Series in Real Analysis – Vol. 11
GENERALIZED ORDINARY DIFFERENTIAL EQUATIONS Not Absolutely Continuous Solutions
790...
35 downloads
905 Views
1MB Size
Report
This content was uploaded by our users and we assume good faith they have the permission to share this book. If you own the copyright to this book and it is wrongfully on our website, we offer a simple DMCA procedure to remove your content from our site. Start by pressing the button below!
Report copyright / DMCA form
Series in Real Analysis – Vol. 11
GENERALIZED ORDINARY DIFFERENTIAL EQUATIONS Not Absolutely Continuous Solutions
7907.9789814324021-tp.indd 1
12/16/11 10:40 AM
SERIES IN REAL ANALYSIS
Published Vol. 1:
Lectures on the Theory of Integration R Henstock
Vol. 2:
Lanzhou Lectures on Henstock Integration Lee Peng Yee
Vol. 3:
The Theory of the Denjoy Integral & Some Applications V G Celidze & A G Dzvarseisvili translated by P S Bullen
Vol. 4:
Linear Functional Analysis W Orlicz
Vol. 5:
Generalized ODE S Schwabik
Vol. 6:
Uniqueness & Nonuniqueness Criteria in ODE R P Agarwal & V Lakshmikantham
Vol. 7:
Henstock–Kurzweil Integration: Its Relation to Topological Vector Spaces Jaroslav Kurzweil
Vol. 8:
Integration between the Lebesgue Integral and the Henstock–Kurzweil Integral: Its Relation to Local Convex Vector Spaces Jaroslav Kurzweil
Vol. 9:
Theories of Integration: The Integrals of Riemann, Lebesgue, Henstock–Kurzweil, and McShane Douglas S Kurtz & Charles W Swartz
Vol. 10: Topics in Banach Space Integration Òtefan Schwabik & Ye Guoju Vol. 11: Generalized Ordinary Differential Equations: Not Absolutely Continuous Solutions Jaroslav Kurzweil Vol. 12: Henstock–Kurzweil Integration on Euclidean Spaces Tuo Yeong Lee Vol. 13: Theories of Integration: The Integrals of Riemann, Lebesgue, Henstock–Kurzweil, and McShane (2nd Edition) Douglas S Kurtz & Charles W Swartz
He Yue - Generalized Ordinary Diff.pmd
1
1/31/2012, 1:50 PM
Series in Real Analysis – Vol. 11
GENERALIZED ORDINARY DIFFERENTIAL EQUATIONS Not Absolutely Continuous Solutions
Jaroslav Kurzweil Academy of Sciences, Czech Republic
World Scientific NEW JERSEY
•
7907.9789814324021-tp.indd 2
LONDON
•
SINGAPORE
•
BEIJING
•
SHANGHAI
•
HONG KONG
•
TA I P E I
•
CHENNAI
12/16/11 10:40 AM
Published by World Scientific Publishing Co. Pte. Ltd. 5 Toh Tuck Link, Singapore 596224 USA office: 27 Warren Street, Suite 401-402, Hackensack, NJ 07601 UK office: 57 Shelton Street, Covent Garden, London WC2H 9HE
British Library Cataloguing-in-Publication Data A catalogue record for this book is available from the British Library.
Series in Real Analysis — Vol. 11 GENERALIZED ORDINARY DIFFERENTIAL EQUATIONS Not Absolutely Continuous Solutions Copyright © 2012 by World Scientific Publishing Co. Pte. Ltd. All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means, electronic or mechanical, including photocopying, recording or any information storage and retrieval system now known or to be invented, without written permission from the Publisher.
For photocopying of material in this volume, please pay a copying fee through the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to photocopy is not required from the publisher.
ISBN-13 978-981-4324-02-1 ISBN-10 981-4324-02-7
Printed in Singapore.
He Yue - Generalized Ordinary Diff.pmd
2
1/31/2012, 1:50 PM
November 18, 2011
16:26
World Scientific Book - 9in x 6in
Preface
The Kurzweil-Henstock integral is a nonabsolutely convergent integral. The aim of this treatise is the exploitation of this property in some convergence problems in ordinary differential equations and in some situations where solutions of infinite variation can occur. This leads to generalized differential equations the theory of which is presented in Chapters 6–18, 22–24, 27. Since the motion of Kapitza’s pendulum was a significant motivation for the theory, the equation of motion of Kapitza’s pendulum is exposed in Chapter 2 and various estimates for equations of a similar type are obtained by elementary methods in Chapters 3 and 4. The concept of the Kurzweil-Henstock integral and of the generalized differential equation goes back to 1957. The preparation of this book started in 2004 after W. N. Everitt had encouraged me to build a solid theory of the generalized differential equations. The results in this direction were reported and discussed regularly in the Seminar on Differential Equations and Integration Theory in the Institute of Mathematics of the Academy of Sciences of the Czech Republic in Prague. I wish to thank the participants of the seminar for their contributions and comments, in particular to J. Jarn´ık, B. Maslowski, I. Vrkoˇc, M. Tvrd´ y ˇ and the late S. Schwabik. The last two of them in addition read and commented the manuscript. E. Ritterov´a was very helpful by typing several versions of the manuscript. The research connected with the preparation of this book was supported by the grant No. IAA100190702 of the Grant Agency of the Acad. Sci. of the Czech Republic and by the Academy of Sciences of the Czech Republic, Institutional Research Plan No. AV0Z10190503. Prague, May 2011
Jaroslav Kurzweil v
jk
This page intentionally left blank
October 31, 2011
17:19
World Scientific Book - 9in x 6in
jk
Contents
Preface
v
1.
Introduction
1
2.
Kapitza’s pendulum and a related problem
9
3.
Elementary methods: averaging
11
4.
Elementary methods: internal resonance
15
5.
Strong Riemann-integration of functions of a pair of coupled variables
27
6.
7. 8.
9.
Generalized ordinary differential equations: Riemann-solutions (concepts)
Strong
Functions ψ1 , ψ2
37 43
Strong Riemann-solutions of generalized differential equations: a survey Approximate solutions: boundedness vii
47 51
October 31, 2011
17:19
viii
World Scientific Book - 9in x 6in
jk
Generalized Ordinary Differential Equations
10. Approximate solutions: a Lipschitz condition
59
11. Approximate solutions: convergence
63
12. Solutions
69
13. Continuous dependence
77
14. Strong Kurzweil Henstock-integration of functions of a pair of coupled variables
83
15. Generalized differential equations: Henstock-solutions
97
Strong Kurzweil
16. Uniqueness
101
17. Differential equations in classical form
105
18. On a class of differential equations in classical form
111
19. Integration and Strong Integration
119
20. A class of Strong Kurzweil Henstock-integrable functions
127
21. Integration by parts
135
22. A variant of Gronwall inequality
145
23. Existence of solutions of a class of generalized ordinary differential equations
155
24. A convergence process as a source of discontinuities in the theory of differential equations
165
October 31, 2011
17:19
World Scientific Book - 9in x 6in
Contents
jk
ix
25. A class of Strong Riemann-integrable functions
177
26. On equality of two integrals
185
27. A class of Generalized ordinary differential equations with a restricted right hand side
187
Appendix A.
Some elementary results
189
Appendix B.
Trifles from functional analysis
191
Bibliography
193
Symbols
195
Subject index
197
This page intentionally left blank
October 31, 2011
17:19
World Scientific Book - 9in x 6in
jk
Chapter 1
Introduction
A solution of a classical differential equation x˙ = f (x, t)
(1.1)
is a function u such that its derivative u˙ is at every τ equal to f (u(τ ), τ ), i.e. in a neighborhood of τ the linear function t → u(τ ) + f (u(τ ), τ ) (t − τ ) is a good approximation of u. Usually f and u are Rn -valued functions. Given u(a) = y the value u(T ) is approximately equal to y+
k ∑
f (u(τi ), τi ) (ti − ti−1 )
i=1
for T > a. Here a = t0 < t < · · · < tk = T, (1.2) τi ∈ [ti−1 , ti ], τi being called the tag of the interval [ti−1 , ti ] and the partition of [a, b ] into intervals [ti−1 , ti ] is sufficiently fine. Moreover, u is a solution of the Volterra integral equation ∫ T u(T ) = y + f (u(t), t) dt (1.3) a
and vice versa, every solution of (1.3) is a solution of (1.1) and fulfils u(a) = y. A generalized ordinary differential equation (GODE) d x = Dt F (x, τ, t) dt 1
(1.4)
October 31, 2011
2
17:19
World Scientific Book - 9in x 6in
jk
Generalized Ordinary Differential Equations
depends on a function F of three variables and its solution is a function u such that the function t → u(τ ) + F (u(τ ), τ, t) − F (u(τ ), τ, τ ) is a good approximation of u in a neighborhood of any τ. The value u(T ) is approximately equal to u(a) +
k ∑
[F (u(τi ), τi , ti ) − F (u(τi ), τi , ti−1 )].
(1.5)
i=1
In fact, the sum in (1.5) can be viewed as an approximation of an integral which is denoted by ∫ T Dt F (u(τ ), τ, t). (1.6) a
The quality of approximation depends on the interpretation of the concept that the partition of [a, T ] is fine. By definition, u is a solution of (1.4) if it fulfils ∫ T u(T ) = u(a) + Dt F (u(τ ), τ, t)
(1.7)
a
for T > a, which is a Volterra-type integral equation. The concept of a fine partition of [a, b ] admits various interpretations and two of them are crucial in this treatise. Let ξ > 0, [a, T ] ⊂ R. A set {([ti−1 , ti ], τi ) ; i = 1, 2, . . . , k} is a ξ-fine partition of [a, T ] if (1.2) holds, if ti − ti−1 ≤ ξ and τi ∈ [ti−1 , ti ] for i = 1, 2, . . . , k. Let δ be a positive function on [a, T ], i.e. δ : [a, T ] → R+ . A set {([ti−1 , ti ], τi ) ; i = 1, 2, . . . , k} is a δ-fine partition of [a, T ] if (1.2) holds and if τi − δ(τi ) ≤ ti−1 ≤ τi ≤ ti ≤ τi + δ(τi )
for i = 1, 2, . . . , k.
These two concepts of a fine partition of [a, T ] are a basis for two concepts of a solution of (1.4). Let us proceed to the concept of a solution u of (1.4) without making precise the integral in (1.6). Let X be a Banach space, ∥x∥ denoting the norm of x for x ∈ X. Assume that [a, b ] ⊂ R, u : [a, b ] → X and that there exists ξ0 > 0 such that F (u(τ ), τ, t) is defined for τ, t ∈ [a, b ],
November 18, 2011
16:26
World Scientific Book - 9in x 6in
Introduction
jk
3
|t − τ | ≤ ξ0 . u is called an SR-solution (Strong Riemann solution) of (1.4) if for every ε > 0 there exists ξ > 0 such that k ∑
∥u(ti ) − u(ti−1 ) − F (u(τi ), τi , ti ) + F (u(τi ), τi , ti−1 )∥ ≤ ε
i=1
for every ξ-fine partition {([ti−1 , ti ], τi ); i = 1, 1, . . . , k} of [a, b ]. Assume that [a, b ]⊂ R, u: [a, b ]→ X and that there exists δ0 : [a, b ]→ R+ such that F (u(τ ), τ, t) is defined for τ, t ∈ [a, b ], |t − τ | ≤ δ0 (τ ). u is called an SKH-solution (Strong Kurzweil-Henstock solution) of (1.4) if for every ε > 0 there exists δ : [a, b ] → R+ such that k ∑
∥u(ti ) − u(ti−1 ) − F (u(τi ), τi , ti ) + F (u(τi ), τi , ti−1 )∥ ≤ ε
i=1
for every δ-fine partition {([ti−1 , ti ], τi ) ; i = 1, 2, . . . , k} of [a, b ]. This definition is correct since for every δ : [a, b ] → R+ there exists a δ-fine partition of [a, b ]. Let ξ0 > 0, 0 < ξ < ξ0 , and let δ(τ ) ≤ ξ for τ ∈ [a, b ]. Then every δ-fine partition of [a, b ] is a ξ-fine partition of [a, b ]. Therefore every SRsolution of (1.4) is an SKH-solution of (1.4) but not vice versa. The origin of the concept of a GODE goes back to the averaging principle by which the solutions of x˙ = h0 (x) +
k ∑
hj (x) cos(σj t/ε + ηj ),
(σj ̸= 0)
(1.8)
j=1
tend for ε → 0 to the solutions of x˙ = h0 (x)
(1.9)
which is called the averaged equation since 1 T →∞ T
∫
T
h0 (x) = lim
[ h0 (x) +
0
k ∑
] hj (x) cos(σj t/ε + ηj ) dt .
j=1
The right hand side of (1.8) does not converge pointwise for ε → 0 which gave an impulse to tying together the convergence of solutions with various types of convergence of the right hand sides of the differential equations.
October 31, 2011
4
17:19
World Scientific Book - 9in x 6in
jk
Generalized Ordinary Differential Equations
The book consists of five parts. In the first part (Chapters 2–4) Kapitza’s pendulum is briefly treated. Its equation is transformed to an equation of the form (1.8). Let λi : R → R, i = 1, 2, . . . , k, ∫ 1 λj (t + 1) = λj (t), λj (s) ds = 0, hj : Rn → Rn . 0
Let u : [a, b ] → Rn be a solution of x˙ = h0 (x) +
n ∑
hj (x) λj (t/ε),
(1.10)
j=1
and let w : [a, b ] → Rn be a solution of (1.9), u(a) = w(a). Then ∥u(t) − w(t)∥ ≤ κ ε for t ∈ [a, b ] for some κ > 0 and ε sufficiently small, i.e. w is an approximation of u of order ε. Moreover, an approximation w e of u of order ε2 can be defined by the formula k ∑ w(t) e = w(t) + hj (w(t)) Λj (t/ε) j=1
∫
1
where Λj : R →R is the primitive of λj such that that w(a) e = w(a) + ε
k ∑
Λj (s) ds = 0. (Observe 0
hj (w(a)) Λj (a/ε).)
j=1
The second part (Chapters 5–13) contains a theory of GODEs in the form d x = Dt G(x, τ, t) (1.11) dt where G fulfils conditions (8.2)–(8.7). In simplified form conditions (8.3), (8.4) may be written as ∥G(x, τ, t) − G(x, τ, s)∥ ≤ κ |t − s|α ,
(1.12)
∥G(x, τ, t) − G(x, τ, s) − G(y, τ, t) + G(y, τ, s)∥ ≤ κ ∥x − y∥ |t − s|β , (1.13) where κ > 0, 0 < α ≤ β, α + β > 1. Conditions (8.5)–(8.7) are of a similar type. A local existence theorem and a continuous dependence theorem are valid for the equation of the type (1.11). By the continuous dependence theorem there exists a function Ω : R → R such that Ω(η) → 0 for η → 0 and
October 31, 2011
17:19
World Scientific Book - 9in x 6in
jk
Introduction
5
the following situation takes place: Let G∗ fulfil (8.1)–(8.7), let v : [a, b ] → X be a solution of (1.11) and let v ∗ : [a, b ] → X be a solution of d x = Dt G∗ (x, τ, t), dt
(1.14)
v(a) = v ∗ (a). If G∥(x, τ, t) − G∗ (x, τ, t)∥ ≤ η (for (x, τ, t) from a suitable set) then ∥v(t) − v ∗ (t)∥ ≤ Ω(η) for t ∈ [a, b ]. A uniqueness result is postponed to Chapter 16 since it is proved for the concept of SKH-solutions which is wider than the concept of SR-solutions. A solution u: [a, b ] → X of (1.11) fulfils ∥u(t) − u(s)∥ ≤ κ1 |t − s|α , where κ1 > 0, t, s ∈ [a, b ], but need not have finite variation on any interval. By definition u is a solution of the corresponding integral equation of Volterra type. The main object of the third part (Chapters 14–18) is the concept of an SKH-solution of the GODE (1.11), no specific assumptions on G being imposed. In particular: (i) If a < c < b, u : [a, b ] → X and if u is an SKH-solution of (1.11) on [a, c] and on [c, b] then it is an SKH-solution on [a, b ] (which need not hold for SR-solutions in general). (ii) If u : [a, b ] → X is an[SKH-solution of (1.11) on [c, b ] for every c]such that a < c < b and if u(c) − u(a) − G(u(a), a, c) − G(u(a), a, a) → 0 for c → a, then u is an SKH-solution of (1.11) on [a, b ]. Let g depend on the variables x, t and u : [a, b ] → X. Then u is called an SKH-solution of the differential equation in the classical form x˙ = g(x, t)
(1.15)
if ∫
∫
T
u(T ) − u(S) = (SKH)
T
Dt [g(u(τ ), τ ) t] = (SKH) S
g(u(t), t) dt . S
Conditions on g, G are found such that u is a solution of (1.15) if and only if it is a solution of (1.11). The following result is an illustration of the above concepts: ( ) ( ) Let h : X × R \ {0} → X, H : X × R \ {0} → X, the main assumption
October 31, 2011
17:19
World Scientific Book - 9in x 6in
jk
Generalized Ordinary Differential Equations
6
being that h and H are bounded and continuous, ∂ H(x, t) = h(x, t) and 1 ≤ α < 1 + 12 β. ∂t Put
−α −β t h(x, t ) g(x, t) = 0 |t|−α h(x, −|t|−β )
if t > 0, if t = 0, if t < 0.
Then for every y ∈ X there exists a unique SKH-solution u : [a, b ] → X of (1.15), u(a) = y. u need not be absolutely continuous on any neighbourhood of 0. Let Φ : [a, b ] → R be nondecreasing, Φ(τ ) − limt→τ,t<τ Φ(t) < 1 for a < τ ≤ b. The fourth part (Chapters 19–24) contains a theory of the GODE d x = F (x, τ, t), dt
(1.16)
where F : X × [a, b ] 2 → X fulfils
∥F (x, τ, t) − F (x, τ, s)∥ ≤ (1 + ∥x∥) Φ(t) − Φ(s)
and three conditions of a similar type. For every y ∈ X there exists a unique SKH-solution u : [a, b ] → X of (1.16), u(a) = y. This solution is a function of bounded variation and depends continuously on y and F. Put F ◦ (x, T ) = (SKH)
∫
T
Dt F (x, τ, t). a
Then u is an SKH-solution of (1.16) if and only if it is an SKH-solution of d x = F ◦ (x, t). dt
(1.17)
In other words: a process which is described by equation (1.16) is described by equation (1.17) as well. Moreover, for a given F there may exist a sequence of functions Fi , i ∈ N, which are continuous and fulfil similar conditions as F and if ui : [a, b ] → X is a solution of d x = Dt Fi (x, τ, t), dt
ui (a) = y,
then ui is continuous, the sequence ui is bounded and ui (t) → u(t) almost everywhere. Observe that Chapter 19 contains only such results which
November 18, 2011
16:26
World Scientific Book - 9in x 6in
jk
Introduction
7
follow directly from the definition of the SKH-solution and that rather ∫ b general results on the existence of (SKH) Dt U (τ, t) and on integrationby-parts are presented in Chapters 20,21.
a
The main topic of the fifth part (Chapters 25–27) is the treatment of the GODEs d x = Dt G(x, τ, t) , dt d x = Dt G◦ (x, τ, t) , dt
(1.18) (1.19)
where G: X × [a, b ]2 → X fulfils conditions which are similar to the conditions imposed on G in the GODE (8.8) and ∫ t ◦ G (x, t) = (SR) Dt G(x, σ, s). (1.20) a
In the simplified form G fulfils ∥G(x, τ, t) − G(x, τ, s)∥ ≤ κ (1 + ∥x∥) |t − s|α
for x ∈ X, τ, t, s ∈ [a, b ] ,
∥G(x, τ, t) − G(x, τ, s) − G(z, τ, t) + G(z, τ, s)∥ ≤ κ ∥x − z∥ |t − s|β for x, z ∈ X, τ, t, s ∈ [a, b ] , where κ > 0, 0 < α ≤ β, α + β > 1, and three similar conditions. The integral in (1.20) exists and G◦ fulfils analogical conditions as G. Moreover, u is a solution of (1.18) if and only if it is a solution of (1.19). The main part of the book was written in the years 2007-2009. The results on the relation of the GODEs (1.15), (1.16) and on the relation of the GODEs (1.18), (1.19) were added to the text in the final phase of its preparation.
This page intentionally left blank
October 31, 2011
17:19
World Scientific Book - 9in x 6in
jk
Chapter 2
Kapitza’s pendulum and a related problem
In [Kapitza (1951a)], [Kapitza (1951b)] the author studied the equation ¨ = (g L−1 − L−1 (A ω) ω sin ω t) sin Θ Θ
(2.1)
which describes the motion of a pendulum the support of which is vibrating with a large frequency ω and a small amplitude A. Here g, L, ω, A ∈ R+ , L is the length of the pendulum and g is the gravitational constant. Putting ˙ − L−1 (Aω) cos ω t sin Θ = Φ Θ the equation (2.1) is transformed to 1 −1 2 sin Θ − 2 (L A ω) sin Θ cos Θ
˙ = Φ + L−1 A ω sin Θ cos ω t , Θ ˙ = g L−1 Φ
− 12 (L−1 A ω)2 sin Θ cos Θ cos 2ω t −L−1 A ω Φ cos Θ cos ω t .
(2.2)
If ω is large and A is small (i.e. if A ω ≤const.) then the solutions of (2.2) are close to the solutions of the averaged equation } ˙ = Φ, Θ (2.3) Φ˙ = g L−1 sin Θ − 21 (L−1 A ω)2 sin Θ cos Θ . The relation of solutions of (2.2) and (2.3) can be studied as the relation of solutions of x˙ = f (x) + h(x, t, t/ε),
ε>0
(2.4)
and the solutions of x˙ = f (x) , 9
(2.5)
November 18, 2011
16:26
World Scientific Book - 9in x 6in
jk
Generalized Ordinary Differential Equations
10
the main assumption being the existence of a bounded function H(x, τ, t) such that ∂ H(x, τ, t) = h(x, τ, t) . ∂t This problem will be tackled by elementary methods in Chapter 3. In Chapter 4 an equation of a more special form than (2.4) is treated but more precise results are obtained. An insight into the problem of averaging is given by the equation x˙ = x ε−α cos(2π t/ε) + ε−α sin(2π t/ε)
(2.6)
where 0 < α ≤ 1/2. Let y ∈ R and denote by uα,ε : [−1, 1] → R the solution of (2.6) fulfilling x(0) = y. It is well known that uα,ε (t) = exp
( sin(2π t/ε) ) 2π εα−1
(2.7)
(
) ∫ t ( sin(2πτ /ε) ) sin(2πτ /ε) y + exp − dτ 2π εα−1 εα 0
and it can be deduced that ε1−2 α t ≤ const. ε1−α , uα,ε (t) − y + 4π
(2.8)
const. being independent of α, ε, t. Hence, for ε → 0, y if α < 12 , uα,ε (t) → y − t if α = 1 . 2 4π In other words, uα,ε tends to a solution of x˙ = 0 if α < 21 and ε → 0 while uα,ε tends to a solution of x˙ = − 1/(4 π) if α = 21 and ε → 0. If α = 0 then (cf. (2.8)) ∥u1,ε (t) − y∥ ≤ const. ε . 2.1. Remark. In [Lojasiewicz (1955)] the author treated an equation the particular case of which is (2.1) and obtained the corresponding convergence results. J. Jarn´ık approached an analogous problem by means of the Kurzweil-Henstock integral and related ideas, see [Jarn´ık (1965)]. A different method was used in [Mitropolskij (1971)].
November 18, 2011
16:26
World Scientific Book - 9in x 6in
jk
Chapter 3
Elementary methods: averaging
The aim of this chapter is to estimate the difference of the solutions uε of x˙ = f (x) + h(x, t/ε)
(3.1)
and the solutions w of the “averaged” differential equation x˙ = f (x) ,
(3.2)
the main assumption being the existence of a bounded H such that ∂ H(x, t) = h(x, t) . ∂t
(3.3)
Moreover, it is assumed that there exist µ, ν ∈ R+ such that f and its differential Df are bounded by µ
(3.4)
h, H and some of their derivatives are bounded by ν .
(3.5)
and
Let [a, b ] ⊂ R. It will be proved in this chapter that there exist κ1 , κ2 ∈ R, depending only on µ and b − a, such that the inequality ∥uε (t) − w(t)∥ ≤ ε (ν κ1 + ν 2 κ2 ),
t ∈ [a, b ]
(3.6)
holds for the solution uε of (3.1) and the solution w of (3.2) such that uε (a) = w(a). (3.6) is valid if ν is large provided ε > 0 is sufficiently small (cf. (3.7). Let 0 ≤ α < 21 and let uα,ε be a solution of x˙ = f (x) + ε−α h(x, t/ε) 11
(3.7)
November 18, 2011
16:26
World Scientific Book - 9in x 6in
jk
Generalized Ordinary Differential Equations
12
where f fulfils (3.4) and h, H fulfil (3.5). Then ε−α h, ε−α H
}
and some of their derivatives are bounded by ε−α ν .
(3.8)
(3.6) implies that ∥uα,ε (t) − w(t)∥ ≤ ε1−α ν κ2 + ε1−2α ν 2 κ3 ,
t ∈ [a, b ]
(3.9)
if uα,ε (a) = w(a). 3.1. Notation. Let R denote the set of reals, R+ the set of positive reals, R+ 0 the set of nonnegative reals, N the set of positive integers, N0 the set of nonnegative integers. Let R, µ, ν, ε ∈ R+ , n ∈ N .
(3.10)
Let [a, b ] denote the segment in R with endpoints a, b for a, b ∈ R, a < b. The vector space Rn is supposed to be equipped with a norm, ∥x∥ denoting the norm of x for x ∈ Rn . If r ≥ 0 then B(r) = {x ∈ Rn ; ∥x∥ ≤ r} (i.e. B(r) is the ball in Rn with center at 0 and radius r). If h : B(r) → Rn then D h(x) is the differential of h at x. Analogously, if h : B(r) × [a, b ] → Rn then D1 h(x, t) is the differential of h with respect to x at (x, t) and D2 h(x, t) is the differential of h with respect to t at (x, t). D2 h(x) is the differential of the second order of h at x. Let f : B(R) → Rn ,
h : B(R) × R → Rn ,
H : B(R) × R → Rn .
(3.11)
Assume that f, D f are continuous ,
(3.12)
∥f (x)∥ ≤ µ, ∥D f (x)∥ ≤ µ for x ∈ B(R) ,
(3.13)
h, D1 h, D1 H, D2 H are continuous ,
(3.14)
D2 H(x, t) = h(x, t) for x ∈ B(R), t ∈ R
(3.15)
October 31, 2011
17:19
World Scientific Book - 9in x 6in
jk
Elementary methods: averaging
13
and ∥h(x, t)∥, ∥D1 h(x, t)∥, ∥H(x, t)∥, ∥D1 H(x, t)∥ ≤ ν
}
for x ∈ B(R), t ∈ R .
(3.16)
3.2. Remark. Conditions (3.13)–(3.16) may be fulfilled if h(x, t) =
k ∑
hi (x) λi (t)
(3.17)
i=1
where hi : B(R) → Rn , λi : R → R are continuous, if there exist ωi ∈ R+ ∫ ωi such that λi (t + ωi ) = λi (t) for t ∈ R and λi (t) dt = 0, i = 1, 2, . . . , k, since the primitive Λi of λi is bounded and H(x, t) =
k ∑
0
hi (x) Λi (t) .
i=1
3.3. Theorem. Assume that y ∈ B(R), that uε : [a, b ] → B(R) is a solution of (3.1), u(a) = y and that w : [a, b ] → B(R) is a solution of (3.2), w(a) = y. Then } ∥uε (t) − w(t)∥ (3.18) ≤ ε [(2 + µ)(b − a) eµ (b − a) ν + (b − a) eµ (b − a) ν 2 ] . Proof.
Observe that (cf. (3.15)) ε
d H(uε (t), t/ε) = ε D1 H(uε (t), t/ε) u˙ ε (t) + h(uε (t), t/ε) . dt
Hence after substituting for u˙ ε (t) we obtain ∫
t
h(uε (s), s/ε) ds = ε A (t) a
where A (t) = D1 H(uε (t), t/ε) − D1 H(y, a/ε) ∫ t [ ] − D1 H(uε (s), s/ε) f (uε (s)) + h(uε (s), s/ε) ds . a
October 31, 2011
17:19
14
World Scientific Book - 9in x 6in
jk
Generalized Ordinary Differential Equations
Moreover, ∫
∫
t
uε (t) = y +
t
f (uε (s)) ds + ∫
a
∫
a
h(uε (s), s/ε) ds a
t
f (uε (s)) ds + ε A (t) ,
= y+ t
w(t) = y +
f (w(s)) ds . a
Hence
∫
t
uε (t) − w(t) =
[ ] f (uε (s)) − f (w(s)) ds + ε A (t) .
a
(3.13) and (3.16) imply that ∥f (uε (s)) − f (w(s))∥ ≤ µ ∥uε (s) − w(s)∥ , ∥A (t)∥ ≤ 2 ν + (b − a) ν (µ + ν) and
∫
t
∥uε (t) − w(t)∥ ≤
µ ∥uε (s) − w(s)∥ ds a
+ ε [(2 + (b − a) µ) ν + (b − a) ν 2 ] . Therefore (3.18) is correct by Lemma A.1. Moreover, (3.6) holds with κ1 = (2 + µ) (b − a) e µ(b − a) ,
κ2 = (b − a) e µ (b − a) .
3.4. Remark. Let 0 < r < R, y ∈ B(r), [ ] ε (2 + µ) (b − a) ν + (b − a) ν 2 e µ (b − a) ≤ R − r .
(3.19)
Let there exist a solution w : [a, b ] → B(r) of (3.2), w(a) = y. By classical results on ordinary differential equations uε exists on an interval [a, c], a < c ≤ b and can be continued to [a, b ] (cf. (3.18)) and (3.19)).
October 31, 2011
17:19
World Scientific Book - 9in x 6in
jk
Chapter 4
Elementary methods: internal resonance
The solution w of (3.2) can be viewed as an approximation of the solutions uε of (3.1). A more precise approximation w eε is constructed in this chapter but fairly stronger conditions are imposed on the right-hand side of (3.1). 4.1. Notation. Let n, k ∈ N; ε, R, µ, ν ∈ R+ . Let f : B(R) → Rn , hi : B(R) → Rn , λi : R → R for i = 1, 2, . . . , k. Assume that f and hi are differentiable, ∥f (x)∥ ≤ µ,
}
∥Df (x)∥ ≤ µ ,
(4.1)
∥D f (x) − D f (¯ x)∥ ≤ µ ∥x − x ¯∥ for x, x ¯ ∈ B(R) , ∥hi (x)∥ ≤ ν k −1 ,
∥D hi (x)∥ ≤ ν k −1 ,
∥D hi (x) − D hi (¯ x)∥ ≤ ν k −1 ∥x − x ¯∥ for x, x ¯ ∈ B(R), λi
is continuous ,
∫
i = 1, 2, . . . , k ,
t+1
|λi (t)| ≤ 1, λi (t+1) = λi (t) ,
λi (s) ds = 0 , t
for i = 1, 2, . . . , k .
(4.2)
(4.3)
By Lemma A.2 there exists Λi : R → R such that d Λi (t) = λi (t), Λi (t + 1) = Λi (t) , dt ∫ t+1 Λi (t) d τ = 0, |Λi (t)| ≤ 12 t
15
(4.4)
November 18, 2011
16:26
World Scientific Book - 9in x 6in
jk
Generalized Ordinary Differential Equations
16
for t ∈ R, i = 1, 2, . . . , k. Put ∫ 1 ξi,j = Λi (τ ) λj (τ ) dτ,
i, j = 1, 2, . . . , k .
(4.5)
0
Observe that |ξi,j | ≤
1 2
(4.6)
and that d Λi (t) λj (t) + Λj (t) λi (t) = (Λi (t) Λj (t)) , dt ∫ 1 (Λi (τ ) λj (τ ) + Λj (τ ) λi (τ )) dτ 0
= Λi (1) Λj (1) − Λi (0) Λj (0) = 0 . Hence ξi,j + ξj,i = 0,
i, j = 1, 2, . . . , k .
(4.7)
If p, q : B(R) → R and if D p (x), D q(x) exist for x ∈ B(R) then D p ◦ q(x) is the composition of the maps D p and q, ( ) D p ◦ q(x) = D p (x) q(x) (4.8) n
and [p, q](x) denotes the Lie bracket of the vector fields p, q, i.e. } [ p, q](x) = D p ◦ q(x) − Dq ◦ p (x) = D p (x) q(x) − D q(x) p (x),
x ∈ B(R) .
(4.9)
Let y ∈ B(R), [a, b ] ⊂ R, ε, ν ∈ R+ . Assume that 0 < ε ≤ 1,
(4.10)
that uε : [a, b ] → B(R) is a solution of x˙ = f (x) +
k ∑
hi (x) λi (t/ε),
uε (a) = y
(4.11)
i=1
and wε : [a, b ] → B(R − 14 ε ν) is a solution of ∑ x˙ = f (x) − ε [hi , hj ](x) ξi,j , i>j
wε (a) = y − ε
∑ i
hi (y) Λi (a/ε) .
(4.12)
November 18, 2011
16:26
World Scientific Book - 9in x 6in
Elementary methods : internal resonance
Put w eε (t) = wε (t) + ε
∑
hi (wε (t)) Λi (t/ε),
jk
17
t ∈ [a, b ] .
(4.13)
i
Assume that w eε (t) ∈ B(R) for t ∈ [a, b ] . Observe (cf. (4.2), (4.4)) that ∥w eε (t) − wε (t)∥ ≤ ε 14 ν,
(4.14)
t ∈ [a, b ]
(4.15)
which implies that w eε (t) ∈ B(R) for t ∈ [a, b ]. Finally, assume that ε ν2 ≤ 1 .
(4.16)
The goal of this Chapter is to obtain an estimate for ∥uε (t) − w eε (t)∥,
t ∈ [a, b ] .
The crucial step is the inequality ∫ t ∥uε (t) − w eε (t)∥ ≤ C + B ∥uε (s) − w eε (s)∥ ds,
t ∈ [a, b ] ,
(4.17)
a
where C, B are positive functions of µ, ν, ε, t. (4.17) implies that ∫ ( t ) ∥uε (t) − w eε (t)∥ ≤ exp B(s) ds max{C(τ ) ; τ ∈ [a, t]} a
for t ∈ [a, b ] (cf. Lemma A.1). Assumption (4.16) is introduced in order to ∫ t keep B(s) ds bounded. It will also make many formulas simpler. a
4.2. Lemma. Let [σ, s] ⊂ [a, b ]. Then ∥wε (s) − wε (σ)∥ ≤ (µ + ε ν 2 ) (s − σ) . Proof. since
(4.18)
(4.18) is a consequence of (4.12), (4.1), (4.2), (4.6), (4.7), (4.16) ∑
[hi , hj ](x) ξi,j =
i>j
and ε
∑ i,j
∑
D hi ◦ hj (x) ξi,j
i,j
∥D hi ◦ hj (x)∥ |ξi,j | ≤ ε ν 2 ≤ 1 .
October 31, 2011
17:19
World Scientific Book - 9in x 6in
jk
Generalized Ordinary Differential Equations
18
4.3. Lemma. Let ρ ∈ R+ , [σ, σ + ε] ⊂ [a, b ] and let p : B(R)→Rn fulfil ∥p (x)∥ ≤ ρ, ∥p (x) − p (¯ x)∥ ≤ ρ∥x − x ¯∥
for x, x ¯ ∈ B(R) .
(4.19)
for t ∈ R .
(4.20)
Let Ξ : R → R be continuous and fulfil ∫ |Ξ(t)| ≤ 1, Ξ(t + 1) = Ξ(t),
t+1
Ξ(s) ds = 0 t
Then
∫
σ+ε
p (wε (s)) Ξ(s/ε) ds ≤ ε2 ρ (µ + 1) .
(4.21)
σ
Proof.
∫
σ+ε
p (wε (s)) Ξ(s/ε) ds = J (σ) + K(σ) , σ
where ∫
σ+ε
J (σ) =
[p (wε (s)) − p (wε (σ))] Ξ(s/ε) ds , σ
∫
σ+ε
K(σ) =
p (wε (σ)) Ξ(s/ε) ds . σ
By (4.16), (4.18) ∫
σ+ε
∥J (σ)∥ ≤
ρ (µ + 1) (s − σ) ds ≤ ρ (µ + 1) ε2 σ
and by (4.21) K(σ) = 0, i.e. (4.20) holds.
4.4. Lemma. Let p fulfil (4.19) and let Ξ fulfil (4.20). Then
∫
t
p (wε (s)) Ξ(s/ε) ds ≤ ε ρ [(µ + 1) (b − a) + 1]
a
Proof.
for a < t ≤ b .
(4.22)
Let a < t ≤ b and let m ∈ N0 and σℓ ∈ R be defined by
m ε < t − a ≤ (m + 1) ε,
σℓ = a + ℓ ε for ℓ = 0, 1, . . . , m .
(4.23)
October 31, 2011
17:19
World Scientific Book - 9in x 6in
jk
Elementary methods : internal resonance
19
Then ∫
t
p (wε (s)) Ξ(s/ε)ds a
=
m−1 ∑∫ σℓ +ε
∫ t p (wε (s)) Ξ(s/ε)ds+ p (wε (s)) Ξ(s/ε)ds .
ℓ=0 σℓ
By (4.21)
∫
σm
σℓ +ε
p (wε (s)) Ξ(s/ε) ds ≤ ε2 ρ (µ + 1) .
σℓ
Moreover (cf. (4.19), (4.20), (4.23)),
∫
t
p (wε (s) Ξ(s/ε) ds ≤ ε ρ
and m ≤
σm
b−a . ε
Therefore (4.22) is correct. 4.5. Lemma. Let p : B(R) → Rn be differentiable and fulfil ∥p (x)∥ ≤ ρ, ∥Dp (x)∥ ≤ ρ, ∥Dp (x) − Dp (¯ x)∥ ≤ ρ
} (4.24)
for x, x ¯ ∈ B(R) . Then
∫ t
[p (w eε (s)) − p (wε (s))]
a
≤ ε ρ [(b − a + 1) ν + (b − a) µ ν + (b − a) ν ] . 2
Proof.
2
Let a < t ≤ b. Then ∫
t
[p (w eε (s) − p (wε (s)))] ds = L + N a
where ∫
t
L=
[p (w eε (s) − p (wε (s)) − Dp (wε (s))(w eε (s) − wε (s))] ds , a
∫ N =
t
Dp (wε (s)) (w eε (s) − wε (s)) ds . a
(4.25)
November 18, 2011
16:26
World Scientific Book - 9in x 6in
jk
Generalized Ordinary Differential Equations
20
By (4.14), (4.15) p (w eε (s)) − p (wε (s)) ∫ 1 ( ) ) = Dp wε (s) + λ (w eε (s) − wε (s)) (w eε (s) − wε (s) dλ 0
and p (w eε (s)) − p (wε (s)) − Dp (wε (s))) (w eε (s) − wε (s)) ∫ 1 [ ( ] Dp wε (s)+λ[w eε (s)−wε (s)])−Dp (wε (s) (w eε (s)−wε (s)) dλ . = 0
Hence ∥p (w eε (s)) − p (wε (s)) − Dp (wε (s)) (w eε (s) − wε (s))∥ ≤ ρ (ε ν)2 since (cf. (4.15)) ∥w eε (s) − wε (s)∥ ≤ εν and ∥L∥ ≤ ρ (b − a)(ε ν)2 .
(4.26)
By (4.13) N =
∫ k ∑ ε i=1
t
D p (wε (s)) hi (wε (s)) Λi (s/ε) ds .
(4.27)
a
The integrals in (4.27) can be estimated similarly as in Lemma 4.4 since (cf. (4.2), (4.4)) ∥D p (x) hi (x)∥ ≤ ρ ν k −1 , ∥D p (x)hi (x) − D p (¯ x) hi (¯ x)∥ ≤ 2 ρ ν k −1 ∥x − x ¯∥
for x, x ¯ ∈ B(R) ,
and |Λi (t)| ≤
1 2
for t ∈ R .
Hence (cf. (4.4)) ∥N ∥ ≤ k ε · ε 2 ρ ν k −1 [(µ + 1) (b − a) + 1] 12 ≤ ε2 ρ [(µ + 1) (b − a) + 1] ν . (4.25) is a consequence of (4.26) and (4.28).
} (4.28)
4.6. Theorem. There are functions βj : (R+ )2 → R+ , j = 1, 2, 3 such that } ∥uε (t) − w eε (t)∥ (4.29) ≤ ε2 [β1 (b − a, µ) ν + β2 (b − a, µ) ν 2 + β3 (b − a, µ) ν 3 ]
November 18, 2011
16:26
World Scientific Book - 9in x 6in
jk
Elementary methods : internal resonance
21
for t ∈ [a, b ]. Proof.
By (4.11) ∫
uε (t) = y + ∫
f (uε (s)) ds + a
k ∫ ∑ i=1
t
hi (uε (s)) λi (s/ε) ds , a
t
hi (uε (s)) λi (s/ε) ds = ε hi (uε (t))Λi (t/ε) − ε hi (y)Λi (a/ε) ∫ t − ε D hi (uε (s))u˙ ε (s)Λi (s/ε)ds ,
a
∫
t
a
∫
t
t
Dhi (uε (s)) u˙ ε (s) Λi (s/ε) ds = Dhi (uε (s)) f (uε (s)) Λi (s/ε) ds a ∫ ∑ t + D hi (uε (s)) hj (uε (s)) Λi (s/ε) λj (s/ε) ds .
a
a
j
Hence
∑ ∑ hi (uε (t))Λi (t/ε) + y − ε hi (y) Λi (a/ε) uε (t) = ε i ∫ t i ∫ t ∑ + f (uε (s))ds − ε D hi ◦ f (uε (s)) Λi (s/ε) ds a a i ∑∫ t −ε D hi ◦ hj (uε (s)) Λi (s/ε) λj (s/ε) ds .
