This content was uploaded by our users and we assume good faith they have the permission to share this book. If you own the copyright to this book and it is wrongfully on our website, we offer a simple DMCA procedure to remove your content from our site. Start by pressing the button below!
JN _IM>«rMrv _J««-CM " ' m . Ul » U1W 111 U UIW uia. m a . t u a . u i a . U??^i°^î\î uiccrvoKieou. UJ oc o CM « M I . tu or CM v4ao ri II. UI or «o rv κι β u. uts oco ν u. uiacm >. n7r^ Λ (ν κ j ^ * e « κ locu ν * μim*ct k-xoov ^. CN O tt N G 0C ΙΟ Ct "V <\IC» ΙΠ «ΟΟΤ >. CV Λ
Λ
Γ0 0
.-^ Σ*»βο*ω x-xtCMCM^ui ε(Μΐνιη·»ιυ t n u ; χ CMO ο OC3CMO Ό —t O O M U ΙΟ— OOCMO Γν, — ΟΟ τ « ri ft— Ο Ο « « ΙΛ ΛΙ Ο — Ι Ο » ιν <χ -Ο — FO ^ 1^ « (Μ·-ΙΟΙΟ -a to — |ΟΙΟ fv< » — (Μ κι jl îi ο _ico » CM tr » _io» » CMor ro _j » » CM or H j o * CM et ο j o t * 1 1 1 Zoo z n ) z e c ^ < ·Τ LU UJ» U l » U l » • T H Î Ï » Ion or o mrv «o u » e ON" aoenn" a: « » <© * aem« MI î n î i « #s.ÎTi « ITÎCCNMT i»Tin^»»»4or il Tir r(DN cr « i c i o i v ^ f r nxcoCMin inr τ S » î-î _1 i_ UI\N »CO OUI UJ *V OO 00 CMO Ul LU MjJ Ui>«orv»CMul Ul N (M« Λ ^ _ ΓΖ " ,». . .
E
Œ i.
0
. . ^ orx»eoo»»-
in
orxincMCMOi-
o r x c M o i f » » ^
orx *4iv » iot-
iîSt ίο ΛΙΝΌ Ή 3 toareveo r<3 coarviiv WDÎ r*c or H or cv rr ro or " C M _ I ΙΛ , U . HΙΟΟΙΟΟ C M _ l K»U . HCOCΟMlO_OI IOU. CH CM_I C U. l i i n e^t^Ort-l V i uiS tOOlOO 0 OolOO M 4 ^ui tu ζοκ î? ^ 7 J** a en< ι^ o ui z " uia.ee ^ JUKUJ o zu u>-O.-«ZUI-«*UJ iζaocan _i ο ζ u ui οi uζ » £ ^. >• a. ζ LU<» >-a.z*x -a.aeo Î O Z K O O— a > z h < o n— c ·> — Q >Z K < o o i o or ο ζ »-·«» σ ο Ï O (-•cam 3 t- χ t- o a LU 3 *-τ. ι - ϋ α u: j h Σ ι- o a u. 3 ι- Σ" ι-·ο a u - ^ »- χ 11
ω
5
(
2
o
a
J
or τ CMO «C trorx»K, » HO CMO CM _l Ui cβoπ r ω *α χ> «aο. «» ζ a^ >~ ' '
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
«ο ω Σ: CM "0— OC»-l o«-CV war o _icc 2 r>U l » »-· or» «^or MXO OUI Ul\«M » κ
çc χ CM
^ 3 <Λ ο: ^ f>» _ tO O CM c z uja.ee « ^ a >
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
c
PRESSURE*
E
47.480
t
2
S )
TEMP* 160,367
A S
COMP(i) C0MR(2)
C0MP(3) TOTAL
DISTILLATE DISTILLATE
C0MP(2) C0MP(3)
W
VARIABLES
S E C T ] t ON S E C T ] ION
STRIPPING SECTION
MOLES/HR
MOLES/HR MOLES/HR
MOLES/H" MOLES/HR
VAPOR-LIQUID FLOW STRIPPING V A P O R - L I Q U I O FLOW STRIPPING
C O M P ( i ) VAPOR-LIQIJIO F L 0
COMP(3) TOTAL
C0M»(2>
MOLES/HR MOLES/HR MOLES/HP MOLES/MR
MOLES/HR
TOTAL COMP(i)
MOLES/HR MOLES/HR
C0MP(3)
THE FOLLOWINS
COMP(l) COMP(2>
CALCULATED
FEED FEED
HAS
FEED FEED BOTTOMS BOTTOMS BOTTOMS BOTTOMS DISTILLATE DISTILLATE
PROGRAM
FINAL RESULTS FOLLOW
LIQ M/wR LIQ BTU/M VAPOR M/HR 6244,8645 777,9226 777,9222 432*.1252 130.7335 130.7 99 2207,3051 8,9337 49,5142 917,5858 5443553,7 95«,1704 MOLE FRACTION WATER (ENTRAINER FREE BASIS )
KTRAY»18 COMP PNTAN2 ETHNOL WATER TOTAL
A
f
1 BTU/M
N» 5
Vt I t V( 2) VI 3 ) V< 4) Vt 5) V( 6) VI 71 V( 8) V( 9 ) V(10> vttr> VU2) MOLES/HR v t t 3 T MOLES/HR VC14J MOLES/HR V<15l
0
16719.4820 21953.799 20369,4990 16885141,0
VAP
M»
16765 3520 21982,2030 20382,2610 17063895,0
)•
•
«ρ
•
a
•
4
•
•
Y
Y ,811883 ,ΐ3644ι ,031676 ,274701
.063966
,228631
.783370 ÎÏ67097 ,049333
Χ IÏ9) .847792 .142472 ,009736
,041106
x ue> ,818033 ,174487 ,007480
,1072*4
.049112
.00000000 ,24202000+03 .405813884-02 .28260159*03 .15005057.03 ,24201635*03 ,5ei81042-03 .24201705*03 .40584334-03 ,36526080*02 .40380475*02 .40384534*02 *.15005057.03 -,242W*35*03 ·.56181042.03
KNTRK10)» VP/THETA 42,8265 11,7269 4,9839
43 8322 12.2352 5,2050
KNTRL'( io VP/TMETA
Y ,797334 ,180731 .02Ï7Î3
.
«045485
,020595
r
.187079 ,008915
.342798 ,007208
X (Î7Î .643332 ,339151 ,017317
KNTRL<10)» 0
M» 3 N« 5 VAP BTU/M
0MP
8
KTRAY*17 PRESSURE» 47,620 TEMP. 162.i33 COMP VAPOR M/MR LIQ M/HR LIQ BTU/M PNTAN2 75?,29o5 750,2900 65o3 6753 ETHNOL 160.0411 160.0374 4540.*4524 WATER 47,4410 6,«606 2313,8971 TOT L 957,7726 9ι7,ϊβ„0 5622309,8 MOLE FRA TjON WAT R ( NTRAiNF.R F * E E B I
C
KTRAY=16 Vp/T&Et* 45,0731 trJW 5,4569
B
13,0792 3,5864
M« 3 Ν· 4 VAP TU/M 16819,1180 22015,40*0 20397,1830 18006621.0
τ υ / Μ
22031.7840 20404,5470 18229770.0
PRESSURE 47.760 TE^P" 164,203 VAPOR M/HR LIQ M/HR LIQ β PNTAN2 805,1856 «05,1857 6581,6141 ETHNOL 182,4605 424,4768 4604,3625 WATgR 21.9231 21.9236 2345.7019 TOTAL I00'i569i 1251.5862 7305293.0 MOLE FRACTION WATER (ENTRAINER FRE5 3ASIS)
NEXT TRAY IS FEED TRAY
0
FTHNOL 191.0646 433.1010 4579,5937 WATER 9,1057 9,ï 62 2382.9789 TOTAL 1021.4107 1263.4277 7528436.8 MOLE FRACTION WATER (ENTRAINER FREE BASIS)
ALPHA 1.269234 1.000000 Θ,934943
2,471473 1.OOOOOO 5.739363
ALPHA
2.327323 1,000000 5,714574
ALPHA
1.000000 5.695273
ί94$«9 ,93942*
TM1TA
THfT* ,994187 ,94ΐ370 .938201
TgfT* ,991*23 ,«44073 .939741
,943163 ,9*0408
Computer Output Page 1 1
GAMMA 1,100325 3,165983 «3,815821
£.322906 1,917384 23,876892
GAMMA
Ï.30Ô16* 1,968342 26,369356
GAMMA
1,989408 26,327143
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
Y
C
T
W
.0023
.0028
3*47,4417
FREE
BASIS)
PRESSURE" 49.580 TE^P» 234,%Q2 LlQ M/HR LÎQ BTU/M VAPOR M/HR 4.6852 4.6854 9783.6962 787,8411 1029,8574 7302,44Ï8 .0025 ,0031 3588,4516 792,5288 1034.5459 7566325.0
(ENTRAINER
R
T
COMP PNTAN2
KtRAY»
E
5
W
A
T
E
R
LÎQ BTU/M 73l8,o396
ΤΕ*1Ρ· 211.961
L I Q M/HR 268,0906
49,300
E
<ENT«AIN R F ^ E E ?ASJS)
VAPOR M/HR 268,0904
PRESSURE»
N
49,440 TEMP» 231,260 PRESSURE» VAPOR M/HR LIQ M/HR LIQ.BTU/M 39 8052 8858 3103 39 8050 961.5896 65lo!6443 719î5733 .0030 3241,9305 ,0024 759,3808 1001,3978,, 6613192.3
.. TOTAL MOL F * C i °
«AÎE»
KfRAY* 4 COMP PNTAN2 ETHNOL
MOLE FRACTION WATER (ENTRAINER FRE5 3ASIS)
E
KTRAY* 3 COMP PNTAN2 ETHNOL WAT R TOTAL
WATER
2
TE^Pf 234,558 PRESSURE" 49,720 LIQ M/HR LIQ BTU/M VAPOR M/HR 99 i,986i .5i39 1039,7254 7421,5674 797,7091 .0030 3639,4535 .0024 7721503,4 1040,2425 798.2254
MOLE FRACTION
TOTAL
WATER
ETHNOL
PNTAN2
COMP
KTRAY*
VAP BTU/M 18655,6430 23087,8140 2Q883.2230 18470220,0
,231020*02
VP/THETA ,98315**02 ,499997*02 .231712*02
2 BTU/M
N«
6
N»
8
Ρ VAP BTU/M 18059.58^0
Mi 3
7
N» 7
VAP BTU/M 18560 83*023035,3850 20859,2591) Ϊ7314512.0
M» 3
VAP BTU/M 18634,6530 23076,2360 20877,9290 18267766,0
Ml 2
l8646,5n8o 23082,7760 20680,9200 18422972,0
VAP
M»
20882,1670 18448765,0
VP/THETA ,787405*02
950046*02 .470586*02 .217125*02
.493110*02 .226336*02
HE
Vp/T TA
,496905*02 .230212*02"
VP/THETA .979429+Q2
Me 2 N» 5 PRESSURE* 49,860 ΤΕ*Φ* 234,748 VAPOR M/HR LIQ M/HR L I Q BTU/M VAP BTU/M VP/THETA 18651.4540 «98i42Î*Ô2 .0558 ,0559 9944,2387 .498567*02 799.1022 1041,H86 7440.7544 23085.5050
TOTAL 799,1602 1041,1773 7747273.7 MOLE FRACyI ON wAyER (ENJRAINER FREE 9ASI8)
WATER
KTRAY* 1 COMP PNTAN2 ETHNOL
REBOILER PRESSURE» 50.000 TEMP* 234,910 COMP VAPOR M/HR LIQ M/HR L I Q BTU/M PNTAN2 .0059 ,QQ61 9961,3993 ETHNOL 799.9920 1042.0083 7455.5545 WATER .0021 .0026 3653.9526 TOTAL 800,0000 1042,0170 7768820,1 MOLE FRACTION ATER (ENTRAINER FREE 9ASIS)
.10701400*08 .40584534*03 ,36526080*02 .40580475*02 ·1ΐ44ΐ642*θβ Computer Output Page 12
X .039750
,000003
Υ ,341087
.000003
Y 052418 ,947579 ,000003
,000003
,000003
,000003
Υ •000*44 ,999353 .000003
,000003
Υ .0059Ϊ2 .994085 .000003
.004529 ,995468 ,000003
ALPHA
ALPHA .119476*02 .100000*01 .111692*01
GAMMA
GAMMA .607608*01 .100000*01 .241012*01
THETA
THETA .114654*01 .999999-00 .983621-00
0
0
GAMMA .6 β47 *01 ,100000*01 .241138*01
ALPHA .425051*02
ALPHA 121590*02 !ίθΟΟΟΟ*01 ,112886*01
THETA 113705*01 .995459-00 .981333*00
Τ
THÇTA GAMMA .537254*01 .108614*01
GAMMA ,602307*01 .100006*01 .244678*01
Τ
4 6
THETA ·11 21*01 ,999943-00 .983646*00
GAMMA ΗΕ * ALPHA .1202*2*02 .6Q826I*01 ,1ΐ45ΐ9*οι .100000*01 .100000*01 .999483-00 ,111836*01 ,241516*01 ,983429*00
ALPHA .Ïl9933*02 ,100000*01 .111717*01
,000070 .419698*02 .6θβθ7ΐ*01 .114642*01 ,999927 ,100000*01 .100000*01 .999994*00 ,000003 ,111699*01 .241059*01 .983646·00
X •000*94 ,999503 .000003
,000003
.000003
:wm;ï
.000003
•000006 ,999992 •000003
Y
•000003
•000002 X
Y ,000007 ,999990 ,000003
•000001 ,999997 ,000002
X
L I Q U I D AND VAPOR COMPOSITIONS ARE FOR THE FLOWS FROM THE TRAY
MOLES/HR V U 9 > * BTU/HR v<20* "
MOLES/HR V(18) •
BTU/HR V U 6 > Ρ MOLES/HR v U 7 > *
VAPOR MOLES AND ENTHALPIES ARE FLOWS FROM THE TRAY LIQUID MOLES A N D ENTHALPIES APE FLOwS TO THE TRAY
w
w
HEAT FLOW STRIPPING Sç Tl| iN COMP(i) vAPOR-LIQijID FLO> REC-flFylNG S E C ON C0MP(2) VAPOR-LIQUID FLOW RECTIFYING SECT ON C0MP<3) VAPOR-LIQUID FLOW RECTIFYING SECT ON HEAT FLO RECTIF IN6 SECT ON
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
PRESSUSE* 49.160 TEMP- 178,640 VAPOR M/HR L I Q M/HR L Î Q BTU/M 656.3955 656,3956 6894,4,59i 294,4158 036,4321 4862,3906 .0022 .0028 2472,8385
T
p
3
WATER
PRESSURE»
46,980 TE^P» 167,474 LIT M/HR LIQ BTU/M «24,6642 6797,2936 445.9783 4782.Ï087 .0137 2433.4969 1270.5562 7737756,5 ( E N T R A I M R R F*E5 3A5IS)
E
A
KTRAYs i l PRESSURE* 48,460 TE^P* 16*.557 CONP V P0R M/HR LIO M/HR LIQ BTU/M PNTAN2 932.5859 «32.5860 6767.7421 ETHNOL 198,2818 440.2982 4757.7173 WAT R ,2240 .2246 2421.5060 τΟγΑΙ. 1031.09i7 1273.1Q97 7730Q85.3 MOLE FRACTION WATER (ENTRAINER FREE B A S I S )
8
TEMP* 166.766 KTRAYs 1 PRESSURE* 4 8 , 6 0 0 COMP VAPOR M/HR LIT M/HR LIQ BTU/M 832.4717 6777.2436 332.4716 ΡΝΤΔΜ2 440· 649 4765.5584 l9R,8485 ETHNOL 2425,3626 ,Οβ'Ο ,0877 WATER 7743044.8 1273.4248 103Î.4078 TOT ΑΙMOLE FRACTION WATER (ENTRAINER FREî IUSIS)
C
KTRAY=
9
FRACTION
?
PRESSURE VA 0R M/HR 924,6641 203.8620 .0131 102*».5392
2
48.740 TE^P« 167,009 0MP V A P O R M/HR LlQ M/HR L I Û BTU/M PNTAN2 631.2025 «31·2θ26 6786.5001 ETHNOL 199.9386 441.9550 4773.Ï986 WATER .0341 ,0347 2429.1187 TOTAL 1031,1753 1273,Î9?2 7750579.6 M O L E F R A C T I O N v'ATER ( E N T R A I N E R F R E ? 3ASIS )
MOLE
KTRAYs CûMP PNT AM2 ETWNOL WAT^R TOTAL
T
COMP PNTAN2 FTH-NOL W AT(:R 0 AL
49,020 TE'1P« 1 6 9 . 1 9 4 PRESSURE VA OR M/HH LIQ M/HR LIQ BTU/M 792.9419 6*17,9567 792.94?0 4799.1707 221,4156 463,4319 2441,8741 .0056 .0050 7430346.8 1256.37?5 1014.3625 MOLE FRACTION WATER (ENTRAINER F3E" 3ASIS)
KTRAYs
TOTAL 95Γ1.8135 1192,*3T5 7133842.3 MOLE FRACTION WATER (ENTRAINER F"*E5 3ASIS)
KtRAY» 6 COMP PNTAN2 ETHNOL WATER
A
ETHNOL 517,8967 759,9131 5213,8250 W TER .0020 ,0026 2642,8492 TOTAL 785,9892 1028,3062 5923958,0 MOLE FRAfeTÎON WATER (ENTRAINER F^ES SASIS)
7
BTU/M
N" 6
VP/THETA
r+656-13*ô2 .134698*02 ,576065*01
k BTU/M
A
N*
22053.0310 20414,1040 18431551,0
V P
2
! 5*78907*01
.467014*02
VP/THETA
.468633^02 •136104*02 * 3822*9*01
VP/THETA
VP/THETA ,*7I540*02 .137553*02 ,588661*01
I6880.257o
M*
20415,6010 18444509,0
22056.36oo
16885,6750
M* 2 N* 6 VAP BTU/M
l689i,99io 22060,2390 20417.3430 18452055,0
VAP
Mi 2
16904,077ο 22067,6550 20420.6820 1.8439207,0
M* 2 Ν· VAP B T U / M
M»
3 N" 3 VAP BTU/M VP/THETA 16948,7490 . 4 * 2 0 3 5 * 0 2 22095,0280 . 1 4 3 0 1 1 * 0 2 20432.999Q ι*429θθ*04 l833î659,o
17835185,0
VP/THETA
•5îl9nï*g2 ,175479*02 1759«T5ô*Ôi
BTU/M
VAP
N* "3
.536685*02 il*I6-U**02
i7i94.b**0 22244,0940 20500,1590
M« 3
22752i8710 20730,5130 Ï6625276.4
GAMMA
THETA
Computer Output Page 13
THETA
TH|TA
,0002p0
X .6537127 .346204 ,0000^9
.000078
lg
X .652849 .347 4 .000027
ALPHA
GAMMA
THETA
,00112e
Y «80748Q
,000441 GÀMMA
THETA
222373*01 .128557*01 .998403-00 .945640-00 ,960670-00
ALPHA
:Œi ·ΜΜΚ& 'Minm $w&
,807122 ,222596*01 .128637*01 .998423-00
Y
.000171
GAMMA
.000031
ALPHA
,8o6o73 .224776*01 .129Ï63*Q1 .998512-00 ,193894 ,100000*01 ,197856*01 ,945469-09 ,000033 .556344*01 .237304*02 .980537-00
X .64905* .350932 .oooojii
Y
,000064
CÂMMA
,000012
ALPHA
,801762 .236421*04 .131689*01 ,998997-00 .Î98205 ,100000*01 .l9o947*ôl ,945259*00 .000013 .532861*01 .237755*02 ,960357-00
Y
,000023
Y GAMMA THETA ALPHA .781714 ,292673*01 .144463*01 .100173*01 .218281 ,100000*01 ,166373*01 .944806-00 .000005 ,441599*01 ,171431*02 ,959835*00
,000007
ALPHA
63l956*01 .240146*01 .101820*01 100000*01 ,117350+01 ,947050-00 222579*01 ,603523*01 .959809-00
X .6311-33 .368863 .000004
,000009
X .55Q284 .449714 .000002
.000003
0
.69 35i ,309646 .000002
,000004
.000003
,26Q7^7 ,739211 ,000002
,658911 ,100000*01 .100477*01 .971859-00 ,000003 ,123329*01 ,275187*01 ,969674*00
,960247 ,000003
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
14
E
PRESSURE*
A
48.040
T
PRESSURE* V A P O R M/HR 821.2204 191,0846 9.1057 1021,4107
TEMP*
LlO M / H R «21.2205 433.1010 9.1062 1263.4277
47,900
B
A
S
I
S
>
LIQ BTU/M 6672.9946 4679.5937 2382.9789 7528436.8
165.227
M
MOLE
E
WAT R
0
75fi.29 5 160,0411 47,4410 957.7726
PRESSURE V A P O R M/HR
FRACTION
ETHNOL WATER TOT »
C
0MP PNTAN2
KTRfiY* 1 7
8
E
( N T R A I N R FREÎ
E
TE^P*
M/HR 75O.29Q0 Ϊ60.0374 6,8606 917.Î89Q
LiQ
47,620 B
T
U
/
M
3ASI8)
4540.4524 2313.8971 5622309.8
65o3,8753
LÎQ
162,133
KTRAY* 1 6 PRESSURE 47.760 TEMP* 1 6 4 . 2 0 3 COMP VAPOR M/HR L I Q M/HR L I Q BTU/M ΡΝΤΔΝ2 8 0 51856 8Q5 1857 6581,6141 ETHNOL 182'.4605 424,4768 4604.3625 WATER 21.9231 21.9?36 2345.7019 TOJAL 1009.5691 1251.5862 7305293.0 M O L E F R A C T I O N WATER ( E N T R A I N E R F R E 5 3 A S I S )
8
NEXT TRAY IS FEED TRAY
/
165.766
MOLE FRAC i0N wAyER (ENyRAINER FREE BASIS)
KTRAY* 1 5 COMP PNTAN2 ETHNOL WATER TOTAL
E
U
LIQ B 6742,1831 4736.6308 2411.1252 7685310.7
T
166,097
L T Q BTU/M 6718,2870 4716,9242 2401.4117 763435Q.7 BASIS)
TE^P*
V
L I Q M/HR V A P O R M/HR COMP 828,2290 92«.22B8 ΡΝΤΑΝ2 436,99&8 194,9825 THNOL 3.65*4 3.6558 WATER 1026.8671 1269.8842 TOTAL MOLE F R A C T I O N WATER ( E N T R A I N E R F R E E
KTRAY*
C
8
TE »P« 48 1 8 0 KTRAY* 1 3 PRESSURE 0MP V A P O R M/HR L I Q M/HR 3 L 1 0 0 6 PNT AN2 «31.100* 196,7734 ETHNOL 438,7897 1,4478 1.4493 WATER 1271,3308 1 0 29,3218 TOTAL M O L E F R A Q T I ON W A T R ( J T N T R A I N E R F & E E
E
48,320 TEMP* 1 6 6 , 3 4 3 PRESSURE* KTRAY* 1 2 V A P O R M/HR L I Q M/HR L I Q BTU/M COUP 332,2150 832.2152 PNTAM2 6756,8310 439.7081 197,6918 ETWNOL 4748,7144 .5708 .5703 WAT R 2417.0756 1272.4941 1030.4771 TOTAL 77i2565.2 MOLE F R A C T I O N ' M A T E R ( E N T R A I N E R F R E E B A S I S )
N» 6
3 BTU/M
N»
Ν* 4
3
,450731+02 ,127925+02 ,545688+01
VP/THETA
VP/THETA .457047*02 .130792+02 ,558635*01
M« 3
B
N* 5 VP/THFTA V A P TU/M 16765,3520 .438322+Q2 21982,2030 .122352+02 20382,2610 ,520498+01 17063895,0
ll8o
VAP BTU/M 1.6819 2 2 0 1 5 * . 40*0 20397,1830 18006621.0
Ma 3
16845.7060 22031.7840 20404.5470 18229770,0
VAP
M*
VP/THETA ,460426*02 .132332*02 .565557*01
7
V A P BTU/M
Ν»
VP/THETA
»462556*TJ2 ,133303*02 ,569»9û*0l
16859,718ο 22040,4060 20408.4250 1.8335807.0
Ms 2
V A P gTU/M 16868,30?0 22045,6850 20410,7990 18386810.0
Ma 2
VP/THETA
,464180*02 ,134043*02 ,573175*01
N« * BTU/M
VAP
16874,6930 22049,6130 20412.5660 l84i4Q4liO
Ma 2
GAMMA
THETA
THETA
THETA
THETA
GAMMA
^HPTA
,228651
ALPHA
,049112
0
,78337 .247i47*oi ,l3229l*oi .994il7*oo ,167097 ,100000+01 .191758*01 ,941578*00. ,049533 ,573936*01 .2387Q9*02 ,936204·00
X .«43332 ,339151 .017517
Y
,107264
GAMMA
,020593
ALPHA
797554 232732*01 ,130017+01 99*623*00 ,180731 ,100000*01 .196836+01 .944075*00 ,021715 .571457+01 .2*3*94+02 .959741*00
X .649994 ,342798 ,007208
Y
,045485
GAMMA
,008298
ALPHA
,804006 .226759+01 .129094+01 ,997709-00 ,187079 .100000+01 .198941+01 .945163*00 ,008915 ,569528+01 .265271+02 ,9*0408*00
X ,652722 .344396 .002882
Y
,018404
w
.003290
GAMMA
_ ,998133-00 ,806559 ,224263*01 ,128732+01 ,189881 ,100000*01 199722+01 ,945570·00 ,003360 .568041*01 ,2*5457+02 ,960652*00
ALPHA
Page l A
X .653721 .345140 ,001139 Y
Computer Output
,007304
ALPHA
.001296
0
,8 7425 .223160+01 .128596*01 .998324-00 .Ï9Ï168 ,100000*01 ,199956*01 ,945688*00 ,001407 ,566762*01 .265084*02 .960717*00
Y
,002876
Y ALPHA GAMMA THfTA «8076Q2 .222620*01 .126551*01 ,998385*00 ,191845 .100000*01 .199964*01 ,945688*00 ,000553 ,565548*01 ,264472*02 .960708*00
X «654003 ,345548 .000449
,000510
,653979 ,345845 ,000176
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
AND HEATER OR SU3C00LER
ι
Ν· 5 BTU/M
CALCULATIONS
16719,4820 21953.7990 20369,4990 I6883l4li0
VAP
Μ»
.041106
,818033 ,174487 ,007460
CYCLE NO 1
VP/THETA ,428265*02 .117269*62 ,498386*01 ,274701
CONDENSER
TOTAL HFAT HEAT LOAD
T
T
COMP PNTAN2 ETHNOL WATER 0 AL
PRODUCT OUT
PRODUCT M/HR .0004 .0037 40.5805 40.5845
ENTRAINER MAKE-UP · .40584534-03 M/UR
FRACTION OF AQUEOUS PHASE TO SATISFY WATER BALANCE » ,956^1*22-00
NO HEATER OR SUBCOOLER
FRACTION OF AQUEOUS PHASE · .059107 ,55574808*07 BTU/HR ,11327660+08 BTU/HR
VAPOR-LIQUID EQUILIBRIA FOR AQUEOUS PHASE PRESSURE" 44,814 TEMP" 154.450 COMP Χ Υ Κ ALPHA GAMMA THETA VP/THETA PNTAN2 ,001251 ,808692 .646451*03 ,148266*04 ,737158*03 ,98874-00 ,39300*02 ETHNOL .249871 .108946 .436007-00 .100000*01 , l 9 n 4 i * o i ,94295-00 .10222*02 WATER ,748878 ,082363 .109981*00 ,252247-00 ,114030*01 ,95940-00 ,43223*01
Computer Output Page 16
Computer Output Page 15
THETA GAMMA Y ALPHA ,811883 .126923+01 .1Ï0033+01 ,991243*00 ,136441 .100000*01 .3Ï6598+01 ,943219*00 ,051676 .883494+01 .658Ï58+02 ,959426*00
VAPOR-LIQUIO EQUILIBRIA FOR ORGANIC PHASE PRESSURE- 44,815 TEMP* 154,450 COMP Χ Υ Κ ALPHA GAMMA THETA VP/THETA PNTAN2 .876890 .«C8694 .922230-00 .975464*00 ,105166+01 ,98874-00 ,39300*02 ETHNOL .115232 .108944 .945427-00 .100000*01 .414479*01 ,94295-00 ,10222*02 WATER .007878 .082362 .104550-02 .110584*02 ,108402*03 ,95940-00 ,43223*01
ACCUMULATOR
ACCUMULATOR
,480 TEMP* 160.367 PRESSURE» L I Q M/HR L I Q BTU/M VAPOR M/HR 777,9222 6244.8645 777,9226 130.7299 4328,Ϊ252 130.7335 ETHNOL 8,9337 2207.3051 49,5142 WATER 9!7.5858 5443553.7 958.1704 TOTAL MOLE FRACTION WATER (ENTRAINER FREE BASIS)
Α
ΡΝΤ Ν2
KTRAYs ΐβ COMP
84
E X T R A C T I V E
Table II.
A N D
A Z E O T R O P I C
DISTILLATION
Column Profiles in Azeotropic Distillation Dehydration of Aqueous Ethanol Using n-Pentane as Entraîner
Tray No. (Equil.) 18 17 16" 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 Reboiler
t, °F 160.37 162.13 164.20 165.23 165.77 166.10 166.34 166.56 166.77 167.01 167.47 169.19 178.64 211.96 231.26 234.10 234.56 234.75 234.91
Pressure, psia
Fraction Pentane in Liquid
Fraction Water in Vapor (Pentane-Free)
Fraction Ethanol in Liquid
47.48 47.62 47.76 47.90 48.04 48.18 48.32 48.46 48.60 48.74 48.88 49.02 49.16 49.30 49.44 49.58 49.72 49.86 50.00
0.818 0.643 0.650 0.653 0.654 0.654 0.654 0.654 0.653 0.649 0.631 0.550 0.261 0.040 0.0045 0.00049 0.00005 0.000006 0.000001
0.275 0.229 0.107 0.045 0.018 0.0073 0.0029 0.0011 0.00044 0.00017 0.000064 0.000023 0.000007 0.000004 0.000003 0.000003 0.000003 0.000003 0.000003
0.175 0.339 0.343 0.344 0.345 0.346 0.346 0.346 0.347 0.351 0.369 0.450 0.739 0.960 0.996 0.9995 0.99994 0.999992 0.999997
B o t t o m Product, M o l e fraction ethanol — M o l e fraction water — M o l e f r a c t i o n pentane =
0.99999706 0.00000232 0.00000062
Stripped Water Product, M o l e fraction water = M o l e fraction ethanol = M o l e f r a c t i o n pentane =
0.99999 0.000009 0.000001
Feed, 8 5 . 6 4 % m ethanol, 14.36%m water a
Tray No. 16 is the feed tray.
T h e t e m p e r a t u r e profile is most c l e a r l y seen i n F i g u r e 1. T h e t e m p e r a t u r e changes s l i g h t l y f r o m the r e b o i l e r u p a f e w trays; t h e n i t drops r a p i d l y for a b o u t three trays.
A f t e r this it d r o p s o n l y five degrees i n
the next n i n e trays a n d s l o w l y drops another f o u r degrees f r o m the f e e d to the t o p tray. T h e b e h a v i o r of the t e m p e r a t u r e profile is e x p l a i n e d w h e n the c o m p o s i t i o n profiles of F i g u r e 2 are e x a m i n e d . I n the first f e w trays n e a r the r e b o i l e r , the c o n c e n t r a t i o n of e t h a n o l i n the l i q u i d is h i g h , a b o v e 99 m o l e % . F r o m tray 4 to tray 7 the e t h a n o l c o n c e n t r a t i o n d r o p s 99.6-45.0 m o l e
%.
In
this
same
region
the
pentane
from
concentration
increases f r o m a p p r o x i m a t e l y 0.5-55.0 m o l e % . T h e w a t e r c o n c e n t r a t i o n ,
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
GOLDiNG,
B L A C K ,
160 Figure 1.
Computer Calculations
A N D DITSLER
200 TEMPERATURE, °F
240
Temperature profile for 50 psia column dehydration of aqueous ethanol using n-pentane n-pentane-to-ethanol ratio 3.22 (mole basis)
20 TOP ENTRAINER "IN LIQUID
FEED 16
3
><
/WATER IN Γ VAPOR 12 (ENTRAIN ER FREE) 8
ETHANOL IN LIQUID
—
4 0 0 Figure
.
1
20
.
1
.
1
40 60 MOLE, %
1
1
80
2. Composition profiles in 50 psia column dration of aqueous ethanol using n-pentane
.
100 dehy
n-pentane-to-ethanol ratio 3.22 (mole basis)
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
86
E X T R A C T I V E
A N D
A Z E O T R O P I C
DISTILLATION
100
TRAYS Figure
3.
Relative
volatility profiles in 50 psia column aqueous ethanol using n-pentane n-pentane-to-ethanol ratio 3.22 (mole basis)
dehydration
of
w h i c h is l o w , begins to increase. F r o m t r a y 8 t o t r a y 17 w a t e r c o n t i n u e s to b u i l d u p i n the v a p o r o n a pentane-free basis. O v e r this r e g i o n the c o n c e n t r a t i o n o f p e n t a n e i n t h e l i q u i d is n e a r l y constant w h i l e the e t h a n o l c o n c e n t r a t i o n decreases s l o w l y .
O n the t o p t w o trays p e n t a n e increases
a n d e t h a n o l decreases i n the l i q u i d w h i l e w a t e r continues to b u i l d u p i n the v a p o r . F i g u r e 3 gives the r e l a t i v e v o l a t i l i t y profiles also for the s a m p l e c o l u m n c a l c u l a t i o n ; these c o r r e s p o n d to the t e m p e r a t u r e a n d c o m p o s i t i o n profiles of F i g u r e s 1 a n d 2.
Pentane is easily s e p a r a t e d f r o m
ethanol
w h i l e w a t e r is not as r e a d i l y separated i n the b o t t o m of the c o l u m n , r e b o i l e r to t r a y 5.
