I
ORN L-2823
UC-4
- Chemistry-Genera
EFFECTIVE CADMIUM CUTOFF ENERGIES
R, W, Stoughton J. Halperin Mo P o Bietske...
15 downloads
567 Views
1MB Size
Report
This content was uploaded by our users and we assume good faith they have the permission to share this book. If you own the copyright to this book and it is wrongfully on our website, we offer a simple DMCA procedure to remove your content from our site. Start by pressing the button below!
Report copyright / DMCA form
. I
ORN L-2823
UC-4
- Chemistry-Genera
EFFECTIVE CADMIUM CUTOFF ENERGIES
R, W, Stoughton J. Halperin Mo P o Bietske
.
U N I O N CARBIDE CORPORATION for the
U.S. A T O M I C ENERGY C O M M I S S I O N
.
1
L E G A L NOTICE T h i s report was prepared a s an account o f Government sponsored work.
N e i t h e r the U n i t e d States,
nor t h e Commission, nor any person a c t i n g on b e h a l f of t h e Commission:
A.
Makes
ony warranty or representation, expressed or implied, w i t h r e s p e c t t o t h e accuracy,
completeness, ony
or u s e f u l n e s s of the information c o n t a i n e d i n t h i s report, or t h a t t h e u s e o f
information.
apporatus,
method,
or process d i s c l o s e d
i n t h i s report may n o t i n f r i n g e
p r i v o t e l y owned r i g h t s ; or
8 . Assumes any l i a b i l i t i e s w i t h respect t o the use of,
or for damages r e s u l t i n g from t h e u s e of
ony information, apparatus, method, or process d i s c l o s e d in t h i s report.
A s used i n the above, "person a c t i n g on behalf of the Commission"
i n c l u d e s any employee or
contractor of t h e Commission, or employee of s u c h contractor, t o the e x t e n t t h a t s u c h employee or
contractor
of the Commission, or employee of s u c h contractor prepares,
disseminates, or
provides access to, any information pursuant t o h i s employment or contract w i t h t h e Commission, or h i s employment w i t h such contractor.
1
om2823
DATE ISSUED
OAK RIDGE PTATIOTJAL U B O W O R P
Oak Ridge, Tennessee operated by UT?IOIT CAR3ZDE CORPO€U!ITOT? f o r the Ud S + AT01!IC EIERGY COPdNISSION '
8
3 4 4 5 6 0363434 0
-2
-
Effective CadmLum CytofZ Ehergies R . W . Stoughton, J. Halperir,, and Marjorie P, Lietzke
Abstract Effective cutoff energies for poir-t
_1.I/. absorbers
inside of spherical
and cylindrical cadmim f i l t e r s have been calculated f o r thermal reactor neutrons. plus a
The neutron s p e c t m was assumed t o consist of a Maxwellian
1/E component,
and the parmeters varied were the thickness of
f i l t e r , the Maxwellian tenrperature and the b ~ w e l l i a aLo
_1/E flux r a t i o .
Because of the s e n s i t i v i t y of the el’fective cutoff t o Maxwellian f l u x parameters for t h i n f i l t e r s it i s recornended %‘fiatf i l t e r thicknesses of about 40 m i l s be used.
Forty mil f i l t e r s show effective cutoffs a t about
0.50 t o 0.55 ev. for temperahres up t o about 500°A ( o r about 0.045 ev).
Effective cutoff energies f o r boron f i l t e r s were also calculated for purposes of comparison.
The cutoffs f o r cylindrical cadnium f i l t e r s
should be applicable to a properly designed experLxen+ual f a c i l i t y .
-3h t r o d u c t ion
For many yems cadm3m has been used as a fiJ,ter for thermal neutrana in maswing t h e r m 1 vs epithermal reaction r a t e s f o r reactor spectrum neutrons. Yaa e f ' f e c t l v s Cd cutoff er,ergy kras been estimateil as several
depenaing on the t h i c h e s s ~f the f j l t e r .
Hughes
a
e s t h a t e d about 0.4Q and
0.57 ev for 10 and 30 m i l cadmium -t;taFcknesses, -respe:tiveljr, calculated r e l a t i v e number of neufxoos transmi3Aed vs enezgy Dayton and Pettus
tenths ef an ev
from a p l o t of %he
.
More recently
calculated effective Cd cutoff energies f o r flat f i l t e r s
of ,large area f o r both a monodirectional and an isotropic flux. only a
& flux,
w i t h lower wii upper lj.aits of 0.025 ev
%he upper liiit was not
and energy.
They assumed
aQa 10nev (althorn
important) i n the* numerical integrations over the angle
They defined the effective cutoff energy as the cutoff of a perfect
( I n f i n i t e l y sharp) f i l t e r that allows t h e same tu"al xmiber of-absorptions by the f i l t e r e d sample as does the gLven cailmkm ffl%er. In - h e i r calczila%irms they
assumed that the f i l t e r e d sanple had a The purpose of thLs paper is
tb
& cross
sectian.
calculate ef"fec-i;5.-veCd cutoff enezgies, as absorber and for an idealized
defined by Dayton and Pettus, f o r a 12ypo-khetical&l
Two geometrical configurations have been conside;-ed:
spherica4. and cylLndrica1
f i l t e r s (one cm dim. by two cn high.) ix resctor ixz*adiai;ions. Fdihfle %e ampl.es
occurred) and rather smal.1 3x1 ares,.