(4.30)
a
i,j
By (4.12) wε (t) = y − ε
∑
∫ hi (y) Λi (a/ε) +
i,j
f (wε (s)) ds a
∑∫ i
−ε
t
t
D hi ◦ hj (wε (s)) ξi,j ds a
since (cf. (4.9), (4.7)) ∑ ∑ [hi , hj ](x) ξi,j = D hi ◦ hj (x) ξi,j , i>j
x ∈ B(R).
i,j
Subtracting (4.31) from (4.30) we obtain uε (t) − wε (t) ∫ ∑ =ε hi (uε (t)) Λi (t/ε) + i
t a
[ ] f (uε (s)) − f (wε (s)) ds
(4.31)
November 18, 2011
16:26
World Scientific Book - 9in x 6in
jk
Generalized Ordinary Differential Equations
22
−ε −ε +ε
∑∫
t
∑∫
t
i
a
i,j
a
∑∫ i,j
D hi ◦ f (uε (s)) Λi (s/ε) ds D hi ◦ hj (uε (s)) Λi (s/ε) λj (s/ε) ds t
D hi ◦ hj (wε (s)) ξi,j ds ,
a
which can be transformed (cf. also (4.13)) to ∫ t [ ] uε (t) − w eε (t) = f (uε (s)) − f (w eε (s)) ds a
∫
[
t
+
] f (w eε (s)) − f (wε (s)) ds
a
−ε
∑ ∫ t[ ] D hi ◦ f (uε (s)) − D hi ◦ f (w eε (s)) Λi (s/ε) ds a
i
−ε
∑∫ ∫
t[
] D hi ◦ f (w eε (s)) − D hi ◦ f (wε (s)) Λi (s/ε) ds
a
i
−ε D hi ◦ f (wε (s)) Λi (s/ε) ds a ∫ ∑ t[ ] −ε D hi ◦ hj (uε (s)) − D hi ◦ hj (w eε (s)) Λi (s/ε) λj (s/ε) ds i,j a ∫ ∑ t[ ] −ε D hi ◦ hj (w eε (s)) − D hi ◦ hj (wε (s)) Λi (s/ε) λj (s/ε) ds i,j a ∫ t ∑ [ ] −ε D hi ◦ hj (wε (s)) Λi (s/ε) λj (s/ε) − ξi,j ds . a t
(4.32)
i,j
Now the terms on the right-hand side of (4.32) will be estimated. By (4.1) ∫ t
∫ t [ ]
f (uε (s)) − f (w eε )) ds ≤ µ ∥uε (s) − w eε (s)∥ ds . (4.33)
a
0
By Lemma 4.5 with p = f, ρ = µ
∫ t[ ]
f (w eε (s) − f (wε (s))) ds
a
[ ] ≤ ε2 ((b − a + 1) µ + (b − a) µ2 ) ν + (b − a) µ ν 2 .
(4.34)
November 18, 2011
16:26
World Scientific Book - 9in x 6in
jk
Elementary methods : internal resonance
Now, (4.1), (4.2), (4.4) and (4.10) imply that
∑∫ t[ ]
D hi ◦ f (uε (s)) − D hi ◦ f (w eε (s)) Λi (s/ε) ds
ε a
i
∫
t
≤ ε2µν
∥uε (s) − w eε (s)∥ 21 ds
0
∫
t
≤µ
23
∥uε (s) − w eε (s)∥ ds
(4.35)
0
since ε ν ≤ 1 by (4.16) and (4.10). Similarly (cf. (4.15), (4.16))
∑∫ t[
]
Dhi ◦ f (w eε (s)) − Dhi ◦ f (wε (s)) Λi (s/ε) ds
ε a
i
∫
t
≤ ε2µν a
∥w eε (s) − wε (s)∥ 12 ds
(4.36)
≤ ε (b − a) µ ν 2 . ∑ Lemma 4.4 with p = i D hi ◦ f, ρ = 2 µ ν, Ξ = Λi gives (cf. (4.4))
∑∫ t
D hi ◦ f (wε (s)) Λi (s/ε) ds
ε a i 1 2 (4.37) ≤ ε 2 µ ν [(µ + 1) (b − a) + 1] 2 2 2 ≤ ε [(b − a + 1) µ ν + (b − a) µ ν] . 2
Further, (cf. (4.1), (4.2), (4.3), (4.4), (4.10), (4.16))
∑∫ t[
]
D hi ◦ hj (uε (s)) − D hi ◦ hj (w eε (s)) Λi (s/ε) λj (s/ε) ds
ε i,j
a
∫
∫
t
≤ εν 2
∥uε (s) − w eε (s)∥ ds ≤
2
a
t
∥uε (s) − w eε (s)∥ ds .
(4.38)
a
Similarly
∫ t∑[
]
D hi ◦ hj ( w eε (t)) − D hi ◦ hj (wε (t)) Λi (s/ε) λj (s/ε) ds
ε a i,j
εν ≤ ε2 (b − a) ν 3 . ≤ ε (b − a) 2 ν 2 2
Finally, by Lemma 4.4 with p = D hi ◦ hj ,
ρ = 2 ν 2 k −2 ,
Ξ = Λi λj − ξi,j ,
(4.39)
November 18, 2011
16:26
World Scientific Book - 9in x 6in
jk
Generalized Ordinary Differential Equations
24
we get
∑∫
ε i,j
t
[ ]
D hi ◦ hj (wε (s)) Λi (s/ε) λj (s/ε) − ξi,j ds
a
≤ ε2 2 ν 2 [(µ + 1) (b − a) + 1] 12
≤ ε2 [(b − a + 1) + (b − a) µ] ν 2
(4.40)
since |ξi,j | ≤ 12 , ∫ t+1 |Ξ(t)| ≤ 1, Ξ(t + 1) = Ξ(t), Ξ(s) ds = 0
|λj (t)| ≤ 1,
|Λi (t)| ≤ 12 ,
for t ∈ R
t
and by Lemma A.2 there exists a primitive Θ of Ξ such that Θ(t + 1) = Θ(t) and |Θ(t)| ≤ 14 for t ∈ R. Relations (4.32)–(4.40) imply that ∫ ∥uε (t) − w eε (t)∥ ≤ B
t
∥uε (s) − w eε (s)∥ ds + C ,
(4.41)
a
where B = 2 µ + 1 (cf. (4.33), (4.35), (4.38)). Moreover, C = ε2 [γ1 (b − a, µ) ν + γ2 (b − a, µ) ν 2 + γ3 (b − a, µ)ν 3 ] , where (cf. (4.34), (4.37)) γ1 (b − a, µ) = 2 (b − a + 1) µ + (b − a)}, µ2 and (cf. (4.34), (4.36), (4.40)) γ2 (b − a, µ) = b − a + 1 + 4 (b − a) µ and (cf. (4.39)) γ3 = b − a . By Lemma A.2, (4.29) is true with ( ) βj (b − a, µ) = γj (b − a, µ) exp (2 µ + 1) (b − a) ,
j = 1, 2, 3 .
October 31, 2011
17:19
World Scientific Book - 9in x 6in
Elementary methods : internal resonance
jk
25
4.7. Remark. The only bound on ν in Theorem 4.6 is ε ν 2 ≤ 1 (cf. (4.16)). ¯ i : B(R) → Rn be differentiable and Let 0 ≤ α ≤ 21 , ν¯ ∈ R+ , y ∈ B(R), let h fulfil ¯ ¯ ¯ ¯ x)∥ ≤ ν¯ ∥x − x ∥h(x)∥ ≤ ν¯, ∥D h(x)∥ ≤ ν¯, ∥D h(x) − D h(¯ ¯∥ , for x, x ¯ ∈ B(R). Theorem 4.6 can be applied to the equation ∑ ¯ x˙ = f (x) + ε−α h(x) λi (t/ε) .
(4.42)
i
Let uε : [a, b ] → B(R) be a solution of (4.42), uε (a) = y, let wε : [a, b ] → B(R) be a solution of ∑ ¯ i, h ¯ j ](x) , x˙ = f (x) + ε1−2α [h wε (a) = y − ε
1−α
∑
i>j
hi (y) Λi (a/ε) ,
i
and w eε (t) = wε (t) + ε1−α
∑
hi (wε (t)) Λi (t/ε),
t ∈ [a, b ] .
i
Theorem 4.6 implies that ∥uε (t) − w eε (t)∥ ≤ ε2 [β1 (b − a, µ) ε−α ν¯ + β2 (b − a, µ) ε−2 α ν¯2 + β3 (b − a, µ) ε−3 α ν¯3 ]
for t ∈ [a, b ]
and uε (t) − w eε (t) → 0 uniformly on [a, b ] if α < 23 . 4.8 . Remark. Consider equation (4.11). Let uε , wε , w eε have the same meaning as in Notation 4.1. Assume in addition to (4.1)–(4.3) that a = 0,
Λi (a) = 0,
ξi,j = 0 for i, j = 1, 2, . . . , k .
(4.43)
Then wε is a solution of x˙ = f (x),
wε (a) = y.
Hence it is independent of ε and we may write w instead of wε , ∑ w eε (t) = w(t) + ε hi (w(t)) Λi (t/ε) i
(4.44)
November 18, 2011
16:26
World Scientific Book - 9in x 6in
jk
Generalized Ordinary Differential Equations
26
and by Theorem 4.6 (cf. (4.1), (4.2), (4.16)) ∑ ∥uε (t) − w(t) − ε hi (w(t)) Λi (t/ε)∥
i
≤ ε2 [β1 (b − a, µ) ν + β2 (b − a, µ) ν 2 + β3 (b − a, µ) ν 3 ]
(4.45)
for ε ≤ ν −2 . Equation (2.2) which describes the motion of Kapitza’s pendulum can be written in the form x˙ = f (x) + h1 (x) cos(4 π t/ε) + h2 (x) cos(2 π t/ε) where x=
( ) Θ Φ
( ,
f (x) =
,
)
0
L−1 A (2 π/ε) sin Θ
−L−1 A (2 π/ε) Φ cos Θ
,
) ,
λ1 (t) = cos 4π t,
Λ1 (t) =
sin 4 π t , 4π
λ2 (t) = cos 2π t,
Λ2 (t) =
sin 2 π t , 2π
ξi,j = 0
ω = 2 π/ε ,
− 21 (L−1 A 2 π/ε)2 sin Θ cos Θ (
h2 (x) =
)
g L−1 sin Θ
( h1 (x) =
Φ
(4.46)
for i, j = 1, 2 .
There exist R, µ, ν ∈ R+ such that (4.1) and (4.2) hold. The estimate (4.45) is valid in the case of equation (4.46).
October 31, 2011
17:19
World Scientific Book - 9in x 6in
jk
Chapter 5
Strong Riemann integration of functions of a pair of coupled variables
5.1. Notation. X is a Banach space, ∥x∥ Dom U ⊂ R2 , U : Dom U → X.
being the norm of
x ∈ X,
Given σ ∈ R we denote by U (σ, ·) the X-valued function which is defined for all τ ∈ R such that (σ, τ ) ∈ Dom U with the value U (σ, τ ) for such τ. Similarly for U (·, t) for a given t ∈ R. If a, b ∈ R, a ≤ b, we put [a, b ] = {t ∈ R ; a ≤ t ≤ b}. If v : [a, b ] → X, then ∫
b
(R)
v(t) dt a
denotes the classical Riemann integral. 5.2. Definition. U is SR-integrable (Strongly Riemann integrable) on [a, b ] and u is an SR-primitive of U on [a, b ] if there exists ξ0 ∈ R+ such that (τ, t) ∈ Dom U for τ, t ∈ [a, b ],
τ − ξ0 ≤ t ≤ τ + ξ0 ,
for every ε > 0 there exists ξ > 0 k ∑
such that
∥u(ti ) − u(ti−1 ) − U (τi , ti ) + U (τi , ti−1 )∥ ≤ ε
i=1
for every set A = (t0 , τ1 , t1 , τ2 , t2 , . . ., τk , tk ) fulfilling a = t0 ≤ τ1 ≤ t1 ≤ τ2 ≤ . . . ≤ τk ≤ tk = b , ti − ti−1 ≤ ξ,
i = 1, 2, . . . , k .
(5.1)
(5.2)
Briefly, U is called SR-integrable and u is called a primitive of U, (τ, t) is called a pair of coupled variables. 27
October 31, 2011
17:19
World Scientific Book - 9in x 6in
jk
Generalized Ordinary Differential Equations
28
5.3. Lemma. Assume that U is SR-integrable on [a, b ], u is its primitive, ε > 0. Let ξ > 0 correspond to ε by Definition 5.2, [S, T ] ⊂ [a, b ]. Then m ∑ ∥u(si ) − u(si−1 ) − U (σi , si ) + U (σi , si−1 )∥ ≤ ε (5.3) i=1
for every sequence A = (s0 , σ1 , s1 , . . . , σm , sm ) fulfilling S = s0 ≤ σ1 ≤ s1 ≤ · · · ≤ σm ≤ sm = T , si − si−1 ≤ ξ Proof.
}
for i = 1, 2, . . . , m .
(5.4)
Let the sequence A fulfil (5.4). There exists a sequence B = (r0 , ρ1 , r1 , . . . , ρn , rn )
such that a = r0 ≤ ρ1 ≤ r1 ≤ · · · ≤ ρn ≤ rn = S , ri − ri−1 ≤ ξ for i = 1, 2, . . . , r and a sequence C = (ℓ0 , λ1 , ℓ1 , . . . , λp , ℓp ) such that T ≤ ℓ0 ≤ λ1 ≤ ℓ − 1 ≤ . . . λp ≤ ℓp = b , ℓi − ℓi−1 ≤ ξ
for i = 1, 2, . . . , p .
Put ti = ri
for i = 0, 1, . . . , n ,
τi = ρi
for i = 1, 2, . . . , n ,
ti = si−n ,
τi = σi−n
ti = ℓi−n−m ,
τi = λi−n−m
for i = n + 1, n + 2, . . . , n + m , for i = n + m + 1, n + m + 2, . . . , k ,
where k = n + m + p. Then a = t0 ≤ τ1 ≤ t1 ≤ τ2 ≤ · · · ≤ τk ≤ tk = b , ti − ti−1 ≤ ξ, i = 1, 2, . . . , k . Therefore by (5.2) m ∑
∥u(sj ) − µ(sj−1 ) − U (σj , sj ) + U (σj , sj−1 )∥
j=1
≤
k ∑
∥u(ti ) − u(ti−1 ) − U (τi , ti ) + U (τi , ti−1 )∥ ≤ ε
i=1
and (5.3) is correct.
October 31, 2011
17:19
World Scientific Book - 9in x 6in
jk
SR-integration of functions of a pair of coupled variables
29
5.4 . Corollary. Let U be SR-integrable on [a, b ], u being its primitive, [S, T ] ⊂ [a, b ]. Then U is SR-integrable on [S, T ] and u is its primitive. 5.5. Lemma. Let U be SR-integrable and let u be a primitive of U on [a, b ]. (i) If y ∈ X and v(t) = u(t) + y for t ∈ [a, b ] then v is a primitive of U on [a, b ], (ii) if v is another primitive of U on [a, b ] then u(T ) − v(T ) = u(a) − v(a)
for T ∈ [a, b ] .
Proof. (i) is a direct consequence of Definition 5.2. In order to prove (ii) assume that v is a primitive of U on [a, b ] and that a < T ≤ b. By Corollary 5.4 U is SR-integrable on [a, T ], u and v being its primitives. Therefore there exists a sequence A = (t0 , τ1 , t1 , . . . , τk , tk ) such that a = t0 ≤ τ1 ≤ t1 ≤ · · · ≤ τk ≤ tk = T , k ∑ ∥u(ti ) − u(ti−1 ) − U (τi , ti ) + U (τi , ti−1 )∥ ≤ ε , i=1 k ∑
∥v(ti ) − v(ti−1 ) − U (τi , ti ) + U (τi , ti+1 )∥ ≤ ε .
i=1
Hence k ∑
∥u(ti ) − u(ti−1 ) − v(ti ) + v(ti−1 )∥ ≤ 2 ε .
(5.5)
i=1
Moreover, u(T ) − u(a) − v(T ) + v(a) =
k ∑ (
) u(ti ) − u(ti−1 ) − v(ti ) + v(ti−1 ) ,
i=1
which together with (5.5) implies that ∥u(T ) − v(T ) − u(a) + v(a)∥ ≤ 2 ε and (ii) is true since ε > 0 is arbitrary.
5.6. Definition. Let U be SR-integrable and let u be its primitive on [a, b ]. For a ≤ S ≤ T ≤ b put ∫ T (SR) Dt U (τ, t) = u(T ) − u(S) . (5.6) S
The left-hand side of (5.6) is called the SR-integral of U over [S, T ].
November 18, 2011
16:26
World Scientific Book - 9in x 6in
jk
Generalized Ordinary Differential Equations
30
Furthermore, ∫ S ∫ (SR) Dt U (τ, t) = −(SR) T
T
Dt U (τ, t),
for S < T
(5.7)
S
and
∫
S
(SR)
Dt U (τ, t) = 0 .
(5.8)
S
Observe that the left-hand side of (5.6) is uniquely defined since the right hand side of (5.6) does not depend on the choice of the primitive by Lemma 5.5. 5.7. Remark. Let R, S, T ∈ [a, b ]. The preceding definition implies that ∫ T ∫ S ∫ T (SR) Dt U (τ, t) = (SR) Dt U (τ, t) + (SR) Dt U (τ, t) R
R
S
if U is SR-integrable on [a, b ] and u is its primitive. 5.8. Lemma. Let u : [a, b ] → X, a < c < b. Assume that U
is continuous at (c, c),
(5.9)
U
is SR −integrable on [a, c ] and u is its primitive,
(5.10)
U
is SR −integrable on [c, b ] and u is its primitive.
(5.11)
Then U is SR-integrable on [a, b ] and u is its primitive. Proof. Let ε > 0. (5.7)–(5.9) imply that there exists ξ ∈ R such that 0 < ξ ≤ 12 (b − a), } ∥U (τ, t) − U (c, c)∥ ≤ ε (5.12) if |τ − c | ≤ ξ, |t − c | ≤ ξ, (τ, t) ∈ Dom U, k ∑
∥u(ti ) − u(ti−1 ) − U (τi , ti ) + U (τi , ti−1 )∥ ≤ ε
(5.13)
i=1
for any sequence (t0 , τ1 , t1 , . . . , tk ) fulfilling
and
a = t0 ≤ τ1 ≤ t1 ≤ . . . ≤ τk ≤ tk = c, |ti − ti−1 | ≤ ξ
for i = 1, 2, . . . , k
(5.14)
November 18, 2011
16:26
World Scientific Book - 9in x 6in
jk
SR-integration of functions of a pair of coupled variables ℓ ∑
31
∥u(si ) − u(si−1 ) − U (σi , si ) + U (σi , si−1 )∥ ≤ ε
(5.15)
i=1
for any sequence (s0 , σ1 , s1 , . . . , σℓ , sℓ ) fulfilling c = s0 ≤ σ1 ≤ s1 ≤ . . . ≤ σℓ ≤ sℓ = b, |si − si−1 | ≤ ξ
for i = 1, 2, . . . , ℓ .
(5.16)
Let the set {r0 , ρ1 , r1 , . . . , rm , ρm } fulfil a = r0 ≤ ρ1 ≤ r1 ≤ . . . ≤ ρm ≤ rm = b, |ri − ri−1 | ≤ ξ
for i = 1, 2, . . . , m .
(5.17)
there is
p such that 2 ≤ p ≤ m−2 and rp = c, rp+1 = c
(5.18)
there is
p≥1
(5.19)
Then m > 2 and either
or such that rp−1 < c < rp .
If (5.18) holds then (cf. (5.11), (5.12), (5.14), (5.16)) m ∑
∥u(ri ) − u(ri−1 ) − U (ρi , ri ) + U (ρi , ri−1 )∥
i=1
=
p ∑
∥u(ri ) − u(ri−1 ) − U (ρi , ri ) + U (ρi , ri−1 )∥
+ ∥u(rj ) − u(rj−1 ) − U (ρj , rj ) + U (ρj , rj−1 )∥ j=p+1 ≤ 2ε. i=1
(5.20)
m ∑
Let (5.19) take place. Then m ∑ i=1
∥u(ri ) − u(ri−1 ) − U (ρi , ri ) + U (ρi , ri−1 )∥ = K1 + K2 + K3
(5.21)
November 18, 2011
16:26
World Scientific Book - 9in x 6in
jk
Generalized Ordinary Differential Equations
32
where
K1 =
p−1 ∑
∥u(ri ) − u(ri−1 ) − U (ρi , ri ) + U (ρi , ri−1 )∥
i=1
+ ∥u(c) − u(rp−1 ) − U (c, c) + u(c, rp−1 )∥ + ∥u(rp ) − u(c) − U (c, rp ) + U (c, c)∥ +
m ∑
∥u(ri ) − u(ri−1 ) − U (ρi , ri ) + U (ρi , ri−1 )∥,
i=p+1
K2 = ∥u(rp ) − u(rp−1 ) − U (ρp , rp ) + u(ρp , rp−1 )∥ − ∥u(rp ) − u(rp−1 ) − U (c, rp ) + U (c, rp−1 )∥ , K3 = ∥u(rp ) − u(rp−1 ) − U (c, rp ) + U (c, rp−1 )∥ − ∥u(c) − u(rp−1 ) − U (c, c) + U (c, rp−1 )∥ − ∥u(rp ) − u(c) − U (c, rp ) + U (c, c)∥ . By Definition 5.2 K1 ≤ ε
(5.22)
since the sequence {t0 , τ1 , t1 , . . . , τp−1 , tp−1 , c, c, c, tp , τp+1 , . . . , τm , tm } fulfils (5.15). Further, ∥u(rp ) − u(rp−1 ) − U (ρp , rp ) + U (ρp , rp−1 )∥ ≤ ∥u(rp ) − u(rp−1 ) − U (c, rp ) + U (c, rp−1 )∥ + ∥U (ρp , rp ) − U (ρp , cp )∥ + ∥U (ρp , rp−1 ) − U (c, rp−1 )∥ and by (5.7) K2 ≤ 2 ε .
(5.23)
October 31, 2011
17:19
World Scientific Book - 9in x 6in
SR-integration of functions of a pair of coupled variables
jk
33
Finally, ∥u(rp ) − u(rp−1 ) − U (c, rp ) + U (c, rp−1 )∥ ≤ ∥u(rp ) − u(c) − U (c, rp ) + U (c, c)∥ + ∥u(c) − u(rp−1 ) − U (c, c) + U (c, rp−1 )∥ . Hence K3 ≤ 0 .
(5.24)
Putting (5.19)–(5.22) together we obtain that m ∑
∥u(ri ) − u(ri−1 ) − U (ρi , ri ) + U (ρi , ri−1 )∥ ≤ 3 ε .
(5.25)
i=1
(5.18) and (5.23) imply that U is SR-integrable on [a, b ] and u is its primitive. 5.9. Lemma. Let U be SR-integrable on [a, b ], u being its primitive. Let σ ∈ [a, b ]. Assume that U (σ, ·) : [σ − ξ0 , σ + ξ0 ] ∩ [a, b ] → X is continuous at σ. Then u is continuous at σ. Proof. Let ε > 0 and let ξ > 0 correspond to ε by Definition 5.2. Let a ≤ s¯ ≤ σ ≤ s ≤ c, s − s¯ ≤ ξ. There exists A = {t0 , τ1 , t1 , . . . , τk , tk } such that a = t0 ≤ τ1 ≤ t1 ≤ τ2 ≤ · · · ≤ τk ≤ tk = b, ti − ti−1 ≤ ξ
for i = 1, 2, . . . , k
is fulfilled and (¯ s, σ, s) = (ti−1 , τi , ti ) for some i = 1, 2, . . . , k. Then ∥u(s) − u(¯ s) − U (σ, s) + U (σ, s¯)∥ ≤ ε by (5.2).
5.10 . Remark. Let w : [a, b ] → X, U (τ, t) = w(τ ) t for τ, t ∈ [a, b ]. If U is ∫ b SR-integrable and if u is its primitive then (R) w(t) dt = u(b) − u(a), a ∫ b (R) w(t) dt denoting the Riemann integral of w over [a, b ]. This is a cona
sequence of Definition 5.2.
October 31, 2011
17:19
World Scientific Book - 9in x 6in
jk
Generalized Ordinary Differential Equations
34
∫ b On the other hand, if (R) w(t) dt exists, y ∈ X and if a
∫
t
u(t) = (R)
w(s) ds + y
for t ∈ [a, b ]
a
then for every ε > 0 there exists ξ > 0 such that k
∑
(u(ti ) − u(ti−1 )) − U (τ, ti ) + U (τ, ti−1 ) ≤ ε
(
i=1
) if A = t0 , τ1 , t1 , τ2 , t2 , . . ., τk , tk is a set fulfilling a = t0 ≤ τ1 ≤ t1 ≤ τ2 ≤ · · · ≤ τk ≤ tk = b and ti − ti−1 ≤ ξ,
i = 1, 2, . . . , k ,
but U need not be SR-integrable. ∫ b If dim X < ∞ and if (R) w(t) dt exists then U is SR-integrable and a
u is its primitive. This is proved in Chapter 18 for the SKH-integration and it can be proved for the SR-integration in the same way (see also [Schwabik, Ye (2005)], Corollary 3.4.3 and Remark). 5.11 . Remark. If v : [a, b ] → X is continuous then the Riemann integral ∫ b (R) v(s) ds exists. Furthermore, observe that a
∫
(R)
t t¯
v(s) ds − v(τ ) (t − t¯) ≤ ε (t − t¯)
if a ≤ t¯ ≤ τ ≤ t ≤ b and if ∥v(s) − v(τ )∥ ≤ ε for s ∈ [t¯, t]. 5.12. Lemma. Let v : [a, b ]→X be continuous, U (τ, t) = v(τ ) t, ∫ t w(t) = (R) v(s) ds for t ∈ [a, b ] . a
Then U is SR -integrable, w is its primitive , dw (t) = v(t) for t ∈ [a, b ] . dt
(5.26) (5.27)
October 31, 2011
17:19
World Scientific Book - 9in x 6in
SR-integration of functions of a pair of coupled variables
Proof.
jk
35
For every ε > 0 there exists ξ > 0 such that ∥w(T ) − w(S) − v(τ ) (T − S)∥ ≤ ε (T − S)
(5.28)
if a ≤ S ≤ τ ≤ T ≤ b, T − S ≤ ξ since ∫
T
w(T ) − w(S) − v(τ ) (T − S) = (R)
[v(t) − v(τ )] dt . S
Both (5.26) and (5.27) are consequences of (5.28).
This page intentionally left blank
November 18, 2011
16:42
World Scientific Book - 9in x 6in
jk
Chapter 6
Generalized ordinary differential equations: Strong Riemann-solutions (concepts) 6.1. Notation. B(r) = {x ∈ X ; ∥x∥ ≤ r} for r ≥ 0,
Dom G ⊂ X × R2 ,
G : Dom G → X, [a, b ] ⊂ R, u : [a, b ] → X, ξ0 > 0, (u(τ ), τ, t) ∈ Dom G for τ, t ∈ [a, b ],
τ − ξ0 ≤ t ≤ τ + ξ0 .
6.2. Definition. u is an SR-solution of the generalized differential equation (GODE) d x = Dt G(x, τ, t) dt
(6.1)
on [a, b ] if ∫
T
u(T ) − u(S) = (SR)
Dt G(u(τ ), τ, t)
for [S, T ] ⊂ [a, b ] .
(6.2)
S
Briefly, u is an SR-solution of (6.1). 6.3. Lemma. Let u : [a, b ] → X, P ∈ [a, b ]. Then u
is an SR −solution of (6.1) on [a, b ]
(6.3)
if and only if ∫
T
u(T ) = u(P ) + (SR)
Dt G(u(τ ), τ, t) P
37
for T ∈ [a, b ] .
(6.4)
October 31, 2011
17:19
World Scientific Book - 9in x 6in
jk
Generalized Ordinary Differential Equations
38
Proof.
Let (6.3) hold. Then ∫
T
Dt G(u(τ ), τ, T )
u(T ) = u(a) + (SR) ∫
for T ∈ [a, b ] ,
a P
u(P ) = u(a) + (SR)
Dt G(u(τ ), τ, T ) . a
Hence (cf. Remark 5.7) ∫
T
u(T ) = u(P ) + (SR)
Dt G(u(τ ), τ, t)
if P ≤ T ≤ b ,
P ∫ P
u(T ) = u(P ) − (SR)
Dt G(u(τ ), τ, t) if a ≤ T ≤ P , T
and (6.4) holds by (5.7). Let (6.4) hold. Then ∫
S
u(S) = u(P ) + (SR)
Dt G(u(τ ), τ, t)
for S ∈ [a, b ] .
P
By (5.7) and Remark 5.7 ∫
T
u(T ) − u(S) = (SR)
∫ S Dt G(u(τ ), τ, t) − (SR) Dt G(u(τ ), τ, t)
P
∫
P
∫
T
= (SR)
P
Dt G(u(τ ), τ, t) + (SR) P
∫
Dt G(u(τ ), τ, t) S
T
= (SR)
Dt G(u(τ ), τ, t) S
and (6.3) is correct.
6.4. Lemma. The two assertions below are equivalent: u and
is an SR-solution of (6.1),
(6.5)
October 31, 2011
17:19
World Scientific Book - 9in x 6in
jk
Generalized ordinary differential equations: SR-solutions (concepts)
for every ε > 0 there exists ξ > 0 such that ∑
∥u(ti ) − u(ti−1 ) − G(u(τ ), τ, ti ) + G(u(τ ), τ, ti−1 )∥ ≤ ε
A
(6.6)
Definition 5.2 implies that (6.2) and (6.6) are equivalent.
for every A = (t0 , τ1 , t1 , τ2 , t2 , . . ., τk , tk ) such that a = t0 ≤ τ1 ≤ t1 ≤ τ2 ≤ . . . ≤ τk ≤ tk = b , ti − ti−1 ≤ ξ Proof.
39
for i = 1, 2, . . . , k .
6.5 . Lemma. Let u be an SR-solution of (6.2) on [a, b ]. Assume that σ ∈ [a, b ] and that G(u(σ), σ, ·) is continuous at σ. Then u is continuous at σ. Proof.
This is a consequence of Definition 6.2 and Lemma 5.9.
6.6. Remark. Let u be an SR-solution of (6.1) on [a, b ]. By Definition 6.2 u is an SR-solution of (6.1) on any [c, d ] ⊂ [a, b ]. On the other hand, let a < c < b and let u be an SR-solution of (6.2) on [a, c] and on [c, b ]. Assume that G is continuous at (u(c), c, c). Then u is an SR-solution of (6.2) on [a, b ] by Lemma 5.8 since (i) u is continuous at c by Lemma 6.5 , (ii) if U (τ, t) = G(u(τ ), τ, t) then U is continuous at (c, c). 6.7 . Lemma. Let u be an SR-solution of (6.1) on [a, b ], [S, T ] ⊂ [a, b ]. Then u is an SR-solution of (6.1) on [S, T ]. Proof.
Lemma 6.7 is a consequence of Corollary 5.4.
6.8 . Definition. Let Dom g ⊂ B(r) × R2 , g : Dom g → X. A function u is a classical solution of x˙ = g(x, t, t)
(6.7)
on [a, b ] if (u(τ ), τ, τ ) ∈ Dom g
for τ ∈ [a, b ]
and if du (t) = g(u(t), t, t) for t ∈ [a, b ] . dt
(6.8)
October 31, 2011
17:19
World Scientific Book - 9in x 6in
jk
Generalized Ordinary Differential Equations
40
6.9. Lemma. Let [a, b ] ⊂ R, r> 0, g: B(r)× [a, b ]2 → X and u: [a, b ] → B(r). Let g and u be continuous. Put Dom G = B(r) × [a, b ] 2 , and
∫ G(x, τ, t) = (R)
t
g(x, τ, s) ds
f or (x, τ, t) ∈ Dom G .
(6.9)
a
Then
∫
∫
T
(SR)
T
Dt G(u(τ ), τ, t) = (R) S
g(u(s), s, s) ds .
(6.10)
S
Proof. Since g and u are continuous the integrals in (6.9), (6.10) exist. Let ε > 0. There exists ξ > 0 such that ∥g(u(τ ), τ, s) − g(u(τ ), τ, s¯)∥ ≤ ε,
(6.11)
∥g(u(s), s, s) − g(u(¯ s), s¯, s¯)∥ ≤ ε
(6.12)
for τ, s, s¯ ∈ [a, b ], |s − s¯| ≤ ξ. Moreover, (6.11) implies (cf. Remark 5.11) that ∫
(R)
t t¯
g(u(τ ), τ, s)ds − g(u(τ ), τ, τ )(t − t¯) ≤ ε (t − t¯) if a ≤ t¯≤ τ ≤ t ≤ b and t − t¯≤ ξ .
Hence
G(u(τ ), τ, t) − G(u(τ ), τ, t¯) − g(u(τ ), τ, τ ) (t − t¯) ∫ t
= (R) g(u(τ ), τ, s) ds − g(u(τ ), τ, τ ) (t − t¯) ≤ ε (t − t¯) t¯
if a ≤ t¯≤ τ ≤ t ≤ b and t − t¯≤ ξ .
(6.13)
Further, by (6.12) ∫
(R)
t¯
t
g(u(s), s, s)ds − g(u(τ ), τ, τ ) (t − t¯) ≤ ε (t − t¯) if a ≤ t¯≤ τ ≤ t ≤ b and t − t¯≤ ξ .
(6.14)
October 31, 2011
17:19
World Scientific Book - 9in x 6in
jk
Generalized ordinary differential equations: SR-solutions (concepts)
41
Relations (6.13), (6.14) imply that ∫
G(u(τ ), τ, t) − G(u(τ ), τ, t¯) − (R)
t t¯
g(u(s), s, s) ds ≤ 2 ε (t − t¯) if t − t¯≤ ξ
and finally (cf. Lemma 6.4), G(u(τ ), τ, t) is SR-integrable on [a, b ], ∫ t (R) g(u(s), s, s) ds is its SR-primitive and (6.10) holds. a
6.10. Theorem. Assume that [a, b ] ⊂ R, r > 0, g : B(r) × [a, b ] 2 → X and u : [a, b ] → B(r). Let g and u be continuous and let G be defined by (6.9). Then u
is a classical solution of (6.7)
(6.15)
if and only if u is an SR-solution of (6.1) . Proof.
If u is an SR-solution of (6.1) then ∫ T u(T ) − u(S) = (R) g(u(s), s, s) ds for [S, T ] ⊂ [a, b ]
(6.16)
S
by Lemma 6.9 and u is a classical solution of (6.7) since g and u are continuous (cf. Lemma 5.12). If u is a classical solution of (6.7) then (6.16) holds again (cf. Remark 5.11) and u is an SR-solution of (6.1) by Lemma 6.9.
This page intentionally left blank
October 31, 2011
17:19
World Scientific Book - 9in x 6in
jk
Chapter 7
Functions ψ1, ψ2
+ 7.1. Notation. Let ψ1 , ψ2 : R+ 0 → R0 . Assume that
ψ1 , ψ 2
are nondecreasing, continuous,
ψ1 (σ) ≤ ψ2 (σ) for σ ∈ R+ 0 , ∞ ∑ 2 i ψ1 (2−i ) ψ2 (2−i ) < ∞ , i=1 ∞ ∑
(7.1) (7.2) (7.3)
ψ2 (2−i ) < ∞ .
(7.4)
i=1
Put Ψ(σ) =
∞ ∑
2 i ψ1 (σ2−i ) ψ2 (σ2−i ) for σ ∈ R+ 0 ,
(7.5)
i=1
A (σ) = Ψ(σ) exp
∞ ∑
ψ2 (σ2−j ) for σ ∈ R+ 0 ,
(7.6)
j=1
φ(σ) = 3 ψ1 (σ) ψ2 (σ) + A (σ) ψ1 (σ) for σ ∈ R+ 0 , ∞ ∑ Φ(σ) = 2i−1 φ(σ2−i ) for σ ∈ R+ 0 , i=1
B (σ) = Φ(σ) exp
∞ (∑
2 ψ2 (σ2−j ) + σ
)
for σ ∈ R+ 0 .
(7.7) (7.8) (7.9)
j=1
Observe that Ψ, A, φ are well defined (cf. (7.1)–(7.4)) but it remains to be proved that Φ, B are well defined as well.
43
October 31, 2011
17:19
World Scientific Book - 9in x 6in
jk
Generalized Ordinary Differential Equations
44
7.2. Remark. Let α > 12 , 0 < β ≤ α, α + β > 1, ψ1 (σ) = σ α , ψ2 (σ) = σ β for 0 ≤ σ ≤ 1, ψ1 (σ) = ψ2 (σ) = σ for σ ≥ 1. Then (7.1)–(7.4) hold and 2−α−β+1 , 1 − 2−α−β+1 ( 2−β ) A (σ) = Ψ(σ) exp σ β for 0 ≤ σ ≤ 1 . 1 − 2−β Ψ(σ) = σ α+β
7.3. Remark. (7.1)–(7.4) imply that Ψ, A, φ are continuous and nondecreasing. Moreover, ∞ ∑
2 i Ψ(σ 2−i ) ψ1 (σ2−i )
i=1
=
∞ ∑
2i
i=1
=
∞ ∑
2j ψ1 (σ2−i−j ) ψ2 (σ2−i−j ) ψ1 (σ2−i )
j=1
∞ ∑
2k ψ1 (σ2−k ) ψ2 (σ2−k )
∞ ∑
ψ1 (σ2−i ) < ∞
i=1
k=2
since
k−1 ∑
ψ1 (σ 2−i ) < ∞ by (7.2) and (7.4). Hence
i=1 ∞ ∑
−i
−i
2 A (σ2 ) ψ1 (σ2 )
i=1
≤
i
∞ ∑
i
−i
−i
2 Ψ(σ2 ) ψ1 (σ2 ) exp
∞ ∑
i=1
ψ1 (σ 2
−i−j
)<∞
j=1
(7.10)
and Φ and B are well defined, nondecreasing and continuous as well. + 7.4. Lemma. Let λ : R+ 0 → R0 be nondecreasing, continuous, ∞ ∑
2 i λ(2−i ) < ∞ ,
(7.11)
i=1
Λ(σ) =
∞ ∑ i=1
2 i λ(σ 2−i )
for σ ∈ R+ 0 .
(7.12)
November 18, 2011
16:42
World Scientific Book - 9in x 6in
Functions ψ1 , ψ2
jk
45
Then Λ
is nondecreasing, continuous, 1 lim Λ(σ) = 0 . σ → 0+ σ
(7.13) (7.14)
Proof. The series in (7.11) is uniformly convergent on [0, S] for 0 < S. Hence A is continuous and nondecreasing. Let k ∈ N. Then 2k Λ(2−k ) =
∞ ∑
2 i λ(2−i )
i=k+1
and
lim 2k Λ(2−k ) = 0 .
k→∞
Moreover, 1 Λ(σ) ≤ 2k+1 Λ(2−k ) σ and (7.14) is valid.
for 2−k−1 ≤ σ ≤ 2−k
7.5. Remark. Lemma 7.4 applies if λ(σ) = ψ1 (σ) ψ2 (σ). Therefore 1 Ψ(σ) = 0 , σ 1 lim A (σ) = 0 . σ → 0+ σ lim
σ → 0+
(7.15) (7.16)
Moreover (cf. (7.10)), 1 Φ(σ) = 0 , σ → 0+ σ 1 lim B (σ) = 0 . σ → 0+ σ lim
(7.17) (7.18)
Observe that lim
σ → 0+
1 ψ1 (σ) ψ2 (σ) = 0 σ
(7.19)
by (7.15). 7.6. Lemma. Let σ ∈ R+ 0 . Then A (σ/2) 2 (1 + ψ2 (σ/2)) + 2 ψ1 (σ/2) ψ2 (σ/2) ≤ A (σ) . Proof.
We have 2 Ψ(σ/2) + 2 ψ1 (σ/2) ψ2 (σ/2) = Ψ(σ) for σ ∈ R+ 0 .
(7.20)
November 18, 2011
16:42
World Scientific Book - 9in x 6in
jk
Generalized Ordinary Differential Equations
46
Hence (
2 A (σ/2) exp −
∞ ∑
) ψ2 (σ2−j−1 ) + 2 ψ1 (σ/2) ψ2 (σ/2)
j=1
(
= A (σ) exp −
∞ ∑
) ψ2 (σ 2−j )
j=1
and 2 A (σ/2) exp ψ2 (σ/2) + 2 ψ1 (σ/2) ψ2 (σ/2) exp
∞ ∑
ψ2 (σ2−j ) = A (σ)
j=1
for σ ∈ R+ 0 . Therefore (7.20) is correct.
7.7. Lemma. There exists ξ1 > 0 such that B (σ) ≤ σ Proof.
for 0 ≤ σ ≤ ξ1 .
(7.21)
(7.21) is a consequence of (7.18).
7.8. Lemma. Let 0 ≤ σ ≤ ξ1 . Then
}
B 2 (σ/2) + B (σ/2) 2 (1 + ψ2 (σ/2)) +A (σ/2) ψ1 (σ/2) + 3 ψ1 (σ/2) ψ2 (σ/2) ≤ B (σ) . Proof.
(7.22)
Φ fulfils 2 Φ(σ/2) + φ(σ/2) = Φ(σ)
for σ ∈ R+ 0.
Hence ∞ ( ∑ ) 2 B (σ/2) exp − ψ2 (σ2−j−1 ) − σ/2 + φ(σ/2) j=1 ∞ ( ∑ ) = B (σ) exp − ψ2 (σ2−j ) − σ , j=1
(
∞ ) (∑ ) 2 B (σ/2) exp ψ2 (σ/2) + σ/2 + φ(σ/2) exp ψ2 (σ2−j ) + σ j=1
= B (σ) , B (σ/2) 2 [1 + ψ2 (σ/2) + σ/2] + φ(σ/2) ≤ B (σ) for σ ∈ R+ 0 and (7.22) is valid by virtue of Lemma 7.7 and (7.8).
October 31, 2011
17:19
World Scientific Book - 9in x 6in
jk
Chapter 8
Strong Riemann solutions of generalized differential equations: a survey A theory of SR-solutions of generalized differential equations is developed in Chapters 9–13. Its brief survey is presented below. 8.1. Notation. Let X1 , X2 be vector spaces, Ω ⊂ X1 and let P be any set, f : Ω → X2 , F : Ω × P → X2 . Denote } ∆v f (x) = f (x + v) − f (x) , (8.1) ∆v F (x, p) = F (x + v, p) − F (x, p) for x, x + v ∈ Ω, p ∈ P. Let X be a Banach space with the norm ∥ · ∥, B(r) = {x ∈ X; ∥x∥ ≤ r} for 0 ≤ r < ∞. Let [a, b ] ⊂ R, R > 0, G : B(8R) × [a, b ] 2 → X. 8.2. Assumptions. Let G fulfil G
is continuous ,
(8.2)
∥G(x, τ, t) − G(x, τ, s)∥ ≤ ψ2 (t − s) ,
(8.3)
∥∆v (G(x, τ, t) − G(x, τ, s))∥ ≤ ∥v∥ψ1 (t − s) ,
(8.4)
∥∆w ∆v (G(x, τ, t) − G(x, τ, s))∥ ≤ ∥w∥ ∥v∥ ψ1 (t − s) , ∥G(x, τ, t) − G(x, τ, s) − G(x, σ, t) + G(x, σ, s)∥ ≤ ψ1 (t − s) ψ2 (τ − σ) , ∥∆v (G(x, τ, t) − G(x, τ, s) − G(x, σ, t) + G(x, σ, s))∥
(8.5) } (8.6) }
≤ ∥v∥ ψ1 (t − s) ψ2 (τ − σ) for x, x + v, x + w, x + v + w ∈ B(8R), t, s, τ, σ ∈ [a, b ], s ≤ t, σ ≤ τ. 47
(8.7)
October 31, 2011
17:19
World Scientific Book - 9in x 6in
jk
Generalized Ordinary Differential Equations
48
8.3. Proposition (Existence and uniqueness). There exists ξ5 > 0 having the following property: If b − a ≤ ξ5 , s ∈ [a, b ], y ∈ B(3R), then there exists an SR-solution u : [a, b ] → B(4R) of d x = Dt G(x, τ, t) (8.8) dt fulfilling u(s) = y. Moreover, u is unique. (See Theorems 12.10, 12.12.) 8.4. Proposition. Let b − a ≤ ξ5 and let u : [a, b ] → B(4R) be a solution of (8.8). Then lim (t − τ )−1 ∥u(t) − u(τ ) − G(u(τ ), τ, t) + G(u(τ ), τ, τ )∥ = 0 .
t→τ
(8.9)
(8.9) implies that ∂ (u(t) − G(u(τ ), τ, t))|t=τ = 0 ∂t
for τ ∈ [a, b ] .
