by FRANK H. T. R HODES The University of Michigan ILLUSTRATED BY
REBECCA MERRILEES
and
RUDY ZALLINGER
®
GOLDEN PRE...
397 downloads
2308 Views
12MB Size
Report
This content was uploaded by our users and we assume good faith they have the permission to share this book. If you own the copyright to this book and it is wrongfully on our website, we offer a simple DMCA procedure to remove your content from our site. Start by pressing the button below!
Report copyright / DMCA form
by FRANK H. T. R HODES The University of Michigan ILLUSTRATED BY
REBECCA MERRILEES
and
RUDY ZALLINGER
®
GOLDEN PRESS
•
NEW YORK
Western Publishing Company, Inc. Racine, Wisconsin
FOREWORD
How l ife arose a n d h ow m a n developed are two q u es tio n s that are as old a s man h i m s e l f, a s the cre a t i o n a c c oun ts o f m a n y civi l i z atio n s b e a r witn ess. But a n c i e n t a s i s t h i s con c ern , t h e i m p l icatio n s o f m a n ' s re l a ti o n s h i p t o t h e wo r l d o f l ivi n g th i n g s are a s s ig n ifica n t i n t h e S p a ce Ag e a s t h ey were i n t h e Sto n e A g e. Th i s boo k i s a s i m p l e a c c o u n t o f m a n's search for t h o s e ori g i n s a n d rel a ti o n s h i p s. I t d escri bes t h e h i storica l d eve l o p m e n t of the pres e n t t h eory of evo l uti o n , or d es c e n t with m o d ifi cati o n , the i n d i ca ti o n s that sup port it, its n a ture a n d m ec h a n i s m , a n d its res u l t i n th e l o n g h i story of l ife. The boo k c o n c l u d es with a secti o n on t h e m ea n i n g of evolutio n , for the th eory of evo luti o n h a s h a d a p rofoun d i m p a ct o n m a n ' s view of h i m s e l f a n d h i s re lat i o n s h i p to th e worl d in w h i c h h e l i ves. Evo luti o n a ry th eory provi d e s a powerfu l ex p l a n a t i o n of h ow l i fe d eve l o p e d , yet b e yo n d i t, a n d un a n swered by i t, l i e s t h e ul ti m a te questi o n o f w h y l ife d eve l o p e d . T h a t q uestio n , confro n ti n g a s i t does t h e l a rg er s i g n ifica n c e of l ife, t h oug h t h e a b stra c tive m ethod s of s c i e n c e provi d e n o a p propriate so l ution to it, is neit her m ea n i n g l e s s n or inco n s e q uentia l. for in our re s p o n s e to it, i n d ividua l l y a n d c o l lective ly, l i e s the future of evol uti on , a n d with it the future of ma n k i n d. I a m g ra teful to m y co l l ea g u e D r. A l fred S m it h w h o k i n d ly rea d t h e m a n u sc r i pt o f t h i s book. Fra n k H. T. R ho d e s
l£0;).q5:
GOLDEN, A GOLDEN GUIDE®, and GOLDENCRAFT® are trademarks af Western Publ i s h ing Company, Inc.
Copyri g h t © 1974 by Western P u b l i s h i n g Co m p a n y , I n c . A l l r i g hts reserv e d , i n c l ud i n g r i g h ts o f reprod u c t i o n o n d u s e i n o n y f o r m or by a ny m eo n s , i n c l u d i n g t h e m a k i n g of cop i es by a n y p h oto proc e s s , or by a n y e l ectro n ic or m ec h a n i c a l dev i c e , p r i nted o r w r i t te n o r ora l , o r record i n g for sou n d o r v i s u a l re p rod u c tion or for use i n a n y k now l e d g e ret r i eva l system or dev i c e , unl e s s per m i s s ion i n w r i t i n g i s o b t a i ned f rom t h e copy r i g h t p ropr i etor. P rod u ced i n t h e U . S.A. P u b ri s h ed by G o l d e n Pres s , N e w Yor k , N . Y . l i b ra ry of Con g ress Cata l og Card N u m ber: 74-76432
C O N T E N TS OVE RVIEW OF LIFE .
. .4-29
Di vers ity, develop m e n t a n d orig i n of l i fe; spon ta neous g e n era t i o n ; c l a s s i f i cation; degrees o f d i vers ity a n d d i scove ry of l i fe's lon g h i story; deve l o p m e n t of t h e theory of evo l u t i o n from Aristotle to La m a rc k to C h a rl e s D a rw i n a n d Alfred R u s s e l Wa l l a ce; t h e voya g e of t h e Beagle a n d p u b l icat ion o f O n the Origin of Species; t h e w o r k of G r e g o r M e n d e l , lea d i n g to t h e laws o f i n h e rita n c e a n d to the new synthesic t h eory of evo l u t i o n . .... 30-55 Con t i n u ity, u n ity a n d t h e n a t u re of l i fe; i n ter depen d e n c e a n d i m p l icatio n s of s i m i la r i t i e s a n a to m i c a l , e m b ryolog ica l , b i oc h e m i ca l , a n d serolog i ca l ; ad aptations; geogra p h ical d i s t r i b u tion; l i v i n g species; c h a n g es i n species; fos s i l s a n d h i g h e r ta xa; m i ss i n g l i n k s a n d t h e fos s i l record .
I NDICATI O N S OF EVO LUTION .
. .56-1()3 I n herita n c e : Ce l l d i v i s i o n ; patte r n s a n d laws; proba b i l ity and m e c h a n i s m ; g e n e s ; c h e m istry (DNA a n d RNA), sources of varia b i l ity; reco m b i nation a n d m u ta t i o n ; g e n e t i c d ri ft; i s o l a t i o n a n d m i g ra t i o n .
THE PROCESS OF EVO LUTI O N .
N a t u r a l Selectio n : Nature of n a t u r a l selection a n d its action i n living popu lations a n d fos s i l s ; adaptation a n d m i m icry; sexual selectio n ; n a t u ra l selection i n m a n ; m i s s i n g l i n k s . T i m e: T h e geolog i c t i m e scale , rates of a n d recipe of evo l u t i o n . THE COURSE O F EVOLUT I O N .
104-150 T h e p r i m itive eart h ; orig i n of l i fe; fos s i l s-th e o l d est; m a r i n e i n verte b rates-t h e oldest; l i f e o n l a n d ; l a n d , va s c u l a r seedless a n d seed bea r i n g p l a nts; a m p h i b i a n s ; t h e r i s e of a n d d o m i n a n c e of t h e re ptiles; a doptive rad iation; b i rds; evol u t i o n a n d g eog ra p h i c d i st r i but i on of m a m m a l s ; pri mates a n d evo l u t i o n of h u m a n societies.
T H E M E A N I N G OF EVOLUT I O N
.... 151-155 I t s i m p l icatio n s ; perspective; t h e future of m a n .
M O R E INFORMAT I O N.
.156
I NDEX
.1 57
3
OVERVIEW OF LIFE Ea rt h tee m s with l ife . living cre a t u re s exist from ocean dept h s to t h e h i g h e st m o u ntain p e a k s, fro m e q u a to ri a l j u n g les a n d h o t m inera l springs t o t h e frozen p o l a r waste l ands, fro m t h e b l inding b rig h tness a nd a ri d i ty of t h e desert to t h e d a rk intesti n e s of a ni m a l s . I n e a c h envi ro n m e n t, unto l d nu m bers o f indivi d ua l o rg a ni s m s i n h abit eve ry n o o k and cranny of t h e a va i l a b l e s p a c e . Most a n im a l a n d p l a n t species conta i n a myriad i n d ivid u a l s . Thus the s u rface layer of m ost m e a d ow soil s conta i n s several m i l l io n a n i m a l s per a c re . Micro scopic a n i m a ls and pla nts exist i n u n cou n ta b l e n u m b e rs . O n e g ra m of soil may conta i n h u n d reds of m i l l i o n s of l ivin g t h i n g s . B i rds a n d in sects exist i n populatio n s so vast a s to con stitute loca l "plag ue" con d ition s . Aquatic l ife is n o l ess p rol ific. It is u n l i ke l y t h a t the e a rt h is u ni q u e in this respect . I t h a s bee n c a l c u l a ted t h a t t h e re m a y b e m i l l i ons of p l a nets in ot h er p a rts of the u n iverse ca p a b l e of s u p p o rti n g s o m e form o f l ife. Eac h e nviro n ment s u p ports a n i m a ls .
a
distinctive co m m u n ity of pla nts a n d
6. Other invertebrates-2 1 ,000 5. Wormlik e phyla-38,000 4. Protozoans-30,000
3. Chordates-45,000 2. Mollus ks-45,000 1 . Art h ropods-900,000
MAJOR GROUPS (PHYLA) OF ANIMALS-OVER 1 ,000,000 SPE CIES
DIVERSITY OF LIFE i s shown by t h e existence of
m o re t h a n o n e m i l l io n ki n d s (species) of a n i m als a n d m o re t h a n 350,0 00 k i n d s o f p l a nts . An i m a l s ra n g e i n size from a few thousa ndths of a n inc h to m o re th a n 1 00 feet in l e n g t h . They represent a vast variety of ways of l ife-p a rasites, pred ators, herb ivores, swi m m ers, fl i e rs, crawlers, burrowers. S o m e spend their l i ves fi x e d i n o n e spot; others u n dertake sea sona l m i g rations of thousa n d s of m i les. In spite of t h e m a ny ki n ds of a n i m a l s a n d p l a n ts, t h ey rep rese n t o n ly a few ba sic g ro u p s ( p hy l a ) .
4. Algae a n d F u n g i-60,000 3. Mosses
and
L iverworts-
23,000
2. Ferns, Con ifers, et c.-1 0,000 1. Floweri ng
Pla nts-250,000
MAJOR GROUPS (PHYLA) OF PLANTS-ABOUT 350,000 SPECIES
5
THE DEVELOPMENT OF LI FE h a s a lways b e e n o n e of
m a n's g re a t conce rns . A n c i ent s a cred writing s of m a ny fa it h s d i s c u s s this q uestio n . T h e ea r l y c h a p t e rs of the Boo k of Genesis, fo r exa m p le, d e a l with the seq u e n ce of c re a t i o n , and Ad a m n a m e d t h e d iffere n t k i n d s o f a n i m a l s . T h e nee d t o c l a s sify l iving t h ings w a s p a rt l y p ra ctica l . So m e p l ants were poisonous, ot h e rs e d i b l e . So m e ani m a ls were h a rm fu l , ot h e rs we re n o t . Ea r l y m a n's s u rviva l d e pended o n h i s s k i l l i n recogniz i n g each kind . Ma n 's d a i l y e x p e rience and re l i g i o u s t ra d ition coinci d e d h e re : every a ni m a l a n d p l a n t t h a t h e recognized re p rod u ce d " a fte r i t s own k i nd . " Ma n's e a r l y life a s a h u nter b ro u g ht h i m in c lose contact with a n i m a ls, and a n cient cave pa inting s b e a r a record of h i s inte rest. Late r d o m estication of a n i m a l s and h a rvesting of c rops inc rea se d thi s concern. Creation of Ada m f r o m M i c h e l a n g e l o 's p a i n t i n g of Sisti n e C h a p e l Cei l i n g .
r )
6
I
ARISTOTLE, G reek p h i losopher, was a ls o one o f the fi rs t a n d greates t b i o l o g i sts. He wrote exten sive ly o n the c l a s s ification a n d s tructure of over 5 0 0 s pe c i e s of a n i m a l s f r o m t h e M e d i terra n e a n a re a . Ari s totle w a s a gifted observer, a n d described details of s uc h t h i n g s a s ch ick em bryo logy. H e accepted the sponta n eo u s g e n era tion of fl ies from p u trefyi n g m a tter, b u t was also concerned about the prob lems of h eredity.
A R I ST O T L E (384-32 2 B. C . ), p u p i l of P l a to and tutor of Alexand e r the Great, o b s e rved t h a t s pecies a p pea red to be unc h a ng ing . Cows p ro d u ced onl y cows; horses a rose only fro m horses. Between the two t h e re wa s a clea r d ivision. S p ecies we re c h a ra cte rized by t h e i r re p ro d u ctive isolation. Ind ivid u a l s d eveloped, a ccord ing to A ristotle, by the c a p acity ( psyc he) of e a c h to confo rm to the a rc h etype c h a ra cters of t h e s p e c i e s relations h i p s . H e constru cted a "la d d e r o f Natu re" s h owing t h e unity of p l an. In contra st to A ristotle's "vita l i st" views, the De m o c rita n s were " m e c h a n ists ." T h e y b e l i eved t h a t a n o rganis m's a ctivity wa s the resu l t o f t h e intera ction of the ato m s of w h i c h it wa s m a d e . Altho u g h vita l istic and m e c h anistic controve rsies sti ll persist, the s u p posed confl ict b etwe en s c i e n c e and relig ion being an exa m p le, the two views a re ofte n co m pl e m e n ta ry, not c o m petitive . In s o m e situ a tio n s , we need to u s e both ( p . 1 5 5 ) . T h e d iscuss ion i n t h i s book is m e c h anistic ("how" t h ing s d e velop, not "why") , but that do es n o t m e a n that l ife h a s n o m ea n i n g a n d p u rpose .
7
THE ORI G IN OF LIFE
wa s
long regarded as a spon
taneous eve n t : l iving thing s a rose fro m nonlivi n g m at ter. Althoug h the va rious g ro u ps of l iving thing s were b e l i eved to h ave b e en created in d efinite s eq u e n ce, it was su pposed that each k ind of ani m a l and p l ant a rose " fu l l y fo r m ed " fro m the d ust of t h e e a rth . S u c h a view involved n o obvious contra d i ctions . Flies, for exa m p l e , cou l d be seen to d evelop fro m m a g g ots, w h i c h a rose " s pontaneously" in decayi n g m eat. T h e s pontaneous g enerati o n o f l iving t h ings b e ca m e a universa l assu m ption. We sti l l s p e a k of d i rt " b ree d i n g " ve r m in. T h e view w a s a l so econo m ical : it involved only one category of expl anation . O u r c u rrent popu l a r vi ews req u i re not only a n explanation for t h e origin of l ife b u t a l so one for t h e origin of species. Early views o n the o r i g i n o f l i f e i n c l u ded o n e t h a t s u g gested s h ee p a rose from a pla nt. (Afte r Weinberg.)
8
of l iv i n g cre atures from n onlivi n g m a tter beca m e increasing l y s u spect in the seve nteenth c e n tu ry. Francesco Redi ( 1621-97), an Itali a n p hysici a n , beca m e convi n ce d that the m a g gots fou n d in m eat were d e rived n ot fro m the m e a t itself but fro m e g g s l a i d by flies . S PONTA N E OUS G E N E R A T I O N
f l i es, d e c o y i n g m ea t , a n d m a g g ots
p l a ced a "dead s n ake, s o m e fi s h , a n d a s l ice of vea l" in four o p e n - m o u t h e d fl a s k s , and then placed the same t h i n g s i n f o u r fl a s k s t h a t h e c l o s e d a n d s e a l e d . F l ies con sta ntly settl ed o n the m eat in the open fl a s k s , w h i c h beca m e w o r m y . N o wor m s a p peared o n t h e m e a t i n t h e s e a led fl a s k s . Knowi n g t h a t s o m e b e l ieved air to b e e s s e n tia l for g e n e ra· t i o n , Red i repeated t h e ex per i m ent, t h i s t i m e u s i n g a g a u z e cover f o r t h e " c losed" fl a s k s t o p rotect t h e m f ro m fl i e s b u t a l lowi n g a i r i n s i d e . Ag a i n , n o m a g g ots a p pea red o n t h e m eat. This d i scredi ted the most fa m i l i a r e x a m p l e o f s po n ta n e o u s g e n e ra tio n . R EDI
meat decoy ing, b u t n o f l i e s o r m a g g ots
A R EFINED VE RSIO N of Red i's
experi m e n t was used by Pa ste u r i n the m id - e i g htee n t h c e n t u ry to d e m o n strate t h a t p u trefa ction a n d f e r m e n ta t i o n depend o n action of ai r - b o r n e o rg a n i s m s .
..,
Ope nf l ies a n d m a g g ots o n decoy i n g m e a t
Cove red w i t h g a u zeno f l i e s or m a g g o ts o n d e c oy i n g m e a t
9
A C LASS IFICATI O N OF LIFE was devised by Aristo t l e
i n t h e fo urth c e n tu ry B . C . a n d stood und i s p ut e d for n i n eteen c e n t u r i e s . This c l a ss i fi c a tion e m b r a c e d a co m pl ete g ra d a t ion fro m t h e l owest to t h e h i g h est o r g a n i s m-m a n . Fifte e n t h and s i xteenth centu ry voya g es of d i scov e ry a n d t h e inven tion of t h e m i croscope revea l e d a d i ve rsity of a n i m a l a n d pl ant fo rm and functio n un k n own to Aristot l e . With these n ew observatio n s, c h a n g e s in classification too k p l a ce . (1627-1705), a n En g l is h natural ist,· i n trod uced the present idea of species and h ig he r categories i n classifica tion . Ray s h owed t h a t groups of s i m i l a r s pecies co u l d be classified i n to sets, w h ich he called genera. This syste m is t h e b a s i s for t h e i n tern atio n a l o n e s ti l l b e i n g u s e d today. JO H N RAY
( 1 707- 1 77 8 ), a Swed i s h na t u ra l i st, devel ope d the present syste m a n d method of biological c l a s s i f icatio n (ta x o n omy). H e u sed a u n iform system of c l a s s i f ication a n d no m e n clature. T h e 1 Ot h edition of h i s Syste m a Naturae ( 1 758) marks the beg i n n i n g of modern tax o n o my.
CARL LIN N A EUS
RELATIVE AGE OF CATEGORIES OF ANIMALS
s h ows a n in cre a s i n g sim i l a r i ty of e a c h g ro u p from t h e kin g d o m to t h e s pe c i e s . N ote t h e modern evo l u ti o n a ry bra n c h i n g in terpre t a tion o n t h e rig h t.
THE L I N N A E A N T Y P E CLA S S I FICATI O N
IN BIN OMIAL NOME NCLATUR E ,
t h e ba sis of the cla ssif i ca tio n developed by Lin n a e u s , each s pecies h a s two n a m es: t h e f i rst is the g e n u s to which it be longs; the seco n d is the spe cies. T h e Com m o n Rave n , for
exa m p l e , is Corv u s cora x , w h i l e t h e s o m ewhat similar Co m mo n Crow is Corvus brach yrhynchos. Lin n a e u s used this s h ort, a n d internatio n a l l y u n d e rstood clas sification to c l a s sify all of the species k nown a t that ti m e .
L I N N A E U S and m ost of his contem pora ries a s s u m ed
that e a c h sp e cies was d i stinct and unc hang ing , t h e i r d e g rees of s i m il a rity refl ecting s i m i l a rity to the a rc he types, o r m o d els, u pon w h i c h e a c h h a d been c reated .
11
THE VARYING DEGREES OF D IVERS ITY shown
by
d ifferent species s u g g ested to so m e e i g h teenth c e n t u ry stu d ents a conclu s ion bol dly d ifferent fro m that rea c h e d by li n n aeus and m o s t o f h i s contem poraries. P e r h a ps, it was a rg u e d , s pecies were not u n c h ang ing and i m m u ta ble . P e r h a p s existing s pecies a rose b y a slow m o d ification of e a r l i er for m s . P e r h a p s d e g rees of s i m ilarity b etween s pecies reflected t h e i r d eg ree of rela tions h i p to co m m on ancestra l fo r m s . Perha p s c h ange, not constancy, w a s one essenti a l c h a r a cteristic of s pecies . Perh a ps species have evolved , o r unfol d e d , r a t h e r t h a n h a ving a p pea re d fu lly fo r m e d . Perh a p s t h ey a rose not fro m a sing l e c rea tive act b u t b y s l ow p rocesses of c h ange ove r l ong p e ri o d s of ti m e . ERASMUS DARW I N ( 1 7 3 1 - 1 802),
JEAN
g ra n d father of C harles Darwi n , w a s a ph ysicia n , poet, a n d natura list. H e was impressed by t h e exte n t of c h a nges in farm wit h i n t h e lifeti m e of indiv i d u a l a n ima ls (frog s , for example), by the i nfluence of s e lective breed ing i n horses and dogs, by d iffe rences d u e to c l i mate, a n d b y t h e close a ffi n i ties of t h e m a m ma l s-wh i c h h e rea soned i m p l i ed their commo n o ri g i n .
( 1 744- 1 8 29), Fre n c h s o l d i e r a n d biologist, w a s t h e fou n d e r o f t h e stu dies of i n vertebrate a n i ma l s . He stressed t h a t n o a b solute limits s e p a rated o n e spe cies from a n oth er and that s pecies reta i n con sta nt c harac teristics o n ly i n u n c h a n g i n g en v i ronments. When the environ ment does c h a n g e , he a rg u e d , t h e i n creased u s e of some or g a n s a n d the relative d i suse of
BA PTISTE
DE
.r
LAMARCK
others lead to i n h e ri ta b l e cha nges. T h e g i raffe's long n e c k , f o r exa m p le , co u l d be b e s t ex plained by t h e l o n g -conti n u e d habit of reach i n g u pward t o feed on t h e l e a v e s of trees. By La m a rc k's t h eory, the rela-
tive devel o p m e n t of a n y organ respo n d s to i t s d eg ree of use. La marck's belief that ac q u i red c h a racteristics c a n be i n h e rited i s n o l o n g e r a ccepted , b u t h is recog n ition of evolution was of major i m porta n c e .
La m a rck's views s u g g e s ted t h a t g i raffes reach i n g u pw a rd be i n c rea s i n g l y ca m e l o n ger n ecked a n d tra n s m i tted t h i s c h a racteristic t o t h e i r offs pri n g .
T h e conce pts o f evo l ut i o n p ro p osed by Era s m us D a rw i n a n d by La m a rc k were n ot o n l y rejecte d b u t were a l so ri d i c u l e d by t h e i r scientific co n te m p o ra ries . Th is wa s beca u se of t h e excesses of s o m e i n te r p reta tio n s p ro p osed by La m a rc k a n d h i s d i sci p l es, a n d a l so beca use m a n ' s eve ry d a y e x p e rie n ce p rovi ded l it t l e s u p p o rt fo r La m a rc k ' s t h e o ry of s p e c i e s deve l o p m e n t . I n sp ite of circu m sta n ti a l evi d e n ce, n o o n e h a d yet seen o n e species t u r n i n to a n ot h e r.
13
THE DISCOVERY THAT LIFE HAD A LONG HISTORY
d i d not com e until t h e e i g h teenth and nineteenth cen turies, when it b e c a m e genera lly recogni zed t h a t fos s i l s were the re m a ins of once-l iving ani m a l s and p l a n ts . Fos s i l s ind i cated that m a ny s p e c i e s h a d beco m e extinct and that m o st l iving species were of recent origin. If species were i m m uta b l e, how cou l d these c h anges in the pattern of l ife be exp lained ? D u ring the nineteenth centu ry, two o p posing schools of thought developed . CATASTROPH I STS a ttem pted to
recon c i l e the foss i l record with the early c h a pters of the Boo k of Genesis. T h ey reg a rded t h e Flood of N o a h as the l a s t o f a series of g reat worldwide ca tas trophes, each of which d e stroyed a l l l iving t h i n gs. After eac h catastrophe, a n ew crea tion took pla ce, in w h i c h the earth was repopu lated by ani m a l s a n d pla nts of new a n d d ifferent species. These in turn were d estroyed, and their fos sil re m a i n s e n t o m bed in t h e s trata o f the next cataclys m .
GRADUALISTS m a i n ta i n e d that t h e foss i l record s h owed n o evi dence of wor l dwide catastro phes, a l t h ou g h it d i d s h ow m a ny exa m p les of local eros ion s u rfaces and c h a n g i n g e n v i ron m e n t s of roc k d e p o s i t i o n . A l t h o u g h t h ese c h a n ges a re often m a rked by t h e c u toff of o n e k i n d of fossil and its re p l a c e m e n t by a n other, th i s was a p i e c e m e a l , loca l , i rreg u la r process, not a worldwide o n e . New species ori g i n ated, accord i n g to g r a d u a l ists, by t h e s l o w m o d i fication of a n cestra l fo r m s . G E O R G E S CUVIE R ( 1 769- 1 832 ), a n outsta n d i n g Fre n c h a n atom ist and pa l eontologist, studied th e foss i l ve rte b rates of t h e Pa ris Ba s i n . T h e s u ccession of d iffer e n t species see m e d to h i m to i m p l y a se ries of u n ivers a l ca tastro p h es, t h e last of w h i c h was the F lood o f N oa h . C u v i e r be l i eved that some species s u rvived to repo p u late the earth w h i l e other students i n voked a new creation after each of the catas tro p hes. As m a n y a s 30 catastro phes were proposed.
JAMES
H UTTO N
(1726-1797),
Scotti s h p h ys i c i a n , l a n d owner, a n d a g r i c u l t u r i st, l a i d t h e fou n dations of m od e r n g eology. He recog n ized t h a t many rocks were the res u l t of eros i o n a n d deposition i n e n v i ro n m e n ts t h a t h a d modern co u n terparts. T h i s co ncept of uniformitaria nism s o u g h t to e x p l a i n t h e fea t u res of t h e earth i n term s o f pres e n t processes.
(1797-1875), a Scott i s h s o l d i er, l awyer, a n d g eologist, p u b l i s h e d T h e Prin ciples of Ge ology in 1830-33 T h e book, w h i c h ra n to twelve e d i t i o n s , had e n o r m o u s i n fl u e n ce . I n it, Lye l l esta b l i s h e d the s c i e n c e of g e o l ogy, j u st i f y i n g a n d a m p l i fyi n g H u tto n ' s con cept of u n i form itaria n ism . Lye l l f i rst used t h e word "evo l u t i o n " i n its prese n t se n se.
C HARLE S LYELL
N ew d iscove ri e s l e d to t h e g ra d u a l rejectio n of c a ta s t ro p h i s m . Fi rst, t h e n u m b e r of catastro p h e s re q u i red to ex p l a i n t h e fo s s i l record ste a d i l y i n c re a s e d u n t i l t h e w h o l e syste m b eca m e u n wi e l d ly. I t beca m e c l ea r, a l s o, t h a t the rock reco rd coul d b e i n te r p reted s a t i sfa c to r i l y i n te r m s of p r e s e n t- d a y, o b serva b l e g e o l o g i c p rocesses ra th e r t h a n u n k n own catastro p h e s . In a d d it i o n , t h e "d i ____ 1=-uv'_ -' i a l " ro c k s t h a t l a y ove r t h e s u rfa ce of m u c h of Euro p e a n d North Am e rica a n d we re t h oug h t to b e t he re m a i n s o f Noa h ' s Flood we re reco g n iz e d a s g l a c i a l d e p osits . More a n d m o re evi d e n c e of conti n u ity ( o r evo lutio n ) of fo s s i l s wa s d e m o n strate d . D a rwi n a n d Wa l l a c e p ro p ose d a n a ccepta b l e m ec h a n i s m fo r t h e p ro c e s s of evo l utio n . 15
D ARWIN'S VOYAGE aboard t h e HMS Beagle c h a n g e d the worl d ' s viewpoi nt i n regard to evo l ution a n d the d evelo p m ent of s p ecies. U ntil t h e p u b l i cati o n of D a rwi n's On t h e O rigin o f Species, i n
CHARLES
1859, t h e i d e a o f evo l utio n was g e n e ra l l y rejecte d .
D a rwin was born a t S h rewsbu ry, E n g l a n d , o n F e b ru a ry 1 2 , 18 09, t h e s a m e d a y a s Li n c o l n. After two ye a rs of m e d ica l tra i n i n g a t E d i n b u rg h , h e w e n t to Com b r i d g e, w h e re h e g ra d ua ted i n 1 83 1 . Afte r h i s g ra d u a t i o n , D a rw i n was a p pointed n atu ra l ist to t h e Beagle, a 240-to n , 1 0 - g u n brig, which was to u ndertake a s u rvey voyag e to South Am erica a n d fro m t h e re on a ro u n d t h e worl d . Th e voy a g e l a sted five ye a rs, a n d t h e i n s i g h ts D a rw i n g a i n e d d u ri n g t h ose yea rs were t o b e co m e t h e fo u n d a t i o n of h i s l i fe ' s wo r k . Da rwi n mode i m p o rta n t co n t ri b u t i o n s to t h e g e o l ogy of South A m e rica, the orig i n of cora l reefs, the re l a t i o n s h i p s betwe e n l ivi n g a n d foss i l a n i m a l s , a n d t h e struct u re , a d a p tation , a n d geog ra p h ic distri b u t i o n of a n i m a l s . I t wa s t h ese s t u d i es t h a t l a t e r fo r m e d t h e basis fo r h is evo l utio n a ry th eory . DARWIN too k the first volu me of Lye l l 's n ewly p u b l i s h e d Prin ciples of Geology o n the voya g e a n d was d e e p l y i m pressed by i t . Lye l l a rg u e d tha t t h e ea rth's s u rface had b e e n s h a p e d by s u c h n a t u r a l forces as river erosion , vo l ca n i c e r u p t i o n s , a n d c h a n g e s i n s e a leve l s . D a rw i n u s e d s uc h i d e a s i n u n rave l i n g t h e geo logy o f a re a s h e v i s i t e d , a n d t h ey i n fl u e n ced h i s t h i n k ing a b o u t t h e orig i n o f s pecies .
C h a rles Darw i n , aged 31
16
The route of the HMS Beagle is show n on t h e m a p a bove. I t is proba b l e that Da rwin contracted C h a g a s ' disease du ring an inl and journey in South A m erica, m a k ing h i m a s e m i - i nva l i d later. VERTEBRATE S collec ted by Darw i n from Arg e n t i n a a n d elsewhere i n c l u d e d T oxodo n a h eavy e l e pha n t-sized m a m m a l t h a t looked m uc h l i ke a rhi noc eros. D a rw i n concl uded ( wro n g ly) t h a t i t s h owed t h e two groups were c l o s e l y re l a t e d . D a rwi n d iscovered foss i l teeth of horses that had l ived a t t h e sa m e t i m e a s Toxodon a n d h a d b e c o m e extinct with it, a l tho u g h s u rviving i n ot h e r pa rts of the worl d . T h i s m a d e the idea of catastro p h i c w or l d w id e e x t i n c t i o n a p pear s u s pect. FO S S I L
,
T H E S I M I LA R I TY of some fo ssil
verte brates, such a s t h e g i a n t a rm a d i l lo- l i ke Glyptodon, to form s s t i l l l i v i n g s u g g ested to Darwi n the idea of descent by evolution.
THE GALAPAGOS ISLANDS, l oca ted
i n the Pa c ific a bo ut 600 m i les west of the coast of Ecu a d o r, a re a d esolate g ro u p of 1 4 roc ky i s l a n d s , representi n g t h e re m a i n s of exti n ct vo l ca n oe s . T h e i s l a n d s a re s e p a rated fro m e a c h oth e r by deep water, a n d n o wi n ds o r ocean c u rre n ts carry s m a l l a n i m a l s o r seeds fro m o n e t o a noth e r . T h e g e n eral a bsence o f m a m m a l s h a s a l lowed g i a n t tortoises t o g ra z e i n safety, l i z a r d s t o be co m e s e a g o i ng, and fi n ches to exist i n n iches that else w h e re a r e occupied by other species. D a rw i n d i scovered that ea c h of t h e i s l a n d s , a l t h o u g h h a vi n g very s i m i l a r c l i mates a n d e n v i ro n m e n ts a n d b e i n g o n l y a b out 5 0 m i l e s a p a rt, h a s its own fa una and f l o ra - s i m i l a r to but d isti n ct fro m t h o s e of the n e i g h b o ri n g i s l a n d s . This s ug g e sted to D a rw i n that t h e s i m i l a r species m i g h t h a ve d eve l o p e d from a co m mo n a n ce sto r rat h e r t h a n e a c h h a v i n g b e e n c reated sepa ra t e l y . The isl a n ds a r e of rece n t o rig i n , a n d t h ei r fa u n a , de rive d fro m t h e S o u t h A m e rica n m a i n l a n d , i l l u strates co l o n iz a t i o n of, a n d a d o ptio n to, a n e m p ty e n vi ro n m e n t b y re l a tive ly ra p i d evo l uti o n .
I G U ANAS g row to f o u r feet l o n g a n d a re fears o m e i n a p p e a ra n ce , b u t t h ey are h a r m l es s h e r b i vore s , feed i n g o n s e a weeds. F o u nd o n l y \r'..:'i"J4f!: i n t h e G a l a p a g o s I s l a nd s , t h ey i n c l ude two rel ated s p e c i e s , o n e terrestr i a l , a n d t h e o t h e r mari n e. T h e latter are pow erf u l s w i m m ers, with we b b ed toes and a f l atte n ed ta i l to a s s i s t i n s w i m m i n g. Ea c h i s l a nd h a s i t s o w n ra c e , s h ow i n g m i nor d i f fere n c e s f ro m o n e gro u p to a n ot h e r.
w e ig h i n g up to 250 pou n d s g ra z e on veg eta tion, fi l l i n g a n i c h e occu pied i n oth e r p l a c e s by m a m m a l s . These tortoises a re fou n d o n ly i n the Galapagos I slands, a n d each m a j o r isla n d h a s its own variety. The variation within a stn g l e sp e ci e s of tortoise is so s i m i la r to that fou n d betwe e n species i n t h e Gal a p a g o s fi n c h e s t h a t Darwi n w rote, " I m ust s u s pect t h at (th e fi nc h species) a re o n ly varieties."
G IANT TORTO I S E S
THE F I N C H E S of th e G a l a pa gos
Islands showed a g e n e r al s i m i l a rity t o o n e a noth er a n d to th ose of t h e m a i n l a n d of South A m e rica, b u t t h e fi n c h e s of each i s l a n d d iffered s l ig htly fro m those of t h e n ext. T h e 1 3 d iffe re n t s pecies s h owed a perfect g radatio n , fro m g ro u n d l i v i n g , seed-eati n g f o r m s with heavy, large beaks to tree dwe l l i n g , i n sec t eatin g fo r m s w i t h long, p o i n t e d beaks. -
D a rwi n w o n d ered w h y the s pecies, i f created s e parately, rese m b led one a n ot h e r a n d those of t h e m a i n l a n d o f So u t h A m erica, w h e re a s birds of t h e Ca pe Ve rde I s l a n d s , a t t h e same latitude i n the South At l a n tic, res e m b l e d t h o s e of Afri c a . " O n e m i g h t rea l l y fa n cy," w rote Da rwi n , " t h a t . . . o n e s pecies h a d been ta ken a n d m o d i fi e d f o r d iffere n t e n d s . " T h e s e a re i l l u s trated o n p . 8 2 .
The G a l a pagos Islands, s h owing route o f H.M.S. Beag l e .
19
THE SEARCH FOR A MECHAN ISM h a d b eg u n . C h a r l e s
D a rwin retu r n e d w i t h the Beagle t o E n g l a n d i n Octo b er of 1 83 6. The fol l owi n g July h e o p e n e d h i s fi rst n ote book o n The Transmutatio n of Spe cies. He was t h e n 27 y e a rs o l d . D a rwi n h a d see n how s m a l l v a r i a t i o n s co u l d b e s e l ected b y a rtifici a l b ree d i n g i n d o m estic a n im a l s . Could the sa m e tra nsform ations within a spe cies a lso occur between species so t h a t one u l t i m ately g ave rise to a noth er? D a rwi n 's observations s u g g ested that they could, but h e could not vis u a l i z e t h e m e th o d .
ALFRED
RUSSEL
WALLA C E
( 1 8 32- 1 9 1 3), British su rveyor a n d natural ist, i n d e p e n d e n tly s u ggested the t h eory of natura l se lection . A l ready con v i n ced of the fact of evo l u t i o n , he con ceived t h e idea of natura l se l ection w h i l e l y i n g s i c k with feve r i n the Moluccas i n Febru a ry, 1 85 8 . H e reca l l e d the Essay on Pop ulation, by Robert Ma l t h u s, w h i c h h e h a d read twe lve years before. He w rote tha t he saw its a p p l ica tion to evo l u t i o n " i n a fla s h o f i n t u i t i o n . " Wa l l ace w a s a l so a n out sta n d i ng p i o n ee r in the study of the geogra p h i c d i stri bution of a n i m a l s and its s i g n ifica n ce for the th eory o f evo l u t ion (p. 43).
MALT H U S (1 766-1834) was a n E n g l i s h c l e rg y m a n a n d that eco n o m i st . U n c o n v i n ced man is p e rfect, and d i s b e l i e v i n g t h e p robab i l ity of un ivers a l p e a c e , e q u a l i ty, a n d p l e n ty, pred i cted by the p o l i t i ci a n s a n d u t i l ita rian phi l osophers o f the e i ghte e n t h c e n t u ry, Ma l t h u s wrote a n a n o nymo u s " Essay on Popu lation " in 1 798. In it, h e sla ted t h a t h u ma n pop u l ation c a n not e x pa n d i n defi n itely. Pop u l ations e x pa n d at a geo m etric rate of i n crease w i t h wh ich f o o d s u p p l i e s c a n n ever keep pace. Fa m i n e , d i sease, and wa r, Ma l l h u s a rg ue d , wi l l l i m it t h e i n c rea s i n g size o f h u m a n popu l a tio n s . ROBERT
Natura l selection i m plies that a n c estral g i raffe populations i n c l uded n e c k s of various le ngths. More of the l o n g e r - n e c ked gi raffes s u rvived, a n d t h ey pro d u ced i n crea s i n g n u m bers of offs p r i n g that i n h erited t h e i r pare n ts' lon g e r nec ks.
