CHRISTIAN C. FENSKE
Extrema in Case of Several Variables a
f a v o u r i t e topic of most calculus courses is the cal...
10 downloads
612 Views
1001KB Size
Report
This content was uploaded by our users and we assume good faith they have the permission to share this book. If you own the copyright to this book and it is wrongfully on our website, we offer a simple DMCA procedure to remove your content from our site. Start by pressing the button below!
Report copyright / DMCA form
CHRISTIAN C. FENSKE
Extrema in Case of Several Variables a
f a v o u r i t e topic of most calculus courses is the calculation of extrema. Every calculus student is confronted w i t h the following:
S t a n d a r d c a l c u l u s r e s u l t . L e t n >-- 2 a n d J C R a n o p e n i n t e r v a l . L e t f : J - - ) ~ be n - 1 t i m e s d i f f e r e n t i a b l e on J a n d n t i m e s d i f f e r e n t i a b l e at s o m e p o i n t a E J. A s s u m e t h a t f ( k ) ( a ) = O f o r k = 1 , . . . , n - 1 b u t f O O ( a ) r O. T h e n there is the f o l l o w i n g a l t e r n a t i v e : (1) E i t h e r n i s even. T h e n f h a s a n i s o l a t e d e x t r e m u m at a, a n d t h a t i s a m a x i m u m i n case f O O ( a ) < 0 a n d a minimum i n c a s e f ( n ) ( a ) > O. (2) Or n i s odd. T h e n f does n o t a t t a i n a local e x t r e m u m at a. When the course proceeds to functions of more than one variable we meet this theorem again--but now only for s e c o n d d e r i v a t i v e s . B u t w h a t a b o u t a f u n c t i o n w i t h t h e first five derivatives vanishing? Of course, there arises the quest i o n o f w h a t p r e c i s e l y w e m e a n b y " v a n i s h i n g " o f an n - t h d e r i v a t i v e , a n d w h a t w e s h o u l d u s e as a s u b s t i t u t e for t h e conditionf(n)(a) being positive or negative. This again depends on how we define differentiability for functions of several variables. In this p a p e r , I first e x p l a i n h o w t h e t h e o r e m w o u l d l o o k f o r a l o w - b r o w a p p r o a c h . T h e n I will d i s c u s s b r i e f l y t h e modifications required for the high-brow approach where higher derivatives are viewed as multilinear forms. O f c o u r s e , at first g l a n c e o n e s u s p e c t s t h a t t h e multivariable case should be well known, and I am pretty sure it is. A l t h o u g h I h a v e l o o k e d i n t o n u m e r o u s c a l c u l u s t e x t s a n d a s k e d at l e a s t a s m a n y c o l l e a g u e s , I h a v e n o t b e e n a b l e to i d e n t i f y a s o u r c e 9 E i t h e r t h e r e is a p r o o f o f t h i s r e s u l t in t h e l i t e r a t u r e , b u t I d i d n o t f i n d it, o r t h e r e s u l t s e e m e d p l a u s i b l e to e v e r y o n e w h o t h o u g h t o f it, b u t w r i t i n g it d o w n w a s n o t w o r t h w h i l e . S o I j u s t p r e s e n t h e r e a p r o o f for r e f e r e n c e p u r p o s e s a n d m a y b e f o r u s e in c a l c u l u s c o u r s e s .
