Landolt-Börnstein Numerical Data and Functional Relationships in Science and Technology New Series / Editor in Chief: W. Martienssen
Group IV: Physical Chemistry Volume 9
Electrochemistry Subvolume A Electrochemical Thermodynamics and Kinetics
Editor M.D. Lechner Author R. Holze
ISSN 1615-2018 (Physical Chemistry) ISBN 978-3-540-41038-6 Springer Berlin Heidelberg New York
Library of Congress Cataloging in Publication Data Zahlenwerte und Funktionen aus Naturwissenschaften und Technik, Neue Serie Editor in Chief: W. Martienssen Vol. IV/9A: Editor: M.D. Lechner At head of title: Landolt-Börnstein. Added t.p.: Numerical data and functional relationships in science and technology. Tables chiefly in English. Intended to supersede the Physikalisch-chemische Tabellen by H. Landolt and R. Börnstein of which the 6th ed. began publication in 1950 under title: Zahlenwerte und Funktionen aus Physik, Chemie, Astronomie, Geophysik und Technik. Vols. published after v. 1 of group I have imprint: Berlin, New York, Springer-Verlag Includes bibliographies. 1. Physics--Tables. 2. Chemistry--Tables. 3. Engineering--Tables. I. Börnstein, R. (Richard), 1852-1913. II. Landolt, H. (Hans), 1831-1910. III. Physikalisch-chemische Tabellen. IV. Title: Numerical data and functional relationships in science and technology. QC61.23 502'.12 62-53136 This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in other ways, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are liable for prosecution act under German Copyright Law. Springer is a part of Springer Science+Business Media springeronline.com © Springer-Verlag Berlin Heidelberg 2007 Printed in Germany The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. Product Liability: The data and other information in this handbook have been carefully extracted and evaluated by experts from the original literature. Furthermore, they have been checked for correctness by authors and the editorial staff before printing. Nevertheless, the publisher can give no guarantee for the correctness of the data and information provided. In any individual case of application, the respective user must check the correctness by consulting other relevant sources of information. Cover layout: Erich Kirchner, Heidelberg Typesetting: Author and Redaktion Landolt-Börnstein, Darmstadt Printing and binding: AZ Druck, Kempten SPIN: 1050 1024
63/3020 - 5 4 3 2 1 0 – Printed on acid-free paper
Editor M.D. Lechner Institut für Physikalische Chemie Universität Osnabrück Barbarastr. 7 D-49069 Osnabrück, Germany
Author R. Holze Technische Universität Chemnitz Institut für Chemie Straße der Nationen 62 D-09111 Chemnitz, Germany
Editorial Office Gagernstr. 8, D-64283 Darmstadt, Germany fax: +49 (6151) 171760 e-mail:
[email protected] Internet http://www.landolt-boernstein.com
Preface of the editor
Electrochemistry deals with the nature of electrolytes and with the processes at electrodes which are in contact with electrolytes. Generally speaking chemistry is electrochemistry as interactions in the atomic scale are of electrical nature. Electrochemistry is the basis of many important and modern applications and scientific developments such as nanoscale machining (fabrication of miniature devices with three dimensional control in the nanometer scale), electrochemistry at the atomic scale, scanning tunneling microscopy, transformation of energy in biological cells, selective electrodes for the determination of ions, and new kinds of electrochemical cells, batteries and fuel cells. All these developments need precise values of the electrochemical systems. Springer Verlag and the editor are very grateful to the author R. Holze who collects and presents all relevant data together with a precise description of the phenomenons in this volume. The data are divided in five chapters: 1 Electrode potentials (potentials between an electrode and the normal hydrogen electrode (NHE)) 2 Cell voltages (electromotive force of a complete cell) 3 Electrode potentials of zero charge 4 Free enthalpy of adsorption 5 Exchange current densities Springer-Verlag plans to publish a second volume on electrochemistry LB IV/9B which includes mainly electrical conductivities and equilibria of electrochemical systems. The complete volume, including links to the original citations, is also available online: you can either navigate through the electronic version of this volume starting from the Landolt-Börnstein website www.landolt-boernstein.com; simply select and jump directly into the PDF data file of interest and then search for entries by the full text search engine; from this website you can also access the content via a substance index or a comprehensive index. Alternatively you can also search for relevant keywords via the full Springer search gate on www.springerlink.com leading to cross-publication hits. Constraints to the search will specify your results, particularly when combined with the navigation facility. You can find a brief description of the different entrances to Landolt-Börnstein online on the inner backcover page of this volume. The editor wishes to express his thanks to the author R. Holze for this excellent volume which appears nearly fifty years after the corresponding volume of Landolt-Börnstein’s 6th edition, "Elektrische Eigenschaften II (Elektrochemische Systeme)". The encouraging and never ending support of the editor in chief W. Martienssen and of R. Poerschke, M. Müller, D. Rathgeber-Manns and H. Hämmer from Springer-Verlag is kindly acknowleged. The publisher and the editor are confident that this volume will increase the use of the "Landolt-Börnstein".
Osnabrück, May 2007 ...................................................................................................................................
Preface of the author
Data on the structure and the dynamics, the thermodynamics and the kinetics of phase boundaries in the presence of charged species and electric fields form the numerical basis of electrochemistry. They are of essential importance in chemistry, physics, materials science and numerous related fields of fundamental and applied science. This volume presents a collection of electrode potentials established when an electronically conducting material is brought into contact with an ionically conducting phase. Since single electrode potentials cannot be measured easily (for a thorough discussion see [90Tra]) the use of a reference electrode is a prerequisite for the measurement of electrode potentials. A list of reference electrode potentials is therefore included (see also [61Ive]). Sometimes the obtained voltage (i.e. the potential difference between the two electrode potentials) which should subsequently be converted into an electrode potential given the knowledge of the precise value of the electrode potential of one electrode (commonly called the reference electrode) contains unknown contributions from further local changes of potential in the system under investigation. In many cases the exact composition of the electrochemical system is hard to establish precisely. For these systems cell voltages are reported. Although recommendations provided elsewhere regarding the use of the terms voltage and potential remain inconclusive at best [96IUP] in this compilation the potential difference measured between two electrodes is always called voltage, the potential of an electrode given with respect to a reference electrode (preferably the standard hydrogen electrode) is called electrode potential. Certainly this might also be called a voltage because it is actually also a potential difference with one electrode potential set arbitrarily to zero. Nevertheless the daily use recommends assignment of voltage to cells and potential to electrodes. No distinction is mady anymore between reversible and irreversible electrode potentials [60LB]. The usage of the term "reversible" in the context of electrochemistry is a confused one. Frequently it is applied to electrode kinetics, i.e. fast electrode reactions showing particular features in e.g. cyclic voltammograms are called reversible. Closely related is the use as a term to characterize a reference electrode. A reversible electrode is an electrode which returns quickly to its thermodynamically correct rest potential after current has been drawn across the interface whereas an irreversible electrode shows a long time delay until the correct potential is established again (if at all) [61Ive]. Elsewhere reactions proceeding on the forward and backward reaction pathway according to exactly the same mechanism just in opposite directions are called reversible. Exactly (and thermodynamically) speaking the term applies only to a system being in its equilibrium state. Thus electrode potentials and cell voltages listed below are reversible because they are measured at zero current, i.e. in the equlibrium state. Because this condition is obvious such a remark would be redundant according to current standards. The term electromotive force (elektromotorische Kraft) has been defined and explained in classical terms [57Kor] as the voltage measured between the metallic leads (contacts) of a galvanic cell at infinitely small current. Already in a standard textbook published somewhat later [70Boc] this term has vanished completely, nevertheless it has been used frequently even in most recent publications listed and quoted below. It is nevertheless not used in this compilation anymore. Because of the interaction between the electrode surface and the various species present in the ionic phase an excess of charged species may be present on the ionically conducting side of the phase boundary. Its extent depends upon the actual electrode potential. At a certain electrode potential this excess vanishes, the corresponding potential value is called potential of zero charge. Knowledge of this
value is important for the understanding of many electrochemical phenomena. A list of known values is therefore included. Closely connected to this aspect is the process of adsorption at electrode surfaces, which is a competetive process like at any other solid/liquid surface where a solvent molecule is replaced by an adsorbate molecule. Compared to common adsorption processes at solid/liquid interfaces the strong electric field at electrochemical phase boundaries adds an influence of utmost importance. The strength of the interaction between the electrode and the adsorbed species can be expressed by the free enthalpy of adsorption. Employing a variety of methods many data have been reported, they are listed in this volume. Presumably the most important kinetic parameter used in the description of the kinetics of an electrode is the exchange current density or the almost equivalent rate constant. It indicates the speed of the heterogeneous process of charging or discharging species at the phase boundary, i.e. the charge transfer process. Its value is influenced by numerous factors of the investigated system. For both applied and fundamental aspects of electrochemical research a list of reported values should be helpful. It concludes this volume. The present volume presents the results of an attempt to collect all relevant data as complete as possible. In a few cases original sources were not accessible despite considerable efforts. To provide a critical review and a complete reevaluation of the reported data is not the purpose of this collection. Consequently all data are reported, only conversion into standard units and with respect to standard references were made when necessary and reasonable, obvious printing errors were corrected. The author wishes to express his deep gratitude to all friends and colleagues who contributed to this volume by providing reprints, to all librarians who helped in retrieving even the most remote journals and documents. Without their support this book would have remained unwritten. Close cooperation and helpful assistance in planning and preparing this book by the staff of the Springer-Verlag are gratefully appreciated. The continuous (and almost neverending) encouragement provided by the editor M.D. Lechner was quintessential; without his support this collection would have remained unfinished. My wife’s tolerance for many hours spent in front of computer terminals and scientific papers was the essential prerequisite, the book would have been impossible without this.
Table of contents List of symbols, abbreviations and methods.
....................
X
1
Electrode potentials
.................................
1
1.1 1.2
Definition of the electrode potential . . . . . . . . . . . . . . . . . . . . . . . . . . Effect of temperature and pressure on cell voltages and electrode potentials . . . . . .
1 3
Table 1.1 Table 1.2 Table 1.3 Table 1.4 Table 1.5 Table 1.6
Metal electrode potentials in aqueous electrolyte systems . . . . . Nonmetal electrode potentials in aqueous electrolyte systems . . . Metal electrode potentials in nonaqueous electrolyte systems . . . Nonmetal electrode potentials in nonaqueous electrolyte systems . Formal potentials of organic redox systems . . . . . . . . . . . . Potentials of common reference electrodes in an aqueous solution .
2
Cell voltages
2.1
Definition of cell voltage
Table 2.1 Table 2.2 Table 2.3 Table 2.4
Cell voltages with aqueous electrolyte systems . . Cell voltages with nonaqueous electrolyte systems Cell voltages with molten salt electrolyte systems . Cell voltages with solid state electrolyte systems .
3
Electrode potentials of zero charge
3.1 3.2
Thermodynamics of an electrode in contact with an electrolyte solution . Determination of the electrode potential of zero charge . . . . . . . . .
Table 3.1
Electrode potentials of zero charge of metal electrodes in contact with electrolyte solutions . . . . . . . . . . . . . . Electrode potentials of zero charge of metal oxide electrodes in contact with electrolyte solutions . . . . . . . . . . . . . . Electrode potentials of zero charge of metal electrodes in contact with molten electrolyte salts . . . . . . . . . . . . Electrode potentials of zero charge of miscellaneous materials in contact with aqueous electrolyte solutions . . . . . . . . .
Table 3.2 Table 3.3 Table 3.4
. . . . . .
5 41 46 54 55 59
.....................................
61
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
...............................
61
. . . .
63 126 152 168
.........................
179
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
....... .......
179 180
............
191
............
232
............
233
............
237
............................
238
4
Free enthalpies of adsorption
4.1 4.2
Thermodynamics of the adsorption at electrodes. . . . . . . . . . Determination of the free enthalpy of the adsorption at electrodes .
.......... ..........
238 239
Table 4.1
Free enthalpies of adsorption ΔG0ad of ions and organic molecules at metal electrodes . . . . . . . . . . . . . . . . . . . . . . . . .
..........
244
.............................
264
5
Exchange current densities
5.1
Kinetics of electrode processes at an electrode in contact with an electrolyte solution . . . . . . . . . . . . Methods for the determination of exchange current densities
5.2
............. .............
264 267
Table 5.3
Exchange current densities and rate constants in aqueous systems . . . . . . . . . . . 276 Exchange current densities and rate constants in aqueous systems at miscellaneous surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 380 Exchange current densities in molten salt electrolyte systems . . . . . . . . . . . . . 381
6
References
Table 5.1 Table 5.2
......................................
384
R1
References 57Kor 60LB
61Ive 70Boc 90Tra 96IUP
Kortüm, G.: Lehrbuch der Elektrochemie, Weinheim: Verlag Chemie, 1957. Landolt-Börnstein, 6. Auflage, II. Band, Eigenschaften der Materie in ihren Aggregatzuständen, 7. Teil: Elektrische Eigenschaften II (Elektrochemische Systeme), Hellwege, K.H., Hellwege, A.M., Schäfer, K., Lax, E. (eds.), Berlin: Springer-Verlag, 1960. Ives, D.J.G., Janz, G.J.: Reference Electrodes, New York: Academic Press, 1961. Bockris, J.O'M., Reddy, A.K.N.: Modern Electrochemistry, Vol. I, New York: Plenum Press, 1970. Trasatti, S.: Electrochim. Acta 35 (1990) 269. IUPAC (ed.): Größen, Einheiten und Symbole in der Physikalischen Chemie, Weinheim: VCH, 1996.
X
List of symbols and abbreviations 1) Symbols
Definitions
A AN a aq
electrode surface area acetonitrile activity aqueous
Bu
butyl
C CE c c#
capacitance counterelectrode concentration standard unit concentration mol l–1
D
diffusion coefficient
E EA EH, ESHE ENCE Epzc ESCE E0 E00
electrode potential activation energy electrode potential vs. standard hydrogen electrode electrode potential vs. normal calomel electrode electrode potential of zero charge electrode potential vs. saturated calomel electrode electrode potential at rest (i.e. I = 0 mA cm–2) standard electrode potential
E0’
electrode potential where the conditional rate constant k c0 is determined
ΔE EDTA Et en
difference of electrode potentials, e.g. peak potentials ethylenediamine tetraacetate ethanol, ethyl ethylenediamine
F F FeC f
Faraday constant (96464 C mol–1) fugacity; [F] = [M] Ferrocene/ferrocinium (reference electrode) activity coefficient (also in use: Ȗ)
I Ia Ic
current anodic current cathodic current
j ja jc j0 j00
current density anodic current density cathodic current density exchange current density standard exchange current density
kapp k0, ksh
rate constant at a selected electrode potential different from the rest potential rate constant of an electrode reaction
k c0
conditional rate constant
Landolt-Börnstein New Series IV/9A
XI
Symbols
Definitions
M Me m
molarity (number of moles dissolved per liter (dm3) of solution) methyl molality (number of moles dissolved per kilogram of solution)
N NCE n.a. n [n-Bu4N][PF6]
normal concentration unit normal calomel electrode (see also: ENCE) not available, information not provided in the original report number of electrons transferred in the cell or electrode reaction tetra-n-butylammonium hexafluorophosphate
Ph
phenyl
Q
charge
Rct RE RT
charge transfer resistance reference electrode room temperature
SCE sat. sol.
standard calomel electrode saturated (solution) solid (state)
T TEAC TEAH TEAP
temperature (in units of °C or K) tetraethylammonium perchlorate tetraethylammonium hexafluorophosphate tetraethylammonium phosphate
U, UT U0
cell voltage U at temperature T in K when not stated otherwise cell voltage at rest (i.e. I = 0 mA cm–2) and at standard temperature or some other defined reference temperature
v
rate (velocity) of reaction
x
mole fraction, atom fraction
z
number of electrons transferred in an electrochemical reaction step
α
charge transfer coefficient
η
overpotential
θ
coverage (relative units 0 < θ < 1)
υ
stochiometric coefficient
Ň
indicates a phase boundary between a solid and a liquid phase
Œ
indicates a phase boundaries between two liquid phases established by e.g. a porous diaphragm
*
symbol indicating hydrate composition
1
) For a compilation of symbols in electrochemistry see [74Par], symbols, abbreviations and acronyms used only infrequently are defined at their place of use or in an associated footnote.
Landolt-Börnstein New Series IV/9A
XII
List of abbreviations of methods Abbreviation
Method
ACP AE
alternating current polarography acousto-electrochemical method
BAW
bulk acoustic wave method
C CA CC CCS CD CF CH CM CO CP CPS CS CT CV
chronocoulometry contact angle method corrosion current method cyclic current step method circular dichroic spectroelectrochemical method controlled hydrodynamic convection chronopotentiometry chronocoulometric method CO charge displacement method current-potential curves cyclic potential step method coulostatic method cathode overpotential method cyclic voltammetry
DCP DCVA DE DME DR
direct current polarography derivative cyclic voltabsorptometry desorption potential dropping mercury electrode double layer repulsion method
EB EC ED EE EL ER
film electrode bending method electrocapillary method electrode displacement method theory of electron emission ellipsometric method electroreduction of ions
F FD FL FR
friction method Faradaic distortion method flow measurement Faradaic rectification
G GCI GD GM GS
gravimetric method galvanostatically controlled current interruption galvanostatic double pulse method galvanostatic method galvanostatic single pulse method
H
hardness measurement
IA IM IP IR
ionic adsorption method immersion method impedance method infrared spectroscopic method
Landolt-Börnstein New Series IV/9A
XIII
Abbreviation
Method
ISS
isoelectronic shift of potential
MP
mixed potential method
NS
null solution method
OA OC OP OCS
organic adsorption method open-circuit method oscillographic polarography oscillographically observed current interruption
P PC PE POL PP PS
photoemission method electrode capacitance measured with a pulse method piezoelectric method miscellaneous polarographic methods pulse polarography potential step method
R RDE RT
surface stress measurement (ribbon extension method) rotating disc electrode radiotracer technique
S SFG SO SS
scratching or streaming electrode method sum frequency generation salting out method stirred solution
T TC
tensammetry modified charge determination method
VE VIB
vibrating electrode method vibrational spectroscopic method
TLV TPF
thin-layer voltammetry turbulent pipe flow
WL
weight loss method
Landolt-Börnstein New Series IV/9A
R1
References 74Par
Landolt-Börnstein New Series IV/9A
Parsons, R.: Pure Appl. Chem. 37 (1974) 499.
1 Electrode potentials
1
1 Electrode potentials
1.1 Definition of electrode potential When a piece of metal is brought into contact with a solution containing ions of the same metal the system thus created will change towards a chemical equilibrium. Basically this involves dissolution of the metal by means of oxidation of metal atoms resulting in solvated ions and electrons left in the metal or deposition of ions from the solution on the metal. The latter process will result in an excess of positive charges on the metal compared to the initial state, the former process leads to a negatively charged metal. Since consideration of the established equilibrium using the concepts of mixed phase thermodynamics includes charged species and immiscible phases with excess electric charges the simple chemical potential has to be corrected by a contribution of the electric charge. This can be deduced most easily by setting up the corresponding equations. The cell reaction under consideration is z+
M sol + z e → M s
(1.1) z+
In the state of equilibrium between both phases, i.e. the solution phase containing the M sol species and the solid metal phase, the sum of the chemical potentials in both phases are equal. Since charged species are involved, the usual chemical potential μi has to be extended by a term representing the work necessary to bring one mol of charged species with a charge of zi e into a phase where an electrostatic potential E is present μ i = μ i + N A e zi E = μ i + zi F E
(1.2)
The equilibrium is expressed by
(
)
μ M − μ M + z μ e ,M = 0 z+
-
sol
(1.3) z+
with μ M being the electrochemical potential of the ionic species in the solution phase and M sol the z+
sol
electrochemical potential of the respective species in the metal. Since atoms in the metal are uncharged, μ M = μ M . Substituting the complete equations for the electrochemical potentials in eq. (1.3) gives
(
)
z+ μ M − ª¬ μ sol + zi F Esol + zi μ e ,M + zi F EM º¼ = 0 -
(1.3)
The difference of electric potentials across the interface ΔE is given by
(
ΔE = [1 ( z F )] μ M + z μ e − μ M
Landolt-Börnstein New Series IV/9A
z+
sol
)
(1.4)
2
1 Electrode potentials
The chemical potential of the ions depends on their activity a, this results in
(
)
ΔE = [1 ( z F )] μ M z + + z μ e − μ M + [ R T 0
sol
( z F )] ln a
M
z+
(1.5)
Assuming unit ion activity the potential difference is equal to the first term; this term is called 'standard potential difference' or more commonly 'standard electrode potential'. Eq. (1.5) thus simplifies to E = E0 + [ RT
( zF )] ln a
M
z+
(1.6)
This relationship is also called Nernst equation. By now it is obvious that the actual value of an electrode potential will critically depend both on the nature and composition of the electronically conducting material and the ionically conducting phase. Although for the sake of simplicity the former has generally been called the electrode, the latter being named the electrolyte or electrolyte solution, W. Nernst has suggested to call the combination of both an electrode. Although this definition is considerably more precise than the general usage with the term electrode referring to the electron conducting phase only, its strict usage throughout this volume might result in confusion and complication, thus the term electrode will refer to the electron conductor mostly if not explicitly stated otherwise. The ionically conducting phase will be called electrolyte solution (or melt etc.) throughout. The term „electrolyte“ only is not used; this avoids the general confusion related to the fact, that the term electrolyte refers precisely speaking only to the component of the phase providing the ions (which does not include the solvent). Considerable confusion has been caused during the data compilation of the following lists as well as during the use of compilations prepared previously and published elsewhere by the sometimes poorly defined application of the term 'standard electrode potential'. As stated in textbooks (e.g. [72Moo]) a standard electrode potential is measured with an electrode, which contains all components in the electrode under consideration (or in the whole cell when cell voltages are considered) in their standard state. The actual measurement procedure is subject of textbooks (see e.g. [97Wed, 98Hol]). Besides temperature 1) and pressure the activity of species involved in establishing the electrode potential is obviously crucial. As defined by IEC and by e.g. the German industrial norm DIN 50900 T2 (June 1975) the species have to be present at activity a = 1 2). In other textbooks every electrode potential measured versus a standard hydrogen electrode is considered a standard potential [96Atk]. This extends to reports on electrode potentials, wherein again a measurement versus this reference qualifies a measured electrode potential as a standard value (e.g. [74Bau]), even in early tabulations [60LB]. In the tables only electrode potentials of the first type are designated standard potentials, in the latter case the electrode potential values are quoted with the respective data on composition etc.. Various listings of calculated electrode potentials and cell voltages based on known or estimated thermodynamic and further chemical data have been compiled [52Lat, 64Bet, 82Ant]. Some compilations contain a large fraction of theoretically calculated potentials without providing experimental proofs [78Mil] or are limited to aqueous solutions only [85Bar]. Experimentally determined voltages and potentials involving the use of several cells and electrode combinations to yield a final value based on the mathematical combination of these numbers are nevertheless included.
1)
2)
Although the standard temperature most frequently encountered is T0 = 25 °C or 298.15 K there are deviating definitions like e.g. the German industrial standard DIN 1343 (November 1975) stating the normal temperature as Tn=273.15 K. In the following list the former standard is always assumed if not explicitly stated otherwise. Activity ai is defined as ai = (mi Ȗi)/m0 with mi being the molality of ion i with activity coefficient Ȗi and standard molality m0. Thus activity is dimensionless. Landolt-Börnstein New Series IV/9A
1 Electrode potentials
3
1.2 Effect of temperature and pressure on cell voltages and electrode potentials The temperature derivative of the free energy yields an expression for the entropy change occuring during the cell reaction ΔS = n F ( ∂U ∂T ) p
(1.7)
which can be converted into ΔH = n F ª¬T ( ∂U ∂T ) p − U º¼
(1.8)
These relationships can be used to obtain thermodynamic data otherwise difficult to get. Vice versa they can be used to calculate the temperature coefficient of a cell voltage respectively an electrode potential based on known thermodynamic data. The pressure dependency of the cell voltage (and correspondingly the electrode potential) can also be derived using standard thermodynamic equations
( ∂U
∂p )T = −ΔV
(n F )
(1.9)
With solid and liquid reactants participating in the electrochemical processes leading to the establishment of a cell voltage U and the respective electrode potentials E volume changes are generally negligible. If a gas is involved, considerable effects are to be expected. Integration of eq. (1.9) yields U p = U1 −
1 nF
p
³ ΔVdp
(1.10)
1
Assuming perfect gas behavior a simplified equation can be used U p = U1 +
RT 2F
ln p
(1.11)
As reference electrode commonly a hydrogen electrode is used. In its standard state, i.e. with a proton activity a = 1 in the electrolyte solution and standard pressure of hydrogen in the gas phase, the potential of this electrode is set to E00, SHE = 0 V 3) (see also [61Ive]). When comparing the corresponding potential scale with the energy scale commonly used in physics, a difficulty arises, because in the latter scale the energy of an electron being in vacuum without any interaction is considered as reference state. Both scales can be matched [78Noz, 80Noz]. The potential of the standard hydrogen electrode thus corresponds to – 4.5 eV on the vacuum scale (for an overview see e.g. [99Tra]). The relationship between the electrode potential, the metal electron work function, an electronic term, a dipolar term and a molecular term are thoroughly reviewed elsewhere [83Tra, 90Tra].
3)
Sometimes the term normal hydrogen electrode (and respectively normal potential instead of standard potential) has been used referring to a hydrogen electrode with a platinized platinum electrode immersed in 1 M sulfuric acid irrespectively of the actual proton activity in this solution. With the latter electrode poorly defined diffusion (liquid junction) potentials will be caused, thus data obtained with this electrode are not included. The term normal hydrogen electrode should not be used either, because it implies a reference to the concentration unit normal which is not to be used anymore, see also below.
Landolt-Börnstein New Series IV/9A
4
1 Electrode potentials
General remarks on the tables
An electrode potential is given a positive value (i.e. no sign at all) if it is the positive terminal in a cell, whose second electrode is the standard hydrogen electrode (SHE) 4). This is the Gibbs-Stockholm electrode potential convention. The 'Oxidation Potential' introduced by Latimer has the opposite sign [52Lat]. The tables conform with the suggestions of IUPAC compiled elsewhere [74Par, 96IUP]. All electrode reactions (potential determining processes) are given as anodic (oxidation) reactions as suggested previously [64Bet]. Because of the delicate use of arrows in reaction equations only a single arrow is used tacitly assuming that the reaction proceeds at equilibrium in both directions at the same rate. Only if explicitly stated a difference is made and reported between absolute, international, average international and US-international Volt because of the very minor differences, which might become effective only in precision measurements. The respective relationships are 1 Vabs. = 1.00034 Vint. = 1.00034 Vav.int. = 1.000330 VUS-int. [61Ive, 96IUP]. The growing use of electrochemical methods including the measurement of electrode potentials assigned to well defined redox processes in organic and inorganic chemistry has resulted in an increasing demand for tabulations of the redox (or formal) potentials E0 of these processes. Unfortunately in most experimental studies the choice of a redox electrode seems to be determined by the ease of availability instead of compatibility with data of other authors (for a typical example see [05Vat]). Consequently a considerable amount of data has been generated, wherein the communicated electrode potential E0 does not refer to the standard hydrogen electrode neither in an aqueous system nor in the electrolyte system under investigation, but to one of the numerous other reference electrode systems. Any conversion into the normal hydrogen scale is prone to considerable errors, thus it has to be avoided [73Str]. As a help to the researcher in this field a tabulation of data has been attempted (Table 1.5) with values of E0 stated with reference to a specified reference electrode. Only a brief separate table of reference electrodes and their respective potentials is provided. Various systems have been employed as reference electrodes, their choice depending on the actual application. As applications have developed and broadened, the use of references has changed, too. Thus this selection is personal and of temporary value only. The reader searching for any particular reference will nevertheless find the desired system in the tables arranged according to the potential-determining element/electrode reaction, for an older review see [61Ive] 5).
4)
5)
The term normal hydrogen electrode (NHE) is frequently employed as a synonym. Since normal may be taken as a concentration unit (although use of this unit is discouraged, but nevertheless numerous results are given with this unit) its use in the designation of this reference electrode should be avoided. No more recent complete review seems to be available. Landolt-Börnstein New Series IV/9A
R1
References 52Lat 60LB
61Ive 64Bet 72Moo 73Str 74Bau 74Par 78Mil 78Noz 80Noz 82Ant 83Tra 85Bar 90Tra 96Atk 96IUP 97Wed 98Hol 99Tra 05Vat
Landolt-Börnstein New Series IV/9A
Latimer, W.M.: The Oxidation States of the Elements and their Potentials in Aqueous Solutions, Englewood Cliffs: Prentice-Hall Inc., 1952. Landolt-Börnstein, 6. Auflage, II. Band, Eigenschaften der Materie in ihren Aggregatzuständen, 7. Teil: Elektrische Eigenschaften II (Elektrochemische Systeme), Hellwege, K.-H., Hellwege, A.M., Schäfer, K., Lax, E. (eds.), Berlin: Springer-Verlag, 1960. Ives, D.J.G., Janz, G.J.: Reference Electrodes, New York: Academic Press, 1961. de Bethune, A.J., Swendeman Loud, N.A.: Standard Aqueous Electrode Potentials and Temperature Coefficients at 25 °C, Skokie: C.A. Hampel, 1964. Moore, W.J.: Physical Chemistry, London: Longman, 1972. Strehlow, H., Knoche, W., Schneider, H: Ber. Bunsenges. Phys. Chem. 77 (1973) 760. Baucke, F.G.K.: Chem. Ing. Techn. 46 (1974) 71. Parsons, R.: Pure Appl. Chem. 37 (1974) 499. Milazzo, G., Caroli, S., Sharma, V.K.: Tables of Standard Electrode Potentials, Chichester: John Wiley&Sons, 1978. Nozik, A.J.: Annu. Rev. Phys. Chem. 29 (1978) 189. Nozik, A.J.: Philos. Trans. R. Soc. (London) A 295 (1980) 453. Antelman, M.S., Harris jr., F.J.: The Encyclopedia of Chemical Electrode Potentials, New York: Plenum Press, 1982. Trasatti, S.: J. Electroanal. Chem. 150 (1983) 1. Bard, A.J., Parsons, R., Jordan, J.: Standard Potentials in Aqueous Solutions, New York: Marcel Dekker, 1985. Trasatti, S.: Electrochim. Acta 35 (1990) 269. Atkins, P.W.: Physikalische Chemie, Weinheim: VCH, 1996. IUPAC (ed.): Größen, Einheiten und Symbole in der Physikalischen Chemie, Weinheim: VCH, 1996. Wedler, G.: Lehrbuch der Physikalischen Chemie, Weinheim: Wiley-VCH, 1997. Holze, R.: Leitfaden der Elektrochemie, Stuttgart: Teubner, 1998. Trasatti, S., Lust, E.: Modern Aspects of Electrochemistry, Vol. 33, White, R.E., Conway, B.E., Bockris, J.O'M., (eds.) New York: Kluwer Academic/Plenum Publisher, 1999, p. 1. Vatsadze, S., Al-Anber, M., Thiel, W.R., Lang, H., Holze, R.: J. Solid State Electrochem. 9 (2005) 764.
1 Electrode potentials
5
Table 1.1. Metal electrode potentials in aequeous electrolyte systems. 1) Electrode 2)
Electrode reaction, electrolyte system 3), concentration 4)
Aluminum (Al)
Antimony (Sb)
ESHE [V]
Ref.
Al→Al3++3e−
–1.66
Al→Al3++3e− Al+Cl−→AlCl2++3e−
–1.662 –1.802
28Lat, 25Mak 72Moo 42Bro1, 43Bro 61Ive 41Hov
2Sb+3H2O→Sb2O3+6H++6e− Sb→ SbIII+3e− ESHE [V]=0.2552–(0.05893*pH) 2Sb+3H2O→Sb2O3+6H++6e−, acetate buffer Sb+H2O→SbO++2H++3e−, acetate buffer Sb+H2O→SbO++2H++3e−, SbOClO4, HClO4 Sb+6H2O→Sb4O6+12H++12e−, SbOClO4, HClO4
0.152 0.212 0.2040 0.1504
52Tou 52Tou 71Vas1 71Vas1
Sb+4Cl−→ SbCl 4– +3e−
0.17
68Noz
–0.67
–2.906 –1.700 –1.717 –1.728 –1.741 –1.753 –2.912
23Gru, 26Lat 52Lat 61Yag 52Lat, 31Lie 52Lat, 28Dev, 34Lat 72Moo 76Ard 76Ard 76Ard 76Ard 76Ard 62Jak2
–2.997
52Gib
–3.027
56Coh
–3.011
49Jon
–3.059
50Jon
–2.979 –2.930 –2.924 –2.919 –2.916
51Den 52Col1 52Col1 49Dav2 52Col1
–2.912
52Col1
Sb+4OH
−
→ SbO 2–
+2H2O+3e
As+2H2O→HAsO2+3H++3e− 4As+5H2O+½O2→As4O6+10H++10e− H3AsO3+H2O→H3AsO4+2H++2e−
Barium (Ba)
Ba→Ba2++2e−
Ba+ Fe(CN)36 – → BaFe(CN)6– +2e− → BaFe(CN)62 –
−
+2e
Ba+ P3O 39 – → BaP3O 39 – +2e− 4– Ba+ P4 O12
2– → BaP4 O12
−
+2e
Ba+ S2 O 32 – →BaS2O3+2e− −
+
−
Ba+formate →Ba formate +2e , Na(formate), Ba(IO3)2 sat. Ba+acetate−→Ba acetate++2e−, Na(acetate), Ba(IO3)2 sat. Ba+bromoacetate−→Ba bromoacetate++2e− Ba+propionate−→Ba propionate++2e−, Na propionate, Ba(IO3)2 sat. Ba+n-butyrate−→Ba n-butyrate++2e−, Na n-butyrate, Ba(IO3)2 sat. Landolt-Börnstein New Series IV/9A
0.25 0.285 0.559 –2.92
Ba→Ba2++2e−, acidic Ba(Hg)→Ba2++Hg+2e− Ba(Hg)→Ba2++Hg+2e− Ba(Hg)→Ba2++Hg+2e− Ba(Hg)→Ba2++Hg+2e− Ba(Hg)→Ba2++Hg+2e− BaCaO3+Pb→Ba2++PbCO3+2e−, BaCl2 Ba+ Fe(CN) 64 –
0.245
−
Arsenic (As)
Ba(Hg) Ba(Hg) Ba(Hg) Ba(Hg) Ba(Hg)
T [K]
283.15 298.15 313.15 328.15 343.15
6
1 Electrode potentials
Electrode 2)
Electrode reaction, electrolyte system 3), concentration 4)
Ba
Ba+glycolate−→Ba glycolate++2e−, Na glycolate, Ba glycolate, Ba(IO3)2 sat. Ba+lactate−→Ba lactate++2e−, Na lactate, Ba(IO3)2 sat.
–2.933
Ba+fumarate2−→Ba fumarate+2e− Ba+malate2−→Ba malate+2e−
–2.959 –2.971
Ba+maleate2−→Ba maleate+2e− Ba+tartrate2−→Ba tartrate+2e− Ba+malonate2−→Ba malonate+2e−
–2.979 –2.987 –2.968
Ba+iso-phthalate2−→Ba isophthalate+2e− Ba+pivalate−→Ba pivalate++2e−, Na pivalate, Ba(IO3)2 sat. Ba+valerate−→Ba valerate++2e−, Na valerate, Ba(IO3)2 sat. Ba+adipate2−→Ba adipate+2e−
–2.958 –2.914 –2.918 –2.965
Ba+succinate2−→Ba succinate+2e−
–2.968
Ba+glutarate2−→Ba glutarate+2e− Ba+alanine→Ba alanine2++2e−, alanine, Ba(IO3)2 sat. Ba+glycine→Ba glycine2++2e−, glycine, Ba(IO3)2 sat. Ba+8-hydroxyquinoline-5-sulfonate2−→ Ba(8-hydroxyquinoline-5-sulfonate)+2e−, NaOH, BaCl2, 8-hydroxyquinoline-5-sulfonate2−
–2.972 –2.935 –2.934 –2.980
Beryllium (Be) Bismuth (Bi)
Cadmium (Cd)
T [K]
ESHE [V]
Ref.
–2.942
52Col1, 54Dav1 52Col1, 54Dav2 54Dav1 54Dav1, 51Bel 54Dav1 54Dav1 51Pea, 49Sto 54Dav1 52Col1 52Col1 54Dav1, 51Pea 54Dav1, 51Pea 51Pea 40Top 51Mon3 54Näs
Be→Be2++2e−
1.7
Bi→Bi3++3e−
–1.7
Bi→Bi3++3e−, HCl, BiOCl Bi+H2O→BiO−+2H++e−
0.200 0.32
Bi+Cl−+H2O→BiOCl+H2+e−, HClO4, HCl
0.1697
2+
−
Cd→Cd +2e Cd→Cd2++2e− Cd→Cd2++2e− Cd→Cd2++2e− Cd→Cd2++2e− Cd→Cd2++2e−
288.15 293.15 298.15 303.15 308.15
–0.401 –0.401 –0.402 –0.402 –0.402 –0.400
Cd→Cd2++2e− Cd→Cd2++2e− Cd→Cd2++2e− Cd→Cd2++2e−
–0.4026 273.15 –0.4006 278.15 –0.4010 283.15 –0.4013
52Lat, 27Lat 52Lat, 27Lat 47Cup 23Smi, 23Swi 69Vas 79Lon1 79Lon1 79Lon1 79Lon1 79Lon1 46Gap, 34Shr1, 36Har1, 33LaM, 23Lew 58Tre1 36Har1 36Har1 36Har1 Landolt-Börnstein New Series IV/9A
1 Electrode potentials Electrode 2)
Cd(Hg) Cd(Hg) Cd(Hg) Cd(Hg) Cd(Hg)
7
Electrode reaction, electrolyte system 3), concentration 4)
T [K]
ESHE [V]
Ref.
Cd→Cd2++2e− Cd→Cd2++2e− Cd→Cd2++2e− Cd→Cd2++2e− Cd→Cd2++2e− Cd→Cd2++2e− Cd→Cd2++2e−, acidic Cd(Hg)→Cd2++Hg+2e− Cd(Hg)→Cd2++Hg+2e− Cd(Hg)→Cd2++Hg+2e− Cd(Hg)→Cd2++Hg+2e− Cd(Hg)→Cd2++Hg+2e− Cd→Cd2++2e−, CdCl2, Cd(ClO4)2, HClO4
288.15 293.15 298.15 303.15 308.15 313.15
–0.4016 –0.4018 –0.4020 –0.4021 –0.40022 –0.4026 –0.4029 –0.379 –0.379 –0.379 –0.380 –0.380 –0.4030
36Har1 36Har1 36Har1 36Har1 36Har1 36Har1 72Moo 79Lon1 79Lon1 79Lon1 79Lon1 79Lon1 58Tre1, 58Tre2, 66Bur 57Kiv 57Kiv 57Kiv
288.15 293.15 298.15 303.15 308.15
Cd(Hg) Cd(Hg) Cd(Hg)
Cd+Br−→CdBr++2e− Cd+2Br−→CdBr2+2e− Cd+3Br−→ CdBr3– +2e−
–0.469 –0.492 –0.482
Cd(Hg)
Cd+4Br−→ CdBr4– +2e−
–0.489
57Kiv 53Van 53Van 53Van
−
+
−
Cd(Hg) Cd(Hg) Cd(Hg)
Cd+Cl →CdCl +2e , NaCl, HClO4, Cd(ClO4)2 Cd+2Cl−→CdCl2+2e−, NaCl, HClO4, Cd(ClO4)2 Cd+3Cl−→ CdCl 3– +2e−, NaCl, HClO4, Cd(ClO4)2
–0.463 –0.483 –0.468
Cd(Hg)
2Cd+ Fe(CN) 64 – →Cd2Fe(CN)6+2e−, Li4Fe(CN)6
–0.6205
57Bas
Cd+ S2 O 32 – →CdS2O3+2e− CdCl2, BaS2O3
–0.520
51Den
–0.594 –0.547 –0.667
51Den 55Eva 55Eva
Cd+glycylglycine→Cd glycylglycine2++2e−, glycylglycine, Cd(ClO4)2
–0.502
55Eva
Cd+2glycylglycine→Cd(glycylglycine) 22+ +2e−, glycylglycine, Cd(ClO4)2 Cd+glycylglycylglycine→Cd glycylglycylglycine2++2e−, glycylglycylglycine, Cd(ClO4)2
–0.578
55Eva
–0.501
55Eva
Cd+2glycylglycylglycine→CD(glycylglycylglycine) 22+ +2e−, glycylglycylglycine, Cd(ClO4)2 Cd+8-hydroquinoline-5-sulfonate2−→ Cd(8-hydroquinoline-5-sulfonate)+2e−, NaOH, Cd(ClO4)2, 8-hydroquinoline-5-sulfonic acid Cd+2(8-hydroxyquinoline-5-sulfonate2−)→ Cd(8-hydroxyquinoline-5-sulfonate) 22– +2e−, NaOH, Cd(ClO4)2, 8-hydroxyquinoline-5-sulfonic acid
–0.577
55Eva
–0.633
54Näs
–0.828
54Näs
Cd+2 S2 O 32 –
→ Cd(S2 O 3 ) 22 – 2+
−
+2e , CdCl2, Na2S2O3 −
Cd+glycine→Cd glycine +2e , glycine, Cd(ClO4)2 Cd+2glycine→Cd(glycine) 22+ +2e−, glycine, Cd(ClO4)2
Landolt-Börnstein New Series IV/9A
8
1 Electrode potentials
Electrode 2)
Electrode reaction, electrolyte system 3), concentration 4)
Cd
Cd+oxalate2−→Cd oxalate+2e−, K2 oxalate
ESHE [V]
Ref.
–0.522
51Bar
–0.572
51Bar
Ca→Ca +2e
–2.84
Ca→Ca2++2e−, acidic Ca(Hg)→Ca2++Hg+2e− Ca(Hg)→Ca2++Hg+2e− Ca(Hg)→Ca2++Hg+2e− Ca(Hg)→Ca2++Hg+2e− Ca(Hg)→Ca2++Hg+2e− CaCaO3+Pb→Ca2++PbCO3+2e−, CaCl2
–2.866 –1.995 –2.003 –2.011 –2.018 –2.024 –2.868
52Lat, 34Lat 72Moo 75Lon2 75Lon2 75Lon2 75Lon2 75Lon2 62Jak2
Ca+ HPO 24 – →CaHPO4+2e−
–2.948
53Dav
Ca+ H 2 PO 4– → CaH 2 PO +4 +2e−
–2.900
53Dav
–2.971
49Dav1, 49Jon
4– 2– Ca+ P4 O12 → CaP4 O12 +2e−
–3.021
Ca+OH−→CaOH++2e− Ca+2OH−→Ca(OH)2+2e−, basic
–2.906 –3.02
49Dav1, 50Jon 53Bel 72Moo
Ca+ SO 24 – →CaSO4+2e−
–2.936
53Bel
Ca+ S2 O 32 – →CaS2O3+2e−
–2.926
Ca+formate−→Ca formate++2e− Ca+acetate−→Ca acetate++2e− Ca+trimethylacetate−→Ca trimethylacetate++2e− Ca+methoxyacetate−→Ca methoxyacetate++2e− Ca+bromoacetate−→Ca bromoacetate++2e−, Ca(IO3)2 sat., Na bromoacetate Ca+propionate−→Ca propionate++2e− Ca+malate2−→Ca malate+2e−
–2.892 –2.891 –2.884 –2.901 –2.884
49Dav2, 55Gim 52Col1 52Col1 50Jon 38Dav 52Col1
2−
Cd+2oxalate Calcium (Ca) Ca(Hg) Ca(Hg) Ca(Hg) Ca(Hg) Ca(Hg)
2+
Ca+ P3O 39 –
→Cd(oxalate) 22– +2e−,
T [K]
K2 oxalate
−
→ CaP3O 9–
−
+2e
Ca+maleate2−→Ca maleate+2e− Ca+malonate2−→Ca malonate+2e− Ca+n-valerate−→Ca n-valerate++2e− Ca+iso-valerate−→Ca iso-valerate++2e− Ca+fumarate2−→Ca fumarate+2e− Ca+n-butyrate−→Ca n-butyrate++2e−, Ca(IO3)2 sat., Na n-butyrate Ca+iso-butyrate−→Ca iso-butyrate++2e−, Ca(IO3)2 sat., Na iso-butyrate Ca+glycolate−→Ca glycolate++2e− Ca+tartrate2−→Ca tartrate+2e− Ca+adipate2−→Ca adipate+2e−
283.15 298.15 313.15 328.15 343.15
–2.888 –2.942 –2.940 –3.608 –2.877 –2.877 –2.927 –2.884
52Col1 40Top, 51Bel 40Top 35Win 52Col1 52Col1 40Top 52Col1
–2.883
52Col1
–2.915 –2.951 –3.468
38Dav 40Top 40Top
Landolt-Börnstein New Series IV/9A
1 Electrode potentials Electrode 2)
9
Electrode reaction, electrolyte system 3), concentration 4)
T [K]
Ca+glutamate2−→Ca glutamate+2e−, Ca(IO3)2 sat., Na2 glutamate Ca+hippurate−→Ca hippurate++2e−, Na hippurate Ca+mandelate−→Ca mandelate++2e− Ca+salicylate2−→Ca salicylate+2e−,NaOH, CaCl2, salicylic acid Ca+pyruvate−→Ca pyruvate++2e− Ca+isophthalate2−→Ca isophthalate+2e− Ca+succinate2−→Ca succinate+2e− Ca+glycylglycine→Ca glycylglycine2++2e− Ca+alanylglycine→Ca alanylglycine2++2e− Ca+leucylglycine→Ca leucylglycine2++2e−, Na leucylglycine Ca+tyrosine→Ca tyrosine2++2e− Ca+serine→Ca serine2++2e−, Ca(IO3)2 sat., Na serine Ca+di-iodotyrosine→Ca di-iodotyrosine2++2e−, Ca(IO3)2 sat., Na di-iodotyrosine Ca+aminoacetate→Ca aminoacetate2++2e−
ESHE [V]
Ref.
–2.928
50Dav
–2.881 –2.911 –2.881
50Dav 38Dav 38Dav, 51Bel 50Dav 40Top 40Top 50Dav 50Dav 50Dav
–2.900 –2.927 –2.927 –2.904 –2.887 –2.889
Ca+α-aminopropionate→Ca(α-aminopropionate)2++2e−, Na(α-aminopropionate) Ca+8-hydroxyquinoline-5-sulfonate2−→ Ca(8-hydroxyquinoline-5-sulfonate)+2e−, NaOH, CaCl2, 8-hydroxyquinoline-5-sulfonate2−
–2.904
50Dav 50Dav 50Dav, 35Win 52Col1, 50Dav, 38Dav 50Dav
–2.972
54Näs
Cerium
Ce+Br−→CeBr2++e−, Ce(ClO4)3,NaBr
–2.92
51May
(Ce)
Ce+ ClO 4–
Ce+F →CeF +e
–2.521 –2.563
55Hei 53Kur
Ce+ PO 34– →CePO4+3e−, CeCl3, NaH2PO4
–2.853
50May
Ce+ P2 O 74 – →Ce(P2O7)−+3e−, CeCl3, NaH2PO4
–2.825
50May
–2.641
50May
Ce+(2,4-dinitrophenate) →Ce(2,4-dinitrophenate) +3e Ce+picrate−→Ce picrate2++3e− Ce3+→Ce4++e−, acidic
–2.555 –2.504 –2.504 1.61
54Spe 55Bab 55Bab 72Moo
Cs→Cs++e−
–2.92
26Mai, 39Ben 72Moo 72Mus 72Mus 72Mus 72Mus 72Mus
→ CeClO 24 +
−
Ce+ SO 32 –
2+
–2.912 –2.910 –2.913 –2.887
−
+3e , Ce(ClO4)3, Na ClO4, HClO4
−
→ CeSO 3+ +3e−,
CeCl3, HCl, NaH2SO3
Ce+ SO 24 – → CeSO +4 +3e−, Ce2(SO4)3, HCl, NaH2SO3 −
Cesium (Cs) Cs(Hg) Cs(Hg) Cs(Hg) Cs(Hg) Cs(Hg)
Landolt-Börnstein New Series IV/9A
Cs→Cs++e−, acidic Cs(Hg)→Cs++Hg+e− Cs(Hg)→Cs++Hg+e− Cs(Hg)→Cs++Hg+e− Cs(Hg)→Cs++Hg+e− Cs(Hg)→Cs++Hg+e−
2+
−
283.15 298.15 313.15 328.15 343.15
–2.923 –1.919 –1.950 –1.979 –2.006 –2.035
10
1 Electrode potentials
Electrode 2)
Electrode reaction, electrolyte system 3), concentration 4)
Chromium (Cr)
Cr→Cr2++2e− Cr→Cr3++3e− Cr2+→Cr3++e−
T [K]
2Cr3++7H2O→ Cr2 O 72 – +14H++6e−, Cr2(SO4)3, H2CrO4, H2SO4 2Cr
3+
+7H2O→ Cr2 O 72 –
−
+
+14H +6e
2Cr3++7H2O→ Cr2 O 72 – +14H++6e−, acidic Cr(CN) 64 –
→ Cr(CN) 36 –
−
+e
2−
[Cr(II)-trans-1,2-cyclohexandiaminetetraacetate] → [Cr(II)-trans-1,2-cyclohexandiaminetetraacetate]2−, NaCl, acetate buffer Cobalt (Co)
Co→Co2++2e− Co→Co2++2e−, CoSO4 2Co+ Fe(CN)64 – Co+ S2 O 32 – 2+
Ref.
–0.56 –0.71 –0.41
27Gru 52Lat 27Gru
1.232
46Dig
1.36
52Lat, 25Neu
1.33
72Moo
–1.28 1.198
43Hum 70Tan
–0.283
32Hey, 34Har1, 10Sch2 66Gol
–0.28 −
→Co2Fe(CN)6+4e −
→CoS2O3+2e , CoCl2, BaS2O3 −
3+
ESHE [V]
Co →Co +e , H2SO4 Co2+→Co3++e−, acidic
0.2691 –0.337 1.83 1.808
−
Co(CN) 64 –
→ Co(CN) 36 –
2Co(CO) 4–
→[Co(CO)4]2+2e−, NaCo(CO)4, [Co(CO)4]2
+e
293 Co2O3+2OH →2CoO2+H2O+2e , NaOH, Na2CO3, Na2B4O7 291 Co(OH)2+2OH−→ CoO 2– +2H2O+e−, KOH, Co(OH)2 −
−
−
2−
Co+malonate →Co malonate+2e , CoCl2, NaH malonate Co+2(oxalate)2−→Co(oxalate) 22 – +2e−, Co oxalate, K2 oxalate Co(oxalate) 34 – →Co(oxalate) 33 – +e−, KCl Co oxalate2(H2O) 22 – →Co oxalate2(H2O) 2– +e−, KCl 2+
−
Co+alanine→Co alanine +2e , CoCl2, alanine, NaOH Co+2alanine→[Co alanine2]2++2e−, CoCl2, alanine, NaOH Co+glycine→Co glycine2++2e−, CoCl2, glycine, NaOH Co+2glycine→[Co glycine2]2++2e−, CoCl2, glycine, NaOH Co+glycylglycine→Co glycylglycine2++2e−, CoCl2, glycylglycine, NaOH Co+2glycylglycine→[Co glycylglycine2]2++2e−, CoCl2, glycylglycine, NaOH Co+glycylglycylglycine→Co(glycylglycylglycine)2++2e−, CoCl2, glycylglycylglycine, NaOH Co+2glycylglycylglycine→[Co glycylglycylglycine2]2++2e−, CoCl2, glycylglycylglycine, NaOH
66Mal2 51Den 58Ver, 63Che 72Moo
–0.83
26Lie
–0.40 0.58
53Hie 50ElW2
0.22 –0.380
67Bol 49Sto
–0.474
51Bar
0.57
67Hin
0.78 –0.419 –0.527 –0.431 –0.550 –0.380
67Hin 51Mon4 51Mon4 51Mon4 51Mon4 51Mon4
–0.450
51Mon4
–0.365
55Eva
–0.442
55Eva
Landolt-Börnstein New Series IV/9A
1 Electrode potentials Electrode 2)
Electrode reaction, electrolyte system 3), concentration 4) Co(phenanthroline) 32 + →Co(phenanthroline) 33 + +e−, Co(phenanthroline) 33 +
Co(phenanthroline) 32 +
, , 2− HClCo+8-hydroxyquinoline-5-sulfonate → Co 8-hydroxyquinoline-5-sulfonate+2e−, 8-hydroxyquinoline-5-sulfonate2−, NaOH, Co(NO3)2 Co+2(8-hydroxyquinoline-5-(sulfonate)2−)→ [Co 8-hydroxyquinoline-5-sulfonate2]2−+2e−, 8-hydroxyquinoline-5-sulfonate2−, NaOH, Co(NO3)2 Co propylenediaminetetraacetate2−→ Co propylenediaminetetraacetate−+e−, KNO3, Co propylenediaminetetraacetate2−, Co propylenediaminetetraacetate− Co trimethylenediaminetetraacetate2−→ Co trimethylenediaminetetraacetate−+e−, KNO3, Co trimethylenediaminetetraacetate2−, Co trimethylenediaminetetraacetate− [Co diethylenediamine2]2+→[Co diethylenediamine2]3++e−, KCl, [Co diethylenediamine2]2+, [Co diethylenediamine2]3+, diethylenediamine Co(dipyridyl) 32 + →Co(dipyridyl) 33 + +e−, Co(NO3)2, 2,2'-dipyridyl, monochloroacetic acid+ammonia buffer Co(EDTA)2−→Co(EDTA)−+e−, KNO3, Co(EDTA)−, Co(EDTA)2−, acetate buffer [Co ethylenediamine3]2+→[Co ethylenediamine3]3++e−, [Co ethylenediamine3]Cl2, [Co ethylenediamine3]Cl3, KCl trans-[Co glycine3]−→trans-[Co glycine3] +e−, KCl Copper (Cu)
2+
−
Cu→Cu +2e
Cu→Cu2++2e−
Cu→Cu2++2e−, acidic Cu→Cu++e− Cu+→Cu2++e− Cu+→Cu2++e−, acidic Cu→Cu2++2e−, CuCl2 Cu→Cu2++2e−, CuSO4, 0.01 M Cu→Cu2++2e−, CuSO4, 0.1 M Cu→Cu2++2e−, CuSO4, 1 M Cu→Cu2++2e−, acidic
Landolt-Börnstein New Series IV/9A
11 T [K]
ESHE [V]
Ref.
0.419
72Lav
–0.537
54Näs
–0.746
54Näs
0.36
65Tan2
0.29
65Tan2
–0.232
71Bar3
0.31
61Vyd
0.37
65Tan2
0.180
69Kim
0.20
67Hin
0.337
52Lat, 59Par 0.345 31Bur, 14Lew1, 41Mül, 42Mül, 27Nie, 38Qui 0.337 72Moo 0.52 26Fen 0.167 26Fen, 52Lat 0.153 72Moo 0.3352 74Gro 0.268 5) 61Hur2 0.291 5) 61Hur2 0.311 5) 61Hur2 0.3419 64Bet
12
1 Electrode potentials
Electrode 2)
Electrode reaction, electrolyte system 3), concentration 4)
Cu
Cu+Br−→CuBr++2e− Cu+2Br
−
−
→ Cu(Br) 2–
−
+e , 0.1 M KBr, 0.1 M KCl −
Cu+CN →CuCN+e
Cu+2CN−→ Cu(CN) 2– +e− Cu+4CN
−
→ Cu(CN)34 –
−
+e
2Cu+ Fe(CN)64 – →Cu2Fe(CN)6+4e− Cu+ 2IO3–
−
→Cu(IO3)2+2e
Cu+ N 3– →CuN3+e− −
2+
Cu+NH3→Cu(NH3) +2e
Cu+3NH3→ Cu(NH 3 ) 32 + +2e− Cu+ NO 2–
→ Cu(NO) +2
T [K]
ESHE [V] 0.343
50Näs
0.170 –0.639
02Böd 50Vla
–1.170
50Vla
–1.281
50Vla
–0.130
02Böd
–0.079
48Kee, 51Llo
0.03 –0.223
52Suz1 44Näs
0.025
−
+2e
Ref.
54Llo
Cu+OH →CuO+H2O+2e Cu+OH−→CuOH++2e− Cu+2OH−→Cu(OH)2+2e− 2Cu+2OH−→Cu2O+H2O+2e−
0.305 –0.262 0.153 –0.222 –0.360
3Cu+ 2PO 34 – →Cu3(PO4)2+6e−
0.325
50Bat
0.172
50Bat
0.204
50Bat
0.020
50Kor
0.274
38Owe1, 49Näs
–0.022 0.247 0.296 0.2835 0.276 0.255 0.282 0.268 0.153 0.257 –0.023
53Lev2 49Kee 49Kee 51Llo 51Llo 51Llo 51Llo 51Pea 30Ril 51Llo 55Pec
–0.233 0.203 0.199 0.190 0.226 0.243
53Pec 68Bon 31Ive 30Ril 51Pea 51Pea
−
−
Cu+ HPO 24 –
→CuHPO4+2e−
Cu+ 2H 2 PO 4–
−
→Cu(H2PO4)2+2e
Cu+4SCN−→ Cu(SCN) 34– Cu+ SO 24 –
+e−
−
→CuSO4+2e
Cu+ 2S2 O 32 – → Cu(S2 O 3 ) 22 – +2e− −
Cu+1-methylallylalcohol→Cu 1-methylallylalcohol+2e Cu+2-methylallylalcohol→Cu 2-methylallylalcohol+2e− Cu+formate−→Cu formate++2e− Cu+acetate−→Cu acetate++e− Cu+β-hydroxypropionate−→Cu β-hydroxypropionate++2e− Cu+n-hexanoate−→Cu n-hexanoate++e− Cu+fumarate2−→Cu fumarate+2e− Cu+2dimethylmalonate−→Cu dimethylmalonate2+2e− Cu+glycolate2−→Cu glycolate+2e− Cu+gluconate2−→Cu gluconate+2e− Cu+2(gluconate)2−→Cu gluconate 22 – +2e− Cu+malonate2−→Cu malonate+2e− Cu+dimethylmalonate→Cu dimethylmalonate2++2e− Cu+ethylmalonate2−→Cu ethylmalonate+2e− Cu+maleate2−→Cu maleate+2e− Cu+adipate2−→Cu adipate+2e−
46Kos 65Kha 51Dav1 65Kha 65Kha
Landolt-Börnstein New Series IV/9A
1 Electrode potentials Electrode 2)
13
Electrode reaction, electrolyte system 3), concentration 4)
ESHE [V]
Ref.
Cu+phenylacetate−→Cu phenylacetate++2e− Cu+pivalate−→Cu pivalate++2e− Cu+iso-valerate−→Cu iso-valerate++2e− Cu+n-valerate−→Cu n-valerate++2e− Cu+6-methylpicolinate−→Cu 6-methylpicolinate++2e− Cu+2(6-methylpicolinate−)→Cu (6-methylpicolinate)2+2e− Cu+succinate2−→Cu succinate+2e− Cu+salicylaldehyde-5-sulfonate−→ Cu salicylaldehyde-5-sulfonate++2e− Cu+2salicylaldehyde-5-sulfonate−→ Cu salicylaldehyde-5-sulfonate2+2e− Cu+bromoacetate−→Cu bromoacetate++2e− Cu+α-bromobutyrate−→Cu α-bromobutyrate++2e− Cu+iso-bromobutyrate−→Cu iso-bromobutyrate++2e− Cu+n-bromobutyrate−→Cu n-bromobutyrate++2e− Cu+chloroacetate−→Cu chloroacetate++2e− Cu+1,2-diaminopropane→Cu 1,2-diaminopropane2++2e−
0.284 0.281 0.284 0.276 0.155 –0.010 0.243 0.284
51Llo 51Llo 51Llo 51Llo 55Hol 55Hol 51Pea 48Cal
0.067
48Cal
0.294 0.299 0.278 0.216 0.294 0.0294
51Llo 51Llo 51Llo 51Llo 51Llo 54Bas
Cu+2(1,2-diaminopropane)→Cu 1,2-diaminopropane 22 + +2e− Cu+1,3-diaminopropane→Cu 1,3-diaminopropane2++2e−
–0.268 0.051
54Bas 55Pou, 54Irv
Cu+2(1,3-diaminopropane)→Cu 1,3-diaminopropane 22 + +2e−
–0.163
55Pou, 54Irv
Cu+2(ethylenediamine)→Cu ethylenediamine +2 +e− Cu+EDTA →Cu EDTA +2e Cu+alanine→Cu alanine2++2e−
–0.119 –0.216 0.092
48Bje 53Pec 48Kee, 51Mon1
Cu+2alanine→Cu alanine 22 + +2e−
–0.118
48Kee, 51Mon1 48Kee, 51Mon1
4−
−
2−
Cu+glycine→Cu glycine2++2e−
0.092
Cu+2 glycine→Cu glycine 22 + +2e−
–0.123
Cu+glycylglycine→Cu glycylglycine2++2e− Cu+2 glycylglycine→Cu
glycylglycine 22 +
−
+2e
2+
−
Cu+glycylglycylglycine→Cu glycylglycylglycine +2e
Cu+2 glycylglycylglycine→Cu glycylglycylglycine 22 + +2e− −
2+
Cu+leucine→Cu leucine +2e
Cu+2leucine→Cu leucine 22 + +2e− Cu+valine→Cu valine2++2e− Cu+2valine→Cu
valine 22 +
Cu+2histidine→Cu
−
+2e
histidine 22 +
+2e
2+
−
−
Cu+norvaline→Cu norvaline +2e
Landolt-Börnstein New Series IV/9A
T [K]
0.163
48Kee, 51Mon1 51Mon1
–0.004 0.182
51Mon1 55Eva
0.030 0.109 –0.083
55Eva 49Mal1 49Mal1
0.095
52Reb
–0.114
52Reb
0.023 0.085
50Mal 52Reb
14
1 Electrode potentials
Electrode 2)
Electrode reaction, electrolyte system 3), concentration 4)
Cu
Cu+2norvaline→Cu norvaline 22 + +2e− 2+
−
Cu+ornithine→Cu ornithine +2e
Cu+2ornithine→Cu ornithine 22 + +2e− Cu+8-hydroxyquinoline-5-sulfonate−→ Cu 8-hydroxyquinoline-5-sulfonate++2e− Cu+2(8-hydroxyquinoline-5-sulfonate)−→ Cu 8-hydroxyquinoline-5-sulfonate2+2e− Dy2+→Dy3++e−
T [K]
ESHE [V]
Ref.
–0.124 0.138
52Reb 52Reb
–0.028 –0.100
52Reb 49Mal1, 54Näs 49Mal1, 54Näs
–0.308 1.7
72Ten
1.6
72Ten
+3e
–2.368
54Spe
Europium (Eu) Gadolinium
Eu →Eu +e , Eu(ClO4)3, HCOOH, NaClO4
–0.36
65Mac
Gd+F−→GdF2++3e−
–2.482
53Kur
(Gd)
Gd+ SO 24 –
–2.470
54Spe
Ga→Ga +3e , GaCl3, HCl, Ga(ClO4)3, HClO4 Ga→Ga3++3e− Ga+Cl−→GaCl2++3e−, GaCl3, HCl
–0.560 –0.52 –0.548
53Sal 32Sch 54Kra
Ga+2Cl−→ GaCl +2 +3e−, GaCl3, HCl
–0.514 –0.471
54Kra 54Kra
Ga+F →GaF +3e
–0.447 –0.676
54Kra 52Yat
Ga+4OH−→ GaOH 4– +3e−, KGaOH4, KOH
Dysprosium (Dy) Erbium
Er2+→Er3++e−
(Er)
Er+ SO 24 –
Gallium (Ga)
2+
→ ErSO +4
−
−
3+
→ GdSO +4 +3e−,
Gd2(SO4)3
−
3+
−
−
Ga+3Cl → GaCl3+3e , GaCl3, HCl Ga+4Cl−→ GaCl 4– +3e−, GaCl3, HCl −
−
2+
–1.326
67Van
Germanium (Ge)
−
Ge→Ge +2e , H2SO4 Ge→Ge4++4e−, H2SO4 Ge2+→Ge4++2e−, H2SO4 GeO(brown)+H2O→GeO2(white, hexag.)+2H++2e−, HCl
0.24 0.124 0.0 –0.118
65Rei 65Rei 65Rei 52Jol
Gold (Au)
Au→Au++e− Au→Au3++3e− Au+→Au3++2e− Au+2Br−→ AuBr2– +e−, HBr
1.7 1.42 1.2
52Lat 52Lat 29Abh
0.959
63Eva
Au+4Br → AuBr +3e , HBr
0.854
63Eva
AuBr2– +2Br−→ AuBr +2e−, HBr
Au+Br +OH →AuBrOH +e , KBr
0.802 0.63
63Eva 72Gad
Au+2Cl−→ AuCl2– +e−, HCl
1.1540
62Lin
Au+2Cl−→ AuCl2– +e−, HCl
1.1575
68Mur2
1.002
62Lin
0.926 0.75
62Lin 72Gad
2+
−
−
– 4
– 4
−
−
−
Au+4Cl
→ AuCl4–
−
−
−
+3e , HCl
AuCl2– +2Cl−→ AuCl4– +2e−, HCl −
−
−
−
Au+Cl +OH →AuClH +e , NaCl
Landolt-Börnstein New Series IV/9A
1 Electrode potentials Electrode 2)
Electrode reaction, electrolyte system 3), concentration 4)
15 T [K]
Au+2I−→ AuI 2– +e−
ESHE [V]
Ref.
2Au+3H2O→Au2O3+6H +6e , H2SO4
0.578 1.36
69Ere 66Hoa
Au+2NH3→ Au(NH 3 ) +2 +e−, NH4NO3, [Au(NH3)4](NO3)2
0.563
74Ski
Au+4NH3→ Au(NH 3 ) 34+
0.325
74Ski
Au(NH3 ) +2 +2NH3→ Au(NH3 ) 34+ +2e−, NH4NO3, [Au(NH3)4](NO3)2
0.206
74Ski
Au+2OH−→ Au(OH) 2– +e−
0.4
72Gad
0.661
71DeC
0.623
66Pou
0.636
66Pou
0.153
69Pou
−
+
−
+3e , NH4NO3,
[Au(NH3)4](NO3)2
Au+2SCN
−
−
→ Au(SCN) 2–
+e
Au(SCN) 2– +2SCN−→ Au(SCN) 4– +2e−
Au+4SCN
−
−
→ Au(SCN) 4–
+3e , HCl, KCl, NaSCN
Au+ S2 O 32 – → Au(S2 O 3 ) 32 – +e−, KCl, Na3[Au(S2O3)2] 2+
−
+
Hafnium (Hf) Holmium
Hf+H2O→HfO +2H +4e
(Ho)
Ho+ SO 24 –
Ho2+→Ho3++e− +
→ HoSO +4
−
+3e
−
–1.7
52Lat
1.7
72Ten
–2.391
54Spe
–0.340 –0.339 –0.339 –0.339 –0.339 –0.34
64But2 64But2 64But2 64But2 64But2 36Hat, 30Hak 64But2 53Hep 63Cav 53Hep 53Hep 54Hep
Indium (In)
In→In +e In→In++e− In→In++e− In→In++e− In→In++e− In→In3++e−
288.15 298.15 308.15 318.15 333.15
In(Hg)
In(Hg)→In++Hg+e− In→In++e−, InClO4, Ce(ClO4)3, HClO4 In→In3++3e−, InCl3, HCl In+→In2++e−, InClO4, Ce(ClO4)3, HClO4 In2+→In3++e−, InClO4, Ce(ClO4)3, HClO4 In+F−→InF2++3e−, InClO4, Fe(ClO4)2, Fe(ClO4)3, NaF, HClO4
298.15 –0.313 –0.14 –0.3382 –0.40 –0.49 –0.429
Iridium
Ir→Ir3++3e−
(Ir)
IrBr63 –
→ IrBr62 –
−
+e , NaBr
IrCl36 – → IrCl62 – +e−, K3IrCl6, HCl Ir(H 2 O)Cl 52 – → Ir(H 2 O)Cl5– +e−, (NH4)2[Ir(H2O)Cl5], HNO3 −
−
trans-[Ir(H2O)2Cl4] →trans-[Ir(H2O)2Cl4]+e , HClO4, NaH2PO4 Ir(H2O)3Cl3→[Ir(H2O)3Cl3]++e−, HClO4, HNO3 IrI36 –
Landolt-Börnstein New Series IV/9A
→ IrI62 –
−
+e
1.0
52Lat
0.97
47Dwy2, 45Pti
0.8665
57Geo
1.0 1.22
65Cha 67ElA
1.30
67ElA
0.485
45Pti
16
1 Electrode potentials
Electrode 2)
Electrode reaction, electrolyte system 3), concentration 4)
Iron (Fe)
ESHE [V]
Ref.
Fe→Fe2++2e−
–0.441
Fe→Fe2++2e−, acidic Fe→Fe3++3e−, acidic Fe→Fe2++2e−, FeCl2, FeSO4
–0.4402 –0.036 –0.447
Fe→Fe2++2e−, FeCl2 Fe2+→Fe3++2e−
–0.447 0.771
23Lew, 32Ran, 24Ric 72Moo 72Moo 53Pat, 51Bon 60Hur 60Mat, 37Sch, 45Bez, 72Moo 60Mat 60Mat
T [K]
3Fe2++4H2O→Fe3O4+8H++2e− 3Fe2++3H2O→FeOH3+3H++e−
1.230 0.939
Fe(CN)64 – → Fe(CN)36 – +e−
0.358
67Han, 68Mur1
Fe(CN)64 – → Fe(CN)36 – +e−
0.356
35Kol
0.69
72Moo
0.412
66Mal1
Fe(NH3 )(CN)35 – → Fe(NH3 )(CN)52 – +e−, Na3[Fe(NH3)(CN)5],Na2[Fe(NH3)(CN)5], H2SO4
–0.378
75Mal
Fe(H 2 O)(NO)35 – → Fe(H 2 O)(NO)52– +e−, K3[Fe(H2O)(CN)5]
–0.075
69Mas
–0.747
53Hie
–0.35
53Hie
0.340 0.380 0.360 0.445 0.362 –0.768
59Per 59Per 59Per 59Per 59Per 53Leu
Fe(CN)64 – → Fe(CN)36 – +e−, acidic Fe(H 2 O)(CN)35 –
3Fe(CO) 24 –
→ Fe(H 2 O)(CN)52 –
−
+e , K3[Fe(H2O)(CN)5]
−
→[Fe(CO)4]3+6e , Na2, Ba[Fe(CO)4], [Fe(CO)4]3
3FeH(CO) 4–
+
−
→[Fe(CO)4]3+3H +6e , Na2, Ba[Fe(CO)4],
[Fe(CO)4]3 Fe alanine2+→Fe alanine3++e−, KCl Fe glycine2+→Fe glycine3++e−, KCl Fe glycylglycine2+→Fe glycylglcine3++e−, KCl Fe hydroxyproline2+→Fe hydroxyproline3++e−, KCl Fe leucine2+→Fe leucine3++e−, KCl Fe+2 mercaptoacetate−→[Fe(mercaptoacetate)2]2–+2e−, FeCl2, mercaptoacetic acid Fe methionine2+→Fe methionine3++e−, KCl Fe ornithine2+→Fe ornithine3++e−, KCl Fe nitrilotriacetate−→ Fe nitrilotriacetate+e−, acetate or veronal buffer, KCl Fe α-amino-n-butyric acid2+→ Fe α-amino-n-butyric acid3++e−, KCl Fe α-amino-iso-butyric acid2+→ Fe α-amino-iso-butyric acid3++e−, KCl Fe arginine2+→Fe arginine3++e−, KCl Fe asparagine2+→Fe asparagine3++e−, KCl Fe proline2+→Fe proline3++e−, KCl
293 293 293 293 293
293 293 293
0.400 0.415 0.3295
59Per 59Per 51Sch2
293
0.370
59Per
293
0.345
59Per
293 293 293
0.420 0.440 0.395
59Per 59Per 59Per Landolt-Börnstein New Series IV/9A
1 Electrode potentials Electrode 2)
17
Electrode reaction, electrolyte system 3), concentration 4)
T [K]
Fe (β-phenylalanine)2+→Fe (β -phenylalanine)3++e−, KCl Fe sarcosine2+→Fe sarcosine3++e−, KCl Fe serine2+→Fe serine3++e−, KCl Fe threonine2+→Fe threonine3++e−, KCl Fe tryptophan2+→Fe tryptophan3++e−, KCl Fe valine2+→Fe valine3++e−, KCl Fe aspartic acid2+→Fe aspartic acid3++e−, KCl Fe glutamic acid2+→Fe glutamic acid3++e−, KCl
293 293 293 293 293 293 293 293
Fe 2 cysteine2−→Fe cysteine 22 – +e−, FeCl2, cysteine 2+
−
Fe+dipyridyl→Fe dipyridyl +e , 2,2'-dipyridyl, FeCl2 [Fe(dipyridyl)3]2+→[Fe(dipyridyl)3]3++e−, HNO3 [Fe(2,2',2''-terpyridyl)2]2+→ [Fe(2,2',2''-terpyridyl)2]3++e−, H2SO4 Fe(1,10-phenanthroline)2+→ Fe(1,10-phenanthroline)3++e−, H2SO4 298.5 Fe(1,10-phenanthroline)2+→ 3+ − Fe(1,10-phenanthroline) +e , HNO3,Fe(II,III)tris-o-orthophenanthroline Fe(5-methyl-1,10-phenanthroline)2+→ Fe(5-methyl-1,10-phenanthroline)3++e−, H2SO4 Fe(5-phenyl-1,10-phenanthroline)2+→ Fe(5-phenyl-1,10-phenanthroline)3++e−, H2SO4 Fe(5-chloro-1,10-phenanthroline)2+→ Fe(5-chloro-1,10-phenanthroline)3++e−, H2SO4 Fe(5-nitro-1,10-phenanthroline)2+→ Fe(5-nitro-1,10-phenanthroline)3++e−, H2SO4 Fe(4,7-dihydroxyphenanthroline)3−→ Fe(4,7-dihydroxyphenanthroline)2−+e− Fe(4,7-dimethyl-1,10-phenanthroline)2+→ Fe(4,7-dimethyl-1,10-phenanthroline)3++e−, LiClO4 [Fe(dipyridyl)(CN)4]2–→[Fe(dipyridyl)(CN)4]–+e−, HCl, Fe(II,III)dipyridyl(CN)4 [Fe(dipyridyl)2(CN)2]→[Fe(dipyridyl)2(CN)2]++e−, H2SO4 [Fe(pyridine-2-aldoxime)3]+→[Fe(pyridine-2-aldoxime)3]2++e−, 293 Fe(II,III)(pyridine-2-aldoxime)3, NaOH, NaCl, NaH2PO4 [Fe(pyridine-2,6-dialdoxime)2]2– [Fe(pyridine-2,6-dialdoxime)2]2–→ [Fe(pyridine-2,6-dialdoxime)2]–+e− Fe(EDTA)2−→Fe(EDTA)−+e−, phosphate or acetate buffer Ferrocene→Ferrocinium+e− Methylferrocene→Methylferricinium++e− Ethylferrocene→Ethylferricinium++e− 1-Methyl-2-ethylferrocene→1-Methyl-2-ethylferricinium++e− 1-Methyl-3-ethylferrocene→1-Methyl-3-ethylferricinium++e− Propylferrocene→Propylferricinium++e− Landolt-Börnstein New Series IV/9A
ESHE [V]
0.415 0.380 0.405 0.430 0.415 0.380 0.330 0.240
Ref. 59Per 59Per 59Per 59Per 59Per 59Per 59Per 59Per
–0.793 –0.571 1.120 –0.927
55Tan 49Kru 59Geo 54Dwy
1.06
52Bra
1.147
59Geo
1.02
52Bra
1.08
52Bra
1.12
52Bra
1.25
52Bra
–0.20
67Han
0.936
66Far
0.541
59Geo
0.776 0.348
63Sch2 68Han
0.204
66Han
0.1172 0.400 0.082 0.081 0.098 0.097 0.079
51Sch1 78Lag 62Gub 62Gub 65Nes 65Nes 62Gub
18
1 Electrode potentials
Electrode 2)
Electrode reaction, electrolyte system 3), concentration 4)
Fe
iso-Propylferrocene→iso-Propylferricinium++e− Vinylferrocene→Vinylferricinium++e− Methoxyferrocene→Methoxyferricinium++e− Acetylferrocene→Acetylferricinium++e− Phenylferrocene→Phenylferricinium++e− Phenylmethoxyethylferrocene→ Phenylmethoxyphenylferricinium++e− Aminoferrocene hydrochloride→ Aminoferrocene+hydrochloride+e− m-Aminophenylferrocene→m-Aminophenylferricinium++e− p-Aminophenylferrocene→p-Aminophenylferricinium++e− Trimethylferrocenylmethylammonium+→ Trimethylferrocenylmethylammonium2++e− m-Nitrophenylferrocene→m-Nitrophenylferricinium++e− p-Nitrophenylferrocene→p-Nitrophenylferricinium++e− m-Phenylazophenylferrocene→ m-Phenylazophenylferricinium++e− Benzoxyferrocene→Benzoxyferricinium++e− (2'-Bromoaminoethyl)ferrocene→ (2'-Bromoaminoethyl)ferricinium++e− Butenylferrocene→Butenylferricinium++e− Carbacylferrocene→Carbacylferricinium++e− 1-Methyl-1'-carbacylferrocene→ 1-Methyl-1'-carbacylferricinium++e− 1-Methyl-2-carbacylferrocene→ 1-Methyl-2-carbacylferricinium++e− 1-Methyl-3-carbacylferrocene→ 1-Methyl-3-carbacylferricinium++e− 1-Ethyl-1'-carbacylferrocene→ 1-Ethyl-1'-carbacylferricinium++e− 1-Ethyl-2-carbacylferrocene→ 1-Ethyl-2-carbacylferricinium++e− 1-Ethyl-3-carbacylferrocene→ 1-Ethyl-3-carbacylferricinium++e− 1-Phenyl-1'-carbacylferrocene→ 1-Phenyl-1'-carbacylferricinium++e− 1-Phenyl-2-carbacylferrocene→ 1-Phenyl-2-carbacylferricinium++e− 1-Ethyl-2-hydroxyethylferrocene→ 1-Ethyl-2-hydroxyethylferricinium++e− 1'-Hydroxyethylferrocene→1'-Hydroxyethylferricinium++e− Hydroxymethylferrocene→Hydroxymethylferricinium++e− p-Carbacylphenyl ferrocene→ p-Carbacylphenyl ferricinium++e− Carbomethoxyferrocene→Carbomethoxyferricinium++e−
T [K]
ESHE [V]
Ref.
0.082 0.000 0.114 –0.044 –0.004 –0.022
62Gub 62Gub 62Gub 62Gub 62Gub 62Gub
–0.280
62Gub
–0.056 –0.061 0.659
62Gub 62Gub 66L'vo
–0.078 –0.110 –0.049
62Gub 62Gub 62Gub
–0.056 –0.022
62Gub 62Gub
0.069 –0.204 –0.179
62Gub 62Gub 65Nes
–0.157
65Nes
–0.188
65Nes
–0.277
65Nes
–0.164
65Nes
–0.188
65Nes
–0.271
65Nes
–0.262
65Nes
–0.020
65Nes
0.003 –0.029 –0.111
62Gub 62Gub 62Gub
–0.231
62Gub
Landolt-Börnstein New Series IV/9A
1 Electrode potentials Electrode 2)
Lanthanum (La)
Electrode reaction, electrolyte system 3), concentration 4)
ESHE [V]
Ref.
Carboxyferrocene→Carboxyferricinium++e− Carboxmethylferrocene→Carboxymethylferricinium++e− Chloroferrocene→Chloroferricinium++e− Chloromercuryferrocene→Chloromercuryferricinium++e− Bromoferrocene→Bromoferricinium++e− Iodoferrocene→Iodoferricinium++e− (2'-Dimethylaminoethyl)ferrocene→ (2'-Dimetylaminoethyl)ferricinium++e− (2-Dimethylaminoethyl)ferrocene→ (2-Dimetylaminoethyl)ferricinium++e−
–0.219 –0.008 –0.128 –0.002 –0.130 –0.104 –0.016
62Gub 62Gub 62Gub 62Gub 62Gub 62Gub 62Gub
–0.165
62Gub
La→La3++3e−
–2.4
52Lat
–2.597
La+ Co(CN) 36 –
−
→LaCo(CN)6+3e
La+F−→LaF2++3e−
–2.592
La+ Fe(CN)36 – →LaFe(CN)6+3e−
–2.594
48Dav
La+ Fe(CN)36 – →LaFe(CN)6+3e−, LaFe(CN)6, glycine
–2.594
51Dun
La+ Fe(CN)36 – →LaFe(CN)6+3e−,
–2.594
53Ber2
–2.636
49Mon3
–2.655
49Mon3
La+ SO 24 – → LaSO +4 +3e−, La2(SO4)3
–2.596
La+adipate2−→La adipate++3e−, NaH adipate, LaCl3 La+fumarate2−→La fumarate++3e−, NaH fumarate, LaCl3 La+glutarate2−→La glutarate++3e−, NaH glutarate, LaCl3 La+malonate2−→La malonate++3e−, NaH malonate, LaCl3 La+phthalate2−→La phthalate++3e−, NaH phthalate, LaCl3 La+picrate−→ La picrate2++3e−
–2.604 –2.582 –2.598 –2.620 –2.633 –2.543
50Jen, 52Jon, 54Spe 51Pea 51Pea 51Pea 51Pea 51Pea 55Bab
La+2(picrate)−→La picrate +2 +3e− La+succinate →La succinate +3e , NaH succinate, LaCl3
–2.586 –2.601
55Bab 51Pea
Pb→Pb2++2e−
–0.126
Pb→Pb2++2e−, PbCl2 Pb→Pb2++2e−, Pb(ClO4)2, NaClO4 Pb→Pb2++2e−, Pb(ClO4)2, HClO4 Pb2+→Pb4++2e−, Pb(HCOO)2, Pb(HCOO)4, HClO4 Pb+Br−→PbBr++2e−, PbBr2
–0.1262 –0.1262 –0.1237 1.67 –0.174
61Ive, 38Har1, 22Ger, 30Ger, 30Ran, 38Lin, 39Har1, 72Moo 67Tou 37Far 71Vas2 62Ber 55Nan
4– La+ P4 O12
–
LaFe(CN)6
−
→La(P4O12) +3e
2−
Landolt-Börnstein New Series IV/9A
T [K]
47Jam, 50Jam 64Rao
La+ P3O 39 – →LaP3O9+3e−
Lead (Pb)
19
+
−
20
1 Electrode potentials
Electrode 2)
Electrode reaction, electrolyte system 3), concentration 4)
Pb
Pb+Br−→PbBr++2e−, KBr, Pb(ClO4)2
ESHE [V]
Ref.
–0.174
55Big
Pb+2Cl →PbCl2+2e , KCl Pb+2OH−→PbO+H2O+2e−, basic
–0.509 –0.2675 –0.577
72Moo 64Alt 64Bet
Pb+3OH−→ HPbO 2– +H2O+2e−, NaOH
–0.537
54Vle
273
–0.3335
61Ive
285.5
–0.3448
61Ive
298
–0.3563
61Ive
310.5
–0.3680
61Ive
Pb+ SO 24 – →PbSO4+2e−
323
–0.3802
61Ive
−
273
–0.3281
61Ive
−
Pb+ CO 32 –
→PbCO3+2e , basic
−
−
Pb+ SO 24 – →PbSO4+2e− Pb+ SO 24 –
−
→PbSO4+2e
Pb+ SO 24 – →PbSO4+2e− Pb+ SO 24 – Pb(Hg)
Pb+ SO 24 –
−
→PbSO4+2e →PbSO4+2e
Pb+ SO 24 – →PbSO4+2e−
285.5
–0.3392
61Ive
−
298
–0.3505
61Ive
Pb+ SO 24 – →PbSO4+2e−
298
–0.351
35Har, 34Shr2
Pb+ SO 24 – →PbSO4+2e−
310.5
–0.3619
61Ive
Pb+ SO 24 – →PbSO4+2e−
323
–0.3738
61Ive
Li→Li +e
–3.00
Li→Li++e− Li→Li++e−, acidic Li→Li++e− Li→Li++e− Li→Li++e− Li+glycolate2−→Li(glycolate)−+e− Li+lactate2−→Li(lactate)−+e− Li(Hg)→Li++Hg+e−, LiOH Li(Hg)→Li++Hg+e− Li(Hg)→Li++Hg+e− Li(Hg)→Li++Hg+e−
–3.0388 –3.045 –3.034 –3.042 –3.049 –3.033 –3.052 –3.0401 –2.184 –2.195 –2.205
52Lat, 31Lar, 31Lew, 23Lew 83Maz 72Moo 77Ron 77Ron 77Ron 54Dav1 54Dav2 68Hus 77Lon2 77Lon2 77Lon2
–2.38 –2.363 –2.372
45Coa 72Moo 61Jak1
298.15 –1.980
75Lon2
Pb+ SO 24 –
Lithium (Li)
Li(Hg) Li(Hg) Li(Hg) Li(Hg) Magnesium (Mg)
Mg(Hg)
T [K]
+
→PbSO4+2e
−
283.15 298.15 313.15 288 288 288 283.15 298.15 313.15
Mg→Mg2++2e− Mg→Mg2++2e−, acidic Cd+Mg(OH)2→Cd(OH)2+Mg2++2e−, cadmium electrode, MgCl2 Mg(Hg)→Mg2++Hg+2e− Mg+ Fe(CN)64 –
→ MgFe(CN)62 –
−
+2e
–2.478
56Coh
Landolt-Börnstein New Series IV/9A
1 Electrode potentials Electrode 2)
Electrode reaction, electrolyte system 3), concentration 4)
21 ESHE [V]
Ref.
–2.384 –2.440
30Dav, 34Kil, 38Wis 48Sto
–2.437
48Sto
–2.515
50Jon
Mg+ SO 24 – →MgSO4+2e−
–2.430
Mg+lactate2−→Mg lactate+2e−, Mg lactate, HCl Mg+malonate2−→Mg malonate+2e−, Mg malonate, HCl Mg+oxalate2−→Mg oxalate+2e−, Mg oxalate, K2 oxalate Mg+glycolate2−→Mg glycolate+2e−, Mg glycolate, HCl Mg+glycine→Mg glycine2++2e−, MgCl2, NaOH, glycine Mg+glycylglycine→Mg glycylglycine2++2e−, MgCl2, NaOH, glycylglycine Mg+(8-hydroxyquinoline-5-sulfonate)2−→ Mg(8-hydroxyquinoline-5-sulfonate)+2e−, MgCl2, NaOH, 8-hydroxyquinoline-5-sulfonate2−
–2.404 –2.447 –2.493 –2.402 –2.465 –2.394
51Dun, 52Jon 54Dav2 52Eva 51Bar 54Dav1 51Mon2 51Mon2
–2.465
54Näs
Mn→Mn2++2e−
–1.05
23Cam1, 52Lat, 35San 65Cia 23Cam2 65Tan1 47Wit, 55Max 72Moo 62Cov 30Bro
T [K]
Mg+ IO3– → MgIO3+ +2e− Mg+OH−→MgOH++2e− Mg+ PO 34–
→ MgPO 4–
4– Mg+ P4 O12
Manganese (Mn)
−
+2e
2– → MgP4 O12
−
+2e
Mn2+→Mn3++1e−, Mn(ClO4)2, HClO4 Mn2+→Mn4++2e− Mn2++2H2O→MnO2+4H++2e− Mn2++2H2O→MnO2+4H++2e−, Mn(ClO4)2, HClO4 Mn2++2H2O→MnO2+4H++2e−, acidic Mn2++2H2O→MnO2+4H++2e−, MnCl2 Mn2++2H2O→MnO2+4H++2e− Mn+ P3O 39 – →Mn(P3O9)3−+2e−
1.23 1.224 1.236 –1.291
49Jon
→Mn(P4O12) +2e
–1.355
50Jon
Mn+ S2 O32 – →MnS2O3+2e−, MnCl2, BaS2O3
–1.243
51Den
–1.252
47Jam
–0.68
58Hie
4– Mn+ P4 O12
Mn+ S2 O 24 –
−
2−
−
→MnSO4+2e , MnCl2, BaS2O3
2Mn(CO)5– →[Mn(CO)5]2+2e−, NaMn(CO)5
MnO2+2H2O→ MnO 4–
+
−
+4H +3e
MnO 24 – → MnO 4– +1e−, KOH, K2MnO4, KMnO4 MnO 34 –
→ MnO 24 – 2−
−
+e , NaOH,NaClO4, KMnO4 −
Mn+malonate →Mn(malonate)+2e , Mg(malonate), HCl Mn+alanine→Mn(alanine)2++2e−, MnCl2, alanine, NaOH Mn+glycyne→Mn(glycyne)2++2e−, MnCl2, glycyne, NaOH
Landolt-Börnstein New Series IV/9A
291
1.5415 1.465 1.224 1.224
1.679
65Tan1
0.558
56Car2
0.274 –1.282 –1.274 –1.286
67Sch2 51Den 51Mon4 51Mon4
22
1 Electrode potentials
Electrode 2)
Electrode reaction, electrolyte system 3), concentration 4)
Mn
Mn+glycylglycyne→Mn(glycylglycyne)2++2e−, MnCl2, glycylglycyne, NaOH Mn+glycylglycylglycyne→Mn(glycylglycylglycyne)2++2e−, MnCl2,glycylglycylglycyne, NaOH [Mn trans-1,2-cyclohexanetetraacetate]2−→ [Mn trans-1,2-cyclohexanetetraacetate]−+e−, CH3COONa, Mn(ClO4)2, Na2H2trans-1,2-cyclohexanetetraacetate, K[Mn trans-1,2-cyclohexanetetraacetate] [Mn ethylenediaminetetraacetate]2−→ [Mn ethylenediaminetetraacetate]−+e−, Mn(ClO4)2, Na2H2ethylenediaminetetraacetate, K[Mn ethylenediaminetetraacetate] [Mn ethylenediaminetetraacetate]2−→ [Mn ethylenediaminetetraacetate]−+e−, acetate buffer, Na2H2ethylenediaminetetraacetate, K[Mn ethylenediaminetetraacetate] [Mn hydroxyethylenediaminetetraacetate]2−→ [Mn hydroxyethylenediaminetetraacetate]− + e−, Mn(ClO4)2, CH3COONa, NaClO4Na2H2hydroxyethylenediaminetetraacetate, K[Mn hydroxyethylenediaminetetraacetate] Mn+(8-hydroxyquinoline-5-sulfonate)2−→ Mn(8–hydroxyquinoline-5-sulfonate)+2e−, MnCl2, NaOH, 8-hydroxyquinoline-5-sulfonate2−
Mercury (Hg)
T [K]
ESHE [V]
Ref.
–1.248
51Mon4
–1.227
55Eva
0.814
67Ham3
0.825
65Tan1
0.825
67Ham3
0.782
67Ham3
–1.390
54Näs
2Hg→ Hg 22 + +2e−
0.798
61Ive, 34Bra, 23Lew
2Hg→ Hg 22 + +2e−, Hg2(NO3)2
0.7973
53Bon
2Hg→ Hg 22 + +2e−, Hg2(ClO4)2
0.7973
50ElW1
2Hg→ Hg 22 +
0.7889
71Pan
2Hg→ Hg 22 + +2e−, Hg2Cl2
0.7973
63Mur
Hg 22 +
0.905
31Pop
0.92 0.854 0.13923 0.13956 0.1397 0.13921 0.13921
72Moo 72Moo 63Gup1 57Kor 40Lar 70Leu 40Dak
−
+2e , Hg2(ClO4)2, HClO4, NaClO4 2+
−
→2Hg +2e
Hg 22 + →2Hg2++2e−, acidic 2+
−
Hg→Hg +2e , acidic 2Hg+2Br−→Hg2Br2+2e−, HBr 2Hg+2Br−→Hg2Br2+2e− 2Hg+2Br−→Hg2Br2+2e−, KBr, KCl, KNO3 2Hg+2Br−→Hg2Br2+2e−, KBr E0 [V]=0.13925–0.186 10–3(T–25 °C)–0.32 10–5(T–25 °C)2 2Hg+2Br−→Hg2Br2+2e−, HBr E0 [V]=0.13925–0.186·10–3(T–25°C)–0.32·10–5(T–25°C)2 2Hg+2Br−→Hg2Br2+2e−, 1 m
0.13921 40Dak 278
0.14095 57Gup
Landolt-Börnstein New Series IV/9A
1 Electrode potentials Electrode 2)
Electrode reaction, electrolyte system 3), concentration 4)
T [K]
2Hg+2Br−→Hg2Br2+2e−, 1 m 2Hg+2Br−→Hg2Br2+2e−, 1 m 2Hg+2Br−→Hg2Br2+2e−, 1 m 2Hg+2Br−→Hg2Br2+2e−, 1 m 2Hg+2Br−→Hg2Br2+2e−, 1 m 2Hg+2Br−→Hg2Br2+2e−, 1 m 2Hg+2Br−→Hg2Br2+2e−, 1 m 2Hg+2Br−→Hg2Br2+2e−, 1 m 2Hg+2Cl−→Hg2Cl2+2e−, acidic 2Hg+2Cl−→Hg2Cl2+2e−, HCl
283 288 293 298 303 308 313 318
2Hg+2Cl−→Hg2Cl2+2e− 2Hg+2Cl−→Hg2Cl2+2e−, 1 m 2Hg+2Cl−→Hg2Cl2+2e−, 1 m 2Hg+2Cl−→Hg2Cl2+2e−, 1 m 2Hg+2Cl−→Hg2Cl2+2e−, 1 m 2Hg+2Cl−→Hg2Cl2+2e−, 1 m 2Hg+2Cl−→Hg2Cl2+2e−, 1 m 2Hg+2Cl−→Hg2Cl2+2e−, 1 m 2Hg+2Cl−→Hg2Cl2+2e−, 1 m 2Hg+2Cl−→Hg2Cl2+2e−, 1 m 2Hg+2Cl−→Hg2Cl2+2e−, 1 m 2Hg+2Cl−→Hg2Cl2+2e−, 1 m 2Hg+2Cl−→Hg2Cl2+2e−, 1 m 2Hg+2Cl−→Hg2Cl2+2e−, 1 m 2Hg+2Cl−→Hg2Cl2+2e−, 1 m 2Hg+2Cl−→Hg2Cl2+2e−, 1 m 2Hg+2Cl−→Hg2Cl2+2e−, 1 m 2Hg+2Cl−→Hg2Cl2+2e−, 1 m 2Hg+2Cl−→Hg2Cl2+2e−, 1 m 2Hg+2Cl−→Hg2Cl2+2e−, 1 m 2Hg+2Cl−→Hg2Cl2+2e−, 1 m 2Hg+2Cl−→Hg2Cl2+2e−, 1 m 2Hg+2Cl−→Hg2Cl2+2e−, 1 m 2Hg+2Cl−→Hg2Cl2+2e−, 1 m 2Hg+2Cl−→Hg2Cl2+2e−, 1 m 2Hg+2Cl−→Hg2Cl2+2e−, 1 m 2Hg+2Cl−→Hg2Cl2+2e−, 1 m 2Hg+2Cl−→Hg2Cl2+2e−, 1 m 2Hg+2Cl−→Hg2Cl2+2e−, 1 m 2Hg+2Cl−→Hg2Cl2+2e−, 1 m Landolt-Börnstein New Series IV/9A
23
298 278 283 288 293 298 303 308 313 318 278 283 288 293 298 303 308 313 318 323 328 333 338 343 273 278 283 288 293
ESHE [V]
0.14078 0.14041 0.13985 0.13917 0.13836 0.13726 0.13627 0.13503 0.2679 0.26808
0.26796 0.26796 0.27286 0.27189 0.27075 0.26943 0.26797 0.26639 0.26466 0.26278 0.26079 0.27283 0.27187 0.27078 0.26949 0.26804 0.26642 0.26466 0.26273 0.26063 0.25839 0.25598 0.25347 0.25088 0.24767 0.27406 0.27321 0.27218 0.27099 0.26962
Ref. 57Gup 57Gup 57Gup 57Gup 57Gup 57Gup 57Gup 57Gup 64Bet 53Pou, 67Cov, 63Gup2, 58Grz, 65Sch1, 68Sha 57Kor 51Hil 61Ive 61Ive 61Ive 61Ive 61Ive 61Ive 61Ive 61Ive 61Ive 53Pou 53Pou 53Pou 53Pou 53Pou 53Pou 53Pou 53Pou 53Pou 53Pou 53Pou 53Pou 53Pou 53Pou 58Grz 58Grz 58Grz 58Grz 58Grz
24
1 Electrode potentials
Electrode 2)
Electrode reaction, electrolyte system 3), concentration 4)
T [K]
Hg
2Hg+2Cl−→Hg2Cl2+2e−, 1 m 2Hg+2Cl−→Hg2Cl2+2e−, 1 m 2Hg+2Cl−→Hg2Cl2+2e−, 1 m 2Hg+2Cl−→Hg2Cl2+2e−, 1 m 2Hg+2Cl−→Hg2Cl2+2e−, 1 m 2Hg+2Cl−→Hg2Cl2+2e−, 1 m 2Hg+2Cl−→Hg2Cl2+2e−, 1 m 2Hg+2Cl−→Hg2Cl2+2e−, 1 m 2Hg+2Cl−→Hg2Cl2+2e−, 1 m 2Hg+2Cl−→Hg2Cl2+2e−, 1 m 2Hg+2Cl−→Hg2Cl2+2e−, 1 m 2Hg+2Cl−→Hg2Cl2+2e−, 1 m 2Hg+2Cl−→Hg2Cl2+2e−, 1 m 2Hg+2Cl−→Hg2Cl2+2e−, 1 m 2Hg+2Cl−→Hg2Cl2+2e−, 1 m 2Hg+2Cl−→Hg2Cl2+2e−, 1 m 2Hg+2Cl−→Hg2Cl2+2e−, 1 m 2Hg+2Cl−→Hg2Cl2+2e−, 1 m 2Hg+2Cl−→Hg2Cl2+2e−, sol. saturated in KCl 2Hg+2Cl−→Hg2Cl2+2e−, sol. saturated in KCl 2Hg+2Cl−→Hg2Cl2+2e−, sol. saturated in KCl 2Hg+2Cl−→Hg2Cl2+2e−, sol. saturated in KCl 2Hg+2Cl−→Hg2Cl2+2e−, sol. saturated in KCl 2Hg+2Cl−→Hg2Cl2+2e−, sol. saturated in KCl 2Hg+2Cl−→Hg2Cl2+2e−, sol. saturated in KCl 2Hg+2Cl−→Hg2Cl2+2e−, sol. saturated in KCl 2Hg+2Cl−→Hg2Cl2+2e−, sol. saturated in KCl 2Hg+2Cl−→Hg2Cl2+2e−, sol. saturated in KCl 2Hg+2Cl−→Hg2Cl2+2e−, sol. saturated in KCl 2Hg+2Cl−→Hg2Cl2+2e−, sol. saturated in KCl 2Hg+2Cl−→Hg2Cl2+2e−, sol. saturated in KCl 2Hg+2Cl−→Hg2Cl2+2e−, sol. saturated in KCl 2Hg+2Cl−→Hg2Cl2+2e−, sol. saturated in KCl 2Hg+2Cl−→Hg2Cl2+2e−, sol. saturated in KCl 2Hg+2Cl−→Hg2Cl2+2e−, sol. 3.5 M in KCl 2Hg+2Cl−→Hg2Cl2+2e−, sol. 3.5 M in KCl 2Hg+2Cl−→Hg2Cl2+2e−, sol. 3.5 M in KCl 2Hg+2Cl−→Hg2Cl2+2e−, sol. 3.5 M in KCl 2Hg+2Cl−→Hg2Cl2+2e−, sol. 3.5 M in KCl 2Hg+2Cl−→Hg2Cl2+2e−, sol. 3.5 M in KCl 2Hg+2Cl−→Hg2Cl2+2e−, sol. 1 M in KCl 2Hg+2Cl−→Hg2Cl2+2e−, sol. 1 M in KCl 2Hg+2Cl−→Hg2Cl2+2e−, sol. 1 M in KCl 2Hg+2Cl−→Hg2Cl2+2e−, sol. 1 M in KCl
298 303 308 313 318 323 328 333 278 283 288 293 298 303 308 313 318 298 298 273 283 288 293 298 303 308 311 313 323 333 343 353 363 373 313 323 333 343 353 363 273 283 293 298
ESHE [V]
0.26812 0.26648 0.26468 0.26276 0.26068 0.25841 0.25613 0.25376 0.27289 0.27191 0.27082 0.26955 0.26816 0.26659 0.26485 0.26303 0.26103 0.26796 0.2412 0.2602 0.2541 0.2509 0.2477 0.2444 0.2411 0.2377 0.2357 0.2343 0.2272 0.2199 0.2124 0.2047 0.1967 0.1885 0.2466 0.2428 0.2377 0.2331 0.2277 0.2237 0.2854 0.2839 0.2815 0.2801
Ref. 58Grz 58Grz 58Grz 58Grz 58Grz 58Grz 58Grz 58Grz 61Ive 61Ive 61Ive 61Ive 61Ive 61Ive 61Ive 61Ive 61Ive 58Sch 61Ive 61Ive 6) 61Ive 6) 61Ive 6) 61Ive 6) 61Ive 6) 61Ive 6) 61Ive 6) 61Ive 6) 61Ive 6) 61Ive 6) 61Ive 6) 61Ive 6) 61Ive 6) 61Ive 6) 61Ive 6) 61Ive 6) 61Ive 6) 61Ive 6) 61Ive 6) 61Ive 6) 61Ive 6) 61Ive 6) 61Ive 6) 61Ive 6) 61Ive 6)
Landolt-Börnstein New Series IV/9A
1 Electrode potentials Electrode 2)
25
Electrode reaction, electrolyte system 3), concentration 4)
T [K]
2Hg+2Cl−→Hg2Cl2+2e−, sol. 1 M in KCl 2Hg+2Cl−→Hg2Cl2+2e−, sol. 1 M in KCl 2Hg+2Cl−→Hg2Cl2+2e−, sol. 1 M in KCl 2Hg+2Cl−→Hg2Cl2+2e−, sol. 1 M in KCl 2Hg+2Cl−→Hg2Cl2+2e−, sol. 1 M in KCl 2Hg+2Cl−→Hg2Cl2+2e−, sol. 0.1 M in KCl 2Hg+2Cl−→Hg2Cl2+2e−, sol. 0.1 M in KCl 2Hg+2Cl−→Hg2Cl2+2e−, sol. 0.1 M in KCl 2Hg+2Cl−→Hg2Cl2+2e−, sol. 0.1 M in KCl 2Hg+2Cl−→Hg2Cl2+2e−, sol. 0.1 M in KCl 2Hg+2Cl−→Hg2Cl2+2e−, sol. 0.1 M in KCl 2Hg+2Cl−→Hg2Cl2+2e−, sol. 0.1 M in KCl 2Hg+2Cl−→Hg2Cl2+2e−, sol. 0.1 M in KCl 2Hg+2Cl−→Hg2Cl2+2e−, sol. 0.1 M in KCl 2Hg+2Cl−→Hg2Cl2+2e−, sol. 1 M in KCl 2Hg+2Cl−→Hg2Cl2+2e−, sol. 0.1 M in KCl 2Hg+2Cl−→Hg2Cl2+2e−, sol. 1 m in KCl Hg+F−→HgF++2e− Hg+H2O→HgO+2H++2e−, Ba(OH)2 sat. Hg+H2O→HgO+2H++2e−, Ca(OH)2 sat.
303 313 323 333 343 273 283 293 298 303 313 323 333 343 298 298 298 298 298
6Hg+ 2[Co(CN)36 – ] →(Hg2)3[Co(CN)6]+6e−, K3[Co(CN)6] 2Hg+ HPO 24 –
−
→Hg2HPO4+2e
298
0.638
61Ive
298
0.6359 –0.661 –0.0405
50Lar 61Ive 61Ive, 57Kor
0.3942
43Tak
0.3944
61Ive
2Hg+ IO3– →Hg2(IO3)2+2e−, KIO3 2Hg+ IO3–
−
→Hg2(IO3)2+2e
298
Hg+ N 3– →Hg2(N3)2+2e− −
−
Hg+2OH →HgO+H2O+2e , NaOH Hg+4SCN−→ Hg(SCN) 24 – +2e− Hg+4SeCN
−
→ Hg(SeCN) 24 –
−
+2e
−
2Hg+ SO →Hg2SO4+2e , acidic 2– 4
−
2Hg+ SO →Hg2SO4+2e 2– 4
−
2Hg+ SO →Hg2SO4+2e , H2SO4 2– 4
−
2Hg+ SO →Hg2SO4+2e , H2SO4, c=1 M 2– 4
−
2Hg+ SO →Hg2SO4+2e , H2SO4, c=1 M 2– 4
−
2Hg+ SO →Hg2SO4+2e , H2SO4, c=1 M 2– 4
−
2Hg+ SO →Hg2SO4+2e , H2SO4, c=1 M 2– 4
Landolt-Börnstein New Series IV/9A
61Ive 6) 61Ive 6) 61Ive 6) 61Ive 6) 61Ive 6) 61Ive 6) 61Ive 6) 61Ive 6) 61Ive 6) 61Ive 6) 61Ive 6) 61Ive 6) 61Ive 6) 61Ive 6) 61Ive 61Ive 61Ive 55Pau 35Sam 35Sam 65Roc
−
2Hg+H2S→Hg2S+2H +2e 2Hg+2I−→Hg2I2+2e−
0.2786 0.2753 0.2716 0.2673 0.2622 0.3338 0.3343 0.3340 0.3337 0.3332 0.3316 0.3296 0.3229 0.3236 0.2801 0.3337 0.2810 0.876 0.1462 0.1932
Ref.
–0.427
2Hg+ HPO 24 – →Hg2HPO4+2e−, H3PO4 +
ESHE [V]
–0.26 0.0977
52Suz1 57Ham
0.267
56Tac
0.025
56Tac
0.6151
64Bet
0.6141
57Kor
0.6135
70Sha2
273
0.63495 90Gal
278
0.63097 90Gal
283
0.62704 90Gal
288
0.62307 90Gal
26
1 Electrode potentials
Electrode 2)
Electrode reaction, electrolyte system 3), concentration 4)
Hg
− 2Hg+ SO 2– 4 →Hg2SO4+2e , H2SO4, c=1 M
T [K]
ESHE [V]
Ref.
293
0.61930 90Gal
298
0.61515 90Gal
303
0.61107 90Gal
2Hg+ SO →Hg2SO4+2e , H2SO4, c=1 M
308
0.60701 90Gal
− 2Hg+ SO 2– 4 →Hg2SO4+2e , H2SO4, c=1 M
313
0.60305 90Gal
318
0.59900 90Gal
323
0.59487 90Gal
328
0.59051 90Gal
333
0.58659 90Gal
273
0.63495 35Har
278
0.63097 35Har
283
0.62704 35Har
288
0.62307 35Har
293
0.61930 35Har
298
0.61515 35Har
2Hg+ SO →Hg2SO4+2e
303
0.61107 35Har
− 2Hg+ SO 2– 4 →Hg2SO4+2e
308
0.60701 35Har
313
0.60305 35Har
318
0.59900 35Har
323
0.59487 35Har
328
0.59051 35Har
333
0.58659 35Har
−
2Hg+ SO →Hg2SO4+2e , H2SO4, c=1 M 2– 4
−
2Hg+ SO →Hg2SO4+2e , H2SO4, c=1 M 2– 4 2– 4
−
−
2Hg+ SO →Hg2SO4+2e , H2SO4, c=1 M 2– 4
−
2Hg+ SO →Hg2SO4+2e , H2SO4, c=1 M 2– 4
−
2Hg+ SO →Hg2SO4+2e , H2SO4, c=1 M 2– 4
−
2Hg+ SO →Hg2SO4+2e , H2SO4, c=1 M 2– 4
−
2Hg+ SO →Hg2SO4+2e 2– 4
−
2Hg+ SO →Hg2SO4+2e 2– 4
−
2Hg+ SO →Hg2SO4+2e 2– 4
−
2Hg+ SO →Hg2SO4+2e 2– 4
−
2Hg+ SO →Hg2SO4+2e 2– 4
−
2Hg+ SO →Hg2SO4+2e 2– 4 2– 4
−
−
2Hg+ SO →Hg2SO4+2e 2– 4
−
2Hg+ SO →Hg2SO4+2e 2– 4
−
2Hg+ SO →Hg2SO4+2e 2– 4
−
2Hg+ SO →Hg2SO4+2e 2– 4
−
2Hg+ SO →Hg2SO4+2e 2– 4
−
2Hg+ SO →Hg2SO4+2e , H2SO4 2– 4
0.6125
65Cov
273
0.6718
90Gal
278
0.6676
90Gal
283
0.6635
90Gal
288
0.6594
90Gal
2Hg+ SO →Hg2SO4+2e , K2SO4, sat.
293
0.6553
90Gal
− 2Hg+ SO 2– 4 →Hg2SO4+2e , K2SO4, sat.
298
0.6513
90Gal
303
0.6473
90Gal
308
0.6433
90Gal
313
0.6392
90Gal
318
0.6351
90Gal
323
0.6309
90Gal
−
2Hg+ SO →Hg2SO4+2e , K2SO4, sat. 2– 4
−
2Hg+ SO →Hg2SO4+2e , K2SO4, sat. 2– 4
−
2Hg+ SO →Hg2SO4+2e , K2SO4, sat. 2– 4
−
2Hg+ SO →Hg2SO4+2e , K2SO4, sat. 2– 4 2– 4
−
−
2Hg+ SO →Hg2SO4+2e , K2SO4, sat. 2– 4
−
2Hg+ SO →Hg2SO4+2e , K2SO4, sat. 2– 4
−
2Hg+ SO →Hg2SO4+2e , K2SO4, sat. 2– 4
−
2Hg+ SO →Hg2SO4+2e , K2SO4, sat. 2– 4
−
2Hg+ SO →Hg2SO4+2e , K2SO4, sat. 2– 4
Landolt-Börnstein New Series IV/9A
1 Electrode potentials Electrode 2)
Electrode reaction, electrolyte system 3), concentration 4) − 2Hg+ SO 2– 4 →Hg2SO4+2e , K2SO4, sat.
27 T [K]
0.6266
90Gal
333
0.6226
90Gal
338
0.6177
90Gal
2Hg+ SO →Hg2SO4+2e , K2SO4, sat
343
0.6133
90Gal
− 2Hg+ SO 2– 4 →Hg2SO4+2e , K2SO4, sat.
348
0.6084
90Gal
353
0.6034
90Gal
358
0.5984
90Gal
363
0.5931
90Gal
0.028
63Mur
–0.057
56Tac
–0.100 0.567 0.566 0.5109 0.5117 0.51163 0.51163 0.51163 0.5111 0.499 0.4158 0.4166 0.4263 0.4924
56Tac 66Cha 74Ost 61Ive 61Ive 63Lar 64Cov 68Shu 73Cho 66Cha 48Fer 61Ive 67Ber 71Cov
–0.2
52Lat
2Hg+ SO →Hg2SO4+2e , K2SO4, sat. −
2Hg+ SO →Hg2SO4+2e , K2SO4, sat. 2– 4
−
2– 4
−
2Hg+ SO →Hg2SO4+2e , K2SO4, sat. 2– 4
−
2Hg+ SO →Hg2SO4+2e , K2SO4, sat. 2– 4
−
2Hg+ SO →Hg2SO4+2e , K2SO4, sat. 2– 4
2Hg+ 2S2 O 32 – → Hg(S2 O 3 ) 22– +2e− Hg+ 3S2 O 32 –
→ Hg(S2 O 3 ) 34–
−
+2e
Hg+ 4S2 O 32 – → Hg(S2 O 3 ) 64– +2e− −
−
2Hg+2(formate) →Hg2 formate2+2e , Na formate 2Hg+2(formate)−→Hg2 formate2+2e−, formic acid 2Hg+2Ac−→Hg2Ac2+2e−, T = 298 K, 1 M acetic acid 7) 298 2Hg+2Ac−→Hg2Ac2+2e−, 1 m acetic acid − − 2Hg+2Ac →Hg2Ac2+2e , acetic acid 2Hg+2Ac−→Hg2Ac2+2e−, acetic acid, K acetate, Na acetate 2Hg+2Ac−→Hg2Ac2+2e−, acetic acid, KNO3 2Hg+2Ac−→Hg2Ac2+2e−, acetic acid, Na acetate 2Hg+2(propionate)−→Hg2 propionate2+2e−, Na propionate 2Hg+2(oxalate)−→Hg2 oxalate2+2e−, oxalic acid sat. 298 2Hg+Ox−→Hg2Ox+2e− 8) 2Hg+2(benzoate)−→Hg2(benzoate)2+2e−, benzoic acid 2Hg+2(picrate)−→Hg2 picrate2+2e−, picric acid Molybdenum Mo→Mo3++3e− Neodymium (Nd)
+H2O→ MoO 22 +
3+
MoO
+2H +2e , molybdenum blue, HCl
0.482
53ElS
1.8
72Ten
Nd+oxalate →Nd oxalate +3e
–2.504 –2.575
54Spe 55Bab
Nd+2(oxalate)2−→Nd oxalate 2– +3e−
–2.661
55Bab
1.130
54Spe
2+
−
3+
Nd →Nd +e Nd+ SO 24 –
→
NdSO +4
−
+3e , Nd2(SO4)3 +
−
NpO +2 → NpO 22 + +e−, NpO2(NO3)2
Ni→Ni2++2e−
–0.236
Ni→Ni2++2e−, NiSO4
–0.257
Ni+2OH−→Ni(OH)2+2e−, basic
–0.72
29Har1, 34Col 55Pal, 62Vag 72Moo
NiCl2, NaPO3
–0.345
53Rin
→NiS2O3+2e , NiCl2, BaS2O3
–0.372
51Den
Ni+ P3O 39 – Ni+ S2 O 32 – Landolt-Börnstein New Series IV/9A
−
+
2−
Neptunium (Np) Nickel (Ni)
Ref.
328
−
2– 4
(Mo)
ESHE [V]
→
NiP3O 9– +2e−, −
28
1 Electrode potentials
Electrode 2)
Electrode reaction, electrolyte system 3), concentration 4)
Ni
Ni(CN) 32 – +CN−→ Ni(CN) 24 – +e−, K2Ni(CN)3 K2Ni(CN)4 2+
−
Ni+acetylacetone→[Ni acetylacetone] +2e , acetylacetone Ni+2acetylacetone→[Ni acetylacetone2]2++2e−, acetylacetone Ni+malonate2−→Ni malonate+2e−, NiCl2, NaH malonate − Ni+2(oxalate)2−→Ni oxalate 2– 2 +2e 2+
−
Ni+glycine→[Ni glycine] +2e , NiCl2, glycine, NaOH Ni+2glycine→[Ni glycine2]2++2e−, NiCl2, glycine, NaOH Ni+glycylglycine→[Ni glyclglycine]2++2e−, NiCl2,glycylglycine, NaOH Ni+2glycylglycine→[Ni glyclglycine2]2++2e−, NiCl2,glycylglycine, NaOH Ni+glycylglycylglycine→[Ni glyclglycylglycine]2++2e−, NiCl2,glycylglycylglycine, NaOH Ni+2glycylglycylglycine→[Ni glyclglycylglycine2]2++2e−, NiCl2,glycylglycylglycine, NaOH Ni+8-hydroxyquinoline-5-sulfonate2−→ Ni 8-hydroxyquinoline-5-sulfonate+2e−, 8-hydroxyquinoline-5-sulfonate2−, NaOH, Ni(NO3)2 Ni+2(8-hydroxyquinoline-5-sulfonate2−)→ [Ni 8-hydroxyquinoline-5-sulfonate2]2−+2e−, 8-hydroxyquinoline-5-sulfonate2−, NaOH, Ni(NO3)2
T [K]
ESHE [V]
Ref.
–0.401 –0.425 –0.559 –0.368
47Cag 49Mal2 49Mal2 49Sto
–0.442 –0.433 –0.578 –0.383
51Bar 51Mon4 51Mon4 51Mon4
–0.483
51Mon4
–0.368
55Eva
–0.459
55Eva
–0.538
54Näs
–0.796
54Näs
Osmium
OsBr63 – → OsBr62 – +e−, HBr
0.452
47Dwy1
(Os)
OsCl36 – → OsCl 62 – +e−, HCl
0.452
47Dwy1
Os dipyridyl 32 + →Os dipyridyl 33 + +e−, Os dipyridyl3(ClO4)2, Os dipyridyl3(ClO4)3, KCl, HCl, KNO3
0.8821
52Bar
Os dipyridyl 32 + →Os dipyridyl 33 + +e−, Os dipyridyl3(ClO4)2, Os dipyridyl3(ClO4)3, KCl
0.8821
66Buc2
Os dipyridyl2(CN)2→Os dipyridyl2(CN) +2 +e−, Os dipyridyl2(CN)2, H2SO4 Os dipyridyl2(2,4-pentanedione)+→ Os dipyridyl2(2,4-pentanedione)2++e–, Os dipyridyl2(2,4-pentanedione)(ClO4)2, Os dipyridyl2(2,4-pentanedione)(ClO4)3, KCl
0.792
63Sch2
0.1530
66Buc2
Os(dipyridyl)(pyridyl) 24 + →Os(dipyridyl)(pyridyl) 34+ +e−, Os(dipyridyl)(pyridyl)4(ClO4)2, Os(dipyridyl)(pyridyl)4(ClO4)3
0.8052
52Bar
Os(dipyridyl)2(pyridyl) 22 + →Os(dipyridyl)2(pyridyl) 32+ +e−, Os(dipyridyl)2(pyridyl)2(ClO4)2, Os(dipyridyl)2(pyridyl)2(ClO4)3
0.8345
52Bar
Os(dipyridyl)Br(pyridyl) 3+ →Os(dipyridyl)Br(pyridyl) 32 + +e−, Os(dipyridyl)Br(pyridyl)3(ClO4)2, Os(dipyridyl)Br(pyridyl)3Cl, KCl
0.4437
52Bar
Landolt-Börnstein New Series IV/9A
1 Electrode potentials Electrode 2)
Electrode reaction, electrolyte system 3), concentration 4) Os(dipyridyl)2Br(pyridyl)+→Os(dipyridyl)2Br(pyridyl)2++e−, Os(dipyridyl)2Br(pyridyl)(ClO4)2, Os(dipyridyl)2Br(pyridyl)Cl, KCl Os(dipyridyl)(pyridyl)3Cl+→Os(dipyridyl)(pyridyl)3Cl2++e−, Os(dipyridyl)Cl(pyridyl)3(ClO4)2, Os(dipyridyl)Cl(pyridyl)3Cl, KCl Os(dipyridyl)2(pyridyl)Cl+→Os(dipyridyl)2(pyridyl)Cl++e−, Os(dipyridyl)2Cl(pyridyl)(ClO4)2, Os(dipyridyl)2Cl(pyridyl)Cl, KCl Os(dipyridyl)2Cl(pyridyl)+→Os(dipyridyl)2Cl(pyridyl)2++e−, Os(dipyridyl)2Cl(pyridyl)(ClO4)2, Os(dipyridyl)2Cl(pyridyl)Cl, KCl Os(dipyridyl)I(pyridyl) 3+ →Os(dipyridyl)I(pyridyl) 32 + +e, Os(dipyridyl)I(pyridyl)3(ClO4)2, Os(dipyridyl)I(pyridyl)3Cl, KCl− Os(dipyridyl)2(pyridyl)+→Os(dipyridyl)2(pyridyl)2++e−, Os(dipyridyl)2I(pyridyl)(ClO4)2, Os(dipyridyl)2I(pyridyl)Cl, KCl Os tripyridyl 22 + →Os tripyridyl 32+ +e−, Os(tripyridyl)2(ClO4)2, Os(tripyridyl)2(ClO4)3, H2SO4 Os(dipyridyl)(tripyridyl)Br+→Os(dipyridyl)(tripyridyl)Br2++e−, Os(dipyridyl)Br(tripyridyl)3(ClO4)2, Os(dipyridyl)Br(tripyridyl)3Cl, KCl Os(dipyridyl)(tripyridyl)Cl+→Os(dipyridyl)(tripyridyl)Cl2++e−, Os(dipyridyl)Cl(tripyridyl)3(ClO4)2, Os(dipyridyl)Cl(tripyridyl)3Cl, KCl Os(dipyridyl)(tripyridyl)I+→Os(dipyridyl)(tripyridyl)I2++e−, Os(dipyridyl)I(tripyridyl)3(ClO4)2, Os(dipyridyl)I(tripyridyl)3Cl, KCl Os(tripyridyl)(dipyridyl)(pyridyl)2+→ Os(tripyridyl)(dipyridyl)(pyridyl)3++e−, Os(tripyridyl)(dipyridyl)(pyridyl)(ClO4)2, Os(tripyridyl)(dipyridyl)(pyridyl)(ClO4)3, KCl Os(tripyridyl)(dipyridyl)(4-ethylpyridyl)2+→ Os(tripyridyl)(dipyridyl)(4-ethylpyridyl)3++e−, Os(tripyridyl)(dipyridyl)(4-ethylpyridyl)(ClO4)2, Os(tripyridyl)(dipyridyl)(4-ethylpyridyl)(ClO4)3, KCl Os(tripyridyl)(dipyridyl)(3-methylpyridyl)2+→ Os(tripyridyl)(dipyridyl)(3-methylpyridyl)3++e−, Os(tripyridyl)(dipyridyl)(3-methylpyridyl)(ClO4)2, Os(tripyridyl)(dipyridyl)(3-methylpyridyl)(ClO4)3, KCl Os(tripyridyl)(dipyridyl)(4-methylpyridyl)2+→ Os(tripyridyl)(dipyridyl)(4-methylpyridyl)3++e−, Os(tripyridyl)(dipyridyl)(4-methylpyridyl)(ClO4)2, Os(tripyridyl)(dipyridyl)(4-methylpyridyl)(ClO4)3, KCl
Landolt-Börnstein New Series IV/9A
29 T [K]
ESHE [V]
Ref.
0.4871
52Bar
0.4255
52Bar
0.4836
52Bar
0.4836
52Bar
0.4508
52Bar
0.4888
52Bar
0.9866
54Dwy
0.5675
52Bar
0.5628
52Bar
0.5666
52Bar
0.8713
52Bar
0.8587
52Bar
0.8672
52Bar
0.8506
52Bar
30
1 Electrode potentials
Electrode 2)
Electrode reaction, electrolyte system 3), concentration 4)
Os
Os(tripyridyl)(dipyridyl)(4-propylpyridyl)2+→ Os(tripyridyl)(dipyridyl)(4-propylpyridyl)3++e−, Os(tripyridyl)(dipyridyl)(4-propylpyridyl)(ClO4)2, Os(tripyridyl)(dipyridyl)(4-propylpyridyl)(ClO4)3, KCl
0.8609
52Bar
Os(tripyridyl)(pyridyl) 32 + →Os(tripyridyl)(pyridyl) 33 + +e−, Os(tripyridyl)(pyridyl)3(ClO4)3, Os(tripyridyl)(pyridyl)3(ClO4)2, KCl
0.7999
52Bar
Pd→Pd++2e− Pd→Pd++2e−
0.951 0.83
Pd→Pd++2e−, Pd(ClO4)2, HClO4 Pd+Cl−→PdCl++e− Pd+2Cl−→PdCl2+2e−
0.951 0.771 0.638
63Gri 32Chl, 38Owe2 67Iza 56Dro 56Dro
Pd+3Cl−→ PdCl 3– +2e−
Palladium (Pd)
Ref.
0.567
56Dro
0.591
66Kra2
Pd+5Cl−→ PdCl 35 – +2e−
0.553
56Dro
0.615
56Dro
1.288 0.692
64Bet 65Bab
1.13
65Bab
0.625
65Bab
1.28
52Lat
0.755
68Gri
0.40
66Hub
0.72
30Smi
0.39 0.14 1.28
66Hub 61Saw 69Kuk
0.95
69Kuk
0.722
66Che
0.583
49Gri
0.431 0.597
49Gri 49Gri
0.600
49Gri
→ PdCl 24 –
Pd+4Cl
+2e , PdCl4
−
−
→ PdCl 64 –
Pd+6Cl
+2e
PdCl 24 – +2Cl–→ PdCl 64 – +2e− −
2+
2+
−
[Pd ethylenediamine2] +2Br →[Pd ethylenediamine2 Br2] +2e , [Pd ethylenediamine2]2+, [Pd ethylenediamine2 Br2]2+ [Pd ethylenediamine2]2++2Cl−→[Pd ethylenediamine2 Cl2]2++2e−, [Pd ethylenediamine2]2+, [Pd ethylenediamine2 Cl2]2+ [Pd ethylenediamine2]2++2I−→[Pd ethylenediamine2 I2]2++2e−, [Pd ethylenediamine2]2+, [Pd ethylenediamine2 I2]2+ (Pt)
ESHE [V]
−
−
Platinum
T [K]
Pt→Pt2++2e− −
Pt+4Cl Pt+4I
→ PtCl 24 – +2e−
−
→ PtI 24 –
−
+2e
PtCl 24 – +2Cl−→ PtCl 62 – +2e− PtI 24 –
+2I
−
→ PtI 62 –
−
+2e
−
−
Pt+2OH →Pt(OH)2+2e PtCl(NCl2)(NH3)4+2Cl−→ [PtCl(NCl2)(NH3)4]Cl2+2e−, PtCl(NCl2)(NH3)4Cl2, H2SO4 [PtCl(NCl2)(NH3)2]Cl−+2Cl−→ [PtCl3(NCl2)(NH3)2]Cl−+2e−, PtCl3(NCl2)(NH3)2Cl−, H2SO4 PtCl(NO2)(NH3)2+NO2−+Cl−→Pt(Cl(NO2))2(NH3)2+2e− Pt(NH 3 ) 24 + Pt(NH 3 ) 24 +
+2Br +2I
→ Pt(NH 3 ) 4 Br22 +
−
→ Pt(NH 3 ) 4 I 22 +
−
−
−
+2e −
+2e
−
cis-[Pt(NH3)2Br2]+2Br →cis-[Pt(NH3)2Br4]+2e , cis-[Pt(NH3)2Br2], cis-[Pt(NH3)2Br4] trans-[Pt(NH3)2Br2]+2Br−→trans-[Pt(NH3)2Br4]+2e−, trans-[Pt(NH3)2Br2], trans-[Pt(NH3)2Br4]
Landolt-Börnstein New Series IV/9A
1 Electrode potentials Electrode 2)
31
Electrode reaction, electrolyte system 3), concentration 4) cis-[Pt(NH3)2I2]+2I−→cis-[Pt(NH3)2I4]+2e−, cis-[Pt(NH3)2I2], cis-[Pt(NH3)2I4] trans-[Pt(NH3)2I2]+2I−→trans-[Pt(NH3)2I4]+2e−, trans-[Pt(NH3)2I2], trans-[Pt(NH3)2I4] Pt((NO2)(NH3))2+2Br−→Pt(Br2((NO2)(NH3))2+2e−, Pt((NO2)(NH3))2, Pt(Br2((NO2)(NH3))2 Pt((NO2)(NH3))2+2Br−→Pt(Br2((NO2)(NH3))2+2e−, Pt((NO2)(NH3))2, Pt(Br2((NO2)(NH3))2
0.383
49Gri
0.782
66Che
0.786
66Che
0.807
66Che
0.759
66Che
0.763
66Che
PtCl(NO2)(NH3)2+ NO 2– +Cl−→PtCl2(NO2)2(NH3)2+2e−, PtCl(NO2)2(NH3)2, PtCl2(NO2)2(NH3)2
0.778
66Che
Pt(methylamine) 24 + +2Cl−→Pt(methylamine)4 Cl 22 + +2e−,
0.6220
68Gri
0.8327
68Gri
+2Cl →Pt(butylamine)4Cl 22 + +2e−, Pt(butylamine) 24 + , Pt(butylamine)4Cl 22 + , H2SO4
0.8380
68Gri
Pt(ethylamine) 24 + +2Cl−→Pt(ethylamine)4Cl 22 + +2e−,
0.6919
68Gri
0.5660
68Gri
1.006
62Sch2
Pt(propylamine) 24 +
Pt(methylamine)4 Cl 22 +
,
+2Cl →Pt(propylamine)4 Cl 22 + +2e−, Pt(propylamine)4 Cl 22 +
,
Pt(butylamine) 24 +
,
Pt(ethylenediamine) 22 +
Pt(ethylamine)4Cl 22 +
+2Cl →Pt(ethylenediamine)2Cl 22 + +2e−,
Pu →Pu +e , HClO4 −
(Pu)
Pu +5acetate → Pu
Polonium (Po)
Po→Po3++3e−
acetate5- +e−
Po→Po4++4e− −
Landolt-Börnstein New Series IV/9A
,
Pt(ethylenedamine)2Cl 22 +
−
3+
Po+4Cl
→ PoCl 24 –
PoCl 24 –
−
+2Cl
−
+2e
→ PoCl 62 –
K→K++e−
K→K++e−, acidic K→K++e− K(Hg)→K++Hg+e−
, HCl
−
Pt(ethylenediamine) 22 + 4+
, H2SO4
−
Pt(ethylamine) 24 +
3+
, HCl
−
Pt(propylamine) 24 +
K(Hg)
Ref. 49Gri
Pt(methylamine) 24 +
Potassium (K)
ESHE [V]
0.390
Pt(NO2)(NH3)2Br+ NO 2– +Br−→PtBr2((NO2)(NH3))2+2e−, Pt((NO2)(NH3))2Br, PtBr2(NO2)2(NH3)2 Pt((NO2)(NH3))2+2Cl−→PtCl2((NO2)(NH3))2+2e−, Pt((NO2)(NH3))2, PtCl2((NO2)(NH3))2 Pt(NO2)2(NH3)2+2Cl−→PtCl2(NO2)2(NH3)2+2e−, Pt(NO2) 2 (NH3)2, Pt(Cl2(NO2) 2 (NH3)2
Plutonium
T [K]
−
+2e , HCl
, HCl –0.33
62Sch2
0.56 0.76
35Hai, 29Sch 56Bag
0.38
56Bag
0.72
56Bag
–2.922
34Arm, 31Lar, 52Lat, 12Lew 72Moo 77Gio 68Dil
–2.925 298.15 –2.928 –2.931
32
1 Electrode potentials
Electrode 2)
Electrode reaction, electrolyte system 3), concentration 4)
T [K]
ESHE [V]
Ref.
K(Hg) K(Hg) K(Hg) K(Hg) K(Hg)
K(Hg)→K++Hg+e− K(Hg)→K++Hg+e− K(Hg)→K++Hg+e− K(Hg)→K++Hg+e− K(Hg)→K++Hg+e−
283.15 298.15 313.15 328.15 343.15
–1.950 –1.975 –1.998 –2.020 –2.038
77Gio 77Gio 77Gio 77Gio 77Gio
K+ BrO3– →KBrO3+e−
–2.895
44Jon1
K+ ClO 3– →KClO3+e−
–2.928
31Ban
−
–2.902
45Jon
3.010
50Jam
3.008
50Jam, 37Har2
3.0667
36Jon, 49Jam
K+ ClO 4–
→KClO4+e
K+ Co(CN) 36 – → KCo(CN) 62 – +e− K+ Fe(CN)36 – → KFe(CN)62 –
−
+e
K+ Fe(CN) 64 – → KFe(CN)36 – +e− K+ IO3– →KIO3+e−
–2.917
42Kri, 48Mon
K+ NO 3– →KNO3+e−
–2.917
31Ban, 27Dav
K+ ReO 4– →KReO4+e−
–2.974
46Jon
–2.988
50Jen
–2.987
51Den
1.8
72Ten
–2.534
54Spe, 55Gim
K+ SO 24 – → KSO 4– +e− K+ S2 O 32 –
→ KS2 O 3–
−
+e
Praseodymium Pr2+→Pr3++e− → PrSO +4 +3e−,
(Pr)
Pr+ SO 24 –
Rhenium (Re) Rhodium (Rh)
ReO3+H2O→ ReO 4– +2H++e−, HReO4, NaReO4, NaOH
0.768
57Kin
Rh→Rh2++2e− Rh→Rh3++3e−, Rh(ClO4)3, HClO4
0.6 0.758
52Lat 71Amo
Pr2(SO4)3
Rubidium (Rb)
Rb→Rb++e−
Rb(Hg) Rb(Hg) Rb(Hg) Rb(Hg) Rb(Hg)
Rb(Hg)→Rb++Hg+e− Rb(Hg)→Rb++Hg+e− Rb(Hg)→Rb++Hg+e− Rb(Hg)→Rb+Hg+e−
–2.98 283.15 –1.943 298.15 –1.969 313.15 –1.996
52Lat, 31Lar, 46Gap, 15Lew 51Boc 74Lon 74Lon 74Lon
Rb(Hg)→Rb++Hg+e Ru(H 2 O)(NH 3 ) 35 + −
328.15 –2.022 343.15 –2.049
74Lon 74Lon
+
–2.96
−
Rb(Hg)
Rb(Hg)→Rb +Hg+e
Ruthenium (Ru)
Ru2+→Ru3++e−, HCl, RuCl2, RuCl3 Ru(CN) 64 –
→ Ru(CN)36 –
−
+e , K4Ru(CN)6, H2SO4, KCl
Ru(NH 3 ) 62 + → Ru(NH 3 )36+ +e−, NaClO4
0.2487
66Buc1
0.86
59Geo
0.214
65And
Landolt-Börnstein New Series IV/9A
1 Electrode potentials Electrode 2)
Electrode reaction, electrolyte system 3), concentration 4) Ru(NH 3 )52 + +H2O→ Ru(H 2 O)(NH 3 ) 35 + +e−, NaClO4
57Con2
1.0
54Sil
0.59
57Con2
RuO 24 – → RuO 4– +e−, KRuO4, RuO4, NaClO4
0.59
54Sil
Ru(dipyridyl) 32 +
1.29
59Geo
Ru(dipyridyl) 32 + →Ru(dipyridyl) 33 + +e−, H2SO4
1.29
49Bra
Ru(dipyridyl) 32 +
1.29
63Sch2
Ru(dipyridyl)2(CN)2→Ru(dipyridyl)2(CN) +2 +e−, HNO3, H2SO4
1.10
63Sch2
Ru(terpyridyl) 22 +
1.202
49Bra
Sm+ SO 24 – → SeSO +4 +3e−, Sm2(SO4)3
–2.487
54Spe
Sc+F−→ScF2++3e− Sc+2F−→ ScF2+ +3e−
–2.239
55Pau
Sc+3F →ScF3+3e
–2.333 –2.428
55Pau 55Pau
Se+2e−→Se2–
–0.78
, RuO4
−
→ RuO 4–
, RuO 4–
+e
, RuO4
→Ru(dipyridyl) 33 + →Ru(dipyridyl) 33 +
−
+e , Ru dipyridyl3Cl2 −
+e , H2SO4
→Ru(terpyridyl) 32+
−
−
+e , H2SO4
−
Ag+Br−→AgBr+e−, HBr Ag+Br−→AgBr+e− Ag+Br−→AgBr+e− Ag+Br−→Ag++e−+Br−, acidic
23Kra2, 23Lew 0.799 61Ive, 23Lew 0.7991 72Moo 0.800 65Pap 0.07133 62Het, 60Tow 0.0714 70Sin 0.07131 57Kor 0.654 53Ber1 0.0712 64Bet
Ag+2Br−→ AgBr2– +e−, AgClO4, NaBr, NaClO4
0.379
53Ber1
+e , AgClO4, NaBr, NaClO4
0.328
53Ber1
Ag+4Br−→ AgBr43 – +e−, AgClO4, NaBr, NaClO4
0.274
53Ber1
Ag→Ag++e− Ag→Ag++e−, acidic Ag→Ag++e−, AgClO4, NaClO4 Ag+Br−→AgBr+e−, HBr
Ag+3Br
−
→ AgBr32 –
−
−
−
+
Ag+Br +3Cl
−
→ AgBrCl33 – −
−
+e , AgBr sat., KCl, KBr
−
Ag+Cl →Ag +e +Cl , acidic Ag+Cl−→Ag++e−+Cl−, HCl
Ag+Cl−→Ag++e−+Cl− Ag+Cl−→Ag++e−+Cl−, KCl, HCl
Landolt-Börnstein New Series IV/9A
Ref.
1.0
, RuO 4–
→RuO4+e
RuO 24 –
Selenium (Se) Silver (Ag)
ESHE [V]
65And
−
RuO 4– →RuO4+e−, KRuO4, RuO4, NaClO4
(Sc)
T [K]
0.20
RuO 4–
Samarium (Sm) Scandium
33
0.330 57Cha3 0.2224 64Bet 0.22230 67Sen1, 54Bat2, 60Gre, 62Lie 0.22234 57Kor 0.22233 71Kom1 0.22238 72Kom
34
1 Electrode potentials
Electrode 2)
Electrode reaction, electrolyte system 3), concentration 4)
Ag
Ag+Cl−+3Br−→ AgClBr33 – +e−, AgBr sat., KCl, KBr Ag+ ClO 4–
T [K]
−
→AgClO4+e , Ag ClO4
3Ag+ Co(CN) 36 – →Ag3Co(CN)6+3e−, K3Co(CN)6 2Ag+ CrO 24 –
−
→Ag2CrO4+2e , KNO3, AgNO3, K2CrO4
4Ag+ Fe(CN) 64 – →Ag4Fe(CN)6+4e−, K4Fe(CN)6 −
Ag+I →AgI+e , HI Ag+I−→AgI+e− E00 [V]=–0.14590–1.696·10–4T–2.934 10–6T, 20
→AgMnO4+e , NaClO4, AgMnO4
2Ag+2 MoO 24 – →Ag2MoO4+2e− Ag+ N 3–
Ref.
0.239
57Cha3
0.787
45Jon
0.298
65Roc
0.4470
55Pan
0.1478 64Roc –0.15224 64Het –0.1510 37Can1, 37Can2 65Kor
−
Ag+ MnO 4–
ESHE [V]
−
→AgN3+e
Ag+ N 3– →AgN3+e−
0.763
55Ren
0.725
55Ren
0.2149
75Das3
0.4573
54Pan1
0.29
52Suz2
0.2919
57Kor
−
278
0.2959
38Tay
Ag+ N 3– →AgN3+e−
288
0.2942
38Tay
−
298
0.2919
38Tay
Ag+ N 3– →AgN3+e−
308
0.2889
38Tay
−
318
0.2854
38Tay
Ag+NH3→ AgNH3+ +e−
0.603
2Ag+2OH−→Ag2O+H2O+2e−, basic 2Ag+2OH−→Ag2O+H2O+2e−, NaOH 2Ag+2OH−→Ag2O+H2O+2e−, basic, sat. 2Ag+2OH−→Ag2O+H2O+2e−, basic, sat. 2Ag+2H2O→Ag2O+2H++2e− 2AgO+H2O+2e−→Ag2O+2OH−, basic, sat.
0.342 0.342 0.342 0.338 1.1700 0.604
41Dor, 43Vos1, 44Kil 64Bet 62Gre 57Ham 61Dir 61Ive 62Dir
0.3402 –0.691 –0.7125 0.08951 0.08944 0.0947
68Naq 59Gol 61Ive 56Van 75Lal 57Kor
Ag+2SCN−→ Ag(SCN) 2– +e−, AgSCN, KSCN
0.304
53Cav
Ag+3SCN−→ Ag(SCN)32 – +e−, AgSCN, KSCN
0.231
53Cav
Ag+ N 3– Ag+ N 3– Ag+ N 3–
→AgN3+e →AgN3+e →AgN3+e
3Ag+ PO 34 – →Ag3PO4+3e−, H3PO4 2−
−
2Ag+S →Ag2S+2e 2Ag+H2S→Ag2S+2H++2e− Ag+SCN−→AgSCN+e−, HClO4, KSCN Ag+SCN−→AgSCN+e−, HClO4, KSCN Ag+SCN−→AgSCN+e−
Landolt-Börnstein New Series IV/9A
1 Electrode potentials Electrode 2)
35
Electrode reaction, electrolyte system 3), concentration 4) Ag+4SCN−→ Ag(SCN)34– +e−, AgSCN, KSCN −
−
Ag+SeCN →AgSeCN+e , K2CO3, KSeCN 2Ag+ SeO 32 – →Ag2SeO3+2e−, NaHSeO3
T [K]
ESHE [V]
Ref.
0.214 –0.0288
53Cav 74Das
0.3629
61Lin
−
0.8289
42Gel
−
Ag+formate−→Ag formate+e−
0.4660 0.502
54Pan2 66Cha
Ag+2(acetate)−→Ag acetate 2– +e−, acetic acid
0.421
2Ag+oxalate2−→Ag2 oxalate+e−, Ag acetate, Na acetate 2Ag+tartrate2−→Ag2 tartrate+2e−, tartaric acid Ag+picrate−→Ag picrate+e− Ag+chloroacetate−→Ag chloroacetate+e−, Ag chloroacetate Ag+2(chloroacetate)−→Ag3 citrate+e−, citric acid Ag+benzoate−→Ag benzoate+e−, AgClO4, NaClO4 Ag+methylamine→Ag(methylamine)++e−, CH3NH3NO3
0.4647 0.5610 0.17 0.422 0.5046 0.746 0.614
52Mac, 42Mac, 47Mac, 51Dav2 48Fer 46Ple1 68Mat 52Mac 66Mat 49Led 50Bje
Ag+2methylamine→Ag(methylamine) +2 +e−
0.399
55Fyf
Ag+ethylamine→Ag ethylamine++e−
0.482 0.600
55Fyf 48Bru
Ag+2ethylamine→Ag(ethylamine) +2 +e−
0.368
Ag+ethylenediamine→Ag ethylenediamine++e−
0.361
55Fyf, 48Bru 50Bje
Ag+2alanine→Ag(alanine) +2
+e , AgNO3, alanine
0.375
51Mon2
Ag+2glycine→Ag(glycine) +2 +e−, AgNO3, glycine
0.392
51Mon2
Ag+2glycylglycine→Ag(glycylglycine) +2
0.505
51Mon2
0.609
55Mur
Ag+2methylnicotinamide→Ag(methylnicotinamide) +e
0.699 0.625
55Mur 55Mur
Ag+2methylisonicotinate→Ag(methylisonicotinat) +2 +e−
0.655
55Mur
Ag+3thiourea→Ag(thiourea) 3+
−
Ag+pyridine→Ag pyridine +e
0.026 0.682
43Vos2 55Mur, 61Sir
Ag+2pyridine→Ag(pyridine) +2 +e−
0.549
55Mur, 61Sir
2Ag+ SeO 24 – 2Ag+ WO 24 –
→Ag2SeO4+2e
→Ag2WO4+2e , Na2WO4,NaNO3,AgNO3
Ag+2dimethylamine→Ag(dimethylamine) +2
−
+e
−
−
+e , AgNO3,
glycylglycine Ag+2nicotinamide→Ag(nicotinamide) +2 +e− Ag+2isonicotinamide→Ag(isonicotinamide) +2
−
+e
+
+
+e , thiourea −
+e−, KNO3 Ag(dipyridyl) +2 →Ag(dipyridyl) 2+ 2
–0.758
54Scr
−
0.629
55Mur
Ag+2(4-cyanopyridine)→Ag 4-cyanopyridine +2 +e−
0.618
55Mur
Ag+2(3-cyanopyridine)→Ag
Landolt-Börnstein New Series IV/9A
−
3-cyanopyridine +2
+e
36
1 Electrode potentials
Electrode 2)
Electrode reaction, electrolyte system 3), concentration 4)
Ag
Ag+(3-methoxypyridine)→Ag(3-methoxypyridine)++e−
Ref.
0.707
55Mur
Ag+(4-methoxypyridine)→Ag(4-methoxypyridine) +e
0.583 0.665
55Mur 55Mur
Ag+2(4-methoxypyridine)→Ag(4-methoxypyridine) +2 +e−
0.538
55Mur
–2.713
46Gap, 10Lew, 52Lat, 31Lar, 40Tay 72Moo 77Mus
+
+
+e −
−
Na→Na +e
Na→Na++e−, acidic Na→Na++e−
–2.714 298.15 –2.717
Na+ BrO3– →NaBrO3+e− −
298
–2.692 –2.670
55Mar1 33Har1
–2.849
49Mon1
298
–3.610
49Dav1
298
–2.779
55Dav
–2.862
49Mon2
–2.752
50Jen
–2.747
51Gim
–2.71 –1.941 –1.958 –1.976 –1.992 –2.008
46Ple2 71Mus 71Mus 71Mus 71Mus 71Mus
–2.89
52Lat, 28Dev, 34Lat 75Lon1 75Lon1 75Lon1 75Lon1 75Lon1 62Jak2, 53Har
−
Na+OH →NaOH+e , 0.1 M NaOH Na+ P2 O 74 – → NaP2 O 37 – +e−, 0.523...2.34·10–3 M Na4P2O7, 0.256...1.17 10–3 M HCl Na+ HP2 O 37 – → NaHP2 O 72 – +e− Na+ P3O 39 – → NaP3O 92 – +e− 5– Na+ P3O10
4– → NaP3O10
−
–3
+e , 0.1941...2.749·10 M Na5P3O10
Na+ SO 24 – → NaSO 4– +e− Na+ S2 O 32 –
Na(Hg) Na(Hg) Na(Hg) Na(Hg) Na(Hg)
ESHE [V]
−
Ag+2(3-methoxypyridine)→Ag(3-methoxypyridine) +2
Sodium (Na)
T [K]
NaS2 O 3–
−
–3
→ +e , 1.014·10 M Na2S2O3, 0.01...0.02 M NaCl Na→Na++e− Na(Hg)→Na++Hg+e− Na(Hg)→Na++Hg+e− Na(Hg)→Na++Hg+e− Na(Hg)→Na++Hg+e− Na(Hg)→Na++Hg+e−
Strontium (Sr)
Sr→Sr2++2e−
Sr(Hg) Sr(Hg) Sr(Hg) Sr(Hg) Sr(Hg)
Sr(Hg)→Sr2++Hg+2e− Sr(Hg)→Sr2++Hg+2e− Sr(Hg)→Sr2++Hg+2e− Sr(Hg)→Sr2++Hg+2e− Sr(Hg)→Sr2++Hg+2e− SrCO3+Pb→Sr2++PbCO3+2e−, SrCl2
298 283.15 298.15 313.15 328.15 343.15
283.15 298.15 313.15 328.15 343.15
–1.889 –1.900 –1.911 –1.921 –1.929 –2.886
Sr+ Fe(CN)36 – → SrFe(CN) 6– +2e−
–2.972
52Gib
Sr+ IO3– → SrIO3+ +2e−
–2.931 –2.913
52Col2 52Col2, 53Har
−
+
−
Sr+OH →SrOH +2e
Landolt-Börnstein New Series IV/9A
1 Electrode potentials Electrode 2)
Electrode reaction, electrolyte system 3), concentration 4)
37 T [K]
Sr+ P3O 39 – → SrP3O 9– +2e− 4– Sr+ P4 O12
2– → SrP4 O12
−
+2e
Sr+ S2 O 32 – →SrS2O3+2e−
Tl(Hg) Landolt-Börnstein New Series IV/9A
52Mon
–3.039
52Mon
–2.948 –2.907 –2.896 –2.895 –2.917 –2.892 –2.894 –2.909 –2.915 –2.969
TcO2+2H2O→TcO4+4H++3e−, HTcO4
0.782 –0.322
53Cob 53Cob
−
Te→Te +2e
–0.92
Te→Te4++4e−
0.56
TcO2+4OH 2+
−
−
→ TcO 4–
−
+2H2O+3e , NaOH, NaTcO4
Te+3H2O→TeO2·H2O+4H++4e−, citric acid, phopshate buffer 2H2Te→Te2+4H++4e−, HCl, LaCl3 H2Te2→Te2+2H++2e−, HCl, LaCl3
0.593 –0.50 –0.365
23Kra1, 23Lew 33Get, 23Kra1 59Ric 62Awa 62Awa
Te 22 – →2Te+2e−, Na2Te2,NaOH
–0.790
71Kom2
−
–0.845
64Pan
1.6
72Ten
Te 22 –
Terbium (Tb) Thallium (Tl)
–2.987
Sr+pivalate−→Sr pivalate++2e− Sr+n-valerate−→Sr n-valerate++2e− Sr+alanine→Sr alanine2++2e− Sr+glycine→Sr glycine2++2e− Sr+8-hydroxyquinoline-5-sulfonate2−→ Sr(8-hydroxyquinoline-5-sulfonate)+2e−, NaOH, SrCl2, 8-hydroxyquinoline-5-sulfonate2−
+
Sr+formate →Sr formate +2e Sr+bromoacetate−→Sr bromoacetate++2e− Sr+propionate−→Sr propionate++2e− Sr+lactate−→Sr lactate++2e−
Tellurium (Te)
Ref.
51Den 52Col1 52Col1 52Col1 52Col1, 54Dav2 52Col1 52Col1 52Col1 52Col1 54Näs
−
Technetium (Tc)
ESHE [V]
2+
→2Te+2e , 9 < pH < 13 3+
−
Tb →Tb +e Tl→Tl++e− Tl→Tl++e− Tl→Tl++e−
Tl→Tl++e− Tl→Tl++e− Tl→Tl++e− Tl→Tl++e− Tl→Tl++e− Tl+→Tl3++2e− Tl+→Tl3++2e−, HNO3 Tl+→Tl3++2e−, HNO3 Tl(Hg)→Tl++Hg+e−
–0.3363 –0.335 –0.336
288.15 293.15 298.15 303.15 308.15
–0.313 –0.320 –0.327 –0.334 –0.340 1.25 273.15 1.193 1.2303 283.15 –0.273
64Bet 61Ive 23Lew, 25Ger, 42Bro2, 34Cow 79Lon2 79Lon2 79Lon2 79Lon2 79Lon2 36She 36Noy 36Noy 79Lon2
38
1 Electrode potentials
Electrode 2)
Electrode reaction, electrolyte system 3), concentration 4)
T [K]
Tl(Hg) Tl(Hg) Tl(Hg)
Tl(Hg)→Tl++Hg+e− Tl(Hg)→Tl++Hg+e− Tl(Hg)→Tl++Hg+e− Tl+Br−→TlBr+e− Tl+2Br−→ TlBr2– +e−
298.15 –0.293 313.15 –0.314 328.15 –0.333 –0.392
79Lon2 79Lon2 79Lon2 56Car1
Tl+Cl →TlCl+e , TlCl
–0.395 –0.372
Tl+Cl−→TlCl+e−, TlCl, HCl
–0.372
56Car1 53Bel, 45Gar 55Hu
–0.346
55Hu
Tl+F →TlF+e , TlF
–1.056 –0.342
53Suz 53Bel
Tl+ IO3– →TlIO3+e−, TlIO3
–0.6
53Bel
–0.554
52Suz3
–0.359
57Nai
Tl+OH →TlOH+e Tl+OH−→TlOH+e−
–0.356 –0.34 –0.385
Tl+SCN−→TlSCN+e−, TlSCN
–0.56 9)
Tl+SCN−→TlSCN+e−, TlSCN
–0.384
57Nai 51Suz 53Bel, 56Bel1, 56Bel2 52Suz2, 56Gre 53Bel 53Bel 25Ger
−
−
−
Tl+2Cl
→ TlCl 2–
2Tl+ CrO 24 –
Tl+
+e , TlCl, HCl −
→Tl2CrO4+2e
−
N 3–
−
−
−
→TlN3+e
Tl+2 N 3– → TlN 3– +e−, TlN3 Tl+
NO3–
−
→TlNO3+e , TlNO3
−
Tl+ SO 24 –
−
→ TlSO 4–
−
+e , TlSCN
ESHE [V]
Ref.
Tl(Hg)
2Tl+H2SO4→Tl2SO4+2H +2e
–0.418 –0.4360
Thorium (Th) Thulium (Tm) Tin (Sn)
Th→Th4++4e−
–2.1
52Lat
2.0
72Ten
Titanium (Ti)
+
Tm2+→Tm3++e− Sn→Sn2++2e− Sn→Sn2++2e−, acidic Sn→Sn2++2e−, Sn(ClO4)2, HClO4 Sn2+→Sn4++2e− Sn2+→Sn4++2e− Sn2+→Sn4++2e−, acidic Sn+F−→SnF++2e− SnH4→Sn+4H++4e−
–0.135 –0.136 –1.375 0.154 0.2 0.15 –1.510 –1.07
23Lew 72Moo 57ElW1 34Hue 29Abh 72Moo 55Pau 57DeZ
Ti→Ti2++2e− Ti2+→Ti3++e− Ti3+→Ti4++e− Ti3++H2O→Ti(OH)3++H++e−, HCl or HClO4 Ti3++H2O→TiO2++2H++e− Ti3++2Br−+H2O→Ti(OH)(Br2)+H++e−, H+ KBr
–1.8 –0.37 –0.04 –0.055 0.10 0.235
52Lat 24For 29Abh 58Tri 08Die 62Kar Landolt-Börnstein New Series IV/9A
1 Electrode potentials Electrode 2)
Electrode reaction, electrolyte system 3), concentration 4)
Tungsten
Ti(SCN)2++H2O→Ti(SCN)(OH)2++H++e−, H+ KBr − W+8OH−→ WO 2– 4 +4H2O+6e
(W)
−
−
W+8OH → WO +4H2O+6e , Na2WO4, NaOH W(CN)84 –
2– 4
→ W(CN)83 –
Uranium
U+H2O→ UO 22 –
(U)
U +2 → U 22 + +e−
−
+e , K4WCN8, K3WCN8 −
+
–0.03
58Tri
–1.5
52Lat
–1.0069
57ElW2
0.457
55Baa 52Lat
0.327
61Sob
0.062
49Ker
V→V +2e V2+→V3++e−, V2(SO4)3, VSO4 V2+→V3++e− V3++H2O→VO2++2H++e−
–1.5 –0.255 –0.20 0.314
52Lat 44Jon2 30Foe 30Foe
VO2++3H2O→ V(OH) +4 +H++e−
1.000
34Car, 33Cor
VO2++H2O→ VO +2 +2H++e−, NH4VO3, VOSO4
0.991
64Dzh
1.250
64Dzh
1.0
65Sch2
+2H2O→ UO 22 +
−
+
+4H +2e
2+
2+
−
+H2O→ VO +2
−
+
+2H +e , NH4VO3, VOSO4
V(acetylacetone) 3– →V acetylacetone+e− 2+
3+
−
Ytterbium
Yb →Yb +3e , acidic, 1 M
(Yb)
Yb+ SO 24 –
–0.58
64Bet
Yb+oxalate →Yb(oxalate) +3e
–2.339 –2.412
54Spe 51Cro, 50Cro1
Yb+2(oxalate)2−→Yb oxalate 2– +3e−
–2.504
51Cro, 50Cro1
Y+ SO 24 – → YSO +4 +3e−
–2.872
54Spe
Zn→Zn2++2e−
–0.763
→ YbSO +4
−
+3e
2−
Landolt-Börnstein New Series IV/9A
Ref.
49Ker
4+
VO
Zn(Hg) Zn(Hg) Zn(Hg) Zn(Hg) Zn(Hg) Zn(Hg)
ESHE [V]
–0.82
+4H +6e
UO +2 → UO 22 + +e−, UO2NO3, NaClO4, HClO4
Yttrium (Y) Zinc (Zn)
T [K]
0.062
U Vanadium (V)
39
+
Zn→Zn2++2e−, acidic Zn→Zn2++2e−, ZnCl2 Zn(Hg)→Zn2++Hg+2e Zn(Hg)→Zn2++Hg+2e− Zn(Hg)→Zn2++Hg+2e− Zn(Hg)→Zn2++Hg+2e− Zn(Hg)→Zn2++Hg+2e− Zn→Zn2++2e−, acidic, 1 M Zn→Zn2++2e−, acidic, ZnBr2 Zn→Zn2++2e−, acidic, ZnCl2 Zn+F−→ZnF++2e−
−
45Sto1, 40Rob, 34Shr1, 23Lew –0.7628 72Moo –0.76194 76Lut 283.15 –0.802 77Lon1 293.15 –0.801 77Lon1 298.15 –0.801 77Lon1 303.15 –0.800 77Lon1 313.15 –0.789 77Lon1 –0.7627 64Bet –0.7618 45Sto2 –0.7618 57Car –0.798 55Pau
40
1 Electrode potentials
Electrode 2)
Electrode reaction, electrolyte system 3), concentration 4)
Zn
Zn+3OH−→ Zn(OH)3– +2e−, NaOH, Zn(OH)2 Zn+4OH
−
→ Zn(OH) 24 –
−
+2e , KOH
Zn+4OH−→ Zn(OH) 24 – +2e−, KOH, K2Zn(OH)4, KOH Zn+4OH
−
→ Zn(OH) 24 –
−
+2e , basic
Zn+ S2 O 32 – →ZnS2O3+2e−, ZnCl2, BaS2O3 −
2−
Zn+malate →Zn malate+2e , Zn malate Zn+lactate2−→Zn lactate+2e−, Zn lactate Zn+mandelate2−→Zn mandelate+2e−, Zn mandelate Zn+alanine→Zn alanine2++2e−, alanine, NaOH, ZnSO4 Zn+2alanine→Zn(alanine) 22 + +2e−, alanine, NaOH, ZnSO4 2+
−
Zn+glycine→Zn glycine +2e , glycine, NaOH, ZnSO4 Zn+2glycine→Zn(glycine) 22 + +2e−, glycine, NaOH, ZnSO4 2+
−
Zn+glycylglycine→Zn glycylglycine +2e , glycylglycine, NaOH, ZnSO4 Zn+2glycylglycine→Zn(glycylglycine) 22 + +2e−, glycylglycine, NaOH, ZnSO4 Zn+glycylglycylglycine→Zn glycylglycylglycine2++2e−, glycylglycylglycine, NaOH, ZnSO4 Zn+2glycylglycylglycine→Zn(glycylglycylglycine) 22 + +2e−, glycylglycylglycine, NaOH, ZnSO4 Zn+8-hydroxyquinoline-5-sulfonate2−→ Zn(8-hydroxyquinoline-5-sulfonate)+2e−, Zn(NO3)2, 8-hydroxyquinoline-5-sulfonic acid Zn+2(8-hydroxyquinoline-5-sulfonate2−)→ Zn(8-hydroxyquinoline-5-sulfonate) 22 – +2e−, Zn(NO3)2, 8-hydroxyquinoline-5-sulfonic acid Zirkonium (Zr)
Zr+H2O→ZrO2++2H++4e− Zr+F−→ZrF3++4e−
T [K]
ESHE [V]
Ref.
–1.183
54Ful
–1.214
54Dir
–1.205
71Bod
–1.215
72Moo
–0.831 –0.859 –0.826 –0.828 –0.915
51Den 54Ful 54Dav2 51Bel 51Mon4
–1.043 –0.925
51Mon4 51Mon4
–1.056 –0.874
51Mon4 51Mon4
–0.955
51Mon4
–0.859
51Mon4
–0.948
51Mon4
–1.021
54Näs
–1.241
54Näs
–1.5 –1.685
52Lat 49Con
1
) All data refer to room temperature if not stated otherwise. ) Amalgam electrodes are denoted with a subscript (Hg), the metal content in the amalgam is stated when provided by the author; in case of standard electrodes the metal content may not be stated explicitly. For details of amalgam electrodes see [85Mus]. Amalgam electrodes are placed in the listings according to the same ordering criteria as nonamalgam ones. If an electronically conducting material different from the metal stated in column 1 is used (e.g. with a redox electrode system) this is not stated explicitly. 3 ) Experimental details are given only if relevant for the stated value of ESHE, solvent is always water. 4 ) If no value is given unity activity has been used and thus a standard electrode potential is given. 5 ) Difference with respect to value calculated from accepted standard potential and activity coefficient is attributed to liquid junction potential. 6 ) Potential contains liquid junction potential. 7 ) Ac = acetate anion. 8 ) Ox = oxalic acid anion. 9 ) Mercury electrode used. 2
Landolt-Börnstein New Series IV/9A
R1
References 02Böd 08Die 10Lew 10Sch2 12Lew 14Lew1 15Lew 22Ger 23Cam1 23Cam2 23Gru 23Kra1 23Kra2 23Lew 23Smi 23Swi 24For 24Ric 25Ger 25Mak 25Neu 26Fen 26Lat 26Lie 26Mai 27Dav 27Gru 27Lat 27Nie 28Dev 28Lat 29Abh 29Har1 29Sch 30Bro 30Dav 30Foe 30Ger 30Hak 30Ran 30Ril 30Smi 31Ban 31Bur 31Ive 31Lar 31Lew 31Lie 31Pop
Landolt-Börnstein New Series IV/9A
Bödlander, G., Starbeck, O.: Z. Anorg. Allg. Chem. 31 (1902) 458. Diethelm, B., Foerster, F.: Z. Phys. Chem. (Leipzig) 62 (1908) 129. Lewis, G.N., Kraus, Ch.A.: J. Am. Chem. Soc. 32 (1910) 1459. Schildbach, R.: Z. Elektrochem. 16 (1910) 967. Lewis, G.N., Keyes, F.G.: J. Am. Chem. Soc. 34 (1912) 119. Lewis, G.N., Lacy, W.N.: J. Am. Chem. Soc. 36 (1914) 804. Lewis, G.N., Argo, W.L.: J. Am. Chem. Soc. 37 (1915) 1983. Gerke, R.H.: J. Am. Chem. Soc. 44 (1922) 1684. Campbell, A.N.: J. Chem. Soc. 123 (1923) 2323. Campbell, A.N.: J. Chem. Soc. 123 (1923) 892. Grube, G., Schweigardt, F.: Z. Elektrochem. 29 (1923) 257. Krasanowski, I.A.: Z. Anorg. Allg. Chem. 128 (1923) 17. Krasanowski, I.A.: Z. Anorg. Allg. Chem. 128 (1923) 3. Lewis, G.N., Randall, M.: Thermodynamics and the Free Energy of Chemical Substances, New York: McGraw Hill, 1923. Smith, D.F.: J. Am. Chem. Soc. 45 (1923) 360. Swift, E.H.: J. Am. Chem. Soc. 45 (1923) 371. Forbes, G.S., Hall, L.P.: J. Am. Chem. Soc. 46 (1924) 385. Richards, Th.W., Richards, W.T.: J. Am. Chem. Soc. 46 (1924) 89. Gerke, R.H.: Chem. Rev. 1 (1925) 377. Makishima, S.: Z. Elektrochem. 31 (1925) 287. Neumann, B., Richter, H.: Z. Elektrochem. 31 (1925) 287. Fenwick, F.: J. Am. Chem. Soc. 48 (1926) 860. Latimer, W.M.: J. Am. Chem. Soc. 48 (1926) 2868. Lieder, H., Schachterle, P.: Z. Elektrochem. 32 (1926) 561. Maier, Ch.G., Parks, G.S., Anderson, C.Fr.: J. Am. Chem. Soc. 48 (1926) 2564. Davies, C.W.: Trans Faraday Soc. 23 (1927) 351. Grube, G., Breitinger, G.: Z. Elektrochem. 33 (1927) 112. Latimer, W.M.: J. Phys. Chem. 31 (1927) 1267. Nielson, R.F., Brown, D.J.: J. Am. Chem. Soc. 49 (1927) 2423. Devoto, G.: Z. Elektrochem. 34 (1928) 19. Latimer, W.M., Greensfelder, B.S.: J. Am. Chem. Soc. 50 (1928) 2202. Abhandlungen der Deutschen Bunsengesellschaft 10 (1929). Haring, M.M., van den Bosche, E.G.: J. Phys. Chem. 33 (1929) 161. Scheidt, H.J.: Sitzungsber. Akad. Wiss. Wien, Math. Naturwiss. Kl. 138 (1929) 755. Brown, D.J., Liebhafsky, H.A.: J. Am. Chem. Soc. 52 (1930) 2595. Davies, C.W.: J. Chem. Soc. (1930) 2410. Foerster, F., Böttcher, F.: Z. Phys. Chem. Abt. A 151 (1930) 321. Gerding, H.: Z. Phys. Chem. Abt. A 151 (1930) 190. Hakomori, S.I.: J. Am. Chem. Soc. 52 (1930) 2373. Randall, M., Cann, J.Y.: J. Am. Chem. Soc. 52 (1930) 589. Riley, H.: J. Chem. Soc. (1930) 1642. Smith, E.R.: J. Res. Natl. Bur. Stand. 5 (1930) 735. Banks, W.H., Righellato, E.C., Davies, C.W.: Trans. Faraday Soc. 27 (1931) 621. Burian, R.: Z. Elektrochem. 37 (1931) 238. Ives, D.J., Riley, H.L.: J. Chem. Soc. (1931) 1938. Larsson, E., Adell, B.: Z. Phys. Chem. Abt. A 156 (1931) 352. Lewis, G.N., Keyes, F.G.: J. Am. Chem. Soc. 53 (1931) 340. Liebhafsky, H.A.: J. Phys. Chem. 35 (1931) 1648. Popoff, S., Riddick, J.A., Wirth, V.J., Ough, L.D.: J. Am. Chem. Soc. 53 (1931) 1195.
R2 32Chl 32Hey 32Ran 32Sch 33Cor 33Get 33Har1 33LaM 34Arm 34Bra 34Car 34Col 34Cow 34Har1 34Hue 34Kil 34Lat 34Shr1 34Shr2 35Hai 35Har 35Kol 35Sam 35San 35Win 36Har1 36Hat 36Jon 36Noy 36She 37Can1 37Can2 37Far 37Har2 37Sch 38Dav 38Har1 38Lin 38Owe1 38Owe2 38Qui 38Tay 38Wis 39Ben 39Har1 40Dak 40Lar 40Rob 40Tay 40Top 41Dor 41Hov 41Mül
Chloupek, J.B., Danes, V.Z.: Collect. Czech. Chem. Commun. 4 (1932) 124 Heymann, T., Jellinek, K.: Z. Phys. Chem. Abt. A 160 (1932) 34. Randall, M., Frandsen, M.: J. Am. Chem. Soc. 54 (1932) 47. Schwarz von Bergkampf, E.: Z. Elektrochem. 38 (1932) 847. Coryell, C.D., Yost, D.M.: J. Am. Chem. Soc. 55 (1933) 1909. Getmann, F.H.: Trans. Am. Chem. Soc. 64 (1933) 201. Harned, H.S., Hamer, W.J.: J. Am. Chem. Soc. 55 (1933) 4496. La Mer, V.K., Parks, W.G.: J. Am. Chem. Soc. 55 (1933) 4343. Armbruster, M.H., Crenshaw, J.L.: J. Am. Chem. Soc. 56 (1934) 2525. Bray, W.C., Hershey, A.V.: J. Am. Chem. Soc. 56 (1934) 1893. Carpenter, J.E.: J. Am. Chem. Soc. 56 (1934) 1874. Colombier, L.: C. R. Acad. Sci. (Paris) 199 (1934) 273; 408. Cowperthwaite, J.A., La Mer, V.K., Barksdale, J.: J. Am. Chem. Soc. 56 (1934) 544. Haring, M.M., Westfall, B.B.: Trans. Am. Electrochem. Soc. 65 (1934) 235. Huey, C.S., Tartar, H.V.: J. Am. Chem. Soc. 56 (1934) 2585. Kilde, G.: Z. Anorg. Allg. Chem. 218 (1934) 113. Latimer, W.M., Schutz, P.W., Hicks, J.F.G.: J. Chem. Phys. 2 (1934) 82. Shrawder jr., J., Cowperthwaite, I.A., La Mer, V.K.: J. Am. Chem. Soc. 56 (1934) 2348. Shrawder jr., J., Cowperthwaite, J.A.: J. Am. Chem. Soc. 56 (1934) 2340. Haissinsky, M.: J. Chim. Phys. 32 (1935) 116. Harned, H.S., Hamer, W.J.: J. Am. Chem. Soc. 57 (1935) 27. Kolthoff, I.M., Tomssicek, J.: J. Phys. Chem. 39 (1935) 945. Samuelson, G.J., Brown, D.J.: J. Am. Chem. Soc. 57 (1935) 2711. Sano, K.: Kinzoku No Kenkyu 12 (1935) 548. Winnek, P.S., Schmidt, C.L.A.: J. Gen. Physiol. 18 (1935) 889. Harned, H.S., Fitzgerald, M.: J. Am. Chem. Soc. 58 (1936) 2624. Hattox, E.M., de Vries, T.: J. Am. Chem. Soc. 58 (1936) 2125. Jones, G., Jelen, F.C.: J. Am. Chem. Soc. 58 (1936) 2561. Noyes, A.A., Garner, C.S.: J. Am. Chem. Soc. 58 (1936) 1268. Sherill, M.S., Haas jr., A.J.: J. Am. Chem. Soc. 58 (1936) 952. Cann, J.Y., Taylor, A.C.: J. Am. Chem. Soc. 59 (1937) 1484. Cann, J.Y., Taylor, A.C.: J. Am. Chem. Soc. 59 (1937) 1987. Farayo, K.: Acta Litt. Sci. Regiae Univ. Hung. Francisco-Josephinae Sect. Chem. Mineral. Phys. 5 (1937) 193. Hartley, G.S., Donaldson, G.W.: Trans. Faraday Soc. 33 (1937) 457. Schumb, W.C., Sherrill, M.S., Sweetser, S.B.: J. Am. Chem. Soc. 59 (1937) 2360. Davies, C.W.: J. Chem. Soc. (1938) 277. Haring, M.M., White, J.C.: Trans. Am. Chem. Soc. 73 (1938) 211. Lingane, J.J.: J. Am. Chem. Soc. 60 (1938) 724. Owen, B.B., Gurry, R.W.: J. Am. Chem. Soc. 60 (1938) 3074. Owen, B.B., Brinkley, S.R.: J. Am. Chem. Soc. 60 (1938) 2233. Quintin, M.: J. Chim. Phys. 35 (1938) 300. Taylor, A.C., Nims, L.F.: J. Am. Chem. Soc. 60 (1938) 262. Wise, C.W., Davies, C.W.: J. Chem. Soc. (1938) 273. Bent, H.E., Forbes, G.S., Forziatti, A.F.: J. Am. Chem. Soc. 61 (1939) 709. Haring, M.M., Hatfield, M.R., Zapponi, P.P.: Trans. Am. Chem. Soc. 75 (1939) 167. Dakin, T.W., Ewing, D.T.: J. Am. Chem. Soc. 62 (1940) 2280. Larson, W.D.: J. Am. Chem. Soc. 62 (1940) 764. Robinson, R.A., Stokes, R.H.: Trans. Faraday Soc. 36 (1940) 740. Taylor, A.C.: J. Res. Natl. Bur. Stand. Sect. A 25 (1940) 731. Topp, N.E., Davies, C.W.: J. Chem. Soc. (1940) 87. Dorr, P.D., Stockdale, R.M., Vosburg, W.C.: J. Am. Chem. Soc. 63 (1941) 2670. Hovorka, F., Chapman, G.H.: J. Am. Chem. Soc. 63 (1941) 955. Müller, F., Reuther, H.: Z. Elektrochem. 47 (1941) 640. Landolt-Börnstein New Series IV/9A
R3 42Bro1 42Bro2 42Gel 42Kri 42Mac 42Mül 43Bro 43Hum 43Tak 43Vos1 43Vos2 44Jon1 44Jon2 44Kil 44Näs 45Bez 45Coa 45Gar 45Jon 45Pti 45Sto1 45Sto2 46Dig 46Gap 46Jon 46Kos 46Ple1 46Ple2 47Cag 47Cup 47Dwy1 47Dwy2 47Jam 47Mac 47Wit 48Bje 48Bru 48Cal 48Dav 48Fer 48Kee 48Mon 48Sto 49Bra 49Con 49Dav1 49Dav2 49Gri 49Jam 49Jon 49Kee 49Ker 49Kru 49Led Landolt-Börnstein New Series IV/9A
Brosset, C.: Dissertation, Stockholm, 1942. Brouty, M.L.: C. R. Acad Sci. (Paris) 214 (1942) 258. Gelbach, R.W., Brooks King, G.: J. Am. Chem. Soc. 64 (1942) 1054. Krieger, K.A., Kilpatrick, M.: J. Am. Chem. Soc. 64 (1942) 7. MacDougall, F.H., Allen, M.: J. Phys. Chem. 46 (1942) 730. Müller, F., Reuther, H.: Z. Elektrochem. 48 (1942) 682. Brosset, C., Orring, J.: Sven. Kem. Tidskr. 55 (1943) 101. Hume, D.N., Kolthoff, I.M.: J. Am. Chem. Soc. 65 (1943) 1897. Takács, I.: Mag. Chem. Foly. 49 (1943) 33; 100. Vosburg, W.C., McClure, R.S.: J. Am. Chem. Soc. 65 (1943) 1060. Vosburg, W.C., Cogswell, S.A.: J. Am. Chem. Soc. 65 (1943) 2412. Jones, J.H.: J. Am. Chem. Soc. 66 (1944) 1115. Jones, G., Colvin, J.H.: J. Am. Chem. Soc. 66 (1944) 1563. Kilpi, S., Näsänen, R.: Suom. Kemistil. B 17 (1944) 9. Näsänen, R.: Suom. Kemistil. B 17 (1944) 31. Bezier, D.: Ann. Chim. (Paris) 20 (1945) 161. Coates, G.E.: J. Chem. Soc. (1945) 478. Garrett, A.G., Vellenga, S.J.: J. Am. Chem. Soc. 67 (1945) 225. Jones, J.H.: J. Am. Chem. Soc. 67 (1945) 855. Ptitsyn, B.V.: Zh. Neorg. Khim. 15 (1945) 277. Stokes, J.M.: Trans. Faraday Soc. 41 (1945) 685. Stokes, R.H., Stokes, J.M.: Trans. Faraday Soc. 41 (1945) 688. Dighe, S.G.: J. Indian Chem. Soc. 23 (1946) 291. Gapon, E.N.: J. Phys. Chem. USSR 20 (1946) 1209. Jones, J.H.: J. Am. Chem. Soc. 68 (1946) 240. Kossikoff, A., Sickmann, D.V.: J. Am. Chem. Soc. 68 (1946) 442. Pleskov, V.A.: Acta Physicochim. URSS 21 (1946) 41; J. Phys. Chem. USSR 20 (1946) 153. Pleskov, V.A.: Acta Physicochim. URSS 21 (1946) 235. Caglioti, V., Sartori, G., Silvestroni, P.: Ric. Sci. 17 (1947) 624. Cupr, V.: Publ. Fac. Sci. Univ. Masaryk 296 (1947). Dwyer, F.P., Mckenzie, H.A., Nyholm, R.S.: J. Proc. R. Soc. N. S. W. 80 (1947) 183. Dwyer, F.P., Mckenzie, H.A., Nyholm, R.S.: J. Proc. R. Soc. N. S. W. 80 (1947) 216. James, J.C.: Thesis, London, 1947. MacDougall, F.H., Peterson, S.: J. Phys. Chem. 51 (1947) 1346. Witt Hutchison, A.: J. Am. Chem. Soc. 69 (1947) 3051. Bjerrum, J., Nielson, E.J.: Acta Chem. Scand. 2 (1948) 297. Bruehlman, R.J., Verhoak, F.H.: J. Am. Chem. Soc. 70 (1948) 1401. Calvin, N., Melcier, N.C.: J. Am. Chem. Soc. 70 (1948) 3270. Davies, C.W., James, J.C.: Proc. R. Soc. London, Ser. A 195 (1948) 116. Ferrell jr., D.T., Blackburn, I., Vosburgh, W.C.: J. Am. Chem. Soc. 70 (1948) 3812. Keefer, R.M.: J. Am. Chem. Soc. 70 (1948) 476. Monk, C.B.: J. Am. Chem. Soc. 70 (1948) 3281. Stock, D.I., Davies, C.W.: Trans. Faraday Soc. 44 (1948) 856. Brandt, W.W., Smith, G.F.: Anal. Chem. 21 (1949) 1313. Connick, R.E., McVey, W.H.: J. Am. Chem. Soc. 71 (1949) 3182. Davies, C.W., Monk, C.B.: J. Chem. Soc. (1949) 413. Davies, C.W., Wyatt, P.A.H.: Trans. Faraday Soc. 45 (1949) 770. Grinberg, A.A., Orlova, B.Z.: Zh. Prikl. Khim. (Leningrad) 22 (1949) 441. James, J.C.: Trans. Faraday Soc. 45 (1949) 855. Jones, H.W., Monk, C.B., Davies, C.W.: J. Chem. Soc. (1949) 2693. Keefer, R.N., Andrews, L.J., Kepner, R.E.: J. Am. Chem. Soc. 71 (1949) 3906. Kern, D.M.H., Orleman, E.F.: J. Am. Chem. Soc. 71 (1949) 2102. Krumholz, P.: J. Am. Chem. Soc. 71 (1949) 3654. Leden, I.: Acta Chem. Scand. 3 (1949) 1318.
R4 49Mal1 49Mal2 49Mon1 49Mon2 49Mon3 49Näs 49Sto 50Bat 50Bje 50Cro1 50Dav 50ElW1 50ElW2 50Jam 50Jen 50Jon 50Kor 50Lar 50Mal 50May 50Näs 50Vla 51Bar 51Bel 51Boc 51Bon 51Cro 51Dav1 51Dav2 51Den 51Dun 51Gim 51Hil 51Llo 51May 51Mon1 51Mon2 51Mon3 51Mon4 51Pea 51Sch1 51Sch2 51Suz 52Bar 52Bra 52Col1 52Col2 52Eva 52Gib 52Jol 52Jon 52Lat 52Mac
Maley, L.E., Mellor, D.P.: Aust. J. Sci. Res. Ser. A 2 (1949) 579. Maley, L.E., Mellor, D.P.: Aust. J. Sci. Res. Ser. A 2 (1949) 92. Monk, C.B.: J. Chem. Soc. (1949) 423. Monk, C.B.: J. Chem. Soc. (1949) 427. Monk, C.B.: J. Chem. Soc. (1949) 1317. Näsänen, R.: Acta Chem. Scand. 3 (1949) 959. Stock, D.I., Davies, C.W.: J. Chem. Soc. (1949) 1371. Batashev, K.P., Nikitin, E.N.: Zh. Prikl. Khim. (Leningrad) 23 (1950) 263. Bjerrum, J.: Chem. Rev. 46 (1950) 381. Crouthamel, C.E., Martin, D.S.: J. Am. Chem. Soc. 72 (1950) 1382. Davies, C.W., Waind, G.M.: J. Chem. Soc. (1950) 301. El Wakkad, S.E.S., Salem, T.M.: J. Phys. Chem. 54 (1950) 1371. El Wakkad, S.E.S., Hickling, A.: Trans. Faraday Soc. 46 (1950) 820. James, J.C., Monk, C.B.: Trans. Faraday Soc. 46 (1950) 1041. Jenkins, I.L., Monk, C.B.: J. Am. Chem. Soc. 72 (1950) 2695. Jones, H.W., Monk, C.B.: J. Chem. Soc. (1950) 3475. Korshunov, I.A., Nalyugina, N.I.: Zh. Obshch. Khim. 20 (1950) 1309. Larson, W.D.: J. Phys. Chem. 54 (1950) 310. Maley, I.E., Mellor, D.S.: Nature (London) 165 (1950) 453. Mayer, S.W., Schwartz, S.D.: J. Am. Chem. Soc. 72 (1950) 5106. Näsänen, R.: Acta Chem. Scand. 4 (1950) 816. Vladimirova, M.G., Kakovskii, I.A.: Zh. Prikl. Khim. 23 (1950) 580. Barney, J.E., Argersinger jr., W.J., Reynolds, G.A.: J. Am. Chem. Soc. 73 (1951) 3785. Bell, R.P., Waind, G.M.: J. Chem. Soc. (1951) 2357. Bockris, J., Haringshow, J.: Usp. Khim. 20 (1951) 216. Bonhoeffer, K.F., Jena, W.: Z. Elektrochem. 55 (1951) 151. Crouthamel, C.E., Martin, D.S.: J. Am. Chem. Soc. 73 (1951) 569. Davies, C.W.: J. Chem. Soc. (1951) 1256. Davies, C.W., Monk, C.B.: J. Chem. Soc. (1951) 2718. Denney, T.O., Monk, C.B.: Trans. Faraday Soc. 47 (1951) 992. Dunsmore, H.S., James, J.C.: J. Chem. Soc. (1951) 2925. Gimblett, F.G.R., Monk, C.B.: Trans. Faraday Soc. 47 (1951) 793. Hills, G.J., Ives, D.J.G.: J. Chem. Soc. (1951) 305; 311; 318. Lloyd, N., Wycherley, V., Monk, C.B.: J. Chem. Soc. (1951) 1786. Mayer, E.W., Schwartz, S.D.: J. Am. Chem. Soc. 73 (1951) 222. Monk, C.B.: Trans. Faraday Soc. 47 (1951) 285. Monk, C.B.: Trans. Faraday Soc. 47 (1951) 292. Monk, C.B.: Trans. Faraday Soc. 47 (1951) 1233. Monk, C.B.: Trans. Faraday Soc. 47 (1951) 297. Peacock, J.M., James, J.C.: J. Chem. Soc. (1951) 2233. Schwarzenbach, G., Heller, J.: Helv. Chim. Acta 34 (1951) 576. Schwarzenbach, G., Heller, J.: Helv. Chim. Acta 34 (1951) 1889. Suzuki, S.: J. Chem. Soc. Jpn. 72 (1951) 265. Barnes, G.T., Dwyer, F.P., Gyarfas, E.C.: Trans. Faraday Soc. 48 (1952) 269. Brandt, W.W., Gullstrom, D.K.: J. Am. Chem. Soc. 74 (1952) 3532 Colman-Porter, C.A., Monk, C.B.: J. Chem. Soc. (1952) 4363. Colman-Porter, C.A., Monk, C.B.: J. Chem. Soc. (1952) 1312. Evans, J.I., Monk, C.B.: Trans. Faraday Soc. 48 (1952) 934. Gibby, C.W., Monk, C.B.: Trans. Faraday Soc. 48 (1952) 632. Jolly, W.L., Latimer, W.M.: J. Am. Chem. Soc. 74 (1952) 5751. Jones, H.W., Monk, C.B.: Trans. Faraday Soc. 48 (1952) 929. Latimer, W.M.: The Oxidation States of the Elements and their Potentials in Aqueous Solutions, Englewood Cliffs: Prentice-Hall Inc., 1952. MacDougall, F.H., Topol, I.E.: J. Phys. Chem. 56 (1952) 1090. Landolt-Börnstein New Series IV/9A
R5 52Mon 52Reb 52Suz1 52Suz2 52Suz3 52Tou 52Yat 53Bel 53Ber1 53Ber2 53Bon 53Cav 53Cob 53Dav 53ElS 53Har 53Hep 53Hie 53Kur 53Leu 53Lev2 53Pat 53Pec 53Pou 53Rin 53Sal 53Suz 53Van 54Bas 54Bat2 54Dav1 54Dav2 54Dir 54Dwy 54Ful 54Hep 54Irv 54Kra 54Llo 54Näs 54Pan1 54Pan2 54Scr 54Sil 54Spe 54Vle 55Baa 55Bab 55Big 55Dav 55Eva 55Fyf 55Gim Landolt-Börnstein New Series IV/9A
Monk, C.B.: J. Chem. Soc. (1952) 1314. Rebertus, R.L.: Dissertation, Urbana, 1952. Suzuki, S.: J. Chem. Soc. Jpn. Pure Chem. Sect. 73 (1952) 278. Suzuki, S.: J. Chem. Soc. Jpn. Pure Chem. Sect. 73 (1952) 153. Suzuki, S.: J. Chem. Soc. Jpn. Pure Chem. Sect. 73 (1952) 150. Tourky, A.R., Khairy, E.M.: J. Chem. Soc. (1952) 2626. Yates, L.M., Dodgen, H.W.: 122nd Meeting of the American Chemical Society 1952, Abstr. Nr. 18P. Bell, R.P., George, J.H.B.: Trans. Faraday Soc. 49 (1953) 619. Berne, B., Leden, I.: Z. Naturforsch. A 8 (1953) 719. Berg, D., Patterson jr., A.: J. Am. Chem. Soc. 75 (1953) 1484. Bonner, O.D., Unietis, F.A.: J. Am. Chem. Soc. 75 (1953) 5111. Cave, G.B.C., Hume, D.N.: J. Am. Chem. Soc. 75 (1953) 2893. Cobble, J.W., Smith jr., W.T., Boyd, G.E.: J. Am. Chem. Soc. 75 (1953) 5777. Davies, C.W., Hoyle, B.E.: J. Chem. Soc. (1953) 4134. El Shamy, H.K., El Aggan, A.M.: J. Am. Chem. Soc. 75 (1953) 1187. Harned, H.S., Paxton, T.R.: J. Phys. Chem. 57 (1953) 531. Hepler, L.G., Hugusti, Z.Z.: J. Am. Chem. Soc. 75 (1953) 5652. Hieber, W., Hübel, W.: Z. Elektrochem. 57 (1953) 331. Kury, J.W.: Thesis, University of California, Berkely, 1953. Leussing, D.L., Kolthoff, I.M.: J. Am. Chem. Soc. 75 (1953) 3904. Levin, A.I., Ukshe, E.A.: Sb. Statei Obshch. Khim. 2 (1953) 798. Patrick, W.A., Thompson, W.E.: J. Am. Chem. Soc. 75 (1953) 1184. Pecsok, R.: Anal. Chem. 25 (1953) 561. Pouradier, J., Chateau, H.: C. R. Acad. Sci. (Paris) 237 (1953) 711. Ringbom, A.: Solubility of Sulfides, Report to Analytical Section, IUPAC, July 1953. Saltman, W.M., Nachtrieb, N.H.: J. Electrochem. Soc. 100 (1953) 126. Suzuki, S.: J. Chem. Soc. Jpn. 74 (1953) 219. Vanderzee, C.E., Dawson, H.J.: J. Am. Chem. Soc. 75 (1953) 5659. Basolo, F., Chen, Y.T.: J. Am. Chem. Soc. 76 (1954) 956. Bates, R.G., Bowers, V.E.: J. Res. Natl. Bur. Stand. U.S. 53 (1954) 282. Davies, P.B., Monk, C.B.: Trans. Faraday Soc. 50 (1954) 128. Davies, P.B., Monk, C.B.: Trans. Faraday Soc. 50 (1954) 132. Dirkse, T.P.: J. Electrochem. Soc. 101 (1954) 328. Dwyer, F.P., Gyarfas, E.C.: J. Am. Chem. Soc. 76 (1954) 6320. Fulton, J.W., Swinehart, D.F.: J. Am. Chem. Soc. 76 (1954) 864. Hepler, L.G., Hugusti jr., Z.Z., Kury, J.W.: J. Phys. Chem. 58 (1954) 26. Irving, H.: J. Chem. Soc. (1954) 3494. Kraus, K.A., Nelson, F., Smith, G.W.: J. Phys. Chem. 58 (1954) 11. Lloyd, R.: Thesis, Temple University Philadelphia, 1954. Näsänen, R., Uusitalo, E.: Acta Chem. Scand. 8 (1954) 112. Pan, K.: J. Chin. Chem. Soc. (Taipei) Ser. II 1 (1954) 16. Pan, K.: J. Chin. Chem. Soc. (Taipei) Ser. II 1 (1954) 26. Scrocco, E., Marmani, G.: Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat. 16 (1954) 637. Silvermann, M.D., Levy, H.A.: J. Am. Chem. Soc. 76 (1954) 3319. Spedding, F.H., Jaffe, S.: J. Am. Chem. Soc. 76 (1954) 882. Vleck, A.A.: Chem. Listy 48 (1954) 1474. Baadsgaard, H., Treadwell, W.D.: Helv. Chim. Acta 38 (1955) 1669. Babtelsky, M., Kertes, S.: Bull. Soc. Chim. Fr. (1955) 328. Biggs, A.I., Parton, H.N., Robinson, R.A.: J. Am. Chem. Soc. 77 (1955) 5844. Davis, J.A.: Thesis, Indiana University, 1955. Evans, J.I., Monk, C.B.: Trans. Faraday Soc. 51 (1955) 1244. Fyfe, W.S.: J. Chem. Soc. (1955) 1347. Gimblett, F.G.R., Monk, C.B.: Trans. Faraday Soc. 51 (1955) 793.
R6 55Hei 55Hol 55Hu 55Mar1 55Max 55Mur 55Nan 55Pal 55Pan 55Pau 55Pec 55Pou 55Ren 55Tan 56Bag 56Bel1 56Bel2 56Car1 56Car2 56Coh 56Dro 56Gre 56Tac 56Van 57Bas 57Car 57Cha3 57Con2 57DeZ 57ElW1 57ElW2 57Geo 57Gup 57Ham 57Kin 57Kiv 57Kor 57Nai 58Grz 58Hie 58Sch 58Tre1 58Tre2 58Tri 58Ver 59Geo 59Gol 59Par 59Per 59Ric 60Gre
Heidt, L.J., Berestecky, J.: J. Am. Chem. Soc. 77 (1955) 2049. Holmes, F., Crimmin, W.R.G.: J. Chem. Soc. (1955) 1175. Hu, K.H., Scott, A.B.: J. Am. Chem. Soc. 77 (1955) 1380. Martel, R.W., Kraus, C.A.: Proc. Natl. Acad. Sci. USA 41 (1955) 9. Maxwell, K.H., Thirsk, H.R.: J. Chem. Soc. (1955) 4054. Murmann, R.K., Basolo, F.: J. Am. Chem. Soc. 77 (1955) 3484. Nancollas, G.H.: J. Chem. Soc. (1955) 1458. Palczewska, W.: Rocz. Chem. 29 (1955) 594. Pan, K.: J. Chinese Chem. Soc. (Taipei) Ser. II 2 (1955) 15. Paul, A.D.: Thesis, University of California, Berkely, 1955. Pecsok, R., Juvet, R.S.: J. Am. Chem. Soc. 77 (1955) 20. Poulsen, J., Bjerrum, J.: Acta Chem. Scand. 9 (1955) 1407. Renier, J.J., Martin, D.S.: United States Atomic Energy Comission and Iowa State College, contribution 668-1955; see also: Renier, J.J., Martin, D.S.: J. Am. Chem. Soc. 78 (1956) 1833. Tanacka, N., Kolthoff, I.M., Strieks, W.: J. Am. Chem. Soc. 77 (1955) 1996 Bagnall, K.W., Freeman, J.H.: J. Chem. Soc. (1956) 2770. Bell, R.P., Panckhurst, M.H.: J. Chem. Soc. (1956) 2836. Bell, R.P., Panckhurst, M.H.: Recl. Trav. Chim. Pays Bas 75 (1956) 725. Carpenter, L.G.: Thesis, Columbia University, 1956. Carrington, A., Symons, M.C.R.: J. Chem. Soc. (1956) 3373. Cohen, S.R.: Thesis Cornell University, Ithaka, New York, 1956. Droll, H.A.: Thesis, Pennsylvania University, 1956. Grenier, J.N., Meites, L.: Anal. Chim. Acta 14 (1956) 482. Tacopova, V.F.: Zh. Neorg. Khim. 1 (1956) 243. Vanderzee, C.E., Smith, W.E.: J. Am. Chem. Soc. 78 (1956) 721. Basinski, A., Poczpko, S.: Rocz. Chem. 31 (1957) 449. Carraro, G., Stephens, H.L.: J. Electrochem. Soc. 104 (1957) 512. Chateau, H., Hervier, B.: J. Chim. Phys. 54 (1957) 356. Connick, R.E., Hurley, C.R.: J. Phys. Chem. 61 (1957) 1018. De Zoubov, N., Deltombe, E.: Proc. Int. Comm. Electrochem. Thermodynamics and Kinetics, 1957, p. 240. El Wakkad, S.E.S., Salem, T.M., Al Sayed, J.A.: J. Chem. Soc. (1957) 3770. El Wakkad, S.E.S., Salem, T.M., Risk, H.A., Ebaid, J.G.: J. Chem. Soc. (1957) 3776. George, P., Hanania, G.I., Irvine, D.H.: J. Chem. Soc. (1957) 3048. Gupta, S.R., Hills, G.J., Ives, D.J.G.: Discuss. Faraday Soc. 24 (1957) 147. Hamer, W.G., Craig, D.N.: J. Electrochem. Soc. 104 (1957) 206. King, J.P., Cobble, J.W.: J. Am. Chem. Soc. 79 (1957) 1559. Kivalo, P., Ekari, P.: Suom. Kemistil. B 30 (1957) 116. Kortüm, G.: Lehrbuch der Elektrochemie, Weinheim: Verlag Chemie, 1957. Nair, V.S.K., Nancollas, G.H.: J. Chem. Soc. (1957) 318. Grzybowski, A.K.: J. Phys. Chem. 62 (1958) 550 Hieber, W., Wagner, G.: Z. Naturforsch. B 13 (1958) 339. Schwabe, K., Ziegenbalg, S.: Z. Elektrochem. 62 (1958) 172. Treumann, W.B., Ferris, L.M.: J. Am. Chem. Soc. 80 (1958) 5048. Treumann, W.B., Ferris, L.M.: J. Am. Chem. Soc. 80 (1958) 5050. Tribalat, S., Delafosse, D.: Anal. Chim. Acta 19 (1958) 74. Verbeek, F., Eechebaut, Z.: Bull. Soc. Chim. Belg. 67 (1958) 204 George, P., Hanania, G.I.H., Irvine, D.H.: J. Chem. Soc. (1959) 2548. Golding, R.M.: J. Chem. Soc. (1959) 1838. Parsons, R.: Handbook of Electrochemical Constants, London: Butterworths, 1959. Perin, D.D.: J. Chem. Soc. (1959) 290. Ricketts, J.A., Tresselt, L.W.: J. Am. Chem. Soc. 81 (1959) 2305. Greeley, R.S., Smith, W.T., Stoughton, R.W., Lietzke, M.H.: J. Phys. Chem. 64 (1960) 652; 1445. Landolt-Börnstein New Series IV/9A
R7 60Hur 60Mat 60Tow 61Dir 61Hur2 61Ive 61Jak1 61Lin 61Saw 61Sir 61Sob 61Vyd 61Yag 62Awa 62Ber 62Cov 62Dir 62Gre 62Gub 62Het 62Jak2 62Kar 62Lie 62Lin 62Sch2 62Vag 63Cav 63Che 63Eva 63Gri 63Gup1 63Gup2 63Lar 63Mur 63Sch2 64Alt 64Bet 64But2 64Cov 64Dzh 64Het 64Pan 64Rao 64Roc 65And 65Bab 65Cha 65Cia 65Cov 65Kha Landolt-Börnstein New Series IV/9A
Hurlen, T.: Acta Chem. Scand. 14 (1960) 1533. Mattoo, B.N.: Zh. Prikl. Khim. 33 (1960) 2015. Towns, M.B., Greeley, Lietzke, N.H.: J. Phys. Chem. 64 (1960) 1861. Dirkse, T.P.: J. Chem. Eng. Data 6 (1961) 538. Hurlen, T.: Acta Chem. Scand. 15 (1961) 630. Ives, D.J.G., Janz, G.J.: Reference Electrodes, New York: Academic Press, 1961. Jakuszewski, B.J., Taneewska-Osinska, S.: Zesz. Nauk Uniw. Lodz. Ser. 2 (1961) 10. Lin, C.L., Pan, K.: J. Chin. Chem. Soc. (Taipei) 8 (1961) 14. Sawyer, D.T., Interrante, L.V.: J. Electroanal. Chem. 2 (1961) 310. Sircair, S.C., Prasad, B.: J. Indian Chem. Soc. 38 (1961) 361. Sobkovski, J., Minc, S.J.: J. Inorg. Nucl. Chem. 19 (1961) 101. Vydra, F., Pribil, R.: Talanta 8 (1961) 824. Yagn, N.S., Bunazhnov, F.T., Sokolova, V.G.: Zap. Leningr. Gorn. Inst. im. G. V. Plekhanova 42 (1961) 35. Awad, S.A.: J. Phys. Chem. 66 (1962) 890. Berka, A., Dvorak, V., Nemec, I., Zyka, J.: J. Electroanal. Chem. 4 (1962) 150. Covington, A.K., Cressey, T., Lever, B.G., Thirsk, H.R.: Trans. Faraday Soc. 58 (1962) 1975. Dirkse, T.P.: J. Electrochem. Soc. 109 (1962) 173. Gregor, V., Pitzner, K.S.: J. Am. Chem. Soc. 84 (1962) 2671. Gubin, S.P., Perevalova, E.G.: Dokl. Akad. Nauk SSSR 143 (1962) 1351. Hetzer, H.B., Robinson, R.A., Bates, R.G.: J. Phys. Chem. 66 (1962) 1423. Jakuszewski, B., Taniewska-Osinka, S.: Rocz. Chem. 36 (1962) 329. Kartushinskaya, A.I., Stromberg, A.G.: Zh. Neorg. Khim. 7 (1962) 291. Lietzke, N.H., Stoughton, R.W.: J. Chem. Educ. 39 (1962) 230. Lingane, J.J.: J. Electroanal. Chem. 4 (1962) 332. Schwabe, K., Nebel, D.: Z. Phys. Chem. (Leipzig) 220 (1962) 339. Vagramyan, A.T., Uvarov, L.A.: Izv. Akad. Nauk SSSR, Otd. Khim. Nauk (1962) 1520. Cavington, A.K., Hakeem, M.A., Wynne-Jones, W.F.K.: J. Chem. Soc. (1963) 4394. Chebrikova, Z.M., Belaya, Zh.V., Loshkarev, M.A.: Tr. Dnepropetr. Khim. Tekhnol. Inst. (1963) 55. Evans, D.H., Lingane, J.J.: J. Electroanal. Chem. 6 (1963) 1. Grinberg, A.A., Kiseleva, N.N., Gelfman, N.I.: Dokl. Akad. Nauk SSSR 153 (1963) 1327. Gupta, S.R., Hills, G.J., Ives, D.J.G.: Trans. Faraday Soc. 59 (1963) 1886. Gupta, S.R., Hills, G.J., Ives, D.J.G.: Trans. Faraday Soc. 59 (1963) 1874. Larson, W.D.: J. Phys. Chem. 67 (1963) 937. Murgulescu, J.G., Constantinescu, E.: Rev. Chim. Acad. Repub. Pop. Roum. 8 (1963) 5. Schilt, A.A.: Anal. Chem. 35 (1963) 1599. Altynov, V.I., Pritsyyn, B.V.: Zh. Neorg. Khim. 9 (1964) 2407. de Bethune, A.J., Swendeman Loud, N.A.: Standard Aqueous Electrode Potentials and Temperature Coefficients at 25 °C, Skokie: C.A. Hampel, 1964. Butler, J.N.: J. Phys. Chem. 68 (1964) 1828. Covington, A.K., Talukdev, P.K., Thirsk, H.R.: Trans. Faraday Soc. 60 (1964) 412. Dzhabarov, F.Z., Gorbachev, S.V.: Zh. Neorg. Khim. 9 (1964) 2399. Hetzer, H.B., Robinson, R.A.: J. Phys. Chem. 68 (1964) 1929. Panson, A.J.: J. Phys. Chem. 68 (1964) 1721. Rao, J.P., Murthy, A.R.V.: J. Phys. Chem. 68 (1964) 1573. Rock, P.A.: Inorg. Chem. 3 (1964) 1593. Andicott, J.F., Taube, H.: Inorg. Chem. 4 (1965) 437. Babaeva, A.V., Khananova, E.Ya.: Zh. Neorg. Khim. 10 (1965) 2579. Chang, J.C., Garner, C.S.: Inorg. Chem. 4 (1965) 209. Ciavatta, L., Grimaldi, M.: J. Inorg. Chem. 31 (1965) 3071 Covington, A.K., Dobson, J.V., Jones, L.W.: Trans. Faraday Soc. 61 (1965) 2050. Khairy, E.M., Darwish, N.A.: Z. Phys. Chem. (Leipzig) 230 (1965) 327.
R8 65Kor 65Mac 65Nes 65Pap 65Rei 65Roc 65Sch1 65Sch2 65Tan1 65Tan2 66Buc1 66Buc2 66Bur 66Cha 66Che 66Far 66Gol 66Han 66Hoa 66Hub 66Kra2 66Mal1 66Mal2 66Mat 66Pou 67Ber 67Bol 67Cov 67ElA 67Ham3 67Han 67Hin 67Iza 67Sch2 67Sen1 67Tou 67Van 68Bon 68Dil 68Gri 68Han 68Hus 68Mat 68Mur1 68Mur2 68Naq 68Noz 68Sha 68Shu 69Ere 69Kim
Kortüm, G., Häussermann, W.: Ber. Bunsenges. Phys. Chem. 69 (1965) 594. Macero, D.J., Anderson, L.B., Malachesky, P.: J. Electroanal. Chem. 10 (1965) 76. Nesmeyanov, A.N., Perevalova, E.G., Yureva, L.P., Gubin, S.P.: Izv. Akad. Nauk SSSR Ser. Khim. (1965) 909. Papon, C., Jacq, J.: Bull. Soc. Chim. Fr. (1965) 13. Reid Jr., W.E.: J. Phys. Chem. 69 (1965) 3168. Rock, P.A.: Inorg. Chem. 4 (1965) 1667. Schwabe, K., Ferse, E.: Ber. Bunsenges. Phys. Chem. 69 (1965) 383. Schaefer, W.P.: Inorg. Chem. 4 (1965) 624. Tanaka, N., Shirikashi, T.: Bull. Chem. Soc. Jpn. 38 (1965) 1515. Tanaka, N., Ogino, H.: Bull. Chem. Soc. Jpn. 38 (1965) 1054. Buckley, R.R., Mecer, E.E.: J. Phys. Chem. 70 (1966) 3103. Buckingham, D.A., Dwyer, F.P., Sargeson, A.M.: Inorg. Chem. 5 (1966) 1243. Burnett, J.L., Zirin, M.H.: J. Inorg. Nucl. Chem. 28 (1966) 902. Chauchard, J., Gauthier, J.: Bull. Soc. Chim. Fr. (1966) 2635. Chernyaev, I.I., Muraveiskaya, G.S., Korablina, L.S.: Zh. Neorg. Khim. 11 (1966) 1339. Farba, F., Iwamoto, R.T.: Anal. Chem. 38 (1966) 143. Goldberg, R.N., Riddell, R.G., Wing, M.R., Hopkins, H.P., Wuffs, C.A., Heple, L.G.: J. Phys. Chem. 70 (1966) 706. Hanania, G.I.H., Irvine, D.H., Michaelides, M.S., Shurayh, F.S.: Proc. 9th Int. Conf. Coord. Chem., St. Moritz-Bad, 1966, p. 222. Hoare, J.P.: Electrochim. Acta 11 (1966) 203. Hubbard, A.T., Anson, F.C.: Anal. Chem. 38 (1966) 58. Kravtsov, V.I., Zelensky, M.I.: Elektrokhimiya 2 (1966) 1138. Malik, W.U.: Indian J. Chem. 4 (1966) 106. Malik, W.U., Das, A.: Indian J. Chem. 4 (1966) 203. Mathur, P.B., Naqvi, S.M.A.: Proc. Symp. Electrode Processes, 1966, p. 39. Pouradier, J., Gadet, M.G.: J. Chim. Phys. 63 (1966) 1467. Bertram, J., Bone, S.J.: Trans. Faraday Soc. 63 (1967) 415. Boldin, R.V.: Elektrokhimiya 3 (1967) 1259. Covington, A.K., Dobson, J.V., Jones, L.W.: Electrochim. Acta 12 (1967) 513. El-Awady, A.A., Bounsall, E.J., Garner, C.S.: Inorg. Chem. 6 (1967) 79. Hamm, R.E., Suwyn, M.A.: Inorg. Chem. 6 (1967) 139. Hanania, G.I.H., Irvine, D.H., Eaton, W.A., George, P.: J. Phys. Chem. 71 (1967) 2022. Hin-Fat, L., Higginson, W.C.E.: J. Chem. Soc. A (1967) 298. Izatt, R.M., Eatough, D., Christensen, J.J.: J. Chem. Soc. A (1967) 1301. Schurig, H., Heusler, K.E.: Fresenius Z. Anal. Chem. 224 (1967) 45. Sen, B., Johnson, D.A., Roy, R.N.: J. Phys. Chem. 71 (1967) 1523. Tourchy, A.R., Abdul-Azim, A.A., Shalaby, L.A.: J. Chem. U.A.R. 10 (1967) 253. Van Vagramanian, A.T., Leshawa, T.I.: Z. Phys. Chem. 234 (1967) 57. Bonnet, N., Mihalova, V.: Dokl. Bolg. Akad. Nauk 21 (1968) 1295. Dill, A.J., Itzkovits, V.: J. Phys. Chem. 72 (1968) 4580 Grinberg, A.A., Dkhara, S.C., Gelfman, M.I.: Zh. Neorg. Khim. 13 (1968) 2199. Hanania, G.I.H., Irvine, D.H., Shurayh, F.R.: J. Phys. Chem. 72 (1968) 1355. Huston, R., Butler, J.N.: J. Phys. Chem. 72 (1968) 4263. Mathur, P.B., Naqvi, S.M.A.: Indian J. Chem. 6 (1968) 311. Murray jr., R.C., Rock, P.A.: Electrochim. Acta 13 (1968) 969. Murgulescu, I.G., Vartires, I.: Rev. Roum. Chim. 13 (1968) 1397. Naqvi, S.M., Mathur, P.B.: Bull. Acad. Pol. Sci. Ser. Sci. Chim. 16 (9) (1968) 479. Nozakzee, N.G., Kazakov, V.A., Vagramyan, A.T.: Elektrokhimiya 4 (1968) 1464. Sharma, L., Sahu, G., Prasad, B.: J. Indian Chem. Soc. 45 (1968) 580. Shu-Chen, L., Pan, K.: J. Chin. Chem. Soc. (Taipei) 15 (1968) 106. Erenburg, A.M., Peshchevitskii, B.I.: Zh. Neorg. Khim. 14 (1969) 932. Kim, J.J., Rock, P.A.: Inorg. Chem. 8 (1969) 563. Landolt-Börnstein New Series IV/9A
R9 69Kuk 69Mas 69Pou 69Vas 70Leu 70Sha2 70Sin 70Tan 71Amo 71Bar3 71Bod 71Cov 71DeC 71Kom1 71Kom2 71Mus 71Pan 71Vas1 71Vas2 72Gad 72Kom 72Lav 72Moo 72Mus 72Ten 73Cho 74Das 74Gro 74Lon 74Ost 74Ski 75Das3 75Lal 75Lon1 75Lon2 75Mal 76Ard 76Lut 77Gio 77Lon1 77Lon2 77Mus 77Ron 78Lag 79Lon1 79Lon2 83Maz 85Mus 90Gal
Landolt-Börnstein New Series IV/9A
Kukushkin, Yu.N., Drokina, Z.V.: Zh. Neorg. Khim. 14 (1969) 2452. Mašek, J., Dempir, J.: Collect. Czech. Chem. Commun. 34 (1969) 727. Pouradier, J., Gadet, M.G.: J. Chim. Phys. Phys. Chim. Biol. 66 (1969) 109. Vasil'jev, V.P., Grechina, N.K.: Elektrokhimiya 5 (1969) 426. Leuscke, W., Schwabe, K.: J. Electroanal. Chem. 25 (1970) 219. Sharma, L., Prasad, B.: J. Indian Chem. Soc. 47 (1970) 379. Sinha, H.K., Prasad, B.: J. Indian Chem. Soc. 47 (1970) 901. Tanaka, N., Tomita, T., Yamada, A.: Bull. Chem. Soc. Jpn. 43 (1970) 2042. Amosse, J., Ruband, M., Barbier, M.J.: C. R. Acad. Sci. (Paris), Ser. C 273 (1971) 1708. Bartelt, H., Prügel, M.: Electrochim. Acta 16 (1971) 1815. Boden, D.P., Wylie, R.B., Spera, V.J.: J. Electrochem. Soc. 118 (1971) 1298. Covington, A.K., Srinivasan, K.V.: J. Chem. Thermodyn. 3 (1971) 795. De Cugnac-Pailliotet, A., Pouradier, J.: C. R. Acad. Sci. (Paris), Ser. C 273 (1971) 1565. Komar, N.P., Kaftanov, A.Z.: Zh. Anal. Khim. 26 (1971) 2086. Komandenko, V.M.: Elektrokhimiya 7 (1971) 1255. Mussini, T., Maina, T., Pagella, T.: J. Chem. Thermodyn. 3 (1971) 281. Pan, K., Chang, J.-J., Hsin, S.-C.: J. Chin. Chem. Soc. (Taipei) 18 (1971) 1. Vasil'ev, V.P., Shorokhova, V.I.: Elektrokhimiya 7 (1971) 185. Vasil'ev, V.P., Glavin, S.R.: Elektrokhimiya 7 (1971) 1395. Gadet, M.C., Pouradier, J.: C. R. Acad. Sci. (Paris), Ser. C 275 (1972) 1061. Komar, N.P., Kaftanov, A.Z., Dunai, B.A.: Elektrokhimiya 8 (1972) 1177. Lavrenova, L.G., Zegzhda, T.V., Shul'man, L.M.: Elektrokhimiya 8 (1972) 1153. Moore, W.J.: Physical Chemistry, London: Longman, 1972. Mussini, T., Longhi P., Riva, G.: J. Chem. Thermodyn. 4 (1972) 591. Tendler, Y., Faraggi, M.: J. Chem. Phys. 57 (1972) 1358. Choudhary, B.K., Prasad, B.: Indian J. Chem. 11 (1973) 931. Das, R.C., Sahu, G., Satyanarayana, D., Misra, S.N.: Electrochim. Acta 19 (1974) 887. Gronlund, F., Noer, S.: J. Electrochem. Soc. 121 (1974) 25. Longhi, P., Mussini, T., Osimani, C.: J. Chem. Thermodyn. 6 (1974) 227. Ostannii, N.I., Zharkova, L.A., Erofeev, B.V., Kazakova, G.D.: Zh. Fiz. Khim. 48 (1974) 358. Skibsted, L.H., Bjerrum, J.: Acta Chem. Scand. A 28 (1974) 764. Dash, U.N., Mohanty, J.: Thermochim. Acta 12 (1975) 189. Lal, S.C., Prasad, B.: Indian J. Chem. 13 (1975) 372. Longhi, P., Mussini, T., Vaghi, E.: J. Chem. Thermodyn. 7 (1975) 767. Longhi, P., Mussini, T., Vaghi, E.: Chim. Ind. (Milan) 57 (1975) 169. Malik, W.U., Bembi, R., Dwivedi, J.K.: Indian J. Chem. 13 (1975) 589. Ardizzone, S., Longhi, P., Mussini, T., Rondinini, S.: J. Chem. Thermodyn. 8 (1976) 557. Lutfullah, Dunsmore, H.S., Paterson, R.: J. Chem. Soc. Faraday Trans. 1 72 (1976) 495. Giordano, G.M., Longhi P., Mussini, T., Rondinini, S.: J. Chem. Thermodyn. 9 (1977) 997. Longhi, P., Mussini, T., Rondinini, S., Vaghi, E: Chim. Ind. (Milan) 59 (1977) 249. Longhi, P., Rondinini, S., Ardizzone, S., Mussini, T.: Ann. Chim. (Rome) 67 (1977) 177. Mussini, T., Longhi, P.: Chim. Ind. (Milan) 59 (1977) 163. Rondinini, S., Longhi, P., Mussini, T.: Ann. Chim. (Rome) 67 (1977) 305; 467. Lagowski, J.J.: The Chemistry of Non-aqueous Solutions, Vol. 1, London: Academic Press, 1978. Longhi, P., Mussini, T., Rondinini, S., Sala, B: J. Chem. Thermodyn. 11 (1979) 359. Longhi, P., Mussini, T., Rondinini, S., Sala, B: J. Chem. Thermodyn. 11 (1979) 73. Mazzarese, J., Popvych, O.: J. Electrochem. Soc. 130 (1983) 2032. Mussini, T., Rondinini, S., Longhi, P.: Pure Appl. Chem. 57 (1985) 169. Galster, H.: pH-Messung, Weinheim: VCH, 1990.
