ .A
11:
does.
L e t us subdivide t h e pentagon
However,
Ao4A2A3A4
R
is d i f f e r e n t
by the line-segment
(See ~ F i g . 42.2.) A0
Fig. 42.2. Consider two copies
S"(l)and
of t h e Riemann sphere, where
s(2)
i s c u t along an a r c which is a copy o f
an a r c which i s a copy of
of
L
j ,k
,
respectively.
q L y L 3
.
LyL2
, while s"(2)
The c u t on
(See F i g . 42.3.)
+)
i s cut along
s"(l)r e p r e s e n t s two
REMARKS
183
There e x i s t s a homeomorphism from t h e t r i a n g l e
onto
A,%%
such
t h a t the images of the t h r e e line-segments
-
- -
(42.3)
’
AoAl
!LA2
and
%Ao
are, respectively, (42.4)
There also e x i s t s a homeomorphism from t h e trapezoid
onto
AoA2A3A4
4 2 ) S
such t h a t t h e images o f t h e f o u r line-segments
, A2A3 , A3A4
AoA2
(42.5)
and
A A
40
are, respectively, (42.6)
Let us a t t a c h -(2)“-(2) L2,1
4,l
-S( 2 )
to
by i d e n t i f y i n g
-(l) 5 .2
with 2.2
I n this way, we construct a covering s u r f a c e
B“
over the
There e x i s t s a homeomorphism from t h e pentagon
Riemann sphere.
Ao%A2A 3A4
such t h a t the images of t h e f i v e line-segments ( 4 2 . 1 ) a r e , respec-
onto tively, (42.7)
.-
By a t t a c h i n g s u i t a b l e logarithmic-ends t o
B along t h e f i v e a r c s ( 4 2 . 7 ) ’
we can c o n s t r u c t a covering s u r f a c e which s a t i s f i e s the same conditions (i), (ii)and (iii)a s t h e s u r f a c e Ro
, but
i s d i f f e r e n t from R o I n Section 39, we i n v e s t i g a t e d the cases m = l and m = 2
39.1.
I n p a r t i c u l a r , i n case
m= 2
equation (39.27)
If we regard
i
a
1- i t a n [1 - n ( l - az) ] 1
rxc3. , equations
.
o f Theorem
(39.11) were reduced t o the
1+ i tan[-n(l- a2) 1 4
the points = O and c = a a r e 3 ’ c3 3 logarithmic branch-points of this f u n c t i o n . This means t h a t equations 2
a s a function of
c
(39.11) may have i n f i n i t e l y many s o l u t i o n s f o r f i x e d values of The non-uniqueness o f s o l u t i o n s of (3.11) i s c l e a r l y
C0’C1, * .,c mtl r e l a t e d with the non-uniqueness of covering s u r f a c e s t h a t w e have shown
by Examples I and 11.
The function a2 of t h e q u a n t i t y However, the condition
c
3
is holomorphic a t
c =I 3
.
A
12%
GENERAL BOUNDARY VALUE PROBLEM
y12- T2Tllf 0
(39.9) i s violated i f
Z ( 1 - t a2) =0,-1,-2
I
,... ,
1
,... .
OI’
- ( 3 + a2) =O,-1,-2
4
Hence t h e r e a r e c e r t a i n s i n g u l a r i t i e s of s o l u t i o n s o f (39.11)a t Let us consider the case when m = 3
,
c0 = o
(42 .e;j
cl=l
,
, and
c2=l+i
,
c3=€i
,
c 3 =1
.
c4=l+i
uhere
(42.9)
.
O<€
F’cr ehch value o f
c
i n i n t e r v a l ( 4 2 . 9 ) , q u a n t i t i e s (42.8) s a t i s f y condi-
t i o n s ( i )a n d (ii)o f Theorem 39.1. Furthermore, i f
O<
€51 ,
we can
construct a covering surface by using the same method as i n Section P r e c i s e l y speaking, w e s t a r t with the pentagon
c(%) =ck
([email protected]) where
ck
AoA3 .
and t h e mapping
(k=0,1,2,3,4)
a r e given by (42.8)
line-segmen t
Ao4%A3A4
a.
.
Then w e subdivide the pentagon by the
W e extend mapping (42.10) t o a homeomorphism f r o m
the pentagon onto the R i e m a n n sphere which i s c u t along t h e t h r e e l i n e -
0
segments j o i n i n g
to
1
,
1 to
lti
, and
(See Fig. 42.4.)
l+i t o
ci
, respectively.
.
Fig. 42.4. By attaching s u i t a b l e logarithmic-ends t o this surface, w e can construct a
desired covering s u r f a c e . Note t h a t ,
at
E
=0
,
However, this process breaks down a t
c ( Ao) = c ( A3) = 0
.
c=O
.
Hence t h e subdivision of t h e
A pentagon
Ao%%A3AI,
ON THE GENERAL CASE
RplARK
by
A A
does not work.
0 3
185
This phenomenon would y i e l d
a s i n g u l a r i t y which i s s i m i l a r t o the s i n g u l a r i t i e s a t
c3
=1 o f the case
m = 2 .
43.
A remark on the g e n e r a l case.
AoqA2A3A m+2
4 '
vertices
In Section &L,
we considered a pentagon
In the general case, we consider a r e g u l a r polygon
.
Ao,4,...,~l
i n t h e counter-clockwise sense.
We assume t h a t
Ao,
Define a mapping
..,hl]
i n t o the Riemann sphere. {Ao,. s p e c i a l case of t h e problem below.
Km
with
...,bl are arranged
c(A)
from t h e s e t
The problem i n Section 41 i s a
PROBLEM L3.1 : Construct a covering surface R
over the Riemann sphere s o
that ( i ) 63
i s a simply connected and open Riemann surface; contains a domain which i s homeomorphic t o t h e polypon
(ii) R
such a way t h a t each v e r t e x
of
over t h e base p o i n t
R
(iii) R
4,
Km
corresponds t o a logarithmic branch-point
c(pk)
, and
t h a t the o r i e n t a t i o n i s preserved;
admits no s i n m l a r p o i n t s o t h e r than the
m + 2 logarithmic
.
branch-points described i n (ii)
I n o r d e r t o c o n s t r u c t such a covering s u r f a c e by a method s i m i l a r t o t h a t of Section 41, the following remark i s very important.
,...,
A ) of Km whose v e r t i c e s a r e A 1 jh jl r e g u l a r with r e s p e c t t o t h e mapping c(A) , i f
K(Aj
(pfd
c ( A j )#c(Aj ) P 9
,...,A
A subpolygon
i s s a i d t o be jh
.
Then t h e remark i s given a s the lemma below.
m L 3 1 . Assume : that (43.1)
4%)# c(%+l),
and t h a t t h e mapping
c ( A)
.., m f l
; A&2=Ao)
f
takes a t l e a s t t h r e e d i s t i n c t v a l u e s .
A
s a t i s f d n n t h e conditions: j% these a r c s do n o t i n t e r s e c t each o t h e r i n t h e i n t e r i o r of Km ; these a r c s subdivide Km i n t o subpolygons a l l o f which a r e r e m l a r
t h e r e e x i s t s a family of arcs (a) (b)
(k = 0,1,.
with r e s p e c t t o t h e mappinq
c(A)
.
.
We s h a l l use induction on m If m = l , the three p o i n t s c(Ao), c ( % ) and c(A2) must be d i s t i n c t , and hence the a s s e r t i o n o f Lemma 43.1 i s true. I n general, t h e r e exists a p a i r %-l,&+l such t h a t Proof:
A GENERAL
184
(43.a
c(%-l)
As t o t h e s e t
Case I:
{c(Aj);
BOUNDARY VALm PROBLEM
-
#C(%++
j =0,1,. ..,k-l,ktl,.
..,ni+l}
, there
a r e two cases:
This s e t c o n t a i n s a t l e a s t t h r e e d i s t i n c t p o i n t s ;
This set c o n t a i n s o n l y two d i s t i n c t p o i n t s .
Case 11:
.
I n Sase I , we can complete t h e proof o f Lemma 43.1 by i n d u c t i o n on m
rase 11, t h e f a m i l y of a r c s
$Aj
(jfk-l,k,k+l)
polygor,s which a r e r e g u l a r w i t h r e s p e c t t o
Km i n t o sub-
subdivide
.
c(A)
In
Therefore t h e a s s e r t i o n
of Lemma 43.1 i s t r u e f o r t h e g e n e r a l c a s e .
,!&.
W e c o n s t r u c t e d a covering s u r f a c e
An a p p l i c a t i o n of a l i n e complex.*
R 3 i n S e c t i o n 41. We can d e s c r i b e t h e method i n S e c t i o n 4l by u s i n g a l i n e ccmplex ( o r a t o p o l o g i c a l t r e e ) .
I n S e c t i o n 41, we d i v i d e d t h e
itiemam s p h e r e by t h e s q u a r e with t h e v e r t i c e s
0, 1, l+i and
p r o c e s s y i e l d e d two domains
D1 and D2 on t h e Riemann s p h e r e .
denote t h e s e two domains by
@
Lo, L1, 1
,
L2
1 to
and
L
and
8
l+i , and
l+i t o
i
, respectively.
i
0
to
(See F i g .
,
de sha.11 u s e t h e n o t a t i o n s
W e shall
,
0
u.1.)
order t o i n d i c a t e t h e s e f o u r line-segments on t h e boundaries of
E2
This
Let us denote by
respectively.
t h e f o u r line-segments which j o i n
3
.
i
to In
D1 and
3
3 and
z+o 1
1
respectively,
L2
F i g . u.1.
See, G. E l f v i n g [ S ] and R . Nevanlinna [28; Chapter XI,$Z,pp.
289-2971.
A LINE COMPLEX
187
Using t h e s e n o t a t i o n s , we can denote by t h e symbol
1
* - 2
2
t h e Riemann sphere which i s c u t along
L"L"L 1 2 3 .
The n o t a t i o n a c t u a l l y
.
If we means t h a t t h e two domains D1 and D2 a r e joined along Lo w a n t t o i n d i c a t e t h e f i v e a r c s ( d . 6 1 , w e s h a l l u s e t h e following n o t a t i o n :
(44-1)
L
and L a r e combined i n t o 192 292 S i m i l a r l y , t h e Riemann sphere which i s c u t along
This n o t a t i o n means t h a t t h e two a r c s a single arc
LyL2
-
.
L2,2 " L 1,2
i s denoted by
-
3
2 m
i
1
0
I n S e c t i o n 41, we c o n s t r u c t e d a logarithmic-end along L2,y L1,2 using countably many copies along
L
~
. L If ~we
Si
.
( j = 1 , 2 , . .)
J
attach
S1
"y
h
o f t h e Riemann s p h e r e , c u t
t o s u r f a c e (44.1) along
o b t a i n a s u r f a c e r e p r e s e n t e d by
13 2
3
H
1
-
0
P
%
If we a t t a c h
Sj+l
to
S
j
.'
2
f\
0
ii
i n t h e same way a s i n S e c t i o n 41, we o b t a i n a
s u r f a c e represented by
2 (44.3)
3
2
3
2
p I 0 1 0 I
% Hence, by a t t a c h i n g t h e logarithmic-end t o s u r f a c e (44.1) along we o b t a i n a s u r f a c e r e p r e s e n t e d by
u L L2,2 1 , 2
A GENERAZ, BWNDARY VALUE PROBLEM
188
(44.4)
----
2 I w 30
+*+-
a21 .--
I n this manner, we can r e p r e s e n t t h e s u r f a c e
Ro
o f S e c t i o n 41 by t h e
l i n e complex below:
Note, f o r example, t h a t t h e Riemann sphere c u t along
%
i s r e p r e s e n t e d by
the s p t o l :
- w %,2 L2,2
We const,ructed t h e logarithmic-end along
by a t t a c h i n g
t o suri’%f-:ce (u.1) along “L and then a t t a c h i n g Sj+l t o S L2,2 1 , 2 ? j If we s t o p this t h e way explained i n S e c t i o n 4 1 , where j =1,2,
S1 in
....
process a t
2
3
j =N-1
2
, where
NL2
2
, we 3
o b t a i n a s u r f a c e r e p r e s e n t e d by
2
3
S y u s i n g t h e same i d e a along each of f i v e a r c s
r e p r e s e n t e d by t h e l i n e complex below:
2
( a . 6 ) , we obtain a surface
A LINE COMPLEX
189
N
0
0
N
Let us mite this l i n e complex i n the following form:
(44.6)
0
Denote t h i s surface by
AN
.
hl The surfaces
%
s a t i s f y the following con-
d it i o n s :
(i)
the %
(ii)
B"
(iii)
Ro=
a r e simply connected domains on the surface R,
9
gN+1 i aD
u %
N 4 I n Section
. a,we
remarked t h a t , the homeomorphism from -he pen ;agon
L1u L2u L3 , maps the f i v e line-segments (41.5)e i t h e r onto t h e f i v e a r c s ( 4 l . 6 ) , r e s p e c t i v e l y , o r onto the f i v e a r c s ( 4 1 . 7 ) , respectively. The f i v e a r c s (W.6) are represented by symbol onto the Riemann sphere, c u t along
(44.1).
Similarly, the f i v e a r c s (4l.7)
a r e represented by the symbol
A GENERAL BOUNDARY VALUE PROBLEM
190
-p+ 3
3
2
,I 2-6s sj-mbol rreans t h a t two a r c s W
L
-
291
are combined i n t o a
L
and
191
By a t t a c h i n g s u r f a c e ( 4 4 . 6 ) t o ( 4 4 . 7 ) along t h e s i n g l e
0
;&!+.e
0
0 N
Denote t h i s s u r f a c e by
.
” copies.
The s u r f a c e
%
s a t i s f i e s t h e following
conditi on s : (a;
c%
(5;; Lrj (cj
i <’
i s a closed Riemann s u r f a c e of genus zero; i s a simply connected domain on
3”;
SN admits f i v e a l g e b r a i c branch-points
& l+i ; i ) 5 ; admits no
5es:rii;ed
i n (c)
.
over base p o i n t s
0 , 1, l+i,
s i n d a r p o i n t s o t h e r t h a n t h e f i v e branch-points
mom 40.1
PROOF OF
45.
Proof of Theorem 40.1.
In this s e c t i o n , we s h a l l explain how t o prove of Section
Theorem 40.1 by using t h e covering s u r f a c e 62, Step I:
191
Consider the s u r f a c e
%
0.
of Section &!+.This s u r f a c e i s a
closed Riemann surface o f genus zero, and a l s o a covering s u r f a c e over the
S
Riemann sphere
.
Therefore, t h e r e e x i s t s a r a t i o n a l f'unction
z,(x)
such t h a t p = zN(x)
(45 .I)
i s a conformal mapping from t h e Riemann sphere and
pE;FN
.
Since a conformal mapping from S
parameters, t h e r a t i o n a l function
Let
po
rn
.
(45 - 2 )
%
the e x t e r i o r of N
Step 11:
S contains t h r e e
a2
which i s
not over
have
,
were defined i n Section &!+. L e t us f i x a p o i n t
%
on the surface
ZN(0)
=Po
% .
Z$O)
=1
,
x=cN(p)
AM c%
.
for all
Hereafter, we s h a l l f i x an i t e g e r
NkM,
Y
We s h a l l prove t h a t t h e family
{cN(p); N 2 M ]
%.
L e t us denote such a mapping by
P=&)
This mapping i s uniquely determined by the conditions
(45.7)
Cp(0) =Po
9
(p'(O)>O
%
. for
i s uniformlx
1st < 1
%.
2)
To do this, consider
a conformal mapping from t h e open unit d i s c
onto t h e i n t e r i o r of
M (2
mappings (45.4) are well defined i n
bounded i n each compact s e t i n the i n t e r i o r of
(45.6)
qN i n t h e
We s h a l l f i x t h r e e parameters i n
,
be the i n v e r s e of (45.1).
(45.5)
the
Let
(45.4)
such N
onto
by t h e conditions:
(45 - 3 )
Since
, we
"=2,3,...)
P o q q
where t h e z (x)
a2c%
Since
$ , where xE S
onto
zN(x) contains a l s o t h r e e parameters.
be a fixed p o i n t i n t h e i n t e r i o r of
base p o i n t
S
n
If
i s a compact set i n t h e i n t e r i o r of
nmber (a:
GENERAL BOUNDtlRY VALTE PROBLEM
A
192
r
% , there
exists a positive
such t h a t
O < r < l ,
and
(5)
the s e t
G i s contained i n t h e image of t h e closed d i s c
Is1 I r
(45.Ei by mapping
( 4 5 . 6 ) . The f u n c t i o n s defined by
(45.9)
(NP)
+N(F) = c N ( Q ( s ) )
are holomorphic and u n i v a l e n t i n t h e open d i s c ( 4 5 . 5 ) .
Furthermore, (45.3)
arid ( 4 5 . 7 ) imply t h a t
$N(O) ='
( 4 5 .lo!
(N~M)
=Wf(O)
9
.
r-T
eref fore, by v i r t u e of Koebefs d i s t o r t i o n theorems,
ir, t h e open d i s c ( 4 5 . 5 ) .
a n i f o r m l y bounded i n t h e c l o s e d d i s c (45.8).
i s unifclrmly bounded i n t h e compact s e t Step 111:
{$N(s);N l M ]
This means t h a t t h e family
is
Hence t h e family (CN(p); N)M!
n.
Since m
u %, ,
Ro=
N =2
we ciln s e l e c t a sequence { c N ( p ) ; N223
.
{cN
( p ) ; j =1,2,. .] from The iamily
j SO
(45.12)
that
lim j-tm
6N
j
e x i s t s uniformly i n each compact set on t h e s u r f a c e
R,
.
By v i r t u e of
( 4 5 . 3 ) , the mapping (45.13)
X=C(?)
i s u n i v a l e n t from
Ro
i n t o t h e complex p l a n e .
Note t h a t t h e image
t h e p o i n t a t i n f i n i t y by mapping (45.1) i s i n t h e e x t e r i o r of denote by
A
t h e image of
Ro
by mapping ( 4 5 . 1 3 ) .
connected domain i n t h e complex p l a n e .
*
See, f o r example, R . Nevanlinna [28;
Then A
qN of Let us
i$ . i s a simply
Let
(3.11), ( 3 . 1 3 ) and (3.15) on p . 911.
PROOF OF THEOFEM 40.1
193
P=
(45.4)
be t h e i n v e r s e of (45.13).
Then
i s meromorphic i n the domain
g(x)
A
.
We s h a l l prove t h a t
(45 - 1 5 ) of t h e open set
uniformly i n each comDact subset contain any poles of
.
g(x)
Let
A
fi be t h e image of
, If fi
does nc
. I
by mapping
(45 .4). Since fi i s compact, w e have (45 -16) if
jo
j2jo
for
fi'=BNj
This means t h a t the functions
i s sufficiently large.
(45.17)
fj(x)
=cN
(g(x)) j a r e w e l l defined i n the compact s e t
uniformly i n
5
.
( C f . (45.12) .)
j -+=
uniformly i n
fi
fi , where A
.
S i m i l a r l y , we can prove t h a t
Vo
the closure of co-neighborhood of the
which does not contain any poles of
fi Vo
(45 120)
.
o
.
Let
Then t h e r e efists a p o s i t i v e i n t e g e r j(e)2jo ;
I f j ( x ) -XI < c/8
-
for
(45.21).
g(x)
.
j o i s s u f f i c i e n t l y l a r g e , the functions
(45.21)
The s e t Vo if
i s a compact
c0
Formula (45.18) i s a l s o uniformly v a l i d i n Vo
defined and univalent i n
(b) for
Furthermore,
i s a f i x e d p o s i t i v e number.
z e t (45.19) uniformly i n
(a)
.
j
Denote by
€0
c i e n t l y small. If
fi
l i m f ' ( x ) =1
(45.19)
subset of
(j2jo)
lim f (x)=x j+m j
(45.18)
set
,
x€ij
,
j 2 j ( € );
This means t h a t
6
f.( )
J ?
.
i s suffi-
( j 2j o )
Hence we a r e well
be a p o s i t i v e number such t h a t
j(c)
such t h a t
A SENERAL BOUNDARY VALUE PROBLER
194
- x J < -1s l f ’ ( x ) I 4 j ThereCore, by v i r t u e of Koebels theorem%, f o r each f i x e d Ifj(X)
(45 2 2 : for (45.21).
(x,j) i n ( 4 5 . 2 l ) , t h e r e exists a p o i n t
h.(x) J
i n t h e €-neighborhood o f
x
such tkii%t
(45 -23; b (x)
Since
‘j
f.(h.(x)) =x , J j i s i n t h e €-neighborhood o r
(45.24:
Ih,(x) rl
x
, we
have
-XI < . E
From (45.17) and ( 4 5 . 2 3 ) we d e r i v e
,
h.(x! = 6 ( z N (XI) 3 j
(45.25’
ttnd henze (45.24) i m p l i e s t h a t
(45 .rb:
IC(Z”(X))
-XI
<€
J
C ( zN
‘This means t h a t the f u n c t i o n s conditions (45.26), i f ( x , j ) g(x)
Remark:
S t e p 1.;: t i o n of
.
2mmIa
(45.15)i s
,
x
.
i s a r b i t r a r y , and
E
t h e d e s i r e d r e s u l t (45.15) f o l l o w s
W e s h a l l prove t h a t t h e Schwarzian of
g(x)
x = O i s i n t h e domain
Farthermore
p
0
is n o t a t i n f i n i t y ,
g l ( 0 ) =1
.
Hence, i f
ro
formula
i s a r a t i o n a l func-
f i r s t o f a l l , from ( 4 5 . 3 ) and (45.12) we d e r i v e
Since she base p o i n t of
.
Vo
Since
a g e n e r a l i z a t i o n o f t h e well-known
This means t h a t t h e p o i n t a t g(x)
are w e l l defined and s a t i s f y
i s i n (45.21).
i s uniformly continuous i n
imme5ia t e l y
(x))
j
A
and
6 (p,) = 0 g(0) =po
x = O i s n o t a pole of i s a s u f f i c i e n t l y small
p o s i t i v e numjer, t h e r e s u l t obtained i n S t e p I11 i m p l i e s t h a t
(45.27.’
, x ) = {g,x)
l i m {z,
j
j-tm
u i i f o r m i y i n t h e domain
(45.28)
’ See,
**
1x1 I r 0
f o r example,
*
R. Nevanlinna
See G. E l f v i n g [8; p.311.
.
[ 2 8 ; Koebe Is Theorem on p .
861.
.
PROOF OF mom 40.1
195
Mapping (45.1) i s a conformal mapping from t h e Riemann sphere onto t h e
SN
surface
.
%
Note t h a t t h e surface
over the base p o i n t s
%
t h e boundary of
.