"I n Octob e r, 1838," wrote D arwi n , " I h a p p e n e d to read Mal t h u s for amu seme n t. Bei n g wel l pre p a red to appreciate t h e stru g g l e fo r exi ste n ce , wh i c h eve ry w h ere goes o n , fro m l o n g conti n u ed o b s e rvati o n of t h e h a b its of a n i m a l s a n d p l a nts, i t a t o n ce stru c k m e t h at u n d e r t h e s e circ u m sta n ce s favo r a b l e va r i atio n s wou l d te n d t o b e p r e s e rved a n d u n favora b l e o n es to be d e stroye d . T h e re s u l t of t h i s wo u l d be t h e fo r m ation of a new s p e c i e s . " D a rwi n ca l l e d t h i s process " n at u r a l s e l ecti o n ." H e arg u e d t h at t h o s e parti cular i n d ivid u a l s b ette r -a d apted to t h e i r e n v i ro n me n t wou l d l ive l o n g e r t h a n t h e rest. S i n ce t h e offs p r i n g wou l d s h a re t h e i r p a rents' c h a r a cteri stics, over m a n y g e n erati o n s, t h o s e most favo r a b l e wo u l d te n d to pre d omi nate. D a rwi n m u l l e d ove r his theory, p re p a ri n g a bri ef outl i n e of it i n 18 4 2 , a n d a l o n g e r a b stra ct two years l ate r. T h e s e were n ot p u b l i s h e d u n t i l 1858 ( S ee p . 2 2 ). For t h e n e xt fourteen years h e g a t h ered data for a fou r- vol ume treatise. These vo l umes were n ever p u b l i s h e d. 21
THE ORI G I N OF S PE C I ES. I n t h e summer of
1858,
D a rwi n received fro m Alfred Russel Wa l l a ce a m a n u s c r i pt e n titled " O n the Ten d e n cy of Va rietie s to D ep a rt I n d e fi n itely fro m the Orig i n a l Typ e . " Wa l l a ce h a d i n d e p e n d e n tly rea c h e d t h e conclusion that n at u r a l sel ection h a d pl ayed a m a jo r rol e i n t h e o r i g i n of n ew species. D i s m aye d , D a rwin offered to with d raw h i s own m a n uscri pt, but a j o i n t paper by the two men was rea d b efo re t h e l i n n a e a n Society of lo n d o n o n July 1 , 1858. On Nove m b e r 24, 1859, D a rwin p u b l is h e d t h e Origin o f Species-a b rief abstract, as h e c a l led i t , of h is views . The book created a sensatio n . The f1rst e d i tion of 1250 copies sold out o n the f1rst d a y of p u b l i cati o n . Scie n tists w e re at f1rst d ivi ded i n t h e i r views . Oth e rs, wro n g ly as it n ow a p p e a rs, reg a rd e d the boo k as a d i rect c h a l l e n g e to rel ig ious b e l i efs. I n s u c h d iverse f1el d s a s p h i l osophy, h istory, a nth ropology, pol itics, and sociology, D a rwi n 's book ra ised p rofo u n d q ues tions. Th e d e b ate was wid espread a n d i ntense .
THE B O O K w a s ca refully w rit THE ORIGIN OF SPECIES Bf !lEANS OF NATURAL SELECTION,
Bf
CHARLES DARWIN, K.A.,
_............... _ .. �, ....................... , ...._ .... _.......... ..... _, ___ .......... ""... _,.. ™ .... . .......
LONDON:
.lORN MURRAY, ALBEM:ABLJ: IITREET.
22
ten a n d cog e n tly a rgued. T h e fi rs t four c h a pters described t h e res u l ts of d o m e s t i c s e l ection and bre e d i n g a n d then devel oped t h e idea of natu ra l se lectio n . T h e fifth c h a pter, de voted to t h e m echen isms of va riation and i n h erita n ce , is t h e o n ly part of the boo k that has s i nce been d iscredite d . T h e s ixth to te nth c h a pters d i s c u ss e d possible o b j e ctions to the w h o l e idea of evo l u t i o n , a n d t h e re m a i n i n g c h a pters treated poss i b l e evid e n c e for evo l utio n . S h ow n at left i s t h e title p a g e of t h e 1 s t edition .
Cartoonist's view, i n 1 8 7 1 , of Charles Darw i n Hux ley, ( rig h t ) w h o c h a m pioned his teac h i n g s .
( Left ) a n d T. H.
The i m porta n ce of D a rw i n ' s book on Th e Origin of Species, i s d iffi cult to exa g g era t e . It h a s b e e n ca l l e d t h e most i m p orta n t b o o k o f t h e n i n etee n t h c e n tury. More t h a n a n y o t h e r b o o k , b efore or si n c e , i t esta b l i s h e d t h e t h e ory o f evo luti o n -or "d esc e n t b y m o d ifica t i o n , " a s Da rw i n c a l l e d it. I n t h is, D a rw i n i n itiated a tra n sform a t i o n i n t h e stud y o f t h e org a n i c worl d a s profoun d a s t h a t broug h t a bout i n t h e p h ysica l worl d b y N ewto n ' s work w i t h g ra vitatio n . I n b i o logy, evo l ut i o n p rovi d e d a p owerful n ew unify i n g pri n c i p l e , g ivi n g n ew m ea n i n g a n d i nsig h t t o a ma z e o f confl i c t i n g d a ta a n d a l s o a n ew i mpetus i n every fi eld of i n quiry . T h e boo k's i nflu e n c e w a s n o t co n fi n e d t o b i o logy. I f l ife had a h i s tory, so had m a n , so had l a n g u a g e, so h a d cul ture . H a d t h ey too evolved? I f there h a d been org a n i c evo l uti o n , had there a l so b e e n i n o rg a n i c evo lut i o n in w h i c h the e a rt h , t h e sol a r system , the u n iverse, m atter, a n d e n ergy itself had u n d e r g o n e c h a n g e? A wate rs h e d of h u m a n thou g h t was esta b l is h e d . Ma n's view of the wor l d , of l ife, a n d of h i mself would n eve r be q u ite the s a m e a g a i n . 23
DARWIN'S THESIS for t h e ong m of new species
rested on th ree essenti a l fou n d ation s-two of t h e m d e m o n stra b l e fa cts, t h e oth er a n i n ference. Fi rst, D a rw i n stressed t h at variation existed t h rou g h o u t t h e wor l d o f livi n g t h i n g s . N o two i n divi d u a l s of the s a m e s pecies a re exa ctly a l i ke . In size, p ro po rti o n s , colori n g , m e ntal a b i l ity, d i s position, physiolog i c a l p ro cesses, a n d m a ny other ways, each i n d ivid u a l i s u n i q u e . Furth e r m o re, m a ny o f these a n d oth e r featu res a re tra n s m itted fro m p a rent to offs p ri n g . Seco n d ly, D a rwi n a rg u ed that every s pecies over pro d u c es . More you n g are p ro d u ced t h a n ever su rvive, for the n u m be r of i n d ivid u a l s in a popul ation s h ow re l atively l ittle va riatio n . Th is overprod uction exists at every l evel i n the plant and a n i m a l ki n g d o m s . " Even s low- b reed i n g m a n , wrote D a rwin, " h as d o u b l e d ( his n u m bers) i n twenty-five yea rs, a n d at t h i s rate, i n less than a thousa n d yea rs there wou l d l itera l l y not be sta n d i n g room fo r h i s progeny. There m u st therefore be a very hig h rate of m o rta l i ty, a n d t h i s h a s been s h own to be so. In m a ny s pecies of birds and i n sects, 98 pe rce n t of t h e i n d ivid u a l s die b efo re m a t u rity . II
11
Swarm of locusts exemplifies a b u n d a n ce of l ivi n g thi n g s .
NATU RAL SELECTION
+
•
GRAZI NG HORSES
Darwi n 's "re c i p e " for evo l ution was the i n teraction of variation, ove rpo p u lati o n , and n a t u r a l s e lectio n ; i l l u s trated h ere i s evo l u tion of h orses ( See p . 5 1 ).
Third ly, D a rwin a rg u ed that m a ny c h a racteristics of p l a nts a n d a n i m a l s were a d a ptati o n s to the e n vi ro n m ents i n w h i c h t h ey l ived . T h e p rotective col o r i n g o f m a ny a n i m a l s wa s c l e a rly a d a ptive . Th e teeth of a n i m a ls we re clea rly related to t h e i r d iet, as were th e bea ks of b i rd s . Wh a l es, though m a m m a ls, were so a d a pted to l ife in the seas that they h a d fis h l i ke bodies. D a rw i n s u g g ested that these h a d come a bout by natura/ selection of favora b l e d iffere n ces i n a nces tra l o rg a n i s m s . Those best a d a pted to t h e i r e nviron ment wou l d s u rvive l o n g e r and so p ro d u c e m o re off spr i n g tha n those that were not. Th e offs p r i n g wou l d i n h erit th e i r p a re n ts ' favora b l e c h a racteristics . N e w species cou l d d evelop i n t h i s way. Th e vigorous d e bate that fol l owed p ubl ication of D a rwi n 's book saw g ra d u a l acce pta nce of h is views . D a rwi n m is u n d e rstood t h e m e c h a n is m of variation a n d i n h e rita nce, but h i s g e n e ra l theory h a s withstood th e test of ti m e . 25
THE
LAWS OF I N H E R I TANC E, w h ich h a d e l uded Da r
w i n a n d Wa l l a ce , were d iscovered by Gregor Me n d el ( 1 8 2 2 - 1 8 8 4 ) , a n Au stri a n m o n k . Men d e l is con s i d e re d t o b e the fo u n d e r o f m o d ern g e n etics. His wor k w a s p u b l is h e d i n 1866, b u t re m a i n ed g e n e ra l ly u n k n own u n t i l it was i n d e p e n d ently " red iscovered " by t h ree biologists in 1900 . Men d e l d e c i d e d to stud y the i n h erita nce of o n e o r two re a d i ly recog n i z a b l e c h a ra cters i n t h e g a rd e n pea-t h e s i z e a n d fo rm o f t h e peas, t h e i r fl ower color, a n d so o n . He cross- pol l i n ated o n e fo rm with a n other and t h e n ca refu l ly recorded the resu lts of this over seve ra l g rowi n g seaso n s . ( p . 60 ) MEN DEL raised peas by cross pollinating those with smooth, round peas and those with shriveled, wrinkled peas. He discovered that they did not produce a blending of the par ent characters, as was g e n e r ally believed, but that all the new peas were smooth and round. He then used these seeds to p rodu c e a n ot h e r cro p ,
covered t h a t t h ree-quarters of t h e n ew g e n e ra t i o n were s m oo t h a nd ro u n d a n d o n e q u arte r w a s wr i n kled. Mendel ca l l ed c h ara cters t h a t c o u l d be m a s ked i n o n e g e n e ra t i o n b u t a p pear i n a n ot h e r ( s u c h a s w r i n k l ed p e a s ) recessive; t h os e t h a t ove r s h adow t h e m ( s u c h a s t h e s m o o t h , ro u nd p e a f o r m ) ,
cross-pollinated them, and dis-
Me nde l co n c l uded t h a t t h i s de layed a p pe a ra n c e o f reces s i ve c h a ra c t e r s m u st i m p l y t h a t e a c h c h ara c t e r i s g over n e d by a n i nde p e n d e n t factor ( w h i c h w e n o w c a l l a ge n e) a n d t h a t t h e se m u st b e pa ired in t h e pare n t b u t n o t i n t h e g a m et e s. Me nde l m a de t h ree m ajor d i s cove r i e s : (1) t h a t c h ara cters are g ove r n ed by p a i red , b u t i n di vidu a l "fa ctors," (2) that t h e s e factors m a y b e do m i n a n t o r re c e s s ive, a n d (3) t h a t t h e s e f a c tors c o m b i n e , w i t h o u t b l e n di n g , to prod u c e c h ara cter i s t i c ra t i o s in the later g e n era t i o n s.
dom inant.
Hugo de Vries, the discoverer of mutations, and the evening prim rose that he used in his studies.
MUTATI ON. Me n d e l h a d shown t h a t i n he rita nce was
p a rticu l a r a n d p red i cta b l e . But if this was so, how cou l d a ny new features ever a rise? Th e a n swer was fou n d p a rtly i n t h e a ction of n atural sel ection a n d pa rtly i n the work o f a D utch bota nist. Hugo d e Vries {18 4 8 -193 5 ) was Professor of Bota ny at Am sterd a m . He stu died the m ec h a n i s m of i n h erita nce of c h a racters i n t h e eve n i ng p r i m rose and beca m e in creasi n g ly s u s picious of t h e t hen c u r rent view that d iffere n t p a re n t a l c h a ra cters a lways ble n d e d in the offs p r i n g a n d that all va riatio n s were s m a l l . H e stu d i e d ove r 5 0 , 0 0 0 p l a n ts, a n d out of t h e i r several h u n d red thousa n d fl owers, he d i s covered rare exa m p l e s that were " sports . " They h a d giant size o r dwa rf size, o r twice the n o r m a l n u m b e r of peta l s . W h e n b re d to gether, they p rod uced s i m i l a r offs p ri n g . S u c h new forms de Vries c a l l ed mutants, the c h a nges p rod u c i ng th e m mutations. I n searc h i n g the l iterature, d e Vries red iscovered t h e work of Me n d e l . These m utatio n s p rovided th e g e n u i nely n ew c h a racteristics u p o n which evol ution by n atura l selection was d e p e n d e nt. 27
T. H. Morgan, a pioneer American geneticist.
Walter S. Sutton, geneticist who identified role of chromosomes.
T H E N EW SYNTHESIS OF EVOLUTIONARY TH EORY
came i n th e early yea rs of the twentieth centu ry, m a rked by recog n ition of chromosomes, m i n ute th rea d l i ke structu res i n t h e c e l l n u c l e u s, a s t h e c a r r i e rs of h e red ita ry c h a racte rs . Th is d iscove ry, w h i c h a l s o showed a l inka g e of c h a racters that Me n d e l h a d n o t suspected, w a s m a d e independently i n 1 902 b y W . S . Sutton and b y T. Bove ri. T. H . Morg a n ( 1 886- 1 9 4 5 ), experi m e n t i n g with t h e fru it fl y, Drosophila, d e m o n strated t h a t t h e g enetic d eterm ina nts were p r e s e n t i n a d efinite l ine a r order i n t h e c h ro m os o m e s and cou l d be " mapped . " Many wo r k e rs b e ca m e co n v i n c e d t h a t i t was s u d d e n , sponta n eo u s , l a rg e-sca l e m utations t h a t w e r e t h e rea l b a s i s of evolut i o n rat h e r t h a n , a s D a rwi n h a d s u g g este d , t h e m ino r va riations . But why, oth ers o b j ected, s h o u l d so m a ny c h a ra cters then b e a d a ptive s i n c e m a ny m utations proved t o b e l eth a l rather t h an b en efici al? T h e d i scove ry in 1 9 27 t h a t X- rays, te m pe rature c h a n g es, g a m m a rays, a n d var iou s c h e m i c a l s could i n d u ce m utati o n s proved that the g re a t m a jority of them were m i n u te in t h e i r effects and t h erefore were m o re l i kely to s u rvive . 28
Magnified Segment
C h rom osomes from the fruit fly Drosophila g reatly m a g nified. The map s h ow s loca t i o n of g e n e s a l o n g part of c h ro m o s o m e l e n g t h .
T h e s i m p l e M e n d e l i a n concept of i n d e p e n d ent, p a r ti cul ar g e n etic d ev e l o p m e n t h a s g iven way to ac ce ptan ce of a n i n d ivi d ua l re pre s e n t e d by a ge ne co m plex i n wh ich g e n e s a re l i n ked a n d i nte ract to g eth e r T h e curre n t synthetic th eory of evo luti o n is b a s e d on rig orous sta tistic a l an a l ysi s , stud y of t h e fo ssil re cord , exp eri mental studies, an d o b s ervat i o n of n at ural popul a tio n s . I t ac c e p t s as the bas i s for evo l utio n i n d ivid ual variations, ari si n g fro m mutatio n a n d repro ductive reco mbin atio n , an d ac ted upo n , fi l tered , c o n serve d , int e n sifi e d or eli mi n ated by n atural s e l ection. .
Ge netic variation i n Drosop hila expressed by striking d iffe re nces i n fo rm. The fl y at left is t h e normal wi l d type. vestigia l norm a l
wing s
strap
twisted abdomen
n o win g s
29
INDI C ATIONS O F E V O LU T ION
The p roof requ i red for a n y p a rticu l a r statem e n t va ries with the n a t u re of t h e state m e n t . To p rove t h a t 2 + 2 = 4 i nvolves a n a ppeal to reas o n a n d mathematical l o g i c . T o p rove t h at a n ath l ete ca n r u n a fou r- m i n ute m ile i nvolves an a p p e a l to experi m e n t-th e ru n n i n g of a ca refu l ly m ea s u red d i stance u n d e r s pecified con d i tio n s a n d with a c c u rate ti m e keepi n g . B u t n o experi m e nt cou l d prove t h a t t he s a m e ath l ete ra n a fou r- m i n ute m i l e o n Ju n e 2 0t h a yea r a g o . P roof of t h a t wou l d i n vo lve a n a p pe a l to the record boo k s a n d to witnesses. No experi m e n t ca n p rovi de p roof of p a s t eve n t s . Other k i n d s of evi d e n ce a re n eeded, a l t h o u g h o b servatio n a n d experi m en ts of ex isti n g facts a n d p rocesses m ay s u p po rt the pro b a b i l ity of a p a rticu l a r p a st event . Often p roof i n volves an a p peal to everyd ay experi e n ce to p rovi d e t h e m o st eco n o m i c a l expl a n atio n . You cou l d n ot p rove, for ex a m p l e , that all of the s p a rrows livi n g tod a y desce n d e d f r o m those l ivi n g t h ree h u n d red. yea rs a g o , b u t t h e b a l a n ce of e x p e r i e n c e wo u l d s u p po rt t h a t i n terpretati o n . "I wi l l b e l i eve i n evol ution , " Wi l l i a m Jen n i n g s B rya n re m a r k e d , " w h e n I c a n sit i n m y g a rd e n a n d see a n o n io n t u r n i nto a l i ly. " Cl ea rly, i f w e h a d to rely o n that k i n d o f i n sta n t experience, evol ution co u l d n o t b e p rove d . B u t n e it h e r c o u l d t h e g rowth of a n o n io n s e e d i nto a n o n io n be p roved i n sta ntly. I t, too, i s a s l o w s c a rcely p e rceptible eve n t . W e ca n, h owever, o b s e rve p o p u latio n s c h a n g i n g a nd c a n a l s o o b s e rve the m e c h a n is m s by w h i c h s u c h c h a n g e c o m e s a b o u t . The p roof of evo l utio n a l so l ies in its u n ique position as the o n ly a d equate expl a n atio n .fo r t h e orig i n of t h e d iverse fea t u res s hown by l iv i n g th ing s . 30
Frog
tadpoles,
metamorphose
into frogs by the resorption of the tail, loss of gills, and growth of lungs and paired limbs. Such radical change within a few weeks makes it less difficult to visualize evolu tion over countless years.
CONT I N U I TY of l ivi n g thi n g s i s p rovi d e d b y r e p ro
d u ct io n . I n d ivi d u a l s l ive , g row old, a n d d i e, but the i r k ind i s p e rpetua ted i n the i r offs p ri n g . W e k n ow o f n o evi d e n ce s u g g e stin g tha t l ivi n g o rg a n i s m s a ri s e i n a n y othe r w a y tha n fro m p a re n ts of the sa m e s p e c i e s . I t wo u l d be d iffi c u l t to p rove, fo r exa m p l e , tha t a l l f ro g s a l ive tod a y m u st have d e s c e n d e d f ro m fro g s tha t l ived 1 , 0 0 0 ye a rs a g o , but a l l of our e x p e r i e n c e s u g g ests that they ha ve . Bu t if fro g s a l ways g ive b i rth to fro g s a n d cam e l s t o ca m e l s , h ow d o n ew k i n ds ( s p e c i es) of an i m a l s eve r deve l op? Two fea tures of c o n t i n u ity s u g g e s t pos s i b l e a n sw e r s . Fi rstly, con ti n u ity betwe e n pa r e n t s a n d off s p r i n g i n volve s both b roa d res e m b l a n c e s a n d in divid ua l diffe re n c e s a n d varia tio n s . Wha teve r e x p l a n a t i o n we s e l e ct m u s t ex p l a i n both fea t u r e s . Se con dly, c o n tin uous c han g e wi thi n the l ifeti m e of a s i n g l e i n d ivi d ua l a n i m a l i s very g re a t. I f s uch cha n g e s c a n occur i n on e g e n e ration , it m ay w e l l b e t h a t on e s p e c i e s could d evelop i n to a n other. 31
U NITY OF LIFE i s s h o w n by t h e fact that, i n s p i te of t h e ir d iversity of fo r m a n d variety of h a b its , the n e a rl y 1 % m il l io n s p e c i e s of p l a nts a n d a n im a l s a l l s o l ve t h e b a s i c p ro b l e m s of l ivi n g i n m u c h the s a m e w a y . They rese m b l e o n e a n othe r i n co m positio n , c e l l u l a r stru ctu r e , l i fe p r o c e s s e s , a n d b a s ic patte r n s o f r e p ro d u cti o n , a d a pta b i l ity, a n d d eve l o p m e n t . They a l s o s h a re a co m m o n u n ity in the e n d le s s interd e p e n d e n c e o f a l l l i vi n g t h in g s . I f e a ch s p e c ie s i s a n e n tirely s e p a rate creati o n , why d o a l l sha re thes e b a s i c c o m m o n p r o p e rti es?
CELLULAR STRUCTURE i s a ch ar acter ist i c of all living material, and the cells are made of pro toplasm. Most cells are only a few thousandths of an i nch in diameter, but a few are m uch larger. T he yol ks of b ird eggs are single cells.
In sp ite of some di fferences, p lant and ani mal cel l s do have a s i m ilar bas i c str u ct ure. Even t h e simplest cel l co n s i s ts of thousands of di fferent m ole cules t hat i nte ract toge t h er in coordination. A typ ical ce ll str u cture i s shown below.
A N I MAL CELL P ROTO PLASM
Oxyg e n Ca r bon Hyd rog e n N i trog e n P h o s p ho r u s Pota s s i u m Sulfur Chlorine
32
76.0% 1 0.5% 1 0 . 0% 2 . 5% 0 .3% 0 . 3% 0.2% 0 . 1%
P R O T O P LASM is sh ared by a ll l i v ing things. It is composed of a distincti ve comb ination of large m o lecules of no n l iv ing s u bstances, inc l u d ing carbohy drates, fats, proteins ( including enzy mes), a n d nucle i c a c i d s t h a t are organized into a co l l o idal m i x t u re in wate r. T he u n i q ue p ropert ies of t h is mater i a l form the bas is of l i fe.
META B OLISM i n c l u d e s t h e n u trition , re s p i ra t i o n , s y n t h e s i s , a n d excretion t h a t i s c h ara c t e r i s t i c o f a l l l i v i n g t h i n g s . N o n - l i v i n g food materi a l s a re c o n ve rted i n to t h e org a n i s m ' s l i v i n g t i s s u e s , c e rta i n of w h i c h b rea k d o w n t o provide t h e e n e r g y t h a t i s v i t a l to t h e processes e s s e n t i a l to l i fe. Meta b o l i s m i n vo l v e s a c o n s ta n t f l ow of e n ergy a n d m a t e r i a l s w it h i n a n d betwee n a n org a n i s m a n d i t s e n v iro n m e n t .
REPRO D U C T I O N of n e w d u p l i
cate i n d i v i d u a l s i s c h a racteristic o f a l l l i v i n g t h i n g s . The con t i n u i t y of form i n volved i n re prod u c t i o n i s contro l l e d by the activity
of
s e l f-du p l i ca t i n g
c h e m i c a l structu res c a l l e d g e n e s ( p . 56).
of newborn i n d i v i d uals i s a co m m o n prope rty of a l l living things.
GRO WTH
of a l l living t h i n g s i nvolves c o n t i n u i n g a d j u s t m e n t t o a c h a n g i n g e n v i ro n
ADAPTAT I O N
m e n t. I n d i v i du a l s po n s e s include
adaptive rea c t i o n
re to
sti m u l i , i rritab i l ity, p h ysiolog i c c h a n g e s , h ea l i n g of I n J U ri e s , a n d m ov e m e n t. Over l o n g pe riods, po p u l a ti o n s show m o re g e n e r a l a d a ptati o n s .
33
Sponges
Des pite t h ei r diversity, all livi n g t h i n g s s h a re co m m o n propertie s .
T H E NAT U R E OF L I FE i s u n de rs tood l a rg e l y in terms
of a s e r i e s of fu n d a m e n t a l pr o pe rties ( p p . 3 2 -3 3 ) . N o s i m p l e d e fi n ition o f " l ife " i s pos s i b l e , p a rtly beca u s e o f its co m p l exity a n d p a rtly b ec a u s e it is un i q u e . But we c a n d efi n e l ife in term s of s o m e of its s i m p l e r p r o p e rti e s . livi n g o rg a n i s m s co n s i st of u n i q u e a n d com p l e x co m b i n ati o n s o f c e rta i n n o n l ivi n g m ate r i a l s , a r ra n g e d in l a rg e m o l e c u l e s t h a t a re c a p a b l e of g rowt h , r e p rodu cti o n , a da ptatio n , a n d t h e g a t h e r i n g a n d u s i n g of exte r n a l foo d a n d e n ergy. So m e of these i n d ivi d u a l p ro p e rties of l i vi n g thi n g s a re a l s o p r e s e n t i n n o n l ivi n g th i n g s , b ut o n l y l iv i n g o rg a n i s m s e x h i b it t h e m a l l s i m u lta n e o u s ly . O t h e r k i n d s of d efi n it i o n s of l ife a re p o s s i b l e a n d a re e q ua l l y va l i d . Sc i e n tific d efi n itio n s o r stu d i e s a re l a rg e l y c o n c e r n e d wit h how l ife d eve l o p e d a n d how i t i s m a i n ta i n e d . P h i l o s o p h i c a l and re l i g i o u s d ef i n itio n s a re m o re c o n c e r n e d with why. T h e two k i n d s o f d efi n itio n s a re u s u a l l y co m p l e m e n ta ry, not c o m p etitive .
34
I NTERDEP E N DENCE is a c h a racte ristic of a l l l iv i n g thin g s . Eve ry in d ivid u a l exi sts a s p a rt o f a n i n terbreed ing po p u l atio n that co n s i sts of m a ny g e n et i c a l l y simi l a r in d ivi d u a l s . These po p u l ati o n s of i n d ivi d u a l s exist wi thin c o m m u n ities of m a ny s pecies that i n te r a ct with o n e a n othe r a s p rey a n d p re d ator, host a n d p a ra site, co n s u m e r a n d p rod u c e r, a n d co m petitors fo r s p a c e or food . The intera cti o n cuts a c ross the m a j o r divi s i o n s of p l a n ts a n d a n im a l s ; thus , trees she l t e r b i rd s , i n sects fe rtil i z e flowers, he r b ivo res co n s u m e g ra s s , fish s u p port p a r a s ites, s e a a ne m o n e s shelter c l o w n fi s h , etc . i n teract with C O M M UN I T I ES t h e i r p h y s i c a l e n v i ro n m en t , c o n stitu t i n g a n ecosyste m . C h a n g e s i n ra i n fo l l , t e m p e ra t u re ra n g e , s o i l type , e l e va t i o n , l a t i tude, depth of sea water, sedi m e n t i n strea m s , a nd cou n t l e s s o t h e r p h y s i c a l factors a l l i n f l u e n ce t h e
deve l o p m e n t of com m u n ities. Orga n i s m s i n t u r n m a y m odify t h e i r e n v i ro n m e n t, crea t i n g lo c a l s h ade in forests , m odifyi n g a n d e n r i c h i n g s o i l s , p reve n t i n g eros i o n , a nd i n m a n y o t h e r w a y s . T h i s i n te rde p e n de n c e p ro vides i m porta n t data .
O x y g e n a n d c a r b o n c y c l e s s h ow i n terde p e n d e n ce of a l l l i f e . CARBON- HYDROGEN OXYGEN CYCLE ( on land )
T H E S I M I LA R I T I E S t ha t exist betwee n l ivi n g o rg a n is m s
a t a l l leve l s h a v e c e rta i n i m p l icati o n s . Offs p r i n g o f t h e sa m e parents h a v e a m o r e o r l e s s close rese m b l a n ce to o n e a n oth e r a n d to th e i r p a re n t s . Althou g h e a c h i n d iv i d u a l is u n i q u e , m e m b e rs o f the sa m e s p e c i e s s h a re " o b v i o u s " co m m o n featu res t h a t a re c o n s e rved a n d p e rpetu ated i n re p rod uctio n . W e d o n ot ha ve tro u b l e recog n i z i n g a l io n , fo r exa m p l e - o r even a d o g , d e s p ite t h e m a n y va riati o n s tha t d o m estic b reed i n g h a s p rod uced i n d og s . o f rese m bl a nce a l so · exist a m o n g related species. Ocelots, p u m a s , bobcats, a n d dom estic cats, f o r exa m p l e , a l l have ce.rta i n b a s i c c h a ra cteris tics i n co m m o n , and these a re recog n ized in a n i ma l c l a ssifica tion (taxono my) by g rou p i n g t h e m a l l togeth er i n the s a m e g e n u s-Fe lis . B u t g e n e ra , too,
DEGREES
e x h i b i t d e g rees of rese m bl a n ce so that we c a n g rou p t h e m i n tq fa m i l ies of s i m i l a r m e m bers. S i m i l a r fa m i l ies a re g roup ed i n to ord e rs, orders i n to classes, a n d c l a sses i n to p hyla. Each " h i g h er" g ro u p thus i n c l u d e s m o r e forms, a n d these h a ve prog re ssively fewer features i n com m o n ( p . 1 1 ) .
The o rioles be low belong to a sing le g e n us, Icterus. They have dif ferent. colors a n d geog ra p h i c ra nges, b ut they share m a ny co m m o n features. T h e y a re m e m bers of t h e s a m e f a m i l y a s b l a c k b i r d s .
To rosa u r u s
Trice ra tops
Arrhin oceratops
T h e s e h o r ned c e ra to p s i a n d i no s a u r s s h ow how deg rees of rese m , b l a n ce s u g g e s t evo l u t io n a ry re l a ti o n s h i ps . T h e g e o l o g i c prog re s s i o n i s a r ra n g ed f r o m b o t t o m to t o p . ( After C o l bert. )
T h e m e a n i n g of t h e va r i o u s d e g re e s of res e m b l a n ce wa s a t fi rst t h o u g h t to l i e i n t h e i r a p p ro x i m a t i o n to the a rc h e t y p e o r i d e a l fo r m , u p o n w h i c h e a c h s p e c i e s h a d b e e n " d e s i g n e d " o r p l a n n e d . But to l ater stu de n ts, t h es e c l u stered re lat i o n shi ps, often p i ctured a s t h e b r a n c h e s of a t r e e ( a s a b ove ) s u g g ested o n ly d e g r ees of r e l a t i o n s h i p , a l tho u g h the c l a ssification itself wa s esta b l i s h e d before t h i s w a s recog n i zed ( p p . 1 0 1 1 ) . J ust a s t h e b r a n ches of a tree g row by conti n u o u s d evel o p m e n t fro m a seed , e a c h b ra n c h bei n g fo r m e d b y s l o w a n d a l m o s t i m pe rcepti b l e m o d i fication of e a r l i e r b ra n ches fro m an i n iti a l ste m , so t h e b r a n c h i n g pattern o f c l a s s i fi c a t i o n s u g g ested a co m m o n ori g i n . T h e b r a n c h e s r e p re s e n te d d e g re e s of r e l a t i o n s h i p t o t h e o rg a n i s m s o f t h e c e n t r a l a n cestra l ste m . 37
DEGREES OF S IM I LARITY between l i v i n g t h i n g s
a re
reflected by va r i o u s featu res . The overa l l form a n d structure ( m o rpho l o g y ) o f a l l creatu res s how va ryi n g d e g rees o f s i m i l a rity. W hen we s pea k o f a " d eer, " w e th i n k of a p a rt ic u l a r k i n d o f a n i m a l, b u t the d eer fa m i ly c o n ta i n s 2 0 d ifferent g e n e r a a n d m a ny species . Al though they d i ffer in s iz e , a ntl ers, colo r, a n d g eo g r a p h i c d i st r i b u t i o n , all m e m bers of the deer fa m i ly sha re b a s i c features . Their s keleton s rese m b l e o n e a n other, b o n e fo r b o n e ; their i nte r n a l o rg a n s a re si m i l a r; a n d t h ey d i s p l a y m a ny s i m i l a r b e h avio r a l c h a racteris t i c s . Thi s co m p rehe n s ive s i m i l a rity, s howi n g a u nity of b a s i c fo r m but a d ive rs ity of i n d ivid u a l pattern, sug g e sts the i r d e rivation f r o m a co m m on a n cesto r that pos s e s s e d these co m mo n featu res . DEVELOP EMBRYO N I C THE M E N T of m a n y s pecies s h ows
startl i n g s i m i larities, even in forms that h ave few rese m b l a n ce s as a d u lts. T h u s a m a n , a p i g , a n d a c h ic ken have a g e n e ra l s i m i l a r i ty d u r i n g their develop m e n t. I f each s pecies is e n tirely d i s ti nct fro m every
o t h e r species, i t m a kes n o s e n s e t h a t they s h o u l d h ave s u c h e m b ryo n i c rese m b l a n ces a n d t h e n l o s e t h e m i n a d u l t l i fe . A l t h o u g h t h i s e m b ryo n i c s i m i la rity i s less than was c l a i m e d by late n i ne tee n t h c e n t u ry zoologists, it is a n i n d ication and an i m print of their re mote k i n s h i p.
STRU CTU RES
HOMOLO G O U S S T R U CTURES i n
A N A LO G O U S
m a n y orga n i s m s s u g g est t h e i r derivation f ro m com m o n a n ces tors. The s ke l etons of cats, horses, whales, bats, m i ce, a n d m e n , for exa m p le, a l l have a n ess e n t i a l l y s i m i l a r for m . The structure of t h e ve rte brae a n d t h e fused bones of t h e s k u l l a re s i m i la r i n every verte brate, fro m fish to m e n . So a re the re lated n e rves, m uscles, a n d b lood vessels. In less c losely re lated species, h o mology i s less well m a rked, s u g g esti n g their m ore d ista n t com m u n ity of ori g i n .
s h ow a s i m i l a rity of f u n ction but not of d eta i l e d structu re . T h e w i n g s of a n i n sect perform the sa m e f u n ction as those of a b i rd , but they h ave a ve ry d if fere n t structure . S u c h d i ffer e n ces res u l t n o t from i n h eri t a n ce fro m a co m m o n a n cestor b u t from a d a ptation to s i m i l a r If e n v i ro n m e n t a l co n d i ti o n s . each s pecies h a d a s e p a ra te orig i n , t h e n a n a lo g o u s s truc t u res s h o u ld be m o re co m m o n t h a n h o m o l ogous s tructures, b u t t h e reverse i s true.
VESTIGIAL STRUCTUR E S deve l o p w h e n a n org a n i s reta i n ed eve n thoug h its ori g i n a l f u n c t i o n i s reduced or lost. S u c h structu res a re fou n d i n a l l a n i m a l s . I n m a n , t h e e a r m u scles a re usually nonfu n ctional, b u t i n other a n i mals, s u c h a s t h e dog, these m u scles m ove t h e ears and d i rect them towa rd particu l a r sou n d s . T h e h u m a n a ppen d i x h a s n o obvious f u n ction a n d i s a n u i sa n ce, b u t in other a n i ma l s, t h e a p pen d i x i s m ore stro n g l y deve l o ped a n d serves a n
i m porta n t d i g estive f u n c t i o n . I n w h o l e s a n d i n s o m e s n a kes, ves t i g i a l h i n d l i m bs o re preserved, s u g g esti n g t h a t they o re t h e rem m o n ts of a n cestra l structures.
B I O C H EMI CAL S I M I LARITIES a lso e x i s t betwee n re
l a t e d o rg a n is m s . The most stri k i n g feature of these si m i l a rities is the way they confirm i n d e p e n d e ntly the vari o u s g ro u p i n g s of p l a nts and a n i m a ls that were esta b l i s h e d o n t h e b a sis of thei r overa l l for m . T h i s i m plies t hat t h e c l a ssification that h a s been d eveloped (pp. 3 63 7) is n ot w h o l l y a rtifi c i a l but reflects the a n cestra l - d e scen d a n t ( p hylog e n etic) relatio nsh ips o f org a n is m s . Oth e r m o re g e n eral b i o c h e m i c a l si m i l a rities i m ply t h e co m m o n k i n s h i p of all o rg a n i s m s . These i n c l u d e the use of n u c l e i c acids as a g ents of heredity (p. 68), the use of a p a rticu l a r phosph ate, ATP, i n e n ergy tra n sfer, a n d t h e use by p l a n ts with c h l o ro p hyl l of this g reen pig me n t a s a cata lyst i n p h otosynthesis. BLOOD P I GMENTS d i ffer in d iffere n t a n i ma l g roups. I n ve rteb ra tes a n d some other a n i m a l s , the blood has a r e d pig ment, he moglobi n , which h a s a res piratory f u n ction i n carrying blood from the lungs or g i l l s throug hout the body. I n a l l ar th ropods, the respi ratory pig ment i s a b l u e copper com-
pou nd, ca l l e d h e mocya n i n ; i n m a r i n e wo rms, a g reen i ron com pou n d , ca l l e d c h l o rocruo rine. These p i g ment s i m i l a r i ties con fi r m the re l a t i o n s h i ps between m e m bers of t h e g ro u p s esta b l i s h ed by o t h e r criteri a . Prote i n s o f e a c h s pecies, a l thoug h d i s t i n ct, s h ow co m p ar a b le d e g rees of s i m i l a rity.