1 Electrode potentials
41
Table 1.2. Nonmetal electrode potentials in aqueous electrolyte systems. 1) Electrode
Electrode reaction, electrode system 2)
Boron (B) Bromine (Br)
B+3H2O→H3BO3+3H++3e−
Chlorine (Cl)
–0.73
52Lat
1.0873 1.066
2Br−→Br2+2e−, acidic 2Br−→Br2+2e−, KBr, KCl, Br2, acetic acid Br−+H2O→HBrO+H++2e−
1.0652 1.078 1.33
Cl2+2H2O→2HClO+2H++2e−, NaClO, HClO 2Cl−→Cl2+2e−, HCl 2Cl−→Cl2+2e−
1.611 1.35827 1.359
2Cl−→Cl2+2e−, acidic Cl−+H2O→HClO+H++e−, NaClO, HClO Cl−+4H2O→ ClO 4– +8H++8e−
1.3595 1.482
59Fli 69Cer 22Ger, 26Kam, 11Lew, 23Lew, 28Ran 72Moo 59Fli
1.35
52Lat
0.954
62Nai
0.936
59Tro
–0.003 –0.0028
35Hai 72Moo
2.85
26Lat
−
ClO →ClO2+e , NaClO2, AgClO2, Pb(ClO2)2 −
ClO →ClO2+e , NaClO2, ClO2 – 2
−
Deuterium (D)
½D2→D +e ½D2→D++e−, acidic
Fluorine (F) Hydrogen (H)
2F−→F2+2e−
Iodine (I)
+
H2+2OH−→2H2O+2e−, basic I2+2HCN→2ICN+2H++2e−, HClO4, NaCN, I2
66Mus 33Ish1, 17Lew1, 23Lew 72Moo 71Lav 52Lat
–0.82806 0.625
72Moo 56Bow
I−+H2O→HIO+H++2e− 2I−→I2+2e− 2I−→I2+2e−
0.536 0.615 0.536
2I−→I2+2e−, acidic 3I−→ I3– +2e−
0.5355
11Bra 71Lav 23Lew, 29Ish, 37Wil 72Moo
0.535
29Ish, 52Lat
1.1942
75Spi
I2+6H2O→ 2IO +12H +10e
1.19
29Abh
NO+H2O→NO++e−, NO, H2SO4 NO+H2O→NO++e−, NO, H2SO4
1.46 1.45
66Sch 67Sch1, 68Mus
I2+6H2O→ 2IO3– +12H++10e−, HClO4, HIO3 – 3
Landolt-Börnstein New Series IV/9A
Ref.
2Br−→Br2+2e−, HBr, Br2 2Br−→Br2+2e−
– 2
Nitrogen (N)
T ESHE [K] [V]
+
−
42
1 Electrode potentials
Electrode
Electrode reaction, electrode system 2)
N
NO+H2O→HNO2+H++e−, NaNO2, H2SO4 2NO++2H2O→N2O4+4H++2e−, N2O4,H2SO4 HNO2+H2O→HNO3+2H++2e−, NaNO2,HNO3
67Sch1 68Mus 71Ale
273
1.67694
35Ham1
278
1.67846
35Ham1
283
1.67998
35Ham1
288
1.68159
35Ham1
293
1.68322
35Ham1
298
1.68488
35Ham1
303
1.68671
35Ham1
308
1.68847
35Ham1
313
1.69036
35Ham1
318
1.69231
35Ham1
323
1.69436
35Ham1
328
1.69649
35Ham1
333
1.69861
35Ham1
2OH →½O2+H2O+2e
0.400
10Brö, 06Lew, 14Lew2, 23Lew, 06Ner, 27Nie
3OH−→ HO 2– +H2O+2e−, basic
0.878 1.229 0.695
72Moo 66Hoa 54Ker
–1.565
72Moo
−
PbO2+4H + SO →PbSO4+2H2O+2e +
2– 4
−
PbO2+4H + SO →PbSO4+2H2O+2e +
2– 4
−
PbO2+4H + SO →PbSO4+2H2O+2e +
2– 4
−
PbO2+4H + SO →PbSO4+2H2O+2e +
2– 4
−
PbO2+4H + SO →PbSO4+2H2O+2e +
2– 4
−
PbO2+4H + SO →PbSO4+2H2O+2e +
2– 4
−
PbO2+4H + SO →PbSO4+2H2O+2e +
2– 4
−
PbO2+4H + SO →PbSO4+2H2O+2e +
2– 4
−
PbO2+4H + SO →PbSO4+2H2O+2e +
2– 4
−
PbO2+4H + SO →PbSO4+2H2O+2e +
2– 4
−
PbO2+4H + SO →PbSO4+2H2O+2e +
2– 4
−
PbO2+4H + SO →PbSO4+2H2O+2e +
Oxygen (O)
2– 4
−
−
−
2H2O→O2+4H +4e H2O2→O2+2H++2e−, O2, H2O2 +
Phosphorus (P) Quinone
Ref.
0.983 0.77 0.945
− Lead dioxide PbO2+4H++ SO 2– 4 →PbSO4+2H2O+2e
(PbO2)
T ESHE [K] [V]
H 2 PO 2– +3OH−→ HPO32– +2e−, basic hydroquinone→quinone+2e–+2H+ hydroquinone→quinone+2e–+2H+ hydroquinone→quinone+2e–+2H+ hydroquinone→quinone+2e–+2H+ hydroquinone→quinone+2e–+2H+ hydroquinone→quinone+2e–+2H+ hydroquinone→quinone+2e–+2H+ hydroquinone→quinone+2e–+2H+ hydroquinone→quinone+2e–+2H+ hydroquinone→quinone+2e–+2H+, E0 [V]=0.69969–735.8·10–6(T–273.15 K)–0.29·10–6(T–273.15 K) hydroquinone→quinone+2e–+2H+, pH=0
273 278 283 288 293 298 303 308 313
0.71798 0.71437 0.71073 0.70709 0.70343 0.69976 0.69607 0.69237 0.68865
54Bat1 54Bat1 54Bat1 54Bat1 54Bat1 54Bat1 54Bat1 54Bat1 54Bat1 33Har2
0.6990
22LaM
Landolt-Börnstein New Series IV/9A
1 Electrode potentials Electrode
Selenium (Se) Sulfur (S)
Electrode reaction, electrode system 2)
T ESHE [K] [V]
Ref.
Toluhydroquinone→Toluquinone+2e–+2H+, pH=0 p-Xylohydroquinone→p–Xyloquinone+2e–+2H+, pH=0 p-Thymohydroquinone→p-Thymoquinone+2e–+2H+, pH=0 Dimethoxyhydroquinone→Dimethoxyquinone+2e–+2H+, pH=0 1,4-Naphthohydroquinone→1,4-Naphthoquinone+2e–+2H+, pH=0 Bromohydroquinone→Bromoquinone+2e–+2H+, pH=0 Chlorohydroquinone→Chloroquinone+2e–+2H+, pH=0 hydroquinone→quinone+2e–+2H+, 0.01 N HCl, 0.09 N KCl hydroquinone→quinone+2e–+2H+, 0.01 N HCl, 0.09 N KCl hydroquinone→quinone+2e–+2H+, 0.01 N HCl hydroquinone→quinone+2e–+2H+, 0.01 N HCl hydroquinone→quinone+2e–+2H+, 0.1 N HCl hydroquinone→quinone+2e–+2H+, 0.1 N HCl
298
0.6454 0.5900 0.5875 0.5139 0.4698
22LaM 22LaM 22LaM 22LaM 22LaM
0.7151 0.7125 0.5750 0.5831 0.5787 0.5868 0.6345 0.6414
22LaM 22LaM 61Ive 61Ive 61Ive 61Ive 61Ive 61Ive
291 298 291 298 291 298
Se+3H2O→H2SeO3+4H++4e−, H2SeO3
–0.74
66Osm
S2−→S+2e−2
–0.51
Ag2S→S+2Ag++2e−, H2S, HCl HgS→S+Hg2++2e−, H2S, HCl PbS→S+Pb2++2e− + − Ag++4S+6H2O→ Ag(S2 O3 )3– 2 +12H +8e
–1.99 –2.00 –1.296
35Kim, 20Noy, 23Lew 51Goa1 51Goa2 56Kiv
Ba2++2S+3H2O→BaS2O3+6H++4e− Ba2++2S+3H2O→BaS2O3+6H++4e−, BaS2O3 Ca2++2S+3H2O→CaS2O3+6H++4e−, CaCl2, BaS2O3
0.432 0.394 0.436
Cd2++2S+3H2O→CdS2O3+6H++4e−, CdCl2, Na2S2O3, BaS2O3
0.407
Co2++2S+3H2O→CoS2O3+6H++4e−, CoCl2, BaS2O3 + − Hg2++4S+6H2O→ Hg(S2 O3 ) 2– 2 +12H +8e , HgNO3, Na2S2O3
0.435
57Cha1, 57Cha2 49Dav2 51Den 51Den, 49Dav1, 55Gim 51Den, 49Dav1, 55Gim 51Den
0.245
54Tor
0.365
0.306
54Tor
0.341
54Tor
0.452 0.438 0.438 0.438
51Den 51Den 55Gim 51Den
0.455 0.434
51Den 51Den
−
Hg +6S+9H2O→ Hg(S2 O ) +18H +12e , HgNO3, Na2S2O3 + − Hg2++8S+12H2O→ Hg(S2 O3 ) 6– 4 +24H +16e , HgNO3, Na2S2O3 K++2S+3H2O→ KS2 O3– +6H++4e−, KCl, BaS2O3 2+
4– 3 2
+
Mg2++2S+3H2O→MgS2O3+6H++4e−, MgCl2, BaS2O3 Mg2++2S+3H2O→MgS2O3+6H++4e−, MgCl2, Na2S2O3 Mn2++2S+3H2O→MnS2O3+6H++4e−, MnCl2, BaS2O3 Na++2S+3H2O→ NaS2 O3– +6H++4e−, MnCl2, BaS2O3 Ni2++2S+3H2O→NiS2O3+6H++4e−, NiCl2, BaS2O3 Landolt-Börnstein New Series IV/9A
43
44
1 Electrode potentials
Electrode
Electrode reaction, electrode system 2)
S
Sr2++2S+3H2O→SrS2O3+6H++4e−, NiCl2, BaS2O3 Zn2++2S+3H2O→ZnS2O3+6H++4e−, NiCl2, BaS2O3 Zn2++2S+3H2O→ZnS2O3+6H++4e−, NiCl2, BaS2O3 Zn2++2S+3H2O→ZnS2O3+6H++4e−, NiCl2, Na2S2O3
0.435 0.430 0.430 0.430
51Den 51Den 51Den 51Goa1, 51Goa2
Ce3++S+4H2O→ CeSO +4 +8H++6e−, Ce2(SO4)3
0.322
54Spe
0.322
54Spe
0.321
54Spe
0.297
57Bro
0.322
54Spe
0.348
50Jen
0.322
50Jen
0.322 0.338 0.338 0.346
47Jam 51Dun 52Jon 47Jam
0.350
57Dav
0.321
54Spe
0.322
54Spe
0.321
54Spe
0.328
57Dav
0.323
54Spe
0.322 –0.47627
54Spe 57Mar
–0.5242
57Mar
–0.42836
57Mar
–0.5056
57Mar
–0.38973
57Mar
–0.4778
57Mar
–0.36039
57Mar
–0.4407
57Mar
–0.34030
57Mar
0.169
76Cob
0.17
72Moo
–0.93
72Moo
2.01
72Moo
+ 4
−
Er +S+4H2O→ ErSO +8H +6e , Er2(SO4)3 3+
+
+ 4
−
Gd +S+4H2O→ GdSO +8H +6e , Gd2(SO4)3 3+
+
−
Hg +S+4H2O→Hg2SO4+8H +6e , Hg2SO4 +
2+ 2
+ 4
−
Ho +S+4H2O→ HoSO +8H +6e , Ho2(SO4)3 3+
+
−
K +S+4H2O→ KSO +8H +6e , K2SO4 +
+
– 4
+ 4
+
+ 4
+
−
La +S+4H2O→ LaSO +8H +6e , La2(SO4)3 3+
−
La +S+4H2O→ LaSO +8H +6e , La2(SO4)3 3+
−
Mg +S+4H2O→MgSO4+8H +6e , MgSO4 Mg2++S+4H2O→MgSO4+8H++6e−, HCl, MgSO4 Mn2++S+4H2O→MnSO4+8H++6e− Na++S+4H2O→ NaSO 4– +8H++6e−, Na2SO4 2+
+
+ 4
−
Nd +S+4H2O→ NdSO +8H +6e , Nd2(SO4)3 3+
+
+ 4
−
Pr +S+4H2O→ PrSO +8H +6e , Pr2(SO4)3 3+
+
+ 4
−
Sm +S+4H2O→ SmSO +8H +6e , Sm2(SO4)3 3+
+
2+ 2
−
UO +S+4H2O→UO2SO4+8H +6e , UO2SO4, HClO4 +
+ 4
−
Y +S+4H2O→ YSO +8H +6e , Y2(SO4)3 3+
+
+ 4
−
Yb +S+4H2O→ YbSO +8H +6e , Yb2(SO4)3 3+
+
−
S →S+2e , H2S − 2S2–→ S2– 2 +2e , H2S 2−
−
S →2S+2e , H2S 2– 2
−
3S → 2S +2e , H2S 2– 2
2– 3
−
S →3S+2e , H2S 2– 3
−
4S → 3S +2e , H2S 2– 3
2– 4
−
S →4S+2e , H2S 2– 4
−
5S → 4S +2e , H2S 2– 4
2– 5
−
S →5S+2e , H2S 2– 5
−
2S2 O → S4 O +2e , K2S2O3, K2S4O6 2– 3
2– 6
−
2S2 O → S4 O +2e , acidic 2– 3
2– 6
−
−
SO +2OH → SO +H2O+2e , basic 2– 3
2– 4
−
2SO → S2 O +2e , acidic 2– 4
2– 8
T ESHE [K] [V]
Ref.
Landolt-Börnstein New Series IV/9A
1 Electrode potentials
1
45
) First electrodes based on inorganic materials (arranged according to Hill's system) are listed, followed by those based on organic materials. All data refer to room temperature if not stated otherwise. 2 ) Experimental details are given only if relevant for the stated value of ESHE.
Landolt-Börnstein New Series IV/9A
R1
References 06Lew 06Ner 10Brö 11Bra 11Lew 14Lew2 17Lew1 20Noy 22Ger 22LaM 23Lew 26Kam 26Lat 27Nie 28Ran 29Abh 29Ish 33Har2 33Ish1 35Hai 35Ham1 35Kim 37Wil 47Jam 49Dav1 49Dav2 50Jen 51Den 51Dun 51Goa1 51Goa2 52Jon 52Lat 54Bat1 54Ker 54Spe 54Tor 55Gim 56Bow 56Kiv 57Bro 57Cha1 57Cha2 57Dav 57Mar 59Fli 59Tro
Landolt-Börnstein New Series IV/9A
Lewis, G.N.: J. Am. Chem. Soc. 28 (1906) 158. Nernst, W., Wartenberg, H.v.: Z. Phys. Chem. 56 (1906) 534. Brönsted, J.N.: Z. Phys. Chem. 68 (1910) 703. Bray, W.C., Connolly, E.L.: J. Am. Chem. Soc. 33 (1911) 1485. Lewis, G.N., Rupert, F.F.: J. Am. Chem. Soc. 33 (1911) 299. Lewis, G.N., Randall, M.: J. Am. Chem. Soc. 36 (1914) 2468. Lewis, G.N., Storch, H.: J. Am. Chem. Soc. 39 (1917) 2544. Noyes, A.A., Freed, E.S.: J. Am. Chem. Soc. 42 (1920) 476. Gerke, R.H.: J. Am. Chem. Soc. 44 (1922) 1684. La Mer, V.K., Baker, L.E.: J. Am. Chem. Soc. 44 (1922) 1954. Lewis, G.N., Randall, M.: Thermodynamics and the Free Energy of Chemical Substances, New York: McGraw Hill, 1923. Kameyama, N., Yamamoto, H., Skumpei, O.: J. Soc. Chem. Ind. Jpn. 29 (1926) 679. Latimer, W.M.: J. Am. Chem. Soc. 48 (1926) 2868. Nielson, R.F., Brown, D.J.: J. Am. Chem. Soc. 49 (1927) 2423. Randall, M., Young, L.E.: J. Am. Chem. Soc. 50 (1928) 989. Abhandlungen der Deutschen Bunsengesellschaft 10 (1929). Ishikawa, F., Shibata, E.: Sci. Rep. Tohoku Univ. Ser. 1 18 (1929) 109. Harned, H.S., Wright, D.D.: J. Am. Chem. Soc. 55 (1933) 4849. Ishikawa, F., Kimura, G., Murooka, T.: Sci. Rep. Tohoku Imp. Univ. Ser. 1 22 (1933) 131. Haissinsky, M.: J. Chim. Phys. 32 (1935) 116. Hamer, W.J.: J. Am. Chem. Soc. 57 (1935) 9. Kimura, G.: Bull. Inst. Phys. Chem. Res. Tokyo 14 (1935) 94. Willard, H.H., Ning Kang Tang: J. Am. Chem. Soc. 59 (1937) 1188. James, J.C.: Thesis, London, 1947. Davies, C.W., Monk, C.B.: J. Chem. Soc. (1949) 413. Davies, C.W., Wyatt, P.A.H.: Trans. Faraday Soc. 45 (1949) 770. Jenkins, I.L., Monk, C.B.: J. Am. Chem. Soc. 72 (1950) 2695. Denney, T.O., Monk, C.B.: Trans. Faraday Soc. 47 (1951) 992. Dunsmore, H.S., James, J.C.: J. Chem. Soc. (1951) 2925. Goates, J.R., Cole, A.G., Cray, E.L., Faux, N.D.: J. Am. Chem. Soc. 73 (1951) 707. Goates, J.R., Cole, A.G., Cray, E.L.: J. Am. Chem. Soc. 73 (1951) 3596. Jones, H.W., Monk, C.B.: Trans. Faraday Soc. 48 (1952) 929. Latimer, W.M.: The Oxidation States of the Elements and their Potentials in Aqueous Solutions, Englewood Cliffs: Prentice-Hall Inc., 1952. Bates, R.G.: Electrometric pH Determinations, New York: Wiley, 1954. Kern, D.M.H.: J. Am. Chem. Soc. 76 (1954) 4208. Spedding, F.H., Jaffe, S.: J. Am. Chem. Soc. 76 (1954) 882. Toropova, V.F.: Zh. Obshch. Khim. 24 (1954) 423. Gimblett, F.G.R., Monk, C.B.: Trans. Faraday Soc. 51 (1955) 793. Bowersox, D.F., Butler, E.A., Swift, E.H.: Anal. Chem. 28 (1956) 221. Kivalo, P., Ringbom, A.: Suom. Kemistil. B 29 (1956) 109. Brown, S.A., Land, J.E.: J. Am. Chem. Soc. 79 (1957) 3015. Chateau, H., Hervier, B., Pouradier, J.: J. Phys. Chem. 61 (1957) 250. Chateau, H., Hervier, B., Pouradier, J.: J. Chim. Phys. 54 (1957) 246. Davies, E.W., Monk, C.B.: Trans. Faraday Soc. 53 (1957) 442. Maronny, G., Valensi, G.: Proc. Int. Comm. Electrochem. Thermodynamics and Kinetics, 1957, p. 155. Flis, I.E., Mishchenko, K.P., Troitskaya, N.V.: Zh. Fiz. Khim. 33 (1959) 1744. Trotiskaya, N.V., Mishchenko, K.P., Flis, I.E.: Zh. Fiz. Khim. 33 (1959) 1614.
R2 61Ive 62Nai 66Hoa 66Mus 66Osm 66Sch 67Sch1 68Mus 69Cer 71Ale 71Lav 72Moo 75Spi 76Cob
Ives, D.J.G., Janz, G.J.: Reference Electrodes, New York: Academic Press, 1961. Naito, T.: Kogyo Kagaku Zasshi 65 (1962) 749. Hoare, J.P.: Electrochim. Acta 11 (1966) 203. Mussine, T., Faita, G.: Ric. Sci. 36 (1966) 175. Osman-Zade, Sh.D., Vagramyan, A.T.: Elektrokhimiya 2 (1966) 85. Schmid, G., Neumann, U.: Ber. Bunsenges. Phys. Chem. 70 (1966) 1165. Schmid, G., Neumann, U.: Z. Phys. Chem. (Frankfurt/Main) 54 (1967) 150. Mussini, T.: Chim. Ind. (Milan) 50 (1968) 783. Cerquetti, A., Longhi, P., Mussini, T., Natta, G.: J. Electroanal. Chem. 20 (1969) 411. Alekseeva, N.I., Zymmer, Ya.D., Nikol'skii, V.A.: Elektrokhimiya 7 (1971) 873. Lavrenova, L.G., Zegzhda, T.V., Shul'man, V.M.: Elektrokhimiya 7 (1971) 83. Moore, W.J.: Physical Chemistry, London: Longman, 1972. Spitz, R.D., Liefbafsky, H.A.: J. Electrochem. Soc. 122 (1975) 363. Cobble, J.W., Stephens, H.P., McKinnon, I.R., Westrum jr., E.F.: Inorg. Chem. 11 (1976) 1669.
Landolt-Börnstein New Series IV/9A
46
1 Electrode potential
Table 1.3. Metal electrode potentials in nonaqueous 1) electrolyte systems 2). Electrode
Electrode reaction, electrolyte solution 3)
Aluminum (Al) Arsenic (As) Barium (Ba) Beryllium (Be) Bismuth (Bi) Cerium (Ce) Cesium (Cs) Cadmium (Cd)
Al→Al3++3e−, methanol
CdHg CdHg CdHg CdHg Cd(Hg) CdHg
Calcium (Ca) (Ca)Hg
ESHE 4) [V]
Ref.
–0.632
64Jak2
0.590
49Gal
BaCaO3+Pb→Ba2++PbCO3+2e−, methanol, BaCl2
–2.943
62Jak2
Be→Be2++2e−, molten BeCl2, T=773 K
–2.144
56Ham
Be→Be2++2e−, methanol, LiCl
–0.513
64Jak2
As+3Br−→AsBr3+3e−, tolueneAsBr3,AlBr3
T [K]
Ce3+→Ce4++e−, acetonitrile; activity: 1.3 Cs→Cs++e−, propylene carbonate, CsClO4 Cd+2Cl−→CdCl2+2e−, liquid ammonia, NH4Cl, 1 M Cd→Cd2++2e−, liquid ammonia, CdCl2, Pb(NO3)2, NH4SCN − Cd+ SO 2– 4 →CdSO4+2e , hydrazine, H2SO4 −
Cd→Cd +2e , methanol, CdCl2 Cd→Cd2++2e−, ethanol, Cd(NO3)2, NH4NO3 Cd+3Br−→ CdBr3– +2e−, ethanol, Cd(NO3)2, NH4Br 2+
−
−
Cd+2SCN →Cd(SCN)2+2e , ethanol, Cd(NO3)2, NH4Br Cd→Cd2++2e−, formic acid, CdCl2 Cd→Cd2+, formamide, CdCl2, KCl
64Rao –3.012
72LHe
298 –0.362 239 –0.189
58Fis 66Ros
–0.246 –0.410 –0.340
55Fur 65Hef 54Tur1
–0.779 –0.740 –0.75 –0.414
56Tur 56Tur 46Ple1 68Bro3, 67DeR 71And 54Pav 54Pav 54Pav 48Ple 56Ham 61Ive 56Ham
–0.412 Cd→Cd2++2e−, formamide, CdCl2 298 –0.408 Cd→Cd2+, anhydrous formamide, 1 M 298 –0.617 Cd+2Cl−→CdCl2+2e−, anhydrous formamide, 1 M − − Cd+2Cl →CdCl2+2e , KCl saturated in anhydrous formamide, 1 M 298 –0.608 –0.47 Cd→Cd2++2e−, acetonitrile, CdI2 773 –1.403 Cd→Cd2++2e−, molten CdCl2 1073 –1.193 Cd→Cd2++2e−, molten CdCl2 1273 –1.002 Cd→Cd2++2e−, molten CdCl2 2+ − 239 –2.185 Ca→Ca +2e , ammonia –2.929 CaCaO3+Pb→Ca2++PbCO3+2e−, methanol, CaCl2 2+ − –3.20 Ca→Ca +2e , formic acid, Ca formate 2+ − –2.65 Ca→Ca +2e , propylene carbonate –2.75 Ca→Ca2++2e−, acetonitrile 773 –3.534 Ca→Ca2++2e−, molten CaCl2 1273 –3.208 Ca→Ca2++2e−, molten CaCl2
66Ros 62Jak2 46Ple1 72LHe 48Ple 56Ham 56Ham
Landolt-Börnstein New Series IV/9A
1 Electrode potential Electrode
Electrode reaction, electrolyte solution 3)
Cesium (Cs)
Cs→Cs++e−, ammonia, CsNO3
47 T [K]
228 –3.93
Landolt-Börnstein New Series IV/9A
Ref.
–3.44 –3.16
46Ple2, 46Ple3 46Ple1 48Ple
–1.537 –1.352 –1.262 –1.376 –1.113 –1.006
56Ham 61Ive 56Ham 56Ham 61Ive 56Ham
–0.233 773 –1.140 1073 –0.977 1273 –0.900
61Jak2 56Ham 61Ive 56Ham
Cs→Cs++e−, formic acid, 0.01 M CsHCOO Cs→Cs++e−, acetonitrile, 0.01 M CsCl Chromium Cr→Cr2++2e−, molten CrCl2 (Cr) Cr→Cr2++2e−, molten CrCl2 Cr→Cr2++2e−, molten CrCl2 Cr→Cr3++3e−, molten CrCl3 Cr→Cr3++3e−, molten CrCl3 Cr→Cr3++3e−, molten CrCl3 Cobalt Co→Co2++2e−, methanol,CoCl2 (Co) Co→Co2++2e−, molten CoCl2 Co→Co2++2e−, molten CoCl2 Co→Co2++2e−, molten CoCl2 Copper Cu→Cu++e−, methanol, Cu(ClO4)2 (Cu) (Cu)Hg Cu→Cu2++2e−, methanol, Cu(ClO4)2 (Cu)Hg Cu+→Cu2++e−, methanol, Cu(ClO4)2 (Cu)Hg Cu→Cu2+, anhydrous formamide, 1 M (Cu)Hg Cu→Cu+, acetonitrile Cu+→Cu2++e−, acetonitrile, Cu(ClO4)2 Cu→Cu++e−, molten CuCl Cu→Cu++e−, molten CuCl Cu→Cu++e−, molten CuCl Cu→Cu2++2e−, molten CuCl2 Iron Ferrocene→Ferrocinium+e−, methanol (Fe) Ferrocene→Ferrocinium+e−, 1,2-dimethoxyethane Ferrocene→Ferrocinium+e−, tetrahydrofuran, Bu4NClO4 Ferrocene→Ferrocinium+e−, formamide Ferrocene→Ferrocinium+e−, acetonitrile, ferrocene, ferricinium picrate, (C2H5)4NClO4 Ferrocene→Ferrocinium+e−, pyridine, ferrocene, ferricinium picrate, (C2H5)4NClO4 Fe(1,10-phenanthroline)2+→ Fe(1,10-phenanthroline)3++e−, acetonitrile, NaClO4 Fe(1,10-phenanthroline)2+→ Fe(1,10-phenanthroline)3++e−, acetonitrile, (C2H5)4NClO4 Fe→Fe2++2e−, molten FeCl2 Fe→Fe2++2e−, molten FeCl2 Fe→Fe2++2e−, molten FeCl2 Lead Pb→Pb2++2e−, ethanol, NH4NO3 (Pb) Pb→Pb2++2e−, formic acid, Pb(HCOO)2 Pb→Pb2++2e−, anhydrous formamide, 1 M Pb→Pb2+, acetamide, Pb(NO3)2
ESHE 4) [V]
773 1073 1273 773 1073 1273
298
0.64
70Des
298 298 298 298 298 773 1073 1273 1273
0.513 0.4 0.279 –0.344 0.133 –1.024 –0.970 –0.943 –0.528
70Des 70Des 54Pav 71Sen 71Sen 56Ham 61Ive 56Ham 56Ham
0.410 0.07 0.12 0.539 0.19
78Lag 71Gue 71Gue 78Lag 65Kol
0.628
68Muk
0.805
65Kol
0.805
66Kra3
773 –1.267 1073 –1.118 1273 –1.050
56Ham 61Ive 56Ham
–0.146 –0.72 298 –0.193 –0.193
54Tur2 46Ple1 54Pav 58Fis
48
1 Electrode potential
Electrode
Electrode reaction, electrolyte solution 3)
T [K]
Pb
Pb→Pb2+, acetonitrile, Pb(ClO4)2 Pb+2Cl−→PbCl2+2e−, methanol, KCl Pb+2Cl−→PbCl2+2e−, N, N-dimethylformamide, HCl Pb→Pb2++2e−, molten PbCl2 Pb→Pb2++2e−, molten PbCl2 Pb→Pb2++2e−, molten PbCl2
–0.12 –0.2873 –0.3368 773 –1.2710 1073 –1.112 1273 –1.039
48Ple 50Car 74Bat2 56Ham 61Ive 56Ham
Lithium (Li)
Li→Li++e−, methanol/water 30 wt% Li→Li++e−, methanol/water 50.3 wt% Li→Li++e−, methanol/water 69.3 wt% Li→Li++e−, methanol/water 90.0 wt% Li→Li++e−, methanol Li→Li++e−, methanol Li→Li++e−, ethanol/water 10 wt% Li→Li++e−, ethanol/water 20.1 wt% Li→Li++e−, ethanol/water 30.4 wt% Li→Li++e−, ethanol/water 40.3 wt% Li→Li++e−, ethanol/water 49.9 wt% Li→Li++e−, ethanol/water 60.3 wt% Li→Li++e−, ethanol/water 70.3 wt% Li→Li++e−, ethanol/water 80.4 wt% Li→Li++e−, ethanol/water 90.4 wt% Li→Li++e−, ethanol Li→Li++e−, ethanol Li→Li++e−, ethanol, LiBr Li→Li++e−, formic acid Li→Li++e−, propylene carbonate Li→Li++e−, acetonitrile Li→Li++e−, dimethylsulfoxide Li→Li++e−, molten LiCl Li→Li++e−, molten LiCl
–3.020 –3.001 –2.994 –3.006 –3.095 –3.095 –3.025 –3.014 –3.002 –2.991 –2.983 –2.975 –2.961 –2.952 –2.942 –3.016 –3.022 –3.097 –3.48 –2.8874 –3.23 –2.4212 –3.646 –3.352
83Maz 83Maz 83Maz 83Maz 83Maz 59Jak 83Maz 83Maz 83Maz 83Maz 83Maz 83Maz 83Maz 83Maz 83Maz 83Maz 53Bje 72Kun 46Ple1 70Bod 48Ple 67Smy 56Ham 56Ham
Li(Hg) Li(Hg)
Magnesium Cd+Mg(OH)2→Cd(OH)2+Mg2++2e−, methanol, cadmium electrode (Mg) Mg→Mg2++2e−, molten MgCl2 Mg→Mg2++2e−, molten MgCl2 Mg→Mg2++2e−, molten MgCl2 Manganese Mn→Mn2++2e−, molten MnCl2 (Mn) Mn→Mn2++2e−, molten MnCl2 Mn→Mn2++2e−, molten MnCl2 Mercury 2Hg+2Cl−→Hg2Cl2+2e−, methanol(20.22 wt%)/water, 1 m (Hg) 2Hg+2Cl−→Hg2Cl2+2e−, methanol(43.12 wt%)/water, 1 m 2Hg+2Cl−→Hg2Cl2+2e−, methanol(68.33 wt%)/water, 1 m 2Hg+2Cl−→Hg2Cl2+2e−, methanol(99.29 wt%)/water, 1 m 2Hg+2Cl−→Hg2Cl2+2e−, dioxane(20 wt%)/water, 1 m 2Hg+2Cl−→Hg2Cl2+2e−, dioxane(40 wt%)/water, 1 m
298
298 298 298 298 298 773 1273
ESHE 4) [V]
Ref.
–2.478 773 –2.680 1073 –2.460 1273 –2.346
61Jak1 56Ham 61Ive 56Ham
773 –1.967 1073 –1.807 1273 –1.725
56Ham 61Ive 56Ham
298 298 298 298 298 298
0.2545 0.2515 0.2173 0.1027 0.2501 0.2104
58Sch 58Sch 58Sch 58Sch 59Sch2 59Sch2
Landolt-Börnstein New Series IV/9A
1 Electrode potential Electrode
Electrode reaction, electrolyte solution 3) 2Hg+2Cl−→Hg2Cl2+2e−, dioxane(70 wt%)/water, 1 m 2Hg+2Cl−→Hg2Cl2+2e−, dioxane(82 wt%)/water, 1 m 2Hg+2Cl−→Hg2Cl2+2e−, ethylene glycol(19.25 wt%)/water, 1 m 2Hg+2Cl−→Hg2Cl2+2e−, ethylene glycol(50 wt%)/water, 1 m 2Hg+2Cl−→Hg2Cl2+2e−, ethylene glycol(77.91 wt%)/water, 1 m − 2Hg+ SO 2– 4 →Hg2SO4+2e , anhydrous acetic acid, 1 m −
2Hg+ SO →Hg2SO4+2e , methanol, H2SO4 2– 4
−
−
2Hg+2Cl →Hg2Cl2+2e , acetic acid, KCl 2Hg→ Hg 22 + +2e−, formic acid, HgHCOO −
−
2Hg+2Ac →Hg2Ac2+2e , acetic acid, Na acetate 2Hg→ Hg 22 + +2e−, formamide, KCl
49 T [K]
ESHE 4) [V]
Ref.
298 0.1126 59Sch2 298 –0.0014 59Sch2 298 0.2570 59Sch3 298 0.2364 59Sch3 298 0.20125 59Sch3 298
0.181
31Hut
0.5392 0.27
46Kan 56Tut2
0.180 46Ple1 –0.1599 65Jak2 0.2451 0.2453
67DeR 71Nay
0.25
48Ple
0.614
71Nay
2Hg→ Hg +2e , acetonitrile, Hg2(ClO4)2, HClO4
0.460
73Coe
2Hg→ Hg 22 + +2e−, N-methylpyrrolidone, Hg2(ClO4)2, HClO4
0.069
70Bré
0.061 0.065 0.2535
70Bré 70Leu 75Das5
−
−
2Hg+2Cl →Hg2Cl2+2e , formamide, HCl 2Hg→ Hg 22 + +2e−, acetonitrile, HgBr2 2+ 2
−
Hg →2Hg +2e , acetonitrile, Hg2(ClO4)2, HClO4 2+
−
2+ 2
2+ 2
−
Hg →2Hg +2e , N-methylpyrrolidone, HClO4 2+
−
Hg→Hg +2e , N-methylpyrrolidone, Hg2(ClO4)2, HClO4 2Hg+2 benzoate−→Hg2 benzoate2+2e−, formamide, benzoic acid 2Hg→ Hg 22 + +2e−, molten Hg2Cl2 2+
−
773 –0.597
56Ham
Nickel (Ni)
Ni→Ni +2e , LiCl Ni→Ni2++2e−, molten NiCl2 Ni→Ni2++2e−, molten NiCl2 Ni→Ni2++2e−, molten NiCl2
0.088 773 –1.070 1073 –0.875 1273 –0.763
64Jak2 56Ham 61Ive 56Ham
Palladium (Pd)
Pd→Pd2++2e−, molten PdCl2 Pd→Pd2++2e−, molten PdCl2
773 –0.457 1073 –0.331
56Ham 61Ive
Potassium (K)
K→K++e−, methanol/water 28.9 wt% K→K++e−, methanol/water 49.7 wt% K→K++e−, methanol/water 70.1 wt% K→K++e−, methanol/water 90.6 wt% K→K++e−, methanol K→K++e−, methanol, 0.01...0.1 M KCl K→K++e−, ethanol, 0.6266...3.1390 M KCl K→K++e−, formic acid, 0.01 M KCOOH K→K++e−, propylene carbonate, KI or KClO4 K→K++e−, ethylene glycol, KBr K→K++e−, acetonitrile, 0.01 M KI K→K++e−, anhydrous formamide, 1 M K→K++e−, anhydrous formamide, 1 M K→K++e−, ethane bromide, 0.19 M KCl, 0.24 M AlBr3 K→K++e−, nitrobenzene, KCl
K(Hg) K(Hg) K(Hg) K(Hg)
Landolt-Börnstein New Series IV/9A
2+
–2.888 –2.861 –2.833 –2.836 –2.928 –2.921 –2.843 –3.36 –2.9504 298 –2.998 –2.91 291 –2.868 298 –2.872 –2.516 –2.804
83Maz 83Maz 83Maz 83Maz 83Maz 58Brä 68Dil 46Ple1 70Bod 72Kun 48Ple 54Pav 54Pav 46Mez 46Mez
50
1 Electrode potential
Electrode
Electrode reaction, electrolyte solution 3)
T [K]
K
K→K++e−, molten KCl K→K++e−, molten KCl
773 –3.755 1273 –3.155
56Ham 56Ham
–3.45 –2.982 291 –2.851 298 –2.855 –3.17
46Ple1 72LHe 54Pav 54Pav 48Ple
243
0.49 0.06014 0.812 295 0.240 298 –0.1328 308 –0.0815 –0.139 –0.1939 –0.1007 –0.1633 0.0967 0.0965 0.4997
74Bro2 74Lie 63Cha 68Ben 42Kan 56Muk 67Alf 61Nun 70Kun1 70Kun2 68Mar1 75Das1 75Das2
298 0.2155 298 0.2094 298 0.1968 298 0.1818 298 0.1492 298 0.1135 298 0.0841 298 –0.0099 –0.0103 –0.0221 298 0.2144 298 0.2073 298 0.2003 298 0.1945 298 0.1859 298 0.1554 298 0.1053 298 0.0215 298 –0.0813 –0.0848 –0.1135 –0.1345 298 0.2141
61Ive 61Ive 61Ive 61Ive 61Ive 61Ive 61Ive 61Ive 74Kun 53Mar 61Ive 61Ive 61Ive 61Ive 61Ive 61Ive 61Ive 61Ive 61Ive 61Téz 61Téz 61Téz 61Ive
Rubidium(Hg) Rb→Rb++e−, formic acid, 0.01 M RbHCOO (Rb) Rb→Rb+e−, propylene carbonate, RbClO4 Rb→Rb++e−, anhydrous formamide, 1 M Rb→Rb++e−, anhydrous formamide, 1 M Rb→Rb++e−, acetonitrile Silver Ag→Ag++e−, liquid ammonia, AgNO3, NH4NO3 (Ag) Ag+Br−→AgBr+e−, D2O, DBr Ag→Ag++e−, N,N-dimethylformamide, AgNO3, KNO3, NaNO3 Ag→Ag++e−, acetonitrile, AgClO4 Ag+Br−→AgBr+e−, methanol, 1 m Ag+Br−→AgBr+e−, methanol, 1 M Ag+Br−→AgBr+e−, methanol Ag+Br−→AgBr+e−, ethanol Ag+Br−→AgBr+e−, ethylene glycol, HBr Ag+Br−→AgBr+e−, propylene glycol, NaBr Ag+Br−→AgBr+e−, formamide, HBr Ag+Br−→AgBr+e−, formamide, KBr, CH3COOH, CH3COOK Ag+ BrO3– →AgBrO3+e−, formamide, NaClO4, AgBrO3
Ag+Cl−→AgCl+e−, methanol(10 wt%)/water, 1 m Ag+Cl−→AgCl+e−, methanol(20 wt%)/water, 1 m Ag+Cl−→AgCl+e−, methanol(40 wt%)/water, 1 m Ag+Cl−→AgCl+e−, methanol(60 wt%)/water, 1 m Ag+Cl−→AgCl+e−, methanol(80 wt%)/water, 1 m Ag+Cl−→AgCl+e−, methanol(90 wt%)/water, 1 m Ag+Cl−→AgCl+e−, methanol(94.2 wt%)/water, 1 m Ag+Cl−→AgCl+e−, methanol, 1 m Ag+Cl−→AgCl+e−, methanol Ag+Cl−→Ag++e−+Cl−, methanol, HCl Ag+Cl−→AgCl+e−, ethanol(10 wt%)/water, 1 m Ag+Cl−→AgCl+e−, ethanol(20 wt%)/water, 1 m Ag+Cl−→AgCl+e−, ethanol(30 wt%)/water, 1 m Ag+Cl−→AgCl+e−, ethanol(40 wt%)/water, 1 m Ag+Cl−→AgCl+e−, ethanol(50 wt%)/water, 1 m Ag+Cl−→AgCl+e−, ethanol(71.9 wt%)/water, 1 m Ag+Cl−→AgCl+e−, ethanol(88.5 wt%)/water, 1 m Ag+Cl−→AgCl+e−, ethanol(98 wt%)/water, 1 m Ag+Cl−→AgCl+e−, ethanol, 1 m Ag+Cl−→Ag++e−+Cl−, ethanol, HCl Ag+Cl−→Ag++e−+Cl−, n-propanol, HCl Ag+Cl−→Ag++e−+Cl−, isopropanol, HCl Ag+Cl−→AgCl−, 1-propanol(10 wt%)/water, 1 m
ESHE 4) [V]
Ref.
Landolt-Börnstein New Series IV/9A
1 Electrode potential Electrode
Electrode reaction, electrolyte solution 3) Ag+Cl−→AgCl+e−, 1-propanol(20 wt%)/water, 1 m Ag+Cl−→AgCl+e−, 2-propanol(5 wt%)/water, 1 m Ag+Cl−→AgCl+e−, 2-propanol(10 wt%)/water, 1 m Ag+Cl−→AgCl+e−, 2-propanol(20 wt%)/water, 1 m Ag+Cl−→Ag++e−+Cl−, n-butanol, HCl Ag+Cl−→AgCl+e−, ethylene glycol(5 wt%)/water, 1 m Ag+Cl−→AgCl+e−, ethylene glycol(10 wt%)/water, 1 m Ag+Cl−→AgCl+e−, ethylene glycol(15 wt%)/water, 1 m Ag+Cl−→AgCl+e−, ethylene glycol(20 wt%)/water, 1 m Ag+Cl−→AgCl+e−, ethylene glycol(30 wt%)/water, 1 m Ag+Cl−→AgCl+e−, ethylene glycol(40 wt%)/water, 1 m Ag+Cl−→AgCl+e−, ethylene glycol(60 wt%)/water, 1 m Ag+Cl−→Ag++e−+Cl−, ethylene glycol, HCl Ag+Cl−→AgCl+e−, ethylene glycol, HCl Ag+Cl−→AgCl+e−, propylene glycol(10 wt%)/water, 1 m Ag+Cl−→AgCl+e−, propylene glycol(20 wt%)/water, 1 m Ag+Cl−→AgCl+e−, propylene glycol Ag+Cl−→AgCl+e−, 2,3-butylene glycol(10 wt%)/water, 1 m Ag+Cl−→AgCl+e−, 2,3-butylene glycol(20 wt%)/water, 1 m Ag+Cl−→AgCl+e−, glycerol(4.9 wt%)/water, 1 m Ag+Cl−→AgCl+e−, glycerol(10 wt%)/water, 1 m Ag+Cl−→AgCl+e−, glycerol(21.2 wt%)/water, 1 m Ag+Cl−→AgCl+e−, glycerol(30 wt%)/water, 1 m Ag+Cl−→AgCl+e−, glycerol(50 wt%)/water, 1 m Ag+Cl−→AgCl+e−, glycerol, HCl Ag+Cl−→AgCl+e−, acetone(5 wt%)/water, 1 m Ag+Cl−→AgCl+e−, acetone(10 wt%)/water, 1 m Ag+Cl−→AgCl+e−, acetone(20 wt%)/water, 1 m Ag+Cl−→AgCl+e−, acetone(40 wt%)/water, 1 m Ag+Cl−→AgCl+e−, acetone(50 wt%)/water, 1 m Ag+Cl−→AgCl+e−, acetone(90 wt%)/water, 1 m Ag+Cl−→AgCl+e−, acetone, 1 m Ag+Cl−→AgCl+e−, acetone, HCl Ag+Cl−→AgCl+e−, methyl ethyl ketone(10 wt%)/water, 1 m Ag+Cl−→AgCl+e−, methyl ethyl ketone(20 wt%)/water, 1 m Ag+Cl−→AgCl+e−, dioxane(20 wt%)/water, 1 m Ag+Cl−→AgCl+e−, dioxane(45 wt%)/water, 1 m Ag+Cl−→AgCl+e−, dioxane(70 wt%)/water, 1 m Ag+Cl−→AgCl+e−, dioxane(82 wt%)/water, 1 m Ag+Cl−→AgCl+e−, D-glucose(5 wt%)/water, 1 m Ag+Cl−→AgCl+e−, D-glucose(10 wt%)/water, 1 m Ag+Cl−→AgCl+e−, D-glucose(20 wt%)/water, 1 m Ag+Cl−→AgCl+e−, D-glucose(30 wt%)/water, 1 m Ag+Cl−→AgCl+e−, D-glucose(50 wt%)/water, 1 m
Landolt-Börnstein New Series IV/9A
51 T [K]
298 298 298 298 298 298 298 298 298 298 298
298 298 298 298 298 298 298 298 298 298 298 298 298 298 298 298 298 298 298 298 298 298 298 298 298 298 298
ESHE 4) [V]
Ref.
0.2066 0.2180 0.2138 0.2066 –0.1430 0.2190 0.2161 0.2133 0.2101 0.2036 0.1972 0.1807 0.0235 0.0233 0.2150 0.2077 –0.0323 0.2144 0.2067 0.2196 0.2165 0.2084 0.2022 0.1940 0.02077 0.2190 0.2156 0.2079 0.1859 0.158 –0.034 –0.53 –0.54 0.2153 0.2078 0.2031 0.1635 0.0639 –0.0614 0.2186 0.2142 0.2045 0.1935 0.1634
61Ive 61Ive 61Ive 61Ive 60Ryz 61Ive 61Ive 61Ive 61Ive 61Ive 61Ive 61Ive 67Sen2 75Ale2 61Ive 61Ive 70Kun1 61Ive 61Ive 61Ive 61Ive 61Ive 61Ive 61Ive 72Roy 61Ive 61Ive 61Ive 61Ive 61Ive 61Ive 61Ive 54Eve 61Ive 61Ive 61Ive 61Ive 61Ive 61Ive 61Ive 61Ive 61Ive 61Ive 61Ive
52
1 Electrode potential
Electrode
Electrode reaction, electrolyte solution 3)
Ag
Ag+Cl−→AgCl+e−, D-fructose(5 wt%)/water, 1 m Ag+Cl−→AgCl+e−, D-fructose(10 wt%)/water, 1 m Ag+Cl−→AgCl+e−, HCl in formic acid, 1 m Ag+Cl−→AgCl+e−, HCl in formic acid, 1 M Ag+Cl−→AgCl+e−, anhydrous acetic acid, 1 m Ag+Cl−→AgCl+e−, anhydrous acetic acid, 1 M Ag+Cl−→AgCl+e−, acetic acid, AgNO3, Ag+Cl−→AgCl+e−, acetic acid, HCl, LiClO4 Ag+Cl−→AgCl+e−, trifluoro acetic acid Ag+Cl−→AgCl+e−, anhydrous formamide, 1 m Ag+Cl−→AgCl+e−, formamide, KCl
298 298 298 298 298 298 295
Ag+Cl−→AgCl+e−, N-methylformamide, HCl Ag+Cl−→AgCl+e−, N-methylacetamide, HCl Ag+Cl−→AgCl+e−, N,N-dimethylacetamide, HCl Ag+Cl−→AgCl+e−, ethylenediamine, AgCl Ag+Cl−→AgCl+e−, pyridine, AgCl Ag+I−→AgI+e−, methanol, 1 M Ag+I−→AgI+e−, methanol, NaI, succinic acid, Na succinate Ag+I−→AgI+e−, ethylene glycol, NaI, Na cetate, acetic acid Ag+I−→AgI+e−, propylene glycol, NaI, Na cetate, acetic acid Ag+I−→AgI+e−, formamide, CH3COOH, CH3COOK, KI Ag+ MnO 4– →AgMnO4+e−, formamide, NaClO4, AgMnO4
0.208 0.21187 0.1500 0.757 0.551 308 –0.2530 –0.3176 –0.2928 –0.3468 –0.0996
Ag+acetate−→Ag acetate+e−, formamide, acetic acid Ag→Ag++e−, molten AgCl Ag→Ag++e−, molten AgCl Ag→Ag++e−, molten AgCl Sodium (Na)
Na(Hg) Na(Hg)
Na→Na++e−, methanol/water 69.8 wt% Na→Na++e−, methanol Na→Na++e−, methanol Na→Na++e−, ethanol/water 10 wt% Na→Na++e−, ethanol/water 20.4 wt% Na→Na++e−, ethanol/water 30.8 wt% Na→Na++e−, ethanol/water 40.6 wt% Na→Na++e−, ethanol/water 50.5 wt% Na→Na++e−, ethanol/water 60.6 wt% Na→Na++e−, ethanol/water 69.9 wt% Na→Na++e−, ethanol/water 80.0 wt% Na→Na++e−, ethanol/water 90.5 wt% Na→Na++e−, ethanol Na→Na++e−, ethanol, NaBr, Na→Na++e−, formic acid Na→Na++e−, propylene carbonate, NaClO4 Na→Na++e−, acetonitrile, 0.01 M NaI
T [K]
ESHE 4) [V]
0.2190 0.2150 –0.1302 –0.1199 –0.6241 –0.6180 0.87 –0.610 0.31 298 0.204 0.1979
Ref. 61Ive 61Ive 57Muk 57Muk 57Muk 57Muk 56Tut1 75Nev 72Pet3 58Man 68Bro2, 67Aga 70Ber 65Daw 68Scr 65Muk 69Muk 56Muk 53Ber1 70Kun2 70Kun2 75Das1
0.2055 0.4266 773 –0.896 1073 –0.826 1273 –0.763
75Das4 73Nay 56Ham 61Ive 56Ham
–2.627 –2.726 2.72 –2.701 –2.688 –2.672 –2.656 –2.639 –2.626 –2.607 –2.597 –2.557 –2.643 298 –2.787 –3.42 –2.653 –2.87
83Maz 83Maz 59Jak 83Maz 83Maz 83Maz 83Maz 83Maz 83Maz 83Maz 83Maz 83Maz 83Maz 72Kun 46Ple1 72LHe 46Mez Landolt-Börnstein New Series IV/9A
1 Electrode potential
53
Electrode reaction, electrolyte solution 3)
T [K]
Na→Na++e−, nitrobenzene, 0.19 M NaCl, 0.24 M AlBr3 Na→Na++e−, ethane bromide, 0.19 M NaCl, 0.24 M AlBr3 Na→Na++e−, molten NaCl Na→Na++e−, molten NaCl
–3.42 –2.45 773 –3.519 1273 –3.019
46Ple1 47Mez 56Ham 56Ham
Strontium (Sr)
SrCO3+Pb→Sr2++PbCO3+2e−, methanol, SrCl2 Sr→Sr2++2e−, molten SrCl2 Sr→Sr2++2e−, molten SrCl2
–2.938 773 –3.684 1273 –3.333
62Jak2 56Ham 56Ham
Thallium (Tl)
Tl+Cl−→TlCl+e−, liquid ammonia, 1 M Tl+Cl−→TlCl+e−, n-hexanol, HCl Tl→Tl++e−, propylene carbonate
298
Tl→Tl2++2e−, anhydrous formamide, 1 M Tl+Cl−→TlCl+e−, N,N-dimethylformamide, HCl Tl→Tl++e−, acetonitrile, TlCl4, Et4NClO4 Tl→Tl++e−, molten TlCl Tl→Tl++e−, molten TlCl Tl→Tl++e−, molten TlCl
298
773 1073 1273
Tin (Sn)
Sn→Sn2++2e−, methanol, SnCl2 Sn→Sn2++2e−, molten SnCl2 Sn→Sn2++2e−, molten SnCl2
–0.532 773 –1.320 1073 –1.259
Titanium (Ti)
Ti3+→Ti4++2e−, DMF, HCl Ti3+→Ti4++2e−, pyridine, HCl
Vanadium (V) Zinc (Zn)
Electrode
Tl(Hg)
1
ESHE 4) [V]
Ref.
0.1 58Fis –0.973 74Con2 –0.3817 70Bod, 73Bod –0.344 54Pav –0.5994 74Bat2 –0.410 67Coe –1.606 56Ham –1.473 61Ive –1.470 56Ham 64Jak2 56Ham 61Ive
0.000 –0.190
69Hla 69Hla
V→V2++2e−, molten VCl2
1073 –1.566
61Ive
Zn+2Cl−→ZnCl2+2e−, liquid ammonia, NH4Cl, 1 M Zn→Zn2++2e−, liquid ammonia, ZnCl2, Pb(NO3)2, NH4SCN Zn+→ZnSO4+2e−, anhydrous hydrazine, 1 M Zn→Zn2++2e−, formic acid, ZnCl2 Zn→Zn2++2e−, acetonitrile, ZnCl2 Zn→Zn2++2e−, anhydrous formamide, ZnCl2, 1 M Zn+2Cl−→ZnCl2+2e−, pyridine, HCl Zn→Zn2++2e−, molten ZnCl2 Zn→Zn2++2e−, molten ZnCl2
298 –0.72 239 –0.505 273 –0.7100 –1.05 –0.74 298 –0.757 –0.788 773 –1.603 1073 –1.476
58Fis 66Ros 37Uli 46Ple1 48Ple 54Pav 68Muk 56Ham 61Ive
) Mixed solvent systems containing water are included below even in case water is only a minor constituent, molten salts are listed after liquid solvent-based systems. 2 ) All data refer to room temperature if not stated otherwise. 3 ) Details are given only if relevant for the stated value of ESHE. 4 ) All potentials refer to a standard hydrogen electrode in the used solvent. Exemptions are stated explicitly.
Landolt-Börnstein New Series IV/9A
R1
References 31Hut 37Uli 42Kan 46Kan 46Mez 46Ple1 46Ple2 46Ple3 47Mez 48Ple 49Gal 50Car 53Ber1 53Bje 53Mar 54Eve 54Pav 54Tur1 54Tur2 55Fur 56Ham 56Muk 56Tur 56Tut1 56Tut2 57Muk 58Brä 58Fis 58Man 58Sch 59Jak 59Sch2 59Sch3 60Ryz 61Ive 61Jak1 61Jak2 61Nun 61Téz 62Jak2 63Cha 64Jak2 64Rao 65Daw 65Hef 65Jak2 65Kol 65Muk 66Kra3 66Ros
Landolt-Börnstein New Series IV/9A
Hutchinson, A.W., Chandlee, G.C.: J. Am. Chem. Soc. 53 (1931) 2881. Ulich, H., Biostoch, K.: Z. Phys. Chem. Abt. A 178 (1937) 306. Kanning, E.W., Campbell, A.W.: J. Am. Chem. Soc. 64 (1942) 1672. Kanning, E.W., Bowman, M.G.: J. Am. Chem. Soc. 68 (1946) 2042. Mezhennyi, Ya.F.: J. Phys. Chem. USSR 20 (1946) 493. Pleskov, V.A.: Acta Physicochim. URSS 21 (1946) 41; J. Phys. Chem. USSR 20 (1946) 153. Pleskov, V.A.: Acta Physicochim. URSS 21 (1946) 235. Pleskov, V.A.: J. Phys. Chem. USSR 20 (1946) 151. Mezhennyi, Ya.F.: J. Phys. Chem. USSR 21 (1947) 839. Pleskov, V.A.: Acta Physicochim. URSS 22 (1948) 351. Galinker, V.S.: Zh. Obshch. Khim. 19 (1949) 2048. Carlson, C.L., Malmberg, E.W., Brovon, D.I.: J. Phys. Chem. 54 (1950) 322. Berne, B., Leden, I.: Z. Naturforsch. A 8 (1953) 719. Bjerrum, J., Jörgensen, C.K.: Acta Chem. Scand. 7 (1953) 951 Marshall, H.P., Grünwald, E.: J. Chem. Phys. 21 (1953) 2143. Everett, D.M., Rasmussen, S.E.: J. Chem. Soc. (1954) 2812. Pavlopoulos, T., Strehlow, H.: Z. Phys. Chem. (Frankfurt/Main) 2 (1954) 89. Turyan, Ya.I.: Zh. Fiz. Khim. 28 (1954) 2152. Turyan, Ya.I.: Zh. Fiz. Khim. 28 (1954) 2129. Furlani, C.: Ann. Chim. (Paris) 45 (1955) 264. Hamer, W.H., Malmberg, M.S., Rubin, B.: J. Electrochem. Soc. 103 (1956) 8. Mukherjee, L.M.: J. Phys. Chem. 60 (1956) 974. Turyan, Ya.I.: Zh. Anal. Khim. 11 (1956) 71. Tutundžik, P.S., Putanov, P.: Glas. Hem. Drust. (Beograd) 21 (1956) 19. Tutundžik, P.S., Putanov, P.: Glas. Hem. Drust. (Beograd) 21 (1956) 257. Mukherjee, L.M.: J. Am. Chem. Soc. 79 (1957) 4040. Bräuer, K., Strehlow, H.: Z. Phys. Chem. N. F. 17 (1958) 346. Fischer, L., Winkler, G., Jander, G.: Z. Elektrochem. 62 (1958) 1. Mandel, M., Decroly, P.: Nature (London) 182 (1958) 794. Schwabe, K., Ziegenbalg, S.: Z. Elektrochem. 62 (1958) 172. Jakuszewski, B., Taniewska-Osinka, S.: Acta Chim. Soc. Sci. Lodz. 4 (1959) 17. Schwabe, K., Schwenk, W.: Z. Elektrochem. 63 (1959) 441. Schwabe, K., Schwenk, W.: Z. Elektrochem. 63 (1959) 445. Ryzhov, E.M., Sukhotin, A.N.: Zh. Fiz. Khim. 34 (1960) 1402. Ives, D.J.G., Janz, G.J.: Reference Electrodes, New York: Academic Press, 1961. Jakuszewski, B.J., Taneewska-Osinska, S.: Zesz. Nauk Uniw. Lodz. Ser. 2 (1961) 10. Jakuszewski, B., Taniewska-Osinska, S.: Acta Chim. Soc. Sci. Lodz. 7 (1961) 37. Nunez, L.J., Day, M.C.: J. Phys. Chem. 65 (1961) 164. Tézé, A., Schaal, R.: C. R. Acad. Sci. (Paris) 252 (1961) 3995. Jakuszewski, B., Taniewska-Osinka, S.: Rocz. Chem. 36 (1962) 329. Chateau, M., Moncet, M.C.: C. R. Acad. Sci. (Paris) 256 (1963) 1504. Jakuszewski, B., Kozlowski, Z.: Rocz. Chem. 38 (1964) 93. Rao, J.P., Murthy, A.R.V.: J. Phys. Chem. 68 (1964) 1573. Dawson, R.L., Sheridan, R.C., Eckstrom, H.C.: J. Phys. Chem. 69 (1965) 1335. Hefley, J.D., Amis, E.S.: J. Electrochem. Soc. 112 (1965) 336. Jakuszewski, B., Jedraejwska, J.B.: Rocz. Chem. 39 (1965) 907. Kolthoff, I.M., Thomas, F.G.: J. Phys. Chem. 69 (1965) 3049. Mukherjee, L.M., Bruckenstein, S., Badawai, F.A.K.: J. Phys. Chem. 69 (1965) 2544. Kratochvil, B., Krock, J.: J. Phys. Chem. 70 (1966) 944. Rosztoczy, F.E., Tobias, C.W.: Electrochim. Acta 11 (1966) 857.
R2 67Aga 67Alf 67Coe 67DeR 67Sen2 67Smy 68Ben 68Bro2 68Bro3 68Dil 68Mar1 68Muk 68Scr 69Hla 69Muk 70Ber 70Bod 70Bré 70Des 70Kun1 70Kun2 70Leu 71And 71Gue 71Nay 71Sen 72Kun 72LHe 72Pet3 72Roy 73Bod 73Coe 73Nay 74Bat2 74Bro2 74Con2 74Kun 74Lie 75Ale2 75Das1 75Das2 75Das4 75Das5 75Nev 78Lag 83Maz
Agarwal, R.K., Nayak, R.: J. Phys. Chem. 71 (1967) 2062. Alfenaar, M., De Ligny, C.L., Remijnse, A.G.: Recl. Trav. Chim. Pays Bas 86 (1967) 555. Coetzee, T.F., Campion, J.J.: J. Am. Chem. Soc. 89 (1967) 2513. De Rossi, M., Pecci, G., Scrosati, B.: Ric. Sci. 37 (1967) 342. Sen, B., Kundu, K., Das, M.N.: J. Phys. Chem. 71 (1967) 3665. Smyrl, W.H.: Diss. Abstr. B 28 (1967) 637. Benoit, R.L.: Inorg. Nucl. Chem. Lett. 4 (1968) 723. Broadbank, R.W.C., Dhabanandana, S., Morcom, K.W., Muju, B.L.: Trans. Faraday Soc. 64 (1968) 3311. Broadbank, R.W.C., Muju, B.L., Morcom, K.W.: Trans. Faraday Soc. 64 (1968) 3318. Dill, A.J., Itzkovits, V.: J. Phys. Chem. 72 (1968) 4580 Marcom, K.W., Muju, B.L.: Nature (London) 217 (1968) 1046. Mukerjee, L.M., Kelly, J.J., Baranetzky, W., Sica, J.: J. Phys. Chem. 72 (1968) 3410. Scrosati, B., Pecci, G., Pistoia, G.: J. Electrochem. Soc. 115 (1968) 506. Hladky, Z., Vrestal, J.: Collect. Czech. Chem. Commun. 34 (1969) 984. Mukherjee, L.M., Kelly, J.J., Richards, M., Lukacs jr., J.M.: J. Phys. Chem. 73 (1969) 580. Berardelli, M.J., Pecci, G., Scrosati, B.: J. Electrochem. Soc. 117 (1970) 781. Boden, D.P.: Diss. Abstr. B 31 (1970) 3223. Bréant, M., Buisson, C.: J. Electroanal. Chem. 24 (1970) 145. Desmarquet, J.P., Trinh-Dinh, C., Bolck, O.: J. Electroanal. Chem. 27 (1970) 101. Kundu, K.K., Chattopadhyay, P.K., Jana, D., Das, M.N.: J. Chem. Eng. Data 15 (1970) 209. Kundu, K.K., Chattopadhyay, P.K., Jana, D., Das, M.N.: J. Phys. Chem. 74 (1970) 2625. Leuscke, W., Schwabe, K.: J. Electroanal. Chem. 25 (1970) 219. Andrews, A.W., Armitage, D.A., Broadbank, R.W.C., Morcom, K.W.: Trans. Faraday Soc. 67 (1971) 128. Guérin, G.D., Caillet, A.: C. R. Acad. Sci. (Paris), Ser. C 273 (1971) 235. Nayak, B., Saku, D.K.: Electrochim. Acta 16 (1971) 1757. Senne, J.K., Kratochvil, B.: Anal. Chem. 43 (1971) 79. Kundu, K.K., Rakshit, A.K., Das, M.N.: Electrochim. Acta 17 (1972) 1921. L'Her, M., Courtot-Coupez, J.: Bull. Soc. Chim. Fr. (1972) 3645. Petit, G., Besssiere, J.: J. Electroanal. Chem. 34 (1972) 489. Roy, R.N., Vernon, W., Gibbons, J.J., Bothwell, A.L.M.: J. Electroanal. Chem. 34 (1972) 101. Boden, D.P., Mukherjee, L.M.: Electrochim. Acta 18 (1973) 781. Coetzee, J.F., Campion, J.J., Liberman, D.R.: Anal. Chem. 45 (1973) 343. Nayak, B., Dash, U.N.: J. Electroanal. Chem. 41 (1973) 323. Bates, F.L., Nee, Y.T.: J. Electrochem. Soc. 121 (1974) 79. Brown, O.R., Thornton, S.A.: J. Chem. Soc. Faraday Trans. 1 70 (1974) 1009. Contreras-Ortega, C.H., Rock, P.A.: J. Electrochem. Soc. 121 (1974) 1048. Kundu, K.K., Jana, D., Das, M.N.: J. Chem. Eng. Data 19 (1974) 329. Lietzke, M.H., Lemmonds, T.J.: J. Inorg. Nucl. Chem. 36 (1974) 2299. Aleksandrov, V.V., Bezpalyi, B.N.: Zh. Fiz. Khim. 49 (1975) 1314. Dash, U.N., Nayak, B.: Aust. J. Chem. 28 (1975) 1657. Dash, U.N., Nayak, B.: Thermochim. Acta 11 (1975) 17. Dash, U.N.: Thermochim. Acta 12 (1975) 197. Dash, U.N.: Aust. J. Chem. 28 (1975) 1653. Nevskaya, Yu.A., Korotkova, P.I., Sumarova, T.N.: Elektrokhimiya 11 (1975) 1660. Lagowski, J.J.: The Chemistry of Non-aqueous Solutions, Vol. 1, London: Academic Press, 1978. Mazzarese, J., Popvych, O.: J. Electrochem. Soc. 130 (1983) 2032.
Landolt-Börnstein New Series IV/9A
54
1 Electrode potentials
Table 1.4. Nonmetal electrode potentials in nonaqueous 1) electrolyte systems. Electrode Electrode reaction, electrolyte solution 2)
T [K] 3) ESHE [V] 4) Ref.
2– B10 H14 →B10H14+2e−, acetonitrile, Et4NClO4, Bu4NClO4 Boron (B) Bromine 2Br−→Br2+2e−
(Br)
−
−
3Br → Br +2e , acetonitrile, (C2H5)4NClO4 – 3
−
2Br →3Br2+2e , acetonitrile, (C2H5)4NClO4 – 3
−
2Br →3Br2+2e , nitromethane, (C2H5)4NClO4 – 3
−
−
3Br → Br +2e , nitromethane, (C2H5)4NClO4 – 3
−
–0.539 5) 68Cha 0.8617 59Jak 293
0.22
68Mar2
293
0.83
68Mar2
293
1.24
68Mar2
293
0.63
68Mar2
−
Chlorine 2Cl →Cl2+2e , methanol (Cl) 2Cl−→Cl2+2e−, acetonitrile Fluorine HF→F+H++e−, HF+1.5 wt%H2O (F) Iodine 2I−→I2+2e−, methanol (I)
−
1.1272 59Jak 0.60 68Mar2
−
3I → I +2e , acetonitrile, LiClO4 – 3
3I−→ I3– +2e−, nitromethane, (C2H5)4NClO4 Oxygen (O) 6) Tetratetrachlorbenzoquinone+2e−+2H+→tetrachlorohydroquinone, chlor1 m, anhydrous acetic acid benzoquinone
293
2.85
68Wat
0.357
59Jak
–0.124
61Des
0.28
68Mar2
0.680
33Hes
1
) Mixed solvent systems containing water are included below even in case water is only a minor constituent. ) Details are given only if relevant for the stated value of ESHE. 3 ) All data refer to standard (room) temperature T = 298 K if not stated otherwise. 4 ) All potentials refer to a standard hydrogen electrode in the used solvent. Exemptions are stated explicitly. 5 ) Potential reported versus a saturated calomel electrode, converted assuming ESCE= –0.241 V vs. SHE. 6 ) An extensive review on oxygen reference electrodes with solid electroytes is available [00Mal]. 2
Landolt-Börnstein New Series IV/9A
R1
References 33Hes 59Jak 61Des 68Cha 68Mar2 68Wat 00Mal
Landolt-Börnstein New Series IV/9A
Heston, B.O., Hall, N.F.: J. Am. Chem. Soc. 55 (1933) 4729; 56 (1934) 1462. Jakuszewski, B., Taniewska-Osinka, S.: Acta Chim. Soc. Sci. Lodz. 4 (1959) 17. Desbarres, J.: Bull. Soc. Chim. Fr. (1961) 502. Chambers, J.Q., Norman, A.D., Bickell, M.R., Cadle, S.H.: J. Am. Chem. Soc. 90 (1968) 6056. Marchon, J.C.: C. R. Acad. Sci. (Paris), Ser. C 267 (1968) 1123. Watanabe, N., Chang, T., Nakanishi, K.: Denki Kagaku 36 (1968) 600. Mallika, C., Sreedharan, O.M., Subasri, R.: J. Eur. Ceram. Soc. 20 (2000) 2297.
1 Electrode potentials
55
Table 1.5. Formal potentials of organic redox systems. Electrode Electrode reaction 1), electrolyte system 2)
RE
E0 [V]
Ref.
Platinum C6H4-1,4-(CN)20/–, THF, 0.1 M [n-Bu4N][PF6], 1 mM (Pt) N C C N
FeC
–2.16
03Les
FeC
–2.46
79Rus
FeC
–2.57
03Les
FeC
–0.44
03Les
FeC
–2.57
03Les
FeC
–0.41
03Les
FeC
–2.57
03Les
FeC
0.07
79Rus
FeC
–0.38
03Les
FeC
–2.46
79Rus
FeC
–0.43
03Les
FeC
–2.16
03Les
FeC
–2.76
05Vat
FeC
–2.51
05Vat
[(R3P)Ag-4-NC5H4-CN-Ag(PR3)]2+/1+, 0.1 M [n-Bu4N][PF6], 1 mM, R=C6H4CH2NMe2-2, 4-NC5H4-CN0/– N
C N
[(R3P)Ag-bipy-Ag(PR3)]2+/1+, 0.1 M [n-Bu4N][PF6], 1 mM, R=C6H4CH2NMe2-2, bipy0/– N
N
[(R3P)Cu-bipy-Cu(PR3)]2+/1+, 0.1 M [n-Bu4N][PF6], 1 mM, R=C6H4CH2NMe2-2, Cu(I)/Cu(II) N
N
[(R3P)Cu-bipy-Cu(PR3)]2+/1+, 0.1 M [n-Bu4N][PF6], 1 mM, R=C6H4CH2NMe2-2, bipy0/– N
N
[(R3P)Ag-bipy-Cu(PR3)]2+/1+, 0.1 M [n-Bu4N][PF6], 1 mM, R=C6H4CH2NMe2-2, Cu(I)/Cu(II) N
N
[(R3P)Ag-bipy-Cu(PR3)]2+/1+, 0.1 M [n-Bu4N][PF6], 1 mM, R=C6H4CH2NMe2-2, bipy0/– N
N
[(R3P)Ag-4-NC5H4-CN-Ag(PR3)]2+/1+, 0.1 M [n-Bu4N][PF6], 1 mM, R=C6H4CH2NMe2-2, Cu(I)/Cu(II) [(R3P)Ag-4-NC5H4-CN-Ag(PR3)]2+/1+, 0.1 M [n-Bu4N][PF6], 1 mM, R=C6H4CH2NMe2-2, Cu(I)/Cu(II) [(R3P)Ag-4-NC5H4-CN-Ag(PR3)]2+/1+, 0.1 M [n-Bu4N][PF6], 1 mM, R=C6H4CH2NMe2-2, 4-NC5H4-CN0/– [(R3P)Cu-NC-C6H4-CN-Cu(PR3)]2+/1+, 0.1 M [n-Bu4N][PF6], 1 mM, R=C6H4CH2NMe2-2, Cu(I)/Cu(II) [(R3P)Cu-NC-C6H4-CN-Cu(PR3)]2+/1+, 0.1 M [n-Bu4N][PF6], 1 mM, R=C6H4CH2NMe2-2, C6H4-1,4-(CN)20/– 2,2’-bipyridine0/–, THF, 0.1 M [n-Bu4N][PF6], 5 mM N
N
4,4’-bipyridine0/–, THF, 0.1 M [n-Bu4N][PF6], 5 mM N
Landolt-Börnstein New Series IV/9A
N
56
1 Electrode potentials
Electrode Electrode reaction 1), electrolyte system 2) Pt
RE
E0 [V]
Ref.
FeC
–2.71
05Vat
2,5-dipyridin-2-yl-pyrazine0/–, THF, 0.1 M [n-Bu4N][PF6], 5 mM FeC
–2.15
05Vat
–2.51
05Vat
–2.03
05Vat
FeC
–2.66
05Vat
FeC
–2.17
05Vat
1,2-bis(4-pyridinyl)ethylene0/–, THF, 0.1 M [n-Bu4N][PF6], 5 mM FeC
–2.27
05Vat
FeC
–2.21
05Vat
FeC
–2.06
05Vat
[2,2’;6,6’]terpyridine0/–, THF, 0.1 M [n-Bu4N][PF6], 5 mM N N
N N
N
N
N
2,3-dipyridin-2-yl-pyrazine0/–, THF, 0.1 M [n-Bu4N][PF6], 5 mM FeC N
N N
N
1,3,5-tris(2-pyridyl)triazine0/–, THF, 0.1 M [n-Bu4N][PF6], 5 mM FeC N N
N N
N
N
[1,10]phenanthroline0/–, THF, 0.1 M [n-Bu4N][PF6], 5 mM
N
N
2,5-bis(4-pyridinyl)[1,2,4]oxadiazol0/–, THF, 0.1 M [n-Bu4N][PF6], 5 mM N
N
O N N
N N
1,4-bis(2-(4-pyridinyl)ethenyl)benzene0/–, THF, 0.1 M [n-Bu4N][PF6], 5 mM N N
4-[2-(4-pyridinyl)ethenyl]-N-(4-pyridinylmethylene)N-benzylamine0/–, THF, 0.1 M [n-Bu4N][PF6], 5 mM N N N
Landolt-Börnstein New Series IV/9A
1 Electrode potentials Electrode Electrode reaction 1), electrolyte system 2) N,N’-bis(4-pyridinylmethylene)1,4-benzenediamine0/–, THF, 0.1 M [n-Bu4N][PF6], 5 mM
57
RE
E0 [V]
Ref.
FeC
–2.00
05Vat
FeC
–2.18
05Vat
FeC
–1.92
05Vat
FeC
–1.61
05Vat
FeC
–1.78
05Vat
FeC
–1.92
05Vat
FeC
–1.75
05Vat
FeC
–1.89
05Vat
N N
N N
N,N’-bis(3-pyridinylmethylene)1,4-benzenediamine0/–, THF, 0.1 M [n-Bu4N][PF6], 5 mM N N
N N
4-pyridinaldazine0/–, THF, 0.1 M [n-Bu4N][PF6], 5 mM N N N N
2,5-bis(4-pyridinylmethylene)cyclopentaone0/–, THF, 0.1 M [n-Bu4N][PF6], 5 mM O
N
N
2,5-bis(3-pyridinylmethylene)cyclopentanone0/–, THF, 0.1 M [n-Bu4N][PF6], 5 mM O
N
N
2,5-bis(phenylmethylene)cyclopentanone0/–, THF, 0.1 M [n-Bu4N][PF6], 5 mM O
2,6-bis(4-pyridinylmethylene)cyclohexaone0/–, THF, 0.1 M [n-Bu4N][PF6], 5 mM O
N
N
2,6-bis(3-pyridinylmethylene)cyclohexanone0/–, THF, 0.1 M [n-Bu4N][PF6], 5 mM O
N
Landolt-Börnstein New Series IV/9A
N
58
1 Electrode potentials
Electrode Electrode reaction 1), electrolyte system 2) Pt
2,6-bis(phenylmethylene)cyclohexanone0/–, THF, 0.1 M [n-Bu4N][PF6], 5 mM
RE
E0 [V]
Ref.
FeC
–2.07
05Vat
FeC
–1.71
05Vat
FeC
–1.83
05Vat
FeC
–1.85
05Vat
FeC
–1.93
05Vat
FeC
–1.71
05Vat
O
1-methyl-3,5-bis(4-pyridinylmethylene)piperidin-4-one0/–, THF, 0.1 M [n-Bu4N][PF6], 5 mM O
N
N
N
1-methyl-3,5-bis(3-pyridinylmethylene)piperidin-4-one0/–, THF, 0.1 M [n-Bu4N][PF6], 5 mM O
N
N
N
1-isopropyl-3,5-bis(4-pyridinylmethylene)piperdin-4-one0/–, THF, 0.1 M [n-Bu4N][PF6], 5 mM O
N
N
N
1-isopropyl-3,5-bis(3-pyridinylmethylene)piperdin-4-one0/–, THF, 0.1 M [n-Bu4N][PF6], 5 mM O
N
N
N
1-benzyl-3,5-bis(4-pyridinylmethylene)piperidin-4-one0/–, THF, 0.1 M [n-Bu4N][PF6], 5 mM O
N
N
N Ph
1
) In order to avoid cumbersome notation and excessive length of entries caused by repetition of long formulas assigned to the oxidized and the reduced state of the species under investigation the name of the potential-determiningcompound is given once only. The superscript denotes the involved states of oxidation. The initial state is given first, the final state second as encountered in the experimental method applied. 2 ) Details are given only if relevant for the stated value of ESHE.
Landolt-Börnstein New Series IV/9A
R1
References 79Rus 03Les 05Vat
Landolt-Börnstein New Series IV/9A
Rusina, A., Vlcek, A.A., Zalis, S.: Z. Chem. 19 (1979) 27. Leschke, M., Lang, H., Holze, R.: J. Solid State Electrochem. 7 (2003) 518. Vatsadze, S., Al-Anber, M., Thiel, W.R., Lang, H., Holze, R.: J. Solid State Electrochem. 9 (2005) 764.
1 Electrode potentials
59
Table 1.6. Potentials of common reference electrodes in aqueous solution. Electrode
Electrode reaction, electrolyte solution 1)
Copper (Cu)
Cu→Cu2++2e−, sol. sat. CuSO4
Lead (Pb) Pb(Hg) Mercury (Hg)
0.320
61Ive
− Pb+ SO 2– 4 →PbSO4+2e , sol. sat. K2SO4
–0.276
57Kor
− Pb+ SO 2– 4 →PbSO4+Hg+2e
–0.351
35Har, 34Shr2 57Kor 61Ive, 54Cha
2Hg+2I−→Hg2I2+2e− 2Hg+2Cl−→Hg2Cl2+2e−, sol. sat. Hg2Cl2 and in KCl E [Vint.]=0.2412–6.61·10–5(T–25°C)–1.75·10–6(T–25°C)2 –9·10–10(T–25°C) 2Hg+2Cl−→Hg2Cl2+2e−, sol. sat. Hg2Cl2 and in KCl
2Hg+2Cl−→Hg2Cl2+2e−, sol. sat. Hg2Cl2 and in NaCl 2Hg+2Cl−→Hg2Cl2+2e−, sol. sat. Hg2Cl2, sol. 0.1 M in KCl E [Vint.]=0.3337–8.75·10–5(T–25°C)–3·10–6(T–25°C)2 2Hg+2Cl−→Hg2Cl2+2e−, sol. sat. Hg2Cl2, sol. 0.1 m in KCl E [Vint.]=0.3339–7.75·10–5(T–25°C)–3·10–6(T–25°C)2 2Hg+2Cl−→Hg2Cl2+2e−, sol. sat. Hg2Cl2, sol. 1 M in KCl E [Vint.]=0.2801–2.75·10–5(T–25 °C)–2.5·10–6(T–25 °C)2 –4·10–9(T–25 °C) 2Hg+2Cl−→Hg2Cl2+2e−, sol. sat. Hg2Cl2, sol. 1 m in KCl E [Vint.]=0.2809–2.65·10–5(T–25 °C)–2.63·10–6(T–25 °C)2 2Hg+2Cl−→Hg2Cl2+2e−
Silver (Ag)
Landolt-Börnstein New Series IV/9A
T [K, °C] ESHE 2) [V] Ref.
–0.0405 0.2412
0 °C 10 °C 20 °C 25 °C 30 °C 40 °C 50 °C 60 °C 70 °C
0.2568 *) 54Cha 0.2507 *) 54Cha 0.2444 *) 54Cha 0.2412 *) 54Cha 0.2378 *) 54Cha 0.2307 *) 54Cha 0.2233 *) 54Cha 0.2154 *) 54Cha 0.2071 *) 54Cha 0.2360 01Bar 0.3337 01Bar 54Cha 0.3339 54Cha 54Cha 0.2801 61Ive, 54Cha 0.2809 0.268
54Cha 54Cha 43Mül, 28Ran 01Bar 26Fri, 34Kob
Hg+2OH−→HgO+H2O+2e−, sol. sat. HgO, sol. 0.1 M NaOH Hg+2OH−→HgO+H2O+2e−
0.926 0.098
− Hg+ SO 2– 4 →HgSO4+2e , sol. 0.5 M K2SO4
0.680
01Bar
− Hg+ SO 2– 4 →HgSO4+2e , sol. sat. K2SO4
0.640
01Bar
Ag+Br →AgBr+e
0.071
Ag+Cl−→AgCl+e−
0.2224
36Har2, 37Har1, 43Har, 35Kes, 36Owe 32Har1, 43Har, 33Pre
−
−
60
1 Electrode potentials
Electrode
Electrode reaction, electrolyte solution 1)
Ag
Ag+Cl−→AgCl+e−, sat. KCl Ag+Cl−→AgCl+e−, sol. 3 M KCl Ag+Cl−→AgCl+e−, sol. 0.1 M KCl Ag+I−→AgI+e− Ag+I−→AgI+e−
Thallium(Hg) Tl+Cl−→TlCl+e−, TlCl, sol. 3.5 M KCl, HCl 3) (Tl)(Hg) Tl+Cl−→TlCl+e−, TlCl, sol. 3.5 M KCl, oxalate Tl+Cl−→TlCl+e−, TlCl, sol. 3.5 M KCl, phosphate Tl+Cl−→TlCl+e−, TlCl, sol. 3.5 M KCl, borax Tl+Cl−→TlCl+e−, TlCl, sat. KCl, HCl Tl+Cl−→TlCl+e−, TlCl, sat. KCl, phosphate Tl+Cl−→TlCl+e−, TlCl, sat. KCl, borax Quinhydroquinone→quinone+2e–+2H+ hydrone
T [K, °C] ESHE 2) [V] Ref.
298 K 4) 298 K 298 K 298 K 298 K 298 K 298 K
0.197 0.207 0.289 –0.152 –0.15225
01Bar 01Bar 01Bar 35Owe 57Kor
–0.5706 –0.5703 –0.5713 –0.5709 –0.5734 –0.5766 –0.5795
74Bau 74Bau 74Bau 74Bau 74Bau 74Bau 74Bau
0.69969 33Har2
1
) Details are given only if relevant for the stated value of ESHE. ) All potentials refer to a standard hydrogen electrode in the used solvent. Exceptions are stated explicitly. 3 ) This electrode is frequently called 'Thalamid™-electrode'. 4 ) For a detailed listing of temperature-dependent potential values see [74Bau]. * ) In [Vint.]. 2
Landolt-Börnstein New Series IV/9A
R1
References 26Fri 28Ran 32Har1 33Har2 33Pre 34Kob 34Shr2 35Har 35Kes 35Owe 36Har2 36Owe 37Har1 43Har 43Mül 54Cha 57Kor 61Ive 74Bau 01Bar
Landolt-Börnstein New Series IV/9A
Fried, F.: Z. Phys. Chem. 123 (1926) 406. Randall, M., Young, L.E.: J. Am. Chem. Soc. 50 (1928) 989. Harned, H.S., Ehlers, R.W.: J. Am. Chem. Soc. 54 (1932) 1350. Harned, H.S., Wright, D.D.: J. Am. Chem. Soc. 55 (1933) 4849. Prentiss, S.S., Scatchard, G.: Chem. Rev. 13 (1933) 139. Kobayashi, Y., Wang, H.Y.: J. Sci. Hiroshima Univ. Ser. A Math. Phys. Chem. 5 (1934) 392. Shrawder jr., J., Cowperthwaite, J.A.: J. Am. Chem. Soc. 56 (1934) 2340. Harned, H.S., Hamer, W.J.: J. Am. Chem. Soc. 57 (1935) 27. Keston, A.S.: J. Am. Chem. Soc. 57 (1935) 1526. Owen, B.B.: J. Am. Chem. Soc. 57 (1935) 1926. Harned, H.S., Keston, A.S., Donelson, J.G.: J. Am. Chem. Soc. 58 (1936) 989. Owen, B.B., Foering, L.: J. Am. Chem. Soc. 58 (1936) 1575. Harned, H.S., Donelson, J.G.: J. Am. Chem. Soc. 59 (1937) 1280. Harned, H.S., Owen, B.B.: The Physical Chemistry of Electrolytic Solutions, New York: Reinhold, 1943. Müller, F., Reuther, H.: Z. Elektrochem. 49 (1943) 497. Chateau, H.: J. Chim. Phys. 51 (1954) 590. Kortüm, G.: Lehrbuch der Elektrochemie, Weinheim: Verlag Chemie, 1957. Ives, D.J.G., Janz, G.J.: Reference Electrodes, New York: Academic Press, 1961. Baucke, F.G.K.: Chem. Ing. Techn. 46 (1974) 71. Bard, A.J., Faulkner, L.R.: Electrochemical Methods, 2nd ed., New York: Wiley, 2001.
2 Cell voltages
61
2 Cell voltages
2.1 Definition of cell voltage Between the terminals of an electrochemical cell composed of two electrodes (i.e. two half cells) a voltage being equivalent to the electrode potential difference between both terminals appears. This voltage measured in the absence of any electrical current flowing across the participating interfaces has also been called electromotive force or - particularly confusing - cell potential. Subsequently - as in the previous section - the term potential is reserved for use with an electrode (a half cell) having of course in mind, that by definition this electrode potential value is numerically equivalent to the cell voltage of a cell composed of this electrode and the standard hydrogen electrode, whereas voltage refers to a complete cell. The measured cell voltage is composed of the electrode potentials and further contributions. As discussed in detail above an electrode potential is actually the potential difference between the bulk of two phases. Beyond these two obvious contributions of the electrodes to the cell voltage further potential steps or differences e.g. at the interface between the electrolyte solutions established by a porous frit or a membrane may be present. At first glance a listing of cell voltages might seem to be superfluous, because it might contain only differences between electrode potentials already listed in the previous chapter. As already mentioned additional contributions might be involved, also certain useful electrode compositions might have not been studied as single electrodes, but only in complete cells. In addition the growing number of sensor systems based on the measurement of the voltage of an electrochemical cell has stimulated interest in cell voltages. The use of solid state electrochemical cells has been reviewed [89Jac], the applicability of CaF2 as a solid electrolyte has been discussed extensively [89Aza3]. The influence of interfacial potentials (diffusion or liquid junction potentials) established at the boundary between two different electrolyte solutions (based on e.g. aqueous and nonaqueous solvents) has been investigated frequently, for a thorough overview see Jakuszewski and Woszczak [68Jak2]. Concerning the usage of absolute and international Volt see preceding chapter. General remarks on the tables Cells are arranged according to the first chemical element of the electrode material first mentioned in the entry (left hand side according to the Stockholm convention, negative pole in common terms). When an element has been used as amalgam also the amalgam entries follow those obtained with the pure element. Within every group the potential-determining constituent of the other electrode serves as next order criterion. A final ordering criterion is the composition of the electrolyte solution, with the organic solvents arranged according to Hill’s system [00Hil] with the ordering of the element symbol and trivial names kept in the usual manner. Metal contacts mentioned for completeness and other construction elements are not taken into account (although they are mentioned especially when explicitly stated in the original report) in this arrangement, although they may be mentioned when provided in the original report. In case of redox electrodes, where both potential-determining species are dissolved, the metal (or any other electron conducting material) is used instead. The reader searching for a cell containing such redox electrode may start looking at frequently used electrode materials (platinum, mercury, carbon) first. Concentration of the electrolyte solution constituents are given in the units as originally reported. When no concentration is given, unity values are assumed, thus the cell voltage refers to a standard cell voltage (although this term does not seem to be properly defined) with two standard electrodes combined. Landolt-Börnstein New Series IV/9A
62
2 Cell voltages
Vertical lines indicate phase boundaries inside the cell. Double bars indicate inserted porous separators in order to avoid intermixing of liquid phases. In case of states composed of several solid phases serving as electronic conductors and/or as electrolytes with no well defined boundaries or other reasons reported in the original publications, where sometimes no phase boundaries are explicitly stated, this is carefully reflected in the tables below. The sequence of electrodes follows the Stockholm convention, i.e. the electrode forming the negative terminal of a cell (the minus pole of the cell) is always given first (left hand). Frequently data referring to variable concentrations of an electrolyte solution constituent are given. Sometimes the cell voltage varies as a function of the said concentration resulting in an inversion of polarity. Strictly adhering to the stated convention would result in a separation of this list from subsequent entries of a second part found at the entry of the respective element of the initially right-hand side electrode. This would cause considerable searching for the reader. To avoid this the cell voltages, where the negative terminal is on the right-hand side of the description of the cell, are marked by a minus sign.
Landolt-Börnstein New Series IV/9A
R1
References 00Hil 68Jak2 89Aza3 89Jac
Landolt-Börnstein New Series IV/9A
Hill, E.A.: J. Am. Chem. Soc. 22 (1900) 478. Jakuszewski, B., Kozlowski, Z.: Soc. Sci. Lodz. Acta Chim. 13 (1968) 21. Azad, A.M., Sreedharan, O.M.: J. Appl. Electrochem. 19 (1989) 475. Jacob, K.T., Swaminathan, K., Sreedharan, O.M.: Solid State Ionics 34 (1989) 167.
2 Cell voltages
63
Table 2.1. Cell voltages with aqueous electrolyte systems. 1) Cell composition 2) Barium (Ba) BaxHgŇBaCl2, 0.01 MŒBaCl2, 0.005 MŇBaxHg BaxHgŇBaCl2, 0.005 MŒBaCl2, 0.0025 MŇBaxHg BaxHgŇBaCl2, 0.0025 MŒBaCl2, 0.00125 MŇBaxHg BaxHgŇBaCl2, 0.00125 MŒBaCl2, 0.000625 MŇBaxHg BaxHgŇBaCl2, 0.0500 m, Hg2Cl2ŇHg
BaxHgŇBaCl2, 0.1159 m, Hg2Cl2ŇHg
BaxHgŇBaCl2, 0.2293 m, Hg2Cl2ŇHg BaxHgŇBaCl2, 0.2373 m, Hg2Cl2ŇHg BaxHgŇBaCl2, 0.4546 m, Hg2Cl2ŇHg BaxHgŇBaCl2, 0.4786 m, Hg2Cl2ŇHg BaxHgŇBaCl2, 0.8807 m, Hg2Cl2ŇHg
BaxHgŇBaCl2, 1.4015 m, Hg2Cl2ŇHg BaxHgŇBaCl2, 1.5271 m, Hg2Cl2ŇHg BaxHgŇBaCl2, 1.5713 m, Hg2Cl2ŇHg BaxHgŇBaCl2, 1.7783 m, Hg2Cl2ŇHg Beryllium (Be) BeŇBe(ClO4)2, 0.005 MŒKCl,sat.ŒKCl, 1.0 M, Hg2Cl2ŇHg BeŇBe(ClO4)2, 0.05 MŒKCl,sat.ŒKCl, 1.0 M, Hg2Cl2ŇHg BeŇBeSO4, 0.05 M, KCl, 0.0 MŒKCl,sat.ŒKCl, 1.0 M, Hg2Cl2ŇHg BeŇBeSO4, 0.1 M, KCl, 0.5 MŒKCl,sat.ŒKCl, 1.0 M, Hg2Cl2ŇHg Bromine (Br) Pt, Br2, 0.00385 MŇHBr, 0.3 MŒHBr, 0.1 MŇBr2, 0.001575 M, Pt Pt, Br2, 0.0068 MŇHBr, 0.6 MŒHBr, 0.1 MŇBr2, 0.001575 M, Pt Pt, Br2, 0.01275 MŇHBr, 1.0 MŒHBr, 0.1 MŇBr2, 0.001575 M, Pt Pt, Br2, 0.0233 MŇHBr, 2.0 MŒHBr, 0.1 MŇBr2, 0.001575 M, Pt Pt, Br2, 0.0446 MŇHBr, 3.7 MŒHBr, 0.1 MŇBr2, 0.001575 M, Pt Pt, Br2, 0.0594 MŇHBr, 5.0 MŒHBr, 0.1 MŇBr2, 0.001575 M, Pt Pt, Br2, 0.0684 MŇHBr, 6.0 MŒHBr, 0.1 MŇBr2, 0.001575 M, Pt Pt, Br2, 0.0733 MŇHBr, 7.0 MŒHBr, 0.1 MŇBr2, 0.001575 M, Pt Pt, Br2, 0.0743 MŇHBr, 8.5 MŒHBr, 0.1 MŇBr2, 0.001575 M, Pt Pt, Br2, 0.00385 MŇHBr, 0.3 MŒKCl, 3.0 MŒHBr, 0.1 MŇBr2, 0.001575 M, Pt Pt, Br2, 0.0068 MŇHBr, 0.6 MŒKCl, 3.0 MŒHBr, 0.1 MŇBr2, 0.001575 M, Pt Pt, Br2, 0.01275 MŇHBr, 1.0 MŒKCl, 3.0 MŒHBr, 0.1 MŇBr2, 0.001575 M, Pt
Landolt-Börnstein New Series IV/9A
T [K, °C] U0 [V]
Ref.
0.00700 0.00725 0.00731 0.00728 2.0072 2.0453 2.0595 1.9832 2.0183 2.0317 1.9631 2.0090 1.9953 1.9433 1.9738 1.9838 1.9199 1.9489 1.9598 1.9003 1.9243 1.9333 1.9166
32Mas2 32Mas2 32Mas2 32Mas2 34Tip 34Tip 34Tip 34Tip 34Tip 34Tip 34Tip 34Tip 34Tip 34Tip 34Tip 34Tip 34Tip 34Tip 34Tip 34Tip 34Tip 34Tip 34Tip
0.804 0.825 0.820 1.029
30Bir 30Bir 27Bod 27Bod
18 °C 18 °C 18 °C 18 °C 18 °C 18 °C 18 °C 18 °C 18 °C 18 °C
0.0433 0.0764 0.1020 0.1433 0.2013 0.2397 0.2681 0.2949 0.3340 0.0264
32Wil 32Wil 32Wil 32Wil 32Wil 32Wil 32Wil 32Wil 32Wil 32Wil
18 °C
0.0475
32Wil
18 °C
0.0648
32Wil
273 K 298 K 308 K 273 K 298 K 308 K 273 K 308 K 298 K 273 K 298 K 308 K 273 K 298 K 308 K 273 K 298 K 308 K 298 K
64
2 Cell voltages
Cell composition 2) Pt, Br2, 0.0233 MŇHBr, 2.0 MŒKCl, 3.0 MŒHBr, 0.1 MŇBr2, 0.001575 M, Pt Pt, Br2, 0.0446 MŇHBr, 3.7 MŒKCl, 3.0 MŒHBr, 0.1 MŇBr2, 0.001575 M, Pt Pt, Br2, 0.0594 MŇHBr, 5.0 MŒKCl, 3.0 MŒHBr, 0.1 MŇBr2, 0.001575 M, Pt Pt, Br2, 0.0684 MŇHBr, 6.0 MŒKCl, 3.0 MŒHBr, 0.1 MŇBr2, 0.001575 M, Pt Pt, Br2, 0.0733 MŇHBr, 7.0 MŒKCl, 3.0 MŒHBr, 0.1 MŇBr2, 0.001575 M, Pt Pt, Br2, 0.0743 MŇHBr, 8.5 MŒKCl, 3.0 MŒHBr, 0.1 MŇBr2, 0.001575 M, Pt Cadmium (Cd) CdŇCdSO4, 0.5 mŇCdsat.Hg
CdŇCdI2, 0.0039 m, AgI,sol.ŇAg CdŇCdI2, 0.0098 m, AgI,sol.ŇAg CdŇCdI2, 0.0197 m, AgI,sol.ŇAg CdŇCdI2, 0.0389 m, AgI,sol.ŇAg CdŇCdI2, 0.0969 m, AgI,sol.ŇAg CdŇCdI2, 0.2021 m, AgI,sol.ŇAg CdŇCdI2, 0.4883 m, AgI,sol.ŇAg CdŇCdI2, 1.0274 m, AgI,sol.ŇAg CdŇCdBr2, 0.0012 m, Hg2Br2ŇHg CdŇCdBr2, 0.0029 m, Hg2Br2ŇHg CdŇCdBr2, 0.0048 m, Hg2Br2ŇHg CdŇCdBr2, 0.0117 m, Hg2Br2ŇHg CdŇCdBr2, 0.0293 m, Hg2Br2ŇHg CdŇCdBr2, 0.0476 m, Hg2Br2ŇHg CdŇCdBr2, 0.0732 m, Hg2Br2ŇHg CdŇCdBr2, 0.1172 m, Hg2Br2ŇHg CdŇCdBr2, 0.1872 m, Hg2Br2ŇHg CdŇCdBr2, 0.2929 m, Hg2Br2ŇHg CdŇCdBr2, 0.4756 m, Hg2Br2ŇHg CdŇCdBr2, 3.1594 m, Hg2Br2ŇHg CdŇCdCl2, 0.00086 m, Hg2Cl2ŇHg CdŇCdCl2, 0.0031 m, Hg2Cl2ŇHg CdŇCdCl2, 0.0062 m, Hg2Cl2ŇHg CdŇCdCl2, 0.0086 m, Hg2Cl2ŇHg CdŇCdCl2, 0.0164 m, Hg2Cl2ŇHg CdŇCdCl2, 0.0311 m, Hg2Cl2ŇHg CdŇCdCl2, 0.0622 m, Hg2Cl2ŇHg CdŇCdCl2, 0.0819 m, Hg2Cl2ŇHg CdŇCdCl2, 0.1556 m, Hg2Cl2ŇHg CdŇCdCl2, 0.3113 m, Hg2Cl2ŇHg CdŇCdCl2, 5.035 m, Hg2Cl2ŇHg
T [K, °C] U0 [V]
Ref.
18 °C
0.0989
32Wil
18 °C
0.1437
32Wil
18 °C
0.1745
32Wil
18 °C
0.2002
32Wil
18 °C
0.2236
32Wil
18 °C
0.2588
32Wil
0 °C 10 °C 20 °C 30 °C
0.0554 0.0536 0.0515 0.0495 0.4648 0.4425 0.4325 0.4250 0.4102 0.3993 0.3869 0.3740 0.7624 0.7507 0.7368 0.7202 0.6993 0.6915 0.6805 0.6733 0.6640 0.6551 0.6452 0.6051 0.9155 0.8667 0.8727 0.8485 0.8325 0.8198 0.8063 0.8014 0.7866 0.7752 0.7311
34Par 34Par 34Par 34Par 28Get1 28Get1 28Get1 28Get1 28Get1 28Get1 28Get1 28Get1 28Get2 28Get2 28Get2 28Get2 28Get2 28Get2 28Get2 28Get2 28Get2 28Get2 28Get2 28Get2 28Get2 28Get2 28Get2 28Get2 28Get2 28Get2 28Get2 28Get2 28Get2 28Get2 28Get2 Landolt-Börnstein New Series IV/9A
2 Cell voltages Cell composition 2) CdŇCdCl2, 5.909 m, Hg2Cl2ŇHg CdŇCdCl2, 0.00966 m, Hg2Cl2ŇHg CdŇCdCl2, 0.04805 m, Hg2Cl2ŇHg CdŇCdCl2, 0.09986 m, Hg2Cl2ŇHg CdŇCdCl2, 0.20027 m, Hg2Cl2ŇHg CdŇCdCl2, 0.28766 m, Hg2Cl2ŇHg CdŇCdCl2, 0.49084 m, Hg2Cl2ŇHg CdŇCdCl2, 0.99472 m, Hg2Cl2ŇHg CdŇCdSO4, 0.0014 m, Hg2SO4ŇHg CdŇCdSO4, 0.0055 m, Hg2SO4ŇHg CdŇCdSO4, 0.0139 m, Hg2SO4ŇHg CdŇCdSO4, 0.0554 m, Hg2SO4ŇHg CdŇCdSO4, 0.1328 m, Hg2SO4ŇHg CdŇCdSO4, 0.1386 m, Hg2SO4ŇHg CdŇCdSO4, 0.2217 m, Hg2SO4ŇHg CdŇCdSO4, 0.5542 m, Hg2SO4ŇHg CdŇCdSO4, 1.386 m, Hg2SO4ŇHg CdŇCdSO4, 2.125 m, Hg2SO4ŇHg CdŇCdSO4, 2.656 m, Hg2SO4ŇHg CdŇCdSO4, 3.698 m, Hg2SO4ŇHg CdŇCdSO4*8/3 H2O,sol., H2SO4, 0.078 MŒH2SO4, 0.078 M, Hg2SO4ŇHg CdŇCdSO4*8/3 H2O,sol., H2SO4, 0.195 MŒH2SO4, 0.195 M, Hg2SO4ŇHg CdŇCdSO4*8/3 H2O,sol., H2SO4, 0.756 MŒH2SO4, 0.756 M, Hg2SO4ŇHg CdŇCdSO4*8/3 H2O,sol., H2SO4, 1.151 MŒH2SO4, 1.151 M, Hg2SO4ŇHg CdŇCdSO4*8/3 H2O,sol., H2SO4, 0.021 MŒH2SO4, 0.021 M, Hg2SO4ŇHg CdŇCdSO4*8/3 H2O,sol., H2SO4, 0.078 MŒH2SO4, 0.078 M, Hg2SO4ŇHg CdŇK2Cd(CN)4, 9.13 mM, KCN, 3.56 mMŒKNO3,sat.ŒKCl, 1.0 M, Hg2Cl2ŇHg CdŇK2Cd(CN)4, 9.13 mM, KCN, 16.93 mMŒKNO3,sat.ŒKCl, 1.0 M, Hg2Cl2ŇHg CdŇK2Cd(CN)4, 7.44 mM, KCN, 15.83 mMŒKNO3,sat.ŒKCl, 1.0 M, Hg2Cl2ŇHg CdŇK2Cd(CN)4, 2.92 mM, KCN, 26.55 mMŒKNO3,sat.ŒKCl, 1.0 M, Hg2Cl2ŇHg CdŇCdI2, 0.0030 m, PbI2,sol.ŇPb CdŇCdI2, 0.0040 m, PbI2,sol.ŇPb CdŇCdI2, 0.0050 m, PbI2,sol.ŇPb CdŇCdI2, 0.0099 m, PbI2,sol.ŇPb CdŇCdI2, 0.0196 m, PbI2,sol.ŇPb CdŇCdI2, 0.0389 m, PbI2,sol.ŇPb CdŇCdI2, 0.0968 m, PbI2,sol.ŇPb CdŇCdI2, 0.2030 m, PbI2,sol.ŇPb CdŇCdI2, 0.4897 m, PbI2,sol.ŇPb CdŇCdI2, 1.0274 m, PbI2,sol.ŇPb CdŇCdI2, 1.2967 m, PbI2,sol.ŇPb
Landolt-Börnstein New Series IV/9A
65
T [K, °C] U0 [V]
Ref.
0.7286 0.8465 0.8117 0.7954 0.7821 0.7763 0.7663 0.7555 1.1438 1.1484 1.1399 1.1285 1.1178 1.1153 1.1130 1.1034 1.0926 1.0810 1.0768 1.0656 15.67 °C 1.0184 20 °C 1.0182 20 °C 1.0181 15.67 °C 1.0178 20 °C 1.0172 1.0180 1.0179 14 °C 0.952
28Get2 31Get2 31Get2 31Get2 31Get2 31Get2 31Get2 31Get2 28Get2 28Get2 28Get2 28Get2 28Get2 28Get2 28Get2 28Get2 28Get2 28Get2 28Get2 28Get2 18Oba 18Oba 18Oba 18Oba 18Oba 26Vos 26Vos 32Bri
14 °C
1.013
32Bri
14 °C
0.982
32Bri
14 °C
1.022
32Bri
0.2542 0.2487 0.2463 0.2332 0.2232 0.2142 0.2017 0.1923 0.1807 0.1674 0.1678
28Get1 28Get1 28Get1 28Get1 28Get1 28Get1 28Get1 28Get1 28Get1 28Get1 28Get1
66
2 Cell voltages
Cell composition 2) CdŇCd11wt%HgŇCdCl2, AgClŇAg (UT [V]=0.57390–394·10–6(T–25 °C)–3.63·10–6(T–25 °C)2) CdŇCd11wt%HgŇCdCl2, 0.0005 m, AgClŇAg (UT [V]=0.8539+560·10–6(T–25 °C)–3.48·10–6(T–25 °C)2) CdŇCd11wt%HgŇCdCl2, 0.001 m, AgClŇAg (UT [V]=0.82997+494·10–6(T–25 °C)–3.40·10–6(T–25 °C)2) CdŇCd11wt%HgŇCdCl2, 0.005 m, AgClŇAg (UT [V]=0.77851+356·10–6(T–25 °C)–3.13·10–6(T–25 °C)2) CdŇCd11wt%HgŇCdCl2, 0.01 m, AgClŇAg (UT [V]=0.75846+305·10–6(T–25 °C)–2.93·10–6(T–25 °C)2) CdŇCd11wt%HgŇCdCl2, 0.05 m, AgClŇAg (UT [V]=0.71739+185·10–6(T–25 °C)–2.05·10–6(T–25 °C)2) CdŇCd11wt%HgŇCdCl2, 0.1 m, AgClŇAg (UT [V]=0.70175+136·10–-6(T–25 °C)–1.68·10–6(T–25 °C)2) CdŇCd11wt%HgŇCdCl2, 0.5 m, AgClŇAg (UT [V]=0.66864+48·10–6(T–25 °C)–0.80·10–6(T–25 °C)2) CdŇCd11wt%HgŇCdCl2, 1.0 m, AgClŇAg (UT [V]=0.65640+12·10–6(T–25 °C)–0.44·10–6(T–25 °C)2) Cdsat.HgŇCdBr2*4 H2O,sat., AgBrŇAg Cdsat.HgŇCdBr2,sat., AgBrŇAg Cdsat.HgŇCdBr2, 0.0100 m, AgBrŇAg Cdsat.HgŇCdBr2, 0.01993 m, AgBrŇAg Cdsat.HgŇCdBr2, 0.05629 m, AgBrŇAg Cdsat.HgŇCdBr2, 0.100 m, AgBrŇAg Cdsat.HgŇCdBr2, 0.3026 m, AgBrŇAg Cdsat.HgŇCdBr2, 0.5444 m, AgBrŇAg Cdsat.HgŇCdBr2, 0.9996 m, AgBrŇAg Cdsat.HgŇCdBr2, 1.896 m, AgBrŇAg Cdsat.HgŇCdBr2, 3.082 m, AgBrŇAg Cdsat.HgŇCdCl2, 0.0101 m, AgClŇAg Cdsat.HgŇCdCl2, 0.05056 m, AgClŇAg Cdsat.HgŇCdCl2, 0.1000 m, AgClŇAg Cdsat.HgŇCdCl2, 0.5101 m, AgClŇAg Cdsat.HgŇCdCl2, 0.9999 m, AgClŇAg Cdsat.HgŇCdCl2, 2.045 m, AgClŇAg Cdsat.HgŇCdCl2, 6.146 m, AgClŇAg CdHgŇCdCl2ŇAgClŇAg CdHgŇCdCl2, 4.0972 mm, Na3citrate, 5.2310 mm, AgClŇAg CdHgŇCdCl2, 4.9487 mm, Na3citrate, 7.6584 mm, AgClŇAg CdHgŇCdCl2, 5.0353 mm, Na3citrate, 6.3399 mm, AgClŇAg CdHgŇCdCl2, 5.6126 mm, Na3citrate, 7.1657 mm, AgClŇAg CdHgŇCdCl2, 6.5715 mm, Na3citrate, 7.7265 mm, AgClŇAg CdHgŇCdCl2, 7.2661 mm, Na3citrate, 8.8274 mm, AgClŇAg CdHgŇCdCl2, 7.8425 mm, Na3citrate, 10.012 mm, AgClŇAg CdHgŇCdCl2, 8.4232 mm, Na3citrate, 10.551 mm, AgClŇAg
T [K, °C] U0 [V]
Ref.
25 °C
0.57390 36Har1
25 °C
0.8539
25 °C
0.82997 36Har1
25 °C
0.77851 36Har1
25 °C
0.75846 36Har1
25 °C
0.71739 36Har1
25 °C
0.70175 36Har1
25 °C
0.66864 36Har1
25 °C
0.65640 36Har1
35.6 °C 40 °C
24.96 °C 24.96 °C 24.96 °C 24.96 °C 24.96 °C 24.96 °C 24.96 °C 24.96 °C
36Har1
0.4883 0.3776 0.4776 0.5932 0.5756 0.5515 0.5395 0.5264 0.5101 0.5005 0.4888 0.4777 0.7406 0.6995 0.6843 0.6534 0.6424 0.6317 0.6105 0.5744 0.8293 0.82803 0.82809 0.81870 0.81021 0.80792 0.80722 0.80476
32Spe1 32Spe1 32Spe1 29Luc1 29Luc1 29Luc1 29Luc1 29Luc1 29Luc1 29Luc1 29Luc1 29Luc1 29Luc1 29Luc1 29Luc1 29Luc1 29Luc1 29Luc1 29Luc1 58Tre1 58Tre2 58Tre2 58Tre2 58Tre2 58Tre2 58Tre2 58Tre2 58Tre2
Landolt-Börnstein New Series IV/9A
2 Cell voltages Cell composition 2) Cd10wt%HgŇCdBr2*4 H2O, CdBr2,sat., Hg2Br2ŇHg
Cd10wt%HgŇCdBr2,sol., CdBr2,sat., Hg2Br2ŇHg
Cd10wt%HgŇCdBr2, 52.90wt%, Hg2Br2ŇHg
Cd10wt%HgŇCdBr2, 46.34wt%, Hg2Br2ŇHg Cd10wt%HgŇCdBr2, 48.15wt%, Hg2Br2ŇHg Cd10wt%HgŇCdBr2, 50.82wt%, Hg2Br2ŇHg Cd10wt%HgŇCdBr2, 52.14wt%, Hg2Br2ŇHg Cd9wt%HgŇCdI2,sol., CdI2,sat., Hg2I2ŇHg
Cdsat.HgŇCdI2, 0.001025 mŒCdI2, 0.001025 m, Hg2I2ŇHg Cdsat.HgŇCdI2, 0.0050 mŒCdI2, 0.0050 m, Hg2I2ŇHg
Cdsat.HgŇCdI2, 0.0100 mŒCdI2, 0.0100 m, Hg2I2ŇHg
Cdsat.HgŇCdI2, 0.02015 mŒCdI2, 0.02015 m, Hg2I2ŇHg
Cdsat.HgŇCdI2, 0.0500 mŒCdI2, 0.0500 m, Hg2I2ŇHg
Cdsat.HgŇCdI2, 0.100 mŒCdI2, 0.100 m, Hg2I2ŇHg
Cdsat.HgŇCdI2, 0.250 mŒCdI2, 0.250 m, Hg2I2ŇHg
Cdsat.HgŇCdI2, 0.4843 mŒCdI2, 0.4843 m, Hg2I2ŇHg
Cdsat.HgŇCdI2, 1.000 mŒCdI2, 1.000 m, Hg2I2ŇHg
Cdsat.HgŇCdI2, 1.983 mŒCdI2, 1.983 m, Hg2I2ŇHg
Cdsat.HgŇCdI2, 2.366 mŒCdI2, 2.366 m, Hg2I2ŇHg
Landolt-Börnstein New Series IV/9A
67
T [K, °C] U0 [V] 20 °C 25 °C 30 °C 35.5 °C 36 °C 36.5 °C 37.5 °C 38 °C 25 °C 30 °C 35 °C 25 °C 25 °C 25 °C 25 °C 25 °C 30 °C 35 °C 25 °C 25 °C 30 °C 35 °C 25 °C 30 °C 35 °C 25 °C 30 °C 35 °C 25 °C 30 °C 35 °C 25 °C 30 °C 35 °C 25 °C 30 °C 35 °C 25 °C 30 °C 35 °C 25 °C 30 °C 35 °C 25 °C 30 °C 35 °C 25 °C
0.5581 0.5561 0.5539 0.5510 0.5507 0.5509 0.5512 0.5513 0.5563 0.5580 0.5597 0.5633 0.5614 0.5586 0.5571 0.4171 0.4189 0.4207 0.5695 0.5252 0.5296 0.5341 0.5083 0.5123 0.5165 0.4932 0.4969 0.5006 0.4779 0.4811 0.4846 0.4679 0.4709 0.4739 0.4557 0.4584 0.4611 0.4467 0.4493 0.4519 0.4351 0.4375 0.4400 0.4209 0.4233 0.4258 0.4170
Ref. 33Ish4 33Ish4 33Ish4 33Ish4 33Ish4 33Ish4 33Ish4 33Ish4 33Ish4 33Ish4 33Ish4 33Ish4 33Ish4 33Ish4 33Ish4 28Yos 28Yos 28Yos 37Bat 37Bat 37Bat 37Bat 37Bat 37Bat 37Bat 37Bat 37Bat 37Bat 37Bat 37Bat 37Bat 37Bat 37Bat 37Bat 37Bat 37Bat 37Bat 37Bat 37Bat 37Bat 37Bat 37Bat 37Bat 37Bat 37Bat 37Bat 37Bat
68
2 Cell voltages
Cell composition 2) Cdsat.HgŇCdI2, 2.404 mŒCdI2, 2.404 m, Hg2I2ŇHg Cdsat.HgŇCdI2, 2.453 mŒCdI2, 2.453 m, Hg2I2ŇHg Cdsat.HgŇCdCl2*2.5 H2O,sat.ŒCdCl2*2.5 H2O,sat., Hg2Cl2,sol.ŇHg
Cdsat.HgŇCdCl2*H2O,sat.ŒCdCl2*1H2O,sat., Hg2Cl2,sol.ŇHg Cd10wt%HgŇCd(OH)2,sol., NaOH, 1.0%, HgO,sol.ŇHg Cd10wt%HgŇCd(OH)2,sol., NaOH, 33%, HgO,sol.ŇHg Cd8wt%HgŇCdSO4ŇCd0.74wt%Hg
Cd8wt%HgŇCdSO4ŇCd2.12wt%Hg Cd8wt%HgŇCdSO4ŇCd2.77wt%Hg Cd8wt%HgŇCdSO4ŇCd4.76wt%Hg Cd8wt%HgŇCdSO4ŇCd5.87wt%Hg Cd10...13wt%HgŇCdSO48·8/3H2Osat., H2O⏐Hg2SO4,sat., H2O⏐Hg (UT [V]=U293K–[4.06·10–5(T–293 K)–0.95·10–6(T–293 K) +1·10–8(T–293 K)]) (Weston-Cell) Cdsat.HgŇCdCl2*2.5 H2O,sat.ŒCdCl2*2.5 H2O,sat., PbCl2,sol.ŇPb6wt%Hg
Cdsat.HgŇCdCl2*H2O,sat.ŒCdCl2*1H2O,sat., PbCl2,sol.ŇPb6wt%Hg Cdsat.HgŇCdSO4, 0.0005 m, PbSO4,sol.ŇPbsat.Hg Cdsat.HgŇCdSO4, 0.001 m, PbSO4,sol.ŇPbsat.Hg Cdsat.HgŇCdSO4, 0.002 m, PbSO4,sol.ŇPbsat.Hg Cdsat.HgŇCdSO4, 0.005 m, PbSO4,sol.ŇPbsat.Hg Cdsat.HgŇCdSO4, 0.01 m, PbSO4,sol.ŇPbsat.Hg Cdsat.HgŇCdSO4, 0.02 m, PbSO4,sol.ŇPbsat.Hg Cdsat.HgŇCdSO4, 0.000458 m, PbSO4,sol.ŇPbsat.Hg Cdsat.HgŇCdSO4, 0.000727 m, PbSO4,sol.ŇPbsat.Hg Cdsat.HgŇCdSO4, 0.001077 m, PbSO4,sol.ŇPbsat.Hg Cdsat.HgŇCdSO4, 0.001993 m, PbSO4,sol.ŇPbsat.Hg Cdsat.HgŇCdSO4, 0.005618 m, PbSO4,sol.ŇPbsat.Hg Cdsat.HgŇCdSO4, 0.008351 m, PbSO4,sol.ŇPbsat.Hg Cdsat.HgŇCdSO4, 0.01096 m, PbSO4,sol.ŇPbsat.Hg Cdsat.HgŇCdSO4, 0.02237 m, PbSO4,sol.ŇPbsat.Hg Cdsat.HgŇCdSO4, 0.0529 m, PbSO4,sol.ŇPbsat.Hg Cdsat.HgŇCdSO4, 0.1268 m, PbSO4,sol.ŇPbsat.Hg Cdsat.HgŇCdSO4, 0.3496 m, PbSO4,sol.ŇPbsat.Hg
T [K, °C] U0 [V] 30 °C 35 °C 17 °C 20 °C 25 °C 30 °C 35 °C 40 °C
0 °C 17 °C 25 °C 25 °C 0 °C 25 °C 25 °C 293 K
17 °C 20 °C 25 °C 30 °C 35 °C 40 °C 0 °C 20 °C 0 °C 20 °C 0 °C 20 °C 0 °C 20 °C 0 °C 20 °C 0 °C 20 °C
Ref.
0.4188 0.4206 0.6713 0.6711 0.6706 0.6701 0.6699 0.6714 0.8598 0.8502 0.0159 0.02389 0.02759 0.01395 0.00023 0.00331 0.00040 1.0183
37Bat 37Bat 30Pri 30Pri 30Pri 30Pri 30Pri 30Pri 32Ish2 32Ish2 31LaM 31LaM 31LaM 31LaM 31LaM 31LaM 31LaM 55Sti 3)
0.1425 0.1419 0.1407 0.1395 0.1385 0.1392 0.2004 0.2028 0.1869 0.1887 0.1739 0.1749 0.1580 0.1580 0.1465 0.1459 0.1350 0.1340 0.2024 0.1943 0.1861 0.1738 0.1546 0.1475 0.1428 0.1310 0.1190 0.1086 0.0963
30Pri 30Pri 30Pri 30Pri 30Pri 30Pri 33LaM 33LaM 33LaM 33LaM 33LaM 33LaM 33LaM 33LaM 33LaM 33LaM 33LaM 33LaM 33LaM 33LaM 33LaM 33LaM 33LaM 33LaM 33LaM 33LaM 33LaM 33LaM 33LaM Landolt-Börnstein New Series IV/9A
2 Cell voltages Cell composition 2) Cdsat.HgŇCdSO4, 1.027 m, PbSO4,sol.ŇPbsat.Hg Cdsat.HgŇCdSO4, 3.698 m, PbSO4,sol.ŇPbsat.Hg Calcium (Ca) Ca0.0256wt%HgŇCaCl2, 0.0099 MŇKCl, 3.0 MŇKCl, 1.0 M, Hg2Cl2ŇHg Ca0.0256wt%HgŇCaCl2, 0.0197 MŇKCl, 3.0 MŇKCl, 1.0 M, Hg2Cl2ŇHg Ca0.0256wt%HgŇCaCl2, 0.0495 MŇKCl, 3.0 MŇKCl, 1.0 M, Hg2Cl2ŇHg CaxHgŇCaCl2, 0.00125 MŒCaCl2, 0.000625 MŇCaxHg CaxHgŇCaCl2, 0.0025 MŒCaCl2, 0.00125 MŇCaxHg CaxHgŇCaCl2, 0.005 MŒCaCl2, 0.0025 MŇCaxHg CaxHgŇCaCl2, 0.01 MŒCaCl2, 0.005 MŇCaxHg Ca0.012wt%HgŇCa(OH)2, 0.0022 mŇKCl,sat.ŇKCl,sat., Hg2Cl2ŇHg Ca0.012wt%HgŇCa(OH)2, 0.0044 mŇKCl,sat.ŇKCl,sat., Hg2Cl2ŇHg Ca0.012wt%HgŇCa(OH)2, 0.0110 mŇKCl,sat.ŇKCl,sat., Hg2Cl2ŇHg Ca0.012wt%HgŇCa(OH)2, 0.0153 mŇKCl,sat.ŇKCl,sat., Hg2Cl2ŇHg Ca0.012wt%HgŇCa(OH)2, 0.0219 mŇKCl,sat.ŇKCl,sat., Hg2Cl2ŇHg Ca0.012wt%.HgŇCaSO4, 0.0038 mŇKCl,sat.ŇKCl,sat., Hg2Cl2ŇHg Ca0.012wt%HgŇCaSO4, 0.0077 mŇKCl,sat.ŇKCl,sat., Hg2Cl2ŇHg Ca0.012wt%HgŇCaSO4, 0.0153 mŇKCl,sat.ŇKCl,sat., Hg2Cl2ŇHg Chlorine (Cl) Pt, Cl2ŇHCl, 0.01 m, NaCl, 0.0 mŒKCl, 1.0 m, HCl, 0.1 mŇCl2, Pt Pt, Cl2ŇHCl, 0.01 m, NaCl, 4.5 mŒKCl, 1.0 m, HCl,0.1 mŇCl2, Pt Pt, Cl2ŇHCl, 0.1 m, NaCl, 2.0 mŒKCl, 1.0 m, HCl, 0.1 mŇCl2, Pt Pt, Cl2ŇHCl, 0.1 m, NaCl, 4.0 mŒKCl, 1.0 m, HCl, 0.1 mŇCl2, Pt Pt, Cl2ŇHCl, 1.0 m, NaCl, 0.0 mŒKCl, 1.0 m, HCl, 0.1 mŇCl2, Pt Pt, Cl2ŇHCl, 1.0 m, NaCl, 2.0 mŒKCl, 1.0 m, HCl, 0.1 mŇCl2, Pt Pt, Cl2ŇHCl, 1.0 m, NaCl, 3.5 mŒKCl, 1.0 m, HCl, 0.1 mŇCl2, Pt Pt, Cl2ŇHCl, 2.0 m, NaCl, 0.0 mŒKCl, 1.0 m, HCl, 0.1 mŇCl2, Pt Pt, Cl2ŇHCl, 2.0 m, NaCl, 2.0 mŒKCl, 1.0 m, HCl, 0.1 mŇCl2, Pt Pt, Cl2ŇHCl, 4.0 m, NaCl, 0.0 mŒKCl, 1.0 m, HCl, 0.1 mŇCl2, Pt Pt, Cl2ŇHCl, 5.0 m, NaCl, 0.0 mŒKCl, 1.0 m, HCl, 0.1 mŇCl2, Pt Pt, Cl2ŇHCl, 5.0 m, NaCl, 1.25 mŒKCl, 1.0 m, HCl, 0.1 mŇCl2, Pt Chromium (Cr) CrŇCr2(SO4)3ŇKCl,sat.ŒKCl, 0.1 M, Hg2Cl2ŇHg CrŇCrSO4, 0.426 M, H2SO4, 0.0 MŒKCl, 1.0 M, Hg2Cl2ŇHg CrŇCrSO4, 0.168 M, H2SO4, 0.0 MŒKCl, 1.0 M, Hg2Cl2ŇHg CrŇCrSO4, 0.034 M, H2SO4, 0.001 MŒKCl, 1.0 M, Hg2Cl2ŇHg Cobalt (Co) CoŇCoCl2, 0.05 MŒKCl, 1.0 M, Hg2Cl2ŇHg CoŇCoCl2, 0.5 MŒKCl, 1.0 M, Hg2Cl2ŇHg CoŇCoCl2, 0.01 MŒKCl, 1.0 M, Hg2Cl2ŇHg CoŇCoCl2, 0.02 MŒKCl, 1.0 M, Hg2Cl2ŇHg CoŇCoCl2, 0.05 MŒKCl, 1.0 M, Hg2Cl2ŇHg CoŇCoCl2, 1.0 MŒKCl, 1.0 M, Hg2Cl2ŇHg CoŇCoCl2, 2.0 MŒKCl, 1.0 M, Hg2Cl2ŇHg CoŇCoCl2, 0.0670 m, Hg2Cl2ŇHg CoŇCoCl2, 0.0597 m, Hg2Cl2ŇHg CoŇCoCl2, 0.0670 m, KCl, 1.0 M, Hg2Cl2ŇHg Landolt-Börnstein New Series IV/9A
69
T [K, °C] U0 [V]
294 K 294 K 294 K 303 K 303 K 303 K 303 K
23.2 °C 23.2 °C 23.2 °C
18 °C 18 °C 18 °C 18 °C
Ref.
0.0826 0.0464
33LaM 33LaM
2.2649 2.2564 2.2459 0.00664 0.00675 0.00659 0.00615 2.2266 2.2208 2.2135 2.2113 2.2053 2.1959 2.1906 2.1853
26Dru1 26Dru1 26Dru1 32Mas1 32Mas1 32Mas1 32Mas1 29Fos 29Fos 29Fos 29Fos 29Fos 29Fos 29Fos 29Fos
–0.0680 –0.0668 –0.0380 –0.0721 0.0685 0.0943 0.1068 0.1276 0.1458 0.1820 0.1978 0.2126
25Wil 25Wil 25Wil 25Wil 25Wil 25Wil 25Wil 25Wil 25Wil 25Wil 25Wil 25Wil
0.867 0.879 0.884 0.910
26Gru 27Gru 27Gru 27Gru
0.625 0.590 0.582 0.570 0.556 0.539 0.525 0.657 0.659 0.598
04Lab 04Lab 20Lam 20Lam 20Lam 20Lam 20Lam 34Har4 34Har4 34Har4
70
2 Cell voltages
Cell composition 2) Cerium (Ce) CeŇCeBr3,sat.ŒNH4NO3,sat.ŒKCl, 1.0 M, Hg2Cl2ŇHg Ce1.55wt%HgŇCeBr3,sat.ŒNH4NO3,sat.ŒKCl, 1.0 M, Hg2Cl2ŇHg PtŇCe(SO4)2, 0.0104 m, Ce2(SO4)3, 0.0052 m, H2SO4, 0.5 m ŒH2SO4, 0.5 mŇH2ŇPt PtŇCe(SO4)2, 0.00102 m, Ce2(SO4)3, 0.00051 m, H2SO4, 0.5 mŒH2SO4, 0.5 mŇH2ŇPt PtŇCe(SO4)2, 0.00790 m, Ce2(SO4)3, 0.00395 m, H2SO4, 1.0 mŒH2SO4, 0.5 mŇH2ŇPt PtŇCe(SO4)2, 0.00099 m, Ce2(SO4)3, 0.000495 m, H2SO4, 1.0 mŒH2SO4, 0.5 mŇH2ŇPt Copper (Cu) CuŇCuCN, 0.01 M, KCN, 0.0025 MŒKCl, 0.1 M, Hg2Cl2ŇHg CuŇCuCN, 0.01 M, KCN, 0.005 MŒKCl, 0.1 M, Hg2Cl2ŇHg CuŇCuCN, 0.01 M, KCN, 0.01 MŒKCl, 0.1 M, Hg2Cl2ŇHg CuŇCuCN, 0.01 M, KCN, 0.02 MŒKCl, 0.1 M, Hg2Cl2ŇHg, CuŇCuCN, 0.01 M, KCN, 0.05 MŒKCl, 0.1 M, Hg2Cl2ŇHg CuŇCuCN, 0.01 M, KCN, 0.1 MŒKCl, 0.1 M, Hg2Cl2ŇHg CuŇCuCN, 0.01 M, KCN, 0.5 MŒKCl, 0.1 M, Hg2Cl2ŇHg CuŇCuCN, 0.025 M, KCN, 0.025 MŒKCl, 0.1 M, Hg2Cl2ŇHg CuŇCuCN, 0.025 M, KCN, 0.05 MŒKCl, 0.1 M, Hg2Cl2ŇHg CuŇCuCN, 0.025 M, KCN, 0.1 MŒKCl, 0.1 M, Hg2Cl2ŇHg CuŇCuCN, 0.025 M, KCN, 0.25 MŒKCl, 0.1 M, Hg2Cl2ŇHg CuŇCuCN, 0.025 M, KCN, 0.5 MŒKCl, 0.1 M, Hg2Cl2ŇHg CuŇCuCN, 0.025 M, KCN, 0.1 MŒKCl, 0.1 M, Hg2Cl2ŇHg CuŇCuCN, 0.1 M, KCN, 0.1 MŒKCl, 0.1 M, Hg2CL2ŇHg CuŇCuCN, 0.1 M, KCN, 0.2 MŒKCl, 0.1 M, Hg2CL2ŇHg CuŇCuCN, 0.1 M, KCN, 0.4 MŒKCl, 0.1 M, Hg2CL2ŇHg CuŇCuCN, 0.1 M, KCN, 1.0 MŒKCl, 0.1 M, Hg2CL2ŇHg CuŇCuSO4, 0.1 MŇCu10wt%Hg
CuŇCu2O, NaOH, 1.027 mŒNaOH, 1.027 m, HgOŇHg
Cusat.HgŇCuSO4, 0.5 mŇCu
Cusat.HgŇCuSO4,sat., CuSO4*5 H2O,solid, Hg2SO4ŇHg
Cusat.HgŇCuSO4, 0.00420 m, Hg2SO4ŇHg Cusat.HgŇCuSO4, 0.01049 m, Hg2SO4ŇHg Cusat.HgŇCuSO4, 0.02098 m, Hg2SO4ŇHg
T [K, °C] U0 [V]
18 °C 18 °C 18 °C 18 °C 18 °C 18 °C 18 °C 18 °C 18 °C 18 °C 18 °C 18 °C 18 °C 18 °C 18 °C 18 °C 18 °C 0 °C 15 °C 20 °C 25 °C 30 °C 0 °C 15 °C 25 °C 0 °C 15 °C 25°C 35 °C 20 °C 25 °C 30 °C 35 °C
Ref.
0.74 0.94 1.4617
29Mül2 29Mül2 31Kun
1.4604
31Kun
1.4437
31Kun
1.4433
31Kun
0.506 0.635 0.830 0.973 1.125 1.226 1.453 0.600 0.838 1.138 1.343 1.441 1.138 0.663 0.946 1.300 1.505 0.00631 0.00533 0.00471 0.00378 0.00263 0.4587 0.4602 0.4617 0.00694 0.00584 0.00510 0.00436 0.3499 0.3467 0.3434 0.3401 0.4125 0.4107 0.4007
05Spi 05Spi 05Spi 05Spi 05Spi 05Spi 05Spi 05Spi 05Spi 05Spi 05Spi 05Spi 05Spi 05Spi 05Spi 05Spi 05Spi 19Öho 19Öho 19Öho 19Öho 19Öho 27Ish 27Ish 27Ish 33Oku 33Oku 33Oku 33Oku 33Ish3 33Ish3 33Ish3 33Ish3 30Get 30Get 30Get
Landolt-Börnstein New Series IV/9A
2 Cell voltages Cell composition 2) Cusat.HgŇCuSO4, 0.04193 m, Hg2SO4ŇHg Cusat.HgŇCuSO4, 0.10488 m, Hg2SO4ŇHg Cusat.HgŇCuSO4, 0.20984 m, Hg2SO4ŇHg Hydrogen (H) 4) H2ŇHBr, 1 mŇAgBrŇAg
H2ŇHBr, 1 mŇAgBrŇAg
Pt, H2ŇHBr, 0.001 m, AgBrŇAg (UT [V]=U0+0.682·10–3(T–303 K)+2.930·10–6(T–303 K)2, 273
Pt, H2ŇHBr, 0.01 m, KBr, 0.0 m, AgBrŇAg Landolt-Börnstein New Series IV/9A
71
T [K, °C] U0 [V]
Ref.
0.3906 0.3785 0.3701
30Get 30Get 30Get
273 K 278 K 283 K 288 K 293 K 298 K 303 K 308 K 313 K 318 K 323 K 278 K 283 K 288 K 293 K 298 K 303 K 308 K 313 K 303 K
0.08168 0.07994 0.07804 0.07596 0.07379 0.07129 0.06874 0.06604 0.06302 0.05997 0.05668 0.07989 0.07803 0.07599 0.07376 0.07136 0.06878 0.06602 0.06306 0.43118
37Har1 37Har1 37Har1 37Har1 37Har1 37Har1 37Har1 37Har1 37Har1 37Har1 37Har1 36Owe 36Owe 36Owe 36Owe 36Owe 36Owe 36Owe 36Owe 36Har2
303 K
0.34910 36Har2
303 K
0.31421 36Har2
303 K
0.27958 36Har2
303 K
0.23427 36Har2
303 K
0.20021 36Har2
303 K
0.16550 36Har2
303 K
0.11735 36Har2
303 K
0.07612 36Har2
273 K 278 K 283 K 288 K 293 K 298 K 303 K
0.08127 0.07955 0.07770 0.07561 0.07340 0.07103 0.0685 0.3136
36Har2 36Har2 36Har2 36Har2 36Har2 36Har2 36Har2 33Har1
72
2 Cell voltages
Cell composition 2) Pt, H2ŇHBr, 0.01 m, KBr, 0.01 m, AgBrŇAg Pt, H2ŇHBr, 0.01 m, KBr, 0.02 m, AgBrŇAg Pt, H2ŇHBr, 0.01 m, KBr, 0.05 m, AgBrŇAg Pt, H2ŇHBr, 0.01 m, KBr, 0.1 m, AgBrŇAg Pt, H2ŇHBr, 0.01 m, KBr, 0.2 m, AgBrŇAg Pt, H2ŇHBr, 0.01 m, KBr, 0.5 m, AgBrŇAg Pt, H2ŇHBr, 0.01 m, KBr, 1.0 m, AgBrŇAg Pt, H2ŇHBr, 0.01 m, KBr, 3.0 m, AgBrŇAg Pt, H2ŇHBr, 0.01 m, LiBr, 0.0 m, AgBrŇAg Pt, H2ŇHBr, 0.01 m, LiBr, 0.02511 m, AgBrŇAg Pt, H2ŇHBr, 0.01 m, LiBr, 0.04827 m, AgBrŇAg Pt, H2ŇHBr, 0.01 m, LiBr, 0.1004 m, AgBrŇAg Pt, H2ŇHBr, 0.01 m, LiBr, 0.1994m, AgBrŇAg Pt, H2ŇHBr, 0.01 m, LiBr, 0.5016 m, AgBrŇAg Pt, H2ŇHBr, 0.01 m, LiBr, 0.9996 m, AgBrŇAg Pt, H2ŇHBr, 0.01 m, LiBr, 1.9837 m, AgBrŇAg Pt, H2ŇHBr, 0.01 m, LiBr, 2.4893 m, AgBrŇAg Pt, H2ŇB(OH)3, 5.466 mm, Na3BO3, 4.640 mm, NaCl, 4.785 mm, AgClŇAg Pt, H2ŇB(OH)3, 9.688 mm, Na3BO3, 8.225 mm, NaCl, 8.481 mm, AgClŇAg Pt, H2ŇB(OH)3, 26.890 mm, Na3BO3, 22.831 mm, NaCl, 23.54 mm, AgClŇAg Pt, H2ŇB(OH)3, 65.33 mm, Na3BO3, 55.895 mm, NaCl, 57.63 mm, AgClŇAg Pt, H2ŇB(OH)3, 12.066 mm, Na3BO3, 4.46 mm, NaCl, 3.79 mm, AgClŇAg Pt, H2ŇB(OH)3, 22.096 mm, Na3BO3, 8.216 mm, NaCl, 6.94 mm, AgClŇAg Pt, H2ŇB(OH)3, 53.043 mm, Na3BO3, 19.723 mm, NaCl, 16.66 mm, AgClŇAg Pt, H2ŇB(OH)3, 109.876 mm, Na3BO3, 40.856 mm, NaCl, 34.51 mm, AgClŇAg Pt, H2ŇHClO4ŒHClO4, As2O3,sol.ŇAs Pt, H2ŇHCl, 0.000983 MŒHCl, 0.000983 M, BiOCl,sol.ŇBi Pt, H2ŇHCl, 0.009022 MŒHCl, 0.009022 M, BiOCl,sol.ŇBi Pt, H2ŇHCl, 0.1041 MŒHCl, 0.1041 M, BiOCl,sol.ŇBi Pt, H2ŇHCl, 0.5005 MŒHCl, 0.5005 M, BiOCl,sol.ŇBi Pt, H2ŇHCl, 1.0 MŇCl2, C (UT [V]=1.360–1.0·10–3(T–20 °C)) Pt, H2ŇNaHCO3, 0.443 M, NaCl, 1.0 MŒNaCl, 0.95 M, NaHCO3, 0.422 M, HOCl, 0.0084 MŇPt Pt, H2ŇNaHCO3, 0.0755 M, NaCl, 1.0 MŒNaCl, 1.0 M, NaHCO3, 0.0755 M, HOCl, 0.150 MŇPt Pt, H2ŇHCl, 0.01447 mŒHCl, 0.01447 m, CuClŇCu Pt, H2ŇHCl, 0.0434 mŒHCl, 0.0434 m, CuClŇCu Pt, H2ŇHCl, 0.09596 mŒHCl, 0.09596 m, CuClŇCu Pt, H2ŇHCl, 0.1876 mŒHCl, 0.1876 m, CuClŇCu Pt, H2ŇHCl, 0.3253 mŒHCl, 0.3253 m, CuClŇCu
T [K, °C] U0 [V]
Ref.
0.2976 0.2884 0.2728 0.2595 0.2451 0.2246 0.2063 0.1658 0.3134 0.2840 0.2726 0.2577 0.2427 0.2194 0.1972 0.1654 0.1514 0.9016
33Har1 33Har1 33Har1 33Har1 33Har1 33Har1 33Har1 33Har1 33Van2 33Van2 33Van2 33Van2 33Van2 33Van2 33Van2 33Van2 33Van2 34Owe
0.8869
34Owe
0.8608
34Owe
0.8282
34Owe
0.8862
34Owe
0.8702
34Owe
0.8458
34Owe
0.8234
34Owe
20 °C 18 °C
0.234 0.2825 0.2429 0.2022 0.1756 1.360 1.608
24Sch2 18Noy 18Noy 18Noy 18Noy 24Sch3 04Ner
15 °C
1.734
04Ner
0.3472 0.2923 0.2520 0.1916 0.1580
18Noy 18Noy 18Noy 18Noy 18Noy
Landolt-Börnstein New Series IV/9A
2 Cell voltages Cell composition 2) Pt, H2ŇHBr, 0.1 m, CuBrŇCusat.Hg
Pt, H2ŇHI, 0.05104 m, CuIŇCusat.Hg
Pt, H2ŇBa(OH)2, 0.05058 m, BaCl2, 0.01067 m, AgClŇH2, Pt Pt, H2ŇBa(OH)2, 0.05043 m, BaCl2, 0.02027 m, AgClŇH2, Pt Pt, H2ŇBa(OH)2, 0.05092 m, BaCl2, 0.04988 m, AgClŇH2, Pt Pt, H2ŇBa(OH)2, 0.05088 m, BaCl2, 0.1028 m, AgClŇH2, Pt Pt, H2ŇBa(OH)2, 0.05073 m, BaCl2, 0.2053 m, AgClŇH2, Pt Pt, H2ŇBa(OH)2, 0.05020 m, BaCl2, 0.5120 m, AgClŇH2, Pt Pt, H2ŇBa(OH)2, 0.05081 m, BaCl2, 1.0079 m, AgClŇH2, Pt Pt, H2ŇBa(OH)2, 0.04920 m, BaCl2, 1.3171 m, AgClŇH2, Pt Pt, H2ŇB(OH)3, 209.277 mm, Na3BO3, 77.817 mm, NaCl, 65.73 mm, AgClŇAg Pt, H2ŇHCOOH, 6.54 mm, KHCOOH, 8.253 mm, KCl,7.056 mm, AgClŇAg Pt, H2ŇHCOOH, 11.76 mm, KHCOOH, 14.661 mm, KCl, 12.689 mm, AgClŇAg Pt, H2ŇHCOOH, 24.42 mm, KHCOOH, 30.444 mm, KCl, 26.349 mm, AgClŇAg Pt, H2ŇHCOOH, 35.75 mm, KHCOOH, 44.569 mm, KCl, 38.574 mm, AgClŇAg Pt, H2ŇHCOOH, 48.63 mm, KHCOOH, 60.627 mm, KCl, 52.471 mm, AgClŇAg Pt, H2ŇHCOOH, 98.76 mm, KHCOOH, 123.124 mm, KCl, 106.562 mm, AgClŇAg Pt, H2ŇCH3COOH, 6.313 mm, CH3COONa, 6.313 mm, NaCl, 6.313 m, AgClŇAg Pt, H2ŇCH3COOH, 12.87 mm, CH3COONa, 12.87 mm, NaCl, 12.87 m, AgClŇAg Pt, H2ŇCH3COOH, 21.02 mm, CH3COONa, 21.02 mm, NaCl, 21.02 m, AgClŇAg Pt, H2ŇCH3COOH, 47.97 mm, CH3COONa, 47.97 mm, NaCl, 47.97 m, AgClŇAg Pt, H2ŇCH3COOH, 76.13 mm, CH3COONa, 76.13 mm, NaCl, 76.13 m, AgClŇAg Pt, H2ŇCH3COOH, 100.3 mm, CH3COONa, 100.3 mm, NaCl, 100.3 m, AgClŇAg Pt, H2ŇCH3COOH, 4.779 mm, CH3COONa, 4.599 mm, NaCl, 4.896 m, AgClŇAg Pt, H2ŇCH3COOH, 12.035 mm, CH3COONa, 11.582 mm, NaCl, 12.426 m, AgClŇAg Pt, H2ŇCH3COOH, 21.006 mm, CH3COONa, 20.216 mm, NaCl, 21.516 m, AgClŇAg Pt, H2ŇCH3COOH, 49.22 mm, CH3COONa, 47.37 mm, NaCl, 50.42 m, AgClŇAg Landolt-Börnstein New Series IV/9A
73
T [K, °C] U0 [V] 20 °C 25 °C 30 °C 20 °C 25 °C 30 °C 35 °C
308.15 K 333.15 K 308.15 K 333.15 K 308.15 K 333.15 K 308.15 K 333.15 K 308.15 K 333.15 K 308.15 K 333.15 K
Ref.
0.1732 0.1726 0.1721 0.01407 0.01295 0.01210 0.01127 1.0883 1.0715 1.0483 1.0287 1.0090 0.9808 0.9554 0.9455 0.8009
34Ish1 34Ish1 34Ish1 34Ish1 34Ish1 34Ish1 34Ish1 32Har3 32Har3 32Har3 32Har3 32Har3 32Har3 32Har3 32Har3 34Owe
0.5784
34Har2
0.5629
34Har2
0.5439
34Har2
0.5343
34Har2
0.5265
34Har2
0.5088
34Har2
0.6414 0.6598 0.6227 0.6394 0.6097 0.6253 0.5878 0.6015 0.5755 0.5882 0.5684 0.5804 0.6396
33Har6 33Har6 33Har6 33Har6 33Har6 33Har6 33Har6 33Har6 33Har6 33Har6 33Har6 33Har6 32Har1
0.6158
32Har1
0.6015
32Har1
0.5798
32Har1
74
2 Cell voltages
Cell composition 2) Pt, H2ŇCH3COOH, 81.01 mm, CH3COONa, 77.96 mm, NaCl, 82.97 m, AgClŇAg Pt, H2ŇCH3COOH, 90.56 mm, CH3COONa, 87.16 mm, NaCl, 92.76 m, AgClŇAg Pt, H2ŇCH3COOH, 0.1003 m, NaCl, 0.05 m, AgClŇAg Pt, H2ŇCH3COOH, 0.1006 m, NaCl, 0.5 m, AgClŇAg Pt, H2ŇCH3COOH, 0.1050 m, NaCl, 1.0 m, AgClŇAg Pt, H2ŇCH3COOH, 0.1050 m, NaCl, 2.0 m, AgClŇAg Pt, H2ŇCH3COOH, 0.2018 m, NaCl, 0.1 m, AgClŇAg Pt, H2ŇCH3COOH, 0.2018 m, NaCl, 0.2 m, AgClŇAg Pt, H2ŇCH3COOH, 0.2018 m, NaCl, 0.5 m, AgClŇAg Pt, H2ŇCH3COOH, 0.2018 m, NaCl, 1.066 m, AgClŇAg Pt, H2ŇCH3COOH, 0.2018 m, NaCl, 2.0 m, AgClŇAg Pt, H2ŇCH3COOH, 0.2018 m, NaCl, 3.0 m, AgClŇAg Pt, H2ŇCH3COOH, 1.002 m, NaCl, 0.01997 m, AgClŇAg Pt, H2ŇCH3COOH, 1.002 m, NaCl, 0.049 m, AgClŇAg Pt, H2ŇCH3COOH, 1.002 m, NaCl, 0.1 m, AgClŇAg Pt, H2ŇCH3COOH, 1.002 m, NaCl, 0.2 m, AgClŇAg Pt, H2ŇCH3COOH, 1.002 m, NaCl, 0.5 m, AgClŇAg Pt, H2ŇCH3COOH, 1.002 m, NaCl, 1.0 m, AgClŇAg Pt, H2ŇCH3COOH, 1.002 m, NaCl, 2.43 m, AgClŇAg Pt, H2ŇCH3COOH, 0.2 m, NaCl, 0.05 m, AgClŇAg Pt, H2ŇCH3COOH, 0.2 m, NaCl, 0.1 m, AgClŇAg Pt, H2ŇCH3COOH, 0.2 m, NaCl, 0.2 m, AgClŇAg Pt, H2ŇCH3COOH, 0.2 m, NaCl, 0.5 m, AgClŇAg Pt, H2ŇCH3COOH, 0.2 m, NaCl, 1.0 m, AgClŇAg Pt, H2ŇCH3COOH, 0.2 m, NaCl, 3.0 m, AgClŇAg Pt, H2ŇCH3COOH, 0.2 m, KCl, 0.05 m, AgClŇAg Pt, H2ŇCH3COOH, 0.2 m, KCl, 0.1 m, AgClŇAg Pt, H2ŇCH3COOH, 0.2 m, KCl, 0.2 m, AgClŇAg Pt, H2ŇCH3COOH, 0.2 m, KCl, 0.5 m, AgClŇAg Pt, H2ŇCH3COOH, 0.2 m, KCl, 1.0 m, AgClŇAg Pt, H2ŇCH3COOH, 0.2 m, KCl, 3.0 m, AgClŇAg Pt, H2ŇC3H7COOH, 5.64 mm, C3H7COONa, 6.41 mm, NaCl, 6.06 mm, AgClŇAg Pt, H2ŇC3H7COOH, 7.17 mm, C3H7COONa, 6.87 mm, NaCl, 7.06 mm, AgClŇAg Pt,H2ŇC3H7COOH, 13.74 mm, C3H7COONa, 15.63 mm, NaCl, 14.77 mm, AgClŇAg Pt,H2ŇC3H7COOH, 15.15 mm, C3H7COONa, 14.53 mm, NaCl, 14.93 mm, AgClŇAg Pt, H2ŇC3H7COOH, 22.32 mm, C3H7COONa, 21.39 mm, NaCl, 21.98 mm, AgClŇAg Pt, H2ŇC3H7COOH, 23.81 mm, C3H7COONa, 27.07 mm, NaCl, 25.59 mm, AgClŇAg Pt, H2ŇC3H7COOH, 40.40 mm, C3H7COONa, 45.94 mm, NaCl, 43.43 mm, AgClŇAg
T [K, °C] U0 [V]
Ref.
0.5671
32Har1
0.5642
32Har1
273.15 K
0.4744 0.4184 0.3986 0.3773 0.4484 0.4317 0.4088 0.3877 0.3682 0.3519 0.4646 0.4429 0.4255 0.4085 0.3865 0.3672 0.3377 0.4648 0.4486 0.4319 0.4094 0.3902 0.3522 0.4654 0.4496 0.4329 0.4117 0.3941 0.3649 0.6202
28Har1 28Har1 28Har1 28Har1 28Har1 28Har1 28Har1 28Har1 28Har1 28Har1 28Har1 28Har1 28Har1 28Har1 28Har1 28Har1 28Har1 31Har1 31Har1 31Har1 31Har1 31Har1 31Har1 31Har1 31Har1 31Har1 31Har1 31Har1 31Har1 34Har3
298.15 K 313.15 K 273.15 K
0.6339 0.6465 0.5993
34Har3 34Har3 34Har3
298.15 K 313.15 K 298.15 K 313.15 K 273.15 K
0.6150 0.6265 0.6051 0.6161 0.5867
34Har3 34Har3 34Har3 34Har3 34Har3
273.15 K
0.5746
34Har3
Landolt-Börnstein New Series IV/9A
2 Cell voltages Cell composition 2)
75
T [K, °C] U0 [V]
Pt, H2ŇC3H7COOH, 51.06 mm, C3H7COONa, 48.95 mm, NaCl, 50.29 mm, 298.15 K AgClŇAg 313.15 K Pt, HŒquinone, hydroquinone, HCl, 0.01 m, AgClŇAg 273.33 K 283.15 K 288.15 K 293.15 K 298.15 K 303.15 K 308.15 K 313.15 K UT [V]=(0.2355–911.2·10–6(T–298.15 K)+2.939·10–7(T–298.15 K)), 273.15
Ref.
0.5840 0.5941 0.2599 0.2498 0.2449 0.2401 0.2355 0.2310 0.2267 0.22225
34Har3 34Har3 33Har2 33Har2 33Har2 33Har2 33Har2 33Har2 33Har2 33Har2 33Har2
0.884 0.908 0.959 0.920 0.985 0.7943
22Men 22Men 22Men 22Men 22Men 33Nim
0.7738
33Nim
0.7697
33Nim
0.7599
33Nim
0.7506
33Nim
0.7333
33Nim
0.7233
33Nim
0.69622 33Har3 0.66084 33Har3 0.61422 33Har3 0.57912 33Har3 0.54423 33Har3 0.49843 33Har3 0.46418 33Har3 0.43023 33Har3 0.38588 33Har3
76
2 Cell voltages
Cell composition 2) Pt, H2ŇHCl, 0.1 m, AgClŇAg (UT [V]=U0–0.18157·10–3(T–298 K) –2.90·10–6(T–298 K)2+1.79 10–9(T–298 K)3, 273
Pt, H2ŇHCl, AgClŇAg
Pt, H2ŇHCl, AgClŇAg
T [K, °C] U0 [V]
Ref.
0.35240 33Har3 0.31874 33Har3 0.27230 33Har3 0.23328 33Har3 0.20719 33Har3 0.18634 33Har3 0.15184 33Har3 0.12215 33Har3 0 °C 5 °C 10 °C 15 °C 18 °C 20 °C 25 °C 30 °C 35 °C 37 °C 40 °C 45 °C 50 °C 55 °C 60 °C 0 °C 5 °C 10 °C 15 °C 20 °C 25 °C 30 °C 35 °C 40 °C 45 °C 50 °C 55 °C 60 °C 0 °C 5 °C 10 °C 15 °C
0.23647 0.23406 0.23145 0.22865 0.22689 0.22568 0.22254 0.21924 0.21578 0.21432 0.21216 0.20841 0.20452 0.20050 0.19635 0.23642 0.23400 0.23134 0.22854 0.22558 0.22246 0.21919 0.21570 0.21207 0.20828 0.20444 0.20042 0.19627 0.23655 0.23413 0.23142 0.22857
52Swi 52Swi 52Swi 52Swi 52Swi 52Swi 52Swi 52Swi 52Swi 52Swi 52Swi 52Swi 52Swi 52Swi 52Swi 33Har3 33Har3 33Har3 33Har3 33Har3 33Har3 33Har3 33Har3 33Har3 33Har3 33Har3 33Har3 33Har3 54Bat2 54Bat2 54Bat2 54Bat2
Landolt-Börnstein New Series IV/9A
2 Cell voltages Cell composition 2)
Pt, H2ŇHCl, AgClŇAg
Pt, H2ŇHCl, AgClŇAg
Pt, H2ŇHCl, 0.05 m, AlCl3, 0.0 m, AgClŇAg Pt, H2ŇHCl, 0.05 m, AlCl3, 0.005 m, AgClŇAg Pt, H2ŇHCl, 0.05 m, AlCl3, 0.01 m, AgClŇAg Pt, H2ŇHCl, 0.05 m, AlCl3, 0.02 m, AgClŇAg Pt, H2ŇHCl, 0.05 m, AlCl3, 0.05 m, AgClŇAg Pt, H2ŇHCl, 0.05 m, AlCl3, 0.1 m, AgClŇAg Pt, H2ŇHCl, 0.05 m, AlCl3, 0.45 m, AgClŇAg Pt, H2ŇHCl, 0.1 m, AlCl3, 0.4 m, AgClŇAg Pt, H2ŇHCl, 0.2 m, AlCl3, 0.3 m, AgClŇAg Pt, H2ŇHCl, 0.3 m, AlCl3, 0.2 m, AgClŇAg Pt, H2ŇHCl, 0.45 m, AlCl3, 0.05 m, AgClŇAg Pt, H2ŇHCl, 0.5 m, AlCl3, 0.0 m, AgClŇAg Pt, H2ŇHCl, 0.01 m, CeCl3, 0.0 m, AgClŇAg Pt, H2ŇHCl, 0.01 m, CeCl3, 0.005 m, AgClŇAg
Landolt-Börnstein New Series IV/9A
77
T [K, °C] U0 [V] 20 °C 25 °C 30 °C 35 °C 40 °C 45 °C 50 °C 55 °C 60 °C 70 °C 80 °C 90 °C 95 °C 0 °C 5 °C 10 °C 15 °C 20 °C 25 °C 30 °C 35 °C 40 °C 45 °C 50 °C 60 °C 90 °C 125 °C 150 °C 175 °C 200 °C 225 °C 250 °C 275 °C
0.22557 0.22234 0.21904 0.21565 0.21208 0.20835 0.20449 0.20056 0.19649 0.18782 0.1787 0.1695 0.1651 0.23652 0.23405 0.23137 0.22849 0.22549 0.22239 0.21908 0.21570 0.21207 0.20833 0.20449 0.19676 0.1696 0.1330 0.1032 0.0708 0.0348 –0.0051 –0.054 –0.090 0.3863 0.3809 0.3769 0.3704 0.3574 0.3445 0.3010 0.2859 0.2742 0.2708 0.2712 0.3024 0.4647 0.4451
Ref. 54Bat2 54Bat2 54Bat2 54Bat2 54Bat2 54Bat2 54Bat2 54Bat2 54Bat2 54Bat2 54Bat2 54Bat2 54Bat2 53Har 53Har 53Har 53Har 53Har 53Har 53Har 53Har 53Har 53Har 53Har 60Gre 60Gre 60Gre 60Gre 60Gre 60Gre 60Gre 60Gre 60Gre 31Har2 31Har2 31Har2 31Har2 31Har2 31Har2 31Har2 31Har2 31Har2 31Har2 31Har2 31Har2 34Mas 34Mas
78
2 Cell voltages
Cell composition 2) Pt, H2ŇHCl, 0.01 m, CeCl3, 0.01 m, AgClŇAg Pt, H2ŇHCl, 0.01 m, CeCl3, 0.05 m, AgClŇAg Pt, H2ŇHCl, 0.01 m, CeCl3, 0.10 m, AgClŇAg Pt, H2ŇHCl, 0.01 m, CeCl3, 0.25 m, AgClŇAg Pt, H2ŇHCl, 0.01 m, CeCl3, 0.5 m, AgClŇAg Pt, H2ŇHCl, 0.01 m, CeCl3, 1.0 m, AgClŇAg Pt, H2ŇHCl, 0.1 m, CeCl3, 0.150 m, AgClŇAg Pt, H2ŇHCl, 0.3 m, CeCl3, 0.1167 m, AgClŇAg Pt, H2ŇHCl, 0.5 m, CeCl3, 0.0833 m, AgClŇAg Pt, H2ŇHCl, 0.7 m, CeCl3, 0.050 m, AgClŇAg Pt, H2ŇHCl, 1.0 m, CeCl3, 0.0 m, AgClŇAg Pt, H2ŇHCl, 0.02498 m, HClO4, 0.02498 m, AgClŇAg Pt, H2ŇHCl, 0.0421 m, HClO4, 0.04821 m, AgClŇAg Pt, H2ŇHCl, 0.1493 m, HClO4, 0.1493 m, AgClŇAg Pt, H2ŇHCl, 0.2570 m, HClO4, 0.2570 m, AgClŇAg Pt, H2ŇHCl, 0.4961 m, HClO4, 0.4961 m, AgClŇAg Pt, H2ŇHCl, 0.00988 m, HClO4, 0.08985 m, AgClŇAg Pt, H2ŇHCl, 0.04005 m, HClO4, 0.3604 m, AgClŇAg Pt, H2ŇHCl, 0.07087 m, HClO4, 0.6378 m, AgClŇAg Pt, H2ŇHCl, 0.09994 m, HClO4, 0.8995 m, AgClŇAg Pt, H2ŇHCl, 0.02498 m, HClO4, 0.02498 m, AgClŇAg Pt, H2ŇHCl, 3.842 mm, H2SO4, 4.143 mm, AgClŇAg
Pt, H2ŇHCl, 5.736 mm, H2SO4, 7.784 mm, AgClŇAg
Pt, H2ŇHCl, 7.085 mm, H2SO4, 7.641 mm, AgClŇAg
Pt, H2ŇHCl, 13.982 mm, H2SO4, 13.254 mm, AgClŇAg
Pt, H2ŇHCl, 2.831 mm, H2SO4, 3.34 mm, AgClŇAg
Pt, H2ŇHCl, 2.913 mm, H2SO4, 3.403 mm, AgClŇAg
Pt, H2ŇHCl, 3.575 mm, H2SO4, 4.209 mm, AgClŇAg
Pt, H2ŇHCl, 9.872 mm, H2SO4, 9.487 mm, AgClŇAg
T [K, °C] U0 [V]
278 K 283 K 288 K 278 K 283 K 288 K 278 K 283 K 288 K 278 K 283 K 288 K 293 K 298 K 303 K 308 K 293 K 298 K 303 K 308 K 293 K 298 K 303 K 308 K 293 K 298 K 303 K
0.4350 0.4054 0.3904 0.3700 0.3491 0.3210 0.3157 0.2811 0.2625 0.2490 0.2334 0.4030 0.3714 0.3163 0.2884 0.2506 0.4107 0.3416 0.3112 0.2906 0.4030 0.4810 0.4829 0.4847 0.4600 0.4618 0.4633 0.4540 0.4555 0.4569 0.4259 0.4268 0.4278 0.4996 0.5015 0.5031 0.5047 0.4984 0.5003 0.5020 0.5035 0.4887 0.4904 0.4920 0.4934 0.4865 0.4882 0.4897
Ref. 34Mas 34Mas 34Mas 34Mas 34Mas 34Mas 34Mas 34Mas 34Mas 34Mas 34Mas 33Mur 33Mur 33Mur 33Mur 33Mur 33Mur 33Mur 33Mur 33Mur 33Mur 52Dav 52Dav 52Dav 52Dav 52Dav 52Dav 52Dav 52Dav 52Dav 52Dav 52Dav 52Dav 52Dav 52Dav 52Dav 52Dav 52Dav 52Dav 52Dav 52Dav 52Dav 52Dav 52Dav 52Dav 52Dav 52Dav 52Dav
Landolt-Börnstein New Series IV/9A
2 Cell voltages Cell composition 2) Pt, H2ŇHCl, 0.01 m, HgClŇAg
Pt, H2ŇHCl, 0.1 m, HgClŇAg
Pt, H2ŇHCl, 0.01 m, KCl, 0.0 m, AgClŇAg
Pt, H2ŇHCl, 0.01 m, KCl, 0.01 m, AgClŇAg
Pt, H2ŇHCl, 0.01 m, KCl, 0.05 m, AgClŇAg
Pt, H2ŇHCl, 0.01 m, KCl, 0.1 m, AgClŇAg
Pt, H2ŇHCl, 0.01 m, KCl, 0.5 m, AgClŇAg
Pt, H2ŇHCl, 0.01 m, KCl, 1.0 m, AgClŇAg
Pt, H2ŇHCl, 0.01 m, KCl, 2.0 m, AgClŇAg
Pt, H2ŇHCl, 0.01 m, KCl, 3.5 m, AgClŇAg
Pt, H2ŇHCl, 0.1 m, KCl, 3.9 m, AgClŇAg Pt, H2ŇHCl, 0.5 m, KCl, 3.5 m, AgClŇAg Pt, H2ŇHCl, 1.0 m, KCl, 3.0 m, AgClŇAg Pt, H2ŇHCl, 2.0 m, KCl, 2.0 m, AgClŇAg Pt, H2ŇHCl, 4.0 m, KCl, 0.0 m, AgClŇAg Pt, H2ŇHCl, 5.0 m, KCl, 0.0 m, AgClŇAg Pt, H2ŇHCl, 6.037 mm, La2(SO4)3, 0.5865 mm, AgClŇAg
Pt, H2ŇHCl, 5.961 mm, La2(SO4)3, 0.7618 mm, AgClŇAg
Pt, H2ŇHCl, 6.036 mm, La2(SO4)3, 0.9803 mm, AgClŇAg
Landolt-Börnstein New Series IV/9A
79
T [K, °C] U0 [V] 291 K 298 K 303 K 291 K 298 K 303 K 273 K 298 K 333 K 273 K 298 K 333 K 273 K 298 K 333 K 273 K 298 K 333 K 273 K 298 K 333 K 273 K 298 K 333 K 273 K 298 K 333 K 273 K 298 K 333 K
293 K 298 K 303 K 308 K 293 K 298 K 303 K 308 K 293 K 298 K 303 K 308 K
0.4631 0.4643 0.4651 0.5478 0.5788 0.5814 0.4579 0.4642 0.4667 0.4432 0.4482 0.4491 0.4204 0.4235 0.4218 0.4081 0.4101 0.4072 0.3766 0.3760 0.3697 0.3594 0.3574 0.3497 0.3389 0.3356 0.3267 0.3183 0.3140 0.3042 0.2474 0.2043 0.1816 0.1566 0.1222 0.0955 0.4899 0.4915 0.4929 0.4941 0.4915 0.4931 0.4945 0.4959 0.4910 0.4926 0.4940 0.4953
Ref. 22Har 22Har 22Har 22Har 22Har 22Har 33Har5 33Har5 33Har5 33Har5 33Har5 33Har5 33Har5 33Har5 33Har5 33Har5 33Har5 33Har5 33Har5 33Har5 33Har5 33Har5 33Har5 33Har5 33Har5 33Har5 33Har5 33Har5 33Har5 33Har5 32Haw 32Haw 32Haw 32Haw 32Haw 32Haw 52Jon 52Jon 52Jon 52Jon 52Jon 52Jon 52Jon 52Jon 52Jon 52Jon 52Jon 52Jon
80
2 Cell voltages
Cell composition 2) Pt, H2ŇHCl, 6.030 mm, La2(SO4)3, 2.990 mm, AgClŇAg
Pt, H2ŇHCl, 0.01 m, LiCl, 0.01 m, AgClŇAg
Pt, H2ŇHCl, 0.01 m, LiCl, 0.05 m, AgClŇAg
Pt, H2ŇHCl, 0.01 m, LiCl, 0.1 m, AgClŇAg
Pt, H2ŇHCl, 0.01 m, LiCl, 0.5 m, AgClŇAg
Pt, H2ŇHCl, 0.01 m, LiCl, 1.0 m, AgClŇAg
Pt, H2ŇHCl, 0.01 m, LiCl, 1.5 m, AgClŇAg
Pt, H2ŇHCl, 0.01 m, LiCl, 2.0 m, AgClŇAg
Pt, H2ŇHCl, 0.01 m, LiCl, 2.5 m, AgClŇAg
Pt, H2ŇHCl, 0.01 m, LiCl, 3.0 m, AgClŇAg
T [K, °C] U0 [V] 293 K 298 K 303 K 308 K 288 K 293 K 298 K 303 K 308 K 288 K 293 K 298 K 303 K 308 K 288 K 293 K 298 K 303 K 308 K 288 K 293 K 298 K 303 K 308 K 288 K 293 K 298 K 303 K 308 K 288 K 293 K 298 K 303 K 308 K 288 K 293 K 298 K 303 K 308 K 288 K 293 K 298 K 303 K 308 K 288 K 293 K 298 K 303 K 308 K
0.4945 0.4964 0.4981 0.4997 0.4464 0.4472 0.4478 0.4484 0.4488 0.4222 0.4226 0.4228 0.4230 0.4231 0.4088 0.4091 0.4092 0.4092 0.4092 0.3730 0.3727 0.3724 0.3719 0.3712 0.3529 0.3525 0.3519 0.3513 0.3505 0.3380 0.3375 0.3368 0.3360 0.3351 0.3249 0.3243 0.3235 0.3227 0.3217 0.3125 0.3119 0.3111 0.3102 0.3092 0.3011 0.3004 0.2996 0.2987 0.2976
Ref. 52Jon 52Jon 52Jon 52Jon 33Har4 33Har4 33Har4 33Har4 33Har4 33Har4 33Har4 33Har4 33Har4 33Har4 33Har4 33Har4 33Har4 33Har4 33Har4 33Har4 33Har4 33Har4 33Har4 33Har4 33Har4 33Har4 33Har4 33Har4 33Har4 33Har4 33Har4 33Har4 33Har4 33Har4 33Har4 33Har4 33Har4 33Har4 33Har4 33Har4 33Har4 33Har4 33Har4 33Har4 33Har4 33Har4 33Har4 33Har4 33Har4 Landolt-Börnstein New Series IV/9A
2 Cell voltages Cell composition 2) Pt, H2ŇHCl, 0.01 m, LiCl, 3.5 m, AgClŇAg
Pt, H2ŇHCl, 0.01 m, LiCl, 4.0 m, AgClŇAg
Pt, H2ŇHCl, 0.01 m, LiCl, 4.5 m, AgClŇAg
Pt, H2ŇHCl, 0.01 m, LiCl, 5.0 m, AgClŇAg
Pt, H2ŇHCl, 0.1 m, LiCl, 3.9 m, AgClŇAg Pt, H2ŇHCl, 0.55 m, LiCl, 3.5 m, AgClŇAg Pt, H2ŇHCl, 1.0 m, LiCl, 3.0 m, AgClŇAg Pt, H2ŇHCl, 2.0 m, LiCl, 2.0 m, AgClŇAg Pt, H2ŇHCl, 3.0 m, LiCl, 1.0 m, AgClŇAg Pt, H2ŇHCl, 7.762 mm, MgSO4, 3.795 mm, AgClŇAg
Pt, H2ŇHCl, 5.893 mm, MgSO4, 4.596 mm, AgClŇAg
Pt, H2ŇHCl, 5.294 mm, MgSO4, 5.762 mm, AgClŇAg
Pt, H2ŇHCl, 7.66 mm, MgSO4, 6.933 mm, AgClŇAg
Pt, H2ŇHCl, 0.1 m, NaCl, 3.9 m, AgClŇAg Pt, H2ŇHCl, 0.5 m, NaCl, 3.5 m, AgClŇAg Pt, H2ŇHCl, 1.0 m, NaCl, 3.0 m, AgClŇAg Pt, H2ŇHCl, 2.0 m, NaCl, 2.0 m, AgClŇAg Pt, H2ŇHCl, 3.0 m, NaCl, 1.0 m, AgClŇAg Pt, H2ŇHCl, 0.01 m, NaCl, 0.05 m, AgClŇAg
Landolt-Börnstein New Series IV/9A
81
T [K, °C] U0 [V] 288 K 293 K 298 K 303 K 308 K 288 K 293 K 298 K 303 K 308 K 288 K 293 K 298 K 303 K 308 K 288 K 293 K 298 K 303 K 308 K
293 K 298 K 303 K 308 K 293 K 298 K 303 K 308 K 293 K 298 K 303 K 308 K 293 K 298 K 303 K 308 K
0.2902 0.2894 0.2885 0.2875 0.2864 0.2794 0.2785 0.2775 0.2765 0.2753 0.2681 0.2671 0.2660 0.2647 0.2634 0.2567 0.2555 0.2543 0.2530 0.2526 0.2147 0.1735 0.1578 0.1390 0.1289 0.4806 0.4821 0.4835 0.4837 0.4953 0.4971 0.4988 0.5004 0.5017 0.5037 0.5057 0.5073 0.4840 0.4857 0.4872 0.4886 0.2311 0.1884 0.1686 0.1472 0.1337 0.4236
Ref. 33Har4 33Har4 33Har4 33Har4 33Har4 33Har4 33Har4 33Har4 33Har4 33Har4 33Har4 33Har4 33Har4 33Har4 33Har4 33Har4 33Har4 33Har4 33Har4 33Har4 32Haw 32Haw 32Haw 32Haw 32Haw 52Jon 52Jon 52Jon 52Jon 52Jon 52Jon 52Jon 52Jon 52Jon 52Jon 52Jon 52Jon 52Jon 52Jon 52Jon 52Jon 32Haw 32Haw 32Haw 32Haw 32Haw 31Har1
82
2 Cell voltages
Cell composition 2) Pt, H2ŇHCl, 0.01 m, NaCl, 0.1 m, AgClŇAg Pt, H2ŇHCl, 0.01 m, NaCl, 0.2m, AgClŇAg Pt, H2ŇHCl, 0.01 m, NaCl,0.5 m, AgClŇAg Pt, H2ŇHCl, 0.01 m, NaCl,1.0 m, AgClŇAg Pt, H2ŇHCl, 0.01 m, NaCl,3.0 m, AgClŇAg Pt, H2ŇHCl, 0.2480 m, NaClO4, 0.0 m, AgClŇAg Pt, H2ŇHCl, 0.2480 m, NaClO4, 0.1450 m, AgClŇAg Pt, H2ŇHCl, 0.2480 m, NaClO4, 0.2459 m, AgClŇAg Pt, H2ŇHCl, 0.2480 m, NaClO4, 0.7208 m, AgClŇAg Pt, H2ŇHCl, 0.1015 m, NaClO4, 0.0 m, AgClŇAg Pt, H2ŇHCl, 0.1015 m, NaClO4, 0.1684 m, AgClŇAg Pt, H2ŇHCl, 0.1015 m, NaClO4, 0.5409 m, AgClŇAg Pt, H2ŇHCl, 0.1015 m, NaClO4, 0.8902 m, AgClŇAg Pt, H2ŇHCl, 0.04639 m, NaClO4, 0.0 m, AgClŇAg Pt, H2ŇHCl, 0.04639 m, NaClO4, 0.1241 m, AgClŇAg Pt, H2ŇHCl, 0.04639 m, NaClO4, 0.2633 m, AgClŇAg Pt, H2ŇHCl, 0.04639 m, NaClO4, 0.4446 m, AgClŇAg Pt, H2ŇHCl, 0.04639 m, NaClO4, 0.6230 m, AgClŇAg Pt, H2ŇHCl, 0.04639 m, NaClO4, 0.8460 m, AgClŇAg Pt, H2ŇHCl, 0.1036 m, Na2S2O6, 0.0 m, AgClŇAg Pt, H2ŇHCl, 0.1036 m, Na2S2O6, 0.05 m, AgClŇAg Pt, H2ŇHCl, 0.1035 m, Na2S2O6, 0.1 m, AgClŇAg Pt, H2ŇHCl, 0.1034 m, Na2S2O6, 0.2 m, AgClŇAg Pt, H2ŇHCl, 0.1029 m, Na2S2O6, 0.6 m, AgClŇAg Pt, H2ŇHCl, 0.1023 m, Na2S2O6, 1.10 m, AgClŇAg Pt, H2ŇHCl, 0.05 m, Na2S2O6, 0.0 m, AgClŇAg Pt, H2ŇHCl, 0.04985 m, Na2S2O6, 0.25 m, AgClŇAg Pt, H2ŇHCl, 0.04963 m, Na2S2O6, 0.65 m, AgClŇAg Pt, H2ŇHCl, 0.04919 m, Na2S2O6, 1.4291 m, AgClŇAg Pt, H2ŇHCl, 0.01 m, SrCl2, 0.0 m, AgClŇAg Pt, H2ŇHCl, 0.01 m, SrCl2, 0.025 m, AgClŇAg Pt, H2ŇHCl, 0.01 m, SrCl2, 0.05 m, AgClŇAg Pt, H2ŇHCl, 0.01 m, SrCl2, 0.1 m, AgClŇAg Pt, H2ŇHCl, 0.01 m, SrCl2, 0.2 m, AgClŇAg Pt, H2ŇHCl, 0.01 m, SrCl2, 0.5 m, AgClŇAg Pt, H2ŇHCl, 0.01 m, SrCl2, 1.0 m, AgClŇAg Pt, H2ŇHCl, 0.01 m, SrCl2, 2.0 m, AgClŇAg Pt, H2ŇHCl, 0.01 m, SrCl2, 2.75 m, AgClŇAg Pt, H2ŇHCl, 0.533 m, cane sugar, 0.0 m, AgClŇAg Pt, H2ŇHCl, 1.068 m, cane sugar, 0.0 m, AgClŇAg Pt, H2ŇHCl, 2.188 m, cane sugar, 0.0 m, AgClŇAg Pt, H2ŇHCl, 4.110 m, cane sugar, 0.0 m, AgClŇAg Pt, H2ŇHCl, 0.533 m, cane sugar, 0.292 m, AgClŇAg Pt, H2ŇHCl, 1.068 m, cane sugar, 0.292 m, AgClŇAg Pt, H2ŇHCl, 2.188 m, cane sugar, 0.292 m, AgClŇAg Pt, H2ŇHCl, 4.110 m, cane sugar, 0.292 m, AgClŇAg Pt, H2ŇHCl, AgCl, D-glucose, 5wt%ŇAg (molar standard potential)
T [K, °C] U0 [V] 0.4103 0.3955 0.3746 0.3547 0.3087 0.3078 0.3085 0.3088 0.3070 0.3513 0.3543 0.3548 0.3532 0.3899 0.3944 0.3956 0.3961 0.3955 0.3946 0.3505 0.3521 0.3531 0.3544 0.3564 0.3559 0.3861 0.3923 0.3944 0.3934 0.4645 0.4248 0.4116 0.3970 0.3816 0.3563 0.3290 0.2857 0.2551 0.3158 0.2759 0.2258 0.1640 0.3136 0.2719 0.2217 0.1601 0.2186
Ref. 31Har1 31Har1 31Har1 31Har1 31Har1 33Bat 33Bat 33Bat 33Bat 33Bat 33Bat 33Bat 33Bat 33Bat 33Bat 33Bat 33Bat 33Bat 33Bat 33Mur 33Mur 33Mur 33Mur 33Mur 33Mur 33Mur 33Mur 33Mur 33Mur 33Van1 33Van1 33Van1 33Van1 33Van1 33Van1 33Van1 33Van1 33Van1 35Kri 35Kri 35Kri 35Kri 35Kri 35Kri 35Kri 35Kri 50Wil
Landolt-Börnstein New Series IV/9A
2 Cell voltages Cell composition 2) Pt, H2ŇHCl, AgCl, D-glucose, 5wt%ŇAg (molal standard potential) Pt, H2ŇHCl, AgCl, D-glucose, 10wt%ŇAg (molar standard potential) Pt, H2ŇHCl, AgCl, D-glucose, 10wt%ŇAg (molal standard potential) Pt, H2ŇHCl, AgCl, D-glucose, 20wt%ŇAg (molar standard potential) Pt, H2ŇHCl, AgCl, D-glucose, 20wt%ŇAg (molal standard potential) Pt, H2ŇHCl, AgCl, D-glucose, 30wt%ŇAg (molar standard potential) Pt, H2ŇHCl, AgCl, D-glucose, 30wt%ŇAg (molal standard potential) Pt, H2ŇKOH, 0.01 m, KBr, 0.01 m, AgBrClŇAg Pt, H2ŇKOH, 0.01 m, KBr, 0.02 m, AgBrClŇAg Pt, H2ŇKOH, 0.01 m, KBr, 0.05 m, AgBrClŇAg Pt, H2ŇKOH, 0.01 m, KBr, 0.1 m, AgBrClŇAg Pt, H2ŇKOH, 0.01 m, KBr, 0.2 m, AgBrClŇAg Pt, H2ŇKOH, 0.01 m, KBr, 0.5 m, AgBrClŇAg Pt, H2ŇKOH, 0.01 m, KBr, 1.0 m, AgBrClŇAg Pt, H2ŇKOH, 0.01 m, KBr, 3.0 m, AgBrClŇAg Pt, H2ŇKOH, 0.01 m, KCl, 0.01 m, AgClŇAg
Pt, H2ŇKOH, 0.02 m, KCl, 0.01 m, AgClŇAg
Pt, H2ŇKOH, 0.05 m, KCl, 0.01 m, AgClŇAg
Pt, H2ŇKOH, 0.1 m, KCl, 0.01 m, AgClŇAg
Pt, H2ŇKOH, 0.2 m, KCl, 0.01 m, AgClŇAg
Pt, H2ŇKOH, 0.5 m, KCl, 0.01 m, AgClŇAg
Pt, H2ŇKOH, 1.0 m, KCl, 0.01 m, AgClŇAg
Pt, H2ŇKOH, 2.0 m, KCl, 0.01 m, AgClŇAg
Pt, H2ŇKOH, 3.5 m, KCl, 0.01 m, AgClŇAg
Pt, H2ŇLiOH, 0.01 m, LiCl, 0.01 m, AgClŇAg
Landolt-Börnstein New Series IV/9A
83
T [K, °C] U0 [V]
273 K 298 K 333 K 273 K 298 K 333 K 273 K 298 K 333 K 273 K 298 K 333 K 273 K 298 K 333 K 273 K 298 K 333 K 273 K 298 K 333 K 273 K 298 K 333 K 273 K 298 K 333 K 288 K 293 K 298 K 303 K 308 K
0.2195 0.2141 0.2160 0.2045 0.2083 0.1935 0.1995 0.8997 0.8919 0.8585 0.8410 0.8234 0.8002 0.7841 0.7569 1.0462 1.0503 1.0567 1.0299 1.0326 1.0370 1.0084 1.00092 1.0107 0.9922 0.9916 0.9914 0.9761 0.9742 0.9717 0.9554 0.9517 0.9465 0.9407 0.9356 0.9284 0.9270 0.9207 0.9114 0.9175 0.9101 0.8992 1.0481 1.0490 1.0498 1.0506 1.0515
Ref. 50Wil 50Wil 50Wil 50Wil 50Wil 50Wil 50Wil 33Har1 33Har1 33Har1 33Har1 33Har1 33Har1 33Har1 33Har1 33Har5 33Har5 33Har5 33Har5 33Har5 33Har5 33Har5 33Har5 33Har5 33Har5 33Har5 33Har5 33Har5 33Har5 33Har5 33Har5 33Har5 33Har5 33Har5 33Har5 33Har5 33Har5 33Har5 33Har5 33Har5 33Har5 33Har5 33Har4 33Har4 33Har4 33Har4 33Har4
84
2 Cell voltages
Cell composition 2) Pt, H2ŇLiOH, 0.01 m, LiCl, 0.02 m, AgClŇAg
Pt, H2ŇLiOH, 0.01 m, LiCl, 0.1 m, AgClŇAg
Pt, H2ŇLiOH, 0.01 m, LiCl ,0.5 m, AgClŇAg
Pt, H2ŇLiOH, 0.01 m, LiCl, 1.0 m, AgClŇAg
Pt, H2ŇLiOH, 0.01 m, LiCl, 1.5 m, AgClŇAg
Pt, H2ŇLiOH, 0.01 m, LiCl, 2.0 m, AgClŇAg
Pt, H2ŇLiOH, 0.01 m, LiCl, 2.5 m, AgClŇAg
Pt, H2ŇLiOH, 0.01 m, LiCl, 3.0 m, AgClŇAg
Pt, H2ŇLiOH, 0.01 m, LiCl, 3.5 m, AgClŇAg
T [K, °C] U0 [V] 288 K 293 K 298 K 303 K 308 K 288 K 293 K 298 K 303 K 308 K 288 K 293 K 298 K 303 K 308 K 288 K 293 K 298 K 303 K 308 K 288 K 293 K 298 K 303 K 308 K 288 K 293 K 298 K 303 K 308 K 288 K 293 K 298 K 303 K 308 K 288 K 293 K 298 K 303 K 308 K 288 K 293 K 298 K 303 K 308 K
1.0073 1.0074 1.0076 1.0076 1.0077 0.9891 0.9890 0.9888 0.9886 0.9884 0.9443 0.9437 0.9428 0.9418 0.9409 0.9224 0.9212 0.9199 0.9186 0.9173 0.9074 0.9060 0.9045 0.9029 0.9014 0.8953 0.8937 0.8920 0.8903 0.8886 0.8847 0.8831 0.8813 0.8794 0.8776 0.8752 0.8734 0.8715 0.8696 0.8676 0.8665 0.8646 0.8625 0.8604 0.8583
Ref. 33Har4 33Har4 33Har4 33Har4 33Har4 33Har4 33Har4 33Har4 33Har4 33Har4 33Har4 33Har4 33Har4 33Har4 33Har4 33Har4 33Har4 33Har4 33Har4 33Har4 33Har4 33Har4 33Har4 33Har4 33Har4 33Har4 33Har4 33Har4 33Har4 33Har4 33Har4 33Har4 33Har4 33Har4 33Har4 33Har4 33Har4 33Har4 33Har4 33Har4 33Har4 33Har4 33Har4 33Har4 33Har4
Landolt-Börnstein New Series IV/9A
2 Cell voltages Cell composition 2) Pt, H2ŇLiOH, 0.01 m, LiCl, 4.0 m, AgClŇAg
Pt, H2ŇLiOH, 0.01 m, LiCl, 4.5 m, AgClŇAg
Pt, H2ŇLiOH, 0.01 m, LiCl, 5.0 m, AgClŇAg
Pt, H2ŇLiOH, 9.913 mm, LiBr, 20.02 mm, AgClŇAg Pt, H2ŇLiOH, 9.963 mm, LiBr, 49.99 mm, AgClŇAg Pt, H2ŇLiOH, 9.995 mm, LiBr, 99.95 mm, AgClŇAg Pt, H2ŇLiOH, 9.969 mm, LiBr, 197.6 mm, AgClŇAg Pt, H2ŇLiOH, 9.985 mm, LiBr, 499.4 mm, AgClŇAg Pt, H2ŇLiOH, 10.0 mm, LiBr, 1.0007 m, AgClŇAg Pt, H2ŇLiOH, 10.0 mm, LiBr, 1.4993 m, AgClŇAg H2ŇHI, 1 mŇAgIŇAg
Pt, H2ŇHI, 0.030 mŇAgIŇAg Pt, H2ŇHI, 0.0980 mŇAgIŇAg Pt, H2ŇH2C2O4, Ag2C2O4,sat.ŇAg
85
T [K, °C] U0 [V] 288 K 293 K 298 K 303 K 308 K 288 K 293 K 298 K 303 K 308 K 288 K 293 K 298 K 303 K 308 K
278 K 283 K 288 K 293 K 298 K 303 K 308 K 313 K
25 °C 30 °C 35 °C Pt, H2ŇNa2CO3, 0.005821 m, NaHCO3, 0.005843 m, NaCl, 0.005821 m, 273 K AgClŇAg 288 K 298 K 308 K 323 K Pt, H2ŇNa2CO3, 0.011556 m, NaHCO3, 0.011602 m, NaCl, 0.011556 m, 273 K AgClŇAg 288 K 298 K 308 K 323 K
Landolt-Börnstein New Series IV/9A
0.8582 0.8562 0.8541 0.8519 0.8496 0.8503 0.8482 0.8460 0.8437 0.8414 0.8406 0.8383 0.8359 0.8334 0.8327 0.8801 0.8563 0.8372 0.8182 0.7900 0.7651 0.7486 –0.14717 –0.14810 –0.14925 –0.15067 –0.15230 –0.15401 –0.15591 –0.15792 0.0368 –0.0228 0.4723 0.4679 0.4624 0.9259 0.9443 0.9565 0.9685 0.9860 0.9076 0.9251 0.9370 0.9488 0.9665
Ref. 33Har4 33Har4 33Har4 33Har4 33Har4 33Har4 33Har4 33Har4 33Har4 33Har4 33Har4 33Har4 33Har4 33Har4 33Har4 33Van2 33Van2 33Van2 33Van2 33Van2 33Van2 33Van2 35Owe 35Owe 35Owe 35Owe 35Owe 35Owe 35Owe 35Owe 20Noy 20Noy 48Fer 48Fer 48Fer 41Har 41Har 41Har 41Har 41Har 41Har 41Har 41Har 41Har 41Har
86
2 Cell voltages
Cell composition 2) Pt, H2ŇNa2CO3, 0.02230 m, NaHCO3, 0.02239 m, NaCl, 0.02230 m, AgClŇAg
T [K, °C] U0 [V]
273 K 288 K 298 K 308 K 323 K Pt, H2ŇNaHC2O4, 0.8589 m, Na2C2O4, 0.045 m, NaCl, 0.000657 m, 273 K AgClŇAg 298 K 323 K Pt, H2ŇNaHC2O4, 0.001857 m, Na2C2O4, 0.008346 m, NaCl, 0.01214 m, 273 K AgClŇAg 298 K 323 K Pt, H2ŇNaHC2O4, 0.02003m, Na2C2O4, 0.01053 m, NaCl, 0.001532 m, 273 K AgClŇAg 298 K 323 K Pt, H2ŇNaHC2O4, 0.0231143 m, Na2C2O4, 0.01217 m, NaCl, 0.00177 m, 273 K AgClŇAg 298 K 323 K Pt, H2ŇNaHC2O4, 0.027776 m, Na2C2O4, 0.01460 m, NaCl, 0.0212434 m, 273 K AgClŇAg 298 K 323 K Pt, H2ŇNaHC2O4, 0.03591 m, Na2C2O4, 0.01889 m, NaCl, 0.002747 m, 273 K AgClŇAg 298 K 323 K Pt, H2ŇNaHC2O4, 0.04226 m, Na2C2O4, 0.02222 m, NaCl, 0.003232 m, 273 K AgClŇAg 298 K 323 K Pt, H2ŇNaHC2O4, 0.04945 m, Na2C2O4, 0.02600 m, NaCl, 0.003782 m, 273 K AgClŇAg 298 K 323 K Pt, H2ŇNaHSO4, 0.9173 mm, Na2SO4, 0.9780 mm, NaCl, 0.9173 mm, AgClŇAg Pt, H2ŇNaHSO4, 1.947 mm, Na2SO4, 1.957 mm, NaCl, 1.947 mm, AgClŇAg Pt, H2ŇNaHSO4, 9.724 mm, Na2SO4, 9.776 mm, NaCl, 9.724 mm, AgClŇAg Pt, H2ŇNaHSO4, 19.57 mm, Na2SO4, 19.68 mm, NaCl, 19.57 mm, AgClŇAg Pt, H2ŇNaHSO4, 50.10 mm, Na2SO4, 50.54 mm, NaCl, 5.10 mm, AgClŇAg Pt, H2ŇNaHSO4, 69.19 mm, Na2SO4, 69.56 mm, NaCl, 69.19 mm, AgClŇAg Pt, H2ŇSr(OH)2, 0.01369 m, SrCl2, 0.02009 m, AgClŇAg Pt, H2ŇSr(OH)2, 0.01369 m, SrCl2, 0.05010 m, AgClŇAg Pt, H2ŇSr(OH)2, 0.01329 m, SrCl2, 0.09993 m, AgClŇAg Pt, H2ŇSr(OH)2, 0.01312 m, SrCl2, 0.2013 m, AgClŇAg Pt, H2ŇSr(OH)2, 0.01338 m, SrCl2, 0.5003 m, AgClŇAg Pt, H2ŇSr(OH)2, 0.01323 m, SrCl2, 0.9988 m, AgClŇAg Pt, H2ŇSr(OH)2, 0.01371 m, SrCl2, 1.9810 m, AgClŇAg Pt, H2ŇSr(OH)2, 0.01344 m, SrCl2, 2.4855 m, AgClŇAg
Ref.
0.8853 0.9019 0.9130 0.9254 0.9419 0.5618 0.5807 0.6005 0.5447 0.5621 0.5802 0.5385 0.5551 0.5728 0.5346 0.5507 0.5643 0.5294 0.5451 0.5616 0.5222 0.5372 0.5533 0.5174 0.5321 0.5475 0.5132 0.5321 0.5420 0.58622
41Har 41Har 41Har 41Har 41Har 39Har2 39Har2 39Har2 39Har2 39Har2 39Har2 39Har2 39Har2 39Har2 39Har2 39Har2 39Har2 39Har2 39Har2 39Har2 39Har2 39Har2 39Har2 39Har2 39Har2 39Har2 39Har2 39Har2 39Har2 34Ham
0.55388 34Ham 0.51260 34Ham 0.48356 34Ham 0.45420 34Ham 0.40388 34Ham 1.0390 1.0131 0.9939 0.9730 0.9435 0.9154 0.8803 0.8641
33Van1 33Van1 33Van1 33Van1 33Van1 33Van1 33Van1 33Van1 Landolt-Börnstein New Series IV/9A
2 Cell voltages Cell composition 2) Pt, H2ŇHCl, 0.01 MŒHCl, 0.01 M, quinone, hydroquinoneŇAu Pt, H2ŇHCl, 0.04 MŒHCl, 0.04 M, quinone, hydroquinoneŇAu Pt, H2ŇHCl, 0.1 MŒHCl, 0.1 M, quinone, hydroquinoneŇAu Pt, H2ŇHCl, 0.5 MŒHCl, 0.5 M, quinone, hydroquinoneŇAu Pt, H2ŇHCl, 1 MŒHCl, 1 M, quinone, hydroquinoneŇAu Pt, H2ŇHCl, 2 MŒHCl, 2 M, quinone, hydroquinoneŇAu Pt, H2ŇHCl, 0.01 M, LiCl, 1.0 M, quinone, hydroquinoneŇAu Pt, H2ŇHCl, 0.01 M, NaCl, 1.0 M, quinone, hydroquinoneŇAu Pt, H2ŇHCl, 0.01 M, KCl, 1.0 M, quinone, hydroquinoneŇAu Pt, H2ŇHCl, 0.01 M, MgCl2, 0.5 M, quinone, hydroquinoneŇAu Pt, H2ŇHCl, 0.01 M, CaCl2, 0.5 M, quinone, hydroquinoneŇAu Pt, H2ŇHCl, 0.01 M, SrCl2, 0.5 M, quinone, hydroquinoneŇAu Pt, H2ŇHCl, 0.01 M, BaCl2, 0.5 M, quinone, hydroquinoneŇAu Pt, H2ŇHCl, 0.01 M, H2SO4, 0.5 M, quinone, hydroquinoneŇAu Pt, H2ŇHCl, 0.01 M, Li2SO4, 0.5 M, quinone, hydroquinoneŇAu Pt, H2ŇHCl, 0.01 M, Na2SO4, 0.5 M, quinone, hydroquinoneŇAu Pt, H2ŇHCl, 0.01 M, K2SO4, 0.5 M, quinone, hydroquinoneŇAu Pt, H2ŇHCl, 0.01 M, MgSO4, 0.5 M, quinone, hydroquinoneŇAu Pt, H2ŇBa(OH)2, 0.00245 mŇBaxHgŇBa(OH)2, 0.12 mŇH2, Pt Pt, H2ŇBa(OH)2, 0.0050 mŇBaxHgŇBa(OH)2, 0.12 mŇH2, Pt Pt, H2ŇBa(OH)2, 0.01132 mŇBaxHgŇBa(OH)2, 0.12 mŇH2, Pt Pt, H2ŇBa(OH)2, 0.02015 mŇBaxHgŇBa(OH)2, 0.12 mŇH2, Pt Pt, H2ŇBa(OH)2, 0.05323 mŇBaxHgŇBa(OH)2, 0.12 mŇH2, Pt Pt, H2ŇBa(OH)2, 0.07983 mŇBaxHgŇBa(OH)2, 0.12 mŇH2, Pt Pt, H2ŇBa(OH)2, 0.1055 mŇBaxHgŇBa(OH)2, 0.12 mŇH2, Pt Pt, H2ŇBa(OH)2, 0.2296 mŇBaxHgŇBa(OH)2, 0.12 mŇH2, Pt Pt, H2ŇHCl, 0.1 MŒHCl, 0.01 MŇH2, Pt Ir, H2ŇHCl, 0.1 mŒHCl, 0.01 mŇH2, Ir Ir, H2ŇHCl, 0.02 mŒHCl, 0.01 mŇH2, Ir Pt, H2ŇHCl, 0.1005 MŒHClO4, 0.1 MŇH2, Pt Pt, H2ŇNaH-phthalat, 0.1 MŒNH4Cl, 0.0 MŒHClO4, 0.1 MŇH2, Pt Pt, H2ŇNaH-phthalat, 0.1 MŒNH4Cl, 0.1 MŒHClO4, 0.1 MŇH2, Pt Pt, H2ŇNaH-phthalat, 0.1 MŒNH4Cl, 0.5 MŒHClO4, 0.1 MŇH2, Pt Pt, H2ŇNaH-phthalat, 0.1 MŒNH4Cl, 1.0 MŒHClO4, 0.1 MŇH2, Pt Pt, H2ŇNaH-phthalat, 0.1 MŒNH4Cl, 1.75 MŒHClO4, 0.1 MŇH2, Pt Pt, H2ŇNaH-phthalat, 0.1 MŒNH4Cl, 2.5 MŒHClO4, 0.1 MŇH2, Pt Pt, H2ŇNaH-phthalat, 0.1 MŒNH4Cl, 3.5 MŒHClO4, 0.1 MŇH2, Pt Pt, H2ŇNaH-phthalat, 0.1 MŒNH4Cl, 4.1 MŒHClO4, 0.1 MŇH2, Pt Pt, H2ŇNaH-phthalat, 0.1 MŒNH4Cl, 5.66 M 5)ŒHClO4, 0.1 MŇH2, Pt Pt, H2ŇNaOH, 0.25 mŇNa0.01wt%Hg, NaOH, 0.05 mŇH2, Pt
UT [V]=0.06929+285·10–6(T–273 K)–0.73·10–6(T–273 K)2, 273
UT [V]=0.10018+422·10–6(T–273 K)–0.90·10–6(T–273 K)2, 273
Landolt-Börnstein New Series IV/9A
87
T [K, °C] U0 [V]
273 K 298 K 308 K 273 K 298 K 308 K
0.69935 0.69926 0.69906 0.69766 0.69583 0.69200 0.6974 0.6970 0.6972 0.6974 0.6974 0.6973 0.6969 0.6977 0.7010 0.7007 0.7008 0.7007 –0.1245 –0.0976 –0.0725 –0.0540 –0.0233 –0.0121 –0.0036 0.0185 0.0201 0.0173 0.0053 0.0006 0.1493 0.1518 0.1625 0.1685 0.1719 0.1740 0.1763 0.1769 0.1773 0.06929 0.0760 0.0784
Ref.
35Hov 35Hov 35Hov 35Hov 35Hov 35Hov 35Hov 35Hov 35Hov 35Hov 35Hov 35Hov 35Hov 35Hov 35Hov 35Hov 35Hov 35Hov 32Har2 32Har2 32Har2 32Har2 32Har2 32Har2 32Har2 32Har2 27Erd 24Dru 24Dru 24Sch2 31Mur 31Mur 31Mur 31Mur 31Mur 31Mur 31Mur 31Mur 31Mur 33Har7 33Har7 33Har7 33Har7 0.10018 33Har7 0.1102 33Har7 0.1139 33Har7 33Har7
88
2 Cell voltages
Cell composition 2) Pt, H2ŇNaOH, 1.0 mŇNa0.01wt%Hg, NaOH, 0.05 mŇH2, Pt
T [K, °C] U0 [V] 273 K 298 K 308 K
UT [V]=0.13156+585·10–6(T–273 K)–1.59·10–6(T–273 K)2, 273
Ref.
0.13156 33Har7 0.1452 33Har7 0.1501 33Har7 33Har7 0.1511 33Har7 0.16600 33Har7 0.1832 33Har7 0.1894 33Har7 33Har7 0.1785 33Har7 0.1903
33Har7
0.2017
33Har7
0.2126 0.2338 0.2413
33Har7 33Har7 33Har7 33Har7 0.1385 28Har2 0.1586 28Har2 0.1700 28Har2 0.1795 28Har2 0.1876 28Har2 0.1943 28Har2 0.2003 28Har2 0.2071 28Har2 0.2137 28Har2 0.2184 28Har2 0.0991 37Har3 0.0961 37Har3 0.0819 37Har3 0.0530 37Har3 0.0378 37Har3 0.0640 37Har3 0.0415 37Har3 0.0176 37Har3 0.2042 28Har2 0.1950 28Har2 0.1861 28Har2 0.1764 28Har2 0.1644 28Har2 0.1497 28Har2 0.1282 28Har2 –0.0764 30Har1 –0.0431 30Har1 –0.03246 30Har1 Landolt-Börnstein New Series IV/9A
2 Cell voltages Cell composition 2)
89
T [K, °C] U0 [V]
Pt, H2ŇCsOH, 0.05 mŇCsxHgŇCsOH, 0.05 mŇH2, Pt Pt, H2ŇCsOH, 0.09065 mŇCsxHgŇCsOH, 0.05 mŇH2, Pt Pt, H2ŇCsOH, 0.232 mŇCsxHgŇCsOH, 0.05 mŇH2, Pt Pt, H2ŇCsOH, 0.5402 mŇCsxHgŇCsOH, 0.05 mŇH2, Pt Pt, H2ŇCsOH, 1.3205 mŇCsxHgŇCsOH, 0.05 mŇH2, Pt Pt, H2ŇCsOH, 0.05 m, CsCl, 0.09563 mŇCsxHgŇCsOH, 0.05 mŇH2, Pt Pt, H2ŇCsOH, 0.05 m, CsCl, 0.3511 mŇCsxHgŇCsOH, 0.05 mŇH2, Pt Pt, H2ŇCsOH, 0.05 m, CsCl, 0.9411 mŇCsxHgŇCsOH, 0.05 mŇH2, Pt Pt, H2ŇCsOH, 0.05 m, CsCl, 1.7077 mŇCsxHgŇCsOH, 0.05 mŇH2, Pt Pt, H2ŇCsOH, 0.05 m, CsCl, 3.9896 mŇCsxHgŇCsOH, 0.05 mŇH2, Pt 273 K Pt, H2ŇKOH, 0.2240 mŇKxHgŇKOH, 0.09154 mŇH2, Pt 293 K 313 K 333 K Pt, H2ŇKOH, 0.9956 mŇKxHgŇKOH, 0.09154 mŇH2, Pt 273 K 293 K 313 K 333 K Pt, H2ŇKOH, 4.0565 mŇKxHgŇKOH, 0.09154 mŇH2, Pt 273 K 293 K 313 K 333 K Pt, H2ŇKOH, 10.052 mŇKxHgŇKOH, 0.09154 mŇH2, Pt 273 K 293 K 313 K 333 K Pt, H2ŇKOH, 17.544 mŇKxHgŇKOH, 0.09154 mŇH2, Pt 273 K 293 K 313 K 333 K Pt, H2ŇCH3COOH, 0.4992 M, CH3COOK, 0.4992 M, (CH3COO)2Hg2,sol.ŇHg Pt, H2ŇCH3COOH, 0.5087 M, CH3COOK, 0.5087 M, (CH3COO)2Hg2,sol.ŇHg Pt, H2ŇCH3COOH, 0.5170 M, CH3COOK, 0.5170 M, (CH3COO)2Hg2,sol.ŇHg Pt, H2ŇCH3COOH, 0.7433 M, CH3COOK, 0.7433 M, (CH3COO)2Hg2,sol.ŇHg Pt, H2ŇCH3COOH, 1.035 M, CH3COOK, 1.035 M, (CH3COO)2Hg2,sol.ŇHg, U00 [V]=0.5109 Pt 6), H2ŇHBr, 0.1012 M, Hg2Br2ŇHg Pt, H2ŇHCl, 0.01006 M, Hg2Cl2ŇHg Pt, H2ŇHCl, 0.1009 M, Hg2Cl2ŇHg Pt, H2ŇHCl, 1.029 M, Hg2Cl2ŇHg Pt, H2ŇHCl, 2.25 M, Hg2Cl2ŇHg Pt, H2ŇHCl, 6.75 M, Hg2Cl2ŇHg Pt, H2ŇHCl, 10.0 M, Hg2Cl2ŇHg Pt, H2ŇHCl, 16.0 M, Hg2Cl2ŇHg Landolt-Börnstein New Series IV/9A
Ref.
0.0000 0.02888 0.07379 0.1168 0.1687 0.0224 0.0435 0.0634 0.0779 0.1025 0.0397 0.0423 0.046 0.0482 0.1104 0.1183 0.1256 0.1325 0.2107 0.2239 0.2380 0.2471 0.3483 0.3637 0.3769 0.3867 0.4948 0.5085 0.5224 0.5308 0.8100
30Har1 30Har1 30Har1 30Har1 30Har1 30Har2 30Har2 30Har2 30Har2 30Har2 34Ham 34Ham 34Ham 34Ham 34Ham 34Ham 34Ham 34Ham 34Ham 34Ham 34Ham 34Ham 34Ham 34Ham 34Ham 34Ham 34Ham 34Ham 34Ham 34Ham 39Lar
0.8096
39Lar
0.8092
39Lar
0.7999
39Lar
0.7914
39Lar
0.2698 33Ish2 0.5108 17Lin 0.3990 17Lin 0.2780 17Lin 0.2231 17Lin 0.0972 17Lin 0.0302 17Lin –0.0662 7) 17Lin
90
2 Cell voltages
Cell composition 2) Pt, H2, p=1 atmŇHCl, 0.1 MŒHCl, 0.1 M, Hg2Cl2ŇHg Pt, H2, p=110.2 atmŇHCl,0.1 MŒHCl, 0.1 M, Hg2Cl2ŇHg Pt, H2, p=556.8 atmŇHCl,0.1 MŒHCl, 0.1 M, Hg2Cl2ŇHg Pt, H2, p=1035.2 atmŇHCl,0.1 MŒHCl, 0.1 M, Hg2Cl2ŇHg Pt, H2ŇHClO4, 0.0817 mŒHClO4, 0.0817 m, HgClO4, 0.00550 mŇHg Pt, H2ŇHClO4, 0.0817 mŒHClO4, 0.0817 m, HgClO4, 0.0010 mŇHg Pt, H2ŇHClO4, 0.0817 mŒHClO4, 0.0817 m, HgClO4, 0.00055 mŇHg Pt, H2ŇHF, 0.03 MŇKCl,sat., HgClŇHg Pt, H2ŇHF, 0.5 MŇKCl,sat., HgClŇHg Pt, H2ŇHF, 1 MŇKCl,sat., HgClŇHg Pt, H2ŇKOH, 15wt%, HgOŇHg Pt, H2ŇKCl, 1.49 M, KOH, 0.01 MŒKCl, 3.5 MŒKCl, 0.01 M, HgClŇHg Pt, H2ŇKCl, 0.99 M, KOH, 0.01 MŒKCl, 3.5 MŒKCl, 0.01 M, HgClŇHg Pt H2ŇKCl, 0.29 M, KOH, 0.01 MŒKCl, 3.5 MŒKCl, 0.01 M, HgClŇHg Pt, H2ŇKCl, 0.00 M, KOH, 0.01 MŒKCl, 3.5 MŒKCl, 0.001 M, HgClŇHg Pt, H2ŇKCl, 0.09 M, KOH, 0.01 MŒKCl, 3.5 MŒKCl, 0.01 M, HgClŇHg Pt, H2ŇKCl, 0.099 M, KOH, 0.01 MŒKCl, 3.5 MŒKCl, 0.001 M, HgClŇHg Pt, H2ŇKCl, 0.029 M, KOH, 0.01 MŒKCl, 3.5 MŒKCl, 0.001 M, HgClŇHg Pt, H2ŇKCl, 0.02 M, KOH, 0.01 MŒKCl, 3.5 MŒKCl, 0.01 M, HgClŇHg Pt, H2ŇKCl, 0.0 M, KOH, 0.01 MŒKCl, 3.5 MŒKCl, 0.01 M, HgClŇHg Pt, H2ŇKCl, 0.009 M, KOH, 0.01 MŒKCl, 3.5 MŒKCl, 0.001 M, HgClŇHg Pt, H2ŇKCl, 0.002 M, KOH, 0.01 MŒKCl, 3.5 MŒKCl, 0.001 M, HgClŇHg Pt, H2ŇKCl, 0.00 M, KOH, 0.01 MŒKCl, 3.5 MŒKCl, 0.001 M, HgClŇHg Pt, H2ŇCa(OH)2, 0.05 g dm–3ŒKCl,sat., Hg2Cl2ŇHg Pt, H2ŇCa(OH)2, 0.1024 g dm–3ŒKCl,sat., Hg2Cl2ŇHg Pt, H2ŇCa(OH)2, 0.2004 g dm–3ŒKCl,sat., Hg2Cl2ŇHg Pt, H2ŇCa(OH)2, 0.4002 g dm–3ŒKCl,sat., Hg2Cl2ŇHg Pt, H2ŇCa(OH)2, 0.8004 g dm–3ŒKCl,sat., Hg2Cl2ŇHg Pt, H2ŇCa(OH)2, 1.199 g dm–3ŒKCl,sat., Hg2Cl2ŇHg Pt, H2ŇH2C2O4, 0.05380 M, Hg2C2O4,sol.ŇHg Pt, H2ŇH2C2O4, 0.1022 M, Hg2C2O4,sol.ŇHg Pt, H2ŇH2C2O4, 0.2054 M, Hg2C2O4,sol.ŇHg Pt, H2ŇH2C2O4, 0.3987 M, Hg2C2O4,sol.ŇHg Pt, H2ŇH2C2O4, 0.4778 M, Hg2C2O4,sol.ŇHg Pt, H2ŇH2C2O4, 0.6127 M, Hg2C2O4,sol.ŇHg Pt, H2ŇH3PO4 ,0.001026 m, Hg2HPO4,sol.ŇHg
T [K, °C] U0 [V]
285 K 273 K 298 K 273 K 298 K 273 K 298 K 298 K 273 K 298 K 273 K 298 K 273 K 298 K 273 K 298 K 273 K 298 K 273 K 298 K 273 K 298 K 273 K 298 K
Ref.