(8.10)
E.g., if G(x, τ, ·) is nowhere differentiable then u is nowhere differentiable. (See Lemma 12.7 and Corollary 12.8.) 8.5. Proposition (Continuous dependence). b : R+ → R+ , Ω(σ) b There exists Ω → 0 for σ → 0 with the following property: Let G∗ : B(8R) × [a, b ] 2 → X. Assume that b − a ≤ ξ5 and that G∗ fulfils (8.2)– (8.7). Put } dist (G, G∗ ) (8.11) = sup {∥G(x, τ, t) − G∗ (x, τ, t)∥ ; x∈B(8R), τ, t ∈ [a, b ]} . Let y ∈ B(3R), s ∈ [a, b ]. Let v : [a, b ] → B(8R) be an SR-solution of (8.8), v(s) = y, and let v ∗ : [a, b ] → B(8R) be an SR-solution of d x = Dt G∗ (x, τ, t), dτ
v ∗ (s) = y .
(8.12)
for t ∈ [a, b ]
(8.13)
Then v(t), v ∗ (t) ∈ B(4R) and
November 18, 2011
16:42
World Scientific Book - 9in x 6in
SR-solutions of generalized differential equations: a survey
b ∥v(t) − v ∗ (t)∥ ≤ Ω(dist(G, G∗ ))
for t ∈ [a, b ] .
jk
49
(8.14)
Proof. (8.13) follows from Proposition 8.3 and (8.14) is a consequence b = 3 κ Ω. of Theorem 13.7 where Ω 2 8.6. Remark. Let e.g. [a, b ] ⊂ R,
1 2
b > 0, < α ≤ 1, 0 < β ≤ 1, α + β > 1, R
G(x, τ, t) = −h(x, τ + εα sin(τ /ε)) εα sin(t/ε) − λ p (τ + εα sin(τ /ε)) εβ sin (t/(λ ε)) , where 0 < ε ≤ 1, 0 ≤ λ ≤ 1, b × [a − 1, b + 1] → X, p : [a − 1, b + 1] → X , h : B(R) ∂ h(x, τ ) is Lipschitzian with respect to x, τ D1 h(x, τ ) = ∂x and D p (s) =
d p (s) is Lipschitzian . ds
Then any solution of the classical equation x˙ = h(x, t + εα sin(t/ε)) εα−1 cos(t/ε) + p(t + εα sin(t/ε)) εβ−1 cos(λ t/ε) is a solution of (8.8) and vice versa. Conditions (7.1)–(7.4) and (8.2)–(8.7) are fulfilled if ψ1 (σ) = κ σ α ,
ψ2 (σ) = κ σ β
for 0 ≤ σ ≤ 1
and ψ1 (σ) = ψ2 (σ) = κ σ
for 1 ≤ σ .
The existence and uniqueness of solutions of (8.8) are given by Proposition 8.4. Observe that β may be small if α is sufficiently close to 1.
This page intentionally left blank
November 18, 2011
16:42
World Scientific Book - 9in x 6in
jk
Chapter 9
Approximate solutions: boundedness
9.1 . Notation. Let [a, b ] ⊂ R, c = a + 2 (b − a), ξ2 ∈ R+ , b − a ≤ ξ2 , G : B(8R) × [a, b ] 2 → X. Assume that G fulfils (8.2)– (8.7). Further, assume that ψ2 (2 ξ2 ) + A(2 ξ2 ) < R,
b − a ≤ ξ2 ,
(9.1)
where the functions ψ1 and A were introduced in Notation 7.1. Extend G by putting e τ, t) = G(x, min{τ, b}, min{t, b}) for (τ, t) ∈ [a, c]2 , x ∈ B(8R) (9.2) G(x, and for S, t, T such that S, t, T ∈ [a, c] and S < T let G(S, t, T ) be a mapping from B(8R) to X, the value of G(S, t, T ) at x being denoted by x G(S, t, T ) and if t ≤ S , 0 e S, t) − G(x, e S, S) if S ≤ t ≤ T , x G(S, t, T ) = G(x, (9.3) e e S, S) if T ≤ t. G(x, S, T ) − G(x, 9.2 . Remark. Existence, uniqueness and continuous dependence of solutions of (8.8) will be proved for t ∈ [a, b ]. The proofs are based on the properties of the functions in the form } x (id + G(S, t, S + σ)) (id + G(S + σ, t, S + 2 σ)) (9.4) . . . (id + G(S + (k−1) σ, t, S + k σ)) for k ∈ N , where x (id + G(S, t, S + σ)) = x + x G (S, t, S + σ) . In Chapter 12 functions in the form (9.4) are needed such that S ∈ [a, b ], σ = (b − a) 2−j , k = 1, 2, . . . , 2j , j ∈ N, so that S + 2j σ = S + b − a and 51
October 31, 2011
17:19
World Scientific Book - 9in x 6in
jk
Generalized Ordinary Differential Equations
52
[S, S + b − a] ⊂ [a, c] (see (12.3)). This is the motivation for extending e G to G. e fulfils (8.2)–(8.7) on its domain 9.3. Lemma. G B(8R) × {(S, t, T ); [S, T ] ⊂ [a, c], t ∈ [a, c]} .
(9.5)
Moreover, G is continuous ,
(9.6)
∥x G(S, t, T )∥ ≤ ψ2 (t − S) ,
(9.7)
∥∆v (x G(S, t, T ))∥ ≤ ∥v∥ ψ1 (t − S) , ∥∆w ∆v (xG(S, t, T ))∥ ≤ ∥w∥ ∥v∥ ψ1 (t − S) ,
S+T ) + x G( , t, T ) − x G(S, t, T )
x G(S, t, S+T
2) ( 2 ) ( ≤ ψ1 t −2 S ψ2 t −2 S ,
(9.8) (9.9)
( )
S+T )+x G( , t, T ) − x G(S, t, T )
∆v x G(S, t, S+T
2 2 T −S T −S )ψ ( ) ≤ ∥v∥ ψ ( 1
2
2
(9.10)
(9.11)
2
for x, x + v, x + v + w, x + w ∈ B(8R), t ∈ [S, T ] ⊂ [a, c]. e fulfils (8.2)–(8.7) on its domain by (9.2) since ψ1 , ψ2 are nonProof. G decreasing. Relation (9.6) is a consequence of (8.2) and (9.7), (9.8), (9.9) follow directly from (8.3), (8.4), (8.5). If t ≤ S +2 T then the left hand side of (9.10) vanishes. Let
S+T 2
< t ≤ T. Then S+T x G(S, t, S+T 2 ) + x G( 2 , t, T ) − x G(S, t, T ) S+T e S, S+T ) − G(x, e S, S) + G(x, e = G(x, 2 2 , t) S+T S+T e e e − G(x, 2 , 2 ) − G(x, S, t) + G(x, S, S)
and (9.10) holds by (8.6). (9.11) is proved in an analogous way (cf. (8.7)).
February 6, 2012
13:40
World Scientific Book - 9in x 6in
jk
Approximate solutions, boundedness
53
9.4. Definition. Let x ∈ B(8R),
[S, T ] ⊂ [a, c],
t ∈ [a, c],
i ∈ N0 ,
j ∈ {0, 1, . . . , 2 i } .
Put x (id + G(S, t, T )) = x + x G(S, t, T ), Z(i, j) = S + j
T −S i
2
.
Assume that x (id + G(Z(i, 0), Z(i, 1), Z(i, 1))) (id + G(Z(i, 1), Z(i, 2), Z(i, 2))) . . .
(id + G(Z(i, j − 2), Z(i, j − 1), Z(i, j − 1))) (id + G(Z(i, j − 1), t, Z(i, j))) ∈ B(8R)
(9.12)
for j = 1, 2, . . . , 2 i and Z(i, j −1) < t ≤ Z(i, j). Then denote by x Vi (S, t, T ) the expression in (9.12), S < t ≤ T and put x Vi (S, t, T ) = x
for a ≤ t ≤ S ,
x Vi (S, t, T ) = x Vi (S, T, T ) for T < t ≤ c
(9.13) (9.14)
if x Vi (S, T, T ) exists. 9.5. Remark. Let ui (t) = x Vi (S, t, T ) for S ≤ t ≤ T. ui is called an approximate solution of (8.8), which is justified by (11.16), (12.3), Theorem 12.10. 9.6 . Lemma. Let t ∈ [a, c], i ∈ N0 , x ∈ B(8R) and let x Vi (S, T, T ) exist. Then x Vi (S, t, T ) (9.15) = x (id + G(S, t, Z(i, 1))) (id + G(Z(i, 1), t, Z(i, 2))) . . . (id + G(Z(i, 2 i −1), t, T )) for t ∈ [a, c] . Proof.
(9.15) is a consequence of (9.3) and Definition 9.4.
9.7 . Lemma. Let i ∈ N, t ∈ [S, T ] ⊂ [a, c], x ∈ B(8R) and let x Vi (S, T, T ) exist. Then S+T x Vi (S, t, T ) = x Vi−1 (S, t, S+T 2 ) Vi−1 ( 2 , t, T )
and
(9.16)
November 21, 2011
9:6
World Scientific Book - 9in x 6in
jk
Generalized Ordinary Differential Equations
54
x Vi−1 (S, t, S+T 2 ) = x Vi (S, t, T )
if t ≤ S+T 2
(9.17)
Proof. (9.17) is a consequence of Definition 9.4. If t ≤ S+T then (9.16) 2 is valid since S+T S+T x Vi−1 (S, t, S+T 2 ) Vi−1 ( 2 , t, T ) = z Vi−1 (S, t, 2 )
by (9.17). If t > S+T then (9.16) follows by Definition 9.4. 2 9.8. Definition. For [S, T ] ⊂ [a, c], t ∈ [a, c], x ∈ B(8R) and i ∈ N0 , put x Yi (S, t, T ) = x Vi (S, t, T ) − x − x G(S, t, T )
(9.18)
if x Vi (S, T, T ) exists. 9.9. Lemma. Let i ∈ N0 , t ∈ [S, T ] ⊂ [a, c], x ∈ B(8R) and let x Vi+1 (S, T, T ) exist. Then S+T S+T x Yi+1 (S, t, T ) = x Vi (S, t, S+T 2 )Yi ( 2 , t, T )+x Yi (S, t, 2 ) ( ) S+T S+T S+T (9.19) + x Yi (S, t, 2 )+x+x G(S, t, 2 ) G( 2 , t, T ) + x G(S, t, S+T 2 ) − x G(S, t, T ) and
S+T ) Y ( , t, T ) ∥x Yi+1 (S, t, T )∥ ≤ x Vi (S, t, S+T
i 2 2
(9.20)
) ( ( )) (
T −S T −S T −S S+T + x Yi S, t, 2 1 + ψ1 2 + 2 ψ1 ( 2 ) ψ2 ( 2 ) . Proof.
By (9.16) and by Definitions 9.4, 9.8, we have x Yi+1 (S, t, T )
[ ] S+T S+T = x Vi (S, t, S+T ) Y ( , t, T ) + id + G( , t, T ) i 2 2 2 − x − x G(S, t, T )
S+T = x Vi (S, t, S+T 2 ) Yi ( 2 , t, T ) S+T + x Yi (S, t, S+T 2 ) + x + x G(S, t, 2 ) ( S+T S+T + x Yi (S, t, S+T 2 ) + x + x G(S, t, 2 )) G( 2 , t, T )
− x − x G(S, t, T )
November 21, 2011
9:6
World Scientific Book - 9in x 6in
Approximate solutions, boundedness
jk
55
S+T S+T since x Vi (S, t, S+T 2 ) ∈ B(8R) and x Vi (S, t, 2 ) G( 2 , t, T ) exists. Therefore x Yi+1 (S, t, T ) S+T S+T = x Vi (S, t, 2 ) Yi ( 2 , t, T ) S+T S+T + x Yi (S, t, 2 ) + x + x G(S, t, 2 ) (9.21) [ ] S+T S+T + x Yi (S, t, S+T 2 ) + x + x G(S, t, 2 ) G( 2 , t, T ) − x − x G(S, t, T ) ,
Hence (9.19) holds. Moreover, (9.21) can be written in the form x Yi+1 (S, t, T ) S+T S+T = x Vi (S, t, S+T 2 ) Yi ( 2 , t, T ) + x Yi (S, t, 2 ) ) [( S+T S+T + x Yi (S, t, S+T 2 ) + x + x G(S, t, 2 ) G( 2 , t, T ) ( ) ] S+T − x + x G(S, t, S+T 2 ) G( 2 , t, T ) ) ] [( S+T S+T + x + x G(S, t, S+T 2 ) G( 2 , t, T ) − x G( 2 , t, T ) [ ] S+T + x G(S, t, S+T ) + x G( , t, T ) − x G(S, t, T ) . 2 2 T −S The first bracket does not exceed ∥x Yi (S, t, S+T 2 )∥ ψ1 ( 2 ) by (9.8), the T −S second one and the third one are estimated by ψ1 ( 2 ) ψ2 ( T −S 2 ). Therefore (9.20) is correct.
9.10. Lemma. Let i ∈ N0 , t ∈ [S, T ] ⊂ [a, c], x ∈ B(8R) and let x Vi (S, T, T ) exist. Then ∥x Yi (S, t, T )∥ ≤ A(T − S) ∥x Vi (S, t, T ) − x∥ ≤ A(T − S) + ψ2 (T − S) Proof.
(9.22) (9.23)
Part 1. By Definitions 9.4, 9.8 x V0 (S, t, T ) = x G(S, t, T ),
and x Y0 (S, t, T ) = 0 .
(9.24)
November 21, 2011
9:6
World Scientific Book - 9in x 6in
jk
Generalized Ordinary Differential Equations
56
Lemma 9.10 is valid for i = 0 (cf. (9.7)). Part 2. Assume that there exists k ∈ N such that Lemma 9.10 is valid for i = 0, 1, . . . , k−1. Let t ∈ [S, T ] ⊂ [a, c], x ∈ B(8R) and let x Vk (S, T, T ) exist. By (9.20) } S+T ∥x Yk (S, t, T )∥ ≤ ∥x Vk−1 (S, t, S+T 2 ) Yk−1 ( 2 , t, T )∥ (9.25) ( ) T −S T −S T −S + ∥x Yk−1 (S, t, S+T )∥ 1 + ψ ( ) + 2 ψ ( ) ψ ( ) . 1 1 2 2 2 2 2 If t ≤ S+T then (cf. (9.18), (9.3)) 2 S+T S+T T −S x Vk−1 (S, t, S+T 2 ) Yk−1 ( 2 , t, T ) = 0, ∥x Yk−1 (S, t, 2 )∥ ≤ A( 2 )
and (9.22) holds by (7.20). If t > S+T then 2 S+T T −S ∥x Vk−1 (S, t, S+T 2 ) Yk−1 ( 2 , t, T )∥ ≤ A( 2 ), T −S ∥x Yk−1 (S, t, S+T 2 )∥ ≤ A( 2 )
and (9.22) holds by (7.20). Part 3. Parts 1 and 2 imply that (9.22) holds. Moreover, (9.23) follows by (9.22), (9.18), (9.8). 9.11. Theorem. Let i ∈ N0 , [S, T ] ⊂ [a, c], t ∈ [a, c] and x ∈ B(7R). Then ∥x Vi (S, t, T ) − x∥ < R . Proof.
(9.26)
Part 1. By Definition 9.4, (9.7), (9.1), x V0 (S, t, T ) = x + x G(S, t, T ) , ∥x V0 (S, t, T ) − x∥ ≤ ∥x G(S, t, T )∥ ≤ ψ2 (t−S) < R
if S ≤ t ≤ T. Moreover, x V0 (S, t, T ) = x
for a ≤ t < T,
x V0 (S, t, T ) = x V0 (S, T, T ) for T < t ≤ C . Hence Theorem 9.11 is valid if i = 0. Part 2. Assume that there exists k ∈ N such that (9.26) holds for i = 0, 1, . . . , k−1, S ≤ t ≤ T and that (9.26) does not hold for i = k and all
November 21, 2011
9:6
World Scientific Book - 9in x 6in
jk
Approximate solutions, boundedness
57
x ∈ B(7R) and t ∈ [S, T ] ⊂ [a, c]. By (9.6) and Definition 9.4, G(S, ., T ) is b Tb] ⊂ [a, c] and x continuous. Hence there exist [S, b ∈ B(7R) such that b t, Tb) − x ∥b x Vk (S, b∥ < R
if Sb ≤ t < T
and b Tb, Tb) − x ∥b x Vk (S, b∥ = R
(9.27)
By Lemma 9.10 and (9.1) b Tb, Tb) − x b + ψ2 (Tb−S) b
for t ∈ [S, T ] ⊂ [a, c], x ∈ B(7R) .
By Definition 9.4 ∥x Vk (S, t, T ) − x∥ < R
for [S, T ] ⊂ [a, c], t ∈ [a, c], x ∈ B(7R) .
Part 3. Parts 1 and 2 imply that Theorem 9.11 is valid.
This page intentionally left blank
October 31, 2011
17:19
World Scientific Book - 9in x 6in
jk
Chapter 10
Approximate solutions: a Lipschitz condition
10.1. Notation. Observe that
∞ ∑
ψ1 (σ 2−j ) → 0 for σ → 0 (cf. (7.1), (7.2),
j=1
(7.4)). Let ξ3 ∈ R+ fulfil (cf. (7.21), (9.1), (7.1), (7.2), (7.4)) ξ3 ≤ min{ξ1 , ξ2 }
(10.1)
(ξ1 having been introduced by Lemma 7.7, ξ2 in (9.1)) , ∞ ∑ exp(2 ξ3 + ψ1 (2 ξ3 2−j )) ≤ 2 ,
(10.2)
j=1
A(2 ξ3 ) + ψ2 (2 ξ3 ) ≤ R .
(10.3)
Assume that G fulfils (8.2)–(8.7). 10.2. Theorem. Let [a, c] ⊂ R, c−a ≤ 2 ξ3 ,
(10.4)
[S, T ] ⊂ [a, c], i ∈ N0 , x, z ∈ B(6R), t ∈ [a, c] .
(10.5)
Then ∥x Vi (S, t, T ) − z Vi (S, t, T ) − x + z − x G(S, t, T ) + z G(S, t, T )∥ = ∥x Yi (S, t, T ) − z Yi (S, t, T )∥ ≤ ∥x − z∥ B(T − S) . The proof is postponed after Lemma 10.3. 59
(10.6)
November 21, 2011
10:35
World Scientific Book - 9in x 6in
jk
Generalized Ordinary Differential Equations
60
10.3. Lemma. Assume that there exists ℓ ∈ N0 such that ¯ t¯, T¯) − z¯ Yℓ (S, ¯ t¯, T¯)∥ ≤ ∥¯ ¯ ∥¯ x Yℓ (S, x − z¯∥ B(T¯ − S)
(10.7)
for ¯ T¯] ⊂ [a, c], [S,
x ¯, z¯ ∈ B(6R), t¯∈ [a, c] .
(10.8)
Then ∥x Yℓ+1 (S, t, T ) − z Yℓ+1 (S, t, T )∥ ≤ ∥x − z∥ B(T − S)
} (10.9)
for [S, T ] ⊂ [a, c], x, z ∈ B(6R), , t ∈ [a, c]. Proof.
Let [S, T ] ⊂ [a, c], x, z ∈ B(6R), , t ∈ [a, c].
Observe that (cf. (9.22), (9.6)) T −S ∥x Yℓ (S, t, S+T 2 )∥ ≤ A( 2 ), T −S ∥x G(S, t, S+T 2 )∥ ≤ ψ2 ( 2 )
(10.10)
and that (cf. (10.3)) S+T x Yℓ (S, t, S+T 2 ) + z + x G(S, t, 2 ) ∈ B(8R)
(10.11)
since ∥z∥ ≤ 6R. Write ℓ instead of i in (9.19), then write z instead of x and form the difference of these equations. In this way we obtain x Yℓ+1 (S, t, T ) − z Yℓ+1 (S, t, T ) = F1 + F2 + F3 + F4 + F5 , where S+T F1 = x Vℓ (S, t, S+T 2 ) Yℓ ( 2 , t, T ) S+T −z Vℓ (S, t, S+T 2 ) Yℓ ( 2 , t, T ),
S+T F2 = x Yℓ (S, t, S+T 2 ) − z Yℓ (S, t, 2 ), S+T S+T F3 = [x Yℓ (S, t, S+T 2 ) + x + x G(S, t, 2 )] G( 2 , t, T ) S+T − x G( S+T 2 , t, T ) + z G( 2 , t, T ) S+T S+T −[x Yℓ (S, t, S+T 2 ) + z + x G(S, t, 2 )] G( 2 , t, T ),
(10.12)
(10.13)
(10.14)
(10.15)
October 31, 2011
17:19
World Scientific Book - 9in x 6in
jk
Approximate solutions: a Lipschitz condition S+T S+T F4 = [x Yℓ (S, t, S+T 2 ) + z+x G(S, t, 2 )] G( 2 , t, T )
61
} (10.16)
S+T S+T −[z Yℓ (S, t, S+T 2 ) + z + z G(S, t, 2 )] G( 2 , t, T ), S+T F5 = x G(S, t, S+T 2 ) + x G( 2 , t, T ) − x G(S, t, T )
} (10.17)
S+T −z G(S, t, S+T 2 ) − z G( 2 , t, T ) + z G(S, t, T ).
The following estimates are deduced from (10.13)–(10.17) by (10.7), (9.7)– (9.11), (9.23). In particular, by (10.7), (9.18) and (9.8), we have S+T T −S ∥F1 ∥ ≤ ∥x Vℓ (S, t, S+T 2 )−z Vℓ (S, t, 2 )∥ B( 2 ) ) T −S ( T −S ≤ ∥x − z∥ 1 + ψ2 ( T −S 2 ) + B( 2 ) B( 2 ) .
(10.18)
Further, by (10.7), we have ∥F2 ∥ ≤ ∥x − z∥ B( T −S 2 ).
(10.19)
By (9.5), (9.9), (9.21)
S+T ∥F3 ∥≤∥x−z∥ xYℓ (S, t, S+T )+xG(S, t, )
ψ1 ( T −S 2 2 2 ) ( T −S ) T −S ≤ ∥x−z∥ A( 2 ) + ψ2 ( T −S 2 ) ψ1 ( 2 )
(10.20)
since F3 = − ∆w ∆v (x G( S+T 2 , t, T ) where v = z − x,
S+T w = x Yℓ (S, t, S+T 2 ) + x G( 2 , t, T ) .
By (9.8), (10.6)
S+T ∥F4 ∥≤ x Yℓ (S, t, S+T 2 )−z Yℓ (S, t, 2 )
S+T + x G(S, t, S+T )−z G(S, t, )
ψ1 ( T −S 2 2 2 ) ( T −S ) T −S ≤ ∥x − z∥ B( 2 ) + ψ2 ( T −S 2 ) ψ1 ( 2 ) .
(10.21)
Finally, by (9.11) T −S ∥F5 ∥ ≤ ∥x − z∥ ψ1 ( T −S 2 ) ψ2 ( 2 ) .
(10.22)
November 21, 2011
62
9:6
World Scientific Book - 9in x 6in
jk
Generalized Ordinary Differential Equations
Now, (10.12) and (10.18)– (10.22) imply that ∥x Yℓ+1 (S, t, T ) − z Yℓ+1 (S, t, T )∥ ( ) T −S T −S T −S 2 T −S ≤ ∥x − z∥ B( 2 ) 2 + ψ1 ( 2 ) + ψ2 ( 2 ) + B ( 2 ) T −S T −S T −S +3 ψ1 ( T −S ) ψ ( ) + A( ) ψ ( )) . 2 1 2 2 2 2 (10.9) holds by (10.23), (7.2) and (7.22).
(10.23)
Proof of Theorem 10.2 . (10.7) holds by (9.24) if ℓ = 0. Lemma 10.3 implies that (10.6) holds if ℓ ∈ N0 .
November 21, 2011
9:6
World Scientific Book - 9in x 6in
jk
Chapter 11
Approximate solutions: convergence
11.1. Notation. Let 0 < ξ4 ≤ ξ3 , ψ2 (ξ4 ) + ψ1 ( ξ24 ) ψ2 ( ξ24 ) exp
∞ ( ∑ 1 2
) Cj (ξ4 ) < R
j=2
where Cj (z) = ψ2 (
z j
) + B(
z j)
(11.1)
for z > 0, j ∈ N
2 2 and B has been introduced in (7.9) , a < c ≤ a + ξ4 .
(11.2)
11.2. Lemma. Let [S, T ] ⊂ [a, c],
x ∈ B(7R) .
(11.3)
Then T −S ∥x V1 (S, t, T ) − x V0 (S, t, T )∥ ≤ 2 ψ1 ( T −S 2 ) ψ2 ( 2 ) .
Proof.
Let (11.3) be fulfilled. By Definition 9.4 for S ≤ t ≤ T ,
x V0 (S, t, T ) = x + x G(S, t, T ) x V1 (S, t, T ) = x + x G(S, t,
S+T 2
) for S ≤ t ≤
S+T 2
Hence Let
S+T 2
(11.4)
x V1 (S, t, T ) − x V0 (S, t, T ) = 0 < t. Then (cf. also (9.17), (9.16))
for t ≤
S+T 2
.
x V1 (S, t, T ) − x V0 (S, t, T ) S+T S+T = x V0 (S, S+T 2 , 2 ) V0 ( 2 , t, T ) − x V0 (S, t, T )
63
.
November 21, 2011
9:6
World Scientific Book - 9in x 6in
jk
Generalized Ordinary Differential Equations
64
( ) )( S+T = x + x G(S, S+T id + G( S+T 2 , 2 ) 2 , t, T ) − x − x G(S, t, T ) S+T = x + x G(S, S+T 2 , 2 ) ) ( S+T , ) G( S+T + x + x G(S, S+T 2 2 2 , t, T ) S+T − x G( S+T 2 , t, T ) + x G( 2 , t, T ) − x − x G(S, t, T )
and (11.4) holds since (cf. (9.7), (9.8), (9.10))
(
)
S+T S+T S+T , ) G( , t, T ) − x G( , t, T )
x + x G(S, S+T
2 2 2 2 S+T ≤ ψ1 ( S+T 2 ) ψ2 ( 2 ) ,
S+T S+T
x G(S, S+T 2 , 2 ) + x G( 2 , t, T ) − x G(S, t, T ) T −S ≤ ψ1 ( T −S 2 ) ψ2 ( 2 ) .
Lemma 11.2 is correct. 11.3. Lemma. Let i ∈ N. Assume that
b b b b ∥b x Vi (S, t, Tb) − x b Vi−1 (S, t, Tb)∥ −1 ) ( i∑ b b b b b Cj (Tb − S) ≤ 2 i ψ1 ( T −iS ) ψ2 ( T −iS ) exp 12 2 2 j=1
(11.5)
for b Tb] ⊂ [a, c], x [S, b ∈ B(6R) . ◦ ( ∑ ) b = 1.) (Observe that for i = 1 we have exp 12 Cj (Tb − S)
(11.6)
j=1
Then ∥x Vi+1 (S, t, T ) − x Vi (S, t, T )∥ −S −S ≤ 2i+1 ψ1 ( T i+1 ) ψ2 ( T i+1 ) exp 2 2
i ( ∑ 1 2
j=1
Cj (T −S)
)
(11.7)
for x ∈ B(6R).
(11.8)
November 21, 2011
9:6
World Scientific Book - 9in x 6in
jk
Approximate solutions: convergence
Proof.
Let (11.8) be fulfilled. By (11.8) and (9.17) x Vi+1 (S, t, T ) − x Vi (S, t, T ) = 0
Let
65
S+T 2
for t ≤
S+T 2
.
(11.9)
< t. Then x Vi+1 (S, t, T ) − x Vi (S, t, T ) = U + V
(11.10)
where S+T S+T U = x Vi (S, S+T 2 , 2 ) Vi ( 2 , t, T ) S+T S+T − x Vi−1 (S, S+T 2 , 2 ) Vi ( 2 , t, T ), S+T S+T V = x Vi−1 (S, S+T 2 , 2 ) Vi ( 2 , t, T ) S+T S+T − x Vi−1 (S, S+T 2 , 2 ) Vi−1 ( 2 , t, T ) S+T S+T the term x Vi (S, S+T 2 , 2 ) Vi−1 ( 2 , t, T ) being well defined since S+T S+T x Vi (S, 2 , 2 ) ∈ B(7R). By (11.8), Lemma 9.7 and Theorem 9.11 S+T and x Vi−1 (S, S+T 2 , 2 ) ∈ B(7R).
x ∈ B(6R) Hence by (11.5)
−S −S ) ψ2 ( T i+1 ) exp ∥V∥ ≤ 2 i ψ1 ( T i+1 2 2
i ( ∑ 1 2
Cj (T −S)
(11.11)
j=2
S+T S+T S+T
x Vi (S, S+T 2 , 2 ) − x Vi−1 (S, 2 , 2 ) −S −S ≤ 2 i ψ1 ( T i+1 ) ψ2 ( T i+1 ) exp 2 2
)
i ( ∑ 1 2
j=2
) Cj (T −S)
(11.12)
and by (11.12), (10.6), (9.18) and (9.8) ∥U∥ ≤ 2
i
i ( ( ∑ )) ) 1 exp 2 Cj (T −S (1+ C1 (T −S) . (11.13)
−S −S ψ1 ( T i+1 )ψ2 ( T i+1 )
2
2
j=2
(11.10), (11.11) and (11.13) imply that ∥x Vi+1 (S, t, T ) − x Vi (S, t, T )∥ i ( ( ∑ )) ( ) −S −S ≤ 2 i ψ1 ( T i+1 )ψ2 ( T i+1 ) exp 12 Cj (T −S) 2 1+ 21 C1 ( T −S ) 2 2 2 j=2
November 21, 2011
9:6
World Scientific Book - 9in x 6in
jk
Generalized Ordinary Differential Equations
66
and (11.7) is correct.
11.4. Theorem. Let i ∈ N, t ∈ [S, T ] ⊂ [a, c] and let x ∈ B(6R). Then ∥x Vi (S, t, T ) − x Vi−1 (S, t, T )∥ i−1 ( ∑ ) (11.14) T −S 1 ≤ 2 i ψ1 ( T −S Cj (T −S) . i ) ψ2 ( i ) exp 2 2 2 j=1
Proof.
This is a consequence of Lemmas 11.2, 11.3.
11.5. Lemma. Let x ∈ B(6R), t ∈ [S, T ] ⊂ [a, c], k, ℓ ∈ N, k < ℓ. Then ∥x Vℓ (S, t, T ) − x Vk (S, t, T )∥ ℓ ∞ ( ∑ ) ∑ c −a ≤ 2 i ψ12 ( i ) exp 12 Cj (c −a) . 2 j=1 i=k+1 Proof.
(11.15)
The series ∞ ∑
Cj (c−a) =
j=1
∞ ( ∑ j=1
) c−a ψ1 ( c−a ) ) + B( 2j 2j
is convergent by (7.1), (7.2), (7.4) and (7.21). Lemma 11.5 follows from Theorem 11.4. 11.6. Definition. Put x V (S, t, T ) = lim x Vi (S, t, T ) i→∞
for x ∈ B(6R), t ∈ [S, T ] ⊂ [a, c]. The limit in (11.16) exists by (11.15) since the series ∞ ∑
2 i ψ12 ( c−a ) 2i i=1
is convergent by (7.1), (7.2), (7.3).
(11.16)
November 21, 2011
9:6
World Scientific Book - 9in x 6in
jk
Approximate solutions: convergence
67
11.7. Theorem. Let x, x ¯ ∈ B(6R), t ∈ [S, T ] ⊂ [a, c]. Then V
is continuous ,
(11.17)
x V (S, t, T ) ∈ B(7R) ,
(11.18)
x V (S, t, S+T 2 ) = x V (s, t, T )
for t ≤ S+T 2 ,
∥x V (S, t, T ) − x − x G(S, t, T )∥ ≤ A(2 (T − S)) , ∥x V (S, t, T ) − x ¯ V (S, t, T ) − x + x ¯ − x G(S, t, T ) + x ¯ G(S, t, T )∥ ≤ ∥x − x ¯∥ B(2(t−S)) .
(11.19) (11.20)
(11.21)
Proof. V is the uniform limit of continuous Vi (cf. Lemma 11.5). Hence (11.17) is correct. (11.18) is a consequence of (9.23) and (9.1). (11.19) follows by (11.9). The limit procedure for i → ∞ in (9.22) (cf. also (9.18)) gives } ∥x V (S, t, T ) − x − x G(S, t, T )∥ ≤ A(T − S) (11.22) for x ∈ B(6R), t ∈ [S, T ] ⊂ [a, c] . By (9.3) x G(S, t, S+T 2 ) = x G(S, t, T ) for x ∈ B(8R), t ∈ [S, T ] ⊂ [a, c], t ≤ S+T 2 . Similarly ∥x V (S, t, T ) − x − x G(S, t, T )∥ ≤ A( T −j S ) 2 for x ∈ B(6R), t ≤ S + T −S , j ∈N. 2j
(11.23)
(11.20) follows by (11.23) since A is nondecreasing and 2 (t−S) ≥ T −S 2j
for
T −S
2j+1
≤ t−S ≤ T −S . 2j
The limit procedure for i → ∞ in (10.6) results in ∥x V (S, t, T ) − x ¯ V (S, t, T ) − x + x ¯ − x G(S, t, T ) + x ¯ G(S, t, T )∥ ≤ ∥x − x ¯∥ B(T − S) for x ∈ B(6R), t ∈ [S, T ] ⊂ [a, c] .
(11.24)
November 21, 2011
68
9:6
World Scientific Book - 9in x 6in
jk
Generalized Ordinary Differential Equations
(11.24) implies that ∥x V (S, t, T ) − x ¯ V (S, t, T ) − x + x ¯ − x G(S, t, T ) + x ¯ G(S, t, T )∥ ≤ ∥x − x ¯∥ B( T −j S ) 2 for x, x ¯ ∈ B(6R), t ≤ S + T −S , j ∈N, 2j
(11.25)
in a similar way as (11.22) implies that (11.23) holds. (11.21) follows by (11.25) since B is nondecreasing. The proof is complete. 11.8. Remark. Put u(t) = x V (S, t, T ), ui (t) = x Vi (S, t, T ) for t ∈ [S, T ], i ∈ N. (11.18) and (7.16) imply that u is an SR-solution of d x = G(x, τ, t) , dt
(11.26)
u(S) = x. Therefore ui may be called approximate solutions of (11.26). Let Dom g ⊂ X×R, G(x, τ, t) = g(x, τ ) t. Then ui are approximate solutions of the differential equation in the classical form x˙ = g(x, t) which are obtained by Euler’s method (going back to 1768).
November 21, 2011
9:6
World Scientific Book - 9in x 6in
jk
Chapter 12
Solutions
12.1 . Notation. By (7.1), (7.2), (7.4), (7.16), (7.18), (11.1) there exists ξ5 ∈ R+ such that } ξ5 ≤ ξ4 , ψ1 (ξ5 ) + B(2 ξ5 ) ≤ 31 , (12.1) ψ2 (ξ5 ) + A(2 ξ5 ) ≤ 23 R . Let [a, c] ⊂ R, c − a ≤ 2 ξ5 ,
b=
1 2
(a + c).
(12.2)
Let W be defined by x W (S, t) = x V (S, t, S + b − a)
(12.3)
for x ∈ B(6R), S ∈ [a, b ], t ∈ [S, S + b − a]. For σ ∈ [S, S+b−a] put ES,σ = {x W (S, σ) ; x ∈ B(5R)}.
(12.4)
12.2. Lemma. W is continuous. Proof. W is continuous since it is a restriction of a continuous V (cf. (11.17)). 12.3. Lemma. Let S, t ∈ [a, b ], S ≤ t, v, v¯ ∈ B(6R). Then ES,t ⊂ B(6R) ,
(12.5)
∥v W (S, t) − v − v G(S, t, S + b − a)∥ ≤ A(2 (t − S)) , ∥v W (S, t) − v¯ W (S, t) − v + v¯ − v G(S, t, S + b − a) +¯ v G(S, t, S + b − a)∥ ≤ ∥v − v¯∥ B(2(t − S)) , ∥v W (S, t) − v∥ ≤ ψ2 (t − S) + A(2(t − S)) , 69
(12.6) } (12.7) (12.8)
November 21, 2011
9:6
World Scientific Book - 9in x 6in
jk
Generalized Ordinary Differential Equations
70
}
∥v W (S, t) − v¯ W (S, t) − v + v¯ ∥
(12.9)
≤ ∥v − v¯∥ (ψ1 (t − S) + B(2 (t − S))) ,
}
∥v W (S, t) − v¯ W (S, t)∥
(12.10)
≥ ∥v − v¯∥ (1 − ψ1 (t − S) − B(2 (t−S))) .
Proof. (12.5) is a consequence of (12.4) and (11.18). Further, (12.6) and (12.7) follow by (12.3), (11.20), (11.21). Moreover, (12.8) holds by (12.6) since ∥v W (S, t) − v∥ ≤ ∥v G(S, t, S + b − a)∥ + A(2(T − S)) ≤ ψ2 (T − S) + A(2(T − S)) (cf. (9.7)). Similarly (12.9) holds by (12.7) and (9.8).
(12.10) follows from (12.9). 12.4. Lemma. Let a ≤ τ ≤ t ≤ b.
(12.11)
Then x W (a, τ )W (τ, t) = x W (a, t), Proof.
x ∈ B(5R) .
(12.12)
x W (a, τ ) W (τ, t) is well defined since x W (a, τ ) = x V (a, τ, b) ∈ B(6R)
(cf. (12.3)). Let i, j, k, ℓ ∈ N0 ,
j ≤ i,
τ = a + k (b−a) 2−j ,
}
k ≤ ℓ ≤ 2j ,
(12.13)
t = a + ℓ (b−a) 2−j .
By Definition 9.4 x Vj (a, τ, b) Vj (τ, t, τ + b − a) = x Vj (a, t, b) and x Vi (a, τ, b) Vi (τ, t, τ + b − a) = x Vi (a, t, b) for i ∈ N, i > j .
} (12.14)
November 21, 2011
9:6
World Scientific Book - 9in x 6in
Solutions
jk
71
The limit procedure for i → ∞ in (12.14) implies (cf. (12.3)) that (12.12) holds for the particular choice of τ, t in (12.13) since ∥v Vi (τ, t, τ + b − a) − v¯ Vi (τ, t, τ + b − a)∥ ≤ ∥v − v¯∥ (1 + ψ1 (T − S) + B(T − S)) for v, v¯ ∈ B(6R) (cf. (9.8), (10.6)). Hence (12.12) holds since W is continuous and for every i ∈ N, τ, t ∈ [a, b ], τ ≤ t there exist k, ℓ ∈ N0 , k ≤ ℓ such that a + (k−1)(b − a) 2−i ≤ τ ≤ a + k (b − a) 2−i and a + (ℓ−1) (b − a) 2−i ≤ t ≤ a + ℓ (b − a) 2−i .
12.5. Lemma. Let a ≤ S ≤ T ≤ b. Then W (S, T )
is a one-to-one map of B(5R) onto ES,T .
(12.15)
Moreover, if y ∈ B(5R) then there exists x ∈ B(6R) such that x W (a, S) = y .
(12.16)
Further B(6R) ⊂ ES,T .
(12.17)
Proof. W (S, T ) is a map of B(6R) onto ES,T by (12.4) and (12.8). W (S, T ) is a one-to-one map by (12.10), (12.1). Let Q : B(6R) → X be defined by x Q = x W (S, T ) − x . Lemma B.1 may be applied with R1 = 6R,
R2 = 5R,
ξ = min{ 13 , 32 R} .
Hence (cf. (B.3)) there exists x ∈ B(6R) such that x W (a, S) = x + x Q = y . (12.16) holds. Finally, (12.17) is a consequence of (12.8).
November 21, 2011
9:6
World Scientific Book - 9in x 6in
jk
Generalized Ordinary Differential Equations
72
12.6. Lemma. Let x ∈ B(6R), u(t) = x W (a, t) for t ∈ [a, b ]. Then ∥u(τ ) − u(t¯)∥ ≤ ψ2 (τ − t¯) + A(2 (τ − t¯)) and ∥u(t) − u(t¯) − G(u(τ ), τ, t) + G(u(τ ), τ, t¯)∥
(12.18) } (12.19)
≤ A(2(t − t¯)) (1 + ψ1 (t − t¯)) + 2ψ1 (t − t¯) ψ2 (t − t¯) if a ≤ t¯≤ τ ≤ t ≤ b . Proof.
(12.20)
Let (12.20) hold. Then (cf. (12.12)) u(t) = x W (a, t) = x W (a, t¯) W (t¯, t) = u(t¯) W (t¯, t) .
By (12.6), (9.7) ∥u(t) − u(t¯) − u(t¯) G(t¯, t, t¯+ b − a)∥ ≤ A(2 (t − t¯)),
∥u(t¯) G(t¯, t, t¯+ b − a)∥ ≤ ψ2 (t − t¯)
(12.21)
and (12.18) is correct. (9.3) and (9.2) imply that u(t¯) G(t¯, t, t¯ + b − a) = G(u(t¯), t¯, t) − G(u(t¯), t¯, t¯) since e τ, t) = G(x, τ, t) for τ, t ∈ [a, b ], x ∈ B(8R) . G(x, (12.20) and (12.21) imply that ∥u(t) − u(t¯) − G(u(t¯), t¯, t) + G(u(t¯), t¯, t¯)∥ ≤ A(2 (t−t¯)) .
(12.22)
Finally, u(t) − u(t¯) − G(u(τ ), τ, t) + G(u(τ ), τ, t¯) = A + B + C
(12.23)
where A = u(t) − u(t¯) − G(u(t¯), t¯, t) + G(u(t¯), t¯, t¯) , B = G(u(t¯), t¯, t) − G(u(t¯), t¯, t¯) − G(u(τ ), t¯, t) + G(u(τ ), t¯, t¯) , C = G(u(τ ), t¯, t) − G(u(τ ), t¯, t¯) − G(u(τ ), τ, t) + G(u(τ ), τ, t¯)
November 21, 2011
9:6
World Scientific Book - 9in x 6in
jk
Solutions
73
and (cf. (12.21), (8.4), (12.18), (8.6)) ∥A∥ ≤ A(2(t − t¯)) ,
}
∥B∥ ≤ ∥u(τ ) − u(t¯)∥ ψ1 (τ − t¯) ≤ ψ1 (t − t¯) ψ2 (t − t¯) + A(2 (t − t¯)) ψ1 (t − t¯) , ∥C∥ ≤ ψ2 (t − t¯)ψ1 (t − t¯) .
(12.24) (12.25) (12.26)
(12.19) holds by (12.1), (12.23)–(12.26).