A serolog ical test (p. 4 1 ) i s made by m i x i n g seru m and a n ti seru m a n d record i n g t h e h i g h e st d i l ution of seru m t h a t wi l l s t i l l g i ve a wh ite r i n g of p rec i p itate. (After Boyd en.) HOMOlOGO U S TEST beef se r u m a n d a n ti - beef seru m
1 000
1 5 00
2000 3000 4000
6 0 0 0 8 000 con trol
TI D DU D E n d Point
HETEROlOGOU S TEST sheep serum a n d a n ti- beef s e r u m
40
SEROLOG I CA L S I M I LARIT I E S a re m e a s u re d b y i m m u n ity tests . If b l o o d fro m o n e s p e c i e s , s u ch as a cow, i s i n jected i n to the b l o o d s t re a m o f a n othe r, s a y a g u i n e a p i g , the g u i n e a p i g p ro d uces a p re c i p i t a t e , a n a n t i seru m , tha t i m m u n iz e s i t a g a i n st cow ' s b l o o d . Whe n this a n ti - cow s e r u m i s m i x e d with the b l o o d of o the r a n i m a l s , it p ro d uces p reci p i ta t e s of va ryi n g i n te n s i ty tha t corres p o n d to the n e a r n e s s of the o the r s p e c i e s i n the sche m e o f c l a s s i fi c a t i o n . Th u s , a n t i - cow s e r u m g i ves 1 0 0 p e rc e n t p re c i p i t a tio n w i th the b l o o d of a n o t h e r cow, 48 p e rce n t w i th a she e p , a n d 2 4 p e rce n t w ith a p i g . Thi s b i o c h e m i ca l i n d i c a t i o n o f co m m o n a n ce s t ry i s a m ethod o f c l a s s i fi c a t i o n c o n fi r m i n g wha t w a s esta b l i she d i n d e pe n d e n t l y b y c o m p a ra t i ve a n a tom ica l s t u d i e s . Serolog i c a l tests m a d e w i t h a n t i- h u m a n s e r u m g ive varyi n g per c e n t a g e s of p r e c i p i ta t i o n . T h i s refl ects t h e q u a n t i ta t i ve deg re e s of s i m i l a r ity betwee n m a n a n d ot h e r s pe c i e s .
G o ri l l a
O ra n g u ta n
K a n g a ro o
to the pa rti c u l a r e n v i ro n m e n ts i n w h i c h they l i ve a re s h own b y a l l l ivi n g creatu res. S o m e that a re so g e n eral t h ey may b e overlooked e a s i l y i n c l u d e t h e won d e rfu l ly efficient b u t d isti n ct wi n g struc ture of i n sects, b a ts, and b i rd s ( a l so those of t h e ex tinct pterodactyls), the s h a pe a n d structure of fi s h , the speci a l i z e d ste m s of d esert cacti, a n d cou ntl ess oth e r s . Sti l l o t h e r a d a ptati o n s are m o re specific . O f the m a ny exa m p les a m o n g b i rds, those of the wood pec kers were fi rst d escri b e d by C h a rles D a rwi n . Ada ptation i s so w i d es p read i n both p l a nts a n d a n i m a l s th at, althoug h n ot a proof o f evo l ution, i t sugg ests that n atural sel ectio n i s a very p ro b a b l e ex p l a n ation fo r o rg a n i c d iversity.
ADAPTATI O N S
PROTECTIVE fo rm and colora tion a re adaptatio n s s h own by many a n i m als . T h e p u pa e of some i nsects rese m b le thorns or twigs. Others m i m i c less v u l n er able species by color rese m -
Wood pecker
42
b l a n ces. The color of some a n i m a l s , s u c h a s t h e c h a meleon, changes with t h e color of the backgro u n d . Experi m e n ts h ave s h own the s u rviva l value of t h i s coloration ( p. 8 4 ) .
A wood pecker h a s two l a rg e toes d i rected backward so t h a t i t s f o o t forms a n a n chorlike h o l d . I t s stiff t a i l feath ers form a prop a s t h e b i rd chisels with its powerful beak. It extracts insects with its l o n g , barbed ton g u e . All of t h e 1 79 species of wood pec kers h ave esse n t i a l ly s i m i l a r structure .
�··�·-=--- Salomon Islands
New G &� i nea ( 5 20 species
of b i rds)
•
. •:. .: '
Fiji
Island
( 1 26)
• •
1541
Henderson •
Island
(4)
TH E NUMBE�S OF ISLA N D S P E CI E S a n d t h e i r res e m b l a n c e to those o f t h e m a i n l a n d decrea s e wit h i n crea s i n g d i s ta n c e f ro m t h e la n d . T h e n u m be r of m a m m a l s p e c i e s s hows a s i m i l ar decrea se, s u g g e s t i n g t h a t t h e species were deri ved from t h o se o n t h e m a i n l a n d .
P R E S E N T LI M ITED D I S TR I BUT I O N O F MANY S P E C I ES, s u c h a s ta p i rs, can be i n terpreted o n ly on t h e a s s u m ption t h a t they a re descenda nts of m ore w i d e sprea d foss i l a n cestors, some of w h i c h hove bee n fou n d i n i n termed iate a reas.
�
T. indicus
llr.'-.... .. +
0
GEOGRAP H I C
PlPlieoiscene tocenespecispecies es
•. / �.
After De leer
D I STRIBUTIO N of many p lants a n d
a n i m a ls s h ows features t h a t c a n b e a ccounted fo r o n ly by s u p p os i n g t h a t t h ey a re t h e d escen d a nts of co m m o n a n cesto rs . T h e fa u n a s o f t h e G a l a pagos a n d C a pe Verde I s l a n d s were m a jo r clues i n D a rwi n 's d evelop m e n t of an evo l utio n a ry theory (pp. 18- 19) . Alfred Russel Wa l l a ce noted t h a t l a rg e r g roups, s u c h as orders, h ave a w i d e r g e o g r a p h i c d i stri bution than do s m a l l e r g roups, s u c h a s fa m i lies o r g e n era . S pecies most s i m i l a r a re fou n d i n a d j a c e n t a re a s, s u g gesting their evo l ution fro m co m m o n a nc esto r s. 43
..
LIV I NG SPEC I ES of p l a n t s a n d a n i m a l s a re c h a r a c
t e r i z e d by t h e i r con sta n cy of g e n e r a l fo rm a n d t h e i r g reat ran g e o f i n d ivi d u a l variatio n . Each s p e c i es b re e d s " true " a n d i s r e p ro d u ctively i s o l ated from o t h e r s pecies, even t h o s e t h a t are closely si m i l a r . Y e t n o two i n d ivi d u a l s of t h e s a m e species a re i d e ntica l . We n ow recog n i z e t h a t t h e i n h erited c h a racteristics of a l l l iv i n g t h i n g s a re contro l l e d by t h e i r g e n e s a n d c h ro m o s o m e s a n d t h a t t h e s e stru ctu res u n d e r g o s p o n ta n eo u s m u tatio n s ( p . 7 4 ) . T h i s i n pu t of n ew c h a racteristics m e a n s that ove r a long period of ti m e species a re not Axed e ntities a s o n c e s u p posed . Both in n a t u r e a n d in ca ptivity, we see evid e n c e of va riations with i n a spe cies, s u g g esti n g t h e i r evo l utio n a ry c a p a c ity. S E L E C T I V E B R E E D ING of do m e s t i c p l a n ts a nd a n i m a l s i ndi cates t h e g reat v a r i a b i l ity of many s pe c i e s . I l l u stra ted h e re , a re dog s of t h e s a m e s pe c i e s .
Basset H o u n d
Dach s h u n d
Vendee Hound
-- �
Canis fomiliaris leineri
T h i s s u g g ested to D a rw i n t h a t natural selection might be ana l og o u s i n i t s a c t i o n t o ( a r t i f i c i a l ) do m e s t i c s e l e c t i o n a s a n a g e n t of c h a n g e.
Egyptian Grey h o u n d
S t . H u bert Hou n d
Sa l u k i
Beagle
Talbot H o u n d
Afg h a n H o u n d
Sleuth Hound
PO PULAT I O N S s h o w loca l v a ri a t i o n i n n a t u re . T h e s m a l l e s t u n i ts , ca l l e d d e m e s, a re o n ly partly i s o l a te d populations, with i n w h i c h t h e re i s c l o s e g e n e t i c s i m i l a r ity. V a r i a t i o n b e twe e n d e m e s i s ofte n ra ndo m , b u t betwee n s o m e i t i s n o n -
ra ndo m , f or m i n g g raded c l i n e s t h a t m a y s h ow corre la t i o n w i t h differe n t e c o l og i c c o ndit ions. Th u s loca l r a c e s o r s u b sp e cies d e v e l o p , e a c h a d a p t e d to t h e c o n di t i o n s of a part i c u l a r a rea a n d i n terg rad i n g w i t h o n e a n o t h e r o n l y i n o v e r l a p p i n g a re a s .
P. major m a jor
P.
I
rnajqr
intermedius
•
P. major minor
• Z o n e of Overl ap Z o n e of Ove r l a p
Geog ra p h i c a l D i s t r i b u t i o n of t h e Great Ti t . Th e G re a t T i t of Europe a n d As i a s h ow s deve l o p m e n t o f typ ical geog ra p h i c r a c e s or va r i e t i e s . T h e m o s t w i d e s p read race i s P o r us major major, e x t e n d i n g from B r i ta i n to Ea s t A s i a . P . c i n e r e u s a n d P. m inor h a ve m o re restri cted ra n g e s . T h e i n te r b reedi n g i n I ra n o f P . major w i t h t h e c e n t ra l As i a n a n d I n dia n v a r i ety P . cin ere us g ives a f o u r t h v a r i e ty-P. i n te r -
( Af t e r De B e e r )
medius. I nterbree d i n g of P. cinereus a n d P. m inor in I n d o c h i n a g i v e s a fi ft h , P . com m ix I u s . B u t P. major a nd P . c i n er eus occ u r tog e t h e r w i t h o u t i n
te r b ree d i n g in n o rt h c e n tra l A s i a , a s do P. m i n or a n d P . m a jor i n n o rt h e a stern C h i n a . R e p rodu ctive i s o l a t i o n b e t w e e n g e o g r a p h i c races s u g g e s ts o n e mecha n i s m for the formation o f n e w s pe c i e s ( p . 76 ) .
45
CHANGES IN SPECIES h a ve bee n observed eve n d u r
i n g the l i m ited t i m e that accu rate observatio n s h a ve been reco rded . S o m e d isease- p ro d u c i n g bacteria h a ve been s uccessfu l l y treated with d ru g s, but o n e of th e s i de effects of this med icatio n h a s been the deve l o p m e n t o f v a r i o u s dru g resista nt stra i n s of the bacte ri a . Escherichia coli i s a co m m o n bacte r i u m that h a s d e ve l o p e d p o p u l a tio n s e n ti re l y resista n t to strepto m y ci n . T h ese resista n t g ro u p s a rise fro m m u ta tio n s . W h e n t h ey a p p e a r, t h ey a re t h e o n l y g ro u p a b l e to s u rvive a n d m u l ti p l y .
A l t h o u g h m o s t evo l u ti o n i s pro b a b l y t h e res u l t o f s low, c u m u l a tive c h a n ge , by t h i s process of " prea d a ptatio n " i n w h i c h a m u ta ti o n " e n co u n ters " a favora b l e e n v i ro n m e n t, t h e w h o l e c h a racter of a popu l a t i o n m a y c h a n g e very ra p i d ly. By a s i m i la r proces s , so m e s pe cies of destructive i n sects have d eveloped an i m m u n i ty to vari ous i nsecti c i d e s . Sca l e i n sects of t h e citrus reg i o n s of Ca l i fornia have beco m e i n crea s i n g ly re s i sta n t t o hyd rocya n i c a c i d , for exa m ple.
A
sca le
ra ntii.
i nsect,
A o n idella
a u
MELA N I SM ha s been observed i n s cores o f spe cies of moths d u ring the past century. In i n d u strial a reas, many species have beco m e p ro gressively darker, o r even b l a c k , w h i l e m e m bers of t h e s a m e s p e c i e s i n rura l a reas re m a i n l i g h t colored. T h i s d e m o n strates h ow plastic a n d c h a ngeable many species a re, eve n over short pe riods of t i m e . The m e c h a n i s m o f t h i s c h a n g e i s d iscussed o n p. 84 . I n t h e p h otogra p h b e l o w , t h e l i c h e n - covered tree tru n k prov i d es concea l m e n t for Pep pered the l i g h t-colored Moth but m a kes the d a rker, i n d u stri a l m e l a n i c form co n s pi c u ous. The soot-covered tree tru n k from an i n d u s tri a l a re a concea l s t h e d a r k form of t h e Peppered M o t h b u t ma kes t h e l i g h t form c o n s p i cuous. I N DUSTRIAL
cred i t : H. B. D . Kettlewe l l
Peppered moth, Bis t o n b e t u la r ia, show i n g l i g h t a n d d a r k fo r m s o n two d i ffere n t b a c k g rou n d s .
FOSS I L S PEC I ES a re d ifficu l t to reco g n ize b ec a use
the
test of re pro d u ctive isolation, by w h i c h l ivi n g species a re d isti n g u i s h e d , c a n n ot be used . But we c a n reco g n iz e i n fossils t h e s a m e d e g rees o f structu ral d iffere n c e a s betwe e n related l ivi n g species . We c a n a l s o recog n iz e i n d e p e n d e ntly deve l o p i n g fossil g ro u ps, a n d t h ese, b y d efi n itio n , ca n be reg a rd e d a s s p e c i e s . T h e foss i l record a l l ows us to observ e c h a n g es ove r fa r l o n g e r periods of ti m e th a n a re eve r a va i l a b l e i n livi n g p o p u l atio n s . I n fossils, w e c a n reco g n i z e evo l u tio n i n a ctio n . Althou g h they tel l us l ittl e a bout t h e de t a i l e d m ec h a n i s m s of c h a n g e, fossi l s d o p rovi de pow erfu l evi d e n ce t h a t evo l ution h a s occu rred .
FORAMI N I FERA a re m i c roscopic
protozoa n s , most of w h i c h se crete a s h e l l . I l l u strated i s a m a r i n e g e n u s , Textularia, stud ied i n rocks of Tert i a ry a g e (p. 98) i n New Zeala n d . When traced t h roug h a period repre-
s e n te d by the a cc u m u l a t i o n of 500 feet of strata, t h ere is a m a rked c h a n g e i n s h a pe for each p o p u l a tion . Two s pecies a re recog n ized. Horizo n t a l l i n e s represe n t s ta n d a rd d ev i a t i o n f o r eac h . ( After Ke n n ett. )
Fossil b iva lve cl a m s ( b e low) , fro m roc k s of P e n nsy l va n ia n a n d P e r m i a n a g e ( p . 98 ) o f t h e m id c o n ti n e n t re g ion of t h e U n ited States, s h ow successive d evel o p m ent by desce n t of closely s i m i l a r s pecies of the g e n u s Mya /in a . Each of the n u m bers o n g ra p hs represents a d iffe r ent species, l isted b e l ow. Form Ratio of a n g les b/ a
Ratio of length
FIGURE A
to He i g h t
0.9
1 .0
1 .1
1 .2
Misso u r i a n
1.
M y a l i n a cop h a
2 . M . lepta 2 . M. iepta M. w y o m i n g e n s is
3.
Desmoinesian
4. M . m iope t i n a
5 . M . p l iap e t i n a
6. 7.
M . cop e i
9.
M. p e t i n a
M. arbo/a
Ato k a n
8 . M . g /oss idea
1 0 . M . a v i c u loides
F I GURE B
Fi g u re A is a plot of t h e form ratio of length to h e i g h t of the shells, p lotted a g a i n s t the ra tio of the a n g le b to the a n g le a (see d ia g ra m ) . T h e rig h t - h a n d l i n e represents i n - l i n e evol u t i o n , w h e r e new s pecies a rise by s u c cessive modification of earlier populations. T h e left- h a n d l i n e re p res e n ts speciation by bra n c h -
i n g or s p l i tt i n g ra t h e r t h a n by co n t i n uous c h a n ge. Fig ure B s h ow s i n ferred evo l u tionary descent a n d re lation ships (phyloge ny) of species of Myali n a . N u m bers refer to the sa m e species a s t h os e i n Fig. A. T h e n a mes a re those of s u cces sive roc k d iv i s i o n s . (After New ell and Moore.)
49
H I G H E R TAXA ( g e ne ra , fa m i l ies, etc.) of a n i m a l s
a n d p l a nts a re fou n d i n t h e foss i l record a l so t o a ri s e by d e s c e n t w i t h s l ow mod ification from a n cestra l fo r m s . T h i s is evol utio n . The fos s i l record provi d e s repeate d evi d e n c e t h a t it i s t h e n o r m a l m ethod b y w h i c h n ew g ro u ps of o rg a n i s m s orig i n ate . C E R A T O PS I AN D I N OS A U RS (a l l dra w n t o s a m e s c a l e ) l i ved i n t h e Creta c e o u s Period ( p. 98), 7 0 m i l l i o n years a g o. T h ey s h ow a n overa l l i n crea s e i n s i z e a n d i n t h e re l a t i ve di m e n s i o n s a n d co m ·
p l e x i ty o f t h e b o n y a r m or t h a t covered t h e i r h ead a n d n e c k , Triceratops rea c h ed a l e n g t h o f 2 4 f e e t a n d we i g h e d u p to e i g h t to n s. O n ly t h re e g e n e ra are s h own. (Afte r Co l b e rt.)
O l D WOR L D
Equus
Styfohipparion
Hipparion
Pfio hippus
Anchitherium
GRAZERS I
BROWS E R S
Orohippus
To R h i noceroses
1£)
Epihtppus
H ORS E S p rovide a c l a s s i c e x a m
p l e of t h e evo l u t i o n of n e w g e n e r a f r o m e a r l i e r o n e s over a period of 70 m i l l i o n yea r s .
After S i m p s o refl e cted m odi fi c a t i o n s L a te r c h a n g e in d i e t from brow s i n g to g r a z i n g . R i g h t u p p e r m o l a r t o o t h s u rf a c e s a re s h o w n .
51
"MI S S I N G L I N KS," a s e v i de n ce t h a t o n e g ro u p de
veloped from a n o t h e r, were often d e m a n d ed by o p po n ents of evo l uti o n i n e a r l i e r y e a r s of t h e evoluti o n a ry d e bate. At t h e ti m e of t h e p u b l ication of On the Origin of Species, very few of these tra n sitio n a l fo r m s were k n own , b u t m a ny h ave since b e e n d iscove red . T h ey b r i d g e m a ny of t h e m a jo r g ro u p s of existi n g o rg a n is m s . I n th e ve rtebrates, for exa m p le, t h e re a re tra ns itio n a l fo r m s b etwe e n fi s h a n d a m p h i b i a , a m p h i b i a a n d rep tiles, reptiles and b i rds, and repti l e s and m a m m a l s . They i n d icate t h a t these m a jo r g rou ps, d isti nct a n d s epa rate i n l iv i n g forms, a rose fro m for m s th a t s howed s o m e c h a racters i nte rmed iate betwe e n two g ro u p s a n d oth e rs now restricted t o j u st o n e . ARC HAEO PTERYX, a n a n cestra l
fos s i l b i rd from t h e J u ras si c of Germa ny, had m a n y features of the rept i l i a n g rou p fro m w hi ch i t developed. Althou g h it had the feathers of a b i rd , i t h a d a repti l e l i ke too t h e d bea k a n d clawed w i n g s . I t h a d b i rd l i ke
feet b u t re pt i l i a n vertebra e a n d ta i l . I t h a d t h e w i s h b o n e of a bird b u t a repti l i a n b ra i n . A rchaeopteryx was i ndeed a m os a i c or j u m b l e of va riously d eve loped c h a racteristics that were s u bs e q u e n tly restricted to d i ffe rent g roups (p. 1 29).
Cynognath us
T H ER I O D O NTS " beast toothed ") were reptiles that l ived i n Perm i a n a n d Triassic times (p. 98). T h ey s h owed many m a m m a l ia n c h a racteristics. Cynognath u s was a typ i c a l m e m be r of t h e g ro u p . An active carn ivore, six feet l o n g , i t h a d a l o n g s k u l l w i t h m a m m a l- l i ke THE
d i fferentiation of the teeth i nto i n c isors, ca n i nes, a n d cheek teeth . I t had an " u pri g h t " m a m m a l i a n postu re, a n d m a ny d e ta i l s o f t h e s k u l l , vertebra e , h i ps, s h o u l d e rs, a n d l i m b s were a l s o m a m m a l - l i ke . Ma m ma l s a re b e l i eved to h ave deve loped from these o r s i m i la r re pti l e s .
P l a ty p u s FO S S I LS a re s u rviving representa tives of a n c i e n t fos s i l g ro u p s . T h e m o n otre m es-the duckbilled platypus and t h e sp i ny a n tea ters ( ec h i d n a s ) of Austra l i a-a re very p ri m i tive m a m m a l s t h a t reta i n m a n y typ i cal repti l i a n c h a ra c ters i n t h e i r LIV I N G
s k e l e to n s . T h e y l a y l e a t h ery, l a rge-yo l ke d eggs a n d s ecrete milk fro m sweat m o d i fi e d g l a n d s . S u c h a n i m a l s pro b a b l y a rose fro m t ra n s i t i o n a l repti l i a n - m a m m a l i a n form s . G i n kgos and a ra ucarias a re p l a n t l ivi n g fos s i l s .
53
T H E F OS S I L R E C O R D
s hows t h ree other g e n e ra l featu res w h i c h s u g g est that species a rose b y c o n ti n u o u s evol utio n . I t d i s p l ays diversificati o n , enviro n m e n t fi l l i n g , a n d co m pl e x a d a ptatio n a l c h a n g e . Th ese a re p recisely w h a t wou l d b e pred i cted, a priori, o n t h e b a s i s o f t h e t h eory of evol uti o n . THE
ADAPTAT I O N
OF
OR
GA N I S M S to a g reater ra n ge of
envi ron m e n ts has d eveloped with t i m e . T h e o l dest orga n is m s were confi n e d t o the seas, but fresh waters, the l a n d , a n d t h e a i r were successively colo n ized . Deta i l s a re given on p. 1 1 8 and t h e fol lowi n g pages.
Mammals
Modern Amphibians
AQUATIC
Cartilaginous fishes
54
T h e h istory of t h e verte b rates s h ows an i n cre a s i n g ra n g e of ada ptation. Birds and a few m a m ma l s and extinct re ptiles h ave colonized the a i r; others h ave " retu r n e d " to t h e a q uatic l ife a b a n d o n e d by t h e i r a n ces tors. Deta i l e d a d a ptati o n s have deve loped i n each enviro n m e n t .
_j
_
_
l_j__l_j
----.
c 0
�
;;;
c 0
.., � 0
1.
_ _
l
I
,
0
�
. .,
0 �
0
u
" �
T h e c l a sses of vertebrates s h ow an i n c re a s e i n co m p l e x ity a o d d i vers i ty w i t h t i m e . T h e w i d t h of t h e co l u m n s i n d i ca t e s t h e re l a t i v e a b u nda n c e of e a c h g ro u p ; dotted l i n e s s h ow t h e pro ba b l e or i g i n o f e a c h g ro u p . ( After S i m p so n ) T H E TOTAL N U M B E R of s p e c i e s h a s s h own a steady i n c r e a s e th rou g h g e o l og i c t i m e. I n sects , for exa m p l e , c o n s t i t u t e m o re t h a n t h re e-qu a rters of a l l l i v i n g s pe c i e s , yet t h ey d i d not a p p e a r u n t i l the Devon i a n , 375 m i l l i o n yea rs ago ( p . 98). The c l a s s e s (a bove) s h ow s i n crea s i n g n u m b ers of s pe c i e s .
G R EATE R C O M P L E X I TY of o r g a n i s m s w i t h t i m e h a s a c co m pa n i ed t h e i n va s i o n of n ew e n v i ro n m e n ts . "Co m p l e x i ty" i s a n a m b i g u o u s q u a l ity, b u t m o s t wo u l d a g ree that fish, a m p h i bians, reptiles, a n d m a m m a l s represe n t s u c h a s ca l e . Th i s i s a l s o t h e o r d e r of t h e ir a p pe a ra n c e in the f os s i l reco rd.
55
_ _
THE PROCESS OF EVOLUTION
I N H ERITAN CE p rovi d e s t h e c o n sta n cy of fo r m ( a l i o n i s a l i o n i s a l i o n ) a n d va ri a t i o n i n d e ta i l ( b l u e e y e s , g re e n e y e s , b ro w n e y e s , b l a c k eyes ) t h a t a re c h a ra c teristic o f a l l l ivi n g p l a nts a n d a n i m a l s . lobsters p ro d u ce o n l y l o b sters; h u m a n s p ro d uce h u m a n s . B ut n o two l o b sters a n d n o two h u m a n s a re eve r i d e n t ica l i n a l l c h a r a cte rist i c s . H o w a re t h e s e two, co n sta n cy a n d va riety, t ra n s m itted fro m p a re n ts to offs p ri n g ? GENES, a s demon strated by Greg o r M e n d e l (p. 26) and by s u bs e q u e n t stu d e n ts of g e n et i cs , are t h e reg u lators that g overn t h e deve l o p m e n t of c h a racteris tics i.n new i n d iv i d u a l s . Genes are m a d e of deoxyr i b o n u c l e i c acid-DNA (pp. 72-75)-a n d reproduce themselves exactly. G e n e s are i n corporated i n v i s i b l e structu res c a l led c h ro mosomes, e a c h of w h i c h conta i n s
m a n y g e n e s . Ea c h species h a s a defin ite type a n d n u m be r of c h ro m osomes. In all b u t t h e m o s t s i m p l e orga n i s m s , t h e c h romosomes a r e conta i n e d i n t h e ce l l n uc l e u s . C h a ra cteri stics of a n o rg a n i s m a re governed by parti c u l a r g e n e s ; b u t i n d i v i d u a l g e n e s m a y i n teract w i t h o n e a n ot h e r o r co m b i n e to prod uce c o n t i n uous v a r i a t i o n o f s o m e c h a racters .
T h e h u m a n c h ro m osomes s h own be low ca rry g e n e s that d eterm i n e i n d ividual c h a racteristics. X a n d Y a re the s e x c h romosomes.
11
2 3 ,.;,.
of c h romosomes i n order of s i z e
\
3< 6
\
KK 81
1
XI
II
8
7
'� - � I "'"' J'
:J-I 1-.•f �
��7":\ 'l
f
"'
lit
Kl 9
\ l
� 1"1 ��}�I' 1. �
_ .t t.
3
2
\
I
I1 3I
\
XX 10
IX 16
XK
\ 19
c h rom os o m e s i n s p e r m a tog o n i u m
J fi K& 4
5
��
i ii
a1 7x
1 1
20
Hl
A1 5ft 12
II
14
II
I
AM 21
18
11 5 22
I
I y
A
I
II
spermatogon i u m
;:
rr t p rmatocyte '
1 II
..
(f\ \�! ...
THE DEVELOPMENT OF
••
11 1 1
fi �st oocy t e
. JI" •• • • , . .,.,_ lfC
seco n d spermatocy te$
!
J
!
.J.
!
...
' P "m'
!
II \.
111 1
•.! • •
)(
I
J)
a�
,J.
\
a re the s peci a l ized re productive c e l l s of p l a n t s a n d a n i m a l s . Most s p e c i e s prod uce both male g a m etes (sperm) a n d fe m a l e g a m etes (egg s). Eac h g a mete c o n ta i n s o n ly one c h ro m oso m e from each p a i r
�" . .
.
fi rst ' � ; polar body
II·.,I' ...........
•
-\.ve pola
ootid
! �' / I II • •
GAMETES
_...,
second oocyte
••
\ sp � r m atl ds J
'<,
o ogoniu m
S PERMS A N D EGGS
� �:��
egg
fertil ized e g g (zygote)
of the o rg a n i s m 's d i p l o i d c e l l s . U n l i ke t h e body c e l l s , w h i c h h ave a d i p loid o r 2 n c h ro m o so m e n u m ber, t h e tota l n u m ber of c h ro m os omes i n a g a m ete i s n . These ce l l s w i t h u n p a i red c h romosomes are c a l led h a p l o i d .
C H R O M O S O M E S of most species occu r in pa i rs so that e a c h c e l l c o n ta i n s two s i m i l a r ( ho m ol o g o u s) c h ro moso me s . Ea c h c h ro m o s o m e i n turn conta i n s h o m o l o g o u s g e n e s . S u c h cel l s a re ca l l ed d i p l oi d . T h e d i p l o i d n u m b e r i n d icates t h e tota l n u m b e r o f c h ro m os o m es t h a t t h e s e c e l l s c on ta i n . I n m a n , fo r e x a m p l e , m ost c e l l s conta i n 2 3 chromo som es, h e n ce t h e u s u a l c h rom o so m e n u m be r (n) is 2 3 . But s i n ce t h e c h ro m os o m e s a re p a i red i n d i p l o i d c e l l s, the tota l d iploid n u m be r i n each c e l l is 2 n o r 46.
57
C E L L D IVIS ION-the consta nt m a n u fa ct u re of n ew
c e l l s-is essenti a l for t h e l ife a n d g rowth of a l l m u lti cel l u l a r p l a n ts a n d a n i m a l s . I n j u re d or worn out cells a re replaced by this p rocess, too . Th e new c e l l s a re exact replicas of th e orig i n a l cel ls, conta i n i n g t h e sa m e k i n d a n d n u m b e r of c h ro m oso m e s . Th e p rocess o f p ro d u c i n g n ew c e l l s by d ivision of the orig i n a l cel l is c a l l e d m itosis. In m ost c e l l d ivision , the p rocess is co m pl eted i n less t han two hours. Mi tos i s c a n pro d u ce n ew i n d ivid ua l s as wel l as n ew body cel l s . In m ost org a n is m s that reproduce asexually, thE> new c e l l is ide ntica l to the p a re n t c el l .
STAGES OF M I T O S I S i n clude : Ia) PRO PHASE, fi rs t stage o f m i tosi s , i s m a rked b y thicken i n g o f c h ro m osomes i n n ucleus a n d s e p a ration o f ce n trioles from cen tra l body ( ce n tros o m e ) a bove n uc l e u s . Fibers from ce n trioles form a s ter. ( b ) S PI N D LE o f fi bers t h e n g rows between the two s e pa ra ted a s ters. N uclear m e m b ra n e d i si n teg rates , a n d· t h e t h icke n e d c h ro m o s o m e s divide l e n g t h w i s e i n to t w o c h ro m a ti d s . ( c ) I N METAPHASE, the d u p l i ca ted chromosomes leave t h e n u cleus. They arra n g e t h e m s e lves i n to pa i rs across the e q u a tor of the e n l a rged s p i n d le. I d l I N A N A PHASE, o n e o f each o f t h e c h ro m os o m e s p a i rs , or c h rom a tid, m i g rates to opposite poles of t h e s p i n d le . l e l TELO P H A S E , fi n a l stage, i s m a rked by loss of s p i n d le, division of centriole, and division of p a re n t ce l l i n to two identica l d a u g h te r ce l l s .
THE
58
MEIOSIS
2N
,
2N
OR
Division
I N
2N \ Division N
� 2N \ N
N
MEIOS I S is shown for a cell with a d i ploid n u mber (2N) of four c h ro m oso mes. The fl rst d i vision i n volves t h e ra n d o m s h o r i n g of exactly h a l f the n u mber of c h ro mosomes betwee n the daughte r ce l l s . In this reduc tion d iv i s i o n , the s h o r i n g of t h e orig i n a l c h ro m osomes m a y pro d u c e e i t h e r of two co m b i nations i n the haploid d a u g hter c e l l s , ea c h of w h i c h h a s N c h ro m o somes-that i s , h a l f of the orig i n a l n u m ber o f c h ro m o s o m e s .
._.. OR
� 2N \Division N
N
N
N
The s e c o n d d iv i s i o n occ u rs by m i tosis, in w h i c h each n ew d a u g h ter c e l l d iv i des into two f u rther h a p l o i d c e l l s , each a l s o with N c h ro m osomes. These form the g a m etes, or reprod u ctive ce l l s , ea c h of w h i c h h a s one c h romoso m e from each of the ori g i n a l pa i rs. The u n i o n of two ga metes, each of which has t h e haploid o r N c h ro m oso m e n u m ber, g ives the , offs p r i n g the orig i n a l 2 N c h romoso m e n u m be r o f t h e parents.
S EXUA L R E P R O DUCT I O N i n vo lves a seco n d a n d d if fe re n t k i n d of c e l l d ivision , c a l l e d m e i o s i s . I n sexua l l y re p rod u c i n g o rg a n i s m s, m eiosis is c o n f i n e d to t h e tes tis of t h e m a l e a n d to t h e ova ry of t h e fe m a l e . A l l t h e oth e r c e l l s o f t h e body i n c rease i n n u m b e r by m itos i s . Meiosis i n volves two d isti n ct sta g es of c e l l d ivisio n .
59
T H E PATTERNS OF I N H E RITANCE we re fi rst d e m o n
strated by Gregor Me n d e l ( p . 2 6 ) with seve n e a s i ly recog n i z e d c h a ra cters i n g a rd e n p e a s ( s i z e , s h a p e , col o r of flowers, a n d so o n ) . I n studyi n g t h e i r occu r r e n ce t h ro u g h s u ccessive g e n e rati o n s, he d i scovered t h a t c h a ra cters a re contro l l e d by factors ( n ow c a l l e d g e n es) t h a t d o n o t b l e n d i n t h e offs p ri n g . H e a l so d i s cove red t h a t i n t h e seco n d g e n e ration so m e c h a ra c t e r s , s u c h a s s h o rt ste m s , yel low c o l o r , a n d w ri n k l e d p e a s , m ay b e m a s ked b y others, s u c h a s l o n g ste m s , g re e n c o l o r , a n d rou n d s h a p e . The m a s k e d features wi l l re a p p e a r i n the t h i rd g e n e ratio n . H e c a l l e d t h ese c h a racters dominant a n d recessive and c o n c l u d e d t h a t t h ey a re i n h e rited i n d e p e n d e ntly of o n e a noth e r . THE I N HER I TED RAT I O o f o n e
.
c h a racter to a no t h e r w a s s h ow n by Mendel to be c ons t a n t H e c ross-po l l i nated p u re b r e d ro u n d p e a p l a n ts (R) w i t h p u reb red w ri n kled pea p l a n ts ( r ) . T h e Ft (fi rs t fi l ia l ) g e n e r a tio n peas were a l l rou n d , but t h ose in the next g e n ehtt i on ( F2 ) i n cluded 25 per cent wri n k l e d , as s h own h e re .
(
RR
R
P
1 . Pure Domin a n t
60
ents
I
rr
Go m e t e s F,
Rr
ar
Offs p r i n g Rr
1 . Pure Recessive
Me ndel co n c l u d ed that eac h p l a n t h a d a p a i r of g e n e s for each c h a ra cter, b e c a use s o m e p l a n ts ( s u c h a s t h o s e of t h e Ft) w i t h a do m i n a n t c h a ra c t e r p ro du ced so m e offspr i n g w i t h t h e recessive c h a ra cter. F t pl a n t s a re s h ow n a s Rr o n t h e d i a g ra m . P u rebred p l a n ts , a l so w i t h pa i red g e n e s , a re RR or r r
.
Me n d e l reaso n e d t h a t t h ese pai red g e n e s m u st s e p a rate to form g a m et e s. At f e rt i l i za t i o n , t h ey u n i t e ra n do m l y w i t h ot h e r g a m etes, p rodu c i n g a p redi ct a b l e ra t i o o f c h a racteri s t i c s i n t h e offs p r i n g. Ma n y f e a t u res m a y be i n f l u e n ced b y m o r e t h a n two k i nds of c o n t ra s t i n g c h a racters, cal l ed a l l e l e s , in e a c h gene. Con t i n uo u s l y varyi n g c h a ra c te r i s t i c s , l i k e h e i g h t, a r e a c co u n ted f o r p a r t l y by t h i s a nd p a rt l y b y t h e f a c t t h a t severa l d i f f e re n t pa i rs of g e n e s m a y c o n t r o l t h e sa m e c h a ra c t e r .
T h e gen oty p e of a n y o rg a n i s m i s its tota l c o m p l e m ent of g e n etic m a te ria l s . T h e p h ysica l c h a ra cte ristics of an o rg a n i s m a re called its phen otyp e . T h e g e n otype Rr p rod uces t h e p h e n otype of ro u n d p e a s . Beca u s e o f t h e d o m i n a n ce of some c h a ra cters, o rg a n i s m s with t h e same p h e n otype m ay h ave
TH R E E G E N OTYPES - R R , R r, a n a rr-a re s h ow n i n p l a nts o f t h e F 1 g e n e ra t i o n a n p . 6 0 . A p l a n t w i t h a pa i r of t h e sa m e g e n e s for a part i c u l a r c h a ra c t e r ( R R a n d rr) i s ca l l ed h omo z y g o us m ea n i n g "sa m e pa i r." O n e w i t h a pa i r of d i ffere n t g e n e s i n t h e g e n otype ( R r) i s h eterozygous, o r " d i ffe re n t pa i r." G e n e s of t h e sa m e g e n e pa i r - R a n d r, f o r e x a m p l e , a re a l le l e s .
g e n otyp e s . d iffere n t Ro u n d p e a s , f o r e x a m p l e , m a y h ave g e n otypes of e i t h e r RR or R. O n l y by s t u d y i n g t h e i r offs p r i n g c a n we d i st i n g u i s h b e twee n t h e m . H o m ozyg o u s ( R R) p l a nts wi l l b r e e d tru e , p ro d u c i n g a l l R offs p ri n g . H e te rozy g o u s p l a n ts ' p ro d u ce b o t h R a n d r offs p ri n g .