0.3990 0.4596 0.4844 0.4975 0.7777 0.7569 0.7480 0.3820 0.33318 0.3120 0.93 1.0286 1.0361 1.0279 1.0350 1.0200 1.0358 1.0955 1.0305 1.0375 0.9768 0.9790 0.9787 0.9803 1.0323 1.0398 1.0333 1.0433 0.9807 0.9836 0.9808 0.9838 0.9810 0.9839 0.9062 0.9235 0.9393 0.9588 0.9720 0.9810 0.6315 0.6200 0.6085 0.5981 0.5953 0.5917 0.7992
24Hai 24Hai 24Hai 24Hai 16Lin 16Lin 16Lin 24Wyn 24Wyn 24Wyn 19Hof 29Bje 29Bje 29Bje 29Bje 29Bje 29Bje 29Bje 29Bje 29Bje 29Bje 29Bje 29Bje 29Bje 29Bje 29Bje 29Bje 29Bje 29Bje 29Bje 29Bje 29Bje 29Bje 29Bje 33Fli 33Fli 33Fli 33Fli 33Fli 33Fli 41Lar 41Lar 41Lar 41Lar 41Lar 41Lar 49deV
Landolt-Börnstein New Series IV/9A
2 Cell voltages Cell composition 2) Pt, H2ŇH3PO4, 0.01026 m, Hg2HPO4,sol.ŇHg Pt, H2ŇH3PO4, 0.02052 m, Hg2HPO4,sol.ŇHg Pt, H2ŇH3PO4, 0.05130 m, Hg2HPO4,sol.ŇHg Pt, H2ŇH3PO4, 0.1032 m, Hg2HPO4,sol.ŇHg Pt, H2ŇH2SO4, 0.05 m, Hg2SO4,sat.ŇHg (UT [V]=U0–0.010·10–3(T–298 K)–0.0583·10–6(T–298 K)2) Pt, H2ŇH2SO4, 0.10 m, Hg2SO4,sat.ŇHg (UT [V]=U0–0.0317·10–3(T–298 K)–0.0347·10–6(T–298 K)2) Pt, H2ŇH2SO4, 0.20 m, Hg2SO4,sat.ŇHg (UT [V]=U0–0.07305·10–3(T–298 K)–0.0272·10–6(T–298 K)2) Pt, H2ŇH2SO4, 0.50 m, Hg2SO4,sat.ŇHg (UT [V]=U0–0.13994·10–3(T–298 K)–0.0133·10–6(T–298 K)2) Pt, H2ŇH2SO4, 1.0 m, Hg2SO4,sat.ŇHg (UT [V]=U0–0.18577·10–3(T–298 K)+0.0622·10–6(T–298 K)2) Pt, H2ŇH2SO4, 1.50 m, Hg2SO4,sat.ŇHg (UT [V]=U0–0.21635·10–3(T–298 K)+0.0947·10–6(T–298 K)2) Pt, H2ŇH2SO4, 2.0 m, Hg2SO4,sat.ŇHg (UT [V]=U0–0.235·10–3(T–298 K)+0.1031·10–6(T–298 K)2) Pt, H2ŇH2SO4, 3.0 m, Hg2SO4,sat.ŇHg (UT [V]=U0–0.2418·10–3(T–298 K)+0.1174·10–6(T–298 K)2) Pt, H2ŇH2SO4, 4.0 m, Hg2SO4,sat.ŇHg (UT [V]=U0–0.2406·10–3(T–298 K)+0.1301·10–6(T–298 K)2) Pt, H2ŇH2SO4, 5.0 m, Hg2SO4,sat.ŇHg (UT [V]=U0–0.2343·10–3(T–298 K)+0.1427·10–6(T–298 K)2) Pt, H2ŇH2SO4, 6.0 m, Hg2SO4,sat.ŇHg (UT [V]=U0–0.2323·10–3(T–298 K)+0.1583·10–6(T–298 K)2) Pt, H2ŇH2SO4, 7.0 m, Hg2SO4,sat.ŇHg (UT [V]=U0–0.2268·10–3(T–298 K)+0.1689·10–6(T–298 K)2) Pt, H2ŇH2SO4, 8.0 m, Hg2SO4,sat.ŇHg (UT [V]=U0–0.2217·10–3(T–298 K)+0.2116·10–6(T–298 K)2) Pt, H2ŇH2SO4, 9.0 m, Hg2SO4,sat.ŇHg (UT [V]=U0–0.2154·10–3(T–298 K)+0.2944·10–6(T–298 K)2) Pt, H2ŇH2SO4, 10.0 m, Hg2SO4,sat.ŇHg (UT [V]=U0–0.2098·10–3(T–298 K)+0.3273·10–6(T–298 K)2) Pt, H2ŇH2SO4, 11.0 m, Hg2SO4,sat.ŇHg (UT [V]=U0–0.2033·10–3(T–298 K)+0.3657·10–6(T–298 K)2) Pt, H2ŇH2SO4, 12.0 m, Hg2SO4,sat.ŇHg (UT [V]=U0–0.1991·10–3(T–298 K)+0.3859·10–6(T–298 K)2) Pt, H2ŇH2SO4, 13.0 m, Hg2SO4,sat.ŇHg (UT [V]=U0–0.1960·10–3(T–298 K)+0.3198·10–6(T–298 K)2) Pt, H2ŇH2SO4, 14.0 m, Hg2SO4,sat.ŇHg (UT [V]=U0–0.1870·10–3(T–298 K)+0.2909·10–6(T–298 K)2) Pt, H2ŇH2SO4, 15.0 m, Hg2SO4,sat.ŇHg (UT [V]=U0–0.2098·10–3(T–298 K)+0.3273·10–6(T–298 K)2) Pt, H2ŇH2SO4, 16.0 m, Hg2SO4,sat.ŇHg (UT [V]=U0–0.1762·10–3(T–298 K)+0.1506·10–6(T–298 K)2) Pt, H2ŇH2SO4, 17.0 m, Hg2SO4,sat.ŇHg (UT [V]=U0–0.1628·10–3(T–298 K)+0.1181·10–6(T–298 K)2)
Landolt-Börnstein New Series IV/9A
91
T [K, °C] U0 [V]
Ref.
298 K
0.7740 0.7600 0.7443 0.7339 0.75434
49deV 49deV 49deV 49deV 35Har
298 K
0.73714 35Har
298 K
0.7197
298 K
0.69609 35Har
298 K
0.67600 35Har
298 K
0.66213 35Har
298 K
0.65088 35Har
298 K
0.63041 35Har
298 K
0.61201 35Har
298 K
0.59498 35Har
298 K
0.57952 35Har
298 K
0.56550 35Har
298 K
0.55289 35Har
298 K
0.54153 35Har
298 K
0.53149 35Har
298 K
0.52189 35Har
298 K
0.51304 35Har
298 K
0.50475 35Har
298 K
0.49688 35Har
298 K
0.48950 35Har
298 K
0.48236 35Har
298 K
0.47552 35Har
35Har
92
2 Cell voltages
Cell composition 2) Pt, H2ŇH2SO4, 17.5 m, Hg2SO4,sat.ŇHg (UT [V]=U0–0.1655·10–3(T–298 K)+0.1170·10–6(T–298 K)2) Pt, H2, p=742.5 TorrŇH2SO4, 0.00482 m, Hg2SO4ŇHg Pt, H2, p=750.7 TorrŇH2SO4, 0.06209 m, Hg2SO4ŇHg Pt, H2, p=765.5 TorrŇH2SO4, 1.181 m, Hg2SO4ŇHg Pt, H2, p=754.2 TorrŇH2SO4, 1.181 m, Hg2SO4ŇHg Pt, H2, p=733.5 TorrŇH2SO4, 1.181 m, Hg2SO4ŇHg Pt, H2, p=640.3 TorrŇH2SO4, 1.181 m, Hg2SO4ŇHg Pt, H2, p=458.1 TorrŇH2SO4, 1.181 m, Hg2SO4ŇHg Pt, H2ŇH2SO4, Hg2SO4ŇHg
Pt, H2ŇH2SO4, 0.01 m, (NH4)2SO4, 0.0 m, Hg2SO4ŇHg Pt, H2ŇH2SO4, 0.1 m, (NH4)2SO4, 0.0 m, Hg2SO4ŇHg Pt, H2ŇH2SO4, 0.01 m, (NH4)2SO4, 0.01 m, Hg2SO4ŇHg Pt, H2ŇH2SO4, 0.1 m, (NH4)2SO4, 0.01 m, Hg2SO4ŇHg Pt, H2ŇH2SO4, 0.01 m, (NH4)2SO4, 0.04 m, Hg2SO4ŇHg Pt, H2ŇH2SO4, 0.1 m, (NH4)2SO4, 0.04 m, Hg2SO4ŇHg Pt, H2ŇH2SO4, 0.01 m, (NH4)2SO4, 0.1 m, Hg2SO4ŇHg Pt, H2ŇH2SO4, 0.1 m, (NH4)2SO4, 0.1 m, Hg2SO4ŇHg Pt, H2ŇH2SO4, 0.01 m, (NH4)2SO4, 0.2 m, Hg2SO4ŇHg Pt, H2ŇH2SO4, 0.1 m, (NH4)2SO4, 0.2 m, Hg2SO4ŇHg Pt, H2ŇH2SO4, 0.01 m, (NH4)2SO4, 0.5 m, Hg2SO4ŇHg Pt, H2ŇH2SO4, 0.1 m, (NH4)2SO4, 0.5 m, Hg2SO4ŇHg Pt, H2ŇH2SO4, 0.01 m, (NH4)2SO4, 1.0 m, Hg2SO4ŇHg Pt, H2ŇH2SO4, 0.1 m, (NH4)2SO4, 1.0 m, Hg2SO4ŇHg Pt, H2ŇH2SO4, 0.01 m, (NH4)2SO4, 2.0 m, Hg2SO4ŇHg Pt, H2ŇH2SO4, 0.1 m, (NH4)2SO4, 2.0 m, Hg2SO4ŇHg Pt, H2ŇH2SO4, 0.0504 M, acetic acid, 0.0 M, Hg2SO4ŇHg Pt, H2ŇH2SO4, 0.1369 M, acetic acid, 0.0 M, Hg2SO4ŇHg Pt, H2ŇH2SO4, 0.2741 M, acetic acid, 0.0 M, Hg2SO4ŇHg Pt, H2ŇH2SO4, 0.5472 M, acetic acid, 0.0 M, Hg2SO4ŇHg Pt, H2ŇH2SO4, 1.093 M, acetic acid, 0.0 M, Hg2SO4ŇHg Pt, H2ŇH2SO4, 1.642 M, acetic acid, 0.0 M, Hg2SO4ŇHg Pt, H2ŇH2SO4, 2.184 M, acetic acid, 0.0 M, Hg2SO4ŇHg Pt, H2ŇH2SO4, 0.0545 M, acetic acid, 0.0991 M, Hg2SO4ŇHg Pt, H2ŇH2SO4, 0.1004 M, acetic acid, 0.0991 M, Hg2SO4ŇHg Pt, H2ŇH2SO4, 0.2008 M, acetic acid, 0.0991 M, Hg2SO4ŇHg
T [K, °C] U0 [V]
Ref.
298 K
0.47213 35Har
298.7 K 298.2 K 286.9 K 298.7 K 310.4 K 333.5 K 353.2 K 273 K 278 K 283 K 288 K 293 K 298 K 303 K 308 K 313 K 318 K 323 K 328 K 333 K
0.8241 0.7491 0.6403 0.6370 0.6328 0.6242 0.6134 0.63495 0.63097 0.62704 0.62307 0.61930 0.61515 0.61107 0.60701 0.60305 0.59900 0.59487 0.59051 0.58659 0.7971 0.7372 0.7952 0.7379 0.7964 0.7382 0.7997 0.7397 0.8037 0.7456 0.8102 0.7497 0.8153 0.7558 0.8251 0.7616 0.7544 0.7290 0.7115 0.6929 0.6712 0.6555 0.6418 0.7517 0.7367 0.7193
10Brö 10Brö 10Brö 10Brö 10Brö 10Brö 10Brö 35Har 35Har 35Har 35Har 35Har 35Har 35Har 35Har 35Har 35Har 35Har 35Har 35Har 34Cro 34Cro 34Cro 34Cro 34Cro 34Cro 34Cro 34Cro 34Cro 34Cro 34Cro 34Cro 34Cro 34Cro 34Cro 34Cro 33Mac 33Mac 33Mac 33Mac 33Mac 33Mac 33Mac 33Mac 33Mac 33Mac
Landolt-Börnstein New Series IV/9A
2 Cell voltages Cell composition 2)
93
T [K, °C] U0 [V]
Pt, H2ŇH2SO4, 0.4016 M, acetic acid, 0.0991 M, Hg2SO4ŇHg Pt, H2ŇH2SO4, 0.8197 M, acetic acid, 0.0991 M, Hg2SO4ŇHg Pt, H2ŇH2SO4, 1.642 M, acetic acid, 0.0991 M, Hg2SO4ŇHg Pt, H2ŇH2SO4, 3.278 M, acetic acid, 0.0991 M, Hg2SO4ŇHg Pt, H2ŇH2SO4, 0.0547 M, acetic acid, 0.548 M, Hg2SO4ŇHg Pt, H2ŇH2SO4, 0.1366 M, acetic acid, 0.548 M, Hg2SO4ŇHg Pt, H2ŇH2SO4, 0.2733 M, acetic acid, 0.548 M, Hg2SO4ŇHg Pt, H2ŇH2SO4, 0.5453 M, acetic acid, 0.548 M, Hg2SO4ŇHg Pt, H2ŇH2SO4, 1.092 M, acetic acid, 0.548 M, Hg2SO4ŇHg Pt, H2ŇH2SO4, 1.637 M, acetic acid, 0.548 M, Hg2SO4ŇHg Pt, H2ŇH2SO4, 2.179 M, acetic acid, 0.548 M, Hg2SO4ŇHg Pt, H2ŇH2SO4, 0.0546 M, acetic acid, 1.365 M, Hg2SO4ŇHg Pt, H2ŇH2SO4, 0.1364 M, acetic acid, 1.365 M, Hg2SO4ŇHg Pt, H2ŇH2SO4, 0.2738 M, acetic acid, 1.365 M, Hg2SO4ŇHg Pt, H2ŇH2SO4, 0.5458 M, acetic acid, 1.365 M, Hg2SO4ŇHg Pt, H2ŇH2SO4, 1.091 M, acetic acid, 1.365 M, Hg2SO4ŇHg Pt, H2ŇH2SO4, 1.637 M, acetic acid, 1.365 M, Hg2SO4ŇHg Pt, H2ŇH2SO4, 2.177 M, acetic acid, 1.365 M, Hg2SO4ŇHg Pt, H2ŇH2SO4, 0.0546 M, acetic acid, 2.186 M, Hg2SO4ŇHg Pt, H2ŇH2SO4, 0.1087 M, acetic acid, 2.186 M, Hg2SO4ŇHg Pt, H2ŇH2SO4, 0.2731 M, acetic acid, 2.186 M, Hg2SO4ŇHg Pt, H2ŇH2SO4, 0.5478 M, acetic acid, 2.186 M, Hg2SO4ŇHg Pt, H2ŇH2SO4, 1.093 M, acetic acid, 2.186 M, Hg2SO4ŇHg Pt, H2ŇH2SO4, 1.640 M, acetic acid, 2.186 M, Hg2SO4ŇHg Pt, H2ŇH2SO4, 2.184 M, acetic acid, 2.186 M, Hg2SO4ŇHg Pt, H2ŇH2SO4, 0.0543 M, acetic acid, 3.278 M, Hg2SO4ŇHg Pt, H2ŇH2SO4, 0.1089 M, acetic acid, 3.278 M, Hg2SO4ŇHg Pt, H2ŇH2SO4, 0.2732 M, acetic acid, 3.278 M, Hg2SO4ŇHg Pt, H2ŇH2SO4, 0.5471 M, acetic acid, 3.278 M, Hg2SO4ŇHg Pt, H2ŇH2SO4, 1.091 M, acetic acid, 3.278 M, Hg2SO4ŇHg Pt, H2ŇH2SO4, 1.639 M, acetic acid, 3.278 M, Hg2SO4ŇHg Pt, H2ŇH2SO4, 2.181 M, acetic acid, 3.278 M, Hg2SO4ŇHg Pt, H2ŇH2SO4, 0.0545 M, acetic acid, 4.38 M, Hg2SO4ŇHg Pt, H2ŇH2SO4, 0.1086 M, acetic acid, 4.38 M, Hg2SO4ŇHg Pt, H2ŇH2SO4, 0.2729 M, acetic acid, 4.38 M, Hg2SO4ŇHg Pt, H2ŇH2SO4, 0.5482 M, acetic acid, 4.38 M, Hg2SO4ŇHg Pt, H2ŇH2SO4, 1.093 M, acetic acid, 4.38 M, Hg2SO4ŇHg Pt, H2ŇH2SO4, 1.643 M, acetic acid, 4.38 M, Hg2SO4ŇHg Pt, H2ŇH2SO4, 2.185 M, acetic acid, 4.38 M, Hg2SO4ŇHg Pt, H2ŇNaCl, 1.49 M, NaOH, 0.01 MŒKCl, 3.5 MŒKCl, 0.1 M, HgClŇHg 273 K 298 K Pt, H2ŇNaCl, 0.99 M, NaOH, 0.01 MŒKCl, 3.5 MŒKCl, 0.1 M, HgClŇHg 273 K 298 K Pt, H2ŇNaCl, 0.29 M, NaOH, 0.01 MŒKCl, 3.5 MŒKCl, 0.1 M, HgClŇHg 273 K 298 K Pt, H2ŇNaCl, 0.0 M, NaOH, 0.1 MŒKCl, 3.5 MŒKCl, 0.1 M, HgClŇHg 273 K 298 K
Landolt-Börnstein New Series IV/9A
0.7012 0.6802 0.6550 0.6153 0.7496 0.7269 0.7095 0.6908 0.6690 0.6531 0.6392 0.7463 0.7237 0.7061 0.6873 0.6653 0.6492 0.6353 0.7430 0.7260 0.7027 0.6838 0.6616 0.6449 0.6308 0.7379 0.7209 0.6979 0.6789 0.6567 0.6398 0.6248 0.7325 0.7156 0.6928 0.6734 0.6505 0.6334 0.6181 1.0164 1.0246 1.0185 1.0267 1.0252 1.0323 1.0808 1.0938
Ref. 33Mac 33Mac 33Mac 33Mac 33Mac 33Mac 33Mac 33Mac 33Mac 33Mac 33Mac 33Mac 33Mac 33Mac 33Mac 33Mac 33Mac 33Mac 33Mac 33Mac 33Mac 33Mac 33Mac 33Mac 33Mac 33Mac 33Mac 33Mac 33Mac 33Mac 33Mac 33Mac 33Mac 33Mac 33Mac 33Mac 33Mac 33Mac 33Mac 29Bje 29Bje 29Bje 29Bje 29Bje 29Bje 29Bje 29Bje
94
2 Cell voltages
Cell composition 2)
T [K, °C] U0 [V]
Ref.
Pt, H2ŇNaCl, 0.05 M, NaOH, 0.05 MŒKCl, 3.5 MŒKCl, 0.1 M, HgClŇHg 298 K Pt, H2ŇNaCl, 0.07 M, NaOH, 0.03 MŒKCl, 3.5 MŒKCl, 0.1 M, HgClŇHg 273 K 298 K Pt, H2ŇNaCl, 0.09 M, NaOH, 0.01 MŒKCl, 3.5 MŒKCl, 0.1 M, HgClŇHg 273 K 298 K Pt, H2ŇNaCl, 0.0 M, NaOH, 0.03 MŒKCl, 3.5 MŒKCl, 0.1 M, HgClŇHg 273 K 298 K Pt, H2ŇNaCl, 0.015 M, NaOH, 0.015 MŒKCl, 3.5 MŒKCl, 0.1 M, HgClŇHg 273 K 298 K Pt, H2ŇNaCl, 0.021 M, NaOH, 0.009 MŒKCl, 3.5 MŒKCl, 0.1 M, HgClŇHg 273 K 298 K Pt, H2ŇNaCl, 0.027 M, NaOH, 0.003 MŒKCl, 3.5 MŒKCl, 0.1 M, HgClŇHg 273 K 298 K Pt, H2ŇNaCl, 0.0021 M, NaOH, 0.0009 MŒKCl, 3.5 MŒKCl, 0.1 M, HgClŇHg 273 K 298 K Pt, H2ŇNaCl, 0.0027 M, NaOH, 0.0003 MŒKCl, 3.5 MŒKCl, 0.1 M, HgClŇHg 273 K 298 K Pt, H2ŇNaCl, 0.0007 M, NaOH, 0.0003 MŒKCl, 3.5 MŒKCl, 0.1 M, HgClŇHg 273 K 298 K Pt, H2ŇNaCl, 0.0000 M, NaOH, 0.0003 MŒKCl, 3.5 MŒKCl, 0.1 M, HgClŇHg 273 K 298 K Pt, H2ŇNaOH, 0.673 M, HgOŇHg 298.65 K 302.45 K 314.85 K 327.45 K
1.0764 1.0543 1.0640 1.0291 1.0363 1.0563 1.0666 1.0412 1.0490 1.0296 1.0371 1.0326 1.0408 0.9776 0.9536 0.9522 0.9536 0.9527 0.9542 0.9512 0.9535 0.9287 0.9248 0.9208 0.9163
29Bje 29Bje 29Bje 29Bje 29Bje 29Bje 29Bje 29Bje 29Bje 29Bje 29Bje 29Bje 29Bje 29Bje 29Bje 29Bje 29Bje 29Bje 29Bje 29Bje 29Bje 08Brö 08Brö 08Brö 08Brö
Pt, H2ŇHCl, 1.0 M, IrCl62– , 4.86 mM, IrCl3– 6 , 5.16 mMŇIr
1.0240
31Sho
Pt, H2ŇHCl, 1.0 M, IrCl , 4.84 mM, IrCl , 5.19 mMŇIr
1.0237
31Sho
Pt, H2ŇHCl, 1.0 M, IrCl62– , 2.48 mM, IrCl3– 6 , 7.63 mMŇIr
0.9969
31Sho
0.9891 1.610 1.617 1.654 1.801 0.2252 0.0954 0.0959 0.1173 0.1190 0.1449 0.1475 0.1644 0.1674 0.1830 0.1864 1.800 1.842
31Sho 99Dol 99Dol 99Dol 99Dol 28Get1 34Shr2 34Shr2 34Shr2 34Shr2 34Shr2 34Shr2 34Shr2 34Shr2 34Shr2 34Shr2 37Noy 37Noy
2– 6
2– 6
3– 6
3– 6
Pt, H2ŇHCl, 1.0 M, IrCl , 1.98 mM, IrCl , 8.15 mMŇIr Pt, H2ŇH2SO4, 0.513 MŒH2SO4, 0.513 M, PbSO4,sol.ŇPbO2 Pt, H2ŇH2SO4, 1.01 MŒH2SO4, 1.01 M, PbSO4,sol.ŇPbO2 Pt, H2ŇH2SO4, 2.30 MŒH2SO4, 2.30 M, PbSO4,sol.ŇPbO2 Pt, H2ŇH2SO4, 7.70 MŒH2SO4, 7.70 M, PbSO4,sol.ŇPbO2 Pt, H2ŇHI, 0.0891 mŇPbI2,sat.ŇPbHg Pt, H2ŇH2SO4, 0.001 m, PbSO4ŇPbHg Pt, H2ŇH2SO4, 0.002 m, PbSO4ŇPbHg Pt, H2ŇH2SO4, 0.005 m, PbSO4ŇPbHg Pt, H2ŇH2SO4, 0.01 m, PbSO4ŇPbHg Pt, H2ŇH2SO4, 0.02 m, PbSO4ŇPbHg Pt, H2ŇHClO4, 1.0 MŒHNO3, 1.0 M, Co(NO3)2, Co(NO3)3ŇPt Pt, H2ŇHClO4, 1.0 MŒHNO3, 3.0 M, Co(NO3)2, Co(NO3)3ŇPt
0 °C 0 °C 0 °C 0 °C 273 K 298 K 273 K 298 K 273 K 298 K 273 K 298 K 273 K 298 K 0 °C 25 °C
Landolt-Börnstein New Series IV/9A
2 Cell voltages Cell composition 2) Pt, H2ŇHClO4, 1.0 MŒHNO3, 4.0 M, Co(NO3)2, Co(NO3)3ŇPt
95
T [K, °C] U0 [V] 0 °C 25 °C
Pt, H2ŇHClO4, 0.19841 MŒHClO4, 0.19460 M, Ce(ClO4)3, 0.74 mM Ce(ClO4)4, 9.33 mMŇPt Pt, H2ŇHClO4, 0.8071 MŒHClO4, 0.8024 M, Ce(ClO4)3, 1.54 mM Ce(ClO4)4, 8.43 mMŇPt Pt, H2ŇHClO4, 0.19841 MŒHClO4, 0.19649 M, Ce(ClO4)3, 2.95 mM Ce(ClO4)4, 7.11 mMŇPt Pt, H2ŇHClO4, 2.4472 MŒHClO4, 2.3855 M, Ce(ClO4)3, 3.55 mM Ce(ClO4)4, 6.58 mMŇPt Pt, H2ŇHClO4, 1.6353 MŒHClO4, 1.6310 M, Ce(ClO4)3, 4.98 mM Ce(ClO4)4, 4.75 mMŇPt Pt, H2ŇHClO4, 0.15 mŒHClO4, 0.1 m, Hg2(ClO4)2, 0.0900 m, Hg(ClO4)2, 0.00810 mŇPt Pt, H2ŇHClO4, 0.15 mŒHClO4, 0.1 m, Hg2(ClO4)2, 0.0632 m, Hg(ClO4)2, 0.0040 mŇPt Pt, H2ŇHClO4, 0.15 mŒHClO4, 0.1 m, Hg2(ClO4)2, 0.0449 m, Hg(ClO4)2, 0.0020 mŇPt Pt, H2ŇHClO4, 0.15 mŒHClO4, 0.1 m, Hg2(ClO4)2, 0.0316 m, Hg(ClO4)2, 0.0010 mŇPt Pt, H2ŇHClO4, 0.08 mŒHClO4, 0.08 m, Hg2(ClO4)2, 0.004 m, Hg(ClO4)2, 0.004 mŇPt Pt, H2ŇHClO4, 0.2 mŒHClO4, 0.2 m, Hg2(ClO4)2, 0.004 m, Hg(ClO4)2, 0.004 mŇPt Pt, H2ŇHClO4, 1.0 mŒHClO4, 1.0 m, Hg2(ClO4)2, 0.004 m, Hg(ClO4)2, 0.004 mŇPt Pt, H2ŇHClO4, 0.4948 MŒHClO4, 0.4948 M, TlClO4, 0.0383 M, Tl(ClO4)3, 0.001474 MŇPt Pt, H2ŇHClO4, 0.7160 MŒHClO4, 0.7160 M, TlClO4, 0.0533 M, Tl(ClO4)3, 0.002119 MŇPt Pt, H2ŇHClO4, 0.9496 MŒHClO4,0.9496 M, TlClO4, 0.1682 M, Tl(ClO4)3, 0.005804 MŇPt Pt, H2ŇHClO4, 1.2270 MŒHClO4,1.2270 M, TlClO4, 0.1090 M, Tl(ClO4)3, 0.009230 MŇPt Pt, H2ŇHClO4, 0.1077 M, VO2ClO4, 0.5293 mm, VO(ClO4)2, 0.004420 mŇPt Pt, H2ŇHClO4, 0.1077 M, VO2ClO4, 0.2.489 mm, VO(ClO4)2, 0.004420 mŇPt Pt, H2ŇHClO4, 0.1077 M, VO2ClO4, 9.855 mm, VO(ClO4)2, 0.004420 mŇPt Pt, H2ŇHClO4, 0.1077 M, VO2ClO4, 19.67 mm, VO(ClO4)2, 0.004420 mŇPt Pt, H2ŇHClO4, 0.02398 M, VO2ClO4, 4.947 mm, VO(ClO4)2, 0.004420 mŇPt Pt, H2ŇHClO4, 0.1077 M, VO2ClO4, 4.947 mm, VO(ClO4)2, 0.004420 mŇPt Pt, H2ŇHClO4, 0.2338 M, VO2ClO4, 4.947 mm, VO(ClO4)2, 0.004420 mŇPt Pt, H2ŇHClO4, 0.4442 M, VO2ClO4, 4.947 mm, VO(ClO4)2, 0.004420 mŇPt Pt, H2ŇHClO4, 0.900 M, VO2ClO4, 4.947 mm, VO(ClO4)2, 0.004420 mŇPt Pt, H2ŇHClO4, 0.1077 M, VO2ClO4, 0.004947 mm, VO(ClO4)2, 0.03511 mŇPt Pt, H2ŇHClO4, 0.025 MŒHClO4, 0.025 M, KMnO4, 0.0237 M, MnO2ŇPt Pt, H2ŇHClO4, 0.025 MŒHClO4, 0.025 M, KMnO4, 0.0237 M, MnO2ŇPt Pt, H2ŇHClO4, 0.025 MŒHClO4, 0.025 M, KMnO4, 0.0237 M, MnO2ŇPt Pt, H2ŇKOH, 5.5 MŒNi2O3*(H2O)x 10 °C 65 °C Landolt-Börnstein New Series IV/9A
Ref.
1.816 1.850 1.7331
37Noy 37Noy 43She
1.6998
43She
1.6982
43She
1.7175
43She
1.6998
43She
0.9034
31Pop
0.9032
31Pop
0.9024
31Pop
0.9017
31Pop
0.9020
31Pop
0.9007
31Pop
0.9072
31Pop
1.2379
36She
1.2301
36She
1.2244
36She
1.2318
36She
0.9031 0.9395 0.9723 0.9875 0.9098 0.9554 0.9783 0.99774 1.0198 0.9084 1.4799 1.4975 1.5114 1.305 1.266
34Car 34Car 34Car 34Car 34Car 34Car 34Car 34Car 34Car 34Car 26Bro 26Bro 26Bro 06Zed 06Zed
96
2 Cell voltages
Cell composition 2) Pt, H2ŇHClO4, 1.027 mŒHClO4, 1.027 m, (NpIV/NpIII=0.279)ŇPt Pt, H2ŇHClO4, 1.027 mŒHClO4, 1.027 m, (NpIV/NpIII=0.656ŇPt Pt, H2ŇHClO4, 1.027 mŒHClO4, 1.027 m, (NpIV/NpIII=1.028)ŇPt Pt, H2ŇHClO4, 1.027 mŒHClO4, 1.027 m, (NpIV/NpIII=1.725)ŇPt Pt, H2ŇHClO4, 1.027 mŒHClO4, 1.027 m, (NpIV/NpIII=2.300)ŇPt Pt, H2ŇHClO4, 1.027 mŒHClO4, 1.027 m, (NpIV/NpIII=6.874)ŇPt Pt, H2ŇHClO4, 1.0 mŒHClO4, 1.0 m, (NpV/NpIV=0.3896)ŇPt Pt, H2ŇHClO4, 1.0 mŒHClO4, 1.0 m, (NpV/NpIV=0.7801)ŇPt Pt, H2ŇHClO4, 1.0 mŒHClO4, 1.0 m, (NpV/NpIV=1.171)ŇPt Pt, H2ŇHClO4, 1.0 mŒHClO4, 1.0 m, (NpV/NpIV=1.560)ŇPt Pt, H2ŇHClO4, 1.0 mŒHClO4, 1.0 m, (NpV/NpIV=2.117)ŇPt Pt, H2ŇHClO4, 1.0 mŒHClO4, 1.0 m, (NpV/NpIV=2.498)ŇPt Pt, H2ŇHClO4, 1.0 mŒHClO4, 1.0 m, (NpV/NpIV=3.120)ŇPt Pt, H2ŇHClO4, 1.027 mŒHClO4, 1.027 m, (NpVI/NpV=0.3175)ŇPt Pt, H2ŇHClO4, 1.027 mŒHClO4, 1.027 m, (NpVI/NpV=0.6207)ŇPt Pt, H2ŇHClO4, 1.027 mŒHClO4, 1.027 m, (NpVI/NpV=1.336)ŇPt Pt, H2ŇHClO4, 1.027 mŒHClO4, 1.027 m, (NpVI/NpV=2.448)ŇPt Pt, H2ŇHClO4, 1.027 mŒHClO4, 1.027 m, (NpVI/NpV=5.024)ŇPt Pt, H2ŇHClO4, 1.0 MŒTlNO3,Tl(NO3)3, HNO3, 0.5 MŇPt Pt, H2ŇHClO4, 1.0 MŒTlNO3,Tl(NO3)3, HNO3, 1.0 MŇPt Pt, H2ŇHClO4, 1.0 MŒTlNO3,Tl(NO3)3, HNO3, 1.0 MŇPt Pt, H2ŇHClO4, 2.0 MŒTlNO3, Tl(NO3)3, HNO3, 2.0ŇPt Pt, H2ŇCH3COOH, 0.01 M, CH3COONa, 0.01 M, SrCl2, 0.996 M, quinhydroneŇPt Pt, H2ŇCH3COOH, 0.01 M, CH3COONa, 0.01 M, SrCl2, 1.793 M, quinhydroneŇPt Pt, H2ŇCH3COOH, 0.01 M, CH3COONa, 0.01 M, BaCl2, 0.5 M, quinhydroneŇPt Pt, H2ŇCH3COOH, 0.01 M, CH3COONa, 0.01 M, BaCl2, 0.9 M, quinhydroneŇPt Pt, H2ŇCH3COOH, 0.01 M, CH3COONa, 0.01 M, BaCl2, 0.15 M, quinhydroneŇPt Pt, H2ŇHCl, 6.078 mŒHCl, 6.078 mŒN2+Cl2, 0.00597 M, Pt Pt, H2ŇHCl, 6.078 mŒHCl, 6.078 mŒN2+Cl2, 0.01492 M, Pt Pt, H2ŇHCl, 6.078 mŒHCl, 6.078 mŒN2+Cl2, 0.04633 M, Pt Pt, H2ŇHCl, 6.078 mŒHCl, 6.078 mŒN2+Cl2, 0.09905 M, Pt Pt, H2ŇHI, 5.8 MŒHI, 5.8 M, I2, 0.29 MŒPt (UT [V]=0.2372–11.0·10–4(T–31.6 °C)) Pt, H2ŇHCl, 0.0100 mŒHIO3, 0.0100 m, I2,sol.ŇPt Pt, H2ŇHCl, 0.0950 mŒHIO3, 0.0950 m, I2,sol.ŇPt Pt, H2ŇHClO4, 0.001 m, Pb(ClO4)2, 0.001 m, PbO2,sol.ŇPt Pt, H2ŇHClO4, 0.0025 m, Pb(ClO4)2, 0.0025 m, PbO2,sol.ŇPt Pt, H2ŇHClO4, 0.01 m, Pb(ClO4)2, 0.01 m, PbO2,sol.ŇPt Pt, H2ŇHClO4, 0.025 m, Pb(ClO4)2, 0.025 m, PbO2,sol.ŇPt Pt, H2ŇHClO4, 0.1 m, Pb(ClO4)2, 0.1 m, PbO2,sol.ŇPt Pt, H2ŇHClO4, 0.25 m, Pb(ClO4)2, 0.01 m, PbO2,sol.ŇPt Pt, H2ŇHClO4, 0.25 m, Pb(ClO4)2, 0.001 m, PbO2,sol.ŇPt Pt, H2ŇHClO4, 0.25 m, Pb(ClO4)2, 0.0001 m, PbO2,sol.ŇPt
T [K, °C] U0 [V]
0 °C
31.6 °C
Ref.
0.1216 0.1428 0.1546 0.1676 0.1746 0.2039 0.7154 0.7329 0.7444 0.7518 0.7581 0.7631 0.7689 1.1067 1.1239 1.1434 1.1591 1.1721 1.2303 1.2306 1.193 1.2300 0.0012
52Coh 52Coh 52Coh 52Coh 52Coh 52Coh 52Coh 52Coh 52Coh 52Coh 52Coh 52Coh 52Coh 52Coh 52Coh 52Coh 52Coh 52Coh 36Noy 36Noy 36Noy 36Noy 31Lar
0.0037
31Lar
0.0007
31Lar
0.0025
31Lar
0.0043
31Lar
1.1478 1.1595 1.1741 1.1840 0.2372
25For 25For 25For 25For 10Ste
1.1425 1.1621 1.378 1.389 1.407 1.417 1.432 1.501 1.523 1.549
31Lun 31Lun 33Bat 33Bat 33Bat 33Bat 33Bat 33Bat 33Bat 33Bat Landolt-Börnstein New Series IV/9A
2 Cell voltages Cell composition 2) Pt, H2ŇH2SO4, 0.0005 m, PbSO4,sat.ŇPbO2ŇPt (UT [V]=U0–0.68479·10–3(T–298 K)+0.9111·10–6(T–298 K)2, 273
Landolt-Börnstein New Series IV/9A
97
T [K, °C] U0 [V]
Ref.
298 K
1.42151 35Har
298 K
1.43276 35Har
298 K
1.444458 35Har
298 K
1.46706 35Har
298 K
1.47976 35Har
298 K
1.49528 35Har
298 K
1.50502 35Har
298 K
1.51540 35Har
298 K
1.53427 35Har
298 K
1.54464 35Har
298 K
1.55733 35Har
298 K
1.57398 35Har
298 K
1.59038 35Har
298 K
1.61231 35Har
298 K
1.63121 35Har
298 K
1.64429 35Har
298 K
1.65507 35Har
298 K
1.67536 35Har
298 K
1.69379 35Har
298 K
1.71096 35Har
298 K
1.72646 35Har
298 K
1.74061 35Har
273 K 288 K 298 K 313 K 333 K
1.6769 1.6816 1.6849 1.6923 1.6986
35Har 35Har 35Har 35Har 35Har
98
2 Cell voltages
Cell composition 2) H2ŇHClO4ŇSb2O3ŇSb Indium (In) InŇInCl3, 0.001515 M, HCl, 0.02 M, AgClŇAg InŇInCl3, 0.00533 M, HCl, 0.02 M, AgClŇAg InŇInCl3, 0.01104 M, HCl, 0.02 M, AgClŇAg InŇInCl3, 0.02744 M, HCl, 0.02 M, AgClŇAg InŇInCl3, 0.01 MŒKNO3, 0.1 MŒKCl, 0.1 M, Hg2Cl2ŇHg InŇInCl3, 0.1 MŒKNO3,0.1 MŒKCl, 0.1 M, Hg2Cl2ŇHg InŇInCl3, 1.0 MŒKNO3,0.1 MŒKCl, 0.1 M, Hg2Cl2ŇHg In0.016wt%HgŇIn2(SO4)3ŇIn0.008wt%Hg In0.242wt%HgŇIn2(SO4)3ŇIn0.120wt%Hg In0.384wt%HgŇIn2(SO4)3ŇIn0.242wt%Hg In1.92wt%HgŇIn2(SO4)3ŇIn0.384wt%Hg Iodine (I) PtŇI2, 0.005 M, KI, 0.115 MŒI2, 0.05 M, KI, 0.115 MŇPt PtŇI2, 0.005 M, KI, 0.23 MŒI2, 0.05 M, KI, 0.23 MŇPt PtŇI2, 0.005 M, KI, 0.344 MŒI2, 0.05 M, KI, 0.344 MŇPt PtŇI2, 0.0005 M, KI, 0.115 MŒI2, 0.005 M, KI 0.005 MŇPt PtŇI2, 0.0005 M, KI, 0.23 MŒI2, 0.005 M, KI, 0.23 MŇPt PtŇI2, 0.0005 M, KI, 0.344 MŒI2, 0.005 M, KI, 0.344 MŇPt PtŇI2, 0.0139 M, KI, 1.0 MŒI2, 0.056 M, KI, 1.0 MŇPt PtŇI2, 0.0139 M, KI, 1.0 MŒI2, 0.109 M, KI, 1.0 MŇPt PtŇI2, 0.0139 M, KI, 1.0 MŒI2, 0.209 M, KI, 1.0 MŇPt PtŇI2, 0.0139 M, KI, 1.0 MŒI2, 0.508 M, KI, 1.0 MŇPt Iron (Fe) FeŇFeSO4, 0.123 M, H2SO4, 0.0 MŒKCl, 1.0 M, Hg2Cl2ŇHg FeŇFeSO4, 0.123 M, H2SO4, 0.0005 MŒKCl, 1.0 M, Hg2Cl2ŇHg FeŇFeSO4, 0.131 M, H2SO4, 0.05 MŒKCl, 1.0 M, Hg2Cl2ŇHg FeŇFeSO4, 0.123 M, H2SO4, 0.125 MŒKCl, 1.0 M, Hg2Cl2ŇHg FeŇFeSO4, 0.130 M, H2SO4, 0.25 MŒKCl, 1.0 M, Hg2Cl2ŇHg Lanthanum (La) LaŇLaBr3,sat.ŒKCl, 1 M, Hg2Cl2ŇHg La1.5wt%HgŇLaBr3,sat.ŒKCl, 1 M, Hg2Cl2ŇHg Lead (Pb) PbŇPbCl2ŇPbsat.Hg PbŇPbI2,sol., KI, 0.01 MŒKCl, 1.0 M, Hg2Cl2ŇHg PbŇPbI2,sol., KI, 0.1 MŒKCl, 1.0 M, Hg2Cl2ŇHg PbŇPb(NO3)2, 0.0036 MŒKNO3, 0.5 MŒKCl, 1.0 M, Hg2Cl2ŇHg PbŇPb(NO3)2, 0.011 MŒKNO3, 0.5 MŒKCl, 1.0 M, Hg2Cl2ŇHg PbŇPb(NO3)2, 0.05 MŒKNO3, 0.5 MŒKCl, 1.0 M, Hg2Cl2ŇHg PbŇPb(NO3)2, 0.36 MŒKNO3, 0.5 MŒKCl, 1.0 M, Hg2Cl2ŇHg PbŇPbO(yellow),sol., NaOH, 1.0 MŒNaOH, 1.0 M, HgOŇHg PbŇPbO(red),sol., NaOH, 1.0 MŒNaOH, 1.0 M, HgOŇHg PbŇPbO,sol., NaOH, HgOŇHg
PbŇPbS,sol., Na2S, 0.005 MŒKCl, 1.0 M, Hg2Cl2ŇHg
T [K, °C] U0 [V] 313 K
Ref.
0.1524
24Sch1
0 °C 0 °C 0 °C 0 °C
0.7370 0.7264 0.7191 0.7061 0.739 0.728 0.714 0.0058 0.0057 0.0038 0.0145
30Hak 30Hak 30Hak 30Hak 04Thi 04Thi 04Thi 10Ric 10Ric 10Ric 10Ric
20.4 °C 20.4 °C 20.4 °C 20.4 °C 20.4 °C 20.4 °C 20.4 °C 20.4 °C 20.4 °C 20.4 °C
0.0444 0.0352 0.0326 0.0304 0.0297 0.0295 0.0184 0.0273 0.0376 0.0588
08Lau 08Lau 08Lau 08Lau 08Lau 08Lau 08Lau 08Lau 08Lau 08Lau
0.753 0.753 0.724 0.669 0.634
24Ric 24Ric 24Ric 24Ric 24Ric
0.71 0.932
29Mül1 29Mül1
0.00584 0.5277 0.5812 0.487 0.472 0.456 0.438 0.6734 0.6808 0.673 0.675 0.675 0.700
29Car 17Lew3 17Lew3 03Sac 03Sac 03Sac 03Sac 22App 22App 26Fri 26Fri 26Fri 22Jel
20 °C 20 °C 0 °C 23.5 °C 39 °C 10.5 °C
Landolt-Börnstein New Series IV/9A
2 Cell voltages Cell composition 2) PbŇPbS,sol., Na2S, 0.01 MŒKCl, 1.0 M, Hg2Cl2ŇHg PbŇPbS,sol., Na2S, 0.05 MŒKCl, 1.0 M, Hg2Cl2ŇHg PbŇPbS,sol., Na2S, 0.1 MŒKCl, 1.0 M, Hg2Cl2ŇHg PbŇPbS,sol., Na2S, 0.5 MŒKCl, 1.0 M, Hg2Cl2ŇHg PbŇPbSO4,sol., Na2SO4, Hg2SO4ŇHg PbŇPbSO4,sol., ZnSO4,sat., Hg2SO4ŇPbsat.Hg PbŇPbSO4,sat., H2SO4, 0.00046 MŇPbO2 PbŇPbSO4,sat., H2SO4, 0.0124 MŇPbO2 PbŇPbSO4,sat., H2SO4, 0.0505 MŇPbO2 PbŇPbSO4,sat., H2SO4, 0.111 MŇPbO2 PbŇPbSO4,sat., H2SO4, 0.180 MŇPbO2 PbŇPbSO4,sat., H2SO4, 0.360 MŇPbO2 PbŇPbSO4,sat., H2SO4, 1.00 MŇPbO2 PbŇPbSO4ŇH2SO4, 0.05 mŇPbSO4ŇPbO2ŇPt (UT [V]=U0–0.310·10–3(T–298 K)+0.134·10–6(T–298 K)2, 273
Landolt-Börnstein New Series IV/9A
99
T [K, °C] U0 [V] 10.5 °C 10.5 °C 10.5 °C 10.5 °C
Ref.
0 °C 0 °C 0 °C 0 °C 0 °C 0 °C 0 °C 298 K
0.712 0.743 0.764 0.787 0.9697 0.00586 1.472 1.672 1.745 1.782 1.808 1.844 1.896 1.76874
298 K
1.80207 35Har
298 K
1.87910 35Har
298 K
1.91737 35Har
298 K
1.96637 35Har
298 K
2.00874 35Har
298 K
2.04789 35Har
298 K
2.08502 35Har
298 K
2.11910 35Har
298 K
2.15071 35Har 0.5480 0.5311 0.5311 0.5661 0.5362 0.5176 0.5188 0.5521 0.5256 0.5057 0.5071 0.5392 0.5149 0.4939 0.4946
22Jel 22Jel 22Jel 22Jel 18Hen 34Hoy 99Dol 99Dol 99Dol 99Dol 99Dol 99Dol 99Dol 35Har
33All 33All 33All 33All 33All 33All 33All 33All 33All 33All 33All 33All 33All 33All 33All
100
2 Cell voltages
Cell composition 2) Pbsat.HgŇPbCl2, 1.0 g/kg H2O, KCl, 292 g/kg H2O, AgClŇAg Pbsat.HgŇPbCl2, 0.125 g/kg H2O, LiCl, 2 g/kg H2OŒLiCl, 2 g/kg H2O, AgClŇAg Pbsat.HgŇPbCl2, 0.125 g/kg H2O, LiCl, 10 g/kg H2OŒLiCl, 10 g/kg H2O, AgClŇAg Pbsat.HgŇPbCl2, 0.125 g/kg H2O, LiCl, 50 g/kg H2OŒLiCl, 50 g/kg H2O, AgClŇAg Pbsat.HgŇPbCl2, 0.125 g/kg H2O, LiCl, 200 g/kg H2OŒLiCl, 200 g/kg H2O, AgClŇAg Pbsat.HgŇPbCl2, 0.125 g/kg H2O, LiCl, 600 g/kg H2OŒLiCl, 600 g/kg H2O, AgClŇAg Pbsat.HgŇPbCl2, 0.125 g/kg H2O, LiCl,sat.ŒLiCl,sat., AgClŇAg Pbsat.HgŇPbCl2, 0.25 g/kg H2O, LiCl, 2 g/kg H2OŒLiCl, 2 g/kg H2O, AgClŇAg Pbsat.HgŇPbCl2, 0.25 g/kg H2O, LiCl, 10 g/kg H2OŒLiCl, 10 g/kg H2O, AgClŇAg Pbsat.HgŇPbCl2, 0.25 g/kg H2O, LiCl, 50 g/kg H2OŒLiCl, 50 g/kg H2O, AgClŇAg Pbsat.HgŇPbCl2, 0.25 g/kg H2O, LiCl, 200 g/kg H2OŒLiCl, 200 g/kg H2O, AgClŇAg Pbsat.HgŇPbCl2, 0.25 g/kg H2O, LiCl, 600 g/kg H2OŒLiCl, 600 g/kg H2O, AgClŇAg Pbsat.HgŇPbCl2, 0.25 g/kg H2O, LiCl,sat.ŒLiCl,sat., AgClŇAg Pbsat.HgŇPbCl2, 0.5 g/kg H2O, LiCl, 2 g/kg H2OŒLiCl, 2 g/kg H2O, AgClŇAg Pbsat.HgŇPbCl2, 0.5 g/kg H2O, LiCl, 10 g/kg H2OŒLiCl, 10 g/kg H2O, AgClŇAg Pbsat.HgŇPbCl2, 0.5 g/kg H2O, LiCl, 50 g/kg H2OŒLiCl, 50 g/kg H2O, AgClŇAg Pbsat.HgŇPbCl2, 0.5 g/kg H2O, LiCl, 200 g/kg H2OŒLiCl, 200 g/kg H2O, AgClŇAg Pbsat.HgŇPbCl2, 0.5 g/kg H2O, LiCl, 600 g/kg H2OŒLiCl, 600 g/kg H2O, AgClŇAg Pbsat.HgŇPbCl2, 0.5 g/kg H2O, LiCl,sat.ŒLiCl,sat., AgClŇAg Pbsat.HgŇPbCl2, 1.0 g/kg H2O, LiCl, 2 g/kg H2OŒLiCl, 2 g/kg H2O, AgClŇAg Pbsat.HgŇPbCl2, 1.0 g/kg H2O, LiCl, 10 g/kg H2OŒLiCl, 10 g/kg H2O, AgClŇAg Pbsat.HgŇPbCl2, 1.0 g/kg H2O, LiCl, 50 g/kg H2OŒLiCl, 50 g/kg H2O, AgClŇAg Pbsat.HgŇPbCl2, 1.0 g/kg H2O, LiCl, 200 g/kg H2OŒLiCl, 200 g/kg H2O, AgClŇAg Pbsat.HgŇPbCl2, 1.0 g/kg H2O, LiCl, 600 g/kg H2OŒLiCl, 600 g/kg H2O, AgClŇAg Pbsat.HgŇPbCl2, 1.0 g/kg H2O, LiCl,sat.ŒLiCl,sat., AgClŇAg Pbsat.HgŇPbCl2,sat., LiCl, 2 g/kg H2OŒLiCl, 2 g/kg H2O, AgClŇAg Pbsat.HgŇPbCl2,sat., LiCl, 10 g/kg H2OŒLiCl, 10 g/kg H2O, AgClŇAg Pbsat.HgŇPbCl2,sat., LiCl, 50 g/kg H2OŒLiCl, 50 g/kg H2O, AgClŇAg Pbsat.HgŇPbCl2,sat., LiCl, 200 g/kg H2OŒLiCl, 200 g/kg H2O, AgClŇAg
T [K, °C] U0 [V]
Ref.
0.5272 0.5407
33All 35Par
0.5209
35Par
0.5117
35Par
0.5239
35Par
0.5658
35Par
0.5679 0.5315
35Par 35Par
0.5122
35Par
0.5032
35Par
0.5163
35Par
0.5575
35Par
0.5594 0.5221
35Par 35Par
0.5032
35Par
0.4946
35Par
0.5084
35Par
0.5485
35Par
0.5510 0.5128
35Par 35Par
0.494
35Par
0.4867
35Par
0.5002
35Par
0.5397
35Par
0.5435 0.4842 0.4842 0.4842 0.4842
35Par 35Par 35Par 35Par 35Par
Landolt-Börnstein New Series IV/9A
2 Cell voltages Cell composition 2) Pbsat.HgŇPbCl2,sat., LiCl, 600 g/kg H2OŒLiCl, 600 g/kg H2O, AgClŇAg Pbsat.HgŇPbCl2,sat., LiCl,sat.ŒLiCl,sat., AgClŇAg Pbsat.HgŇPbCl2, 0.125 g/kg H2O, NaCl, 5 g/kg H2OŒNaCl, 5 g/kg H2O, AgClŇAg Pbsat.HgŇPbCl2, 0.125 g/kg H2O, NaCl, 10 g/kg H2OŒNaCl, 10 g/kg H2O, AgClŇAg Pbsat.HgŇPbCl2, 0.125 g/kg H2O, NaCl, 50 g/kg H2OŒNaCl, 50 g/kg H2O, AgClŇAg Pbsat.HgŇPbCl2, 0.125 g/kg H2O, NaCl, 100 g/kg H2OŒNaCl, 100 g/kg H2O, AgClŇAg Pbsat.HgŇPbCl2, 0.125 g/kg H2O, NaCl, 250 g/kg H2OŒNaCl, 250 g/kg H2O, AgClŇAg Pbsat.HgŇPbCl2, 0.125 g/kg H2O, NaCl,sat.ŒNaCl,sat., AgClŇAg Pbsat.HgŇPbCl2, 0.25 g/kg H2O, NaCl, 5 g/kg H2OŒNaCl, 5 g/kg H2O, AgClŇAg Pbsat.HgŇPbCl2, 0.25 g/kg H2O, NaCl, 10 g/kg H2OŒNaCl, 10 g/kg H2O, AgClŇAg Pbsat.HgŇPbCl2, 0.25 g/kg H2O, NaCl, 50 g/kg H2OŒNaCl, 50 g/kg H2O, AgClŇAg Pbsat.HgŇPbCl2, 0.25 g/kg H2O, NaCl, 100 g/kg H2OŒNaCl, 100 g/kg H2O, AgClŇAg Pbsat.HgŇPbCl2, 0.25 g/kg H2O, NaCl, 250 g/kg H2OŒNaCl, 250 g/kg H2O, AgClŇAg Pbsat.HgŇPbCl2, 0.25 g/kg H2O, NaCl,sat.ŒNaCl,sat., AgClŇAg Pbsat.HgŇPbCl2, 0.5 g/kg H2O, NaCl, 5 g/kg H2OŒNaCl, 5 g/kg H2O, AgClŇAg Pbsat.HgŇPbCl2, 0.5 g/kg H2O, NaCl, 10 g/kg H2OŒNaCl, 10 g/kg H2O, AgClŇAg Pbsat.HgŇPbCl2, 0.5 g/kg H2O, NaCl, 50 g/kg H2OŒNaCl, 50 g/kg H2O, AgClŇAg Pbsat.HgŇPbCl2, 0.5 g/kg H2O, NaCl, 100 g/kg H2OŒNaCl, 100 g/kg H2O, AgClŇAg Pbsat.HgŇPbCl2, 0.5 g/kg H2O, NaCl, 250 g/kg H2OŒNaCl, 250 g/kg H2O, AgClŇAg Pbsat.HgŇPbCl2, 0.5 g/kg H2O, NaCl,sat.ŒNaCl,sat., AgClŇAg Pbsat.HgŇPbCl2, 1.0 g/kg H2O, NaCl, 5 g/kg H2OŒNaCl, 5 g/kg H2O, AgClŇAg Pbsat.HgŇPbCl2, 1.0 g/kg H2O, NaCl, 10 g/kg H2OŒNaCl, 10 g/kg H2O, AgClŇAg Pbsat.HgŇPbCl2, 1.0 g/kg H2O, NaCl, 50 g/kg H2OŒNaCl, 50 g/kg H2O, AgClŇAg Pbsat.HgŇPbCl2, 1.0 g/kg H2O, NaCl, 100 g/kg H2OŒNaCl, 100 g/kg H2O, AgClŇAg Pbsat.HgŇPbCl2, 1.0 g/kg H2O, NaCl, 250 g/kg H2OŒNaCl, 250 g/kg H2O, AgClŇAg Pbsat.HgŇPbCl2, 1.0 g/kg H2O, NaCl,sat.ŒNaCl,sat., AgClŇAg Pbsat.HgŇPbCl2, 2.0 g/kg H2O, NaCl, 5 g/kg H2OŒNaCl, 5 g/kg H2O, AgClŇAg Pbsat.HgŇPbCl2, 2.0 g/kg H2O, NaCl, 10 g/kg H2OŒNaCl, 10 g/kg H2O, Landolt-Börnstein New Series IV/9A
101
T [K, °C] U0 [V]
Ref.
0.4842 0.4842 0.5369
35Par 35Par 35Bra
0.5276
35Bra
0.5187
35Bra
0.5215
35Bra
0.5408
35Bra
0.5557 0.5272
35Bra 35Bra
0.5184
35Bra
0.5092
35Bra
0.5128
35Bra
0.5315
35Bra
0.5469 0.5174
35Bra 35Bra
0.5092
35Bra
0.5002
35Bra
0.5038
35Bra
0.5222
35Bra
0.5376 0.5078
35Bra 35Bra
0.5001
35Bra
0.4914
35Bra
0.4945
35Bra
0.5126
35Bra
0.5280 0.4984
35Bra 35Bra
0.4909
35Bra
102
2 Cell voltages
Cell composition 2) AgClŇAg Pbsat.HgŇPbCl2, 2.0 g/kg H2O, NaCl, 100 g/kg H2OŒNaCl, 100 g/kg H2O, AgClŇAg Pbsat.HgŇPbCl2, 2.0 g/kg H2O, NaCl, 250 g/kg H2OŒNaCl, 250 g/kg H2O, AgClŇAg Pbsat.HgŇPbCl2, 2.0 g/kg H2O, NaCl,sat.ŒNaCl,sat., AgClŇAg Pbsat.HgŇPbCl2,sat., NaCl, 5 g/kg H2OŒNaCl, 5 g/kg H2O, AgClŇAg Pbsat.HgŇPbCl2,sat., NaCl, 10 g/kg H2OŒNaCl, 10 g/kg H2O, AgClŇAg Pbsat.HgŇPbCl2,sat., NaCl, 50 g/kg H2OŒNaCl, 50 g/kg H2O, AgClŇAg Pbsat.HgŇPbCl2,sat., NaCl, 100 g/kg H2OŒNaCl, 100 g/kg H2O, AgClŇAg Pbsat.HgŇPbCl2,sat., NaCl, 250 g/kg H2OŒNaCl, 250 g/kg H2O, AgClŇAg Pbsat.HgŇPbCl2,sat., NaCl,sat.ŒNaCl,sat., AgClŇAg Pbsat.HgŇPbBr2,sat., KBrŒKBr, AgBrŇAg (UT [V]=0.3465–2.89·10–4(T–25 °C)) Pbsat.HgŇPbBr2, 1.536 mm, AgBrŇAg Pbsat.HgŇPbBr2, 3.626 mm, AgBrŇAg (UT [V]=0.4053+61.2·10–5(T–25 °C)–3.97·10–6(T–25 °C)2) Pbsat.HgŇPbBr2, 7.196 mm, AgBrŇAg (UT [V]=0.3835+54.6·10–5(T–25 °C)–3.20·10–6(T–25 °C)2) Pbsat.HgŇPbBr2, 9.551 mm, AgBrŇAg (UT [V]=0.3758+51.1·10–5(T–25 °C)–2.90·10–6(T–25 °C)2) Pbsat.HgŇPbBr2, 12.736 mm, AgBrŇAg (UT [V]=0.3682+50.2·10–5(T–25 °C)–2.70·10–6(T–25 °C)2) Pbsat.HgŇPbBr2, 18.200 mm, AgBrŇAg (UT [V]=0.3584+46.4·10–5(T–25 °C)–2.37·10–6(T–25 °C)2) Pbsat.HgŇPbCl2, 0.2116 mm, AgClŇAg Pbsat.HgŇPbCl2, 0.6197 mm, AgClŇAg Pbsat.HgŇPbCl2, 1.034 mm, AgClŇAg Pbsat.HgŇPbCl2, 1.337 mm, AgClŇAg Pbsat.HgŇPbCl2, 2.348 mm, AgClŇAg Pbsat.HgŇPbCl2, 2.62 mm, AgClŇAg Pbsat.HgŇPbCl2, 5.16 mm, AgClŇAg Pbsat.HgŇPbCl2, 10.39 mm, AgClŇAg Pbsat.HgŇPbCl2, 20.48 mm, AgClŇAg Pbsat.HgŇPbCl2, 29.55 mm, AgClŇAg Pbsat.HgŇPbCl2, 39.05 mm, AgClŇAg Pbsat.HgŇPbCl2, 0.001028 mm, Ba(NO3)2, 0.002135 m, AgClŇAg Pbsat.HgŇPbCl2, 0.002056 mm, Ba(NO3)2, 0.00427 m, AgClŇAg Pbsat.HgŇPbCl2, 0.004112 mm, Ba(NO3)2, 0.01709 m, AgClŇAg Pbsat.HgŇPbCl2, 0.01097 mm, Ba(NO3)2, 0.02279 m, AgClŇAg Pbsat.HgŇPbCl2, 0.01729 mm, Ba(NO3)2, 0.03575 m, AgClŇAg Pbsat.HgŇPbCl2, 0.019037 mm, Ba(NO3)2, 0.00503 m, AgClŇAg Pbsat.HgŇPbCl2, 0.019037 mm, Ba(NO3)2, 0.01003 m, AgClŇAg Pbsat.HgŇPbCl2, 0.019037 mm, Ba(NO3)2, 0.02008 m, AgClŇAg Pbsat.HgŇPbCl2, 0.019037 mm, Ba(NO3)2, 0.04013 m, AgClŇAg Pbsat.HgŇPbCl2, 0.019037 mm, Ba(NO3)2, 0.08027 m, AgClŇAg Pbsat.HgŇPbCl2, 0.019037 mm, Ba(NO3)2, 0.10025 m, AgClŇAg Pbsat.HgŇPbCl2, 0.000446 mm, Ba(NO3)2, 0.02004 m, AgClŇAg
T [K, °C] U0 [V]
Ref.
0.4858
35Bra
0.5040
35Bra
0.5183 0.4842 0.4842 0.4842 0.4842 0.4842 0.4842 0.3465
35Bra 35Bra 35Bra 35Bra 35Bra 35Bra 35Bra 32Can
0.4334 0.4053
42Bat 42Bat
0.3835
42Bat
0.3758
42Bat
0.3682
42Bat
0.3584
42Bat
0.6537 0.6143 0.5960 0.5870 0.5677 0.5639 0.5419 0.5205 0.5012 0.4913 0.4842 0.5994 0.5764 0.5333 0.5248 0.5130 0.5043 0.5052 0.5072 0.5096 0.5143 0.5154 0.6464
29Car 29Car 29Car 29Car 29Car 29Car 29Car 29Car 29Car 29Car 29Car 36Cro 36Cro 36Cro 36Cro 36Cro 36Cro 36Cro 36Cro 36Cro 36Cro 36Cro 36Cro
Landolt-Börnstein New Series IV/9A
2 Cell voltages Cell composition 2) Pbsat.HgŇPbCl2, 0.000892 mm, Ba(NO3)2, 0.02004 m, AgClŇAg Pbsat.HgŇPbCl2, 0.003567 mm, Ba(NO3)2, 0.02004 m, AgClŇAg Pbsat.HgŇPbCl2, 0.007136 mm, Ba(NO3)2, 0.02004 m, AgClŇAg Pbsat.HgŇPbCl2, 0.01427 mm, Ba(NO3)2, 0.02004 m, AgClŇAg Pbsat.HgŇPbCl2, 0.02856 mm, Ba(NO3)2, 0.02004 m, AgClŇAg PbHgŇPbI2,sol., PbI2,sat., KI, 0.025 m, AgIŇAg
PbHgŇPbI2,sol., PbI2,sat., KI, 0.05 m, AgIŇAg
PbHgŇPbI2,sol., PbI2,sat., KI, 0.1 m, AgIŇAg
Pbsat.HgŇPbHPO4,sol., H3PO4, 0.001 mŇH2, Pt Pbsat.HgŇPbHPO4,sol., H3PO4, 0.005 mŇH2, Pt Pbsat.HgŇPbHPO4,sol., H3PO4, 0.01 mŇH2, Pt Pbsat.HgŇPbHPO4,sol., H3PO4, 0.05 mŇH2, Pt Pbsat.HgŇPbHPO4,sol., H3PO4, 0.1 mŇH2, Pt Pbsat.HgŇPbHPO4,sol., H3PO4, 0.5 mŇH2, Pt Pbsat.HgŇPbHPO4,sol., H3PO4, 1.0 mŇH2, Pt Pbsat.HgŇPbHPO4,sol., H3PO4, 3.0 mŇH2, Pt Pbsat.HgŇPbHPO4,sol., H3PO4, 5.0 mŇH2, Pt Pbsat.HgŇPbHPO4,sol., H3PO4, 7.0 mŇH2, Pt Pbsat.HgŇPbHPO4,sol., H3PO4, 10.0 mŇH2, Pt Pbsat.HgŇPbO(red),sol., Ba(OH)2, 0.132 MŇH2, Pt
Landolt-Börnstein New Series IV/9A
103
T [K, °C] U0 [V]
15.3 °C 23.6 °C 25 °C 26.1 °C 30.0 °C 32.1 °C 35 °C 15.3 °C 17 °C 23.6°C 25 °C 26.1 °C 30.0 °C 32.2 °C 35 °C 36 °C 40 °C 15.3 °C 18.7 °C 23.6 °C 25 °C 26.1 °C 30.0 °C 32.2 °C 35 °C 36 °C 40 °C
20 °C 25 °C 30 °C 35 °C
0.6182 0.5647 0.5392 0.5161 0.4950 0.21043 0.20845 0.20810 0.20708 0.20760 0.20623 0.20515 0.2095 0.2091 0.2078 0.2075 0.2072 0.2065 0.2063 0.2053 0.2053 0.2043 0.2092 0.2081 0.2074 0.2070 0.2070 0.2056 0.2060 0.2046 0.2049 0.2035 0.0623 0.0978 0.1113 0.1383 0.1492 0.1724 0.1828 0.2018 0.2134 0.2229 0.2343 0.2599 0.2579 0.2561 0.2545
Ref. 36Cro 36Cro 36Cro 36Cro 36Cro 37Can2 37Can2 37Can2 37Can2 37Can2 37Can2 37Can2 37Can2 37Can2 37Can2 37Can2 37Can2 37Can2 37Can2 37Can2 37Can2 37Can2 37Can2 37Can2 37Can2 37Can2 37Can2 37Can2 37Can2 37Can2 37Can2 37Can2 47Mas 47Mas 47Mas 47Mas 47Mas 47Mas 47Mas 47Mas 47Mas 47Mas 47Mas 29Ish 29Ish 29Ish 29Ish
104 Cell composition 2) Pbsat.HgŇPbBr2,sol., PbBr2,sat., Hg2Br2ŇHg
2 Cell voltages T [K, °C] U0 [V] 40 °C 20 °C 25 °C 30 °C 35 °C
Pbsat.HgŇPbI,sol., PbBr2,sat., KI, 0.01 MŒKI, 0.01 M, PbI,sol., Hg2I2,sol.ŇHg (UT [V]=0.3175+1.29·10–4(T–25 °C), 20
Ref.
0.2531 0.4136 0.4138 0.4140 0.4142 0.3175
29Ish 33Ish2 33Ish2 33Ish2 33Ish2 28Vos
0.4170
28Vos
0.6714 0.6683 0.6664 0.96466 0.9635 0.9644 0.9653 0.9660 0.104 0.043 0.035 0.026
32Spe2 32Spe2 32Spe2 18Hen 33Ued2 33Ued2 33Ued2 33Ued2 03Con 03Con 03Con 03Con
2.3952
13Lew
2.3871 2.3861 1.9790 2.3871 2.1288 2.1245 2.1203 2.3952
24Dru 24Dru 33Ued1 24Dru 33Ued1 33Ued1 33Ued1 13Lew
2.3861 2.6760 2.6748 2.6736
24Dru 33Ued2 33Ued2 33Ued2
1.561
34Sch
1.428 1.445 1.449 1.451
26Roy 26Roy 26Roy 26Roy
0.213 0.207
32Has 32Has
Landolt-Börnstein New Series IV/9A
2 Cell voltages Cell composition 2) HgŇHg2Cl2, KCl, 0.1 mŒKCl,sat.ŒK2C2O4, 0.0656 m, Ag2C2O4ŇAg HgŇHg2Cl2, KCl, 0.1 mŒKCl,sat.ŒK2C2O4, 0.1314 m, Ag2C2O4ŇAg HgŇHg2Cl2, KCl, 0.1 mŒKCl,sat.ŒK2C2O4, 0.656 m, Ag2C2O4ŇAg HgŇHg2Cl2, KCl, 0.1 MŒNaNO3, 0.3 M, KNO3, 1.7 MŒAgClO4, 0.00271 MŇAg HgŇHg2Cl2, KCl, 0.1 MŒNaNO3, 0.3 M, KNO3, 1.7 MŒAgClO4, 0.0271 MŇAg HgŇHg2Cl2, KCl, 0.1 MŒNaNO3, 0.3 M, KNO3, 1.7 MŒAgClO4, 0.271 MŇAg HgŇHg2Cl2, KCl, 0.1 MŒKCl,sat.ŒK2CrO4, 0.005 M, Ag2CrO4ŇAg HgŇHg2Cl2, KCl, 0.1 MŒKCl,sat.ŒK2CrO4, 0.01 M, Ag2CrO4ŇAg HgŇHg2Cl2, KCl, 0.1 MŒKCl,sat.ŒK2CrO4, 0.05 M, Ag2CrO4ŇAg HgŇHg2Cl2, KCl, 0.1 MŒKCl,sat.ŒK2CrO4, 0.1 M, Ag2CrO4ŇAg HgŇHg2Cl2, KCl, 0.1 MŒKCl,sat.ŒK2CrO4, 0.5 M, Ag2CrO4ŇAg HgŇHg2Cl2, KCl, 0.1 MŒNaNO3, 0.3 M, KNO3, 1.7 MŒAgNO3, 0.001 MŇAg HgŇHg2Cl2, KCl, 0.1 MŒNaNO3, 0.3 M, KNO3, 1.7 MŒAgNO3, 0.01 MŇAg HgŇHg2Cl2, KCl, 0.1 MŒNaNO3, 0.3 M, KNO3, 1.7 MŒAgNO3, 0.1 MŇAg HgŇHg2Cl2, KCl, 0.1 MŒNaNO3, 0.3 M, KNO3, 1.7 MŒAg2SO4, 0.002 MŇAg HgŇHg2Cl2, KCl, 0.1 MŒNaNO3, 0.3 M, KNO3, 1.7 MŒAg2SO4, 0.02 MŇAg HgŇHg2SO4,sol., CdSO4, 0.005 mŒKCl,sat.ŒKCl, 0.1 M, AgClŇAg HgŇHg2SO4,sol., CdSO4, 0.01 mŒKCl,sat.ŒKCl, 0.1 M, AgClŇAg HgŇHg2SO4,sol., CdSO4, 0.05 mŒKCl,sat.ŒKCl, 0.1 M, AgClŇAg HgŇHg2SO4,sol., CdSO4, 0.1 mŒKCl,sat.ŒKCl, 0.1 M, AgClŇAg HgŇHg2SO4,sol., CdSO4, 0.5 mŒKCl,sat.ŒKCl, 0.1 M, AgClŇAg HgŇHg2SO4,sol., CdSO4, 1.0 mŒKCl,sat.ŒKCl, 0.1 M, AgClŇAg HgŇHg2SO4,sol., CdSO4, 1.5 mŒKCl,sat.ŒKCl, 0.1 M, AgClŇAg HgŇHg2SO4,sol., K2SO4, 0.005 mŒKCl,sat.ŒKCl, 0.1 M, AgClŇAg HgŇHg2SO4,sol., K2SO4, 0.01 mŒKCl,sat.ŒKCl, 0.1 M, AgClŇAg HgŇHg2SO4,sol., K2SO4, 0.05 mŒKCl,sat.ŒKCl, 0.1 M, AgClŇAg HgŇHg2SO4,sol., K2SO4, 0.1 mŒKCl,sat.ŒKCl, 0.1 M, AgClŇAg HgŇHg2SO4,sol., K2SO4, 0.5 mŒKCl,sat.ŒKCl, 0.1 M, AgClŇAg HgŇHg2SO4,sol., MgSO4, 0.005 mŒKCl,sat.ŒKCl, 0.1 M, AgClŇAg HgŇHg2SO4,sol., MgSO4, 0.01 mŒKCl,sat.ŒKCl, 0.1 M, AgClŇAg HgŇHg2SO4,sol., MgSO4, 0.05 mŒKCl,sat.ŒKCl, 0.1 M, AgClŇAg HgŇHg2SO4,sol., MgSO4, 0.1 mŒKCl,sat.ŒKCl, 0.1 M, AgClŇAg HgŇHg2SO4,sol., MgSO4, 0.5 mŒKCl,sat.ŒKCl, 0.1 M, AgClŇAg HgŇHg2SO4,sol., MgSO4, 1.0 mŒKCl,sat.ŒKCl, 0.1 M, AgClŇAg HgŇHg2SO4,sol., Na2SO4, 0.005 mŒKCl,sat.ŒKCl, 0.1 M, AgClŇAg HgŇHg2SO4,sol., Na2SO4, 0.01 mŒKCl,sat.ŒKCl, 0.1 M, AgClŇAg HgŇHg2SO4,sol., Na2SO4, 0.05 mŒKCl,sat.ŒKCl, 0.1 M, AgClŇAg HgŇHg2SO4,sol., Na2SO4, 0.1 mŒKCl,sat.ŒKCl, 0.1 M, AgClŇAg HgŇHg2SO4,sol., Na2SO4, 0.3 mŒKCl,sat.ŒKCl, 0.1 M, AgClŇAg HgŇHg2SO4,sol., Na2SO4, 0.6 mŒKCl,sat.ŒKCl, 0.1 M, AgClŇAg HgŇHg2Cl2, KCl, 1.0 MŒAuCl3, 0.01 MŇAu HgŇHg2Cl2, KCl, 1.0 MŒNH4NO3,sat.ŒHNO3, 3.32 M, Au2OŇAu HgŇHg2SO4, H2SO4, 0.0506 mŒH2SO4, 0.0506 m, Au2O3ŇAu Landolt-Börnstein New Series IV/9A
105
T [K, °C] U0 [V]
Ref.
0.196 0.190 0.182 0.3114
32Has 32Has 32Has 27Bre
0.3681
27Bre
0.4221
27Bre
0.203 0.195 0.182 0.175 0.161 0.2856
32Has 32Has 32Has 32Has 32Has 27Bre
0.3433 0.3980 0.3031
27Bre 27Bre 27Bre
0.3579 0.399 0.393 0.387 0.3855 0.384 0.382 0.381 0.398 0.392 0.3775 0.372 0.3635 0.399 0.393 0.380 0.375 0.366 0.360 0.398 0.392 0.378 0.3735 0.369 0.3675 0.894 0.835 0.599
27Bre 32Has 32Has 32Has 32Has 32Has 32Has 32Has 32Has 32Has 32Has 32Has 32Has 32Has 32Has 32Has 32Has 32Has 32Has 32Has 32Has 32Has 32Has 32Has 32Has 06Faw 07Cam 27Ger
106
2 Cell voltages
Cell composition 2) HgŇHg2SO4, H2SO4, 0.1031 mŒH2SO4, 0.1031 m, Au2O3ŇAu HgŇHg2SO4, H2SO4, 1.031 mŒH2SO4, 1.031 m, Au2O3ŇAu HgŇPbS,sat.ŇPbSO4,sat.ŇPbsat.Hg HgŇHg2Cl2, KCl, 1.0 MŒHCl, 1.0 M, CuCl, 0.1016 M, CuCl2, 0.1001 MŇPt HgŇHg2Cl2, KCl, 1.0 MŒHCl, 1.0 M, CuCl, 0.1254 M, CuCl2, 0.2002 MŇPt HgŇHg2Cl2, KCl, 1.0 MŒHCl, 1.0 M, CuCl, 0.1449 M, CuCl2, 0.3003 MŇPt HgŇHg2Cl2, KCl, 1.0 MŒHCl, 1.0 M, CuCl, 0.1703 M, CuCl2, 0.4004 MŇPt HgŇHg2Cl2, KCl, 1.0 MŒHCl, 1.0 M, CuCl, 0.1919 M, CuCl2, 0.5005 MŇPt HgŇHg2Cl2, KCl, 0.1 MŒFeSO4, 0.5 MŇFe (ultrapure) HgŇHg2Cl2, KCl, 0.1 MŒFeSO4, 0.5 MŇFe (technical purity) HgŇHg2Cl2, KCl, 0.1 MŒFeSO4, 0.5 MŇFe (reduced) HgŇHg2Cl2, KCl, 0.1 MŒFeSO4, 0.5 MŇFe (hydrogen loaded) HgŇHg2Cl2, KCl, 1.0 MŒHCl, 0.1 M, FeCl2, 0.0995 M, FeCl3, 0.0005 MŇPt HgŇHg2Cl2, KCl, 1.0 MŒHCl, 0.1 M, FeCl2, 0.099 M, FeCl3, 0.001 MŇPt HgŇHg2Cl2, KCl, 1.0 MŒHCl, 0.1 M, FeCl2, 0.09 M, FeCl3, 0.01 MŇPt HgŇHg2Cl2, KCl, 1.0 MŒHCl, 0.1 M, FeCl2, 0.05 M, FeCl3, 0.05 MŇPt HgŇHg2Cl2, KCl, 1.0 MŒHCl, 0.1 M, FeCl2, 0.01 M, FeCl3, 0.09 MŇPt HgŇHg2Cl2, KCl, 1.0 MŒHCl, 0.1 M, FeCl2, 0.004 M, FeCl3, 0.096 MŇPt HgŇHg2Cl2, KCl, 1.0 MŒHCl, 0.1 M, FeCl2, 0.002 M, FeCl3, 0.098 MŇPt HgŇHg2Cl2, KCl, 1.0 MŒHCl, 0.5 M, FeCl2, 0.45 M, FeCl3, 0.05 MŇPt HgŇHg2Cl2, KCl, 1.0 MŒHCl, 0.25 M, FeCl2, 0.225 M, FeCl3, 0.025 MŇPt HgŇHg2Cl2, KCl, 1.0 MŒHCl, 0.75 M, FeCl2, 0.225 M, FeCl3, 0.025 MŇPt HgŇHg2Cl2, KCl, 1.0 MŒNH4Cl, 1.0 M, HCl, 0.1 M, FeCl3, 0.1 M, FeCl2, 0.1 MŇPt HgŇHg2Cl2, KCl, 1.0 MŒNH4Cl, 2.0 M, HCl, 0.1 M, FeCl3, 0.1 M, FeCl2, 0.1 MŇPt HgŇHg2Cl2, KCl, 1.0 MŒNaCl, 1.0 M, HCl, 0.1 M, FeCl3, 0.1 M, FeCl2, 0.1 MŇPt HgŇHg2Cl2, KCl, 1.0 MŒNaCl, 2.0 M, HCl, 0.1 M, FeCl3, 0.1 M, FeCl2, 0.1 MŇPt HgŇHg2Cl2, KCl, 1.0 MŒKCl, 1.0 M, HCl, 0.1 M, FeCl3, 0.1 M, FeCl2, 0.1 MŇPt HgŇHg2Cl2, KCl, 1.0 MŒKCl, 2.0 M, HCl, 0.1 M, FeCl3, 0.1 M, FeCl2, 0.1 MŇPt HgŇHg2Cl2, KCl, 1.0 MŒLiCl, 1.0 M, HCl, 0.1 M, FeCl3, 0.1 M, FeCl2, 0.1 MŇPt HgŇHg2Cl2, KCl, 1.0 MŒLiCl, 2.0 M, HCl, 0.1 M, FeCl3, 0.1 M, FeCl2, 0.1 MŇPt HgŇHg2Cl2, KCl, 1.0 MŒMgCl2, 1.0 M, HCl, 0.1 M, FeCl3, 0.1 M, FeCl2, 0.1 MŇPt HgŇHg2Cl2, KCl, 1.0 MŒMgCl2, 2.0 M, HCl, 0.1 M, FeCl3, 0.1 M, FeCl2, 0.1 MŇPt HgŇHg2Cl2, KCl, 1.0 MŒCaCl2, 1.0 M, HCl, 0.1 M, FeCl3, 0.1 M, FeCl2, 0.1 MŇPt HgŇHg2Cl2, KCl, 1.0 MŒCaCl2, 2.0 M, HCl, 0.1 M, FeCl3, 0.1 M, FeCl2, 0.1 MŇPt HgŇHg2Cl2, KCl, 1.0 MŒBaCl2, 1.0 M, HCl, 0.1 M, FeCl3, 0.1 M, FeCl2, 0.1 MŇPt HgŇHg2Cl2, KCl, 1.0 MŒBaCl2, 2.0 M, HCl, 0.1 M, FeCl3, 0.1 M,
T [K, °C] U0 [V]
20 °C 20 °C 20 °C 20 °C 17 °C 17 °C 17 °C 17 °C 17 °C 17 °C 17 °C 17 °C 17 °C 17 °C
Ref.
0.629 0.690 0.0670 0.1489 0.1673 0.1841 0.1920 0.2033 0.761 0.765 0.761 0.9 0.296 0.312 0.375 0.427 0.483 0.506 0.522 0.346 0.362 0.341 0.6972
27Ger 27Ger 29Nim 09Pom 09Pom 09Pom 09Pom 09Pom 07Ric 07Ric 07Ric 07Ric 98Pet 98Pet 98Pet 98Pet 98Pet 98Pet 98Pet 98Pet 98Pet 98Pet 29Isg
0.6890
29Isg
0.7001
29Isg
0.6978
29Isg
0.6983
29Isg
0.6913
29Isg
0.7047
29Isg
0.7016
29Isg
0.7038
29Isg
0.7014
29Isg
0.7033
29Isg
0.7026
29Isg
0.7032
29Isg
0.7025
29Isg Landolt-Börnstein New Series IV/9A
2 Cell voltages Cell composition 2) FeCl2, 0.1 MŇPt HgŇHg2Cl2, KCl, 1.0 MŒZnCl2, 1.0 M, HCl, 0.1 M, FeCl3, 0.1 M, FeCl2, 0.1 MŇPt HgŇHg2Cl2, KCl, 1.0 MŒZnCl2, 2.0 M, HCl, 0.1 M, FeCl3, 0.1 M, FeCl2, 0.1 MŇPt HgŇHg2Cl2, KCl, 1.0 MŒCdCl2, 1.0 M, HCl, 0.1 M, FeCl3, 0.1 M, FeCl2, 0.1 MŇPt HgŇHg2Cl2, KCl, 1.0 MŒCdCl2, 2.0 M, HCl, 0.1 M, FeCl3, 0.1 M, FeCl2, 0.1 MŇPt HgŇHg2Cl2, KCl, 1.0 MŒNH4NO3, 1.0 M, HCl, 0.1 M, FeCl3, 0.1 M, FeCl2, 0.1 MŇPt HgŇHg2Cl2, KCl, 1.0 MŒNH4NO3, 2.0 M, HCl, 0.1 M, FeCl3, 0.1 M, FeCl2, 0.1 MŇPt HgŇHg2Cl2, KCl, 1.0 MŒNaNO3, 1.0 M, HCl, 0.1 M, FeCl3, 0.1 M, FeCl2, 0.1 MŇPt HgŇHg2Cl2, KCl, 1.0 MŒNaNO3, 2.0 M, HCl, 0.1 M, FeCl3, 0.1 M, FeCl2, 0.1 MŇPt HgŇHg2Cl2, KCl, 1.0 MŒKNO3, 1.0 M, HCl, 0.1 M, FeCl3, 0.1 M, FeCl2, 0.1 MŇPt HgŇHg2Cl2, KCl, 1.0 MŒKNO3, 2.0 M, HCl, 0.1 M, FeCl3, 0.1 M, FeCl2, 0.1 MŇPt HgŇHg2Cl2, KCl, 1.0 MŒLiNO3, 1.0 M, HCl, 0.1 M, FeCl3, 0.1 M, FeCl2, 0.1 MŇPt HgŇHg2Cl2, KCl, 1.0 MŒLiNO3, 2.0 M, HCl, 0.1 M, FeCl3, 0.1 M, FeCl2, 0.1 MŇPt HgŇHg2Cl2, KCl, 1.0 MŒMg(NO3)2, 1.0 M, HCl, 0.1 M, FeCl3, 0.1 M, FeCl2, 0.1 MŇPt HgŇHg2Cl2, KCl, 1.0 MŒMg(NO3)2, 2.0 M, HCl, 0.1 M, FeCl3, 0.1 M, FeCl2, 0.1 MŇPt HgŇHg2Cl2, KCl, 1.0 MŒCa(NO3)2, 1.0 M, HCl, 0.1 M, FeCl3, 0.1 M, FeCl2, 0.1 MŇPt HgŇHg2Cl2, KCl, 1.0 MŒCa(NO3)2, 2.0 M, HCl, 0.1 M, FeCl3, 0.1 M, FeCl2, 0.1 MŇPt HgŇHg2Cl2, KCl, 1.0 MŒSr(NO3)2, 1.0 M, HCl, 0.1 M, FeCl3, 0.1 M, FeCl2, 0.1 MŇPt HgŇHg2Cl2, KCl, 1.0 MŒSr(NO3)2, 2.0 M, HCl, 0.1 M, FeCl3, 0.1 M, FeCl2, 0.1 MŇPt HgŇHg2Cl2, KCl, 1.0 MŒCd(NO3)2, 1.0 M, HCl, 0.1 M, FeCl3, 0.1 M, FeCl2, 0.1 MŇPt HgŇHg2Cl2, KCl, 1.0 MŒCd(NO3)2, 2.0 M, HCl, 0.1 M, FeCl3, 0.1 M, FeCl2, 0.1 MŇPt HgŇHg2Cl2, KCl, 1.0 MŒKCl, 3.5 MŒHNO3, 0.05 M, Fe(NO3)2, 0.05 M, Fe(NO3)3, 0.05 MŇPt HgŇHg2Cl2, KCl, 1.0 MŒKCl, 1.75 MŒHNO3, 0.05 M, Fe(NO3)2, 0.05 M, Fe(NO3)3, 0.05 MŇPt HgŇHg2Cl2, KCl, 1.0 MŒKCl, 3.5 MŒHNO3, 0.0125 M, Fe(NO3)2, 0.01 M, Fe(NO3)3, 0.05 MŇPt HgŇHg2Cl2, KCl, 1.0 MŒKCl, 1.75 MŒHNO3, 0.0125 M, Fe(NO3)2, 0.01 M, Fe(NO3)3, 0.056 MŇPt
Landolt-Börnstein New Series IV/9A
107
T [K, °C] U0 [V]
Ref.
0.7055
29Isg
0.7100
29Isg
0.7112
29Isg
0.7144
29Isg
0.7123
29Isg
0.7141
29Isg
0.7139
29Isg
0.7164
29Isg
0.7130
29Isg
0.7138
29Isg
0.7176
29Isg
0.7258
29Isg
0.7195
29Isg
0.7292
29Isg
0.7171
29Isg
0.7254
29Isg
0.7171
29Isg
0.7225
29Isg
0.7260
29Isg
0.7382
29Isg
0.4494
12Noy
0.4479
12Noy
0.4519
12Noy
0.4517
12Noy
108
2 Cell voltages
Cell composition 2) HgŇHg2Cl2, KCl, 1.0 MŒKCl, 3.5 MŒHNO3, 0.05 M, Fe(NO3)2, 0.0045 M, Fe(NO3)3, 0.0056 MŇPt HgŇHg2Cl2, KCl, 1.0 MŒKCl, 1.75 MŒHNO3, 0.05 M, Fe(NO3)2, 0.0045 M, Fe(NO3)3, 0.0056 MŇPt HgŇHg2Cl2, KCl, 1.0 MŒKCl, 3.5 MŒHNO3, 0.05 M, Fe(NO3)2, 0.00257 M, Fe(NO3)3, 0.0064 MŇPt HgŇHg2Cl2, KCl, 1.0 MŒKCl, 1.75 MŒHNO3, 0.05 M, Fe(NO3)2, 0.0257 M, Fe(NO3)3, 0.0064 MŇPt HgŇHg2Cl2, KCl, 1.0 MŒK4Fe(CN)6, 0.09 M, K3Fe(CN)6, 0.01 MŇPt HgŇHg2Cl2, KCl, 1.0 MŒK4Fe(CN)6, 0.08 M, K3Fe(CN)6, 0.02 MŇPt HgŇHg2Cl2, KCl, 1.0 MŒK4Fe(CN)6, 0.05 M, K3Fe(CN)6, 0.05 MŇPt HgŇHg2Cl2, KCl, 1.0 MŒK4Fe(CN)6, 0.02 M, K3Fe(CN)6, 0.08 MŇPt HgŇHg2Cl2, KCl, 1.0 MŒK4Fe(CN)6, 0.01 M, K3Fe(CN)6, 0.09 MŇPt HgŇHg2Cl2, KCl, 0.1 mŒKCN, 0.0 m, K4Fe(CN)6, 0.01 m, K3Fe(CN)6, 0.01 mŇPt HgŇHg2Cl2, KCl, 0.1 mŒKCN, 0.0321 m, K4Fe(CN)6, 0.01 m, K3Fe(CN)6, 0.01 mŇPt HgŇHg2Cl2, KCl, 0.1 mŒKCN, 0.1284 m, K4Fe(CN)6, 0.01 m, K3Fe(CN)6, 0.01 mŇPt HgŇHg2Cl2, KCl, 0.1 mŒKCN, 0.2766 m, K4Fe(CN)6, 0.01 m, K3Fe(CN)6, 0.01 mŇPt HgŇHg2Cl2, KCl, 0.1 mŒKCN, 0.5532 m, K4Fe(CN)6, 0.01 m, K3Fe(CN)6, 0.01 mŇPt HgŇHg2Cl2, KCl, 0.1 mŒKCN, 0.8685 m, K4Fe(CN)6, 0.01 m, K3Fe(CN)6, 0.01 mŇPt HgŇHg2Cl2, KCl, 0.1 mŒKCN, 1.1580 m, K4Fe(CN)6, 0.01 m, K3Fe(CN)6, 0.01 mŇPt HgŇHg2Cl2, KCl, 1.0 MŒKCl,sat.ŒKI, 0.000978 M, I2,sol.ŇPt HgŇHg2Cl2, KCl, 1.0 MŒKCl,sat.ŒKI, 0.00391 M, I2,sol.ŇPt HgŇHg2Cl2, KCl, 1.0 MŒKCl,sat.ŒKI, 0.01 M, I2,sol.ŇPt HgŇHg2Cl2, KCl, 1.0 MŒKCl,sat.ŒKI, 0.02 M, I2,sol.ŇPt HgŇHg2Cl2, KCl, 1.0 MŒKCl,sat.ŒKI, 0.0625 M, I2,sol.ŇPt HgŇHg2Cl2, KCl, 1.0 MŒKCl,sat.ŒKI, 0.1 M, I2,sol.ŇPt HgŇHg2Cl2, KCl, 1.0 MŒKCl,sat.ŒKI, 0.5 M, I2,sol.ŇPt HgŇHg2Cl2, KCl, 1.0 MŒKCl,sat.ŒKI, 1.0 M, I2,sol.ŇPt HgŇHg2Cl2, KCl, 1.0 MŒCuI,sol., I2,sol.ŇPt HgŇHg2Cl2, KCl, 1.0 MŒKNO3, 0.1 M, PbI2,sol., I2,sol.ŇPt HgŇHg2Cl2, KCl, 1.0 MŒKCl, 0.5 MŒHIO3, 1.0 M, I2,sol.ŇPt HgŇHg2Cl2, HCl, 0.1 MŒHCl, 0.1 MŇair+Cl2, 0.00293 atm, PtIr HgŇHg2Cl2, HCl, 0.1 MŒHCl, 0.1 MŇair+Cl2, 0.00629 atm, PtIr HgŇHg2Cl2, HCl, 0.1 MŒHCl, 0.1 MŇair+Cl2, 0.0124 atm, PtIr HgŇHg2Cl2, HCl, 0.1 MŒHCl, 0.1 MŇair+Cl2, 0.0249 atm, PtIr HgŇHg2Cl2, HCl, 0.1 MŒHCl, 0.1 MŇair+Cl2, 0.0490 atm, PtIr HgŇHg2Cl2, HCl, 1.0 MŒHCl, 1.0 MŇCl2, PtIr(15wt%)
HgŇCrCl2, 2.163 M, CrCl3, 0.241 M, HCl, 0.1 MŒKCl, 0.1 M, Hg2Cl2ŇHg
T [K, °C] U0 [V]
Ref.
0.4649
12Noy
0.4649
12Noy
0.4131
12Noy
0.4121
12Noy
0.133 0.153 0.189 0.222 0.241 0.0684
02Fre 02Fre 02Fre 02Fre 02Fre 32Mas1
0.0747
32Mas1
0.0892
32Mas1
0.1040
32Mas1
0.1182
32Mas1
0.1242
32Mas1
0.1257
32Mas1
0.440 0.4080 0.3872 0.3780 0.3456 0.3340 0.2978 0.2892 20...21 °C 0.358 20...21 °C 0.400 18 °C 0.841
22Keo 22Keo 22Keo 22Keo 22Keo 22Keo 22Keo 22Keo 10Fed 10Fed 05Lut1, 05Lut2 11Lew 11Lew 11Lew 11Lew 11Lew 22Ger 22Ger 22Ger 17For
15.0 °C 24.9 °C 35.0 °C
1.0150 1.0242 1.0330 1.0424 1.0508 1.0996 1.0903 1.0813 0.801
Landolt-Börnstein New Series IV/9A
2 Cell voltages Cell composition 2) HgŇCrCl2, 3.153 M, CrCl3, 1.457 M, HCl, 0.1 MŒKCl, 0.1 M, Hg2Cl2ŇHg HgŇCrCl2, 0.774 M, CrCl3, 1.200 M, HCl, 0.1 MŒKCl, 0.1 M, Hg2Cl2ŇHg HgŇCrCl2, 0.773 M, CrCl3, 3.627 M, HCl, 0.1 MŒKCl, 0.1 M, Hg2Cl2ŇHg HgŇHg2Cl2, CaCl2, 0.002 MŒCaCl2, 0.001 M, Hg2Cl2ŇHg HgŇHg2Cl2, CaCl2, 0.0025 MŒCaCl2, 0.00125 M, Hg2Cl2ŇHg HgŇHg2Cl2, CaCl2, 0.0025 MŒCaCl2, 0.002 M, Hg2Cl2ŇHg HgŇHg2Cl2, CaCl2, 0.005 MŒCaCl2, 0.0025 M, Hg2Cl2ŇHg HgŇHg2Cl2, SrCl2, 0.002 MŒSrCl2, 0.001 M, Hg2Cl2ŇHg HgŇHg2Cl2, SrCl2, 0.0025 MŒSrCl2, 0.00125 M, Hg2Cl2ŇHg HgŇHg2Cl2, SrCl2, 0.0025 MŒSrCl2, 0.002 M, Hg2Cl2ŇHg HgŇHg2Cl2, BaCl2, 0.002 MŒBaCl2, 0.001 M, Hg2Cl2ŇHg HgŇHg2Cl2, BaCl2, 0.0025 MŒBaCl2, 0.001 M, Hg2Cl2ŇHg HgŇHg2Cl2, BaCl2, 0.002 MŒBaCl2, 0.00125 M, Hg2Cl2ŇHg HgŇHg2Cl2, BaCl2, 0.005 MŒBaCl2, 0.0025 M, Hg2Cl2ŇHg HgŇHg2Cl2, BaCl2, 0.01 MŒBaCl2, 0.005 M, Hg2Cl2ŇHg HgŇHg2Cl2, HCl, 0.1 MŒHCl, 0.01 M, Hg2Cl2ŇHg HgŇHg2Cl2, KCl, 0.1 MŒKCl, 0.01 M, Hg2Cl2ŇHg HgŇHg2Cl2, KCl, 0.1 MŒKCl, 1.0 M, Hg2Cl2ŇHg HgŇHg2Cl2, KCl, 0.1 MŒKCl, 3.5 M, Hg2Cl2ŇHg HgŇHg2Cl2, ZnCl2, 0.00125 MŒZnCl2, 0.001 M, Hg2Cl2ŇHg HgŇHg2Cl2, ZnCl2, 0.0025 MŒZnCl2, 0.00125 M, Hg2Cl2ŇHg HgŇHg2Cl2, ZnCl2, 0.005 MŒZnCl2, 0.0025 M, Hg2Cl2ŇHg HgŇHg2Cl2, ZnCl2, 0.01 MŒZnCl2, 0.005 M, Hg2Cl2ŇHg HgŇHg2I2,sol., KI, 0.05 mŒKCl, 0.1 m, Hg2Cl2ŇHg HgŇHg2I2,sol., KI, 0.1 mŒKCl, 0.1 m, Hg2Cl2ŇHg HgŇHgNO3, 0.01 M, HNO3, 0.001 MŒKNO3,sat.ŒKCl, 1.0 M, Hg2Cl2ŇHg HgŇHgNO3, 0.01 M, HNO3, 0.009 MŒKNO3,sat.ŒKCl, 1.0 M, Hg2Cl2ŇHg HgŇHgNO3, 0.01 M, HNO3, 0.098 MŒKNO3,sat.ŒKCl, 1.0 M, Hg2Cl2ŇHg HgŇHg2SO4, H2SO4, 0.05 mŒH2SO4, 0.1 m, Hg2SO4ŇHg HgŇHg2SO4, H2SO4, 0.1 mŒH2SO4, 0.2 m, Hg2SO4ŇHg HgŇHg2SO4, H2SO4, 0.2mŒH2SO4, 0.3 m, Hg2SO4ŇHg HgŇHg2SO4, H2SO4, 0.3 mŒH2SO4, 0.5 m, Hg2SO4ŇHg HgŇHg2SO4, H2SO4, 0.5 mŒH2SO4, 1.0 m, Hg2SO4ŇHg HgŇHg2SO4, H2SO4, 1.0 mŒH2SO4, 2.0 m, Hg2SO4ŇHg HgŇHg2Cl2, NaCl, 1.0 MŒNaCl, 1.0 M, Na2IrCl6, 0.984 mM, Na3IrCl6, 2.132 mMŇIr HgŇHg2Cl2, NaCl, 1.0 MŒNaCl, 1.0 M, Na2IrCl6, 0.984 mM, Na3IrCl6, 8.757 mMŇIr HgŇHg2Cl2, NaCl, 1.0 MŒNaCl, 1.0 M, Na2IrCl6, 0.984 mM, Na3IrCl6, 18.48 mMŇIr HgŇHg2Cl2, NaCl, 1.0 MŒNaCl, 1.0 M, Na2IrCl6, 8.330 mM, Na3IrCl6, 0.874 mMŇIr HgŇHg2Cl2ŇKCl, 1.0 MŒHNO3, 0.1 M, Mn(NO3)2, 0.005 MŇMnO2 HgŇHg2Cl2ŇKCl, 1.0 MŒHNO3, 0.00078 M, Mn(NO3)2, 0.005 MŇMnO2 HgŇHg2Cl2ŇKCl, 1.0 MŒHNO3, 0.05 M, Mn(NO3)2, 0.1 MŇMnO2 HgŇHg2Cl2ŇKCl, 1.0 MŒHNO3, 0.05M, Mn(NO3)2, 0.00078 MŇMnO2 HgŇHg2Cl2ŇKCl, 0.1 MŒKCl,sat.ŒH2SO4, 0.05 M, KMnO4,0.002 MŇMnO2 HgŇHg2Cl2ŇKCl, 0.1 MŒKCl,sat.ŒH2SO4, 0.01 M, KMnO4, 0.01 MŇMnO2 Landolt-Börnstein New Series IV/9A
109
T [K, °C] U0 [V]
30 °C 30 °C 30 °C 30 °C 30 °C 30 °C 30 °C 30 °C 30 °C 30 °C 30 °C 30 °C 25 °C 25 °C 25 °C 30 °C 30 °C 30 °C 30 °C
20 °C 20 °C 20 °C 20 °C
0.757 0.727 0.693 0.01853 0.01875 0.00593 0.01799 0.0185 0.0185 0.00589 0.0238 0.0179 0.0175 0.0172 0.0162 0.0948 0.0576 –0.0529 –0.0831 0.00579 0.0188 0.0184 0.0179 0.2927 0.3094 0.4449 0.4424 0.4311 0.0145 0.0143 0.00852 0.0110 0.0163 0.0200 0.728
Ref. 17For 17For 17For 32Mas2 32Mas2 32Mas2 32Mas2 32Mas2 32Mas2 32Mas2 32Mas2 32Mas2 32Mas2 32Mas2 32Mas2 27Erd 17Lew2 17Lew2 17Lew2 32Mas2 32Mas2 32Mas2 32Mas2 31McB 31McB 12Dru 12Dru 12Dru 35Ham2 35Ham2 35Ham2 35Ham2 35Ham2 35Ham2 30Ter
0.764
30Ter
0.777
30Ter
0.638
30Ter
0.9813 0.7685 0.9442 0.9942 1.145 1.115
00Tow 00Tow 00Tow 00Tow 03Ing 03Ing
110
2 Cell voltages
Cell composition 2) HgŇHg2Cl2ŇKCl, 0.1 MŒKCl,sat.ŒH2SO4, 0.02 M, KMnO4, 0.02 MŇMnO2 HgŇHg2Cl2ŇKCl, 0.1 MŒKCl,sat.ŒH2SO4, 0.05 M, KMnO4, 0.05 MŇMnO2 HgŇHg2Cl2ŇKCl, 0.1 MŒKCl,sat.ŒH2SO4, 0.005 M, MnSO4, 0.001 MŇMnO2 HgŇHg2Cl2ŇKCl, 0.1 MŒKCl,sat.ŒH2SO4, 0.005 M, MnSO4, 0.01 MŇMnO2 HgŇHg2Cl2ŇKCl, 0.1 MŒKCl,sat.ŒH2SO4, 0.05 M, MnSO4, 0.001 MŇMnO2 HgŇHg2Cl2ŇKCl, 0.1 MŒKCl,sat.ŒH2SO4, 0.05 M, MnSO4, 0.01 MŇMnO2 HgŇHg2Cl2ŇKCl, 1.0 MŒNiCl2, 0.5 MŇNi HgŇHg2Cl2, KCl, 0.1 MŒKCl,sat.ŒNiSO4, 0.005 MŇNi HgŇHg2Cl2, KCl, 0.1 MŒKCl,sat.ŒNiSO4, 0.05 MŇNi HgŇHg2Cl2, KCl, 1.0 MŒKNO3, 1.0 M, Ni(NO3)2, 0.005 M, Ni(OH)2, HgOŇHg HgŇHg2Cl2, KCl, 1.0 MŒKNO3, 1.0 M, Ni(NO3)2, 0.05 M, Ni(OH)2, HgOŇHg HgŇHg2Cl2, KCl, 1.0 MŒFeCl3, c1, FeCl2, c2, c1/(c1+c2)=0.2578, HCl, 0.1 MŇPt HgŇHg2Cl2, KCl, 1.0 MŒFeCl3, c1, FeCl2, c2, c1/(c1+c2)=0.5066, HCl, 0.1 MŇPt HgŇHg2Cl2, KCl, 1.0 MŒFeCl3, c1, FeCl2, c2, c1/(c1+c2)=0.0634, HCl, 1.0 MŇPt HgŇHg2Cl2, KCl, 1.0 MŒFeCl3, c1, FeCl2, c2, c1/(c1+c2)=0.2642, HCl, 1.0 MŇPt HgŇHg2Cl2, KCl, 1.0 MŒFeCl3, c1, FeCl2, c2, c1/(c1+c2)=0.500, HCl, 1.0 MŇPt HgŇHg2Cl2, KCl, 1.0 MŒFeCl3, c1, FeCl2, c2, c1/(c1+c2)=0.7449, HCl, 1.0 MŇPt HgŇHg2Cl2, KCl, 1.0 MŒFeCl3, c1, FeCl2, c2, c1/(c1+c2)=0.1579, HCl, 3.0 MŇPt HgŇHg2Cl2, KCl, 1.0 MŒFeCl3, c1, FeCl2, c2, c1/(c1+c2)=0.5078, HCl, 3.0 MŇPt HgŇHg2Cl2, KCl, 1.0 MŒFeCl3, c1, FeCl2, c2, c1/(c1+c2)=0.7533, HCl, 3.0 MŇPt HgŇHg2Cl2, KCl, 1.0 MŒFeCl3, c1, FeCl2, c2, c1/(c1+c2)=0.8762, HCl, 3.0 MŇPt HgŇHg2Cl2, KCl, 1.0 MŒFeCl3, c1, FeCl2, c2, c1/(c1+c2)=0.2103, HCl, 4.9 MŇPt HgŇHg2Cl2, KCl, 1.0 MŒFeCl3, c1, FeCl2, c2, c1/(c1+c2)=0.4227, HCl, 4.9 MŇPt HgŇHg2Cl2, KCl, 1.0 MŒFeCl3, c1, FeCl2, c2, c1/(c1+c2)=0.5206, HCl, 4.9 MŇPt HgŇHg2Cl2, KCl, 1.0 MŒFeCl3, c1, FeCl2, c2, c1/(c1+c2)=0.6471, HCl, 4.9 MŇPt HgŇHg2Cl2, KCl, 1.0 MŒFeCl3, c1, FeCl2, c2, c1/(c1+c2)=0.6811, HCl, 4.9 MŇPt HgŇHg2Cl2, KCl, 1.0 MŒFeCl3, c1, FeCl2, c2, c1/(c1+c2)=0.7750, HCl, 4.9 MŇPt HgŇHg2Cl2, KCl, 1.0 MŒFeCl3, c1, FeCl2, c2, c1/(c1+c2)=0.2892, HCl, 6.66 MŇPt HgŇHg2Cl2, KCl, 1.0 MŒFeCl3, c1, FeCl2, c2, c1/(c1+c2)=0.4496, HCl, 6.66 MŇPt
T [K, °C] U0 [V]
20 °C 60 °C 20 °C 60 °C 20 °C 60 °C 20 °C 60 °C 20 °C 60 °C 20 °C 60 °C 20 °C 60 °C 20 °C 60 °C 20 °C 60 °C 20 °C 60 °C 20 °C 60 °C 20 °C 60 °C 20 °C 60 °C 20 °C 60 °C 20 °C 60 °C 20 °C 60 °C 20 °C 60 °C 20 °C 60 °C
Ref.
1.165 1.171 0.851 0.821 0.958 0.935 0.596 0.6607 0.6385 0.182
03Ing 03Ing 03Ing 03Ing 03Ing 03Ing 09Sch 28Mur 28Mur 04Lab
0.266
04Lab
0.4056 0.4355 0.4339 0.4652 0.3219 0.3294 0.3640 0.3808 0.3923 0.4118 0.3909 0.4417 0.3037 0.3022 0.3481 0.3528 0.3783 0.3876 0.3971 0.4055 0.2724 0.2651 0.2958 0.2926 0.3090 0.3084 0.3203 0.3206 0.3272 0.3285 0.3368 0.3387 0.2409 0.2313 0.2557 0.2473
32Car 32Car 32Car 32Car 32Car 32Car 32Car 32Car 32Car 32Car 32Car 32Car 32Car 32Car 32Car 32Car 32Car 32Car 32Car 32Car 32Car 32Car 32Car 32Car 32Car 32Car 32Car 32Car 32Car 32Car 32Car 32Car 32Car 32Car 32Car 32Car
Landolt-Börnstein New Series IV/9A
2 Cell voltages Cell composition 2) HgŇHg2Cl2, KCl, 1.0 MŒFeCl3, c1, FeCl2, c2, c1/(c1+c2)=0.5243, HCl, 6.66 MŇPt HgŇHg2Cl2, KCl, 1.0 MŒFeCl3, c1, FeCl2, c2, c1/(c1+c2)=0.7829, HCl, 6.66 MŇPt HgŇHg2Cl2, KCl, 1.0 MŒFeCl3, c1, FeCl2, c2, c1/(c1+c2)=0.4084, HCl, 10.02 MŇPt HgŇHg2Cl2, KCl, 1.0 MŒFeCl3, c1, FeCl2, c2, c1/(c1+c2)=0.5759, HCl, 10.02 MŇPt HgŇHg2Cl2, KCl, 1.0 MŒFeCl3, c1, FeCl2, c2, c1/(c1+c2)=0.8054, HCl, 10.02 MŇPt HgŇHg2Cl2, KCl, 0.1 MŒKCl, 0.1 M, K2PtCl6, 0.520 mm, K2PtCl4, 0.483 mmŇPt HgŇHg2Cl2, KCl, 0.1 MŒKCl, 0.1 M, K2PtCl6, 0.752 mm, K2PtCl4, 0.252 mmŇPt HgŇHg2Cl2, KCl, 0.1 MŒKCl, 0.1 M, K2PtCl6, 0.555 mm, K2PtCl4, 1.956 mmŇPt HgŇHg2Cl2, KCl, 0.1 MŒKCl, 0.1 M, K2PtCl6, 1.251 mm, K2PtCl4, 1.248 mmŇPt HgŇHg2Cl2, KCl, 0.1 MŒKCl, 0.1 M, K2PtCl6, 2.009 mm, K2PtCl4, 0.500 mmŇPt HgŇHg2Cl2, KCl, 0.1 MŒKCl, 0.1 M, K2PtCl6, 2.511 mm, K2PtCl4, 2.488 mmŇPt HgŇHg2Cl2, KCl, 0.1 MŒKCl, 0.1 M, K2PtCl6, 1.017 mm, K2PtCl4, 3.957 mmŇPt HgŇHg2Cl2, KCl, 0.1 MŒKCl, 0.1 M, K2PtCl6, 1.026 mm, K2PtCl4, 8.999 mmŇPt HgŇHg2Cl2, KCl, 0.1 MŒKCl, 0.1 M, K2PtCl6, 2.483 mm, K2PtCl4, 7.504 mmŇPt HgŇHg2Cl2, HCl, 3.5 mŒHCl, 3.5 m, SbIII,SbVŇAu on Pt HgŇHg2Cl2, HCl, 4.5 mŒHCl, 4.5 m, SbIII,SbVŇAu on Pt HgŇHg2Cl2, HCl, 6.0 mŒHCl, 6.0 m, SbIII,SbVŇAu on Pt HgŇHg2Cl2, KCl, 0.1 MŒHCl, 0.1053 M, TlCl, 0.161 mM, TlCl3, 0.0087 MŇPt HgŇHg2Cl2, KCl, 0.1 MŒHCl, 0.1053 M, TlCl, 0.644 mM, TlCl3, 0.0087 MŇPt HgŇHg2Cl2, KCl, 0.1 MŒHCl, 0.1053 M, TlCl, 3.22 mM, TlCl3, 0.0087 MŇPt HgŇHg2Cl2, KCl, 0.1 MŒHCl, 0.001 M, KBr, 0.1003 MŇBr2, x=0.0122 in CCl4ŇPt HgŇHg2Cl2, KCl, 0.1 MŒHCl, 0.001 M, KBr, 0.03009 MŇBr2, x=0.0125 in CCl4ŇPt HgŇHg2Cl2, KCl, 0.1 MŒHCl, 0.001 M, KBr, 0.01003 MŇBr2, x=0.0126 in CCl4ŇPt HgŇHg2Cl2, KCl, 0.1 MŒHCl, 0.001 M, KBr, 0.1003 MŇBr2, x=0.00463 in CCl4ŇPt HgŇHg2Cl2, KCl, 0.1 MŒHCl, 0.001 M, KBr, 0.03009 MŇBr2, x=0.0047 in CCl4ŇPt HgŇHg2Cl2, KCl, 0.1 MŒHCl, 0.001 M, KBr, 0.01003 MŇBr2, x=0.0050 in CCl4ŇPt
Landolt-Börnstein New Series IV/9A
111
T [K, °C] U0 [V]
Ref.
20 °C 60 °C 20 °C 60 °C 20 °C 60 °C 20 °C 60 °C 20 °C 60 °C 35 °C
0.2679 0.2572 0.2977 0.2934 0.1777 0.1757 0.1912 0.1733 0.2219 0.2075 0.4585
32Car 32Car 32Car 32Car 32Car 32Car 32Car 32Car 32Car 32Car 30Smi
35 °C
0.4720
30Smi
35 °C
0.4410
30Smi
35 °C
0.4581
30Smi
35 °C
0.4762
30Smi
35 °C
0.4585
30Smi
35 °C
0.4404
30Smi
35 °C
0.4303
30Smi
35 °C
0.4446
30Smi
0.746 0.748 0.818 0.5723
49Bro 49Bro 49Bro 05Abe
0.5570
05Abe
0.5393
05Abe
0.8009
17Lew1
0.8276
17Lew1
0.8519
17Lew1
0.7886
17Lew1
0.8163
17Lew1
0.842
17Lew1
112
2 Cell voltages
Cell composition 2) HgŇHg2SO4, H2SO4, 1.0 MŒH2SO4, 1.0 M, CoSO4, 0.465 M, Co2(SO4)3, 0.0173 MŇPt HgŇHg2SO4, H2SO4, 1.0 MŒH2SO4, 1.0 M, CoSO4, 0.0580 M, Co2(SO4)3, 0.0175 MŇPt HgŇHg2SO4, H2SO4, 1.0 MŒH2SO4, 1.0 M, CoSO4, 0.0881 M, Co2(SO4)3, 0.0486 MŇPt HgŇHg2Cl2, NH4Cl, 0.5 MŒNH4Cl, 0.5 MŒNH3, H2ŇPt (hydrogen passed through aqueous solution of 0.05 M NH3) HgŇHg2Cl2, NH4Cl,sat.ŒNH4Cl,sat.ŒNH3, H2ŇPt (hydrogen passed through aqueous solution of 0.05 M NH3) HgŇHg2SO4, Li2SO4, 0.025 MŒLixHgŇLi2SO4, 0.05 M, Hg2SO4ŇHg HgŇHg2SO4, Li2SO4, 0.5 MŒLixHgŇLi2SO4, 0.05 M, Hg2SO4ŇHg HgŇHg2SO4, Na2SO4, 0.025 MŒNaxHgŇNa2SO4, 0.05 M, Hg2SO4ŇHg HgŇHg2SO4, Na2SO4, 0.25 MŒNaxHgŇNa2SO4, 0.05 M, Hg2SO4ŇHg HgŇHg2SO4, Na2SO4, 1.0 MŒNaxHgŇNa2SO4, 0.05 M, Hg2SO4ŇHg HgŇK2Hg(CN)4, 4.355 mM, KCN, 2.54 mMŒKNO3,sat.ŒKCl, 1.0 M, Hg2Cl2ŇHg HgŇK2Hg(CN)4, 8.33 mM, KCN, 7.72 mMŒKNO3,sat.ŒKCl, 1.0 M, Hg2Cl2ŇHg HgŇK2Hg(CN)4, 62.5 mM, KCN, 5.79 mMŒKNO3,sat.ŒKCl, 1.0 M, Hg2Cl2ŇHg HgŇK2Hg(CN)4, 57.1 mM, KCN, 13.7 mMŒKNO3,sat.ŒKCl, 1.0 M, Hg2Cl2ŇHg HgŇNb3+, 0.238 mm, Nb5+, 23.76 mm, H2SO4, 3.14 MŒKCl,sat.Œ KCl,sat., Hg2Cl2ŇHg HgŇNb3+, 0.470 mm, Nb5+, 23.53 mm, H2SO4, 3.14 MŒKCl,sat.Œ KCl,sat., Hg2Cl2ŇHg HgŇNb3+, 1.14 mm, Nb5+, 22.85 mm, H2SO4, 3.14 MŒKCl,sat.Œ KCl,sat., Hg2Cl2ŇHg HgŇNb3+, 2.2 mm, Nb5+, 21.81 mm, H2SO4, 3.14 MŒKCl,sat.Œ KCl,sat., Hg2Cl2ŇHg HgŇNb3+, 7.1 mm, Nb5+, 16.90 mm, H2SO4, 3.14 MŒKCl,sat.Œ KCl,sat., Hg2Cl2ŇHg HgŇNb3+, 12 mm, Nb5+, 12 mm, H2SO4, 3.14 MŒKCl,sat.Œ KCl,sat., Hg2Cl2ŇHg HgŇNb3+, 16.73 mm, Nb5+, 7.27 mm, H2SO4, 3.14 MŒKCl,sat.Œ KCl,sat., Hg2Cl2ŇHg HgŇNb3+, 21.55 mm, Nb5+, 2.4 mm, H2SO4, 3.14 MŒKCl,sat.Œ KCl,sat., Hg2Cl2ŇHg HgŇNb3+, 22.72 mm, Nb5+, 1.27 mm, H2SO4, 3.14 MŒKCl,sat.Œ KCl,sat., Hg2Cl2ŇHg HgŇNb3+, 23.5 mm, Nb5+, 0.515 mm, H2SO4, 3.14 MŒKCl,sat.Œ KCl,sat., Hg2Cl2ŇHg HgŇHg2Cl2, KCl,sat.ŒHCl, 2.5 M, TeCl4, 0.402 mMŇTe HgŇHg2Cl2, KCl,sat.ŒHCl, 2.5 M, TeCl4, 0.902 mMŇTe HgŇHg2Cl2, KCl,sat.ŒHCl, 2.5 M, TeCl4, 2.16 mMŇTe HgŇHg2Cl2, KCl,sat.ŒHCl, 2.5 M, TeCl4, 4.02 mMŇTe HgŇHg2Cl2, KCl,sat.ŒHCl, 2.5 M, TeCl4, 8.04 mMŇTe HgŇHg2Cl2, KCl,sat.ŒHCl, 2.5 M, TeCl4, 11.5 mMŇTe
T [K, °C] U0 [V]
Ref.
0 °C
1.03
03Obe
0 °C
1.07
03Obe
0 °C
1.09
03Obe
18 °C
0.8200
10Brö
18 °C
0.6924
10Brö
12 °C
–0.0205 0.0684 –0.0198 0.0452 0.0809 0.520
26Ake 26Ake 26Ake 26Ake 26Ake 32Bri
12 °C
0.459
32Bri
12 °C
0.455
32Bri
12 °C
0.497
32Bri
0.3125
28Kie
0.3225
28Kie
0.3348
28Kie
0.3443
28Kie
0.3618
28Kie
0.3730
28Kie
0.3840
28Kie
0.4014
28Kie
0.4102
28Kie
0.4211
28Kie
0.2724 0.2754 0.2828 0.2867 0.2913 0.2933
33Get 33Get 33Get 33Get 33Get 33Get
Landolt-Börnstein New Series IV/9A
2 Cell voltages Cell composition 2)
113
T [K, °C] U0 [V]
HgŇHg2Cl2 sat. acetic acidŇchloranil, anhydrous acetic acidŇPt HgŇHg2Cl2 sat. acetic acidŇchloride solution in anhydrous acetic acidŇAgClŇAg HgŇHg2Cl2ŇKCl,sat., formic acidŒquinhydrone, 0.05 M, sodium formate 0.25 M in formic acidŇPt Palladium (Pd) PdŇPdCl2, HCl, 0.9952 MŒHClŇH2, Pt
298 K 298 K
0.9095 0.3928
56Bru 56Bru
298 K
0.5384
56Pin
0.623
43Tem
0.629 0.987
43Tem 43Tem
17 °C
0.274
10Sch1
17 °C
0.239
10Sch1
17 °C
0.195
10Sch1
17 °C
0.195
10Sch1
17 °C
0.160
10Sch1
0 °C
0.6062
27Gru
0 °C
0.5643
27Gru
0 °C
0.5118
27Gru
18 °C
0.122
11För
18 °C
0.181
11För
18 °C
0.506
11För
18 °C
0.552
11För
0.403
08Lut
0.418
08Lut
0.393
08Lut
0.407
08Lut
0.380
08Lut
0.55 0.31 0.3733
49Kra 49Kra 24Col
2– 4
PdŇPdCl2, HCl, HClO4ŒHClŇH2, Pt (formation of PdCl ) PdŇPdCl2, HClO4, 4.0 MŒHClO4ŇH2, Pt Platinum (Pt) PtŇK2Fe(C2O4)2, 0.0425 M, K3Fe(C2O4)2, 0.075 M, K2C2O4ŇKCl, 1.0 M ŒKCl, 3.5 M, Hg2Cl2ŇHg PtŇK2Fe(C2O4)2, 0.025 M, K3Fe(C2O4)2, 0.025 M, K2C2O4ŇKCl, 1.0 M ŒKCl, 3.5 M, Hg2Cl2ŇHg PtŇK2Fe(C2O4)2, 0.0075 M, K3Fe(C2O4)2, 0.0425 M, K2C2O4ŇKCl, 1.0 M ŒKCl, 3.5 M, Hg2Cl2ŇHg PtŇK2Fe(C2O4)2, 0.00213 M, K3Fe(C2O4)2, 0.025 M, K2C2O4ŇKCl, 0.1 M ŒKCl, 3.5 M, Hg2Cl2ŇHg PtŇK2Fe(C2O4)2, 0.00085 M, K3Fe(C2O4)2, 0.004 M, K2C2O4ŇKCl, 0.1 M ŒKCl, 3.5 M, Hg2Cl2ŇHg PtŇK3Mo(CN)8, 0.0853 M, K4Mo(CN)8, 0.0147 MŒKCl,sat.ŒKCl, 1.0 M, Hg2Cl2ŇHg PtŇK3Mo(CN)8, 0.050 M, K4Mo(CN)8, 0.05 MŒKCl,sat.ŒKCl, 1.0 M, Hg2Cl2ŇHg PtŇK3Mo(CN)8, 0.010 M, K4Mo(CN)8, 0.09 MŒKCl,sat.ŒKCl, 1.0 M, Hg2Cl2ŇHg PtŇSnCl2, 0.05 M, SnCl4, 0.45 M, NH4Cl, 1.0 MŒKCl,sat.ŒKCl, 1.0 M, Hg2Cl2ŇHg PtŇSnCl2, 0.45 M, SnCl4, 0.05 M, NH4Cl, 1.0 MŒKCl,sat.ŒKCl, 1.0 M, Hg2Cl2ŇHg PtŇSnCl2, 0.05 M, SnCl4, 0.45 M, HCl, 0.5 MŒNH4NO3,sat.ŒH2SO4, 0.5 M, Hg2SO4ŇHg PtŇSnCl2, 0.45 M, SnCl4, 0.05 M, HCl, 0.5 MŒNH4NO3,sat.ŒH2SO4, 0.5 M, Hg2SO4ŇHg PtŇUO2SO4, 0.0131 M, U(SO4)2, 0.0069 M, H2SO4, 0.052 MŒH2SO4, 0.052 M, Hg2SO4ŇHg PtŇUO2SO4, 0.0127 M, U(SO4)2, 0.0273 M, H2SO4, 0.053 MŒH2SO4, 0.053 M, Hg2SO4ŇHg PtŇUO2SO4, 0.0941 M, U(SO4)2, 0.0259 M, H2SO4, 0.054 MŒH2SO4, 0.054 M, Hg2SO4ŇHg PtŇUO2SO4, 0.0917 M, U(SO4)2, 0.0883 M, H2SO4, 0.050 MŒH2SO4, 0.050 M, Hg2SO4ŇHg PtŇUO2SO4, 0.0911 M, U(SO4)2, 0.00886 M, H2SO4, 0.050 MŒH2SO4, 0.050 M, Hg2SO4ŇHg PtŇUVI, UV, HCl, 0.1 m, AgClŇAg PtŇUIV, UV, HCl, 0.1 m, AgClŇAg PtŇK3W(CN)8, 8.87 mM, K4W(CN)8, 0.986 mM, KCl, 1.0 MŒ KCl,sat.ŒKCl, 1.0 M, Hg2Cl2ŇHg
Landolt-Börnstein New Series IV/9A
Ref.
0 °C
114
2 Cell voltages
Cell composition 2) PtŇK3W(CN)8, 4.83 mM, K4W(CN)8, 4.83 mM, KCl, 1.0 MŒ KCl,sat.ŒKCl, 1.0 M, Hg2Cl2ŇHg PtŇK3W(CN)8, 0.986 mM, K4W(CN)8, 8.87 mM, KCl, 1.0 MŒ KCl,sat.ŒKCl, 1.0 M, Hg2Cl2ŇHg PtŇK3W(CN)8, 9.64 mM, K4W(CN)8, 86.7 mM, KCl, 0.0 MŒ KCl,sat.ŒKCl, 1.0 M, Hg2Cl2ŇHg PtŇK3W(CN)8, 95.5 mM, K4W(CN)8, 10.6 mM, KCl, 0.0 MŒ KCl,sat.ŒKCl, 1.0 M, Hg2Cl2ŇHg PtŇVIII, 0.0138 N, VIV, 0.0138 N, H2SO4, 1.5 MŒH2SO4, 1.5 M, Hg2SO4ŇHg PtŇVIII, 0.125 N, VIV, 0.125 N, H2SO4, 0.375 MŒH2SO4, 1.0 M, Hg2SO4ŇHg PtŇVIII, 0.125 N, VIV, 0.125 N, H2SO4, 0.625 MŒH2SO4, 1.0 M, Hg2SO4ŇHg PtŇVIII, 0.125 N, VIV, 0.125 N, H2SO4, 1.5 MŒH2SO4, 1.5 M, Hg2SO4ŇHg PtŇVIV, 0.0138 N, VV, 0.0138 N, H2SO4, 0.375 MŒH2SO4, 1.5 M, Hg2SO4ŇHg PtŇVIV, 0.0138 N, VV, 0.0138 N, H2SO4, 0.625 MŒH2SO4, 1.5 M, Hg2SO4ŇHg PtŇVIV, 0.0138 N, VV, 0.0138 N, H2SO4, 1.5 MŒH2SO4, 1.5 M, Hg2SO4ŇHg PtŇVIV, 0.125 N, VV, 0.125 N, H2SO4, 0.375 MŒH2SO4, 1.0 M, Hg2SO4ŇHg PtŇVIV, 0.125 N, VV, 0.125 N, H2SO4, 0.625 MŒH2SO4, 1.0 M, Hg2SO4ŇHg PtŇVIV, 0.125 N, VV, 0.125 N, H2SO4,1.5 MŒH2SO4,1.5 M, Hg2SO4ŇHg PtŇTlCl, 0.1814 mM, TlCl3, 0.01886 mM, HCl+HClO4, 0.9952 MŒHCl, 0.9952 MŇH2, Pt PtŇTlCl, 0.1016 mM, TlCl3, 0.09430 mM, HCl+HClO4, 0.9952 MŒHCl, 0.9952 MŇH2, Pt PtŇTlCl, 0.1097 mM, TlCl3, 1.053 mM, HCl+HClO4, 0.9952 MŒHCl, 0.9952 MŇH2, Pt PtŇTlCl, 0.1452 mM, TlCl3, 4.715 mM, HCl+HClO4, 0.9952 MŒHCl, 0.9952 MŇH2, Pt PtŇTlCl, 0.1806 mM, TlCl3, 1.886 mM, HCl+HClO4, 0.9952 MŒHCl, 0.9952 MŇH2, Pt PtŇTlCl, 0.01806 mM, TlCl3, 1.886 mM, HCl+HClO4, 0.9952 MŒHCl, 0.9952 MŇH2, Pt Potassium (K) KzHgŇKCl, 0.001 mŒKCl, 1.0 M, Hg2Cl2ŇHg KzHgŇKCl, 0.01 mŒKCl, 1.0 M, Hg2Cl2ŇHg KzHgŇKCl, 0.02 mŒKCl, 1.0 M, Hg2Cl2ŇHg KzHgŇKCl, 0.05 mŒKCl, 1.0 M, Hg2Cl2ŇHg KzHgŇKCl, 0.1 mŒKCl, 1.0 M, Hg2Cl2ŇHg KzHgŇKCl, 0.2 mŒKCl, 1.0 M, Hg2Cl2ŇHg KzHgŇKCl, 0.5 mŒKCl, 1.0 M, Hg2Cl2ŇHg KzHgŇKCl, 1.0 mŒKCl, 1.0 M, Hg2Cl2ŇHg Kx=0.002559HgŇKCl, 0.10245 m, Hg2Cl2ŇHg
T [K, °C] U0 [V]
Ref.
0 °C
0.3218
24Col
0 °C
0.2702
24Col
0 °C
0.2426
24Col
0 °C
0.3481
24Col
18 °C
0.299
30Foe
18 °C
0.377
30Foe
18 °C
0.354
30Foe
18 °C
0.299
30Foe
18 °C
0.315
30Foe
18 °C
0.327
30Foe
18 °C
0.384
30Foe
18 °C
0.316
30Foe
18 °C
0.327
30Foe
18 °C
0.384 0.7593
30Foe 42Hug
0.7862
42Hug
0.8148
42Hug
0.8328
42Hug
0.8468
42Hug
0.8468
42Hug
2.3121 2.2784 2.2610 2.2414 2.2246 2.2080 2.1875 2.1818 2.2217
30Bir 30Bir 30Bir 30Bir 30Bir 30Bir 30Bir 30Bir 34Arm Landolt-Börnstein New Series IV/9A
2 Cell voltages Cell composition 2) Kx=0.002559HgŇKCl, 1.0168 m, Hg2Cl2ŇHg K0.1wt%HgŇKI, 0.002 m, AgIŇAgŇAgI, KI, 0.02 mŇK0.1wt%Hg K0.1wt%HgŇKI, 0.005 m, AgIŇAgŇAgI, KI, 0.05 mŇK0.1wt%Hg K0.1wt%HgŇKI, 0.01 m, AgIŇAgŇAgI, KI, 0.05 mŇK0.1wt%Hg K0.1wt%HgŇKI, 0.01 m, AgIŇAgŇAgI, KI, 0.12 mŇK0.1wt%Hg K0.1wt%HgŇKI, 0.02 m, AgIŇAgŇAgI, KI, 0.1 mŇK0.1wt%Hg K0.1wt%HgŇKI, 0.02 m, AgIŇAgŇAgI, KI, 0.2 mŇK0.1wt%Hg K0.1wt%HgŇKI, 0.05 m, AgIŇAgŇAgI, KI, 0.5 mŇK0.1wt%Hg K0.1wt%HgŇKI, 0.02 mŒKI, 0.002 mŇK0.1wt%Hg K0.1wt%HgŇKI, 0.05 mŒKI, 0.005 mŇK0.1wt%Hg K0.1wt%HgŇKI, 0.05 mŒKI, 0.01 mŇK0.1wt%Hg K0.1wt%HgŇKI, 0.1 mŒKI, 0.01 mŇK0.1wt%Hg K0.1wt%HgŇKI, 0.1 mŒKI, 0.02 mŇK0.1wt%Hg K0.1wt%HgŇKI, 0.2 mŒKI, 0.02 mŇK0.1wt%Hg K0.1wt%HgŇKI, 0.5 mŒKI, 0.05 mŇK0.1wt%Hg K0.2216wt%HgŇKOH, 0.2026 mŒKCl, 1.0 m, Hg2Cl2ŇHg Rubidium (Rb) RbzHgŇRbOH, 0.1 mŒRbCl, 0.1 m, Hg2Cl2ŇHg RbzHgŇRbOH, 0.1 m, RbCl, 0.1 mŒKCl, 1.0 m, Hg2Cl2ŇHg Silver (Ag) AgŇAg2SO4, K2SO4,sat.ŒK2SO4,sat., Hg2SO4ŇHg AgŇAgBr, KBr, 0.05 mŇKxHgŇKBr, 0.1 m, AgBrŇAg AgŇAgBr, KBr, 0.1 mŇKxHgŇKBr, 0.1 m, AgBrŇAg AgŇAgBr, KBr, 0.2 mŇKxHgŇKBr, 0.1 m, AgBrŇAg AgŇAgBr, KBr, 0.5 mŇKxHgŇKBr, 0.1 m, AgBrŇAg AgŇAgBr, KBr, 1.0 mŇKxHgŇKBr, 0.1 m, AgBrŇAg AgŇAgBr, KBr, 1.5 mŇKxHgŇKBr, 0.1 m, AgBrŇAg AgŇAgBr, KBr, 2.0 mŇKxHgŇKBr, 0.1 m, AgBrŇAg AgŇAgBr, KBr, 2.5 mŇKxHgŇKBr, 0.1 m, AgBrŇAg AgŇAgBr, KBr, 3.0 mŇKxHgŇKBr, 0.1 m, AgBrŇAg AgŇAgBr, KBr, 3.5 mŇKxHgŇKBr, 0.1 m, AgBrŇAg AgŇAgBr, KBr, 4.0 mŇKxHgŇKBr, 0.1 m, AgBrŇAg AgŇAgCl, 1.43·10–4 M, KCl, 1.824 MŒKNO3,sat.ŒAgNO3, 0.01 MŇAg AgŇAgCl, 1.43·10–4 M, KCl, 2.968 MŒKNO3,sat.ŒAgNO3, 0.01 MŇAg AgŇAgCl, 1.43·10–4 M, KCl, 4.064 MŒKNO3,sat.ŒAgNO3, 0.01 MŇAg AgŇAgCl, 4.7006 mmŒHCl, 0.100313 m, AgClŇAg (UT [V]=0.12341+2.48·10–4(T–25 °C)–0.56·10–6(T– 25 °C)2) AgŇAgCl, 6.188 mmŒHCl, 0.100313 m, AgClŇAg (UT [V]=0.11217+2.25·10–4(T–25 °C)–0.51·10–6(T–25 °C)2) AgŇAgCl, 18.028 mmŒHCl, 0.100313 m, AgClŇAg (UT [V]=0.06885+1.38·10–4(T–25 °C)–0.31·10–6(T–25 °C)2) AgŇAgCl, 58.486 mmŒHCl, 0.100313 m, AgClŇAg (UT [V]=0.02171+0.44·10–4(T–25 °C)–0.10·10–6(T–25 °C)2) AgŇAgCl, 0.179939 mŒHCl, 0.100313 m, AgClŇAg (–UT [V]=0.02351+0.48·10–4(T–25 °C)+0.10·10–6(T–25 °C)2) AgŇAgCl, 0.55472 mŒHCl, 0.100313 m, AgClŇAg (–UT [V]=0.07131+1.38·10–4(T–25 °C)+0.31·10–6(T–25 °C)2)
Landolt-Börnstein New Series IV/9A
115
T [K, °C] U0 [V]
Ref.
2.0704 0.1155 0.1108 0.0762 0.1093 0.0765 0.1087 0.1082 0.0559 0.0549 0.0380 0.0552 0.0388 0.0551 0.0551 2.1891
34Arm 33Gel 33Gel 33Gel 33Gel 33Gel 33Gel 33Gel 33Gel 33Gel 33Gel 33Gel 33Gel 33Gel 33Gel 12Lew
2.1805 2.1805
15Lew 15Lew
0.0407 0.0323 0.0 –0.0321 –0.0746 –0.1069 –0.1262 –0.1405 –0.1510 –0.1614 –0.1701 –0.1778 0.4591 0.5100 0.5385 0.12341
33Ish1 29Har2 29Har2 29Har2 29Har2 29Har2 29Har2 29Har2 29Har2 29Har2 29Har2 29Har2 15For 15For 15For 39Har4
0.11217 39Har4 0.06885 39Har4 0.02171 39Har4 –0.02351 39Har4 –0.07131 39Har4
116
2 Cell voltages
Cell composition 2) AgŇAgCl, 0.97192 mŒHCl, 0.100313 m, AgClŇAg (–UT [V]=0.09787+1.78·10–4(T–25 °C)+0.41·10–6(T–25 °C)2) AgŇAgCl, 1.69357 mŒHCl, 0.100313 m, AgClŇAg (–UT [V]=0.12844+2.15·10–4(T–25 °C)+0.51·10–6(T–25 °C)2) AgŇAgCl, 2.99000 mŒHCl, 0.100313 m, AgClŇAg (–UT [V]=0.16695+2.50·10–4(T–25 °C)+0.62·10–6(T–25 °C)2) AgŇAgCl, KCl, 0.05 mŇKxHgŇKCl, 0.1 m, AgClŇAg AgŇAgCl, KCl, 0.1 mŇKxHgŇKCl, 01 m, AgClŇAg AgŇAgCl, KCl, 0.2 mŇKxHgŇKCl, 0.1 m, AgClŇAg AgŇAgCl, KCl, 0.5 mŇKxHgŇKCl, 0.1 m, AgClŇAg AgŇAgCl, KCl, 1.0 mŇKxHgŇKCl, 0.1 m, AgClŇAg AgŇAgCl, KCl, 1.5 mŇKxHgŇKCl, 0.1 m, AgClŇAg AgŇAgCl, KCl, 2.0 mŇKxHgŇKCl, 0.1 m, AgClŇAg AgŇAgCl, KCl, 2.5 mŇKxHgŇKCl, 0.1 m, AgClŇAg AgŇAgCl, KCl, 3.0 mŇKxHgŇKCl, 0.1 m, AgClŇAg AgŇAgCl, KCl, 3.5 mŇKxHgŇKCl, 0.1 m, AgClŇAg AgŇAgCl, KCl, 4.0 mŇKxHgŇKCl, 0.1 m, AgClŇAg AgŇAgBr, CdBr2, 0.1 mŇCdBr2, 0.01 m, AgBrŇAg AgŇAgBr, CdBr2, 0.1 mŇCdBr2, 0.01396 m, AgBrŇAg AgŇAgBr, CdBr2, 0.1 mŇCdBr2, 0.02801 m, AgBrŇAg AgŇAgBr, CdBr2, 0.1 mŇCdBr2, 0.03997 m, AgBrŇAg AgŇAgBr, CdBr2, 0.1 mŇCdBr2, 0.05629 m, AgBrŇAg AgŇAgBr, CdBr2, 0.1 mŇCdBr2, 0.08114 m, AgBrŇAg AgŇAgBr, CdBr2, 0.1 mŇCdBr2, 0.2026 m, AgBrŇAg AgŇAgBr, CdBr2, 0.1 mŇCdBr2, 0.4069 m, AgBrŇAg AgŇAgBr, CdBr2, 0.1 mŇCdBr2, 0.9996 m, AgBrŇAg AgŇAgBr, CdBr2, 0.1 mŇCdBr2, 3.0815 m, AgBrŇAg AgŇAgBr, KBr, 0.001 MŒKCl,sat.ŒKCl, 1.0 M, Hg2Cl2ŇHg AgŇAgBr, KBr, 0.01 MŒKCl,sat.ŒKCl, 1.0 M, Hg2Cl2ŇHg AgŇAgBr, KBr, 0.1 MŒKCl,sat.ŒKCl, 1.0 M, Hg2Cl2ŇHg AgŇAgBr, LiBr, 0.1 mŇLixHgŇLiBr, 0.1 m, AgBrŇAg AgŇAgBr, LiBr, 0.1 mŇLixHgŇLiBr, 0.2 m, AgBrŇAg AgŇAgBr, LiBr, 0.1 mŇLixHgŇLiBr, 0.5 m, AgBrŇAg AgŇAgBr, LiBr, 0.1 mŇLixHgŇLiBr, 1.0 m, AgBrŇAg AgŇAgBr, LiBr, 0.1 mŇLixHgŇLiBr, 2.0 m, AgBrŇAg AgŇAgBr, LiBr, 0.1 mŇLixHgŇLiBr, 2.5 m, AgBrŇAg AgŇAgBr, LiBr, 0.1 mŇLixHgŇLiBr, 3.0 m, AgBrŇAg AgŇAgBr, LiBr, 0.1 mŇLixHgŇLiBr, 3.5 m, AgBrŇAg AgŇAgBr, LiBr, 0.1 mŇLixHgŇLiBr, 4.0 m, AgBrŇAg AgŇAgCl, LiCl, 0.1 mŇLixHgŇLiCl, 0.1 m, AgClŇAg AgŇAgCl, LiCl, 0.1 mŇLixHgŇLiCl, 0.2 m, AgClŇAg AgŇAgCl, LiCl, 0.1 mŇLixHgŇLiCl, 0.5 m, AgClŇAg AgŇAgCl, LiCl, 0.1 mŇLixHgŇLiCl, 1.0 m, AgClŇAg AgŇAgCl, LiCl, 0.1 mŇLixHgŇLiCl, 2.0 m, AgClŇAg AgŇAgCl, LiCl, 0.1 mŇLixHgŇLiCl, 2.5 m, AgClŇAg AgŇAgCl, LiCl, 0.1 mŇLixHgŇLiCl, 3.0 m, AgClŇAg AgŇAgCl, LiCl, 0.1 mŇLixHgŇLiCl, 3.5 m, AgClŇAg AgŇAgCl, LiCl, 0.1 mŇLixHgŇLiCl, 4.0 m, AgClŇAg
T [K, °C] U0 [V]
Ref.
–0.09787 39Har4 –0.12844 39Har4 –0.16695 39Har4
18 °C 18 °C 18 °C
0.0323 0.0 –0.0319 –0.0739 –0.1056 –0.1246 –0.1388 –0.1502 –0.1598 –0.1677 –0.1755 0.0229 0.0194 0.0119 0.00832 0.00508 0.00176 –0.00529 –0.00915 –0.0117 –0.0100 0.0342 0.0851 0.1414 0.00 0.0340 0.0803 0.1191 0.1657 0.1845 0.1998 0.2160 0.2324 0.00 0.0336 0.0790 0.1168 0.1624 0.1862 0.1958 0.2112 0.2250
29Har2 29Har2 29Har2 29Har2 29Har2 29Har2 29Har2 29Har2 29Har2 29Har2 29Har2 29Luc2 29Luc2 29Luc2 29Luc2 29Luc2 29Luc2 29Luc2 29Luc2 29Luc2 29Luc2 21Kol 21Kol 21Kol 29Har2 29Har2 29Har2 29Har2 29Har2 29Har2 29Har2 29Har2 29Har2 29Har2 29Har2 29Har2 29Har2 29Har2 29Har2 29Har2 29Har2 29Har2
Landolt-Börnstein New Series IV/9A
2 Cell voltages Cell composition 2) AgŇAgBr, NaBr, 0.1 mŇNaxHgŇNaBr, 0.1 m, AgBrŇAg AgŇAgBr, NaBr, 0.1 mŇNaxHgŇNaBr, 0.2 m, AgBrŇAg AgŇAgBr, NaBr, 0.1 mŇNaxHgŇNaBr, 0.5 m, AgBrŇAg AgŇAgBr, NaBr, 0.1 mŇNaxHgŇNaBr, 1.0 m, AgBrŇAg AgŇAgBr, NaBr, 0.1 mŇNaxHgŇNaBr, 1.5 m, AgBrŇAg AgŇAgBr, NaBr, 0.1 mŇNaxHgŇNaBr, 2.0 m, AgBrŇAg AgŇAgBr, NaBr, 0.1 mŇNaxHgŇNaBr, 2.5 m, AgBrŇAg AgŇAgBr, NaBr, 0.1 mŇNaxHgŇNaBr, 3.0 m, AgBrŇAg AgŇAgBr, NaBr, 0.1 mŇNaxHgŇNaBr, 3.5 m, AgBrŇAg AgŇAgBr, NaBr, 0.1 mŇNaxHgŇNaBr, 4.0 m, AgBrŇAg AgŇAgCl, BaCl2, 0.03016 mŇBaxHgŇBaCl2, 0.01 m, AgClŇAg AgŇAgCl, BaCl2, 0.1004 mŇBaxHgŇBaCl2, 0.01 m, AgClŇAg AgŇAgCl, BaCl2, 0.2978 mŇBaxHgŇBaCl2, 0.01 m, AgClŇAg AgŇAgCl, BaCl2, 0.9710 mŇBaxHgŇBaCl2, 0.01 m, AgClŇAg AgŇAgCl, BaCl2, 1.521 mŇBaxHgŇBaCl2, 0.01 m, AgClŇAg AgŇAgCl, BaCl2, 1.550 mŇBaxHgŇBaCl2, 0.01 m, AgClŇAg AgŇAgCl, BaCl2, 0.01923 mŒBaCl2, 0.01 m, AgClŇAg AgŇAgCl, BaCl2, 0.07971 mŒBaCl2, 0.01 m, AgClŇAg AgŇAgCl, BaCl2, 0.1791 mŒBaCl2, 0.01 m, AgClŇAg AgŇAgCl, BaCl2, 0.3927 mŒBaCl2, 0.01 m, AgClŇAg AgŇAgCl, BaCl2, 0.8122 mŒBaCl2, 0.01 m, AgClŇAg AgŇAgCl, BaCl2, 1.715 mŒBaCl2, 0.01 m, AgClŇAg AgŇAgCl, CaCl2, 0.01547 mŒCaCl2, 0.01 m, AgClŇAg AgŇAgCl, CaCl2, 0.02006 mŒCaCl2, 0.01 m, AgClŇAg AgŇAgCl, CaCl2, 0.04966 mŒCaCl2, 0.01 m, AgClŇAg AgŇAgCl, CaCl2, 0.08053 mŒCaCl2, 0.01 m, AgClŇAg AgŇAgCl, CaCl2, 0.1612 mŒCaCl2, 0.01 m, AgClŇAg AgŇAgCl, CaCl2, 0.3208 mŒCaCl2, 0.01 m, AgClŇAg AgŇAgCl, CaCl2, 0.6162 mŒCaCl2, 0.01 m, AgClŇAg AgŇAgCl, CaCl2, 1.013 mŒCaCl2, 0.01 m, AgClŇAg AgŇAgCl, CaCl2, 2.586 mŒCaCl2, 0.01 m, AgClŇAg AgŇAgCl, CaCl2, 0.03504 mŇCa0.02wt%HgŇCaCl2, 0.01 m, AgClŇAg AgŇAgCl, CaCl2, 0.06294 mŇCa0.02wt%HgŇCaCl2, 0.01 m, AgClŇAg AgŇAgCl, CaCl2, 0.1032 mŇCa0.02wt%HgŇCaCl2, 0.01 m, AgClŇAg AgŇAgCl, CaCl2, 0.2066 mŇCa0.02wt%HgŇCaCl2, 0.01 m, AgClŇAg AgŇAgCl, CaCl2, 0.3713 mŇCa0.02wt%HgŇCaCl2, 0.01 m, AgClŇAg AgŇAgCl, CaCl2, 0.4655 mŇCa0.02wt%HgŇCaCl2, 0.01 m, AgClŇAg AgŇAgCl, CaCl2, 0.6627 mŇCa0.02wt%HgŇCaCl2, 0.01 m, AgClŇAg AgŇAgCl, CaCl2, 1.003 mŇCa0.02wt%HgŇCaCl2, 0.01 m, AgClŇAg AgŇAgCl, CaCl2, 1.960 mŇCa0.02wt%HgŇCaCl2, 0.01 m, AgClŇAg AgŇAgCl, CaCl2, 3.507 mŇCa0.02wt%HgŇCaCl2, 0.01 m, AgClŇAg AgŇAgCl, CaCl2, 0.0999 mŇCaxHgŇCaCl2, 0.00992 m, AgClŇAg AgŇAgCl, CaCl2, 0.0998 mŇCaxHgŇCaCl2, 0.01051 m, AgClŇAg AgŇAgCl, CaCl2, 0.1004 mŇCaxHgŇCaCl2, 0.02594 m, AgClŇAg AgŇAgCl, CaCl2, 0.0998 mŇCaxHgŇCaCl2, 0.02758 m, AgClŇAg AgŇAgCl, CaCl2, 0.0999 mŇCaxHgŇCaCl2, 0.04113 m, AgClŇAg AgŇAgCl, CaCl2, 0.0999 mŇCaxHgŇCaCl2, 0.1263 m, AgClŇAg
Landolt-Börnstein New Series IV/9A
117
T [K, °C] U0 [V] 0.00 0.0327 0.0769 0.1118 0.1333 0.1507 0.1650 0.1775 0.1884 0.1987 0.0355 0.0742 0.1092 0.1532 0.1718 0.1771 0.0093 0.0185 0.0280 0.0394 0.0491 0.0600 0.0060 0.0097 0.0220 0.0284 0.0368 0.0460 0.0549 0.0676 0.0836 0.0411 0.0606 0.0772 0.1014 0.1235 0.1335 0.1543 0.1773 0.2313 0.3005 0.0761 0.0742 0.0439 0.0412 0.0289 –0.0078
Ref. 29Har2 29Har2 29Har2 29Har2 29Har2 29Har2 29Har2 29Har2 29Har2 29Har2 25Luc 25Luc 25Luc 25Luc 25Luc 25Luc 25Luc 25Luc 25Luc 25Luc 25Luc 25Luc 25Luc 25Luc 25Luc 25Luc 25Luc 25Luc 25Luc 25Luc 25Luc 25Luc 25Luc 25Luc 25Luc 25Luc 25Luc 25Luc 25Luc 25Luc 25Luc 30Sca1 30Sca1 30Sca1 30Sca1 30Sca1 30Sca1
118 Cell composition 2)
2 Cell voltages T [K, °C] U0 [V]
AgŇAgCl, CaCl2, 0.1003 mŇCaxHgŇCaCl2, 0.4420 m, AgClŇAg AgŇAgCl, CaCl2, 0.0997 mŇCaxHgŇCaCl2, 0.6589 m, AgClŇAg AgŇAgCl, CaCl2, 0.1006 mŇCaxHgŇCaCl2, 0.9301 m, AgClŇAg AgŇAgCl, CdCl2, 0.1 mŇCdCl2, 0.0101 m, AgClŇAg AgŇAgCl, CdCl2, 0.1 mŇCdCl2, 0.02015 m, AgClŇAg AgŇAgCl, CdCl2, 0.1 mŇCdCl2, 0.03030 m, AgClŇAg AgŇAgCl, CdCl2, 0.1 mŇCdCl2, 0.05056 m, AgClŇAg AgŇAgCl, CdCl2, 0.1 mŇCdCl2, 0.08145 m, AgClŇAg AgŇAgCl, CdCl2, 0.1 mŇCdCl2, 0.2014 m, AgClŇAg AgŇAgCl, CdCl2, 0.1 mŇCdCl2, 0.5101 m, AgClŇAg AgŇAgCl, CdCl2, 0.1 mŇCdCl2, 0.9999 m, AgClŇAg AgŇAgCl, CdCl2, 0.1 mŇCdCl2, 4.227 m, AgClŇAg AgŇAgCl, CdCl2, 0.1 mŇCdCl2, 6.146 m, AgClŇAg AgŇAgCl, CsCl, 0.05 mŇCsxHgŇCsCl, 0.1 m, AgClŇAg AgŇAgCl, CsCl, 0.1 mŇCsxHgŇCsCl, 0.1 m, AgClŇAg AgŇAgCl, CsCl, 0.2 mŇCsxHgŇCsCl, 0.1 m, AgClŇAg AgŇAgCl, CsCl, 0.5 mŇCsxHgŇCsCl, 0.1 m, AgClŇAg AgŇAgCl, CsCl, 1.0 mŇCsxHgŇCsCl, 0.1 m, AgClŇAg AgŇAgCl, CsCl, 2.0 mŇCsxHgŇCsCl, 0.1 m, AgClŇAg AgŇAgCl, CsCl, 3.0 mŇCsxHgŇCsCl, 0.1 m, AgClŇAg AgŇAgClŇNaCl, 0.01<m<0.1ŒKCl,sat., NaN3, 0.01<m<0.1ŇAgN3ŇAg 278 K 288 K 298 K 308 K 318 K AgŇAgCl, NaCl, 0.1 mŇNaxHgŇNaCl, 0.1 m, AgClŇAg AgŇAgCl, NaCl, 0.1 mŇNaxHgŇNaCl, 0.2 m, AgClŇAg AgŇAgCl, NaCl, 0.1 mŇNaxHgŇNaCl, 0.5 m, AgClŇAg AgŇAgCl, NaCl, 0.1 mŇNaxHgŇNaCl, 1.0 m, AgClŇAg AgŇAgCl, NaCl, 0.1 mŇNaxHgŇNaCl, 1.5 m, AgClŇAg AgŇAgCl, NaCl, 0.1 mŇNaxHgŇNaCl, 2.0 m, AgClŇAg AgŇAgCl, NaCl, 0.1 mŇNaxHgŇNaCl, 2.5 m, AgClŇAg AgŇAgCl, NaCl, 0.1 mŇNaxHgŇNaCl, 3.0 m, AgClŇAg AgŇAgCl, NaCl, 0.1 mŇNaxHgŇNaCl, 3.5 m, AgClŇAg AgŇAgCl, NaCl, 0.1 mŇNaxHgŇNaCl, 4.0 m, AgClŇAg AgŇAgCl, NaCl, 0.0953 mŇNazHgŇNaOH, 0.9174 m, NaCl, 0.0826 m, AgClŇAg AgŇAgCl, NaCl, 0.0953 mŇNazHgŇNaOH, 0.5702 m, NaCl, 0.4298 m, AgClŇAg AgŇAgCl, NaCl, 0.0953 mŇNazHgŇNaOH, 0.1854 m, NaCl, 0.8146 m, AgClŇAg AgŇAgCl, NaCl, 0.0953 mŇNazHgŇNaOH, 0.1032 m, NaCl, 0.8968 m, AgClŇAg AgŇAgCl, NaCl, 0.0953 mŇNazHgŇNaOH, 0.00 m, NaCl, 1.0 m, AgClŇAg AgŇAgCl, NaCl, 0.0953 mŇNazHgŇNaOH, 0.2218 m, NaCl, 0.2782 m, AgClŇAg
Ref.
–0.0558 –0.0768 –0.0962 0.0265 0.0177 0.0129 0.00729 0.00214 –0.00697 –0.0152 –0.0203 –0.0274 –0.0265 –0.03201 0.0 0.0311 0.0711 0.1013 0.1323 0.1502 0.0620 0.0657 0.0695 0.0733 0.0772 0.00 0.0324 0.0756 0.1095 0.1303 0.1462 0.1592 0.1703 0.1818 0.1907 0.0469
30Sca1 30Sca1 30Sca1 29Luc2 29Luc2 29Luc2 29Luc2 29Luc2 29Luc2 29Luc2 29Luc2 29Luc2 29Luc2 30Har1 30Har1 30Har1 30Har1 30Har1 30Har1 30Har1 38Tay 38Tay 38Tay 38Tay 38Tay 29Har2 29Har2 29Har2 29Har2 29Har2 29Har2 29Har2 29Har2 29Har2 29Har2 37Har3
0.0898
37Har3
0.1064
37Har3
0.1094
37Har3
0.1120
37Har3
0.0628
37Har3
Landolt-Börnstein New Series IV/9A
2 Cell voltages Cell composition 2)
119
T [K, °C] U0 [V]
AgŇAgCl, NaCl, 0.0953 mŇNazHgŇNaOH, 0.0885 m, NaCl, 0.4115 m, AgClŇAg AgŇAgCl, NaCl, 0.0953 mŇNazHgŇNaOH, 0.00 m, NaCl, 0.5 m, AgClŇAg AgŇAgI, KI, 0.005 mŒKCl, 0.005 mŇAg AgŇAgI, KI, 0.05 mŒKCl, 0.05 mŇAg AgŇAgI, KI, 0.50 mŒKCl, 0.50 mŇAg AgŇAgI, KI, 1.0 mŒKCl, 1.0 mŇAg AgŇKAg(CN)2, 0.0005 M, KCN, 0.02 MŒKCN, 0.01 M, KAg(CN)2, 0.0005 MŇAg AgŇKAg(CN)2, 0.005 M, KCN, 0.2 MŒKCN, 0.1 M, KAg(CN)2, 0.0005 MŇAg AgŇKAg(CN)2, 0.005 M, KCN, 0.1 MŒKCN, 0.1 M, KAg(CN)2, 0.00125 MŇAg AgŇKAg(CN)2, 0.05 M, KCN, 1.0 MŒKCN, 1.0 M, KAg(CN)2, 0.0125 MŇAg 278 K AgŇAg2SŇHCl, 0.5 M, H2S,sat., 1 atmŒHCl, 0.5 MŇH2, Pt 283 K 298 K 308 K AgŇKAg(CN)2, 0.05 M, KCN, 1.0 MŒKCl, 0.1 M, Hg2Cl2ŇHg AgŇKAg(CN)2, 3.44 mM, KCN, 5.51 mMŒKNO3,sat.ŒKCl, 1.0 M, Hg2Cl2ŇHg AgŇKAg(CN)2, 4.86 mM, KCN, 3.89 mMŒKNO3,sat.ŒKCl, 1.0 M, Hg2Cl2ŇHg AgŇKAg(CN)2, 9.78 mM, KCN, 14.1 mMŒKNO3,sat.ŒKCl, 1.0 M, Hg2Cl2ŇHg AgŇAgBr, HBr, 0.1 MŒHBr, 0.1 MŒHBr, 0.1 MŇBr2, 3.82·10–5 M, Pt AgŇAgBr, HBr, 0.1 MŒHBr, 0.1 MŒHBr, 0.1 MŇBr2, 2.28·10–4 M, Pt AgŇAgBr, HBr, 0.1 MŒHBr, 0.1 MŒHBr, 0.1 MŇBr2, 0.00186 M, Pt AgŇAgBr, HBr, 0.1 MŒHBr, 0.1 MŒHBr, 0.1 MŇBr2, 0.00645 M, Pt AgŇAgBr, HBr, 0.1 MŒHBr, 0.1 MŒHBr, 0.1 MŇBr2, 0.0192 M, Pt AgŇAgBr, HBr, 0.1 MŒHBr, 0.1 MŒHBr, 0.1 MŇBr2, 0.106 M, Pt AgŇAgBr, HBr, 0.1 MŒHBr, 0.1 MŒHBr, 0.1 MŇBr2, 0.214 M, Pt AgŇAgBr, KBr, 0.009995 MŒKBr, 0.009995 MŒBr2, a=4.815·10–3, PtIr AgŇAgBr, KBr, 0.019999 MŒKBr, 0.009995 MŒBr2, a=4.819·10–3, PtIr AgŇAgBr, KBr, 0.050480 MŒKBr, 0.009995 MŒBr2, a=6.159·10–3, PtIr AgŇAgBr, KBr, 0.10095 MŒKBr, 0.009995 MŒBr2, a=4.927·10–3, PtIr AgŇAgBr, KBr, 0.20193 MŒKBr, 0.009995 MŒBr2, a=11.823·10–3, PtIr AgŇAgBr, KBr, 0.5003 MŒKBr, 0.009995 MŒBr2, a=10.355·10–3, PtIr AgŇAgBr, KBr, 1.007 MŒKBr, 0.009995 MŒBr2, a=1.801·10–3, PtIr AgŇAgBr, KBr, 0.9996 MŒKBr, 0.009995 MŒBr2, a=7.533·10–3, PtIr AgŇAgClŇHCl, 0.01 m, quinhydroneŇPt 0.18 °C 283 K 288 K 293 K 298 K 303K 308 K
Landolt-Börnstein New Series IV/9A
Ref.
0.0733
37Har3
0.0744 0.3724 0.3728 0.3724 0.3723 0.0344
37Har3 37Can1 37Can1 37Can1 37Can1 04Bod
0.0431
04Bod
–0.0351
04Bod
–0.0375
04Bod
0.03805 0.03767 0.03658 0.0357 0.894 1.1542
20Noy 20Noy 20Noy 20Noy 04Bod 32Bri
1.1302
32Bri
1.0634
32Bri
0.860 0.881 0.909 0.925 0.941 0.980 1.007 0.9468 0.9471 0.9471 0.9471 0.9471 0.9471 0.9471 0.9471 0.2599 0.2498 0.2449 0.2401 0.2355 0.2310 0.2267
99Lut 99Lut 99Lut 99Lut 99Lut 99Lut 99Lut 34Jon 34Jon 34Jon 34Jon 34Jon 34Jon 34Jon 34Jon 33Har2 33Har2 33Har2 33Har2 33Har2 33Har2 33Har2
120
2 Cell voltages
Cell composition 2) AgŇAgClŇHCl, 0.1 MŇHg2Cl2ŇHg
AgŇAgClŇHCl, 0.5 MŇHg2Cl2ŇHg AgŇAgClŇHCl, 1 MŇHg2Cl2ŇHg
AgŇAgCl, MgCl2, 0.0227 mŒKCl,sat.ŒKCl, 0.1 m, Hg2Cl2ŇHg AgŇAgCl, MgCl2, 0.0399 mŒKCl,sat.ŒKCl, 0.1 m, Hg2Cl2ŇHg AgŇAgCl, MgCl2, 0.0875 mŒKCl,sat.ŒKCl, 0.1 m, Hg2Cl2ŇHg AgŇAgCl, MgCl2, 0.202 mŒKCl,sat.ŒKCl, 0.1 m, Hg2Cl2ŇHg AgŇAgCl, MgCl2, 0.386 mŒKCl,sat.ŒKCl, 0.1 m, Hg2Cl2ŇHg AgŇAgCl, MgCl2, 0.968 mŒKCl,sat.ŒKCl, 0.1 m, Hg2Cl2ŇHg AgŇAgCl, MgCl2, 2.175 mŒKCl,sat.ŒKCl, 0.1 m, Hg2Cl2ŇHg AgŇAgCl, MgCl2, 4.217 mŒKCl,sat.ŒKCl, 0.1 m, Hg2Cl2ŇHg AgŇAgI, ZnI2, 0.01075 mŒZnI2, 0.01075 m, Hg2I2ŇHg
AgŇAgI, ZnI2, 0.01474 mŒZnI2, 0.01075 m, Hg2I2ŇHg
AgŇAgI, ZnI2, 0.01801 mŒZnI2, 0.01075 m, Hg2I2ŇHg
AgŇAgI, ZnI2, 0.03373 mŒZnI2, 0.01075 m, Hg2I2ŇHg AgŇAgI, ZnI2, 0.06068 mŒZnI2, 0.01075 m, Hg2I2ŇHg
AgŇAg2OŇKOHŇHgOŇHg
T [K, °C] U0 [V] 313 K 293 K 328 K 333 K 373 K 397 K 413 K 448 K 468 K 538 K 293 K 293 K 344 K 383 K 433 K 493 K 533 K
15 °C 20 °C 25 °C 30 °C 35 °C 15 °C 20 °C 25 °C 30 °C 35 °C 15 °C 20 °C 25 °C 30 °C 35 °C 25 °C 30 °C 15 °C 20 °C 25 °C 30 °C 35 °C 298 K
0.2225 0.041 0.055 0.058 0.058 0.078 0.103 0.138 0.098 0.264 0.041 0.041 0.058 0.065 0.088 0.110 0.130 0.021 0.0335 0.0500 0.0675 0.0805 0.1025 0.118 0.147 0.1076 0.1091 0.1106 0.1122 0.1139 0.1081 0.1096 0.1112 0.1127 0.1144 0.1086 0.1102 0.1117 0.1134 0.1150 0.1125 0.1141 0.1117 0.1132 0.1147 0.1163 0.1179 0.2440
Ref. 33Har2 55Lie 55Lie 55Lie 55Lie 55Lie 55Lie 55Lie 55Lie 55Lie 55Lie 55Lie 55Lie 55Lie 55Lie 55Lie 55Lie 28Jon 28Jon 28Jon 28Jon 28Jon 28Jon 28Jon 28Jon 39Vos 39Vos 39Vos 39Vos 39Vos 39Vos 39Vos 39Vos 39Vos 39Vos 39Vos 39Vos 39Vos 39Vos 39Vos 39Vos 39Vos 39Vos 39Vos 39Vos 39Vos 39Vos 57Ham Landolt-Börnstein New Series IV/9A
2 Cell voltages Cell composition 2) AgŇAgCl, PbCl2, 0.00262 m, D-mannitol, 0.10 m, Ba(NO3)2, 0.0 mŇPbsat.Hg AgŇAgCl, PbCl2, 0.00528 m, D-mannitol, 0.10 m, Ba(NO3)2, 0.0 mŇPbsat.Hg AgŇAgCl, PbCl2, 0.01056 m, D-mannitol, 0.10 m, Ba(NO3)2, 0.0 mŇPbsat.Hg AgŇAgCl, PbCl2, 0.01580 m, D-mannitol, 0.10 m, Ba(NO3)2, 0.0 mŇPbsat.Hg AgŇAgCl, PbCl2, 0.02109 m, D-mannitol, 0.10 m, Ba(NO3)2, 0.0 mŇPbsat.Hg AgŇAgCl, PbCl2, 0.01055 m, D-mannitol, 0.0 m, Ba(NO3)2, 0.0 mŇPbsat.Hg AgŇAgCl, PbCl2, 0.01055 m, D-mannitol, 0.1012 m, Ba(NO3)2, 0.0 mŇPbsat.Hg AgŇAgCl, PbCl2, 0.01055 m, D-mannitol, 0.2897 m, Ba(NO3)2, 0.0 mŇPbsat.Hg AgŇAgCl, PbCl2, 0.01055 m, D-mannitol, 0.5609 m, Ba(NO3)2, 0.0 mŇPbsat.Hg AgŇAgCl, PbCl2, 0.01055 m, D-mannitol, 0.7313 m, Ba(NO3)2, 0.0 mŇPbsat.Hg AgŇAgCl, PbCl2, 0.023455 m, D-mannitol, 0.0 m, Ba(NO3)2, 0.0 mŇPbsat.Hg AgŇAgCl, PbCl2, 0.023455 m, D-mannitol, 0.0990 m, Ba(NO3)2, 0.0 mŇPbsat.Hg AgŇAgCl, PbCl2, 0.023455 m, D-mannitol, 0.2899 m, Ba(NO3)2, 0.0 mŇPbsat.Hg AgŇAgCl, PbCl2, 0.023455 m, D-mannitol, 0.5604 m, Ba(NO3)2, 0.0 mŇPbsat.Hg AgŇAgCl, PbCl2, 0.023455 m, D-mannitol, 0.7304m, Ba(NO3)2, 0.0 mŇPbsat.Hg AgŇAgCl, PbCl2, 0.01090 m, D-mannitol, 0.20698 m, Ba(NO3)2, 0.02339 mŇPbsat.Hg AgŇAgCl, PbCl2, 0.01083 m, D-mannitol, 0.15708 m, Ba(NO3)2, 0.02324 mŇPbsat.Hg AgŇAgCl, PbCl2, 0.01076m, D-mannitol, 0.1002 m, Ba(NO3)2, 0.02339 mŇPbsat.Hg AgŇAgCl, PbCl2, 0.01069 m, D-mannitol, 0.05009 m, Ba(NO3)2, 0.02294 mŇPbsat.Hg AgŇAgCl, PbCl2, 0.01063 m, D-mannitol, 0.00 m, Ba(NO3)2, 0.02281 mŇPbsat.Hg Sodium (Na) Na0.2065wt%HgŇNaOH, 0.2 mŒNaCl, 0.2 mŒKCl, 0.2 mŒKCl, 1.0 m, Hg2Cl2ŇHg Na0.551wt%HgŇNaOHŇNa0.1815wt%Hg Na0.1978wt%HgŇNaOHŇNa0.0396wt%Hg Na0.0396wt%HgŇNaOHŇNa0.0197wt%Hg Na0.206wt%HgŇNaCl, 0.001 mŒKCl, 1.0 m, Hg2Cl2ŇHg Na0.206wt%HgŇNaCl, 0.01 mŒKCl, 1.0 m, Hg2Cl2ŇHg Na0.206wt%HgŇNaCl, 0.02 mŒKCl, 1.0 m, Hg2Cl2ŇHg Na0.206wt%HgŇNaCl, 0.05 mŒKCl, 1.0 m, Hg2Cl2ŇHg Na0.206wt%HgŇNaCl, 0.1 mŒKCl, 1.0 m, Hg2Cl2ŇHg Na0.206wt%HgŇNaCl, 0.2 mŒKCl, 1.0 m, Hg2Cl2ŇHg Na0.206wt%HgŇNaCl, 0.5 mŒKCl, 1.0 m, Hg2Cl2ŇHg Na0.206wt%HgŇNaCl, 1.0 mŒKCl, 1.0 m, Hg2Cl2ŇHg Sulfur (S) PtŇS,sat., Na2S, 0.00781 MŒKCl, 1.0 M, Hg2Cl2ŇHg PtŇS,sat., Na2S, 0.125 MŒKCl, 1.0 M, Hg2Cl2ŇHg PtŇS,sat., Na2S, 2.0 MŒKCl, 1.0 M, Hg2Cl2ŇHg
Landolt-Börnstein New Series IV/9A
121
T [K, °C] U0 [V]
Ref.
0.5659 0.5419 0.5197 0.5096 0.5013 0.5200 0.5205 0.5217 0.5254 0.5270 0.4972 0.4983
38Cro 38Cro 38Cro 38Cro 38Cro 38Cro 38Cro 38Cro 38Cro 38Cro 38Cro 38Cro
0.5000
38Cro
0.50224 38Cro 0.5047
38Cro
0.5269
38Cro
0.5266
38Cro
0.5261
38Cro
0.5258
38Cro
0.5256
38Cro
2.1749
10Lew
0.0565 0.0531 0.0194 2.2967 2.2665 2.2556 2.2296 2.2147 2.1956 2.1750 2.1531
22Ric 22Ric 22Ric 30Bir 30Bir 30Bir 30Bir 30Bir 30Bir 30Bir 30Bir
0.5523 0.5836 0.6211
02Küs 02Küs 02Küs
122
2 Cell voltages
Cell composition 2) Thallium (Tl) TlŇTlCl,sol., TlCl.sat., Hg2Cl2ŇHg (UT [V]=0.8230–0.32·10–3(T–20 °C)) TlŇTlCl, 0.002 MŒNH4NO3,sat.ŒKCl, 0.1 M, Hg2Cl2ŇHg TlŇTlCl, 0.005 MŒNH4NO3,sat.ŒKCl, 0.1 M, Hg2Cl2ŇHg TlŇTlCl, 0.01 MŒNH4NO3,sat.ŒKCl, 0.1 M, Hg2Cl2ŇHg TlŇTlNO3, 0.002 MŒNH4NO3,sat.ŒKCl, 0.1 M, Hg2Cl2ŇHg TlŇTlNO3, 0.01 MŒNH4NO3,sat.ŒKCl, 0.1 M, Hg2Cl2ŇHg TlŇTlNO3, 0.1 MŒNH4NO3,sat.ŒKCl, 0.1 M, Hg2Cl2ŇHg TlŇTl2SO4, 0.005 M, Hg2SO4ŇHg TlŇTl2SO4, 0.0125 M, Hg2SO4ŇHg TlŇTl2SO4, 0.025 M, Hg2SO4ŇHg TlŇTl2SO4, 0.05 M, Hg2SO4ŇHg Tlsat.HgŇTlBr,sol., TlBr,sat., Hg2Br2ŇHg (UT [V]=0.7920–0.00023(T–20 °C)) Tlsat.HgŇTlBr,sol., KBr, 0.1 MŒKBr, 0.1 M, Hg2Br2ŇHg Tlsat.HgŇTlI,sol., TlI,sat., Hg2I2ŇHg (UT [V]=0.7572–0.00023(T–20 °C)) Tl5wt%HgŇTlCl, 0.0005 m, AgClŇAg Tl5wt%HgŇTlCl, 0.001 m, AgClŇAg Tl5wt%HgŇTlCl, 0.002 m, AgClŇAg Tl5wt%HgŇTlCl, 0.004 m, AgClŇAg Tl5wt%HgŇTlCl, 0.006 m, AgClŇAg Tl5wt%HgŇTlCl, 0.008 m, AgClŇAg Tl5wt%HgŇTlCl, 0.01 m, AgClŇAg Tlsat.HgŇTlNO3, 0.433 MŒKCl, 0.1 M, Hg2Cl2ŇHg Tlsat.HgŇTlNO3, 0.0183 MŒTlNO3, 0.0107 MŇTlxHg Tlsat.HgŇTlNO3, 0.0568 MŒTlNO3, 0.0107 MŇTlxHg Tlsat.HgŇTlNO3, 0.1530 MŒTlNO3, 0.0107 MŇTlxHg Tlsat.HgŇTl2SO4, 0.1101 MŒKCl, 0.1 M, Hg2Cl2ŇHg Tl5wt%HgŇTlCl, AgClŇTl TlŇTl2SO4ŇTl49.48wt%Hg Tl49.42wt%HgŇTl2SO4ŇTl34.03wt%Hg Tl34.03wt%HgŇTl2SO4ŇTl27.36wt%Hg Tl27.36wt%HgŇTl2SO4ŇTl20.97wt%Hg Tl20.78wt%.HgŇTl2SO4ŇTl10.02wt%Hg Tl10.02wt%HgŇTl2SO4ŇTl4.930wt%Hg Tl4.935wt%HgŇTl2SO4ŇTl3.788wt%Hg Tl3.788wt%HgŇTl2SO4ŇTl1.704wt%Hg Tl1.704wt%HgŇTl2SO4ŇTl0.3315wt%Hg Tin (Sn) SnŇSnCl2, 0.01 M, HCl, 0.01 MŒKCl, 3.5 M, Hg2Cl2ŇHg SnŇSnCl2, 0.01 M, HCl, 0.1 MŒKCl, 3.5 M, Hg2Cl2ŇHg SnŇSnCl2, 0.01 M, HCl, 1.0 MŒKCl, 3.5 M, Hg2Cl2ŇHg
T [K, °C] U0 [V]
Ref.
20 °C
0.8230
34Öho
17 °C 17 °C 17 °C 17 °C 17 °C 17 °C 14.9 °C 25 °C 14.9 °C 25 °C 14.9 °C 25 °C 14.9 °C 25 °C 20 °C
0.813 0.788 0.773 0.813 0.775 0.724 1.1198 1.1310 1.0967 1.1065 1.0768 1.0885 1.0609 1.0690 0.7920
09Bri 09Bri 09Bri 09Bri 09Bri 09Bri 34Öho 34Öho 34Öho 34Öho 34Öho 34Öho 34Öho 34Öho 34Öho
20 °C
0.7945 0.7572
33Ish5 34Öho
17 °C 17 °C 17 °C
24.5 °C 24.5 °C 24.5 °C
0.8307 34Cow 0.7956 34Cow 0.7609 34Cow 0.7266 34Cow 0.7068 34Cow 0.6929 34Cow 0.6821 34Cow 0.7105 05Abe 0.0099 21Dru 0.0325 21Dru 0.0536 21Dru 0.7330 05Abe 0.1196 34Cow 0.0025 19Ric 0.00852 19Ric 0.00868 19Ric 0.01157 19Ric 0.03377 19Ric 0.002948 19Ric 0.00976 19Ric 0.0264 19Ric 0.04555 19Ric 0.4645 0.4770 0.5194
28Pry 28Pry 28Pry Landolt-Börnstein New Series IV/9A
2 Cell voltages Cell composition 2) SnŇSnCl2, 0.1 M, HCl, 1.0 MŒKCl, 3.5 M, Hg2Cl2ŇHg SnŇSnCl2, 0.092 MŒKCl,sat.ŒKCl, 1.0 M, Hg2Cl2ŇHg SnŇSnCl2, 0.897 MŒKCl,sat.ŒKCl, 1.0 M, Hg2Cl2ŇHg SnŇSnCl4, 0.01 M, HCl, 0.0109 M, KCl, 0.0 MŒKCl, 3.5 M, Hg2Cl2ŇHg SnŇSnCl4, 0.01 M, HCl, 0.0109 M, KCl, 0.25 MŒKCl, 3.5 M, Hg2Cl2ŇHg SnŇSnCl4, 0.01 M, HCl, 0.0109 M, KCl, 0.5 MŒKCl, 3.5 M, Hg2Cl2ŇHg SnŇSnCl4, 0.01 M, HCl, 0.0109 M, KCl, 1.149 MŒKCl, 3.5 M, Hg2Cl2ŇHg SnŇSnCl4, 0.01 M, HCl, 0.0109 M, KCl, 1.445 MŒKCl, 3.5 M, Hg2Cl2ŇHg SnŇSnCl4, 0.01 M, HCl, 0.02 M, KCl, 0.0 MŒKCl, 3.5 M, Hg2Cl2ŇHg SnŇSnCl4, 0.01 M, HCl, 0.12 M, KCl, 0.12 MŒKCl, 3.5 M, Hg2Cl2ŇHg SnŇSnCl4, 0.01 M, HCl, 0.43 M, KCl, 0.43MŒKCl, 3.5 M, Hg2Cl2ŇHg SnŇSnCl4, 0.01 M, HCl, 1.03 M, KCl, 1.03 MŒKCl, 3.5 M, Hg2Cl2ŇHg SnŇSnCl4, 0.01 M, HCl, 0.5 M, KCl, 0.0 MŒKCl, 3.5 M, Hg2Cl2ŇHg SnŇSnCl4, 0.01 M, HCl, 0.5 M, KCl, 1.11 MŒKCl, 3.5 M, Hg2Cl2ŇHg SnŇSnCl4, 0.01 M, HCl, 0.5 M, KCl, 2.46 MŒKCl, 3.5 M, Hg2Cl2ŇHg SnŇSnCl4, 0.01 M, HCl, 1.48 M, KCl, 1.48 MŒKCl, 3.5 M, Hg2Cl2ŇHg SnŇSn(NO3)2, 0.05 MŒKNO3, 0.5 MŒKCl, 1.0 M, Hg2Cl2ŇHg SnŇSn(ClO4)4, 0.02 M, HClO4, 0.5 MŒKCl, 3.5 M, Hg2Cl2ŇHg SnŇSn(ClO4)4, 0.05 M, HClO4, 0.5 MŒKCl, 3.5 M, Hg2Cl2ŇHg SnŇSn(ClO4)4, 0.1 M, HClO4, 0.876 MŒKCl, 3.5 M, Hg2Cl2ŇHg SnŇSnSO4, 0.010 MŒKCl,sat.ŒKCl, 1.0 M, Hg2Cl2ŇHg SnŇSnSO4, 0.492 MŒKCl,sat.ŒKCl, 1.0 M, Hg2Cl2ŇHg SnŇSnSO4, 0.096 M, H2SO4, 0.5 MŒNH4NO3,sat.ŒH2SO4, 0.5 M, Hg2SO4ŇHg SnŇSnSO4, 0.0105 M, H2SO4, 0.5 MŒNH4NO3,sat.ŒH2SO4, 0.5 M, Hg2SO4ŇHg Zinc (Zn) ZnŇZnO, Ba(OH)2, 0.1<m<0.2ŇH2, Pt ZnŇK2(CN)4, 9.09 mM, KCN, 3.74 mMŒKNO3,sat.ŒKCl, 1.0 M, Hg2Cl2ŇHg ZnŇK2(CN)4, 9.09 mM, KCN, 17.11 mMŒKNO3,sat.ŒKCl, 1.0 M, Hg2Cl2ŇHg ZnŇK2(CN)4, 7.41 mM, KCN, 25.08 mMŒKNO3,sat.ŒKCl, 1.0 M, Hg2Cl2ŇHg ZnŇK2(CN)4, 4.76 mM, KCN, 27.86 mMŒKNO3,sat.ŒKCl, 1.0 M, Hg2Cl2ŇHg ZnŇK2(CN)4, 2.91 mM, KCN, 36.17 mMŒKNO3,sat.ŒKCl, 1.0 M, Hg2Cl2ŇHg ZnŇZnCl2, 0.005 m, Hg2Cl2ŇHg ZnŇZnCl2, 0.01 m, Hg2Cl2ŇHg ZnŇZnCl2, 0.0199 m, Hg2Cl2ŇHg ZnŇZnCl2, 0.05003 m, Hg2Cl2ŇHg ZnŇZnCl2, 0.10019 m, Hg2Cl2ŇHg ZnŇZnCl2, 0.25148 m, Hg2Cl2ŇHg ZnŇZnCl2, 0.50786 m, Hg2Cl2ŇHg ZnŇZnCl2, 1.0375 m, Hg2Cl2ŇHg ZnŇZn(OH)2,sol., NaOH, 1.0 MŒNaOH, 1.0 M, HgOŇHg ZnŇZnSO4, 0.005 MŒKCl,sat.ŒKCl, 0.1 M, Hg2Cl2ŇHg Landolt-Börnstein New Series IV/9A
123
T [K, °C] U0 [V] 24.5 °C 18.5 °C 18.5 °C
Ref.
18 °C 18 °C 18 °C
0.4892 0.480 0.471 0.5000 0.5021 0.5300 0.5518 0.5562 0.5091 0.5231 0.5441 0.5671 0.5331 0.5599 0.5831 0.5837 0.440 0.5026 0.5011 0.5007 0.494 0.473 0.887
28Pry 11För 11För 34Pry 34Pry 34Pry 34Pry 34Pry 34Pry 34Pry 34Pry 34Pry 34Pry 34Pry 34Pry 34Pry 03Sac 34Pry 34Pry 34Pry 11För 11För 11För
18 °C
0.913
11För
44.9 °C 12.5 °C
0.4198 1.344
26Mai 32Bri
12.5 °C
1.429
32Bri
12.5 °C
1.410
32Bri
12.5 °C
1.434
32Bri
12.5 °C
1.437
32Bri
22 °C
1.2244 1.2035 1.1800 1.1474 1.1308 1.1009 1.0782 1.0568 1.344 1.163
31Get1 31Get1 31Get1 31Get1 31Get1 31Get1 31Get1 31Get1 27Die 21Moo
124
2 Cell voltages
Cell composition 2) ZnŇZnSO4, 0.05 MŒKCl,sat.ŒKCl, 0.1 M, Hg2Cl2ŇHg Zn10wt%HgŇZn(OH)2, 0.2 M, KOH, 4.2 MŒKOH, 4.2 MŇH2, Pt Zn10wt%HgŇZnBr2,sat., Hg2Br2ŇHg
Zn10wt%HgŇZnCl2,sat., Hg2Cl2ŇHg
Zn1wt%HgŇZnCl2, 0.00963 m, AgClŇAg Zn1wt%HgŇZnCl2, 0.0304 m, AgClŇAg Zn1wt%HgŇZnCl2, 0.1011 m, AgClŇAg Zn1wt%HgŇZnCl2, 0.1444 m, AgClŇAg Zn1wt%HgŇZnCl2, 0.3590 m, AgClŇAg Zn1wt%HgŇZnCl2, 0.5285 m, AgClŇAg Zn1wt%HgŇZnCl2, 1.202 m, AgClŇAg Znsat.HgŇZnCl2, 0.002941 m, AgClŇAg Znsat.HgŇZnCl2, 0.00781 m, AgClŇAg Znsat.HgŇZnCl2, 0.01236 m, AgClŇAg Znsat.HgŇZnCl2, 0.02144 m, AgClŇAg Znsat.HgŇZnCl2, 0.04242 m, AgClŇAg Znsat.HgŇZnCl2, 0.9048 m, AgClŇAg Znsat.HgŇZnCl2, 0.2111 m, AgClŇAg Znsat.HgŇZnCl2, 0.4499 m, AgClŇAg Znsat.HgŇZnCl2, 0.6404 m, AgClŇAg Znsat.HgŇZnCl2, 1.480 m, AgClŇAg ZnzHgŇZnCl2, 0.000625 mŒZnCl2, 0.00125 mŇZnzHg ZnzHgŇZnCl2, 0.00125 mŒZnCl2, 0.0025 mŇZnzHg ZnzHgŇZnCl2, 0.0025 mŒZnCl2, 0.005 mŇZnzHg ZnzHgŇZnCl2, 0.005 mŒZnCl2, 0.01 mŇZnzHg ZnHgŇZn(ClO4)2, 0.1 mŒZn(ClO4)2, 0.1 mŇZnHg ZnHgŇZn(ClO4)2, 0.1 mŒZn(ClO4)2, 0.5 mŇZnHg ZnHgŇZn(ClO4)2, 0.1 mŒZn(ClO4)2, 1.0 mŇZnHg ZnHgŇZn(ClO4)2, 0.1 mŒZn(ClO4)2, 1.5 mŇZnHg ZnHgŇZn(ClO4)2, 0.1 mŒZn(ClO4)2, 2.0 mŇZnHg ZnHgŇZn(ClO4)2, 0.1 mŒZn(ClO4)2, 2.5 mŇZnHg ZnHgŇZn(ClO4)2, 0.1 mŒZn(ClO4)2, 3.0 mŇZnHg ZnHgŇZn(ClO4)2, 0.1 mŒZn(ClO4)2, 3.5 mŇZnHg ZnHgŇZn(ClO4)2, 0.1 mŒZn(ClO4)2, 4.0 mŇZnHg Znsat.HgŇZnI2, 0.3 mŒZnI2, 0.05 mŇZnsat.Hg Znsat.HgŇZnI2, 0.3 mŒZnI2, 0.1 mŇZnsat.Hg Znsat.HgŇZnI2, 0.3 mŒZnI2, 0.3 mŇZnsat.Hg Znsat.HgŇZnI2, 0.3 mŒZnI2, 1.0 mŇZnsat.Hg
T [K, °C] U0 [V]
Ref.
22 °C
1.138 21Moo 0.424 07Fau 20 °C 0.6896 32Ish1 25 °C 0.6874 32Ish1 30 °C 0.6850 32Ish1 35 °C 0.6826 32Ish1 37.5 °C 0.6830 32Ish1 40 °C 0.6833 32Ish1 45 °C 0.6840 32Ish1 25 °C 0.8231 33Ish1 30 °C 0.8238 33Ish1 35 °C 0.8244 33Ish1 40 °C 0.8251 33Ish1 42.5 °C 0.8255 33Ish1 15 °C 1.1568 32Ham 15 °C 1.1180 32Ham 15 °C 1.0799 32Ham 15 °C 1.0678 32Ham 15 °C 1.0387 32Ham 15 °C 1.0262 32Ham 15 °C 1.0007 32Ham 1.1983 30Sca2 1.1650 30Sca2 1.1495 30Sca2 1.1310 30Sca2 1.1090 30Sca2 1.0844 30Sca2 1.0566 30Sca2 1.0328 30Sca2 1.0221 30Sca2 0.9978 30Sca2 30 °C 0.000638 32Mas2 30 °C 0.000655 32Mas2 30 °C 0.000615 32Mas2 30 °C 0.00060 32Mas2 0.0000 46Sto1 0.0400 46Sto1 0.0673 46Sto1 0.0909 46Sto1 0.1139 46Sto1 0.1372 46Sto1 0.1604 46Sto1 0.1836 46Sto1 0.2068 46Sto1 0.0418 46Sto2 0.0269 46Sto2 0.0 46Sto2 –0.0409 46Sto2 Landolt-Börnstein New Series IV/9A
2 Cell voltages Cell composition 2) Znsat.HgŇZnI2, 0.3 mŒZnI2, 2.5 mŇZnsat.Hg Znsat.HgŇZnI2, 0.3 mŒZnI2, 5.0 mŇZnsat.Hg Znsat.HgŇZnI2, 0.3 mŒZnI2, 10.0 mŇZnsat.Hg Zn10wt%HgŇZnSO4*6 H2O,sol., ZnSO4,sat., Hg2SO4ŇHg Zn10wt%HgŇZnSO4*6 H2O,sol., ZnSO4,sat., Hg2SO4ŇHg Zn10wt%HgŇZnSO4*7 H2O,sol., ZnSO4,sat., Hg2SO4ŇHg Zn10wt%HgŇZnSO4*7 H2O,sol., ZnSO4,sat., Hg2SO4ŇHg Znsat.HgŇZnSO4, 0.0008558 m, Hg2SO4ŇHg Znsat.HgŇZnSO4, 0.0020793 m, Hg2SO4ŇHg Znsat.HgŇZnSO4, 0.0039726 m, Hg2SO4ŇHg Znsat.HgŇZnSO4, 0.010109 m, Hg2SO4ŇHg Znsat.HgŇZnSO4, 0.04413 m, Hg2SO4ŇHg Znsat.HgŇZnSO4, 0.06099 m, Hg2SO4ŇHg Znsat.HgŇZnSO4, 0.10539 m, Hg2SO4ŇHg Znsat.HgŇZnSO4, 0.23255 m, Hg2SO4ŇHg Znsat.HgŇZnSO4, 0.46574 m, Hg2SO4ŇHg Znsat.HgŇZnSO4, 1.0 m, Hg2SO4ŇHg Znsat.HgŇZnSO4, 2.0 m, Hg2SO4ŇHg Znsat.HgŇZnSO4, 3.0 m, Hg2SO4ŇHg Znsat.HgŇZnSO4, 0.0005 m, Pb2SO4,sat.ŇPbsat.Hg Znsat.HgŇZnSO4, 0.001 m, Pb2SO4,sat.ŇPbsat.Hg Znsat.HgŇZnSO4, 0.002 m, Pb2SO4,sat.ŇPbsat.Hg Znsat.HgŇZnSO4, 0.005 m, Pb2SO4,sat.ŇPbsat.Hg Znsat.HgŇZnSO4, 0.01 m, Pb2SO4,sat.ŇPbsat.Hg Znsat.HgŇZnSO4, 0.02 m, Pb2SO4,sat.ŇPbsat.Hg Znsat.HgŇZnSO4, 0.05 m, Pb2SO4,sat.ŇPbsat.Hg Znsat.HgŇZnSO4, 0.0512 m, Pb2SO4,sat.ŇPbsat.Hg
Znsat.HgŇZnSO4, 0.150 m, Pb2SO4,sat.ŇPbsat.Hg
Znsat.HgŇZnSO4, 0.510 m, Pb2SO4,sat.ŇPbsat.Hg
Znsat.HgŇZnSO4, 1.501 m, Pb2SO4,sat.ŇPbsat.Hg
1
125
T [K, °C] U0 [V]
35 °C 35 °C
15 °C 25 °C 35 °C 15 °C 25 °C 35 °C 15 °C 25 °C 35 °C 15 °C 25 °C 35 °C
–0.0769 –0.1168 –0.2143 1.4137 1.4046 1.4197 1.4062 1.5331 1.5281 1.5233 1.5137 1.4930 1.4897 1.4830 1.4729 1.4655 1.4560 1.4438 1.4305 0.6114 0.5971 0.5832 0.5660 0.5535 0.5425 0.5287 0.5343 0.5283 0.5222 0.5196 0.5135 0.5074 0.5055 0.4992 0.4929 0.4920 0.4850 0.4780
Ref. 46Sto2 46Sto2 46Sto2 11Coh 11Coh 11Coh 11Coh 32Mas3 32Mas3 32Mas3 32Mas3 32Mas3 32Mas3 32Mas3 32Mas3 32Mas3 32Mas3 32Mas3 32Mas3 31Cow 31Cow 31Cow 31Cow 31Cow 31Cow 31Cow 36Kie 36Kie 36Kie 36Kie 36Kie 36Kie 36Kie 36Kie 36Kie 36Kie 36Kie 36Kie
) Description of the cell composition is based on the Stockholm convention (1953). All data refer to room temperature RT (T = 298 K) if not stated otherwise. 2 ) Metal leads (e.g. platinum contacts) used solely as electrical connector and being identical at both cell terminals are not always explicitly mentioned. 3 ) Cell voltage in international Volt; in absolute Volt U = 1.01865 V. 4 ) If not stated otherwise hydrogen is present at standard pressure. 5 ) Saturated. 6 ) Most frequently platinum is used as electronically conducting phase of the hydrogen electrode, thus it is mentioned only when explicitly stated also in the original report. 7 ) Cell voltage with negative terminal at right-hand side of cell description (for details see introduction). Landolt-Börnstein New Series IV/9A
R1
References 98Pet 99Dol 99Lut 00Tow 02Fre 02Küs 03Con 03Ing 03Obe 03Sac 04Bod 04Lab 04Ner 04Thi 05Abe 05Lut1 05Lut2 05Spi 06Faw 06Zed 07Cam 07Fau 07Ric 08Brö 08Lau 08Lut 09Bri 09Pom 09Sch 10Brö 10Fed 10Lew 10Ric 10Sch1 10Ste 11Coh 11För 11Lew 12Dru 12Lew 12Noy 13Lew 15For 15Lew 16Lin 17For 17Lew1 17Lew2 17Lew3 17Lin
Landolt-Börnstein New Series IV/9A
Peters, R.: Z. Phys. Chem. 26 (1898) 193. Dolezalek, F.: Z. Elektrochem. 6 (1899) 517. Luther, R.: Z. Phys. Chem. 30 (1899) 647. Tower, O.F.: Z. Phys. Chem. 32 (1900) 566. Fredenhagen, C.: Z. Anorg. Allg. Chem. 29 (1902) 396. Küster, F.W., Hommel, W.: Z. Elektrochem. 8 (1902) 496. Conrad, W.: Dissertation Universität Göttingen, 1903. Inglis, J.K.H.: Z. Elektrochem. 9 (1903) 226. Oberer, E.: Dissertation ETH Zürich, 1903. Sackur, O.: Arb. Gesund. 20 (1903) 539. Bodländer, G., Eberlein, W.: Z. Anorg. Allg. Chem. 39 (1904) 197. Labendzinski, S., Abegg, R.: Z. Elektrochem. 10 (1904) 77. Nernst, W., Sand, J.: Z. Phys. Chem. 48 (1904) 601. Thiel, A.: Z. Anorg. Allg. Chem. 39 (1904) 333. Abegg, R., Spencer, J.F.: Z. Anorg. Allg. Chem. 46 (1905) 406. Luther, R., Sammet, V.: Z. Elektrochem. 11 (1905) 293. Luther, R., Sammet, V.: Z. Phys. Chem. 53 (1905) 645. Spiker, F.: Z. Elektrochem. 11 (1905) 345. Fawsitt, C.E.: J. Chem. Ind. 25 (1906) 1133. Zedner, J.: Z. Elektrochem. 12 (1906) 463. Campbell, F.H.: Chem. News J. Ind. Sci. 96 (1907) 15. Faust, O.: Z. Elektrochem. 13 (1907) 161. Richards, T.W., Behr, G.E.: Z. Phys. Chem. 58 (1907) 301. Brönsted, J.N.: Z. Phys. Chem. (Leipzig) 65 (1908) 84. Laurie, A.P.: Z. Phys. Chem. (Leipzig) 64 (1908) 615. Luther, R., Michie, A.C.: Z. Elektrochem. 14 (1908) 826. Brisle, F.J.: Trans. Faraday Soc. 4 (1909) 159. Poma, G.: Atti Accad. Naz. Lincei 181 (1909) 192. Schweitzer, A.: Z. Elektrochem. 15 (1909) 607. Brönsted, J.N.: Z. Phys. Chem. 68 (1910) 703. Fedotiew, P.: Z. Anorg. Allg. Chem. 69 (1910) 35. Lewis, G.N., Kraus, Ch.A.: J. Am. Chem. Soc. 32 (1910) 1459. Richards, T.W., Wilson, J.H.: Z. Phys. Chem. 72 (1910) 129. Schaper, C.: Z. Phys. Chem. 72 (1910) 308. Stegmüller, P.: Z. Elektrochem. 16 (1910) 90. Cohen, E., Inouye, K., Euwen, C.: Z. Phys. Chem. 75 (1911) 1. Förster, F., Yamasaki, J.: Z. Elektrochem. 17 (1911) 361. Lewis, G.N., Rupert, F.F.: J. Am. Chem. Soc. 33 (1911) 299. Drucker, C.: Z. Elektrochem. 18 (1912) 236. Lewis, G.N., Keyes, F.G.: J. Am. Chem. Soc. 34 (1912) 119. Noyes, A.A., Brann, B.F.: J. Am. Chem. Soc. 34 (1912) 1023. Lewis, G.N., Keyes, F.G.: J. Am. Chem. Soc. 35 (1913) 340. Forbes, G.S., Anderegg, F.O.: J. Am. Chem. Soc. 37 (1915) 1676. Lewis, G.N., Argo, W.L.: J. Am. Chem. Soc. 37 (1915) 1983. Linhart, G.A.: J. Am. Chem. Soc. 38 (1916) 2356 Forbes, G.S., Richter, H.W. : J. Am. Chem. Soc. 39 (1917) 1140. Lewis, G.N., Storch, H.: J. Am. Chem. Soc. 39 (1917) 2544. Lewis, G.N., Brighton, T.B.: J. Am. Chem. Soc. 39 (1917) 2245. Lewis, G.N., Brighton, T.B.: J. Am. Chem. Soc. 39 (1917) 1906. Linhart, G.A.: J. Am. Chem. Soc. 39 (1917) 2601.
R2 18Hen 18Noy 18Oba 19Hof 19Ric 19Öho 20Lam 20Noy 21Dru 21Kol 21Moo 22App 22Ger 22Har 22Jel 22Keo 22Men 22Ric 24Col 24Dru 24Hai 24Ric 24Sch1 24Sch2 24Sch3 24Wyn 25For 25Luc 25Wil 26Ake 26Bro 26Dru1 26Fri 26Gru 26Mai 26Roy 26Vos 27Bod 27Bre 27Die 27Erd 27Ger 27Gru 27Ish 28Get1 28Get2 28Har1 28Har2 28Jon 28Kie 28Mur 28Pry 28Vos
Henderson, W.E., Stegeman, G.: J. Am. Chem. Soc. 40 (1918) 84. Noyes, A.A., Chow, M.: J. Am. Chem. Soc. 40 (1918) 739. Obata, J.: Proc. Tokyo Math. Phys. Soc. 9 (1918) 416; see also: Proc. Phys. Math. Soc. Jpn. 2 (1920) 3; 3 (1921) 136. Hofmann, K.A., Wurthmann, B.: Ber. Dtsch. Chem. Ges. 52 (1919) 1185. Richards, T.W., Daniels, F.: J. Am. Chem. Soc. 41 (1919) 1732. Öholm, L.W.: Medd. K. Vetenskapsakad. Nobelinst. 5 (1919) 41. Lamp, A.B., Larson, A.T.: J. Am. Chem. Soc. 42 (1920) 2024. Noyes, A.A., Freed, E.S.: J. Am. Chem. Soc. 42 (1920) 476. Drucker, C.: Z. Phys. Chem. 96 (1921) 381. Kolthoff, J.M.: Z. Anorg. Allg. Chem. 119 (1921) 202. Moore, W.C.: J. Am. Chem. Soc. 43 (1921) 81. Applebey, M.P., Reid, R.D.: J. Chem. Soc. 121 (1922) 2129. Gerke, R.H.: J. Am. Chem. Soc. 44 (1922) 1684. Harned, H.S., Brumbaugh, N.J.: J. Am. Chem. Soc. 44 (1922) 2729. Jellinek, K., Czerwinski, J.: Z. Phys. Chem. 102 (1922) 438. McKeown, A.: Trans. Faraday Soc. 17 (1922) 517. Menzel, H.: Z. Phys. Chem. 100 (1922) 276. Richards, Th.W., Conant, J.B.: J. Am. Chem. Soc. 44 (1922) 601. Collenberg, O.: Z. Phys. Chem. 109 (1924) 353. Drucker, C., Riethof, G.: Z. Phys. Chem. 111 (1924) 1. Hainsworth, W.R., Rowley, H.J., McInnes, D.A.: J. Am. Chem. Soc. 46 (1924) 1437. Richards, Th.W., Richards, W.T.: J. Am. Chem. Soc. 46 (1924) 89. Schuhmann, R.: J. Am. Chem. Soc. 46 (1924) 52. Schuhmann, R.: J. Am. Chem. Soc. 46 (1924) 58; 1444. Schmid, A.: Helv. Chim. Acta 7 (1924) 370. Wynne-Jones, W.F.K., Hudlestone, H.: J. Chem. Soc. 125 (1924) 1031. Forbes, G.S., Glass, S.W., Fuoss, R.M.: J. Am. Chem. Soc. 47 (1925) 2892. Lucasse, W.W.: J. Am. Chem. Soc. 47 (1925) 743. Wilke, E., Kieninger, O.: Z. Phys. Chem. 116 (1925) 215. Akerlöf, G.: J. Am. Chem. Soc. 48 (1926) 1160; 1169. Brown, D.J., Tefft, R.F.: J. Am. Chem. Soc. 48 (1926) 1128. Drucker, C., Luft, F.: Z. Phys. Chem. 121 (1926) 307. Fried, F.: Z. Phys. Chem. 123 (1926) 406. Grube, G., Schlecht, L.: Z. Elektrochem. 32 (1926) 178. Maier, Ch.G., Parks, G.S., Anderson, C.Fr.: J. Am. Chem. Soc. 48 (1926) 2564. Royce, H.D., Kahlenberg, L.: Trans. Am. Electrochem. Soc. 50 (1926) 281. Vosburgh, W.C.: J. Opt. Soc. Am. 12 (1926) 511. Bodfors, P.: Z. Phys. Chem. 130 (1927) 82. Brester, A.: Recl. Trav. Chim. Pays Bas 46 (1927) 328. Dietrich, H.G., Johnston, J.: J. Am. Chem. Soc. 49 (1927) 1419. Erdey-Gruz, T.: Z. Phys. Chem. 131 (1927) 81. Gerke, R.H., Rourke, M.D.: J. Am. Chem. Soc. 49 (1927) 1855. Grube, G., Breitinger, G.: Z. Elektrochem. 33 (1927) 112. Ishikawa, F., Kimura, G.: Chem. Inst. Dept. Kyoto Imp. Univ. (1927) 255. Getmann, F.H.: J. Phys. Chem. 32 (1928) 940. Getmann, F.H.: J. Phys. Chem. 32 (1928) 91. Harned, H.S., Robinson, R.A.: J. Am. Chem. Soc. 50 (1928) 3157. Harned, H.S., McHarris jr., J.A.: J. Am. Chem. Soc. 50 (1928) 2633. Jones, G., Kaplan, B.B.: J. Am. Chem. Soc. 50 (1928) 1845; 2066. Kiehl, S.J., Hart, D.: J. Am. Chem. Soc. 50 (1928) 1845; 2337. Murata, K.: Bull. Chem. Soc. Jpn. 3 (1928) 57. Prytz, M.: Z. Anorg. Allg. Chem. 172 (1928) 142. Vosburgh, W.C.: J. Am. Chem. Soc. 50 (1928) 2386. Landolt-Börnstein New Series IV/9A
R3 28Yos 29Bje 29Car 29Fos 29Har2 29Isg 29Ish 29Luc1 29Luc2 29Mül1 29Mül2 29Nim 30Bir 30Foe 30Get 30Hak 30Har1 30Har2 30Pri 30Sca1 30Sca2 30Smi 30Ter 31Cow 31Get1 31Get2 31Har1 31Har2 31Kun 31LaM 31Lar 31Lun 31McB 31Mur 31Pop 31Sho 32Bri 32Can 32Car 32Ham 32Har1 32Har2 32Har3 32Has 32Haw 32Ish1 32Ish2 32Mas1 32Mas2 32Mas3 32Spe1 32Spe2 32Wil 33All Landolt-Börnstein New Series IV/9A
Yoshida, T.: Sci. Rep. Tohoku Univ. Ser. 1 17 (1928) 1279. Bjerrum, N., Unmack, A.: K. Dan. Vidensk. Selsk. Mat. Fys. Medd. 9 (1929) 5-206. Carmody, W.R.: J. Am. Chem. Soc. 51 (1929) 2901; 2905; 5908. Fosbinder, R.J.: J. Am. Chem. Soc. 51 (1929) 1345. Harned, H.S.: J. Am. Chem. Soc. 51 (1929) 416. Isgarischew, N., Turkowskaja, A.: Z. Phys. Chem. Abt. A 140 (1929) 227. Ishikawa, F., Shibata, E.: Sci. Rep. Tohoku Univ. Ser. 1 18 (1929) 109. Lucasse, W.W.: J. Am. Chem. Soc. 51 (1929) 2597. Lucasse, W.W.: J. Am. Chem. Soc. 51 (1929) 2605. Müller, R., Kreiner, F., Schmidt, H.J.: Monatsh. Chem. 53 (1929) 215. Müller, R., Schmidt, H.J.: Monatsh. Chem. 53 (1929) 224. Nims, L.F., Bonner, W.D.: J. Phys. Chem. 33 (1929) 586. Bird, E.W., Hixon, R.M.: J. Phys. Chem. 34 (1930) 1412. Foerster, F., Böttcher, F.: Z. Phys. Chem. Abt. A 151 (1930) 321. Getmann, F.H.: J. Phys. Chem. 34 (1930) 454. Hakomori, S.I.: J. Am. Chem. Soc. 52 (1930) 2373. Harned, H.S., Schupp, O.E.: J. Am. Chem. Soc. 52 (1930) 3886. Harned, H.S., Schupp, O.E.: J. Am. Chem. Soc. 52 (1930) 3892. Priepke, R.J., Vosburg, W.: J. Am. Chem. Soc. 52 (1930) 4831. Scatchard, G., Tefft, R.: J. Am. Chem. Soc. 52 (1930) 2265. Scatchard, G., Tefft, R.: J. Am. Chem. Soc. 52 (1930) 2272. Smith, E.R.: J. Res. Natl. Bur. Stand. 5 (1930) 735. Terry, H., Baker, H.C.: J. Am. Chem. Soc. 52 (1930) 2583. Cowperthwaite, J.A., La Mer, V.K.: J. Am. Chem. Soc. 53 (1931) 4333. Getmann, F.H.: J. Phys. Chem. 35 (1931) 2749. Getmann, F.H.: J. Phys. Chem. 35 (1931) 588. Harned, H.S., Murphy, G.M.: J. Am. Chem. Soc. 53 (1931) 8. Harned, H.S., Mason, C.M.: J. Am. Chem. Soc. 53 (1931) 3377. Kunz, A.H.: J. Am. Chem. Soc. 53 (1931) 98. La Mer, V.K., Parks, W.G.: J. Am. Chem. Soc. 53 (1931) 2040. Larsson, E., Adell, B.: Z. Phys. Chem. Abt. A 156 (1931) 352. Lundberg, W.O., Vestling, C.S., Ahlberg, J.E.: J. Am. Chem. Soc. 53 (1931) 352. McBain, J.W., van Rysselberghe, P.J., Squance, W.A.: J. Phys. Chem. 35 (1931) 999. Murray, E.N., Acree, S.F.: J. Res. Natl. Bur. Stand. 7 (1931) 713. Popoff, S., Riddick, J.A., Wirth, V.J., Ough, L.D.: J. Am. Chem. Soc. 53 (1931) 1195. Show-Chow-Woo: J. Am. Chem. Soc. 53 (1931) 469. Britton, H.T.S., Dodd, E.N.: J. Am. Chem. Soc. 54 (1932) 1940. Cann, J.Y., Sumner, R.A.: J. Phys. Chem. 36 (1932) 2615. Carter, S.R., Glover, T.J.: J. Phys. Chem. 36 (1932) 679. Hamilton, R.T., Butler, J.A.V.: Proc. R. Soc. London 138 (1932) 450. Harned, H.S., Ehlers, R.W.: J. Am. Chem. Soc. 54 (1932) 1350. Harned, H.S., Mason, C.M.: J. Am. Chem. Soc. 54 (1932) 1439. Harned, H.S., Mason, C.M.: J. Am. Chem. Soc. 54 (1932) 3112. Hass, K., Jellinek, K.: Z. Phys. Chem. Abt. A 162 (1932) 153. Hawkins, J.E.: J. Am. Chem. Soc. 54 (1932) 4480. Ishikawa, F., Yoshida, T.: Sci. Rep. Tohoku Imp. Univ. Ser. 1 21 (1932) 474. Ishikawa, F., Shibata, E.: Sci. Rep. Tohoku Imp. Univ. Ser. 1 21 (1932) 499. Masaki, K., Ikkatai, T.: Bull. Chem. Soc. Jpn. 7 (1932) 233. Masaki, K., Ikkatai, T.: Bull. Chem. Soc. Jpn. 7 (1932) 35. Masaki, K., Ikkatai, T.: Bull. Chem. Soc. Jpn. 7 (1932) 238. Spencer, H.M., Selden, R.F.: J. Am. Chem. Soc. 54 (1932) 4504. Spencer, H.M., Mote, J.H.: J. Am. Chem. Soc. 54 (1932) 4618. Wilke, E., Martin, W.: Z. Phys. Chem. Abt. A 160 (1932) 39. Allmand, A.J., Burrage, L.J.: Trans. Faraday Soc. 29 (1933) 692.