T h e p e n t a n e v o l a t i l i t y decreases a n d that of
water
increases r a p i d l y , r e l a t i v e to ethanol, o n p r o c e e d i n g f r o m tray 5 to 8. T h e y r e m a i n n e a r l y constant for the next n i n e trays w h e r e the s e p a r a t i o n of w a t e r r e l a t i v e to e t h a n o l is f a v o r a b l e ; t h e s e p a r a t i o n of p e n t a n e relative to e t h a n o l is s t i l l f a v o r a b l e i n this r e g i o n . O n the t o p t r a y c o n d i t i o n s are f a v o r a b l e for s e p a r a t i n g w a t e r , b u t for s e p a r a t i n g p e n t a n e t h e y are less favorable. It becomes difficult to r e m o v e e t h a n o l f r o m the t o p p r o d u c t .
For
t h e c o n d i t i o n s o f this s a m p l e c a l c u l a t i o n , t h e r e d u c t i o n of e t h a n o l i n the o v e r h e a d vapors b e l o w a b o u t 13.5 m o l e % is a c c o m p a n i e d b y a b u i l d i n g
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
5.
B L A C K ,
GOLDING,
A N D
DITSLER
Computer
87
Calcuhtions
u p of w a t e r i n t h e o v e r h e a d vapors a n d a t e n d e n c y to f o r m a s e c o n d l i q u i d phase i n the top of the c o l u m n . T h e effect o n tray r e q u i r e m e n t s of c h a n g i n g the n-pentane-to-ethanol r a t i o is s h o w n i n F i g u r e 4. T h e w a t e r content of the b o t t o m p r o d u c t , e t h a n o l , is s h o w n vs. this r a t i o i n F i g u r e 5. W i t h n-pentane as entraîner the w a t e r content of the e t h a n o l p r o d u c t is r e d u c e d b e l o w ten p p m , o n a m o l e basis. Comparison of Entrainers T h e c h o i c e of a n entraîner u s e d to m a k e a d e s i r e d separation i n a n a z e o t r o p i c d i s t i l l a t i o n d e p e n d s o n the b i n a r y m i x t u r e b e i n g separated a n d the n o n i d e a l i t i e s of these c o m p o n e n t s w i t h the a d d e d entraîner. several different final
While
entrainers m i g h t b e u s e d to p r o v i d e a separation, the
selection m a y d e p e n d o n the r e q u i r e d p u r i t y of the p r o d u c t .
several entrainers c a n p r o d u c e a p r o d u c t of d e s i r e d p u r i t y , the
If final
c h o i c e m a y d e p e n d o n a n e c o n o m i c e v a l u a t i o n of the several schemes. F o r the a z e o t r o p i c
d e h y d r a t i o n of aqueous e t h a n o l m i x t u r e s a p -
p r o a c h i n g the constant b o i l i n g m i x t u r e , a b r i e f c o m p a r i s o n is s h o w n for the entrainers, n-pentane, benzene, a n d d i e t h y l ether. S i n c e w a t e r is most n o n - i d e a l i n n-pentane, the driest e t h a n o l is e x p e c t e d to b e p r o d u c e d i f n-pentane is u s e d .
8
12
16
20
TRAYS
Figure
4.
Effect of changing the n-pentane-to-ethanol basis) on trays required
ratio (mole
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
E X T R A C T I V E
^1 0
A N D
A Z E O T R O P I C
DISTILLATION
I ι I ι I I 2 4 6 MOLE FRACTION WATER IN BOTTOM PRODUCT, χ 10 1
6
5. Fraction
Figure
water in bottom product ethanol vs. to-ethanol ratio (mole basis)
n-pentane-
DIETHYL ETHER 135 psia
Τ 1
\ BENZENE \
14.7 psia
" \ PENTANE 50 psia
0
ι
ι , I L 1 40 80 120 MOLE FRACTION WATER IN BOTTOM PRODUCT, χ 10 LZ
6
Figure
6. Comparing entrainers, n-pentane, benzene, ether, for water content of ethanol product
and diethyl
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
5.
B L A C K ,
GOLDiNG,
A N D
DITSLER
Computer
89
Calculations
C a l c u l a t i o n s h a v e b e e n m a d e u s i n g the a u t o m a t e d feature o f the A z e o t r o p i c D i s t i l l a t i o n P r o g r a m A D P / A D P L L E . T h e same m o l e fract i o n o f entraîner i n the e t h a n o l p r o d u c t , 0.62 Χ 1 0 c a l c u l a t i o n s i n v o l v i n g e a c h entraîner.
- 6
has b e e n u s e d i n
U s i n g n-pentane, the
azeotropic
d i s t i l l a t i o n w a s c a l c u l a t e d for a c o l u m n w i t h a r e b o i l e r at 50 p s i a .
The
c o r r e s p o n d i n g pressures w e r e 14.7 p s i a a n d 135 p s i a for cases i n v o l v i n g b e n z e n e a n d d i e t h y l ether, r e s p e c t i v e l y . C a l c u l a t i o n s w e r e m a d e also at h i g h e r pressures for cases u s i n g n-pentane a n d benzene.
A l t h o u g h the
a b o v e pressures are n o t necessarily the o p t i m u m for e a c h solvent, c o m parisons h a v e b e e n m a d e for the three cases as i n d i c a t e d .
MILLIONS BTU/UNIT TIME Figure
7. Comparing the entrainers, n-pentane, benzene, and diethyl ether, for reboiler and condenser loads in dehydrating aqueous ethanol Condenser loads, heat removed, btu/unit time Reboiler loads, heat added, btu/unit time
T h e c a l c u l a t e d results, c o m p a r i n g t h e w a t e r content o f the e t h a n o l p r o d u c t for the entrainers, n-pentane, b e n z e n e , a n d d i e t h y l ether, are s h o w n i n F i g u r e 6. T h e m o l e f r a c t i o n w a t e r i n the e t h a n o l p r o d u c t i s p l o t t e d vs. t h e e n t r a i n e r - t o - e t h a n o l r a t i o , o n a m o l e basis. n - P e n t a n e p r o duces e t h a n o l o f lowest w a t e r content; b e n z e n e comes next, a n d d i e t h y l ether comes last. E n t r a i n e r - t o - e t h a n o l ratios o f 2.5-3.5, m o l e basis, are a d e q u a t e w h e n n-pentane o r b e n z e n e is u s e d ; for d i e t h y l ether, the r a t i o m u s t b e a b o v e four. C o n d e n s e r a n d r e b o i l e r loads are c o m p a r e d for the same three e n trainers i n F i g u r e 7. F o r d i e t h y l ether-to-ethanol ratios o f a b o u t 4.2, the
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
90
E X T R A C T I V E
A N D
A Z E O T R O P I C
DISTILLATION
DEE 135 p s ^ a ^ ^ ^ ^
PENTANE / 50 psia /
-
/
BENZENE 14.7 psia
'
1 1 1 1 16 24 32 40 MAXIMUM FLOW IN COLUMN, IN MOLES, χ 10" 2
Figure 8. Comparison of maximum flows on any tray for entrainers, n-pentane, benzene, and diethyl ether, in dehydrating aqueous ethanol by azeotropic distillation
\
1
DLETHYL\
-
1
\
1 !^ 3
ETHER
^ 135 psia
—
BENZENE
\ 14.7 psia
—
\N-PENTANE
L _
\
50 psia
I
.
20
TRAYS,
I
\
.
40
1 60
EQUILIBRIUM
Figure 9. Comparing tray requirements for the entrainers, n-pen tane, benzene, and diethyl ether, in dehydrating aqueous ethanol by azeotropic distillation
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
5.
B L A C K ,
GOLDiNG,
A N D
DITSLER
Computer
91
Calculations
condenser a n d r e b o i l e r loads c o m p a r e f a v o r a b l y w i t h those for
benzene-
to-ethanol ratios of a b o u t 3, m o l e basis. A t the h i g h e r r a t i o , heat loads w i t h n-pentane are a b o u t 8 0 % of those for d i e t h y l ether. A t the l o w r a t i o of a b o u t 3, the heat loads w i t h n-pentane are o n l y 6 0 % of those
for
benzene. T h e m a x i m u m flow o n a n y t r a y i n the c o l u m n is c o m p a r e d for the three entrainers, n-pentane, benzene, a n d d i e t h y l ether, i n F i g u r e 8.
At
the h i g h entrainer-to-ethanol r a t i o of 4.2, the m a x i m u m flow w h e n n pentane is u s e d is a b o u t 7 0 % of that for the case u s i n g d i e t h y l ether. F o r the l o w ratio of a b o u t 3, the flows w i t h n-pentane are a b o u t 7 5 % of those u s i n g benzene.
A s m a l l e r d i a m e t e r c o l u m n is r e q u i r e d w i t h n -
p e n t a n e t h a n w i t h either of the other entrainers. T o t a l tray r e q u i r e m e n t s for the three entrainers are c o m p a r e d i n F i g u r e 9. T h e least n u m b e r of trays is r e q u i r e d w h e n n-pentane is u s e d ; the most are r e q u i r e d w h e n d i e t h y l ether is the entraîner. If b e n z e n e is u s e d as entraîner at h i g h e r pressure t h a n 14.7 p s i a , the c o r r e s p o n d i n g c u r v e i n F i g u r e 9 is shifted to the r i g h t , m o r e trays b e i n g r e q u i r e d . The
c o m p u t e r p r o g r a m for
azeotropic
distillation A D P / A D P L L E
makes possible not o n l y a c o m p a r i s o n of entrainers for a separation b u t also gives results of a q u a l i t y r e q u i r e d for a c t u a l d e s i g n c a l c u l a t i o n s . Acknowledgment S o m e of the u t i l i t y subroutines d e s c r i b e d here w e r e d e s i g n e d
after
a g e n e r a l system of u t i l i t y - s u b r o u t i n e p r o g r a m m i n g d e v e l o p e d b y H . W . B r o u g h of S h e l l C h e m i c a l C o m p a n y .
W e also w i s h to a c k n o w l e d g e
s u p p o r t of E . G . F o s t e r a n d L . J . T i c h a c e k i n f a c i l i t a t i n g this w o r k . List
of
Symbols
OLi
v a n der W a a l s a t t r a c t i o n constant for c o m p o n e n t i
bi
v a n der W a a l s c o v o l u m e for c o m p o n e n t i
fi
f u g a c i t y of c o m p o n e n t i i n vapor-phase m i x t u r e
v
0.5
P* Ρ Pi° w w
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
the
92
E X T R A C T I V E
A N D AZEOTROPIC
DISTILLATION
Xi
t o t a l l i q u i d c o m p o s i t i o n i n r e g i o n o f t w o l i q u i d phases
Xi
l i q u i d c o m p o s i t i o n , m o l e f r a c t i o n , p o l a r phase
tji
l i q u i d c o m p o s i t i o n , m o l e f r a c t i o n , n o n p o l a r phase
Yi
vapor composition, mole fraction component i
an
v o l a t i l i t y o f c o m p o n e n t i relative to c o m p o n e n t /
ji
l i q u i d - p h a s e a c t i v i t y coefficient, p o l a r p h a s e
Yi
l i q u i d - p h a s e a c t i v i t y coefficient, n o n p o l a r phase
&a
b i n a r y v a p o r i n t e r a c t i o n coefficient
6i
imperfection-pressure
£°
n o n p o l a r p a r t o f the m o l e c u l a r attractive coefficient at zero pressure
(° ί°
p o l a r p a r t o f the m o l e c u l a r a t t r a c t i o n coefficient at zero pressure $ έ° + é°> the l i m i t i n g v a l u e o f the m o l e c u l a r a t t r a c t i o n coefficient at zero pressure
i°
f u g a c i t y coefficient f o r c o m p o n e n t i at saturation pressure Pi°
φί
fugacity coefficient f o r c o m p o n e n t i i n a v a p o r pressure
coefficient
Literature Cited 1. Gerster, J. Α., Chem. Eng. Progr. (1969) 65 (9), 43. 2. Hoffman, E. S., "Azeotropic and Extractive Distillation," Wiley, New York, 1964. 3. Robinson, C. S., Gilliland, E. R., "Elements of Fractional Distillation," p. 312, McGraw-Hill, New York, 1950. 4. Black, C., Ind. Eng. Chem. (1958) 50, 391. 5. Black, C., Ind. Eng. Chem. (1958) 50, 403. 6. Black, C., A.I.Ch.E. J. (1959) 5 (2), 251. 7. Black, C., Ind. Eng. Chem. (1959) 51, 211. 8. Black, C., Derr, E. L., Papadopoulos, M. N., Ind. Eng. Chem. (1963) 55 (9), 38. 9. Null, H. R., Palmer, D. Α., Chem. Eng. Progr. (1969.) 65 (9), 47. 10. Yamada, I., S. Hidezumi, A. Kanji Kagaku Kogaku (1967) 31, 395-398. 11. Berg, L., Chem. Eng. Progr. (1969) 65, (9), 53. RECEIVED November 24, 1970.
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
6 Prediction of Isobaric Vapor-Liquid Equilibrium Data for Mixtures of Water and Simple Alcohols A. ANDIAPPAN and A. Y. McLEAN Annamalainagas University, Tamifnedu, India and Nova Scotia Technical College, Halifax, Nova Scotia
The Non-Random, Two Liquid Equation was used in an attempt to develop a method for predicting isobaric vapor– liquid equilibrium data for multicomponent systems of water and simple alcohols—i.e., ethanol, 1-propanol, 2-methyl-1propanol (2-butanol), and 3-methyl-1-butanol (isoamyl alcohol). Methods were developed to obtain binary equilibrium data indirectly from boiling point measurements. The binary data were used in the Non-Random, Two Liquid Equation to predict vapor-liquid equilibrium data for the ternary mixtures, water-ethanol-1-propanol, water—ethanol-2-methyl1-propanol, and water-ethanol-3-methyl-1-butanol. Equilibrium data for these systems are reported.
/
T p h e d e s i g n of a z e o t r o p i c o r extractive d i s t i l l a t i o n c o l u m n s , as w i t h c o n A
v e n t i o n a l c o l u m n s , d e m a n d s a k n o w l e d g e of the v a p o r - l i q u i d e q u i l i b -
r i u m p r o p e r t i e s o f the system to b e d i s t i l l e d . S u c h k n o w l e d g e is o b t a i n e d e x p e r i m e n t a l l y o r c a l c u l a t e d f r o m o t h e r properties of the c o m p o n e n t s o f the system.
S i n c e the systems i n a z e o t r o p i c o r e x t r a c t i v e d i s t i l l a t i o n
processes h a v e at least three c o m p o n e n t s , d i r e c t m e a s u r e m e n t
of t h e
e q u i l i b r i u m p r o p e r t i e s is l a b o r i o u s a n d , therefore, expensive, so m e t h o d s of c a l c u l a t i o n o f these d a t a are d e s i r a b l e . F o r a z e o t r o p i c d i s t i l l a t i o n e s p e c i a l l y the systems are n o n - i d e a l w h i c h makes c a l c u l a t i n g v a p o r - l i q u i d e q u i l i b r i u m p r o p e r t i e s m o r e difficult t h a n , for e x a m p l e , i n d i s t i l l a t i o n of m i x t u r e s of s i m p l e h y d r o c a r b o n s . W o r k p r e d i c t i n g the v a p o r - l i q u i d e q u i l i b r i u m properties of t e r n a r y m i x t u r e s o f 93 In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
94
E X T R A C T I V E
A N D
A Z E O T R O P I C
DISTILLATION
water, e t h a n o l , a n d o n e of the s i m p l e alcohols—i.e., 1-propanol, 2 - m e t h y l 1-propanol, 3 - m e t h y l - l - b u t a n o l , ( a l l f o r m b i n a r y azeotropes w i t h w a t e r ) — i s p r e s e n t e d here. A q u e o u s solutions of these alcohols o c c u r w h e n sugar solutions are fermented
a n d m a y b e separated b y d i s t i l l i n g t h e m i x t u r e s .
It is a
c o m m o n , e c o n o m i c a l l y v a l u a b l e process for m a n u f a c t u r i n g p o t a b l e l i q u o r s a n d for p r o d u c i n g i n d u s t r i a l a l c o h o l f r o m f e r m e n t e d molasses solutions o r p u l p m i l l wastes.
O n e of the authors ( A . Y . M . ) reports t h a t d e s i g n
a n d o p e r a t i o n of these c o l u m n s is h a m p e r e d b y l a c k of v a p o r - l i q u i d e q u i l i b r i u m d a t a , e s p e c i a l l y for m a k i n g p o t a b l e l i q u o r s , w h e r e
small
a m o u n t s of t h e alcohols other t h a n e t h a n o l greatly affect the flavor a n d , therefore, the p r o d u c t ' s m a r k e t a b i l i t y . Prediction of Vapor—Liquid Equilibrium
Data
A system c o n s i s t i n g of a l i q u i d m i x t u r e a n d v a p o r is i n e q u i l i b r i u m if, for a n y c o m p o n e n t i, the fugacities i n the v a p o r a n d l i q u i d phases, fi
Y
a n d /i
L
are e q u a l .
/i = /, V
(1)
L
A s the fugacities are not i n themselves q u a n t i t i e s w h i c h are easily estab l i s h e d e x p e r i m e n t a l l y , i t is necessary to relate t h e m to easily d e t e r m i n a b l e quantities—e.g., t e m p e r a t u r e , pressure, a n d c o m p o s i t i o n .
T h i s is d o n e
b y i n t r o d u c i n g the f u g a c i t y a n d a c t i v i t y coefficients Φ* a n d y ι w h i c h are defined as f o l l o w s ,
w h e r e y is t h e c o m p o s i t i o n o f c o m p o n e n t f i n t h e v a p o r phase, Ρ is the {
t o t a l pressure of t h e system, x is t h e c o m p o s i t i o n of c o m p o n e n t i i n the {
l i q u i d phase, a n d
fi
0L
is the f u g a c i t y of c o m p o n e n t i i n the l i q u i d at a
reference state. T h i s reference state is the f u g a c i t y of p u r e l i q u i d i at the t e m p e r a t u r e a n d pressure of t h e system. E q u a t i o n 1 t h e n becomes Φ-ϊ^Ρ
=
JiXiU
(3)
0lj
A t c o n d i t i o n s w h e n it is safe to assume t h a t t h e gas p h a s e w i l l b e h a v e i n a n ideal manner—i.e.,
at l o w
pressure w i t h a l l c o m p o n e n t s
con
densable—
«^land/^^P, Pi
s
8
is t h e v a p o r pressure of p u r e l i q u i d i at t h e t e m p e r a t u r e o f t h e system,
a n d e q u i l i b r i u m is d e s c r i b e d b y the e q u a t i o n , yP
— ytiPi*
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
(4)
6.
ANDiAPPAN
A N D M C L E A N
Isobaric Vapor-Liquid
Equilibrium
95
A t c o n d i t i o n s w h e r e i t is i n c o r r e c t t o assume i d e a l b e h a v i o r f o r t h e gas a n d /i
phase, et al.
are calculated b y procedures described b y Prausnitz
0L
(1).
T h e calculation of y
i9
t h e a c t i v i t y coefficient, establishes γ* as a f u n c
t i o n of c o m p o s i t i o n , as w e l l as t e m p e r a t u r e a n d pressure. T h i s is d o n e b y r e l a t i n g γ* t o t h e excess G i b b s energy G , — L e . , b y t h e e q u a t i o n E
a n d expressing G
E
o r g , t h e m o l a r excess G i b b s energy, i n terms of E
composition. T h e p r o b l e m o f expressing t h e excess G i b b s energy as a f u n c t i o n o f c o m p o s i t i o n has b e e n researched extensively, a n d m a n y m e t h o d s of v a r y i n g a c c u r a c y a n d usefulness h a v e b e e n p r o p o s e d . A n extensive d i s c u s s i o n of these m e t h o d s is g i v e n b y H a l a et al. (2), m o n expressions—e.g.,
w h o s h o w that m a n y c o m
those o f v a n L a a r a n d M a r g u l e s — a r e
f r o m t h e g e n e r a l expression of W o h l C u k o r a n d P r a u s n i t z (4),
deduced
(3).
h o w e v e r , p o i n t o u t that W o h l ' s
expression p r e c l u d e s other expressions f o r t h e c o m p o s i t i o n
general
dependence
of t h e excess free energy, i n c l u d i n g that o f W i l s o n ( 5 ) , w h i c h has b e e n u s e d b y several authors t o p r e d i c t a n d correlate v a p o r - l i q u i d e q u i l i b r i u m W i l s o n s equation and the modification proposed b y Renon and
(1,6,7).
P r a u s n i t z (8)
u s e t h e l o c a l m o l e f r a c t i o n concept, p r o d u c e d
because
molecules i n s o l u t i o n aggregate as a result o f t h e v a r i a t i o n i n i n t e r m o l e c u l a r forces.
T h e l o c a l m o l e f r a c t i o n c o n c e p t results i n a m o r e u s e f u l
d e s c r i p t i o n o f t h e b e h a v i o r of m o l e c u l e s i n a n o n - i d e a l m i x t u r e . The Wilson Equation and the Two-Liquid
(NRTL)
Non-Random
Equation
T h e W i l s o n e q u a t i o n , u s e d b y P r a u s n i t z et al. (1) (6,7),
a n d other w o r k e r s
equals or surpasses earlier t w o - p a r a m e t e r equations i n c o r r e l a t i n g
v a p o r - l i q u i d e q u i l i b r i u m d a t a f o r a large n u m b e r of n o n - i d e a l systems. T h e e q u a t i o n w h i c h is sufficiently d i s c u s s e d elsewhere
( J ) contains t w o
adjustable parameters p e r b i n a r y a n d p r e d i c t s m u l t i c o m p o n e n t e q u i l i b r i u m d a t a u s i n g t h e b i n a r y parameters only. N o m u l t i c o m p o n e n t e x p e r i m e n t a l d a t a are necessary as f o r t h e v a n L a a r t y p e e q u a t i o n s o f t h i r d o r d e r a n d above. O n e l i m i t a t i o n of t h e W i l s o n e q u a t i o n has b e e n that i t c a n n o t b e a p p l i e d t o systems w h e r e t h e n o n - i d e a l i t y is s u c h that t w o l i q u i d phases are
formed—e.g.,
water-2-methyl-l-propanol
and
water-3-methyl-l-
butanol.
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
96
E X T R A C T I V E
A N D A Z E O T R O P I C
DISTILLATION
R e n o n a n d P r a u s n i t z ( 8 ) p r o p o s e d a n o t h e r e q u a t i o n , b a s e d also o n the l o c a l m o l e f r a c t i o n c o n c e p t , w h i c h w o u l d a v o i d this l i m i t a t i o n a n d c o u l d b e a p p l i e d to partially miscible mixtures. T h e relationship between a c t i v i t y coefficient a n d l i q u i d p h a s e c o m p o s i t i o n is g i v e n b y t h e e q u a t i o n Ν
/
i n y ^ i f ^ 2
+ t ^ ^ K - i ^ M ^
Gx ki
'
k
k-\
where Ν =
(ëa
Ν
=
2 Gx
1
kj
k
k=l
I
2
\
k=l
1
)
)
(5
GjcjXk
number of components
~~ ëu) is t h e adjustable p a r a m e t e r ( t w o p e r b i n a r y ) s i m i l a r t o that
contained i n the W i l s o n equation.
is a n e m p i r i c a l non-randomness
parameter. R e n o n a n d P r a u s n i t z ( 8 ) r e c o m m e n d values o f
f o r v a r i o u s classes
of m i x t u r e s . I f these v a l u e s a r e v a l i d t h e n E q u a t i o n 5 has o n l y t w o a d justable p a r a m e t e r s p e r b i n a r y .
T h e N R T L e q u a t i o n w a s u s e d i n this
work. Experimental T o test t h e N R T L
equation for predicting V L E data for ternary
mixtures, experimental data for the ternary mixtures a n d for the binary c o m p o n e n t s o f t h e m i x t u r e s a r e necessary.
A literature survey
showed
t h a t d a t a w e r e n o t r e a d i l y a v a i l a b l e f o r a n y o f t h e ternaries o r f o r t h e two binaries ethanol-3-methyl-l-propanol a n d 3-methyl-l-butanol-water, a n d i t w a s therefore necessary to o b t a i n these d a t a e x p e r i m e n t a l l y . T h e direct measurement of v a p o r - l i q u i d e q u i l i b r i u m data for part i a l l y m i s c i b l e m i x t u r e s s u c h as 3 - m e t h y l - l - b u t a n o l - w a t e r is difficult, a n d a l t h o u g h stills h a v e b e e n d e s i g n e d f o r this p u r p o s e (9, 10), t h e d a t a w a s i n d i r e c t l y o b t a i n e d f r o m measurements
o f pressure, P , t e m p e r a t u r e , t,
a n d l i q u i d c o m p o s i t i o n , x. I t w a s also felt that a test o f t h e v a l i d i t y o f the N R T L
equation i n predicting the V L E data for the ternary mix-
tures w o u l d b e t h e successful p r e d i c t i o n o f t h e b o i l i n g p o i n t . T h i s e l i m inates
the complicated
analytical procedures
necessary
i n the direct
measurement of ternary V L E data. A modified version of the M-100 b o i l i n g point apparatus, made b y the James F . S c a n l o n C o . , W h i t t i e r , C a l i f , w a s u s e d ; t e m p e r a t u r e w a s measured b y a H e w l e t t - P a c k a r d m o d e l 2801A quartz thermometer. A l l measurements w e r e m a d e at a t m o s p h e r i c pressure w i t h t h e t e m p e r a t u r e c o r r e c t e d t h e n t o 760 m m H g .
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
6.
ANDiAPPAN
A N D
Isobaric Vapor-Liquid
M C L E A N
T a b l e I.
Equilibrium
97
F u g a c i t y Coefficients
Component
Temperature,
°C
Φ,
Water
80 90 130 100
0.9925 0.9960 1.0150 1.0000
Ethanol
80 90 100
1.0015 1.0119 1.0240
1-Propanol
80 90 100
0.9898 0.9954 1.0018
2-Methyl-l-propanol
80 90 100
0.9726 0.9809 0.9904
3-Methyl-l-butanol
80 90 100 130
0.9535 0.9608 0.9686 C.9991
T o extract y f r o m P, t, x, d a t a o b t a i n e d for the b i n a r y system, a c o m p u t e r p r o g r a m u s i n g the N R T L e q u a t i o n w a s p r e p a r e d . U p o n re c e i v i n g the i n p u t data—i.e., P, x 1 a n d a v a l u e of a, u s u a l l y a r o u n d 0.475 — v a l u e s of the adjustable parameters (gi2-g22) a n d ( g 2 i - g n ) w e r e as s u m e d . T h e a c t i v i t y coefficients w e r e c a l c u l a t e d u s i n g E q u a t i o n 5 a n d values of y w e r e c a l c u l a t e d u s i n g E q u a t i o n 4. T o justify u s i n g E q u a t i o n 4, values of the f u g a c i t y coefficients w e r e c a l c u l a t e d . T h e s e values ( T a b l e I ) are b e l i e v e d sufficiently near u n i t y to p e r m i t that the effects of gas p h a s e n o n i d e a l i t y c a n b e i g n o r e d . T h e s u m of t/i a n d y w a s c o m p a r e d w i t h u n i t y , a n d the p r o c e d u r e w a s r e p e a t e d u n t i l s u m y w a s w i t h i n a g r e e d l i m i t s of u n i t y . T h i s p r o g r a m also a l l o w e d the c a l c u l a t i n g of b i n a r y energy parameters u s e d i n p r e d i c t i n g properties of the t e r n a r y systems. 9
2
A n a d d i t i o n a l p r o g r a m took the energy parameters of the b i n a r y systems m a k i n g u p ternary m i x t u r e s a n d c a l c u l a t e d t h e b o i l i n g p o i n t of the t e r n a r y a n d the e q u i l i b r i u m c o m p o s i t i o n of the v a p o r phase. C o m p a r i s o n of the m e a s u r e d b o i l i n g p o i n t w i t h the p r e d i c t e d b o i l i n g p o i n t for the same c o m p o s i t i o n a n d pressure was u s e d as a c r i t e r i o n of successful p e r f o r m a n c e of the N R T L e q u a t i o n . T o illustrate the consistency b e t w e e n the t w o programs, d a t a for the e t h a n o l - w a t e r system r e p o r t e d b y R i e d e r a n d T h o m p s o n ( 11 ) w e r e u s e d . T h e first p r o g r a m estimated the values of the energy parameters a n d c a l c u l a t e d the vapor-phase c o m p o s i t i o n , y, w i t h a root m e a n square d e v i a t i o n ( R M S D ) of 0.00847. T h e m e a n a r i t h m e t i c d e v i a t i o n b e t w e e n the
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
98
E X T R A C T I V E
A N D
A Z E O T R O P I C
DISTILLATION
s u m y a n d u n i t y w a s 0.0064. T h e e s t i m a t e d parameters w e r e u s e d i n the s e c o n d p r o g r a m w h i c h p r e d i c t e d t h e same values of y a n d also p r e d i c t e d the t e m p e r a t u r e of the b o i l i n g m i x t u r e . T h e p r e d i c t e d a n d e x p e r i m e n t a l t e m p e r a t u r e a g r e e d w i t h a R M S D v a l u e of 0.22°C. T h e p r o c e d u r e e s t a b l i s h i n g the v a p o r - l i q u i d e q u i l i b r i u m d a t a for t h e b i n a r y system was tested u s i n g the homogeneous water, a n d the heterogeneous
system,
1-propanol-
system, 2 - m e t h y l - l - p r o p a n o l - w a t e r , u s i n g
the d a t a of M u r t i a n d V a n W i n k l e (12)
and Ellis and Garbett
(9).
T h e R M S D v a l u e b e t w e e n the e x p e r i m e n t a l a n d t h e c a l c u l a t e d values of y w e r e 0.011 a n d 0.0155, respectively, T h e c o m p a r i s o n b e t w e e n
ex
p e r i m e n t a l a n d c a l c u l a t e d V L E d a t a is s h o w n i n F i g u r e 1 a n d F i g -
Figure
1. Comparison of calculated librium data at 760 mm Hg.
•
Indirectly
Ο
Directly
measured, Gadwa
ψ
Directly
measured, Murti and Van
and experimental vapor-liquid 1-Propanol (1)-Water (2).
measured, present work (15) Winkle
(12)
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
equi
6.
ANDiAPPAN
Figure 2. librium
A N D
M C L E A N
Isobaric Vapor-Liquid
Equilibrium
99
Comparison of calculated and experimental vapor-liquid equi data at 760 mm Hg. 2-Methyl-l-Propanol (1)-Water (2).
ψ Indirectly measured, present work Ο Directly measured, Ellis and Garbett
(9)
u r e 2, a n d they agree w e l l e n o u g h to justify u s i n g t h e i n d i r e c t m e t h o d of e s t a b l i s h i n g t h e V L E d a t a o n t h e system, e t h a n o l - 2 - m e t h y l - l - p r o p a n o l and 3-methyl-l-butanol-water. D i r e c t m e a s u r e m e n t of t h e V L E d a t a for t h e e t h a n o l - 2 - m e t h y l - l p r o p a n o l system w e r e also m a d e , u s i n g a M E S 1 0 0 m o d e l e q u i l i b r i u m s u p p l i e d b y the James F . S c a n l o n C o . Results and Discussion Binary System.
T h e e t h a n o l - 2 - m e t h y l - p r o p a n o l system was
to b e h a v e i n a n e x p e c t e d i d e a l w a y .
T h e x-y
found
d a t a , that was d i r e c t l y
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
100
E X T R A C T I V E AND
Table II.
AZEOTROPIC DISTILLATION
Vapor—Liquid Equilibrium Data at 760 mm. H g Ethanol ( l ) - M e t h y l - l - P r o p a n o l (2) t°c 104.15 101.88 101.55 101.03 98.07 94.67 94.08 90.96 89.34 87.56 86.75 86.11 85.24 84.18 83.67 82.54 81.45 81.11 80.06
Table III.
0.050 0.080 0.085 0.090 0.155 0.220 0.243 0.330 0.382 0.465 0.490 0.510 0.560 0.610 0.635 0.705 0.770 0.800 0.870
0.126 0.200 0.215 0.235 0.332 0.460 0.479 0.595 0.658 0.712 0.742 0.770 0.790 0.817 0.845 0.875 0.915 0.920 0.950
Vapor—Liquid Equilibrium Data at 760 mm. H g 3-Methyl-1-Butanol ( l ) - W a t e r (2) t
°c
99.17 97.99 97.82
XJ
Yi
0.0009 0.0024
0.0386
0.0155
0.0031
0.0482
96.60
0.0051
96.27
0.0072
0.0725 0.0932
96.14
0.0073
0.0942
95.90
0.0205
95.26
0.0616
0.1603 0.1694
97.32
0.5766
0.1810
104.03
0.6536
0.2323
109.86
0.7698
0.3495
119.65
0.8873
125.76 126.96
0.9347 0.9427
0.5710 0.7158
128.54
0.9696
0.7449 0.8512
129.84
0.9884
0.9394
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
6.
ANDiAPPAN
A N D
M C L E A N
Isobaric Vapor-Liquid
0
Figure
Equilibrium
5
3.
Vapor-liquid
101
1
equilibrium data at 760 mm Hg. 2-Methyl-l-Propanol (2).
Ethanol
(1)-
Ο Directly measured y Indirectly measured — Ideal behavior m e a s u r e d , are p r e s e n t e d i n T a b l e II.
F i g u r e 3 shows t h e c o m p a r i s o n
w i t h the d i r e c t l y m e a s u r e d d a t a , the i n d i r e c t l y m e a s u r e d d a t a , a n d the data calculated from Raoult's L a w . T h e v a p o r - l i q u i d e q u i l i b r i u m d a t a for t h e 3 - m e t h y l - l - b u t a n o l - w a t e r system are s h o w n i n T a b l e I I I a n d F i g u r e 4. T h e b o i l i n g p o i n t measure ments a g r e e d w i t h those r e p o r t e d i n T i m m e r m a n s (13).
T h e v a l u e of
a =
alcohol-water
0.45 as suggested b y R e n o n a n d P r a u s n i t z ( 8 )
for
systems w a s not suitable. V a r i o u s other values of a w e r e t r i e d , a n d a v a l u e of
a
=
0.3 w a s f o u n d to agree best. T h i s fit c a n b e e s t a b l i s h e d b y u s i n g
the m e t h o d d e s c r i b e d to test t h e consistency of t h e equations—i.e.,
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
the
102
E X T R A C T I V E
0
Figure
A N D AZEOTROPIC
DISTILLATION
5
4.