0, 1, lti, i
Since
point i s n o t a branch-point
.
and
has e x a c t l y f i v e branch-points lti
.
These branch-points a r e on
%
qN i s i n the e x t e r i o r o f
of
ZN , this
Thus, by v i r t u e of (45.3), we can conclude
that
z l ( x ) has zeros a t f i v e d i s t i n c t p o i n t s i n x-plane. Denote these N f i v e p o i n t s by 5 ( h = 1 , 2 , 3 , 4 , 5 ) . A straight-forward computation N,h shows t h a t (45.29) where
a
N,h
p,,
and
(45.28) f o r l a r g e
are c e r t a i n constants.
, the El/sN hi j
Since
zl ( x ) # 0 i n domain N
f i v e sequences
...I
j=l,2,
j
(h=1,2,3,4,5)
j'
a r e bounded.
Without loss o f g e n e r a l i t y w e assume t h a t
exist i n x-plane.
Set P.(x) =
5
n
h=l
5
n
( j =1,2,. .)
J
and PJX) =
.
( 1 - A ) 'N: ,h
(LThX)
.
2
h=l Then
l i m P . ( x ) =P,(x) j -tcoJ uniformly i n (45.28). Hence
P.(x){zN ,XI a r e polynomials i n x whose J j degrees a r e n o t g r e a t e r than nine, t h e limit function P,(x){g,x] i s alsc a polynomial i n x of degree not g r e a t e r than n i n e . This proves t h a t
uniformly i n (45.28). Since
{g,x] Step V:
i s a r a t i o n a l function of
We s h a l l prove t h a t
Section 4.0, t h e f'unction
g(x)
A
x
.
i s a c t u a l l y x-plane.
As we mentioned i n
i s represented by a r a t i o of two l i n e a r l y
A GENERAI,
196
BOUNDARY VALUE PROBLEM
independent s o l u t i o n s o f the l i n e a r d i f f e r e n t i a l equation 1
y" t 7{g,xJy = 0
(40.10)
.
{g,x] i s a r a t i o n d function of
Since
, solutions
x
of (40.10) admit
only a f i n i t e number of i s o l a t e d s i n g u l a r p o i n t s i n x-plane which a r e poles of
{g,x]
continuum.
.
If
i s n o t x-plane, t h e boundary of
A
Note t h a t
A
i s simply connected.
Hence
ued a n a l y t i c a l l y across a p a r t of t h e boundary of
since Ro
4 must contain a A
g(x)
.
can be contin-
This i s impossible,
can n o t be extended t o a much l a r g e r covering s u r f a c e over t h e
Hiemann sphere. Step VI:
Ro
We s h a l l prove t h a t
i s a cubic polmomial i n
{g,x]
does n o t admit any a l g e b r a i c branch-points,
zeros i n x-plane and every pole of entire i n
x
,
g(x)
and hence a polynomial i n
conclude t h a t t h e degree of {g,x)
.
i s three.
Since
g l ( x ) does not have any
i s simple. x
.
x
Hence
{g,x]
is
Then from Lemma 40.1 we can Note t h a t
.
m+2=5
This completes t h e proof of Theorem 40.1 f o r t h e s u r f a c e R0
.
For-
mula (45.27) means t h a t the l i n e a r d i f f e r e n t i a l equations 1 y " + ~ { z, x~} y = o (j =1,2, ...) j approximate the d i f f e r e n t i a l equation (40.10) Each of equations (45.30)
( 4 s .30)
.
has e x a c t l y f i v e r e g u l a r s i n g u l a r p o i n t s Riemann sphere. Fuchsian c l a s s . as
h (h=1,2,3.4,5) on t h e j' Hence t h e d i f f e r e n t i a l equations (45.30) a r e of the
N'
Furthermore, the s i n g u l a r p o i n t s
5 N.,h
tend t o i n f i n i t y
J
46. Proof of Theorem 39.1. We s h a l l complete the proof of t h e e x i s t e n c e o f a s o l u t i o n of system (39.11) i n t h e c a s e when (46.1)
m=3
(46.2)
c
0
=o
,
cl=l
,
c2=l+i
,
c3=i
,
.
c =l+i
4
W e have constructed a covering s u r f a c e over t h e Memann sphere i n such Ro a way t h a t conditions (i), (ii) and (iii)of Section & are Isatisfied. W e
have f u r t h e r constructed a function
g(x)
such t h a t
(a)
g(x)
(b)
p = g ( x ) is a conformal mapping from x-plane onto R~ ; t h e Schuarzian {g,x) of g ( x ) i s a cubic polynomial i n
(c)
i s meromorphic i n x-plane; x
.
LOCAL UNIQUENESS
197
W e can assume without l o s s of g e n e r a l i t y t h a t { g , x j =-2[x 3 +alx 2 + a x + a 2 3 Then
g(x)
I.
i s a r a t i o of two l i n e a r l y independent s o l u t i o n s of
y " - [ x 3 + a x2 + a x + a 1 y = 0 1 2 3 Therefore, by virtue of Lemma 40.1,
(46.3)
g(x)+yk as
x-+w i n
%
.
9
(k= 0 , 1 , 2 , 3 , 4 )
,
yk a r e points on the Riemann sphere. F'urthemore, the sets E Y , , Y ~ , Y ~ , Y ~ , Y ~ ~ and E C 0 , ~ 1 , ~ 2 , C433, ~ must be the 981318, s i n c e ( 4 6 - 3 ) implies t h a t yk a r e logarithmic branch-points on Ro Note t h a t % h 2 i s mapped onto 8keh by t h e r o t a t i o n % = w x , where w=exp[.-rri] . Hence 5 where
.
.
Then i t will yo=co tl h a t we have y k = \ follow immediately from condition (ii)of Section &
we can assume without l o s s of g e n e r a l i t y t h a t
.
This completes the proof of Theorem 39.1 f o r t h e s p e c i a l (k=0,1,2,3,4) case given by (46 .l) and (46.2) 47.
.
Local uniaueness.
As we have seen i n Section 42, equations (39.11)
may have many s o l u t i o n s .
This i s not unusual f o r any eigenvalue problems.
In f a c t , Problem 39.1 i s a multiparameter eigenvalue problem i n the complex I n this and the next section* we s h a l l i n v e s t i g a t e t h e d i s c r e t e n e s s
plane.
I n o t h e r words, we s h a l l i n v e s t i g a t e the l o c a l uniqueness of s o l u t i o n s of equations (39.11). To state the problem properly, we must eliminate non-essestial parameters from t h e left-hand members of (39.11). of eigenvalues.
Observe t h a t the boundary conditions (39.10) a r e equivalent t o cp (x+s 9 a,{,
,Il)
(p(x+s,a,52,12) where
+ ck
as
x-+w i n
%
(k=O,
...,mtl) ,
is an a r b i t r a r y but f i x e d complex number. Therefore, by choosing s i n a s u i t a b l e way, we can reduce a1 t o zero. This means t h a t we can s
set (47.1)
a =O 1
i n the left-hand members of (39.11). Observe next t h a t conditions ( i ) and (ii)o f Theorem 39.1 imply the existence of t h r e e d i s t i n c t points
*
.
%, ~ k + ~~ , k + By ~
Sections 47 and 48 are based on I. Bakken [ 2 ] .
r o t a t i n g x-plane
i n a s u i t a b l e way, we can assume t h a t into
2 Ti1,
c 0 ’ c1
and
c2
a r e mutually d i s -
Then a Moebius transformation t a k e s t h e t h r e e p o i n t s
tinct. c
VALUE PROBLEM
A GENERAL BOUNDARY
198
f,
and
0, and
li2
.
1
, respectively.
This allows u s t o e l i m i n a t e
and
T,,
If w e assume t h a t
c = G ,
(47.2)
c o , c1
cl=m,
0
,
c2=1
i: f o i I 2 ; r s f r o m (39 .lo) t h a t 1 ldm o ( x , a ) ’ = C o b ) u(x18J m, 1
c9(x,a,fl,ril) cp ( x 9 a
axi
1 2 ~ ( a ) # O , where
,s 2
7 TI2
Co(a) i s the Stokes m u l t i p l i e r defined i n Section
‘:f. (21.9).)
21,
Se:
l(a2,. ..,am)i
lit=
.
F(x,a2,. .,a ) =
m
Co(0,a2,
. . .,am)# 01 , um,o(x,0,a2,
I
I:0 (0,a2,...,am) m , l ( x , 0 , a 2 ,
--
- 9
am)
...,am ) ’
and
%(a2
,...,am ) = E m
F(x,a2
,...,am )
as
x+m
in
‘k
‘
Recently, I . 3akken [ 2 ] proved t h e following theorem.
THEOFSM h7 .I: For ______ number
(ij
r
%(a2
and -
(a2,
...,am ) 0
& I fo.
there e x i s t s a positive
such t h a t t h e two conditions
,...,am )=%(G2 ,...,-am ) 0
(ii) { a i - a . l < r d J a . =a“ ~j
implv
0
each f i x e d
,
.
( k = 3 , . .,el)
,...,m)
0
Iii.-a.I < r (j=2 J J ( j = 2 , .,m) The constant
..
.
r
may depend on
0
(a2,
.. . , am ). 0
Theorem 4?.l means t h a t t h e mapping % ( a 2 , . . . , a m1 = ck
(47.3)
i s iocally univalent.
Since (47.3) is a n a n a l y t i c mapping, i t s l o c a l
inverse i s also analytic.*
on the .ia-c,a
( co,
.. .
(k = 3 , . ..,m+l)
Therefore, t h e s o l u t i o n o f Problem 39.1 depends
) analytically.
/+8. A sketch of t h e proof of Theorem L7.1.
jC
Note t h a t
See, for example. R. Narasimhan [26; Chapter 5 , Theorem 5, p . 861.
199
A SKETCH OF THE PROOF
F(x,a2,
(48.1)
... , a m ) = F( x,K2, .. .,gm)
f o r every x
i f and only i f
-
.
a. =a ( j = 2 , . .,m) . J j This i s due t o t h e f a c t t h a t t h e Schwarzian of
(48.2)
-2[x
(48.3)
m
+ a2xm-2 + ...+ am]
.
(Cf
F(x,a2,
...,am )
is
. Theorem 40.1 .)
The b a s i c i d e a of t h e proof of Theorem 47.1 is t o derive
(48.4)
x=y
from the equation
(48.5)
F(x,a2
,...,am) = F ( y , a 2 ,... , am . z
U
I . Bakken gave two methods f o r t h i s problem. In t h e f i r s t method, he u t i -
The second method i s based on
l i z e d t h e theory of Nevanlinna-E1fving.s
various p r o p e r t i e s of t h e subdominant s o l u t i o n s Q s e c t i o n , w e s h a l l explain h i s second method.
m,k
(x,a)
.%*
In t h i s
To d e r i v e (48.4) from ( 4 8 . 5 ) , Bakken e s t a b l i s h e d the following r e s u l t .
LEMMA L8 .l: Assume t h a t
(a2,
(ii)of Theorem L7.1.
(i)
e x i s t s a function H(x)
... , a m ) g& m, if r
(a",, . . . , a " m ) s a t i s f y conditions i s s u f f i c i e n t l y small, t h e r e
such t h a t
(I) H i s entire i n x ;
.
(11) F ( x , a 2 , . .,am)=F(H(x),g,,
(m)
IH(x)-x~
-,o
.
x+=
P r o p e r t i e s ( I ) and (111) of
.. .,E m )
H(x)
yield
f o r every x ;
H(x) = x
,
Hence, by using
Lemma 48.1, we can e s t a b l i s h ( 4 8 . 1 ) . This completes the proof of Theorem
47.1. Set
(48.6) and
*
I . Bakken [2; D i s s e r t a t i o n ] .
SQ
I. Bakken [2; Technical Report].
A GEXERAL BOUNDARY
200
VALUE PROBLEM
To prove Lemma 48.1, Bakken derived and u t i l i z e d the following lemma.
Note
that
m: Assume
that
(a2,
...,am)
(a",,
( i ) o f Theorem L7.1.
m, any two of
(48.8-k)
- ,...,Ei ) = + ( a , E ) % ( x , a 2 m
...,a"m )
s a t i s f y condition
t h e following m + 2
%(y,a2
,...,am )
equations (k=0,1,
...,mtl)
are equivalent. Since f o ( a , E ) =Co(a")/Co(a) same.
bakken constructed r
, he
he continued
proved t h a t H(x)
.
The s e c t o r s x
Then,
Since
I$
Uo,U1, .. .,Umtl
I n t h i s way, he could show t h a t t o zero as
i s small i n this compact s e t .
a n a l y t i c a l l y i n the s e c t o r
the asymptotic r e p r e s e n t a t i o n s of Uk
i n a s u f f i c i e n t l y l a r g e compact set i n
I H(x) -XI
by using equation (48.8-k) .
in
(48.5) and (48.8-0) a r e t h e
By assuming condition (ii)of Tfieorem 47.1 with a s u f f i c i e n t l y
x-plane. small
H(x)
, equations
tends t o i n f i n i t y .
I . Sakken [2; Technical Report].
m,k
H(x)
(x,a)
and Q,,,,(x,a)
are v a l i d
cover the e n t i r e x-plane completely. i s e n t i r e and t h a t
I H(x) - X I
For the d e t a i l s of t h e proof, s e e
tends
CHAPTER
2
SUBDOMINANT SOLUTIONS ADMITTING A PRESCRIBED STOKES PHENOMENON*
49.
Main problems.
Id
The subdominant s o l u t i o n s
(49.1)
bm,k(
9
a) = %( a )bm,k+l(
9
a) +
of the d i f f e r e n t i a l
m,k
equation (6.1) admit the connection formulas:
G( )Um,k+2( (k=O,
...,m t l )
,
where
Some p r o p e r t i e s of the Stokes m u l t i p l i e r s Chapter 5.
$(a)
and
$(a)
were given i n
For example,
(49.3) where
(49 *4)
w =exPC-
2n
mt2
i)
and
(49.5 1
v(a)=bl
(a)
.
Zm+l In this chapter, we s h a l l consider t h e following two problems.
m i s odd, and t h a t yo, ...,yWl a r e given m complex numbers al, a m such t h a t
Assume t h a t
complex numbers.
(49.6)
*
Find $(“l9
,am) = yk
( k =O,.
..., .. , m t l ) .
This chapter i s based on Y. Sibuya [4O] and [41].
A PRESCRIBED STOKES PHENOMENON
202
L9.2:
m
Assume t h a t
m
given complex numbers. -2w(a)
(49.7) and
w
(49.8)
\(al,.
i s even, and t h a t complex numbers
-- P
,...,yHl p are al, . . . , a m such t h a t
yo
-
.. , a
(k = 0 ,
) =y
...,m + l ) .
I n t h i s s e c t i o n , w e s h a l l d e r i v e some necessary conditions f o r t h e As i n Section 21, l e t u s s e t
existence of s o l u t i o n s of these two problems.
These matrices s a t i s f y t h e i d e n t i t y
.
(49 .lo)
Sm+l(a)Sm(a). .Sl(a)So(a) =12
We a l s o know t h a t , f o r each fixed
, there
a
.
(Cf.
(21.31) .)
e x i s t s an i n t e g e r
k
such
$hat
i49 .llj
%(a)#O
.
( C f . Theorem 21.4.)
firthemore,
(49 -12)
w - 2 ~ ( a ) + ~for every
a
.
Therefore, we obtain t h e following r e s u l t s . L9.1:
In order t h a t Problem L9.l have a s o l u t i o n , i t i s necessary
t h a t the matrices
s a t i s f y the condition
rm+,rm. ..rlro = i2
(49 -14) L9.2:
.
I n order t h a t Problem L9.2 have a s o l u t i o n , i t is necessarx
that -
(49.15)
P f O
(49 .l6j
ykfO
and t h e matrices
9
f o r some k
,
CASE m = l
ANDCASE m = 2
203
.
s a t i s f y condition (49 .U+)
It should be remarked t h a t we need condition (49.16) o n l y when
50.
Case m = l
=(-l) 2
and case
c0 ( a 1) where
.
2
w=exp{-ni)
3
.
+n
p$ 1
(49 -18)
m=2
.
W e know t h a t , i f
= C ( a ) = C (a ) = l + w 1 1 2 1
(Cf.
Theorem 22.1.)
m=l
,
m=l
, condition
,
Also, i f
( ~ .U) 9 becomes
and i t follows t h a t y
0
=y
1
=y = l + w 2
.
, condition
(49.14) i s a l s o s u f f i c i e n t f o r t h e existence of a s o l u t i o n of Problem 49.1. I n case m = 2 , condition (49.l.4) becomes Therefore, i f
m=l
This i s equivalent t o
Note t h a t , i f (50.2)
and
m=2
, we
Yo=Y2
have 9
.
w=i
Yl=Y3
9
From (50.1), i t follows t h a t
A PRESCFXBED STOKES PHENOMENON
204
(50.3) Conversely, (50.1) follows from (50.2) and ( 5 0 . 3 ) . -2 zero, then p =-1
.
Also, we know t h a t , i f
m=2
1 2 7 1
1 2 v ( a ) = b = -1 a 2 2-iia1
j
is
-in(Lb-L) 2 4-
J-
2n
r(+)
’
’
(Cf. (21.12), (22.10), and Theorem 22.2.) l e t us assume t h a t t h e q u a n t i t i e s
y
,
b ) =C2(al,a2) = 2 e
‘
If one of the
To solve Problem 49.2 f o r
yo,y1,y2,y3
and
m= 2
,
s a t i s f y the condi-
p
tions
(i) p f o , (ii) y o or y , f o
,
and (50.2) and ( 5 0 . 3 ) . r($tb)#m
.
I n case yo# 0 , choose b s o t h a t e-ibn = p and al s o t h a t Co(a , a ) = C ( a a ) = y o ( = y )
Also, choose
1
2 2 1’2 2 Then i t follows t h a t C ( a , a ) = C3(al,a2) = y l ( = y3) W e can t r e a t the 1 1 2 i n the same way. Therefore, i f m = 2 , conditions (49.15), case y,#O
.
.
(49.16) and (49.14) a r e s u f f i c i e n t f o r t h e e x i s t e n c e of a s o l u t i o n of F’roblem 49.2. 51.
Problem L9.1 a t
(51.1)
a=O
.
At
, we
a=O
have
,...,m t l ) .
(k=O
s(0)= l t w
( C f . (23.,!+).)
Therefore, (51.2)
$(a)
#0
(k = 0 , .
.., m + l )
for
(51.3) if
Ro> 0
m M lA 5LL:
1 1 .1
. a * +
bI,
IRo
9
i s s u f f i c i e n t l y small.
a,b,c,a,p,y,t,T,
none o f them i s zero.
&, if
g&
c
be complex numbers.
Assume t h a t
PROBLEM 49.1 AT a = 0
205
i t follows t h a t
(51.5)
a = a ,
Proof:
b=!,
.
c=y
A straight-forward computation shows t h a t
q, and c a r e a r b i t r a r y complex q u a n t i t i e s . Therefore, (51.5) follows from (51.4). This completes the proof of Lemma 51.1. a , b, c , 5 ,
where
LEMMA 51.2: according a s
(49.9).
rk
Let the matrices
m i s odd o r even.
Assume t h a t the
rk
be defined by e i t h e r (49.13) Let the matrices
Sk(a)
or
be defined by
m, if
s a t i s f y condition (49.14).
(49.17) a
i n domain ( 5 1 . 3 ) , the system of equations
(51.6)
%(a)
=rk
(k=O,l,
S,(a)
=rk
(k=O,
...,m+l)
i s equivalent t o (51.7)
...,m-2) .
It i s s u f f i c i e n t t o show t h a t (51.6) follows from (51.7).
Proof:
t h e matrices
%(a)
Since
s a t i s f y r e l a t i o n (49 .lo), we derive
rmtlrmrm-l = s,,(a)sm(a)sm-,(a)
(51.8)
from (49.10), (49.14) and ( 5 1 . 7 ) .
( 51 -9)
By v i r t u e of Lemma 51.1, i t follows t h a t r m = S m ( a ) , rmtl=Smt,(a)
rm-l =sm-l(a)
.
This completes the proof of Lemma 51.2. LEUMA
Assume t h a t
complex v a r i a b l e s . tions
a,(y)
(i)
a,(y)
each
(51.11)
i s odd.
&&
yo
such t h a t
i s holomorRhic f o r Iyj-(l+w)J
a,(y)
m
Then t h e r e exist a Dositive number
( k = 2 , . ..,m)
(51-10) (ii)
m23
(j=O,
satisfies t h e condition apw,l+w,.
..,l+w)
=0 ;
...,m-2)
;
,...,ym-2 be c
m-1
func-
A PRESCRIBED STOKES PHENOMENON
2 6
Proof:
L_
Let us compute t h e determinant
(51.13)
A(a)=
a cO
...
aam at
a=O
.
acm-2
aam
From % ( a ) = C(Gk(a))
,
( c f . ( i i ) of Theorem 21.1),
i t follows t h a t
w
1
w
-4
...
w
w4
...
w
w
-3
-2( m-2) -3(m-2)
m
...
...
-m
...
-m(m-2)
w
w
-2m
w
ac
n K j=2 j
... ... ... 1
"her, A( 0) # 0
-2
1
f o l l o w s from (23.12) of Theorem 23.2.
a=O
Consider t h e system
of e q u a t i o n s
...,
...,
.
C.(0,a2, a =y ( j =O, m-2) J m j Since Z . ( O ) =1+w , and A(0) # 0 , w e can solve (51.15) with r e s p e c t t o J This completes t h e proof o f Lemma 51.3. %2, ,a
(51.15)
...
m '
Assume t h a t
m Q R F ; M 51.1:
t i v e number
E
such t h a t ,
m
m23
if
m+ 2
i s odd.
Then t h e r e e d s t s a posi-
complex q u a n t i t i e s
yo,
...
satisfv t h e c o n d i t i o n s
(51.16)
Juj-(l+w)I
< s
(j=O,
and i f m a t r i c e s (49.13) satisfy c o n d i t i o n
...,m t l ) , (49 .u), a solution
L9.1 is given by
(51.17)
~=~(Y0~.'.'Ym-;?)
(k = 2 ,
...,m)
o f Problem
a =0
PROBLPl 49.2 AT
207
and -
(51.18)
al=O,
where a 2 ( y ) ,...,am(y)
are d v e n i n h
a 51.3.
This theorem follows from Lemmas 51.2 and 51.3. 52.
Problem L9.2 a t
a=O
.
If m i s even, the system of equations
(51.7) i s equivalent t o -2w(a) = P
{
(52.1)
9
.
( k = 0 , . .,m-2)
=yk
.
In order t o solve ( 5 2 . 1 ) , we consider f i r s t t h e system o f equations u(Z) =a )’ “&-l(’) =YoYZh-l
(52.2)
.