R4 33Bat 33Fli 33Gel 33Get 33Har1 33Har2 33Har3 33Har4 33Har5 33Har6 33Har7 33Ish1 33Ish2 33Ish3 33Ish4 33Ish5 33LaM 33Mac 33Mur 33Nim 33Oku 33Ued1 33Ued2 33Van1 33Van2 34Arm 34Car 34Cow 34Cro 34Ham 34Har2 34Har3 34Har4 34Hoy 34Ish1 34Jon 34Mas 34Owe 34Par 34Pry 34Sch 34Shr2 34Tip 34Öho 35Bra 35Ham2 35Har 35Hov 35Kri 35Owe 35Par 36Cro 36Har1 36Har2
Bates, St.J., Urmston, J.W.: J. Am. Chem. Soc. 55 (1933) 4068. Flint, E.P., Wells, L.S.: J. Res. Natl. Bur. Stand. 11 (1933) 163. Gelbach, R.W.: J. Am. Chem. Soc. 55 (1933) 4857. Getmann, F.H.: Trans. Am. Chem. Soc. 64 (1933) 201. Harned, H.S., Hamer, W.J.: J. Am. Chem. Soc. 55 (1933) 4496. Harned, H.S., Wright, D.D.: J. Am. Chem. Soc. 55 (1933) 4849. Harned, H.S., Ehlers, R.W.: J. Am. Chem. Soc. 55 (1933) 2179. Harned, H.S., Copson, H.R.: J. Am. Chem. Soc. 55 (1933) 2206. Harned, H.S., Hamer, W.J.: J. Am. Chem. Soc. 55 (1933) 2194. Harned, H.S., Ehlers, R.W.: J. Am. Chem. Soc. 55 (1933) 652. Harned, H.S., Hecker, J.C.: J. Am. Chem. Soc. 55 (1933) 4838. Ishikawa, F., Kimura, G., Murooka, T.: Sci. Rep. Tohoku Imp. Univ. Ser. 1 22 (1933) 131. Ishikawa, F., Ueda, Y.: Sci. Rep. Tohoku Imp. Univ. Ser. 1 22 (1933) 249. Ishikawa, F., Murooka, T.: Sci. Rep. Tohoku Imp. Univ. Ser. 1 22 (1933) 138. Ishikawa, F., Ueda, Y.: Sci. Rep. Tohoku Imp. Univ. Ser. 1 22 (1933) 263. Ishikawa, F., Ferui, Y.: Bull. Inst. Phys. Chem. Res. - Rikagaku Kenkyusho Iho 12 (1933) 45. La Mer, V.K., Parks, W.G.: J. Am. Chem. Soc. 55 (1933) 4343. MacDougall, F.H., Blumer, D.R.: J. Am. Chem. Soc. 55 (1933) 2236. Murdock, P.G., Barton, R.C.: J. Am. Chem. Soc. 55 (1933) 4074. Nims, L.F: J. Am. Chem. Soc. 55 (1933) 1946. Oku, M.: Sci. Rep. Tohoku Imp. Univ. Ser. 1 22 (1933) 288. Ueda, Y.: Sci. Rep. Tohoku Imp. Univ. Ser. 1 22 (1933) 448. Ueda, Y.: Sci. Rep. Tohoku Imp. Univ. Ser. 1 22 (1933) 879. Vance, J.E.: J. Am. Chem. Soc. 55 (1933) 2729. Vance, J.E.: J. Am. Chem. Soc. 55 (1933) 4519. Armbruster, M.H., Crenshaw, J.L.: J. Am. Chem. Soc. 56 (1934) 2525. Carpenter, J.E.: J. Am. Chem. Soc. 56 (1934) 1874. Cowperthwaite, J.A., La Mer, V.K., Barksdale, J.: J. Am. Chem. Soc. 56 (1934) 544. Crockford, H.D., Simmons, N.L.: J. Am. Chem. Soc. 56 (1934) 1537. Hamer, W.J.: J. Am. Chem. Soc. 56 (1934) 860. Harned, H.S., Embree, N.D.: J. Am. Chem. Soc. 56 (1934) 1042. Harned, H.S., Sutherland, R.O.: J. Am. Chem. Soc. 56 (1934) 2039. Haring, M.M., Westfall, B.B.: Trans. Am. Electrochem. Soc. 63 (1934) 61. Hoyt, C.S., Stegemann, G.: J. Phys. Chem. 38 (1934) 753. Ishikawa, F., Yamasaki, S., Murooko, T.: Sci. Rep. Tohoku Imp. Univ. Ser. 1 23 (1934) 115. Jones, G., Baeckström, S.: J. Am. Chem. Soc. 56 (1934) 1524. Mason, Ch.M., Kellam, D.B.: J. Phys. Chem. 38 (1934) 689. Owen, B.B.: J. Am. Chem. Soc. 56 (1934) 1695. Parks, W.G., La Mer, V.K.: J. Am. Chem. Soc. 56 (1934) 90. Prytz, M.: Z. Anorg. Allg. Chem. 219 (1934) 89. Scherer, G.A., Newton, R.E.: J. Am. Chem. Soc. 56 (1934) 18. Shrawder jr., J., Cowperthwaite, J.A.: J. Am. Chem. Soc. 56 (1934) 2340. Tippetts, E.A., Newton, R.F.: J. Am. Chem. Soc. 56 (1934) 1675. Öholm, L.W.: Finska Kemistsamf. Medd. 43 (1934) 25. Brasher, D.M., Parton, H.N.: Trans. Faraday Soc. 31 (1935) 681. Hamer, W.J.: J. Am. Chem. Soc. 57 (1935) 662. Harned, H.S., Hamer, W.J.: J. Am. Chem. Soc. 57 (1935) 27. Hovorka, F., Dearing, W.C.: J. Am. Chem. Soc. 57 (1935) 446. Krieble, V.K., Reinhart, F.M.: J. Am. Chem. Soc. 57 (1935) 19. Owen, B.B.: J. Am. Chem. Soc. 57 (1935) 1926. Parton, H.N.: Trans. Faraday Soc. 31 (1935) 686. Crockford, H.D., Farr jr., H.O.: J. Am. Chem. Soc. 58 (1936) 87. Harned, H.S., Fitzgerald, M.: J. Am. Chem. Soc. 58 (1936) 2624. Harned, H.S., Keston, A.S., Donelson, J.G.: J. Am. Chem. Soc. 58 (1936) 989. Landolt-Börnstein New Series IV/9A
R5 36Kie 36Noy 36Owe 36She 37Bat 37Can1 37Can2 37Har1 37Har3 37Noy 38Cro 38Tay 39Har2 39Har4 39Lar 39Vos 41Har 41Lar 42Bat 42Hug 43She 43Tem 46Sto1 46Sto2 47Mas 48Fer 49Bro 49Kra 49deV 50Wil 52Coh 52Dav 52Jon 52Swi 53Har 54Bat2 55Lie 55Sti 56Bru 56Pin 57Ham 58Tre1 58Tre2 60Gre
Landolt-Börnstein New Series IV/9A
Kielland, J.: J. Am. Chem. Soc. 58 (1936) 1855. Noyes, A.A., Garner, C.S.: J. Am. Chem. Soc. 58 (1936) 1268. Owen, B.B., Foering, L.: J. Am. Chem. Soc. 58 (1936) 1575. Sherill, M.S., Haas jr., A.J.: J. Am. Chem. Soc. 58 (1936) 952. Bates, R.G., Vosburg, W.C.: J. Am. Chem. Soc. 59 (1937) 1188. Cann, J.Y., Taylor, A.C.: J. Am. Chem. Soc. 59 (1937) 1484. Cann, J.Y., Taylor, A.C.: J. Am. Chem. Soc. 59 (1937) 1987. Harned, H.S., Donelson, J.G.: J. Am. Chem. Soc. 59 (1937) 1280. Harned, H.S., Cook, M.A.: J. Am. Chem. Soc. 59 (1937) 1890. Noyes, A.A., Deahl, T.J.: J. Am. Chem. Soc. 59 (1937) 1337. Crockford, H.D., Loffin, J.C.: J. Am. Chem. Soc. 60 (1938) 1606. Taylor, A.C., Nims, L.F.: J. Am. Chem. Soc. 60 (1938) 262. Harned, H.S., Fallon, L.D.: J. Am. Chem. Soc. 61 (1939) 3111. Harned, H.S., Dreby, E.C.: J. Am. Chem. Soc. 61 (1939) 3113. Larson, W.D., Tomsicek, W.J.: J. Am. Chem. Soc. 61 (1939) 65. Vosburgh, W.C., Derr, P.F., Cooper, G.R., Bates, R.G.: J. Am. Chem. Soc. 61 (1939) 2592. Harned, H.S., Scholes jr., S.R.: J. Am. Chem. Soc. 63 (1941) 1706. Larson, W.D., Tomsicek, W.J.: J. Am. Chem. Soc. 63 (1941) 3329. Bates, R.G.: J. Am. Chem. Soc. 64 (1942) 1136. Hughes, R.H., Garner, C.S.: J. Am. Chem. Soc. 64 (1942) 1644. Sherrill, M.S., King, C.B., Spooner, R.C.: J. Am. Chem. Soc. 65 (1943) 170. Templeton, D.H., Watt, G.W., Gardner, C.S.: J. Am. Chem. Soc. 65 (1943) 1608. Stokes, R.H., Levien, B.J.: J. Am. Chem. Soc. 68 (1946) 333. Stokes, R.H., Levien, B.J.: J. Am. Chem. Soc. 68 (1946) 1853. Mason, C.M., Blum, W.M.: J. Am. Chem. Soc. 69 (1947) 1246. Ferrell jr., D.T., Blackburn, I., Vosburgh, W.C.: J. Am. Chem. Soc. 70 (1948) 3812. Brown, R.A., Swift, E.H.: J. Am. Chem. Soc. 71 (1949) 2719. Kraus, K.A., Nelson, F., Johnson, G.L.: J. Am. Chem. Soc. 71 (1949) 2520. deVries, T., Cohen, D.: J. Am. Chem. Soc. 71 (1949) 1114. Williams, J.P., Knight, S.B., Crockford, H.D.: J. Am. Chem. Soc. 72 (1950) 1277. Cohen, D., Hindman, J.C.: J. Am. Chem. Soc. 74 (1952) 4679; 4682. Davis, C.W., Jones, H.W., Monk, C.B.: Trans. Faraday Soc. 48 (1952) 921. Jones, H.W., Monk, C.B.: Trans. Faraday Soc. 48 (1952) 929. Swinehart, D.F.: J. Am. Chem. Soc. 74 (1952) 1100. Harned, H.S., Paxton, T.R.: J. Phys. Chem. 57 (1953) 531. Bates, R.G., Bowers, V.E.: J. Res. Natl. Bur. Stand. U.S. 53 (1954) 282. Lietzke, M.H., Vaughan, J.V.: J. Am. Chem. Soc. 77 (1955) 876. Stille, U.: Messen und Rechnen in der Physik, Braunschweig: Vieweg, 1955, p. 217. Bruckenstein, S., Kolthoff, I.M.: J. Am. Chem. Soc. 78 (1956) 2974. Pinfold, T.A., Sebba, F.: J. Am. Chem. Soc. 78 (1956) 2095; 5193. Hamer, W.G., Craig, D.N.: J. Electrochem. Soc. 104 (1957) 206. Treumann, W.B., Ferris, L.M.: J. Am. Chem. Soc. 80 (1958) 5048. Treumann, W.B., Ferris, L.M.: J. Am. Chem. Soc. 80 (1958) 5050. Greeley, R.S., Smith, W.T., Stoughton, R.W., Lietzke, M.H.: J. Phys. Chem. 64 (1960) 652; 1445.
126
2 Cell voltages
Table 2.2. Cell voltages with nonaqueous 1) electrolyte systems. 2) Cell composition Barium (Ba) Ba0.2629wt%HgŇBaCl2, hydrazineŇBa0.01083wt%Hg Ba0.2629wt%HgŇBaCl2, hydrazineŇBa0.01894wt%Hg Ba0.2629wt%HgŇBaCl2, hydrazineŇBa0.0503wt%Hg Ba0.2629wt%HgŇBaCl2, hydrazineŇBa0.1160wt%Hg Ba0.2629wt%HgŇBaCl2, hydrazineŇBa0.2085wt%Hg Ba0.2629wt%HgŇBaCl2, hydrazineŇBa0.1228wt%Hg
Ba0.1228wt%HgŇBaCl2, hydrazineŇBa0.03106wt%Hg
Ba0.2679wt.%HgŇBaCl2,pyridineŇBa0.01083wt.%Hg Ba0.2679wt.%HgŇBaCl2,pyridineŇBa0.1160wt.%Hg Ba0.2679wt.%HgŇBaCl2,pyridineŇBa0.2085wt.%Hg Cadmium (Cd) CdŇCd(NO3)2, 0.05 M, NH3ŒAgNO3, 0.1 M, NH3ŇAg (UT [V]=0.963–0.33·10–3 (T+35 °C), –65
Cd9at%HgŇCdI2,sol., CdI2,sat., Hg2I2,sol., ethanolŇHg
CdzHgŇCdI2,sol., CdI2,sat., Hg2I2,sol., acetoneŇHg
Calcium (Ca) CaŇCaI2, pyridineŇCa0.0253wt%Hg Ca1at%HgŇCaI2, 0.0093 M, pyridineŇAgNO3, 0.1 M, pyridineŇAg Ca5at%HgŇCaI2, 0.0093 M, pyridineŇAgNO3, 0.1 M, pyridineŇAg Ca10at%HgŇCaI2, 0.0093 M, pyridineŇAgNO3, 0.1 M, pyridineŇAg Ca20at%HgŇCaI2, 0.0093 M, pyridineŇAgNO3, 0.1 M, pyridineŇAg Ca25at%HgŇCaI2, 0.0093 M, pyridineŇAgNO3, 0.1 M, pyridineŇAg CaŇCaCl2, 0.25 m, methanol, Hg2Cl2ŇHg Ca0.25wt%HgŇCaCl2, 0.25 m, methanol, Hg2Cl2ŇHg Ca1.06wt%HgŇCaCl2, 0.25 m, methanol, Hg2Cl2ŇHg Ca4.06wt%HgŇCaCl2, 0.25 m, methanol, Hg2Cl2ŇHg Ca7.90wt%HgŇCaCl2, 0.25 m, methanol, Hg2Cl2ŇHg
T [°C]
U0 [V]
Ref.
0.04712 0.03953 0.02624 0.01396 0.00427 0.01256 0.01291 0.01326 0.01935 0.01998 0.02061 0.0471 0.0134 0.0043
26And 26And 26And 26And 26And 26And 26And 26And 26And 26And 26And 26And 26And 26And
–35
0.963
26Cos
10 0
1.0337 0.030 0.746 0.032 0.570
52Koe 52Koe 99Kah 00Kah 29Buc
25 30 35 25 30 35 22.5 25.0 30
0.4172 0.4190 0.4208 0.4172 0.4192 0.4208 0.4169 0.4178 0.4195
28Yos 28Yos 28Yos 28Yos 28Yos 28Yos 28Yos 28Yos 28Yos
0.0843 1.85 1.82 1.84 1.82 1.99 2.20 1.37 1.70 1.82 2.02
26Dru1 15Cam 15Cam 15Cam 15Cam 15Cam 15Cam 15Cam 15Cam 15Cam 15Cam
15 25 35 15 25 35
–80 –80 –80 –80 –80
Landolt-Börnstein New Series IV/9A
2 Cell voltages
Cell composition Cerium (Ce) CeŇCeBr3, pyridineŇCe5wt%Hg CeŇCeBr3,sat., pyridineŇCe5wt%Hg Ce5wt%HgŇCeBr3, pyridineŇAgNO3, 0.1 M, pyridineŇAg CeŇCeBr3,sat., pyridineŇAgNO3, 0.1 M, pyridineŇAg Copper (Cu) CuŇCu(NO3)2,sat., pyridineŒAgNO3, 0.1 M, pyridineŇAg CuŇCu(NO3)2, 0.05 M, anilineŒAgNO3, 0.1 M, anilineŇAg Hydrogen (H) Pt, H2ŇHBr, 0.474 mm, methanol, AgBrŇAg Pt, H2ŇHBr, 1.274 mm, methanol, AgBrŇAg Pt, H2ŇHBr, 9.36 mm, methanol, AgBrŇAg Pt, H2ŇHBr, 54.30 mm, methanol, AgBrŇAg Ir, H2ŇHCl, 0.4955 mm, methanol, AgClŇAg Ir, H2ŇHCl, 1.652 mm, methanol, AgClŇAg Ir, H2ŇHCl, 4.939 mm, methanol, AgClŇAg Ir, H2ŇHCl, 7.113 mm, methanol, AgClŇAg Ir, H2ŇHCl, 14.44 mm, methanol, AgClŇAg Ir, H2ŇHCl, 25.49 mm, methanol, AgClŇAg Ir, H2ŇHCl, 53.12 mm, methanol, AgClŇAg Ir, H2ŇHCl, 75.07 mm, methanol, AgClŇAg Ir, H2ŇHCl, 0.1155 m, methanol, AgClŇAg Ir, H2ŇHCl, 0.5574 m, methanol, AgClŇAg H2ŇHCl, 1 m, methanol(10wt%)/waterŇAgClŇ H2ŇHCl, 1 m, methanol(20wt%)/waterŇAgClŇ H2ŇHCl, 1 m, methanol(43.3wt%)/waterŇAgClŇ H2ŇHCl, 1 m, methanol(64.0wt%)/waterŇAgClŇ H2ŇHCl, 1 m, methanol(84.2wt%)/waterŇAgClŇ H2ŇHCl, 1 m, methanol(94.2wt%)/waterŇAgClŇ H2ŇHCl, 1 m, methanolŇAgClŇ H2ŇHCl, 1 m, ethanol(10wt%)/waterŇAgClŇ H2ŇHCl, 1 m, ethanol(20wt%)/waterŇAgClŇ H2ŇHCl, 1 m, ethanolŇAgClŇ H2ŇHCl, 1 m, 2-propanol(5wt%)/waterŇAgClŇ H2ŇHCl, 1 m, 2-propanol(10wt%)/waterŇAgClŇ H2ŇHCl, 1 m, 2-propanol(20wt%)/waterŇAgClŇ H2ŇHCl, 1 m, glycerol(10wt%)/waterŇAgClŇ H2ŇHCl, 1 m, glycerol(30wt%)/waterŇAgClŇ H2ŇHCl, 1 m, glycerol(50wt%)/waterŇAgClŇ H2ŇHCl, 1 m, acetoneŇAgClŇ H2ŇHCl, 1 m, 1,4-dioxane(20wt%)/waterŇAgClŇ H2ŇHCl, 1 m, 1,4-dioxane(45wt%)/waterŇAgClŇ H2ŇHCl, 1 m, 1,4-dioxane(70wt%)/waterŇAgClŇ H2ŇHCl, 1 m, 1,4-dioxane(82wt%)/waterŇAgClŇ H2ŇHCl, 1 m, formamideŇAgClŇ H2ŇHCl, 1 m, formic acidŇAgClŇ H2ŇHCl, 1 m, acetic acidŇAgClŇ
Landolt-Börnstein New Series IV/9A
127
T [°C]
20 20 25 25 25 25 20 20 20 20 20 20 20 25 25 25 20 25 25 25 25 20 20 20
U0 [V]
Ref.
0.245 0.24 0.965 0.72
26Mül 29Mül2 29Mül2 29Mül2
0.210 0.210
99Kah 99Kah
0.2639 0.2155 0.1217 0.0439 0.3861 0.3274 0.2757 0.2698 0.2285 0.2049 0.1758 0.1612 0.1439 0.0844 0.21818 0.21151 0.1941 0.1764 0.1319 0.0840 –0.0099 0.21900 0.21025 –0.0813 0.22110 0.21660 0.20905 0.21650 0.20221 0.18392 –0.53 0.20303 0.16352 0.06395 0.0611 0.204 –0.1200 –0.6180
42Kan 42Kan 42Kan 42Kan 25Non 25Non 25Non 25Non 25Non 25Non 25Non 25Non 25Non 25Non 61Ive 61Ive 61Ive 61Ive 61Ive 61Ive 61Ive 61Ive 61Ive 61Ive 61Ive 61Ive 61Ive 61Ive 61Ive 61Ive 61Ive 61Ive 61Ive 61Ive 61Ive 58Man 61Ive 61Ive
128
2 Cell voltages
Cell composition Pt, H2ŇCH3COOH, 0.01 m, methanol, CH3COONa, 0.00976 m ŒNaCl, 0.01 m, methanolŒHCl, 0.00976 mŇH2, Pt Pt, H2ŇCH3COOH, 0.1 m, methanol, CH3COONa, 0.0966 m ŒNaCl, 0.1 m, methanolŒHCl, 0.0966 mŇH2, Pt Pt, H2ŇCH3COOH, 0.0382 M, methanolŒNaCl, 0.1 M, Hg2Cl2ŇHg Pt, H2ŇNa-methylat, 0.0217 m, methanolŒNaCl, 0.01 m, AgClŇAg Pt, H2ŇHCl, 0.02 m, methanol(20wt%)/water, AgClŇAg Pt, H2ŇHCl, 0.02 m, methanol(40wt%)/water, AgClŇAg Pt, H2ŇHCl, 0.02 m, methanol(60wt%)/water, AgClŇAg Pt, H2ŇHCl, 0.02 m, methanol(90wt%)/water, AgClŇAg Pt, H2ŇHCl, 0.05 m, methanol(20wt%)/water, AgClŇAg Pt, H2ŇHCl, 0.05 m, methanol(40wt%)/water, AgClŇAg Pt, H2ŇHCl, 0.05 m, methanol(60wt%)/water, AgClŇAg Pt, H2ŇHCl, 0.05 m, methanol(90wt%)/water, AgClŇAg Pt, H2ŇHCl, 0.5 m, methanol(20wt%)/water, AgClŇAg Pt, H2ŇHCl, 0.5 m, methanol(40wt%)/water, AgClŇAg Pt, H2ŇHCl, 0.5 m, methanol(60wt%)/water, AgClŇAg Pt, H2ŇHCl, 0.5 m, methanol(90wt%)/water, AgClŇAg Pt, H2ŇHCl, 4.393 mm, H2SO4, 4.654 mm, methanol(10wt%)/water, AgClŇAg
Pt, H2ŇHCl, 5.549 mm, H2SO4, 6.182 mm, methanol(10wt%)/water, AgClŇAg
Pt, H2ŇHCl, 8.866 mm, H2SO4, 18.901 mm, methanol(10wt%)/water, AgClŇAg
Pt, H2ŇHCl, 8.795 mm, H2SO4, 24.623 mm, methanol(10wt%)/water, AgClŇAg
Pt, H2ŇHCl, 13.268 mm, H2SO4, 14.008 mm, methanol(10wt%)/water, AgClŇAg Pt, H2ŇHCl, 23.935 mm, H2SO4, 31.290 mm, methanol(10wt%)/water, AgClŇAg
Pt, H2ŇHCl, 4.426 mm, H2SO4, 28.239 mm, methanol(20wt%)/water, AgClŇAg
Pt, H2ŇHCl, 4.586 mm, H2SO4, 6.224 mm, methanol(20wt%)/water, AgClŇAg
T [°C]
20 25 30 35 20 25 30 35 20 25 30 35 20 25 30 35 20 25 35 20 25 30 35 20 25 30 35 20 25 30 35
U0 [V]
Ref.
0.4080
24Bje
0.4452
24Bje
0.6688 0.9930 0.4191 0.4075 0.3915 0.3292 0.3753 0.3644 0.3496 0.2902 0.2621 0.2534 0.2417 0.1910 0.4749 0.4767 0.4784 0.4798 0.4633 0.4651 0.4665 0.4678 0.4326 0.4339 0.4349 0.4356 0.4287 0.4299 0.4309 0.4319 0.4237 0.4248 0.4261 0.3940 0.3945 0.3948 0.3948 0.4414 0.4429 0.4443 0.4456 0.4648 0.4668 0.4683 0.4698
34Goo 29Buc 30Ake 30Ake 30Ake 30Ake 30Ake 30Ake 30Ake 30Ake 30Ake 30Ake 30Ake 30Ake 53Eva 53Eva 53Eva 53Eva 53Eva 53Eva 53Eva 53Eva 53Eva 53Eva 53Eva 53Eva 53Eva 53Eva 53Eva 53Eva 53Eva 53Eva 53Eva 53Eva 53Eva 53Eva 53Eva 53Eva 53Eva 53Eva 53Eva 53Eva 53Eva 53Eva 53Eva Landolt-Börnstein New Series IV/9A
2 Cell voltages
Cell composition Pt, H2ŇHCl, 5.435 mm, H2SO4, 6.437 mm, methanol(20wt%)/water, AgClŇAg
Pt, H2ŇHCl, 6.110 mm, H2SO4, 4.335 mm, methanol(20wt%)/water, AgClŇAg
Pt, H2ŇHCl, 6.509 mm, H2SO4, 9.975 mm, methanol(20wt%)/water, AgClŇAg
Pt, H2ŇHCl, 14.179 mm, H2SO4, 4.286 mm, methanol(20wt%)/water, AgClŇAg Pt, H2ŇHCl, 0.1 MŒHCl, 0.01 M, ethanol(16.18vol%)/waterŇH2, Pt Pt, H2ŇHCl, 0.1 MŒHCl, 0.01 M, ethanol(32.35vol%)/waterŇH2, Pt Pt, H2ŇHCl, 0.1 MŒHCl, 0.01 M, ethanol(52.35vol%)/waterŇH2, Pt Pt, H2ŇHCl, 0.1 MŒHCl, 0.01 M, ethanol(67.64vol%)/waterŇH2, Pt Pt, H2ŇHCl, 0.1 MŒHCl, 0.01 M, ethanolŇH2, Pt Pt, H2ŇHCl, AgCl, ethanol(10wt%)/waterŇAg (UT [V]=0.21898+4.89247·10–4 (T–20 °C)–1.40006·10–4 (T–20 °C)2) Pt, H2ŇHCl, AgCl, ethanol(20wt%)/waterŇAg (UT [V]=0.21011+4.08604·10–4 (T–20 °C)–5.57748·10–4 (T–20 °C)2) Pt, H2ŇHCl, 0.005124 m, AgCl, ethanol(30wt%)/waterŇAg Pt, H2ŇHCl, 0.009768 m, AgCl, ethanol(30wt%)/waterŇAg Pt, H2ŇHCl, 0.016212 m, AgCl, ethanol(30wt%)/waterŇAg Pt, H2ŇHCl, 0.029336 m, AgCl, ethanol(30wt%)/waterŇAg Pt, H2ŇHCl, 0.045850 m, AgCl, ethanol(30wt%)/waterŇAg Pt, H2ŇHCl, 0.053154 m, AgCl, ethanol(30wt%)/waterŇAg Pt, H2ŇHCl, 0.006306 m, AgCl, ethanol(40wt%)/waterŇAg Pt, H2ŇHCl, 0.013185 m, AgCl, ethanol(40wt%)/waterŇAg Pt, H2ŇHCl, 0.019214 m, AgCl, ethanol(40wt%)/waterŇAg Pt, H2ŇHCl, 0.021231 m, AgCl, ethanol(40wt%)/waterŇAg Pt, H2ŇHCl, 0.022995 m, AgCl, ethanol(40wt%)/waterŇAg Pt, H2ŇHCl, 0.041587 m, AgCl, ethanol(40wt%)/waterŇAg Pt, H2ŇHCl, 0.006027 m, AgCl, ethanol(50wt%)/waterŇAg Pt, H2ŇHCl, 0.011901 m, AgCl, ethanol(50wt%)/waterŇAg Pt, H2ŇHCl, 0.021062 m, AgCl, ethanol(50wt%)/waterŇAg Pt, H2ŇHCl, 0.028877 m, AgCl, ethanol(50wt%)/waterŇAg Pt, H2ŇHCl, 0.051775 m, AgCl, ethanol(50wt%)/waterŇAg Pt, H2ŇHCl, 0.070456 m, AgCl, ethanol(50wt%)/waterŇAg Pt, H2ŇHCl, 0.01 m, AgCl, ethanol(25mol%)/waterŇAg Pt, H2ŇHCl, 0.05 m, AgCl, ethanol(25mol%)/waterŇAg Pt, H2ŇHCl, 0.1 m, AgCl, ethanol(25mol%)/waterŇAg Pt, H2ŇHCl, 0.3 m, AgCl, ethanol(25mol%)/waterŇAg Pt, H2ŇHCl, 0.6 m, AgCl, ethanol(25mol%)/waterŇAg Pt, H2ŇHCl, 1.0 m, AgCl, ethanol(25mol%)/waterŇAg Pt, H2ŇHCl, 0.01 m, AgCl, ethanol(50mol%)/waterŇAg
Landolt-Börnstein New Series IV/9A
129 T [°C] 20 25 30 35 20 25 30 35 20 25 30 35 20 25
U0 [V]
Ref.
20
0.4588 0.4605 0.4620 0.4634 0.4592 0.4609 0.4623 0.4637 0.4469 0.4485 0.4499 0.4510 0.4267 0.4277 0.0192 0.0169 0.0216 0.0275 0.044 0.21898
20
0.21011 42Pat 0.4769 0.4453 0.4212 0.3931 0.3720 0.3652 0.4618 0.4263 0.4084 0.4038 0.3999 0.3732 0.4566 0.4241 0.3975 0.3827 0.3561 0.3420 0.4361 0.3606 0.3281 0.2778 0.2431 0.2141 0.4033
53Eva 53Eva 53Eva 53Eva 53Eva 53Eva 53Eva 53Eva 53Eva 53Eva 53Eva 53Eva 53Eva 53Eva 27Erd 27Erd 27Erd 27Erd 27Erd 42Pat
54Har 54Har 54Har 54Har 54Har 54Har 54Har 54Har 54Har 54Har 54Har 54Har 54Har 54Har 54Har 54Har 54Har 54Har 29But 29But 29But 29But 29But 29But 29But
130
2 Cell voltages
Cell composition Pt, H2ŇHCl, 0.05 m, AgCl, ethanol(50mol%)/waterŇAg Pt, H2ŇHCl, 0.1 m, AgCl, ethanol(50mol%)/waterŇAg Pt, H2ŇHCl, 0.3 m, AgCl, ethanol(50mol%)/waterŇAg Pt, H2ŇHCl, 0.6 m, AgCl, ethanol(50mol%)/waterŇAg Pt, H2ŇHCl, 1.0 m, AgCl, ethanol(50mol%)/waterŇAg Pt, H2ŇHCl, 0.01 m, AgCl, ethanol(75mol%)/waterŇAg Pt, H2ŇHCl, 0.05 m, AgCl, ethanol(75mol%)/waterŇAg Pt, H2ŇHCl, 0.1 m, AgCl, ethanol(75mol%)/waterŇAg Pt, H2ŇHCl, 0.3 m, AgCl, ethanol(75mol%)/waterŇAg Pt, H2ŇHCl, 0.6 m, AgCl, ethanol(75mol%)/waterŇAg Pt, H2ŇHCl, 1.0 m, AgCl, ethanol(75mol%)/waterŇAg Pt, H2ŇHCl, 0.01 m, AgCl, ethanol(95mol%)/waterŇAg Pt, H2ŇHCl, 0.05 m, AgCl, ethanol(95mol%)/waterŇAg Pt, H2ŇHCl, 0.1 m, AgCl, ethanol(95mol%)/waterŇAg Pt, H2ŇHCl, 0.3 m, AgCl, ethanol(95mol%)/waterŇAg Pt, H2ŇHCl, 0.6 m, AgCl, ethanol(95mol%)/waterŇAg Pt, H2ŇHCl, 1.0 m, AgCl, ethanol(95mol%)/waterŇAg Pt, H2ŇHCl, 0.01 m, AgCl, ethanolŇAg Pt, H2ŇHCl, 0.05 m, AgCl, ethanolŇAg Pt, H2ŇHCl, 0.1 m, AgCl, ethanolŇAg Pt, H2ŇHCl, 0.3 m, AgCl, ethanolŇAg Pt, H2ŇHCl, 0.6 m, AgCl, ethanolŇAg Pt, H2ŇHCl, 1.0 m, AgCl, ethanolŇAg Pt, H2ŇC2H5COOH, 8.97 mm, C2H5COONa, 10.21 mm, NaCl, 9.84 mm, AgCl, methanol(10wt%)/waterŇAg Pt, H2ŇC2H5COOH, 44.86 mm, C2H5COONa, 51.06 mm, NaCl, 49.22 mm, AgCl, methanol(10wt%)/waterŇAg Pt, H2ŇC2H5COOH, 78.73 mm, C2H5COONa, 89.61 mm, NaCl, 86.39 mm, AgCl, methanol(10wt%)/waterŇAg Pt, H2ŇC2H5COOH, 6.07 mm, C2H5COONa, 7.01 mm, NaCl, 6.076 mm, AgCl, methanol(20wt%)/waterŇAg Pt, H2ŇC2H5COOH, 37.36 mm, C2H5COONa, 43.15 mm, NaCl, 37.39 mm, AgCl, methanol(20wt%)/waterŇAg Pt, H2ŇC2H5COOH, 67.29 mm, C2H5COONa, 77.71 mm, NaCl, 67.35 mm, AgCl, methanol(20wt%)/waterŇAg Ir, H2ŇHCl, 0.0003045 m, AgCl, ethanolŇAg Ir, H2ŇHCl, 0.0005158 m, AgCl, ethanolŇAg Ir, H2ŇHCl, 0.001198 m, AgCl, ethanolŇAg Ir, H2ŇHCl, 0.002193 m, AgCl, ethanolŇAg Ir, H2ŇHCl, 0.005442 m, AgCl, ethanolŇAg Ir, H2ŇHCl, 0.01114 m, AgCl, ethanolŇAg
T [°C]
0 20 40 0 20 40 0 20 40 0 20 40 0 20 40 0 20 40
U0 [V] 0.3331 0.3034 0.2550 0.2209 0.1926 0.3563 0.2902 0.2622 0.2156 0.1825 0.1524 0.2752 0.2119 0.1839 0.1374 0.1013 0.0691 0.1938 0.1390 0.1144 0.0806 0.0591 0.0405 0.6138 0.6317 0.6492 0.5779 0.5921 0.6062 0.5674 0.5780 0.5914 0.5720 0.6469 0.6662 0.5862 0.6015 0.6175 0.5720 0.5874 0.6019 0.3466 0.3216 0.2827 0.2550 0.2185 0.1905
Ref. 29But 29But 29But 29But 29But 29But 29But 29But 29But 29But 29But 29But 29But 29But 29But 29But 29But 29But 29But 29But 29But 29But 29But 42Pat 42Pat 42Pat 42Pat 42Pat 42Pat 42Pat 42Pat 42Pat 42Pat 42Pat 42Pat 42Pat 42Pat 42Pat 42Pat 42Pat 42Pat 28Woo 28Woo 28Woo 28Woo 28Woo 28Woo
Landolt-Börnstein New Series IV/9A
2 Cell voltages
Cell composition
131 T [°C]
Ir, H2ŇHCl, 0.02537 m, AgCl, ethanolŇAg Ir, H2ŇHCl, 0.05188 m, AgCl, ethanolŇAg Ir, H2ŇHCl, 0.1147 m, AgCl, ethanolŇAg Ir, H2ŇHCl, 0.2189 m, AgCl, ethanolŇAg Ir, H2ŇHCl, 0.4732 m, AgCl, ethanolŇAg Ir, H2ŇHCl, 1.0 m, AgCl, ethanolŇAg Ir, H2ŇHCl, 1.343 m, AgCl, ethanolŇAg Pt, H2ŇHCl, 0.084 mm, AgCl, ethanolŇAg Pt, H2ŇHCl, 0.149 mm, AgCl, ethanolŇAg Pt, H2ŇHCl, 0.771 mm, AgCl, ethanolŇAg Pt, H2ŇHCl, 1.030 mm, AgCl, ethanolŇAg Pt, H2ŇHCl, 1.290 mm, AgCl, ethanolŇAg Pt, H2ŇHCl, 1.780 mm, AgCl, ethanolŇAg Pt, H2ŇHCl, 3.530 mm, AgCl, ethanolŇAg Pt, H2ŇHCl, 6.154 mm, AgCl, ethanolŇAg Pt, H2ŇHCl, 9.070 mm, AgCl, ethanolŇAg Pt, H2ŇHCl, 11.834 mm, AgCl, ethanolŇAg Pt, H2ŇHCl, 15.130 mm, AgCl, ethanolŇAg Pt, H2ŇHCl, 21.790 mm, AgCl, ethanolŇAg Pt, H2ŇHCl, 37.241 mm, AgCl, ethanolŇAg Pt, H2ŇHCl, 65.090 mm, AgCl, ethanolŇAg Pt, H2ŇHCl, 130.180 mm, AgCl, ethanolŇAg Pt, H2ŇHCl, 0.00886 m, Hg2Cl2, ethanolŇHg Pt, H2ŇHCl, 0.019 m, Hg2Cl2, ethanolŇHg Pt, H2ŇHCl, 0.0274 m, Hg2Cl2, ethanolŇHg Pt, H2ŇHCl, 0.0877 m, Hg2Cl2, ethanolŇHg Pt, H2ŇHCl, 0.1703 m, Hg2Cl2, ethanolŇHg Pt, H2ŇHCl, 0.3020 m, Hg2Cl2, ethanolŇHg Pt, H2ŇHCl, 0.01 MŒHCl, 0.01 M, Hg2Cl2,sol., ethanol(16.18vol%)/waterŇHg Pt, H2ŇHCl, 0.01 MŒHCl, 0.01 M, Hg2Cl2,sol., ethanol(32.35vol%)/waterŇHg Pt, H2ŇHCl, 0.01 MŒHCl, 0.01 M, Hg2Cl2,sol., ethanol(52.35vol%)/waterŇHg Pt, H2ŇHCl, 0.01 MŒHCl, 0.01 M, Hg2Cl2,sol., ethanol(67.64vol%)/waterŇHg Pt, H2ŇHCl, 0.01 MŒHCl, 0.01 M, Hg2Cl2,sol., ethanolŇHg Pt, H2ŇHCl, 0.1 MŒHCl, 0.01 M, Hg2Cl2,sol., ethanol(16.18vol%)/waterŇHg Pt, H2ŇHCl, 0.1 MŒHCl, 0.01 M, Hg2Cl2,sol., ethanol(32.35vol%)/waterŇHg Pt, H2ŇHCl, 0.1 MŒHCl, 0.01 M, Hg2Cl2,sol., ethanol(52.35vol%)/waterŇHg Pt, H2ŇHCl, 0.1 MŒHCl, 0.01 M, Hg2Cl2,sol., ethanol(67.64vol%)/waterŇHg Pt, H2ŇHCl, 0.1 MŒHCl, 0.01 M, Hg2Cl2,sol., ethanolŇHg Pt, H2ŇH2SO4, 0.05 mŒHg2SO4,sat., ethanol(10wt%)/waterŇHg Pt, H2ŇH2SO4, 0.10 mŒHg2SO4,sat., ethanol(10wt%)/waterŇHg Pt, H2ŇH2SO4, 0.50 mŒHg2SO4,sat., ethanol(10wt%)/waterŇHg Pt, H2ŇH2SO4, 1.0 mŒHg2SO4,sat., ethanol(10wt%)/waterŇHg Pt, H2ŇH2SO4, 2.0 mŒHg2SO4,sat., ethanol(10wt%)/waterŇHg Pt, H2ŇH2SO4, 4.0 mŒHg2SO4,sat., ethanol(10wt%)/waterŇHg Pt, H2ŇH2SO4, 6.0 mŒHg2SO4,sat., ethanol(10wt%)/waterŇHg Pt, H2ŇH2SO4, 8.0 mŒHg2SO4,sat., ethanol(10wt%)/waterŇHg Pt, H2ŇH2SO4, 0.05 mŒHg2SO4,sat., ethanol(20wt%)/waterŇHg
Landolt-Börnstein New Series IV/9A
U0 [V] 0.1601 0.1356 0.1090 0.0880 0.0636 0.0405 0.0292 0.5082 0.4795 0.3962 0.3817 0.3710 0.3570 0.3250 0.2992 0.2794 0.2704 0.2659 0.2440 0.2216 0.1956 0.1632 0.2406 0.2232 0.1957 0.1538 0.1326 0.1175 0.4992 0.4858 0.4697 0.4402 0.322 0.3832 0.3742 0.3545 0.3329 0.227 0.7470 0.7303 0.6899 0.6700 0.6450 0.6028 0.5757 0.5491 0.7419
Ref. 28Woo 28Woo 28Woo 28Woo 28Woo 28Woo 28Woo 54Muk 54Muk 54Muk 54Muk 54Muk 54Muk 54Muk 54Muk 54Muk 54Muk 54Muk 54Muk 54Muk 54Muk 54Muk 22Dan 22Dan 22Dan 22Dan 22Dan 22Dan 27Erd 27Erd 27Erd 27Erd 27Erd 27Erd 27Erd 27Erd 27Erd 27Erd 46Cro 46Cro 46Cro 46Cro 46Cro 46Cro 46Cro 46Cro 46Cro
132
2 Cell voltages
Cell composition
T [°C]
U0 [V]
Pt, H2ŇH2SO4, 0.10 mŒHg2SO4,sat., ethanol(20wt%)/waterŇHg Pt, H2ŇH2SO4, 0.50 mŒHg2SO4,sat., ethanol(20wt%)/waterŇHg Pt, H2ŇH2SO4, 1.0 mŒHg2SO4,sat., ethanol(20wt%)/waterŇHg Pt, H2ŇH2SO4, 2.0 mŒHg2SO4,sat., ethanol(20wt%)/waterŇHg Pt, H2ŇH2SO4, 4.0 mŒHg2SO4,sat., ethanol(20wt%)/waterŇHg Pt, H2ŇH2SO4, 6.0 mŒHg2SO4,sat., ethanol(20wt%)/waterŇHg Pt, H2ŇH2SO4, 8.0 mŒHg2SO4,sat., ethanol(20wt%)/waterŇHg Pt, H2ŇH2SO4, 0.05 mŒHg2SO4,sat., ethanol(35wt%)/waterŇHg Pt, H2ŇH2SO4, 0.10 mŒHg2SO4,sat., ethanol(35wt%)/waterŇHg Pt, H2ŇH2SO4, 0.50 mŒHg2SO4,sat., ethanol(35wt%)/waterŇHg Pt, H2ŇH2SO4, 1.0 mŒHg2SO4,sat., ethanol(35wt%)/waterŇHg Pt, H2ŇH2SO4, 2.0 mŒHg2SO4,sat., ethanol(35wt%)/waterŇHg Pt, H2ŇH2SO4, 4.0 mŒHg2SO4,sat., ethanol(35wt%)/waterŇHg Pt, H2ŇH2SO4, 6.0 mŒHg2SO4,sat., ethanol(35wt%)/waterŇHg Pt, H2ŇH2SO4, 8.0 mŒHg2SO4,sat., ethanol(35wt%)/waterŇHg Pt, H2ŇH2SO4, 0.05 mŒHg2SO4,sat., ethanol(50wt%)/waterŇHg Pt, H2ŇH2SO4, 0.10 mŒHg2SO4,sat., ethanol(50wt%)/waterŇHg Pt, H2ŇH2SO4, 0.50 mŒHg2SO4,sat., ethanol(50wt%)/waterŇHg Pt, H2ŇH2SO4, 1.0 mŒHg2SO4,sat., ethanol(50wt%)/waterŇHg Pt, H2ŇH2SO4, 2.0 mŒHg2SO4,sat., ethanol(50wt%)/waterŇHg Pt, H2ŇH2SO4, 4.0 mŒHg2SO4,sat., ethanol(50wt%)/waterŇHg Pt, H2ŇH2SO4, 6.0 mŒHg2SO4,sat., ethanol(50wt%)/waterŇHg Pt, H2ŇH2SO4, 8.0 mŒHg2SO4,sat., ethanol(50wt%)/waterŇHg Pt, H2ŇH2SO4, 0.05 mŒHg2SO4,sat., ethanol(65wt%)/waterŇHg Pt, H2ŇH2SO4, 0.10 mŒHg2SO4,sat., ethanol(65wt%)/waterŇHg Pt, H2ŇH2SO4, 0.50 mŒHg2SO4,sat., ethanol(65wt%)/waterŇHg Pt, H2ŇH2SO4, 1.0 mŒHg2SO4,sat., ethanol(65wt%)/waterŇHg Pt, H2ŇH2SO4, 2.0 mŒHg2SO4,sat., ethanol(65wt%)/waterŇHg Pt, H2ŇH2SO4, 4.0 mŒHg2SO4,sat., ethanol(65wt%)/waterŇHg Pt, H2ŇH2SO4, 6.0 mŒHg2SO4,sat., ethanol(65wt%)/waterŇHg Pt, H2ŇH2SO4, 0.05 mŒHg2SO4,sat., ethanol(80wt%)/waterŇHg Pt, H2ŇH2SO4, 0.10 mŒHg2SO4,sat., ethanol(80wt%)/waterŇHg Pt, H2ŇH2SO4, 0.50 mŒHg2SO4,sat., ethanol(80wt%)/waterŇHg Pt, H2ŇH2SO4, 1.0 mŒHg2SO4,sat., ethanol(80wt%)/waterŇHg Pt, H2ŇH2SO4, 2.0 mŒHg2SO4,sat., ethanol(80wt%)/waterŇHg Pt, H2ŇH2SO4, 4.0 mŒHg2SO4,sat., ethanol(80wt%)/waterŇHg Pt, H2ŇH2SO4, 6.0 mŒHg2SO4,sat., ethanol(80wt%)/waterŇHg Pt, H2ŇH2SO4, 8.0 mŒHg2SO4,sat., ethanol(80wt%)/waterŇHg Pt, H2ŇHCl, AgCl, ethane-1,2-diol(5wt%)/waterŇAg
0.7254 0.6853 0.6658 0.6409 0.6042 0.5737 0.5471 0.7359 0.7159 0.6801 0.6602 0.6355 0.5977 0.5663 0.5408 0.7297 0.7135 0.6745 0.6548 0.6297 0.5915 0.5587 0.5314 0.7194 0.7038 0.6659 0.6460 0.6209 0.5834 0.5533 0.7033 0.6881 0.6516 0.6355 0.6148 0.5818 0.5485 0.5209 0.2191
Pt, H2ŇHCl, AgCl, ethane-1,2-diol(10wt%)/waterŇAg
0.2164
Pt, H2ŇHCl, AgCl, ethane-1,2-diol(15wt%)/waterŇAg
0.2133
Pt, H2ŇHCl, AgCl, ethane-1,2-diol(20wt%)/waterŇAg
0.2102
Pt, H2ŇHCl, AgCl, ethane-1,2-diol(30wt%)/waterŇAg
0.2036
Ref. 46Cro 46Cro 46Cro 46Cro 46Cro 46Cro 46Cro 46Cro 46Cro 46Cro 46Cro 46Cro 46Cro 46Cro 46Cro 46Cro 46Cro 46Cro 46Cro 46Cro 46Cro 46Cro 46Cro 46Cro 46Cro 46Cro 46Cro 46Cro 46Cro 46Cro 46Cro 46Cro 46Cro 46Cro 46Cro 46Cro 46Cro 46Cro 50Cro2, 46Kni 50Cro2, 46Kni 50Cro2, 46Kni 50Cro2, 46Kni 50Cro2, 46Kni Landolt-Börnstein New Series IV/9A
2 Cell voltages
Cell composition
133 T [°C]
U0 [V]
Ref.
Pt, H2ŇHCl, AgCl, ethane-1,2-diol(40wt%)/waterŇAg
0.1972
Pt, H2ŇHCl, AgCl, ethane-1,2-diol(60wt%)/waterŇAg
0.1807
Pt, H2ŇH2SO4, 0.005 M, Hg2SO4,sol., ethane-1,2-diol, 10 M, waterŇHg Pt, H2ŇH2SO4, 0.025 M, Hg2SO4,sol., ethane-1,2-diol, 10 M, waterŇHg Pt, H2ŇH2SO4, 0.05 M, Hg2SO4,sol., ethane-1,2-diol, 10 M, waterŇHg Pt, H2ŇH2SO4, 0.25 M, Hg2SO4,sol., ethane-1,2-diol, 10 M, waterŇHg Pt, H2ŇH2SO4, 0.5 M, Hg2SO4,sol., ethane-1,2-diol, 10 M, waterŇHg Pt, H2ŇH2SO4, 1.0 M, Hg2SO4,sol., ethane-1,2-diol, 10 M, waterŇHg Pt, H2ŇHCl, 0.001862 m, AgCl,2-propanol(10wt%)/waterŇAg Pt, H2ŇHCl, 0.0208 m, AgCl,2-propanol(10wt%)/waterŇAg Pt, H2ŇHCl, 0.11188 m, AgCl,2-propanol(10wt%)/waterŇAg Pt, H2ŇHCl, 0.4451 m, AgCl,2-propanol(10wt%)/waterŇAg Pt, H2ŇHCl, 0.8863 m, AgCl,2-propanol(10wt%)/waterŇAg Pt, H2ŇHCl, 1.0 m, AgCl,2-propanol(10wt%)/waterŇAg Pt, H2ŇHCl, AgCl, 2-propanol(5wt%)/waterŇAg (UT [V]=0.22110–5.7425·10–4 (T–20 °C)–3.8357·10–6 (T–20 °C)2, 0
0.7834 0.7453 0.7290 0.6904 0.6730 0.6505 0.53930 0.42025 0.33984 0.27180 0.23417 0.22704 0.2239 0.2211 0.2181 0.2192 0.2167 0.2138 0.2114 0.2091 0.2064 0.7492 0.7327 0.6922 0.6720 0.7470 0.7304 0.6908 0.6709 0.7414 0.7249 0.6862 0.6661 0.18932
50Cro2, 46Kni 50Cro2, 46Kni 33Tri 33Tri 33Tri 33Tri 33Tri 33Tri 39Har3 39Har3 39Har3 39Har3 39Har3 39Har3 47Moo 47Moo 47Moo 47Moo 47Moo 47Moo 47Moo 47Moo 47Moo 50Cro3 50Cro3 50Cro3 50Cro3 50Cro3 50Cro3 50Cro3 50Cro3 50Cro3 50Cro3 50Cro3 50Cro3 46Har
0.5777 0.5415 0.4599 0.4615 0.4276 0.3834 0.3495 0.3161 0.2696
26Luc 26Luc 26Luc 26Luc 26Luc 26Luc 26Luc 26Luc 26Luc
Pt, H2ŇHCl, AgCl, 2-propanol(10wt%)/waterŇAg (UT [V]=0.21666–5.3324·10–4(T–20 °C)–4.7405·10–6(T–20 °C)2, 0
15 20 25 15 20 25 15 20 25
134
2 Cell voltages
Cell composition Pt, H2ŇHCl, 1.0 m, AgCl, glycerol(1mol%)/waterŇAg Pt, H2ŇHCl, 2.0 m, AgCl, glycerol(1mol%)/waterŇAg Pt, H2ŇHCl, 4.0 m, AgCl, glycerol(1mol%)/waterŇAg Pt, H2ŇHCl, 0.001 m, AgCl, glycerol(5mol%)/waterŇAg Pt, H2ŇHCl, 0.002 m, AgCl, glycerol(5mol%)/waterŇAg Pt, H2ŇHCl, 0.005 m, AgCl, glycerol(5mol%)/waterŇAg Pt, H2ŇHCl, 0.01 m, AgCl, glycerol(5mol%)/waterŇAg Pt, H2ŇHCl, 0.02 m, AgCl, glycerol(5mol%)/waterŇAg Pt, H2ŇHCl, 0.05 m, AgCl, glycerol(5mol%)/waterŇAg Pt, H2ŇHCl, 0.1 m, AgCl, glycerol(5mol%)/waterŇAg Pt, H2ŇHCl, 0.2 m, AgCl, glycerol(5mol%)/waterŇAg Pt, H2ŇHCl, 0.5 m, AgCl, glycerol(5mol%)/waterŇAg Pt, H2ŇHCl, 1.0 m, AgCl, glycerol(5mol%)/waterŇAg Pt, H2ŇHCl, 2.0 m, AgCl, glycerol(5mol%)/waterŇAg Pt, H2ŇHCl, 4.0 m, AgCl, glycerol(5mol%)/waterŇAg Pt, H2ŇHCl, 0.01 M, Hg2Cl2, glycerol(23.50vol%)/waterŇAg Pt, H2ŇHCl, 0.1 M, Hg2Cl2, glycerol(23.50vol%)/waterŇAg Pt, H2ŇHCl, 0.01 M, Hg2Cl2, glycerol(47.96vol%)/waterŇAg Pt, H2ŇHCl, 0.1 M, Hg2Cl2, glycerol(47.96vol%)/waterŇAg Pt, H2ŇHCl, 0.01 M, Hg2Cl2, glycerol(71.32vol%)/waterŇAg Pt, H2ŇHCl, 0.1 M, Hg2Cl2, glycerol(71.32vol%)/waterŇAg Pt, H2ŇHCl, 0.01 M, Hg2Cl2, glycerol(94.60vol%)/waterŇAg Pt, H2ŇHCl, 0.1 M, Hg2Cl2, glycerol(94.60vol%)/waterŇAg Pt, H2ŇHCl, 0.01 M, Hg2Cl2, glycerolŇAg Pt, H2ŇHCl, 0.1 M, Hg2Cl2, glycerolŇAg Pt, H2ŇHCl, 0.01 M, glycerol(23.50vol%)/waterŒHCl, 0.1 M, glycerol(23.50vol%)/waterŇH2, Pt Pt, H2ŇHCl, 0.01 M, glycerol(47.96vol%)/waterŒHCl, 0.1 M, glycerol(47.96vol%)/waterŇH2, Pt Pt, H2ŇHCl, 0.01 M, glycerol(71.32vol%)/waterŒHCl, 0.1 M, glycerol(71.32vol%)/waterŇH2, Pt Pt, H2ŇHCl, 0.01 M, glycerol(94.60vol%)/waterŒHCl, 0.1 M, glycerol(94.60vol%)/waterŇH2, Pt Pt, H2ŇHCl, 0.01 M, glycerol ŒHCl, 0.1 M, glycerolŇH2, Pt Pt, H2Ňquinhydrone, picric acid, 0.01 M, glycerol(23.32vol%)/water Œquinhydrone, picric acid, 0.1 M, glycerol(23.32vol%)/waterŇPt Pt, H2Ňquinhydrone, picric acid, 0.01 M, glycerol(47.87vol%)/water Œquinhydrone, picric acid, 0.1 M, glycerol(47.87vol%)/waterŇPt Pt, H2Ňquinhydrone, picric acid, 0.01 M, glycerol(71.18vol%)/water Œquinhydrone, picric acid, 0.1 M, glycerol(71.18vol%)/waterŇPt Pt, H2Ňquinhydrone, picric acid, 0.01 M, glycerol(95.56vol%)/water Œquinhydrone, picric acid, 0.1 M, glycerol(95.56vol%)/waterŇPt Pt, H2Ňquinhydrone, picric acid, 0.01 M, glycerolŒquinhydrone, picric acid, 0.1 M, glycerolŇPt Pt, H2ŇHCl, 0.005 m, AgCl, 1,4-dioxane(20wt%)/waterŇAg (UT [V]=0.48096–1.87·10–4 (T–25 °C)–3.61·10–6 (T–25 °C)2)
T [°C]
U0 [V]
Ref.
0.2304 0.1830 0.1184 0.5681 0.5323 0.4860 0.4512 0.4172 0.3730 0.3397 0.3061 0.2596 0.2197 0.1711 0.1037 0.4994 0.3868 0.4848 0.3738 0.4653 0.3593 0.4416 0.3388 0.403 0.287 0.0181
26Luc 26Luc 26Luc 26Luc 26Luc 26Luc 26Luc 26Luc 26Luc 26Luc 26Luc 26Luc 26Luc 26Luc 26Luc 27Erd 27Erd 27Erd 27Erd 27Erd 27Erd 27Erd 27Erd 27Erd 27Erd 27Erd
0.0166
27Erd
0.0129
27Erd
0.0096
27Erd
0.025 0.0084
27Erd 27Erd
0.0069
27Erd
0.0062
27Erd
0.017
27Erd
0.148
27Erd
0.48096 38Har2, 38Har3, 39Har5, 36Har3
Landolt-Börnstein New Series IV/9A
2 Cell voltages
Cell composition Pt, H2ŇHCl, 0.01 m, AgCl, 1,4-dioxane(20wt%)/waterŇAg (UT [V]=0.4722–0.84·10–4 (T–25 °C)–3.58·10–6 (T–25 °C)2)
Pt, H2ŇHCl, 0.05 m, AgCl, 1,4-dioxane(20wt%)/waterŇAg (UT [V]=0.37074+1.54·10–4 (T–25 °C)–3.51·10–6 (T–25 °C)2)
Pt, H2ŇHCl, 0.10 m, AgCl, 1,4-dioxane(20wt%)/waterŇAg (UT [V]=0.33829–2.56·10–4 (T–25 °C)–3.46·10–6 (T–25 °C)2)
Pt, H2ŇHCl, 0.5 m, AgCl, 1,4-dioxane(20wt%)/waterŇAg (UT [V]=0.25991–4.90·10–4 (T–25 °C)–3.10·10–6 (T–25 °C)2)
Pt, H2ŇHCl, 1.0 m ,AgCl, 1,4-dioxane(20wt%)/waterŇAg (UT [V]=0.22099–5.95·10–4 (T–25 °C)–2.78·10–6 (T–25 °C)2)
Pt, H2ŇHCl, 1.5 m, AgCl, 1,4-dioxane(20wt%)/waterŇAg (UT [V]=0.19453–6.58·10–4 (T–25 °C)–2.52·10–6 (T–25 °C)2)
Pt, H2ŇHCl, 2.0 m, AgCl, 1,4-dioxane(20wt%)/waterŇAg (UT [V]=0.17291–7.02·10–4 (T–25 °C)–2.31·10–6 (T–25 °C)2)
Pt, H2ŇHCl, 3.0 m, AgCl, 1,4-dioxane(20wt%)/waterŇAg (UT [V]=0.13689–7.67·10–4 (T–25 °C)–1.99·10–6 (T–25 °C)2) Pt, H2ŇHCl, 0.003 m, AgCl, 1,4-dioxane(45wt%)/waterŇAg (UT [V]=0.47082+0.78·10–4 (T–25 °C)–3.30·10–6 (T–25 °C)2)
Pt, H2ŇHCl, 0.005 m, AgCl, 1,4-dioxane(45wt%)/waterŇAg (UT [V]=0.44670–1.38·10–4 (T–25 °C)–3.24·10–6 (T–25 °C)2)
Pt, H2ŇHCl, 0.01 m, AgCl, 1,4-dioxane(45wt%)/waterŇAg (UT [V]=0.41470–2.23·10–4 (T–25 °C)–3.17·10–6 (T–25 °C)2)
Pt, H2ŇHCl, 0.05 m, AgCl, 1,4-dioxane(45wt%)/waterŇAg (UT [V]=0.34316+4.23·10–4 (T–25 °C)–2.99·10–6 (T–25 °C)2)
Landolt-Börnstein New Series IV/9A
135 T [°C]
U0 [V]
Ref.
0.44722 38Har2, 38Har3, 39Har5, 36Har3 0.37074 38Har2, 38Har3, 39Har5, 36Har3 0.33829 38Har2, 38Har3, 39Har5, 36Har3 0.25991 38Har2, 38Har3, 39Har5, 36Har3 0.22099 38Har2, 38Har3, 39Har5, 36Har3 0.19453 38Har2, 38Har3, 39Har5, 36Har3 0.17291 38Har2, 38Har3, 39Har5, 36Har3 0.13689 38Har2, 38Har3, 39Har5, 36Har3 0.47082 38Har2, 38Har3, 39Har5, 36Har3 0.44670 38Har2, 38Har3, 39Har5, 36Har3 0.41470 38Har2, 38Har3, 39Har5, 36Har3 0.34316 38Har2, 38Har3, 39Har5, 36Har3
136
2 Cell voltages
Cell composition Pt, H2ŇHCl, 0.10 m, AgCl, 1,4-dioxane(45wt%)/waterŇAg (UT [V]=0.31290–5.08·10–4 (T–25 °C)–2.91·10–6 (T–25 °C)2)
Pt, H2ŇHCl, 0.5 m, AgCl, 1,4-dioxane(45wt%)/waterŇAg (UT [V]=0.23855–7.03·10–4 (T–25 °C)–2.52·10–6 (T–25 °C)2)
Pt, H2ŇHCl, 1.0 m, AgCl, 1,4-dioxane(45wt%)/waterŇAg (UT [V]=0.19951–7.91·10–4 (T–25 °C)–2.12·10–6 (T–25 °C)2)
Pt, H2ŇHCl, 1.5 m, AgCl, 1,4-dioxane(45wt%)/waterŇAg (UT [V]=0.17162–8.44·10–4 (T–25 °C)–1.84·10–6 (T–25 °C)2)
Pt, H2ŇHCl, 2.0 m, AgCl, 1,4-dioxane(45wt%)/waterŇAg (UT [V]=0.14811–8.82·10–4 (T–25 °C)–1.62·10–6 (T–25 °C)2)
Pt, H2ŇHCl, 3.0 m, AgCl, 1,4-dioxane(45wt%)/waterŇAg (UT [V]=0.10711–9.38·10–4 (T–25 °C)–1.29·10–6 (T–25 °C)2)
Pt, H2ŇHCl, 0.001 m, AgCl, 1,4-dioxane(70wt%)/waterŇAg (UT [V]=0.43716+4.50·10–4 (T–25 °C)–3.14·10–6 (T–25 °C)2)
Pt, H2ŇHCl, 0.005 m, AgCl, 1,4-dioxane(70wt%)/waterŇAg (UT [V]=0.37130–6.20·10–4 (T–25 °C)–2.71·10–6 (T–25 °C)2) Pt, H2ŇHCl, 0.01 m, AgCl, 1,4-dioxane(70wt%)/waterŇAg (UT [V]=0.34525–6.80·10–4 (T–25 °C)–2.60·10–6 (T–25 °C)2)
Pt, H2ŇHCl, 0.05 m, AgCl, 1,4-dioxane(70wt%)/waterŇAg (UT [V]=0.28739+8.11·10–4 (T–25 °C)–2.33·10–6 (T–25 °C)2)
Pt, H2ŇHCl, 0.10 m, AgCl, 1,4-dioxane(70wt%)/waterŇAg (UT [V]=0.26195–8.67·10–4 (T–25 °C)–2.22·10–6 (T–25 °C)2)
Pt, H2ŇHCl, 0.5 m, AgCl, 1,4-dioxane(70wt%)/waterŇAg (UT [V]=0.19274–9.95·10–4 (T–25 °C)–1.80·10–6 (T–25 °C)2)
T [°C]
U0 [V]
Ref.
0.31290 38Har2, 38Har3, 39Har5, 36Har3 0.23855 38Har2, 38Har3, 39Har5, 36Har3 0.19951 38Har2, 38Har3, 39Har5, 36Har3 0.17162 38Har2, 38Har3, 39Har5, 36Har3 0.14811 38Har2, 38Har3, 39Har5, 36Har3 0.10711 38Har2, 38Har3, 39Har5, 36Har3 0.43716 38Har2, 38Har3, 39Har5, 36Har3 0.37130 38Har2, 38Har3, 39Har5, 36Har3 0.34525 38Har2, 38Har3, 39Har5, 36Har3 0.28739 38Har2, 38Har3, 39Har5, 36Har3 0.26195 38Har2, 38Har3, 39Har5, 36Har3 0.19274 38Har2, 38Har3, 39Har5, 36Har3
Landolt-Börnstein New Series IV/9A
2 Cell voltages
Cell composition
137 T [°C]
Pt, H2ŇHCl, 1.0 m, AgCl, 1,4-dioxane(70wt%)/waterŇAg (UT [V]=0.150000–10.54·10–4 (T–25 °C)–1.45·10–6 (T–25 °C)2)
Pt, H2ŇHCl, 1.5 m, AgCl, 1,4-dioxane(70wt%)/waterŇAg (UT [V]=0.11638–10.90·10–4 (T–25 °C)–1.19·10–6 (T–25 °C)2)
Pt, H2ŇHCl, 0.001 m, AgCl, 1,4-dioxane(82wt%)/waterŇAg (UT [V]=0.36094+8.03·10–4 (T–25 °C)–5.54·10–6 (T–25 °C)2)
Pt, H2ŇHCl, 0.005 m, AgCl, 1,4-dioxane(82wt%)/waterŇAg (UT [V]=0.30913–9.43·10–4 (T–25 °C)–3.45·10–6 (T–25 °C)2)
Pt, H2ŇHCl, 0.01 m, AgCl, 1,4-dioxane(82wt%)/waterŇAg (UT [V]=0.28844–9.85·10–4 (T–25 °C)–2.80·10–6 (T–25 °C)2)
Pt, H2ŇHCl, 0.05 m, AgCl, 1,4-dioxane(82wt%)/waterŇAg (UT [V]=0.24060+10.73·10–4 (T–25 °C)–2.29·10–6 (T–25 °C)2)
Pt, H2ŇHCl, 0.10 m, AgCl, 1,4-dioxane(82wt%)/waterŇAg (UT [V]=0.21870–11.14·10–4 (T–25 °C)–1.85·10–6 (T–25 °C)2)
Pt, H2ŇHCl, 0.3 m, AgCl, 1,4-dioxane(82wt%)/waterŇAg (UT [V]=0.17636–11.70·10–4 (T–25 °C)–1.30·10–6 (T–25 °C)2) Pt, H2ŇHCl, 0.5 m, AgCl, 1,4-dioxane(82wt%)/waterŇAg (UT [V]=0.14792–11.71·10–4 (T–25 °C)–0.65·10–6 (T–25 °C)2)
Pt, H2ŇHCl, 0.0056 m, AgCl, acetoneŇAg Pt, H2ŇHCl, 0.0090 m, AgCl, acetoneŇAg Pt, H2ŇHCl, 0.0219 m, AgCl, acetoneŇAg Pt, H2ŇHCl, 0.0290 m, AgCl, acetoneŇAg Pt, H2ŇHCl, 0.055 m, AgCl, acetoneŇAg Pt, H2ŇHCl, 0.079 m, AgCl, acetoneŇAg Pt, H2ŇHCl, 0.093 m, AgCl, acetoneŇAg Pt, H2ŇHCl, 0.128 m, AgCl, acetoneŇAg Pt, H2ŇHCl, 0.149 m, AgCl, acetoneŇAg Pt, H2ŇNaOH, 0.02426 m, NaCl, 0.02426 m, AgCl, 1,4-dioxane(20wt%)/waterŇAg
Landolt-Börnstein New Series IV/9A
0 5 10 15 20
U0 [V]
Ref.
0.15000 38Har2, 38Har3, 39Har5, 36Har3 0.11638 38Har2, 38Har3, 39Har5, 36Har3 0.36094 38Har2, 38Har3, 39Har5, 36Har3 0.30913 38Har2, 38Har3, 39Har5, 36Har3 0.28844 38Har2, 38Har3, 39Har5, 36Har3 0.24060 38Har2, 38Har3, 39Har5, 36Har3 0.21870 38Har2, 38Har3, 39Har5, 36Har3 0.17636 38Har2, 38Har3, 39Har5, 36Har3 0.14792 38Har2, 38Har3, 39Har5, 36Har3 0.0938 54Eve 0.0811 54Eve 0.0483 54Eve 0.0392 54Eve 0.0226 54Eve 0.0126 54Eve 0.0072 54Eve –0.0001 54Eve –0.0049 54Eve 1.0635 39Har6 1.0644 39Har6 1.0652 39Har6 1.0661 39Har6 1.0670 39Har6
138
2 Cell voltages
Cell composition Pt, H2ŇNaOH, 0.02426 m, NaCl, 0.02426 m, AgCl, 1,4-dioxane(20wt%)/waterŇAg
Pt, H2ŇNaOH, 0.04344 m, NaCl, 0.04344 m, AgCl, 1,4-dioxane(20wt%)/waterŇAg
Pt, H2ŇNaOH, 0.07621 m, NaCl, 0.07621 m, AgCl, 1,4-dioxane(20wt%)/waterŇAg
Pt, H2ŇNaOH, 0.01 m, NaCl, 0.03 m, AgCl, 1,4-dioxane(45wt%)/waterŇAg
Pt, H2ŇNaOH, 0.01 m, NaCl, 0.06 m, AgCl, 1,4-dioxane(45wt%)/waterŇAg
T [°C] 25 30 35 40 50 0 5 10 15 20 25 30 35 40 50 0 5 10 15 20 25 30 35 40 50 0 5 10 15 20 25 30 35 40 50 0 5 10 15 20 25 30 35 40 50
U0 [V] 1.0678 1.0687 1.0695 1.0704 1.0721 1.0636 1.0645 1.0653 1.0662 1.0670 1.0678 1.0687 1.0695 1.0704 1.0720 1.0638 1.0646 1.0654 1.0663 1.0671 1.0679 1.0688 1.0696 1.0704 1.0721 1.0660 1.0659 1.0658 1.0656 1.0655 1.0654 1.0652 1.0651 1.0650 1.0647 1.0488 1.0484 1.0479 1.0475 1.0471 1.0467 1.0463 1.0459 1.0455 1.0447
Ref. 39Har6 39Har6 39Har6 39Har6 39Har6 39Har6 39Har6 39Har6 39Har6 39Har6 39Har6 39Har6 39Har6 39Har6 39Har6 39Har6 39Har6 39Har6 39Har6 39Har6 39Har6 39Har6 39Har6 39Har6 39Har6 39Har6 39Har6 39Har6 39Har6 39Har6 39Har6 39Har6 39Har6 39Har6 39Har6 39Har6 39Har6 39Har6 39Har6 39Har6 39Har6 39Har6 39Har6 39Har6 39Har6
Landolt-Börnstein New Series IV/9A
2 Cell voltages
Cell composition Pt, H2ŇNaOH, 0.01 m, NaCl, 0.09 m, AgCl, 1,4-dioxane(45wt%)/waterŇAg
Pt, H2ŇNaOH, 0.01 m, NaCl, 0.15 m, AgCl, 1,4-dioxane(70wt%)/waterŇAg
Pt, H2ŇNaOH, 0.01 m, NaCl, 0.30 m, AgCl, 1,4-dioxane(70wt%)/waterŇAg
Pt, H2ŇCH3COOH, 0.01 m, CH3COONa, 0.01 m, AgCl, 1,4-dioxane(82wt%)/waterŇAg
Pt, H2ŇCH3COOH, 0.05 m, CH3COONa, 0.05 m, AgCl, 1,4-dioxane(82wt%)/waterŇAg
Landolt-Börnstein New Series IV/9A
139 T [°C] 0 5 10 15 20 25 30 35 40 50 0 5 10 15 20 25 30 35 40 50 0 5 10 15 20 25 30 35 40 50 5 10 15 20 25 30 35 40 45 5 10 15 20 25 30 35 40 45
U0 [V] 1.0385 1.0380 1.0374 1.0369 1.0363 1.0358 1.0352 1.0347 1.0341 1.0330 1.0520 1.0505 1.0489 1.0473 1.0457 1.0441 1.0426 1.0410 1.0394 1.0362 1.0299 1.0280 1.0260 1.0240 1.0220 1.0200 1.0181 1.0161 1.0141 1.0101 0.6903 0.6911 0.6929 0.6945 0.6962 0.6978 0.6994 0.7011 0.7028 0.6501 0.6508 0.6519 0.6532 0.6540 0.6549 0.6559 0.6568 0.6577
Ref. 39Har6 39Har6 39Har6 39Har6 39Har6 39Har6 39Har6 39Har6 39Har6 39Har6 39Har6 39Har6 39Har6 39Har6 39Har6 39Har6 39Har6 39Har6 39Har6 39Har6 39Har6 39Har6 39Har6 39Har6 39Har6 39Har6 39Har6 39Har6 39Har6 39Har6 39Har6 39Har6 39Har6 39Har6 39Har6 39Har6 39Har6 39Har6 39Har6 39Har6 39Har6 39Har6 39Har6 39Har6 39Har6 39Har6 39Har6 39Har6
140
2 Cell voltages
Cell composition Pt, H2ŇCH3COOH, 0.08 m, CH3COONa, 0.08 m, AgCl, 1,4-dioxane(82wt%)/waterŇAg
Pt, H2ŇH2SO4, 0.002461 m, Hg2SO4, acetic acidŇHg Pt, H2ŇH2SO4, 0.006053 m, Hg2SO4, acetic acidŇHg Pt, H2ŇH2SO4, 0.007730 m, Hg2SO4, acetic acidŇHg Pt, H2ŇH2SO4, 0.01377 m, Hg2SO4, acetic acidŇHg Pt, H2ŇH2SO4, 0.02662 m, Hg2SO4, acetic acidŇHg Pt, H2ŇH2SO4, 0.03796 m, Hg2SO4, acetic acidŇHg Pt, H2ŇH2SO4, 0.1437 m, Hg2SO4, acetic acidŇHg Pt, H2ŇH2SO4, 0.5014 m, Hg2SO4, acetic acidŇHg Pt, H2ŇH2SO4, 0.8715 m, Hg2SO4, acetic acidŇHg Lanthanum (La) LaŇLaBr3,sat., pyridineŒAgNO3, 0.1 MŇAg La5wt%HgŇLaBr3,sat., pyridineŒAgNO3, 0.1 MŇAg LaŇLaBr3,sat., pyridineŇLa5wt%Hg Lead (Pb) Pbsat.HgŇPbF2*2.5 H2O,sol.ŇHF(NaF), Hg2F2,sol.ŇHg PbŇPb(NO3)2, 0.05 M in NH3ŒAgNO3, 0.1 M in NH3ŇAg (UT [V]=0.467–0.5·10–3 (T+35 °C), –65
T [°C] 5 10 15 20 25 30 35 40 45
0 –35
U0 [V]
Ref.
0.6362 0.6372 0.6379 0.6384 0.6391 0.6399 0.6406 0.6413 0.6429 0.537 0.525 0.521 0.512 0.504 0.498 0.480 0.460 0.452
39Har6 39Har6 39Har6 39Har6 39Har6 39Har6 39Har6 39Har6 39Har6 31Hut 31Hut 31Hut 31Hut 31Hut 31Hut 31Hut 31Hut 31Hut
0.71 0.93 0.255
29Mül1 29Mül1 29Mül1
1.0637 0.467
52Koe 26Cos
0.5788 0.5561 0.5209 0.5017 0.4842 0.5462 0.5120 0.5016 0.4842 0.5207 0.5081 0.4929 0.4842 0.327
44Nob 44Nob 44Nob 44Nob 44Nob 44Nob 44Nob 44Nob 44Nob 44Nob 44Nob 44Nob 44Nob 99Kah
2.287 2.1995 2.1760 2.1511 2.1264 2.1040 0.9502
32McF 26Dru2 26Dru2 26Dru2 26Dru2 26Dru2 13Lew Landolt-Börnstein New Series IV/9A
2 Cell voltages
Cell composition Magnesium (Mg) MgŇMgCl2, 0.35 m, methanol, Hg2Cl2ŇHg Mg0.12wt%HgŇMgCl2, 0.35 m, methanol, Hg2Cl2ŇHg Mg3.11wt%HgŇMgCl2, 0.35 m, methanol, Hg2Cl2ŇHg Mg9.02wt%HgŇMgCl2, 0.35 m, methanol, Hg2Cl2ŇHg MgŇMg(NO3)2, 0.05 M, pyridineŒAgNO3, 0.1 M, pyridineŇAg Mg5at%HgŇMgI2, 0.038 M, pyridineŒAgNO3, 0.1 M, pyridineŇAg Mg10at%HgŇMgI2, 0.038 M, pyridineŒAgNO3, 0.1 M, pyridineŇAg Mg21at%HgŇMgI2, 0.038 M, pyridineŒAgNO3, 0.1 M, pyridineŇAg Mg25at%HgŇMgI2, 0.038 M, pyridineŒAgNO3, 0.1 M, pyridineŇAg Mg38at%HgŇMgI2, 0.038 M, pyridineŒAgNO3, 0.1 M, pyridineŇAg Mg1at%HgŇMgBr2, sat.pyridineŒAgNO3, 0.1 M, pyridineŇAg Mg10at%HgŇMgBr2, sat.pyridineŒAgNO3, 0.1 M, pyridineŇAg Mg30at%HgŇMgBr2, sat.pyridineŒAgNO3, 0.1 M, pyridineŇAg Mg40at%HgŇMgBr2, sat.pyridineŒAgNO3, 0.1 M, pyridineŇAg Mg50at%HgŇMgBr2, sat.pyridineŒAgNO3, 0.1 M, pyridineŇAg Mg52at%HgŇMgBr2, sat.pyridineŒAgNO3, 0.1 M, pyridineŇAg Mg60at%HgŇMgBr2, sat.pyridineŒAgNO3, 0.1 M, pyridineŇAg Mg90at%HgŇMgBr2, sat.pyridineŒAgNO3, 0.1 M, pyridineŇAg Mg99at%HgŇMgBr2, sat.pyridineŒAgNO3, 0.1 M, pyridineŇAg MgŇMg(NO3)2, 0.05 M, anilineŒAgNO3, 0.1 M, anilineŇAg Mercury (Hg) HgŇHg2F2,sol., HF(NaF)ŇCuF2,sol.ŇCusat.Hg HgŇHg2F2,sol.ŇNaF, x=0.010 in HFŒNaF, HF*H2O, AgF, x=0.00154 in HFŇAg HgŇHg2F2,sol.ŇNaF, x=0.020 in HFŒNaF, HF*H2O, AgF, x=0.00308 in HFŇAg HgŇHg2F2,sol.ŇNaF, x=0.0320 in HFŒNaF, HF*H2O, AgF, x=0.0020 in HFŇAg HgŇHg2F2,sol.ŇNaF, x=0.034 in HFŒNaF, HF*H2O, AgF, x=0.0040 in HFŇAg HgŇHg2F2,sol.ŇNaF, x=0.036 in HFŒNaF, HF*H2O, AgF, x=0.0060 in HFŇAg HgŇHg2F2,sol.ŇNaF, x=0.040 in HFŒNaF, HF*H2O, AgF, x=0.00615 in HFŇAg HgŇHg2F2,sol.ŇNaF, x=0.050 in HFŒNaF, HF*H2O, AgF, x=0.00769 in HFŇAg HgŇHg2SO4, H2SO4, methanolŇH2, Pt
HgŇHgNO3, 0.00108 m, methanolŒHgNO3, 0.00108 m, methanolŇHg HgŇHgNO3, 0.0043 m, methanolŒHgNO3, 0.0173 m, methanolŇHg HgŇHgNO3, 0.0173 m, methanolŒHgNO3, 0.069 m, methanolŇHg HgŇHgNO3, 0.0345 m, methanolŒHgNO3, 0.069 m, methanolŇHg HgŇHg2Cl2, HCl, 0.1 M, glycerin(23.50vol%)/waterŒHg2Cl2, HCl, 0.01 M, glycerin(23.50vol%)/waterŇH2, Pt Landolt-Börnstein New Series IV/9A
141 T [°C]
U0 [V]
Ref.
–80 –80 –80 –80
1.8 1.22 1.83 1.95 0.929 1.68 1.67 1.70 1.85 1.58 1.65 1.72 1.72 1.73 1.69 1.31 1.33 1.34 1.25 1.151
15Cam 15Cam 15Cam 15Cam 99Kah 15Cam 15Cam 15Cam 15Cam 15Cam 23Mül 23Mül 23Mül 23Mül 23Mül 23Mül 23Mül 23Mül 23Mül 99Kah
0 10 0
0.274 0.283 0.0543
52Koe 52Koe 52Koe
0
0.0737
52Koe
0
0.0642
52Koe
0
0.0763
52Koe
0
0.0901
52Koe
0
0.0915
52Koe
0
0.0964
52Koe
20 25 30 35
0.544431 46Kan 0.53920 46Kan 0.53510 46Kan 0.53177 46Kan 0.006 09Neu 0.003 09Neu 0.002 09Neu 0.001 09Neu 0.0946 27Erd
142
2 Cell voltages
Cell composition HgŇHg2Cl2, HCl, 0.1 M, glycerol(47.96vol%)/waterŒHg2Cl2, HCl, 0.01 M, glycerol(47.96vol%)/waterŇH2, Pt HgŇHg2Cl2, HCl, 0.1 M, glycerol(71.32vol%)/waterŒHg2Cl2, HCl, 0.01 M, glycerol(71.32vol%)/waterŇH2, Pt HgŇHg2Cl2, HCl, 0.1 M, glycerol(94.60vol%)/waterŒHg2Cl2, HCl, 0.01 M, glycerol(94.60vol%)/waterŇH2,Pt HgŇHg2Cl2, HCl, 0.1 M, glycerolŒHg2Cl2, HCl, 0.01 M, glycerolŇH2, Pt HgŇHg2picrate,sol., picric acid, 0.1 M, glycerol(23.32vol%)/water Œpicric acid, 0.01 M, Hg2picrate,sol., glycerol(23.32vol%)/waterŇHg HgŇHg2picrate,sol., picric acid, 0.1 M, glycerol(47.87vol%)/water Œpicric acid, 0.1 M, Hg2picrate,sol., glycerol(47.87vol%)/waterŇHg HgŇHg2picrate,sol., picric acid, 0.1 M, glycerol(71.18vol%)/water Œpicric acid, 0.1 M, Hg2picrate,sol., glycerol(71.18vol%)/waterŇHg HgŇHg2picrate,sol., picric acid, 0.1 M, glycerol(95.56vol%)/water Œpicric acid, 0.1 M, Hg2picrate,sol., glycerol(95.56vol%)/waterŇHg HgŇHg2picrate,sol., picric acid, 0.1 M, glycerolŒpicric acid, 0.1 M, Hg2picrate,sol., glycerolŇHg HgŇHg2picrate,sol., picric acid, 0.01 M, glycerol(23.32vol%)/water Œquinhydrone, picric acid, 0.01 M, glycerol(23.32vol%)/waterŇPt HgŇHg2picrate,sol., picric acid, 0.01 M, glycerol(47.87vol%)/water Œquinhydrone, picric acid, 0.01 M, glycerol(47.87vol%)/waterŇPt HgŇHg2picrate,sol., picric acid, 0.01 M, glycerol(71.18vol%)/water Œquinhydrone, picric acid, 0.01 M, glycerol(71.18vol%)/waterŇPt HgŇHg2picrate,sol., picric acid, 0.01 M, glycerol(95.56vol%)/water Œquinhydrone, picric acid, 0.01 M, glycerol(95.56vol%)/waterŇPt HgŇHg2picrate,sol., picric acid, 0.01 M, glycerolŒquinhydrone, picric acid, 0.01 M, glycerolŇPt HgŇHg2picrate,sol., picric acid, 0.1 M, glycerol(23.32vol%)/water Œquinhydrone, picric acid, 0.1 M, glycerol(23.32vol%)/waterŇPt HgŇHg2picrate,sol., picric acid, 0.1 M, glycerol(47.87vol%)/water Œquinhydrone, picric acid, 0.1 M, glycerol(47.87vol%)/waterŇPt HgŇHg2picrate,sol., picric acid, 0.1 M, glycerol(71.18vol%)/water Œquinhydrone, picric acid, 0.1 M, glycerol(71.18vol%)/waterŇPt HgŇHg2picrate,sol., picric acid 0.1 M, glycerol(95.56vol%)/water Œquinhydrone, picric acid, 0.1 M, glycerol(95.56vol%)/waterŇPt HgŇHg2picrate,sol., picric acid, 0.1 M, glycerolŒquinhydrone, picric acid, 0.1 M, glycerolŇPt Platinum (Pt) PtŇquinhydrone, picric acid, 0.01 M ethanol(16.02vol%)/water Œquinhydrone, picric acid, 0.1 M, ethanol(16.02vol%)/waterŇPt PtŇquinhydrone, picric acid, 0.01 M, ethanol(33.78vol%)/water Œquinhydrone, picric acid, 0.1 M, ethanol(33.78vol%)/waterŇPt PtŇquinhydrone, picric acid, 0.01 M, ethanol(50.18vol%)/water Œquinhydrone, picric acid, 0.1 M, ethanol(50.18vol%)/waterŇPt PtŇquinhydrone, picric acid, 0.01 M, ethanol(67.46vol%)/water Œquinhydrone, picric acid, 0.1 M, ethanol(67.46vol%)/waterŇPt PtŇquinhydrone, picric acid, 0.01 M, ethanolŒquinhydrone, picric acid, 0.1 M, ethanolŇPt
T [°C]
U0 [V]
Ref.
0.0944
27Erd
0.0926
27Erd
0.0924
27Erd
0.087 0.1017
27Erd 27Erd
0.1012
27Erd
0.1008
27Erd
0.1084
27Erd
0.186
27Erd
0.0854
27Erd
0.0800
27Erd
0.0766
27Erd
0.092
27Erd
0.268
27Erd
0.246
27Erd
0.282
27Erd
0.305
27Erd
0.328
27Erd
0.059
27Erd
0.0079
27Erd
0.0080
27Erd
0.0116
27Erd
0.0238
27Erd
0.0079
27Erd
Landolt-Börnstein New Series IV/9A
2 Cell voltages
Cell composition PtŇquinhydrone, picric acid, 0.01 M, ethanol(16.02vol%)/waterŒpicric acid, 0.01 M, Hg2picrate, ethanol(16.02vol%)/waterŇHg PtŇquinhydrone, picric acid, 0.01 M, ethanol(33.78vol%)/waterŒpicric acid, 0.01 M, Hg2picrate, ethanol(33.78vol%)/waterŇHg PtŇquinhydrone, picric acid, 0.01 M, ethanol(50.18vol%)/waterŒpicric acid, 0.01 M, Hg2picrate, ethanol(50.18vol%)/waterŇHg PtŇquinhydrone, picric acid, 0.01 M, ethanol(67.46vol%)/waterŒpicric acid, 0.01 M, Hg2picrate, ethanol(67.46vol%)/waterŇHg PtŇquinhydrone, picric acid, 0.01 M, ethanolŒpicric acid, 0.01 M, Hg2picrate, ethanolŇHg PtŇquinhydrone, picric acid, 0.1 M, ethanol(16.02vol%)/waterŒpicric acid, 0.1 M, Hg2picrate, ethanol(16.02vol%)/waterŇHg PtŇquinhydrone, picric acid, 0.1 M, ethanol(33.78vol%)/waterŒpicric acid, 0.1 M, Hg2picrate, ethanol(33.78vol%)/waterŇHg PtŇquinhydrone, picric acid, 0.1 M, ethanol(50.18vol%)/waterŒpicric acid, 0.1 M, Hg2picrate, ethanol(50.18vol%)/waterŇHg PtŇquinhydrone, picric acid, 0.1 M, ethanol(67.46vol%)/waterŒpicric acid, 0.1 M, Hg2picrate, ethanol(67.46vol%)/waterŇHg PtŇquinhydrone, picric acid, 0.1 M, ethanolŒpicric acid, 0.1 M, Hg2picrate, ethanolŇHg Potassium (K) K0.2756wt%HgŇKCl, 1.492 m in NH3, ZnCl2*6 NH3,sol.ŇZnsat.Hg K0.2756wt%HgŇKCl, 1.923 m in NH3, ZnCl2*6 NH3,sol.ŇZnsat.Hg K0.2756wt%HgŇKCl, 3.204 m in NH3, ZnCl2*6 NH3,sol.ŇZnsat.Hg K0.2756wt%HgŇKCl, 4.696 m in NH3, ZnCl2*6 NH3,sol.ŇZnsat.Hg K0.2756wt%HgŇKCl, 13.98 m in NH3, ZnCl2*6 NH3,sol.ŇZnsat.Hg K0.2756wt%HgŇKCl, 14.26 m in NH3, ZnCl2*6 NH3,sol.ŇZnsat.Hg K0.2756wt%HgŇKCl, 21.51 m in NH3, ZnCl2*6 NH3,sol.ŇZnsat.Hg K0.2756wt%HgŇKCl, 22.66 m in NH3, ZnCl2*6 NH3,sol.ŇZnsat.Hg K0.2216wt.%HgŇKI,sol., KI,sat., AgI, ethanolŇAg K0.2216wt.%HgŇKI,sol., KI,sat., CuI, ethanolŇCu K0.2216wt%HgŇKI,sol., KI,sat., CuI, ethanolŇCuzHg K0.2216wt%HgŇKBr,sol., KBr,sat., AgBr,sol., ethanol(85wt%)/waterŇAg (from Ag2O) KŇKI, ethyl amineŇK0.2216wt%Hg K1.127mol%HgŇKI, ethyl amineŇK0.01950mol%Hg K1.127mol%HgŇKI, ethyl amineŇK0.1924mol%Hg K1.127mol%HgŇKI, ethyl amineŇK0.6721mol%Hg K1.127mol%HgŇKI, ethyl amineŇK1.539mol%Hg K1.127mol%HgŇKI, ethyl amineŇK1.944mol%Hg K1.127mol%HgŇKI, ethyl amineŇK2.193mol%Hg K1.127mol%HgŇKI, ethyl amineŇK2.444mol%Hg K1.127mol%HgŇKI, ethyl amineŇK2.627mol%Hg Rubidium (Rb) RbŇRbI, ethyl amine with 7.9mol% ammoniaŇRb0.02698 eq/kgHg
Landolt-Börnstein New Series IV/9A
143 T [°C]
U0 [V]
Ref.
0.0834
27Erd
0.1063
27Erd
0.1427
27Erd
0.1506
27Erd
0.094
27Erd
–0.00243 27Erd
–36 –36 –36 –36 –36 –36 –36 –36
0.0012
27Erd
0.0294
27Erd
0.0424
27Erd
0.005
27Erd
0.3834 0.3750 0.3575 0.3457 0.3147 0.3137 0.3042 0.3027 1.6271 1.5904 1.5993 1.8793
51Sed 51Sed 51Sed 51Sed 51Sed 51Sed 51Sed 51Sed 34Ish3 34Ish3 34Ish3 34Ish2
1.0481 0.1237 0.06156 0.02099 –0.01552 –0.06156 –0.03672 –0.04418 –0.05084
12Lew 33Ben 33Ben 33Ben 33Ben 33Ben 33Ben 33Ben 33Ben
1.0745
15Lew
144
2 Cell voltages
Cell composition Silver (Ag) AgŇAgNO3, 0.298 mM in NH3ŒAgNO3, 1.87 mM in NH3ŇAg AgŇAgNO3, 0.0487 mM in NH3ŒAgNO3, 1.82 mM in NH3ŇAg AgŇAgNO3, 0.0080 mM in NH3ŒAgNO3, 1.82 mM in NH3ŇAg AgŇAgNO3, 0.743 mM in NH3ŒAgNO3, 4.54 mM in NH3ŇAg AgŇAgBr, NaBr, 0.1 m, methanolŒNaCl, 0.1 m, methanol, Hg2Cl2ŇHg AgŇAgBr, NaBr, 0.00125 m, ethanolŒNaBr, 0.00625 m, ethanol, AgBrŇAg AgŇAgBr, NaBr, 0.00313 m, ethanolŒNaBr, 0.00156 m, ethanol, AgBrŇAg AgŇAgBr, NaBr, 0.00625 m, ethanolŒNaBr, 0.00313 m, ethanol, AgBrŇAg AgŇAgBr, NaBr, 0.025 m, ethanolŒNaBr, 0.0125 m, ethanol, AgBrŇAg AgŇAgBr, NaBr, 0.05 m, ethanolŒNaBr ,0.025 m, ethanol, AgBrŇAg AgŇAgBr, NaBr, 0.1 m, ethanolŒNaBr, 0.00156 m, ethanol, AgBrŇAg AgŇAgBr, NaBr, 0.1 m, ethanolŒNaBr, 0.00313 m, ethanol, AgBrŇAg AgŇAgBr, NaBr, 0.1 m, ethanolŒNaBr, 0.00625 m, ethanol, AgBrŇAg AgŇAgBr, NaBr, 0.1 m, ethanolŒNaBr, 0.0125 m, ethanol, AgBrŇAg AgŇAgBr, NaBr, 0.1 m, ethanolŒNaBr, 0.025 m, ethanol, AgBrŇAg AgŇAgBr, NaBr, 0.1 m, ethanolŒNaBr, 0.05 m, ethanol, AgBrŇAg AgŇAgBr, KBr, 0.001013 M, ethanol(85wt%)/waterŒAgCl, KCl, 0.001013 M, ethanol(24.67wt%)/waterŇAg AgŇAgBr, KBr, 0.01006 M, ethanol(85wt%)/waterŒAgCl, KCl, 0.01006 M, ethanol(24.67wt%)/waterŇAg AgŇAgBr, KBr, 0.1001 M, ethanol(85wt%)/waterŒAgCl, KCl, 0.1001 M, ethanol(24.67wt%)/waterŇAg AgŇAgBr, KBr, 0.001011 M, ethanol(85wt%)/waterŒAgCl, KCl, 0.001011 M, ethanol(50.6wt%)/waterŇAg AgŇAgBr, KBr, 0.01006 M, ethanol(85wt%)/waterŒAgCl, KCl, 0.01006 M, ethanol(50.6wt%)/waterŇAg AgŇAgBr, KBr, 0.10012 M, ethanol(85wt%)/waterŒAgCl, KCl, 0.10012 M, ethanol(50.6wt%)/waterŇAg AgŇAgCl, HCl, 0.01571 m, methanol, AgClŒAgCl, HCl, 0.001274 m, methanol, AgClŇAg AgŇAgCl, HCl, 0.07332 m, methanol, AgClŒAgCl, HCl, 0.004939 m, methanol, AgClŇAg AgŇAgCl, HCl, 0.07333 m, methanol, AgClŒAgCl, HCl, 0.008396 m, methanol, AgClŇAg AgŇAgCl, HCl, 0.1155 m, methanol, AgClŒAgCl, HCl, 0.009857 m, methanol, AgClŇAg AgŇAgCl, HCl, 0.4802 m, methanol, AgClŒAgCl, HCl, 0.04261 m, methanol, AgClŇAg AgŇAgCl, HCl, 0.1 m, methanolŒAgCl, NaCl, 0.1 m, methanolŇAg AgŇAgCl, LiCl, 0.0630 m, methanolŒ AgCl, LiCl, 0.0063 m, methanolŇAg AgŇAgCl, LiCl, 0.1262 m, methanolŒ AgCl, LiCl, 0.0136 m, methanolŇAg AgŇAgCl, LiCl, 0.3812 m, methanolŒ AgCl, LiCl, 0.0378 m, methanolŇAg AgŇAgCl, LiCl, 0.6374 m, methanolŒ AgCl, LiCl, 0.0630 m, methanolŇAg AgŇAgCl, NaCl, 0.0180 m, methanolŒAgCl, NaCl, 0.00204 m, methanolŇAg AgŇAgCl, NaCl, 0.0991 m, methanolŒAgCl, NaCl, 0.00999 m, methanolŇAg
T [°C] –38 –38 –38 –38
U0 [V]
Ref.
15.9
0.0308 0.0592 0.0845 0.0341 0.0206 0.0127 0.0138 0.0134 0.0120 0.0115 0.0737 0.0599 0.0466 0.0341 0.0222 0.0104 0.1419
05Cad 05Cad 05Cad 05Cad 29Buc 26Dru2 26Dru2 26Dru2 26Dru2 26Dru2 26Dru2 26Dru2 26Dru2 26Dru2 26Dru2 26Dru2 30Afa
15.2
0.1447
30Afa
15.1
0.1469
30Afa
16.6
0.1447
30Afa
16.6
0.1371
30Afa
16.6
0.1392
30Afa
0.0844
25Non
0.0852
25Non
0.0672
25Non
0.0751
25Non
0.0709
25Non
0.0206 0.0316 0.0291 0.0275 0.0285 0.0451
29Buc 22Pea 22Pea 22Pea 22Pea 27Wol
0.0441
27Wol
Landolt-Börnstein New Series IV/9A
2 Cell voltages
Cell composition AgŇAgCl, NaCl, 0.1790 m, methanolŒAgCl, NaCl, 0.0180 m, methanolŇAg AgŇAgCl, NaCl, 0.1 m, methanolŒNaCl, 0.1 m, methanol, Hg2Cl2ŇHg AgŇAgCl, NaCl, 0.01 m, methanolŒNaClO4, 0.01 m, methanolŒAgClO4, 0.01 mŇAg AgŇAgI, KI, 0.054 m, methanolŒNaCl, 0.1 m, Hg2Cl2, methanolŇHg AgŇAgI,sol., KI, 0.005 M, ethanolŒKI, 0.001 mM, AgI,sol., ethanolŇAg AgŇAgI,sol., KI, 0.02 M, ethanolŒKI, 0.001 mM, AgI,sol., ethanolŇAg AgŇAgI,sol., KI, 0.02 M, ethanolŒKI, 0.002 mM, AgI,sol., ethanolŇAg AgŇAgI,sol., KI, 0.04 M, ethanolŒKI, 0.001 mM, AgI,sol., ethanolŇAg AgŇAgI,sol., KI, 0.04 M, ethanolŒKI, 0.005 mM, AgI,sol., ethanolŇAg AgŇAgI,sol., KI, 0.05 M, ethanolŒKI, 0.001 mM, AgI,sol., ethanolŇAg AgŇAgI,sol., KI, 0.05 M, ethanolŒKI, 0.002 mM, AgI,sol., ethanolŇAg AgŇAgI,sol., KI, 0.05 M, ethanolŒKI, 0.005 mM, AgI,sol., ethanolŇAg AgŇAgI,sol., KI, 0.05 M, ethanolŒKI, 0.01 mM, AgI,sol., ethanolŇAg AgŇAgNO3, 0.001 m, ethanolŒAgNO3, 0.01 m, ethanolŇAg AgŇAgNO3, 0.001 m, ethanolŒAgNO3, 0.1 m, ethanolŇAg AgŇAgNO3, 0.01 m, ethanolŒAgNO3, 0.1 m, ethanolŇAg AgŇAgNO3, 0.00156 m, methanolŒAgNO3, 0.00625 m, methanolŇAg AgŇAgNO3, 0.00156 m, methanolŒAgNO3, 0.025 m, methanolŇAg AgŇAgNO3, 0.00625 m, methanolŒAgNO3, 0.025 m, methanolŇAg AgŇAgNO3, 0.00156 m, methanolŒAgNO3, 0.1 m, methanolŇAg AgŇAgNO3, 0.00625 m, methanolŒAgNO3, 0.1 m, methanolŇAg AgŇAgNO3, 0.025 m, methanolŒAgNO3, 0.1 m, methanolŇAg AgŇAgNO3, 0.00156 m, methanolŒAgNO3, 0.025 m, methanolŇAg
145 T [°C]
18...20 18...20 18...20 18...20 18...20 18...20 18...20 18...20 18...20
U0 [V] 0.0422
27Wol
0.0496 0.5243
29Buc 29Buc
0.3381 0.0335 0.0595 0.0455 0.0705 0.0380 0.0745 0.0600 0.0415 0.0275 0.0597 0.1066 0.0470 0.032 0.065 0.034 0.093 0.063 0.027 0.065
29Buc 29Isa 29Isa 29Isa 29Isa 29Isa 29Isa 29Isa 29Isa 29Isa 13Bel 13Bel 13Bel 23Gra 23Gra 23Gra 23Gra 23Gra 23Gra 34Mül, 06Wil 34Mül, 06Wil 34Mül, 06Wil 34Mül, 06Wil 34Mül, 06Wil 34Mül, 06Wil 34Mül, 06Wil 34Mül, 06Wil 34Mül, 06Wil 12Ros, 13Ros 12Ros, 13Ros 12Ros, 13Ros
AgŇAgNO3, 0.00625 m, methanolŒAgNO3, 0.025 m, methanolŇAg
0.031
AgŇAgNO3, 0.00156 m, methanolŒAgNO3, 0.1 m, methanolŇAg
0.086
AgŇAgNO3, 0.00625 m, methanolŒAgNO3, 0.1 m, methanolŇAg
0.044
AgŇAgNO3, 0.025 m, methanolŒAgNO3, 0.1 m, methanolŇAg
0.021
AgŇAgNO3, 0.000099 m, methanolŒAgNO3, 0.00099 m, methanolŇAg
0.054
AgŇAgNO3, 0.00099 m, methanolŒAgNO3, 0.0099 m, methanolŇAg
0.061
AgŇAgNO3, 0.0099 m, methanolŒAgNO3, 0.099 m, methanolŇAg
0.073
AgŇAgNO3, 0.099 m, methanolŒAgNO3, 0.99 m, methanolŇAg
0.044
AgŇAgNO3, 0.0005 m, acetoneŒAgNO3, 0.007 m, acetoneŇAg
0.0555
AgŇAgNO3, 0.001 m, acetoneŒAgNO3, 0.01 m, acetoneŇAg
0.0536
AgŇAgNO3, 0.001 m, acetoneŒAgNO3, 0.02 m, acetoneŇAg
0.0621
Landolt-Börnstein New Series IV/9A
Ref.
146
2 Cell voltages
Cell composition
T [°C]
U0 [V]
Ref.
AgŇAgNO3, 0.002 m, acetoneŒAgNO3, 0.02 m, acetoneŇAg
0.0490
AgŇAgNO3, 0.005 m, acetoneŒAgNO3, 0.02 m, acetoneŇAg
0.0289
AgŇAgNO3, 0.01 m, acetoneŒAgNO3, 0.02 m, acetoneŇAg
0.0114
AgŇAgCl, KCl, 0.02 mŇKzHgŇKCl, 0.02 m, AgCl, methanol(10wt%)/waterŇAg AgŇAgCl, KCl, 0.02 mŇKzHgŇKCl, 0.02 m, AgCl, methanol(20wt%)/waterŇAg AgŇAgCl, KCl, 0.02 mŇKzHgŇKCl, 0.02 m, AgCl, methanol(40wt%)/waterŇAg AgŇAgCl, KCl, 0.02 mŇKzHgŇKCl, 0.02 m, AgCl, methanol(60wt%)/waterŇAg AgŇAgCl, KCl, 0.02 mŇKzHgŇKCl, 0.02 m, AgCl, methanol(90wt%)/waterŇAg AgŇAgCl, KCl, 0.05 mŇKzHgŇKCl, 0.05 m, AgCl, methanol(10wt%)/waterŇAg AgŇAgCl, KCl, 0.05 mŇKzHgŇKCl, 0.05 m, AgCl, methanol(20wt%)/waterŇAg AgŇAgCl, KCl, 0.05 mŇKzHgŇKCl, 0.05 m, AgCl, methanol(40wt%)/waterŇAg AgŇAgCl, KCl, 0.05 mŇKzHgŇKCl, 0.05 m, AgCl, methanol(60wt%)/waterŇAg AgŇAgCl, KCl, 0.05 mŇKzHgŇKCl, 0.05 m, AgCl, methanol(90wt%)/waterŇAg AgŇAgCl, KCl, 0.1 mŇKzHgŇKCl, 0.1 m, AgCl, methanol(10wt%)/waterŇAg AgŇAgCl, KCl, 0.1 mŇKzHgŇKCl, 0.1 m, AgCl, methanol(20wt%)/waterŇAg AgŇAgCl, KCl, 0.1 mŇKzHgŇKCl, 0.1 m, AgCl, methanol(40wt%)/waterŇAg AgŇAgCl, KCl, 0.1 mŇKzHgŇKCl, 0.1 m, AgCl, methanol(60wt%)/waterŇAg AgŇAgCl, KCl, 0.1 mŇKzHgŇKCl, 0.1 m, AgCl, methanol(90wt%)/waterŇAg AgŇAgCl, KCl, 0.5 mŇKzHgŇKCl, 0.5 m, AgCl, methanol(10wt%)/waterŇAg AgŇAgCl, KCl, 0.5 mŇKzHgŇKCl, 0.5 m, AgCl, methanol(20wt%)/waterŇAg AgŇAgCl, KCl, 0.5 mŇKzHgŇKCl, 0.5 m, AgCl, methanol(40wt%)/waterŇAg AgŇAgCl, KCl, 0.5 mŇKzHgŇKCl, 0.5 m, AgCl, methanol(60wt%)/waterŇAg AgŇAgCl, HCl, 0.02493 m, ethanolŒHCl, 0.002461 m, AgCl, ethanolŇAg AgŇAgCl, HCl, 0.06239 m, ethanolŒHCl, 0.004111 m, AgCl, ethanolŇAg AgŇAgCl, HCl, 0.08238 m, ethanolŒHCl, 0.008224 m, AgCl, ethanolŇAg AgŇAgCl, HCl, 0.1764 m, ethanolŒHCl, 0.01062 m, AgCl, ethanolŇAg AgŇAgCl, HCl, 0.4753 m, ethanolŒHCl, 0.04171 m, AgCl, ethanolŇAg
0.0181
12Ros, 13Ros 12Ros, 13Ros 12Ros, 13Ros 30Ake
0.0364
30Ake
0.0747
30Ake
0.1158
30Ake
0.1966
30Ake
0.0175
30Ake
0.0351
30Ake
0.0715
30Ake
0.1116
30Ake
0.1883
30Ake
0.0171
30Ake
0.0344
30Ake
0.0701
30Ake
0.1091
30Ake
0.1854
30Ake
0.0161
30Ake
0.0324
30Ake
0.0660
30Ake
0.1028
30Ake
0.0646 0.0705 0.0579 0.0644 0.0581
28Woo 28Woo 28Woo 28Woo 28Woo
Landolt-Börnstein New Series IV/9A
2 Cell voltages
Cell composition AgŇAgCl, HCl, 0.7457 m, ethanolŒHCl, 0.07319 m, AgCl, ethanolŇAg AgŇAgCl, HCl, 0.8388 m, ethanolŒHCl, 0.08238 m, AgCl, ethanolŇAg AgŇAgCl, HCl, 1.0 m, ethanolŒHCl, 0.1 m, AgCl, ethanolŇAg AgŇAgCl, HCl, 1.0 m, ethanolŒHCl, 0.01035 m, AgCl, ethanolŇAg AgŇAgCl, HCl, 1.2411 m, ethanolŒHCl, 0.1364 m, AgCl, ethanolŇAg AgŇAgCl, HCl, 1.2411 m, ethanolŒHCl, 0.004111 m, AgCl, ethanolŇAg AgŇAgCl, LiCl, 0.00295 m, ethanolŒLiCl, 0.00295 m, AgCl, ethanolŇAg AgŇAgCl, LiCl, 0.00590 m, ethanolŒLiCl, 0.00295 m, AgCl, ethanolŇAg AgŇAgCl, LiCl, 0.0120 m, ethanolŒLiCl, 0.00590 m, AgCl, ethanolŇAg AgŇAgCl, LiCl, 0.0240 m, ethanolŒLiCl, 0.0120 m, AgCl, ethanolŇAg AgŇAgCl, LiCl, 0.0480 m, ethanolŒLiCl, 0.0240 m, AgCl, ethanolŇAg AgŇAgCl, LiCl, 0.0965 m, ethanolŒLiCl, 0.00147 m, AgCl, ethanolŇAg AgŇAgCl, LiCl, 0.0965 m, ethanolŒLiCl, 0.00295 m, AgCl, ethanolŇAg AgŇAgCl, LiCl, 0.0965 m, ethanolŒLiCl, 0.00590 m, AgCl, ethanolŇAg AgŇAgCl, LiCl, 0.0965 m, ethanolŒLiCl, 0.0120 m, AgCl, ethanolŇAg AgŇAgCl, LiCl, 0.0965 m, ethanolŒLiCl, 0.0240 m, AgCl, ethanolŇAg AgŇAgCl, LiCl, 0.0965 m, ethanolŒLiCl, 0.0480 m, AgCl, ethanolŇAg AgŇAgCl, LiCl, 0.005 m, ethanolŒLiClO4, 0.005 m, ethanolŒAgClO4, 0.005 m, ethanolŇAg AgŇAgCl, LiCl, 0.01 m, ethanolŒLiClO4, 0.01 m, ethanolŒAgClO4, 0.01 m, ethanolŇAg AgŇAgCl, HCl, 0.0020142 m, 1,4-dioxane(20wt%)/water ŒAgCl, HCl, 0.038278 m, 1,4-dioxane(20wt%)/waterŇAg (UT=0.11700–2.47·10–4 (T–25 °C)–0.64·10–6 (T–25 °C)2 [V]) AgŇAgCl, HCl, 0.0038779 m, 1,4-dioxane(20wt%)/water ŒAgCl, HCl, 0.038278 m, 1,4-dioxane(20wt%)/waterŇAg (UT [V]=0.09090–1.82·10–4 (T–25 °C)–0.44·10–6 (T–25 °C)2) AgŇAgCl, HCl, 0.0085061 m, 1,4-dioxane(20wt%)/water ŒAgCl, HCl, 0.038278 m, 1,4-dioxane(20wt%)/waterŇAg (UT [V]=0.05954–1.19·10–4 (T–25 °C)–0.29·10–6 (T–25 °C)2) AgŇAgCl, HCl, 0.018333 m, 1,4-dioxane(20wt%)/water ŒAgCl, HCl, 0.038278 m, 1,4-dioxane(20wt%)/waterŇAg (UT [V]=0.11700–0.58·10–4 (T–25 °C)–0.15·10–6 (T–25 °C)2) AgŇAgCl, HCl, 0.080510 m, 1,4-dioxane(20wt%)/water ŒAgCl, HCl, 0.038278 m, 1,4-dioxane(20wt%)/waterŇAg (–UT [V]=0.02935+0.59·10–4 (T–25 °C)+0.15·10–6 (T–25 °C)2) AgŇAgCl, HCl, 0.165267 m, 1,4-dioxane(20wt%)/water ŒAgCl, HCl, 0.038278 m, 1,4-dioxane(20wt%)/waterŇAg (–UT [V]=0.05796+1.10·10–4 (T–25 °C)+0.29·10–6 (T–25 °C)2) AgŇAgCl, HCl, 0.33243 m, 1,4-dioxane(20wt%)/water ŒAgCl, HCl, 0.038278 m, 1,4-dioxane(20wt%)/waterŇAg (–UT [V]=0.08634+1.60·10–4 (T–25 °C)+0.46·10–6 (T–25 °C)2) AgŇAgCl, HCl, 0.70003 m, 1,4-dioxane(20wt%)/water ŒAgCl, HCl, 0.038278 m, 1,4-dioxane(20wt%)/waterŇAg (–UT [V]=0.11908+2.13·10–4 (T–25 °C)+0.66·10–6 (T–25 °C)2) AgŇAgCl, HCl, 1.49548 m, 1,4-dioxane(20wt%)/water ŒAgCl, HCl, 0.038278 m, 1,4-dioxane(20wt%)/waterŇAg (–UT [V]=0.15870+2.67·10–4 (T–25 °C)+1.07·10–6 (T–25 °C)2)
Landolt-Börnstein New Series IV/9A
147 T [°C]
U0 [V]
Ref.
0.0535 0.0540 0.0542 0.1129 0.0524 0.1418 0.0121 0.0116 0.0110 0.0105 0.0100 0.0647 0.0526 0.0408 0.0295 0.0192 0.0093 0.5311
28Woo 28Woo 28Woo 28Woo 28Woo 28Woo 26Dru2 26Dru2 26Dru2 26Dru2 26Dru2 26Dru2 26Dru2 26Dru2 26Dru2 26Dru2 26Dru2 32McF
0.5626
32McF
0.11700 39Har4
0.09090 39Har4
0.05954 39Har4
0.02900 39Har4
–0.02935 39Har5
–0.05796 39Har4
–0.08634 39Har4
–0.11908 39Har4
–0.15870 39Har4
148
2 Cell voltages
Cell composition AgŇAgCl, HCl, 2.78348 m, 1,4-dioxane(20wt%)/water ŒAgCl, HCl, 0.038278 m, 1,4-dioxane(20wt%)/waterŇAg (–UT [V]=0.20077+3.10·10–4 (T–25 °C)+1.69·10–6 (T–25 °C)2) AgŇAgCl, HCl, 0.0035521 m, 1,4-dioxane(45wt%)/water ŒAgCl, HCl, 0.037604 m, 1,4-dioxane(45wt%)/waterŇAg (UT [V]=0.08765–1.74·10–4 (T–25 °C)–0.44·10–6 (T–25 °C)2) AgŇAgCl, HCl, 0.0084476 m, 1,4-dioxane(45wt%)/water ŒAgCl, HCl, 0.037604 m, 1,4-dioxane(45wt%)/waterŇAg (UT [V]=0.05442–0.95·10–4 (T–25 °C)–0.34·10–6 (T–25 °C)2) AgŇAgCl, HCl, 0.018603 m, 1,4-dioxane(45wt%)/water ŒAgCl, HCl, 0.037604 m, 1,4-dioxane(45wt%)/waterŇAg (UT [V]=0.02516–0.44·10–4 (T–25 °C)–0.19·10–6 (T–25 °C)2) AgŇAgCl, HCl, 0.076748 m, 1,4-dioxane(45wt%)/water ŒAgCl, HCl, 0.037604 m, 1,4-dioxane(45wt%)/waterŇAg (–UT [V]=0.02546+0.45·10–4 (T–25 °C)+0.20·10–6 (T–25 °C)2) AgŇAgCl, HCl, 0.16490 m, 1,4-dioxane(45wt%)/water ŒAgCl, HCl, 0.037604 m, 1,4-dioxane(45wt%)/waterŇAg (–UT [V]=0.05313+0.95·10–4 (T–25 °C)+0.44·10–6 (T–25 °C)2) AgŇAgCl, HCl, 0.29646 m, 1,4-dioxane(45wt%)/water ŒAgCl, HCl, 0.037604 m, 1,4-dioxane(45wt%)/waterŇAg (–UT [V]=0.07540+1.32·10–4 (T–25 °C)+0.62·10–6 (T–25 °C)2) AgŇAgCl, HCl, 0.68931 m, 1,4-dioxane(45wt%)/water ŒAgCl, HCl, 0.037604 m, 1,4-dioxane(45wt%)/waterŇAg (–UT [V]=0.11058+1.86·10–4 (T–25 °C)+0.87·10–6 (T–25 °C)2) AgŇAgCl, HCl, 1.50730 m, 1,4-dioxane(45wt%)/water ŒAgCl, HCl, 0.037604 m, 1,4-dioxane(45wt%)/waterŇAg (–UT [V]=0.15212+2.29·10–4 (T–25 °C)+1.11·10–6 (T–25 °C)2) AgŇAgCl, HCl, 2.44143 m, 1,4-dioxane(45wt%)/water ŒAgCl, HCl, 0.037604 m, 1,4-dioxane(45wt%)/waterŇAg (–UT [V]=0.18579+2.36·10–4 (T–25 °C)+1.26·10–6 (T–25 °C)2) AgŇAgCl, HCl, 2.99791 m, 1,4-dioxane(45wt%)/water ŒAgCl, HCl, 0.037604 m, 1,4-dioxane(45wt%)/waterŇAg (–UT [V]=0.20336+2.35·10–4 (T–25 °C)+1.32·10–6 (T–25 °C)2) AgŇAgCl, HCl, 0.0038857 m, 1,4-dioxane(70wt%)/water ŒAgCl, HCl, 0.036576 m, 1,4-dioxane(70wt%)/waterŇAg (UT [V]=0.06200–0.82·10–4 (T–25 °C)–0.40·10–6 (T–25 °C)2) AgŇAgCl, HCl, 0.0085917 m, 1,4-dioxane(70wt%)/water ŒAgCl, HCl, 0.036576 m, 1,4-dioxane(70wt%)/waterŇAg (UT [V]=0.03905–0.60·10–4 (T–25 °C)–0.31·10–6 (T–25 °C)2) AgŇAgCl, HCl, 0.0199096 m, 1,4-dioxane(70wt%)/water ŒAgCl, HCl, 0.036576 m, 1,4-dioxane(70wt%)/waterŇAg (UT [V]=0.01673–0.28·10–4 (T–25 °C)–0.17·10–6 (T–25 °C)2) AgŇAgCl, HCl, 0.077959 m, 1,4-dioxane(70wt%)/water ŒAgCl, HCl, 0.036576 m, 1,4-dioxane(70wt%)/waterŇAg (–UT [V]=0.02090+0.37·10–4 (T–25 °C)+0.28·10–6 (T–25 °C)2) AgŇAgCl, HCl, 0.15798 m, 1,4-dioxane(70wt%)/water ŒAgCl, HCl,0.036576 m, 1,4-dioxane(70wt%)/waterŇAg (–UT [V])=0.04211+0.71·10–4 (T–25 °C)+0.57·10–6 (T–25 °C)2
T [°C]
U0 [V]
Ref.
–0.20077 39Har4
0.08765 39Har4
0.05442 39Har4
0.02516 39Har4
–0.02546 39Har4
–0.05313 39Har4
–0.07540 39Har4
–0.11058 39Har4
–0.15212 39Har4
–0.18579 39Har4
–0.20336 39Har4
0.06200 39Har4
0.03905 39Har4
0.01673 39Har4
–0.02090 39Har4
–0.04211 39Har4
Landolt-Börnstein New Series IV/9A
2 Cell voltages
Cell composition AgŇAgCl, HCl, 0.33140 m, 1,4-dioxane(70wt%)/water ŒAgCl, HCl, 0.036576 m, 1,4-dioxane(70wt%)/waterŇAg (–UT [V]=0.06499+1.08·10–4 (T–25 °C)+0.91·10–6 (T–25 °C)2) AgŇAgCl, HCl, 0.35639 m, 1,4-dioxane(70wt%)/water ŒAgCl, HCl, 0.036576 m, 1,4-dioxane(70wt%)/waterŇAg (–UT [V]=0.06796+1.10·10–4 (T–25 °C)+0.92·10–6 (T–25 °C)2) AgŇAgCl, HCl, 0.63909 m, 1,4-dioxane(70wt%)/water ŒAgCl, HCl, 0.036576 m, 1,4-dioxane(70wt%)/waterŇAg (–UT [V]=0.09225+1.39·10–4 (T–25 °C)+1.23·10–6 (T–25 °C)2) AgŇAgCl, HCl, 0.91788 m, 1,4-dioxane(70wt%)/water ŒAgCl, HCl, 0.036576 m, 1,4-dioxane(70wt%)/waterŇAg (–UT [V]=0.11065+1.57·10–4 (T–25 °C)+1.42·10–6 (T–25 °C)2) AgŇAgCl, HCl, 1.30623 m, 1,4-dioxane(70wt%)/water ŒAgCl, HCl, 0.036576 m, 1,4-dioxane(70wt%)/waterŇAg (–UT [V]=0.12916+1.76·10–4 (T–25 °C)+1.62·10–6 (T–25 °C)2) AgŇAgCNS,sol., LiCNS, 0.01 m,ethanolŒLiCl, 0.01 m, AgCl, ethanolŇAg AgŇAgI, NaI, 0.0989 m, ethanolŇNaxHgŇNaI, 0.004133 m, AgI, ethanolŇAg AgŇAgI, NaI, 0.1003 m, ethanolŇNaxHgŇNaI, 0.00609 m, AgI, ethanolŇAg AgŇAgI, NaI, 0.0996 m, ethanolŇNaxHgŇNaI, 0.00920 m, AgI, ethanolŇAg AgŇAgI, NaI, 0.0991 m, ethanolŇNaxHgŇNaI, 0.01576 m, AgI, ethanolŇAg AgŇAgI, NaI, 0.0998 m, ethanolŇNaxHgŇNaI, 0.01945 m, AgI, ethanolŇAg AgŇAgI, NaI, 0.1002 m, ethanolŇNaxHgŇNaI, 0.02970 m, AgI, ethanolŇAg AgŇAgI, NaI, 0.1003 m, ethanolŇNaxHgŇNaI, 0.0761 m, AgI, ethanolŇAg AgŇAgI, NaI, 0.1015 m, ethanolŇNaxHgŇNaI, 0.002217 m, AgI, ethanolŇAg AgŇAgI, NaI, 0.1968 m, ethanolŇNaxHgŇNaI, 0.009923 m, AgI, ethanolŇAg AgŇAgI ,NaI, 0.5704 m, ethanolŇNaxHgŇNaI, 0.09544 m, AgI, ethanolŇAg AgŇAgI, NaI, 0.5704 m, ethanolŇNaxHgŇNaI, 0.01010 m, AgI, ethanolŇAg AgŇAgI, NaI, 0.0970 M, ethanolŇNaI, 0.0066 M, KI, 0.0031 M, AgI, ethanolŇAg AgŇAgI, NaI, 0.1002 M, ethanolŇNaI, 0.0051 M, KI, 0.0049 M, AgI, ethanolŇAg AgŇAgI, NaI, 0.0987 M, ethanolŇNaI, 0.0036 M, KI, 0.0064 M, AgI, ethanolŇAg AgŇAgI, NaI, 0.0970 M, ethanolŇNaI, 0.0017 M, KI, 0.0087 M, AgI, ethanolŇAg AgŇAgI, NaI, 0.0980 M, ethanolŇNaI, 0.0010 M, KI, 0.0082 M, AgI, ethanolŇAg AgŇAgI, NaI, 0.0993 M, ethanolŇNaI, 0.0166 M, KI, 0.0041 M, AgI, ethanolŇAg AgŇAgI, NaI, 0.0993 M, ethanolŇNaI, 0.0162 M, KI, 0.0047 M, AgI, ethanolŇAg Landolt-Börnstein New Series IV/9A
149 T [°C]
U0 [V]
Ref.
–0.06499 39Har4
–0.06796 39Har4
–0.09225 39Har4
–0.11065 39Har4
–0.12916 39Har4
0.157 0.1328
32McF 30Par1
0.1177
30Par1
0.1012
30Par1
0.0778
30Par1
0.0690
30Par1
0.0513
30Par1
0.0116 0.1494
30Par1 30Par1
0.1257
30Par1
0.0720
30Par1
0.1678
30Par1
0.0341
30Par2
0.0390
30Par2
0.0430
30Par2
0.0462
30Par2
0.0502
30Par2
0.0278
30Par2
0.0279
30Par2
150
2 Cell voltages
Cell composition AgŇAgI, NaI, 0.0997 M, ethanolŇNaI, 0.0126 M, KI, 0.0068 M, AgI, ethanolŇAg AgŇAgI, NaI, 0.0997 M, ethanolŇNaI, 0.0074 M, KI, 0.0127 M, AgI, ethanolŇAg AgŇAgI, NaI, 0.0970 M, ethanolŇNaI, 0.0018 M, KI, 0.0172 M, AgI, ethanolŇAg AgŇAgNO3, 0.00205 m, acetonitrileŒAgNO3, 0.00412 m, acetonitrileŇAg AgŇAgNO3, 0.00205 m, acetonitrileŒAgNO3, 0.0083 m, acetonitrileŇAg AgŇAgNO3, 0.00205 m, acetonitrileŒAgNO3, 0.0152 m, acetonitrileŇAg AgŇAgNO3, 0.00205 m, acetonitrileŒAgNO3, 0.0305 m, acetonitrileŇAg AgŇAgNO3, 0.00205 m, acetonitrileŒAgNO3, 0.061 m, acetonitrileŇAg AgŇAgNO3, 0.00205 m, acetonitrileŒAgNO3, 0.122 m, acetonitrileŇAg AgŇAgNO3, 0.0078 m, acetonitrileŒAgNO3, 0.125 m, acetonitrileŇAg AgŇAgNO3, 0.001 m, pyridineŒAgNO3, 0.1 m, pyridineŇAg AgŇAgNO3, 0.002 m, pyridineŒAgNO3, 0.1 m, pyridineŇAg AgŇAgNO3, 0.01 m, pyridineŒAgNO3, 0.1 m, pyridineŇAg AgŇAgNO3, 0.00156 m, benzonitrileŒAgNO3, 0.00312 m, benzonitrileŇAg AgŇAgNO3, 0.00156 m, benzonitrileŒAgNO3, 0.00625 m, benzonitrileŇAg AgŇAgNO3, 0.00156 m, benzonitrileŒAgNO3, 0.0125 m, benzonitrileŇAg AgŇAgNO3, 0.00156 m, benzonitrileŒAgNO3, 0.025 m, benzonitrileŇAg AgŇAgNO3, 0.00156 m, benzonitrileŒAgNO3, 0.05 m, benzonitrileŇAg AgŇAgNO3, 0.00156 m, benzonitrileŒAgNO3, 0.1 m, benzonitrileŇAg Sodium (Na) Na0.2wt%HgŇNaCl, 2.148 mm in NH3, ZnCl2*6 NH3,sol.ŇZnsat.Hg Na0.2wt%HgŇNaCl, 4.968 mm in NH3, ZnCl2*6 NH3,sol.ŇZnsat.Hg Na0.2wt%HgŇNaCl, 8.551 mm in NH3, ZnCl2*6 NH3,sol.ŇZnsat.Hg Na0.2wt%HgŇNaCl, 15.18 mm in NH3, ZnCl2*6 NH3,sol.ŇZnsat.Hg Na0.2wt%HgŇNaCl, 30.14 mm in NH3, ZnCl2*6 NH3,sol.ŇZnsat.Hg Na0.2wt%HgŇNaCl, 74.97 mm in NH3, ZnCl2*6 NH3,sol.ŇZnsat.Hg Na0.2wt%HgŇNaCl, 0.1058 m in NH3, ZnCl2*6 NH3,sol.ŇZnsat.Hg Na0.2wt%HgŇNaCl, 0.2666 m in NH3, ZnCl2*6 NH3,sol.ŇZnsat.Hg Na0.2wt%HgŇNaCl, 0.4316 m in NH3, ZnCl2*6 NH3,sol.ŇZnsat.Hg Na0.2wt%HgŇNaCl, 0.5283 m in NH3, ZnCl2*6 NH3,sol.ŇZnsat.Hg NazHgŇNaNO3, 0.060 mM in NH3ŒNaNO3, 2.245 mM in NH3ŇNazHg NazHgŇNaNO3, 0.367 mM in NH3ŒNaNO3, 2.245 mM in NH3ŇNazHg NazHgŇNaNO3, 0.312 mM in NH3ŒNaNO3, 11.7 mM in NH3ŇNazHg NazHgŇNaNO3, 1.91 mM in NH3ŒNaNO3, 11.7 mM in NH3ŇNazHg NazHgŇNaNO3, 1.22 mM in NH3ŒNaNO3, 45.8 mM in NH3ŇNazHg NazHgŇNaNO3, 7.48 mM in NH3ŒNaNO3, 45.8 mM in NH3ŇNazHg Na0.206wt%HgŇNaBr,sol., NaBr,sat., AgBr, ethanolŇAg (silver electrolytically deposited) Na0.206wt%HgŇNaBr,sol., NaBr,sat., AgBr, ethanolŇAg (silver produced by reduction of Ag2O) Na0.247wt%HgŇNaClO4, 0.01 m, ethanolŒLiClO4, 0.01 m, ethanolŒLiCl, 0.01 m, AgCl, ethanolŇAg Na0.466wt%HgŇNaClO4, 0.01 m, ethanolŒLiClO4, 0.01 m, ethanolŒLiCl, 0.01 m, AgCl, ethanolŇAg
T [°C]
36 36 36 36 36 36 36 36 36 36 –36 –36 –38 –38 –39 –39
U0 [V]
Ref.
0.0300
30Par2
0.0314
30Par2
0.0344
30Par2
0.012 0.030 0.047 0.059 0.075 0.086 0.046 0.076 0.061 0.035 0.012
28Koc 28Koc 28Koc 28Koc 28Koc 28Koc 00Kah 00Kah 00Kah 00Kah 28Koc
0.023
28Koc
0.036 0.049 0.061 0.076
28Koc 28Koc 28Koc 28Koc
–0.4835 –0.4559 –0.4421 –0.4262 –0.4106 –0.3952 –0.3865 –0.3752 –0.3702 –0.3672 0.0603 0.0307 0.0572 0.0276 0.0465 0.0236 1.7640
51Sed 51Sed 51Sed 51Sed 51Sed 51Sed 51Sed 51Sed 51Sed 51Sed 05Cad 05Cad 05Cad 05Cad 05Cad 05Cad 34Ish2
1.7631
34Ish2
1.9943
32McF
1.9943
32McF
Landolt-Börnstein New Series IV/9A
2 Cell voltages
Cell composition Na0.206wt%HgŇNaI,sol., NaI,sat., CuI,sol., 3-methyl-1-butanolŇCuyHg NaŇNaI, ethyl amineŇNa0.206wt%Hg NaxGaŇNaI, ethyl amineŇNa (mol fraction x=0.568 10–5) NaxGaŇNaI, ethyl amineŇNa (mol fraction x=3.493 10–5) NaxGaŇNaI, ethyl amineŇNa (mol fraction x=7.96 10–5) NaxGaŇNaI, ethyl amineŇNa (mol fraction x=13 10–5) Thallium (Tl) Tlsat.HgŇTlCl,sol., NaCl, 0.1 m, methanolŒNaCl, 0.1 m, Hg2Cl2, methanolŇHg Tlsat.HgŇTlClO4, 0.00987 m, methanolŒNaCl, 0.01 m, methanolŒNaCl, 0.1 m, Hg2Cl2, methanolŇHg Tlsat.HgŇTlCl,sol., LiCl, 0.01 m, ethanolŒLiCl, 0.01 m, ethanol, AgClŇAg Tlsat.HgŇTlClO4,sol., LiCl, 0.03 m, ethanolŒLiCl, 0.03 m, ethanol, AgClŇAg TlŇTlNO3, 0.1 M, pyridineŒAgNO3, 0.1 M, pyridineŇAg Zinc (Zn) Zn0.0289at.fract.HgŇZnCl2*10 NH3, NH4Cl, TlCl,sol.ŇTl0.0265at.fract.Hg Zn0.0289at.fract.HgŇZnCl2*10 NH3, NH4Cl, TlCl,sol.ŇTl0.0913at.fract.Hg Zn0.0289at.fract.HgŇZnCl2*10 NH3, NH4Cl, TlCl,sol.ŇTl0.428at.fract.Hg Zn0.0301at.fract.HgŇZnCl2*10 NH3, NH4Cl, TlCl,sol.ŇTl0.0265at.fract.Hg Zn10wt%HgŇZnBr2,sol., ZnBr2,sat., Hg2Br2,sol., ethanolŇHg
Zn1wt%HgŇZnCl2, 0.01263 m, AgCl, acetoneŇAg Zn1wt%HgŇZnCl2, 0.02997 m, AgCl, acetoneŇAg Zn1wt%HgŇZnCl2, 0.08820 m, AgCl, acetoneŇAg Zn1wt%HgŇZnCl2, 0.2176 m, AgCl, acetoneŇAg Zn1wt%HgŇZnCl2, 0.4616 m, AgCl, acetoneŇAg Zn1wt%HgŇZnCl2, 1.047 m, AgCl, acetoneŇAg Zn1wt%HgŇZnCl2, 0.002115 m, AgCl, acetone(50mol%)/waterŇAg Zn1wt%HgŇZnCl2, 0.02451 m, AgCl, acetone(50mol%)/waterŇAg Zn1wt%HgŇZnCl2, 0.04656 m, AgCl, acetone(50mol%)/waterŇAg Zn1wt%HgŇZnCl2, 0.1331 m, AgCl, acetone(50mol%)/waterŇAg Zn1wt%HgŇZnCl2, 0.2479 m, AgCl, acetone(50mol%)/waterŇAg Zn1wt%HgŇZnCl2, 0.4475 m, AgCl, acetone(50mol%)/waterŇAg Zn1wt%HgŇZnCl2, 0.7099 m, AgCl, acetone(50mol%)/waterŇAg Zn1wt%HgŇZnCl2, 1.4490 m, AgCl, acetone(50mol%)/waterŇAg ZnŇZn(NO3)2, 0.1 M, pyridineŒCd(NO3)2, 0.05 M, pyridineŇCd ZnŇZn(NO3)2, 0.05 M, anilineŒAgNO3, 0.1 M, anilineŇAg 1
151 T [°C]
1.75 20 25 30 35 40 45
17
U0 [V]
Ref.
1.4102 0.8456 0.7116 0.7025 0.7012 0.7001
34Ish3 10Lew 34Gil 34Gil 34Gil 34Gil
0.642
29Buc
0.6237
29Buc
0.5639 0.5710
32McF 32McF
0.699
99Kah
0.9394 0.8900 0.8231 0.9680 0.6806 0.6813 0.6820 0.6826 0.6833 0.6841 1.007 1.001 0.9888 0.9783 0.9653 0.9521 1.0839 1.0431 1.0314 1.0177 1.0061 0.9981 0.9894 0.9722 0.340 0.916
34Ell 34Ell 34Ell 34Ell 32Ish1 32Ish1 32Ish1 32Ish1 32Ish1 32Ish1 32Ham 32Ham 32Ham 32Ham 32Ham 32Ham 32Ham 32Ham 32Ham 32Ham 32Ham 32Ham 32Ham 32Ham 99Kah 99Kah
) All mixed electrolyte solvent systems including those containing water are listed below, for a given element cells with inorganic solvents are listed first followed by solutions based on organic solvents. 2 ) Description of the cell composition is based on the Stockholm convention (1953). All data refer to room temperature RT if not stated otherwise.
Landolt-Börnstein New Series IV/9A
R1
References 99Kah 00Kah 05Cad 06Wil 09Neu 10Lew 12Lew 12Ros 13Bel 13Lew 13Ros 15Cam 15Lew 22Dan 22Pea 23Gra 23Mül 24Bje 25Non 26And 26Cos 26Dru1 26Dru2 26Luc 26Mül 27Erd 27Wol 28Koc 28Woo 28Yos 29Buc 29But 29Isa 29Mül1 29Mül2 30Afa 30Ake 30Par1 30Par2 31Hut 32Ham 32Ish1 32McF 33Ben 33Tri 34Ell 34Gil 34Goo 34Ish2 34Ish3 34Mül 36Har3 38Har2 38Har3 39Har3 39Har4
Landolt-Börnstein New Series IV/9A
Kahlenberg, L.: J. Phys. Chem. 3 (1899) 709. Kahlenberg, L.: J. Phys. Chem. 4 (1900) 379. Cady, H.P.: J. Phys. Chem. 9 (1905) 477. Wilson, J.H.: Am. Chem. J. 35 (1906) 78. Neustadt, J., Abegg, R.: Z. Phys. Chem. (Leipzig) 69 (1909) 486. Lewis, G.N., Kraus, Ch.A.: J. Am. Chem. Soc. 32 (1910) 1459. Lewis, G.N., Keyes, F.G.: J. Am. Chem. Soc. 34 (1912) 119. Roshdestwensky, A., Lewis, W.C.M.: Proc. Chem. Soc. 27 (1912) 266. Bell, J.M., Feild, A.L.: J. Am. Chem. Soc. 35 (1913) 715. Lewis, G.N., Keyes, F.G.: J. Am. Chem. Soc. 35 (1913) 340. Roshdestwensky, A., Lewis, W.C.M.: Proc. Chem. Soc. 28 (1913) 239. Cambi, L.: Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Nat. Rend. 24(I) (1915) 932; 23(II) (1915) 606. Lewis, G.N., Argo, W.L.: J. Am. Chem. Soc. 37 (1915) 1983. Danner, P.S.: J. Am. Chem. Soc. 44 (1922) 2832. Pearce, J.N., Hart, H.B.: J. Am. Chem. Soc. 44 (1922) 2411. Grant, J., Partington, J.R.: Trans. Faraday Soc. 19 (1923) 414. Müller, R., Knaus, W.: Z. Anorg. Allg. Chem. 130 (1923) 173. Bjerrum, N., Unmack, A., Zechmeister, L.: K. Dan. Vidensk. Selsk. Mat. Fys. Medd. 5 (1924) 11. Nonhebel, G., Hartley, H.: Philos. Mag. 50 (1925) 729. Anderson, P.A.: J. Am. Chem. Soc. 48 (1926) 2285. Costeanu, G.J.: C. R. Acad. Sci. (Paris) 197 (1926) 2285. Drucker, C., Luft, F.: Z. Phys. Chem. 121 (1926) 307. Drucker, C., Schingnitz, R.: Z. Phys. Chem. 122 (1926) 149. Lucasse, W.W.: J. Am. Chem. Soc. 48 (1926) 626. Müller, R.: Z. Anorg. Allg. Chem. 156 (1926) 65. Erdey-Gruz, T.: Z. Phys. Chem. 131 (1927) 81. Wolfenden, J.H., Wright, C.P., Rosskana, N.L., Buckley, P.S.: Trans. Faraday Soc. 23 (1927) 491. Koch, K.W.: J. Am. Chem. Soc. 50 (1928) 924. Woolcock, J.W., Hartley, H.: Philos. Mag. 5 (1928) 1133. Yoshida, T.: Sci. Rep. Tohoku Univ. Ser. 1 17 (1928) 1279. Buckley, P.S., Hartley, H.: Philos. Mag. 8 (1929) 320. Butler, J.A.V., Robertson, C.M.: Proc. R. Soc. London, Ser. A 125 (1929) 694. Isaaks, G.F., Partington, J.R.: Trans. Faraday Soc. 25 (1929) 53. Müller, R., Kreiner, F., Schmidt, H.J.: Monatsh. Chem. 53 (1929) 215. Müller, R., Schmidt, H.J.: Monatsh. Chem. 53 (1929) 224. Afanasiev, A.S.: J. Am. Chem. Soc. 52 (1930) 3477. Akerlöf, G.: J. Am. Chem. Soc. 52 (1930) 2353. Partington, J.R., Simpson, H.G.: Trans. Faraday Soc. 26 (1930) 625. Partington, J.R., Simpson, H.G.: Trans. Faraday Soc. 26 (1930) 147. Hutchinson, A.W., Chandlee, G.C.: J. Am. Chem. Soc. 53 (1931) 2881. Hamilton, R.T., Butler, J.A.V.: Proc. R. Soc. London 138 (1932) 450. Ishikawa, F., Yoshida, T.: Sci. Rep. Tohoku Imp. Univ. Ser. 1 21 (1932) 474. McFarlane, A., Hartley, H.: Philos. Mag. 13 (1932) 425. Bent, H.E., Gilfillan jr., E.S.: J. Am. Chem. Soc. 55 (1933) 3989. Trimble, H.M., Ebert, P.F.: J. Am. Chem. Soc. 55 (1933) 958. Elliot, N., Yost, D.M.: J. Am. Chem. Soc. 56 (1934) 1057. Gilfillan jr., E.S., Bent, H.E.: J. Am. Chem. Soc. 56 (1934) 1661. Goodhue, L.D., Hixon, R.M.: J. Am. Chem. Soc. 56 (1934) 1924. Ishikawa, F., Tachiki, K.: Sci. Rep. Tohoku Imp. Univ. Ser. 1 23 (1934) 103. Ishikawa, F., Tachiki, K., Murooko, T.: Sci. Rep. Tohoku Imp. Univ. Ser. 1 23 (1934) 147. Müller, R., Kunzmüller, H., Pinter, E., von Seebach, B.: Monatsh. Chem. 63 (1934) 317. Harned, H.S., Morrison, J.O.: J. Am. Chem. Soc. 58 (1936) 1908. Harned, H.S., Donelson, J.G.: J. Am. Chem. Soc. 60 (1938) 2128. Harned, H.S., Calmon, C.: J. Am. Chem. Soc. 60 (1938) 2130. Harned, H.S., Calmon, C.: J. Am. Chem. Soc. 61 (1939) 1891. Harned, H.S., Dreby, E.C.: J. Am. Chem. Soc. 61 (1939) 3113.
R2 39Har5 39Har6 42Kan 42Pat 44Nob 46Cro 46Har 46Kan 46Kni 47Moo 50Cro2 50Cro3 51Sed 52Koe 53Eva 54Eve 54Har 54Muk 58Man 61Ive
Harned, H.S., Walker, F.: J. Am. Chem. Soc. 61 (1939) 48. Harned, H.S., Fallon, L.D.: J. Am. Chem. Soc. 61 (1939) 2377. Kanning, E.W., Campbell, A.W.: J. Am. Chem. Soc. 64 (1942) 1672. Patterson, A., Felsing, W.A.: J. Am. Chem. Soc. 64 (1942) 1480. Noble, M.V., Garret, A.B.: J. Am. Chem. Soc. 66 (1944) 231. Crockford, H.D., Wideman, S.A.: J. Phys. Chem. 50 (1946) 418. Harned, H.S., Nestler, F.H.M.: J. Am. Chem. Soc. 68 (1946) 665. Kanning, E.W., Bowman, M.G.: J. Am. Chem. Soc. 68 (1946) 2042. Knight, S.B., Mason, J.F., Roesel, D.: J. Am. Chem. Soc. 68 (1946) 661. Moore, R.L., Felsing, W.A.: J. Am. Chem. Soc. 69 (1947) 1076. Crockford, H.D., Knight, S.B., Staton, H.A.: J. Am. Chem. Soc. 72 (1950) 2164. Crockford, H.D., Land, J.E.: J. Am. Chem. Soc. 72 (1950) 1895. Sedlet, J., De Vries, T.: J. Am. Chem. Soc. 73 (1951) 5808. Koerber, G.G., de Vries, T.: J. Am. Chem. Soc. 74 (1952) 5008. Evans, J.I., Monk, C.B.: Trans. Faraday Soc. 49 (1953) 415. Everett, D.M., Rasmussen, S.E.: J. Chem. Soc. (1954) 2812. Harned, H.S., Allen, D.S.: J. Phys. Chem. 58 (1954) 191. Mukherjee, L.M.: J. Phys. Chem. 58 (1954) 1042. Mandel, M., Decroly, P.: Nature (London) 182 (1958) 794. Ives, D.J.G., Janz, G.J.: Reference Electrodes, New York: Academic Press, 1961.
Landolt-Börnstein New Series IV/9A
152
2 Cell voltages
Table 2.3. Cell voltages with molten salt electrolyte systems. 1) Cell composition 2) Aluminum (Al) AlŇNaCl, 13.74 wt%, KCl, 8.85 wt%, AlCl3, 77.41 wt%ŇCl2, 720.5 Torr, C
Bismuth (Bi) BiŇBiCl3, KCl, LiClŇBixAu, x=0.3192 (dU/dT=0.075·10–3 V/°C) BiŇBiCl3, KCl, LiClŇBixAu, x=0.4475 (dU/dT=0.0335·10–3 V/°C) BiŇBiCl3, KCl, LiClŇBixAu, x=0.5125 (dU/dT=0.0268·10–3 V/°C) BiŇBiCl3, KCl, LiClŇBixAu, x=0.6015 (dU/dT=0.0183·10–3 V/°C) BiŇBiCl3, KCl, LiClŇBixAu, x=0.7483 (dU/dT=0.0088·10–3 V/°C) BiŇBiCl3, KCl, LiClŇBixAu, x=0.8926 (dU/dT=0.0044·10–3 V/°C) Cadmium (Cd) CdŇCdCl2, KCl, LiClŇCdxAu, x=0.158 (dU/dT= –0.258·10–3 V/°C) CdŇCdCl2, KCl, LiClŇCdxAu, x=0.227 (dU/dT=0.031·10–3 V/°C) CdŇCdCl2, KCl, LiClŇCdxAu, x=0.241 (dU/dT=0.007 mV/°C) CdŇCdCl2, KCl, LiClŇCdxAu, x=0.326 (dU/dT= –0.013 mV/°C) CdŇCdCl2, KCl, LiClŇCdxAu, x=0.418 (dU/dT= –0.063 mV/°C) CdŇCdCl2, KCl, LiClŇCdxAu, x=0.440 (dU/dT= –0.099 mV/°C) CdŇCdCl2, KCl, LiClŇCdxAu, x=0.493 (dU/dT= –0.110 mV/°C) CdŇCdCl2, KCl, LiClŇCdxAu, x=0.555 (dU/dT= –0.003 mV/°C) CdŇCdCl2, KCl, LiClŇCdxAu, x=0.599 (dU/dT= –0.095 mV/°C) CdŇCdCl2, KCl, LiClŇCdxAu, x=0.698 (dU/dT= –0.116 mV/°C) CdŇCdCl2, KCl, LiClŇCdxAu, x=0.664 (dU/dT= –0.0060 mV/°C) CdŇCdCl2, KCl, LiClŇCdxAu, x=0.714 (dU/dT= –0.0113 mV/°C) CdŇCdCl2, KCl, LiClŇCdxAu, x=0.763 (dU/dT=0.017 mV/°C) CdŇCdCl2, KCl, LiClŇCdxBi, x=0.1134 CdŇCdCl2, KCl, LiClŇCdxBi, x=0.1134 CdŇCdCl2, KCl, LiClŇCdxBi, x=0.282 CdŇCdCl2, KCl, LiClŇCdxBi, x=0.282 CdŇCdCl2, KCl, LiClŇCdxBi, x=0.472 CdŇCdCl2, KCl, LiClŇCdxBi, x=0.472 CdŇCdCl2, KCl, LiClŇCdxBi, x=0.864 CdŇCdCl2, KCl, LiClŇCdxBi, x=0.864 CdŇCdCl2, 4-5%, KCl, LiClŇCdxCu, x=0.463 CdŇCdCl2, 4-5%, KCl, LiClŇCdxCu, x=0.507 CdŇCdCl2, 4-5%, KCl, LiClŇCdxCu, x=0.599 CdŇCdCl2, 4-5%, KCl, LiClŇCdxCu, x=0.662 CdŇCdCl2, 4-5%, KCl, LiClŇCdxCu, x=0.782 CdŇCdCl2, 4-5%, KCl, LiClŇCdxCu, x=0.859 CdŇCdCl2, 4-5%, KCl, LiClŇCdxCu, x=0.915 CdŇCdCl2, KCl, LiClŇCdxPb, x=0.155
T [°C]
U0 [V]
Ref.
96 102 124 135 166 196 220
2.092 2.084 2.070 2.062 2.039 2.001 1.975
33Tre 33Tre 33Tre 33Tre 33Tre 33Tre 33Tre
600 600 600 600 600 600
0.0357 0.02115 0.01788 0.01343 0.00743 0.00301
51Kle 51Kle 51Kle 51Kle 51Kle 51Kle
602 602 602 602 602 602 602 602 602 602 602 602 602 422 528 422 528 422 528 422 528 602 602 602 602 602 602 602 436
0.2222 0.2112 0.2097 0.1627 0.1531 0.1501 0.1283 0.0518 0.0448 0.0408 0.0432 0.0372 0.0060 0.0673 0.0789 0.0416 0.0509 0.0257 0.0305 0.0039 0.0043 0.0269 0.023 0.0155 0.0120 0.0073 0.00460 0.00328 0.0155
32Öla 32Öla 32Öla 32Öla 32Öla 32Öla 32Öla 32Öla 32Öla 32Öla 32Öla 32Öla 32Öla 23Tay 23Tay 23Tay 23Tay 23Tay 23Tay 23Tay 23Tay 54Ric 54Ric 54Ric 54Ric 54Ric 54Ric 54Ric 23Tay
Landolt-Börnstein New Series IV/9A
2 Cell voltages Cell composition 2) CdŇCdCl2, KCl, LiClŇCdxPb, x=0.401 CdŇCdCl2, KCl, LiClŇCdxPb, x=0.584 CdŇCdCl2, KCl, LiClŇCdxPb, x=0.786 CdŇCdCl2, 5%, KCl, LiClŇCdx1Pbx2Bix3, x1=0.1095, x2/x3=0.1974 (dU/dT=0.1052 mV/°C) CdŇCdCl2, 5%, KCl, LiClŇCdx1Pbx2Bix3, x1=0.1995, x2/x3=0.1974 (dU/dT=0.0780 mV/°C) CdŇCdCl2, 5%, KCl, LiClŇCdx1Pbx2Bix3, x1=0.3143, x2/x3=0.1974 (dU/dT=0.0602 mV/°C) CdŇCdCl2, 5%, KCl, LiClŇCdx1Pbx2Bix3, x1=0.4199, x2/x3=0.1974 (dU/dT=0.0466 mV/°C) CdŇCdCl2, 5%, KCl, LiClŇCdx1Pbx2Bix3, x1=0.5699, x2/x3=0.1974 (dU/dT=0.0291 mV/°C) CdŇCdCl2, 5%, KCl, LiClŇCdx1Pbx2Bix3, x1=0.6914, x2/x3=0.1974 (dU/dT=0.0219 mV/°C) CdŇCdCl2, 5%, KCl, LiClŇCdx1Pbx2Bix3, x1=0.8119, x2/x3=0.1974 (dU/dT=0.0123 mV/°C) CdŇCdCl2, 5%, KCl, LiClŇCdx1Pbx2Bix3, x1=0.9376, x2/x3=0.1974 (dU/dT=0.00351 mV/°C) CdŇCdCl2, 5%, KCl, LiClŇCdx1Pbx2Bix3, x1=0.1182, x2/x3=0.5 (dU/dT=0.101 mV/°C) CdŇCdCl2, 5%, KCl, LiClŇCdx1Pbx2Bix3, x1=0.2333, x2/x3=0.5 (dU/dT=0.0769 mV/°C) CdŇCdCl2, 5%, KCl, LiClŇCdx1Pbx2Bix3, x1=0.4291, x2/x3=0.5 (dU/dT=0.0449 mV/°C) CdŇCdCl2, 5%, KCl, LiClŇCdx1Pbx2Bix3, x1=0.5523, x2/x3=0.5 (dU/dT=0.0377 mV/°C) CdŇCdCl2, 5%, KCl, LiClŇCdx1Pbx2Bix3, x1=0.6291, x2/x3=0.5 (dU/dT=0.0304 mV/°C) CdŇCdCl2, 5%, KCl, LiClŇCdx1Pbx2Bix3, x1=0.7793, x2/x3=0.5 (dU/dT=0.0115 mV/°C) CdŇCdCl2, 5%, KCl, LiClŇCdx1Pbx2Bix3, x1=0.8221, x2/x3=0.5 (dU/dT=0.0112 mV/°C) CdŇCdCl2, 5%, KCl, LiClŇCdx1Pbx2Bix3, x1=0.9503, x2/x3=0.5 (dU/dT=0.00245 mV/°C) CdŇCdCl2, 5%, KCl, LiClŇCdx1Pbx2Sbx3, x1=0.0963, x2/x3=0.4480 (dU/dT=0.1036 mV/°C) CdŇCdCl2, 5%, KCl, LiClŇCdx1Pbx2Sbx3, x1=0.2326, x2/x3=0.4936 (dU/dT=0.0654 mV/°C) CdŇCdCl2, 5%, KCl, LiClŇCdx1Pbx2Sbx3, x1=0.3980, x2/x3=0.4894 (dU/dT=0.0454 mV/°C) CdŇCdCl2, 5%, KCl, LiClŇCdx1Pbx2Sbx3, x1=0.4984, x2/x3=0.5009 (dU/dT=0.0403 mV/°C) CdŇCdCl2, 5%, KCl, LiClŇCdx1Pbx2Sbx3, x1=0.5910, x2/x3=0.4932 (dU/dT=0.0320 mV/°C) CdŇCdCl2, 5%, KCl, LiClŇCdx1Pbx2Sbx3, x1=0.6985, x2/x3=0.4480 (dU/dT=0.0231 mV/°C) CdŇCdCl2, 5%, KCl, LiClŇCdx1Pbx2Sbx3, x1=0.8096, x2/x3=0.5075 (dU/dT=0.0135 mV/°C)
Landolt-Börnstein New Series IV/9A
153
T [°C]
U0 [V]
Ref.
436 436 436 500
0.0108 0.0073 0.00043 0.05079
23Tay 23Tay 23Tay 51Ell
500
0.03433
51Ell
500
0.02377
51Ell
500
0.01729
51Ell
500
0.01101
51Ell
500
0.00788
51Ell
500
0.00509
51Ell
500
0.00179
51Ell
500
0.05962
51Ell
500
0.03972
51Ell
500
0.02241
51Ell
500
0.01597
51Ell
500
0.01247
51Ell
500
0.00446
51Ell
500
0.00513
51Ell
500
0.00150
51Ell
500
0.09454
51Ell
500
0.06347
51Ell
500
0.04027
51Ell
500
0.02851
51Ell
500
0.02018
51Ell
500
0.01236
51Ell
500
0.00674
51Ell
154
2 Cell voltages
Cell composition 2) CdŇCdCl2, 5%, KCl, LiClŇCdx1Pbx2Sbx3, x1=0.9581, x2/x3=0.5258 (dU/dT=0.00262 mV/°C) CdŇCdCl2, 5%, KCl, LiClŇCdx1Pbx2Sbx3, x1=0.0772, x2/x3=1.896 (dU/dT=0.0985 mV/°C) CdŇCdCl2, 5%, KCl, LiClŇCdx1Pbx2Sbx3, x1=0.2497, x2/x3=1.932 (dU/dT=0.0677 mV/°C) CdŇCdCl2, 5% ,KCl, LiClŇCdx1Pbx2Sbx3, x1=0.3731, x2/x3=2.548 (dU/dT=0.0517 mV/°C) CdŇCdCl2, 5%, KCl, LiClŇCdx1Pbx2Sbx3, x1=0.4926, x2/x3=1.846 (dU/dT=0.0396 mV/°C) CdŇCdCl2, 5%, KCl, LiClŇCdx1Pbx2Sbx3, x1=0.5928, x2/x3=1.900 (dU/dT=0.0293 mV/°C) CdŇCdCl2, 5%, KCl, LiClŇCdx1Pbx2Sbx3, x1=0.6758, x2/x3=2.188 (dU/dT=0.0220 mV/°C) CdŇCdCl2, 5%, KCl, LiClŇCdx1Pbx2Sbx3, x1=0.8002, x2/x3=1.842 (dU/dT=0.0132 mV/°C) CdŇCdCl2, 5%, KCl, LiClŇCdx1Pbx2Sbx3, x1=0.9498, x2/x3=1.789 (dU/dT=0.00270 mV/°C) CdŇCdCl2, 5%, KCl, LiClŇCdx1Pbx2Snx3, x1=0.0992, x2/x3=0.5 (dU/dT=0.1138 mV/°C) CdŇCdCl2, 5%, KCl, LiClŇCdx1Pbx2Snx3, x1=0.2738, x2/x3=0.5079 (dU/dT=0.0680 mV/°C) CdŇCdCl2, 5%, KCl, LiClŇCdx1Pbx2Snx3, x1=0.4023, x2/x3=0.5 (dU/dT=0.0486 mV/°C) CdŇCdCl2, 5%, KCl, LiClŇCdx1Pbx2Snx3, x1=0.4983, x2/x3=0.4981 (dU/dT=0.0382 mV/°C) CdŇCdCl2, 5%, KCl, LiClŇCdx1Pbx2Snx3, x1=0.5966, x2/x3=0.5 (dU/dT=0.0288 mV/°C) CdŇCdCl2, 5%, KCl, LiClŇCdx1Pbx2Snx3, x1=0.6928, x2/x3=0.5 (dU/dT=0.0210 mV/°C) CdŇCdCl2, 5%, KCl, LiClŇCdx1Pbx2Snx3, x1=0.8042, x2/x3=0.5 (dU/dT=0.0121 mV/°C) CdŇCdCl2, 5%, KCl, LiClŇCdx1Pbx2Snx3, x1=0.9055, x2/x3=0.5 (dU/dT=0.00512 mV/°C) CdŇCdCl2, 5%, KCl, LiClŇCdx1Pbx2Snx3, x1=0.9403, x2/x3=0.527 (dU/dT=0.00290 mV/°C) CdŇCdCl2, 5%, KCl, LiClŇCdx1Pbx2Snx3, x1=0.1067, x2/x3=2.0 (dU/dT=0.1138 mV/°C) CdŇCdCl2, 5%, KCl, LiClŇCdx1Pbx2Snx3, x1=0.2491, x2/x3=2.0 (dU/dT=0.0735 mV/°C) CdŇCdCl2, 5%, KCl, LiClŇCdx1Pbx2Snx3, x1=0.4041, x2/x3=2.0 (dU/dT=0.0484 mV/°C) CdŇCdCl2, 5%, KCl, LiClŇCdx1Pbx2Snx3, x1=0.5160, x2/x3=2.0 (dU/dT=0.0352 mV/°C) CdŇCdCl2, 5%, KCl, LiClŇCdx1Pbx2Snx3, x1=0.6078, x2/x3=2.0 (dU/dT=0.0268 mV/°C) CdŇCdCl2, 5%, KCl, LiClŇCdx1Pbx2Snx3, x1=0.6986, x2/x3=2.0 (dU/dT=0.0192 mV/°C)
T [°C]
U0 [V]
Ref.
500
0.00163
51Ell
500
0.07050
51Ell
500
0.04099
51Ell
500
0.02523
51Ell
500
0.01898
51Ell
500
0.01328
51Ell
500
0.00969
51Ell
500
0.00602
51Ell
500
0.00152
51Ell
500
0.0603
51Ell
500
0.03182
51Ell
500
0.02222
51Ell
500
0.01703
51Ell
500
0.01309
51Ell
500
0.00963
51Ell
500
0.00608
51Ell
500
0.00298
51Ell
500
0.00186
51Ell
500
0.05338
51Ell
500
0.03098
51Ell
500
0.01950
51Ell
500
0.01433
51Ell
500
0.01106
51Ell
500
0.00840
51Ell
Landolt-Börnstein New Series IV/9A
2 Cell voltages Cell composition 2) CdŇCdCl2, 5%, KCl, LiClŇCdx1Pbx2Snx3, x1=0.7967, x2/x3=2.0 (dU/dT=0.0123 mV/°C) CdŇCdCl2, 5%, KCl, LiClŇCdx1Pbx2Snx3, x1=0.8930, x2/x3=2.14 (dU/dT=0.00627 mV/°C) CdŇCdCl2, 5%, KCl, LiClŇCdx1Pbx2Snx3, x1=0.9546, x2/x3=2.0 (dU/dT=0.00243 mV/°C) CdŇCdCl2, KCl, LiClŇCdxSb, x=0.3444 (dU/dT = 46.7·10–3 mV/°C, 495
CdŇCdCl2, x=0.4, BaCl2ŇCl2, C (dU/dT= –0.604 mV/°C) CdŇCdCl2, x=0.5, BaCl2ŇCl2, C (dU/dT= –0.567 mV/°C) CdŇCdCl2, x=0.6, BaCl2ŇCl2, C (dU/dT= –0.555 mV/°C) CdŇCdCl2, x=0.7, BaCl2ŇCl2, C (dU/dT= –0.549 mV/°C) CdŇCdCl2, x=0.8, BaCl2ŇCl2, C (dU/dT= –0.538 mV/°C) CdŇCdCl2, x=0.3, KClŇCl2, C (dU/dT= –0.579 mV/°C) CdŇCdCl2, x=0.4, KClŇCl2, C (dU/dT= –0.578 mV/°C) CdŇCdCl2, x=0.5, KClŇCl2, C (dU/dT= –0.5830 mV/°C) CdŇCdCl2, x=0.6, KClŇCl2, C (dU/dT= –0.5715 mV/°C) CdŇCdCl2, x=0.7, KClŇCl2, C (dU/dT= –0.560 mV/°C) CdŇCdCl2, x=0.9, KClŇCl2, C (dU/dT= –0.528 mV/°C) Landolt-Börnstein New Series IV/9A
155 T [°C]
U0 [V]
Ref.
500
0.00571
51Ell
500
0.00329
51Ell
500
0.00146
51Ell
480
0.06395
38Sel
480
0.05990
38Sel
480
0.05651
38Sel
480
0.05200
38Sel
480
0.03385
38Sel
480
0.02969
38Sel
480
0.01896
38Sel
480
0.01156
38Sel
480
0.00720
38Sel
480
0.00331
38Sel
430 585 430 585 430 585 430 585 600 650 700 750 600 600 600 600 600 600 600 600 600 600 600
0.0578 0.0749 0.0292 0.0395 0.0129 0.0173 0.0051 0.0064 1.340 1.309 1.279 1.249 1.3323 1.3142 1.3001 1.2097 1.2874 1.5094 1.4522 1.4022 1.3775 1.3609 1.3405
23Tay 23Tay 23Tay 23Tay 23Tay 23Tay 23Tay 23Tay 29Lor 29Lor 29Lor 29Lor 53Lan1 53Lan1 53Lan1 53Lan1 53Lan1 53Lan1 53Lan1 53Lan1 53Lan1 53Lan1 53Lan1
156
2 Cell voltages
Cell composition 2) CdŇCdCl2, x=0.3, NaClŇCl2, C (dU/dT= –0.5010 mV/°C) CdŇCdCl2, x=0.4, NaClŇCl2, C (dU/dT= –0.5720 mV/°C) CdŇCdCl2, x=0.5, NaClŇCl2, C (dU/dT= –0.5638 mV/°C) CdŇCdCl2, x=0.6, NaClŇCl2, C (dU/dT= –0.5518 mV/°C) CdŇCdCl2, x=0.7, NaClŇCl2, C (dU/dT= –0.5553 mV/°C) CdŇCdCl2, x=0.8, NaClŇCl2, C (dU/dT= –0.5438 mV/°C) CdŇCdCl2, x=1.0, NaClŇCl2, C (dU/dT= –0.5684 mV/°C) CdŇCdCl2, 5%, KCl, LiClŇPbxBi, x=0.1357 (dU/dT=0.0894 mV/°C) CdŇCdCl2, 5%, KCl, LiClŇPbxBi, x=0.3333 (dU/dT=0.0474 mV/°C) CdŇCdCl2, 5%, KCl, LiClŇPbxBi, x=0.5017 (dU/dT=0.0312 mV/°C) CdŇCdCl2, 5%, KCl, LiClŇPbxBi, x=0.5791 (dU/dT=0.0223 mV/°C) CdŇCdCl2, 5%, KCl, LiClŇPbxBi, x=0.9011 (dU/dT=0.00434 mV/°C) CdŇCdCl2, 5%, KCl, LiClŇPbxSb, x=0.6902 (dU/dT=0.0173 mV/°C) CdŇCdCl2, 5%, KCl, LiClŇPbxSb, x=0.7668 (dU/dT=0.0128 mV/°C) CdŇCdCl2, 5%, KCl, LiClŇPbxSb, x=0.8952 (dU/dT=0.0051 mV/°C) Lead (Pb) PbŇPbBr2ŇBr2, C
PbŇPbBr2, x=0.200, ZnBr2ŇBr2, C
PbŇPbBr2, x=0.210, ZnBr2ŇBr2, C
PbŇPbBr2, x=0.288, ZnBr2ŇBr2, C
PbŇPbBr2, x=0.392, ZnBr2ŇBr2, C
PbŇPbBr2, x=0.486, ZnBr2ŇBr2, C
PbŇPbBr2, x=0.604, ZnBr2ŇBr2, C
PbŇPbBr2, x=0.704, ZnBr2ŇBr2, C
PbŇPbBr2, x=0.794, ZnBr2ŇBr2, C
PbŇPbBr2, x=0.902, ZnBr2ŇBr2, C
T [°C]
U0 [V]
Ref.
600 600 600 600 600 600 600 500 500 500 500 500 500 500 500
1.4199 1.3978 1.3798 1.3597 1.3491 1.3436 1.3382 0.08608 0.04723 0.02960 0.02271 0.00357 0.01290 0.00908 0.00369
53Lan1 53Lan1 53Lan1 53Lan1 53Lan1 53Lan1 53Lan1 51Ell 51Ell 51Ell 51Ell 51Ell 51Ell 51Ell 51Ell
400 450 500 550 400 450 500 400 450 500 400 450 500 400 450 500 400 450 500 400 450 500 400 450 500 400 450 500 400 450 500
1.0928 1.0624 1.0321 1.0017 1.1297 1.1045 1.0810 1.1268 1.1033 1.0798 1.1211 1.0956 1.0700 1.1155 1.0884 1.0613 1.1114 1.0832 1.0550 1.1058 1.0772 1.0487 1.1016 1.0726 1.0436 1.0986 1.0691 1.0396 1.0951 1.0652 1.0352
33Sal 33Sal 33Sal 33Sal 33Sal 33Sal 33Sal 33Sal 33Sal 33Sal 33Sal 33Sal 33Sal 33Sal 33Sal 33Sal 33Sal 33Sal 33Sal 33Sal 33Sal 33Sal 33Sal 33Sal 33Sal 33Sal 33Sal 33Sal 33Sal 33Sal 33Sal
Landolt-Börnstein New Series IV/9A
2 Cell voltages Cell composition 2) PbŇPbBr2, x=1.0, ZnBr2ŇBr2, C
PbŇPbCl2ŇCl2, C
PbŇPbCl2, x=0.450, PbBr2ŇBr2, C
PbŇPbCl2, x=0.500, PbBr2ŇBr2, C
PbŇPbCl2, x=0.600, PbBr2ŇBr2, C
PbŇPbCl2, x=0.800, PbBr2ŇBr2, C
Landolt-Börnstein New Series IV/9A
157 T [°C]
U0 [V]
Ref.
400 450 500 500
1.0928 1.0624 1.0321 1.273 3)
550
1.275 1.244 3)
600
1.248 1.213 3)
650
1.221 1.183 3)
700
1.195 1.153 3)
750
1.168 1.121 3)
800
1.142 1.093 3)
450 500 550 450 500 550 450 500 550 450 500 550
1.115 1.1038 1.0768 1.0469 1.0959 1.0687 1.0415 1.0866 1.0593 1.0318 1.0736 1.0447 1.0156
33Sal 33Sal 33Sal 35Hol, 29Lor, 33Sal, 30Wac 53Lan1 35Hol, 29Lor, 33Sal, 30Wac 53Lan1 35Hol, 29Lor, 33Sal, 30Wac 53Lan1 35Hol, 29Lor, 33Sal, 30Wac 53Lan1 35Hol, 29Lor, 33Sal, 30Wac 53Lan1 35Hol, 29Lor, 33Sal, 30Wac 53Lan1 35Hol, 29Lor, 33Sal, 30Wac 53Lan1 30Sal 30Sal 30Sal 30Sal 30Sal 30Sal 30Sal 30Sal 30Sal 30Sal 30Sal 30Sal
158
2 Cell voltages
Cell composition 2) PbŇPbCl2, x=1.0, PbBr2ŇBr2, C
PbŇPbCl2, x=0.6, BaCl2ŇCl2, C (dU/dT= –0.480 mV/°C) PbŇPbCl2, x=0.8, BaCl2ŇCl2, C (dU/dT= –0.505 mV/°C) PbŇPbCl2, x=0.6, CaCl2ŇCl2, C (dU/dT= –0.4935 mV/°C) PbŇPbCl2, x=0.8, CaCl2ŇCl2, C (dU/dT= –0.5212 mV/°C) PbŇPbCl2, x=0.4, KClŇCl2, C (dU/dT= –0.5144 mV/°C) PbŇPbCl2, x=0.5, KClŇCl2, C (dU/dT= –0.5216 mV/°C) PbŇPbCl2, x=0.6, KClŇCl2, C (dU/dT= –0.5365 mV/°C) PbŇPbCl2, x=0.7, KClŇCl2, C (dU/dT= –0.5445 mV/°C) PbŇPbCl2, x=0.8, KClŇCl2, C (dU/dT= –0.5260 mV/°C) PbŇPbCl2, x=0.9, KClŇCl2, C (dU/dT= –0.5150 mV/°C) PbŇPbCl2, x=0.466, LiClŇCl2, C (dU/dT= –0.5020 mV/°C) PbŇPbCl2, x=0.6625, LiClŇCl2, C (dU/dT= –0.5126 mV/°C) PbŇPbCl2, x=0.840, LiClŇCl2, C (dU/dT= –0.5235 mV/°C) PbŇPbCl2, x=1.0, LiClŇCl2, C (dU/dT= –0.531 mV/°C) PbŇPbCl2, x=0.50, NaClŇCl2, C (dU/dT= –0.492 mV/°C) PbŇPbCl2, x=0.60, NaClŇCl2, C (dU/dT= –0.5050 mV/°C) PbŇPbCl2, x=0.75, NaClŇCl2, C (dU/dT= –0.5245 mV/°C) PbŇPbCl2, x=0.9, NaClŇCl2, C (dU/dT= –0.5285 mV/°C) PbŇPbCl2, x=0.6, SrCl2ŇCl2, C (dU/dT= –0.446 mV/°C) PbŇPbCl2, x=0.8, SrCl2ŇCl2, C (dU/dT= –0.505 mV/°C) PbŇPbCl2, x=0.301, ZnCl2ŇCl2, C PbŇPbCl2, x=0.490, ZnCl2ŇCl2, C PbŇPbCl2, x=0.595, ZnCl2ŇCl2, C PbŇPbCl2, x=0.688, ZnCl2ŇCl2, C PbŇPbCl2, x=0.885, ZnCl2ŇCl2, C PbŇPbCl2, x=1.0, ZnCl2ŇCl2, C PbŇPbCl2, 5 wt%, KCl, LiClŇPbxAu, x=0.2135 (dU/dT=0.101·10–3 V/°C, 730
T [°C]
U0 [V]
Ref.
450 500 550 700 700 700 700 500 500 500 500 500 500 500 500 500 500 500 500 500 500 700 700 500 600 500 600 500 600 500 600 500 600 500 600 600
1.0624 1.0321 1.0017 1.1919 1.1777 1.1860 1.1757 1.3506 1.3290 1.3133 1.3019 1.2851 1.2754 1.2980 1.2867 1.2800 1.2745 1.3021 1.2952 1.2876 1.2784 1.1877 1.1773 1.3315 1.2800 1.3095 1.2520 1.2990 1.2405 1.2905 1.2310 1.2800 1.2185 1.2730 1.2105 0.0912
30Sal 30Sal 30Sal 53Lan2 53Lan2 53Lan2 53Lan2 53Lan2 53Lan2 53Lan2 53Lan2 53Lan2 53Lan2 53Lan2 53Lan2 53Lan2 53Lan2 53Lan2 53Lan2 53Lan2 53Lan2 53Lan2 53Lan2 30Wac 30Wac 30Wac 30Wac 30Wac 30Wac 30Wac 30Wac 30Wac 30Wac 30Wac 30Wac 49Kle
600
0.06025
49Kle
600
0.04580
49Kle
600
0.03515
49Kle
600
0.02584
49Kle
600
0.01886
49Kle
Landolt-Börnstein New Series IV/9A
2 Cell voltages Cell composition 2) PbŇPbCl2, 5 wt%, KCl, LiClŇPbxAu, x=0.8205 (dU/dT = 0.0083·10–3 V/°C, 450
MgŇMgCl2ŇCl2, C (U [V]=2.544–0.66·10–3 (T–718 °C), 660
Landolt-Börnstein New Series IV/9A
159 T [°C]
U0 [V]
Ref.
600
0.00881
49Kle
600
0.000140
49Kle
700 700 700 700 700 700 700 700 475
0.00532 0.01148 0.01929 0.02782 0.03594 0.04540 0.05976 0.08615 0.07956
36Sel 36Sel 36Sel 36Sel 36Sel 36Sel 36Sel 36Sel 39Sel
475
0.05848
39Sel
475
0.04068
39Sel
475
0.03225
39Sel
475
0.02452
39Sel
475
0.01682
39Sel
475
0.01194
39Sel
475
0.00767
39Sel
475
0.00463
39Sel
704 750 790 718
2.5120 2.4730 2.4460 2.544
29Lor 29Lor 29Lor 55Mar2
718 718 718 718 718 718 718 718 718 718 718 718
2.852 2.766 2.742 2.688 2.612 2.570 2.559 2.710 2.652 2.616 2.588 2.581
55Mar2 55Mar2 55Mar2 55Mar2 55Mar2 55Mar2 55Mar2 55Mar2 55Mar2 55Mar2 55Mar2 55Mar2
160
2 Cell voltages
Cell composition 2) MgŇMgCl2, x=0.4, LiClŇCl2, C (dU/dT= –0.51 mV/°C) MgŇMgCl2, x=0.5, LiClŇCl2, C (dU/dT= –0.54 mV/°C) MgŇMgCl2, x=0.6, LiClŇCl2, C (dU/dT= –0.54 mV/°C) MgŇMgCl2, x=0.7, LiClŇCl2, C (dU/dT= –0.56 mV/°C) MgŇMgCl2, x=1.0, LiClŇCl2, C (dU/dT= –0.66 mV/°C) MgŇMgCl2, x=0.222, NaClŇCl2, C (dU/dT= –0.535 mV/°C) MgŇMgCl2, x=0.242, NaClŇCl2, C (dU/dT= –0.584 mV/°C) MgŇMgCl2, x=0.323, NaClŇCl2, C (dU/dT= –0.545 mV/°C) MgŇMgCl2, x=0.403, NaClŇCl2, C (dU/dT= –0.60 mV/°C) MgŇMgCl2, x=0.559, NaClŇCl2, C (dU/dT= –0.524 mV/°C) MgŇMgCl2, x=0.343, RbClŇCl2, C (dU/dT= –0.49 mV/°C) MgŇMgCl2, x=0.41, RbClŇCl2, C (dU/dT= –0.50 mV/°C) MgŇMgCl2, x=0.477, RbClŇCl2, C (dU/dT= –0.52 mV/°C) MgŇMgCl2, x=0.59, RbClŇCl2, C (dU/dT= –0.61 mV/°C) MgxPb, x=at.frac.=1ŇMgCl2ŇMgxPb, x=at.frac.=0.617 MgxPb, x=at.frac.=1ŇMgCl2ŇMgxPb, x=at.frac.=0.709 MgxPb, x=at.frac.=1ŇMgCl2ŇMgxPb, x=at.frac.=0.895 MgxPb, x=at.frac.=0.697ŇMgCl2ŇMgxPb, x=at.frac.=0.288 MgxPb, x=at.frac.=0.697ŇMgCl2ŇMgxPb, x=at.frac.=0.358 MgxPb, x=at.frac.=0.697ŇMgCl2ŇMgxPb, x=at.frac.=0.479 MgPb, x=at.frac.=0.697ŇMgCl2ŇMgxPb, x=at.frac.=0.675 MgxPb, x=at.frac.=0.261ŇMgCl2ŇMgxPb, x=at.frac.=0.059 MgxPb, x=at.frac.=0.261ŇMgCl2ŇMgxPb, x=at.frac.=0.114 MgxPb, x=at.frac.=0.261ŇMgCl2ŇMgxPb, x=at.frac.=0.174 MgxPb, x=at.frac.=0.261ŇMgCl2ŇMgxPb, x=at.frac.=0.223 Silver (Ag) AgŇAgBrŇBr2, C
AgŇAgBr, x=0.3538, KBrŇBr2, C
AgŇAgBr, x=0.4502, KBrŇBr2, C
AgŇAgBr, x=0.6005, KBrŇBr2, C
AgŇAgBr, x=0.800, KBrŇBr2, C
AgŇAgBr, x=1.0, KBrŇBr2, C
AgŇAgBr, x=0.1100, LiBrŇBr2, C
T [°C]
U0 [V]
Ref.
718 718 718 718 718 718 718 718 718 718 718 718 718 718 680 680 680 680 680 680 680 680 680 680 680
2.567 2.556 2.550 2.547 2.544 2.692 2.682 2.641 2.613 2.571 2.795 2.718 2.669 2.590 0.050 0.031 0.010 0.0932 0.0784 0.0551 0.0125 0.0655 0.0400 0.0229 0.0134
55Mar2 55Mar2 55Mar2 55Mar2 55Mar2 55Mar2 55Mar2 55Mar2 55Mar2 55Mar2 55Mar2 55Mar2 55Mar2 55Mar2 32Wag 32Wag 32Wag 32Wag 32Wag 32Wag 32Wag 32Wag 32Wag 32Wag 32Wag
450 500 550 500 550 600 500 550 600 500 550 600 500 550 600 500 550 600 500 550 600
0.8010 0.7865 0.7720 0.8815 0.8727 0.8640 0.8588 0.8483 0.8374 0.8297 0.8177 0.8057 0.8016 0.7884 0.7753 0.7863 0.7720 0.7577 0.8686 0.8648 0.8610
32Sal1 32Sal1 32Sal1 31Sal2 31Sal2 31Sal2 31Sal2 31Sal2 31Sal2 31Sal2 31Sal2 31Sal2 31Sal2 31Sal2 31Sal2 31Sal2 31Sal2 31Sal2 30Sal 30Sal 30Sal
Landolt-Börnstein New Series IV/9A
2 Cell voltages Cell composition 2) AgŇAgBr, x=0.2548, LiBrŇBr2, C
AgŇAgBr, x=0.4086, LiBrŇBr2, C
AgŇAgBr, x=0.5937, LiBrŇBr2, C
AgŇAgBr, x=1.0, LiBrŇBr2, C
AgŇAgBr, x=0.5130, NaBrŇBr2, C AgŇAgBr, x=0.6045, NaBrŇBr2, C AgŇAgBr, x=0.7486, NaBrŇBr2, C AgŇAgBr, x=1.0, NaBrŇBr2, C AgŇAgBr, x=0.00, PbBr2ŇBr2, C
AgŇAgBr, x=0.10, PbBr2ŇBr2, C
AgŇAgBr, x=0.20, PbBr2ŇBr2, C
AgŇAgBr, x=0.30, PbBr2ŇBr2, C
AgŇAgBr, x=0.40, PbBr2ŇBr2, C
AgŇAgBr, x=0.50, PbBr2ŇBr2, C
AgŇAgBr, x=0.60, PbBr2ŇBr2, C
AgŇAgBr, x=0.70, PbBr2ŇBr2, C
AgŇAgBr, x=0.80, PbBr2ŇBr2, C
Landolt-Börnstein New Series IV/9A
161 T [°C]
U0 [V]
Ref.
500 550 600 500 550 600 500 550 600 500 550 600 550 600 550 600 550 600 550 600 450 500 550 450 500 550 450 500 550 450 500 550 450 500 550 450 500 550 450 500 550 450 500 550 450 500 550
0.8301 0.8216 0.8128 0.8202 0.8100 0.7993 0.8085 0.7961 0.7836 0.7865 0.7720 0.7577 0.8088 0.7979 0.8002 0.7883 0.7877 0.7749 0.7720 0.7577 1.0624 1.0321 1.0017 0.9407 0.9352 0.9295 0.8976 0.8897 0.8818 0.8733 0.8637 0.8542 0.8580 0.8470 0.8358 0.8446 0.8328 0.8212 0.8336 0.8207 0.8078 0.8238 0.8106 0.7972 0.8149 0.8015 0.7882
30Sal 30Sal 30Sal 30Sal 30Sal 30Sal 30Sal 30Sal 30Sal 30Sal 30Sal 30Sal 31Sal1 31Sal1 31Sal1 31Sal1 31Sal1 31Sal1 31Sal1 31Sal1 32Sal1 32Sal1 32Sal1 32Sal1 32Sal1 32Sal1 32Sal1 32Sal1 32Sal1 32Sal1 32Sal1 32Sal1 32Sal1 32Sal1 32Sal1 32Sal1 32Sal1 32Sal1 32Sal1 32Sal1 32Sal1 32Sal1 32Sal1 32Sal1 32Sal1 32Sal1 32Sal1
162 Cell composition 2) AgŇAgBr, x=1.0, PbBr2ŇBr2, C
AgŇAgBr, x=0.352, RbBrŇBr2, C
AgŇAgBr, x=0.467, RbBrŇBr2, C
AgŇAgBr, x=0.569, RbBrŇBr2, C
AgŇAgBr, x=0.747, RbBrŇBr2, C
AgŇAgBr, x=1.0, RbBrŇBr2, C
AgŇAgClŇCl2, C
AgŇAgCl, x=0.136, LiClŇCl2, C AgŇAgCl, x=0.252, LiClŇCl2, C AgŇAgCl, x=0.469, LiClŇCl2, C AgŇAgCl, x=0.573, LiClŇCl2, C AgŇAgCl, x=0.690, LiClŇCl2, C AgŇAgCl, x=0.804, LiClŇCl2, C AgŇAgCl, x=1.0, LiClŇCl2, C AgŇAgCl, x=0.10, PbCl2ŇCl2, C AgŇAgCl, x=0.20, PbCl2ŇCl2, C AgŇAgCl, x=0.30, PbCl2ŇCl2, C AgŇAgCl, x=0.45, PbCl2ŇCl2, C AgŇAgCl, x=0.60, PbCl2ŇCl2, C AgŇAgCl, x=0.80, PbCl2ŇCl2, C
2 Cell voltages T [°C]
U0 [V]
Ref.
450 500 550 500 550 600 500 550 600 500 550 600 500 550 600 500 550 600 450 500 550 600 500 600 500 600 500 600 500 600 500 600 500 600 500 600 500 600 500 600 500 600 500 600 500 600 500 600
0.8010 0.7865 0.7720 0.9040 0.8937 0.8833 0.8697 0.8582 0.8468 0.8398 0.8275 0.8151 0.8116 0.7986 0.7856 0.7865 0.7720 0.7577 0.9145 0.9001 0.8855 0.8709 0.9626 0.9497 0.9424 0.9260 0.9249 0.9038 0.9199 0.98965 0.9156 0.8901 0.9085 0.8816 0.9001 0.8709 1.0518 1.0424 1.0086 0.9930 0.9817 0.9631 0.9549 0.9329 0.9352 0.9107 0.9148 0.8878
32Sal1 32Sal1 32Sal1 32Sal2 32Sal2 32Sal2 32Sal2 32Sal2 32Sal2 32Sal2 32Sal2 32Sal2 32Sal2 32Sal2 32Sal2 32Sal2 32Sal2 32Sal2 33Sal 33Sal 33Sal 33Sal 36Sal 36Sal 36Sal 36Sal 36Sal 36Sal 36Sal 36Sal 36Sal 36Sal 36Sal 36Sal 36Sal 36Sal 34Sal 34Sal 34Sal 34Sal 34Sal 34Sal 34Sal 34Sal 34Sal 34Sal 34Sal 34Sal Landolt-Börnstein New Series IV/9A
2 Cell voltages
163
Cell composition 2)
T [°C]
U0 [V]
AgŇAgCl, x=1.0, PbCl2ŇCl2, C
500 600 1087 1087 1087 1087 1087 729
0.9001 34Sal 0.8709 34Sal 0.198 32Wag 0.114 32Wag 0.074 32Wag 0.045 32Wag 0.021 32Wag 5.6–0.023T 32Wag [mV] 18.02– 32Wag 0.0065T [mV] 17.2+ 32Wag 0.0243T [mV] 47.9+ 32Wag 0.0271T [mV] 69.7+ 32Wag 0.0452T [mV] 131.2+ 32Wag 0.0467T [mV]
AgŇAgCl, KClŇAgxAu, x=0.263 AgŇAgCl, KClŇAgxAu, x=0.471 AgŇAgCl, KClŇAgxAu, x=0.602 AgŇAgCl, KClŇAgxAu, x=0.716 AgŇAgCl, KClŇAgxAu, x=0.84 AgŇAgCl, KClŇAgxAu, x=0.030 AgŇAgCl, KClŇAgxAu, x=0.0910 AgŇAgCl, KClŇAgxAu, x=0.250 AgŇAgCl, KClŇAgxAu, x=0.400 AgŇAgCl, KClŇAgxAu, x=0.500 AgŇAgCl, KClŇAgxAu, x=0.750 Thallium (Tl) TlŇTlCl, LiCl, KClŇTlxAu, x=0.382 (dU/dT=0.120 mV/°C) TlŇTlCl, LiCl, KClŇTlxAu, x=0.485 (dU/dT=0.0950 mV/°C) TlŇTlCl, LiCl, KClŇTlxAu, x=0.587 (dU/dT=0.0640 mV/°C) TlŇTlCl, LiCl, KClŇTlxAu, x=0.681 (dU/dT=0.0350 mV/°C) TlŇTlCl, LiCl, KClŇTlxAu, x=0.794 (dU/dT=0.0245 mV/°C) TlŇTlCl, LiCl, KClŇTlxAu, x=0.895 (dU/dT=0.0117 mV/°C) TlŇTlCl, MgCl2, KClŇTlxBi, x=0.205 TlŇTlCl, MgCl2, KClŇTlxBi, x=0.460 TlŇTlCl, MgCl2, KClŇTlxBi, x=0.585 TlŇTlCl, MgCl2, KClŇTlxBi, x=0.720 TlŇTlCl, MgCl2, KClŇTlxBi, x=0.826 TlŇTlCl, CH3COOK, CH3COONaŇTlxBi, x=0.086 TlŇTlCl, CH3COOK, CH3COONaŇTlxBi, x=0.154 TlŇTlCl, CH3COOK, CH3COONaŇTlxBi, x=0.239 TlŇTlCl, CH3COOK, CH3COONaŇTlxBi, x=0.352 TlŇTlCl, CH3COOK, CH3COONaŇTlxBi, x=0.733 TlŇTlCl, LiCl, KClŇTlxPb, x=0.0454
TlŇTlCl, LiCl, KClŇTlxPb, x=0.0812
TlŇTlCl, LiCl, KClŇTlxPb, x=0.1316
Landolt-Börnstein New Series IV/9A
600 600 600 600 600 600 481 481 481 481 481 271
Ref.
0.1042 0.04880 0.05460 0.03785 0.02050 0.00915 0.2240 0.1261 0.0900 0.0502 0.0194 0.219
51Kle 51Kle 51Kle 51Kle 51Kle 51Kle 29Hil 29Hil 29Hil 29Hil 29Hil 32Wag
0.176
32Wag
0.147
32Wag
0.117
32Wag
0.028
32Wag
0.1840 0.2020 0.2122 0.1660 0.1777 0.1885 0.1413 0.1511 0.1597
29Hil 29Hil 29Hil 29Hil 29Hil 29Hil 29Hil 29Hil 29Hil
164
2 Cell voltages
Cell composition 2) TlŇTlCl, LiCl, KClŇTlxPb, x=0.3079 TlŇTlCl, LiCl, KClŇTlxPb, x=0.6087 TlŇTlCl, LiCl, KClŇTlxPb, x=0.7653
TlŇTlCl, LiCl, KClŇTlxPb, x=0.8848 TlŇTlCl, LiCl, KClŇTlxSn, x=0.0794
TlŇTlCl, LiCl, KClŇTlxSn, x=0.1242 TlŇTlCl, LiCl, KClŇTlxSn, x=0.1502
TlŇTlCl, LiCl, KClŇTlxSn, x=0.2107 TlŇTlCl, LiCl, KClŇTlxSn, x=0.3407 TlŇTlCl, LiCl, KClŇTlxSn, x=0.3944 TlŇTlCl, LiCl, KClŇTlxSn, x=0.5781 TlŇTlCl, LiCl, KClŇTlxSn, x=0.7128 Thorium (Th) ThŇThCl4, x=0.00825, NaCl, KCl(equimol.)ŇCl2, C ThŇThCl4, x=0.00789, NaCl, KCl(equimol.)ŇCl2, C ThŇThCl4, x=0.0171, NaCl, KCl(equimol.)ŇCl2, C ThŇKThF5, x=0.00623, NaCl, KCl(equimol.)ŇCl2, C ThŇKThF5, x=0.00868, NaCl, KCl(equimol.)ŇCl2, C ThŇKThF5, 0.8 wt%, SrCl2, KCl(equimol.)ŇCl2, C ThŇKThF5, 2.0 wt%, SrCl2, KCl(equimol.)ŇCl2, C Tin (Sn) SnŇSnCl2, KCl, LiClŇSnxAu, x=0.2589 SnŇSnCl2, KCl, LiClŇSnxAu, x=0.3596 SnŇSnCl2, KCl, LiClŇSnxAu, x=0.5091 SnŇSnCl2, KCl, LiClŇSnxAu, x=0.6815 SnŇSnCl2, KCl, LiClŇSnxAu, x=0.8125 SnŇSnCl2ŇSnxBi, x=0.046 SnŇSnCl2ŇSnxBi, x=0.095 SnŇSnCl2ŇSnxBi, x=0.143 SnŇSnCl2ŇSnxBi, x=0.189 SnŇSnCl2ŇSnxBi, x=0.236
T [°C]
U0 [V]
Ref.
438 438 438 500 563 438 353 414 478 414 478 353 414 478 414 478 414 478 353 414 353 414 414 478
0.0865 0.0381 0.0180 0.0183 0.0192 0.0048 0.0893 0.1047 0.1217 0.0867 0.0979 0.0627 0.0756 0.0884 0.0629 0.0712 0.0422 0.0507 0.0301 0.0374 0.0172 0.0225 0.0157 0.0194
29Hil 29Hil 29Hil 29Hil 29Hil 29Hil 29Hil 29Hil 29Hil 29Hil 29Hil 29Hil 29Hil 29Hil 29Hil 29Hil 29Hil 29Hil 29Hil 29Hil 29Hil 29Hil 29Hil 29Hil
730 730 730 743 743 747 747
2.64 2.61 2.58 2.67 2.63 2.49 2.47
59Dro 59Dro 59Dro 59Dro 59Dro 59Dro 59Dro
500 500 500 500 500 329
0.1898 0.1317 0.0690 0.02765 0.01116 0.0762
50Kle 50Kle 50Kle 50Kle 50Kle 32Wag
0.0585
32Wag
0.0479
32Wag
0.0406
32Wag
0.0351
32Wag
Landolt-Börnstein New Series IV/9A
2 Cell voltages Cell composition 2) SnŇSnCl2ŇSnxBi, x=0.292 SnŇSnCl2ŇSnxBi, x=0.367 SnŇSnCl2ŇSnxBi, x=0.453 SnŇSnCl2ŇSnxBi, x=0.549 Zinc (Zn) ZnŇZnBr2ŇBr2, C
ZnŇZnCl2ŇCl2, C
ZnŇZnCl2, x=0.4, NaClŇCl2, C (dU/dT= –0.561 mV/°C) ZnŇZnCl2, x=0.5, NaClŇCl2, C (dU/dT= –0.572 mV/°C) ZnŇZnCl2, x=0.6, NaClŇCl2, C (dU/dT= –0.644 mV/°C) ZnŇZnCl2, x=0.7, NaClŇCl2, C (dU/dT= –0.710 mV/°C) ZnŇZnCl2, x=0.8, NaClŇCl2, C (dU/dT= –0.707 mV/°C) ZnŇZnCl2, x=0.9, NaClŇCl2, C (dU/dT= –0.714 mV/°C) ZnŇZnCl2, x=0.5, NaClŇCl2, C (dU/dT= –0.624 mV/°C) ZnŇZnCl2, x=0.6, NaClŇCl2, C (dU/dT= –0.683 mV/°C) ZnŇZnCl2, x=0.7, NaClŇCl2, C (dU/dT= –0.700 mV/°C) ZnŇZnCl2, x=0.8, NaClŇCl2, C (dU/dT= –0.700 mV/°C) ZnŇZnCl2, x=0.9, NaClŇCl2, C (dU/dT= –0.708 mV/°C) ZnŇZnCl2, x=1.0, NaClŇCl2, C (dU/dT= –0.697 mV/°C) ZnŇLiCl, KCl, ZnCl2ŇZnxCd, x=0.150 ZnŇLiCl, KCl, ZnCl2ŇZnxCd, x=0.344 ZnŇLiCl, KCl, ZnCl2ŇZnxCd, x=0.536 ZnŇLiCl, KCl, ZnCl2ŇZnxCd, x=0.690 ZnŇZnCl2, KCl, LiClŇZnxGa, x=0.042 (dU/dT=0.1574·10–3 V/°C) ZnŇZnCl2, KCl, LiClŇZnxGa, x=0.150 (dU/dT=0.1001·10–3 V/°C) ZnŇZnCl2, KCl, LiClŇZnxGa, x=0.260 (dU/dT=0.0720·10–3 V/°C) ZnŇZnCl2, KCl, LiClŇZnxGa, x=0.370 (dU/dT=0.0565·10–3 V/°C) ZnŇZnCl2, KCl, LiClŇZnxGa, x=0.480 (dU/dT=0.0500·10–3 V/°C) ZnŇZnCl2, KCl, LiClŇZnxGa, x=0.590 (dU/dT=0.0363·10–3 V/°C) Landolt-Börnstein New Series IV/9A
165 T [°C]
U0 [V]
Ref.
329
0.0302
32Wag
0.0248
32Wag
0.0198
32Wag
0.0151
32Wag
400
1.3382
450
1.3041
500
1.270
417.8 450 500 550 600 650 700 500 500 500 500 500 500 500 500 500 500 500 500 436 572 436 572 436 572 436 572 488.2 488.2 488.2 488.2 488.2 488.2
1.611 1.607 1.572 1.537 1.503 1.468 1.433 1.7003 1.6398 1.6032 1.5853 1.5751 1.5721 1.6163 1.5981 1.5787 1.5723 1.5695 1.5635 0.0275 0.0396 0.0136 0.0200 0.0083 0.0126 0.0058 0.0080 0.0932 0.0530 0.0367 0.0268 0.0200 0.0146
33Sal, 30Wac 33Sal, 30Wac 33Sal, 30Wac 30Wac 30Wac 30Wac 30Wac 30Wac 30Wac 30Wac 54Lan 54Lan 54Lan 54Lan 54Lan 54Lan 54Lan 54Lan 54Lan 54Lan 54Lan 54Lan 23Tay 23Tay 23Tay 23Tay 23Tay 23Tay 23Tay 23Tay 55Gen 55Gen 55Gen 55Gen 55Gen 55Gen
166
2 Cell voltages
Cell composition 2) ZnŇZnCl2, KCl, LiClŇZnxGa, x=0.697 (dU/dT=0.0264·10–3 V/°C) ZnŇZnCl2, KCl, LiClŇZnxGa, x=0.775 (dU/dT=0.0167·10–3 V/°C) ZnŇZnCl2, KCl, LiClŇZnxGa, x=0.841 (dU/dT=0.0082·10–3 V/°C) ZnŇZnCl2, KCl, LiClŇZnxGa, x=0.910 (dU/dT=0.0054·10–3 V/°C) ZnŇZnCl2, KCl, LiClŇZnxGa, x=0.957 (dU/dT=0.0033·10–3 V/°C) ZnŇZnCl2, 5 wt% in KCl+LiCl eutecticŇZnxSn, x=0.097 (dU/dT=0.1361·10–3 V/°C) ZnŇZnCl2, 5 wt% in KCl+LiCl eutecticŇZnxSn, x=0.161 (dU/dT=0.1096·10–3 V/°C) ZnŇZnCl2, 5 wt% in KCl+LiCl eutecticŇZnxSn, x=0.255 (dU/dT=0.0862·10–3 V/°C) ZnŇZnCl2, 5 wt% in KCl+LiCl eutecticŇZnxSn, x=0.361 (dU/dT=0.0665·10–3 V/°C) ZnŇZnCl2, 5 wt% in KCl+LiCl eutecticŇZnxSn, x=0.463 (dU/dT=0.0498·10–3 V/°C) ZnŇZnCl2, 5 wt% in KCl+LiCl eutecticŇZnxSn, x=0.579 (dU/dT=0.0371·10–3 V/°C) ZnŇZnCl2, 5 wt% in KCl+LiCl eutecticŇZnxSn, x=0.687 (dU/dT=0.0255·10–3 V/°C) ZnŇZnCl2, 5 wt% in KCl+LiCl eutecticŇZnxSn, x=0.767 (dU/dT=0.0180·10–3 V/°C) ZnŇZnCl2, 5 wt% in KCl+LiCl eutecticŇZnxSn, x=0.840 (dU/dT=0.0125·10–3 V/°C) ZnŇZnCl2, 5 wt% in KCl+LiCl eutecticŇZnxSn, x=0.905 (dU/dT=0.0073·10–3 V/°C) ZnŇZnCl2, KCl, LiClŇZnxBi, x=0.0639 ZnŇZnCl2, KCl, LiClŇZnxBi, x=0.1284 ZnŇZnCl2, KCl, LiClŇZnxBi, x=0.5523 ZnŇZnCl2, KCl, LiClŇZnxBi, x=0.7642 ZnŇZnCl2, KCl, LiClŇZnxBi, x=0.9741 ZnŇZnCl2, KCl, LiClŇZnxPb, x=0.0388 ZnŇZnCl2, KCl, LiClŇZnxPb, x=0.1229 ZnŇZnCl2, KCl, LiClŇZnxPb, x=0.2043 ZnŇZnCl2, KCl, LiClŇZnxPb, x=0.5058 ZnŇZnCl2, KCl, LiClŇZnxPb, x=0.8986 ZnŇZnCl2, KCl, LiClŇZnxPb, x=0.9894 ZnŇZnCl2, KCl, LiClŇZnxSn, x=0.221 ZnŇZnCl2, KCl, LiClŇZnxSn, x=0.384 ZnŇZnCl2, KCl, LiClŇZnxSn, x=0.583 ZnŇZnCl2, KCl, LiClŇZnxSn, x=0.845 ZnŇZnCl2, KCl, LiCl, NaClŇZn10at%Sn90at%Sb0at% ZnŇZnCl2, KCl, LiCl, NaClŇZn8.33at%Sn75at%Sb16.67at% ZnŇZnCl2, KCl, LiCl, NaClŇZn6.25at%Sn56.25at%Sb37.5at% ZnŇZnCl2, KCl, LiCl, NaClŇZn5at%Sn45at%Sb50at%
T [°C]
U0 [V]
Ref.
488.2 488.2 488.2 488.2 488.2 476.8
0.0103 0.0077 0.0051 0.0030 0.00145 0.0554
55Gen 55Gen 55Gen 55Gen 55Gen 55Fio
476.8
0.0406
55Fio
476.8
0.0278
55Fio
476.8
0.0191
55Fio
476.8
0.0130
55Fio
476.8
0.00857
55Fio
476.8
0.00571
55Fio
476.8
0.00417
55Fio
476.8
0.00355
55Fio
476.8
0.00249
55Fio
600 600 600 600 600 653 653 653 653 653 653 431 572 431 572 431 572 431 572 600 600 600 600
0.0666 0.0428 0.00312 0.00101 0.00055 0.0487 0.0116 0.00126 0.00090 0.00080 0.00048 0.0267 0.0401 0.0138 0.0226 0.0065 0.0106 0.0024 0.0038 0.0805 0.0903 0.1218 0.1424
52Kle 52Kle 52Kle 52Kle 52Kle 52Kle 52Kle 52Kle 52Kle 52Kle 52Kle 23Tay 23Tay 23Tay 23Tay 23Tay 23Tay 23Tay 23Tay 54Ala 54Ala 54Ala 54Ala
Landolt-Börnstein New Series IV/9A
2 Cell voltages 1
167
) Description of the cell composition is based - as far as possible - on the Stockholm convention (1953), i.e. the lefthand electrode constitutes the negative terminal of the cell. Cells are listed according to the metallic constituent of the electrode mentioned first which is involved in the electrode reaction establishing the respective electrode potential. Contact materials and conductive additives may be mentioned first before the actual element of interest only for the sake of correct materials sequence. The sequence of electrode components is stated as reported in the original publications. 2 ) Carbon electrodes as employed with e.g. halogens are designated as C only irrespective of the actual composition. 3 ) Average value of the quoted references.
Landolt-Börnstein New Series IV/9A
R1
References 23Tay 29Hil 29Lor 30Sal 30Wac 31Sal1 31Sal2 32Sal1 32Sal2 32Wag 32Öla 33Sal 33Tre 34Sal 35Hol 36Sal 36Sel 38Sel 39Sel 49Kle 50Kle 51Ell 51Kle 52Kle 53Lan1 53Lan2 54Ala 54Lan 54Ric 55Fio 55Gen 55Mar2 59Dro
Landolt-Börnstein New Series IV/9A
Taylor, N.W.: J. Am. Chem. Soc. 45 (1923) 2865. Hildebrand, J.H., Sharma, J.N.: J. Am. Chem. Soc. 51 (1929) 462. Lorenz, R., Velde H.: Z. Anorg. Allg. Chem. 183 (1929) 81. Salstrom, E.: J. Am. Chem. Soc. 52 (1930) 4641; 4650. Wachter, A., Hildebrand, J.H.: J. Am. Chem. Soc. 52 (1930) 4655. Salstrom, E.: J. Am. Chem. Soc. 53 (1931) 1794. Salstrom, E.: J. Am. Chem. Soc. 53 (1931) 3388. Salstrom, E.: J. Am. Chem. Soc. 54 (1932) 2653. Salstrom, E.: J. Am. Chem. Soc. 54 (1932) 4255. Wagner, C., Engelhardt, G.: Z. Phys. Chem. Abt. A 159 (1932) 241. Ölander, A.: J. Am. Chem. Soc. 54 (1932) 3819. Salstrom, E.: J. Am. Chem. Soc. 55 (1933) 1029; 2426. Treadwell, W.D., Terebesi, L.: Helv. Chim. Acta 16 (1933) 931. Salstrom, E.: J. Am. Chem. Soc. 56 (1934) 1272. Holub, L., Neubert, F., Sauerwald, F.: Z. Phys. Chem. Abt. A 174 (1935) 161. Salstrom, E., Kew, E.T., Powell, T.M.: J. Am. Chem. Soc. 58 (1936) 1848. Seltz, H., Strickler, H.S.: J. Am. Chem. Soc. 58 (1936) 2084. Seltz, H., DeWitt, J.: J. Am. Chem. Soc. 60 (1938) 1305. Seltz, H., DeWitt, J.: J. Am. Chem. Soc. 61 (1939) 2594. Kleppa, O.J.: J. Am. Chem. Soc. 71 (1949) 3275. Kleppa, O.J.: J. Am. Chem. Soc. 72 (1950) 3346. Elliot, J.F., Chipman, J.: J. Am. Chem. Soc. 73 (1951) 2682. Kleppa, O.J.: J. Am. Chem. Soc. 73 (1951) 385. Kleppa, O.J.: J. Am. Chem. Soc. 74 (1952) 6052. Lantratov, M.F., Alabyshev, A.F.: Zh. Prikl. Khim. 26 (1953) 321; 353. Lantratov, M.F., Alabyshev, A.F.: Zh. Prikl. Khim. 26 (1953) 263. Alabyshev, A.F., Lantratov, M.F.: Zh. Prikl. Khim. 27 (1954) 851. Lantratov, M.F., Alabyshev, A.F.: Zh. Prikl. Khim. 27 (1954) 722. Riccoboni, L., Genta, V., Fiorani, M., Valenti, V.: Gazz. Chim. Ital. 84 (1954) 982. Fiorani, M., Valenti, V.: Gazz. Chim. Ital. 85 (1955) 607. Genta, V., Fiorini, M., Valenti, V.: Gazz. Chim. Ital. 85 (1955) 103. Markov, B.F., Delimarskii, Yu.K., Panchenko, I.D.: Zh. Fiz. Khim. 29 (1955) 51. Drossbach, P., Neumayr, F.: Z. Elektrochem. 63 (1959) 516.
168
2 Cell voltages
Table 2.4. Cell voltages with solid state electrolyte systems. 1) T [K, °C] U0 [V]
Cell composition Aluminum (Al) AlŇAl2O3ŇĮ- and ȕ-aluminaŇNbOŇNb (UT±0.00007 [V]=0.8209–0.00016400 T, 795
Ref.
850 K 0.6806
96Sub
840 K 0.6822
97Sub2
800 K 0.2977
02Sub
900 K 0.07642
96Swa1
900 K 0.07642
01Swa
800 K 0.37226
92Pan
800 K 0.00486
96Swa2
800 K 0.8182
86Aza
1000 K 0.733
86Aza
600 K 0.57165
87Pan
900 K 0.1454
91Aza2
1200 K 0.10443
96Pan
1100 K 0.74498
89Pan3
800 K 0.24486
95Mal1
800 K 0.28408
95Mal1
800 K 0.39194
95Mal1
900 K 0.03305
91Aza2
800 K 0.08387
94Mal1
900 K 0.26136
94Mal1
800 K 0.44029
94Mal1
2
(UT±0.00291 [V]=0.59412–0.00043657 T, 756
(UT±0.00243 [V]=0.52915–0.00030634 T, 797
Pt, O2, BaZrO3, ZrO2, BaF2ŇCaF2ŇBaF2, Y2BaCuO5, Y2Cu2O5, CuO, O2, Pt (UT±0.0009 [V]= –0.2248+0.000286507199 T, 853
(UT±0.00113 [V]=0.88504–0.00060593 T, 772
2 Cell voltages
169
T [K, °C] U0 [V]
Cell composition Pt, O2, Bi2Cu2O5, Bi2CuO4, CuF2ŇCaF2ŇCuF2, Bi2CuO4, Bi4CuO7, O2, Pt, pO = 1 atm (UT±0.00212 [V]=0.13015–0.00011476 T, 662
Ref.
800 K 0.00383
94Mal1
600 °C 0.1228 650 °C 0.1243 700 °C 0.1265
30Opp 30Opp 30Opp
900 K 0.02143
02Sub
900 K 0.86722
97Sre
1100 K 0.06150
97Sre
2
Cadmium (Cd) CdŇCdCl2ŒPbCl2ŇPb
Carbon (C) Pt, O2, CO2, Na2CO3ŇNa-ȕ"-aluminaŇNa2ZrO3, ZrO2, O2, Pt (UT±0.004 [V]= –0.2024+0.0002487 T, 850
900 K 0.8673
97Pan2
1100 K 0.06155
97Pan2
1100 K 0.23677
92Mal
1000 K 0.017
87Aza2
1000 K 0.0547
87Aza2
900 K 0.70509
88Aza
900 K 0.70509
87Aza1
900 K 0.70509
87Aza1
800 K 0.5066
99Swa1
900 K 0.15528
89Aza1
900 K 0.21501
89Aza1
800 K 0.22222
89Aza1
700 K 0.01218
85Pan
900 K 0.61980
84Sre1
2
(UT±0.0005 [V]=0.87425–0.00045952 T, 770
(UT±0.0014 [V]=0.33003–0.00045406 T, 626
Landolt-Börnstein New Series IV/9A
170
2 Cell voltages
Cell composition
T [K, °C] U0 [V]
Ref.
Cr2O3ŇRb2CrO4ŇRb3CrO4ŇO2(air), Pt (UT±0.00257 [V]=1.2168–0.00050062 T, 798
1000 K 0.71728
94Pan
1000 K 0.07873
94Pan
1000 K 0.1349
84Bha
1000 K 0.8211
86Sre1
1323 K 0.0965
75Ram
1000 K 0.1494
86Sre1
1000 K 0.0280
86Sre1
900 K 0.74702
96Swa1
900 K 0.74702
01Swa
900 K 0.57235
01Swa
900 K 0.57235
96Swa1
1100 K 0.11577
90Mal2
1000 K 0.4558
97Sub3
942.5 K 0.2647 985 K 0.1173 1000 K 0.5163
90Mal2 90Mal2 97Sre
1000 K 0.5163
97Sub3
1200 K 0.3804
96Pan
800 K 0.35656
89Pan1
1100 K 0.17084
96Pan
1100 K 0.230
97Sre
1050 K 0.12732
97Sre
800 K 0.24531
96Pan
Landolt-Börnstein New Series IV/9A
2 Cell voltages
171 T [K, °C] U0 [V]
Cell composition
Ref.
Germanium (Ge) Ge⏐GeO2(tetragonal)⏐O2, p O = 0.0001 atm
850 K 1.0696
79Sre
(UT±0.003 [V]=1.4805–0.00048342 T, 800
850 K 1.0541
79Sre
2
2
(UT±0.003 [V]=1.4247–0.00043599 T, 810
1000 K 0.7193
90Pan2
800 K 0.2388
85Mal
1015 K 0.5967
75Ram
1087 K 0.313
75Ram
800 K 0.35484
88Aza
800 K 0.35484
87Aza1
800 K 0.35484
87Aza1
1206 K 0.11172 1323 K 0.1965
01Mal 75Ram
1323 K 0.2966
75Ram
750 K 1.1219
86Mal2
800 K 1.0671
86Mal2
1100 K 0.03441
86Sre2
800 K 0.676
03Swa
800 K 0.577
03Swa
1000 K 0.7349
84Sre2
900 K 0.0696
91Aza1
2
(UT±0.00022=1.010–0.0004172 T [V], 771
(UT±0.00046 [V]=0.8701–0.0003665 T; UT±0.00031 [V]=0.8093–0.0002992 T, 787
(UT±0.0037 [V]=1.1675–0.0004326 T, 973
Landolt-Börnstein New Series IV/9A
172
2 Cell voltages
Cell composition Pt, MnO, LaMnO3, La2O3Ň15YSZŇO2, Pt 5), pO = 0.001 atm
T [K, °C] U0 [V]
Ref.
1100 K 0.8625
83Sre1
900 K 0.1470
90Aza2
900 K 0.3593
95Pan2
1000 K 0.5114
95Pan2
1000 K 0.0701
03Sub1
1000 K 0.00328
03Sub1
2
(UT±0.0042 [V]=1.7402–0.0007979 T, 1064
PbŇPbCl2ŇglassŇPbCl2ŇCl2, C
PbŇPbCl2, KClŇglassŇPbCl2, KClŇCl2, C
PbŇPbCl2ŒCdCl2, PbCl2, x=0.1ŇPb PbŇPbCl2ŒCdCl2, PbCl2, x=0.176ŇPb PbŇPbCl2ŒCdCl2, PbCl2, x=0.25ŇPb PbŇPbCl2ŒCdCl2, PbCl2, x=0.45ŇPb PbŇPbCl2ŒCdCl2, PbCl2, x=0.75ŇPb PbŇPbCl2, KCl, 2:1ŒPbCl2ŇPb
PbŇPbCl2, KClŒPbCl2ŇPb
PbŇPbCl2, KCl, 2:1ŇglassŇPbCl2, KCl, 2:1ŇCl2, C
PbŇPbCl2, KClŇglassŇAgClŇAg
PbŇPbCl2, KClŇglassŇAgClŇAg
516 °C 566 °C 616 °C 515 °C 555 °C 595 °C 635 °C 410 °C 460 °C 510 °C 560 °C 630 °C 570 °C 570 °C 570 °C 570 °C 570 °C 490 °C 540 °C 630 °C 470 °C 520 °C 580 °C 630 °C 426 °C 476 °C 526 °C 576 °C 626 °C 430 °C 480 °C 530 °C 630 °C
1.093 1.057 1.111 1.235 1.217 1.188 1.168 1.387 1.358 1.332 1.306 1.270 0.0597 0.0412 0.0373 0.0322 0.0130 0.027 0.034 0.048 0.047 0.065 0.072 0.079 1.346 1.315 1.288 1.260 1.234 0.673 0.622 0.619 0.616
34Gru 34Gru 34Gru 34Gru 34Gru 34Gru 34Gru 34Gru 34Gru 34Gru 34Gru 34Gru 28Lor 28Lor 28Lor 28Lor 28Lor 34Gru 34Gru 34Gru 34Gru 34Gru 34Gru 34Gru 34Gru 34Gru 34Gru 34Gru 34Gru 34Gru 34Gru 34Gru 34Gru
Landolt-Börnstein New Series IV/9A
2 Cell voltages
Cell composition PbŇPbCl2, KCl, 2:1ŇglassŇAgClŇAg
Pb(liquid)⏐PbO⏐O2(air) (UT±0.00093 [V]=1.1019–0.00051324 T, 767
MgŇMgCl2ŒTlClŇTl MgU2O6⏐MgU2O6.67⏐O2(air) (UT±0.01219 [V]=1.1189–0.00077878 T, 779
Landolt-Börnstein New Series IV/9A
173 T [K, °C] U0 [V] 426 °C 476 °C 526 °C 626 °C 850 K
Ref.
0.635 0.536 0.510 0.511 1.2066
34Gru 34Gru 34Gru 34Gru 95Mal2
750 K 0.0412
95Mal2
900 K 1.1101
91Jac
900 K 0.7623
91Jac
900 K 0.51847
91Jac
900 K 0.7952
84Bha
900 K 0.9163
84Bha
720 °C 750 °C 720 °C 750 °C 720 °C 740 °C 760 °C 720 °C 750 °C 850 K
0.869 0.891 0.964 0.996 1.078 1.103 1.121 0.530 0.517 0.45694
28Lor 28Lor 28Lor 28Lor 28Lor 28Lor 28Lor 28Lor 28Lor 89Mad
850 K 0.82157
89Mad
850 K 0.58374
89Mad
900 K 1.0406
88Aza
900 K 0.03090
90Mal1
800 K 0.49461
88Pan1
1100 K 0.39271
88Pan1
900 K 0.02429
90Mal1
174
2 Cell voltages T [K, °C] U0 [V]
Cell composition MoTe2(Į)ŇTe(solid or liquid), MoO2⏐O2(air), Pt (UT±0.0044 [V]=1.3571–0.00059357 T, 654
Ref.
700 K 0.94160
88Mal
800 K 0.115
03Swa
1100 K 0.3172
98Sub2
1150 K 0.2587
98Sub2
1100 K 0.2252
98Sub2
1150 K 0.1773
98Sub2
1150 K 0.1508
98Sub2
1200 K 0.05518
76Sre
1000 K 0.0116
87Aza2
1000 K 0.284
75Ram
1161 K 0.2196
72Sre
1318 K 0.2342
72Sre
900 K 0.55454
96Swa2
900 K 0.43485
91Mal2
900 K 0.16141
91Mal2
0.00486
99Swa2
0.4991
99Swa2
1100 K 0.0369
97Sub2
1100 K 0.2874
97Sub2
2
(UT±0.0003 [V]=1.0535–0.0005544 T, 894
900 K 0.08069
01Mal
2
(UT±0.0026 [V]= –0.0022+0.0000921 T, 788
Landolt-Börnstein New Series IV/9A
2 Cell voltages
Cell composition Palladium (Pd) PdŇPdOŇ15YSZŇO2(air) 5) (UT±0.00142 [V]=0.5845–0.00055090 T, 699
AgŇAgClŇfels glassŇAgClŇCl2, C
AgŇAgClŇglassŇPbCl2ŇCl2, C
Landolt-Börnstein New Series IV/9A
175 T [K, °C] U0 [V]
Ref.
