REP RES EN TIN G
K IN S H IP:
SIMPLE MODELS OF ELEMENTARY STRUCTURES
PRO MO T I E COM M I S S I E
Promotoren:
Pro...
77 downloads
1567 Views
15MB Size
Report
This content was uploaded by our users and we assume good faith they have the permission to share this book. If you own the copyright to this book and it is wrongfully on our website, we offer a simple DMCA procedure to remove your content from our site. Start by pressing the button below!
Report copyright / DMCA form
REP RES EN TIN G
K IN S H IP:
SIMPLE MODELS OF ELEMENTARY STRUCTURES
PRO MO T I E COM M I S S I E
Promotoren:
Pro f . Dr . P . E . de Jos s e li. n de J o ng ( emeritus) Pro f . Dr . A. J . Kuper ( B r u n e I University)
Referent:
Prof . Dr . L . J. T. van der Kamp
Overige leden:
Prof. D r . IV.J. Heiser
Prof . D r . A. Ollongren
Prof. Dr. A. de Rui jter ( Rijksuniversiteit Utrecht)
©
1990 F . E . Tjon Sie F at, L ei den . No part of t h i s pub l i cat ion may be reproduce d , All r ights reserved.
stored i n a retrieval system , or transmi t t e d , i n any form or by any means, electron i c , mec hani cal , photoprint, microf i l m , or other wise , without w r i t te n p erm i ssi o n from the p u b lisher , e x ce p t f o r t he quotatio n of brief passages in cri ti cism . Al l hard -copy ( inclu d i ng the mono c h r omati c , contextually embedded Lwo-dimensional rep resentations ) was first produced at a sed e rrtary mode ergonomic work stat ion for i nterruptib l e sequential b i o - o p t ical s canning and p s y c h o m o t o r- ac t i v a t e d t e x t g e ne r ation, featuring visually dis criminab l e nonvolat i l e r andom - ac ce s s of f-line s torage with p r e he ns i l e data retrieval , by m e an s of a plotter/encoder/ no t at o r f o r c i p h e r s , i co ns and l e t t e r s (PENCI L ) a n d pas s i ve accumulat i ve p e rmanent/erasab l e rasters (PAPER) ( Tenner 1989:68-71). Pr i nt e d at
t h e Fac u l t y of Soci al Sciences , Lei den Universi t y .
REP
RE S E N TIN G
K I N S H IP:
SIMPLEM O
PRE O FSCHRIFT
ter verkrijging van de graad van Doctor aan de Ri jksuniversiteit te Leiden op gezag van de Rector Magn i ficus D r . J . J . M . Beenakke r , hoog leraar in de faculteit der IViskunde en Natuurwetenschappen , volgens beslui t van het col lege van dekanen te verded igen op d insdag 27 november 1990 t e k lokke 15.15 uur
door
Franklin Edmund Tjon
Sie Fat
geboren te W i llemstad , Cura 9 ao in 1947
iv
:
I
---
... -.�-
Univ.-0Il I G:"lmLer'1
t
To the Memory of m y Fa t her To m y Mo t her
To Mi l dred and Lisa
XF
0266
v
CON TENTS
List of tables and figures Preface
.
•
•
•
O. Prologue 1.
Leiden,
.
•
.
.
• .
•
.
.
.
.
.
.
.
.
.
.
.
.
.
•
•
.
.
.
.
.
vii xi
•
•
•
•
•
.
.
.
•
•
.
.
.
.
.
.
.
.
•
•
•
•
.
•
.
.
•
.
•
.
.
.
.
.
.
.
.
•
.
.
.
.
•
•
•
•
•
.
.
.
•
•
.
•
•
.
•
.
.
.
•
•
.
•
•
.
.
.
.
.
•
.
.
•
.
.
.
•
.
.
.
.
•
.
.
.
.
.
•
.
.
Levi-Strauss,
double descent
T r a d i t io n
.
.
.
.
.
.
.
.... .
.
.
.
.
.
and the mathematics of .
•
..
.
.
.
.
.
.
..
.
.
.
.
.
•
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
•
.
... . . ...... . . .
Theo r i e s , mode l s , and s t ructures T h e n o n -s t a t e m e n t p r o g r a m m e
.
.. . . . . . .... . . .... . .
.
........... ........
Ele m e n t a r y k i n s h i p s t r u c t u re s a n d double d e s c e n t M o d e l l i n g e l e m e n t a r y k in s h ip s t r u c t u r es .
Double
Append i x 2.
.
.
..
. . ... .. . .
23
26
34 39
..... ... . ... .... . .
60
.
..........................................
70
... . .. .
.
generalized
.
. . ...... . ... .
exchange
.
.
.
.
.
.
.
.
.. . ... .
more complex
Recursive definitions: .
.
.
.
.
.
•
•
.
.
.
.
.
.
.
.
. . .. . . .
. . ....
T h e formal m o d e l
... .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.. ... . ..... .... .
Ki n s h i p s t r u c t u r e s a n d generalized exchange I n t e n d e d a p p l i c a t i o n s a n d e m p i r i c a l c l ai m s
•
.
.
.
•
genera l ized exchange
.
Appe ndix .
.
.
.
.
.
.
.
.
.
.
.
..
.
......
.
.
.
.
.
.
.
.
..
.
.
...
.. . ..
.
. .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
75
.
81
..
82
. . . . 89
... .. . . 1 0 6
. . .. . . . . . .. . .
..
.
.
........ 120
. . ... . ..... .. . .
..... . . . . .
.
..
.. .
M a r r i ag e p r o h i b i t io n s a n d t h e l i mit s o f Summa ry and c o n c l u s ion
.
formulae of
Hybrid structures and a l te rna tive marr iages
Notes
.
11
12
d e s c e n t and matrilateral cross-cousin m ar r i age .. 49
C o mp a r i s o n s a n d e x t e n s i o n s Notes
.
1
.
.
.
.
.. . .
. 128
...142
.. . ....... . .. 143
. . ........ . .
.
.. .
.
... 144
3 . Age metrics and twisted cylinders: predictions from a structural model
The problem
.
.
.
.
.....
.
.
.
.
.
•
.
.
.
•
.
.
.
•
.
.
.
.
.
.
•
... . . . . . . .......... .
Helica l m ode l s ........... D i s c u s s i o n of t h e m o d el s
.
.
.
.
.....
. .
.
.
... .
_.147
.
.
.
.
.
. 149
...... . . . . ... . ... . . . . 1.53 .
....
.
.
.... .
.
.
.
.. ...
.
166
Appc n d i x ..... ..... ... . .................... . ....... 182 No tes .
.
.
.
.
.
.
.
.
.
.
.
.... .
.
.
..... . . .
.
.
.
.
.
.. . ..... ... . . 184
vi
4 . Symmetries of restricted exchange: the twofold path to complexity
.
.
.
.
.
.
.
• . • . .
.
.
.
.
.
•
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
187 189
The road t o exclusive stra i g h t s i s te r-e xcha nge
.
.
•
.
S e m i -comp l e x s t r u c t u r e s a s au t omo r p h i sm g r o u p s
.
.
.
.
196
.
.
.
.
224
B r o ken s y mme t r i e s Appendi x Notes 5.
.
.
.
.
Kinship,
.
•
.
.
•
.
.
.
.
.
.
•
.
.
•
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
•
.
.
•
•
•
.
.
.
.
.
.
.
.
.
.
.
•
•
•
•
.
.
.
.
.
.
•
.
.
.
.
.
.
.
226
.
.
.
.
.
.
.
.
.
.
.
.
.
.
•
.
.
.
.
.
.
.
.
•
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
•
227
.
.
231
complexity,
simple systems
.
.
.
.
.
and the discrete dynamics of .
.
.
.
.
•
.
.
.
.
.
.
.
•
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
O n t h e c o m p l e x i t y of k i n s h i p s t r u ctu r e s ........... 233
S y s t ems o f i n t e rme d i a t e com p l e x i t y
.
.
.
.
.
.
....
.
.
.
.
.
.
.
. 236
C e l l u l a r a u t o m a t a a n d d i s c r e t e d y n a m i c a l s y s t e m s . ,244 P r o h i b it i o n s , mu l t i p l e e x c h a n g e s a n d s e m i g r o u p s Of brothers and s isters
.
.
.
.
•
.
.
.
.
.
.
.
.
.
.
.
.
•
.
.
.
.
.
.
.
.
271
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
292
. . . . .
.
.
.
.
.
.
.
. .
•
.
.
.
.
.
.
.
.
.
.
. . . •
295
.
.
.
.
.
.
.
.
.
. .
.
.
.. .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
318
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
325
.
•
.
•
.
.
.
.
.
.
.
.
.
.
. .
.
.
.
.
.
.
•
328
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
...
.
. .. ..
.
.
.
General index
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Dutch summary
•
.
.
.
.
.
.
.
.
.
.
• .
. .
. •
.
.
.
.
•
.
.
.
.
.
.
.
References
.
Index of names
Curriculum vitae
258
.
.
Notes
.
.
.
.
.
•
.
. 314
vii
L I ST O F T A BL E S AND F IG U R E S
T a b l e 1.1
K i n t y p e s a n d k i n s hi p m a pp i n g s
Table 1 . 2
A l t e r n a t i v e c o d i n gs
Table 2 . 1
V a l u e s o f E u l e r's f u n ct i o n �( n ) e l e m e nt s o f K f o r n < 15 . . . .
( ' Lawrence ' .
Table 2 . 2 Tab le 2 . 3
.
n
and . .
.
.
.
.
.
. .
<
15
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
C r o s s / p a r a l l e l clas s i f i c a tio n o f kint y p e s n,
Tab le 2 . 4
K i n s h i p st r u c t u r e s W(a , Values of for n < 1 5
Ta b l e 3 . 2
P a r a m e t er s of s i m p l e h e l i c a l w i th l e s s t h a n 15 p a t r i l i n e s
Table 3 . 4
.
65 .
St r u ct u r e s o f g e n e ra l i z e d e x c h a n g e f o r
Table 3 . 1
Table 3 . 3
s y s t em )
18 1
<
for n
k)
.
.
96
.
.
112
15 . . 114
and e l e m e nts of t h e s e t 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
s t ru c t u r e s . . . . . . . . . . . . . 1 62
V a l u e s o f d C f o r va r i o u s c o mb i n a t i o n s F . . . . . . . . . o f d C/d C a n d dHW M
F
91
.
.
.
.
.
.
.
.
.
.
Four s e t s o f m e a n a g e d i f f e r e n c e s
.
.
.
.
163
. . . . . . . . 1 64
F i g u r e 1 .1
K i n s h i p c h a r t n u m b e r 10 .
Figure 1 . 2
D i a g r a m s a d a p t e d f r o m F riedericy a n d Held
F i gu r e 1 . 3
D o u b l e t w o - p h r a t ry s y s t e m
. . . . . . . . . . . . . . . . 22
F igure 1 . 4
R e d u c e d k i n s h i p n e tw o r k
.
Fi g u r e 1.5 Figure 1 . 6
F ig u r e 2.1 F i gure 2 . 2 Figure 2 3 .
F i gu r e 2 . 4
.
. .
.
. . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
R e p r e s e n t at i o n of t h e s t r u ctu r e Mn x P
.
.
.
.
.
.
13
. 19 .
n P4
Lattice o f quotient s t ru c t u r e s o f M x 4 A l te r nat i v e m a r ria g e w ith i n a s y s tem o f g e n e r a l iz e d excha n g e . . . . . . . . . . . . . . . . . . . . . S t r u c tu r a l i n c o n s i s t e n c i e s i n a f i v e - l i n e a s y m m e t r i c p r e s c r i p t i ve s y st e m . . . . . . . . . . . G r a p h o f t h e c o m m u t a t i v e g r o u p G (c , s)
41
52 61 83 85 99
R e c u r s i v e d e fin i t i o n o f t h e e x c han g e c y c l e a s a p r o j e c t i o n . . . . . . . . . . . . . . . . . . . . . . . 100
wx
F i gu r e 2 . 5
R e d u c e d s t r u c t u r e a n d k i n s h i p s t r u c ture a s s o c i a t e d w i t h W ( a , 8 , 1 ) . . . . . . . . . . . . . . . 102
Figure 2 . 6
R e d u c e d s t r u ctu r e a n d k i n s hi p s t ruc t u r e a s s o c i a t e d w i t h W ( a , 8 , 3 ) ...............103
F i g u r e 2.7
R e d u c e d st r u c t u r e a n d k i n s h i p stru ct u r e a s s o c i a te d w i t h W ( a , 8 , 5 ) . .
.
.
.
.
.
.
.
.
.
.
104
.
.
.
.
.
. 1 05
Fi gur e 2 . 8
R e d u c e d s t r u ct u r e a n d k i n s hip s t r u c t u r e a s s oc i a t e d w i t h W(a, 8 , 7 ) . .
F i gure 2 . 9
R e d u c e d s t r u c t u r e a n d k i n s hip s t r u c t u r e a s s o c i a t e d w i th W ( a , 7, 2 ) . . . . . . . . . . . . . . . 124
.
.
.
.
.
.
.
.
.
.
viii
F i g u r e 2.1 0 P a r t i a l m o d e l s r e p r e s e n t i n g ma r r i a g e w i t h p p q- lM q - l r r- l t h e F ZO , F BS , a n d F ZS o 133 .
F igure 3 . 1
F igure 3.2
.
.
.
.
.
Ma t r i la t e r a l c r o s s - c o u s i n mar r i a g e : c l o s e d , c y c l i c a l m o d e l ; dHW = 0 . . . . . . . . . . 1 5 4
Matrilateral Cros s - cous i n marriage : o p e n , h e l i c a l m o d e l ; dHW > 0 .
.
.
. ..
.
.
.
.
.
•
•
.
155
F i gure 3 . 3
Hel ical exchange structure H ( a , 2, 2 ; r, . 50 0 ) ; ' o b l i q u e ' m a r r i a g e with ZO and FZSD . . . . . . . . . . . . . . . . . . . . . . . . . 167
F igure 3 . 4
A l t e r na t i v e r e p r e s e n t a t i o n s o f t h e mod e l H ( a , 3, 3; r, .667); ' o b l i q u e ' m a r r i a g e w i t h F Z OD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 6 8
F i gure 3 . 5
He l i c a l e x c h an g e s t r u c t u r e H ( a , 4 , 2 ; r , . 500 ) w i t h d i r e c t e x c h a n g e o f Z O a n d FZSO . . . . .
F igure 3.6
He l i c a l e x c h a n g e s t r u c t u r e H ( a , 6 , 2 ; r, . 5 0 0 ) w i t h g e n e r a l i z e d e x c h a n g e o f Z O a n d F ZS D . . . . . . . . . . . . . . . . . . 1 7 4
F igure 3 . 7
H e l Ic a l e x c h a n g e s t r u c t u r e H ( a, 6 , 3 ; r, . 6 6 7 ) w i t h d i r e c t e x c h a n g e o f F ZO O
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 172
.
176
F igure 3 . 8
P a r t i a l m o d e l s b a s e d o n the exchange o f Z , ZO , a n d Z D D ; c o n s ec u t i v e a n d a l t e r n a t i ng e x c h a n g e . . . . . . . . . . . . . . . . . . . . . 1 80
Figure 4 . 1
P a t r imo i e t y s t r u c t u r e w i t h r e s t r i c te d e x c h a n g e; K a r i e r a - t y p e f o u r - s e c t i o n system . 190
F i g u r e 4 . ;:.
Aranda- type k i n s h i p s tructure
Figure
Bardi-type
4.3
.
.
.
.
.
. .
.
.
.
.
. 191
k i ns h i p s t ructure . . . . . . . . . . . . . 199
Figure 4 . 4
Reduced s t ructures of restricted exchange a s s 0 c i � t e d w i 2 h 0 ( .; , 2, �), D ( .; , 4 , Sa ) and D ( a , 4 , a ) . . . . . . . . . . . . . . . . . . . . . . . . . . 206
Figure 4 . 5
R e d u c e d s t r u c t u r e s o f r e s t r i c t e d �x c h a n g � _ a s s 0 c i a t e d w i t h D ( a , 6 , Sa ) and D (a , 6 , a ) 2 0 8
F i g u re
4.6
Bun - type k i n s h i p structure . . . . . . . . . . . . . . . 209
F igure 4 . 7
M a ng a - t yp e ki n s h i p s tr u c t u r e . . . . . . . . . . . . . 2 1 1
F i g u r e 4.8
R e d u c e d s t r u c t u r e �f r e s t r i ) ted e x c h a n g e a s s o c i a t e d w i t h D ( a , 10 , Sa ) . . . . . . . . . . . . 2 1 6
F i gure 4 . 9
P a r t ia l m o d e l s a s s o c i a t e d w i t h t h e 4-� e n e r a t i o � p a t r i l i n e a l s t ru c t u r e o ( a . 1 0 , Sa ) ; s i s t e r - e x c h a n g e a n d m a r r i a g e w i t h FFFFZSSSO a n d FFFMBSSSO
.
.
F i g u r e 4 . 1 0 P a r t i a l mo d e l s a s s o c i a t ed w i t h t h e 4 - �e n e r a t i o � p a t r i l i n e a l s t r u c t u r e D ( a , 10, Sa ) ; s i s t e r - e x c h a n g e a n d m a r r i a g e w i t h MMMBSS D , MMFZSSD , F F F Z D O D ,
. . 218
ix F F MBOOO , F MM B OS O , a nd F M F ZOSO
. . . . . . . . . . . . 219
F i gu r e 5 . 1
K i n s h i p s t r u c t u r e W(a, 7, 2 ) ; d i s c r e t e d y n am i c a l s y st e m w i t h a p e r i od - 3 c y c l e . . . 2 5 3
F i gure 5 . 2
'Loca l ' r u l e s ( pa r t i a l poten t i a l mode l s ) genera ting the ' g loba l ' exchange structure
F i gu r e 5 . 3
G l o b a l s t ructures genera ted b y the local 3 r u l e wg(i+l) = wg (i) f r o m t h r e e d i f ferent i n i t i a l sta tes . . . . . . . . . . . . . . . . . 2 56
F i g u r e 5.4
P r o h i b i t io n s o n t h e r e pe t i t i o n o f a p r e v i ou s a l l i a n c e . . . . . . . . . . . . . . . . . . . . . . . . 2 6 9
F i gure 5 . 5
P a r t i a l s t ru ct u r e s r e p r e s e n t i n g t h e repe t i t ion o f a previous a l l iance by a s a m e - s e x o r b y a n o p p o s i t e - s e x consangu i n e
Figure 5 . 6
P a r t i a l m o d e l r e p r e s e n t i n g t h e Be l i y a n k i n s h i p s t ru c t u r e . . . . . . . . . . 2 89
W (a ,
7,
2)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
2 54
276
x
Th e b o ok is w r i t te n i n t h e ma t h em a t i c a l l a n g ua g e , a n d t h e s ymbo l s a r e t r i a n g l es , c i r c l es a nd o t h e r g e om e t r i c a l f i gur e s , w i t h o ut t h e h e l p o f wh i c h i t i s i mp os s i b l e t o c o n c e i v e a s i n g l e wor d o f it . . .
G a l i l e o G a li l e i , Op e r a IVl
T h e s i mp l i c i t i e s o f n a tu r a l l a w s a ri s e thro u g h th e c o mp l ex i ties o f t h e l a n g u a g es we use for t h e i r e x p r ess i o n .
E . P.
Wigner
2
F o r seven a n d a h a l f mil l i o n y e a r s , D e e p Th o u g h t comp ute d a n d c a l c u l at e d , an d i n th e e n d a n n o u n c e d t h a t t h e a ns w e r wa s i n f a c t Fo r t y -two - a n d s o a n o t h er , e v e n b i g g e r , c o m p ute r h a d t o b e b u i l t to f i n d o u t w h a t t h e a ct u a l q u e s t i o n wa s .
D o u g l a s A d ams, The R e s t a u r a n t a t t h e J E n d o f th e U n i ver s e
1 a n d 2: c i t e d i n M a c k a y ( 1 9 7 7 : 6 2 , 3 : v o l ume 2 o f A d a m s ( 1 9 79 - 1 98 5 ) .
1 62 ) .
xi
PREF A CE
T h e b o o k t h at f o l l o w s i s co n ce r n e d w i t h t h e f o rm al i z at i o n o f an t h ro p o l o g i ca l t h e o r y , of k in s h i p .
i n p art i c u l ar ,
w i t h t h e o ri�s
T h e ce n t r a l t h e s i s of my re s e a rch
is t h a t a
s ys t e m a t i c t re at m e n t o f t h e o ry - s t ru ct u re i s a p re re q u is i t e t o t h e d e v e lo p me n t o f an ad e qu a t e f r a m e w o rk fo r r e p re s e n t i n g a n d i n t e g r a t i n g k i n s h i p p h e n o m e n a,
an d t h a t a structural
re co n s t ru ct i o n o f m ajo r s e g m e n t s o f ki n s h i p t h e o ry i s
f u n d am e n t a l t o a cri t i ca l as s e s s m e n t o f t h e d y n am i cs o f t h e o ry - ch a n g e . E arl i e r vers i o n s o f p ar t s o f C h ap t e r 2 an d C h ap t e r 3
w e re p u b l i s h e d i n Cur�en t Anthr opol ogy a n d Amer i can Ethno l ogist re s p e ct i ve ly .
M an y s e c t i o n s o f t h e t h e s i s w e re first
p re se n t e d at t h e s em i n a r on co g n i t i ve and s t r u ct u ra l an t h ro po l o g y
( CA S A ) ,
a r e s e a rch p ro g ram m e of
t h e In s t i t u t e o f
Cu l t ural A n t h r o po l o g y a t L e i d e n Un i ve rs i t y .
Sections of
Ch a p t e r 5 w e re re ce n t l y w o rk e d up f o r a l e ct u re a t t h e D e p a rt m e n t o f A n t h ro p o l o g y , Un i v e rs i t y C o l l ege Lon d on , t h e c o n t e x t o f t h e E r asm u s e x c h an g e p ro g ram m e . t o m y co l l e ag u e s an d f ri e n d s , an d
I
in
am g ratefu l
to t h e e d i t o rs a n d an o n y
m o u s re f e re e s o f t h e jo u rn al s co n ce rn e d f o r t h e i r n u m e rou s h e l p f u l s u g g e s t i o n s an d p e rce p t i ve cri t i ci s m s . T h e N e t h e rl an d s F o u n d at i o n f o r t h e A d v an ceme n t o f Tropi cal Re s e a rch
( W OT R O )
19 8 1 an d 19 8 2 ;
p ro v i d e d f i n a n ci a l as s i s t a n ce d u ri n g
f o r t h e f o �b e arance i n aw ai t i n g a t h e s i s
t h a t b e ars b u t l i t tl e re se m b l an ce t o t h e re s e arch o r i g i nal l y p ro p o s e d I a m i n d e e d i n d e b t e d . M y i n t e l l e c t ual d e b t s a re m an y .
Un f o rt u n a t e ly ,
acad e m i c
t rad i t i o n a t L e i d e n Un i v e r s i t y d o e s n o t al l o w m e t o t h a n k t h e i n d i vi d u al me m b e rs o f t h e st a f f
(past a nd p r e se n t)
wh o
h a ve i nf l ue n ce d my t h i n k i n g ab o u t an t h rop ol o g y an d w h o h ave p ro vid e d as s i s t an ce i n t h e p re p a rat i o n o f t h i s t h es i s . W i t h o u t t h e i r e n co u ra g e m e n t , b e e n w ri t t e n . Fi n al l y ,
this
b o o k w o u l d n e v e r h ave
I t i s a belated and unequal co u n t e r- p re s t at ion .
t he n ,
t o M i l d re d ,
a n d p at i e n ce : m an y ,
f o r h e r u n s t i n t i n g s u p p o rt
man y t h an k s .
xi i
1
O.
PR OLOGUE
I am not tr y i ng to a rg u e t h a t we c a n use m a t h ema t i c s to s o lve a n t h ro p o l og i c a l p r o b l ems . Wha t I do c l a i m is t h a t t h e a bs t r a c t i o n of ma t h e m a t i c a l s t a t e m e n t h a s g r e a t v i r t u es i n i ts e l f . B y t r ans l a t i ng a n t h r op o l ogic a l f a c ts i n t o m a t h em a t i c a l l a ng u a g e , h o w e v e r c r u de, we c a n g e t away f r o m exc e s s i v e e n t a ng l eme n t i n emp i r i ca l fac ts a nd value loaded c o n c ep ts . E.R. L e a c h
( 1 9 5 9 ) , R e t h i n k i n g A n t h r o p o l og y
T h e F i r s t M a l i n o wsk i
M emo r i a l
Lec t u r e .
.
1
A n eme r g i ng tre n d i n t h e c u r r e n t c y c l e o f a n t h r op o l o g i ca l theorizi ng , p e r h a p s motivated e x p e r i e n c e d b y t h e c ommu n i t y 1 9 705 a n d 1 9 8 0 5 , an d
reflex itivity
o f a n A na r c his t i c
the sense of malaise
by of
anthropologists
in t h e
i s t h e g r e a t empha s i s p l a c e d on re l a t i v i sm as
core
Th e o r y
values.