,
( h z l , . .,*-l) 1 2
9
where
m-t2 i l o g p
,
(52.3)
m Assume t h a t
m>_4
m
i s even.
m, there e x i s t a p o s i t i v e number ( k = 2 , . . .,m) such t h a t
be complex v a r i a b l e s .
functions
%(y,u)
( i ) each %(y,u)
(52.5)
ak(ltw,l+w
.
Proof:
-
Set
8
, gIJ
_and m - 1
satisfies the condition
,...,1 t w , O )
(iii) a”= ( 0 , a 2 ( y , a ) , , .,am(y,u))
(52 - 4 )
..,Y,-~
i s holomorphic f o r
%(y,a)
(ii)
yo,.
=O ;
s a t i s f i e s esuations (52.2) in domain
CJ
A PRESCRIBED
208
STOKES PHENOMENON
(52.6) (h=l,
afO
...
afo a am
...
afl
aa2
a rl (52.7)
at
A(a)=
a=O
.
...,312 - 1 ) .
aa2
r-om % ( a ) = C ( Ck ( a ) )
,
it fellows t h a t
r k t h e r m o r e , from Lemma 23.1, we g e t
( c f . ( i i ) of Theorem 21.1),
PROBLEM 49.2 AT a = O
209
...
... D=
(52.11)
... ... ... dm - 21, ~
...
... ...
d m-2,Zm+2 l
and
Observe t h a t
,
dl,j=l+w-j
(52 -13)
d2h, j
+
d2h+l, j
+
( h = l , ...,-m-1 1) 2
- j ) w - j(2h-1)
d2h-l, j =
d2h, j = (1+w - j ) w
..
-2jh
(h = 1,. ,=-2) 1 2
This implies t h a t
1
...
-2
...
W
-4
...
W
...
...
1
1
...
1
1
W
V=
W
-z" -m
W
W
...
-2(5+2)
... ...
...
...
-(5+2)
w
w -2m
...
Note t h a t
Hence from (23.34), (52.10) and (52.L$), we g e t (52.15)
A(O)#O
Therefore, equations (52.2) can be solved with respect t o
-m
i n the
. .
210
A PRESCRTBEI3 STOKES PHENOMENON
neighborhood of
LEMMA 52.2:
8=0
.
This completes t h e proof of Lemma 52.1.
AS i n Theorems 7.3
& 21.2, d e f i n e ul, , .. , um
(52.16)
= sm t u l s m-1 Then t h e f u n c t i o n s
i...tum-ls+u
f o ( a ), f , ( a ) ,
a
...t a m-l ( ~ t s ) t a m
m m-1 + (xts) +al(xts)
.
m
. ..,fm-,(a)
defined by (52.6) s a t i s f y t h e
c o n 3t i o n s (52.17)
( j = 0,.
f j (u) = f j( a )
Froof: -
...,um and a .
Let us denote
ul,
their dependence on x
ul(x,a),
by
...,u,(x,a)
to indicate
Set
u(x.a) = (u,(x,a),
(52.183
..,m-2) .
- ..,u,(x,a)) .
rher. ,k
(52.19)
( u ( x , a ) >= U ( W
-k
x,Ck ( a ) )
.
( C f . (21.26).)
Hence
k -k k I \ ( u ( x , a ) ) = C ( G ( u ( x , a ) ) ) = C(U(W x,G ( a ) ) )
(52.20)
= exp{ZEm(w-kx,Gk(a)) }C(Gk(a)) k = e x p { ( - l ) 2Em(x,a)}Ck(a)
.
In t h i s computation, we used formulas ( 2 1 . 7 ) , ( 2 1 . 2 3 ) , and (ii)of Theorem 21.1.
Therefore, we o b t a i n (52.17) f o r
(52.20).
As t o
fo(a)
bl
(52.21)
Zm+l if C
,
from (52.6) and
observe t h a t
m
1
( a ) = - J1 [xm+ 2 %x m-k 2ni C k=l
15 dx
i s a simple closed curve such t h a t a l l r o o t s o f t h e polynomial a r e
contained i n i t s i n t e r i o r . ( 5 2 -22)
bl
v(a) = b
(a)
Hence
(u) =bl
F+l Since
...,m-2
j =1,
(a)
P1
.
( c f . ( 2 1 . 1 2 ) ) , w e o b t a i n (52.17) f o r
j =O
$1 completes t h e proof of Lemma 52.2. Let u s d e r i v e (52.1) from ( 5 2 . 2 ) .
To do this, assume t h a t
.
This
PROBLEM 49.1: THE GENERAL CASE
Yo,...,Ym,2
yj # 0
.
Then, i f
u
and
a r e i n domain (52.4), and t h a t
...,um(x,a)
Let u l ( x , a ) , a"
211
s > 0 i s so small t h a t
denote the q u a n t i t i e s defined by (52.16).
s a t i s f i e s (52.2), i t follows from Lemma 52.2 t h a t
5 i s an a r b i t r a r y complex number.
a l s o s a t i s f i e s ( 5 2 . 2 ) , where
u(5,E) Observe
that
Co(u(5,s)) =exp{2Em(5,E)}Co(g)
(52.23) Since Em(Z,8)
i s a polynomial i n
5
from zero, we can f i n d
5
, and
.
Co(g)
and yo a r e d i f f e r e n t
so that
(52.24.)
c o ( u ( 5 , a )=yo
This means t h a t
a=u(s,g)
.
satisfies (52.1).
Thus we proved the following theorem.
THEOREM 52.1:
Assume t h a t
p o s i t i v e number
E
m24 and m i s even.
such t h a t ,
m, t h e r e e x i s t s
a
if
and matrices (49.17) s a t i s f y condition (49.l4), Problem L9.2 has a s o l u t i m . 53.
Problem L9.1:
I n this s e c t i o n , we s h a l l show t h a t
t h e general case.
condition (49.14) i s s u f f i c i e n t f o r the existence of a s o l u t i o n of Problem 49.1. LEMMA 53.1:
Assume t h a t
s a t i s f y condition (49.14).
m
m23
i s odd, and t h a t matrices (49.13)
Set
,
c 0 =m
cl=o, (53.2) U
k-2
(k=2,
C k = z
Then
co,
...,c
...,m t l ) .
a r e well-defined points on t h e Riemann sphere, and they
s a t i s f y the following two conditions.
(i) c ~ + ~ # (ck =~O ,
...,mtl;
cm t 2-- c 0 ) i
A PRESCRIBED
212
...,cI U t l 3
(ii) t h e s e t (co,
STOKES PHENOMENON
c o n t a i n s a t l e a s t t h r e e d i s t i n c t p o i n t s on t h e
Riemanr, s p h e r e . Proof:
Note t h a t
L_
.
d e t H,#O
This means t h a t
defined p o i n t s on t h e Riemann s p h e r e . follows from p r o p e r t y
(53.3)
'ktl
-2
#O
.
For
.
(k=2,
.
Hence
are well-
m i s odd, p r o p e r t y
(ii)
( i ) , w e s h a l l prove t h a t
To prove
# 'k
Ho = T o
Observe f i r s t t h a t
-
(i)
Since
. . .,c &l
co,
T~
...,m) ,
=yo
and
k>_O , we have
a =1 0
.
This shows t h a t
%+l = r k t l % ' m d heme
' k t l ='k+l7kt
',"herePore,
" k t l ''ktlak
-t % '
-' k t l
-
7
k
0
0
ktl
'%is shows t h a t
'
'k
'k
b
k
c k t l # ~ for
= -det H , # O
,
'k
k=2,
...,m .
Condition (49.14) can be
vrifter: as
Hence
This shows t h a t
T
~
=-- w -~l #
0
.
Therefore,
c f mtl
a
.
This completes t h e
proof of Lemma 53.1.
moRn*!5 3 . 1 :
Assume t h a t
.
s a t i s f y c o n d i t i o n (49 .I&) Proof:
m i s odd, and t h a t m a t r i c e s (49.13) Then Problem L9.1 h a s a s o l u t i o n .
m>_3
By v i r t u e of Lemma 53.1, we can u s e Theorem 39.1 t o f i n d
p l e x numbers
al,
...,am
such t h a t t h e d i f f e r e n t i a l e q u a t i o n
m y " - [ x mt
z "kx
k=l
m-k ly=O
m
com-
PROBLEM 49.1:
THE GENERAL CASE
has two linearly independent solutions yl(x) the boundary conditions
213
and y,(x)
which satisfy
(53.5) Since c0 = a and c1 = O
, we must have
(53.6) where 1 is a non-zero complex number. By utilizing the matrices %(a) defined by (@.lo), we can write the connection formulas (49.1) as
[ld m,k (X,a),bm,k+l(x,a) 1 = [km,k+l(x’a)9bm,k+2(x9a) lsk(a) (k=O,
...,m + l ) .
Set
...,m-1) .
(k=O, Then
and hence
Therefore, (53.8) Set
(53.9) We shall Drove that if k is even, if k is odd, where (53.11)
k=O,
...,m-1 .
214
A
For
k =0
PRESCRIBED STOKES PHENOMENON
, (53.10)
becomes
Also, i t f o l l o w s from (53.1) and (53.7) t h a t
,
t o ( a ) =Co!a) 'To-yo
,
Hence, (53.8) i m p l i e s t h a t
Cl
0
s o ( a ) =1
=1
.
Assume t h a t ( 5 3 .lo) i s true f o r
(53.13)
i
$(a) =
*-'%A
A%A
Let us consider t h e case when k=h+l
, we
.
Co(a) = X Y o
h
This proves ( 5 3 . 1 2 ) .
k = 0,.
. ., h .
Then
if
h
i s even,
if
h
i s odd.
i s even.
If we s p e c i a l i z e (53.10) f o r
get
W e s h a l l prove t h a t (53.14) i s t r u e .
To do this, observe t h a t (53.13)
Since
'h+l =Yh+lThs 'h
'
'htl ='h+laht
'
Therefore, w e d e r i v e
'h
ar++l(a) =yhtl
This proves ( 5 3 . y ) .
from (53.8).
S i m i l a r l y , we g e t
-1 X Chtl(a)
Note t h a t ='yh+l
if
det Hh#O h
.
i s odd.
This completes t h e proof o f (53.10) f o r (53.11). The m a t r i c e s
Sk(a)
f o r (53.11), and s i n c e
satisfy condition
(49.10). S i n c e (53.10) i s true
m - 1 i s even, i d e n t i t y (49.10) becomes
PROBLEM 49.2:
THE GENERAL
215
CASE
.
S&1(a)Sm(a)AHm-1A=12
On the other hand, (49.14) can be written as
=2'
'm+l'mHm-l Hence
Aswl(a)Sm(a)A
*
=relrm .
This implies that
(53.16)
=1
,
c,Ca) =ym
,
.
~ ~ + ~=ydl ( a )
Theorem 53.1 follows from (53.10) and (53.16).
54.
Problem L9.2:
the general case,
method o f solving Problem 49.2.
For
m 2 4 , we have not
found any
Instead, w e s h a l l prove the following
theorem.
THEOFEM 5L.1:
(i)
m24
(ii) yo,
Assume t h a t
m is even; 'ywl , g& p are given complex numbers;
...
(iii) p f ~; (iv) yo#o ; ( v ) matrices (49.17) s a t i s f y condition (49.14)
Then, -
m complex numbers a l , .
there e x l s t
(54 -1)
If
p =0
..,a m
and an i n t e g e r
if
k
is even,
if
k
is odd,
p
(k=O,
f o r some
j
p=O
can be reduced t o the case
.
such
...,mtl) .
then Theorem 54.1 would give a solution o f Problem 49.2.
ever, we s t i l l do not know how t o prove y #O j
.
How-
The case when yo=O but y,#O
To prove Theorem 54.1, l e t us define matrices
Po,
easily.
...,r&l r-
by
A PRESCRIBED STOKES PHENOMENON
216
where
(54.3)
if
k
i s even,
if
k
i s odd,
(k=O,
?k =
...,m) ,
MRtrices ( 5 4 . 2 ) s a t i s f y t h e condition
(54.5)
-
--
rmlfm...rlro = I . ~.
In f a c t , i f we set
’
OP 1
if
k
i s even,
if
k
i s odd,
.
(k = 0 , . ,,m-1)
and
7
I d e n t i t y ( 5 4 . 5 ) follows from (49.L$),(54.7) and ( 5 4 . 8 ) .
Note t h a t
(54.9)
0
=1
.
Hence
THE GENERAL CASE
PROBLEM 49.2:
c Then
0
= a ,
cl=O,
Ok-2 c ='k-2
217
(k = 2 , .
..,m+l)
are well-defined p o i n t s on t h e Riemann sphere, and they
c0,...,cmtl
s a t i s f y t h e condition (54.12)
%+l#Ck
(k=O,
...,W l ;
Cw2=C0)
( C f . the proof of Lemma 53.1.) Furthermore, s i n c e c2 = 1, t h e set {co c ] contains t h r e e d i s t i n c t p o i n t s , 0 , and 1 Hence mtl by v i r t u e of Theorem 39.1, t h e r e e x i s t m complex numbers a l , . .,a and
,...,
. .
two l i n e a r l y Independent s o l u t i o n s
y,(x)
and
y2(x)
m
of the d i f f e r e n t i a l
equation
m m-k yrt- [xm+ c EkX ]y=o k=l
(54.13) such t h a t
Since
c == 0
,
cl=O
where t h e matrices
and
c2=1
, we
must have
Sk a r e defined by (49.9).
o f subdominant s o l u t i o n s by
Let us define another s e t
A PRESCRIBED STOKES PHENOMENON
218
where
f 5.4 .la)
p( a) = m-zv'a)
.
Let
-
(54.19) be
(k=O,
[~k(x),yki~+l(~)]=[~k+l(~) ,?k+2(x)lsk(')
t h e 2onnection formulas f o r t h e subdominant s o l u t i o n s
where
Fmi2 ( x ) =y,(x)
and
7e
3
(x) = y l ( x )
.
?,(x),
-. ...,Y~+~(X),
Then
-
(54.20)
sm (a") =
uhere
(k =0,.
..,m)
and
Then
(54.25) Hence
q-- as
F(x) + ' - 2 -2
x+-
in
ak
(k=2,
...,m + l ) .
219
PROBLEM 49.2: THE GENERAL CASE
Bk = % tk 'k
(54.26 1 Note t h a t %
(54.27)
.
(k=O,
...,m-1) .
- .
.
so(;) =To
Therefore, from (54.27) and (54.26), we can derive
..
,.
s,(a) =rk
(54.28)
(k = 0 ,
i n t h e same way a s i n Section 53.
..,,m-1)
Since t h e matrices
fk
s a t i s f y condi-
sk(Z) s a t i s f y t h e condition .smtl . ( z ) ~ m ( z... ) So(a) =12 ,
t i o n ( 5 4 . 5 ) , and the matrices
we have
A straight-forward computation shows t h a t
-
-
Sm(Z) =rm
.-. smtl(:)
and
..
.
Hence
I 7+1
1 2"+1 B(Z)
=p
(54.29) Q Let
p
9
.
=yk
.
(k = 0 , . ,,m+l)
be an unknown quantity, and define
s
m m-I. x +alx
(54 -30)
+
...+ am-lx
al
,...,am
by
+ am
...+ grn-l ( x + s ) + Ern . a r e polynomials i n s . By v i r t u e o f
= ( x + s p + ZJx+ s ) m - l + The q u a n t i t i e s
al,
...,a m
Lemma 52.2,
we have
(54.31) (k=O,
...,m)
,
and 1
7n
2
(54.32)
Q ~ ( E ) = B(a)
Co(a)Cmtl(a)
.
Then Theorem 54.1 follows from (54.3) , ( 5 4 . 4 ) , (54.29), (54.31), and (54.32). This completes t h e Proof of Tfmxw
Determine
54 .I.
s
so that
Co(a) = y o .
A PRESCRIBED
220
55. of
STOKES PHENOMENON A set
Subdominant s o l u t i o n s a d m i t t i n g a p r e s c r i b e d Stokes phenomenon.
m + 2 n o n t r i v i a l s o l u t i o n s yo,
...,ymtl
of d i f f e r e n t i a l e q u a t i o n (6 .l)
i s c a l l e d a complete s e t o f subdominant s o l u t i o n s of (6.1) ? i f a r e sub:iominant i n
Note ?hat
m+ 2
-
So,
- go,. ..,Sm C l , r e s p e c t i v e l y .
. ..,Swl
solutions
.
y o , . .,ymtl
( C f . D e f i n i t i o n 7.1.)
cover x-plane completely.
For example, t h e s e t o f
i s a complete s e t o f subdominant solu'dm,o, * * ' " b , m t l Fbrthermore, {yo, .,yrtttl} i s a complete set o f subdomi-
..
tions of (6.1).
nant s o l u t i o n s of (6.1) i f and o n l y i f
.
Y,(x) = a , ~ + ~ , ~ ( x , a )( k = 0 , . .,el)
(55.1) khere t h e
4(
are non-zero c o n s t a n t s .
,
If a complete s e t o f subdominant
s o l u t i o n s of (6.1)i s given by ( 5 5 . 1 ) , t h e s e
m+ 2
subdominant s o l u t i o n s
admit t h e connection formulas (55.2)
( k = O , ...,mtl) where i55.3) and
(55.4) Set
and
(55.5)
$=[;
'01
(k=O,
...,ni-tl) .
Then t h e connection formulas ( 5 5 . 2 ) become
Fhthermore, observe t h a t
where (55.8) and t h e m a t r i c e s
(k=O, Sk(a)
...,rtttl)
a r e given by (49.9).
,
S i n c e m a t r i c e s (49.9)
?
221
A PRESCRIBED STOKES PHENOMENON
s a t i s f y i d e n t i t y (49.10), and
( c f . ( 5 5 . 4 ) ) , matrices (55.5)
Tk+2= T0
s a t i s f y t h e condition
... s
SmflSm
(55.9)
0
.
=12
Conversely, l e t us consider m + 2 matrices
;3
4=[;
(k=O,
...,mtl)
such t h a t
(55.11) In this s e c t i o n w e s h a l l prove the following theorem.
mom
5 5 . 1:
(k = 0 , .
qk r
'k
..,m+1)
be d v e n complex numbers s a t i s -
fying t h e conditions t h a t
(i) matrices (55 .lo) s a t i s f y condition (55 .u); f o r some k if. m i s even. (ii) q k # O
,
Then we can f i n d m
complex numbers
esuation (6 .l)has a comDlete set
al,
.
...,am
so t h a t t h e d i f f e r e n t i a l
{yo,. . , Y & ~ }
of subdominant s o l u t i o n s
which admit the connection formulas
(55.12)
[Yk(x) ,yk+l(x) 1 = [yk+l(x) ,yk+2(x)
where
and
Ymt2=Yo
Proof:
-$(a)
= --w
9
*
*
,*l)
0
W e s h a l l f i r s t consider t h e case when m i s odd.
(49.3) .)
(Cf.
Ye3=Y1
(k = '
(k=O,
I n this case,
...,m f l ) .
Therefore,
Also, condition (55.11) implies t h a t mtl (55.13) II r k = - l , k=O Let u s d e f i n e m + 2
(55
complex numbers
ao,
.u)
where
(55.15)
amf2=ao
,
amt3=a1
.
...,a m t l
by the condition
9
A PRESCRIBED STOKES PHENOMENON
222
'70 do t h i s , s e t a I
0
=1
, ( h = 1,
2(h-1)
<
(55.16
...,$( mtl ) ) ,
C120
= (-w)r
QZh
= ( - wa )m yt l
c
1
,
m+l
he^ it is e t s y to v e r i f y (55.14) f o r
- . :t' r1v';'
n
r
(-WY)
i
.
To prove ( 5 5 - 1 4 ) f o r
k=m ,
=-1
kt2
%j&
frm
ak
k#m
55-13) m d ( 5 5 . 1 4 ) . Then,
II (-w-)
r
"k
a
= -(-u)-
'k+2
%=O
.
m
amt2
Also, froni (55.15), i t f o l l o w s t h a t
n
( - w ?k y ) = (-w)mt2=-1
k=O There:'c-e,
.
kt2
(55.17) y i e l d s (55.14) f o r k = m
.
Set
'kt1
Y k = T qk
(k=O,
...,m+l) ,
Then
rk =
(k=O,
...,m t l )
,
= Ti'0 ( c f . ( 5 5 . 1 5 ) ) , m a t r i c e s (55.18) s a t i s f y c o n d i t i o n (49.14) of Lemma 49.1. Condition (49.14) is s u f f i c i e n t f o r t h e e x i s t e n c e of a s o l u t i o n of Problem 49.1. Therefore, t h e r e e x i s t m complex numbers
Since
'YM2
- ,. .., R m such t h a t
a,
223
A PRESCRIBED STOKES PHENOMENON
=Yk
(k=O,
...,m t l ) .
Set
(55.19)
yk (
=
\urn, k (
7
(k = 0,.
a)
..,mtl) .
Then t h e subdominant s o l u t i o n s (55.19) admit t h e connection formulas (55.12).
This proves Theorem 55.1 f o r t h e c a s e m
Let us consider t h e case when m
i s even.
(k = 0 ,
i s odd.
I n this case
...,m+l)
,
where $ ( a ) = l J -2w(a)
.
( C f . (49.3).)
Therefore, mfl
n
k=O m_
2
n
h=O
m 2
n
h=O
Also, c o n d i t i o n (55.11) i m p l i e s t h a t
mtl
n rk=l. k=O L e t u s determine a complex number
(55.20)
p
by t h e c o n d i t i o n
1
It is e v i d e n t t h a t (55 21) Let u s d e f i n e (55.22)
P f O
-
m + 2 numbers
ao,
...,allt+l
by t h e condition
(k=O,
rk = ( - w p %+2
...,mtl)
,
A
221,
PRESCRIBED STOKES PHENOMENON
where
(55.23)
nW2=ao
,
ad3=a 1 ’
To do this, s e t a
0
=a = 1 , 1
( 5 5 .a+) ‘k= (*p ( - 1 ) kr ) k k-2
Then, (55.22) f o l l o w s f o r
(k=2,
.
k#m,m+l
...,m t l ) .
To prove (55.22) f o r
k=m
and
m + l , observe t h a t (55.20) can be w r i t t e n a s “5-1
r
n
2h
,
( - ~ p , a ) =-p
h=O
2h+2
I n t h e same way as we proved (55.14) f o r k = m
k = m ar,d m + l
from (55.23)
, we
can d e r i v e (55.22) f o r
and ( 5 5 . 2 5 ) .
See,
Then
(55.27)
y,#O
€ o r some
k
,
and (k=O,
rk = T ~ + ~ ~ . , T L ~
...,mtl)
,
where
Since
Tk+z = To
(cf
. (55.23)),
matrices (55.26) s a t i s f y (49.14)
.