800 K 0.14378
83Mal
900 K 0.34171
86Mal3
1100 K 0.04063
97Sre
1100 K 0.60586
97Pan1
900 K 0.19770
85Mal
1100 K 0.35095
91Mal1
1100 K 0.001555
92Mal
1100 K 0.29513
90Mal2
1100 K 0.56478
93Mal
1000 K 0.57601
93Mal
1000 K 0.59174
93Mal
1100 K 0.2609
90Mal2
1100 K 0.0958
97Sre
1100 K 0.230
97Sub3
1050 K 0.1273
97Sub3
1000 K 0.1461
97Sub3
1000 K 0.05840
98Sub1
480 °C 530 °C 630 °C 614 °C 664 °C 704 °C 520 °C 570 °C 630 °C
0.895 0.882 0.857 0.870 0.867 0.866 1.113 1.119 1.128
34Gru 34Gru 34Gru 34Gru 34Gru 34Gru 34Gru 34Gru 34Gru
176
2 Cell voltages T [K, °C] U0 [V]
Cell composition Sodium (Na) Pt, NaCrO2, Cr, Cr2O3, NaFŇCaF2ŇCo, CoF2, Pt (UT±0.0055 [V]=0.7458–0.0003613 T, 782
Ref.
900 K 1.0707
84Bha
900 K 1.160
84Bha
900 K 0.17627
83Sre2
1000 K 0.03270
97Sre
1000 K 0.3996
02Sub
800 K 0.6862
02Sub
1000 K 0.07448
02Aru
1000 K 0.0224
03Sub1
1000 K 0.06176
01Aru
900 K 0.03931
01Aru
1000 K 0.04701
01Aru
900 K 0.05973
01Aru
900 K 0.01925
01Aru
897 K 0.045 986 K 0.0504
01Aru 01Aru
1200 K 0.19794
97Sub1
1000 K 0.0440
96Sub
700 K 0.75893 600 K 0.54377 800 K 0.44053
86Mal1 86Mal1 86Mal1
800 K 0.11213
89Mal
(UT±0.00214 [V]=0.52270–0.00051321 T, 643
800 K 0.11213
89Mal
(UT±0.00214 [V]=0.52270–0.00051321 T, 643
800 K 0.11515
89Mal
2
2
2
(UT±0.00357 [V]=0.50725–0.00049013 T, 555
Landolt-Börnstein New Series IV/9A
2 Cell voltages
177 T [K, °C] U0 [V]
Cell composition
Ref.
Pt, C, [Te]Pd-Te25at%, TeO2Ň15YSZŇO2, Pt 5), p O = 0.21 atm
800 K 0.11448
89Mal
(UT±0.00261 [V]=0.54414–0.00053707 T, 612
800 K 0.11736
89Mal
(UT±0.00218 [V]=0.52717–0.00051226 T, 632
800 K 0.17782
89Mal
(UT±0.00225 [V]=0.53393–0.00052167 T, 540
800 K 0.29305
89Mal
(UT±0.00175 [V]=0.69491–0.00050120 T, 578
800 K 0.32583
89Mal
(UT±0.00304 [V]=0.57359–0.00030970 T, 584
800 K 0.32179
89Mal
(UT±0.00138 [V]=0.71316–0.00048921 T, 546
800 K 0.32699
89Mal
(UT±0.00217 [V]=0.66947–0.00042809 T, 547
800 K 0.33893
89Mal
500 °C 600 °C 440 °C 460 °C 480 °C 550 °C 500 °C 600 °C
28Lor 28Lor 28Lor 28Lor 28Lor 28Lor 28Lor 28Lor
2
2
2
2
2
2
2
2
(UT±0.00168 [V]=0.60155–0.00032827 T, 549
TlŇTlClŒKCl, LiClŒSnCl2ŇSn Thorium (Th) Pt, O2, ThO2-2mol%SrO, SrF2ŇSrF2ŇZrO2, SrZrO3, SrF2, O2, Pt (UT±0.0008 [V]= –0.0141+0.0000700 T, 678
0.365 0.404 0.378 0.386 0.395 0.403 0.367 0.382
750 K 0.0384
03Sub2
750 K 0.0704
03Sub2
750 K 0.0304
03Sub2
923 K 0.8802
01Mal
900 K 0.30989
87Swa
2
2
(UT±0.0043 [V]=0.7517–0.00049090 T, 776
178
2 Cell voltages T [K, °C] U0 [V]
Cell composition Yttrium (Y) YBa2Cu3O7–xŇO2(air), Pt (UT±0.0020 [V]=0.2982–0.00026787 T, 620
Ref.
700 K 0.11069
89Pan2
900 K 0.1419
90Aza1
900 K 0.00212
91Aza2
1100 K 0.12652
88Pan2
1100 K 0.71473
91Pan
2
(UT±0.00271 [V]=1.2886–0.00052170 T, 1015
0.2996
89Aza2
0.155 0.150 0.276 0.273 0.270 0.267 0.323 0.315 0.077 0.086 0.095 0.110
30Opp 30Opp 28Lor 28Lor 28Lor 28Lor 28Lor 28Lor 28Lor 28Lor 28Lor 28Lor
0.47575
94Mal2
0.0323
03Sub2
0.47463
90Pan1
1
) Description of the cell composition is based - as far as possible - on the Stockholm convention (1953), i.e. the lefthand electrode constitutes the negative terminal of the cell. Cells are listed according to the metallic constituent of the electrode mentioned first which is involved in the electrode reaction establishing the respective electrode potential. Contact materials and conductive additives may be mentioned first before the actual element of interest only for the sake of correct materials sequence. The sequence of electrode components is stated as reported in the original publications. When an oxygen electrode is used as reference electrode an oxygen partial pressure of 0.21 atm is assumed. 2 ) SS = stainless steel, inert separator (barrier) between Pt contact and electrode under investigation; 15CSZ = 15 wt% CaO-stabilized ZrO2. 3 ) SS = stainless steel, inert separator (barrier) between Pt contact and electrode under investigation. 4 ) 8YSZ = 8 wt% Y2O3-stabilized ZrO2. 5 ) 15YSZ = 15 wt% Y2O3-stabilized ZrO2. 6 ) 15CSZ = 15 mol% CaO-stabilized ZrO2. 7 ) 15YDT = 15 wt% yttria doped thoria. 8 ) 10CSZ = 10 mol% CaO-stabilized ZrO2.
Landolt-Börnstein New Series IV/9A
R1
References 28Lor 30Opp 34Gru 72Sre 75Ram 76Sre 79Sre 83Mal 83Sre1 83Sre2 84Bha
84Sre1
84Sre2 85Mal 85Pan 86Aza 86Mal1 86Mal2 86Mal3 86Sre1 86Sre2 87Aza1 87Aza2 87Pan 87Swa 88Aza 88Mal 88Pan1 88Pan2 89Aza1 89Aza2 89Mad 89Mal 89Pan1 89Pan2 89Pan3 90Aza1 90Aza2 90Mal1 90Mal2 90Pan1
Landolt-Börnstein New Series IV/9A
Lorenz, R., Michael, F.: Z. Phys. Chem. Abt. A 137 (1928) 1. Oppenheimer, F.: Z. Anorg. Allg. Chem. 189 (1930) 297. Grube, G., Rau, A.: Z. Elektrochem. 40 (1934) 352. Sreedharan, O.M., Chandrasekharaiah, M.S.: Mater. Res. Bull. 7 (1972) 1135. Ramakrishnan, E.S., Sreedharan, O.M., Chandrasekharaiah, M.S.: J. Electrochem. Soc. 122 (1975) 328. Sreedharan, O.M., Chandrasekharaiah, M.S., Karkhanawala, M.D.: High Temp. Sci. 8 (1976) 179. Sreedharan, O.M., Athiappan, E., Pankajavalli, R., Gnanamoorthy, J.B.: J. Less-Common Met. 68 (1979) 143. Mallika, C., Sreedharan, O.M., Gnanamoorthy, J.B.: J. Less-Common Met. 95 (1983) 213. Sreedharan, O.M., Pankajavalli, R., Gnanamoorthy, J.B.: High Temp. Sci. 16 (1983) 251. Sreedharan, O.M., Madan, B.S., Gnanamoorthy, J.B.: J. Nucl. Mater. 119 (1983) 296. Bhat, N.P., Swaminathan, K., Krishnamurthy, D., Sreedharan, O.M., Sundaresan, M.: Proc. 3rd Int. Conf. Liquid Metal Eng. and Technol., Oxford, 1984, Vol. 1, Brit. Nucl. Energ. Soc., London, p. 323. Sreedharan, O.M., Madan, B.S., Pankajavalli, R., Gnanamoorthy, J.B.: Proc. 3rd International Conference on Liquid Metal Engineering and Technology, Vol. 1, in: Energy Production, London, 1984, p. 249. Sreedharan, O.M., Pankajavalli, R.: J. Mater. Sci. Lett. 3 (1984) 388. Mallika, C., Sreedharan, O.M., Chandrasekharaiah, M.S.: J. Less-Common Met. 107 (1985) 203. Pankajavalli, R., Sreedharan, O.M., Gnanamoorthy, J.B.: J. Nucl. Mater. 127 (1985) 170. Azad, A.M., Pankajavalli, R., Sreedharan, O.M.: J. Chem. Thermodyn. 18 (1986) 255. Mallika, C., Sreedharan, O.M.: J. Chem. Thermodyn. 18 (1986) 727. Mallika, C., Pankajavalli, R., Sreedharan, O.M.: Electrochim. Acta 31 (1986) 885. Mallika, C., Sreedharan, O.M.: J. Mater. Sci. Lett. 5 (1986) 915. Sreedharan, O.M., Mallika, C.: Mater. Chem. Phys. 14 (1986) 375. Sreedharan, O.M., Chandrasekharaiah, M.S.: J. Mater. Sci. 21 (1986) 2581. Azad, A.M., Sreedharan, O.M.: J. Appl. Electrochem. 17 (1987) 949. Azad, A.M., Sreedharan, O.M.: Bull. Electrochem. 3 (1987) 331. Pankajavalli, R., Sreedharan, O.M.: J. Mater. Sci. 22 (1987) 177. Swaminathan, K., Mallika, C., Sreedharana, O.M.: J. Am. Ceram. Soc. 70 (1987) C-168. Azad, A.M., Sreedharan, O.M.: Trans. SAEST 23 (1988) 45. Mallika, C., Sreedharan, O.M.: J. Chem. Thermodyn. 20 (1988) 769. Pankajavalli, R., Sreedharan, O.M.: J. Chem. Thermodyn. 20 (1988) 309. Pankajavalli, R., Sreedharan, O.M.: J. Mater. Sci. Lett. 7 (1988) 714. Azad, A.M., Sreedharan, O.M.: J. Nucl. Mater. 167 (1989) 89. Azad, A.M., Sreedharan, O.M.: J. Mater. Sci. Lett. 8 (1989) 67. Madan, B.S., Mallika, C., Sreedharan, O.M., Rodiguez, P., Paranjpe, S.R.: J. Nucl. Mater. 167 (1989) 278. Mallika, C., Sreedharan, O.M.: J. Nucl. Mater. 167 (1989) 181. Pankajavalli, R., Sreedharan, O.M.: J. Mater. Sci. Lett. 8 (1989) 225. Pankajavalli, R., Sreedharan, O.M.: J. Mater. Sci. Lett. 8 (1989) 697. Pankajavalli, R., Sreedharan, O.M.: International Symposium on Thermochemistry and Chemical Processing, IGCAR, Kalpakkam, 1989, p. 2. Azad, A.M., Sreedharan, O.M.: J. Mater. Sci. Lett. 9 (1990) 304. Azad, A.M., Sudha, R., Sreedharan, O.M.: J. Less-Common Met. 166 (1990) 57. Mallika, C., Sreedharan, O.M.: J. Nucl. Mater. 170 (1990) 246. Mallika, C., Sreedharan, O.M.: J. Less-Common Met. 162 (1990) 51. Pankajavalli, R., Sreedharan, O.M.: J. Nucl. Mater. 172 (1990) 151.
R2 90Pan2 91Aza1 91Aza2 91Jac 91Mal1 91Mal2 91Pan 92Mal 92Pan 93Mal 94Mal1 94Mal2 94Pan 95Mal1 95Mal2 95Pan2 96Pan 96Sub 96Swa1 96Swa2 97Pan1 97Pan2 97Sre 97Sub1 97Sub2 97Sub3 98Sub1 98Sub2 99Swa1 99Swa2 01Aru 01Mal 01Swa 02Aru 02Sub 03Sub1 03Sub2 03Swa
Pankajavalli, R., Sreedharan, O.M.: J. Nucl. Mater. 175 (1990) 194. Azad, A.M., Sudha, R., Sreedharan, O.M.: Mater. Res. Bull. 26 (1991) 97. Azad, A.M., Sreedharan, O.M., Jacob, K.T.: J. Mater. Sci. 26 (1991) 3374. Jacob, K.T., Swaminathan, K., Sreedharan, O.M.: Electrochim. Acta 36 (1991) 791. Mallika, C., Sreedharan, O.M.: J. Alloys Compounds 177 (1991) 273. Mallika, C., Sreedharan, O.M.: Thermochim. Acta 190 (1991) 217. Pankajavalli, R., Sreedharan, O.M.: J. Less-Common Met. 171 (1991) 249. Mallika, C., Sreedharan, O.M.: J. Nucl. Mater. 186 (1992) 250. Pankajavalli, R., Sreedharan, O.M.: Natl. Workshop on Chemical Sensors, SAEST, Kalpakkam, IGCAR, 1992. Mallika, C., Sreedharan, O.M.: J. Alloys Compounds 191 (1993) 219. Mallika, C., Sreedharan, O.M.: J. Alloys Compounds 216 (1994) 47. Mallika, C., Sreedharan, O.M.: J. Nucl. Mater. 211 (1994) 123. Pankajavalli, R., Sreedharan, O.M., Gnanamoorthy, J.B.: J. Nucl. Mater. 217 (1994) 104. Mallika, C., Rama Rao, G.V., Sreedharan, O.M., Varadaraju, U.V.: Mater. Sci. Eng. B 33 (1995) 96. Mallika, C., Sreedharan, O.M.: Mater. Lett. 22 (1995) 5. Pankajavalli, R., Sreedharan, O.M.: Mater. Lett. 24 (1995) 247. Pankajavalli, R., Sreedharan, O.M.: J. Mater. Sci. 31 (1996) 3137. Subasri, R., Sreedharan, O.M., Bhat, N.P.: Trans. SAEST 31 (1996) 59. Swaminathan, K., Jacob, K.T., Sreedharan, O.M.: 50th Annual Technical Meeting, Ind. Inst. Metals, New Delhi, 1996, B1-0-01. Swaminathan, K., Jacob, K.T., Sreedharan, O.M.: 50th Annual Technical Meeting, Ind. Inst. Metals, New Delhi, 1996, B1-P-03 Pankajavalli, R., Sreedharan, O.M.: Proceedings of the Symposium on Localized Corrosion and Environmental Cracking, IGCAR, Kalpakkam, 1979, C55. Pankajavalli, R., Sreedharan, O.M., Gnanamoorthy, J.B.: J. Nucl. Mater. 250 (1997) 53. Sreedharan, O.M.: private communication, 1997. Subasri, R., Sreedharan, O.M.: Mater. Lett. 30 (1997) 289. Subasri, R., Sreedharan, O.M.: Solid State Ionics 93 (1997) 341. Subasri, R., Pankajavalli, R., Sreedharan, O.M.: Physica C 281 (1997) 85. Subasri, R., Sreedharan, O.M.: J. Alloys Compounds 274 (1998) 153. Subasri, R., Pankajavalli, R., Sreedharan, O.M.: J. Alloys Compounds 269 (1998) 71. Swaminathan, K., Sreedharan, O.M.: J. Nucl. Mater. 275 (1999) 225. Swaminathan, K., Sreedharan, O.M.: J. Alloys Compounds 292 (1999) 100. Arul Anthony, S., Swaminathan, K., Nagaraja, K.S., Sreedharan, O.M.: J. Alloys Compounds 322 (2001) 113. Mallika, C., Edwin Suresh Raj, A.M., Nagaraja, K.S., Sreedharan, O.M.: Thermochim. Acta 371 (2001) 95. Swaminathan, K., Sreedharan, O.M.: J. Mater. Sci. 36 (2001) 1031. Arul Antony, S., Pankajavalli, R., Nagaraja, K.S., Sreedharan, O.M.: Mater. Lett. 57 (2002) 469. Subasri, R., Mathews, T., Swaminathan, K., Sreedharan, O.M.: J. Nucl. Mater. 300 (2002) 237. Subasri, R., Mathews, T., Swaminathan, K., Sreedharan, O.M.: J. Alloys Compounds 354 (2003) 193. Subasri, R., Mallika, C., Mathews, T., Sastry, V.S., Sreedharan, O.M.: J. Nucl. Mater. 312 (2003) 249. Swaminathan, K., Sreedharan, O.M.: J. Alloys Compounds 358 (2003) 48.
Landolt-Börnstein New Series IV/9A
3 Electrode potentials of zero charge
179
3 Electrode potentials of zero charge
3.1 Thermodynamics of an electrode in contact with an electrolyte solution When a metal used as an electrode 1) is brought into contact with an ion-containing electrolyte solution or a molten salt acting as a liquid electrolyte, a double layer is established at the phase boundary (c.f. chapter 1, [10Gou1, 10Gou2] for reviews see [86Tra, 86Vor, 97Kor, 99Rit]). Depending on the ratio of the electrochemical potentials of the involved species (ions, electrons etc.) in both phases starting from the initially present nonequilibrium the composition of both phases at the interface is changed by dissolution or deposition of metal atoms until equilibrium is reached. This results in an excess charge on the metal compensated by an excess charge of ions of the opposite charge on the solution side in close distance to the electrode (i.e. inside the double layer). In case of electrode/solution systems where no such charge transfer is possible the unequal charge distribution will be established without metal dissolution or deposition. The local electroneutrality in the double layer results in an uneven distribution of the ions in the solution phase; nevertheless electroneutrality in the solution remains unchanged. The charge qm on the metal is thus proportional to the excess of ions in the double layer according to q m =− F
¦Γ zi i
with zi
i
being the ionic charge number, F the Faraday constant and Γi the surface excess. The charge qm on the metal is equal to the charge – qs on the solution side with opposite sign qm = –qs. Assuming an ideally polarizable interface, i.e. an electrode where no charge transfer occurs upon immersion into the solution, the Gibbs adsorption isotherm can be written at constant pressure and temperature, ds=− q m d E +
¦Γ i dm i . i
§ ∂σ · = − qm with μi being the chemical potential of ¸ © ∂E ¹T, p, ȝi
The excess charge density on the metal is thus ¨
species i, E the electrode potential and σ the interfacial tension. The interfacial tension can be measured as a function of the electrode potential by using a suitable reference electrode. The potential, where
§ ∂σ · = 0 ,corresponds to the situation, where there is no excess charge on the electrode, the value ¨ ∂E ¸ © ¹T, p, ȝi of the electrode potential is called potential of zero charge Epzc (this term was introduced 1928 [28Fru2]). If it is assumed, that there are no specific interactions between molecules or any other species dissolved in the electrolyte solution and the metal surface, the corresponding electrode potential should be called 1) The
term „electrode“ is used primarily to designate an electronically (electron or hole) conducting material. According to W. Nernst the term „electrode“ should be used to name an electronically conducting materal in combination with a specific ionically conducting material. Although this definition is convincing it is not generally accepted. Thus within this chapter „electrode“ will be used in the generally accepted meaning.
Landolt-Börnstein New Series IV/9A
180
3 Electrode potentials of zero charge
differently, according to [63Ant, 66Lor] EN. Although this distinction is certainly valid, most values reported below have not been discussed explicitly having this distinction in mind. A similar complication caused by the specific adsorption or chemisorption of oxygen and in particular hydrogen (at e.g. platinum group metals) has been discussed extensively by Frumkin and Petrii resulting in the definition of the potentials of zero total charge and zero free charge Epztc and Epzfc [75Fru]; see also [70Fru]; for a review see [99Tra]. Nevertheless most values have been determined under conditions, where these interactions (i.e. chemisorption of hydrogen in particular) are unlikely, thus Epzfc is termed generally Epzc. At first glance Epzc may be considered as a specific property of the metal alone like e.g. the electronic work function of a metal at the vacuum/metal interface. Since the properties of the ionic species in the solution have to be taken into account, also the actual value of Epzc depends on the composition of the solution. The conceivable relationship between Epzc and the work function has been discussed [53Vas, 68Boc1, 71Tra, 77Tra, 76Ard] as well as the general importance of the electron work function in electrochemistry [77Tra]. Particular attention has been paid to these relationships for selected metals with different crystallographic orientations and all other parameters kept unchanged [82Lec]. It was observed, that an increase in the density of atoms in the topmost layer, which is accompanied by an increase in the relative surface energy, corresponds to a more positive value of Epzc. General trends between crystal face orientation and interfacial parameters have been considered [88Bor2, 92Tra2, 99Tra]. A relationship between the enthalpy ΔH of the metal lattice, the free heat content and Epzc has been derived [62Kho]. Further relations between material properties like density, atomic weight etc. and Epzc have been discussed [55Uks2], a more general review of relationships between the nature of the metal surface and the value of Epzc has been given elsewhere [67Fru]. Correlations between the passivation potential and Epzc have been reviewed with particular attention to iron alloys and their components [67Gri1]. Attempts have been made to compare values of Epzc with surface charge-potential information deduced from work function-composition data for the respective metallic surfaces as obtained with ultra-high vacuum surface analytical techniques (electrode emersion) and charge displacement data obtained during CO adsorption. A comparison focussing on the Pt(111) surface has been reported [98Wea]. Despite the considerable uncertainties seemingly involved in this approach these data are included in the following tables. The influence of the temperature on the value of Epzc has been discussed in detail [56Ran, 57Gra, 66But1, 72Pan1, 87Bac, 88Ham, 90Sil, 96Sil, 99Tra]. It is related to the structure of the electrochemical double layer, in particular to the extent of specific anion adsorption. With molten salt electrolytes the temperature dependence of values of the Epzc has been attributed to shifts of the reference electrode potential [66Pri]. The influence of the pH-value on Epzc has been discussed in detail [56Khe, 57Khe] The relationship between Epzc and the kinetics of electrode processes, in particular the rate of the electron transfer in electrochemical reactions, has been pointed out [55Fru]. It has been the basis for a method to determine the value of Epzc. The influence of the surface roughness important in particular at solid metal electrodes has been discussed extensively together with a listing of suitable methods for surface roughness determination [99Tra]. The influence of steps and kinks on values of Epzc has been discussed based on a theoretical model [03Iba]. A review of recent progress in the understanding of Epzc has been provided elsewhere [99Tra], numerous listings of values of Epzc have been published starting with [33Fru]. Apparently no comprehensive review of data has been published after [69Per], more recently only a selective review has been published [99Tra]. Relationships between exchange current densities and Epzc have been discussed [70Khe].
3.2 Determination of the electrode potential of zero charge Various methods have been employed for the determination of Epzc of liquid and solid metals. Besides purely electrochemical ones (e.g. measurement of the differential double layer capacity (see also chapter 4.2)) further techniques have been used for the investigation of the surface tension at the solid/electrolyte solution phase boundary. The employed methods can be grouped into several families based on the meas-
Landolt-Börnstein New Series IV/9A
3 Electrode potentials of zero charge
181
urement principle employed. Various methods are aimed at determining the interfacial tension or its change. They are generally regarded as electrocapillary methods. A small group of methods particularly often employed in studies of solid electrode materials employs the measurement of the interfacial capacity of the electrochemical double layer; they are summarized as capacitance methods. A broad variety of methods is based on measurements made during exposure of a fresh electrode surface to the electrolyte solution or molten electrolyte. These methods are briefly reviewed in the following section. Further details and more thorough reviews can be found in the literature [55Fru, 67Arg, 69Per, 72Con, 72Pay, 79Fru, 80Fru]. Electrocapillary and surface tension methods The interfacial tension of an electrode surface being in contact with an electrolyte solution or molten electrolyte is related to the electrode potential and the charge on the electrode in a direct way:
dγ = −q dE − ¦ ī i dμi = −σ dE − RT i
¦ ī d ln a i
(3.1)
i
with γ being the surface tension, q = σ the (surface) charge density, ai the chemical potential of component i. This makes measurements of the interfacial tension of liquid electrodes an attractive route towards the knowledge of Epzc. Based on experimental evidence [96Hai, 97Iba1, 97Iba2, 98Hai] it has been pointed out, that interfacial tension and surface stress should not be regarded as equal [98Lip, 00Sie] (see also [99Tra]). Consequently measurements of surface stress employed to identify Epzc should be considered with care. Since this debate is still open, no critical evaluation of the respective data collected in the tables is attempted. Electrocapillary curves For a liquid metal in particular the value of Epzc can be measured most precisely by identifying the electrode potential, where no current flows during a change of the electrode surface area. This requires the absence of any Faradaic reaction causing a charge transfer at an appreciable rate in the investigated range of electrode potentials. Electrocapillary curves, i.e. relationships between the surface tension γ and the electrode potential E, can be obtained most directly with a capillary electrometer as described originally by Lippmann [73Lip, 75Lip], for a thorough review see [28Fru3, 47Gra]. With this instrument the electrolyte solution/electrode interface is made inside a thin capillary tube. The height of the metal column necessary to maintain the phase boundary at a given level is proportional to the interfacial tension. Calibration is performed by using solutions of known properties. Since the value of Epzc is directly related to the maximum of the electrocapillary curve, calibration is not essential. Various designs of instruments have been reviewed [54Par, 52Gra]. The capillary can be substituted by a dropping metal electrode where the weight of the metal drop is used as a measure of the interfacial tension [03Kuc]. Using a sessile-drop Gouy measured the surface tension of the mercury/liquid interface [16Gou, 17Gou]. The same information can be obtained by measuring the drop time as a function of the electrode potential [49Gra]. (Data obtained with these methods are labelled EC). Contact angle method If a gas bubble adheres to an electrode surface being in contact with an electrolyte solution, the contact angle θ can be measured as an indicator of the interfacial tension and its change. The respective relationship is cos θ = (γg,m – γs,m)/γg,s with g, s, m referring to the gas, solution and metal phase respectively. It was initially observed by Möller, that θ changes with E [08Möl]. Assuming that γg,s and γg,m do not depend on the electrode potential a plot of relationship follows:
dγ g,s dE
Landolt-Börnstein New Series IV/9A
= −γ s,m d cos θ dE
(3.2)
182
3 Electrode potentials of zero charge
Thus an electrocapillary curve can be obtained. The assumption of γg,m being independent from the electrode potential has been questioned by Frumkin et al. [32Fru]. Although closer inspection of the influence of the potential resulted in the conclusion, that the maximum of θ occurs at Epzc (for further disscussions see [69Per]), the method has been used infrequently. The contact angle between electrode and electrolyte solution can be determined using a solid and partially emersed electrode and observing the meniscus rise [68Mor, 69Mor, 71Mor]. (Data obtained with these methods are labelled CA). Alternatively the capillary rise can be measured using a bulk acoustic wave sensor [97Che]. (Data obtained with these methods are labelled BAW). Ribbon extension method
The extension of a metal ribbon made of the electrode material hanging as a working electrode in the electrolyte solution under investigation has been measured [69Bec, 76Lin, 79Bec]. In the used experimental setup the change of the tension of the ribbon held under slight tension is recorded. A change in ribbon length is directly related to a change of the surface stress. This in turn can be used to calculate changes of the surface free energy (surface tension) according to the Shuttleworth equation. The maximum in the surface tension vs. electrode potential curve is equal to the value of Epzc as derived from the Lippmann equation. (Data obtained with this method are labelled R). Surface stress measurement method
The piezoelectric technique determines the surface tension (surface stress) of an electrode [66Gok, 70Gok, 76Gok, 79Mal1, 79Mal2, 86Seo]. Whereas no difficulties are encountered in measuring the surface tension of liquid electrodes (see above), measurements on solid materials are more difficult. In this technique a thin film of the material under study is glued to a piezoelectric element. The electrode is brought into contact with the electrolyte solution. A small sinusoidal voltage is superimposed to the slow DC-ramp applied to the electrode. This voltage dE causes a corresponding change of the surface stress dγ of the electrode and subsequently a response from the piezoelectric element. Recording the amplitude of the signal of the piezoelectric element and its phase angle with respect to the perturbation as a function of the electrode potential results in diagrams showing a sharp minimum of the amplitude and a change of the phase angle by 180° at Epzc. The use of the cantilever of an atomic force microscope as the sensing device has been reported [95Rai]. The bending of a glass sheet coated with a thin layer of the electrode metal to be investigated acting as the working electrode has been measured using a laser-beam deflection apparatus [99Uen]. (Data obtained with this method are labelled PE). Interfacial tension at the solid electrodesolution interface can also be measured with a thickness shear mode (TSW) bulk acoustic wave sensor [96Jin]. (Data obtained with this method are labelled BAW). Film electrode bending method
As already discussed with the ribbon extension method a change of the surface tension can result in changes of the mechanical dimensions of the electrode. Besides direct measurements of a change of the length and a more indirect approach via the deformation of a piezoelectric element the bending of a thin film electrode exposed to the electrolyte solution on one side only can be utilized [71Fre]. This concept takes into account earlier observations of spontaneous bending of InSb wafers attributed to differences in interfacial tension [64Spa]. Although these measurements yield only differential values of the surface tension Δγ according to
1 § ∂Δγ · = Δī ¨ ¸ 2 RT © ∂ ln a± ¹ V, T, p, ...
(3.3)
Landolt-Börnstein New Series IV/9A
3 Electrode potentials of zero charge
183
proper selection of reference states allows the determination of the desired information on the interface. With this technique the electrode material under study is coated by vapor deposition as a thin layer of approximately 100 nm on a glass strip. A change of the electrode potential applied to the metal film being in contact with an electrolyte solution results in a change of the interfacial tension Δγ, consequently the electrode bends. For small bending the curvature R is given by R = EI/M with E being Youngs modulus of the glass substrate, M being the bending moment as given by M = 0.5 δΔγd (d is the width, δ is the thickness of the electrode) and I = (1/12)δ 3d. The angular deflection AD of an electrode with the length of l is AD = Δγ 6 l /Eδ 2. A plot of the differential surface tension thus measured by means of a suitable optical device can be plotted as a function of the electrode potential etc.. The maximum of the curve corresponds to the value of Epzc. The measurement of changes in specific surface energy via Koesters laser interferometry as a function of electrode potential yielding electrocapillary curves has been suggested [97Heu] (Data obtained by this method are designated EB). Capacitance methods
Measurement of the differential capacitance C = dq/dE of the electrode/solution interface as a function of the electrode potential E results in a curve representing the influence of E on the value of C. The curves show an absolute minimum at Epzc indicating a maximum in the effective thickness of the double layer as assumed in the simple model of a condenser [39Fru]. C is related to the electrocapillary curve and the surface tension according to C = d2γ /dE2. Certain conditions have to be met in order to allow the measured capacity of the electrochemical double to be identified with the differential capacity (see [69Per]). In dilute electrolyte solutions this is generally the case. After initial difficulties in applying this method to a hanging mercury drop [60Fru] this method has been successfully adapted to a dropping mercury electrode [41Gra] and subsequently to solid electrodes [52Bre, 51Dos1, 51Dos2, 51Dos3, 51Dos4]. Experimental setups for measuring C can be classified into AC-techniques and pulse techniques [61Dam]. In early experiments the value of C was determined by comparing the AC-potential drop across an appropriately designed electrochemical cell including the electrochemical phase boundary under investigation with a calibration circuit containing a capacitor of known value [36Bor]. By comparing the potential drops the value of the double layer capacitance was determined. Using an impedance bridge Grahame [53Gra] determined the interfacial capacity. Since this setup is essentially a modified Wheatstone bridge, measurements are time consuming. More recently the setup of choice is a standard arrangement as used for cyclic voltammetry. The DC potential ramp applied to the electrode under investigation is modulated by adding a small amplitude AC voltage (a few millivolts, frequency ten to twenty Hz). The AC current flowing across the interface is detected by means of a frequency selective amplifier. Its rectified value can be recorded as a function of the electrode resulting in a C vs. E curve. Calibration of the capacity axis is done by inserting standard capacitors instead of the electrochemical cell. The AC current is directly proportional to C provided that the cell resistance is small compared to the resistive component of the interfacial impedance. This can be accomplished by a proper design of the cell and the electrode under investigation. Use of a phase sensitive amplifier suggested for detecting only the capacitive out-of-phase component has been suggested but found to be not necessary [81Fle]. Critical reviews of the method have been reported [73Lei]. (Data obtained with this method are labelled T). In some cases the cyclic voltamogram itself recorded when ramping the electrode potential as described above shows a characteristic minimum around Epzc (e.g. with single crystal gold electrodes [86Kol, 96Ham2]) (Data obtained with this method are labelled CV). Instead of applying an AC potential modulation pulse methods have been used infrequently. If a direct current pulse I of sufficiently short duration is applied in the absence of a Faradaic reaction, the transferred charge will be entirely consumed for charging the double layer. From the electrode potential vs. time slope the capacity can be calculated according to C = I/(dV/dt). Depending on the speed of any conceivable competitive Faradaic reaction the pulse can be generated by simple conventional circuitry, by square wave polarography, single pulses [58Pop, 59McM, 52Lov, 62Sch1] or triangular waves [47Bor]. A method employing potentiodynamic pulses has been described [78Brz]. An approach based on galvanostatic transients has been reported [59Mat3]. (Data obtained with this method are labelled PC). Landolt-Börnstein New Series IV/9A
184
3 Electrode potentials of zero charge
The presence of a Faradaic electrode reaction of any kind competing with the double layer charging presents a problem in determining the purely capacitive current needed to calculate the surface charge. From a plot of It1/2 vs. I1/2 (I = total electrode current) with a fixed concentration of the ions of the electrode metal dissolved in solution, the surface charge can be obtained [65But1]. (Data obtained with this method are labelled TC). Fresh-surface-exposure methods
If an electrode is brought into contact with an electrolyte solution or a molten electrolyte, the establishment of the electrochemical double layer will be accompanied by a transfer of electrical charge. In a suitable arrangement this charge can be measured as an external current. If the contact is made in a way which adjusts the electrode potential upon immersion exactly to the value of Epzc, the current will be nil. Various methods briefly described below have been devised to detect exactly this situation. Scratching and streaming electrode techniques
If it were possible to bring a clean, bare metal surface instantaneously into contact with an electrolyte solution, the potential difference between the metal and the electrolyte solution should change from zero (before contact is made) to a certain value caused by the formation of the electrochemical double layer and any Faradaic reaction. The change of this value being measurable as the electrode potential to a reference electrode versus time (relaxation time) would be indicative of the nature and the relative rate of these processes. If possible at all, in practice a finite time is needed to make the contact or to renew the electrode surface of an electrode being continuously in contact with the solution. If the rate of the double layer formation or reconstitution is fast compared to any Faradaic charge transfer process, the electrode potential observed immediately after the first, fast relaxation should correspond to the electrode potential of zero charge. Subsequent charge transfer processes will cause further potential shifts and a continuing relaxation. In a different approach to obtain a self-renewing electrode a steady stream of the metal is again used as an electrode [49Gra]. If a jet of the streaming metal is used as an electrode, its length varies as a function of the electrode potential showing a minimum at Epzc [50Riu]. Such an experimental approach is verified with a streaming mercury electrode and a solution of e.g. NaCl or KCl. The electrode potential measured with the streaming mercury showing a minimum of length corresponds to the value of Epzc. If the flow is stopped, a further relaxation of the electrode potential is observed and the finally established electrode potential in the system described would correspond to the potential of a calomel electrode. A further experimental development has been proposed [84Cza]. Obviously this method is limited to liquid metals like mercury and gallium and their amalgams respectively alloys. Modifications of this method have been reported [86Hor]. At elevated temperatures with molten salt electrolytes alloys with an appropriately low melting point can be investigated, too. If components of the solution phase are prone to electrochemical reactions (e.g. reduction of dissolved oxygen, reduction of oxidising anions) their presence may also cause Faradaic reactions and the subsequent establishment of an electrode potential different from Epzc. At first glance such a procedure seems to be highly theoretical for solid metals. The development of the scratching technique has provided an experimental approach to the ideal described above [64And, 66Bod, 67Bod, 67Per, 68And, 69And]. With this technique the electrode metal surface is scratched in situ (i.e. in the presence of an electrolyte solution) with a sapphire or corundum bit. The freshly exposed metal surface in contact with the electrolyte solution establishes a potential which is equivalent to Epzc in the absence of any sufficiently fast Faradaic process. A record of the electrode potential of the continuously scraped metal surface versus time shows an initial value always established after complete renewal of the surface, which relaxes to a different value because of the said Faradaic processes. The initial value can be taken as Epzc after careful consideration of the absence of any interfering Faradaic process. A comparison of the data obtained with this method with data obtained with the immersion method described below has been reported [74Cla2]. Although in both methods essentially the same situation - a
Landolt-Börnstein New Series IV/9A
3 Electrode potentials of zero charge
185
freshly exposed metal surface is exposed to the electrolyte solution - is present, the results tend to differ for various reasons. (Data obtained with this method are labelled S). Immersion method
If the electrode under investigation is connected to an external voltage source before being immersed into the solution with the second output of the voltage source wired to a reference electrode already immersed in the solution, the charge necessary to establish the electrochemical double layer can be recorded as a transient current at the immersion of the test electrode. If the external voltage is adjusted to a value equal to Epzc this current transient will be nil [62Jak1, 71Jak]. An advanced method taking into account the influence of gas molecules possibly adsorbed on the test electrode which may react upon immersion has been described by Kim [73Kim]. For a careful evaluation of the data and a comparison with results obtained with the open-circuit scrape method see [74Cla2]. (Data obtained with this method are labelled IM). Miscellaneous methods
Various methods including the repulsion between two electrode wires immersed in a solution, further friction and ultrasonic methods etc., which have not gained practical importance, have been reviewed elsewhere [67Arg]. Some methods, which have been employed to some extent and cannot be fitted easily into one of the groups reviewed above, are briefly treated in the following. Electron photoemission technique
Under certain conditions the illumination of the electrode/solution interface can result in an electric current. Various reasons can cause this phenomenon. Homogeneous photochemical reactions in the solution may result in electrochemically active particles, which in turn cause the flow of electric current across the interface. Absorption of electromagnetic radiation in the visible and the UV region by the metal electrode can cause the emission of electrons into the solution (photoemission, [65Bar1, 66Bar, 72Bro, 80Gur]). These electrons in turn can cause reactions at the interface termed 'heterogeneous photoreactions'. If the former process of photoemission is the central process, experimental data can be treated based on the theory developed by Brodsky and Gurevich [67Gur, 68Bro1]. At a fixed wavelength of the illuminating light the dependence of the photocurrent Ipc on the electrode potential E in concentrated solutions can be described by Ipc = A (E0 – E)5/2 with E0 being the threshold electrode potential, where the photocurrent is observed first, and A being a constant depending on the strength of illumination and the nature of the metal. Because of the influence of the potential distribution within the electrochemical double layer at dilute electrolyte concentrations the value of E in the above equation has to be substituted by E – E1 with E1 representing this influence. Evaluation of dE1/dE and of
0.4 dI pc
d( − E )
results in a value of Epzc [69Ple, 73Rot].
(Data obtained with this method are labelled P). Friction method
The mechanical friction between the electrode surface under investigation and a suitable probe depends on the electrode potential showing a maximum at Epzc. Of various experimental setups reviewed previously [69Boc2] the most recent one is used to measure the friction between a test electrode in wire shape and a cylindrical slider sitting on the wire [69Boc1]. Results are interpreted in terms of the repulsion of double layers being present on the wire and the slider [69Boc2]. (Data obtained with this method are labelled F).
Landolt-Börnstein New Series IV/9A
186
3 Electrode potentials of zero charge
Vibrating electrode method
The interface between a liquid metal and an electrolyte solution can be vibrated by applying an oscillating external pressure variation. An electric signal picked up at the oscillating interface as a function of the applied electrode potential can be registered. It shows a particular dependency, at Epzc the signal vanishes [83Mly]. (Data obtained with this method are labelled VE). Double layer repulsion method
Variations of the repulsion between two electrodes being held at the same electrode potential can be correlated to changes in the diffuse double layer [59Vor, 62Vor, 63Vor]. Assuming that the repulsion is due to charges of the same sign being present on both electrodes the repulsion should pass a minimum at Epzc provided that specific adsorption is absent. This method is analogous to the measurement of the friction (see above). (Data obtained with this method are labelled DR). Electrode displacement method
Observation of the electrode under examination being exposed to an electric field may yield information about the value of Epzc. Any charge on the electrode, which can be a wire or a colloidal particle, will result in a movement in the external field. Assuming that the movement is due to charges being present on the electrode the rate of the movement should pass through a minimum at Epzc provided that specific adsorption is absent. (Data obtained with this method are labelled ED). Acousto-electrochemical method
If sound vibrations are applied to an electrode being in contact with a solution, a variable electrode potential component ΔE is generated. Its amplitude depends on the electrode potential E. It shows a maximum at the Epzc. Further details have been provided elsewhere [66Kuk2]. (Data obtained with this method are labelled AE). Organic adsorption method
Given that certain conditions are met, an organic molecule can be used as a probe of the electrostatic field in the compact Helmholtz double layer. Assuming field/dipole interactions across this layer is the basis for an explanation of the adsorption of neutral organic molecules on the electrode surface. At Epzc this electrostatic field across the double layer arising from excess charge on the electrode is zero. At a given fixed concentration of the organic molecule in the solution phase its concentration on the electrode surface will be independent of the concentration of the supporting electrolyte. Thus potential dependent curves of surface coverage with the organic material at various concentrations of the supporting electrolyte for different supporting electrolyte systems will intersect at the potential corresponding to Epzc.The coverage is determined using a radiotracer technique (see also 4.2). Further details have been reported [63Dah, 63Gre]. (Data obtained with this method are labelled OA). Ionic adsorption
A correlation between the amount of adsorbed ions and the electrode potential, in particular Epzc, has been identified apparently for the first time by Frumkin and Obrutschewa [26Fru]. A minimum of ionic adsorption was found at Epzc, this is equivalent to the absence of specific adsorption at Epzc. The measurement of the amount of adsorbed ions was performed by measuring the ionic concentration in the solution as a function of the electrode potential or by measuring the surface concentration of adsorbed ions by e.g. radiotracer techniques (see also 4.2). (Data obtained with this method are labelled IA).
Landolt-Börnstein New Series IV/9A
3 Electrode potentials of zero charge
187
Isoelectronic shift of potential
By measuring the hydrogen electrode potential as a function of the concentration of hydrogen ions, i.e. of the pH-value of the electrolyte solution, at a constant charge on the electrode it is possible to calculate the dependence of the adsorption of hydrogen ions on the electrode potential. Thermodynamic treatment of the obtained data allows the calculation of Epzc [66Fru2, 68Fru, 68Pet, 69Pet]. (Data obtained with this method are labelled ISS). CO charge displacement method
Carbon monoxide CO is known to become strongly adsorbed on various metals both from the gas phase as well as from the liquid phase. When CO is present in an aqueous electrolyte solution it will displace other species less strongly adsorbed on a metal electrode surface of e.g. platinum [92Cla]. Charge vs. time transients recorded at various fixed electrode potentials outside the potential region, where electrooxidation of CO or any other Faradaic process occurs, yields data pertaining to the charge and thus the amount of species desorbed (displaced) during CO adsorption. Transients recorded at various COadsorption electrode potentials can be used to identify Epzc. This method (which is sometimes called in abbreviated form 'charge displacement method') has been applied successfully also to the determination of local values of Epzc on metals showing areas with significantly different CO adsorption properties [00Alv]. (Data obtained with this method are labelled CO). Radiotracer technique
The relationship between the amount of adsorbed particles of a certain type (ion, organic molecule etc.) and the electrode potential can be used to identify Epzc. This has been discussed in detail in the description of methods given above. The central aspect of all methods is the determination of the amount of species actually adsorbed. One method is the radiotracer technique. The species to be adsorbed has to be radioactive. In particular radioactively labelled species emitting β-radiation are employed. The amount of radiation emitted from the electrode is directly proportional to the amount of adsorbed species after careful consideration of the radiation of dissolved species and the thermal background. In order to increase the surface area accessible for adsorption electrodes to be investigated, rough or even porous electrodes with a considerably enlarged ratio of true to geometric surface area can be prepared. Since species in the solution phase as well as in the adsorbed state are both radioactive, the radiation emitted from the dissolved species has to be removed or at least decreased somehow. This can be achieved preferably by using a thin layer technique wherein the electrolyte solution is squeezed away from the electrode as soon as the adsorption equilibrium is attained. Numerous reviews describing details of this method are available [95Hor, 86Zel, 85Hor, 84Kaz, 65Kaz, 65Bal2, 64Boc1, 60Blo]; for general information see also [65Erw]. (Data obtained with this method are labelled RT.) Salting out method
With some metals the value of Epzc cannot be derived from e.g. tensammetric curves, because the value of Epzc is positive against the standard potential. Consequently Faradaic currents caused by the dissolution of the metal would interfere with the registration of the supposedly purely capacitive current flowing across the interface. Calculation of the charge on the electrode as a prerequisite for the determination of the electrode potential value, where σ = 0, can be based on the dependence of the cathodic desorption potential Edes of an organic substance at a given fixed concentration on the variable concentration of the electrolyte in the electrolyte solution [75Bat, 74Dam]. This dependence shows a maximum, because in a dilute solution the value of Edes shifts towards anodic potentials with an increase of the electrolyte concentration because of an increase of the surface charge. At even higher electrolyte concentrations salting out will occur and the value of Edes will shift again towards cathodic values. From the observed maximum value of Edes it is possible to calculate the corresponding surface charge. Integration of the capacitance vs. the electrode potential curve measured in the range of electrode potentials, where no Faradaic current interferes, Landolt-Börnstein New Series IV/9A
188
3 Electrode potentials of zero charge
results in a charge vs. electrode potential curve. Extrapolation towards σ = 0 results in a value of Epzc. (Data obtained with this method are labelled SO). A related approach suggested by Frumkin [ 74Fru2] is based on the assumption, that the surface charges of metals at the potential of desorption Edes of the same organic substance (e.g. n-amyl alcohol) at the same concentration are equal. Further calculation is similar to the procedure outlined above. (Data obtained with this method are labelled DE). Hardness measurements
Various mechanical properties of a metal like e.g. creep, deformation under mechanical stress, hardness, friction (see above) etc. are presumed to be dependent on the electrode potential. If measurements of a selected property as a function of electrode potential reveal an extreme value at a certain electrode potential identical with Epzc, the method can be used for determinations of Epzc. Although there does not seem to exist a firm theory linking the mechanical hardness of a solid with the electrode potential, intuitively a relationship between hardness and surface tension γ seems to be reasonable. In early experiments the mechanical damping of a pendulum resting on the electrode under investigation was used. The rate of change of the pendulum's swing amplitude was recorded as a function of the electrode potential [44Reb]. It was assumed, that the damping effect was directly related to the bulk metal hardness. Later work reviewed by Perkins and Andersen [69Per] related the damping to surface oxides, repulsion of the double layers on the test electrode and sampling device (pendulum etc.) and other effects. Results obtained with the pendulum method are nevertheless still assigned to measurements of surface hardness. The dependence of the erosion of a vibrating electrode immersed in an electrolyte solution containing an abrasive additive (e.g. corundum powder) on the electrode potential was also employed [66Kuk1] (Data obtained with this method are labelled H). Permanent deformation has also been investigated. The rate of flow of gold wires has been found to depend on the electrode potential with a minimum of the rate at Epzc [51Pfü]. The creep of a lead electrode has been studied [69Lik]. (Data obtained with this method are labelled FL). Electroreduction of ions
If charged particles are involved in an electrode process, the rate of this process depends on the charge on the electrode surface, since adsorption or desorption of reaction participants is influenced by the charge on the electrode. It has been shown experimentally, that the rate of reaction for the reduction of S2O82- drops sharply in the vicinity of Epzc [55Fru]. The same has been observed for a few other electrode reactions including the hydrogen evolution reaction [69Kil]. More recently similar relationships have been observed for the electroreduction of N2O [95Att]. From suitable kinetic measurements the value of Epzc can be deduced. (Data obtained with this method are labelled ER). Gravimetric method
Based on the theory of wetting [85deG] the electrocapillary action at the three phase boundary liquid/gas/partially immersed solid electrode can be understood. Youngs equation [52Goo, 59Joh] describes this situation for a smooth rigid isotropic metal surface: cos θ = (γg,s – γs,l)/γg,l with g,s,l referring to the gas, solid and liquid phase respectively and θ being the contact angle formed by the metal and the liquid. For a thin metal sheet of weight m0g in air attached to one end of a microbalance beam and partially immersed in a liquid it can be demonstrated, that mg = m0g – wdzρ + 2(w + d) γg,lcos θ with m mass of the sheet, w width and d thickness of the sheet, z depth of immersion, ρ difference in density between gas and liquid, g gravitational constant. Since an accurate measurement of z is difficult, it is desirable to have the term wdzρ as small as possible in comparison to 2(w + d) γg,lcos θ. This can be done by using thin sheets with small d. Accordingly the equation can be rewritten as γg,l cos θ = (m – m0)g/2w. A change of the electrode potential E applied to the sheet will result in a change of the contact angle θ and a rise or drop of the meniscus [71Mor] with an accompanying change of the detectable weight of the sheet (m – m0). Assuming that γg,l does not change with E a plot of (m – m0) vs. E will result in an electrocapillary curve. Landolt-Börnstein New Series IV/9A
3 Electrode potentials of zero charge
189
According to Balashova and Frumkin [38Bal] also γg,s can be assumed to be independent from the electrode potential. Thus partial differentiation with respect to E is possible:
γ lg
∂ cos θ § ∂γ sl · = −¨ ¸ ∂E © ∂E ¹ T, p, ȝi
(3.4)
The right hand term is equal to the excess surface charge density qM on the metal electrode of the Lippmann equation. Since Lippmann's equation was originally derived for the liquid metal/solution interface, the reversible work of formation of a unit surface of a solid electrode has to be reconsidered. This work now contains a contribution γ caused by the plastic cleavage and the surface stress Y caused by elastic stretching under equilibrium conditions [86Tra]. Accordingly Lippmann's equation has to be reformulated for the solid metal/liquid interface
§ ∂γ · § ∂ε e · − ¨ sl ¸ = qM + ( γ − Y ) ¨ ∂E ¸ © ∂E ¹T, p, mi © ¹ T, p, ȝi
(3.5)
with εe being the elastic surface strain. The second term in this equation is not definitely known; nevertheless it has been demonstrated, that the elastic stress Y of a gold ribbon is essentially identical to the interfacial tension γ of an unstrained gold crystal [79Moh]. Thus the second term of the equation can be neglected. Plots of (m-m0)g/2w vs. E can be used to obtain qM, the double layer capacity CDL and the ionic excess Γ±. The experimental setup and further details have been reported [87Mur, 88Mur, 89Mur]. (Data obtained with this method are designated G). Null solution method
Based on the original hypothesis of the evolution of potential differences at the metal/solution interface proposed by Nernst [97Ner] Palmær devised an experiment which resulted in the value of Epzc [98Pal]. It is based on the observation, that depending on the concentration of dissolved metal ions in the solution these ions will deposit on the metal if their 'osmotic pressure' in the solution is larger than in the metal. If their 'osmotic pressure' is smaller, the metal will be dissolved in part until equilibrium is attained.With an appropriate solution concentration neither deposition nor dissolution will happen. This solution is called null solution. Closer inspection of the situation at the interface in the null solution reveals, that exactly under these conditions there is no net charge on the electrode. This is exactly the condition for the registration of Epzc. (Data obtained with this method are designated NS). Spectroscopic methods
Various spectroscopic methods applied to studies of the electrochemical interface (spectroelectrochemical methods) provide information about structure and dynamics at this interface. Since e.g. coverage and degree/strength of the adsorbate/metal bonding depend on the potential drop across the interface and consequently on the charge on the metal surface, any spectroscopic information indicating zero charge on the surface will identify Epzc. Sum frequency generation SFG has been employed successfully [95Tad]. (Data obtained with this method are designated SFG). Surface enhanced Raman spectroscopy SERS [90Sob, 92Joa] and interfacial infrared spectroscopy in various methodologies can be employed to probe vibrational spectra of species directly interacting with the electrode surface. The electric field at the electrode/solution interface as well as the charge on the electrode strongly influence position and intensity of vibrational bands. From a comparison of vibrational spectra of the adsorbed species in its free and in its adsorbed form (the latter as a function of applied electrode potential) the situation, where there is no charge on the electrode, i.e. Epzc, can be deduced. (Data obtained with this method are designated VIB). Relationships between the surface plasmon excitation energy and the electrode potential have been stud-
Landolt-Börnstein New Series IV/9A
190
3 Electrode potentials of zero charge
ied [80Tad]. A shift of this energy with Epzc has been found for the Ag(111) surface as compared with a polycristalline silver surface [80Tad]. No practical use of this observation has been reported. Theoretical approaches
Based on the theory of electron emission from a heterogeneous surface Epzc values have been calculated for two-phase systems (alloys). Calculated data show good agreement with experimental data for the studied alloys [65Gri], an influence of the mode of preparation (electrochemical deposition or melting) was observed. In one example this was attributed to the more developed texture of the alloy, i.e. more crystals of either alloy constituent were present [67Gri1]. Experimental values are tabulated below, calculated ones are not included in this listing. (Data obtained with this method are designated EE). General remarks on the tables
All values taken from literature sources are given on the standard hydrogen electrode scale. If necessary, conversions were based on standard values for the involved reference electrodes. If a single report contains several values measured with different concentrations of the electrolyte under investigation, all values are included in the table in order to allow insight into the influence of the concentration. Data are listed according to the alphabetical order of the electrode material. Polycrystalline materials are listed first followed by single crystal samples and amalgam electrodes for every element. Within a given electrode material data are arranged according to increasing concentration of the supporting electrolyte solution.
Landolt-Börnstein New Series IV/9A
R1
References 73Lip 75Lip 97Ner 98Pal 03Kuc 08Möl 10Gou1 10Gou2 16Gou 17Gou 26Fru 28Fru2 28Fru3 32Fru 33Fru 36Bor 38Bal 39Fru 41Gra 44Reb 47Bor 47Gra 49Gra 50Riu 51Dos1 51Dos2 51Dos3 51Dos4 51Pfü 52Bre 52Goo 52Gra 52Lov 53Gra 53Vas 54Par 55Fru 55Uks2 56Khe 56Ran 57Gra 57Khe 58Pop 59Joh 59Mat3 59McM 59Vor Landolt-Börnstein New Series IV/9A
Lippmann, G.: Ann. Phys. (Leipzig) 149 (1873) 547. Lippmann, G.: Ann. Chim. Phys. (Leipzig) 5 (1875) 494. Nernst, W.: Z. Elektrochem. 4 (1897) 29. Palmaer, W.: Z. Phys. Chem. 25 (1898) 257. Kucera, G.: Ann. Phys. 11 (1903) 529. Möller, H.G.: Z. Phys. Chem. (Leipzig) 65 (1908) 226. Gouy, G.: J. Phys. (Paris) 9 (1910) 457. Gouy, G.: C. R. Acad. Sci. (Paris) 149 (1910) 654. Gouy, G.: Ann. Phys. (Paris) Ser. 9 6 (1916) 3. Gouy, G.: Ann. Phys. (Paris) Ser. 9 7 (1917) 129. Frumkin, A., Obrutschewa, A.: Z. Anorg. Allg. Chem. 158 (1926) 84. Frumkin, A., Gorodetzkaja, A.: Z. Phys. Chem. 136 (1928) 451. Frumkin, A.: Ergeb. Exakten Naturwiss. 7 (1928) 235. Frumkin, A., Gorodetzkaja, A., Kabanov, B., Nekrassov, N.: Phys. Z. Sowjetunion 1 (1932) 255. Frumkin, A.: Phys. Z. Sowjetunion 4 (1933) 239. Borisova, T., Proskurnin, M.: Acta Physicochim. URSS 4 (1936) 819. Balashova, N., Frumkin, A.: C. R. Acad. Sci. URSS 20 (1938) 449. Vorsina, M., Frumkin, A.: C. R. Acad. Sci. URSS 24 (1939) 918. Grahame, D.: J. Am. Chem. Soc. 63 (1941) 1207. Rebinder, P.A., Venstrem, E.K.: Acta Physicochim. URSS 19 (1944) 36. Borisova, T.I., Proskurnin, M.A.: Zh. Fiz. Khim. 21 (1947) 463. Grahame, D.C.: Chem. Rev. 41 (1947) 441. Grahame, D., Larsen, R.P., Poth, M.A.: J. Am. Chem. Soc. 71 (1949) 2978. Rius, A., Marin, A.: An. R. Soc. Esp. Fis. Quim. Ser. A 46 (1950) 93. Doss, K.S.G., Kalyanasundaram, A.: Current Sci. 20 (1951) 199. Doss, K.S.G., Agarwal, H.P.: Proc. Indian Acad. Sci. Sect. A 34 (1951) 229. Doss, K.S.G., Agarwal, H.P.: Proc. Indian Acad. Sci. Sect. A 34 (1951) 263. Doss, K.S.G., Agarwal, H.P.: Proc. Indian Acad. Sci. Sect. A 33 (1951) 66. Pfützenreuther, A., Masing, G.: Z. Metallkd. 42 (1951) 361. Breyer, B., Hacobian, S.: Aust. J. Sci. Res. Ser. A 5 (1952) 500. Good, R.J.: J. Am. Chem. Soc. 74 (1952) 5041. Grahame, D.C., Coffin, E.M., Cummings, J.I., Poth, M.A.: J. Am. Chem. Soc. 74 (1952) 1207. Loveland, J.W., Elving, P.J.: J. Phys. Chem. 56 (1952) 250; 255. Grahame, D.: J. Chem. Phys. 21 (1953) 1054. Vasenin, R.M.: Zh. Fiz. Khim. 27 (1953) 878. Parsons, R., in: Modern Aspects of Electrochemistry, Vol. 1, Bockris, J.O’M., Conway, B.E. (eds.), London: Butterworth, 1954. Frumkin, A.: Z. Elektrochem. 59 (1955) 807. Ukshe, E.A., Levin, A.I.: Zh. Fiz. Khim. 29 (1955) 219. Kheifets, V.L., Krasikov, B.S.: Dokl. Akad. Nauk SSSR 109 (1956) 586. Randles, J.E.B., Whiteley, K.S.: Trans. Faraday Soc. 52 (1956) 1509. Grahame, D.C.: J. Am. Chem. Soc. 79 (1957) 2093. Kheifets, V.L., Krasikov, B.S.: Zh. Fiz. Khim. 31 (1957) 1992. Popat, P.V., Hackerman, N.: J. Phys. Chem. 62 (1958) 1198. Johnson, R.E.: J. Phys. Chem. 63 (1959) 1655. Matsuda, H., Oka, S., Delahay, P.: J. Am. Chem. Soc. 81 (1959) 5077. McMullen, J.J., Hackerman, N.: J. Electrochem. Soc. 106 (1959) 341. Voropaeva, T.N., Deryagin, B.V., Kabanov, B.N.: Dokl. Akad. Nauk SSSR 128 (1959) 981.
R2 60Blo 60Fru 61Dam 62Jak1 62Kho 62Sch1 62Vor 63Ant 63Dah 63Gre 63Vor 64And 64Boc1 64Spa 65Bal2 65Bar1 65But1 65Erw 65Gri 65Kaz 66Bar 66Bod 66But1 66Fru2 66Gok 66Kuk1 66Kuk2 66Lor 66Pri 67Arg 67Bod 67Fru 67Gri1 67Gur 67Per 68And 68Boc1 68Bro1 68Fru 68Mor 68Pet 69And 69Bec 69Boc1 69Boc2 69Kil
Blomgren, E.A., Bockris, J.O’M.: Nature (London) 186 (1960) 305. Frumkin, A.: J. Electrochem. Soc. 107 (1960) 461. Damaskin, B.B.: Usp. Khim. 30 (1961) 220. Jakuszewski, B., Kozlowski, Z.: Rocz. Chem. 36 (1962) 1873. Khomutov, N.E.: Zh. Fiz. Khim. 36 (1962) 2721. Schmid, G.M., Hackerman, N.: J. Electrochem. Soc. 109 (1962) 243. Voropaeva, T.N., Deryagin, B.V., Kabanov, B.N.: Kolloidn. Zh. 24 (1962) 396. Antropov, L.I.: Ukr. Khim. Zh. 29 (1963) 555. Dahms, H., Green, M.: J. Electrochem. Soc. 110 (1963) 1075. Green, M., Dahms, H.: J. Electrochem. Soc. 110 (1963) 466. Voropaeva, T.N., Deryagin, B.V., Kabanov, B.N.: Izv. Akad. Nauk SSSR, Otd. Khim. Nauk (1963) 257. Andersen, T.N., Perkins, R.S., Eyring, H.: J. Am. Chem. Soc. 86 (1964) 4496. Bockris, J.O’M., Green, M., Swinkels, D.A.J.: J. Electrochem. Soc. 111 (1964) 743. Sparnaay, M.J.: Surf. Sci. 1 (1964) 213. Balashova, N.A., Kazarinov, V.E.: Usp. Khim. 34 (1965) 1721. Barker, G.C., Gardner, A.W.: Osnovnye Voprosy Sovremennoi Teoreticheskoi Elektrokhimii, Izd. Mir, Moscow, 1965, p. 118. Butler, J.N., Meehan, M.L.: J. Phys. Chem. 69 (1965) 4051. Erwall, L.G., Forsberg, H.G., Ljunggren, K.: Radioaktive Isotope in der Technik, Braunschweig: Friedr. Vieweg & Sohn, 1965. Grilikhes, M.S., Krasikov, B.S.: Vestn. Leningr. Univ. Ser. 4, Fiz. Khim. 4 (1965) 131. Kazarinov, V.E., Balashova, N.A., Kulesneva, M.I.: Elektrokhimiya 1 (1965) 975. Barker, G.C., Gardner, A.W., Sammon, D.C.: J. Electrochem. Soc. 113 (1966) 1182. Bodé, D.D.: Ph.D. Thesis, University of Utah, 1966. Butler, J.N.: J. Phys. Chem. 70 (1966) 2312. Frumkin, A., Petry, O., Marvet, R.: J. Electroanal. Chem. 12 (1966) 504. Gokhstein, A.Y.: Elektrokhimiya 2 (1966) 1318. Kukoz, F.I., Semenchenko, S.A.: Elektrokhimiya 2 (1966) 74. Kukoz, F.I., Semenchenko, S.A., Bogdanov, V.I.: Issled. Obl. Khim. Istochnikov Toka (1966) 201. Lorenz, W.J., Fischer, F.: Electrochim. Acta 11 (1966) 1597. Prisekina, T.N., Kusnetzov, V.A., Maljutina, N.P.: Elektrokhimiya 2 (1966) 1307. Argade, S.G., Gileadi, E., in: Electrosorption, Gileadi, E. (ed.), New York: Plenum Press, 1967, p. 87. Bodé, D.D., Andersen, T.N., Eyring, H.: J. Phys. Chem. 71 (1967) 792. Frumkin, A.N.: J. Res. Inst. Catal. Hokkaido Univ. 15 (1967) 61. Grigor'ev, N.B.: Zashch. Met. 3 (1967) 357. Gurevich, Yu.Ya., Brodsky, A.M., Levich, B.G.: Elektrokhimiya 3 (1967) 1302. Perkins, R.S.: Ph.D. Thesis, University of Utah, 1967. Andersen, T.N., Anderson, J.L., Bodé, D.D.: J. Res. Inst. Catal. Hokkaido Univ. 16 (1968) 449. Bockris, J.O’M., Argade, S.E.: J. Chem. Phys. 49 (1968) 5133. Brodsky, A.M., Gurevich, Yu.Ya.: Zh. Eksp. Teor. Fiz. 54 (1968) 213. Frumkin, A., Petry, O., Kossaya, A., Entina, V., Topolev, V.: J. Electroanal. Chem. 16 (1968) 175. Morcos, I., Fisher, H.: J. Electroanal. Chem. 17 (1968) 7. Petrii, O.A., Kotlov, Yu.G.: Elektrokhimiya 4 (1968) 774. Andersen, T.N., Anderson, J.L., Eyring, H.: J. Phys. Chem. 73 (1969) 3562. Beck, T.R.: J. Phys. Chem. 73 (1969) 466. Bockris, J.O’M., Argade, S.E., Gileadi, E.: Electrochim. Acta 14 (1969) 1259. Bockris, J.O’M., Argade, S.D.: J. Chem. Phys. 50 (1969) 1622. Kilimnik, A.B., Rotinyan, A.L.: Elektrokhimiya 5 (1969) 1234.
Landolt-Börnstein New Series IV/9A
R3 69Lik 69Mor 69Per 69Pet 69Ple 70Fru 70Gok 70Khe 71Fre 71Jak 71Mor 71Tra 72Bro 72Con 72Pan1 72Pay 73Kim 73Lei 73Rot 74Cla2 74Dam 74Fru2 75Bat 75Fru 76Ard 76Gok 76Lin 77Tra 78Brz 79Bec 79Fru 79Mal1 79Mal2 79Moh 80Fru
80Gur 80Tad 81Fle 82Lec
Landolt-Börnstein New Series IV/9A
Likhtman, V., Kochanova, L., Leikis, D., Shchukin, E.: Elektrokhimiya 5 (1969) 729. Morcos, I.: J. Electroanal. Chem. 20 (1969) 479. Perkins, R.S., Andersen, T.N.: Modern Aspects of Electrochemistry, Vol. 5, Bockris, J.O’M., Conway, B.E. (eds.), New York: Plenum Press, 1969, p. 203. Petrii, O.A., Frumkin, A.N., Kotlov, Yu.G.: Elektrokhimiya 5 (1969) 476. Pleskov, Yu.V., Rotenberg, Z.A.: J. Electroanal. Chem. 20 (1969) 1. Frumkin, A., Petry, O., Damaskin, B.: J. Electroanal. Chem. 27 (1970) 81. Gokhstein, A.Y.: Electrochim. Acta 15 (1970) 219. Kheifets, V.L., Krasikov, B.S., Rotinyan, A.L.: Elektrokhimiya 6 (1970) 916. Fredlein, R.A., Damjanovic, A., Bockris, J.O’M.: Surf. Sci. 25 (1971) 261. Jakuszewsi, B., Kozlowski, Z., Partyka, S., Przasnyski, M., Romanovski, S.: Elektrokhimiya 7 (1971) 804. Morcos, I.: J. Colloid Interface Sci. 37 (1971) 410. Trasatti, S.: J. Electroanal. Chem. 33 (1971) 351. Brodsky, A., Pleskov, Yu.: Progress in Surface Science 2, Davidson, S. (ed.), Oxford: Pergamon, 1972, p. 2. Conway, B.E.: Techniques of Electrochemistry, Vol. 1, Yeager, E., Salkind, A.J. (eds.), New York: Wiley-Interscience, 1972, p. 389. Panin, V.A., Rybalka, K.V., Leikis, D.I.: Elektrokhimiya 8 (1972) 390. Payne, R.: Techniques of Electrochemistry, Vol. 1, Yeager, E., Salkind, A.J. (eds.), New York: Wiley-Interscience, 1972, p. 43. Kim, S.H.: J. Phys. Chem. 77 (1973) 2787. Leikis, D.I., Rybalka, K.V., Sevastyanov, E.S., Frumkin, A.N.: J. Electroanal. Chem. 46 (1973) 161. Rotenberg, Z., Pleskov, V.Yu.: Elektrokhimiya 9 (1973) 1419. Clark, G.J., Andersen, T.N., Valentine, R.S., Eyring, H.: J. Electrochem. Soc. 121 (1974) 618. Damaskin, B.B., Batrakov, V.V.: Elektrokhimiya 10 (1974) 140. Frumkin, A.N., Damaskin, B.B., Grigoryev, N.B., Bagotskaya, I.A.: Electrochim. Acta 19 (1974) 69. Batrakov, V.V., Damaskin, B.B.: J. Electroanal. Chem. 65 (1975) 361. Frumkin, A.N., Petrii, O.A.: Electrochim. Acta 20 (1975) 347. Ardizzone, S., Longhi, P., Mussini, T., Rondinini, S.: J. Chem. Thermodyn. 8 (1976) 557. Gokhstein, A.Y.: Surface Tension of Solids and Adsorption, Moscow: Nauka, 1976. Lin, K.-F., Beck, T.R.: J. Electrochem. Soc. 123 (1976) 1145. Trasatti, S.: Advances in Electrochemistry and Electrochemical Engineering, Vol. 10, Gerischer, H., Tobias, C.W. (eds.), New York: John Wiley, 1977, p. 213. Brzostowska-Smolska, M., Milkowska, M., Kalinowski, A., Minc, S.: J. Electroanal. Chem. 89 (1978) 389. Beck, T.R., Lin, K.-F.: J. Electrochem. Soc. 126 (1979) 252. Frumkin, A.: Zero Charge Potentials (Potentsialye Nulevogo Zaryada), Nauka, Moscow, 1979. Malpas, R.E., Fredlein, R.A., Bard, A.J.: J. Electroanal. Chem. 89 (1979) 171. Malpas, R.E., Fredlein, R.A., Bard, A.J.: J. Electroanal. Chem. 89 (1979) 339. Mohilner, D.M., Beck, T.R.: J. Phys. Chem. 83 (1979) 1160. Frumkin, A.N., Petrii, O.A., Damaskin, B.B.: Comprehensive Treatise of Electrochemistry, Vol. 1, Bockris, J'O.M., Conway, B.E., Yeager, E. (eds.), New York: Plenum Press, 1980, p. 221. Gurevich, Y.Y., Pleskov, Y.V., Rotenberg, Z.A.: Photoelectrochemistry, New York: Consultants, 1980. Tadjeddine, A., Kolb, D.M., Kötz, R.: Surf. Sci. 101 (1980) 277. Fleischmann, M., Robinson, J., Waser, R.: J. Electroanal. Chem. 117 (1981) 257. Lecoeur, J., Andro, J., Parsons, R.: Surf. Sci. 114 (1982) 320.
R4 83Mly 84Cza 84Kaz
85Hor 85deG 86Hor 86Kol 86Seo 86Tra 86Vor 86Zel 87Bac 87Mur 88Bor2 88Ham 88Mur 89Mur 90Sil 90Sob 92Cla 92Joa 92Tra2 95Att 95Hor 95Rai 95Tad 96Hai 96Ham2 96Jin 96Sil 97Che 97Heu 97Iba1 97Iba2 97Kor 98Hai 98Lip 98Wea 99Rit 99Tra 99Uen 00Alv 00Sie 03Iba
Mlynarczyk, R., Figaszewski, Z., Koczorowski, Z.: Pol. J. Chem. 57 (1983) 1011. Czajkowski, J.M., Blaszczyk, T., Kazmierczak, D.: Electrochim. Acta 29 (1984) 439. Kazarinov, V.E., Andreev, V.N.: Comprehensive Treatise of Electrochemistry, Vol. 9, Yeager, E., Bockris, J.O’M., Conway, B.E., Sarangapani, S. (eds.), New York: Plenum Press, 1984, p. 393. Horanyi, G.: Wiss. Z. Humboldt-Univ. Berlin, Math. Naturwiss. Reihe 34 (1985) 37. de Gennes, P.G.: Rev. Mod. Phys. 57 (1985) 827. Horanyi, T.S., Takács, M.: J. Electroanal. Chem. 215 (1986) 83. Kolb, D.M., Schneider, J.: Electrochim. Acta 31 (1986) 929. Seo, M., Makino, T., Sato, N.: J. Electrochem. Soc. 133 (1986) 1138. Trasatti, S., Parsons, R.: Pure Appl. Chem. 58 (1986) 437. Vorotyntsev, M.A.: Modern Aspects of Electrochemistry, Vol. 17, Bockris, J.O’M., Conway, B.E., White, R.E. (eds.), New York: Plenum Press, 1986, p. 131. Zelenay, P., Habib, M.A., Bockris, J.O'M.: Langmuir 2 (1986) 393. Bacchetta, M., Francesconi, A., Trasatti, S., Doubova, L., Hamelin, A.: J. Electroanal. Chem. 218 (1987) 355. Murphy, O.J., Wainright, J.S.: J. Electrochem. Soc. 134 (1987) 267. Borkowska, Z., Hamelin, A.: J. Electroanal. Chem. 241 (1988) 373. Hamelin, A., Stoicoviciu, L., Dubova, N.M., Trasatti, S.: J. Electroanal. Chem. 244 (1988) 133. Murphy, O.J., Wainright, J.S.: J. Electrochem. Soc. 135 (1988) 138. Murphy, O.J., Wainright, J.S.: Langmuir 5 (1989) 519. Silva, F., Sottomayor, M.J., Hamelin, A.: J. Electroanal. Chem. 294 (1990) 239. Sobocinski, R.L., Pemberton, J.E.: Langmuir 6 (1990) 43. Clavilier, J., Albalat, R., Gomez, R., Orts, J.M., Feliu, J.M., Aldaz, A.: J. Electroanal. Chem. 330 (1992) 489. Joa, S.L., Pemberton, J.E.: Langmuir 8 (1992) 2301. Trasatti, S.: J. Electroanal. Chem. 329 (1992) 237. Attard, G.A., Ahmadi, A.: J. Electroanal. Chem. 389 (1995) 175. Horanyi, G., Kolics, A.: Sov. Electrochem. (English Transl.) 31 (1995) 941. Raiteri, R., Butt, H.-J.: J. Phys. Chem. 99 (1995) 15728. Tadjeddine, A., Peremans, A., Guyot-Sionnest, P.: Surf. Sci. 335 (1995) 210. Haiss, W., Sass, J.K.: Langmuir 12 (1996) 4311. Hamelin, A.: J. Electroanal. Chem. 407 (1996) 1. Jin-Hua, C., Li-Hua, N., Zhuo, Y.S.: J. Electroanal. Chem. 414 (1996) 53. Silva, F., Sottomayor, M.J., Martins, A.: J. Chem. Soc. Faraday Trans. 92 (1996) 3693. Chen, J.-H., Si, S.-H., Nie, L.-H., Yao, S.-Z.: Electrochim. Acta 42 (1997) 689. Heusler, K.E., Lang, G.: Electrochim. Acta 42 (1997) 747. Ibach, H.: Surf. Sci. Rep. 29 (1997) 193. Ibach, H., Bach, C.E., Giesen, M., Grossmann, A.: Surf. Sci. 375 (1997) 107. Korzeniewski, C., Conway, B.E. (eds.): The Electrochemical Double Layer, Pennington: The Electrochemical Society, 1997. Haiss, W., Nichols, R.J., Sass, J.K., Charle, K.P.: J. Electroanal. Chem. 452 (1998) 199. Lipkowski, J., Schmickler, W., Kolb, D.M., Parsons, R.: J. Electroanal. Chem. 452 (1998) 193. Weaver, M.J.: Langmuir 14 (1998) 3932. Ritchie, I.M., Bailey, S., Woods, R.: Advan. Colloid Interface Sci. 80 (1999) 183. Trasatti, S., Lust, E.: Modern Aspects of Electrochemistry, Vol. 33, White, R.E., Conway, B.E., Bockris, J.O'M., (eds.) New York: Kluwer Academic/Plenum Publisher, 1999, p. 1. Ueno, K., Seo, M.: J. Electrochem. Soc. 146 (1999) 1496. Álvarez, B., Climent, V., Feliu, J.M., Aldaz, A.: Electrochem. Commun. 2 (2000) 427. Sieradzki, K., Friesen, C., Dimitrov, N.: 198. Electrochemical Society Meeting, Phoenix, Arizona, USA, 22.-27.10.2000, Extended Abstracts. Ibach, H., Schmickler, W.: Phys. Rev. Lett. 91 (2003) 016106.
Landolt-Börnstein New Series IV/9A
3 Electrode potentials of zero charge
191
Table 3.1. Electrode potentials of zero charge of metal electrodes in contact with electrolyte solutions. Electrode
Solution 1)
Aluminum (Al)
0.01 M KCl/H2O 0.01 M LiCl/methanol 0.01 N LiCl/methanol 0.01 M LiCl/ethanol 0.01 N LiCl/ethanol 0.01 M LiCl/ethanol 0.01 N LiCl/2-butanol 0.01 N LiCl/2-propanol 5 mM TBABF4/dimethylformamide 5 mM TBABF4/dimethylsulfoxide
IM IM IM IM IM IM IM IM T T
–0.523 –0.623 –0.632 –0.751 –0.752 –0.751 –0.81 –0.77 –2.05 –1.75
62Jak1 64Jak2 65Jak1 64Jak2 65Jak1 64Jak2 65Jak1 65Jak1 91Saf 91Saf
Antimony (Sb)
0.01 N HCl/H2O HClO4/methanol 0.002 N KF/H2O KF; NaF/H2O 0.002 N KCl/H2O 0.002 N KClO4/H2O 0.002 N KClO4/H2O KNO3/H2O 0.002 N K2SO4/H2O 1 N K2SO4/H2O 0.002 N KNO3/H2O 1 N NaClO4/H2O 0.002 N NaF/H2O 0.002 N NaF/H2O 1 N Na2SO4/H2O 1 N Na2SO4/H2O LiClO4/EtOH 0.0005 M NaF+0.0005 M HCl/H2O 0.001 M NaF/H2O 0.002 N NaF/H2O 0.001 M NaF/ethanol 0.001 M NaF/H2O 0.002 N NaF/H2O LiClO4/EtOH 0.0005 M NaF+0.0005 M HCl/H2O 0.001 M NaF/H2O 0.001 M NaF/ethanol 0.002 M NaF/H2O 0.002 N NaF/H2O 0.002 M NaF/H2O
T T T T T T T T T S T S T T H H T T T T T T T T T T T T T T
–0.19 –0.02 –0.14 –0.17 –0.14 –0.15 –0.15 –0.18 –0.14 –0.11 –0.14 –0.11 –0.14 –0.169 –0.2 –0.2 0.05 –0.36 –0.129 –0.119 0.051 –0.149 –0.139 –0.02 –0.45 –0.219 –0.019 –0.219 5) –0.209 –0.209 6)
63Wu 86Pas 69Kha1 75Pul3 69Kha1 69Kha1 69Kha2 69Hag 69Kha1 69And 69Kha1 69And 69Kha1 94Lus 65Kuk 66Kuk1 91Lus1 92Lus 97Lus2 94Lus 97Lus2 97Lus2 94Lus 91Lus1 92Lus 97Lus2 97Lus2 97Lus1 94Lus 97Lus1
T T
–0.199 –0.089
97Lus2 94Lus
Sb (001)
Sb (011) Sb (111)
Sb (21 1)
Landolt-Börnstein New Series IV/9A
0.001 M NaF/H2O 0.002 N NaF/H2O
Comments 2)
pH=7 pH=1
Met. 3)
Epzc [V vs. SHE] 4)
Ref.
192
3 Electrode potentials of zero charge
Electrode
Solution 1)
Comments 2)
Arsenic (As) Barium (Ba) Beryllium (Be) Bismuth (Bi)
not reported
n.a.
+0.2
53Vas
not reported
n.a.
–2.06
53Vas
not reported
n.a.
–0.88
53Vas
0.001 M HCl+0.01 M KCl/H2O 0.001 N H2SO4/H2O 0.001 M KCl/H2O 0.01 M KCl/H2O 0.001 M KF/H2O 0.002 M KF/H2O 0.001 M KF/methanol 0.001 M KNO3+0.01 M KF/H2O 0.001 N KNO3+0.01 N KF 1 N K2SO4/H2O 1 N K2SO4/H2O 0.01 M LiCl/methanol 0.01 M LiCl/ethanol 0.01 N LiCl/1-butanol 0.01 N LiCl/2-butanol 0.01 N LiCl/2-propanol 0.01 N LiCl/1-pentanol 0.01 N LiCl/quinoline LiF/methanol 0.005 N LiClO4/methanol 0.003 N LiClO4/ethanol 0.005 N LiClO4/ethanol 0.005 N LiClO4/1-propanol 0.005 N LiClO4/1-propanol 0.001 N LiClO4/2-propanol 0.005 N LiClO4/2-propanol 0.005 N LiClO4/1-butanol 0.005 N LiClO4/iso-butanol 0.005 N LiClO4/2-butanol 0.005 N LiClO4/dimethylsulfoxide 1 N NaClO4/H2O 1 N NaClO4/H2O 0.002 M NaF/H2O 0.002 M NaF/H2O 0.002 M NaF/H2O 0.002 M NaF/methanol 0.002 M NaF/acetonitrile 0.05 M Na2SO4/H2O n.a.
P T T IM T T T P P S S IM IM IM IM IM IM IM T T T T T T T T T T T T S S T T T T T T EE
–0.64 –0.4 –0.4 –0.358 –0.625 –0.39 –0.22 –0.63 –0.39 –0.34 –0.64 –0.513 –0.529 –0.67 –0.66 –0.609 –0.67 –1.184 –0.259 –0.239 –0.189 –0.209 –0.209 –0.209 –0.179 –0.179 –0.229 –0.239 –0.199 –0.239 –0.34 –0.34 –0.354 5) –0.369 7) –0.374 8) –0.249 9) –0.229 9) –0.159 –0.37
74Rot 66Pal 66Pal 62Jak1 77Pal 69Pal 72Pet1 74Rot 74Bro1 69And 69And 64Jak2 64Jak2 68Jak1 65Jak1 65Jak1 65Jak1 68Jak1 71Pet 79Vaa1 75Pal 79Vaa1 78Vaa 79Vaa1 80Vae 79Vaa1 79Vaa1 88Vae 88Vae 76Pet 69And 69And 97Lus1 97Lus1 97Lus1 97Lus1 97Lus1 85Lus2 67Gri2
pH=7 pH=11
pH=7 pH=11
Met. 3)
Epzc [V vs. SHE] 4)
Ref.
Landolt-Börnstein New Series IV/9A
3 Electrode potentials of zero charge
Electrode
Solution 1)
Bi (001)
0.003 M KF/H2O 0.001 M LiClO4/H2O 0.001 M LiClO4/acetonitrile 0.005 M LiClO4/ethanol 0.001 M NaBF4/H2O 0.001 M NaF/H2O 0.001 M NaF/H2O 0.001 M NaF/acetonitrile 0.001 M NaF/methanol 0.002 M NaF/methanol 0.001 M NaF/ethanol 0.001 M NaF/i-propanol 0.05 M Na2SO4/H2O 0.05 M Na2SO4/H2O 0.05 M Na2SO4/H2O 0.003 M KF/H2O 0.001 M KF/H2O 0.001 M LiClO4/H2O 0.001 M LiClO4/acetonitrile 0.001 M LiClO4/ethanol 0.005 M LiClO4/ethanol 0.001 M NaBF4/H2O 0.001 M NaF/H2O 0.001 M NaF/H2O 0.001 M NaF/acetonitrile 0.001 M NaF/methanol 0.001 M NaF/ethanol 0.001 M NaF/i-propanol 0.05 M Na2SO4/H2O 0.05 M Na2SO4/H2O 0.05 M Na2SO4/H2O 0.003 M KF/H2O 0.001 M LiClO4/H2O 0.001 M LiClO4/acetonitrile 0.001 M NaBF4/H2O 0.001 M NaF/H2O 0.001 M NaF/H2O 0.001 M NaF/acetonitrile 0.05 M Na2SO4/H2O 0.05 M Na2SO4/H2O 0.05 M Na2SO4/H2O 0.0025 M KF/H2O 0.001 M KF/H2O 0.003 M KF/H2O
Bi (011)
Bi (101)
Bi (111)
Landolt-Börnstein New Series IV/9A
Comments 2)
Met. 3) T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T
193 Epzc [V vs. SHE] 4) –0.334 –0.414 –0.169 –0.189 –0.399 –0.344 –0.354 –0.169 –0.209 –0.209 –0.179 –0.169 –0.199 –0.219 –0.069 –0.339 –0.359 –0.429 –0.179 –0.199 –0.199 –0.409 –0.349 –0.349 –0.179 –0.229 –0.199 –0.219 –0.149 –0.119 0.001 –0.334 –0.409 –0.179 –0.389 –0.334 –0.344 –0.179 –0.099 –0.039 –0.049 –0.409 –0.409 –0.409
Ref. 85Lus1 90Lus 91Lus2 88Ann 90Lus 90Lus 97Lus2 97Lus2 97Lus2 97Lus1 97Lus2 97Lus2 85Lus2 86Lus1 86Lus2 85Lus1 77Pal 90Lus 91Lus2 86Ann 88Ann 90Lus 90Lus 97Lus2 97Lus2 97Lus2 97Lus2 97Lus2 85Lus2 86Lus1 86Lus2 85Lus1 90Lus 91Lus2 90Lus 90Lus 97Lus2 97Lus2 85Lus2 86Lus1 86Lus2 74Fru1 77Pal 85Lus1
194
3 Electrode potentials of zero charge
Electrode
Solution 1)
Bi (111)
0.005 M KF/H2O 0.005 M K2SO4/H2O 0.001 M LiClO4/H2O 0.013 M LiClO4/H2O 0.001 M LiClO4/acetonitrile 0.001 M LiClO4/ethanol 0.005 M LiClO4/ethanol 0.001 M NaBF4/H2O 0.001 M NaF/H2O 0.001 M NaF/H2O 0.001 M NaF/acetonitrile 0.001 M NaF/methanol 0.001 M NaF/i-propanol 0.002 M NaF/H2O 0.002 M NaF/H2O 0.002 M NaF/H2O 0.002 M NaF/H2O 0.002 M NaF/H2O 0.002 M NaF/H2O 0.002 M NaF/H2O 0.002 M NaF/acetonitrile 0.002 M NaF/methanol 0.001 M NaF/ethanol 0.05 M Na2SO4/H2O 0.05 M Na2SO4/H2O 0.05 M Na2SO4/H2O 0.001 M KF/H2O 0.001 M LiClO4/H2O 0.001 M LiClO4/ethanol 0.001 M NaBF4/H2O 0.001 M NaF/H2O 0.001 M NaF/H2O 0.001 M NaF/acetonitrile 0.001 M NaF/ethanol 0.001 M LiClO4/acetonitrile n.a. n.a. n.a. n.a. n.a.
Bi (211)
Bi-Cu alloy
Cadmium (Cd)
0.001 M HCl+0.01 M KCl/H2O 0.011 N K2S2O8/H2O 0.005 N KCl/H2O 0.001 N KCl/H2O 0.005 N KCl/H2O
Comments 2)
Met. 3)
55 at% Bi 30 at% Bi 18 at% Bi 8 at% Bi 4 at% Bi
T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T EE EE EE EE EE
–0.42 –0.439 –0.459 –0.239 –0.169 –0.209 –0.209 –0.424 –0.409 –0.414 –0.259 –0.279 –0.209 –0.414 5) –0.409 6) –0.389 7) –0.379 8) –0.384 10) –0.384 9) –0.379 11) –0.259 5) –0.279 5) –0.209 –0.249 –0.249 –0.019 –0.329 –0.409 –0.219 –0.384 –0.334 –0.329 –0.169 –0.219 –0.179 –0.35 –0.345 –0.33 –0.32 –0.27
74Fru3 74Fru1 90Lus 81Ann 91Lus2 86Ann 88Ann 90Lus 90Lus 97Lus2 97Lus2 97Lus2 97Lus2 97Lus1 97Lus1 97Lus1 97Lus1 97Lus1 97Lus1 97Lus1 97Lus1 97Lus1 97Lus2 85Lus2 86Lus1 86Lus2 77Pal 90Lus 86Ann 90Lus 90Lus 97Lus2 97Lus2 97Lus2 91Lus2 67Gri2 67Gri2 67Gri2 67Gri2 67Gri2
P ER T T T
–1.025 –0.95 –0.92 –0.91 –0.92
74Rot 52Nik 50Bor 67Ham1 50Bor
Epzc [V vs. SHE] 4)
Ref.
Landolt-Börnstein New Series IV/9A
3 Electrode potentials of zero charge
Electrode
Cd (001) Cd (110) Cd (0001)
Landolt-Börnstein New Series IV/9A
Solution 1) 0.005 N KCl/H2O 0.005 N KCl/H2O 0.005 N KCl/H2O 0.01 N KCl/H2O 0.01 N KCl+0.001 N HCl/H2O 1.0 N KCl/H2O 0.001 N KClO4/H2O 0.01 N KF/H2O 1.5 M LiClO4/dimethylformamide 0.01 M NaF/H2O 0.01 M NaF/H2O 0.001 M NaF/H2O 0.001 M NaF/H2O 0.001 M NaF/H2O 0.005 M NaF/H2O 0.01 M NaF/H2O 0.02 M NaF/H2O 0.026 M NaF/H2O 0.01 M NaNO3/H2O 0.01 N Na2SO4/H2O 0.01 M Na2SO4/H2O 0.01 M Na2SO4/H2O 0.01 M Na2SO4/H2O 0.02 M (Na2SO4+ H2SO4)/H2O 0.02 M (Na2SO4+ H2SO4)/H2O 0.02 M (Na2SO4+ H2SO4)/H2O 0.02 M (Na2SO4+ H2SO4)/H2O 0.02 M (Na2SO4+ H2SO4)/H2O 0.02 M (Na2SO4+ H2SO4)/H2O 0.02 M (Na2SO4+ H2SO4)/H2O 0.02 M (Na2SO4+ H2SO4)/H2O 0.8 M Na2SO4/H2O 0.001 M NaF/H2O 0.001 M NaF/H2O 0.005 M LiClO4/H2O 0.005 M NaClO4/H2O NaF/H2O 0.005 M NaF/H2O 0.005 M NaF/H2O 0.005 M NaF/H2O 0.002 M NaF/H2O 0.002 M NaF/H2O 0.002 M NaF/H2O 0.002 M NaF/H2O 0.005 M NaNO2/H2O
Comments 2)
pH=2 pH=4 pH=6 pH=7 pH=2 pH=4 pH=6 pH=7
Met. 3) T H H T P T T T S T T T T T T S T T T T T S T T T T T T T T T T T T T T T T T T T T T T T
195 Epzc [V vs. SHE] 4) –0.9 –0.7 –0.70 –0.93 –0.8 –0.95 –0.91 –0.78 12) –0.63 –0.74 13) –0.75 –0.72 –0.72 –0.75 –0.803 –0.69 –0.8 –0.77 –0.684 –0.68 –0.73 –0.66 14) –0.73 15) –0.9 –0.9 –0.9 –0.9 –0.7 16) –0.7 16) –0.7 16) –0.7 16) –0.913 –0.709 –0.769 –0.759 –0.784 –0.749 –0.709 –0.729 6) –0.729 15) –0.709 5) –0.729 6) –0.729 7) –0.759 8) –0.774
Ref. 55Fru 55Fru 56Ven 50Bor 74Bro1 50Bor 67Ham1 73Ryb3 80Kar 69Bar1 72Pan1 91Agl 68Bar 72Lei 91Obr 80Kar 72Ham 75Mis 80Pan 65Gri 75Non 75Non 75Non 57Khe 57Khe 57Khe 57Khe 57Khe 57Khe 57Khe 57Khe 91Obr 97Lus2 97Lus2 96Lus1 92Nan 89Nan 96Lus1 96Lus1 96Lus1 97Lus1 97Lus1 97Lus1 97Lus1 92Nan
196
3 Electrode potentials of zero charge
Electrode
Solution 1)
Cd (0001)
0.005 M NaNO3/H2O 0.005 M LiClO4/H2O 0.005 M NaF/H2O 0.005 M NaF/H2O 0.005 M NaF/H2O
T T T T T
–0.784 –0.799 –0.759 –0.739 8) –0.749
92Nan 96Lus1 96Lus1 96Lus1 96Lus1
0.005 M LiClO4/H2O 0.002 M NaF/H2O 0.002 M NaF/H2O 0.001 M NaF/H2O 0.005 M NaF/H2O 0.005 M NaF/H2O 0.005 M NaF/H2O 1 M KBr/H2O 1 M KBr/H2O 1 M KBr/H2O 1 M KBr/H2O 1 M KBr/H2O 1 M KBr/H2O 1 M KCl/H2O 1 M KCl/H2O 1 M KCl/H2O 1 M KCl/H2O 1 M KCl/H2O 1 M KI/H2O
T T T T T T T S S S S S S S S S S S S
–0.799 –0.779 5) –0.749 7) –0.759 –0.769 –0.749 8a) –0.739 –0.423 –0.431 –0.444 –0.456 –0.48 –0.538 –0.345 –0.360 –0.4 –0.434 –0.466 –0.653
96Lus1 97Lus1 97Lus1 97Lus2 96Lus1 96Lus1 96Lus1 30Fru 30Fru 30Fru 30Fru 30Fru 30Fru 30Fru 30Fru 30Fru 30Fru 30Fru 30Fru
not reported
n.a.
–1.7
53Vas
1 N H2SO4/H2O 1 N KCl/H2O 1 N KBr/H2O 1 N KBr/H2O 4 N KBr/H2O 1 N KI/H2O 1 N K2SO4/H2O 0.5 N NaCl/H2O 1 N NaOH/H2O 0.05 N Na2SO4/H2O 1 N Na2SO4/H2O 1 N Na2SO4+0.005 M H2SO4/H2O 1 M NaClO4/H2O
CA CA CA CA CA CA S H CA IA CA IA T
0.07 0.07 0.0 18) 0.07 0.0 18) –0.13 –0.26 0.25 0.07 0.05 0.22 0.07 –0.359
43Chu 43Chu 71Mor 43Chu 71Mor 43Chu 69And 49Ven 43Chu 40Kuc 43Chu 40Kuc 95Koe
not reported
n.a.
–1.61
53Vas
not reported
n.a.
–2.59
53Vas
Cd (1010)
Cd (1011)
Cd (1120)
Cd (1121) Cd amalgam 17)
Calcium (Ca) Carbon (C)
Cerium (Ce) Cesium (Cs)
Comments 2)
0.0003 % Cd 0.001 % Cd 0.004 % Cd 0.01 % Cd 0.1 % Cd 4.8 % Cd 0.004 % Cd 0.01 % Cd 0.1 % Cd 1 % Cd 4.8 % Cd 4.8 % Cd
pH=7
pH=7
2 mol% In
Met. 3)
Epzc [V vs. SHE] 4)
Ref.
Landolt-Börnstein New Series IV/9A
3 Electrode potentials of zero charge
Electrode
Solution 1)
Chromium (Cr)
0.05 M H2SO4/H2O 0.1 M NaOH/H2O
Cobalt (Co)
0.01 N Na2SO4/H2O 0.02 N (Na2SO4+H2SO4)/H2O 0.02 N (Na2SO4+H2SO4)/H2O 0.02 N (Na2SO4+H2SO4)/H2O 0.02 N (Na2SO4+H2SO4)/H2O 0.02 N (Na2SO4+H2SO4)/H2O 0.02 N (Na2SO4+H2SO4)/H2O 0.02 N (Na2SO4+H2SO4)/H2O 0.02 N (Na2SO4+H2SO4)/H2O 0.02 N (Na2SO4+H2SO4)/H2O
Copper (Cu)
0.03 M Cu2SO4+0.05 M Na4P2O7/ H2O 0.1 M H2SO4/H2O 0.5 M H2SO4/H2O 0.5 M H2SO4/H2O 1 M H2SO4/H2O 0.0001 m KBr/H2O 1 M KBr/H2O 0.0001 M KCl/H2O 0.0001M KCl/H2O 0.001 M KCl/H2O 0.001M KCl/H2O 0.01M KCl/H2O 0.01M KCl/H2O 0.1M KCl/H2O 0.1M KCl/H2O 0.1M KCl/H2O 0.3 M KCl/H2O 1 M KCl/H2O 1 M KCl/H2O 0.1 M KClO4+ HClO4/H2O 0.1 M KClO4+ HClO4/H2O 0.1 M KClO4+ HClO4/H2O 0.1 M KClO4+ HClO4/H2O 0.0025 N K2SO4/H2O 0.01 M Cl–/H2O 0.01M LiCl/methanol 0.01M LiCl/ethanol 0.01 N LiCl/1-butanol 0.01 N LiCl/2-butanol 0.01 N LiCl/2-propanol 0.01 N LiCl/1-pentanol 0.01 N LiCl/quinoline
Landolt-Börnstein New Series IV/9A
Comments 2)
pH=5.6 pH=1 pH=1 pH=2 pH=3 pH=3 pH=4 pH=5 pH=5 pH=6
Met. 3)
pH=2.7...11 pH=5.7 pH=4.2 pH=3.7 pH=3.2
Epzc [V vs. SHE] 4)
Ref.
CA CA
–0.45 –0.45
55Uks1 55Uks1
S T T T T T T T T T
–0.43 –0.32 –0.32 –0.405 –0.43 –0.43 –0.465 –0.475 –0.46 –0.48
78Laz 57Khe 57Khe 57Khe 57Khe 57Khe 57Khe 57Khe 57Khe 57Khe
0.11
53Lev1
ER
pH=7
197
OA OA T OA IM S IM IM IM IM IM IM IM IM S IM IM S T T T T T IM IM IM IM IM IM IM IM
–0.052 –0.052 0.101 –0.052 0.073 19) –0.74 0.073 0.078 0.073 0.075 0.073 0.073 –0.012 –0.012 –0.35 –0.049 –0.122 –0.51 –0.73 –0.72 –0.70 –0.64 –0.04 0.075 –0.072 –0.147 –0.236 –0.2 –0.214 –0.21 –0.764
73Lou 73Lou 01Ma 73Lou 68Koz 74Cla2 62Jak1 64Jak1 62Jak1 64Jak1 62Jak1 64Jak1 62Jak1 64Jak1 64Per 64Jak1 64Jak1 74Cla2 04Luk 04Luk 04Luk 04Luk 70Ego2 65Jak1 64Jak2 64Jak2 68Jak1 65Jak1 65Jak1 68Jak1 68Jak1
198
3 Electrode potentials of zero charge
Electrode
Solution 1)
Cu
0.003 N NaCl/H2O 0.025 M NaClO4/H2O 0.0001 M NaF/H2O 0.0001M NaF/H2O 0.001 M NaF/H2O 0.001 M NaF/H2O 0.001M NaF/H2O 0.001 M NaF/H2O 0.01 M NaF/H2O 0.01M NaF/H2O 0.1 M NaF/H2O 0.1M NaF/H2O 0.3M NaF/H2O 1 M NaF/H2O 1 M NaF/H2O 0.0001 M F–/H2O 0.1 M NaOH/H2O 0.05 M Na4P2O7/H2O 0.05 M Na4P2O7/H2O 0.01 N Na2SO4/H2O 0.01 N Na2SO4/H2O 0.02 N (Na2SO4+ H2SO4)/H2O 0.02 N (Na2SO4+ NaOH)/H2O 0.02 N (Na2SO4+ NaOH)/H2O 0.02 N (Na2SO4+ NaOH)/H2O 0.01 M Na2SO4/H2O 0.01 M Na2SO4/H2O 0.02 M Na2SO4/H2O 0.05 N Na2SO4/H2O 0.5 M Na2SO4/H2O 1 N Na2SO4/H2O 1 N Na2SO4/H2O 1 M Na2SO4/H2O 1 N Na2SO4/H2O Na2SO4/H2O 0.001 M Na2SO4+K2S2O7/H2O 0.01 M Na2SO4/H2O+1-propanol 0.01 M Na2SO4/H2O+1-propanol 0.01 M Na2SO4/H2O+1-propanol 0.01 M Na2SO4/H2O+1-propanol 0.01 M Na2SO4/H2O+1-propanol 0.01 M Na2SO4/H2O+1-propanol 0.01 M Na2SO4/H2O+1-propanol 0.01 M Na2SO4/H2O+1-propanol 0.01 M Na2SO4/H2O+1-propanol
Comments 2)
1< pH <7 7< pH <10 pH=11 pH=12
3 %wt 6.3 %wt 9.4 %wt 11 %wt 15.3 %wt 25.1 %wt 32.1 %wt 43.4 %wt 56 %wt
Met. 3) T T IM IM T IM IM T IM IM IM IM IM IM IM IM CA CA ER T IM T T T T IM IM T T OA F CA OA T EC ER IM IM IM IM IM IM IM IM IM
Epzc [V vs. SHE] 4) –0.03 0.025 0.073 0.079 0.05 0.073 0.075 0.09 0.073 0.072 0.073 0.068 0.073 0.073 0.077 0.075 0.05 0.15 0.11 –0.433 –0.035 0.025 0.025 0.015 0.05 0.189 20) –0.03 0.03 –0.45 –0.053 –0.26 –0.04 –0.053 –0.059 –0.049 0.0 0.12 0.16 0.18 0.19 0.21 0.197 0.14 0.165 0.155
Ref. 70Ego2 72Nov2 62Jak1 64Jak1 91Agl 62Jak1 64Jak1 70Ego1 62Jak1 64Jak1 62Jak1 64Jak1 64Jak1 62Jak1 64Jak1 65Jak1 55Uks1 55Uks1 53Lev1 86Dag 95Tur 57Khe 57Khe 57Khe 57Khe 90Sok 97Tur 57Khe 86Dag 73Lou 61Sta 65Bon 73Lou 59McM 65Bon 55Fru 95Tur 95Tur 95Tur 95Tur 95Tur 95Tur 95Tur 95Tur 95Tur
Landolt-Börnstein New Series IV/9A
3 Electrode potentials of zero charge
Electrode
Cu (100)
Cu (110)
Cu (111)
Landolt-Börnstein New Series IV/9A
Solution 1)
Comments 2)
Met. 3)
0.01 M Na2SO4/H2O+1-propanol 0.01 M Na2SO4/H2O+1-propanol n.a. n.a. 0.1 M KClO4+ HClO4/H2O 0.1 M KClO4+ HClO4/H2O 0.1 M KClO4+ HClO4/H2O 0.1 M KClO4+ HClO4/H2O 0.01 M NaClO4/H2O 0.04 M NaClO4/H2O 0.007 M NaF/H2O 0.007 M NaF/H2O 0.007 M NaF/H2O 0.01 M NaF/H2O 0.01 M NaF/H2O 0.01 M NaF/H2O 0.05 M NaF/H2O 0.05 M NaF/H2O 0.05 M Na2SO4/H2O 0.005 M KClO4/H2O 0.005 M KClO4/H2O 0.1 M KClO4+ HClO4/H2O 0.1 M KClO4+ HClO4/H2O 0.1 M KClO4+ HClO4/H2O 0.1 M KClO4+ HClO4/H2O 0.01 M NaClO4/H2O 0.007 M NaF/H2O 0.007 M NaF/H2O 0.007 M NaF/H2O 0.007 M NaF/H2O 0.01 M NaF/H2O 0.01 M NaF/H2O 0.05 M NaF/H2O 0.05 M NaF/H2O 0.007 M NaF/H2O 0.01 M NaF/H2O 0.005 M Na2SO4/H2O 0.1 M KClO4+ HClO4/H2O 0.1 M KClO4+ HClO4/H2O 0.1 M KClO4+ HClO4/H2O 0.1 M KClO4+ HClO4/H2O 0.01 M NaClO4/H2O 0.04 M NaClO4/H2O 0.007 M NaF/H2O 0.007 M NaF/H2O
63.8 %wt 77 %wt
IM IM EC EE T T T T T T T T T T T T T T T T C T T T T T T T T T T T T T T T T T T T T T T T T
pH=5.7 pH=4.2 pH=3.7 pH=3.2
pH=5.7 pH=4.2 pH=3.7 pH=3.2
pH=5.7 pH=4.2 pH=3.7 pH=3.2
199 Epzc [V vs. SHE] 4) 0.15 0.14 –0.040 21) 0.03 –0.73 –0.72 –0.71 –0.62 –0.723 –0.54 –0.049 –0.050 22) –0.075 23) –0.05 23) –0.05 24) –0. 075 23) –0.05 23) –0.05 23) –0.459 –0.689 –0.689 –0.75 –0.73 –0.72 –0.66 –0.748 –0.074 –0.124 –0.075 22) –0.125 23) –0.075 23) –0.125 23) –0.025 24) –0.125 23) –0.124 –0.124 –0.629 –0.70 –0.68 –0.65 –0.55 –0.698 –0.2 –0.014 –0.125 23)
Ref. 95Tur 95Tur 32Pro 67Gri2 04Luk 04Luk 04Luk 04Luk 06Luk 85Lec 72Nov1 73Nov 73Nov 73Nov 73Nov 73Nov 73Nov 73Nov 79Hen 97For 97For 04Luk 04Luk 04Luk 04Luk 06Luk 72Nov1 72Nov1 73Nov 73Nov 73Nov 73Nov 73Nov 73Nov 75Max 78Max 79Hen 04Luk 04Luk 04Luk 04Luk 06Luk 85Lec 72Nov1 73Nov
200
3 Electrode potentials of zero charge
Electrode
Solution 1)
Comments 2)
Cu (111)
0.007 M NaF/H2O 0.05 M NaF/H2O 0.01 M NaF/H2O 0.01 M NaF/H2O 0.01 M NaF/H2O 0.050 M Na2SO4/H2O
T T T T T T
–0.024 –0.025 22) –0.025 22) –0.125 23) 0.076 –0.329
75Max 73Nov 73Nov 73Nov 78Max 79Hen
Gallium 25) (Ga)
0.006 N HCl/H2O HClO4, HCl/H2O HClO4, HCl/H2O
T EC T
–0.700 –0.69 –0.69
0.1 M HClO4/H2O 0.006 N H2SO4/H2O 0.9 N KBr+0.1 N HCl/H2O 0.9 M KBr+0.1 M HCl/H2O 1 N KBr+HCl/H2O 1 N KBr+HCl/H2O 1 N KBr+HCl/H2O 1 N KBr+HCl/H2O 1 M KCl+HCl/H2O 0.01 N KCl/H2O 0.9 N KCl+0.1 N HCl/H2O 1 N KCl+0.1 N HCl/H2O 1 N KCl+HCl/H2O 1 N KCl+HCl/H2O 1 N KCl+HCl/H2O 1 N KCl+HCl/H2O 1 N KCl+0.01 N HCl/H2O 1 M KCl+HCl/H2O 1 N KI+HCl/H2O 1 N KI+HCl/H2O 1 N KI+HCl/H2O 1 N KI+HCl/H2O 0.1 M KOH/H2O 1 N K2SO4/H2O 0.06...0.63 N NaClO4/H2O 0.1 M NaClO4/H2O+ 0.1 M n-C5H11OH 0.1 M NaClO4/H2O 0.1 M NaClO4/N-methylformamide 0.1 M NaClO4/dimethylsulphoxide 1 N NaClO4/H2O 1 N NaClO4+HClO4/H2O 1 N NaClO4+HClO4/H2O 1 N NaClO4+HClO4/H2O 1 N NaClO4+ClO4/H2O
TC T S S EC T T EC EC EC S EC EC T EC T CA S EC T EC T EC S T; C T
–0.645 –0.680 26) –0.73 –0.73 –0.799 –0.789 –1.03 –1.04 –0.62 –0.96 –0.7 –0.6 –0.769 –0.759 –1.01 –1.0 –0.42 –0.71 –0.869 –0.859 –1.11 –1.1 –0.58 –0.63 –0.64 –0.94
68Bag 66Mor 66Fru1, 68Bag 66But2 72Gri4 67Per 74Cla2 64Fru1 64Fru2 65Fru1 65Fru1 36Mur 66Mor 67Per 55Fru 64Fru1 64Fru1 65Fru1 65Fru1 34Gor 74Cla2 64Fru1 64Fru2 65Fru1 65Fru1 67Pol 69And 93Inn 71Fru
EC T T S EC T EC T
–0.96 –0.669 –1.025 –0.63 –0.659 –0.649 –0.9 –0.89
66Mor 96Eme 78Bag 69And 64Fru1 64Fru2 65Fru1 65Fru1
pH=1
pH=7
pH=1
Met. 3)
Epzc [V vs. SHE] 4)
Ref.
Landolt-Börnstein New Series IV/9A
3 Electrode potentials of zero charge
Electrode
Ga amalgam
Ga/In alloy
Ga/Tl alloy 27)
Solution 1) 1 N NaClO4+1 N HClO4/H2O 0.01...1 N (NaClO4+HClO4)/H2O 0.01...0.63 N Na2SO4/H2O 0.9 N Na2SO4+0.1 N H2SO4/H2O 0.45 M Na2SO4+0.05 M H2SO4/H2O 1 N Na2SO4+H2SO4/H2O 1 N Na2SO4+H2SO4/H2O 1 N Na2SO4+H2SO4/H2O 1 N Na2SO4+H2SO4/H2O 0.5 M Na2SO4+H2SO4/H2O 1 N Na2SO4+0.1 N HClO4/H2O 0.1 M KOH/H2O 0.1 M KOH/H2O 0.1 M KOH/H2O 0.1 M KOH/H2O 0.1 M KOH/H2O 0.1 M KOH/H2O 0.1 M HClO4/H2O 0.001 M HClO4/H2O 0.1 M HClO4/H2O 0.1 M NaClO4/H2O+ 0.1 M n-C5H11OH 1 N NaBr/H2O 1 N NaBr/H2O 1 N NaCl/H2O 1 N NaCl/H2O 1 N NaClO4/H2O 0.1 M NaClO4/N-methylformamide 1 N NaI/H2O 1 N NaI/H2O 1 N Na2SO4/H2O
Germanium 0.1 N HCl/H2O not reported (Ge) Gold (Au)
Landolt-Börnstein New Series IV/9A
0.001 N HCl/H2O 0.0749 N HCl/H2O 0.1 N HCl/H2O 0.1 N HCl/H2O 0.1 N HCl/H2O 1 M HCl/H2O HClO4/H2O 0.001 M HClO4/H2O 0.001 M HClO4/H2O 0.001 M HClO4/H2O 0.001 M HClO4/H2O
Comments 2)
0.001 at% Ga 0.004 at% Ga 0.03 at% Ga 0.18 at% Ga 0.36 at% Ga 0.7at % Ga 89.36 at% Ga 83.3 % Ga/ 16.7 % In 19.2 at% In 83.3 % Ga/ 16.7 % In
p- and n-type
Met. 3)
201 Epzc [V vs. SHE] 4)
Ref.
T T T; C S S EC T EC T PC T EC EC EC EC EC EC TC T
–0.61 –0.64 –0.68 –0.63 –0.63 –0.689 –0.684 –0.93 –0.925 –0.684 –0.645 –1.3 –1.3 –1.0 –0.96 –0.91 –0.88 –0.589 –0.68
65Fru1 90Pez 93Inn 67Per 74Cla2 64Fru1 64Fru2 65Fru1 65Fru1 85Pez 65Fru1 67Pol 67Pol 67Pol 67Pol 67Pol 67Pol 66But2 72Gri1
TC T
–0.666 –1.02
66But2 71Fru
EC T EC T EC,T T EC T EC,T
–0.859 –0.849 –0.779 –0.769 –0.759 –0.639 28) –0.959 –0.959 –0.709
78Bul 78Bul 78Bul 78Bul 78Bul 96Eme 78Bul 78Bul 78Bul
T n.a.
–0.66 –0.34
59Efi 53Vas
S EB S G S OA T IM T OA PE
–0.01 –0.00 –0.07 0.14 –0.06 0.086 0.199 0.34 0.17 0.3 0.207
73Non 74Fre 67Bod 88Mur 64And 52Hil 77Cla 73Kim 69Boc1 63Gre 96Jin
202
3 Electrode potentials of zero charge
Electrode
Solution 1)
Au
0.001 M HClO4+1 N NaClO4/H2O 0.005 M HClO4/H2O 0.01 N HClO4/H2O 0.01 M HClO4/H2O 0.1 M HClO4/H2O 0.1 M HClO4/H2O 0.001 M H2SO4/H2O 0.0087 M H2SO4/H2O 0.1 M H2SO4/H2O 0.1 N H2SO4+Na2SO4/H2O 0.001 M HClO4/H2O 0.001 M HClO4/H2O 0.02 N H2SO4/H2O 0.1 M H2SO4/H2O 0.001 N KBr/H2O 0.01 N KBr/H2O 0.01 N KBr/H2O 0.1 N KBr/H2O 0.1 N KBr/H2O 0.1 N KBr/H2O 0.1 N KBr/H2O 0.001 N KCl/H2O 0.001 N KCl/H2O 0.001 N KCl/H2O 0.0025 N KCl/H2O 0.005 N KCl/H2O 0.01 N KCl/H2O 0.02 N KCl/H2O 0.05 N KCl/H2O 0.1 N KCl/H2O 0.01 N KCl/H2O 0.01 N KCl/H2O 0.1 N KCl/H2O 0.1 N KCl/H2O 0.1 N KCl/H2O 0.1 N KCl/H2O 0.1 N KCl/H2O 1 N KCl/H2O KClO4/H2O 0.1 N KClO4/H2O 0.1 N KClO4/H2O 0.1 N KClO4/H2O 0.1 N KClO4/H2O 0.005 N KF/H2O
Comments 2)
pH=3 pH=4
4< pH <12
0< pH <6
pH=7
Met. 3)
Epzc [V vs. SHE] 4)
OA PE F PE T F S T G S T T T G T S T S S S
0.3 0.177 0.15 0.155 0.24 0.1 0.12 0.330 0.3 0.18 0.15 0.18 0.23 0.28 –0.179 –0.22 –0.18 –0.13 –0.26 –0.24
R S DR T T T T T T T T S ED R S S S H T T S R EB PC
–0.46 –0.01 –0.05 –0.001 0.061 0.031 0.001 –0.029 –0.069 –0.089 0.06 –0.07 0.0 –0.21 –0.11 –0.09 –0.06 0.15 0.199 0.24 –0.180 –0.160 0.336 0.181
Ref. 63Gre 96Jin 69Boc1 96Jin 63Sch1 69Boc1 73Non 72Car 89Mur 67Bod 69Boc1 69Boc1 64Kra 88Mur 75Huo 73Non 73Cla 73Non 65Per 64And, 67Bod 76Lin 73Non 62Vor 75Huo 68Cla1 68Cla1 68Cla1 68Cla1 68Cla1 68Cla1 73Cla 73Non 71Fre 76Lin 65Per 64Per 64And 56Ven 77Cla 86Ric1 65Per 76Lin 96Efi 80Brz
Landolt-Börnstein New Series IV/9A
3 Electrode potentials of zero charge
Electrode
Solution 1) 0.01 N KF/H2O 0.01 N KF/methanol 0.1 N KF/H2O 0.1 N KF/H2O 0.001 N KI/H2O 0.001 N KI/H2O 0.01 N KI/H2O 0.01 N KI/H2O 0.1 N KI/H2O
0.1 N KI/H2O 0.005 M KNO3/H2O 0.02 M KNO3/H2O 0.035 M KNO3/H2O 0.05 M KNO3/H2O 0.1 N KNO3/H2O 0.1 N KNO3/H2O 1 N KNO3/H2O 0.001 N KOH/H2O 0.1 N KOH/H2O 0.1 N KOH/H2O 0.1 N KSCN/H2O 0.01 N K2SO4/H2O 0.01 N K2SO4/H2O 0.1 N K2SO4/H2O 0.1 N K2SO4/H2O 0.017 N K2SO4/H2O 0.0005 N La(NO)3/H2O 0.0005 N La(NO)3/H2O 0.003 M LiClO4/ dimethylsulphoxide 0.005 M LiClO4/ dimethylsulphoxide 0.0055 M LiClO4/ dimethylsulphoxide 0.01 M LiClO4/dimethylsulphoxide 0.03 M LiClO4/dimethylsulphoxide 0.001 M LiClO4/acetonitrile 0.02 M LiNO3/H2O 0.035 M LiNO3/H2O 0.05 M LiNO3/H2O 0.1 M LiNO3/H2O 0.02 M LiNO3/methanol 0.035 M LiNO3/methanol 0.05 M LiNO3/methanol Landolt-Börnstein New Series IV/9A
Comments 2)
5< pH <12
0< pH <6
Met. 3)
203 Epzc [V vs. SHE] 4)
Ref.
T PC S CA S T T S S
0.180 0.26 –0.060 0.1 –0.34 –0.459 –0.46 –0.5 –0.47
R T PC PC PC S R FL S R CA S S EB R S T DR DR T
–0.74 0.171 0.041 0.011 –0.029 –0.04 –0.16 0.43 –0.06 –0.16 0.1 –0.44 0.08 0.241 –0.06 0.06 0.1 –0.05 –0.05 0.454
73Cla 83Brz 65Per 71Mor 73Non 75Huo 73Cla 73Non 65Per, 64And, 67Bod 76Lin 68Cla1 80Brz 80Brz 80Brz 65Per 76Lin 51Pfü 73Non 76Lin 71Mor 65Per 73Non 95Lan 76Lin 65Per 67Pet1 62Vor 63Vor 87Jar
T
0.249
88Bor2
T
0.444
87Jar
T T T PC PC PC PC PC PC PC
0.464 0.454 0.896 0.041 0.011 –0.029 –0.059 0.297 0.320 0.170
87Jar 87Jar 87Ham2 83Brz 83Brz 83Brz 83Brz 83Brz 83Brz 83Brz
204
3 Electrode potentials of zero charge
Electrode
Solution 1)
Comments 2)
Au
0.1 M LiNO3/methanol 0.1 M LiNO3/methanol 0.00025 M MgSO4/H2O 0.1 N NaBr/H2O
PC PC T S
0.155 0.095 0.181 –0.24
0.001 N NaCl/H2O 0.1 N NaCl/H2O 0.01 N NaClO4/H2O 0.1 N NaClO4/H2O 0.1 N NaClO4/H2O 0.1 N NaClO4/H2O 0.1 M NaClO4/propylene carbonate 0.1 N NaClO4+ HClO4/H2O 0.1 N NaClO4+HClO4/H2O 1 N NaClO4/H2O 1 N NaClO4/H2O 1 N NaClO4/H2O 0.00025 M NaF/H2O 0.001 M NaF/H2O 0.001 M NaF/H2O 0.0024 M NaF/H2O 0.0025 M NaF/H2O 0.0048 M NaF/H2O 0.005 M NaF/H2O 0.0072 M NaF/H2O 0.0095 M NaF/H2O 0.01 M NaF/H2O 0.01 M NaF/H2O 0.02 M NaF/H2O 0.02 M NaF/H2O 0.04 M NaF/H2O 0.05 M NaF/H2O 0.1 M NaF/H2O 0.1 M NaF/H2O 0.1 M NaF/H2O 0.1 M NaF/H2O 0.1 M NaF/H2O 0.1 N NaI/H2O 0.1 N NaOH/H2O 0.1 N NaOH/H2O 0.1 N NaOH/H2O 0.0005 M Na2SO4/H2O 0.001 M Na2SO4/H2O 0.01 M Na2SO4/H2O 0.01 M Na2SO4/H2O
S S OA S CA PE T PE PE S S PE T PE S PE T PE PE PE PE T T PE T T PE PE S G S PE S S S G PE S T S
–0.01 –0.07 0.37 0.14 0.241 0.18 0.4 0.22 –0.29 0.12 0.05 0.08 0.181 0.28 0.13 0.098 0.18 0.116 0.273 0.087 0.119 0.2 0.18 0.138 0.181 0.189 0.15 0.15 0.19 0.17 0.1 0.278 –0.53 –0.09 –0.08 0.11 0.107 0.11 0.09 0.09 15)
pH=2.3 pH=12 pH=7 pH=11
Met. 3)
Epzc [V vs. SHE] 4)
Ref. 83Brz 83Brz 74Cla1 67Bod, 64And 73Non 67Bod 69Boc1 67Bod 71Shi 99Uen 85Ngu 95Rai 95Rai 69And 69And 96Seo 74Cla1 96Jin 73Non 92Dic 73Cla 92Dic 96Jin 92Dic 92Dic 78Zel2 73Cla 92Dic 69Cla 73Cla 92Dic 92Dic 67Bod 87Mur 73Non 96Jin 67Bod 67Bod 64And 88Mur 96Jin 73Non 75Non 75Non
Landolt-Börnstein New Series IV/9A
3 Electrode potentials of zero charge
Electrode
Au (100)
Au (100)(5x20) Au (100)(1x1) Au (110)
Landolt-Börnstein New Series IV/9A
Solution 1) 0.01 M Na2SO4/H2O 0.01 M Na2SO4/H2O 0.01 M Na2SO4/H2O 0.01 M Na2SO4/H2O 0.1 M Na2SO4/H2O 0.1 M Na2SO4+0.001 M H2SO4+ 5·10–5 M Ag2SO4/H2O 0.01 M Na2SO4/H2O+1-propanol 0.01 M Na2SO4/H2O+1-propanol 0.01 M Na2SO4/H2O+1-propanol 0.01 M Na2SO4/H2O+1-propanol 0.01 M Na2SO4/H2O+1-propanol 0.01 M Na2SO4/H2O+1-propanol 0.01 M Na2SO4/H2O+1-propanol 0.01 M Na2SO4/H2O+1-propanol 0.01 M Na2SO4/H2O+1-propanol 0.01 M Na2SO4/H2O+1-propanol 0.01 M Na2SO4/H2O+1-propanol 0.1 N Na2SO4/H2O 0.2 N Na2SO4/H2O 0.4 M N LiBr+0.1 M LiCl/butan-1-ol 0.4 M N LiBr+0.1 M LiCl/butan-2-ol 0.4 M N LiBr+0.1 M LiCl/ 2-methylpropan-1-ol 0.001 M HClO4/H2O 0.001 M HClO4/H2O 0.01 M HClO4/H2O 0.01 M HClO4/H2O 0.1 M KClO4/H2O 0.005 M LiClO4/ dimethylsulphoxide 0.0025 M NaF/H2O 0.010 M NaF/H2O 0.010 M NaF/H2O 0.010 M NaF/H2O 0.020 M NaF/H2O 0.01 M K2SO4/H2O 0.00096 M KPF6/H2O 0.002 M TEAC 31)/acetonitrile 0.01 M HClO4/H2O 0.01 M HClO4/H2O 0.1 M HClO4+5 mM KI/H2O 0.001 M HClO4/H2O 0.01 M HClO4/H2O
Comments 2)
3 wt% 6.3 wt% 9.4 wt% 11 wt% 15.3 wt% 25.1 wt% 32.1 wt% 43.4 wt% 56 wt% 63.8 wt% 77 wt%
pH=5.6
2(111)-(111)
Met. 3)
205 Epzc [V vs. SHE] 4)
Ref.
S IM IM IM PE PE
0.09 14) 0.284 20) 0.06 –0.39 0.09 0.9 29)
75Non 90Sok 95Tur 97Tur 96Jin 94Seo
IM IM IM IM IM IM IM IM IM IM IM S T VIB VIB VIB
0.155 0.225 0.23 0.23 0.19 0.2 0.225 0.22 0.207 0.2 0.195 0.14 0.23 –0.29 30) –0.05 30) –0.19 30)
95Tur 95Tur 95Tur 95Tur 95Tur 95Tur 95Tur 95Tur 95Tur 95Tur 95Tur 67Bod 64Kra 96Pem 96Pem 96Pem
PC T T T T T
0.191 0.291 0.341 0.29 0.341 0.229
62Sch1 94Ham 85Kol 96Sil 90Ric 88Bor2
0.381 0.381 0.341 0.341 0.301 0.02 0.388 –0.05 32) 0.541
71Ham1 76Ham 78Lec 82Lec 80Kof 69Ham2 87Ham1 95Pan1 86Kol
T T T T T T T T T T T PC T
0.321 0.559 33) 0.241 0.2
86Kol 94Gao 62Sch1 96Sil
206
3 Electrode potentials of zero charge
Electrode
Solution 1)
Au (110)
0.1 M HClO4+50 mM KI/H2O 0.1 M KClO4/H2O 0.005 M LiClO4/ dimethylsulphoxide 0.0025 M NaF/H2O 0.01 M NaF/H2O 0.01 M NaF/H2O 0.02 M NaF/H2O 0.01 M K2SO4/H2O 0.00096 M KPF6/H2O 0.005 M K2SO4/H2O 0.01 M HClO4/H2O
Au(110)(1x2) Au(110)(1x1) Au (111)
Au(111)(1x23) Au(111)(1x1) Au (210)
Comments 2)
Met. 3)
Epzc [V vs. SHE] 4)
Ref.
T T T
0.409 0.191 0.374
94Gao 90Ric 88Bor2
T T T T T T T T
0.191 0.177 0.191 0.151 0.1 0.201 0.101 0.201
71Ham1 82Lec 76Ham 80Kof 69Ham2 87Ham1 74Ham 86Kol
0.01 M HClO4/H2O
T
0.221
86Kol
0.01 M HClO4/H2O 0.01 M HClO4/H2O 0.1 M HClO4/H2O 0.1 M KCl/H2O 0.1 M KClO4/H2O 0.1 M KClO4/H2O 0.01 M KPF6/H2O 0.005 M LiClO4/ dimethylsulphoxide 0.0025 M NaF/H2O 0.002 M NaF/H2O 0.01 M NaF/H2O
CV T IM R T T T T
pH=5.6 pH=5
T T T
0.01 M NaF/H2O 0.02 M NaF/H2O 0.01 M K2SO4/H2O 0.005 M K2SO4/H2O 0.00096 M KPF6/H2O 0.002 M TEAC 31)/acetonitrile 0.002 M TEAC 31)/acetonitrile 0.1 M NaClO4/H2O 0.1 M NaClO4/H2O 0.1 M NaClO4/H2O 0.1 M NaClO4/H2O 0.01 M HClO4/H2O 0.01 M HClO4/H2O 0.01 M HClO4/H2O
pH=5.6 pH=5
T T T T T T T EC EC EC EC T T T
0.01 M HClO4/H2O 0.01 M HClO4/H2O
2(100)-(110) 2(110)-(101)
T T
0.52 0.52 0.53 –0.25 0.516 0.521 0.561 0.204
00Alv 96Sil 96Ham1 98Bru 90Ric 01Li 92Lec 88Bor2
0.501 0.571 0.571
71Ham1 74Lec 75Lec1, 75Lec2, 76Ham 82Lec 80Kof 69Ham2 74Ham 87Ham1 95Pan1 95Pan1 04Iwa 04Iwa 04Iwa 04Iwa 86Kol 85Kol 86Kol
0.571 0.481 0.45 0.361 0.541 0.2 32) 0.2 32) –0.239 34) –0.209 35) –0.019 36) 0.759 37) 0.561 0.551 0.471 0.12 0.12
96Sil 96Sil Landolt-Börnstein New Series IV/9A
3 Electrode potentials of zero charge
Electrode
Au (221) Au (310) Au (311)
Au (320) Au (331)
Au (332) Au (410) Au (511) Au (533)
Au (551) Au (554) Au (755) Au (771) Au (10.1.1) Au (11.9.9) Au (19.1.1) Indium (In)
Solution 1) 0.1 M KClO4/H2O 0.005 M LIClO4/ dimethylsulphoxide 0.01 M LiClO4/H2O 0.01 M NaF/H2O 0.010 M NaF/H2O 0.01 M NaF+HClO4/H2O 0.01 M NaBF4/H2O 0.010 M NaF/H2O 0.010 M NaF/H2O 0.1 M KClO4/H2O 0.01 M NaF/H2O 0.01 M HClO4/H2O 0.01 M HClO4/H2O 0.01 M HClO4/H2O 0.01 M NaF/H2O 0.01 M HClO4/H2O 0.01 M NaF/H2O 0.01 M HClO4/H2O 0.01 M HClO4/H2O 0.01 M HClO4/H2O 0.01 M NaF/H2O 0.01 M HClO4/H2O 0.01 M HClO4/H2O 0.01 M NaF/H2O 0.01 M NaF/H2O 0.01 M HClO4/H2O 0.01 M HClO4/H2O 0.01 M NaF/H2O 0.01 M HClO4/H2O 0.010 M NaF/H2O 0.010 M NaF/H2O 0.01 M KPF6/H2O 0.01 M HClO4/H2O 0.010 M NaF/H2O 0.010 M NaF/H2O 0.010 M NaF/H2O
pH=6.5 pH=5.6 pH=5.6 pH=5.6 pH=5.6 pH=5.6 2(100)-(111) 2(100)-(111) 2(111)-(100) pH=5.6 3(110)-(100) pH=5.6 3(111)-(111) 3(111)-(111) 2(110)-(111) pH=5.6 6(111)-(111) 4(100)-(110) pH=5.6 pH=5.6 2(100)-(111) 4(111)-(100) pH=5.6 pH=5.6 pH=5.6 7/3(111)-(111) pH=5.6 pH=5.6 pH=5.6
0.001 M HCl+0.01 M KCl/H2O 2 N H2SO4/H2O 2 N H2SO4/H2O 1 N NaClO4/H2O 0.003 M NaF/H2O 1 N K2SO4/H2O
Landolt-Börnstein New Series IV/9A
Comments 2)
pH=7 pH=7
Met. 3)
207 Epzc [V vs. SHE] 4)
Ref.
T T
0.141 0.414
90Ric 88Bor2
T C T C C T T T T T T T T T T T T T T T T T T T T T T T T T T T T T
0.161 0.121 0.104 0.096 0.151 0.204 0.122 0.241 0.259 0.241 0.24 0.24 0.122 0.13 0.286 0.216 0.22 0.22 0.304 0.22 0.2 0.241 0.307 0.303 0.31 0.186 0.217 0.413 0.377 0.401 0.18 0.268 0.459 0.313
82Ham2 82Ham1 82Lec 82Ham1 82Ham1 82Lec 82Lec 90Ric 82Lec 93Sil 96Sil 96Sil 82Lec 96Sil 82Lec 93Sil 96Sil 96Sil 82Lec 96Sil 96Sil 82Lec 82Lec 93Sil 96Sil 82Lec 93Sil 82Lec 82Lec 92Lec 96Sil 82Lec 82Lec 82Lec
P ER ER
–0.9 –0.8 –0.65
S T S
–0.65 –0.65 –0.64
74Rot 70Rot2 70Rot2 38 ) 69And 72Gri3 69And
208
3 Electrode potentials of zero charge
Electrode
Solution 1)
Comments 2)
Met. 3)
In amalgam
0.1 M HClO4/H2O
4.7 10–3 mol% In 9.4 10–3 mol% In 0.015 mol% In 0.094 mol% In 0.11 mol% In 0.11 mol% In 0.138 mol% In 0.49 mol% In 0.49 mol% In 0.92 mol% In 0.9 at% In 1.14 mol% In 1.14 mol% In 1.23 mol% In 1.71 mol% In 2 mol% In 2.04 mol% In 2.04 mol% In 3.9 mol% In 3.9 at% In 4.6 mol% In 4.6 mol% In 5.0 mol% In 5.95 mol% In 5.97 mol% In 5.97 mol% In 8.4 mol% In 8.4 at% In 10.0 mol% In 10.0 mol% In 10 mol% In 10.02 mol% In 10.02 mol% In 10.3 mol% In 10.3 mol% In 16.3 mol% In 20.0 mol% In 20 mol% In 20.34 mol% In 20 mol% In 20.34 mol% In 20.0 mol% In 20.0 mol% In
TC
–0.255
TC
–0.268
64But1 39 ) 64But1
TC TC EC EC TC EC EC TC T EC EC TC EC T EC EC TC T EC EC TC EC TC TC TC T TC TC T TC TC EC EC TC TC T TC TC TC EC EC
–0.229 –0.281 –0.449 –0.33 –0.271 –0.471 –0.33 –0.322 –0.322 –0.525 –0.38 –0.324 –0.34 –0.359 –0.525 –0.39 –0.36 –0.36 –0.568 –0.41 –0.366 –0.37 –0.37 –0.365 –0.382 –0.387 –0.403 –0.416 –0.414 –0.391 –0.369 –0.622 –0.46 –0.434 –0.457 –0.469 –0.445 –0.471 –0.457 –0.457 –0.667
66But1 64But1 65Pol 65Pol 66But1 65Pol 65Pol 64But1 65But6 65Pol 65Pol 66But1 68Pol 95Koe 65Pol 65Pol 64But1 65But6 65Pol 65Pol 66But1 68Pol 66But1 66But1 64But1 65But6 66But1 66But1 95Koe 66But1 66But1 65Pol 65Pol 64But1 64But1 95Koe 66But1 66But1 66But1 68Pol 65Pol
0.1 M HClO4/H2O 1 M HClO4/H2O 0.1 M HClO4/H2O 1 N KBr+0.01 N H2SO4/H2O 1 N Na2SO4+0.01 N H2SO4/H2O 1 M HClO4/H2O 1 N KBr+0.01 N H2SO4/H2O 1 N Na2SO4+0.01 N H2SO4/H2O 0.1 M HClO4/H2O 0.1 M HClO4/H2O 1 N KBr+0.01 N H2SO4/H2O 1 N Na2SO4+0.01 N H2SO4/H2O 1 M HClO4/H2O 0.1 M HClO4/H2O 1 M NaClO4/H2O 1 N KBr+0.01 N H2SO4/H2O 1 N Na2SO4+0.01 N H2SO4/H2O 0.1 M HClO4/H2O 0.1 M HClO4/H2O 1 N KBr+0.01 N H2SO4/H2O 1 N Na2SO4+0.01 N H2SO4/H2O 1 M HClO4/H2O 0.1 M HClO4/H2O 1 M HClO4/H2O 0.01 M HClO4/H2O 0.1 M HClO4/H2O 0.1 M HClO4/H2O 1 M HClO4/H2O 1 M HClO4/H2O 1 M NaClO4/H2O 0.01 M HClO4/H2O 0.1 M HClO4/H2O 1 N KBr+0.01 N H2SO4/H2O 1 N Na2SO4+0.01 N H2SO4/H2O 0.1 M HClO4/H2O 0.1 M HClO4/H2O 1 M NaClO4/H2O 0.01 M HClO4/H2O 1 M HClO4/H2O 0.1 M HClO4/H2O 0.1 M HClO4/H2O 1 N KBr+0.01 N H2SO4/H2O
Epzc [V vs. SHE] 4)
Ref.
Landolt-Börnstein New Series IV/9A
3 Electrode potentials of zero charge
Electrode
Solution 1)
1 N Na2SO4+0.01 N H2SO4/H2O 0.1 M HClO4/H2O 1 M NaClO4/H2O 1 N KBr+0.01 N H2SO4/H2O 1 N Na2SO4+0.01 N H2SO4/H2O 0.1 M HClO4/H2O 1 N Na2SO4+0.01 N H2SO4/H2O 1 M HClO4/H2O 0.01 M HClO4/H2O 0.1 M HClO4/H2O 0.1 M HClO4/H2O 1 M NaClO4/H2O 0.1 M HClO4/H2O 1 N KBr+0.01 N H2SO4/H2O 1 N Na2SO4+0.01 N H2SO4/H2O 0.1 M HClO4/H2O 1 M NaClO4/H2O 0.1 M HClO4/H2O 1 N KBr+0.01 N H2SO4/H2O 1 N Na2SO4+0.01 N H2SO4/H2O 1 M NaClO4/H2O 0.01 M HClO4/H2O 0.1 M HClO4/H2O 1 M HClO4/H2O 0.1 M HClO4/H2O 0.1 M HClO4/H2O 0.1 M HClO4/H2O In/Ga (eu- 1 N KBr/H2O tectic alloy) 1 N KCl/H2O 1 N KI/H2O 1 N K2SO4/H2O 0.1 M NaClO4/N-methylformamide 1 N Na2SO4/H2O 0.001 M LiClO4/acetonitrile
Iridium (Ir)
0.01 N NaCl+0.001 N HCl 1 N NaClO4/H2O 1 N NaClO4/H2O 1 N K2SO4/H2O 1 N K2SO4/H2O
Iron (Fe)
n.a./H2O 0.003 N HCl/H2O 0.01 N HCl/H2O 0.3 N HClO4/H2O 0.001 N H2SO4/H2O
Landolt-Börnstein New Series IV/9A
209
Comments 2)
Met. 3)
20.0 mol% In 30.0 mol% In 30 mol% In 30.2 mol% In 30.2 mol% In 30.4 mol% In 38.9 mol% In 39.83 mol% In 39.89 mol% In 39.89 mol% In 40 mol% In 40 mol% In 42.7 mol% In 48.5 mol% In 48.5 mol% In 50.0 mol% In 50 mol% In 52.2 mol% In 57.7 mol% In 57.7 mol% In 60 mol% In 63.02 mol% In 63.02 mol% In 63.02 mol% In 63.6 mol% In 64.4 mol% In 64.5 mol% In
EC TC T EC EC TC EC TC TC TC TC T EC EC EC TC T TC EC EC T TC TC TC TC TC EC T T T T T T T
–0.54 –0.489 –0.526 –0.719 –0.58 –0.515 –0.63 –0.570 –0.524 –0.552 –0.525 –0.571 –0.545 –0.784 –0.66 –0.585 –0.610 –0.605 –0.816 –0.68 –0.639 –0.592 –0.622 –0.646 –0.621 –0.625 –0.646 –0.68 –0.74 –0.89 –0.68 –0.629 –0.68 –0.509
65Pol 64But1 95Koe 65Pol 65Pol 64But1 65Pol 66But1 66But1 66But1 64But1 95Koe 68Pol 65Pol 65Pol 64But1 95Koe 64But1 65Pol 65Pol 95Koe 66But1 66But1 66But1 64But1 64But1 68Pol 72Gri5 72Gri5 72Gri5 72Gri5 96Eme 72Gri5 75Bag
P S S S S
–0.63 –0.04 –0.17 –0.04 –0.17
74Bro1 69And 69And 69And 69And
n.a. DR DR T T
–0.02 –0.4 –0.4 –0.28 –0.37
58Ant 63Vor 63Vor 67Mur 55Aya, 55Fru
pH=7 pH=11 pH=7 pH=11
Epzc [V vs. SHE] 4)
Ref.
210
3 Electrode potentials of zero charge
Electrode
Solution 1)
Fe
0.1 N H2SO4/H2O 0.01 N KCl/H2O 40) 0.1 M KF/H2O 0.3 N NaBr/H2O 0.3 N NaCl/H2O 0.3 N NaClO4/H2O 0.3 N NaI/H2O 0.01 N Na2SO4/H2O 40) 0.01 N Na2SO4/H2O 0.01 M Na2SO4/H2O 0.01 M Na2SO4/H2O 0.01 M Na2SO4/H2O 0.01 M Na2SO4/H2O+1-propanol 0.01 M Na2SO4/H2O+1-propanol 0.01 M Na2SO4/H2O+1-propanol 0.01 M Na2SO4/H2O+1-propanol 0.01 M Na2SO4/H2O+1-propanol 0.01 M Na2SO4/H2O+1-propanol 0.01 M Na2SO4/H2O+1-propanol 0.01 M Na2SO4/H2O+1-propanol 0.01 M Na2SO4/H2O+1-propanol 0.01 M Na2SO4/H2O+1-propanol 0.01 M Na2SO4/H2O+1-propanol 0.02 N (Na2SO4+H2SO4)/H2O 0.02 N (Na2SO4+H2SO4)/H2O 0.3 N Na2SO4/H2O 0.005 N NaClO4+3 mM HClO4/ H2O 0.01 N NaClO4+3 mM HClO4/H2O 0.02 N Na2SO4+H2SO4 /H2O
Fe (100) Fe (111) Fe-Ni alloy
0.02 N Na2SO4+H2SO4 /H2O 0.02 N Na2SO4+H2SO4 /H2O 0.02 N Na2SO4+H2SO4 /H2O 0.02 N Na2SO4+H2SO4 /H2O 0.02 N Na2SO4+H2SO4 /H2O 0.02 N Na2SO4+H2SO4 /H2O 0.02 N Na2SO4+H2SO4 /H2O
Comments 2)
pH=3.5 pH=3.5
pH=3.5
3 wt% 6.3 wt% 9.4 wt% 11 wt% 15.3 wt% 25.1 wt% 32.1 wt% 43.4 wt% 56 wt% 63.8 wt% 77 wt% pH=1.5 pH=3
pH=3.2, 5 % Fe pH=3.2, 8 % Fe pH=3.2, 12 % Fe pH=3.2, 20 % Fe pH=3.2, 25 % Fe pH=3.2, 40 % Fe pH=3.2, 50 % Fe pH=3.2, 60 % Fe
Met. 3) T T T PE PE PE PE T S IM IM IM IM IM IM IM IM IM IM IM IM IM IM T T PE T
Epzc [V vs. SHE] 4) –0.33 –0.7 –0.7 –0.65 –0.65 –0.52 –0.64 –0.7 –0.64 0.074 20) –0.16 –0.13 –0.3 0.075 0.13 0.142 0.095 0.025 0.1 0.105 0.095 0.08 0.065 –0.325 –0.48 –0.59 –0.72
Ref. 55Aya 75Ryb2 76Ryb 97Seo 97Seo 97Seo 97Seo 75Ryb2 78Laz 90Sok 95Tur 97Tur 95Tur 95Tur 95Tur 95Tur 95Tur 95Tur 95Tur 95Tur 95Tur 95Tur 95Tur 57Khe 57Khe 97Seo 79Bat
T T
–0.69 –0.345
79Bat 57Kra
T
–0.353
57Kra
T
–0.36
57Kra
T
–0.375
57Kra
T
–0.38
57Kra
T
–0.383
57Kra
T
–0.383
57Kra
T
–0.382
57Kra
Landolt-Börnstein New Series IV/9A
3 Electrode potentials of zero charge
Electrode
Solution 1)
Comments 2)
Met. 3)
0.02 N Na2SO4+H2SO4 /H2O
pH=3.2, 70 % Fe pH=3.2, 80 % Fe pH=3.2, 90 % Fe
T
–0.384
57Kra
T
–0.382
57Kra
T
–0.383
57Kra
0.001 M HCl+0.01 M KCl/H2O 0.0034 N HNO3/H2O 0.0056 N H3PO4/H2O 0.001 N H2SO4/H2O 0.001 N H2SO4/H2O 0.0027 N H2SO4/H2O 0.001 M KCl/H2O 0.01 N KCl/H2O 0.01 N KCl/H2O 0.01 N KCl/H2O 0.001 M KCl/H2O KCl/H2O 0.0027 N KNO3/H2O 0.25 N NaCH3COO/glacial acetic acid 0.01 N NaCl+0.001 N HCl/H2O 0.1 N NaCl/H2O
P T T T AE T DR T H T DR H T T
–0.85 –0.59 –0.59 –0.67 –0.62 –0.59 0.2 –0.69 –0.60 –0.75 0.2 –0.37 –0.59 –0.6
74Rot 71Car 71Car 55Fru 66Kuk2 71Car 59Vor 48Bor 49Ven 50Bor 59Vor 44Reb 71Car 72Pan3
P H
–0.6 –0.62
1 N NaCl/H2O 1 N NaCl/H2O 0.001 N NaF/H2O 0.01 N NaF/H2O 0.01 N NaF/H2O 0.026 N NaF/H2O 0.001 N NaF/methanol 1 N NaOH/H2O 1 N NaOH/H2O 0.001 M Na2SO4+0.001 N K2S2O8/ H2O 0.01 N Na2SO4/H2O 0.1 N Na2SO4/H2O 0.1 N Na2SO4/H2O 1 N Na2SO4/H2O 1 N Na2SO4/H2O 1 N Na2SO4/H2O 1 N Na2SO4/H2O
H H T T T T T H H ER
–0.6 –0.63 –0.56 –0.56 –0.6 –0.59 0.921 –0.58 –0.55 –0.65
74Bro1 55Fru, 56Ven 49Ven 44Reb 67Ryb 67Ryb 89Saf 78Mis 76Ush 44Reb 49Ven 55Fru
T T H H H H H
–0.6 –0.64 –0.6 –0.59 –0.56 –0.59 –0.6
89Saf 67Ryb 52Ven 44Reb 49Ven 56Ven 66Kuk1
S2 O82– /H2O KF/MeOH 0.01 N H2SO4/H2O
T T FL
–0.65 –0.43 –0.7
57Khe 89Saf 69Lik
0.02 N Na2SO4+H2SO4 /H2O 0.02 N Na2SO4+H2SO4 /H2O
Lead (Pb)
Pb (s.c.) 41)
Landolt-Börnstein New Series IV/9A
211 Epzc [V vs. SHE] 4)
Ref.
212
3 Electrode potentials of zero charge
Electrode
Solution 1)
Pb (s.c.) 41)
0.01 M NaBr/H2O 0.01 M NaCl/H2O 0.01 M NaF/H2O 0.001 M NaF/H2O 0.01 M NaF/H2O 0.01 M NaF/H2O 0.005 M Na2SO4/H2O 0.005 M Na2SO4/H2O 0.01 M NaF/H2O 0.01 M NaF/H2O 0.005 M Na2SO4/H2O 0.005 M Na2SO4/H2O 0.01 M NaF/H2O 0.01 M NaF/H2O 0.005 M Na2SO4/H2O 0.005 M Na2SO4/H2O 0.010 M NaF/H2O 0.01 M NaF/H2O 0.005 M Na2SO4/H2O 0.005 M Na2SO4/H2O
FL FL FL T T T T T T T T T T T T T T T T T
–0.8 –0.71 –0.68 –0.56 –0.589 –0.59 –0.609 –0.59 –0.579 –0.58 –0.609 –0.58 –0.619 –0.62 –0.649 –0.62 –0.579 –0.58 –0.609 –0.58
69Lik 69Lik 69Lik 67Ryb 78Kme 89Saf 78Kme 89Saf 78Kme 89Saf 78Kme 89Saf 78Kme 89Saf 78Kme 89Saf 78Kme 89Saf 78Kme 89Saf
not reported
n.a.
–2.24
53Vas
Magnesium not reported (Mg)
n.a.
1.08
53Vas
Manganese (Mn)
not reported
n.a.
–1.01
53Vas
Mercury (Hg)
1 N BaCl2/H2O 1 N BaCl2/H2O 1 N CH3COONa/H2O 0.01 N CsF/H2O 0.1 N CsF/H2O 0.9 N CsF/H2O 0.1 N CsI/H2O 0.9 N CsI/H2O 0.01 M HCl/H2O 0.01 M HCl/H2O 0.03 M HCl/H2O 0.03 M HCl/H2O 0.1 M HCl/H2O 0.1 M HCl/H2O 0.1 M HCl/H2O 0.1 N HCl/H2O 0.1 N HCl/H2O 0.1 M (HCl+KCl/H2O)
CA EC CA T T T T T S T S T H S T CA CA S
–0.28 –0.28 –0.24 –0.193 –0.192 –0.189 –0.452 –0.532 0.133 42) 0.138 42) 0.142 0.147 0.19 43) 0.168 42) 0.182 42) –0.5 44) –0.259 –0.639
55Uks2 67Arg 55Uks2 58Dam 58Dam 58Dam 58Dam 58Dam 65Boc 65Boc 65Boc 65Boc 53Boc 65Boc 65Boc 71Mor 68Mor 86Hor
Pb (100)
Pb (110)
Pb (111)
Pb (112)
Lithium (Li)
Comments 2)
pH=1
Met. 3)
Epzc [V vs. SHE] 4)
Ref.
Landolt-Börnstein New Series IV/9A
3 Electrode potentials of zero charge
Electrode
Landolt-Börnstein New Series IV/9A
213
Solution 1)
Comments 2)
Met. 3)
Epzc [V vs. SHE] 4)
0.1 M (HCl+KCl/H2O) 0.1 M (HCl+KCl/H2O) 0.1 M (HCl+KCl/H2O) 0.1 M (HCl+KCl/H2O) 0.1 M (HCl+KCl/H2O) 0.1 M (HCl+KCl/H2O) 0.3 M HCl/H2O 0.3 M HCl/H2O 1 N HCl/H2O 1 M HCl/H2O 1 N HCl/H2O 1 N HCl/H2O 2.94 M HCl/H2O 2.94 M HCl/H2O 7.5 N HCl/H2O 0.01 M HClO4/H2O 0.1 M HClO4/H2O 0.1 M HClO4/H2O 0.1 M HClO4/H2O 0.1 M HClO4/H2O 1 M HClO4/H2O 5.2 M HClO4/H2O 0.25 M HPF6/H2O 0.1 N H2SO4/H2O 1 N H2SO4/H2O 1 N H2SO4/H2O 0.1 N KBr/H2O 0.1 N KBr/H2O 1 N KBr+0.01 N H2SO4/H2O 1 N KBr/H2O 1 N KBr/H2O 0.01 N KCl/H2O 0.01 N KCl/H2O 0.01 N KCl/H2O 0.01 N KCl/H2O 45) 0.01 M KCl/ H2O+1,4-dioxane 0.01 M KCl/ H2O+1,4-dioxane 0.01 M KCl/ H2O+1,4-dioxane 0.1 m KCl/H2O 0.1 N KCl/H2O 0.1 N KCl/H2O 0.1 N KCl/H2O 0.1 N KCl/H2O 0.1 N KCl/H2O 0.1 N KCl/H2O
pH=1.3 pH=2.1 pH=3.2 pH=3.8 pH=4 pH=4.1
S S S S S S S T CA S EC T S T T TC TC T TC EC TC T EC, T EC CA EC S EC EC CA EC S P S P VE VE VE S EC T EC S S NS
–0.639 –0.643 –0.645 –0.663 –0.675 –0.684 0.214 42) 0.227 42) –0.3 0.290 42) –0.3 –0.321 0.401 42) 0.402 42) –0.562 –0.21 –0.23 –0.235 –0.229 –0.21 –0.282 –0.316 –0.241 –0.258 –0.23 –0.23 –0.277 –0.295 –0.395 –0.37 –0.37 –0.448 –0.199 –0.326 –0.199 –0.301 –0.271 –0.251 –0.224 –0.226 –0.190 –0.226 –0.226 –0.291 –0.240
5 wt% 10 wt% 20 wt%
Ref. 86Hor 86Hor 86Hor 86Hor 86Hor 86Hor 65Boc 65Boc 55Uks2 65Boc 67Arg 69Dek 65Boc 65Boc 69Dek 66But1 64But1 65But6 66But1 68Pol 66But1 69Dek 73Bau 38Win 55Uks2 67Arg 62Jen 52Gra 65Pol 55Uks2 67Arg 62Jen 69Ple 68Log 72Bro 83Mly 83Mly 83Mly 56Ran 49Gra 47Gra 52Gra 62Jen 68Log 98Pal
214
3 Electrode potentials of zero charge
Electrode
Solution 1)
Hg
1 N KCl/H2O 0.01 N KClO4/H2O 0.01 N KClO4/H2O 0.1 N KClO4/H2O 0.1 M KClO4/dimethylsulfoxide 0.01 N KF/ H2O 0.1 N KCNS/H2O 1.1 N KCNS/H2O 3 N KCNS/H2O 3 N KCNS/H2O 0.1 N K2CO3/H2O 1 N K2CO3/H2O 1 N K2CO3/H2O 0.1 N KC2H3O2/H2O 0.001 N KF/ H2O 0.01 N KF/H2O 0.1 N KF/H2O 0.1 N KF/H2O 0.1 N KF/formamide 0.005...0.2 M KF/H2O 0.005...0.2 M KF/ethanediol 0.005...0.2 M KF/1,2-propanediol 0.005...0.2 M KF/1,3-propanediol 0.005...0.2 M KF/1,2-butanediol 0.005...0.2 M KF/1,3-butanediol 0.005...0.2 M KF/1,4-butanediol 0.005...0.2 M KF/2,3-butanediol 1 N KF/H2O 0.001 M KF+N2O/H2O 0.1 N KHCO2/H2O 1 N K2HPO4/H2O 1 N K2HPO4/H2O 0.001 N KI/H2O 0.1 N KI/H2O 0.1 N KI/H2O 0.1 N KI/H2O 1 N KI/H2O 3 N KI/H2O 0.01 N KNO3/H2O 0.1 N KNO3/H2O 0.1 N KNO3/H2O 1 N KNO3/H2O 1 N KNO3/H2O 1 N KNO3/H2O 3 N KNO3/H2O
Comments 2)
Met. 3) S CA CA EC S IM EC EC CA EC EC CA EC EC IM P CA CA VE T T T T T T T T EC P EC CA EC IM EC CA CA CA EC EC EC EC EC CA EC CA
Epzc [V vs. SHE] 4) –0.275 –0.5 44) –0.259 –0.228 –0.226 –0.290 –0.348 –0.437 –0.49 –0.49 –0.193 –0.2 –0.2 –0.209 –0.193 –0.19 –0.209 –0.45 44) –0.510 –0.184 –0.089 –0.084 –0.154 –0.094 –0.154 –0.129 –0.089 –0.194 –0.43 –0.193 –0.21 –0.21 –0.287 –0.453 –0.479 –0.72 44) –0.6 44) –0.59 –0.246 –0.261 –0.236 –0.322 –0.28 –0.28 –0.59
Ref. 62Jen 71Mor 68Mor 52Gra 87Bor 71Jak 52Gra 36Erd 55Uks2 67Arg 52Gra 55Uks2 67Arg 52Gra 71Jak 74Bro1 68Mor 71Mor 83Mly 88Jap 88Jap 88Jap 88Jap 88Jap 88Jap 88Jap 88Jap 52Gra 74Rot 52Gra 55Uks2 67Arg 71Jak 52Gra 68Mor 71Mor 71Mor 67Arg 38Win 38Win 52Gra 38Win 55Uks2 67Arg 55Uks2
Landolt-Börnstein New Series IV/9A
3 Electrode potentials of zero charge
Electrode
Solution 1) KNO3/H2O 0.1 N KOH/H2O 0.1 M KOH/H2O 0.1 N KOH/H2O 1 N KOH/H2O 1 N KOH/H2O 0.01 M KPF6/propylene carbonate 0.01 M KPF6/nitromethan 0.1 M KPF6/H2O 0.1 M KPF6/methanol 0.1 M KPF6/dimethyl sulfoxide 0.1 M KPF6/4-butyrolactone 0.1 M KPF6/4-valerolactone 0.1 M KPF6/propylene carbonate 0.1 M KPF6/propylene carbonate 0.1 M KPF6/ethylene carbonate 0.1 M KPF6/acetonitrile 0.1 M KPF6/dimethylformamide 0.1 M KClO4/dimethylsulfoxide 0.2 M KPF6/water 0.2 M KPF6/acetone 0.1 N K2SO4/H2O 0.1 N K2SO4/H2O 0.1 m K2SO4/H2O 1 N LaCl3/H2O 1 N LaCl3/H2O 0.01 M LiCl/methanol 0.1 M LiCl/H2O 1 M LiCl/H2O 3.1 M LiCl/glycerol 0.005...0.2 M LiClO4/ethanediol 0.005...0.2 M LiClO4/1,2-propanediol 0.005...0.2 M LiClO4/1,3-propanediol 0.005...0.2 M LiClO4/1,3-butanediol 0.005...0.2 M LiClO4/1,4-butanediol 0.005...0.2 M LiClO4/1,2-butanediol 0.005...0.2 M LiClO4/2,3-butanediol 0.001 M LiClO4/acetonitrile 0.1 M LiClO4/dimethylsulfoxide 0.1 M LiNO3/dimethylsulfoxide 0.2 M LiNO3/water 0.2 M LiNO3/acetone 0.1 N (NH4)2SO4/H2O 0.853 N NaBr/H2O 0.1 N NaBr/H2O
Landolt-Börnstein New Series IV/9A
Comments 2)
215
Met. 3)
Epzc [V vs. SHE] 4)
CA EC EC EC, T EC CA VE EC T VE T T T T VE T T T S T T EC T S CA EC S T T VE T T T T T T T T S S T T T EC S
–0.19 –0.196 –1.3 –0.176 –0.19 –0.19 –0.300 –0.204 –0.243 –0.120 –0.073 –0.039 –0.032 –0.089 –0.333 –0.093 –0.0093 –0.039 –0.226 –0.218 –0.058 –0.190 –0.189 –0.851 46) –0.32 –0.32 –0.392 47) –0.279 –0.229 –0.510 –0.089 –0.084 –0.154 –0.154 –0.129 –0.094 –0.089 –0.049 –0.226 –0.236 –0.253 –0.042 –0.199 –0.348 –0.220
Ref. 67Vet 52Gra 67Pol 73Bau 67Arg 55Uks2 83Mly 81Jur 67Pay 83Mly 67Pay 67Pay 67Pay 67Pay 83Mly 67Pay 67Pay 67Pay 87Bor 77Bor 77Bor 52Gra 73Iva 56Ran 55Uks2 67Arg 67Gar 70Tim 70Tim 83Mly 88Jap 88Jap 88Jap 88Jap 88Jap 88Jap 88Jap 87Ham2 87Bor 87Bor 77Bor 77Bor 73Iva 36Erd 62Jen
216
3 Electrode potentials of zero charge
Electrode
Solution 1)
Hg
1 N NaCH3COO/H2O 0.1 N NaCl/H2O 0.1 N NaCl/H2O 0.1 N NaCl/H2O 0.1 N NaCl/H2O 0.1 N NaCl/H2O 1 N NaCl/H2O 1.18 N NaCl/H2O 0.014 M NaClO4/methanol 0.05 M NaClO4/methanol 0.1 M NaClO4/methanol 0.1 M NaClO4/methanol 0.1 M NaClO4/methanol 0.1 M NaClO4/methanol 0.1 M NaClO4/methanol 0.1 M NaClO4/methanol 0.1 M NaClO4/formamide 0.1 M NaClO4/N-methylformamide 0.1 M NaClO4/N-methylformamide 0.1 M NaClO4/N-methylformamide 0.1 M NaClO4/N-methylformamide 0.1 M NaClO4/N-methylformamide 0.1 M NaClO4/dimethylsulfoxide 0.2 M NaClO4/methanol 0.2 M NaClO4/H2O 0.2 M NaClO4/acetone 1.08 M NaClO4/H2O 1 M NaClO4/H2O 1 N NaClO4/H2O 1 M NaClO4/H2O NaF/H2O 0.01 N NaF/H2O 0.1 N NaF/H2O 0.1 N NaF/H2O 0.9 N NaF/H2O 1 N NaF/H2O 0.25 N NaF/H2O 0.25 N NaF/H2O 0.1 N NaI/H2O 0.9 N NaI/H2O 1.09 N NaI/H2O 1.38 N NaNO3/H2O 0.1 m NaOH/H2O 0.1 M NaOH/H2O 0.514 M Na2S/H2O
Comments 2)
T=–5 °C T=10 °C T=25 °C T=40 °C
T=5 °C T=25 °C T=30 °C T=40 °C
Met. 3) EC EC EC T EC S S EC T T T T T T T VE VE EC EC EC EC T S T T T S T CA T T T EC T T EC S EC T T EC EC S S EC
Epzc [V vs. SHE] 4) –0.24 –0.223 –0.225 –0.190 –0.235 –0.226 –0.275 –0.277 –0.326 48) –0.327 48) –0.330 48) –0.320 48) –0.325 48) –0.330 48) –0.335 48) –0.31 –0.215 –0.398 –0.401 –0.400 –0.420 –0.079 –0.226 –0.333 48) –0.244 –0.028 –0.250 0.03 –0.25 44) –0.273 –0.192 –0.193 –0.194 –0.193 –0.192 –0.192 –0.191 –0.199 –0.446 –0.519 –0.542 –0.279 –0.567 –0.524 –0.791
Ref. 67Arg 91Pas 03Gou 47Gra 49Gra 62Jen 62Jen 36Erd 81Bor 81Bor 81Bor 82Bor 82Bor 82Bor 82Bor 83Mly 83Mly 84Bor 84Bor 84Bor 84Bor 96Eme 87Bor 81Bor 77Bor 77Bor 36Erd 68Ham2 71Mor 95Koe 54Gra 58Dam 52Gra 58Dam 58Dam 52Gra 79Ama 79Ama 58Dam 58Dam 36Erd 36Erd 56Ran 62Jen 36Erd
Landolt-Börnstein New Series IV/9A
3 Electrode potentials of zero charge
Electrode
Solution 1) 0.0066 M Na2SO4/H2O 0.01 N Na2SO4/H2O 0.005 M Na2SO4/H2O 0.01 M Na2SO4/H2O 0.01 M Na2SO4/H2O 0.01 M Na2SO4/H2O 0.02 M Na2SO4/H2O 0.02 M Na2SO4/H2O 0.03 M Na2SO4/H2O 0.05 M Na2SO4/H2O 0.05 M Na2SO4/H2O 0.1 N Na2SO4/H2O 0.1 M Na2SO4/H2O 0.1 M Na2SO4/H2O 0.1 M Na2SO4/H2O 0.2 N Na2SO4/H2O 0.25 N Na2SO4/H2O 0.25 N Na2SO4/H2O 0.2 M Na2SO4/H2O 0.2 M Na2SO4/H2O 0.3 M Na2SO4/H2O 1 N Na2SO4/H2O 0.5 M Na2SO4/H2O 0.5 M Na2SO4/H2O 1 M Na2SO4/H2O 1 M Na2SO4/H2O 1.01 M Na2SO4/H2O Na2SO4/H2O 0.5 M Na2SO4+0.001 M H2SO4/ H2O 0.01 M Na2SO4/H2O+1-propanol 0.01 M Na2SO4/H2O+1-propanol 0.01 M Na2SO4/H2O+1-propanol 0.01 M Na2SO4/H2O+1-propanol 0.01 M Na2SO4/H2O+1-propanol 0.01 M Na2SO4/H2O+1-propanol 0.01 M Na2SO4/H2O+1-propanol 0.01 M Na2SO4/H2O+1-propanol 0.1 M Na2SO4/H2O 0.02 N (Na2SO4+H2SO4)/H2O 0.02 N (Na2SO4+ NaOH)/H2O 0.02 N (Na2SO4+NaOH)/H2O 0.02 N (Na2SO4+NaOH)/H2O 1 N Na2SO4/H2O 1 N Na2SO4/H2O
Landolt-Börnstein New Series IV/9A
Comments 2)
3 wt% 6.3 wt% 15.3 wt% 25.1 wt% 32.1 wt% 43.4 wt% 56 wt% 77 wt% 1< pH <7 7< pH <10 pH=11 pH=12
Met. 3)
217 Epzc [V vs. SHE] 4)
Ref.
EC EC EC T IM EC T EC T T EC EC T EC T S S EC EC T T EC T EC EC T EC CA T
–0.186 –0.232 –0.194 –0.1916 –0.19 –0.195 –0.1914 –0.196 –0.199 –0.1912 –0.199 –0.248 –0.209 –0.201 –0.1907 –0.190 –0.191 –0.199 –0.203 –0.1900 –0.229 –0.213 –0.1894 –0.206 –0.210 –0.1892 –0.169 –0.19 –0.148
36Erd 38Win 75Pay 84Dag 95Tur 75Pay 84Dag 75Pay 71Elk 84Dag 75Pay 38Win 71Elk 75Pay 84Dag 62Jen 79Ama 79Ama 75Pay 84Dag 71Elk 38Win 84Dag 75Pay 75Pay 84Dag 36Erd 67Vet 65Sat
IM IM IM IM IM IM IM IM EC T T T T EC CA
0.01 0.039 0.036 0.023 0.018 0.006 0.004 –0.024 –0.24 –0.26 –0.26 –0.255 –0.2 –0.2 –0.12
95Tur 95Tur 95Tur 95Tur 95Tur 95Tur 95Tur 95Tur 60Del 57Khe 57Khe 57Khe 57Khe 28Fru2 34Gor
218
Electrode
3 Electrode potentials of zero charge Solution 1)
1 N Na2SO4/H2O 1 N Na2SO4/H2O 1 N Na2SO4+0.01 N H2SO4/H2O n.a. Molybdenum not reported (Mo) Nickel 0.0015 N HBr/H2O (Ni) 0.0015 N HCl/H2O 0.001 N HCl/H2O 1 M HCl/H2O 0.0001 M HClO4/H2O 0.01 M KCl/H2O 0.0005 M KClO4/H2O 0.01 N K2SO4/H2O 0.01 M LiCl/methanol 0.01 M LiCl/ethanol 0.01 N LiCl/2-butanol 0.01 N LiCl/2-propanol 0.01 N NaClO4/H2O 0.1 N NaClO4/H2O 0.0001 M NaOH/H2O 0.0005 M Na2SO4/H2O 0.01 N Na2SO4/H2O 0.01 M Na2SO4/H2O 0.01 M Na2SO4/H2O 0.01 M Na2SO4/H2O 0.01 M Na2SO4/H2O+1-propanol 0.01 M Na2SO4/H2O+1-propanol 0.01 M Na2SO4/H2O+1-propanol 0.01 M Na2SO4/H2O+1-propanol 0.01 M Na2SO4/H2O+1-propanol 0.01 M Na2SO4/H2O+1-propanol 0.01 M Na2SO4/H2O+1-propanol 0.01 M Na2SO4/H2O+1-propanol 0.01 M Na2SO4/H2O+1-propanol 0.01 M Na2SO4/H2O+1-propanol 0.01 M Na2SO4/H2O+1-propanol 0.02 N Na2SO4/H2O 0.02 N Na2SO4/H2O 0.02 N Na2SO4+ H2SO4/H2O 0.02 N Na2SO4/H2O 0.02 N (Na2SO4+H2SO4)/H2O 0.02 N (Na2SO4+H2SO4)/H2O 0.02 N (Na2SO4+H2SO4)/H2O 0.02 N (Na2SO4+H2SO4)/H2O
Comments 2)
Hg
pH=10.3 pH=3
pH=12.5 pH=3.5
3 wt% 6.3 wt% 9.4 wt% 11 wt% 15.3 wt% 25.1 wt% 32.1 wt% 43.4 wt% 56 wt% 63.8 wt% 77 wt% pH=1 pH=3 pH=3.2 pH=5 pH=1 pH=2 pH=3 pH=4
Met. 3)
Epzc [V vs. SHE] 4)
Ref.
CA EC EC EC n.a.
–0.2 –0.2 –0.22 –0.22 –0.62
55Uks2 67Arg 65Pol 32Pro 53Vas
ER ER ER OA IM IM T T IM IM IM IM OA F T PC S IM IM IM IM IM IM IM IM IM IM IM IM IM IM T T T T T T T T
–0.28 –0.28 –0.06 –0.264 0.03 0.193 –0.24 –0.33 0.088 –0.02 –0.105 –0.1 –0.32 –0.3 –0.27 –0.110 –0.37 0.034 20) –0.19 –0.18 –0.12 –0.087 –0.11 –0.125 –0.12 –0.17 –0.185 –0.18 –0.19 –0.2 –0.2 –0.21 –0.33 –0.328 –0.37 –0.205 –0.27 –0.3 –0.325
40Leg 40Leg 39Luk 52Hil 73Kim 62Jak1 69Boc1 70Vol 64Jak2 64Jak2 65Jak1 65Jak1 69Boc1 69Boc1 69Boc1 83Ohm 78Laz 90Sok 95Tur 97Tur 95Tur 95Tur 95Tur 95Tur 95Tur 95Tur 95Tur 95Tur 95Tur 95Tur 95Tur 53Khe 53Khe 57Kra 53Khe 57Khe 57Khe 57Khe 57Khe
Landolt-Börnstein New Series IV/9A
3 Electrode potentials of zero charge
219
Electrode
Solution 1)
Comments 2)
Met. 3)
pH=5 pH=6
Ni (100) Ni (110) Ni-Zn alloy
0.02 N (Na2SO4+ H2SO4)/H2O 0.02 N (Na2SO4+H2SO4)/H2O 3 mM HClO4/H2O 3 mM HClO4/H2O 0.01 N K2SO4/H2O
T T T T T
–0.305 –0.355 –0.39 –0.53 –0.31
57Khe 57Khe 89Aro 89Aro 70Vol
T
–0.32
70Vol
T
–0.41
70Vol
T
–0.43
70Vol
T
–0.48
70Vol
T
–0.54
70Vol
T
–0.58
70Vol
T
–0.62
70Vol
T
–0.63
70Vol
T
–0.63
70Vol
T T
–0.79 49) –0.66 50)
65Koz 65Koz
pH=7
S T T
–0.0 0.279 0.241
69And 80Pet 84Ale
pH=7
S T T T T T T T T T CO T T T T
–0.0 0.031 0.2 –0.06 –0.227 –0.31 –0.36 –0.375 –0.385 –0.39 0.25 0.117 52) 0.151 53) 0.141 54) 0.119 55)
69And 06ElA 57Khe 57Khe 57Khe 57Khe 57Khe 57Khe 57Khe 57Khe 00Alv 02ElA 02ElA 02ElA 02ElA
0.01 N K2SO4/H2O 0.01 N K2SO4/H2O 0.01 N K2SO4/H2O 0.01 N K2SO4/H2O 0.01 N K2SO4/H2O 0.01 N K2SO4/H2O 0.01 N K2SO4/H2O 0.01 N K2SO4/H2O 0.01 N K2SO4/H2O
Niobium (Nb)
1 N H2SO4/H2O 1 N H2SO4/H2O
Palladium (Pd)
1 N K2SO4/H2O 0.001 M LiClO4/acetonitrile 0.003 M LiClO4/ dimethylsulphoxide 1 N NaClO4/H2O 5 mM NaF/H2O 51) 0.02 N (Na2SO4+H2SO4)/H2O 0.02 N (Na2SO4+H2SO4)/H2O 0.02 N (Na2SO4+H2SO4)/H2O 0.02 N (Na2SO4+H2SO4)/H2O 0.02 N (Na2SO4+H2SO4)/H2O 0.02 N (Na2SO4+NaOH)/H2O 0.02 N (Na2SO4+H2SO4)/H2O 0.02 N (Na2SO4+NaOH)/H2O 0.01 N HClO4/H2O 5 mM NaF/H2O 5 mM NaF/H2O 5 mM NaF/H2O 5 mM NaF/H2O
Pd (111)
Landolt-Börnstein New Series IV/9A
1 % Zn, pH=3 2 % Zn, pH=3 2.8 % Zn, pH=3 3 % Zn, pH=3 3.5 % Zn, pH=3 4.1 % Zn, pH=3 5 % Zn, pH=3 6.3 % Zn, pH=3 7 % Zn, pH=3 8 % Zn, pH=3
pH=2 pH=3 pH=4 pH=6 pH=7 pH=8 pH=9 pH=11
Epzc [V vs. SHE] 4)
Ref.
220
Electrode
3 Electrode potentials of zero charge Solution 1)
Platinum 56) 0.01 N CdBr2+0.1 N H2SO4/H2O (Pt) 0.01 N CdI2+0.1 N H2SO4/H2O 0.01 N CdSO4+0.1 N H2SO4/H2O 0.005 N Cs2SO4/H2O 0.001...0.01 N Cs2SO4/H2O 0.025 M Cs2SO4+0.005 M H2SO4/ H2O 0.01 N Cs2SO4+0.01 N H2SO4/H2O 0.01 N HCl + 0.1 N KCl/H2O 1 N HCl/H2O 0.015 M HCl+0.12 M KCl/H2O HClO4/H2O 0.1 N HClO4/H2O 0.1 N HClO4/H2O HClO4,NaClO4,NaOH/H2O 0.3 N HF+0.1 N KF/H2O 0.3 M HF+0.12 M KF/H2O 0.000025 N H2SO4/H2O 0.001 N H2SO4/H2O 0.001 N H2SO4/H2O 0.001 N H2SO4/H2O 0.005 N H2SO4/H2O 0.005 M H2SO4+0.5 M Na2SO4/H2O 0.005 M H2SO4+0.06 M K2SO4/H2O 0.01 N H2SO4+0.1 N K2SO4/H2O 0.01 N H2SO4/H2O 0.01 N H2SO4/H2O 0.1 N H2SO4/H2O H2SO4, NaOH/H2O 1 M KBr+0.01 M HBr/H2O 1 M KBr+0.01 M NaOH/H2O 0.001 M KCl/H2O 0.001 M KCl/H2O 0.001 M KCl/H2O 0.01 M KCl/H2O 0.1 M KCl/H2O 0.1 M KCl/H2O 1 N KCl+0.01 N HCl/H2O 1 M KCl/H2O 0.1 N KF/H2O 0.1 N KI/H2O 1 M KI+0.01 M NaOH/H2O 1 N K2SO4/H2O
Comments 2)
Met. 3)
(Pt) (Pt) (Pt) pH=2.7 (Pt) 2.5
IA IA IA IA RT IA
(Pt)
RT ISS T ISS T F IM T
2.5
(H)
0
pH=12 (Pt)
(Pt) pH=7
ISS ISS ED T DR AE T ISS ISS ISS T T F PE ISS ISS DR DR DR DR ED S ISS S CA S ISS S
Epzc [V vs. SHE] 4) 0.45 0.01 0.65 0.18 0.18 0.11 0.17 0.132 0.47 0.13 0.1 0.5 1.1 0.56– 0.059 pH 0.233 0.235 0.12 0.18 0.2 0.21 0.35 0.2 0.205 0.205 0.35 0.18 0.3 0.32– 0.04 pH –0.09 –0.39 0.2 0.2 0.2 0.2 0.09 –0.4 0.04 –0.08 –0.06 –0.51 –0.52 –0.02
Ref.
66Man 66Man 66Man 61Bal 68Bal 33Fru 64Kaz 72Pod 53Rob 74Pod 69Bur 69Boc1 96Ham1 66Gil 72Pod 74Pod 38Bal 63Bir 63Vor 66Kuk2 53Bor 74Pod 74Pod 72Pod 53Bor 63Bir 50Bow 86Seo 68Pet 68Pet 59Vor 62Vor 63Vor 63Vor 71Fre 64Per 69Pet 74Cla2 71Mor 69And 68Pet 69And
Landolt-Börnstein New Series IV/9A
3 Electrode potentials of zero charge
Electrode
Landolt-Börnstein New Series IV/9A
221
Solution 1)
Comments 2)
Met. 3)
1 N K2SO4/H2O 0.0005 M LiClO4/acetonitrile 0.003 M LiClO4/dimethylsulphoxide 0.00001 N MgSO4/H2O 0.0003 N MgSO4/H2O 0.001 N MgSO4/H2O 0.001 N NaBr+001 N H2SO4/H2O 1 N NaBr+0.01 N HBr/H2O 1 N NaBr+0.05 N NaOH/H2O 0.001 N NaCl+0.001 N HCl/H2O 1 N NaCl+0.01 N HCl/H2O NaClO4/H2O 0.01 N NaClO4/H2O 0.003 N NaClO4+HClO4/H2O 0.003 N NaClO4+HClO4/H2O 0.003 N NaClO4+HClO4/H2O 0.003 N NaClO4+HClO4/H2O 0.003 N NaClO4+NaOH/H2O 0.003 N NaClO4+NaOH/H2O 0.003 N NaClO4+NaOH/H2O 0.1 N NaClO4/H2O 0.1 N NaClO4/H2O 0.1 N NaClO4/H2O 1 N NaClO4/H2O 1 N NaClO4/H2O 0.001 N NaF+0.001 N H2SO4/H2O 0.005 N NaI+005 N H2SO4/H2O 0.001 N Na2SO4+0.001 N H2SO4/H2O 0.001...0.01 N Na2SO4/H2O 0.025 M Na2SO4+0.005 M H2SO4/ H2O 0.02 N Na2SO4/H2O 0.02 N (Na2SO4+H2SO4)/H2O 0.02 N (Na2SO4+H2SO4)/H2O 0.02 N (Na2SO4+H2SO4)/H2O 0.02 N (Na2SO4+H2SO4)/H2O 0.02 N (Na2SO4+H2SO4)/H2O 0.02 N (Na2SO4+H2SO4)/H2O 0.02 N (Na2SO4+H2SO4)/H2O 0.02 N (Na2SO4+H2SO4)/H2O 0.02 N (Na2SO4+H2SO4)/H2O 0.02 N (Na2SO4+H2SO4)/H2O 0.02 N Na2SO4/H2O 0.02 N (Na2SO4+H2SO4)/H2O
pH=11
pH=3 pH=2.5 pH=2.8 pH=3.3 pH=4.1 pH=8.0 pH=10.3 pH=11.2 pH=12 pH=2.3 pH=12 pH=7 pH=11 (Pt) (Pt) (Pt)
S T T DR DR DR IA IA IA IA IA T OA T T T T T T T OA F F S S IA IA IA
–0.3 0.099 0.091 0.2 0.2 0.2 0.04 –0.02 –0.26 0.14 0.05 0.1 0.5 0.47 0.41 0.37 0.33 0.07 –0.083 –0.11 –0.07 0.35 –0.2 –0.02 –0.3 0.18 –0.5 0.18
2.5< pH <6 (H)
RT IA
0.18 0.11
pH=2 (H) pH=2 (H) pH=3 (H) pH=4 (H) pH=4 (H) pH=5 (H) pH=5 (H) pH=6 (H) pH=6 (H) pH=7 (H) pH=7 (H) pH=7 (H) pH=8 (H)
T T T T T T T T T T T T T
(Pt) (Pt) (Pt) (Pt) (Pt)
Epzc [V vs. SHE] 4)
0.48 0.48 0.3 0.18 57) 0.13 0.0 0.12 57) –0.14 0.08 –0.21 0.06 57) –0.21 –0.28
Ref. 69And 80Pet 84Ale 63Vor 63Vor 63Vor 65Bal1 36Shl 36Shl 65Bal1 36Shl 69Bur 69Boc1 69Boc1 69Boc1 69Boc1 69Boc1 69Boc1 69Boc1 69Boc1 69Boc1 69Boc1 69Boc1 69And 69And 65Bal1 65Bal1 65Bal1 68Bal 36Shl 57Khe 57Khe 57Khe 57Khe 57Khe 57Khe 57Khe 57Khe 57Khe 57Khe 57Khe 57Khe 57Khe
222
3 Electrode potentials of zero charge
Electrode
Solution 1)
Comments 2)
Met. 3)
Pt
0.02 N (Na2SO4+H2SO4)/H2O 0.02 N (Na2SO4+H2SO4)/H2O 0.02 N (Na2SO4+H2SO4)/H2O 0.02 N (Na2SO4+H2SO4)/H2O 0.02 N (Na2SO4+H2SO4)/H2O 0.02 N (Na2SO4+H2SO4)/H2O 0.02 N (Na2SO4+H2SO4)/H2O 0.1 N Na2SO4/H2O 1 N Na2SO4/H2O 1 N Na2SO4+0.01 N H2SO4/H2O 1 N Na2SO4/H2O 0.001 N ZnCl2/H2O 0.1 M HClO4/H2O 0.1 M HClO4/H2O
pH=8 (H) pH=9 (H) pH=9 (H) pH=10 (H) pH=10 (H) pH=11 (H) pH=12 (H)
T T T T T T T T CA ISS T DR CO CO
Pt (111)
Potassium (K) Rhodium (Rh)
Rubidium (Rb)
Epzc [V vs. SHE] 4)
Ref.
0.1 M HClO4/H2O
CO
0.1 M HClO4/H2O 0.1 M HClO4/H2O not reported
ER VIB n.a.
0.03 57) –0.31 0.01 57) –0.35 0.01 57) –0.36 0.36 0.22 0.28 0.16 0.11 0.2 0.25 0.25... –0.75 58) 0.19... 0.33 58) 0.277 0.287 –2.31
0.001 N Cs2SO4/H2O 0.01 N HCl+1 N KCl/H2O 0.01 N HCl+1 N KCl/H2O 0.3 M HF+0.12 M KF/H2O 0.02 N H2SO4/H2O 0.005 M H2SO4+0.06 M K2SO4/H2O 0.005 M H2SO4+0.5 M Na2SO4/H2O 0.01 N H2SO4+1 N Na2SO4/H2O KCl+0.01 N HCl/H2O 1 N NaClO4/H2O 1 N NaClO4/H2O 0.01 N NaOH+1 N Na2SO4/H2O Na2SO4/H2O 0.001 N Na2SO4/H2O 0.01 N Na2SO4/H2O 1 N Na2SO4/H2O Na2SO4+0.01 N H2SO4/H2O 0.001 N Na2SO4+0.001 N H2SO4/H2O 0.01 N Na2SO4+0.01 N H2SO4/H2O 1 N K2SO4/H2O 1 N K2SO4/H2O
OA ISS ISS ISS T ISS ISS ISS ISS S S ISS RT OA ISS ISS ISS ISS RT S S
0.18 0.0 59) 0.0 0.085 0.28 0.03 0.025 0.5 –0.12 –0.02 –0.36 –0.4 –0.03 0.18 0.15 0.02 –0.04 –0.07 59) –0.03 –0.02 –0.36
64Kra 67Pet2 70Pet 74Pod 64Kra 74Pod 74Pod 70Pet 68Fru 60) 69And 69And 74Pod 63Bir 64Kra 82Laz 82Laz 68Fru 60) 67Pet2 67Bal 69And 69And
n.a.
–2.42
53Vas
not reported
acidic (Pt)
pH=7 pH=11
pH=2.5
pH=7 pH=11
57Khe 57Khe 57Khe 57Khe 57Khe 57Khe 57Khe 59McM 34Gor 69Pet 35Fru 63Vor 00Gom 00Gom 99Cli 95Att 96Iwa 53Vas
Landolt-Börnstein New Series IV/9A
3 Electrode potentials of zero charge
Electrode
Solution 1)
Silicon (Si) Silver (Ag)
not reported
n.a.
–0.13
53Vas
AgNO3/H2O AgNO3/H2O 0.001 M HClO4/H2O 0.001 M HClO4/H2O 0.002 M HClO4/H2O 0.005 M HClO4/H2O 0.001 M KCl+0.199 M NaF/H2O 0.002 M HClO4/H2O 0.01 N KCl/H2O 0.01 M KCl+0.19 M NaF/H2O 0.05 M KCl+0.15 M NaF/H2O 0.1 N KCl/H2O 0.1 N KCl/H2O 0.1 N KCl/H2O 0.1 M KCl+0.1 M NaF/H2O 0.1 M KClO4/H2O 0.1 M KClO4+0.01 M KCN/H2O 0.1 N KNO3/H2O
IA,IM S T BAW BAW BAW T T T T T S S S T SFG SFG various methods RT T T S S S S T T S OA F T S S T BAW T T T T BAW BAW CA
–0.51 –0.475 –0.45 –0.683 –0.683 –0.666 –0.719 –0.41 –0.86 –0.704 –0.679 –0.82 –0.80 –0.80 –0.669 –0.709 –0.959 0.046
31Pro 26Ben 69Boc1 97Che 97Che 97Che 78Shl 69Boc1 67Dag 78Shl 78Shl 64And 64Per 67Per 78Shl 95Tad 95Tad 39Ves
0.05 –0.7 –0.7 –0.64 –0.64 –0.78 –0.62 –0.66 –0.7 –0.48 0.08 –0.4 –0.719 –0.64 –0.64 –0.7 –0.662 –0.72 –0.7 –0.729 –0.7 –0.664 –0.673 –0.46
55Fru 66Dag 74Zel 69And 69And 67Bod 67Bod 02Lan61) 67Ham2 67Bod 69Boc1 69Boc1 83Hup 69And 69And 91Agl 97Che 72Val 78Nov 78Shl 78Zel1 97Che 97Che 69Mor
0.1 N KNO3/H2O 0.01 N KOH/H2O 0.1 N KOH/H2O 1 N K2SO4/H2O 1 N K2SO4/H2O 0.1 N NaBr/H2O 0.1 N NaCl/H2O 0.005 M NaClO4/H2O 0.01 N NaClO4/H2O 0.1 N NaClO4/H2O 0.1 N NaClO4/H2O 0.1 N NaClO4/H2O 0.5 M NaClO4/H2O 1 N NaClO4/H2O 1 N NaClO4/H2O 0.001 M NaF/H2O 0.001 M NaF/H2O 0.005 M NaF/H2O 0.005 M NaF/H2O 0.005 M NaF/H2O 0.005 M NaF/H2O 0.005 M NaF/H2O 0.1 M NaF/H2O 0.1 M NaOH/H2O
Landolt-Börnstein New Series IV/9A
Comments 2)
pH=7
pH=7 pH=11
pH=2 pH=7 pH=11
pH=4
Met. 3)
223 Epzc [V vs. SHE] 4)
Ref.
224
3 Electrode potentials of zero charge
Electrode
Solution 1)
Ag
0.1 N NaOH/H2O 0.0005 M Na2SO4/H2O 0.001 N NaSO4/H2O 0.001 N NaSO4/H2O 0.005 N NaSO4/H2O 0.01 N Na2SO4/H2O 0.01 N Na2SO4/H2O 0.01 N Na2SO4/H2O 0.01 N Na2SO4/H2O 0.01 N Na2SO4/H2O 0.01 N Na2SO4/H2O 0.01 M Na2SO4/H2O 0.01 M Na2SO4/H2O 0.2 N Na2SO4/H2O 0.02 N (Na2SO4+ H2SO4)/H2O 0.02 N Na2SO4/H2O 0.02 N Na2SO4/H2O 0.1 M Na2SO4/H2O 0.1 M Na2SO4/H2O 1 N Na2SO4/H2O 0.05 M KClO4/acetonitrile 0.4 M N LiBr/ethanol 0.4 M N LiBr/propanol 0.4 M N LiBr/pentanol 0.4 M N LiBr+0.1 M LiCl/butan-1-ol 0.4 M N LiBr+0.1 M LiCl/butan-2-ol 0.4 M N LiBr+0.1 M LiCl/ 2-methylpropan-1-ol n.a. 0.1 M KClO4/H2O 0.1 M KClO4/H2O 0.1 M KClO4/H2O 0.1 M KClO4/H2O 0.1 M KClO4/H2O 0.0025 M Cs2SO4/H2O 1 N HCl/H2O 0.002 M KF/H2O
63
AgAu(111) ) AgIr(111) 63) AgPd(111) 63) AgPt(111) 63) AgRh(111) 63) Ag (100)
0.002 M KF/H2O 0.0025 M K2SO4/H2O 0.005 M KPF6/H2O 0.1 M LiClO4/H2O 0.0025 M Li2SO4/H2O 0.005 M NaF/H2O 0.005 M NaF/H2O
Comments 2)
pH=3.4
1< pH <6
acidic
Met. 3)
Epzc [V vs. SHE] 4)
S BAW T T T T T T T T T T S PE T T T CA BAW CA T VIB VIB VIB VIB VIB VIB
–0.56 –0.675 –0.7 –0.7 –0.7 –0.7 –0.7 –0.7 –0.709 5) –0.709 62) –0.7 –0.66 –0.65 14) –0.75 0.05 0.05 –0.7 –0.58 –0.668 –0.02 –0.744 –1.0 30) –1.0 30) –1.0 30) –0.94 30) –1.3 30) –1.45 30)
67Bod 97Che 66Dag 66Dag 66Lei 60Lei 66Dag 66Dag 70And 70And 75Ale1 75Non 75Non 66Gok 57Khe 57Khe 60Lei 69Mor 97Che 34Gor 93Dou 92Sob 92Sob 92Sob 96Pem 96Pem 96Pem
EC T T T T T T H,F T
–0.510 21) –0.259 –0.559 –0.359 –0.239 –0.359 –0.649 –0.28 –0.609
T T T T T T T
–0.608 –0.599 –0.624 –0.619 –0.669 –0.669 –0.624
32Pro 06Sol 06Sol 06Sol 06Sol 06Sol 75Vit2 57Fle 75Vit2, 76Vit2 82Vit 69Ham1 82Val 02Jur 75Vit1 73Val 82Val
Ref.
Landolt-Börnstein New Series IV/9A
3 Electrode potentials of zero charge
Electrode
Ag (110)
Ag (111)
Solution 1)
Met. 3)
Epzc [V vs. SHE] 4)
0.005 M NaF/H2O 0.1 M NaF/H2O 0.1 M NaF/H2O 0.002 M NaClO4/H2O 0.005 M NaClO4/H2O 0.0005 M Na2SO4/H2O 0.001 N Na2SO4/H2O 0.0025 M Na2SO4/H2O 0.005 N Na2SO4/H2O 0.005 M Na2SO4/H2O
T T T T T T T T T T
–0.616 –0.669 –0.639 –0.647 –0.632 –0.669 –0.7 –0.669 –0.650 –0.609
0.001 M NaNO3/H2O 0.005 M KBF4/H2O 0.05 M KClO4/H2O 0.002 M KF/H2O 0.005 M KPF6/H2O 0.005 M KPF6/H2O 0.0025 M K2SO4/H2O 0.1 M LiClO4/H2O 0.005 M NaF/H2O
T T T T T T T T T
–0.659 –0.734 –0.749 –0.609 –0.734 –0.734 –0.659 –0.734 –0.769
0.005 M NaF/H2O 0.1 M NaF/H2O 0.1 M NaF/H2O 0.002 M NaClO4/H2O 0.005 M NaClO4/H2O 0.005 M Na2SO4/H2O 0.0025 M Cs2SO4/H2O 1 N HCl/H2O 0.1 M KClO4/H2O 0.001 M KF/H2O 0.002 M KF/H2O (100–x) mM KF + x mM KCl/H2O 0.1 M KPF6/H2O 0.0025 M K2SO4/H2O 0.0025 M Li2SO4/H2O 0.1 M NaF/H2O 0.005 M NaF/H2O
T T T T T T T H,F T T T T T T T T T
–0.734 –0.759 –0.649 –0.653 –0.734 –0.719 –0.499 –0.18 –0.459 –0.459 64) –0.459 –0.519 –0.454 –0.509 –0.519 –0.449 –0.449
T T T T T
–0.469 –0.479 –0.46 –0.24 –0.499
0.01 M NaF/H2O 0.002 M NaClO4/H2O 0.005 M NaClO4/H2O 0.005 M NaClO4/H2O 0.001 M NaNO3/H2O
Landolt-Börnstein New Series IV/9A
Comments 2)
225
(1< x <40)
Ref. 95Tra 81Fle 02Jur 82Vit 82Val 74Vit1 66Dag 75Vit1 69Bud 75Vit1, 76Vit1 75Vit1 81Val 89Ham 82Vit 89Ham 81Val 69Ham1 02Jur 71Val2, 73Val 81Val 81Fle 02Jur 82Vit 81Val 74Vit1 75Vit2 57Fle 06Sol 72Sev 82Vit 77Vit 89Val 69Ham1 75Vit2 81Fle 73Val, 71Val1, 71Val2 87Ham2 82Vit 02Lan 65) 02Lan 66) 75Vit2
226
Electrode
3 Electrode potentials of zero charge Solution 1)
0.005 N Na2SO4/H2O 0.005 M Na2SO4/H2O 0.005 M Na2SO4/H2O 0.0005 M Na2SO4/H2O 0.0025 M Na2SO4/H2O 0.005 M Na2SO4/H2O Ag (311) 0.005 M KPF6/H2O 0.05 M KClO4/H2O Ag/Au alloy 2 N H2SO4/H2O
Comments 2)
Ag (111)
2 N H2SO4/H2O 2 N H2SO4/H2O 2 N H2SO4/H2O 2 N H2SO4/H2O 2 N H2SO4/H2O 2 N H2SO4/H2O not reported Sodium (Na) Na amalgam 1 N NaOH/H2O 1 N NaOH/H2O 1 N NaOH/H2O 1 N NaOH/H2O 1 N NaOH/H2O
100 % Ag/ 0 % Au 15 % Ag/ 85 % Au 12 % Ag/ 88 % Au 9 % Ag/ 91 % Au 6 % Ag/ 94 % Au 3 % Ag/ 97 % Au 0 % Ag/ 100 % Au
cNa in Hg= 0.000126 cNa in Hg= 0.000783 cNa in Hg= 0.000587 cNa in Hg= 0.00174 cNa in Hg= 0.0558
Met. 3)
Epzc [V vs. SHE] 4)
Ref.
T T T T T T T T T
–0.500 –0.479 –0.519 –0.519 –0.519 –0.519 –0.666 –0.709 –0.700
69Bud 72Sev 78Vit 74Vit1 75Vit2 77Vit 90Ham 90Ham 72Lev
T
–0.600
72Lev
T
–0.500
72Lev
T
–0.370
72Lev
T
–0.300
72Lev
T
–0.250
72Lev
T
0.070
72Lev
n.a.
–2.25
53Vas
EC
–1.69
57Smi
EC
–1.73
57Smi
EC
–1.78
57Smi
EC
–1.81
57Smi
EC
–1.82
57Smi
Strontium (Sr)
not reported
n.a.
–2.32
53Vas
Tantalum (Ta)
1 N H2SO4/H2O 1 N H2SO4/H2O
T T
–0.85 49) –0.73 50)
65Koz 65Koz
Tellurium (Te)
1 N H2SO4/H2O 1 N NaCl/H2O 1 N Na2SO4/H2O 1 N Na2SO4/H2O
H H H H
–0.6 –0.02 0.56 0.6
1 N NaCl/H2O
H
56Ven 44Reb 49Ven 45Reb, 52Ven, 55Fru 49Ven
0.510
Landolt-Börnstein New Series IV/9A
3 Electrode potentials of zero charge
Electrode
Solution 1)
Thallium (Tl)
1 N KBr/H2O 1 N KBr/H2O 0.001 N KCl/H2O
H H T
–0.85 –0.82 –0.82
0.01 N KCl/H2O 0.01 N KCl/H2O 0.1 N KCl/H2O 1 N Na2CO3/H2O 0.001 N NaF/H2O 0.003 N NaF/H2O Na2SO4/H2O 0.1 N Na2SO4/H2O 1 N Na2SO4/H2O 1 N Na2SO4/H2O
T T T H T T H H H S
–0.82 –0.71 –0.84 –0.69 –0.67 –0.67 –0.69 –0.69 –0.69 –0.214
44Reb 49Ven 55Fru, 50Bor 50Bor 67Dag 50Bor 49Ven 67Dag 75Gri 55Fru 49Ven 49Ven 30Fru
T T T T S S T T S T T
–0.434 –0.469 –0.544 –0.561 –0.51 –0.52 –0.622 –0.673 –0.55 –0.698 –0.503
95Koe 95Koe 95Koe 95Koe 65But1 65But1 95Koe 95Koe 65But1 95Koe 60Bog
T
–0.548
60Bog
T
–0.575
60Bog
EC
–0.39
28Fru2
S
–0.388
30Fru
S
–0.388
30Fru
EC
–0.45
28Fru2
CA
–0.67
34Gor
EC
–0.329
60Del
S
–0.512
30Fru
Tl amalgam 67)
1 M NaClO4/H2O 1 M NaClO4/H2O 1 M NaClO4/H2O 1 M NaClO4/H2O 0.1 N HClO4/H2O 0.1 N HClO4/H2O 1 M NaClO4/H2O 1 M NaClO4/H2O 0.1 N HClO4/H2O 1 M NaClO4/H2O 0.002 N NaF/H2O 0.002 N NaF/H2O 0.002 N NaF/H2O 1 N Na2SO4/H2O 1 N Na2SO4+0.01 N H2SO4/H2O 1 N Na2SO4+0.1 N NaOH/H2O 1 N Na2SO4/H2O 1 N Na2SO4/H2O 0.1 M Na2SO4/H2O 1 N Na2SO4+0.01 N H2SO4/H2O
Landolt-Börnstein New Series IV/9A
Comments 2)
99.009 % Hg/ 0.0011 % Tl 1.4 mol% In 2 mol% In 7.9 mol% In 10 mol% In 10.16 % Tl 19.88 % Tl 20 mol% In 30 mol% In 30.39 % Tl 40 mol% In 89.8 % Hg/ 1.2 % Tl 95 % Hg/ 5 % Tl 90.5 % Hg/ 9.5 % Tl 99 % Hg/ 1 % Tl 99 % Hg/ 1 % Tl 99 % Hg/ 1 % Tl 96.65 % Hg/ 3.35 % Tl acidic, 59 % Hg/41 % Tl 96.55 % Hg/ 3.45 % Tl 90 % Hg/ 10 % Tl
Met. 3)
227 Epzc [V vs. SHE] 4)
Ref.
228
3 Electrode potentials of zero charge
Electrode
Solution 1)
Comments 2)
Met. 3)
Tl amalgam 67)
1 N Na2SO4+0.1 N NaOH/H2O
99 % Hg/ 1 % Tl 90 % Hg/ 10 % Tl 89.65 % Hg/ 10.35 % Tl 80.78 % Hg/ 19.22 % Tl 69 % Hg/ 31 % Tl 67 % Hg/ 33 % Tl 67 % Hg/ 33 % Tl 66.1 % Hg/ 33.9 % Tl 60 % Hg/ 40 % Tl 58.5 % Hg/ 41.5 % Tl 58.5 % Hg/ 41.5 % Tl Hg/sat. Tl
S
–0.388
30Fru
EC
–0.439
60Del
EC
–0.52
28Fru2
T
–0.596
60Bog
EC
–0.609
60Del
S
–0.618
30Fru
S
–0.388
30Fru
EC
–0.64
28Fru2
T
–0.645
60Bog
EC
–0.65
28Fru2
T
–0.65
28Fru1
EC
–0.65
55Fru
IM T T S IM IM IM IM IM IM IM T T T H T S T T
–0.382 –0.46 –0.38 –0.02 –0.532 –0.573 –0.685 –0.655 –0.655 –0.63 –1.224 –0.43 –0.42 –0.35 –0.24 –0.38 –0.3 –0.359 –0.359
62Jak1 65Fru2 71Erl 69And 64Jak2 64Jak2 68Jak1 65Jak1 65Jak1 68Jak1 68Jak1 68Ham1 70Bar2 65Gri 52Ven 73Gri 69And 81Khm 81Khm
T T T T
0.851 –0.63 –0.61 –0.68
81Khm 65Gri 65Gri 65Gri
0.1 M Na2SO4/H2O 1 N Na2SO4/H2O 0.002 N NaF/H2O 0.1 M Na2SO4/H2O 1 N Na2SO4+0.01 N H2SO4/H2O 1 N Na2SO4+0.1 N NaOH/H2O 1 N Na2SO4/H2O 0.002 N NaF/H2O 1 N Na2SO4/H2O Na2SO4/H2O 1 N Na2SO4/H2O
Tin (Sn)
Sn (001) Sn (110)
0.01 M KCl/H2O 0.001 N KClO4/H2O 0.002 N KClO4/H2O 1 N K2SO4/H2O 0.01 M LiCl/methanol 0.01 M LiCl/ethanol 0.01 N LiCl/1-butanol 0.01 N LiCl/2-butanol 0.01 N LiCl/2-propanol 0.01 N LiCl/1-pentanol 0.01 N LiCl/quinoline 0.0007 N NaClO4/H2O 0.0025 N Na2SO4/H2O 0.01 N Na2SO4/H2O 0.1 N Na2SO4+0.01 N H2SO4/H2O Na2SO4/H2O 1 N NaClO4/H2O 0.0015 M Na2SO4/H2O 0.0015 M Na2SO4/H2O
Sn (110) 0.0015 M Na2SO4/H2O Sn/Cd alloy 0.01 N Na2SO4/H2O 0.01 N Na2SO4/H2O 0.01 N Na2SO4/H2O
pH=7
pH=3.1
pH=7
7 at%Cd 15 at%Cd 40 at%Cd
Epzc [V vs. SHE] 4)
Ref.
Landolt-Börnstein New Series IV/9A
3 Electrode potentials of zero charge
229
Electrode
Solution 1)
Comments 2)
Met. 3)
65 at%Cd 40 at%Cd 90 at%Cd
Titanium (Ti)
0.01 N Na2SO4/H2O 0.01 N Na2SO4/H2O 0.01 N Na2SO4/H2O 1 N Na2SO4/H2O 0.1 M HCl/H2O
T T T T T
–0.69 –0.68 –0.695 –1.05 –1.20
65Gri 65Gri 65Gri 67Che 67Che
n.a.
–0.32
53Vas
T T T T T H H
–0.63 –0.92 –0.7 –0.7 –0.7 –0.62 –0.65
T T SO SO DE SO T DE T T T T T T T T T T T T
–0.649 –0.769 –0.769 –0.759 –0.759 –0.769 –0.779 –0.759 –0.9 –0.899 –0.769 –0.6 68) –0.61 –0.61 –0.61 –0.61 –0.61 –0.599 –0.68 68) –0.6 68)
70Vol 69Cas 70Bar1 70Bar1 70Bar1 49Ven 65Kuk, 66Kuk1 60Chu 74Bat1 75Bat 74Fru2 75Bat 76Ipa1 76Ipa1 76Ipa1 69Cas 69Cas 76Ipa2 57Kra 57Khe 57Khe 57Khe 57Khe 57Khe 57Kra 57Kra 57Kra
Tungsten (W)
not reported
Zinc (Zn)
0.01 N K2SO4/H2O 0.005 M NaClO4/H2O 0.01 N NaF/H2O 0.01 N NaI/H2O 0.01 N Na2SO4/H2O 1 N Na2SO4/H2O 1 N Na2SO4/H2O
Zn (0001)
0.1 M KCl/H2O 0.1 M KCl/H2O 0.3 M KCl/H2O 0.1 M KCl/H2O 0.1 M KCl/H2O 0.3 M NaF/H2O 0.1 M KCl/H2O 0.1 M KCl/H2O 0.005 M NaClO4/H2O 0.005 M NaClO4/H2O NaF/H2O 0.02 N Na2SO4+H2SO4/H2O 0.02 M (Na2SO4+H2SO4)/H2O 0.02 M (Na2SO4+H2SO4)/H2O 0.02 M (Na2SO4+H2SO4)/H2O 0.02 M (Na2SO4+H2SO4)/H2O 0.02 M (Na2SO4+H2SO4)/H2O 0.01 M Na2SO4/H2O 0.02 N Na2SO4+H2SO4/H2O 0.02 N Na2SO4/H2O
Zn (0101)
pH=3 pH=3.48
pH=3.48
pH=3.2 pH=2 pH=3 pH=4 pH=5 pH=6 pH=3.2 pH=2.6
Epzc [V vs. SHE] 4)
Ref.
Zn (1010)
0.21 M NaF/H2O NaF/H2O 0.2 M NaF/H2O 0.010 M Na2SO4/H2O 0.2 M KCl/H2O 0.1 M KCl/H2O
T T SO T SO T
–0.919 –0.839 –0.849 –0.679 –0.829 –0.844
74Bat1 76Ipa2 76Ipa1 57Kra 75Bat 76Ipa1
Zn (1120)
0.2 M NaF/H2O 0.2 M KCl/H2O
SO SO
–0.869 –0.879
76Ipa1 75Bat
0.003 M KCl/H2O
T
–0.859
75Bat
Landolt-Börnstein New Series IV/9A
230
3 Electrode potentials of zero charge
Electrode
Solution 1)
Zn (1120)
0.003 M KCl/H2O 0.1 M KCl/H2O
Comments 2)
pH=3.7
Met. 3)
Epzc [V vs. SHE] 4)
Ref.
T
–0.849
76Ipa1
T
–0.864
76Ipa1
1
) A lack of an explicit concentration value indicates, that the value of Epzc did not depend on the concentration.
2
) All data refer to room temperature if not stated otherwise.
3
) Met. = Method. AE = Acousto-electrochemical method, BAW = bulk acoustic wave method, C = Chronocoulometry, CA = Contact angle method, CO = CO charge displacement method, CV = Cyclic voltamogram, DE = Desorption potential, DR = Double layer repulsion method, EB = Film electrode bending method, EC = Electrocapillary method, ED = Electrode displacement method, EE = Theory of electron emission, ER = Electroreduction of ions, F = Friction method, FL = Flow measurement, G = Gravimetric method, H = Hardness measurements, IA = Ionic adsorption method, IM = Immersion method, ISS = Isoelectronic shift of potential, NS = Null solution method, OA = Organic adsorption method, P = Photoemission method, PC = Electrode capacitance measured with a pulse method, PE = Piezoelectric method, R = Surface stress measurement (ribbon extension method), RT = Radiotracer technique, S = Scratching or streaming electrode method, SFG = Sum frequency generation, SO = Salting out method, T = Tensammetry, TC = Modified charge determination method, VE = Vibrating electrode method, VIB = Vibrational spectroscopic method (for details and further acronyms see text). See also list of symbols.
4
) All reported values are converted with respect to the standard hydrogen electrode for the solvent under investigation if not stated otherwise. 5
) Electropolished surface.
6
) Surface formed by crystal cleavage at liquid nitrogen temperature.
7
) Electrochemically etched surface.
8
) Chemically etched surface.
8a
) Chemically treated surface.
9
) Remelted solid drop electrode.
10
) Mechanically polished and chemically etched surface.
11
) Solid drop electrode obtained without remelting.
12
) No significant temperature dependence was observed between 0 and 50 °C.
13
) Electrodeposited electrode surface.
14
) Without preelectrolysis of the electrolyte solution.
15
) With preelectrolysis of the electrolyte solution.
16
) This value was recorded in a separate experiment, no explanation of the reproducable difference is given.
17
) Amalgam compositions are given as stated by the authors; conversions were made only for the organisation of the table, mol%≡at%, if not stated otherwise, values are wt%, values are listed according to amalgam composition.
18
) Cleavage plane of high pressure stress annealed pyrolytic graphite.
19
) Values for concentration up to 1 m were reported.
20
) The reference electrode is ill defined in this report.
21
) Electrode prepared by reduction of the metal oxide with hydrogen at 400 °C.
22
) Copper purified by sublimation and recrystallization.
23
) Copper purified according to Bridgeman.
24
) Copper purified by zone melting.
25
) Except where stated otherwise all measurements were done at T > 30 °C.
26
) Solid gallium.
27
) Gallium saturated with thallium (approx. 0.02...0.06 at%).
28
) Gallium with thallium (0.02 at%).
Landolt-Börnstein New Series IV/9A
3 Electrode potentials of zero charge
231
29
) Based on the experimental conditions the gold electrode is most likely covered with underpotential deposited (upd) silver. Consequently the value of Epzc should be compared with the corresponding value for a silver electrode. ) Measured vs. a reference electrode of Ag/Ag+ (0.01 M AgNO3) in methanol + 0.1 M Bu4NClO4.
30 31
) Tetraethylammoniumperchlorate.
32
) Versus a Ag/AgNO3 (0.01 M) + 0.1 M tetraethylammoniumperchlorate in acetonitrile reference electrode.
33
) The value refers to both the hexagonal and the (1x1) phase.
34
) Electrode coated with 1-octadecanethiol.
35
) Electrode coated with 1-undecanethiol.
36
) Electrode coated with 1-propanethiol.
37
) Electrode coated with 1H,1H,2H,2H-perfluorodecanethiol.
38
) Electrolyticall deposited indium electrode.
39
) Because of the many different electrolyte solutions employed values are grouped according to the indium concentration.
40
) Acidified with H2SO4.
41
) Single crystal. The crystallographic face was not specified.
42
) Versus hydrogen electrode in the same solution.
43
) An amalgamated copper surface was used.
44
) Amalgamated gold electrode.
45
) Solution saturated with N2O.
46
) E vs. a pool of mercury in the same solution.
47
) E vs. a reference electrode of mercury in methanol + 0.01 M LiCl.
48
) Measured vs. a saturated calomel electrode filled with methanol.
49
) On an electrode not saturated with hydrogen.
50
) On an electrode saturated with hydrogen.
51
) Palladium overlayer on a Pt(111) electrode surface.
52
) The value refers to palladium islands on a Au(111) electrode.
53
) One monolayer of palladium deposited on a Au(111) electrode.
54
) Two monolayers of palladium deposited on a Au(111) electrode.
55
) Five monolayers of palladium deposited on a Au(111) electrode.
56
) If a coverage of the platinum with hydrogen was specified this is indicated by (H), if the electrode was platinized this is indicated by (Pt).
57
) Value measured after prolonged cathodic polarisation.
58
) Values vary as a function of step density on Pt[n(111)x(111)] surfaces.
59
) The value is given with respect to the potential of a hydrogen electrode in this electrolyte solution.
60
) A rhodium black electrode was used.
61
) Polycrystalline silver layer electrodeposited on a polycrystalline platinum electrode.
62
) Mechanical surface treatment of the electrode.
63
) Silver monolayer deposited on foreign metal single crystal.
64
) Silver purified by sublimation and recrystallization.
65
) Silver layer epitaxially electrodeposited on a Pt(111) electrode.
66
) Incomplete upd-silver layer electrodeposited on a Pt(111) electrode.
67
) Because of the many different electrolyte solutions employed values are grouped according to the thallium concentration. 68
) Zinc purified by sublimation and recrystallization.