I n Aga i n s t Meth o d : O u t l i n e
o f K n o w l e dg e
( 1 98 4
[197 5 ])
Paul
Fe y e r a b e n d h a d a l r e a d y a r g u e d t h a t s c i e n c e ( o n l y o n e o f the
m a n y f o rm s
of thought
d e v elo p e d b y m a n )
is much closer
to m y t h than orthodox s c i e n t i f ic p h i l o s o p h y i s p r e p a r e d t o a dm i t . O n e s h ou l d f o c u s practice , not
on
on
t h e s tu d y o f s c i e n t i f i c
m e t h o d and the w a y in w h i c h a scien t i f i c
r e s u l t i s u l t im a t e l y p r e s e n t e d a n d j u s t i f i ed . W h a t i s r e q u i r e d i s a n u n d e r s t a n d i n g o f t h e p a r t i c u l a r We l t a n s c h a u ung o r
perspect i ve which conceptua l l y shapes the way one
experi ences
t h e w o r l d , a n d w h i c h d e t e r m i n e s t h e s e l e c t i o�
o f l e g i t i ma t e p r o b l em s a s w e l l a s t h e c r i t e r i a f o r t h e i r acce p t a b l e s o l u t i o n . F rom t h i s p e r s pe c t i v e , a c r i t i c a l analysis o f the h i s tory o f ideas and the soc i o log i c a l factors i n f luencing the i r de velopme n t ,
p e r s i s t e n ce,
and
transformation i s requ i r ed . Anthropological method i s accorded a
p r i v i l e ged p o s i t i o n :
of course ,
t h a t t h e a n t h r o p o l o g i c a l m e t h o d i s t he
m e t h od matter,
'My
for studying the structure of any other
form
of
thus
a rgument presuppos es , s c i e n ce
( and ,
correct for
that
o f l i f e r ( F e y e r a b e n d 1 9 8 4 :2 5 2 ) .
2
Re c e n t c r i tic s o f a n th ro p o lo g y h a v e no w ta k e n F e ye r a b e n d 's p r o g r a m m e o n e s te p fu r th e r . F o cus s i n g m a i n l y o n the s tud y a n d i n te r p re ta ti o n o f e th n o g r a p h y a s te xts , a n d e x p l i c i tl y c o n c e r n e d w i th th e e p i s te m o l o g y o f textu a l (de)construction a n d
w i th t h e
( r e )p r e s e n ta ti o n o f
e th n o g r a p h y a s o b je c tiv e d i s c o ur s e ,
a n th r o p o l og y i ts e l f
h a s no w b e c o m e the o b je c t o f a n th r o p o l o g i c a l s e l f- c r i tiq u e . Un d e r th e m o r e r a d i c a l f o r m s o f 'p o s tm o d e r n ' s k e p ti c i s m , th e r e je c ti o n o f s c i e n c e a s le g i ti m a ti n g v a l u e i s c o m p l e te : a n th r o p o l o g y,
in a c h ie v i n g p h e n o m e n o l o g i c a l v a l id i ty ,
is
r e d uc e d to a fo r m o f l i t e r a r y c u l t u r e c r i ti que , tr a p p e d i n th e i nf i n i te r e g r e s s o f m e ta -s e l f-re f l e x i v i t y . T h e d e b a te h a s n o w c o m m e n c e d ,
2
w ith m u c h po s tu r i n g a n d
p o te nt r h e to r i c f r o m b o t h s id e s o f th e d i v i d e . e x amp l e ,
S a n g r e n 's r e c e n t ( 1 9 8 8 )
r e a c ti o n s ,
and his reply.)
p o l em i c ,
However ,
( S e e , fo r
w i th c o m m e n ts ,
i f th e h i s to r y o f
a nth r o p o l o g i c a l ih e o r y i s a n yth i n g to g o b y ,
one should
n o t b e o ve r l y o p ti m i s t i c a b o u t th e p o s s ib il i t y o f c u mu l a tiv e p r o g r e s s a r i s in g th r o u g h d i s c u s s i o n a n d th e e l i m in a ti o n o f p a s t e r r o r s . T hu s ,
Ba r r e tt ( 1 9 84 ) ,
a p p lyi n g a Kuh n i a n framework to
th e h is to r y o f a n th r o p o l o g i c a l th e o r y ,
a r g u e s t h a t th e o r y
d e v e l o p m e n t w i th in t h e d i s c i p l i n e has f a i l e d to b e c u mu l a ti v e .
S p e c ifi c th e o re ti c a l o r i e n ta tio n s e m e r g e ,
d i sa pp e a r ,
and reappea r ,
e xp r e s s in g a s e que n c e o f t r a n s
f o r m a t i o ns b a s e d o n a l i m ited nu m b e r o f un d e r l y i n g ' c o n c e p tu a l c o n tr a d ic ti o n s ' resolved
w h ic h a r e th em s e l v e s n e v e r
( B a r r e tt 1 9 8 4 : 7 3 - 9 9 ) .
p o l o g i c a l th e o r y i s r e p e titi v e ,
T h e c h a r a c te r o f a n th r o o s c ill a to r y ,
a nd c yc l i c ,
a nd th e a n a l ys i s o f i ts h i s to r y c l o s e l y r e s e m b l e s th e Lev i -S tra u s s i a n a n a l ys i s o f m yth . ' L i k e myt h ,
and a r e
Thus
( B a r r e tt 1 9 8 4:4 ) :
th e o r i e s d o no t b e c o m e "b e tt e r " o ve r tim e ,
"g o o d to th i n k " e v e n if th e y d o n o t e x p l a i n' .
Ku p e r h a s r e c e ntl y d e v e l o p e d a s i m i l a r a r g u m e n t . I n v e n t i o n o f P r i m i t i v e S o c i e t lj. Il l us i on
Tra n sfo rma t i on s
In
The
of a n
( 1 9 8 8 ) Ku p e r e x p l a i n s th e e m e r g e n c e a n d
p e r s i s te n ce o f o n e o f the 'c e n tr a l o r th o d o x ie s ' o f s o c i a l
3
a n t h r o p o l o g y i n m u c h t h e s a m e t e r m s.
' Pr i m i t i v e '
s oc i e t y , c o nc e i ve d a s t he m i r r o r i m a g e o f
' mo d e r n '
s o c i e t y , g e n e r a t e d a n e n t i r e s e r i e s o f m o d e l s a nd s p e c i f i c t h e o r i e s o f s o c i e t y , wit h e a c h new v a r i a n t o f t e n m e r e l y a s t r a i g h t f o r w a r d st r u c t u r a l t r a n s f o rma t i o n o f i t s p re d e c e s s o r (1988:5-14).
O t h e r e x am p l e s a b o u n d . I n t h e f i r s t Ma l i n o w s k i Memorial L e c t u r e of 1 9 5 9 E d m u n d L e a c h s e t o u t to anthropology ,
sketching
' re t h i nk '
i n b r o a d s t r o k e s a p ro g r amme f o r
a c h i e v i n g g e n u i n e l y u n b i a s e d g e n e r a l i za t i o n s .
This new
p r o g r a m m e was f o r m u l a t e d i n d i r e c t o p p o s i t i o n t o t h e ( t h e n p r e v a i l i n g ) t e n d e n c y o f w r i t i n g i m p e c c a b l y de t a i l e d h i s to r i c a l e t hn o g ra p h i e s of par t ic u l a r soc i e t i e s ,
as we l l
a s t o t h e m e t h o d o f s o c i a l - s t r u c t u r e compa r i s o n c h a m p i oned b y R a d c l i f f e - B r ow n ( a t y p e o f a n a l y s i s s c o r n ed b y L e a c h a s
mere
'
b u t t e rf l y c o l l e c t i n g ' ;
1 9 7 1 :2-6 ) .
Leach argued t h a t
v a l i d g e n e r a l i z a t i o n s c o u l d o n l y b e o b t a i n e d i f a n t h r o p o l o g i s t s w e r e w i l l i n g t o c o n s i d e r s o c i e t i e s m a t h ema t i c a l l y . H i s f or m a l p a r a d i gm w a s t o p o l o g y , r o u g h l y , t h e b ra n c h o f m a t hema t i c s c o n c e r n e d w i t h d e s c r i b i ng t h e p r o p e r t i e s o f geome t r i c a l f ig u r e s t h a t a r e u n a f f e ct ed b y c o n t i n u o u s t r a n s f o rm a t i o n s s u c h a s s t r e t c h i n g
.
F o r m u l a t ed i n o p p o s i t i o n t o th e o r t h o d o x v i e w s o f
f u n c t i o n a l i st a n t h r o p o l o g y , L e a c h ' s p r o g r a m m e o f t o p o l o g i c a l g e n e r ali z a t i o n w a s n e v e r c a r r i e d ou t . O n l y f i v e y e a r s l a t e r , i n a who l l y n e g a t i v e rev i ew o f H a r r i s o n W h i t e ' s A n A n a t om y o f Ki n s h i p : Cum u l a t e d R o l es
Ma t h e m a t i c,.ai
( 19 6 4 ) ,
M o de l s
fo r S t r uc t ure s o f
t h e u s e of m a t h ema t i c s i n k i n s h i p
theory i s denounced . B y 1978 Leach ' s recan tation and s e l f - r e f u ta t i on is comp l e t e . I n a reac t i on t o the topo l o g ic a l approach developed by H i l l ier e t a l .
( 1978 ) for the
c om p a r a t i v e g e n e r a l i z a t i o n o f s p a t i a l s t r u c t u r e ( e x p r e s s e d t h r o u g h bu i l d i n g f o rms a n d s e t t l e m e n t p a t t e r n s ) f rom
v a r i o u s s o c i e t i es , h i s pronouncements a r e p o s i t i v e l y M a l i n o w s k i a n ! T h u s ( L e a c h 1 9 7 8 : 40 0 ) :
I n k i n s h i p s t u d i e s w e l e a r n e d long a g o t h a t , p r e c i s e l y a t
t h e p o in t w h e re m o d e l bu i ld i n g b e g in s t o t u rn i n t o fo rm a l m a t h e ma t i c s , t h e w h o le e x e r c is e b e c o m e s a n a l y t i c a l l y w o r t h le s s . T his h a s h a p p e n e d r e p e a t e d l y o v e r t h e p a s t s i x t y y e a rs a n d c o m e s a b o u t b e c a u s e t h e m a t h e m a t i c a l m o d e l fai l s t o t a ke a c c o u n t o f t h e c o m p l e x i t ie s o f t h e 're a l' si tuation. T h e s h i f t i n p e r s pe c t i v e i s s t rik i n g:
i f,
u s e o f m a t h e m a t i c s s ho ul d e na bl e u s t o
i n 1959,
' ge t a w a y
the
from
e xc e s s i v e e n t a n g l e m e n t i n e m p i r ic a l f a c t s a n d v a l u e loa d e d conce p t s',
by 1978 a n id e n t i c a l a p p ro a c h 'fa i l s t o t a k e
a c c o u n t o f t h e c o m p l e x i t i e s o f t h e "r e a l " s i t u a t i o n ' ( L e ach 1971:13;
1978:400).
T o qu o t e L ev i - S t r a u s s
't h e a r m a t u re r e m a in s c o n s t a n t ,
(1970 [1964]:199):
t h e c o d e i s c h a n ge d ,
and
t h e m e s s a ge is re v e r s e d ' . T h e re a r e ,
indeed ,
s o u n d m e t h o d o l o gi ca l
reasons for
re j e c t i n g bo�h c �n c e p t io n s o n t h e u s e o f m a t h e m a t i c s h e ld ( i n s u c c e s s i o n ) by Le a c h .
I n a t t a c k i n g t h e c o m p a ra t i v e
s t u d i e s o f Ra d c lif f e - B ro w n a n d h i s s u c c e s s o r s , Le a c h w a s i n v e i g h i n g a g a i n s t t h e a p p l i c a t i o n o f a n a i v e p o s i t iv i s t a n d e m p iric is t f ra m e w o rk,
i n w h ic h t h e p ro l if e ra t i o n o f
t y p o lo g i e s a n d c l a s s i f i c a t o ry s c h e m e s m e r e l y re fl e c t e d
t h e a pr i ori
v e rb a l c a t e go rie s o f t h e a nt h ro p o l o g i s t ,
Ho w e v e r ,
not
( Le a c h 1 971 : 25-27 ) .
t h e r e a li t y o f e t h n o g ra p h ic f a c t
L e a c h 's p r o po s a l - s u b s t i t u t i n g t h e s u p p o s e d l y
v a l u e - free c a t e go r ie s o f a m a th e m a ti c a l ( t o p o lo gic a l ) c a lc u l u s , a n d t h e n t r a n s l a t i n g a n t h r o p o l o gi c a l f a c t s i n t o m a t h e m a t i c a l la n gu a ge -- r e m a i n s f i r m ly bo u n d t o l o gi c a l po s i t i v i s t c o n c e p t i o n s . V i ew o n Th e o r i e s ,
Thu s ,
u n d e r t h e s o - c a lle d R e c e i v e d
s c i e n t i fi c t h e o ri e s a re c o n s t r u e d a s
p a r t i a ll y i n t e r p r e t e d a x i o m a t i c s y s t e m s i. e . ,
( f o r m a l c a l c u li ) ,
a s li n gu i s t i c e n t it i e s i n w h ic h t h e o r e t ic a l t e r m s
a re gi v e n a p a r t i a l o b s e r v a t i o n a l o f c o r re s p o n d e n c e r u le s . ma thema tical way
( L e a c h 1971:7)
p re m i s e fo r a ra d i c a l
i n t e rp re t a t i o n b y m e a n s
Thinking abou t soc iety
in a
is n o t a s u ff i c i e n t
r e t h i n ki n g o f a n t h r o p o l o g y .
L e a c h 's l a t e r c r i t iqu e o f m a t h e ma t i c a l m o d e l l i n g i s p a r t i c u la rl y i n a p t .
Th e m a p i s n o t t h e w o rl d ;
n e v e r a s n o u ri s h i n g a s t h e fo o d ;
t h e menu
never equate the model
is
5
w i t h r ea l i t y .
If a m o d e l fa il s t o t a k e a c c o un t o f t he
compl e x i t i e s o f t h e
' r e a l ' wor l d w h i c h a r e t o be mode l l ed ,
i t s h o u l d b e r e p l a c e d b y a m o r e a d e qu a t e r e p r e s e n t a t i o n . T h e r e i s n o a p ri o r i
r e a s o n f o r r e je c t in g m a t he m a t i c a l
f o r mu l a t i o n s a s b e i n g f u n dame n t a l l y d e f i c i e n t to say ,
( a s opposed
a n t hr o p o l o g i c a l d e s c r i p t i o n o r s o m e o t h e r f o r m
o f n o n - m a t he m a t i c a l r e p r e s e n t a t i o n ) . O n e w a y o f b r e a k i n g o ut o f t he s t e r i l e c y c l e o f n o n cu m u l a t i v e t h e o r y
s ub s t i t u t i o n i s t o p r o v i d e a d e t a i l e d
hi s t o r i c a l cr i t i qu e o f h o w a p a r t i c u l a r tr a d i t i o n o r model has persisted,
c o n s t r a i n i n g o u r p e r ce p t i o ns a n d
l i m i t i n g o ur s t r a t e g i e s f o r r e s e a r c h
a d o p t e d b y Kup e r ( 1 9 8 8 ) .
Th i s i s t h e m e t hod
.
My st r a t e g y i s m o r e c o nve n t i o nal
( g r o u n d e d i n m e r e l y m o d e r n i s t e p i s t em o l o g y ) . F i r s t , wh a t e ve r i t s l i m i t a t i o n s ,
I ho l d t h a t f o r m a l
r e p r e s e n t a t io n
p r o v i d e s t h e p r i m a r y t e c h n i qu e f o r e x p l o r i n g a n d cl a r i fy ing c o n c e p t ua l p r o b l e m s a n d fo r m a ki n g e xp l i c i t t he f o un d a t i on a l a s s u m p t i o n s o f s c i e n t i f i c t he o r i e s Se co n d ,
t h e fo r m a l
( cf .
S u p p e s 1 9 68 ) .
representation and recons truction of
t he o r i e s i s a p r e r e qu i s i t e t o t h e i r c o m p a rison. A s u f f iciently r i c h f ramewo r k co n c e p t s ;
( t o i n c l ud e
see Balzer et a l .
i l l um i n a t e a n d
' pragmatic' and
' s o c i a - h i s t o r i ca l ' w i l l e n a b l e u s to
19 8 7 :20 5 - 2 4 6 )
to e va l ua t e m o r e p r e c i s e l y t he s i g n i f i c a n t
f e a t u r e s a s s o c i a t e d w i t h t h e o r y - c ha n g e o r no n -c u m u l a t i ve theory transformat ion . Wi t h t he R e c e iv ed V i e w n o w r e p u d i a t e d
( s e e S u p p e 1 9 77
a n d 1 9 8 9 f o r a d e fi n i t i v e a c co u n t o f i t s d e m i s e ) ,
pos i t i
v i s t i c t r eatme n t s o f t h e o r y f o r ma l i z a t i o n a r e n o l o n g e r tenable. More specifica lly ,
t he f u n d a m e n t a l a s s u m p t i o n
t h a t t h e o r i e s a r e l i n g u i s t i c e n t i t i e s m u s t n o w b e r e j ected .
Un d e r t h e m o s t p r o m i s i n g of t he al te r na ti ve vie ws th a t h a ve co m e t o t h e f o r e s i nce t he 1970 s ,
the o r i e s n o lo n g e r
c o n s i s t o f a n a xioma t i z a t i o n i n m a t h e m a t i ca l l o g i c, t o g e t he r w i t h a n e mp i r i c a l i n t e r p r e t a t i o n . Fo r e x a m p 1 e ,
the
' s ema n t i c' ( a s
0p
p 0 s e d to 's y n t a c t i c '
co nce p t i o n o f t h e o ri e s i s s u mm a r i ze d a s f o l lows F r a a s s en
( 1 9 87
[19 80 ]:64):
( Va n
6
T o p r e s e n t a t h e o r y i s t o s p e c i f y a f a m i l y of s t r u c t u r e s , i t s model s ; a n d s e c on d l y , t o s p e c i f y c e r t a i n p a r t s o f t h os e m od e l s ( t h e empirical s u b s t ruct u r e s ) a s c a n d i d a t e s f o r t h e d i r e c t r e p r e s e n t a t i on of obs e r v a bl e p h e nom e n a . T h e s t r u c t u r e s w h ic h c a n be d e s c r i be d i n e x p e r i m e n t a l a n d m e a s u r e m e n t r e p or t s w e c a n c a l l appe a r an c e s : t h e t h e or y i s e m p i r i c a l l y a d e q u a t e i f i t h a s s om e m od e l s u c h t h a t al l ap p e ar an c e s a r e i s om o r p h i c t o e m p i r i c a l s ub s t r u c t ur e s of t h a t m o d e l [o r i g i na l e m p h a s i s ] . T h e or i e s a r e t h u s s p e c i f i e d a s c l a s s e s o f m o d e l s a n d t h e i r s u b s t r uc t u r e s ,
no t a s t h e i n t e r p r e t e d s t a t e m e n t s
a nd f or m ul a e o f a l og i c a l - m a t h e m a t i c a l c a l c u l us . t h e ne w c o n c e p t i o n of t h e or i e s ,
the
Un d e r
' s ema n t ics' a r e
p r ov id e d d i r e c t l y b y d e f i n i n g a s p e c i f ic c l a s s of m od e l s , no t b y c or r e s p ond e n c e r ul e s on t h e or i e s )
(as
in the
's y n t a c t i c '
v i ew
l i n k in g t h e f or m a l s y s t e m t o t h e w or l d o f
p h e n om e na . A t h e or y ' s m od e l s a r e m a t h e m a t i c a l s t r u c t u r e s , a nd t h e r e l a t i ons h ip o f m o d e l t o p h e no m e na i s o n e o f i s om o rp h i s m :
the
empirical claim is
t h en t h a t t h e
system
of r e l a t i o n s d i s c e r n e d i n s om e p a r t i c ul a r e m p i r i c a l d o m a i n i s i s o m o r p h i c t o c e r t a i n s u bs t r u c t u r e s
( p a r t s of
t h e t h e or y ' s m od e l s ) . T h e p a r t i c ul a r m e t h od o l og ic a l a p p r oa c h t h a t I h a v e a d op t e d a s t h e g e n e r a l f r a me w o r k f or m y a n a l y s i s o f k i n s h ip t h e or y i s q u i t e s i m i l a r . non - s tateme n t
I t i s t h e s o-c a l l e d
or s t r u ctura l i s t v i ew of t h e or i e s d e v e l op e d W ol f g a n g S t e g m u l l e r ,
a n d a d v oc a t e d b y Jo s e p h S n e e d , W o l f g a n g B a l ze r a n d o t h e r s .
T h e s t r u c t u r a l i s t a p p r oa c h
s h a r e s m os t of t h e c r uc i a l c h a r a c t e r i s t i c s o f t h e s e m a n t ic a p p r oa c h ,
e x c e p t t h a t t h e l a t t e r t e nd s t o b e a p p l i e d l e s s
f or m a l l y i n t h e c on t e x t o f a c t ua l a n a l y s e s of s c i e n t i f i c t h e or ie s . � O n e a s p e c t of t h e s t r uc t u r a li s t a p p r oa c h t h a t I f i nd especially
i n t e r e s tin g i s t h e
claim
that
it may
be
applied
t o t h e r e c on s t r u c t i o n o f K u h n ' s c o n c e p t ion o f t h e o r y c h a n ge ,
a p oint ackn owle d g e d b y K u h n h im s e l f
1 9 76: 1 3 5 -27 1
a nd Ku h n 1 9 76 ) .
Thus
(see Stegm uller
( K u h n 1 976:18 4 ) : 'T o a
f a r g r e a t e r e x t e nt a nd a l s o f a r m or e na t u r a lly t h a n a ny p r e v i ous m od e o f form a l i z a t i o n ,
S n e e d 's l e nd s i t s e lf t o
7
the rec o nstruc t i on o f theory d y n a m i c s ,
w h i c h t h e o r i e s change and s t ru c t u r a l i s t
grow'.
the process by
Spec i f i c a ll y ,
the
o n t h e struc ture a n d d y n a m i c s o f
view
t h e o r i e s p r o v i d e s a s u f f i c i e n t l y ric h a n d e l a b o r a t e f r a m e w o r k f o r i n v e s t i g a t i n g the structure o f k i n s h i p
t h e o r y . T h i s is t h e g e n e r a l t h e s i s o f Wi t h r e g a r d
to
the
the
p l a n of t h e b o o k ,
c h a p t e r I i n t roduce some o f
the
book .
in the first
e a r l y k i n s h i p mod e l s
d e ve l o p e d u n d e r t h e t r a d i t i o n a l L e i d e n p r o g r a m m e o f st ruct u r a l compa r i s on . N ex t , I d i s cuss t h e s t r uctura l i s t or non - s t a tement view o n theo r i e s a n d a p p l y t h e general s c h eme t o o b t a i n a f o r m a l r e - p r e se n t a t i o n o f t h e c l a s s i c models o f double -descent and c i r c u l a t i n g connub ium a s cla sses o f set - theoretic structures .
( T h e p a r a d i gma t i c
k i n s h i p mod e l i s d e r i ve d f r om g r o u p t h e o r y . ) the c o m p l e t e set of
'lat ent'
or
'reduced'
I t h e n derive
s t ructures
imp l ied by the formal model and compare these resu l ts
w i t h t h e k i n s h i p s t r u c t u r e s d e s c r i b e d b y other anthropo logists.
Having i n t roduced the basic c oncepts and t oo l s , I move n e x t
mathematical
to t h e f o r m a l i z a t i o n a n d gen era l iza tion
of C l a u d e L e v i - S t r a u s s ' s s e m i n a l t h e o r y of e l e m e n t a r y k i ns h i p s t r u c t u r e s ( 1 9 7 0 [ 1 9 4 9 ] ) . I n C h a p t e r 2 , I d e f i n e a fami l y of
s t r u c t u r e s b a s e d o n g e n e r a l i z e d e x c h a n g e and
t h e n d em o n s t r a t e t h a t c e r t a i n s u b s t r u c t u r e s a r e i s om o r p h i c t o partial
structures and relat ionships reported i n the
et hnogra p h i c data .
T h e e x te n d e d fam i l y o f s t ru c tu re s o f
g e n e r a l i z ed e x c h a n g e
i s obtained by d e f i n i n g succe s s i ve
e x c h a n g e c y c l e s r e c u r s i v e l y , a s a u t omo r p h i sm s o f
a
basic
set o f exchange relations .5 T h e analogous p r o c e d u r e i s c a r r i e d o u t i n C h a p t e r 4, f o r m a l i z i n g a n d e x t e n d i n g L e v i -S t r a u s s ' s t h e o r y o f r e s t r i c t e d e x cha n g e .
I n Chapter 3 I demon strate how the
b a s i c model o f g e n e r a l i z e d e x c h a n g e
with exclusive
mat ril a ter a l cr oss-cousin m a r r i a g e may b e r e f o r m u l a t e d a n d m ade m o r e c om p l e x s o a s t o c o p e w i t h t h e w i d e r a n g e of age d i ff erences genera l l y reported
in t h e e th nog r a p h i c
8
r e c o rd .
Th e
s t r a t e g y I a d o p t i s t o s u p e r i m p o s e a m e t rica l
st ructure o n the underlying group- theore t i c structure . Again,
a f t e r d e r iv in g
e n t i r e f a mil y
an
of
a g e - c o n s t r ai n e d
k i n s h i p s t r u c t u r e s , I e s t a b l i s h i s o m o r p h is m s b e t w e e n
t h e m o d e l s and e t h n o g r a p h i c d a t a f r om p a r t i c u l a r s o c i e t i e s . fa m i l y
The
o f h e l i c a l e x c h a n g e mod e l s
ha s i m p o r t a n t c o n s e q u e n c e s
for
assumption that s t r u c t u
invar iably
based
on
formulated
also
fun d a me n t a l L e v i
the
Straussian
thus
res o f a l l i a nce a r e
the exchange of
a
for
s i s te r
a
spouse .
I d e m o n s t r a t e t h a t a g e - co n s t r a i n e d h e l i c a l m o d e l s a r e compatible
w ith the
f o rmu l a t i o n o f e x c ha n g e i n t e r m s o f
close female kin other than s i ste r s , and
that
such
f o r m u l a t i o n s a r e i s o m o r p h i c t o d e s c r i p ti o n s o f e m p i r i c a l societies .