There-
f o r e , if w e can s o l v e Problem 49.2, we will be able t o complete t h e proof o f Theorem 55.1 f o r even i n t e g e r s
m
.
However, w e have n o t solved Problen
m24 . I n s t e a d , we proved Theorem 54.1. I n o r d e r t o u t i l i z e Theorem 54.1, l e t us assume t h a t y o # O Other cases can be t r e a t e d i n
49.2 f o r
.
A GENERAT., PROBLEM OF G.D. BIRKHOFF
By v i r t u e of Theorem 54.1, t h e r e exist and an i n t e g e r p such t h a t
m
t h e same way. al,.
.. , a m
if
k
i s even,
if
k
i s odd,
225
complex numbers
(k=O,
...,mtl) .
Set if
k
i s even,
if
k
i s odd,
...,m+l) .
(k=O, W
Then if
k
i s even,
if
k i s odd,
and
-k' = {
W
2P
if
k
i s even,
U
w -2P
if
k
i s odd.
k+Z
Hence, i f we s e t
(5529)
?k ( x, = 'kbm,k (
9
(k=O,
a)
...,mtl) ,
the subdominant s o l u t i o n s (55 . Z 9 ) admit the connection formulas
(55.30)
[ ~ ~ : , ( ~ ) , ~ k + ~ ( ~ ) l = [ ~ ~ + ~ ( X( k) =, O ~ ,~'o',mtl) + ~ ( X )9 l ~ k
fm+2=yo
where
(55.31)
and
y&3="yl
.
This means t h a t , i f w e set
.
(k = 0 , . .,m+l)
s k (x, = a g k (
,
the subdominant s o l u t i o n s (55.31) s a t i s f y the connection formulas (55.12)
.
This completes t h e proof of Theorem 55.1.
56.
A general problem of G.D.
Birkhoff.
As i n Section 11, l e t us consider
a system of t h e general form k y' =x B ( 4 Y
(56.1) where
k
9
x i s a complex independent v a r i a b l e ,
i s a non-negative i n t e g e r ,
y i s an n-dimensional v e c t o r , and t h a t t h e components of
B
i s an n-by-n
matrix.
W e assume
B(x) are convergent power series i n x
c o e f f i c i e n t s are complex numbers. W -h B(x) = Z %x (56.2)
h=O
.
Set
-1
whose
A PRESCRIBED STOKES
226
PHENOMENON
Assume t h a t t h e l e a d i n g c o e f f i c i e n t m a t r i x d i s t i n c t eigenvalues
hl,o'
* '
mit,lial;y d i s t i n c t eigenvalues large.
.
.,A
n,o i1(x),
Bo h a s n mutually
Then t h e m a t r i x
B(x)
. . .,An (x) , i f I XI
a l s o has
n
i s sufficiently
Furthermore, t h e s e eigenvalues are convergent power s e r i e s i n
-1 x ,
Set m
c A.
q x j=
(56.3)
h=O F s r each p a i r
56 .I*) :he
-h
(j=1,
,hX
...,n ) .
(j,.C) such t h a t
j f t
,
j,t=1,
...,n
,
e~~ation
rietexxines
d i r e c t i o n s i n x-plane. The t o t d number o f p a i r s s a t i s 1 p ( n - 1 ) . This means t h a t n ( n - l ) ( k + l ) d i r e c t i o n s a r e
2(k+lj
(56.4)i s
r'ying
d e t e i m i n e i through e q u a t i o n s (56.5)
.
Assume t h a t t h e s e d i r e c t i o n s a r e
mutualiy i i s t i n c t , and denote them by (
56, .6)
a r g x = TV
( w = l ?...,
N)
,
where
(56.7)
IJ=n(n-l)(k+l)
.
Assume a l s o t h a t
(56.9) L e t us denote by
(56 .lo)
8 V
TV
5 arg
A s we p a s s from 8v-1 ?.e[ (X
j,o
-
h
t,o
the sector
)xktl]
to
x<
T~~~
SW
, exactly
.
( w =1,. . ? N )
.
one o f t h e q u a n t i t i e s
changes from p o s i t i v e t o n e g a t i v e .
W e denote it by
L e t us go back t o Theorem 11.1 o f S e c t i o n 11. System (56.1) i s a
A GETERAL PROBLEM OF
the matrix
T
227
Therefore, we can apply Theorem 11.1 t o
s p e c i a l case of system (11.7). system ( 5 6 . 1 ) .
G.D. BTRKHOF'F
,
B(x) of (56.1) does not depend on
Since the matrix
of transformation (11.14) i s independent of
G
.
Let us
w r i t e (11.~) as
(56.11)
y=T(x)z
.
of the asymptotic expansion (11.12) are a l s o independent Th I n other words, components of t h e matrices Th a r e constants.
The matrices of
.
8
kt us write (11.12) a s m
T(x) 3
(56.12)
.
Z Thx-h h=O
x tends t o i n f i n i t y i n s e c t o r (11.13). Let u s
This expansion i s v a l i d as
write system (11.10) a s k z ' = x A(x)z
(56.13)
,
where
(56J 4 )
A(x) = 0 hl(x).*
'
O
I
*
Transformation (56.11) takes system (56 .l) t o (56.14). matrix
T(x)
independent o f
arg x=B
8
.
p2
depend on t h e
.
However, the matrices
Th
and
p1
.
Bh The matrix given by
X k Y(x) = T(x)exp{J 5 A(S)d53
is a fundamental s o l u t i o n matrix of system (56.1).
(56.16)
-k-1 A . ( x )= a . ( x ) + r . x +qj(x) J J J
Set (j=l,...,d
where k
(56.17)
a.(x) =
zh h=O j ,hx
-h
(j=l,
...,n )
and (56.18)
rj --' j , k + l
(j=l,
...,n) .
Then matrix (56.15) can be w r i t t e n a s
(56.19)
A(x)
are
These q u a n t i t i e s can be computed a l g e b r a i c a l l y i n
terns of t h e matrices
(56.15)
and
and the two p o s i t i v e numbers
given direction:
Note t h a t t h e
Y(x) =S(x)xR.eXPVXs kN 5 ) d S l 0
9
9
A PRESCRIBED STOKES PHENOMENON
228
and
%e matrix
S(x) admits an asymptotic expansion
( 5 6 .a)
(D
x Uhx-h
S(x)
h =O tends t o i n f i n i t y i n s e c t o r (11.13).
as
x
tih
are independent of
, but
0
the matrix
The matrices S(x)
R
depends on
, 8
A(x)
.
and
Note
t h a t components of the matrix (56.253
P ( x ) =fSkA(S)dS 0
a r e polynomials i n
x
The two q u a n t i t i e s
o f degree P1
k+ 1
and
.
determine s e c t o r (11.13).
P2
As we
remarked i n Section 11 ( c f . the foot-note f o r Theorem ll.l), these t w o q u a n t i t i e s can be given i n terms of eigenvalues of C.D.
Bo ’
I n 1909,
Birkhoff proved the following theorem.
56.1:” matrix (56.26)
For each s e c t o r
a,
, there
exists a f’undamental s o l u t i o n
Yv(x) of the f 01‘91 y V ( x )= S ( x ) x R expcP(x)l V
,
where m
(56.27)
SV(X)
c
UhX
-h
h=O
as
x
tends t o i n f i n i t y i n Sv
.
This theorem can be proved by u t i l i z i n g Theorem 112. Birkhoff elaborated
this theorem f’urther
*
G.D.
.
Sirkhoff [& $6, pp. 466-4691.
A GENERAL PROBm OF G.D.
mom 56.2 :*
BIRKHOF'F
Choose a fundamental s o l u t i o n matrix
Y1(4 =sl(x)x
(56 -28)
R
exp{p(x)]
229
Y,(x)
of t h e form
,
where (56.29)
as
x
tends t o i n f i n i t y i n g1
.
Then we can construct
Y2,.
..,YN
of
Theorem 56.1 i n such a way t h a t the constant matrices
cV =Yw-l(x) -1YJX)
(56.30)
( w = 2,
..., N )
have the following forms:
+
Cw = ln awEv
(56.31)
(w=2,
...,N )
,
where ln i s t h e n-by-n i d e n t i t y matrix; a2, ...,% a r e complex numberg each matrix E i s an n-by-n matrix of zero components except f o r the W
sincrle comonent i n t h e 4, - t h row end j y - t h column which i s esual t o V one. Furthermore, we can construct another fundamental s o l u t i o n matrix
-
%+l(x)
s a t i s f u i n g t h e following conditionst,
(i) YN+l(x)
has t h e form
(56.32) where
as
h=O tends t o i n f i n i t y i n the s e c t o r
x
T1+ 2nIaI'g X < T 2 + 2n ;
(56.34) (ii)
x uhx-h
O3
SN+JX)
(56.33)
t h e constant matrix
( 5 6 -35)
$+I = yN ( )-1%+1 (
has t h e form (56.36)
%+1= l n
%+1
where
+
a~+l%+l 9
i s a complex number, and the matrix
%+1
i s an n-by-n
matrix of zero components except f o r t h e s i n g l e comDanent i n the
row and
j,-
t h column which i s eaual t o one.
independent of t h e choice of
*
Yl(x)
~
G.D.
Birkhoff [4; $6, pp. 463-4669].
.
The matrix
YN+l(x)
"-&
A PFESCRIBED STOKES PHENOMENON
230
Ibis theorem can Se a l s o proved by u s i n g Theorem 11.1. However, w e must a l s o i w e s t i g a t e c a r e f u l l y t h e change o f t h e o r d e r of magnitude o f t h e quantities
.
Re[Xj ,oxkt1]
If we s e t lil(x) =YNtl(e2 n i x)exp(-2niR]
155.3:‘: then t h e m a t r i x
,
s a t i s f i e s t h e c o n d i t i o n o f Theorem 56.2.
Y1(x)
(56.28;, ( 5 6 . 2 9 ) , ( 5 6 . 3 2 ) , (56.33) and (56.34) .) d e n t of t h e choice of
in Theorem 56.2.
( x ) =Yl(e
-Y
-2ni
Tit1
i s i n sector (56.34).
x
Since
YNtl
i s indepen-
can u s e (56.37) i n t h e c o n s t r u c t i o n given
This means t h a t
(56.j8: vhere
, we
Y,(x)
(Cf.
t 56.39)
- -. CNtl
This means t h a t t h e m a t r i x
i n s e c t o r (56.34).
11 = exp{2niR] [ C 2
(56 .LO;
,
Observe t h a t
= Y1(X)C2
YN+&X)
x)exp{ZniR]
... CNt1 I-’
i s t h e c i r c u i t m a t r i x o f t h e fundamental s o l u t i o n m a t r i x singular point a t
X=W
.
Yl(x) f o r t h e The eigenvalues of t h e c i r c u i t m a t r i x o f a
Pmdamental s o l u t i o n m a t r i x
Y(x)
of (56 .l) a t
x = a are independent of
+,he choice of a p a r t i c u l a r fundamental s o l u t i o n m a t r i x
Y(x)
.
S i r k h o f f a l s o proved t h e following theorem.
56.3:* system ( 5 6 . 1 ) n-by-n
Assume t h a t t h e eigenvalues of t h e c i r c u i t m a t r i c e s o f
at
matrix
are mutually d i s t i n c t .
x=m
such t h a t
?(x)
( i ) t h e components of ( i i ) iim 3 x 1
T(x)
are convergent power series i n
i s non-singular;
X+W
( iii )
the transformation
(56 4 1 )
-
w = T(x ) y
reduces system (56.1) &
(56.42)
k’
w l = x B(x)w
,
where
*
S e e , G.D.
Then t h e r e exists an
Birkhoff [ 4 J and
[5].
x-l ;
A GENERAL PROBLEM OF G . D . BIRKHOFF
231
(56.43) The q u a n t i t i e s Let
h
are
..
Y1, . ,YNtl
n-by-n
constant matrices.
be t h e fundamental s o l u t i o n m a t r i c e s o f (56 .l)
which s a t i s f y t h e c o n d i t i o n s given i n Theorem 56.2.
W,W
(56 44) Then t h e s e
N+1
= "Tx) Y"(X)
(v=1,
Set
...,N t l ) .
m a t r i c e s a r e t h e fundamental s o l u t i o n m a t r i c e s of (56.42)
which s a t i s f y t h e c o n d i t i o n s corresponding t o those i n Theorem 56.2. Furthermore, t h e q u a n t i t i e s
R
,
A(x)
and t h e
av
a r e preserved.
We can
assume, without loss of g e n e r a l i t y , t h a t
R
Birkhoff regarded t h e q u a n t i t i e s a
V
, the
c o e f f i c i e n t s of
a s t h e c h a r a c t e r i s t i c q u a n t i t i e s of system (56.1).
q u a n t i t i e s c o n s i s t of (56.46)
n t n(kt1)
n + n(k+l)
+ n(n-1) (kS1)
A(x)
, and
the
The c h a r a c t e r i s t i c
parameters.
Note t h a t
+ n(n-1) (kS1) = n t n 2 ( k + l ) .
Birkhoff a l s o regarded system (56.42) a s t h e canonical form o f ( 5 6 . 1 ) .
If
we r e g a r d t h e c o e f f i c i e n t s of $x) a s parameters, t h e t o t a l number of 2 t h e s e parameters i s n + n (k+l) ( C f . (56.45) .) Based on t h e s e observa-
.
t i o n s , Birkhoff proposed t h e following problem: PROBLEM 56. 1:* Flnd a canonical system (56.42) whose c h a r a c t e r i s t i c q u a n t i t i e s assume p r e s c r i b e d v a l u e s .
His method I n 1913, Birkhoff published a method of s o l v i n g Problem 56.1.** i s based on t h e t h e o r y of s i n g u l a r i n t e g r a l equations of Riemann-Hilbert. The problem of Theorem 55.1 i s similar t o Problem 56.1.
However,
s i n c e t h e form of d i f f e r e n t i a l equation (6.1) i s more r e s t r i c t e d than t h a t o f system (56.42), Theorem 55.1 i s n o t a consequence of B i r k h o f f l s r e s u l t .
The proof of 'Iheorem 55.1 i s e s s e n t i a l l y based on Theorem 39.1 which i s due t o R . Nevanlinna [27].
Theorem 55.1 guarantees t h a t
...,am e x i s t f o r t h e given d a t a qk,rk I all ,...,I am] are s u f f i c i e n t l y s m a l l , t h e
al,
*
(k=O
constants If
smoothness of t h e q u a n t i t i e s
~~
*+
m
,...,m t l ) .
See G.D. Birkhoff [ 4 ; 7, pp. 469-4703. See G.D. Birkhoff [5; 6611 and U . DP. 545-5511.
232
A PRESCRIBED STOKES PHENOMENON
a l , . , . , a m with r e s p e c t t o t h e d a t a can be obtained through t h e i n v e s t i g a t i o n i n Sections 5 1 and 52. I n the general case, such information may be obtained through t h e i n v e s t i g a t i o n i n S e c t i o n s 47 and 48.
CHAPTER 10
SUBDOMINANT S OL UT I ONS OF THE DIFFEFf3"lTAL EQUATION y" - x 2 (x-x,) (X-X,) . .(X-Xm)Y = 0
.
57.
Subdominant s o l u t i o n s .
I n this chapter we s h a l l study asymptotic
behaviors of c e r t a i n s o l u t i o n s of the d i f f e r e n t i a l equation
as
...( x-xm)y=o
yll-X L (X-X,)(X-.,)
(57.1)
1 tends t o i n f i n i t y i n a s t r i p
I ~ . [ x l l 16, , W h I 2 O ,
(57.2) where
is a s u f f i c i e n t l y small p o s i t i v e constant. I n general, a problem of finding asymptotic behaviors of s o l u t i o n s i s divided i n t o two parts: ( i ) construction of formal solutions; (ii) j u s t i f i c a t i o n of the formal s o l u t i o n s . To begin wlth, l e t us consider d2y/dz 2 -P(z,cl c )y=O , (57.3) m 6,
,...,
where
cl,
...,cm
P(Z,Cl,
(57.4.)
rf
a r e complex parameters, and
...,
Cm)
= ( 2-Cl) (2-c2)
. ..(
"Cm)
*
we put
(57.5) the d i f f e r e n t i a l equation (57.1) i s reduced t o (57.3).
Let
%(c)
be t h e symmetric polynomials i n
cl,
...,cm
...,cm ) = x-m+ y ( c ) xm-1 + ...+am-l ( c ) x + am(c) .
P(z,c~, (57.6)
The d i f f e r e n t i a l equation (57.3) has a unique s o l u t i o n
(57.7) such t h a t
defined by
y
=urn(z,a ( c 1)
2.34
SU BDOMIN ANT SOLUTIONS (z,c) ;
( i ) b m ( z , a ( c ) ) i s a n e n t i r e function of
(ii)
urn(z , x ( c ) )
and
U$z,a(c))
admit asymptotic r e p r e s e n t a t i o n s 7
uniformly on each compact s e t i n ity
ir,
...,cm )-space
r
m
The q u a n t i t i e s
as
z
tends t o i n f i n -
.
I a r g Z I < -&n
any closed subsector of t h e open s e c t o r
?heorem 6 . 1 . ) Sence
(cl,
(Cf
.
b h ( a ( c ) ) are symmetric polynomials i n
i s a l s o a symmetric polynomial i n
c
.
b h ( a ( c ) ) i s a homogeneous polynomial i n -k -k -k Lenote ( w cl, w cm) by w c: Then
Hence,
Note t h a t
cl,
.
...,
.
c
...,cm
of degree
h
Y 'ldm,k( z , a ( c ) )
(57.12)
i s a unique s o l u t i o n of (57.3) such t h a t
uniformly on each compact s e t i n
(cl,
...,cm )-space
as
z
tends t o i n f i n -
ity i n any closed subsector o f t h e open s e c t o r
(zf.
Theorems 7.1 and 21.1.)
mials i n
C1'.
..
,c
m '
The q u a n t i t i e s
r m,k
a r e symmetric polyno-
.
SUBDOMINANT SOLUTIONS
235
As we mentioned already, t h e d i f f e r e n t i a l equation (57.1) is reduced
t o (57.3) by t h e change o f v a r i a b l e s ( 5 7 . 5 ) . (57.14)
Y=(xl’.’.,xm)
Set
9
and
(57.18)
Em(px,a(py)) = h E r n ( x , 4 y ) )
.
Thus, we obtain the following r e s u l t . JWE0RF;M 57.1 : The d i f f e r e n t i a l eauation (57.1) has s o l u t i o n s (57.16).
These s o l u t i o n s are e n t i r e functions of
(x,p)
, and
satisfy the asymptotic
conditions
(57 -19)
I
fk(x,h)
-
r =( pw”) fL(X,X)
=(
F
--1
rn9k x m9k[l+ O(x 2)]exp{(-l)k+1hEm(x,a(y))}
.-,
11.
p ~ -Xxprrn’k[(-l)k+l+O(x ~p~~
,
1 _2)]exp{(-l)k+\Ern( x,a(y)) ]
uniformly on each compact s e t i n the domain Pf 0
of p-plane sector (57 -20) where
as
x
tends t o i n f i n i t y i n any closed subsector of t h e open
SUBDOMINANT SOLUTIONS
236
If p > 0
.
in
, the
solution
Hence, we c a l l
f
k
tends t o zero as
fk
x
tends t o i n f i n i t y
a subdominant s o l u t i o n i n t h e s e c t o r
%'
Note t h a t -k -k fk(X,A)=bm(Pwx , a ( p Y ) )
(57.22)
*
In this c h a p t e r , w e shall explain how t o f i n d asymptotic behavior of t h e s e subdominant s o l u t i o n s as variable
58.
x
1 tends t o i n f i n i t y i n s t r i p (57.2).
The
will be r e s t r i c t e d t o a s u i t a b l e domain.
Formal s o l u t i o n s of the a s s o c i a t e d R i c c a t i equation.
L e t us consider
a d i f ' f e r e n t i a l equation 2 y"-x p(x)y=O
,
i s a polynomial i n
x
58.1) where
p(x)
, and
1 is a complex parameter.
In
Sections 58, 59, and 60 we s h a l l d e r i v e asymptotic r e p r e s e n t a t i o n s of solut i o n s of (58.1) with r e s p e c t t o
a
and
x
.
I n such a problem i t i s help-
-I
.
f u l t o r e p r e s e n t s o l u t i o n s i n terms of I P ( x ) ~ Furthermore, a represent a t i o n o f y l / y is derived more e a s i l y than t h a t o f y i t s e l f . Set
(58.2)
u=y'/y
.
Then
(58.3)
U'+U
2
- a 2p ( x ) = o .
This i s a M c c a t i equation. The m .
M c c a t i equation (58.3) has two formal s o l u t i o n s
FORMAL SOLUTIONS
237
(58.6) -n-1
(58.7)
Pn(x, = p ( x )
and t h e a u a n t i t x coefficients.
Proof:
and
g(x)
%(XI
9
is a polynomial i n p , p l , ...,p (n+l) u i t h r a t i o n a l
Let us consider the formal series (58.4). Observe t h a t
238
SUBDOMINANT SOLUTIONS
This means t h a t i f we d e f i n e
Pn(x)
by
-
Qj(x)Qh(x)I
(n>_z)
j th=n
:'his completes the proof of Lemma 58.1. respect t o
where
deg
g(x) denotes
"heref'ore, the q u a n t i t i e s
the degree of Pn(x)
g(x)
with r e s p e c t t o
a r e bounded f o r l a r g e values of -1
So f a r , we have n o t s p e c i f i e d a branch of
(58.4) and ( 5 8 . 5 ) .
function of ( i ) ;Q
Now, l e t us consider
x
in
B
.
(58 .lo)
is a simply connected domain i n x-plane;
Ip(x)(>,B>o
for
8 such t h a t X E O
.
-1 Let us choose a branch of
p(x)'
i n the domain, and assume t h a t
-1 (58.11)
l a r g ~ x I M) ~ ~for~
XE
B
. x
.
~ ( x as ) ~a holonorphic
P r e c i s e l y speaking, w e assume t h a t
( i i ) t h e r e e x i s t s a p o s i t i v e number
x
P ( x ) ~ i n t h e formal s e r i e s i n a simply connected -1
p(x)
s o t h a t we can s p e c i f y a branch of
domain
with
,
deg g ( x ) I (m-1) (n+l)
(58.9)
p(x)
, then
m
is
x
If the degree of
.
,
239
FORMAL SOLUTIONS
M is
where
a p o s i t i v e number.
p o s i t i v e numbers (58.12)
Kn
.