BLENDING OF SOME CHARAC T E RS m a y occ u r w h e n o n e a l l e l e i s n o t co m p l etely d o m i n a n t over the o t h er. In s h o r t h o r n c a t t l e , a red b u l l ( R R ) a n d a w h i t e cow (ww) p ro d u c e h e t e r o z y g o u s
ca lves t h a t a re roa n ( a m i x t ure of red a n d w h ite h a i rs ) . C ro s s i n g a roa n b u l l ( Rw ) a n d a roa n cow ( R w ) g ives a p r o b a b l e ratio of 1 w h i te , 2 roa n , a n d 1 red .
,
61
T H E LAWS O F I N H E R I TAN C E a re d e m o n strated below
b y the i nteractio n of two d ifferent c h a ra cters i n stud ies of a co m b i n ation of pea p l a n t size (T tall, do m i n a nt; and t dwa rf, recessive) a n d p e a s h a pe ( R = rou n d , d o m i n a nt; r = wri n kl ed , recessive) . C ross i n g a p u re rou n d -seeded, ta l l p l a n t ( RT) with a pure wri n k l e-s e e d e d , dwa rf p l a n t ( rt) g ives the results s h own . Men d e l ' s s i m p l e ratios were obta i n e d by avera g i n g t h e resu lts of c rossi n g l a r g e n u m bers o_f d iffe rent pla nts . =
=
R = Ro u n d ( do m i n a n t ) r = Wri n k led ( recessive ) T = To l l ( do m i n a n t ) t = S hort ( recessive )
PARENTS
r R IT
R rT t
MEN D E L I A N RAT I O 9 3 3 1
Round-To l l Rou n d-short w ri n k led-Ta l l w r i n k led-s hort
62
TA I LS
Prob a b i l ities a re of m a jo r i m p o rt a n ce i n u n de r sta n d i n g g e n etic m ec h a n i s m s . Pro b a b i l ity is t h e li keli hood of a p a rticu l a r even t h a p p e n i n g . I f you toss a coi n , t h e re is a 50 percent c h a n ce that it wil l com e down h e a d s . W e ca n ca l c u l ate t h e p ro b a b i l ity o f t h i s . P is t h e p rob a b i l ity, f is t h e total n u m ber of ways i n w h i c h t h e eve n t m ay o c c u r, a n d u i s t h e n u m be r of ways in which so m e other u n favo ra b l e event m ay occur. f P = -
f+
u .
If we toss a coi n 1 00 ti m es, it i s j u st a s li kely to com e down h e a d s a s it i s tai l s for a ny g iven th row. S o the p rob a b i l ity of t h rowi n g a h e a d ( PH) will b e : P H eo d
=
f( Heads }
�---
f( Heads } + U( rai ls )
50
50 + 5 0
50
1 00
=
0 5 •
I n g e n etics, g a m etes a re co m pa r a b l e to t h e coi n s , a n d t h e zygotes res u l t i n g fro m t h e u n io n of t h e g a m etes a re c o m p a ra b l e to t h e h e a d s a n d ta i l s . I n m a n, with 2 3 p a i rs of c h ro m oso m es, t h e re a re 223 o r 8 , 3 8 8 , 6 0 8 d i ffe rent co m b i n atio n s possi b l e i n t h e p ro d u ction of s p e r m s a n d e g g s . S i n ce any o n e of these s p e r m may ferti l i z e a ny of an e q u a l n u m be r of k i n d s o f e g g s fro m a fe m a le, it i s theoretic a l ly possi b l e for o n e pa i r of h u m a n s to prod u c e a s m a ny offs p ri n g a s t h e wo r l d p o p u l a t i o n wit h o u t a n y t w o b e i n g i d e n ti c a l . 63
I N H ERITAN CE PROBAB I LITI E S ca n be ca l c u l a te d j u s t a s
p r o b a b i l ities a r e c a l c u lated i n fl i pp i n g a coi n . With 0.5 means a 50/50 or a th e coi n , a va l u e of PH o n e out of two p roba b i l ity of obtai n i n g a head o n a n y o n e t h row . S i m i l a rly, t h e proba b i l ity ( PT) o f o b ta i n i n g a t a i l i s a l so 0 . 5 . T h e s u m o f a n y d e p e n d e n t p ro b a b i l i ties is always 1 . I n the c a s e of t h e coi ns, t h i s 1 ca n b e exp ressed a s P H + PT Proba b i l ities ra n g e from 0 to 1 . 0 . P = 1 i m p l ies a pa rtic u l a r eve n t is ce rta i n to ta ke p l a ce . P = 0 m e a n s a n eve n t is i m possi b l e . T h e p ro b a b i l ity o f two o r m o re i n d e p e n d e n t events occu r r i n g s i m u lta n eously is g iven by t h e p ro d uct of their i n d ivi d u a l proba b i l ities, o r P = P 1 X P2 • I n t h i s fo r m u l a , P i s t h e p ro b a b i l ity o f t h e eve nts occu r r i n g s i m u lta n eously, P 1 is t h e p roba b i l ity of o n e eve n t, a n d P2 is the proba b i l ity of t h e other. S o m eti m e s a single eve n t ca n have m o re tha n o n e cause. B l a c k color , i n g u i nea p i g s b e l ow for exa m ple, may be p rod uced by a l l black o r by b l a c k and wh ite a l l e l es, if b l a c k is d o m i n a nt. T hen the p ro b a b i l ity of suc h a n eve n t ( 2 ) t h a t m a y a r ise i n m o re t h a n o n e wa y is the s u m of the p ro b a b i l ities fo r each of its ca u ses (p a n d q ) . T h i s can be c a l c u l a ted by P2 = P P + PQ . =
=
P u rebred parents
P u re bred parents
88 ( p u rebred b l a c k )
8b ( m i x e d b l a c k )
64
•
M i x e d parents
8 8 , Bb
or
bb ( p urebred w h i te )
C h e c k e rboard C a l c u l a t i o n of Possible G e n otypes
C H E CKE R B O A R D s h ows m et h o d f o r ca l c u l a t i n g t h e g e n otypes i n offs p r i n g of t w o g u i n e a p i g s t h a t a re h e t e rozyg o u s f o r b l a c k , s h o r t h a i r. ( B = b l a c k , b = b row n , S = s hort h a i r, a n d s = l o n g h a i r. ) T h e f o u r poss i b l e g a m etes f r o m e a c h a re a r ra n g e d a lo n g t h e s i d e s of t h e c h ec k e r b oa rd . T h e i r co m b i n a t i o n s a re p l otted i n t h e s q u a re s . S i n ce B and S are d o m i n a nt, a
b l a c k s h ort p h e notype c a n be p ro d u c e d by BBSS, B b S s , B b S S , and BBSs. I n t h e c o m b i n a t i o n , t h e re w i l l b e 9 b l a c k s h orts ( 1 BBSS, 2 B b S s , 4 B b S s , a n d 2 BBSs), 3 b rown s ho rts ( 1 b b SS a n d 2 b bS s ) , 3 b l a c k l o n g ( 1 B B s s a n d 2 B b s s) , a n d 1 b ro w n l o n g ( b b s s ) . T h i s rat io of 9 : 3 : 3 : 1 correspo n d s to t h a t of t h e H a rdy-We i n b e rg P r i n c i p l e, b e lo w .
o r fe rtilized e g g s, a re f o r m e d by two i n d iv i d u a l g a m et e s , e a c h o f w h i c h c a n b e reg a r d e d a s a n i n d e p e n d e n t " eve n t . " I f p i s t h e p ro b a b i l i ty of a zygote w i t h a b l a c k c h ro m os o m e a n d q i s t h e p rob a b i l ity o f a zygote with a w h i te
t h e proba b i l i ty o f t h i s by ra n dom mating i n a large popula t i o n f r o m t h e for m u l a t h a t g ives t h e p rod uct o f the male c o n t r i
ZYGOTES,
chro m oso m e , p + q = 1 . A zyg ote w i t h o n e b l a c k a n d o n e w h ite c h ro m os o m e m a y be p ro d u ced in two w ay s-e i t h e r pq o r q p , . e a c h g iv i n g t h e i d e n t i c a l resu lt. W e c a n ca l c u l ate
bution ( p + q ) a n d the female co n t ri b ut i o n ( p + q ) X ( p + q) = ( p + q) 2 = p 2 + 2 pq + q 2 = 1 This
re l a t i o n s h i p ,
called
the
H a r dy-We i n berg Pri nciple, shows t h a t in a l a rge, s t a b l e p o p u l a tio n , freq u e n c i e s of d i ffere n t g e n otypes a re predicta b l e a n d co n s e rva tive fro m o n e g e n era tio n to a n other.
65
T H E M E C H A N I S M O F I N H E R I TA N C E revea l e d by the
stu d ies of M e n d e l and l a t e r g e n eticists s h owed t h a t e a c h i n h erited c h a ra cte r, s u c h a s s e e d s h a p e o r col o r i n peas, is contro l l e d by a pa i r of g e n e s . O n e m e m b e r o f e a c h p a i r ( a n a l l e l e ) i s contrib uted b y e a c h p a re n t . The g e n e s a re l ()cated o n vis i b l e rod l i k e c h ro m os o m e s , w h o s e b e havior s h ows a c l o s e pa ra l l e l t o th a t p re d icted fo r g e n es (p. 6 0 ) . We h a ve a l rea d y s e e n how these structu res d ivid e i n e g g and sperm fo r m a ti o n a n d com b i n e i n fe rtil izati o n . B u t w h a t d ete r m i n es t h e sex of the n ew i n d ivid u a l ? SEX of the offs p r i n g is deter m i n e d by s p e c i a l ized pa i rs of sex c h romosomes. The fe m a l e parent h a s one p a i r o f s i m i l a r chromosomes (X c h ro m osomes, p. 56), and t h e m a l e parent has one pa i r of d i ssi m i la r c h ro mo somes (X a n d Y). T h e d i v i s i o n of the c h ro moso mes w h e n e g g s a n d s p e r m s a re produced g ives the eggs all X c h ro m osomes a n d
THE
t h e sperm h a l f X a n d h a l f Y c h ro m o s o m e s . T h e ra n do m p a i r i n g i n ferti l i z a t i o n res u l ts i n either X X (fe m a le) o r X Y ( m a le). O t h e r g e n e s , i n c l u d i n g those t h a t produce h e m o p h i l i a a n d some k i n ds o f color b l i n d n e s s , a re l i n k ed to sex c h ro m osomes. These sex- l i n ked c h a racters c a n be tra n s m i tted to t h e offs p r i n g of a p parently " n o r m a l " parents.
S e x of a n i m a l s i s d e term i n ed by t h e sperm . c h r o m o s o m e t h e offspri n g w i l l be m a l e . ,
66
I f i t co n ta i n s a Y
G ENES c o n t ro l i n h e rita nce, b u t w h a t c o n t ro l s g e n es?
How do they t ra n s m it their c o m plex g e n et i c i nfo r m ation from one g e n e ra t i o n to a n o t h e r ? C h e m ica l a n a lys is of c h ro m o so m e s h a s s h ow n t h a t they co n s i st of fou r b a s i c co m pou n d s : two p rote i n s , one with a re l a tively low m o l ec u l a r we i g h t a n d t h e other m u c h h i g h e r, p l u s two n uc l e i c a c i d s, d eoxyribo n ucleic a c i d ( D N A ) and r i b o n u c l e i c a c i d ( R NA ) . The co m b i n a t i on of t h e s e fo u r m o l e c u l es fo r m s chromatin , the " s tuff" of w h i c h c h ro m osom es a re m a d e . DNA ca rries and c o n t ro l s g e n etic i n fo r m atio n . DNA was f i rst s u s p ected t o be t h e " b a s i c co m po n e n t" of g e n e s w h e n i t w a s d i scovered t h a t t h e n u c l e i of b o t h re p ro d u c t i v e a n d body c e l l s of a n y p a rt i c u l a r s p e c i e s c o n ta i n e d i d e n t i c a l a m o u n ts of D N A for ea c h c h ro m o so m e set . O n e stra i n o f t h e bacte r i u m P n e u m ococc us cou l d be tra n sfo r m e d i n to a n o t h e r by i n fec t i n g i t w i t h a p u r i f i e d e x t ra c t
from d e a d cel l s of t h e s e c o n d stra i n . T h e " t ra n sf o r m e d " stra i n b r e d t r u e , a n d t h e ex t r a c t was l a t e r i d e n t i f i e d a s DNA. T h i s n o n l i v i n g D NA f r o m a s e c o n d stra i n t h e re f o r e h a d t h e a b i l ity to t r a n s f o r m the h e re d ita ry m e c h a n i s m of b a cte r i a c e l l s . S i m i l a r tra n sfor m a t i o n s i n d u c e d i n ot h e r bacte r i a s h o w t h a t g e n e s a r e co m posed o f D N A.
T h e ge netic tra nsfo rmation of Pneumococcus Typ e I I cel l s i nto Type I l l c e l ls by the addition of an extract from d e a d Type I l l cel ls. EXPER I MENTAL C U LT U R E
nutrie nt, p l u s Type I I cells
sterile nutrient
type I l l cells a d d e d
type I I c e l l s tra n sfo r m to t y p e I l l
t y p e I l l cells a d d e d
no colonies
CONTROL C U LT U R E
67
( de o xyri bonucleic a c i d ) , w h i c h controls hered ity b y reg u l a ti n g i n structi o n s of g rowth and form from cell to cell a n d fro m parent to offs p ri n g . DNA i s present in all l iv i n g creatu res. In structure, the DNA molecule is a double helix, re sem b l i n g a l a d d e r that has been repeatedly twiste d . Ea c h r u n g of t h i s m olecu l a r l a d d e r is m a d e u p o f a pai r o r two fro m fou r c h e m i c a l bases-a d e n i n e , thy m i n e, g ua n i n e, a n d cystosi n e . The size a n d structure of these bases is such that each " ru n g p a i r " always con sists o f either a d e n i n e a n d thym i n e o r o f g u a n i n e a n d cystosi n e . It i s the seq u e n ce o f t h e pairs i n the ru n g s that provi d es t h e code b y w h i c h g rowth i n stru ctio n s a re tra n s m itted . From these fou r basic code substa n ces, a n a l m ost i n fi n ite va riety of seq uences can d evelop.
T H E CH EMICAL KEY TO INHERITAN CE IS D NA
T h e portion of a DNA molecular m o d e l h e re s h ows t h a t each ru n g of t h e h e l i x ladder i s b u i l t of a pa i r of c h e m ical bases.
adenine
cystosine
guanine
Model of
DNA Molecu le
thymine
T h e s p l itt i n g of a DNA ladder a n d t h e reco m b i n ation of t h e un z i pped r u n g s with a p p ropriately fitti n g n ew base u n its, i d e ntical to t h e i r origi n a l partners o n the run g , p rod uces two n ew m ol e c u les. H a l f of each new m olecule is derived from t h e orig i n a l pare n t molecule. "
"
DNA con t ro ls g rowth by h a v i n g the u n i q u e a bi l it y
to u n z i p d own the m i d d l e of t h e m o l e c u l a r l a d d e r, thus freei n g the p a i red e n d s of each c h e m i c a l run g . The exposed com pou n d s then l i n k u p with si m i l a r n ew u n its that a re d e rived from the o r g a n is m ' s food sup ply. As t h e s p l it of t h e m o l ec u l a r l a d d e r conti n u es, each half b u i l d s an exact rep l i ca of itself by this l i n k a g e . The rig i d seq u e n ce of pairi n g i s preserved by t h e fit o f the o ri g i n a l structure. I n t hi s way the DNA mole cu le c a n repro d u c e itself over and over a g ai n . 69
PROT E I N MAN UFACTURE . RNA ( ri b o n u c l eic a ci d ) h a s
a structu re m u c h l i ke that of D NA . U n l i ke D NA, h ow ever, it is not c o n fi n e d to the c e l l n uc l e u s . It is t h e es se ntial m esse n g e r in the m a n ufacture of p rote i n s by cells. Prote i n s a re i nvolved i n every body p rocess . They fo rm the basic m ate rial of l iv i n g o rg a n i s m s . They a re very l a rg e m o l e c u l es, m a d e u p of various co m b i n atio n s of 20 essential k i n d s o f a m i no a c i d s . R N A i s m a n ufactured fro m D NA, fro m w h i c h i t dif fers i n h avi n g o n e m o re oxyg en atom i n its sug a r ( ri bose) a n d i n havi n g u racil i n stead o f thy m i n e i n t h e m o l e c u l a r stru ctu re. S l i g htly d ifferen t " m esse n g e r " R N A m o l e c u l e s c o n t r o l t h e m a n ufa ctu re of e a c h of the m a ny k i n d s of protei n . Each is i m pri nted with a c o d e d tem pl ate o f its structure. Selected a m i n o a c i d s a re t h e n tagged by sti l l o t h e r d i stin ctive " tr a n sfe r " RNA m o l e c u l e s , e a c h i m pri n te d w i t h a structure t h a t e n a b l es i t t o b r i n g t h e p a rti c u l a r a m i n o ac id t o t h e m esse n g e r te m p l ate . W h e n these a m i n o a c i d s a re a rra n g ed a n d c o m b i n e d i n correct seq u e n ce, R N A m a y s e p a rate fro m newly p rod uced p rote i n a n d perfo rm its ta s k a g a i n . T h e m e s se n g e r RNA bar carries t h e cod e , w h i l e each of t h ree s m a l l e r co m po n e n t s of t h e RNA u n i t is s t r u c t u red to a c c e p t a pa r t i c u l a r a m i n o a c i d s h a p e . I n t h e bac k g ro u n d is a DNA h e l i x .
Tra n s f e r R N A u n its locate ( Le f t ) a n d tra n s port t h e i r ( Ri g h t ) vari ous a m i n o acids toward t h e coded RNA te m p l a t e bar.
Tra nsfer RNA u n its u n ite with a messe n g e r u n it op posite t h e i r pa i red p a r t n e r c o m p o u n d s , s o arra n ged as to b u i l d a n a m i n o a c i d s e q u e n c e i n to a part i c u l a r p rote i n m o l e c u l e .
T h e new prote i n m o l e c u l e cons tructed f r o m a seq u e n ce o f a m i n o a c i d s , separates f r o m t h e R N A . M o s t p rote i n s consist o f h u n d reds of a m i n o a c i d u n its that are a rra n g e d tog ether.
71
WHAT ARE THE S O U RCES OF VARIABILITY? If g e netic
e q u i l i b ri u m i n any p o p u l ation is so conservative, h ow does c h a n ge eve r take p l a c e ? How c o u l d evo l utio n i n p l a n ts a n d a n i m a l s occur? W hat a re the so u rces of variati o n s in p l a n ts a n d a n i m a l s ? No two i n d ivid u a l s a re eve r exactly a l i k e . T h e s e i n d ivid u a l d i fferen ces a re a s recog n i z a b l e i n d o g s o r i n g o l d fi s h a s t h ey a re i n m a n . S o m e d i ffere n ces a re acq u i re d d u r i n g life th roug h b e h avio r o r fro m t h e e n vi ro n m e n t . D i eti n g , o r l a c k of i t , i nfl u e n ces wei g ht . R e s p i rato ry d iseases m ay be pro d u ced by s m o ki n g o r b y l ivi n g i n a p o l l uted a t m o s p h e r e . But m a ny i n d ivi d u a l c h a racteristics a re h ered ita ry, n o t enviro n m en ta l . These i n c l u d e s u c h phys i c a l features a s eye c o l o r, co m p l ex i o n , color b l i n d n ess, a n d h e i g h t . How do t h ese d if feren ces a rise? Variations of this kind a re pro d u ced in two ways : by a s h uffl i n g a n d red i stri buti o n of g e n e s d u ri n g re ( reco m b i n atio n } a n d by sponta n eo u s pro d u ction c h a n ges i n g e n e structure l e a d i n g t o n ew c h a racteris tics ( m utatio n } . Crowd sce n e i l l u s trates vari a b i l i t y of o u r ow n speci es.
RECOMB I NAT I O N i s the ch ief so u rce of v a r i a tion . I t
m ay occu r e i t h e r b y a s i m p le reco m b i n at i o n o f the c h romosomes w h e n ferti l i zati o n between p a rents ta kes place o r by a c ross i n g -over that i n volves an exc h a n g e o f g e n etic m ateri a l between c h ro m osomes . Reco m bi n a tion i n volves t h e fo r m a t i o n o f n e w g e n otypes by the res h u ffl i n g of e x i s t i n g o n es ( p. 6 4 ) . I n o rg a n i s m s t h a t reprod uce a s e x u a l ly, m uc h less pote n t i a l va riati o n is poss i b l e t h a n in those that reprod uce sexu a l ly. Th is has put an evo l u ti o n a ry " p re m i u m " on sex u a l rep ro d uctio n . Sex u a l re p ro d uct i o n i s the m a j o r so u rce of the wide va r i a t i o n in p l a n t a n d a n i m a l s pecies . of chromo somes s o m e t i m e s takes p l a c e duri n g m e iosis, t h e formation of sex c e l l s . This results from c h ro moso m e stra n d s stic k i n g to g e t h e r so that an e x c h a n g e of genes ta kes p l a ce betwee n c h ro m oso m e pairs. Where these c h ro m osomes a re joined and the CRO S S I N G-OVER
exchanges
occur
a re
called
chiasmata. Ea c h cross-ove r dou
b l e s t h e n u m ber of k i n d s of g a m etes and modifies the l i n k a g e of g e n es , t h u s prov i d i n g a n i m porta n t sou rce o f varia b i l i ty. I n the i l l u stration of cross i n g over below, d iffere n t colors rep resent d ifferent g e n e s .
CROSSING-OVER
73
Horned Hereford
Polled H e reford
Po l led H ereford cattle l a c k horns beca u s e of t h e effects of m u ta t i o n of a g e n e w h i c h reg u l a tes horn s ecretio n .
MUTATIONS a re c h a n g e s i n g e n e t i c materi a l that
pro d u ce n ew c h a ra cte risti cs. The c h a n g e m ay b e o bvi ous (as exa m pl es, wi n g for m in fl i es, horn l ess pol l e d He refo rd cattle, s h ort- l eg g e d A n co n s h eep, o r double flowers), o r it m ay be a n i n co n spicuous and subtle c h e m i c a l a n d p hysiological d iffe re n ce . Particu l a r g e n es m ay m utate i n m o re t han o n e way, a n d m a ny can re ve rse the d i rection of c h a n g e .. Each g e n e has a d is ti n ctive m utation rate . Some wi l l m utate o n ly once per m i l l ion g a m etes, for exa m ple, while others u n dergo m utati o n s m o re than 500 ti m es as freq uently. The rate of m utation ca n be i nfl u e n ce d by va rious factors, such as te m p erature c h a n g es, ra d iation, a n d c h e m ical sti m u l a n ts . C o n s p i c uous m utation s a re m o re ofte n h a rmfu l to t h e org a n i s m t h a n a re t h e s m a l l e r o n es . Mutation see m s t o be caused b y s l i g ht i m perfection s i n the self-copyi n g c h e m ical structu res o f the D NA molecules that m a ke u p the g e n e s . They m ay affect the n u m ber and structures of the DNA molecules of the genes. They m a y a lso affect the n u m be r a n d structure of c h ro m osomes. Occasion a l l y the c h ro m oso m es d ivide but the cell does n ot, resu lti n g i n a whole new set of c h ro m osomes ( polyploidy). The n ew m uta n ts b reed true and do not revert to the orig i n a l typ e . 74
DRIFT was discove red by t h e Ame rica n gen eticist Sewa l l Wrig ht, who studied the math e m atics of population g e n etics. The g e n e pool-that is, the tota l gene contrib ution of a particul a r popul atio,n to its offspri n g-is g reatly i n fl u e n ced by the size of t h e pop u l atio n . In very s m a l l populations, such a s those iso lated from their parent g ro u p, cha nce pl ays relatively a m uch g reater rol e i n p rod ucing g e n etic c h a nge, som eti m e s lea d i n g to n o n - a d a ptive c h a n g e s . Although the real ity of g e n etic d rift has been confirmed i n lab oratory experi m en ts, its role i n evol ution i s sti l l not clear. It m ay b e of some i m porta nce i n small popula tions that l ater i n c rease i n size and m ay acco u n t for some of the puzzl ing, pers iste nt n o n - a d a ptive o r neu tral c h a n g es observed i n d iversified wild populatio n s . Va ri a b i l ity t h u s a rises fro m fo u r possi b l e s o u rces reco m b i n ation, crossi n g -over, m utation, a n d g e n eti c d rift. Of these, reco m b i n ation is by fa r t h e most im porta n t . Once it was thought that variabil ity a l o n e cou l d p ro d u ce evoluti o n a ry c h a n g e, without a i d from a d d itio n a l factors . Statistical a n a lysis showed , how ever, that o n l y natural sel ection cou l d a ccount for t h e perpetuation a n d refi n e m ent o f t h e e n d less a d a pta tions shown by livi n g t h i n g s . Varia b i lity is not the whole of t h e evol utionary reci pe, but i t is t h e essenti a l raw m aterial o n which everything else d epen d s . GENETI C
75
I S O LATION of g e n e pool s d ist i n g u i s h e s s pecies from
races a n d d e m es, w h i c h a re p o p u l ations ca p a b l e of i n terb re e d i n g when t h ey co m e i n to conta ct . The de ve l o p m e n t of isolation between o n ce i n te rb reed i n g g ro u p s i s a n i m po rta n t fa cto r i n evo l utio n . O n c e i so l ated, e a c h p o p u l ation wi l l u n d ergo i n d e p e n d e n t, g r a d u a l g e n etic c h a n g e u n t i l it i s n o l o n g e r co m p ati b l e w i t h t h e g ro u p with w h i c h it o n ce i n terbre d . S i n ce c l i m a tic a n d e c o l o g i c c o n d itio ns u n d e rg o s l ow c h a n g e s , th e re is a d yn a m ic i n tera.ction betwe e n th e m a n d s p e c i e s d istri b u tio n . Ma ny now- d ivi d e d ra n g e s of s p e c ies reflect i so l atio n of orig i n a l ly w i d e s p re a d p o p u l a t io n s . I s o l a t i o n m a y a r i s e i n d i ffe r e n t w a y s . I t m a y b e g e o
1 9) .
g r a p h ic, a s i n s o m e i s l a n d p o p u l a ti o n s (p.
R e l a ted
species t h a t d o not ove r l a p i n territory a re c a l l e d a l lopatric;
those that do,
sy m p a t r i c .
G e n et i c
isolation
m a y a r i s e b etwe e n e i t h e r k i n d of p o p u l a t i o n . I t m a y i n vo l v e e c o l o g i c a l , b e h a v i o r a l , m o r p h o l o g i c a l , o r p h y s i o l o g i c a l d i ffe r e n c e s , a n y of w h i c h m a y p r eve n t m a t i n g . Eve n i f m a t i n g d o e s t a k e p l a c e , v a r i o u s i n t e r n a l c e l l u l a r o r d ev e l o p m e n ta l b a r r i e r s m a y p r e ve n t f e r t i l i z a t i o n o r p r o d u ce n o n vi a b l e , w e a k o r s t e r i l e h y b r i d s . is I S OLAT I O N GEOGRAPH I C s h ow n b e l ow i n s c h e m a t i c for m : (A) w i d e s p r e a d s pe c i e s w i t h n o g eog ra p h i c v a r i a t i o n , (B) d i f fer ent popu l a t i o n s d ev e l o p in ex t re m e s o f ra n g e s, ( C ) p a rt i a l barrier develops, g eog ra p h i c
(D) b a r r i e r bec o m e s a tota l pre ve n tative to i n t e r bree d i n g of two p o p u l a t ion s ( E) cu m u lative g e n et i c d i ffere n c e s b e co m e so g reat that g e n et i c s e pa r a t i o n prod uces two species, eve n i f t h e b a r r i e r i s e l i m i n a ted. ,
M I GRAT I ON of po p u l a tions i n to new a re a s may l ea d
to perm a n e n t co l o n i zatio n . I n so m e cases, d i fferent a reas may h ave very closely s i m i l a r c l i m a tes a n d ter ra i n s b u t b e s e p a rated by such b a rri ers a s oceans, deserts, o r m o u n ta i n s . Over long periods, a few i n d ivid u a l s m a y c ross these ba rriers a n d beco m e esta b l ished i n th e i r new e nv i ro n m e nt. The n ew c o l o n y will i nterbreed in isolation fro m t h e parent population a n d m a y i n t i m e d evelop i nto a n e w s p e ci e s. S o m e of t h e g reatest tra n sfo rmations i n the h istory of l ife h ave a ri s e n by m i g ratio n . These i n c l u d e t he col o n i zation of t h e l a n d by p l a nts and a n i m a l s . M I GRA I N TERC O N T I N E NTAL T I O N of some Plei s tocen e m a m
m a l s is s h ow n h ere. Asia a n d North A m erica were periodi c a l l y joined b y t h e Beri n g
Straits. T h e " fi l ter" effect of these i s l a n d co n n ecti o n s co n fi n ed s o m e m a m m a l s ( ci rcled ) to t hei r ori g i n a l co n ti n e n ts . ( After Kay a n d Co l bert. )
N AT U R A L S E L E C T I O N is the seco n d m a j or co m po n e n t
o f t h e evoluti o n a ry p rocess. Left t o t h e m selves, l a rg e a n d ra n d o m l y i n t e r b reed i n g p o p u l atio n s w i l l m ove to wa rd g e n etic e q u i l i b r i u m (p. 6 5 ) . N a t u ra l s e l ectio n is t h e n e t re s u l t of a l t t h e p hysica l a n d b io l o g i c a l e n v i ro n m e n ta l factors t h a t t e n d t o d i sturb t h i s e q u i l i b r i u m a n d c h a n g e a p o p u l a tio n ' s g e n e poo l . N a t u r a l s e l ecti o n d o e s not i t s e l f c re a te n ew va riatio n s ; it sel ects , w i n n ows, a n d p r e s e rves e x i s ti n g va riati o n s . The g e n et ic co m po n e nts of a p o p u l ation dete r m i n e what i t m a y b e co m e ; s e l e c t i o n d ete r m i n e s w h a t it w i l l becom e . I n he rita n c e p rovi d e s i t with its potent i a l ; sel ection tra n sfo r m s pote ntia l to a ctu a l ity. THE ACTI O N of n atural se l e c
tion depends on t h e tende ncy of a l l species to p rod uce more offs pri n g than can norma l ly sur vive (p. 24) in a n environ ment of l i m ited capacity. Better ada pted org a n i s m s w i l l l ive longer tha n the l ess wel l ada pt ed, hence prod uce a g reater n u m ber of descenda nts. The descendant popu lation will i n c l u d e a n i n c reas i n g ly large pro portion of i n d ividua l s that have features favora b l e inherited from their parents. Natura l selection is rarely a "stru g g l e for existe n c e " be-
tween two c o m pet i n g i n divid uals. Predation and direct com petition are on l y two of
many factors i nvolved, includ i n g such other t h i n g s as mo bil ity, physiological and struc tura l efficiency, resista nce to d isease, a n d sexual vigor. Natura l selection produces d ifferential rep roductio n . It is the "su rviva l of the fittest" o n ly in th e sense that the fittest produce more offspring. In ef fect, it not o n ly e l i m i nates the less we l l a d a pted characteris tics but also p rod uces positive res u lts.
Stro n g b u l l-m a n y offs pri n g
W e a k b u l l-no offspri n g
SELECTIO N
PRESSURE varies from season to season and from place to p lace. It is influenced by such fl uctuating factors as cli mate, population size, food supply, a n d m i g ration. Selection genera l ly does not lead to long term stability because so many of these and other factors un dergo more or less continuous change a n d are re i n forced by such major changes as colon iza tion of a new environ ment, iso IQtion, or change in the existi ng geogra phy of a n a rea. Natural selection does not operate as a stea m-roUer effect on one c h a racter, but as a subtle series of i n teracti ng " com promises" t h a t affect t h e
whole organism a n d may influ ence many differe n t c h a racteris tics. Selection is a c u m u lative process. Even over a s h ort pe riod, its effects can be s ubsta n tial ( p. 8 4 ) . Over l o n g periods its effects can be enormous. The increasing ada ptation of a population to its environ ment is the res u l t of natural selection. Each n iche is genera l ly fi l led by on ly a single species, but a n u m ber of s pecies may share the sa me area by their va rious adaptations to speciflc food suppl ies or to habitats. The bet ter adapted leave more off spring, g radually cha nging the character of the desce ndant popu lation. Con trasti n g effects of m utation ( B ) a n d n a tura l selection ( C) are s h own on a " norm a l " dis tribution curve ( A ) of a char acter in a large populatio n . ( After Hardi n . )
Carn ivore
79
PRO OF OF NATURAL SELECTION ca me long after
D a rwin presented t h e theory i n The Origin of Spe cies. D a rwin c o m p a red it with a rtificial d o m estic selectio n and d e m o n strated its p roba b l e causes a n d a p p a re n t effects, but the p rocess itself h a d not b e e n d e m o n strated . M a n y l a b o ratory stud ies h ave s i n c e b e e n c o n d ucted t h a t i l l u strate both the operatio n a n d the effects o f natural selection . I n these, the biolog ist atte m pts to d u p l icate and to isolate ce rta i n natural e n viro n m e nts a nd t o a n a lyze their i nte racti n g p rocesse s . M I C E a n c:l o the r wi l d a n i· m a l s , color c h a n g es a re ofte n closely associated w i t h t h e pre d o m i n a n t color of the b a c k g rou n d so i l a n d vegetat i on w h e re t h e a n i m a l s l ive. I n Florida, for e x a m p l e , t h e deer mouse (Peromyscus m a n iculatusJ s h ows a co n t i n uous color tra n si tion from very light o n t h e cora l s a n d of isla n d reefs to dark i n i n l a n d a re a s of d a rker s o i l . I s t h i s t h e res u l t of n a tura l s e lectio n ? Research ers worked w i t h two color va rieties-g ray a n d b uff. Two c on t ra s t i n g b a c k g rou n d s IN
were set u p i n a large d a r k e n e d cage. T h e s o i l i n t h e cages m o re o r l ess matched t h e color of e a c h of the s h a d e s of m ic e . E i g h t m i ce, four of e a c h color, were e x posed to a barn owl for 1 5 m i n u tes. T h e b a c k g rou n d s were a l ternated with ea c h e x experi p e r i m e nt. After 8 8 ments," it w a s fou n d that t h e o w l h a d t aken 1 07 of t h e " n o n m a tc h i n g " m ic e a n d on ly 62 o f t h e bette r c o n cea led ones. T h i s s h ows how powerful a se lective factor p rotective backg rou n d coloration ca n b e , eve n over a s hort period.
6 2 M a tc h i n g
1 07 N o n - m a tc h i n g
1 1 20
1 100 I I 80 I I 60 I I 40 I I 20 I
A
c
D
G
I
0
V i a b i l ity of seven stra i n s (A-G) of h o m ozygous Drosoph ila fruit fl ies with d e leterious g e nes, before and a fte r t h e e x peri m e n t described below. Th e via b i l ity is shown a s % o f n o r m a l viabil ity ( 1 00 % ). B l a c k col u m n s i n d i cate t h e v i a b i l ity before t h e expe r i m e n t; the red col u m n s , v i a b i l ity of u n treated stocks after 50 g e n e ra tions; t h e yellow col u m n s , of stocks i r ra d iated with X- rays after 50 g e nerati o n s . (After Dobz h a n s ky and Spass ky.) POORLY
ADAPTE D
A N IMALS
are rarely fou n d in nature, b u t t h e effect of natura l selection upon such poorly a d a pted form s ca n be observed u n d e r experi m e n t a l c o n d i t i o n s . Dobz h a n s ky and S p a s s ky ra i s e d sa m p l e s o f t h e fruit fl y D ro s ophila that were h o m ozyg o u s for d i ffere n t c h ro m oso m e seven co m b i nations (A-G). Ea c h was as soc iated with some a b nor m a l ity s u c h a s reta rded deve l op me n t or defor m e d w i n g s , l e g s , a n d a b d o m e n s-t h a t re s u lted in a low via b i l ity. Ea c h of t h ese stocks was ra ised for fi fty g e n e ra t i o n s a n d kept i n c rowd ed c u l t u re bott l e s t o i n crease s e l ection pressure.
The populations were s a m p l e d a t reg u l a r i n te rv a l s to s t u d y t h e c h ro m os o m e s of repre s e n tative i n d iv i d u a l s . In most cases, th ere wa s a ra pid a n d m a rked de c l i n e in the a b u n da n ce of t h e deleterious co m b i n a t i o n s . The experi m e n t i n c l u d e d e x pos u re of o n e s a m p l e of each sto c k to X - ra y ra d i a ti o n , b u t th ese pro duced n o s ig n ifi c a n t d iffere n ces. O f t h e 14 stocks, 1 1 s h owed m a rked i n crea s e in v i a b i l i ty, 2 decl i n e d i n v i a b i l ity, a n d 1 re m a i n e d u n c h a n g e d . Of the con trol g roups, u n m i xed w i t h the stro n g e r n a t u ra l pop u l a t i o n s , 8 s h owed a m a r k e d deterioratio n , 6 we re u n ch a n g e d or s h owe d only s l i g h t i m p rove m e nts.
81
NATURAL POPU LATI ONS a re a l so stu d ie d to dete r
m i n e the effects of n atura l s e l ectio n . One exa m p l e is how n atura l s e l e ct i on m i g ht h ave p ro d u ce d the .d iffer e n ces that exist b etween the va rious k i n d s of D a rwi n ' s fr n c h e s o n t h e Ga l a p a g o s I s l a n d s ( p . 1 8 ) . Ty p i c a l fr n c h es , s u c h a s s p a rro w s a n d c a rd i n a l s , h a ve s t ro n g c o n ica l be a k s t h a t a re u s e d t o c r u s h se e d s . B ut t h e G a l a p a g os fi n c h es s h o w a g reat va riety of b e a k s . S o m e a re sto u t a n d co n i c a l , o t h e rs s l e n d e r, a n d sti l l ot h e rs a d a pted fo r q u ite d iffe re n t d iets . T h i s d ivers i ty wa s probably p rod uced by the presence of m a ny vaca n t ecolog ical n i c h e s w h e n t h e fi n c h e s fi rst beca m e esta b l is h e d on t h e Gala pagos.