Xt c a s be s$mm that if a point san2le is moved
a signtficant distance f r D m the cen%er of the cyl-bdrical s h e l l i t s correaponfiir&
effective C d thickness is changed very l i t t l e .
For example, i f t h e p0b-k is moved
along the axis half way t o ogle of %he f a c e s (i. .e.
to one q w t e r '3f t h e height from
the nearer face) the effective Cd thickness is changed about G.$.
Eence a th4.n
-4f i n i t e sample which approximates an i n t e p a l of such points should shov very rxarly the sane effective cutoff as does the central point.
Actually an e f -
fective thickness could be calculated and a correction made, i f desired. the case of the spherical f i l t e r s the correction would be larger.
In
From an
experimental point of view, however, the cylindrical f i l t e r s are easier to make and to use, i n addition L ' o allowing an effective cutoff which is r e l atively insensitive t o position of sample. Effective cutoff energies were also calculated f o r boron f i l t e r s LEIorder t o compare the variation of effective cutoffs with f i l t e r thickness and spectral parameters t o t h a t of cadmium.
I n general r e a l fiYcers such as caclnriurn a.~ad boron o n l y approxiaate o m defined perfect f i l t e r .
An additional factor t h a t a f f e c t s the u s e m e s s of a
f i l t e r is the sharpness w i t h iflich the t r t z x i t f o n fi-on opacity t o transparency i s made a t the cutoff.
A siaple measure of t b . i s efficiency was made here by
calculating the f'raction of %he ",tal number of reactions occurring i n t h e l / v t e s t sample a t energies below <&e ccnpiAted cutoff energies (FRACT).
hypothetical perfect f i l t e r would yield a m C T
= 0.
TIIUS
s%e
A comparison of t h i s e f -
ficiency f o r cadmium and boron f i l t e r s has been made i n this paper.
In general
much lower values of t h i s pmameter FRACT were found for cadmium than f o r boron. This i s of course consisten5 w i t h the large resonance b cadmium giving r i s e t o a sharp cutoff L a contrast t o %he 1/77 e r m s section dependence of boros.
Model, Assmqtions a d Calculations The f l u x was assumed t o be isotropic w i t h respect t o the point &I absorber and t o consist of a Mamellian thermal plus a spectrum.
Following Westcott
a
the
1/E:f l u x was
1/E e p i t h e m l
assumed to go t o zero
(sharply) a t five times the Max~relliancharacteristic energy E (where na Em = E ) . For a Maxwellian spectnm the Cerivative of the neutron density n I
-
,
-5-
-
with respect t o the energy E is given by the equation
-
-
,
The d i f f e r e n t i a l of the t o t a l flux Ftot in any interval dE then becanes
Ibr is the &pithermalor flux per u n i t E .On changing the vasiable to x e E/Em, the d i f f e r e n t i a l of the total reaction r a t e R pes atom f o r a l/v -
where
I &
I
absorber hecomes
where
#r = o far xC5 ( i * e . $ E < SE,). Here the subscript zero r e f e r s to a standard energy or velocity (here taken 2200 m/s).
.
where r 5 nvo/pI,B i,e,, the r a t i o of the "conventioW" t h e r m a l flux
t o the resoname flux per unit l d 3 ,
a
as3
-6Two geometrical configurations w u l b e considered8 c a l cadmitrm
shells with p o b t
qheriea3. and c y W i -
absorbers a t t h e i r cen%eps.
the only neutxom going through the spherical s h e l l s
A@ $ c a faa F i g o
L
ax% a&wgoing fJTpougbt h e
point saqples a t the centers go &Low a diameter, and hence %he t\haabes~of cadmium traversed before reaching tihe ssanples is just %he act;;lsal thickness of %-
the spheres lo, ETfects of scattering of neutrons by the &heJJ.f!& wD"M mt h
-
general be important and EtSe not coruidered h these c*%-,
-
same definition_,& effective Cd autoff energy
Pettius
a
Using the
Ec as tha.1; w e d by Day-bn and
the equation f o r the spheres becomes
I
where
zcdlois the macroscopic cross section of
cadm;lum titxts
the t;hbckness of
where x' = x C
6
if
X@
p 5
J
-7-
UNCLASSIFIED ORNL-L R-DWG. 38 132.A
Cy Ii nder
Sphere
A
D eL = t o n - l H
H
Fig. 1 .
Spherical and Cylindrical Cadmium Filters.
-8
-
P
Eqwtion A?) was uSed t o evaluate t h i s integral f o r va.lues of xc greater tfiaJz 5;.
For d u e s of xc l e s s than 5$ the f i r s t integral on the l e f t w a s divided i n t o
-
two parts:
that from xc t o 5 and that above 53 the first part was evaluated
-
numerically using Gaussian quadrature and equation (7) was used f o r the r e mainder of the integral. The magnitude of the error made i n u s i n g equation (7) is less than the
last term i n pasentheses. .wlan O,@
For values of xc greater than 5 this error is l e s s
-
It i s not recommended that t h i s approximation be used for xc values
-
l e s s than about 5.
The two integrals on the right were evaluated numericaw using Gaussian qpa.cbature.