Landolt-Börnstein New Series IV/9A
R1
References 91Pas 98Pal 03Gou 26Ben 28Fru1 28Fru2 30Fru 31Pro 32Pro 33Fru 34Gor 35Fru 36Erd 36Mur 36Shl 38Bal 38Win 39Luk 39Ves 40Kuc 40Leg 43Chu 44Reb 45Reb 47Gra 48Bor 49Gra 49Ven 50Bor 50Bow 51Pfü 52Gra 52Hil 52Nik 52Ven 53Boc 53Bor 53Khe 53Lev1 53Rob 53Vas 54Gra 55Aya 55Fru 55Uks1 55Uks2 56Ran Landolt-Börnstein New Series IV/9A
Paschen, F.: Ann. Phys. (Leipzig) 43 (1891) 568. Palmaer, W.: Z. Phys. Chem. 25 (1898) 257. Gouy, G.: Ann. Chim. Phys. 29 (1903) 145. Bennewitz, K.: Z. Phys. Chem. 124 (1926) 115. Frumkin, A., Gorodetzkaja, A.: Z. Phys. Chem. 136 (1928) 215. Frumkin, A., Gorodetzkaja, A.: Z. Phys. Chem. 136 (1928) 451. Frumkin, A., Cirves, F.J.: J. Phys. Chem. 34 (1930) 74. Proskurnin, M., Frumkin, A.: Z. Phys. Chem. Abt. A 155 (1931) 29. Proskurnin, M.A.: Zh. Fiz. Khim. 3 (1932) 91. Frumkin, A.: Phys. Z. Sowjetunion 4 (1933) 239. Gorodetzkaja, A., Kabanov, B.: Phys. Z. Sowjetunion 5 (1934) 418. Frumkin, A.: Actual. Sci. Ind. (1935) 373. Erdey-Grúz, T., Szarvas, P.: Z. Phys. Chem. Abt. A 177 (1936) 277. Murtasaev, A., Gorodetskaya, A.V.: Acta Physicochim. URSS 4 (1936) 75. Shlygin, A., Frumkin, A., Medvedovskii, V.: Acta Physicochim. URSS 4 (1936) 911. Balashova, N., Frumkin, A.: C. R. Acad. Sci. URSS 20 (1938) 449. Winkel, A., Siebert, H.: Z. Elektrochem. 44 (1938) 127. Lukovtsev, P., Levina, S., Frumkin, A.N.: Acta Physicochim. URSS 11 (1939) 21. Veselovsky, V.I.: Acta Physicochim. URSS 11 (1939) 815. Kuchinskii, E., Burshtein, R., Frumkin, A.: Zh. Fiz. Khim. 14 (1940) 441. Legran, A., Levina, S.: Acta Physicochim. URSS 12 (1940) 243. Chugunov, P., Bruns, B.: Acta Physicochim. URSS 18 (1943) 351. Rebinder, P.A., Venstrem, E.K.: Acta Physicochim. URSS 19 (1944) 36. Rebinder, P.A., Venstrem, E.K.: Zh. Fiz. Khim. 19 (1945) 1. Grahame, D.C.: Chem. Rev. 41 (1947) 441. Borisova, T.I., Ershler, B., Frumkin, A.: Zh. Fiz. Khim. 22 (1948) 925. Grahame, D., Larsen, R.P., Poth, M.A.: J. Am. Chem. Soc. 71 (1949) 2978. Venstrem, E.K., Rebinder, P.A.: Dokl. Akad. Nauk SSSR 68 (1949) 329. Borisova, T.I., Ershler, B.V.: Zh. Fiz. Khim. 24 (1950) 337. Bowden, F.P., Young, L.: Research (London) 3 (1950) 235. Pfützenreuther, A., Masing, G.: Z. Metallkd. 42 (1951) 361. Grahame, D.C., Coffin, E.M., Cummings, J.I., Poth, M.A.: J. Am. Chem. Soc. 74 (1952) 1207. Hillson, P.J.: Trans. Faraday Soc. 48 (1952) 462. Nikolaeva, N.V., Shapiro, N.S., Frumkin, A.N.: Dokl. Akad. Nauk SSSR 36 (1952) 581. Venstrem, E.K., Rebinder, P.A.: Zh. Fiz. Khim. 26 (1952) 1847. Bockris, J.O'M., Jones, R.P.: Nature (London) 171 (1953) 930. Borisova, T.I., Veselovskii, V.J., Karpov, L.Ya.: Zh. Fiz. Khim. 27 (1953) 1195. Kheifets, V.L., Reishakhrit, L.S.: Uch. Zap. Leningr. Gos. Univ. im. A. A. Zhdanova Ser. Khim. Nauk. 13 (1953) 173. Levin, A.I., Ukshe, E.A., Brilina, N.S.: Dokl. Akad. Nauk SSSR 88 (1953) 697. Robertson, W.D.: J. Electrochem. Soc. 100 (1953) 194. Vasenin, R.M.: Zh. Fiz. Khim. 27 (1953) 878. Grahame, D.: J. Am. Chem. Soc. 76 (1954) 4819. Ayazyan, E.O.: Dokl. Akad. Nauk SSSR 100 (1955) 473. Frumkin, A.: Z. Elektrochem. 59 (1955) 807. Ukshe, E.A., Levin, A.I.: Dokl. Akad. Nauk SSSR 105 (1955) 119. Ukshe, E.A., Levin, A.I.: Zh. Fiz. Khim. 29 (1955) 219. Randles, J.E.B., Whiteley, K.S.: Trans. Faraday Soc. 52 (1956) 1509.
R2 56Ven 57Fle 57Khe 57Kra 57Smi 58Ant 58Dam 59Efi 59McM 59Vor 60Bog 60Chu 60Del 60Lei 61Bal 61Sta 62Jak1 62Jen 62Sch1 62Vor 63Bir 63Gre 63Sch1 63Vor 63Wu 64And 64But1 64Fru1 64Fru2 64Jak1 64Jak2 64Kaz 64Kra 64Per 65Bal1 65Boc 65Bon 65But1 65But6 65Fru1 65Fru2 65Gri 65Jak1 65Koz 65Kuk 65Per
Venstrem, E.K., Lichtman, V.I., Rebinder, P.A.: Dokl. Akad. Nauk SSSR 107 (1956) 105. Fleischmann, M., Sowerby, J., Thirsk, H.R.: Trans. Faraday Soc. 53 (1957) 91. Kheifets, V.L., Krasikov, B.S.: Zh. Fiz. Khim. 31 (1957) 1992. Krasikov, B., Sysoeva, V.: Dokl. Akad. Nauk SSSR 114 (1957) 826. Smirnov, V.A., Antropov, L.I: Dokl. Akad. Nauk SSSR 113 (1957) 1098. Antropov, L.I., Banerjee, S.N.: J. Indian Chem. Soc. 35 (1958) 531. Damaskin, B.B., Nikolaeva-Fedorovic, N.V., Frumkin, A.N.: Dokl. Akad. Nauk SSSR 121 (1958) 129. Efimov, E.A., Erusalimchik, I.G.: Zh. Fiz. Khim. 33 (1959) 441. McMullen, J.J., Hackerman, N.: J. Electrochem. Soc. 106 (1959) 341. Voropaeva, T.N., Deryagin, B.V., Kabanov, B.N.: Dokl. Akad. Nauk SSSR 128 (1959) 981. Boguslavskii, L.I., Damskin, B.B.: Zh. Fiz. Khim. 34 (1960) 2099. Chuan-Sin, T., Iofa, Z.A.: Dokl. Akad. Nauk SSSR 131 (1960) 137. Delahay, P., Kleinerman, M.: J. Am. Chem. Soc. 82 (1960) 4509. Leikis, D.I.: Dokl. Akad. Nauk SSSR 135 (1960) 1429. Balashova, N.A., Merkulova, N.: Soviet Electrochemistry (Proceedings of the Fourth Conference on Electrochemistry), Vol. 1, New York, 1961, p. 23. Staicopoulos, D.N.: J. Electrochem. Soc. 108 (1961) 900. Jakuszewski, B., Kozlowski, Z.: Rocz. Chem. 36 (1962) 1873. Jenkins, D., Newcombe, R.: Electrochim. Acta 6 (1962) 685. Schmid, G.M., Hackerman, N.: J. Electrochem. Soc. 109 (1962) 243. Voropaeva, T.N., Deryagin, B.V., Kabanov, B.N.: Kolloidn. Zh. 24 (1962) 396. Birintseva, T.P., Kabanov, B.N.: Zh. Fiz. Khim. 37 (1963) 2600. Green, M., Dahms, H.: J. Electrochem. Soc. 110 (1963) 466. Schmid, G.M., Hackerman, N.: J. Electrochem. Soc. 110 (1963) 440. Voropaeva, T.N., Deryagin, B.V., Kabanov, B.N.: Izv. Akad. Nauk SSSR, Otd. Khim. Nauk (1963) 257. Wu, H., Lin, C.: Hua Hsueh Hsueh Pao 29 (1963) 95. Andersen, T.N., Perkins, R.S., Eyring, H.: J. Am. Chem. Soc. 86 (1964) 4496. Butler, J.N., Makrides, A.C.: Trans. Faraday Soc. 60 (1964) 1664. Frumkin, A.N., Polianovskaya, N., Grigor’ev, N.B.: Dokl. Akad. Nauk SSSR 157 (1964) 1455. Frumkin, A.N., Grigor’ev, N.B., Bagotskaya, I.A.: Dokl. Akad. Nauk SSSR 157 (1964) 957. Jakuszewski, B., Kozlowski, Z.: Lodz. Tow. Nauk. Wydz. 3, Acta Chim. 9 (1964) 25. Jakuszewski, B., Kozlowski, Z.: Rocz. Chem. 38 (1964) 93. Kazarinov, V.E., Balashova, N.A.: Dokl. Akad. Nauk SSSR 157 (1964) 1174. Krasikov, B.S.: Zh. Prikl. Khim. 37 (1964) 2420. Perkins, R.S., Eyring, H.: J. Am. Chem. Soc. 86 (1964) 4496. Balashova, N.A., Kazarinov, V.E.: Elektrokhimiya 1 (1965) 512. Bockris, J.O’M., Müller, K., Wroblowa, H., Kovac, Z.: J. Electroanal. Chem. 10 (1965) 416. Bonnemay, M., Bronoël, G., Jonville, P., Levart, E.: C. R. Acad. Sci. (Paris) 260 (1965) 5262. Butler, J.N., Meehan, M.L.: J. Phys. Chem. 69 (1965) 4051. Butler, J.N., Meehan, M.L., Makrides, A.C.: J. Electroanal. Chem. 9 (1965) 237. Frumkin, A., Polianovskaya, N., Grigoriev, N.B., Bagotskaya, I.: Electrochim. Acta 10 (1965) 793. Frumkin, A.: Sven. Kem. Tidskr. 77 (1965) 300. Grilikhes, M.S., Krasikov, B.S.: Vestn. Leningr. Univ. Ser. 4, Fiz. Khim. 4 (1965) 131. Jakuszewski, B., Kozlowski, Z.: Soc. Sci. Lodz. Acta Chim. 10 (1965) 5. Kozhevnikova, N.M., Rotinyan, A.L.: Elektrokhimiya 1 (1965) 664. Kukoz, F.I., Semenchenko, S.A.: Elektrokhimiya 1 (1965) 1454. Perkins, R.S., Livingston, R.C., Andersen, T.N. , Eyring, H.: J. Phys. Chem. 69 (1965) 3329.
Landolt-Börnstein New Series IV/9A
R3 65Pol 65Sat 66But1 66But2 66Dag 66Fru1 66Gil 66Gok 66Kuk1 66Kuk2 66Lei 66Man 66Mor 66Pal 67Arg 67Bal 67Bod 67Che 67Dag 67Gar 67Gri2 67Ham1 67Ham2 67Mur 67Pay 67Per 67Pet1 67Pet2 67Pol 67Ryb 67Vet 68Bag 68Bal 68Bar 68Cla1 68Fru 68Ham1 68Ham2 68Jak1 68Koz 68Log 68Mor 68Pet 68Pol 69And 69Bar1 69Boc1 69Bud 69Bur
Landolt-Börnstein New Series IV/9A
Polyanovskaya, N.S., Frumkin, A.N.: Elektrokhimiya 1 (1965) 538. Sathyanarayana, S.: J. Electroanal. Chem. 10 (1965) 119. Butler, J.N.: J. Phys. Chem. 70 (1966) 2312. Butler, J.N., Meehan, M.L.: J. Phys. Chem. 70 (1966) 3582. Dagaeva, I.G., Leikis, D.I., Sevastyanov, E.S.: Elektrokhimiya 2 (1966) 820. Frumkin, A., Grigoryev, N., Bagotskaya, I.: Elektrokhimiya 2 (1966) 329. Gileadi, E., Argade, S.D., Bockris, J.O’M.: J. Phys. Chem. 70 (1966) 2044. Gokhstein, A.Y.: Elektrokhimiya 2 (1966) 1318. Kukoz, F.I., Semenchenko, S.A.: Elektrokhimiya 2 (1966) 74. Kukoz, F.I., Semenchenko, S.A., Bogdanov, V.I.: Issled. Obl. Khim. Istochnikov Toka (1966) 201. Leikis, D.I., Sevastyanov, E.S., Dagaeva, I.G.: J. Electrochem. Soc. 113 (1966) 1341. Mansorov, G.N., Kazarinov, V.E., Balashova, N.A.: Elektrokhimiya 2 (1966) 1438. Morozov, A., Grigoryev, N., Bagotskaya, I.: Elektrokhimiya 2 (1966) 1235. Palm, U., Past, V., Pullerits, R.: Elektrokhimiya 2 (1966) 604. Argade, S.G., Gileadi, E., in: Electrosorption, Gileadi, E. (ed.), New York: Plenum Press, 1967, p. 87. Balashova, N.A., Kossaya, A.M., Gorokhova, N.T.: Elektrokhimiya 3 (1967) 656. Bodé, D.D., Andersen, T.N., Eyring, H.: J. Phys. Chem. 71 (1967) 792. Chervyakov, P.I., Parfenov, G.S.: Uch. Zap. Omsk. Gos. Pedagog. Inst. 26 (1967) 58. Dagaeva, I.G., Leikis, D.I., Sevastyanov, E.S.: Elektrokhimiya 3 (1967) 891. Garnish, J.D., Parsons, R.: Trans. Faraday Soc. 63 (1967) 1754. Grilikhes, M.S., Krasikov, B.S.: Zh. Prikl. Khim. 40 (1967) 921. Hampson, N.A., Larkin, D.: J. Electrochem. Soc. 114 (1967) 933. Hampson, N.A., Larkin, D., Morley, J.R.: J. Electrochem. Soc. 114 (1967) 817. Murakawa, T., Kato, T., Nagaura, S., Hackerman, N.: Corros. Sci. 7 (1967) 657. Payne, R.: J. Phys. Chem. 71 (1967) 1548. Perkins, R.S.: Ph.D. Thesis, University of Utah, 1967. Petit, M., Clavilier, J.: C. R. Acad. Sci. (Paris), Ser. C 265 (1967) 145. Petrii, O.A., Kossaya-Tsybulevskay, A.M., Tyurin, Yu.M.: Elektrokhimiya 3 (1967) 617. Polianovskaya, N., Frumkin, A.: Elektrokhimiya 3 (1967) 1129. Rybalka, L.E., Leikis, D.I.: Elektrokhimiya 3 (1967) 383. Vetter, K.J.: Electrochemical Kinetics, New York: Academic Press, 1967, p. 73. Bagotskaya, I., Morozov, A., Grigoryev, N.: Electrochim. Acta 13 (1968) 873. Balashova, N.A., Gorokhova, N.T., Kulezneva, M.I.: Elektrokhimiya 4 (1968) 871. Bartenev, V.J., Sevastjanov, E.S., Leikis, D.I.: Elektrokhimiya 4 (1968) 745. Clavilier, J., van Huong, N.: C. R. Acad. Sci. (Paris), Ser. C 267 (1968) 207. Frumkin, A., Petry, O., Kossaya, A., Entina, V., Topolev, V.: J. Electroanal. Chem. 16 (1968) 175. Hampson, N.A., Larkin, D.: J. Electrochem. Soc. 115 (1968) 612. Hampson, N.A., Larkin, D.: J. Electroanal. Chem. 18 (1968) 401. Jakuszewski, B., Kozlowski, Z., Granosik, W.: Soc. Sci. Lodz. Acta Chim. 13 (1968) 15. Kozlowski, Z., Nast, A.M.: Lodz. Tow. Nauk. Wydz. 3, Acta Chim. 13 (1968) 21. Loge, A., Lorenz, W.: Z. Phys. Chem. (Leipzig) 238 (1968) 299. Morcos, I., Fisher, H.: J. Electroanal. Chem. 17 (1968) 7. Petrii, O.A., Kotlov, Yu.G.: Elektrokhimiya 4 (1968) 774. Polianovskaya, N.: Elektrokhimiya 4 (1968) 549. Andersen, T.N., Anderson, J.L., Eyring, H.: J. Phys. Chem. 73 (1969) 3562. Bartenev, V.Ya., Sevastyanov, E.S., Leikis, D.I.: Elektrokhimiya 5 (1969) 1502. Bockris, J.O’M., Argade, S.E., Gileadi, E.: Electrochim. Acta 14 (1969) 1259. Budevski, E., Vitanov, T., Sevastyanov, E.S., Popov, A.: Elektrokhimiya 5 (1969) 90. Burshstein, R.K., Pshenichnikov, A.G.: Elektrokhimiya 5 (1969) 332.
R4 69Cas 69Cla 69Dek 69Hag 69Ham1 69Ham2 69Kha1 69Kha2 69Lik 69Mor 69Pal 69Pet 69Ple 70And 70Bar1 70Bar2 70Ego1 70Ego2 70Pet 70Rot2 70Tim 70Vol 71Car 71Elk 71Erl 71Fre 71Fru 71Ham1 71Jak 71Mor 71Pet 71Shi 71Val1 71Val2 72Bro 72Car 72Gri1 72Gri3 72Gri4 72Gri5 72Ham 72Lei 72Lev 72Nov1 72Nov2 72Pan1
Caswell, P., Hampson, N.A., Larkin, D.: J. Electroanal. Chem. 20 (1969) 335. Clavilier, J., van Huong, N.: C. R. Acad. Sci. (Paris), Ser. C 269 (1969) 736. Dekker, B.G., Sluyters-Rehbach, M., Sluyters, J.H.: J. Electroanal. Chem. 21 (1969) 137. Haga, M., Past, V.: Trans. Tartu State Univ. 235 (1969) 47. Hamelin, A., Valette, G.: C. R. Acad. Sci. (Paris), Ser. C 269 (1969) 1020. Hamelin, A., Sotto, M., Valette, G.: C. R. Acad. Sci. (Paris), Ser. C 268 (1969) 213. Khaga, M., Past, V.: Elektrokhimiya 5 (1969) 618. Khaga, M., Past, V.: Uch. Zap. Tartu. Gos. Univ. 235 (1969) 47. Likhtman, V., Kochanova, L., Leikis, D., Shchukin, E.: Elektrokhimiya 5 (1969) 729. Morcos, I.: J. Electroanal. Chem. 20 (1969) 479. Palts, K., Palm, U., Past, V., Pullerits, R.: Uch. Zap. Tartu. Gos. Univ. 235 (1969) 57. Petrii, O.A., Frumkin, A.N., Kotlov, Yu.G.: Elektrokhimiya 5 (1969) 476. Pleskov, Yu.V., Rotenberg, Z.A.: J. Electroanal. Chem. 20 (1969) 1. Andrusev, M.M., Ershler, A.B., Tedoradze, G.A.: Elektrokhimiya 6 (1970) 1163. Bartenev, V.J., Sevastjanov, E.S., Leikis, D.I.: Elektrokhimiya 6 (1970) 1197. Bartenev, V.J., Sevastjanov, E.S., Leikis, D.I.: Elektrokhimiya 6 (1970) 1868. Egorov, L., Novosel’sky, I.M.: Elektrokhimiya 6 (1970) 521. Egorov, L.Y., Novoselskij, I.M.: Elektrokhimiya 6 (1970) 869. Petrii, O.A., Frumkin, A.N., Kotlov, Yu.G.: Elektrokhimiya 6 (1970) 725. Rotinyan, A.L., Levin, E.D.: Elektrokhimiya 6 (1970) 328. Timmer, B., Sluyters-Rehbach, M., Sluyters, J.H.: J. Electroanal. Chem. 24 (1970) 287. Volkov, L.V., Ponomarjev, A.F., Yurev, B.P.: Tr. Leningr. Politekh. Inst. im. M. I. Kalinina 304 (1970) 94. Carr, J.P., Hampson, N.A., Holley, S.N., Taylor, R.: J. Electroanal. Chem. 32 (1971) 345. Elkin, V.V., Alekseyev, V.N., Knots, L.L., Leikis, D.I.: Dokl. Akad. Nauk SSSR 199 (1971) 638. Erlikh, G., Kukk, Yu., Past, V.: Uch. Zap. Tartu. Gos. Univ. 289 (1971) 9. Fredlein, R.A., Damjanovic, A., Bockris, J.O’M.: Surf. Sci. 25 (1971) 261. Frumkin, A., Polianovskaya, N., Bagotskaya, I., Grigoryev, N.: J. Electroanal. Chem. 33 (1971) 319. Hamelin, A., Lecoeur, J.: Collect. Czech. Chem. Commun. 36 (1971) 714. Jakuszewsi, B., Kozlowski, Z., Partyka, S., Przasnyski, M., Romanovski, S.: Elektrokhimiya 7 (1971) 804. Morcos, I.: J. Colloid Interface Sci. 37 (1971) 410. Petyarv, E., Kolk, K., Palm, U.: Tartu Riikliku Ulik. Toim. 289 (1971) 22. Shimokawa, M., Takamura, T.: J. Electroanal. Chem. 32 (1971) 314. Valette, G., Hamelin, A.: C. R. Acad. Sci. (Paris), Ser. C 272 (1971) 602. Valette, G.: C. R. Acad. Sci. (Paris), Ser. C 273 (1971) 320. Brodsky, A., Pleskov, Yu.: Progress in Surface Science 2, Davidson, S. (ed.), Oxford: Pergamon, 1972, p. 2. Carr, J.P., Hampson, N.A.: J. Electrochem. Soc. 119 (1972) 325. Grigor’ev, N.B., Gedvillo, I., Bardina, N.: Elektrokhimiya 8 (1972) N3. Grigor’ev, N.B., Gedvillo, I., Bardina, N.: Elektrokhimiya 8 (1972) 409. Grigor’ev, N.B., Fateev, S.L., Bagotskaya, I.A.: Elektrokhimiya 8 (1972) 311. Grigor’ev, N.B., Fateev, S.L., Bagotskaya, I.A.: Elektrokhimiya 8 (1972) 1525. Hampson, N.A., Latham, R.J.: J. Electroanal. Chem. 34 (1972) 247. Leikis, E.D., Panin, V., Rybalka, K.: J. Electroanal. Chem. 40 (1972) 6. Levin, E.D., Rotinyan, A.L.: Elektrokhimiya 8 (1972) 242. Novoselskiy, I.M., Konevskih, N.I., Egorov, L.Ya.: Double Layer and Adsorption on Solid Electrodes, Vol. III, Tartu University, 1972, p. 195. Novoselskii, I.M., Konevskikh, N.I., Egorov, L.Ya.: Elektrokhimiya 8 (1972) 1480. Panin, V.A., Rybalka, K.V., Leikis, D.I.: Elektrokhimiya 8 (1972) 390.
Landolt-Börnstein New Series IV/9A
R5 72Pan3 72Pet1 72Pod 72Sev 72Val 73Bau 73Cla 73Gri 73Iva 73Kim 73Lou 73Non 73Nov 73Ryb3 73Val 74Bat1 74Bro1 74Cla1 74Cla2 74Fre 74Fru1 74Fru2 74Fru3 74Ham 74Lec 74Pod 74Rot 74Vit1 74Zel 75Ale1 75Bag 75Bat 75Gri 75Huo 75Lec1 75Lec2 75Max 75Mis 75Non 75Pal 75Pay 75Pul3 75Ryb2 75Vit1
Landolt-Börnstein New Series IV/9A
Panin, V.A., Rybalka, K.V., Leikis, D.I.: Elektrokhimiya 8 (1972) 1507. Petyarv, E.K., Kolk, K.A., Palm, U.V.: Elektrokhimiya 8 (1972) 100. Podlovchenko, B.I., Epstein, N.A.: Elektrokhimiya 8 (1972) 1522. Sevastyanov, E.S., Vitanov, T., Popov, A.: Elektrokhimiya 8 (1972) 412. Valette, G.: C. R. Acad. Sci. (Paris), Ser. C 274 (1972) 2046. Baugh, L.M., Parsons, R.: J. Electroanal. Chem. 41 (1973) 311. Clavilier, J., van Huong, C.N.: J. Electroanal. Chem. 41 (1973) 193. Grigor’ev, N.B., Kuprin, V.P., Loshkarev, Yu.M.: Elektrokhimiya 9 (1973) 1842. Ivanov, V.F., Damaskin, B.B., Segel'man, B.S., Melekhova, N.I.: Elektrokhimiya 9 (1973) 389. Kim, S.H.: J. Phys. Chem. 77 (1973) 2787. Loutfy, R.O.: Electrochim. Acta 18 (1973) 227. Noninski, K.I., Lazarova, E.M.: Elektrokhimiya 9 (1973) 673. Novoselskiy, I.M., Maksimyuk, N.I., Egorov, L.Ya.: Elektrokhimiya 9 (1973) 1518. Rybalka, K.V., Panin, V.A.: Elektrokhimiya 9 (1973) 172. Valette, G., Hamelin, A.: J. Electroanal. Chem. 45 (1973) 301. Batrakov, V.V., Damaskin, B.B., Ipatov, Y.P.: Elektrokhimiya 10 (1974) 144. Brodsky, A., Gurevich, V.Ya., Pleskov, Yu., Rotenberg, Z.: Sovremennaya Fotoelektrokhimiya, Nauka, Moscow, 1974. Clavilier, J., van Huong, N.: C. R. Acad. Sci. (Paris), Ser. C 279 (1974) 993. Clark, G.J., Andersen, T.N., Valentine, R.S., Eyring, H.: J. Electrochem. Soc. 121 (1974) 618. Fredlein, R.A., Bockris, J.O'M.: Surf. Sci. 46 (1974) 641. Frumkin, A.N., Pyarnoya, M.P., Grigoriev, N.B., Pal’m, U.V.: Elektrokhimiya 10 (1974) 1130. Frumkin, A.N., Damaskin, B.B., Grigoryev, N.B., Bagotskaya, I.A.: Electrochim. Acta 19 (1974) 69. Frumkin, A.N., Grigoryev, N.B., Pyarnoya, M., Palm, U.: Elektrokhimiya 10 (1974) N5. Hamelin, A., Bellier, J.P.: C. R. Acad. Sci. (Paris), Ser. C 279 (1974) 371. Lecoeur, J., Hamelin, A.: C. R. Acad. Sci. (Paris), Ser. C 279 (1974) 1081. Podlovchenko, B.I., Epstein, N.A., Frumkin, A.N.: J. Electroanal. Chem. 53 (1974) 95. Rotenberg, Z.A., Prishchepa, Yu.A., Pleskov, Yu.V.: J. Electroanal. Chem. 56 (1974) 345. Vitanov, T., Popov, A., Sevastyanov, E.S.: Elektrokhimiya 10 (1974) 346. Zelinsky, A.G., Bek, R.Yu.: Elektrokhimiya 10 (1974) 1212. Aleksandrova, D.P., Sevastyanov, E.S., Andrusev, M.M., Leikis, D.I.: Elektrokhimiya 11 (1975) 648. Bagotskaya, I.A., Grigor'ev, N.B., Doubova, L., Kalyuzknaya, A., Fateev, S.: Double Layer and Adsorption on Solid Electrodes, Vol. IV, Tartu University, 1975, p. 14. Batrakov, V.V., Damaskin, B.B.: J. Electroanal. Chem. 65 (1975) 361. Grigor'ev, N.B., Bulavka, V.A., Loshkarev, Yu.M.: Elektrokhimiya 11 (1975) 1404. van Huong, N., Clavilier, J., Bonnemay, M.: J. Electroanal. Chem. 65 (1975) 531. Lecoeur, J., Sella, C., Tertian, L., Hamelin, A.: C. R. Acad. Sci. (Paris), Ser. C 280 (1975) 247. Lecoeur, J., Sella, C., Martin, K., Tertian, L., Deschamps, J.: C. R. Acad. Sci. (Paris), Ser. C 281 (1975) 71. Maximuk, N.I., Egorov, L.Ya.: Double Layer and Adsorption on Solid Electrodes, Vol. IV, Tartu University, 1975, p. 177. Mishuk, V.Ya., Solomatin, E.A., Elkin, V.V., Knots, L.L.: Elektrokhimiya 11 (1975) 1897. Noninski, K.I., Lazarova, E.M.: Elektrokhimiya 11 (1975) 1103. Palm, U.V., Vaartnou, M.G., Petyarv, E.K.: Elektrokhimiya 11 (1975) 1849. Payne, R.: J. Electroanal. Chem. 60 (1975) 183. Pullerits, R., Moldau, M., Past V.: Double Layer and Adsorption on Solid Electrodes, Vol. IV, Tartu University, 1975, p. 257. Rybalka, L.E., Leikis, D.I.: Elektrokhimiya 11 (1975) 1619. Vitanov, T., Popov, A.: Trans. SAEST 10 (1975) 5.
R6 75Vit2 76Ham 76Ipa1 76Ipa2 76Lin 76Pet 76Ryb 76Ush 76Vit1 76Vit2 77Bor 77Cla 77Pal 77Vit 78Bag 78Bul 78Kme 78Laz 78Lec 78Max 78Mis 78Nov 78Shl 78Vaa 78Vit 78Zel1 78Zel2 79Ama 79Bat 79Hen 79Vaa1 80Brz 80Kar 80Kof 80Pan 80Pet 80Vae 81Ann 81Bor 81Fle 81Jur 81Khm 81Val 82Bor 82Ham1 82Ham2
Vitanov, T., Popov, A., Sevastyanov, E.S.: Elektrokhimiya 11 (1975) 170. Hamelin, A., Lecoeur, J.: Surf. Sci. 57 (1976) 771. Ipatov, Y.P., Batrakov, V.V.: Elektrokhimiya 12 (1976) 1174. Ipatov, Y.P., Batrakov, V.V., Shalaginov, V.V.: Elektrokhimiya 12 (1976) 286. Lin, K.-F., Beck, T.R.: J. Electrochem. Soc. 123 (1976) 1145. Petyarv, V., Palm, U.W.: Elektrokhimiya 12 (1976) 806. Rybalka, L.E., Leikis, D.I., Zelinski, A.G.: Elektrokhimiya 12 (1976) 1340. Ushakova, Z.N., Ivanov, V.F.: Elektrokhimiya 12 (1976) 485. Vitanov, T., Popov, A.: Dokl. Akad. Nauk SSSR 226 (1976) 373. Vitanov, T., Popov, A., Sevastyanov, E.S.: Elektrokhimiya 12 (1976) 582. Borkowska, Z.: J. Electroanal. Chem. 79 (1977) 206. Clavilier, J., van Huong, N.: J. Electroanal. Chem. 80 (1977) 101. Pal’m, U.V., Pyarnoya, M.P., Sal’ve, M.A.: Elektrokhimiya 13 (1977) 873. Vitanov, T., Popov, A.: 28th Meeting of ISE (International Society of Electrochemistry), Varna; Ext. Abstract, 1977, p. 230. Bagotskaya, I.A., Dubova, L.M.: Elektrokhimiya 14 (1978) 1383. Bulavka, V.A., Grigor'ev, N.B., Loshkarev, Yu.M.: Elektrokhimiya 14 (1978) 1037. Kmelevaya, L.P., Chizhov, A.V., Damaskin, B.B.: Elektrokhimiya 14 (1978) 1304. Lazarova, E.M.: Elektrokhimiya 14 (1978) 1300. Lecoeur, J., Sella, C., Martin, J.C.: C. R. Acad. Sci. (Paris), Ser. C 287 (1978) 447. Maximuk, N.I., Egorov, L.Ya.: Double Layer and Adsorption on Solid Electrodes, Vol. V, Tartu University, 1978, p. 148. Mishuk, V.Ya., Solomatin, E.A., Elkin, V.V.: Elektrokhimiya 14 (1978) 1135. Novitskii, S.P., Burenkov, I.I., Kenzin, V.I., Zelinsky, A.G., Leikis, D.I.: Elektrokhimiya 14 (1978) 270. Shlepakov, A.V., Sevastyanov, E.S.: Elektrokhimiya 14 (1978) 287. Vaartnou, M., Palm, U.: Elektrokhimiya 14 (1978) 311. Vitanov, T., Popov, A.: 29th Meeting of ISE (International Society of Electrochemistry), Budapest; Ext. Abstracts, Part I, 1978, p. 539. Zelinsky, A.G., Bek, R.Yu.: Elektrokhimiya 14 (1978) 1825. Zelinsky, A.G., Bek, R.Yu., Makurin, A.L., Abdulov, S.D.: Elektrokhimiya 14 (1978) 1740. Amadelli, R., Daghetti, A., Vergano, L., De Battisti, A., Trasatti, S.: J. Electroanal. Chem. 100 (1979) 379. Batrakov, B.B., Naumova, N.I.: Elektrokhimiya 15 (1979) 551. Hennig, H., Batrakov, V.V.: Elektrokhimiya 15 (1979) 1833. Vaartnou, M.G., Palm, U.V.: Elektrokhimiya 15 (1979) 591. Brzostowska-Smolska, M., Minc, S.: Pol. J. Chem. 54 (1980) 2391. Karbasov, B.G., Tikhonov, K.I., Vyacheslavov, P.M.: Elektrokhimiya 16 (1980) 1273. Kofman, R., Garrigos, R., Cheyssac, P.: Surf. Sci. 101 (1980) 231. Pankina, G.W., Leikis, D.I., Sevastyanov, E.S.: Elektrokhimiya 16 (1980) 213. Petrii, O.A., Khomchenko, I.G.: J. Electroanal. Chem. 106 (1980) 277. Vaertnou, M., Palm, U.: Elektrokhimiya 16 (1980) 1877. Anni, K.L., Erlich, Y.O., Pal’m, U.V.: Double Layer and Adsorption on Solid Electrodes, Vol. VI, Tartu University, 1981, p. 5. Borkowska, Z., Fawcett, W.R.: Can. J. Chem. 59 (1981) 710. Fleischmann, M., Robinson, J., Waser, R.: J. Electroanal. Chem. 117 (1981) 257. Jurkiewicz-Herbich, M.: J. Electroanal. Chem. 119 (1981) 275. Khmelevaya, L.P., Damaskin, B.B.: Elektrokhimiya 17 (1981) 1721. Valette, G.: J. Electroanal. Chem. 122 (1981) 285. Borkowska, Z., Fawcett, W.R.: Can. J. Chem. 60 (1982) 1787. Hamelin, A.: J. Electroanal. Chem. 138 (1982) 395. Hamelin, A., Le Lan, A.: C. R. Acad. Sci. (Paris), Ser. 2 295 (1982) 161.
Landolt-Börnstein New Series IV/9A
R7 82Laz 82Lec 82Val 82Vit 83Brz 83Hup 83Mly 83Ohm 84Ale 84Bor 84Dag 85Kol 85Lec 85Lus1 85Lus2 85Ngu 85Pez 86Ann 86Dag 86Hor 86Kol 86Lus1 86Lus2 86Pas 86Ric1 86Seo 87Bor 87Ham1 87Ham2 87Jar 87Mur 88Ann 88Bor2 88Jap 88Mur 88Vae 89Aro 89Ham 89Mur 89Nan 89Saf 89Val 90Ham 90Lus 90Pez 90Ric 90Sok 91Agl 91Lus1
Landolt-Börnstein New Series IV/9A
Lazarova, E.M.: Elektrokhimiya 18 (1982) 1654. Lecoeur, J., Andro, J., Parsons, R.: Surf. Sci. 114 (1982) 320. Valette, G.: J. Electroanal. Chem. 138 (1982) 37. Vitanov, T., Popov, A., Sevastyanov, E.S.: J. Electroanal. Chem. 142 (1982) 289. Brzostowska-Smolska, M., Minc, S.: Pol. J. Chem. 57 (1983) 1005. Hupp, J.T., Larkin, D., Weaver, M.J.: Surf. Sci. 125 (1983) 429. Mlynarczyk, R., Figaszewski, Z., Koczorowski, Z.: Pol. J. Chem. 57 (1983) 1011. Ohmori, T.: J. Electroanal. Chem. 157 (1983) 159. Alekseeva, E.Yu., Safonov, V.A., Petrii, O.A.: Elektrokhimiya 20 (1984) 945. Borkowska, Z., Stafiej, J.: J. Electroanal. Chem. 170 (1984) 289. Daghetti, A., Trasatti, S.: J. Electroanal. Chem. 162 (1984) 327. Kolb, D.M., Schneider, J.: Surf. Sci. 162 (1985) 764. Lecoeur, J., Bellier, J.P.: Electrochim. Acta 30 (1985) 1027. Lust, E.I., Palm, Yu.V.: Elektrokhimiya 21 (1985) 1256. Lust, E.I., Palm, Yu.V.: Elektrokhimiya 21 (1985) 1381. Nguyen Van Huong, C.: J. Electroanal. Chem. 194 (1985) 131. Pezzatini, G., Moncelli, M.R., Foresti, M.L., Pergola, F., Guidelli, R.: J. Electroanal. Chem. 196 (1985) 429. Anni, K.L., Vaertnou, M., Palm, J.V.: Elektrokhimiya 22 (1986) 992. Dagaeva, I., Nikolov, Z.: Elektrokhimiya 22 (1986) 1217. Horanyi, T.S., Takács, M.: J. Electroanal. Chem. 215 (1986) 83. Kolb, D.M., Schneider, J.: Electrochim. Acta 31 (1986) 929. Lust, E.I., Palm, Yu.V.: Elektrokhimiya 22 (1986) 407. Lust, E.I., Erlich, Yu.I., Palm, Yu.V.: Elektrokhimiya 22 (1986) 695. Past, V., Pullerits, R., Moldau, M.: Trans.Tartu State Univ. 755 (1986) 140. Richer, J., Lipkowski, J.: J. Electrochem. Soc. 133 (1986) 121. Seo, M., Makino, T., Sato, N.: J. Electrochem. Soc. 133 (1986) 1138. Borkowska, Z., Stafiej, J.: J. Electroanal. Chem. 226 (1987) 283. Hamelin, A., Stoicoviciu, L.: J. Electroanal. Chem. 234 (1987) 93. Hamelin, A., Doubova, L., Wagner, D., Schirmer, H.: J. Electroanal. Chem. 220 (1987) 155. Jarzabek, G., Borkowska, Z.: J. Electroanal. Chem. 226 (1987) 295. Murphy, O.J., Wainright, J.S.: J. Electrochem. Soc. 134 (1987) 267. Anni, K.L., Väärtnou, M.G., Palm, U.V.: Elektrokhimiya 24 (1988) 846. Borkowska, Z., Hamelin, A.: J. Electroanal. Chem. 241 (1988) 373. Japaridze, J.I., Khutzishvili, Zh.A., Chagelishvili, V.A., Borghesani, G., De Battisti, A., Locatelli, C., Trasatti, S.: J. Electroanal. Chem. 257 (1988) 123. Murphy, O.J., Wainright, J.S.: J. Electrochem. Soc. 135 (1988) 138. Vaertnou, M.G., Palm, U.V.: Elektrokhimiya 24 (1988) 553. Arold, J., Tamm, J.: Elektrokhimiya 25 (1989) 1417. Hamelin, A., Morin, S., Richer, J., Lipkowski, J.: J. Electroanal. Chem. 272 (1989) 241. Murphy, O.J., Wainright, J.S.: Langmuir 5 (1989) 519. Naneva, R., Bostanov, V., Popov, O., Vitanov, T.: J. Electroanal. Chem. 274 (1989) 179. Safonov, V.A., Damaskin, B.B., Choba, M.A.: Elektrokhimiya 25 (1989) 1432. Valette, G.: J. Electroanal. Chem. 269 (1989) 191. Hamelin, A., Morin, S., Richer, J., Lipkowski, J.: J. Electroanal. Chem. 285 (1990) 249. Lust, E.J., Lust, K.K., Jänes, A.A.-J.: Elektrokhimiya 26 (1990) 1627. Pezzatini, G., Foresti, M.L., Innocenti, M., Guidelli, R.: J. Electroanal. Chem. 295 (1990) 265. Richer, J.: Ph.D. Thesis, University of Guelph, 1990. Sokolowski, J., Czajkowski, J.M., Turowska, M.: Electrochim. Acta 35 (1990) 1393. Agladze, T., Podobayev, A.: Electrochim. Acta 36 (1991) 859. Lust, E., Anni, K.: Double Layer and Adsorption on Solid Electrodes, Vol. IX, Tartu University, 1991, p. 109.
R8 91Lus2 91Obr 91Saf 92Dic 92Lec 92Lus 92Nan 92Sob 93Dou 93Inn 93Sil 94Gao 94Ham 94Lus 94Seo 95Att 95Koe 95Lan 95Pan1 95Rai 95Tad 95Tra 95Tur 96Efi 96Eme 96Ham1 96Iwa 96Jin 96Lus1 96Pem 96Seo 96Sil 97Che 97For 97Lus1 97Lus2 97Seo 97Tur 98Bru 99Cli 99Uen 00Alv 00Gom 01Li
Lust, E.: Sov. Electrochem. (English Transl.) 27 (1991) 389; Elektrokhimiya 27 (1991) 424. Obraztsov, V.B., Parfenov, Yu.A., Danilov, F.I.: Elektrokhimiya 27 (1991) 980. Safonov, V.A., Sokolov, S.A.: Elektrokhimiya 27 (1991) 1317. Dickinson, K.M., Hanson, K.E., Fredlein, R.A.: Electrochim. Acta 37 (1992) 139. Lecoeur, J., Bellier, J.P., Koehler, C.: J. Electroanal. Chem. 337 (1992) 197. Lust, E.J., Jänes, A.A.-J.: Elektrokhimiya 28 (1992) 802. Naneva, R., Vitanov, T., Dimitrov, N., Bostanov, V., Popov, A.: J. Electroanal. Chem. 328 (1992) 287. Sobocinski, R.L., Pemberton, J.E.: Langmuir 8 (1992) 2049. Doubova, L.M., Trasatti, S., Valcher, S.: J. Electroanal. Chem. 349 (1993) 187. Innocenti, M., Pezzatini, G., Foresti, M.L., Guidelli, R.: J. Electroanal. Chem. 349 (1993) 113. Silva, F., Sottomayor, M.J., Martins, A.: J. Electroanal. Chem. 360 (1993) 199. Gao, X.P., Edens, G.J., Weaver, M.J.: J. Electroanal. Chem. 376 (1994) 21. Hamelin, A., Stoicoviciu, L., Edens, G.J., Gao, X.P., Weaver, M.J.: J. Electroanal. Chem. 365 (1994) 47. Lust, E.J., Jänes, A.A.-Ja.: Elektrokhimiya 30 (1994) 357. Seo, M., Aomi, M., Yoshida, K.: Electrochim. Acta 39 (1994) 1039. Attard, G.A., Ahmadi, A.: J. Electroanal. Chem. 389 (1995) 175. Koene, L., Sluyters-Rehbach, M., Sluyters, J.H.: J. Electroanal. Chem. 396 (1995) 569. Lang, G., Heusler, K.E.: J. Electroanal. Chem. 391 (1995) 169. Panzram, E., Baumgärtel, H., Roelfs, B., Schröter, C., Solomun, T.: Ber. Bunsenges. Phys. Chem. 99 (1995) 827. Raiteri, R., Butt, H.-J.: J. Phys. Chem. 99 (1995) 15728. Tadjeddine, A., Peremans, A., Guyot-Sionnest, P.: Surf. Sci. 335 (1995) 210. Trasatti, S., Dubova, L.: J. Chem. Soc. Faraday Trans. 91 (1995) 3311. Turowska, M., Sokolowski, J.: Proc. 3rd Int. Symp. Electrochemistry in Practice and Theory, Lodz, Sept. 11-13, 1995. Efimov, I.O., Heusler, K.E.: J. Electroanal. Chem. 414 (1996) 75. Emets, V.V., Kazarinov, V.E., Bagotskaya, I.A.: Sov. Electrochem. (English Transl.) 32 (1996) 1069; Elektrokhimiya 32 (1996) 1157. Hamm, U.W., Kramer, D., Zhai, R.S., Kolb, D.M.: J. Electroanal. Chem. 414 (1996) 85. Iwasita, T., Xia, X.H.: J. Electroanal. Chem. 411 (1996) 95. Jin-Hua, C., Li-Hua, N., Zhuo, Y.S.: J. Electroanal. Chem. 414 (1996) 53. Lust, E., Lust, K., Jänes, A.: J. Electroanal. Chem. 413 (1996) 111. Pemberton, J.E., Joa, S.L., Shen, A.J., Woelfel, K.J.: J. Chem. Soc. Faraday Trans. 92 (1996) 3683. Seo, M., Ueno, K.: J. Electrochem. Soc. 143 (1996) 899. Silva, F., Sottomayor, M.J., Martins, A.: J. Chem. Soc. Faraday Trans. 92 (1996) 3693. Chen, J.-H., Si, S.-H., Nie, L.-H., Yao, S.-Z.: Electrochim. Acta 42 (1997) 689. Foresti, M.L., Pezzatini, G., Innocenti, M.: J. Electroanal. Chem. 434 (1997) 191. Lust, E., Jänes; A., Lust, K., Sammelselg, V., Miidla, P.: Electrochim. Acta 42 (1997) 2861. Lust, E., Jänes, A., Lust, K., Miidla, P.: Electrochim. Acta 42 (1997) 771. Seo, M., Ueno, K.: Electrochemical Society Meeting 97-2, Paris, France, 1.-5.9.1997, Ext. Abstr. p. 426. Turowska, M., Baczynski, J., Sokolowski, J.: Elektrokhimiya 33 (1997) 1301. Brunt, T.A., Chabala, E.D., Rayment, T., O'Shea, S.J., Welland, W.E.: Electrochemical Nanotechnology, Lorenz, W.J., Plieth, W. (eds.), Weinheim: Wiley-VCH, 1998, p. 87. Climent, V., Gomez, R., Feliu, J.M.: Electrochim. Acta 45 (1999) 629. Ueno, K., Seo, M.: J. Electrochem. Soc. 146 (1999) 1496. Álvarez, B., Climent, V., Feliu, J.M., Aldaz, A.: Electrochem. Commun. 2 (2000) 427. Gómez, R., Climent, V., Feliu, J.M., Weaver, M.J.: J. Phys. Chem. B 104 (2000) 597. Li, H.-Q., Chen, A., Roscoe, S.G., Lipkowski, J.: J. Electroanal. Chem. 500 (2001) 299.
Landolt-Börnstein New Series IV/9A
R9 02ElA 02Jur 02Lan 04Iwa 04Luk 06ElA 06Luk 06Sol
Landolt-Börnstein New Series IV/9A
El-Aziz, A.M., Kibler, L.A., Kolb, D.M.: Electrochem. Commun. 4 (2002) 535. Jurkiewicz-Herbich, M., Milkowska, M., Slojkowska, R.: Colloids Surf. A 197 (2002) 235. Langkau, T., Baltruschat, H.: Electrochim. Acta 47 (2002) 1595. Iwami, Y., Hobara, D., Yamamoto, M., Kakiuchi, T.: J. Electroanal. Chem. 564 (2004) 77. àukomska, A., Sobkowski, J.: J. Electroanal. Chem. 567 (2004) 95. El-Aziz, A.M., Hoyer, R., Kibler, L.A., Kolb, D.M.: Electrochim. Acta 51 (2006) 2518. àukomska, A., Sobkowski, J.: J. Electroanal. Chem. 592 (2006) 68. Soliman, K., Kibler, L.A., Kolb, D.M.: 57th Annual Meeting of the International Society of Electrochemistry, Edinburg, 27.8.-1.9.2006, Abstr. S8-O-16.
232
3 Electrode potentials of zero charge
Table 3.2. Electrode potentials of zero charge of metal oxide electrodes in contact with electrolyte solutions. 1) Electrode
Solution 2)
Method 3)
Epzc [mV vs. SHE] 4)
Ref.
Iron (passivated) (Fe)
0.01 N NaOH/H2O
DR
0.34
63Vor
PbO2
0.001 N Na2SO4/H2O 0.005 M H2SO4/H2O 0.005 M H2SO4/H2O 0.005 M H2SO4/H2O 0.01 N HClO4/H2O 0.1 N H2SO4/H2O 8 N H2SO4/H2O 2 N H2SO4/H2O 2 N Na2SO4/H2O 10 N Na2SO4/H2O
T T T H T H H H H H
1.8 1.8 1.8 1.8 1.8 1.9 1.7 1.85 1.85 1.9
54Kab 54Kab 60Lei 57Lei 54Kab 57Lei 57Lei 65Kuk 66Kuk1 66Kuk1
Silver oxide (AgO2)
0.001 N NaOH/H2O
T
0.6
53Bor
1
) All data refer to room temperature if not stated otherwise.
2
) A lack of an explicit concentration value indicates, that the value of Epzc did not depend upon the concentration.
3
) DR = Double layer repulsion method, H = Hardness measurements, T = Tensammetry (for details see text). See also list of symbols.
4
) All reported values are converted with respect to the standard hydrogen electrode if not stated otherwise.
Landolt-Börnstein New Series IV/9A
R1
References 53Bor 54Kab 57Lei 60Lei 63Vor 65Kuk 66Kuk1
Landolt-Börnstein New Series IV/9A
Borisova, T.I., Veselovskii, V.J., Karpov, L.Ya.: Zh. Fiz. Khim. 27 (1953) 1195. Kabanov, B.N., Kiseieva, I.G., Leikis, D.I.: Dokl. Akad. Nauk SSSR 99 (1954) 805. Leikis, D.I., Venstrem, E.K.: Dokl. Akad. Nauk SSSR 112 (1957) 97. Leikis, D.I.: Dokl. Akad. Nauk SSSR 135 (1960) 1429. Voropaeva, T.N., Deryagin, B.V., Kabanov, B.N.: Izv. Akad. Nauk SSSR, Otd. Khim. Nauk (1963) 257. Kukoz, F.I., Semenchenko, S.A.: Elektrokhimiya 1 (1965) 1454. Kukoz, F.I., Semenchenko, S.A.: Elektrokhimiya 2 (1966) 74.
3 Electrode potentials of zero charge
233
Table 3.3. Electrode potentials of zero charge of metal electrodes in contact with molten electrolyte salts. 1) Electrode
Electrolyte melt 2)
Reference electrode REF
Aluminum (Al)
KCl-LiCl eutectic
Pb
Antimony (Sb)
KCl-LiCl eutectic KCl-LiCl eutectic KCl-LiCl eutectic KCl-LiCl 1:1 KCl-LiCl 1:1 KCl-LiCl 1:1 KCl-LiCl 1:1
Bismuth (Bi)
T [°C]
Met. 3)
Epzc 4) [mVvs.REF]
Ref.
750
EC
–0.3
42Kar, 44Kar
Pb Pb Pb Pb-2.5 mol% PbCl2 Pb-2.5 mol% PbCl2 Pb-2.5 mol% PbCl2 Pb-2.5 mol% PbCl2
750 750 1050 1050 750 500 700
EC EC EC EC EC T T
0.2 0.1 0.2 –0.1 0.0 –0.92 –0.17
42Kar 44Kar 44Kar 60Uks 60Uks 60Uks 60Uks
KCl-LiCl eutectic KCl-LiCl eutectic KCl-LiCl eutectic KCl-LiCl eutectic KCl-LiCl eutectic KCl-LiCl 1:1 KCl-LiCl 1:1
Pb Pb Pb Pb Pt/Pt2+ (1 M) Pb-2.5 mol% PbCl2 Pb-2.5 mol% PbCl2
450 450 450 450 450 420 700
EC EC EC EC PC EC T
–0.23 –0.3 –0.3 –0.3 –1.52 –0.48 –0.32
44Kar 48Kar 49Kar 42Kar 60Lai1 60Uks 60Uks
Bi amalgams 5.2 at% Bi 15.25 at% Bi 29 at% Bi 30.4 at% Bi 50.5 at% Bi 61.5 at% Bi 73 at% Bi
KCl-LiCl eutectic KCl-LiCl eutectic KCl-LiCl eutectic KCl-LiCl eutectic KCl-LiCl eutectic KCl-LiCl eutectic KCl-LiCl eutectic
Pb Pb Pb Pb Pb Pb Pb
420 420 420 420 420 420 420
EC EC EC EC EC EC EC
–0.38 –0.32 –0.3 –0.3 –0.3 –0.29 –0.3
48Kar 48Kar 48Kar 48Kar 48Kar 48Kar 48Kar
Bi-Te alloy 10...20 at% Te
KCl–LiCl eutectic
Pb
450
EC
0.15
49Kar
Cadmium (Cd)
KCl-LiCl eutectic KCl-LiCl eutectic
Pb Pb
400 450
EC EC
–0.79 –0.63
KCl-LiCl eutectic
Pb
450
EC
–0.6
KCl-LiCl 1:1 KCl-LiCl 1:1
Pb-2.5 mol% PbCl2 Pb-2.5 mol% PbCl2
450 700
EC T
–0.82 –0.8
36Kar 42Kar, 44Kar 44Str, 53Kuz 60Uks 60Uks
KCl-LiCl eutectic KCl-LiCl eutectic KCl-LiCl eutectic KCl-LiCl eutectic KCl-LiCl eutectic
Pb Pb Pb Pb Pb
450 450 450 450 450
EC EC EC EC EC
–0.31 –0.35 –0.41 –0.42 –0.5
53Kuz 53Kuz 53Kuz 53Kuz 53Kuz
KCl-LiCl 1:1
Ag/AgCl (0.05 M)
700
T
–1.16
65Del1
Cd-Sn alloys 10 at% Cd 20 at% Cd 40 at% Cd 60 at% Cd 80 at% Cd Chromium (Cr)
Landolt-Börnstein New Series IV/9A
234
3 Electrode potentials of zero charge
Electrode
Electrolyte melt 2)
Reference electrode
Cobalt (Co)
KCl-LiCl 1:1
Ag/AgCl (0.05 M)
700
T
–0.9
65Del1
Gallium (Ga)
KCl-LiCl eutectic
Pb
450
EC
–0.4
KCl-LiCl eutectic
Pb-10 wt.% PbCl2
450
T
–0.63
42Kar, 44Kar 63Buk
Indium (In)
KCl-LiCl eutectic
Pb
450
EC
–0.52
61Kuz
Iron (Fe)
KCl-LiCl 1:1
Ag/AgCl (0.05 M)
700
T
–0.98
65Del1
Lead (Pb)
KCl-LiCl 1:1 KCl-LiCl 1:1 KBr KCl KCl KCl-LiCl eutectic KCl-LiCl eutectic
Pb-2.5 mol% PbCl2 Pb-2.5 mol% PbCl2 Pb-2.5 mol% PbCl2 Pb-2.5 mol% PbCl2 Graphite in melt Pb Pb
450 700 820 820 850 400 450
EC T EC EC EC EC EC
–0.58 –0.55 –0.595 –0.6 1.4 –0.47 –0.47
KCl-LiCl eutectic KCl-LiCl eutectic KCl-LiCl eutectic KCl-KI eutectic NaBr NaCl NaCl-NaI eutectic
Pb Pb-10 wt% PbCl2 Pb Graphite in melt Pb-2.5 mol% PbCl2 Pb-2.5 mol% PbCl2 Graphite in melt
1050 450 1050 700 820 820 650
EC T EC EC EC EC EC
–0.38 –0.7 –0.38 1.36 –0.5 –0.47 1.44
60Uks 60Uks 63Uks 63Uks 10Hev 36Kar 42Kar, 44Kar 44Kar 63Buk 42Kar 10Hev 63Uks 63Uks 10Hev
Manganese (Mn)
KCl-LiCl 1:1
Ag/AgCl (0.05 M)
700
T
–1.7
65Del1
Mercury (Hg)
KCl-LiCl eutectic
Pb
420
EC
–0.1
LiNO3-KNO3 (34%+66%) LiNO3-NaNO3KNO3 (27%+18%+55%) LiNO3-NaNO3 eutectic
Hg/HgSO4
140
T
–1.12
42Kar, 44Kar, 48Kar 55Ran
Hg/HgSO4
140
T
–1.12
55Ran
Graphite in melt
145
EC
0.68
10Hev
Nickel (Ni)
KCl-LiCl 1:1
Ag/AgCl (0.05 M)
700
T
–0.72
65Del1
Platinum (Pt)
KCl-LiCl eutectic KCl-LiCl eutectic
Pt/Pt2+ (1 M) Pt/Pt2+ (1 M)
450 450
T PC
–0.83 –1.91
65Gra 60Lai1
Silver (Ag)
KCl-LiCl eutectic
Pb
1050
EC
–0.3
KCl-LiCl 1:1
Ag/AgCl (0.05 M)
T
–0.8
42Kar, 44Kar 65Del1
T [°C]
700
Met. 3)
Epzc 4) [mVvs.REF]
Ref.
Landolt-Börnstein New Series IV/9A
3 Electrode potentials of zero charge
Electrode
Electrolyte melt 2)
Reference electrode
Tellurium (Te)
KCl-LiCl eutectic
Pb
550
EC
0.60
KCl-LiCl eutectic KCl-LiCl eutectic
Pb Pb-10 wt% PbCl2
475 550
EC T
0.60 0.4
42Kar, 44Kar 59Kuz2 63Buk
Te-Tl alloys 2.83 at% Tl 10.9 at% Tl 22.1 at% Tl 42.3 at% Tl 53.7 at% Tl 65.2 at% Tl
KCl-LiCl eutectic KCl-LiCl eutectic KCl-LiCl eutectic KCl-LiCl eutectic KCl-LiCl eutectic KCl-LiCl eutectic
Pb Pb Pb Pb Pb Pb
475 475 475 475 475 475
EC EC EC EC EC EC
0.55 0.48 0.35 0.15 0.09 –0.05
59Kuz2 59Kuz2 59Kuz2 59Kuz2 59Kuz2 59Kuz2
Thallium (Tl)
KCl-LiCl eutectic KCl-LiCl eutectic
Pb Pb
400 420
EC EC
–1.04 –0.65
KCl-LiCl eutectic KCl-LiCl 1:1 KCl-LiCl 1:1
Pb Pb-2.5 mol% PbCl2 Pb-2.5 mol% PbCl2
475 420 700
EC EC T
–0.6 –0.85 –0.87
36Kar 42Kar, 44Kar 59Kuz2 60Uks 60Uks
KCl-LiCl eutectic KCl-LiCl eutectic KCl-LiCl eutectic KCl-LiCl eutectic
Pb Pb Pb Pb
400 400 400 450
EC EC EC EC
–0.25 –0.31 –0.18 –0.23
KCl-LiCl eutectic KCl-LiCl eutectic KCl-LiCl eutectic KCl-LiCl 1:1 KCl-LiCl 1:1 KI-LiI (70 mol% LiI)
Pb Pb Graphite in melt Pb-2.5 mol% PbCl2 Pb-2.5 mol% PbCl2 Pb
420 450 600 420 700 400
EC EC EC EC T EC
–0.23 –0.2 1.04 –0.43 –0.32 –0.3
36Kar 37Kar 44Str 42Kar, 44Kar 48Kar 53Kuz 10Hev 60Uks 60Uks 36Kar
Sn amalgams 2.5 at% Sn 10.7 at% Sn 15.9 at% Sn 23.5 at% Sn 27.9 at% Sn 32.1 at% Sn 42.7 at% Sn 50.8 at% Sn 61.8 at% Sn 75.9 at% Sn
KCl-LiCl eutectic KCl-LiCl eutectic KCl-LiCl eutectic KCl-LiCl eutectic KCl-LiCl eutectic KCl-LiCl eutectic KCl-LiCl eutectic KCl-LiCl eutectic KCl-LiCl eutectic KCl-LiCl eutectic
Pb Pb Pb Pb Pb Pb Pb Pb Pb Pb
420 420 420 420 420 420 420 420 420 420
EC EC EC EC EC EC EC EC EC EC
–0.21 –0.32 –0.3 –0.27 –0.26 –0.25 –0.25 –0.24 –0.24 –0.23
48Kar 48Kar 48Kar 48Kar 48Kar 48Kar 48Kar 48Kar 48Kar 48Kar
Sn-Au alloy 2...69 at% Au
KCl-LiCl eutectic
Pb
450
EC
0.2
49Kar
Tin (Sn)
Landolt-Börnstein New Series IV/9A
T [°C]
Met. 3)
235 Epzc 4) [mVvs.REF]
Ref.
236
3 Electrode potentials of zero charge
Electrode
Electrolyte melt 2)
Reference electrode
Sn-Zn alloys 5 mol% Zn 10 mol% Zn 25 mol% Zn 50 mol% Zn 75 mol% Zn 90 mol% Zn 95 mol% Zn 5 mol% Zn 10 mol% Zn 25 mol% Zn 50 mol% Zn 75 mol% Zn 90 mol% Zn 95 mol% Zn
KCl-LiCl eutectic KCl-LiCl eutectic KCl-LiCl eutectic KCl-LiCl eutectic KCl-LiCl eutectic KCl-LiCl eutectic KCl-LiCl eutectic KI-LiI (70mol%LiI) KI-LiI (70mol%LiI) KI-LiI (70mol%LiI) KI-LiI (70mol%LiI) KI-LiI (70mol%LiI) KI-LiI (70mol%LiI) KI-LiI (70mol%LiI)
Pb Pb Pb Pb Pb Pb Pb Pb Pb Pb Pb Pb Pb Pb
400 400 400 400 400 400 400 400 400 400 400 400 400 400
EC EC EC EC EC EC EC EC EC EC EC EC EC EC
–0.2 –0.3 –0.35 –0.4 –0.45 –0.5 –0.5 –0.4 –0.3 –0.35 –0.4 –0.45 –0.5 –0.5
37Kar 37Kar 37Kar 37Kar 37Kar 37Kar 37Kar 36Kar 36Kar 36Kar 36Kar 36Kar 36Kar 36Kar
Titanium (Ti)
KCl-LiCl 1:1
Ag/AgCl (0.05 M)
700
T
–1.35
65Del1
Zinc (Zn)
KCl-LiCl eutectic KCl-LiCl eutectic
Pb Pb
400 450
EC EC
–0.55 –0.55
KCl-LiCl eutectic KCl-LiCl 1:1 KI-LiI (70mol%LiI)
Pb Ag/AgCl (0.05 M) Pb
450 700 400
EC T EC
–0.47 –1.16 –0.6
37Kar 42Kar, 44Kar 44Str 65Del1 36Kar
T [°C]
Met. 3)
Epzc 4) [mVvs.REF]
Ref.
1
) All data refer to room temperature if not stated otherwise.
2
) A lack of an explicitly stated composition indicates, that the value of Epzc does not depend on the concentration of the constituents. 3
) Met. = Method. EC = electrocapillary method, PC = electrode capacitance measured with a pulse method, T = tensammetry. See also list of symbols.
4
) All reported values are given with respect to the stated reference electrode.
Landolt-Börnstein New Series IV/9A
R1
References 10Hev 36Kar 37Kar 42Kar 44Kar 44Str 48Kar 49Kar 53Kuz 55Ran 59Kuz2 60Lai1 60Uks 61Kuz 63Buk 63Uks 65Del1 65Gra
Landolt-Börnstein New Series IV/9A
von Hevesy, G., Lorenz, R.: Z. Phys. Chem. 74 (1910) 443. Karpatschoff, S., Stromberg, A.: Z. Phys. Chem. Abt. A 176 (1936) 182. Karpachev, S., Stromberg, A.: Zh. Fiz. Khim. 10 (1937) 739. Karpachev, S., Stromberg, A.G.: Acta Physicochim. URSS 16 (1942) 331. Karpachev, S., Stromberg, A.G.: Zh. Fiz. Khim. 18 (1944) 47. Stromberg, A., Chukina, T.: Zh. Fiz. Khim. 18 (1944) 234. Karpachev, S., Kochergin, W.P., Iordan, E.F.: Zh. Fiz. Khim. 22 (1948) 521. Karpachev, S.V., Rodigina, E.: Zh. Fiz. Khim. 23 (1949) 953. Kuznetsov, V.A., Kotschergin, W.P., Titschenko, M.W., Posdnischewa, E.G.: Dokl. Akad. Nauk SSSR 92 (1953) 1197. Randles, J.E.B., White, W.: Z. Elektrochem. 59 (1955) 666. Kuznetsov, V.A., Akzenov, V.I., Klevzova, M.P.: Dokl. Akad. Nauk SSSR 128 (1959) 763. Laitinen, H.A., Roe, D.K.: Collect. Czech. Chem. Commun. 25 (1960) 3065. Ukshe, E.A., Bukun, N.G., Leikis, D.P.: Dokl. Akad. Nauk SSSR 135 (1960) 1183. Kuznetsov, V.A., Zagainova, L.S.: Zh. Fiz. Khim. 35 (1961) 1640. Bukun, N.G., Ukshe, E.A.: Zh. Fiz. Khim. 37 (1963) 1401. Ukshe, E.A., Tomskikh, I.V.: Dokl. Akad. Nauk SSSR 150 (1963) 347. Delimarski, Yu.K., Kikhno, V.S.: Ukr. Khim. Zh. 31 (1965) 116. Graves, A.D., Inman, D.: Nature (London) 208 (1965) 481.
3 Electrode potentials of zero charge
237
Table 3.4. Electrode potentials of zero charge of miscellaneous materials in contact with aqueous electrolyte solutions. 1) Electrode
Solution
Method 2)
Epzc [mV vs. SHE]
Ref.
Polypyrrole
LiClO4/H2O
CA
0.256
99Lee
1
) All data refer to room temperature if not stated otherwise.
2
) CA = Contact angle method. See also list of symbols.
Landolt-Börnstein New Series IV/9A
R1
References 99Lee
Landolt-Börnstein New Series IV/9A
Lee, M.-H., Kim, S.S., Kang, Y.: Synth. Met. 101 (1999) 442.
238
4 Free enthalpies of adsorption
4 Free enthalpies of adsorption
4.1 Thermodynamics of the adsorption at electrodes The adsorption of any particle (molecule, ion) at the electrode 1) surface is essentially a competitive process. In the presence of only the solvent of the electrolyte solution and the electrolyte dissolved therein solely molecules of the solvent and ions formed by the dissociation of the electrolyte in the solvent are interacting with the surface. This results in case of e.g. platinum interacting with an aqueous solution in a situation wherein about 80 % of all platinum atoms are directly interacting with water molecules. The ratio of the number of metal atoms interacting with a species of the adjacent phase versus the total number of metal atoms in the topmost layer of the electrode can be defined as the degree of coverage θ = Ncov/Ntot. Alternatively the ratio of the number of occupied adsorbate places versus the total number of adsorbate places can be defined as θ. If an additional kind of species (subsequently called adsorbate molecule) is dissolved in the solution phase, a further partner will participate in the competitive adsorption process. In a simplified case wherein the electrolyte ions are not interacting with the electrode to an appreciable extent (i.e. specific adsorption is absent; this can be accomplished by using e.g. salts of alkali cations and anions like e.g. F– or ClO 4– ) only solvent and adsorbate molecules are present on the electrode surface. The degree of coverage θ of the electrode with species of both kinds will depend primarily on the relative strengths of the interaction of both species. Quantitatively this can be expressed by the free enthalpy of adsorption 2) for the adsorbate molecule G 0ad . A closer inspection has to take into account all conceivable interactions. Thus the free enthalpy of adsorption is easily defined for the case of adsorption at the gas/solid interface according to A → Aad with G ad, g representing solely the free
enthalpy associated with the adsorption of A on the solid surface. The corresponding formal reaction equation for adsorption from the solution phase is more complicated: Asol + n Sad → Aad + n Ssol
(4.1)
with n being the number of solvent molecules S desorbing in the process. Assuming ΔGad,S being the free enthalpy associated with the solvent adsorption and ΔGad,A being the free enthalpy associated with the adsorption of A the free enthalpy of the substitution process is ΔGad = ΔGad,A − ΔGad,S
(4.2)
1) The
term „electrode“ is used primarily to designate an electronically (electron or hole) conducting material. According to W. Nernst the term „electrode“ should be used to name an electronically conducting materal in combination with a specific ionically conducting material. Although this definition is convincing it is not generally accepted. Thus within this chapter „electrode“ will be used in the generally accepted meaning.
2
)The term free enthalpy of adsorption is synonymously used for free energy of adsorption and Gibbs energy of adsorption.
Landolt-Börnstein New Series IV/9A
4 Free enthalpies of adsorption
239
Obviously ΔGad depends on the strength of the solvent-surface and the adsorbate-surface interaction; in addition S-S-, A-A- and S-A-interactions contribute. Various simplifications are possible [74Tra]. As a further complication the electrical field being always present (except at Epzc) at the electrode/solutioninterface has to be considered. Consequently the free enthalpy of adsorption can be split into a chemical part and an electrical part: ΔGad = ΔGchem + ΔGel
(4.3)
This separation assumes, that the type of interaction causing ΔGchem is not influenced by the electric field. This is certainly only a simplification. Nevertheless a comparison of the adsorption at the solid/gasand the solid/solution-interface implies as a simple consequence ΔGad < ΔGad,g
(4.4)
Proper definition of the reference state is essential for the compatibility of values of the free enthalpy of 0 obtained by various authors and with different methods [87Jas, adsorption results in values of ΔGad 88Gon]. 0 The strength of the adsorptive interaction as expressed in values of ΔGad depends on the mode of interaction between the adsorbate molecule and the electrode surface. Weak adsorption (physisorption) is 0 based mostly on van-der-Waals-interactions. It shows typically values of ΔGad > – 20 kJ mol–1. Stronger 0 interactions involve some contributions from covalent bonding, typical values are ΔGad < – 20 kJ mol–1. Further details are collected in numerous reviews [92Tra1, 84Con, 67Gil, 67Pie, 92Lip]. Attempts to model the interface based on quantum chemistry have been reported [95Rom]. General patterns in ionic and molecular adsorption have been reviewed elsewhere [75Ans].
4.2 Determination of the free enthalpy of the adsorption at electrodes 0 Various methods have been employed for the determination of ΔGad for electrochemical systems. A number of reviews providing further details is available [72Con, 72Pay].
Electrocapillary curves
For liquid electrode metals (mercury, gallium) the determination of the surface tension can be applied. From changes of the surface tension as a function of dissolved adsorbable species the surface coverage 0 can be derived. With solid electrodes this method is not applicable directly. (Data and finally ΔGad obtained with this method are labelled EC.)
Cyclic voltammetry
When cyclic voltammograms of an electrode partially or completely covered with an adsorbate in contact with an electrolyte solution are recorded, various characteristic features of the obtained voltammogram can be used to deduce the amount of adsorbed material. This procedure can be repeated at various concentrations of the species to be adsorbed in the solution. From the obtained relationship between 0 can be coverage and concentration an adsorption isotherm can be constructed; finally a value of ΔGad
Landolt-Börnstein New Series IV/9A
240
4 Free enthalpies of adsorption
obtained. The features of the voltammogram to be evaluated are: The amount of electric charge needed to reduce or oxidize the adsorbed species; changes in the charge corresponding to some other adsorbed (preferably hydrogen on platinum, oxygen on gold etc.), which can be related to the coverage with the species of interest, changes in the voltammogram caused by a shift of the electrochemical reaction from a pathway involving only adsorbed species to a pathway involving solution phase species. (Data obtained with this method are labelled CV.) Details of the various possible procedures can be found in the literature (see below). Cyclic voltammetry as described above can be performed in an electrochemical cell, wherein the solution volume is confined to a space of a few micrometers thickness between the flat working electrode and an inert plate mounted adjacent to the working electrode. Connection to the counter and reference electrode is made by inserting the assembly into an electrolyte solution contained in a standard electrochemical cell. Because of the thin liquid film enclosed between the working electrode and the inert plate diffusional transport of solution species from within the bulk solution is impeded. The amount of species converted electrochemically within the time frame of a potential sweep is thus limited to the amount of liquid confined in the mentioned volume. When these species can be adsorbed on the electrode surface, the amount of species adsorbed in a single run, i.e. before the described gap is opened again in order to allow an exchange of electrolyte solution, can be calculated easily from the composition of the solution. In order to detect the number of fillings necessary to saturate the electrode surface, a check of the solution in the gap for species not adsorbed has to be made. In most cases this can be done by running a cyclic voltammogramm, which shows distinctly different features for adsorbed and dissolved species. As soon as the latter features appear, the surface is presumed to be completely covered. For further information and a review see [69Hub, 70Hub, 72Lai]. In the case of the reactive chemisorption the electrode redox potentials assigned to the chemisorption step represent the thermodynamic free energy of adsorption according to ΔGad = – n F E1/2. This can be visualized by considering the example of the reactive adsorption of an n-alkanethiolate on a silver electrode surface. The reaction is (4.5) Ag + CnH2nS– + H+ (a = 1) → Ag – SCnH2n + ½ H2 (a = 1) [98Hat] For this experimental approach the standard states as used in the evaluation of adsorption isotherms do not apply, care has thus to be taken when comparing data. (Data obtained with this method are labelled RCV.) Cathode overpotential method
During metal deposition processes the addition of adsorbable species has been found to cause an increase in the deposition overpotential [71Lou]. Evaluation of the data results in the calculation of an adsorption isotherm. (Data obtained with this method are labelled CT.) Tensammetry
Measurements of the interfacial capacitance (the differential double layer capacity CDL) have been used widely, the method has been labelled tensammetry [46Bre, 52Bre, 51Dos1, 52Dos1, 63Bre]. Various experimental setups based on arrangements for AC polarography, lock-in-amplifier, impedance measurement etc. have been employed. In all reports evaluated in the lists of data below the authors have apparently taken precautions in order to measure only the value of CDL. Since replacement of an adsorbed solvent molecule by an adsorbate molecule generally results in a change of the composition of the first layer of the electrolyte solution being in contact with the electrode, the different values of the dielectric properties of the solvent and adsorbate molecules as well as their different size result in a change of the value of CDL. Evaluation of the changes of CDL as a function of the concentration of the adsorbate in the solution phase results in adsorption isotherms. Various isotherms (Frumkin, Langmuir etc.) have been used in the further evaluation [75Dam]. Because of interferences of the kinetics of the adsorption process in particular by slow transport and slow adsorption tensammetry
Landolt-Börnstein New Series IV/9A
4 Free enthalpies of adsorption
241
has been shown to provide unreliable results in some cases. (Data obtained with this method are labelled T.) Chronocoulometry
In order to overcome certain shortcomings of tensammetry outlined above as an additional method chronocoulometry has been established [86Sto, 86Ric1, 86Ric2, 87Sto, 88Ric]. By means of electrode potential jumps between a reference value Er, where complete desorption is established, to another value Em, where adsorption with a certain coverage θ is established , the charge σM involved during this process is measured. A plot of σM vs. EM allows the determination of the adsorption isotherm. (Data obtained with this method are labelled C.) Corrosion Current Measurements
The coverage θ of a metallic electrode surface with an adsorbed species, which inhibits corrosion of the metal, can be related to the corrosion current according to
θ =1−
jcorr,i jcorr,0 − jcorr,i = jcorr,0 jcorr,0
(4.6)
Details of the method have been reported elsewhere [73Kam, 61Fis, 67Amm, 78Yah, 99Dur]. (Data obtained with this method are labelled CC.) Radiotracer technique
The relationship between the amount of adsorbed particles of a certain type (ion, organic molecule etc.) and the concentration of the adsorbable species in the solution as a function of the electrode potential can be used to calculate adsorption isotherms and the free enthalpy of adsorption. Provided the species to be adsorbed is radioactive the radiotracer technique can be used. In particular species emitting β-radiation are employed. The amount of radiation emitted from the electrode is directly proportional to the amount of adsorbed species. In order to increase the surface area accessible for adsorption, electrodes to be investigated can be prepared as rough or even porous electrodes with a considerably large ratio of true to geometric surface area. Since species both in the solution phase as well as in the adsorbed state are both radioactive, the radiation emitted from the dissolved species has to be removed or at least decreased somehow. This can be achieved preferably by using a thin layer technique, wherein the electrolyte solution is squeezed away from the electrode as soon as the adsorption equilibrium is attained. The main advantage of this method is the fact, that a perfect stationary equilibrium is attained. Thus the influence of slow adsorption or diffusion of the species to be adsorbed can be excluded entirely rather easily in contrast to the electrochemical methods. Numerous reviews describing details of this method are available [95Hor, 92Boc, 86Zel, 85Hor, 84Kaz, 64Boc1, 60Blo], for general information see [65Erw]. (Data obtained with this method are labelled RT.) Thin film resistance method
The electrical resistance of a conducting material depends according to the Drude equation on the concentration, the specific charge and the mobility of a charge carrier in the conducting medium. A more thorough examination of the mobility takes into account the way the charged species (electron, hole) is moving in the conductor. Any distortion of the material in particular in the solid phase (defects in crystals etc.) will affect the conductivity. In the case of very thin conducting films the effects of particles sitting on the surface of the thin film will be particularly strong because of the fact, that their effect will extend into almost the complete conducting layer. Consequently the phenomenon is called surface resistance. Species adsorbed on the surface will introduce additional 'defect-like' changes in the film resulting in
Landolt-Börnstein New Series IV/9A
242
4 Free enthalpies of adsorption
changes of the film conductivity [98Win]. More recently the change of the DC resistance was explained by Schumacher et al. [91Sch] by considering the adsorbate-induced density of states at the Fermi level and the half-width of the Newns-Anderson resonance corresponding to the lowest unoccupied orbital of the adsorbate molecule. Since the adsorption of neutral species depends on the electrode potential and reaches a maximum around the potential of maximum adsorption, measurements of the thin film resistance (or conductance) as a function of adsorbate concentration in the solution phase and electrode potential will provide the necessary information to construct an adsorption isotherm (see also [87Tuc, 91Kör]). As the mode and intensity of adsorbate-surface interaction may be different for different surface places (differing in local energy, topography, atomic arrangement) results may differ from those of other methods not sensitive to local differences in surface properties. A method which allows the contact resistance measurement has been proposed for the determination of electrode coverage with adsorbates, but no thermodynamic data determined this way have been reported so far [99Mar]. (Data obtained with the former method are labelled TF.) Ellipsometric method
When linearly polarized light is reflected at a surface, the perpendicular and the parallel components undergo different changes both in amplitude and phase. Whereas both components are in phase and of the same amplitude upon incidence this may have changed considerably after reflection. The resulting optical vector of the reflected light is not any more at a given fixed angle as during incidence, instead it describes a spiral. Its projection is an ellipse, consequently measurements of the shifts outlined above upon reflection are called ellipsometry. From the obtained changes in phase shift and amplitude optical data of layers on the electrode surface can be calculated. Based on a model suggested by Paik and Bockris [71Pai] the coverage of the electrode surface with an adsorbate can be derived [92Boc]. (Data obtained with this method are labelled EL.) Infrared spectroscopic method
The coverage of an electrode surface with adsorbed species can be calculated from infrared spectra obtained in the reflection mode. A beam of infrared radiation is directed towards the electrode surface in situ, i.e. it passes an infrared-transparent window and the electrolyte solution film between the window and the electrode surface. The reflected beam passes again the solution film and window and is directed towards the infrared sensitive detector. In order to remove unwanted spectral information related to the window, that the solution and the constituents of the atmosphere the infrared beam passes through outside the electrochemical cell, a modulation (or so-called differential) method has to be used. Either the electrode potential or the plane of polarization of the incident light beam is modulated. With both methods two sets of spectra are initially collected. In the former method the sets of spectra correspond to two different electrode potentials, in the latter case they correspond to infrared absorption of light polarized parallelly and perpendicularly to the plane of incidence. Calculating the spectral difference of both results in a spectrum showing only infrared absorption of species adsorbed on the electrode surface. With electrode potential modulation an additional prerequisite for bands to show up in the differential spectrum is their change in band position and/or intensity as a function of electrode potential. In the latter case no potential modulation is involved; consequently so-called absolute bands showing the infrared absorption at a given electrode potential are obtained. Because of surface selection rules only vibrational modes with a change of their dipole moment perpendicular to the surface will interact absorptively with the infrared radiation. Further details of both spectroscopic techniques have been reported in detail in numerous reports [07Hol]. Spectral absorption calculated from the infrared spectra can be related directly to the coverage of the electrode surface as detailed elsewhere [92Boc, 87Cha]. (Data obtained with this method are labelled IR.)
Landolt-Börnstein New Series IV/9A
4 Free enthalpies of adsorption
243
Weight loss method
The coverage of a metal surface with an adsorbate affecting (inhibiting or accelerating) corrosion can be deduced from the corrosion rate of the metal in the absence/presence of the adsorbate as determined by measuring the weight loss of the metal [06Bou]. (Data obtained with this method are labelled WL.) General remarks on the tables 0 The following table contains values of the free enthalpy of adsorption ΔGad taken from literature sources. If not stated otherwise the values refer to the maximum absolute value calculated assuming standard reference states unit mole fraction for the adsorbed species in solution, unit coverage of adsorbate on the electrode surface (for further details see [74Tra], [84Nik], [91Nik], [90Tor], [93Tor]). The method employed in determining the value is stated. If a specific variant of a method is used, only the general type of method is stated, further details on the experimental approach can be found in the original report. In some cases additional information on the employed adsorption isotherm, further details on the thermodynamics as well as kinetics of the adsorption have been reported which are included in this table as footnotes. Data are listed according to the alphabetical order of the electrode material. Polycristalline materials are listed first followed by single crystal samples and amalgam electrodes for every element. Within a given electrode material data are arranged according to the alphabetically listed adsorbate, inorganic adsorbates are listed first in this sequence. Within a given adsorbate data are listed with increasing concentration of the supporting electrolyte solution. At the same electrolyte concentration data obtained with water as a solvent are listed first, subsequently listed organic solvents are arranged according to Hill’s system [00Hil] with the ordering of the element symbol and trivial names kept in the usual manner.
Landolt-Börnstein New Series IV/9A
R1
References 00Hil 46Bre 51Dos1 52Bre 52Dos1 60Blo 61Fis 63Bre 64Boc1 65Erw 67Amm 67Gil 67Pie 69Hub 70Hub 71Lou 71Pai 72Con 72Lai 72Pay 73Kam 74Tra 75Ans 75Dam 78Yah 84Con 84Kaz
84Nik 85Hor 86Ric1 86Ric2 86Sto 86Zel 87Cha 87Jas 87Sto 87Tuc 88Gon 88Ric 90Tor Landolt-Börnstein New Series IV/9A
Hill, E.A.: J. Am. Chem. Soc. 22 (1900) 478. Breyer, B., Gutmann, F.: Trans. Faraday Soc. 42 (1946) 645. Doss, K.S.G., Kalyanasundaram, A.: Current Sci. 20 (1951) 199. Breyer, B., Hacobian, S.: Aust. J. Sci. Res. Ser. A 5 (1952) 500. Doss, K.S.G., Kalyanasundaram, A.: Proc. Indian Acad. Sci. Sect. A 35 (1952) 27. Blomgren, E.A., Bockris, J.O’M.: Nature (London) 186 (1960) 305. Fisher, H.: Ann. Univ. Ferrara, Sez. 5, 1960, suppl. No. 3 (1961) 1. Breyer, B., Bauer, H.H.: Alternating Current Polarography and Tensammetry, New York: Interscience, 1963. Bockris, J.O’M., Green, M., Swinkels, D.A.J.: J. Electrochem. Soc. 111 (1964) 743. Erwall, L.G., Forsberg, H.G., Ljunggren, K.: Radioaktive Isotope in der Technik, Braunschweig: Friedr. Vieweg & Sohn, 1965. Ammar, I.A., Darwish, S.: Corros. Sci. 7 (1967) 579. Gileadi, E., in: Electrosorption, Gileadi, E. (ed.), New York: Plenum Press, 1967, p. 1. Piersma, B.J., in: Electrosorption, Gileadi, E. (ed.), New York: Plenum Press, 1967, p. 19. Hubbard, A.T.: J. Electroanal. Chem. 22 (1969) 165. Hubbard, A.T., Anson, F.C.: Electroanalytical Chemistry, Vol. 4, Bard, A.J. (ed.), New York: Marcel Dekker, 1970. Loutfy, R.O., Sukava, A.J.: J. Electrochem. Soc. 118 (1971) 216. Paik, W.-K., Bockris, J.O'M.: Surf. Sci. 28 (1971) 61. Conway, B.E.: Techniques of Electrochemistry, Vol. 1, Yeager, E., Salkind, A.J. (eds.), New York: Wiley-Interscience, 1972, p. 389. Lai, C.-H., Hubbard, A.T.: Inorg. Chem. 11 (1972) 2081. Payne, R.: Techniques of Electrochemistry, Vol. 1, Yeager, E., Salkind, A.J. (eds.), New York: Wiley-Interscience, 1972, p. 43. Kaminski, M., Szklarska-Smialowska, Z.: Corros. Sci. 13 (1973) 557. Trasatti, S.: J. Electroanal. Chem. 53 (1974) 335. Anson, F.C.: Acc. Chem. Res. 8 (1975) 400. Damaskin, B.B., Petrii, O.A., Batrakov, V.V.: Adsorption organischer Verbindungen an Elektroden, Berlin: Akademie-Verlag, 1975, p. 70. Yahalom, J., Poznansky, A.: Passivity of Metals, Frankenthal, R.P., Kruger, J. (eds.), Princeton, NJ: The Electrochemical Society, 1978, p. 328. Conway, B.E.: Prog. Surf. Sci. 16 (1984) 1. Kazarinov, V.E., Andreev, V.N.: Comprehensive Treatise of Electrochemistry, Vol. 9, Yeager, E., Bockris, J.O’M., Conway, B.E., Sarangapani, S. (eds.), New York: Plenum Press, 1984, p. 393. Nikitas, P.: J. Electroanal. Chem. 170 (1984) 333. Horanyi, G.: Wiss. Z. Humboldt-Univ. Berlin, Math. Naturwiss. Reihe 34 (1985) 37. Richer, J., Lipkowski, J.: J. Electrochem. Soc. 133 (1986) 121. Richer, J., Lipkowski, J.: Langmuir 2 (1986) 630. Stolberg, L., Richer, J., Irish, D.E., Lipkowski, J.: J. Electroanal. Chem. 207 (1986) 213. Zelenay, P., Habib, M.A., Bockris, J.O'M.: Langmuir 2 (1986) 393. Chandrasekaran, K., Bockris, J.O'M.: Surf. Sci. 185 (1987) 495. Jastrzebska, J., Jurkiewicz-Herbich, M., Trasatti, S.: J. Electroanal. Chem. 216 (1987) 21. Stolberg, D.E., Irish, J., Lipkowski, J.: Electroanal. Chem. 238 (1987) 333. Tucceri, R.I., Posadas, D.: Electrochim. Acta 32 (1987) 27. Gonzalez, R., Torrent, J., Sanz, F.: J. Electroanal. Chem. 244 (1988) 53. Richer, J., Lipkowski, J.: J. Electroanal. Chem. 251 (1988) 217. Torrent, J., Sanz, F.: J. Electroanal. Chem. 286 (1990) 207.
R2 91Kör 91Nik 91Sch 92Boc 92Lip 92Tra1 93Tor 95Hor 95Rom 98Hat 98Win 99Dur 99Mar 06Bou 07Hol
Körwer, D., Schumacher, D., Otto, A.: Ber. Bunsenges. Phys. Chem. 95 (1991) 1484. Nikitas, P.: J. Electroanal. Chem. 309 (1991) 1. Schumacher, D., Otto, A., Persson, B.N.J.: Chem. Phys. Lett. 178 (1991) 204. Bockris, J.O'M, Jeng, K.T.: J. Electroanal. Chem. 330 (1992) 541. Lipkowski, J., Stolberg, L.: Adsorption of Molecules at Metal Electrodes, Lipkowski, J., Ross, P.N. (eds.), New York: VCH, 1992. Trasatti, S.: Electrochim. Acta 37 (1992) 2137. Torrent, J., Sanz, F.: J. Electroanal. Chem. 359 (1993) 273. Horanyi, G., Kolics, A.: Sov. Electrochem. (English Transl.) 31 (1995) 941. Romanowski, S., Maksymiuk, K., Galus, Z.: J. Electroanal. Chem. 385 (1995) 95. Hatchett, D.W., Uibel, R.H., Stevenson, K.J., Harris, J.M., White, H.S.: J. Am. Chem. Soc. 120 (1998) 1062. Winkes, H., Schumacher, D., Otto, A.: Surf. Sci. 400 (1998) 44. Durnie, W., De Marco, R., Kinsella, B., Jefferson, A.: J. Electrochem. Soc. 146 (1999) 1751. Marichev, V.A.: Russ. J. Electrochem. 35 (1999) 417. Bouklah, M., Hammouti, B., Lagrenée, M., Bentiss, F.: Corros. Sci. 48 (2006) 2831. Holze, R.: Surface and Interface Analysis: An Electrochemists Toolbox, Heidelberg: Springer-Verlag, 2007.
Landolt-Börnstein New Series IV/9A
244
4 Free enthalpies of adsorption
Table 4.1. Free enthalpies of adsorption ΔG 0ad of ions and organic molecules at metal electrodes. ΔGad0 4)5) [kJ mol–1]
Electrode
Solution 1)
Adsorbate 2)
Met. 3)
Antimony (Sb) Sb (001)
0.1 M NaF/H2O
cyclohexanol
T
–19.8
94Lus
0.001 M NaF/H2O 0.1 M NaF/H2O 0.001 M NaF/H2O 0.1 M NaF/H2O
cyclohexanol cyclohexanol cyclohexanol cyclohexanol
T T T T
–20.1 –20.1 –18.9 –18.9
97Lus2 94Lus 97Lus2 94Lus
Sb (211)
0.001 M NaF/H2O 0.1 M NaF/ H2O
cyclohexanol cyclohexanol
T T
–20.7 –20.7
97Lus2 94Lus
Bismuth (Bi)
0.1 M KBr+KF/methanol 0.1 M KCl+KF/methanol 0.1 M LiCl+LiClO4/ethanol 0.1 M LiCl+LiClO4/ethanol 0.1 M LiCl+LiClO4/ethanol 0.1 M LiCl+LiClO4/ethanol 0.1 M LiCl+LiClO4/ethanol 0.1 M LiCl+LiClO4/ethanol 0.126 M LiCl+CsCl/methanol 0.1 M KI+KF/H2O 0.1 M KI+KF/methanol 0.126 M LiCl+KCl/methanol 0.126 M LiCl+RbCl/methanol 0.1 N K2SO4/H2O 0.1 N K2SO4+H2SO4/H2O 0.1 N K2SO4/H2O 0.1 N K2SO4+H2SO4/H2O 0.1 N KF+H2SO4/H2O 0.1 N K2SO4/H2O 0.1 N KF+H2SO4/H2O 0.1 N K2SO4+H2SO4/H2O 0.1 N K2SO4/H2O 0.1 N K2SO4+H2SO4/H2O 0.1 N K2SO4/H2O 0.1 N K2SO4+H2SO4/H2O 0.1 N K2SO4+H2SO4/H2O 0.1 N K2SO4/H2O 0.1 N K2SO4+H2SO4/H2O 0.1 N K2SO4+H2SO4/H2O 0.1 N K2SO4/H2O 0.1 N KF+H2SO4/H2O
Br– Cl– Cl– Cl– Cl– Cl– Cl– Cl– Cs+ I– I– K+ Rb+ methanol ethanol ethanol n-propanol n-propanol n-propanol n-propanol n-butanol n-butanol n-pentanol n-pentanol n-hexanol n-hexanol n-hexanol n-heptanol n-heptanol n-heptanol cyclohexanol
T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T
Sb (111)
–94.1 –91.6 –70.7 6) –75.7 7) –79.5 8) –82.8 9) –86.2 10) –87.9 11) –16.8 –114.0 –107.1 –14.0 –15.5 –5.23 –7.82 –7.8 –11.09 –11.0 –11.1 –11.07 –14.52 –14.7 –17.83 –18.5 –21.31 –21.31 –22.1 –24.78 –24.78 –25.6 –17.42
Ref.
72Pet1 72Pet1 79Vaa2 79Vaa2 79Vaa2 79Vaa2 79Vaa2 79Vaa2 72Pet2 80Pal 72Pet1 72Pet2 72Pet2 75Pul2 69Pul 75Pul2 69Pul 72Pul 75Pul2 78Pya 69Pul 75Pul2 69Pul 75Pul2 69Pul 72Alu 75Pul2 69Pul 72Alu 75Pul2 72Alu
Landolt-Börnstein New Series IV/9A
4 Free enthalpies of adsorption
Electrode
Bi (001)
Landolt-Börnstein New Series IV/9A
245 ΔGad0 4)5) [kJ mol–1]
Solution 1)
Adsorbate 2)
Met. 3)
0.1 N KF+H2SO4/H2O 0.05 M Na2SO4/H2O 0.12 N KF/H2O 0.1 N KF+H2SO4/H2O 1 N Na2SO4+H2SO4/H2O 1 N Na2SO4+H2SO4/H2O 1 N Na2SO4+H2SO4/H2O 1 N Na2SO4+H2SO4/H2O 1 N Na2SO4+H2SO4/H2O 1 N Na2SO4+H2SO4/H2O 0.99 N Na2SO4+ 0.01 N H2SO4/H2O 0.99 N Na2SO4+ 0.01 N H2SO4/H2O 0.99 N Na2SO4+ 0.01 N H2SO4/H2O 0.99 N Na2SO4+ 0.01 N H2SO4/H2O 0.99 N Na2SO4+ 0.01 N H2SO4/H2O 0.99 N Na2SO4+ 0.01 N H2SO4/H2O 0.99 N Na2SO4+ 0.01 N H2SO4/H2O 0.1 N NaF+HClO4/H2O 0.1 N KF+H2SO4/H2O 0.1 M LiCl+LiClO4/H2O 0.1 M KBr+KF/H2O 0.1 M LiBr+LiClO4/H2O 0.1 M LiBr+LiClO4/methanol 0.1 M LiBr+LiClO4/ethanol 0.1 M LiBr+Li ClO4/propanol 0.1 M KJ+KF/H2O 0.1 M LiI+LiClO4/H2O 0.1 M LiI+LiClO4/methanol 0.1 M LiI+LiClO4/ethanol 0.1 M LiI+LiClO4/ethanol 0.1 M LiI+LiClO4/ethanol 0.1 N Na2SO4/H2O 0.1 N Na2SO4/H2O 0.1 N Na2SO4/H2O 0.1 N Na2SO4/H2O 0.05 N Na2SO4/H2O 0.05 M Na2SO4/H2O 0.1 N Na2SO4/H2O 0.1 N Na2SO4/H2O
cyclohexanol cyclohexanol phenol phenol acetone methylethylketone methylpropylketone methylbutylketone diethylketone cyclohexanone acetic acid
T T T T T T T T T T T
–17.38 –17.4 –23.87 –21.69 –12.3 –14.7 –17.9 –20.9 –18.7 –19.2 –12.1
78Pya 85Lus2 70Alu 72Alu 74Erl 74Erl 74Erl 74Erl 74Erl 74Erl 73Pal
propionic acid
T
–13.8
73Pal
butyric acid
T
–15.5
73Pal
pentanoic acid
T
–18.4
73Pal
hexanoic acid
T
–21.3
73Pal
heptanoic acid
T
–24.7
73Pal
β-pentanoic acid
T
–17.6
73Pal
camphor aniline Cl– Br– Br– Br– Br– Br– I– I– I– I– I– I– n-propanol n-butanol i-butanol 2-butanol 1-pentanol t-butanol t-butanol t-pentanol
T T T; C T; C T; C T; C T; C T; C T; C T; C T; C T; C T; C T; C T; C T T T T; C T T T
–22.3 –19.8 –79.5 –84.0 –85.8 –86.0 –89.0 –92.0 –93.0 –94.2 –94.6 –99.8 –100.7 –102.0 –11.5 –14.2 –12.7 –13.2 –17.4 –12.6 –12.6 –15.5
Ref.
79Pal 71Alu 98Vää 02Lus 98Vää 02Lus 02Lus 02Lus 02Lus 99Vää2 12) 01Vää2 13) 01Vää2 12) 01Vää2 13) 02Lus 97Lus4 96Lus2 96Lus2 96Lus2 99Jän2 86Lus1 96Lus2 01Nur
246
4 Free enthalpies of adsorption ΔGad0 4)5) [kJ mol–1]
Electrode
Solution 1)
Adsorbate 2)
Met. 3)
Bi (001)
0.1 N Na2SO4/H2O 0.05 M Na2SO4/H2O 0.05 M Na2SO4/H2O 0.1 M NaF/H2O 0.1 M NaF/H2O 0.1 N Na2SO4/H2O 0.1 N Na2SO4/H2O 0.1 N Na2SO4/H2O 0.1 N Na2SO4/H2O 0.1 N Na2SO4/H2O 0.1 M KBr+KF/H2O 0.1 M LiBr+LiClO4/H2O 0.1 M LiBr+LiClO4/ethanol 0.1 M LiBr+LiClO4/methanol 0.1 M LiBr+LiClO4/methanol 0.1 M LiBr+LiClO4/methanol 0.1 M LiBr+Li ClO4/methanol 0.1 M LiBr+LiClO4/2-propanol 0.1 M LiBr+LiClO4/methanol 0.1 M LiBr+Li ClO4/ethanol 0.1 M LiBr+LiClO4/ethanol 0.1 M LiBr+LiClO4/2-propanol 0.1 M LiBr+LiClO4/2-propanol
heptanol cyclohexanol butylacetate pyridine pyridine adenosine adenosine adenosine d-ribose d-ribose Br– Br– Br– Br– Br– Br– Br– Br– Br– Br– Br– Br– Br–
T T T T C T T T T T T; C T; C T; C T; C T; C T; C T; C T; C T; C T; C T; C T; C T
–25.7 –18.5 –20.5 –24.7 –25.1 –34.2 14) –34.4 15) –34.2 –16.66 –16.52 –89.0 –88.3 –90.0 –85.8 –86.0 –86.0 –86.0 –90.8 –86.0 –89.2 –89.2 –91.4 –90.7
0.1 M LiBr+LiClO4/2-propanol
Br–
T
–91.4
0.1 M LiBr+LiClO4/methanol 0.1 M LiBr+LiClO4/ethanol 0.1 M LiBr+LiClO4/methanol 0.1 M LiBr+LiClO4/methanol 0.1 M LiBr+LiClO4/methanol 0.1 M LiBr+LiClO4/ methanol 0.1 M LiCl+LiClO4/H2O 0.1 M LiCl+LiClO4/methanol 0.1 M LiCl+LiClO4/methanol 0.1 M LiCl+LiClO4/methanol 0.1 M LiCl+LiClO4/methanol 0.1 M LiCl+LiClO4/methanol 0.1 M LiCl+LiClO4/methanol 0.1 M LiCl+LiClO4/methanol 0.1 M LiCl+LiClO4/methanol 0.1 M LiCl+LiClO4/ethanol 0.1 M LiCl+Li ClO4/ethanol 0.1 M LiCl+LiClO4/2-propanol
Br– Br– Br Br– Br– Br– Cl– Cl– Cl– Cl– Cl– Cl– Cl– Cl– Cl– Cl– Cl– Cl–
T; C T; C T; C T; C T; C T; C T; C T; C T; C T; C T; C T; C T; C T; C T; C T; C T; C T; C
–86.8 –89.8 –86.2 –86.8 –86.8 –86.8 –80.5 –81.7 –81.3 –81.3 –81.3 –81.4 –81.3 –81.3 –81.3 –82.3 –82.8 –84.8
Ref. 03Jän 85Lus2 86Lus2 97Lus3 97Lus3 98Lus 98Lus 01Jän 99Jän1 01Jän 02Lus 98Vää 02Lus 99Vää1 13) 99Vää1 12) 98Vää 99Vää2 12) 98Vää 01Vää1 01Vää1 01Vää1 12) 01Vää1 00Vää 12), 96Vää 00Vää 13), 96Vää 01Vää1 01Vää1 99Vää1 13) 99Vää2 12) 99Vää1 12) 98Vää 98Vää 99Vää1 13) 99Vää2 12) 99Vää1 12) 98Vää 99Vää1 13) 98Vää 99Vää2 12) 99Vää1 12) 98Vää 98Vää 98Vää
Landolt-Börnstein New Series IV/9A
4 Free enthalpies of adsorption
Electrode
Bi (101)
Landolt-Börnstein New Series IV/9A
247 ΔGad0 4)5) [kJ mol–1]
Solution 1)
Adsorbate 2)
Met. 3)
0.1 M LiCl+LiClO4/2-propanol
Cl–
T
–84.8
0.1 M LiCl+LiClO4/2-propanol
Cl–
T
–85.3
0.1 M LiI+LiClO4/methanol 0.1 M LiI+LiClO4/methanol 0.1 M LiI+LiClO4/methanol 0.1 M LiI+LiClO4/ethanol 0.1 M LiI+LiClO4/acetonitrile 0.1 M LiI+Li ClO4/methanol 0.1 M LiI+LiClO4/ethanol 0.1 M LiI+LiClO4/methanol 0.1 M LiI+LiClO4/methanol 0.1 M KI+KF/H2O 0.1 M LiI+LiClO4/H2O 0.1 M KI+KF/H2O 0.1 M LiI+Li ClO4/methanol 0.1 M LiI+Li ClO4/ethanol 0.1 M LiI+Li ClO4/ethanol 0.1 M LiI+Li ClO4/ethanol 0.1 N Na2SO4/H2O 0.1 N Na2SO4/H2O 0.1 N Na2SO4/H2O 0.1 N Na2SO4/H2O 0.05 M Na2SO4/H2O 0.1 N Na2SO4/H2O 0.1 N Na2SO4/H2O 0.1 N KF+H2SO4/H2O 0.001 M NaF/H2O 0.05 M Na2SO4/H2O 0.1 N Na2SO4/H2O 0.05 M Na2SO4/H2O 0.1 N KF+H2SO4/H2O 0.1 M NaF/H2O 0.1 M NaF/H2O 0.05 N Na2SO4/H2O 0.1 N Na2SO4/H2O 0.1 N Na2SO4/H2O 0.05 M Na2SO4/H2O
I– I– I– I– I– I– I– I– I– I– I– I– I– I– I– I– n-propanol n-butanol 2-butanol i-butanol t-butanol t-butanol t-pentanol cyclohexanol cyclohexanol cyclohexanol heptanol butylacetate aniline pyridine pyridine 1-pentanol d-ribose d-ribose uracil
T; C T; C T; C T; C T; C T; C T; C T; C T; C T; C T; C T T; C T; C T; C T; C T; C T T T T T T T T T T T T T C T; C T T T
0.001 M NaF/H2O 0.1 N Na2SO4/H2O 0.1 N Na2SO4/H2O 0.05 M Na2SO4/H2O 0.1 N Na2SO4/H2O 0.05 M Na2SO4/H2O
cyclohexanol n-butanol 2-butanol t-butanol t-butanol cyclohexanol
T T T T T T
–97.5 –96.3 –97.5 –98.7 –110.0 –94.6 –98.7 –95.2 –95.2 –87.0 –100.2 –116.0 –96.3 –101.2 –102.4 –103.0 –12.3 –15.1 –14.5 –14.5 –13.6 –13.6 –17.3 –19.77 –20.1 –20.1 –27.3 –22.1 –20.0 –25.4 –26.2 –19.2 –30.76 –30.66 –17.1 –19.0 –14.4 –14.0 –13.0 –13.0 –19.04
Ref. 00Vää 12), 96Vää 00Vää 13), 96Vää 99Vää1 12) 99Vää1 13) 99Vää2 12) 99Vää2 12) 02Lus 99Vää1 13) 99Vää2 12) 99Vää1 12) 99Vää2 12) 02Lus 99Vää2 12) 80Pal 01Vää2 13) 01Vää2 12) 01Vää2 13) 02Lus 97Lus4 96Lus2 96Lus2 96Lus2 86Lus1 96Lus2 01Nur 78Pal 97Lus2 85Lus2 03Jän 86Lus2 82Pal 97Lus3 97Lus3 99Jän2 99Jän1 01Jän 05Kas 97Lus2 96Lus2 96Lus2 86Lus1 96Lus2 85Lus2
248
4 Free enthalpies of adsorption ΔGad0 4)5) [kJ mol–1]
Electrode
Solution 1)
Adsorbate 2)
Met. 3)
Bi (101) Bi (111)
0.05 M Na2SO4/H2O 0.1 M KBr+KF/ H2O 0.1 M KBr+KF/H2O 0.1 M LiBr+LiClO4/H2O 0.1 M LiBr+LiClO4/methanol 0.1 M LiBr+LiClO4/methanol 0.1 M LiBr+LiClO4/ethanol 0.1 M LiBr+LiClO4/methanol 0.1 M KBr+KF/methanol 0.1 M LiCl+LiClO4/methanol 0.1 M LiBr+LiClO4/methanol 0.1 M LiBr+LiClO4/ethanol 0.1 M LiBr+LiClO4/ethanol 0.1 M KBr+KF/2-propanol 0.1 M LiBr+LiClO4/2-propanol
butylacetate Br– Br– Br– Br– Br– Br– Br– Br– Br– Br– Br– Br– Br– Br–
T T; C T T; C T; C T; C T; C T; C T T; C T; C T; C T; C T T
–21.3 –83.0 –84 –85.3 –85.8 –85.3 –88.0 –85.3 –88 –85.3 –85.8 –88.8 –88.7 –93 –90.6
0.1 M LiBr+LiClO4/2-propanol
Br–
T
–89.9
0.1 M LiBr+LiClO4/2-propanol 0.1 M LiBr+LiClO4/2-propanol 0.1 M KCl+KF/H2O 0.1 M KCl+KF/methanol 0.1 M LiCl+LiClO4/H2O 0.1 M LiCl+LiClO4/methanol 0.1 M LiCl+LiClO4/methanol 0.1 M LiCl+LiClO4/methanol 0.1 M LiCl+LiClO4/methanol 0.1 M LiCl+LiClO4/ethanol 0.1 M KCl+KF/2-propanol 0.1 M LiCl+LiClO4/2-propanol
Br– Br– Cl– Cl– Cl– Cl– Cl– Cl– Cl– Cl– Cl– Cl–
T; C T; C T T T; C T; C T; C T; C T; C T; C T T
–89.8 –90.6 –79 –82 –80.8 –79.8 –79.8 –79.8 –79.8 –79.8 –83 –83.0
0.1 M LiCl+LiClO4/2-propanol
Cl–
T
–83.3
0.1 M LiCl+LiClO4/2-propanol 0.1 M KI+KF/H2O 0.1 M LiI+LiClO4/H2O 0.1 M KI+KF/H2O 0.1 M KI+KF/H2O 0.1 M LiI+LiClO4/methanol 0.1 M LiI+LiClO4/ethanol 0.1 M LiI+LiClO4/ethanol 0.1 M LiI+LiClO4/methanol 0.1 M LiI+LiClO4/ethanol 0.1 M LiI+LiClO4/methanol 0.1 M LiI+LiClO4/methanol
Cl– I– I– I– I– I– I– I– I– I– I– I–
T; C T T; C T T; C T; C T; C T; C T; C T; C T; C T; C
–83.0 –112.0 –92.2 –96 –96.0 –94.2 –98.5 –99.2 –96.0 –99.0 –95.2 –94.2
Ref.
86Lus2 02Lus 00Lus 98Vää 99Vää1 13) 99Vää2 12) 02Lus 99Vää1 12) 00Lus 98Vää 01Vää1 01Vää1 01Vää1 12) 00Lus 00Vää 13), 96Vää 00Vää 12), 96Vää 98Vää 01Vää1 00Lus 00Lus 98Vää 99Vää1 13) 99Vää2 12) 99Vää1 12) 98Vää 98Vää 00Lus 00Vää 12), 96Vää 00Vää 13), 96Vää 98Vää 80Pal 99Vää2 12) 00Lus 02Lus 01Vää2 13) 01Vää2 12) 01Vää2 13) 02Lus 02Lus 99Vää1 13) 99Vää2 12)
Landolt-Börnstein New Series IV/9A
4 Free enthalpies of adsorption
Electrode
Bi (21 1)
Cadmium (Cd)
Landolt-Börnstein New Series IV/9A
249
Solution 1)
Adsorbate 2)
Met. 3)
ΔGad0 4)5) [kJ mol–1]
Ref.
0.1 M LiI+LiClO4/methanol 0.1 M KI+KF/methanol 0.1 M LiI+LiClO4/ethanol 0.1 M KI+KF/2-propanol 0.1 M LiI+LiClO4/acetonitrile 0.02 (1–x) M LiClO4+ 0.02x M NEt4ClO4/ethanol 0.1 N Na2SO4/H2O 0.1 N Na2SO4/H2O 0.1 N Na2SO4/H2O 0.05 M Na2SO4/H2O 0.1 N Na2SO4/H2O 0.1 N Na2SO4/H2O 0.1 N Na2SO4/H2O 0.05 N Na2SO4/H2O 0.1 N Na2SO4/H2O 0.1 N KF+H2SO4/H2O 0.001 M NaF/H2O 0.001 M NaF/H2O 0.05 M Na2SO4/H2O 0.1 N Na2SO4/H2O 0.05 M Na2SO4/H2O 0.1 N Na2SO4/H2O 0.1 N Na2SO4/H2O 0.1 N NaF+ HClO4/H2O 0.1 N KF+H2SO4/H2O 0.1 M NaF/ H2O 0.1 M NaF/ H2O 0.1 N Na2SO4/H2O 0.1 N Na2SO4/H2O 0.1 N Na2SO4/H2O 0.05 M Na2SO4/H2O
I– I– I– I– I– NEt +4
T; C T T; C T T; C T
–94.2 –97 –97.0 –96 –108.0 –81.0
99Vää1 12) 00Lus 99Vää2 12) 00Lus 02Lus 06Vää
n-butanol i-butanol 2-butanol t-butanol t-butanol t-butanol n-propanol 1-pentanol t-pentanol cyclohexanol cyclohexanol cyclohexanol cyclohexanol heptanol butylacetate d-ribose d-ribose camphor aniline pyridine pyridine adenosine adenosine adenosine uracil
T T T T T C T; C T; C T T T C T T T T T T T T C T T T T
0.1 M KI+KF/H2O 0.1 N KF+H2SO4/H2O 0.1 N Na2SO4/H2O 0.1 N Na2SO4/H2O 0.1 N Na2SO4/H2O 0.1 N KF+H2SO4/H2O 0.1 N KF+H2SO4/H2O 0.001 M NaF/H2O 0.1 N NaF+ HClO4/H2O 0.1 N KF+H2SO4/H2O 0.2 N KI+KF/H2O 0.1 N KF/H2O 0.1 N KF/H2O
I– n-propanol i-butanol 2-butanol t-butanol cyclohexanol cyclohexanol cyclohexanol camphor aniline I– ethanol n-propanol
T T T T T T T T T T T T T
–13.9 –12.7 –13.1 –12.2 –12.2 –12.0 –11.2 –17.0 –17.0 –17.01 –17.1 –16.8 –17.1 –24.5 –18.9 –16.52 –16.66 –21.6 –18.5 –22.1 –24.3 –32.7 14) –31.5 15) –32.7 –16.4 –114.0 –13.2 –14.2 –14.4 –13.4 –18.55 –18.55 –18.6 –23.2 –19.3 –92.0 –7.46 –9.53
96Lus2 96Lus2 96Lus2 86Lus1 96Lus2 96Lus2 97Lus4 99Jän2 01Nur 78Pal 97Lus2 97Lus2 85Lus2 03Jän 86Lus2 99Jän1 01Jän 79Pal 82Pal 97Lus3 97Lus3 98Lus 98Lus 01Jän 05Kas 80Pal 78Pya 96Lus2 96Lus2 96Lus2 78Pal 78Pya 97Lus2 79Pal 82Pal 72Pan2 75Ryb1 75Ryb1
250
4 Free enthalpies of adsorption ΔGad0 4)5) [kJ mol–1]
Electrode
Solution 1)
Adsorbate 2)
Met. 3)
Cd
n-propanol n-propanol n-propanol
T T T
–9.61 –10.5 –10.4
73Ryb1 91Obr 91Obr
Cd (000) Cd (0001)
0.1 N KF/H2O 0.1 N NaF/H2O 1 N Na2SO4+0.05 N H2SO4/ H2O 0.1 N KF/H2O 0.1 N KF/H2O 0.1 N KF/H2O 0.001 M NaF/H2O 0.001 M NaF/H2O
n-butanol n-pentanol cyclohexanol cyclohexanol cyclohexanol
T T T C T
–12.85 –16.00 –8.29 –15.8 –16.2
75Ryb1 75Ryb1 73Ryb2 97Lus2 97Lus2
Cd (1010)
0.001 M NaF/H2O
cyclohexanol
T
–17.4
97Lus2
Cd (1020)
0.001 M NaF/H2O
cyclohexanol
T
–17.3
97Lus2
Carbon (C)
0.1 N NaClO4+0.1 N HClO4/ H2O
N,N,N',N'-tetramethyl-1,1'naphthidine
CV
–24.68 16)
93Ote
Copper (Cu)
1 M H2SO4+0.5 M CuSO4/H2O 1 M H2SO4+0.5 M CuSO4/H2O 1 M H2SO4+0.5 M CuSO4/H2O 1 M H2SO4+0.5 M CuSO4/H2O 1 M H2SO4+0.5 M CuSO4/H2O 1 M H2SO4+0.5 M CuSO4/H2O 0.9 N NaClO4+0.1 N NaOH/ H2O 1 N NaClO4/H2O 0.1 M HClO4/H2O 0.1 M HClO4/H2O 0.1 M HClO4/H2O 0.5 M HCl/H2O 0.5 M HCl/H2O 0.5 M HCl/H2O
propanoic acid butanoic acid pentanoic acid hexanoic acid heptanoic acid octanoic acid n-decylamine
CT CT CT CT CT CT RT
–12.55 17) –15.5 17) –18.4 17) –21.3 17) –24.3 17) –27.2 17) –30.51
71Lou 71Lou 71Lou 71Lou 71Lou 71Lou 64Boc2
RT RT RT RT CC CC CC
–29.3 –18.6 18) –26.4 19) –26.4 –14.5 –13.9 –14.2
64Boc1 95Was 95Was 95Sob 00Gas 00Gas 00Gas
CC
–15.2
00Gas
CC
–16.3
00Gas
0.1 M HClO4/H2O 0.01 M NaClO4/H2O 0.1 M HClO4/H2O 0.01 M NaClO4/H2O 0.1 M HClO4/H2O 0.01 M NaClO4/H2O
naphthalene benzoic acid benzoic acid benzoic acid imidazole 4-methylimidazole 4-methyl-5hydroxymethylimidazole 1-phyenyl-4methyl-imidazole 1-(p-tolyl)-4methyl-imidazole thiourea thiourea thiourea thiourea thiourea thiourea
RT RT RT RT RT RT
–22.3 –33.1 –22.4 –31.9 –22.3 –33.4
01Luk 06Luk 01Luk 06Luk 01Luk 06Luk
0.5 M Na2SO4/H2O
2-propanol
C
–9.2
91Pez
0.05 M Na2SO4/H2O
n-butanol
T
–14.55
05Eme
0.5 M HCl/H2O 0.5 M HCl/H2O
Cu (100) Cu (110) Cu (111)
Gallium (Ga) Ga-Bi 20)
Ref.
Landolt-Börnstein New Series IV/9A
4 Free enthalpies of adsorption
251 ΔGad0 4)5) [kJ mol–1]
Electrode
Solution 1)
Adsorbate 2)
Met. 3)
Ga-Pb 21) Ga-Sn 22)
0.05 M Na2SO4/H2O 0.05 M Na2SO4/H2O 0.5 M Na2SO4/H2O
n-butanol n-butanol t-pentanol
T T C
–14.55 –14.55 –16.3
05Eme 05Eme 91Pez
Gold (Au)
1 N H2SO4/H2O 0.02 M NaClO4/H2O 0.1 M KClO4/H2O 0.02 M NaClO4/H2O 0.02 M NaF/H2O 0.02 M NaClO4/H2O 0.02 M NaClO4/H2O 0.02 M NaClO4/H2O 0.02 M NaClO4/H2O 0.04 M KClO4/H2O 0.02 M NaClO4/H2O 0.02 M NaClO4/H2O 0.02 M NaClO4/H2O 0.02 M NaClO4/H2O 0.02 M NaClO4/H2O 0.04 M KClO4/H2O 0.04 M KClO4/H2O 0.04 M KClO4/H2O
cyclohexane 1,2-ethanediol 1,2-butanediol 1-propanol 2-propanol 2-propen-1-ol 2-propin-2-ol 1-butanol 2-butanol t-butanol 1-pentanol 1-pentanol 2-pentanol 1-hexanol 2-hexanol 1,2-cyclohexanediol 1,2-cyclohexanediol trans-1,2cyclohexanediol 1,3-cyclohexanediol 1,4-cyclohexanediol 1-heptanol 2-heptanol benzene naphthalene p-toluenesulphonate 23) β-cyclodextrine benzoic acid benzoic acid benzoic acid benzoic acid urea aniline aniline aniline o-toluidine m-toluidine p-toluidine N,N-dimethylaniline 2,5-dimethylaniline pyridine pyrazine
RT T T T T T T T T T T T T T T T T T
–24.3 –6.9 –12.8 –5.0 –8.2 –31.8 –34.0 –8.5 –11.1 –9.63 –13.4 –13.7 –14.5 –17.9 –16.5 –19.0 –18.9 –17.5
63Dah 93Luc 93Luc 86Hol 98Bel 95Luc1 95Luc1 85Hol 86Hol 96Sta 87Tuc 85Hol 85Hol 85Hol 86Hol 95Luc2 89Hol 94Luc
T T T T RT RT T T RT RT RT T T T T T T T T T T C C
–19.6 –16.1 –21.2 –19.5 –25.5 –2.9 –40.00 –34.70 –16.4 24) –23.1 25) –16.4 –43.7 –24.0 –42.45 –47.00 –45.08 –34.05 –34.43 –34.35 –34.05 –35.42 –38.0 –32.5
89Hol 89Hol 86Hol 86Hol 63Dah 63Dah 92Sko1 90Jar 94Zel 94Zel 95Sob 71Kat 90Hol 90Pap 89Ngu 90Pap 89Sch 89Sch 89Sch 89Sch 89Sch 86Sto 97Ian
0.04 M KClO4/H2O 0.04 M KClO4/H2O 0.02 M NaClO4/H2O 0.02 M NaClO4/H2O 1 N H2SO4/H2O 1 N H2SO4 /H2O 0.1 M KClO4/H2O 0.01 M NaClO4/H2O 0.1 M HClO4/H2O 0.1 M HClO4/H2O 0.1 M HClO4/H2O 0.1 M HClO4/H2O 0.04 M KClO4/H2O 0.04 M KClO4/H2O 0.1 M KClO4/H2O 0.1 M KClO4/H2O 0.04 M KClO4/H2O 0.04 M KClO4/H2O 0.04 M KClO4/H2O 0.04 M KClO4/H2O 0.04 M KClO4/H2O 0.1 M KClO4/H2O 0.1 M KClO4/H2O Landolt-Börnstein New Series IV/9A
Ref.
252
4 Free enthalpies of adsorption ΔGad0 4)5) [kJ mol–1]
Electrode
Solution 1)
Adsorbate 2)
Met. 3)
Au
0.1 M LiClO4/H2O 0.1 M LiClO4/H2O 0.1 M LiClO4/H2O, pH=9.8 0.1 M LiClO4/H2O, pH=9.8 0.1 M LiClO4/H2O, pH=1.4...7 0.1 M LiClO4/H2O, pH=1.4...7 0.1 M LiClO4/H2O, pH=1.4...7 0.04 M KClO4/H2O 0.1 M NaClO4/H2O 0.05 M KF/methanol 0.1 M KClO4/H2O 0.04 M KClO4/H2O 0.04 M KClO4/H2O 0.01 M NaF/H2O 0.1 M KClO4/H2O 0.1 M KClO4/H2O 0.05 M KClO4/H2O 0.01 M NaF/H2O 0.1 M KClO4/H2O
DL-serine L-tyrosine L-histidine L-histidine L-histidine L-histidine L-histidine thiourea thiourea thiourea t-pentanol 2-butene-1,4-diol 2-butyne-1,4-diol diethylether benzonitrile pyridine t-pentanol diethylether pyridine
C C C C C C C T T T C T T C C C C C C
–37.0 –46.2 –44.6 26) –42.4 27) –42.0 26) –41.4 27) –42.3 28) –43.3 –26.5 –21.5 –17.4 –29.8 –29.0 –13.5 –27.9 –36.0 –18.5 –10.0 –42.0
01Slo 01Slo 01Slo 01Slo 01Slo 01Slo 01Slo 90Hol 94Brz 94Brz 88Ric 93Luc 93Luc 83Lip 90Ric 87Sto 86Ric2 83Lip 90Sto
0.1 M HClO4/H2O NaClO4/H2O NaClO4/H2O 0.01 M NaF/H2O 0.02 M HClO4/H2O 0.02 M HClO4/H2O 0.02 M NaClO4/H2O 0.02 M NaClO4/H2O 0.1 M KClO4/H2O 0.1 M KClO4/H2O 0.1 M KClO4/H2O 0.1 M KClO4/H2O 0.1 M KClO4/H2O 0.1 M KClO4/H2O 0.05 M KClO4/H2O 0.05 M KClO4/H2O 0.05 M KClO4/H2O 0.05 M KClO4/H2O 0.1 M KClO4/H2O 0.1 M NaClO4/H2O 29)
SO 24
C
–110.0 13)
n-hexanol n-hexanol diethylether sorbitol mannitol sorbitol mannitol benzonitrile pyridine pyrazine pyrazine benzonitrile 4-cyanopyridine 1,3-dimethyluracil uracil 5-methyluracil 5,6-dimethyluracil L-phenylalanine benzenesulfonic acid bromide ions pyrazine benzonitrile p-toluenesulphonate benzonitrile
C T C T T T T C C C C C C C C C C C T
–22.3 –22.3 –15.5 –17.3 –12.4 –17.7 –15.2 –27.0 –37.0 –26.0 –26.2 –28.1 –37.0 –35.4 –14.85 –17.95 –22.1 –27.0 13) –35.0
95Shi 97Sil 97Sil 83Lip 94Sot 94Sot 94Sot 94Sot 92Ric 91Sto 94Ian 97Ian 90Ric 95Yan 96Wan1 96Wan2 96Wan1 96Wan2 01Li 96Dut
T C C C C
–140.0 13) –39.0 –26.4 –35.0 –26.2
96Shi 97Ian 90Ric 92Sko2 90Ric
Au (100)
Au (110)
Au (111)
Au (210) Au (211) Au (311)
0.1 M KClO4/H2O 0.1 M KClO4/H2O 0.1 M KClO4/H2O 0.1 M NaClO4/H2O 0.1 M KClO4/H2O
Ref.
Landolt-Börnstein New Series IV/9A
4 Free enthalpies of adsorption
253 ΔGad0 4)5) [kJ mol–1]
Electrode
Solution 1)
Adsorbate 2)
Met. 3)
Au (322) Au (511)
0.1 M KClO4/H2O 0.1 M KClO4/H2O 0.1 M KClO4/H2O
pyridine benzonitrile benzonitrile
C C C
–44.0 –25.8 –25.6
92Sto 90Ric 90Ric
In-Ga eutectic alloy (16.4 at.% In)
0.1 N Na2SO4/H2O 0.1 N Na2SO4/H2O 0.1 N Na2SO4/H2O 0.1 N Na2SO4/H2O
ethanol propanol n-butanol n-pentanol
T T T T
–6.13 –11.31 –14.46 –17.03
74Gri 74Gri 74Gri 74Gri
Iron (Fe) mild steel
1 N NaClO4/H2O 0.9 N NaClO4+0.1 N NaOH/H2O 3% W/V NaCl+100 mg Na2CO3 100 ml H2O 3% W/V NaCl+100 mg Na2CO3/ 100 ml H2O 3% W/V NaCl+100 mg Na2CO3 100 ml H2O 3% W/V NaCl+100 mg Na2CO3 100 ml H2O
naphthalene n-decylamine hexadecenylsuccinic anhydride hexadecylsuccinic anhydride octenylsuccinic anhydride benzyldimethylhexadecyl-ammonium chloride trimethylexadecylammonium chloride lauric acid
RT RT CC
–29.3 –27.58 –37.00
64Boc1 64Boc2 99Dur
CC
–31.00
99Dur
CC
–27.00
99Dur
CC
–37.00
99Dur
CC
–32.00
99Dur
CC
–34.00
99Dur
sebacic acid
CC
–25.00
99Dur
cetylpyridinium chloride cetylamine
CC
–35.00
99Dur
CC
–36.00
99Dur
stearylamine
CC
–34.00
99Dur
dimethyldodecylamine cetyl cyanide
CC
–23.00
99Dur
CC
–29.00
99Dur
cetylmercaptan
CC
–31.00
99Dur
dimethyldipalmitylammonium chloride folic acid
CC
–31.00
99Dur
CC
–33.00
99Dur
2,5-bis(4-methoxyphenyl)-1,3,4oxadiazole n-pentanol cyclohexanol
WL
–37.61
06Bou
T T
–18.00 –18.74
69Gri1 72Gri2
Ref.
Indium (In)
steel
3% W/V NaCl+100 mg Na2CO3 100 ml H2O 3% W/V NaCl+100 mg Na2CO3 100 ml H2O 3% W/V NaCl+100 mg Na2CO3 100 ml H2O 3% W/V NaCl+100 mg Na2CO3 100 ml H2O 3% W/V NaCl+100 mg Na2CO3 100 ml H2O 3% W/V NaCl+100 mg Na2CO3 100 ml H2O 3% W/V NaCl+100 mg Na2CO3 100 ml H2O 3% W/V NaCl+100 mg Na2CO3 100 ml H2O 3% W/V NaCl+100 mg Na2CO3 100 ml H2O 3% W/V NaCl+100 mg Na2CO3 100 ml H2O 3% W/V NaCl+100 mg Na2CO3 100 ml H2O 0.5 M H2SO4/H2O
Lead (Pb)
0.1 N Na2SO4/H2O 0.1 N Na2SO4/H2O
Landolt-Börnstein New Series IV/9A
254
4 Free enthalpies of adsorption ΔGad0 4)5) [kJ mol–1]
Electrode
Solution 1)
Adsorbate 2)
Met. 3)
Pb
0.1 N Na2SO4/H2O 0.1 N Na2SO4/H2O 1 N Na2SO4/H2O 0.1 N Na2SO4/H2O 0.9 N NaClO4+0.1 N NaOH/ H2O 0.12 N KF/H2O 0.1 N Na2SO4/H2O 0.1 N Na2SO4/H2O 0.1 N Na2SO4/H2O 0.1 N Na2SO4/H2O
cyclohexanol cyclohexanol phenol aniline n-decylamine
T T T T RT
–18.76 –18.8 –22.59 –22.2 –25.9
72Alu 80Khm 72Gri2 72Gri2 64Boc2
phenol cyclohexanol cyclohexanol cyclohexanol cyclohexanol
T T T T T
–22.62 –18.6 –18.9 –18.1 –18.4
70Alu 80Khm 80Khm 80Khm 80Khm
Cl– NCS– NCS– toluene toluene naphthalene naphthalene diphenyl diphenyl methanol ethanol 2-(methylthio)ethanol n-propanol n-propanol n-propanol n-propanol 2-propanol n-propanol hexafluoro2-propanol n-butanol n-butanol n-butanol n-butanol n-butanol n-butanol n-butanol n-butanol n-butanol n-butanol n-butanol n-butanol t-butanol
T EC EC T T T T T T T T EC
–81.2 –90.4 31) –97.1 32) –5.34 –19.2 –4.69 –8.93 34) –6.46 35) –8.8 34) –13.8 –7.78 –17.9
68Pay 68Min 68Min 85Dam 85Dam 70Kag 70Kag 70Kag 70Kag 68Mur3 67Dam 79Ike
T T T C C C EC
–12.76 –14.6 36) –12.75 –19.9 –12.5 –19.7 –10.7
67Dam 65Bar2 73Ryb1 93For 91Pez 93For 74Ped
T T T T T T EC T C C C EC T
–14.6 –14.0 37) –13.1 38) –14.7 –15.4 –16.03 –14.5 –14.0 –17.6 –16.4 –15.9 –10.47 –14.0
97Dam1 97Dam1 97Dam1 97Dam1 97Dam1 67Dam 76Bro 76Bro 90Mon2 93For 93For 61Blo 75Pul1
Pb (100) Pb (110) Pb (111) Pb (112) Mercury (Hg)
1 M KCl+KF/H2O 30) KNCS/H2O KNCS/H2O 0.1 N NaF/H2O 0.2 N NH4NO3/methanol 0.1 N NaClO4/DMF 33) 0.1 N NaClO4/DMF 33) 0.1 N NaClO4/DMF 33) 0.1 N NaClO4/DMF 33) 0.1 M Na2SO4/H2O 0.1 N NaF/H2O 0.4 N NaF/H2O 0.1 N NaF/H2O 1 N KCl/H2O 0.1 N KF/H2O 0.1 M NaF/H2O 0.5 M Na2SO4/H2O 0.05 M Na2SO4/H2O 0.5 M Na2SO4/ H2O 0.1 N NaF/H2O 0.1 N NaF/H2O 0.1 N NaF/H2O 0.05 M Na2SO4/H2O 0.5 M Na2SO4/H2O 0.1 N NaF/H2O 0.1 N HClO4/H2O 0.1 N HClO4/H2O 0.5 M Na2SO4/H2O 0.1 M NaF/H2O 0.05 M Na2SO4/H2O 1 N HCl/H2O 0.5 M Na2SO4/H2O
Ref.
Landolt-Börnstein New Series IV/9A
4 Free enthalpies of adsorption Electrode
Landolt-Börnstein New Series IV/9A
255 ΔGad0 4)5) [kJ mol–1]
Solution 1)
Adsorbate 2)
Met. 3)
0.25 N NaF/H2O 0.1 M Na2SO4/H2O 0.1 N NaF/H2O 0.1 M HClO4+0.001 M HCl/ H2O 0.5 M Na2SO4/H2O 0.1 N NaF/H2O 0.1 N NaF/H2O 0.1 N NaF/H2O 0.1 N Na2SO4/H2O 0.1 N HClO4/H2O 0.1 N HClO4/H2O 0.5 M NaF/H2O 0.5 M Na2SO4/H2O 0.1 N NaF/H2O 0.1 M NaF/H2O 0.05 M Na2SO4/H2O 0.5 M Na2SO4/H2O 0.1 N NaF/H2O 0.1 M HClO4/H2O 0.5 M Na2SO4/H2O 0.1 M NaF/H2O 0.05 M Na2SO4/H2O 0.5 M Na2SO4/H2O 0.1 M NaF/H2O 0.05 M Na2SO4/H2O 0.1 N Na2SO4/H2O 0.1 N Na2SO4/H2O 0.1 M HClO4/H2O 0.1 M KBr/H2O 0.1 M KCl/H2O 0.1 M KJ/H2O 0.1 M NaF/H2O 0.5 M Na2SO4/H2O 0.5 M Na2SO4/H2O 0.1 M Na2SO4/H2O 0.25 M Na2SO4/H2O 0.25 M NaF/H2O 0.25 M Na2SO4/H2O 0.5 M Na2SO4/H2O 0.5 M Na2SO4/H2O 0.5 M Na2SO4/H2O 0.5 M Na2SO4/H2O 0.5 M Na2SO4/H2O 0.1 M Na2SO4/H2O
t-butanol t-butanol n-pentanol 1-pentanol
EC T T T
–13.0 –14.0 –19.17 –11.31
76Pul 76deB1 67Dam 57Han
n-pentanol n-pentanol n-pentanol n-pentanol i-pentanol i-pentanol i-pentanol t-pentanol t-pentanol n-hexanol n-hexanol n-hexanol n-hexanol n-pentanol 3-pentanol n-heptanol n-heptanol n-heptanol n-octanol n-octanol n-octanol cyclohexanol cyclohexanol cyclohexanol 1,2-ethanediol 1,2-ethanediol 1,2-ethanediol 1,2-ethanediol 1,2-ethanediol 1,3-propanediol 2-propen-1-ol 1,4-butanediol 1,4-butanediol 1,4-butanediol 1,4-butanediol 1,5-pentanediol 1,6-hexanediol 1,6-hexanediol 1,7-heptanediol β-cyclodextrine
C T T T T EC T T C T C C C T EC C C C C C C T T EC EC EC EC EC C C T EC EC EC C C EC; C C C EC
–20.4 –18.1 –17.6 37) –15.6 38) –17.98 –14.0 –13.9 –18.0 –19.6 –22.56 –23.8 –23.6 –24.5 –21.7 –18.0 –28.5 –27.3 –27.0 –31.8 –30.8 –31.5 –19.45 –19.35 –20.3 –8.37 –8.45 –8.03 –8.7 –8.8 –15.9 –24.06 –15.5 –15.5 –15.5 –17.6 –21.3 –23.1 –23.7 –26.4 –34.7
90Mon2 97Dam1 97Dam1 97Dam1 70Dob 76Bro 76Bro 62Dam 91Pez 67Dam 93For 93For 90Mon2 97Dam1 69Bro1 90Mon2 93For 93For 90Mon2 93For 93For 70Dob 72Alu 69Bro1 70Tra 70Tra 70Tra 70Tra 90Mon1 90Mon1 68Mur3 68Dut 78Pul 78Pul 90Mon1 90Mon1 85Gol 90Mon1 90Mon1 88Bor1
Ref.
256
4 Free enthalpies of adsorption ΔGad0 4)5) [kJ mol–1]
Electrode
Solution 1)
Adsorbate 2)
Met. 3)
Hg
0.7953 M NaF/H2O 1 N KCl/H2O 1 N KCl/H2O 0.12 N KF/H2O 1 N Na2SO4/H2O 1 N HCl/H2O 0.1 M HClO4+0.001 M HCl/ H2O 0.5 M NaClO4/H2O 0.5 M NaClO4/H2O 0.5 M NaClO4/H2O 0.1 M Na2SO4/H2O 0.1 N Na2SO4/H2O 0.5 M NaClO4/H2O 0.1 N Na2SO4/H2O 0.1 N Na2SO4/H2O 1 N HCl/H2O 0.5 M NaClO4 0.5 M NaClO4/H2O 0.1 M HClO4+0.001 M HCl/H2O 1 N HCl/H2O 0.1 M HClO4+0.001 M HCl/ H2O 0.1 M HClO4/H2O 1 N Na2SO4/H2O 1 N Na2SO4/H2O 1 N HCl/H2O 1 N Na2SO4/H2O 1 N Na2SO4/H2O 1 N KBr/H2O 1 N KCl/H2O 1 N KF/H2O 1 N KI/H2O 1 N NaCl/H2O 0.1 M Na2SO4/H2O 1 N HCl/H2O 1 N HCl/H2O 1 M KCl/H2O 0.8 N Na2SO4+0.2 N H2SO4/ H2O 0.4 M Na2SO4+0.1 M H2SO4/ H2O 0.8 N Na2SO4+0.2 N H2SO4/ H2O 0.4 M Na2SO4+0.1 M H2SO4/ H2O
sucrose allyl alcohol propargyl alcohol phenol phenol phenol phenol
T T T T C EC T
–22.1 –13.0 36) –12.3 36) –28.4 –28.37 –10.89 –21.82
81Par 65Bar2 65Bar2 70Alu 64Dam2 61Blo 57Han
phenol phenol phenol phenol pyrocatechol pyrocatechol resorcinol hydroquinone α-naphthol phloroglucinol phloroglucinol 3-pentanone n-pentanone 2,4-pentanedione
T T T; EC T T T; EC T T EC EC T; EC T EC T
–26.0 39) –18.5 40) –6.3 41) –14.64 –31.07 –6.3 41) –30.8 –28.34 –27.22 –25.5 41) –20.1 41) –12.10 –27.6 –12.19
86Rol 86Rol 83Sar 68Mur3 69Dya 83Sar 69Dya 69Dya 61Blo 79Sar 83Sar 57Han 61Blo 57Han
cyclohexanone methylpropylketone methylbutylketone di-n-butylketone methylpentylketone methylhexylketone dioxane dioxane dioxane dioxane dioxane dioxane benzaldehyde α-naphthaldehyde cinnamaldehyde acetic acid
EC T T EC T T T T T T T T EC EC T T; EC
–21.10 –19.6 –22.3 –25.55 –25.1 –27.8 –13.8 –12.5 36) –13.8 –10.9 –12.6 –15.5 –18.85 –28.90 –34.7 –12.6
69Bro1 73Gus 73Gus 61Blo 73Gus 73Gus 63Wat 65Bar2 63Wat 63Wat 63Wat 68Mur3 61Blo 61Blo 84Gon 70Dam
acetic acid
T
–13.2
97Dam2
propionic acid
T; EC
–15.9
70Dam
propionic acid
T
–14.8
97Dam2
Ref.
Landolt-Börnstein New Series IV/9A
4 Free enthalpies of adsorption Electrode
ΔGad0 4)5) [kJ mol–1]
Solution 1)
Adsorbate 2)
Met. 3)
0.8 N Na2SO4+0.2 N H2SO4/ H2O 0.8 N Na2SO4+0.2 N H2SO4/ H2O 0.8 N Na2SO4+0.2 N H2SO4/ H2O 0.4 M Na2SO4+0.1 M H2SO4/ H2O 0.1 M HClO4+0.001 M HCl/ H2O 1 N HCl/H2O 0.8 N Na2SO4+0.2 N H2SO4/ H2O 0.8 N Na2SO4+0.2 N H2SO4/ H2O 0.8 N Na2SO4+0.2 N H2SO4/ H2O 0.8 N Na2SO4+0.2 N H2SO4/ H2O 0.1 N HClO4/H2O 0.1 N HClO4/H2O 0.4 M Na2SO4+0.1 M H2SO4/ H2O 0.8 N Na2SO4+0.2 N H2SO4/ H2O 0.4 M Na2SO4+0.1 M H2SO4 0.1 M HClO4+0.001 M HCl/ H2O 0.1 M NaClO4+0.05 M HClO4/ H2O 1 N HCl/H2O 1 N H2SO4/H2O 0.1 m Na2SO4/H2O
n-butyric acid
EC
–15.21
69Chi
n-butyric acid
T
–15.21
69Chi
n-butyric acid
T; EC
–19.1
70Dam
n-butyric acid
T
–18.5
97Dam2
n-pentanoic acid
T
–10.80
57Han
n-pentanoic acid n-pentanoic acid
EC T; EC
–12.14 –23.1
61Blo 70Dam
α-iso-valeric acid
T; EC
–18.0
70Dam
β-iso-valeric acid
T; EC
–18.6
70Dam
trimethyl acetic acid n-pentanoic acid n-pentanoic acid n-pentanoic acid
T; EC
–17.0
70Dam
EC T T
–15.3 –15.3 –21.8
76Bro 76Bro 97Dam2
n-hexanoic acid
T; EC
–26.6
70Dam
n-hexanoic acid octanoic acid
T T
–23.5 –12.14
97Dam2 57Han
maleic acid
EC
–12.8
69Pos
benzoic acid benzoic acid o-hydroxybenzoic acid p-hydroxybenzoic acid o-hydroxybenzoic acid p-hydroxybenzoic acid α-naphthoic acid D-ribose
EC EC; T EC
–19.27 –26.0 –29.9
61Blo 77Tan 72Jos
EC
–26.0
72Jos
EC; T
–38.62
81Dob
EC; T
–39.08
81Dob
EC EC
–32.25 –6.93
61Blo 78Bra1
2’-deoxy-D-ribose
EC
–7.51
78Bra1
D-ribose 5’-phosphate
EC
–3.32
78Bra1
0.1 m Na2SO4/H2O 0.05 N Na2SO4+0.05 N H2SO4/ H2O 0.05 N Na2SO4+0.05 N H2SO4/ H2O 1 N HCl/H2O 0.5 M NaF/H2O+0.01 M Na2HPO4 0.5 M NaF/H2O+0.01 M Na2HPO4 0.5 M NaF/H2O+0.01 M Na2HPO4 Landolt-Börnstein New Series IV/9A
257 Ref.
258
4 Free enthalpies of adsorption
Electrode
Solution 1)
Adsorbate 2)
Met. 3)
ΔGad0 4)5) [kJ mol–1]
Hg
1 N KNO3/H2O 1 N Na2SO4/H2O 0.5 M Na2SO4/H2O 1 N Na2SO4/H2O 0.25 M NaF/H2O 0.25 M NaF/H2O 0.25 M NaF/H2O 0.1 M Na2SO4/H2O 0.1 M HClO4+0.001 M HCl/ H2O 0.25 M NaF/H2O 1 N HCl/H2O 1 N HCl/H2O 1 N HCl/H2O
benzofurazan butylamine t-butylamine N-methylaniline acetonitrile propionitrile butyronitrile butyronitrile pentane nitrile
T EC EC EC EC; T EC; T EC; T EC; T T
–27.2 –20.5 –16.5 –23.84 –9.1 –10.6 –13.8 –13.8 –10.38
71Tsv 65Zwi 83Bor 65Zwi 73DeB 75Abd 79Ama 79Ama 57Han
succinonitrile benzonitrile n-pentanoic acid n-butylammonium chloride benzylammonium chloride α-naphthylammonium chloride n-thiobutanol thiophenol thiourea thiourea thiourea piazthiole di-n-butylsulfide dibenzylsulfide n-butyl sulfonic acid benzylsulfonic acid
EC; T EC EC EC
76deB2 61Blo 61Blo 61Blo
EC
–12.6 –19.68 –12.14 –4.2... –10.05 –4.2... –10.05 –4.2... –10.05 –23.04 –25.55 –95.72 –94.13 –90.9 –33.5 –30.99 –36.44 –4.2... –10.05 –4.2... –10.05 –6.70
C C T EC EC EC EC EC EC EC T EC
–22.22 –18.6 –23.54 42) –17.15 36) –18.82 36) –102.1 –103.8 –10.46 36) –13.8 36) –17.7 –18.6 36) –13.8
1 N HCl/H2O 1 N HCl/H2O 1 N HCl/H2O 1 N HCl/H2O 0.1 N NaF/H2O 0.1 N KNO3/H2O 0.1 N NaClO4/DMF 33) 1 N KNO3/H2O 1 N HCl/H2O 1 N HCl/H2O 1 N HCl/H2O 1 N HCl/H2O 1 N HCl/H2O 1 N KCl/H2O 1 N KI/H2O 0.1 N NaF/H2O 1 N HCl/H2O 1 N KCl/H2O 0.1 M NaH2PO4/H2O 1 M NaH2PO4/H2O 1 N HCl/H2O 1 N KCl/H2O 1 N KCl/H2O 1 N KCl/H2O 0.03 N NaClO4/H2O
α-naphthyl sulfonic acid aniline aniline aniline aniline aniline acetanilide acetanilide pyridine pyridine pyridine pyridine pyridine
EC EC EC EC T T T T EC EC EC EC
Ref.
61Blo 61Blo 61Blo 61Blo 61Par 68Par 70Gan 71Tsv 61Blo 61Blo 61Blo 61Blo 61Blo 64Dam1 64Dam1 85Dam 61Bar2 61Con 66Par1 66Par1 61Bar2 61Con 65Con 65Bar2 74Con1
Landolt-Börnstein New Series IV/9A
4 Free enthalpies of adsorption Electrode
ΔGad0 4)5) [kJ mol–1]
Solution 1)
Adsorbate 2)
Met. 3)
0.03 N NaClO4+0.01 M NaOH/ H2O 1 N HCl/H2O
pyridine
EC
–13.8
74Con1
1,2,3,6-tetrahydropyridine 1,2,3,6-tetrahydropyridine 2-Cl-pyridine 2-Cl-pyridine piperidine piperidine piperidine pyrazine
EC
–15.48 36)
61Bar2
EC
–18.82 36)
61Con
EC EC EC EC T EC
–14.64 36) –22.17 36) –15.06 36) –19.24 36) –18.8 36) –17.99 43)
61Bar2 61Con 61Bar2 61Con 65Bar2 73Con
pyrazine pyrazine
EC EC
–11.4 –11.4
74Con1 74Con1
nicotinic acid 2-NH2-pyridine 2-NH2-pyridine morpholine piazselenole sodium tetraphenylborate cis-1,2-dibromoethylene trans-1,2-dibromoethylene tyrosine adenine
T EC EC T T T
1 N KCl/H2O 1 N HCl/H2O 1 N KCl/H2O 1 N HCl/H2O 1 N KCl/H2O 1 N KCl/H2O 0.03 N NaClO4+0.01 M NaOH/ H2O 0.03 N NaClO4/H2O 0.03 N NaClO4+0.01 M NaOH/ H2O 0.1 N KF/H2O 1 N HCl/H2O 1 N KCl/H2O 1 N KCl/H2O 1 N KNO3/H2O 0.916 M NaF/H2O 1 M LiClO4/H2O 1 M LiClO4/H2O 0.1 M NaF/H2O 0.5 M NaF/H2O+0.01 M Na2HPO4 0.5 M borate buffer/H2O 0.5 M NaF/H2O+0.01 M Na2HPO4 0.5 M borate buffer/H2O 0.5 M borate buffer/H2O 0.5 M borate buffer/H2O 0.5 M borate buffer/H2O 0.5 M NaF/H2O+0.01 M Na2HPO4 0.5 M NaF/H2O+0.01 M Na2HPO4 0.5 M NaF/H2O+0.01 M Na2HPO4
Landolt-Börnstein New Series IV/9A
259
–100.8 –18.82 36) –16.73 36) –14.6 36) –36.1 –41.38
Ref.
92Jur 61Bar2 61Con 65Bar2 71Tsv 72Gio
T
–21.5
69Mar
T
–21.03
69Mar
T EC
–31.3 –18.46
97Jur 78Bra2
adenine adenosine
T EC
–18.5 –24.4
77Kin 78Bra2
deoxyadenosine deoxyadenosine5’-monophosphate deoxyadenosine5’-diphosphate deoxyadenosine5’-triphosphate adenosine 5’-monophosphate uracil
T T
–23.8 –20.7
77Kin 77Kin
T
–20.6
77Kin
T
–23.0
77Kin
EC
–20.44
78Bra2
EC
–12.53
78Bra2
uridine
EC
–17.47
78Bra2
260
4 Free enthalpies of adsorption ΔGad0 4)5) [kJ mol–1]
Electrode
Solution 1)
Adsorbate 2)
Met. 3)
Hg
0.5 M NaF/H2O+0.01 M Na2HPO4 0.5 M NaF/H2O, pH = 7 0.5 M NaF/H2O, pH = 7 0.5 M NaF/H2O, pH = 7 0.1 M HClO4/H2O
uridine 5’-monophosphate uracil 2-thiouracil 5-ethyl-2-thiouracil chloroform
EC
–16.16
78Bra2
T T T EC
–23.7 –32.8 –40.6 –14.2
91Wan 91Wan 91Wan 69Bro1
0.9 N NaClO4+0.1 N NaOH/ H2O 1 N NaClO4/H2O
n-decylamine
RT
–28.42
64Boc2
naphthalene
RT
–25.1
64Boc1
Nickel (Ni)
Ref.
Palladium (Pd)
0.9 N NaClO4+0.1 N NaOH/H2O
n-decylamine
RT
–25.91
64Boc2
Platinum (Pt)
1 N H2SO4/H2O 1 N H3PO4/H2O 1 N H3PO4/H2O 1 N H2SO4/H2O 1 N H2SO4/H2O 1 N NaClO4/H2O 0.01 M HCl/H2O 0.01 M HCl/H2O 0.01 M HCl/H2O 0.01 M HCl/H2O 0.01 M HCl/H2O 0.01 M HCl/H2O 0.01 M HCl/H2O 0.01 M HCl/H2O 0.01 M HCl/H2O 0.01 M HCl/H2O 0.9 N NaClO4+0.1 N NaOH/ H2O 0.01 M HCl/H2O 0.01 M HCl/H2O 0.01 M HCl/H2O 0.01 M HCl/H2O 0.1 M HClO4/H2O 0.01 M HCl/H2O 0.01 M HCl/H2O 0.01 M HCl/H2O 0.01 M HCl/H2O 0.01 M HCl/H2O
ethylene benzene benzene benzene benzene naphthalene n-butyl alcohol phenol 1-naphthol 1-naphthaldehyde n-valeraldehyde n-valeric alcohol benzoylchloride n-valeroylchloride 1-naphthoyl chloride n-butylamine n-decylamine
RT RT RT RT RT RT EL; IR EL; IR EL; IR EL; IR EL; IR EL; IR EL; IR EL; IR EL; IR EL; IR RT
–20.48 –23.87 –32.18 44) –27.22 –36.36 44) –35.1 –34.7 –40.2 –56.1 –54.0 –32.6 –35.6 –39.3 –33.9 –59.4 –33.5 –30.93
65Gil 66Hei 66Hei 66Hei 66Hei 64Boc1 92Boc 92Boc 92Boc 92Boc 92Boc 92Boc 92Boc 92Boc 92Boc 92Boc 64Boc2
aniline 1-naphthamine benzaldehyde benzoic acid benzoic acid 1-naphthoic acid benzonitrile n-valeronitrile 1-butylmercaptane thiophenol
EL; IR EL; IR EL; IR EL; IR RT EL; IR EL; IR EL; IR EL; IR EL; IR
–42.3 –54.8 –38.5 –43.5 –49.5 –61.1 –43.9 –38.1 –36.0 –41.0
92Boc 92Boc 92Boc 92Boc 95Sob 92Boc 92Boc 92Boc 92Boc 92Boc
0.1 M NaF/H2O 0.5 M NaF/H2O 0.5 M NaClO4/H2O 0.5 M NaF/H2O 0.5 M NaClO4/H2O 0.5 M NaClO4/H2O
Cl– Cl– Cl– Br– Br– I–
T T T T T T
–86.0 –83.0 –95.0 –96.0 –101.0 –95.0
82Lar 82Lar 83Hup 82Lar 83Hup 83Hup
Silver (Ag)
Landolt-Börnstein New Series IV/9A
4 Free enthalpies of adsorption
261
Electrode
Solution 1)
Adsorbate 2)
Met. 3)
ΔGad0 4)5) [kJ mol–1]
Ref.
Ag
0.5 M NaF/H2O 0.5 M Na2SO4/H2O 0.1 M LiClO4/H2O 0.1 M KF/H2O 0.04 M (NaF+NaCl)/H2O 0.1 N NaF/H2O 0.1 N NaF/H2O 0.1 N Na2SO4/H2O 0.1 M KF/H2O 0.05 M KPF6/H2O 0.04 M (NaF+NaCl)/H2O 0.1 N NaF/H2O 0.1 N NaF/H2O 0.1 N LiClO4F/H2O 0.1 N LiClO4/H2O 0.1 N Na2SO4/H2O 0.05 M KPF6/H2O 0.1 M LiClO4/H2O 0.04 M (NaF+NaCl)/H2O 0.1 N Na2SO4/H2O 0.1 M KF/H2O 0.05 M KClO4/H2O 0.1 N Na2SO4/H2O 0.05 M KClO4/H2O 0.05 M KClO4/H2O 0.05 M KClO4/H2O 0.1 M LiClO4/H2O 0.5 M NaOH/H2O 0.5 M NaOH/H2O 0.5 M NaOH/H2O 0.5 M NaOH/H2O 0.5 M NaOH/H2O 0.5 M NaOH/H2O 0.5 M NaOH/H2O 0.5 M NaOH/H2O 0.5 M NaOH/methanol+5% H2O 0.5 M NaOH/methanol+5% H2O 0.5 M NaOH/methanol+5% H2O 0.5 M NaOH/methanol+5% H2O 0.5 M NaOH/methanol+5% H2O 0.5 M NaOH/methanol+5% H2O 0.5 M NaOH/methanol+5% H2O 0.5 M NaOH/methanol+5% H2O 0.5 M NaOH/methanol+5% H2O 0.1 N Na2SO4/H2O 0.1 N Na2SO4/H2O
N 3– CN– 4-phenylpyridine thiourea Cl– 1-butanol 2-butanol isobutanol amyl alcohol n-pentanol Cl– 1-butanol 2-butanol 1-butanol 2-butanol n-hexanol n-pentanol tyrosine Cl– isobutanol amyl alcohol amyl alcohol n-hexanol uracil 5-methyluracil 5,6-dimethyluracil tyrosine thioethanol n-thiopropanol n-thiobutanol n-thiopentanol n-thiohexanol n-thioheptanol n-thiooctanol n-thiodecanol thioethanol n-thiopropanol n-thiobutanol n-thiopentanol n-thiohexanol n-thioheptanol n-thiodecanol n-thiododecanol n-thiohexadecanol ethanol n-propanol
T T T T T T T T T T; C T T T T T T T; C T T T T T T C C C T CV CV CV CV CV CV CV CV CV CV CV CV CV CV CV CV CV C C
–93.0 –23.0 45) –40.0 –85.6 –100.0 –21.4 –23.0 –20.5 –15.8 –14.1 –93.0 –20.6 –22.7 –21.0 –18.4 –23.0 –12.2 –28.1 –100.0 –20.9 –15.3 –16.4 –24.7 –11.38 –14.65 –21.1 –28.1 –78.0 –82.3 –86.5 –90.8 –95.0 –99.3 –103.6 –112.0 –87.0 –89.1 –91.2 –94.5 –95.0 –96.6 –102.5 –106.7 –110.0 –7.36 –11.88
82Lar 97Rog 02Buk 88Mil 78Val 02Jur 02Jur 76Vit3 88Pop 01Dou 78Val 02Jur 02Jur 02Jur 02Jur 74Vit3 01Dou 98Mil 78Val 76Vit3 88Pop 94Dou 74Vit3 96Wan2 96Wan2 96Wan2 98Mil 98Hat 46) 98Hat 46) 98Hat 46) 98Hat 46) 98Hat 46) 98Hat 46) 98Hat 46) 98Hat 46) 98Hat 46) 98Hat 46) 98Hat 46) 98Hat 46) 98Hat 46) 98Hat 46) 98Hat 46) 98Hat 46) 98Hat 46) 73Gri 73Gri
Ag (100)
Ag (110)
Ag (111)
Tin (Sn) Landolt-Börnstein New Series IV/9A
262
4 Free enthalpies of adsorption ΔGad0 4)5) [kJ mol–1]
Electrode
Solution 1)
Adsorbate 2)
Met. 3)
Sn
0.1 N Na2SO4/H2O 0.1 N Na2SO4/H2O
n-butanol n-pentanol
C C
–15.4 –17.86
73Gri 73Gri
0.1 N KCl+0.0002 N H2SO4/H2O 0.1 N KCl+0.0002 N H2SO4/H2O 0.1 N KCl+0.0002 N H2SO4/H2O 0.1 N KCl+0.0002 N H2SO4/H2O 0.1 N KCl+0.0002 N H2SO4/H2O
n-propanol n-butanol n-pentanol cyclohexanol cyclohexanol
T T T T T
–9.94 –12.51 –15.42 –15.9 –15.9
76Ipa2 76Ipa2 76Ipa2 75Ipa1 75Ipa2
Zn (1010)
0.1 N KCl+0.0002 N H2SO4/H2O
cyclohexanol
T
–15.1
75Ipa2
Zn (1020)
0.1 N KCl+0.0002 N H2SO4/H2O
cyclohexanol
T
–14.7
75Ipa2
Zinc (Zn) Zn (0001)
Ref.
) If no concentration is given the reported value of ΔG 0ad did not depend on the concentration of the supporting
1
electrolyte; concentrations are given as molar values (M) or molal (m) values. If the original report contains concentration numbers in units of N this is maintained. In case of mixed electrolytes (this is mostly used to maintain constant ionic strength) the electrolyte containing the species to be asdorbed is mentioned first. 2 ) Adsorbates are arranged alphabetically starting with inorganic adsorbates; within a given adsorbate data are arranged with increasing concentration of the supporting electrolyte. 3 ) Met. = Method. C = chronocoulometry, CC = corrosion current method, EC = Electrocapillary method, EL = Ellipsometric method, IR = Infrared spectroscopic method, CV = cyclic voltammetry, RT = Radiotracer method, T = Tensammetry, TF = Thin film resistance, WL = weight loss method. When a combination of methods was used all methods are listed separated by slashes. See also list of symbols. ) If values of ΔG 0ad as a function of electrode potential are reported only maximum values are listed except for data reported for specific adsorbate orientations. 5 ) Standard state: unit mole fraction in solution and unit coverage in monolayer. 6 ) T = –15 °C. 7 ) T = –0 °C. 8 ) T = 12 °C. 9 ) T = 25 °C. 10 ) T = 40 °C. 11 ) T = 50 °C. 12 ) Obtained at σ = 0 C cm–2. 13 ) Obtained at E = Epzc. 14 ) Obtained with assuming a Frumkin isotherm. 15 ) Obtained with assuming a Henry isotherm. 16 ) The actual value varies slightly depending on the way the glassy carbon electrode was pretreated. 17 ) Extrapolated to zero coverage. 18 ) At ERHE = –0.2 V. 19 ) At ERHE = –0.2 V. 20 ) Gallium saturated with bismuth. 21 ) Gallium saturated with lead. 22 ) Gallium saturated with tin. 23 ) The concentration of the supporting electrolyte and of the adsorbate were adjusted to keep constant ionic strength. 24 ) At ERHE = 0.3 V. 4
Landolt-Börnstein New Series IV/9A
4 Free enthalpies of adsorption 25
) At ERHE = 1.3 V. ) Value calculated using Frumkin’s isotherm. 27 ) Value calculated using Henry’s isotherm. 28 ) Value calculated using Langmuir’s isotherm. 29) Concentration of NaClO4 and benzensulfonic acid kept constant at 0.1 M. 30 ) Variable concentration of chloride, total concentration kept at constant ionic strength. 31 ) T = 293 K. 32 ) T = 313 K. 33 ) DMF = dimethylformamide. 34 ) Flat adsorbate orientation. 35 ) Inclined adsorbate orientation. 36 ) θ = 0.5. 37 ) T = 50 °C. 38 ) T = 75 °C. 39 ) Flat orientation. 40 ) Perpendicular orientation. 41 ) At Epzc. 42 ) ENHE = 0.241 V. 43 ) θ = 0.17. 44 ) T = 70 °C. 45 ) At ESHE = –0.7 V. 46 ) θ = 1.0, ccalc. = 5 mM. 26
Landolt-Börnstein New Series IV/9A
263
R1
References 57Han 61Bar2 61Blo 61Con 61Par 62Dam 63Dah 63Wat 64Boc1 64Boc2 64Dam1 64Dam2 65Bar2 65Con 65Gil 65Zwi 66Hei 66Par1 67Dam 68Dut 68Min 68Mur3 68Par 68Pay 69Bro1 69Chi 69Dya 69Gri1 69Mar 69Pos 69Pul 70Alu 70Dam 70Dob 70Gan 70Kag 70Tra 71Alu 71Kat 71Lou 71Tsv 72Alu 72Gio 72Gri2 72Jos 72Pan2 72Pet1 Landolt-Börnstein New Series IV/9A
Hansen, R.S., Minturn, R.E., Hickson, D.A.: J. Phys. Chem. 61 (1957) 953. Barradas, R.G., Conway, B.E.: Electrochim. Acta 5 (1961) 349. Blomgren, E., Bockris, J.O’M., Jesch, C.: J. Phys. Chem. 65 (1961) 2000. Conway, B.E., Barradas, R.G.: Electrochim. Acta 5 (1961) 319. Parsons, R.: Proc. R. Soc. London, Ser. A 261 (1961) 79. Damaskin, B.B., Grigorjev, N.B.: Dokl. Akad. Nauk SSSR 147 (1962) 135. Dahms, H., Green, M.: J. Electrochem. Soc. 110 (1963) 1075. Watanabe, A., Tsuji, F., Ueda, S.: Kolloid Z. Z. Polym. 191 (1963) 147. Bockris, J.O’M., Green, M., Swinkels, D.A.J.: J. Electrochem. Soc. 111 (1964) 743. Bockris, J.O’M., Swinkels, D.A.J.: J. Electrochem. Soc. 111 (1964) 736. Damaskin, B.B., Mishutushkina, I.P., Gerovich, V.M., Kaganovich, R.I.: Zh. Fiz. Khim. 38 (1964) 1797. Damaskin, B.B., Gerovich, V.M., Gladkikh, I.P., Kaganovich, R.I.: Zh. Fiz. Khim. 38 (1964) 2495. Barradas, R.G., Hamilton, P.G.: Can. J. Chem. 43 (1965) 2468. Conway, B.E., Barradas, R.G., Hamilton, P.G., Parry, J.M.: J. Electroanal. Chem. 10 (1965) 485. Gileadi, E., Rubin, B.T., Bockris, J.O’M.: J. Phys. Chem. 69 (1965) 3335. Zwierzykowska, I.: Rocz. Chem. 39 (1965) 101. Heiland, W., Gileadi, E., Bockris, J.O’M.: J. Phys. Chem. 70 (1966) 1207. Parsons, R., Zobel, F.G.R.: Trans. Faraday Soc. 62 (1966) 3511. Damaskin, B.B., Survila, A.A., Rybalka, L.E.: Elektrokhimiya 3 (1967) 146. Dutkiewicz, E., Garnish, J.T., Parsons, R.: J. Electroanal. Chem. 16 (1968) 505. Minc, S., Andrejczak, J.: J. Electroanal. Chem. 17 (1968) 101. Murti, M.V.R., Singh, N.: Allg. Prakt. Chem. 19 (1968) 365. Parsons, R.: Trans. Faraday Soc. 64 (1968) 1077. Payne, R.: Trans. Faraday Soc. 64 (1968) 1638. Broadhead, D.E., Hansen, R.S., Potter jr., G.W.: J. Colloid Interface Sci. 31 (1969) 61. Chizhov, A.V., Damaskin, B.B.: Elektrokhimiya 5 (1969) 1012. Dyatkina, S.L., Damaskin, B.B.: Elektrokhimiya 5 (1969) 438. Grigor’ev, N.B., Macavariani, D.N.: Elektrokhimiya 5 (1969) 87. Markova, I.G., Feoktistov, L.G.: Elektrokhimiya 5 (1969) 1095. Pospisil, L., Kuta, J.: Collect. Czech. Chem. Commun. 34 (1969) 3047. Pullerits, R.J., Palm, U.V., Past, V.E.: Elektrokhimiya 5 (1969) 886. Alumaa, A.R., Palm, U.V.: Elektrokhimiya 6 (1970) 580. Damaskin, B., Frumkin, A., Chizhov, A.: J. Electroanal. Chem. 28 (1970) 93. Dobren'kov, G.A., Schilotkach, G.D.: Elektrokhimiya 6 (1970) 1416. Ganzhina, I.M., Damaskin, B.B.: Elektrokhimiya 6 (1970) 1715. Kaganovich, R.I., Damaskin, B.B., Kaisheva, M.K.: Elektrokhimiya 6 (1970) 1359. Trasatti, S.: J. Electroanal. Chem. 28 (1970) 257. Alumaa, A., Palm, U.: Uch. Zap. Tartu. Gos. Univ. 289 (1971) 41. Katoh, K., Schmid, G.M.: Bull. Chem. Soc. Jpn. 44 (1971) 2007. Loutfy, R.O., Sukava, A.J.: J. Electrochem. Soc. 118 (1971) 216. Tsveniashvili, V.Sh., Zhdanov, S.I., Todres, Z.V.: Elektrokhimiya 7 (1971) 28. Alumaa, A.R., Palm, U.V.: Elektrokhimiya 8 (1972) 790. Giomini, C., Rampazzo, L.: J. Phys. Chem. 76 (1972) 707. Grigor’ev, N.B., Machavariani, D.N.: Elektrokhimiya 8 (1972) 406. Joshi, K.M., Rajagopalan, S.: Electrochim. Acta 17 (1972) 479. Panin, V.A., Rybalka, K.V.: Elektrokhimiya 8 (1972) 1202. Petyarv, E.K., Kolk, K.A., Palm, U.V.: Elektrokhimiya 8 (1972) 100.
R2 72Pet2 72Pul 73Con 73DeB 73Gri 73Gus 73Pal 73Ryb1 73Ryb2 74Con1 74Erl 74Gri 74Ped 74Vit3 75Abd 75Ipa1 75Ipa2 75Pul1 75Pul2 75Ryb1 76Bro 76Ipa2 76Pul 76Vit3 76deB1 76deB2 77Kin 77Tan 78Bra1 78Bra2 78Pal 78Pul 78Pya 78Val 79Ama 79Ike 79Pal 79Sar 79Vaa2 80Khm 80Pal 81Dob 81Par 82Lar 82Pal 83Bor 83Hup
Petyarv, E.K., Kolk, K.A., Palm, U.V.: Elektrokhimiya 8 (1972) 104. Pullerits, R., Moldau, M., Palm, U., Past, B.: Uch. Zap. Tartu. Gos. Univ. 302 (1972) 41. Conway, B.E., Dhar, H.P., Gottesfeld, S.: J. Colloid Interface Sci. 43 (1973) 303. De Battisti, A., Trasatti, S.: J. Electroanal. Chem. 48 (1973) 213. Grigor’ev, N.B., Kuprin, V.P., Loshkarev, Yu.M.: Elektrokhimiya 9 (1973) 1842. Gusakova, O.Yu., Damaskin, B.B., Fedorovitch, N.V.: Elektrokhimiya 9 (1973) 1134. Palm, Yu.V., Palm, V.E., Erlich, Yu.I., Erlich, T.E.: Elektrokhimiya 9 (1973) 1399. Rybalka, L.E., Damaskin, B.B., Leikis, D.I.: Elektrokhimiya 9 (1973) 414. Rybalka, L.E., Damaskin, B.B.: Elektrokhimiya 9 (1973) 1562. Conway, B.E., Mathieson, J.G., Dhar, H.P.: J. Phys. Chem. 78 (1974) 1226. Erlich, Yu.I., Pal’m, U.V.: Elektrokhimiya 10 (1974) 1866. Grigor'ev, N.B., Kalyushnaja, A.M.: Elektrokhimiya 10 (1974) 1287. Pedriali, R., Kuta, J.: J. Electroanal. Chem. 51 (1974) 395. Vitanov, T., Popov, A.: Elektrokhimiya 10 (1974) 1373. Abd-El-Nabey, B.A., Trasatti, S.: J. Chem. Soc. Faraday Trans. 1 71 (1975) 1230. Ipatov, Yu.P., Batrakov, B.B.: Elektrokhimiya 11 (1975) 1282. Ipatov, Yu.P., Batrakov, B.B.: Elektrokhimiya 11 (1975) 1717. Pulidori, F., Borghesani, G., Pedriali, R., Bighi, C.: Ann. Chim. (Rome) 65 (1975) 581. Pullerits, R.Ya., Moldau, M.E., Palm, U.V.: Elektrokhimiya 11 (1975) 487. Rybalka, D.E., Damaskin, B.B., Leijkis, D.I.: Elektrokhimiya 11 (1975) 9. Broadhead, D.E., Balkerikar, K.G., Hansen, R.S.: J. Phys. Chem. 80 (1976) 370. Ipatov, Y.P., Batrakov, V.V., Shalaginov, V.V.: Elektrokhimiya 12 (1976) 286. Pulidori, F., Borghesani, G., Pedriali, R., Bighi, C.: J. Electroanal. Chem. 72 (1976) 65. Vitanov, T., Popov, A.: Elektrokhimiya 12 (1976) 319. de Battisti, A., Abd-El-Nabey, B., Trasatti, S.: J. Chem. Soc. Faraday Trans. 1 72 (1976) 2076. de Battisti, A., Trasatti, S.: J. Electroanal. Chem. 73 (1976) 327. Kinoshita, H., Christian, S.D., Dryhurst, G.: J. Electroanal. Chem. 83 (1977) 151. Taniguchi, I., Machida, K., Sato, N., Sekine, T.: Bull. Chem. Soc. Jpn. 50 (1977) 1245. Brabec, V., Christian, S.D., Dryhurst, G.: J. Electrochem. Soc. 125 (1978) 1236. Brabec, V., Christian, S.D., Dryhurst, G.: Biophys. Chem. 7 (1978) 253. Pal’m, U.V., Pyarnoya, M.P.: Elektrokhimiya 14 (1978) 1070. Pulidori, F., Borghesani, G., Pedriali, R., De Battisti, A., Trasatti, S.: J. Chem. Soc. Faraday Trans. 1 74 (1978) 79. Pyarnoya, M.P., Pal’m, U.V.: Elektrokhimiya 14 (1978) 1229. Valette, G., Hamelin, A., Parsons, R.: Z. Phys. Chem. N. F. 113 (1978) 71. Amadelli, R., Daghetti, A., Vergano, L., De Battisti, A., Trasatti, S.: J. Electroanal. Chem. 100 (1979) 379. Ikeda, O., Kogo, K., Tamura, H.: J. Electroanal. Chem. 95 (1979) 177. Paltusova, N., Alumaa, A., Palm, U.: Elektrokhimiya 15 (1979) 1870. Sarangapani, S., Venkatesan, V.K.: Electrochim. Acta 24 (1979) 975. Vaartnou, M.G., Palm, U.V.: Elektrokhimiya 15 (1979) 1568. Khmelevaya, L.P., Chizhov, A.V., Damaskin, B.B., Vainblat, T.I.: Elektrokhimiya 16 (1980) 257. Palm, U.V., Pyarnoya, M.P.: Elektrokhimiya 16 (1980) 1599. Dobrenkov, G.A., Gucewa, L.T.: Elektrokhimiya 17 (1981) 1272. Parsons, R., Peat, R.: J. Electroanal. Chem. 122 (1981) 299. Larkin, D., Guyer, K.L., Hupp, J.T., Weaver, M.J.: J. Electroanal. Chem. 138 (1982) 401. Paltusova, N.A., Alumaa, A.R., Palm, U.V.: Elektrokhimiya 18 (1982) 475. Borghesani, G.: Electrochim. Acta 28 (1983) 483. Hupp, J.T., Larkin, D., Weaver, M.J.: Surf. Sci. 125 (1983) 429.
Landolt-Börnstein New Series IV/9A
R3 83Lip 83Sar 84Gon 85Dam 85Gol 85Hol 85Lus2 86Hol 86Lus1 86Lus2 86Ric2 86Rol 86Sto 87Sto 87Tuc 88Bor1 88Mil 88Pop 88Ric 89Hol 89Ngu 89Sch 90Hol 90Jar 90Mon1 90Mon2 90Pap 90Ric 90Sto 91Obr 91Pez 91Sto 91Wan 92Boc 92Jur 92Ric 92Sko1 92Sko2 92Sto 93For 93Luc 93Ote 94Brz 94Dou 94Ian 94Luc 94Lus 94Sot 94Zel
Landolt-Börnstein New Series IV/9A
Lipkowski, J., van Huong, C.N., Hinnen, C., Parsons, R., Chevalet, J.: J. Electroanal. Chem. 143 (1983) 375. Sarangapani, S., Venkatesan, V.K.: Proc. Indian Natl. Sci. Acad. Part A 49 (1983) 124. Gonzalez-Arjona, D., Andreu, R., Rueda, M.: J. Electroanal. Chem. 178 (1984) 305. Damaskin, B.B., Dyatkina, S.L., Gerovich, V.M.: Elektrokhimiya 21 (1985) 716. Goledzinowski, M., Dojlido, J., Lipkowski, J.: J. Electroanal. Chem. 185 (1985) 131. Holze, R., Beátowska-Brzezinska, M.: Electrochim. Acta 30 (1985) 937. Lust, E.I., Palm, Yu.V.: Elektrokhimiya 21 (1985) 1381. Holze, R., Beátowska-Brzezinska, M.: J. Electroanal. Chem. 201 (1986) 387. Lust, E.I., Palm, Yu.V.: Elektrokhimiya 22 (1986) 407. Lust, E.I., Erlich, Yu.I., Palm, Yu.V.: Elektrokhimiya 22 (1986) 695. Richer, J., Lipkowski, J.: Langmuir 2 (1986) 630. Rolle, D., Schultze, J.W.: Electrochim. Acta 31 (1986) 991. Stolberg, L., Richer, J., Irish, D.E., Lipkowski, J.: J. Electroanal. Chem. 207 (1986) 213. Stolberg, D.E., Irish, J., Lipkowski, J.: Electroanal. Chem. 238 (1987) 333. Tucceri, R.I., Posadas, D.: Electrochim. Acta 32 (1987) 27. Borkowska, Z.: J. Electroanal. Chem. 246 (1988) 423. Milkowska, M.: Electrochim. Acta 33 (1988) 161. Popov, A., Velev, O., Vitanov, T.: J. Electroanal. Chem. 256 (1988) 405. Richer, J., Lipkowski, J.: J. Electroanal. Chem. 251 (1988) 217. Holze, R., Fischer, G.: DECHEMA-Monogr. 117, Weinheim: VCH, 1989, p. 331. Nguyen Van Huong, C.: J. Electroanal. Chem. 264 (1989) 247. Schomaker, S.: Diplomarbeit, Universität Oldenburg, 1989. Holze, R., Schomaker, S.: Electrochim. Acta 35 (1990) 613. Jarzabek, G.: J. Electroanal. Chem. 294 (1990) 253. Moncelli, M.R., Guidelli, R.: J. Electroanal. Chem. 295 (1990) 239. Moncelli, M.R., Foresti, M.L., Guidelli, R.: J. Electroanal. Chem. 295 (1990) 225. Pape, U.: unpublished results, Oldenburg, 1990. Richer, J.: Ph.D. Thesis, University of Guelph, 1990. Stolberg, L., Lipkowski, J., Irish, D.E.: J. Electroanal. Chem. 296 (1990) 171. Obraztsov, V.B., Parfenov, Yu.A., Danilov, F.I.: Elektrokhimiya 27 (1991) 980. Pezzatini, G., Foresti, M.L., Moncelli, M.R., Guidelli, R.: J. Colloid Interface Sci. 146 (1991) 452. Stolberg, L., Morin, S., Lipkowski, J., Irish, D.E.: J. Electroanal. Chem. 307 (1991) 241. Wandlowski, T.: J. Electroanal. Chem. 312 (1991) 245. Bockris, J.O'M, Jeng, K.T.: J. Electroanal. Chem. 330 (1992) 541. Jurkiewicz-Herbich, M.: J. Electroanal. Chem. 332 (1992) 265. Richer, J., Iannelli, A., Lipkowski, J.: J. Electroanal. Chem. 324 (1992) 339. Skoluda, P., Dutkiewicz, E.: Electrochim. Acta 37 (1992) 75. Skoluda, P., Dutkiewicz, E.: J. Electroanal. Chem. 329 (1992) 279. Stolberg, L., Lipkowski, J., Irish, D.E.: J. Electroanal. Chem. 322 (1992) 357. Foresti, M.L., Mocelli, M.R.: J. Electroanal. Chem. 348 (1993) 429. àuczak, T., Beátowska-Brzezinska, M., Holze, R.: Electrochim. Acta 38 (1993) 717. Otero, L., Vettorazzi, N., Barbero, C., Miras, M.C., Silber, J.J., Sereno, L.: J. Electroanal. Chem. 350 (1993) 251. Brzostowska-Smolska, M.: Pol. J. Chem. 68 (1994) 1379. Doubova, L.M., Valcher, S. Trasatti, S.: J. Electroanal. Chem. 376 (1994) 73. Iannelli, A., Merza, J., Lipkowski, J.: J. Electroanal. Chem. 376 (1994) 49. àuczak, T., Holze, R., Beátowska-Brzezinska, M.: Electroanalysis 6 (1994) 773. Lust, E.J., Jänes, A.A.-Ja.: Elektrokhimiya 30 (1994) 357. Sottomayor, M.J., Silva, F.: J. Electroanal. Chem. 376 (1994) 59. Zelenay, P., Waszczuk, P., Dobrowolska, K., Sobkwoski, J.: Electrochim. Acta 39 (1994) 655.
R4 95Luc1 95Luc2 95Shi 95Sob 95Was 95Yan 96Dut 96Lus2 96Shi 96Sta 96Vää 96Wan1 96Wan2 97Dam1 97Dam2 97Ian 97Jur 97Lus2 97Lus3 97Lus4 97Rog 97Sil 98Bel 98Hat 98Lus 98Mil 98Vää 99Dur 99Jän1 99Jän2 99Vää1 99Vää2 00Gas 00Lus 00Vää 01Dou 01Jän 01Li 01Luk 01Nur 01Slo 01Vää1 01Vää2 02Buk 02Jur 02Lus
àuczak, T., Beátowska-Brzezinska, M., Holze, R.: Electroanalysis 7 (1995) 251. àuczak, T.: Thesis, University of Poznan, 1995. Shi, Z.H., Lipkowski, J., Mirwald, S., Pettinger, B.: J. Electroanal. Chem. 396 (1995) 115. Sobkowski, J., Waszczuk, P., Zelenay, P.: Elektrokhimiya 31 (1995) 920. Waszczuk, P., Zelenay, P., Sobkowski, J.: Electrochim. Acta 40 (1995) 1717. Yang, D., Lipkowski, J.: Elektrokhimiya 31 (1995) 836. Dutkiewicz, E., Skoluda, P.: J. Chem. Soc. Faraday Trans. 92 (1996) 3763. Lust, E., Jänes, A., Lust, K., Miidla, P.: J. Electroanal. Chem. 413 (1996) 175. Shi, Z., Lipkowski, J., Mirwald, S., Pettinger, B.: J. Chem. Soc. Faraday Trans. 92 (1996) 3737. Standke, C.: Diploma Thesis, Technische Universität Chemnitz-Zwickau, 1996. Väärtnôu, M., Pärsimägi, P., Lust, E.: J. Electroanal. Chem. 407 (1996) 227. Wandlowski, T., Hölzle, M.H.: Langmuir 12 (1996) 6597. Wandlowski, T., Hölzle, M.H.: Langmuir 12 (1996) 6604. Damaskin, B.B., Safonov, V.A., Baturina, O.A.: Elektrokhimiya 33 (1997) 117. Damaskin, B.B., Baturina, O.A.: Elektrokhimiya 33 (1997) 1141. Iannelli, A., Brolo, A.G., Irish, D.E., Lipkowski, J.: Can. J. Chem. 75 (1997) 1694. Jurkiewicz-Herbich, M., Muszalska, A., Slojkowska, R.: Electrochemical Society Meeting 97-2, Paris, France, 1.-5.9.1997, Ext. Abstr. p. 1068. Lust, E., Jänes, A., Lust, K., Miidla, P.: Electrochim. Acta 42 (1997) 771. Lust, E., Jänes, A., Miidla, P., Lust, K.: J. Electroanal. Chem. 425 (1997) 25. Lust, E., Jänes, A., Lust, K.: J. Electroanal. Chem. 436 (1997) 141. Rogozhnikov, N.A., Beck, R.Y.: J. Electroanal. Chem. 434 (1997) 19. Silva, F., Sottomayor, M.J., Coelho, V.: Electrochemical Society Meeting 97-2, Paris, France, 1.-5.9.1997, Ext. Abstr. p. 956. Beátowska-Brzezinska, M., àuczak, T., Holze, R.: Surf. Sci. 418 (1998) 281. Hatchett, D.W., Uibel, R.H., Stevenson, K.J., Harris, J.M., White, H.S.: J. Am. Chem. Soc. 120 (1998) 1062. Lust, E., Jänes, A., Lust, K.: J. Electroanal. Chem. 449 (1998) 153. Milkowska, M., Jurkiewicz-Herbich, M.: Pol. J. Chem. 72 (1998) 1096. Väärtnôu, M., Lust, E.: J. Electroanal. Chem. 445 (1998) 165. Durnie, W., De Marco, R., Kinsella, B., Jefferson, A.: J. Electrochem. Soc. 146 (1999) 1751. Jänes, A., Vagel, A., Miidla, P., Lust, E.: Ext. Abstracts of 50th ISE-Meeting, Pavia, Italy, September 5th-10th, 1999, Abstract 2-466. Jänes, A., Miidla, P., Lust, E.: J. Solid State Electrochem. 3 (1999) 277. Väärtnõu, M., Lust, E.: J. Electroanal. Chem. 469 (1999) 182. Väärtnõu, M., Lust, E.: Electrochim. Acta 44 (1999) 2437. Gasparac, R., Martin, C.R., Stupnisek-Lisac, E.: J. Electrochem. Soc. 147 (2000) 548. Lust, K., Väärtnou, M., Lust, E.: Electrochim. Acta 45 (2000) 3543. Väärtnõu, M., Lust, E.: Electrochim. Acta 45 (2000) 1623. Doubova, L.M., De Battista, A., Daolio, S., Trasatti, S.: J. Electroanal. Chem. 500 (2001) 134. Jänes, A., Lust, E.: Electrochim. Acta 47 (2001) 967. Li, H.-Q., Chen, A., Roscoe, S.G., Lipkowski, J.: J. Electroanal. Chem. 500 (2001) 299. àukomska, A., Smolinski, S., Sobkwoski, J.: Electrochim. Acta 46 (2001) 3111. Nurk, G., Jänes, A., Miidla, P., Lust, K., Lust, E.: J. Electroanal. Chem. 515 (2001) 33. Slojkowska, R., Jurkiewicz-Herbich, M.: Colloids Surf. 178 (2001) 325. Väärtnõu, M., Lust, E.: J. Electroanal. Chem. 499 (2001) 136. Väärtnõu, M., Lust, E.: Electrochim. Acta 47 (2001) 997. Bukowska, J., Calvo, M., Jurkiewicz-Herbich, M., Jackowska, K.: Pol. J. Chem. 76 (2002) 1151. Jurkiewicz-Herbich, M., Milkowska, M., Slojkowska, R.: Colloids Surf. A 197 (2002) 235. Lust, K., Väärtnõu, M., Lust, E.: J. Electroanal. Chem. 532 (2002) 303
Landolt-Börnstein New Series IV/9A
R5 03Jän 05Eme 05Kas 06Bou 06Luk 06Vää
Landolt-Börnstein New Series IV/9A
Jänes, A., Miidla, P., Lust, E.: J. Solid State Electrochem. 7 (2003) 189. Emets, V.V., Damaskin, B.B.: J. Electroanal. Chem. 582 (2005) 97. Kasuk, H., Nurk, G., Lust, K., Lust, E.: J. Electroanal. Chem. 580 (2005) 128. Bouklah, M., Hammouti, B., Lagrenée, M., Bentiss, F.: Corros. Sci. 48 (2006) 2831. àukomska, A., Sobkowski, J.: J. Electroanal. Chem. 592 (2006) 68. Väärtnõu, M., Lust, E.: J. Electroanal. Chem. 587 (2006) 220.
264
5 Exchange current densities
5 Exchange current densities
5.1 Kinetics of electrode processes at an electrode in contact with an electrolyte solution 1) In a simplified electrode reaction of the form Ox + n e – → Red
(5.1)
an oxidized species Ox is reduced by a transfer of n electrons from the electrode onto the species forming the reduced species Red. The number n of electrons transferred is sometimes called reaction valency. An electrode reaction is always a heterogeneous reaction; its rate is assumed to be proportional to the surface area A. With ξ designating the extent of the reaction the rate divided by the surface area is v=
1 dξ = va − vc A dt
(5.2)
with va and vc denoting the rate of the oxidation (anodic) and the reduction (cathodic) reaction. In the following text as well as in the tables it is assumed (if not explicitly stated otherwise), that with a single rate determining step a number of n electrons is transferred and a stochiometric number υ of generated/consumed species of the transition state is passed in the process of the electrode reaction. The total Faradaic current density (given in A cm–2) is composed of the anodic current density ja and the cathodic current density jc according to j = ja + j c
(5.3)
with the partial current densities related to the corresponding reaction rates ja =nFva
(5.4)
jc =−nFvc
(5.5)
and
By definition a current of positive charge (an oxidation reaction) is taken as a positive current, a current of negative charge (a reduction reaction) is taken as a negative current. When the electrode is at equilibrium, the net current density j equals zero. This implies, that j a = jc = j0
1)
(5.6)
As outlined in chapter 1 the term „electrode“ is used - contrary to the suggestion of W. Nernst - to designate the electronically conducting phase only, the term „electrolyte solution“ covers all types of ionically conducting phases (solutions, melts, solids) being in contact with the former phase.
Landolt-Börnstein New Series IV/9A
5 Exchange current densities
265
This exchange current j0 density shows a characteristic value for a given reacting species, electrolyte solution composition and electrode material, in addition it depends on the concentration of the reacting species. Other exchange current densities related to surface properties like e.g. surface step or dislocation densities have been reported [74Vit2], they are not included in the following tables. The relationship between these various currents and the electrode potential is given by the Butler-Volmer-equation, a complete treatment of this equation has been provided by various authors elsewhere [80Bar2, 01Bar]. In order to obtain values of j0 which can be compared directly without regard to different reactant concentrations a standard exchange current density j00 has been defined, which refers to a reactant concentration of 1 mol L–1 (for the definition see below). This current density has also been called conditional exchange current density j0 (see e.g. [75Tam]). Unfortunately there are numerous examples, where the values of j00 calculated from values of j0 obtained at various reactant concentrations do not agree. Consequently in the table reported below values of j00 are listed only when reported by the authors. When the partial current density is found to be proportional to the concentration of a reactant ci or the product of concentrations of several reactants Π cν i with νi being the reaction order with respect to ci, an electrochemical rate constant i
i
for the anodic reaction kox = ja / nF Πi ciν i
(5.7)
and for the cathodic reaction kred = jc / nF Πi ciν i
(5.8)
can be defined. With Σ being the overall reaction order (the sum of all ν i ) the electrochemical rate constant has the dimension mol(1–Σ)cm(3Σ–2)s–1. For a first order reaction the dimensions are cm s–1. In addition to the exchange current density the transfer coefficient α is needed to describe the relationship between the electrode potential and the current flowing across the electrode/solution interface. From a formal point of view α can be obtained by calculating the partial current densities with respect to the electrode potential for the anodic reaction:
α a /ν =( RT / nF )( ∂ln ja / ∂E ) T,p,ci = ( RT / nF )( ∂lnk ox / ∂E ) T,p
(5.9)
and for the cathodic reaction
α c /ν =−( RT / nF )( ∂ln jc / ∂E ) T,p,ci =( RT / nF )( ∂lnk red / ∂E ) T,p
(5.10)
From a kinetic point of view α describes the influence of a change of the electrode potential on the energy of activation for the charge transfer reaction which in turn influences the partial current density. The transfer coefficients αa for the anodic charge transfer reaction and αc for the cathodic reaction add up according to
αa + αc = 1
(5.11)
Assuming αa + αc to be independent of the electrode potential integration of (5.9) and (5.10) yields 0 exp(α nFE / RT ) k ox = k ox a
(5.12)
0 exp( −α nFE / RT ) k red = k red c
(5.13)
and
0 and k 0 being the rate constant at E = 0 V with respect to a reference electrode. These values with k ox red
are sometimes reported for electrode reactions with unknown equilibrium potentials. A closely related rate constant also reported sometimes is the apparent rate constant kapp. This constant is calculated from the observed current I at a selected electrode potential, the surface area of the electrode A and the surface concentrations cs of the reacting species according to Landolt-Börnstein New Series IV/9A
266
5 Exchange current densities kapp = I/FAcs
(5.14)
The surface concentration cs can be obtained in various ways. With cyclic voltammetry cs can be determined according to cs = cb [(I1 – I)/I1]
(5.15)
with cb being the bulk reactant concentration; I1 being the peak current in the voltammogram and I being the current in the rising part of the current wave [80Bar1]. This rate constant varies with electrode potential, thus a precise comparison of values is possible only when the electrode potential is known. A conditional electrode reaction rate constant 2) k c0 which is defined as the common value of the anodic and cathodic rate constants at the conditional electrode potential E0' is given according to k c0 = k ox /exp[α a nF ( E − E 0' )/ RT ]
(5.16)
k c0 = k red /exp[ −α c nF ( E − E 0' )/ RT ]
(5.17)
and
It should be kept in mind, that these rate constants are defined based on the volume concentrations of the reacting species. Another standard rate constant k0 can be defined with regard to the rate of the reaction at the standard electrode potential of the electrode reaction. This rate constant refers consequently to standard activities instead of concentrations. As a result of polarographic investigations using e.g. a dropping mercury electrode electrochemical rate constants at the half wave potential E1/2 are reported: k1/2 = k red /exp[ −α c nf ( E − E1/2 )/ RT ]
(5.18)
If the reaction is diffusion controlled, i.e. the charge transfer is fast compared to reactant transport, the value of k1/2 is equal to k c0 . With the electrochemical rate constant a relationship between the exchange current density, the electrochemical rate constant and the concentration of the reacting species can be derived: j0 =nFcred k ox /exp(α a nFη/ RT )
(5.19)
j0 =nFcox k red /exp( −α c nFη/ RT )
(5.20)
and
with the overpotential η = E – E0. With (5.11) the conditional electrode reaction rate constant (5.17) and (5.18) can be fused α
α
j0 = nFk c0 coxa credc
(5.21)
The standard (conditional) exchange current density can be rewritten accordingly: 0 )α a (c 0 )α c j00 = nFk c0 (cox red
(5.22)
wherein ci0 is the standard concentration (usually 1 mol dm–1). In order to obtain an electrochemical quantity not depending on the actual reactant concentration (as the rate constant k0) the exchange current density j0 can be converted into the standard exchange current density j00 according to α
α
j0 = j00 coxa credc (c # ) −1
(5.23)
Landolt-Börnstein New Series IV/9A
5 Exchange current densities
267
Unfortunately there are numerous examples in the literature where conversion of values of j0 obtained at various concentrations did not result in the same value of the standard exchange current density j00 (e.g. 83Kaw]). Further relationships have been discussed elsewhere [64Tan, 70Mat]. Compilations of exchange current densities j0 or the corresponding kinetic parameter k0 etc. have been published only sparingly [64Tan, 75Tam]. Relationships between the rate of an electrochemical reaction and other properties of the participating materials and species like e.g. the work function or electronic properties of the metal acting as an electrode have been discussed elsewhere [57Con1, 72Tra, 77Tra], the influence of the energies of the hydrogen-platinum bond on the exchange current density has been treated using density functional theory [05Nor]. Relationships between electrode kinetics (including j0) and Epzc have been discussed [70Khe]. The way the electron is actually passing the phase boundary, the influence of interactions between the electrode and the reacting species (inner-sphere versus outer-sphere reaction [76Wea, 96Tor, 01Wea]) and the mechanism of processes closely associated with the electron transfer itself (i.e. the electrode reaction mechanism) will not be considered in this text.
5.2 Methods for the determination of exchange current densities Current density versus electrode potential curves (current-potential curves) At an electrode immersed in an electrolyte solution a rest electrode potential will be established provided that a potential determining electrode reaction can take place (e.g. at the interface between a copper wire and a copper ion-containing solution or at the interface between a platinum wire and an electrolyte solution containing both iron(II)- and iron(III)-ions). If this electrode is connected to a suitable electronic device (i.e. a potentiostat) a change of this electrode potential can be effected by forcing an electric current of sign and magnitude appropriate to change the interfacial concentration of those species through the electrode/solution interface. Various steps of the overall electrode process may limit this current and may thus interfere with the establishment of the desired electrode potential. Provided that the charge transfer is the rate determining step the relationship between current density and electrode potential is given by the Butler-Volmer-equation [80Bar2, 01Bar]. At deviations from the rest potential, small enough to avoid transport to become the rate controlling step and large enough to neglect the corresponding back reaction, mathematic simplification results in a linearized form of this equation (Tafel approximation). From respective plots of current density and electrode potential the exchange current density and the transfer coefficient can be derived. An experimental procedure for measurements with a dropping mercury electrode involving photographic determination of drop size and surface area has been described [64But1]. (Data obtained with this method are labelled CP.) Cyclic voltammetry Beyond applying a fixed electrode potential different from the rest potential various other time dependent potential changes are feasible. In an experimental approach widely used the electrode potential is changed linearly with time. Upper and lower potential limits are fixed, thus the change of the electrode potential plotted as a function of time yields a triangular plot. Thus this methods is frequently called triangular voltage sweep method. Since the potential is cycled between these limits and since the potential (in volts) and the current (in ampere) are recorded, the method is also called cyclic voltammetry. In the presence of a redox couple in the electrolyte solution typical voltammograms with current peaks are obtained which provide the information needed for the calculation of electrode reaction rate constants. An introduction to the method was provided by Nicholson [65Nic]. For reviews see [84Hei2, 89Bon]. High speed cyclic voltammetry [88Wip] has been reviewed by Wightman and Wipf [90Wig]. The suitability of microelectrodes in cyclic voltammetry in particular at low temperatures has been discussed [92Saf]. As the term voltammetry itself can be applied to a broad variety of methods, where the fundamental principle (i.e. reLandolt-Börnstein New Series IV/9A
268
5 Exchange current densities
cording the flowing current as a function of the electrode potential) is combined with different methodological variations (i.e. modulation of the electrode potential with an additional signal), there are numerous „voltammetries“. They are treated in the appropriate context of the additional modification below (e.g. AC voltammetry). (Data obtained with the basic method are labelled CV.) Thin-layer voltammetry Cyclic voltammetry as described above can be performed in an electrochemical cell wherein the solution volume is confined to a space of a few micrometers thickness between the flat working electrode and an inert plate mounted adjacent to the working electrode. Connection to the counter and reference electrode is made by inserting the assembly into the electrolyte solution contained in a standard electrochemical cell. Because of the thin liquid film enclosed between working electrode and inert plate diffusional transport of solution species from within the bulk solution is impeded. At sufficiently low scan rates (dE/dt < 2 mV s–1) and electrolyte layer thickness (d < 4·10–3 cm) the reactant concentration at the electrode surface will differ only negligibly from the bulk concentration. The amount of species converted electrochemically within the time frame of a potential sweep is thus limited to the amount of liquid confined in the said volume. When the species under investigation undergoes an electrode reaction wherein the species converted from a given state of oxidation into another one can be converted back into its initial state (this criterion has been called sometimes misleadingly „reversibility“) the potential splitting between the oxidation and reduction peak can be used to calculate the rate of reaction. For further information and reviews see [66Hub, 69Hub, 70Hub, 72Lai]. (Data obtained with this method are labelled TLV.) Coulostatic method In the absence of an external current flowing across the solution/electrode interface the electrochemical interface can be treated in good approximation as a capacity (i.e. the double layer capacity) connected in parallel to a resistor (i.e. the charge transfer resistance). Any electrical charge brought onto the capacity will be discharged into the resistance. The rate of discharge will depend on the magnitude of the resistance; the latter being directly related to the exchange current j0. The charging of the double layer is done in various ways, the duration of the charging process has to be sufficiently short in order to avoid any appreciable concentration perturbation because of the electrolysis taking place. The potential-time curves recorded after the charging are evaluated resulting in the desired kinetic parameters [62Del1, 62Del2, 62Del3, 62Rei1, 62Rei2]. A consideration of the limitations of this method has been reported [67Koo2]. The method has also been called coulostatic relaxation method. (Data obtained with this method are labelled CS.) Potential step method A sudden change of the electrode potential (i.e. a potential step, sometimes less precisely called voltage step) applied by e.g. a potentiostat results in a current flow needed to change the concentration of the species involved in the electrode potential determining reaction to the new values determined by the new value of the electrode potential. An additional current flow is needed to charge the electrochemical double layer capacitance to the new value. The latter process is accomplished within usually 10–3 s. During a brief period of time following immediately the charging time the potential-time relationship is controlled predominantly by the charge transfer process. A plot of the measured current versus t –1/2 extrapolated for t = 0 s for various values of ΔE yields the relationship of charge transfer overpotential versus charge transfer current, which in turn provides the desired exchange current density j0 [54Lor, 55Ger1, 55Ger2, 57Vie]. A treatment taking into account double layer effects has been reported [69Tan1], the method has also been simply called potentiostatic method. An experimental approach employing two matching electrochemical cells (only one containing the species dissolved in the supporting electrolyte solution being present in both cells), wherein the difference in response to the potential step is recorded (thus the method has been termed differential potentiostatic technique) has been described [64Bon]. (Data obtained with this method are labelled PS.) Landolt-Börnstein New Series IV/9A
5 Exchange current densities
269
Cyclic potential step method Based on an evaluation of the drawbacks and limitations of the established potential step methods Smit and Wijnen [60Smi, 60Wij2] have developed a method wherein a cyclic potential-step is applied to a polarizable electrode. Mathematical treatment of the current response predicts a rapidly established constant pattern. This prediction is free from limitations pertaining to reversibility of the electrochemical system [54Kam, 56Kou] or amplitude of the potential perturbation (compare with e.g. AC and square wave polarography [58Bar2, 58Mat]). Exchange current densities and transfer coefficients can be obtained. (Data obtained with this method are labelled CPS.) Impedance method The measurement of the electrode impedance has also been called Faradaic impedance method. Since measurements are possible by applying either an electrode potential modulated by an AC voltage of discrete frequency (which is varied subsequently) or by applying a mix of frequencies (pink noise, white noise) followed by Fourier transform analysis, the former method is sometimes called AC impedance method. The optimization of this method for the use with ultramicroelectrodes has been described [91Bar1]. (Data obtained with these methods are labelled IP.) Faradaic rectification When the electrode potential of the working electrode is modulated with a sinusoidal alternating current, the mean potential is shifted by a small increment in many cases. This effect has been named Faradaic rectification, it is caused by the non-linearity of the proceeding electrode processes, in particular their variation of rate with the electrode potential [51Dos2, 54Hil, 57Old, 71Aga, 94Gal]. A theoretical treatment of an electrode in contact with a solution containing a redox system has been provided [57Old, 51Dos3, 51Dos4, 52Dos2]. It was extended to reactions where one reactant is present in its elementary form dispersed throughout a metallic liquid phase (e.g. Cd2+ → Cd(Hg)) [58Bar1]. An improved evaluation technique has been proposed [67deL], some inherent problems have been reviewed [60Bau]. A variant of this method applied to polarography has been described by van der Pol et al. [73Pol]. The measurement of the second harmonic in AC polarography (see below) has been described, the approach closely resembles Faradaic rectification [66Bau]. (Data obtained with all variants of the Faradaic rectification method are labelled FR.) Faradaic distortion method When a pure sinusoidal AC current passes across the electrode/solution interface, the cell voltage (a two electrode arrangement is used) shows a sinusoidal perturbation. It contains multiples of the fundamental frequency of the modulation, the first harmonic dominates. The magnitude of the effect is comparable to Faradaic rectification, but experiments may be easier to perform. Measurement and evaluation have been described in detail [60Old, 72Hil2]. (Data obtained with this method are labelled FD.)
Galvanostatic method The potential of an electrode being initially at equilibrium (i.e. no net current is flowing across the electrochemical interface) is shifted when a constant current is applied. Recording the change of the electrode potential as a function of time after turning-on of the current (i.e. applying a current step) results in curves, which yield the desired kinetic data. Since only the initial part of the curve is of interest (in this time domain transport etc. does not influence the current-overpotential relationship) a fast electronic current switch is required. Instead of only switching on the current a current pulse of defined duration can be applied, in this case the method is called galvanostatic single pulse method [55Ber1, 55Ber2], for details
Landolt-Börnstein New Series IV/9A
270
5 Exchange current densities
see below. A consideration of the limitations of this method has been reported [67Koo2]. (Data obtained with this method are labelled GM.) Galvanostatic single pulse method An electrochemical system (i.e. an electrode) can be displaced from its equilibrium situation by applying a current pulse or step. From the electrode potential response kinetic data pertaining to the redox system present at the electrode/solution interface (j0 and α) can be derived [55Ger1, 55Ger2, 55Ber1, 55Ber2, 55Ber3]. In addition to the change of the electrode potential this pulse or step also charges the double layer capacitance. The actual value of the differential capacitance of the double layer can be extracted from the charging curve. From the subsequent relaxation of the electrode potential the charge transfer resistance can be calculated taking into account the already obtained value of the double layer capacitance. By limiting the pulse duration to very short values (ns to μs) the supplied electrical charge can be kept very low, consequently mass-transport contributions need not be taken into account. Infrequently this method has been called 'current impulse relaxation technique' [67Wei1, 67Wei2]. Further details can be found elsewhere [67Wei1, 69Dau]. (Data obtained with this method are labelled GS.) Galvanostatic double pulse method The current flowing across the interface between the electronically conducting phase (electrode) and the ionically conducting phase (electrolyte solution etc.) causes a deviation of the electrode potential from its rest value in the absence of a net current to a new value. The difference is called overpotential; it is attributed to the limited rate of the involved steps of the overall electrode process. The aim of many experimental methods used for the measurement of the rate of the electrochemical charge transfer is to exclude the unwanted influence of all other steps than the central charge transfer step. A sudden change (e.g. from zero to a given value) of the current flowing across the interface effected by a suitable instrument (a galvanostat) will result in a current immediately after the step which is only limited by the rate of the charge transfer because all other steps of the electrode reaction are still almost in equilibrium. Evaluation of the potential-time transients should yield the charge transfer overvoltage from the relationship between applied current and observed initial overpotential, which can be combined with the applied current to yield the charge transfer resistance and finally the exchange current density Rct =
RT nFj0
(5.24)
Unfortunately the sudden change in current and potential causes a substantial charging current necessary to adapt the electrochemical double layer to the new electrode potential. This distorts the potential-time transients in the crucial initial period. Gerischer and Krause have developed a method which provides a short pulse of a large current used predominantly to charge the double layer practically without affecting the concentration of the reactant followed by a second much smaller current step [57Ger2]. At the beginning of the second step the slope of the potential-time transient should be zero, from the relationship between the measured potential and the applied current the charge transfer resistance etc. can be calculated. A proper match of time and duration of the first pulse has to be found by trial and error. (Data obtained with this method are labelled GD.) Galvanostatic current interruption Interruption of the galvanostatically controlled current flowing across the electrode/solution interface results in potential-time curves which can be evaluated in order to obtain values of j0 [70New]. An experimental setup has been described [87Wru]. (Data obtained with this method are labelled GCI.) A method based on the oscillographic observation of the response after current interruption or turning-on suitable for its interpretation taking into account the effect of side reactions on potential-time curves has been described [59Khe, 61Zin]. (Data obtained with this method are labelled OCS.)
Landolt-Börnstein New Series IV/9A
5 Exchange current densities
271
Cyclic current step method The inherent drawbacks and limitations of current step and pulse methods (e.g. need of photographic recording or transients recorders, influence of double layer capacitance) have caused further developments including the application of a cyclic current square wave. The observed cell response reaches a steady state very soon and can be inspected easily with an oscilloscope. Exchange current density and double layer capacitance can be obtained. A mathematical treatment for a symmetrical square wave and a cyclic state of the cell response has been provided by Berzins and Delahay [55Ber3]. An extended treatment including asymmetric square waves applicable even when the cell response has not yet attained a steady state has been reported by Wijnen and Smit [60Wij1, 60Wij2, 60Wij3]. This method (together with the cyclic potential step method) has been infrequently called oscilloscopic square wave method [66Tep1, 66Tep2, 68Tep]. (Data obtained with this method are labelled CCS.) Dropping mercury electrode The dropping electrode, in particular used with mercury and with amalgams, has been frequently employed in kinetic studies [66But3]. Data obtained with this electrode/method are labelled DME, if no specific technique is applied that is more helpful in qualifying the obtained data. Open-circuit method When the area A of the electrode/solution interface with a redox system in the solution varies (e.g. when using a streaming mercury electrode), the double layer capacity which is proportional to A, varies too. The corresponding double layer charging current has to be supplied at open circuit conditions by the Faradaic current of the redox reaction. The associated overpotential can be measured with respect to a reference electrode. By measuring the overpotential at different capacitive current densities (i.e. Faradaic current densities) the current density vs. electrode potential relationship can be determined, subsequently kinetic data can be obtained [65Del3]. (Data obtained with this method are labelled OC.) Chronopotentiometry A constant current flowing across the electrolyte solution/electrode interface causes a potential shift because of the changing concentrations of educts and products, which are consumed and generated respectively. The change of the electrode potential as a function of time is recorded in a chronopotentiometric experiment. Depending on the rate of the electrode reaction various mathematical treatments are possible providing access to rate constants; for details see e.g. [01Bar]. (Data obtained with this method are labelled CH.) Chronocoulometric method When the potential of an electrode is switched from a value, where an electrode reaction under investigation proceeds at a negligible rate, to a value, where the rate is measurable, a charge-time behavior can be observed, which contains besides numerous other electrochemical parameters the rate constant of the electrode reaction. Details and a complete derivation have been given elsewhere [73Rod, 75Wea, 76Wea] (Data obtained with this method are labelled CM.)
Landolt-Börnstein New Series IV/9A
272
5 Exchange current densities
Direct current polarography Kinetic data especially of slow electrode reactions can be extracted from polarographic curves obtained with direct current polarography (DC polarography) and a dropping mercury electrode (DME, see entry above). A complete review of the fundamentals of polarography including the use of DC polarography for the derivation of values of i0 has been provided [60Sta, 65Hey, 53Del]. Equations describing the current potential relationship useful for the derivation of i0 have been reported [65Del2]. The analysis of irreversible waves has been described by Koutecky and Weber [53Kou, 55Web]. The term polarography basically refers to a method, where the current flowing across the electrochemical interface is recorded as a function of the applied electrode potential, historically in most cases a mercury electrode is involved. Thus polarography might be called also voltammetry. This sometimes results in confusing terms like e.g. AC voltammetry, which is obviously equivalent to AC polarography (see following entry). (Data obtained with this method are labelled DCP.) Alternating current polarography Superposition of a small amplitude AC voltage on the DC ramp in a polarographic or voltammetric experiment results in an alternating current added to the direct current. Analysis of the AC part as a function of the applied electrode (DC) potentials yields kinetic information about the proceeding electrode process [58Mat, 58Bau]. An advanced technique, wherein an excitation signal composed of several discrete, noncoherent frequencies is supplied to the electrochemical cell and the response is measured at every frequency simultaneously using appropriately tuned electronic circuits (the method is termed AC polarography in the non-coherent wave frequency mode), has been reported [72Hue]. A combination of the Faradaic rectification method with polarography has been described by van der Pol et al.; for theoretical and experimental details see [73Pol]; results obtained with this method are designated FR. For alternating current harmonics methods, i.e. the measurement of the second harmonic in AC polarography [66Bau] see above because of the similarities with Faradaic rectification. (All data obtained with AC polarographies and voltammetry are labelled ACP.) Oscillographic polarography Application of a suitable electrode potential to a small electrode immersed in a solution containing a low concentration of an electrochemically active species with a large concentration of an indifferent supporting electrolyte can result in a diffusion controlled flow. Sudden application of this potential results in an initially large current which decreases with time according to the growing diffusion-layer thickness. Using a sufficiently fast recording device (e.g. a cathode ray oscilloscope (i.e. an oscillograph)) the time-dependent current-potential relationship can be recorded. Essentially the same information obtained from a polarogram recorded within about ten minutes can be obtained here within a few seconds. The form of the obtained curves and their evaluation have been described [48Ran, 48Sev, 55Mat]. (Data obtained with this method are labelled OP.) Pulse polarography Theoretical treatment of polarographic curves for the calculation of values of j0 has been described [65Hey, 66Hey], for an overview see [94Gal], a further evaluation procedure has been described [68Old]. Experimental details, in particular of solid electrodes in combination with a rotating disk electrode have been reported elsewhere [84Guy]. (Data obtained with this method are labelled PP.)
Miscellaneous polarographic methods Beyond specific polarographic techniques variations of these methods have been developed aiming at simplified and fast evaluation using modified measurement procedures and data processing. Oldham and Landolt-Börnstein New Series IV/9A
5 Exchange current densities
273
Parry have described procedures to determine the kinetic parameters of totally irreversible electrode processes using various polarographic techniques [68Old]. (Data obtained with these methods are collectively labelled POL.) Rotating disc electrode The current flowing across an electrochemical interface is in most cases controlled or at least influenced by transport limitations. A determination of a pure charge transfer overpotential or charge transfer current is thus hampered. This problem may be solved either by providing unlimited reactant supply (which is impossible) or by providing a reactant supply which can be mathematically treated. This treatment can be used to remove the transport contribution from the experimental data. So far the reactant flow towards a rotating disc electrode and the turbulent flow within a tube or a channel (see below) have been described mathematically with sufficient precision. In case of a rotating disc electrode the active electrode area is disc shaped and embedded in the front end of a rod of insulating material. Rotation of the rod drags the fluid along the rod surface, the effective centrifugal force flings the solution outwards, and fresh solution from the bulk is flows normal to the disk surface. The hydrodynamic and the convective-diffusion equations have been solved rigorously for this system [62Lev, 71Alb, 76Ple, 84Fil]. By extrapolating current versus rate of rotation data obtained at various overpotentials towards infinite rates the transport contribution can be eliminated and pure charge transfer controlled data become available resulting finally in values of j0. (Data obtained with this method are labelled RDE.) Controlled hydrodynamic convection Alternatively controlled hydrodynamic convection can be achieved by using a rotating bucket (electrochemical cell) or a controlled electrolyte flow and a stationary electrode [55Jor, 62Los1, 62Jor]. The evaluation of cyclic voltammograms obtained with a stationary electrode exposed to a flowing electrolyte solution moved by a rotating disc has been treated in detail [60Oza1, 60Oza2, 68Suz, 69Suz, 70Suz]. The method has been called hydrodynamic voltammetry; the electrode has been named 'convection electrode'. A setup suitable for liqud metal electrodes has been described [64Suz]. In order to minimize transport control limiting the charge transfer reaction forced convection can be achieved by using a rotating metal wire as a working electrode [50Ger]. (Data obtained with this method are labelled CF). Turbulent pipe flow Beside laminar flow created by e.g. a rotating disc electrode turbulent flow provides a means of artificially enhanced transport. A consistent mathematical description and analytical treatment of this mode of transportation is not possible. Various approximations have been proposed and tested for correctness [84Bar1], an experimental setup has been described [78Ber, 83Her, 83Iwa]. From comparisons of measured and calculated current density vs. electrode potential relationships exchange current densities are available. (Data obtained with this method are labelled TPF.) Stirred solution Steady state polarization curves showing the dependence of the electrode potential vs. the current flowing across the solution or electrolyte melt/electrode interface can be recorded in a simple three-electrode arrangement in either the galvanostatic or the potentiostatic mode. In order to minimize transport control limiting the charge transfer reaction, stirring the electrolyte solution can be used to enhance convection artificially [68Boc2]. (Data obtained with this method are labelled SS.)