I n c reas i n g n u mbers of b i rds feed i n g o n a l i m ited seed s u p p l y provi d e d t h e sel ective pres s u re tha·t favored those that coul d e x i st o n new food .
DARW I N 'S FI NCH ES ( GA L A PAGOS I S LANDS )
82
The g rou n d - l ov i n g fi n ches re ta ined t h e i r seed-eating h a bits, a lthough i n d iv i d u a l s pecies show m a rked variation i n beak proportions t h a t see m related to parti c u l a r types of seed prefere nces . Other fi n ches turned to k i n ds of food a n d hab its t h a t a re c h a racteristic o f species o f oth e r fa m i l ies o n t h e conti n e n ts . S o m e beca m e tree-dwe l l ers, i n c l u d i n g types that a re w a r b le r l i k e i n se ctivores and oth ers t h a t a re pa rrot l i ke veg eta r i a n s . Sti l l oth e rs beca me special ized for feed i n g on cacti. An insectivore developed a strong bea k t h a t it. uses to bore i nto bark. Lacking t h e long ton g u e of true wood peckers ( p . 42), it uses a c a c t u s s p i n e t o extract the i n sects fro m t h e b u r rows. All fi n c hes are rat h e r s i m i la r i n t h e i r g e n e ra l s i z e a n d h ave d u l l p l u m a g e , probably because of t h e d a r k volca n i c roc ks that outcrop over m u c h of their ter ritory. The Ga l a pagos fi n c hes prob ably a rose fro m an a n ce stra l South A m erican f or m , b u t they n ow d iffer so g reatly from a l l e x i s t i n g m a i n l a n d fi n c h e s that their a n cestry c a n not be recog n i zed. This m a r ked d i ffe re n ce s u g g ests the that fi n ches rea c h e d t h e i s l a n d s earl i e r than oth e r s p e c ies, which are m u c h c l o s e r t o t h e m a i n la n d for m s . T h e a n cestra l fi n c h e s pres u m a b l y rea c h e d t h e i s l a n d s b y be ing " a c c i d e n ta l l y " carried t h e re , perh a ps a i d e d by ocea n i c cur re n ts . It s ee m s most u n l i ke l y t h a t t h e Ga l a p a g os I s l a n d s w e re ever j o i n e d to t h e m a i n la � d .
I n contrast t o t h e diversity of t h e Ga l a pagos fi n c h es , Davi d Lack has s h own t h a t i n the n e i g h bori n g Cocos I s l a n d t h ere is only a s i n g l e species of fi n c h , a l t h o u g h t h e i s l a n d prov i d e s v a r i e d h a b itats a n d l a c k s m a ny o t h e r typi ca l s pecies o f co n t i n e ntal b i rd s . Th i s see m s t o re s u l t fro m the s i n g l e i s l a n d of Cocos l a c k i n g the n u m bers of s m a l l , isolated e n v i ro n m e n ts t h a t a re provi ded by t h e a rc h i pela g o n a t u re of t h e Galapagos I s l a n d s . ( See m a p p. 1 9 )
Tool-u s i n g Finch
( Amarhnyncluis pallid us)
N AT U R A L S E L E C T I O N I N A C T I O N is s h ow n b y t h e
p e p p e red m ot h ( p . 47), w h i c h i s a n exa m p l e of a s p e c i e s t h a t h a s s h own a stri k i n g c h a n g e i n t h e fre q u e n cy of a d a r k ( m e l a n i c ) fo rm in the last c e n t u ry . T h i s m o t h wa s we l l k n own to t h e m a n y a m a t e u r e n to m o lo g i sts i n B r i ta i n i n t h e ea rly yea rs of t h e 1 9t h centu ry . U n t i l 1 8 4 5 , it was k n own o n l y i n t h e " p e p p e r e d " fo r m , w h i c h h a s d a r k m a rk i n g s o n a l i g h t w i n g b a c k g ro u n d . I n t h a t yea r, a d a r k fo r m w a s d i s covered i n t h e i n d u stria l c ity of Ma n c heste r. At that ti m e t h e d a rk fo r m m a d e u p l e ss t h a n 1 p e r c e n t o f t h e tota l p o p u l a ti o n . With i n fifty yea rs i t m a d e u p 9 9 p e r c e n t of t h e p o p u l a tion i n t h e Ma n c h e ste r a re a . T h e b l a c k m o t h i s n ow t h e p re d o m i n a n t fo rm ove r m u c h o f E n g l a n d , a n d t h e o ri g i n a l p e p p e red fo r m i s a b u n d a n t o n l y i n n o n - i n d ustri a l a re a s w h e re p o l l u t i o n h a s n ot b l a c k e n ed t h e trees o n w h i c h t h e m o t h l ive s . I n s o m e of t h e n o n i n d u s t r i a l ea ste r n a re a s o f t h e cou n t ry w h e re heavy s m o g is ca r r ied i n , t h e b l a c k fo r m a l s o d o m i n a tes t h e ni oth p o p u l a ti o n . Rece n t s t u d i e s i n M a n c h ester and other i n d u s t ri a l cities w h e re stri n g e n t a n t i - p o l l ution o rd i n a nces h ave b e e n e n force d , h ave s h ow n a revers a l of t h e tre n d tow a r d s d a rker for m s , a n d a s l o w but m a rked i n crease i n a b u n d a n ce o f t h e l i g h ter peppered form s . P E P P E R ED MOTH D I ST R I BU T I O N I N B R I TA I N • ( red ) M a j o r i n d u s tr i a l cities o ( w h i te ) l i g h t form pred o m i nant • ( b l a c k ) d a r k form pred o m i nant • ( g ray ) i n te r m e d i a t e popu lation
84
I N DUSTRIAL
MELAN I SM
(the
p red o m i n a n ce of d a r k varieties) i s a l so s hown by a bout 70 oth e r species of m ot h s in Europe. In the U n i ted Sta tes, the Pittsburg h reg io n s h ows a com para b l e predo m i n a n ce of once rare black forms in a l m ost 1 00 species of m oths. T h e c a u s e of i n d u strial m e l a n i s m l ies i n t h e i n teraction o f a d o m i n a n t g e n e , p ro d u c i n g t h e b l a c k m u tatio n , a n d n a t u r a l s e lection. H . B. D . Kettlewe l l h a s d e m o n strated t h e i m porta n c e of natura l selection by studyi n g rates of b i rd predation o n t h e two form s of t h e p e p pered moth . H e released k n own n u m bers of m a rked moths of e a c h f o r m i n t w o a re a s a n d a n a lyzed t h e n u m b e r of e a c h f o r m that h e recaptu red by a t tra c t i n g t h e m to a l i g h t a t
n i g ht. I n t h e i n d ustria l Birm i n g h a m a rea, w h e re t h e l oca l pop u lation has 90 percent black forms, h e released 477 bla ck a n d 1 37 l i ght i n d iv i d u a l s . He reca ptured 40 p e rcent of t h e b l a c k for m s b u t o n ly 1 9 percent of the p e p pered. In the u n poll uted coa sta l a rea of Dorset, from a l most 1 ,000 of t h e two colors of m o t h s re leased, 6 perce n t of the b l a c k a n d 1 2 . 5 perce n t of t h e l i g h t form s w e re reca pture d . So i n p o l l uted a r e a s , t h e b l a c k - w h i te reca pture ratio w a s 2 : 1 . I n u n pol l u ted a re a s i t w a s exactly reversed-1 : 2 . I n both a reas, caref u l ob servation and fi l m i n g of b i rd s eati n g t h e m ot h s from tree tru n ks con fi r m ed that these ratios were t h e res u lts of rela tive predation.
85
FOS S I LS a l s o d e m o n st r a te the effects of natura l se
l ectio n . B . K u rten h a s s hown its effects i n the E u ro p e a n cave bea r (Ursus spelaeus) t h a t i n h a b ited north e r n E u rope d u r i n g t h e P l e istoce n e . Ku rte n coll ected fos s i l s from caves i n t h e Od essa reg i o n o f the U . S . S . R . B y c o m p a r i n g these with s keleto ns of th e c l osely related l ivi ng b e a r (Ursus arctos), h e wa s able to d iv i d e each of the fossil popul atio ns i nto g rowth sta g e s . The fos s i l s fro m a l l l o c a l ities s h owed stro n g s e p a ratio n i nto s i m i l a r, yea rly g rowth stages, prob a b l y because t h e caves i n wh i c h they were collected were i n h a bited o n l y d u ri n g a n n u a l " h i b e r n atio n . " The a n a lysis o f these g rowth stages d e m o nstrates the effects of natural sel ectio n . Y O U N GEST STAGES of t h e cave
bear eq u a l in size to n ewborn cubs of l i vi n g bears . a re rare, proba b l y beca use of the f ra g i l i ty of t h e b o n e s . T h e m o s t a b u n d a n t g rowth s t a g e h a s a l l t h e per m a n e n t teeth d ev e l o p e d , eq uiva l e n t to a b o u t 4 o r 5 m o n t h s i n l ivi n g bears, s u g gest ing birth d u r i n g t h e period of w i n ter d o r m a n cy, but a h i g h m o rta l i ty o f c u b s toward t h e
end of this time. The next g rowth s t a g e i s 1 . 4 y e a r s , i n dicati n g t h e n e x t a n n ua l " h i ber n a t io n . " A t 4 yea rs, bears were f u l l y g rown . Life e x pecta tion a t bi r t h w a s a b o u t 3 . 5 ye a r s ; m a x i m u m a g e , 1 8 years. Divi d i n g the tota l n u m be r of i n d ivi d ua ls i n a g iven age g ro u p by the s u m of these a n d a l l o l d e r i n d i v i d u a l s g i ves t h e m o rta l i ty i n d ex f o r t h e g ro u p .
P l ei stoce n e Cave bear
86
1 000
- Ma n Cave bear
�------� o
1 00
1
•
- 1 00
0
� . 1 00 2 0 0 300 4000
Age in % deviation from meon longevity
Survivors h i p c u rves from b i rth for cave bea rs and m a n , s h ow ing the s i m i l a rity of t h e c u rves . ( After K u rten . )
24
26
28
30
32
Mola r M ' Paracone I n d e x
Selecti o n pres s u re o n form of paraco n e of seco n d molar teeth of cave bear i s i n d i c a ted by red u c t i o n of v a r i a t i o n a n d de ve l o p m e n t of a rela tive l y s m a l l e r paraco n e w i t h i n creas i n g a g e . ( After Kurte n . )
Mola r M' of Cave b e a r
TEETH of fossi l c a ve bea rs a re ve ry se n sitive to n a t u ra l selection, because s u rviva l d e p e n d s o n s uccessful feed ing p rio r to h i bernatio n . K u rten stu d ied the form of t h e seco n d molar teeth (M2) . The ratio 1 O O x the l e n g t h of the l a rg est cusp ( pa ra co n e ) to the tota l l e n gt h o f the seco n d m o l a r s h owed a sig n ifi c a n t c h a n g e , b e c o m i n g s m a l l er with i n c reasi n g a g e . The you n g e r a g e g ro ups were f a r m o re va ria b l e th a n th e o l d e r, b u t fo r m s w i t h less wel l - a d a pted teeth we re e l i m i n ated . O l d e r tooth m e a s u re m e n ts g ave c o m p a r a b l e resu lts. S a m ples fro m oth e r caves g ave s i m i l a r b u t not i d e n t i c a l resu l ts, s u g g esti n g d iffe rences i n s e l e ctive p ress u re betwee n d iffere nt l o c a l e nviro n m e ntal n ic h es i n w h i c h the b e a rs l ived .
87
ADAPTATION
i s t h e con t i n u i n g resu l t of n a t u ral s e l ection . Ma n y o rg a n is m s a re very p recisely a d a pted to p a rti cu l a r n i c h e s o r to p a rticu l a r ways of l ife . The b i r d s of Hawaii p rovi d e a c l a s s i c i l l ustration of how a n a ncestral g ro u p beco m es a d a pted t o s p e c i a l n i c h e s i n a n e w e nviro n m e nt. Hawa i i cons ists o f a g ro u p o f iso l a te d vol ca n ic isl a n d s situated i n the m id - Pa c ifi c . L i k e m ost ocea n i c is l a n d s, the n u m b e r o f l a n d b i rd s is s m a l l . Th e h i g h d e g re e o f specia l i zation o f s o m e of t h e b i rd s m a kes t h e m v u l n e r a b l e t o e nv i ro n m e n t a l c h a n g e .
Ko uoi okepo
LOBELIA
Hawaii akialoa (Hemignalhus obscurus ohscurus)
o r drepa n i d i d s , a re a fa m i ly of b i rds fou n d only i n Hawa i i . L i ke D a rwi n 's fi n ches i n t h e Ga l a p a g os I s l a n d s (p. 8 3 ) , t h ey h ave a d a pted t h e m se lves to a wide d i v e r s i ty of conditions. The ori g i n a l for m s se e m to h ave f e d o n the i n sects a n d n e ctar of s h ortbe l l e d flowers. T h ey p roba b ly h a d
S I CKLEB I LLS,
88
s h ort, s l e n d e r beaks. O t h e r fo r m s s how d i versity of a d a pta t i o n s to d i ffere n t d iets, i n c l u d i n g s o m e w i t h re m a r k a b l y l o n g , curved b e a k s f o r feed i n g o n the l o n g , t u b u l a r fl owers of t h e Hawa i i a n l o b e l i a . Some of the various for m s of s i c k l e b i l l s a re i l l ustrated . N i n e of t h e 22 k n own species a re n o w extinct.
Pseu donestor
Psittirostra kona
H e m i g n a thus o b s c uru s procerus
Hemignathus lucidus
P ro b a b l e evo l ut io n of o n e g ro u p of d re p a n i d i d s from a n a n cestor, p o s s i b l y s i m i l a r to t h e H o n eyea t e r ( p . 8 8 ) i s s h own a b ove . D repa n i d i d bea k s s h ow a d o p ti o n to va r i o u s d i ets . H e mign a t h us o b scurus u s e s its e l o n g a ted b e a k c h iefly to p ro b e fo r i n sects in b a r k caviti e s , a l t h o u g h o t h e r s p eci e s u s e t h e i r l o n g " s i c k l e - b i l l s " c h i efly to p r o b e l o b e l i a f l owers for n e cta r. The n ow ext i n ct H . lucidus had a s h o rt l ow e r m a n d i b l e , w h i c h i s r e d uced even fu rth e r in H . wilso n i, which uses it, wood p e c k e r fa s h io n , a s a c h i s e l . T h e l o n g tu b u l a r to n g u e s of i n sect eati n g s pe c i e s refl ect t h e i r d eve l o p m e n t f ro m n e cta r fee d i n g fo r m s . Pseudon estor has a p a r rot l i k e b i l l , w h i l e seed-eati n g s p e c i e s , s u c h a s Psittirostra k o n a , h a v e h e a vy fi n c h - l i ke bea k s . 89
MIMICRY i s rel atively com mon
i n i nsects a n d in so m e fl owers . In i n s ects it see m s to h ave a risen c h i efly fo r defense; in flowers, for po l l i n ation . The i n fl u e n ce of n atura l selection in the deve l o p m e n t of m i m icry is s h own by the d i stribution of m i m i c s pecies o n ly i n a reas where t h e i r models a re co m m o n . Where the m o d e l s a re a b u n d a nt, the m i m ics s h ow g reater vari a b i l ity, w h i c h c a n be exp l a i n e d o n ly by assu m i n g th a t t h e l owe r predato r fa m i l i a rity with t h e m o d e l s i n s u c h a reas h a s p ro d uced l ower selection p ressure o n t h e m i m ics. Develop m e nt o f m i m ics d e p e n d s n o t o n " acci d e n ta l " p a ra l l e l m utatio ns but on a series of i n teracti ng ge nes that h ave u ndergone strong sel ection .
THE S L I P P E R O R C H I D o f Eu rope
and the M i d d l e East e m its a perf u m e that attracts a wasp wh i c h pol l i nates it. Other re lated Ophrys orc h i d s have bri g h t, i n sectlike flowers t h a t aid i n a ttracti n g m a l e wasps.
I N S E CTS h ave developed v a r ious protective s h apes a n d col o rs . The h a r m less b u m bl ebee m o t h , for exa m p le, i s a m i m i c of t h e s ti n g i n g b u m b l ebee. The tree hoppers below look l i ke thorns.
Tree h opper on rose stem
Ophrys orchid
a n d pol li n ating
wasp
90
S EX UAL S ELECT I ON i s t h e s u m of va rious cha ra cters
by wh ich o n e p a rtner, gen erally the m a l e , of a spe cies attracts a m ate a n d repels riva l s of the sa m e sex. S i n ce it i n creases the i n d ivi d u a l ' s repro d u ctive produc tivity, it con stitutes a d i sti n ct ki n d of sel ecti o n . Ela bo rate m a l e p l u m a g e a n d song in b i rds, courts h i p d i s pl ays, m o re i n ten se m a l e coloratio n, g reater s i z e a n d a n tlers i n various a n i m a ls-these a re so m e o f t h e c h a r a cteristics t h a t m ay resu lt. Th e rel ative i m porta n ce of sexua l selectio n a s a component of natural selection is sti l l not clea r . D a rw i n was convi n ced it was of m a jor i m po rta n ce, but su bseq u e n t writers h ave been less sure.
MALE S U PERB LYREBI RD of A u s
tra l i a sta n ds w i t h i t s e l a bora te ta i l feathers exte n ded a n d q u iv ering, as it perform s its cou rt s h i p d i s p l ay. T h e f e m a l e re s e m b l e s the m a l e i n color but l a c k s the special ized tai l feath ers. You n g male b i rds are l i ke the fe m a les. T h ey do not de velop the ta i l feathers u nt i l t h ey a re a bout t h ree yea rs old.
Each male esta b l i s h es a l a rg e territory, a n d t h ro u g h o u t t h i s a rea, h e b u i l d s a series o f m o u n d s of ea rth , each a bout a ya rd i n d i a m eter. H e patro l s h i s territo ry by v i s i t i n g each mou n d and pe rfor m i n g his d i s play on it. T h e d i s play beg i n s w i t h a voca l perform a n c e that i n cludes a series of m i m i c k i n g so u n d s a n d c a l l s .
91
N AT U RAL S ELECT I O N I N MA N i s re d uced i n i ts o b
vious effects by t h e stru ctu res of society a n d b y the e l a b o rate patte r n s of fa m i ly c a r e . Even so, m a n y body fe atu res show t h e i n fl ue n ce of n a t u r a l selectio n . S o m e g e n e c h a n g es a l so d e m o n strate i t s effects. S i c k l e- c e l l a n e m i a , a d isease c a u s e d by a s i n g l e g e n e , is m a rk e d b y d i sto rtion of t h e b lood c e l l s fro m t h e i r n o r m a l d i s c s h a p e t o s i c k l e s h a pe w h i c h b l o c k s t h e fl ow of b l o o d i n c a pi l l a ries a n d t h u s cau ses a n e m i a . S o m eti m es d eath results when sufferers a re s h o rt of b reath o r wor k at h i g h a ltitu d e s . In West and Central Afri c a , w h e re m a l a ri a i s e n d e m i c , po pulations with a s i c k l e- g e n e e q u i l i b ri u m freq u e n cy of u p t o 2 0 perce n t a re com m o n . A m o n g desce n d a nts of th ese people i n the U n ited States, freq u e n cy of sickle-cell a n e m ia has d ropped to 9 perce n t in two ce nturies. How has this co m e a bout? T h e fre q u e n cy of a sickle-ce l l g e n e i n Africa i s p lotted be low a s p e rce n t of pop u l a t i o n . H ig h freq u e n c i e s a re re stricted t o e q u a tor ia l a re a s i n w h i c h tertia n ma laria is a n i m porta n t c a u s e of death . N o r t h a n d s o u t h of t h i s b e l t , m a la ria is less c o m m o n a n d i s b e n i g n . S i m i l a r h i g h f r e q u e n c i e s occur i n m a l a r i a l a reas of S i c i ly, G reece, T u r key, a n d I n d i a . (Afte r All ison.)
Eq u a tor 1 0- 1 5% 5 - 1 0% 0-5%
92
S I CKLE G E N E w a s demon strated b y b iologist Ver n o n I ng ra m to h ave t h e a b i l ity t o change o n e of t h e t h re e h u n d red a m i n o a c i d u n its i n t h e h e m o g l ob i n m o l e c u l e s t h a t m a k e u p t h e r e d b lood c e l l s . A t o n e point i n t h e c h a i n of n i n e te e n d i ffere n t a m i n o a c i d s t h a t m a ke u p the prote i n , va l i n e is s u b stituted for g l u ta m i c a c i d . T h e res u l t i s t h a t n or m a l red b l ood corpuscles beco m e s i c k l e -s h a p e d . THE
s i c k le genes have c o m pa ra t i v e l y l i tt l e a d verse effect u n d e r n o r m a l co n d i t i ons, b u t t h e h o m ozyg o u s co n d i tion has far m o r e seriou s effects, ofte n ca u s i n g blood c l ott i n g or p re m a t u re deat h . Why d o s i c k l e g e n e s sti l l per s i st i f n a t u ra l s e l e c t i o n i s effec tive? I t so h a p p e n s t h a t s i c k l e s h a pe d h e mog l o b i n i s resista n t t o i n fection b y t h e m a l a r i a l parasite Plasmodium, which feeds o n r e d b l ood c e l l s . I n m a l a r i a l a reas, t h e refore, a se lective e q u i l i b r i u m e x i sts, with t h e heterozyg o u s s i c k l e - ce l l i n d iv i d u a l s re s i sta n t a n d th u s favore d . T h e h o m ozyg o u s i n d i v i d u a l s (w i t h 2 s i c k l e - ce l l H E TEROZY G O U S
Amino acids in normal hemoglobin
Amino acids i n s i c k l e cell hemoglobin
g e n e s) often d i e. A n e q u i l i b r i u m tends to occur betwe e n t h e n u m be r of peo p l e w i t h n o s i c k le - c e l l g e n e ( t h e s e a re t h e " n orma l " i n d i v i d u a l s) w h o d i e of m a la r i a a n d t h o s e w i t h two s i c k l e - ce l l g e n e s w h o d i e of a n e m i a o r b l ood c l o t t i n g . I n t h i s c a s e , a n a p pa re n t l y h a r m f u l g e n e t i c effect m a y be pre served beca u s e of side b e n e fi t s . I n m a l a ri a - f re e U . S . , t h e co n d i t i o n h a s n o s u rv i v a l v a l u e . T h u s , n a t u ra l s e l ec t i o n repre se nts not a b l i n d , c r u s h i n g wave of exti n c t i o n but the reso l u t i o n of confl icti n g e n v i ro n m e n t a l d e mands on a population. It in volves s u b t l e i n te r p l a y of i n tern a l a n d e x ter n a l i n fl u e n c e s .
93
( p . 5 2 ) c o n fi r m t h e a ction of n at u ra l s e l ectio n a n d d e m o n st ra te t h e way i n w h i c h i t o p e r a tes . O n ce i t was a rg ued t h a t n a t u ra l sel ecti o n co u l d n o t poss i b l y h ave p rod u ced t h e e l a b o rate co m p l e x of c h a nges requ i red to b r i n g a bout s u c h m a j o r evo l utio n a ry c h a n ges as the d evelop m e n t of a m p hi b i a n s from fish o r b i r d s from reptiles. Tra nsitio n a l fossil for m s, o r " m issing l i n ks, " s h ow h o w the p rocess took p l a c e .
M I S SI N G LI NKS
A Devo n i a n lobef i n crossopte ryg i a n fish c l i m bs a s hore.
Labyri nthodont a m phibian, a de s ce n d a n t, goes a s h ore c l u m s i ly.
RANDOM
52-53) s how that c h a n g e from one m a j o r g ro u p to a n other was a piece m e a l process. T h e re was not one big j u m p or a syn c h ro n ized deve l o p m e n t of a l l t h e va rious c h a racters i nvolved . I n A rchaeopteryx, some featu res, s u c h as t h e bra i n , c l aws, teeth , a n d ster n u m , were p r i m itive a n d repti l i a n ; others, such a s w i n g s a n d fea t h e rs a n d t h e g e n era l body s h a pe, were a l ready f u l l y b i rd l i ke . T h i s j u m b l e d mosaic evo l u t i o n i s exactly what we should ex pect i f natural se lec tion h a s bee n an effective a g e n t of change.
NATURAL
S E LEC
T I O N , the critics o n ce a rg u ed,
cou ld n ot have produced t h e ela borate series of variations that g ra d u a l ly t ra n sfor m e d rep t i l i a n a r m s i nto b i r d w i n g s a n d gave b i r d s a l i g h t a n d mod ified skeleto n , feathers , and s i m i la r fea tures . E a c h of t h e s e e n d less m i nor mod ifications, i t was thought, m i g h t offe r n o special advantage-not e n o u g h to bring a bout the va r ious s u pposedly i n terd e p e n d e n t a n d coord i n a ted c h a n g e s that were i nvolve d . B u t Archaeopteryx a n d other tra n sitio n a l fos s i l forms (pp.
94
MOSAIC EVO LU T I O N is shown
wel l i n the i c h t hyosteg ids, pri m itive a m p h i b i a n s of t h e D e von ia n (p. 98). T h ey h a d many fi s h l i ke f e a t u re s . T h e c h a rt g i ves
!
8
"'
75 1 00 1 00 1 00 1 00
a b reakdown of t h e i r a m p h i b i a n vers us fi s h l i ke c h a racteri s tics, with 1 00 poi n ts f o r f u l ly developed a m p h i b i a n form a n d 0 for fu l ly fi s h l i ke for m .
�a li
.c
...
Skull tlructure Eye._titlon of
limbs Shoulder and hlp girdle• Skull articulation Rlbt-form of
lchthyoste ga, a pri m itive De vo n i a n a m p h i b i a n from East Gree n l a n d . About 3 feet lo n g . A reco n s tructi o n .
Skel eton of lch thyostega prob· a bly rese m b l es c l osely that of the a n cestors from w h i c h p h i b i a n s evolved.
D iplove rteb r o n, a l a byri nthodont a m p h i b i a n of t h e Carbo n i ferous, with many rese m b l a n ces to the i c h thyostegids.
Eusth enopteron, a Devo n i a n lobefi n crosso pteryg i a n fi s h 2 feet l o n g , h a s m a n y rese m bla nces t o t h e ichthyostegids.
95
is the fi n a l co m po n e n t of the evo l u t io n a ry recipe . Ea rly oppon ents of evolution conte n d e d t h a t the age o f the ea rth, t h e n reg a rded a s l e s s t h a n 4 0 m i l l io n yea rs, d i d n o t a l low enou g h t i m e fo r t h e s l ow process of c h a n g e that evol ution i nvolve d . These es t i m ates were based o n t h e rate of coo l i n g of a s u p pose d l y o n ce m o lten e a rth . But t h e d eve l o p m e n t of othe r m et h o d s of dati n g s u g g ested a m u c h g reater a g e, a n d t h e use of ra d io a ctivity n ow i n d i cates that t h e e a rt h i s p ro b a b ly about 5 b i l l i o n yea rs o l d . This is a m pl e ti m e fo r evo l ution to have taken p l a c e . T h e d e ve l o p m e nt of a geologic t i m e sca l e puts the fos s i l rec ord i n to perspective, a n d reveals the order a n d se q ue n ce of t h e va riou s fo r m s of l ife . TIME
THE GEOLOGIC CLOCK S h ows last 600 m i l l ion years of earth ' s h i s tory, each hour representing 5 0 m i l lion years.
u s to a p p re ciate the e n o r m o u s i n terva l of t i m e t h i s represe n ts . S u p pose a cos m ic h i storia n wri t i n g a h i s · tory o f t h e e a r t h beg a n t o write a t t h e creation of t h e e a r t h a n d wrote o n e l i n e every t h o u s a n d years. If the boo ks h e p rodu ced were t h e s i z e o f t h i s o n e y o u a re rea d i n g , h e wou l d b y now h ave pro d u c e d 94,000 boo ks.
ANALO G I E S h e l p
96
Most Fossils
ELEME NTS, such as u ra n i u m a n d rad i u m , have u nstable a to m i c n u c l e i that u n dergo s p o n ta n e o u s breakdow n at a consta n t, m e a s urable rate to form oth e r, more sta b l e e l e m e n ts . U ra n i u m , for e xa m p le , p rod uces a s e r i e s of " d a u g h t e r " e l e m e nts a n d fi n a l ly y i e l d s l e a d a n d h e l i u m . O n e g ra m of u ra n i u m prod uces 1 / 7000 g ra m s of lead every m i l l i o n yea rs. T h i s r a t e i s u n affected by any c h a n ge s in heat o r pres s ure. M e a s u re m e n t o f t h e ra tio o f " o l d " u ra n i u m t o " n ew" RADIOACTIVE
lead i n u ra n i u m m i n e ra l s pro vides an i n d ication o f the age of the rocks in w h i c h t h ey are fou n d . O t h e r r adi oa c t i ve e l e m e n ts used in age m e a s u re m e n ts i n c l u d e lead-thori u m , pota s s i u m a rgon , ru b i d i u m -stro n t i u m , a n d carbon . S t u d i e s o f m eteorites, w h i c h seem to b e " left over" fra g m e n t s fro m the d evelop ment of th e solar syste m , a n d t h e rate of ex pa n s i o n of t h e u n iverse te n d to co n f i r m a f i g u re of a bo u t 4.5-5.0 b i l l i on years for t h e ag e of the e a rt h . URAN I U M T O LEAD B R E A K DOWN
Oldest u n d isp uted fossil
SCALI N G D O W N EARTH'S H I S TORY i n to a model s i n g l e ca l
e n d a r year w i t h t h e orig i n of t h e e a rt h on J a n u a ry 1 st a n d t h e p res e n t day o n Dece m be r 3 1 st wou l d m a ke e a c h second e q u i v a l e n t to 1 67 years a n d e a c h m i n ute to 1 0,000 years.
The o l d e s t u n d i s p u te d fos s i l s wou l d a p pe a r about J u ly 1 ; t h e o l d e s t a b u n d a n t fos s i l s , a b o u t Nove m b e r 1 8 . Ma n wo u l d a p p e a r a t a b o u t 1 1 :50 p . m . o n Dece m be r 3 1 . A l l record e d h i s tory wo u l d f a l l i n t h e fi n a l 4 0 seco n d s o f t h e ye a r.
97
"'
�
PERIOD
w
Q UATERN A R Y
u
2
0
;t
u
63
62
T ERTI ARY
C R ET A C E O U S
1 36
71
J U RASSI C
1 90
54
225
35
TRIASSIC
PERMIAN
280
55
325
45
345
20
P E N N S Y LV A N I A N
D EV O N I A N
u
0 N
395
50
�
430
35
8
M I SS I S S I P P I AN
SILU RIAN
O RDOVICIAN
500
70
CAMBRIAN
570 z <( "' "'
�0.. u �
70
P R EC A M B R I AN
4,030
THE G EOLOG I C TIME S C A L E
H E G E O LO G I C TIME S CALE d e
r-�� �··�r-
r-
f--
f--
f--
f--
f--
t-
+-
---
---
---
--
J
--
--
--
--
--
-
--
----
_____.....___. . ....____. . ________
ope d fro m a study of stratified rocks a n d their fossils, is d ivided i n to fou r e ras, fos s i l s b e i n g a b u n d a n t o n ly i n t h e l a st th ree . The n a m es of m ost of t h e periods a re d e rived fro m p l a ce s w h e re rocks of t h a t a g e were fi rst stud ied . Thus, we spea k of Devo n i a n fi s h just as we spe a k of Rom a n a rc h itectu re . Wh e n t h e i r rela tive s e q u e n c e is k n own, both ca n t h e n b e fitted i n to a n u m e r i c a l ti m e sca l e . Preca m bria n t i m e covers a l m os t 9 I 1 Oth s of a I I e a rth h i story .
RATES OF EVO LUTIO N v a ry e n o r m o u s l y fro m o n e species t o a nother. The s m a l l b r a c h i pod Lingula, a n i n
h a b itc;mt o f wa r m , s h a l low seas, h a s sca rcely c h a n ged i n t h e l a st 400 m i l l io n yea rs. But t h e s pecta c u l a r d i versification o f m a m m a l s has ta ken p l a ce with i n t h e l a st 60 m i l l i o n yea r s . Develo p m e n t of a g eolog i c ti m e scale a l l ows u s to a n a lyze a n d i n terp ret t h ese d ifferi n g rates, wh ich m a y b e expressed i n various ways . IN STR U CTU R ES, rates of c h a n g e can b e m e a s u red for some foss i l g ro u p s . In the evo lution of early Tertiary h orses, c h a n g e s i n d i m e n s i o ns of molar teeth were o n ly 0. 1 5 mm per m i l l ion years. T h is is about equal to t h e d i a meter of a h u m a n hai r . S i n g l e populations ofte n conta i n e d u p to twe n ty t i m es as m u c h variation i n tooth d i m e n s i o n s . S u c h s l ow tra n s for m ation ca n be observed o n ly i n foss i l s .
TRA N S FO RMATI O N O F S P E C I E S
E C O L O G I C A L R E PLAC EMENT o f
R A P I D D I V E R S I FI C A T I O N of Mioce ne horses f ro m b rows i n g to g razi n g correspo n ded t o t h e w i despread c h a n g e fro m lowland forests to upla nd pra iries i n North A m erica a n d t h e f i rst appeara n c e of fos s i l g rasses. T h i s i n teraction see m s t o conf i r m t h e i m po rta n ce of n a t u ra l selection (p. 1 0 1 ).
s o m e ext i n ct g rou ps b y oth e rs of s i m i la r e n v i ro n m e ntal h a b i ts s u g g ests that com pet ition be twe e n the two g roups may have been a factor in some cases of exti n ct i o n . T h e width of each co l u m n in t h e d ia g ra m i s p ro portional to the d iversity of t h e group.
1 00
fro m one i n to a n other for Ter t i a ry m a m m a l s (p. 1 3 2) h a s b e e n calcu lated to be a bout 500,000 yea rs. With such s low rates, it is not surpri s i n g that few exa m p les of t h e develop ment of n ew species can be observed i n l i v i n g populations. S u c h rates also a l low a m pl e t i m e f o r t h e operation of " s low" evo l u t i o n ary mech a n i s m s , s u c h a s t h e selection o f s m a l l va riations.
\
BROWSI N G TEETH ( low.crowned- no ceme n t )
G R A Z I N G TEETH ( H i g h crown ed-cemen t )
H Y PO H I P P U S
P A RA H I P P U S
ANCHITHERI UM
EVO LUTION O F H O RSES ( Teeth drawn to scale-After S i m pson )
PATTE RNS O F C H AN G E beco m e e v i d e n t i n s o m e g ro u p s w h e n t h e time factor is considered. The ra pid d i ve rs i f i cation of h orses i n M i o c e n e t i m e s represe n ted a c h a n g e i n fee d i n g h a b i t f ro m brows i n g to g ra z i n g , correspo n d i n g to t h e w i d e spread c h a n g e f ro m l ow l a n d forests to u p l a n d pra i ries i n North A m e rica a n d t h e f i rst a p pe a ra n ce of fo s s i l g ra s s es. T h i s see m s to be a n i n te raction co n f i r m i n g t h e i m por ta n c e of n a t u ra l selection ( p . 5 1 ).
1 01
s h owi n g t h e i n te r p l a y o f t h e va rious fa cto rs i n volve d , c a n b e s u m m e d u p fo r a ny popu l a tion a s d e m o nstrated i n the d ia g ra m below. Such a si m pl e recipe does not m ea n tha t evo l ution i s itself s i m p l e o r t h a t it fol lows a c l e a r ly predicta b l e p a t tern . The reverse is the case. The i n teraction of t h ese va rious p rocesses pro d u ces an eno rm o u sl y c o m plex dy n a m ic syste m . Both the co m p l exity a n d the potenti a l ity fo r n ovelty of the evo l utio n a ry process a re i n d i cated by t h e g reat d iversity of l ivi n g thi n g s .
A R E C I PE FOR EVOLUT I O N
I SOLATION :
VARIATION : Genetic Reco m b i nation
+
Over-Production Limited Food Supply NEW SPEC I ES
EVOLU T I O N S T I LL C O N T I N U E S .
Many g eo g ra p h i c races a re po te ntia l ly new s pecies i n t h e m a k i n g . Co n t i n ued i s o l a t i o n o f r a c e s of t h e g o l d e n w h i s t l e r i n
1 02
t h e Solo m o n I s l a n d s l o n g i n g to a s i n g l e
a l l be s pecies, Pachycephala pe ctoralis, wo u l d pro b a b l y c o n v e r t t h e m i n to re prod u c t i v e l y i s o l a te d s pecies .
MUTAT I O N S a re i m po rta n t i n t h e evo l u t i o n a ry process, eve n though so m a ny i n l i v i n g popu lations see m to be h a r m f u l . I n a population w e l l -a d a pted to a part i c u l a r e n v i ro n m e n t , the most b e n efi c i a l m u tations have ofte n a l ready bee n i n corporat ed. In a d d i t i o n , m u tations with a re effects visible l i m ited known to be co m mo n .
N o t a l l h a r m f u l tra its a re e l i m i nated from t h e g e n e pool of a population . Selection is a l ways a c o m p ro m i se . Even h a r m f u l c h a racteristics may have s o m e be n e fi c i a l s i d e effects (p. 93). Prese rvation of such g e n e s provides a reservo i r of pote n t i a l c h a n g e that may be o f critica l i m porta n c e if e n v i ro n m e n ta l co n d itions c h a n g e .
COLOR CHANGES I N M I N K o r e t h e res u l t o f m utations.