Vapor-liquid
Table IV.
1
equilibrium data at 760 mm Hg. Butanol (1)-Water ( 2 ) .
3-Methyl-l-
N R T L Parameters for the Binary Systems Isobaric Systems at 1 A t m . Reference
E t h a n o l U ) - W a t e r (2) 1 - P r o p a n o l ( i ) - W a t e r (2) 2 - M e t h y l - l - P r o p a n o l (1)-Water (2) 3 - M e t h y l - l - B u t a n o l U ) - W a t e r (2) E t h a n o l (1 ) - l - P r o p a n o l (2) Ethanol (i)-3-Methyl-lB u t a n o l (2) Ethanol (J)-2-Methyl-lP r o p a n o l [2)
( gia-fW
a
cal./gram mole
(
gai-gu) cal./gram mole
16
0.475 0.500 0.475 0.300 0.500
121.0 438.4 611.5 -386.9 465.5
1161.5 1762.9 2475.7 3483.8 -324.5
16
0.475
20.8
7.4
11 15,12 9 —
—
—
0
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
0
6.
ANDiAPPAN
A N D
Table V . Xj
103
Equilibrium
Vapor—Liquid Equilibrium Data at 760 mm H g Water ( l ) - E t h a n o l (2)-l-Propanol (3)
, χ*
0.1763 0.3742 0.5397 0.7271 0.1642 0.3216 0.4759 0.6350 0.1293 0.2707 0.4214 0.5519 0.1201 0.2421 0 3764 0.4812 0.1246 0.2046 0.3030 0.4071 0.0962 0.1896 0.3096 0.0853 0.1911 0.1125 0.1524 0.0851
Isobaric Vapor-Liquid
M C L E A N
0.0905 0.0992 0.0944 0.0987 0.1920 0.1949 0.1966 0.1984 0.2698 0.2956 0.3123 0.3076 0.4024 0.3935 0.3777 0.3934 0.4861 0.4837 0.4944 0.4939 0.6059 0.6054 0.5907 0.7030 0.7026 0.7007 0.7319 0.8319
y/ 0.3133 0.4527 0.5143 0.5345 0.2720 0.3909 0.4526 0.4768 0.2152 0.3297 0.3932 0.4217 0.1793 0.2852 0.3566 0.3797 0.1702 0.2388 0.2936 0.3312 0.1248 0.2045 0.2731 0.1036 0.1889 0.1264 0.1579 0.0920
0.1353 0.1426 0.1503 0.2100 0.2730 0.2649 0.2828 0.3395 0.3752 0.3822 0.4123 0.4510 0.5203 0.4857 0.4750 0.5214 0.5966 0.5744 0.5797 0.5994 0.7064 0.6785 0.6652 0.7814 0.7518 0.7691 0.7792 0.8648
t°C
t
89.13 86.70 86.14 85.75 87.57 85.55 84.63 84.04 86.89 84.47 83.12 82.54 84.85 83.30 82.43 81.60 83.47 82.42 81.35 80.63 82.14 80.92 80.03 80.94 79.65 80.59 79.69 79.24
89.07 86.40 85.60 85.46 87.65 85.47 84.57 83.94 87.19 84.59 83.12 82.51 85.12 83.45 82.47 81.52 83.79 82.65 81.47 80.67 82.39 81.03 80.01 81.11 79.68 80.01 79.30 79.07
°C
"Predicted using N R T L equation. Measured. 5
c a l c u l a t i o n of the parameters w i t h the first p r o g r a m a n d the use of the p a r a m e t e r s to c a l c u l a t e t h e i n i t i a l t e m p e r a t u r e . Ternary System. T h e values of a l l b i n a r y parameters u s e d i n p r e d i c t i n g t h e t e r n a r y d a t a are s h o w n i n T a b l e I V . T h e p r e d i c t e d values of the v a p o r - l i q u i d e q u i l i b r i u m data—i.e., the b o i l i n g p o i n t , a n d t h e c o m p o s i t i o n of the v a p o r phase, y, f o r g i v e n values of t h e l i q u i d c o m p o s i t i o n , x, are p r e s e n t e d i n T a b l e s V , V I , a n d V I I .
A l s o s h o w n are t h e m e a s u r e d
b o i l i n g p o i n t s for the g i v e n values of the l i q u i d c o m p o s i t i o n . T h e R M S D v a l u e b e t w e e n t h e p r e d i c t e d a n d m e a s u r e d b o i l i n g p o i n t s for the sys tems w a t e r - e t h a n o l - l - p r o p a n o l , w a t e r - e t h a n o l - 2 - m e t h y l - l - p r o p a n o l , a n d w a t e r - e t h a n o l - 2 - m e t h y l - l - b u t a n o l are 0.23°C, 0.69°C, a n d 2.14°C.
It
seems therefore that since t h e N R T L e q u a t i o n successfully p r e d i c t s t e m p e r a t u r e , t h e p r e d i c t e d values of y c a n b e a c c e p t e d confidently.
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
104
E X T R A C T I V E
A N D
A Z E O T R O P I C
DISTILLATION
T o test the m e t h o d of p r e d i c t i n g some d i r e c t l y m e a s u r e d t e r n a r y d a t a , t h e p r e d i c t e d results for the system w a t e r - e t h a n o l - l - p r o p a n o l w e r e u s e d to c a l c u l a t e r e l a t i v e v o l a t i l i t i e s w h i c h w e r e c o m p a r e d w i t h t h e ex p e r i m e n t a l l y d e t e r m i n e d v a l u e s of C a r l s o n et al. (14).
This comparison
is s h o w n o n F i g u r e 5. T h e c o m p a r i s o n seems to i n d i c a t e that the m e t h o d of p r e d i c t i n g is satisfactory a n d gives less scatter t h a n t h e e x p e r i m e n t a l l y d e t e r m i n e d values of r e l a t i v e v o l a t i l i t y .
Table VI. Vapor—Liquid Equilibrium Data at 760 mm H g Water ( l ) - E t h a n o l (2)-2-Methyl-l-Propanol (3) x»
y."
t°C
t°C
0.1937
0.0999
0.4203
0.1632
93.28
93.0
0.3582
0.1062
0.5294
0.1574
90.13
89.25
0.5377
0.1003
0.5945
0.1548
88.78
87.67
0.7115
0.1014
0.6098
0.1912
88.09
86.93
0.1589
0.2002
0.3300
0.3163
91.78
0.3156
0.1996
0.4521
0.2854
88.68
91.46 87.72
0.5570
0.1820
0.5377
0.2813
86.88
85.92
0.6352
0.2066
0.5208
0.3492
85.71
84.87
0.1264
0.3072
0.2468
0.4635
90.05
89.89
0.3006
0.2943
0.3947
0.4012
86.86
86.09
0.4103
0.3056
0.4323
0.4161
85.33
84.59 85.1 87.76
0.5562
0.2981
0.4572
0.4474
84.09
0.1255
0.3990
0.2158
0.5602
0.2611
0.3974
0.3274
87.85 85.24
0.3722
0.3897
0.3791
0.5145 0.5041
0.4789
0.3993
0.3930
0.5414
82.53
82.23
0.0959
0.4984
0.1556
0.6666
86.29
86.38
0.1934
0.5010
0.2470
0.6228
84.18
83.96
0.3099
0.4949
0.3135
0.4991
0.3385
82.55 81.32
82.28
0.4006
0.6009 0.6149
0.0954
0.6042
0.7448
83.97
84.08
0.1347
83.95
85.09 83.46
81.10
0.2124
0.5908
0.2339
0.6877
82.05
81.93
0.4614
0.4118
0.3870
0.5465
80.23
0.1021
0.6959
0.1266
0.7982
82.46 81.94
0.1952
0.1955 0.0865
0.7680 0.8764
80.14
0.0757
0.7051 0.8162
80.15
80.11 80.25
0.1805
0.7530
0.1768
0.7997
79.49
79.49
0.0526
0.8987
0.0577
0.9264
79.09
79.19
Predicted using N R T L equation. * Measured.
β
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
81.99
6.
ANDiAPPAN
Isobaric Vapor-Liquid
A N D M C L E A N
105
Equilibrium
Table VII. V a p o r - L i q u i d Equilibrium Data at 760 mm H g Water ( l ) - E t h a n o l ( 2 ) - 3 - M e t h y l - l - B u t a n o l (3) Xi
XJ
y/
y/
t°C
t °C
0.7422
0.0101
0.8790
0.0198
95.08
94.37
0.4982
0.0127
0.8318
0.0266
97.93
94.67
0.3477
0.0120
0.7503
0.0311
103.20
99.58
0.8455
0.0589
94.46
93.57 100.44
0.7248
0.0303
0.6809 0.8464
0.0729
104.88
0.0565
93.78
0.8412
0.0277
94.56 95.22
0.0241
0.8492
0.0456
95.14
94.13
0.0384
0.7685
0.0826
98.26
95.68
0.6338
0.1773
0.6234
0.3225
89.45
89.41
0.5055
0.2112
05744
0.3604
89.97
89.71
96.20
92.15
0.2944
0.0263
0.7784 0.8878
0.0269 0.0094
0.0344 0.4465
95.40
0.2774
0.1984
0.4574
0.4082
0.2087
0.1867
0.3944
0.4306
99.46
93.92
0.3781
0.3232
0.4331
0.5084
88.31
88.31 86.25
0.6071
0.2999
0.4801
0.4971
84.75
0.1377
0.3002
0.2369
0.6182
96.57
91.73
0.1984
0.3953
0.2684
0.6495
90.32
88.62
0.2802
0.4149
0.3265
0.6180
87.35
87.39
0.4460
0.3727
0.4225
0.5431
85.22
86.62
0.1335
0.4835
0.1774
0.7491
89.05
87.69
0.1857
0.5114
0.2212
0.7262
86.56
86.65
0.3912
0.5172
0.3319
0.6538
81.75
84.07
0.1047
0.6257
0.1248
0.8307
85.20
85.37
0.1939
0.6103
0.2054
0.7648
83.33
84.63
0.2963
0.5946
0.2709
0.7134
81.50
83.62
0.1112
0.6845
0.1247
0.8441
83.31
84.20
0.1353
0.7158
0.1428
0.8359
81.85
83.40
0.2135
0.6820
0.2050
0.7806
83.94
82.97
0.0453
0.8104
0.0511
0.9280
81.67
82.76
0.1022
0.8118
0.1059
0.8824
80.21
82.00
0.1547
0.7925
0.1498
0.8434
79.49
81.51
0.9551
80.02
80.09
0.0312
0.8920
0.0499
0.8998
0.0532
0.9402
79.38
79.45
0.0680
0.8989
0.0706
0.9252
78.96
78.99
α 6
0.0343
Predicted using N R T L equation. Measured.
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
106
E X T R A C T I V E
A N D
A Z E O T R O P I C
DISTILLATION
Ο >
•
> < L—OOfCpCBDO
MOLE Figure
5.
FRACTION
OF WATER IN
LIQUID
Comparison of calculated and experimental volatilities panol relative to ethanol in presence of water
of 1-pro-
Ο Indirectly measured, present work ψ Directly measured, Carbon et al. (14) Conclusion T h e n o n - r a n d o m , t w o - l i q u i d (NRTL) a n d P r a u s n i t z (8)
equation proposed b y Renon
seems to p r e d i c t successfully m u l t i c o m p o n e n t ( t e r n a r y )
m i x t u r e s of a l c o h o l s a n d w a t e r .
T h e alcohols s t u d i e d i n t h i s w o r k etha
n o l , 1 - p r o p a n o l , 2 - m e t h y l - l - p r o p a n o l , a n d 3 - m e t h y l - l - b u t a n o l , w h i c h oc c u r f r o m the f e r m e n t a t i o n
of
sugar solutions, s h o w h i g h l y n o n - i d e a l
b e h a v i o r i n a q u e o u s solutions a n d present a severe test of t h e effectiveness of a n y p r e d i c t i o n m e t h o d . T h e success of the N R T L e q u a t i o n i n u n d e r g o i n g this test w o u l d suggest that i t w i l l b e a p o w e r f u l t o o l i n t h e d e s i g n of processes i n v o l v i n g a z e o t r o p i c or extractive d i s t i l l a t i o n . T h e effect of the a d d i t i o n of a t h i r d
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
6.
ANDiAPPAN
A N D
M C L E A N
Isobaric Vapor-Liquid
Equilibrium
107
c o m p o n e n t t o a difficult to separate b i n a r y m i x t u r e c a n b e p r e d i c t e d w i t h a d e g r e e of confidence, c e r t a i n l y f o r a l c o h o l - w a t e r mixtures. O n l y e q u i l i b r i u m d a t a f o r t h e b i n a r y c o m p o n e n t s of t h e system are necessary, a n d this w o r k shows that e v e n f o r systems of l i m i t e d l i q u i d - p h a s e m i s c i b i l i t y , t h e N R T L e q u a t i o n c a n b e u s e d to extract t h e necessary i n f o r m a t i o n
from
measurements of b o i l i n g p o i n t , l i q u i d c o m p o s i t i o n , a n d pressure alone.
Literature Cited 1. Prausnitz, J. M., Eckert, C. Α., Orye, R. V., O'Connell, J. P., "Computer Calculations for Multicomponent Vapor-Liquid Equilibria," p. 14, Prentice Hall, New Jersey, 1967. 2. Hala, E., Pick, J., Fried, V., Vilim, O., "Vapor-Liquid Equilibrium," p. 33, Pergamon, London, 1967. 3. Wohl, K., Trans. Amer. Inst. Chem. Eng. (1946) 42, 215. 4. Cukor, P. M., Prausnitz, J. M., Int. Symp. "Distillation," p. 73, Inst. Chem. Eng., London (Sept. 9, 1969). 5. Wilson, G. M.,J.Amer. Chem. Soc. (1964) 86, 127. 6. Garrett, G. R., VanWinkle, Matthew,J.Chem. Eng. Data (1969) 14, 302. 7. Gurukul, S. Μ. Κ. Α., Raju, Β. N.,J.Chem. Eng. Data (1966) 11, 501. 8. Renon, H., Prausnitz, J. M., A.I.Ch.E. J. (1968) 14, 135. 9. Ellis, S. R. M., Garbett, R. D., Ind. Eng. Chem. (1960) 52, 385. 10. Othmer, D. F., Gilmont, R., Conti, J. J., Ind. Eng. Chem. (1960) 52, 625. 11. Rieder, R. M., Thompson, A. R., Ind. Eng. Chem. (1949) 41, 2905. 12. Murti, P. S., VanWinkle, Matthew, Ind. Eng. Chem., J. Chem. Eng. Data (1958) 3, 72. 13. Timmermans, J., "The Physico Chemical Constants of Binary Systems," Vol. 4, p. 237, Interscience, New York (1960). 14. Carlson, C. S., Smith, P. V., Jr., Morrell, C. E., Ind. Eng. Chem. (1954) 46, 350. 15. Gadwa, T. W., Chemical Engineering Thesis, M.I.T., 1936. 16. Gay, L., Chim. et Ind. (1927) 18, 187.
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
7 Demulsification of Crude Oils Use of Azeotropic
Distillation
LESLIE L. BALASSA and DONALD F. OTHMER Slate Hill, Ν. Y. 10973 and Polytechnic Institute, Brooklyn, Ν. Y. 11201
Water and often fine sand and silt are held in various crude oils in permanent emulsions. Particularly crudes obtained by secondary methods and those from tar sands where water or steam are used contain water and mineral matter emulsified therein by the surface forces on small particles and drops. Azeotropic distillation removes the relatively small amount of water, using the solvent as an entrainer which dilutes the crude. This allows: the mineral matter to be separated easily without using centrifuges with their substantial cost and wear, free of organic material, so it may be discarded with out hazards of fire or odors; the bitumen to be recovered for such use or cracked to give volatile fractions and coked to an ash-free coke; the water to be obtained as distilled water for reuse.
" p e t r o l e u m crudes p r o d u c e d b y w a t e r
flooding,
hot water displacement,
pressure steam, or steam i n j e c t i o n u s u a l l y are e m u l s i o n s , either w a t e r i n - o i l o r o i l - i n - w a t e r , a n d are f r e q u e n t l y a c o m b i n a t i o n o f b o t h . E m u l s i o n s of these h i g h v i s c o s i t y oils often c a n n o t b e b r o k e n a n d d e h y d r a t e d b y conventional methods. A n e v e n m o r e difficult p r o c e s s i n g c o n d i t i o n arises w i t h h e a v y b i t u m i n o u s oils w h i c h a l w a y s c a r r y m u c h sand, c l a y , a n d silt of coarse a n d s m a l l p a r t i c l e sizes w h i c h s t a b i l i z e the oil—water e m u l s i o n s e v e n m o r e . T h e b i t u m i n o u s oils h a v e specific gravities of 0.9-1.4 a n d h a v e h i g h viscosi ties; thus t h e y c a n n o t b e separated f r o m the w a t e r or solids present b y s e t t l i n g or b y u s i n g the most efficient centrifuges. D i l u t i n g these e m u l s i o n s o f h e a v y oils w i t h l i g h t
solvents—e.g.,
kerosene, solvent n a p h t h a , b e n z e n e , etc.—reduces the specific g r a v i t y of the o i l phase of the e m u l s i o n s b e l o w t h a t of w a t e r a n d l o w e r s the v i s 108
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
7.
B A L A S S A
A N D
O T H M E R
Demulsification
of Crude
109
Oils
cosity so that some of the w a t e r a n d m i n e r a l matters u s u a l l y c a n b e r e m o v e d b y s e d i m e n t a t i o n , centrifuge, or h y d r o - c y c l o n e . A d d i t i o n of a l o w viscosity h y d r o c a r b o n solvent often extracts t h e o i l f r o m the w a t e r ; t h e extract l a y e r of solvent a n d solute separates f r o m the water. T h e large a m o u n t of solvent n e e d e d to separate e m u l s i o n s of w a t e r i n a viscous h e a v y o i l is u n e c o n o m i c because of t h e d i l u t e s o l u t i o n n e e d e d to o b t a i n a c o n t i n u o u s w a t e r phase. A d d i t i o n of solvent, p o s s i b l y u p to a n e q u a l a m o u n t , is reasonable a n d is d e s i r a b l e to r e d u c e t h e v i s c o s i t y suffic i e n t l y to p u m p a n d transport the h e a v y o i l . A c h e a p a l i p h a t i c s o l v e n t — e.g., k e r o s e n e — i s preferable, b u t b i t u m i n o u s o i l fractions are m u c h m o r e s o l u b l e i n a r o m a t i c solvents, p a r t i c u l a r l y at temperatures near t h e a m bient. H o w e v e r , the w a t e r a n d s o l i d particles are not at a c c e p t a b l e l i m i t s e v e n after m u c h d i l u t i o n , e s p e c i a l l y i n the presence of fine p a r t i c l e s as i n some crudes f r o m C a l i f o r n i a a n d V e n e z u e l a a n d p a r t i c u l a r l y f r o m t a r sands as those i n A t h a b a s c a ( A l b e r t a , C a n a d a ) . P r o c e s s i n g o i l emulsions f r o m t a r sands is difficult w i t h t h e o i l a n d the aqueous phase. T h e o i l phase carries m u c h c l a y a n d silt ( s a n d ) of s m a l l p a r t i c l e size w h i c h are s u s p e n d e d a n d d o not settle o u t e v e n o n p r o l o n g e d storage.
T h e surface or m o l e c u l a r forces b e t w e e n viscous oils a n d s u c h
fine p a r t i c l e s are m o r e i m p o r t a n t i n d e t e r m i n i n g t h e latter's m o t i o n s , or l a c k of m o t i o n , t h a n t h e m e c h a n i c a l forces r e s u l t i n g f r o m differences i n specific gravity. S o m e particles i n the a q u e o u s phase are w e t b y o i l i n s t e a d of
by
water, a n d these o i l - c o a t e d p a r t i c l e s g i v e a n u n u s u a l l y stable s u s p e n s i o n for a b o u t the same reason. T h i s o i l i n t h e oil-wet m i n e r a l matter, susp e n d e d i n t h e aqueous phase, makes it u n s u i t a b l e for r e c y c l i n g i n t h e p r o c e s s i n g o p e r a t i o n or d i s c h a r g i n g b a c k i n t o surface waters.
Also, the
m i n e r a l sludge w h i c h is separated f r o m w a t e r s t i l l contains a s u b s t a n t i a l percentage of o i l ; it c a n n o t b e d i s p o s e d of e v e n b y r e t u r n i n g i t t o t h e p l a c e w h e r e it w a s m i n e d or p r o d u c e d . F i r e s h a v e o c c u r r e d f r o m s p o n taneous c o m b u s t i o n r e s u l t i n g f r o m this s l u d g e of fine p a r t i c l e s a n d o i l . P r i o r processes p r o p o s e d to d e m u l s i f y it are unsatisfactory because so m u c h o i l is a l w a y s lost i n the aqueous p h a s e o r i n t h e d e w a t e r e d sludge. A l s o , the content of w a t e r a n d m i n e r a l s i n the o i l separated b y c o n v e n t i o n a l processes is u s u a l l y a b o v e a c c e p t a b l e l i m i t s for p i p e l i n e t r a n s p o r t a t i o n or for r e f i n i n g purposes. F i n a n c i a l losses are e x p e r i e n c e d i n o i l w a s t e d , i n e q u i p m e n t a n d c a p i t a l charges of w o r n e q u i p m e n t i n plants, a n d i n l a n d v a l u e of d i s p o s a l p o n d s . T r e m e n d o u s d i s p o s a l p o n d s of d i s c a r d e d emulsions i n V e n e z u e l a a n d elsewhere
take u p available land.
I n separating emulsions from
tar sands, the extremely abrasive silt has r u i n e d expensive
centrifuges
a n d makes u s i n g t h e m i m p r a c t i c a l .
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
110
E X T R A C T I V E
Azeotropic
A N D A Z E O T R O P I C
DISTILLATION
Distillation
T h e w a t e r content of a n e m u l s i o n is r e m o v e d b y d i s t i l l a t i o n , h o w e v e r , d i r e c t a n d s i m p l e d i s t i l l a t i o n presents several p r a c t i c a l p r o b l e m s .
I n the
presence of a s o l v e n t - d i l u e n t after p r e l i m i n a r y s e p a r a t i o n of m u c h of the water
as a c o n t i n u o u s phase, the b a l a n c e is r e m o v e d
by
azeotropic
distillation. F o r m a n y years w a t e r has b e e n separated f r o m m a n y l i q u i d s b y a z e o t r o p i c d i s t i l l a t i o n . W a t e r is s u b s t a n t i a l l y i n s o l u b l e n o t o n l y i n the oils b u t also i n the d i l u e n t s o r solvents. T h u s , the v a p o r pressures of t h e w a t e r a n d d i l u e n t are a d d i t i v e as i n t h e f a m i l i a r steam d i s t i l l a t i o n s . A heterogeneous
azeotrope is f o r m e d ; this a l w a y s b o i l s b e l o w t h e b o i l i n g
p o i n t of w a t e r because pressure m u s t b e r e d u c e d f o r w a t e r t o b o i l at t h e v a p o r pressure of t h e h y d r o c a r b o n . T h e p r i n c i p l e s of a z e o t r o p i c d i s t i l l a t i o n h a v e often b e e n (1,2,3,4,5,6,7),
described
a n d a p p l y i n g t h e m gives a s i m p l e m e t h o d of s e p a r a t i n g
w a t e r f r o m its o i l emulsions. T h e l o w - b o i l i n g constituents of a n o i l — o r the d i l u e n t u s e d — w o u l d b e t h e entraîner ( w i t h d r a w i n g a g e n t ) w h i c h forms t h e heterogeneous
azeotrope or steam d i s t i l l a t i o n w i t h t h e water.
B e c a u s e of n o n e q u i l i b r i u m b o i l i n g c o n d i t i o n s i n a s i m p l e d i s t i l l a t i o n , the vapors m a y n o t c o n t a i n t h e t r u e azeotrope, a n d t h e heat cost m a y b e too h i g h . T h e r e f o r e a c o l u m n is s t i l l u s e d to r e c t i f y the exact azeotrope at t h e h e a d of the c o l u m n ; h o w e v e r , o n l y a f e w trays are r e q u i r e d . T h e azeotrope contains t h e l o w e r h y d r o c a r b o n s of t h e d i l u e n t . I f a w i d e - c u t f r a c t i o n is u s e d , t h e m o r e v o l a t i l e ones c o m e to t h e t o p of t h e c o l u m n w i t h the water. A t a n y t e m p e r a t u r e t h e v a p o r pressure of w a t e r p l u s that o f t h e entraîner, o r t h e effective v a p o r pressure of the m i x t u r e of l i q u i d s o p e r a t i n g as t h e entraîner, gives t h e azeotrope's v a p o r pressure. T h e t e m p e r a t u r e w h e r e this s u m m a t i o n c u r v e crosses the a t m o s p h e r i c l i n e , o r other o p e r a t i n g pressure of t h e d i s t i l l a t i o n , is t h e a z e o t r o p i c point.
boiling
A close-cut f r a c t i o n o r a single m o r e or less p u r e c o m p o u n d as
a d i l u e n t a n d a z e o t r o p i c w i t h d r a w i n g agent is preferable, a l t h o u g h n o t necessary.
I f the m i x t u r e loses some o f its m o r e v o l a t i l e
components
at t h e h e a d of the c o l u m n o v e r a p e r i o d of t i m e , t h e a z e o t r o p i c b o i l i n g p o i n t w i l l g r a d u a l l y rise. T h e condensate has t w o l i q u i d phases. It r u n s f r o m t h e condenser to a separator o r decanter w h e r e the w a t e r layer is r e m o v e d f o r d i s c a r d a n d t h e solvent layer is r e t u r n e d , u s u a l l y as reflux to t h e c o l u m n . T h i s reflux of " a l l o r p a r t " ( t h e solvent l a y e r ) of the condensate after décantation, r a t h e r t h a n " p a r t of a l l , " w a s d e v e l o p e d i n 1927 (2)
f o r acetic a c i d d e h y -
d r a t i o n w i t h a n a d d e d solvent as entraîner a n d for b u t a n o l d e h y d r a t i o n u s i n g b u t a n o l itself as t h e entraîner.
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
7.
B A L A S S A
A N D
O T H M E R
Demulsification
of Crude
111
Oils
S e p a r a t i n g w a t e r f r o m a n o i l e m u l s i o n is best d o n e b y a n entraîner a d d e d as a d i l u e n t to the o i l . F o r example, the d i l u e n t a d d e d to t h e o i l e m u l s i o n is a n a p h t h a f r a c t i o n h a v i n g a n effective v a p o r pressure e q u a l to that of octane. T h i s n a p h t h a is a d d e d to the o i l , a n d as m u c h w a t e r as possible is separated; the o i l e m u l s i o n layer w h i c h is n o t b r o k e n contains the a d d e d n a p h t h a .
OIL, SILT β DILUENT OUT Figure 1. Flow sheet for removing emulsified water from crude oil and diluent using azeotropic distilfotion with fixed amount of entraîner
F i g u r e 1 i n d i c a t e s one o p e r a b l e
flow
sheet w h e n this o i l e m u l s i o n
c o n t a i n i n g the n a p h t h a w i l l h a v e a sufficiently l o w v i s c o s i t y to b e p u m p e d t h r o u g h a t u b u l a r condenser a n d t h e n t h r o u g h a t u b u l a r bottoms
cooler
for heat i n t e r c h a n g i n g a n d r e c o v e r y . It is t h e n p u m p e d to a n u p p e r p l a t e of a c o l u m n s t i l l . T h i s m i g h t h a v e 1 0 - 1 5 trays d e s i g n e d to a l l o w
ready
passage d o w n w a r d of a n y silt. T h e c o l u m n is thus self-cleaning as m u c h as possible, b u t p r o v i s i o n s are also m a d e for o p e n i n g to c l e a n m e c h a n i c a l l y , i f necessary. T a b l e I gives several azeotropes o f w a t e r w i t h h y d r o c a r b o n s
and
b u t a n o l , u s e d as entrainers. A s s u m i n g t h e entraîner—diluent has the p r o p -
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
112
e x t r a c t i v e
Table I.
a z e o t r o p i c
d i s t i l l a t i o n
Azeotropes of Water and Entrainers Composition by Weight
Temperature, °C (1 atm) Boiling Point Compound
a n d
Azeo. Temp.
Azeo. Vapors
%
Upper Layers
Lower Layers
Separated Layers
Volume,
%
Toluene Water
110.6 100
85
79.8 20.2
99.9 0.1
0.1 99.9
82 18
Up Low
m-Xylene Water
139.1 100
94.5
60 40
99.95 0.05
0.05 99.95
63.4 36.6
Up Low
n-Octane Water
125.7 100
89.6
74.5 25.5
99.98 0.02
0.02 99.98
80 20
Up Low
Butanol Water
117.7 100
93
55.5 45.5
77.5 22.5
8.0 92.0
71.5 28.5
Up Low
erties of o c t a n e , the c o l u m n has a t o p v a p o r t e m p e r a t u r e of 89.6 ° C . T h e s e v a p o r s are c o n d e n s e d i n p r e h e a t i n g the f e e d a n d i n another w a t e r c o o l e d condenser i f n e e d e d .
T h e condensate flows to a decanter w h i c h
c o n t i n u o u s l y separates 8 0 %
b y v o l u m e as the d i l u e n t - e n t r a i n e r l a y e r
a n d 2 0 % b y v o l u m e of a w a t e r layer. T h e a m o u n t of e a c h c o m p o n e n t d i s s o l v e d i n the other layer is so s m a l l that it is d i s r e g a r d e d ; t h u s the w a t e r l a y e r flows to waste. T h e entraîner l a y e r is r e t u r n e d to the t o p of t h e c o l u m n as reflux to w i t h d r a w m o r e w a t e r , a n d the d r y o i l w i t h sedim e n t passes o u t the b o t t o m a n d t h r o u g h a bottoms exchanger.
T h e silt
n o w settles a n d separates r e l a t i v e l y easily f r o m the o i l w h i c h is d e c a n t e d . T h e silt is w a s h e d w i t h t h e s o l v e n t - d i l u e n t w h i c h is t h e n r e u s e d w i t h a f o l l o w i n g o i l e m u l s i o n a n d t h e n s t e a m e d to recover the n a p h t h a . I n this flow sheet the solvent-diluent—entraîner passes t h r o u g h t h e system a n d o u t w i t h t h e o i l f o r t r a n s p o r t o r r e f i n i n g — a first step w h i c h m a y r e c o v e r n a p h t h a for reuse. H o w e v e r , i n the c y c l e at the h e a d of the a z e o t r o p i c c o l u m n w i t h t h e condenser a n d the decanter, f r a c t i o n a t i n g l i g h t - e n d s f r o m the n a p h t h a p a s s i n g t h r o u g h w i t h the o i l occurs to g i v e the a z e o t r o p e w i t h w a t e r w h i c h has a c o m p o s i t i o n d e p e n d i n g o n the effective v a p o r p r e s s u r e of the m i x t u r e of h y d r o c a r b o n s w h i c h stabilizes t h e r e as t i m e passes. T h i s m a y h a v e a c o n s i d e r a b l y l o w e r b o i l i n g p o i n t t h a n the n a p h t h a f r a c t i o n , a n d the light-ends congregate a n d b e c o m e the entraîner. S o m e of this m a y b e r e m o v e d f r o m the system b y w i t h d r a w i n g f r o m the reflux s t r e a m to the c o l u m n . If there are so m a n y l o w ends that the azeot r o p i c b o i l i n g p o i n t goes d o w n , a n a p h t h a f r a c t i o n of s o m e w h a t h i g h e r b o i l i n g r a n g e is u s e d as the d i l u e n t . A c t u a l l y this i n d i c a t e s a n o p e r a t i o n c o m p a r a b l e w i t h the d e h y d r a t i o n of m a n y other l i q u i d s w i t h a separate entraîner. T h u s , i f no d i l u e n t
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
7
ΒA L A S SA
A N D
O T H M E R
Demulsification
of Crude
113
Oils
is necessary to r e d u c e t h e v i s c o s i t y of t h e o i l so that i t m a y b e h a n d l e d a n d n o d i l u e n t is u s e d to g i v e a p r e v i o u s p a r t i a l d e m u l s i f i c a t i o n , e n o u g h entraîner c o u l d b e selected a n d s u p p l i e d to t h e a z e o t r o p i c system t o charge the u p p e r p a r t o f the c o l u m n , t h e condenser, decanter, a n d c o n nections. T h e a d d e d entraîner w o u l d t h e n w i t h d r a w w a t e r f r o m t h e o i l e m u l s i o n f e d i n t o a n d o u t of t h e c o l u m n , a n d t h e entraîner w o u l d t h e n act l i k e a m e c h a n i c a l p a r t of t h e system. T a b l e I shows that, as t h e b o i l i n g p o i n t of the h y d r o c a r b o n u s e d as t h e entraîner increases so does that of t h e azeotrope w i t h w a t e r a n d t h e p e r c e n t of w a t e r t h e r e i n . A h i g h percentage
of w a t e r i n t h e a z e o t r o p e
is d e s i r e d for the heat r e q u i r e d for t h e d i s t i l l a t i o n , w h i c h is m a i n l y t h a t of t h e latent heat of t h e w a t e r p l u s that of t h e entraîner. Sufficient e n t r a i n e r s h o u l d b e a v a i l a b l e i n the azeotrope f o r reflux to t h e c o l u m n a l t h o u g h this r e q u i r e m e n t is n o t large.
A l s o , the s o l u b i l i t y o r d i l u t i o n
effect is better w i t h l o w e r - b o i l i n g h y d r o c a r b o n s .
T h u s t h e r e a r e several
factors to be b a l a n c e d i n c h o o s i n g t h e azeotrope.
T h e effect of r e l a t i v e
b o i l i n g points, v a p o r pressures, a n d amounts of different
entrainers i n
t h e i r azeotropes w i t h w a t e r has b e e n d i s c u s s e d as affecting the c h o i c e o f entrainers for s e p a r a t i n g w a t e r f r o m acetic a c i d ( 5 ) .