In C h a p t e r 5 , I f o c u s o n
' el e m e n t a r y '
b e tween
and
t h e L�v i - S t r a u s s i a n opp o s i t i o n
' comp l ex '
k i nship structure s .
I p r o v i d e a s u m m ar y a c c o u n t o f r e c e n t d e v e l o p m e n t s i n t h e t h e ory o f c o m p l e x i t y , a n d i n t r o d u c e e x a m p l e s o f d i s c r e t e d y n a m i c a l s y s t em s f rom t h e t h e o r y o f c e l l u l a r a u t oma ta . T a k i n g u p a g a i n s om e o f t h e p o i n t s that e m e rg e d a n a ly s i s i n t h e p re c e d i n g c h a p t e r s , fundame n t a l oppo s i t i on be tween
'
i n mod e l l i n g comp l e x
as
To
'complex'
i n the l i ght of recent
wel l as the new
systems.
f r om t h e
a r gue t h a t t h e
e l e men t a r y ' a n d
s y s t ems mu s t now be r e co n s i d e red, ethnographical research
I
ac
dev elopments
c om m o d a t e t h e s e n ew
f a c t o r s , t h e s ta n d a r d mod e l s f o r r e p r e se n t i n g k i n s h i p structures
( i n c l u d i n g t he
fam ilies
of
algebraic
i n t roduced i n t h i s vo l ume ) m u s t b e r e f i n ed .
with
a
models
I conclude
number of concrete suggestions for develop ing a
m o r e e l a b o r a t e s e r i e s o f s t r u c t u r a l m o d e l s f o r inves t igating and understa nd ing the s tructure
and
d e ve l o p m e n t
of
kinship
s y s te m s . S i n c e much o f the m a t e r i a l i n t h i s b o o k re q u i r e s f a m i l i a r i t y w i th b a s i c m a thema t i c a l c o n c ep t s , I prov ided a series o f appendices
at
some
have
the end o f each chapter
to make the techn i c a l m a t e r i a l i n t h e r e s t of the b o o k access i b l e to those with l it t l e knowledge in these a reas .
9
N O T ES
1 2
3
Re p r i n t e d a s C h a p t e r 1 o f Le a ch (19 7 1 [ 1 9 6 1 ] ) . Re f l e xi v e a n d cr i t i ca l a n t h r o p o l o g y h a s y e t t o a d d r e s s t h e v a r i e t y o f t u q uo q u e a rg u m e n t s i n w h i c h r e f l e x iv e a n d c r i t i ca l a p p r o a c h e s a r e a p p l i e d t o t h e c ri t i c s t h e m s e l v e s . Fo r a s t u n n i n g e x p l o r a t i o n o f r e f l e x i v i t y ( i n c l u d i n g a t t e m p t s t o g o b e y o n d t h e co n s t r a i n t s o f t u quoque r e f l e x i v e cr i t i q u e ) , I r e c o mm e n d M a l c o l m A s h mo r e 's Th e R e f l e x i v e Th e s i s: Wr i g h t i n g S o c i o l o gy o f S cie n t i f i c K n o w l e d g e ( 1 9 8 9 ) w h o l e h e a r t e d l y ! Th e re i s a s p l e n d i d i ro n y i n c h oo s in g t h e M a l i n o w ski L e ct u re f o r re c a s t i n g a n t h r o p o l o g y i n a m at h e m a t ic al mould, g i v en M a l i nows ki 's v e h e m e n t p ro n o un c e m e n t s o n t h e 'd e h u m a ni Lat i o n o f ki n s h ip ' b y 'm o c k a l ge b ra and ' ps e u d o-m a t h e m a t i c a l t reat m e n t s ' ( c f . Mal i n o wski 1 9 3 0 ) . M a l i n o ws k i s t u d i e d p h y s i cs a n d p h i l o s o p h y i n Po l a n d b e f o re re a d i n g a n t h r o p o l o g y . L e a ch h a d a Ca m b r i d ge u n d e r g r a d u a t e e d uca t i o n in m a t h e m a t i c s a n d e n g i n e e ri n g before becom i n g a s t u d e n t of M a l i nows k i ' s . Other , even m o r e i m p a s s i o n e d cr i t i c s o f t h e u s e o f m a t h e m a t i cs i n a n t h r o p o l o g y m u s t b e c o n s i d e r e d le s s w e l l -i nf o r m e d . S e e , i n p a rt i c u l a r , Ko r n a n d N e e d h a m ( 1 9 7 0 ) f o r a p o l e m i ca l a r t i cl e ri d d l e d w i t h e rr o r s a n d i n w h i ch t h e a u t h o r s i g n o r e s om e o f t h e m o r e re l e v a n t p u b l i ca t i o n s . F o r o t h e r p r o n o u n c e m e n t s o n t h e r e l e v a n c e o f mathemat ics in a n t h ro p o l o g y r o u g h l y co n t e mp o ra n e o u s wit h L e a ch ' s t o p o lo g i c a l p r o g r a mm e o f 1 9 5 9 , s e e R a d c l i f f e - B r o w n '
4
5
(19 5 7 ; lecture no tes 1937 ) a nd L� vi-S trauss (1955 ) . c o m p r e h e n s iv e r e v i e w s o f t h e s e m an t i c a p p r o a c h , s e e S u p p e ( 1 9 7 7 : 2 2 1 - 2 3 0 , 7 0 9 - 7 1 2 ; 1 9 8 9 ) , Va n Fra a s s e n ( 1 9 8 7 [ 1 9 8 0 ] ; 1 9 8 9 ) , Gi e re ( 1 9 8 8 ) , a nd T h o m p s o n ( 1 9 8 9 ) .
For
Ke y t e xt s o n t h e s t ruct u ra l i s t ( n o n - s t a t e m e nt ) vi e w o f t h e o r i e s a r e : S n e e d ( 1 9 7 9 [ 1 9 7 1 ] ) , S t e g m ul l e r ( 1 9 7 6 , 1 9 7 9 ) , B a l Le r e t a l . ( 1 9 8 7 ) . S e e a l s o t h e r e f e r e n ce s p r o v id e d i n t h e f o l l o w i n g c h a p t e r s . T h e re a re n o w l i t e r a l l y h u n d r e d s o f p ub l i ca t i o n s o n t h e n o n -s t a t e m e n t v i e w . D i e d e ri c h e t a l . ( 1 9 8 9 ) p r o v i d e a c o m p r e h e n s i v e b i b l i o g r ap h y up t o 1988. Fo r a r e c e n t o v e r v i e w , s e e D i e d e r i c h ( 1 9 8 9 ) . S urp ri s i n gl y, a l t h ough t h e s e m a n t i c a n d s t ru c t ura l i s t v i e w s s h a re a co m m o n a n ce s t r y a n d t h e re a r e o b v i o u s c o m m o n co n ce r n s , t h e re h a s b e e n a l m o s t n o d i s cus s i o n b e t w e e n a d h e r e n t s o f t h e t w o a p p r o a c h e s . D i e d e r ich h a s n o w a n n o un c e d h i s i n t e n t i o n o f co m p a r i n g b o t h v i e w s i n a f o rt h com i n g p a p e r (s e e D i e d e r i c h 1989:383). Th u s i n t ro d u c in g , i n a t e c h n ica l s e n s e , a m o d icum of 'r e f l e xi v i t y ' a s a d e f i n i t i v e a s p e ct o f t h e t h e o ry 's s t ru ct u re .
10
11
1 . L E I DE N
,
L E V I - S T R A U S S , A N D T HE M A T H E M A T I C S O F
DOUBLE DESCENT
For
last year 's
words belong
to last year 's language And next year's words await another voice
T . S . Eliot
Li t t le
Gidding
T h e d� bris o f p r e v i o u s s c i e n t i f i c d i s c o u r s e i s o f t e n m u c h u n d e r v a l u e d - s o m u c h s o tha t , w i t h t h e r e p u d i a t i o n o f a past
p a ra d i gm ,
a s c i e n t i f i c commu n i t y w i l l
s imultaneously ren ounce , as n o t relevant f o r cont i nued p r o f e s s i o n a l s tu d y , m o s t o f t h e pub l i ca t i o n s i n w h i c h t h a t p a r a d i gm had b e e n embo d i e d .
T h i s i s t h e v i ew
p r e s e n t e d b� T h o m a s K u h n i n t h e f i n a l s e c t i o n o f h i s c e l e b r a t e d e s s a y o n The Structure of Scientific Revolutions.
I
Thus ( Kuhn 1970 : 167 ) :
S c i e n t i f i c e d u c a t i o n m a k e s u s e of n o e q u i v a l e n t f o r t h e a r t m u s e um o r t h e l i b r a r y o f c l a s s i c s , a n d t h e r e s u l t i s a some ti m e s d r a s t i c d i s t o r t i o n i n t h e s c i e n t i s t ' s perception of h i s d is c i p l ine ' s p as t . More than the p r a c t i tioners of other creative f i e l d s , he comes to see i t as leading in a straight line to the discipline ' s p r e s e n t v a n t a g e . I n s h o r t , h e c o me s t o s e e i t a s progress . Anthropologists are ,
fortunately ,
l e s s prone than mos t
to ignor i ng their pa s t . The f l edgl i ng student i s
i n t r o d u c e d t o t h e o r i g i n a l s o u r c e s a s w e l l a s the
c o n t em p o r a r y l i t e r a t u r e , a n d i s t h u s made awa re o f t h e c la s s i c p r o b l e m s a n d d i s c u s s i o n s , t o g e t h e r w i t h t h e b e w i l d e r i ng v a r i e t y o f i ncomme n s u r a b l e p r o p o s a l s o f f e r e d i n s o l u t i o n ( c f . Ku h n 1 9 7 0 : 1 6 5 ) . S t r a u s s ( 1 9 7 4 : 2 2) ,
T o p a r a p h r a s e Lev i
anthrop o l o g i c a l thought ( l i ke the
12
pensee s a uvage which is the object of its contemplatio n), in producing results in the fo rm of events, is constantly reordering, elaborating and extending the structures which constitute its hypotheses and theori es. Next year's
debriS
language emerges from the reconstructed year's words.2
of last
TRADITION
Included among the modest collecti on of maps he Id in the library of the Institute of
Cultural Anthropology at
Leiden are certain items of a curious nature:
charts with figures and di a gr a m s carefully
five large
rendered
in
Indian ink. Relegated to the basement, the y have been
rescued from oblivion by our librarian and are now listed in the catalogue as ve r w a n tschap)
'kinshi p charts
(stokk a a r t e n
1 , 5 , 7 , 9 and 10'.3
Charts number 5 and 9 are line drawings of, respectively, the classic
'Kariera'
and
'Aranda'
systems
with Dutch abbreviations denoting the genealogical relations. Chart number 7
is a variant of the 'Murngin'
diagram presented as Ch art A in J.P.B. Jong's
K i nship and Mar r i a ge. by
de Josselin de
(1952) monograph, L e vi-Str a uss's Theory on These charts were evidently used
P.E. de Josselin de Jong as exemplary illustrations
in his ki nship lectures during the late 1950s and the 1960s.4 The two remaining charts are arguably even dating back to the 1930s.
older,
Chart number
identical to a diagram in F.A.E.
possibly
1 is
van Wouden's 1935
thesis where it is used to demonstrate the exi stence of a double two-phratry system logically entailed by his celebrated model of double descent and ci rculating connubium.
I shall return to this diagram shortly.
5
Chart number 10 is the real prize. It is reproduced below as figure 1.1.
The chart is composed of two
13
J;-�-�-�-J �-� 'Circuleerend
sel
(patrilineaal)'
�-�-�-�-O{b tb---£ - � 'Circuleerend
'Enkelvoudig phratriestel sel
Cmatrilineaal)'
ok
(patrilineaal
Al
04
I I
A2 J r'1
I I
A2
61
Bl
62
C3
cb
C2
systeem
(patrilineaal
en
matrilineaal) ,
61
I
'4-klassenstelsel
'Circuleerend
(dubbel phratriestelsel)'
F ig.
62
'Circuleerend
en
T
Al
O--�--{J
matrilineaal) ,
61
systeem
(matrilineaal) ,
A4
phratriestelsel
systeem
(patrilineaal) ,
'Enkelvoudig phratriestel
1.1. Kinship chart number 10.
detailed informat i on .
systeem
(patrilineaal
en
matrilineaal) ,
See the text
for
14
paralIe 1 ser ies of diagrams set out in four rows. According to the key provided, squares denote males, circles females . Broken lines c onne c t siblings (excep t in the figure a t the bottom left-hand corner), u nbroken lines link spouses.
while
I have tra nslated the Dutch
c a ption s t o the f i g u r e s i n the first se r i e s ( st a r t i n g a t the top row, left) as:
'simple p hratry system
(patrilineal)', 'simple p h r a t r y system (matrilineal)', 'double p hratry system a nd
(pa trilineal and matrilineal)',
'four-class sys tem (double phra try system)'. The
captions correspo nding to the second series of four diagrams
(right) read: 'circulating system
(patrilineal)',
'circulating system
(ma trilineal)', and
'circulatin g system (patrilineal and ma trilineal)', with the third caption repeated for the final diagram. Chart number 10 is obviously mean t to express theoretical sta temen t of some sophistication. prin ciples of sy m me t r i c e x c h a n g e
a
Firs t, the
(ech a nge restreint) and
asymmetric or generalized exchange
(ech a n g e generalise)
a r e recognized as fundamentally distinct and contrasted by m e a n s of the tw o se r ie s of
kinship mod e ls .
S e c o n d,
within each series, i t is demonstra ted that one single
st r u c t u ra l model of the connubial system can serve for three b a sic types of descent:
patrilineal, matrilin eal,
or double descent. Finally, the entire family of models comprises a coherent expla natory scheme for the study of structural variation. By focussing on the diverse possibili ties implici t in the models the chart serves as a framework for articulating the formal proper ties of kinship systems, not all of which will necessarily be realised in phenomena from ac tual societies. Moreover,
a s I shall demonstrate, the fin a l diagram combining the prinCiples of double descent and asymmetric exchange, ac tually encompasses all
of
the other models.
suitable homomorphism they are recovered as 'reduced' st r u c tu r e s , e a c h
Under a
'latent' or
p r e se r v in g s pe c i f ic aspects
of the more complex, encompassing whole.6
15 of t he te r m, a p a r a d i g m r e f e r s
In t h e genera l sense
t o t he e n t i r e c o ns t e l la t i on o f s h a r e d c om m i t me n t s o f a
g i v e n s c i e n t i f i c c ommu ni t y . f u n d a me n t a l s e n s e 29� ) a
H ow e v e r ,
iden tified
by
in t he s e c o n d ,
( 1970 : 175 ,
m or e
1977 :
p a r a d i g m i s a n e x e m p l a r y p a s t a c h i e v e me n t , a
p a r t i c u la r l y i m p orta n t c on c r e t e
pu z z le - s o lu t i o n w h i c h ,
a s a m odel or shared e x a m p l e
e m p l oy e d
expli c i t rules a s t he
,
c a n e ve n r e p la c e
t h e b a s i s f or s e e k i n g s olu t i ons t o t h e
p r ob le ms ident i fi e d by a t h i s s e n s e of
pa r t i c u l a r s c i e n t i f i c g r ou p .
t er m , c ha r t number
s u m m a r y r e p r e s e n t a t i on f or
Ku h n
of
10 is
a
u
In
ni q u e
t h e c la s s i c L e i d e n p a r a d i g m
s t r u c t u r a l r e s e a r c h on k i ns h i p a n d
ma r r i a g e a s
e la b or a t e d b y J . P . B . d e J os s e l i n d e J o n g a nd h i s s tuden ts . T h e e me r g e n c e
of a d i s t i n c t i v e Le i d e n t r e nd i n
s t r u c t u r a l a nt h r op ol ogy i s c on v e n t i a l ly d a t e d w i t h t he
pr e s e n t a t i on of
f a m ou s s e c o n d as a F i e l d
t he s e s
J . P. B . d e
J os s e l i n d e
J on g ' s
i n a u g u r a l l e c t u r e , T h e Ma l a y A rch i p e l ago
of
Eth n o l ogica l Study , a n d
t he e x c e p t i o n a l
Held u n d er t h e s a me y e a r . 7 T h e
p r e pa r e d b y F . A . E . v a n W ou d e n a n d G . J .
h i s su p ervi s i on a nd d e f e n d e d i n
c on c e p t t he
to 1935 ,
of
a
' f i e ld o f e t h n o l og i c a l s t u d y ' S e x p ou n d e d i n
inaugura 1 address
pr i n c i ples
of
(wi th
5
pe c i a 1 e m pha s i s
on
s oc i a l or g a n i z a t i on a r t i c u la t i n g i t s
' s t r u c t u r a l c or e ' ) , t og e t he r wi t h the cle a r f oc u s w h a t w ould n ow be ter m e d t h e analy s i s
of k i n s h i p m od e ls
as a s y s t e m o f t r a ns f o r ma t i on a l v a r i a n t s e ffect serve a s a
p r og r a mme
of L e i d e n s c h ola r s ,
on
,
w ould i n
of r e s e a r c h f or g e n e r a t i o n s
pa r t i c u la r ly
t h os e s pe c i a li z i ng i n
I n d on e s i a . T h e h i s t or y a n t h r o p o l og y
of
pha s e s
( u p t o t he m i d - 1 9 5 0s )
d oc u me n t e d , w i t h t i ons
t he e a r ly
pr e v i ou s l y
now w i d e ly a v a i l a b le
I n r e c e nt y e a r s m a n y
of L e i d e n s t r u c t u r a l is
n ow f a i r l y w e l l
i n a c c e s s i b le D u t c h
pu b li c a i n E ng l i s h t r a n s la t i o n . 9
of t h e e a r ly c o n c e p t s h a v e b e e n
r e - e x a mi n e d a nd d i s c u s s e d . A c on f e r e n c e w a s h e ld i n 19 8 2
t o r e - e v a lu a t e t h e c e n t r a l n o t i o n o f a
' f i e ld
of
16
e t h n o l og i c a l s t u d y ' . T h e
p a r t i c i pa n t s
p a i d p ar t i c u la r
a t t e n t i on t o c e r t a i n f u n d a me nt a l q u e s t i on s : e x t e n t h a d t he c o nc e pt b e e n r e v i s e d
to what
o r t r a n s f or me d s i n c e
1 9 3 5 ? W h a t s h ou I d b e d on e t o i m pr av e i t s u s e f u In e s s ? T h e c on f e r e nc e pa pe r s h a v e s i n c e b e e n J os s e l i n de J ong
P .E . de
( see
1 9 8 4 ) , e l i c i t i n g f u r t he r d e b a t e . 1 0 A s
F ox h a s r e ce n t ly r e m a r k e d , t he t he
p u b l i s he d
or i g i n a l f or mu l a t i on
of
pr og r a m me e n u n c i a t e d i n 1 9 3 5 h a s s e e n a s i g n i f i c a n t
t r a n s f or m a t i on - a l t h ou g h c on t i n u i t i e s a r e c le a r l y r e c og n i z a b le .
' W h a t r e ma i n s i s a c o n c e r n t o e x a m i n e t h e
c am p a r a t i v e i n t e r r e l a t i o n s h i p b e t w e e n c on n u b i u m , d e s c e nt and d u a l i s m w i t h i n a h o l i s t i c c u l t u r a l f r a me w o r k '
( Fox
1988 : 18 1 ) . Many
o f t he k e y e le me n t s
o f t he e a r ly L e i d e n
s u mm a r i z e d a b ov e
(cf .
pu b l i c a t i on s a nd
i s o la t a b l e f r om o t h e r s ou r c e s
1935 . Thus , in
i n J . P h . Du y v e n d a k ' s d i s s e r t a t i on J osse li n d e
1 9 2 6 ; J . P . B . de
s t ructure
made
parad i g m
f i g u r e 1 . 1 ) a r e a lr e a d y s e t
J o ng w a s
his
ou t i n
p r e d a t i ng ( pu b li s h e d
s u pe r v i s or ) ,
a
u p of u n i l a t e r a l m a r r i a g e r e l a t i on s
l i nk i n g f ou r g r ou ps
( e x c l u s i ve ma t r i la t e r a l c r os s - c ou s i n
ma r r i a g e ) i s d e s c r i b e d a nd s h ow n t o b e c o m pa t ib le w i t h a ph r a t r y d i v i s i on
( 1 9 26 : 1 2 4 - 1 2 9 ) .
f a mi li a r w i t h t he c on c e p t t e r m i t s e lf :
' The
Duyvend ak was
n ot
o n ly
of a m od e l - he a p p l i e d t h e
o ld e xo g a m ou s t r i b a l d i v i s i o n ,
pr e s u m a b l y e mb od y i n g a n e la b or a t e s y s t e m of c l a s s i f i c a t i on , t he m od e l
was
m o d e l l ed '
use
on w h i c h a l l ot h e r
o p p os i t i ons w e r e
( 1 9 2 6 : 1 3 5 ; m y e m p h a s i s a n d t r a n s la t i on ) . T h i s
of t h e t e r m i s d e r i v e d f r om D u r k he i m a n d M a u s s ' s
1 9 0 3 e s s a y , D e q u e l q u es f o r m es p r i m i t i v es d e c l ass i f i ca t i o n :
contr i b u t ion
c o l l e c t i v es .
by way
a
l ' e t u de
of F . O . E .
des
van
r e pr es e n t a t i o n s
Ossenbruggen
and W . H .
Rasse r s . 1 1 T h e m od e l c on c e pt a l s o t u r n s u p i n J . P . B . d e J o s s e l i n d e J o n g ' s p a p e r o n Th e N a t c h e z S o c i a l Sy s t e m , at
the
t y pe of
of
1 9 2 8 C on g r e s s o f A m e r i c a n i s t s . s oc i a l s t r u c t u r e
He r e t h e
pre sented ' Om a h a '
( e n c o m pa s s i n g a s oc i a l d i c h ot omy
s oc i e t y i n t o c o m p l e me n t a r y , e x o g a m ou s h a lv e s , o ne
of
17
w h i c h i s h e ld
t o b e s u pe r i or ) s e r v e s a s a m od e l f or
recon s t ru c t i n g a n e a r l i e r p h a s e o r g a ni z a t i on
of N a t c h e z s oc i a l
( J . P . B . d e J o s s e l i n d e J on g 1 9 3 0 : 5 5 5 - 5 5 8 ) .
A c c or d i n g t o L oc h e r p a r a l le ls b e t w e e n
( 1 9 8 8 : 5 8 - 5 9 ) t he r e a r e i m p or t a n t
t he a p p r oa c h s k e t c h e d i n t he N a t c h e z
p a p e r a nd t he e a r l i e r d i s c u s s i on o f c om p a r i s o n a n d ' r e c on s t r u c t i on ' r e c a l ls , t he
i n t he
i n D u y v e nd a k ' s t h e s i s . A s L oc h e r l a t e 1 9 2 0 s w h e n t he m od e l a r t i c u l a t i ng
i m p or t a n t p r i n c i p le
of d ou b le d e s c e n t w i t h t he
c on nu b i a l s y s t e m w a s f o r mu l a t e d b y J . P . B . d e J o s s e li n d e J o ng a nd d i s c u s s e d w i t h h i s s t u d e n t s , in t r od u c e d t h e c o n c e p t but
t he w or d a s w e l l
of s t ru c t u r e
his
the
n ot
le c t u r e s
p r e s e n t a t i on
p a p e r , J . R . Sw a n s on v oi c e d h i s d ou b t :
J os s e l i n d e J on g ' s t h e d e r i v a t i on
on ly
1 9 8 8 : 60 - 6 2 ) .