FACTORS A C CO U N T I N G F O R N E W S P E C I E S orig i n s e e m a d e
q u a t e to a ccou n t a l so for a l l evol u t i o n a ry change. So m e writers re.f er t o m i c ro-evol u t i o n . a n d m a c ro-evol u t i o n , b u t t h e s e are not f u n d a m e n ta l l y d i ffere n t. C u m u l a t i ve devel o p m e n t of new
- 5
species leads to w h a t we later classify a s n ew g e n era a n d h i g h e r g ro u p s . Sepa ra t i o n of desce n d a n ts from a n ce s t ra l ·po p u la.ti o n s by ti m e re i n forces g e o g ra p h i c d i f fere n ces be tween co n te m pora ry race s , as s h o w n below.
-
4 2
3 II IV
ARAB I C N O ' S . ( S PEC I ES)
l i ne-Evol ution of o Species
ROMAN NO ' S .
C o n t i n u e s to E xist Becomes Extinct
(GENERA)
1 03
T H E C O U RS E OF EVOLUTION
Pre-org a n i c evo l ution t h a t occu rred before t h e a p pe a r a n ce of life o n e a rth left l ittle d i rect evi d e n ce of the p rocesses i nvolved . Much s m a l l e r m o l ecu l es were i n vo lved t h a n i n o rg a n ic evo l u ti o n , h owever, a n d the process resu lted i n bod ies of m u c h g reater d i m en sions, s u c h a s stars and g a l axies. The o ri g i n a l m ateri a l p ro b a b ly co n s i sted of su b-ato m i c p a rticles, s u c h a s n e u tro n s , p roto n s, a n d el ectrons, that l a te r p rod uced hy d ro g e n . Much of the m ate rial in the vi s i b l e u n ive rse see m s to be hydrogen, which cons ists of a s i n g l e p ro to n . Heavier e l e m e nts were pro b a b l y produced from the l i g hter hyd rog e n by a p rocess of neutron ca pture. Each neutron t h a t was a d d ed yiel d e d a new isoto pe. The p rocess by which hyd rog e n a g g reg ated to fo rm bodies s u c h a s stars, i n which e l e m ent- b u i l d i n g too k p l a ce, is sti l l t h e s u b j ect of speculation . It m ay be a conti n u o u s p rocess i n w h i c h n ew hydrogen i s b e i n g created con sta ntly. Altern atively the a p p a re n t exp a n sion of t h e u n iverse m ay result fro m t h e " b ig b a n g " o f a s i n g l e e p i s o d e of creation about 5 t o 1 0 b i l l io n years a go. The u n iverse m ig h t u n d er go p u l s a t i n g m ove m e nts, so t h a t t h e p rese n t e x p a n si o n wou l d b e fo l l owe d by co n t ra ctio n . The " b ig b a n g " h y p o t h eses te n d s to be t h e c u rre n t fa vo rite . a n d t h e re s t of t h e s o l a r system pro b a b l y o r ig i n a ted by the a g g r e g a t i o n of a c l o u d of cos m i c d u s t . Earth ' s s t r u c t u res s u g g e s t t h a t i t formed fro m c o l d ra ther t h a n fro m m o l te n m a teria l . E A RTH
THE PR I M IT IVE EARTH o n wh ich l ife o ri g i n a ted was
an enviro n m en t very d i fferent fro m a n y o n ea rth today. Th ree l i n es of evi d e n c e s u g g est that the e a rt h ' s p r i m i tive a t m os p h e re p r o b a b l y co n s i sted of hyd rog e n , he l i u m , m et h a n e, a n d a m m o n i a . The present a t m o s p h ere of n itro g e n , ca rbon d ioxi de, a n d oxyg en ca m e l ater. METEOR ITES a pp e a r t o be ma terial " l eft over" f ro m the orig i n of t h e solar syste m . A n a lys is o f their composition p rovides a n i n d ication o f t h e poss i b l e " b u l k co m pos i t i o n " o f t h e earth. Most m eteorites a re m a d e of i ron n i ckel or "stony" m ateri a l . A few (the carbo n a ceous c h o n dr ites) conta i n c a r b o n co m pou n d s of extrate rrestrial orig i n .
3 4 - to n m e teori te f r o m G r e e n Ia nd
A NALYS I S of l i g h t f ro m other p l a nets s h ows that the s i x " ba s i c " e l e m e n ts of l i v i n g t h i n g s a re w i d e l y d i strib uted. Hydrog e n , oxyg e n , carbo n , a n d n i trog e n a re a m o n g t h e m o s t a b u n d a n t e l e m e nts i n the solar syste m . Sulfur i s n i nt h ;
SPECTRO S C O P I C
p h o s p h o rou s , s i x teen t h . T h i s i m p l i e s t h ey w e r e a l s o proba b l y presen t in t h e p r i m i t i ve e a r t h .
Dark l i n es i n s pectru m a n a lysis a re prod u ced by a bsorption by coo ler g a s i n f ro n t of g lo w i n g sou r c e . TH E ATMOS PH E R ES of p l an ets m ost d i stan t f r o m t h e s u n h a v e p rob a b l y c h a n g ed t h e l ea st . T h e i r a t m os p h e res i n c l ude h ydrog en , h e l i u m , m et h a n e ( C H 4 ) and, in J u p i ter and S a t u rn , a m m on i a ( N H 3 ). Proba b l e c h an g e s in t h e eart h ' s a t m o s p h e re (water o m i t ted) a re b a s ed p a r t l y on a n a l o g y w i t h t h e s e.
PA L EO Z O I C .... Cl)
z 0 ""' <(
:;
j
�
�
o..
T H E O RI G I N OF LI FE m u st h a ve i n vo l ve d t h e deve l o p
m e n t o f protei n s fro m thei r a m i no-acid co m po n e n t s . An experi m e n t b y Sta n l ey Mi l l e r a n d H a ro l d U rey d e m on stra tes o n e poss i b l e way i n w h i c h t h i s m i g ht h ave ta ken p l a ce o n the p r i m itive ea rth . AMMO N I A, meth a n e, h y d rogen,
and steam were m i xed together i n a closed c i r c u l a t i n g system · and then s u b j ected to a n elec trica l d i s c h a rg e . Afte r severa l days t h e c o n d e n s e d water was fou n d to conta i n a m i xtu re of a m i n o a c i ds. The effects of l i g h t n i n g o n t h e p r i m itive at mosph ere may have prod u ced a s i m i l a r n o n - biological synt h e s i s o f orga n i c m o l e c u l e s . _
M i l ler- U rey a p paratus, show n i n d i a g ra m matic for m .
1 06
I n orga n i c synthesis of other molecules, s u c h a s carbohydrates and n uc l e i c a c i d s , h a s also been d e m o nstrated. va rious These co m pou n d s were pro b a b l y pre served o n the early e a rth by t h e a bs e n ce of oxyg e n and o f other l iv i n g t h i n g s .
A LL LIVI N G T H I N GS tod ay de
pend, d i rectly or i n d i rectly, u po n g ree n p l a n ts for t h e i r foo d . T h e e a r l i e s t orga n i s m s pro b a b l y " fed " b y s o m e fer m e n tatio n - l i ke proces s u po n t h e o rga nic " b roth" from wh ich they a rose, b u t t h i s food s o u rce was l i m i te d . C h a n g es i n t h e earth ' s a t m o s p h ere ca used both by s o l a r radiation and by t h e effects of t h e e a r l i e s t or g a n is m s produced a n e n v i ro n m e n t w i t h i n creas i n g q u a n t ities of n i trog e n and carbon dioxide. T h i s proba b l y e n co u raged the a l tern ative of develop m e n t fee d i n g m ec h a n i s m s , i n vo l vi n g fi rs t t h e s y n t h e s i s of m o re co m p l e x m o l e c u l e s . T h e m ore s o p h i s ticated process of p h oto s y n thesis in which s u n light sup p l i e s t h e e n e r g y f o r t h e co n vers i o n o f a t m o s p h eric carbo n carbo h y d rates i n to dioxide ca m e l a ter. P h otosy n t h es i s re l e a s e s o x yg e n , s o t h e e a r l y a t m o s p h e re u n d e rw e n t tra n sfor m a tion from a red u ci n g to a n oxyge n a t i n g e n v i ro n m e n t .
s o l a r ra d i a t i o n w a s i n crea s i n g l y f i l tered o u t a s r e l e a s e of f ree oxyg e n p r o d u ced o I o ye r of at m o s p h e r i c ozo n e . C ol o n i za t i o n of s u rface waters , a n d l a t e r o f t h e l a n d , d e p e n d e d o n t h e g rowi n g effective n e s s ozone the of scree n . T h e " s u d d e n " a p pea r a n ce of h a rd - bod i e d i n vertebrate a n i m a l s in Early C a m br i a n t i m e s m a y reflect t h e d ev e l o p m e n t o f t h e ozo n e I o y e r , w h i c h p rovi d ed a p rotec t i ve e n v i ro n m e n t.
R E PROD U C T I O N a rose by d u p l i cation of I o r g e m o l e c u l a r a g g re g a t i o n s by a u tocata l y s i s , i n w h i c h e l e c t r i c a l l y a ct i ve co m poun d s , s u c h a s p rote i n s , cou l d prec i p i ta te d ro p l e ts of col l o i d a l a g g r e g a t e s t h a t were c a p a b l e of d eve l o p i n g i n to o s u rface m e m b ra n e . W h e n i n c rea s i n g oxyg e n i n t h e a t m o s p h ere r e a c h e d a l evel to a l low d e ve l o p m e n t o f res s p i ro t i o n , harmful u l tra v i o l et
bi I l i o n s of years
EVOLUT I O N OF L I F E V
0
befo re pres e n t
-T__________________.______,
N
-0-
0
"' w z
< -+------� :r: ...
z 0
.... ;j ......
0
> w ......
EVOLUT I O N O F EARTH'S ATMOSPHER E & HYDROSPHER E
• E a rl i es t a n i mals
known
foss i I
m a r i ne
-1 -
* Fo s s i l g reen a l g a e ( m u l ti - ce l l e d , sex u a l reprod u ct i o n )
* Foss i l
bacte r i a
and
b l ue - g reen
a lgae
-
2-
F ree oxyg e n s u ffici e n t res p i r a t i o n
for a n i m a l
F ree oxygen i nv a d es a t m osphere; starts t o form oz o n e I oyer w h i c h screen s out u l trav i o l et rays • Wea th e r i n g of rock beg i n s
<
u
"' 0 ...... 0 ""
-
_,
-< u
�z
oo
_, _
Q l
- ;j .., _,
u:. o
<>< > I>. W
* Ea r l i est known foss i l s ( s i n g l e ce l l protists ( ba c t er i a ) a n d s i m p l e p l a n ts ( b l ue- g reen a l g ae ) . Deve l o p m e n t o f ce l l m e m b r a n e
F ree oxygen i n h ydrosph ere creases; o x i d izes i ro n
-3-
Protei n and m a c ro m o l e c u l e s A m i n o acids S i m p l est c o m p o u n d s of and N
Deve l o p m e n t of p h otosyn thesis; re l eases free oxygen to hydrosphere Fermentation (?); adds d i o x i d e to h ydrosphere
Co l l o i d a l CO!Jcervates
C, H , 0,
-4 -
in
c a r bon
Pri m i t i ve a t m osphere proba b l y H 2 , H 2 0 , CH4 a n d N H 3 ; n o free oxygen . I ntense u l traviolet radi ation
FO RMAT I O N O F P L A N ET EARTH
Crit i c a l events i n t h e ea r l y h i story of l i v i n g m a tter a n d i n t h e deve l o p m e n t of a t m o s p h e re and hydrosphere . • denote foss i l s , the earl ier part of the h istory being hypothetica l ( A fte r F l i n t and ot h e r s )
THE FOSS I L RECOR D i s the basis of o u r u n de rsta nd
i n g o f the h istory o f l ife a n d t h e course o f evol utio n . Fossils a re t h e re m a i n s o f or i n d ications o f prehisto ric a n i m a l s a n d p l a nts preserved i n the roc ks of the e a rt h ' s crust. Fossi ls a re o f m a ny k i n d s a n d a r e fo rmed by va rious p rocesses, but the c h a n ces of a n y o rg a n i s m be co m i n g foss i l ized a re s m a l l . Thus, the fossil record is a very i n c o m p l ete a n d rath e r b i a sed record of t h e h istory of l ife . Recog n ition o f t h i s is i m po rta nt i n i nter preti n g the fossil reco r d . Orga n i s m s l a c k i n g h a rd pa rts, fo r exa m pl e, a re ra rely fou n d a s fossi l s . For t h is reason records of the ea rly d evelo p m e n t of l ife a re p a rtic u l a rly m e a g e r . W H O L E A N I MALS A N D PLA NTS
are very ra rely preserved in t h e fos s i l record . Wooll y m a m moths, up to 1 0 feet ta l l , fou n d i n S i ber ia a n d A l a s ka are e x a m ples of such preservation by a deep fre eze process.
O UTLI N E of soft parts of org a n i s m s b u ried in fi n e m u d i s s o m eti m e s preserved a s a carbon fi l m , t h e m o re vo l a t i l e com p o n e n ts d i s t i l led off b y h e a t a n d pres s u re i n rock s . Exa m p les a re t h e tri lobi tes and l eaves.
AN
Woo l l y m a m moth preserved i n froze n gro u n d
Ca m b r i a n tri l o b i tes
Fo s s i l p l a n t leaves fro m Pe n n s y l va n i a n
Growth ri n g s a re preserved i n s i l ica i n petrified wood. This cla m s h e l l i s a l m ost u n a l tered except f o r leach i n g . MOST FOSS I LS consist of o n l y
the h a rd pa rts of a n i m a l s a n d pla n ts , s u c h a s s h e l l s , bones, teeth, and wood. In a few cases these are a l most u na ltered, but usua l ly they a re leached a n d partly o r wholly replaced by oth e r m i nerals, e s pecia l ly s i l ica (Si0 2) and calcite (CaC0 3) . The re p l a c i n g m i n e ra l s may some ti mes preserve t h e orig i n a l m i c rostru cture, a s i n s o m e s i l ici fied wood, but this i s u n u su a l .
A m m o n ite, c a l ci u m carbo n a te , replaced b y pyri te ( FeS2 ) .
i m p res s i o n or m o l d
IMPRESS I O N S A N D CASTS of a n i m a l s a n d p l a n t s may be formed in porous roc ks, s u c h as san dstone, w h e n a l l the o ri g i n a l com ponents a re d issolved away. T h i s leaves a cavity, w h i c h may later be ti l led by new m i nera l s , c a r r i e d i n sol u t i o n , to g ive o cast of t h e orig i n a l o u t l i n e . B U R R O W S , TRA I LS A N D TRACKS
may be preserved in s ed i m e n ts t h a t a re l a ter co n so l i d a ted i n to rocks. STO N E ARTI FACTS a re the most
D i n o s a u r t r a c k s i n s a n d s to n e
c o m m o n re m a i n s of p re h i storic man. They represent various types of tools and wea pons. P re h i s toric h a n d a x e
1 09
THE OLDEST FOSS I LS fou n d i n rocks est i m a te d t o b e . a bo u t 2 . 7 b i l l io n y e a r s o l d , co n si st of si m pl e p l a n ts, , i n c l u�d i n g l i m e-sec reti n g a l g ae, b a cteri a , a n d fu n g i . Various o rg a n i c a m i no-acid res i d u es a re a lso k n own frol?l these very a n cient rocks. Wel l - p reserved a n i m a l fo is i l s fi rst a p pea r i n roc ks 6 0 0 m i l l i o n yea rs o l d . Microsco p i c colo n i e s o f a l g a e f r o m 1 .6 b i l l i o n years ago. .Gu n f l i n t Formation, O n tario
�x200)
Preca m b r i a n Fo s s i l s
O L D E S T PLANTS a re p re served i n c h erts from North A m erica, Africa, and A u s t ra l i a a n d ra n g e i n a g e from 2 to a b o u t 3 b i l l i o n years. They i n c l u de fi l a m e n tous a n d s p h e r i c a l al gae a n d bacte ria a n d ot h e r m i c rosco p i c structures t h a t a re n o t eas i l y classified. S o m e a re c l osely s i m i l a r to l i v i n g for m s . O t h e r m o r e w i d e s pread Preca m bria n foss i l s i n c l u d e o p t i ca l l y active orga n i c co m po u n d s o f s u pposed org a n i c ori g i- n . Stromatolites, w i d e ly d i stri b uted in rocks of Preca m b r i a n age, a re m ou n d l i ke, la m i n a ted stru ctures, a few feet in d i a m eter, fou n d i n calcareous roc ks. They represent the deposits of l i m e-secret i n g b l ue-g reen a l g a e. THE
OLDEST A N IMALS a re known from Ed iacara, South Austra l i a , in Preca m br i a n rocks that lie o n l y 500 feet b e l ow t h e Ca m b r i a n . T h ey a re soft- bod ied a n i mal s, i n c l u d i n g j e l lyfi s h , seg m e nted wor m s, sea p ens, and some a n i ma l s of u n k nown affi n i t i es. I n con trast t o t h e oldest pla nts, which a re pri m i t ive, t h e o l d e s t a n i ma l s a re relatively ad va nced type s, s u g g e s t i n g a l o n g earl ier h istory.
THE
Seg m e n ted w o r m fl o un d e ri (Afte r Glaessner) Spriggina
1 .5
in.
Jel lyfish Medusian mawsoni
about 1 i n .
(Afte r Glaessner)
Ob olella, lower Ca m b r i a n brach iopod A b o u t 0.2 i n . .
0/ene//us, a lowe r C a m b r i a n trilobite. Le ngth to 9 i n .
T h e " s u d d e n " a p p e a ra n ce o f fossi l a n i m a l s a b o ut 6 0 0 m i l l i o n yea rs a g o i s o n e of t h e m a jo r evo l utio n a ry pro b l e m s . I t h a s been variously s u g g ested t h a t : ( a ) n o Preca m b ri a n a n i m a l s existe d ; ( b ) Preca m b r i a n a n i m a l s d i d exist but l a c k e d h a rd p a rts a n d were n ot fossi l i zed ; ( c ) Preca m b ri a n a n i m a l foss i l s have be e n d estroyed by erosion a n d meta m o r p hi s m ; a n d ( d ) Preca m bria n a n i m a l s were co n fi n e d to isolated, oxyg e n - ri c h a re a s a n d a r e a s y e t u n d i s cove red o r u n exposed a s fos si l s . N o n e o f t h e s e expl a n ati o n s i s n ecessarily u ntru e . E a r l y C a m b ri a n d iversification o f a n i m a l s exte n d e d over 3 0 m i l l i o n years, h e n ce w a s n o t rea l ly " su d d e n . " I t seems prob a b l e that a n i m a l s d i d not orig i n a te i n l ate Preca m b r i a n ti m es, t h a t t h e i r ea rli est representa tives were soft- b o d i e d fo r m s of restricted d istri b ution , a n d t h a t t h e later w i d e s p r e a d a p p e a ra n ce o f h a rd bod ied fo r m s i n C a m b r i a n ti m es m a y m a r k a res p o n s e t o s o m e e n v i ro n m e ntal c h a n g e, s u c h a s t h e atmo s p h e r i c co m position o r cut-off of u ltravi o l et ra d i ation (p. 1 0 6 ) . I t w a s pro b a b l y r a p i d because of t h e rel a tive " e m pti n e s s " o f m a n y enviro n m ents t o a n i m a l l ife, a n d t h e stro n g sel ective pressure that t h e d evelo p m e n t o f h a rd pa rts by a ny o n e g ro u p wou l d exert o n others . 111
M i.d d l e Ca m bri a n sea based on s peci m e n s f ro m B u rgess S h a l e of Bri t i s h Co l u m bi a : ( 1 ) j e l l yfi s h , ( 2 ) s p o n g e , ( 3 ) trilobite, ( 4 ) worm , ( 5 ) brach iopod, ( 6 ) x e n o pod a r t h ropod
I NVERTEBRATES were t h e m ost disti n ctive a n i m a l s of C a m b ri a n , Ordovi c i a n , a n d S i l u r i a n ti m es a period of so m e 200 m i l lion yea r s . Althou g h verte b rate fra g m e n ts a re fou n d in Ordovic i a n rocks, they were ra re u n t i l D evo n i a n t i m e s . The ea rliest i n ve rte b rates ( p . 1 1 0) i n cl u d e d jel lyfish, sea pens, a n d seg m e nted wo r m s , b u t C a m b r i a n fa u n as were d o m i n ated by trilob ites, riow extinct a rth ropods . Spong es, s n a ils, e c h i n o d e r m s, and s m a l l horny b ivalved brach iopods were a b u n d a n t i n s h a l low seas. In the Ordovician, cora l s , b ryozo a n s ( m oss a n i m a l s ) , a n d m a n y n ew k i n d s of b ra c h i o p o d s a n d t ri l o bites a p pe a re d . P ro tozoa n s we re ra re. S q u i d l i k e cepha lopods, so m e 1 5 feet l o n g , d eveloped . I n t h e S i l u ri a n , e u rypte r i d s, a r t h ropods to 6 feet l o n g , l ived i n del ta s a n d estua ries. MAR I N E
1 12
Represe n t a tives of a l l t h e m a jo r l ivi n g i n verte brate p h y l a a n d n ea rly a l l the c l a sses were esta b l i shed by Ordovi ci a n ti m e s . S i n ce t h e n , the m a j o r patter n s of inverteb rate l ife i n the seas h ave c h a n g e d l ittl e . A few m a jor g roups h ave becom e exti nct, d iffe re nt g eo g ra p h i c a r e a s a n d d iffere nt e nviro n m e nts h ave sup ported d iffere n t fa u n a s, and g e n e ra and spec ies h a ve shown va ried p a tterns of mod ificatio n a n d exti n ctio n . EARLY
PALEOZO I C
A N IMALS
s h owed many a d a ptations to d ifferi n g modes of l ife. They i n c l uded fixed benthic for m s , such as cora l s a n d brac h iopod s ; va g rant benth i c types, s u c h as starfi s h and s n a i l s ; free-swi m m i ng for m s , s u c h a s ce p h a l o p o d s a n d e u rypterids; a n d free fl oating forms, such a s j e l lyfi s h . Comparable d ivers ity existed in feed i n g h a b its. The p hyto plan kton , on w h i c h m a ny l i v i n g marine i nve rte b rates f e e d , h ave s i l iceous a n d calcareous hard parts. These types a re u n k n ow n
i n the Ea rly Pa leozoic, perhaps beca use their foreru n n e rs were soft- bodi ed. T h e h a rd parts of Early Pa leozoic i nve rteb rates a re com posed of various m i nerals. Ca m brian for m s consist c h i efly of phosphatic, s i l iceou s , a n d ch iti nous m a te ria l s , but calci u m carbonate beca m e t h e pred o m i n a n t s h e l l s u bsta nce i n O rdov i c i a n t i m es . Little i s y e t k n own of the s i g n ifica nce of this b io c h e m ical evolution. O r i g i na l s h e l l com position i s ofte n mod i · fled b y s u bseq u e n t alteration duri n g fos s i lization ( p. 1 0 8 ) .
A Devo n i a n cora l reef : ( 1 ) trilobite, (2) cephalo pod, (3) bryozoan, (4) brac h i opod , (5) cora l , (6) cora l , (7) cora l ------
THE O LDEST VERT EBRATES a re fra g me nts of a rm o re d
fi s h fou n d i n roc k s of Ordovici a n a g e i n Wyo m i n g a n d el sewhere. Fish re m a i n ra re a s fossils unti l l ate S i l ur i a n ti m e s . They b e co m e d iversifi e d a n d a b u n d a nt d u r i n g t h e Devo n ia n . The o r i g i n o f ve rtebrates i s obscure. Th ey belong to th e Phyl u m C h o r d ata, conta i n i n g so m e m e m b e rs t h a t l a c k a vertebral col u m n ( a corn wo rms, sea s q u i rts, l a n celets, a n d t h e i r k i n ) tho u g h t h ey do h ave a sup porti n g n otochord and other featu res s h a red with the " h i g h e r " vertebrates . Larva l acorn wor m s show stri k i n g s i m i l a rities to l a rva l ech i n o d e r m s, sugg esti n g that both g roups may h ave a rise n fro m a com mo n b u t un known a n cestra l stock. primitive g roup of fi s h , a re represente d today o n ly b y t h e h a g fi s h a n d l a m preys. Agnatha l a c k the true jaws a n d paired fins typical of most l i v i n g fish. Ma ny of these oldest a n d most d iversified o f the early fi s h had a bony arm or. Cal led ostra coderms (" bony s k i n "), they
AG NATHA, t h e most
ra rely exceeded a foot i n l e n g t h . T h ey l ived ch iefly in stre a m s and estu a ries w h ere pre s u m a bly they fed on botto m m ud s or on suspended mate ria l . They a re n ot k n own i n roc ks you n g e r than the D evon ian, per h a p s beca u se th ey were soft bod ied-l ike their l iv i n g repre sen tatives. Pteraspis
U p p e r S i l u r i a n to De von i a n . About 6 i n .
B irkenia
A n S i l u ri a n a g n a t h a n f i s h a bo u t 4 i n . l o n g .
Drep a n aspis
1 14
lower Devon i a n .
T o 1 ft.
Climatius, U pper S i l u r i a n to De vonian, was a spiny a c a nth o d i a n "shark" with rhomboid s c a les, 2 spines on bac k , a n d 5 pa i rs of ve ntra l fins. L e n g t h 3 i n .
w a s a j o i n ted necked m a r i n e a rt h rod ire to 30 ft. lon g . It was the largest verte brate of Devon i a n l i m es. D u n k l e os t e u s
( late S i l urian to Per m i a n ) are the o n ly verte brate class to have beco m e extinct. They reached their peak i n the Devo n i a n a n d a re rare in you nger Pa l eozoi c ro'cks. Placo derms d i ffer fro m Agnatha i n havi ng pa i re d fi n s a n d pri m i tive jaws, i m porta n t fea t u res i n later d iversification o f verte brate s . bot h i n cluded Placoder m s freshwater a n d m a r i n e form s, such as t h e 30-fool, joi nted necked arlhrod ires; s m a l l fresh water s p i ny a c a n t h o d i a n s ; a n d mass ively a rmored , strong-finned a n t ia rch s . PLACODERM$
shark jaws and teeth
a s h a rk f r o m the U p per Devonian, with a stream li ned naked body. To 4 ft.
Clacloselache,
Teeth of C arch a r o clo n, a 40- to 50-foot shark from the Mi o cene S H A R K S A N D RAYS belong to
the C h o n d richthyes, a class of predaceous, cart i la g i nous, open g i l led fish. Sharks s h ow m a ny ada ptations to life i n t h e open ocea n s , i n c l u d i n g strea m l i n i n g , wel l - developed teet h , a n d spiny skin scales. S o m e l i v i n g s harks rea c h a l e n g t h of 50 feet. The earliest m e m bers of t h e g roup, which ap peared in Devo n i a n t i m es , l ived i n f r e s h water.
Skates and rays, fl a tte n ed for botto m - d we l l i n g existe n c e , h ave fl a tte n e d teeth for cru s h i n g s h e l ls. Loss of t h e bony a r mor, de velop m e n t of efficient jaw sus pension, and more flexible fins pro v ided both s h arks and bony fi s h with an advanta g e over t h e i r placod e r m a n cestors. I so lated teeth a n d spines a re the m ost co m mo n fos s i ls.
1 15
Rece n t
I
EVO L U T I O N O F F I S H
Te rti a ry Bon y R a y - Fi n n e d Fi s h
Cretaceo u s ) J u ra s s i c
L u n g fi s h
Triassic Perm i a n P l acoder m s
::::::�·:1, �= Ord ov ici a n
Ag n a t h a
Crosso p teryg 1 a 1
Carti l a g i n o u s F i s h
?
....... . . . . . . ..
-
-
- -
- - - -· -
-
--- ·········· ··· ···········
· · · ··
'
.
...... . . .
.
BONY F I S H (Oste i c h t hyes) i n c l u d e nearly a l l l i vi n g fres h water a n d m a r i n e species. They have stro n g , but flex i b le, bony s ke l eto n s and either sca les or plates. Most k i n ds have a n a i r bla dder. Bony f i s h l i ve i n every k i n d of a q u a t i c e n v i ro n m e n t (eve n caves), a n d t h e y outn u m be r a l l other vertebrates co m bi ned, both i n n u m bers of spe cies a n d of i n d iv i d ua l s . The
oldest m e m bers w e r e fres hwater for m s from the M i d d l e Devo n i a n . T h ey i n c l u d e f i s h with two types of f i n s . The ray-f i n ned f i s h were a rare, f reshwater g roup i n the Pal eozo ic, b u t t h ey beca m e the do m i n a n t g r o u p i n t h e Mesozoi c a n d Cenozo i c . T h e i r scales be ca m e t h i n n e r, a n d t h e i r jaws and s keleto n s s h owed progres sive i m prove m e n t.
a Mi d d le Devo n i a n fi n ned fish. L e n g t h a b o ut 1 1 i n .
ray·
Cheirolepis,
I , ,,
Deta i l of ray fi n , w i t h typica l s u pporti n g b o n e s .
1 16
EVO L U T I O N O F AM P H I B I A N S
U ro d e l e s Ste reos po n d y l e
To Repti les
..
... .
L a b y r i n t h o d o n ts
). .l e-f)o fp·Q"� d y I e
. . . . . . . . . . . . . . . . . . .. . . .
.
Am p h i bi a n s
A I R-BREAT H I N G
BONY
FISH
( C h oa n i c h thyes), a s m a l l e r g rou p t h a n t h e ray-fi n n ed fi s h , have i n te r n a l n os tr i l s that o p e n i n to t h e m o u t h , a s do t h ose i n l a n d l iv i n g vert e b r a t e s . L i vi n g fo r m s i n c l u d e t h e l u n g fi s h ; t h ree g e n
era a re k n own, o n e fro m each of t h e s o u t h e r n co n t i n e n t s . T h e y have p owe rf u l fi n s , s u p ported n ot b y a fan of s l e n d e r bones as i n t h e ray-fi n n e d fish but by
a strong bony a x i s . T h e y u s e t h e s e s t o u t fi n s to " wa l k " f r o m
p o o l t o p o o l d u r i n g t h e d ry sea son. Lobef i n s, t h e othe r m a j o r g r o u p , i n c l u d es t h e l i v i n g m a r i n e coelaca n t h s a n d t h e i r more g e n era l i zed, freshwater, ca r n i v o rous, Devo n i a n crossopteryg i a n forebea rs. I t wa s t h ese t h a t g a ve rise to the terrest r i a l verte b rates ( p p . 94-95).
-
Oste ole pis, from M i d d le Devo nian, with t h ick, rhomboid sca les a n d short, lobed fi n s. To 9 i n .
fr i n ge
Lobe fi n , show i n g t h e strong s u p porting bo nes from wh ich feet deve loped.
1 17
c o mp a r a ti v e l y late de ve l o p m e n t . life p ro b a b l y o ri g i n ated in the s h a l l ow seas, where t h e m a jo rity of i n vertebrate g ro u p s a re sti l l restri cte d . Life o n the l a n d i nvolved m ajor c h a n g es fo r these c reatu res that ori g i n ated a n d lived i n t h e ocea n s . T h e m o d ificatio n s i n cl u d e d c h a n ges n ecess a ry fo r p rotection a g a i n st d ryi n g u p , n ew m ethods of s u p port i n a i r a s o p posed t o the m o re buoya nt water, b reat h i n g oxyg en as o p posed to extra cti n g it from the water , n ew sou rces of food a n d water, a n d n ew repro d u ctive m e c h a n i s m s to assure ferti lization i n the ab sence of water. Colon ization of rivers a n d l a kes was only slig htly less for m i d a ble, for it involved d evelop ment of m ec h a n is m s to p reve nt d i l utio n of body fl u id s
L I F E ON TH E LA N D w a s a
A RTH R O PODS h a v e exceeded all o t h e r g rou ps in the d i ver· sity and n u m be r o f t h e i r terres tri a l and flyi n g re p r e s e n ta t i ve s . T h ey g a i n e d a " f l y i n g start" b y t h e i r tou g h , f l e x i b l e outer coveri n g and by t h e i r s t ro n g a p p e n d a g e s . T h e o l d est l a n d a rt h ro pods a re l a te S i l u r i a n
m i l l i pedel i ke f or m s t h a t m a y h a ve b e e n p a r t l y a q u a t i c . I n sects f i rst a p peared i n t h e D e von i a n . By C a r bo n i ferous t i m e s , a va r i ety o f a rt h ro p o d s , i n c l u d i n g p r i m i t ive w i n g ed i n sects, coc k roa c h e s , s p i d e rs , and scor pions, had a p pea red . Most g ro u p s a rose in t h e Mesozo i c .
A RT H ROPODS
that, in a l l a n i m a ls, conta i n d issolved salts p re cisely adjusted to the osmotic balance of sea water. land dwe l l i n g , i n spite of its problems, offered all the a dva ntag es of an em pty envi ro n m ent. Beca use of the deli cate i nterdependence of a l l livi n g t h i n g s, it is not surprisi n g that both pla nts and a n i m a l s seem to have colo n i zed t h e l a n d at about the s a m e ti m e d u ring the Silu ria n a n d Devo n ia n . Th e i nvasion of the l a n d a l m ost certa i n l y i nvolved t h e earlier i nvasion o f fresh waters. Ma ny l iving g rou ps, wh ich a re essentially m a rine, conta i n a few freshwate r colon ists (cla m s a n d crustacea ns, fo r exa m ple), but o n ly t h e p l a nts a n d three m a j o r g ro u p s o f a n i m a l s (snails, a rthropods, a n d vertebrates) h ave beco m e fully established o n the l a n d .
h a v e established them selves o n the land with varying degrees of s u cces s . Most a m ph i b i a n s a re l i m ited to a reas near e nough to water to a l low them to return to it to repro d uce. Most reptiles a re restricted to a reas from the tropical to the te m perate zones. Ma m ma l s and bird s a re more widely d i stri b uted a n d ada pted. Some verte brates, i n c l u d i n g turtles a n d other ext i n ct rept i l e s , porpoises, wha l es, and pe n g u i n s , have u n dergone a secondary adaptation to m a ri n e l ife (p. 1 2 8).
VERTEBRATE S
S N A I LS have i nvaded fresh waters a n d t h e l a n d . Some h ave reta i ned the protective s h e l l , but ot h ers (slugs) a re na ked . Land for m s m ove a n d feed b y b rows i n g , m u c h l i ke aquatic for m s. T h ey have de veloped lungs for brea t h i n g .
Skeleton o f Perm i a n a m p h i b i a n , Eryops. L e n g t h a b o u t 5 feet.
La nd Snail, Helix
1 19
Cycads
600 Psilophytes
terids S p h e nophylls
g re e n a l g ae, which now exist i n both the seas and i n fresh waters. Like a n i m a ls, d ifferen t g roups of pla nts s how va ryi n g deg rees o f a d a ptatio n t o l a n d life.
LAND
PLANTS p rob a b l y a rose fro m
BRYO PHYTES ( m osses a n d l iver worts ) need w a ter in repro d u c tion and f o r protection from desiccation . T h e i r parti a l a d a p tation to land life is a n a logous t o t h a t of t h e a m p h i b i a n s . S m a l l p l a n ts, w i t h leaves a n d stems, they l a c k woody t i s s u e s for s u p port a n d c i rc u l a t io n .
1 20
' '
w h i c h incl udes the a lgae, f u n g i , a n d bacteria, lack t h e roots, stems, leaves, and va s c u l a r s u p port i n g and c i r cu l a t i n g syste m typ ical of h ig h e r p l a nts. T h ey a re e i t h e r u n i cel l u la r or consist of loosely or g a n ized g roups of c e l l s . li m i ted to d a m p e n vi ro n m e n ts .
THALLOPHYTES,
A n g iosperms
G i n kgo
Corda ites
C o n ifers
VASCULAR PLANTS ( Tra c h e o p h ytes ) i n c l u de t h e m a
jority o f l ivi n g p l a nts. A l l have specia l i z ed vasc u l a r sys te m s of con d ucti n g tissues that tra n s port water a n d n utrie n ts fro m t h e s o i l t h rou g h t h e roots t o t h e other pa rts of the p l a nt. T h i s syste m a l so provi d e s s u p po rt, a l l owi n g so m e of these p l a n ts to g row to g reat sizes. They als o h ave a n outer l ayer (cuticle) that p revents d esiccation . The e a r l i est vascu l a r p l a nts were seed l ess kinds, such a s those shown i n Devo n i a n forest b elow. Devo n i a n f o r e s t sce ne. S h o w n a re : (1) a prim itive lycopod (P ro to· lepidode n dro n ), (2) tree fe r n (Eosperm atopte ris), a n d (3) s c o u r i n g r u s h (Cala m op hyton). g ro u n d .
Psi l opsids a re
low g rowi ng pla nts
in fore·
PSILOPSI DS, wh ich include the
e a r l i e s t k n own vasc u l a r pla nts, lack roots . Th e y h ave either pri m itive l eaves or are leafless. T h o u g h w ide s p rea d i n Devo n i a n times, they re m a i n e d s mal l i n s ize. O n ly two g e nera survive.
include the liv i ng scou r i n g rus h e s a n d s i m i l a r Paleozoic p l a nts that g rew to 40 feet ta l l . T h ey h ave roots and long, seg m e n ted, ribbed, c o ne be ari n g stems with circlets of l e av es at the nodes. S P H E N O PS I D S
-
S E E DL E S S VAS C U L A R PLANTS i n cl u d e psilopsids, lyco
pods, ferns, a n d sp henops i d s . The a d u l t p l a n t prod u ces spores that d evelop i n to s m a l l speci a l i z e d l eafless p l a nts ( g a m etop h ytes ) . T h ese l ater p r o d u ce g a m etes, or sex ce l l s . Because sperm req u i re wa ter to re a c h t h e eggs, these seedl ess pla nts a re restricted to · d a m p envi ro n m ents . Widespread i n t h e P a l eozoic, they de clined a s seed-bearing p l a nts expa n d e d in Mesozoic. i nclude the living club mosses and g ia n t represen tatives fro m t h e Pe n n sylva n i a n coa l forests . LYCOPODS
1 22
which sti l l survive in la rge n u m bers, a re spore- bear ing p l a n ts. Some foss i l a n d l iv i n g for m s g rew to 50 feet ta l l .