The L o w - B r o w Approach In t h e l o w - b r o w a p p r o a c h a f u n c t i o n f : U--~ ~ o n an o p e n s e t U C ~,r~ is s a i d to b e n t i m e s c o n t i n u o u s l y d i f f e r e n t i a b l e if all partial d e r i v a t i v e s u p to o r d e r n e x i s t a n d a r e c o n t i n u o u s o n U. (I w r i t e Di for t h e p a r t i a l d e r i v a t i v e w i t h r e s p e c t to t h e i-th variable.) S c h w a r z ' s t h e o r e m o n t h e i n t e r c h a n g e ability o f partial d e r i v a t i v e s t h e n tells u s t h a t for a ~ U a n d h O), . . . , h (~) E ~ ' , t h e m a p d~)~(a): ~m x 9 9 9 x ~m____> w i t h d'~f(a)(h (1), h (ro) = ~ DL . 9 9 Dj f(a)h(~.Jl1) " " 9 h(~ 0 ?~ 9
"
"
~
9
1
( s u m m a t i o n o v e r all d i s t i n c t n - t u p l e s ( j l , 9 9 9 , J~,) w i t h 1 --< j~ --< m ) is a s y m m e t r i c n - l i n e a r m a p . If h ~ ~ m w e w r i t e d ~ f ( a ) ( h n) : = d~J[a)(h, . . . , h). W e t h e n h a v e THEOREM. L e t U be o p e n i n ~.,r, a n d let f : U ~ ~ be n t i m e s c o n t i n u o u s l y d i f f e r e n t i a b l e . L e t 2 <--p <- n, a n d a s s u m e t h a t f o r s o m e a ~ U a n d all h ~ ~m, w e h a v e d f ( a ) ( h ) = d 2 f ( a ) ( h 2) . . . . . d p - l f ( a ) ( h p 1) = 0, b u t dPf(a)(h p) r 0 f o r s o m e h @ ~m. T h e n the f o l l o w i n g holds: (1) A n e c e s s a r y c o n d i t i o n f o r f at a i s t h a t p be even. L e t t h e n p be even. (2) A n e c e s s a r y c o n d i t i o n f o r mum (minimum) at a i s f o r all h E ~,m. (3) A s u f f i c i e n t c o n d i t i o n f o r mum (minimum) at a i s f o r all h E ~m\{0}.
to h a v e a local e x t r e m u m
f to h a v e a local m a x i t h a t d P f ( a ) ( h p) <-- 0 (>--0) f to h a v e a local m a x i t h a t d P f ( a ) ( h p) < 0 ( > 0 )
P r o o f T o b e g i n with, c h o o s e y o u r f a v o u r i t e n o r m I1"11o n ~m. (1) L e t p b e o d d . W e h a v e t o s h o w t h a t f d o e s not have a l o c a l e x t r e m u m at a. B y a s s u m p t i o n t h e r e is a n h s u c h t h a t d P f ( a ) ( h p) #= O. U p o n d i v i d i n g h b y its n o r m w e m a y a s s u m e t h a t Ilhll = 1. S i n c e p is o d d w e m a y
@ 2003 SPRINGER-VERLAG NEW YORK, VOLUME 25, NUMBER 1, 2003
49
e v e n a s s u m e t h a t / ~ :-- dPf(a)(h ; ) < 0 (else w e w o u l d r e p l a c e h b y - h ) . N o w w e s e t 9 := -t~/p! an d use T a y l o r ' s f o r m u l a ([J, C o r o l l a r y 8.17]) to find a 5 > 0 such that
entiable at a E D if t h e r e is a linear m ap T E L(E, F) and there is a function r : D --~ F c o n t i n u o u s at a, s u c h that r(a) = 0 a n d f ( x ) - f ( a ) + T ( x - a) + I]x - aNr(x ) for all x E D.
[f(a + k) - f ( a )
- ~.dPf(a)(kP)] ~ 2[Ikl~'
w h e n e v e r k ~ ~m satisfies Ilk]] < & Let 0 < t < 8 . We t h e n h a v e f ( a + t h ) - f ( a ) < ~ t P + • p = ~ t , < 0. So t h e r e c a n n o t be a l o cal minp~ 2p~ 2 1mum at a. B u t w e m a y as well c h o o s e an h w i t h ]]h[I = 1 s u c h t h a t tL' = dPf(a)(h p) > O. Let t h e n 9 :=tz'/p!. We c h o o s e ~ a n d t as a b o v e a n d find that
0 < I~' tp = -e--tP + ~'tP 2p! 2 2p! <--f(a + th) - f ( a ) . So w e d o n ' t h a v e a lo c a l m a x i m u m at a either. (2) N o w a s s u m e t h a t w e h a v e a l o c a l m i n i m u m at a (else w e r e p l a c e f w i t h -99. T h e n t h e r e is an ~? > 0 s u c h t h a t f ( a + h) - f ( a ) >-- 0 w h e n e v e r [[h[[ -----~. Let 9 > 0. Again w e a p p l y T a y l o r ' s t h e o r e m , a n d find a p o s i t i v e 8 --< ~? s u c h t h a t
<--f(a + h) - f ( a )
-9
- ~ . d P f ( a ) ( h p) <-- e[[h[~~
w h e n e v e r []hll < & So f o r 0 < ]]h]] < ~ w e h a v e
0 <--f(a + h) - f ( a )
<-- l d p f ( a ) ( h P )
+ 9
IJ.