12.7. Lemma. Let x ∈ B(6R), u(t) = xW (a, t) for t ∈ [a, b ], ε > 0. Then there exists ξ > 0 such that t − t¯ ∥u(t) − u(t¯) − G(u(τ ), τ, t) + G(u(τ ), τ, t¯)∥ ≤ ε b−a
(12.27)
if u(t) = x W (a, t)
for t ∈ [a, b ] ,
a ≤ t¯ ≤ τ ≤ t ≤ b, t − t¯ ≤ ξ . Proof.
(12.28) (12.29)
(7.1)–(7.4) and (7.16), (7.19) imply that
ψ1 (σ) → 0, σ −1 A(σ) → 0, σ −1 ψ1 (σ) ψ2 (σ) → 0 for σ → 0 + . Hence Lemma 12.7 is a consequence of Lemma 12.6.
12.8. Corollary. u is an SR-solution of (8.8). 12.9. Corollary. ∂ (u(t) − G(u(τ ), τ, t))|t=τ = 0 ∂t
for τ ∈ [a, b ] .
d u(t) | ∂ t=τ exists if and only if ∂t G(u(τ ), τ, t) |t=τ exists. dt 12.10. Theorem. Let y ∈ B(4R), s ∈ [a, b ]. Then
Hence
there exists x ∈ B(5R)
such that x W (a, s) = y .
(12.30)
Put u(t) = x W (a, t) for t ∈ [a, b ]. Then u
is an SR-solution of (8.8) on [a, b ] ,
∥u(t) − y∥ ≤ R Moreover, x is unique.
for t ∈ [a, b ] .
(12.31) (12.32)
November 21, 2011
9:6
World Scientific Book - 9in x 6in
jk
Generalized Ordinary Differential Equations
74
Proof. (12.30) holds by (12.16), (12.8). Moreover, (12.31) is true by Corollary 12.8. If t < s then y − u(t) = x W (a, t) W (t, s) − x W (a, t) and ∥u(t) − y∥ ≤ R by (12.8) and (12.1). If s < t then u(t) − y = x W (a, s) W (s, t) − x W (a, s) and again ∥u(t) − y∥ ≤ R by (12.8). Hence (12.32) holds. Let x ¯ ∈ B(5R) be such that x ¯ W (a, s) = y. Then by (12.9), (12.1) and (12.2) ∥x − x ¯∥ = ∥x W (a, s) − x ¯ W (a, s) − x + x ¯∥ 1 ≤ ∥x − x ¯∥ (ψ1 (ξ5 ) + B(ξ5 )) ≤ ∥x − x ¯∥ , 3
i.e. x = x ¯.
12.11. Theorem. Let [S, T ] ⊂ [a, b ] and let w : [S, T ] → B(4R) be an SRsolution of (8.8). Then there exists a unique z ∈ B(5R) such that w(s) = z W (a, s)
for s ∈ [S, T ] .
(12.33)
Proof. Theorem 12.11 is a particular case of Theorem 16.1 since every SKH-solution of (8.8) is an SR-solution of (8.8). 12.12. Theorem. Let y ∈ B(3R), s ∈ [S, T ] ⊂ [a, b ]. Let v : [S, T ] → B(8R) be an SR-solution of (8.8), v(s) = y. Then ∥v(t)∥ ≤ ∥y∥ + 32 R
for t ∈ [S, T ]
and there exists a unique z ∈ B(∥y∥ + 23 R)
(12.34) }
such that v(t) = z W (a, t) for t ∈ [S, T ] . Proof.
Put Sb = inf{S1 ; S ≤ S1 ≤ s, ∥v(t)∥ ≤ 4R for S1 ≤ t ≤ s} , Tb = sup{T1 ; s ≤ T1 ≤ T, ∥v(t)∥ ≤ 4R for s ≤ t ≤ T1 } .
(12.35)
November 21, 2011
9:6
World Scientific Book - 9in x 6in
Solutions
jk
75
Then Sb < s < Tb since v is continuous by Lemma 6.5. By Theorem 12.11 b Tb]. there exists z ∈ B(5R) such that v(t) = z W (a, t) for t ∈ [S, If Sb ≤ t ≤ s write v(t) − y = z W (a, t) − z W (a, t) W (t, s) and (cf. (12.8), (12.1)) ∥v(t) − y∥ ≤ ψ2 (s − t) + A(2s − 2t) ≤
2 R. 3
Hence ∥v(t)∥ ≤ ∥y∥ +
2 11 R≤ R, 3 3
which implies that Sb = S
and ∥v(t)∥ ≤ ∥y∥ +
2 R 3
for S ≤ t ≤ s .
(12.36)
If s ≤ t ≤ T write v(t) − y = z W (a, s) W (s, t) − z W (a, s) and by a similar argumentation Tb = T
and ∥v(t)∥ ≤ ∥y∥ +
2 R 3
for s ≤ t ≤ T .
(12.37)
Now, (12.34) and (12.35) hold by (12.36) and (12.37). The proof is complete.
This page intentionally left blank
November 21, 2011
9:6
World Scientific Book - 9in x 6in
jk
Chapter 13
Continuous dependence
13.1 . Notation. Let (12.1), (12.2) hold and let η > 0. Assume that G : B(8R) × [a, b ] 2 → X and G∗ : B(8R) × [a, b ] 2 → X fulfil (8.2)–(8.7), ∥G∗ (x, τ, t) − G(x, τ, t)∥ ≤ η for x ∈ B(8R), τ, t ∈ [a, b ] .
(13.1)
e ∗ , G∗ , V ∗ , V ∗ , W ∗ , E ∗ in the same way as Starting from G∗ introduce G i S,T e G, Vi , V, W, Eσ were introduced starting from G. G, 13.2. Lemma. Let [S, S + τ ] ⊂ [a, b ], z ∈ B(6R). Then ∥z W (S, S + τ ) − z W ∗ (S, S + τ )∥ ≤ η + 2 A(2 τ ) .
(13.2)
Proof. (13.2) holds by (12.6), (9.3) and by an analogous inequality for W ∗ . 13.3. Lemma. Assume that ℓ ∈ N0 and that b Sb + 2 ℓ τ ) − z W ∗ (S, b Sb + 2 ℓ τ )∥ ∥z W (S, ≤ (η + 2 A(2τ ))2ℓ−1 exp
ℓ−1 (∑
) (ψ1 (2j τ ) + B (2j+1 τ ))
(13.3)
j=1
b Sb + 2 ℓ τ ] ⊂ [a, b ] and z ∈ B(5R), where for the case ℓ = 1 we take for [S, 0 ∑
(ψ1 (2j τ ) + B (2j+1 τ )) = 0 .
j=1
77
November 21, 2011
9:6
World Scientific Book - 9in x 6in
jk
Generalized Ordinary Differential Equations
78
Then ∥x W (S, S + 2ℓ+1 τ ) − x W ∗ (S, S + 2ℓ+1 τ )∥ ℓ (∑ ) ≤ (η + 2 A(2τ )) 2 ℓ exp (ψ1 (2j τ ) + B (2j+1 τ )) j=1
(13.4)
for [S, S + 2ℓ+1 τ ] ⊂ [a, b ], x ∈ B(5R). Proof.
Let [S, S + 2ℓ+1 τ ] ⊂ [a, b ], x ∈ B(5R) .
Then (cf. (12.12)) x W (S, S + 2ℓ+1 τ ) − x W ∗ (S, S + 2ℓ+1 τ ) = J + K ,
(13.5)
where J = x W (S, S + 2 ℓ τ ) W (S + 2 ℓ τ, S + 2ℓ+1 τ ) − x W (S, S + 2 ℓ τ ) W ∗ (S + 2 ℓ , S + 2ℓ+1 τ ) , K = x W (S, S + 2 ℓ τ ) W ∗ (S + 2 ℓ τ, S + 2ℓ+1 τ ) − x W ∗ (S, S + 2 ℓ τ ) W ∗ (S + 2 ℓ τ, S + 2ℓ+1 τ ) . Observe that x W (S, S + 2 ℓ τ ) W ∗ (S + 2 ℓ τ, S + 2ℓ+1 τ ) is well defined since x W (S, S + 2 ℓ τ ) ⊂ B(6R). By (13.3) ∥J∥ ≤ (η + 2 A(2τ )) 2ℓ−1 exp
ℓ−1 (∑
) (ψ1 (2j τ ) + B (2j+1 τ ))
(13.6)
j=1
and by (13.3), (12.9) ∥K∥ ≤ (η + 2 A(2 τ )) 2
ℓ−1
[ exp
ℓ−1 (∑
(ψ1 (2 τ ) + B (2 j
j+1
)] τ )) ×
( ) × 1 + ψ1 (2 ℓ τ ) + B (2ℓ+1 τ ) . j=1
(13.4) is a consequence of (13.5)–(13.7). 13.4. Lemma. Let [S, T ] ⊂ [a, b ], x ∈ B(5R), ℓ ∈ N. Then ∥x W (S, T ) − x W ∗ (S, T )∥ ≤ (η + 2 A(2−ℓ+1 (T − S))) 2ℓ κ ,
(13.7)
(13.8)
November 21, 2011
9:6
World Scientific Book - 9in x 6in
jk
Continuous dependence
where κ = exp
∞ ∑
79
(ψ1 ((b − a) 2−j ) + B ((b − a) 2−j+1 )) .
(13.9)
j=1
Proof.
Lemmas 13.2 and 13.3 imply that
∥x W (S, S + 2 ℓ τ ) − x W ∗ (S, S + 2 ℓ τ )∥ ≤ (η + 2 A(2 τ )) 2
ℓ−1
exp
ℓ−1 ∑ j=1
(ψ1 (2j τ ) + B (2j+1 τ ))
(13.10)
for ℓ ∈ N, [S, S + 2 ℓ τ ] ⊂ [a, b ], x ∈ ES . (13.8) is a consequence of (13.10) since the series in (13.9) is convergent by (7.2), (7.4), (7.18) and τ ≤ (b−a) 2−ℓ . 13.5. Lemma. Define { } Ω(η) = min [η + 2 A(2 ( b − a)2−ℓ )] 2 ℓ ; ℓ ∈ N0 for η > 0 .
(13.11)
Then Ω(η) → 0 Proof.
for η → 0 + .
(13.12)
Let ε > 0. By (7.16) 2ℓ+1 A(2(b − a)2−ℓ ) → 0
for ℓ → ∞
and there exists m ∈ N such that 2m+1 A(2 (b − a) 2−m ) <
1 2
ε.
(13.13)
Let 0 < η ≤ 2−m−1 ε . Then [η + 2 A(2 (b − a) 2−m )] 2m < ε .
Hence (13.12) is valid. 13.6. Lemma. Let S ∈ [a, b ], y ∈ B(5R). Then ∥y W (S, T ) − y W ∗ (S, T )∥ ≤ Ω(η) κ
for T ∈ [S, b ] .
(13.14)
Proof. (13.14) is a consequence of (13.8), (13.11), (13.12) since A is nondecreasing.
November 21, 2011
9:6
World Scientific Book - 9in x 6in
jk
Generalized Ordinary Differential Equations
80
13.7 . Theorem. Let a ≤ S ≤ s ≤ T ≤ b, S < T, y ∈ B(3R). Assume that v : [S, T ] → B(8R) is an SR-solution of d x = Dt G(x, τ, t) , dt
(13.15)
v(s) = y and that v ∗ : [S, T ] → B(8R) is an SR-solution of d x = Dt G∗ (x, τ, t), dt
(13.16)
v ∗ (s) = y. Then ∥v(t) − v ∗ (t)∥ ≤ Proof.
3 2
Ω(η) κ
for t ∈ [S, T ].
(13.17)
By Theorem 12.12 there exist z, z ∗ ∈ B(∥y∥ + 32 R) such that v(t) = z W (a, t),
v ∗ (t) = z ∗ W ∗ (a, t)
for t ∈ [S, T ].
(13.18)
Lemma 13.6 implies that ∥q W (σ, τ ) − q W ∗ (σ, τ )∥ ≤ Ω(η)κ
} (13.19)
for q ∈ B(5R), a ≤ σ ≤ τ ≤ b. If s ≤ t ≤ T then (cf. Lemma 13.6) ∥v(t) − v ∗ (t)∥ = ∥y W (s, t) − y W ∗ (s, t)∥ ≤ Ω(η)κ.
(13.20)
Let S ≤ t < s. Then (cf. (13.18), (12.12)) y = z W (a, s) = z W (a, t) W (t, s) = v(t) W (t, s) and similarly y = v ∗ (t) W ∗ (t, s). Hence 0 = −v(t) W (t, s) + v ∗ (t)W (t, s) −v ∗ (t) W (t, s) + v ∗ (t) W ∗ (t, s), ∥v(t)−v ∗ (t)∥ ≤ ∥v(t)−v ∗ (t)−v(t)W (t, s)+v ∗ (t)W (t, s)∥ +∥v ∗ (t) W (t, s)−v ∗ (t) W ∗ (t, s)∥.
(13.21)
By (12.9) and (12.1) ∥v(t) − v ∗ (t) − v(t) W (t, s) + v ∗ (t) W (t, s)∥ ≤ ∥v(t) − v ∗ (t)∥ 31 ,
(13.22)
November 21, 2011
9:6
World Scientific Book - 9in x 6in
Continuous dependence
jk
81
by (13.14) ∥v ∗ (t) W (t, s) − v ∗ (t) W ∗ (t, s)∥ ≤ Ω(η) κ. (13.21)–(13.23) imply that ∥v(t) − v ∗ (t)∥ ≤
3 2
Ω(η) κ.
(13.23)
(13.24)
(13.17) holds by (13.20) and (13.24) and Theorem 13.7 is true. 13.8. Remark. The problem of the necessity of the condition ∞ ∑
2 i ψ1 (2−i ) ψ2 (2−i ) < ∞
(13.25)
i=1
in the above theory was studied by J. Jarn´ık (cf. [Jarn´ık (1961a)],[Jarn´ık (1961b)]). Assume that for ψ1 , ψ2 we have ψ1 = ψ2 ,
(13.26)
while ψ1 , ψ2 fulfil (7.1), (7.2), (7.4), ψ1 (σ1 + σ2 ) ≤ ψ1 (σ1 ) + ψ1 (σ2 ) and
∞ ∑
for σ1 , σ2 ≥ 0
2 i ψ1 (2−i ) ψ2 (2−i ) = ∞.
(13.27)
(13.28)
i=1
Then there exists a sequence of continuous functions ak : [0, 1] → R, bk : [0, 1] → R, k ∈ N, such that the functions ∫ t ∫ t Gk (x, t) = x ak (s) ds + bk (s) ds t ∈ [0, 1], |x| ≤ 1 0
0
fulfil |Gk (x, t2 ) − Gk (x, t1 )| ≤ ψ1 (|t2 − t1 |), |∆v (Gk (x, t2 ) − Gk (x, t1 ))| ≤ ∥v∥ ψ1 (|t2 − t1 |) for x, x + v ∈ [−1, 1], t1 , t2 ∈ [0, 1], Gk (x, t) → 0 Let uk be a solution of d x = Dt Gk (x, t), dt
uniformly for k → ∞.
uk (0) = 0.
November 21, 2011
82
9:6
World Scientific Book - 9in x 6in
Generalized Ordinary Differential Equations
The sequence uk is divergent. If conditions (13.26), (13.27) are added to the theory which is presented in Chapters 8–13 then condition (13.25) becomes necessary. Observe that uk is also a solution of x˙ = x ak (t) + bk (t). For details see [Jarn´ık (1961a)]. On the other hand, there exist couples ψ1 , ψ2 such that (7.1), (7.2), (7.4), (13.28) are fulfilled and the continuous dependence holds. This occurs if ψ1 (σ) → 0 for σ → 0+ σ very slowly, e.g. if ψ1 (σ) → 1 for σ → 0 + . σ | ln σ| See [Jarn´ık (1961b)].
jk
October 31, 2011
17:19
World Scientific Book - 9in x 6in
jk
Chapter 14
Strong Kurzweil Henstock-integration of functions of a pair of coupled variables 14.1 . Notation. Dom U ⊂ R2 , U : Dom U → X, [a, b ] ⊂ R, δ0 : [a, b ] → R+ , {(τ, t) ; τ − δ0 (τ ) ≤ t ≤ τ + δ0 (τ )} ⊂ Dom U, u : [a, b ] → X. If a ≤ σ < b and if u(σ−) =
lim
τ →σ,τ <σ
lim
τ →σ,τ >σ
u(τ ) exists, denote it by u(σ+). Similarly,
u(τ ) if a < σ ≤ b and if the limit exists.
14.2. Definition. A couple ([t¯, t], τ ) or ([¯ s, s], σ) is called a tagged interval, τ, σ being the tags. A finite set A = {([¯ si , si ], σi ) ; i = 1, 2, . . . , k}
(14.1)
is called a system in [a, b ] if σi ∈ [¯ si , si ] ⊂ [a, b ]
for i = 1, 2, . . . , k
and if the intervals [¯ si , si ], [¯ sj , sj ] are nonoverlapping for i ̸= j (i.e. their intersections [¯ si , si ] ∩ [¯ sj , sj ] contain at most one point). Let δ : [a, b ] → R+ . The system A is δ-fine if [t¯, t] ⊂ [τ − δ(τ ), τ + δ(τ )]
for ([t¯, t], τ ) ∈ A.
If ξ ∈ R+ and if t − t¯≤ ξ for ([t¯, t], τ ) ∈ A, then A is called ξ-fine. Let Q ⊂ [a, b ]. The system A is called Q-anchored if τ ∈ Q for ([t¯, t], τ ) ∈ A. The system A is called a partition of [a, b ] if k ∪
[¯ si , si ] = [a, b ].
i=1
83
(14.2)
October 31, 2011
17:19
World Scientific Book - 9in x 6in
jk
Generalized Ordinary Differential Equations
84
14.3. Remark. Any partition A of [a, b ] can be written in the form A = {([ti−1 , ti ], τi ) ; i = 1, 2, . . . , k}
(14.3)
where a = t0 ≤ τ1 ≤ t1 ≤ τ2 ≤ t2 ≤ · · · ≤ tk−1 ≤ τk ≤ tk = b.
(14.4)
The index i is frequently omitted so that the system A is written in the form A = {([t¯, t], τ )} (14.5) and e.g. (14.2) assumes the form ∪
[t¯, t] = [a, b ].
(14.6)
A
14.4. Lemma. (Cousin) Given δ : [a, b ] → R+ , there exists a δ-fine partition A = {([t¯, t], τ )} of [a, b ]. Lemma 14.4 can be found in almost all books on Kurzweil–Henstock integration. The proof can be based on the Heine–Borel covering theorem (e.g. [Kurzweil (1957)], Lemma 1.1.1; [Henstock (1988)], Theorem 3.1) or on the repeated bisection (e.g. [Henstock (1988)], Theorem 4.1; [Pfeffer (1993)], Proposition 1.2.4; [Kurzweil (2000)], Lemma 13.4) or on the concept of supremum (e.g. [Bartle, Sherbert (2000)], Theorem 5.5.5). The SKH-integral (Strong Kurzweil–Henstock) which is introduced in Definitions 14.5 and 14.10, and the SR-integral (Strong Riemann) are useful in the theory of GODEs. 14.5 . Definition. U is SKH-integrable (Strongly Kurzweil–Henstock integrable) on [S, T ] and u is an SKH-primitive of U on [S, T ] if for every ε > 0 there exists δ : [S, T ] → R+ such that k ∑ (14.7) ∥u(ti ) − u(ti−1 ) − U (τi , ti ) + U (τi , ti−1 )∥ ≤ ε i=1
for every δ-fine partition A = {([ti−1 , ti ], τi ); i = 1, 2, . . . , k} of [S, T ]. Briefly, U is called SKH-integrable and u is called a primitive of U. The couple (τ, t) is called a pair of coupled variables .
October 31, 2011
17:19
World Scientific Book - 9in x 6in
SKH-integration of functions of a pair of coupled variables
jk
85
14.6. Remark. If A is written in the form (14.5) then the inequality in (14.7) is replaced by ∑ ∥u(t) − u(t¯) − U (τ, t) + U (τ, t¯)∥ ≤ ε. A
14.7. Lemma. Assume that U is SKH-integrable on [a, b ], u is its primitive and ε > 0. Let δ : [a, b ] → R+ correspond to ε by Definition 14.5 and let [S, T ] ⊂ [a, b ]. Then ∑ ∥u(t) − u(t¯) − U (τ, t) + U (τ, t¯)∥ ≤ ε (14.8) A
for every δ-fine partition A = {([t¯, t], τ )} of [S, T ]. Proof.
The proof is analogous to the proof of Lemma 5.3.
Let A be a δ-fine partition of [S, T ]. By Lemma 14.4 there exist δ-fine partitions B = {([t¯, t], τ )} of [a, S] and C = {([t¯, t], τ )} of [T, b ]. Then ∑ ∥u(t) − u(t¯) − U (τ, t) + U (τ, t¯)∥ A
≤
∑
∥u(t) − u(t¯) − U (τ, t) + U (τ, t¯)∥ ≤ ε
A∪B∪C
since A ∪ B ∪ C is a δ-fine partition of [a, b ]. (14.8) is correct. 14.8. Corollary. Let U be SKH-integrable on [a, b ], u being its primitive, [S, T ] ⊂ [a, b ]. Then U is SKH-integrable on [S, T ] and u is its primitive. 14.9 . Lemma. Let U be SKH-integrable on [a, b ], u being its primitive. Then (i) if y ∈ X, v(t) = u(t) + y for t ∈ [a, b ], then v is a primitive of U ; (ii) if v is a primitive of U, then v(t) − u(t) = v(a) − u(a) for t ∈ [a, b ]. The proof runs along the same lines as the proof of Lemma 5.5. 14.10 . Definition. Let U be SKH-integrable on [S, T ] and let u be its primitive. Put ∫ T (SKH) Dt U (τ, t) = u(T ) − u(S). (14.9) S
October 31, 2011
17:19
World Scientific Book - 9in x 6in
jk
Generalized Ordinary Differential Equations
86
∫
T
(SKH)
Dt U (τ, t) is called the strong Kurzweil–Henstock integral of U S
over [S, T ] or shortly, the SKH-integral of U over [S, T ]. ∫ T 14.11. Remark. By Lemma 14.9, (SKH) Dt U (τ, t) is independent of the S
choice of the primitive of U.
14.12. Remark. If ξ > 0 and δ : [S, T ] → R+ , δ(τ ) ≤ ξ/2 for τ ∈ [S, T ] then every δ-fine partition A = {([t¯, t], τ )} of [S, T ] is a ξ-fine partition of [S, T ]. Hence every SR-integrable U is SKH-integrable and ∫ T ∫ T (SKH) Dt U (τ, t) = (SR) Dt U (t, τ ) . S
S
14.13. Lemma. Let a < c < b and let the integrals ∫ c ∫ b (SKH) Dt U (τ, t), (SKH) Dt U (τ, t) a
exist.
(14.10)
c
Then U is SKH-integrable on [a, b ] and ∫ b ∫ c ∫ b (SKH) Dt U (τ, t) = (SKH) Dt U (τ, t) + (SKH) Dt U (τ, t). a
a
(14.11)
c
Proof. Let w1 : [a, c] → X be a primitive of U on [a, c], let w2 : [c, b ] → X be a primitive of U on [c, b ] and let ε > 0. By Lemma 14.4 and Definition 14.5 there exists δ : [a, b ] → R+ such that τ + δ(τ ) < c for τ < c, τ − δ(τ ) > c for τ > c , ∑ ∥w1 (t) − w1 (t¯) − U (τ, t) + U (τ, t¯)∥ ≤ ε
(14.12) (14.13)
A
for every δ-fine partition A = {([t¯, t], τ )} of [a, c] and ∑ ∥w2 (t) − w2 (t¯) − U (τ, t) + U (τ, t¯)∥ ≤ ε B
for every δ-fine partition B = {([t¯, t], τ )} of [c, b ]. Put w1 (t) for a ≤ t ≤ c , u(t) = w2 (t) − w2 (c) + w1 (c) for c < t ≤ b .
(14.14)
October 31, 2011
17:19
World Scientific Book - 9in x 6in
jk
SKH-integration of functions of a pair of coupled variables
87
Let C = {([t¯, t], τ )} be a δ-fine partition of [a, b ]. (14.12) implies that either } there exist t¯< c and t > c such that (14.15) ([t¯, c ], c) ∈ C, ([c, t], c) ∈ C or there exist s¯ < c and s > c such that
} (14.16)
([¯ s, s], c) ∈ C. If (14.15) holds then ∑ ∥u(t) − u(t¯) − U (τ, t) + U (τ, t¯)∥ C
=
∑
∥w1 (t) − w1 (t¯) − U (τ, t) + U (τ, t¯)∥
C;[t¯,t] ⊂ [a,c]
∑
+ ∥w2 (t) − w2 (t¯) − U (τ, t) + U (τ, t¯)∥ C;[t¯,t] ⊂ [c,b ] ≤ ε + ε.
(14.17)
If (14.16) takes place then u(s) − u(¯ s) − U (c, s) + U (c, s¯) = w2 (s) − w2 (c) + w1 (c) − w1 (¯ s) − U (c, s) − U (c, c) + U (c, c) + U (c, s¯), ∥u(s) − u(¯ s) − U (c, s) + U (c, s¯)∥ ≤ ∥w2 (s) − w2 (c) − U (c, s) + U (c, c)∥ + ∥w1 (c) − w1 (¯ s)∥ − U (c, c) + U (c, s¯)∥. Therefore ∑
∥u(t) − u(t¯) − U (τ, t) + U (τ, t¯)∥ C [ ∑ ≤ ∥w1 (t) − w1 (t¯) − U (τ, t) + U (τ, t¯)∥ C;[t¯,t] ⊂ [a,c]
] + ∥w1 (c) − w1 (¯ s) − U (c, c, + U (c, s¯)∥ [ + ∥w2 (s) − w2 (c) − U (c, s) + U (c, c)∥ ] ∑ + ∥w2 (t) − w2 (t¯) − U (τ, t) + U (τ, t¯)∥ ¯ C;[t,t] ⊂ [c,b ] ≤ 2 ε.
(14.18)
October 31, 2011
17:19
World Scientific Book - 9in x 6in
jk
Generalized Ordinary Differential Equations
88
By (14.17) and (14.18) ∑ ∥u(t) − u(t¯) − U (τ, t) + U (τ, t¯)∥ ≤ 2 ε. C
U is SKH-integrable on [a, b ] and u is its primitive. b : [−1, 1] → {0, 1} be defined by 14.14. Remark. Let H, H { { 0 for − 1 ≤ t ≤ 0, 0 for − 1 ≤ t < 0, b H(t) = H(t) = 1 for 0 < t ≤ 1, 1 for 0 ≤ t ≤ 1. Then
∫
0
(R) ∫
b dH = 0, H
−1 1
but (R)
∫
1
(R)
b dH = 1, H
0
b dH does not exist. On the other hand, H
−1
∫
1
(SKH) −1
b ) H(t)) = 1 Dt (H(τ
(cf. Lemma 14.13 and Remark 14.12). Of course, ∫ 0 ∫ 0 ∫ b ) H(t)) = (R) b dH(t) = (R) (SR) Dt (H(τ H(t) −1
−1
0
b dH H
etc.
−1
14.15. Theorem. The three conditions below are equivalent: ∫
T
(i) u(T ) − u(S) = (SKH)
Dt U (τ, t) for [S, T ] ⊂ [a, b ], S
(ii) U is SKH-integrable on [a, b ] and u is its primitive, (iii) for ε > 0 there exists δ : [a, b ] → R+ such that ∑ ∥u(t) − u(t¯) − U (τ, t) + U (τ, t¯)∥ ≤ ε A
if A = {([t¯, t], τ )} is a δ-fine partition of [a, b ]. ∫T Proof. Let (i) hold. Then (SKH) S Dt U (τ, t) exists for [S, T ] ⊂ [a, b ], i.e. U is SKH-integrable on [a, b ] and u : [a, b ] → X is an SKH-primitive of U. Hence (ii) is valid. Let (ii) hold. Then (iii) is valid by Definition 14.5. Let (iii) hold. Then (i) is true by Definitions 14.5 and 14.10.
October 31, 2011
17:19
World Scientific Book - 9in x 6in
jk
SKH-integration of functions of a pair of coupled variables
89
14.16. Remark. Let a ≤ S < T ≤ b and let U be SKH-integrable on [S, T ], u being its primitive. It is convenient to put ∫ S ∫ T (SKH) Dt U (τ, t) = −(SKH) Dt U (τ, t) = u(S)−u(T ), T S (14.19) ∫ S (SKH) Dt U (τ, t) = 0. S
14.17. Lemma. Let U be SKH-integrable on [a, b ], u : [a, b ] → X being its primitive. Then u(T ) − u(σ) − U (σ, T ) + U (σ, σ) → 0
for T → σ.
(14.20)
Proof. Let ε > 0 and let δ : [a, b ] → R+ correspond to ε by Theorem 14.15 (iii). Let a ≤ σ < T ≤ σ + δ(σ) ≤ b. By Lemma 14.4 there exists a δ-fine partition T = {([t¯, t], τ )} of [a, b ] such that ([σ, t], σ) ∈ T . Then ∥u(T ) − u(σ) − U (σ, T ) + U (σ, σ)∥ ∑ ≤ ∥u(t) − u(t¯) − U (τ, t) + U (τ, t¯)∥ ≤ ε . T
Similarly if a < σ − δ(σ) ≤ T < σ ≤ b then ∥u(T ) − u(σ) − U (σ, T ) + U (σ, σ)∥ ≤ ε .
Hence (14.20) holds. The proof is complete. 14.18. Corollary. u(σ+) exists if and only if U (σ, σ+) exists and then u(σ+) − u(σ) = U (σ, σ+) − U (σ, σ) .
(14.21)
Let a ≤ S < T ≤ b and let u(S+) exist. The equation u(T ) − u(S) = u(T ) − u(S + ) + u(S + ) − u(S) can be written in the form ∫ T ∫ (SKH) Dt U (τ, t) = (SKH) S
T
∫ Dt U (τ, t)+(SKH)
S+
where
∫
S+
Dt U (τ, t) (14.22) S
S+
Dt U (τ, t) = U (S, S + ) − U (S, S).
(SKH) S
(14.23)
October 31, 2011
17:19
World Scientific Book - 9in x 6in
jk
Generalized Ordinary Differential Equations
90
Similarly u(σ−) exists if and only if U (σ, σ−) exists and u(σ) − u(σ−) = U (σ, σ) − U (σ, σ−) . Let u(T −) exist. Then ∫ T ∫ (SKH) Dt U (τ, t) = (SKH) S
∫ Dt U (τ, t)+(SKH)
T− S
where
∫
(14.24)
T
Dt U (τ, t) (14.25)
T−
T
(SKH) T−
Dt U (τ, t) = U (T, T ) − U (T, T −).
(14.26)
In particular, u is continuous at σ if and only if U (σ, .) is continuous at σ. 14.19 . Lemma. Let [a, b ] ⊂ R, let Φ : [a, b ] → R be nondecreasing and let U fulfil ∥U (τ, t) − U (τ, t¯)∥ ≤ Φ(t) − Φ(t¯)
for (τ, t), (τ, t¯) ∈ Dom U.
Assume that U is SKH-integrable and that u : [a, b ] → X is its primitive. Then ∥u(T ) − u(S)∥ ≤ Φ(T ) − Φ(s) Proof.
for T, S ∈ [a, b ].
(14.27)
Let a ≤ S < T ≤ b. For ε > 0 there exists δ : [a, b ] → R+ such that ∑ ∥u(t) − u(t¯) − U (τ, t) + U (τ, t¯)∥ ≤ ε, T
T being a δ-fine partition of [S, T ]. Hence ∑ ∥u(T ) − u(S)∥ ≤ ∥u(t) − u(t¯)∥ ≤
∑
T
∥U (τ, t) − U (τ, t¯)∥ + ε ≤ Φ(T ) − Φ(s) + ε
T
and (14.27) holds since ε is arbitrary positive. The proof is complete.
14.20. Theorem. Let U be SKH-integrable on [S, b ] for a < S < b, w ∈ X and ∫ b ( ) (14.28) lim −(SKH) Dt U (τ, t)+w−U (a, S)+U (a, a) = 0. S→a
S
October 31, 2011
17:19
World Scientific Book - 9in x 6in
SKH-integration of functions of a pair of coupled variables
jk
91
Then U is SKH-integrable on [a, b ] and ∫ (SKH)
b
Dt U (τ, t) = w. a
Proof.
Let ∫ b − (SKH) Dt U (τ, t) for a < S ≤ b, u(S) = S − w for S = a.
(14.29)
Then ∫
b
u(b) = 0, u(b) − u(S) = (SKH)
Dt U (τ, t) for a < S ≤ B S
and u is an SKH-primitive of U on [S, b ] for a < S < b. Put ai = a + (b−a) 2−i for i ∈ N0 . There exist δi : [ai , b ] → R+ for i = 2, 3, 4, . . . such that ∑ ∥u(t) − u(t¯) − U (τ, t) + U (τ, t¯)∥ ≤ ε 2−i−2 (14.30) A
for a δi -fine system A in [ai+2 , b ] (cf. Lemma 14.4). By (14.28) there exists ξ, a < ξ < b, such that ∫ b
ε
for a < S ≤ ξ.
−U (a, S) + U (a, a) − (SKH) Dt U (τ, t) + w ≤ 2 S Hence ∥u(S) − u(a) − U (a, S) + U (a, a)∥ ≤
ε 2
(14.31)
since (cf. (14.29)) u(S) − u(a) − U (a, S) + U (a, a) ∫ b = −(SKH) Dt U (τ, t) + w − U (a, S) + U (a, a). S
There exists δ : [a, b ] → R fulfilling +
ξ δ(τ ) =
for τ = a,
min{(b − a) 2−i−2 , δi (τ )} for ai+1 < τ ≤ ai , i ∈ N0 .
(14.32)
November 21, 2011
9:58
World Scientific Book - 9in x 6in
jk
Generalized Ordinary Differential Equations
92
If a < τ ≤ b then there exists a unique i ∈ N0 such that ai+1 < τ ≤ ai ,
ai+2 = ai+1 −
b−a < τ − δ(τ ), 2i+2
[τ − δ(τ ), b] ⊂ [ai+2 , b] .
(14.33)
Let A = {([t¯, t], τ )} be a δ-fine partition of [a, b ]. (14.32) implies that there exists ([a, S], a) ∈ A, a < S ≤ ξ. Let Ak = {([t¯, t], τ ) ∈ A ; ak+1 < τ ≤ ak } for k ∈ N0 . If ([t¯, t], τ ) ∈ Ak , then τ ∈ [ak+1 , ak ], [t¯, t] ⊂ [ak+2 , b ] and by (14.30) ∑ ∥u(t) − u(t¯) − U (τ, t) + u(τ, t¯)∥ ≤ ε 2−k−2 . (14.34) Ak
Moreover, A = {([a, S], a)} ∪
∞ ∪
Ak .
k=0
Hence (cf. (14.26), (14.24)) ∑ ∥u(t) − u(t¯) − U (τ, t) + U (τ, t¯)∥ A
= ∥u(S) − u(a) − U (S, a) + U (a, a)∥ ∞ ∑ ∑ + ∥u(t) − u(t¯) − U (τ, t) + U (τ, t¯)∥ k=0 Ak
which implies that U is SKH-integrable on [a, b ], that u is its primitive and ∫ b (SKH) Dt U (τ, t) = u(b) − u(a) = w . a 14.21 . Remark. Theorem 14.20 is an extension of Hake’s theorem (cf. [Schwabik, Ye (2005)], Theorem 3.4.5 and Remark) to the integration of functions of a pair of coupled variables. The next theorem is an analogue of Theorem 14.20 and can be proved in a similar way. 14.22. Theorem. Let U be SKH-integrable on [a, T ] for a < T < b, x ∈ X and let ∫ T ( ) lim − (SKH) Dt U (τ, t) + w + U (b, t) − U (b, b) = 0 . T →b
a
October 31, 2011
17:19
World Scientific Book - 9in x 6in
jk
SKH-integration of functions of a pair of coupled variables
93
Then U is SKH-integrable on [a, b ] and ∫ b (SKH) Dt U (τ, t) = w. a
14.23. Remark. Let f : [a, b ] → X and U (τ, t) = f (τ ) t
for (τ, t) ∈ [a, b ] 2 .
Then f is called SKH-integrable on [a, b ] if U is SKH-integrable on [a, b ] ∫ b ∫ b and (SKH) f (t) dt is written instead of (SKH) Dt U (τ, t). Furthermore, a
a
u is called an SKH-primitive of f if u is a primitive of U. Therefore f is SKH-integrable on [S, T ] and u is its primitive if and only if for every ε > 0 there exists δ : [a, b ] → R+ such that ∑ ∥f (τ )(t − t¯) − u(t) + u(t¯)∥ ≤ ε (14.35) A
for every δ-fine partition A = {([t¯, t], τ )} of [S, T ]. Moreover, ∫ b (SKH) f (t) dt = u(b) − u(a). a
14.24. Lemma. Let Q ⊂ [a, b ], |Q| = 0, h : Q → R+ 0 , ε > 0. Then there exists ξ : Q → R+ such that ∑ h(τ ) (t − t¯) ≤ ε A
if A = {([t¯, t], τ )} is a ξ-fine Q-anchored system in [a, b ]. Hint. Let Q0 = ∅, Qj = {t ∈ Q ; h(t) ≤ 2j }, j ∈ N. There exist open sets Gj ⊂ R, j ∈ N, such that Qj ⊂ Gj , |Gj | ≤ ε 2−2 j . Let (t − ξ(t), t + ξ(t)) ⊂ Gj for t ∈ Qj \ Qj−1 . Then ξ does the job. 14.25. Theorem. Let f : [a, b ] → X, u : [a, b ] → X. Then f is SKH -integrable and u is its primitive on [a, b ]
(14.36)
if and only if there exists Q ⊂ [a, b ] such that |Q| = 0, d u(t) = f (t) dt and
for t ∈ [a, b ] \ Q,
(14.37)
October 31, 2011
17:19
World Scientific Book - 9in x 6in
jk
Generalized Ordinary Differential Equations
94
for each ε > 0 there exists δ4 : [a, b ] → R+ such that ∑ ∥u(t) − u(t¯)∥ ≤ ε for each A
δ4 -fine Q-anchored system A = {([t¯, t], τ )} in [a, b ].
(14.38)
Proof. Let (14.37) and (14.38) hold. Then for every ε > 0 there exists δ1 : [a, b ] → R+ such that ∑
∥u(t) − u(t¯) − f (τ ) (t − t¯)∥+
([t¯,t],τ ) ∈ A, τ ∈ [a,b ]\Q
∑
∥u(t) − u(t¯)∥ ≤
([t¯,t],τ ) ∈ A, τ ∈Q
ε 2
for every δ1 -fine partition A = {([t¯, t], τ )} of [a, b ]. Moreover (cf. Lemma 14.24), there exists δ2 : [a, b ] → R+ such that ∑ C
∥f (τ )∥(t − t¯) ≤
ε 2
for every δ2 -fine Q-anchored system C = {([t¯, t], τ )} in [a, b ]. Hence ∑ ∥f (τ ) (t − t¯) − u(t) + u(t¯)∥ ≤ ε A
for a δ-fine partition A = {([t, t¯], τ )} of [a, b ] where δ(τ ) = δ1 (τ ) if τ ∈ [a, b ] \ Q and δ(τ ) = δ2 (τ ) if τ ∈ Q. On the other hand, let (14.36) hold. By Theorem 7.4.2 in [Schwabik, Ye (2005)] there exists Q such that (14.37) holds. Let ε > 0. By Lemma 14.24 there exists δ4 : [a, b ] → R+ which fulfils ∑ ∥f (τ )∥ (t − t¯) ≤ 21 ε (14.39) A
for every δ4 -fine Q-anchored system A = {([t¯, t], τ )} in [a, b ]. (14.38) is correct. 14.26 . Remark. The concept of a real-valued ACG∗ function was extended to Banach-valued functions in a natural way (see [Schwabik, Ye (2005)], Definition 7.1.5 (d)). By [Schwabik, Ye (2005)], Theorem 7.4.5, the function f : [a, b ] → X is SKH-integrable on [a, b ] and v : [a, b ] → X is its primitive if and only if v is continuous and ACG∗ on [a, b ] such that dv (t) = f (t) almost everywhere in [a, b ]. dt
October 31, 2011
17:19
World Scientific Book - 9in x 6in
SKH-integration of functions of a pair of coupled variables
jk
95
Observe that the set of primitives is the set of continuous ACG∗ functions. 14.27. Remark. If φ : [a, b ] → R is Lebesgue integrable, c ∈ [a, b ], ∫ t u(t) = (L) φ(s) ds (Lebesgue integral) for t ∈ [a, b ] c
then (14.37), (14.38) are fulfilled and, by Theorem 14.25, φ is SKH-integrable on [a, b ] and ∫ t ∫ t (SKH) φ(s) ds = (L) φ(s) ds, t ∈ [a, b ]. c
c
This page intentionally left blank
October 31, 2011
17:19
World Scientific Book - 9in x 6in
jk
Chapter 15
Generalized differential equations: Strong Kurzweil Henstock solutions
15.1. Notation. Let Dom G ⊂ X × R2 , δ0 : [a, b ] → R , +
G : Dom G → X,
[a, b ] ⊂ R,
u : [a, b ] → X,
(u(τ ), τ, t) ∈ Dom G for τ, t ∈ [a, b ], τ − δ0 (τ ) ≤ t ≤ τ + δ0 (τ ). 15.2. Definition. u is an SKH-solution of d x = Dt G(x, τ, t) dt
(15.1)
on [a, b ] if ∫ T u(T ) − u(S) = (SKH) Dt G(u(τ ), τ, t) for [S, T ] ⊂ [a, b ].
(15.2)
S
15.3. Theorem. The following three assertions are equivalent: (i)
u is an SKH-solution of (15.1),
(ii)
U is SKH-integrable on [a, b ] and u is its primitive, U (τ, t) = G(u(τ ), τ, t),
(iii)
for every ε > 0 there exists a δ : [a, b ] → R+ such that ∑ ∥u(t) − u(t¯) − G(u(τ ), τ, t) + G(u(τ ), τ, t¯)∥ ≤ ε, A
A = {([t¯, t], τ )} Proof.
being any δ-fine partition of [a, b ] .
The theorem is a consequence of Theorem 14.15. 97
October 31, 2011
17:19
World Scientific Book - 9in x 6in
jk
Generalized Ordinary Differential Equations
98
15.4. Theorem. If u is an SR-solution of (15.1) then it is an SKH-solution of (15.1). Proof. This is a consequence of Definitions 15.2 and 6.2 (cf. also Remark 14.12). 15.5. Lemma. Let u be an SKH-solution of (15.1) on [a, b ], [S, T ] ⊂ [a, b ]. Then u is an SKH-solution of (15.1) on [S, T ]. Proof.
This is a consequence of Corollary 14.8.
15.6. Lemma. Let a < c < b and let u be an SKH-solution of (15.1) on [a, c] and on [c, b ]. Then u is an SKH-solution of (15.1) on [a, b ]. Proof.
u is an SKH-solution of (15.1) on [a, b ] by Lemma 14.13.