L.1 the numerical integration f i n i t e upper lWts had t o be set, so
- = 1000.
all the four upper limits i n equation (5) were s e t a t x
It can be shown
a t the error made in setting these lwts a t 1000 i s l e s s t h a n about Od.$ in the reaction r a t e w i t h even the thicker cadmium shells, by expanding the exponential in the last integral, dropping a l l terms a f t e r the second and integrating ana3-ytkallyo It should be noted t h a t the error i s not as great as t h e values
of the integrals above x = 1000, since these approximately cancel on the two
sides of equation ( 6 ) .
-
After evaPuat%ng the right haad side of ( 6 ) , xc (and hence Ec) was e v a L
-
uated by successive approximationso The ORACLE (the Oak R i d g e National Lab..
oratory d i g i t a l coqpvter) and the bBM-704 a t the Oak Ridge Gaseous Diffusion P l a t were used for ~ e s calculations, e
Also calculated ia mimy ca6es was %he fraction
FRAd of tota3 reactisns
of %.he central l / v sanple which occurred below -tihe effective anitaff. The Torn of the expression used for the cmas sectFon of Qa was a one
l e v e l Ere2totligner b m parameter equation in whiah the parameters w e r e a& juated ta fit the abawption curve given in ENL-325
u*
Fkplicit2.y %he
equation w a s
5.076 x
2&lQ=
section of
lo
fi[4(~&0.178)~ + O e 0 l 3 ~ ]
-
where lo 2s in m i l s of metallic Cd and E is i n ev.
!&e
t o t a l absorptfon woss
cadmium if3 essentially due t o -&he 0.178 ev rescmauce of Cdu3,
at
l e a s t out la an energy of mqy eve Hence the paratnetera In equation (8) axe those for this nuclkle a t its wbural i s o t q i c abundanoe.
I n the case of the cyljtndrica,l shells the -tzraa&ssion seen i n Fig. 1, depwds -on
of p 3 ~ u t r o ~as ,
the angle betiieen the &ireation of t h e neutron
aad t h e axis of the c y l b d e r as w e l l as upon the neutmn energy.
In eqw-tion
-
-
(8) lo wt be replaced by lo/cosO and lQ/sin@f o r values of 8 be%ween zero
-
a,nd
eL
=
taS-l(D/H) and between the latter value and
-H and D- m e %heheimt and dianeter, changing the variable cb & ..s cosB2
& respecd;ivelye
respectively, of %he cyl-ers.
wing appwxbation (7) aad addigg
",
1
\
Sere
AfLer
-1G 2x1/2/ n
v m t o both sides,
the equation analogous to
(6) b e c d s
Here the upper l i m l t of energy i n the numerical integration W a s taken as
-x = 1000 with the energy range being divided
into
15-100, 100-1000) and the range of 8 into 2 (i.ee, 0
tan-l(D/H) 3c
-
/
3t/2).
*
5 intervals (i.e
Dy
- tan*'(D/H)
0-2, 2 0 5 ~
a3ad
The fratemation was carried out using Qqmian quadratwe
Some calculations ware aJ-s.0 carried out using 10 energy intervals and these se&ts agreed t o w i t h F n OOl$ With those us5 intervals,
-
with 8 points per interval (of either x or
E)
on the
IEM-704 c q p u t e r a t the
O a k Ridge Gaseous Diffusion Plan”c.
Also calauJ.a,ted was the fraction F C T of the t o t a l reactions of the
l/v
sample which occurred below %e effective cutoff.
It should be noted that if the value of xc is Less than 5 the second ex*
p e s s i o n on the l e f t of eqwtion (9) should not be given
Fn the s e r i e s expansion
shown. Rather it shovld be evalwted, as in the sphere case, by
using the
following expression
The v a u e of xc
rimy
then be obtained by successive a p p r o x ~ t i c x susing
numerical integration.
This procedure was necessary i n Che ca3,aulatians on
both the thinner cadmlton a,nd boron f i l t e r s .
-
In the case of boron filters the energy range (values of x) w a s divided
into 8 i n t R r V a l s ( @2j 2-53 5.115; 15-Zoo j 1OOalOOOj 1OO0-10,000~ 1O,OOO+OO,OOO
j
100,000~1,000,000) because of the slow decrease of the boron cross section
w i t h energy,
The q q e r limits on aJ.l integrals here beccrmes 1,000,000 and
the t e r m added t o Mi21 sides becomes X;/~/~OO. the expression
xcdl -was replaced by = 0.042039
-
/’
where
-’
% x0
For %he boron cangutatkas
9
z & is the macmscopic aross section of bomp tlmes -
5 being i n the units of mg B/m2, 755 2.
tihe thicbpessp
The 2200 m/s m s s section used here was .--
Results azxd Discussion Cd @hereso Effective cutoff energies f o r spherical cadmium sheads,
are
presented in tabular form in Append& A and axe shown for three d u e s of the MaxweUian t o e p i t h e d flux r a t i o ;
as a function of the characteristic
MaxweUan energy Em = kT -in Fig, 2,
Values axe also giver, f o r
5 6
trans-
mission ( i.eo, the energy a t which the exponential tmnsmission factor is
-
equal t o ofie-ha3f) and f o r r = o (E, = 0,0253 ev).
It can be seen that tihe
cutoff energies a t 20 m i l s thiakness arid helow are sensitive
r as w e l l as E&,
even a t lawer values of the latter.