( L oc h e r 1 9 6 8 : v i ;
I n t h e d i s c u s s i on f o l l ow i ng Natchez
in
he
p os i t i on w e r e c or r e c t
of
if Ue
' i t 1V 0u ld m e a n
o f a n u m b e r o f d i f f e r e n t f or m s o f s oc i a l
o r g a n i z a t i on f r o m a s i n g le h ig h l y s pe c i a l i z e d t y pe ' P . B . d e J os s e l i n d e J ong t he
p o in t .
me a n s
1 9 30 : 56 1 ) . T h a t is
(J.
prec i se ly
I n i n t e r p re t in g t h e A me r i c a n I nd i a n d a t a b y
of a s t r u c t u r a l m od e l
s oc i a l s t r u c t u r e ) , J . P . B . de d e m o n s t r a te t h a t d i v e r s e the
t he
m o d e l . T h e s e ma y b e
( i .e . ,
' O ma h a '
t he
po s s i b i l i t i e s a r e re a l i s e d
of
imp l ic i t
to
in
i n a c t u a l s oc ie t ie s a s
d i s pa r a t e f o r ms o f s oc ia l o r g a n i z a t i on : or t ow n m o i e t i e s , a s a
t y pe
J os s e l i n de J on g i s a b le
ma t r i l i ne a l or
a s t ot e mi c , c la n
pa t r i l i ne a l d u a l
d i v i s i on , e t c . T h e e a r ly L e i d e n b y L oc he r
p os i t i on h a s b e e n a pt ly s u mm a r i z e d
( 1968 :x ) :
T h e g r e a t a d v a n c e in u nd e r s t a n d i n g e f f e c t e d i n t h e t h i r t i e s w a s p r i ma r i ly t h e id e a t h a t a c c e n t u a t e d ma t r i l i n e a l g r ou p i n g , s i mi l a r ly ma r k e d pa t r i l i n e a l g r ou p i n g , a nd d ou b le - u n i li n e a l g r ou p i n g c ou ld b e l o ng t o one a nd t h e s a me s t ru c tu r e . F o r a n a r e a . . . i n w h i c h a 1 1 t h r e e f o r ms of o rg a n i z a t i on occ u r re d , t h i s s t r u c t u r a 1 i n s i g h t p r o v i d e d a n e n t i r e l y d i f f e r e n t pe r s pe c t i v e f r o m t h a t a f f o rd e d b y s t a r t in g f r o m t h re e s h a r p l y d i s t i n g u i s h e d ma i n t y p e s of u n i li n e a l k i n s h i p s y s t e ms , s t u d i e d e x c l u s i v e l y in a f u n c t i on a l i s t w a y or e ls e
18
p l a c e d i n a d i f f u s i on i s t o r e v o lu t i o n a r y h i s t o r i c a l s e q u e n c e , a s f o r t h e m o s t pa r t h a d p r e v i ou s l y b e e n d on e . These
i d e a s a r e c le a r ly
f ou r d i a g r a m s a nd
in
Ma k a s s a r e s e
' t w o- c l a n
or
s h ow n , b y a
re prese nted
H . J . F r iede r i cy ' s t he s is a
( 1 93 3 : 141-142 ) :
phratry s i m p le
system with
p r oc e s s
i d e n t ic a l u n d e r l y i n g
to a
p r o p os i t i on
i s d e m on s t r a t e d
is
in
figure
T w o ye a r s
later ,
d i s p la y e d
in
p lan
in
e v en
The M a h a b h a r a t a . p lan '
The
Two
is
t o e xhib it or
t he
ph r a t r y
o f c i r c u la t i ng or
a
of F r i e d e r i c y ' s d i a g r a ms ( t o p ) .1 2
g re a t e r d e t a i l i n He ld ' s p r e s e n t in g a n
o f a t w o- c l a n s y s t e m w i t h
thesis ,
' i l lu s t r a t ive
pa t r i l i n e a l d e s c e n t ,
t he
t he
succeed ing
d iagram , w i t h the
pa t r i l i n e a l d i c h ot o m y n ow
c r os s e d b y
a
d i v i s i on . r e ma i n s I n t he are
The
e x c lu s i ve
( H e ld
s e c t i on ,
p r ov i d e d
s h ow s
s tructure
iden t ica l s a me
in
a
1 9 3 5 , t h i s n ow f a m i l i a r pa t t e r n
Thus , af ter
i s r e p r od u c e d
Bug is
a n a l og ou s
f o r m od e l s
1.2
t he
' t w o- c l a n
r e s pe c t i v e ly , a m a t r i l i n e a l
pa t r i l i n e a l d e s c e n t r u l e . r e p r od u c e d
on
of
r e p r e s e n t ing
o f r e n u mb e r i n g ,
s tructure
pa t r i line a l d e s c e n t ' .
a re
s c h e me
se r ie s
ma t r i l i n e a l d e s c e n t '
s ys t e m w i t h
c on n u b i u m w i t h ,
in a
cf .
1 9 35 : 54 ;
f or a f ou r - c l a n
ma r r i a g e
p h r a t r y d i v i s i on
t he s e c ond d i a g r a m i s .
r e p re s e n t a t i o n s
pa t r i l i n e a l s y s t e m w i t h
ma t r i la t e r a l c r os s - c ou s i n
( pe n u l t i ma t e d i a g r a m »
ma r r i a g e
5 6 , n ot e s 1 , 2 , 3 ) .
t hr e e a lt e r n a t i v e
t h a t a n e x og a m o u s
( 1 935 : 63 ;
ma t r i l i n e a l
of d ou b l e c r os s - c ou s i n
is
r e p r od u c e d
I n a f ina l s e ries
a nd
H e ld
i mp l i e d in
of
f igure
1.2
t hree
d i a g r a ms , a
p a t r i l i n e a l f ou r - c la n s y s t e m w i t h a s y m me t r i c
e x c h a ng e
t r a n s f o r me d
by
is
s u pe r i mp os i n g
r e s u l t i n g s c h e me
a
is
k i n s h i p c h a r t n u mb e r He l d ' s w o r k t h r ou g h
the
int o a
s y s t e m of d ou b le d e s c e n t
ma t r i l i n e a l f ou r - c l a n g r ou p i n g .
later
The
i d e n t i c a l t o t h e f i n a l d i a g r a m of
10
( s e e f ig u r e
b e c a me
k n ow n
c r i t ica l c o mmen t s
1.1).
t o a wider aud ience
b y C la u de
Lev i - S t r a u s s
i n L e s S t r u c t u r e s d l d me n t a i r e s . 1 3 ' L e v i - S t r a u s s r e p r od u c e d
He ld ' s s c h e me a r t i c u l a t i n g
d ou b le d e s c e n t
19
Tw o - c l a n o r phr a t ry s y s te m ; p a t r i li ne a l de scen t .
1
o
,1\
2
0. . .. ... . . ... . .
-01\ , 2
C i r c u l a t in g s y s t e m ;
3
0 . . . . . . .. . . .
..
-01\ 3
1
0
,
pa t r i l i n e a l d e s c e n t . 3
1
r·· · ·
P a t r i l i n e a l f ou r - c la n s y s t e m w i t h e x c lu s i v e ma t r i l a t e r a l c r os s - c o u s i n m a r r i a g e ; e x o g a m ou s
l·
. ...... .
ph r a t r y d i v i s i on .
2
Al ..·
. . .. 82
C2
02
A2
A4
04
84
C4
S y s t e m w i t h d o u b le d e s c e n t a nd e xc lu s i v e m a t r i l a t e r a l c r os s - c ou s i n
ma r r i a g e ; e x og a m ou s
ph r a t r y d i v i s i o n .
F i g . 1 . 2 . D i a g r a m s a d a p t e d f r om F r i e d e r i c y 1 4 1 - 1 4 2 ) a n d He ld
( b o t t om )
( 1 935 : 6 3 ,
95 ) .
( t op )
( 1933 :
20
a nd c i r c u la t i n g c on n u b i u m i n a d a p t e d f or m ( 1 9 4 9 : 5 0 1 , f ig .
77 ;
1 9 7 0 : � 0 5 , f i g . 7 6 ) . H ow e v e r , L e v i - S t r a u s s d oe s
n o t r e n d e r H e Id ' s i d e a s q u i t e c or r e c t l y , a l o n g a g o b y J . P . B . d e J os s e l i n d e J o n g W h a t a pp e a r s t o b e a t i s s u e r e lu c t a nc e
(at
p os s i b i l i t y
le a s t i n
Les
p oi n t ma d e
( 195 2 : 54-56 ) .
i s L e v i - S t r a u s s ' s c u r i ou s
S t r u c t ur e s ) t o a d m i t t h e
of c om b i n i n g d ou b le d e s c e n t w i t h a s y m me t r ic ( a s o pp osed t o t h e
c on nu b i u m i n a n e x pl a n a t o r y m o d e l e m p i r i c a l q u e s t i on
o f w h e t h e r o r n ot a l l t h e f e a t u r e s
s u c h a m od e l a r e e v e r r e a l i z e d , p r a c t i c e b y t h e p a r t i c i pa n t s ) . I ..
o r r e c og n i z e d
of
L e v i - S t r a u s s ' s e m ph a s i s i s
on t h e s t r u c t u r e
g e n e r a l i z e d e x c h a n g e a s i t a ppe a r s
in
its
in
of
' s i m p le s t '
f or m ,
i . e . , w i t h a u n i l i n e a l r u le of d e s c e n t , or i n a ' h a r m on i c r e g i me ' ( 1 9 7 0 : 2 1 5 - 2 1 7 , 2 3 3 , 2 6 5 , 2 7 3 ) .
B i l i n e a 1 s y s t e m s a r e c on s i d e r e d t o b e s e c ond a r y e la b or a t i on s , w i t h d ou b le d e s ce n t a feature
of t h e e x c h a ng e s t r u c t u r e .
l og i c a l ly
redundant
I n c on t r a s t , u n d e r
t he t r a d i t i on a l L e i d e n p a r a d i g m of t h e 1 9 3 0 s , t he d ou b le d e s c e n t f or mu la t i on of c i r c u l a t i n g c on nu b i u m i s , a t a t h e o r e t i c a l l e v e l , t he s t ru c t u r e .
It
is a
m os t c om p r e h e n s i v e , e n c o m pa s s i ng
' poss i b i l i s t ic '
m od e l
( a term
recen t ly
i n t r od u c e d b y P . E . d e J os s e l i n d e J o n g a nd H . F . V e r me u l e n ) l s g e n e r a t i n g a w e l l - d e f i n e d f a m i ly of ' la t en t ' s t r u c t u r e s w h i c h , i n c omb i n a t i on , w i l l r e n d e r i n t e l l i g i b le t he v a r i a t i on a t t h e facts .
T h i s i s t h e p a r a d i g m s o a d mi r a b ly s u m ma r i z e d i n
k i n s h i p c h a r t n u mb e r 1 0 ( f i g . The
le v e l o f e t h n og r a ph i c
1.1) .
or i g i n a l L e i d e n a p p r oa c h t o s oc i a l o r g a n i z a t i on
w a s n e v e r e x c l u s i v e ly c on c e r n e d w i t h gene r a l i z e d e x c h a ng e . F r om t h e s t a r t ,
t he
pe r s pe c t i v e
e mb r ac i n g , w i t h a n e a r l y e m p h a s i s d u a li s m a s a
pe r v a s i v e s y s t e m of
i s m u c h m or e
on s oc i a l - c o s m o l og i c a l c l a s s i f i c a t i on , a nd
t h e s t u d y o f k i n s h i p s y s t e ms b a s e d on a
on
ph r a t r y d i v i s i on . 1 6
L oc h e r , c i t i n g c or r e s p on d e n c e w i t h J . P . B . d e J os s e l i n d e J on g r e g a r d i n g h i s i n i t i a l P h . D . r e s e a r c h ( 1 9 8 8 : 6 0 - 6 2 ) , 1 7 e m p h a s i z e s t h a t t he d ou b l e d e s c e n t f r a me w o r k w a s , a t t h e
21
t i me . a l r e a d y b e i n g a p p l i e d
t o t h e Au s t r a l i a n s y s t e m s
e mb od y i n g s y m m e t r i c e x c h a n g e - a nd w i t � s o me s u c c e s s . ' A t a t h e or e t i c a l le v e l we R a d c li f f e - Br ow n
•
•
•
h a d b y t he n s u r p a s s e d
f r om ou r v i e w p oi n t , mu c h
of
the
a v a i la b le ma t e r i a l c ou ld b e g i v e n a n e w i n t e r p r e t a t i on ' ( L oc he r 1 9 8 8 : 6 1 ;
m y t r a n s l a t i on ) .
T h e f u l l (n x n ) d ou b le d e s c e n t m od e l , w i t h p a t r i li n e a l ' c la n s '
' g r ou p i ng s '
i n t e r sected
by n
n
ma t r i l i n e a l
l i n k e d i n a s y mm e t r i c c o n nu b i u m c a n , f or n a n
e v e n n u mb e r , b e s h ow n t o e n t a i l a d ou b le - ph r a t r y
or
f ou r - c la s s s y s t e m w i t h s y m me t r i c e x c h a n g e . T h i s c a n b e d on e
in s ta ge s .
T h u s , He ld
( 1 9 3 5 : 9 5 ) , a f t er c on s t r u c t ing
a 4 x 4 d ou b le d e s c e n t s c h e me
( c f . f i g u r e 1 . 1 , b o t t om ,
r i g h t ) . p r ov i d e s a d i a g r a m
( r e p r od u c e d h e re
1 . 2 , b ot t om ) s h ow i n g h ow a
pa t r i li n e a l p h r a t r y d i v i s i on
ma y be
o b t a i n e d b y a r e g r ou p i n g
of t h e
in
figure
origina l
c o m p on e n t s . B y i m p li c a t i on , a rna t r i li n e a 1 d u a I d i v i s i on i s a ls o p os s i b le .
A
la t e n t f ou r - c la s s s y s t e m c a n a ls o b e
ob t a i n e d b y d i r e c t r e d u c t i on . W h a t w ou ld n ow b e t e r me d a h om o m or p h i c ma p p i ng
on t o a q u o t i e n t s t r u c t u r e i s
r e p r e s e n t e d i n k i n s h i p c h a r t 1 , r e p r od u c e d a s f i g u r e 1 .3
( t op )
(wi th
m i n o r c h a ng e s i n n o t a t i on t o m a k e i t
f u l l y c o m pa t i b le w i t h H e ld ' s e x a mp le a n d w i t h f i g u r e 1 . 1 ) . The reduced structure a nd Q y ( d o t t e d
on f ou r c la s s e s
l i n e s p a t r i l i n e a l d e s c e n t , a n d u n b r ok e n e x c h a ng e )
is
Px , P y , Q x
l i n e s d e n o t e m a t r i li n e a l d e s c e n t , b r ok e n i s o mo r p h i c t o the
l i n e s s y mme t r i c
' Ka r i e r a ' s t r u c t u re , one
o f t h e Au s t r a l i a n s y s t e ms d e s c r i b e d b y R a d c li f f e - B r ow n . In sum:
t he s t r u c t u r e w i t h a s y m me t r i c c o n n u b i u m a nd
d ou b le d e s c e n t e n c o m p a s s e s t h e c la s s i c s t r u c t u r e s w i t h s y mme t r i c e x c h a ng e . T h u s , i n 1 9 3 5 , w h e n V a n Wouden a p p lied t he g e ne r a l parad i g m t o d a t a on the k i n sh i p s y s tems
of e a s t e r n
I nd o n e s i a , i t s i n t e r na l l o g i c h a d a lr e a d y b e e n d i s c u s s e d i n s o me d e t a i 1 . A g e n e r a t i on la t e r , i n
P . E . de
J os se lin
d e J on g ' s t h e s i s , M i n a n gk a b a u a n d N e g r i S e m b i l a n
( 1 9 5 1 ) ,1 8 t h e b a s i c m od e l w o u ld a g a i n b e a pp l i e d w i t h s u c c e s s t o a
22
A
x
y
D IV ° 0 " 0
2 4
° 0 0 , 0
1,,
3
1
II,
IV
p
0 0 0 IV a 0 , 0 "
lila 0
i-
F ig .
III
1 . 3 . D ou b le
D 111
0 0 0
'a
0 0 O IV 0 ,,
B
0 0 0 111 0 1
O IV 0 ° 11 0
I p xl+---�Ia xl -t-
I,
C
a
xr
I,
III
�
�«---� �
II, I V
t w o- p h r a t r y s y s t e m l og i c a l l y i m p l i e d
b y a s c h e m e w i t h d ou b l e d e s c e n t a n d c i r c u la t i n g c on n u b i u m ( t o p ; a d a p t e d f r om k i n s h i p c h a r t n u m b e r 1 ) .
I , I I , I I I , I V s u c c e s s i v e g e ne r a t i o n s , P a n d Q ma t r i l i ne a l
p hr a t r i e s ,
x
a n d y p a t r i l i n e a l p h r a t r i e s . R e d u c e d m od e l
of a f ou r - c l a s s s y s t e m ( b ot t om ) . C f . V a n W ou d e n 1 9 3 5 : 9 7 .
23
s i g n i f i c a n t c or pu s o f d a t a . T h e s e m i n a l i d e a s o f t h e e a r l y 1 9 3 0 s , d e v e l o p e d a n d c a r r i e d f or w a r d i n t o t h e m i d - 1 9 5 0 s , p r ov i d e d t h e n e c e s s a ry c o n c e p t u a 1 f oc u s f or ma i n t a i n i n g a nd e x t e n d i n g t h e L e i d e n
pe r s pe c t i v e d u r i n g
i t s f or ma t i v e y e a r s . I n t h e r e m a i n i n g s e c t i on s o f t h i s c h a p t e r I f i r s t i n t r od u c e t he b a s i c me t h od o l og i c a l a p pa r a t u s a nd t h e s i m p le m a t h e ma t i c a l t o o ls n e c e s s a r y f or t he f or ma l r e c on s t r u c t i on of k in s h i p t h e or y . T h e me t h od o l og y i s p r ov i d e d b y t he
' n o n - s t a t e me n t '
a re la ted sen se
o f t h e t e r m ) a pp r oa c h t o s c i e n t i f i c
or
' s tr uctura l i s t '
(in
t h e or i e s a r i s i n g f r om t h e w or k of Pa t r i c k Su p p e s , a nd e la b or a t e d b y J os e ph S ne e d , W o lf g a ng S t e g mu l le r a n d t he i r c o l la b o r a t or s . T h i s s c h e me i s f u l ly c om me n s u r a t e w i t h t h e t r a d i t i on a l L e i d e n s t r u c t u r a l i s t p a r a d i g m a s s e t ou t a b ov e . I t h e n a p p l y t he ma t h e ma t i c a l c on c e p t s t o ob t a i n a f or ma l re - p r e s e n t a t i on of t h e c la s s i c m od e l of d ou b le d e s c e n t a nd c i r c u l a t i n g c on n u b i u m . F i n a l l y , a f t e r d e r i v i n g t h e c o m p le t e la t t i c e
of
' la t e n t ' k i n s h i p
s t r u c t u r e s i m p li e d b y t he f or ma 1 m o d e l , I c om p a r e my re s u l t s w i t h t h e k i n s h i p s t r u c t u r e s d e s c r i b e d b y p r e v i o u s g e n e r a t i on s o f Le i d e n s c h o la r s .
THEORIES ,
MODE L S ,
AND
S T R U C T URES
K n ow le d g e , a c c or d i n g t o G i l le s - G a s t o n G r a n g e r , c a n on l y b e c ome s c i e n t i f i c b y
' pr og r e s s i n g f r om v u l g a r e r r or -
t h a t i s , f r om u n f or mu l a t e d , a mb i g u ou s k n ow le d g e - t o s c i e n t i f i c e r r or , t h a t i s , t o r e f u t a b l e k n o w l e d g e '
( 1983 :
3 ) . T h u s , t h e l i v e d e x pe r i e n c e s a n d f a c t s d i r e c t ly pe rc e i v e d a s s i g n i f i c a n t mu s t b e r e c on s t i t u te d a n d t r a n s f or me d , b y a d � c o u pa g e of t he p h e n o me n a , i n t o ob j e c t s w h i c h s a t i s f y t h e f or ma l r e s t r i c t i o n s cha rac te r i s t ic of s c i en t i f ic
l a n g u a ge a n d w h i c h
c on s t i t u t e a s t r u c t u r e . T h i s i s t h e c e n t r a l t h e s i s of h i s i mp or t a n t w o r k , P e n s �e fo r m e l l e et s c i e n c e s de
24
l ' h omme , f i r s t pu b l i s h e d i n 1 9 6 0 a n d r e c e n t ly t r a n s l a t e d i n t o E ng l i s h . In
t h i s p r oc e s s . o f r e c o n s t r u c t i on , a x i o ma t i z a t i o n ,
d e f i n e d a s t h e s u b s t i t u t i on
of a s i m p l e i d e a f or a
c o mm o n - s e n s e i d e a , p la y s a d e c i s i v e Thus
r o le
( 1 983 : 1 35 ) .
( G r a n g e r 1 9 8 3 : 145 ) :
I t i s a x i o ma t i z a t i on w h i c h r e v e a l s t h e i n t e r d e p e n d e n c e o f h y p ot h e s e s , a n d t h e i r s t r a t e g i c v a l u e i n a m od e l . . . . i t c a l ls f or t h a nd a s s u me s t h i s e i d e t i c v a r i a t i o n of m od e ls t h a t is one of t h e e s s e n t i a l c on d i t i o n s o f t h e c on s t r u c t i on of e f f e c t i v e a n d c oh e r e n t c on c e p t s . As G r a n g e r a r g ue s , i n w i s d om e n c a psu lated in of t e n
o r d e r t o ov e r c ome t h e e n t r e n ch e d or d i n a r y
la n g u a g e t h a t h a s s o
l e d t o s c i e n t i f i c a l ly s t e r i le d i s c o urse ,
s oc i a l a n d b e h a v i ou r a l s c i e n c e s
t he
mu s t f o rg o t h e o r d i n a r y
me a n i n g s o f c o m m on - s e n s i c a I k n ow le d g e. a n d f o r mu la t e
s t r u c t ur a l d e s c r i p t i on s o f t h e p h e n o m e n a t h a t t h e y w i s h t o e x p la i n . By
' s t r u c t u r a l d e s c r i p t i on s ' G r a n g e r
a . g e n e r a l me t h od o l og y a p p li c a b le
i s r e f e r i ng
t o a ll t he
li n g u i s t i c s i t i s e x e m p li f i e d b y t h e
to
sc i e n ce s . I n
or i g i n a l a nd
of F e r d i n a n d d e S a u s s u r e . A s s u m me d u p ,
f r u i t fu l ideas t he b a s i c ide a s
of
Sau s su r i a n
li n g u i s t ic s a r e
( G r a ng e r 1 9 8 3 : x x i i i - x x i v ) : l a n g u a g e , c on s i d e re d i n d e pe n d e n t l y of t h e e n t i r e c on t e x t o f c on c r e t e a c t i v i t i e s o f e x p r e s s i on a nd t he i r h i s t or i c a l e v o lu t i on , c o n s t i t u t e s a le g i t i ma t e l y dec o u p e o b j e c t of s c i e n c e , f or min g a s y s t em w h o s e in t r i n s i c d e t e r mi n a t i on s c a n b e d e s c r i b e d a s s u c h . O n c e t h e r e d u c t i on 0 f t h e p h e n o me n o n t o t h e a b s t I' a c t ob j e c t t h a t i s l a n g u a ge h a s b e e n e f f e c t e d , t h e s e c on d S a u s s u r i a n e a c h of t h e i d e a a s s i g ns t his o b j e c t i t s n a t u r e ; e le me n t s of t h e s y s t e m o f l a n g u a g e c a n b e d e f i n e d on ly i n t e r ms of i t s re la t i on s of o p p os i t i on t o a l l t h e o t h e r s . . . a n d a s s u me s v a lu e , f u n c t i on a nd me a n i n g o n l y r e la t i v e t o t h a t f r om w h i c h i t i s d e ma r c a t e d w i t h i n t h e en tire syste m. • •
.
•
C o m p le me n t i n g deve loped
in
t h e s e i d e a s i s a n ot i on the
•
.
o f s t r u c t ur e
e a r l y 1 9 3 0 s b y t h e B ou r b a k i g r o u p of
25
m a t h e ma t i c i a n s . 1 9 e m ph a s i s
is
la id
Unde r the on the use
B ou r b a k i p r og r a m me , of
i n f or ma l s e t
great
t h e ory a nd
a b s t r a c t a lg e b r a i n a n a t t e m p t t o a x i o ma t i z e
t h e w h o le
of
of
ma t h e ma t i c s , s e e n a s a n
orde r e d
h ierarchy
s t r u c t u r e s , f r om t h e g e n e r a l t o t h e Ac c or d i n g t o G r a n g e r
p a r t i c u la r .
( l 983 : xx iv ) :
T h e i d e a t h a t i s e s s e n t i a l , a nd a t i t s f ou n d a t i on c o mm on t o t h e ma t h e ma t i c i a n s a n d S a u s s u r e , i s t h a t t h e ob j e c t i s p e r c e p t i b le i n i t s d e p t h n o t s o mu c h a s t h e b e a r e r of i n n e r p r o pe r t i e s - in t h e i ma g e of p e r c e i v e d q u a li t i e s b u t a s t h e s y s t e m of r e la t i o n s b e t w e e n e le me n t s n o t ot h e r w i s e ma r k e d , w h os e on ly e n v i s a g e d p r o pe r t i e s d e r i v e f r o m t h e s e r e la t i on s t h e ms e lv e s . S o t h a t t h e t r u e o b j e c t of ma t h e ma t i c a l k n ow le d g e i s t h e s t r u c t u r e , n o t t h e e le me n t : w h a t t h e a n a ly s t a i ms a t • • • a r e t h e f o r m a l p r o pe r t i e s of a s y s t e m of ob j e c t s • • • E a c h b r a n c h of ma t h e ma t i c s t h u s e x p l o r e s a s t r u c t u r e , or a c o m p le x o f s t ru c t u r e s G r a ng e r f in d s a s truc t u r a li s t
1950s
third ,
i n d e pe n d e n t s o u r c e
me t h od o l og y
to ana lyse a
in c e r t a i n
of
a t t e mp ts
ph i l o s o p h i c a l w o r k . 2 o T h u s
in
the
( Granger
1 98 3 : x x v ) : T h e s t r u c t u r a l i s t i d e a i n t h e h i s t or y of p h i l o s o p h y c on s i s t s i n c on s i d e r i n g a w o r k i n i t s e lf , a s a r e la t i v e ly c l o s e d a n d a u t o n o m ou s s y s t e m w h i c h t h e a n a l y s t w a n t s t o u n d e r s t a n d a s s u c h . T h u s t h e S a u s s u r i a n i d e a o f la n g u a g e i s r e d i s c o v e r e d a n d a p p l i e d t o a p h e n o me n o n o f c u l t u r e a t o n c e le s s e x t e n s i v e a n d m o re c o m p le x • • • t h e s e c o n d p r i n c i p le • • • c o n s i s t s i n p os i t i ng t h a t t h e e le me n t s o f 1 t h e s y s t e m a r e ' s i g n i f i c a t i on s ' , n ot ' m e a n i ng s ' . 2 It
i s f r om t h e
s u pe r p os i t i o n of t h e s e t h r e e m od e s
ob j e c t i f i c a t i on
t ha t G r a n g e r ex p l i c a t e s h i s
s pe c i f i c t h e me :
the
a x i oma t i z a t i on
of
the
of
m or e
s oc i a l
sc iences . H a v i n g f a i le d
in
m a ny
f u n d a me n t a l p r o b le m o f the
s oc i a l a n d
t h e m s e lv e s
in
t o c o pe w i t h
ob j e c t i f i c a t i o n
b e h a v i ou r a l s c i e n c e s t he
of
the of e x p e r i e n c e ,
h a ve en s n a r e d
s c i e n t i f i c a l l y s t e r i le w e b
l a n g u a g e d e s c r i p t i on s , m a n i p u l a t i on
cases
the
of
or d i n a r y
o r i n t h e e qu a l ly s t e r i le
me t r i c a l l y q u a n t i f i a b le
v a r i a b le s .