However,
that
represents a m u c h m o r e difficult selection because there t h e q u a n t i t y of reflux is i m p o r t a n t a n d also the solvent characteristics of the entraîner for t h e acetic a c i d also c o n t r o l t h e choice. However,
t h e o p t i m u m a z e o t r o p i c entraîner for w a t e r f r o m a n o i l
e m u l s i o n is p a r t i a l l y selected a c c o r d i n g to those p r i n c i p l e s . T h e highest b o i l i n g l i q u i d s o b v i o u s l y c a r r y m o r e w a t e r for a g i v e n heat i n p u t .
A
selected a n d stable t e m p e r a t u r e at t h e t o p of t h e azeo c o l u m n is necessary f o r o p t i m u m o p e r a t i o n , a n d this m i g h t seem to b e s e c u r e d best b y a pure aromatic.
A l t e r n a t e l y , a p u r e a l i p h a t i c or a close-cut n a p h t h a
f r a c t i o n m i g h t b e o b t a i n e d a n d m a i n t a i n e d i n the a z e o t r o p i c
column.
T h e use of a p u r e c o m p o u n d is n o t advantageous i f a close-cut n a p h t h a f r a c t i o n is u s e d as a n entraîner i n this c o n t i n u o u s o p e r a t i o n because t h e losses a n d m a k e - u p of s u c h entraîner i n a c o l u m n are so s m a l l ; thus, the effective a z e o t r o p i c b o i l i n g p o i n t r e m a i n s constant. T h e entraîner s h o u l d b e a h y d r o c a r b o n w h i c h has a l o w e r b o i l i n g p o i n t t h a n t h e light-ends, w h a t e v e r the feedstock of o i l e m u l s i o n ; otherw i s e l i g h t ends c o n t i n u a l l y fractionate i n t o the azeotrope a n d h a v e to b e removed.
I n other systems i n v o l v i n g a z e o t r o p i c w i t h d r a w i n g agents w i t h
a m i x t u r e of v a r i o u s volatilities, a stable entraîner is d e v e l o p e d a n d m a i n t a i n e d at t h e d e s i r e d b o i l i n g p o i n t b y r e m o v i n g p e r i o d i c a l l y some o f t h e entraîner to k e e p its effective b o i l i n g p o i n t sufficiently h i g h .
Sometimes
s m a l l heads c o l u m n s h a v e b e e n i n c o r p o r a t e d to d o this c o n t i n u o u s l y .
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
114
EXTRACTIVE
Laboratory
AND
AZEOTROPIC
DISTILLATION
Testing
H a v i n g c o n s i d e r e d a b a s i c flow sheet a n d the e l e m e n t a r y p r i n c i p l e s of a z e o t r o p i c d i s t i l l a t i o n as t h e y m a y b e u s e d , w e c o n s i d e r e d t e s t i n g emulsions i n the l a b o r a t o r y p r i o r to process design. T h e first step i n t e s t i n g t h e m a t e r i a l f o r s u i t a b i l i t y o f t h e d e m u l s i f y i n g , d e h y d r a t i n g process is to d i l u t e t h e c r u d e o i l w i t h a solvent w h i c h is u s e d b y itself or m i x e d w i t h another i n a z e o t r o p i c d e h y d r a t i o n of the emulsion.
T h e m i n i m u m a m o u n t of solvent w h i c h is sufficient for the
first step is t h a t w h i c h cuts t h e viscosity of the c r u d e e n o u g h to a l l o w a z e o t r o p i c d i s t i l l a t i o n w i t h o u t excessive f o a m i n g . T h i s m a y r e q u i r e a b o u t 4 0 - 6 0 v o l u m e s solvent p e r 100 v o l u m e s of c r u d e , b u t this r a t i o of solvent, h o w e v e r , m a y not b e sufficient to r e d u c e the g r a v i t y of the c r u d e b e l o w that of w a t e r to a l l o w p r e l i m i n a r y décantation of some of the w a t e r . T o a c h i e v e this, a v o l u m e of solvent a b o u t e q u a l to t h a t of the c r u d e m a y h a v e to b e u s e d (sometimes a n e v e n h i g h e r r a t i o of s o l v e n t ) .
By
d i l u t i n g the c r u d e first w i t h t o l u e n e u p to a v o l u m e of 2 0 % of the c r u d e a n d c o n t i n u i n g the d i l u t i o n w i t h a l i g h t gasoline f r a c t i o n i n the r a n g e of hexane, octane, or h i g h e r , the g r a v i t y is l o w e r e d w i t h less t o t a l solvent. A l s o d i l u t i o n w i t h a n a p h t h a f r a c t i o n a l o n e m a y suffice at 80 ° C .
Each
c r u d e has to b e separately e v a l u a t e d b a s e d o n its properties a n d w a t e r content. If the w a t e r i n the p e r m a n e n t e m u l s i o n is l o w , it m a y not b e w o r t h w h i l e to a d d sufficient solvent to separate a w a t e r layer. T h e w a t e r i n the c r u d e w h i c h is not i n a p e r m a n e n t e m u l s i o n is d e t e r m i n e d b y d i l u t i n g the c r u d e w i t h a m i x t u r e of toluene a n d a n a p h t h a f r a c t i o n ; m u c h of the w a t e r together w i t h the water-set i n o r g a n i c m a t t e r t h e n settles out i n a separatory f u n n e l . If a centrifuge is u s e d , the h i g h g r a v i t y oil-wet i n o r g a n i c m a t t e r separates w i t h the w a t e r c a r r y i n g w i t h i t a s u b s t a n t i a l a m o u n t of o i l . T h u s , s i m p l e g r a v i t y s e p a r a t i o n is preferable. T h e o i l d i l u t e d w i t h the solvent only m a y b e d i s t i l l e d i n a glass flask, fitted
w i t h a r e l a t i v e l y s i m p l e l a b o r a t o r y c o l u m n . B o i l i n g i n the flask is
a c c o m p l i s h e d w i t h o u t b u m p i n g i f a n i n t e r n a l electric heater w h i c h a l l o w s l i t t l e superheat is u s e d . T h e a z e o t r o p i c d i s t i l l a t i o n b r i n g s o v e r v a p o r s w h i c h are c o n d e n s e d . C o n d e n s a t e is separated i n a c o n t i n u o u s glass dec a n t e r w h i c h returns the h y d r o c a r b o n l a y e r to the c o l u m n a n d discharges the w a t e r layer. W h e n the w a t e r content of the s o l u t i o n is r e d u c e d to b e l o w 0 . 1 - 0 . 2 % , no w a t e r is v i s i b l e i n the condensate; the t e m p e r a t u r e at the h e a d of the c o l u m n rises to the b o i l i n g p o i n t of the entraîner itself, a n d the d e h y d r a t i o n is c o m p l e t e . T h e t o t a l w a t e r separated is m e a s u r e d . T h i s v o l u m e w i t h the w a t e r w h i c h has b e e n separated b y décantation after d i l u t i o n a n d before d i s t i l l a t i o n represents the o r i g i n a l a m o u n t of w a t e r present.
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
7.
B A L A S S A
A N D
O T H M E R
Demulsification
of Crude
Oils
115
B a t c h a z e o t r o p i c d i s t i l l a t i o n is also a c c o m p l i s h e d i n t h e l a b o r a t o r y w i t h a s i m p l e flask, condenser, a n d r e c e i v e r w i t h o u t a c o l u m n , c o n t i n u o u s decanter, a n d c o n t i n u o u s reflux, b u t i t takes m u c h l o n g e r a n d is n o t c o m p a r a b l e to a p l a n t o p e r a t i o n , w h i c h is d e v e l o p e d f r o m s u c h l a b o r a t o r y testing. T h e oil-wet s l u d g e is r e m o v e d f r o m t h e d e h y d r a t e d o i l s o l u t i o n i n the flask b y s e t t l i n g a n d d e c a n t i n g or c e n t r i f u g i n g . solvent to free i t of o i l , d r i e d , a n d w e i g h e d .
It is w a s h e d w i t h
T h e w a s h s o l u t i o n is c o m -
b i n e d w i t h the d e h y d r a t e d o i l s o l u t i o n w h i c h contains other solvent a n d the separate entraîner, i f o n e w a s u s e d . S o l v e n t is s t r i p p e d f r o m t h e s o l u t i o n b y d i s t i l l a t i o n to d e t e r m i n e t h e a v a i l a b l e o i l of the c r u d e w h i c h remains. A s m a l l a m o u n t of a d d i t i o n a l i n o r g a n i c m a t t e r m a y settle o u t of c r u d e after a f e w days storage. T h i s is a n extremely s m a l l p a r t i c l e size silt w h i c h is u s u a l l y less t h a n 0 . 0 5 % of t h e o i l . It m i g h t b e r e m o v e d b y a m o r e efficient, h i g h e r speed, centrifuge t h a n u s u a l l y a v a i l a b l e . H o w e v e r , s u c h h i g h s p e e d centrifuges m i g h t b e b a d l y a b r a d e d b y t h e fine silt a n d w o u l d b e too expensive to u s e i n a c t u a l p r a c t i c e . O n e o r t w o days s e t t l i n g at 120°C for example, is a better test m e t h o d a n d is a better p r a c t i c e i n p r o d u c t i o n i f the necessary storage facilities a r e a v a i l a b l e . A d d i t i v e s t o flocculate
the fine silt m i g h t also b e u s e d .
Modified Azeotropic
Distillation
C o n t i n u o u s d i s t i l l a t i o n a l w a y s gives a better, m o r e u n i f o r m p r o d u c t at a l o w e r heat cost a n d u s u a l l y a l o w e r p l a n t cost. A c o n t i n u o u s o p e r a t i o n is essential i n a z e o t r o p i c d i s t i l l a t i o n w h e n a n entraîner is a d d e d , o r it w o u l d necessarily h a v e to b e f r a c t i o n a t e d off to reuse i t after e a c h b a t c h . S e v e r a l v a r i a t i o n s of t h e flow sheet for a z e o t r o p i c d i s t i l l a t i o n are possible, e a c h h a v i n g a c o n t i n u o u s d e c a n t e r w h i c h discharges p u r e w a t e r (less t h a n 0 . 1 % d i s s o l v e d h y d r o c a r b o n o r a r o m a t i c s a n d less t h a n 0 . 0 1 % for a l i p h a t i c s ). F i g u r e 1 is the s i m p l e s t flow sheet. T h e entraîner selected is c h a r g e d to t h e a z e o t r o p i c c o l u m n a n d r e m a i n s s u b s t a n t i a l l y there, rem o v i n g w a t e r c o n t i n u o u s l y b u t b e i n g a l m o s t u n c h a n g e d i f i t has a l o w e r b o i l i n g p o i n t t h a n t h e l i g h t ends of t h e feedstock.
T h e reboiler m a y be
h e a t e d b y other w a y s t h a n b y t h e steam s h o w n i n F i g u r e 1. F i g u r e 2 shows a c o n t i n u o u s a z e o t r o p i c c o l u m n u s i n g a fixed a m o u n t of entraîner w h i c h r e m a i n s i n t h e u n i t . S i n c e reflux is l a r g e l y s u p p l i e d b y f e e d of the e m u l s i o n near the t o p of t h e c o l u m n , t h e entraîner f r o m the d e c a n t e r passes to a r e b o i l e r a n d is f e d b a c k to t h e t o w e r as vapors. T h i s gives a m o r e n e a r l y c o u n t e r - c u r r e n t a c t i o n of the a z e o t r o p i c d i s t i l l i n g o p e r a t i o n , a n d a lesser heat i n p u t r e q u i r e d i n t o t h e viscous o i l at the base of the c o l u m n , u s u a l l y w i t h m o r e or less silt i n suspension w h i l e
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
116
EXTRACTIVE
AND
AZEOTROPIC
DISTILLATION
CONDENSER >
Figure 2. Flow sheet for removing emulsified water by azeotropic distillation using a vapor feed of the reflux of a fixed amount of entraîner the b a l a n c e of the heat r e q u i r e m e n t s for the a z e o t r o p i c d i s t i l l a t i o n w o u l d b e s u p p l i e d to the t h i n , p u r e , entraîner i n a separate reboiler. F i g u r e 3 u t i l i z e s the d i l u t i n g of the o i l e m u l s i o n w i t h the entraîner c o m i n g f r o m the decanter.
T h i s occurs at or near t h e a z e o t r o p i c b o i l i n g
p o i n t . T h i s m i x e r dissolves t h e o i l i n the e m u l s i o n a n d p a r t i a l l y breaks i t w i t h some of the w a t e r a n d silt b e i n g d e c a n t e d off of the f e e d stream of p e r m a n e n t column.
e m u l s i o n a n d entrainer-solvent
g o i n g to the t o p of
the
M o r e entraîner m u s t b e u s e d i n this system to s u p p l y t h a t i n
the m i x e r a n d the decanter; h o w e v e r , it is m i x e d w i t h the o i l p a s s i n g through continuously. F i g u r e 4 is a m o d i f i c a t i o n o f F i g u r e 3 w h e r e the f u n c t i o n of the m i x e r i n d i s s o l v i n g the entraîner a n d the f e e d of o i l e m u l s i o n a n d t h e f u n c t i o n of t h e decanter i n s e p a r a t i n g t h e w a t e r layer f o r m e d is t a k e n o v e r b y a n extractor. I t is one o f the several m e c h a n i c a l l y a g i t a t e d types w h i c h washes o r extracts the o i l out of t h e e m u l s i o n a n d precipitates or discharges as a raffinate l a y e r the w a t e r a l o n g w i t h most of the silt. T h e r e m a i n i n g perm a n e n t e m u l s i o n o i l l a y e r c a r r i e d b y the d i s s o l v i n g entraîner solvent goes to t h e top of the c o l u m n .
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
7.
B A L A S S A
A N D
O T H M E R
Demulsification
of Crude
Oils
117
T h e b o t t o m of F i g u r e 4 i n d i c a t e s one system for the h a n d l i n g of t h e c r u d e w i t h silt f r o m the b o t t o m of t h e c o l u m n before, after, or w i t h o u t a heat exchanger to r e c o v e r the sensible heat of the bottoms f r o m this still. A c o n t i n u o u s t h i c k e n e r , of t h e u s u a l r o t a t i n g t y p e w i t h hoes, t h i c k e n s the s u s p e n d e d silt i n t o a n o i l - m u d w h i c h is r e m o v e d , w a s h e d , a n d steamed b e f o r e d i s c a r d . T h e solvent r e c o v e r e d f r o m this w a s h i n g of m u d goes b a c k to t h e f e e d d i s s o l u t i o n . T h e c l e a r c r u d e kerosene s o l u t i o n , n o w free of w a t e r a n d silt, has kerosene r e m o v e d b y d i s t i l l a t i o n , o r i t is p u m p e d t o the refinery. O f t e n w h e r e the c r u d e does not c o n t a i n too m u c h w a t e r i n a p e r m a n e n t e m u l s i o n o r is not too difficult to p u m p , i t w o u l d n o t r e q u i r e the i n i t i a l d i l u t i o n . O t h e r v a r i a t i o n s of flows are p o s s i b l e ; i n e a c h case i f m o r e solvente n t r a i n e r is a d d e d to the e m u l s i o n i n a d v a n c e , it is r e c o v e r e d b y d r a w i n g off a c o r r e s p o n d i n g percentage
of the entraîner layer w h i c h discharges
f r o m the decanter a n d r e c y c l i n g i t b a c k to s o l u t i o n t a n k w h e r e i t is a d d e d to the o p t i m u m p r o p o r t i o n a l a m o u n t of f e e d e m u l s i o n . T h u s , i f kerosene a n d a n a r o m a t i c solvent—e.g., t o l u e n e or x y l e n e — a r e u s e d i n d i s s o l u t i o n of t h e e m u l s i o n , t h e a r o m a t i c c h o s e n as the entraîner is c o n t i n u o u s l y
Figure 3. Flow sheet using entraîner as diluent with premixer and predecanter for separating some of the silt and water
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
118
E X T R A C T I V E
A N D
A Z E O T R O P I C
DISTILLATION
Figure 4. Flow sheet using entraîner as diluent solvent in an extractor used to extract oil from an emulsion with water and to remove a raffinate layer of silt and water (with removal of final silt from the bottoms stream by a thickener, either before or after a heat exchanger) s e p a r a t e d i n the a m o u n t of its a r r i v a l i n the c o l u m n a n d r e c y c l e d b a c k for c o n t i n u o u s d i s s o l u t i o n i n t h e m i x e r . T h i s is c o n t r o l l e d b y o b s e r v i n g the temperatures at several m i d s e c t i o n plates, t h e same as t h e a m o u n t of b u t y l acetate i n the c o l u m n is c o n t r o l l e d i n acetic a c i d d e h y d r a t i o n
(5).
T h e h i g h e r b o i l i n g kerosene is d i s t i l l e d a w a y f r o m t h e c r u d e i n a separate c o l u m n , or it m a y r e m a i n to t h i n the c r u d e i n its t r a n s p o r t to the refinery. Comparison of Azeotropic
Demulsification
with GCOS Process
T o e x e m p l i f y the p r o b l e m s of d e m u l s i f i c a t i o n of o i l , some steps i n the r e c o v e r y of b i t u m i n o u s o i l f r o m t a r sands are c o n s i d e r e d . T h e G r e a t C a n a d i a n O i l Sands, L t d . ( G C O S ) Process has b e e n d e s c r i b e d i n v a r i o u s
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
7.
B A L A S S A
A N D
Demulsification
O T H M E R
p u b l i c a t i o n s (e.g., 8),
of Crude
119
Oils
a n d because of the major p r o b l e m s of s e p a r a t i n g
w a t e r a n d a b r a s i v e m i n e r a l s f r o m the c r u d e , o p e r a t i o n a l losses of m a n y m i l l i o n s of dollars h a v e r e s u l t e d . Mining—overburden,
r e m o v a l , a n d m i n i n g of tar sands
T r a n s p o r t — t a r sands c o n v e y e d , stored, a n d l o a d e d i n extractors Primary Extraction. T h i s is a c c o m p l i s h e d w i t h steam a n d hot w a t e r i n r o t a t i n g c o n d i t i o n i n g d r u m s at a b o u t 190 °F.
T h e t o t a l mass is p i p e d
i n t o a v e r t i c a l s e p a r a t i o n c e l l w h e r e — ( a ) t h e c r u d e b i t u m e n , as a f r o t h , rises to the surface a n d is r e m o v e d ; ( b )
a b o t t o m layer c o n t a i n i n g m a i n l y
sand, c l a y , a n d w a t e r w i t h n o t m o r e t h a n a b o u t 2 % b i t u m e n is p i p e d to the t a i l i n g p o n d ; ( c )
a " m i d d l i n g s " layer w i t h o u t s h a r p d i v i d i n g lines
b e t w e e n the f r o t h a b o v e or the s a n d a n d w a t e r b e l o w . T h i s is a tenacious e m u l s i o n of b i t u m e n i n w a t e r , s t a b i l i z e d b y a s u b s t a n t i a l a m o u n t of s a n d a n d c l a y — m o s t l y oil-wet.
M o s t of the b i t u m e n is r e m o v e d i n
cells b y a i r - f r o t h i n g . T h e s a n d , clay, a n d w a t e r a n d some b i t u m e n is p u m p e d to t h e t a i l i n g s p o n d .
scavenger
unrecoverable
B i t u m e n r e c o v e r y is n o t m o r e
t h a n 9 0 % , thus the tailings c a r r y off at least 1 0 % of that o r i g i n a l l y present. Final Extraction. T h e b i t u m e n f r o m the f r o t h , c o n t a i n i n g s u b s t a n t i a l q u a n t i t i e s of s a n d , clay, a n d w a t e r , is d i l u t e d w i t h n a p h t h a to r e d u c e its v i s c o s i t y so i t c a n b e p u m p e d r e a d i l y .
It is first p u m p e d to 14 s c r o l l -
t y p e centrifuges to r e m o v e l a r g e m i n e r a l particles a n d t h e n to 26 n o z z l e t y p e centrifuges A b r a s i o n i n the charge.
to r e m o v e m o s t of t h e r e m a i n i n g m i n e r a l s a n d expensive
centrifuges
has b e e n
a major
water.
operational
T h e d i l u t e d b i t u m e n s t i l l contains significant q u a n t i t i e s of w a t e r
a n d h y d r o p h i l i c s a n d a n d clay. Cracking and Coking.
T h e d i l u t e b i t u m e n is p u m p e d i n t o
d r u m s , w h e r e i t is c r a c k e d to y i e l d gas a n d c r u d e o i l o v e r h e a d , goes to the refinery.
coker which
R e s i d u a l c o k e contains a l l of the r e s i d u a l s a n d a n d
c l a y w h i c h c o u l d not b e r e m o v e d i n the final extraction, a n d therefore i t is u s e d o n l y as a f u e l for t h e boilers. I n the a z e o t r o p i c system ( J ) , the m i n i n g a n d transport steps are the same, also the c r a c k i n g a n d c o k i n g step, except t h a t i t gives a m u c h i m p r o v e d coke w h i c h is u s e d for m o r e v a l u a b l e p r o d u c t s t h a n as a h i g h ash f u e l . I n the p r i m a r y extraction, h o w e v e r , a h y d r o c a r b o n solvent is a d d e d . This allows a relatively sharp separation between the " m i d d l i n g s " a n d the aqueous b o t t o m layer.
A f r a c t i o n w i t h b o i l i n g r a n g e of octane
suitable, since i t t h e n becomes the a z e o t r o p i c
entraîner for the
A n a r o m a t i c solvent—e.g., t o l u e n e — m i g h t b e better, b u t i t m a y
is
water. require
another s e p a r a t i o n later. I n the final e x t r a c t i o n because of solvent a d d i t i o n i n t h e p r i m a r y extraction, the m i n e r a l matter r e a d i l y separates f r o m the b o t t o m
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
aqueous
120
EXTRACTIVE
AND
AZEOTROPIC
DISTILLATION
l a y e r i n s t e a d of r e q u i r i n g batteries of expensive centrifuges w i t h c o n s i d e r a b l e d a m a g e r e s u l t i n g f r o m a b r a s i o n of the fine s a n d . A
suitable
s e t t l i n g a i d assists this, a n d the w e t sediment, a l m o s t free of b i t u m e n , is u s e d as fill. T h e w a t e r contains o n l y a s m a l l a m o u n t of d i s s o l v e d solvent w h i c h is r e c o v e r e d b y s t r i p p i n g , o r w a s t e d , a n d the w a t e r itself is r e u s e d or d i s c a r d e d to surface waters as it is e n v i r o n m e n t a l l y
acceptable.
T h e t o p b i t u m e n l a y e r a n d t h e " m i d d l i n g s " l a y e r are c o m b i n e d a n d are p u m p e d to a n a z e o t r o p i c d i s t i l l a t i o n system, as d i a g r a m m e d i n F i g ures 1, 2, 3, a n d 4. T h e c h o i c e of
flow
sheet d e p e n d s o n the
relative
a m o u n t s of w a t e r r e m a i n i n g a n d the a m o u n t s a n d characteristics of the m i n e r a l matter. T h e systems of F i g u r e s 3 a n d 4 r e m o v e m o r e w a t e r a n d silt b e f o r e the a z e o t r o p i c d i s t i l l a t i o n , thus s a v i n g heat. U s i n g t h e system of F i g u r e 4 i n s t e a d of the t h i c k e n e r , a s i m p l e storage t a n k a l l o w i n g t w o days residence for settling o u t a l l silt, i n c l u d i n g c o l l o i d a l c l a y w h i c h passes t h r o u g h the c o l u m n , m a y b e u s e d after the heat exchanger. If a n a p h t h a f r a c t i o n has b e e n u s e d i n the d i l u t i o n a n d as the entrainer, it is left i n as a d i l u e n t for r e d u c i n g the v i s c o s i t y i n p u m p i n g the o i l to t h e refinery.
A l t e r n a t i v e l y , some o r a l l is r e m o v e d as a s l i p stream
f r o m t h e reflux g o i n g to the t o p of the a z e o t r o p i c c o l u m n . If toluene or other a r o m a t i c solvent is u s e d , i t w o u l d b e so r e m o v e d or r e m o v e d i n a separate d i s t i l l a t i o n for recycle. O i l - w e t materials, s a n d , a n d clay, s e p a r a t e d f r o m either o i l or w a t e r layers, are w a s h e d w i t h the solvent o r d i l u e n t u n t i l t h e y are free of b i t u m e n a n d the r e s i d u a l solvent is s t r i p p e d f r o m the m i n e r a l m a t t e r w i t h steam. T h e m i n e r a l m a t t e r is c l e a n a n d is sent to waste or u s e d as
fill
w i t h o u t d a n g e r of spontaneous c o m b u s t i o n , or i t is u s e d i n cement m a n u facture.
T h e aqueous phases c o n d e n s e d f r o m s u c h s t r i p p i n g a n d f r o m
the d e c a n t e r of the a z e o t r o p i c system has so l i t t l e solvent, i n h u n d r e d t h s of a percent, that i t is neglected.
It evaporates r e a d i l y i n o p e n storage.
T h i s d i s t i l l e d w a t e r is u s e d for a n y s u i t a b l e p u r p o s e . R e c o v e r y of the b i t u m e n b y this system has b e e n almost 9 8 % c o m p a r e d w i t h the losses i n the G C O S system, a n d the solvent losses are l o w . T h e major a d v a n t a g e of this system is e l i m i n a t i o n of the 14-scroll t y p e centrifuges a n d 26-nozzle t y p e m a c h i n e s u s e d i n the G C O S p l a n t w h i c h h a v e h a d excessive r e p l a c e m e n t , m a i n t e n a n c e , a n d r e p a i r costs because o f the a b r a s i v e a c t i o n of the fine solids o n these h i g h speed, p r e c i s i o n machines. T h e b i t u m e n o b t a i n e d is the u n m o d i f i e d n a t i v e b i t u m e n w i t h a s u b s t a n t i a l percentage of h i g h m e l t i n g , a l i p h a t i c s o l u b l e c o m p o n e n t s .
These
are separated f r o m t h e l o w m e l t i n g c o m p o n e n t s b y solvent e x t r a c t i o n or solvent p r e c i p i t a t i o n . T h e h i g h m e l t i n g c o m p o n e n t s are u t i l i z e d i n p r o tective coatings for metals o r i n heat resistant r o a d surface compositions. If coke is o b t a i n e d f r o m this process, it is free of m i n e r a l m a t t e r a n d
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
7.
BALASSA AND OTHMER
Demulsification of Crude Oils
121
is used for the same uses as other high grade petroleum cokes—e.g., in electrodes or activated carbon, as well as in metallurgical uses where the high ash content resulting from the residual minerals would prevent that from the GCOS system being used. Another advantage is that little water is required in the azeotropic process since most of the water is recycled and that which is not recycled is immediately passed to surface waters without environmental damage. Also, removing all organics from the mineral matters means that these can be used as fill or otherwise without fire hazard, odors, or other environmental problems caused by microbiological attacks on any residual bitumen left on the minerals as in the GCOS process. Literature Cited 1. Balassa, L. L., U.S. Patent 3,468,789 (Sept. 23, 1969). 2. Clarke, H. T., Othmer, D. F., U.S. Patent 1,804,745 (May 12, 1931). 3. Othmer, D. F., "Encyclopedia of Chemical Technology," 2nd ed., Vol. 2, p. 839, 1963. 4. Othmer, D. F., U.S. Patent 1,917,391 (July 11, 1933). 5. Othmer, D. F., Chem.&Met. Eng. (1941) 48, 91. 6. Othmer, D. F., Chem. Eng. Progr. (1963) 59, 6, 67. 7. Othmer, D. F., TenEyck, Ε. H., Ind. Eng. Chem. (1949) 41, 2897. 8. "Our Sun," Sun Oil Co., House Publication (Autumn, 1967). RECEIVED November 24, 1970.
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
8 Distillation Calculations with Nonideal Mixtures a
JOSEPH A. BRUNO, JOHN L . YANOSIK, and JOHN W. TIERNEY Chemical Engineering Department, University of Pittsburgh, Pittsburgh, Pa. 15213
A new iteration sequence is presented for solving distillation problems with composition dependent equilibrium and enthalpy relations. For a steady state, non-reacting system with m components and n stages, the procedure requires simultaneous iteration of n(m + 1) variables. These are the vapor flow rates, the stage temperatures, and all but one of the liquid compositions. The basic equations for an equilibrium stage system are presented using matrix notation. The calculation sequence is outlined, and a correction algorithm based on Newton's method is derived. This requires the calculation of the Jacobian matrix of partial derivatives, and an analytical method for obtaining these derivatives by vector differentiation of the system equations is presented. This method is much simpler than those used previously. Modification of the iteration process to hold selected vapor flows constant is described, and a method of obtaining starting values for the first iteration is presented. Results obtained from solution of a sample extractive distillation problem are presented. Quadratic convergence is obtained near the solution, indicating that the equations derived for the Jacobian matrix are correct.
^ p h e m a t h e m a t i c a l m o d e l for a steady state e q u i l i b r i u m stage s e p a r a t i o n process consists of a l a r g e set o f s i m u l t a n e o u s n o n l i n e a r e q u a t i o n s w h i c h m u s t b e s o l v e d to d e t e r m i n e the phase flow rates, the stage t e m peratures, a n d t h e phase c o m p o s i t i o n . A m a t r i x n o t a t i o n w a s p r e v i o u s l y p r e s e n t e d (1, 2) w h i c h p e r m i t s w r i t i n g t h e e q u a t i o n s i n a concise f o r m "Present address: A M O C O Production Co., Tulsa, Okla.
122
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
8.
BRUNO,
YANOsiK,
A N D
Nonideal
TiERNEY
a n d p r o v i d e s for a n y interstage
flow
123
Mixtures
pattern.
It w a s also s h o w n that
these equations c a n b e a n a l y t i c a l l y differentiated t o o b t a i n iterative algo r i t h m s w i t h q u a d r a t i c convergence rates near the s o l u t i o n . F o r t h e case w h e r e the e q u i l i b r i u m ratios are functions o n l y of stage
temperatures
a n d not of c o m p o s i t i o n s , it w a s s h o w n t h a t q u a d r a t i c convergence
can
be o b t a i n e d b y s i m u l t a n e o u s i t e r a t i o n of o n l y the stage temperatures a n d the v a p o r
flow
rates.
A l l other variables can be obtained b y
solving
n o t h i n g m o r e c o m p l i c a t e d t h a n sets of s i m u l t a n e o u s l i n e a r equations. O n c e a set of temperatures a n d v a p o r flows are a s s u m e d , t h e equations b e c o m e l i n e a r i n the r e m a i n i n g variables.
T h u s , for a system w i t h η
stages a n d m c o m p o n e n t s , i t is o n l y necessary to iterate o n 2 n v a r i a b l e s rather t h a n the c o m p l e t e set o f n ( 2 m + 3 ) u n k n o w n s . If the e q u i l i b r i u m ratios are functions of phase c o m p o s i t i o n s as occurs i n l i q u i d e x t r a c t i o n or extractive d i s t i l l a t i o n , it is necessary to i n c l u d e m o r e v a r i a b l e s i n the iterative process.
It w a s later s h o w n ( 3 )
t h a t for
l i q u i d e x t r a c t i o n p r o b l e m s w i t h k n o w n stage temperatures, t h e m i n i m u m n u m b e r of i t e r a t i o n variables for q u a d r a t i c convergence is ran, t h e η v a p o r flow rates, a n d n(m v a r i a b l e s is η(2m
— 1) of the phase compositions. T h e t o t a l n u m b e r of + 2 ) because t h e temperatures are k n o w n . T h e i t e r a
t i o n sequence is c o m p l e t e l y different for this case as c o m p a r e d w i t h the p r e v i o u s case w i t h c o m p o s i t i o n i n d e p e n d e n t e q u i l i b r i u m ratios. D e v e l o p e d here is a c o r r e c t i o n process w i t h q u a d r a t i c
convergence
near t h e s o l u t i o n for p r o b l e m s i n w h i c h the e q u i l i b r i u m ratios are c o m p o s i t i o n d e p e n d e n t a n d i n w h i c h the stage temperatures are n o t fixed b u t must be determined.
It is necessary to i n t r o d u c e t h e energy
equations to g i v e the a d d i t i o n a l equations n e e d e d .
balance
T h e derivation fol
l o w s t h e g e n e r a l lines o f that for the l i q u i d e x t r a c t i o n p r o b l e m , b u t t h e extension is not t r i v i a l . T h e m e t h o d r e q u i r e s the s i m u l t a n e o u s c o r r e c t i o n of n(m
-f- 1) variables. W e w i l l also present a s i m p l i f i e d m e t h o d of a n a
l y t i c a l l y differentiating the m a t r i x equations w h i c h g r e a t l y reduces
the
w o r k necessary to d e r i v e a c o r r e c t i o n a l g o r i t h m . I n related convergence
investigations
Roche
(4)
for c o m p o s i t i o n d e p e n d e n t
constant temperature.
has d e m o n s t r a t e d
quadratic
l i q u i d extraction problems
H e essentially iterates o n a l l η(2m
at
+ 2) variables.
N e l s o n ( 5 ) has u s e d the m a t r i x n o t a t i o n of References I a n d 2 t o i n v e s t i gate systems w h e r e c h e m i c a l r e a c t i o n occurs i n the stages. Equations for an Equilibrium The
Separation System
equations d e s c r i b i n g a steady-state
e q u i l i b r i u m stage system
w i t h o u t c h e m i c a l r e a c t i o n are s u m m a r i z e d here. has b e e n p r e v i o u s l y d i s c u s s e d (1,2,3),
T h e matrix notation
a n d a l l s y m b o l s are defined b e l o w .