For 30
Iu
flE1ters the cutoffs are nearly independent of atwes,
5 a t the lawer
Die values f o r 5% transmission axe rather close t o
f o r the tbicker f i l t e r s and Lower t m e r a t w e s ,
1% would be desirable t o have a cutoff neas the assumed lower U.&t I & Plwc, S.e,,
tihe
Of
sm.However, this would require thin filters, which-,aPe very flux r a t i o 2, Xence the authors suggest that the best ccnnpro-
sensitive -bo the
mise wo7fld be achieved wit21 f i l t e r s of about 40 m i l thickness. Approxiasbe calculations for cyEin&ical and cubic f i l t e r s were &e,
based
on the sphere calculattons aml the a s s q t i o n that the transmhsion could be calculated sinlply by using effective thicknesses seen by the neutrons 3.n the
+aansmission ex;ponentiizl factor,
"he effective thickness f o r cylinders cari
e a s i l y be shown t o be lcL3 and L,22 times the actual oihickness f o r an (height/dianeter) of 1 and 2, respectively.
Then the appro-te
a
effectAve
cutoffs for a cyLLnder w o u l d be given by the r e s u l t s for a sphere w i t b a thickness of 1.13 and l,22, respectively, tjmes t h e a c t u thickness of t h e cylinders,
Such approxiw,te and accurate cutoffs f o r a a@dader
(H/D = 2)
UNCLASSIFIED ORNL-LR -DWG. 38139A
.80 mils Gd for 50% trans
.70
- 120
nils Cd for r = O
& =.025; 120
120
100
400
ao
80
60
60 50
400
.60
f
.50
-
ao
aJ
lu" .40
50
50
40
40
30
30 ut.z.=L._L.L.L.
- 20
10
.30
-r=20 --- = 30
,-
".&.-...... _ ..... - ........... ... &.-...... --........................ ...... ................................. ......... -----------_______ ............ --- -_ ............. .......... -- ............ ................................ ..................................... -----__________----- -----...... ............... + .......... ............ ............................................................ L:
-- --. ..--. -_ -. -. --
20 15
-----_ -----__ -. . --. .---. --.. --- -----.......-..-..--.......... -----___ -_____________-_ --------........................................................... --.---_________________--------------L....
.L
Y'.L"'"t".
30
Y
............
e..
60
h
;"e....
e..
- 40
>
--
'V
...................... 20
10
-
I
...........................
A
w
- __-- ----_ _ _ _ _ _ _ _ _ _ _ _ - - ----------- ............................. _---_----- - .................-2-:*: .............................. .......
I
_/c*
20
-
=
Rperfec+ filter
.IO
.(
>-
.O3 294
Fig. 2.
.04
.O5
.06
580 MAXWELLIAN TEMPERATURE
filter
(E,) for
.O8
.O 7
870 (OA)
Effective Cadmium Cutoffs for Spherical Shells.
l/V
absorbe .09
3
4160
are given i n Table 1 f o r two values of Em (0.0253 and 0.05 ev)
-
.
Here the
f i r s t column gives ?he actual thickness, the second gives the effective
thickness and the last column gives the energy a t which 50% of the neutrons a r e transmitted.
The corresponding thickness r a t i o (effective/actual) f o r
a cubic f i l t e r i s about 1.20.
Some calculations were also carried out under conditions which should have given r e s u l t s i n agreement with those of Dayton and Pettus
12). Using
-
the sphere model, described above, with no Mxwellian ( i . e . , r = 0 ) and with a lower l i m i t of the I & flux a t 0.025 ev the r e s u l t s should have agreed with
t h e i r monodirectional flux calculations f o r very t h i n samples (see the t h i r d and fourth columns of Table 11). The data of Dayton and Pettus were read from
*.
a graph but should be accurate enough t o indicate a d i s t i n c t difference
Their
resonance parameters f o r Cd were s l i g h t l y different from those used i n t h i s paper, but hardly enough t o account f o r t h e difference i n results.
-
-
Reactior, rates per unit energy vs E and t o t a l reactions below E have been calculated f o r the
l/v absorber
as a function of energy for 10 and 40 m i l cad-
-
The solid curves i n Figs. 3 and 3a show
mium filters, Em = 0.0253 and r = 20.
-
-
the fractions of the t o t a l number of reactions occurring a t energy E per unit energy; the dotted curves show the fractions of the t o t a l reactions which
-
occur between energies zero and E.
*A
The t o t a l number of reactions occurring
recent comunication ( 2 June 1959) from W . G . Pettus contained some recal-
culated values and these ( i n the case of the beam flux) were much closer t o the r e s u l t s obtained in t h i s work than were Dayton's and Pettus' original values.
(See Table I1 and r e f . ( 2 ) ) .
-15-
Table 9
Approximate vs Accurate Effective Cadmium Cu-toffs for Cylinrters
( a b . = 2) f o r Em = .0253 lo
Eff 0
sphere
cylixder
1
cake
10
122
20
24,4
30
36.6
40
48.8
60
732
100
122.0
approx.
-P = 20
-16-
Table I1 Effective Cd Cutoff Energies for Monodirectional
1/E F l u
F l u Lower Limit in ev
Cd Thickness (mils )
Dayton and Pettusa
This Paper
5 x
0.0253
0.025
0.025 -
10
0.362
0 -237
0.26
20
.431
.429
.34
40
,520
.520
.42
60
.584
583
47
100
.679
679
56
a
V a l u e s read from a graph
m.