Under assumption (58.10), t h e r e e x i s t
( n = 0,1,. .)
such t h a t
~ p ( x ) - ~ p ~ ( Lx ) K l
~for
x~
5Kn
xEie
and
a
and
(58.13)
IPn(x)l
for
n=1,2,
I n d e r i v i n g (58.13) we used i n e q u a l i t i e s (58.9).
... .
By u t i l i z i n g Theorems
3.3, 4.1 and 5.1 o f Chapter I, we can c o n s t r u c t a f u n c t i o n two complex v a r i a b l e s , (w,x) i n such a way t h a t (i)
g(w,x)
wo
of the
i s holomorphic f o r
(58.14) where
g(w,x)
larg
WI
52M
,
IwI
2wo>
0
,
xE B
,
i s a p o s i t i v e c o n s t a n t , and
(ii) g(w,x)
s a t i s f i e s t h e conditions:
f o r ( 5 8 . u ) and Note t h a t i f
N=1,2, po
...,
where t h e
EN
a r e positive constants.
i s a s u f f i c i e n t l y l a r g e p o s i t i v e number, then
(58.16) for
( 5 8 -17) where
xEB 6,
,
(Im[kl(l6,
,
i s a given p o s i t i v e c o n s t a n t .
R ~ [ X I > _ F J,~ Therefore, i f we s e t
-1
(58 -18)
2 h(x,X) =g(Ap(x) , x )
the f u n c t i o n h(x,A)
(58.17)
.
F'urthermore,
,
i s holomorphic with r e s p e c t t o h(x,X)
(x,k)
s a t i s f i e s t h e conditions:
i n domain
SUBDOMINANT S O L U T I O N S
240
f o r (58.17) and
...,
N=1,2,
where t h e
Notice t h a t
N a r e positive constants. 1 -
-1
-1
hl(x,A) = & ( x ) - l p ~ ( x ) ~ [ a p ( x ) ~ ~ d g ( ~ p ( x ) ~ , x ) /ag(Ap(x)2,x)/ax aw+ and hence the second and t h i r d i n e q u a l i t i e s of (58.15) imply t h e second i n e q u a l i t y of (58.19)
.
Let us s e t
(58.20)
-1 u = X p ( x )2 - p1( x ) - ' p ! ( x )
th(x,A)+u"
.
Then, t h e R i c c a t i equation (58.3) i s transformed t o 1
where (58.22)
-1 H(X,A)
= [hp(x)'- ~ ( x ) - ' p I ( x ) + h ( x , A ) 1 '
+
-
1 [Ap(xI2 - 5 ( x ) - ' p t ( x )
+ h ( x , h ) 12 - A 2P ( x )
-
Since s e r i e s (58.4) is a formal s o l u t i o n o f ( 5 8 . 3 ) , i n e q u a l i t i e s (58.19) imply t h a t
-1 -N
(58.23)
I H(x,A)l I$/ I P ( X ) ~ ~
f o r (58.17) and Set
N=1,2,
(58.uJ
iT=hp(x) v
to obtain (58.25) where
...,
where the
$ a r e c e r t a i n p o s i t i v e constants.
-1 2
-1
-12
v f t 2[Ap(x)'+ h ( x , ) , ) ] v + [ h p ( x )
]V
2
+ L(x,A) = 0
FORMAL SOLUTIONS
-1 -1 ( 58.26 )
.
~ ( x , h=) [xp(x)23 ~ ( x , h )
I n e q u a l i t i e s (58.23) imply (58.27) f o r (58.17).
-1 -N
1 L(x,A) I L CN,ll
.
( N = 2,3,. .)
W(d2(
We s h a l l prove the following lemma.
-2"; v1
F
l t w1t w 2
2w
t
(w1
1 1
t w;)
( 1 t w t w2)
2
1
1
(58.31) i s a s o l u t i o n of t h e R i c c a t i esuation (58.3).
Consequently,
SUBDOMINANT SOLUTIONS
59.
As.mptotic s o l u t i o n s i n a canonical domain as
Iri t h i s s e c t i o n , r e s t r i c t i n g
system (58.28) f o r
t o a s u i t a b l e domain
,
) I m [ h ] )< a 0
tends t o i n f i n i t x .
, where
Re[h]lO
Ig
6,
, we
simply connected, and t h a t
should be
should s a t i s f y an i n e q u a l i t y
p(x)
)p(x)l> _ B > o for
( 58 .lo)
s h a l l study
i s a given posi-
I n S e c t i o n 58, we r e q u i r e d t h a t t h e domain
t i v e number.
xhere
x
A
XELI
,
p i s a p o s i t i v e number.
Furthermore, w e assumed t h a t
M
The domain
{ j8.1; srne r e
i s a p o s i t i v e number.
J3 must be r e s t r i c t e d f u r t h e r
by t h e behavior o f t h e q u a n t i t y
-1
X
Re[ A p ( t ) 2 d t
as
A
tends t o i n f i n i t y .
x = 50 i s c a l l e d a t r a n s i t i o n p o i n t of t h e x = s i s a zero of p ( x ) d i f f e r e n t i a l equation (58.1) of o r d e r k , 0 of m u l t i p l i c i t y k .
m
: A point
j
For example, t h e d i f f e r e n t i a l e q u a t i o n 2 2 y"-x x ( x - l ) y = O
has two t r a n s i t i o n p o i n t s x = O and x = l i s of o r d e r two, wNle t h e t r a n s i t i o n p o i n t
.
The t r a n s i t i o n p o i n t is of o r d e r one.
x=l
x=O A
t r a n s i t i o n p o i n t o f o r d e r one i s c a l l e d a simple t r a n s i t i o n p o i n t .
DEFTNITION 59.2:
A curve
x = S(S)
( 0 5 s < so)
i s c a l l e d a S t o k e s curve
f o r t h e d i f f e r e n t i a l e q u a t i o n (58.1), when (i)
5(s)
or -
t= ;
i s continuous f o r
(ii) s ( 0 ) (iii) FJ(s)
O < s < so
, where
s
0
i s a p o s i t i v e number
i s a t r a n s i t i o n p o i n t of (58.1);
for
{ i v ) we have
s>O
i s n o t a t r a n s i t i o n p o i n t of (58.1);
ASYMPTOTIC S O L U T I O N S
where t h e i n t e g r a t i o n i s taken along t h e curve
213
x = 5 (s)
.
Some examples o f Stokes curves will be given i n Section 61.
D E F I N I T I O N 59 .l: A simply connected domain
0
& I x-plane i s c a l l e d a
canonical domain f o r t h e d i f f e r e n t i a l eauation (58.1), (i) t h e boundam of (ii) t h e i n t e r i o r of
(iii)
n
n c o n s i s t s of Stokes curves; n does not contain t r a n s i t i o n
p o i n t s of (58.1);
i s c o n f o d l g mapped bx
(59.1)
z=I(x)
=sxp ( t )-d t 2
X
0
onto t h e whole z-plane c u t by a finite number of v e r t i c a l s , each of which
i s unbounded, where
xo i s a Doint on t h e boundary o f
n
.
Examples of canonical domains will a l s o be given i n Section 61.
n
B of a canonical domain
c o n s t r u c t a subdomain
so t h a t
B
We s h a l l satisfies
conditions (58.10) and (58.11).
n
Mapping (59.1) take5 t h e domain
conformally onto t h e whole z-plane
c u t by a f i n i t e number of unbounded v e r t i c a l s . c a l c u t s by V
j
L1,
...,4,.
of c e n t r a l angle
(iii) (h# j )
For each c u t
j
i s on t h e b i s e c t o r o f
t h e c e n t r a l angle
6
of
a r e not contained i n
W e assume t h a t
6
V
V V
j ’ j
domain derived by removing
VluV2w.
V
s h a l l construct a s e c t o r
j ’
i s so small t h a t t h e o t h e r c u t s
j -
i s independent of
, we
L j
such t h a t
i s contained i n t h e i n t e r i o r of
(i) L.
J (ii) L
6
Let us denote these v e r t i -
j
.“Vk
.
Let
U
4,
be the simply connected
from z-plane.
(See Fig.
59.1.)
SUBDOMINANT SOLUTIONS
U
Fig. 59.1.
Denote by onto
&
.
IJ
t h e subdomain o f
The domain
0
(58.11) a r e s a t i s f i e d i n I n t h e domain
which i s mapped by (59.1) conformally
i s simply connected and c o n d i t i o n s (58.10) and
B
.
A w e c o n s i d e r t h e two formal s o l u t i o n s ( 5 8 . 4 ) and
(58.5) of t h e R i c c a t i e q u a t i o n ( 5 8 . 3 ) .
We c o n s t r u c t a f u n c t i o n
g(w,x)
which s a t i s f i e s c o n d i t i o n s (58.15) f o r xE B
(59.2) where
w
,
larg[w]l 5 2 M + 2 n
i s a positive constant.
0
, 1.1
Then, i f
Lwo>O po
,
i s a s u f f i c i e n t l y large
-1 p o s i t i v e c o n s t a n t , we can f i x a branch of
(59.3)
for
I
~ ( x )such ~ that
ASYMP"IC
and
SOLUTIONS
245
-12
(58.18')
h(x9-A) =g(-XP(X> , x >
t h e functions
h(x,X)
and
h(x,-X)
9
are holomorphic with r e s p e c t t o
i n domain (58.17). -Finthemore,
h(x,A)
(58.17) and N = 1 , 2 ,
h(x,-X)
I
( 58.19 ' )
f o r (58.17) and
... ,
lh(x,-h)
while
-
s a t i s f i e s conditions (58.19) f o r s a t i s f i e s the conditions
-1 -n
N
X [-XP(X)~]
(x,h)
Pn(x)l < % l h p ( x )
-12 -N-1 1
n=l
9
1
N
1
n=l
N=1,2,.
.. , where the %
a r e p o s i t i v e constants.
We
s h a l l prove t h e following theorem. 59 .k*
If
po
i s a s u f f i c i e n t l y l a r m Dositive number,
the
d i f f e r e n t i a l equation 2 y"-A p ( x ) y = O
(58.1)
admits, i n domain (58.17), two s o l u t i o n s of t h e forms:
-1
{
(59.4) where
F+(x,X)
--1
x
Y =xk,u=P(x)' [1+ F-(x,X)lexp[-AJ
and
-l
x
x
$k,h)lexp[AJ p ( t I 2 d t + J h ( t , A ) d t l
y = y + ( x , A T = ~ ( x'[l )+
,
-l x p(tI2dt+ h(t,-A)dt]
are holomorphic i n domain (58.17)
F-(x,A)
Y
uniformly f o r x E &
Proof:
h
We s h a l l construct
tends t o i n f i n i t y i n the s t r i D
y+(x,A)
constructed i n a similar manner.
.
The o t h e r s o l u t i o n
In order t o construct
-
y (x,A)
F+(x,X)
, we
consider t h e system
*
See M.A.
Evgrafov and M.V.
can be
Fedoryuk [11;$4,Remark 4 . 3 on p . 231.
shall
SUBDOMINANT SOLUTIONS
where
( 58.26 )
1
J.
H(x,h) = [ h p ( ~ ) & ~ (-x ) - l p ' ( x ) t h ( x , h ) ] '
(58.22)
4
-1 2
+ [hp(x)
- a 2P(X)
2
- p1 ( x ) - ' p r ( x )
t h(x,X) 1
9
and hence
-12 -N
I L ( X , X ) 1 IcN-J a p h ) I N = 2 , 3 , . .. , where the
( 5 82 7 ) f o r (58.17) and
are c e r t a i n p o s i t i v e con-
CN-l
stants. We s h a l l reduce system (58.28) t o a system of i n t e g r a l equations by choosing the path of i n t e g r a t i o n i n t h e following manner: point i n in
U
&
.
Then
z = I ( x ) is a point i n
.
U
Let
W e shall join
x
be a
z to
by a curve
(59.7)
c
c(z):
along which
Re[XC(s)]
more p r e c i s e l y , choose
=c(s)
,
c(O)=z
,
O<_s<SCP
i s s t r i c t l y decreasing. PO
I f we do not want t o m a k e
so l a r g e t h a t
In order t o d e f i n e C(z) 1 5-6 i n domain (59.6).
Iarg[A]l
4
unnecessarily l a r g e , we can consider a
p0
domain
(59.6
IIm[il1
The q u a n t i t y
6
16, ,
Re[X12po
,
Iarg[hll
i s t h e c e n t r a l angle of t h e s e c t o r s
1
5,s V
j .
. Consider a
large disc
i n z-plane. Now, i f
parts:
1.
We s h a l l f i x
= 1 I ( x ) l (-R
R and assume t h a t R i s s u f f i c i e n t l y l a r g e .
, we
choose
C(z)
s o t h a t i t c o n s i s t s of two
( i ) an a r c contained i n d i s c (59.8) and
i o r of d i s c (59.8)
.
(See Fig. 59.2.)
If
(ii) a r a y i n the e x t e r -
I z{ = I I(x)( > R , t h e
path
C( z)
i s e i t h e r a r a y i n t h e e x t e r i o r of d i s c (59.8), o r a curve c o n s i s t i n g of
247
ASYMPTOTIC SOLUTIONS
three parts: (i) a line-segment joining z t o the boundary of d i s c (59.8), (ii) an a r c contained i n d i s c (59.8) and (iii) a r a y i n t h e e x t e r i o r of d i s c (59.8). (See Mg. 59.3.) I n any case, t h e length of the arc i n disc (59.8) can be bounded by a constant which depends only on t h e domain U , and i s independent of z If C(z) i s a ray i n the e x t e r i o r of (59.8), then C(z) i s given by
.
~(z): c = z + s e ie
(59.7 ' 1
,
,
(O(s<+=)
where
(59.7")
(arg A+e-rr(
1
1
( 7 -P
i
.
Fig. 59.2.
Fig. 59.3.
Let us define a path i n the domain
$!
by
(59.9)
.
I-1( s) denotes the inverse mapping of I ( x ) The path y(x) j o i n s x t o = i n t h e domain 0 If we define 5 ( s ) by
where
.
(59.10) the path
(59.111
5(s)
y(x)
=I-l(c(s))
y
i s given by
yM:
S=<W
(O<S<+=)
=I-'(I(x)) = x (58.28) t o a system of i n t e g r a l equations
Note t h a t
s ( 0 ) =I-'(c(O))
9
.
. W e s h a l l now reduce system
zL8
SUBDOMINANT SOLUTIONS
E r s t of a l l , we s h a l l c o n s t r u c t a bounded s o l u t i o n o f (59.12) i n domain
(58.17)by choosing
sufficiently large.
p
0
TO do this, note t h a t
l e x p [ - ~ ~ ( ~- (Ix( )s ( s ) ) ) ] 2~1
( 59 J3.l
for
(o<st+=)
.
In f a c t ,
since
Re[AC(s)] i s decreasing along t h e path
.
C(z)
Next, we s h a l l
prove the following lemma.
59,l: In domain (58.17) (59.U+)
where t h e Q u a n t i t i e s
Proof:
K
a r e p o s i t i v e constants independent of
If we change the v a r i a b l e
x
.
c =I(S) , then
5 by
1
(59.16) and
--1
(59.17; Since
p(x)
numbers
c1
s a t i s f i e s condition and
(59.18) where
c2
c,151mclP(S)1 I c , l 5 I m
two p o s i t i v e numbers
where
p(x) and
c4
Ic,l51
for
5E
with r e s p e c t t o
7
x
.
Also,there exist
such t h a t
$1
+c
for
4
IP(S)l >-c51clN ( m t 2 ) f o r
and the f a c t t h a t
(59.21)
t h e r e e x i s t two p o s i t i v e
SE B
.
i s a s u f f i c i e n t l y l a r g e p o s i t i v e number,
5 =I-'(C)
an e s t i m a t e
c3
Icl = I I ( S ) l
Therefore, if R
(592.0)
,
such t h a t
m i s the degree of
(59.19)
(58.10) i n B
and
c5
cEU
i s a positive constant.
Pn(S) =O(S-"-l)
as
5
and .
IcI 2 R
By u t i l i z i n g
,
(58.19)
tends t o i n f i n i t y , we can d e r i v e
249
ASYMPTOTIC SOLUTIONS
where
c6
I n deriving (59.21), w e d s o used
i s a p o s i t i v e constant.
(59.18). Estimates (59.20) and (59.21) imply t h a t
--1 (59.22)
21
lh(S,A)l(p(S)
S=I-l(c)
for
cEU
and
Icl > - R
.
i s a p o s i t i v e number. Therefore by using the 7 f a c t t h a t t h e length of the p a r t of C ( z ) i n d i s c (59.8) i s bounded by a
where
and
c
constant independent o f
f o r a p o s i t i v e number
z
in
, we
a
U
, and
can prove (59.14).
By u t i l i z i n g Lemma 59.1, w e can e a s i l y con-
proved i n a s i m i l a r manner.
s t r u c t a bounded s o l u t i o n w,(x,X) (58.17) i f
po
and
i s sufficiently large.
p o s i t i v e constant
c
w2(x,A)
of (59.12) i n domain
Furthermore, we can a l s o find a
such t h a t
8
Then (59.15) implies t h a t
We s h a l l leave the d e t a i l s t o t h e r e a d e r s . wl(x,h) s o uniformly f o r
Estimate (59.15) can be
x E p as A
,
w,(x,x)
so
tends t o i n f i n i t y i n s t r i p (59.6).
complete the proof of Theorem 59.1 f o r
F+(x,A)= w,(x,x)
,
y+(x,X)
I n order t o
set
+ w2(x,i)
and use Lemma 58.3.
60.
As.wlDtotic s o l u t i o n s i n a canonical domain a s
I n Section 59, w e constructed a subdomain t h a t t h e r e exist two s o l u t i o n s y+(x,h)
&I
and
s a t i s f y t h e conditions given i n Theorem 59.1. i n v e s t i g a t e the asymptotic behavior o f tends t o i n f i n i t y i n behavior of
F+(x,A.)
DEFINITION 60J:*
B
.
and
x
tends t o i n f i n i t x .
n
of a canonical domain y- (x.A)
so
of (58.1) which
I n this s e c t i o n , w e s h a l l
y+(x,l)
and
y-(x.X)
as
x
I n o t h e r words, we s h a l l study the asymptotic
F- ( x , l )
as
A canonical domain
x
tends t o i n f i n i t y i n
n is
B
.
s a i d t o be c o n s i s t e n t ,
or
i n c o n s i s t e n t , according a s t h e v e r t i c a l c u t s i n i t s i m a g e i n the z-plane do, o r do n o t , a l l tend t o i n f i n i t y i n t h e same d i r e c t i o n .
*
This d e f i n i t i o n i s due t o W. Wasow [49].
SUBDOMINAN T SOLUTIONS
250
Set
where
r
i s a p o s i t i v e number.
Then, i f
i s a n c n s i s t e n t canonical domain,
O,S(r)
ari I n c o n s i s t e n t canonical domain,
( S , 8
ea,,h of uhich i s simply connected.
i s s u f f i c i e n t l y l a r g e , and
r
i s simply connected.
If
n
c1 i s
r ) has two connected components
W e s h a l l t r e a t t h e s e two c a s e s separ-
ately.
'I'HEORDl 60.1:"
rf n
i s a c o n s i s t e n t canonical domain,
f3I' (58.i7) N = 1 , 2 ,... , where t h e Praof: bJe s h a l l t r e a t F+(x,A) only.
s t u d i e d i n a s i m i l a r manner.
tim ticjn
$
then
a r e c e r t a i n p o s i t i v e numbers.
The f u n c t i o n
F ( x , l ) can be
I n S e c t i o n 59, we c o n s t r u c t e d a bounded solu-
and w of t h e system o f i n t e g r a l e q u a t i o n s (59.12). 1 2 $ + ( x , A ) i s defined by
The h c -
x,
.
F+:x,X) =w,(x,A) + w 2 ( x , h )
;%eref'ore, we s h a l l s t u d y t h e asymptotic behavior o f tends t o i n f i n i t y i n
&I
.
w1
and
w2
To do this, l e t u s change t h e v a r i a b l e
as
5
in
systen! !59.12) by
c
(60.2)
=:(S)
*
Then,
wl(x,A =
i(
[-2h(S,A)wl(I,h)
+ ~1L ( S , h ) ( w l ( S , h )+ wZ(S,h))
z)
1 -
+ $LCS,X) M S )
2
e x p [ - a ( z - 6 ) 3%
,
(60.33 w2(x,h)
=J-
[ 2h( S ,A )w,( 5 ,A )
c( a )
-$5,
A ) ( ~ ~ (A 5+, w2( I, h )
1 _-
1
- $ 5 , h ) l ~ ( I ) 'dc where
z =i(x)
.
Assilme t h a t a l l t h e v e r t i c a l c u t s
' See
M . A . Evgrafov and M.V.
L1, .. .,$ are d i r e c t e d downwards.
Fedoryuk [ll; Theorems 3 . 3 and 4 . 1 , Remark 4.31
251
ASYMPTOTIC SOLUTIONS
Consider a half-plane
I m [ C ] < r i n C-plane, where r i s a real v a r i a b l e . I n this half-plane, we s h a l l construct a closed s e t O ( r ) which s a t i s f i e s the following conditions: (See Fig. 60.1,)
& ( r ) i s simply connected,
( i ) the i n t e r i o r of
&(r) c o n s i s t s of t h r e e parts: = (-1+i r ) - (is)exp[-ig6] 2 (OlS<+=)
(ii) the boundary of
C
( a ) a ray: (b)
a line-segment joining
(c)
a ray:
where
(-1t i r )
(1+ ir)
to
6 = (1+i r ) - ( i s ) e x p [ i 2 86]
(Ols<S.p)
i s t h e c e n t r a l angle of the s e c t o r s V
6
j *
-1+ir
W e shall denote by S(r)
seen t h a t
O(r)fiU
, and
choose
C(z)
i n 8(r),U
(Cf. Section 59.)
i n <-plane.
It i s e a s i l y
r is a
Furthermore, i f
a r e contained i n
Ll1...,$
For a l a r g e p o s i t i v e
i s simply connected.
r
, we
can
as a ray given by
ie
~ ( z ) :c = z + s e
(60.4)
a(.>
the e x t e r i o r of
i s a bounded set i n <-plane.
S(r),,U
1
1+ir
s u f f i c i e n t l y l a r g e p o s i t i v e number, then
a(r)
9
,
(OlS<+o)
9
where
(60.4 I )
larg
~1
6 p
.
Observe t h a t , if a = I ( x ) E g(r),U
-
, and
~ r
i s a sufficiently large
p o s i t i v e number, then
where
c
i s a c e r t a i n p o s i t i v e number.
By using t h e same method as i n the
proof o f Lemma 10.1 (Chapter 2), we obtain
SUBDOMINANT SOLUTIONS
252
1 w l ( x , a ) 1 I tll ~
-
:L
where
-i s
1
for
( x -2)
a p o s i t i v e number.