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
124
E X T R A C T I V E AND
AZEOTROPIC DISTILLATION
T h e o v e r a l l m a t e r i a l b a l a n c e e q u a t i o n gives a n i m p o r t a n t r e l a t i o n b e t w e e n t h e l i q u i d a n d v a p o r flow rate vectors, V a n d L . BL
+ AV
+ Σ (F*) 3
= Ο
(1)
T h e m a t r i c e s A a n d Β a r e fixed b y t h e interstage flow p a t t e r n a n d together w i t h t h e f e e d m a t r i x F are a s s u m e d to b e g i v e n i n t h e p r o b l e m statement. T h e fact that t h e l i q u i d c o m p o s i t i o n s m u s t s u m to a constant (1.0 i f m o l e fractions are u s e d ) i n e a c h stage is g i v e n b y : Σ (ZO = U
(2)
A s i m i l a r e q u a t i o n c a n b e w r i t t e n f o r t h e v a p o r phase, b u t i t is n o t i n d e pendent a n d can be derived b y combining Equations ( 1 ) , ( 2 ) , a n d (3). A m a t e r i a l b a l a n c e c a n b e w r i t t e n f o r e a c h c o m p o n e n t i n e a c h stage, Β L X> + A V F> +
= 0; 1 < j < m
(3)
X a n d Y are vectors c o n t a i n i n g l i q u i d a n d v a p o r c o m p o s i t i o n s f o r c o m j
j
p o n e n t /'. T h e matrices L a n d V are d i a g o n a l a n d h a v e t h e same elements o n t h e d i a g o n a l as t h e vectors L a n d V. A n energy b a l a n c e a r o u n d e a c h stage gives BLH
+ AY
G +
Q +
Q
f
=
(4)
0
H a n d G are vectors c o n t a i n i n g t h e specific enthalpies of l i q u i d a n d v a p o r phases i n e a c h stage.
Q is t h e vector o f stage heat duties, a n d Q is t h e
f e e d e n t h a l p y vector.
Q a n d Q are a s s u m e d to b e g i v e n i n t h e p r o b l e m
f
f
statement. T h e e q u i l i b r i u m r e l a t i o n b e t w e e n l i q u i d a n d v a p o r c o m p o s i t i o n s is given by Λ> Υ
3
-
Γ ' K>" X> = Ο; 1 < j < m ?
(5)
Λ/ a n d Ρ a r e t h e a c t i v i t y coefficient m a t r i c e s for v a p o r a n d l i q u i d phases a n d are d i a g o n a l . F o r i d e a l solutions, t h e y b e c o m e t h e i d e n t i t y m a t r i x . K
;
is t h e f u g a c i t y ratio m a t r i x a n d is also d i a g o n a l . T h e enthalpies a n d e q u i l i b r i u m d a t a are p h y s i c a l properties o f t h e
m i x t u r e s b e i n g separated a n d are a s s u m e d to b e k n o w n e x p l i c i t f u n c t i o n s of c o m p o s i t i o n s a n d temperatures as f o l l o w s :
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
8.
B R U N O ,
YANOSIK,
A N D
Nonideal
T I E R N E Y
H{X\
G
G(Y ,
Y,
. . Y,
T)
(7)
Γ
Γ(Χ , X,
. . X,
T)
(8)
Λ
Λ ( F , 7», . . F » ,
T)
(9)
3
2
3
. . X",
T)
H
2
X\
125
Mixtures
m
m
2
(6)
K(T)
K
(10)
E a c h of the a b o v e functions is a s s u m e d to b e c o n t i n u o u s a n d to possess first derivatives w i t h respect to c o m p o s i t i o n a n d t e m p e r a t u r e .
Also, the
c o m p o s i t i o n of c o m p o n e n t 1 is n o t to b e c o n s i d e r e d as a n i n d e p e n d e n t v a r i a b l e i n the d e v e l o p m e n t omitting X The
1
and Y
Calculation
1
w h i c h f o l l o w s , a n d this is e m p h a s i z e d
by
as arguments i n E q u a t i o n s 6 - 9 .
Sequence
E q u a t i o n s 1-10 constitute a set of ( 5 m + 5 ) m a t r i x equations w h i c h are to b e s o l v e d s i m u l t a n e o u s l y to d e t e r m i n e 2 m c o m p o s i t i o n
vectors,
t w o flow vectors, a t e m p e r a t u r e vector, t w o e n t h a l p y vectors, 2 m a c t i v i t y coefficient vectors, a n d m f u g a c i t y r a t i o vectors.
T h e solution must be
iterative because the equations are n o n l i n e a r . H o w e v e r , there are v a r i o u s m e t h o d s of o r g a n i z i n g the c a l c u l a t i o n s , a n d one of o u r p r i m a r y objects here is to d e v e l o p a n efficient c a l c u l a t i o n order. A t one extreme i t w o u l d b e possible to c o n s i d e r a l l 5 m +
5 vectors as i t e r a t i o n v a r i a b l e s a n d thus
to h a v e a process w i t h ( 5 m + 5 ) η v a r i a b l e s of i t e r a t i o n . It seems o b v i o u s that a m o r e efficient m e t h o d is to r e d u c e the size of t h e iterative process b y e l i m i n a t i n g as m a n y of t h e v a r i a b l e s as possible.
I n p r a c t i c e , it is
u n d e s i r a b l e a c t u a l l y to e l i m i n a t e t h e v a r i a b l e s ; i n s t e a d the v a r i a b l e s w i l l b e d i v i d e d i n t o t w o groups.
T h e first g r o u p is the v a r i a b l e s w h i c h w i l l
b e i t e r a t e d a n d w i l l b e c a l l e d t h e i t e r a t e d or i n d e p e n d e n t v a r i a b l e s ; t h e second group w i l l be called dependent
variables.
One equation must
b e u s e d t o define e a c h d e p e n d e n t v a r i a b l e , a n d these equations w i l l b e c a l l e d the d e f i n i n g equations. T h e r e m a i n i n g equations, e q u a l i n n u m b e r to t h e i n d e p e n d e n t variables, w i l l b e c a l l e d the error equations.
The
i t e r a t i o n sequence w i l l t h e n b e to assume first a set of values for the i n d e p e n d e n t variables a n d t h e n to solve t h e d e f i n i n g equations for the de p e n d e n t variables.
T h e error equations are t h e n u s e d to correct
the
i n d e p e n d e n t v a r i a b l e s , a n d the process is repeated. T h e n u m b e r of i n d e p e n d e n t variables s h o u l d g e n e r a l l y b e as s m a l l as possible. A l s o , the d e f i n i n g equations s h o u l d p e r m i t s i m p l e c a l c u l a t i o n of the d e p e n d e n t variables, a n d t h e c o r r e c t i o n process itself s h o u l d b e s i m p l e a n d efficient.
H e r e the set of i n d e p e n d e n t v a r i a b l e s has b e e n
c h o s e n to b e as s m a l l as possible subject t o t h e l i m i t a t i o n t h a t the d e f i n i n g equations
r e m a i n l i n e a r i n the
dependent
variables.
The
correction
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
126
EXTRACTIVE
AND AZEOTROPIC
DISTILLATION
a l g o r i t h m is also l i n e a r a n d is t h e m u l t i v a r i a b l e f o r m o f t h e N e w t o n Raphson method. T h e set o f i n d e p e n d e n t v a r i a b l e s w h i c h satisfies these r e q u i r e m e n t s is the v a p o r flow v e c t o r V , the l i q u i d p h a s e c o m p o s i t i o n s , X t o X , a n d 2
m
the t e m p e r a t u r e v e c t o r T . T h e c a l c u l a t i o n sequence is, a. V a l u e s are a s s u m e d f o r ( V , X , X , . . X , T ) . 2
3
W
b. T h e l i q u i d flow vector L is c a l c u l a t e d u s i n g E q u a t i o n 1. c. E q u a t i o n 2 is u s e d to c a l c u l a t e X . 1
d . E q u a t i o n 3 is u s e d m times t o c a l c u l a t e Y ^ ,.. Y . e. E q u a t i o n s 6 - 1 0 a r e u s e d t o c a l c u l a t e t h e d e p e n d e n t v a r i a b l e s H, G, Λ, Γ, a n d K . A l l v a r i a b l e s h a v e n o w b e e n e v a l u a t e d f o r the c u r r e n t set o f i n d e p e n d e n t v a r i a b l e s . f. C u r r e n t values f o r a l l v a r i a b l e s are s u b s t i t u t e d i n t o the error e q u a tions, w h i c h a r e E q u a t i o n s 4 a n d 5. I f t h e equations a r e satisfied, t h e i t e r a t i v e process is t e r m i n a t e d . O t h e r w i s e , t h e i n d e p e n d e n t v a r i a b l e s m u s t b e c o r r e c t e d , a n d the c a l c u l a t i o n r e p e a t e d f r o m Step b . 1
The Jacobian
Correction
2
m
Matrix
T h e o n l y u n d e f i n e d step i n t h e c a l c u l a t i o n sequence p r o p o s e d a b o v e is t h e c o r r e c t i o n o f the i n d e p e n d e n t v a r i a b l e s i n step f. A l i n e a r correc t i o n process is g i v e n b y ( J ) v { ( C )
v
+
1
-
(C)v}
=
-
(11)
(D)v
w h e r e C is t h e d i r e c t s u m o f t h e i n d e p e n d e n t v a r i a b l e s i n t h e o r d e r ( V , X , X , . . X , T ) , a n d D is the d i r e c t s u m o f the error vectors, defined as 2
3
m
E
k
= AY k
k
-
Γ*Κ*Χ*; 1 < k < m
= BL H + AVG T h e most r a p i d convergence
+ Q+ Q
f
(12) (13)
o f E q u a t i o n 11 t o t h e s o l u t i o n is o b
t a i n e d w h e n J is t h e J a c o b i a n m a t r i x , defined as t h e m a t r i x i n w h i c h e a c h element is t h e p a r t i a l d e r i v a t i v e o f o n e of t h e errors w i t h respect to o n e o f t h e i t e r a t i o n v a r i a b l e s w i t h a l l other i t e r a t i o n v a r i a b l e s h e l d constant. T h u s , a n estimate o f the effect o f e a c h c h a n g e i n a n i t e r a t i o n v a r i a b l e o n e a c h o f t h e errors i s i n c l u d e d i n t h e c o r r e c t i o n . T h e d i s a d v a n t a g e i n u s i n g t h e J a c o b i a n m a t r i x is t h e large n u m b e r o f d e r i v a t i v e s n e e d e d , (mn + n ) , a n d a s i m p l e means o f o b t a i n i n g these d e r i v a t i v e s is 2
needed.
W e h a v e f o u n d that v e c t o r differentiation o f t h e m a t r i x e q u a
tions g i v e n a b o v e does g r e a t l y s i m p l i f y t h e d e r i v a t i o n of t h e e q u a t i o n s for c a l c u l a t i o n o f t h e J a c o b i a n . B y vector differentiation w e m e a n t h e o p e r a t i o n o f differentiating one v e c t o r w i t h respect to a s e c o n d vector.
T h e result is a m a t r i x i n
w h i c h e a c h c o l u m n is t h e d e r i v a t i v e o f t h e first v e c t o r w i t h respect t o
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
8.
B R U N O ,
YANOSiK,
Nonideal
A N D T B E R N E Y
127
Mixtures
one o f t h e elements o f t h e s e c o n d vector. F o r e x a m p l e ( dL/dV ) is a n η b y η m a t r i x i n w h i c h t h e j t h c o l u m n is (dL/dVj),
a n d t h e ij element is
(dk/dv,). J c a n n o w b e defined b y v e c t o r derivatives. p a r t i t i o n e d into (m + l )
2
F i r s t , h o w e v e r , i t is
s u b m a t r i c e s , e a c h o f size η b y n . S u b s c r i p t s
are u s e d t o designate t h e submatrices.
Thus, from the definition of the
Jacobian matrix, w e obtain
w ' ' * J* =
{ ~ ; 2
f^;k
1
(
4
)
(15)
< k <m
=
1
(16)
m+l
B e f o r e p r o c e e d i n g w i t h t h e e v a l u a t i o n o f E q u a t i o n s 1 4 - 1 6 , some use f u l relations a m o n g t h e v a r i a b l e s w i l l b e d e r i v e d b y differentiating t h e d e f i n i n g equations ( E q u a t i o n s 1-3 a n d 6 - 1 0 ) w i t h respect t o t h e i t e r a t i o n variables.
T h e s e results w i l l b e u s e d w h e n
t h e error equations a r e
differentiated i m p l i c i t l y . F r o m t h e o v e r a l l m a t e r i a l b a l a n c e , E q u a t i o n 1,
% Because X . . X
m
2
= -
B
_ 1
A = -
R
(17)
are iteration variables, I l ; 2 < j, k < m
(18)
jk
where 8
jk
=
0 if /^
t h e fact that X
1
k a n d equals 1.0 i f / — k. F r o m E q u a t i o n 2 a n d
is n o t a n i t e r a t i o n v a r i a b l e , g -
=
-
î; 2 < j < m
D i f f e r e n t i a t i n g E q u a t i o n 3 w i t h respect to i n d e p e n d e n t
(19) liquid
compo-
sitions. AY*
y^u= ~ Y-'S
-1
2
£ L = v-iR-i L; 2 < k < m
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
(20) (21)
128
EXTRACTIVE
AND
AZEOTROPIC
DISTILLATION
F o r Y , a different result is o b t a i n e d because of E q u a t i o n 19. 1
T o d e r i v e E q u a t i o n s 20 a n d 2 1 , i t m u s t b e r e m e m b e r e d differentiation is w i t h respect to X ,
that the
h o l d i n g V , T , a n d a l l other i n d e
k
p e n d e n t l i q u i d c o m p o s i t i o n s constant. W i t h V constant, L m u s t also b e constant because of E q u a t i o n 17. E q u a t i o n 3 w i l l n o w b e differentiated w i t h respect to V, h o l d i n g Τ and X . . X 2
constant. I n this case L is not constant, a n d differentiation
m
of the first t e r m B L X ' causes difficulty because L is a d i a g o n a l m a t r i x a n d not a vector.
T h i s c a n b e r e s o l v e d b y r e w r i t i n g B L X ' as BXJL,
n o w L is a vector.
and
T h i s s p e c i a l t y p e of c o m m u t a t i v i t y for t h e p r o d u c t
of a d i a g o n a l m a t r i x a n d a vector is u s e d a g a i n i n the p r o d u c t A V Y ' a n d frequently i n the derivations w h i c h follow. by V
T h e d e r i v a t i v e of E q u a t i o n 3
gives,
=Y
dV
P a r t i a l derivatives
-1
{R
- 1
S Ε - Y} ; ι 7
?
< j <
of the p h y s i c a l properties
(22)
™
given by
Equations
6 - 1 0 w i l l also b e n e e d e d i n the d e r i v a t i o n s of t h e J a c o b i a n submatrices. H o w e v e r , the exact f o r m of E q u a t i o n s 6 - 1 0 is not k n o w n a n d w i l l v a r y f r o m p r o b l e m to p r o b l e m .
T h e c o n v e n t i o n w i l l b e a d o p t e d that a n y
p a r t i a l d e r i v a t i v e i n v o l v i n g a p h y s i c a l p r o p e r t y is to b e i n t e r p r e t e d u s i n g the v a r i a b l e s
given
as arguments
i n Equations 6-10.
For
( d G / d Y ) means the p a r t i a l d e r i v a t i v e of G w i t h respect to Y 2
Y ... Y 3
and Τ
m
constant. A l l vector
derivatives
example, 2
holding
of p h y s i c a l p r o p e r t y
vectors w i l l b e d i a g o n a l matrices. T h i s is necessary because t h e p h y s i c a l properties i n a n y one stage are f u n c t i o n s o n l y of t h e c o m p o s i t i o n s a n d t e m p e r a t u r e i n that stage.
The Jacobian
Submatrices
S e v e n different e q u a t i o n s are n e e d e d to c a l c u l a t e the v a r i o u s s u b matrices of J : 1. T h e first g r o u p of s u b m a t r i c e s is o b t a i n e d b y differentiating t h e error vector w i t h respect to i n d e p e n d e n t c o m p o s i t i o n s . T h e g e n e r a l e q u a t i o n is
dX
k
" ~
dX
k
+
Y
1
(23)
K'X' - -
dX"
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
8.
YANOsiK,
B R U N O ,
Nonideal
A N D TiERNEY
129
Mixtures
F o r 2 ^ j,k ^ m, E q u a t i o n s 18 a n d 2 0 are u s e d t o o b t a i n
-
2. F o r / =
2<j,k<m
1 i n E q u a t i o n 23, E q u a t i o n s 19 a n d 21 are u s e d
Ju = A ^ R - i L
-
Y
Y^R-'L
1
+ P K
-
1
(24) K
1
^
^ ) ;
1
2 < k < m
3. T h e derivatives of t h e m a t e r i a l b a l a n c e errors w i t h respect t o v a p o r flows are e v a l u a t e d :
dE' dV a n d t h e n u s i n g E q u a t i o n 22
Jyi = à Y~ (Β^Χ'R ~ YO + Υ'Ύ 1
Σ (|γ^)
-1
l
( R X S - Y Ρ)
(y" ) 1
_ 1
p
(26)
1 < j < m
4. T h e energy b a l a n c e errors are next differentiated w i t h respect to v a p o r flows.
dE« dV
•
B
i
^
i
f
i
+
i
ï|,(|)(f)
<w
U s i n g E q u a t i o n s 17 a n d 22
lm i,i +
= - B H R + A G + A
v
f
(J^j Y"
1
(E X E -1
p
- Y ) (28) p
5. T h e derivatives of t h e energy balances w i t h respect to c o m p o sitions are,
dE ~dX
m+1
r
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
130
EXTRACTIVE
A N DAZEOTROPIC
DISTILLATION
T h e n , u s i n g E q u a t i o n 20, a n d after some rearrangement.
W
= B L
(J^ - A (Jf^j R - L 2
(30)
< k< m
6. T h e derivatives o f the m a t e r i a l b a l a n c e errors w i t h respect t o Τ are next c a l c u l a t e d .
%
-fa—I'(^)-M'(^)-S*(S.> 1<j < m
(31)
7. F i n a l l y , the d e r i v a t i v e o f the energy b a l a n c e w i t h respect t o Τ gives,
^ ' - W , Change
of Iteration
=
BL(g) Av(g)
(32)
+
Variable
T h e J a c o b i a n m a t r i x d e v e l o p e d a b o v e is b a s e d u p o n a specific m o d e l of a staged system i n w h i c h t h e flow rates, the temperatures, a n d the phase c o m p o s i t i o n s are a l l u n k n o w n a n d m u s t b e d e t e r m i n e d . A v a r i a t i o n o f this m o d e l w h i c h often occurs i n p r a c t i c e r e q u i r e s that a s o l u t i o n b e f o u n d i n w h i c h one or m o r e o f the flows has a fixed v a l u e . I t is r e l a t i v e l y s i m p l e t o m o d i f y t h e i t e r a t i o n p r o c e d u r e a n d the J a c o b i a n m a t r i x for the case o f fixed v a p o r flows b y s u b s t i t u t i n g one o f the elements o f Q, the heat e x c h a n g e vector, for e a c h o f the v a p o r flows w h i c h is to b e T o i n t e r c h a n g e t h e v a r i a b l e s Vi a n d q
jy
fixed.
the f o l l o w i n g p r o c e d u r e c a n
b e u s e d . T h e J a c o b i a n m a t r i x is first m o d i f i e d b y setting t o z e r o the i t h •column o f e a c h o f the s u b m a t r i c e s J * * for k =
1 t o m. T h e i t h c o l u m n
contains the effect o f c h a n g i n g of Vi o n e a c h element o f E; because q, does n o t enter i n t o a n y o f t h e m a t e r i a l b a l a n c e e q u a t i o n s , this c o l u m n b e comes zero. T h e i t h c o l u m n o f Jm+ι,ι is set e q u a l to the ; t h c o l u m n o f a n η b y η i d e n t i t y m a t r i x because q$ enters o n l y the o n e energy b a l a n c e e q u a t i o n . U p o n s o l v i n g for the c o r r e c t i o n vector [ ( C ) v + i — ( C ) v ] t h e i t h element is n o w the c o r r e c t i o n for q$. T h e c o r r e c t i o n to υ is zero. τ
T h i s p r o c e d u r e c a n o n l y b e u s e d for fixed v a p o r flows. I f l i q u i d
flows
are t o b e fixed, a m o r e c o m p l i c a t e d p r o c e d u r e is n e e d e d a n d w i l l n o t b e d e v e l o p e d here. F o r s i m p l e c o u n t e r c u r r e n t systems i t is u s u a l l y pos sible to fix p r o d u c t l i q u i d flows b y fixing c e r t a i n v a p o r flows. A n o b v i o u s m o d i f i c a t i o n o f the a b o v e p r o c e d u r e c a n b e u s e d t o fix temperatures i f desired.
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
8.
B R U N O ,
YANOsiK,
A N D
TiERNEY
Initial Values for Iteration
Nonideal
131
Mixtures
Variables
A n i m p o r t a n t p a r t of the i t e r a t i o n p r o c e d u r e is to select i n i t i a l values for t h e i t e r a t i o n v a r i a b l e s
( V,X
2
... X , T ) .
The
m
correction
sequence
g i v e n b y E q u a t i o n 11 w i l l c o n v e r g e for s t a r t i n g values sufficiently close to t h e s o l u t i o n . T h e r e is no s i m p l e w a y of k n o w i n g w h e t h e r a g i v e n set of i n i t i a l values is w i t h i n this convergence
range or not.
Every
effort
s h o u l d b e m a d e to m a k e t h e i n i t i a l values as g o o d as possible.
The
m e t h o d w e h a v e u s e d is d e s c r i b e d here. T h e temperatures of the r e b o i l e r a n d the condenser are first e s t i m a t e d u s i n g w h a t e v e r i n f o r m a t i o n is a v a i l a b l e . T h e temperatures of the i n t e r m e d i a t e stages are t h e n o b t a i n e d b y l i n e a r i n t e r p o l a t i o n b e t w e e n
con-
denser t e m p e r a t u r e a n d r e b o i l e r t e m p e r a t u r e . T h e i n i t i a l v a p o r flows are t h e n c a l c u l a t e d b y e s t i m a t i n g the l i q u i d a n d v a p o r enthalpies a n d s o l v i n g s i m u l t a n e o u s l y E q u a t i o n 1, t h e o v e r a l l m a t e r i a l b a l a n c e , a n d E q u a t i o n 4, t h e e n e r g y b a l a n c e . T h e c o m p o s i t i o n s are u n k n o w n for the e n t h a l p y c a l c u l a t i o n . T h e p r o c e d u r e w e h a v e u s e d is to set a l l c o m p o s i t i o n s i n a l l stages e q u a l to 1/m; this is a r o u g h approximation. A f t e r o b t a i n i n g V a n d L , the a c t i v i t y coefficients a n d f u g a c i t y ratios are c a l c u l a t e d u s i n g 1/m as t h e average c o m p o s i t i o n i n a l l stages.
Then
E q u a t i o n s 3 a n d 5 are s i m u l t a n e o u s l y s o l v e d to g i v e the l i q u i d phase c o m p o s i t i o n s . T h e s e c o m p o s i t i o n s for e a c h stage are t h e n s u m m e d a n d n o r m a l i z e d to one. T h e s e serve as t h e first estimates for X , . . X . 2
Modification The
of Correction
requirement
m
Algorithm
that a l l of the v a r i a b l e s l i e w i t h i n
reasonable
p h y s i c a l b o u n d s c a n b e i n c o r p o r a t e d i n t o the c o r r e c t i o n a l g o r i t h m . h a v e d o n e this b y s p e c i f y i n g t h a t at a l l times the v a p o r a n d l i q u i d m u s t b e p o s i t i v e or zero; t h e phase c o m p o s i t i o n s m u s t n o t b e
We flows
negative
or greater t h a n one; a n d the temperatures m u s t l i e w i t h i n p r e d e t e r m i n e d l i m i t s . I f at a n y t i m e d u r i n g t h e c o r r e c t i o n process these l i m i t s are exc e e d e d , the c u r r e n t i t e r a t i o n is t e r m i n a t e d . I f it is the first i t e r a t i o n , t h e n a n e w set of i n i t i a l values w i l l b e n e e d e d .
If i t is the s e c o n d or a later
i t e r a t i o n , t h e n i t is a s s u m e d t h a t the corrections m a d e i n t h e p r e v i o u s i t e r a t i o n w e r e too large, a n d the c u r r e n t i t e r a t i o n is r e p e a t e d u s i n g oneh a l f the corrections p r e d i c t e d i n t h e p r e v i o u s step. It m a y b e necessary to repeat this process several t i m e s b e f o r e a l l v a r i a b l e s satisfy t h e g i v e n b o u n d s . If d u r i n g a n y i t e r a t i o n , m o r e t h a n 10 h a l v i n g s of the c o r r e c t i o n are n e e d e d , w e h a v e t e r m i n a t e d c a l c u l a t i o n s a n d a s s u m e d t h e process was
diverging.
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
132
EXTRACTIVE
Application
AND
AZEOTROPIC
DISTILLATION
to a Sample Problem
T h e results o b t a i n e d i n the s o l u t i o n of a sample p r o b l e m are s u m m a r i z e d here to i l l u s t r a t e the a p p l i c a t i o n of the m e t h o d . distillation problem from Oliver
(6)
An
extractive
was used i n w h i c h methylcyclo-
hexane is separated f r o m toluene b y a d d i n g p h e n o l . T h e c o l u m n contains 11 stages ( i n c l u d i n g the r e b o i l e r a n d c o n d e n s e r ) a n d has a f e e d of 0.4 m o l e s / u n i t t i m e of m e t h y l c y c l o h e x a n e a n d 0.6 m o l e s / u n i t t i m e of toluene to the f o u r t h stage f r o m the r e b o i l e r a n d 4.848 m o l e s / u n i t t i m e of p h e n o l to t h e f o u r t h stage f r o m the condenser. W e u s e d t h e same p h y s i c a l p r o p e r t y correlations as O l i v e r . T h e a c t i v i t y coefficients w e r e o b t a i n e d f r o m a m u l t i c o m p o n e n t f o r m of the V a n L a a r E q u a t i o n Table I.
(7).
Norms for Successive Iterations of Sample Problem
Iteration
ρ
Composition,
1 2 3 4 5 6 7 8 9
Energy Balance,
2.9 1.6 1.5 1.4 1.2 5.8E-1 7.8E-2 1.7E-3 5.0E-6
σ
2.8E4 1.6E4 7.2E4 3.2E4 9.8E3 7.5E3 1.5E3 8.1 2.0E-1
Results for successive iterations of a t y p i c a l r u n are s h o w n i n T a b l e I. T h e c o m p o s i t i o n n o r m is defined as t h e E u c l i d e a n n o r m of the c o m p o s i t i o n errors
/ n
9 =
m
(Σ Σ V = i y=i
2\
(e ) i3
y
2
(33)
) /
a n d t h e energy b a l a n c e n o r m as
Σ
(<Wi)
)
(34)
V a l u e s for these n o r m s are g i v e n i n T a b l e I at e a c h i t e r a t i o n . A t i t e r a t i o n 9 the m a x i m u m error i n a n y e q u i l i b r i u m e q u a t i o n is 2 χ
10" , a n d the 6
m a x i m u m energy b a l a n c e error is 0.09 B t u / u n i t t i m e . T h e t o t a l t i m e r e q u i r e d for the n i n e iterations i n T a b l e I w a s a b o u t 4 m i n o n a n I B M 360/50 of w h i c h 1.5 m i n w a s e x e c u t i o n time.
The
J a c o b i a n w a s c a l c u l a t e d for e a c h iteration. T h e results f r o m some other runs are s u m m a r i z e d i n T a b l e II. e a c h r u n the values of v
±
and u
n
For
w e r e h e l d constant b y m a k i n g qx a n d
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
8.
B R U N O ,
YANOSiK,
A N D
<7u i t e r a t i o n variables.
Nonideal
TiERNEY
133
Mixtures
A U other heat duties,
w e r e set to zero.
F o r e a c h r u n i t is necessary to estimate the r e b o i l e r a n d condenser t e m peratures to i n i t i a t e c a l c u l a t i o n s . T h e s t a r t i n g v a l u e m e t h o d
described
p r e v i o u s l y w a s u s e d to c a l c u l a t e a l l other s t a r t i n g values for the i t e r a t i o n variables. V a l u e s of u n a r o u n d 0.4 m o l e s / u n i t t i m e are i n t e r e s t i n g because u n is the v a p o r p r o d u c t a n d s h o u l d b e m o s t l y m e t h y l c y c l o h e x a n e . Discussion T h e last t w o iterations i n T a b l e I c l e a r l y i n d i c a t e q u a d r a t i c c o n v e r g e n c e rates. T h i s is e s p e c i a l l y e v i d e n t i n the c o m p o s i t i o n n o r m w h e r e the error is r o u g h l y s q u a r i n g i n e a c h i t e r a t i o n . . T h e e n e r g y b a l a n c e n o r m for the last i t e r a t i o n does n o t decrease as m u c h as i t s h o u l d , b u t this u n d o u b t e d l y results f r o m round-off errors i n t h e c o m p u t e r w h e n u s i n g single
precision arithmetic.
The
m a x i m u m energy
balance
error
in
i t e r a t i o n 9 is 0.09 B t u / u n i t t i m e , a n d the enthalpies w h i c h are b e i n g s u m m e d i n the energy b a l a n c e e q u a t i o n are of the o r d e r of 50,000 B t u / unit time.
T h e fact that q u a d r a t i c convergence
is o b t a i n e d is s t r o n g
e v i d e n c e that the J a c o b i a n m a t r i x has b e e n c o r r e c t l y c a l c u l a t e d a n d t h a t the d e r i v e d equations are correct.
It is u n l i k e l y that the n o r m s c o u l d
decrease as t h e y d o i n the last t w o iterations i f the J a c o b i a n w e r e incorrect. T h e first seven iterations i n T a b l e I s h o w s l o w l i n e a r
convergence.
T h e c o r r e c t i o n - h a l v i n g p r o c e d u r e o u t l i n e d p r e v i o u s l y w a s u s e d at least once i n iterations 2 - 6 . T h e other r u n s i n T a b l e II b e h a v e d s i m i l a r l y . A l l took m o r e t h a n n i n e iterations, a n d for e a c h case the n o r m s w o u l d decrease s l o w l y ( e v e n o c c a s i o n a l l y r i s i n g for one i t e r a t i o n )
u n t i l the last
t w o or three iterations w h e n t h e y w o u l d d r a m a t i c a l l y decrease. the r u n s d i d not
Two
T h e results i n T a b l e I I i n d i c a t e that for a r e a s o n a b l y w i d e of v a p o r flows a n d starting c o n d i t i o n s the c o r r e c t i o n m e t h o d Table II.
range
proposed
Results for Different Vapor Flows and Starting Conditions for Sample Problems
Condenser
Reboiler Vapor
hi
Vu
h
Vl
Number of Iterations to Converge
210 270 210 210 220 210
.5 .8 .8 .1 .4 .4
270 330 275 275 300 275
1.5 1.5 1.0 1.5 1.0 1.0
10 17 Diverge 10 Diverge
Temp
0
of
converge.
Vapor
Flow
Temp.
Flow
9
a
This is run reported in Table I.
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
134
EXTRACTIVE
AND
AZEOTROPIC
DISTILLATION
h e r e w i l l g i v e a g o o d s o l u t i o n for this p r o b l e m . T h e system s t u d i e d s h o u l d b e a g o o d test because i t is h i g h l y n o n i d e a l . A n i n d i c a t i o n of this is t h a t t e m p e r a t u r e a n d c o m p o s i t i o n m a x i m a a n d m i n i m a w e r e f o u n d for most p r o b l e m s w h e n these v a r i a b l e s w e r e p l o t t e d against stage n u m b e r . M a n y v a r i a t i o n s of the c o r r e c t i o n m e t h o d w e h a v e p r o p o s e d c a n be u s e d . A m o n g these are the use of the same J a c o b i a n for several iterations a n d t h e use of m o d i f i e d N e w t o n m e t h o d s s u c h as M a r q u a r d t ' s (S).
We
h a v e t r i e d M a r q u a r d t ' s m e t h o d o n some of these
method problems
w i t h o u t o b s e r v i n g a n y significant i m p r o v e m e n t , b u t this is o n l y a tentative evaluation.
I m p r o v e d m e t h o d s for g e n e r a t i n g s t a r t i n g c o n d i t i o n s w o u l d
be helpful. A c o m p a r i s o n of the m e t h o d p r o p o s e d i n this p a p e r w i t h other m e t h ods is difficult because there are f e w distillation problems.
p u b l i s h e d solutions for
nonideal
W e w e r e u n a b l e to find a c o m p l e t e l y s o l v e d p r o b
l e m w i t h a l l m a t e r i a l a n d energy balances satisfied.
We
have
demon
strated that the J a c o b i a n m a t r i x gives r a p i d c o n v e r g e n c e i n the v i c i n i t y of t h e s o l u t i o n , a n d this m e t h o d m i g h t serve as a basis to e v a l u a t e other methods. Acknowledgment T h e authors w i s h to a c k n o w l e d g e
the assistance of the
Computer
C e n t e r at the U n i v e r s i t y of P i t t s b u r g h . List of
Symbols
G e n e r a l : A l o w e r case s y m b o l is a scalar. A n u p p e r case s y m b o l is a c o l u m n vector. A n u p p e r case s y m b o l w i t h a s u p e r s c r i p t is a c o l u m n v e c t o r f o r m e d b y r e m o v i n g the c o l u m n i n d i c a t e d b y t h e s u p e r s c r i p t f r o m t h e m a t r i x w i t h the same name. U n d e r l i n e d u p p e r case s y m b o l s are matrices. I f a s y m b o l is defined as a v e c t o r t h e n w h e n u n d e r l i n e d , i t represents a d i a g o n a l m a t r i x w i t h the same elements as the vector. A m a t r i x w i t h a s u p e r s c r i p t is a l w a y s a d i a g o n a l m a t r i x . A Β C D Ε F G H
V a p o r d i s t r i b u t i o n m a t r i x : au = — 1, α^ = f r a c t i o n of t o t a l v a p o r l e a v i n g stage / w h i c h goes to stage i L i q u i d d i s t r i b u t i o n m a t r i x : b = — 1, by = f r a c t i o n of t o t a l l i q u i d l e a v i n g stage / w h i c h goes to stage i T h e d i r e c t s u m of the i n d e p e n d e n t v a r i a b l e s , ( V,X ,... X ,T) T h e d i r e c t s u m of t h e error vectors, ( E , . . E ) E r r o r m a t r i x , the c o l u m n s are defined b y E q u a t i o n s 12 a n d 13 F e e d m a t r i x : fa is t o t a l f e e d of c o m p o n e n t / to stage i , mass p e r unit time V a p o r e n t h a l p y vector; gi is specific e n t h a l p y of v a p o r i n stage i, energy p e r u n i t mass L i q u i d e n t h a l p y vector; hi is specific e n t h a l p y of l i q u i d i n stage i, e n e r g y p e r u n i t mass u
2
1
m+1
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
m
8.