Landolt-Börnstein New Series IV/9A
274
5 Exchange current densities
Radiotracer (radiochemical) method The electron transfer between an electrode (e.g. a metal) and a corresponding species in solution (e.g. the metal ion) is a dynamic equilibrium process at E = E0 with ja = jc = j0 . This implies a continuous exchange of species between solution and electrode. Such an exchange can be detected and measured with radioactive species (radiotracers) being present initially only in one phase. As a function of time the other phase will become radioactive too. The rate of the increase of radioactivity corresponds to the value of j0. Because of the limited speed of measurements of radioactivity the measurable values of j0 and k c0 are low ( k c0 ≤ 10–2 cm s–1). In case of redox systems like e.g. Ce(III)/Ce(IV) the different solubilities of the involved species in a separate liquid phase can be used for separation. Experimental setups have been described [56Fro1, 63Ric, 63Bom, 63Fio]. (Data obtained with this method are labelled RT.) Derivative cyclic voltabsorptometry Using optically transparent electrodes (OTE) the concentration of light absorbing species formed or consumed during electrochemical reactions can be monitored [84Hei1]. Usually this is done under stationary or quasistationary conditions, i.e. at a constant or at an only slowly changing electrode potential. Results are displayed as absorption A vs. electrode potential E. Instead of the absorption the derivative ∂A /∂E can be registered. The obtained plots closely resemble cyclic voltammograms. Digital simulation of these plots can be used to obtain the rate constant of the involved electrode reaction [81Ban]. (Data obtained with this method are labelled DCVA.) Circular dichroic spectroelectrochemical method Optically active molecules show circular dichroism. Their extinction coefficients ε L and ε R are different and change as a function of wavelength. Using a suitable spectroelectrochemical cell, Δε = ε L – ε R , which is usually small compared to conventional extinction coefficients, can be measured. Combined with the special properties of a thin layer cell kinetic data can be extracted from CD-data [01Liu]. (Data obtained with this method are labelled CD.) Mixed potential method A titration procedure essentially equivalent to the redox titration known from analytical chemistry can be employed to obtain kinetic parameters including rate constants of processes. In a two-compartment cell with an ionically conducting connection (porous glass frit, salt bridge) wire electrodes of the desired electrode material and reference electrodes are mounted in both cells. A supporting electrolyte solution purged with inert gas is filled into both compartments. The reduced (or oxidized) form of the redox system under study is filled into one compartment at a concentration large enough to avoid diffusion limitation. Into the other compartment small amounts of the oxidized (or reduced) form of the opposite couple are added stepwise. Measurements of the current flowing between both electrodes under short-circuit conditions and of the electrode potential of the electrode in the first compartment enables the determination of titration curves, which can be further evaluated in order to obtain the desired kinetic data [70Her]. (Data obtained with this method are labelled MP.) General remarks Because of the outlined difficulties in a simple transformation of the exchange current density j0 into the standard exchange current density j00 or the rate constant k c0 all values are listed as reported in the original literature. The exchange current density is usually reported in units of A cm–2, the rate constant in units of cm s–1. Sometimes the exchange current density or the standard exchange current density are reported in units of A cm mol–1. All values reported below refer to the units outlined initially referring to Landolt-Börnstein New Series IV/9A
5 Exchange current densities
275
molar concentrations. Apparent rate constants kapp are given in parentheses. Since the conditions for calculating kapp are rather complex and detailed, in many cases the reader is referred to the original reports for exact descriptions. Further data treatment of obtained kinetic data (e.g. conversion of the initially calculated rate constant to the value the constant is assumed to reach at a certain different electrode potential (e.g. [72Lai])) is not listed. In case a specific type of electrode (e.g. dropping mercury electrode) is used, nevertheless the employed method is stated preferably. Data are listed according to the alphabetical order of the electrode material. Polycrystalline materials are listed first followed by single crystal samples and amalgam electrodes for every element. Within a given electrode material data are arranged according to the alphabetically listed reactants. Within a given reactant data are listed with increasing concentration of the supporting electrolyte solution. Electrode reactions proceeding at a mercury electrode may be listed at the electrode material (mercury) or at the reduced form of the element undergoing the studied reaction with giving its state as amalgam. In case a reporting author states explicitly the use of an amalgam electrode the latter assignment is used.
Landolt-Börnstein New Series IV/9A
R1
References 48Ran 48Sev 50Ger 51Dos2 51Dos3 51Dos4 52Dos2 53Del 53Kou 54Hil 54Kam 54Lor 55Ber1 55Ber2 55Ber3 55Ger1 55Ger2 55Jor 55Mat 55Web 56Fro1 56Kou 57Con1 57Ger2 57Old 57Vie 58Bar1 58Bar2 58Bau 58Mat 59Khe 60Bau 60Old 60Oza1 60Oza2 60Smi 60Sta 60Wij1 60Wij2 60Wij3 61Zin 62Del1 62Del2 62Del3 62Jor
Landolt-Börnstein New Series IV/9A
Randles, J.E.B.: Trans. Faraday Soc. 44 (1948) 327. Sevcik, A.: Collect. Czech. Chem. Commun. 13 (1948) 349. Gerischer, H.: Z. Elektrochem. 54 (1950) 366. Doss, K.S.G., Agarwal, H.P.: Proc. Indian Acad. Sci. Sect. A 34 (1951) 229. Doss, K.S.G., Agarwal, H.P.: Proc. Indian Acad. Sci. Sect. A 34 (1951) 263. Doss, K.S.G., Agarwal, H.P.: Proc. Indian Acad. Sci. Sect. A 33 (1951) 66. Doss, K.S., Agarwal, H.P.: Proc. Indian Acad. Sci. Sect. A 35 (1952) 45. Delahay, P.: J. Am. Chem. Soc. 75 (1953) 1430. Koutecky, J.: Collect. Czech. Chem. Commun. 18 (1953) 597. Hillson, P.J.: Trans. Faraday Soc. 50 (1954) 385. Kambara, T.: Bull. Chem. Soc. Jpn. 27 (1954) 529. Lorenz, W.: Z. Elektrochem. 58 (1954) 912. Berzins, T., Delahay, P.: J. Am. Chem. Soc. 77 (1955) 6448. Berzins, T., Delahay, P.: J. Chem. Phys. 23 (1955) 972. Berzins, T., Delahay, P.: Z. Elektrochem. 59 (1955) 792. Gerischer, H.: Z. Elektrochem. 59 (1955) 604. Gerischer, H., Vielstich, W.: Z. Phys. Chem. (Frankfurt/Main) 3 (1955) 16. Jordan, J.: Anal. Chem. 27 (1955) 1708. Matsuda, H., Ayabe, Y.: Z. Elektrochem. 59 (1955) 494. Weber, J., Koutecky, J.: Collect. Czech. Chem. Commun. 20 (1955) 980. Fronaeus, S., Östman, C.O.: Acta Chem. Scand. 10 (1956) 769. Koutecky, J.: Collect. Czech. Chem. Commun. 21 (1956) 433. Conway, B.E., Bockris, J.O'M.: J. Chem. Phys. 26 (1957) 532. Gerischer, H., Krause, M.: Z. Phys. Chem. N. F. 10 (1957) 264. Oldham, K.B.: Trans. Faraday Soc. 53 (1957) 80. Vielstich, W., Delahay, P.: J. Am. Chem. Soc. 79 (1957) 1874. Barker, G.C., Faircloth, R.L., Gardner, A.W.: Nature (London) 181 (1958) 247. Barker, G.C.: Anal. Chim. Acta 18 (1958) 118. Bauer, H.H., Elving, P.: Anal. Chem. 30 (1958) 341. Matsuda, H.: Z. Elektrochem. 62 (1958) 977. Kheifets, V.L., Sheinin, A.B.: Zh. Fiz. Khim. 33 (1959) 1945. Bauer, H.H., Smith, D.L., Elving, P.J.: J. Am. Chem. Soc. 82 (1960) 2094. Oldham, K.B.: J. Electrochem. Soc. 107 (1960) 766. Ozaki, T., Nakayama, T.: J. Chem. Soc. Jpn. Pure Chem. Sec. (Nippon Kagaku Zasshi) 81 (1960) 90. Ozaki, T., Nakayama, T.: J. Chem. Soc. Jpn. Pure Chem. Sec. (Nippon Kagaku Zasshi) 81 (1960) 98. Smit, W.M., Wijnen, M.D.: Recl. Trav. Chim. Pays Bas 79 (1960) 5. von Stackelberg , M.: Polarographische Arbeitsmethoden, Berlin: Walter de Gruyter & Co., 1960. Wijnen, M.D., Smit, W.M.: Recl. Trav. Chim. Pays Bas 79 (1960) 22. Wijnen, M.D., Smit, W.M.: Recl. Trav. Chim. Pays Bas 79 (1960) 203. Wijnen, M.D., Smit, W.M.: Recl. Trav. Chim. Pays Bas 79 (1960) 289. Zinov'ev, V.A., Sheinin, A.B., Kheifets, V.L.: Zh. Fiz. Khim. 35 (1961) 98. Delahay, P.: J. Phys. Chem. 66 (1962) 2204. Delahay, P.: Anal. Chem. 34 (1962) 1161. Delahay, P., Aramata, A.: J. Phys. Chem. 66 (1962) 2208. Jordan, J., Javick, R.A.: Electrochim. Acta 6 (1962) 23.
R2 62Lev 62Los1 62Rei1 62Rei2 63Bom 63Fio 63Ric 64Bon 64But1 64Suz 64Tan 65Del2 65Del3 65Hey 65Nic 66Bau 66But3 66Hey 66Hub 66Tep1 66Tep2 67Koo2 67Wei1 67Wei2 67deL 68Boc2 68Old 68Suz 68Tep 69Dau 69Hub 69Suz 69Tan1 70Her 70Hub 70Khe 70Mat 70New 70Suz 71Aga 71Alb 72Hil2 72Hue 72Lai 72Tra 73Pol 73Rod
Levich, V.G.: Physicochemical Hydrodynamics, Englewood Cliffs: Prentice-Hall Inc., 1962, p. 107; 314. Loshkarev, M.A., Tomilov, B.I.: Russ. J. Phys. Chem. (English Transl.) 36 (1962) 66; Zh. Fiz. Khim. 36 (1962) 132. Reinmuth, W.H., Wilson, C.E.: Anal. Chem. 34 (1962) 1159. Reinmuth, W.H.: Anal. Chem. 34 (1962) 1272. Bombi, G.G., Fiorani, M.: Chim. Ind. (Milan) 45 (1963) 793. Fiorani, M., Bombi, G.G., Marchetto, M.T.: Chim. Ind. (Milan) 45 (1963) 796. Riccoboni, L., Bombi, G.G., Fiorani, M.: Chim. Ind. (Milan) 45 (1963) 786. Bonnemay, M., Costa, M.: C. R. Acad. Sci. (Paris) 258 (1964) 2054. Butler, J.N., Makrides, A.C.: Trans. Faraday Soc. 60 (1964) 1664. Suzuki, J., Ozaki, T.: Bull. Chem. Soc. Jpn. 37 (1964) 230. Tanaka, N., Tamamushi, R.: Electrochim. Acta 9 (1964) 963. Delahay, P.: Double Layer and Electrode Kinetics, New York: John Wiley&Sons, 1965, p. 171. Delahay, P.: J. Electroanal. Chem. 10 (1965) 1. Heyrovsky, J., Kuta, J.: Grundlagen der Polarographie, Berlin: Akademie-Verlag, 1965. Nicholson, R.S.: Anal. Chem. 37 (1965) 1351. Bauer, H.H., Foo, D.C.S.: Aust. J. Chem. 19 (1966) 1103. Butler, J.N., Meehan,M.L.: Trans. Faraday Soc. 62 (1966) 3524. Heyrovsky, J., Kuta, J.: Principles of Polarography, New York: Academic Press, 1966. Hubbard, A.T., Anson, F.C.: Anal. Chem. 38 (1966) 58. Teppema, P., Sluyters-Rehbach, M., Sluyters, J.H.: Recl. Trav. Chim. Pays Bas 85 (1966) 303. Teppema, P., Sluyters-Rehbach, M., Sluyters, J.H.: Recl. Trav. Chim. Pays Bas 85 (1966) 1161. Kooijman, D.J., Sluyters, J.H.: Electrochim. Acta 12 (1967) 1579. Weir, W.D., Enke, C.G.: J. Phys. Chem. 71 (1967) 275. Weir, W.D., Enke, C.G.: J. Phys. Chem. 71 (1967) 280. de Leuwe , R., Sluyters-Rehbach, M., Sluyters, J.H.: Electrochim. Acta 12 (1967) 1593. Bockris, J.O’M., Mannan, R.J., Damjanovich, A.: J. Chem. Phys. 48 (1968) 1898. Oldham, K.B., Parry, E.P.: Anal. Chem. 40 (1968) 65. Suzuki, J.: Rev. Polarogr. 15 (1968) 21. Teppema, P., Sluyters-Rehbach, M., Sluyters, J.H.: J. Electroanal. Chem. 16 (1968) 165. Daum, P.H., Enke, C.G.: Anal. Chem. 41 (1969) 653. Hubbard, A.T.: J. Electroanal. Chem. 22 (1969) 165. Suzuki, J.: Bull. Chem. Soc. Jpn. 42 (1969) 3487. Tanaka, N., Yamada, A.: Electrochim. Acta 14 (1969) 491. Herbelin, J.M., Andersen, T.N., Eyring, H.: Electrochim. Acta 15 (1970) 1455. Hubbard, A.T., Anson, F.C.: Electroanalytical Chemistry, Vol. 4, Bard, A.J. (ed.), New York: Marcel Dekker, 1970. Kheifets, V.L., Krasikov, B.S., Rotinyan, A.L.: Elektrokhimiya 6 (1970) 916. Matsuda, A., Notoya, R.: J. Res. Inst. Catal. Hokkaido Univ. 18 (1970) 59. Newman, J.: J. Electrochem. Soc. 117 (1970) 507. Suzuki, J.: Bull. Chem. Soc. Jpn. 43 (1970) 755. Agarwal, H.P.: Electrochim. Acta 16 (1971) 1395. Albery, W.J., Hitchman, M.L: Ring-Disc Electrodes, Oxford: Clarendon Press, 1971. Hill, D.L., Fung, K.W., Lee, H.L.: J. Electroanal. Chem. 38 (1972) 67. Huebert, B.J., Smith, D.E.: Anal. Chem. 44 (1972) 1179. Lai, C.-H., Hubbard, A.T.: Inorg. Chem. 11 (1972) 2081. Trasatti, S.: J. Electroanal. Chem. 39 (1972) 163. van der Pol, F., Sluyters-Rehbach, M., Sluyters, J.H.: J. Electroanal. Chem. 45 (1973) 377. Rodgers, R.S., Anson, F.C.: J. Electroanal. Chem. 42 (1973) 381.
Landolt-Börnstein New Series IV/9A
R3 74Vit2 75Tam 75Wea 76Ple 76Wea 77Tra 78Ber 80Bar1 80Bar2 81Ban 83Her 83Iwa 83Kaw 84Bar1 84Fil 84Guy 84Hei1 84Hei2 87Wru 88Wip 89Bon 90Wig 91Bar1 92Saf 94Gal 96Tor 01Bar 01Liu 01Wea 05Nor
Landolt-Börnstein New Series IV/9A
Vitanov, T., Popov, A., Budevski, E.: J. Electrochem. Soc. 121 (1974) 207. Tamamushi, R.: Kinetic Parameters of Electrode Reactions of Metallic Compounds, London: Butterworth, 1975. Weaver, M.J., Anson, F.C.: J. Electroanal. Chem. 65 (1975) 711. Pleskov, Yu.V., Filinovskii V.Yu.: The Rotating Disc Electrode, New York: Consultants Bureau, 1976. Weaver, M.J., Anson, F.C.: Inorg. Chem. 15 (1976) 1871. Trasatti, S.: Advances in Electrochemistry and Electrochemical Engineering, Vol. 10, Gerischer, H., Tobias, C.W. (eds.), New York: John Wiley, 1977, p. 213. Bernstein, C., Heindrichs, A., Vielstich, W.: J. Electroanal. Chem. 87 (1978) 81. Barr, S., Guyer, K., Weaver, M.J.: J. Electroanal. Chem. 111 (1980) 41. Bard, A.J., Faulkner L.R.: Electrochemical Methods, New York: Wiley, 1980. Bancroft, E.E., Sidwell, J.S., Blount, H.N.: Anal. Chem. 53 (1981) 1390. Herrmann, J.: Ph.D. Dissertation, Bonn University, 1983. Iwasita, T., Schmickler, W., Herrmann, J., Vielstich, W.: J. Electrochem. Soc. 130 (1983) 2026. Kawiak, J., Jedral, T., Galus, Z: J. Electroanal. Chem. 145 (1983) 163. Barz, F., Bernstein, Ch., Vielstich W.: Advances in Electrochemistry and Electrochemical Engineering, Vol. 13, Gerischer, H. (ed.), New York: John Wiley, 1984. Filinovski, V.Yu., Pleskov, Yu.V.: Comprehensive Treatise of Electrochemistry, Yeager, E., Bockris, J.O'M., Conway, B.E., Sarangapani, S. (eds.), New York: Plenum Press, 1984, p. 293. Guyer, K.L., Weaver, M.J.: Inorg. Chem. 23 (1984) 1664. Heinemann, W.R., Hawkridge, F.M., Blount, H.N.: Electroanalytical Chemistry, Vol. 13, Bard, A.J. (ed.), New York: Marcel Dekker, 1984, p. 1. Heinze, J.: Angew. Chem. 96 (1984) 823. Wruck, W.J., Machaldo, R.M., Chapman, T.W.: J. Electrochem. Soc. 134 (1987) 539. Wipf, D.O., Kristensen, E.W., Deakin, M.R., Wightman, R.M.: Anal. Chem. 60 (1988) 306. Bontempelli, G., Magno, F., Mazzochin, G.A., Seeber, R.: Ann. Chim. (Rome) 79 (1989) 103. Wightman, R.M., Wipf, D.O.: Acc. Chem. Res. 23 (1990) 64. Baranski, A.S.: J. Electroanal. Chem. 300 (1991) 309. Safford, L.K., Weaver, M.J.: J. Electroanal. Chem. 331 (1992) 857. Galus, Z.: Fundamentals of Electrochemical Analysis, 2nd edition, Chichester: Ellis Horwood, 1994. Torres, L.M., Gil, A.F., Galicia, L., Gonzalez, I.: J. Chem. Educ. 73 (1996) 808. Bard, A.J., Faulkner, L.R.: Electrochemical Methods, 2nd ed., New York: Wiley, 2001. Liu, X., Liu, K., Cheng, G., Dong, S.: J. Electroanal. Chem. 510 (2001) 103. Weaver, M.J.: J. Electroanal. Chem. 498 (2001) 105. Norskov, J.K., Bligaard, T., Logadottir, A., Kitchin, J.R., Chen, J.G., Pandelov, S., Stimming, U.: J. Electrochem. Soc. 152 (2005) J23.
276
5 Exchange current densities
Table 5.1. Exchange current densities and rate constants in aqueous systems. Electrode 1)
Solution 2)
Aluminum (Al) 1 N CH3COOH/H2O 1 N CH3COOH/H2O 1 N CH3COOH/H2O 1 N CH3COOH/H2O 1 N CH3COOH/H2O Antimony (Sb) 7 M HCl/H2O 7 M HCl/H2O 7 M HCl/H2O 0.5 M H2SO4/H2O SbHg 0.5 M H2SO4/H2O +0.001 % gelatin Bismuth (Bi) 2 M HCl/H2O 2 M HCl/H2O 2 M HCl/H2O 2 M HCl/H2O 2 M HCl/H2O 2 M HCl/H2O 2 M HCl/H2O 2 M HCl/H2O 2 M HCl/H2O 2 M HCl/H2O 2 M HCl/H2O Bi(Hg) 1 M HCl/H2O Bi(Hg) 1 M HCl/H2O 1 M HClO4/H2O Bi(Hg) Bi(Hg) 1 M HClO4/H2O Bi(Hg) 1 M HClO4/H2O 1 M HClO4/H2O Bi(Hg) Bi(Hg) 1 M HClO4/H2O Bi(Hg) 1 M HClO4/H2O 1 M HClO4/H2O Bi(Hg) Bi(Hg) 1 M HClO4/H2O Bi(Hg) 1 M HClO4/H2O 1 M HClO4/H2O Bi(Hg) Bi(Hg) 2 M HClO4/H2O Bi(Hg) 10) 2 M HClO4/H2O 2 M HClO4/H2O Bi(Hg) 7) 7 Bi(Hg) ) 2 M HClO4/H2O Bi(Hg) 7) 2 M HClO4/H2O Bi(Hg) 7) 2 M HClO4/H2O 2 M HClO4/H2O Bi(Hg) 8) Bi(Hg) 10) 2 M HClO4/H2O Bi(Hg) 9) 2 M HClO4/H2O
Educt, product, concentration 3)
T 4)
H+/H2 H+/H2 H+/H2 H+/H2 H+/H2 Sb3+/0, 0.1 M Sb3+ Sb3+/0, 0.25 M Sb3+ Sb3+/0, 0.5 M Sb3+ H+/H2 Sb3+/0
1 12.5 30.5 38.5 55.5 25 25 25 25
10–9.28 10–8.86 10–8.82 10–8.6 10–8.15 1.98·10–7 1.05·10–7 0.74·10–7 10–8.1 8.7·10–5
CP CP CP CP CP CP CP CP CP DCP
68Vij 68Vij 68Vij 68Vij 68Vij 69Nor 69Nor 69Nor 69Pun 63Fuz
Bi3+/0, 4.6·10–5 M Bi3+/0, 2·10–2 M Bi3+/2+, 4.6·10–5 M Bi3+/2+, 2·10–2 M Bi2+/0, 4.6·10–5 M Bi2+/0, 2·10–2 M Bi1+/0, 4.6·10–5 M Bi1+/0, 2·10–2 M Bi3+/0 Bi3+/0 Bi3+/0 Bi3+/0 Bi3+/0 Bi3+/0 Bi3+/0 Bi3+/0, +1 mM Cl– Bi3+/0, 2 mM Bi3+/0, 4 mM Bi3+/0, 8 mM Bi3+/0, 17.7 mM Bi3+/0, 38.4 mM Bi3+/0 Bi3+/0 Bi3+/0 Bi3+/0, 4.3·10–6 M Bi3+/0, 1 mM Bi3+/0, 1 mM Bi3+/0, 1 mM Bi3+/0, 1 mM Bi3+/0, 0.1 M Bi3+/0, 0.001 M Bi3+/0, 0.0028 M
20 20 20 20 20 20 20 20 20 30 40 20 26 20 26 26 25 25 25 25 25 25 25 20 20 –8 20 59 78 20 20 20
6.2·10–6 1.0·10–4 3.7·10–6 5.1·10–4 5.3·10–6 9.3·10–5 4.4·10–5 6.1·10–5 7.2·10–4 2.5·10–3 9.4·10–3 >1 1.2..3.6 0.0003 0.00037 0.0028 1.61·10–4 1.98·10–4 2.55·10–4 3.51·10–4 4.55·10–4 3.0·10–4 3.0·10–4 3.5·10–5 2.8·10–6 4.3·10–6 3.2·10–5 1.9·10–4 3.8·10–4 8.5·10–5 2.6·10–5 1.0·10–2
CP CP CP CP CP CP CP CP CP CP CP IP IP IP IP IP IP IP IP IP IP CS ACP SS CP CP CP CP CP RT RT CP
69Gor 69Gor 69Gor 69Gor 69Gor 69Gor 69Gor 69Gor 69Gor 69Gor 69Gor 52Ran1 60Mou 52Ran1 60Mou 60Mou 64Joh 64Joh 64Joh 64Joh 64Joh 6) 64Ham1 61Kam 66Gor 68Gor1 71Gor 71Gor 71Gor 71Gor 67Gor 66Gor 63Gor
j0 , j00 Method Ref. 174 ș 5 ) kapp or k c ) –2 –1 [°C] [A cm or cm s ]
Landolt-Börnstein New Series IV/9A
5 Exchange current densities
277
Electrode 1)
Solution 2)
Educt, product, concentration 3)
T 4)
Bi(Hg) 10) Bi(Hg)
Bi3+/0, 0.0001 M Bi3+/0, 0.001 mM
20 20
7.2·10–5 1.0·10–5
CP CP
68Gor2 67Los
Bi3+/0, 0.001 mM
20
6.6·10–5
RT
66Gor
Bi3+/0
20
1.4·10–3
RT
66Gor
Bi3+/0
25
1.8·10–4
RT
63Fio
Bi3+/0
35
2.5·10–4
RT
63Fio
Bi3+/0
45
3.59·10–4
RT
63Fio
Bi3+/0, 0.001 mM
20
8.4·10–5
RT
66Gor
Bi3+/0, 0.001 mM
20
4.7·10–4
RT
66Gor
Bi(Hg) Bi(Hg) 11) Bi(Hg) 11) Bi(Hg) 10) Bi(Hg) 12) Bi(Hg) 13) Bi(Hg) 13) Bi(Hg) 12) Bi(Hg) 13) Bi(Hg) 13) Bi(Hg) 11) Bi(Hg) 11) Bi(Hg) 10) Bi(Hg) 12) Bi(Hg)
12.5 M HClO4/H2O 2 M HClO4 +0.25 mM NaCl/H2O 2 M HClO4 +0.1 mM NaCl/H2O 2 M HClO4 +1 mM NaCl/H2O 2 M HClO4 +1 M NaClO4/H2O 2 M HClO4 +1 M NaClO4/H2O 2 M HClO4 +1 M NaClO4/H2O 2 M HClO4 +10–7 M NaI/H2O 2 M HClO4 +10–8 M NaI/H2O 2 M HClO4/H2O 2 M HClO4/H2O 2 M HClO4/H2O 2 M HClO4/H2O 2 M HClO4/H2O 2 M HClO4/H2O 2 M HClO4/H2O 2 M HClO4/H2O 2 M HClO4/H2O 2 M HClO4/H2O 2 M HClO4/H2O 2 M HClO4/H2O 2 M HClO4/H2O 2 M HClO4/H2O 2 M HClO4/H2O
20 20 20 20 20 20 20 20 20 20 20 20 20 20 25
3.5·10–5 2.0·10–5 5.6·10–5 2.0·10–6...5.9·10–6 4.3·10–5 6.9·10–6 3.5·10–5 2.1·10–4 9.6·10–5 8.6·10–5 3.6·10–5 6.0·10–5 6.8·10–7...2.0·10–6 9.6·10–5 1.52
RT CP CP CP CP CP CP CP CP CP RT CP CP CP PS
63Gor 67Gor 68Gor1 68Gor1 67Gor 67Gor 68Gor1 67Gor 67Gor 68Gor1 67Gor 68Gor1 68Gor1 68Gor1 66Ham
Bi(Hg)
2 M HClO4/H2O
25
0.9
PS
66Ham
Bi(Hg)
2 M HClO4/H2O
25
0.26
PS
66Ham
Bi(Hg) 11) Bi(Hg) 11) Bi(Hg) 10) Bi(Hg) 10) Bi(Hg) 12) Bi(Hg) 12) Bi(Hg) 12)
2 M HClO4/H2O 2 M HClO4/H2O 2 M HClO4/H2O 2 M HClO4/H2O 2 M HClO4/H2O 2 M HClO4/H2O 2 M HClO4/H2O
Bi3+/0 Bi2+/1+, 0.00078 M Bi2+/1+, 0.00078 M Bi2+/1+, 4.3·10–6 M Bi2+/1+, 0.1 M Bi2+/0, 0.1 M Bi2+/0, 0.1 M Bi3+/2+, 0.1 M Bi3+/2+, 0.1 M Bi3+/2+, 0.1 M Bi3+/2+, 0.00078 M Bi3+/2+, 0.00078 M Bi3+/2+, 4.3·10–6 M Bi3+/2+, 0.1 M Bi3+/2+, 18/50 mM 14) Bi3+/2+, 9/50 mM 14) Bi3+/2+, 1.8/- mM 14) Bi1+/0, 7.8·10–4 M Bi1+/0, 7.8·10–4 M Bi1+/0, 4.3·10–6 M Bi1+/0, 4.3·10–6 M Bi1+/0, 0.1 M Bi1+/0, 0.1 M Bi1+/0, 0.1 M
20 20 20 20 20 20 20
1.4·10–4 1.3·10–4 6.4·10–4 5.6·10–4 1.2·10–6 1.2·10–6 3.2·10–5
CP CP CP CP CP CP CP
68Gor1 67Gor 67Gor 68Gor1 67Gor 68Gor1 67Gor
Bi(Hg)
Bi(Hg) Bi(Hg) Bi(Hg) Bi(Hg) Bi(Hg) Bi(Hg)
Landolt-Börnstein New Series IV/9A
j0 , j00 Method Ref. 174 ș 5 ) kapp or k c ) –2 –1 [°C] [A cm or cm s ]
278
5 Exchange current densities
Electrode 1)
Solution 2)
Educt, product, concentration 3)
T 4)
Bi(Hg) Bi(Hg) Bi(Hg)
2 M HClO4/H2O 2 M HClO4/H2O 2 M HClO4/H2O
25 25 20
0.1 0.04 8.5·10–5
PS PS RT
Bi(Hg)
2 M HClO4/H2O
20
7.2·10–5
CP,RT 67Gor
Bi(Hg)
2 M HClO4/H2O
20
2.1·10–4
CP
Bi(Hg)
2 M HClO4/H2O
20
3.6·10–5
CP,RT 67Gor
Bi(Hg)
2 M HClO4/H2O
20
9.6·10–5
CP
Bi(Hg)
2 M HClO4/H2O
20
4.3·10–5
CP,RT 67Gor
Bi(Hg)
2 M HClO4/H2O
20
2.0·10–5
CP,RT 67Gor
Bi(Hg)
2 M HClO4/H2O
20
6.9·10–6
CP
67Gor
Bi(Hg)
2 M HClO4/H2O
20
1.2·10–6
CP
67Gor
Bi(Hg)
2 M HClO4/H2O
20
3.2·10–5
CP
67Gor
Bi(Hg)
2 M HClO4/H2O
20
1.3·10–4
CP
67Gor
Bi(Hg) Bi(Hg) Bi(Hg) Bi(Pt) Bi(Pt) Bi(Pt) Bi Bi Cadmium (Cd) (Cd)(Hg) Cd(Hg)
1 M HNO3/H2O 0.5 M HNO3/H2O 0.5 M H2SO4/H2O 2 M HClO4/H2O 2 M HClO4/H2O 2 M HClO4/H2O 0.1 M HClO4/H2O 0.5 M H2SO4/H2O 0.72 m CdSO4/H2O 1 M HClO4/H2O 1 M KBr/H2O 1 M KCl/H2O 1 M KCl/H2O 1 M KCl/H2O 1 M KCl/H2O 1 M KCl/H2O 1 M KCl/H2O 1 M KCl/H2O 1 M KCl/H2O 1 M KCl/H2O 1 M KCl/H2O 1 M KCl/H2O
Bi0/2+, -/1 mM 14) Bi0/2+, -/5 mM 14) Bi0/3+, 0.5/100 mM 14) Bi0/3+, 120/7.8 mM 14) Bi3+/2+, 5·10–4/0.1 M 14) Bi3+/2+, 0.12/7.8·10–4 M 14) Bi3+/2+, 5·10–6/0.1 M 14) Bi2+/0, 5·10–4/0.1 M 14) Bi2+/0, 0.12/7.8·10–4 M 14) Bi2+/0, 5·10–6/0.1 M 14) Bi+/0, 5·10–4/0.1 M 14) Bi+/0, 5·10–4/0.1 M 14) Bi+/0, 0.12/7.8·10–4 M 14) Bi3+/0 Bi3+/0 Bi3+/0 Bi3+/0 Bi3+/0 Bi3+/0 H+/H2 H+/H2 Cd2+ Cd2+ Cd2+ Cd2+ Cd2+ Cd2+ Cd2+ Cd2+ Cd2+/0, 1.5·10–3 Cd2+/0 Cd2+/0 Cd2+/0 Cd2+ Cd2+
26 25 26 20 30 40 RT 22 27 22 0 25 25 25 27 0 25 0 -
0.0037 5.0·10–3 0.0018 7.2·10–4 2.5·10–3 9.4·10–3 10–8.1 10–10.8 1.4·10–3 68 0.91 2.9 >12.0 4 .. 8 >5.0 2.5 1.25 ≈4...8 >12 ≈5 700 700
IP CS IP CP CP CP CP CP IP IP FR FR IP IP GS FR FR IP IP IP IP IP
60Mou 64Ham1 60Mou 69Gri2 69Gri2 69Gri2 61Bic 70Ten 61Bro 70Sal1 71Aga 58Bar1 63Slu 63Slu 67Koo1 69deL15) 71Aga 63Slu 63Slu 61Ran 70Sal1 70Sal2
Cd(Hg) Cd(Hg) Cd(Hg) Cd(Hg) Cd(Hg) Cd(Hg) Cd(Hg) Cd(Hg) Cd(Hg) Cd(Hg)
j0 , j00 Method Ref. 174 ș 5 ) kapp or k c ) –2 –1 [°C] [A cm or cm s ] 66Ham 66Ham 67Gor
67Gor
67Gor
Landolt-Börnstein New Series IV/9A
5 Exchange current densities
279
Electrode 1)
Solution 2)
Educt, product, concentration 3)
T 4)
Cd(Hg) Cd(Hg) Cd(Hg) Cd(Hg) Cd(Hg) Cd(Hg) Cd(Hg) Cd(Hg)
1 M KCl/H2O, pH=2 1 M KCl/H2O, pH=4 1 M KF/H2O 1 M KF/H2O 1 M KI/H2O 1 M KI/H2O 1 M KNO3/H2O 1 M KNO3/H2O, pH=2 1 M KNO3/H2O 1 M KNO3/H2O 1 M KNO3/H2O 1 M KNO3/H2O 0.4 M K2SO4/H2O 0.5 M K2SO4/H2O 1 M K2SO4/H2O 1 M K2SO4/H2O 1 M NaBr/H2O 1 M NaClO4/H2O 1 M NaClO4/H2O 1 M NaClO4/H2O 1 M NaClO4/H2O 1 M NaClO4/H2O, pH=4 1 M NaClO4/H2O, pH=2.9 1 M NaClO4/H2O, pH=3.2 1 M NaClO4/H2O, pH=3.8 1 M NaClO4/H2O, pH=5.4...6.9 1 M NaClO4/H2O, pH=3 1 M NaClO4/H2O, c(Cd(Hg))=1.3... 5.7·10–3 M 0.5 M Na2SO4/H2O 0.5 M Na2SO4/H2O 0.5 M Na2SO4/H2O 0.5 M Na2SO4/H2O 1 M Na2SO4/H2O 1 M Na2SO4/H2O 1 M Na2SO4/H2O, pH=4 1 M Na2SO4/H2O
Cd2+ Cd2+/0 Cd2+, 1.5 mM Cd2+, 3 mM Cd2+/0, 1.5·10–3 Cd2+/0, 3·10–3 Cd2+ Cd2+
27 25 27 27 27 27 20 22
1.25 >5 2.0 6.1 6.5...13.8 8.5...13.6 ~0.6 6.3
FR GM FR FR FR FR IP FR
71Aga 67Koo1 71Aga 71Aga 71Aga 71Aga 52Ran1 58Bar1
Cd2+ Cd2+ Cd2+/0, 1.5·10–3 Cd2+/0, 3·10–3 Cd2+, 0.01 M Cd2+ Cd2+ Cd2+ Cd2+ Cd2+ Cd2+ Cd2+ Cd2+ Cd2+
25 25 28 28 20 0 0 0 22 0 25 36 25
~1.0 0.6 1.5 3.1 5·10–4 5.5 0.2 0.2 30...100 2.3 40 0.5 1.2 0.46
ACP ACP FR IP PS IP IP IP IP FR IP GS FR GS
60Bau 61Kam 71Aga 71Aga 54Lor 61Mül 57Del 58Del 70Sal2 58Bar1 61Mül 67Koo1 71Aga 67Koo2
Cd2+
23
0.4
IP
68Ham2
Cd2+
23
0.38
IP
68Ham2
Cd2+
23
0.48
IP
68Ham2
Cd2+
23
0.38
IP
68Ham2
Cd2+
25
0.46
FR
69deL16)
Cd2+, 3.6·10–5 M
23
0.16
IP
70Ham
Cd2+ Cd2+ Cd2+ Cd2+ Cd2+ Cd2+ Cd2+
20 20 20 20 27 25 25
4.2·10–2 4.2·10–2 4.5·10–2 2.6·10–2 4.31 0.55 6.3·10–2
IP IP GS PS GM GS GS
53Ger117) 57Vie 57Vie 57Vie 55Ber1 67Koo1 67Koo1
Cd2+, 5 mM
25
0.065
GS
69van
Cd(Hg) Cd(Hg) Cd(Hg) Cd(Hg) Cd(Hg) Cd(Hg) Cd(Hg) Cd(Hg) Cd(Hg) Cd(Hg) Cd(Hg) Cd(Hg) Cd(Hg) Cd(Hg) Cd(Hg) Cd(Hg) Cd(Hg) Cd(Hg) Cd(Hg) Cd(Hg)
Cd(Hg) Cd(Hg) Cd(Hg) Cd(Hg) Cd(Hg) Cd(Hg) Cd(Hg) Cd(Hg) Landolt-Börnstein New Series IV/9A
j0 , j00 Method Ref. 174 ș 5 ) kapp or k c ) –2 –1 [°C] [A cm or cm s ]
280 Electrode 1)
5 Exchange current densities Solution 2)
Educt, product, concentration 3)
T 4)
Cd2+, 5 mM H+/H2 H+/H2 Co(CN) 63–/4–
25 -
0.058 10–10.77 10–11.6 0.09·10–3
CS CP CP IP
69van 64Boc3 70Rot1 93Gao 18)
1 M H2SO4/H2O 1 M H2SO4/H2O 1 M HClO4/H2O 1 M HClO4/H2O 1 M H2SO4/H2O 1 M H2SO4/H2O 1 M H2SO4/H2O 1 M H2SO4/H2O 1 M H2SO4/H2O 1 M H2SO4/H2O 1 M H2SO4/H2O 1 M LiCl/H2O
Ce4+/3+ Ce4+/3+ Ce4+/3+ Ce4+/3+ Ce4+/3+ Ce4+/3+ Ce4+/3+ Ce4+/3+ Ce4+/3+ Ce4+/3+ Ce4+/3+ Co(CN) 63–/4–
RT RT RT 25 25 RT RT RT RT -
5.3·10–5 10–6 4.8·10–6 1.48·10–5 3.8·10–4 3.2·10–4 3.8·10–4 5.3·10–8 1.7·10–5 5.3·10–8 6.5·10–7 0.13·10–3
CV IP CP, IP CP, IP CP CF RDE IP IP IP IP IP
84Gro 99Evs 20) 02Fer1 21) 02Fer2 22) 63Ada 84Gro 63Gal 46) 98Evs2 23) 98Evs2 24) 98Ple 23) 98Ple 25) 93Gao 18)
1 M MgCl2/H2O
Co(CN) 63–/4–
-
0.1·10–3
IP
93Gao 18)
0.01 M NaCl/H2O
Co(CN) 63–/4–
-
0.64·10–3
IP
93Gao 18)
0.1 M NaCl/H2O
Co(CN) 63–/4–
-
2.1·10–3
IP
93Gao 18)
1 M NaCl/H2O
Co(CN) 63–/4–
-
5.2·10–3
IP
93Gao 18)
1 M KCl/H2O 0.5 M KCl +0.1 M HCl/H2O 0.2 M HClO4/H2O 0.01 M HCl +0.09 M HClO4 +3.9 M NaClO4/H2O 0.1 M HCl/H2O 0.1 M HCl +3.8 M KCl/H2O 0.1 M HCl+3.9 M LiCl/H2O 0.1 M HCl +0.5 M NaCl +3.4 M NaClO4/H2O 0.1 M HCl +3.9 M NaCl/H2O 0.1 M HCl +3.9 M NaCl/H2O 0.1 M HCl +3.9 M NaCl/H2O
Cr3+/2+ Cu2+/+
-
1.27·10–4 1.6...9.5·10–4
CV CF
84Gro 84Gro
Eu2+/3+ Fe3+/2+
25
8.4·10–4 1.37·10–5
CV CP
95Che 26) 63Gal 27)
Fe3+/2+ Fe3+/2+
25 25
7.4...10 10–5 2.29·10–5
CP CP
63Gal 63Gal
Fe3+/2+
25
2.19·10–5
CP
63Gal
Fe3+/2+
25
1.41·10–5
CP
63Gal
Fe3+/2+
-
9.4·10–4
CP
63Ada 28)
Fe3+/2+
-
2.1·10–4
CP
63Ada 29)
Fe3+/2+
-
3.1·10–4
CP
63Ada 30)
1 M Na2SO4/H2O 0.5 N H2SO4/H2O 1 M H2SO4/H2O 19 Carbon (C) ) 1 M CaCl2/H2O Cd(Hg) Cd
j0 , j00 Method Ref. 174 ș 5 ) kapp or k c ) –2 –1 [°C] [A cm or cm s ]
Landolt-Börnstein New Series IV/9A
5 Exchange current densities Electrode 1)
Landolt-Börnstein New Series IV/9A
281
Solution 2)
Educt, product, concentration 3)
T 4)
0.1 M HCl +3.9 M NaCl/H2O 0.1 M HCl +3.9 M NaCl/H2O 0.1 M HCl +3.9 M NaCl/H2O 0.1 M HCl +3.9 M NaCl/H2O 0.1 M HCl +3.9 M NaCl/H2O 0.1 M HCl +0.1 M NaClO4/H2O 0.1 M HCl +3.9 M NaClO4/H2O 1 M HCl/H2O 1 M HClO4/H2O 1 M HClO4/H2O 0.2 M HClO4/H2O 0.2 M HClO4/H2O 0.2 M HClO4/H2O 0.2 M HClO4/H2O 0.2 M HClO4/H2O 0.2 M HClO4/H2O 0.2 M HClO4/H2O 1 M HClO4/H2O 1 M HClO4/H2O 1 M H2SO4/H2O
Fe3+/2+
-
5.4·10–4
CP
63Ada 31)
Fe3+/2+
-
5.8·10–4
CP
63Ada 32)
Fe3+/2+
-
6.0·10–4
CP
63Ada 33)
Fe3+/2+
-
7.3·10–4
CP
63Ada 34)
Fe3+/2+
-
8.2·10–4
CP
63Ada 35)
Fe3+/2+
25
8.5·10–5
CP
63Gal
Fe3+/2+
25
1.41·10–5
CP
63Gal
Fe3+/2+ Fe3+/2+ Fe3+/2+ Fe2+/3+ Fe2+/3+ Fe2+/3+ Fe2+/3+ Fe2+/3+ Fe2+/3+ Fe2+/3+ Fe3+/2+ Fe3+/2+ Fe(H2O) 62 + /3 +
21 23 23 RT RT 25
1.2·10–4 (4.5·10–5) (1.0·10–5) 2.5·10–3 2.1·10–6 1.6·10–5 1.1·10–3 7.4·10–8 3.8·10–4 9.1·10–5 (1.0·10–6) (0.6·10–5) 5.4·10–5
DCP CV CV CV CV CV CV CV CV CV CP, IP CP, IP CP
70Sha1 00Gra 36) 00Gra 37) 95Che 26) 95Che 38) 95Che 39) 95Che 40) 95Che 41) 95Che 42) 95Che 43) 02Fer1 44) 02Fer2 45) 63Ada
1 M H2SO4/H2O
Fe(H2O) 62 + /3 +
25
5.4·10–5
CP
63Gal
1 M H2SO4/H2O
Fe(H2O) 62 + /3 +
25
4.5·10
–5
OC
63Gal
0.1 M NaClO4 +0.1 M HCl/H2O 3.9 M NaClO4 +0.01 M HCl +0.09 M HClO4/H2O 0.09 M HClO4/H2O
Fe(H2O) 62 + /3 +
25
8.5·10
–5
RDE
63Gal 46)
Fe(H2O) 62 + /3 +
25
1.37·10–4
RDE
63Gal 46)
Fe(H2O) 62 + /3 +
-
1.8·10–3
CV
84Gro
0.9 M HClO4/H2O
Fe(H2O) 62 + /3 +
-
1.34·10
CV
84Gro
0.1 M HClO4 Fe(H2O) 62 + /3 + +0.09 M HCl /H2O 3.9 M HClO4 Fe(H2O) 62 + /3 + +0.1 M HCl/H2O
-
5.7·10–3
CV
84Gro
1.41·10–4
RDE
63Gal 46)
Method Ref. j0 , j00 174 ș 5 ) kapp or k c ) –2 –1 [°C] [A cm or cm s ]
25
–3
282
5 Exchange current densities
Electrode 1)
Solution 2)
Educt, product, concentration 3)
T 4)
C
1 M H2SO4/H2O
Fe(H2O) 62 + /3 +
25
5.4·10–5
RDE
63Gal 46)
1 M H2SO4/H2O
Fe(H2O) 62 + /3 +
-
9.0·10–4
RDE
84Gro
1 M H2SO4/H2O
Fe(H2O) 62 + /3 +
-
1.2·10
–3
CV
84Gro
0.45 M H2SO4/H2O
Fe(H2O) 62 + /3 +
-
8.6·10–4
CV
84Gro
3.4 M NaClO4 +0.5 M NaCl +0.1 M HCl/H2O 3.9 M NaClO4 +0.09 M HCl/H2O 3.8 M KCl +0.1 M HCl/H2O 0.5 M potassium oxalate/H2O 3.9 M LiCl +0.1 M HCl/H2O -/H2O
Fe(H2O) 62 + /3 +
25
1.41·10
RDE
63Gal 46)
Fe(H2O) 62 + /3 +
25
1.2·10–3
RDE
63Gal 46)
Fe(H2O) 62 + /3 +
25
2.29·10–4
RDE
63Gal 46)
Fe(H2O) 62 + /3 +
25
1.4·10–3
CV
84Gro
Fe(H2O) 62 + /3 +
25
2.19·10–4
RDE
63Gal 46)
Fe(CN)36 – /4 –
20
0.58
Method Ref. j0 , j00 174 ș 5 ) kapp or k c ) –2 –1 [°C] [A cm or cm s ]
–4
RDE
61Reg
25
1.48·10
–3
RDE
63Gal 46)
Fe(CN)36 – /4 –
25
2.65·10–3
RDE
63Gal 46)
1 M KCl/H2O
Fe(CN)36 – /4 –
25
7.08·10–3
RDE
63Gal 46)
1 M LiCl/H2O
Fe(CN)36 – /4 –
25
1.06·10–3
RDE
63Gal 46)
1 M KCl/H2O
Fe(CN)36 – /4 –
-
5.3·10–2
ACP
84Gro
1 M KCl/H2O
Fe(CN)36 – /4 –
-
7.0·10–2
CV
84Gro
1 M KCl/H2O
Fe(CN)36 – /4 –
25
0.1
CV
95Che 26)
1 M KCl/H2O
Fe(CN)36 – /4 –
25
0.037
CV
95Che 38)
1 M KCl/H2O
Fe(CN)36 – /4 –
25
0.026
CV
95Che 39)
1 M KCl/H2O
Fe(CN)36 – /4 –
25
0.084
CV
95Che 40)
1 M KCl/H2O
Fe(CN)36 – /4 –
25
0.047
CV
95Che 41)
1 M KCl/H2O
Fe(CN)36 – /4 –
25
0.078
CV
95Che 42)
1 M KCl/H2O
Fe(CN)36 – /4 –
25
0.076
CV
95Che 43)
0.1 M KCl/H2O
Fe(CN)36 – /4 –
23
9.0·10–4
CV
95Ale 47)
1 M KCl/H2O
Fe(CN)36 – /4 –
23
(0.017)
CV
00Gra 36)
1 M KCl/H2O
Fe(CN)36 – /4 –
23
(0.019)
CV
00Gra 37)
0.5 M K2SO4/H2O
Fe(CN)36 – /4 –
25
0.025
CV
84Gro
0.5 M K2SO4/H2O
Fe(CN)36 – /4 –
22
0.015
CV
84Gro 48)
0.1 M KCl/H2O
Fe(CN)36 – /4 –
0.3 M KCl/H2O
Landolt-Börnstein New Series IV/9A
5 Exchange current densities Electrode 1)
Landolt-Börnstein New Series IV/9A
283
Solution 2)
Educt, product, concentration 3)
phosphate buffer/ H2O, pH=7.5 0.1 M THAP 49) /H2O+ethanol 0.5 M H2SO4/H2O 1 M H2SO4/H2O 1 M NaOH/H2O
Fe(CN)36 – /4 –
-
0.02
TPF
84Gro
ferrocene/ ferrocinium H+/H2 Hg2+/+
-
1.3·10–2
CV
84Gro
-
1·10–10 10–7 (2.1·10–19)
CP CF CV
96Mar 44) 84Gro 84Gro
1 M KCl/H2O
IrCl36 – /4 –
25
0.5
CV
95Che 26)
1 M KCl/H2O
IrCl36 – /4 –
25
0.11
CV
95Che 38)
1 M KCl/H2O
IrCl36 – /4 –
25
0.21
CV
95Che 39)
1 M KCl/H2O
IrCl36 – /4 –
25
0.25
CV
95Che 41)
1 M KCl/H2O
IrCl36 – /4 –
25
0.22
CV
95Che 42)
1 M KCl/H2O
IrCl36 – /4 –
25
0.2
CV
95Che 43)
0.1 M KCl/H2O
IrCl62 – /3 –
23
0.004
CV
95Ale 47)
1 M KCl/H2O
IrCl62 – /3 –
23
(0.01)
CV
00Gra 36)
1 M KCl/H2O
IrCl62 – /3 –
23
(0.308)
CV
00Gra 37)
1 M KOH/H2O
MnO 4–/2 –
20
2.1·10–2
CP,GS 67Thi1
–3
IO3– / I –
T 4)
Method Ref. j0 , j00 174 ș 5 ) kapp or k c ) –2 –1 [°C] [A cm or cm s ]
RDE
62Gal 46)
6.92·10–3
RDE
63Gal 46)
1.4·10–2
RDE
62Gal 46)
25
1.45·10–2
RDE
63Gal 46)
-
4.45·10–3
CP
70Sha1
1.33 M NaOH +1.95 M NaNO3/H2O 0.5 M H2SO4/H2O 0.1 M DMSO 51) /TBAP 52) 1 M KCl/H2O
NO 3– /NO
25
3.6·10
–12
CV
96Boc 50)
H2O/O2 O 2 /O 2–
25
5·10–11 9.3·10–2
CP CV
96Mar 44) 03Ort
Ru(NH 3 ) 36+ /2 +
25
0.24
CV
95Che 26)
1 M KCl/H2O
Ru(NH 3 ) 36+ /2 +
25
0.039
CV
95Che 38)
1 M KCl/H2O
Ru(NH 3 ) 36+ /2 +
25
0.13
CV
95Che 39)
1 M KCl/H2O
Ru(NH 3 ) 36+ /2 +
25
0.15
CV
95Che 40)
1 M KCl/H2O
Ru(NH 3 ) 36+ /2 +
25
0.15
CV
95Che 41)
1 M KCl/H2O
Ru(NH 3 ) 36+ /2 +
25
0.093
CV
95Che 42)
1 M KCl/H2O
Ru(NH 3 ) 36+ /2 +
25
0.13
CV
95Che 43)
0.9 M LiOH/H2O
MnO 4–/2 –
-
0.9 M LiOH/H2O
MnO 4–/2 –
25
0.9 M NaOH/H2O
MnO 4–/2 –
-
0.9 M NaOH/H2O
MnO 4–/2 –
0.9 M LiOH/H2O
MnO4–/2– , 0.1 mM
6.3·10
284
5 Exchange current densities
Electrode 1)
Solution 2)
Educt, product, concentration 3)
T 4)
C
0.1 M KCl/H2O
Ru(NH 3 ) 36+ /2 +
23
0.003
CV
95Ale 47)
1 M KCl/H2O
Ru(NH 3 ) 36+ /2 +
23
(0.012)
CV
00Gra 36)
1 M KCl/H2O
Ru(NH 3 ) 36+ /2 +
23
(0.017)
CV
00Gra 37)
0.5 M TBAPF6 /acetonitrile 52) 0.5 M TBAPF6 /acetonitrile 52) 0.5 M TBAPF6 /acetonitrile 52) 0.5 M TBAPF6 /acetonitrile 52) 0.5 M TBAPF6 /acetonitrile 52) 0.5 M TBAPF6 /acetonitrile 52) 9.5 M HCl/H2O 6 M HCl/H2O
(Ru(Cl2dpy)2 (NO2)(NO))+/2+ (Ru(dpy)2(NO2) (NO))+/2+ (Ru((C6H5)2)dpy)2 (NO2)(NO))+/2+ (Ru((C4H9)2)dpy)2 (NO2)(NO))+/2+ (Ru((CH3)2)dpy)2 (NO2)(NO))+/2+ (Ru((OCH3)2)dpy)2 (NO2)(NO))+/2+ Sb5+/3+
-
0.06
CV
84Gro
-
0.19
CF
84Gro
-
0.09
CF
84Gro
-
0.07
CF
84Gro
-
0.15
CF
84Gro
-
0.12
CF
84Gro
SbCl 6– (r )
-
4.0·10–4 2.0·10–3
CF CF
84Gro 84Gro
6 M HCl/H2O
SbCl 6– (r )
-
2.0·10–3
CV
84Gro
12 M HCl/H2O
SbCl 6– (r )
-
2.0·10–3
CF
84Gro
-
1.0·10
–3
CF
84Gro
–4
CF
84Gro
12 M HCl/H2O 4 M HCl+1 M Hbr +9.5 M LiBr/H2O 4 M HCl+1 M Hbr +9.5 M LiBr/H2O 1 M KCl/H2O 1 M NaOH/H2O 0.2 M HClO4/H2O
SbCl 6– (r )
Method Ref. j0 , j00 174 ș 5 ) kapp or k c ) –2 –1 [°C] [A cm or cm s ]
Sn 4+ /2+ (ox )
-
2.0·10
Sn 4+ /2+ ( r )
-
5.6·10–4
CF
84Gro
21 21 25
8.7·10–6 5.75·10–6 6.8·10–4
DCP DCP CV
70Sha1 70Sha1 95Che 26)
Tl 3+/1+ Tl
3+/1+
2+/3+ Vaq
0.2 M HClO4/H2O
2+/3+ Vaq
25
2.0·10–5
CV
95Che 38)
0.2 M HClO4/H2O
2+/3+ Vaq
25
1.0·10–6
CV
95Che 39)
0.2 M HClO4/H2O
2+/3+ Vaq
25
7.8·10–5
CV
95Che 40)
0.2 M HClO4/H2O
2+/3+ Vaq
25
2.1·10–3
CV
95Che 41)
0.2 M HClO4/H2O
2+/3+ Vaq
25
2.9·10–6
CV
95Che 42)
0.2 M HClO4/H2O
2+/3+ Vaq
25
1.5·10–6
CV
95Che 43)
1 M H2SO4/H2O 2 M H2SO4/H2O 3 M H2SO4/H2O 4 M H2SO4/H2O 1 M H2SO4/H2O
V 5+/4+
-
(1.5·10–3) (1.9·10–3) (5.3·10–3) (6.1·10–3) (0.91·10–3)
CV CV CV CV CV
91Kan 91Kan 91Kan 91Kan 91Kan
V 5+/4+
V 5+/4+ V 5+/4+ V 4+/5+
Landolt-Börnstein New Series IV/9A
5 Exchange current densities Electrode 1)
Solution 2)
Educt, product, concentration 3)
2 M H2SO4/H2O 3 M H2SO4/H2O 4 M H2SO4/H2O 1 M H2SO4/H2O 2 M H2SO4/H2O 3 M H2SO4/H2O 1 M H2SO4/H2O 2 M H2SO4/H2O 3 M H2SO4/H2O 0.1 M TEAP /acetonitrile
V 4+/5+
0.05 M LiClO4 /ethanol 0.05 M acetate buffer /H2O, pH=4.6 0.05 M acetate buffer /H2O, pH=4.6 0.05 M carbonate buffer/H2O, pH=10 0.05 M carbonate buffer/H2O, pH=10 0.05 M acetate buffer/ H2O, pH=4.6 0.05 M acetate buffer/ H2O, pH=4.6 0.05 M carbonate buffer/H2O, pH=10 0.05 M carbonate buffer/H2O, pH=10 0.1 M KCl/H2O 1 M HClO4/H2O 1 M HClO4/H2O 1 M HClO4/H2O 1 M HClO4/H2O 0.1 M KCl/H2O 1 M HClO4/H2O 0.1 M KCl/H2O 1 M H2SO4/H2O Britton&Robinson buffer/H2O
Landolt-Börnstein New Series IV/9A
V V
4+/5+ 4+/5+
V 2+/3+
V 2+/3+ V 2+/3+ V 3+/2+ V 3+/2+ V 3+/2+
1,1’dimethyl2,2’dibenzylhydrazine (ox, r) vitamin D0/+ 2 cyanocobalamin0/– cyanocobalamin–/2– cyanocobalamin0/– cyanocobalamin–/2– aquocobalamin0/– aquocobalamin–/2– hydroxycobalamin0/– hydroxycobalamin–/2– dopamine dopamine dopamine methylviologen2+/+ chlorpromazine0/+ 4-methylcatechol 4-methylcatechol hydroquinone quinone /hydro-quinone p-phenylenediamine
285
T 4)
Method Ref. j0 , j00 174 ș 5 ) kapp or k c ) –2 –1 [°C] [A cm or cm s ] -
(2.1·10–3)
1.8·10–3
CV CV CV CV CV CV CV CV CV CV
91Kan 91Kan 91Kan 91Kan 91Kan 91Kan 91Kan 91Kan 91Kan 84Gro
20
4.3·10–4
CD
01Liu
-
6.0·10–4
ACP
84Gro
-
6.0·10–3
ACP
84Gro
-
<·10–4
ACP
84Gro
-
4.0·10–3
ACP
84Gro
-
5.0·10–3
ACP
84Gro
-
1.0·10–2
ACP
84Gro
-
<·10–3
ACP
84Gro
-
6.0·10–3
ACP
84Gro
<10–6 (7.3·10–5) (3.2·10–4) (0.247) (0.023) <10–6 (5.3·10–4) <10–6 0.8·10–3
CV CV CV CV CV CV CV CV IP
95Ale 47) 00Gra 36) 00Gra 37) 00Gra 37) 00Gra 37) 95Ale 47) 00Gra 37) 95Ale 47) 98Evs153)
1.9·10–3
CV
84Bal
23 23 23 23 23 23 23 23 RT -
–3
(6.1·10 ) (7.7·10–3) (3.2·10–3) (4.7·10–3) (7.7·10–3) (4.8·10–3) (5.6·10–3) (9.7·10–3)
286 Electrode 1)
Cesium (Cs) Cs(Hg)
5 Exchange current densities Solution 2)
0.1 M NEt4PF6 /DMF 54) Chromium(Cr) 1 N H2SO4/H2O 1 N H2SO4/H2O 1 N H2SO4/H2O 1 N H2SO4/H2O 1 N H2SO4/H2O 1 N H2SO4/H2O 0.1 N CoCl2/H2O Cobalt (Co) 0.5 N CoCl2/H2O 1 N CoCl2/H2O 2 N CoCl2/H2O CoSO4/H2O 2 N CoSO4/H2O 2 N CoSO4+0.002 N CoCl2/H2O 2 N CoSO4+0.02 N CoCl2/H2O 2 N CoSO4 +0.2 N CoCl2/H2O 2 N CoSO4 +0.02 N KI/H2O 0.7 M LiCl+0.8 M Copper (Cu) AlCl3/propylenecarbonate 0.001 M Cu(NO3)2/H2O 0.001 M Cu(NO3)2/H2O 0.01 M Cu(NO3)2/H2O 0.01 M Cu(NO3)2/H2O 0.1 M Cu(NO3)2/H2O 0.1 M Cu(NO3)2/H2O 1 M Cu(NO3)2/H2O 1 M Cu(NO3)2/H2O 0.15 N CuSO4 +1 N H2SO4/H2O 0.15 N CuSO4 +1 N H2SO4/H2O 0.8 M CuSO4+1.02 M H2SO4/H2O
Educt, product, concentration 3)
T 4)
Cs1+
25
1.1
IP/PP
80Bar3
H+/H2 H+/H2 H+/H2 H+/H2 H+/H2 H+/H2 Co2+/0 Co2+/0 Co2+/0 Co2+/0 Co2+/0 Co2+/0 Co2+/0
25 38 45 25 38 45 25 25 25 25 25 25 25
0.35·10–6 5.0·10–6 22.0·10–6 5.3·10–9 1.0·10–8 1.7·10–8 2.8·10–7 4.2·10–7 6.8·10–7 8.4·10–7 3·10–5 1.3·10–5 5.2·10–6
CP CP CP CP CP CP CS CS CS CS OCS CS CS
69Wil 55) 69Wil 55) 69Wil 55) 69Wil 56) 69Wil 56) 69Wil 56) 61She 61She 61She 61She 61Zin 61She 61She
Co2+/0
25
1.1·10–6
CS
61She
Co2+/0
25
4.8·10–7
CS
61She
Co2+/0
25
1.0·10–7
CS
61She
Cu2+/0 57)
25
4.5·10–5
CP
70Eis
Cu2+/0
20
1.0·10–9
CP
43Phi
Cu2+/0
20
1.0·10–9
CP
52Con
Cu2+/0
20
1.0·10–11
CP
43Phi
Cu2+/0
20
1.0·10–11
CP
52Con
Cu2+/0 Cu2+/0 Cu2+/0 Cu2+/0 Cu2+/0
20 20 20 20 30
1.0·10–11 1.0·10–11 1.0·10–10 1.0·10–10 0.136 58)
CP CP CP CP GM
43Phi 52Con 43Phi 52Con 59Mat1
Cu0/2+
30
0.052 58)
GM
59Mat1
Cu0/2+
30
7.08·10–3
CH
68Che
Method Ref. j0 , j00 174 ș 5 ) kapp or k c ) –2 –1 [°C] [A cm or cm s ]
Landolt-Börnstein New Series IV/9A
5 Exchange current densities Electrode 1)
Landolt-Börnstein New Series IV/9A
287
Solution 2)
Educt, product, concentration 3)
T 4)
0.05 M CuSO4 +1 M KCl +2 M NH3/H2O 0.05 M CuSO4 +1 M H2SO4/H2O 0.001 M CuSO4 +1 M KNO3/H2O 0.025 M CuSO4 +1 M KNO3/H2O 0.05 M CuSO4 +1 M KNO3/H2O 0.025 M CuSO4 +0.05 M H2SO4 +1 M KNO3/H2O 0.025 M CuSO4 +0.05 M H2SO4 +1 M KNO3 +0.0025 % cetyl trimethyl ammonium bromide/H2O 0.025 M CuSO4 +0.05 M H2SO4 +1 M KNO3 +0.0125 % cetyl trimethyl ammonium bromide/H2O 0.025 M CuSO4 +0.05 M H2SO4 +1 M KNO3 +0.05 % cetyl trimethyl ammonium bromide/H2O 0.025 M CuSO4 +0.05 M H2SO4 +1 M KNO3 +0.0025 % sodium dodecyl sulphate/H2O 0.025 M CuSO4 +0.05 M H2SO4 +1 M KNO3 +0.0125 % sodium dodecyl sulphate/H2O
Cu2+/0
-
0.06
IP
59Lor
Cu2+/0
-
0.03
IP
59Lor
Cu0/2+, 0.001 M
-
2.3
FR
54Hil
Cu0/2+, 0.025 M
-
3.2
FR
54Hil
Cu0/2+, 0.05 M
-
3.9
FR
54Hil
Cu2+/0
-
3.9
IP
54Hil
Cu2+/0
-
5.2
IP
54Hil
Cu2+/0
-
7.6
IP
54Hil
Cu2+/0
-
3.5
IP
54Hil
Cu2+/0
-
10.0
IP
54Hil
Cu2+/0
-
23.0
IP
54Hil
Method Ref. j0 , j00 174 ș 5 ) kapp or k c ) –2 –1 [°C] [A cm or cm s ]
288
5 Exchange current densities
Electrode 1)
Solution 2)
Educt, product, concentration 3)
T 4)
Cu
0.01 M CuSO4 +0.05 M H2SO4 +1 M KNO3 +0.0025 % gelatin/H2O 0.01 M CuSO4 +0.05 M H2SO4 +1 M KNO3 +0.0125 % gelatin/H2O 0.01 M CuSO4 +0.05 M H2SO4 +1 M KNO3 +0.05 % gelatin/H2O 0.025 M CuSO4 +0.05 M H2SO4 +1 M KNO3 +0.0125 % gelatin/H2O 0.025 M CuSO4+ 0.05 M H2SO4 +1 M KNO3+0.025 % gelatin/H2O 0.025 M CuSO4+0.05 M H2SO4+1 M KNO3+0.05 % gelatin/H2O 0.05 M CuSO4+0.05 M H2SO4 +1 M KNO3 +0.0125 % gelatin/H2O 0.05 M CuSO4 +0.05 M H2SO4 +1 M KNO3 +0.025 % gelatin/H2O 0.05 M CuSO4 +0.05 M H2SO4 +1 M KNO3 +0.05 % gelatin/H2O 0.05 M H2SO4/H2O
Cu2+/0
-
2.1
IP
54Hil
Cu2+/0
-
2.0
IP
54Hil
Cu2+/0
-
2.0
IP
54Hil
Cu2+/0
-
3.8
IP
54Hil
Cu2+/0
-
3.7
IP
54Hil
Cu2+/0
-
4.6
IP
54Hil
Cu2+/0
-
3.8
IP
54Hil
Cu2+/0
-
3.2
IP
54Hil
Cu2+/0
-
3.2
IP
54Hil
Cu2+/0
0
2.3·10–3
GM
0.05 M H2SO4/H2O
Cu2+/0
15
1.2·10–2
GM
61Hur1, 61Hur2 61Hur1, 61Hur2
Method Ref. j0 , j00 174 ș 5 ) kapp or k c ) –2 –1 [°C] [A cm or cm s ]
Landolt-Börnstein New Series IV/9A
5 Exchange current densities Electrode 1)
60
Cu(Hg) ) Cu(Hg) 61) Cu(Hg) 62) Cu(Hg) 62)
Cu(Hg)
Landolt-Börnstein New Series IV/9A
289
Solution 2)
Educt, product, concentration 3)
T 4)
0.05 M H2SO4/H2O
Cu2+/0
20
2.4·10–2
GM
0.05 M H2SO4/H2O
Cu2+/0
25
8.1·10–2
GM
0.05 M H2SO4/H2O
Cu2+/0
35
5.4·10–2
GM
0.05 M H2SO4/H2O
Cu2+/0
45
1.4·10–1
GM
0.7 M LiCl +0.8 M AlCl3 /propylenecarbonate 0.08 M CN–/H2O, (I=2 M) 0.10 M CN–/H2O, (I=2 M) 0.12 M CN–/H2O, (I=2 M) 0.001 N HCl/H2O 0.01 N HCl/H2O 0.1 N HCl/H2O 1 M KOH/H2O
Cu2+/0 59)
25
4.5·10–5
CP
61Hur1, 61Hur2 61Hur1, 61Hur2 61Hur1, 61Hur2 61Hur1, 61Hur2 70Eis
Cu1+/0, 0.01 M
31
6.5·10–3
CP
62Bon
Cu1+/0, 0.01 M
31
5.5·10–3
CP
62Bon
Cu1+/0, 0.01 M
31
2.9·10–3
CP
62Bon
H+/H2 H+/H2 H+/H2 MnO 4–/2 –
20
10–7.56 10–7.25 10–6.84 2.6·10–2
CP CP CP CP,GS
57Pen 57Pen 57Pen 67Thi1
Cu2+/0
20
2.5·10–6
CP
66Los
Cu2+/0
20
1.5·10–6
CP
66Los
Cu2+/1+
20
5.7·10–4
CP
66Los
Cu1+/0
20
4·10–4
CP
66Los
H+/H2 H+/H2 H+/H2 H+/H2 H+/H2 H+/H2 H+/H2 H+/H2 H+/H2 [Ru(NH3)6]3+/2+ Cu2+/0
21 21 RT 21 21 21 21 20 20
10–7.2 10–7.25 2.3·10–8 1.6·10–7 10–7.25 10–6.97 10–7.0 10–6.75 10–6.09 113 0.045
CP CP CP CP CP CP CP CP CP TPF IP
68Gos 68Gos 65Iof 63Gos 68Gos 68Gos 68Gos 68Gos 57Pen 85Iwa 52Ran1
5.0 M HClO4 +10–5 M Cu(ClO4)2/H2O 5.0 M HClO4 +2·10–3 M Cu(ClO4)2/H2O 5.0 M HClO4 +10–5...0.1 M Cu(ClO4)2/H2O 5.0 M HClO4 +10–5...0.1 M Cu(ClO4)2/H2O 0.01 M H2SO4/H2O 0.1 M H2SO4/H2O 0.5 M H2SO4/H2O 1 M H2SO4/H2O 1 M H2SO4/H2O 1.5 M H2SO4/H2O 3 M H2SO4/H2O 5 M H2SO4/H2O 0.01 N NaOH/H2O 1 M KF/H2O 1.0 M KNO3/H2O
Method Ref. j0 , j00 174 ș 5 ) kapp or k c ) –2 –1 [°C] [A cm or cm s ]
290
5 Exchange current densities
Electrode 1)
Solution 2)
Educt, product, concentration 3)
T 4)
Cu(Hg)
1.0 M en 63) HCl-en/H2O 1.0 M NH4OH+NH3/H2O 0.1 N HCl/H2O 0.1 N HCl/H2O 0.1 N HCl/H2O 0.1 N HCl/H2O 0.01 N HCl/H2O 0.01 N HCl/H2O 0.01 N HCl/H2O 0.01 N HCl/H2O 0.001 N HCl/H2O 0.001 N HCl/H2O 0.001 N HCl/H2O 0.001 N HCl/H2O 0.15 N NaOH/H2O 0.02 N NaOH/H2O 0.005 N NaOH/H2O 0.5 M H2SO4 +0.5 M CuSO4/H2O 0.1 M HClO4/H2O 0.1 M HClO4/H2O 0.1 M HClO4/H2O 0.1 M HClO4/H2O 0.1 M HClO4/H2O 0.1 M HClO4/H2O 0.1 M HClO4/H2O 0.1 M HClO4/H2O 0.5 M H2SO4/H2O 0.54 M KCN +0.0052 M KAu(CN)2/H2O 1 M H2SO4/H2O
Cuen 22 +
20
0.037
IP
52Ran1
Cu(NH 3 ) 22 +
20
0.011
IP
52Ran1
H+/H2 H+/H2 H+/H2 H+/H2 H+/H2 H+/H2 H+/H2 H+/H2 H+/H2 H+/H2 H+/H2 H+/H2 H+/H2 H+/H2 H+/H2 Cu2+/0
10 20 30 40 10 20 30 40 10 20 30 40 16 16 16 -
4.26·10–7 5.49·10–7 1.58·10–6 2.13·10–6 1.44·10–6 1.94·10–6 2.95·10–6 1.23·10–5 4.36·10–6 7.76·10–6 1.65·10–5 2.34·10–5 1.02·10–6 5.12·10–7 3.98·10–7 4·10–4
CP CP CP CP CP CP CP CP CP CP CP CP CP CP CP IP
59Boc 64) 59Boc 64) 59Boc 64) 59Boc 64) 59Boc 64) 59Boc 64) 59Boc 64) 59Boc 64) 59Boc 64) 59Boc 64) 59Boc 64) 59Boc 64) 59Boc 64) 59Boc 64) 59Boc 64) 69Tka
H+/H2, 0.1 M H+/H2, 0.1 M H+/H2, 0.1 M H+/H2, 0.1 M H+/H2, 0.1 M H+/H2, 0.1 M H+/H2, 0.1 M H+/H2, 0.1 M H+/H2, 0.1 M Au+/0
32 58 37.5 55.5 31.9 43.6 33.3 25 60
1.2·10–10 2.08·10–10 1.15·10–11 5.75·10–12 3.38·10–11 8.7·10–11 1.69·10–13 2.39·10–12 10–10.1 0.82·10–3
CP CP CP CP CP CP CP CP CP CP
66But3 66But3 66But3 66But3 66But3 66But3 66But3 66But3 65Rai 71Che
-
(4.0·10–4)
CP
70Bon
CP
70Bon
CP
02Fer1 65)
Cu(Hg)
Cu(111)
Gallium (Ga)
+19.2mol%In +0.122mol%Hg +0.36mol%Hg +1.64mol%Hg +99.65mol%Hg Gold (Au)
1 M HClO4/H2O
Ce 3 + /4 + Ce 3 + /4 +
Method Ref. j0 , j00 174 ș 5 ) kapp or k c ) –2 –1 [°C] [A cm or cm s ]
-
–4
(3.0·10 ) –5
1 M HClO4/H2O
Ce 4 + /3 +
RT
3.6·10
1 M HClO4/H2O
Ce 4 + /3 + [Co(cp)2] (o)
RT
5.8·10–5
IP
02Fer1 65)
-
2.63
ACP
93Win
[Co(cp)2] (o)
-
1.75
ACP
93Win
[Co(cp)2] (o)
-
0.94
ACP
93Win
0.025 M TBAP 52) /DMF 54) 0.05 M TBAP 52) /DMF 54) 0.1 M TBAP 52) /DMF 54)
Landolt-Börnstein New Series IV/9A
5 Exchange current densities Electrode 1)
Solution 2)
Educt, product, concentration 3)
0.25 M TBAP 52) /DMF 54) 0.1 M KPF6/H2O 0.1 M NaClO4/H2O 0.1 M NaClO4/H2O 0.1 M NaClO4/H2O 0.1 M NaClO4/H2O 0.1 M NaClO4 +5 mM HClO4/H2O 0.1 M NaClO4 +5 mM HClO4 +5 mM NaI/H2O 0.1 M NaClO4 +5 mM HClO4/H2O 0.1 M NaClO4 +5 mM HClO4 +5 mM NaI/H2O 0.1 M NaClO4 +5 mM HClO4/H2O 0.1 M NaClO4 +5 mM HClO4 +5 mM NaI/H2O 0.1 M NaClO4 +5 mM HClO4/H2O 0.1 M NaClO4 +5 mM HClO4 +5 mM NaI/H2O 0.1 M NaClO4 +5 mM HClO4/H2O 0.1 M NaClO4 +5 mM HClO4 +5 mM NaI/H2O 0.1 M NaClO4 +5 mM HClO4/H2O 0.1 M NaClO4 +5 mM HClO4 +5 mM NaI/H2O 0.1 M NaClO4/H2O
[Co(cp)2] (o)
0.1 M NaClO4/H2O
Landolt-Börnstein New Series IV/9A
291
T 4)
Method Ref. j0 , j00 174 ș 5 ) kapp or k c ) –2 –1 [°C] [A cm or cm s ] -
0.71
ACP
93Win
[Co(NH3)6]3+/2+ [Co(NH3)6]3+/2+ [Co(NH3)6]3+/2+ [Co(NH3)5] F2+/1+ [Co(NH3)5]OH23+/2+ [Co(NH3)5]Cl2+/1+
25 25 23 23 25 24
(1.0·10–2) (2.0·10–3) (4.2·10–4) (30·10–4) (1.0·10–3) (0.1)
RDE RDE CV CV RDE PP
80Bar1 80Bar1 86Ham 86Ham 80Bar1 84Bar2
[Co(NH3)5]Cl2+/1+
24
(1.0·10–7)
PP
84Bar2
[Co(NH3)5]Br2+/1+
24
(0.15)
PP
84Bar2
[Co(NH3)5]Br2+/1+
24
(1.0·10–7)
PP
84Bar2
[Co(NH3)5]NCS2+/1+
24
(5.0·10–2)
PP
84Bar2
[Co(NH3)5]NCS2+/1+
24
(2.5·10–2)
PP
84Bar2
cis([Co(NH3)4]Cl2)2+/1+
24
(4.0·10–3)
PP
84Bar2
cis([Co(NH3)4]Cl2)2+/1+
24
(1.0·10–5)
PP
84Bar2
cis([Co(en)2]Cl2)2+/1+
24
(5.0·10–3)
PP
84Bar2 63)
cis([Co(en)2]Cl2)2+/1+
24
(7.0·10–6)
PP
84Bar2 63)
cis-([Co(en)2] (NCS)2)2+/1+
24
(6.5·10–4)
PP
84Bar2 63)
cis-([Co(en)2] (NCS)2)2+/1+
24
(1.0·10–4)
PP
84Bar2 63)
([Co(NH3)5] HCOO)2+/1+ ([Co(NH3)5] CH3COO)2+/1+
24
(6.5·10–5)
PP
85Li
24
(3.1·10–5)
PP
85Li
292
5 Exchange current densities
Electrode 1)
Solution 2)
Educt, product, concentration 3)
T 4)
Au
0.1 M NaClO4/H2O
([Co(NH3)5] CCl3COO)2+/1+ ([Co(NH3)5] CF3COO)2+/1+ ([Co(NH3)5] (CH3)3COO)2+/1+ ([Co(NH3)5] CH3C(O)COO)2+/1+ ([Co(NH3)5] HC(O)COO)2+/1+ ([Co(NH3)5] CH2OHCOO)2+/1+ ([Co(NH3)5]CH3C (OH)HCOO)2+/1+ ([Co(NH3)5] CH2FCOO)2+/1+ ([Co(NH3)5] cyclopentane carboxylate)2+/1+ ([Co(NH3)5] cyclopentane acetate)2+/1+ ([Co(NH3)5] cyclohexane carboxylate)2+/1+ ([Co(NH3)5] cyclohexane acetate)2+/1+ ([Co(NH3)5] 3-cyclohexane propionate)2+/1+ ([Co(NH3)5] benzoate)2+/1+ ([Co(NH3)5] phenylacetate)2+/1+ ([Co(NH3)5]3-phenyl propionate)2+/1+ ([Co(NH3)5]2-phenyl acrylate)2+/1+ ([Co(NH3)5]furan-3carboxylate)2+/1+ ([Co(NH3)5]furan-2carboxylate)2+/1+ ([Co(NH3)5]furan-2acrylate)2+/1+ ([Co(NH3)5]pyridine2-carboxylate)2+/1+
24
(6.8·103)
PP
85Li
24
(3.2·10–4)
PP
85Li
24
(3.0·10–5)
PP
85Li
24
(1.2·10–4)
PP
85Li
24
(1.0·10–4)
PP
85Li
24
(4.8·10–5)
PP
85Li
24
(6.0·10–5)
PP
85Li
24
(1.8·10–4)
PP
85Li
24
(4.5·10–4)
PP
85Li
24
(5.0·10–4)
PP
85Li
24
(4.6·10–4)
PP
85Li
24
(1.6·10–3)
PP
85Li
24
(3.1·10–3)
PP
85Li
24
(1.2·10–2)
PP
85Li
24
(6.5·10–3)
PP
85Li
24
(9.7·10–3)
PP
85Li
24
(2.0·10–2)
PP
85Li
24
(1.1·10–3)
PP
85Li
24
(1.5·10–3)
PP
85Li
24
(1.6·10–3)
PP
85Li
24
(1.5·10–3)
PP
85Li
0.1 M NaClO4/H2O 0.1 M NaClO4/H2O 0.1 M NaClO4/H2O 0.1 M NaClO4/H2O 0.1 M NaClO4/H2O 0.1 M NaClO4/H2O 0.1 M NaClO4/H2O 0.1 M NaClO4/H2O
0.1 M NaClO4/H2O
0.1 M NaClO4/H2O
0.1 M NaClO4/H2O
0.1 M NaClO4/H2O
0.1 M NaClO4/H2O 0.1 M NaClO4/H2O 0.1 M NaClO4/H2O 0.1 M NaClO4/H2O 0.1 M NaClO4/H2O 0.1 M NaClO4/H2O 0.1 M NaClO4/H2O 0.1 M NaClO4+/H2O
Method Ref. j0 , j00 174 ș 5 ) kapp or k c ) –2 –1 [°C] [A cm or cm s ]
Landolt-Börnstein New Series IV/9A
5 Exchange current densities Electrode 1)
Solution 2)
Educt, product, concentration 3)
T 4)
0.1 M NaClO4+/H2O
([Co(NH3)5]pyridine3-carboxylate)2+/1+ ([Co(NH3)5] pyridine-2acetate)2+/1+ ([Co(NH3)5] 3-pyridyl acrylate)2+/1+ ([Co(NH3)5] thiophene-2carboxylate)2+/1+ ([Co(NH3)5] thiophene-2acetate)2+/1+ ([Co(NH3)5] thiophene-2propionate)2+/1+ ([Co(NH3)5] thiophene-2butyrate)2+/1+ ([Co(NH3)5] thiophene-3carboxylate)2+/1+ ([Co(NH3)5] thiophene-2acetate)2+/1+ ([Co(NH3)5] thiophene-2acrylate)2+/1+ ([Co(NH3)5] thiophene-2carboxylate)2+/1+ ([Co(NH3)5] thiophene-2acetate)2+/1+ ([Co(NH3)5] thiophene-2propionate)2+/1+ ([Co(NH3)5] thiophene-2butyrate)2+/1+ ([Co(NH3)5] thiophene-2acrylate)2+/1+ ([Co(NH3)5] thiophene-3carboxylate)2+/1+
24
(1.3·10–3)
PP
85Li
24
(8.9·10–3)
PP
85Li
24
(7.2·10–3)
PP
85Li
24
(2.3·10–2)
PP
85Li
24
(7.3·10–3)
PP
85Li
24
(7.0·10–3)
PP
85Li
24
(3.0·10–3)
PP
85Li
24
(2.8·10–2)
PP
85Li
24
(7.5·10–3)
PP
85Li
24
(3.2·10–2)
PP
85Li
24
(7.0·10–5)
PP
84Li
24
(1.2·10–5)
PP
84Li
24
(1.8·10–5)
PP
84Li
24
(1.3·10–5)
PP
84Li
24
(2.0·10–5)
PP
84Li
24
(7.5·10–5)
PP
84Li
0.1 M NaClO4/H2O
0.1 M NaClO4/H2O
0.1 M NaClO4/H2O
0.1 M NaClO4/H2O
0.1 M NaClO4/H2O
0.1 M NaClO4/H2O
0.1 M NaClO4/H2O
0.1 M NaClO4/H2O
0.1 M NaClO4/H2O
0.1 M NaClO4 +5 mM HClO4/H2O 0.1 M NaClO4 +5 mM HClO4/H2O 0.1 M NaClO4 +5 mM HClO4/H2O 0.1 M NaClO4 +5 mM HClO4/H2O 0.1 M NaClO4 +5 mM HClO4/H2O 0.1 M NaClO4 +5 mM HClO4/H2O
Landolt-Börnstein New Series IV/9A
293
Method Ref. j0 , j00 174 ș 5 ) kapp or k c ) –2 –1 [°C] [A cm or cm s ]
294
5 Exchange current densities
Electrode 1)
Solution 2)
Educt, product, concentration 3)
T 4)
Au
0.1 M NaClO4 +5 mM HClO4/H2O 0.1 M NaClO4 +5 mM HClO4/H2O 0.1 M NaClO4 +5 mM HClO4/H2O 0.1 M NaClO4/H2O
([Co(NH3)5] thiophene-3acetate)2+/1+ ([Co(NH3)5] benzothiophene-3carboxylate)2+/1+ ([Co(NH3)5] benzothiophene-3malonate)2+/1+
24
(3.0·10–5)
PP
84Li
24
(2.0·10–5)
PP
84Li
24
(4.0·10–5)
PP
84Li
2 + /3 + Craq
25
(7.0·10–4)
RDE
80Bar1
0.5 M NaClO4/H2O
2 + /3 + Craq
25
(1.5·10–3)
RDE
80Bar1
0.1 M H2SO4+0.1 M NaCl/H2O 66) 0.1 M H2SO4+0.2 M NaCl/H2O 66) 0.1 M H2SO4+0.5 M NaCl/H2O 66) 0.1 M H2SO4 +1 M NaCl/H2O 66) 0.1 M H2SO4 +2 M NaCl/H2O 66) 0.2 M HCl/H2O 67)
2 + /3 + Craq
-
1.5·10–3
CV
89Rod
2 + /3 + Craq
-
2.7·10–3
CV
89Rod
2 + /3 + Craq
-
3.3·10–3
CV
89Rod
2 + /3 + Craq
-
5.8·10–3
CV
89Rod
2 + /3 + Craq
-
7.3·10–3
CV
89Rod
2 + /3 + Craq
-
7.3·10–3
CV
89Rod
0.2 M HCl/H2O 68)
2 + /3 + Craq
-
4.8·10–3
CV
89Rod
0.2 M HCl/H2O 69)
2 + /3 + Craq
-
9.4·10–3
CV
89Rod
0.2 M HCl/H2O 70)
2 + /3 + Craq
-
6.0·10–3
CV
89Rod
0.4 M K2SO4 +0.01 N H2SO4/H2O 0.4 M K2SO4 +0.01 N H2SO4/H2O 1 M H2SO4/H2O
Fe(H 2 O) 62 + /3 +
20
19.0
TPF
88Boc
Fe(H 2 O) 62 + /3 +
20
18.0
CV
88Boc
Fe(H 2 O) 62 + /3 + , 10 mM
25
2.5·10–4
SS
68Boc2 71)
1 M H2SO4/H2O
Fe(H 2 O) 62 + /3 + , 0.1 M
25
7.2·10–4
SS
68Boc2 72)
1 M H2SO4/H2O
Fe(H 2 O) 62 + /3 + , 0.004 M
-
6.0·10–6
RDE
96Tor
1 N H2SO4/H2O
Fe(H 2 O) 62 + /3 +
20
10·10–3
RDE
72Ang
0.1 M HClO4/H2O
Fe(H 2 O) 62 + /3 +
22
7.8·10–3
CV
89Chu
Method Ref. j0 , j00 174 ș 5 ) kapp or k c ) –2 –1 [°C] [A cm or cm s ]
Landolt-Börnstein New Series IV/9A
5 Exchange current densities Electrode 1)
Solution 2)
Educt, product, concentration 3)
j0 , j00 Method Ref. 174 ș 5 ) kapp or k c ) –2 –1 [°C] [A cm or cm s ]
0.5 M HClO4/H2O
Fe(H 2 O) 62 + /3 +
20
(5·10–5)
RDE
78Web
0.5 M HClO4/H2O
Fe(H 2 O) 62 + /3 +
RT
2.2·10–5
PS
87Hun 73)
0.5 M HClO4/H2O
Fe(H 2 O) 62 + /3 +
25
8.0·10–5
CP
91Cur
1 N H2SO4/H2O
Fe(H 2 O) 62 + /3 +
20
5.0
RDE
83Vie
1 M KF/H2O
Fe(CN)36– /4 –
20
37.0
TPF
83Iwa
0.5 M K2SO4/H2O
Fe(CN)36– /4 –
20
26.0
TPF
83Iwa
1 M NaNO3/H2O
Fe(CN)36– /4 –
RDE
96Tor
0.3 M TEAH/acetone 0.3 M TEAH/acetone 0.3 M TEAH/acetone 0.3 M TEAH/acetone 0.3 M TEAH/acetone 0.3 M TEAH/acetone 0.3 M TEAH/propionitrile 0.3 M TEAH/propionitrile 0.3 M TEAH/propionitrile 0.3 M TEAH/propionitrile 0.3 M TEAH/propionitrile 0.3 M TEAH/propionitrile 0.3 M TEAH/butyronitrile 0.3 M TEAH/butyronitrile 0.3 M TEAH/butyronitrile 0.3 M TEAH/butyronitrile 0.3 M TEAH/butyronitrile 0.3 M TEAH/butyronitrile 1 M KOH/H2O 0.001 N HCl/H2O 0.01 N HCl/H2O
T 4)
–4
-
2.01·10
25
5.0·10–3
IP
52Ran2
+/0
FeC FeC+/0 FeC+/0 FeC+/0 FeC+/0 FeC+/0 FeC+/0
–75 –55 –35 –15 5 25 –75
0.083 0.38 0.92 1.4 2.5 5.5 0.07
CV CV CV CV CV CV CV
92Saf 92Saf 92Saf 92Saf 92Saf 92Saf 92Saf
FeC+/0
–55
0.15
CV
92Saf
FeC+/0
–35
0.43
CV
92Saf
FeC+/0
–15
0.68
CV
92Saf
FeC+/0
5
2.1
CV
92Saf
FeC+/0
25
3.0
CV
92Saf
FeC+/0
–75
0.02
CV
92Saf
FeC+/0
–55
0.04
CV
92Saf
FeC+/0
–35
0.17
CV
92Saf
FeC+/0
–15
0.36
CV
92Saf
FeC+/0
5
0.48
CV
92Saf
FeC+/0
25
0.95
CV
92Saf
MnO 4–/2 –
20
0.8·10–2
CP, GS 67Thi1
0.004 M 0.5 M K-oxalate/H2O Fe(ox)34– /3–
Landolt-Börnstein New Series IV/9A
295
+
H /H2 H+/H2
,
-
–7.32
10 10–6.63
CP CP
57Pen 57Pen
296
5 Exchange current densities
Electrode 1)
Solution 2)
Educt, product, concentration 3)
T 4)
j0 , j00 Method Ref. 174 ș 5 ) kapp or k c ) –2 –1 [°C] [A cm or cm s ]
Au
0.1 N HCl/H2O 0.1 M HCl/H2O 0.1 M HClO4/H2O 0.01 M H2SO4/H2O 0.1 M H2SO4/H2O 0.5 M H2SO4/H2O 1 M H2SO4/H2O 2 M H2SO4/H2O 3 M H2SO4/H2O 5 M H2SO4/H2O 8 M H2SO4/H2O 12 M H2SO4/H2O 0.001 N NaOH/H2O 0.01 N NaOH/H2O 0.1 N NaOH/H2O 0.6 M TEAP 74)/AN 0.2 M NaClO4/H2O
H+/H2 H+/H2 H+/H2 H+/H2 H+/H2 H+/H2 H+/H2 H+/H2 H+/H2 H+/H2 H+/H2 H+/H2 H+/H2 H+/H2 H+/H2 ferrocene 2 + /3 + Vaq
21 21 21 21 21 21 21 21 25
10–5.64 10–6.3 1.4·10–7 10–5.83 10–5.75 10–5.9 10–5.86 10–5.81 10–5.78 10–5.71 10–5.61 10–5.48 10–5.64 10–7.05 10–7.04 3.1 (>0.1)
CP CP CP CP CP CP CP CP CP CP CP CP CP CP CP CV CV
57Pen 59Ive 98Per 68Gos 68Gos 67Man 68Gos 68Gos 68Gos 68Gos 68Gos 68Gos 57Pen 57Pen 57Pen 88Wip 80Bar1
0.2 M NaClO4 +1 mM Cr2+/H2O 0.2 M KPF6/H2O
2 + /3 + Vaq
25
(5.5·10–5)
CV
80Bar1
2 + /3 + Ru aq
25
(>5.0·10–2)
CV
80Bar1
0.2 M KPF6 +1 mM Cr2+/H2O 1 M KF/H2O 0.1 M TEAP 74) /DMF 54) 0.3 M TEAH/propionitrile 0.3 M TEAH/propionitrile 0.3 M TEAH/propionitrile 0.3 M TEAH/propionitrile 0.3 M TEAH/propionitrile 0.3 M TEAH/butyronitrile 0.3 M TEAH/butyronitrile 0.3 M TEAH/butyronitrile 0.3 M TEAH/butyronitrile 0.3 M TEAH/butyronitrile
2 + /3 + Ru aq
25
(5·10–5)
CV
80Bar1
[Ru(NH3)6]3+/2+ benzoquinone (r)
20 25
98 0.0053
TPF CV
85Iwa 73Cap
o-nitrotoluene0/–
–55
0.014
CV
92Saf
o-nitrotoluene0/–
–35
0.071
CV
92Saf
o-nitrotoluene0/–
–15
0.16
CV
92Saf
o-nitrotoluene0/–
5
0.36
CV
92Saf
o-nitrotoluene0/–
25
0.75
CV
92Saf
o-nitrotoluene0/–
–55
0.014
CV
92Saf
o-nitrotoluene0/–
–35
0.042
CV
92Saf
o-nitrotoluene0/–
–15
0.12
CV
92Saf
o-nitrotoluene0/–
5
0.28
CV
92Saf
o-nitrotoluene0/–
25
0.58
CV
92Saf
Landolt-Börnstein New Series IV/9A
5 Exchange current densities Electrode 1)
297
Solution 2)
Educt, product, concentration 3)
j0 , j00 Method Ref. 174 ș 5 ) kapp or k c ) –2 –1 [°C] [A cm or cm s ]
0.3 M TEAH/propionitrile 0.3 M TEAH/propionitrile 0.3 M TEAH/propionitrile 0.3 M TEAH/propionitrile 0.3 M TEAH/butyronitrile 0.3 M TEAH/butyronitrile 0.3 M TEAH/butyronitrile 0.3 M TEAH/butyronitrile 0.1 M NaClO4/H2O 0.1 M NaClO4/H2O 0.1 M NaClO4/H2O 0.1 M HClO4/H2O
nitromesitylene0/–
–35
0.029
CV
92Saf
nitromesitylene0/–
–15
0.075
CV
92Saf
nitromesitylene0/–
5
0.19
CV
92Saf
nitromesitylene0/–
25
0.36
CV
92Saf
nitromesitylene0/–
–35
0.025
CV
92Saf
nitromesitylene0/–
–15
0.082
CV
92Saf
nitromesitylene0/–
5
0.16
CV
92Saf
nitromesitylene0/–
25
0.31
CV
92Saf
[Co(NH3)6]3+/2+ 23 [Co(NH3)5]F2+/1+ 23 2+/1+ [Co(NH3)5OSO3] 23 Fe(H O) 3 + (r)
(1.8·10–4) (5·10–4) (2.5·10–4) (1.0)
CV CV CV CV
86Ham 86Ham 86Ham 97Faw
0.1 M HClO4/H2O 0.1 M NaClO4/H2O 0.1 M NaClO4/H2O 0.1 M NaClO4/H2O 0.1 M HClO4/H2O
H+/H2 3+/2+ [Co(NH3)6] 23 [Co(NH3)5]F2+/1+ 23 [Co(NH3)5OSO3]2+/1+ 23 Fe(H 2 O)36+ (r)
0.5·10–7 (1.5·10–4) (1.5·10–4) (50·10–4) (1.0)
CP CV CV CV CV
98Per 86Ham 86Ham 86Ham 97Faw
0.1 M HClO4/H2O 0.1 M NaClO4/H2O 0.1 M NaClO4/H2O 0.1 M NaClO4/H2O 0.1 M HClO4/H2O
H+/H2 [Co(NH3)6]3+/2+ 23 [Co(NH3)5]F2+/1+ 23 2+/1+ [Co(NH3)5OSO3] 23 Fe(H 2 O)36+ (r)
0.3·10–7 (3·10–4) (10·10–4) (40·10–4) (1.0)
CP CV CV CV CV
98Per 86Ham 86Ham 86Ham 97Faw
0.1 M HClO4/H2O Gold/Palladium 1 M H2SO4/H2O alloy 25 at%
H+/H2
25
2.5·10–7 0.0018
CP SS
98Per 68Boc2
Gold/Palladium 1 M H2SO4/H2O alloy 50 at%
Fe(H 2 O) 62 + /3 + , 0.1 M
25
0.0046
SS
68Boc2
Gold/Palladium 1 M H2SO4/H2O alloy 75 at%
Fe(H 2 O) 62 + /3 + , 0.1 M
25
0.0063
SS
68Boc2
Gold/Platinum 1 M H2SO4/H2O alloy 20 at%
Fe(H 2 O) 62 + /3 + , 0.1 M
25
6.9·10–4
SS
68Boc2
Au(100)
Au(110)
Au(111)
Landolt-Börnstein New Series IV/9A
2
T 4)
6
Fe(H 2 O) 62 + /3 +
,
0.1 M
298 Electrode 1)
5 Exchange current densities Solution 2)
0.1 M HClO4/H2O 0.1 M HClO4/H2O 10–2 M HClO4 +10–2 M In(ClO4)3/H2O 10–2 M HClO4 +10–2 M In(ClO4)3 +5·10–2 M NaCl/H2O 10–2 M HClO4 +10–2 M In(ClO4)3 +0.16 M NaCl/H2O 3 mM HClO4/H2O In(Pt) 76) 3 mM HClO4 +NaClO4/H2O (I=3 M) In(Pt) 10 mM HClO4 +NaClO4/H2O (I =3 M) In(Pt) 10 mM HClO4 +NaClO4+ 0.05 M NaCl/H2O (I =3 M) In(Pt) 10 mM HClO4 +NaClO4+0.16 M NaCl/H2O (I =3 M) In(Hg)0.97 M In 1 M HClO4/H2O Indium (In)
In(Hg) 0.01 M HClO4 0.002...0.9 M In +NaClO4/H2O (I =3 M) In(Hg) 0.1M In 0.0077 M HClO4 +2.9923 M NaClO4/H2O In(Hg) 0.1M In 0.016 M HClO4 +2.984 M NaClO4/H2O In(Hg) 0.1M In 0.05 M HClO4 +2.95 M NaClO4/H2O In(Hg) 0.1M In 0.01 M HClO4 +1 M NaClO4/H2O In(Hg) 0.1M In 0.01 M HClO4 +3 M NaClO4/H2O In(Hg) 0.1M In 0.01 M HClO4 +6.1 M NaClO4/H2O
T 4)
Educt, product, concentration 3)
j0 , j00 Method Ref. 174 ș 5 ) kapp or k c ) –2 –1 [°C] [A cm or cm s ]
H+/H2 H+/H2 In3+/In
30 25 20
10–10.83 1.4·10–12 6.7·10–5
CP CP CF
65But5 75) 64But1 68Los
In3+/In
20
2.4·10–4
CF
68Los
In3+/In
20
4.2·10–4
CF
68Los
In3+/In In3+/In
20 20
2.88·10–3 2.9·10–3
RT RT
68Los 70Los
In3+/In
20
6.7·10–5
RT
70Los
In3+/In
20
2.4·10–4
RT
70Los
In3+/In
20
4.2·10–4
RT
70Los
In3+/In, 5.3 mM In3+ In3+/In
20
4·10–6
CP
65Mol3
0.0067
RT
63Bud
In3+/In, 10 mM In3+
20
3.5·10–4
CP, RT 60Los2, 62Los2
In3+/In, 10 mM In3+
20
2.2·10–4
CP, RT 60Los2, 62Los2
In3+/In, 10 mM In3+
20
5.2·10–5
CP, RT 60Los2, 62Los2
In3+/In, 10 mM In3+ In3+/In, 10 mM In3+ In3+/In, 10 mM In3+
20
6.9·10–4
RT
20
1.52·10–4
RT
20
2.5·10–4
RT
-
64Mol, 65Mol2 64Mol, 65Mol2 64Mol, 65Mol2
Landolt-Börnstein New Series IV/9A
5 Exchange current densities
299
Electrode 1)
Solution 2)
Educt, product, concentration 3)
j0 , j00 Method Ref. 174 ș 5 ) kapp or k c ) –2 –1 [°C] [A cm or cm s ]
In(Hg) 0.1M In
0.01 M HClO4 +2.9 M NaClO4 +0.1 M Na2SO4/H2O 0.01 M HClO4 +2.4 M NaClO4 +0.6 M Na2SO4/H2O 0.01 M HClO4 +2.9 M NaClO4 +0.1 M NaBr/H2O 0.01 M HClO4 +2.5 M NaClO4 +0.5 M NaBr/H2O 0.01 M HClO4 +2.9 M NaClO4 +0.1 M NaI/H2O 0.01 M HClO4 +2.5 M NaClO4 +0.5 M NaI/H2O 0.01 M HClO4 +2.5 M NaClO4 +0.5 M NaCl/H2O 0.01 M HClO4 +2.9 M NaClO4 +0.1 M NaCl/H2O 0.1 M HClO4 +0.3 M NaF/H2O 0.86 M H3PO4/H2O 2.98 M NaClO4 +0.02 M NaF +HClO4/H2O (pH=1.3) 2.9 M NaClO4 +0.1 M NaF +HClO4/H2O (pH=1.3)
In3+/In, 10 mM In3+
20
3.0·10–4
CP, RT 60Los3, 63Los
In3+/In, 10 mM In3+
20
1.7·10–4
CP, RT 60Los3, 63Los
In3+/In, 10 mM In3+
20
1.1·10–3
CP, RT 63Los
In3+/In, 10 mM In3+
20
2.9·10–3
CP, RT 63Los
In3+/In, 10 mM In3+
20
4.7·10–3
CP, RT 63Los
In3+/In, 10 mM In3+
20
8.7·10–3
CP, RT 63Los
In3+/In, 10 mM In3+
20
1.7·10–4
CP, RT 63Los
In3+/In, 10 mM In3+
20
1.7·10–4
CP, RT 63Los
In3+/In, 4·10–6 mMIn3+ In3+/0 In3+/In, 0.01 M In3+
20
1.55·10–5
CP
25 20
(6.6·10–11) 9.1·10–5
DCP 58Ima CP, RT 63Los
In3+/In, 0.01 M In3+
20
1.6·10–5
CP, RT 63Los
H+/H2 H+/H2 H+/H2 H+/H2 H+/H2 H+/H2 H+/H2 H+/H2 H+/H2
25 25 30 40 50 61 25 14 25
2.9·10–13 1.9·10–14 3.3·10–14 1.0·10–13 2.7·10–13 8.9·10–13 3.8·10–13 4.2·10–15 1.3·10–15
CP CP CP CP CP CP CP CP CP
In(Hg) 0.1M In
In(Hg) 0.1M In
In(Hg) 0.1M In
In(Hg) 0.1M In
In(Hg) 0.1M In
In(Hg) 0.1M In
In(Hg) 0.1M In
In(Hg) 0.1M In In(Hg) In(Hg) 0.1M In
In(Hg) 0.1M In
In(Hg) 8.4% In 10.0% In 10.0% In 10.0% In 10.0% In 10.0% In 16.3% In 20.0% In 20.0% In
Landolt-Börnstein New Series IV/9A
0.1 M HClO4 0.1 M HClO4 0.1 M HClO4 0.1 M HClO4 0.1 M HClO4 0.1 M HClO4 0.1 M HClO4 0.1 M HClO4 0.1 M HClO4
T 4)
67Los
64But1 65But4 65But4 65But4 65But4 65But4 64But1 65But4 65But4
300
5 Exchange current densities
Electrode 1)
Solution 2)
Educt, product, concentration 3)
j0 , j00 Method Ref. 174 ș 5 ) kapp or k c ) –2 –1 [°C] [A cm or cm s ]
20.0% In 20.0% In 20.0% In 20.0% In 30.4% In 40.0% In 40.0% In 40.0% In 40.0% In 40.0% In 52.2% In 63.0% In 63.0% In 63.0% In 63.0% In 63.0% In 63.0% In 64.4% In Iridium (Ir)
0.1 M HClO4 0.1 M HClO4 0.1 M HClO4 0.1 M HClO4 0.1 M HClO4 0.1 M HClO4 0.1 M HClO4 0.1 M HClO4 0.1 M HClO4 0.1 M HClO4 0.1 M HClO4 0.1 M HClO4 0.1 M HClO4 0.1 M HClO4 0.1 M HClO4 0.1 M HClO4 0.1 M HClO4 0.1 M HClO4 1 M H2SO4/H2O
H+/H2 H+/H2 H+/H2 H+/H2 H+/H2 H+/H2 H+/H2 H+/H2 H+/H2 H+/H2 H+/H2 H+/H2 H+/H2 H+/H2 H+/H2 H+/H2 H+/H2 H+/H2
35 44 55 66 25 14 25 35 51 65 25 16 25 36 46 56 66 25 25
3.3·10–14 5.2·10–13 1.2·10–13 1.8·10–12 5.5·10–13 4.9·10–15 2.9·10–14 9.5·10–14 1.2·10–12 3.3·10–12 8.1·10–13 8.1·10–14 1.0·10–13 4.3·10–13 5.2·10–13 1.5·10–12 9.7·10–12 1.1·10–12 0.0052
CP CP CP CP CP CP CP CP CP CP CP CP CP CP CP CP CP CP SS
65But4 65But4 65But4 65But4 64But1 65But4 65But4 65But4 65But4 65But4 64But1 65But4 65But4 65But4 65But4 65But4 65But4 64But1 68Boc2
1 M H2SO4/H2O
Fe(H 2 O) 62 + /3 + 0.01 M H+/H2 H+/H2 benzoquinone (r)
25
0.0015
SS
68Boc2
25
10–3.7 10–3.4 6.2·10–3
CP CP CV
65Mat 67Man 73Cap
hydroquinone/ quinone, 5.5 mM hydroquinone/ quinone, 5.5 mM hydroquinone/ quinone, 5.5 mM hydroquinone/ quinone, 5.5 mM Fe2+/3+, 0.05 M
25
6.3·10–6
CP
62Tom 77)
25
3.4·10–5
CF
62Tom
25
2.6·10–5
CF
62Tom
25
4.9·10–5
CF
62Tom
25
1·10–5
CP
64Mak 78)
25
10–6.19 10–6.29 10–5.6 10–6.62 10–6.06 4.19·10–13
CP CP CP CP CP CV
57Pen 57Pen 67Man 57Pen 57Pen 96Boc 79)
Iron (Fe)
0.5 M H2SO4/H2O 0.5 M H2SO4/H2O 0.1 M TEAP 74) /DMF 54) HCl-buffer/H2O, pH=1.1 HCl-buffer/H2O, pH=1.1 acetate buffer/H2O, pH=3.0 acetate buffer/H2O, pH=5.0 1 M H2SO4 +0.1 M Na2SO4/H2O 0.001 N HCl/H2O 0.01 N HCl/H2O 0.5 M H2SO4/H2O 0.01 N NaOH/H2O 0.1 N NaOH/H2O 1.33 M NaOH +1.95 M NaNO3/H2O
Fe(H 2 O) 62 + /3 + 0.1 M
H+/H2 H+/H2 H+/H2 H+/H2 H+/H2 NO 3– /NO
T 4)
Landolt-Börnstein New Series IV/9A
5 Exchange current densities
301
Electrode 1)
Solution 2)
Educt, product, concentration 3)
j0 , j00 Method Ref. 174 ș 5 ) kapp or k c ) –2 –1 [°C] [A cm or cm s ]
Lead (Pb)
0.01...1 M HCl/H2O 0.5 N H2SO4/H2O H2SO4/H2O, ρ =1.225 g·cm–3 H2SO4/H2O, ρ =1.225 g·cm–3 H2SO4/H2O, ρ =1.225 g·cm–3 H2SO4/H2O, ρ =1.225 g·cm–3 0.5 N NaOH/H2O H2SO4/H2O, ρ =1.225 g·cm–3 H2SO4/H2O, ρ =1.225 g·cm–3 H2SO4/H2O, ρ =1.225 g·cm–3 H2SO4/H2O, ρ =1.225 g·cm–3 1 M HClO4/H2O 0.9946 M KNO3 +2.7 mM Pb(NO3)2/H2O 0.986 M KNO3 +7 mM Pb(NO3)2/H2O 0.9 M KNO3 +50 mM Pb(NO3)2/H2O 0.8 M KNO3 +0.1 M Pb(NO3)2/H2O 0.5 M Pb(NO3)2/H2O
H+/H2 H+/H2 H+/H2
30
10–11.5 10–11.33 1.8·10–13
CP CP CS
70Avd 64Boc3 57Rüe 80)
H+/H2
30
7.5·10–13
CS
57Rüe 81)
H+/H2
30
1.4·10–12
CS
57Rüe 82)
H+/H2
30
4.5·10–12
CS
57Rüe
H+/H2 H2O/O2
30
10–6.47 1.4·10–10
CP CS
64Boc3 57Rüe 83)
H2O/O2
30
8.9·10–11
CS
57Rüe 84)
H2O/O2
30
2.1·10–10
CS
57Rüe 82)
H2O/O2
30
4.4·10–10
CS
57Rüe
Pb2+/0 Pb2+/0
16 23
0.3 0.0262, 0.0356
IP IP, GD
67Har 69Ham3
Pb2+/0
23
0.0349, 0.0395
IP, GD
69Ham3
Pb2+/0
23
0.0468, 0.064
IP, GD
69Ham3
Pb2+/0
23
0.0498, 0.067
IP, GD
69Ham3
Pb2+/0
23 -
IP, GD IP
69Ham3
Pb2+/0
0.0714, 0.1 0.1
59Lor
Pb(Hg) Pb(Hg) Pb(Hg) Pb(Hg) Pb(Hg) Pb(Hg) Pb(Hg)
Landolt-Börnstein New Series IV/9A
0.05 M PbCl2 +1 M KNO3/H2O 1.33 M NaOH +1.95 M NaNO3/H2O 1 M HClO4/H2O 1 M HClO4/H2O 1 M KBr/H2O, pH=2 1 M KCl/H2O 1 M KCl/H2O 1 M KNO3/H2O 1 M KNO3/H2O
T 4)
NO 3– /NO
25
6.6·10–10
CV
96Boc 79)
Pb2+/0 Pb2+/0 Pb2+/0, 1.5 mM Pb2+/0, 1.2 mM Pb2+/0, 2.4 mM Pb2+/0 Pb2+/0
25 28 32 32 20 22
2.0 1 0.96 5.2 7.7 >1 0.8
IP IP FR FR FR IP FR
61Ran 62Ran 71Aga 71Aga 71Aga 52Ran1 58Bar1
302 Electrode 1)
5 Exchange current densities Solution 2)
1 M KCl/H2O 1 M KCl/H2O 1 M KF/H2O 1 M KNO3/H2O 1 M KNO3/H2O K4P2O7+NaNO3/H2O 1 M NaBr/H2O 1 M NaClO4/H2O 1 M NaClO4/H2O 1 M NaClO4/H2O 1 M NaClO4/H2O 0.1 M NEt4PF6 /DMF 54) 0.1 M NPr4PF6 86) /DMF 54) 0.1 M NBu4PF6 86) /DMF 54) Mercury (Hg) 0.1 M LiCl/H2O 1 M LiCl/H2O 0.1 M (C2H5)4NI/H2O 1 M HCl/H2O 1 mM HCl +1 M HClO4/H2O 1 M HClO4/H2O 1 M HClO4/H2O 1 M HNO3/H2O 0.2 M HNO3 +0.8 M HClO4/H2O 0.4 M HNO3 +0.6 M HClO4/H2O 0.6 M HNO3 +0.4 M HClO4/H2O 2 M HClO4 +0.25 mM NaCl/H2O 0.5 M H2SO4/H2O 0.5 M HCl/H2O 0.5 M HCl/H2O 0.5 M HCl/H2O 1 M HCl/H2O 1 N HCl/H2O 1 M HCl/H2O Pb(Hg) Pb(Hg) Pb(Hg) Pb(Hg) Pb(Hg) Pb(Hg) Pb(Hg) Pb(Hg) Pb(Hg) Pb(Hg) Pb(Hg) Lithium (Li)
T 4)
Educt, product, concentration 3)
j0 , j00 Method Ref. 174 ș 5 ) kapp or k c ) –2 –1 [°C] [A cm or cm s ]
Pb2+/0 Pb2+/0 Pb2+/0, 3.7·10–5 M Pb2+/0, 1.5 mM Pb2+ Pb2+/0, 3 mM Pb2+ Pb2+/0 Pb2+/0 Pb2+/0 Pb2+/0 Pb2+/0, 1.2 mM Pb2+ Pb2+/0, 2.4 mM Pb2+ Li1+/0
22 28 28 28 22 25 37 37 25
0.2 250 2.1·10–3 0.59 1.0 1.66·10–4 3...50 3.3 220 10.2 13.5 1.1·10–4
FR IP FR FR FR DCP IP FR IP FR FR IP/PP
58Bar1 70Sal2 71Aga 71Aga 71Aga 68Pop 70Sal2 58Bar1 70Sal1 71Aga 71Aga 80Bar3
Li1+/0
25
2.8·10–4
IP/PP
80Bar3
Li1+/0
25
4.7·10–4
IP/PP
80Bar3
Ba2+/0 Ba2+/0 Ba2+/0 Bi3+/0 Bi3+/0
25 25 25 26 26
1.6·10–2 9·10–3 1·10–2 1.2...3.6 2.7·10–3
IP IP IP IP IP
70Tim 70Tim 70Tim 60Mou 60Mou
Bi3+/0 Bi3+/0 Bi3+/0 Bi3+/0
25 26 26 26
3·10–4 3.7·10–4 2.8...4.2·10–4 1.15·10–3
ACP IP IP IP
61Kam 60Mou 60Mou 60Mou
Bi3+/0
26
1.75·10–3
IP
60Mou
Bi3+/0
26
2.5·10–3
IP
60Mou
Bi0/3+, 4·10–6 M
20
10–5
CP
67Los
Bi3+/0 Cd2+/0 Cd2+/0 Cd2+/0 Cd2+/0 Cd2+/0 Cd2+/0
26 23.7 25 25 25 25 24
1.85·10–3 0.165 ≈0.5 ≈10 ≈0.6 2.6 0.94
IP ACP ACP IP ACP IP IP
60Mou 58Bau 60Bau 65Bie 60Bau 65Bie 67Fri
Landolt-Börnstein New Series IV/9A
5 Exchange current densities Electrode 1)
Landolt-Börnstein New Series IV/9A
303
Solution 2)
Educt, product, concentration 3)
T 4)
j0 , j00 Method Ref. 174 ș 5 ) kapp or k c ) –2 –1 [°C] [A cm or cm s ]
1 M HClO4/H2O 1 M HClO4/H2O 0.1 M HClO4 +0.9 M NaClO4/H2O 1 N H2SO4/H2O 1 M H2SO4/H2O 0.5 M H2SO4/H2O 1 M KBr/H2O, pH=2 1 M KBr/H2O 0.5 M KCl/H2O 1 M KCl/H2O, pH=2 1 M KCl/H2O, pH=3 1 M KCl/H2O, pH=2 1 M KI/H2O, pH=2 1 M KI/H2O 1 M KCl/H2O 1 N KF/H2O 1 N KI/H2O 1 N KI/H2O 1 M KNO3/H2O 1 M KNO3/H2O 1 M KNO3/H2O 1 M KNO3/H2O 1 M KNO3/H2O 1 N K2SO4/H2O 1 N K2SO4/H2O, pH=2 1 M NaBr/H2O 1 M NaCl/H2O 1 M NaCl/H2O 1 M NaClO4/H2O, pH=2 1 M NaClO4/H2O, pH=2 1 M NaClO4/H2O, pH=3 1 M NaClO4/H2O 1 M NaClO4/H2O 1 M NaClO4/H2O 1 M NaN3/H2O 1 N Na2SO4/H2O 1 N Na2SO4/H2O 1 N Na2SO4/H2O 1 N Na2SO4/H2O 1 N Na2SO4/H2O
Cd2+/0 Cd2+/0 Cd2+/0
25 24 25
0.35 0.25 0.46
IP IP IP
65Bie 67Fri 65Bie
Cd2+/0 Cd2+/0 Cd2+/0, 1·10–3 Cd2+/0, 2·10–5 Cd2+/0, 1.5·10–3 Cd2+/0 Cd2+/0 Cd2+/0 Cd2+/0 Cd2+/0, 2·10–5 Cd2+/0, 2·10–5 Cd2+/0 Cd2+/0, 2·10–5 Cd2+/0, 2·10–5 Cd2+/0, 2·10–5 Cd2+/0 Cd2+/0 Cd2+/0 Cd2+/0 Cd2+/0 Cd2+/0, 2·10–5 Cd2+ Cd2+/0 Cd2+/0 Cd2+/0 Cd2+/0
24 24 24 22 27 25 25 25 25 22 22 24 22 22 22 25 24 25 25 24 22 22 25 24 25 22
0.14 0.12 0.17 >0.2 0.91 ≈1.5 ≈2.9 ≈0.7 (≈2.9) >0.2 >1 1.2 (0.25) >0.2 >1 0.6 0.063 ≈0.4 2.6 0.63 0.08 (0.08) 7.7·10–3 1.2 3.9·10–3 2.3
IP IP ACP FR FR IP FR FR FR FR ACP IP FR FR ACP ACP IP ACP IP ACP FR FR IP IP IP FR
67Fri 67Fri 68Moo 61Bar1 71Aga 60Bau 60Bau 69deL 61Bar1 61Bar1 61Kam 67Fri 61Bar1 61Bar1 61Kam 61Kam 67Fri 60Bau 65Bie 67Fri 61Bar1 61Bar1 70Mou 67Fri 70Mou 58Bar1
Cd2+/0
22
(0.43)
FR
61Bar1
Cd2+/0
25
0.45
FR
69deL
Cd2+/0 Cd2+/0, 1·10–3 Cd2+/0, 3·10–3 Cd2+/0 Cd2+/0 Cd2+/0 Cd2+/0 Cd2+/0 Cd2+/0
24 24 27 25 20 25 25 25
0.34 0.33 1.2 7.5·10–3 2.6·10–2 0.25 8.5·10–2 3.6·10–2 3.8·10–2
IP ACP FR IP PS ACP IP PS GS
67Fri 68Moo 71Aga 70Mou 57Vie 60Bau 61Ran 63Tos 65Tos
304
5 Exchange current densities
Electrode 1)
Solution 2)
Educt, product, concentration 3)
T 4)
j0 , j00 Method Ref. 174 ș 5 ) kapp or k c ) –2 –1 [°C] [A cm or cm s ]
Hg
1 N Na2SO4/H2O 1 M Na2SO4/H2O 1 M Na2SO4/H2O 1 M Na2SO4/H2O 1 M Na2SO4+ 5·10–3 M n-hexanol/H2O 1 M Na2SO4+10–2 M n-hexanol/H2O 0.9 M NaClO4/H2O 0.9 M NaClO4 /methanol 0.9 M NaClO4 /propylene carbonate 0.9 M NaClO4 /DMF 54) 0.9 M NaClO4 /NMF 88) 1 M NaClO4/H2O 1 M NaClO4/H2O +CH3CN 0.5 mol +0.5 mol 1 M NaClO4/CH3CN 1 M NaClO4/CH3CN +CH3OH 0.8 mol +0.2 mol 1 M NaClO4/CH3CN +CH3OH 0.5 mol +0.5 mol 1 M NaClO4/CH3OH 1 M NaClO4/DMF 54) +NMF 88) 0.8 mol +0.2 mol 1 M NaClO4/DMF 54) +NMF 88) 0.5 mol +0.5 mol 1 M NaClO4/DMF 54) +NMF 88) 0.2 mol +0.8 mol 1 M KCl/H2O 0.1 M NaCl/H2O 0.1 M NaClO4/H2O 0.1 M NaSO4/H2O 0.1 M NMe4Br/H2O 0.1 M NaClO4 /formamide
Cd2+/0 Cd2+/0 Cd2+/0 Cd2+/0 Cd2+/0
24 24 24 25 30
0.076 0.063 0.24 0.15 2.2·10–4
IP IP CP ACP ACP
67Fri 67Fri 65Nic 72Hue 58Del
Cd2+/0
30
1.0·10–4
ACP
58Del
Cd2+/0 Cd2+/0
25 25
0.45 0.013
IP IP
71Bie 71Bie
Cd2+/0
25
∼0.1
IP
71Bie
Cd2+/
25
0.15
IP
71Bie
Cd2+/0
25
0.12
IP
71Bie
Cd2+/0, 2·10–5 Cd2+/0
22 25
(0.43) 0.0145
FR IP
61Bar1 71Bie
Cd2+/0 Cd2+/0
25 25
0.19 0.08
IP IP
71Bie 71Bie
Cd2+/0
25
0.028
IP
71Bie
Cd2+/0 Cd2+/0
25 25
0.013 0.081
IP IP
71Bie 71Bie
Cd2+/0
25
0.089
IP
71Bie
Cd2+/0
25
0.108
IP
71Bie
Co2+/0 Co2+/0 Co2+/0 Co2+/0 Co2+/0 Co2+/0
25 30 30 30 30 30
1.99·10–10 8.0·10–17 1.5·10–16 5.6·10–16 4.0·10–16 2.8·10–15
OP DCP DCP DCP DCP DCP
55Mat 70Gau 70Gau 70Gau 70Gau 70Gau
Landolt-Börnstein New Series IV/9A
5 Exchange current densities Electrode 1)
Landolt-Börnstein New Series IV/9A
305
Solution 2)
Educt, product, concentration 3)
T 4)
j0 , j00 Method Ref. 174 ș 5 ) kapp or k c ) –2 –1 [°C] [A cm or cm s ]
0.1 M NaClO4 /formamide (20vol%)+H2O 0.1 M NaClO4 /formamide (40vol%)+H2O 0.1 M NaClO4 /formamide (60vol%)+H2O 0.1 M NaClO4 /formamide (80vol%)+H2O 0.1 M NaClO4 /DMF 54) 0.1 M NaClO4 /DMF(20vol%) +H2O 0.1 M NaClO4 /DMF(40vol%) +H2O 0.1 M NaClO4 /DMF(60vol%) +H2O 0.1 M NaClO4 /DMF(80vol%) +H2O 0.1 M NaClO4 /acetonitrile 0.1 M NaClO4 /acetonitrile (40vol%)+H2O 0.1 M NaClO4 /acetonitrile (60vol%)+H2O 0.1 M NaClO4 /acetonitrile (80vol%)+H2O 0.1 M KPF6/H2O 0.1 M NaClO4/H2O 1 M KF/H2O 0.1 M KPF6/H2O 0.1 M NaClO4/H2O 1 M NH4F/H2O 0.2 M NaF/H2O 0.2 M KF/H2O 0.905 M NaF/H2O 1 M KF/H2O
Co2+/0
30
1.0·10–14
DCP
70Gau
Co2+/0
30
5.6·10–15
DCP
70Gau
Co2+/0
30
4.5·10–15
DCP
70Gau
Co2+/0
30
1.4·10–14
DCP
70Gau
Co2+/0
30
5.0·10–13
DCP
70Gau
Co2+/0
30
1.0·10–14
DCP
70Gau
Co2+/0
30
3.5·10–17
DCP
70Gau
Co2+/0
30
3.2·10–16
DCP
70Gau
Co2+/0
30
3.5·10–15
DCP
70Gau
Co2+/0
30
2.8·10–6
DCP
70Gau
Co2+/0
30
1.4·10–10
DCP
70Gau
Co2+/0
30
4.5·10–9
DCP
70Gau
Co2+/0
30
7.0·10–13
DCP
70Gau
[Co(NH3)6]3+/2+ [Co(NH3)6]3+/2+ [Co(NH3)5]F2+/+ [Co(NH3)5]F2+/+ [Co(NH3)5]F2+/+ [Co(NH3)5]F2+/+ [Co(NH3)5]F2+/+ [Co(NH3)5]F2+/+ [Co(NH3)5]F2+/+ [Co(NH3)5]OH2+/+
25 25 25 25 25 25 25 25 25 25
(2.7·10–4) (3.2·10–3) (1.5·10–5) (4.5·10–4) (2.0·10–3) (1.5·10–5) (8.0·10–6) (1.0·10–5) (1.7·10–5) (1.0·10–5)
CV CV DCP CV CV DCP DCP DCP DCP DCP
80Bar1 80Bar1 78Sat 80Bar1 80Bar1 78Sat 78Sat 78Sat 78Sat 78Sat
306
5 Exchange current densities
Electrode 1)
Solution 2)
Educt, product, concentration 3)
j0 , j00 Method Ref. 174 ș 5 ) kapp or k c ) –2 –1 [°C] [A cm or cm s ]
Hg
1 M KF/H2O
([Co(NH3)5] NO3)2+/+ ([Co(NH3)5]N3)F2+/+ [Co(NH3)5]NCS2+/+ [Co(NH3)6]3+/2+ [Co(NH3)6]3+/2+ [Co(en)3]F2+/+ cis-([Co(en)2](N3)2)+/0 trans([Co(en)2](N3)2)+/0 [Co(NH3)5OSO3]+/0 [Co(NH3)5OSO3]+/0 [Co(NH3)5Cl]2+/+
25
(3.2·10–2)
DCP
78Sat
25 25 25 25 25 25 25
(1.7·10–2) (1.1·10–3) (8.0·10–7) (7.5·10–7) (1.5·10–5) (5.0·10–3) (8.0·10–4)
DCP DCP DCP DCP DCP DCP DCP
78Sat 78Sat 78Sat 78Sat 78Sat 63) 78Sat 63) 78Sat 63)
25 25 25 25
(4.1·10–4) (4.5·10–4) (>4.0·10–2) (1.6·10–4)
DCP DCP DCP CV
78Sat 78Sat 78Sat 80Bar1
24
(1.0·10–3)
PP
84Bar2
24
(3.2·10–3)
PP
85Li
24
(8.5·10–3)
PP
85Li
24
(4.2·10–2)
PP
85Li
24
(6.5·10–3)
PP
85Li
24
(4.0·10–3)
PP
85Li
24
(4.0·10–3)
PP
85Li
24
(1.5·10–3)
PP
85Li
24
(2.4·10–3)
PP
85Li
24
(1.1·10–3)
PP
85Li
24
(2.0·10–3)
PP
85Li
24
(1.1·10–2)
PP
85Li
24
(2.5·10–2)
PP
85Li
24
(8.5·10–4)
PP
85Li
1 M KF/H2O 1 M KF/H2O 1 M KF/H2O 1 M NH4F/H2O 1 M KF/H2O 1 M KF/H2O 1 M KF/H2O 1 M KF/H2O 1 M NH4F/H2O 1 M KF/H2O 0.1 M KPF6/H2O
[Co(NH3)5] OH 32+ / 2 +
0.1 M NaClO4+5 mM [Co(NH3)5] NCS2+/1+ HClO4/H2O 0.1 M NaClO4+/H2O ([Co(NH3)5] HCOO)2+/1+ 0.1 M NaClO4+/H2O ([Co(NH3)5] CH3COO)2+/1+ 0.1 M NaClO4+/H2O ([Co(NH3)5] CCl3COO)2+/1+ 0.1 M NaClO4+/H2O ([Co(NH3)5] CF3COO)2+/1+ 0.1 M NaClO4+/H2O ([Co(NH3)5] (CH3)3COO)2+/1+ 0.1 M NaClO4+/H2O ([Co(NH3)5]CH3C (O)COO)2+/1+ 0.1 M NaClO4+/H2O ([Co(NH3)5] HC(O)COO)2+/1+ 0.1 M NaClO4+/H2O ([Co(NH3)5] CH2OHCOO)2+/1+ 0.1 M NaClO4+/H2O ([Co(NH3)5] CH3C(OH) HCOO)2+/1+ 0.1 M NaClO4+/H2O ([Co(NH3)5] CH2FCOO)2+/1+ 0.1 M NaClO4+/H2O ([Co(NH3)5] cyclopentane carboxylate)2+/1+ 0.1 M NaClO4+/H2O ([Co(NH3)5]cyclopen tane acetate)2+/1+ 0.1 M NaClO4+/H2O ([Co(NH3)5] cyclohexane carboxylate)2+/1+
T 4)
Landolt-Börnstein New Series IV/9A
5 Exchange current densities Electrode 1)
Solution 2)
Educt, product, concentration 3)
j0 , j00 Method Ref. 174 ș 5 ) kapp or k c ) –2 –1 [°C] [A cm or cm s ]
0.1 M NaClO4+/H2O
([Co(NH3)5] cyclohexane acetate)2+/1+ ([Co(NH3)5] cyclohexane propionate)2+/1+ ([Co(NH3)5] benzoate)2+/1+ ([Co(NH3)5] phenylacetate)2+/1+ ([Co(NH3)5] 3-phenylpropionate)2+/1+ ([Co(NH3)5] 2-phenylacrylate)2+/1+ ([Co(NH3)5] benzoate)2+/1+ ([Co(NH3)5] furan-3carboxylate)2+/1+ ([Co(NH3)5] furan-2carboxylate)2+/1+ ([Co(NH3)5]furan-2acrylate)2+/1+ ([Co(NH3)5] pyridine-2carboxylate)2+/1+ ([Co(NH3)5] pyridine-3carboxylate)2+/1+ ([Co(NH3)5] pyridine-2acetate)2+/1+ ([Co(NH3)5] 3-pyridylacrylate)2+/1+ ([Co(NH3)5] thiophene-2carboxylate)2+/1+ ([Co(NH3)5] thiophene-2acetate)2+/1+ ([Co(NH3)5] thiophene-2propionate)2+/1+
24
(2.0·10–2)
PP
85Li
24
(6.1·10–2)
PP
85Li
24
(1.0·10–2)
PP
85Li
24
(1.1·10–2)
PP
85Li
24
(8.7·10–2)
PP
85Li
24
(1.2·10–2)
PP
85Li
24
(1.2·10–2)
PP
85Li
24
(1.1·10–3)
PP
85Li
24
(1.5·10–3)
PP
85Li
24
(1.6·10–3)
PP
85Li
24
(1.5·10–3)
PP
85Li
24
(1.3·10–3)
PP
85Li
24
(8.9·10–3)
PP
85Li
24
(7.2·10–3)
PP
85Li
24
(2.3·10–2)
PP
85Li
24
(7.3·10–3)
PP
85Li
24
(7.0·10–3)
PP
85Li
0.1 M NaClO4+/H2O
0.1 M NaClO4+/H2O 0.1 M NaClO4+/H2O 0.1 M NaClO4+/H2O
0.1 M NaClO4+/H2O
0.1 M NaClO4+/H2O 0.1 M NaClO4+/H2O
0.1 M NaClO4+/H2O
0.1 M NaClO4+/H2O 0.1 M NaClO4+/H2O
0.1 M NaClO4+/H2O
0.1 M NaClO4+/H2O
0.1 M NaClO4+/H2O
0.1 M NaClO4+/H2O
0.1 M NaClO4+/H2O
0.1 M NaClO4+/H2O
Landolt-Börnstein New Series IV/9A
307
T 4)
308
5 Exchange current densities
Electrode 1)
Solution 2)
Educt, product, concentration 3)
j0 , j00 Method Ref. 174 ș 5 ) kapp or k c ) –2 –1 [°C] [A cm or cm s ]
Hg
0.1 M NaClO4+/H2O
([Co(NH3)5] thiophene-2butyrate)2+/1+ ([Co(NH3)5] thiophene-3carboxylate)2+/1+ ([Co(NH3)5] thiophene-2acetate)2+/1+ ([Co(NH3)5] thiophene-2acrylate)2+/1+ ([Co(NH3)5] thiophene-2carboxylate)2+/1+ ([Co(NH3)5] thiophene-2acetat)2+/1+ ([Co(NH3)5] thiophene-2propionate)2+/1+ ([Co(NH3)5] thiophene-2butyrate)2+/1+ ([Co(NH3)5] thiophene-2acrylate)2+/1+ ([Co(NH3)5] thiophene-3carboxylate)2+/1+ ([Co(NH3)5] thiophene-3acetate)2+/1+ ([Co(NH3)5] benzothiophene-3carboxylate)2+/1+ ([Co(NH3)5] benzothiophene-3malonate)2+/1+ [Co(Cp)2] (o) 87)
24
(3.0·10–3)
PP
85Li
24
(2.8·10–2)
PP
85Li
24
(7.5·10–3)
PP
85Li
24
(3.2·10–2)
PP
85Li
24
(1.8·10–3)
PP
84Li
24
(4.5·10–4)
PP
84Li
24
(6.3·10–4)
PP
84Li
24
(3.2·10–4)
PP
84Li
24
(2.8·10–3)
PP
84Li
24
(1.7·10–3)
PP
84Li
24
(4.9·10–4)
PP
84Li
24
(2.7·10–4)
PP
84Li
24
(2.6·10–4)
PP
84Li
-
2.75
ACP
93Win
[Co(Cp)2] (o)
-
1.55
ACP
93Win
[Co(Cp)2] (o)
-
0.89
ACP
93Win
[Co(Cp)2] (o)
-
0.62
ACP
93Win
0.1 M NaClO4+/H2O
0.1 M NaClO4+/H2O
0.1 M NaClO4+/H2O
0.1 M NaClO4 +5 mM HClO4/H2O 0.1 M NaClO4 +5 mM HClO4/H2O 0.1 M NaClO4 +5 mM HClO4/H2O 0.1 M NaClO4 +5 mM HClO4/H2O 0.1 M NaClO4 +5 mM HClO4/H2O 0.1 M NaClO4 +5 mM HClO4/H2O 0.1 M NaClO4 +5 mM HClO4/H2O 0.1 M NaClO4 +5 mM HClO4/H2O 0.1 M NaClO4 +5 mM HClO4/H2O 0.025 M TBAP 52) /DMF 54) 0.05 M TBAP 52) /DMF 54) 0.1 M TBAP 52) /DMF 54) 0.25 M TBAP 52) /DMF 54)
T 4)
Landolt-Börnstein New Series IV/9A
5 Exchange current densities Electrode 1)
Landolt-Börnstein New Series IV/9A
Solution 2)
Educt, product, concentration 3)
309
T 4)
j0 , j00 Method Ref. 174 ș 5 ) kapp or k c ) –2 –1 [°C] [A cm or cm s ]
0.1 M TBAP 52) Co(Cp) 2+ /0 /acetonitrile 0.1 M TBAP/acetone Co(Cp) + /0 2
23
3.0
ACP
85Gen
23
2.5
ACP
85Gen
0.1 M TBAP /formamide 0.1 M TBAP /NMF 88) 0.1 M TBAP /DMF 54) 0.1 M TBAP /dimethyl sulfoxide 0.1 M TBAP /benzonitrile 0.1 M TEAP 74) /acetonitrile 0.1 M TEAP 74) /CH2Cl2 0.1 M TEAP 74) /formamide 0.1 M TEAP 74) /NMF 88) 0.1 M TEAP 74) /DMF 54) 0.1 M TEAP 74) /dimethylacetamide 0.1 M TEAP 74) /tetramethylurea 0.1 M TEAP 74) /dimethyl sulfoxide 0.1 M TEAP 74) /benzonitrile 0.1 M TEAP 74)/PC 113)
Co(Cp) 2+ /0
23
0.55
ACP
85Gen
Co(Cp) 2+ /0
23
0.6
ACP
85Gen
Co(Cp) 2+ /0
23
1.0
ACP
85Gen
Co(Cp) 2+ /0
23
0.55
ACP
85Gen
Co(Cp) 2+ /0
23
0.25
ACP
85Gen
Co(Cp) 2+ /0
23
5.0
ACP
86McM
Co(Cp) 2+ /0
23
5.0
ACP
86McM
Co(Cp) 2+ /0
23
0.6
ACP
86McM
Co(Cp) 2+ /0
23
0.45
ACP
86McM
Co(Cp) 2+ /0
23
2.0
ACP
86McM
Co(Cp) 2+ /0
23
2.0
ACP
86McM
Co(Cp) 2+ /0
23
0.35
ACP
86McM
Co(Cp) 2+ /0
23
0.75
ACP
86McM
Co(Cp) 2+ /0
23
0.6
ACP
86McM
Co(Cp) 2+ /0
23
1.0
ACP
86McM
0.1 M TBAFB 89) /methanol 0.1 M TBAFB /ethanol 0.1 M TBAFB /1-propanol 0.1 M TBAP 52) /acetonitrile 0.1 M TBAP 52) /butyronitrile 0.1 M TBAP 52) /dimethylacetamide 0.1 M TBAP /dimethyl sulfoxide
Co(Cp) 2+ /0
23
6.0
ACP
86McM
Co(Cp) 2+ /0
23
4.0
ACP
86McM
Co(Cp) 2+ /0
23
1.0
ACP
86McM
Co(Cp) 02 / –
22
0.112
IP
92Faw1
Co(Cp) 02 / –
22
0.079
IP
92Faw1
Co(Cp) 02 / –
22
0.126
IP
92Faw1
Co(Cp) 02 / –
22
0.04
IP
92Faw1
310
5 Exchange current densities
Electrode 1)
Solution 2)
Hg
0.1 M TBAP 52) Co(Cp) 02 / – 113 /PC ) 0.1 M TBAP Co(Cp' ) 2+ /0 /acetonitrile 0.1 M TBAP/acetone Co(Cp' ) + /0 2
Educt, product, concentration 3)
T 4)
j0 , j00 Method Ref. 174 ș 5 ) kapp or k c ) –2 –1 [°C] [A cm or cm s ]
22
0.034
IP
92Faw1
23
3.5
ACP
85Gen
23
3.0
ACP
85Gen
0.1 M TBAP/NMF ) Co(Cp' ) + /0 2
23
0.8
ACP
85Gen
0.1 M TBAP/DMF 54) Co(Cp' ) + /0 2
23
1.5
ACP
85Gen
0.1 M TBAP Co(Cp' ) 2+ /0 /dimethyl sulfoxide trans-([Co(SO3)2 0.5 M Na2SO4/H2O (CN)4)5–/7– trans-([Co(SO3)2 0.5 M Na2SO4/H2O (CN)4)5–/7– trans-([Co(SO3)2 0.5 M Na2SO4/H2O (CN)4)5–/7– trans-([Co(SO3)2 0.5 M Na2SO4/H2O (CN)4)5–/7– trans-([Co(SO3)2 0.5 M Na2SO4/H2O (CN)4)5–/7– ([Co(SO3) 0.5 M Na2SO4/H2O (CN)5)4–/6– ([Co(SO3) 0.5 M Na2SO4/H2O (CN)5)4–/6– ([Co(SO3) 0.5 M Na2SO4/H2O (CN)5)4–/6– ([Co(SO3) 0.5 M Na2SO4/H2O (CN)5)4–/6– 2 + /3 + 1 M KCl/H2O Craq
23
0.75
ACP
85Gen
15
(2.67·10–13)
DCP
70Mak
20
(3.32·10–13)
DCP
70Mak
25
(5.29·10–13)
DCP
70Mak
30
(6.59·10–13)
DCP
70Mak
35
(9.12·10–13)
DCP
70Mak
10
(1.66·10–17)
DCP
70Mak
15
(3.06·10–17)
DCP
70Mak
20
(6.26·10–17)
DCP
70Mak
30
(1.5·10–17)
DCP
70Mak
25
1.0·10–5
IP
52Ran2
90
)
88
1 M KCl/H2O
2 + /3 + Craq
25
7.9·10–8
OP
55Mat
0.4 M KPF6/H2O
2 + /3 + Craq
25
(2.1·10–3)
DME
80Bar1
0.4 M NaClO4/H2O
2 + /3 + Craq
25
(2.0·10–2)
CV
80Bar1
1 M NaClO4/H2O
3 + /2 + Craq
25
(0.75·105)
CM
76Wea
1 M KCl/H2O
2 + /3 + , Craq
24
0.95·10–4
OC
65Sri
24
1.4·10–4
OC
65Sri
24
2.2·10–4
OC
65Sri
24
1.6·10–4
OC
65Sri
0.018; 0.082 M 1 M KCl/H2O
2 + /3 + , Craq
0.035; 0.065 M 1 M KCl/H2O
2 + /3 + , Craq
0.076; 0.024 M 1 M KCl/H2O
2 + /3 + , Craq
0.08; 0.02 M Landolt-Börnstein New Series IV/9A
5 Exchange current densities Electrode 1)
311
Solution 2)
Educt, product, concentration 3)
T 4)
j0 , j00 Method Ref. 174 ș 5 ) kapp or k c ) –2 –1 [°C] [A cm or cm s ]
1 M KCl/H2O
2 + /3 + Craq ,
24
1.8·10–4
OC
65Sri
1 M KCl/H2O
2 + /3 + Craq ,
24
2.1·10–4
OC
65Sri
24
1.7·10–4
OC
65Sri
24
1.8·10–4
OC
65Sri
24
1.7·10–4
OC
65Sri
24
1.9·10–4
OC
65Sri
24
2.2·10–4
OC
65Sri
24
2.0·10–4
OC
65Sri
2 + /3 + Craq ,
24
2.3·10–4
OC
65Sri
0.036; 0.004M Cr(VI)/Cr(IV) Cr(IV)/Cr(III) Cr(III)/Cr(II) Cr(III)/Cr(II) Cr(III)/Cr(II) Cr(III)/Cr(II) Cr(III)/Cr(II) Cr(III)/Cr(II) Cr(III)/Cr(II) Cr(III)/Cr(II) Cr(III)/Cr(II) Cr(III)/Cr(II) Cr(III)/Cr(II) Cr(III)/Cr(II) Cr(III)/Cr(II) Cr(III)/Cr(II) Cr(III)/Cr(II) Cr(III)/Cr(II)
25 25 25 25 25 25 25 25 25 25 25 25 25 25 25
2.7·10–6 2.7·10–6 8.0·10–7 2.1·10–5 1.7·10–5 1.4·10–5 8.5·10–6 8.5·10–6 9.8·10–5 6.5·10–6 2.6·10–6 6.5·10–6 6.5·10–6 3.6·10–6 3.6·10–6 8.1·10–6 8.1·10–6 7.1·10–6
DCP DCP DCP DCP DCP DCP DCP DCP DCP DCP DCP DCP DCP DCP DCP DCP DCP DCP
61Pam 61Pam 61Pam 70Ans 70Ans 70Ans 70Ans 71deK 70Ans 70Ans 70Ans 70Ans 71deK 70Ans 71deK 70Ans 71deK 66Par2
Cr(III)/Cr(II)
35
1.4·10–5
DCP
66Par2
Cr(III)/Cr(II)
45
2.5·10–5
DCP
66Par2
0.085; 0.015 M 0.003; 0.037 M 1 M KCl/H2O
2 + /3 + Craq ,
0.008; 0.032 M 1 M KCl/H2O
2 + /3 + Craq ,
0.012; 0.028 M 1 M KCl/H2O
2 + /3 + Craq ,
0.017; 0.023 M 1 M KCl/H2O
2 + /3 + Craq ,
0.023; 0.017 M 1 M KCl/H2O
2 + /3 + Craq ,
0.027; 0.013 M 1 M KCl/H2O
2 + /3 + Craq ,
0.031; 0.009 M 1 M KCl/H2O KCl/H2O KCl/H2O KCl/H2O 0.08 M CsClO4/H2O 0.5 M KBr/H2O 1 M KBr/H2O 0.5 M KCl/H2O 0.5 M KCl/H2O 0.5 M KI/H2O 0.0883 M LaCl3/H2O 0.1666 M LaCl3/H2O 0.5 M LiClO4/H2O 0.5 M LiClO4/H2O 1 M LiClO4/H2O 1 M LiClO4/H2O 0.5 M NaClO4/H2O 0.5 M NaClO4/H2O 0.5 M NaClO4/H2O, pH=3.4 0.5 M NaClO4/H2O, pH=3.4 0.5 M NaClO4/H2O, pH=3.4 Landolt-Börnstein New Series IV/9A
312
5 Exchange current densities
Electrode 1)
Solution 2)
Educt, product, concentration 3)
Hg
0.9 M NaClO4 /+0.1 M HClO4/H2O 1 M NaClO4/H2O 1 M NaClO4/H2O 0.1 M NaOH/H2O
Cr(III)/Cr(II)
-
Cr(III)/Cr(II) Cr(III)/Cr(II)
0.1 M NaOH/H2O 0.1 M NaOH /10 vol% methanol/H2O 0.1 M NaOH /20 vol% methanol/H2O 0.1 M NaOH /30 vol% methanol/H2O 0.1 M NaOH /40 vol% methanol/H2O 0.1 M NaOH /50 vol% methanol/H2O 0.1 M NaOH /60 vol% methanol/H2O 0.1 M NaOH /70 vol% methanol/H2O 0.1 M NaOH /10 vol% ethanol/H2O 0.1 M NaOH /20 vol% ethanol/H2O 0.1 M NaOH /30 vol% ethanol/H2O 0.1 M NaOH /40 vol% ethanol/H2O 0.1 M NaOH /50 vol% ethanol/H2O
T 4)
j0 , j00 Method Ref. 174 ș 5 ) kapp or k c ) –2 –1 [°C] [A cm or cm s ] 1.0·10–5
DCP
62Ran
CrO 24 – (r)
25 25 25
7.9·10–6 7.9·10–6 (1.2·10–9)
DCP DCP DCP
70Ans 71deK 61Mei
CrO 24 – (r)
-
(1.8·10–9)
DCP
71Sad
CrO 24 – (r)
-
–11
(1.9·10 )
DCP
71Sad
CrO 24 – (r)
-
(1.6·10–11)
DCP
71Sad
CrO 24 – (r)
-
(1.1·10–11)
DCP
71Sad
CrO 24 – (r)
-
(2.1·10–11)
DCP
71Sad
CrO 24 – (r)
-
(4.1·10–11)
DCP
71Sad
CrO 24 – (r)
-
(4.1·10–11)
DCP
71Sad
CrO 24 – (r)
-
(1.1·10–11)
DCP
71Sad
CrO 24 – (r)
-
(3.5·10–13)
DCP
71Sad
CrO 24 – (r)
-
(2.4·10–15)
DCP
71Sad
CrO 24 – (r)
-
(8.5·10–16)
DCP
71Sad
CrO 24 – (r)
-
(7.4·10–17)
DCP
71Sad
CrO 24 – (r)
-
(2.2·10–15)
DCP
71Sad
Landolt-Börnstein New Series IV/9A
5 Exchange current densities Electrode 1)
Landolt-Börnstein New Series IV/9A
313
Solution 2)
Educt, product, concentration 3)
T 4)
0.1 M NaOH /60 vol% ethanol/H2O 0.1 M NaOH /70 vol% ethanol/H2O 0.1 M NaOH /10 vol% propanol/H2O 0.1 M NaOH /20 vol% propanol/H2O 0.1 M NaOH /30 vol% propanol/H2O 0.1 M NaOH /40 vol% propanol/H2O 0.1 M NaOH /50 vol% propanol/H2O 0.1 M NaOH /60 vol% propanol/H2O 0.1 M NaOH/70 vol% propanol/H2O 0.1 M NaOH/10 vol% dioxane/H2O 0.1 M NaOH/20 vol% dioxane/H2O 0.1 M NaOH/30 vol% dioxane/H2O 0.1 M NaOH/40 vol% dioxane/H2O 0.1 M NaOH/50 vol% dioxane/H2O 0.1 M NaOH/60 vol% dioxane/H2O
CrO 24 – (r)
-
(6.9·10–15)
DCP
71Sad
CrO 24 – (r)
-
(7.2·10–16)
DCP
71Sad
CrO 24 – (r)
-
(1.1·10–16)
DCP
71Sad
CrO 24 – (r)
-
(1.1·10–18)
DCP
71Sad
CrO 24 – (r)
-
(1.6·10–17)
DCP
71Sad
CrO 24 – (r)
-
(3.0·10–15)
DCP
71Sad
CrO 24 – (r)
-
(2.7·10–14)
DCP
71Sad
CrO 24 – (r)
-
(5.8·10–16)
DCP
71Sad
CrO 24 – (r)
-
(1.1·10–15)
DCP
71Sad
CrO 24 – (r)
-
(5.3·10–18)
DCP
71Sad
CrO 24 – (r)
-
(2.2·10–16)
DCP
71Sad
CrO 24 – (r)
-
(8.4·10–18)
DCP
71Sad
CrO 24 – (r)
-
(8.4·10–18)
DCP
71Sad
CrO 24 – (r)
-
(1.8·10–17)
DCP
71Sad
CrO 24 – (r)
-
(4.6·10–17)
DCP
71Sad
j0 , j00 Method Ref. 174 ș 5 ) kapp or k c ) –2 –1 [°C] [A cm or cm s ]
314
5 Exchange current densities
Electrode 1)
Solution 2)
Educt, product, concentration 3)
T 4)
j0 , j00 Method Ref. 174 ș 5 ) kapp or k c ) –2 –1 [°C] [A cm or cm s ]
Hg
0.1 M KCN/H2O
Cr(CN)36 – /4 –
30
0.018
IP
62Del4
0.1 M KCN +0.1 M KCl/H2O 0.1 M KCN +0.1 M KCl/H2O 0.1 M KCN +0.3 M KCl/H2O 0.1 M KCN +0.5 M KCl/H2O 0.1 M KCN +0.7 M KCl/H2O 0.5 M KCN +3 M KCl/H2O 1 M KCN/H2O
Cr(CN)36 – /4 –
25
2.2·10–2
PS
70Yam
Cr(CN) 36 – /4 –
25
0.052
IP
62Del4
Cr(CN) 36 – /4 –
25
0.14
IP
62Del4
Cr(CN)36 – /4 –
25
0.31
IP
62Del4
Cr(CN) 36 – /4 –
25
0.91
IP
62Del4
Cr(CN) 36 – /4 –
25
1.25
FR
62Ima1
Cr(CN)36 – /4 –
20
(0.25)
IP
52Ran2
1 M KCN/H2O
Cr(CN)36 – /4 –
30
0.22
ACP
61Smi
0.1 M KSCN/H2O
Cr(SCN)36 – /4 –
-
4.0·10–3
DCP
62Kis
0.3 M KSCN/H2O
Cr(SCN)36 – /4 –
-
4.0·10
–3
DCP
62Kis
1 M KSCN/H2O
Cr(SCN)36 – /4 –
-
2.0·10–3
DCP
62Kis
3 M KSCN/H2O
Cr(SCN)36 – /4 –
-
7.0·10
–3
DCP
62Kis
7 M KSCN/H2O
Cr(SCN)36 – /4 –
-
1.0·10–2
DCP
62Kis
25
5
(0.6·10 )
CM
76Wea
5
(0.46·10 ) (1.2·103)
CM CM
76Wea 76Wea
– 2+/1+
1 M NaClO4/H2O
[Cr(OH2)F ]
1 M NaClO4/H2O 1 M NaClO4/H2O
[Cr(OH2)SO 24 –]1+ / 0 [Cr(OH2)Cl–]2+/1+
25 25
1 M NaClO4/H2O
[Cr(OH2)Br–]2+/1+
25
(7.·104)
CM
76Wea
25 25
2
(4.2·10 ) (12)
CM CM
76Wea 76Wea
[Cr(NH3)5]NCS
25 24
(35) (1.0·10–5)
CM PP
76Wea 84Guy
[Cr(OH2)5]NCS2+/1+
24
(7.5·10–4)
PP
84Guy
([Cr(NH3)5]N3)2+/1+
24
(5.0·10–7)
PP
84Guy
([Cr(OH2)5]N3)2+/1+
24
(2.0·10–5)
PP
84Guy
1 M NaClO4/H2O 1 M NaClO4/H2O 1 M NaClO4/H2O 0.1 M NaClO4 +5 mM HClO4/H2O 0.1 M NaClO4 +5 mM HClO4/H2O 0.1 M NaClO4 +5 mM HClO4/H2O 0.1 M NaClO4 +5 mM HClO4/H2O
– 2+/1+
[Cr(OH)2NCS ]
[Cr(OH2)N 3– ]2+/1+ [Cr(OH2)NO3– ]2+/1+ 2+/1+
Landolt-Börnstein New Series IV/9A
5 Exchange current densities Electrode 1)
Solution 2)
Educt, product, concentration 3)
j0 , j00 Method Ref. 174 ș 5 ) kapp or k c ) –2 –1 [°C] [A cm or cm s ]
0.1 M NaClO4 +5 mM HClO4/H2O 0.1 M NaClO4 +5 mM HClO4/H2O 0.1 M NaClO4 +5 mM HClO4/H2O 0.1 M NaClO4 +5 mM HClO4/H2O 0.1 M TBAP 52) /acetonitrile 0.1 M TBAP/acetone
[Cr(NH3)5]Cl2+/1+
24
(1.0·10–5)
PP
84Guy
[Cr(OH2)5]Cl2+/1+
24
(1.5·10–3)
PP
84Guy
[Cr(NH3)5]Br2+/1+
24
(6.0·10–3)
PP
84Guy
[Cr(OH2)5]Br2+/1+
24
(>2.5)
PP
84Guy
Cr(C 6 H 6 ) 2+ /0
23
4.0
ACP
85Gen
Cr(C 6 H 6 ) 2+ /0
23
2.5
ACP
85Gen
0.1 M TBAP /formamide 0.1 M TBAP /NMF 91) 0.1 M TBAP /DMF 54) 0.1 M TBAP /dimethyl sulfoxide 0.1 M TBAP /benzonitrile 0.1 M TBAP /acetonitrile 0.1 M TBAP/PC 113)
Cr(C 6 H 6 ) 2+ /0
23
0.55
ACP
85Gen
Cr(C 6 H 6 ) 2+ /0
23
0.65
ACP
85Gen
Cr(C 6 H 6 ) 2+ /0
23
1.2
ACP
85Gen
Cr(C 6 H 6 ) 2+ /0
23
0.5
ACP
85Gen
Cr(C 6 H 6 ) 2+ /0
23
0.3
ACP
85Gen
23
1.37·10–2
PP/CV 95Urb
23
0.56·10–2
PP/CV 95Urb
Cr(acac)30/ –
23
0.57·10
–2
PP/CV 95Urb
Cr(acac)30/ –
23
0.96·10–2
PP/CV 95Urb
0.1 M TBAP /dimetylacetamide 0.1 M TBAP Cr(acac)30/ – /dimethylsulfoxide 0.1 M TBAP/DEF 93) Cr(acac)30/ –
23
0.75·10
–2
PP/CV 95Urb
23
0.53·10–2
PP/CV 95Urb
23
0.83·10–2
PP/CV 95Urb
Cr(acac)30/ –
23
0.37·10–2
PP/CV 95Urb
Cr(acac)30/ –
23
0.89·10–2
PP/CV 95Urb
Cr(acac)30/ –
23
0.59·10–2
PP/CV 95Urb
0.1 M TBAP /butyrolactone 0.1 M TBAP/DMF
Cr(acac)30/ – Cr(acac)30/ –
Cr(acac)30/ –
0.1 M TBAP /HMPA 124) 0.1 M TBAP /formamide 0.1 M TBAP /NMF 88)
Landolt-Börnstein New Series IV/9A
315
92
)
T 4)
316
5 Exchange current densities
Electrode 1)
Solution 2)
Educt, product, concentration 3)
T 4)
j0 , j00 Method Ref. 174 ș 5 ) kapp or k c ) –2 –1 [°C] [A cm or cm s ]
Hg
0.1 M acetate buffer +0.4 M NaCl/H2O 0.1 M acetate buffer +0.4 M NaCl/H2O, pH=5 0.1 M acetate buffer +0.4 M NaNO3/H2O 0.1 M TEAP 74) /acetonitrile 0.3 M Na2SO4/H2O 0.1 M TEAP 74) /propionitrile 0.1 M TEAP 74) /DMA 96) 0.1 M TEAP 74) /DMF 54) 0.1 M TEAP 74) /DMSO 51) 0.1 M TEAP 74) /ethylene glycol 0.1 M TEAP 74) /PC 113) 0.1 M TEAP 74) /acetonitrile 0.1 M TEAP 74)/ propionitrile 0.1 M TEAP 74) /DMA 96) 0.1 M TEAP 74) /DMF 54) 0.1 M TEAP 74) /DMSO 51) 0.1 M TEAP 74) /ethylene glycol 0.1 M TEAP 74) /PC 113) 0.02 M K-acetate buffer+0.08 M KCl +2 μM LEO 98) /H2O, pH=4.5 0.04 M K-acetate buffer+0.16 M KCl +2 μM LEO 98) /H2O, pH=4.5
[CrEDTA]–/2– 94)
25
2.1·10–1
PS
69Tan1
[CrEDTA]–/2– 94)
25
2.1·10–1
PS
69Yam
[CrEDTA]–/2– 94)
25
2.9·10–2
PS
69Tan1
[CrEDTA]–/2– 94)
25
3.4·10–3
CV
95Hec1
[CrEDTA]–/2– 94) [CrEDTA]–/2– 94)
22 25
0.45 1.1·10–2
IP CV
87Zha 95) 95Hec1
[CrEDTA]–/2– 94)
25
4.3·10–3
CV
95Hec1
[CrEDTA]–/2– 94)
25
3.7·10–3
CV
95Hec1
[CrEDTA]–/2– 94)
25
3.2·10–4
CV
95Hec1
[CrEDTA]–/2– 94)
25
3.4·10–3
CV
95Hec1
[CrEDTA]–/2– 94)
25
3.7·10–3
CV
95Hec1
[CrEDTA]–/2– 94)
25
3.4·10–3
CV
95Hec2
[CrEDTA]–/2– 94)
25
1.1·10–2
CV
95Hec2
[CrEDTA]–/2– 94)
25
4.3·10–3
CV
95Hec2
[CrEDTA]–/2– 94)
25
3.7·10–3
CV
95Hec2
[CrEDTA]–/2– 94)
25
3.2·10–4
CV
95Hec2
[CrEDTA]–/2– 94)
25
3.4·10–3
CV
95Hec2
[CrEDTA]–/2– 94)
25
3.1·10–3
CV
95Hec2
[CrCYDTA]–/2– 97)
25
8.5·10–3
PS, DCP
72Tan
[CrCYDTA]–/2– 97)
25
17.0·10–3
PS, DCP
72Tan
Landolt-Börnstein New Series IV/9A
5 Exchange current densities Electrode 1)
Landolt-Börnstein New Series IV/9A
317
Solution 2)
Educt, product, concentration 3)
T 4)
j0 , j00 Method Ref. 174 ș 5 ) kapp or k c ) –2 –1 [°C] [A cm or cm s ]
0.1 M K-acetate buffer+0.4 M KCl +2 μM LEO 98) /H2O, pH=4.5 0.2 M K-acetate buffer+0.8 M KCl +2 μM LEO 98) /H2O, pH=4.5 0.02 M Li-acetate buffer+0.08 M LiCl +2 μM LEO 98) /H2O, pH=4.5 0.04 M Li-acetate buffer+0.16 M LiCl +2 μM LEO 98) /H2O, pH=4.5 0.1 M Li-acetate buffer+0.4 M LiCl +2 μM LEO 98) /H2O, pH=4.5 0.2 M Li-acetate buffer+0.8 M LiCl +2 μM LEO 98) /H2O, pH=4.5 0.02 M Na-acetate buffer+0.08 M NaCl +2 μM LEO 98) /H2O, pH=4.5 0.04 M Na-acetate buffer+0.16 M NaCl +2 μM LEO 98) /H2O, pH=4.5 0.1 M Na-acetate buffer+0.4 M NaCl +2 μM LEO 98) /H2O, pH=4.5 0.2 M Na-acetate buffer+0.8 M NaCl +2 μM LEO 98) /H2O, pH=4.5 0.1 M acetate buffer +0.4 M NaCl +2 μM LEO 98) /H2O, pH=5
[CrCYDTA]–/2– 97)
25
34.0·10–3
PS, DCP
72Tan
[CrCYDTA]–/2– 97)
25
58.0·10–3
PS, DCP
72Tan
[CrCYDTA]–/2– 97)
25
6.6·10–3
PS, DCP
72Tan
[CrCYDTA]–/2– 97)
25
9.6·10–3
PS, DCP
72Tan
[CrCYDTA]–/2– 97)
25
18.0·10–3
PS, DCP
72Tan
[CrCYDTA]–/2– 97)
25
25.0·10–3
PS, DCP
72Tan
[CrCYDTA]–/2– 97)
25
5.9·10–3
PS, DCP
72Tan
[CrCYDTA]–/2– 97)
25
11.0·10–3
PS, DCP
72Tan
[CrCYDTA]–/2– 97)
25
29.0·10–3
PS, DCP
72Tan
[CrCYDTA]–/2– 97)
25
37.0·10–3
PS, DCP
72Tan
[CrCYDTA]–/2– 97)
0
4.5·10–3
PS, DCP
72Tan
318
5 Exchange current densities
Electrode 1)
Solution 2)
Educt, product, concentration 3)
T 4)
j0 , j00 Method Ref. 174 ș 5 ) kapp or k c ) –2 –1 [°C] [A cm or cm s ]
Hg
0.1 M acetate buffer +0.4 M NaCl +2 μM LEO 98) /H2O, pH=5 0.1 M acetate buffer +0.4 M NaCl +2 μM LEO 98) /H2O, pH=5 0.1 M acetate buffer +0.4 M NaCl +2 μM LEO 98) /H2O, pH=5 0.1 M acetate buffer +0.4 M NaCl +2 μM LEO 98) /H2O, pH=5 0.1 M TEAP 74) /acetonitrile 0.1 M TEAP 74) /benzonitrile 0.1 M TEAP 74) /propionitrile 0.1 M TEAP 74) /DMA 96) 0.1 M TEAP 74) /DMF 54) 0.1 M TEAP 74) /DMSO 51) 0.1 M TEAP 74) /PC 113) 0.1 M TEAP 74) /DMA 96) 0.1 M TEAP 74) /DMF 54) 0.1 M TEAP 74) /DMSO 51) 0.1 M TEAP 74) /HMPA 100) 0.1 M TEAP 74) /propionitrile 0.1 M TEAP 74) /tetramethylurea 0.2 M Bu4NClO2 /DMF 54) 0.2 M Bu4NClO2 /DMF 54)
[CrCYDTA]–/2– 97)
10
11.0·10–3
PS, DCP
72Tan
[CrCYDTA]–/2– 97)
20
18.0·10–3
PS, DCP
72Tan
[CrCYDTA]–/2– 97)
25
29.0·10–3
PS, DCP
72Tan
[CrCYDTA]–/2– 97)
35
51.0·10–3
PS, DCP
72Tan
[CrCYDTA]–/2– 97)
25
2.1·10–5
CV
95Hec1
[CrCYDTA]–/2– 97)
25
2.7·10–5
CV
95Hec1
[CrCYDTA]–/2– 97)
25
8.5·10–2
CV
95Hec1
[CrCYDTA]–/2– 97)
25
2.2·10–4
CV
95Hec1
[CrCYDTA]–/2– 97)
25
7·10–3
CV
95Hec1
[CrCYDTA]–/2– 97)
25
3.9·10–6
CV
95Hec1
[CrCYDTA]–/2– 97)
25
1.6·10–3
CV
95Hec1
[CrHEDTRA]0/– 99)
25
7.6·10–4
CV
95Hec1
[CrHEDTRA]0/–
25
8.5·10–3
CV
95Hec1
[CrHEDTRA]0/–
25
3.1·10–3
CV
95Hec1
[CrHEDTRA]0/–
25
5.1·10–3
CV
95Hec1
[CrHEDTRA]0/–
25
4.0·10–2
CV
95Hec1
[CrHEDTRA]0/–
25
1.1·10–2
CV
95Hec1
Cr(bipy)32 + / +
25
>0.4
GD
75Saj1
Cr(bipy)3+ / 0
25
1.3
GD
75Saj1
Landolt-Börnstein New Series IV/9A
5 Exchange current densities Electrode 1)
Solution 2)
Educt, product, concentration 3)
j0 , j00 Method Ref. 174 ș 5 ) kapp or k c ) –2 –1 [°C] [A cm or cm s ]
0.2 M Bu4NClO2 /DMF 54) 1 M KCl/H2O
Cr(bipy)30 / –
25
0.23
GD
75Saj1
2 + / 3+ Craq
25
1.0·10–5
IP
52Ran2
0.2 M NaCN/H2O
Cr(CN) 36 – /4 – , 2.5 mM
30
3.9·10–3
IP
60Del
1 M KCN/H2O
Cr(CN) 36 – /4 –
25
0.25
IP
52Ran2
1 M KCN/H2O
Cr(CN) 36 – /4 –
25
0.27
ACP
72Hue
Cs Cu2+/0, 0.5 mM CuSO4
20 25
~0.2 1.3·10–3
IP DCP
52Ran1 71Bar4
Cu2+/0, 0.5 mM CuSO4
25
1.3·10–3
DCP
71Bar4
Cu2+/0, 0.5 mM CuSO4
25
1.1·10–3
DCP
71Bar4
Cu2+/0, 0.5 mM CuSO4
25
1.6·10–3
DCP
71Bar4
Cu2+/0, 0.5 mM CuSO4
25
1.6·10–3
DCP
71Bar4
Cu2+/0, 0.5 mM CuSO4
25
1.6·10–3
DCP
71Bar4
Cu2+/0
25
4 .4·10–9
DCP
59Kol
Cu2+/0, 0.046 M CuSO4
25
1.43·10–9
DCP
58Lai
Cu2+/0 Cu2+/0 Cu2+/0, 2 mM Cu2+ Cu2+/0
25 25 25 25
2.2·10–9 4.5·10–2 1.9·10–2 1.9·10–2
CF ACP PS GS
69Suz 61Kam 63Tos 63Tos
1 M NMe4OH/H2O 0.1 M CsCl +0.01 M EDTA +0.01 M borate buffer, pH=8 0.15 M CsCl +0.01 M EDTA +0.01 M borate buffer, pH=8 0.2 M CsCl +0.01 M EDTA +0.01 M borate buffer, pH=8 0.3 M CsCl +0.01 M EDTA+ 0.01 M borate buffer, pH=8 0.5 M CsCl +0.01 M EDTA +0.01 M borate buffer, pH=8 1 M CsCl +0.01 M EDTA +0.01 M borate buffer, pH=8 0.1 M HClO4/ +0.05% TritonX 100/H2O 0.1 M KCl+0.1 M EDTA/H2O; saturated with camphor 0.1 M KClO4/H2O 1 M KNO3/H2O 1 M KNO3/H2O 1 M KNO3/H2O
Landolt-Börnstein New Series IV/9A
319
1+
T 4)
320
5 Exchange current densities
Electrode 1)
Solution 2)
Educt, product, concentration 3)
T 4)
j0 , j00 Method Ref. 174 ș 5 ) kapp or k c ) –2 –1 [°C] [A cm or cm s ]
Hg
1 M KNO3+1 M en /H2O; saturated with camphor 63) 1 M KNO3+0.95 M propylene-diamine /H2O; saturated with camphor 63) 0.1 M LiCl +0.01 M EDTA +0.01M borate buffer, pH=8 0.15 M LiCl +0.01 M EDTA +0.01M borate buffer, pH=8 0.2 M LiCl +0.01 M EDTA +0.01M borate buffer, pH=8 0.3 M LiCl +0.01 M EDTA +0.01M borate buffer, pH=8 0.5 M LiCl +0.01 M EDTA +0.01M borate buffer, pH=8 1 M LiCl +0.01 M EDTA +0.01M borate buffer, pH=8 1 M LiNO3/H2O, pH=5 0.5 M NaCl +0.01 M EDTA +0.01M borate buffer, pH=8 NaCl+NaI +0.01 M EDTA +0.01M borate buffer, pH=8 0.05 M NaI +0.01 M EDTA +0.01M borate buffer, pH=8
Cu2+/0, 0.047 M CuSO4
25
1.12·10–5
DCP
58Lai
Cu2+/0, 0.046 M CuSO4
25
9.44·10–6
DCP
58Lai
Cu2+/0, 0.5 mM CuSO4
25
1.0·10–3
DCP
71Bar4
Cu2+/0, 0.5 mM CuSO4
25
1.0·10–3
DCP
71Bar4
Cu2+/0, 0.5 mM CuSO4
25
1.3·10–3
DCP
71Bar4
Cu2+/0, 0.5 mM CuSO4
25
0.9·10–3
DCP
71Bar4
Cu2+/0, 0.5 mM CuSO4
25
1.3·10–3
DCP
71Bar4
Cu2+/0, 0.5 mM CuSO4
25
1.4·10–3
DCP
71Bar4
Cu2+/0
25
0.48
ACP
72Haw
Cu2+/0, 0.5 mM CuSO4
25
2.1·10–3
DCP
71Ruz
Cu2+/0, 0.5 mM CuSO4
25
1.0·10–2
DCP
71Bar4
Cu2+/0, 0.5 mMCuSO4
25
1.1·10–6
DCP
71Bar4
Landolt-Börnstein New Series IV/9A
5 Exchange current densities Electrode 1)
Landolt-Börnstein New Series IV/9A
321
Solution 2)
Educt, product, concentration 3)
T 4)
j0 , j00 Method Ref. 174 ș 5 ) kapp or k c ) –2 –1 [°C] [A cm or cm s ]
0.05 M NaI +0.01 M EDTA +0.01M borate buffer, pH=8 0.1 M NaI +0.01 M EDTA +0.01M borate buffer, pH=8 0.25 M NaI +0.01 M EDTA +0.01M borate buffer, pH=8 0.25 M NaI +0.01 M EDTA +0.01M borate buffer, pH=8 0.3 M NaI +0.01 M EDTA +0.01M borate buffer, pH=8 1 M NaI+0.01 M EDTA +0.01M borate buffer, pH=8 1 M NaI+0.01 M EDTA +0.01M borate buffer, pH=8 1 M NaNO3 +0.1 M EDTA/H2O 1 M NaNO3+0.1 M EDTA+0.01% polyvinylalcohol /H2O 0.5 M NaSO4/+1 mM H2SO4+ n-butanol/H2O 1 M NH4OH +1 M NH4NO3 +0.71 M EDTA /H2O; saturated with camphor 1 M NH4OH +1 M NH4NO3 /H2O; saturated with camphor
Cu2+/0, 0.5 mM CuSO4
25
7.7·10–7
CV
71Bar4
Cu2+/0, 0.5 mM CuSO4
25
6.9·10–7
DCP
71Bar4
Cu2+/0, 0.5 mM CuSO4
25
4.1·10–7
DCP
71Bar4
Cu2+/0, 0.5 mM CuSO4
25
1.9·10–7
CV
71Bar4
Cu2+/0, 0.5 mM CuSO4
25
3.1·10–7
DCP
71Bar4
Cu2+/0, 0.5 mM CuSO4
25
3.2·10–7
DCP
71Bar4
Cu2+/0, 0.5 mM CuSO4
25
1.2·10–7
CV
71Bar4
Cu2+/0, 2 mM Cu(NO3)2
25
1.07·10–3
DCP
70Aya
Cu2+/0, 2 mM Cu(NO3)2
25
(2.5·10–11)
DCP
70Aya
Cu2+/0
25
0.065·(1-θ ) 3.97 101 )
DCP
65Sat
Cu2+/0, 0.025 M CuSO4
25
8.75·10–3
DCP
58Lai
Cu2+/1+,0.035 M CuCl2
25
3.64·10–4
DCP
58Lai
322
5 Exchange current densities
Electrode 1)
Solution 2)
Educt, product, concentration 3)
T 4)
j0 , j00 Method Ref. 174 ș 5 ) kapp or k c ) –2 –1 [°C] [A cm or cm s ]
Hg
1 M NH4OH +1 M NH4NO3 /H2O; saturated with camphor 1 M NH4OH +1 M NH4Cl/H2O; saturated with camphor 1 M NH4OH +1 M NH4NO3 /H2O; saturated with camphor 1 M KCl/H2O
Cu2+/1+, 0.025 M CuSO4
25
2.28·10–6
DCP
58Lai
Cu2+/1+, 0.01 M CuSO4
25
1.03·10–6
DCP
58Lai
Cu1+/0, 0.026 M CuCl2
25
9.75·10–5
DCP
58Lai
2 + /3 + Eu aq
25
2.1·10–4
IP
52Ran2
1 M KCl/H2O
2 + /3 + Eu aq
25
(0.32...0.87)·10
DCP
70deK
1 M KI/H2O
2 + /3 + Eu aq
25
0.0016
IP
52Ran2
1 M KCNS/H2O
2 + /3 + Eu aq
25
0.008
IP
52Ran2
0.1 M KPF6/H2O
2 + /3 + Eu aq
CV
80Bar1
0.4 M KPF6/H2O
2 + /3 + Eu aq
CV
80Bar1
0.2 M LiCl/H2O
2 + /3 + Eu aq
NaClO4/H2O
2 + /3 + Eu aq
NaClO4/H2O
Eu 3aq+ /2 +
25 25 25
–3
(3.0·10 ) –3
(7.0·10 )
4...9.9·10
–3
–3
OP
68Kov
2.0·10
–3
DCP
60Gie
25
1.6·10
–5
DCP
60Gie
0.03...1 M NaClO4 Eu 3aq+ /2 + +1mM HClO4/H2O 1 M NaClO4/H2O Eu 3aq+ /2 +
25
2·10
–5
DCP
61Gie
25
2.7·10–4
ACP
67Tim
1 M NaClO4/H2O
Eu 3aq+ /2 +
25
3·10–5
DCP
70Kin
1 M KSCN/H2O
Eu 3aq+ /2 +
25
(2.5...3.3)·10–2
DCP
71deK
0.5 M NaSCN+ 0.5 M NaClO4/H2O KCl (I=1 M)/H2O KCl (I=1 M) +0.1 M thiourea/H2O KCl (I=1 M)+0.2 M thiourea/H2O KCl (I=1 M)+0.4 M thiourea/H2O 0.5 M K-oxalate/H2O
Eu 3aq+ /2 +
25
(2.5...3.3)·10–2
CM
73Rod
25
Fe2+(r) Fe2+(r)
-
(2.5·10–22) (1.3·10–20)
DCP DCP
61deM 61deM
Fe2+(r)
-
(1.2·10–20)
DCP
61deM
Fe2+(r)
-
(1.3·10–20)
DCP
61deM
Fe(ox)33 – /4 –
25
>1.0
IP
52Ran2 102)
0.5 M K-oxalate/H2O Fe(ox)33 – /4 –
25
1.2
ACP
72Hue
Landolt-Börnstein New Series IV/9A
5 Exchange current densities Electrode 1)
Solution 2)
Educt, product, concentration 3)
j0 , j00 Method Ref. 174 ș 5 ) kapp or k c ) –2 –1 [°C] [A cm or cm s ]
1 M K-oxalate/H2O
Fe(ox)33 – /4 –
25
1.44
GD
72Roh
25
0.86
FR
69deL 103)
Fe(ox)2+/3+
-
1.29
FR
73Pol 102)
Ferrocene Fe(Cp' ) 2+ /0 90)
23
1.1 3.5
CV ACP
88Wip 85Gen
Fe(Cp' ) 2+ /0
23
0.9
ACP
85Gen
Fe(Cp' ) 2+ /0
23
2.0
ACP
85Gen
Fe(Cp' ) 2+ /0
23
0.85
ACP
85Gen
Fe(Cp' ) 2+ /0
23
0.4
ACP
85Gen
23
2.0
ACP
86McM
(COT)Fe(CO) 30 / –
23
1.1
ACP
86McM
(COT)Fe(CO) 30 / –
23
1.1
ACP
86McM
(COT)Fe(CO) 30 / –
23
0.19
ACP
86McM
(COT)Fe(CO) 30 / –
23
0.7
ACP
86McM
(COT)Fe(CO) 30 / –
23
0.16
ACP
86McM
(COT)Fe(CO) 30 / –
23
0.5
ACP
86McM
(COT)Fe(CO) 30 / –
23
0.07
ACP
86McM
(COT)Fe(CO) 30 / –
23
0.45
ACP
86McM
(COT)Fe(CO) 30 / –
23
0.07
ACP
86McM
(COT)Fe(CO) 30 / –
23
0.35
ACP
86McM
(COT)Fe(CO) 30 / –
23
0.1
ACP
86McM
1 M K-oxalate +0.05 M oxalicacid/H2O 1 M K-oxalate +0.05 M oxalicacid/H2O 0.6 M TEAP 74)/AN 0.1 M TBAP 52) /acetone 0.1 M TBAP /NMF 88) 0.1 M TBAP /DMF 54) 0.1 M TBAP /dimethyl sulfoxide 0.1 M TBAP /benzonitrile 0.1 M TEAP 74) /acetonitrile 0.1 M TBAP 52) /acetonitrile 0.1 M TEAP 74) /NMF 88) 0.1 M TBAP 52) /NMF 88) 0.1 M TEAP 74) /DMF 54) 0.1 M TBAP 52) /DMF 54) 0.1 M TEAP 74) /tetramethylurea 0.1 M TBAP 52) /tetramethylurea 0.1 M TEAP 74) /dimethyl sulfoxide 0.1 M TBAP 52) /dimethyl sulfoxide 0.1 M TEAP 74) /PC 113) 0.1 M TBAP 52) /PC 113)
Landolt-Börnstein New Series IV/9A
323
Fe(ox)
T 4)
2+/3+
(COT)Fe(CO)30 / –
104
)
324
5 Exchange current densities
Electrode 1)
Solution 2)
Educt, product, concentration 3)
j0 , j00 Method Ref. 174 ș 5 ) kapp or k c ) –2 –1 [°C] [A cm or cm s ]
Hg
0.1 M TBAFB 89) /ethanol 0.1 M TBAFB /1-propanol 0.1 M TBAP 52) /acetone 0.1 M TBAP /dimethylacetamide 0.1 M TBAP /dimethyl sulfoxide 0.1 M TBAP 52) /PC 113) 0.1 M TBAP 52) /HMPA 124) 0.2 M Bu4NClO2 /DMF 54) 6 M NaClO4+0.05 M NaSCN/H2O 6 M NaClO4+0.1 M NaSCN/H2O 0.1 M HCl/H2O +methanol 1 M HCl/H2O 1 M HCl/H2O 1 M HCl/H2O 1 M HCl/H2O 1 M HCl/H2O 7.5 M HCl/H2O 7.5 M HCl/H2O 7.5 M HCl/H2O 7.5 M HCl/H2O 7.5 M HCl/H2O 7.5 M HCl/H2O 7.5 M HCl/H2O 7.5 M HCl/H2O 7.5 M HCl/H2O 7.5 M HCl/H2O 7.5 M HCl/H2O 7.5 M HCl/H2O 7.5 M HCl/H2O 7.5 M HCl/H2O 7.5 M HCl/H2O 0.1 M HClO4/H2O 0.1 M HClO4/H2O 5.2 M HClO4/H2O
(COT)Fe(CO) 30 / –
23
3.0
ACP
86McM
(COT)Fe(CO) 30 / –
23
2.0
ACP
86McM
Fe(acac)30/ –
22
0.42
IP
92Faw2
Fe(acac)30/ –
22
0.324
IP
92Faw2
Fe(acac)30/ –
22
0.175
IP
92Faw2
Fe(acac)30/ –
22
0.154
IP
92Faw2
Fe(acac)30/ –
22
0.031
IP
92Faw2
Fe(bipy)32 + / +
25
0.14
GD
75Saj1
Ga3+/Ga, 1·10–3
24
0.016
ACP
68Moo
Ga3+/Ga, 1·10–3
30
0.026
ACP
68Moo
H+/H2
19
10–13...10–12
CP
49Boc 106)
H+/H2 H+/H2 H+/H2 H+/H2 H+/H2 H+/H2 H+/H2 H+/H2 H+/H2 H+/H2 H+/H2 H+/H2 H+/H2 H+/H2 H+/H2 H+/H2 H+/H2 H+/H2 H+/H2 H+/H2 H+/H2 H+/H2 H+/H2
0 15 25 45 0 –35 –25 –15 –5 5 10 15 20 25 35 45 50 55 65 72 25 25 –39
10–13.65 10–13.08 10–11.98 10–11.28 10–13.65 10–11.66 10–11.23 10–10.70 10–10.7 10–10.38 10–10.0 10–9.88 10–9.77 10–9.8 10–9.33 10–9.16 10–8.85 10–8.88 10–8.52 10–8.4 2.2·10–13 5.88·10–14 10–16.52
IP IP IP IP IP IP IP IP IP IP IP IP IP IP IP IP IP IP IP IP CP CP IP
69Dek 69Dek 69Dek 69Dek 69Dek 69Dek 69Dek 69Dek 69Dek 69Dek 69Dek 69Dek 69Dek 69Dek 69Dek 69Dek 69Dek 69Dek 69Dek 69Dek 64But1 66But3 69Dek
105
)
T 4)
Landolt-Börnstein New Series IV/9A
5 Exchange current densities Electrode 1)
Solution 2)
Educt, product, concentration 3)
j0 , j00 Method Ref. 174 ș 5 ) kapp or k c ) –2 –1 [°C] [A cm or cm s ]
5.2 M HClO4/H2O 5.2 M HClO4/H2O 5.2 M HClO4/H2O 5.2 M HClO4/H2O 5.2 M HClO4/H2O 5.2 M HClO4/H2O 5.2 M HClO4/H2O 5.2 M HClO4/H2O 0.05 M H2SO4/H2O 0.1 M HClO4/H2O 0.2 M HClO4/H2O 1.1 M HClO4/H2O 0.98 M HClO4/H2O
H+/H2 H+/H2 H+/H2 H+/H2 H+/H2 H+/H2 H+/H2 H+/H2 H+/H2 Hg+/0 Hg+/0 Hg+/0 Hg 22 + /Hg , 1 mM
–35 –25 –5 0 5 10 15 25 24 24 24 25
1 M HClO4/H2O
Hg 22 + /Hg , 1 mM
1 M HClO4/H2O
Hg 22 + /Hg , 1 mM
1 M HClO4/H2O
Hg 22 + /Hg
1 M HClO4/H2O 107)
Hg 22 + /Hg Hg 22 + /Hg
1 M HClO4/H2O
Landolt-Börnstein New Series IV/9A
325
108
)
, 1 mM
T 4)
10–15.56 10–15.64 10–14.26 10–13.07 10–13.03 10–13.58 10–13.82 10–12.17 10–12.6 0.28 0.35 1.3 0.248
IP IP IP IP IP IP IP IP CP FR FR FR GD
69Dek 69Dek 69Dek 69Dek 69Dek 69Dek 69Dek 69Dek 65Mat 62Ima2 62Ima2 62Ima2 59Mat3
0
>1.5
PS
56Ger
0
14
GD
58Ger
16.5
GD
58Ger
–38.8 10
GD
58Ger
–38.9 8.5
GD
58Ger
>0.46
IP
64Slu
0.6<j0<2.2
GM
67Koo2
25
1 M HClO4/H2O
Hg/Hg 22 + , 1 mM
1 M HClO4/H2O
Hg/Hg 22 +
1 M HClO4/H2O
Hg 22 + /Hg , 0.0206 mM 25
0.0212
GS
67Wei2 109)
1 M HClO4/H2O
Hg 22 + /Hg , 0.103 mM 25
0.0678
GS
67Wei2 109)
1 M HClO4/H2O
Hg 22 + /Hg , 0.206 mM 25
0.103
GS
67Wei2 109)
1 M HClO4/H2O
Hg 22 + /Hg , 0.515 mM 25
0.190
GS
67Wei2 109)
1 M HClO4/H2O
Hg 22 + /Hg , 1.03 mM
25
0.304
GS
67Wei2 109)
1 M HClO4/H2O
Hg 22 + /Hg , 2.06 mM
25
0.662
GS
67Wei2 109)
1 M HClO4/H2O
Hg 22 + /Hg , 5.15 mM
25
2.74
GS
67Wei2 109)
1 M HClO4/H2O
Hg 22 + /Hg , 0.0206 mM 25
0.0197
GS
67Wei2 110)
1 M HClO4/H2O
Hg 22 + /Hg , 0.103 mM 25
0.0717
GS
67Wei2 110)
1 M HClO4/H2O
Hg 22 + /Hg , 0.206 mM 25
0.104
GS
67Wei2 110)
1 M HClO4/H2O
Hg 22 + /Hg , 0.515 mM 25
0.182
GS
67Wei2110)
1 M HClO4/H2O
Hg 22 + /Hg , 1.03 mM
25
0.274
GS
67Wei2110)
1 M HClO4/H2O
Hg 22 + /Hg , 2.06 mM
25
0.447
GS
67Wei2110)
1 M HClO4/H2O
Hg 22 + /Hg , 5.15 mM
25
1.21
GS
67Wei2110)
, 0.88 mM
25
326
5 Exchange current densities
Electrode 1)
Solution 2)
Hg
T 4)
Educt, product, concentration 3)
j0 , j00 Method Ref. 174 ș 5 ) kapp or k c ) –2 –1 [°C] [A cm or cm s ]
1 M HClO4/H2O
Hg 22 + /Hg , 0.25 mM
25
0.040
1 M HClO4/H2O
Hg 22 + /Hg , 0.5 mM
25
0.075
1 M HClO4/H2O
Hg 22 + /Hg , 1 mM
25
0.140
1 M HClO4/H2O
Hg 22 + /Hg , 2 mM
25
0.265
1 M HClO4/H2O
Hg 22 + /Hg , 4 mM
25
0.500
0.5 M ClO 4– /H 2 O
In3+/0
20
(2.2·10–12)
0.5 M ClO 4– /H 2 O
In3+/0
26.5 (4.7·10–12)
0.5 M ClO 4– /H 2 O
In
3+/0
30
1 M KCl/H2O (pH=3 with HNO3) 1 M KNO3+0.012 M KCl/H2O 0.1 M LiCl/H2O 111) 0.1 M LiCl/H2O 111) 0.5 M LiCl/H2O 111) 0.5 M LiCl/H2O 111) 1 M LiCl/H2O 111) 1 M LiCl/H2O 111) 1 M NaBr/H2O 1 M NaCl/H2O 0.1 M NaClO4/H2O 0.1 M NaClO4/H2O 0.48 M NaClO4/H2O 0.5 M NaClO4/H2O 0.5 M NaClO4 +0.04 M acetylacetonate/H2O, pH=1.35 0.5 M NaClO4 +0.04 M acetylacetonate/H2O, pH=1.58 0.5 M NaClO4 +0.04 M acetylacetonate/H2O, pH=1.82 0.5 M NaClO4 +0.04 M acetylacetonate/H2O, pH=2.59
In3+/0
FR,GS, IP,CS FR,GS, IP,CS FR,GS, IP,CS FR,GS, IP,CS FR,GS, IP,CS DCP
70deL
DCP
60Ino
(7.3·10 )
DCP
60Ino
25
6.0·10–4
IP
68Tim
In3+/0
25
3.1·10–3
IP
68Tim
In3+/0 In3+/0 In3+/0 In3+/0 In3+/0 In3+/0 In3+/0 In3+/0 In3+/0 In3+/0 In3+/0 In3+/0 In3+/0
30 40 30 40 30 40 25 25 30 40 25 30 25
3.147·10–4 3.147·10–4 4.414·10–4 6.0·10–4 6.65·10–4 8.683·10–4 0.65 0.034 1.282·10–3 1.423·10–3 (4.4·10–9) 1.251·10–3 1.4·10–3
DCP DCP DCP DCP DCP DCP IP IP DCP DCP DCP DCP DCP
67Jai 67Jai 67Jai 67Jai 67Jai 67Jai 70Mou 70Mou 66Gau 66Gau 58Ima 66Gau 66Cos
In3+/0
25
1.57·10–3
DCP
66Cos
In3+/0
25
1.27·10–3
DCP
66Cos
In3+/0
25
5.42·10–3
DCP
66Cos
–12
70deL 70deL 70deL 70deL 60Ino
Landolt-Börnstein New Series IV/9A
5 Exchange current densities Electrode 1)
Solution 2)
Educt, product, concentration 3)
j0 , j00 Method Ref. 174 ș 5 ) kapp or k c ) –2 –1 [°C] [A cm or cm s ]
0.5 M NaClO4 +0.04 M acetylacetonate/H2O, pH=4.45 0.5 M NaClO4 +0.04 M acetylacetonate/H2O, pH=5.11 0.5 M NaClO4 +0.04 M acetylacetonate/H2O, pH=5.45 0.5 M NaClO4 +0.04 M acetylacetonate /H2O, pH=5.78 0.5 M NaClO4 +0.04 M acetylacetonate/H2O, pH=6.7 0.5 M NaClO4 +0.04 M acetylacetonate/H2O, pH=7.25 1 M NaClO4/H2O 0.3 M NaF +0.1 M HCl/H2O 1 M NaN3/H2O 0.1 M NaNO3/H2O 0.1 M NaNO3/H2O 0.5 M NaNO3/H2O 0.5 M NaNO3/H2O 1 M NaNO3/H2O 1 M KCl/H2O 1 M LiCl/H2O
In3+/0
25
2.92·10–3
DCP
66Cos
In3+/0
25
3.32·10–3
DCP
66Cos
In3+/0
25
2.92·10–3
DCP
66Cos
In3+/0
25
5.32·10–3
DCP
66Cos
In3+/0
25
5.32·10–3
DCP
66Cos
In3+/0
25
11.3·10–3
DCP
66Cos
In3+/0 In0/3+, 4·10–6 M
30 20
1.213·10–3 1.55·10–5
DCP CP
66Gau 67Los
In3+/0 In3+/0 In3+/0 In3+/0 In3+/0 In3+/0 K+/0 Li+/0
25 30 40 30 40 30 25 25
0.05 1.285·10–3 1.89·10–3 1.243·10–3 1.875·10–3 1.232·10–3 (0.7) (0.14)
70Mou 66Gau 66Gau 66Gau 66Gau 66Gau 66Slu 72Ree
Mn2+(r) Mn3+/2+
25 -
4·10–3 (8.6·10–3)
IP DCP DCP DCP DCP DCP IP IP,DC, P OP DCP
Mn3+/2+
-
(5.1·10–3)
DCP
72Iss3
Mn3+/2+
-
(2.3·10–3)
DCP
72Iss3
Mn3+/2+
-
(1.6·10–3)
DCP
72Iss3
1 M KCl/H2O 1 M H2SO4+0.021 % sodiumdodecylsulfonate/H2O 1 M H2SO4+0.019 % TritonX-100/H2O 1 M H2SO4+0.059 % TritonX-100/H2O 1 M H2SO4+0.19 % TritonX-100/H2O
Landolt-Börnstein New Series IV/9A
327
T 4)
55Mat 72Iss3
328
5 Exchange current densities
Electrode 1)
Solution 2)
Educt, product, concentration 3)
Hg
1 M H3PO4+0.042 % sodiumdodecyl sulfonate/H2O 1 M H3PO4+0.145 % sodiumdodecylsulfonate/H2O 1 M H3PO4+0.01 % TritonX-100/H2O 1 M H3PO4+0.0136 % TritonX-100/H2O 1 M H3PO4+0.19 % TritonX-100/H2O 1 M H3PO4+0.536 % TritonX-100/H2O 0.08 M NaF+0.0046 % TritonX-100/H2O (pH=4.5 with H2SO4) 0.08 M NaF+0.018 % TritonX-100/H2O (pH=4.5 with H2SO4) 0.08 M NaF+0.052 % TritonX-100/H2O (pH=4.5 with H2SO4) 0.08 M NaF+0.0036 % TritonX-100/H2O (pH=4.5 with H2SO4) 0.08 M NaF+0.0108 % TritonX-100/H2O (pH=4.5 with H2SO4) 0.08 M NaF+0.068 % TritonX-100/H2O (pH=4.5 with H2SO4) 0.1 M TBAP 52) /acetonitrile 0.1 M TBAP/acetone
Mn3+/2+
-
(2.0·10–2)
DCP
72Iss3
Mn3+/2+
-
(1.4·10–2)
DCP
72Iss3
Mn3+/2+
-
(2.8·10–3)
DCP
72Iss3
Mn3+/2+
-
(4.8·10–3)
DCP
72Iss3
Mn3+/2+
-
(6.6·10–3)
DCP
72Iss3
Mn3+/2+
-
(9.4·10–3)
DCP
72Iss3
MnF4– /Mn 2 +
-
(3.82·10–5)
DCP
71Iss
MnF4– /Mn 2 +
-
(4.60·10–6)
DCP
71Iss
MnF4– /Mn 2 +
-
(3.65·10–6)
DCP
71Iss
MnF4– /Mn 2 +
-
(2.01·10–3)
DCP
71Iss
MnF4– /Mn 2 +
-
(7.46·10–4)
DCP
71Iss
MnF4– /Mn 2 +
-
(3.8·10–4)
DCP
71Iss
23
4.0
ACP
85Gen
Mn(Cp' ) 2+ /0
23
4.0
ACP
85Gen
0.1 M TBAP/DMF ) Mn(Cp' ) 2+ /0
23
2.0
ACP
85Gen
Mn(Cp' ) 2+ /0
23
0.9
ACP
85Gen
Mn(Cp' ) 2+ /0
54
0.1 M TBAP /dimethyl sulfoxide
90
)
T 4)
j0 , j00 Method Ref. 174 ș 5 ) kapp or k c ) –2 –1 [°C] [A cm or cm s ]
Landolt-Börnstein New Series IV/9A
5 Exchange current densities Electrode 1)
Solution 2)
0.1 M TBAP /butyronitrile 0.1 M TBAP/PC 113) 0.1 M TBAP /acetonitrile 0.1 M TBAP /propionitrile 0.1 M TBAP /butyronitrile 0.1 M TBAP /nitromethane 0.1 M TBAP /nitrobenzene 0.1 M TBAP/PC 113) 0.2 M Bu4NClO2 /DMF 54) 0.2 M Bu4NClO2 /DMF 54) KCl/H2O, I=2 M 0.1 M KCl/H2O 0.1 M KCl+0.025 M acetyl-acetonate +0.025 M acetate buffer+0.005 carboxymethyl cellulose/H2O, pH=3.5...4.5 0.1 M KCl+0.025 M acetyl-acetonate +0.025 M acetate buffer+0.005 carboxymethyl cellulose/H2O, pH=3.5...4.5 0.1 M KCl+0.025 M acetyl-acetonate +0.025 M acetate buffer+0.005 carboxymethyl cellulose/H2O, pH=3.5...4.5
Landolt-Börnstein New Series IV/9A
T 4)
j0 , j00 Method Ref. 174 ș 5 ) kapp or k c ) –2 –1 [°C] [A cm or cm s ]
Educt, product, concentration 3)
0.1 M TBAP Mn(acac)30/ – /acetonitrile 0.1 M TBAP/acetone Mn(acac)30/ –
329
105
)
22
0.448
IP
92Faw2
22
0.189
IP
92Faw2
Mn(acac)30/ – 105)
22
0.132
IP
92Faw2
Mn(acac)30/ –
22
0.074
IP
92Faw2
25
0.18
CV
93Mu
Mn(TPP)Cl (r)
25
0.068
CV
93Mu
Mn(TPP)Cl (r)
25
0.028
CV
93Mu
Mn(TPP)Cl (r)
25
0.116
CV
93Mu
Mn(TPP)Cl (r)
25
0.018
CV
93Mu
Mn(TPP)Cl (r) Mo(bipy)3+ /0
25 25
0.012 1.3
CV GD
93Mu 75Saj1
Mo(bipy)30 / –
25
0.22
GD
75Saj1
Ni2+/0 Ni2+/0 Ni2+/0
25 25
(6.3·10–18) (1.2·10–2) (2.9·10–10)
DCP DCP DCP
61deM 70Nis 114) 70Nis 115)
Ni2+/0
25
(1.5·10–7)
DCP
70Nis 116)
Ni2+/0
25
(5.7·10–3)
DCP
70Nis 114)
Mn(TPP)Cl (r)
112
)
330
5 Exchange current densities
Electrode 1)
Solution 2)
Educt, product, concentration 3)
T 4)
j0 , j00 Method Ref. 174 ș 5 ) kapp or k c ) –2 –1 [°C] [A cm or cm s ]
Hg
0.1 M KCl+0.025 M acetyl-acetonate +0.025 M phospate or borate buffer +0.005 carboxymethyl cellulose/H2O, pH=7...8.5 KCl+0.1 M thiourea /H2O, I=2 M KCl+0.2 M thiourea /H2O, I=2 M KCl+0.4 M thiourea /H2O, I=2 M KCl+0.7 M thiourea /H2O, I=2 M 0.1 M KNO3/H2O 0.1 M KNO3 +1 M NH3/H2O 0.1 M KNO3 +1 M en/H2O 63) +0.01 % gelatin 0.1 M KNO3 /H2O+0.01 % gelatin 0.1 M KNO3 /H2O+0.01 % gelatin 0.1 M KNO3 +0.2...3 M HN3 /H2O+0.01 % gelatin 0.1 M KNO3+0.2...3 M HN3/H2O +0.01 % gelatin 0.2 M KSCN/ H2O 0.1 M KSCN/ H2O 0.2 M KSCN/ H2O 0.6 M KSCN/ H2O 0.6 M KSCN/ H2O 1.8 M KSCN/ H2O 1.8 M KSCN/ H2O 5.5 M KSCN/ H2O 5.5 M KSCN/ H2O 0.12 M NaBr/H2O +0.005 % methyl cellulose
Ni2+/0
25
(8.7·10–15)
DCP
70Nis
Ni2+/0
-
(3.2·10–12)
DCP
61deM
Ni2+/0
-
(3.1·10–12)
DCP
61deM
Ni2+/0
-
(3.0·10–12)
DCP
61deM
Ni2+/0
-
(3.2·10–12)
DCP
61deM
Ni2+/0 Ni2+/0
25 25
(2.0·10–14) (1.6·10–17)
DCP DCP
56Mor 56Mor
Ni2+/0
25
(2.5·10–18)
DCP
56Mor
Ni2+/0
25
(2.0·10–14)
DCP
55Mor
Ni2+/0
25
(2.0·10–14)
DCP
56Mat
Ni2+/0
25
(1.6·10–17)
DCP
55Mor
Ni2+/0
25
(1.6·10–17)
DCP
56Mat
Ni2+/0 Ni2+/0 Ni2+/0 Ni2+/0 Ni2+/0 Ni2+/0 Ni2+/0 Ni2+/0 Ni2+/0 Ni2+/0
25 25 25 25 25 25 25 25 25 25
2.9·10–4 2.5·10–4 1.5·10–4 3.2·10–4 3.4·10–4 3.8·10–4 3.1·10–4 4.2·10–4 2.5·10–4 (1.0·10–13)
DCP CV CV CV DCP CV DCP CV DCP DCP
67Gal 67Gal 67Gal 67Gal 67Gal 67Gal 67Gal 67Gal 67Gal 58Ima
Landolt-Börnstein New Series IV/9A
5 Exchange current densities Electrode 1)
Landolt-Börnstein New Series IV/9A
331
Solution 2)
Educt, product, concentration 3)
T 4)
j0 , j00 Method Ref. 174 ș 5 ) kapp or k c ) –2 –1 [°C] [A cm or cm s ]
0.18 M NaBr/H2O +0.005 % methyl cellulose 0.24 M NaBr/H2O +0.005 % methyl cellulose 0.18 M NaClO4 +0.02 M KSCN/H2O 0.16 M NaClO4 +0.04 M KSCN/H2O 0.13 M NaClO4 +0.07 M KSCN/H2O 0.18 M NaI/H2O, +0.005 % methyl cellulose 0.24 M NaI/H2O, +0.005 % methyl cellulose 0.12 M NaCl/H2O, +0.005 % methyl cellulose 0.18 M NaCl/H2O, +0.005 % methyl cellulose 0.24 M NaCl/H2O, +0.005 % methyl cellulose 0.1 M NaClO4/H2O 0.1 M NaClO4/H2O, saturated with β-naphthol 0.1 M NaClO4/H2O, saturated with camphor 0.5 M NaClO4/H2O 0.5 M NaClO4/H2O +2 mM n-octyl alcohol 1 M NaClO4/H2O 2 M NaClO4/H2O 3 M NaClO4/H2O 0.1 M NaClO4/H2O +0.01 % polyacrylamide
Ni2+/0
25
(4.0·10–13)
DCP
58Ima
Ni2+/0
25
(2.7·10–12)
DCP
58Ima
Ni2+/0
25
0.25·10–4
DCP
67Gal
Ni2+/0
25
0.63·10–4
DCP
67Gal
Ni2+/0
25
2.3·10–4
DCP
67Gal
Ni2+/0
25
(7.0·10–13)
DCP
58Ima
Ni2+/0
25
(8.0·10–12)
DCP
58Ima
Ni2+/0
25
(1.0·10–13)
DCP
58Ima
Ni2+/0
25
(5.0·10–13)
DCP
58Ima
Ni2+/0
25
(2.7·10–12)
DCP
58Ima
Ni2+/0 Ni2+/0
25 25
(1.22·10–9) (7.17·10–12)
DCP DCP
58Lai 58Lai
Ni2+/0
25
(1.09·10–16)
DCP
58Lai
Ni2+/0 Ni2+/0
25 25
(5.14·10–9) (6.06·10–16)
DCP DCP
58Lai 58Lai
Ni2+/0 Ni2+/0 Ni2+/0 Ni2+/0
25 25 25 25
(8.05·10–9) (3.53·10–8) (1.69·10–9) 3.3·10–9
DCP DCP DCP DCP
58Lai 58Lai 58Lai 60Oki
332
5 Exchange current densities
Electrode 1)
Solution 2)
Educt, product, concentration 3)
T 4)
j0 , j00 Method Ref. 174 ș 5 ) kapp or k c ) –2 –1 [°C] [A cm or cm s ]
Hg
0.1 M TBAP /acetonitrile 0.1 M TBAP 52) /acetone 0.1 M TBAP 52) /dichloromethane 0.1 M TBAP 52) /dichloroethane 0.1 M TBAP 52) /DMF 54) 0.1 M TBAP 52) /dimethyl sulfoxide 0.1 M TBAP 52) /PC 113) 0.2 M Bu4NClO2 /DMF 54) 0.2 M Bu4NClO2 /DMF 54) 1 M HClO4/H2O 1 M KCl/H2O, pH=2 with HClO4 1 M KCl/H2O, pH=2 1 M KF/H2O, saturated with PbF2 1 M KNO3/H2O 1 M KNO3/H2O 1 M KBr/H2O 1 M KBr/H2O, pH=2 1 M KCl/H2O 1 M KCl/H2O 1 M KI/H2O, pH=2 1 M KNO3/H2O 1 M KNO3/H2O, pH=2 with HClO4 1 M KNO3/H2O, pH=2 1 M KNO3/H2O 1 M KNO3/H2O 1 M KNO3/H2O 1 M NaBr/H2O 1 M NaCl/H2O 0.9 M NaClO4+0.1 M NaOH/H2O 1 M NaClO4/H2O 1 M NaClO4/H2O
[Ni(cp)2]0/+
22
0.71
ACP
96Win
[Ni(cp)2]0/+
22
0.55
ACP
96Win
[Ni(cp)2]0/+
22
0.4
ACP
96Win
[Ni(cp)2]0/+
22
0.25
ACP
96Win
[Ni(cp)2]0/+
22
0.14
ACP
96Win
[Ni(cp)2]0/+
22
0.1
ACP
96Win
[Ni(cp)2]0/+
22
0.055
ACP
96Win
Os(bipy)32 + / +
25
0.15
GD
75Saj1
Os(bipy)3+ / 0
25
0.25
GD
75Saj1
Pb2+/0 Pb2+/0
25 22
0.9 0.2
IP FR
65Bie 58Bar1
Pb2+/0, 2·10–5 M Pb2+/0, 2·10–5 M
22 22
(>0.2) (>5)
FR FR
61Bar1 61Bar1
Pb2+/0 Pb2+/0 Pb2+/0, 1.5·10–3 M Pb2+/0, 2·10–5 M Pb2+/0, 1.2·10–3 M Pb2+/0, 2.4·10–3 M Pb2+/0, 2·10–5 M Pb2+/0 Pb2+/0
25 25 27 22 32 32 22 25 22
>1 >1 0.96 (>0.2) 5.2 7.7 (>0.2) >1 0.8
ACP ACP FR IP FR FR FR ACP FR
61Kam 61Kam 71Aga 61Bar1 71Aga 71Aga 61Bar1 61Kam 58Bar1
Pb2+/0
22
(>0.8)
FR
61Bar1
Pb2+/0 Pb2+/0, 1.5·10–3 Pb2+/0, 3·10–3 Pb2+/0 Pb2+/0 Pb2+/0
25 28 28 25 25 25
>1 0.59 1.0 0.48 0.17 0.06
ACP FR FR IP IP IP
61Kam 71Aga 71Aga 70Mou 70Mou 70Mou
Pb2+/0, 1.2·10–3 Pb2+/0, 2.4·10–3
37 37
10.2 13.5
FR FR
71Aga 71Aga
Landolt-Börnstein New Series IV/9A
5 Exchange current densities Electrode 1)
Solution 2)
Educt, product, concentration 3)
j0 , j00 Method Ref. 174 ș 5 ) kapp or k c ) –2 –1 [°C] [A cm or cm s ]
1 M NaClO4/H2O, pH=2 with HClO4 1 M NaClO4/H2O, pH=2 1 M NaN3/H2O Na6P6O18/H2O 117) Na6P6O18/H2O Na6P6O18/H2O Na6P6O18/H2O 1 M Na2CO3/H2O 1 M Na2CO3/H2O 0.2 M KPF6/H2O
Pb2+/0
22
3.35
FR
58Bar1
Pb2+/0
22
(3.3)
FR
61Bar1
Pb2+/0 Pb2+/0 Pb2+/0 Pb2+/0 Pb2+/0 Pu(IV)/Pu(III),(r) Pu(IV)/Pu(III),(r)
25 27 32 42 52 25 25 25
0.23 2.0·10–9 1.3·10–8 1.7·10–8 2.2·10–7 10–4.3 10–4.6 (5.0·10–2)
IP DCP DCP DCP DCP DCP OC CV
70Mou 61Pam 61Pam 61Pam 61Pam 70Cas 70Cas 80Bar1
0.45
CV
88Wip
0.1 M CF3COONa/H2O 1 M KF/H2O 0.2 M Bu4NClO2 /DMF 54) 0.2 M Bu4NClO2 /DMF 54) 0.2 M Bu4NClO2 /DMF 54) 0.5 M H2SO4/H2O +0.001 % gelatin 0.1 M NaOH/H2O
Landolt-Börnstein New Series IV/9A
333
2 + /3 + Ru aq
Ru(NH 3 ) 36+ / 2 +
[Ru(NH3)6]3+/2+
T 4)
-
Ru(bipy)32 + / +
20 25
50...79 0.1
TPF GD
85Iwa 75Saj1
Ru(bipy)3+ /0
25
0.25
GD
75Saj1
Ru(bipy)30 / –
25
0.22
GD
75Saj1
Sb3+/0
25
8.7·10–5
DCP
63Fuz
TeO 66 – , 0.5 mM H6TeO6
-
(5.0·10–15)
DCP
71Sad
0.1 M NaOH/H2O TeO 66 – , +10 vol% methanol 0.5 mM H6TeO6 0.1 M NaOH/H2O TeO 66 – , +20 vol% methanol 0.5 mM H6TeO6 0.1 M NaOH/H2O TeO 66 – , +30 vol% methanol 0.5 mM H TeO 6 6 0.1 M NaOH/H2O TeO 66 – , +40 vol% methanol 0.5 mM H6TeO6 0.1 M NaOH/H2O TeO 66 – , +50 vol% methanol 0.5 mM H6TeO6 0.1 M NaOH/H2O TeO 66 – , +10 vol% ethanol 0.5 mM H TeO 6 6 0.1 M NaOH/H2O TeO 66 – , +20 vol% ethanol 0.5 mM H6TeO6 0.1 M NaOH/H2O TeO 66 – , +30 vol% ethanol 0.5 mM H6TeO6
-
(1.2·10–14)
DCP
71Sad
-
(6.9·10–17)
DCP
71Sad
-
(6.3·10–21)
DCP
71Sad
-
(1.25·10–21)
DCP
71Sad
-
(7.9·10–24)
DCP
71Sad
-
(6.2·10–17)
DCP
71Sad
-
(3.2·10–18)
DCP
71Sad
-
(1.15·10–20)
DCP
71Sad
334
5 Exchange current densities
Electrode 1)
Solution 2)
Educt, product, concentration 3)
Hg
0.1 M NaOH/H2O +40 vol% ethanol
TeO 66 – , 0.5 mM H6TeO6
-
(3.16·10–23)
DCP
71Sad
0.1 M NaOH/H2O +50 vol% ethanol
TeO 66 – , 0.5 mM H6TeO6
-
(1.8·10–25)
DCP
71Sad
0.1 M NaOH/H2O +10 vol% n-propanol 0.1 M NaOH/H2O +20 vol% n-propanol 0.1 M NaOH/H2O +30 vol% n-propanol 0.1 M NaOH/H2O +40 vol% n-propanol 0.1 M NaOH/H2O +50 vol% n-propanol 0.1 M NaOH/H2O +10 vol% dioxane
TeO 66 – , 0.5 mM H6TeO6
-
(1.6·10–17)
DCP
71Sad
TeO 66 – , 0.5 mM H6TeO6
-
(4.0·10–22)
DCP
71Sad
TeO 66 – , 0.5 mM H6TeO6
-
(2.0·10–24)
DCP
71Sad
TeO 66 – , 0.5 mM H6TeO6
-
(8.7·10–29)
DCP
71Sad
TeO 66 – , 0.5 mM H6TeO6
-
(4.5·10–31)
DCP
71Sad
TeO 66 – , 0.5 mM H6TeO6
-
(5.5·10–17)
DCP
71Sad
0.1 M NaOH/H2O +20 vol% dioxane
TeO 66 – , 0.5 mM H6TeO6
-
(7.2·10–21)
DCP
71Sad
0.1 M NaOH/H2O +30 vol% dioxane
TeO 66 – , 0.5 mM H6TeO6
-
(5.0·10–22)
DCP
71Sad
0.1 M NaOH/H2O +40 vol% dioxane
TeO 66 – , 0.5 mM H6TeO6 Ti4+/3+
-
(8.3·10–26)
DCP
71Sad
7.8·10–4
DCP
60Str 118)
Ti4+/3+
1617 25
(1.24...3.2)
DCP
63Wol
Ti4+/3+
25
0.046
ACP
63Smi
Ti3+/4+ Ti4+/3+
25 30
0.009 4.1...7.2·10–3
IP ACP
52Ran2 58Del
Ti4+/3+
-
1.7·10–3
IP
64Lai
0.23 M HCl/H2O +0.005 wt% gelatin 0.8 M NaCl/H2O +0.002 wt% Triton X-30S 0.2 M oxalic acid +0.04 M KClO4/H2O 1 M tartaric acid/H2O 1 M tartaric acid +0.1 M NaCl/H2O 1 M tartaric acid +0.2 M Na2SO4/H2O
T 4)
j0 , j00 Method Ref. 174 ș 5 ) kapp or k c ) –2 –1 [°C] [A cm or cm s ]
Landolt-Börnstein New Series IV/9A
5 Exchange current densities Electrode 1)
Landolt-Börnstein New Series IV/9A
335
Solution 2)
Educt, product, concentration 3)
T 4)
1 M tartaric acid +0.2 M Na2SO4 +0.1 mM camphor/H2O 1 M tartaric acid +0.2 M Na2SO4 +0.15 mM camphor/H2O 1 M tartaric acid +0.2 M Na2SO4 +0.2 mM camphor/H2O 1 M tartaric acid +0.2 M Na2SO4 +0.25 mM camphor/H2O 1 M tartaric acid +0.2 M Na2SO4 +0.3 mM camphor/H2O 1 M tartaric acid +0.2 M Na2SO4 +0.35 mM camphor/H2O 1 M tartaric acid +0.2 M Na2SO4 +0.45 mM camphor/H2O 1 M tartaric acid +0.2 M Na2SO4 +0.1 mM thymol/H2O 1 M tartaric acid +0.2 M Na2SO4 +0.2 mM thymol/H2O 1 M tartaric acid +0.2 M Na2SO4 +0.3 mM thymol/H2O 1 M tartaric acid +0.2 M Na2SO4 +0.4 mM thymol/H2O 0.2 M Bu4NClO2 /DMF 54) 1 M KCl/H2O 1 M KCl/H2O, pH=2
Ti4+/3+
-
1.6·10–3
IP
64Lai
Ti4+/3+
-
1.6·10–3
IP
64Lai
Ti4+/3+
-
1.6·10–3
IP
64Lai
Ti4+/3+
-
0.9·10–3
IP
64Lai
Ti4+/3+
-
0.5·10–3
IP
64Lai
Ti4+/3+
-
0.3·10–3
IP
64Lai
Ti4+/3+
-
0.2·10–3
IP
64Lai
Ti4+/3+
-
1.1·10–3
IP
64Lai
Ti4+/3+
-
0.5·10–3
IP
64Lai
Ti4+/3+
-
0.1·10–3
IP
64Lai
Ti4+/3+
-
0.09·10–3
IP
64Lai
j0 , j00 Method Ref. 174 ș 5 ) kapp or k c ) –2 –1 [°C] [A cm or cm s ]
Ti(bipy)30 / –
25
0.5
GD
75Saj1
Tl+/0 Tl+/0
36 22
5.0 0.15
FR FR
71Aga 58Bar1
336
5 Exchange current densities
Electrode 1)
Solution 2)
Educt, product, concentration 3)
j0 , j00 Method Ref. 174 ș 5 ) kapp or k c ) –2 –1 [°C] [A cm or cm s ]
Hg
1 M KCl/H2O, pH=2 1 M KF/H2O 1 M KF/H2O 1 M KF/H2O 1 M KNO3/H2O 1 M KNO3/H2O, pH=2 1 M KNO3/H2O, pH=2 0.5 M KSO4/H2O, pH=2 0.5 M KSO4/H2O, pH=2 0.5 M KSO4/H2O 0.5 M KSO4/H2O 1 M NaClO4/H2O, pH=2 1 M NaClO4/H2O, pH=2 1 M NaClO4/H2O 1 M NaClO4/H2O 3 M NaClO4+0.05 M HClO4/H2O 1 M Na2CO3/H2O 1 M Na2CO3/H2O 1 M HClO4/H2O
Tl+/0 Tl+/0, 0.1 mM Tl+/0, 1.05·10–3 Tl+/0, 2.1·10–3 Tl+/0, 1.05·10–3 Tl+/0, 0.1 mM
22 22 36 36 36 22
>0.15 4.1 3.5 2.5 0.69 >0.3
FR FR FR FR FR FR
61Bar1 61Bar1 71Aga 71Aga 71Aga 61Bar1
Tl+/0, 0.1 mM
22
0.3
FR
58Bar1
Tl+/0, 0.1 mM
22
>3.1
FR
61Bar1
Tl+/0
22
3.1
FR
58Bar1
Tl+/0, 1.05·10–3 Tl+/0, 2.1·10–3 Tl+/0, 0.1 mM
36 36 22
3.5 7.4 >1.2
FR FR FR
71Aga 71Aga 61Bar1
Tl+/0
22
1.2
FR
58Bar1
Tl+/0, 1.05·10–3 Tl+/0, 2.1·10–3 Tl0/+, 4.3·10–5 M
36 36 20
3.4 8.3 1.5·10–4
FR FR CP
71Aga 71Aga 67Los
U(VI)/U(V), (r) U(V)/U(V), (r)
22 22 25
1·10–4 8.9·10–5 (2.14·10–2)
DCP OC OC
70Cas 70Cas 61Gok
0.1 M H3PO4/H2O 1 M H3PO4/H2O 1.85 M H3PO4/H2O 5 M H3PO4/H2O 10 M H3PO4/H2O 0.1 M H2SO4/H2O 1 M H2SO4/H2O 5 M H2SO4/H2O 0.1 M NaCO3 +NaClO4/H2O 0.05...1 M LiOH/H2O
U(VI),(r) U(VI),(r) U(VI),(r) U(VI),(r) U(VI),(r) U(VI),(r) U(VI),(r) U(VI),(r) [UO2(CO3)2(O2)]4– /[UO2(CO3)3]5– [UO2(OH)3(H2O)3]– /[UO2(OH)3(H2O)3]2– U(V)/U(IV)
25 25 25 25 25 25 25 25 25
(9·10–7...2.9·10–3) (1.5·10–7...5·10–3) (2.4·10–2...0.15) (12...113) (1.2...28180) (1.71·10–3) (4.8...7.47·10–3) (3.16) (2.5·10–8)
DCP DCP DCP DCP DCP DCP DCP DCP DCP
72Iss2 72Iss2 72Iss2 72Iss2 72Iss2 72Iss1 72Iss1 72Iss1 68Zut
25
3.5·10–2
DCP
70Zut
2 + /3 + Vaq
25 25
(4.0·10–8) 0.004
DCP IP
71Sip 52Ran2
1 M HClO4/H2O
2 + /3 + Vaq
14
0.0036
IP
59Ran
1 M HClO4/H2O
2 + /3 + Vaq
25
0.0022
IP
59Ran
0.5 M H2SO4/H2O
2 + /3 + Vaq
25
1.45·10–3
PS
69Nik
4 M HClO4/H2O 1 M HClO4/H2O
UO 22 + , (r)
T 4)
Landolt-Börnstein New Series IV/9A
5 Exchange current densities Electrode 1)
Solution 2)
Educt, product, concentration 3)
j0 , j00 Method Ref. 174 ș 5 ) kapp or k c ) –2 –1 [°C] [A cm or cm s ]
0.5 M H2SO4/H2O
2 + /3 + Vaq
25
1.04·10–3
DCP
69Nik