26
G r a n g e r i s m os t e mp h a t i c : r e a l p r og r e s s w i l l o n ly b e e f f e c t u a t e d b y a s t r u c t u r a l t r e a t me n t o f t h e s oc i a l p h e n o me n a . W h i le f or m a l a x i oma t i z a t i on of
' ma t u r e '
is characte r istic
t h e or i e s i n t h e n a t u r a l s C i e n c e s , i n t he
s oc i a l a n d b e h a v i ou r a l s c i e n c e s a n a x i oma t ic is
a ne c e s s a r y
F or t h e s c i e n c e s of h ow e v e r a w kw a r d
or
f r o m the c on f u s e d ide ology After
presen t a t i on
i n i t i a l s t e p on t h e p a t h t o ob j e c t i f i c a t i o� ma n , a t t e m p t s a t a x i o ma t iz a t i on , part ia l ,
of f e r t h e s o le
me a n s
of e s c a p e
i mp l i c a t i on s o f c on c re t e r e a l i t y a nd
(Granger 1983 : 13 6 - 137 . 145 - 149 ) . m o r e t h an a q u a r t e r c e n t u r y , G r a n g e r ' s c r i t i c a l
r e f le c t i on s
on f or ma l t h ou g h t a n d t h e
i n n ov a t i v e r o le
of a x i o ma t i z a t i on c on t in u e t o b e e mi n e n t ly r e le v a n t f or c on t e m p or a r y s oc i a l s c i e n c e s . e a r ly 1 9 6 0 s i t s h ou ld be
In
t h e c on t e x t
seen as an
of
t he
o r i g i n a l a t t e mp t t o
p r ov i d e a n a l t e r n a t i v e me t h od o log i c a l pe r s pe c t i v e t o l o g i c a l e mp i r i c i s m , t h e t h e n p r e d o m i n a n t a p p r oa c h t o s c i e n t if i c k n ow le d g e . The
ma in f e a t u r e s of
l og ic a l p os i t i v i s t me t h od o l og y
a r e w e l l - k n ow n . T h u s , u n d e r t h e ' s t a n d a r d ' o r Re c e i v e d V i e w 2 2 , s c i e n t i f ic t he or i e s a r e t r e a t e d a s c l a s s e s o f s t a t e me n t s , s o me
of w h i c h c a n
on ly b e e s t a b l i s h e d a s
t r u e o r f a l s e b y e mp i r i c a l me a n s . T h e
l og i c a l s k e le t on
of t h e e x p la n a t or y s y s t e m i s
by s pe c i f y i n g a
s u i t a b le a x i o ma t ic c a lc u lu s t h a t a r e le v a n t s u b s e t B o f
ob t a i n e d
or f or ma l l a n g u a g e L s u c h L ' S
l og i c a l ly d e r i v e d f r om a f i n i t e ( L i s u s u a l ly f i r s t - or d e r
l og i c a l v oc a b u l a r y t e r ms a nd
s t a t e me n t s m a y b e pr ope r s u b s e t A
p re d i c a t e
of L i s d i v i d e d
l og i c . ) T h e n on
t h e ore t i c a l t e r ms , w i t h t he ru le s
B.
i n t o ob s e r v a t i on a l la t t e r g i v e n a
p a r t i a l ob s e r v a t i on a l i n t e r p re t a t i on by c or r e s p on d e n c e r u le s . T h e s e
of
in
me a n s
of
effect a s s i gn a n
e m p i r i c a l c on t e"n t t o t h e a b s t r a c t c a l c u lu s b y re la t i n g i t t o t h e c o n c r e t e ma t e r i a l o f ob s e r v a t i on a n d e x p e r i me n t . L a t e r v e r s i on s
of t h e
c e n t r a l r o le o f m od e ls :
Re c e i ve d V i e w s t r e s s t h e i n d e p e n d e n t s e ma n t i c
27
in t e r p re t a t i o n s of t h e" a x i oms s u c h t h a t t h e t h e or e ms d e r i v e d f or t h e t h e or y a r e t ru e . M or e ov e r , a c c or d i n g t o N a g e 1 ( 1 9 6 1 ) a n d H e s se
( 1 9 6 5 , 1 96 6 , 1 9 8 0 ) , a t he or y ' s
m od e Is a r e s i mu l t a n e ou s ly ma t h e ma t i c a 1 m od e Is
( i .e . ,
t r u e i n t e r p re t a t i o n s ) a n d i c on i c m od e l s ( s y s t e ms s t r u c t u r a l ly i s om or p h i c o r s i mi la r t o w h a t i s m od e l le d ) . A s N a g e l a r g ue s , a m od e l ' s u p p li e s s o me f le s h f or t h e s k e l e t a 1 s t ru c t u r e i n t e r ms o f m or e o r le s s f a mi li a r c o n c e p t u a l or v i s u a l i z a b le ma t e r i a l s '
( 1 9 6 1 : 90 ) .
In
e f f e c t , i n p r ov i d i n g a n i n d e pe n d e n t s e ma n t i c i n t e r p r e t a t i o n f or t he t h e or e t i c a l t e r ms a nd s t a t e me n t s one
ma in t a in s a n i s o m o r ph i s m b e t w e e n t h e s t r u c t u r e o f
t h e m od e l a n d t h e n o n - ob s e r v a b le
( a nd pa r t i a l ly
i n t e r p r e t e d ) p or t i o n of t h e e m p i r i c a l d o ma i n u nd e r c on s i d e r a t i on . 2 3 M u c h h a s h a p p e n e d s i n c e t h e 1 9 6 0 s . T h e l og i c a l e m p i r i c i s t t r e a t me n t
of s c i e n c e h a s c o me u n d e r h e a v y
a t t a c k , w i t h t h e R e c e i v e d V i e w n ow r e p u d i a t e d or f ou n d w a n t i n g b y m o s t p h i l o s o p h e r s of s c i e n c e . I n t h e me a n t i me t h e m o r e e x t r e me
of t h e a lt e r n a t i ve Wel t a n s c h a u un gen
v i e w s a d v oc a t e d b y T ou l m i n , F e y e r a b e n d , H a n s o n , a nd K u h n , a f t e r a b r i e f d e c ad e t h e m s e lv e s g o ne
of r e l a t i ve p o pu la r i t y , h a v e
i n t o e c li p s e . 2 " Pe r h a ps i n c r i t i c a l
r e a c t i on , t h e m o s t p r o mi s i n g r e c e n t d e v e l o p me n t s a re n ow c o mmi t t e d t o a n e w s c i e n t i f i c r e a l i s m or t o a p r og r a mme o f r a t i ona l r e c o n s t r u c t i o n f o r t h e s t r u c t u r e a n d d y n a mi c s
of s c i e n t i f i c k n ow le d g e . 2 5 I s h a l l
i n t r od uc e o n e of t h e i m p or t a n t n e w c ,? n c e p t u a l f r a me w or k s : the or
' n on - s t a t e me n t ' ,
' s e t - t h e ore t i c ' ,
' s truc tura list '
' S n e e d i a n ' a p pr oa c h t o s c i e n t i f i c t h e o r i e s . T h e s e
l a b e ls r e f e r t o a r e s e a r c h p r o g r a m me a r i s i ng f r om t h e w o r k o f Pa t r i c k Su p p e s a n d
l a t e r r e f i ne d a n d e la b o r a t e d
b y J o s e p h S n e e d , W o lf g a ng S t e g mu l le r , a n d t h e i r c o l la b o r a t o r s . 2 6 A s I u nd e r s t a n d i t , t he n on - s t a t e me n t v i e w i s c o n s on a n t w i t h G r a n g e r ' s g e n e r a l p os i t i on on a x i oma t i z a t i on .
It a ls o of f e r s a r i c h c on c e p t u a l
f r a me w or k f or t h e r e c on s t r u c t i on
of s t r u c t u r a l t h e or i e s
28
i n a n t h r o p o l og y .
T h r ou g h ou t
the
rest
n on - s t a t e me n t a p p r oa c h w i l l pr ov i d e f r a me w o r k f or
t h e e x p l i c a t i on a nd
of
this
b o ok
t he
t he b a s i c
e lu c i d a t i o n
of
k i n s h i p t h e ory .
T H E N O N - S T A T E M E N T P R OG R A M M E
Under
t he
Re c e i v e d
V iew ,
t r e a t e d a s c la s s e s a x i oma t i z e d The
of
w i t h in a
s c i e n t i f ic
t h e or i e s a r e
s t a t e me n t s , w i t h a n y g i v e n p r e c i s e ly
d e sc r i be d
Su p pe s - S n e e d - S t e g mu l le r c on c e p t i o n
a l t og e t he r d i f f e r e n t . a p p r oa c h b y def ine
a
the
of
in
of
n ot i on s
of
se t
is
the
' t o a x i o ma t i z e a t h e o r y
t e r ms
t he or y lan g u a g e .
t he or i e s
S u p pe s h a s c h a r a c t e r i z e d
s l og a n :
pr e d i c a t e
f or ma l
is
to
t h e or y '
( 1 9 5 7 : 2 4 9 ) . H e r e t h e or i e s a r e d e f i n e d d i r e c t l y a s s e t - t h e or e t i c s t r u c t u r e s b y
me a n s
of
the i r
pre d i c a t e ) ,
m od e l s
( s t r u c t ur e s s a t i sf y i n g
the
c o l le c t i o n
i n t e n d e d a p p l i c a t i on s
of
represent ing
d i s t in c t
t h e a c t u a l e m p i r i c a l s y s t e ms ,
c o n f i g u r a t i on s , e t c . i nt e n d e d
f r o m t h e d o ma i n s
t he or y
is
f or ma l
l i n g u i s t i c s t a t e me n t s a r e
t o a pp ly ) .
c h a r a c t e r iz a t i on a s The
No
i l lu s t r a t i on
a x i o ma t i z e d
or the
or
f or ma l i z a t i on
assu ming
more
advanced
la t t i c e
of
than
more c om p l i c a t e d
f i r s t - or d e r
i mpr a c t ica l . Acc ord i n g
logic
t o Su p pe s ,
t he
f or
v i a b le
t he
the
a p p r oa c h i n a n a l og y
p re s e n t i n g a
in
in
of' g r ou p sign if icant
first
so or d e r
ma t h e ma t i c s ,
t h e or ie s is
large ly
s t a n d a rd
more u n re a l i s t i c
o f r e a l e m p i r i c a l t h e o r ie s . H e n c e me t h od
b y Su p p e s
t he ory a n d
b y e m p l oy i n g
a x i o ma t i z a t i o n b e c o me s e v e n
d e ve l o p a
- he nce
' s truc tura lis t ' .
p r e d i c a t e c a l c u l u s . U n f or t u n a t e ly , e v e n t he
t he
inv o lved
m a t h e ma t i c a l l y
( e . g . , g r ou p t h e or y ,
f or t h ) c a n b e
p r oc e s s e s ,
t o w h ich
( 1 9 5 7 : 2 4 6 - 3 0 5 ) i s t h e e x a m p le
t h e o r y . A s h e e x p la i n s , m a n y
( s tructures
l og i c a l c o n c e p t s
' n on - s t a t e me n t '
p a r a d i g ma t i c
h i s e a r l y w or k
t he or i e s
t og e t h e r w i t h a
in
c h a l le n g e
me t h od is
to
t o a n a lt e r n a t i v e
ma t h e ma t i c a l t h e o r y :
of
t he c a s e
d i re c t l y ,
29
b y s pe c i f y in g a s u i t a b le s e t - t h e o [" e t i c p [" e d i c a t e . T h u s , in t he e x a m p le
of g [" ou p t h e o r y , a n a d e qu a t e a x i o ma t i z a t i on ' i s a g r ou p '
of t h e p r e d i c a t e
i s t h e f o l l ow i n g :
i s a gr o u p i f a n d on ly i f t h e [" e e x i s t s a C a n d
G R OUP :
x
(1)
x
=
*
i s a f u n c t i on w h os e d o ma i n i s C
*
such t h a t
(2) ( 3 )
(C, * ) ;
C i s a n o n - e m pt y s e t ;
r a n g e i s a s u b s e t of C ;
( 4 ) f o r a l l a , b a nd *
8
(b
*
cl
a
*
e = a;
=
(8
c
X
C a n d w h os e
in G,
*
b)
*
c;
( 5 ) f or a l l a a n d b i n G , t h e r e i s a n e i n G s u c h that
( 6 ) f or a l l a i n G , t h e r e i s a n *
a
a-I
a-I
i n G such that
e.
T h i s i s of c o u r s e t h e f a m i l i a r g r o u p d e f i n i t i on i n t e r m s of a n or d e r e d
pa i r c on s i s t i n g of a n on - e m p t y s e t t og e t he r
w i t h a n a s s oc i a t i v e b i n a [" y
o p e r a t i on , w i t h t he g r ou p i d e n t i t y a n d i nv e r s e e le me n t s w e l l -d e f i ne d . 2 7 T h e pred icate
' i s a g r ou p ' s pe c i f i e s a c la s s o f s e t - t h e or e t i c
s t r u c tu r e s a n d i s s a t i s fied b y a l l and
on ly t h os e o b j e c t s t h a t on e w i s h e s t o d e S i g n a t e b y t he t e r m ' g r ou p ' . 2 8 T h e Su p p e s a p p r oa c h r e c e i v e d f r e s h i m pe t u s w i t h t he pu b li c a t i on of J os e p h S n e e d ' s Th e L o g i c a l S t r u c t u r e o f
M a t h e ma t i c a l P h y s i c s i n
1 9 7 1 . B u i ld i n g on S u p pe s ' s i d e a s
f or c h a r a c t e r i z i n g t he i n t e r n a l s t r u c t u r e o f s c i e n t i f i c t h e or i e s , S n e e d i n t r od u c e d f u r t he r e la b or a t i on s . T h e r e l a t i on b e t w e e n s e t - t h e or e t i c s t [" u c t u r e s a n d t h e r e a l w or ld s i t u a t i on s t o w h i c h t he t h e o[" y i s i n t e n d e d t o a p p ly , h e c la i me d , r e q u i r e s t h e c on s i d e r a t i on c la s s e s
of m od e l s . T h e f i r s t i s t h e c la s s M
p o t e n t i a l m o de l s ,
p
of t h r e e of s o - c a l le d
i n o t h e r w o[" d s , t he c la s s of e n t i t i e s
w i t h s ome m i n i ma l c o m m o n
' t y pe '
of s t r u c t u r e . R ou g h ly
s pe a k i n g , t h e s h a r e d s t r u c t u r e d e t e r mi n e s t h e f or ma l p r o pe r t i e s of t he t he o r y ' s c on c e p t u a l a p pa r a t u s .
( In
30
t e c hnical t e r m s t he c las s M
is d e f in e d as a s p e c i es o f p s t r u c t ur e in t h e s e n s e of B ourbak i . S e e Balz e r 19 8 3 and
Ba l z e r
et al . 1987 . )
The s e c ond c las s M of a c t u a l s u bs e t of M
p
and p i c k s
out
or
p r o p er m o d e l s is a
of t he c las s
mod e ls exac t ly t hos e whic h sat isfy t h e t he ory . 2 9 T' h u s , while p o t e n t ia l kind s of s tr u c t ure t hat
of a l l p ot e nt ia l law s
of the
m od e l s are j u s t t hos e
one mi g ht in t e l li g ib ly c laim t o
be m od e ls f or a par t i c ular
t h e ory
( cf .
Sne e d
1 984 : 9 7 ) ,
t he subs e t of pr op e r mod e Is r e pr e s e n t s t ho s e s truc t ur e s whic h , i n ad d i t ion , exhibi t t he
t he ory ' s fund a m e n t al
t he or e t i ca l con t e n t . The t h i rd c la s s of mod e l s is M , a t h e ory ' s p ar t i a l pp hin g e s on t he p o t e n t i a l model s . T h e i n t r od u c t i on of M pp
cruc i a l d is t inc t i on be t we e n t he ore t i c a l an d non- t h e or e t i cal te rms .
A c c ord i n g t o Sne e d ,
t h e u s u a l d i vi s i on ( und e r
t h e R e c e i ve d Vie w) of a the ory ' s non - log i cal vocabulary in t o ' t h e or e t i ca l' and 'n on - t he ore t ic a l ' t e rms is un t e nab Ie.
Thu s , t he
trad i t i ona 1 d ual- le ve
of t he orie s i m p os e s an arbi t rary d ic h ot omy , w i t h as
' t h e or e t ica l ' ne g a t i ve ly c h arac t e r i z e d
' n on - ob s e rvational ' . F ur t h e rmore ,
l i nk a t he ory's ' r ea l i ty '
1 c onc e pti on
or s ub j e c t i v e
t he or e tic a l c onc e p t s
one i s suppos e d
to
t he i nd e p e nd e nt
to
of ob s e r v at i on and e x p e r i me nt by d e vis ing
s uitable c orre s p ond e nc e rule s or d e fini t i ons ' . 3 o
In
' coord inat i ve
t he f inal analy s i s , t h e g oa l is
to
e x p li c a t e and d e f i ne all t h e ore t i c a l c onc e p t s by r e f e r en c e t o t he
' ob s e rvable ' :
one a t t e mp t s
' mean i ng ' from t h e bas i c emp i ri c i s t
t o t ran s f er
lan g uag e t o t he
pure ly t he ore t i c a 1 s u pers t ruc t u r e. A c c or d i n g
to Sne e d
n on - t h e ore t ic a l ' and
( 1 9 7 9 ) , t h e ' t he ore t i c a l ' n on - ob s e rvational - obs e rvat i onal '
d i c h ot om i e s d o not c oinc i d e . c on t r a s t
In ad d i t i on , and
t o t h e c ommon v ie w , he arg u e s
t hat
in
the ore t i c i ty
mus t alway s be exp li ca t e d in re lat i on t o t h e e x is t in g e xpo s i t i ons
of a p a r t i c u lar p hy s i ca l t"heory , not
abs o lu t e ly , by r e ference t o s ub lan g uag e s
of a ge ne r a 1
31
lan g u a g e by
of s c i e n c e .
S t e g m u l le r
S n e e d ' s s o l u t i on
( 1 976 : 4 1-42»
( a s s u mm a r i z e d
i s r ou g h ly t h i s :
E x a c t ly t h o s e q u a n t i t i e s or f u n c t i o n s wh o s e v a l u e s c a n n o t b e c a l c u l a t e d w i t h o u t r e c o ur s e t o a t h e o r y T ( m or e s p e c i f i c a l ly , t o t h e s u c c e s s f u l l y a p p l i e d t h e o r y T ) a r e t h e or e t i c a l i n r e l a t i on t o t h i s t h e or y T . S n e e d ' s c r i t e r i o n i s t he r e f or e f or
a r e la t i v i z e d c o n c e p t
' T - t h e or e t i c a l ' , n ot a n a b s olu t e d e f i n i t i on I n t he a
or i g i n a l f or mu l a t i on
t h e or y ' s
pa r t i a l p ot e n t i a l m od e l s
r e m o v i n g f r om e a c h
structures which can be described of
r e p r e s e n t t he
the
or i g i n a l d e f i n i t i o n
of
M in
t he n d e f i n e d
t he n o n - t h e o r e t i c a l
t he
pp
T.
' T- t h e or e t i c a l '
oc c u r i n g
phy s i c s
of M
( r ea l s ys tems
t h e or y of
t o q u a n t i t ie s
ma t h e m a t i c a l
c l a s s i c a l p a r t i c le
of
pp
by
a ll p thus c ontains a l l
pp
p ot e n t i a l a p p li c a t i on s
c r i t e r i on r e f e r r e d theories
is
t h e t h e or y , i . e . , t he e le me n t s
d e s c r i be d a s s t ruc t u r e s ) o f Sneed ' s
t h e or e t i c i t y .
p ot e n t i a 1 m od e 1 o f t h e c l a s s M
c om p on e n t s t h a t a r e T - t h e or e t i c a l .
v oc a b u la r y
of
1 9 7 9 ) t h e c la s s M
( Sneed
i n deve l oped
( e . g . , f u n c t i on s i n
ma t h e ma t i c s ) .
I n s u c h f u l ly d e v e l o pe d
t h e o r i e s t h e b a s i c f u n c t i on s a r e me t r i c a l c on c e p t s . F o r q u a l i t a t i v e t h e or i e s i ns t e a d just
a
( e .g . ,
o f f u n c t i ons ,
t h e or i e s w i t h b i n a r y
or w h e r e t he
t h e c once pt
t r u t h v a lue )
re la t i o n s
f u n c t i on v a l u e i s
o f T-de pend e n t
me a s u r e
me n t w ou ld b e r e p la'c e d , i n a n a l og y , b y t h e c o n c e p t T- d e p e n d e n t d e t e r m i n a t i o n 1 9 7 6 : 5 3 a n d B a lz e r
of t r u t h v a lue
1 98 2 : 22 ) .
p r i n c i p le b e a d a p t e d
(cf .
of
He n c e t h e c r i t e r i o n c a n
t o n o n - me t r i c a l c on c e p t s
say ,
S t e g m u l le r in
in
a n t h r o p o l og i c a l t h e or- i e s . B a lz e r h a s r e c e n t ly g e n e r a l d e f i ni t i on of M
( 1982 ,
pp
1983 )
m o d e ls a s a r b i t r a r y s u b s t r u c t u r e s m od e ls , i n d e p e n d e n t Unde r a
of
p r o p os e d
, i n t r od uc i n g of a
t he c r i t e r i on o f
t h i s m o d i f i c a t i on a s u b s t r u c t u r e
a m or- e
p a r t i a l p ot e n t i a l t h e or y ' s
p ot en t i a l
T - t h e or e t i c i t y . is
ob t a i n e d f r o m
p ot e n t i a l m od e 1 b y r e s t r i c t i n g i t s f u n c t i o n s a n d
r e la t i o n s
t o a s m a l le r s u b s e t
of
t he
p ot e n t i a l m od e l ' s
32
b a s i c s e t s o f c om p one n t s . B a lz e r t h u s a d m i t s a s a pa r t i a l p ot e n t i a l m od e l e v e r y s t r u c t u r e w h i c h i s
' i n b e t w e e n ' a p ot e n t i a l m od e l a n d t h e t r i v i a l or z e r o
s t r u c t u r e c on s i s t i n g of e m pt y c om p one n t s o n l y .
It can
b e e a s i ly d e m o n s t r a t e d t h a t , u nd e r t h i s d e f i n i t i on , t h e c la s s M
pp
( t og e t he r w i t h t he s u b s t r u c t u r e r e la t i o n ) i s
a c om p le t e la t t i c e w i t h a le a s t e Ie me n t . 3 1 T h e c r i t e r i on of T - t h e ore t i c i t y i s i m p or t a n t - a p oi n t f u l ly a c k n ow le d g e d b y Ba lze r on e a c c e p t s the
( 1 98 2 ,
1983 ) .
H ow e v e r , e v e n if
Sn e e d i a n d i s t i n c t i on , it i s i n
prac t i c e
of t e n q u i t e d i f f i c u l t t o d e t e r mi n e w h i c h t e r m s o f a pa r t i c u l a r t he or y a r e a c t u a l l y T- t h e or e t i c a l a n d w h i c h a r e T - n on - t he or e t i c a l . B y d e f i n i n g M
pp
i n a ma n ne r
i n d e p e n d e n t o f t he c r i t e r i on o f T - t h e or e t i c i t y , B a l z e r ' s a p p r oa c h a l l ow s f or t he f or m a l r e c o n s t r u c t i on of a t he or y t o b e u n d e r t a k e n p r i o r t o t he f u nd a me n t a l i n v e s t i g a t i on of t he ore t i c l t y . T h i s p la n of a c t i on i s p a r t i c u la r l y a p p r o pr i a t e t o t he r e c o n s t r u c t i o n o f t he or i e s i n a n t hr o p o l og y , w he re i t i s o f t e n d i f f i c u l t t o a p p l y t he c r i t e r i on o f T - t h e ore t i c i t y i n a s t r a i g h t f or w a r d ma n ne r . T h u s , i n t he p re s e n t w or k I f i n d i t c on v e n i e n t t o f o l l ow B a l z e r a nd t o d e f i ne M as an
ord e re d h i e r a r c h y
of s u b s t r u c t u re s
of M
P
•
pp
T h e r e a r e t w o ot he r c om p one n t s o f a t he or y . T h e c la s s
C of
c onstra i n t s e x p r e s s
' c r os s c o n n e c t i on s ' b e t w e e n
s e ve r a l p ot e n t i a l m od e l s . T h e y g u a r a n t e e t ha t c e r t a i n f e a t u r e s re ma i n c on s t a n t
or i n v a r i a n t a c r os s p a r t i c u l a r
c o mb i n a t i on s o f p ot e n t i a l m od e ls . F o r e x a m p le , t he v a l u e s a s s u me d b y f u n c t i o n s i n f u l l y m a t he ma t i c a l t h e o r i e s i n o n e m od e l mu s t b e c om pa t i b le w i t h t h os e a s s u me d i n o t h e r a p p li c a t i o n s c on n e c t e d b y t he s a me c o n s t ra i n t .
( S i m i l a r r e s t r i c t i on s ma y b e f or mu l a t e d
f or t he or i e s o f a qu a li t a t i v e n a t u r e . ) F i n a l ly , I i s
t he c la s s of s t r u c t u r e s r e p r e s e n t i n g a t he or y ' s i n t e n de d a pp l i c a t i o n s .