Since
x~
I-l(s(r)nu) ,
I-1(8(r)nU)
i s bounded, by
L1 i n a s u i t a b l e manner, we g e t
choosing
I wl(x ,A 1 I El/
( 60.5 ')
x) I
-2
.
f o r (58.17)
In d e r i v i n g (60.5),w e used t h e f i r s t r e l a t i o n of ( 6 0 . 7 ) and estimate (59.22).
Note t h a t t h e e x i s t e n c e of
S e c t i o n 59.
was proved a l r e a d y i n 2 Iwl(x,A)l and Iw2(x,X)l
and w
w1
What we a r e doing i s t o e s t i m a t e
Now, Sy u s i n g t h e second r e l a t i o n of (60.3) and (60.5) we can a l s o d e r i v e
(60.5 'I
f o r (58.17)
Iw2(x,h)l ( Z , I A I ( X ) ~ - ~
.
.
I n d e r i v i n g ( 6 0 . 5 ' ) , we L1 as w e want, s i n c e t h e second r e l a t i o n o f (60.3)
'de must choose a s u i t a b l e p o s i t i v e number
-an mcdify t h e p a t h
-
C( z )
does not c o n t a i n e x p o n e n t i a l terms.
We l e a v e t h e d e t a i l s t o t h e r e a d e r s .
By i n d u c t i o c , we can prove t h a t
f o r (58.17) and
N=1,2
,...,
where t h e
5
a r e certain positive constants.
This completes t h e proof of Theorem 60.1 f o r
F+(x,h)
.
S i m i l a r l y , we can prove t h e following theorem.
m 0 H F M . 60.;2:* B
A
for
Assume t h a t
n
i s an i n c o n s i s t e n t canonical domain.
be two a r b i t r a r y r e a l numbers.
(58.17)
N=1,2,.
.., where
p o s i t i v e c o n s t a n t s which depend on
m,
and
:t must be remarked t h a t t h e c o n s t a n t s
constants
f,
depend on
B
.
hold i n t h e same domain ( 5 8 . 1 7 ) . e a s i e r than t h a t o f Theorem 60.1.
. Evgrafov
TN -
depend on
A
, while
the
Note a l s o t h a t estimates (60.1)
This i s a d i f f e r e n c e between a c o n s i s t e n t
and an i n c o n s i s t e n t c a n o n i c a l domain.
See M.A
are certain
, respectively.
B
This means t h a t t h e two estimates (60.6) do
n o t hold i n a common unbounded domain.
'~
&
the quantities
A
Let
The proof of Theorem 60.2 i s much
I t is l e f t t o t h e r e a d e r s as an exercise.
and M.V. Fedoryuk
25 3
EXAMPLES
61. Ejcamules of Stokes curves and canonical domains.
I n order t o f i n d t h e
general behavior of Stokes curves, the following observation i s very help-
ful. Assume t h a t
i s holomorphic i n a simply connected domain 8
g(x)
,
and s e t X
(61.1)
I(x)
=J g(S)dS , X
where
x
0
0
i s e i t h e r i n Q o r on t h e boundary of
i n t e g r a t i o n i s taken i n
(61.2)
B
.
Q
, and
the path o f
Assume a l s o t h a t a smooth curve
x=x(t)
s a t i s f i e s t h e condition R e [ I ( x ( t ) )3 =constant,
(61.3)
i t follows t h a t d
(61.?)
z(t
where
denotes t h e .conjugate complex.
This means t h a t (61.2) s a t i s -
f i e s the d i f f e r e n t i a l equation
-
&/cia = i g ( x )
(61.8)
The d i f f e r e n t i a l equation (61.8) represents a system of two autonomous
d i f f e r e n t i a l equations, i f we take t h e real and imaginary p a r t s of account.
x into
I n other words, curve (61.2) i s an o r b i t o f the system of d i f f e r -
e n t i a l equations (61.8).
On t h e o t h e r hand, i f
x = x ( s ) i s an o r b i t of
(61.8) , then --I(x(s)) d ds
=p(x(s))dx(s)/ds=ilg(x(s))12
and hence R e [ I ( x ( s ) ) ]= c o n s t a n t .
,
SUBDOMINANT SOLUTIONS
251,
Transition points of t h e d i f f e r e n t i a l equation
a r e c r i t i c a l p o i n t s of t h e autonomous system
-1
dx/ds =
(61J G )
im2,
and Stokes curves of (61.9) are t h o s e o r b i t s of (61.10) which s t a r t from o r Therefore, t h e t h e o r y of dynamical systems
end a t t r a n s i t i o n p o i n t s .
defined on two-dimensional manifolds can be u t i l i z e d i n t h e s t u d y o f Stokes curves .% I n o r d e r t o i n v e s t i g a t e t h e l o c a l behavior of Stokes curves of (61.9), x = 50 . can be w r i t t e n
we s h a l l f i r s t consider a neighborhood of a t r a n s i t i o n p o i n t Assume t h a t
x=<
0
i s of o r d e r
m
.
I n this c a s e ,
p(x)
as p ( x ) = (x - S,)ms(x)
(61.ll) where
(61. l z j
q(x)
i s holomorphic i n a neighborhood o f q(So)
#o
x = 50
, and
-
W e are i n t e r e s t e d i n t h e o r b i t s of (61.10) which end a t
x=so
.
Such
o r b i t s are given by
W e can write t h e i n t e g r a l of
where
p ( ~ as ) ~
~ ( x )i s holomorphic i n a neighborhood of -1
x=<
a '
and
2 2 cp(so) = ~ q ( s o )
Hence
*
The o r b i t s of (61.10) a r e c a l l e d t h e t r a j e c t o r i e s of t h e q u a d r a t i c diff-
.
e r e n t i a l -p(x)dx2 ( C f . J . A . Jenkins [20; Chapter 3, pp. 27-43].) M.A. Evgrafov and M.V. Fedoryuk [ll] u t i l i z e d t h e t h e o r y of t r a j e c t o r i e s of q u a d r a t i c d i f f e r e n t i a l s i n t h e s t u d y of Stokes curves and canonical domains. See, a l s o , F.W.J. Olver [30], W. Wasow [ 4 9 ] , and J . Heading [15].
EXAMPLES
as
r
tends t o zero, where
25 5
, and
r=Ix-5,1
(61.15) These m + 2 Stokes curves divide the neighborhood o f t h e t r a n s i t i o n point x=s
0
into
m+ 2 s e c t o r s each of which i s a hyperbolic sector.*
(See
Fig. 61.1.)
/
c2
m=l
Fig. 61.1. I n ord r t o i n v s t i g a t e the behavior of Stokes curves a s
x
tends t o
i n f i n i t y , l e t us assume t h a t
(61.16)
p(x) = xrn(l+ O(x-l)
and
(61.17)
*
-1 p ( x )2 - x
1
,
1
P (1+0(&
For t h e d e f i n i t i o n of hyperbolic, parabolic, and e l l i p t i c s e c t o r s , see P. Hartman Chapter V I I , pp. 161-1741.
[u;
256 as
SUBDOMINANT S O L U T I O N S
x
m i s a positive integer.
tends t o i n f i n i t y , where
The o r b i t s of
(61.10) a r e given by
1 -
x
Re[J ~ ( S ) ~ d=sc ]o n s t a n t . X
0
I t i s e a s i l y v e r i f i e d t h a t t h e neighborhood of
m+ 2
e l l i p t i c s e c t o r s by t h e
i s divided i n t o m t 2
directions
2k+l, a r g x =me2
(61.18)
=-
x
(k = 0 ,
.. .,mtl) .*
This means t h a t Stokes curves tend t o i n f i n i t y i n one of d i r e c t i o n s (61.18). Note t h a t d i r e c t i o n s (61.18) a r e the boundaries of
sectors
So,.
..,
( C f . (7.6) .)
which were defined i n Section 7.
8mtl
m+ 2
in the study of the g l o b a l behavior of Stokes curves, we can u t i l i z e
Ekamples a r e the
various methods i n the theory of d y n d c a l systems.
Poincare-Bendixson Theorem and the theory of i n d i c e s of closed curves .** I n p a r t i c u l a r , the lemma below i s very u s e f u l .
LEMMA 61.1-
0 be a bounded simply connected domain i n x-plane,
l e t i t s boundary
- 61 & B
y
be homeomorrhically equivalent t o a c i r c l e .
the closure of
with no poles on
6,
y
.
.
Assume t h a t a function
p(x)
Denote
i s meromorphic on
Set 1
If
Re[B(x) 3
i s constant on y
, then
p(x)
has a t l e a s t two poles i n
6,,
every pole being counted according t o i t s m u l t i p l i c i t y .
-1 Proof:
of t h e boundary single-valued. p a r t of
y
y
i n the domain
...,5,
L e t ,S,
This branch i s n o t n e c e s s a r i l y
i n the neighborhood of each zero
61.2.)
I f we go around the curve
In g e n e r a l , i f
p(x)
t h e neighborhood of tors.
.
on
p(x)
'j
so t h a t we have a smooth closed curve
B
ic*
&I
be the zeros of
domain
*
~ ( x )i n~ t h e neighborhood
To begin w i t h , l e t u s f i x a branch of
y
.
by a smooth a r c i n the in
.
(See fig.
i n the counter-clock-wise sense, i t s
has a pole o f order g r e a t e r than two a t
5,
Replace a
x=5
0'
is divided i n t o a f i n i t e number of e l l i p t i c sec-
(See J . A . Jenkins [20; Theorem 3 . 3 , p.301.)
See, f o r example, E.A.
Coddington and N. Levinson [7; Chapter 16.61.
and M.V. Fedoryuk [ll; $2, Lemma 2.3, p . 7 1 , and J.A. Jenkins [ZO; L e m m a 3.2, p.361. xx*x C f . M . A . Evgrafov
EXAMPLES tangent makes a complete o f the v e c t o r f i e l d
2n
--
ip(xf2
Now, l e t us compute t h e r o t a t i o n
rotation.
, where -
By v i r t u e o f t h e assumption t h a t
257
denotes the conjugate complex.
Re[B(x)] i s constant on y
, the
differ-
ence between r o t a t i o n s of the tangent and the vector f i e l d i s observed only i n the neighborhood of the zeros of nonnegative i n t e g r a l multiple of
.
p(x)
n
.
Such a difference i s always a
This i s due t o the f a c t t h a t the
neighborhood o f a t r a n s i t i o n p o i n t i s divided i n t o a f i n i t e number o f hyHence, i f w e go around the curve
perbolic s e c t o r s .
7
i n the counter-
clock-wise sense, the vector f i e l d makes a r o t a t i o n of an angle
(2tn)n
-1 where
n
i s a nonnegative i n t e g e r .
t i o n of an angle
-(2+n)n
.
and
, where
N
N-P=-(2tn)
This means t h a t
,
~ ( x makes ) ~ a rota-
Hence
i s the number of the zeros of
i s the number of the poles o f
p(x)
in
completes the proof of Lemma 61.l.
A
.
Thus we g e t
p(x) PL 2
.
, and
P
This
-
c
Mg. 61.2.
The following lemma i s a c o r o l l a r y o f Lemma 61.1.
LEMMA 61.2:*
sf
holomorphic i n
of
61
&I
61
i s a simply connected domain i n x-plane,
, then
o r a transition point i n
.
I n this statement, t h e key assumption i s t h a t
*
p(x)
Q
any o r b i t of (61.10) tends t o e i t h e r t h e boundary
p(x)
does not have any
See M . A . Evgrafov and M.V. Fedoryuk [ll; $2, Lemma 2.5, p.81.
25 8
SUBDOMINANT SOLUTIONS
poles i n
g
.
A s i l l u s t r a t i o n s , F i g u r e s 61.3, 61.4, and 61.5 e x h i b i t t h e general
behavior of Stokes curves f o r t h e c a s e s when ( i ) P(X) = ( x - xl) ( x - x2)
,
(ii) P(X) = ( x - xl) ( x - x2) ( x - x 3 ) ( x - x4) ( x - x 5 ) and
,
EXAMPLES
259
Fig. 61.5. To construct canonical domains, t h e following lemmas a r e u s e f u l .
LENMA 61.2:” y be a closed r e c t i f i a b l e Jordan curve, and denote by & ( y ) t h e domain bounded by y Let p(y) be the closure of 9(y)
.
. -
c
Assume t h a t
f(z)
i s continuous i n
number of p o i n t s of
on
&(y)
and maps
y
, and
9(y)
, holomomhic
.
on y
one-to-one
f(z)
w:
p(x)
be a polynomial i n
x
Assume t h a t
Stokes curves i n i t s i n t e r i o r ,
than
, and
If
&
1
i e a p o i n t on the boundary of
See, f o r example, A . I . Markushevlch
let
&
be a simply
does not contain any
g is conformally mapped e i t h e r onto a
half-plane o r a strip i n 2-plane by the mapping
*
.
i s bounded by t h e Stokes
&I
curves o f t h e d i f f e r e n t i a l equation (61.9).
y
Thus we obtain the
.
connected domain i n x-plane.
where xo
i s univalent
~ ( y ) onto the domain bounded by the Fmaae of
We can use Lemma 61.3 even on the Riemann sphere. following result
except a t a f i n i t e
9
.
[a; p.1201.
SUBDOMIN ANT SOLUTIONS
260
The shaded domains i n F i g . 61.5 a r e examples o f domains which a r e mapped ontc s t r i p s . Jis i l l u s t r a t i o n s , examples o f c a n o n i c a l domains a r e given by Figures
61.6, 61.7,61.8, and 61.9.
These f i g u r e s a r e based on F i g . 61.5.
canonical domains given by Figures 61.6 and 61.7 a r e c o n s i s t e n t , others are inconsistent.
A
k
/
-a-
- bFig. 61.6.
I I
I I
1 \
f
\
\ \
/
\
/
\
/
\
/
I
\
\
Fig. 61.7.
The The
ASYMPTOTIC REPRESENTATIONS
26 1
/
1
/
I
1
I
f
/
F i g . 61.8.
I
E
N g . 61.9.
62.
Aa.mptotic r e p r e s e n t a t i o n s of subdominant s o l u t i o n s a s h
tends t o
Let us go back t o t h e d i f f e r e n t i a l e q u a t i o n (57.1).
W e shall
infinity.
use t h e same d e f i n i t i o n s and n o t a t i o n s as i n S e c t i o n 57. is restricted t o a s t r i p (62 -1)
IIm[Xll 26, ,
The p o s i t i v e number (62.2)
2p0
.
i s supposed t o be s o s m a l l t h a t
1
6
is a preassigned p o s i t i v e number.
fk(x,h) of (57.1) $tisfy
Then, t h e solu-
t h e asympto%ic c o n d i t i o n s (57.19) u n i -
formly on each compact s e t i n domain (62.1) as sectors
A
l u g 11 5x6
f o r ( 6 2 . 1 ) , where tions
6dpo
RehI
The parameter
x
tends t o i n f i n i t y i n t h e
SUBDOMTNANT SOLUTIONS
26 2
s a t i s f i e s t h e asymptotic c o n d i t i o n
--1 uniformly on each compact s e t i n domain (62.1) as
x
tends t o i n f i n i t y i n
the sec tor
(62.5 Ey u s i c g t h e s p e c i a l c a s e when
(62.6)
p ( x ) = (x-x,)
(x-x3) (x-x4 ) (x-x5 ) (x-x,)
(X-X,)
,
w e s h a l l e x p l a i n how t o d e r i v e an asymptotic r e p r e s e n t a t i o n o f h
W e assume t h a t t h e
tends t o i n f i n i t y ,
(62.7)
x <x <x <x <x <x
6
4
5
L e t us denote by
i2+
3
2
and
n-
x
The domain
t h e t w o c a n o n i c a l domains given by
no=n,./ n- , so=n+,,n-
so
no
i s shown by Fig. 62.1.
.
The two canonical domains by t h e mapping
&
and
Set
. The shaded domain i n F i g . 6 2 . 1 i s
n-
are consistent.
1 p(5I2d5 X 1
Their images
x
i62.9)
z = I(x)
=s
have a s i n g l e v e r t i c a l c u t .
-1
Let us choose t h e branch of
-1
(62 .lo)
p(x)2>o
for
Then, mapping (62.9) t a k e s
(62.11)
Re[z]>O
So
as
1 ’
F i g . 61.6-a and Fig. 6 1 -6-b r e s p e c t i v e l y .
(62.8)
j
fo(x,h)
are real numbers, and t h a t
x> x
1 ‘
onto t h e h a l f - p l a n e
.
H
M g . 62.1.
P ( x ) ~s o t h a t
26 3
ASYMPTOTIC REPRESENTATIONS
Let us construct a subdomain
of t h e canonical domain
61+
n+
same way a s we constructed a subdomain 61 o f the canonical domain Section 59.
I n Section 59, w e covered the v e r t i c a l cuts
the sectors
V1,
...,Vk
t i v e number
6
a s the c e n t r a l angle.
of c e n t r a l angle
t h e r e i s only,one v e r t i c a l c u t . o f the canonical domain
n-
.
6
.
L1,.
..,$
i n the
n
in
by
W e use the preassigned posi-
Note t h a t , i n the present case,
Similarly, we construct a subdomain The domain
0
-
- i s shown by Ffg. 62.2.
I n the domain
-
(62.12)
IIm[ll1
w e construct a holomorphic function
5b0 , ho( x , X )
Re[X12po
,
s a t i s f y i n g t h e asymptotic
conditions
f o r (62.12) and
N=1,2,
..., where the
thermore,
is a formal s o l u t i o n o f the R i c c a t i equation 2 u ' t u 2 - X p(x) = o
.
( C f . Lemma 58.1.)
Fig. 62.2.
a r e p o s i t i v e constants.
Fur-
SUBDOMIN AN T SOLUTIONS
264
-1
1 -
Note t h a t w e f i x e d t h e branch of The f u n c t i o n
p(x)
2
so t h a t
p(x)
2
>0
for
X>
x1-
.
can be c o n s t r u c t e d i n t h e same way as we c o n s t r u c t e d
ho(x.h)
i n S e c t i o n 58.
h(x,X)
Ey v i r t u e o f Theorems 59.1 and 6 0 . 1 , t h e r e e x i s t s a s o l u t i o n of (57.1)
o f t h e form:
+s
X
y = p ( x ) '[lt F(x,X)]exp{-XI(x)
(62.14)
ho(t,h)dt]
,
co
xhere
--..
(i: p(xl (iii
--1
1
'
i s t h e branch such t h a t
p(x)
'>
for
0
x > x1
,
F(x,X) i s holomorphic i n t h e domain x€A+
( 6 2 .lj)
,
,
IIm[XlI160
,
Re[h12~,
and s a r ; i s f i e s the c o n d i t i o n s
ioz.:o! f c r !62.15) and
... , t h e
N=1,2,
quantities
$
being p o s i t i v e c o n s t a n t s ,
F i n ii
(iii) ',he path of i n t e g r a t i o n i n t h e right-hand member of (62.14) i s a
ciirve j o i n i n g
$03
to
in
x
at
.
(See F i g . 62.2.)
S i m i l a r l y , w e can
c o n s t r x t a s o l u t i o n of (57.1) o f t h e form:
-1 (62.141 ,
+s
X
y = p ( x ) 4[1+?(x,X)]exp[-hI(x)
ho(t,h)dt)
,
m
where
--1
( i f )p ( x )
i s t h e branch such t h a t
--1 p ( x ) '>
0
for
x>xl
,
(iil) T ( x , h ) i s holomorphic i n t h e domain (62.15 I:
xE9-
)Im[h]l16,
9
Re[X12Po
ani s a t i s f i e s t h e c o n d i t i o n s
(62.16' ;. for (62.15')and (iiiI )
N=1,2
,..., and
t h e p a t h o f i n t e g r a t i o n i n t h e right-hand member o f ( 6 2 . 1 4 ' ) is a
curve j o i n i n g
in
B-
'Theorem 59.1, we must choose
po
+rr,
to
x
.
(See M g . 62.2.)
In order t o use
sufficiently large. The two s o l u t i o n s ( 6 2 . 1 4 ) and (62.141) of t h e d i f f e r e n t i a l equation
( 5 7 . 1 ) a r e subdominant i n t h e s e c t o r
265
ASYMPTOTIC REPRJEXNTATIONS
So: l a r g
s i n c e t h e image of (62.11).
so
<=, n
XI
by mapping (62.9) i s t h e p o s i t i v e half-plane
.(A)
Therefore, t h e r e e x i s t s a function
X
of
such t h a t
.
c ( X ) [ l + F ( x , h ) ] = l + “Fx,h)
c ( h )L 1
By v i r t u e of (62.16) and (62.161), w e g e t
, and
hence
F(x,h) = F(x,A)
(62.17) for
xE&+/\fJ_ Define a function
I I m h I l ‘-b0
9
Fo(x,h)
by
i
F(x,X)
Fo(x,h) =
(62.18)
,
for
x E &+
for
~ € 8 -
.
~
F(x,X)
Then
Re[Xl)_Po
9
i s holomorphic i n domain (62.12), and
Fo(x,h)
I F0(xJ )I
(62.19) f o r (62.12) and
N=1,2
hI(x)
,... .
I
Furthermore, 1
--
y = y o ( x , A ) = p ( x ) 4 [1+ Fo(x,h)lexpC-hI
(62.20)
i s a s o l u t i o n of (57.1),where
--1 p(x) ‘>
0
for
i n t e g r a t i o n i s a curve joining
+-
x
in
to
The two s o l u t i o n s y o ( x , h ) and tor
So
.
fo(x,X)
Hence t h e r e e x t s t s a function
(62.21)
f o ( x , O =c(x)Yo(x,a)
c(h)
, and
x > x1 &+“
.
B-
the path of
(See Fig. 62.2.)
a r e subdominant i n the secof
such t h a t
Z
.
, then
(62.19), (62.20) and (62.21) Will provide an asymptotic representation of fo(x,X) f o r x € & + ~ & a s h tends t o
If we can find
c(h)
i n f i n i t y i n s t r i p (62.1). in
So
, and
-
We can f i n d
c(X)
by l e t t i n g
u t i l i z i n g the asymptotic p r o p e r t i e s of
+.
tend t o
yo(x,X) and
+W
fo(x,l)
The d e t a i l s a r e l e f t t o t h e readers.* In order t o summarize t h e method, again by using case (62.6), we conThis s o l u t i o n i s subdominant i n t h e domain s i d e r t h e s o l u t i o n f2(x,X)
as
x
tends t o
x
.
S2
?+
which i s shown by Fig. 62.3.
See, f o r example, Y. Sibuya
[ 361.
SUBDOMINAN T SOLUTIONS
266
Fig. 62.3.
Ng.