h e n c e 0 --< dPf(a)(hP) + p!e]]h[~. N o w fix h. C h o o s e a t r 0 w i t h ]]thll < 8, w h i c h i m p l ie s dPf(a)((th) p) + p!~llthll ~ -> 0. B e c a u s e p is n o w a s s u m e d to b e e v e n w e h a v e tp > O, h e n c e dPf(a)(l~) + p!9 >- O. Bec a u s e this h o l d s f o r e a c h 9 > 0 w e c o n c l u d e that
dPf(a)(hP) >-- O. (3) We d e a l w i t h t h e c a s e w h e r e dPf(a)(hP) > 0 w h e n e v e r h r 0. D e n o t e b y S t h e unit s p h e r e in ~m. S i n c e S is c o m p a c t , t h e c o n t i n u o u s m a p ~b:S--~ ~ d e f i n e d by d~(h) := dPf(a)(hP) attains its m i n i m u m . So t h e r e is a h > 0 w i t h dPf(a)(hP) >-- h w h e n e v e r Ith[I = 1, so dPf(a)(h p) >-- h[[h[~~ f o r all h ~ ~m. Let 0 < 9 < h/p!. Inv o k i n g T a y l o r ' s t h e o r e m for a last time, w e c h o o s e a 8 > 0 s u c h t h a t !f(a + h) - f ( a ) - ~dPf(a)(hP)l <9][h[~~ w h e n e v e r [Ih[[-< & F o r t h e s e tt Pwe t h e n h a v e -e~[h]~~ <--f ( a + h) - f ( a ) - ~ d ~ a ) ( h p) <-- d]hl~, h e n c e 0 <
o
+
h
IIhlP <-f(a + h) - f ( a ) .
But this m e a n s t h a t f ( a + h ) > f ( a ) Ilhll <
as l o n g as 0 <
D
The High-Brow Approach Of course, it is a e s t h e t i c a l l y u n s a t i s f a c t o r y to h a v e a condition s u c h as dPf(a)(h p) r 0 w h e r e o n e w o u l d e x p e c t j u s t dPf(a) r O. But this c a n be t a k e n care o f if w e v i e w h i g h e r derivatives as m u l t i l i n e a r maps. So let E, F be finite-dimensional v e c t o r s p a c e s ( o v e r the reals), a n d c h o o s e n o r m s in E, F. I f D C E is open, a m a p f : D --~ F is said to b e differ-
50
THE MATHEMATICALINTELLIGENCER
One p r o v e s i m m e d i a t e l y that T in the above definition is uniquely d e t e r m i n e d an d c o n s e q u e n t l y writes df(a) := T. One says that f i R c o n t i n u o u s l y differentiable on D iff i R differentiable at e a c h x ~ D and d f : D ~ L(E, F) is continuous. ff El, . . . , Ek are v e c t o r spaces, the space o f k-multilinear m a p s of E1 . . . . , Ek to F is d e n o t e d by L ( E 1 , . . . , Ek; F). We e n d o w this s p a c e with the o b v i o u s norm. If E1 = .... Ek = E this s p a c e is d e n o t e d Lk(E; F). If h E E w e write T(h k) := T(h, . . . , h). By Lk(E; F) one d e n o t e s t h e subspace of s y m m e t r i c mappings. We say that T E Lk(E; ~ ) is p o s i t i v e ( n e g a t i v e ) s e m i d e f i n i t e if T(h k) >- 0 (resp. ~ 0) for all h ~ E. Similarly, T is said to be p o s i t i v e ( n e g a t i v e ) definite if T(h k) > 0 (resp. T(h k) < 0)) w h e n e v e r h r 0. Returning to differentiation, w e k n o w f r o m (multi-)linear algebra that t h e r e ar e n a t u r a l i s o m o r p h i s m s
L(E1, L(E2, . . . , Ek; F ) ) ~ L(E1, . . . , Ek-1; L(Ek, F ) ) ~-- L(E1, . . . , Ek; F). If f is differentiable o n D and d f : D--> L(E, F) is a g a i n differentiable at a E D, t h e n d2f(a) := d ( d f ) ( a ) ~ L(E; L(E, F)) -~ L2(E; F). Inductively, w e define dkf(a) : = d(d k l f ) ( a ) E Lk(E; F ) if d k - l f : D --) L k 1 (E; F) is differentiable at a. Th e S c h w a r z l e m m a t h e n tells us that in f a c t dkf(a) ~ Lks(E; F) p r o v i d e d f i R k t i m e s c o n t i n