R ou g h ly , I c o n t a i n s t h o s e r e a l
s y s t e m s t he t he or y i s i n t e n d e d t o d e a l w i t h . I i s a 5
ubset
of M
pp
;
h e n c e , a s d e f i n e d b y B a lz e r ( 1 9 8 2 , 1 9 8 3 )
33
i n t e n d e d a p p l i c a t i ons a r e s u b s t r u c t u re s . A n y t he ory wi 1 1 i n
p r i n c i p Ie h a ve c ou nt le s s i n t e n d e d a p p l i c a t i on s .
He n c e I i s
la r g e ly a n
open se t
S t e g mu l le r 1 9 7 9 : 1 1 -
(cf .
12 ) , c on t a i n i n g i n m os t c a s e s a s u b s e t 1 0 of
the
t h e o r y ' s h i s t o r i c a p p l i c a t i o n s o r p a r a d i g m e x a m p le s a s i t d e v e l o ps
o v e r t i me .
t h e o r y - e l e me n t T i s t h e n a n
A
T
where M
•
m od e Is ,
C
=
<M
p
and M
M,
p p ot e n t i a l m od e l s ,
•
M. M
pp
•
or d e r e d q u i n t u p le :
C . I >,
a r e , r e s pe c t i v e ly , c la s s e s of
pp pr o p e r m od e l s , a n d
i s a c la s s
of
i n t e n d e d a p p li c a t i on s .
pa r t i a l p ot e n t i a l
c on s t r a i n t s , a n d I t h e
(M
p
, M, M
pp
c la s s
of
, C > d e n ot e s t h e
m a t h e m a t i c a l f or m a l i s m or c or e K o f t he t he or y - e le me n t . Hence T
( K,
=
I >. w i t h
t he t he or y - e le me n t e n c om pa s s i n g
b ot h t he t h e or e t i c a l f r a m e a n d t h e t he or y ' s d om a i n
of
i n t e n d e d a p p li c a t i o n s . W i t h t h e s t r u c t u r a l i s t c on c e p t i on of s u m m a r i z e d a b ove , claim of
and
t h e or y
Re p r e s e n t e d
as
i . e . , r e a 1 s y s t e ms
of
ob s e r v e d ,
the
s e t - t h e or e t i c
rea l
of
intended
i t s c once pts .
subs tructur e s ,
o r t a ke i n t o a c c ou n t
s y s t e ms t ha t are
empirical
pe r c e i v e d i n t e r m s o f
p a r t i a l ly e x h i b i t i n g
a p p li c a t i on s d e s c r i b e part s
c a n n ow f or mu l a t e
t h e or y - e l e me n t T . L e t I b e t he s e t
a pp li c a t i ons , the
on e
t h e or i e s
i n tended o n ly t h o s e
a c t u a l ly i d e n t i f i e d ,
or i n s ome w a y c a pt u r e t he k n ow n d a t a a b ou t
s ome s y s t e m . T h e e m pi r i c a l c la i m t h e n s i m p ly s a y s t h a t t he s u b s t r u c t u r e s a r e i n f a c t p a r t s o f t h e t h e or y ' s p r o pe r m o d e ls a n d c a n b e a u g me n t e d
or e x tended
to
c om p le t e s t r u c t u r e s . T h u s , t h e e m p i r i c a l c la i m c a n b e s t a t e d a s f o l l ow s : o f I s o t ha t X i s
a
s e t X o f e x t e n s i on s
There exi s t s a
s e t o f p r o pe r m od e l s w h i c h a ls o
s a t i s f i e s t h e c o n s t r a i n t s C of t he t he or y 1 9 8 2 a n d 1 9 8 3 , a n d B a lz e r e t a l . e mp i r i c a l
c la i m s a r e a s s e r t i on s
c on s e q u e n c e s :
they
1987 ) . with
a r e e i t he r t r u e
( s e e B a lz e r
T h u s f or mu l a t e d ,
t e s t a b le
or f a ls e . 3 2
34
E L E M E N T A R Y K I N S H I P S T R U C T U R E S A N D D OU B L E D E SC E N T
I n t he k i n s h i p m od e l s d e v e l ope d b y t h e p r e w a r s c h o o l of Le i d e n a n t h r o p o l og y , a p os i t i v e m a r r i a g e r u le r e g u l a t e s t h e c h oi c e o f a s p ou s e , e i t he r b y p r e s c r i b i n g w i t h a c e r t a i n t y pe
ma t r i l a t e r a l c r os s - c ou s i n ) , c a t e g or y
in
terms
of a
ma r r i a g e
( e . g . , w i t h m a le e g o ' s
of r e l a t i ve
or b y d e f i n i n g
t he s p ou s e
pa r t i c u la r w i f e - g i v i n g
l ine
or
' m a r r i a g e c la s s ' . 3 3 S i m i l a r m od e l s w ou l d la t e r p la y a c r u c i a l r o le i n C l a u d e L e v i - S t r a u s s ' s L es
d ou b le d e s c e n t
S t r u c t u r e s e 1 e me n t a i r e s de 1 a p a re n t e , i n t e n d e d a s t he in t r od u c t i on t t he
0
a g e n e r a 1 t h e or y
p r e f a c e t o t he f i r s t
of k i n s h i p .
( 1 9 4 9 ) e d i t i on
( see
Th us , in
L e v i - St r a u s s
1 9 7 0 : x x i i i ) , e l e m e n t ar y k i n s h i p s t r u c t u r e s a r e d e f i n e d as : . . . t h os e s y s t e m s i n w h i c h t he n ome n c la t u r e pe r m i t s t he i m m e d i a t e d e t e r m i n a t i on of t he c i r c le of k i n a n d t h a t of a f f i n e s , t h a t i s , t h os e s y s t e m s w h i c h p r e s c r i b e m a r r i a g e w i t h a c e r t a i n t y p e o f r e la t i v e , or , a l t e r na t i v e ly , t h os e w h i c h , w h i l e d e f i n i n g a l l me m b e r s of t he s oc i e t y a s r e la t i v e s , d i v i d e t he m i n t o t w o c a t e g or i e s , v i z . , p os s i b le s p ou s e s a n d pr oh i b i t e d s p ou s e s . T h e c or r e s p on d e n c e s b e t w e e n
t h e L e i d e n a p pr o a c h a n d
L e v i - S t r a u s s ' s m or e a mb i t i ou s s c h e me a r e e v i d e n t . Ne v e r t he l e s s , t ie s
one s h ou ld n ot a l l ow t h e
ob v i ou s s i m i la r i
t o ob s c u r e f u n d a me n t a l i s s u e s o n w h i c h t h e t w o
a p pr oa c h e s d i s a g r e e .
S i g n i f i c a n t d i f f e r e n c e s w e r e n ot e d
a n d c om me n t e d u p on b y J . P . B . d e J os s e l i n d e J o ng
in h i s
e s s a y - le n g t h r e v i e w of L e s S t r u c t u r e s . L e v i - S t r a u s s ' s Th e o r y o n K i n s h i p a n d M a r r i a g e
On e c r u c i a l f e a t u r e re pe a t e d ly , exchange
i s h i s b e li e f
(resu lt ing
s t r u c t u r e s ) d oe s t he n a tu r e a r c h e t y pe
of
of
w h ic h
in
t h a t t he s i g n i f i c a n c e
in a l i m i t e d s e t
n ot , i n
a p pe a r e d
195 2 .
L e v i - S t r a u s s ' s t h e or y , s t r e s s e d of
of e le me n t a r y
t h e f i n a l a n a ly s i s , d e pe n d
the gifts exchanged .
on
In m a r r i a g e , t he
of e x c h a n g e , w om e n a r e t he s u p r e m e g i f t .
H ow e v e r , t he i n t e g r a t i n g e f f e c t a nd
t h e s o li d a r i t y w h i c h
35
bind
g r ou ps t og e t he r , u n i t i n g t he g i f t a n d t h e c ou n t e r
g i f t , and one marr iage w i t h
othe r marr i ag e s , a r e
u lt i ma t e l y i n d e pe n d e n t c om mu n i c a t e d
(cf .
I n o p p os i t i on ,
of t he v a lu e o f t he s i g n s Le v i - S t r a u s s 1 9 7 0 : 1 1 6 , 4 8 3 , 4 9 5 - 4 9 6 ) . 3 �
J . P . B . de
J os s e l i n d e J on g i n t r od u c e s
d a t a f r om I n d one s i an s oc i e t i e s w h e r e c a t e g or i e s and
of
' m a le '
' f e m a le ' g o od s a r e d i s t i n g u i s he d , w i t h b ot h k i n d s
g o od s
p l a y i ng
a n e s s e n t i a l r o le
i n t he t r a n s a c t i on
m a t r i la t e r a l c r os s - c ou s i n m a r r i a g e , C i r c u l a t i n g
of
of
in
o p p os i t e d i r e c t i o n s t h r ou g h t he w h o le c om mu n i t y .
Thus
( J . P . B . d e J os s e l i n d e J on g 1 9 5 2 : 5 8 ) : I t s e e ms i n d i s pu t a b le t o u s t ha t i n t h i s _ c a t e g or y of ' e c h a n ge gener a l ' ( a l l -e m b r a c i n g e x c h a n g e ) t he i n t r i n s i c n a t u r e of t he e x c h a ng e d v a l u e s i s n ot b y a ny me a n s i r r e le v a n t . T h e f u nc t i on a l v a l u e o f t he e x c ha n g e i n s u c h c a s e s r e s u I t s q u i t e a s mu c h f r o m t he n a t u r e o f t he g o od s a s f r om t he a c t i t s e l f a n d t he p os i t i on s of t he e x c ha n g e p a r t n e r s i n t he w h o le s y s t e m . I t w ou l d s e e m t he r e f ore t ha t we h a v e t o d i s t i n g u i s h b e t w e e n tw o t y pe s o f e x c h a n g e w h i c h a re p r o b a b l y c o -e x i s t e n t i n a l l c om mu n i t i e s w i t h ' e le me n t a r y s t ru c t u r e s o f e x c ha n g e ' , v i z . o n e i n w h i c h t he e f f e c t i s fe l t t o r e s i d e e x c lu s i ve l y i n t he a c t i t s e l f a nd o ne i n w h i c h i t i s c on c e i ve d a s re s u l t i n g f r o m s pe c i f i c g o od s b e i n g e x c h a n g e d b y d e f i n i t e pa r t i e s . F r om t h i s
pe r s pe c t i ve t he re a re c le a r ly n o
a
g r ou nd s f or c la s s i f y i n g w om e n e x c lu s i v e ly a s exc ha nge ty p e
ob j e c t s , t o b e re l e g a t e d t o t he
of e x c ha n g e .
3 5
pr i o r i ' ne u tra l '
f i r s t - me n t i o n e d
T h e s e c on d f u n d a me n t a l d i f fe re n c e s t re s s e d b y J . P . B . d e J os s e l i n d e J on g c on c e r n s t he s t a t u s desce n t .
o f d ou b le
L e v i - S t r a u s s a p pe a r s f i rm ly c o n v i n c e d t ha t
a s y m me t r i C ma r r i a g e a lw a y s
p r e s u p p os e s a u n i l i n e a l m od e
o f d e s c e n t . D ou b le d e s c e n t , a n d b i l i ne a l m od e s
o f re c k o n i n g
m o re g e n e r a l ly , a l l
of d e s c e n t a r e s e e n a s
s e c on d a r y e la b or a t i o n s a s c o m pa r ed w i t h t he s y s te m o f e x c h a nge .
L e v i - S t r a u s s ' s a r g u me n t i s
l a r g e l y f or ma l :
a s y m me t r i c s y s t e ms n e e d n ot b e c o me b i l i n e a l i n or d e r t o b e c ome a l l -e mb r a c i ng , w h e r e a s a s y mme t r i c u n i l i n e a l s y s t e m c a n n o t b e c o me a l l - e m b r a c i n g u n l e s s i t b e c ome s
36
b i li ne a l
or , t r a n s f or mi n g i t s s t ru c tu re
a s y mme t r i c . i nc li n e d
' n ot
t o c on s i d e r t he
p os s i b i l i t y o f d ou b le
d e s c e n t a s a s t r u c t u r a l f a c t o r u n le s s t ha t i t c ou ld n ot b e i g n or e d '
i t is s o e v ident
( J . P . B . d e J os s e l i n d e
J ong 1 95 2 : 3 6 , 5 1 ; m y e m pha s i s ) . As
of e x c ha n ge ,
As a c on s e q u e n c e , L e v i - S t r a u s s i s s t r on g l y
3 <>
I h a v e a lr e a d y s t r e s s e d i n t h e i n t r od u c t or y
s e c t i on t o t h i s c h a p t e r , t h e L e i d e n a r g u m e n t i s v e r y
i n t he w or k o f V a n W ou d e n , He ld , a n d
different . Thus ,
o t he r s , a d i a g r a m a r t i c u l a t i n g a d e scen t w i t h a
p r i n c i p le
o f d ou b le
of e x c h a n g e e m p h a s i z i n g
p r i n c i p le
e x c l u s i v e c r os s - c ou s i n ma r r i a g e a n d a s y m me t r i c c on nu b i u m i s i n t e n d e d a s a s t ru c t u r a l m od e l , i . e . , a c on s i s te n t of t he re l a t i o n s h i p of a l l
f or m a l r e p r e s e n t a t i on
r e le va n t c on c e p t s t o e a c h
ot he r , n ot a s a f a c t u a l
d e s c r i p t i on o f a n y s i n g le k i n s h i p s y s t e m . w he t he r
Indeed ,
or n ot t he s t r u c tu r a l p os s i b i l i t i e s e x p l i c a t e d
i n s u c h a m od e l a re a c t u a l l y r e a l i z e d i n d a t a
f r om
e m p i r i c a l s oc i e t i e s i s a q u e s t i on f or f u r t he r re s e a r c h . F r om t h i s
pe r s pe c t i ve
( an d i n
0
p p os i t i on t o t he i d e a s
e x p re s s e d i n L e s S t r u c t u r e s ) , t he de scen t
i s a n e c e s s a r y c o m p on e n t
T h e e a r ly L e i d e n v i e w s b e t w e e n m od e l s
p r i n c i p le of
of d ou b le
t he s t ru c t u r a l m o d e l .
on t he c r u c i a l r e l a t i on s h i p
of d ou b le d e s c e n t a n d a s y mme t r i c e x c h a n g e
a s c om p l e t e s t ru c t u re s , a n d t he p a r t i a l o r s e l e c t i ve ma n i fe s t a t i o n s
of
these
p r i nc i p Ie s i n a c t u a 1 d a t a a re
c le a r l y c o n g r u ou s w i t h t he t he me s d e ve l ope d m ore f u l l y i n t he
n on - s t a t e me n t p r og r a mme . 3 7
A t h i r d i m p or t a n t
p oi n t
of d i f f e r e n c e e m p h a s i z e d b y
J . P . B . d e J os s e l i n d e J on g i n h i s
1952
t h e c la s s i f ic a t i on of e x c h a n g e s y s t e ms . Le v i - S t r a u s s i a n s p ou s e a n d t he c r i t e r i on :
pa r a d i g m , a s i s t e r t y pe
of
if this
e x c h a n g e f or m u l a , a ma r r i a g e i n t r a - g e n e r a t i on a l s e r i e s
Un d e r
the
is e x c ha n g e d f or a
ma r r i a g e r u le
a s y s t e m i s s y m me t r i c
d i r e c t l y , a s y mme t r i c
essay re lates t o
is
t he s i g n i f i c a n t
i f me n e x c h a n g e s i s t e r s
i s n ot t he c a s e . A s a n ru l e c or r e s p on d s
link ing a
ma n
to an
to h is w ife ' s
37
b r ot h e r , e t c . De Josse lin de
J ong
( 1 9 5 2 : 4 6 - 4 9 ) a r g u e s f or a m or e
e x te n s i ve s e t o f d i s t in gu i s h i n g fe a t u r e s : k n ow le d ge o f t he ma r r i a g e ru le a l one ma y n ot p r ov i d e s u f f ic ie n t i n f o r ma t i on f o r a t ru l y s y s te ma t ic c h a r a c t e r i z a t i on o f s t ru c t u r e s . H e n c e o n e s h ou l d a l s o d e t e r m i n e t he s t [' u c t u r a l t y pe
of o t he [' i m p o r t a n t s e r i e s o f
['e la t i o n s , w i t h i n ge n e r a t i o n s
' e x c ha n g e
I
( e . g . , t he b [' ot he r - in - l a w
s e [' ie s : a ma n , h i s s i s te r ' s h u s b a n d , e t c . ) a s w e l l a s a c r os s g e n e [' a t i o n s se [' i e s : a ma n ,
( e . g . , t h e f a t he r - i n - I a w / s o n - i n - I a w
h i s d a u g h t e [" s h u s b a n d , e t c . ) . E a c h
s e r i e s ma y t he n b e c la s s i f i e d a s s y m me t [' i c 0 [' a s y mme t r i c , a nd t he l e n g t h of
i t s c y c le d e te rm i n e d .
I n d e e d , c r os s
ge n e [' a t i o n a l e x c h a n ge c y c l e s ma y we l l b e d e c i s i ve i n s y s t e ms w he r e t he e x c h a n ge
o f w ome n i s f o r mu l a te d a s t he
b e s t ow a l of a d a u g h te r a s a s po u s e ,
or a s t he e x c ha n g e
o f c l os e fe ma l e k i n ot he r t ha n s i s t e r s o r d a u g h t e [' s . F u r t he r m or e ,
t he d i r e c t i o n i n w h i c h w ome n c i rc u l a t e i n
s u c ce s s i v e g e n e r a t i on s o r e x c h a n g e c y c le s
( a n d w h i c h ma y
v a r y f r om g e n e [' a t i o n t o g e ne r a t i on ) i s i t s e l f a n i m p o r t a n t s t r u c t u r a l f e a t u re . T o i l lu s t r a t e h i s s c he me , J . P . B . d e J o s s e l i n d e J o n g c om pa r e s t he m od e l s r e p r e s e n t i n g f i ve A u s t r a l i a n s y s t e ms ( t he K a r i e r a . a n d A ra nd a , b ot h w i t h d i re c t e x c ha n g e s i s te rs , a n d
of
t he Mu r n g i n , K a ['a d j e r i a n d I�a r a , a l l
e mb od y i n g a n a s y m me t r i c ma r r i a g e r u le ) . H i s a na l y s i s l e a d s t o a c o r [' e c t i o n o f L e v i - S t ra u s s ' s c on c l u s i o n s . Thus
( 19 5 2 : 4 9 ) :
' Ou r c o m pa r i s on of t he A ra n d a a n d
Mu r n g i n s y s t e ms h a s
le d u s t o t he c on c lu s i on t ha t t he r e
i s n o fu n d a me n t a l d i f f e re n ce o f s t ru c t u r e b e t w e e n t he m - a s L e v i - S t r a u s s h a s i t - b u t on l y a d i f f e r e n c e d e g re e
• . . '
A t t he
of
.
le v e l of t he m od e l , t he A ra n d a s t ru c t u r e
c o mb i n e s lon g c y c l e s o f e x c h a n g e
( a s y mm e t r i c f r om
g e n e [' a t i on t o g e n e ra t i o n , b u t i n o p p os i t e d i re c t i on s i n t he i m p l i c i t ma t r i l i n e a l m o i e t i e s ) w i t h t he s a me g e n e r a t i on s y mme t r i c e x c h a n g e o f s i s t e rs . I n t he (·l a r a
38
s t r u c t u re w i t h p a t r i la t e r a l c r os s c ou s i n ma r r i a ge , a l l -e mb ra c i n g l on g c y c le s
( a s y m me t r i c i n t he s a me
g e n e r a t i on , b u t i n o p p os i t e d i re c t i o n s i n t w o s u c ce s s i ve g e n e r a t i o n s ) a r e a r t ic u l a t e d w i t h a s y mme t r i c f a t he r - i n - la w / s on - i n - l aw re l a t i on ( s y mme t r i c f r o m g e n e r a t i on t o g e n e r a t i on ) . C on s e qu e n t l y , t he f u nd a me n t a l pa i r s
of
m od i f i e d .
o p p os i t i on s p os t u la t e d i n L e s S tr u c t ur e s mu s t b e
3 8
F o r e x a m p le , i f o n e w i s h e s t o m a i n t a i n t he o p p os i t i on m a t r i l a t er a l / p a t r i l a t e r a l , i t s h o u ld be b a s e d on
t he
c on t r a s t un i d i r e c t i o n a l c o n t i n u o u s ex c h a n ge c y c l e /
b i d i r e c t i o n a l i n t e r r u p t e d ex c h a n ge c y c l e , n ot , a s s t a t e d b y Le v i - St r a u s s
( 1 9 7 0 : 45 2 , 4 6 5 )
on t he o p p os i t i on
l o n g exc h a n ge c y c l e / sh or t ex c h a n ge c y c l e ( J . P . B . d e J os s e l i n d e J on g 1 9 5 2 : 5 6 - 5 7 ) . 3 9 T h e t he or e t i c a l s t a n d p o i n t of t h e e a r l y L e i d e n f � r mu l a t e d .
r a l i s t s h a s s e l d om b e e n e x p l i c i t l y
s t r u c tu
J.P.B.
d e J os se l i n d e J on g ' s e s s a y , t he r e s u l t of a n i n t e ns i ve s e m i n a r on L e s S t r u c t u r e s e l eme n t a i r e s de L a p a r e n t e i n w h i c h f i f t e e n g r a d u a t e s t u d e n t s p a r t i c i pa t e d d u r i n g t he a c a d e m i c ye a r 1 9 5 0 - 1 9 5 1 , i s a r a re e x a mp le
of
c e r t a i n f u n d a me n t a l p r i n c i p l e s a n d c on c e p t s b e i ng d i s c u s s e d a nd b r ou g h t m o r e f u l ly i n t o r e l i e f
i n c on t r a s t
t o w h a t w a s t o b e c o me t he n e w p a r a d i g m i n p os t - w a r F re n c h a n t h r o p o l og y . A s t he p oi n t s o f d i v e r g e n c e n ot e d a b ove p r o v e , t he L e i d e n v i e w , t h ou g h i n s p i r e d b y ma n y o f t he s a me s ou r c e s o n w h i c h L e v i - S t r a u s s w a s t o d r a w , d oe s n ot me r e l y a n t i c i pa t e
or c on v e r g e on s e l e c t e d o f L e v i - S t r a u s s ' s t he or y o f k i n s h i p . 4 0
fe a tu r e s
I n t e r t h e or y t r a n s la t i on i s c e n t r a l t o t h e p r oc e s s
of
r a t i on a l t h e or y c om p a r i s on , a p o i n t a r g u e d f or c e f u l l y b y ( 1 9 8 7 ) . H e r e I a d o p t a m or e l i m i t e d s t r a t e g y . F o l l ow i n g S n e e d a n d S t e g m � l le r , b y c h a r a c t e r i s i n g Pe a r c e
k i n s h i p t h e ar i e s a s s t r u c t u re s
of
a c e r t a i n t y pe , I
s h a l l d e v e l o p a f r a me w or k f or t h e c om pa r i s on of t he L e i d e n a nd P a r i s r e s e a r c h t r a d i t i o n s
in k i n s h i p s t u d i e s .
39
M O D E L L I N G E L E M E N T A R Y K I N S H I P S T R UC T U R E S Un d e r
t h e n on - s t a t e m e n t
c la s s
of
pr og r a m m e s k e t c h e d a b ove , t h e
p r o p e r m od e l s f or
a s i m p l e m a t h e m a t i c a l t h e or y
of e l e me n t a r y k i n s h i p s t r u c t u r e s of a
X if
i n t r od u c e d b y m e a n s
is
s e t - t h e or e t i c p r e d i c a t e .
e l e m e n t ar y k i n s h i p s t r u c t u r e
is an
t h e re e x is t s a n S .
(1) X
h.
(S.
=
( EK S )
if
and
on l y
h . m and f s uc h t ha t
m. f ) ;
( 2 ) S i s a n on - e m p t y s e t ;
(3)
h . m a n d f a r e p e r m u t a t i on s of 5 ;
(4)
under
t h e u s u a l c om p os i t i on
Since a
pe r m u t a t i on
ont o i t se lf , (x)e
i d en t i ty .
•
•
t o t he i r
e Il
pe r m u t a t i o n s h
Le t e d e n o t e t he
x f or a l l x i n S .
=
c om p os i t i o n
pe r mu t a t i on s ,
on e - t o - one m a p p i n g of S -1 m- 1 a n d f- 1 ,
S is a
of
t h e inver se
a r e w e l l - d e f i ne d . I.e . ,
of
( x ) f = « x ) h ) m f or a l l e le m e n t s x of S .
p e r m u t a t i on s ,
of
ide n t i ty
T he n ,
G)
(5.
under is
pe r m u t a t i on ,
t he
usua l
t h e g r ou p w i t h
g e ne r a t e d b y t he p r od u c t s g i ' w h e r e t h e Il i a r e e q u a l t o h , m , f or
a n d e le me n t s
n
= g
i
i n v e r s e s . He n c e
g e n e r a t e d b y t he
( S , G ) i s t h e pe r m u t a t i on g r ou p
e l e me n t a r y k i n s h i p s t r u c t u r e
m ,
(S. h.
W h e r e n o c on f u s i o n c a n a r i s e , t he e le me n t a r y k i n s h i p s t ru c t u r e w i l l be
d e n ot e d b y
The
i f and
kins hi p structure
o n ly i f
i s r e g u la r , (1)
G.
( S . h , m . f ) i s c a l le d r e g u l a r
t he a s s oc i a t e d pe r mu t a t i on g r ou p
t h a t i s , i f a n d o n ly i f
f or a l l e l e m e n t s g of
(x)g
m , f ) a n d t he
(h .
a s s oc i a t e d p e r m u t a t i on g r ou p b y
G ) such that
(S.
fo x f or a l l x i n S ;
g
G)
(S. F
e,
( 2 ) f or e v e r y p a i r of e l e m e n t s x a n d y i n S t h e r e a n e l e me n t such Un l e s s
g of
that (x)g
ot he r w i s e
c on s i d e r e d a s
=
s t a te d
(5,
y.