B R U N O ,
I J
YANOSIK,
A N D
T I E R N E Y
Nonideal
135
Mixtures
T h e identity matrix T h e J a c o b i a n m a t r i x ; i t is p a r t i t i o n e d i n t o ( r a + l ) s u b m a t r i c e s , e a c h of size η b y n. ] is t h e s u b m a t r i x i n r o w k a n d c o l u m n ; o f the p a r t i t i o n e d m a t r i x . L i q u i d flow rate vector; l is t o t a l l i q u i d l e a v i n g stage i, mass p e r unit time N u m b e r of components N u m b e r of e q u i l i b r i u m stages H e a t exchange vector; q is rate at w h i c h e n e r g y is a d d e d to stage i b y heat exchange, energy p e r u n i t t i m e F e e d e n t h a l p y vector; q is e n t h a l p y of f e e d e n t e r i n g stage i, e n e r g y per unit time D e f i n e d as B A ; R — A B T e m p e r a t u r e vector; t is t e m p e r a t u r e i n stage i A vector e a c h element of w h i c h is 1.0 V a p o r flow rate vector; t>< is t h e t o t a l v a p o r l e a v i n g stage i, mass per unit time L i q u i d c o m p o s i t i o n m a t r i x ; xy is c o m p o s i t i o n of c o m p o n e n t / i n l i q u i d i n stage i V a p o r composition matrix; is c o m p o s i t i o n of c o m p o n e n t / i n v a p o r i n stage i A c t i v i t y coefficient m a t r i x f o r t h e l i q u i d p h a s e ; t h e ij element is t h e a c t i v i t y coefficient f o r c o m p o n e n t / i n stage i E q u a l t o z e r o w h e n k ^ /; e q u a l to 1.0 w h e n k — / A c t i v i t y coefficient m a t r i x f o r v a p o r p h a s e ; t h e ij element is a c t i v i t y coefficient f o r c o m p o n e n t ; i n stage i S u b s c r i p t u s e d to i n d i c a t e i t e r a t i o n n u m b e r E u c l i d e a n n o r m of c o m p o s i t i o n errors, E q u a t i o n 3 3 E u c l i d e a n n o r m o f energy b a l a n c e errors, E q u a t i o n 34 2
kj
L
{
m η Q Q
f
R Τ U V X Y Γ Sjcj
Λ ν Ρ σ
{
t i
_ 1
1
_ 1
t
Literature Cited 1. Tierney, J. W., Bruno, J. Α., "Equilibrium Stage Calculations," AIChE J. (1967) 13, 556. 2. Tierney, J. W., Yanosik, J. L., "Simultaneous Flow and Temperature Correc tions in the Equilibrium Stage Problem," AIChE J. (1969) 15, 897. 3. Tierney, J. W., Yanosik, J. L., Bruno, J. Α., "Solution of Equilibrium Stage Models for Solvent Extraction Processes," Proceedings International Sol vent Extraction Conference 1971, pp. 1051-1061, Society of Chemical Industry, London, 1971. 4. Roche, E. C., "Rigorous Solution of Multicomponent, Multistage LiquidLiquid Extraction Problems," Brit. Chem. Eng. (1969) 14, 1393. 5. Nelson, P. Α., "Countercurrent Equilibrium Stage Separation with Reaction," AIChE J. (1971) 17, 1043. 6. Oliver, E. D., "Diffusional Separation Processes," pp. 189-197, Wiley, New York, 1966. 7. Drickamer, H. G., Brown, G. G., White, R. R., Trans. AIChE J. (1945) 41, 555. 8. Marquardt, D. W., "An Algorithm for Least-Squares Estimation of Non linear Parameters,"J.Soc. Ind. Appl. Math. (June 1963) 2, 431. RECEIVED December 10, 1971. In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
9 Isobaric Vapor-Liquid Equilibrium in the Acetic Acid-Acetone System R. JOE BURKHEAD and J. THOMAS SCHRODT University of Kentucky, Lexington, Ky. 40506
Isobaric vapor-liquid equilibrium data for the system acetic acid-acetone have been obtained at 760 and 500 mm Hg, using an Altsheler still Acetic acid associates in the liquid and vapor phases, and this is accounted for in evaluating modified activity coefficients for the components. This system primarily shows small negative deviations of the coefficients with a maximum and a minimum appearing at high acetone mole fractions for both pressures. In evaluating the thermodynamic consistency of the data, the Herington test for isobaric data gave values of D — J of 5.4 and 7.6 at 760 and 500 mm Hg, respectively. The Redlich-Kister integral area method with an estimate of the heat of mixing term gave areas of 0.023 and 0.025 at 760 and 500 mm Hg, respectively.
/ C o n s i s t e n t v a p o r - l i q u i d e q u i l i b r i u m d a t a are necessary to d e s i g n a l l ^
types o f r e c t i f i c a t i o n devices. H o w e v e r , m a n y i n d u s t r i a l l y i m p o r t a n t
m i x t u r e s are n o n i d e a l , p a r t i c u l a r l y i n the l i q u i d phase, a n d p r e d i c t i n g t h e i r e q u i l i b r i u m p r o p e r t i e s f r o m f u n d a m e n t a l t h e r m o d y n a m i c s is not possible. T h u s , the c o r r e l a t i n g o f e x p e r i m e n t a l x-y-t
a n d x-y-P
d a t a has d e v e l o p e d
as a n i m p o r t a n t b r a n c h of a p p l i e d t h e r m o d y n a m i c s . T h e n o n i d e a l i t i e s o f e q u i l i b r i u m m i x t u r e s result f r o m v a r i o u s c o m b i n a t i o n s of m o l e c u l a r interactions; o n e s u c h i n t e r a c t i o n that has
been
r e c e n t l y s t u d i e d is m o l e c u l a r association. M o l e c u l e s of fatty acids s u c h as acetic a c i d t y p i c a l l y f o r m d i m e r s a n d , to a lesser extent, t r i m e r s b y h y d r o g e n b o n d i n g i n the v a p o r a n d l i q u i d states. F a i l u r e of the e q u i l i b r i u m d a t a o f b i n a r y systems c o n t a i n i n g a c e t i c a c i d to m e e t e s t a b l i s h e d c r i t e r i a o f consistency b a s e d u p o n the G i b b s - D u h e m r e l a t i o n has o b s e r v e d b y R i u s et al. (1),
C a m p b e l l et al. (2),
been
Herington (3), and
136
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
9.
BURKHEAD
M a r e k (4).
AND
Acetic
SCHRODT
Acid-Acetone
H e r e w e t r y to o b t a i n x-y-t
System
137
d a t a for t h e acetic a c i d - a c e t o n e
system at 760 a n d 500 m m H g a n d to s h o w h o w c o n s i d e r i n g a c i d d i m e r i z a t i o n i m p r o v e s the results for t h e r m o d y n a m i c consistency tests. Equilibrium
Theory
T h e l i q u i d phase a c t i v i t y coefficient of a c o m p o n e n t i n a L — V m i x t u r e is u s u a l l y g i v e n b y
T,
L
=
Pf
θ,
(D
w h e r e 0* is the i m p e r f e c t i o n pressure c o r r e c t i o n f a c t o r a n d the absent v a p o r p h a s e a c t i v i t y coefficient is t a k e n as u n i t y . I n systems c o n t a i n i n g a dimerizing component
E q u a t i o n 1 w i l l not g i v e t h e r m o d y n a m i c a l l y
consistent y/s. C o n s i d e r for s u c h a c o m p o n e n t i n a b i n a r y m i x t u r e , t h e respective m o d i f i e d v a p o r a n d l i q u i d e q u i l i b r i u m expressions,
=
(2)
k =
(3)
Κ and
w h e r e η a n d c represent true m o l e fractions a n d t h e s u b s c r i p t s m2 a n d
K
»
=
π » T)
W
m±
o2
A s i n a n y t w o phase b i n a r y system, c o n s i d e r i n g the m o n o m e r a n d d i m e r as t h e t w o c o m p o n e n t s , η„ + η = ι
α
1 and e
m
+
1, w i l l a l l o w E q u a t i o n
e = d
4 a n d the p u r e c o m p o n e n t f o r m of E q u a t i o n 3 to b e r e d u c e d to
_ V
1 + 42f P Q
o2
-
1
, .
and
V
1 +4/c - 1 0
2k ο
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
(6)
138
E X T R A C T I V E AND
T h e a c t i v i t y coefficient
for t h e m o n o m e r
AZEOTROPIC DISTILLATION
of the p u r e a s s o c i a t i n g c o m
p o n e n t is g i v e n b y Po2
Y-
=
TQ τη θ m
p
(n\
—
e
(7)
a n d i n t h e presence of a n o n a s s o c i a t i n g c o m p o n e n t b y (8)
Θ,η2 = Pï)m2 Ρ m32
Tm2
m
C o m b i n i n g E q u a t i o n s 4, 5, 6, a n d 7 a n expression for t h e h y p o t h e t i c a l s a t u r a t i o n v a p o r pressure of the p u r e m o n o m e r is o b t a i n e d :
jy i
m =
Omko ΤΓ
·
V
1 + 4Ko?o2 ~
V
1 +
— 7 = = =
YmAo
4k
*
0
-
/ x
1
0
T h e s t o i c h i o m e t r i c m o l e fractions of t h e associating c o m p o n e n t given
W
1 are
by
yt
= 7
^2
=
η
+
2
(10)
2 η < ; 2
and £m2 + —j—r 1 +
2e
/-,-,χ u t ;
d 2
ε<*2
T h e s e g i v e w i t h E q u a t i o n s 2 a n d 3, r e s p e c t i v e l y ,
„ η
"
2
=
2/2
-
2
=
*
V
1 +
Ρ
4UL
2jfp
y
(2-2/ ) 2
2
~
1
(2-y0
y i
/iox ( 1 2 )
and V ε
2
1 + 4k x ( 2 - x ) 2k x, ( 2 - x ) 2
2
1
2
,
1 Q
N
( 1 3 )
I f E q u a t i o n s 9, 12, a n d 13 are s u b s t i t u t e d i n t o E q u a t i o n 8, a m o d i f i e d e q u i l i b r i u m r e l a t i o n c o n t a i n i n g v a p o r a n d l i q u i d associations factors and Γ
2
Z
2
results:
Ζ Θ 2/ Ρ = Γ γ ζ Ρ 2
2
2
2
2
2
ο 2
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
(14)
9.
B U R K H E A D
Acetic Acid-Acetone
A N D SCHRODT
System
139
where
z
1 +
=
V
1 +
4K
1 +
V
P„
0
1 +
2
4 t f Ρ 2/ (2-2/ ) 2
2
and i +
=
1 +
V
V
T
1 +
+ ¥ 4ifc z
.
=
(
1
6
)
(2-z )
2
2
F o r a nonassociating component, B , i n the mixture, the true m o l e fractions a r e r e l a t e d t o t h e s t o i c h i o m e t r i c m o l e fractions b y
*
=
r
r
xi
=
T-r
V
(
1
7
)
and
(18)
T h e s e a r e c o m b i n e d w i t h E q u a t i o n s 2, 3, 10, a n d 11 to o b t a i n e q u a t i o n s for t h e t r u e m o l e fractions o f 1 i n t h e v a p o r a n d l i q u i d phases, respec tively: „ ηι
=
yi
ε ι
=
1 +
*K
- V 1 + AK Ρ y (2-y ) 2K P(2-y y
P(2-2/ )
2
2
2
2
(19)
and 1 +
4fc(2-s ) 2
V
1 +
4fc s
2
(2-χ )
.
2
X i
(
2
0
. )
A m o d i f i e d e q u i l i b r i u m r e l a t i o n f o r c o m p o n e n t 1 is w r i t t e n i n terms o f Ζχ a n d Γ
χ
c o r r e c t i o n factors f o r t h e a s s o c i a t i o n o f A i n t h e v a p o r a n d
l i q u i d phases, b y c o m b i n i n g E q u a t i o n s 8 ( w r i t t e n f o r c o m p o n e n t
1),
19, a n d 2 0 : Ζ!θι»ιΡ = r
L T L
X!Poi
(21)
where z
=
2 y + V 1 + 4K Ρ y {2-y )) (2-y ) (1 + V 1 + 4K Ρ y , ( 2 - y , ) ) 2
2
2
2
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
140
EXTRACTIVE
AND
AZEOTROPIC
DISTILLATION
and 2 (l-x
+
2
(2-x ) 2
V
(1 +
V
1 +
4fc
1 +
4fc ζ ( 2 - ζ ) )
x {2-x )) 2
2
2
(23)
2
T h e p r e c e d i n g d e r i v a t i o n s are g i v e n i n m o r e d e t a i l b y M a r e k a n d S t a n d a r t ( 5 ) a n d are a p p l i e d b y M a r e k (4)
to several b i n a r y systems.
T h e terms θχ a n d 0 a r e e v a l u a t e d f r o m p a r t i a l m o l a l v o l u m e d a t a o r 2
a p p r o x i m a t e d f r o m g e n e r a l i z e d correlations.
A c c o r d i n g to M a r e k a n d
Standart, t h e p r o d u c t s ΓΊγι a n d Τ γ m u s t satisfy a l l c r i t e r i a o f t h e r m o 2
2
d y n a m i c consistency, as s h o u l d γ ι a n d y f o r nonassociating systems. 2
T o evaluate t h e a c t i v i t y coefficients, IYy*, o f a L - V system c o n t a i n i n g a n associating c o m p o n e n t , t h e o n l y other d a t a n e e d e d a r e t h e m o d i f i e d v a p o r phase association constants, K a n d K. T h e s e are a f u n c t i o n of t e m 0
p e r a t u r e a n d pressure, a n d f o r Κ t h e y a r e also a f u n c t i o n o f t h e n o n associating c o m p o n e n t .
V a l u e s of Κ a r e scarce; h o w e v e r , t h e y m a y b e
a p p r o x i m a t e d b y e x t r a p o l a t i n g K d a t a t o temperatures b e l o w t h e n o r m a l 0
b o i l i n g p o i n t of t h e associating c o m p o n e n t .
Modified Redlich-Kister
Test
O n e m e t h o d o f e v a l u a t i n g t h e o v e r a l l t h e r m o d y n a m i c consistency of b i n a r y , i s o b a r i c L - V e q u i l i b r i u m d a t a is b a s e d o n t h e e q u a t i o n
(24)
T h e greater t h e heats o f m i x i n g a n d differences of b o i l i n g points o f the c o m p o n e n t s , t h e greater t h e v a l u e o f t h e r h s i n t e g r a l .
I n systems
w h e r e this is true, this q u a n t i t y is e v a l u a t e d to test o v e r a l l consistency. If x-y-t
d a t a a r e a v a i l a b l e at m o r e t h a n o n e pressure a n d i f t h e
assumption
(25)
is v a l i d , t h e n Ah /R M
is d e t e r m i n e d as a f u n c t i o n of Χχ a n d of Τ b y o b
t a i n i n g values o f Xid In y / d ( l / T ) over a range o f Ρ ( 6 ) . T h e s e 4
values a n d E q u a t i o n 24 w i l l test f o r consistency.
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
Ah /R M
9.
BURKHEAD
AND
SCHRODT
Acetic
Acid-Acetone
141
System
Experimental A n A l t s h e l e r s t i l l w a s u s e d t o o b t a i n t h e x-y-t d a t a a t 760 a n d 500 m m H g (see R e f e r e n c e 7 f o r a d e s c r i p t i o n o f this s t i l l ) . A s c h e m a t i c d i a g r a m o f o u r a p p a r a t u s is g i v e n i n F i g u r e 1. T h e pressure o f t h e system w a s c o n t r o l l e d t o w i t h i n ± 0 . 5 m m H g for e a c h series b y a C a r t e s i a n d i v e r manostat c o n n e c t e d t o a p o s i t i v e a i r leak, a v a c u u m p u m p , a n d a surge v o l u m e o f 12 liters. A n a b s o l u t e mercury-in-glass m a n o m e t e r w i t h a 0.1 m m s l i d i n g v e r n i e r w a s u s e d t o measure t h e pressure. T e m p e r a t u r e s w e r e m o n i t o r e d via t w o c o p p e r c o n s t a n t a n t h e r m o c o u p l e s ; o n e w a s l o c a t e d just a b o v e t h e l i q u i d surface a n d the other just b e l o w it. M a x i m u m différences o f 0.4°C w e r e detected, b u t a n average o f t h e t w o r e a d i n g s w a s r e p o r t e d t o 0.2°C. G l a c i a l acetic a c i d a n d acetone, b o t h m e e t i n g A C S specifications, w e r e u s e d . T o b e g i n a r u n , t h e s t i l l w a s c h a r g e d w i t h 500 m l o f s o l u t i o n a n d a l l o w e d to b o i l for 3 - 4 h o u r s ; e q u i l i b r i u m w a s assured b y a constant b o i l i n g t e m p e r a t u r e f o r a t least one h o u r . F o r the series a t 500 m m H g , i c e w a t e r w a s c i r c u l a t e d t h r o u g h t h e condenser to m i n i m i z e v a p o r losses. S a m p l e s w e r e w i t h d r a w n a t t h e system o p e r a t i n g pressure, a n d t h e i r densities d e t e r m i n e d a t 2 5 ± 0.1°C. T h e c o m p o s i t i o n w a s a n a l y z e d b y this m e t h o d because o f the l a r g e difference i n densities o f t h e t w o c o m ponents; measurements accurate t o ± 0 . 2 m o l e % w e r e r e c o r d e d .
Condenser
_Air Leak
Drying Tube
Ice-Water Bath Surge Bottles
rtr
1
Manostat
Variac Transformer Liquid Phase Sampling Flasks
Vacuum Water Pump Manometer
Absolute Mercury Manometer
-Vapor Phase Sampling Flask Figure 1. Results
and
Schematic diagram of experimental
apparatus
Discussion
T h e x-y-t d a t a f o r the acetic a c i d - a c e t o n e system at 760 a n d 500 m m H g are presented i n F i g u r e 2 a l o n g w i t h the d a t a of Y o r k a n d H o l m e s ( 8 ) at 760 m m H g . V a l u e s o f the s t a n d a r d a c t i v i t y coefficients, y χ f o r acetone
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
142
E X T R A C T I V E
120 r—ι
1
1
1
1
1
1
1
1
1
1
A N DA Z E O T R O P I C
1
1
1
1
1
1
DISTILLATION
1 Γ
Mole Fraction Acetone Figure 2.
Isobaric equilibrium
data of acetic
acid-acetone
a n d γ f o r a c e t i c a c i d , w e r e c a l c u l a t e d u s i n g : E q u a t i o n 1, s m o o t h e d d a t a 2
f r o m F i g u r e 2, t h e A n t o i n e v a p o r pressure e q u a t i o n f o r acetone ( 9 ) , e x p e r i m e n t a l v a p o r pressure d a t a f o r a c e t i c a c i d (10, 11, 12), a n d a t a b l e of i m p e r f e c t i o n pressure c o r r e c t i o n factors (13).
0 Figure 3.
0.1 Activity
T h e s e y's are p r e s e n t e d
0.2 0.3 0.4 0.5 0.6 0.7 0.8 Mole Fraction Acetone in Liquid phase coefficients
of acetic acid-acetone
0.9
at 760 mm Hg
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
1.0
9.
BURKHEAD
AND
Acetic Acid-Acetone System
SCHRODT
143
as a f u n c t i o n o f Χχ i n F i g u r e s 3 a n d 4. B o t h sets o f curves s h o w p o s i t i v e a n d n e g a t i v e d e v i a t i o n s f r o m i d e a l i t y a n d a m a x i m u m a t Χχ = 0.24. Iso b a r i c e q u i l i b r i u m studies b y R i u s et al. (1) o f acetic a c i d a n d l o w m o l e c u l a r w e i g h t a l c o h o l b i n a r y solutions r e s u l t e d i n s i m i l a r l y s h a p e d curves. F i r s t , t h e d a t a seem t o b e inconsistent since the m a x i m a at x = 0.24 a r e x
not b a l a n c e d b y m i n i m a a t t h e same c o m p o s i t i o n .
I n c l u d i n g t h e heat o f
m i x i n g t e r m t h a t is necessary f o r i s o b a r i c d a t a d i d not c o n f i r m consistency. T o i n c l u d e t h e effect o f t h e association o f t h e a c i d , t h e m o d i f i e d a c t i v i t y coefficients, ΓΊγχ a n d Τ γ , w e r e e v a l u a t e d . 2
0.25 j
1
0
1
0.1
Figure 4.
1 1
2
1 1
1
1
1 1
1
1
1
1—ι 1 1 1 1 1
0.2 0.3 0.4 0.5 0.6 0.7 0.8 Mole Fraction Acetone in Liquid Phase
0.9 1.0
Activity coefficients of acetic acid-acetone at 500 mm Hg
T o c a l c u l a t e Z a n d Ζχ a p p e a r i n g i n E q u a t i o n s 14 a n d 2 1 , f r o m E q u a 2
tions 15 a n d 22, M a r e k ' s e q u a t i o n f o r K (4) 0
-log
K >^ 0{1
a n d e x p e r i m e n t a l values o f K
0
temperature
Ko(p^o) a n d
a n d pressure.
= 10.4205 -
0)
(26)
(14, 15) w e r e p l o t t e d as a f u n c t i o n o f
Differences
b e t w e e n t h e values
of —log
t h e e x p e r i m e n t a l values o f — l o g K at t h e same t e m p e r a t u r e 0
w e r e t h e n p l o t t e d as a f u n c t i o n o f t e m p e r a t u r e a n d pressure, a n d isobars through the points were extrapolated
to the e q u i l i b r i u m
temperatures.
A d d i t i o n o f c o r r e s p o n d i n g Δ l o g K a n d l o g K0(P-*0) f r o m E q u a t i o n 2 6 0
gave - l o g i f ο = 1.4040 l o g Ρ o2 -
1.8821
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
(27)
144
EXTRACTIVE
AND AZEOTROPIC
DISTILLATION
T o d e t e r m i n e K, the association constant o f acetic a c i d i n t h e m i x t u r e , t h e a p p r o p r i a t e isobars, 760 a n d 500 m m H g , w e r e e x t r a p o l a t e d t o t e m peratures b e l o w t h e b o i l i n g p o i n t . T h e equations o b t a i n e d for Κ w e r e
-log
#
(
= 9.9905 + 0.00224* -
7 6 0 )
%
( > 28
2
and - l o g # 5oo) = 10.0505 + 0.00209* (
%
(29)
g
T h e e x p e r i m e n t a l d a t a u s e d t o d e t e r m i n e these constants w e r e scant, a n d t h e i r q u a l i t y is d e b a t e d r e g a r d i n g t h e i r u s e f o r these d e t e r m i n a t i o n s . F o r m u l a t i o n o f Δ l o g K vs. Τ a t constant pressure as a l i n e a r f u n c t i o n is 0
n o t necessarily c o r r e c t a n d w a s d o n e for l a c k o f another m e t h o d . V a l u e s o f Z
2
a n d Ζχ, c a l c u l a t e d u s i n g E q u a t i o n s 15 a n d 23, w e r e u s e d i n E q u a t i o n s
14 a n d 21 to e v a l u a t e Γ γ a n d ΓΊγι. 2
2
F i g u r e s 3 a n d 4 also s h o w the curves o f In ΓΊγι a n d In Γ γ vs. x 2
2
i9
and
t h e a p p e a r a n c e o f these curves i m p r o v e i m m e d i a t e l y b y c o n s i d e r i n g t h e association i n c a l c u l a t i n g these m o d i f i e d a c t i v i t y coefficients.
T h e s e plots
s h o w t w o u n u s u a l f e a t u r e s — n e g a t i v e deviations i n t h e a c t i v i t y coefficients a n d a m a x i m u m - m i n i m u m set a t h i g h m o l e f r a c t i o n acetone. N e g a t i v e deviations s h o w e d b y b o t h sets o f data—i.e., values o f Γ γ less t h a n o n e — a r e c h a r a c t e r i s t i c o f electrolytes o r o f m i x t u r e s i n w h i c h association o r c o m p o u n d f o r m a t i o n b e t w e e n the t w o c o m p o n e n t s reduces 0.20 r — ι — \
1 — 1 — ι 1 — 1 1—1 1—1 1 — ι — ι
1—ι—ι—1—r
Mole Fraction Acetone in Liquid Phase Figure 5.
Thermodynamic consistency plot for acetic acid-acetone system at 760 mm Hg
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
9.
B U R K H E A D
Acetic Acid-Acetone
A N D SCHRODT
145
System
0.20 r — ι — ι — ι — ι — ι — ι — ι — ι — ι — ι — ι — ι — ι — ι — ι — ι — ι — ι — ι — 1
_0 inL 0 Figure 6.
1
1
0.1
1
— — — — — — — — — — — — 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Mole Fraction Acetone in Liquid Phase
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
L
1
1.0
Thermodynamic consistency plot for acetic acid-acetone system at 500 mm H g
t h e i r v o l a t i l i t y . T h u s , i t seems that there is a s s o c i a t i o n o r a t t r a c t i o n b e t w e e n t h e a c e t i c a c i d a n d acetone m o l e c u l e s i n t h e l i q u i d , besides t h e acetic a c i d d i m e r i z a t i o n . A m a x i m u m a n d m i n i m u m a r e o b s e r v e d i n t h e curves o f In Τχγ a n d χ
In T j2 f o r b o t h sets o f d a t a . I n b o t h d a t a sets these o c c u r at x 2
x
about
e q u a l t o 0.65. T h e values o f Γ γ a r e s l i g h t l y greater a t 760 m m H g t h a n at 500 m m H g t h r o u g h o u t t h e range o f c o m p o s i t i o n s . N o other significant differences a r e n o t e d b e t w e e n t h e t w o sets o f curves. F r o m t h e plots o f In ( Γ 2 γ / Γ ι γ ι ) vs. Χχ, s h o w n i n F i g u r e s 5 a n d 6 2
for t h e t w o sets o f d a t a , values f o r t h e H e r i n g t o n test c a l c u l a t i o n s w e r e determined.
A c c o r d i n g t o H e r i n g t o n ( 3 ) , D — J m u s t b e less t h a n 10
i f t h e d a t a a r e consistent. A t 760 m m H g pressure, D is 33.6, a n d / is 28.2, giving D -
J = 5.4. A t 5 0 0 m m H g pressure, D =
36.4 a n d / = 28.8,
g i v i n g D — J= 7.6. T h u s b o t h sets o f d a t a seem t o b e t h e r m o d y n a m i c a l l y consistent b a s e d o n this test. F r o m F i g u r e s 5 a n d 6, t h e R e d l i c h - K i s t e r test a p p a r e n t l y w i l l n o t suffice f o r this system since t h e i n t e g r a t e d areas o f t h e curves a r e n o t zero.
R e t a i n i n g E q u a t i o n 24, v a l u e s o f A r V V R T
2
were calculated using
the p r o c e d u r e o u t l i n e d a b o v e . T h e results a r e p r e s e n t e d i n T a b l e I, a l o n g w i t h values o f 1 j
In ( Γ , tt/Tx γ ι ) dx
h
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
146
E X T R A C T I V E AND
Table I.
DISTILLATION
Modified Redlich-Kister Consistency Test Results
1 P ,mmHg
Γ@χι = 0 In ^
I
T
J O
760 500
AZEOTROPIC
l
dxi
m
-0.0234 - 0.0244
/ J T @ X
l ^ d T 1
=
1
H
Δ
Area
1
-0.0465 - 0.0492
0.0231 0.0248
as d e t e r m i n e d f r o m F i g u r e s 5 a n d 6. A l t h o u g h t h e differences
between
these values seem r a t h e r large, s t u d y i n g t h e p r o c e d u r e s u s e d i n e v a l u a t i n g In ( Γ γ / Γ ι γ ι ) a n d Ah /R 2
M
2
i n d i c a t e s t h a t t h e difference
b e t w e e n these
values is w e l l w i t h i n t h e l i m i t s o f t h e e x p e r i m e n t a l a n d p r o c e d u r a l errors. O n e difficulty i n e v a l u a t i n g these q u a n t i t i e s is t h e relative smallness of t h e d e v i a t i o n s f o r this system as c o m p a r e d w i t h m a n y other systems. V a l u e s of In Γ Ί γ ι close to z e r o t h r o u g h o u t t h e c o m p o s i t i o n r a n g e cause s l i g h t errors i n t h e system parameters t o b e significant i n t h e a r e a deter m i n a t i o n s . P r i m a r i l y i m p o r t a n t for i s o b a r i c systems is t h e fact t h a t t h e heat o f m i x i n g t e r m i n t h e equations d e r i v e d f r o m t h e b a s i c G i b b s - D u h e m relationship cannot be ignored a n d must b e calculated to indicate the d a t a consistency. W i t h i n t h e l i m i t s of e x p e r i m e n t a l error, t h e m o d i f i e d R e d l i c h - K i s t e r test i n d i c a t e s m a r g i n a l consistency of o u r d a t a . Acknowledgment G r a t e f u l a c k n o w l e d g m e n t is m a d e to t h e A s h l a n d O i l a n d R e f i n i n g C o . for s u p p o r t i n g this w o r k w i t h a f e l l o w s h i p . List
of
D Ak J Κ k Ρ R Τ t χ y Ζ Γ γ c η θ
H e r i n g t o n test p a r a m e t e r heat o f m i x i n g H e r i n g t o n test p a r a m e t e r v a p o r p h a s e association e q u i l i b r i u m constant l i q u i d p h a s e association e q u i l i b r i u m constant t o t a l pressure gas constant absolute t e m p e r a t u r e temperature s t o i c h i o m e t r i c l i q u i d m o l e fractions s t o i c h i o m e t r i c v a p o r m o l e fractions v a p o r phase association constant l i q u i d p h a s e association constant a c t i v i t y coefficient true mole fraction i n l i q u i d true mole fraction i n vapor i m p e r f e c t i o n pressure c o r r e c t i o n factor
31
Symbols
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
9.
B U R K H E A D A N D SCHRODT
Acetic
Acid-Acetone
System
147
Superscripts L V
l i q u i d phase vapor phase
Subscripts d dimer m monomer ο pure component 1 nonassociating component 2 associating c o m p o n e n t
Literature Cited 1. Rius, Α., Otero, J. L., Macorron, Α., Chem. Eng. Sci. (1959) 10, 105. 2. Campbell, A. N., Kartzmark, E. M., Gieskes, T. M. T. M., Can. J. Chem. (1963) 41,407. 3. Herington, E. F. G.,J.Inst. Petrol. (1951) 37, 457. 4. Marek, J., Collection Czech. Chem. Commun. (1955) 20, 1490. 5. Marek, J., Standart, G., ibid. (1954) 19, 1074. 6. Null, H. R., "Phase Equilibrium in Process Design," McGraw-Hill, New York, 1970. 7. Altsheler, W. B., Ind. Eng. Chem. (1951) 43, 2559. 8. York, R., Holmes, R., Ind. Eng. Chem. (1942) 34, 345. 9. Lange, Ν. Α., Ed., "Handbook of Chemistry," Rev. 10th ed., McGraw-Hill, New York, 1967. 10. MacDougall, J., Smith, H.,J.Amer. Chem. Soc. (1936) 58, 2585. 11. Ramsay, G., Young, R.,J.Chem. Soc. (1886) 49, 790. 12. Weast, R. C., Ed., "Handbook of Chemistry and Physics," 50th ed., The Chemical Rubber Company, Cleveland, 1970. 13. Burkhead, R. J., M.S. Thesis, University of Kentucky, Lexington, 1971. 14. Johnson, E. W., Nash, C. K.,J.Amer. Chem. Soc. (1936) 58, 2585. 15. Ritter, H. L., Simons, J. H.,J.Amer. Chem. Soc. (1945) 67, 757. RECEIVED February 10, 1972.
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
10 Separation of Water, Methyl Ethyl Ketone, and Tetrahydrofuran Mixtures HUGH M. LYBARGER and HOWARD L. GREENE Department of Chemical Engineering, The University of Akron, Akron, Ohio 44304
Ternary vapor-liquid equilibrium data for the system water-methyl ethyl ketone-tetrahydrofuran were determined with a vapor recirculating equilibrium still of the type used by Hipkin and Myers. All experimental points were checked for thermodynamic consistency using the test proposed by McDermott and Ellis. Calculated liquid phase activity coefficients were correlated over the range of solvent concentrations using regression analysis. These results indicate a low boiling valley between the binary azeotropes of water-tetrahydrofuran and water-methyl ethyl ketone, but no ternary azeotrope was found. A solvent purification scheme, aided by development of a modified Thiele-Geddes computer program, was designed to separate the ternary mixture into pure components. The resulting system requires use of three ordinary distillation columns and extractive distillation, using dimethylformamide as the solvent.
'^efrahydrofuran
( T H F ) a n d m e t h y l e t h y l k e t o n e ( M E K ) are c o m -
m o n l y u s e d as solvents for h i g h m o l e c u l a r w e i g h t p o l y v i n y l c h l o r i d e resins i n t o p c o a t i n g a n d a d h e s i v e a p p l i c a t i o n s . B l e n d s are u s e d to c o m b i n e the l o w cost o f m e t h y l e t h y l ketone w i t h the h i g h e r s o l v e n c y a n d greater v o l a t i l i t y of t e t r a h y d r o f u r a n .
B e c a u s e of the large a m o u n t of
T H F u s e d , its r e l a t i v e l y h i g h cost, a n d a i r p o l l u t i o n considerations, rec o v e r y is n o r m a l l y necessary. T h e solvent v a p o r m a y b e r e c o v e r e d i n c o m m e r c i a l l y a v a i l a b l e activ a t e d c a r b o n a d s o r p t i o n units.
W h e n the v a p o r - a i r m i x t u r e is passed
t h r o u g h a b e d of a c t i v a t e d c a r b o n , solvent vapors are a d s o r b e d w h i l e the s t r i p p e d a i r passes t h r o u g h . P e r i o d i c regeneration o f the a c t i v a t e d 148
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
10.