- 17U N C L A S S I FlED O R N L - L R - DWG. 39143
-
T
I
I. 3
T
1.2
1.1
1.0 lu 3.9
6
cr W
0.8
z
3 0.7
u)
c
.o $ t
L
2Q.'
0.6
X-
s
cn z 0.6 0 -I o
1
IC
a
0.5
E LL
0
0.4 z 0 -
-Reaction
I I I
I
I I
I
I
Rate --- Fractions of Reactions
/o = 10 mil
-Reaction Rate ---Fractions of Reactions
/o =40mil
o
0.3
2 LL
0.2
0.1
I I
0.0
I-
A
I111111
lo2
I(
I I111111
103
I I1
io4
E,
(40 mil)
Fig. 3. Reaction Rates and Fractions of Total Reactions Below Energy E for Spherical Cadmium Shells.
- 18-
I
l1111l1
I
I
I I I1111
I I I IIll
I
UNCLASSIFIED ORNL- L R - DWG. 38934 I 1 1 l 1 1 1 I I I I I III
-
-
-
-
10’
IO0
l‘ > W
.-c u)
t
[r
3
z
W
W
h
L
lo-’ 3
W
L
13w
t .-
a L
m m
0
I I I I I I I
z
10-2
0
I-
o
a w
I
I
I I
[r
I
LL
0
IO-^ z 0
I-
i
0
a
I I
I
-
= 40 mil
---
= 10 mil
I I IIII
T
E
io0
I
I IIIIII
10
I
I1l111
40
I (40ECmil ) EC
(10 mil )
Fig. 3a. Reaction Rates and Fractions of Total Reactions Below Energy Cadmium Shells.
E for Spherical
a t all energies was noxmaLized to uni"cyo Acreactions in the 10 than tn the 40 mEL caae,
of course tihere m e more As seen
i n F i g e 3 about 6 ~ of $
the total reactions occur belaw the cutoff wit& Maxwellian neutrons I n the
BI the 40 mil. case very few reactions inm~,ve
case of the 10 mil khicknesh.
and only a few percent of t h e reactions w c u r be3.0w6EG.
MaxweUan neu-ns
-
The c a l c U t e d r e s u l t s f o r boron spheres m e presented
Boron Spheres.
i n Appendix B. Cd Cylinders.
The results for the cylindrical shells are Shown fn Fig.
4
4
The cutoffs are seen to be sfmilas t o but a l i t t k e higher than those for the spherical f i l t e r s , as expected.
Again a thickneas of abaut 40 m i l s is indi-
cated in arder that We cutoffs be insensitive to We flux r a t i o a t the lower Maxweuian teaperatures.
Since the melting point of cadmtum mtal i s 321%
0
(594 A) the higher temperatures ~ R be Y unrealistic; however cadmpum i n some chemical form could be used as a f i l t e r a t higher temperatures by c l a d d b g Vdues of E
it w i t h sume high melting material.
-
in Fig. 5 f o r r =
G
VS.
C d chiokness are
sWm
0
0,
E and
30 for
% -
= 0,0253 ev.
The fractions of the total reactions by the
& sample below the
effective I
cutaff are shown i n F&g, 6.
-
ing Em a t an;y thickness. creases wi-bh;
For r $
A t low
'c
E;m
0,
this fraction is increased by Fncreas-
( i . e e 2 mound 0,0253 ev), the fkaction in-
*-
only f o r t h i n f i l t e r s ; a t the higher Em values the fraction in-
creases w i t h r f o r all thicknesses.
A t En = 0.075 ev a dfsfinct rnihbtum
OCC'UU"~
d
in the fraction curve at about 15 mjls Cd,
A t Ea = 0.1 ev the mFn39aum &s broader -..-
and l&s d k t j h c t , See Appendix C f o r calculated values for cylindrical. Cd fil%wse
- 20 -
UNCLASSIFIED O R N L - L R - DWG. 381408
.8
.7
nils Cd
........ r = 12
00
-
............
60
.6
-
..................................
40
-T
..................................... ..*""*: _---------_
.5 30
>
............................
Q,
.......................................................................................... 20 -lu" .4 - - - - _ _ ---_---__ -- _ _ _ _ _ _--------------
v
. 3 -1 5
.2 10 .02
.03
294O
Fig,
.O 4
.O 5
.O 6 E,(ev)
-
.07
.08
580" 870° MAX WELL1AN TEMPERATURE ( O A )
.09
.I 0
1160"
4. Effective Cadmium Cutoffs for Cylindrical Filters (Height/Diameter = 2).
-21
-
- 22 0.L
0.:
z
0 -
I-
o 0.2
a
LT
LL
0.4
\&-,
I-= 0
20
40 mils Cd
60
=.0253 ev
80
400
Fig. 6. Fractions of Reactions Below Cadmium Cutoff for Cylindrical Filters (Height/Diameter = 2).
Boron Cylinders. VS.
-
Figs. 7a and 7 b show typical curvEs for Ec and FRACE
thickness, respectively, f o r boron and cadmium. As expectad, there is
as expected the boron shows a much W g e r FRAW
no leveling off of Ec w i t h increasing thickness i n the case of Boron.