15.7 . Lemma. Let u be an SKH-solution of (15.1)) on [a, b ], c ∈ [a, b ]. Assume that G(u(c), c, ·) is continuous at c. Then u is continuous at c. Proof.
u is continuous at c by Corollary 14.18.
15.8. Theorem. Let u : [a, b ] → X be an SKH-solution of (15.1) on [c, b ] for a < c < b. Assume that } u(S) − u(a) − G(u(a), a, S) + G(u(a), a, a) → 0 (15.3) for S → a, S > a . Then u Proof.
is an SKH-solution of (15.1) on [a, b ] .
(15.4)
Put U (τ, t) = G(u(τ ), τ, t) for τ, t ∈ [a, b ], |t − τ | ≤ δ0 (τ ) .
Then
∫
b
u(c) = u(b) −(SKH)
Dt U (τ, t) , c
since u is an SKH-solution of (15.1) on [c, b ]. Put w = u(b) − u(a). Then ∫ −(SKH)
b
U (τ, t) + w − U (a, c) + U (a, a) c
= u(c) − u(a) − G(u(a), a, c) + G(u(a), a, a) .
October 31, 2011
17:19
World Scientific Book - 9in x 6in
Generalized differential equations: SKH-solutions
jk
99
Hence (14.28) is fulfilled by (15.3).
∫ b Theorem 14.20 implies that (SKH) Dt G(u(τ ), τ, t) exists and equals
u(b) − u(a). Theorem 15.8 is correct.
a
15.9. Remark. Theorem 15.8 is an extension of Hake’s theorem to SKHsolutions of (15.1), cf. Remark 14.21. b > 0. Assume that the functions 15.10. Lemma. Let R b × [−b, −a] 2 → X, G : B(R)
b × [a, b ] 2 → X , H : B(R)
b u : [−b, −a] → B(R),
b , w : [a, b ] → B(R)
δ : [−b, −a] → R ,
ρ : [a, b ] → R+
+
are coupled by the relations G(x, τ, t) = H(x, σ, s), τ = −σ,
t = −s
u(τ ) = w(σ),
δ(τ ) = ρ(σ) ,
b τ, t ∈ [a, b ] . for x ∈ B(R),
Then u is an SKH-solution of (15.1) on [−b, −a] if and only if w is an SKH-solution of d x = Ds H(x, σ, s) (15.5) ds on [a, b ]. Proof.
Let the sets
{t0 , τ1 , t1 , τ2 . . . , τk , tk } ⊂ [−b, −a],
{s0 , σ1 , s1 , σ2 , . . . , σk , sk } ⊂ [a, b ]
be coupled by si = −ti for i = 0, 1, . . . , k,
σi = −τi for i = 1, 2, . . . , k .
Then {([ti−1 , ti ], τi ) ; i = 1, 2, . . . , k} is a δ-fine partition of [−b, −a] if and only if {([si , si−1 ], σi ) ; i = 1, 2, . . . , k} is a ρ-fine partition of [a, b ]. Moreover, ∥u(ti ) − u(ti−1 ) − G(u(τi ), τi , ti ) + G(u(τi ), τi , ti−1 )∥ = ∥w(si−1 ) − w(si ) − H(w(σi ), σi , si−1 ) + H(w(σi ), σi , si )∥ and the lemma is correct.
October 31, 2011
17:19
World Scientific Book - 9in x 6in
jk
Generalized Ordinary Differential Equations
100
15.11. Remark. Let Dom g ⊂ X× R, u : [a, b ] → X and let (u(t), t) ∈ Dom g for t ∈ [a, b ]. Then u is called an SKH-solution of d x = g(x, t) dt
(15.6)
on [a, b ] if (cf. Remark 14.23) ∫ T u(T ) − u(S) = (SKH) g(u(t), t) dt for [S, T ] ⊂ [a, b ] .
(15.7)
S
15.12. Theorem. u is an (SKH)-solution of (15.6) on [a, b ] if and only if there exists Q ⊂ [a, b ] such that |Q| = 0, (15.8) d u(t) = g(u(t), t) for t ∈ [a, b ] \ Q dt and for each ε > 0 there exists δ4 : [a, b ] → R+ such that ∑ ∥u(t) − u(t¯)∥ ≤ ε for each δ4 −fine A
Q−anchored system A = {([t¯, t], τ )} in [a, b ] . This is a consequence of Theorem 14.25.
(15.9)
October 31, 2011
17:19
World Scientific Book - 9in x 6in
jk
Chapter 16
Uniqueness
16.1. Notation. Let a, b, c fulfil (12.2). Assume that G : B(8R) × [a, c] 2 → X
fulfils (8.2)–(8.7) .
(16.1)
16.2. Theorem. Let [S, T ] ⊂ [a, b ] and let w : [S, T ] → B(4R) be an SKHsolution of (8.8). Then there exists a unique z ∗ ∈ B(5R) such that w(s) = z ∗ W (a, s) Proof.
for s ∈ [S, T ] .
(16.2)
By Theorem 12.10 there exists a z ∗ ∈ B(5R) such that w(S) = z ∗ W (a, S) .
(16.3)
z ∗ is unique by (12.8) and (12.1). Let 0 < ε < 31 , S < s ≤ T. By Theorem 15.3 there exists δ1 : [S, T ] → R+ such that ∑ ∥w(t) − w(t¯) − G(w(τ ), τ, t) + G(w(τ ), τ, t¯)∥ ≤ ε (16.4) A
for every δ1 -fine partition A = {([t¯, t], τ )} of [S, s]. Moreover, by Lemma 12.7 there exists η, 0 < η < s − S such that ∥x W (a, t) − x W (a, t¯) −G(x W (a, τ ), τ, t) + G(x W (a, τ ), τ, t¯)∥ (16.5) −1 ≤ ε (t − t¯) (b − a) if a ≤ t¯≤ τ ≤ t ≤ s, [t¯, t] ⊂ [τ − η2 , τ + η2 ] . 101
October 31, 2011
17:19
World Scientific Book - 9in x 6in
jk
Generalized Ordinary Differential Equations
102
Put
{ } δ2 (τ ) = min δ1 (τ ), η2 , 12 (τ − S), 12 (s − τ ) {
for S < τ < s ,
}
(16.6)
δ2 (S) = min δ1 (S), η2 , { } δ2 (s) = min δ1 (s), η2 .
By Lemma 14.4 there exists a δ2 -fine partition C = {([ti−1 , ti ], τi ) ; i = 1, 2, . . . , k} of [S, s], i.e. S = t0 ≤ τ1 ≤ t1 ≤ τ2 ≤ . . . ≤ tk−1 ≤ τk ≤ tk = s, t0 < t1 < · · · < tk−1 < tk . (16.6) implies that S < τ − δ2 (τ ) < τ + δ2 (τ ) < s if S < τ < T so that S = t0 = τ1 < t1 , tk−1 < τk = tk = s .
(16.7)
By Theorem 12.10 there exist zi ∈ B(5R) such that zi W (a, τi ) = w(τi ),
i = 1, 2, . . . , k .
Observe that z ∗ = z1 .
(16.8)
ui (t) = zi W (a, t) for t ∈ [a, b ], i = 1, 2, . . . , k .
(16.9)
Put By Theorem 12.10, ui are SR-solutions of (8.8) fulfilling ui (τi ) = w(τi ),
i = 1, 2, . . . , k .
(16.10)
Partition C is modified to D = {([ti−1 , τi ], τi ), ([τi , ti ], τi ),
i = 1, 2, . . . , k}
which again is a δ2 -fine partition of [S, s]. Put Λi = ∥w(ti ) − w(τi ) − G(w(τi ), τi , ti ) + G(w(τi ), τi , τi )∥,
} (16.11)
i = 1, 2, . . . , k − 1 ,
λi = ∥w(ti ) − w(τi+1 ) − G(w(τi+1 ), τi+1 , ti ) + G(w(τi+1 ), τi+1 , τi+1 )∥, i = 1, 2, . . . , k − 1 .
} (16.12)
October 31, 2011
17:19
World Scientific Book - 9in x 6in
jk
Uniqueness
103
Then k−1 ∑
(Λi + λi ) ≤ ε
(16.13)
i=1
since D is δ2 -fine. Moreover, (cf. (16.5)) ∥ui (ti ) − ui (τi ) − G(ui (τi ), τi , ti ) + G(ui (τi ), τi )∥ ≤ε
ti − τ i , b−a
i = 1, 2, . . . , k − 1 ,
∥ui+1 (ti ) − ui+1 (τi+1 ) −G(ui+1 (τi+1 ), τi+1 , ti ) + G(ui+1 (τi+1 ), τi+1 , τi+1 )∥ τi+1 − ti ≤ε , b−a
i = 1, 2, . . . , k − 1 .
(16.14)
(16.15)
(16.11) and (16.14) imply that ∥w(ti ) − ui (ti )∥ ≤ Λi + ε
ti − τ i , b−a
i = 1, 2, . . . , k − 1
(16.16)
since ui (τi ) = w(τi ). Similarly (16.12) and (16.15) imply that ∥w(ti ) − ui+1 (ti )∥ ≤ λi + ε
τi+1 − ti , b−a
i = 1, 2, . . . , k − 1
(16.17)
since ui+1 (τi+1 ) = w(τi+1 ). By (16.13), (16.16), (16.17) ∥ui (ti ) − ui+1 (ti )∥ ≤ ε + ε
τi+1 − τi 2 ≤ , b−a 3
i = 1, 2, . . . , k − 1
(16.18)
since ε < 13 . By (12.10), where S = a, t = ti , v = ui (a) = zi , v¯ = ui+1 (a) = zi+1 , v W (a, ti ) = ui (ti ),
v¯ W (a, ti ) = ui+1 (ti ) ,
we have ∥u( ti ) − ui+1 (ti )∥ ∥ui (a) − ui+1 (a)∥ ≤ 1 − ψ2 (t − S) − B (2 (t − S)) ( 3 τi+1 − τi ) ≤ Λ i + λi + ε , i = 1, 2, . . . , k − 1 , 2 b−a
(16.19)
and ∥u1 (a) − uk (a)∥ ≤
3 2ε = 3ε 2
(16.20)
October 31, 2011
17:19
World Scientific Book - 9in x 6in
jk
Generalized Ordinary Differential Equations
104
(cf. (16.13), (12.1)), (12.2)). Finally, u1 (a) = z1 = z ∗ (cf. (16.8)) , uk (a) = zk , ∥zk − z ∗ ∥ ≤ 3 ε , zk W (a, s) = uk (s) = w(s) and (cf. (12.8)) ∥z ∗ W (a, s) − zk W (a, s)∥ ≤
4 ∗ ∥z − zk ∥ ≤ 4 ε , 3
i.e., ∥z ∗ W (a, s) − w(s)∥ ≤ 4 ε , which proves (16.2).
16.3. Remark. Every (local) SKH-solution u of (8.8) is by Theorem 16.2 an SR-solution of (8.8) and is uniquely determined by the Cauchy condition u(s) = y.
October 31, 2011
17:19
World Scientific Book - 9in x 6in
jk
Chapter 17
Differential equations in classical form
17.1. Notation. Dom g ⊂ X × R, g : Dom g → X, [a, b ] ⊂ R, u : [a, b ] → X, (u(τ ), τ ) ∈ Dom g for τ ∈ [a, b ]. 17.2. Definition. u is an SKH-solution of x˙ = g(x, t) if
(17.1)
∫ T u(T ) − u(S) = (SKH) g(u(t), t) dt for [S, T ] ⊂ [a, b ] .
(17.2)
S
17.3. Theorem. The seven conditions below are equivalent. (i) u is an SKH-solution of (17.1), ∫ T (ii) u(T ) − u(S) = (SKH) Dt U (τ, t), where S
U (τ, t) = g(u(τ ), τ ) t for τ, t ∈ [a, b ], a ≤ S < T ≤ b, (iii) U is SKH-integrable on [a, b ], u being its primitive, (iv) for every ε > 0 there exists a δ : [a, b ] → R+ such that ∑ ∥u(t) − u(t¯) − g(u(τ ), τ ) (t − t¯)∥ ≤ ε, A
A being any δ-fine partition of [a, b ], (v) there exists Q ⊂ [a, b ], |Q| = 0 such that du (t) = g(u(t), t) dt 105
for t ∈ [a, b ] \ Q
(17.3)
October 31, 2011
17:19
World Scientific Book - 9in x 6in
jk
Generalized Ordinary Differential Equations
106
and for every ε > 0
there exists a δ1 : [a, b ] → R+
such that ∑ ¯ A ∥u(t) − u(t )∥ ≤ ε if A = {([t¯, t], τ ]} is a δ1 − fine Q − anchored system in [a, b ] ,
(17.4)
(vi) g(u(t), t) is SKH-integrable on [a, b ] and u is its primitive, (vii) u is continuous and ACG∗ on [a, b ] and du (t) = g(u(t), t) dt almost everywhere. Proof. (i) and (ii) are equivalent since U (τ, t) = g(τ ) t. (ii)–(iv) are equivalent by Theorem 15.3. (iii) and (v) are equivalent by Theorem 14.25. (ii) and (vi) are equivalent since ∫ (SKH)
T
S
∫ g(u(s), s) ds = (SKH)
T
Dt U (τ, t)
for [S, T ] ⊂ [a, b ]
S
by Remark 14.23. (vi) and (vii) are equivalent by Remark 14.26.
17.4 . Theorem. Assume that a < T ≤ b, that u : [a, b ] → X is an SKHsolution of (17.1) on [S, T ] for a < S < T and that u(a) = lim u(S) .
(17.5)
S→a
Then u is an SKH-solution of (17.1) on [a, T ]. Proof.
Put Dom G = (Dom g) × R, G(x, τ, t) = g(x, τ ) t.
By Theorem 17.3 (i) and (ii), u is an SKH-solution of the GODE d x = Dt G(x, τ, t) dt
(17.6)
on [S, T ] for a < S < T. Then condition (15.3) is fulfilled since G(u(a), a, c) → G(u(a), a, a)
for c → a
October 31, 2011
17:19
World Scientific Book - 9in x 6in
Differential equations in classical form
jk
107
and (17.5) holds. By Theorem 15.8 u is an SKH-solution of (17.6) on [a, T ]. By Theorem 17.3 (i) and (ii), u is an SKH-solution of (17.1) on [a, T ]. 17.5 . Lemma. Let u : [a, b ] → X, a < c < b and let the restrictions u|[a,c] , u|[c,b ] be SKH-solutions of (17.1) on [a, c] and on [c, b ] respectively. Then u is an SKH-solution of (17.1) on [a, b ]. Proof. u is an SKH-solution of (17.1) by Lemma 15.6 and Theorem 17.3 (i), (ii). 17.6. Theorem. Let Dom G ⊂ X × R2 , G : Dom G → X, δ0 : [a, b ] → R+ , u : [a, b ] → X, Dom g ⊂ X × R, g : Dom g → X, (u(τ ), τ, t) ∈ Dom G (u(τ ), τ ) ∈ Dom g
for τ, t ∈ [a, b ], |t − τ | ≤ δ0 (τ ) ,
for τ ∈ [a, b ] ,
(17.7) (17.8)
(u(τ ), τ ) ∈ Dom g for τ ∈ [a, b ], Q ⊂ [a, b ], |Q| = 0. Assume that ∂ G(u(τ ), τ, t)|t=τ = g(u(τ ), τ ) ∂t
for τ ∈ [a, b ] \ Q,
(17.9)
and for every ε > 0 there exists δ : [a, b ] → R+ such that ∑
∥G(u(τ ), τ, t) − G(u(τ ), τ, t¯)∥ ≤ ε ,
(17.10)
A
A = {([t¯, t], τ )} being a δ-fine Q-anchored system in [a, b ]. Then u is an SKH-solution of (17.1) if and only if u is an SKH-solution of the GODE d (17.11) x = Dt G(x, τ, t) . dt Proof.
Put W (τ, t) = g(u(τ ), τ ) t − G(u(τ ), τ, t)
(17.12)
for τ, t ∈ [a, b ], |t − τ | ≤ δ0 (τ ). Let A = {([t¯, t], τ )} be a δ0 -fine partition of [a, b ]. Then ∑ ∥W (τ, t) − W (τ, t¯)∥ ≤ Θ1 + Θ2 + Θ3 (17.13) A
October 31, 2011
17:19
World Scientific Book - 9in x 6in
jk
Generalized Ordinary Differential Equations
108
where Θ1 =
∑
∥g(u(τ ), τ )(t − t¯) − G(u(τ ), τ, t) + G(u(τ ), τ, t¯)∥ ,
A;τ ∈Q /
Θ2 =
∑
∥g(u(τ ), τ ) (t − t¯)∥ ,
τ ∈Q
Θ3 =
∑
∥G(u(τ ), τ, t) − G(u(τ ), τ, t¯)∥ .
τ ∈Q
Let ε > 0. By (17.9) there exists δ1 : [a, b ] → R+ such that ∥G(u(τ ), τ, t) − G(u(τ ), τ, t¯) − g(u(τ ), τ ) (t − t¯)∥ ≤ ε
t − t¯ b−a
if τ ∈ [a, b ] \ Q, t, t¯∈ [a, b ], τ − δ1 (τ ) ≤ t¯ ≤ τ ≤ t ≤ τ + δ1 (τ ). Hence ∥Θ1 ∥ ≤ ε if A is δ1 − fine .
(17.14)
By Lemma 14.24 there exists δ2 : [a, b ] → R+ such that ∥Θ2 ∥ ≤ ε if A is δ2 − fine .
(17.15)
By (17.10) there exists δ3 : [a, b ] → R+ such that ∥Θ3 ∥ ≤ ε if A is δ3 − fine .
(17.16)
Let δ4 (τ ) = min{δ1 (τ ), δ2 (τ ), δ3 (τ )} for τ ∈ [a, b ]. By (17.13)–(17.16) ∑ ∥W (τ, t) − W (τ, t¯)∥ ≤ 3 ε if A is δ4 − fine . A
Hence
∫ (SKH)
b
Dt W (τ, t) = 0 a
and Theorem 17.6 is correct. The next lemma is a consequence of Lemma 15.10. b > 0. Assume that functions 17.7. Lemma. Let R b × [−b, −a] → X, g : B(R)
b × [a, b ] → X , f : B(R)
b u : [−b, −a] → B(R),
b , w : [a, b ] → B(R)
δ : [−b, −a] → R+ ,
δb : [a, b ] → R+
October 31, 2011
17:19
World Scientific Book - 9in x 6in
Differential equations in classical form
jk
109
are coupled by the relations g(x, τ ) = −f (x, σ), b δ(τ ) = δ(σ)
u(τ ) = w(σ),
b σ = −τ, τ ∈ [a, b ] . for x ∈ B(R),
Then u is an SKH-solution of (17.1) on [−b, −a] if and only if w is an SKH-solution of x˙ = f (x, t) on [a, b ].
(17.17)
This page intentionally left blank
November 21, 2011
9:58
World Scientific Book - 9in x 6in
jk
Chapter 18
On a class of differential equations in classical form b ∈ R+ , 18.1. Notation. Let α, β, η, ν, R b × (R \ {0}) → X, h : B(R)
b × (R \ {0}) → X . H : B(R)
Assume that 1 ≤ α < 1 + 21 β,
η = min{1, 2 + β − 2 α} ,
(18.1)
h, D1 H, D2 H are continuous (cf. Notation 3.1) , D2 H(x, t) =
(18.2)
∂ b t ∈ R \ {0} , H(x, t) = h(x, t) for x ∈ B(R), ∂t
∥h(x, t)∥ ≤ ν, ∥∆v h(x, t)∥ ≤ ∥v∥ ν
(18.3) } (18.4)
b t ∈ R \ {0} , for x, x + v ∈ B(R), ∥H(x, t)∥ ≤ ν, ∥∆v H(x, t)∥ ≤ ∥v∥ ν, ∥∆v D1 H(x, t)∥ ≤ ∥v∥ ν b t ∈ R \ {0} , for x, x + v ∈ B(R), b 0
} (18.5)
(18.6)
18.2. Remark. In this chapter couples (β, α) ∈ (R+ )2 are found such that SKH-solutions of x˙ = g(x, t)
(18.7)
exist on intervals [−µ, µ], µ > 0. We may expect that α may be large if β 111
October 31, 2011
17:19
World Scientific Book - 9in x 6in
jk
Generalized Ordinary Differential Equations
112
is large since x˙ = |t|−α sin |t|−β is a particular case of (18.7) and ∫
1
τ −α sin τ −β dτ
lim
t → 0+
t
exists if α < 1 + β. 18.3. Lemma. Let ξ ∈ R, ξ > − 1, 0 ≤ S < T ≤ 1. Then ∫
T
σξ d σ ≤ S
2+ξ (T − S)min{1,1+ξ} . 1+ξ
(18.8)
2+β −α (T − S) η , 1+β −α
(18.9)
3 + β − 2α (T − S) η . 2 + β − 2α
(18.10)
In particular, ∫
T
σ β−α d σ ≤ S
∫
T
σ 1+β−2α d σ ≤ S
Proof.
If ξ ≥ 0 then ∫
T
σ ξ dσ ≤ (T − S) . S
If −1 < ξ < 0 then ∫
∫
T
T −S
σ ξ dσ ≤ S
σ ξ dσ ≤
0
1 (T − S)1+ξ 1+ξ
and (18.8) holds. (18.9) and (18.10) follow from (18.8).
b be a (classical) 18.4 . Lemma. Let 0 < a < b ≤ 1 and let u : [a, b ] → B(R) solution of x˙ = t−α h(x, t−β ) . Then
∫
T
u(T ) − u(S) = S
σ −α h(u(σ), σ −β ) dσ
(18.11)
(18.12)
October 31, 2011
17:19
World Scientific Book - 9in x 6in
jk
On a class of differential equations in classical form
113
for a ≤ S < T ≤ b and u(T ) − u(S) =
1 1+β−α S H(u(S), S −β ) β 1 − T 1 + β − α H(u(T ), T −β ) β ∫ 1 + β − α T β−α + σ H(u(σ), σ −β ) dσ β S ∫ 1 T 1+β−2α + σ D1 H(u(σ), σ −β ) h(u(σ), σ −β ) dσ β S
(18.13)
for a ≤ S < T ≤ b, D1 H being the differential of H(x, t) with respect to x. Proof. (18.12) is an immediate consequence of (18.11). Further, (18.13) holds since d 1+β−α (t H(u(t), t−β )) = (1 + β − α) tβ−α H(u(t), t−β ) dt + t1+β−α D1 H(u(t), t−β ) u(t) ˙ − β t−α h(u(t), t−β ) and u(t) ˙ = t−α h(u(t), t−β ) .
b be a solution of 18.5. Lemma. Let 0 < a < b ≤ 1 and let u : [a, b ] → B(R) (18.11). Then ∥u(T ) − u(S)∥ ≤
2ν η T + κ1 (T − S) η β
for a ≤ S < T ≤ b
(18.14)
where κ1 =
ν ν2 3 + β − 2 α . (2 + β − α) + 2 β β 2+β −2α
(18.15)
Moreover, ∥u(S)∥ ≤ ∥u(T )∥ +
2ν η T + κ1 T η . β
(18.16)
November 21, 2011
9:58
World Scientific Book - 9in x 6in
jk
Generalized Ordinary Differential Equations
114
Proof.
Let a ≤ S < T ≤ b. By (18.13), (18.9), (18.10) ∫ T 2ν 1+β−α ν ∥u(T ) − u(S)∥ ≤ T + (1 + β − α) σ β−α dσ β β S ∫ ν 2 T 1+β−2 α + σ dσ β S 2 ν 1+β−α ≤ T + κ1 (T − S) η β
and (18.14) holds since 0 < η ≤ 2 + β − 2 α < 1 + β − α. (18.16) is a consequence of (18.14). 18.6. Lemma. Let 0 < c ≤ d ≤ 1, y ∈ X, ∥y∥ +
2ν η b. d + κ1 d η ≤ R β
(18.17)
Then there exists an SKH-solution u of (18.7) on [0, d ] such that u(c) = y. Moreover, lim u(t) exists. t → 0+
Proof. By classical results on ordinary differential equations there exist b such that u is a classical solution P, Q, 0 < P < c < Q ≤ d, u : [P, Q] → B(R) of (18.7), u(c) = y. By Lemma 18.5 ( ) ( ) 2ν 2ν η ∥u(t) − y∥ ≤ + κ1 t ≤ + κ1 d η for c ≤ t ≤ Q β β and
( ∥u(t) − y∥ ≤
) 2ν + κ1 c η β
for P ≤ t ≤ c .
By standard arguments and by (18.17) and Lemma 18.5 there exists a classical solution u of (18.7) such that u(t) is defined for 0 < t ≤ d, u(c) = y and ( ) 2ν ∥u(t)∥ ≤ ∥y∥ + + κ1 d η for 0 < t ≤ d , β ( ) (18.18) 2ν η ∥u(t) − u(S)∥ ≤ + κ1 S for 0 < t ≤ S ≤ d . β u is an SKH-solution of (18.7) on [a, d ] for 0 < a < d. (18.18) implies that lim u(t) exists. Define u(0) = lim u(t). Then u is an SKH-solution
t→0+
t→0+
of (18.7) on [0, d ] by Theorem 15.8.
October 31, 2011
17:19
World Scientific Book - 9in x 6in
jk
On a class of differential equations in classical form
115
18.7. Lemma. Let ν 1+β−α d ≤ β
0 < d ≤ 21 ,
1 2
(18.19)
b u : [0, d ] → B(R) b be SKH-solutions of (18.7). and let u : [0, d ] → B(R), Then } ∥u(T ) − u(T )∥ ≤ 3 ∥u(S) − u(S) ∥ exp(2 κ1 (T − S) η ) (18.20) for 0 ≤ S < T ≤ d . Proof.
u fulfils (cf. (18.13)) 1 1+β−α T H(u(T ), T −β ) β 1 = u(S) + S 1+β−α H(u(S), S −β ) β ∫ 1 + β − α T β−α + σ H(u(σ), σ −β ) dσ β S ∫ 1 T 1+β−2 α + σ D1 H(u(σ), σ −β ) h(u(σ), σ −β ) dσ . β S
u(T ) +
Subtracting the same equation with u replaced by u we obtain 1 1+β−α T [H(u(T ), T −β ) − H(u(T ), T −β )] β 1 = u(S) − u(S) + S 1+β−α [H(u(S), S −β ) − H(u(S), S −β )] β ∫ 1 + β − α T β−α + σ [H(u(σ), σ −β ) − H(u(σ), σ −β )] dσ β S ∫ 1 T 1+β−2 α + σ [D1 H(u(σ), σ −β ) h(u(σ), σ −β ) β S
u(T ) − u(T ) +
− D1 H(u(σ), σ −β )h(u(σ, σ −β )] dσ . Hence (cf. (18.5), (18.19)) 1 2
∥u(T ) − u(T )∥ ≤
3 2
∫
∥u(S) − u(S)∥ T
ν σ β−α ∥u(σ) − u(σ)∥ dσ (1 + β − α) β S ∫ 2 ν 2 T 1+β−2 α + σ ∥u(σ) − u(σ)∥ dσ . β S +
October 31, 2011
17:19
World Scientific Book - 9in x 6in
jk
Generalized Ordinary Differential Equations
116
Lemma A.1 implies (cf. also (18.9), (18.10), (18.15)) that (18.20) holds. b and let (18.16) hold. Then there exists 18.8. Lemma. Let y ∈ X, ∥y∥ < R b an SKH-solution u1 : [0, d ] → B(R) of (18.7) on [0, d ] fulfilling u1 (0) = y. Proof. By Lemma 18.6 there exists an SKH-solution vi of (18.7) on [0, d ], vi (d 2−i ) = y for i ∈ N. By Lemma 18.5 ∥vi+1 (d 2−i ) − vi+1 (d 2−i−i )∥ ≤ ( Hence ∥vi+1 (d 2−i ) − vi (d 2−i )∥ ≤
(
2ν + κ1 ) (d 2−i ) η . β
) 2ν + κ1 (d 2−i ) η β
since vi+1 (d 2−i−1 ) = y = vi (d 2−i ). By Lemma 18.7 ( ) ( ) 2ν ∥vi+1 (t) − vi (t)∥ ≤ 3 + κ1 d 2−i ) η exp(2 κ1 d η β for d 2−i ≤ t ≤ d, i ∈ N .
(18.21)
By Lemma 18.5 (
) 2ν ∥vi+1 (t) − vi+1 (d 2 )∥ ≤ + κ1 (d 2−i ) η , β ( ) 2ν −i ∥vi (t) − vi (d 2 )∥ ≤ + κ1 (d 2−i ) η , β −i
∥vi+1 (t) − vi (t)∥ ( ) 2ν ≤2 + κ1 (d 2−i ) η + ∥vi+1 (d 2−i ) − vi (d 2−i )∥ β ( ) 2ν ≤3 + κ1 (d 2−i ) η β for 0 < t ≤ d 2−i . The above inequalities hold for t = 0 as well since lim vi (t) exists for t→0+
i ∈ N. Hence
∥vi+1 (t) − vi (t)∥ ≤ 3 κ1 (d 2−i ) η for 0 ≤ t ≤ d 2−i , i ∈ N .
(18.22)
(18.21) together with (18.22) implies that the sequence vi , i ∈ N, is convergent uniformly on [0, d ]. Put u1 (t) = lim vi (t) for t ∈ [0, d ]. Obviously, u1 i→∞
is continuous and u1 (0) = y.
November 21, 2011
9:58
World Scientific Book - 9in x 6in
On a class of differential equations in classical form
jk
117
It remains to prove that u1 is an SKH-solution of (18.7). It is sufficient to prove that ∫ T u1 (T ) − u1 (S) = (SKH) g(u1 (t), t) dt (18.23) S
for 0 ≤ S ≤ T ≤ d (cf. (18.6) and Theorem 17.3 (i), (ii)). Equality (18.23) holds for 0 < S ≤ T ≤ d since g(u1 (t), t) is continuous for ∫ d 0 < t ≤ d. The integral (SKH) g(u1 (t), t) dt exists by Theorem 14.20 0
where U (τ, t) = g(u1 (τ ), τ ) t for τ ∈ [0, d ], t ∈ R, and w = u1 (d) − u1 (0) since U (u1 (0), t) = 0 and ∫ d ( ) lim − (SKH) g(u1 (t), t) dt + u1 (d) − u1 (0) S → 0+ S ( ) = lim −u1 (d)+u1 (S)+u1 (d)−u1 (0) = lim (u1 (S)−u1 (0)) = 0. S→0+
S→0+
(18.23) holds for 0 ≤ S ≤ T ≤ d and Lemma 18.8 is correct.
b and let (18.19) hold. Then there exists 18.9. Theorem. Let y ∈ X, ∥y∥ < R b an SKH-solution u : [−d, d ] → B(R) of (18.7) on [−d, d ] fulfilling u(0) = y. Moreover, u is unique. b Proof. By Lemma 18.8 there exists an SKH-solution u1 : [0, d ] → B(R) of (18.7) such that u1 (0) = y. Let b τ ∈ [0, 1] . f (x, τ ) = −g(x, −τ ) for x ∈ B(R), Lemma 18.8 may be applied to the equation x˙ = f (x, t)
(18.24)
since (cf. (18.6)) f (x, t) = −(−t)−α h(x, (−t)−β ) and h fulfils (18.2)–(18.5). Hence there exists an SKH-solution w of (18.23) on [0, d ] such that w(0) = y. Put u2 (τ ) = w(−τ ) for τ ∈ [−d, 0]. By Lemma 17.7 (where a = 0, b = d) u2 is an SKH-solution of (18.7) on [−d, 0], u2 (0) = y. Let u1 (t) if t ∈ [0, d ] , u(t) = u2 (t) if t ∈ [−d, 0] . u is an SKH solution of (18.7) on [−d, d ] by Lemma 15.6. The uniqueness of u1 is a consequence of Lemma 18.7. Similarly, also u2 is unique. Hence u is unique.
This page intentionally left blank
October 31, 2011
17:19
World Scientific Book - 9in x 6in
jk
Chapter 19
Integration and Strong Integration
19.1. Notation. Let Dom U ⊂ R2 , U : Dom U → X. 19.2. Definition. U is KH-integrable on [a, b ] if there exist δ0 : [a, b ] → R+ and Γ(a, b) ∈ X such that {(τ, t) ∈ [a, b ] 2 ; τ − δ0 (τ ) ≤ t ≤ τ + δ0 (τ )} ⊂ Dom U and for every ε > 0 there exists δ : [a, b ] → R+ such that ∑ ∥Γ(a, b) − (U (τ, t) − U (τ, t¯))∥ ≤ ε
(19.1)
(19.2)
A
for every δ-fine partition A = {([t¯, t], τ )} of [a, b ]. b b) ̸= Γ(a, b) 19.3 . Remark. Γ(a, b) is unique. Indeed, if there exists Γ(a, + b b ) ≤ δ(τ ) for and for every ε > 0 there exists δ : [a, b ] → R such that δ(τ τ ∈ [a, b ] and ∑ b b) − ∥Γ(a, (U (τ, t) − U (τ, t¯))∥ ≤ ε A
b for every δ-fine partition A of [a, b ], then a contradiction is obtained e.g. 1 b b)∥). Γ(a, b) is denoted by for ε = 3 ∥Γ(a, b) − Γ(a, ∫ b (KH) Dt U (τ, t) a
and called the Kurzweil–Henstock integral (KH-integral) of U over [a, b ]. 19.4. Theorem. Let U be SKH-integrable on [a, b ], u : [a, b ] → X being its primitive. Then U is KH-integrable on [a, b ] and ∫ T ∫ T (KH) Dt U (τ, t) = (SKH) Dt U (τ, t) . S
S
119
October 31, 2011
17:19
World Scientific Book - 9in x 6in
jk
Generalized Ordinary Differential Equations
120
Proof. Let U be SKH-integrable on [a, b ] and let u be its primitive. Then for ε > 0 there exists δ : [a, b ] → R+ such that ∑ ∥u(t) − u(t¯) − U (τ, t) + U (τ, t¯)∥ ≤ ε A
for any δ-fine partition A = {([t¯, t], τ )} of [a, b ]. Hence ∑ ∥u(b) − u(a) − (U (τ, t) − U (τ, t¯)∥ ≤ ε A
and the theorem is valid.
19.5. Remark. Theorem 19.4 can be converted if dim X < ∞ (cf. Corollary 19.14). 19.6. Lemma. Let U be KH-integrable on [a, b ]. Then U
is KH-integrable on [S, T ]
for [S, T ] ⊂ [a, b ] .
(19.3)
Moreover, ∫
∫
T
(KH) S
∫
Tb
Dt U (τ, t) = (KH)
Dt U (τ, t) + (KH) S
T
Tb
Dt U (τ, t)
(19.4)
for a ≤ S ≤ Tb ≤ T ≤ b. Proof. Let ε > 0 and let δ : [a, b ] → R+ correspond to ε by Definition 19.2, [S, T ] ⊂ [a, b ]. There exist a δ-fine partition A = {([t¯, t], τ )} of [a, S] and a δ-fine partition C = {([t¯, t], τ )} of [T, b ]. If B1 = {([t¯, t], τ )} and B2 = {([t¯, t], τ )] are δ-fine partitions of [S, T ], then A ∪ B1 ∪ C and A ∪ B2 ∪ C are δ-fine partitions of [a, b ]. Hence
∑
(U (τ, t) − U (τ, t¯)) ≤ ε ,
Γ(a, b) −
Γ(a, b) −
A∪B1 ∪C
∑
A∪B2 ∪C
(U (τ, t) − U (τ, t¯)) ≤ ε ,
October 31, 2011
17:19
World Scientific Book - 9in x 6in
jk
Integration and Strong Integration
and
121
∑
∑
(U (τ, t) − U (τ, t¯)) − (U (τ, t) − U (τ, t¯)) ≤ 2 ε .
B1
(19.5)
B2
(19.5) implies that there exists Γ(S, T ) such that
∑
(U (τ, t) − U (τ, t¯)) ≤ 2 ε
Γ(S, T ) − B
for every δ-fine partition B = {([t¯, t], τ )} of [S, T ]. (19.3) is correct. Let a ≤ S ≤ Tb ≤ T ≤ b. By (19.3) U is KH-integrable on [S, Tb], on [Tb, T ] and on [S, T ]. Therefore there exists δ : [S, T ] → R+ such that
∑
(U (τ, t) − U (τ, t¯)) ≤ ε
Γ(S, Tb) − (19.6) B1 for every δ−fine partition B1 = {([b t, t], τ )} of [S, Tb],
∑
b
(U (τ, t) − U (τ, t¯)) ≤ ε
Γ(T , T ) − (19.7) B2 for every δ−fine partition B2 = {([b t, t], τ )} of [Tb, T ], and
∑
(U (τ, t) − U (τ, t¯)) ≤ ε
Γ(S, T ) − B
for every δ-fine partition B = {([b t, t], τ )} of [S, T ].
(19.8)
Let B1 be a δ-fine partition of [S, Tb] and let B2 be a δ-fine partition of b [T , T ]. Then B = B1 ∪ B2 is a δ-fine partition of [S, T ] and (19.6)–(19.8) imply that ∥Γ(S, Tb) + Γ(Tb, T ) − Γ(S, T )∥ ≤ 3 ε . (19.9) (19.4) holds by (19.9) since ε > 0 is arbitrary. 19.7 . Remark. Let U be KH-integrable on [a, b ]. Then u : [a, b ] → X is called a KH-primitive of U on [a, b ] or simply a primitive of U if ∫ T u(T ) − u(S) = (KH) Dt U (τ, t) for [S, T ] ⊂ [a, b ]. S
∫T
Dt U (τ, t) exists for T ∈ [a, b ]. Put ∫ T v(T ) = (KH) Dt U (τ, t) for T ∈ [a, b ].
By Lemma 19.6 (KH)
a
a
October 31, 2011
17:19
World Scientific Book - 9in x 6in
jk
Generalized Ordinary Differential Equations
122
Then v is a primitive of U. On the other hand, if u is a primitive of U then u(T ) − u(a) = v(T ) for T ∈ [a, b ]. 19.8. Remark. Similarly to Remark 14.16 we put ∫ S ∫ T (KH) Dt U (τ, t) = −(KH) Dt U (τ, t) for a ≤ S ≤ T ≤ b. T
S
19.9. Lemma. Let U be KH-integrable on [a, b ], ε > 0 and let δ : [a, b ] → R+ correspond to ε by Definition 19.2. Then
∑
(Γ(¯ s, s) − U (σ, s) + U (σ, s¯)) ≤ 2 ε (19.10)
D
for every δ-fine system D = {([¯ s, s], σ)} in [a, b ]. Proof. Let D = {([¯ si , si ], σi ); i = 1, 2, . . . , k} be a δ-fine system in [a, b ]. For simplicity assume that a = s¯1 < s1 < s¯2 < s2 < · · · < s¯k < sk = b. By Lemma 19.6, U is KH-integrable on [si−1 , s¯i ] for i = 2, 3, . . . , k. Hence there exist δi : [si−1 , s¯i ] → R+ such that δi (τ ) ≤ δ(τ ) for τ ∈ [si−1 , s¯i ] and ∑ ε ∥Γ(si−1 , s¯i ) − (U (ρ, r) − U (ρ, r¯))∥ ≤ k Ei
for every δi -fine partition Ei = {([¯ r, r], ρ)} of [si−1 , s¯i ]. By Lemma 14.4 there k ∪ exists a δi -fine partition Ebi = {([¯ r, r], ρ)} of [si−1 , s¯i ]. Then D ∪ ( Ebi ) is a i=2
δ-fine partition of [a, b ], k
∑
(Γ(¯ si , si ) − U (σi , s¯i ) + U (σi , si ))
i=1
+
k ∑ (
Γ(si−1 , s¯i ) −
∑
)
(U (ρ, r) − U (ρ, r¯)) ≤ ε ,
Ebi
i=2
ε ∑
(U (ρ, r) − U (ρ, r¯)) ≤
Γi (si−1 , s¯i ) − k Ebi
and (19.10) holds.
October 31, 2011
17:19
World Scientific Book - 9in x 6in
jk
Integration and Strong Integration
123
19.10. Lemma. Let φ: [a, b ] → R be nondecreasing, let δ0 : [a, b ] → R+ and let U be KH-integrable on [a, b ]. Assume that ∥U (τ, t) − U (τ, t¯)∥ ≤ φ(t) − φ(t¯)
for τ, t, t¯∈ [a, b ], t¯≤ τ ≤ t ,
and τ − δ0 (τ ) ≤ t¯ ≤ τ ≤ t ≤ τ + δ0 (τ ) . Then ∫
(KH)
T
Dt U (τ, t) ≤ φ(T ) − φ(S)
for a ≤ S < T ≤ b.
(19.11)
S
Proof. Let ε > 0, [S, T ] ⊂ [a, b ]. By Definition 19.2 and Lemmas 19.6, 14.4 there exists a δ0 -fine partition T = {([t¯, t], τ )} of [S, T ] such that ∫ T
∑
Dt U (τ, t) − (U (τ, t) − U (τ, t¯)) ≤ ε .
(KH) S
Hence
T
∫
(KH)
T
Dt U (τ, t) ≤ φ(T ) − φ(S) + ε
S
and (19.11) holds, since ε is arbitrary positive.
19.11. Remark. Let U : [a, b ] 2 → X. Put −U ∗ (−τ, −t) = U (τ, t)
for (τ, t) ∈ [a, b ] 2 .
Then U ∗ : [−b, −a] 2 → X. Let T = {([ti−1 , ti ], τi ), i = 1, 2, . . . , k} be a partition of [a, b ]. Then k ∑ (U (τi , ti ) − U (τi , ti−1 )) i=1 (19.12) k ∑ ∗ ∗ =− (U (−τi , −ti ) − U (−τi , −ti−1 )) . i=1
Put T ∗ = {([−ti , −ti−1 ], τi ); i = 1, 2, . . . , k}. Then T ∗ is a partition of [−b, −a]. By (19.11) k ∑ i=1
(U (τi , ti ) − U (τi , ti−1 )) =
k ∑ i=1
(U ∗ (−τi , −ti−1 ) − U ∗ (−τi , −ti )) .
October 31, 2011
17:19
World Scientific Book - 9in x 6in
jk
Generalized Ordinary Differential Equations
124
Let δ : [a, b ] → R+ , δ ∗ : [−b, −a] → R+ , δ ∗ (−τ ) = δ(τ ) for τ ∈ [a, b ]. If T is δ-fine, then T ∗ is δ ∗ -fine and vice versa. We may conclude that ∫ (KH)
∫ Dt U ∗ (τ, t) = (KH)
−a
−b
b
Dt U (τ, t) for a < b
(19.13)
a
if one of the integrals exists. If U (τ, t) = ξ(t) Φ(t), put ξ ∗ (−τ ) = ξ(τ ) and Φ∗ (−t) = − Φ(t). Then −U ∗ (−τ, −t) = U (τ, t) and ∫
−a
(KH) −b
Dt ξ ∗ (τ ) Φ∗ (t) = (KH)
∫
b
Dt ξ(τ ) Φ(t)
(19.14)
a
if one of the integrals exists, and ∫ (SKH)
−a
−b
∗
∫
∗
b
Dt ξ (τ ) Φ (t) = (SKH)
Dt ξ(t) Φ(t)
(19.15)
a
if one of the integrals exists. 19.12. Lemma. Let n ∈ N, X = Rn , ∥x∥ =
n ∑
|xi |
for x = (x1 , x2 , . . . , xn ) ∈ Rn
(19.16)
i=1
and L = {−1, 1}n .