Fig. 62.3 i s a p a r t o f Fig. 61.5. taining domains.
S2
.
The domain
on F i g . 61.5 .) from
no
Let us denote by
no
62.4.
There a r e f i v e canonical domains con-
no
t h e union of these f i v e canonical
i s shown by Fig. 62.4.
( F i g . 62.4 i s also based
a s u i t a b l e neighborhood of the boundary of
-
no no .
W e c o n s t r u c t a simply connected domain
by removing Then, by u t i -
l i z i n g Theorems 59.1, 60.1 and 60.2, we can f i n d an asymptotic representaI
t i o n of
fZ(x,X) which i s v a l i d uniformly f o r
xE
no
as
X
tends t o
i n f i n i t y i n s t r i p (62.1).
63. Simple t r a n s i t i o n p o i n t problems i n unbounded domains. we constructed two s o l u t i o n s
I n Section 59,
26 7
SIMPLE TRANSITION POINT PROBLEN3
of t h e d i f f e r e n t i a l equation (58.1) i n a s u i t a b l e subdomain i c a l domain and
(59.5)
, where
0
F+(x,A)
F+(x,A) 5 0
,
F (x,X) 5 0
,
{ -
uniformly f o r
X
xE 61 a s
The functions
h(x,h)
F- (x,X)
of a canon-
a r e holomorphic i n (58.17),
tends t o i n f i n i t y i n the s t r i p
pmll 18,
(59.6)
and
61
and
Re[XILpo
9
h(x,-A)
a r e holomorphic and s a t i s f y conditions
(58.19) and (58.19’),r e s p e c t i v e l y , f o r (58.17). ( C f . Theorem 59.1.) Furi s a c o n s i s t e n t canonical domain, we have
thermore, i f
I F+(x,X) - I 141AI(x) I -2N
(60.1) f o r (58.17) and
... , where the 4 are c e r t a i n p o s i t i v e numbers,
N=1,2,
and
=s
-
X
(59.1)
I(x)
p(tI2dt
.
xO
( C f . Theorem 60.1.)
n
On the other hand, i f
i s an i n c o n s i s t e n t canonical
domain, then
N = 1 , 2 , . . ., where A and B a r e two a r b i t r a r y r e a l num4 a r e p o s i t i v e numbers depending on A , while t h e 4 are p o s i t i v e numbers depending on B . ( C f . Theorem 60.2,) The domain &
f o r (58.17) and
bers, and the
i s constructed i n t h e following manner:
...,$ .
2;
j
that ( i ) Lj
(ii) Lj
0 i s mapped
= I(x) onto the whole z-plane c u t by unbounded v e r t i c a l s W e covered each L by a s e c t o r V of c e n t r a l angle 6 s o
conformally by
L1,
?he canonical domain
j
i s contained i n the i n t e r i o r of i s on t h e b i s e c t o r of
(iii) the c e n t r a l angle
6
V
j ’
V
j ’
i s so small t h a t the other
(hf j )
are
SUBDOMINANT SOLUTIONS
26 8
n o t contained i n
V
We assumed t h a t
j .
i s independent o f
6
j
.
Then we
...
a s a simply connected domain d e r i v e d by removing v1 Vk -1 from t h e z-plane, and & = I ( U ) , where x = I-1( a ) i s t h e i n v e r s e of
defined
U
z = I(x;
.
'ihe domain Ip(x)l
(58.10;
p
uhere
i s simply connected.
&I
LB>O
for
X
Furthermore,
,~
E
( C f . S e c t i o n 59.)
i s a c e r t a i n p o s i t i v e number.
In deriving the
asymptotic estimates (59.5), (60.1) and (60.6) a s well as i n c o n s t r u c t i n g t h e twc f u n c t i o n s
h(x,i)
and
, condition
h(x,-A)
(58.10) was indispene-
able.
Therefore, t h e asymptotic r e p r e s e n t a t i o n s (59.4) of t h e two solu-
tions
y+(x,h)
and
y-(x,h)
c f any t r a n s i t i o n p o i n t . that
cannot be used i n an immediate neighborhood
i s on t h e boundary of
xo
n
.
, we
z = I(x)
When we d e f i n e d t h e mapping
assumed
H e r e a f t e r , assuming f u r t h e r t h a t
xo
i s a simple t r a n s i t i o n p o i n t , w e s h a l l c o n s t r u c t asymptotic r e p r e s e n t a t i o n s of
y+(x,k)
borhood of'
and
y-(x,X)
.
xo
which can be used even i n t h e immediate neigh-
As i n S e c t i o n s 58, 59 and 60, we assume t h a t
(63.1)
P(X0)
.
x
but f i x e d polynomial i n
=o
#0
-
xo i s a simple t r a n s i t i o n p o i n t of t h e d i f f e r e n t i a l equa-
This means t h a t
tiori (53.1). A neighborhood of t h e t r a n s i t i o n p o i n t
61.1 .)
n
Let
,
-12
=s
X
(63.2;
z=I(x)
X
p(t) dt 0
onto t h e whole z-plane c u t by unbounded v e r t i c a l s assume t h a t t h e c u t three sectors R
.
i s divided i n t o
61 and 62 by Stokes c u r v e s .
conformally by
in
xo
(Cf. S e c t i o n 61, M g . be a c a n o n i c a l domain f o r e q u a t i o n (58.1) which i s mapped
E0
three ssctors
i s an a r b i t r a r y
We f u r t h e r assume t h a t
P'(X0)
9
p(x)
Lo
, 51
6,
starts from and
z=O
.
Lo,L1,...,4( . We
also
This means t h a t two of t h e
i n t h e neighborhood of
As we d i d i n S e c t i o n 59, l e t us cover
xo
a r e contained
L1, ...,$ by s e c t o r s
. ..
V1, ,Vk of c e n t r a l a n g l e 6 s o t h a t c o n d i t i o n s ( i ) , ( i i ) and (iii)o f S e c t i o n 59 a r e s a t i s f i e d . Furthermore, ue denote by Vo a s e c t o r of cent r a l angle
6
such t h a t
( i f )t h e v e r t e x of (ii') (iii1 )
the cut
Lo
Vo
is at the point
bisects the sector
the c e n t r a l angle
tained i n
Vo
.
6
Vo
z=O
,
,
is so small that
L1,
...,\
a r e n o t con-
We s h a l l then d e f i n e a simply connected domain
Uo by
A METHOD DUE TO T.M.
removing
Vo"Vlw.
kV'.
n
(63.3)
Bo=I-L(uo)
.
8,
Finally, we
by
Our main concern i s the asymptotic behavior o f uniformly f o r
269
(See Fig. 63.1 .)
from z-plane. of
define a subdomain
CHERRY
y+(x,A)
and
y- ( x , a )
as 1 tends t o i n f i n i t y i n s t r i p (59.6).
x E Bo
LD
b
Fig. 63.1. I n Section 66, we s h a l l a l s o i n v e s t i g a t e t h e case when the v e r t i c a l cut
Lo
.
This
contains only one o f the three s e c t o r s 60
, 5
, but
means t h a t t h e domain
n
z = O i s not t h e s t a r t i n g point of
and 62 i n the neighborhood of the t r a n s i t i o n point
64.
i s on
z=O
A method due t o T.M. Cherrx.
xo
Lo
.
I n Section 58, w e constructed the two
formal s o l u t i o n s (58.4) and (58.5) o f the R i c c a t i equation (58.3). construction, we used the condition:
lp(x)I 2 p> 0
for
xE
&
.
I n this
Since the
is on t h e boundary of t h e domain Po , w e can not use this method i n go Instead we s h a l l follow t h e scheme due t o T.M. Cherry.* To begin with, we consider a d i f f e r e n t i a l equation transition point
(64.1)
xo
.
2 d w/d5'-
Changing the v a r i a b l e
*
sw= O
.
5 by
See A . P d 6 l y i , M. Kennedy and J . L . McGregor [lo; $4. pp. 465-471], W. Wasow [47; Chapter V I I I , pp. 157-1941, and T.M. Cherry [6].
SUBDOMINAN T SOLUTIONS
270
we d e r i v e from (64.1) t h e d i f f e r e n t i a l e q u a t i o n
Eu'ote t h a t
(64.4) Next, changing t h e unknown q u a n t i t y
w
by
--
1
(54.5)
w=J(x)
'h ,
we d e r i v e from ( 6 44 ) t h e d i f f e r e n t i a l e q u a t i o n
(64.6) On t h e o t h e r hand, i f we change t h e unknown q u a n t i t y
y
by
_(64.7)
Y=P(x)
4v
,
the d i f f e r e n t i a l equation
(58.1)
y"
- i2p( x ) y = 0
is reduced t o
-
This equation can be w r i t t e n a s
(64.8)
We s h a l l transform t h e d i f f e r e n t i a l e q u a t i o n (64.8) i n t o an i n t e g r a l equation i n the next s e c t i o n . Let us prove t h e f o l l o w i n g lemmas.
LEMMA 6C.1:
The f u n c t i o n
(64.9) i s holomorphic i n a neighborhood of t h e t r a n s i t i o n p o i n t x = x 0 Proof:
Put a=pl(xo)
,
b=pll(xo)
Assumption ( 6 3 .l) i m p l i e s t h a t
.
.
A METHOD DUE
TO T.M. CHERRY
271
.
afo Since
1 2 p(x) = a(x-xo) + zb(x-xo) i n t h e neighborhood o f
-1
, 11.
+ O[ (x-x,)
3
]
x=xo
1
2 1-2 2 ~[ a) +-a 4 b(x-xo)+O[(x-xo) 11
2 ~ ( X ) ~ = ( X - X
,
and
1 I ( x ) = ( x - x o ) 3 ~ 2 p a ~ + ~ ( x -+x o[ o )(x-x,) 2 31 3 1oa2
-
.
Hence b 0
Thus, 5a x-xo i n the neighborhood of
x=xo
.
+ o(1)
On t h e o t h e r hand,
0
and
i n t h e neighborhood o f
i s holomorphic a t
x=x
x=xo
.
0
.
The n o t a t i o n
O(1) i n d i c a t e s a term which
Since
we g e t q(x) = O(1) i n t h e neighborhood of
6~.2:
If
in
9,
Proof:
, where
.
This proves Lemma 64.1.
R i s a s u f f i c i e n t l y large p o s i t i v e number, w e have
I$$
(64.10)
x=xo
K
IKJI(X)I-~
for
I I W J2~
i s a c e r t a i n p o s i t i v e number.
It is easy t o s e e t h a t q(x)
= o(x-2)
SUBDOMIN AN T SOLU TIONS
272
as
x
tends t o i n f i n i t y i n
Bo
.
as
x
tends t o i n f i n i t y i n
&lo
, where
respect to
x
.
Hence
n: i s t h e degree o f
p(x)
with
On t h e o t h e r hand,
I(X) = o ( x as
tends t o i n f i n i t y i n
x
If
LEMMA 6L.3:
to
This proves Lemma 64.2.
ro is a s u f f i c i e n t l y small p o s i t i v e number, w e have
for
, where H
Proof:
.
I$$
(64.11)
&
Bo
11(x)l < r o
i s a c e r t a i n p o s i t i v e number.
By v i r t u e o f lemma 64.1, t h e f u n c t i o n
neighborhood o f
x =x
i s holomorphic i n t h e
Hence
0 .
i n t h e neighborhood o f
q(x)
x = x0
.
On t h e o t h e r hand,
I(x) =0[(x-xo) 3/21 This proves Lemma 6 4 . 3 .
65.
Assmptotic s o l u t i o n s i n t h e domain
a0
.
Since t h e domain
Uo does
Vo , w e can f i n d an i n t e g e r k such t h a t 1 1 [: ( 2 k - l ) n t 6 1 < a r g [ I ( x ) ] < (Z(kt1)t l)n - 6 1
not contain the s e c t o r
z[
(65.1) for
.
xE Lo
i s odd.
wards i f
k
of
in
p(x)
The c u t
.
Lo
i s d i r e c t e d downwards i f
d3
i s even. and u p
is determined by t h e g l o b a l behavior
In t h e l a s t s e c t i o n , w e defined
J ( x ) = [2. * I ( x )3
(65.2)
k
The i n t e g e r
k J(X)
.
Hence, (65 .l) i m p l i e s t h a t
(65.3) for x E b o
.
This means t h a t
-( n - 46) <
-?<
a r g [ J( x) ] -
2kn 1 y< n - -6 , 3
(65 .4)
< a r g [ J ( x ) 1 - 2(k+l)n < for x E a O
.
3
- 716
by
ASYMPTOTIC S O L U T I O N S I N THE DOMAIN
b
I n Section 7, we defined the solutions
m,k
27 3
go
(x,a)
of the d i f f e r e n t i a l
equation y"-P(x)y=O
m-1
,
~ ( x =) x m + y x
Let u s consider t h e s o l u t i o n s Id
({,al) 1,k d2w/ds2- (st al)w=O
of the d i f f e r e n t i a l equation
.
(65.5)
By v i r t u e of Theorem 7.1, t h e s o l u t i o n conditions :
b 1 ,k (S,al)
( i ) l ~ ~ , ~ ( S , ais , ) an e n t i r e function of
b,,,(!
(ii)
+ ...+am .
,al)
and
b
1,k
( 5 ,al)
s a t i s f i e s t h e following
(s,al) ;
admit asymptotic representations
uniformly on each compact s e t i n a plane a s 1sector
x
tends t o i n f i n i t y i n the
where uo = exp[ i
(65.8)
2
~
]
and (65.9) ( C f . Section 21, Lemma 21.1.)
I n Section 8, w e proved t h a t
b1 ( 5 , all = 2 Lfi( S t y )
(8.4) where
Ai(x)
i s A i r y ' s i n t e g r a l given by (8.1). Since
we have
( C f . (8.5) i n Section 8.)
We s h a l l now prove the following lemmas
-65.1: The d i f f e r e n t i a l equation (64.6) has two l i n e a r l y independent solutions
SUBDOMINANT SOLUTIONS
1
u = \(x,h)
1
= A ?r J ( ~ ) ~ n i ( w ~ \ ~ / ~ J, ( x ) )
(65.11)
1
1
c
.
u = ~ k + ~ ( x =, lh ) J ( X ) ~ A ~ ( L I - ~ - ~ X ~ / ~
J(x))
0
The d i f f e r e n t i a l equation (64.6) was derived from (64.3) by trans-
Proof:
formation (64.5). If we s e t a1 = 0 and { =A2/3J(x) a s o l u t i o n of (64.3). This proves Lemma 65.1. LEMMA 65.2:
Assume t h a t (65.1) i s s a t i s f i e d i n
(65.12)
O < 60/~0(
tan(z6) 1
do
i n (65 .lo), we g e t
, and
that
.
i n the domain (65.13) we have
(65.14)
and -
(65.15)
gg
AI(x) tends t o i n f i n i t x .
Proof:
Since (65.1) i m p l i e s (65.4), we have I ~ r g [ h ~ ' ~ J ( x ) ]
{
= hI(x) , 1 ($)1/3[~2/3~(x) = [AI(x) 11/3
5[A2/'J(x)
13/'
32
,
Since
ASYMPTOTIC SOLUTIONS I N THE DOMAIN
275
Po
and
1
1 1
,
[ X 2/3 J ( x ) ]4 = X 6 J ( x ) ~
\(x,h)
t h e asymptotic representation of
can be derived immediately from
.
t h e asymptotic representation of 1, (5,O) ( C f . (65.6) .) The a s p p t o 19k t i c r e p r e s e n t a t i o n of %(x,X) i s obtained by d i f f e r e n t i a t i n g t h a t of % with r e s p e c t to x
.
( C f . Theorem
i s similar t o t h a t of ( 6 5 . u ) .
3.3, Chapter 1.) The proof o f (65.15)
This completes the proof of Lemma 65.2.
we use more accurate information of
--
If
Airy's i n t e g r a l such a s (8.3) i n Sec-
1
I
t i o n 8, we can reduce O([XI(x)] ') t o O([xI(x) ]-I) L e t us now compute the Wronskian of % and \+l
.
.
Since these two
functions a r e s o l u t i o n s of ( 6 4 . 6 ) , the q u a n t i t y
--2
dX) [Uk%tl- %\+lI must be independent of
as
AI(x)
x
.
Furthermore,
1 7-k
tends t o i n f i n i t y , where we used the i d e n t i t y
-3
k (-1) = w o
,
Hence
Let us prove t h e following theorem.
'JHEOREM 65.1;
Assume t h a t
(65.1) is s a t i s f i e d i n Bo
, and
that
po
a
Then the d i f f e r e n t i a l eauation
s u f f i c i e n t l y large p o s i t i v e number.
2 yl1-h p ( x ) y = O
(58.1)
has two s o l u t i o n s of t h e forms
1
f
1
y=yk(x,lr) = X p ( x )-4J(x)4[1+Gk(x,X) lni(w~kh2'3J(x))
where t h e functions the conditions
z
1
Gk(x,A)
'& %tl(x,X)
a r e holomorphic and s a t i s f y
SUBDCMINANT SOLUTIONS
276
in domain (65.13), and the q u a n t i t y c i s a c e r t a i n Dositive constant.
Proof:
is odd. First o f all, we reduce (58.1) t o (64.8) by (64.7). Then we reduce (64.8) t o a n We s h a l l construct
yk(x,k)
assuming t h a t
k
i n t e g r a l equation
k -71
v(x,h)
and this i n t e g r a l equation is reduced t o k--1 2nw 4
(65.20)
cp(x,h) =
1 +x 0 J
- cp(t,A)dt
C(x,t,a)
Y(X)
PW2 by the transformation
(65.21) srhere
q(x)
.(.,A)
=~(x,L)cp(x,A) ,
i s given by (64.9), and
(65.22) We choose the path of i n t e g r a t i o n y ( x ) We s h a l l estimate the function
(65.23) Since tion
Ai(5) \!x,X)
ciently large.
xEBo
,
tE8,
G(x,t,A)
,
i n 'the same way as i n Section 59. for
(Im[Al(lBo
,
Re[AI1p0
.
has zeros on the negative r e a l a x i s i n <-plane,* the funcdoes not have any zero i n domain (65.13) if
po
i s suffi-
Note t h a t i f (65.1) and (65.12) are s a t i s f i e d , then (65.16)
holds i n domain (65.13). Hence, by using Lemma 65.2, we g e t
i n domain (65.13), where
c1
i s a c e r t a i n p o s i t i v e constant.
manner, we obtain
*
See, f o r example, M. Abramowitz and I.A. S t e w [l; P. 4501.
In the same
277
ASYMPTOTIC SOLUTIONS IN THE DOMAIN Bo
l u . , p , x ) = d - a I ( x ) 11
(65 2 5 )
5c2
and
1%
(65.26)
+1(x,a
)~.&x)l I c3
i n domain (65.13), where
c2 and
c
are c e r t a i n p o s i t i v e constants. I n 3 deriving (65.2,$), (65.25) and (65.26), w e used the assumption t h a t k i s odd. Furthermore, i n deriving (65.25) and (65 .%), we regarded the two
] and %+1 (x,h)%(x,~) as functions of Let us change the v a r i a b l e t i n (65.20) by
quantities
hI(x)
.
%(x,h)exp[-XI(x)
c =I(t)
(65 27)
.
Then t h e i n t e g r a l equation (65.20) becomes
.
z = I(x) and C( z) = I ( y ( x ) ) I n Section 59, we explained how t o choose C(z) Along C(z) , the i n e q u a l i t y Iexp[-M(z<)]l 51 holds, s i n c e Re[AC] is s t r i c t l y decreasing along C(z) This means t h a t G(x,t,h) is bounded by a constant f o r where
.
.
,
xEao
,
tCy(x)
IImbIl
56,
R~[A]LP,
.
Also, by v i r t u e of Lemmas 64.2 and 64.3, we g e t
(65 29) where
z = I(x) and c
4
i s a c e r t a i n p o s i t i v e constant.
construct a bounded s o l u t i o n cp(x,k)
is s u f f i c i e n t l y large.
Therefore, we can
of (65.20) i n domain (65.13), i f
po
Then (65.20) again implles
cp(x,x) = 1+ o(x-l) uniformly f o r
x E B o as b
I M X I 1 56, Hence
tends t o i n f i n i t y i n the s t r i p 9
R e [ x I L P,
--1
Y = Y k ( x , x ) =p(x) 4qx,X)'p(x,a)
s a t i s f i e s all requirements given i n Theorem 65.1.
*
Cf. Lemma 59.1.
Similarly, we can t r e a t
278
SUBDOMINANT SOLUTIONS
.
Yk f o r an even k as w e l l a s yk+l
This completes t h e proof of Theorem
65.1. I n the same way as we proved Theorems 60.1 and 60.2,
we can prove the
following two theorems.
If n
65.2:
(65.30)
f o r (65.13), =ORPI
I
65.3:
f o r (65.13),
i s a c o n s i s t e n t canonical domain,
where
Jf
where
L E IAIWI-’
(X,OI
E
i s a c e r t a i n p o s i t i v e number.
n
i s an i n c o n s i s t e n t canonical domain,
B
A
p o s i t i v e number dependina on on -
,
l%(x,A)I G I A I ( x ) l - l
‘k+l
then
are
A
?
then
two a r b i t r a r y real numbers and
while 6’
i s a p o s i t i v e number dewndine,
.
B
As w e s t a t e d a t t h e beginning of S e c t i o n 63, t h e d i f f e r e n t i a l equation
(58.1) has the two s o l u t i o n s ( 5 9 . 4 ) which s a t i s f y conditions (59.5) and (60.1) o r conditions (59.5) and (60.6) i n t h e domain (58.17)
where
a
xE
9
II d h l l l 6 ,
9
Re[X12Po
.
W e a l s o explained how t h e domain It i s easy t o see t h a t B i s contained i n a0 Let
P is a s u i t a b l e subdomain o f Cl
i s constructed.
9
.
us consider the s o l u t i o n
where the path of i n t e g r a t i o n f o r ity in
h(x,A)
i s a curve j o i n i n g
a so that X
l i m s h(t,h)dt=O
as Re[I(x)]
tends t o
(P
x
to infin-
-.
Then, by v i r t u e o f the uniqueness of subdaminant s o l u t i o n s , we g e t
r
0
if
k
is odd,
FaMARKs
279
By using these formulas, we can find t h e asymptotic behavior o f y+(x,X) a s a tends t o i n f i n i t y i n domain (65.13). Similarly, we can f i n d the
-
y (x,a)
asymptotic behavior of
tends t o i n f i n i t y i n domain (65.13).
as
66. Remarks on the case when n contains only one of the t h r e e s e c t o r s 60 , E j E2 i n t h e neighborhood of the s i m D l e t r a n s i t i o n p o i n t xo I n s e c t i o n s 63, 64 and 65, we assumed t h a t t h e v e r t i c a l c u t Lo starts Note t h a t z = O i s t h e image of t h e t r a n s i t i o n p o i n t xo by from z = O the mapping z 2 I(x) I n o t h e r words, I (x,) = 0 As we mentioned before,
.