FER N S,
SEED-BEARING PLANTS a re of two ba sic kinds: non flowerin g a n d floweri n g . I n the non-flowe ri n g g roups (gym nosper m s ) , t h e seed i s n ot p rotected ; it i s " n a ked" -as i n pine cones. In fl oweri n g pla nts ( a n g iosperms), the seeds a re p rotected. In both ki n d s , resista nt pol len a n d e g g s a re p ro d u ced d i rectly from pa rent p l a nts. Pollen fertil izes the egg, wh ich d evelops i n to a seed wh ich is p rotected from d ryi n g . As a result, seed-bear i n g pla nts h ave colonized a g reat variety of l a nd a reas and a re the d o m i n a nt l ivin g g roup of pla nts. GYM N O S PERMS i n cl u d e ( 1 ) e x t i n ct seed ferns, perhaps a n ces tral to other g ro u ps; ( 2 ) cycads
a n d their exti n ct relatives, which were a b u n da n t i n the Mesozoic; (3) exti nct cordaites, perha ps a ncestra l to conife rs, (4) the living ginkgos; and (5) the widespread, a b u n d a nt con ifers. FLOWER I N G PLANTS ( a ngio sperms) a re re pre sented today by over 250,000 species. They appeared in the Mesozoic a n d ra p i d l y d is p l a ced t h e gym no sperms, which we re then d o m i na nt. Their flowe rs a re repro d uctive structu res, m a ny of t h e m speci a l ly developed t o a ttract i n sects that ca rry the m a le pol len to ferti lize t h e fe m a le fl owers . Enclosure of the seed i n a protective covering a l so rep resents an adva nce over the gym nospe r m s . Floweri n g pla nts s how n u merous a d a ptations to d iffere n t e n v i ro n m ents, ra n g i n g fro m desert c a c t i to tropical swa m p trees a n d f l owers. C h a n g e s i n s o m e a n i m a l g ro u ps a ppear related to c h a nges i n vegeta ti o n ( p . 5 1 a n d 1 0 1 ).
Early cycad
F lowe ring Pla nts of the C retaceous
A M P H I B I A N S were t h e fi rst te r r e s tr i a l
v e r te b r a tes ,
b u t they a re o n ly p a rtly a d a pted to life o n l a n d . T h ey n eed to retu rn to water to lay t h e i r eggs, a n d t h e i r you n g d evelop i n water. Most k i n d s a re co n fi n e d to d a m p envi ro n m ents as ad ults. The o l d est a m p h i b i a n s, the i c h t hyosteg i d s fro m the U p pe r D evo n i a n , a rose from the crosso pte ryg i a n lobe fi n n e d fi sh , possi bly i n respo nse to popul ation pressu re in the pool s where the latter l ived ( p . 9 5 ) . The stout bony axis a n d m uscles of the fi n s a n d the p rese n ce of l u n g s a d a pted lobefl ns idea l l y for m ig ration from sta g n a nt a n d seaso nal p o n d s . Life o n the l a n d p rovided u n l i m ited oxyge n suppl ies, the poss ib il ity of a d d itio n a l food sou rces, escape fro m pred a tors, a nd t h e m e a n s of reaching oth er bod ies of water. LATE PALEOZO I C AMPH I B I A N S
showed g reat d ivers i ty. Their adaptive rad iation onto land was ra pid, a n d some for m s u n derwent a secondary return to : h e w a ter. Some l a byri n t h o d o n ts were 1 5 f e e t i n l e n g t h . A m p h i b i a n s d o m i n a ted t h e l a n d
f o r over 1 0 0 m i l l i o n years. They d ec l i n e d in t h e early Mesozoic, per h a p s a s a res u l t o f competition w i t h t h e i r better a d a pted reptili a n desce n d a n ts . i n c l ude a m phi bia n s Livi n g n ewts, s a l a m a n d ers, frog s , toa d s , a n d caeci l i a n s .
Late Pa l eozo i c coo l -for m i n g swa m p w i t h la byri n t h od o n t a m ph i b i a n s .
Early re ptiles d i ffered f ro m t h e i r a m p h i b i a n a n cestors i n o n l y m i n or ways. They u n d e rwe n t ra p i d d iversification i n Perm i a n ti mes.
THE RISE OF T H E · REPTI LES m a rked a new stage of
a d a ptation to l ife on l a n d . Repti les d evelop fro m a n eg g with a tou g h outer coveri n g , provi d i n g a b u i lt- i n food s u p p l y a n d a sea l e d , l i q u i d -fi l l e d c a p s u l e for t h e deve l o p i n g e m b ryo . The i nfa nt repti les e m erge fro m the eg g m o re o r less fu l l y for m e d . R e p ti l e s were t h u s a b l e t o c o l o n i ze the l a n d a reas fa r removed fro m strea m s a n d l a kes . Repti l i a n s k i n is scaly o r c o r n i fi e d , a p rotection a g a i nst d ryi n g u p ; the l i m b s a n d c i rc u l a tory system s o f reptiles a re g e n e ra l ly s u perior to those of a m p h ib i a n s . Reptiles u n d e rwe nt g re a t d ive rs ifica tion i n Mesozoic t i m es, d o m i n ati n g l ife not only on the land but a lso i n th e seas and i n t h e air. Th e i r de c l in e, sti l l not fully u n d e rstood, was m a rked by t h e ex p a n si o n of t h e i r d esce n d a n ts, the birds a n d m a m m a l s . 1 25
R h y ncoceph a l i a n s
Turtles .-
1it·y <
,,.,__ _ ,
',
��·
��.rd Plesiosaurs
Ichthyosaurs
J U RA S S I C
AQUATIC R E PT I LE S we re a b u n
d a n t i n the Mesozoic, as rep tiles m astered every major e n v i ro n m e n t . Some were fi s h l i ke, oth ers rese m bled the later sea l s , and s ti l l oth ers were ser pentlike.
1 26
R E PTI LES had l i g h t , stro n g s kel eton a n d w i n g s , s u p ported by a n e l o n g a ted fi n g er. So m e were s m a l l ; oth ers had 2 0 -foot wing s p a n s . T h ey were co n te m pora ries, b u t n o t a n ces tors, of early bird s . FLY I N G
lizards
��� -
Birds
Crocodiles
::::... Sauropods
d o m i nated l a n d D I N O SA U R S l ife for t h e 1 40 m i l l i o n years o f the Mesozoic. Aris i n g from the codont a n cestors, t h ey i n c luded two g roups with d istinct h i p structures : rept i l e - l i k e sauris chians and b i rd l i ke ornithis chians. Worldwide i n d i s tribu-
tion, t h ey were ada pted to m a ny d iffere n t enviro n m e n ts. They included herbivores a n d carn ivores a n d a l s o t h e l a rg est, most heavily a rmored l a n d a n i m a l s t h a t h a ve ever l ived. Reasons for their extin ction in the late Mesozoic are obscure.
1 27
ADAPTIVE R A D I AT I O N of repti les i n to fo rms a d a pted
to l ife i n d ifferent envi ro n m ents was p a r a l l e l e d by birds a n d m a m m a l s afte r the repti l es beca m e exti n ct. Adaptive rad iation occurs i n the early h istory of m a ny g roups, u s u a l ly fol lowed by m o re special ized a d a pta tions to niches with i n the wirler e nviro n m e nts . OCEA N S
FRESHWATER
EVO LUTI O N ARY C O N V E RG E N C E
i n form betwee n g e n etica l l y u n re l a ted pe n g ui n s , d o l p h i n s , ich thyos a urs and s h arks res ults fro m a d a ptation to s i m i l a r e n viro n m e n ta l co n d i t i o n s . I t i s a l so pres e n t i n m a n y other
1 28
-<
LAN D
g ro ups. A l t h o u g h e a c h of t h e mammalian tetra pod c l a s ses repre s e n ts a n e w or d i s ti n ctive ado ption to life in various e n viron m e n ts , t h e t h ree " h i g h es t " c l a s s e s h av e each s u ccess f u l l y a d a pted to a l l e n v i ro n m e n t s .
C r o n e s, Rails, a nd A l l ies
['"•' "�/1 4-
A�
�-'' '"''
�
Loo n s
�
�- I't .{;
Grebes Ralites
Pe r c h i n g B irds
Climbing Birds
o n d R o l l e rs
B I R DS a re ra re a s fossils, beca use of t h e i r fra g i l e ske letons a n d because m a ny b i rd s l ive i n a re a s where b u r i a l cond ition s that l e a d to p reservation a re u n co m m on . B i rd s s h a re t h e e g g - layi n g c h a racteristics o f rep tiles from wh ich they a rose, but the i m po rta nt, d isti n c tive featu res i n t h e i r d iversification a n d su rviva l a re t h e i r s u p e rb a d a ptation to flyi n g , t h e i r ca re of the you n g , t h e i r fea t h e r cove r i n g , and their wa rm - blooded n ess . The histo ry of so m e i m po rta n t g ro u p s of b i rds is s hown a b ove .
1 29
EVOLUTION OF MAMMALS (T r i a s s i c to Rece n t) from t h e m a m m a l - l i ke therapsid repti l e s ( p . 1 24) i s well doc
u m e nted i n the fossil record . S o m e fossi l s a re so tran sitio n a l i n c h a racter between the two g roups that there is doubt w h i c h they rep resent. Ma m ma l s a re typ i ca l ly cove red with h a i r o r fur, h ave d ifferenti ated teeth, a re wa r m - blooded, and h ave h i g hly d evel o p e d senses. Nea rly a l l m a m m a l s give b i rt h t o t h e i r you n g o n l y a fter a l o n g period o f protective e m b ryon i c d e velo p m en t with i n the moth e r ' s body, a n d then the mother fee 9 s the you n g m i l k secreted fro m her m a m m a ry g l a n d s . These featu res a n d t h e h i g h l y d eveloped b r a i n s of m ost m a m m a l s m ust h ave been of m a j o r i m porta n ce i n t h e evol utio n a ry success o f t h e g ro u p . Ma m m a l s ' reg ul ated b o d y tem pe rature e n a b l e them to survive i n a m u c h g reater e nvi ro n m ental ran g e th a n d i d the re pti l e s . THE
OLDEST
MAMMALS
were
s h rew-sized c reatures, a few of which reached about one foot in length. They a re kno�n from t h e i r tiny foss i l bones. These m a m m a l s re m a i n ed i n conspicuous t h roughout the Mesozoic. A n cestra l fos s i l m a m m a l
Ec h i d n a
MO N O TR E M E S , l i ke the echidna (s piny a n teater) and platypus (p. 53), lay eggs and secrete sweat milk from modified g lands. T h e i r pri m itive repti l i a n c h a racteristics s uggest t h a t t h e y are a n a n c i e n t g roup, a n d they a re l i m ited to t h e Austra l ia area.
Pla typus
1 30
n u rs i n g you n g
SOUTH A M E R I CA
7�, -- ·· -rf •
'"�· . ....�\'1
-
�, �· .
L
t·.
NO RTH AM E R I CA
·
� !'
Mars u p i a l Carnivore
%: .
·r;r' t:�
Ca m e l - l i ke L i toptern
'(t�:�( .. \
Horse - l i k e Litoptern
Toxod o n t
j��� .
i1' "'
H o m a l o d o t h ere
MARS UPIAL MAMMALS (Creta
ceous to Recent), s u c h as kan garoos and opossu m s , g ive b i rt h to very i m mature you ng that a re s h e ltered and fed i n s i d e t h e i r mother's pou c h . Ma rs u pials were widespread in South A m e rica i n the Ce nozoic, s h ow i n g many exa m p l e s of conver g e n ce (p. 1 28 ) w i t h placental m a m m a l s a s i l l u strated a bove . T h e j o i n i n g of N o rth a n d P LAC E N TAL MAMMALS i n c l ude
m ost l iving m a m m a l s . Because t h e e m b ryo is nourished a n d susta i ned b y the p l a c e n ta with i n t h e m o t h e r ' s wo m b, t h e n ew-
South A m e rica by t h e e m er g e n c e of the I st h m u s of Pa n a m a i n t h e l a t e Cenozoic e n d e d t h e isolation i n w h i c h t h e s e m a rsu pials h a d developed. Com peti tion with the better a d a pted North A merica n placentals re s u lted in the extinction of m ost m a rs u p ials. Ma ny have s u rvived in Austra l i a beca use of t h a t con t i n e n t ' s c o n ti n ui n g i s o l a t i o n . ( After S i m p s o n ) born a re m ore m a t ure t h a n a re m a rsupials, pres u m a b l y a n i m po rta nt evol utionary adva ntage. The o l d est ( Cretaceous ) were s h re w l i k e i n sectivore s .
131
EARLY CENOZO I C MAMMALS s h owe d a period of ex plos ive rad iation, re p l a c i n g the Mesozoic ru l i n g reptiles i n a l most eve ry e nviro n m e nt. Reco n structio n a bove of scene some 50 m il l io n years ago i n c l u d e d a ncestra l le m u r Notharctos ( 1 ) , carn ivo res Oxyaen a ( 2 ) , Mesonyx ( 3 ) , hoofed m a m m a l s Palaeosyops (4), a tita no there (5 ) , and the a m blyods Eobasileus (6), Uinta therium (7), a n d Coryphodon ( 8 ) . Phe n a codus
ARCHAl C HERBIVOROUS, H O O F E D MAMMALS i n cl u ded
Phen acodus, an adva nced con d y l a r t h , with a l o n g ta i l , fi ve toes, a n d a carn ivore l i k e s k u l l . Co n te m pora ries were a m b l y pods a n d u i n ta t h e re s ( a bove ) , w i t h teeth m o d i fi ed for chew ing v e g e t a tio n . T h e clawed toes of a n ces tra l fo r m s later beca m e m o d i fi e d to h ooves.
EVOLUTION OF C A R N I VO R E S (After Colbert)
UJ J z � UJ u u
J ) ' J )
o ,.... � � CL
�
u '
u w
� 5u u
�L. 0 UJ
ARC H A I C C A R N I V O R O U S MAM M A L S - th e creodo n ts - were
mostly s m a l l , s l e n d e r, long ta i l ed creatures. T h ey deve l o p e d c laws, s h a rp teet h , a n d s u p p l e l i m bs. So m e rea c h e d the s i ze of l io n s . Most c reodonts beca m e e xt i nct in the Eoce n e . F r o m wease l - l i ke m e m bers of t h i s g ro u p t h e re s u bs e q u e ntly developed t h e a n cestors of l iv ing cats, dogs, a n d bears.
i n c l uded LATER C A R N IVO R E S a n ces tra l for m s of fl s s i pe d (s p l it foote d) cats, dog s , hye n a s , a n d weasels, a l l o f w h i c h a pp e a red a t d iffere n t t i m e s . We b - footed carn ivores (sea l s , wa lru ses) i n vaded t h e ocea n s i n Miocene t i mes. T h e c l osely re lated ceta cea n s , i n c l u d i n g d o l p h i n s a n d whales, a p peared i n t h e Eoce n e a n d a re s u perbly a d a pted to m a r i n e l ife.
1 33
M O D E R N M A M M A L S a rose i n Eocene a n d O l i g ocene
ti m es. P l eistocene recon struction s h ows g i a nt g round sloth Megatherium ( 1 ) , b ison (2}, s a b e r-tooth cat ( 3 ) , horses (4), wool l y m a m m oth ( 5 ) , c a m e l - l i ke C a m elops (6), g lyptodo n t (7}, a h u g e beaver Castoroides ( 8 ), a n d g ro u n d sloth Mylodon ( 9 ) . MODERN
H O O FE D
MAMMALS
( U n g u la tes ) i n c l u d e od d - toed horses, tapirs , a n d rh i n os , a n d eve n - toed, clove n - h oofed cat-
tie, pigs, ca m e l s , and d eer, which d i s p l aced the earlier o d d - toed u n g u lates. C h a n ges i n veg etation h a d a n ef fect . Cottle
Camels
.>.'�'
P r i m i tive Ruminant
(t .
1 34
·�f:f(v
•
.��
;i.»..y·; \; C h evroto i n s FAM I LY T R E E O F EVEN-TOED U N G U LATES
P r i m a tes
I nsectivo re s
D e r m o pterans
,t!jf>��.'
�� .>. � . t' ·
C h i ropterans
Pyrotheres
Adaptive rad i a ti o n of place n t a l m a m m a l s .
( After Col bert. )
Ra d ia t i o n of m a m m a l s i nto every e nvi ro n m e n t is typified by t h ei r m a stery o f t h e a i r a n d t h e ocea n s as wel l a s t h e l a n d . Bats a n d a n cestral w h ales both a p pea red i n the ea rly Tertiary. On t h e l a n d , specia l i z e d m a m m a l i a n g ro u p s · d eveloped . Rodents a n d rabbits a d a pted to a variety of food s a n d ways of l ife, i n cl u d i n g bu rrowi n g . Prim ates, m a ny a d a pted t o l ife i n t h e trees, a rose ea rly i n t h e Tertia ry. Elepha nts a n d e d e n totes (sloths a n d a r m a d i l los) represent fu rther special ization i n a d a ptati o n s .
135
EVI DE N CE OF EVO LUT I O N of o n e species i n to a n
o t h e r over geo l o g i c t i m e i s p rovi d e d by m a n y m a m m a l i a n g rou p s . Two typica l exa m p l es a re g iven h e re . TITA N OTHERES were a g rou p o f large Te rtiary m a m m a l s . Their evo l u t i o n a ry deve l o p m e n t is shown i n h i storical seq u e n ce
below. Other for m s a l so e x i sted, a n d t h e i r evo l u t i o n i s a l so we l l documented. (After Os born.)
B rontotherium
Ill c Ill
platyceras
v
0
-�
6
4; � _g
_,.,
*"
Brontotherium leidyi
t
y
cr.;.;• � � .� � --, .
Ill c Ill v
Dolichorh inus
0
w 4;
hyognathus
a. a. ::>
'\
Ma nteoceras ma nteoceros
Ill -o ·-o -
Ill c Ill v
0 ::E w
�{'/-�.; .
.·
\ . . ..· .
·
·1. ; t:::;t �>
Ill c Ill
v
0
w
Lambdotherium popagilum
•
,.,"),<
Mesatirhi � us petergon1
;;f
....
��·� �
Eotitanops
Eotitanops
prin ceps
gregoryi
EVO LUTION O F PROBOSCI D EANS, G R EATLY S I M PL I FI ED. ( A FTER OS BO RN . )
E le p ha s
Pleist.- Rec .
Stegodon
P l i o .- Pieist.
P l io .
Mammut
M i o .- P i i o .
Gomphotherium Moe ritherium
Eo c . - O i ig .
Palaeomastodon
Olig.
Mio.-Piio.
1 37
G E O G RAPH I C D I ST R I B U T I O N of livi n g m a m m a l s re
fl ects the pattern of i n terco n nection betwee n conti n e nts during the geologic past. E U ROPE, ASIA, AMERICA were
AND
N ORTH
co n n e cted for m u c h of Cen ozoic t i m e , a l low ing m ig ra tion a n d e x p l a i n i n g m a n y si m i l a ri ties o f t h e i r pre s e n t fa u n a s . T h e d i fferen ces t h a t do e x i s t reflect differi n g c l i m a ti c e n v i ro n m e n ts a n d rece n t develo p m e n t o f desert a n d
m o u n ta i n ba rriers to m i g ra t io n . The fa u n a s o f South A merica, Austra l ia, a n d Africa south of the Sahara a re q u ite disti n ct. These conti n e n ts have been separated fro m o n e a nother throu g hout t h e Cenozoi c. North Africa n m a m m a l s a re m ore s i m i l a r t o those o f Europe.
Reindeer
Bison
W i l d Horse PlAEARCTIC
Hedgehog
.. .
...
O R I ENTAl
I n d ia n E l e p h a n t
Flying Phalanger
1, -t�-
••
..
..
Marco Polo Sheep
Koa l a AU STRA l i A N
K a n g a roo
I S O LATION of South America a n d Australia p rod uced very d ifferent ma m ma l i a n fau nas, i n wh ich marsupials were a t fi rst the dom i n a nt for ms. They re main abundant in Austra l ia be cause of its conti n u i n g isola tion. I n tercon nection of North and South America i n the late Tertiary led to com petition and exti nction of m a n y South America n p l a ce n ta ls. Convergent evolution i n ex ternal form between North
American placental m a m mals and fossil South Am erica n mar supials (p. 1 3 1 ) de monstrates the i nfluence of natural selec tion in ada ptation to s i m ilar modes of l ife. Geog ra phic distribution of other a n i m a l g roups does not n ecessa rily s h ow s a m e bou n d aries a s m a m m a ls . Pla n ts a n d m a ri n e i n vertebrates, f o r e x a m ple, have q uite differe n t dis persal m e a n s , a n d therefore different d istribution pa ttern s .
Mou n ta i n Goat M u s k Ox
N EA RCTIC
Caribon
Porc u p i n e
Pro n g h o r n A ntelope
K i n k a j ou Howler Monkey
Capybara
1 39
Arboreol i n sectivores
Relation s h ips between the m a i n g ro u ps of pri m a tes. bert. )
PRIMATES a re t h e m a m m a l ia n
( After Co l
o r d e r to w h i c h l e m u rs, ta rsiers, m o n keys, a pes, a n d m a n be lon g . They ten d to be rather ra re a s fossils, l a rgely because of their c h a r a cteristi c a l l y a rborea l h a bits . Most prim ates show two fu n d a m ental a d a ptations to t h e i r tree-dwe l l i n g existen ce : stereoscopic v i s i o n a n d h a n d s c a p a b l e of g ra s p i n g . These two features, present i n a l l but the m ost p r i m itive m e m bers, a l l ow the p ri m ates to j u d g e d i stan ces accu rately a n d t o swi n g fro m b ra n ch to bra n c h . They were a lso i m porta nt, together with his l a rge brai n , i n t h e d evelo p m e n t of g ro u n d - dwel l i n g m a n , a l lowi n g h i m t o develop i n crea s i n g s ki l l s i n m a k i n g a n d u s i n g tools.
1 40
PR O S I M I A N S (pre-monkeys) i n
clude living l e m u rs, aye-ayes, bushbabies, a n d the more mon key- l i ke tarsioids. They a rose in the Pa leoce n e , probably from arborea l i n sectivores, a n d be came d ivers ified d uring the early Tert i a ry. T h ey d e c l i n e d i n n u m be rs d u r i n g l a t e Tertiary t i m e s, proba b l y beca u s e of com petition from their des c e n da nts, t h e a n t h ropoids. Prosi m i a n s st i l l s u rvive i n s u c h places a s Madag asca r and Southeast A s i a . Prosi m ia n s have less w e l l developed b i noc u l a r v i sion a n d g rasp i n g l i m b s t h a n ot her pri mates.
Notharctos, an Eocene prosi m ian, a bout 1 8 i n ches h i g h .
i n c l u de mon keys, a pes, a n d men. They de veloped i n t h e O l i g oce n e a n d Miocene from pri m i tive p ros i m i a n a n cestors . O l d World m o n keys s h ow funda m e ntal diffe r· e n ces fro m those of t h e New World. Flat-nosed, pre h e n s i le-
ta i l e d South A m erica n form s, such a s m a r mosets, ca p u c h i n s , a n d spider m o n keys , see m t o be more pri m i tive. O l d World and New World m o n keys a rose i n depen d e n t l y fro m prosi m i a n s . Their s i m i la rities a re t h e res u l t of converg e n t evo l ution .
ANTHROPO I D S
P L E I ST O C E N E
-
Ne w World Monkeys
;\
�-
,_____
Australopithecus-Homo
o n key
. .
;,�
PI i o p i t h e c u s
l
O reop
"'!!!_ _ _ _ __j----
___ ________
- -
-
_
t
�
ec
�
- - - - -
l_o ;;;pith; us
APES
�
"
It
R a m a pithecus MEN
EVOLUTION OF P R I MATES (After McAlester)
1
f.l�� ,.,....
•� · · #,
.: •
•
�\u'!
!.
.
•
• • •
•
Gibbon
•
1)., . .
� •
.
• *
C h i m p a n zee
... Gori l l a
, Pon g i d a e
Hylobati d a e
(Apes)
RECENT
PLEI STOCE N E
Oreopithecidae
PLIOCENE
' ' ' ... , - - - - - - -- - - - ---
M I OC E N E
' ' '
' I
' '. - - - - - - - - - - ''- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ·'
(�' l \
\.,. .,. --
•'''�� : .;
.. ..
Pliopithecus
Oreopithecus
Dryopithec us
HOMINOIDS-a pes a nd men-a re cl a ssified together
i n a s i n g l e superfa m i ly, Hominoidea. They show fewer d ifferences fro m o n e another t ha n d o the O l d World fro m the New World mon keys, which a re i n sepa rate superfa mi l i e s . The h istory of the h o m i n o i d s a bove shows their possi b l e evol utio n a ry relatio n s h i p s as re vea led by s k u l l s a n d by d ental patterns. 1 42
.
.,. -,, ,,, , .. . ., I> ., ., .
Ora n g u t a n
Homo
Austra lopithecus Hominidae
(Men)
R a m a p ithecus . I I I . I I I
· - - - - - - - - - - - -'
I
·- - - - - - - - - - - - - - - - - - - - -
. I J
?
R a m a p ithecus
LIVI N G APES i n c l u de the ch i m
panzee a n d gori l l a , w hi ch a re c h iefly g rou n d - l i v i n g forms, a n d t h e g i b bon a n d t h e ora n g uta n, which a re bea uti f u l ly ada pted to a rboreal l ife. All lack the typical ta i l of mon keys. Al l , e x cept perha ps the g i bbons, seem to h ave arisen from g e nera l -
Austra lopithecus
iz:ed a pes that were wides pread in t h e Old World in M iocene and P l ioce ne times. Dryopithe cus (Proconsu/J, w h i c h i n c l u ded severa l forms most probab l y of apelike proporti o n s , may a l s o h ave given rise to t h e a n cestors of m a n . ( I l l u s tra tio n s a d a p ted from m a n y a u t h o rs . )
1 43
THE FAMILY O F MAN w h ich s p a n s t h e l a st 2 m i l l i o n
yea rs, i n c l u d e s t h ree g e n e ra . Two of t h e m a re n o w ex t i n ct. Because of the ra rity of pri m ate fossils a n d per haps a l so because of the i nten s e i n terest in the o ri g i n o f m a n , there i s so m e d i s a g re e m e n t con ce r n i n g t h e deta i l ed relatio n s h i ps o f particu l a r species wit h i n t h e broad patte r n o f evo l uti o n a ry develo p m e n t . N ew d is coveries a re sti l l bei n g m a d e, a n d the p rovisio n a l ac cou n t g iven here m ay well req u i re l ater m o d ification . RAMAPITHECUS, a
sti l l poorly known h o m i n id, has bee n fou n d i n late Miocene a n d Pl io cene rocks of I n dia a n d Africa. The pa.ttern of its teeth s hows a rather s mooth s e m i c i rcular outli ne, which is far more si m i lar to that of livi ng m a n t h a n to the quadrate pattern o f the
apes (p. 1 4 2). Little is k nown . about other pa rts of t h e s kele ton ; a n d because of this, the reco n struction shown below is very te n ta tive. But the tooth pattern i s so " h u m a nistic" t h a t i t seems p robable t h a t Ramapith ecus wa s close ly re lated to modern m a n .
(Southern ape) i s a lso regarded a s closely re lated to modern m a n , prob a b ly d i rectly a n ces tra l to t h e genus Homo t o which w e as sig n o u r. own species, Homo AUSTRALO P J TH E C U S
sapiens.
A u s t ra lo p i t h ec i n e s , o n c e w i d e sp read i n Afri ca, a re now t h o u g h t t o i n c l u d e two s p e c i e s ( p . 1 4 3 ) . T h e y were g ro u n d d w e l l e r s a b o u t 4 f e e t ta l l . A l re a d y , how ever, t h ey had a n u p r i g h t pos t u re . Bones f o u n d w i t h t h e i r re m a i n s s u g g est t h a t t h ey were ca r n i vores, but t h i s i s not cer ta i n . In d e n ta l pattern a n d i n g e n e r a l s k u l l fo r m , t h e y were
very m a n l i ke, desp ite their rat h e r p rotru d i n g jaws a n d brow ridges. T h e i r bra i n capac ity (about 600 cc) was only half that of modern man. There is sti l l s o m e dou bt w het her crudel y c h i pped stone tool s associated with fossi l de posits were made and u sed by a us tra lopi t h ec i n e s or by t h e i r desce n da nts a n d u l t i m ate con te m poraries, Homo erectus. Austra lopithecines beca m e e x tinct a bout h a l f a m i l l io n years ago. Rece nt d is cove ries in Ke nya suggest t h a t early forms m ay date back a s far a s 2.6 m i l l io n yea rs.
1 45
W H AT I S M A N ? T h i s question is s u rp ri s i n g l y d iff icu l t t o a n sw e r w h e n a p p l ied t o fos s i l s . I t see m s b ette r to restrict t h e term " m a n " to o u r own s p e c i e s , Homo s a piens, a n d to re g a rd o t h er c l o s el y r e l a ted fo r m s a s p re h u m a n , t h o u g h so m e of t h e s e m a n l i k e c reatu res d i d s h a re t h e h u m a n c h a racte r i stic o f too l m a n ufa c t u r e . Mod e r n m a n a p pea red a bo u t 5 0 0 , 0 0 0 yea rs a g o . HOMO ERECTUS i s known fro m fos s i l s fou n d i n t h e Ple istoce n e sed i m e nts ra n g i ng fro m about 750,000 to 200,000 years in age. Though sometimes de scribed by other names ( m ost co m m o n ly Pithecanthropus}, i n d ividuals of the species a re k n own from Java , C h i n a , Af rica, and Asia. H . erectus was an erect, g rou n d - dwe l l i n g i n d i vidual w h o fash ioned various
tool s a n d was a pparently a h u nter. Ma n l i ke i n stru cture a n d i n a p peara nce, H . eredus h a d a b ra i n capac ity of 900- 1 1 00 cc, i n termed iate between that of A ustrafopithecus and modern man. H. erectus was a contem pora ry a n d perhaps a com peti tor of l a te r a u s tralopithec i n es from w hose e a r l i e r m e m bers "he" evolved. H. e re cf us used fire and led a com m u nal life.
MODERN MAN, Homo sapiens, seems to have a risen from H . erectus. For a l m ost 200,000 years, t h e two s pecies were con te m poraries. Modern man is cha racterized by less cons piCu o u s brows a n d j a w s t h a n t h e earlier h o m i n i d s a n d h a d a m uc h larger b ra i n ( av. capa city about 1 3 5 0 cc ) . Severa l races were i n vo lved in the fos s i l h istory of m a n . Ne·
g a rded as a race of o u r own species, l ive d t h roughout Eu rope , the Med iterra nean area, and parts of Asia Minor from about 1 1 0,000 to 35,000 years ago, a period that i n c l u ded t h ree e pisodes of g l aciation. Nea nderthal m e n l ived in caves a n d were s k i l lf u l too l m a kers a n d h u nters. T h ey were n ot t h e s t u p i d brutes t h ey a r e often pictu red as being. MAN replaced Nea n dert h a l Ma n i n Europe about 35,000 yea rs ago, prob a bly m i g rati n g fro m the Mid d l e East. Physically s i m i la r to modern m a n , Cro- M a g n o n m a n m a n u fa c t u red s u perior tools and prod u ced m a sterpieces of art and scu l p t u re ( p . 1 4 9 ) .
CRO-MA G N O N
a n dertha l m a n , l o n g regarded a s a d isti nct species, was a race of h eavy- browed , m uscular in d ividuals. The later C ro-Magnon race had facial features that more c l osely rese m bled those of modern m a n . Alth o u g h these d ifferences are rea l , t h ey seem a n a logous o n ly to those of l iv ing human races, betwee n wh ich i n terbreeding freq u e ntly ta kes place.
T H E EVOLU T I O N O F TOOLS. We a po n s, societies, a n d
c u l t u res a ri s e fro m a n d reflect m a n ' s p hysic a l a n d m en t a l evo l utio n . B i n o cu l a r vision , m a n u a l d exterity, a n d i n crea si n g m e ntal capa city were p a ra l leled by t h e i n crea si n g perfectio n o f m a n ' s work a s a craftsm a n . T H E O LD E S T TOOLS were prob ably used b u t not made, con sisting of stones a n d bou lders conve n i e n tly shaped by natu re. La ter too ls were crudely c h i pped and s h a ped axes and scra pers . These were gradually s u pple m e nted and replaced by d e l i cately c h i p ped b l a d e s a n d ar rowheads of a va riety of mate r i a l s , i n c l u d i n g bone.
About 1 0,000 years a g o, t h e early c u l t u re of c h ipped i m p l e m e n ts, t h e Pa l eo l i t h ic, g a ve way in E u rope to the Neol i t h ic, w h i c h was m a r ked by f i n ely g rou n d and pol i s h e d too l s a n d wea pons. About 5 ,000 yea rs ago, man f i rst learned to fa s h io n i m p l e m e n ts of m e ta l . Th e "sto n e a ge" sti l l pers i sts a m o n g s o m e l iv i n g peo p l e s . SCRAPER Mousterian
HAND AXES Acheulian
SPOKESHAVE A u ri g n a c i a n
BONE A N D A N T L E R W E A PONS Magdelinian
W E A PON H EADS So l u trean
M A M M O T H C A RV I N G Magdelinian
C U LTURAL EVOLUTI O N of m a n
i s g l i m psed i n c ave p a i n t i n g s a n d carv i n g s t h a t d a t e t o about 2 8 ,0 0 0 yea rs ago. Both a re c h iefly depicti o n s of h u n t i n g a n d ferti l i ty. T h e y m ay h a ve had " m a g i ca l " s i g n i fi ca n ce .
Ma n 's a n c i e n t belief in s u r vival a fter death is s h own by N ea n d e rt h a l a n d C ro-Ma g n o n s ke l e to n s b u ri e d i n feta l o r s l e e p i n g pos i t i o n s , w i t h i m p l e m e n ts a n d to k e n s to be u s e d i n the new life.
149
EVO L U T I O N O F H U MAN SOCI E T I E S a rose fro m m a n ' s g rowing a d a ptation to h is e nviro n m e nt. Such l a n d m a r ks a s t h e d iscovery a n d u s e o f fi r e b y Homo erec tus a n d the d eve l o p m e n t of crop cultivation , a n i m a l h us b a n d ry, a n d pottery b y Neolithic m e n prod uced ra d i cal c h a n g es in the patter n s of h u m a n life. Man , ori g i n a l ly a n o m a d i c h u nter a n d herbivore, cou l d then constru ct dwe l l i n g s a n d gather into g roups who estab lished settl e m e nts. The need for com m u n i cation fostered the d evelop m en t of in creasi n g ly sop h i sticated l a n g u a g e . The g row i n g size of co m m u n ities n ecessitated the d ivision of the various ta sks involved i n s u rviva l and the creation of some fo rm of govern ment. We know l ittl e of t h e de tailed d evelo p m e n t of a n y of th ese, for writi n g was not i nvented until a bout 5,000 yea rs a g o . Early re cord ed history i s very patc hy, bei n g i n fi n itely m o re co m pl ete for some pa rts of the world, such a s Egypt, t h a n for others . Th e earli est societies a n d thei r u nwrit ten l a n g u a ges, u n l i ke the i m p lements of ea rly m a n , l eft no records i n t h e sto n e .
1 50
TH E M EAN I N G OF EVOL UTI O N Even before D a rwin publ ished The Origin o f Spe cies, s o m e rel i g ious l e a d e rs atta c ked t h e concept of evo l ution beca use t h ey t h o u g h t it t h re a t e n e d t h e i r view p o i n t; o t h e rs h a ve e m b ra ced it a s a n ew i n si g h t i n to t h e wor k o f G o d i n t h e created worl d . Evo l utio n a ry t h eorists h ave c l a i m e d evo l u t i o n a s a j u stifica tion for m i l ita nt politi c a l tactics; others h ave endorsed it as i l l ustrati n g t h e i n evita b i l ity of h a rmonious political de velo p m ent. So m e eco n o m ists h ave clai m ed it as an ar g u m en t for la issez-faire eco n o m i c policies, while a few scientists h ave u sed it a s a basis for a n ew code of ethics. So m e po p u l a r writers, atta c k i n g trad ition a l re ligious belief, h ave a d o pted evol utio n i s m as a n ew re l i g i o n . Se l d o m h a s a scientific theory so q u i ckly beco m e a l l t h i n g s t o a l l m e n . Seldom h a s a n atu ral pro cess been so ca relessly used as a n expository basis for the whole pattern of h u m a n life . Contem porary ca rtoon and verse i n d icates Victorian i n ter est i n the m ea n i n g of evo l u tion •
.
A m I Satyr o r M a n ? P r a y te l l m e w h o c o n , A n d sett l e m y p l ace i n t h e s c a l e , A m o n i n a pe' s s h a pe , An a n t h ropoid a p e , Or m o n ke y d e p r i ved o f h i s ta i l ? T h e Ves t i g es ta u g h t , That all came from naught By "deve l o p m en t , " so c a l l e d , ' ' prog ress i v e ; " T h a t i nsects a n d w o r m s Ass u m e h i g h e r f o r m s By m od i f i c a t i o n e x cess i v e , T h e n D A RW I N set f o rt h , I n a book of m u c h w o r t h T h e i m p o rta nce of " N a t u re ' s s e l e c t i o
M O N K E Y A N A.
V i ctor i a n ca rtoon d e p icts a pu zzled Darw i n a n d h i s a n cestors.