u o u s l y differentiable. Our t h e o r e m t h e n l o o k s a l m o s t the same: THEOREM. L e t U be a n o p e n s u b s e t o f a f i n i t e - d i m e n s i o n a l vector space E, a n d let f : U--> ~ be n t i m e s c o n t i n u o u s l y differentiable. L e t 2 <--p <-- n, a n d a s s u m e that f o r s o m e a E U w e have dkf(a) = Of o r 1 <-- k <--p - 1 but dPf(a) r O. Then the f o l l o w i n g holds: (1) A n e c e s s a r y c o n d i t i o n f o r f to h a v e a local e x t r e m u m
at a i s that p be even. L e t then p be even. (2) A n e c e s s a r y c o n d i t i o n f o r f to have a mum (minimum) at a i s that d~f(a) (positive) semidefinite. (3) A s u f f i c i e n t c o n d i t i o n f o r f to have a mum (minimum) at a i s that dPf(a) (positive) definite.
local m a x i be n e g a t i v e local m a x i be n e g a t i v e
The p r o o f carries o v e r a l m o s t v e r b a t i m f r o m the lowb r o w case. Th er e is b u t o n e crucial point: We k n o w that dPf(a) r 0, so w e k n o w that t h e r e are hi, 9 9 9 , hp ~ E w i t h d P f ( a ) ( h l , . . . , hp) r 0; b u t w e n e e d to k n o w that this happens with hi, 9 hp all equal. It is h e r e that w e exploit t he fact that dPf(a) is s y m m e t r i c . If p = 2 w e could use the parallelogram identity to c o n c l u d e that d2f(a) = 0 iff d2f(a)(h 2) = 0 for all h ~ E . F o r the general c a s e w e could appeal to the p o l a r i z a t i o n identity [AMR, P r o p o s i t i o n 2.2.11]: PROPOSITION. L e t E, F be f i n i t e - d i m e n s i o n a l vector s p a c e s a n d k E ~. F o r A E Lk(E; F) d e f i n e .2i : E--> F by .2i(h) : =
A ( h k) a n d denote by Sk(E; F) the vector space {fi A E L k (E; F ) } e n d o w e d w i t h the n o r m I ill : = s u p { l ~ ( h b l l IIhll <1}. T h e n ]tAll-< k*!l ~ I f o r A E Lk(E; F), a n d ^ w h e ~ res b ' i e t e d to Lk(E; F ) i s a n i s o m o r p h i s m . If y o u w a n t to p r o v e t h e t h e o r e m o n e x t r e m a in a calculus c o u r s e y o u m i g h t b e r e l u c t a n t to b o t h e r y o u r s t u d e n t s w i t h t o o m u c h m u l t i l m e a r algebra, so h e r e is a s h u p l e and direct p r o o f w h i c h I l e a r n e d f r o m m y c o l l e a g u e T h o m a s M e i x n e r [M]: LEMMA. L e t E, F be v e c t o r spaces, n E ~ , a n d T E L~'(E; F). I f T ( h ~*) = 0 f o r all h ~ E, t h e n T = O. PROOF. W e p r o c e e d b y i n d u c t i o n . If n = 1 t h e r e is n o t h i n g to p r o v e . So a s s u m e t h e c l a i m for n - 1 a n d let T E L~(E; F) C L(E, L~ I(E; F)). S u p p o s e T(h '~) = 0 for all h b u t T r 0. T h e n t h e r e m u s t b e a n a E E w i t h 0 r T(a) E L~*-I(E; F). S i n c e we assume the claim for n - 1 there must be a b E E with T(a, b, . . . , b) r O. By o u r a s s u m p t i o n , w e m u s t h a v e t h a t T((Aa + b) ~2) = 0. E x p a n d i n g b y m u l t i l i n e a r i t y a n d using t h e s y m m e t r y o f T to c o l l e c t c o m m o n t e r m s , w e find that
'~)
0=T((Xa+b)
for allZE
= ~. mjT(a,...,a, j
0
= ~
b,...,b)A
j times
j
withmi~N\{0}
REFERENCES
n - - j times
m j T ( a , . . . , a, b . . . , b)M,
j--1
T(b'9 = T(a'9 = O.
because
Now we put A = 1,..., equation:
(*)
...