Also
.wlan cadnlium azld shows t b e
effects of the Ma%wellim neutrons over a wider range of thioknesses.Also see Appendix D. Conclysiow Effective cadpl;lwn cutoff energies have been calculated for a wide va;riety of Maxwellian neutron temperatures, r a t i o s of Maxwellian to epithe-1 and thicknesses of Cd f i l t e r s .
flux,
Beaause of the sensitivity t o Maxwellian flux
parameters for thin filters (less than about 30 m;uS) it is recanmended that f i l t e r s of about 40 mils be used i n Cd r a t i o work.
Depedlng on the exact
conditions the effective cutoffs for 40 mil C d l i e between 0.50 and 0.55 ev f o r MaxweUm texperatures of 300 t o
5008.
The vaLues presented here Shou3.d
hold t o a good approxirpation for s m a l l samples centrally located inside cyl i n d r i c a l cadmium f i l t e r s .
I " I
+,
-
- 24 -
UNGLASSI FI ED ORNL-LR-DWG. 3 8 1 3 8 A
-B
---- Cd
6-
-
5-
T
4-
>
a, v
-
lu” 3 I I
I
-
2I
I -
-
‘-___________--------------.*/’
,
I
1
I
10 20 30 40 50 60 70 80 90 400
I
I I 10 20 30 40 50 60 70 80 90 100
mils Cd 4
I
Fig. 7a. Effective Cutoffs for Cadmium and Boron Filters for E = 0.0253 ev and r m = 20.
Fig. 7b. Fractions of Reactions Below Effective Cutoffs for Boron and Cadmium Filters for E = 0.0253 ev and r = 20. m
-25-
Acknowledaements We wish t o thank J. E. Murphy and C . S . W i l l i a m s of the Central D a t a
Processing Department of the O a k Ridge Gaseous Diffusion P b t f o r i n % e r e s t b g discussions on numerical integration and f o r helpful suggestions.
References 1, D e J, Hughes, " P i l e Neutron Research", pp. 131-2, AddisonrlJesby
Fubl, Co., 2.
Cambridge, Mass.,
(1953)0
I. E, D q o n a.nd W, G, Pet%us, Nucleonics
3. C. H, Weetcott, J. Nuclear Energy 4.
3
a No.
12, po
86 (1957).
59 (1955).
D. J, Hughes and R e B. Schwartz, "Neutron Cross Sections", U. 8. A.l;aanics Energy ~aaranissionDocument BNL-325, second mition, (1958)
-27-
Appendix A
Wfective Cadmium Cutoffs Ec (in ev) for Spherical F i l t e r s o r Unidirectional Beams
12 EC
0253
10
15 20
30 40 80 100 120
.0300
10
15 20
30 40 50 60 80 100
120
.ob0
0.141 0.283 0.396 0.478 0.519 0.552 0.583 0 635 0.680 0 -719 0.158 0.285 0.395 0.477 0 . 5 ~ 0 555 0.584 0.635 0.679 0 -719
-
10
0.196
15
0.302
20
391 0.474 0.516
30 40 50 60 80 100 120
0
0
551
0.581 0.634 0.680 0.720
20
FRAm
0.459 0.163 0.082
0.067 0.068 0.071 0.073 0.074 0.455 0.162 0.083 0.068
Ec
0.126 0.235 0.375 0.477 0.518 0.552 0.583 0 e635 0.680 0 -719 0.144 0.245 0.374 0.476 0.520 0 * 555 0.584 0 9635 0 0679
0 *719
0.186 0.278 0 372 0.469 0.514 0 549 0 578 0 -633 0.680 0.720
30
m C T
0.585 0.241 0.0%
0.068
EC
0.118 0.202
0 * 351 0 475 f
ERACT
0.678 0.323 0.115 o .069
0.069
0.518 0 552 0.583 0 -635 Q .680 0 -719
0.581
0 J37
0.675
0.220
0 * 33-9 0
0,239 0.097
0.069
0 351 0.474 0.520 0.554 0.584 0 =635 0 -679 0 -719
0.181
0.265 0 * 357 0.462
0.511 0.547 0 578 0.632 0.679 Q -719
.UT
0.070
6280
Appendix A (Cont’d)
KFU.GT e
0500
/
15
0.230 0.3U
20
0,387
30
0 0457 0 .so2
10
40 50
60 80 100 120
.0600
10
0 0105
0,540 574 0.630 0.676 0.716
0.308 0,373 0 446 00493 0 532 0 566 0,625 0,672 0.714 0
0
‘9
0
331
30 40 60
0.376 0.1~32 0.467 0 536
100
0.650
20
15 20
30
40 60
.loo0
Ec 00222
01180 0.131
15
10
0,288 0 353 0 392 0 435
10
0 317 0 4 365 0
20
0.395
30
Oe49 0 477 0 526 0 597
40 60 100
0.206
0.529
0,623
15
0,286 0e 1 8 8 0.165
0 Q47L
100
30
20
12
0.245 0,2hl 0,202
Q.197