,
G)
(i e .
.
,
a
pe r m u t a t i o n
of
is S)
on l y r e g u l a r s t r u c t u r e s w i l l b e
p r o p e r k i n s h i p m od e l s .
f) .
40
The
or i g i n
of
t h e c la s s
can
be
traced
b a c k t o t h e f or m a l a p pe n d i x
t he
B ou r b a k i m a t h e m a t i c i a n A n d r e W e i l a t
L e v i - S t r a u s s f or
e l me n t a i res i n by
of
the f ir s t
k i n s h i p m od e l s
e d i t i on
z a t i on s
of
fami lies
C ou r r e g e - L or r a i n
c h a pt e r
(cf .
a s pe c t s under may
of
a re
be
t he
li ne
matr i l ine a l and
or c l a s s
(x) h ,
a man
(a )
x
t he u n i t y
t w o pe r s o n s
e qu i v a le n t ,
of
then
and
pe r m u t a t i on
t h e s a me
her
( linking a
=
«
x )h )m
t he c h i ld r e n
of
a
ma r r i e d
l i ne
or
c la s s
( 1 9 74 : 98 ; 1 9 7 5 : 12 7 - 128 )
of
t he
a re
t he i r s p o u s e s a r e
a ny
t o t he
s i b ling
f o l l ow i n g g r ou p
(Le . ,
a r e c on s i d e r e d
t he re f ore
ma r r i a g e sex
his wife ) ,
of
m a r r i ag e a re
(x)£
t o descent
a n d a re
(b)
set S
or
a w om a n a n d
pa r a l l e l c ou s i n s
s t r u c t u r a l l y e qu i v a le n t
T hu s , t he
re present .
w h o i s h i m s e lf
w i l l be l on g
L or r a i n
of
lines
f
pe r mu t a t i o n
e qu a t i on
or c l a s s
s i b l i ng s a nd ot h e r ) ,
de f i ne d
t o t ha t
( li n k i n g
ne t w or k r e d u c e d a c c or d i n g
t w o p r i n c i p le s :
w i t h each
and
t h e b a s i c m od e l a s r e p r e s e n t i n g
g e n e a l og i c a l s a me - s e x
Ul
Desce nt and
basic
M or e s pe c i f i c a l ly ,
i n t e r pr e t s
of
patri line a l
line
Un d e r
t his
w or ld .
descent
h.
t h e g e n e r a l r u le t h a t
of
« x' ) h ) m .
'rea l '
or m a r r i a g e
pe r m u t a t i o n
the
of d e s c e n t
t o a w om a n
if
the
M or e ov e r ,
h i s c hi ldren ) .
r e pr e s e n t i n g man
in
i n t e r p r e t a t i on , e le m e n t s
t he
a r t i c u la te d b y
in
t o g e n e a l og i c a l l y
t he c on j u g a l
c h i ld r e n ) , a n d man
li nked
' c lasse s ' .
( li n k i n g t he
or i g i n a l
1 9 6 5 , 1 9 7 4 , L or r a i n 1 9 7 5 ) , t h e
t a k e n t o r e p r e s e n t e i t he r
r e s pe c t i ve l y ,
t he
s pe c i a l k i n s h i p m od e l s . 4 !
k i ns h i p s y s tems
t he s t a n d a r d
marr i age
of
n u m e r ou s c h a r a c t e r i
f or m u l a t i o n e m p l oy e d
C ou r r e g e
f or m a l m od e l s
by
t h e r e qu e s t
1 9 4 9 . E x t e n s i v e l y m od i f i e d a n d a m e n d e d has generated
of
pre pared
i de n t i f i e d
p r e s c r i p t i on
( i .e . ,
s tructura l ly a ls o c o n s i d e r e d
s t r u c t u r a l l y e qu i v a l e n t ) . H e n c e a c t u a l k i n s h i p s y s t e m s are
as sumed
f)
Les S t r u c t ures
m a t h e m a t i c i a n s a n d a n t h r o p o l og i s t s ,
a lg e b r a i c t r e a t me n t
the
of
/D .
(S. h .
t o be
p a r t i t i o ne d
in t o a
ov e r l a p p i n g e q u i v a l e n c e c l a s s e s ,
set S
i .e . ,
of
reduced
n on s i b l i ng
41
0 -- 0 --0 : \ \ \ \
: \ \ \ \
,
�
�
�
,
�
0 --- 0
F i g . 1 . 4 . A k i n s h i p n e t w or k r e d u c e d a c c or d i n g t o p r i n c i p le s ( a ) a n d
(b)
( t op ) .
( Ad a p t e d f r om L o r r a i n
1 9 7 5 : 1 2 7 , f i g . 13 . ) A s t r u c t u r e w i t h e x c lu s i v e m a t r i la t e r a l c r o s s - c ou s i n m a r r i a g e e q u i v a le n t p os i t i o n s
( b o t t om ) . S t r u c t u r a l ly
( n ot d i f f e r e n t i a t e d a s t o s e x ) a r e
d e n o t e d b y s q u a r e s . T h e n od e s i n t h e k i n s h i p n e t w or k s a re m
l i n k e d b y t h e t h r e e b a s i c m a p pi n g s h ( s o l i d a r r o ws ) ,
( d o t t e d a r r o ws ) ,
a n d f ( b r o k e n a r r o ws ) .
42
g r ou p s .
( L or r a i n ' s i n t e r p r e t a t i on o f t he m od e l ' s
i n t e n d e d a pp l ic a t i ons
i s o b v i ou s l y p h r a s e d i n t e r ms
of R a d c l i f f e - B r ow n ' s c la s s i c t he or i e s
of k i n s h i p
s t r u c t u r e s ; c f . R a d c l i f f e - B r ow n 1 9 3 0 - 3 1 . ) A k i n s h i p n e t w or k r e d u c e d a c c o r d i n g t o t he s e p r i n c i p I e s i s g r a p h i c a l ly r e p r e s e n t e d i n f i g u r e 1 . 4 ( t o p ) . F o r t he e le me n t a r y k i n s h i p s t r u c t u r e l e t S b e t he s e t
(S,
A s s u me t he m a p p i n g s h , are
[) ,
of n od e s of a g e n e a l og i c a l ne t w or k
r e d u c e d a c c or d i n g t o L or r a i n ' s p r i n c i p le s s u i t a b ly d e f i ne d .
ill ,
h,
ill ,
[ and
(a) and ( b ) .
t he i r i n v e r s e s t o b e
( T h e i n v e r s e ma p p i n g s h - 1 , m- l a n d [-
1
ob t a i n e d b y r e v e r s i n g t h e d i r e c t i on of t he a r r ow s i n
f i g u r e 1 . 4 . ) C o m p os i t e m a p p i n g s c a n n ow b e d e f i n e d o n S b y t a k i n g d i f f e r e n t c om b i n a t i o n s of t he g e n e r a t i n g pe r mu t a t i o n s h ,
ill
i n t e g r a l p ow e r s of
a n d [ . S u c h c om p os i t e
m a p p i n g s m a y b e b r ou g h t i n t o c or r e s p o n d e n c e w i t h t he s t a n d a r d k i n t y pe n ot a t i on f or g e n e a l og i c a l r e l a t i o n s . C or r e s p on d e n c e s b e t w e e n a b a s i c s e t f or s o me m a l e e g o i n n od e
x
of k i n t y p e s
( d e f i ne d
of S ) a n d k i n s h i p m a p p i n g s
( i . e . , e le me n t s o f t he g r ou p ( S , C » a r e
t h e f i r s t t w o c o l u m n s o f t a b le 1 . 1 .
l i s t e d u nd e r
D i s t i n c t k i n t y pe
r e la t i o n s a r e m a p p e d o n t o a n y o n e k i n s h i p m a p p i n g . F or -1 -1 -1 - 1 [ ff [ = e , MZC = m ill = e , F F B S C = [
e x a m p le , F B C = [ = e,
Sb
=
e .
C o n v e r s e l y , a n y p a r t i c u l a r k i n s h i p ma pp i n g
w i l l r e p r e s e n t a n u mb e r o f s t r u c t u r a l ly e qu i v a le n t k i n t y pe s . T h e b a s i c
li s t
of t a b le 1 . 1 m a y of c ou r s e b e
e x pa n d e d s o a s t o i n c lu d e a n y o t h e r w e l l - f o r m e d k i n t y pe . Ma r r i a g e r u l e s
T h u s f a r t he s t r u c t u r a l pr o p e r t i e s a t t r i b u t e d t o t h e k i n s h i p m od e l s
(S. h .
m,
[)
a n d t h e a s s oc i a t e d p e r mu t a t i on
g r ou p ( S . C ) a r e of a v e r y g e ne r a l n a t u r e . ob t a i n c la s s e s
of
In
or d e r t o
p r op e r m od e l s w h os e p r o pe r t i e s r e f l e c t
m or e s pe c i f i c f e a t u r e s of t h e s t r u c t u r e of r e a l k i n s h i p sys tems
( i n p a r t i c u l a r , t y pe s of m a r r i ag e e X C h a ng e a nd
t h e c l a s s i f i c a t i on of s p ou s e s ) f u r t he r c on s t r a i n t s m u s t b e i m p os e d
on t he g e n e r a t or pe r mu t a t i on s h , m a n d f .
43
T a b l e 1 . 1 . K i n t y pe s a n d k i n s h i p m a p p i n g s
K i n t y pe
Kins h i p
K i ns h i p
ma p p i n g
map ping ( c om m u t a t i v e )
F F Z DC
[
-2 2
m
lF Z S C
-2 mf -1 -1 2 m f m -1 [ m -1 -1 m f m[
F MBDC
-1 -1 [ m [m
FF ZSC
MF Z D C FZC
Sb
[
e
MBC
m
MMBDC
m
FMBSC MM B S C FF Z C F Sb MF Z C F MBC MSb M M BC FZOC
m
MB D C
m
C
f
MBSe
m
F F Sb
[
MMSb
CI
e
m
[
t� F Sb
e
fm -1 -1 2 [ m f -2 2 m f -2 [ m -1 [ -1 -1 m f m -1 -1 f m [ -1 m -2 m f -1 2 [ m
ZC
-l -1
m
-2 2
[ [ f m m m f
-1
-1 -1
-1
[
[
AlII
m
AIV
-1 -1 -1
-2
[ -1 2 m
1 1
fm
[
f
-1
[ m f [ f m
G+
1
eII DIll BIll
G
-1
DI -1 2
-2 -1 -1
-2
2
m
DC
fm
mf
ZSC
m[ 2 [
mf
m
61
C IV
ZDC
SC
OIl
-2 2
-2
�G O
[ [
m
-1 2 f
-1
m
m
-1 -1 [ m m
m
mf
-2
"'
BIV
e
m
-2
C or r e s p on d i ng n od e of t h e 4 x 4 m od e l w i t h d ou b le d e s c e n t ( e g o a t C I ; see f i g s . 1 . 1 and 1 . 5 ) AlII
f
f
F Z SC
FMSb
-1
-2 2 m -1 [ m -1 f m -1 [ m
( m a le e g o ) .
i
AIl
f
AI m m
-1
-1
) }
BIl
G+
2
CIlI eI l I DIV AI
G
-2
44
(St
h t
mt
a symme t r i c
f ) re pre sents a s tructure w i t h exch a n ge
h
n
=
e
h2
=
et
i . e . , if
h
=
h-l ,
symme t r i C
of d i r e c t or
n
i s gre ater than 2 . The
a s y m me t r i c c on n u b i u m s y s t e m c l os e s a f t e r If
or
i f t h e s m a l le s t p os i t i v e i n t e g e r
s a t i s f y i ng t h e e qu a t i on
r u le
general ized
n
m a r r i age s .
the structure exhibits a exchange . Eg o ' s w i f e ' s
s i b l i n g s a r e e qu i v a le n t t o h i s s i b l i n g s ' s p ou s e s a n d s i s t e r - e x c h a n g e i s a s t r u c t u r a l p os s i b i l i t y . C on d i t i on s f or u n i l a t e r a l c r os s - c ou s i n m a r r i a g e a r e e a s i ly d e f i n e d : P a t rila teral
marr iage .
cross -cousin
Ac c or d i n g t o
t a b le 1 . 1 , F Z C a r e d e n o t e d b y t h e k i n s h i p m a p p i n g f
-l
m
.
T h e y a r e me r g e d w i t h w i f e a n d w i f e ' s s i b l i n g s i f a n d -l l on ly i f f m = h f m - . I t i mme d i a t e l y f o l l ow s t h a t =
m2
f2
and hence
( see tab Ie
t h at S C a n d Z D C a r e
1. 1 )
s t r u c t u r a l l y e qu i v a le n t i n s y s t e ms w i t h a r u le F Z D - m a r r i ag e . C on v e r s l y ,
f-2 ,
m- 2
of
and MMSb and FFSb
a r e a l s o me r g e d . Ma t r i l a t e r a l
mar r i a g e .
c r oss - c o u s i n
t a b le 1 . 1 , M B C a r e d e n o t e d b y
m
- 1f
Ac c or d i n g t o
i
t h e y a r e me r g e d l w i t h w i f e a nd w i f e ' s s ib l i n g s i f a n d o n l y i f m - f = fm
-1
, i . e . , if and only if
m
-1
a n d f c omm u t e .
h
=
It can be
e a s i l y s h aw n t h a t t h i s c on d i t i on i s e q u i v a l e n t t o hm
=
mh ,
a n d s i n c e h a n d m a r e t h e g e n e r a t or s of t h e
g r ou p ( 5 , G ) , t h i s g r ou p w i l l b e c om mu t a t i v e o r A b e l i a n . T h i s i m p or t a n t c on c l u s i on i s s u mma r i z e d i n t h e f o l l ow i ng t h e or e m : Th e o r e m
1 : a n e c e s s a r y a n d s u f f i c i e n t c on d i t i o n f or
a n e l e me n t a r y k i n s h i p s t r u c t u r e
(S,
h ,
m ,
f ) t o be
c om p a t i b le w i t h m a t r i l a t e r a l c r os s - c ou s i n m a r r i a g e i s t h a t t he a s s oc i a t e d g r ou p
(S.
G)
b e c omm u t a t i v e .
A p a r t i a l m od e l of a c om mu t a t i v e s t r u c t u r e w i t h m a t r i l a t e r a l c r os s - c ou s i n m a r r i a g e i s pr e s e n t e d i n
f ig u r e 1 . 4 ( b ot t om ) ; c f . L or r a i n 1 9 7 5 : 1 7 1 . F o r a
c om mu t a t i v e s t r u c t u r e , t he k i n s h i p m a p pi n g s r e pr e s e n t i n g
45
k i n t y p e r e l a t i o n s m a y b e g i v e n a m or e s i m p l e f or mu l a t i on , as the
or d e r
s i g n i f ic a n t
.
o f t he g e n e r a t or m a p p i n g s i s n ot
c om m u t a t i v e s t r u c t u r e s
K i n s h i p m a p p i n g s f or
a r e p r e s e n t e d i n t a b le
1 . 1 ( c o l u mn 3 ) . K i n t y p e s t h a t a r e
s t r u c t u r a l ly e qu i v a l e n t i n m od e l s w i t h ma t r i la t e r a l c r os s - c ou s i n m a r r i ag e c a n a l s o b e r e a d t a b Ie
1 . 1 . T h u s , f or c ommu t a t i v e s t r u c t u r e s , F F Z S C ,
M F Z DC , a n d F Z C a r e m e r g e d , F M B D C . N ot e t h a t a r u le c ou s i n m a r r i a g e
wh i c h
hn
= e
f or
of
on l y h o l d s n g re a t e r
w i t h s y m me t r i c e x c h a n g e , eg o ' s wife
Kinsh i p
Sb ,
and
f o r c om m u t a t i v e s t r u c t u r e s
than
h
2
h
=
=
-l
2 . C onver se ly , e , =
m
i .e . -l
f
,
=
s t ructures -l m . Hence
f
m a r r i a g e w i t h t h e b i l a t e r a l c r os s - c ou s i n
( c f . t a b le 1 . 1 ) .
morph i sms
F o l l ow i n g C ou r r e g e
( 1 9 6 5 , 1 9 7 4 ) , t h e p os s i b i l i t y of
l i n k i n g k i n s h i p m od e l s a n d c om p a r i n g
i n v a r i a n t a s pe c t s
of t he i r s t r u c t u r e
f or m a l r i g ou r b y
c on c e p t
in
f or
a n d w i f e ' s s i b l i n g s a r e me r g e d w i t h h i s N B C
and h i s F ZC and p os s i b le
h
a r e M F Z SC ,
as
e x c l u s i v e ma t r i l a t e r a l c r os s
c om m u t a t i v e s t r u c t u r e s w i t h
is
of f d i r e c t ly f r om
i s ex pressed with
o f a k i n s h i p m or p h i s m
t he
.
C on s i d e r t h e e l e me n t a r y k i n s h i p s t r u c t u r e s X ( 8 , h ' m ' f ) a n d Y = ( 8 , h ' m ' f ) . A k i nsh i p 2 l I l 1 2 2 2 m or p h i s m of X o n t o Y i s a f u n c t i o n 8 of S l on t o S 2 s u c h t h a t : ( 1 ) h 8 = 8 h 2 ; ( 2 ) m 1 8 = 8 m2 ; ( 3 ) f 8 = 8 f • ( I n 1 2 1 =
f a c t , i f a n y t w o of t h e s e c o n d i t i on s h o l d , t he r e ma i n i ng c on d i t i on i s a u t om a t i c a l l y s a t i s f i e d one
ma p p i n g
of
i s omor ph i sm of
8 on t o 8 2 1 X on t o y .
, then
8 is
.)
If
8 is a
one - t o
a kinsh i p
Le t X ( 8 1 , h I ' m l ' f l) , Y = ( S 2 ' h 2 ' m 2 ' f 2 ) a n d Z ( S ' h 3 ' m 3 ' f ) b e e le me n t a r y k i n s h i p s t r u c t u r e s , a n d 3 3 le t 8 a n d t; b e k i n s h i p m or p h i s m s of , r e s p e c t i v e l y , X on t o y a n d Y on t o Z . T h e n I; 8 /; i s a k i n s h i p m or p h i s m of X o n t o Z . H e n c e t h e c o m p os i t i on of k i n s h i p m or ph i s ms i s w e l l - d e f i n e d ( c f . C ou r r e g e 1 9 7 5 : 3 0 7 - 3 1 0 ) . =
=
46
K i n s h i p mor ph i s m s a n d gr o u p h o m o m o r ph i sms
T h e f o l l ow i n g t he or e m s u m ma r i , e s t he f u n d a me n t a l r e l a t i on s h i p b e t w e e n k i n s h i p m or ph i s m s a n d h om om or ph i s m s of t h e a s s oc i a t e d g r ou p s t r u c t ur e s 3 10- 3 1 1 ,
le m m a s 2 . 1 a n d 2 . 2 ) :
Th e or e m 2 :
( c f . C ou r r e g e 1 9 7 5 :
' [ ) and y l 1 ( 5 Z ' h Z ' m Z ' f Z ) b e e le me n t a r y k i n s h i p s t r u c t u r e s w i t h a k i n s h i p m or p h i s m 8 d e f i n e d f r om X o n t o Y . T h e n t h e r e Le t X
(5
=
1
' h
I
' m
=
h om om or p h i s m IjJ f r om t h e g r ou p ( 5 ' G ) 1 l on t o t h e g r ou p ( 5 Z ' GZ ) ' i . e . , W i s a f u nc t i on s u c h t h a t
e x i s ts
a
u n i que
( u S ) \II = ( uljj ) ( SW ) f or a l l 0. a n d S i n
S k e t c h of t h e p r o of :
(5
1
' G1 ) .
8 i s a k i n s h i p m or ph i s m , h e n c e
h 8 = 8 h ' 111 8 = 8m , f 8 1 1 Z 1 2
=
w i t h ou t d i f f i c u l t y t h a t 0. 8
8[ Z ' a n d i t c a n b e v e r i f i e d =
8 0. ' a n d 0. '
i s w e l l - d e f i ne d .
I n g e n e r a I t h e r e w i 1 1 b e a n e n t i r e c l a s s of e le me n t s 0. of
(5
1
' G ) ma pped 1
= h
( m 1 ) w = 111 1 '
0. ' of ( 5 ' G Z ) ' D e f i n e t h e Z ( 0. ) \11 = 0. ' . N o t e t h a t ( h ) W = h I '
on t o e a c h
g r ou p h om om or p h i s m W a s
1
m , a n d ( f ) W = f l ' = f ' N ot e a l s o Z 1 2 2 t h a t i f t w o k i n s h i p s t r u � t u r e s a r e i s o m or ph i c , t h e n '
=
t h e i r g r ou ps a r e a l s o i s om or ph i c . H ow e v e r , t h e c o n v e r s e r e l a t i on d oe s n ot h o ld : i s om or ph i s m of t h e g r ou p s t r u c t u r e s d oe s n ot n e c e s s a r i l y i m p l y i s om or ph i s m o f t he k i n s h i p s tr u c t u r e s
( s e e C ou r r e g e 1 9 7 4 : 3 1 1 - 3 1 2 ) .
Q u o t i e n t s t r u c t ur e s a n d q u o t i e n t gr o u ps
T h e f o l l ow i n g r e s u l t s on q u ot i e n t s t r u c t u r e s a r e a d a p t a t i on s o f C ou r r e g e ' s l e m ma s 2 . 3 - 2 . 5 313-315 ) .
( 1965 ;
1974 :
I h av e e x t e n d e d h is an a ly s i s , pr e s e n t in g t h e
b a s i c c on c e pt s i n a f or m a t t h a t a l l ow s a d i r e c t c om p a r i
s on w i t h t h e i m p or t a n t c l a s s of m od e l s d e v e l o p e d b y 42 B oy d ( 1 9 6 9 , 1 9 7 1 , 1 9 7 Z ) . C on s i d e r t he e l e me n t a r y k i n s h i p s t r u c t u r e X
(S, h ,
lll ,
X, i .e . ,
f ) w i t h t he
=
p a r t i t i on P on S c om p a t i b le w i t h
P i s c om p a t i b l e w i t h
h,
lll ,
and f . Then P
i n d u c e s t h e q u o t i e n t s t r u c t ur e X = ( p , h , � , f ) ,
i .e
•
•
47
a n e lementa ry k in sh i p str u c ture o f t h e pa rtiti on P .
d e f ined o n t he bloc k s
R i s the c anon i c a l e qu i valence
If
relat i on assoc i ated w ith P , the n P = Note t h at ( xR ) ii
=
[xRJ h, ( xR ) iD =
s i R an d X
=
[xR ] m , and ( xR ) E
xi R .
[xR 1 f for a l l x in S .
L e mma 1 : Consid e r the e le me nt a ry kinshi p str u c t u r es
X = ( Sl ' h I ' ml ' fl ) a n d Y
(S
' f ) and let 2 ' h Z ' m2 2 8 be a k insh i p mor p h i s m of X onto Y . De f ine t he in verse -1 8 { (s , -s )1 (s )8 s 2 } ' L e t P be the p a rt i t i on of l l z I d e f in e d a s p = { { ( y ) 8 - } I y i n S } ' w i t h the c a n on i c a l S 2 I e qu i v alen c e r e la tion R on S g e n e rate d by P d e f ine d a s l -1 z f or all x a nd z i n S } . { ( x , z ) I ( x ) 8S R l Then P i s c o mpati ble w ith the k i nship structure X , =
=
=
=
t here ex i s t s a k insh i p iso m or p h ism I) of Y onto t h e
and
= XI R .
X
q u ot i ent str u ctu r e 1 I) : y + ( y ) 8 of S
I) i s d e f i n e d
a s the ma p p i n g
onto t h e p a rtition P . It i s ea sily 2 is one -one , and th a t h 1) l I) h , �Z ) 2 l I)m , and f 2 1) = I) E l for all y in S ' For a sketc h of the 2 l proof , s e e Cou r r e g e ( 1 9 7 4 : 3 1 3 - 3 1 4 , lemma 2 . 3 ) . verifie d t h at I)
Cor o l l a r y :
=
Let X
=
(5,
h , m , f ) be a n e l e me nta ry
k insh i p structure w ith p a rtit i on P on X.
5 c omp a t i b le w ith
L et R be the a ssoc i ated c a non i c a l e q uivalence r e la t i on
d e fined a s a b o v e .
Let
=
X
(P.
ii , m , f ) b e t h e quotient"
str uc t ure of X i n d u c e d by the p a r t i t i on P . T h en t he m a p p i n g w ith
8 of S onto P d e f ined by
xR the u n i que block of P su c h th at
x
=
( x) S
i s i n x R , is
a k i nshi p mor ph i sm of X onto the quot i e nt st r u ct u re F u r t he r m or e ,
(5.
G)
and
c o ns i d e r t h e a s s oc i ate d g r ou ps G ( h , =
G ( ii . m , 'f )
a re c o mp at i bl e w ith th e of
G onto
d ef ined by
( xR ) g =
h omomor p h i s m of F i n a lly , let
<1> :
g
+
[xRJ g for a ll
G onto
8.
X.
m, f)
A l l e l e m e nts g of G
( p , C) .
p a rtit i on P .