(19.17)
For L ∈ L (i.e. L = (L1 , L2 , . . . , Ln ), |Li | = 1) put QL = {x ∈ Rn ; Li xi ≥ 0
for i = 1, 2, . . . , n} .
(19.18)
for z = (z1 , z2 , . . . , zn ) ∈ QL ,
(19.19)
if Z ⊂ QL is finite ,
(19.20)
if Z ⊂ QL is finite .
(19.21)
Then ∥z∥ =
n ∑
Li zi
i=1
∑ ∑
z = ∥z∥
z∈Z
∑
z∈Z
z∈Z
∥z∥ ≤ 2n max L∈L
∑ z∈Z∩QL
z
October 31, 2011
17:19
World Scientific Book - 9in x 6in
Integration and Strong Integration
jk
125
Proof. (19.19) follows by (19.16)–(19.18). Further, (19.20) is a consequence of (19.19). Finally, let Z ⊂ Rn be finite. Then
∑ ∑ ∑ ∑
∑
∥z∥ ≤ ∥z∥ ≤ z
z∈Z
L∈L z∈Z∩QL
≤ 2 max n
L∈L
∑
L∈L
z .
z∈Z∩QL
z∈Z∩QL
Hence (19.21) holds.
19.13. Lemma. Assume that n ∈ N and that U : Dom U → Rn is KH-integrable on [a, b ]. Given ε > 0, let δ : [a, b ] → R+ be such that ∑ ∥Γ(a, b) − (U (τ, t) − U (τ, t¯)∥ ≤ ε A
for every δ-fine partition A = {([t¯, t], τ )} of [a, b ]. Then
∑
∥Γ(t¯, t) − (U (τ, t) − U (τ, t¯))∥ ≤ 2n ε
(19.22)
A
for every δ-fine partition A = {([t¯, t], τ )} of [a, b ]. Proof. Let ε > 0, let δ correspond to ε by Definition 19.2, let the partition A = {([¯ s, s], σ)} of [a, b ] be δ-fine and let Z = {z = Γ(¯ s, s) − U (σ, s) + U (σ, s¯) ; ([¯ s, s], σ) ∈ A} . Then
∑
z ≤ ε
z∈Z∩QL
and (19.22) is true by (19.21).
19.14 . Corollary. Let U : Dom U → Rn be KH-integrable on [a, b ]. Then U is SKH-integrable on [a, b ] and ∫ b ∫ b (SKH) Dt U (τ, t) = (KH) Dt U (τ, t) . a
a
This page intentionally left blank
October 31, 2011
17:19
World Scientific Book - 9in x 6in
jk
Chapter 20
A class of Strong Kurzweil Henstock-integrable functions
The main result of Chapter 20 implies that the product ψ(τ ) φ(t) is SKHintegrable if ψ is a regulated function and φ is a function of bounded variation. 20.1. Notation. Let [c, d ] ⊂ [a, b ] ⊂ R, U : [a, b ] 2 → X, Ψ : [a, b ] → R, Φ : [a, b ] → R, ε >0. Assume that Ψ
is a regulated function ,
(20.1)
Φ
is nondecreasing, Φ(b) − Φ(a) > 0 ,
(20.2)
∥U (τ, t) − U (τ, s)∥ ≤ |Φ(t) − Φ(s)|
for t, s, τ ∈ [a, b ] , }
∥U (τ, t) − U (τ, s) − U (σ, t) + U (σ, s)∥ ≤ (Ψ(τ ) − Ψ(σ)) (Φ(t) − Φ(s))
(20.3)
(20.4)
for t, s, τ, σ ∈ [a, b ] .
Define sets A(ε) = A(ε)(ε, c, d), B(ε) = B(ε)(ε, c, d) by { } A(ε) = τ ; c ≤ τ < d, |Ψ(τ +) − Ψ(τ )| ≥ ε { } ∪ τ ; c < τ ≤ d, |Ψ(τ ) − Ψ(τ −)| ≥ ε , B(ε) = {τ ; c ≤ τ < d, |Ψ(τ +) − Ψ(τ )| < ε} ∩ {τ ; c < τ ≤ d, |Ψ(τ ) − Ψ(τ −)| < ε} .
} (20.5) } (20.6)
Obviously, B(ε) = [c, d ] \ A(ε) .
(20.7)
and (20.1) implies that A(ε) is a finite set. Denote by m(ε) the number of elements of A(ε). 127
October 31, 2011
128
17:19
World Scientific Book - 9in x 6in
Generalized Ordinary Differential Equations
20.2. Definition. A partition T = {([t¯, t], τ )} of [c, d ] is called simple if τ = t¯ or τ = t for ([t¯, t], τ ) ∈ T and if c < t¯< t < d whenever c < τ < d. 20.3 . Remark. Let δ : [c, d ] → R+ . Let T = {([t¯, t], τ )} be a partition of [c, d ] such that c < t¯< t < d whenever c < τ < d. Modify T in the following way: keep elements ([t¯, t], τ ) such that τ = t¯ or τ = t and replace every element ([t¯, t], τ ) such that t¯< τ < t by two elements ([t¯, τ ], τ ), ([τ, t], τ ). Denote the modified set by Ω(T ). Then Ω(T ) is a simple partition of [c, d ] which is δ-fine if T is δ-fine. The operation Ω may be used in order to prove that
(i) there exists a δ-fine simple partition of [c, d ] (cf. Lemma 14.4), (ii) U is KH-integrable if and only if there exists Γ(a, b) and if for ε > 0 there exists δ : [a, b ] → R+ such that
∑( )
U (τ, t) − U (τ, t¯) ≤ ε
Γ(a, b) − T
for every δ-fine simple partition T of [a, b ]. 20.4 . Definition. Let T = {([t¯, t], τ )}, R = {([¯ r, r], ρ)} be partitions of [c, d ]. The partition R is called a refinement of T if for every ([¯ r, r], ρ) ∈ R there exists a ([t¯, t], τ ) ∈ T such that [¯ r, r] ⊂ [t¯, t]. 20.5. Remark. Let T = {([t¯, t], τ )}, S = {([¯ s, s], σ)} be partitions of [a, b ], + δ : [a, b ] → R . Then there exists a δ-fine simple partition of [a, b ] which is a refinement of both T and S (by Remark 20.3 (i) there exists a δ-fine simple partition of every nondegenerate interval [t¯, t] ∩ [¯ s, s]). 20.6 . Remark. Let T = {([t¯, t], τ )}, R = {([¯ r, r], ρ)} be simple partitions of [a, b ], R being a refinement of T . For [t¯, t], τ ) ∈ T , denote by R(t¯, t) the set of [¯ r, r], ρ) ∈ R such that [¯ r, r] ⊂ [t¯, t]. Then R(t¯, t) is a simple partition of [t¯, t].
The next lemma plays a crucial role in the proof that U is integrable.
jk
November 21, 2011
9:58
World Scientific Book - 9in x 6in
jk
A class of SKH-integrable functions
129
20.7. Lemma. Let κ > 0 and δ : [c, d ] → R+ fulfil |Ψ(τ )| ≤ κ
for τ ∈ [a, b ],
(20.8)
[τ − δ(τ ), τ + δ(τ )] ∩ [c, d ] ⊂ B(ε)
if τ ∈ B(ε) ,
(20.9) }
|Ψ(t) − Ψ(τ )| < ε
(20.10)
if τ ∈ B(ε) and t ∈ [τ − δ(τ ), τ + δ(τ )] ∩ [c, d ] , [τ − δ(τ ), τ + δ(τ )] ∩ [c, d ] ∩ A(ε) = {τ }
if τ ∈ A(ε),
(20.11) }
|Ψ(t) − Ψ(τ +)| ≤ ε
(20.12)
if τ ∈ A(ε) and τ < t ≤ min{τ + δ(τ ), b} , }
|Ψ(τ −) − Ψ(t)| ≤ ε
(20.13)
if τ ∈ A(ε) and max{τ − δ(τ ), a} ≤ t < τ , ε m(ε) ε Φ(τ −) − Φ(τ − δ(τ )) ≤ m(ε) Φ(τ + δ(τ )) − Φ(τ +) ≤
if τ ∈ A(ε) and τ < b ,
if τ ∈ A(ε) and τ > a .
(20.14)
Let T = {([t¯, t], τ )}, R = {([¯ r, r], ρ)} be δ-fine simple partitions of [c, d ], R being a refinement of T . Then ∑ ) ∑( )
U (ρ, r) − U (ρ, r¯)
U (τ, t) − U (τ, t¯) − T
R
( ) ≤ ε Φ(b) − Φ(a) (2 + 4 κ) .
(20.15)
Proof. A constant κ and a function δ fulfilling (20.8)–(20.14) exist since Ψ fulfils (20.1) and Φ fulfils (20.2). The proof consists of five parts. Part 1. Let ([τ, t], τ ) ∈ T and τ ∈ A(ε). If τ < σ ≤ t then σ ∈ B(ε)
and
[σ − δ(σ), σ + δ(σ)] ⊂ B(ε)
by (20.11). Hence there exists ([τ, r1 ], τ ) ∈ R(τ, t) and U (τ, t) − U (τ, τ ) = U (τ, r1 ) − U (τ, τ ) + U (τ, t) − U (τ, r1 ).
(20.16)
October 31, 2011
17:19
World Scientific Book - 9in x 6in
jk
Generalized Ordinary Differential Equations
130
On the other hand, ∑ (U (ρ, r) − U (ρ, r¯)) R(τ,t)
= U (τ, r1 ) − U (τ, τ ) +
∑ (U (ρ, r) − U (ρ, r¯)) , R∗
(20.17)
where R∗ = R(τ, t) \ {([τ, r1 ], τ )}. By (20.16), (20.17), (20.4), (20.14)
∑
(U (ρ, r) − U (ρ, r¯))
U (τ, t) − U (τ, τ ) − R(τ,t) ∑
U (τ, r) − U (τ, r¯) − U (ρ, r) + U (ρ, r¯) ≤ (20.18) R∗ ( ) ε ≤ 2 κ Φ(b) − Φ(a) m(ε) since Ψ(ρ) − Ψ(τ ) ≤ 2 κ, ∑(
) r) ≤ Φ(τ + δ(τ )) − Φ(τ +) ≤ Φ(r) − Φ(¯
R
Part 2. Similarly, if τ ∈ A(ε), ([t¯, τ ], τ ) ∈ T then
∑
(U (ρ, ρ)−U (ρ, r¯))
U (τ, τ )−U (τ, t¯)− R(t¯,τ )
≤
( ) ε 2 κ Φ(b)−Φ(a) . m(ε)
ε . m(ε)
Part 3. Let ([τ, t], τ ) ∈ T , τ ∈ B(ε). By (20.9), (20.10), (20.4)
∑ ( )
U (ρ, r) − U (ρ, r¯)
U (τ, t) − U (τ, τ ) − R(τ,t)
∑ (
)
≤ U (τ, r) − U (τ, r¯) − U (ρ, r) + U (ρ, r¯) R(τ,t) ∑ ≤ |Ψ(ρ) − Ψ(τ )| (Φ(r) − Φ(¯ r)) ≤ ε (Φ(t) − Φ(τ )) .
(20.19)
(20.20)
R(τ,t)
Part 4. Let ([t¯, τ ], τ ) ∈ T , τ ∈ B(ε). Then similarly to Part 3
∑ ( )
U (ρ, r) − U (ρ, r¯) ≤ ε (Φ(τ ) − Φ(t¯)) . (20.21)
U (τ, τ ) − U (τ, t¯) − R(t¯,τ )
October 31, 2011
17:19
World Scientific Book - 9in x 6in
A class of SKH-integrable functions
Part 5. ∑[ ] ∑[ ] U (τ, t)−U (τ, τ )+U (τ, τ )−U (τ, t¯) − U (ρ, r)−U (ρ, r¯) T R ∑ [ ( )] ∑ = 1 U (τ, t)−U (τ, τ ) − U (ρ, r) − U (ρ, r¯) R(τ,t) ∑ ( )] ∑ [ ¯ + U (τ, τ )−U (τ, t ) − U (ρ, r) − U (ρ, r ¯ ) 2 R(t¯,τ ) ∑ ( )] ∑ [ + U (τ, t)−U (τ, τ ) − U (ρ, r) − U (ρ, r ¯ ) 3 R(τ,t) ∑ ( )] ∑ [ ¯ + U (ρ, r) − U (ρ, r¯) , 4 U (τ, τ )−U (τ, t )−
jk
131
(20.22)
R(t¯,τ )
∑ ∑ where 2 runs over 1 runs over ([τ, t], τ ) ∈ T∑ such that τ ∈ A(ε), runs over ([τ, t], τ ) ∈ T such that ([t¯, τ ], τ ) ∈ T such that τ ∈ A(ε), 3 ∑ τ ∈ B(ε), 4 runs over ([t¯, τ ], τ ) ∈ T such that τ ∈ B(ε). (20.22) holds since A(ε) ∪ B(ε) = [a, b ], A(ε) ∩ B(ε) = ∅. The number of elements of A(ε) does not exceed m(ε). (20.18)–(20.22) imply that (20.15) holds. The proof is complete. 20.8. Theorem. U is KH-integrable, Proof. Let [c, d ] = [a, b ]. By Lemma 20.7, for ε > 0 there is δ : [a, b ] → R+ such that (20.15) holds. Let T = {([t¯, t], τ )}, S = {([¯ s, s], σ)} be δ-fine simple partitions of [a, b ]. By Remark 20.5 then there exists a δ-fine simple partition R = {([¯ r, r], ρ)} of [a, b ] which is a refinement of both T and S. (20.15) implies that
∑( ∑ ( ) ∑ )
U (τ, t) − U (τ, t¯) − U (ρ, r) − U (ρ, r¯)
T
T
∑( ) ∑
U (σ, s) − U (σ, s¯) −
S
R(t¯,τ )∪R(τ,t)
( ) ≤ ε (2 + 4 κ) Φ(b) − Φ(a) , ∑ ( )
U (σ, r) − U (σ, r¯)
S R(¯ s,σ)∪R(σ,s)
( ) ≤ ε (2 + 4 κ) Φ(b) − Φ(a) ,
and
∑( ) ∑( )
U (τ, t) − U (τ, t¯) − U (σ, s) − U (σ, s¯)
T S ( ) (20.23) ≤ ε (4 + 8 κ) Φ(b) − Φ(a)
November 21, 2011
9:58
World Scientific Book - 9in x 6in
jk
Generalized Ordinary Differential Equations
132
since ∑ T
∑
(
) ∑ U (ρ, r)−U (ρ, r¯) =
∑
(
) U (σ, r)−U (σ, r¯) .
S R(¯ s,σ)∪R(σ,s)
R(t¯,τ )∪R(τ,t)
U is KH-integrable by (20.23). The proof is complete.
∫
T
20.9. Theorem. Define u : [a, b ] → X by u(T ) = (KH) U is SKH-integrable and u is its primitive.
Dt U (τ, t). Then a
Moreover, ∥u(d) − u(c)∥ ≤ Φ(d) − Φ(c)
for a ≤ c < d ≤ b .
(20.24)
Proof. Let [c, d ] = [a, b ] and let δ : [a, b ] → R+ fulfil (20.9)–(20.14). Let T = {([t¯, t], τ )} be a δ-fine partition of [a, b ]. Let ([t¯, t], τ ) ∈ T be given and let R = {([¯ r, r], ρ) be a δ-fine simple partition of [τ, t]. If τ ∈ A(ε) then by (20.18) ∑(
)
U (τ, t)−U (τ, τ )− U (ρ, r)−U (ρ, r¯) R ( ) ε 2κ Φ(b)−Φ(a) ≤ m(ε) and
U (τ, t) − U (τ, τ ) − u(t) + u(τ ) ≤
( ) ε 2 κ Φ(b) − Φ(a) . m(ε)
(20.25)
) ∑ ( since ¯) can be arbitrarily close to u(t) − u(τ ). If R U (ρ, r) − U (ρ, r τ ∈ B(ε) then by (20.20) ∑(
)
U (τ, t)−U (τ, τ )− U (ρ, r)−U (ρ, r¯) R ( ) ≤ ε Φ(t)−Φ(τ ) and
( )
U (τ, t) − U (τ, τ ) − u(t) + u(τ ) ≤ ε Φ(t) − Φ(τ ) .
Let ([t¯, τ ], τ ) ∈ T . Then similarly
U (τ, t¯)−U (τ, τ )−u(t¯) + u(τ ) ≤
( ) ε 2 κ Φ(b)−Φ(a) m(ε) for τ ∈ A(ε)
and
(20.26)
(20.27)
October 31, 2011
17:19
World Scientific Book - 9in x 6in
jk
A class of SKH-integrable functions
( )
U (τ, t¯)−U (τ, τ )−u(t¯) + u(τ ) ≤ ε Φ(τ )−Φ(t¯)
133
}
for τ ∈ B(ε) .
(20.28)
(20.25)–(20.28) implies that ∑ ( ) ∥u(t) − u(t¯) − U (τ, t) + U (τ, bart)∥ ≤ ε (4 κ + 1) Φ(b) − Φ(a) . sopT
Hence U is SKH-integrable and u is its primitive. (20.24) is a consequence of Lemma 14.19 and (20.3). 20.10 . Remark. The limit U (τ, τ +) =
lim
t→τ,t>τ
since U (τ, .) is a function of bounded variation.
U (τ, t), a ≤ τ < b, exists
This page intentionally left blank
October 31, 2011
17:19
World Scientific Book - 9in x 6in
jk
Chapter 21
Integration by parts
21.1. Notation. Let [a, b ] ⊂ R, U : [a, b ] 2 →X. Put V (τ, t) = U (t, t) + U (τ, τ ) − U (τ, t) − U (t, τ ),
(21.1)
τ, t ∈ [a, b ] .
W (τ, t) = U (t, τ ), Define
τ, t ∈ [a, b ] ,
∫
∫ b Dτ U (τ, t) = (KH) Dt W (τ, t) (21.2) a a ∫ b if the right-hand side exists (i.e. (KH) Dτ U (τ, t) exists if for ε > 0 there b
(KH)
a
exists δ : [a, b ] → R+ such that ∫ b
∑
(U (τ, t) − U (¯ τ , t)) ≤ ε Dτ U (τ, t) −
(KH) a
T
for every δ-fine partition T
∗
∗
= {([¯ τ , τ ], t)} of [a, b ]).
Similarly, define ∫ (SKH)
∫
b
Dτ U (τ, t) = (SKH) a
b
Dt W (τ, t)
(21.3)
a
if the right-hand side exists. For [c, d ], [e, f ] ⊂ [a, b ] put b ([c, d] × [e, f ]) = U (d, f ) − U (d, e) − U (c, f ) + U (c, e) . U 21.2. Lemma. Let t¯, τ, t ∈ [a, b ]. Then V (τ, t) − V (τ, t¯) = −U (τ, t) + U (τ, t¯) − U (t, τ ) + U (t¯, τ ) + U (t, t) − U (t¯, t¯) . 135
(21.4) } (21.5)
October 31, 2011
17:19
World Scientific Book - 9in x 6in
jk
Generalized Ordinary Differential Equations
136
Let T = {([t¯, t], τ )} be a partition of [a, b ]. Then ∑( ) ∑( ) ∑ U (τ, t)−U (τ, t¯) + U (t, τ )−U (t¯, τ ) − (U (t, t)−U (t¯, t¯)) T T T ∑ (21.6) =− (V (τ, t) − V (τ, t¯)). T
Proof. (21.5).
(21.5) is a consequence of (21.1).
Further, (21.6) follows by
21.3. Theorem. If two of the integrals ∫ b ∫ b (SKH) Dt U (τ, t), (SKH) Dτ U (t, τ ), a
∫
b
(SKH)
a
Dτ V (τ, t) a
exist, then the third one exists as well and ∫ b ∫ b (SKH) Dt U (τ, t) + (SKH) Dτ U (τ, t) − U (b, b) + U (a, a) a
a
∫
b
= −(SKH)
Dτ V (τ, t) .
(21.7)
a
Proof. Let Ui : [a, b ] 2 → X be SKH-integrable, i = 1, 2. Definition 19.2 implies that U1 + U2 is SKH-integrable and that ∫ b ∫ b ∫ b ( ) (SKH) Dt U1 (τ, t)+(SKH) Dt U2 (t, τ ) = (SKH) Dt U1 (t, t)+U2 (τ, t) . a
a
a
∑( ) Also, U (t, t)−T (t¯, t¯) = U (b, b) − U (a, a). Hence (21.7) can be deduced T
by (21.6). The proof is complete.
b is additive in the following sense: 21.4. Remark. U if [c, d ], [d, e], [f, g] ⊂ [a, b ] then b ([c, e] × [f, g]) = U b ([c, d ] × [f, g]) + U b ([d, e] × [f, g]) , U
(21.8)
b ([f, g] × [c, e]) = U b ([f, g] × [c., d ]) + U b ([f, g] × [d, e]) . U
(21.9)
21.5 . Lemma. Let a ≤ σ < r < s ≤ b, a ≤ s¯ < r¯ < σ ≤ b. Then b ([r, s] × [σ, r]) + U b ([σ, s] × [r, s]) , V (σ, s) = V (σ, r) + U
(21.10)
b ([¯ b ([¯ V (¯ s, σ) = V (¯ r, σ) + U s, σ] × [¯ s, r¯]) + U s, r¯] × [¯ r, σ]) .
(21.11)
October 31, 2011
17:19
World Scientific Book - 9in x 6in
jk
Integration by parts
Proof.
137
(21.10) holds (cf. Remark 21.4) since ( ) ( ) [σ, s] 2 = [σ, r] 2 ∪ [r, s] × [σ, r] ∪ [σ, s] × [r, s] .
Similarly, (21.11) follows from ( ) ( ) [¯ s, σ] 2 = [¯ r, σ] 2 ∪ [¯ s, σ] × [¯ s, r¯] ∪ [¯ s, r¯] × [¯ r, σ] .
21.6 . Lemma. Assume that Ψ : [a, b ] → R
is a regulated function ,
(21.12)
Φ : [a, b ] → R
is nondecreasing ,
(21.13)
∥U (τ, t) − U (τ, t¯)∥ ≤ |Φ(t) − Φ(t¯)| ,
τ, t¯, t ∈ [a, b ] ,
(21.14) }
∥U (τ, t) − U (τ, t¯) − U (σ, t) + U (σ, t¯)∥ ≤ |Ψ(τ ) − Ψ(σ)| |Φ(t) − Φ(t¯)| ,
(21.15)
τ, σ, t¯, t ∈ [a, b ] .
Then there exists κ > 0 such that |Ψ(τ )| ≤ κ,
τ ∈ [a, b ] .
(21.16)
Further, b ([c, d ] × [e, f ])∥≤ |Ψ(d) − Ψ(c)| |Φ(f ) − Φ(e)| ∥U
} (21.17)
for [c, d ], [e, f ] ⊂ [a, b ], b ([τ, t] 2 ) V (τ, t) = U
for a ≤ τ < t ≤ b ,
∥V (σ, s) − V (σ, r)∥ ≤ |Ψ(s) − Ψ(r)| (Φ(r) − Φ(σ)) + |Ψ(s) − Ψ(σ)| (Φ(s) − Φ(r)) for a ≤ σ ≤ r ≤ s ≤ b , ∥V (¯ s, σ) − V (¯ r, σ)∥ ≤ |Ψ(σ) − Ψ(s)| (Φ(¯ r) − Φ(s)) + |Ψ(¯ r) − Ψ(¯ s)| (Φ(σ) − Φ(¯ r)) for a ≤ s¯ ≤ r¯ ≤ σ ≤ b . Moreover, the limits
(21.18)
(21.19)
(21.20)
October 31, 2011
17:19
World Scientific Book - 9in x 6in
jk
Generalized Ordinary Differential Equations
138
lim V (e, t) = Θright (e),
t→e,t>e
lim
t→g,t
V (g, t) = Θleft (g),
a≤e
(21.21)
a
(21.22)
exist and ∥Θright (e)∥ ≤ |Ψ(e+) − Ψ(e)| (Φ(e+) − Φ(e)) ,
(21.23)
∥Θleft (g)∥ ≤ |Ψ(g) − Ψ(g−)| (Φ(g) − Φ(g−)) .
(21.24)
Observe that then Ψ(e+) − Ψ(e) > 0 and Φ(e+) − Φ(e) > 0 , then Ψ(e) − Ψ(e−) > 0 and Φ(e) − Φ(e−) > 0 .
if Θright (e) ̸= 0 if Θℓ (e) ̸= 0
Proof. (21.16) holds by (21.12). Further, (21.17) holds by (21.15), (21.4), (21.1) whereas (21.18) is valid by (21.4), (21.1). And (21.19) holds by (21.10), (21.17). Similarly, (21.20) follows from (21.11). It can be deduced by (21.19), (21.12), (21.13) that the limit in (21.21) exists. (21.23) holds b ([σ, t] 2 ) for σ < t ≤ b. (21.22) and (21.24) are by (21.17) since V (σ, t) = U proved by similar arguments. The proof is complete. 21.7. Theorem. Let (21.12)–(21.15) hold. Define v : [a, b ] → X by v(a) = 0, v(t) = Θright (a) +
∑( ) Θright (τ )+Θleft (τ ) + Θleft (t),
a<τ
for a < t ≤ b .
(21.25)
Then V is SKH-integrable and v is its primitive. Proof. If Φ(b) − Φ(a) = 0 then v(t) = 0 for a ≤ t ≤ b and V (τ, t) = 0 for τ, t ∈ [a, b ] (cf. (21.12), (21.13), (21.17), (21.18)) and the theorem holds. Assume that Φ(b) − Φ(a) > 0 . Observe that the sum in (21.25) is well defined since ( ) ∥Θright (τ )∥ + ∥Θleft (τ )∥ ≤ 2 κ Φ(τ +) − Φ(τ −)
(21.26)
October 31, 2011
17:19
World Scientific Book - 9in x 6in
jk
Integration by parts
139
by (21.23), (21.24). Let ε > 0. Put Λ = {λ; a ≤ λ < b, |Ψ(λ+) − Ψ(λ)| ≥ ε} ∪ {λ; a < λ ≤ b, |Ψ(λ) − Ψ(λ−)| ≥ ε} .
(21.27)
Then Λ has a finite number m of elements .
(21.28)
There exists κ ∈ R+ such that |Ψ(λ)| ≤ κ
for λ ∈ [a, b ].
(21.29)
(21.28) and (21.29) are consequences of the basic properties of regulated functions. Let δ: [a, b ] → R+ fulfil a+δ(a) < b, b−δ(b) > a, a < t−δ(t) < t+δ(t) < b for a < t < b ,
(21.30)
[λ−δ(λ), λ+δ(λ)] ∩ [a, b ] ∩ Λ = {λ} for λ ∈ Λ , Ψ(t) − Ψ(λ+) ≤ ε for λ < t ≤ λ + δ(λ), λ, t ∈ [a, b ] , Ψ(λ−) − Ψ(t) ≤ ε for λ − δ(λ) ≤ t < λ, λ, t ∈ [a, b ] ,
(21.31)
ε for λ ∈ Λ, a < λ , κm ε Φ(λ + δ(λ)) − Φ(λ+) ≤ for λ ∈ Λ, λ < b , κm
Φ(λ−) − Φ(λ−δ(λ)) ≤
(21.32) (21.33) (21.34) (21.35)
[a, b ] ∩ [λ − δ(λ), λ + δ(λ)] ⊂ [a, b ] \ Λ for λ ∈ [a, b ] \ Λ , Ψ(t) − Ψ(λ−) ≤ ε if λ−δ(λ) ≤ t < λ, λ, t ∈ [a, b ] , Ψ(t) − Ψ(λ+) ≤ ε if λ < t ≤ λ+δ(λ), λ, t ∈ [a, b ] ,
(21.36)
Φ(λ−) − Φ(t) ≤ ε
for λ − δ(λ) ≤ t < λ, a < λ ≤ b ,
(21.39)
Φ(t) − Φ(λ+) ≤ ε
for λ < t < λ + δ(λ), a ≤ λ < b .
(21.40)
(21.37) (21.38)
There exists a δ which fulfils (21.30)–(21.40) since Λ is finite, Ψ is a regulated function and Φ is nondecreasing.
October 31, 2011
17:19
World Scientific Book - 9in x 6in
jk
Generalized Ordinary Differential Equations
140
Let S = {([¯ s, s], σ)} be a δ-fine simple partition of [a, b ]. Put S1 = {([σ, s], σ); |Ψ(σ+)−Ψ(σ)| ≥ ε} , (21.41) ( ) ( ) S2 = {([s, σ], σ); σ ∈ [a, b ] \ Λ or σ ∈ Λ, |Ψ(σ+)−Ψ(σ)| < ε } , (21.42) S3 = {([σ, s], σ); |Ψ(σ)−Ψ(σ−)| ≥ ε} , (21.43) ( ) ( ) S4 = {([s, σ], σ); σ ∈ [a, b ] \ Λ or σ ∈ Λ, |Ψ(σ)−Ψ(σ−)| < ε } . (21.44) Obviously, S=
4 ∪
Sj ,
Si ∩ Sj = ∅ for i ̸= j .
j=1
Let ([σ, s], s) ∈ S1 , σ < r ≤ s. Then (cf. (21.19)) ( ( ∥V (σ, s)−V (σ, r)∥ ≤ Ψ(s)−Ψ(r) Φ(r)−Φ(σ)) + Ψ(s)−Ψ(σ) Φ(s)−Φ(r)) . The limiting process for r → σ gives (cf. (21.21), (21.38), (21.35)) ∥V (σ, s)−Θright (σ)∥ ( ( ≤ Ψ(s)−Ψ(σ+) Φ(σ+)−Φ(σ))+ Ψ(s)−Ψ(σ) Φ(s)−Φ(σ+)) (21.45) ( ) ( 2ε ε ≤ 2 ε Φ(σ+) − Φ(σ) + . ≤ 2 ε Φ(σ+) − Φ(σ) + 2 κ κm m Moreover (cf. (21.25), (21.24), (21.23)) ∥v(s) − v(σ) − Θright (σ)∥ ∑ [ ] ∥Θleft (λ)∥+∥Θright (λ)∥ + ∥Θleft (s)∥ ≤ σ<λ<s ∑ [ ( ( ) )] Ψ(λ)−Ψ(λ−) Φ(λ)−Φ(λ−) + Ψ(λ+)−Ψ(λ) Φ(λ+)−Φ(λ) ≤ σ<λ<s
Hence
( ) + Ψ(s) − Ψ(s−) Φ(s)−Φ(s−) . ( ) ∥v(s) − v(σ) − Θright (σ)∥ ≤ ε Φ(s) − Φ(σ)
(21.46)
since σ ∈ Λ and if σ < λ ≤ σ + δ(σ) then λ ∈ [a, b ] \ Λ (cf. (21.31)) and Ψ(λ) − Ψ(λ−) < ε,
Ψ(λ+) − Ψ(λ) < ε .
October 31, 2011
17:19
World Scientific Book - 9in x 6in
jk
Integration by parts
141
By (21.45), (21.47) ( ) 2ε ∥v(s) − v(σ) − V (σ, s)∥ ≤ 3 ε Φ(b) − Φ(a) + m and
∑
( ) ∥v(s) − v(σ) − V (σ, s)∥ ≤ 3 ε Φ(b) − Φ(a) + 2 ε
(21.47)
S1
(cf. (21.28)). ( ) Let [¯ s, σ], σ ∈ S3 , s¯ ≤ r¯ < σ. Then (cf. (21.1), (21.20)), ∥V (σ, s¯) − V (σ, r¯)∥ = ∥V (¯ s, σ) − V (¯ r, σ)∥ ( ( ) ) ≤ Ψ(σ) − Ψ(s) Φ(¯ r) − Φ(s) + Ψ(¯ r) − Ψ(¯ s) Φ(σ) − Φ(¯ r) . The limiting process for r¯ → σ gives (cf. (21.22), (21.34), (21.37))
( )
V (σ, s¯) − Θ (σ) ≤ 2 κ ε + 2 ε Φ(σ) − Φ(σ−) . (21.48) left κm Moreover (cf. (21.25), (21.24), (21.23)) ∥v(σ)−v(¯ s)−Θleft (σ)∥ ≤ ∥Θright (¯ s)∥ +
∑ (
)
Θ (λ) + Θ
(λ) left right
s¯<λ<σ
( ) ≤ Ψ(¯ s+) − Ψ(¯ s) Φ(¯ s+) − Φ(¯ s) +
∑ ( ( ( ) )) Ψ(λ)−Ψ(λ−) Φ(λ)−Φ(λ−) + Ψ(λ+)−Ψ(λ) Φ(λ+)−Φ(λ) .
s¯<λ<σ
Hence
( ) ∥v(σ) − v(¯ s) − Θleft (σ)∥ ≤ ε Φ(σ) − Φ(¯ s) .
(21.49)
By (21.47), (21.48) ( ) 2ε ∥v(σ) − v(¯ s) − V (σ, s¯)∥ ≤ 3 ε Φ(σ) − Φ(¯ s) + m and
∑
( ) ∥v(σ) − v(¯ s) − V (σ, s¯)∥ ≤ 3 ε Φ(b) − Φ(a) + 2 ε .
(21.50)
S3
The relations (21.47) and (21.50) give ∑ ( ) ∥v(s) − v(¯ s) − V (σ, s) + V (σ, s¯)∥ ≤ 6 ε Φ(b) − Φ(a) + 4 ε . (21.51) S1 ∪S3
October 31, 2011
17:19
World Scientific Book - 9in x 6in
jk
Generalized Ordinary Differential Equations
142
Let ([σ, s], σ) ∈ S2 . Then σ < s ≤ σ + δ(σ) and either σ ∈ [a, b ] \ Λ or σ ∈ Λ, Ψ(λ+) − Ψ(λ) < ε .
(21.52)
In both cases (cf. (21.36), (21.36)) λ ∈ [a, b ] \ Λ for σ < λ <s .
(21.53)
Hence (cf. (21.23)–(21.25))
∥v(s) − v(σ)∥
∑( ) (21.54) ≤ ∥Θright (σ)∥ + ∥Θright (λ)∥ + ∥Θleft (λ)∥ + ∥Θleft (s)∥ σ<λ<s ( ) ≤ ε Φ(s) − Φ(σ) since Ψ(σ+) − Ψ(σ) < ε, Ψ(λ+) − Ψ(λ) < ε,
Ψ(λ) − Ψ(λ−) < ε , Ψ(s) − Ψ(s−) < ε .
Moreover (cf. (21.4), (21.15), (21.52), (21.38)) b ([σ, s]×[σ, s]) ∥V (σ, s)∥ ≤ ∥U [ ]( ) ≤ Ψ(s) − Ψ(σ+) + Ψ(σ+) − Ψ(σ) Φ(s) − Φ(σ) ( ) ≤ 2 ε Φ(s) − Φ(σ) since Ψ(s) − Ψ(σ+) ≤ ε by (21.38) and Ψ(σ+) − Ψ(σ) < ε
(21.55)
by (21.52). The relations (21.54) and (21.55) imply that ( ) ∥v(s) − v(σ) − V (σ, s)∥ ≤ 3 ε Φ(s) − Φ(σ) for ([σ, s], σ) ∈ S2 . (21.56)
Similarly ( ) ∥v(¯ s) − v(σ) − V (σ, s¯)∥ ≤ 3 ε Φ(σ) − Φ(¯ s)
for ([¯ s, σ], σ) ∈ S4 . (21.57)
By (21.56) and (21.57) ( ) ∥v(s) − v(¯ s) − V (σ, s) + V (σ, s¯)∥ ≤ 3 ε Φ(s) − Φ(¯ s) for ([¯ s, s], σ) ∈ S2 ∪ S4
} (21.58)
and ∑ S2 ∪S4
( ) ∥v(s) − v(¯ s) − V (σ, s) + V (σ, s¯)∥ ≤ 3 ε Φ(b) − Φ(a) .
(21.59)
October 31, 2011
17:19
World Scientific Book - 9in x 6in
jk
Integration by parts
143
Finally, (21.51) and (21.59) give ∑ ( ( ) ) ∥v(s) − v(¯ s) − V (σ, s) + V (σ, s¯)∥ ≤ ε 9 Φ(b)−Φ(a) + 4 . S
V is SKH-integrable and v is its primitive. The proof is complete. ∫ b 21.8. Remark. Let (21.12)–(21.15) hold. Then (SKH) Dτ U (τ, t) exists a
and ∫ (SKH)
b
Dt U (τ, t) a
∫ = U (b, b) − U (a, a) −(SKH)
∫
b
b
Dτ U (τ, t) +(SKH)
a
Dt V (τ, t) . a
This is a consequence of Theorems 21.3 and 21.7. 21.9 . Remark. A similar topic was treated in [Schwabik (2001)] and [Monteiro, Tvrd´ y (2011)] by different methods.
This page intentionally left blank
October 31, 2011
17:19
World Scientific Book - 9in x 6in
jk
Chapter 22
A variant of Gronwall inequality
22.1. Notation. Let [a, b ] ⊂ R and Φ : [a, b ] → R. Assume that Φ is nondecreasing,
} (22.1)
Φ(τ )−Φ(τ −) < 1 for a<τ ≤b, Φ(τ +)−Φ(τ ) < 1 for a≤τ 0}. countable and may be written as Q(S, T ) = {σj }j∈N . The sums ∑ ∑ (Φ(σj )−Φ(σj −)) , (Φ(σj +)−Φ(σj )), ∑
Q(S,T )
Q(S,T )
Q(S, T ) is
(Φ(σj +)−Φ(σj −))
Q(S,T )
(22.2)
are convergent and independent of the choice of the sequence {σj }j∈N . Therefore they are denoted by ∑ ( ) ∑ ( ) ∑ ( ) Φ(σ+)−Φ(σ) , Φ(σ)−Φ(σ−) , Φ(σ+)−Φ(σ−) . S<σ
S<σ
S<σ
Similarly we interpret some analogous cases and the products ∏ ( ∏ ( ) ) 1 + Φ(σ+) − Φ(σ) , 1 + Φ(σ−) − Φ(σ) , S<σ
etc .
S<σ
Define ΦJ (a) = 0, ΦJ (T ) = Φ(a+)−Φ(a)+
∑
(Φ(τ +)−Φ(τ −)) + Φ(T )−Φ(T −)
a<τ
ΦC (T ) = Φ(T ) − ΦJ (T )
for a < T ≤ b ,
for T ∈ [a, b ] . 145
(22.3)
(22.4)
October 31, 2011
17:19
World Scientific Book - 9in x 6in
jk
Generalized Ordinary Differential Equations
146
ΦJ is called the jump function, ΦC is continuous, ΦC (a) = Φ(a), and both ΦJ and ΦC are nondecreasing. (22.3) and (22.4) imply that Φ(T )−Φ(S) = ΦC (T ) − ΦC (S) + Φ(S + ) − Φ(S)+
∑
(Φ(σ+)−Φ(σ−))
a<σ
+Φ(T ) − Φ(T −),
a≤S ≤T ≤b.
(22.5)
Define
Z(S, S) = 1,
Z(S, T ) = exp(ΦC (T )−ΦC (S)) (1 + Φ(S + ) − Φ(S)) ∏ [ ] (1+Φ(σ−)−Φ(σ))−1 (1+Φ(σ+)−Φ(σ)) × S<σ
(22.6)
The possibly infinite product in (22.6) is convergent as we will show in Remark 22.8. Hence (cf. also (22.1)) Z(S, T ) is well defined. 22.2 . Remark. Let [S, T ] ⊂ [a, b ], ξ : [S, T ] → R. As in Remark 14.23, ∫ T ∫ T ∫ T ξ dΦ or ξ(τ ) dΦ(τ ) are abbreviations for (KH) Dt ξ(τ ) Φ(t), i.e. S
S
∫
S
∫
T
∫
T
ξ dΦ =
T
ξ(τ ) dΦ(τ ) = (KH)
S
Dt ξ(τ ) Φ(t) .
S
S
Moreover, ∫
∫
T
(SKH)
T
Dt ξ(τ ) Φ(t) = (KH) S
Dt ξ(τ ) Φ(t) S
by Corollary 19.14. The aim of this chapter is to prove Theorems 22.3 and 22.5. 22.3. Theorem. Let ξ : [a, b ] → R+ , ∫ ξ(T ) = 1 +
T
ξ dΦ a
for T ∈ [a, b ] ,
(22.7)
October 31, 2011
17:19
World Scientific Book - 9in x 6in
A variant of Gronwall inequality
jk
147
and let ρ : [a, b ] → R+ 0 , η > 0, and ∫
T
ρ(T ) ≤ η +
ρ dΦ
for T ∈ [a, b ] .
(22.8)
a
Then ρ(T ) ≤ η ξ(T )
for T ∈ [a, b ] .
22.4. Proposition. The solution ξ of (22.7) is unique. Proof. Assume that Theorem 22.3 is valid and let (22.7) and (22.8) hold. Then by Theorem 22.3, ζ(T ) ≤ ξ(T ) and ξ(T ) ≤ ζ(T ) for T ∈ [a, b ]. 22.5. Theorem. Put ξ(T ) = Z(a, T )
for T ∈ [a, b ] .
(22.9)
Then ξ is a solution of (22.7). 22.6. Remark. Let Φ(τ ) = Φ(τ −) for a < τ ≤ b. Then ( ) ξ(T ) ≤ exp Φ(T ) − Φ(a) for T ∈ [a, b ] . This is a consequence of (22.6) since ( ) ∏ ( ) Z(S, T ) = exp ΦC (T ) − ΦC (S) 1 + Φ(σ+) − Φ(σ) (
) ≤ exp Φ(T ) − Φ(a) .
S≤σ
Proof of Theorem 22.3 By (22.7) and (22.8) ∫
T
(ρ − η ξ) dΦ,
ρ(T ) − η ξ(T ) ≤
T ∈ [a, b ] .
(22.10)
a
∫T Put M = {µ ≥ a ; a (ρ − η ξ) dΦ ≤ 0 for T ∈ [a, µ]} and m = sup M. Then a ∈ M and there exists ν ∈ [a, b ] such that either a<ν ≤b
and M = {t ; a ≤ t < ν} ,
(22.11)
or M = [a, ν] .
(22.12)
October 31, 2011
17:19
World Scientific Book - 9in x 6in
Generalized Ordinary Differential Equations
148
Let (22.11) take place. Then (cf. (14.24), (14.25), (22.10)) ∫
∫
ν
∫
ν−
(ρ − η ξ) dΦ =
ν
(ρ − η ξ) dΦ+
a
a
(ρ − η ξ) dΦ ν−
∫
ν
≤ 0 + (ρ(ν) − η ξ(ν)) (Φ(ν) − Φ(ν−)) ≤
(ρ − η ξ) dΦ (Φ(ν) − Φ(ν−)) , a
which implies that
∫
ν
(ρ − η ξ) dΦ ≤ 0 a
since 0 = Φ(ν) − Φ(ν−) < 1 by (22.1). Therefore (22.12) holds. Let (22.12) take place. Assume that ν < b. Then ∫
ν
ρ(ν) − η ξ(ν) ≤
(ρ − η ν) dΦ ≤ 0 a
and there exists λ, ν < λ ≤ b, such that Φ(λ) − Φ(ν+) ≤
1 2
.