LYBARGER
AND
GREENE
Separation
of
149
Mixtures
c a r b o n w i t h l o w pressure steam, h o w e v e r , g e n e r a l l y contaminates t h e solvents w i t h a large a m o u n t o f w a t e r , i n c r e a s i n g greatly t h e difficulty of s u b s e q u e n t separations. T h i s s t u d y w a s u n d e r t a k e n to o b t a i n t h e necessary v a p o r - l i q u i d equilibrium
d a t a a n d to d e t e r m i n e
the distillation requirements
r e c o v e r i n g solvent f o r reuse f r o m t h e s o l v e n t - w a t e r f r o m a d s o r b e r regeneration. d a t a (2, 3)
for
mixture obtained
Previous binary v a p o r - l i q u i d e q u i l i b r i u m
i n d i c a t e d t w o b i n a r y azeotropes
M E K ) a n d a t w o phase region ( w a t e r - M E K ) .
(water-THF
and water-
T h e t e r n a r y system w a s
thus e x p e c t e d t o b e h i g h l y n o n i d e a l . Results of this s t u d y h a v e b e e n u s e d to d e s i g n a solvent
recovery
system c a p a b l e of s e p a r a t i n g e a c h solvent i n t o its o r i g i n a l p u r e state. I f s e p a r a t i o n o f t h e T H F - M E K m i x t u r e is unnecessary o r i f p u r i t y r e q u i r e ments are less d e m a n d i n g , t h e p r o p o s e d system c o u l d b e a p p r o p r i a t e l y simplified. Experimental A v a p o r - r e c i r c u l a t i n g e q u i l i b r i u m s t i l l s i m i l a r to t h a t d e s c r i b e d b y H i p k i n a n d M y e r s ( 1 ) w a s u s e d to d e t e r m i n e v a p o r - l i q u i d e q u i l i b r i u m d a t a f o r t h e system, w a t e r - M E K - T H F . I n this s t i l l s h o w n s c h e m a t i c a l l y i n F i g u r e 1, a r e c i r c u l a t i n g v a p o r is c o n t i n u o u s l y c o n t a c t e d w i t h a static l i q u i d sample. T h e v a p o r - l i q u i d system is e n c l o s e d b y a jacket w h e r e
KEY 1 2 3 4 5 β 7 8 9 IΟ II 12 13 14 15 16
Figure 1.
Schematic diagram of the equilibrium
Vacuum Pump Manometer Mtrcury Traps Jacket Condenser Sample Condenser Thermocouples Thermistors Jacket Heater Reboiler Jacket Contactor Body Contactor Throat Contactor Sample Valve Vapor Sample Volve Needle Valves Nitrogen Tank
still
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
150
EXTRACTIVE AND AZEOTROPIC
T a b l e I. Run No.
a
ywater.
ΎΜΕΚ,
DISTILLATION
Liquid
YTHF.
Phase
XMEK,
mole fr.
mole fr.
mole fr.
mole fr.
mole fr.
1 3 4 5 6 7 8 910 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29"
.288 .217 .256 .257 .275 .236 .199 .226 .297 .244 .226 .234 .267 .314 .250 .247 .121 .103 .230 .163 .248 .311 .269 .244 .215 .181 .206 .262
.181 .289 .177 .209 .388 .223 .102 .178 .478 .216 .058 .162 .327 .299 .182 .174 .039 .278 .619 .123 .477 .599 .291 .304 .040 .350 .284 .284
.532 .494 .566 .534 .337 .541 .699 .596 .225 .540 .717 .604 .407 .387 .568 .580 .841 .619 .152 .714 .275 .090 .440 .452 .746 .474 .510 .453
30 31 32 33 34 35 36 37 38 39 40 41*
.165 .201 .095 .219 .134 .153 .221 .211 .160 .141 .144 .293
.436 .149 .523 .006 .000 .000 .000 .000 .018 .031 .059 .366
.399 .650 .383 .775 .866 .847 .779 .790 .822 .828 .796 .342
42°
.353
.370
.277
43 44"
.197 .318
.071 .447
.732 .235
.561 .486 .866 .506 .377 .460 .322 .697 .375 .508 .585 .869 .379 .507 .507 .438 .071 .043 .110 .118 .184 .281 .438 .289 .296 .501 .169 .594 .862 .093 .189 .034 .596 .091 .121 .424 .661 .131 .093 .113 .502 .892 .469 .914 .177 .518 .862
.166 .237 .039 .181 .399 .211 .124 .092 .486 .194 .046 .037 .342 .267 .169 .181 .062 .409 .787 .197 .607 .665 .287 .374 .051 .279 .409 .208 .064 .587 .213 .678 .005 .000 .000 .000 .000 .029 .048 .092 .315 .064 .383 .058 .103 .368 .101
Two-phase run.
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
10.
LYBARGER
Activity
AND
GREENE
Separation
of
Mixtures
Coefficients
XTHF
y
water
fMEK
y
THF
.273 .276 .094 .313 .224 .329 .553 .212 .140 .298 .369 .095 .279 .226 .324 .381 .867 .548 .103 .686 .209 .054 .275 .338 .653 .220 .422 .197 .074 .321 .598 .288 .399 .909 .879 .577 .339 .840 .859 .796 .184 .044 .149 .028 .721 .113 .037
Temp. °C.
mole fr. 2.021 1.710 1.343 2.065 2.497 1.925 2.577 1.267 2.608 1.846 1.598 1.088 2.463 2.157 1.876 2.143 7.289 8.396 5.933 5.455 4.274 3.385 2.188 2.994 3.101 1.244 4.588
1.722 1.891 8.008 1.878 1.379 1.612 1.352 3.058 1.353 1.723 2.045 7.152 1.375 1.611 1.661 1.476 1.057 0.980 0.962 0.989 1.050 1.167 1.481 1.186 1.318 1.791 1.060
1.946 1.752 6.582 1.738 1.362 1.587 1.306 2.794 1.421 1.777 2.005 6.462 1.343 1.570 1.706 1.483 1.022 1.041 1.182 1.035 1.136 1.407 1.492 1.242 1.204 1.968 1.173
64.7 65.3 61.6 64.0 67.9 65.8 63.5 64.9 68.8 65.3 63.6 64.2 67.4 67.5 65.5 65.5 62.9 67.4 72.2 64.8 69.6 70.5 67.0 67.1 62.9 67.7 65.7 67.4
5.872 4.179 8.089 1.558 6.745 5.455 2.321 1.375 5.186 6.412 5.343
1.020 1.108 0.966 1.845 0.000 0.000 0.000 0.000 1.054 1.087 1.065
1.099 1.086 1.086 2.038 1.052 1.022 1.465 2.467 1.025 1.010 1.036
68.8 64.7 71.5 63.1 61.4 62.7 62.0 62.7 63.1 63.1 63.5 68.3 68.8
4.738
1.162
1.063
63.1 70.3
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
152
EXTRACTIVE
AND
AZEOTROPIC
DISTILLATION
h y d r o c a r b o n v a p o r is m a i n t a i n e d at the b o i l i n g t e m p e r a t u r e of the l i q u i d s a m p l e i n t h e contactor. T h e s t i l l is t h o r o u g h l y i n s u l a t e d so that the l i q u i d a n d v a p o r i n the c o n t a c t o r are m a i n t a i n e d at a d i a b a t i c c o n d i t i o n s . S t a n d a r d i z e d p r o c e d u r e s for o b t a i n i n g e q u i l i b r i u m a n d for s a m p l i n g t h e r e s u l t a n t v a p o r a n d l i q u i d , as o u t l i n e d b y L y b a r g e r ( 7 ) , w e r e f o l l o w e d . A l l v a p o r - l i q u i d e q u i l i b r i u m d a t a w e r e o b t a i n e d at a constant pressure of 730 m m of m e r c u r y w h i c h w a s a c h i e v e d b y a p p l y i n g v a c u u m or n i t r o g e n pressure to the s t i l l ( d e p e n d i n g o n a t m o s p h e r i c pressure) u n t i l the d e s i r e d differential w a s o b t a i n e d . A f t e r the v a p o r was r e c i r c u l a t e d , a constant pressure c o u l d b e m a i n t a i n e d i n the s t i l l w i t h o u t further adjustments. A l l l i q u i d a n d v a p o r samples w e r e a n a l y z e d o n a V a r i a n A e r o g r a p h M o d e l 202-1B t h e r m a l c o n d u c t i v i t y gas c h r o m a t o g r a p h . A 12-foot c o l u m n p a c k e d w i t h P o r a p a k Q , w h i c h g a v e a c l e a n s e p a r a t i o n for water, was u s e d , b u t it c a u s e d the peaks for m e t h y l e t h y l ketone a n d t e t r a h y d r o f u r a n to b e s l i g h t l y m e r g e d . T h e c h r o m a t o g r a p h w a s c a l i b r a t e d u s i n g 11 solvent b l e n d s of k n o w n c o m p o s i t i o n s . A r e a c o r r e c t i o n factors w e r e d e t e r m i n e d f r o m the s t a n d a r d samples, r e l a t i n g w e i g h t f r a c t i o n to a r e a f r a c t i o n . A l l samples w e r e a n a l y z e d t w i c e , a n d the results w e r e a v e r a g e d . C a l i b r a t i o n of the c h r o m a t o g r a p h w i t h k n o w n w a t e r - M E K - T H F samples i n d i c a t e d accurate d e t e r m i n a t i o n to w i t h i n ±0.002-0.005 m o l e f r a c t i o n , d e p e n d i n g o n composition. Results and
Discussion
Vapor—Liquid Equilibrium Data.
F o r t y - f o u r pairs of v a p o r - l i q u i d
e q u i l i b r i u m d a t a w e r e d e t e r m i n e d for the t e r n a r y system; l i q u i d c o m p o sitions i n the s i n g l e a n d two-phase regions w e r e s t u d i e d . Results of these runs are s u m m a r i z e d i n T a b l e
I a l o n g w i t h the l i q u i d phase
activity
coefficients a n d b o i l i n g p o i n t s o b t a i n e d at a pressure of 730 m m of mercury.
Tabulated
compositions
are averages of t w o
analyses for
each
sample. C a l c u l a t e d l i q u i d p h a s e a c t i v i t y coefficients are b a s e d o n R a o u l t ' s and Dalton's laws:
Pi =
Piji
=
tiPiXi
(1)
a s s u m i n g v a p o r phase i d e a l i t y . The
v a p o r — l i q u i d e q u i l i b r i u m d a t a for the single-phase
r u n s are
g r a p h i c a l l y s h o w n i n F i g u r e 2 w h e r e the two-phase r e g i o n at 60 ° C
is
also p l o t t e d to i n d i c a t e the extent of p a r t i a l m i s c i b i l i t y at the b o i l i n g point.
A l i n e connects e a c h p a i r of v a p o r - l i q u i d e q u i l i b r i u m c o m p o s i -
tions. T e m p e r a t u r e results for the v a p o r - l i q u i d e q u i l i b r i u m d a t a i n d i c a t e a l o w b o i l i n g v a l l e y c o n n e c t i n g t h e b i n a r y azeotropes of (66.2
mole
%
M E K , normal boiling point 73.4°C)
and
water—MEK water-THF
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
10.
L Y B A R G E R
A N D
Separation
G R E E N E
of
Water
0.00 THF
0.10
0.20
0.30
0.40
0.50
153
Mixtures
KEY
0.60
0.70
0.80
030
100 MEK
Figure 2. Ternary vapor-liquid equilibrium data for the one-phase region at 730 mm mercury absolute pressure with the solubility envelope for 60° C
(81.7 m o l e
%
T H F , normal boiling point 64.0°C).
The
dashed line
s h o w n i n F i g u r e 2 indicates the a p p r o x i m a t e l o c a t i o n of this v a l l e y . Results for the two-phase r u n s are p l o t t e d i n F i g u r e 3 a l o n g w i t h the s o l u b i l i t y e n v e l o p e at 60 ° C .
A l t h o u g h the e q u i l i b r i u m s t i l l w a s n o t
d e s i g n e d for two-phase o p e r a t i o n , it was p o s s i b l e to o b t a i n the necessary d a t a for this solvent system since t h e v a p o r i n e q u i l i b r i u m w i t h the t w o phase l i q u i d was a l w a y s single-phase w h e n c o n d e n s e d . S e v e r a l two-phase samples w e r e a n a l y z e d after c o o l i n g h a d o c c u r r e d , a c c o u n t i n g for t h e fact t h a t the ends of the l i q u i d - l i q u i d tielines i n this r e g i o n d o n o t q u i t e e x t e n d to the s o l u b i l i t y c u r v e .
E q u i l i b r i u m vapor compositions
corre-
s p o n d i n g to the l i q u i d c o m p o s i t i o n s are also p l o t t e d i n F i g u r e 3 a n d , except for R u n 42 w h i c h e x p e r i e n c e d
severe b u m p i n g d u r i n g b o i l i n g ,
f a l l a l o n g a n a l m o s t straight l i n e . F o r a t e r n a r y system the c o m p o s i t i o n of v a p o r i n e q u i l i b r i u m w i t h a heterogeneous l i q u i d m i x t u r e c a n b e r e l a t e d to the l i q u i d c o m p o s i t i o n s b y two relationships (5).
F i r s t , the same v a p o r c o m p o s i t i o n w i l l result
f r o m a n y l i q u i d c o m p o s i t i o n o n a g i v e n l i q u i d - l i q u i d tieline. S e c o n d , a
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
154
EXTRACTIVE
AND
AZEOTROPIC
DISTILLATION
s m o o t h c u r v e c a n be d r a w n t h r o u g h the v a p o r c o m p o s i t i o n s i n e q u i l i b r i u m w i t h heterogeneous
liquid
c o m p o s i t i o n s . T h i s c u r v e extends
f r o m the v a p o r i n e q u i l i b r i u m w i t h the b i n a r y heterogeneous azeotrope to v a p o r i n e q u i l i b r i u m w i t h the h o m o g e n e o u s l i q u i d w h e r e t h e c o m p o sitions of t h e t w o l i q u i d phases b e c o m e c o i n c i d e n t ( t h e p l a i t p o i n t ) . W i t h these t w o r e l a t i o n s h i p s , one c a n .closely a p p r o x i m a t e t h e c o m p o s i t i o n o f v a p o r i n e q u i l i b r i u m w i t h a g i v e n t w o - p h a s e l i q u i d f r o m F i g u r e 3.
Wottr
0.00
0.10
0.20
0.30
0.40
0.50
0.70
O60
030
0.90
THF
1.00 MEK
Figure 3. Ternary vapor-liquid equilibrium data for the two-phase region at 730 mm mercury absolute pressure with the solubility envelope for 60° C Thermodynamic and Ellis (6)
Consistency.
T h e test d e v e l o p e d b y M c D e r m o t t
w a s u s e d to d e t e r m i n e t h e t h e r m o d y n a m i c c o n s i s t e n c y of
the v a p o r - l i q u i d e q u i l i b r i u m d a t a . T h i s test i n v o l v e s c a l c u l a t i o n of the deviation, ( D
c d
) , b e t w e e n p a i r s of p o i n t s (c, d)
as d e f i n e d b e l o w :
η D
cd
=
Σ i=l
(x
ic
+ x) id
(log y id
-
log y ) ic
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
(2)
10.
L Y B A R G E R
Separation
A N D G R E E N E
155
of Mioctures
T h i s d e v i a t i o n is d e r i v e d f r o m t h e i s o t h e r m a l - i s o b a r i c f o r m of t h e G i b b s D u h e m e q u a t i o n a n d c a n b e a p p l i e d to i s o b a r i c e q u i l i b r i u m d a t a b y m i n i m i z i n g t h e c o m p o s i t i o n a n d t e m p e r a t u r e differences b e t w e e n p a i r s of points. T h i s w a s d o n e b y c h o o s i n g d a t a paths t h r o u g h t h e ternary e q u i l i b r i u m d i a g r a m so that differences i n c o m p o s i t i o n a n d t e m p e r a t u r e b e t w e e n pairs o f p o i n t s w e r e m i n i m i z e d . A p o i n t w a s c o n s i d e r e d to b e inconsistent i f i t d e v i a t e d m o r e t h a n 0.02 w i t h b o t h o f its n e i g h b o r s . T h i s d e v i a t i o n w a s chosen since i t a p p r o a c h e d t h e a p p r o x i m a t e l i m i t of t h e d e v i a t i o n c a u s e d b y a n a l y t i c a l i n a c c u r a c y . R u n s 1, 4, 5, 13, 15, 2 3 , 27, a n d 28 w e r e d e t e r m i n e d to b e inconsistent o n this basis. Correlation of Liquid Phase Activity Coefficients. F o r a c t i v i t y c o efficients to b e u s e d i n d i s t i l l a t i o n c a l c u l a t i o n s , t h e y are n o r m a l l y repre sented as a f u n c t i o n o f c o m p o s i t i o n . H e r e a m u l t i p l e regression c o m p u t e r p r o g r a m w a s u s e d to d e t e r m i n e t h e coefficients f o r a n e q u a t i o n o f t h e form lny.i
= α + a&i + a x 0
2
aaXz
2
+
α 7Χ&2
+ a3 X 3 + a X i + 2
4
2
+
a&ix
z
+
a&
2
2
+
(3)
a& x 2
z
w h e r e x x , a n d x a r e t h e l i q u i d m o l e fractions of water, m e t h y l e t h y l ketone, a n d t e t r a h y d r o f u r a n , respectively. l9
2
s
T e r m s w e r e d e l e t e d f r o m t h e regression e q u a t i o n u n t i l a n e q u a t i o n c o n t a i n i n g o n l y terms h a v i n g a confidence l e v e l of greater t h a n 8 0 % to i m p r o v e fit ( i n terms o f s u m o f squares e r r o r ) w a s o b t a i n e d . Coefficients (α/s) f o r t h e r e s u l t i n g s i m p l i f i e d equations a r e s u m m a r i z e d i n T a b l e I I w i t h a n estimate o f fit. Table II.
Regression Analysis Coefficients Used in Equation 3 an
ai
en
a5
-4.5041
2.4778
—
-0.0426
—
2.0063
- 0.1641
-0.0017
—
2.0828
0.1995
a
W a t e r (1) ( R = 0.996) MEK
(2)
( R = 0.983) THF
(3)
( R = 0.997) a
2.2301
All a{'8 not listed above were determined to be zero.
F o r m i x t u r e s c o n t a i n i n g m o r e t h a n 0.95 m o l e f r a c t i o n o f either w a t e r o r M E K , respective a c t i v i t y coefficients f o r w a t e r o r M E K a r e r e c o m m e n d e d to b e chosen as 1.0 rather t h a n t h e v a l u e p r e d i c t e d b y t h e regression equations since insufficient d a t a i n these regions cause a c t i v i t y coefficients to d e v i a t e s o m e w h a t f r o m t h e r e q u i r e d t e r m i n a l v a l u e o f u n i t y .
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
156
EXTRACTIVE
A N DAZEOTROPIC
DISTILLATION
THF
WATER
f~~®
© IV
20 Plates
WATER
Figure 4.
Feed 5 th
15 Plates
15 Plats»
L/D« 9
Feed 5 th
Feed β*
L/D* 3
L/D»3
1
MEK
Schematic diagram of solvent separation
T e r n a r y Separation B y Distillation.
scheme
T o design a recovery
system,
a s t a r t i n g c o m p o s i t i o n o f 85 m o l e % w a t e r , 7.5 m o l e % t e t r a h y d r o f u r a n , a n d 7.5 m o l e % m e t h y l e t h y l k e t o n e w a s chosen. T h i s assumes 1.5 p o u n d s of steam p e r p o u n d o f solvent are u s e d for r e g e n e r a t i o n a n d a b l e n d o f e q u a l a m o u n t s o f the solvents for t h e p o l y v i n y l c h l o r i d e processing. F i g u r e 2 shows b y t h e r e l a t i v e l e n g t h o f t h e c o n n e c t i n g Unes that i n t h e r e g i o n o f w a t e r - r i c h l i q u i d m i x t u r e s r e c t i f i c a t i o n to p r o d u c e v a p o r s r i c h i n T H F is easily o b t a i n e d . H o w e v e r , the existence o f a m i n i m u m b o i l i n g v a l l e y e x t e n d i n g across the d i a g r a m f r o m the T H F - w a t e r b i n a r y a z e o t r o p e t o t h e M E K - w a t e r b i n a r y azeotrope m a k e s i t i m p o s s i b l e t o r e m o v e a l l w a t e r f r o m the o v e r h e a d b y a single d i s t i l l a t i o n . T h e
best
that c a n b e d o n e i n t h e i n i t i a l d i s t i l l a t i o n is a n o v e r h e a d p r o d u c t i n the l o w b o i l i n g valley a n d a bottom product of substantially pure water. S e v e r a l alternatives exist t o treat f u r t h e r the o v e r h e a d stream. A s e c o n d d i s t i l l a t i o n , u s i n g t h e o v e r h e a d f r o m t h e i n i t i a l d i s t i l l a t i o n as feed, w o u l d y i e l d a n o v e r h e a d close t o the T H F - w a t e r b i n a r y a z e o t r o p e a n d a b o t t o m i n t h e r e g i o n o f the M E K - w a t e r b i n a r y azeotrope.
These
two
streams c o u l d t h e n b e d r i e d b y r e m o v i n g w a t e r p h y s i c a l l y — b y m o l e c u l a r
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
LYBARGER
10.
AND
Separation
GREENE
of
157
Mixtures
sieve o r c a l c i u m c h l o r i d e treatment, e t c . — t o y i e l d r e l a t i v e l y p u r e T H F and M E K . A s e c o n d alternative, u s i n g o n l y d i s t i l l a t i o n m e t h o d s , is c o n s i d e r e d here. T h i s m e t h o d , s h o w n s c h e m a t i c a l l y i n F i g u r e 4, involves t r e a t m e n t of t h e o v e r h e a d f r o m the first c o l u m n ( c o m p o s i t i o n i n t h e l o w b o i l i n g v a l l e y ) b y a d d i n g to it sufficient d r y T H F to b r i n g t h e n e w f e e d c o m p o s i t i o n across the l o w b o i l i n g v a l l e y . D i s t i l l a t i o n of this n e w f e e d y i e l d s the T H F - w a t e r azeotrope as o v e r h e a d a n d a b o t t o m c o n s i s t i n g of d r y M E K or an M E K - T H F mixture. T h i s T H F - w a t e r azeotrope may then b e d r i e d b y extractive d i s t i l l a t i o n w i t h d i m e t h y l f o r m a m i d e , as has b e e n p r e v i o u s l y d i s c u s s e d (4).
T h e b o t t o m p r o d u c t , as a n M E K - T H F m i x -
ture, is easily p u r i f i e d b y a n a d d i t i o n a l d i s t i l l a t i o n , b u t w i t h r e g u l a t i o n of f e e d c o m p o s i t i o n i n t h e p r e v i o u s c o l u m n , this stream m a y b e
made
to a p p r o a c h p u r e M E K , e h m i n a t i n g the n e e d for this s u b s e q u e n t d i s t i l l a t i o n . F i n a l l y , a s m a l l c o l u m n u s e d t o separate the solvent, d i m e t h y l f o r m a m i d e ( D M F ) , f r o m the w a t e r is necessary to c o m p l e t e the separat i o n scheme. Multicomponent Computer Methods for Sizing Required Columns. A modified Thiele-Geddes
m e t h o d , p r o g r a m m e d for a n I B M 370-155,
w a s u s e d to p e r f o r m t h e c a l c u l a t i o n s n e e d e d to size e a c h r e q u i r e d c o l u m n . E x p e r i m e n t a l a c t i v i t y coefficient d a t a w e r e u s e d to a l l o w for n o n ideal l i q u i d phase
behavior
while
e n e r g y balances, u s i n g
estimated
e n t h a l p y d a t a , w e r e u s e d to c o r r e c t for non-constant m o l a l overflow. T h e t a M e t h o d w a s u s e d for convergence, a n d a l l p l a t e efficiencies
The were
a s s u m e d to b e 1 0 0 % . ( See R e f e r e n c e 7 for a d d i t i o n a l c a l c u l a t i o n a l details a n d a program listing. ) Table III.
Stream No. Flow Rate (moles/hr) Composition (mole fraction) THF MEK H0 DMF 2
1
2
Column Specifications 3
4
5
100 20.0 80.0 34.3 26.8
.075 .374 .075 .369 .002 .850 .258 .998
6
7
7.5 21.6
.635 .799 .016 .215 .011 .984 .150 .190 —
8
9
10
15.2
5.2
10.0
.999 — —
—
—
.660 .999 .001
.340
—
.001 .999
Column Specification and Flowsheet. A s c h e m a t i c d i a g r a m of
the
solvent s e p a r a t i o n scheme a n d t h e results of the c o m p u t e r analysis for e a c h c o l u m n a r e s h o w n i n F i g u r e 4 a n d T a b l e III, respectively.
Feed
p l a t e locations are g i v e n w i t h respect to the b o t t o m of e a c h c o l u m n . P l a t e
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
158
EXTRACTIVE AND AZEOTROPIC DISTILLATION
requirements for columns III and IV, which contain dimethylformamide, are based on an extension of a previous design analysis by Shah and Greene (4). Literature Cited 1. "Recovery of THF du Pont Tetrahydrofuran," Ε. I. du Pont de Nemours and Co. (Inc.), Electrochemicals Department, Wilmington. 2. Methyl Ethyl Ketone, Shell Chemical Corporation, Technical Publication SC: 50-2, New York. 3. Shnitko, V. Α., Kogan, V. B., "Liquid-Vapor Equilibrium in the Systems Tetrahydrofuran-Water and Tetrahydrofuran-Ethylene Glycol and a Method for Dehydration of Tetrahydrofuran,"J.Appl. Chem. USSR 4 (6) 1236-1242. 4. Shah, C. S., Greene, H. L., "Vapor-Liquid Equilibrium for the Ternary System Tetrahydrofuran-Water-Dimethylformamide," J. Chem. Eng. Data 15 (3) 408-411. 5. Hala, E., Pick, J., Fried, V., Vilim, O., "Vapor-Liquid Equilibrium," pp. 107-109, Pergamon, 1967. 6. McDermott, C., Ellis, S. R. M., "A Multicomponent Consistency Test," Chem. Eng. Sci. (1965) 20, 293-296. 7. Lybarger, Η. M., "Ternary Vapor-Liquid Equilibrium Data Applied to the Separation of a Mixture of Water, Methyl Ethyl Ketone, and Tetrahydro furan," Thesis, The University of Akron (March 1972). RECEIVED February 14, 1972.
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
11 Prediction of Vapor Composition in Isobaric Vapor-Liquid Systems Containing Salts at Saturation D. JAQUES and W. F. FURTER Department of Applied Chemistry, Royal Melbourne Institute of Technology, Melbourne, Victoria, Australia, and Department of Chemical Engineering, Royal Military College of Canada, Kingston, Ontario, Canada A method is described for calculating equilibrium vapor compositions from boiling point vs. liquid composition data in ternary systems composed of two liquid components and a salt added to saturation. The procedure is tested on the ethanol-water system containing each of a wide range of inorganic salts at saturation. The results suggest that good quality Τ-Π-x data will yield y values of comparable accuracy.
* T * o o b t a i n v a p o r — l i q u i d e q u i l i b r i u m d a t a for b i n a r y systems, i t is n o w w e l l e s t a b l i s h e d that u n d e r
certain circumstances
it can be
more
accurate a n d less t i m e c o n s u m i n g to m e a s u r e the b o i l i n g p o i n t , the t o t a l pressure, a n d the l i q u i d c o m p o s i t i o n a n d t h e n use the G i b b s - D u h e m r e l a t i o n s h i p to p r e d i c t v a p o r c o m p o s i t i o n ( I ) r a t h e r t h a n to m e a s u r e it. T h e d i s a d v a n t a g e is that there is n o w a y o f c h e c k i n g the t h e r m o d y n a m i c consistency o f the e x p e r i m e n t a l data. F o r systems c o m p o s e d o f t w o l i q u i d s a n d a salt at saturation, this p r o c e d u r e is e s p e c i a l l y attractive because there are c o n s i d e r a b l e e x p e r i m e n t a l difficulties i n o b t a i n i n g accurate x - t / - T - I I d a t a a n d the
process
is m o r e t i m e c o n s u m i n g t h a n i n the absence o f salts. A p r o c e d u r e is presented w h i c h is b a s e d u p o n B a r k e r s m e t h o d for c a l c u l a t i n g v a p o r c o m p o s i t i o n s f r o m the
k n o w n temperature
(2) de
p e n d e n c e o f the v a p o r pressure of the p u r e constituents, w i t h s u i t a b l e m o d i f i c a t i o n for the presence o f salt, a n d f r o m the d e p e n d e n c e
o f the
b o i l i n g p o i n t o f the m i x t u r e w i t h c o m p o s i t i o n o f the e q u i l i b r i u m l i q u i d phase.
159 In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
160
EXTRACTIVE
AND AZEOTROPIC DISTILLATION
Procedure A c o m p u t e r p r o g r a m is u s e d w h i c h m i n i m i z e s 2 ( Π - Π ) 0
2
where the
t o t a l pressure is g i v e n b y : n
= x p '
c
+ (ΐ-χ)ρ' γ,
m
(1)
2
U s i n g ρ Ί a n d p ' i n s t e a d o f t h e s a t u r a t i o n v a p o r pressures o f t h e p u r e 2
l i q u i d components
a l l o w s f o r t h e presence
o f salt.
F o r salt-saturated
systems i t i s p r o p o s e d t o base t h e a c t i v i t y coefficients o n a s t a n d a r d state of e a c h l i q u i d c o m p o n e n t s a t u r a t e d w i t h salt. T h e a c t i v i t y
coefficients
are r e l a t e d t o t h e l i q u i d c o m p o s i t i o n b y u s i n g t h e two-constant W i l s o n e q u a t i o n ( 3 ) except f o r systems w h i c h s h o w a r e g i o n o f i m m i s c i b i l i t y w h e n t h e three-constant f o r m is necessary. O n e a d v a n t a g e o f t h e W i l s o n e q u a t i o n o v e r other s e m i - e m p i r i c a l a p p r o x i m a t i o n s f o r i n t e g r a t i n g t h e G i b b s - D u h e m e q u a t i o n is t h a t i t h a s a d e g r e e o f b u i l t - i n dependence form
f o r t h e l i q u i d - p h a s e a c t i v i t y coefficients.
temperature
T h e two-constant
gives:
mη -
-W-AM-*))
in y, -
+ (i-x) { - ^
- H i - Α * ,
-
-
W h e n t h e best values o f A i a n d A s i t i o n is c a l c u l a t e d : 2
ln(l-y)
= Ζη((1-χ)ρ' /Π) j(l-x) X
2
j,^}
12
\ 1-A x
(2b)
have been found, the vapor
2 2
A 12
1
ïT^fb)} <*>
(£ -V )(II-p' )/RT -
2
_
-
2
_
2
xA
21
1-A
21
compo
ln(l-A x) 12
)
<> 3
(l-x)f
T h e t e r m i n v o l v i n g t h e m i x e d s e c o n d v i r i a l coefficients
was not used
because o f t h e u n c e r t a i n t i e s i n t h e values o f t h e s e c o n d v i r i a l
coefficients
of t h e p u r e c o m p o n e n t s . Application T h e m e t h o d d e s c r i b e d a b o v e is a p p l i e d t o t h e e t h a n o l - w a t e r
system
w h i c h has b e e n s a t u r a t e d i n t u r n w i t h e a c h of a w i d e r a n g e o f i n o r g a n i c salts. T h e v a p o r pressure o f w a t e r s a t u r a t e d w i t h salts o v e r a t e m p e r a t u r e range is a v a i l a b l e f o r m a n y salts (4).
F o r e t h a n o l these d a t a a r e
u n a v a i l a b l e , a n d a c o r r e c t i o n to t h e saturation v a p o r pressure is a p p l i e d b y m u l t i p l y i n g b y t h e r a t i o o f t h e v a p o r pressure o f e t h a n o l s a t u r a t e d
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
11.
J A Q U E S
A N D
Prediction
F U R T E R
of Vapor
161
Composition
w i t h salt to the v a p o r pressure of p u r e e t h a n o l at the salt s o l u t i o n b o i l i n g T h i s r a t i o , c,
point.
is a s s u m e d to
be
independent
of
temperature.
I n t e r p o l a t i n g l i t e r a t u r e d a t a y i e l d e d the r e q u i r e d v a l u e s of the v o l u m e s of the t w o l i q u i d s ( 5 )
molar
at the a p p r o p r i a t e temperatures a n d the
s e c o n d v i r i a l coefficients of w a t e r ( β )
and ethanol (7).
A n example
of
the fit is s h o w n i n T a b l e I. Table I. Calculated Vapor Compositions from Fit of Isobaric D a t a Ethanol—Water—Saturated Ammonium Chloride (14)
X .034 .074 .124 .170 .284 .446 .633 .759 .858 .938
G*/RT-x
Τ—χ fit
y
Τ
.495 .595 .646 .674 .696 .720 .752 .807 .869 .936
93.8 87.2 84.2 82.5 81.7 80.8 79.4 78.5 77.7 77.9
fit
(y-y»)
(y-yc)
.000 -.012 -.007 -.005 -.001 -.003 -.019 -.012 -.006 .001
.003 -.007 .000 .004 .009 .005 -.016 -.014 -.011 -.003 .0098
.0098
Sample deviation
A s a n alternative, these d a t a w e r e also fitted to W i l s o n s free e n e r g y equation: (? /RT = E
-x
ln(l-A (l-x)) 21
-
(l-x)
(4)
ln{\-A x) l2
a n d the v a p o r c o m p o s i t i o n w a s a g a i n c a l c u l a t e d b y u s i n g E q u a t i o n 3.
A
d i r e c t c o m p a r i s o n c a n b e m a d e b y e x a m i n i n g the s a m p l e d e v i a t i o n of the v a p o r c o m p o s i t i o n f r o m b o t h
fittings.
T a b l e II presents the t w o sets
of s a m p l e d e v i a t i o n s b a s e d u p o n v a p o r c o m p o s i t i o n s . a n d σο /κτ Ε
T h e values of σπ
i n d i c a t e that some of the d a t a are of d u b i o u s a c c u r a c y — i . e . ,
l o w consistency a n d / o r h i g h e x p e r i m e n t a l scatter. of the o b s e r v e d Ύ-χ
G r a p h i c a l smoothing
d a t a w o u l d have r e d u c e d the values of the s a m p l e
deviations b y r e m o v i n g the e x p e r i m e n t a l scatter c o m p o n e n t , b u t i t w a s c o n s i d e r e d d e s i r a b l e to use the r a w d a t a . T h e v a l i d i t y of the Ύ-χ
e s t i m a t i o n for
the e t h a n o l - w a t e r
binary
w i t h o u t salt was c h e c k e d u s i n g three sets of l i t e r a t u r e d a t a . T h e results are i n c l u d e d i n T a b l e II, a n d O t s u k i s d a t a ( S )
are s h o w n i n F i g u r e 1.