22
i
n
n - 1 and we obtain the following
,...
2
(n -
1) 2
1)
[AMR] R. Abraham, J.E. Marsden, T. Ratiu, Manifolds, Tensor Analysis, and Applications, 2nd edition, Springer, 1988, AppL Math. Sci. 25. [J] J0rgen Jost, Postmodern Analysis, Universitext, Springer, Berlin et al., 1998. [M] Thomas Meixner, Personal communication.
2''-1
"..
:
...
( n - ' 1 ) '* 1
i
1
Of course, we now might wish to remove the assumption that our vector spaces be finite-dimensional. So now a s s u m e t h a t E is a B a n a c h s p a c e . T h e n w e m a y c o p y t h e above arguments with almost no changes: We simply c h a n g e o u r n o t a t i o n : w e n o w d e n o t e b y L ( E , F) a n d Lk(E; F ) t h e s p a c e o f all c o n t i n u o u s ( k - ) l i n e a r m a p s (in t h e finite-dimensional case (multi-)linear maps are automatic a l l y c o n t i n u o u s , s o t h i s is e v e n c o n s i s t e n t w i t h o u r p r e v i o u s t e r m i n o l o g y ) . M o r e o v e r , I h a v e d e l i b e r a t e l y c h o s e n refe r e n c e s ([J] a n d [AMR]) t h a t a c t u a l l y d e a l w i t h t h e infinite-dimensional case, and Meixner's lemma does work in a n y v e c t o r s p a c e . T h e r e is b u t o n e p o i n t w h e r e w e really n e e d e d a f i n i t e - d i m e n s i o n a l v e c t o r s p a c e : in p a r t 3) o f t h e p r o o f w e u s e d t h e f a c t t h a t t h e u n i t s p h e r e is c o m p a c t . T h e b e s t w a y o u t o f t h i s is to r e q u i r e j u s t w h a t w e n e e d : Let u s c a l l T C Lk(E; R) s t r o n g l y p o s i t i v e ( n e g a t i v e ) deftn i t e if t h e r e is a A > 0 s u c h t h a t T(h k) > )tllhllk (resp., T(h k) <- -Alibi] k) f o r all h E E. T h e h i g h - b r o w t h e o r e m t h e n c o n t i n u e s t o h o l d if w e r e p l a c e " f i n i t e - d i m e n s i o n a l v e c t o r space" by "Banach space," provided we insert "strongly" b e f o r e " n e g a t i v e ( p o s i t i v e ) d e f i n i t e " in 3).
m 2 T ( a , a, b, •
, b, b) ~
=
m,~ iT(a, a, a,
.
. , a, b ) /
We d e n o t e t h e m a t r i x o n t h e l e f t - h a n d s i d e b y M , _ 1 a n d c l a i m t h a t d e t M R - 1 r O: S t a r t i n g f r o m t h e l a s t c o l u m n , m u l tiply t h e (3" - 1)-st c o l u m n b y n - 1 a n d s u b t r a c t t h e r e s u l t f r o m t h e j - t h c o l u m n . T h u s t h e first c o l u m n r e m a i n s unaltered. This gives us
det
2 ~
22(3 - n ) ~
... '..
2
( n - 2 ) ( - 1)
...
1
0
..
2 ~ 2(3 - n ) i (n - 2)'-2(-
1)
0
Expanding the determinant according to the last row and collecting common factors we obtain ( - 1 ) ' ~ ( n - 1 ) ( - 1 ) '~ 2(n - 2)! d e t M,~-2 = ( n - 1)! detM,~ 2. B e c a u s e d e t M2 r 0, t h i s s h o w s w h a t w e n e e d e d . B u t t h e n (*) h a s o n l y t h e t r i v i a l s o l u t i o n . In p a r t i c u l a r , m l T ( a , b, . . . . b) = 0, w h i c h s h o w s t h a t T(a, b, . . . , b) = O. C o n t r a diction. []
VOLUME 25, NUMBER 1,2003
51