Put Θ = sup{ρ(τ ) − η ξ(τ ) ; ν ≤ τ ≤ λ}. Then ∫ Θ ≤ sup
ν≤τ ≤λ
∫
∫
τ
(ρ − η ξ) dΦ ≤ sup
ν≤τ ≤λ
a
∫
ν+
≤
ν≤τ ≤λ
(ρ − η ξ) dΦ ν
τ
(ρ − η ξ) dΦ + sup ν
τ
(ρ − η ξ) dΦ ν+
≤ 0 + Θ (Φ(λ) − Φ(ν+)) ≤ Θ 12 . Hence Θ ≤ 0, ∫
λ
(ρ−η ξ) dΦ = a
∫
ν
(ρ−η ξ) dΦ + a
∫
λ
(ρ−η ξ) dΦ ≤ Θ (Φ(λ)−Φ(ν+)) ≤ 0 , ν
which contradicts the assumption ν < b. Therefore M = [a, b ] and (22.9) holds. The proof is complete. The proof of Theorem 22.5 is preceded by several lemmas. Some elementary inequalities are summarized in the following lemma:
jk
October 31, 2011
17:19
World Scientific Book - 9in x 6in
A variant of Gronwall inequality
22.7. Lemma.
jk
149
Let λ ∈ R, |λ| ≤ 12 . Then | exp (λ) − 1 − λ| ≤ λ2 ,
(22.13)
|(1 + λ)−1 −1 + λ| ≤ 2 λ2 ,
(22.14)
| ln(1+λ)− λ| ≤ λ2 .
(22.15)
Proof. (22.13)–(22.15) can be deduced from the well-known expansions of functions exp (λ), (1 + λ)−1 , ln (1 + λ), where ln(1 + λ) is the natural logarithm of (1 + λ). 22.8. Remark. The product in (22.6) is convergent since its convergence is equivalent with the convergence of the series ∑ [
] ln(1 + Φ(σ+) − Φ(σ)) − ln(1 + Φ(σ) − Φ(σ−)) .
S<σ
(22.15) implies that the series is convergent since the number of σ such that Φ(σ+) − Φ(σ) > 21 or Φ(σ) − Φ(σ−) > 21 is finite (see also (22.1)). Hence there exists κ > 1 such that 1 ≤ Z(S, T ) ≤ κ
for a ≤ S < T ≤ b .
(22.16)
Moreover, by (22.6) Z(R, T ) = Z(R, S) Z(S, T )
for a ≤ R ≤ S < T ≤ b .
(Z(S, T ))−1 exists by (22.16). The domain of Z may be extended to [a, b ] 2 by putting Z(S, T¯) = (Z(T¯, S))−1
for T¯ < S .
(22.17)
Then Z(R, T ) = Z(R, S) Z(S, T ) for R, S, T ∈ [a, b ] .
(22.18)
22.9. Lemma. Let a ≤ R < S < T ≤ b,
Φ(T ) − Φ(S + ) ≤ 31 ,
Φ(S−) − Φ(R) ≤ 31 .
(22.19)
October 31, 2011
17:19
World Scientific Book - 9in x 6in
jk
Generalized Ordinary Differential Equations
150
Then Z(S, T )−Z(S, S+) ( )( ) ( ) = 1+Φ(S+)−Φ(S) Φ(T )−Φ(S+) + 1+Φ(S+)−Φ(S) R1 , (22.20) ( )2 where |R1 | ≤ 5 Φ(T ) − Φ(S+) , Z(S, R)−Z(S, S−) ( )( ) ( ) = 1+Φ(S−)−Φ(S) Φ(R)−Φ(S−) + 1+Φ(S−)−Φ(S) R2 , ( )2 where |R2 | ≤ 5 Φ(S−) − Φ(R) .
Proof.
(22.21)
By (22.6)
Z(S, S+) = 1 + Φ(S+) − Φ(S) , ( )( ) Z(S, T ) − Z(S, S+) = 1 + Φ(S+) − Φ(S) A − 1 ,
(22.22)
where
( ) A = exp ΦC (T ) − ΦC (S) ∏ [( )−1 ( )] × 1+Φ(σ−)−Φ(σ) 1+Φ(σ+)−Φ(σ) S<σ
( )−1 × 1+Φ(T −)−Φ(T ) , ∑ [ ln A = ΦC (T )−ΦC (S) + ln(1+Φ(σ+)−Φ(σ)) +
∑ [
S<σ
] ln(1+Φ(σ+)−Φ(σ)− ln(1+Φ(σ−)−Φ(σ))
S<σ
] − ln(1 + Φ(T −) − Φ(T )) ∑ [ ] = ΦC (T )−ΦC (S)+ Φ(σ+)−Φ(σ−) + Φ(T )−Φ(T −) + R3 S<σ
= Φ(T )−Φ(S+) + R3 and |R3 | ≤ 2
( ∑ [( S<σ
)2 ) )2 ] ( )2 ( + Φ(T )−Φ(T −) Φ(σ) − Φ(σ−) + Φ(σ+) −Φ(σ)
( )2 ≤ 2 Φ(T ) − Φ(S+) .
October 31, 2011
17:19
World Scientific Book - 9in x 6in
A variant of Gronwall inequality
jk
151
Hence ( )[ ( ) ] Z(S, T ) − Z(S, S+) = 1 + Φ(S+) − Φ(S) exp Φ(T )−Φ(S+)+R3 − 1 ( )[ ] = 1 + Φ(S+) − Φ(S) Φ(T )−Φ(S+)+R1 ( )( ) ( ) = 1 + Φ(S+) − Φ(S) Φ(T )−Φ(S+) + 1 + Φ(S+) − Φ(S) R1 , where ( )2 |R1 | ≤ |R3 | + Φ(T ) − Φ(S+) + R3 ( )2 ( )2 [ ( )]2 ≤ 2 Φ(T ) − Φ(S+) + Φ(T ) − Φ(S+) 1+4 Φ(T )−Φ(S+) ( )2 [ ( )2 4 ] ≤ Φ(T ) − Φ(S+) 2 + (1+ )2 ≤ 5 Φ(T ) − Φ(S+) . 9 Hence (22.20) holds. (22.21) can be proved in a similar way starting from the equations ( )−1 Z(S−, S) = 1+Φ(S−)−Φ(S) , Z(S, S−) = 1+Φ(S−)−Φ(S) , (22.23) ( )−1 Z(S, R) = Z(R, S) ( ( )( ) = exp ΦC (S)−ΦC (R) 1+Φ(R+)−Φ(R) )−1 ∏[ ] (1+Φ(σ−)−Φ(σ))−1(1+Φ(σ+)−Φ(σ)) (1+Φ(S−)−Φ(S))−1 . × R<σ<S
The proof is complete.
22.10. Lemma. Let (22.19) hold. Then |Z(S, T ) − 1 − Φ(T ) + Φ(S)| ( )( ) ( ) ≤ Φ(S+)−Φ(S) Φ(T ) − Φ(S+) + 1+Φ(S+)−Φ(S) R1 , (22.24) ( )2 |R1 | ≤ 5 Φ(T ) − Φ(S+) for a ≤ S < T ≤ b, |Z(S, R) − 1 − Φ(R) + Φ(S)| ( )( ) ( ) ≤ Φ(S)−Φ(S−) Φ(S−) − Φ(R) + 1+Φ(S−)−Φ(S) R2 , (22.25) ( )2 |R2 | ≤ 5 Φ(S−) − Φ(R) for a ≤ R < S ≤ b . Proof.
(22.24) follows by (22.22), (22.20) since
Z(S, T ) − 1 − Φ(T ) + Φ(S) = Z(S, S+)−1−Φ(S+)+Φ(S)+Z(S, T )−Z(S, S+)−Φ(T )+Φ(S+) . Similarly, (22.25) follows by (22.23) and (22.21).
October 31, 2011
17:19
World Scientific Book - 9in x 6in
jk
Generalized Ordinary Differential Equations
152
Proof of Theorem 22.5. By (22.9), (22.11), (22.18) }
ξ(T ) − ξ(S) − ξ(S) (Φ(T ) − Φ(S)) ( ) = Z(a, S) Z(S, T ) − 1 − Φ(T ) + Φ(S)
for a ≤ S < T ≤ b ,
ξ(R) − ξ(S) − ξ(S) (Φ(R) − Φ(S)) ( ) = Z(a, S) Z(S, R) − 1 − Φ(R) + Φ(S)
for a ≤ R < S ≤ b .
(22.26) } (22.27)
Put { 1} M (1) = τ ∈ [a, b ]; Φ(τ +)−Φ(τ ) > , 2 { 1} N (1) = τ ∈ [a, b ]; Φ(τ )−Φ(τ −) > , 2 { 1 1} for k ∈ N , M (k+1) = τ ∈ [a, b ]; k+1 < Φ(τ +)−Φ(τ ) ≤ k 2 2 { 1 1} N (k+1) = τ ∈ [a, b ]; k+1 < Φ(τ )−Φ(τ −) ≤ k for k ∈ N . 2 2 The sets M (k), N (k) are finite. Furthermore, Φ(τ +) = Φ(τ ) for τ ∈ [a, b ]\
∪
M (k) ,
(22.28)
N (k) .
(22.29)
k∈N
Φ(τ −) = Φ(τ ) for τ ∈ [a, b ]\
∪
k∈N
Let ε > 0 and let δ: [a, b ] → R+ fulfil the following conditions ∑( )[ ( )2 ] 1+Φ(τ +)−Φ(τ ) Φ(τ +δ(τ ))−Φ(τ +)+5 Φ(τ +δ(τ ))−Φ(τ +) τ ∈M (k) (22.30) k−2 ≤ ε2 for k ∈ N , ∑(
)[ ( )2 ] 1+Φ(τ −)−Φ(τ ) Φ(τ −)−Φ(τ −δ(τ ))+5 Φ(τ −)−Φ(τ −δ(τ ))
τ ∈N (k)
≤ ε2
k−2
for k ∈ N .
(22.31)
(Conditions (22.30), (22.31) can be fulfilled since the sets M (k), N (k) are
October 31, 2011
17:19
World Scientific Book - 9in x 6in
jk
A variant of Gronwall inequality
153
finite.) Furthermore, let ( ) [ ] 1+Φ(τ +)−Φ(τ ) 5 Φ(τ +δ(τ ))−Φ(τ ) ≤
ε Φ(b)−Φ(a) ∪( ) for τ ∈ [a, b ] \ M (k) ∪ N (k) .
(22.32)
k∈N
Let T = {([t¯, t], τ )} be a simple δ-fine partition of [a, b ]. Then (22.16), (22.24), (22.26) and (22.30) imply that ∑ |ξ(t) − ξ(τ ) − ξ(τ ) (Φ(t) − Φ(τ ))| ([t¯,t],τ )∈T τ ∈ M (k) (22.33) ∑ ≤κ |Z(t, τ ) − 1 − (Φ(t) + Φ(τ ))| ≤ κ ε 2−k−2 for k ∈ N. ([τ,t],τ )∈T τ ∈M (k)
Similarly ∑ |ξ(t¯) − ξ(τ ) − ξ(τ ) (Φ(t¯) − Φ(τ ))| ≤ κ ε 2−k−2
for k ∈ N.
([τ,t],τ )∈T τ ∈N (k)
Let T1 be the set of ([τ, t], τ ) ∈ T such that τ ∈ [a, b ]\ be the set of ([t¯, τ ], τ ) ∈ T such that τ ∈ [a, b ]\
∪
∪
(22.34)
M (k) and let T2
k∈N
N (k). Then by (22.16)
k∈N
and (22.24) ∑ ∑ |ξ(t) − ξ(τ ) − ξ(τ ) (Φ(t) − Φ(τ ))| ≤ κ R1 T1
≤κ
T1 ∑ ( )( ) 5 Φ(τ +δ(τ ))−Φ(τ ) Φ(t)−Φ(τ +) T1
≤ κε
∑ Φ(t)−Φ(τ +) T1
Similarly ∑
Φ(b)−Φ(a)
≤ κε.
|ξ(t¯) − ξ(τ ) − ξ(τ ) (Φ(t¯) − Φ(τ ))| ≤ κ ε .
T2
(22.33)–(22.36) imply that ∑ |ξ(t) − ξ(t¯) − ξ(τ ) (Φ(t) − Φ(t¯))| ≤ 3 κ ε . T
(22.35)
(22.36)
October 31, 2011
154
17:19
World Scientific Book - 9in x 6in
jk
Generalized Ordinary Differential Equations
Obviously ξ(a) = 1. Therefore ξ fulfils (22.9) The proof is complete.
22.11. Remark. If Φ(τ −) = Φ(τ ) for a < τ ≤ b then ( ) ξ(T ) ≤ exp Φ(T ) − Φ(a) for T ∈ [a, b ] . This follows from (22.5) and (22.4) since 1 + α ≤ exp (α) for α ∈ R+ . Hence the estimate ( ) ρ(T ) ≤ η exp Φ(T ) − Φ(a) is valid for S from Theorem 22.3.
October 31, 2011
17:19
World Scientific Book - 9in x 6in
jk
Chapter 23
Existence of solutions of a class of generalized ordinary differential equations The aim of this chapter is to prove existence, uniqueness and continuous dependence theorems for the GODE d x = Dt F (x, τ, t) . dt In particular, the theorems are valid in the case of the equation k ∑ d x = Dt fi (x) ψi (τ ) ψi+k (t) , dt i=1
(23.1)
where fi : X → X and D fi fulfil a Lipschitz condition and ψi : [a, b ] → R, |ψi (τ ) − ψi (σ)| ≤ |Φ(τ ) − Φ(σ)|,
i = 1, 2, . . . , 2k,
τ, σ ∈ [a, b ] .
23.1. Notation. Let [a, b ] ⊂ R, Φ : [a, b ] → R, F : X × [a, b ] 2 → X. Let Φ be nondecreasing and continuous from the left. Assume that } ∥F (x, τ, t) − F (x, τ, s)∥ ≤ (1 + ∥x∥) |Φ(t) − Φ(s)| (23.2) for x ∈ X, τ, s, t ∈ [a, b ] , } ∥∆v (F (x, τ, t) − F (x, τ, s))∥ ≤ ∥v∥ |Φ(t) − Φ(s)| (23.3) for x, v ∈ X, τ, s, t ∈ [a, b ] , ∥F (x, τ, t) − F (x, τ, s) − F (x, σ, t) + F (x, σ, s)∥ (23.4) ≤ (1 + ∥x∥) |Φ(τ ) − Φ(σ)| |Φ(t) − Φ(s)| for x ∈ X, τ, σ, s, t ∈ [a, b ] , ( ) ∥∆v F (x, τ, t) − F (x, τ, s) − F (x, σ, t) + F (x, σ, s) ∥ (23.5) ≤ ∥v∥ |Φ(τ ) − Φ(σ)| |Φ(t) − Φ(s)| for x, v ∈ X, τ, σ, s, t ∈ [a, b ] . 155
October 31, 2011
17:19
World Scientific Book - 9in x 6in
jk
Generalized Ordinary Differential Equations
156
Observe that the one-sided limits Φ(s+) = lim Φ(t), a ≤ s < b,
Φ(s−) = lim Φ(t) = Φ(s), a < s ≤ b ,
t→s,t>s
F (x, σ, s+)= lim F (x, σ, t), t→s,t>s
t→s,t<s
x ∈ X, σ ∈ [a, b ], a ≤ s < b ,
F (x, σ, s−)= lim F (x, σ, t) = F (x, σ, s) t→s,t<s
x ∈ X, σ ∈ [a, b ], a < s ≤ b , etc.
exist. Moreover, ( )( ) ∥F (x, σ, t) − F (x, σ, s+)∥ ≤ 1 + ∥x∥ Φ(t) − Φ(s+)
}
for x ∈ X, σ ∈ [a, b ], a ≤ s < b
(23.6)
and several similar inequalities are valid. 23.2. Lemma. Let [c, d ] ⊂ [a, b ] and let w : [c, d ] → X be a function of bounded variation. Then ∫ d the integral (SKH) Dt F (w(τ ), τ, t) exists . (23.7) c
Define z : [c, d ] → X by ∫ z(T ) = (SKH)
T
Dt F (w(τ ), τ, t) . c
Then z has a bounded variation and is continuous from the left .
(23.8)
Proof. Put U (τ, t) = F (w(τ ), τ, t) for τ, t ∈ [c, d ]. It can be deduced by (23.2)–(23.5) that U fulfils (20.3), (20.4) where Ψ, Φ are suitable nondecreasing functions (since w is bounded). (23.7) and (23.8) are true by Theorem 20.9. 23.3. Lemma. Let [c, d ] ⊂ [a, b ], yb ∈ X. Assume that Φ(d) − Φ(c+) ≤
1 2
.
Then there exists a function vc,d : [c, d ] → X such that ∫ T vc,d (T ) = yb + (SKH) Dt F (vc,d (τ ), τ, t) , for T ∈ [c, d ] ,
(23.9)
(23.10)
c
vc,d has a bounded variation and is continuous from the left .
(23.11)
October 31, 2011
17:19
World Scientific Book - 9in x 6in
jk
Existence of solutions of a class of generalized ordinary differential equations
Proof.
157
Define
v0 (T ) = yb for T ∈ [c, d ] , ∫ T (23.12) vi+1 (T ) = yb +(SKH) Dt F (vi (τ ), τ, t) for T ∈ [c, d ], i ∈ N0 . c
By Lemma 23.2 the integrals in (23.12) exist and vi , i ∈ N0 , are functions of bounded variation continuous from the left. By (23.12), Remark 20.10 and Corollary 14.18 vi (c) = yb,
vi (c+) = yb+
for i ∈ N ,
(23.13)
where yb+ = yb + F (b y , c, c+) − F (b y , c, c) .
(23.14)
By (23.12) and (23.2) ∫
T
vi+1 (T ) = yb+ + (SKH)
Dt F (vi (τ ), τ, t) for T ∈ [c, d ], i ∈ N ,
(23.15)
c+
∫
T
v1 (T ) − v0 (T ) = (SKH)
Dt F (b y , τ, t) for T ∈ [c, d ] ( ) ∥v1 (T ) − v0 (T )∥ ≤ (1 + ∥b y ∥) Φ(T ) − Φ(c) for T ∈ [c, d ] . c
(23.16)
By (23.15), (23.3) (cf. Theorem 20.9) ∫ T
[ ]
∥vi+2 (T ) − vi+1 (T )∥ ≤ (SKH) Dt F (vi+1 (τ ), τ, t)−F (vi (τ ), τ, t) c+ { }( ) ≤ max ∥vi+1 (τ )−vi (τ )∥; τ ∈ [c, T ] Φ(T )−Φ(c+) for c < T ≤ d . Furthermore,
( ) ∥v1 (t) − v0 (t)∥ ≤ (1 + ∥b y ∥) Φ(T ) − Φ(c)
for c ≤ t ≤ T ≤ d
and (by induction)
( )( )i ∥vi+1 (T ) − vi (T )∥ ≤ (1 + ∥b y ∥) Φ(d) − Φ(c) Φ(T ) − Φ(c+) for c < T ≤ d, i ∈ N0 .
(23.17)
Hence (cf. (22.1)) {vi (T )} is uniformly convergent for c ≤ T ≤ d when i → ∞ .
(23.18)
October 31, 2011
17:19
World Scientific Book - 9in x 6in
jk
Generalized Ordinary Differential Equations
158
Put vc,d (T ) = lim vi (T ), i→∞
T ∈ [c, d ] .
The limit procedure for i → ∞ in (23.12) gives ∫ T vc,d (T ) = yb + (SKH) Dt F (vc,d (τ ), τ, t) , for c ≤ T ≤ d,
(23.19)
c
(23.10) holds by (23.19). (23.11) holds by Lemma 23.2. The proof is complete. 23.4. Theorem. Let y ∈ X. Then there exists u : [a, b ] → X such that ∫ T u(T ) = y + (SKH) Dt F (u(τ ), τ, t) for T ∈ [a, b ] . (23.20) a
Equivalently, u is a solution of the GODE d x = Dt F (x, τ, t) dt
(23.21)
on [a, b ] and u(a) = y. Moreover, u has a bounded variation and is continuous from the left . Proof.
(23.22)
Let δ : [a, b ] → R+ be such that Φ(τ + δ(τ )) − Φ(τ +) ≤ 21 for a ≤ τ < b
and Φ(τ ) − Φ(τ − δ(τ )) ≤ 21 for a < τ ≤ b . Let R = {([rj−1 , rj ], ρj )}, a = r0 < r1 < . . . < rℓ = b, be a δ-fine partition of [a, b ]. Let {si ; i = 0, 1, . . . , k} = {rj ; j = 0, 1, . . . , ℓ} ∪ {ρj ; j = 0, 1, . . . , ℓ} and s0 < s1 < . . . < sk . Then Φ(si ) − Φ(si−1 +) ≤ 21
for i = 1, 2, . . . , k−1 .
Put y0 = y. By Lemma 23.3 there exists u1 : [s0 , s1 ] → X of bounded variation, continuous from the left and such that ∫ T Dt F (u1 (τ ), τ, t) for s0 ≤ T ≤ s1 . u1 (T ) = y0 + (SKH) s0
October 31, 2011
17:19
World Scientific Book - 9in x 6in
Existence of solutions of a class of generalized ordinary differential equations
jk
159
Put y1 = u1 (s1 ) By Lemma 23.3 there exists u2 : [s1 , s2 ] → X of bounded variation, continuous from the left and such that ∫ T u2 (T ) = y1 + (SKH) Dt F (u2 (τ ), τ, t) for s1 ≤ T ≤ s2 . s1
By induction there exist functions ui : [si−1 , si ] → X, i = 3, 4, . . . , k, of bounded variation, continuous from the left and yi ∈ X, i = 2, 3, . . . , k−1, such that yi−1 = ui−1 (si−1 ) and ∫ T ui (T ) = yi−1 + (SKH) Dt F (ui (τ ), τ, t) for si−1 ≤ T ≤ si , i = 3, 4, . . . , k . si−1
Define u : [a, b ] → X by u(a) = y,
u(T ) = ui (T ) for si−1 < T ≤ si ,
i = 1, 2, . . . , k .
Then u(s1 ) = u1 (s1 ) = y1 ,
∫
T
u(T ) = u(s1 ) + (SKH)
Dt F (u(τ ), τ, t)
for s1 ≤ T ≤ s2 ,
s1
∫
T
u(T ) = y + (SKH)
Dt F (u(τ ), τ, t)
for a ≤ T ≤ s2 ,
a
u(s2 ) = u2 (s2 ) = y2 ,
. . . etc.
Then u fulfils (23.20). By Lemma 23.2, the functions ui , i = 1, 2, . . . , k, have bounded variation and are continuous from the left. Therefore u fulfils (23.22). Moreover, by Definition 15.2, u is a solution of (23.21) if and only if it fulfils (23.20) and u(a) = y. The proof is complete. 23.5. Lemma. Let u fulfil (23.20). Then u has a bounded variation and is continuous from the left , (23.23) ( ) ( ) ∥u(T )∥ ≤ ∥y∥ + Φ(T ) − Φ(a) exp Φ(T ) − Φ(a) for T ∈ [a, b ] . (23.24) Proof. There exists κ > 0 such that ∥u(τ )∥ ≤ κ for τ ∈ [a, b ] since u is locally bounded by the definition of SKH-integral. Hence ∫ T ( ) ∥u(T ) − u(S)∥ ≤ (SKH) Dt F (u(τ ), τ, t)∥ ≤ (1 + κ) Φ(T ) − Φ(S) S
October 31, 2011
17:19
World Scientific Book - 9in x 6in
jk
Generalized Ordinary Differential Equations
160
for a ≤ S ≤ T ≤ b and (23.23) holds. Let ε > 0 and a < T ≤ b. Then there exists δ: [a, T ] → R+ such that ∫ T
∑[ ]
Dt F (u(τ ), τ, t) − F (u(σ), σ, s) − F (u(σ), σ, s¯) < ε
(SKH) a
S
for all δ-fine partitions S = {([¯ s, s], σ)} of [a, T ]. Hence ∑( )( ) ∥u(T ) − u(a)∥ ≤ 1 + ∥u(σ)∥ Φ(s) − Φ(¯ s) + ε S
≤ Φ(T ) − Φ(a) +
∑
( ) ∥u(σ∥ Φ(s) − Φ(¯ s) + ε ,
S
and ∥u(T )∥ ≤ ∥u(a)∥ +
∑(
)( ) 1 + ∥u(σ)∥ Φ(s) − Φ(¯ s) + ε .
(23.25)
S
The function ∥u∥ has a bounded variation since u is a function of bounded ∫ T variation. Hence the integral ∥u(τ )∥ dΦ(τ ) exists and taking S in a
(23.25) sufficiently fine, we get ∫ T ∥u(T )∥ ≤ ∥u(a)∥ + Φ(T )−Φ(a)+ ∥u(τ )∥dΦ(τ )+2 ε a
for T ∈ [a, b ] .
The relations (23.20) and (23.25) imply that ∫ T ∥u(T )∥ ≤ ∥y∥ + Φ(T ) − Φ(a) + ∥u(τ )∥ dΦ(τ )
(23.26)
for T ∈ [a, b ]
a
since ε > 0 can be arbitrary. Thus, by Theorem 22.3, ( ) ∥u(T )∥ ≤ ∥y∥ + Φ(T ) − Φ(a) ξ(T ) , where ξ is defined in (22.7) and, by Remark 22.6, fulfils ( ) ∥ξ(T )∥ ≤ exp Φ(T ) − Φ(a) for T ∈ [a, b ] , since Φ is continuous from the left. This implies that (23.24) is true. The proof is complete. 23.6. Lemma. Let y, y ∈ X, let u fulfil (23.9) and let v fulfil ∫ T v(T ) = y + Dt F (v(τ ), τ, t) for T ∈ [a, b ] . a
(23.27)
October 31, 2011
17:19
World Scientific Book - 9in x 6in
jk
Existence of solutions of a class of generalized ordinary differential equations
161
Then ( ) ∥u(T ) − v(T )∥ ≤ ∥y − y∥ exp Φ(T ) − Φ(a) Proof.
for T ∈ [a, b ] .
(23.28)
By (23.9) and (23.27),
∫ T [ ] u(T )−v(T ) = y−y+(SKH) Dt F (u(τ ), τ, t) − F (v(τ ), τ, t) f or T ∈ [a, b ] . a
Let T ∈ [a, b ]. There exists δ: [a, b ] → R+ such that ∫
(SKH)
[ ] Dt F (u(τ ), τ, t) − F (v(τ ), τ, t)
T
a
∑[ ]
− F (u(σ), σ, s) − F (u(σ), σ, s¯) − F (v(σ), σ, s) + F (v(σ), σ, s¯) ≤ ε S
whenever S = {([¯ s, s], σ)} is a δ-fine partition of [a, T ]. Hence ∥u(T ) − v(T )∥ ∑
≤ ∥y−y∥+ F (u(σ), σ, s)−F (u(σ), σ, s¯)−F (v(σ), σ, s)+F (v(σ), σ, s¯) +ε S
≤ ∥y−y∥ +
∑
( ) ∥u(σ − v(σ)∥ Φ(s)−Φ(¯ s) + ε .
S
Consequently, ∫
T
∥u(T ) − v(T )∥ ≤
∥u(σ) − v(σ)∥ d Φ(s) + ε
for T ∈ [a, b ] .
a
Now, Theorem 22.3 and Remark 22.6 yield ( ) ∥u(T ) − v(T )∥ ≤ (ε + ∥y − y∥) exp Φ(T ) − Φ(a)
for T ∈ [a, b ] .
(23.27) holds as ε > 0 is arbitrary. The proof is complete.
23.7. Remark. Let u fulfil (23.9). Then u is unique. This is a consequence of Lemma 23.6. 23.8. Lemma. Let y ∈ X and let u fulfil (23.20). Let F : X × [a, b ]2 → X fulfil (23.2)–(23.5) with F replaced by F . Assume that u: [a, b ] → X, ∫
T
u(T ) = y + (SKH)
Dt F (u(τ ), τ, t) a
for T ∈ [a, b ] ,
(23.29)
November 21, 2011
9:58
World Scientific Book - 9in x 6in
jk
Generalized Ordinary Differential Equations
162
that Φ∗ : [a, b ] → R is nondecreasing and continuous from the left and that ∥F (x, τ, t) − F (x, τ, s) − F (x, τ, t) + F (x, τ, s )∥ ( ) ≤ (1 + ∥x∥) Φ∗ (t) − Φ∗ (s) for x ∈ X, s, t ∈ [a, b ], s
(23.30)
Then ( ) ∥u(T ) − u(T )∥ ≤ C Φ∗ (b) − Φ∗ (a) for T ∈ [a, b ] , where
(23.31)
( ) ( ) C = ∥y∥ + Φ(b) − Φ(a) exp 2 (Φ(b) − Φ(a)) .
Proof.
By Lemma 23.5, u and u are functions of bounded variation and ∫ b continuous from the left. The integral (SKH) Dt F (u(τ ), τ, t) exists by a
Lemma 23.2. Therefore ∫ u(T ) − u(T ) = (SKH)
b
[ ] Dt F (u(τ ), τ, t) −F (u(τ ), τ, t)
a
∫
b
+ (SKH)
] Dt F (u(τ ), τ, t) −F (u(τ ), τ, t) for T ∈ [a, b ] . [
(23.32)
a
Let ε > 0 and T ∈[a, b ]. There exists δ: [a, b ]→ R+ such that
(SKH) ≤
∫
∑
T
] [ Dt F (u(τ ), τ, t) −F (u(τ ), τ, t)
a
∥F (u(σ), σ, s)−F (u(σ), σ, s¯)−F (u(σ), σ, s)+F (u(σ), σ, s¯)∥ + ε
S
≤
∑( )( ) 1 + ∥u(σ)∥ Φ∗ (s) − Φ∗ (¯ s) + ε S
if S = {([¯ s, s], σ)} is a δ-fine partition of [a, T ]. Hence ∫ T ∫ T
] [ ( )
(SKH) Dt F (u(τ ), τ, t)−F (u(τ ), τ, t) ≤ 1+∥u(τ )∥ dΦ∗ (τ ) (23.33) a
a
since the integral on the right hand side exists and ε > 0 is arbitrary. By
October 31, 2011
17:19
World Scientific Book - 9in x 6in
jk
Existence of solutions of a class of generalized ordinary differential equations
163
(23.33) and (23.24),
(SKH)
∫
T
[ ] Dt F (u(τ ), τ, t) −F (u(τ ), τ, t)
a
) ( )( ) ≤ ∥y∥ + Φ(b) − Φ(a) exp Φ(b) − Φ(a) Φ∗ (b) − Φ∗ (a) . (
(23.34)
F fulfils (23.3) (with F replaced by F ). Therefore
(SKH)
∫
T
[
] Dt F (u(τ ), τ, t)−F (u(τ ), τ, t) ≤
a
∫
T
∥u(τ )−u(τ )∥ dΦ(τ ) a
which together with (23.32)–(23.34) implies that ∥u(T ) − u(T )∥ ( ) ( )( ) ≤ ∥y∥+Φ(b)−Φ(a) exp Φ(b) − Φ(a) Φ∗ (b) − Φ∗ (a) ∫
T
∥u(τ )−u(τ )∥ dΦ(τ ) for T ∈ [a, b ] .
+ a
(23.31) holds by Theorems 22.3, 22.5 and Remark 22.6. The proof is complete. 23.9 . Remark. Theorem 23.4 and Lemmas 23.6, 23.8 describe the existence, uniqueness and continuous dependence (on y and F ) of solutions to the GODE (23.9). In particular, they can be applied in the case of the equation (23.1). 23.10. Lemma. Define F ◦ : X × [a, b ] → X by ∫ t ◦ F (x, t) = (SKH) Ds F (x, σ, s) .
(23.35)
a
Let v: [a, b ] → X be a function of bounded variation and continuous from the left. Then ∫ T ∫ T ◦ (SKH) Dt F (v(τ ), t) = (SKH) Dt F (v(τ ), τ, t) for T ∈ [a, b ] . (23.36) a
a
Proof. F ◦ is well defined by (23.35) due to Theorem 20.9 and assumptions (23.2) and (23.4). Furthermore, by (23.2) and (23.4), we have ( ( ) ∥F ◦ (x, t)−F ◦ (x, s)∥ ≤ 1+∥x∥) Φ(t)−Φ(s) for x ∈ X, t, s ∈ [a, b ] . (23.37)
October 31, 2011
17:19
World Scientific Book - 9in x 6in
jk
Generalized Ordinary Differential Equations
164
Similarly, ( ) ( ) ∥∆v F ◦ (x, t) − F ◦ (x, s) ∥ ≤ ∥v∥ Φ(t) − Φ(s) for x, v ∈ X, t, s ∈ [a, b ] . Hence F ◦ fulfils (23.2),(23.4) (with F replaced by F ◦ ). Analogically, F ◦ fulfils also (23.3), (23.5) since it depends only on x, t. The integrals in (23.36) exist by Lemma 23.2. Let ε > 0, a < T ≤ b. There exists δ1 : [a, b ] →R+ such that ∫ s
∑
(SKH) Dt F (v(τ ), τ, t)−F (v(σ), σ, s)+F (v(σ), σ, s¯) ≤ ε, (23.38) s¯
S
∫ s
∑
(SKH) Dt F ◦ (v(τ ), t)−F ◦ (v(σ), s)+F ◦ (v(σ), s¯) ≤ ε
(23.39)
s¯
S
whenever S = {([¯ s, s], σ)} is δ1 -fine partition of [a, T ]. By (23.38), (23.39), (23.35) ∫ s ∫ s
∑
Dt F (v(τ ), τ, t)−(SKH) Dt F ◦ (v(τ ), t)
(SKH) s¯
S
≤
s¯
∑
F (v(σ), σ, s)−F (v(σ), σ, s¯)−F ◦ (v(σ), s)+F ◦ (v(σ), s¯)
+2 ε S
∫ ∑
≤ F (v(σ), σ, s)−F (v(σ), σ, s¯)−(SKH)
s
Dt F (v(τ ), τ, t) +2 ε .
s¯
S
By (23.38) ∫ T ∫ ∥(SKH) Dt F (v(τ ), τ, t) − (SKH) a
T
Dt F ◦ (v(τ ), t)∥ ≤ 3 ε
if a < T ≤ b.
a
(23.22) holds since ε > 0 may be arbitrary. The proof is complete.
23.11. Theorem. Let y ∈ X, u: [a, b ] → X, u(a) = y. Then u is a solution of the GODE d x = Dt F (x, τ, t) dt if and only if it is a solution of the GODE d x = Dt F ◦ (x, t) . dt Proof. Theorem 23.11 is a consequence of Lemma 23.10 (cf. Theorem 23.4).
October 31, 2011
17:19
World Scientific Book - 9in x 6in
jk
Chapter 24
A convergence process as a source of discontinuities in the theory of differential equations 24.1. Motivation. Let [a, b ] ⊂ R, q : X × [a, b ] → X, κ b ∈ R+ , p : X → X. Assume that q
is continuous,
∥q(0, t)∥ ≤ κ b,
∥q(x, t) − q(y, t)∥ ≤ κ b ∥x − y∥ ,
∥p(x) − p(y)∥ ≤ κ b ∥x − y∥ . Then for t, s ∈ [a, b ], s < t, there exists a map Q(s, t): X → X such that y Q(s, t) is its value at y and that the function t 7→ y Q(s, t) is a solution of the classical equation x˙ = q(x, t) such that y Q(s, s) = y. The function y Q(s, .) is uniquely defined, Q(s, t) is an automorphism of X and y Q(s, r) Q(r, t) = y Q(s, t)
for s, r, t ∈ [a, b ] .
Define H : R → {0, 1} by H(t) =
0
for t ≤ 0 ,
1
for t > 0 .
(24.1)
Let αj , β, γj ∈ [a, b ], αj ≤ β ≤ γj , αj < γj for j ∈ N. Assume that αj → β, γj → β for j → ∞. Let uj : [a, b ] → X be the solution of the classical equation x˙ = q(x, t) + p(x)
χj (t) , βj − αj 165
uj (a) = y .
October 31, 2011
17:19
World Scientific Book - 9in x 6in
jk
Generalized Ordinary Differential Equations
166
χj being the characteristic function of [αj , γj ]. Let v P (s, .) be the unique solution of x˙ = p(x) such that for s ∈ R, v ∈ X .
v P (s, s) = v
Define z : [a, b ] → X by y Q(a, t) for a ≤ t ≤ β, z(t) = y Q(a, β)(id + P (0, 1)) Q(β, t) for β < t ≤ b . Then uj (t) → z(t) Put
for j → ∞, t ∈ [a, b ], t ̸= β .
( ) F (x, t) = q(x, t) + x P (0, 1) H(t − β),
x ∈ X, t ∈ [a, b ] .
Then z is a solution of the GODE d x = Dt F (t, x) . dt Observe that F (x, .) is continuous from the left. The aim of this chapter is to extend the above result to a situation such that the set of discontinuities of the limit solution z may be countable. 24.2 . Notation. Let [a, b ]⊂R, Ψ: [a, b ]→R, Q: X×[a, b ]→X, p i : X → X, αi , βi , γi ∈ [a, b ], κi ∈ R+ for i ∈ N. Assume that Ψ
is nondecreasing and continuous,
(24.2)
a < βi < b, βi ̸= βj for i ̸= j, i, j ∈ N ,
Q(x, t) − Q(x, s) ≤ (1 + ∥x∥) Ψ(t) − Ψ(s) ,
}
for x ∈ X, t, s ∈ [a, b ] , ( ) ∆v Q(x, t) − Q(x, s) ≤ ∥v∥ Ψ(t) − Ψ(s) ,
}
for x, v ∈ X, t, s ∈ [a, b ] , ∞ ∑ i=1
κi < ∞ ,
(24.3) (24.4)
(24.5)
(24.6)
October 31, 2011
17:19
World Scientific Book - 9in x 6in
jk
A convergence process as a source of discontinuities
∥p i (x)∥ ≤ κi (1 + ∥x∥),
167
}
∥p i (x) − p i (y)∥ ≤ κi (∥x − y∥) ,
(24.7)
for x, y ∈ X, i ∈ N .
24.3. Lemma. Let w ∈ X and i ∈ N. Then there exists a unique solution Pi (w, .): R+ 0 → X of the classical differential equation x˙ = p i (x)
(24.8)
( ) ∥Pi (w, t)∥ ≤ ∥w∥ + κi t exp(κi t) for t ∈ R+ 0 , ( )[ ] ∥Pi (w, 1) − w∥ ≤ κi ∥w∥ + 1 exp(κi ) − 1 .
(24.9)
such that Pi (w, 0) = w. Moreover,
(24.10)
Let w ∈ X. Then ∥Pi (w, t) − Pi (w, t)∥ ≤ ∥w − w∥ exp(κi t) for t ∈ R+ 0 , [ ] ∥Pi (w, 1) − w − Pi (w, 1) + w∥ ≤ ∥w −w∥ exp(κi ) − 1 .
(24.11) (24.12)
Sketch of the proof. By standard methods the solution Pi (w, .) exists for 0 ≤ t < α, where α > 0, and fulfils ∫ t Pi (w, t) = w + p i (Pi (w, τ )) dτ for 0 ≤ t < α . 0
By (24.7), ∫
t
∥Pi (w, t)∥ ≤ ∥w∥ +
( ) κi 1 + ∥Pi (w, τ )∥ dτ
for 0 ≤ t < α .
0
By Gronwall inequality (Lemma A.1) ∥Pi (w, t)∥ ≤ (∥w∥ + κi t) exp(κi t)
for 0 ≤ t < α
which implies that Pi (w, t) is defined on R+ 0 and (24.9) holds. Further, ∫ t ∫ t [ ] Pi (w, t)−w = p i (Pi (w, τ )−w) dτ + p i (Pi (w, τ ))−p i (Pi (w, τ )−w) dτ 0
0
for 0 ≤ t < ∞ . By (24.7), ∫ t ∫ t ( ) ∥Pi (w, t)−w∥ ≤ κi 1+∥Pi (w, τ )−w∥ dτ + κi ∥w∥dτ 0
0
for 0 ≤ t < α .
October 31, 2011
17:19
World Scientific Book - 9in x 6in
jk
Generalized Ordinary Differential Equations
168
(24.10) holds by Gronwall inequality. Similarly,
∫ t [ ]
∥Pi (w, t)−Pi (w, t)∥ ≤ ∥w − w∥ + p i (Pi (w, τ )) − p i (Pi (w, τ ) dτ 0 ∫ t ≤ ∥w − w∥ + κi ∥Pi (w, τ )) − Pi (w, τ )∥ dτ for 0 ≤ t < α . 0
and (24.11) is correct by Gronwall inequality. Finally,
∫ t [ ]
∥Pi (w, t) − w − Pi (w, t) + w∥ ≤ p i (Pi (w, τ )) − p i (Pi (w, τ ) dτ 0
∫ ≤ κi
t
∥Pi (w, τ )−Pi (w, τ )∥ dτ
for t ∈ R+
0
and (24.12) holds by (24.11). 24.4. Theorem. Let y ∈ X. Put (cf. (24.1)) ) ∑∞ ( F1 (x, t) = Q(x, t) + i=1 Pi (x, 1) − x H(t−βi )
Φ1 (t) = Ψ(t) +
∑∞ ( i=1
for x ∈ X, t ∈ [a, b ] ,
) exp(κi ) − 1 H(t−βi )
} (24.13) } (24.14)
for t ∈ [a, b ] . Then ∥F1 (x, t) − F1 (x, s)∥ ≤ (1 + ∥x∥) |Φ1 (t) − Φ1 (s)| for x ∈ X, t, s ∈ [a, b] ,
( ) ∥∆v F1 (x, t) − F1 (x, s) ∥ ≤ ∥v∥ |Φ1 (t) − Φ1 (s)|
for x, v ∈ X, t, s ∈ [a, b] and there exists u1 : [a, b ] → X fulfilling ∫ T u1 (T ) = y + (SKH) Dt F1 (u1 (τ ), t)
for T ∈ [a, b ].
} (24.15) } (24.16)
(24.17)
a
Moreover, u1 u1
is a function of bounded variation continuous from the left , (24.18)
is unique , (24.19) ( ) ( ) ∥u1 (T )∥ ≤ ∥y∥+Φ1 (T )−Φ1 (a) exp Φ1 (T )−Φ1 (a) for T ∈[a, b ] . (24.20)
November 21, 2011
9:58
World Scientific Book - 9in x 6in
jk
A convergence process as a source of discontinuities
Proof.
∞ ∑ [
169
] exp(κi ) − 1 < ∞ by (24.6). Hence F1 , Φ1 are well defined
i=1
and fulfil (23.2), (23.3). Conditions (23.4), (23.5) are irrelevant since F1 does not depend on τ. By Theorem 23.4 there exists a solution u1 : [a, b ] → X of (24.17), u1 (a) = y. It fulfils (24.18) and is unique by Lemma 23.6. Moreover, (24.20) holds by Lemma 23.5. 24.5. Notation. Let ζ > 0, a < αi < βi < γi < b for i ∈ N. There exists k ∈ N such that ∞ ∑ (exp(κi ) − 1) ≤ ζ (24.21) i=k+1
and a permutation m of {1, 2, . . . , k} such that βm(1) < βm(2) < . . . < βm(k) ,
(24.22)
a < αm(1) < βm(1) < γm(1) < . . . < αm(k) < βm(k) < γm(k) < b .