The I m p l i cations of Evo lution The proces s of evo l u tion i s a fact. N u m e ro u s l i n e s of evi dence i n d i cate t h e desce n t of new s pecies by m odification of a n cestral form s over extended perio d s . A l t h o u g h t h e m ech a n i s m i s s ti l l t h eore t i c a l , t h e re is very s tro n g evidence t h a t n a t u ra l s e l ecti o n , g e n e t i c v a r i a t i o n , a n d i s o l a tion a re t h e c h ief co m po n e n ts . ( p. 1 0 2 ) Evol u t io n , l i k e a n y other nat u ra l process o r scientific t h e ory, i s t heolog ica l ly n e u tra l . I t d e scri bes m e c h a n i s m s, b u t n ot m ea n i n g . I t i s based u po n t h e recog n i ti o n of order b u t i n corporates n o concl u s io n co n cern i n g t h e o ri g i n o f t h a t or der a s either p u rposef u l or p u rpos e l e s s . A l t h o u g h evo l u ti o n i n vo lves t h e i n terpret a t i o n of n a t u ra l eve n ts b y n a t u ra l processes, i t
1 52
n e i t h e r a s s u m e s n o r provides parti c u l a r co n c l u s i o n s co ncern i n g t h e u l t i m a te s o u rces or t h e s i g n i fi c a n ce of m a teria l s , events o r processes. Evo l u t i o n p rov ides no ob concern i n g co n c l u s i o n s vious p o l i t i c a l o r eco n o m i c syst e m s . Evo l u t i o n n o m o r e s u pports evo l u t io n a ry pol i t i cs (whatever t h e y m i g h t b e ) t h a n d o e s t h e Seco n d L a w o f T h e rmodyna m i cs s u p port political d i sorder or eco n o m i c c haos . Evo l u ti o n offers no b a s i s for ethics. It i s n o t s e l f -ev i d e n t t h a t s u rviva l i s t h e h i g h e s t good a n d that any mea n s of i t s a t ta i n m e n t i s v i rt u o u s . T.H . H u x l e y w rote " T h e e t h ica l pro g res s of society depen d s , n o t o n i m i ta ti n g t h e co m i c proces s , s ti l l less i n r u n n i n g away from i t, b u t i n co m ba t i n g i t . "
fo r man, h e n ce is a s i g n ifi c a n t contri bution to h u m a n u n der sta n d i n g . Reco g n iti o n of the i m m ensity of the spa n of geolog i c ti m e , t h e aweso m e scale of cos m i c d i m e n s i o n s a n d p ro cesses i n volved i n t h e l o n g period o f p re o rg a n i c evo l ution, a n d the p l a ce of m a n h i m self wit h i n the e n d l ess d iversity o f t h e tee m i n g life on t h e fra i l su rfa ce o f o u r p l a n et-a l l these hel p t o e n l i g hten a n d susta i n m a n a s he faces the c h a l l e n g e, the d i l e m m a , a n d t h e mystery o f h i s h u m a n con d ition . EVOLUTION
PROV I D ES
A
PERS PECTIVE
Ma n k i n d , t h e p ro d u c t of o r g a n i c e vo l u t i o n , i s n o w te c h n i c a l l y e q u i p p e d w i t h p o w e r , i f n o t t li e wi l l , to c o n t r o l t h e f u t u r e d e ve l o p m e n t of l i fe o n e a rt h . P s y c h o so c i a l evo l u t i o n
h a s n o w d i s p l a c e d t h e o l d e r p ro c e s s e s of
o rg a n i c evo l u ti o n i n h u m a n co m m u n i t i e s . K n o w l e d g e , t r a d i ti o n s , va l u e s , a n d s k i l l s a r e n o w t ra n s m i tt e d fro m o n e g e n e r a t i o n to a n o t h e r t h ro u g h b o o k s a n d te a c h i n g i n st i t u t i o n s
rath er
than
being
learned
a n ew
"fro m
s c r a t c h " by e a c h n ew i n d i v i d u a l .
Psyco-Social
E a c h seg m e n t
Evolution
represents a p p ro x i m a t e l y 5 0 m i l l io n years
of Earth Appearance of oldest known foss i l s
1 53
THE FUTUR E EVOLUTION OF MAN, of other species,
a n d perhaps of the whole i ntricate ecosystem of which we are a p a rt now sta n d s i n jeopa rdy. The pol l ution of the atmosph ere on which o u r existe n c e depends h a s now reached a c r i s i s of m a j o r p roportions in most i n d ustri a lized a reas o f t h e worl d . Rapidly dwi n d l i n g re serves of s uch essential co m m od ities as petro l e u m a n d ma ny m etals th reaten t h e future not o n ly of i n d ustria l pro d u ction but a l so of technologically b a s e d society. A conti n u i n g explosion of h u m a n population, espe cia l ly i n the less i n d ustri a l i zed areas of the worl d , raises the awesome possi bil ity of wid es p read fa m i n e a n d sta rvatio n within the n ext 3 0 yea rs. Man a l ready possesses the tech n i cal power to solve these th ree m a j o r prob l e m s : poll ution, dwi n d l i n g m i n era l resou rces, a n d overpopu lation . Whether h e has the wisdo m , t h e wil l , and the e n e rgy to solve them re m a i n s to be seen . It is i ro n i c that the future of the age lon g p rocess of o rg a n i c evo l ution m ay n ow depend on the conscious c h o ice of m a n, a p roduct of that process. The d a n g e r, the c h a l l e nge, a n d t h e choice i nvolve m a n kind i n a com m o n peril a n d a com m o n hope. Evo l ution p rovi des n o easy a n swers to m a n ' s long search for m e a n i n g a n d no i n sta nt sol utions to m a n 's most p ress i n g p ro b l e m s . It i s rather for m a n h i m self now to p rovi d e the i n put-i n the recog n ition of an eth i c beyo n d th a t of s u rviva l , of a p urpose b eyo n d that o f g a i n , a n d o f a v i s i o n o f l ife beyo n d that of m e c h a n i s m a n d p rocess. On such col lective com m it ments of m e n a n d of n ations depend the s u rvival of m a n k i n d a n d the future cou rse of evo l ution .
1 54
Po l l ution of a t m o s p h ere in i n d ustri a l areas is a worldwid e prob l e m . World fa m i n e poses an i n creasi n g ly s evere t h reat a s bur ge o n i n g population co m petes for l i m i ted res o u rces. World popu lation projections suggest g loba l population of 2 5 bi l l i o n by 2 0 70 . 2 5 b i l l i o n p e o p l e b y 2 0 70
World population q u a d rupled by 2044
1 6 1: ·a. 0 ..c:
12 � 10 5 ::: 14 U Q;
V)
Asia : q u a d rupled by 2040 Wor l d : d o u b l e d by 2 0 0 7 ; po s s i b l e fa m i n e Asia : doubled by 2 0 0 5
MORE
I N FORMAT I O N
T h e fo l l o w i n g l i s t of books i s o n l y a n i n trod u c t i o n to t h e vo l u m i n o u s l i te ra t u re on evo l u t i o n . Many m u se u m s a l so prov ide d i sp l a y s , ta l k s , a n d l i terat u re . H i stori c a l D a rw i n , C h a r l e s , T h e O r i g i n o f Spe cies, O x f o r d U n ivers i ty Press, N . Y . , 1 9 5 6 . ( 6 t h ed . , 1 8 7 2 re p r i n ted : T h e W o r l d C l a s s i c s . )
Gre e n e ,
J . C . , D a r w i n a n d t h e M odern World V i e w , Mentor Books, N . Y . , 1 9 6 3 . A . , D a r w i n a n d t h e S e a g l e , H a rper a n d Row , N . Y . 1 9 6 9 .
Moore h e a d ,
T h e Proce s s o f E v o l u t i o n D e B e e r , G . , A t las of E v o l u t i o n , N e l son a n d S o n s , l o n d o n , 1 9 64 . Mayr, E . , A n im a l Spec ies and Evolution , Oxford U n ivers i ty Press, N . Y . 1 9 6 3 . Moore , R . , Evolution , T i m e - L i fe, I n c . , N . Y . , 1 9 6 2 . S a v a ge ,
J . M . , E v o l u t i o n , H o l t , R i n e h a r t o n d W i n s to n , N . Y . , 1 9 6 3 .
Sheppard, P . M . , N a t u r a / S e le c t i o n a n d Heredity , H u tch i n so n , l o n d o n , 1 9 5 8 . S i m p s o n , G . G . , T h e Major Features o f E v o l u t i o n , Co l u m b i a U n ivers i ty Press,
N . Y . , 1 95 3 . Smith,
J . M . , T h e Th eory o f E v o l u t i o n , Pe ng u i n B o o k s , H a r m o n d s w o r t h , 1 9 5 8 .
Tax, S . , E v o l u t ion after D a r w i n , U n ivers i ty o f Ch i c a g o Press, C h icag o , 1 9 6 0 . T h e Course o f E vo l ut i o n C o l bert, E . H . , E v o l u t ion o f t h e Vertebrates, J o h n W i l e y , N . Y . , 1 95 5 . Rhode s ,
F . H . T. , T h e E v o l u t ion o f l ife , Peng u i n Books, B a l t i m ore, 1 9 7 4 . F . R . S h affe r, Foss ils, a G u ide to Pre h istor ic
Rhode s , F . H . T . , H . S . Z i m , a n d L if e , G o l d e n Press, N . Y . , 1 9 6 3 .
The E vo l ut i o n of M a n
T . , M a n k i n d E v o l v i n g , Y a l e U n iversity P r e s s , N e w Have n , 1 9 6 2 . F. C l ark, Ear ly M a n , T i m e - l i fe B o o k s , N . Y . , 1 9 6 5 . LeGros C l ark, W. E . , H istory of t h e Primates, B r i t i s h M u se u m of N a t u r a l H i s
Dobzh a n s k y , Howe l l ,
tory, l o n d o n , 1 954; T h e Foss i l Ev idence of H u m a n E v o l u t ion , U n i v e r s i ty of Ch i c a g o Pre s s , C h i c a g o , 1 96 4 . O a k l e y , K . P., M a n t h e Tool-Maker, B r i t i s h M u se u m af N a t u ra l H i story, l o n d o n , 1 96 3 . T h e Me a n i n g o f E v o l ut i o n Barbour, Lack, D . ,
I . G . , Issues in Science and R e l i g i o n , S C M l td . , l o n do n , 1 9 6 6 .
E v o l u t ionary Theory a n d Christian B e fief; th e Un reso lved Con f l i c t ,
Meth u e n a n d Co . , l td . , l o n d o n , 1 9 5 7 . S i m p s o n , G . G . , T h e M e a n i n g of E v o l u t ion , M e n t o r B o o k s , N . Y . , 1 9 5 1 . Te i l h ard de Chard i n , 1 95 9 .
P. , T h e P h e n o m enon of M a n , H a rper a n d B r o t h e r s , N . Y . ,
PHOTO C R E D I TS : p . 6 - 7 , To u r g o P h o t o Serv i ce; p . 1 0 , Bett m o n n A r c h ives; p . 1 2 , D ra w i n g by Sa m u e l l a w re n ce , p h o t o g r a p h repri n ted by perm i s s i o n of George Rai n b i rd , l td . , Bett m a n n A rch ives; p . 1 4 , Bettm a n n A rc h i ve s ; p . 1 5 , C u l v e r Pic t u res; p. 1 6 , George R a i n b i rd , l td . , p . 1 8 , Reyno l d H. C h ose; p . 1 9 , Rey n o l d H . C h o se; p . 2 0 , Bett m a n n Arc h ives; p . 2 2 , C u l ver P i c t u res; p . 2 3 , Bet t m o n n A r c h ives; p . 2 4 , U n i ted N o t i o n s ; p . 2 6 , Bettm a n n A rc h i ves; p . 2 7 , Bell m a n A rc h i ves; p . 2 8 , Victur A . M c K u s i c k ; p . 4 6 , T h e American M u se u m of N a t u ra l H i story; p . 4 7 , T h e A m e r i ca n M u s e u m of N a t u r a l H i s to ry; p . 7 2 , Photo Resea r c h e rs ; p . 1 1 0 , E . S . Borg h o o r n , ( H a rv a rd U n i v e rs i t y ) ; p . 1 5 1 , P u n c h M a g a z i n e 1 8 6 1 ; p. 1 5 2 , from Ev o l u t i o n a ry T h eory of C h r i s t i a n Be l i ef, p . 1 54 , U n i ted N o t i o n s ; p . 1 5 5 , U n i ted N o t i o n s .
1 56
I N DEX A c a n t h od i a n , 1 1 5 Acorn worms, 1 1 4 Ada m , 6 Ada p ta t i o n s , 2 5 , 3 3 , 4 2 , 54, 79, 8 1 ' 88 Agnatha, 1 1 4, 1 1 6 A l g a e , 5, 1 1 0 , 1 2 0 A l lele, 6 1 , 66 A m b l y pod , 1 3 2 A m i no acids, 70, 7 1 A m m o n i a , 1 05 , 1 06 A m m o n i te , 1 09 A m p h i b i a n , 1 1 7 , 1 1 9 , 1 24 A n a l o g o u s s t r u c t u re s , 3 9 An c o n s h ee p , 7 4 A n e m i a , s i c k l e - ce l l , 9 2 A n g i os pe r m s , 1 2 1 , 1 2 2 , 1 23 A n i m a l s , n u m be r o f , 5 o l dest, 1 1 0 A n ky l osa u rs , 1 2 7 A n t e a t e r , s p i n y , 53 , 1 3 0 A n t h ro p o i d s , 1 4 1 A n t i a rc h , 1 1 4 Ape, 1 40 , 1 4 1 , 1 4 2 , 1 4 3 , 1 44 A ra u c a r i a , 5 3 A r c h a eoptery x , 5 2 , 9 4 , 1 29 A r i s t o t l e , 7, 1 0 A r m ad i l l o , 1 3 5 A rs i n a t h e r e s , 1 3 5 Art h r od i re , 1 1 5 A rt h ropod s , 5, 1 1 2 , 1 1 8 , 1 19 A rt i f a c t s , 1 09 A r t i o d a c ty l s , 1 3 5 Astra p o t h e re s , 1 3 5 A t m o s p h ere, 1 0 7 ATP, 40 A u s t ra l i a , 1 1 0 , 1 3 8 , 1 3 9 A us t r a l op i t h e c u s , 1 4 3 , 1 45, 1 46 A y e - a ye , 1 4 1 Bacte r i a , 1 1 0 , 1 2 0 Bat, 1 35 B e a g l e , voya g e o f , 1 6 , 1 7, 1 9 Bea r , 8 6 , 87 Beaver, 1 3 4 Beri n g S t r a i t s , 77
B e r k e n d e r , L C . , 1 07 " B i g b a n g " t h eory, 1 04 B i rd s , 1 1 9 , 1 27 , 1 2 8 , 1 2 9 B irke n i a , 1 1 4 Bison, 1 34 B i ston b e t u la r i a , 47 Blending, 61 B l ood p i g m e n t s , 40 Bove r i , T . , 28 B ra c h i opod s , 1 1 1 , 1 1 2 , 1 1 3 B reed i n g , s e l e c t i v e , 4 4 B rya n , W i l l i a m J e n n i n g s , 30 B r y o p h ytes, 1 2 0 B ryozoa n , 1 1 2 , 1 1 3 Bush boby, 1 4 1 Coec i l i o n , 1 1 7 , 1 2 4 Co l o m o i t e s , 1 20 Co l o m oph y t o n , 1 2 1 Ca m b r i a n , 1 07, 1 1 1 , 1 1 2 , 1 13 Ca m e l , 1 2 6 , 1 3 1 , 1 3 4 Ca m e l ops, 1 3 4 Cope V e r d e I s l a n d , 4 3 Capuch i n , 1 4 1 C a r b o n , 3 5 , 97, 1 0 5 Ca r b o n d i o x i d e , 1 05 , 1 06 Ca r bo n i fe r o u s , 1 1 8 Carcho rodon , 1 1 5 C a r n i v o re s , 1 3 3 , 1 3 5 Carti l a g i n o u s f i s h , 1 1 5 , 116 Castoroides, 1 34 Cot, 1 33 , 1 34 C o to s t r o p h i s i s , 1 4 Cott l e , 1 3 4 Cove bea r , 8 6 Ce l l d i v i s i o n , 5 8 s t r u c t u re , 3 2 Ce n oz o i c , 1 1 6 , 1 2 9 , 1 3 1 , 1 3 2, 1 34, 1 3 8 Cep h a l op o d s , 1 1 2 , 1 1 3 Cerotops i o n s , 1 27 Cetacea n s , 1 3 3 , 1 3 5 C h o l i co t h e r e s , 1 3 1 C h a m e l eo n , 4 2 C h i asmata, 73 C h i m pa n zee , 1 4 2 , 1 4 3 Ch i ro pte ro n s , 1 3 5 C h oo n i c h t h ye s , 1 1 7 C h o n d r i c h t hyes, 1 1 5
C h o n d r i te s , c a r b o n a ce o u s , 1 05 C h ordata , 1 1 4 C h o rd a t e s , 5 C h r o m a t i n , 67 Ch r o m o s o m e s , 2 8 , 2 9 , 5 6 , 57, 58, 59, 63, 65, 66, 67, 73, 74 C lodose loch e , 1 1 5 C l o m s , 4 9 , 1 09 , 1 1 9 Classificat i o n , 36 Climati us, 1 1 5 C l u b m o s s , 1 20 , 1 2 1 C o c k r oa c h , 1 1 8 Cocos I s l a n d , 83 C o l o r b l i n d n e s s , 66 C o m m u n i t i e s , 35 C o n dy l o rt h , 1 3 2 , 1 3 5 C o n i fe r s , 5 , 1 2 1 , 1 2 3 C o n v e rg e n ce , 1 2 8 C o ra l s , 1 1 2 , 1 1 3 C o rd a i te s , 1 2 1 , 1 2 3 Coryph odon , 1 3 2 C o t y losaurs, 1 2 6 C reod e n t , 1 3 3 Cretaceo u s , 5 0 , 1 2 3 , 1 2 9 , 1 3 1 ' 1 32 Crocod i l e s , 1 2 7 C r o - M o g n o n , 1 47 , 1 49 C r o s s i n g - ov e r , 7 3 Crosso pte ryg i a n , 9 4 , 9 5 , 1 1 6 , 1 1 7, 1 2 4 C r u stacea n , 1 1 9 C u l t u re , e v o l u t i o n o f , 1 49 Cuvier, Georges, 1 4 C y c a d s , 1 20 , 1 2 3 C y n o g n a t h us, 5 3 D a r w i n , C h a r l es , 1 5 , 1 6 , 1 7, 1 8 , 1 9, 20, 2 1 , 22, 23, 24, 25, 28, 42, 43, 44, 80, 82, 91 ' 1 51 D a r w i n , E ra s m u s , 1 2 , 1 3 Deer, 1 34 Demes, 4 5 , 76 Dem ocrit o n , 7 D e r m optero n s , 1 3 5 Devon i a n , 5 5 , 1 1 2 , 1 1 4 , 1 1 5, 1 1 6, 1 1 7, 1 1 8, 1 1 9, 1 2 1 , 1 22 , 1 24
1 57
de V ri e s , 27 D io t r y m o , 1 2 9
D i c y n od o n t s , 1 2 6 D i n os a u rs , 37, 50, 1 09 , 1 26 D i p l oid, 57 D ip loverte bron , 95 D i s t r i b u t i o n , g e o g ra p h i c , 43 D N A , 5 6 , 6 7 , 6 8 , 6 9 , 70, 74 Dobz h o n sky, 8 1 Dog , 1 2 3 Do l p h i n , 1 2 8 , 1 3 3 Dreponospis, 1 1 4 Drepo n i d i d s , 8 8 , 8 9 D r os op h i l a , 2 8 , 2 9 , 8 1 Dryop i t h e c u s , 1 4 2 , 1 43 D u n k loste us, 1 1 5 E a r t h , 9 6 , 9 7 , 1 04 , 1 0 5 , 1 07 E c h i d n a , 5 3 , 1 30 E c h i n ode r m , 1 1 2 , 1 1 4 Ecosyste m , 3 5 Edentotes, 1 3 5 E g g s , d ev e l o p m e n t of, 57 Elephants, 1 35 E m bryo n i c deve l o p m e n t , 38 Eobos i l e u s , 1 3 2 Eocene, 1 3 3 , 1 4 1 Eospe m o top t e r i s , 1 2 1 Eryops, 1 1 9 Esch e r i c h ia c o l i , 4 6 Essa y on Pop u la t i o n , 2 0 E u rypte r i d s , 1 1 2 , 1 1 3 E u s t h e n op t e ro n , 95 Evo l u ti o n , 2 3 a n d f u t u re of m a n , 1 5 4 c o u rse of, 1 05 i nd i c a t i o n s of, 3 0 patte r n s o f , 1 0 2 perspec t i v e prov ided by, 1 53 p r e - o rg a n i c , 1 04 processes of, 5 6 - 1 OJ role, 1 00 s y n t h e s i s t h eory of, 2 8 Fe r n , 5 , 1 20, 1 2 2 t ree, 1 2 1 Fiji, 43 F i n c h e s , Ga l a p a g o s , 1 9 , 82, 83, 88
1 58
F i s h , 1 1 4, 1 1 5 , 1 1 6, 1 1 7 F i s s i pe d s , 1 3 3 F l ower i n g p l a n t s , 5, 1 2 2 , 1 23, 1 32 F o ra m i n i fe r a , 4 8 Fossi I s , 48- 5 3 , 86 living, 53 o l de s t , 1 1 0 rec o r d , 5 4 types of, 1 08 , 1 09 F rog , 1 24 F u c us, 1 20 F u n g i , 5, 1 20 G a l a pa g o s I s l a n d s , 1 8 , 1 9, 43, 82 G a m etes, 5 7 , 63 , 7 5 G e n e s , 5 6 , 60, 6 3 , 6 6 , 67, 72, 74 Genes i s , Book of, 6 G e n e t i c d r i f t , 75 G e n o type, 6 1 , 65, 7 3 Geo l o g i c t i m e s c a l e , 98-99 Gi bbon, 1 42 , 1 43 G i n kg o , 5 3 , 1 2 1 , 1 2 3 G l ossople r i d s , 1 20 G lyptoda n , 1 7, 1 3 4 G o r i l l a , 1 4 2 , 1 43 G rad u a l i s t , 1 4 G y m n osperm s , 1 2 3 H a p l o i d , 57 H a rd y - We i n berg p r i n c i p l e , 65 H a wa i i , 8 8 He l i u m , 97, 1 0 5 Helix, 1 1 9 Hemop h i l ia , 66 Henderson I s land, 43 H e r b i vores, 1 3 3 H e reford c a tt l e , 74 H e spe rorn i s , 1 2 9 Heterozyg o u s , 6 1 H o m o l d o t h ere, 1 3 1 H o m i n oi d s , 1 4 2 H o m o e r e c t u s , 1 4 5 , 1 46 , 1 47 , 1 50 sap iens, 1 45 , 1 4 6 , 1 47 H o m o l o g o u s s t r u c t u res, 39 H o m ozyg o u s , 6 1 H o r s e s , 5 1 , 1 00 , 1 0 1 , 1 3 1 , 1 34 H u tt o n , J a m e s , 1 5
H u x ley, T . H . , 2 3 , 1 5 2 H y d rog e n , 3 5 , 1 04 , 1 0 5 , 1 06 H y d rosp here, 1 0 7 Hyena, 1 33 Hyro c o i d s , 1 3 3 H yrocot h e r i u m , 5 1 l ch t h yorn i s , 1 2 9
I c h thyosaur, 1 26, 1 28 l c h t h yostego, 9 5
l c h t h yosteg i d s , 9 5 , 1 24 I cterus, 3 6
I g uana, 1 8 I n g ro m , Ver n o n , 9 3 I n heritonce, 56 lows of, 2 6 , 6 2 mechan i s m , 27, 66 patte r n s o f , 6 0 p r o b a b i l i t i es , 6 3 , 6 4 varia bi l ity, 72 I n sectiv ores, 1 3 5 , 1 4 1 I n s ects, 1 1 8 I s l a n d s p ec i e s , 4 3 I solation, 1 39 genetic, 76 geog rap h i c , 1 9 , 7 6 J e l l yf i s h , 1 1 0 , 1 1 2 , 1 1 3 J u p i te r , 1 05 J u ra s s i c , 5 2 K a n g a ro o , 1 3 1 Kett l e we l l , H . B . D . , 8 5 K u r te n , B . , 8 6 L a byri n t h od o n t , 9 5 , 1 1 7 , 1 24 L o c k , D a v i d , 83 Logom orphs, 1 3 5 Lam arck, 1 2 , 1 3 L oncelets, 1 1 4 L ea d , 97 l eo d -.t h or i u m , 9 7 L e m u r, 1 40 , 1 4 1 L e p i d od e n d r o n s , 1 20 lepos p o n d y l e s , 1 1 7 L i fe , a b u n d a nce of, 4 , 5 adapta t i o n s , 3 3 b i oc h e m i c a l s i m i l o r i ti e s , 40 ce l l s t r u c t u re , 3 2 c l assification o f , 1 0 c o n t i n u i ty of, 3 1 , 44 dev e l o p m en t o f , 6
d i ve rs i ty of, 5, 1 2 e v o l u t i on o f , 1 07 g rowt h , 3 2 h i story, 1 4 i n terdepe n d e n c e , 3 5 m e t a bo l i s m , 3 2 n a t u re of, 3 4 on land, 1 1 8 o r i g i n of, 8 , 1 8 , 1 06 protop l a s m , 3 2 reprod u c t i o n , 3 2 rese m b l o n ce , 3 6 , 3 8 sero l og i c a l s i m i l a r i t i e s , 41 s i m i l a r i t i es o f , 3 6 , 3 8 u n ity o f , 3 2 variation of, 2 4 , 44, 4 5 , 7 2 , 7 3 , 75 l i g h t , s pectros c o p i c o n o l y s i s of, 1 05 L i n g u la , 1 00 l i n n o e u s , 1 0, 1 1 l i n n o e o n S o c i ety, 2 2 l i ptopte r n , 1 3 1 l i verwort, 1 20 l izards, 1 27 l o b ef i n , 9 5 , 1 1 7 , 1 24 l o be l i a , 8 8 , 8 9 l u ngfish, 1 1 6, 1 1 7 lycopod , 1 2 1 , 1 2 2 Lye l l , C h a r l es , 1 5 , 1 6 lyre b i rd , s u p e r b , 9 1 Ma l a r i a , 9 2 , 9 3 Mo l t h u s , R o b e r t , 2 0 , 2 1 Mam m a l s , 1 1 9 , 1 2 8 , 1 30 , 1 3 1 ' 1 3 2 , 1 3 3 , 1 34 , 1 3 5 , 1 3 6 , 1 37 , 1 3 8 , 1 3 9 , 1 40 , 1 4 1 , 1 4 2 , 1 43 Ma m m ot h , woo l l y , 1 0 8 , 1 34 Ma n , 1 40 , 1 4 1 , 1 4 2 , 1 44 , 1 4 5 , 1 46 , 1 47 , 1 4 8 , 1 49 , 1 50 , 1 54 Marm oset, 1 4 1 Marsh a l l , l . C . , 1 07 Mars u p i a l s , 1 3 1 , 1 3 9 Medus ion , 1 1 0 Mego t h e r i u m , 1 3 4 Meios i s , 5 9 , 7 3 Me l a n i s m , 4 7 , 8 5 Mend e l , G re g o r , 2 6 , 2 7 , 2 8 , 2 9 ' 5 6 , 60, 6 6 Meson y x , 1 3 2
Mesoz o i c , 1 1 6 , 1 1 8 , 1 2 2 , 1 2 3 , 1 24 , 1 2 5 , 1 2 6 , 1 27 , 1 30 , 1 3 2 Meta b o l i s m , 3 3 Meteo r i t e s , 1 0 5 Met h a n e , 1 0 5 , 1 06 Michelangelo, 6 M i g ra t i o n , 77 M i l l e r , Sta n l ey, 1 06 M i m i c ry , 90 M i ocene, 1 3 3 , 1 4 1 , 1 43 , 1 44 " M i s s i n g l i n k s , " 5 2 , 94 Mitosis, 58 Mo l l u s k s , 5 M o n key, 1 40 , 1 4 1 , 1 4 2 M o n o t r e m e s , 5 3 , 1 30 M o rg a n , T. H . , 2 8 M o rp h o l og y , 3 8 Mososo u rs , 1 2 7 Mos s , 5 , 1 20 Mot h , peppered , 4 7 , 8 4 , 85 M u ta t i o n , 2 7 , 2 8 , 4 6 , 7 2 , 7 4 , 7 9 , 1 03 Myolino, 4 9 M y lodo n , 1 3 4
Oposs u m , 1 3 1 O ra n g u ta n , 1 43 O rc h i d , s l i pper, 9 0 O r d ov i c i a n , 1 1 2 , 1 1 3 Oreop i t h e c u s , 1 4 2 Orioles, 36 O r n i t h o pods , 1 27 Oste i c h tyes, 1 1 6 Osteolepis, 1 1 7 Ostrocod e r m , 1 1 4 Overpop u l a t i o n , 2 4 , 2 5 Oxyoe n o , 1 3 2 Oxyg e n , 3 5 , 1 05 O z o n e , 1 07 Poch ycep h o lo pec tora lis ,
1 02 Pa l eocene, 1 4 1 Pa l eo l i t h i c c u l tu re , 1 48 Pa l eozo i c , 1 1 3 , 1 1 4 , 1 1 6 , 1 2 2 , 1 24 Pontodonts, 1 3 5 Porus, 4 5 Paste u r , 9 Peng u i n , 1 1 9 , 1 2 8 Pe n n s y l va n i a n , 1 2 2 Perissoda cty l a , 1 3 5 Perm i a n , 5 3 , 1 1 4 , 1 2 5 N a t u r a l s e l ec t i o n , 2 0 , 2 1 , Pet r i f i ed Forest N o t i o n a l Pork, 1 23 2 5 , 78, 79, 80, 84, P h e n o codus, 1 3 2 9 2 , 9 4 , 1 00 P h e n otype, 6 1 , 6 5 N e a n d e rt h a l m a n , 1 47, P h o l i d oto , 1 3 5 1 49 P h os p h o ro u s , 1 0 5 N eo l i t h i c c u l tu re, 1 4 8 , P h otosyn t h es i s , 1 0 6 1 50 Phyla, 5 N e pt u n e , 1 0 5 P i g , 1 34 N e w G u i ne a , 4 3 P i n n i pe d s , 1 3 3 N e w t , 1 24 P i t h ecanth rop u s , 1 46 Newto n , 2 3 P l o ce n t o l s , 1 3 1 , 1 3 5 N i trog e n , 1 05 P l acode r m , 1 1 5 , 1 1 6 N oa h ' s F l oo d , 1 5 P l o c od o n t , 1 26 N o m e n c l a t u re, b i n o m i a l , P l a n t s , 1 06 , 1 20 11 n u m be r of s p e c i e s , 5 Noth orctos , 1 3 2 , 1 4 1 o l dest, 1 1 0 N o t h o s o u rs , 1 26 vasc u l ar, 1 2 1 N ot oc h o rd , 1 1 -4 P lasmod i u m , 9 3 N ot o u n g u l otes, 1 3 5 P l ato, 7 P l a ty p u s , 5 3 , 1 30 Obelia, 1 1 1 P l e s i osa u rs , 1 2 6 Olenellus, 1 1 1 P l i oc e n e , 1 43 , 1 44 O l i g oc e n e , 1 4 1 P l i op i t h e c u s , 1 -4 2 On th e Ori g i n of Species, P n e u m ococcus, 6 7 1 6 , 2 2 , 2 3 , 52, 80, 1 51 Po l y p l o i d y , 74 Ophrys, 90 Porpoise, 1 1 9
1 59
Potassi u m - a rg o n , 9 7 Preca m br i a n , 98, 1 1 0 , 1 1 1 ' 1 20
P r i m ates, 1 3 5 , 1.40 , 1 4 1 ,
1 4 2 , 1 4 3 , 1 44 , 1 4 5 ,
1 46 , 1 47 ' 1 4 8 , 1 4 9 P r i n c ip les of G e o l o g y , 1 5, 1 6
Proba b i l i t i e s , 6 3 , 64 Probosc i d e a n s , 1 3 5 , 1 3 7 Procon s u l , 1 4 3
Prosi m ia n s , 1 4 1 Prote i n s , 6 7 , 7 0 , 1 0 7 Proto lep idodendro n , 1 2 1
Protop l a s m , 3 2 Protoz o a n s , 5 Ps i l a p h y t e s , 1 2 0 Psi lopsid, 1 2 1 , 1 2 2 Ptera sp i s , 1 1 4
Pterosa u r s , 1 2 7 Pyrotheres, 1 3 5
Ra b b i t , 1 3 5 Races, 45, 76 Rad i a t i o n , a d a p t i v e , 1 2 8 , 1 35
Rad i oa c t i v e e l e m e n t s , 9 6 , 97
Rad i u m , 9 7 R a m ap i t h e c u s , 1 4 3 , 1 4 4
Ray , 1 1 5 Ray, Joh n , 1 0 Rece n t , 1 3 0 , 1 3 1 Reco m b i n a t i o n , g e n e t i c , 72, 73
Red i , Fra ncesco, 9 Rep rod u c t i o n , sex u a l , 3 3 , 5 9 , 7 3 , 1 07
Rept i l e , 1 1 7 , 1 1 9 , 1 2 5 , 1 26
R h i n oceros , 1 3 1 , 1 3 4 R h y n coce p h a l i a n s , 1 2 6 R N A , 67, 70, 7 1 Roden ts, 1 3 5 R u b id i u m -stront i u m , 97 R u s h , sco u r i n g , 1 2 1
Sa l a m a n d e r , 1 2 4 Sa t u r n , 1 0 5 S a u ropods , 1 2 7 Sca l e i n sects , 4 6
1 60
S c o rp i o n , 1 1 8 Sea l , 1 3 3 Sea sq u i rt s , 1 1 4 S eed f e r n s , 1 2 0 , 1 2 3 Selecti on , sexua l , 9 1 S e x , determ i n a t i o n o f , 6 6 Shark, 1 1 5 , 1 28 Sickleb i l ls, 88, 89 S i c k l e - ce l l g e n e , 9 2 , 9 3 Sil urian, 1 1 2, 1 1 4, 1 1 8, 1 19
T h a l l o p h yte s , 1 2 0 T h ecodo n t, 1 2 7 Therapsid, 1 30 T h e r iodont, 53, 1 2 6 T h e ropod s , 1 2 7 T i m e sca l e , g eo l og i c , 98-99
T i t , g reat, 4 5 T i ta n o t h eres, 1 3 2 , 1 3 6 To ad , 1 2 4 Too l s , 1 4 8 To r to i se s , 1 8 , 1 9
S i re n i a n s , 1 3 5 S ka t e s , 1 1 5 Toxodo n , 1 7 S l oth, 1 34 , 1 3 5 T r a c h e o p h yte s , 1 2 1 Snai l , 1 1 2, 1 1 9 Trans m u t a t i o n of S p e c i e s , S n a ke s , 1 2 7 20 Societies, h u m a n , 1 50 Tree h o p pe r , 9 0 Solomon I s lands, 4 3 , 1 02 Triassic, 53 , 1 30 S o u t h e r n - a pe , 1 4 5 Tr i c e rat ops, 5 0 Spassky, 8 1 T r i l o b i te , 1 0 8 , 1 0 9 , 1 1 1 , S pec i e s , c h a n g e s i n , 4 6 1 1 2 foss i l , 4 8 T u b u l identes, 1 35 island, 43 T u rt l e , 1 1 9 , 1 2 6 new, 1 03 n u m be r of, 5 5 , 1 0 3 U n g u l a te s , 1 3 3 , 1 3 4 S p e r m , deve l o p m e n t of, 57 U n i f o r m i t a r i a n i s m , 1 5 S p h e n ops i d , 1 2 2 U n i ntatheri u m , 1 3 2, 1 3 6 Spider, 1 1 8 U ra n i u m , 9 7 S p i d e r m o n key, 1 4 1 U ra n u s , 1 0 5 S p i n y a n teater, 5 3 , 1 3 0 U rey, H a ro l d , 1 0 6 Sponge, 1 1 2 U rod e l es , 1 1 7 S p o n t a n e o u s g e n e ra t i o n , 9 Ursus arctos, 8 6 Spr i g g i n a , 1 1 0 spe l a e u s , 8 6 S t a rf i s h , 1 1 3 Stegosa u r s , 1 27 V a sc u l a r p l a n t s , 1 2 1 S te reospo n d y l a , 1 1 7 Ve rte b ra tes , 5 4 , 1 1 9 Stone age, 1 48 " c l asses o f , 5 5 S t ro m a to l i te s , 1 1 0 oldest, 1 1 4 S u b s pec i e s , 4 5 V e s ti g i a l s t r u c t u re s , 3 9 S u l f u r, 1 0 5 S u rv i v a l of t h e f i ttes t , 7 8 W a l l a ce, A l f red R u s se l , S u tt o n , Wa l te r , 2 8 1 5 , 2 0 , 2 2 , 43
Ta p i n ocep h a l i d s , 1 2 6 Ta p i r , 4 3 , 1 3 4 Tars i e r s , 1 40 , 1 4 1 Tarsioids, 1 4 1 T a x od o n t , 1 3 1 Taxonomy, 36 T e r t i a r y , 1 00 , 1 3 4 , 1 3 5 ,
Wa l r u s , 1 3 3 Wease l , 1 3 3 Wh a l e , 1 1 9 , 1 33 , 1 35 W h istler, g o lden , 1 0 2 Wolf, 1 3 1 Wood pec k e r s , 4 2 Worm , 1 1 0 , 1 1 2 W r i g h t , Sewa l l , 7 5
1 36, 1 39, 1 4 1 Tex t u laria , 4 8
Zygotes, 57, 65
B
C
D
E