.
.
.
n
this assumption means t h a t
contains two of the t h r e e s e c t o r s
and E2 i n the neighborhood of the simple t r a n s i t i o n p o i n t s e c t i o n , we s h a l l b r i e f l y discuss the case when these t h r e e s e c t o r s i n t h e neighborhood of
xo
xo
.
e0 , I n this
contains only one of
.
For example, i f
n
is
one of t h e canonical domains given by Figures 61.7 and 61.8, t h e r e are four simple t r a n s i t i o n p o i n t s
n
The domain
,
x2
x3
and
x
W e assume t h a t the canonical domain mapping
(66.1)
z=I(x)
n
xl
hood of
, and
t h e domain
n
0
i s on t h e c u t Lo
i s a non-zero real number.
if T ~ 0>
4'
i s mapped conformally by the
onto t h e whole z-plane c u t by unbounded v e r t i c a l s T~
x
=l p ( t ) 2 d t X
z=O
and
-1
X
where
.
contains two of those t h r e e s e c t o r s i n the neighborhood of
x
assume t h a t
0
on the boundary of
4
However, i n the neighborhood of 3 contains only one of those t h r e e s e c t o r s .
x2
and
,
x1
upwards i f
xo i n the domain
T ~ 0<
n
.
.
, and
that
The c u t Let
Lo,%, Lo
...,4, . We
starts from
also
z=iTO
,
Lo i s d i r e c t e d downwards
B(xo) denote a small neighbor-
If this neighborhood
8(x0) is s u f f i -
c i e n t l y small, we have e i t h e r R e [ I ( x ) ] >0 f o r every x E & ( x o )
or
Re[I(x)] < 0 f o r every x E B(xo)
(66.2)
We assume t h a t ( 6 6 . 2 ) is s a t i s f i e d . domain
6,
of
s e c t o r s V1,. and 63 .) such t h a t
Let
We s h a l l construct a s u i t a b l e sub-
0 i n the follovfng manner.
..,Vk
.
W e s h a l l cover
i n the same way as we d i d before.
z =iT1
5 ,...,4,by
( C f . Sections
59
be a fixed p o i n t on t h e imaginary a x i s i n z-plane
280
SUBDOMINANT SOLUTIONS
(66.3) Denote by
B1
the semi-disc defined by
(66.4)
]z-iTol
r
where
.
iT1$Lo
0
i s a small p o s i t i v e number s a t i s f y i n g t h e condition 1
0 < ro < 7 d n ( l
(66.5) ?he point
,
iT1
Assume t h a t
1 'T1 - To) 3
Tol
a
d i v i d e s the imaginary axis i n t o two p a r t s
LOCI1
.
I1 and I2
.
B2 a s e c t o r s a t i s f y i n g t h e following
Denote by
condi ti ons :
B2
i s a t the p o i n t
(a)
the vertex of
(b)
the c e n t r a l angle of
(c)
IL is on the boundary of
(d)
Re[z]>_O f o r
Also, fienote by
(a0 (b')
B
~
3
the vertex o f
fi2
€
.9
z=irl
~
a s e c t o r s a t i s f y i n g the following conditions:
B
is a t t h e p o i n t z = O 1 , a3 i s 56
3 the c e n t r a l angle of
( c ' ) one of the two s i d e s of t h e s e c t o r ( d ~ )Re[z]
Set
€
.8
vo = 81" a2"
B3
for
~
-
(66.6)
,
1 , 56 B2 ,
is
, i s contained i n
B3
Lo
,
~
.
(See F i g . 66.1.)
0
Fig. 66.1. W e s h a l l d e f i n e a simply connected domain from z-plane
.
'Ihe domain
io
i s given by
0
by removing
..
Tou V1u . u Vk
EXAMPLES
281
-s 0 = 1-1(uo) - .
(66.7)
I t i s easy t o see t h a t we can j o i n each p o i n t
in
z
Go
to
to
in
m
by
a curve
,
c=c(s)
so t h a t
c(o)=z
,
o<s<scD
However, i t i s not possible t o
Re[aC(s)] i s s t r i c t l y decreasing.
j o i n each increasing.
io t o
in
z
in
m
to
so that
Re[AC(s)]
E0
This i s the d i f f e r e n c e between
Section 63 ( o r the domain
U
of Section 59).
construct t h e two s o l u t i o n s yk
and
is strictly
and the domain
of
Uo
Due t o this f a c t , we cannot
of (58.1) i n the domain
yktl
(66.8) However, w e can construct one of these s o l u t i o n s . t i o n (65.1) is s a t i s f i e d f o r
xE
zo , and
i n the same way as i n Section 65.
If
destroyed the symmetry of t h e domain.
is odd, w e can construct
i s even, we can construct
k
Note t h a t w e removed
i n domain (66.8).
k
For example, i f condi-
81
from z-plane.
W e had t o remove
Thus we
9 , since
i s the image of another t r a n s i t i o n point on t h e boundary of
n
67.
Re[ I ( x ) ] > 0 f o r
Examples.
x E S(xo)
The case
can be t r e a t e d i n a s i m i l a r manner.
As i n Section 62, w e s h a l l i l l u s t r a t e how t o use the method
of Sections 63, 64, 65 and 66 by using case (62.6). asymptotic representation of
st" S-
x1
and
S+"
- , we
S
, we
constructed the domain
x2 on the boundary of
no
by removing from
the domain
fo(x,X)
I n order t o derive an
no
of
Flg. 62.1 c l e a r l y shows t h a t there are two t r a n s i -
(62.8) i n Section 62. tion points
iTo
.
So far w e have assumed t h a t condition (66.2) i s s a t i s f i e d . when
yk
yktl
n
.
W e derived t h e domain
a s u i t a b l e nsighborhood of t h e boundary.
In
could u t i l i z e the method of Sections 59 and 60.
Due t o the reason s t a t e d i n Section 66, t h e method of Sections 63, 64, 65
and 66
does not apply t o
fo(x,X)
i n the neighborhood of
x1 , w e can apply the method t o which i s shown roughly by Fig. 67.1. transition point
fo(x,X)
x2
.
As t o the
i n a domain
SUBDOMINANT SOLUTIONS
282
I
\
Fig. 67.1.
By using the same method, w e can d e r i v e some formulas for the parab o l i c cylinder function
D
(67.1)
Dv(x)
such a s
-1
1(2v 2x) V-2
where
The branches of t i v e for x > 1
2
.
(x
given by F i g . 67.2 uith
x =1 a d
1
-1
- 1)2 and
2
(x
-1
- 1)4
are chosen so t h a t they a r e posi-
Fonmiia (67.1) i s v a l i d uniformly for
as
tends t o
v
x =-1 2
.
Sm
.
Mg. 67.2.
x
i n a domain
Fig. 67.2 i s based on Fig. 61.3
283
EXAMPLES Formula (67.1) i s one of the r e s u l t s obtained by A . Erdhlyi, M. Kennedy and J . L . McGregor."
The method of Sections 63, 64, and 65 i s a
straight-forward g e n e r a l i z a t i o n of t h e i r method.
.
This s o l u t i o n i s subdominant f2(x,A) S2 given by Fig. 62.3. As w e mentioned i n Section 62,
L e t us consider the s o l u t i o n
i n the domain
t h e r e a r e f i v e canonical domains containing canonical domains i s the domain
no
S2
.
The union of these f i v e
shown by Fig. 62.4.
t r a n s i t i o n p o i n t s on the boundary of
no
.
of Sections 63, 64, 65 and 66 a t a t r a n s i t i o n p o i n t canonical domains which contain I n case of
x
3
(or x
4
, and
S2
, we
J
no
.
as
A
.
I n case of
x2
tends t o i n f i n i t y
x i n a domain derived from
by removing a s u i t a b l e neighborhood of t h e boundary of
( o r x4 )
x
By u t i l i z i n g the method, we
f2(x,A)
i n s t r i p (62.1) which i s v a l i d uniformly f o r
**
consider a l l
whose boundaries contain
can f i n d an asymptotic representation of
x3
x
j ' ) , all of the f i v e canonical domains s a t i s f y the
requirements, and hence t h e i r union i s
no
There a r e s i x
I n order t o u t i l i z e the method
no
except a t
(or x5 ), t h e r e are two canonical
domains which s a t i s f y the requirements.
.
( o r n: ) The domain n : i s given by Fig. e can f i n d an asymptotic i s given by Mg. 67.4. W 67.3, and t h e domain r e p r e s e n t a t i o n of f 2 ( x , i ) which i s v a l i d uniformly f o r x i n a domain domains i s denoted by
derived from
n; n;
(or
n;
The union of these two canonical
n: n:
) by removing a s u i t a b l e neighborhood o f the
x ( o r a t x ) . Due t o the reason 2 5 s t a t e d i n Section 66, the method does not apply t o f2(x,A) a t x1 and
boundary of
(or
) except a t
Fyg. 67.3.
*
C f . A . Ekde'lyi, M. Kennedy and J . L . McGregor [lo; (8.8), p.477, and Flg. of t h e domain 8, f o r arg v = 0 on p.4821. ** This means t h a t the representation i s v a l i d i n the neighborhood of x3
.
SUBDOMINANT SOLUTIONS
284
//
fl 0
f -T 8 4
F i g . 67.4.
Figures 67.3 and 67.4 are based on F i g . 6 1 . 5 .
1
3
3 7
REFEFENCES This l i s t contains only works t h a t were used by the author i n the preparation of this book. More complete references on t h e asymptotic solut i o n of ordinary d i f f e r e n t i a l equations a r e found, f o r example, i n such books as F.W.J. Olver [31] and W. Wasow [47].
1.
M. Abramouitz and I . A . Stegun ( E d i t o r s ) , Handbook.of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards, Applied Mathematics Series 55, Third P r i n t i n g , March 1965, with corrections; U S . Government P r i n t i n g Office, Washington, D C
..
2.
I . Bakken, A multiparameter eigenvalue problem i n the complex plane, D i s s e r t a t i o n and Technical Report, University o f Minnesota, 1974.
3.
L. Bieberbach, Theorie der Gew%nlichen Springer-Verlag, 1953.
4.
G .D
5.
G.D. Birkhoff, The generalized Riemann problem f o r l i n e a r d i f f e r e n t i a l equations and the a l l i e d problems f o r l i n e a r d i f f e r e n c e and q-difference equations, Proc. Amer. Acad. Arts and S c i . , 49(1913) 521-568.
6.
T.M. Cherry, Uniform asymptotic formulae f o r functions with t r a n s i t i o n p o i n t s , Trans. h e r . Math. SOC., 68(1950) 224-257.
7.
E.A. Coddington and N . Levinson, Theory of Ordinary D i f f e r e n t i a l Equations, McGraw-Hill, 1955.
8.
G . E l M n g , h e r e i n e Klasse von Riemannschen FlPchen und i h r e Uniformisierung, Acta SOC. S c i . fenn. (N.S.) 2, No. 3(1934) 5-60.
9.
A. Erde'lyi, Asymptotic ExDansions, Dover, New York, 1956.
10.
A . Erdklyi, M. Kennedy, and J . L . McGregor, Parabolic cylinder f'unct i o n s of l a r g e order, Jour. Rat. Mech. Anal., 3(1954) 459-485.
Differentialgleichunpen,
.
Birkhoff, Singular points of ordinary l i n e a r d i f f e r e n t i a l equat i o n s , Trans. Amer. Math. SOC., l O ( l 9 O q ) 436-470.
11. M.A. Evgrafov and M.V. Fedoryuk, Asymptotic behaviour a s A + of the s o l u t i o n of t h e equation w"( z) - p(z,X)w(z) = 0 i n the complex z-plane, Russian Math. Surveys, 21(1966), 1-48, t r a n s l a t e d from Uspehi Mat. Nauk., 21(1966), No. 1 (127) 3-50. 12.
K.O. Friedricks, Special Topics i n Analysis, P a r t B, Asymptotic Intep a t i o n of D i f f e r e n t i a l Esuations, New York University, 1953-54.
13. H.E. Gollwitzer and Y. Sibuya, Stokes m u l t i p l i e r s f o r subdominant s o l u t i o n s of second order d i f f e r e n t i a l equations with polynomial c o e f f i c i e n t s , Jour. fcr d i e r e i n . und ange. Math., 243(1970) 98-119.
REFERENCES
286
u.P . 15.
Hartman, Ordinary D i f f e r e n t i a l Equations, John Wiley, 1%4.
J . Heading, An Introduction t o Phase-Internal Methods, Methuen, London, 1962.
16. E . H i l l e , Lectures on Ordinary D i f f e r e n t i a l Equations, Addison-Wesley, 1969. 17.
P.F. Hsieh and Y. Sibuya, On the asymptotic i n t e g r a t i o n of second order l i n e a r ordinary d i f f e r e n t i a l equations with polynomial c o e f f i c i e n t s , J . Math. h a . Appl., 16(1966) 8.4-103.
18. P.F. Hsieh and Y. Sibuya, Note on r e g u l a r perturbations of l i n e a r ordinary d i f f e r e n t i a l equations a t i r r e g u l a r s i n g u l a r p o i n t s , Funkcia1 Ekvac , 8 ( 1966) 9-108.
.
19.
P.F. Hsieh and Y. Sibuya, On d i s t r i b u t i o n of zeros of s o l u t i o n s of a second order l i n e a r d i f f e r e n t i a l equation with polynomial c o e f f i c i e n t s , J . Math. Ana Appl., 43( 1973) 101-113.
.
20.
J.A. Jenkins, Univalent Functions and Conformal Mapping, Second P r i n t i n g Corrected, Springer-Verlag, 1 % 5 .
21.
T. Kimura, On the i t e r a t i o n of a n a l y t i c functions, Funkcial Ekvac., l4( 1971) 197-238.
22.
R .E. Langer, The asymptotic s o l u t i o n s of ordinary l i n e a r d i f f e r e n t i a l equations of the second order, with s p e c i a l reference t o a turning p o i n t , Trans. Amer. Math. SOC., 67(1949) 461-490.
23.
R.W. McKelvey, ?he s o l u t i o n s of second order l i n e a r ordinary d i f f e r e n t i a l equations about a turning p o i n t of order two, Trans. Amer. Math.
SOC., 79(1955) 103-123.
24. A . I . Markushevich, Theory of Functions of a Complex Variable, Vol. 11, Translated from t h e Russian by R.A. Silverman, Prentice-Hall, 1965. 25.
F.E. h l l i n , On t h e r e g u l a r perturbation of the subdominant s o l u t i o n t o second order l i n e a r ordinary d i f f e r e n t i a l equations with polynomial c o e f f i c i e n t s , F’unkcial Ekvac., 11(1968) 1-38.
.
26.
R . Narasimhan, Several Complex Variables, The University of Chicago Press, 197l.
27.
R . Nevanlinna, h e r Riemannsche Flachen mit Endlich Vielen Windungspunkten, Acta Math. 58(1932) 295-373.
28.
R . Nevanlinna, Analytic Functions, Translated by P . W g , SpringerVerlag , 1970.
29.
T. Nishino, Nouvelles recherches sur les fonctions e n t i b e s de plus i e u r s v a r i a b l e s complexes ( I ) , J. Math. Kyoto Univ., 8(1%8) 49-100.
30. F.W.J. Olver, Error a n a l y s i s of phase-integral methods. I . General theory f o r simple turning p o i n t s , J o u r . of Res. of the Nat. Bureau of Stand., B, 69B(1%5)271-290.
REFERENCES
287
31.
F.W.J. Olver, Asymptotics and Special Functions, Academic P r e s s , 1974.
32.
Y. Sibuya, Second order l i n e a r ordinary d i f f e r e n t i a l equations cont a i n i n g a l a r g e parameter, Proc Japan. Acad., 34(1958) 229-234.
33.
Y. Sibuya, Simplification of a system of l i n e a r ordinary d i f f e r e n t i a l equations about a s i n g u l a r p o i n t , F u n k c i d . Ekvac., 4(1962) 29-56.
34.
Y. Sibuya, Subdominant s o l u t i o n s of l i n e a r d i f f e r e n t i a l equations with polynomial c o e f f i c i e n t s , Mich. Math. Jour., ( +!,.I 1967) 53-63.
35.
Y. Sibuya, Stokes m u l t i p l i e r s of subdominant s o l u t i o n s o f t h e d i f f e r e n t i a l equation y t t - ( x3 t A)y=O , Proc. Amer. Math. SOC., 18(1%7) 238-243
36.
Y. Sibuya, Subdominant s o l u t i o n s of the d i f f e r e n t i a l equation 2 .(x-am)y = 0 , Acta Math., 119(1967) 235-272. y" - A (x-a,) (x-a,)
37.
Y. Sibuya, Perturbation of l i n e a r ordinary d i f f e r e n t i a l equations a t i r r e g u l a r singular p o i n t s , Funkcia1 Ekvac , 11(1968) 235-246.
38.
Y. Sibuya, A boundary value problem i n t h e complex plane, Proc. of Conf. a t Western Michigan Univ., Kalamazoo, April 30-May 2, 1970, Lecture Notes i n Math., No. 183, 128-144, Springer-Verlag, 1971.
39.
Y. Sibuya, Perturbation a t an i r r e g u l a r s i n g u l a r p o i n t , Proc. of Japan-U.S. Seminar on Ordinary D i f f e r e n t i a l and Functional Equations, Kyoto, September 6-11, 1 9 7 l , Lecture Notes i n Math., No. 243, 148168, Springer-Verlag, 1971.
40.
Y. Sibuya, Uniform s i m p l i f i c a t i o n i n a f u l l neighborhood of a t r a n s i t i o n p o i n t , Amer. Math. SOC., Memoir l.49, 1974.
41.
Y. Sibuya, Subdominant s o l u t i o n s admitting a prescribed Stokes phenomenon, Proc. of I n t e r n a t i o n a l Conf. on D i f f e r e n t i a l Equations a t Univ. of Southern California, Sept. 3-7, 1974, 709-738, Academic Press, 1975.
42.
Y. Sibuya and R.H.
.
..
.
Cameron, An e n t i r e s o l u t i o n of the f b c t i o n a l equa-
-
t i o n f ( X ) + f ( w X ) f ( w 'a) = 1 , ( w 5 =I) , Proc. of symposium on ~ r d i nary D i f f e r e n t i a l Equations a t Univ. of Minnesota, May 29-30, 1972, Lecture Notes i n Math., No. 312, 194-202, Springer-Verlag, 1973. 43
L. Sirovich, Techniaues of Asymptotic Analysis, Applied Math. S c i . 2, Springer-Verlag, 197l.
44.
C.A. Swanson and V.B. Headley, A n extension of Airy's equation, SIAM J. Appl. Math., 15(1967) l4OO-Ul2.
45 ' E.C. ntchmarsh, Haenfunction E b a n s i o n s Associated with Second-
Order D i f f e r e n t i a l Eauations, P a r t I, Second Edition, Oxford, 1962.
46.
.
F .G Tricomi, Fonctions Hypera6om6triaues Confluentes , Mem. des Sci Math., No. 140, Gauthier-Villars, 1960.
.
288
FEEFENCES
47.
W . Wasow, AsymDtotic E h a n s i o n s f o r Ordinary D i f f e r e n t i a l Ehuations, John Wiley, 1965.
48.
W. Wasow, The asymptotic t h e o r y of l i n e a r d i f f e r e n t i a l e q u a t i o n s i n v o l v i n g a parameter, Le Mat., ll(1955) 134-148.
49.
W. Wasow, Simple turning-point problems i n unbounded domains, SIAM J . Math. Anal., l ( 1 9 7 0 ) 153-170.
50.
F . Zernike, Eine asymptotische Entwicklung fi d i e g r a s s t e N u l l s t e l l e 3.er Hermiteschen Polynome, Koninklijke Akademie van Wetenschappen t e Amsterdam, Proc. of t h e S e c t i o n of S c i . , 34(1931) 673-680.
Airy's integral
22( d e f i n i t i o n ) , 53, 75( Theorem 19.1, ( i v ) ) , 87( connection formula, Theorem 22.1), 168, 203, 273(Lemma 65 -1), 274 (Lemma 65.2), 275( Theorem 65.1)
Asymptotic expansions
1, 12, 14
Asymptotic s o l u t i o n s a t an irregular singular point
&(Theorem 11.1), 228( Theorem 56.1), 229 ( Theorem 56.2)
Asymptotic values of a meromorphic function
173(Remark 1)
Birkhoff 1s problem
231( Problem 56.1)
Boundary value problems
45, 46, 128, 167(Problem 39.1)
Canonical domains
243(Definition 59.3), 249(consistent o r i n c o n s i s t e n t , Definition 60 .l)
Cherry's method
269
Dynamical systems
254, 256
Formal power s e r i e s
3, 10
Hankel functions
94
Index of a closed curve
256
Inverse of an a n a l y t i c mapping
198
I v e r s e n l s property
156
Koebe 1s d i s t o r t i o n theorem
192
Koebe 1s theorem
194
Line complex (topological tree)
186
Logarithmic ends
179
Multipaxameter eigenvalue problem Nevanlinnals problem
197 174(Problem 40 .l)
Nevanlinna1s theorem
175( Theorem 40.1)
Parabolic cylinder functions
2,$(definition), 53, 75(Theorem 19.1, ( i v ) ) , m( connection formulas, Theorem 22.2), 97, 129, 169, 203, 282(fomula (67 .l) due t o Erdhlyi-Kennedy-McGregor)
Phragme'n-Lindel'df theorem H c a r d 1s exceptional values
150 171, 173(Remark 2)
Poincar6-Bendixson theorem
256
Nadratic differentials R i c c a t i equation
254 28(Lemma 9.1), 236(Lemma 58.1), 241 (Lemmas 58.2 and 58.3)
Rouch6 1 s theorem
133
290
INDEX
S i n g u l a r i t y of a multiple-valued function
153
Schvarzian
172
Stokes curves
242 ( D e f i n i t i o n 59.2)
Stokes m u l t i p l i e r s
83
Subdominant s o h ti ons
1 9 ( D e f i n i t i o n 7 . 1 ) , 220(a complete s e t o f ) , 235( Theorem 57.1)
Transcendental s i n g u l a r i t i e s of t h e i n v e r s e of a meromorphic function
173(Remark 1)
Transition points
242(D e f i n i t i o n 59 .l)
bm
1 5 ( d e f i n i t i o n , Theorem 6.1)
bm,k
1 8 ( d e f i n i t i o n , Theorem 7.1), 82(Lemma 21.1)
Zernike s method
53