(24.23)
Assume that k ∑
(γi − αi ) ≤ ζ ,
(24.24)
i=1 k ∑ (
) Ψ(γi ) − Ψ(αi ) ≤ ζ,
i=1
∞ ∑ ( ) Ψ(γi ) − Ψ(αi ) ≤ ζ .
(24.25)
i=k+1
Define QM : X × [a, b ] → X and Ψ∗ : [a, b ] → R as follows: QM (x, t) = Q(x, t),
Ψ∗ (t) = 0
QM (x, t) = QM (x, αm(1) ),
Ψ∗ (t) = Ψ(t) − Ψ(αm(1) )
if a ≤ t ≤ αm(1) ,
QM (x, t) = QM (x, γm(1) ) + Q(x, t) − Q(x, γm(1) ),
if αm(1) ≤ t ≤ γm(1) ,
Ψ∗ (t) = Ψ∗ (γm(1) ) if γm(1) ≤ t ≤ αm(2) ,
QM (x, t) = QM (x, αm(2) ),
Ψ∗ (t) = Ψ∗ (αm(2) ) + Ψ(t) − Ψ(αm(2) ) if αm(2) ≤ t ≤ γm(2) ,
QM (x, t) = QM (x, γm(2) ) + Q(x, t) − Q(x, γm(2) ),
Ψ∗ (t) = Ψ∗ (γm(2) ) if γm(2) ≤ t ≤ αm(3) ,
...
...
...
October 31, 2011
17:19
World Scientific Book - 9in x 6in
jk
Generalized Ordinary Differential Equations
170
Ψ∗ (t) = Ψ∗ (γm(k) )
QM (x, t) = Q(x, γm(k) ) + Q(x, t) − Q(x, γm(k) ),
if γm(k) ≤ t ≤ b . Put ∞ ∑ (
F2 (x, t) = QM (x, t) +
) Pi (x, 1) − x H(t − βi )
i=k+1
for x ∈ X, t ∈ [a, b ] , Φ∗1 (t)
∗
= Ψ (t)+
∞ ∑
(
) exp(κi ) − 1 H(t − βi )
i=k+1
for x ∈ X, t ∈ [a, b ] .
(24.26)
(24.27)
24.6. Remark. The number k and the permutation m having the properties mentioned in Notation 24.5 exist by (24.6) and (24.3), respectively. Moreover (cf. (24.25)), Ψ∗
is nondecreasing and continuous,,
Ψ∗ (a) = 0,
Φ∗1
is nondecreasing and continuous from the left,
Ψ∗ (b) < ζ, (24.28) } (24.29)
Φ∗1 (b) − Φ∗1 (a) < 2 ζ . By (24.10) and (24.12), ( )( ) ∥Pi (x, 1) −x∥ ≤ 1 + ∥x∥ exp(κi ) − 1 , ( ) ( ) ∥∆v P1 (x, 1) − x ∥ ≤ ∥v∥ exp(κi ) − 1
(24.30) (24.31)
for x ∈ X. Hence ( ) ∥F2 (x, t) −F2 (x, s)∥ ≤ 1 + ∥x∥ |Φ1 (t) − Φ1 (s)| for x ∈ X, t, s ∈ [a, b ] ,
( ) ∥∆v F2 (x, t) −F2 (x, s) ∥ ≤ ∥v∥ |Φ1 (t) − Φ1 (s)|
for x, v ∈ X, t, s ∈ [a, b ] .
} (24.32) } (24.33)
24.7. Theorem. Let y ∈ X. Then there exists u2 : [a, b ] → X fulfilling ∫ u2 (T ) = y +(SKH)
T
Dt F2 (u2 (τ ), t) a
for T ∈ [a, b ] .
(24.34)
October 31, 2011
17:19
World Scientific Book - 9in x 6in
jk
A convergence process as a source of discontinuities
171
Moreover, u2
has a bounded variation and is continuous from the left ,
u2
is unique , ( ) ( ) ∥u2 (T )∥ ≤ ∥y∥ + Φ1 (T ) − Φ1 (a) exp Φ1 (T )−Φ1 (a) for T ∈ [a, b ] .
(24.35) (24.36) } (24.37)
The proof is omitted since it follows the same arguments as the proof of Theorem 24.4 (cf. (24.32), (24.33)). ∥u1 (T ) − u2 (T )∥ ≤ 2 C1 ζ, where ( ) ( ) C1 = ∥y∥ + Φ1 (b) − Φ1 (a) exp 2 (Φ1 (b) − Φ1 (a) .
24.8. Theorem.
Hint : Theorem 24.8 is a consequence of Lemma 23.8, where F = F1 , F = F2 , Φ∗ = Φ∗1 and C = C1 (cf. (24.29)) since ( )( ) ∥F1 (x, t) − F1 (x, s) − F2 (x, t) + F2 (x, t)∥ ≤ 1 + ∥x∥ Φ∗1 (t) − Φ∗1 (s) for x ∈ X, s, t ∈ [a, b ], s < t , Φ∗1 (b) − Φ∗1 (a) ≤ 2 ζ
.
24.9. Lemma. For i ∈ N put 0 ωi (t) = (γi − αi )−1 0 ∫ t Ωi (t) = ωi (τ ) dτ for
if a ≤ t ≤ αi , (24.38)
if αi < t < γi , if γi ≤ t ≤ b , t ∈ [a, b ] ,
(24.39)
a
Φ3 (t) = Ψ(t)+
∞ ∑ (
) exp(κi ) − 1 Ωi (t)
for t ∈ [a, b ] ,
(24.40)
for x ∈ X, t ∈ [a, b ] ,
(24.41)
for x ∈ X, t ∈ [a, b ] ,
(24.42)
i=1
F3 (x, t) = Q(x, t) +
∞ ∑
pi (x) Ωi (t)
i=1
F4 (x, t) = QM (x, t) +
k ∑
pi (x) Ωi (t)
i=1
Φ∗3 (t) = Ψ∗ (t)+
∞ ∑ ( i=k+1
) exp(κi )−1
∫
t
ωi (s) ds a
for t ∈ [a, b ] . (24.43)
October 31, 2011
17:19
World Scientific Book - 9in x 6in
jk
Generalized Ordinary Differential Equations
172
(For QM , Ψ∗ (t) see Notation 24.5, for k see (24.21).) Then ∥F3 (x, t) − F3 (x, s)∥ ≤ (1 + ∥x∥) |Φ3 (t) − Φ3 (s)| for x ∈ X, t, s ∈ [a, b] ,
( ) ∥∆v F3 (x, t) − F3 (x, s) ∥ ≤ ∥v∥ |Φ3 (t) − Φ3 (s)|
for x, v ∈ X, t, s ∈ [a, b] , ∥F4 (x, t) − F4 (x, s)∥ ≤ (1 + ∥x∥) |Φ3 (t) − Φ3 (s)| for x ∈ X, t, s ∈ [a, b] ,
( ) ∥∆v F4 (x, t) − F4 (x, s) ∥ ≤ ∥v∥ |Φ3 (t) − Φ3 (s)|
} (24.44) } (24.45) } (24.46) } (24.47)
for x, v ∈ X, t, s ∈ [a, b] , Φ3 (b) − Φ3 (a) = Φ1 (b) − Φ1 (a) .
(24.48)
Hint : The series in (24.40), (24.41) are convergent by (24.7) since 0 ≤ Ωi (t) ≤ 1. (24.44)–(24.47) are valid by (24.4), (24.5) and (24.37). Finally, (24.48) holds since Ωi (b) = 1 for i ∈ N. 24.10. Theorem. Let y ∈ X. Then there exists u3 : [a, b ] → X fulfilling ∫ u3 (T ) = y +(SKH)
T
Dt F3 (u3 (τ ), t)
for T ∈ [a, b ] .
(24.49)
a
Moreover, u3
has a bounded variation and is continuous from the left ,
u3
is unique , ( ) ( ) ∥u3 (T )∥ ≤ ∥y∥ + Φ3 (T ) − Φ3 (a) exp Φ3 (T )−Φ3 (a) for T ∈ [a, b ] .
(24.50) (24.51) } (24.52)
The proof is omitted since it follows the same arguments as the proof of Theorem 24.4. Similarly, the proofs of Theorems 24.11, 24.12 are omitted (cf. the proofs of Theorems 24.4 and 24.8 together with (24.48) and observe that Φ∗3 (b)−Φ∗3 (a) ≤ 2 ζ and Φ3 (b)−Φ3 (a) = Φ1 (b)−Φ1 (a)).
October 31, 2011
17:19
World Scientific Book - 9in x 6in
jk
A convergence process as a source of discontinuities
173
24.11. Theorem. Let y ∈ X. Then there exists u4 : [a, b ] → X fulfilling ∫ T u4 (T ) = y +(SKH) Dt F4 (u4 (τ ), t) for T ∈ [a, b ] . (24.53) a
Moreover, u4
has a bounded variation and is continuous from the left ,
u4
is unique , ( ) ( ) ∥u4 (T )∥ ≤ ∥y∥ + Φ1 (T ) − Φ1 (a) exp Φ1 (T )−Φ1 (a)
(24.54) (24.55) } (24.56)
for T ∈ [a, b ] . 24.12. Theorem.
∥u3 (T ) − u4 (T )∥ ≤ 2 C1 ζ.
24.13. Lemma.
}
for t ∈ A, where
u4 (t) = u3 (t)
(24.57)
A=[a, αm(1) ]∪[γm(1) , αm(2) ]∪. . .∪[γm(k−1) , αm(k) ]∪[γm(k) , b] , |[a, b ] \ A| < ζ. Proof.
(24.58)
Observe that (cf. (24.26), (24.42))
F4 (x, t) − F4 (x, s) = F3 (x, t) − F3 (x, s) for t, s ∈ [a, αm(1) ] or t, s ∈ [γm(j) , αm(j+1) ], j =1, 2, . . . , k−1, or t, s ∈ [γm(k) , b] .
(24.59)
By (24.26), u3 (γm(j) ) = Pj (αm(j) , 1) for j = 1, 2, . . . , k
(24.60)
and, by (24.42), ∫
t
u4 (t) = u4 (αm(j) ) + (SKH)
Ds F4 (u4 (σ), s) αm(j)
∫
t
= u4 (αm(j) ) + (SKH)
[ ]−1 dσ, pj (u4 (σ)) γm(j) − αm(j)
αm(j)
for j = 1, 2, . . . , k. Lemma 24.3 gives u4 (t) = Pj (u4 (αj ), t) for αm(j) ≤ t ≤ γm(j) , j = 1, 2, . . . , k .
October 31, 2011
17:19
World Scientific Book - 9in x 6in
jk
Generalized Ordinary Differential Equations
174
In particular, u4 (γm(j) ) = Pj (u4 (αj ), γm(j) )
for j = 1, 2, . . . , k .
(24.61)
(24.59)–(24.61) imply successively that u4 (t) = u3 (t) for t ∈ [a, αm(1) ],
u4 (γm(1) ) = u2 (γm(1) ),
u4 (t) = u3 (t) for t ∈ [γm(1) , αm(2) ],
u4 (γm(2) ) = u2 (γm(2) ),
...
...
...
u4 (t) = u3 (t) for t ∈ [γm(k−1) , αm(k) ],
u4 (γm(k) ) = u2 (γm(k) ),
u4 (t) = u3 (t) for t ∈ [γm(k) , b] . Hence (24.57) is true. (24.58) is a consequence of (24.24). The proof is complete. 24.14. Theorem. There is A ⊂ [a, b ] such that ∥u1 (T ) − u3 (T )∥ ≤ 2 C1 ζ
for T ∈ A
and
|[a, b ] \ A| < ζ .
Proof follows from Theorems 24.8, 24.12 and Lemma 24.13.
(24.62)
24.15 . Remark. Let there exist sequences (αi,j , j ∈ N), (γi,j , j ∈ N) for i ∈ N such that a < αi,j ≤ βi ≤ γi,j < b, αi,j < γi,j , and αi,j → βi , γi,j → βi
for j → ∞ and i ∈ N .
For ℓ ∈ N put ζℓ = 2−ℓ . There exist k = k(ℓ) such that (24.21) holds with ζ = ζℓ , the permutation m = m(ℓ) such that (24.22) holds and αm(1) , γm(1) , . . . , αm(k) , γm(k) such that (24.23)–(24.25) hold. Define ∗ ∗ QM = QM,ℓ , Ψ = Ψℓ in the same way as in Notation 24.5, F2 = F2,ℓ by (24.26), Φ∗1 by (24.27), ωi = ωi,ℓ , Ωi = Ωi,ℓ , Φ3 = Φ3,ℓ by (24.38)–(24.40), F3 , F4 by (24.41), (24.42), Φ∗3 = Φ∗3,ℓ by (24.43). Then all the objects introduced from Notation 24.5 till Lemma 24.13 — in particular, αi = αi,ℓ , γi = γi,ℓ for i ∈ N, k = k(ℓ), the permutation m = mℓ , QM = QM,ℓ , Ψ∗ = Ψ∗ℓ , ωi = ωi,ℓ , Ωi = Ωi,ℓ , Φ3 = Φ3,ℓ , u3 = u3,ℓ , A = Aℓ - are dependent on ℓ. But the difference Φ3,ℓ (b) − Φ3,ℓ (a) is independent of ℓ since Φ3,ℓ (b) − Φ3,ℓ (a) = Φ(b) − Φ(a)
October 31, 2011
17:19
World Scientific Book - 9in x 6in
A convergence process as a source of discontinuities
jk
175
(cf. (24.48)) and C1 is also independent of ℓ (cf. Theorem 24.8). By Theorem 24.10, ( ) ( ) ∥u3,ℓ (T )∥ ≤ ∥y∥+Φ1 (b)−Φ1 (a) exp 2(Φ1 (b)−Φ1 (a)) for T ∈ [a, b ], ℓ ∈ N , i.e. functions u3,ℓ are bounded uniformly. By Theorem 24.14, ∥u3,ℓ (T ) − u1 (T )∥ ≤ 4 C1 2−ℓ and
[a, b ] \ Aℓ ≤ 2−ℓ
for T ∈ Aℓ , ℓ ∈ N
for ℓ ∈ N .
Let n ∈ N. Then −ℓ
∥u3,ℓ − u1 (T )∥ ≤ 4 C1 2
for T ∈
∞ ∩
Aℓ , ℓ = n, n+1, n+2, . . .
j=n
and
∞ ∞ ∩ ∑ [a, b ] \ [a, b ] \ Aj ≤ 2−n+1 . Aj ≤ j=n
j=n
Hence u3,ℓ → u1
almost everywhere.
The above results can be summarized: Let Q(., a) be continuous. Then the functions Q, F3,ℓ are continuous while F1 The function u3,ℓ is a solution to d x = Dt F3,ℓ (x, t), dt
u3,ℓ (a) = y ,
on [a, b ] and u1 is a solution to d x = Dt F1 (x, t), dt
u1 (a) = y .
on [a, b ]. The functions u3,ℓ are uniformly bounded and u3,ℓ → u1 almost everywhere as ℓ → ∞.
This page intentionally left blank
October 31, 2011
17:19
World Scientific Book - 9in x 6in
jk
Chapter 25
A class of Strong Riemann-integrable functions
Let [a, b ] ⊂ R, Q: [a, b ]2 → X. Assume that Q is continuous,
(25.1)
∥Q(τ, t) − Q(τ, s)∥ ≤ ψ2 (|t − s|)
for t, s, τ ∈ [a, b ],
∥Q(τ, t) − Q(τ, s) − Q(σ, t) + Q(σ, s)∥ ≤ ψ1 (|τ − σ) ψ2 (|t − s|) for t, s, τ, σ ∈ [a, b ],
(25.2) } (25.3)
ψ1 , ψ2 being introduced in Chapter 7. The purpose of this chapter is to prove that Q is SR-integrable on [a, b ]. The chapters 25 and 26 are preparatory for for the which is formulated in Theorem 27.5. 25.1. Notation. Put c = 2 b − a and extend Q to [a, b ] × [a, c] in such a way that Q(τ, t) = Q(τ, b) if τ ∈ [a, b ], t ∈ [b, c], i.e. Q(τ, t) = Q(τ, min{t, b})
for τ ∈ [a, b ], t ∈ [a, c].
(25.4)
Then the inequalities in (25.2), (25.3) are valid if τ, σ ∈ [a, b ], t, s ∈ [a, c] and Q is continuous on its new domain. Put if a ≤ t ≤ S, 0 Q(S, t, T ) = Q(S, t) − Q(S, S) if S < t ≤ T, Q(S, T ) − Q(S, S) if T < t ≤ b , 177
(25.5)
October 31, 2011
17:19
World Scientific Book - 9in x 6in
jk
Generalized Ordinary Differential Equations
178
µi = (b − a) 2−i , νi = (T − S) 2−i , 2 ∑
(25.6)
i
Ri (S, t, T ) =
Q(S + (j−1) νi , t, S + j νi )
(25.7)
for i ∈ N0 , S ∈ [a, b ], t ∈ [a, c], T ∈ [S, c], j=1
2 ∑ i
Pi (t) =
Q(a + (j−1) µi , t, a + j µi )
for i ∈ N0 , t ∈ [a, c].
(25.8)
j=1
Observe that for t ∈ [b, c], i ∈ N0 ,
(25.9)
Pi (t) = Ri (a, t, b) for t ∈ [a, c], i ∈ N0 .
(25.10)
Pi (t) = Pi (b)
25.2. Theorem. The limit on the right-hand side of P (t) = lim Pi (t)
(25.11)
i→∞
exists for each t ∈ [a, b ]. Furthermore, for ε > 0 there exists ξ > 0 such that ∥P (t) − P (s) − Q(s, t) + Q(s, s)∥ ≤ ε |t − s| (25.12) for t, s ∈ [a, b ], |t − s| ≤ ξ . Moreover, Q is SR-integrable on [a, b ] and P is its primitive. Proof.
(25.13)
After some manipulation (25.7) gives 2 ∑ i
Ri+1 (S, t, T ) − Ri (S, t, T ) =
Li,j (t)
j=1
for S ∈ [a, b ], t ∈ [a, c], i ∈ N0 , where Li,j (t) = Q(S + (2j−2) νi+1 , t, S + (2j−1) νi+1 ) + Q(S + (2j−1) νi+1 , t, S + 2j νi+1 ) − Q(S + (j−1) νi , t, S + j νi ).
(25.14)
(25.15)
October 31, 2011
17:19
World Scientific Book - 9in x 6in
jk
A class of SR-integrable functions
179
If t ≤ S + (2j−1) νi+1 then (cf. (25.5)) Q(S + (2j−1) νi+1 , t, S + 2j νi+1 ) = 0 and Q(S+(2j−2) νi+1 , t, S+(2j−1) νi+1 ) = Q(S+(j−1) νi , t, S+j νi ). Therefore Li,j (t) = 0
for a ≤ t ≤ S + (2j−1) νi+1 , i ∈ N, j = 1, 2, . . . , 2i .
(25.16)
If S + (2j−1) νi+1 ≤ t < S + 2j νi+1 then Li,j (t) = Q(S + (2j−2) νi+1 , S + (2j−1) νi+1 ) − Q(S + (2j−2) νi+1 , S + (2j−2) νi+1 ) + Q(S + (2j−1) νi+1 , t) − Q(S + (2j−1) νi+1 , S + (2j−1) νi+1 ) − Q(S + (j−1) νi , t) + Q(S + (j−1) νi , S + (j−1) νi )
and − Q(S + (j−1) νi , t) + Q(S + (j−1) νi , S + (j−1) νi ) = − Q(S+(2j−2) νi+1 , t) + Q(S+(2j−2) νi+1 , S+(2j−2)νi+1 )
(25.17)
} (25.18)
since (j−1) νi = (2j−2) νi+1 . (25.16), (25.17), (25.3) imply that = ∥Q(S+(2j−2)νi+1 , S+(2j−1)νi+1 ) − Q(S+(2j−2)νi+1 , t) (25.19) − Q(S+(2j−1)νi+1 , S+(2j−1)νi+1 ) + Q(S+(2j−1)νi+1 , t)∥ ≤ ψ1 (νi+1 ) ψ2 (νi+1 ) for S+(2j−1)νi+1 ≤ t ≤ S+2jνi+1 , i ∈ N0 , j = 1, 2, . . . , 2i .
∥Li,j (t)∥
Further (cf. (25.5)), ∥Li,j (t)∥ = ∥Li,j (S + 2j νi+1 )∥ for S + 2j νi+1 ≤ t ≤ c .
(25.20)
(25.17)–(25.20) imply that ∥Li,j (t)∥ ≤ ψ1 (νi+1 ) ψ2 (νi+1 ) for t ∈ [a, c], i ∈ N0 , j = 1, 2, . . . , 2i . (25.21)
October 31, 2011
17:19
World Scientific Book - 9in x 6in
jk
Generalized Ordinary Differential Equations
180
By (25.10), (25.14), (25.19)
∥Ri+1 (S, t, T ) − Ri (S, t, T )∥ ≤ 2i ψ1 (νi+1 ) ψ2 (νi+1 )
for i ∈ N0 , t ∈ [a, c], ∥Ri+1 (S, t, T ) − R0 (S, t, T )∥ ≤
i ∑
j
2 ψ1 (νj+1 ) ψ2 (νj+1 )
j=0
≤
1 2
Ψ(T − S)
for i ∈ N0 , t ∈ [a, c] .
(25.22)
(25.23)
If S ≤ t ≤ T then (cf. (25.5)–(25.7), (25.23))
R0 (S, t, T ) = Q(S, t) − Q(S, S), ∥Ri+1 (S, t, T ) − Q(S, t) + Q(S, S)∥ ≤
(25.24) 1 Ψ(T − S). 2
(25.25)
By (25.8), (25.5) Pi (a) = 0 for i ∈ N0 . By (25.10), (25.22)
∥Pi+1 (t) − Pi (t)∥ ≤ 2i ψ1 (µi+1 ) ψ2 (µi+1 ) for i ∈ N0 , t ∈ [a, c] ,
(25.26)
which implies that
the limit in (25.11) exists
since the series m ≤ 2i , i ≥ ℓ,
∞ ∑
2i ψ1 (µi+1 ) ψ2 (µi+1 ) is convergent.
(25.27)
Let i, ℓ, m ∈ N0 ,
i=0
S = a + m µi ,
T = S + (b − a) 2−ℓ ,
S ≤ t ≤ T.
(25.28)
October 31, 2011
17:19
World Scientific Book - 9in x 6in
jk
A class of SR-integrable functions
181
Observe that νi−ℓ = µi . Then (cf. (25.7)) Ri−ℓ (S, t, T ) =
i−ℓ 2∑
Q(S + (j−1) νi−ℓ , t, S + j νi−ℓ )
j=1
=
i−ℓ 2∑
Q(a + (m+j−1) µi , t, a + (m+j) µi )
j=1
=
i−ℓ m+2 ∑
Q(a +(j−1) µi , t, a + j µi )
j=m+1
=
i−ℓ m+2 ∑
−
j=1 m ∑
Q(a + (j−1) µi , t, a + j µi )
Q(a + (j−1) µi , t, a + j µi ) .
(25.29)
j=1
By (25.8) 2 ∑
i
Pi (t) =
Q(a + (j−1) µi , t, a + j µi )
j=1
=
i−ℓ m+2 ∑
Q(a + (j−1) µi , t, a + j µi )
j=1
(25.30)
since t ≤ T = a + (m + 2i−ℓ ) µi which implies that Q(a + (j−1) µi , t, a + j µi ) = 0
if a + (j−1) µi ≥ T,
i.e. if j ≥ m + 1 + 2i−ℓ .
Moreover, m ∑
Q(a + (j−1) µi , t, a + j µi ) =
j=1
m ∑
Q(a + (j−1) µi , S, a + j µi )
j=1
since t ≥ S and Q(a + (j−1) µi , t, a + j µi ) = Q(a + (j−1) µi , a + j µi , a + j µi ) = Q(a + (j−1) µi , S, a + j µi ) for a + j µi ≤ S, Therefore
m ∑ j=1
i.e. for j ≤ m .
Q(a + (j−1) µi , t, a + j µi ) = Pi (S) .
(25.31)
October 31, 2011
17:19
World Scientific Book - 9in x 6in
jk
Generalized Ordinary Differential Equations
182
(25.29)–(25.31) imply that Ri−ℓ (S, t, T ) = Pi (t) − Pi (S) .
(25.32)
since Q(a + (j−1) µi , t, a+j µi ) = 0 if a + j µi > T, i.e. j > m + 2i−ℓ . Now, (25.32) and (25.23) give } ∥Pi (t) − Pi (S) − Q(S, t) + Q(S, S)∥ ≤ 12 Ψ(T − S) (25.33) for S ≤ t ≤ T, S, T fulfilling (25.28). If k ∈ N0 , S = a + m µi then S = a + 2k m µi+k . Hence ∥Pi+k (t) − Pi+k (S) − Q(S, t) + Q(S, S)∥ ≤
1 Ψ(T − S) . 2
The limit procedure for k → ∞ (cf. also (25.27)) implies that ∥P (t) − P (S) − Q(S, t) + Q(S, S)∥ ≤
1 Ψ(T − S) 2
(25.34)
if S, t, T fulfil (25.28) for suitable i, ℓ, m. But P and Q are continuous and (25.34) is valid if S, T ∈ [a, b ], S ≤ T , t = T. Hence } ∥P (t) − P (S) − Q(S, t) + Q(S, S)∥ ≤ 21 Ψ(t − S) (25.35) for S, t ∈ [a, b ], S ≤ t. If a ≤ t¯≤ S ≤ b then by (25.34) ∥P (S) − P (t¯) − Q(t¯, S) + Q(t¯, t¯)∥ ≤
1 Ψ(S − t¯). 2
(25.36)
By (25.3) ∥ − Q(t¯, S) + Q(t¯, t¯) + Q(S, S) − Q(S, t¯)∥ ≤ ψ1 (S − t¯) ψ2 (S − t¯) , which together with (25.36) implies that ∥P (t¯) − P (S) − Q(S, t¯) + Q(S, S)∥ ≤
1 2
Ψ(S − t¯) + ψ1 (S − t¯) ψ2 (S − t¯) .
Moreover (cf. (7.15), (7.19)), 1 Ψ(σ) → 0, σ
1 ψ1 (σ) ψ2 (σ) → 0 for σ → 0 + . σ
(25.37)
October 31, 2011
17:19
World Scientific Book - 9in x 6in
A class of SR-integrable functions
jk
183
Hence (cf. (25.35), (25.37)) for ε > 0 there exists ξ > 0 such that ∥P (t) − P (S) − Q(t, S) + Q(S, S)∥ ≤ ε (t − S) for a ≤ S < t ≤ min{S + ξ, b} and ∥P (t¯) − P (S) − Q(t¯, S) + Q(S, S)∥ ≤ ε (S − t¯) for a ≤ t¯< S ≤ min{t¯+ ξ, b}. Therefore (25.12) is correct. (25.13) is a consequence of (25.12). The proof is complete.
This page intentionally left blank
October 31, 2011
17:19
World Scientific Book - 9in x 6in
jk
Chapter 26
On equality of two integrals
26.1. Notation. Let b ¯ : [a, b ]2 → X, Ψ: b R+ → R+ . [a, b ] ⊂ R, R>0, U : [a, b ]2 → X, U 0 0 26.2. Lemma. Assume that U is SR-integrable on [a, b ] ,
(26.1)
b Ψ(σ) →0 σ
(26.2)
for σ → 0+ ,
b ∥U (τ, t)−U (τ, t¯)−U (τ, t)+U (τ, t¯)∥ ≤ Ψ(t− t¯) for a ≤ t¯≤ τ ≤ t ≤ b. (26.3) Then U is SR-integrable on [a, b ] , ∫ T ∫ T (SR) Dt U (τ, t) = (SR) Dt U (τ, t) a
(26.4) for T ∈ [a, b ] .
(26.5)
a
Proof. Let u : [a, b ] → X be an SR-primitive of U. Let a < T ≤ b, ε > 0. There exists ξ1 > 0 such that b Ψ(σ) ≤ εσ
for 0 < σ ≤ ξ1 .
Moreover, there exists ξ2 , 0 < ξ2 ≤ ξ1 , such that ∑ ∥u(s) − u(¯ s) − U (σ, s) + U (σ, s¯)∥ ≤ ε S
for an arbitrary ξ2 -fine partition S = {([¯ s, s], σ)} of [a, b ]. Let R= {([¯ r, r], ρ)} 185
October 31, 2011
17:19
World Scientific Book - 9in x 6in
jk
Generalized Ordinary Differential Equations
186
be a ξ2 -fine partition of [a, b ]. Then ∑ ∥u(r) − u(¯ r) − U (ρ, r) + U (ρ, r¯)∥ R
≤
∑ R
+
∥u(r) − u(¯ r) − U (ρ, r) + U (ρ, r¯)∥
∑
∥U (ρ, r) − U (ρ, r¯) − U (ρ, r) + U (ρ, r¯)∥
R
≤ ε+
∑
b − r¯) ≤ ε (1 + b − a) Ψ(r
R
i.e. U is SR-integrable and (26.5) holds.
October 31, 2011
17:19
World Scientific Book - 9in x 6in
jk
Chapter 27
A class of generalized ordinary differential equations with a restricted right hand side 27.1. Definition. The right-hand side of the GODE d = Dt F (x, τ, t) dt is called restricted if F is independent of τ. 27.2. Remark. GODEs of this type were met in Theorem 23.11. In this chapter an analogous result will be proved for the class of GODEs from Chapters 8–13. b = 8R. Let ψ1 , ψ2 , Ψ be functions 27.3. Notation. Let [a, b ] ⊂ R, R > 0, R which were introduced in Chapter 7 and let G : B(8R) × [a, b ]2 → X fulfil (8.2)–(8.7). Put 1 b Ψ(σ) = Ψ(σ) + 2 ψ1 (σ) ψ2 (σ) for σ ∈ R+ 0 , 2 ∫ T ◦ G (x, T ) = (SR) Dt G(x, τ, t) for x ∈ B(8R), T ∈ [a, b ] .
(27.1) (27.2)
a
27.4. Lemma. G(x, ., .) is SR-integrable (x being kept fixed). Moreover, ∥G◦ (x, T ) − G◦ (x, S) − G(x, S, T ) + G(x, S, S)∥ b (27.3) ≤ Ψ(|T −S|) + ψ1 (|T −S|) ψ2 (|T −S|) for x ∈ B(8R), S, T ∈ [a, b ]. Proof. The SR-integrability of G(x, ., .) and (27.3) are consequences of Theorem 25.2 where Q(S, T ) = G(x, S, T ), P (T ) = G◦ (x, T ) for S, T ∈ [a, b ]. 187
October 31, 2011
17:19
World Scientific Book - 9in x 6in
jk
Generalized Ordinary Differential Equations
188
27.5. Theorem. b is an SR-solution of the GODE (i) If u: [a, b ] → B(R) d x = Dt G(x, τ, t) dt
(27.4)
then it is an SR-solution of d x = Dt G◦ (x, t) . dt
(27.5)
b is an SR-solution of the GODE (27.5) then it (ii) If v: [a, b ] → B(R) is an SR-solution of (27.4) as well. Proof. (i) is a consequence of the definition of an SR-solution of a GODE and of Lemmas 26.2, 27.4 (where U (τ, t) = G(u(τ ), τ, t), U = G◦ (u(τ ), t)) since σ1 Ψ(σ) → 0, σ1 ψ1 (σ) ψ2 (σ)→ 0 for σ→0+ (cf. (7.17), (7.19)). The proof of (ii) is analogous.
October 31, 2011
17:19
World Scientific Book - 9in x 6in
jk
Appendix A
Some elementary results
+ A.1. Lemma (Gronwall). Let S > 0, η > 0, ω : [0, S] → R+ 0 , ξ : [0, S] → R0 , ω, ξ being continuous. Assume that ∫ t ξ(t) ≤ η + ω(s) ξ(s) ds if 0 ≤ t ≤ S. (A.1) 0
Then ξ(t) ≤ η exp
(∫
t
) ω(s) ds
if 0 ≤ t ≤ S.
(A.2)
0
Comment. (A.2) is proved by integration of
η+
∫
ω(t) ξ(t)
t 0
ω(s) ξ(s) ds
≤ ω(t)
if 0 ≤ t ≤ S.
Lemma A.1 is valid if ω is Lebesgue integrable and if ξ is bounded, measurable. A.2. Lemma. Let λ : R → X. Assume that
λ is continuous, ∫ ∥λ(t)∥ ≤ 1,
(A.3)
Λ(τ ) dτ = 0 for t ∈ R
(A.4)
1
λ(t + 1) = λ(t) for t ∈ R,
λ(τ ) dτ = 0. 0
Then there exists Λ : R → X such that dΛ (t) = λ(t), dt
∫
t+1
Λ(t + 1) = Λ(t), t
and ∥Λ(t)∥ ≤ 41 , t ∈ R. 189
(A.5)
October 31, 2011
17:19
World Scientific Book - 9in x 6in
jk
Generalized Ordinary Differential Equations
190
∫ Proof.
∫
t+1
1
λ(τ ) dτ = 0 for t ∈ R by (A.3). Put
λ(τ ) dτ = t
0
∫
∫
t
¯ Λ(t) =
1
¯ − Λ(t) = Λ(t)
λ(τ ) dτ, 0
¯ dt . Λ(t) 0
Then (A.4) is fulfilled. Moreover, ∫ t ¯ ¯ Λ(t) − Λ(s) = λ(σ) dσ,
¯ ¯ Λ(t+1) = Λ(t) for t ∈ R ,
s
¯ ¯ ∥Λ(t)) − Λ(s)∥ ≤ |t − s| for s, t ∈ R , ∫ 1 ¯ ¯ − Λ(σ) dσ , Λ(t) = Λ(t) 0
∫ ¯ = Λ(t)) − Hence
1 t− 2
∫ ∥Λ(t)∥ ≤
and (A.5) holds.
1 t+ 2
∫ ¯ dσ = Λ(σ)
1 t+ 2
1 t− 2
1 t+ 2 1 t− 2
|t − σ| dσ =
1 4
¯ ¯ dσ . [Λ(t)) − Λ(σ)]
for t ∈ R
October 31, 2011
17:19
World Scientific Book - 9in x 6in
jk
Appendix B
Trifles from functional analysis
B.1. Lemma. Let Q : B(R2 ) → X,
0 < R 1 < R2 , and assume that ∥x Q∥ ≤
2 3
(R2 − R1 )
for x ∈ B(R1 ) ,
∥x Q − x b Q∥ ≤ 31 ∥x − x b∥
(B.1)
for x, x b ∈ B(R2 ) ,
(B.2)
x Q being the value of Q at x. Then for every z ∈ B(R1 ) there exists x ∈ B(R2 ) such that
Proof.
x + x Q = z.
(B.3)
x0 = z
(B.4)
xℓ+1 = z − xℓ Q.
(B.5)
Let z ∈ B(R1 ). Put
and if ℓ ∈ N0 , xℓ ∈ B(R2 ), put
Then (cf. (B.2)) x1 − x0 = −z Q , ∥x1 − x0 ∥ ≤
2 (R2 − R1 ), 3
(B.6) ∥x ℓ+1 − x ℓ ∥ ≤
2 1 (R2 − R1 ) ( )ℓ , 3 3
2 1 1 1 (R2 − R1 ) ( )ℓ (1 + + ( )2 + · · · ) 3 3 3 3 1 ℓ ≤ ( ) (R2 − R1 ) for m > ℓ , 3
∥xm − xℓ ∥ ≤
191
October 31, 2011
17:19
World Scientific Book - 9in x 6in
jk
Generalized Ordinary Differential Equations
192
∥xm − x0 ∥ ≤ R2 − R1 , xm ∈ B(R2 ) for m ∈ N0 and (xm , m = 0, 1, 2, . . . ) is a Cauchy sequence. Define x = lim xm . m→∞
Then x fulfils (B.3) by the limit procedure in (B.5).
B.2. Remark. Let [a, b ] ⊂ R, u : [a, b ] → X. u is called a function of bounded variation on [a, b ] if there exists κ ∈ R+ such that k ∑
∥u(ti+1 ) − u(ti )∥ ≤ κ
i=1
for any k ∈ N and any sequence a = t1 < t1 < . . . < tk ≤ b. The infimum of such κ is called the variation of u on [a, b ] and denoted by var (u, [a, b ]) or var u. If u is a function of bounded variation on [a, b ] then u(τ +) = lim u(t) exists for a ≤ τ < b and u(τ −) = lim u(t) exists t→τ,t>τ
t→τ,t<τ
for a < τ ≤ b. Let ε > 0. The set of τ such that either ∥u(τ +) − u(τ )∥ ≥ ε or ∥u(τ ) − u(τ −)∥ ≥ ε is finite. B.3. Remark. Let [a, b ] ⊂ R, v : [a, b ] → X. v is called a regulated function on [a, b ] if v(τ +) =
lim
v(t)
exists for a ≤ τ < b
lim
v(t)
exists for a < τ ≤ b .
t→τ,t>τ
and v(τ −) =
t→τ,t<τ
Let v be a regulated function. Then v is bounded and for every ε > 0 the number of τ such that either ∥v(τ +) − v(τ )∥ ≥ ε or ∥v(τ ) − v(τ −)∥ ≥ ε is finite.
October 31, 2011
17:19
World Scientific Book - 9in x 6in
Bibliography
[Bartle, Sherbert (2000)] Bartle, R. G. and Sherbert, D. R., Introduction to Real Analysis. Wiley, New York, 2000. [Gordon (1994)] Gordon, R. A., The integrals of Lebesgue, Denjoy, Perron, and Henstock. American Mathematical Society, 1994. [Henstock (1988)] Henstock, R., Lectures on the Theory of Integration. World Scientific, Singapore, 1988. [Henstock (1991)] Henstock, R., The General Theory of Integration. Clarendon Press, Oxford, 1991. [Jarn´ık (1961a)] Jarn´ık, J., On some assumptions of the theorem on the continuous depenˇ dence on a parameter. Cas. Pˇest. Mat. 86 (1961), 404–414. [Jarn´ık (1961b)] Jarn´ık, J., On a certain modification of the theorem on the continuous ˇ dependence on a parameter. Cas. Pˇest. Mat. 86 (1961), 415–424. [Jarn´ık (1965)] Jarn´ık, J., Dependence of solutions of a class of differential equations of the second order on a parameter. Czechoslovak Math. J., 15 (90), (1965), 124–160. [Kapitza (1951a)] Kapitza, P. L., Pendulum with vibrating suspension (in Russian). Uspechi fiz. nauk, XLIV, 1 (1951), 7–20. [Kapitza (1951b)] Kapitza, P. L., Dynamic stability of a pendulum with an oscilatting point of suspension (in Russian). Zhurnal eksperimental’noi i teoreticheskoi fiziki, 21, 5 (1951), 588–597. Translation in : Collected Papers by P. L. Kapitza, vol. 2, 714–726, Pergamon Press, London, 1965. 193
jk
November 21, 2011
194
10:35
World Scientific Book - 9in x 6in
Generalized Ordinary Differential Equations
[Kurzweil (1957)] Kurzweil, J., Generalized ordinary differential equations and continuous dependence on a parameter. Czechoslovak Math. J., 7 (82),(1957), 418–449. [Kurzweil (1958)] Kurzweil, J., On integration by parts. Czechoslovak Math. J.,8 (82),(1958), 356–359. [Kurzweil (1980)] Kurzweil, J., Nichtabsolut konvergente Integrale. Teubner-Verlag, Leipzig, 1980. [Kurzweil (2000)] Kurzweil, J., Henstock-Kurzweil Integration : its relation to topological vector spaces. World Scientific Publishing Co. Inc., River Edge, NJ, 2000. [Lee P.Y. (1989)] Lee, P. Y., Lanzhou Lectures on Henstock Integration. World Scientific, Singapore, 1989. [Lee P.Y., V´ yborn´ y (2000)] Lee, P. Y. and V´ yborn´ y, R., The Integral : An Easy Approach after Kurzweil and Henstock. Cambridge Univ. Press, Cambridge, 2000. [Lojasiewicz (1955)] Lojasiewicz, S., Sur un effet asymptotique dans les ´equations diff´erentielles dont les seconds membres contiennent des termes p´eriodiques de pulsation et d’amplitude tendant a l’infini. Ann. Pol. Math. 1 (1955), 388–413. [Mitropolskij (1971)] Mitropolskij, Yu. A, Averaging in Nonlinear Mechanics (in Russian). Naukova Dumka, Kiev 1971. [Monteiro, Tvrd´ y (2011)] Monteiro, G. and Tvrd´ y, M. On Kurzweil-Stieltjes integral in Banach space. Math. Bohem., to appear. [Pfeffer (1993)] Pfeffer, W. F., The Riemann Approach to Integration : Local geometric theory. Cambridge University Press, 1993. [Schwabik (1992)] ˇ Generalized Ordinary Differential Equations. World ScienSchwabik, S., tific, Singapore, 1992. [Schwabik (2001)] ˇ A note on integration by parts for abstract Perron-Stieltjes Schwabik, S., integrals. Math. Bohem. 126 2001, 613–629. [Schwabik, Ye (2005)] ˇ and Ye, G., Topics in Banach space Integration. World SciSchwabik, S. entific, Singapore, 2005.
jk
November 21, 2011
10:35
World Scientific Book - 9in x 6in
Symbols
D1 h(x, t), 12 D2 h(x, t), 12 D2 h(x), 12 D h(x), 12
N, 12 N0 , 12
[a, b ], 12 A (σ), 43
[p, q](x), 16 Ψ(σ), 43 ψ1 , ψ2 , 43
Ω, 48, 79
B(r), 12, 37 B (σ), 43
R, 12 R+ , 12 R+ 0 , 12
∆v F (x, p), 47 ∆v f (x), 47 dist (G, G∗ ), 48 D p ◦ q(x), 16
U (σ, ·), 27 b , 133 U
ES,σ , 69
W , 69
Φ(σ), 43 φ(σ), 43
∥x∥, 27 X, 27 x Vi (S, t, T ), 53 xYi (S, t, T ), 54
G, 47, 51 G, 51 e 51 G,
195
jk
This page intentionally left blank
October 31, 2011
17:19
World Scientific Book - 9in x 6in
Subject index
ACG∗ function, 94 additive function, 136 approximate solution, 53
Q-anchored, 83 refinement of a partition, 128 regulated function, 192
classical solution, 39 simple partition, 127 SKH-integrable, 84, 93 SKH-integral, 86 SKH-primitive, 84, 93 SKH-solution, 97, 105 SR-solution, 37 SR-integrable, 27 SR-primitive, 27 system in, 83
δ-fine, 83 function of bounded variation, 192 GODE, 37 Hake’s theorem, 92 jump function, 146
tag, 83 tagged interval, 83
KH-integrable, 119 KH-integral, 119
variation, 192 pair of coupled variables, 27, 84 partition, 83 primitive, 84
ξ- fine, 83
197
jk