0.5 M H2SO4/+ 3.44 mM nbutylalcohol/H2O 0.5 M H2SO4/+ 6.9 mM nbutylalcohol/H2O 0.5 M H2SO4/+ 13.8 mM nbutylalcohol/H2O 0.5 M H2SO4/+1 mM n-amylalcohol/H2O 0.5 M H2SO4/+2 mM n-amylalcohol/H2O 0.5 M H2SO4/+4 mM n-amylalcohol/H2O 0.5 M H2SO4/+ 0.213 mM n-hexylalcohol/H2O 0.5 M H2SO4/+ 0.43 mM n-hexylalcohol/H2O 0.5 M H2SO4/+ 0.85 mM n-hexylalcohol/H2O 1 M H2SO4/H2O
2 + /3 + Vaq
25
1.25·10–4
PS
69Nik
2 + /3 + Vaq
25
1.03·10–3
PS
69Nik
2 + /3 + Vaq
25
8.0·10–4
PS
69Nik
2 + /3 + Vaq
25
1.23·10–3
PS
69Nik
2 + /3 + Vaq
25
9.9·10–4
PS
69Nik
2 + /3 + Vaq
25
6.1·10–4
PS
69Nik
2 + /3 + Vaq
25
1.25·10–3
PS
69Nik
2 + /3 + Vaq
25
1.0·10–4
PS
69Nik
2 + /3 + Vaq
25
5.4·10–4
PS
69Nik
2 + /3 + Vaq
25
0.0014
IP
59Ran
2 + /3 + 0.5 M K-oxalate/H2O Vaq
25
0.0014
IP
52Ran2
0.1 M KPF6/H2O
2 + /3 + Vaq
25
(3.0·10–2)
CV
80Bar1
0.4 M KPF6/H2O
2 + /3 + Vaq
25
(7.0·10–2)
CV
80Bar1
3+/2+
V V3+/2+ V3+/2+ V3+/2+
24 24 25 25
0.0044 0.0057 0.0036 0.00436
OC CP IP IP
65Sri 65Sri 67Ell 67Ell
V3+/2+
25
0.00469
IP
67Ell
V3+/2+ V3+/2+ V3+/2+ V3+/2+
20 14.2 25 20 25
0.004 0.0022 0.00364 0.0032 0.00336
IP DCP,IP DCP,IP IP IP
52Ran2 59Ran 59Ran 61Jos 71Bie
1 M HClO4/H2O 1 M HClO4/H2O 1 M HClO4/H2O 0.02 M HClO4+ 0.2 M NaClO4/H2O 0.02 M HClO4 +1 M NaClO4/H2O 1 M HClO4/ H2O 1 M HClO4/ H2O 1 M HClO4/ H2O 1 M HClO4/ H2O 1 M NH2SO3H/H2O
Landolt-Börnstein New Series IV/9A
337
3 + /2 + Vaq
T 4)
338
5 Exchange current densities
Electrode 1)
Solution 2)
Educt, product, concentration 3)
T 4)
j0 , j00 Method Ref. 174 ș 5 ) kapp or k c ) –2 –1 [°C] [A cm or cm s ]
Hg
1 M NH2SO3H /NMF 88) 1 M NaClO4 +0.2 M HClO4 +0.01 M (NH4)2SO4/H2O 5 M NaClO4 +0.2 M HClO4 +0.01 M (NH4)2SO4/H2O 0.5 M H2SO4/ H2O
3 + /2 + Vaq
25
0.00116
IP
71Bie
3 + /2 + Vaq
25
0.0048
ACP
68Ran
3 + /2 + Vaq
25
0.0077
ACP
68Ran
3 + /2 + Vaq
25
0.00145
PS
71Nik
1 M H2SO4/ H2O
3 + /2 + Vaq
15.3 0.00139
59Ran
1 M H2SO4/ H2O
3 + /2 + Vaq
15
0.00103
DCP, IP DCP
0.2 M Bu4NClO2/DMF 0.2 M Bu4NClO2/DMF 0.2 M Bu4NClO2/DMF 0.25 M CsSO4/H2O 1 M KBr/H2O 1 M KBr+2 μM LEO/H2O 98) 1 M KBr+2 μM LEO/H2O 98) 2.88 M KBr+2 μM LEO/H2O 98) 2.88 M KBr+2 μM LEO/H2O 98) 0.1 M KCl/H2O 0.1 M KCl/H2O 0.1 M KCl/H2O 0.1 M KCl/H2O 0.1 M KCl/H2O 0.1 M KCl/H2O 0.1 M KCl/H2O 1 M KCl/H2O 1 M KCl/H2O 1 M KCl/H2O 1 M KCl/H2O 1 M KCl/H2O 1 M KCl/H2O 1 M KCl/H2O, pH=3
V(bipy)32 + / +
25
0.35
GD
75Saj1
V(bipy)3+ / 0
25
1.2
GD
75Saj1
V(bipy)30 / –
25
0.66
GD
75Saj1
Zn2+/0 Zn2+/0 Zn2+/0, 1 mM Zn(NO3)2 Zn2+/0, 1 mM Zn(NO3)2 Zn2+/0, 1 mM Zn(NO3)2 Zn2+/0, 1 mM Zn(NO3)2 Zn2+/0, 2 mM ZnCl2 Zn2+/0, 2 mM ZnCl2 Zn2+/0, 2 mM ZnCl2 Zn2+/0, 2 mM ZnCl2 Zn2+/0, 4 mM ZnCl2 Zn2+/0, 4 mM ZnCl2 Zn2+/0, 4 mM ZnCl2 Zn2+/0 Zn2+/0 Zn2+/0 Zn2+/0 Zn2+/0 Zn2+/0 Zn2+/0
22 25 25
4.1·10–4 8.0·10–3 10.5·10–3
DCP ACP DCP
62Kor 61Kam 62Tam
25
10.5·10–3
DCP
63Tam
25
4.8·10–3
DCP
62Tam
25
4.8·10–3
DCP
63Tam
1 23 38.5 50 19 34 48 25 25 15 27.5 37.5 49.5 25
5.2·10–3 1.23·10–2 1.55·10–2 3.24·10–2 1.58·10–2 1.78·10–2 3.31·10–2 3.1·10–3 4.0·10–3 3.5·10–3 4.7·10–3 7.7·10–3 9.8·10–3 4.0·10–3
CP CP CP CP CP CP CP OP ACP CP CP CP CP DCP
61Riu 61Riu 61Riu 61Riu 61Riu 61Riu 61Riu 55Mat 61Kam 61Riu 61Riu 61Riu 61Riu 67Tim
62Ran
Landolt-Börnstein New Series IV/9A
5 Exchange current densities Electrode 1)
Landolt-Börnstein New Series IV/9A
339
Solution 2)
Educt, product, concentration 3)
T 4)
j0 , j00 Method Ref. 174 ș 5 ) kapp or k c ) –2 –1 [°C] [A cm or cm s ]
1 M KCl+ 2 μM LEO/H2O 98) 1 M KCl+ 2 μM LEO/H2O 98) 1 M KCl+ 2 μM LEO/H2O 98) 0.1...1 M ZnL +KCl/H2O 119) 0.1...1 M ZnL+ KCl/H2O 119) 1 M KI/H2O 0.1 M KNO3+ 0.1...2 M ethylenediamine+0.02 % gelatin/H2O 1 M KNO3/H2O 0.1 M KNO3/H2O 0.1 M KNO3/H2O 0.1 M KNO3/H2O 0.1 M KNO3/H2O 1 M KNO3/H2O 1 M KNO3/H2O 1 M KNO3/H2O 1 M KNO3/H2O 3 M KNO3/H2O 3 M KNO3+0.002 % gelatin/H2O 3 M KNO3+0.004% gelatin/H2O 3 M KNO3+0.006 % gelatin/H2O 3 M KNO3+0.008 % gelatin/H2O 3 M KNO3+0.01 % gelatin/H2O 1 M KNO3+2 μM LEO/H2O 98) 1 M KNO3+2 μM LEO/H2O 98) 2 M KOH+KCl/H2O 1 M KSCN/H2O 0.25 M K2SO4/H2O 0.1 M LaCl3/H2O 0.25 M Li2SO4/H2O 0.25...2.8 M NH4Cl +NH3/H2O
Zn2+/0, 1 mM Zn(NO3)2 Zn2+/0, 1 mM Zn(NO3)2 Zn2+/0
25
7.0·10–3
DCP
62Tam
25
7.0·10–3
DCP
63Tam
25
3.4·10–3
IP
59Tam
Zn2+/0
-
3.4·10–5
DCP
62Mat
ZnL2/0
-
3.4·10–4
DCP
62Mat
Zn2+/0 Zn2+/0
25 25
7.0·10–2 1.0·10–4
ACP DCP
61Kam 56Mor
Zn2+/0 Zn2+/0, 2 mM ZnCl2 Zn2+/0, 2 mM ZnCl2 Zn2+/0, 2 mM ZnCl2 Zn2+/0, 2 mM ZnCl2 Zn2+/0, 2 mM ZnCl2 Zn2+/0, 2 mM ZnCl2 Zn2+/0, 2 mM ZnCl2 Zn2+/0 Zn2+/0 Zn2+/0
25 10.5 24 36.5 50 21 36 54 25 25 25
3.5·10–3 1.7·10–2 1.32·10–2 2.82·10–2 3.34·10–2 0.4·10–2 0.46·10–2 1.2·10–2 3.9·10–3 3.25·10–3 6.0·10–3
ACP CP CP CP CP CP CP CP PS OC OC
61Kam 61Riu 61Riu 61Riu 61Riu 61Riu 61Riu 61Riu 63Tos 58Ima 58Ima
Zn2+/0
25
7.5·10–3
OC
58Ima
Zn2+/0
25
8.7·10–3
OC
58Ima
Zn2+/0
25
5.1·10–3
OC
58Ima
Zn2+/0
25
4.25·10–3
OC
58Ima
Zn2+/0, 1 mM Zn(NO3)2 Zn2+/0, 1 mM Zn(NO3)2 Zn2+/0 Zn2+/0 Zn2+/0 Zn2+/0 Zn2+/0 Zn2+/0
25
5.4·10–3
DCP
62Tam
25
5.4·10–3
DCP
63Tam
25 25 22 22 22 25
5.1·10–4 1.7·10–2 1.3·10–3 2.5·10–3 2.4·10–3 1.3·10–5
DCP ACP DCP DCP DCP DCP
59Mat2 61Kam 62Kor 62Kor 62Kor 59Mat2
340
5 Exchange current densities
Electrode 1)
Solution 2)
Educt, product, concentration 3)
T 4)
j0 , j00 Method Ref. 174 ș 5 ) kapp or k c ) –2 –1 [°C] [A cm or cm s ]
Hg
1 M (NH4)2SO4 +NH3/H2O x M NH4OH +x M NH4/Cl +(3-x) M NaCl/H2O 1 M NaBr/H2O 0.55 M NaCl +1 mM HCl/H2O 0.55 M NaCl+0.01 M borate buffer/H2O 1 M NaCl/H2O 3 M NaCl+KOH/H2O 0.1 M NaClO4 +0.1 mM HClO4 +2 μM LEO/H2O 98) 0.5 M NaClO4 +0.1 mM HClO4 +2 μM LEO/H2O 98) 0.75 M NaClO4 +0.1 mM HClO4 +2 μM LEO/H2O 98) 0.9 M NaClO4/H2O 0.9 M NaClO4 +0.1 M NaCl +2 μM LEO/H2O 98) 0.9 M NaClO4 +0.1 M NaCl +2 μM LEO/H2O 98) 0.9 M NaClO4 +0.1 M NaI +2 μM LEO/H2O 98) 0.9 M NaClO4 +0.1 M NaI +2 μM LEO/H2O 98) 0.99 M NaClO4 +0.01 M KCl +2 μM LEO/H2O 98) 0.99 M NaClO4 +0.01 M KCl +2 μM LEO/H2O 98) 0.99 M NaClO4 +0.01 M NaI +2 μM LEO/H2O 98) 0.99 M NaClO4 +0.01 M NaI +2 μM LEO/H2O 98)
Zn2+/0
25
Zn2+/0
-
Zn2+/0 Zn2+/0
6.3·10–5
OP
59Ima
1 .. 2.9·10–5
DCP
68Pop
25 25
7.7·10–3 0.005
IP DCP
70Mou 71Ruz
Zn2+/0
25
0.0086
DCP
71Ruz
Zn2+/0 Zn2+/0 Zn2+/0, 1 mM Zn(NO3)2
25 25
3.9·10–3 1.7...3.6·10–5 11.9·10–3
IP DCP DCP
70Mou 68Pop 69Tan2
Zn2+/0, 1 mM Zn(NO3)2
25
5.3·10–3
DCP
69Tan2
Zn2+/0, 1 mM Zn(NO3)2
25
3.4·10–3
DCP
69Tan2
Zn2+/0 Zn2+/0, 1 mM Zn(NO3)2
25 25
1.02 3.3·10–3
IP DCP
53Ger2 62Tam
Zn2+/0, 1 mM Zn(NO3)2
25
3.3·10–3
DCP
63Tam
Zn2+/0, 1 mM Zn(NO3)2
25
4.7·10–3
DCP
62Tam
Zn2+/0, 1 mM Zn(NO3)2
25
4.7·10–3
DCP
63Tam
Zn2+/0, 1 mM Zn(NO3)2
25
2.8·10–3
DCP
62Tam
Zn2+/0, 1 mM Zn(NO3)2
25
2.8·10–3
DCP
63Tam
Zn2+/0, 1 mM Zn(NO3)2
25
2.7·10–3
DCP
62Tam
Zn2+/0, 1 mM Zn(NO3)2
25
2.7·10–3
DCP
63Tam
Landolt-Börnstein New Series IV/9A
5 Exchange current densities Electrode 1)
Landolt-Börnstein New Series IV/9A
341
Solution 2)
Educt, product, concentration 3)
j0 , j00 Method Ref. 174 ș 5 ) kapp or k c ) –2 –1 [°C] [A cm or cm s ]
1 M NaClO4 /H2O, acidifed 1 M NaClO4 +2 μM LEO/H2O 98) 1 M NaClO4 +2 μM LEO/H2O 98) 1 M NaClO4 +2 μM LEO/H2O 98) 1 M NaClO4 +2 μM LEO/H2O 98) 1 M NaClO4 +2 μM LEO/H2O 98) 1 M NaClO4 +2 μM LEO/H2O 98) 1 M NaClO4 +2 μM LEO/H2O 98) 1 M NaClO4 +2 μM LEO/H2O 98) 1 M NaClO4 +0.1 mM HClO4 +2 μM LEO/H2O 98) 1 M NaClO4 +0.1 mM HClO4 +2 μM LEO/H2O 98) 1 M NaClO4 +0.1 mM HClO4 +2 μM LEO/H2O 98) 1 M NaClO4 +0.1 mM HClO4 +2 μM LEO/H2O 98) 0.014 M NaNO3/H2O 0.1 M NaNO3/H2O 0.1 M NaNO3+0.05 M (CH3)4NCl/H2O 0.1 M NaNO3+0.05 M (C2H5)4NCl/H2O 0.1 M NaNO3+0.05 M (C4H9)4NCl/H2O 0.105 M NaNO3/H2O 0.2 M NaNO3/H2O 0.25 M NaNO3/H2O 0.35 M NaNO3/H2O 0.49 M NaNO3/H2O
Zn0/2+, 1 mM
20
5.7·10–4
CP
67Los
0
3.3·10–4
DCP
62Tam
0
3.3·10–4
DCP
63Tam
15
1.54·10–3
DCP
62Tam
15
1.54·10–3
DCP
63Tam
25
4.0·10–3
DCP
62Tam
25
4.0·10–3
DCP
63Tam
35
5.2·10–3
DCP
62Tam
35
5.2·10–3
DCP
63Tam
DCP
69Tan2
Zn2+/0, 1 mM Zn(NO3)2 Zn2+/0, 1 mM Zn(NO3)2 Zn2+/0, 1 mM Zn(NO3)2 Zn2+/0, 1 mM Zn(NO3)2 Zn2+/0, 1 mM Zn(NO3)2 Zn2+/0, 1 mM Zn(NO3)2 Zn2+/0, 1 mM Zn(NO3)2 Zn2+/0, 1 mM Zn(NO3)2 Zn2+/0, 1 mM Zn(NO3)2
T 4)
0.3 0.64·10–3
Zn2+/0, 1 mM Zn(NO3)2
15
1.6·10–3
DCP
69Tan2
Zn2+/0, 1 mM Zn(NO3)2
25
2.6·10–3
DCP
69Tan2
Zn2+/0, 1 mM Zn(NO3)2
35
4.29·10–3
DCP
69Tan2
Zn2+/0 Zn2+/0 Zn2+/0
22 22
5.0·10–2 5.0·10–2 1.5·10–3
PP DCP DCP
66Chr 62Kor 62Kor
Zn2+/0
22
1.3·10–3
DCP
62Kor
Zn2+/0
22
1.3·10–3
DCP
62Kor
Zn2+/0 Zn2+/0 Zn2+/0 Zn2+/0 Zn2+/0
25 22 -
2.0·10–2 1.5·10–2 2.0·10–2 6.5·10–3 4.1·10–3
PP DCP DCP PP PP
66Chr 71Ruz 62Kor 66Chr 66Chr
342
5 Exchange current densities
Electrode 1)
Solution 2)
Educt, product, concentration 3)
T 4)
j0 , j00 Method Ref. 174 ș 5 ) kapp or k c ) –2 –1 [°C] [A cm or cm s ]
Hg
0.5 M NaNO3/H2O 0.5 M NaNO3 +0.5 mM HNO3/H2O 0.75 M NaNO3/H2O 1 M NaNO3/H2O 1 M NaNO3/H2O 1.05 M NaNO3/H2O 2.45 M NaNO3/H2O 4 M NaNO3 +NaL/H2O 120) 4 M NaNO3 +NaL/H2O 120) 4 M NaNO3 +NaL/H2O 120) 0.05...0.2 M NaNO3 +NaL/H2O 121) 0.05...0.2 M NaNO3 +NaL/H2O 121) 0.05...0.2 M NaNO3 +NaL/H2O 121) 1 M NaN3/H2O 1 M NaOH/H2O 1 M NaOH/H2O 0.25 M Na2SO4/H2O 0.5 M Na2SO4 +1 mM H2SO4 0.5 M Na2SO4 +1 mM H2SO4 +n-butanol/H2O 0.1 M TEAP 74) /DMF 54) acetate buffer/H2O, pH=3.9 0.1 M TEAP 74) /acetone 0.1 M TEAP 74) /acetonitrile 0.1 M TPAP 74) /acetonitrile 0.1 M TBAP 52) /acetonitrile 0.1 M THxAP 122) /acetonitrile 0.1 M TOAP 123) /acetonitrile
Zn2+/0 Zn2+/0
22 25
5.4·10–3 4.4·10–3
DCP PS
62Kor 69Tan1
Zn2+/0 Zn2+/0 Zn2+/0 Zn2+/0 Zn2+/0 Zn2+/0
22 22 25 25
3.3·10–3 2.8·10–3 0.31·10–2 3.2·10–3 2.4·10–3 1.8·10–4
DCP DCP DCP PP PP DCP
62Kor 62Kor 71Ruz 66Chr 66Chr 63Mat
ZnL+/0
25
4.4·10–3
DCP
63Mat
ZnL3–/0
25
6.2·10–4
DCP
63Mat
Zn2+/0
25
1.15·10–5
DCP
71Aya
ZnL+/0
25
0.99·10–3
DCP
71Aya
ZnL2/0
25
1.0·10–5
DCP
71Aya
Zn2+/0 Zn2+/0 Zn2+/0 Zn2+/0 Zn2+/0
25 25 20 22 22
7.4·10–3 7.4·10–5 1.8·10–4 2.4·10–3 2.08·10–3
IP ACP DCP DCP CP
70Mou 61Kam 62Beh 62Kor 62Bat
Zn2+/0
22
9.0·10–4
DCP
65Sat
benzoquinone (r)
25
0.0052
CV
73Cap
benzoquinone (r)
-
(1.4·10–3)
CP
63Hal
benzophenone (r)
22
2.0
IP
93Faw
benzophenone (r)
22
2.7
IP
93Faw
benzophenone (r)
22
1.03
IP
93Faw
benzophenone (r)
22
0.42
IP
93Faw
benzophenone (r)
22
0. 21
IP
93Faw
benzophenone (r)
22
0. 11
IP
93Faw
Landolt-Börnstein New Series IV/9A
5 Exchange current densities Electrode 1)
Solution 2)
Educt, product, concentration 3)
j0 , j00 Method Ref. 174 ș 5 ) kapp or k c ) –2 –1 [°C] [A cm or cm s ]
0.1 M TEAP 74) /propionitrile 0.1 M TEAP 74) /dimethylacetamide 0.1 M TEAP 74) /dimethylsulfoxide 0.1 M TEAP 74) /HMPA 124) 0.1 M TEAP 74) /PC 113) acetate buffer /H2O, pH=3.9 acetate buffer /methanol, pH=3.9 acetate buffer /methanol, pH=3.9 acetate buffer /methanol, pH=3.9 acetate buffer /methanol, pH=3.9 acetate buffer /methanol, pH=3.9 acetate buffer /ethanol, pH=3.9 acetate buffer /ethanol, pH=3.9 acetate buffer/DMF +H2O, pH=3.9 54) phosphate buffer /H2O, pH=6.75
benzophenone (r)
22
1.82
IP
93Faw
benzophenone (r)
22
0.51
IP
93Faw
benzophenone (r)
22
0.31
IP
93Faw
benzophenone (r)
22
0.11
IP
93Faw
benzophenone (r)
22
0.18
IP
93Faw
1,4-naphthaquinone(r) benzoquinone (r)
-
(1.6·10–3)
CP
63Hal
-
(1.1·10–3)
CP
63Hal
1,4-naphthaquinone(r) 1,2-benzanthraquinone (r) anthraquinone (r)
-
(1.4·10–3)
CP
63Hal
-
(2.2·10–3)
CP
63Hal
-
(2.8·10–3)
CP
63Hal
9,10-phenanthraquinone (r) benzoquinone (r)
-
(0.5·10–3)
CP
63Hal
-
(0.7·10–3)
CP
63Hal
1,4-naphthaquinone(r) anthraquinone (r)
-
(1.5·10–3)
CP
63Hal
-
(0.2·10–3)
CP
63Hal
1-oxo-10-methyl1.10-dihydrophenazine (r) tetramethylparaphenylene diamine (o) p-dicyanobenzene
25
0.5
IP
52Ran2
25
0.5
IP
52Ran2
22
0.95
ACP
96Win
p-dicyanobenzene
22
0.75
ACP
96Win
p-dicyanobenzene
22
0.54
ACP
96Win
p-dicyanobenzene
22
0.27
ACP
96Win
p-dicyanobenzene
22
0.14
ACP
96Win
phosphate buffer /H2O, pH=6.75 0.05 M TBAP /acetonitrile 0.05 M TBAP 52) /acetone 0.05 M TBAP 52) /dichloromethane 0.05 M TBAP 52) /DMF 54) 0.05 M TBAP 52) /PC 113)
Landolt-Börnstein New Series IV/9A
343
T 4)
344
5 Exchange current densities
Electrode 1)
Solution 2)
Educt, product, concentration 3)
j0 , j00 Method Ref. 174 ș 5 ) kapp or k c ) –2 –1 [°C] [A cm or cm s ]
Molybdenum (Mo)
0.001 N HCl/H2O 0.01 N HCl/H2O 0.1 N HCl/H2O 0.001 N NaOH/H2O 0.01 N HCl/H2O 0.1 N HCl/H2O 1 M NaOH/H2O 1 M NaOH/ H2O 1 M NaOH/ H2O 1 M NaOH/ H2O 1 M NaOH/ H2O 1 M NaOH/ H2O 1 M H2SO4+0.01 M MgSO4/H2O 0.5 N H2SO4/H2O 0.5 M H2SO4/H2O 0.5 N NaOH/H2O 0.2 M HCl/H2O, pH=0.67 2 M HCl/H2O, pH=0.67 1 M HCl+1 M KCl /H2O, pH=0 0.1 M H2SO4/H2O, pH=0.8 1 M H2SO4/H2O, pH=0 1.5 M KCl+0.2 M HCl/H2O, pH=0.6 2 M KCl/H2O, pH=6 1 M NaClO4/H2O 1 M Na2SO4/H2O, pH=5.9 0.5 M NiSO4+acetate buffer/H2O, pH=2.3 0.5 M NiSO4+acetate buffer/H2O, pH=4.4 0.5 M NiSO4+acetate buffer/H2O, pH=5.5 0.5 M NiSO4+acetate buffer/H2O, pH=6.7 0.5 M NiSO4+acetate buffer/H2O, pH=7.9 1.33 M NaOH +1.95 M NaNO3/H2O
H+/H2 H+/H2 H+/H2 H+/H2 H+/H2 H+/H2 hydrogen evolution hydrogen evolution hydrogen evolution hydrogen evolution hydrogen evolution hydrogen evolution Fe2+/3+, 0.05 M
25 25 25 25 25 25 25
10–7.12 10–7.19 10–6.45 10–7.27 10–6.42 10–6.37 5.4·10–6 79·10–6 70·10–6 32·10–6 13·10–6 3.3·10–6 7.5·10–5
CP CP CP CP CP CP CP CP CP CP CP CP CP
57Pen 57Pen 57Pen 57Pen 57Pen 57Pen 00Jak 00Jak 00Jak 00Jak 00Jak 00Jak 64Mak 125)
H+/H2 H+/H2 H+/H2 Ni2+/0, 10 mM
-
10–5.22 10–5.3 10–6.1 1.7·10–9
CP CP CP CP
64Boc3 67Man 64Boc3 59Hol
Ni2+/0, 10 mM
-
1.1·10–8
CP
59Hol
Ni2+/0, 10 mM
-
6.9·10–9
CP
59Hol
Ni2+/0, 5 mM
-
2.4·10–9
CP
59Hol
Ni2+/0, 5 mM
-
8.3·10–10
CP
59Hol
Ni2+/0, 10 mM
-
1.7·10–9
CP
59Hol
Ni2+/0, 10 mM Ni2+/0 Ni2+/0, 5 mM
25 -
1.0·10–8 (2.74·10–4) 4.2·10–8
CP CP CP
59Hol 63Mac 59Hol
Ni2+/0
35
1.0·10–6
GCI
47Sal
Ni2+/0
35
1.0·10–6
GCI
47Sal
Ni2+/0
35
1.0·10–7
GCI
47Sal
Ni2+/0
35
1.0·10–5
GCI
47Sal
Ni2+/0
35
1.0·10–5
GCI
47Sal
NO 3– /NO
25
4.17·10–7
CV
96Boc 126)
MoNi MoNi2 MoNi3 MoNi4 Nickel (Ni)
Ni(Hg)
T 4)
Landolt-Börnstein New Series IV/9A
5 Exchange current densities Electrode 1)
Solution 2)
Niobium (Nb) 0.1 N H2SO4/H2O 0.1 N H2SO4/H2O 0.1 N H2SO4/H2O 1 N H2SO4/H2O 1 N H2SO4/H2O 1 N H2SO4/H2O 1 N H2SO4/H2O
Platinum (Pt)
Landolt-Börnstein New Series IV/9A
1 M KF/H2O 0.1 M TEAP 74) /DMF 54) HCl-buffer/H2O, pH=1.1 acetate buffer/H2O, pH=3.0 acetate buffer/H2O, pH=5.0 3 M HClO4/H2O 3 M HClO4/H2O 3 M HClO4/H2O 3 M HClO4/H2O 3 M HClO4/H2O
T 4)
Educt, product, concentration 3)
j0 , j00 Method Ref. 174 ș 5 ) kapp or k c ) –2 –1 [°C] [A cm or cm s ]
H+/H2, 0.1 N H+/H2, 0.1 N H+/H2, 0.1 N H+/H2, 0.1 N H+/H2, 0.1 N H+/H2, 0.1 N H+/H2, 1 N
25 40 55 25 40 55 25
2.0·10–7 4.0·10–7 1.0·10–6 5.0·10–7 1.0·10–6 3.0·10–6 1.9·10–7
CP CP CP CP CP CP GCI 127)
63Rot 63Rot 63Rot 63Rot 63Rot 63Rot 65Koz
20
0.75
TPF
88Boc
20
1.23
TPF
88Boc 128)
25
0.012
SS
68Boc2
25
0.006
SS
68Boc2
20
0.5
Palladium (Pd) 0.4 M K2SO4+0.01 N Fe(H 2 O) 62 + /3 + H2SO4/H2O 0.4 M K2SO4+0.01 N Fe(H 2 O) 62 + /3 + H2SO4/H2O 1 M H2SO4/H2O Fe(H 2 O) 62 + /3 + ; 0.1M 1 M H2SO4/H2O Fe(H 2 O) 62 + /3 + ; 0.01M 1 N H2SO4/H2O Fe(H 2 O) 62 + /3 +
0.01 N HCl/H2O 0.1 N HCl/H2O 0.5 M H2SO4/H2O 0.5 M H2SO4/H2O 1 M H2SO4/H2O 0.001 N NaOH/H2O 0.01 N NaOH/H2O 0.1 N NaOH/H2O 1 M HBr +3 M H2SO4/H2O 1 M HCl +3 M H2SO4/H2O 1 M KOH/H2O
345
+
RDE
83Vie
–4.18
H /H2 H+/H2 H+/H2 H+/H2 H+/H2 H+/H2 H+/H2 H+/H2 Pd2+/0, 0.05 M
25
10 10–3.25 10–3.0 10–5.9 10–3.1 10–5.88 10–5.56 10–5.01 3.9·10–5
CP CP CP CP CP CP CP CP GM
57Pen 57Pen 65Mat 67Man 61Shi 57Pen 57Pen 57Pen 66Kra1
Pd2+/0, 0.1 M
25
4.8·10–5
GM
66Kra2
MnO 4–/2 –
20
0.67·10–2
CP,GS 67Thi1
[Ru(NH3)6] benzoquinone (r)
20 25
97 0.0057
TPF CV
85Iwa 73Cap
hydroquinone /quinone, 5.5 mM hydroquinone /quinone, 5.5 mM hydroquinone /quinone, 5.5 mM Ce4+/3+, 3 mM Ce4+/3+, 6 mM Ce4+/3+, 3 mM Ce4+/3+, 6 mM Ce4+/3+, 3 mM
25
1.9·10–4
CF
62Tom 77)
25
2.5·10–5
CF
62Tom 77)
25
4.8·10–5
CF
62Tom 77)
0 0 0 0 20
0.72·10–9 2.9·10–9 0.25·10–9 1.0·10–9 0.5·10–9
RT RT IP IP IP
56Fro1 56Fro1 56Fro2 56Fro2 56Fro2
3+/2+
346
5 Exchange current densities
Electrode 1)
Solution 2)
Educt, product, concentration 3)
T 4)
j0 , j00 Method Ref. 174 ș 5 ) kapp or k c ) –2 –1 [°C] [A cm or cm s ]
Pt
3 M HClO4/H2O 1 M H2SO4/H2O 1 M H2SO4/H2O 1 N H2SO4/H2O 0.1 N H2SO4/H2O 0.1 N H2SO4 +0.2 M KNO3/H2O 0.1 N H2SO4 +1 M KNO3/H2O 0.1 N H2SO4+0.01 M KAl(SO4)2/H2O 0.1 N H2SO4+0.1 M KAl(SO4)2/H2O 1 M HNO3/H2O 2 M HNO3/H2O 4 M HNO3/H2O 7 M HNO3/H2O 10 M HNO3/H2O 1 M HNO3/H2O 0.025 M TBAP 52) /DMF 54) 0.05 M TBAP 52) /DMF 54) 0.1 M TBAP 52) /DMF 54) 0.25 M TBAP 52) /DMF 54) 1 M NH4Cl +1 M NH3/H2O 0.1 M KPF6/H2O 0.1 M KPF6 +5 mM NaI/H2O 7 M NH3+1 mM NH4Cl/H2O 7 M NH3+1 mM NH4Cl/H2O 7 M NH3+0.2 M NH4Cl/H2O 7 M NH3+0.2 M NH4Cl/H2O 7 M NH3 +1 M NH4Cl/H2O 7 M NH3 +1 M NH4Cl/H2O 7 M NH3+0.1 M (NH4)2SO4/H2O
Ce4+/3+, 6 mM Ce4+/3+ Ce4+/3+ Ce4+/3+, 1 mM Ce4+/3+, 1 mM Ce4+/3+, 1 mM
20 25 25 25 25 25
2.0·10–9 3.7·10–4 3.7·10–4 43.5·10–6 40.5·10–6 17.4·10–6
IP RDE CP CP CP CP
56Fro2 63Gal 63Ada 51Vet 51Vet 51Vet
Ce4+/3+, 1 mM
25
15.8·10–6
CP
51Vet
Ce4+/3+, 1 mM
25
17.3·10–6
CP
51Vet
Ce4+/3+, 1 mM
25
11.7·10–6
CP
51Vet
Ce4+/3+, 1 mM Ce4+/3+, 1 mM Ce4+/3+, 1 mM Ce4+/3+, 1 mM Ce4+/3+, 1 mM Ce4+/3+, 10 mM [Co(cp)2] (o)
25 25 25 25 25 25 -
28.1·10–6 25.9·10–6 15.5·10–6 10.6·10–6 5.5·10–6 56.23·10–6 0.4
CP CP CP CP CP CP ACP
51Vet 51Vet 51Vet 51Vet 51Vet 51Vet 93Win
[Co(cp)2] (o)
-
0.37
ACP
93Win
[Co(cp)2] (o)
-
0.31
ACP
93Win
[Co(cp)2] (o)
-
0.3
ACP
93Win
[Co(NH3)6]Cl3 (r)
25
4.5·10–6
CF
70Suz
[Co(NH3)6]3+/2+ [Co(NH3)6]3+/2+
25 25
(2.0·10–4) (2.0·10–4)
RDE RDE
80Bar1 80Bar1
[Co(NH3)6]3+/2+
25
(2.3·10–3)
RDE
69Bar2
[Co(NH3)6]3+/2+
25
(1.33·10–4)
RDE
71Bar1
[Co(NH3)6]3+/2+
25
(2.3·10–3)
RDE
69Bar2
[Co(NH3)6]3+/2+
25
(2.3·10–3)
RDE
71Bar1
[Co(NH3)6]3+/2+
25
(5.25·10–4)
RDE
69Bar2
[Co(NH3)6]3+/2+
25
(5.25·10–4)
RDE
71Bar1
[Co(NH3)6]3+/2+
25
(7.2·10–4)
RDE
69Bar2
Landolt-Börnstein New Series IV/9A
5 Exchange current densities Electrode 1)
Landolt-Börnstein New Series IV/9A
347
Solution 2)
Educt, product, concentration 3)
T 4)
j0 , j00 Method Ref. 174 ș 5 ) kapp or k c ) –2 –1 [°C] [A cm or cm s ]
7 M NH3+0.1 M (NH4)2SO4/H2O 7 M NH3+0.5 M (NH4)2SO4/H2O 7 M NH3+0.5 M (NH4)2SO4/H2O 0.1 M NaClO4/H2O 0.1 M KPF6/H2O 0.1 M NaClO4/H2O 0.1 M KPF6/H2O 0.1 M KPF6 +5 mM NaI /H2O 0.1 M NaClO4/H2O 0.1 M NaClO4+5 mM HClO4/H2O 0.1 M NaClO4 +5 mM HClO4 +5 mM NaI/H2O 0.1 M NaClO4+5 mM HClO4/H2O 0.1 M NaClO4 +5 mM HClO4 +5 mM NaI/H2O 0.1 M NaClO4+5 mM HClO4/H2O 5 mM HClO4 +5 mM NaI/H2O 0.1 M NaClO4+5 mM HClO4/H2O 0.1 M NaClO4 +5 mM HClO4 +5 mM NaI/H2O 0.1 M NaClO4+5 mM HClO4/H2O 0.1 M NaClO4 +5 mM HClO4 +5 mM NaI/H2O 0.1 M NaClO4+5 mM HClO4/H2O 0.1 M NaClO4 +5 mM HClO4 +5 mM NaI/H2O 1 M KBr +0.1 M L/H2O L=ethylenediamine
[Co(NH3)6]3+/2+
25
(7.2·10–4)
RDE
71Bar1
[Co(NH3)6]3+/2+
25
(2.1·10–4)
RDE
69Bar2
[Co(NH3)6]3+/2+
25
(2.1·10–4)
RDE
71Bar1
[Co(NH3)6]3+/2+ [Co(NH3)5]F2+/+ [Co(NH3)5]F2+/+ [Co(NH3)5]OH23+/2+ [Co(NH3)5]OH23+/2+
25 25 25 25 25
(1.5·10–3) (2.0·10–3) (5.0·10–4) (∼5.0·10–2) (∼0.1)
RDE RDE RDE RDE RDE
80Bar1 80Bar1 80Bar1 80Bar1 80Bar1
[Co(NH3)5]OH23+/2+ [Co(NH3)5]Cl2+/1+
25 24
(∼5.0·10–2) (7.0·10–3)
RDE PP
80Bar1 84Bar2
[Co(NH3)5]Cl2+/1+
24
(1.5·10–7)
PP
84Bar2
[Co(NH3)5]Br2+/1+
24
(2.0·10–2)
PP
84Bar2
[Co(NH3)5]Cl2+/1+
24
(4.0·10–8)
PP
84Bar2
[Co(NH3)5] NCS2+/1+ [Co(NH3)5] NCS2+/1+ cis-([Co(NH3)4] Cl2)2+/1+ cis-([Co(NH3)4] Cl2)2+/1+
24
(4.0·10–4)
PP
84Bar2
24
(2.0·10–4)
PP
84Bar2
24
(2.5·10–2)
PP
84Bar2
24
(1.0·10–5)
PP
84Bar2
cis-([Co(en)2]Cl2)2+/1+ 24
(3.0·10–4)
PP
84Bar2 63)
cis-([Co(en)2]Cl2)2+/1+ 24
(4.0·10–6)
PP
84Bar2 63)
cis-([Co(en)2] (NCS)2)2+/1+ cis-([Co(en)2] (NCS)2)2+/1+
24
(1.0·10–4)
PP
84Bar2 63)
24
(1.5·10–4)
PP
84Bar2 63)
CoL33+/2+
25
0.62·10–2
CP, RDE
69Bar3, 70Bar5
348
5 Exchange current densities
Electrode 1)
Solution 2)
Educt, product, concentration 3)
j0 , j00 Method Ref. 174 ș 5 ) kapp or k c ) –2 –1 [°C] [A cm or cm s ]
Pt
1 M KCl +0.1 M L/H2O L=ethylenediamine 1 M KCl +0.1 M L/H2O L=ethylenediamine 1 M KClO4 +0.1 M L/H2O L=ethylenediamine 1 N K2SO4 +0.1 M L/H2O L=ethylenediamine 1 M K2S2O3 +0.1 M L/H2O L=ethylenediamine 1 M KCl +0.1 M L/H2O L=1,2-propandiamine 1 M KCl +0.1 M L/H2O L=1,2-propandiamine 1 M KCl +0.1 M L/H2O L=2,3-butandiamine 1 M KCl +0.1 M L/H2O L=2,3-butandiamine 1 M KCl+0.1 M L/H2O L=1,2-cyclohexandiamine 1 M KCl+4 mM L/H2O L=1,10 phenanthroline 1 M KCl +0.1 M L/H2O L=diethylenetramine 0.1 M NaClO4/H2O
CoL33+/2+
25
2.1·10–2
CP, RDE
69Bar3, 70Bar5
CoL33+/2+, 1 mM
25
2.6
RDE
70Bar4
CoL33+/2+
25
2.9·10–2
CP
69Bar3
CoL33+/2+
25
2.9·10–2 1.64·10–2
RDE CP
70Bar5 69Bar3
CoL33+/2+
25 25
1.64·10–2 0.46·10–2
RDE CP
70Bar5 69Bar3
CoL33+/2+
25 25
0.46·10–2 1.4·10–2
RDE CP
70Bar5 69Bar3
CoL33+/2+, 1 mM
25
1.35
RDE
70Bar4
CoL33+/2+
25
1.04·10–2
CP
69Bar3
CoL33+/2+, 1 mM
25
1.04·10–2
RDE
70Bar4
CoL33+/2+
25
0.65·10–2
CP
69Bar3;
25
7.5·10–4
RDE
70Bar3
CoL33+/2+
25
4.8·10–2
CP
71Bar2
CoL33+/2+
25
7.7·10–2
CP
71Bar3
2 + /3 + Craq
25
(1.0·10–3)
RDE
80Bar1
0.5 M NaClO4/H2O
2 + /3 + Craq
25
(6.0·10 )
RDE
80Bar1
0.2 M Bu4NClO2 /DMF 54) 0.2 M Bu4NClO2 /DMF 54) 1 N HCl/H2O
Cr(bipy)32 + / +
25
>0.5
GD
75Saj1
Cr(bipy)3+ / 0
25
0.88
GD
75Saj1
0.105
FR
74Aga
Fe(H 2 O) 62 + /3 +
T 4)
-
–3
Landolt-Börnstein New Series IV/9A
5 Exchange current densities Electrode 1)
Solution 2)
Educt, product, concentration 3)
j0 , j00 Method Ref. 174 ș 5 ) kapp or k c ) –2 –1 [°C] [A cm or cm s ]
0.1 N HCl/H2O
Fe(H 2 O) 62 + /3 +
25
4.4·10–3
RDE
72Stu
0.1 M HClO4/H2O
Fe(H 2 O) 62 + /3 +
25
0.011
CF
62Jor
0.1 M HClO4/H2O
Fe(H 2 O) 36+/2+
25
0.0076
CF
70Suz
0.1 M HClO4/H2O
Fe(H 2 O) 62 + /3 + , 0.01 M
-
0.001
CP,CH 70Bre
0.1 M HClO4+3 mM Th(ClO4)4/H2O
Fe(H 2 O) 62 + /3 + , 0.01 M
-
0.0005
CP,CH 70Bre
0.1 M HClO4/H2O
Fe(H 2 O) 62 + /3 +
25
7.6·10–3
CF
70Suz
0.1 M HClO4/H2O
Fe(H 2 O) 62 + /3 +
22
4.8·10–3
CV
89Chu
0.1 M HClO4/H2O
Fe(H 2 O) 62 + /3 +
25
34.3
RDE
74Mom129)
0.5 M HClO4/H2O
Fe(H 2 O) 62 + /3 +
20
(9·10–6)
RDE
78Web
1 M HClO4/H2O
Fe(H 2 O) 62 + /3 +
-
1·10
FR
74Aga
1 M HClO4/H2O
Fe(H 2 O) 62 + /3 +
25
0.22
RDE
62Jah
1 M HClO4/H2O
Fe(H 2 O) 62 + /3 +
25
0.005
IP
52Ran2
1 M HClO4/H2O
Fe(H 2 O) 62 + /3 +
20
9·10–3
RDE
72Ang
0.1 N HNO3/H2O
Fe(H 2 O) 62 + /3 +
25
2.9·10
RDE
72Stu
0.01 M H2SO4+0.5 M Fe(H 2 O) 62 + /3 + K2SO4/H2O 0.1 N H2SO4/H2O Fe(H 2 O) 62 + /3 +
20
5·10–3
RDE
72Ang
25
1.3·10–3
RDE
72Stu
0.1 M H2SO4/H2O
Fe(H 2 O) 62 + /3 +
25
4.3·10–3
RDE
63Gal
0.5 M H2SO4/H2O
Fe(H 2 O) 62 + /3 + , 2 mM
25
3.3·10
–2
FR
63Aga1, 63Aga2
0.5 M H2SO4/H2O
Fe(H 2 O) 62 + /3 + , 2 mM
30
3.8·10–2
FR
63Aga1, 63Aga2
0.5 M H2SO4/H2O
Fe(H 2 O) 62 + /3 + , 2 mM
35
4.4·10–2
FR
63Aga1, 63Aga2
0.5 M H2SO4/H2O
Fe(H 2 O) 62 + /3 + , 2 mM
40
5.0·10–2
FR
63Aga1, 63Aga2
0.5 M H2SO4/H2O
Fe(H 2 O) 62 + /3 +
35
4.8·10–2
FR
63Aga3
) Fe(H 2 O) 62 + /3 +
35
4.1·10
–2
FR
62Aga
0.5 M H2SO4/H2O 131) Fe(H 2 O) 62 + /3 +
35
4.1·10–2
FR
62Aga
35
–2
FR
63Aga3
0.5 M H2SO4/H2O
130
0.5 M H2SO4+0.4 M acetone/H2O
Landolt-Börnstein New Series IV/9A
349
Fe(H 2 O) 62 + /3 +
T 4)
–2
5.5·10
–3
350
5 Exchange current densities
Electrode 1)
Solution 2)
Educt, product, concentration 3)
j0 , j00 Method Ref. 174 ș 5 ) kapp or k c ) –2 –1 [°C] [A cm or cm s ]
Pt
0.5 M H2SO4 +0.002% cetylpyridinium bromide/H2O 1 N H2SO4/H2O
Fe(H 2 O) 62 + /3 +
35
1.2·10–2
FR
63Aga3
Fe(H 2 O) 62 + /3 +
20
7·10–3
RDE
72Ang
1 N H2SO4/H2O
Fe(H 2 O) 62 + /3 +
-
–2
FR
74Aga
Fe(H 2 O) 62 + /3 +
20
0.0053
GM
61Ans 133)
1 M H2SO4/H2O
Fe(H 2 O) 62 + /3 +
20
0.29
CF
50Ger
1 M H2SO4/H2O
Fe(H 2 O) 62 + /3 +
1 M H2SO4/H2O
Fe(H 2 O) 62 + /3 +
1 M H2SO4/H2O
Fe(H 2 O) 62 + /3 +
1 M H2SO4/H2O
Fe(H 2 O) 62 + /3 +
1 M H2SO4/H2O
1F
132
) H2SO4/H2O
T 4)
5·10
2
25
4.63·10
CPS
60Wij3
20
5.2·10
2
CCS
60Wij3
4.3·10
–3
CP
63Ada
25
4.3·10
–3
RDE
63Gal
Fe(H 2 O) 62 + /3 + , 0.1 M
25
0.0011
SS
68Boc2
1 M H2SO4/H2O
Fe(H 2 O) 62 + /3 + , 10 mM
25
0.0025
SS
68Boc2
1 M H2SO4/H2O
Fe(H 2 O) 62 + /3 + , 0.004 M
1.0·10–4
RDE
96Tor
2 M H2SO4/H2O
Fe(H 2 O) 62 + /3 +
0.3
CF
50Ger
4 M H2SO4/H2O
Fe(H 2 O) 62 + /3 +
25
3.1·10
RDE
63Gal
0.4 M K2SO4 +0.01 M H2SO4/H2O 0.4 M K2SO4 +0.01 M H2SO4/H2O 0.4 M K2SO4 +0.01 M H2SO4/H2O 2 M K2SO4 +1 M H2SO4/H2O 0.87 M NaHSO4/H2O
Fe(H 2 O) 62 + /3 +
20
1.0
TPF
88Boc
Fe(H 2 O) 62 + /3 +
20
1.0
CS
88Boc
Fe(H 2 O) 62 + /3 +
20
2.75
TPF
88Boc 134)
Fe(H 2 O) 62 + /3 +
25
1.5·10–3
MP
70Her
Fe(H 2 O) 36+/2+
25
0.38
PS
70Bar5
1 F 132) NaHSO4/H2O Fe(H 2 O) 62 + /3 +
20
0.0027
GM
61Ans 133)
Fe(H 2 O) 62 + /3 +
20
0.0014
GM
61Ans 133)
Fe(H 2 O) 62 + /3 +
25
1.4·10–3
RDE
63Gal
1 F 132) NaHSO4 +1 F 132) Na2SO4/H2O 2.8 M Na2SO4 +1 M H2SO4/H2O
25
20
–3
Landolt-Börnstein New Series IV/9A
5 Exchange current densities Electrode 1)
351
Solution 2)
Educt, product, concentration 3)
j0 , j00 Method Ref. 174 ș 5 ) kapp or k c ) –2 –1 [°C] [A cm or cm s ]
1 M KCl/H2O
Fe(H 2 O) 62 + /3 + , 0.01 M
25
5.0
25
2.0·10–3
0.1 N acetic acid/H2O Fe(H 2 O) 62 + /3 +
T 4)
–5
RDE
62Jah
RDE
72Stu
CP
70Kap
IP
52Ran2
CPS
60Wij3
0.1 M KCl/H2O
Fe(CN)36 – /4 –
-
1 M KCl/H2O
Fe(CN)36 – /4 –
25
1 M KCl/H2O
Fe(CN)36 – /4 –
25
9.2·10
1 M KCl/H2O
Fe(CN)36 – /4 –
25
12.5·103
CCS
60Wij3
1 M KCl/H2O
Fe(CN)36 – /4 –
25
7.7
CF
55Jor
1 M KCl/H2O
Fe(CN)36 – /4 –
25
0.08
CF
62Jor
1 M KCl/H2O
Fe(CN)36 – /4 –
25
0.24
GS
69Dau 135)
1 M KCl/H2O
Fe(CN)36 – /4 – , 2 mM
25
0.03
CP
70Sch
1 M KCl/H2O
Fe(CN)36 – /4 –
25
0.028
GS
69Dau 135)
1 M KF/H2O
Fe(CN)36 – /4 –
20
40.0
TPF
83Iwa
0.2 M KF/H2O
Fe(CN)36 – /4 –
,
25
0.18
GD
75Saj2
0.2 M KF/H2O
Fe(CN)36 – /4 – , 1 mM
25
0.15
GD
75Saj2
1 M KNO3/H2O
Fe(CN)36 – /4 –
35
6.6·10–2
FR
63Aga4
1 M LiCl/H2O
Fe(CN)36 – /4 –
25
6.4·10
–4
CP
70Sch
1.4910 0.09
3
2 mM
,
2 mM 0.5 M K2SO4/H2O
Fe(CN)36 – /4 –
20
34.0
TPF
83Iwa
0.5 M K2SO4/H2O
Fe(CN)36 – /4 –
25
0.13
IP
52Ran2
0.5 M K2SO4/H2O
Fe(CN)36 – /4 – , 0.01 M
25
7.0
RDE
62Jah
0.5 M K2SO4/H2O
Fe(CN)36 – /4 –
25
2·102
RDE
72Ang
0.5 M K2SO4/H2O
Fe(CN)36 – /4 –
20
0.12
TPF
78Ber
1 M NaCl/H2O
Fe(CN)36 – /4 –
CP
70Sch
2.66·10–4
RDE
96Tor
0.032
CP
70Sch
,
25
1 M NaNO3/H2O
Fe(CN)36 – /4 – , 4 mM
-
1 M NH4Cl/H2O
Fe(CN)36 – /4 – , 2 mM
25
2.0·10
–3
2 mM
Landolt-Börnstein New Series IV/9A
352
5 Exchange current densities
Electrode 1)
Solution 2)
Educt, product, concentration 3)
Pt
0.2 M phosphate buffer/H2O, pH=7.2 1 M KCl/H2O
Fe(CN)36 – /4 –
1 M KNO3/H2O 1 M LiCl/H2O 1 M NaCl/H2O 1 M NH4Cl/H2O 1 M KCl/H2O 1 M KCl/H2O 1 M KCl/H2O 1 M KCl/H2O 1 M KCl/H2O 1 M LiCl/H2O
[Fe(CN)5NH3]2–/3–, 2 mM [Fe(CN)5NH3]2–/3–, 2 mM [Fe(CN)5NH3]2–/3–, 2 mM [Fe(CN)5NH3]2–/3–, 2 mM [Fe(CN)5NH3]2–/3–, 2 mM [Fe(CN)5 MeNH2]2–/3–, 2 mM [Fe(CN)5 EtNH2]2–/3–, 2 mM [Fe(CN)5 PrNH2]2–/3–, 2 mM [Fe(CN)5 BuNH2]2–/3–, 2 mM [Fe(CN)5H2O]2–/3–, 2 mM [Fe(CN)5H2O]2–/3–, 2 mM
0.5 M K-oxalate/H2O Fe(ox)34 – /3 – 0.2 M KF/H2O
Fe(bipy)2 (CN) +2
T 4)
j0 , j00 Method Ref. 174 ș 5 ) kapp or k c ) –2 –1 [°C] [A cm or cm s ] 0.1
IP
85Dur
25
0.016
CP
70Sch
25
0.0088
CP
70Sch
25
0.0048
CP
70Sch
25
0.0064
CP
70Sch
25
0.030
CP
70Sch
25
0.0024
CP
70Sch
25
0.0008
CP
70Sch
25
0.0006
CP
70Sch 85)
25
0.0012
CP
70Sch 136)
25
0.0012
CP
70Sch
25
0.00032
CP
70Sch
25
0.009
IP
52Ran2
25
0.63
GD
75Saj2
-
/ Fe(bipy) 2 (CN) 2 0.2 M TBAP 52) /DMF 54)
Fe(bipy)2 (CN) +2 /Fe(bipy)2(CN)2
25
0.41
GD
75Saj2
0.2 M KF/H2O
Fe(bipy)(CN) 4–
25
0.43
GD
75Saj2
/ Fe(bipy)(CN) 24– 1 M LiF/H2O
Fe(bipy)32 + / 3 +
20
0.9
TPF
80Ber 137)
0.2 F KF/H2O
Fe(bipy)33+ / 2+
25
0.8
GD
75Saj2 133)
0.2 mF TBAP 52) /DMF 54) 0.2 M Bu4NClO2 /DMF 54) 0.2 M Bu4NClO2 /DMF 54) 0.6 M TEAP 74) /acetonitrile
Fe(bipy)33+ / 2+
25
1.1
GD
75Saj2 133)
Fe(bipy)33+ / 2+
25
0.8
GD
75Saj1
Fe(bipy)32 + / +
25
0.16
GD
75Saj1
[Fe(cp)2] (o)
-
0.95
CV
88Wip
Landolt-Börnstein New Series IV/9A
5 Exchange current densities Electrode 1)
Landolt-Börnstein New Series IV/9A
353
Solution 2)
Educt, product, concentration 3)
T 4)
j0 , j00 Method Ref. 174 ș 5 ) kapp or k c ) –2 –1 [°C] [A cm or cm s ]
0.1 M TBAP 52) /acetonitrile 0.1 M TBAP 52) /acetone 0.1 M TBAP 52) /butyronitrile 0.1 M TBAP 52) /dichloromethane 0.1 M TBAP 52) /1,2-dichloroethane 0.025 M TBAP 52) /DMF 54) 0.05 M TBAP 52) /DMF 54) 0.1 M TBAP 52) /DMF 54) 0.1 M TBAP 52) /DMF 54) 0.25 M TBAP 52) /DMF 54) 0.1 M TBAP 52) /dimethylsulphoxide 0.1 M TBAP 52) /propylene carbonate 0.025 M TBAP 52) /PC 113) 0.05 M TBAP 52) /PC 113) 0.1 M TBAP 52) /PC 113) 0.25 M TBAP 52) /PC113) 0.1 M TBAP 52) /tetrahydrofurane 0.1 M LiClO4 /methanol 0.1 M LiClO4/ethanol 0.1 M LiClO4 /1-propanol 0.1 M HCl/H2O 0.2 M HCl/H2O 1 M HCl/H2O 1 M HCl/H2O 1 M HCl/H2O 1.5 M HCl/H2O
[Fe(cp)2] (o)
12
2.6
CV/IP
91Bar2
[Fe(cp)2] (o)
12
2.0
CV/IP
91Bar2
[Fe(cp)2] (o)
12
0.51
CV/IP
91Bar2
[Fe(cp)2] (o)
12
0.62
CV/IP
91Bar2
[Fe(cp)2] (o)
12
0.34
CV/IP
91Bar2
[Fe(cp)2] (o)
-
0.47
ACP
93Win
[Fe(cp)2] (o)
-
0.45
ACP
93Win
[Fe(cp)2] (o)
12
0.4
CV/IP
91Bar2
[Fe(cp)2] (o)
-
0.47
ACP
93Win
[Fe(cp)2] (o)
-
0.43
ACP
93Win
[Fe(cp)2] (o)
12
0.2
CV/IP
91Bar2
[Fe(cp)2] (o)
12
0.15
CV/IP
91Bar2
[Fe(cp)2] (o)
-
0.2
ACP
93Win
[Fe(cp)2] (o)
-
0.21
ACP
93Win
[Fe(cp)2] (o)
-
0.19
ACP
93Win
[Fe(cp)2] (o)
-
0.21
ACP
93Win
[Fe(cp)2] (o)
12
0.14
CV/IP
91Bar2
[Fe(cp)2] (o)
12
1.55
CV/IP
91Bar2
[Fe(cp)2] (o) [Fe(cp)2] (o)
12 12
0.55 0.28
CV/IP CV/IP
91Bar2 91Bar2
H+/H2 H+/H2 H+/H2 H+/H2 H+/H2 H+/H2
23 23 23 23 23 23
2.0·10–4 1.0·10–3 1.8·10–4 3.0·10–5 1.0·10–3 0.9·10–3
CP CP CP CP CP CP
64Boc3 138) 64Boc3 139) 64Boc3 138) 64Boc3 140) 64Boc3 139) 64Boc3 139)
354
5 Exchange current densities
Electrode 1)
Solution 2)
Educt, product, concentration 3)
T 4)
j0 , j00 Method Ref. 174 ș 5 ) kapp or k c ) –2 –1 [°C] [A cm or cm s ]
Pt
1.5 M HCl/H2O 1.5 M HCl/H2O 2.5 M HCl/H2O 0.1 M H2SO4/H2O 0.1 M H2SO4+0.05 M K2SO4/H2O 0.5 N H2SO4/H2O 0.5 M H2SO4/H2O 0.5 M H2SO4/H2O 1 M H2SO4/H2O, pH 2 = 1 bar
H+/H2 H+/H2 H+/H2 H+/H2 H+/H2
23 23 23 23 23
4.5·10–4 2.0·10–5 0.8·10–3 1.0·10–3 0.7·10–3
CP CP CP CP CP
64Boc3 138) 64Boc3 140) 64Boc3 139) 64Boc3 139) 64Boc3 139)
H+/H2 H+/H2 H+/H2 H+/H2
25
10–3.53 10–3 10–2.9 1.52·10–3
CP CP CP CP
64Boc3 67Man 69Gal 59Sch1
1 M H2SO4/H2O, pH 2 = 0.46 bar
H+/H2
25
0.7·10–3
CP
59Sch1
1 M H2SO4/H2O, pH 2 = 0.31 bar
H+/H2
25
0.4·10–3
CP
59Sch1
1 M H2SO4/H2O, pH 2 = 0.24 bar
H+/H2
25
0.273·10–3
CP
59Sch1
1 M H2SO4/H2O, pH 2 = 0.14 bar
H+/H2
25
0.112·10–3
CP
59Sch1
1 M H2SO4/H2O, pH 2 = 0.05 bar
H+/H2
25
59.4·10–6
CP
59Sch1
0.5 N NaOH/H2O 1 M KCl/H2O 9.3 M KOH/H2O
H+/H2 I0/–1 MnO 24 – /3 –
25 10
10–4.06 0.015 141) 0.6
CP 64Boc3 CF 62Jor CP,GS 67Thi2
10.0 M KOH/H2O
MnO 24 – /3 –
10
0.7
CP,GS 67Thi2
10.8 M KOH/H2O
MnO 24 – /3 –
10
0.6
CP,GS 67Thi2
11.8 M KOH/H2O
MnO 24 – /3 –
10
0.5
CP,GS 67Thi2 –2
1 M KOH/H2O
MnO 4–/2 –
20
1.2·10
1 M KOD/D2O (96 %) 1 M KOH/H2O
MnO 4–/2 – , 6 mM
20
0.0072
CP,GS 67Thi1
MnO 4–/2 – , 6 mM
20
0.0069
CP,GS 67Thi1
1 M KOH +0.5 M K2CO3/H2O 1 M KOH +0.3 M K2C2O4/H2O 1 M KOH +0.5 M KCl/H2O 1 M KOH +0.3 M KNO3/H2O
MnO 4–/2 – , 6 mM
20
0.0032
CP,GS 67Thi1
MnO 4–/2 – , 6 mM
20
0.0043
CP,GS 67Thi1
MnO 4–/2 – , 6 mM
20
0.0078
CP,GS 67Thi1
MnO 4–/2 – , 6 mM
20
0.0050
CP,GS 67Thi1
CP,GS 67Thi1
Landolt-Börnstein New Series IV/9A
5 Exchange current densities Electrode 1)
Landolt-Börnstein New Series IV/9A
355
Solution 2)
Educt, product, concentration 3)
T 4)
j0 , j00 Method Ref. 174 ș 5 ) kapp or k c ) –2 –1 [°C] [A cm or cm s ]
1 M KOH +0.2 M NaF/H2O 1 M KOH +1 mM H6TeO6/H2O 1 M KOH+1 mM Zn(OH) 24 – /H 2 O
MnO 4–/2 – , 6 mM
20
0.0056
CP,GS 67Thi1
MnO 4–/2 – , 6 mM
20
0.0027
CP,GS 67Thi1
MnO 4–/2 – , 6 mM
20
0.0019
CP,GS 67Thi1
1 M LiOH/H2O
MnO 4–/2 – , 6 mM
20
5.5·10–3
CP,GS 67Thi1
–3
CP,GS 67Thi1
1 M NaOH/H2O
MnO 4–/2 – , 6 mM
20
6.2·10
0.1 M TBAP /acetonitrile 0.1 M TBAP /butyronitrile 0.1 M TBAP 52) /acetone 0.1 M TBAP 52) /dichloromethane 0.1 M TBAP 52) /dichloroethane 0.1 M TBAP 52) /DMF 54) 0.1 M TBAP 54) /dimethyl sulfoxide 0.1 M TBAP 52) /PC 113) 0.2 M Bu4NClO2 /DMF 54) 0.2 M Bu4NClO2 /DMF 54) 1 M HBr/H2O
[Ni(cp)2] (o)
22
2.0
ACP
96Win
[Ni(cp)2] (o)
22
0.52
ACP
96Win
[Ni(cp)2] (o)
22
1.8
ACP
96Win
[Ni(cp)2] (o)
22
1.4
ACP
96Win
[Ni(cp)2] (o)
22
0.8
ACP
96Win
[Ni(cp)2] (o)
22
0.54
ACP
96Win
[Ni(cp)2] (o)
22
0.2
ACP
96Win
[Ni(cp)2] (o)
22
0.12
ACP
96Win
Os(bipy)33 + /2 +
25
0.83
GD
75Saj1
Os(bipy)32 + / +
25
0.26
GD
75Saj1
PtBr62 – /PtBr42 – , 1 mM
-
6.3·10–6
TLV
70Hub
1 M NaBr +3 M H2SO4/H2O
PtBr62 – /PtBr42 – , 5 mM
-
1.9·10–6
TLV
70Hub
1 M HCl/H2O
PtCl 62 – /PtCl 24 – , 1 mM
-
2.3·10–7
TLV
70Hub
1 M NaCl +3 M H2SO4/H2O
PtCl 62 – /PtCl 24 – , 5 mM
-
2.1·10–7
TLV
70Hub
10 mF 132)HClO4 +x NaClO4/H2O 10 mF 132)HClO4 +x NaClO4 +10 mF 132) NaCl/H2O
PtCl 62 – /PtCl 24 –
24
6.1·10–6
TLV
70Lau 133)
PtCl 62 – /PtCl 24 –
24
3.5·10–6
TLV
70Lau 133)
356
5 Exchange current densities
Electrode 1)
Solution 2)
Educt, product, concentration 3)
j0 , j00 Method Ref. 174 ș 5 ) kapp or k c ) –2 –1 [°C] [A cm or cm s ]
Pt
10 mF 132)HClO4 +x NaClO4+ 100 mF 132) NaCl/H2O 10 mF 132)HClO4 +x NaClO4 +300 mF 132) NaCl/H2O 10 mF 132)HClO4 +x NaClO4 +1 mF 132) NaCl/H2O 10 mF 132)HClO4 +x NaClO4/H2O 10 mF 132)HClO4 +x NaClO4 +10 mF 132) NaCl/H2O 10 mF 132)HClO4 +x NaClO4 +100 mF 132) NaCl/H2O 10 mF 132)HClO4 +x NaClO4 +300 mF 132) NaCl/H2O 10 mF 132)HClO4 +x NaClO4 +1000 mF 132) NaCl/H2O 1 F 132)NaCl+10 mM HClO4/H2O 1 F 132)NaCl+10 mM HClO4/H2O 1 F 132)NaCl+10 mM HClO4/H2O 1 F 132)NaCl+10 mM HClO4/H2O 1 F 132)NaCl+10 mM HClO4/H2O 1 M HI/H2O
PtCl 62 – /PtCl 24 –
24
1.5·10–6
TLV
70Lau 133)
PtCl 62 – /PtCl 24 –
24
5.9·10–7
TLV
70Lau 133)
PtCl 62 – /PtCl 24 –
24
5.7·10–7
TLV
70Lau 133)
PtCl 24 – /PtCl 62 –
24
8.1·10–6
TLV
70Lau 133)
PtCl 24 – /PtCl 62 –
24
3.4·10–6
TLV
70Lau 133)
PtCl 24 – /PtCl 62 –
24
1.6·10–6
TLV
70Lau 133)
PtCl 24 – /PtCl 62 –
24
≤10–9
TLV
70Lau 133)
PtCl 24 – /PtCl 62 –
24
≤10–9
TLV
70Lau 133)
PtCl 62 – /PtCl 24 –
23
(1.66) 143)
TLV
71Lau
PtCl 62 – /PtCl 24 –
23
(21.11) 143)
TLV
71Lau
PtCl 62 – /PtCl 24 –
23
(21.25) 143)
TLV
71Lau
PtCl 62 – /PtCl 24 –
23
(20.86) 143)
TLV
71Lau
PtCl 62 – /PtCl 24 –
23
(4.59) 143)
TLV
71Lau
-
7.2·10–5
TLV
70Hub
-
4.5·10–4
TLV
70Hub
Ptmod 142) Ptmod 144) Ptmod 145) Ptmod 146) Ptmod 147)
PtI 62– /PtI 24– ,
T 4)
1 mM 1 M NaI +3 M H2SO4/H2O
PtI 62– /PtI 24– ,
5 mM
Landolt-Börnstein New Series IV/9A
5 Exchange current densities Electrode 1)
357
Solution 2)
Educt, product, concentration 3)
j0 , j00 Method Ref. 174 ș 5 ) kapp or k c ) –2 –1 [°C] [A cm or cm s ]
1 F HClO4 +10 mF 132) NaCl/H2O 1 F 132) NaCl+10 mM HClO4/H2O
Pt(CN) 24 – /Pt(CN)4(H2O)Cl
24
1.05·10–7
TLV
72Lai 133)
Pt(NH3)5Cl3+ / Pt(NH 3 ) 24 +
23
(1.21) 143)
TLV
71Lau
Ptmod 144)
1 F 132) NaCl+10 mM Pt(NH3)5Cl3+ HClO4/H2O / Pt(NH 3 ) 24 +
23
(1.02) 143)
TLV
71Lau
Ptmod 145)
1 F 132) NaCl+10 mM Pt(NH3)5Cl3+ HClO4/H2O / Pt(NH 3 ) 24 +
23
(0.98) 143)
TLV
71Lau
Ptmod 146)
1 F 132) NaCl+10 mM Pt(NH3)5Cl3+ HClO4/H2O / Pt(NH 3 ) 24 +
23
(1.06) 143)
TLV
71Lau
Ptmod 147)
1 F 132) NaCl+10 mM Pt(NH3)5Cl3+ HClO4/H2O / Pt(NH 3 ) 24 +
23
(1.11) 143)
TLV
71Lau
24
1.93·10–6
TLV
72Lai 133)
24
7.6·10–9
TLV
72Lai 133)
23
(1.03) 143)
TLV
71Lau
23
(1.13) 143)
TLV
71Lau
23
(1.54) 143)
TLV
71Lau
23
(1.34) 143)
TLV
71Lau
23
(1.01) 143)
TLV
71Lau
24
2.04·10–7
TLV
72Lai 149)
24
3.58·10–11
TLV
72Lai 133)
24
3.01·10–7
TLV
72Lai 133)
24
4.87·10–7
TLV
72Lai 133)
23
2.0·10–6
TLV
69Cus 133)
24
3.17·10–7
TLV
72Lai 133)
Ptmod 148)
1 F HClO4 +10 mF 132) NaCl/H2O 1 F 132) NaCl/H2O Ptmod 148) Ptmod 144) Ptmod 145) Ptmod 146) Ptmod 147)
1 F 132) NaCl+10 mM HClO4/H2O 1 F 132) NaCl+10 mM HClO4/H2O 1 F 132) NaCl+10 mM HClO4/H2O 1 F 132) NaCl+10 mM HClO4/H2O 1 F 132) NaCl+10 mM HClO4/H2O 1 F 132) HClO4 +10 mF NaCl/H2O 1 F 132) NaCl/H2O 1 F 132) HClO4 +10 mF NaCl/H2O
trans-Pt(NH3)2(CN)2 /trans-Pt(NH3)2 (CN)2(H2O)Cl+ trans-Pt(NH3)2(CN)2 /transPt(NH3)2(CN)2Cl2 Pt(NH3)2(NO2)2Cl2 /Pt(NH3)2(NO2)2 Pt(NH3)2(NO2)2Cl2 /Pt(NH3)2(NO2)2 Pt(NH3)2(NO2)2Cl2 /Pt(NH3)2(NO2)2 Pt(NH3)2(NO2)2Cl2 /Pt(NH3)2(NO2)2 Pt(NH3)2(NO2)2Cl2/ Pt(NH3)2(NO2)2 Pt(en)(CN)2 /Pt(en)(CN)2(H2O)Cl+ Pt(en)(CN)2 /Pt(en)(CN)2Cl2 transPt(NH3)2(SCN)2 /transPt(NH3)2(SCN)2Cl2
1 F 132) HClO4 Pt(NO 2 ) 24 – +10 mF NaCl/H2O /Pt(NO ) (H O)Cl– 2 4 2 1 F 132) HClO4 cis-Pt(NH3)2(NO2)2 +1 F NaCl/H2O /Pt(NH3)2 (NO2)2 cis-Pt(NH3)2(NO2)2 1 F 132) HClO4 +10 mF NaCl/H2O /trans-Pt(NH3)2 (NO2)2(H2O)Cl+
Landolt-Börnstein New Series IV/9A
T 4)
358
5 Exchange current densities
Electrode 1)
Solution 2)
Ptmod 147)
1 F 132) HClO4 cis-Pt(NH3)2(NO2)2 +10 mF NaCl/H2O /transPt(NH3)2(NO2)2Cl2 1 F 132) HClO4 Pt(C2H4)Cl2(H2O) +10 mF NaCl/H2O /Pt(C2H4)Cl4(H2O) 1 F 132) H2SO4 Pt(py) 24 + +10 mF NaCl/H2O / Pt(py)4 Cl 22 +
Educt, product, concentration 3)
T 4)
j0 , j00 Method Ref. 174 ș 5 ) kapp or k c ) –2 –1 [°C] [A cm or cm s ] 24
3.17·10–7
TLV
72Lai 133)
24
8.59·10–8
TLV
72Lai 133)
24
5.4·10–6
TLV
72Lai 133)
1 F 132) HClO4 Pt(CN) 4 Cl 22 – +10 mF NaCl/H2O / Pt(CN) 24 –
24
8.16·10–7
TLV
72Lai 133)
1 F 132) HClO4
24
6.6·10–5
TLV
72Lai 133)
Pt(SCN) 62 –
/ Pt(SCN) 24 – 1 F 132) HClO4 +10 mF NaCl/H2O 1 F 132) HClO4 +10 mF NaCl/H2O
Pt(dien)(NO2)+ /Pt(dien)(NO2)Cl22+ Pt(en)(SCN)Cl2+ / Pt(en) 22 +
24
2.0·10–5
TLV
69Cus 150)
24
4.64·10–5
TLV
72Lai 133)
1 F 132) HClO4 +2 mF NaCl/H2O
Pt(NO 2 ) 4 Cl 22 –
24
9.26·10–6
TLV
72Lai 133)
24
4.9·10–5
TLV
72Lai 133)
25
(>5.0·10–2)
RDE
80Bar1
20 25
116 0.24
TPF GD
85Iwa 75Saj1
25
0.24
GD
75Saj1
25
0.26
GD
75Saj1
RT
5.0·10–4
CV
02Ste
25
(>0.1)
RDE
80Bar1
/ Pt(NO 2 ) 24 –
Pt(NH3)5Cl3+ 1 F 132) HClO4 +10 mF NaCl/H2O / Pt(NH ) 2 + 3 4 0.2 M KPF6/H2O
2 + /3 + Ru aq 3+/2+
1 M KF/H2O [Ru(NH3)6] 0.2 M Bu4NClO2 Ru(bipy)32 + / + 54 /DMF ) 0.2 M Bu4NClO2 Ru(bipy)3+ / 0 /DMF 54) 0.2 M Bu4NClO2 Ru(bipy)30 / – 54 /DMF ) 1 mM TBAP/CH2Cl2 bis(alkynyl) titanocene 151) 2 + /3 + 0.2 M NaClO4/H2O Vaq 0.2 M NaClO4 +1 mM Cr2+/H2O 0.1 M TEAP 74) /DMF 54) HCl-buffer/H2O, pH=1.1 HCl-buffer/H2O, pH=1.1 acetate buffer/H2O, pH=3.0
2 + /3 + Vaq
25
(1.5·10 )
RDE
80Bar1
benzoquinone (r)
25
0.0052
CV
73Cap
hydroquinone /quinone, 5.5 mM hydroquinone /quinone, 5.5 mM hydroquinone /quinone, 5.5 mM
25
7.8·10–5
CF
62Tom 77)
25
1.0·10–4
CF
62Tom
25
7.8·10–6
CF
62Tom
–5
Landolt-Börnstein New Series IV/9A
5 Exchange current densities Electrode 1)
Solution 2)
Educt, product, concentration 3)
j0 , j00 Method Ref. 174 ș 5 ) kapp or k c ) –2 –1 [°C] [A cm or cm s ]
acetate buffer/H2O, pH=5.0 0.1 M HCl/H2O
hydroquinone /quinone, 5.5 mM hydroquinone /quinone, 10 mM hydroquinone /quinone, 10 mM hydroquinone /quinone, 10 mM hydroquinone /quinone, 5 mM hydroquinone /quinone, 7.6 mM hydroquinone /quinone, 15.3 mM hydroquinone /quinone, 10 mM hydroquinone /quinone, 10 mM hydroquinone /quinone, 10 mM hydroquinone /quinone, 5.5 mM hydroquinone /quinone, 5.5 mM hydroquinone /quinone, 5.5 mM hydroquinone /quinone, 5.5 mM hydroquinone /quinone, 5.5 mM hydroquinone /quinone, 5.5 mM hydroquinone /quinone, 5.5 mM hydroquinone /quinone, 5.5 mM hydroquinone /quinone, 5.5 mM
25
2.0·10–5
CF
62Tom
5
3.7·10–7
CF
60Los1
15
9.1·10–7
CF
60Los1
25
1.9·10–6
CF
60Los1
25
1.12·10–6
CF
60Los1
25
1.3810–6
CF
60Los1
25
1.03·10–6
CF
60Los1
35
4.4·10–6
CF
60Los1
45
8.7·10–6
CF
60Los1
60
1.6·10–6
CF
60Los1
25
8.5·10–5
CF
62Los1
25
4.9·10–5
CF
62Los1
25
2.57·10–5
CF
62Los1
25
1.1·10–5
CF
62Los1
25
1.0·10–5
CF
62Los1
25
4.67·10–6
CF
62Los1
25
5.58·10–6
CF
62Los1
25
1.26·10–5
CF
62Los1
25
3.55·10–5
CF
62Los1
hydroquinone /quinone, 5.5 mM hydroquinone /quinone, 5.5 mM
25
1.29·10–4
CF
62Los1
25
4.26·10–4
CF
62Los1
hydroquinone /quinone, 5.5 mM
25
3.1·10–3
CF
62Los1
0.1 M HCl/H2O 0.1 M HCl/H2O 0.1 M HCl/H2O 0.1 M HCl/H2O 0.1 M HCl/H2O 0.1 M HCl/H2O 0.1 M HCl/H2O 0.1 M HCl/H2O HCl/H2O; pH=0.48 HCl/H2O; pH=1.07 HCl/H2O; pH=1.52 HCl/H2O; pH=2.01 acetate buffer/H2O, pH=2.03 acetate buffer/H2O, pH=3.01 acetate buffer/H2O, pH=3.92 acetate buffer/H2O, pH=5.06 phosphate buffer/H2O, pH=6.02 phosphate buffer /H2O, pH=7.06 phosphate+borate buffer/H2O, pH=7.92 borate buffer /H2O, pH=8.6
Landolt-Börnstein New Series IV/9A
359
T 4)
360
5 Exchange current densities
Electrode 1)
Solution 2)
Ptmod 147)
0.1 M HCl/H2O
Educt, product, concentration 3)
quinhydrone, 10 mM HCl/H2O, pH=0.44 Na-β-hydroanthraquinonesulfonate /β-anthraquinonesulfonate, 1.8 mM H2SO4/H2O, pH=2.05 Na-β-hydroanthraquinonesulfonate /β-anthraquinonesulfonate, 1.8 mM acetate buffer/H2O, Na-β-hydroanthrapH=3.06 quinonesulfonate /β-anthraquinonesulfonate, 3.6 mM acetate buffer/H2O, Na-β-hydroanthrapH=4.1 quinonesulfonate /β-anthraquinonesulfonate, 1.8 mM phosphate buffer Na-β-hydroanthra/H2O, pH=6.18 quinonesulfonate /β-anthraquinonesulfonate, 1.8 mM phosphate buffer Na-β-hydroanthra/H2O, pH=8.12 quinonesulfonate /β-anthraquinonesulfonate, 1.8 mM 0.05...0.5 M NaClO4 1,4-phenylene/acetonitrile diamine (o) 0.05...0.3 M NaClO4 1,4-phenylene/DMF 54) diamine (o) 0.05...0.3 M NaClO4 1,4-phenylene/DMSO 51) diamine (o) 0.05...0.5 M NaClO4 1,4-phenylene/PC 113) diamine (o) 1,4-phenylene0.1...0.3 M NaClO4 /THF 152) diamine (o) 1,4-phenylene0.1 M NaClO4 /nitrobenzene diamine (o) 1,4-phenylene0.1...0.3 M NaClO4 /sulfolane diamine (o) 1,4-phenylene0.1...0.3 M NaClO4 /HMPA 124) diamine (o) 0.05...0.3 M NaClO4 1,4-phenylene/NMF 88) diamine (o) 0.05...0.3 M NaClO4 1,4-phenylene/methanol diamine (o)
T 4)
j0 , j00 Method Ref. 174 ș 5 ) kapp or k c ) –2 –1 [°C] [A cm or cm s ] 25
2.34·10–6
CF
60Los1
25
1.51·10–4
CF
62Los1
25
5.5·10–5
CF
62Los1
25
2.81·10–5
CF
62Los1
25
5.5·10–5
CF
62Los1
25
1.21·10–4
CF
62Los1
25
2.24·10–4
CF
62Los1
25
0.22
CV
86Opa
25
0.082
CV
86Opa
25
0.074
CV
86Opa
25
0.055
CV
86Opa
25
0.074
CV
86Opa
25
0.035
CV
86Opa
25
0.022
CV
86Opa
25
0.017
CV
86Opa
25
0.1
CV
86Opa
25
0.18
CV
86Opa
Landolt-Börnstein New Series IV/9A
5 Exchange current densities Electrode 1)
Landolt-Börnstein New Series IV/9A
361
Solution 2)
Educt, product, concentration 3)
T 4)
j0 , j00 Method Ref. 174 ș 5 ) kapp or k c ) –2 –1 [°C] [A cm or cm s ]
0.05...0.1 M NaClO4 /2-propanol 0.1 M NaClO4 /1-butanol 0.05...0.5 M KPF6 /acetonitrile 0.05...0.3 M KPF6 /acetone 0.1...0.5 M TBAP /CH2Cl2 0.1...0.3 M KPF6 /nitroethane 0.05...0.5 M KPF6 /DMF 54) 0.05...0.3 M KPF6 /DMSO 51) 0.05...0.5 M KPF6 /PC 113) 0.1...0.5 M NaClO4 /THF 152) 0.1...0.5 M KPF6 /sulfolane 0.1...0.5 M KPF6 /HMPT 124) 0.05...0.3 M NaClO4 /NMF 88) 0.05...0.3 M NaClO4 /methanol 0.05...0.2 M NaClO4 /ethanol 0.05...0.3 M NaClO4 /2-propanol 0.1 M NaClO4 /1-butanol 0.1 M NaClO4/acetone 0.1 M NaClO4/acetonitrile 0.1 M NaClO4/benzonitrile 0.1 M NaClO4 /propionitrile 0.1 M NaClO4/DMF 54) 0.1 M NaClO4 /HMPA 124) 0.1 M NaClO4/ NMP 153)
1,4-phenylenediamine (o) 1,4-phenylenediamine (o) phenothiazine (o)
25
0.017
CV
86Opa
25
0.027
CV
86Opa
25
0.44
CV
85Opa
phenothiazine (o)
25
0.22
CV
85Opa
phenothiazine (o)
25
0.19
CV
85Opa
phenothiazine (o)
25
0.19
CV
85Opa
phenothiazine (o)
25
0.1
CV
85Opa
phenothiazine (o)
25
0.077
CV
85Opa
phenothiazine (o)
25
0.44
CV
85Opa
phenothiazine (o)
25
0.046
CV
85Opa
phenothiazine (o)
25
0.2
CV
85Opa
phenothiazine (o)
25
0.014
CV
85Opa
phenothiazine (o)
25
0.2
CV
85Opa
phenothiazine (o)
25
0.4
CV
85Opa
phenothiazine (o)
25
0.22
CV
85Opa
phenothiazine (o)
25
0.045
CV
85Opa
phenothiazine (o)
25
0.062
CV
85Opa
tetrathiafulvalene0/+
25
1.6
CV
90Gra
tetrathiafulvalene0/+
25
2.2
CV
90Gra
tetrathiafulvalene0/+
25
0.03
CV
90Gra
tetrathiafulvalene0/+
25
0.26
CV
90Gra
tetrathiafulvalene0/+ tetrathiafulvalene0/+
25 25
0.31 0.031
CV CV
90Gra 90Gra
tetrathiafulvalene0/+
25
0.18
CV
90Gra
362
5 Exchange current densities
Electrode 1)
Solution 2)
Ptmod 147) Pt(100)
0.1 M NaClO4/PC 113) tetrathiafulvalene0/+ 0.1 M KClO4/H2O Fe(CN)36 – /4 – , 0.2 mM 0.1 M KClO4/H2O Fe(CN)36 – /4 – , 0.5 mM 0.1 M KClO4/H2O Fe(CN)36 – /4 – , 1 mM H+/H2 0.05 M H2SO4/H2O H+/H2 0.05 M H2SO4/H2O H+/H2 0.05 M H2SO4/H2O O2/H2O 0.1 M HClO4/H2O O2/H2O 0.05 M H2SO4/H2O 0.1 M KClO4/H2O Fe(CN)3 – /4 – ,
Pt(110)
Educt, product, concentration 3)
6
T 4)
j0 , j00 Method Ref. 174 ș 5 ) kapp or k c ) –2 –1 [°C] [A cm or cm s ] 25 25
0.087 0.17
CV IP
90Gra 98Kit
25
0.04
IP
98Kit
25
0.034
IP
98Kit
1 30 60 25
0.36·10–3 0.6·10–3 0.76·10–3 2.0...4.9·10–2 1.4...3.3·10–2 0.14
CP CP CP RDE RDE IP
97Mar 97Mar 97Mar 97Per 97Per 98Kit
25
0.032
IP
98Kit
25
0.036
IP
98Kit
1 30 60 23 1 30 60 23 23
0.36·10–3 0.98·10–3 1.35·10–3 6.6...19·10–2 3.2...8.7·10–2 (1·10–2) 0.21·10–3 0.45·10–3 0.83·10–3 (3·10–2) (2·10–4)
CP CP CP RDE RDE CV CP CP CP CV CV
97Mar 97Mar 97Mar 97Per 97Per 91Cha 97Mar 97Mar 97Mar 91Cha 91Cha
23 23
(8·10–4) (1·10–4)
CV CV
91Cha 91Cha
23 23 23
(4·10–2) (7·10–4) (7·10–4)
CV CV CV
91Cha 91Cha 91Cha
23 23
(2·10–4) (2·10–4)
CV CV
91Cha 91Cha
23 23
(1.8·10–2) (3.5·10–2)
CV CV
91Cha 91Cha
0.2 mM 0.1 M KClO4/H2O
Fe(CN)36 – /4 – , 1 mM H+/H2 0.05 M H2SO4/H2O H+/H2 0.05 M H2SO4/H2O H+/H2 0.05 M H2SO4/H2O O2/H2O 0.1 M HClO4/H2O O2/H2O 0.05 M H2SO4/H2O 0.1 M NaClO4/H2O [Co(NH3)6]3+/2+ H+/H2 0.05 M H2SO4/H2O H+/H2 0.05 M H2SO4/H2O H+/H2 0.05 M H2SO4/H2O 0.1 M NaClO4/H2O [Co(NH3)6]3+/2+ 0.1 M NaClO4+50 mM [Co(NH3)6]3+/2+ La(ClO4)3/H2O 0.1 M NaClO4/H2O [Co(NH3)6]3+/2+ 0.1 M NaClO4+50 mM [Co(NH3)6]3+/2+ La(ClO4)3/H2O [Co(NH3)5F]3+/2+ 0.1 M NaClO4/H2O 0.1 M NaClO4/H2O [Co(NH3) 5F]3+/2+ 0.1 M NaClO4+50 mM [Co(NH3) 5F]3+/2+ La(ClO4)3/H2O 0.1 M NaClO4/H2O [Co(NH3) 5F]3+/2+ 0.1 M NaClO4+50 mM [Co(NH3) 5F]3+/2+ La(ClO4)3/H2O [Co(NH3)5SO4]1+/0 0.1 M NaClO4/H2O 0.1 M NaClO4/H2O [Co(NH3)5SO4]1+/0
0.1 M KClO4/H2O
Pt(111)
Pt(111)/(I√7) 154) Pt(111)/(I√7) Pt(111)/(I√3x3) Pt(111)/(I√3x3) Pt(111)/(I√7) Pt(111)/(I√7) Pt(111)/(I√3x3) Pt(111)/(I√3x3) Pt(111)/(I√7)
Fe(CN)36 – /4 – , 0.5 mM
Landolt-Börnstein New Series IV/9A
5 Exchange current densities
363
Electrode 1)
Solution 2)
Educt, product, concentration 3)
j0 , j00 Method Ref. 174 ș 5 ) kapp or k c ) –2 –1 [°C] [A cm or cm s ]
Pt(111)/(I√7)
0.1 M NaClO4+50 mM La(ClO4)3/H2O 0.1 M NaClO4/H2O 0.1 M NaClO4+50 mM La(ClO4)3/H2O 0.1 M NaClO4/H2O 0.1 M NaClO4+50 mM La(ClO4)3/H2O 0.1 M NaClO4/H2O 0.1 M NaClO4+50 mM La(ClO4)3/H2O 0.1 M NaClO4/H2O 0.1 M NaClO4/H2O 0.1 M NaClO4+50 mM La(ClO4)3/H2O 0.1 M NaClO4/H2O 0.1 M NaClO4+50 mM La(ClO4)3/H2O 0.1 M NaClO4/H2O 0.1 M NaClO4/H2O 0.1 M NaClO4+50 mM La(ClO4)3/H2O 0.1 M NaClO4/H2O 0.1 M NaClO4+50 mM La(ClO4)3/H2O 0.1 M NaClO4/H2O 0.1 M NaClO4+50 mM La(ClO4)3/H2O 0.1 M NaClO4/H2O 0.1 M NaClO4+50 mM La(ClO4)3/H2O 0.1 M NaClO4/H2O 0.1 M NaClO4+50 mM La(ClO4)3/H2O 0.1 M NaClO4/H2O 0.1 M NaClO4+50 mM La(ClO4)3/H2O 0.1 M KClO4/H2O
[Co(NH3)5SO4]1+/0
23
(9·10–3)
CV
91Cha
[Co(NH3)5SO4]1+/0 [Co(NH3)5SO4]1+/0
23 23
(8·10–3) (2·10–3)
CV CV
91Cha 91Cha
[Co(NH3)5H2O]3+/2+ [Co(NH3)5H2O]3+/2+
23 23
(0.15) (2·10–2)
CV CV
91Cha 91Cha
[Co(NH3)5H2O]3+/2+ [Co(NH3)5H2O]3+/2+
23 23
(3·10–2) (8·10–3)
CV CV
91Cha 91Cha
[Co(NH3)5Ac]2+/1+ [Co(NH3)5Ac]2+/1+ [Co(NH3)5Ac]2+/1+
23 23 23
(1.8·10–2) (3.5·10–2) (9·10–3)
CV CV CV
91Cha 155) 91Cha 91Cha
[Co(NH3)5Ac]2+/1+ [Co(NH3)5Ac]2+/1
23 23
(8·10–3) (2·10–3)
CV CV
91Cha 91Cha
[Co(NH3)5PAc]2+/1+ [Co(NH3)5PAc]2+/1+ [Co(NH3)5PAc]2+/1+
23 23 23
(5.5·10–2) (4·10–3) (4·10–3)
CV CV CV
91Cha 156) 91Cha 91Cha
[Co(NH3)5PAc]2+/1+ [Co(NH3)5PAc]2+/1+
23 23
(4·10–3) (3.5·10–3)
CV CV
91Cha 91Cha
[Co(NH3)5Pyc]2+/1+ [Co(NH3)5Pyc]2+/1+
23 23
(3·10–3) (4.5·10–3)
CV CV
91Cha 157) 91Cha
[Co(NH3)5Pyc]2+/1+ [Co(NH3)5Pyc]2+/1+
23 23
(1.5·10–3) (1.5·10–3)
CV CV
91Cha 91Cha
[Co(NH3)5Cpc]2+/1+ [Co(NH3)5Cpc]2+/1+
23 23
(2.5·10–4) (5.5·10–4)
CV CV
91Cha 158) 91Cha
[Co(NH3)5Cpc]2+/1+ [Co(NH3)5Cpc]2+/1+
23 23
(7·10–5) (1·10–4)
CV CV
91Cha 91Cha
Fe(CN)36 – /4 – , 0.5 mM
25.0 0.43
IP
98Kit
Fe(CN)36 – /4 – , 1 mM O2/H2O O2/H2O
25.0 0.19
IP
98Kit
RDE RDE
97Per 97Per
Pt(111)/(I√3x3) Pt(111)/(I√3x3) Pt(111)/(I√7) Pt(111)/(I√7) Pt(111)/(I√3x3) Pt(111)/(I√3x3) Pt(111)/(I√7) Pt(111)/(I√7) Pt(111)/(I√3x3) Pt(111)/(I√3x3) Pt(111)/(I√7) Pt(111)/(I√7) Pt(111)/(I√3x3) Pt(111)/(I√3x3) Pt(111)/(I√7) Pt(111)/(I√7) Pt(111)/(I√3x3) Pt(111)/(I√3x3) Pt(111)/(I√7) Pt(111)/(I√7) Pt(111)/(I√3x3) Pt(111)/(I√3x3)
0.1 M KClO4/H2O 0.1 M HClO4/H2O 0.05 M H2SO4/H2O
Landolt-Börnstein New Series IV/9A
T 4)
-
3.8...13·10–2 0.5...1.1·10–2
364 Electrode 1)
5 Exchange current densities Solution 2)
T 4)
Educt, product, concentration 3)
j0 , j00 Method Ref. 174 ș 5 ) kapp or k c ) –2 –1 [°C] [A cm or cm s ]
K+ K+
20 25
~0.1 0.65
IP IP/PP
52Ran1 80Bar3
K+
25
0.81
IP/PP
80Bar3
K+
25
1.33
IP/PP
80Bar3
Rhodium (Rh) 1 M H2SO4/H2O
Fe(H 2 O) 36+ /2 + , 0.1M
25
0.0046
SS
68Boc2
1 M H2SO4/H2O
Fe(H 2 O)36+ /2 + , 0.01M
25
0.0022
SS
68Boc2
1 M HClO4/H2O
Fe(H 2 O) 36+ /2 +
4.6·10–4
CP
78Eve 159)
0.01 N HCl/H2O 0.5 N H2SO4/H2O 0.5 M H2SO4/H2O 0.5 M H2SO4/H2O 0.01 N NaOH/H2O 0.1 M TEAP 74) /DMF 54) HCl-buffer/H2O, pH=1.1 HCl-buffer/H2O, pH=1.1 acetate buffer/H2O, pH=3.0 acetate buffer/H2O, pH=3.0 acetate buffer/H2O, pH=5.0 acetate buffer/H2O, pH=5.0 1 M HClO4/H2O
H+/H2 H+/H2 H+/H2 H+/H2 H+/H2 benzoquinone (r)
25
10–3.8 10–3.22 10–3.6 10–3.5 10–4.85 0.0037
CP CP CP CP CP CV
57Pen 64Boc3 65Mat 67Man 57Pen 73Cap
hydroquinone /quinone, 5.5 mM hydroquinone /quinone, 5.5 mM hydroquinone /quinone, 5.5 mM hydroquinone /quinone, 5.5 mM hydroquinone /quinone, 5.5 mM hydroquinone /quinone, 5.5 mM hydroquinone /quinone Rb1+
25
1.5·10–6
CF
62Tom 77)
25
3.2·10–4
CF
62Tom
25
3.5·10-5
CF
62Tom
25
4.0·10–7
CF
62Tom 77)
25
2.3·10–6
CF
62Tom 77)
25
1.0·10–4
CF
62Tom
-
2.4·10–4
CP
78Eve 160)
25
0.59
IP/PP
80Bar3
Rb1+
25
0.82
IP/PP
80Bar3
Fe2+/3+, 0.1 M Fe2+/3+, 0.1 M Fe2+/3+, 0.1 M Fe2+/3+, 0.1 M Fe2+/3+, 0.1 M
20 25 30 35 40
0.00653 0.00755 0.00867 0.00966 0.0108
CP CP CP CP CP
73Gal 73Gal 73Gal 73Gal 73Gal
Potassium (K) (K)(Hg) 1.0 M NMe4OH/H2O 0.1 M NEt4PF6 /DMF 54) 0.1 M NPr4PF6 85) /DMF 54) 0.1 M NBut4PF6 /DMF 54)
Rubidium (Rb) 0.1 M NEt4PF6 /DMF 54) 0.1 M NPr4PF6 85) /DMF 54) 1 M H2SO4/H2O Ruthenium 1 M H2SO4/H2O (Ru) 1 M H2SO4/H2O 1 M H2SO4/H2O 1 M H2SO4/H2O
-
Landolt-Börnstein New Series IV/9A
5 Exchange current densities
365
Electrode 1)
Solution 2)
Educt, product, concentration 3)
j0 , j00 Method Ref. 174 ș 5 ) kapp or k c ) –2 –1 [°C] [A cm or cm s ]
Silver (Ag)
0.58 m AgNO3/ H2O 0.14 M CsCN +2.1 M CsCl/H2O 1 N HClO4/H2O HClO4/H2O 0.14 M KCN +2.1 M KCl/H2O 1 M KNO3 +5 M NH3/H2O 1 M KCl +2...3 M NH3/H2O 35% KOH/H2O 0.14 M NaCN +2.1 M NaCl/H2O 1 M NaOH/H2O 0.28 M NaOH/H2O
Ag+ Ag+/0, 0.33 M
RT 25
0.011 10.9·10–3
IP CP
61Bro 68Nec
Ag+/0 Ag+/0, 0.2 M Ag+/0, 0.33 M
20 20 25
24 0.1 7.6·10–3
GD GS CP
57Ger1 57Meh 68Nec
Landolt-Börnstein New Series IV/9A
T 4)
Ag+/0, 0.1 M
-
0.3
IP
58Lor
Ag+/0, 0.1 M
-
0.5
IP
59Lor
Ag/Ag2O, (r) Ag+/0, 0.33 M
RT 25
2·10–3 1.8·10–3
CP CP
67Dir 68Nec
Ag0/+ Ag/Ag2O (r)
23
8.09·10–6 1.4·10–3
CV GM
1 M NaOH/H2O
Ag/Ag2O (r)
0
1.0·10–3
GM
1 M NaOH/H2O
Ag/Ag2O (r)
23
2.8·10–3
GM
1 M NaOH/H2O
Ag/Ag2O (r)
40
3.0·10–3
GM
1 M NaOH/H2O
Ag/Ag2O (r)
60
6.5·10–3
GM
4.86 M NaOH/H2O
Ag/Ag2O (r)
23
7.2·10–3
GM
1 M NaOH/H2O 1 M NaOH/H2O 1 M NaOH/H2O
Ag/Ag2O (r) Ag/Ag2O (r) Ag/AgO/Ag2O (r)
23
kox=1.1 161) kred=1.1 162) 0.02
CV CV GM
4 M NaSCN +0.1 M NaOH +0.019 M AgNO3 /H2O 4 M NaSCN +0.1 M NaOH +0.019 M AgNO3 /H2O 4 M NaSCN +0.1 M NaOH +0.019 M AgNO3 /H2O 4 M NaSCN +0.1 M NaOH +0.019 M AgNO3 /H2O
Ag+/0
20.3 0.055
IP
68Sto 68Cla2, 71Ham2 68Cla2, 71Ham2 68Cla2, 71Ham2 68Cla2, 71Ham2 68Cla2, 71Ham2 68Cla2, 71Ham2 68Sto 68Sto 68Cla2, 71Ham2 72Bek
Ag+/0
26.5 0.068
IP
72Bek
Ag+/0
33.5 0.080
IP
72Bek
Ag+/0
42.4 0.120
IP
72Bek
161
)
366
5 Exchange current densities
Electrode 1)
Solution 2)
Educt, product, concentration 3)
T 4)
j0 , j00 Method Ref. 174 ș 5 ) kapp or k c ) –2 –1 [°C] [A cm or cm s ]
Ag
4 M NaSCN +0.1 M NaOH +0.031 M AgNO3/H2O 4 M NaSCN +0.1 M NaOH +0.031 M AgNO3 /H2O 4 M NaSCN +0.1 M NaOH +0.031 M AgNO3 /H2O 4 M NaSCN +0.1 M NaOH +0.031 M AgNO3 /H2O 4 M NaSCN +0.1 M NaOH +0.055 M AgNO3 /H2O 4 M NaSCN +0.1 M NaOH +0.055 M AgNO3 /H2O 4 M NaSCN +0.1 M NaOH +0.055 M AgNO3 /H2O 4 M NaSCN +0.1 M NaOH +0.055 M AgNO3 /H2O 4 M NaSCN +0.1 M NaOH +0.097 M AgNO3 /H2O 4 M NaSCN +0.1 M NaOH +0.097 M AgNO3 /H2O 4 M NaSCN +0.1 M NaOH +0.097 M AgNO3 /H2O 4 M NaSCN +0.1 M NaOH +0.097 M AgNO3 /H2O
Ag+/0
20.3 0.065
IP
72Bek
Ag+/0
26.5 0.075
IP
72Bek
Ag+/0
33.5 0.090
IP
72Bek
Ag+/0
42.4 0.130
IP
72Bek
Ag+/0
20.3 0.075
IP
72Bek
Ag+/
26.5 0.09
IP
72Bek
Ag+/0
33.5 0.110
IP
72Bek
Ag+/0
42.4 0.160
IP
72Bek
Ag+/0
26.5 0.11
IP
72Bek
Ag+/0
20.3 0.1
IP
72Bek
Ag+/0
33.5 0.16
IP
72Bek
Ag+/0
42.4 0.22
IP
72Bek
Landolt-Börnstein New Series IV/9A
5 Exchange current densities Electrode 1)
Solution 2)
Educt, product, concentration 3)
j0 , j00 Method Ref. 174 ș 5 ) kapp or k c ) –2 –1 [°C] [A cm or cm s ]
0.14 M RbCN +2.1 M RbCl//H2O 0.1 M KPF6/H2O 0.1 M NaClO4/H2O 0.1 M KPF6/H2O 0.1 M NaClO4/H2O 0.1 M KPF6/H2O 0.1 M NaClO4+5 mM HClO4/H2O 0.1 M NaClO4+5 mM HClO4/H2O 0.2 M KPF6/H2O
Ag+/0, 0.33 M
25
8.5·10–3
CP
68Nec
[Co(NH3)6]3+/2+ [Co(NH3)6]3+/2+ [Co(NH3)5]F2+/+ [Co(NH3)5]F2+/+ [Co(NH 3 )5 ]OH 3+/2+ 2 [Co(NH3)5] NCS2+/1+ cis-([Co(en)2] (NCS)2)2+/1+
25 25 25 25 25 24
(3.0·10–4) (7.0·10–4) (4.5·10–4) (8.0·10–4) (∼10–4) (2.0·10–2)
RDE RDE RDE RDE RDE PP
80Bar1 80Bar1 80Bar1 80Bar1 80Bar1 84Bar2
24
(1.0·10–3)
PP
84Bar2 63)
2 + /3 + Craq
25
(>10–4)
RDE
80Bar1
0.2 M NaClO4/H2O
2 + /3 + Craq
25
(>10–4)
RDE
80Bar1
0.1 M NaClO4+5 mM HClO4/H2O 0.1 M NaClO4+5 mM HClO4/H2O 0.1 M NaClO4+5 mM HClO4/H2O 0.1 M NaClO4+5 mM HClO4/H2O 0.1 M NaClO4+5 mM HClO4/H2O 0.1 M NaClO4+5 mM HClO4/H2O 0.1 M NaClO4+5 mM HClO4/H2O 0.1 M NaClO4+5 mM HClO4/H2O 0.2 M KPF6/H2O
[Cr(NH3)5] NCS2+/1+ [Cr(OH2)5] NCS2+/1+ ([Cr(NH3)5]N3)2+/1+
24
(6.0·10–4)
PP
84Guy
24
(1.2·10–3)
PP
84Guy
24
(<·10–5)
PP
84Guy
([Cr(OH2)5]N3)2+/1+
24
(3.0·10–5)
PP
84Guy
[Cr(NH3)5]Cl2+/1+
24
(1.3·10–2)
PP
84Guy
[Cr(OH2)5]Cl2+/1+
24
(≈0.3)
PP
84Guy
[Cr(NH3)5]Br2+/1+
24
(≈0.1)
PP
84Guy
[Cr(OH2)5]Br2+/1+
24
(>0.5)
PP
84Guy
2 + /3 + Eu aq
25
(1.0·10–2)
RDE
80Bar1
25
(∼1·10–4)
RDE
80Bar1
25
0.001
IP
52Ran2
CP CP CP CP CP CP CP CP CP CP CP
68Gos 68Gos 64Boc3 163) 68Gos 64Boc3 163) 68Gos 68Gos 68Gos 68Gos 68Gos 68Gos
2 + /3 + 0.2 M KPF6 Eu aq 2+ +1 mM Cr /H2O 0.5 M K-oxalate/H2O Fe(ox)34 – /3 –
0.01 M HCl/H2O 0.1 M HCl/H2O 0.1 M HCl/H2O 0.3 M HCl/H2O 0.4 M HCl/H2O 1 M HCl/H2O 2 M HCl/H2O 3 M HCl/H2O 5 M HCl/H2O 0.01 M H2SO4/H2O 0.1 M H2SO4/H2O Landolt-Börnstein New Series IV/9A
367
+
H /H2 H+/H2 H+/H2 H+/H2 H+/H2 H+/H2 H+/H2 H+/H2 H+/H2 H+/H2 H+/H2
T 4)
21 21 23 21 23 21 21 21 21 21 21
–8.94
10 10–9.47 0.27; 8.4·10–7 10–8.94 0.28; 4.4·10–6 10–9.81 10–8.14 10–8.35 10–8.33 10–9.33 10–10.02
368
5 Exchange current densities
Electrode 1)
Solution 2)
Educt, product, concentration 3)
j0 , j00 Method Ref. 174 ș 5 ) kapp or k c ) –2 –1 [°C] [A cm or cm s ]
Ag
1 M H2SO4/H2O 3 M H2SO4/H2O 5 M H2SO4/H2O 7 M H2SO4/H2O 1 M KF/H2O 0.3 M KPF6/H2O
H+/H2 H+/H2 H+/H2 H+/H2 [Ru(NH3)6]3+/2+ 2 + /3 + Vaq
21 21 21 21 20 25
10–9.72 10–9.73 10–9.63 10–7.79 120 (9.0·10–2)
CP CP CP CP TPF RDE
68Gos 68Gos 68Gos 68Gos 85Iwa 80Bar1
0.3 M KPF6 +1 mM Cr2+/H2O 0.2 M KPF6/H2O
2 + /3 + Vaq
25
(∼10–4)
RDE
80Bar1
2 + /3 + Ru aq
25
(>5.0·10–2)
RDE
80Bar1
2 + /3 + Ru aq
25
(5·10–4)
RDE
80Bar1
[Co(NH3)6]3+/2+ Na+ Na+
23 20 25
(8·10–4) ~0.4 9.0·10–2
CV IP IP/PP
86Ham 52Ran1 80Bar3
Na+
25
0.2
IP/PP
80Bar3
Na+
25
0.32
IP/PP
80Bar3
H+/H2 H+/H2, 0.1 N H+/H2, 0.1 N H+/H2, 0.1 N H+/H2, 1 N H+/H2, 1 N H+/H2, 1 N H+/H2, 1 N H+/H2, 1 N H+/H2, 1 N H+/H2, 10 N Fe2+/3+, 0.1 M Fe2+/3+, 0.1 M Fe2+/3+, 0.1 M Fe2+/3+, 0.1 M Fe2+/3+, 0.1 M
25 35 45 25 35 45 55 65 25 25 20 25 30 35 40
10–8.6 1.2·10–8 1.6·10–8 2.0·10–8 1.0·10–8 1.6·10–8 4.0·10–8 5.0·10–8 1.3·10–7 4.0·10–8 3.2·10–8 1.04·10–6 1.22·10–6 1.39·10–6 1.63·10–6 1.87·10–6
CP CP CP CP CP CP CP CP CP CP GCI 165) CP 166) CP 166) CP 166) CP 166) CP 166)
69Gal 63Koz 63Koz 63Koz 63Koz 63Koz 63Koz 63Koz 63Koz 63Koz 65Koz 73Gal 73Gal 73Gal 73Gal 73Gal
H+(r) H+(r) H+(r) H+(r) H+(r) H+(r) H+(r) H+(r)
15 26 36 48 58 66 14 25
7.6·10–14 2.5·10–13 5·10–13 6.8·10–13 2.2·10–12 2.2·10–12 1.1·10–14 4·10–14
CP CP CP CP CP CP CP CP
65But3 65But3 65But3 65But3 65But3 65But3 65But3 65But3
0.2 M KPF6 +1 mM Cr2+/H2O 0.1 M NaClO4/H2O Ag(110) Sodium (Na) 1.0 M NMe4OH/H2O (Na)(Hg) 0.1 M NEt4PF6 /DMF 54) 0.1 M NPr4PF6 164) /DMF 54) 0.1 M NBut4PF6 /DMF 54) Tantalum (Ta) 1 M HClO4/H2O 0.1 N H2SO4/H2O 0.1 N H2SO4/H2O 0.1 N H2SO4/H2O 1 N H2SO4/H2O 1 N H2SO4/H2O 1 N H2SO4/H2O 1 N H2SO4/H2O 1 N H2SO4/H2O 10 N H2SO4/H2O 1 N H2SO4/H2O 1 M H2SO4/H2O 1 M H2SO4/H2O 1 M H2SO4/H2O 1 M H2SO4/H2O 1 M H2SO4/H2O Thallium (Tl) (Tl)(Hg)1% Tl 0.1 M HClO4/H2O 0.1 M HClO4/H2O 0.1 M HClO4/H2O 0.1 M HClO4/H2O 0.1 M HClO4/H2O 0.1 M HClO4/H2O (Tl)(Hg)40.6% Tl 0.1 M HClO4/H2O 0.1 M HClO4/H2O
T 4)
Landolt-Börnstein New Series IV/9A
5 Exchange current densities
369
Electrode 1)
Solution 2)
Educt, product, concentration 3)
j0 , j00 Method Ref. 174 ș 5 ) kapp or k c ) –2 –1 [°C] [A cm or cm s ]
H+(r) H+(r) H+(r) H+(r) H+(r)
10% Tl
0.1 M HClO4/H2O 0.1 M HClO4/H2O 0.1 M HClO4/H2O 0.1 M HClO4/H2O 0.1 M HClO4/H2O 0.2 M NaCN/H2O
33 42 51 62 69 30
1.1·10–13 3.3·10–13 1.9·10–12 4.8·10–12 3.1·10–11 3.9·10–3
CP CP CP CP CP IP
65But3 65But3 65But3 65But3 65But3 60Del
31% Tl
0.2 M NaCN/H2O
30
4.8·10–3
IP
60Del
(Tl)(Hg) (Tl)(Hg) 0.09% Tl (Tl)(Hg) 0.0074% Tl (Tl)(Hg) 0.0057% Tl (Tl)(Hg) (Tl)(Hg) (Tl)(Hg) (Tl)(Hg) (Tl)(Hg) (Tl)(Hg) (Tl)(Hg)
1 M HClO4/H2O 0.5 M H2SO4/H2O
Cr(CN) 36 – /4 – , 2.5 mM Tl+/0 Tl+/0, 1 mM
36 30
1.8 2.36
IP IP
61Ran 67Bat
0.5 M H2SO4/H2O
Tl+/0, 0.97 mM
30
0.43
IP
67Bat
0.5 M H2SO4/H2O
Tl+/0, 10 mM
30
0.67
IP
67Bat
Tl+/0 Tl+/0, 1.05 mM Tl+/0, 2.1 mM Tl+/0 Tl+/0 Tl+/0, 1.05 mM Tl+/0
22 36 36 22 20 35 25
0.15 3.5 2.5 0.3 >1 0.69 1.25
FR FR FR FR IP FR OC
58Bar1 71Aga 71Aga 58Bar1 52Ran1 71Aga 61Gav
Tl1+ Tl+/0, 2.1 mM Tl1+ Tl+/0 Tl+/0, 1.05 mM Tl+/0, 2.1 mM H+/H2 H+/H2 Fe2+/3+, 0.05M
22 36 22 36 36 36 RT 25
3.1 3.5 .. 7.4 1.2 > 1·102 3.4 8.3 10–10.2 2.2·10–9 2.6·10–7
FR FR FR IP FR FR CP CP CP
58Bar1 71Aga 58Bar1 61Lor 71Aga 71Aga 65Mat 63Gos 64Mak 167)
H+/H2 H+/H2 H+/H2 H+/H2 H+/H2 H+/H2 H+/H2 H+/H2 NO 3– /NO
RT RT RT RT RT RT RT RT 25
15.4·10–9 13.5·10–9 11.5·10–9 10.5·10–9 8.8·10–9 7.5·10–9 6.5·10–9 5.5·10–9 1.5·10–9
CP CP CP CP CP CP CP CP CV
70Tho 70Tho 70Tho 70Tho 70Tho 70Tho 70Tho 70Tho 96Boc 168)
hydrogen evolution
25
46·10–6
CP
97Krs
1 M KCl/H2O 1 M KCl/H2O 1 M KCl/H2O 1 M KNO3/H2O 1 M KNO3/H2O 1 M KNO3/H2O 0.33 M KSO4+5 mM H2SO4/H2O (Tl)(Hg) 0.5 M K2SO4/H2O (Tl)(Hg) 0.5 M K2SO4/H2O (Tl)(Hg) 1 M NaClO4/H2O (Tl)(Hg) 1 M NaClO4/H2O (Tl)(Hg) 1 M NaClO4/H2O (Tl)(Hg) 1 M NaClO4/H2O 1 M HCl/H2O Tin (Sn) 1 M H2SO4/H2O Titanium (Ti) 1 M H2SO4+0.1 M Na2SO4/H2O H2SO4/H2O, pH=0.25 H2SO4/H2O, pH=0.5 H2SO4/H2O, pH=0.9 H2SO4/H2O, pH=1 H2SO4/H2O, pH=1.35 H2SO4/H2O, pH=1.65 H2SO4/H2O, pH=1.90 H2SO4/H2O, pH=2.25 1.33 M NaOH+1.95 M NaNO3/H2O 1 M NaOH/H2O Ti2Ni Landolt-Börnstein New Series IV/9A
Cr(CN) 36 – /4 – , 2.5 mM
T 4)
370
5 Exchange current densities
Electrode 1)
Solution 2)
Educt, product, concentration 3)
j0 , j00 Method Ref. 174 ș 5 ) kapp or k c ) –2 –1 [°C] [A cm or cm s ]
Ti3Ni TiNi0.7 TiNi TiNi2 TiNi3 TiNi4 Tungsten (W)
1 M NaOH/H2O 1 M NaOH/H2O 1 M NaOH/H2O 1 M NaOH/H2O 1 M NaOH/H2O 1 M NaOH/H2O 0.1 M HCl/H2O 0.5 N H2SO4/H2O 0.5 N NaOH/H2O
hydrogen evolution hydrogen evolution hydrogen evolution hydrogen evolution hydrogen evolution hydrogen evolution H+/H2 H+/H2 H+/H2
25 25 25 25 25 25 23 -
12·10–6 46·10–6 13.2·10–6 51·10–6 19·10–6 31.6·10–6 0.78; 2.8·10–6 10–6.25 10–7.05
CP CP CP CP CP CP CP CP CP
97Krs 97Krs 97Krs 97Krs 97Krs 97Krs 64Boc3 169) 64Boc3 64Boc3
V4+(r) V4+(r)
25 25
8.0·10–14 8.0·10–14
PS PS
70Arm 70Arm
H+/H2 Zn2+/Zn0, 0.5 M Zn2+/Zn0, 0.04 M Zn2+/Zn0, 0.08 M Zn2+/Zn0, 0.64 M Zn2+/Zn0, 0.016 M Zn2+/Zn0, 0.04 M Zn2+/Zn0, 0.08 M Zn2+/Zn0, 0.64 M Zn2+/Zn0, 0.056 M Zn2+/Zn0, 0.14 M Zn2+/Zn0, 0.28 M Zn2+/Zn0, 0.0073 M
RT 25 25 25 25 25 25 25 25 25 25 24
9.9·10–11 0.3 0.241 0.231 0.224 0.238 0.241 0.231 0.224 0.167 0.175 0.166 2.84·10–4
CP IP GD GD GD GD GD GD GD GD GD GD IP
63Gos 59Lor 67Far 67Far 67Far 67Far 67Far 67Far 67Far 67Far 67Far 67Far 70Cla
Zn2+/Zn0, 0.022 M
24
1.22·10–4
IP
70Cla
Zn2+/Zn0, 0.056 M
24
3.2·10–4
GM
70Cla
Zn2+/Zn0, 0.057 M
24
3.4·10–4
GM
70Cla
Zn2+/Zn0, 0.061 M
24
1.97·10–4
IP
70Cla
Zn2+/Zn0, 0.087 M
24
1.73·10–4
IP
70Cla
Zn2+/Zn0, 0.092 M
24
6.68·10–4
IP
70Cla
Zn2+/Zn0, 0.17 M
24
3.7·10–4
GM
70Cla
Vanadium (V) 1 M HClO4/H2O 0.01 or 1 M HClO4 /H2O(adjusted with NaCl to ionic strength 1) 1 M H2SO4/H2O Zinc (Zn) 2 M KCl/H2O 7 M KOH/H2O 7 M KOH/H2O 7 M KOH/H2O 7 M KOH/H2O 7 M KOH/H2O 7 M KOH/H2O 7 M KOH/H2O 4.95 M KOH/H2O 4.95 M KOH/H2O 4.95 M KOH/H2O NaClO4+Zn(ClO4)2 /H2O 170) NaClO4+Zn(ClO4)2 /H2O 170) NaClO4+Zn(ClO4)2 /H2O 170) NaClO4+Zn(ClO4)2 /H2O 170) NaClO4+Zn(ClO4)2 /H2O 170) NaClO4+Zn(ClO4)2 /H2O 170) NaClO4+Zn(ClO4)2 /H2O 170) NaClO4+Zn(ClO4)2 /H2O 170)
T 4)
Landolt-Börnstein New Series IV/9A
5 Exchange current densities Electrode 1)
Landolt-Börnstein New Series IV/9A
371
Solution 2)
Educt, product, concentration 3)
T 4)
j0 , j00 Method Ref. 174 ș 5 ) kapp or k c ) –2 –1 [°C] [A cm or cm s ]
NaClO4+Zn(ClO4)2 /H2O 170) NaClO4+Zn(ClO4)2 /H2O 170) NaClO4+Zn(ClO4)2 /H2O 170) 0.1 M NaOH+0.9 M NaClO4/H2O 0.1 M NaOH+0.9 M NaClO4/H2O 0.2 M NaOH+0.8 M NaClO4/H2O 0.2 M NaOH+0.8 M NaClO4/H2O 0.5 M NaOH/H2O 0.5 M NaOH/H2O 0.5 M NaOH/H2O 0.7 M NaOH/H2O 0.7 M NaOH/H2O 0.7 M NaOH/H2O 1.05 M NaOH/H2O 1.05 M NaOH/H2O 1.05 M NaOH/H2O 1.4 M NaOH/H2O 1.4 M NaOH/H2O 1.4 M NaOH/H2O 2.1 M NaOH/H2O 2.1 M NaOH/H2O 2.1 M NaOH/H2O 2.6 M NaOH/H2O 2.6 M NaOH/H2O 2.6 M NaOH/H2O 7 M NaOH/H2O 7 M NaOH/H2O 7 M NaOH/H2O 7 M NaOH/H2O Na2SO4 +ZnSO4/H2O 171) Na2SO4 +ZnSO4/H2O 171) Na2SO4 +ZnSO4/H2O 171) Na2SO4 +ZnSO4/H2O 171) 1 M ZnSO4/H2O
Zn2+/Zn0, 0.27 M
24
4.2·10–4
IP
70Cla
Zn2+/Zn0, 0.46 M
24
3.5·10–4
GM
70Cla
Zn2+/Zn0, 0.51 M
24
6.26·10–4
IP
70Cla
Zn2+/Zn0, 0.00025 M Zn2+/Zn0, 0.0005 M Zn2+/Zn0, 0.00075 M Zn2+/Zn0, 0.0015 M
25
0.041
GD
67Far
25
0.042
GD
67Far
25
0.045
GD
67Far
25
0.052
GD
67Far
Zn2+/Zn0, 0.009 M Zn2+/Zn0, 0.009 M Zn2+/Zn0, 0.009 M Zn2+/Zn0, 0.047 M Zn2+/Zn0, 0.047 M Zn2+/Zn0, 0.047 M Zn2+/Zn0, 0.009 M Zn2+/Zn0, 0.009 M Zn2+/Zn0, 0.009 M Zn2+/Zn0, 0.047 M Zn2+/Zn0, 0.047 M Zn2+/Zn0, 0.047 M Zn2+/Zn0, 0.047 M Zn2+/Zn0, 0.047 M Zn2+/Zn0, 0.047 M Zn2+/Zn0, 0.009 M Zn2+/Zn0, 0.009 M Zn2+/Zn0, 0.009 M Zn2+/Zn0, 0.0014 M Zn2+/Zn0, 0.0044 M Zn2+/Zn0, 0.0094 M Zn2+/Zn0, 0.47 M Zn2+/Zn0, 0.011 M
25 40 55 25 40 55 25 40 55 25 40 55 25 40 55 25 40 55 25 25 25 25 24
0.087 0.118 0.143 0.083 0.11 0.141 0.092 0.127 0.158 0.091 0.122 0.155 0.103 0.135 0.163 0.1 0.146 0.178 0.16 0.12 0.13 0.138 4.94·10–4
GD GD GD GD GD GD GD GD GD GD GD GD GD GD GD GD GD GD GD GD GD GD IP
67Far 67Far 67Far 67Far 67Far 67Far 67Far 67Far 67Far 67Far 67Far 67Far 67Far 67Far 67Far 67Far 67Far 67Far 67Far 67Far 67Far 67Far 70Cla
Zn2+/Zn0, 0.14 M
24
3.66·10–4
IP
70Cla
Zn2+/Zn0, 0.5 M
24
10.9·10–4
IP
70Cla
Zn2+/Zn0, 0.88 M
24
12.6·10–4
IP
70Cla
Zn2+/Zn0
RT
2·10–5
-
70Cla
372
5 Exchange current densities
Electrode 1)
Solution 2)
Educt, product, concentration 3)
j0 , j00 Method Ref. 174 ș 5 ) kapp or k c ) –2 –1 [°C] [A cm or cm s ]
Zn(Hg)
0.025 M Ba(ClO4)2 /H2O 0.05 M Ba(ClO4)2 /H2O 0.125 M Ba(ClO4)2 /H2O 0.25 M Ba(ClO4)2 /H2O 0.5 M ZnCl2 +2 M KCl/H2O 1.0 M KBr/H2O 1.0 M KBr/H2O 1.0 M KBr/H2O 1.0 M KBr/H2O
Zn2+/0
26
0.0091
GS
64Ara
Zn2+/0
26
0.0057
GS
64Ara
Zn2+/0
26
0.0032
GS
64Ara
Zn2+/0
26
0.0021
GS
64Ara
Zn2+/0
-
0.3
IP
59Lor
20 25 20 27
0.008 0.005 0.008 1.2·10–2
IP CS ACP FR
52Ran1 64Ham2 61Kam 69Bro2
25 25 45 0 20 25 25 25 25 25 0 20 25 25 25 25 25 25 20 20 25 25 25 25 45 27
1.64 0.33 0.022 0.038 0.25 0.65 0.9 0.58 0.004 0.004 0.016 0.25 0.65 0.9 0.0043 0.0042 0.0043 0.0041 0.0035 0.004 0.004 0.00505 0.0093 1.1 0.0049 0.006 0.014 0.0043
IP IP FR FR IP IP IP IP CS CS OP GM GM GM CS CS CS CS CS IP IP IP IP IP IP FR FR FR
47Ran 62Beh 66Bau 66Bau 61Mül 61Mül 61Mül 47Ran 62Del2 64Ham2 61Gav 61Mül 61Mül 61Mül 62Del3 62Del3 62Del3 62Del3 62Del3 52Ran1 62Beh 63Bla 67Tim 70Sal1 63Slu 66Bau 66Bau 69Bro2
25
3.1·10–5
CP
68Kra
Zn(Hg) Zn(Hg) Zn(Hg) Zn(Hg) Zn(Hg) Zn(Hg) Zn(Hg) Zn(Hg) Zn(Hg) Zn(Hg) Zn(Hg) Zn(Hg) Zn(Hg) Zn(Hg) Zn(Hg) Zn(Hg) Zn(Hg) Zn(Hg) Zn(Hg) Zn(Hg) Zn(Hg) Zn(Hg) Zn(Hg) Zn(Hg) Zn(Hg) Zn(Hg) Zn(Hg) Zn(Hg) Zn(Hg) Zn(Hg) Zn(Hg) Zn(Hg) Zn(Hg) Zn(Hg) Zn(Hg) Zn(Hg 172) Zn(Hg)
Zn2+/0 Zn2+/0 Zn2+/0 Zn2+/0, 0.01...0.1 M Zn2+ 1.0 M KCNS/H2O Zn2+/0 0.2 M KCl/H2O Zn2+/0 0.25 M KCl/H2O Zn2+/0 0.25 M KCl/H2O Zn2+/0 1.0 M KCl/H2O Zn2+/0 1.0 M KCl/H2O Zn2+/0 1.0 M KCl/H2O Zn2+/0 1.0 M KCl/H2O Zn2+/0 1.0 M KCl/H2O Zn2+/0 1.0 M KCl/H2O Zn2+/0 1.0 M KCl/H2O Zn2+/0 1.0 M KCl/H2O Zn2+/0 1.0 M KCl/H2O Zn2+/0 1.0 M KCl/H2O Zn2+/0 1.0 M KCl/H2O Zn2+/0 , 0.5 mM 1.0 M KCl/H2O Zn2+/0 , 1 mM 1.0 M KCl/H2O Zn2+/0 , 5 mM 1.0 M KCl/H2O Zn2+/0 , 10 mM 1.0 M KCl/H2O Zn2+/0 , 50 mM 1.0 M KCl/H2O Zn2+/0 1.0 M KCl/H2O Zn2+/0 1.0 M KCl/H2O Zn2+/0 1.0 M KCl/H2O, pH=3 Zn2+/0 1.0 M KCl/H2O Zn2+/0 1.0 M KCl/H2O Zn2+/0 1.0 M KCl/H2O Zn2+/0 1.0 M KCl/H2O Zn2+/0 172 1.0 M KCl/H2O ) Zn2+/0, 0.01...0.1 M Zn2+ Zn2+/0,0.01 M 2.0 M KCl+1 M K2C2O4/H2O [Zn(C2O4)3]4–
T 4)
Landolt-Börnstein New Series IV/9A
5 Exchange current densities
373
Electrode 1)
Solution 2)
Educt, product, concentration 3)
j0 , j00 Method Ref. 174 ș 5 ) kapp or k c ) –2 –1 [°C] [A cm or cm s ]
Zn(Hg)
2.0 M KCl+1 M K2C2O4/H2O 1.0 M KCNS/H2O 1.0 M KI/H2O 1.0 M KI/H2O 1.0 M KI+5 mM H2SO4/H2O 1.0 M KNO3/H2O 0.025 M Mg(ClO4)2 /H2O 0.05 M Mg(ClO4)2 /H2O 0.05 M Mg(ClO4)2 /H2O 0.05 M Mg(ClO4)2 +0.02 M n-amyl alcohol/H2O 0.05 M Mg(ClO4)2 +0.04 M n-amyl alcohol/H2O 0.05 M Mg(ClO4)2 +0.08 M n-amyl alcohol/H2O 0.05 M Mg(ClO4)2 +0.12 M n-amyl alcohol/H2O 0.05 M Mg(ClO4)2 +0.1 M n-amyl alcohol/H2O 0.125 M Mg(ClO4)2/H2O 0.125 M Mg(ClO4)2 +0.1 M n-amyl alcohol/H2O 0.2 M Mg(ClO4)2 +0.01 M HClO4 /H2O 0.25 M Mg(ClO4)2 /H2O 0.25 M Mg(ClO4)2 /H2O 0.25 M Mg(ClO4)2 /H2O 0.25 M Mg(ClO4)2 /H2O 0.25 M Mg(ClO4)2 /H2O
Zn2+/0,0.01 M [Zn(C2O4)3]4– Zn2+/0 Zn2+/0 Zn2+/0 Zn2+/0
25
1.6·10–4
GM
66Kra1
20 20 25 25
0.017 0.07 0.004 0.12
IP IP CS IP
52Ran1 52Ran1 64Ham2 63Slu
Zn2+/0 Zn2+/0, 2 mM
20 26
0.0035 0.012
IP GS
52Ran1 64Ara
Zn2+/0, 2 mM
26
0.009
GS
64Ara
Zn2+/0, 2 mM
26
0.009
GS
64Ara
Zn2+/0, 2 mM
26
0.0077
GS
64Ara
Zn2+/0, 2 mM
26
0.0042
GS
64Ara
Zn2+/0, 2 mM
26
0.00065
GS
64Ara
Zn2+/0, 2 mM
26
0.00032
GS
64Ara
Zn2+/0, 2 mM
26
0.00032
GS
64Ara
Zn2+/0, 2 mM
26
0.0047
GS
64Ara
Zn2+/0, 2 mM
26
0.00020
GS
64Ara
Zn2+/0, 1 mM
20
0.0006
RT
65Mol2
Zn2+/0, 2 mM
26
0.0027
GS
64Ara
Zn2+/0, 1 mM
26
0.00175
GS
64Ara
Zn2+/0, 2 mM
26
0.00266
GS
64Ara
Zn2+/0, 4 mM
26
0.00452
GS
64Ara
Zn2+/0, 8 mM
26
0.00747
GS
64Ara
Zn(Hg) Zn(Hg) Zn(Hg) Zn(Hg) Zn(Hg) Zn(Hg) Zn(Hg) Zn(Hg) Zn(Hg)
Zn(Hg)
Zn(Hg)
Zn(Hg)
Zn(Hg)
Zn(Hg) Zn(Hg)
Zn(Hg)
Zn(Hg) Zn(Hg) Zn(Hg) Zn(Hg) Zn(Hg)
Landolt-Börnstein New Series IV/9A
T 4)
374
5 Exchange current densities
Electrode 1)
Solution 2)
Educt, product, concentration 3)
j0 , j00 Method Ref. 174 ș 5 ) kapp or k c ) –2 –1 [°C] [A cm or cm s ]
Zn(Hg)
0.25 M Mg(ClO4)2 +0.1 M n-amyl alcohol/H2O 2.8 M Mg(ClO4)2 +0.01 M HClO4 /H2O 1.0 M NH4SCN 1.0 M NH4OH +1 M NH4Cl/H2O Mg2SO4+5 mM H2SO4/H2O (I=2 M) 1.0 M NaBr/H2O 1.0 M NaBr/H2O 0.1 M NaClO4/H2O 0.1 M NaClO4 +1 mM HClO4 2 μM LEO 98) 0.3 M NaClO4 +1 mM HClO4 2 μM LEO 98) 0.5 M NaClO4 +1 mM HClO4 2 μM LEO 98) 0.1 M NaClO4 +0.01 M HClO4 /H2O 0.2 M NaClO4/H2O 0.25 M NaClO4/H2O 0.5 M NaClO4/H2O 0.5 M NaClO4 +0.01 M HClO4 /H2O 0.88 M NaClO4 +1 mM HClO4 /H2O 1 M NaClO4 +0.01 M HClO4 /H2O 1 M NaClO4/H2O 1 M NaClO4/H2O 1 M NaClO4/H2O 1 M NaClO4/H2O 1 M NaClO4/H2O 1 M NaClO4/H2O 1 M NaClO4/H2O 1 M NaClO4/H2O
Zn2+/0, 2 mM
26
0.00014
GS
64Ara
Zn2+/0, 1 mM
20
0.00015
RT
65Mol2
Zn2+/0 Zn2+/0
25 20
17.5·10–3 1.8·10–2
IP CP
63Bla 65Mol1
Zn2+/0
25
0.11
RT
63Bud
Zn2+/0 Zn2+/0 Zn2+/0 Zn2+/0, 1 mM
25 25 45 25
2.29 10.3·10–3 0.02 16.7·10–3
IP IP FD PS
70Sal1 63Bla 64Bau 69Tan2
Zn2+/0, 1 mM
25
7.7·10–3
PS
69Tan2
Zn2+/0, 1 mM
25
3.01·10–3
PS
69Tan2
Zn2+/0, 1 mM
20
0.017
RT
65Mol2
Zn2+/0 Zn2+/0 Zn2+/0 Zn2+/0, 1 mM
25 45 45 20
0.00119 0.013 0.0075 0.025
IP FD FD RT
63Hus 64Bau 64Bau 65Mol2
Zn2+/0
25
3.26·10–3
IP
60Slu
Zn2+/0
-
3.6·10–3
IP
65Ijz
0 0 1 0 25 45 25 25
0.0054 0.0058 0.0021 0.1 2.5·10–3 0.005 0.002 0.73
GM PS PS IP CM FD CS IP+FR
55Ger1 55Ger1 55Vie 61Mül 63Ham 64Bau 64Ham2 68Sal
Zn(Hg)
Zn(Hg) Zn(Hg) 173) Zn(Hg) Zn(Hg) Zn(Hg) Zn(Hg) Zn(Hg)
Zn(Hg)
Zn(Hg)
Zn(Hg)
Zn(Hg) Zn(Hg) Zn(Hg) Zn(Hg)
Zn(Hg)
Zn(Hg)
Zn(Hg) Zn(Hg) Zn(Hg) Zn(Hg) Zn(Hg) Zn(Hg) Zn(Hg) Zn(Hg)
Zn2+/0, 20 mM Zn2+/0, 20 mM Zn2+/0, 6 mM Zn2+/0 Zn2+/0 Zn2+/0 Zn2+/0 Zn2+/0
T 4)
Landolt-Börnstein New Series IV/9A
5 Exchange current densities
375
Electrode 1)
Solution 2)
Educt, product, concentration 3)
j0 , j00 Method Ref. 174 ș 5 ) kapp or k c ) –2 –1 [°C] [A cm or cm s ]
Zn(Hg)
1 M NaClO4 +0.01 M HClO4 /H2O 2 M NaClO4/H2O 2 M NaClO4/H2O 2 M NaClO4 +NaCl/H2O 2 M NaClO4 +NaBr/H2O 2 M NaClO4 +NaI/H2O 2 M NaClO4 +NaSCN/H2O 3 M NaClO4/H2O 3 M NaClO4+0.01 M HClO4/H2O 1.0 M NaI/H2O 1 M NaOH/H2O 0.5 M Na2SO4/H2O
Zn2+/0, 1 mM
20
0.00036
RT
65Mol2
Zn2+/0 Zn2+/0 Zn2+/0
25 45 25
0.00248 0.0026 5.4
IP CH IP
63Hus 68Lar 63Bla
Zn2+/0
25
11.5
IP
63Bla
Zn2+/0
25
66
IP
63Bla
Zn2+/0
25
105
IP
63Bla
Zn2+/0 Zn2+/0, 1 mM
25 20
0.0028 1.64·10–4
IP RT
63Hus 65Mol2
Zn2+/0 Zn2+/0 Zn2+/0
25 20 25
131·10–3 2.5·10–4 0.001
IP IP CS
63Bla 62Beh 64Ham2
Zn(Hg) Zn(Hg) Zn(Hg) Zn(Hg) Zn(Hg) Zn(Hg) Zn(Hg) Zn(Hg) Zn(Hg) Zn(Hg) Zn(Hg)
T 4)
1
) The subscript (Hg) denotes an amalgam electrode. ) The concentration of substances added e.g. to maintain a certain pH is sometimes not stated exactly in the original report; this is indicated by an x. Concentrations are given in units as reported if not stated otherwise (M = molarity; m = molality, F equal to M). 3 ) The educt/reacting species for the charge transfer reaction to which the kinetic data are referring to is stated only if it is not already given by the composition of the electrolyte solution. If the concentrations of the reactants are given in addition the exchange current density j0 will be stated subsequently. The arrangement of species identifies the reaction as a reduction or an oxidation in cases where no simple exchange reaction at rest potential was studied. In the absence of specific designations of the reacting species (e.g. reactions involving complex organometallic compounds) the type of reaction is designated (r) or (o) indicating a reduction or oxidation. Concentrations are given in units as reported if not stated otherwise (M = molarity; m = molality, F equal to M). 4 ) RT designates room temperature as specified in the original report. 2
) If no concentration of the educt is given the standard exchange current density j00 is stated. Values of k cș are printed in italics; values of the apparent rate constant kapp are printed in parentheses in italics. For electrode potentials where the latter rate constant was actually determined the reader is referred to the original literature. 6 ) The influence of the concentration of chloride ions was also studied, no values are listed here. 7 ) Bismuth concentration in amalgam was 3 mM. 8 ) Bismuth concentration in amalgam was 5·10–6 M. 9 ) Bismuth concentration in amalgam was 0.11 M. 10 ) Bismuth concentration in amalgam was 0.3 M. 11 ) Bismuth concentration in amalgam was 0.12 M. 12 ) Bismuth concentration in amalgam was 5·10–4 M. 13 ) Bismuth concentration in amalgam was 5·10–6 M. 14 ) The concentration refers to Bi3+ and Bi(Hg). 5
) The value was obtained using an extrapolation method; with a numerical method k cș = 4.1 cm s–1 was obtained.
15
Landolt-Börnstein New Series IV/9A
376
5 Exchange current densities
) The value was obtained using an extrapolation method; with a numerical method k cș = 0.44 cm s–1 was obtained.
16 17
) The value of j0 is related to the concentration of cadmium in the amalgam and Cd2+ in solution according to j0 = 8.4 [Cd]0.17 [Cd2+]0.83. 18 ) Because the reactant was present as a film on the electrode no reactant concentration is given. 19 ) Carbon refers to all kinds of carbonaceous, graphitic or similar electrode materials including glassy carbon. 20 ) A synthetic diamond electrode was used. 21 ) A boron-doped diamond electrode was used as prepared. 22 ) An electrochemically oxidized boron-doped diamond electrode was used. The observed rates were concentrationdependent. 23 ) A polycrystalline synthetic diamond electrode was used, values of k0 range between 6·10–9 and 2.4·10–6 cm s–1. 24 ) A single crystal synthetic diamond electrode was used, values of k0 range between 4·10–8 and 1.7·10–5 cm s–1. 25 ) A single crystal synthetic diamond electrode was used, values of k0 range between 4·10–8 and 6.5·10–7 cm s–1. 26 ) A polished glassy carbon electrode was used. 27 ) A carbon paste electrode was used. 28 ) A carbon paste made of Acheson graphite and bromonaphthalene was used. 29 ) A carbon paste made of Acheson graphite and nujol was used. 30 ) A carbon paste made of Acheson graphite and bromoform was used. 31 ) A carbon paste made of Acheson graphite and Silicon 1000 was used. 32 ) A carbon paste made of Acheson graphite and Silicon 350 was used. 33 ) A carbon paste made of Acheson graphite and Silicon 50 was used. 34 ) A carbon paste made of Acheson graphite and Silicon 20 was used. 35 ) A carbon paste made of Acheson graphite and Silicon 10 was used. 36 ) Highly boron doped diamond film supplied by Naval Research Laboratory, USA. 37 ) Highly boron doped diamond film supplied by Utah State University, USA. 38 ) An argon-sputtered glassy carbon electrode was used. 39 ) A dinitrophenylhydrazine-treated glassy carbon electrode was used. 40 ) A dinitrobenzoyl chloride-treated glassy carbon electrode was used. 41 ) A 2,6-anthraquinonedisulfonate modified glassy carbon electrode was used. 42 ) A methylene blue-modified sputtered glassy carbon electrode was used. 43 ) A 1,4-bis(2-methylstyryl)benzene coated glassy carbon electrode was used. 44 ) A boron-doped diamond electrode was used as prepared. 45 ) An electrochemically oxidized boron-doped diamond electrode was used. The observed rates were concentrationdependent. 46 ) A carbon paste electrode was used. 47 ) A boron-doped diamond electrode was used after wet etching. 48 ) Anodically activated glassy carbon. 49 ) THAP = Tetrahexylammoniumperchlorate. 50 ) Calculated with the transfer coefficient and the nitrate concentration only as reported. 51 ) DMSO = Dimethylsulphoxide 52 ) TBAP = Tetrabutylammoniumhexafluorophosphate. 53 ) A synthetic diamond electrode was used; values of k0 range between 8.5·10–7 and 1.2·10–5 cm s–1. 54 ) DMF = Dimethylformamide. 55 ) Chromium in its active state. 56 ) Chromium in its passive state. 57 ) An electrolytically deposited and a press-formed electrode prepared from equimolar ratios of Cu (32 wt%) and CuCl2 (67 wt%) and 1 wt% polyethylene binder were used. 58 ) Taken from Tafel slope.
Landolt-Börnstein New Series IV/9A
5 Exchange current densities
377
59
) An electrode prepared from equimolar ratios of Cu (32 wt%) and CuCl2 (67 wt%) and 1 wt% polyethylene binder was used. 60 ) 10–3 M Cu. 61 ) 3·10–6 M Cu. 62 ) 3·10–6 ... 2.5·10–3 M Cu. 63 ) en = ethylene diamine. ) Value calculated from j0 assuming α = 0.5 and the given acidity, activity of hydrogen set to 1. ) The authors report a considerable scattering of the obtained data. 66 ) 0.1 mM BiCl3 have been added to the electrolyte solution. 67 ) 0.07 mM PbCl2 have been added to the electrolyte solution. 68 ) 0.2 mM SnCl2 have been added to the electrolyte solution. 69 ) 0.05 mM TlCl have been added to the electrolyte solution. 70 ) The electrode was modified with an adsorbed layer of tin. 71 ) Measured with an educt concentration of 0.1 M. 72 ) Measured with an educt concentration of 0.01 M. 73 ) This study includes an extended evaluation of the catalytic effect of chloride anions. 74 ) TEAP = Tetraethyl ammonium perchlorate. 75 ) The actual values of j0 depended slightly on the pretreatment of the solid electrode. 76 ) Indium-plated platinum electrode. 77 ) Electrode chemically cleaned with chromic acid. 78 ) Experimental conditions were adjusted to keep the working electrode in the passivated state. 79 ) Calculated with the transfer coefficient and the nitrate concentration only as reported. 80 ) Lead alloy containing 1.08 % antimony. 81 ) Lead alloy containing 2.16 % antimony. 82 ) Lead alloy containing 5.76 % antimony. 83 ) Lead alloy containing 1.08 % antimony. 84 ) Lead alloy containing 2.16 % antimony. 85 ) Pr = Propyl 86 ) Bu = Butyl 87 ) Cp = cyclopentadiene. 88 ) NMF = N-methylformamide. 89 ) TBAFB = n-Tetrabutylammonium fluoroborate. 90 ) Cp' = pentamethylcyclopentadiene. 91 ) NMF = N-methylformamide. 92 ) acac = acetylacetonato. 93 ) DEF = N,N-diethylformamide. 94 ) CrEDTA = ethylenediaminetetraacetatochromate. 95 ) As a function of viscosity values of k0 between 0.45 and 0.021 cm s–1 were found. 96 ) DMA = N,N-dimethylacetamide. 97 ) CrCYDTA = cyclohexanediaminetetraacetatochromate 98 ) LEO = Polyoxyethylene lauryl ether. 99 ) CrHEDTRA = (2-hydroxyethyl)-ethylenediaminetriacetatochromium. 100 ) HMPA = hexamethylphosphoric triamide. 64 65
) θ refers to the electrode coverage with n-butanol. ) ox = oxalate ion.
101 102
) The value was obtained using an extrapolation method; with a numerical method k cș = 1.16 cm s–1 was obtained.
103
Landolt-Börnstein New Series IV/9A
378
5 Exchange current densities
) (COT)Fe(CO) 30/ – = tricarbonyl(η4-cyclooctatetraene(iron).
104 105
) acac = acetylacetonato. ) The value of j0 depended on the water/methanol ratio. 107 ) Liquid mercury. 108 ) Solid mercury. 109 ) Calculated with capacitance value from charging experiment. 110 ) Calculated with capacitance value from relaxation experiment. 111 ) Solution contained Triton X-100. 112 ) Mn(TPP)Cl = Chloro(tetraphenylporphinato)manganese(III). 113 ) PC = Propylene carbonate 106
) For the electrode reaction NiOH+ + 2 e– → Ni + OH–
114
) For the electrode reaction Ni2+ + 2 e– → Ni
115
) For the electrode reaction Ni(AcAc)+ + 2 e– → Ni + AcAc ) Sodium hexaphosphate. 118 ) Standard concentration 1 mM. 119 ) L = tartrate. 120 ) L = acetate. 121 ) L = glycolate. 122 ) THxAP = Tetrahexyl ammonium perchlorate. 123 ) TOAP = Tetraoctyl ammonium perchlorate. 124 ) HMPA = hexamethylphosphoramide. 125 ) Experimental conditions were adjusted to keep the working electrode in the passivated state. 126 ) Calculated with the transfer coefficient and the nitrate concentration only as reported. 127 ) Value obtained after saturating the electrode with hydrogen for 73 hours. 128 ) With an underpotentially deposited coating of Thallium. 129 ) Contrary to theory the value of j00 depends on the concentration ration of the redox components with values ranging from 34. 3 < j00 < 154.2 A cm–2. 130 ) Solution saturated with benzene. 131 ) Solution saturated with toluene. 132 ) The activity of the solution was adjusted to 1. 133 ) The unit F as used throughout this report refers to formality and is equal to M for molarity. 134 ) With an underpotentially deposited coating of thallium. 135 ) The electrode was reduced electrochemically prior to the kinetic measurement. 136 ) Bu = Butyl. 137 ) bipy = bipyridyl complex ligand. 138 ) Electrode prepared in hydrogen. 139 ) Electrode prepared in hydrogen and anodically activated. 140 ) Electrode prepared in air. 141 ) Because the reaction is second order the units are cm4 mol–1 s–1. 142 ) The electrode surface has been modified with adsorbed CO. 143 ) The ratio of the rate constant as observed with the modified electrode at a selected electrode potential is divided by the rate constant observed under the same conditions with an unmodified electrode. 144 ) The electrode surface has been modified with adsorbed ethylene. 145 ) The electrode surface has been modified with adsorbed 2-butene. 146 ) The electrode surface has been modified with adsorbed 1,3-butadiene. 147 ) The electrode surface has been modified with adsorbed 1-octene. 116 117
Landolt-Börnstein New Series IV/9A
5 Exchange current densities
379
148
) The electrode surface has been modified with adsorbed CO. ) en = ethylene diamine. 150 ) dien = diethylenetriamine. 149
) (η5-C5H4SiMe2)2Ti(C≡CSiMe3)2 ) THF = tetrahydrofurane. 153 ) NMP = N-methylpyrrolidone-(2). 154 ) The platinum electrode was modified with an iodine adlayer of the specified symmetry. 155 ) AC = acetate anion. 156 ) PAc = phenylacetic acid anion. 157 ) Pyc = 4-pyridine carboxylic acid anion. 158 ) Cpc = Cyclopentadienyl carboxylic acid anion. 159 ) Depending on the degree of coverage with oxygen the rate constant varied between k0 range between 4.6·10–4 and 2·10–5 cm s–1. 160 ) Depending on the degree of coverage with oxygen the rate constant varied between k0 range between 2.4·10–4 and 1.9·10–5 cm s–1. 161 ) Units: cm2 mol–1 s–1. 151 152
162
) Units: s–1.
163
) Value of j0 depends on selection of part of the current density vs. electrode potential curve.
164
) Pr = Propyl. ) Value obtained after saturating the electrode with hydrogen for 38 hours. 166 ) Average from cathodic and anodic Tafel lines. 167 ) Experimental conditions were adjusted to keep the working electrode in the passivated state. 168 ) Calculated with the transfer coefficient and the nitrate concentration only as reported. 169 ) Value of j0 depends on selection of part of the current density vs. electrode potential curve. 170 ) cperchlorate = 3 M. 171 ) csulfate = 1.5 M. 172 ) Mercury concentration in amalgam 0.1 %. 173 ) Mercury concentration in amalgam 0.32 mM ... 0.1 M. 174 ) See list of symbols. 165
Landolt-Börnstein New Series IV/9A
R1
References 43Phi 47Ran 47Sal 49Boc 50Ger 51Vet 52Con 52Ran1 52Ran2 53Ger2 54Hil 54Lor 55Ber1 55Ger1 55Jor 55Mat 55Mor 55Vie 56Fro1 56Fro2 56Ger 56Mat 56Mor 57Del 57Ger1 57Meh 57Pen 57Rüe 57Vie 58Bar1 58Bau 58Del 58Ger 58Ima 58Lai 58Lor 59Boc 59Hol 59Ima 59Ive 59Kol 59Lor 59Mat1 59Mat2 59Mat3 59Ran 59Sch1 59Tam 60Bau 60Del
Landolt-Börnstein New Series IV/9A
Philbert, G.: J. Chim. Phys. 40 (1943) 157. Randles, J.E.B.: Discuss. Faraday Soc. 1 (1947) 11. Salt, F.W.: Discuss. Faraday Soc. 1 (1947) 169. Bockris, J.O'M., Parsons, R.: Trans. Faraday Soc. 45 (1949) 916. Gerischer, H.: Z. Elektrochem. 54 (1950) 366. Vetter, K.J.: Z. Phys. Chem. (Leipzig) 196 (1951) 360. Conway, B.E.: Electrochemical Data, Amsterdam: Elsevier, 1952. Randles, J.E.B., Somerton, K.W.: Trans. Faraday Soc. 48 (1952) 951. Randles, J.E.B., Somerton, K.W.: Trans. Faraday Soc. 48 (1952) 937. Gerischer, H.: Z. Phys. Chem. 202 (1953) 302. Hillson, P.J.: Trans. Faraday Soc. 50 (1954) 385. Lorenz, W.: Z. Elektrochem. 58 (1954) 912. Berzins, T., Delahay, P.: J. Am. Chem. Soc. 77 (1955) 6448. Gerischer, H.: Z. Elektrochem. 59 (1955) 604. Jordan, J.: Anal. Chem. 27 (1955) 1708. Matsuda, H., Ayabe, Y.: Z. Elektrochem. 59 (1955) 494. Morinaga, K.: J. Chem. Soc. Jpn. Pure Chem. Sect. (Nippon Kagaku Zasshi) 76 (1955) 133. Vielstich, W., Gerischer, H.: Z. Phys. Chem. N. F. 4 (1955) 10. Fronaeus, S., Östman, C.O.: Acta Chem. Scand. 10 (1956) 769. Fronaeus, S.: Acta Chem. Scand. 10 (1956) 1345. Gerischer, H., Staubach, K.-E.: Z. Phys. Chem. N. F. 6 (1956) 118. Matsuda, H., Ayabe, Y.: Bull. Chem. Soc. Jpn. 29 (1956) 134. Morinaga, K.: Bull. Chem. Soc. Jpn. 29 (1956) 793. Delahay, P.: J. Chim. Phys. 54 (1957) 369. Gerischer, H., Tischer, R.P.: Z. Elektrochem. 61 (1957) 1159. Mehl, W., Bockris, J.O'M.: J. Chem. Phys. 27 (1957) 818. Pentland, N., Bockris, J.O'M., Sheldon, E.: J. Electrochem. Soc. 104 (1957) 182. Rüetschi, P., Cahan, B.D.: J. Electrochem. Soc. 104 (1957) 406. Vielstich, W., Delahay, P.: J. Am. Chem. Soc. 79 (1957) 1874. Barker, G.C., Faircloth, R.L., Gardner, A.W.: Nature (London) 181 (1958) 247. Bauer, H.H., Elving, P.: Anal. Chem. 30 (1958) 341. Delahay, P., Trachtenberg, I.: J. Am. Chem. Soc. 80 (1958) 2094. Gerischer, H., Krause, M.: Z. Phys. Chem. N. F. 14 (1958) 184. Imai, H.: J. Sci. Hiroshima Univ. Ser. A Math. Phys. Chem. 22 (1958) 291. Laitinen, H.A., Subcasky, W.J.: J. Am. Chem. Soc. 80 (1958) 2623. Lorenz, W.: Z. Phys. Chem. N. F. 17 (1958) 136. Bockris, J.O'M., Pentland, N.: Trans. Faraday Soc. 55 (1959) 833. Hollnagel, M., Landsberg, R.: Z. Phys. Chem. (Leipzig) 212 (1959) 94. Imai, H.: J. Electrochem. Soc. Jpn. 27 (1959) 55. Ives, D.J.G.: Can. J. Chem. 37 (1959) 213. Kolthoff, I.M., Okinska, Y.: J. Am. Chem. Soc. 81 (1959) 2296. Lorenz, W.: Z. Phys. Chem. N. F. 19 (1959) 377. Mattsson, E., Bockris, J.O'M.: Trans. Faraday Soc. 55 (1959) 1586. Matsuda, H., Ayabe, Y.: Z. Elektrochem. 63 (1959) 1164. Matsuda, H., Oka, S., Delahay, P.: J. Am. Chem. Soc. 81 (1959) 5077. Randles, J.E.B.: Can. J. Chem. 37 (1959) 238. Schuldiner, S.: J. Electrochem. Soc. 106 (1959) 891. Tamamushi, R., Tanaka, N.: Z. Phys. Chem. N. F. 21 (1959) 89. Bauer, H.H., Smith, D.L., Elving, P.J.: J. Am. Chem. Soc. 82 (1960) 2094. Delahay, P., Kleinerman, M.: J. Am. Chem. Soc. 82 (1960) 4509.
R2 60Gie 60Ino 60Los1 60Los2 60Los3 60Mou 60Oki 60Slu 60Str 60Wij3 61Ans 61Bar1 61Bic 61Bro 61Gav 61Gie 61Gok 61Hur1 61Hur2 61Jos 61Kam 61Lor 61Mei 61Mül 61Pam 61Ran 61Reg 61Riu 61She 61Shi 61Smi 61Zin 61deM 62Aga 62Bat 62Beh 62Bon 62Del2 62Del3 62Del4 62Gal 62Ima1 62Ima2 62Jah 62Jor 62Kis 62Kor 62Los1 62Los2
Gierst, L., Cornelissen, R.: Collect. Czech. Chem. Commun. 25 (1960) 3004. Inoue, S., Imai, H.: Bull. Chem. Soc. Jpn. 33 (1960) 149. Loshkarev, M.A., Tomilov, B.I.: Russ. J. Phys. Chem. (English Transl.) 34 (1960) 836; Zh. Fiz. Khim. 34 (1960) 1753. Losev, V.V., Molodov, A.I.: Dokl. Akad. Nauk SSSR 135 (1960) 1432. Losev, V.V., Molodov, A.I.: Dokl. Akad. Nauk SSSR 130 (1960) 111. Moussa, A.A., Sammour, H.M.: J. Chem. Soc. (1960) 2151. Okinaka, Y., Kolthoff, I.M.: J. Am. Chem. Soc. 82 (1960) 324. Sluyters, J.H., Oomen, J.J.C.: Recl. Trav. Chim. Pays Bas 79 (1960) 1101. Stromberg, A.G., Kartushinskaya, A.I.: Zh. Fiz. Khim. 34 (1960) 1684. Wijnen, M.D., Smit, W.M.: Recl. Trav. Chim. Pays Bas 79 (1960) 289. Anson, F.C.: Anal. Chem. 33 (1961) 939. Barker G.C.: Trans. Symp. Electrode Proc. Philadelphia 1959, New York: Wiley, 1961, p. 325. Bicelli, L.P., La Vecchia, A., Graziano, M.: Wadd Tech. Rep. 61-63, Sept. 1961. Brodd, R.J.: J. Res. Natl. Bur. Stand. Sect. A 65 (1961) 275. Gavioli, G., Papoff, P.: Ric. Sci. Parte 2 Sez. A 1 (1961) 193. Gierst, L.: Trans. Symp. Electrode Proc. Philadelphia 1959, New York: Wiley, 1961, p. 109. Gokhshtein, Ya.P., Kao, T.-S.: Zh. Fiz. Khim. 35 (1961) 1699. Hurlen, T.: Acta Chem. Scand. 15 (1961) 621. Hurlen, T.: Acta Chem. Scand. 15 (1961) 630. Joshi, K.M., Mehl, W., Parsons, R.: Trans. Symp. Electrode Proc. Philadelphia 1959, New York: Wiley, 1961, p. 249. Kambara, T., Ishii, T.: Rev. Polarogr. 9 (1961) 30. Lorenz, W., Salié, G.: Z. Phys. Chem. (Leipzig) 218 (1961) 259. Meites, L., Israel, Y.: J. Am. Chem. Soc. 83 (1961) 4903. Müller, W., Lorenz, W.: Z. Phys. Chem. N. F. 27 (1961) 23. Pamfilov, A.V., Lopushanskaya, A.I.: Ukr. Khim. Zh. 27 (1961) 598. Randles, J.E.B.: Trans. Symp. Electrode Proc. Philadelphia 1959, New York: Wiley, 1961, p. 209. Regner, A., Balej, J.: Collect. Czech. Chem. Commun. 26 (1961) 237. Rius, A., Tordesillas, I.M., Sacristan, A.: Electrochim. Acta 4 (1961) 62. Sheinin, A.B., Zinov'ev, V.A., Kheifets, V.L.: Zh. Fiz. Khim. 35 (1961) 513. Shiratori, H.: Denki Kagaku 29 (1961) 765. Smith, D.E.: Ph.D. Thesis, Columbia University, 1961. Zinov'ev, V.A., Sheinin, A.B., Kheifets, V.L.: Zh. Fiz. Khim. 35 (1961) 98. de Mars, R.D.: J. Electrochem. Soc. 108 (1961) 779. Agarwal, H.P.: Aust. J. Chem. 15 (1962) 874. Baticle, A.M.: C. R. Acad. Sci. (Paris) 254 (1962) 668. Behr, B., Dojlido, J., Malyszko, J.: Rocz. Chem. 36 (1962) 725. Bonnemay, M., Costa, M.: Electrochim. Acta 7 (1962) CITCE-meeting. Delahay, P.: Anal. Chem. 34 (1962) 1161. Delahay, P., Aramata, A.: J. Phys. Chem. 66 (1962) 2208. Delahay, P.: Progress in Polarography, Vol. 1, New York: Interscience, 1962. Galus, Z., Adams, R.N.: Am. Chem. Soc. Meeting, 9.-14.09.1962, Atlantic City, NJ, USA. Imai, H.: J. Phys. Chem. 66 (1962) 1744. Imai, H., Delahay, P.: J. Phys. Chem. 66 (1962) 1108. Jahn, D., Vielstich, W.: J. Electrochem. Soc. 109 (1962) 849. Jordan, J., Javick, R.A.: Electrochim. Acta 6 (1962) 23. Kisova, L., Jakesova, M., Fischer, O.: Collect. Czech. Chem. Commun. 27 (1962) 1962. Koryta, J.: Electrochim. Acta 6 (1962) 67. Loshkarev, M.A., Tomilov, B.I.: Russ. J. Phys. Chem. (English Transl.) 36 (1962) 66; Zh. Fiz. Khim. 36 (1962) 132. Losev, V.V., Molodov, A.I.: Electrochim. Acta 6 (1962) 81. Landolt-Börnstein New Series IV/9A
R3 62Mat 62Ran 62Tam 62Tom 63Ada 63Aga1 63Aga2 63Aga3 63Aga4 63Bla 63Bud 63Fio 63Fuz 63Gal 63Gor 63Gos 63Hal 63Ham 63Hus 63Koz 63Los 63Mac 63Mat 63Rot 63Slu 63Smi 63Tam 63Tos 63Wol 64Ara 64Bau 64Boc3 64But1 64Ham1 64Ham2 64Joh 64Lai 64Mak 64Mol 64Slu 65Bie 65But3 65But4 65But5 65Ijz 65Iof 65Koz 65Mat 65Mol1 65Mol2 65Mol3 65Nic 65Rai Landolt-Börnstein New Series IV/9A
Matsuda, H., Ayabe, Y.: Z. Elektrochem. 66 (1962) 469. Randles, J.E.B.: Progress in Polarography 1, New York: Interscience, 1962, p.123. Tamamushi, R., Ishibashi, K., Tanaka, N.: Z. Phys. Chem. N. F. 35 (1962) 209. Tomilov, B.I., Loshkarev, M.A.: Russ. J. Phys. Chem. (English Transl.) 36 (1962) 1027; Zh. Fiz. Khim. 36 (1962) 1753. Adams, R.N.: Rev. Polarogr. 11 (1963) 71. Agarwal, H.P.: J. Electroanal. Chem. 5 (1963) 236. Agarwal, H.P.: J. Electroanal. Chem. 5 (1963) 245. Agarwal, H.P.: Agra Univ. J. Res. Sci. 12 (1963) 93. Agarwal, H.P.: J. Electrochem. Soc. 110 (1963) 237. Blackedge, J., Hush, N.S.: J. Electroanal. Chem. 5 (1963) 435. Budov, G.M., Losev, V.V.: Zh. Fiz. Khim. 37 (1963) 1023. Fiorani, M., Bombi, G.G., Marchetto, M.T.: Chim. Ind. (Milan) 45 (1963) 796. Fuzisawa, T.: Nippon Kagaku Zasshi (J. Chem. Soc. Jpn. Pure Chem. Sect.) 84 (1963) 629. Galus, Z., Adams, R.N.: J. Phys. Chem. 67 (1963) 866. Gorodetskii, V.V., Losev, V.V.: Dokl. Akad. Nauk SSSR 151 (1963) 361. Gossner, K.: Z. Phys. Chem. N. F. 36 (1963) 392. Hale, J.M., Parsons, R.: Trans. Faraday Soc. 59 (1963) 1429. Hamelin, A.: C. R. Acad. Sci. (Paris) 257 (1963) 1709. Hush, N.S., Blackledge, J.: J. Electroanal. Chem. 5 (1963) 420. Kozhevnikova, N.M., Rotinyan, A.L.: Zh. Prikl. Khim. 36 (1963) 1950. Losev, V.V., Molodov, A.I.: Dokl. Akad. Nauk SSSR 148 (1963) 1114. Macero, D.J., Anderson, L.B.: J. Electroanal. Chem. 6 (1963) 221. Matsuda, H., Ayabe, Y., Adachi, K.: Ber. Bunsenges. Phys. Chem. 67 (1963) 593. Rotinyan, A.L., Kozhevnikova, N.M.: Zh. Fiz. Khim. 37 (1963) 1818. Sluyters-Rehbach, M., Sluyters, J.H.: Recl. Trav. Chim. Pays Bas 82 (1963) 535. Smith, D.E.: Anal. Chem. 35 (1963) 610. Tamamushi, R., Tanaka, N.: Z. Phys. Chem. N. F. 39 (1963) 117. Toshima, S., Okinaka, Y., Okaniwa, H.: Denki Kagaku 31 (1963) 854. Wolf, D.: J. Electroanal. Chem. 5 (1963) 186. Aramata, A., Delahay, P.: J. Phys. Chem. 68 (1964) 880. Bauer, H.H.: Aust. J. Chem. 17 (1964) 715. Bockris, J.O’M., Srinivasan, S.: Electrochim. Acta 9 (1964) 31. Butler, J.N., Makrides, A.C.: Trans. Faraday Soc. 60 (1964) 1664. Hamelin, A.: C. R. Acad. Sci. (Paris), Ser. C 259 (1964) 362. Hamelin, A.: Electrochim. Acta 9 (1964) 289. Johansson, R.: Acta Chem. Scand. 18 (1964) 1809. Laitinen, H.A., Eda, K., Nakanishi, M.: Talanta 11 (1964) 321. Makrides, A.C.: J. Electrochem. Soc. 111 (1964) 392. Molodov, A.I., Losev, V.V.: Zh. Fiz. Khim. 38 (1964) 1481. Sluyters-Rehbach, M., Sluyters, J.H.: Recl. Trav. Chim. Pays Bas 83 (1964) 967. Biegler, T., Laitinen, H.A.: Anal. Chem. 37 (1965) 572. Butler, J.N., Barron-Apps, E.A., Meehan, M.L.: Trans. Faraday Soc. 61 (1965) 2509. Butler, J.N., Meehan, M.L.: Trans. Faraday Soc. 61 (1965) 2521. Butler, J.N., Dienst, M.: J. Electrochem. Soc. 112 (1965) 226. Ijzermans, A.B., Sluyters, J.H.: Recl. Trav. Chim. Pays Bas 84 (1965) 751. Iofa, Z.A., Makorova, V.A.: Elektrokhimiya 1 (1965) 230. Kozhevnikova, N.M., Rotinyan, A.L.: Elektrokhimiya 1 (1965) 664. Matthews, D.B.: Ph.D. Thesis, University of Pennsylvania, 1965. Molodov, A.I., Losev, V.V.: Elektrokhimiya 1 (1965) 149. Molodov, A.I., Losev, V.V.: Elektrokhimiya 1 (1965) 53. Molodov, A.I., Losev, V.V.: Elektrokhimiya 1 (1965) 651. Nicholson, R.S.: Anal. Chem. 37 (1965) 1351. Raicheva, S., Andreeva, L.: C. R. Acad. Bulg. Sci. 18 (1965) 1023.
R4 65Sat 65Sri 65Tos 66Bau 66But3 66Chr 66Cos 66Gau 66Gor 66Ham 66Kra1 66Kra2 66Los 66Par2 66Slu 67Bat 67Dir 67Ell 67Far 67Fri 67Gal 67Gor 67Har 67Jai 67Koo1 67Koo2 67Los 67Man 67Thi1 67Thi2 67Tim 67Wei2 68Boc2 68Che 68Cla2 68Gor1 68Gor2 68Gos 68Ham2 68Kov 68Kra 68Lar 68Los 68Moo 68Nec 68Pop 68Ran 68Sal 68Sto 68Tim 68Vij 68Zut
Sathyanarayana, S.: J. Electroanal. Chem. 10 (1965) 119. Srinivasan, V.S., Torsi, G., Delahay, P.: J. Electroanal. Chem. 10 (1965) 165. Toshima, S., Okinaka, Y., Okaniwa, H.: Denki Kagaku 33 (1965) 19. Bauer, H.H., Foo, D.C.S.: Aust. J. Chem. 19 (1966) 1103. Butler, J.N., Meehan,M.L.: Trans. Faraday Soc. 62 (1966) 3524. Christie, J.H., Parry, E.P., Osteryoung, R.A.: Electrochim. Acta 11 (1966) 1525. Cosovic, B., Branica, M.: J. Polarogr. Soc. 12 (1966) 97. Gaur, J.N., Jain, D.S.: Electrochim. Acta 11 (1966) 1661. Gorodetskii, V.V., Losev, V.V.: Elektrokhimiya 2 (1966) 656. Hamelin, A., Valette, G.: J. Chim. Phys. 63 (1966) 1285. Kravtsov, V.I., Chamaev, V.N.: Vestn. Leningr. Univ. 4 (1966) 133. Kravtsov, V.I., Zelensky, M.I.: Elektrokhimiya 2 (1966) 1138. Losev, V.V., Sribny, L.E., Molodov, A.I.: Elektrokhimiya 2 (1966) 1431. Parsons, R., Passeron, E.: J. Electroanal. Chem. 12 (1966) 524. Sluyters-Rehbach, M., Sluyters, J.H.: Electrochim. Acta 11 (1966) 73. Baticle, A.M., Perdu, F.: J. Electroanal. Chem. 13 (1967) 364. Dirkse, T.P., DeWit, D., Shoemaker, R.: J. Electrochem. Soc. 114 (1967) 1196. Elliot, D., Buchanan, G.S.: Anal. Chem. 39 (1967) 1245. Farr, J.P.G., Hampson, N.A.: J. Electroanal. Chem. 13 (1967) 433. Frischmann, J.K., Timnick, A.: Anal. Chem. 39 (1967) 507. Galus, Z., Jeftic, L.: J. Electroanal. Chem. 14 (1967) 415. Gorodetskii, V.V., Losev, V.V.: Elektrokhimiya 3 (1967) 1192. Haruyama, S.: Electrochem. Soc. Jpn. 35 (1967) 62. Jain, D.S., Gaur, J.N.: Electrochim. Acta 12 (1967) 413. Kooijman, D.J., Sluyters, J.H.: Electrochim. Acta 12 (1967) 693. Kooijman, D.J., Sluyters, J.H.: Electrochim. Acta 12 (1967) 1579. Losev, V.V., Molodov, A.I., Gorodetskii, V.V.: Electrochim. Acta 12 (1967) 475. Mannan, R.J.: Ph.D. Thesis, University of Pennsylvania, 1967. Thiele, R., Landsberg, R.: Z. Phys. Chem. 236 (1967) 261. Thiele, R., Landsberg, R.: Z. Phys. Chem. 236 (1967) 95. Timmer, B., Sluyters-Rehbach, M., Sluyters, J.H.: J. Electroanal. Chem. 14 (1967) 181. Weir, W.D., Enke, C.G.: J. Phys. Chem. 71 (1967) 280. Bockris, J.O’M., Mannan, R.J., Damjanovich, A.: J. Chem. Phys. 48 (1968) 1898. Chernenko, V.I., Rysakov, A.A., Pristinskaya, Z.I.: Elektrokhimiya 4 (1968) 519. Clarke, T.G., Hampson, N.A., Lee, J.B., Morley, J.R., Scanlon, B.: Can. J. Chem. 46 (1968) 3437. Gorodetskii, V.V., Mishenina, K.A., Losev, V.V., Grimberg, A.M., Ostrovskii, G.M.: Elektrokhimiya 4 (1968) 46. Gorodetskii, V.V., Fedortsov, L.I., Losev, V.V.: Elektrokhimiya 4 (1968) 967. Gossner, K., Mansfeld, F.: Z. Phys. Chem. N. F. 58 (1968) 24. Hampson, N.A., Larkin, D.: J. Electroanal. Chem. 18 (1968) 401. Kovalenko, P.N., Tsyganov, E.M., Estifeev, M.M.: Elektrokhimiya 4 (1968) 828. Kravtsov, V.I., Chamaev, V.N.: Vestn. Leningr. Univ. 10 (1968) 80. Larionov, O.V., Durdin, Ya.V.: Elektrokhimiya 4 (1968) 630. Losev, V.V., Pchel'nikov, A.P.: Elektrokhimiya 4 (1968) 264. Moorhead, E.D., Frame II, G.M.: J. Phys. Chem. 72 (1968) 3684. Nechaev, E.A., Bek, R.Yu., Kudryavstev, N.T.: Elektrokhimiya 4 (1968) 545. Popova, L.N., Stromberg, A.G.: Elektrokhimiya 4 (1968) 1147. Randles, J.E.B., Whitehouse, D.R.: Trans. Faraday Soc. 64 (1968) 1376. Salié, G.: Z. Phys. Chem. (Leipzig) 239 (1968) 411. Stonehart, P.: Electrochim. Acta 13 (1968) 1789. Timmer, B., Sluyters-Rehbach, M., Sluyters, J.H.: J. Electroanal. Chem. 19 (1968) 73. Vijh, A.K.: J. Phys. Chem. 72 (1968) 1148. Zutic, V., Branica, M.: J. Electroanal. Chem. 19 (1968) 259. Landolt-Börnstein New Series IV/9A
R5 69Bar2 69Bar3 69Bro2 69Cus 69Dau 69Dek 69Gal 69Gor 69Gri2 69Ham3 69Nik 69Nor 69Pun 69Suz 69Tan1 69Tan2 69Tka 69Wil 69Yam 69deL 69van 70Ans 70Arm 70Avd 70Aya 70Bar3 70Bar4 70Bar5 70Bon 70Bre 70Cas 70Cla 70Eis 70Gau 70Ham 70Her 70Hub 70Kap 70Kin 70Lau 70Los 70Mak 70Mou 70Nis 70Rot1 70Sal1 70Sal2 70Sch 70Sha1 Landolt-Börnstein New Series IV/9A
Bartelt, H., Landazury, S.: J. Electroanal. Chem. 22 (1969) 105. Bartelt, H., Skilandat, H.: J. Electroanal. Chem. 23 (1969) 407. Brodd, R.J.: J. Electrochem. Soc. Jpn. 37 (1969) 181. Cushing, J.P., Hubbard, A.T.: J. Electroanal. Chem. 23 (1969) 183. Daum, P.H., Enke, C.G.: Anal. Chem. 41 (1969) 653. Dekker, B.G., Sluyters-Rehbach, M., Sluyters, J.H.: J. Electroanal. Chem. 21 (1969) 137. Galizzioli, D.: Thesis, University of Milan, 1969. Gorodetskii, V.V., Alenina, A.G., Losev, V.V.: Elektrokhimiya 5 (1969) 227. Grilikhes, M.S., Krasikov, B.S., Solotskaya, N.S.: Elektrokhimiya 5 (1969) 859. Hampson, N.A., Larkin, D.: Trans. Faraday Soc. 65 (1969) 1660. Niki, K.K., Hackerman, N.: J. Phys. Chem. 73 (1969) 1023. Norakidze, I.G., Kazakov, V.A., Vagramyan, A.T.: Elektrokhimiya 5 (1969) 970. Punning, K., Past, V.: Uch. Zap. Tartu. Gos. Univ. 235 (1969) 35. Suzuki, J.: Bull. Chem. Soc. Jpn. 42 (1969) 3487. Tanaka, N., Yamada, A.: Electrochim. Acta 14 (1969) 491. Tanaka, N., Aoki, Y., Yamada, A.: Electrochim. Acta 14 (1969) 1155. Tkachik, Z.A., Gorbunova, K.M., Sevastyanov, E.S.: Elektrokhimiya 5 (1969) 1125. Wilde, B.E., Hodge, F.G.: Electrochim. Acta 14 (1969) 619. Yamada, A., Tanaka, N.: Bull. Chem. Soc. Jpn. 42 (1969) 1600. de Leeuwe, R., Sluyters-Rehbach, M., Sluyters, J.H.: Electrochim. Acta 14 (1969) 1183. van Leeuwen, H.P., Kooijman, D.J., Sluyters-Rehbach, M., Sluyters, J.H.: J. Electroanal. Chem. 23 (1969) 475. Anson, F.C., Rathjen, N., Frisbee, R.F.: J. Electrochem. Soc. 117 (1970) 477. Armstrong, R.D., Henderson, M.: J. Electroanal. Chem. 26 (1970) 381. Avdeyev, D.K., Aleksandrov, G.V., Durdin, Y.V.: Proc. 2nd Symposium on Double Layer and Adsorption on Solid Electrodes, Tartu, 1970, p. 58. Ayabe, Y., Matsuda, H.: Abstracts of the 16th Meeting of the Polarographic Society of Japan, 1970, p. 51. Bartelt, H., Skilandat, H.: J. Electroanal. Chem. 25 (1970) 79. Bartelt, H., Skilandat, H.: J. Electroanal. Chem. 24 (1970) 207. Bartelt, H., Skilandat, H.: J. Electroanal. Chem. 24 (1970) 407. Bonewitz, R.A., Schmidt, G.M.: J. Electrochem. Soc. 117 (1970) 1367. Breckenridge, J.H., Harris, W.E.: Can. J. Chem. 48 (1970) 1934. Casadio, S., Orlandini, F.: J. Electroanal. Chem. 26 (1970) 91. Clark, J.T., Hampson, N.A.: J. Electroanal. Chem. 26 (1970) 307. Eisenberg, M., Kuppinger, R.E., Wong, K.M.: J. Electrochem. Soc. 117 (1970) 577. Gaur, J.N., Goswami, N.K.: Electrochim. Acta 15 (1970) 519. Hampson, N.A., Larkin, D.: Anal. Chem. 42 (1970) 1823. Herbelin, J.M., Andersen, T.N., Eyring, H.: Electrochim. Acta 15 (1970) 1455. Hubbard, A.T., Anson, F.C.: Electroanalytical Chemistry, Vol. 4, Bard, A.J. (ed.), New York: Marcel Dekker, 1970. Kapoor, R.C., Mathur, K.C.K.: Indian J. Chem. 8 (1970) 168. Kinard, W.F., Philp jr., R.H.: J. Electroanal. Chem. 25 (1970) 373. Lau, A.L.Y. Hubbard, A.T.: J. Electroanal. Chem. 24 (1970) 237. Losev, V.V., Pchel'nikov, A.P.: Elektrokhimiya 6 (1970) 41. Maki, N., Yamamoto, K.: Bull. Chem. Soc. Jpn. 43 (1970) 2450. Moussa, A.A., Abou Romia, M.M., El-Taib Heakal, F.: Electrochim. Acta 15 (1970) 1391. Nishihara, C., Matsuda, H.: J. Electroanal. Chem. 28 (1970) 17. Rotinyan, A.L., Kilimnin, A.B., Levin, E.D.: Proc. 2nd Symposium on Double Layer and Adsorption on Solid Electrodes, Tartu, 1970, p. 321. Salie, G.: Z. Phys. Chem. (Leipzig) 244 (1970) 1. Salie, G.: Z. Phys. Chem. (Leipzig) 240 (1970) 421. Schleinitz, K.D., Landsberg, R., Lowis of Menar, G.V.: J. Electroanal. Chem. 28 (1970) 287. Sharma, L.R., Dutt, J.: Indian J. Chem. 8 (1970) 170.
R6 70Suz 70Ten 70Tho 70Tim 70Yam 70Zut 70deK 70deL 71Aga 71Aya 71Bar1 71Bar2 71Bar3 71Bar4 71Bie 71Che 71Gor 71Ham2 71Iss 71Lau 71Nik 71Ruz 71Sad 71Sip 71deK 72Ang 72Bek 72Haw 72Hue 72Iss1 72Iss2 72Iss3 72Lai 72Ree 72Roh 72Stu 72Tan 73Cap 73Gal 73Pol 73Rod 74Aga 75Saj1 75Saj2 76Wea 78Ber 78Eve 78Sat 78Web
Suzuki, J.: Bull. Chem. Soc. Jpn. 43 (1970) 755. Tenno, T.T., Slet, V.A., Palm, U.V.: Proc. 2nd Symposium on Double Layer and Adsorption on Solid Electrodes, Tartu, 1970, p. 361. Thomas, N.T., Nobe, K.: J. Electrochem. Soc. 117 (1970) 622. Timmer, B., Sluyters-Rehbach, M., Sluyters, J.H.: J. Electroanal. Chem. 24 (1970) 287. Yamada, A., Tanaka, N.: Sci. Rep. Tohoku Univ. Ser.1 53 (1970) 110. Zutic, V., Branica, M.: J. Electroanal. Chem. 28 (1970) 187. de Kreuk, C.W., Sluyters-Rehbach, M., Sluyters, J.H.: J. Electroanal. Chem. 28 (1970) 391. de Leeuwe, R., Timmer, B., Sluyters-Rehbach, M., Sluyters, J.H.: J. Electroanal. Chem. 28 (1970) 105. Agarwal, H.P.: Electrochim. Acta 16 (1971) 1395. Ayabe, Y., Matsuda, H.: Denki Kagaku 39 (1971) 635. Bartelt, H.: Electrochim. Acta 16 (1971) 307. Bartelt, H.: Electrochim. Acta 16 (1971) 629. Bartelt, H., Prügel, M.: Electrochim. Acta 16 (1971) 1815. Baric, A.: Ph.D. Thesis, University of Zagreb, 1971. Biegler, T., Gonzales, E.R., Parsons, R.: Collect. Czech. Chem. Commun. 36 (1971) 414. Cheh, H.Y., Sard, R.: J. Electrochem. Soc. 118 (1971) 1737. Gorodetskii, V.V., Losev, V.V.: Elektrokhimiya 7 (1971) 631. Hampson, N.A., Lee, J.B., Morley, J.R.: Electrochim. Acta 16 (1971) 637. Issa, I.M., Ghoneim, M.M., El Samahy, A.A., Tharwat, M.: Electrochim. Acta 16 (1971) 1655. Lau, A.L.Y., Hubbard, A.T.: J. Electroanal. Chem. 33 (1971) 77. Niki, K., Okuda, Y., Tomonari, T., Buck, E., Hackerman, N.: Electrochim. Acta 16 (1971) 487. Ruzic, I., Baric, A., Branica, M.: J. Electroanal. Chem. 29 (1971) 411. Sadek, H., Issa, R.M., Abd-El-Nabey, B.A.: Electrochim. Acta 16 (1971) 401. Sipos, L., Jeftic, Lj., Branica, M., Galus, Z.: J. Electroanal. Chem. 32 (1971) 35. de Kreuk, C.W., Sluyters-Rehbach, M., Sluyters, J.H.: J. Electroanal. Chem. 33 (1971) 267. Angell, D.H., Dickinson, T.: J. Electroanal. Chem. 35 (1972) 55. Bek, R.Yu., Pautov, V.N., Lifshits, A.S.: Izv. Sib. Otd. Akad. Nauk SSSR Ser. Khim. Nauk (1972) 22. Hawkridge jr., F.M., Bauer, H.H.: Anal. Chem. 44 (1972) 364. Huebert, B.J., Smith, D.E.: Anal. Chem. 44 (1972) 1179. Issa, I.M., Tharwat, M.: Electrochim. Acta 17 (1972) 343. Issa, I.M., Tharwat, M., Elewady, Y.A.: Electrochim. Acta 17 (1972) 1065. Issa, I.M., Ghoneim, M.M., El Samahy, A.A., Tharwat, M.: Electrochim. Acta 17 (1972) 1251. Lai, C.-H., Hubbard, A.T.: Inorg. Chem. 11 (1972) 2081. Reeves, R.M., Sluyters-Rehbach, M., Sluyters, J.H.: J. Electroanal. Chem. 34 (1972) 69. Rohko, T., Kogoma, M., Aoyagui, S.: J. Electroanal. Chem. 38 (1972) 45. Stulikova, M., Vydra, F.: J. Electroanal. Chem. 38 (1972) 349. Tanaka, N., Tomita, T., Yamada, A.: Bull. Chem. Soc. Jpn. 45 (1972) 940. Capon, A., Parsons, R.: J. Electroanal. Chem. 46 (1973) 215. Galizzioli, D., Trasatti, S.: J. Electroanal. Chem. 44 (1973) 367. van der Pol, F., Sluyters-Rehbach, M., Sluyters, J.H.: J. Electroanal. Chem. 45 (1973) 377. Rodgers, R.S., Anson, F.C.: J. Electroanal. Chem. 42 (1973) 381. Agarwal, H.P., Qureshi, S.: Electrochim. Acta 19 (1974) 607. Saji, T., Aoyagui, S.: J. Electroanal. Chem. 63 (1975) 31. Saji, T., Yamada, T., Aoyagui, S.: J. Electroanal. Chem. 61 (1975) 147. Weaver, M.J., Anson, F.C.: Inorg. Chem. 15 (1976) 1871. Bernstein, C., Heindrichs, A., Vielstich, W.: J. Electroanal. Chem. 87 (1978) 81. Everett, K.G., Drew, L.A., Ericson, S.J., Schmid, G.M.: J. Electrochem. Soc. 125 (1978) 389. Satterberg, T.L., Weaver, M.J.: J. Phys. Chem. 82 (1978) 1784. Weber, J., Samec, Z., Marecek, V.: J. Electroanal. Chem. 89 (1978) 271. Landolt-Börnstein New Series IV/9A
R7 80Bar1 80Bar3 80Ber 83Iwa 83Vie 84Bal 84Bar2 84Gro 84Guy 84Li 85Dur 85Gen 85Iwa 85Li 85Opa 86Ham 86McM 86Opa 87Hun 87Zha 88Boc 88Wip 89Chu 89Rod 90Gra 91Bar2 91Cha 91Cur 91Kan 92Faw1 92Faw2 92Saf 93Faw 93Gao 93Mu 93Win 95Ale 95Che 95Hec1 95Hec2 95Urb 96Boc 96Mar 96Tor 96Win 97Faw 97Krs
Landolt-Börnstein New Series IV/9A
Barr, S., Guyer, K., Weaver, M.J.: J. Electroanal. Chem. 111 (1980) 41. Baranski, A.S., Fawcett, W.R.: J. Chem. Soc. Faraday Trans. 1 76 (1980) 1962. Bernstein, C., Vielstich, W.: Proc. 3rd Symp. Electrode Processes, Boston 1979, The Electrochemical Society (ed.), Princeton: The Electrochemical Society, 1980, p. 350. Iwasita, T., Schmickler, W., Herrmann, J., Vielstich, W.: J. Electrochem. Soc. 130 (1983) 2026. Vielstich, W.: Electrochemical Society Meeting, San Francisco, 1983, Ext. Abstr. 815. Baldwin, R.P., Ravichandran, K., Johnson, R.K.: J. Chem. Educ. 61 (1984) 820. Barr, S.W., Weaver, M.J.: Inorg. Chem. 23 (1984) 1657. Gross, M., Jordan, J.: Pure Appl. Chem. 56 (1984) 1095. Guyer, K.L., Weaver, M.J.: Inorg. Chem. 23 (1984) 1664. Li, T.-T., Liu, H.Y., Weaver, M.J.: J. Am. Chem. Soc. 106 (1984) 1233. Durliat, H., Delorme, P., Comtat, M.: Electrochim. Acta 30 (1985) 1071. Gennett, T., Milner, D.F., Weaver, M.J.: J. Phys. Chem. 89 (1985) 2787. Iwasita, T., Schmickler, W., Schultze, J.W.: Ber. Bunsenges. Phys. Chem. 89 (1985) 138. Li, T.T.-T., Weaver, M.J.: Inorg. Chem. 24 (1985) 1882. Opallo, M., Kapturkiewicz, A.: Electrochim. Acta 30 (1985) 1301. Hamelin, A., Weaver, M.J.: J. Electroanal. Chem. 209 (1986) 109. McManis, G.E., Golovin, M.N., Weaver, M.J.: J. Phys. Chem. 90 (1986) 6563. Opallo, M.: J. Chem. Soc. Faraday Trans. 1 82 (1986) 339. Hung, N.C., Nagy, Z.: J. Electrochem. Soc. 134 (1987) 2215. Zhang, X., Yang, H., Bard, A.J.: J. Am. Chem. Soc. 109 (1987) 1916. Bochmann, H.G., Vielstich, W.: Electrochim. Acta 33 (1988) 805. Wipf, D.O., Kristensen, E.W., Deakin, M.R., Wightman, R.M.: Anal. Chem. 60 (1988) 306. Chu, D., Tryk, D., Gervasio, D., Yeager, E.B.: J. Electroanal. Chem. 272 (1989) 277. Rodes, A., Feliu, J., Aldaz, A.: J. Electroanal. Chem. 271 (1989) 127. Grampp, G., Kapturkiewicz, A., Jaenicke, W.: Ber. Bunsenges. Phys. Chem. 94 (1990) 439. Baranski, A.S., Winkler, K., Fawcett, W.R.: J. Electroanal. Chem. 313 (1991) 367. Chang, S.-C., Lau, S.-Y., Schardt, B.C., Weaver, M.J.: J. Phys. Chem. 95 (1991) 4787. Curtiss, L.A., Halley, J.W., Hautmann, J., Hung, N.C., Nagy, Z., Rhee, Y.-J.: J. Electrochem. Soc. 138 (1991) 2032. Kaneko, H., Nozaki, K., Wada, Y., Aoki, T., Negishi, A., Kamimoto, M.: Electrochim. Acta 36 (1991) 1191. Fawcett, W.R., Opallo, M.: J. Phys. Chem. 96 (1992) 2920. Fawcett, W.R., Opallo, M.: J. Electroanal. Chem. 331 (1992) 815. Safford, L.K., Weaver, M.J.: J. Electroanal. Chem. 331 (1992) 857. Fawcett, W.R., Fedurco, M.: J. Phys. Chem. 97 (1993) 7075. Gao, Z.Q., Bobacka, J., Ivaska, A.: Electrochim. Acta 38 (1993) 379. Mu, X.H., Schultz, F.A.: J. Electroanal. Chem. 353 (1993) 349. Winkler, K., Baranski, A.: J. Electroanal. Chem. 346 (1993) 197. Alehashem, S., Chambers, F. J.W., Strojek, J.W., Swain, G.M., Ramesham, R.: Anal. Chem. 67 (1995) 2812. Chen, P., Fryling, M.A., McCreery, R.L.: Anal. Chem. 67 (1995) 3115. Hecht, M., Fawcett, W.R.: J. Electroanal. Chem. 396 (1995) 473 Hecht, M., Fawcett, W.R.: J. Phys. Chem. 99 (1995) 1311. Urbanczyk, A., Debek, E., Kalinowski, M.K.: J. Electroanal. Chem. 389 (1995) 141. Bockris, J.O'M., Kim, J.: J. Electrochem. Soc. 143 (1996) 3801. Martin, H.B., Argoitia, A., Landau, U., Anderson, A.B., Angus, J.C.: J. Electrochem. Soc. 143 (1996) L133. Torres, L.M., Gil, A.F., Galicia, L., Gonzalez, I.: J. Chem. Educ. 73 (1996) 808. Winkler, K., Baranski, A.S., Fawcett, W.R.: J. Chem. Soc. Faraday Trans. 92 (1996) 3899. Fawcett, W.R.: Electrochim. Acta 42 (1997) 833. Krstajic, N.V., Grgur, B.N., Mladenovic, N.S., Vojnovic, M.V., Jaksic, M.M.: Electrochim. Acta 42 (1997) 323.
R8 97Mar 97Per 98Evs2
98Kit 98Per 98Ple 99Evs 00Gra 00Jak 01Liu 02Fer1 02Fer2 02Ste 03Ort
Markovic, N.M., Grgur, B.N., Ross, P.N.: J. Phys. Chem. B 101 (1997) 5405. Perez, J., Villullas, H.M., Gonzalez, E.R.: J. Electroanal. Chem. 435 (1997) 179. Evstefeeva, Yu.E., Krotova, M.D., Pleskov, Yu.V., Mazin, V.M., Elkin, V.V., Mishuk, V.Y., Varnin, V.P., Teremetskaya, I.G.: Sov. Electrochem. (English Transl.) 34 (1998) 1352; Elektrokhimiya 34 (1998) 1171. Kitamura, F., Nanbu, N., Ohsaka, T., Tokuda, K.: J. Electroanal. Chem. 456 (1998) 113. Perez, J., Gonzalez, E.R., Villullas, H.M.: J. Phys. Chem. B 102 (1998) 10931. Pleskov, Y.V., Evstefeeva, Y.E., Krotova, M.D., Elkin, V.V., Mazin, V.M., Mishuk, V.Y., Varnin, V.P., Teremetskaya, I.G.: J. Electroanal. Chem. 455 (1998) 139. Evstefeeva, Yu.E., Krotova, M.D., Pleskov, Y.V., Laptev, V.A.: Sov. Electrochem. (English Transl.) 35 (1999) 132; Elektrokhimiya 35 (1999) 138. Granger, M.C., Witek, M., Xu, J.S., Wang, J., Hupert, M., Hanks, A., Koppang, M.D., Butler, J.E., Lucazeau, G.: Anal. Chem. 72 (2000) 3793. Jaksic, J.M., Vojnovic, M.V., Krstajic, N.V.: Electrochim. Acta 45 (2000) 4151. Liu, X., Liu, K., Cheng, G., Dong, S.: J. Electroanal. Chem. 510 (2001) 103. Ferro, S., De Battisti, A.: Electrochim. Acta 47 (2002) 1641. Ferro, S., De Battisti, A.: Phys. Chem. Chem. Phys. 4 (2002) 1915. Stein, T., Lang, H., Holze, R.: J. Electroanal. Chem. 520 (2002) 163. Ortiz, M.E., Núñez-Vergara, L.J., Squella, J.A.: J. Electroanal. Chem. 549 (2003) 157.
Landolt-Börnstein New Series IV/9A
380
5 Exchange current densities
Table 5.2. Exchange current densities and rate constants in aqueous systems at miscellaneous surfaces. Solution
Bronzes Na0.9WO3
0.5 M H2SO4/H2O Fe(CN)36 – /4 –
RT
29
CP
69Voj
Na0.7WO3
0.5 M H2SO4/H2O
Fe(CN)36 – /4 –
RT
23
CP
69Voj
Na0.5WO3
0.5 M H2SO4/H2O Fe(CN)36 – /4 –
RT
15
CP
69Voj
Lead oxide (PbO2)
5 M H2SO4/H2O
Pb4+/2+
25
3.2·10–4
IP
68Agu
Tin oxide (SnO2), In-doped
0.24 M cacodylic acid/H2O, pH=7 0.24 M cacodylic acid/H2O, pH=7 0.24 M cacodylic acid/H2O, pH=7 0.24 M cacodylic acid/H2O, pH=7
horse heart cytochrome c (r), 38 μM horse heart cytochrome c (r), 73 μM horse heart cytochrome c (r), 73 μM horse heart cytochrome c (r), 300 μM
22
4.9·10–3
CV
82Bow 4)
22
1.7·10–3
CV
82Bow
22
1·10–4
DCVA
82Bow
22
8.1·10–4
CV
82Bow
O2 (r), p=1 atm O2 (r), p=1 atm O2 (r), p=1 atm O2 (r), p=1 atm
600 700 800 900
4.2·10–3 3.7·10–3 1.8·10–3 4.4·10–3
CV; IP CV; IP CV; IP CV; IP
05Co 05Co 05Co 05Co
LaSrMnO3 solid electrode 5 YSZ ) solid electrode (ZrO2+Y2O3) solid electrode solid electrode
Educt, product, concentration 1)
j0, j00 or k cș 2) T Method 3) Ref. [°C] [A cm–2 or cm–1]
Electrode
1
) The educt/reacting species for the charge transfer reaction to which j0 is referring to is stated only if it is not already given by the composition of the electrolyte solution. If the concentrations of the reactants are given in addition the exchange current density j0 will be stated subsequently. The arrangement of species identifies the reaction as a reduction or an oxidation. In the absence of specific designations of the reaction product (e.g. reactions involving complex organometallic compounds) the type of reaction is designated (r) or (o) indicating a reduction or oxidation. 2 ) If no concentration of the educt is given the standard exchange current density j00 is stated. Values of k ș are c printed in italics. 3 ) CP = current-potential curves; CV = cyclic voltammetry; DCVA = derivative cyclic voltabsorptometry; IP = impedance method. See also list of symbols. 4 ) The unexpected dependence of the rate constant on the reactant concentration was tentatively assigned to traces of impurities. 5 ) YSZ = Y2O3-stabilized ZrO2
Landolt-Börnstein New Series IV/9A
R1
References 68Agu 69Voj 82Bow 05Co
Landolt-Börnstein New Series IV/9A
Aguf, I.A.: Elektrokhimiya 4 (1968) 1130. Vojnovic, M.V., Sepa, D.B.: J. Chem. Phys. 51 (1969) 5344. Bowden, E.F., Bancroft, E.E., Blount, H.N., Chlebowski, J.F., Hawkridge, F.M., Thorpe, C.: J. Am. Chem. Soc. 104 (1982) 7641. Co, A.C., Xia, S.J., Birss, V.I.: J. Electrochem. Soc. 152 (2005) A570.
5 Exchange current densities
381
Table 5.3. Exchange current densities in molten salt electrolyte systems. j0, j00 or k cș 3) Method Ref. –2 –1 9 [A cm or cm s ] )
Electrode 1) Electrolyte
Educt, product, T concentration 2) [°C]
Aluminum 66mol%AlCl3 +20mol%NaCl (Al) +14mol%KCl Bismuth eutectic of LiCl+KCl (Bi) eutectic of LiCl+KCl eutectic of LiCl+KCl Cadmium eutectic of LiCl+KCl (Cd)(Hg) eutectic of LiNO3, NaNO3, KNO3+0.02 mol% KCl eutectic of LiCl+KCl eutectic of LiCl+KCl
Al3+, (r)
217
0.86
Bi2+ Bi0/3+ Bi3+/0 Cd2+ Cd2+
450 450 450 450 156
8 8 5.7·10–3 210 0.53
PS PS PS GD FR
60Lai2 61Lai 70Bek 60Lai2 58Bar1
Cd2+ Cd2+
450 450
210 210
60Lai2 61Lai
Cd2+
450 450
1.8·10–3 0.052
PS GD, PS IP CV
175 800 450 450 450 156
8.6·10–6 3.1·10–4 1.2·10–3 0.01 30 1.4
CV IP IP GD GD FR
84Gro 70Bek 70Bek 60Lai2 61Lai 58Bar1
Mn2+/0
1450
0.298
IP
68Bul
Mn2+/0
1450
0.334
IP
68Bul
Mn2+/0
1450
0.238
IP
68Bul
Mn2+/0
1450
0.436
IP
68Bul
Mn2+/0
1450
0.890
IP
68Bul
Mn2+/0
1450
0.415
IP
68Bul
Mn2+/0
1450
0.550
IP
68Bul
Carbon
eutectic of LiCl+KCl eutectic of LiCl+KCl
NaCl-AlCl3 molten KCl+NaCl molten KCl+NaCl eutectic of LiCl+KCl eutectic of LiCl+KCl eutectic of LiNO3, NaNO3, KNO3+0.02 mol% KCl Manganese 41.5% CaO+51.8% Al2O3 +6.7% MgO (Mn) +0.22% MnO 41.5% CaO+51.8% Al2O3 +6.7% MgO +0.31% MnO 41.5% CaO+51.8% Al2O3 +6.7% MgO +0.52% MnO 41.5% CaO+51.8% Al2O3 +6.7% MgO +0.52% MnO 41.5% CaO+51.8% Al2O3 +6.7% MgO +0.52% MnO 41.5% CaO+51.8% Al2O3 +6.7% MgO +0.58% MnO 41.5% CaO+51.8% Al2O3 +6.7% MgO+0.8% MnO (C) Lead (Hg)
Landolt-Börnstein New Series IV/9A
ClO 2+ /ClO 2 Cl–/Cl2 2+/0
Pb Pb2+/0 Pb2+/0 Pb2+/0, 1 M Pb2+/0
71Hof
70Bek 84Gro
382
5 Exchange current densities
Electrode 1) Electrolyte
Mn
Mercury (Hg) Nickel (Ni) (Ni)(Hg)
Platinum (Pt)
Silver (Ag)
41.5% CaO+51.8% Al2O3 +6.7% MgO +1.43% MnO 41.5% CaO+51.8% Al2O3 +6.7% MgO +1.72% MnO 27% LiNO3 +18% NaNO3 +55% KNO3 eutectic of LiCl+KCl eutectic of LiCl+KCl 27% LiNO3 +18% NaNO3+55% KNO3 eutectic of LiCl+KCl eutectic of LiCl+KCl eutectic of LiCl+KCl eutectic of LiCl+KCl eutectic of LiCl+KCl eutectic of LiCl+KCl eutectic of LiCl+KCl eutectic of LiCl+KCl eutectic of LiCl+KCl eutectic of LiCl+KCl eutectic of LiCl+KCl eutectic of LiCl+KCl eutectic of LiCl+KCl eutectic of LiCl+KCl eutectic of LiCl+KCl eutectic of LiCl+KCl eutectic of LiCl+KCl eutectic of LiCl+KCl eutectic of LiCl+KCl eutectic of LiCl+KCl eutectic of LiCl+KCl 27wt% LiNO3 +18wt% NaNO3 +55wt% KNO3 eutectic of LiCl+KCl eutectic of LiCl+KCl eutectic of LiCl+KCl eutectic of LiCl+KCl eutectic of LiCl+KCl eutectic of LiCl+KCl eutectic of LiCl+KCl
Educt, product, T concentration 2) [°C]
j0, j00 or k cș 3) Method Ref. –2 –1 9 [A cm or cm s ] )
Mn2+/0
1450
0.650
IP
68Bul
Mn2+/0
1450
0.695
IP
68Bul
Ni2+/0
140
0.0042
IP
55Ran
Ni2+/0 Ni2+/0 Ni2+/0
450 450 140
110 110 0.0062
GD GD IP
60Lai2 61Lai 55Ran
Pb2+ Ni2+ Co2+ Cd2+/0 Zn2+/0 Pt2+/0 Pt2+/0 Pt2+/0 Pt2+/0 Pt2+/0 Pt2+/0 Pt2+/0 Pt2+/0 Pt2+/0 Pt2+/0 Pt2+/0 Pt2+/0 Pt2+/0 V3+/2+
450 450 450 450 450 450 450 450 450 450 450 450 450 450 450 450 450 450 450
172 172 172 31.8 31.8 40 40 1.32·10–2 1.76·10–2 ~3·10–2 ~3·10–2 1.5·10–2 1.3·10–2 1.7·10–2 1.3·10–2 1.7·10–2 1.49·10–2 1.3·10–2 30
IP IP IP IP IP GD GD IP 4) IP 5) FR FD IP IP IP IP IP CS IP PS
57Lai 57Lai 57Lai 57Lai 57Lai 60Lai2 61Lai 72Hil1 72Hil1 72Hil2 72Hil2 72Hil2 72Hil2 4) 72Hil2 5) 72Hil2 6) 72Hil2 7) 72Hil3 8) 72Hil3 60Lai2 4)
Ag+ Ag/Ag+ Ag/Ag+
450 410 120
190 7·10–4 2·10–2
GD IP IP
60Lai2 59Hil 59Hil
Ag+ Ag+ Ag+ Ag+ Ag+ Ag+ Ag+
450 450 450 450 450 450 450
IP IP FR FD IP IP IP
72Hil1 4) 72Hil1 5) 72Hil2 72Hil2 72Hil2 72Hil2 4) 72Hil2 5)
1.35·10–2 2.04·10–2 ~0.1 ~0.1 0.17 0.13 0.02·10–2
Landolt-Börnstein New Series IV/9A
5 Exchange current densities
Electrode 1) Electrolyte
Titanium (Ti) Vanadium (V) Yttrium (Y) Zinc (Zn)
Educt, product, T concentration 2) [°C]
eutectic of LiCl+KCl eutectic of LiCl+KCl eutectic of LiCl+KCl
Ag+ Ag+ Ag+
450 450 450
eutectic of LiCl+KCl
Ti2+/Ti3+
400
eutectic of LiCl+KCl
V3+/2+
450
eutectic of LiCl+KCl
Zn2+
450
eutectic of LiCl+KCl eutectic of LiCl+KCl
Zn2+ Zn2+
450 450
eutectic of LiCl+KCl
Zn2+
450
383
j0, j00 or k cș 3) Method Ref. –2 –1 9 [A cm or cm s ] ) 0.19·10–2 0.67·10–2 ~0.115
IP IP CS
72Hil2 6) 72Hil2 7) 72Hil3
IP
59Hil
PS
60Lai2
0.3
GD
60Lai2
0.4 150
PS GD, PS IP
60Lai2 61Lai
0.9 30
0.19
70Bek
1
) The term (Hg) denotes an amalgam electrode.
2
) The educt/reacting species for the charge transfer reaction to which j0 is referring to is stated only if it is not already given by the composition of the electrolyte solution. If the concentration of the educt is given in addition the exchange current density j0 will be stated. ) If no concentration of the educt is given the standard exchange current density j00 is stated. Values referring to k cș are marked (k). 4 ) The electrode was a flat microelectrode. 5 ) The electrode was a hemispherical microelectrode. 6 ) Flat microelectrode, complex plane analysis. 7 ) Hemispherical microelectrode, complex plane analysis. 8 ) Wire microelectrode. 9 ) CS = coulostatic method, CV = cyclic voltamogram, FD = Faradaic distortion method, FR = Faradaic rectification, GD = galvanostatic double pulse method, IP = impedance method, PS = potential step method. See also list of symbols. 3
Landolt-Börnstein New Series IV/9A
R1
References 55Ran 57Lai 58Bar1 59Hil 60Lai2 61Lai 68Bul 70Bek 71Hof 72Hil1 72Hil2 72Hil3 84Gro
Landolt-Börnstein New Series IV/9A
Randles, J.E.B., White, W.: Z. Elektrochem. 59 (1955) 666. Laitinen, H.A., Gaur, H.C.: J. Electrochem. Soc. 104 (1957) 730. Barker, G.C., Faircloth, R.L., Gardner, A.W.: Nature (London) 181 (1958) 247. Hill, D.L., Hills, G.J., Young, L., Bockris, J. O'M.: J. Electroanal. Chem. 1 (1959/60) 79. Laitinen, H.A., Tischer, R.P., Roe, D.K.: J. Electrochem. Soc. 107 (1960) 546. Laitinen, H.A., Tischer, R., Roe, D.K.: Trans. Symp. Electrode Proc. Philadelphia 1959, New York: Wiley, 1961, p. 185. Buler, P.I., Nikitin, Yu.P.: Elektrokhimiya 4 (1968) 330. Bek, R.Yu., Lifshits, A.S.: Izv. Sib. Otd. Akad. Nauk SSSR, Ser. Khim. Nauk (1970) 53. Hoff, H.: Electrochim. Acta 16 (1971) 1357. Hill, D.L., Fung, K.W., Hsieh, S., Lee, H.L.: J. Electroanal. Chem. 38 (1972) 57. Hill, D.L., Fung, K.W., Lee, H.L.: J. Electroanal. Chem. 38 (1972) 67. Hill, D.L., Fung, K.W., Lee, H.L.: J. Electroanal. Chem. 38 (1972) 75. Gross, M., Jordan, J.: Pure Appl. Chem. 56 (1984) 1095.