0.286 0.349 0,386 0 428 0. J+60 0.514 0,606 0 0 317 0 364 0 394 0 e 434 0 467 0 * 517 0 * $93
m m
Ec
’
m m
-29Appendix B Effective Boron Cutoffs Ec (in ev) for Spherical F i l t e r s or Unidirectional Beams
r = nv0/@, = Em
(4 0253
l0
(*./m2) 20
50 100 150 200 300 500
0350
20
50 100 150 200
300 500 .0500
20
50 100 150 200 300 500 *
0750
20
50
100 150 200
300 500 .loo0
20 50 100 150 200
300 500
12 EC
FRACT
0.384 0.545 0.0715 0.1672 0.524 0.5936 0.441 1.422 0.399 3.864 0.373 11.16 0.368 0.0353
0.0432 0.0858 0.1681 0.4192 1.139 3.615
0.356 0.538 0.571 0.492 0.430
E
C
20 FRAm
0.0347 0.0682 0.1258 0.2970 0.9990 0.377 3.600 0.368 11.13
0.407 0.611 0.655 0.543 0.449 0.383 0.368
0.367 0.569 0.638 0.563 0.472 0.393 0.369
0.0427
0.373
0.0832
0.586 0.682 0.627
0 -369
0.0541 0.1060 0.1879 0.3177 0.7782 3.000 10.92
0.324 0.517 0.603 0.561 0.485 0.404 0 371
0.0537 0.331 0.1046 0.538 0.1794 0.655 0.27~. 0.637 0.4997 0.553 2.586 0.429 10.74 0.373
0.2318
0.610
0.3389 0.621 0.5126 0.571 2.174 0.454 io .23 0.380 0.0840 0.1626 0.2728 0.3826 0.5230 1.483
9.155
0.263 0.455 0.599 0.641 0.623 0.510 0.395
me2
0.399 0.587 0.599 0.490 0.422
11.11
0.0699 0.288 0.1360 0.483
EC
0.0349 0.0692 0.1372 0.4227 1.207 3.743 11.14 0.0428 0.0841 0.1507 0.2781 0.8512 3.344 U. .06
0.382
30
0.0696 0.1348 0.2246 0.3168 0.4321
0.293
1.520
0.506
9.613
0.38
0.0837 0.1615 0.2685 0.3691 0.4796 0.9321 8.027
0.267 0.465 0.625 0.687 0.689 0.584 0.413
0.497 0.641 0.680 0.648
0.1442 0.2295 0.6227 3.046 11.00
0.0536 o.logg 0.~754 0.2531 0.3777 2.ll2 10.50
0.0694 0.1342 0.2223
0.3077 0.4030 1.049 8.925 0.0835 0.1610
0.2664 0.3629 0.4606 0.7403 6.881
0.518
0.406 0 * 370 0.336 0.550 0.685 0.690 0.618 0.458 0 - 376 0.296 0.505 0.662 0.716 0.703 0.561 0.398
0.269 0.471 0.639 o.‘p3 0.730 0.651 0.435
-30-
Appendix C Effective Cd Cutoffs Ec ( i n ev) for Cylinders (Hei&t/Diam.
= 2)
-
and Fractions of Reactions Below Cutoffs FRACT f o r Various Values of the Cnwacteristic Maxgellian Energy Em r = nv0/gr = 0
mils Cd
EC
12 FRAm
EC
30
20 FRAm
EC
FRACT
EC
FRACT
Em = 0.0253 10
15 20
30
40 60 100
,378 .419 .452 .504 -547 .615 .718
,0612
.0640 ,0661 .0684 -0705 .0730 .0756
-173 .339 ,431 .503 .547 -615 -718
0358 .116 .0751 ,0692 *0705 .0729 *0757 Em
10
15 20
30 40 60 100
.go6 .342 ,429 .5oi 0545 .615 .719
.148 .298 .419 .502 .547 .615 ,718 =
=
LO
15 20
30 40 60 100
.260 -353 .415 .483 -531 .606 .714
.301
01552 .12i8
.io03 -0915 .089
00799
.137 .259 .404 .501 .547 .615 .718
.466 .161 .0877 .0726 -0723 .0736 a760
.i8i .283 .401 0497 .544 .614 .718
.398
.245 .329 .390 .462 .513 .592 .7o8
.582 .218
.0907 .0698 .0708 .0728 -0755
0.035 .189 .308 .416 ,499 ,545 .614 .718
.346 ,1190 .0789 .0711 -07x5 .0734 .0760
482 .161 .0819 ,0695 .0706 .0730 .0756
.565 .213
.0997 a0750 .0733 .071+1 .0762
0.05 .250 ,338 .401 .472 ,522 -599 .712
.202
.153 .120
.io5 e0910
.0826
.479 .25’2 .188 .143 .122 .lo0
a60
-31(Appendix C continued) E,
.3U a375 .409 .454 .49i e555 .665
10
15 20
30 40 60 100
.336
234
.382
.2U
100
.bo3 .446
.203 *I79 .i40
10
30 40 60
.309
.yo
.210
15
.412 ,456 .495 .547 .631
0.075
.249 -175 .198
E,
20
=
,480
.540 .643
.304 .225 .248 .271 .266 .234
.177
.308 .366 *399 .441 .474 .529 .625
.344 .262
.289 .327 .326 .291 .219
= 0.100
.204 .197 .191 .225 ,236
.336 .381 ,410 .452 .488 ,539 .617
.267 .247 .244 .241 .23g *279 .304
Ec
mm
Ec
E~ = 0.70
#
-335
.go ,409 .450
.483 .534 .610
335 .270
,271 .q4 .274 -325 .370
r = nv0/fir = 20
mils Cd
EC
F!RAcT
Em = 0.20 10
15 20
30 40 60 100
mils