C a l c u l a t e d a n d e x p e r i m e n t a l y-values agree satisfactorily. A d d i t i o n of a salt i n m a n y cases results i n a c o n s i d e r a b l y w i d e r b o i l i n g range, a n d this w o u l d affect the heat of m i x i n g t e r m a n d l e a d to a p o o r e r fit of the d a t a . H o w e v e r , this is u n l i k e l y to be a n i m p o r t a n t factor because
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
162
EXTRACTIVE
AND AZEOTROPIC
DISTILLATION
it has b e e n s h o w n ( 9 ) that a g o o d fit i s o b t a i n e d w i t h i s o b a r i c d a t a f o r the m e t h a n o l - a n i s o l e system w h i c h has a 64 ° C b o i l i n g range.
Comparing
the t w o sets o f results i n T a b l e I I i n d i c a t e s that the G /KT-x
fit
i s gen
e r a l l y superior, b u t f o r t h e better d a t a as i n d i c a t e d b y s m a l l
sample
E
deviations o f pressure a n d free energy, t h e differences c o n c l u s i o n is not u n e x p e c t e d . In y = Ζ τ φ ρ Ί / Π ) -
However, if the following
(Bu-VOffl-p'O/RT
ttl-x)A \ l-A x l2
+
U
X )
are s m a l l .
12
-
This
equation
ln(l-A {l-x)) 2l
xA ) l-A (l-x)f
<> 5
21
21
is u s e d to c a l c u l a t e the v a p o r c o m p o s i t i o n i n s t e a d o f E q u a t i o n 3, i n every case except f o r b a r i u m nitrate t h e opposite is true. m a r g i n a l , a n d a n e x p l a n a t i o n is offered Table II. Salt — — —
NH CI 4
tNaCl t NaBr t NaN0 tKCl KBr KI K S0 Ca(N0 ) Ba(N0 ) CuCl HgCl HgBr Hgl LiCl" t NaCl » t Na S0 tKCl» ΚΙ" BaCl KN0 (NH ) S(V 3
2
4
3
3
2
2
2
2
2
2
4
2
3
4
d
e
2
6
T h i s effect i s n o t
below.
Comparison of the T - * Fit and the G^/RT-x the Wilson Equation σΠ
«y
<sG RT
4.88 6.24 9.69 13.66 18.82 27.42 30.06 31.40 28.09 19.48 3.95 33.69 20.20 10.31 5.10 8.40 13.69 6.07 20.96 23.95 22.90 3.65 11.42 4.94 24.9
.0079 .0068 .0045 .0098 .0119 .0471 .0260 .0301 .0109 .0234 .0118 .0078 .0152 .0092 .0138 .0273 .0142 .0062 .0184 .0264 .0180 .0058 .0110 .0099 .0358
6.45 4.48 6.34 5.84 11.79 60.27 31.75 28.74 10.72 14.08 6.23 28.12 15.45 7.54 3.55 17.47 13.98 12.54 14.64 19.63 10.14 4.00 4.34 7.70 35.3
Fit Using Reference
E
.0082 .0064 .0059 .0098 .0054 .0375 .0187 .0200 .0150 .0098 .0082 .0096 .0130 .0096 .0119 .0261 .0146 .0056 .0143 .0132 .0088 .0045 .0085 .0078 .0320
Data of limited range: x = 0.3-1.0. Data of limited range: x = 0-0.8. Data of limited range: x = 0.2-1.0. Data of limited range: x = 0-0.6. Partially miscible systems-use of three constant Wilson equation, t See text.
a
6
c
d
e
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
8 12 18 U
14 15 u U
15 15 U
11 u η π η u 16 17 18 17 16 U
19 14
11.
J A Q U E S
A N D
Prediction
F U R T E R
of Vapor
163
Composition
χ Figure 1. Comparison of the experimentally de termined vapor compositions for the ethanol-water system (8) with two constant Wilson T - x fit Observed
Ο
Calculated
A n i n t e r e s t i n g a n o m a l y o c c u r r e d for the seven systems m a r k e d w i t h a d a g g e r i n T a b l e II.
T h e o r i g i n a l c o m p u t e r p r o g r a m w h i c h was b a s e d
u p o n first o r d e r l i n e a r i z a t i o n of the n o r m a l e q u a t i o n s f a i l e d to find a s o l u t i o n for the G V R T - x fit for these systems. A s e c o n d p r o g r a m u s e d a more powerful
t e c h n i q u e w h i c h u s e d a n e w a p p r o a c h to
m e t r i c a l g o r i t h m s (10).
variable
B e c a u s e the t w o constants i n the W i l s o n e q u a
t i o n c a n n o t be greater t h a n u n i t y , a constraint is p l a c e d u p o n the p l a n e w h e r e a s o l u t i o n is sought. A i w a s r e p l a c e d b y 1-A 2
2
T o free the p r o g r a m f r o m this constraint,
and A
12
b y 1-B . 2
This program found a solu
t i o n , b u t it d i d n o t represent a true m i n i m u m . T h e s o l u t i o n o c c u r r e d at a wall—i.e.,
where
A i =
1, a n d analysis s h o w e d that this w a s
2
lowest p o i n t of the A i - A i 2
2
the
p l a n e . A n a l y z i n g the r e m a i n i n g systems of
T a b l e II s h o w e d that a g e n u i n e m i n i m u m — i . e . , a least v a l u e w h e r e the first derivatives of the object f u n c t i o n v a n i s h — w a s f o u n d i n a l l of these cases. T h e t w o systems c o n t a i n i n g p o t a s s i u m nitrate a n d a m m o n i u m s u l fate e a c h h a v e a r e g i o n of p a r t i a l m i s c i b i l i t y . A d d i n g a t h i r d constant to the W i l s o n e q u a t i o n allows c o r r e l a t i o n of s u c h systems. T h e results are s h o w n i n T a b l e II a n d F i g u r e 2. ( T h e b r o k e n l i n e of F i g u r e 2 is a feature of systems w h i c h s h o w m a t e r i a l i n s t a b i l i t y . A g r a p h of m o l a r free energy
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
164
E X T R A C T I V E
A N D
A Z E O T R O P I C
DISTILLATION
of m i x i n g as a f u n c t i o n of l i q u i d m o l e f r a c t i o n shows a c o n v e x u p w a r d s p o r t i o n w h e r e a r e g i o n o f p a r t i a l m i s c i b i l i t y exists (20).
The
vapor-
l i q u i d e q u i l i b r i u m c u r v e s h o u l d , of course, b e h o r i z o n t a l i n the r e g i o n of t w o l i q u i d phases, b u t the f o r m of the e q u a t i o n m u s t g i v e a c o n t i n u o u s c u r v e a n d h e n c e c a n n o t p r e d i c t a h o r i z o n t a l l i n e , w h i c h w o u l d a m o u n t to a r e g i o n of d i s c o n t i n u i t y i n the e q u a t i o n . ) T h e t w o - c o n s t a n t W i l s o n e q u a t i o n w a s c h o s e n as t h e c o r r e l a t i n g e q u a t i o n r a t h e r t h a n t h e three-constant R e d l i c h - K i s t e r e q u a t i o n (21)
for
t w o reasons. I n a m a j o r i t y of the systems the s a m p l e d e v i a t i o n of v a p o r c o m p o s i t i o n w a s smaller, a n d i n c e r t a i n cases the R e d l i c h - K i s t e r e q u a t i o n e r r o n e o u s l y p r e d i c t e d phase s e p a r a t i o n . F i g u r e 3 shows s u c h a n e x a m p l e . T a b l e I I I gives a c o m p l e t e l i s t i n g of m , c, c, A21,
A , a n d C values i 2
w h i c h a l l o w us to estimate the v a p o r c o m p o s i t i o n s of e t h a n o l - w a t e r m i x tures c o n t a i n i n g a w i d e r a n g e of i n o r g a n i c salts. Discussion D i f f e r e n t object functions ( Π, y, In 72/71, etc. ) h a v e b e e n u s e d for m a n y years; w h e n d i s c r e p a n c i e s h a v e a r i s e n , at least one a u t h o r
2 LAYERS H .1
.2
.3
.4
.5 X
.6
.7
.8
.9
Figure 2. Comparison of the experimentally de termined vapor compositions for the ethanol-watersaturated potassium nitrate system (19) with the three constant Wilson T - x fit Observed
Ο
Calculated
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
(22)
11.
J A Q U E S
A N D
Prediction
F U R T E R
.1
.2
.3
.4
of Vapor
.5 X
.6
.7
Composition
.8
165
.9
Figure 3. Comparison of experimentally deter mined vapor compositions for the ethanol-watersaturated potassium sulfate system (14) with (a) two constant Wilson T-x fit and (b) three constant Redlich-Kister T-x fit Observed Calculated
Ο (a)
(b)
has a t t r i b u t e d t h e m to errors i n d a t a . A c t u a l l y , there are three possible sources of e r r o r : 1. T h e W i l s o n e q u a t i o n is a n i m p e r f e c t m o d e l . I n t h e i s o b a r i c case the effect of n e g l e c t i n g the t e m p e r a t u r e d e p e n d e n c e of A i a n d A and i n u s i n g the G i b b s — D u h e m e q u a t i o n , w h i c h w a s d e r i v e d for constant t e m p e r a t u r e a n d pressure, a d d to the i n h e r e n t i m p e r f e c t i o n . 2
12
2. A l l the e x p e r i m e n t a l d a t a are subject to error, a n d i n t h e salt effect field a n a d e q u a t e e s t i m a t i o n of e x p e r i m e n t a l errors is r a r e l y m a d e . F o r e x a m p l e , w i t h o u t d o i n g a statistical treatment of the error i n the m e a s u r i n g of t e m p e r a t u r e , a s i m p l e e s t i m a t i o n of r a n d o m e x p e r i m e n t a l error b a s e d u p o n the g r a p h i c a l s m o o t h i n g of b o i l i n g p o i n t - c o m p o s i t i o n d a t a for eight systems c o n t a i n i n g w a t e r , m e t h a n o l o r e t h a n o l , a n d a n acetate salt at s a t u r a t i o n [ t a k e n f r o m the literature ( 2 3 ) ] suggested a n o v e r a l l average error of ± 0 . 9 ° C o n the b o i l i n g p o i n t s . 3. T h e w h o l e p r o c e d u r e , w i t h o r w i t h o u t salts, m a y n o t b e b a s e d u p o n s o u n d statistical p r i n c i p l e s . R a t h e r t h a n u s i n g v a r i o u s object f u n c tions, i t appears better t o use a r e l i a b l e statistical t e c h n i q u e s u c h as t h e m e t h o d of m a x i m u m l i k e l i h o o d (24) o r the B a y e s i a n a p p r o a c h (25), b o t h of w h i c h take i n t o a c c o u n t the errors i n a l l e x p e r i m e n t a l o b s e r v a tions i n a l o g i c a l l y justifiable f a s h i o n . T h e v a r i o u s d i s c r e p a n c i e s a n d anomalies n o t e d i n the present w o r k w o u l d b e m o d e r a t e d b y u s i n g either
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
166
EXTRACTIVE
Table III.
m
const.
ε
—
—
—
—
—
—
—
—
—'
—
.9294 .9935 .9174 .8853 .9547 .9572 .9383 .9962 1.0712 1 1 1 1 1 .9659 .9935 1.019 .9640
3
2
4
3
2
2
2
2
2
2
4
BaCl
2
KN0 (NH ) S0 3
4
2
4
AZEOTROPIC
DISTILLATION
Constants for the Τ—χ Fit Using the Wilson Equation
Salt
NH4CI NaCl NaBr NaN0 KC1 KBr KI K S0 Ca(NO,) Ba(N0 ) CuCl HgCl HgBr Hgl LiCl NaCl Na S0 KC1 KI
AND
—
A M
—
I
2
.8140 .7899 .8526 .8829 .9476 .9138 .9420 .9198 .9214 .8433 .9188 .8531 .8208 .8486 .8314 .8428 .8267 .7926 .9332 .9349 .9307
.1325 .1813 .0848 .4154 .3692 .5005 .5592 .4314 .2744 .4000 .0802 .0090 .1780 .0565 .0791 .1263 .1095 .5457 .3308 .1633 .3226 .3285 .2142
-.0032 .1109 .0776 -.0704 -.0037 .0360 .0719 .0105 .9368 0 0 0 0 0 .9199 .1109 .0969 .0235
1.013 1.019 0.912 1.020 1.000 0.983 0.886 1.023 0.747 1.027 1.042 .892 .965 1.010 .492 1.019 1.000 1.000
.9383
.0719
.9275
.9906 .8570
.0348
.975 1
-.2250 .0487
1.000 1.011
.7515 .9409
.9731
A
.9170
C
Refere
— —
8 12 13
—
U
—
—
14
—
15
—
14 14
— —
15 15
—
U
—
11 11
—
—
14 14 14 14
— — — —
—
16 17 18 17
—
16
—
11
— —
—
- . 3 9 0 8 2.959 .0449 1.250
19
14
estimate w i t h the o n l y sources of error b e i n g i n the observations a n d i n the p h e n o m e n o l o g i c a l m o d e l . Conclusions A
method
has b e e n
d e v e l o p e d for c a l c u l a t i n g e q u i l i b r i u m
vapor
c o m p o s i t i o n s , b a s e d o n b o i l i n g p o i n t vs. l i q u i d c o m p o s i t i o n d a t a ,
for
systems saturated w i t h a salt. S u c h ternary systems i n effect h a v e b e e n treated as b i n a r i e s (26)
i n w h i c h the s t a n d a r d state of e a c h of t h e t w o
l i q u i d c o m p o n e n t s is that of b e i n g saturated w i t h salt i n s t e a d of b e i n g p u r e and w i t h the pure-component example,
v a p o r pressures b e i n g so adjusted.
i n the e t h a n o l - w a t e r - s a l t
t e r n a r y systems
b e e n c o n s i d e r e d as b i n a r i e s c o m p o s e d
tested, t h e y
For have
of w a t e r s a t u r a t e d w i t h salt as
one c o m p o n e n t a n d e t h a n o l saturated w i t h salt as t h e other
component.
I n the testing to w h i c h i t has b e e n subjected so far, the m e t h o d seems encouraging.
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
11.
J A Q U E S
A N D F U R T E R
Prediction
of Vapor
Composition
167
Acknowledgment T h e r e s e a r c h f o r this p a p e r w a s s u p p o r t e d b y t h e D e f e n c e R e s e a r c h B o a r d o f C a n a d a , G r a n t n u m b e r 9530-40. T h e authors are g r a t e f u l t o F . M . L a r k i n o f t h e C o m p u t e r C e n t r e at Queen's U n i v e r s i t y , K i n g s t o n , for m a n y h e l p f u l discussions. Lest of
Symbols
Subscripts: 1 = ethanol 2 = water c = calculated value A21, A12, C = e m p i r i c a l constants i n W i l s o n e q u a t i o n A,B = e m p i r i c a l constants f o r use w i t h F l e t c h e r s s u b r o u t i n e Bu = s e c o n d v i r i a l coefficient o f c o m p o n e n t i G = excess free e n e r g y o f m i x i n g In = natural logarithm log = l o g a r i t h m t o the base 10 m, const. = e m p i r i c a l constants i n the e q u a t i o n : l o g p'2 = τη l o g p ° 2 — const, p'i = v a p o r pressure o f c o m p o n e n t i s a t u r a t e d w i t h salt R = gas constant Τ = absolute t e m p e r a t u r e Vi = molar volume of component i x = m o l e f r a c t i o n o f e t h a n o l i n the l i q u i d phase, c a l c u l a t e d o n a salt-free basis y = mole fraction of ethanol i n the vapor phase 7i = a c t i v i t y coefficient o f c o m p o n e n t i e = r a t i o o f v a p o r pressure o f e t h a n o l s a t u r a t e d w i t h salt to t h e v a p o r pressure o f p u r e e t h a n o l at t h e salt s o l u t i o n boiling point Π = t o t a l pressure σσ /κτ = s a m p l e d e v i a t i o n o f t h e excess free e n e r g y i n E q u a t i o n 4 σ = s a m p l e d e v i a t i o n o f the v a p o r c o m p o s i t i o n c o r r e s p o n d i n g to E q u a t i o n 4 σπ = s a m p l e d e v i a t i o n o f the t o t a l p r e s s u r e i n E q u a t i o n 1 σ = s a m p l e d e v i a t i o n o f the v a p o r c o m p o s i t i o n c o r r e s p o n d i n g to E q u a t i o n 1 E
Β
ν
ν
Literature Cited 1. MacKay, D., Salvador, R. T., Ind. Eng. Chem. Fundamentals (1971) 10, 167. 2. Barker, J. Α., Australian J. Chem. (1953) 6, 207. 3. Wilson, G. M.,J.Amer. Chem. Soc. (1964) 86, 127. 4. International Critical Tables, pp. 362-374, Vol. III, McGraw-Hill, New York, 1929. 5. Prausnitz, J. M., Eckert, C. Α., Orye, R. V., O'Connell, J. P., "Computer Calculations for Multicomponent Vapor-Liquid Equilibrium," Appendix B, Prentice-Hall, 1967.
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
168
EXTRACTIVE AND AZEOTROPIC DISTILLATION
6. Rowlinson, J. S., Trans. Faraday Soc. (1949) 45, 974. 7. Lambert, J. D., Discussions Faraday Soc. (1953) 15, 226. 8. Otsuki, H., Williams, F.C.,Chem. Eng. Progr. Symp. Ser. 6 (1953) 49, 55. 9. Cukor, P. M., Prausnitz, J. M., Intern. Symp. Distillation, Inst. Chem. Eng (London), Section 3B, p. 73 (1969). 10. Fletcher, R., U.K. At. Energy Authority Kept. TP383 (1969). 11. Rius Miró, Α., Alvarez Gonzalez, J. R., Uriante Hulda, Α., Anales Real. Soc. Espan. Fis. Quim. (Madrid) (1960) 56B, 629. 12. Rieder, R. M., Thompson, A. R., Ind. Eng. Chem. (1949) 41, 2905. 13. Furter, W. F., Ph.D. Thesis, University of Toronto, 1958. 14. Johnson, A. I., Furter, W. F., Can. J. Chem. Eng. (1960) 38, 78. 15. Meranda, D., Furter, W. F., A.I.Ch.E. Journal (1972) 17, 38. 16. Rius Miró, Α., Otero de la Gandara, J. L., Alvarez Gonzalez, J. R., Anales Real. Soc. Espan. Fis. Quim. (Madrid) (1957) 53B, 185. 17. idem., ibid. (1957 53B, 171. 18. Tursi, R. R., Thompson, A. R., Chem. Eng. Progr. (1951) 47, 304. 19. Rieder, R. M., Thompson, A. R., Ind. Eng. Chem. (1950) 42, 379. 20. Rowlinson, J. S., "Liquids and Liquid Mixtures," p. 144, 2nd ed., Butterworth, 1969. 21. Redlich, O., Kister, A. T., Ind. Eng. Chem. (1948) 40, 345. 22. Newton, Α., Intern. Symp. Distillation, Inst. Chem. Engrs. (London), Section 3B, p. 82 (1969). 23. Meranda, D., Furter, W. F., A.I.Ch.E. J. (1971) 17, 38. 24. Kendall, M. G., Stuart, Α., "The Advanced Theory of Statistics," Vol. II, 2nd ed., Griffin, London, 1967. 25. Lindley, D. V., "Introduction to Probability and Statistics from a Bayesian Viewpoint," Cambridge, 1965. 26. Jaques, D., Furter, W. F., A.I.Ch.E. J. (1972) 18, 343. RECEIVED January 11, 1972.
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
INDEX
A Acetone 43 azeotrope, methanol 47 -methanol separation 48 system acetic a c i d 136 Acid, Lewis 50 Activity coefficients 17,124,140 dilution 49 liquid phase 2,3,150,151 paraffin 20 selectivity and 27 ADP -ADPLLE 91 simplified calculations by subprogram 68 A D P P L L E , subprogram 69 Agent, separating 37 Air pollution 148 Alcohols, mixtures of water and simple 93 Algorithm, modification of correction 131 Alternate solvent recovery 32 Analysis economic 24 regression 155 venture 24 Applications 43 Aqueous ethanol calculated azeotropic distilla tion results compared for dehydrating 65 dehydrating 14 mixtures, dehydration of . . . . 2 systems 41 Aromatics 58 Association complexes 17, 42 factors, vapor, and liquid 138 Automated feature, use of the . . . . 69 Azeotrope 38,110 methanol-acetone 47 of water and entrainers 112 Azeotropic column 115 distillation 14,65 batch 115 column 12 comparison of extractive with 12 modified 115
Azeotropic (Continued) distillation ternary wo, ADP/ADPLLE results compared for dehydrat ing aqueous ethanol, calculated or extractive distillation columns
ι* 65 65 93
Β Barker's method 159 Base, Lewis * 50 Basic flow 114 Basis cost calculation 25 design 23 Batch azeotropic distillation 115 Benzene 65, 89 and diethyl ether, comparison for the entrainers, n-pentane 87 Binary system 99 Boiling point 107 Bonding solvents, hydrogen 21 Bottom product 12 1,3-Butadiene recovery 33 Butanol HI
C Calcium chloride Calculated azeotropic distillation results compared for dehydrat ing aqueous ethanol Calculation basis, cost computer design distillation for the extractive distillation of aqueous ethanol mixtures . . sequence by subprogram A D P , simplified . tray-to-tray Changing the molecular environ ment Chemistry of the salt effect Choice of an entraîner C3 hydrocarbon mixtures C4 hydrocarbon separations
171
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
39
65 25 64 91 122 4 125 68 70 1 40 87 34 33
172
E X T R A C T I V E
Circulation rate 17 solvent 24 Clay, colloidal 120 Coefficient activity 17,124,140 dilution activity 49 distribution 64 fugacity 97 imperfection-pressure 2 liquid phase activity 3,150,151 paraffin activity 20 selectivity and activity 27 Cohesive density, polar 51 energy, polar 48 Coke 119,120 Colloidal clay 120 Column 35 azeotropic 115 distillation 12 or extractive distillation 93 efficiency 24 extractive distillation 6 profiles 84 solvent recovery 10,11 Comparison for the entrainers, n-pentane, benzene, and diethyl ether 87 of extractive with azeotropic distillation 12 Complexes, association 17, 42 Components, feed 1,17, 22, 40 Composition 7, 35, 94,125,146 liquid 107 vapor 41,159 phase 97 Computer calculations 64 methods, multicomponent 157 Concentration molal salt 40 saturation 39 solvent 19 Condenser temperature 131 Consistency test 146 Content, water 110,114 Cooler, solvent 17 Correction algorithm, modification of 131 matrix, Jacobian 126 Cost calculation, basis 25 extractive distillation 30 utility 26 Cracking 119 Criteria, solvent selection 18
D Dalton's law 152 Data, isobaric vapor-liquid equilibrium 96,124,136 Debye, electrostatic theory of . . . . 42 •Décantation 114
A N D
A Z E O T R O P I C
DISTILLATION
Dehydrating aqueous ethanol 14 calculated azeotropic distillation results 65 process, demulsifying 114 Dehydration of aqueous ethanol mixtures 1,118 Demulsification of crude oils 108 Demulsifying, dehydrating process 114 Density, polar cohesive 51 Design basis 16,23 calculations 91 process 16,106 of separation processes 2 Diethyl ether 65,89 comparison for the entrainers, n-penane, benzene, and diethyl ether 87 Digital computers 2 Dilution activity coefficients 48 relative volatilities through G L C , infinite 59 Dipole-induced dipole 49 Dispersion 49 Dissolution, feed 117 Dissolved salt 37 Distillation of aqueous ethanol mixtures, calculations for the 4 azeotropic 14, 65 batch azeotropic 115 calculations 122 column azeotropic 12,13, 93 extractive 6,13,93 continuous 115 costs, extractive 30 extractive 1,12,14,16,148 modified azeotropic 115 program A D P / A D P L L E , azeotropic . . 65 ternary azeotropic 68, 72 results compared for dehydrating aqueous ethanol, calculated azeotropic 65 solvents ethylene glycol as the extractive 2 extractive 58 screening of extractive 46 using dissolved salts as separating agents, extractive 40 Distribution coefficients 64
Ε Ease of separation Effect chemistry of the salt magnitude of salt mixed solvents
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
40, 46 35, 40 41 52
173
INDEX
Effect (Continued) of solvent and solute concentration 50 Efficiency, column 24 Electrolytes, solution theory of . . . 40 Electrostatic theory of Debye . . . . 42 Energy, Gibbs free 95 Energy molar free 163 polar cohesive 49 Enthalpies for liquid and vapor . . 4,124 Entraîner 12,64,65,110 azeotropes of water and 112 choice of 87 n-pentane, benzene, and diethyl ether, comparison for the . . 87 solvent 116 Entrainment 37 Environment, changing the molecular 1 Equation Gibbs-Duhem 155 modified van Laar 3, 66 non-random, two liquid 93 nonlinear 122 NRTL Redlich-Kister 164 van Laar 132 vapor pressure 3 Wilson 95,160 Equilibria data 124 isobaric vapor-liquid 93,136 prediction of three-phase 65, 66 relative volatilities for three phase 67 relation, modified 139 salt effect on vapor-liquid 40 separation system 123 stage requirements 28 three-phase 67 vapor-liquid 35, 67,148 Ethanol 13,39, 86, 89,93 calculated azeotropic distillation results compared for dehydrating aqueous 65 calculations for the extractive distillation of aqueous 4 mixtures dehydration of aqueous 1,2 recovery of 7 -water 38,41,97,160 Ethylene glycol 1, 2,12 -water 41 Extraction, primary 119 Extractive distillation 1,12,14,16,132,148 of aqueous ethanol mixtures, calculations for the 4 columns, azeotropic or 6, 93 costs 30 solvent 58 ethylene glycol as the 2
Extractive distillation (Continued) solvent screening of using dissolved salts as separating agents
46 40
F Factor, separation 17, 59 Factors, vapor and liquid associations 138 Feed 5 components 17, 22, 40 dissolution 117 Feedstock 113 Flow basic 114 vapor 129 Flowsheet 18,111,157 Foaming 114 Fraction, naphtha Ill Fractionation, reverse 28 Free energy 95,161 molar 163 Fugacity coefficients 94,97
G G C O S process 118 Gibbs-Duhem equation . . . 146,155,159 Gibbs energy 42,95 GLC infinite dilution relative volatilities through 59 screening solvents through . . . . 58 Great Canadian Oil Sands, Ltd. ( G C O S ) Process 118
H Heat loads 14 recovery system 30 Hydration 43 Hydrocarbon 55,93,109 C 4 mixtures 48 separations, C4 33 Hydrogen bonding solvents 21 Hypothetical saturation vapor pressure 138 3
I Imperfection-pressure coefficients . 2 Infinite dilution relative volatilities through G L C 59 Internal pressure 42 Isobaric vapor-liquid equilibrium data 93,136 systems 159 Isothermal-isobaric system 155 Iteration variables 125,127
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
174
E X T R A C T I V E
J Jacobian correction matrix
126,128
Κ Κ values Kerosene Knockback section, solvent
9 117 37, 44
L Law, Raoult's 18,101 Layer, top bitumen 121 Lewis acid 50 base 50 and Matheson technique 70 Limit, miscibility 22 Liquid associations factors, vapor and . 138 composition 107 equation, non-random, two . . . . 93 equilibrium data, isobaric vapor35,93,136,148 -liquid tieline 153 phase activity coefficients . . . 2,3,150,151 miscibility 107 systems, isobaric vapor159 and vapor, enthalpies for 4 phases, relative distributions between the separable . . 2 Loading, solvent 24 Lowest water content 89
M Matrix, Jacobian correction . . . . 122,126 Matheson technique, Lewis and . . 70 Mercuric chloride 41 Methanol -acetone azeotrope 47 separation, acetone48 Method Marquardt's 134 non-hydrocarbon mixtures: The Schiebel 47 Parachor 56 Weimer-Prausnitz ( W P ) 57 multicomponent computer 157 Newton 134 3-Methyl-l-butanol-water 100 Methyl ethyl ketone, water148 Miscibility limit 22 liquid-phase 107 Mixed solvents effect 52 Mixture THF-MEK 149 C3 hydrocarbon 34, 48 nonideal 122 ternary 96 of water and simple alcohols . . . 93
A N D
A Z E O T R O P I C
DISTILLATION
Mixture (Continued) the Scheibel Method, nonhydrocarbon 47 Modification of correction algorithm 131 process 29 Modified azeotropic distillation 115 equilibrium relation 139 Redlich-Kister test 140 van Laar equations 3, 66 Molal salt concentration 40 Molar free energy 163 Molecular environment, changing the 1 Multicomponent systems 13,17,157
Ν Naptha fraction HI Newton's methods 122,134 Non-hydrocarbon mixtures: the Scheibel Method 47 Nonideal mixtures 122 Nonideality 1,95 Nonlinear equations 122 Non-random, two-liquid equation . 93 Notation, matrix 122 N R T L equation 96
Ο Octane Oil wet sludge demulsification of crude Olefins Operating temperature Optimum design Othmer recirculation still
HI 115 108 58 24 16 43
Ρ Parachor method 56 Paraffin activity coefficient 20 -olefin system 19 n-Pentane 1,12,65,89 benzene and diethyl ether, comparison for the entrainers 87 Petroleum crudes 108 P° P°, 47 Polar cohesive density 51 energy 49 solvent 20 Pollution, air 148 Potassium acetate 37 Prediction of three-phase equilibria 66 Pressure 94,107 coefficients, imperfection2 equations, vapor 3 t
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
175
INDEX
Pressure (Continued) hypothetical saturation vapor . . 138 vapor 110 Process demulsifying, dehydrating 114 design 16,106 Great Canadian Oil Sands, Ltd. ( G C O S ) process 118 of separation 2 modifications 29 Product, top 5,12, 86 A D P / A D P L L E , azeotropic distillation 65 ternary azeotropic distillation... 68, 72 Propane 33 separation of propylene— 16 Propylene 33 propane, separation of 16
R Raoult's Law 18,101,152 Rate circulation 17 solvent circulation 24 Reboiler temperature 131 Recirculation still, Othmer 43 Recovery alternate solvent 32 1,3-butadiene 33 column, solvent 10,11 ethanol 7 and recycle step 37 system, heat 30 Recycle step, recovery and 38 Redlich-Kister equation 164 test, modified 140 Regression analysis 155 Relation, modified equilibrium . . . 139 Relationship, Gibbs-Duhem 146 Requirements, equilibrium stage . . 28 Reverse fractionation 28 Runs, two-phase 153
S Salt 35,159 concentration, molal 40 dissolved 37 effect 35 chemistry of the 40 magnitude of 41 on vapor-liquid equilibrium . 40 free 39 molecules, undissociated 41 as separating agents, extractive distillation using dissolved . 40 Saturation 159 concentration 39 vapor pressure, hypothetical . . . 138 Scheibel method, non-hydrocarbon mixtures: the 47
Screening of extractive distillation solvents 46 solvents through G L C 58 Section, solvent knockback 37 Selection criteria, solvent 18 Selectivity 18,47 and activity coefficients 27 Separating agent 37 C4 hydrocarbon 33 extractive distillation using dissolved salts as 40 Separation 91 acetone-methanol 48 ease of 40, 46 factor 17,59 of propylene-propane 16 solvent 156 system, equilibrium 122 Silt 108 Simplified calculations by subprogram A D P 68 Sludge, oil-wet 115 Solubility 113 Solute concentration, effect of solvent and 50 Solution theory of electrolytes . . . . 40 Solutions, ideal 47 Solvent 35,47,114 circulation rate 24 concentration 19 cooler 17 effect, mixed 52 ethylene glycol as the extractive distillation 2 evaluating 19 extractive distillation 58 through G L C , screening 58 hydrogen bonding 21 knockback section 37 loading 24 polar 20 Solvent recovery column 10,11,32 screening of extractive distillation 46 Selection criteria 18 separation 156 and solute concentration, effect of 50 volatility 22 Stage requirements, equilibrium . . 28 Step, recovery, and recycle 38 Still, Othmer recirculation 43 Stripping trays 11 Submatrices, Jacobian 128 Subprogram A D P , simplified calculations by . 68 ADPPLE 69 System acetic acid-acetone 136 aqueous 41 binary 99 equilibrium separation 122 ethanol-water 97,160
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
176
E X T R A C T I V E
System (Continued) isobaric vapor-liquid multicomponent paraffin-olefin ternary
159 17,93 19 103
Τ Temperature . . . .7, 54, 94,110,125,161 denser 131 operating 24 reboiler 131 Ternary azeotropic distillation program . 69 mixtures 96 separation by distillation 156 system 103 Test consistency 146 modified Redlich Kister 140 Tetrahydrofuran 148 Theory of Debye, electrostatic 42 of electrolytes, solution 40 T H F - M E K mixture 149 Three-phase equilibria 66 relative volatilities for 67 Top bitumen layer 120 Top product 5,12, 86 Transport 119 Tray-to-tray 70,71 Trays, stripping 11 Two liquid equation, non-random . . . 93 phase runs 153
U Undissociated salt molecules U N I V A C 1108 computer Use of the automated feature
41 4 69
A N D
AZEOTROPIC
DISTILLATION
Utility costs phase composition
26 2 97
van der Waal forces 42 van Laar equation 95,132 Vapor composition 41,159 enthalpies for liquid and 4 flows 129 relative distributions between the separable liquid and 2 -liquid equilibria 35,67,148 and liquid associations factors . . 138 pressure 110 equations 3 hypothetical saturation 138 Variable, iteration 127 Vector differentiation 126 Venture analysis 24 Viscosity 108 V L E data 96 Volatilities 17, 40,47, 89,104,145 through G L C , infinite dilution relative 59 profiles 7 solvent 22
W Water content 11,110,114 lowest 89 and entrainers, azeotropes 112 ethanol38,41,160 ethylene glycol41 methyl ethyl ketone 148 and simple alcohols, mixtures of 93 Weimer-Prausnitz ( W P ) method . 56 Wilson equation 95,160
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.