.37i .410 .439 .484 .520 '575 .657
.170 .185 a198 .220
.236 .259 .286
Em = 3.0
Ec
FFUiCT
# = 0.40 .390 .434 ,469 .520 .560 ,622 .7i5
-087 .lo2
.115 133 .145 .163 .192
Em = 10.0
Cd 10
15 20
30 40 60 100
,387 .429 .467 *537 .5g8
.0051 .0060 .0071
.702
.0181 00273
.859
.oog8
.0126
.5i7 .631 .716 .834 .9lO .995 1.073
,0031 .0049 .0063 .O083 .0095 .0104 ,0103
.403 .456 .494 .550 .591 .657 -757
.048
.061 .071 .082
.089
.loo
all9
.4ll .450 .485 .546 .596 .678 .792
FRACT = 1.0
.033 .036 .040 .Ob9 a057 .071 .OgO
632-
Appendix C (Cont'd)
Miscellaneous Results
r = nvo/15, = 12
mils Cd
EC
FRAm
E, 25
35 80
0.475 0.526 0.670
EC
m C T
EC
0,069
0,468 0.525 0,670
0,070
0.074
35
80
0.454
0.108
0.508
0,095 0.081
0.665
E25
35 80
0,436 0,476 0.592
m C T
0.432 0.488 0,656
0.072
0.070 0.074
0.473 0,524 0.670
OBL94 0.238
0.431 0.467 O.fl5
0,072 0.071 0,075
m m
0.035 0.464 0.523 0,670
O&Q 0,07lb
0,075
Em = 0.075
0.161 0.131 0.091
0.433 0,472 0,612
= U.100
0.200
EC
=
= 0,0253
E~ = 0.050 25
30
I2
30
0.274 0,274 0,361
,
0.208
0.422
0,316
0,207
0,458
0,529
0.157
0,579
0.252
Effective Boron cui;offs E~ (in ev) for cy1iniiers (ilei@;ht/biam. = 2)
and Fractions of Reactions belox Cutoffs FlRACT! far Various Values of the CharacterTstbc iyla;rweUau k r g y Em
n = 0.0253
E
-p__
20
422
30 50 80
, .Q40 *053 *0?9 0
100
0
125
440
.613 528
,618 --
173
623
150
0
039 053
0'77 QU5 .I49 535
9
1,631
200 300
.
5,160 15 292 611.227
500
1000
zn = 0,050 --1_1__
20
062
30
0082
50 80
9
100 150 200
3w 500 1000
061. e
082
061
a372
464
eo81
.EO 0
166
176
221
454
e
10297
0
D
4 ,620 15.126 61e 310
295 607
3 532 14.790 61 310
Appendix D (Continued)
r = nvo/fir
3.2 mg. B/m2
Ec
m C T
E~ 20
30
50
80
100 150 200 300
500 1000
106
324 410
154
o 522
.080
0
220
264 406 0770 34 532 14,518 61,272
30
20
Ec = 0,075 e
333-
.4639 540 420
607 ,628 627 ,600 0479 e 393* 371+
e 671 e679 .681 539 404 374 0
8
Em = 0,100 20
30
50
80 LOO 150 200
300 500
1000
0%
.E8 184 260 3O9 .442 638 2 570 1 3 e 494 61,189 0 0
298
.m .496 .594 628 645 645 539 .412 8
0
Q575
557 ~ 6 9 8 1 2 364 62,189
.620 43'9 376 0
ma
ORNL- 2823 Chemi.s t r y - General
INTERNAL DISTRIBUTION C. E. Center Biology Library Health Physics Library C e n t r a l Research Library Reactor Experimental Engineering Library 7-21. Laboratory Records Department 22 Laboratory Records, ORNL R, C. 23. A. M. Weinberg Le B. Emlet (K-25) 24 J. P. Murray (Y-12) 25 26 J. A. Swartout 27o EP H. Taylor 28 E. D. Shipley 29 o S. C. Lind 30o M. L. Nelson 31 C. P. Keim J. H. Frye, Jr. 32 R. S o Livingston 33 34. F. L. C u l l e r 35o A. H. S n e l l 36 A. Hollaender 37o M. T. Kelley 38. K. Z o Morgan
1, 20 3. 4-50 6.
.
0
.
0
,/'
,
39 0 40. 41.
42p' 43 0 44* 45 0 46 P,
47 B 48 0 49 P 50% 51%
-52-1020 103. 104. 1050 106 107 108e 0
109 e 110 0
T I A. Lincoln A. S. Householder C, S. H a r r i l l C. Eo Winters Ho E, Seagren D. P h i l l i p s D. S. B i l l i n g t o n J. A, Lane M. Je Skinner W. H. Jordan G o E o Boyd R. A. Charpie P. Mo Reyling R. W o S q . u h t o n J. Halperin M. P. Lietzke Bryce Crawford (consultant ) T. H. Davies ( c o n s u l t a n t ) C. E. Larson ( c o n s u l t a n t ) J. D. Roberts ( c o n s u l t a n t ) G. T. Seaborg ( c o n s u l t a n t ) ORNL - Y-12 Technical Library, Document Reference Section
EXTERNAL DISTRIBUTION
111. Division of Research and Development, AEC, OR0 112-59,3. Given d i s t r i b u t i o n as shown i n TID-4500 (15 ed.) under ChemistryGeneral category