G d ef i n e d a s
xR ,
T he n
g , with x
in
the m a pping
g uniquely
5 and
g in
G is a
H b e t h e sub g r ou p of G c onsi st i ng of a ll
ele m e nts g of G su c h that
[xRJ g = x R for all blo c ks x R
48
o f t h e p a r t i t i on P o n S . T h e n H i s n or ma l i n G . a n d G
i s i s o m or ph i c t o t h e q u ot i e n t g r ou p GI H . I t i s e a s i l y
v e r i f i e d t h a t t h e i s o m or ph i s m i s d e f i n e d b y t h e m a p pi n g
¢:
Hg
( xR l g
g o f GIH [xR J g .
+
T h e or e m 2 ,
on t o G , w i t h
d e f i n e d a s a b ov e b y
le m m a 1 a n d i t s c or o l l a r i e s s u p p or t t h e
f o l l ow i n g t he or e m w h i c h i s T h e o r em 3 :
X = (S. h.
g
of c e n t r a l i m p or t a n c e :
C on s i d e r t h e e le me n t a r y k i n s h i p s t r u c t u r e
lIJ .
Le t P b e t h e s e t o f p a r t i t i on s P i on S , w i t h e a c h p a r t i t i on c om p a t i b le w i t h X . L e t IV be t h e set
of n or m a l s u b g r ou ps N
G( h . m . f )
IV ,
f).
=
i
of t h e a s s oc i a t e d g r ou p
( S . G ) . T h e n t he r e i s a m a t c h in g of P a n d
i . e . , a o n e - t 0 - on e m a p p i n g 1-1 o f P on t
e a c h p a r t i t i on P
IV s u c h
0
that
on S c o r r e s p on d s t o a u n i q u e n or ma l
i
s u b g r"o u p N i o f G .
If R i
i s t h e c a n o n i c a l e qu i v a l e n c e r e l a t i on a s s oc i a t e d
w i t h P i ' t he n 1-1 : P + N i s u n i q ue l y d e f i n e d b y t a k i n g i i N i t o b e t h e n or ma l s u b g r ou p o f G c on s i s t i n g o f a l l
e le me n t s g of G s u c h t h a t
xR �.
of t h e
par t i t i on P
t h e q u ot i e n t s t r u c t u r e
w i t h G . ( ii �
.
�
•
m.. f.) �
�
=:
�
[xR J g i X.
Le t
. •
�
=
=:
xR i (P
�
. •
f or a l l b l oc k s
ii
�
. .
m
� .
T h e pr o of
�
of X i n d u c e d b y t h e p a r t i t i o n P i '
( P . . G . ) t h e a s s oc i a t e d g r ou p . J.
�
T h e n G . i s i s om or p h i c t o t h e qu o t i e n t g r ou p G I N �
t . ) be
•
J. .
•
of t h e or e m 3 i s f a i r ly d i r e c t . T h e r e s u l t s
p r e s e n t e d h e r e f or e le me n t a r y k i n s h i p s t r u c t u r e s c l os e l y p a r a l le l t h e !n or e f a m i l i a r h om om or p h i s m t h e or e m s f or g r ou ps
( c f . B a u m s l a g a n d C h a n d le r 1 9 6 8 : 1 1 4 - 1 2 7 ) .
F o l l ow i n g C ou r r e g e
( 1974 : 316-317 ) ,
i t c a n b e e a s i ly
d e m o n s t r a t e d t h a t f u r t h e r c or r e s p o n d e n c e t h e or e m s exam ple ;
on t h e q u ot i e n t s t r u c t u r e s
( f or
of a q u ot i e n t
s t r u c t u r e ) m a y b e d e r i v e d . S u c h r e f i n e me n t s of
the
b a s i c m od e l a r e , h ow e v e r , n ot e s s e n t i a l t o m y a n a ly s i s . By c on s t r u c t i n g t h e s e t a b le t o f oc u s m or e c le a r l y
of
qu o t i e n t s t r u c t u r e s o n e i s
on s pe c i f i c c h a r a c t e r i s t i c s
of t he e nc o m pa s s i n g k i n s h i p s t r u c t u r e , i n c lu d i n g
49
' la t en t '
p os s i b i l i t i e s i m p l i c i t i n t h e or i g i n a l
s t r u c t u r e w h i c h m i g h t o t h e r w i s e b e ov e r l o o k e d .
In
a d d i t i on , a n y p a r t i t i o n c om pa t i b l e w i t h t h e e n c o m p a s s i n g s t r u c t u r e m a y b e r e a li se d i n d a t a f r om a c t u a l s oc i e t i e s a n d i d e n t i f i e d w i t h , s a y , a m oi e t y s t r u c t u r e or s ome
ot h e r s y s t e m o f s oc i a l g r ou p i n g s o r c a t e g or i e s .
T h e e x t e n t t o w h i c h s u c h s t r u c t u r a l p os s i b i l i t i e s a r e a c t u a l ly r e a l i se d i s o f c ou r s e a m a t t e r f or e m p i r i c a l research . R e t u r n i n g n ow t o t h e k i n s h i p m od e l s i n t r od u c e d b y t h e p r e w a r Le i d e n s c h o l a r s , t h e s t r u c t u r e s o f f i g u r e 1 . 1 a l l r e pr e s e n t q u o t i e n t s t r u c t u r e s o f t h e b a s i c k i n s h i p m od e l w i t h d ou b le d e s c e n t a n d c i r c u l a t i n g c on n u b i u m . T h e c a t a l og u e of
p os s i b le q u o t i e n t s t r u c t u r e s
i s , h ow e v e r , n ot c om p le t e . I n ow r e f o r m u la t e t h e or i g i n a l c la s s o f d ou b le d e s c e n t m od e l s w i t h e x c l u s i v e m a t r i la t e r a l c r os s - c ou s i n m a r r i a g e a s a l g e b r a i c s t r u c t u r e s a n d d e r i v e a s e t of q u ot i e nt s t r u c t u r e s t h a t i s i n d e e d c om p le t e .
D O UB LE D E S C E N T A N D M A T R I L AT E R A L C R O S S - C O U S I N M A R R I A G E
Le t I b e t h e i n d e x b a s i c s e t of
set I = { l , 2 ,
ob j e c t s S n
pe r m u t a t i on c of Sn a s c
=
=
t h e c y c l i c pe r mu t a t i o n of 0
i
•
•
.
, n } a n d d e f i ne t he
{ o . l i i n I} .
De f i n e t h e
�
( 01 ' 0Z ' crde r
n
•
•
•
, On ) ' i . e . , c i s
w h i c h ma p s e a c h ob j e c t
ont o 0 ' w i t h i + l r e d u c e d m od u l o n . i +l T h e n t h e i d e n t i t y p e r mu t a t i on e =
genera l ,
(O . ) c
k
=
o .
k wi t h
�+ � i n v e r s e of t h e p e r m u t a t i on
verif ied that
c
cO
and i n
i +k r e d u c e d m od u l o n , a nd k c i s c - k . I t i s e a s i ly
generates the
w h i c h i s c om mu t a t i v e . These
cn
cycl
i c gr o u p e n
the
of o r d e r n
pr e l i m i n a r i e s le a d t o s i m p le d e f i n i t i on s
of
t w o w e l l - k n ow n k i n s h i p s t r u c t u r e s w i t h u n i l i n e a l d e s c e n t a n d a r u le o f ma t r i l a t e r a l c r os s - c ou s i n m a r r i a g e . D e f i n i t i o n 1 : Mn ' t h e
n -
m a t r i li n e e le me n t a r y k i n s h i p
s t r u c t u r e w i t h c i r c u l a t i n g c o nn u b i u m , i s d e f i n e d a s
50
= ( S , c , e , c ) , i . e . , h = C , LD = e , f = c , a n d t h e n n a s s oc i a t e d p e r m u t a t i on g r' ou p ( S , C ) i s c om m u t a t i v e . n n . I n l i k e m a n n e r , P , t he n - pa t r i l i n e e le me n t a r y k i n s h i p n s t r u c t u r e w i t h c i r c u l a t i n g c on n u b i u m , i s d e f i n e d a s
M
P
=
(S
,
c,
c
-1
,
. l. . e . ,
e) ,
h
= c,
m
= c
-1
,
f = e,
and
n n t h e a s s oc i a t e d p e r m u t a t i on g r ou p ( S , C ) i s c om mu t a t i v e . n n N ot e t h a t t he r e i s n o k i n s h i p i s om or p h i s m of t he k i n s h i p s t r uc t u r e s M
a n d P , a lt h ou g h t h e a s s oc i a t e d g r ou ps n n a r e c le a r l y i s om or p h i c . S i n c e t he g r ou ps a r e c om mu t a t i v e , a c c or d i n g t o t h e or e m 1 b ot h k i n s h i p s t r u c t u r e s a r e c om p a t i b le w i t h m a t r i l a t e r a l c r os s - c ou s i n m a r r i a g e . and P ( f or n n n 3 a n d 4 ) h a v e b e e n d e s c r i b e d b y pr e v i ou s
K i n s h i p m od e l s c l e a r ly i 50m.orph i c w i t h M e qua l t o 2 ,
g e ne r a t i o n s of L e i d e n a n t h r o p o l og i s t s .
4 3
O n e m a y n ow ob t a i n t h e c l a s s o f d ou b le d e s c e n t m od e l s w i t h m a t r i la t e r a l c r os s -c ou s i n m a r r i a g e b y d e f i n i n g t he a n d P ' D e f i n i t i on 2 e m u la t e s n n a n d f or ma l i z e s t h e m or e i n t u i t i v e p r oc e d u r e d e v i s e d b y pro d u c t s t r u c t ur e
V a n W ou d e n
of M
( 1 9 6 8 [ 1 9 3 5 J : 9 0 - 9 4 ) a n d o t he r s .
D e f i n i t i o n 2 : M x P , t h e e le m e n t a r y k i n s h i p s t r u c t u r e n n w i t h c i r c u l a t i n g c o n nu b i u m a n d d ou b le d e s c e n t o n n n
m a t r i li n e s a n d
M M
x P
n
x P
n
n
=
(S
def i ned
x S
n
by
n
,
C X
c ,
e x e
(a . , a .)h (0 . , a .)(e 2 2 J J ( Oi ' 0 ) ( e x e - 1 ) = « j ( O ' 0j) ( C x e ) = « a
i
e le me n t s (s
n
-1
h , m, f) with S = S
(S,
n
patr i li n e s , i s def ined a s
( 0 . , 0 . ) of S 2
J
n
x S
n
'
n
x
i
c x e). x
e)
S
I .e . ,
and h , m and f
n
«O . ) e , (o .)d ; 2 J -1
=
O 2. ) e , ( O . ) c )e
,
J
) ;
and
( a . ) e ) f or a 1 1 J
F u r t h e r m or e ,
(S,
H)
=
x S , C x C ) i s t he c om m u t a t i v e g r ou p a s s oc i a t e d n n n
w i t h t h e k i ns h i p s tr uc t u r e M F or c on v e n i e n c e
n
x P
n
'
of n ot a t i on t h e e le me n t s ( 0 . , 0 . )
w i l l be den oted by the
or d e r e d d ou b le
index
2
(i,
J
of S
j) .
F i g u r e 1 . 5 s h ows a k i n s h i p ne t w or k r e p r e s e n t i n g t h e
51
e le me n t a r y k i n s h i p s t r u c t u r e No
A, B, C ,
III ,
•
•
•
.
•
•
Po '
x
C a pi t a l l e t t e r s
r om a n n u me r a l s I , I I ,
d e n ote matr i li ne s ;
d e n o t e p a t r i l i n e s , a n d t h e n od e s a r e t h u s
d i f f e r e n t i a t e d b y a d ou b le i n d e x a n d l i n k e d b y t h e b a s i c k i n s h i p m a p p i n g s h , m . a n d f . F o r e x a m p le , ( C I U h ( CI U m = C I , a n d
(CI I )f
= DII ,
=
DI l l ,
i . e . , a man i n C I I
m a r r i e s a w om a n i n D I l l , h i s s i s t e r ' s c h i l d r e n a r e i n C I a n d h i s ow n c h i l d r e n i n D I I . T h e m a r r i ag e s y s t e m i s a s s u m e d t o c l os e b a c k o n i t s e lf a f t e r with
0
0
exchanges ,
s u c c e s s i v e g e n e r a t i o n s o f m e n f r om on e m a t r i l i n e
mar r y i n g i n t o d i f f e r e n t p a t r i li n e s . In f ac t , s i n c e h
mn
fn
= e,
t h e k i n s h i p s t r u c t u r e Nn x P
n
is
n
pe r h a ps
b e s t r e p r e s e n t e d b y ma p p i n g t he d i a g r a m of f i g u r e 1 . 5 o n t o t he s u r f ac e of a t or u s .
T h e k i n s h i p s t r u c t u r e N n x P n ' d e f i n e d a s t he pr od u c t o f t he m a t r i l in e a l s t r u c t u r e N o w i t h t he pa t r i l i ne a l
s t r u c t u r e Pn ' i s a d i r e c t r e p r e s e n t a t i on of t h e g e n e r a l d ou b l e d e s c e n t m od e l i n t r od u c e d b y V a n W ou d e n i n h i s t he s i s o f 1 9 3 5 . t he t e r m
( Van
W ou d e n ( 1 9 6 8 : 9 2 - 9 4 ) e v e n a p p l i e d
' pr od u c t ' t o h i s m od e l . ) V a n W ou d e n a l s o
e x t e n d e d h i s b a s i c m od e l , a l l ow i n g f o r d ou b le d e s c e n t s tr u c t u r e s w i t h u ne qua l numb e r s ( 19 6 8 : 94 ) .
of m a t r i - a n d pa t r i l i n e s
F or e x a m p le , h e p os t u la t e d a
r e c on s t r u c t i o n '
' t h e or e t i c a l
of K e i s oc i a l s t r u c t u r e b a s e d
on t h e
i n t e r s e c t i on o f f ou r m a t r i l i ne a l f a m g r ou p s w i t h s i x p a t r i l i n e a l c l a n s ( 1 9 6 8 : 1 5 8 - 1 6 0 ) . T h i s e x t e n s i on c a n e a s i ly b e f or m a l i z e d b y d e f i n i ng t h e g e n e r a l c l a s s of p r od u c t s t r u c t u r e s N n x P
a n a l og y t o d e f i n i t i on 2 .
(with
0
u ne qua l t o q ) i n
q ( A d i f f e r e n t t y pe
of s o lu t i o n
i s d e v e l o pe d i n C h a p t e r 3 . ) N e v e r t h e le s s , wit hin t h e L e i d e n t r a d i t i on i t i s a r g u a b ly t h e f ou r - ma t r i l i n e , f ou r - pa t r i l i n e m od e l w i t h c i r c u l a t i n g c on n u b i u m f or m u l a t e d b y V a n W ou d e n a n d H e l d i n 1 9 3 5 t h a t b e c a m e t h e s t a n d a r d e x a m p le , i . e . , t h e c on c r e t e p r ob le m s o l u t i on on w h i c h m u c h s u b s e q u e n t r e s e a r c h w a s t o b e m od e l le d . I n ow d e v e l o p a n d c la r i f y t h e m os t i m p or t a n t c h a r a c t e r i s t i c s of t h i s p a r t i c u 1 a r m od e 1
•
A
" � � �
1
--+
"
[I]
"
B
c
o
� � �
" � � .
" � � �
DIl
�
: " , :
:
�
: " : ,
:
,
,
[TIj]
--+
: , : :
" ,
[!2]
"
EJ
--+
: "
: :
� � �
,
:
:
, : � �
"
� � �
--+
" "
,
E3 : : :
" � � �
--+
" ,
,
E3
--+
: : :
, " ,
: � �
,
� �
--+ E1--+ IT1� DIl--+ [TIj]--+ [!2]--+ E3 --+ E3--+ :: ,, :: ,, : ,, :: ," :: ," �:: ", :: ",
2
� �
,
: ,, � �
� �
�
.:
,
� � :
: � �
,
� �
� ,
: , � �
: � �
� � :
,
�
--+ E1--+ E3---+ m---+ DIl---+ [TIj] --+ [!2] � E3�
3
: :
,, : � �
" ,
,
: : :
" ,
: : :
,
,
�
V1 N
: : :
, : , : , : " : , " � : , : " : " : , , : , : , : , : , � � � � � � � � � �
..... E3--+ E3 � E1--+ m� []] --+ []j] � [!2] �
4
,,
: , : :
"
,
� �
,
,
: ,
: :
"
,
: : :
"
,
,
:
:
:
"
,
,
: : :
,
"
,
: :
: � �
"
"
,
�
..... E3� E3� E3 ..... E3� m---. []] ---. []j]---. F ig .
are
� .
: , : ,
1.5.
d e s ce n t .
� .
Re p r e s e n t a t i on
Ma t r i line s
linked
by
the
are
: " � ,
of
the
d e n ot e d
m a p pi n g s
h
� �
� .
: , : ,
� �
: , � ,
� �
: , : ,
: " : "
s t r u c t u r e M n x P n w i t h c i r c u la t i n g
by
(s o l i d
capital a r r ow s ) ,
le t t e r s , m
pa t r i l i n e s
( d ot t e d
a r r ow s ) ,
by and
: , , �
c on n u b i u m a n d r om a n n u m e r a l s .
f
( b r ok e n
d ou b l e N od e s
a r r ow s ) .
53
M
x
4
P : 4
p ar t i t i o n s a n d q u o t i e n t s t r u c t ur e s
x P w i t h c i r c u la t i n g 4 4 c o nn u b i u m a n d d ou b le d e s c e n t d e f i n e d a s t h e p r od u c t of
C on s i d e r t h e k i n s h i p s t r u c t u r e M
t h e f ou r - m a t r i l i n e s t r u c t u r e M w i t h t h e f ou r - p a t r i l i n e 4 s t r u c ture P . With index se t I = { I , 2 , 3 , 4 } , t h e 4 s i x t e e n - e le me n t s e t 5 = 5 x 5 4 = { ( O ' 0 j l / i a n d j i n I ) i 4 c on t a i n s t h e ob j e c t s on w h i c h M x P 4 i s d e f i ne d . T h e y 4 a r e i n t e r pr e t e d a s t h e n od e s , s i b l i n g g r ou ps , or , c I a s s e s ' i n a r e d u c e d g e n e a l og i c a 1 n e t IV or k ( s e e f i g u r e
1.4
and
f igure 1 . 5 ) .
I n c on d e n s e d n ot a t i on , e le me n t s
of
S a r e r e pr e s e n t e d by d ou b le i n d i c e s : 5 = { II ,
12 , 13 ,
14 ,
.
•
.
, 24 , 31 ,
, 41 , 42 , 43 , 44} .
I n f i g u r e 1 . 5 a n d i n t a b le 1 . 1 I i n t r od u c e a s l i g h t ly
d i f f e r e n t n ot a t i on a l c on v e n t i on , s u b s t i t u t i n g c a p i t a l
B , C , 0 a n d r om a n n u me r a l s I , I I , I I I , IV f or ,
le t t e r s A ,
r e s pe c t i v e ly , t h e v a lu e s C on s e q u e n t l y , e le me n t s S =
B ot h
{AI , All ,
•
.
.
of t h e f i r s t a n d s e c ond i n d i c e s .
of 5 a r e : . . . , 0 1 , 0 1 1 , 0 1 1 1 , D IV } .
, BIV , CI ,
of t h e s e s c h e me s a r e i n d i r e c t c or r e s p on d e n c e w i t h
t he s y s t e m of s y mb o ls e m p 1oy e d b y H e ld J os s e l i n d e J on g
( 1 9 8 0 - [ 1 9 5 1] : 3 9 ) a n d
used in figure 1 . 1 . c
( 1 9 3 5 : 95 ) ,
P.E.
other s , and a ls o
L e t c = ( 1 , 2 , 3 , 4 ) b e t h e b a s i c pe r mu t a t i on . T h e n -1 3 2 2 = e, c = ( l , 4 , 3 , 2 ) , c= c = (1 , 3)(2 , 4) c
4
a n d t h e b a s i c m a p p i n g s of M
4
x P4 a r e d e f i n e d a s :
h = c x c = ( 11 , 2 2 , 3 3 , 44 ) ( 12 , 23 , 34 , 41 )
OJ
de
= e x c
1
( 13 ; 2 4 , 3 1 , 42 ) ( 14 , 2 1 , 3 2 , 43 ) ; ( 1 1 , 14 , 1 3 , 1 2 ) ( 21 , 2 4 , 2 3 ,
22 )
( 3 1 , 34 , 3 3 , 3 2 ) ( 4 1 , 44 , 4 3 , 42 ) ;
an d
( 1 3 , 2 3 , 3 3 , 4 3 ) ( 1 4 , 2 4 , 3 4 , 44 ) 4 4 = 4 = -1 N ot e t h a t h = [ OJ e , h e n c e h - 1 = h 3 , OJ -1 3 [ and = [
m
[
c
x e
( 11 ,
21 ,
31 , 41 ) ( 12 , 22 , 32 , 42)
•
3
,
•
T h e 1 6 e le me n t s of t h e a s s oc i a t e d c ommu t a t i v e g r ou p
(5,
H ) r e pre s e n t
k i n s h i p m a p pi n g s . T h e y a r e : e ( of
54 2 2 2 2 ( of or d e r 2 ) ; m . m 3 , f . f 3 , mf . or d e r 1 ) ; m • f • m f 2 2 2 2 f3 m3 . m f . f3 m . m 3 f . f3 m • m 3 f , f m ( of or d e r 4 ) . T h e a s s oc i a t e d s e t of k i n t y p e s f or e a c h k i n s h i p
ma p p i n g c a n b e
ob t a in e d f r om t a b le 1 . 1 . A l s o , a s s u m i ng
1 ( or C I ) of t he 3 k i n s h i p m a p pi ng s a n d k i n t y pe s a r e s pe c i f i e d · f or
t h a t m a le e g o i s s i t u a t e d i n n od e
m od e l ,
a 1 1 n od e s of t h e g e n e a 1 og i c a l s t r u c t u r e i n f i g u r e I . 1 ( b ot t om , r i g h t ) a n d f i g u r e 1 . 5 ( f or
n
=
4 ) . F o r e x a m p le .
42 e g o ' s M B C a r e l oc a te d i n n od e 0 1 1 , s i nc e ( 1 ) m3 f 3 0 1 1 ; e g o ' s F l C a r e i n n od e B I V a s ( 1 ) f 3 m = 2 4 B IV . 3 =
=
T h e g r ou p ( S , H ) i s i s om or ph i c t o t h e h om oc y c l i c
x G4 ( t h e g r ou p l a b e l l e d 1 6 / 3 i n T h o m a s and 4 9 8 W o od ' s ( 1 0 ) s u m m a r y of g r ou p t a b le s ) . S i n c e ( S , H ) i s g r ou p G
c ommu t a t i v e , a l l s u b g r ou ps a r e c om mu t a t i v e . H e n c e i t f o l l ow s d i r e c t l y f r om t h e d e f i n i t i on
of a n or m a l
s u b g r ou p ( s e e t h e a p pe n d i x ) t h a t a l l s u b g r ou p s of
(S, H)
a r e a l s o n or m a l i n ( S , H ) , T h e n or m a l s u b g r ou p s a n d t h e i r e le me n t s a r e :
T h e or d e r 1 s u b g r ou p E = { e } � G , l
2 or d e r 2 s u bg r ou p s : N 8 = { e , f } ; 2 2 N1 2 = { e . m f } ; 2 N1 3 { e . m } , a l l i s om or ph i c t o t h e c y c l i c g r ou p C , 2 2 Se v e n or d e r 4 s u bg r ou p s : N f3 } ; , { e . f . f 4 2 2 { e . m f , f . f 3 m2 } ; N6 2 2 { e . m3 f . m f . f 3 m } ; N7 2 2 { e , mf . m f , f 3 m 3 } ; N9 2 2 2 NIO = { e . f m . m m3 f } ; 2 NI l = { e . m , m • m 3 } , a l l i s om or ph i c t o C , a n d 4 2 2 2 2 N 5 = { e . m , f , m f } i s o m or ph i c
Three
=
=
•
t0 C
T h r e e or d e r 8 s u b g r ou ps : 2 2 { e . m3f . m f Nl 3 2 N2 = { e . f . f , f
• •
2
x C ' t h e I< 1 e i n g r ou p 2
2 2 f 3 m . f • m • mf . m 3 f 3 } ; 2 2 [ 2 . 2 2 3m } , m • m f. m f t
•
S5 2 = { e , ill , m , J i s o m o r ph i c t o C
ill
N F i n a l ly ,
t he
the
step is
H a v ing next
t og e t h e r
with
w i th
is a HI N i p a r t i t i on P i
If
. . .
a
,
i
m
} '
•
g l g i n H} i h om om or p h i s m {N
Ni ,
t he
qu ot i e n t
s om e
b l oc k
The
t he
on of
HIN
S
:
P 8 B
and
1.
and
i
i
is
{yly
=
8 8
{
t he
and
S B , l
X
E
{ 11 ,
Jl} ;
4
{ l4 ,
34 } ;
{ Z3 ,
43 } ;
Xa
i q u ot i e n t
d ou b le
1
8
'
(P
=
t he
i
S B } 8 8 8 2 8 a
5
8 8 8
ii E
=
w i th
,
b l oc k s { Bi ,
the
of
16 ,
fs
32} ; 8
{ Zl ,
4l } ;
{24 ,
44 } ,
i 1..
since of
8
3 8 B 6
=
i
t he
(e)¢
N . and
g in
1.
i .e . ,
and
(5.
)
�.
+ N g is a
s tr u c t u r e
{ 12 ,
the
a
p a r t i t i on
g
x.
s t ructures
E'
of
8� .
¢:
( x ) g f or
m
all
or d e r
s tructure
c la s s
-
} ,
M x P , 4 4 s t r uc tur e s ,
ide ntity
descent
s'
J[
p a r t i t i on s
def ine s
t he
of
P
of
, C o n s e q u e n t ly ,
set
8 a 7 H e n ce
H o n t o HIN
p a r t i t i on
5.
P
ill
n or m a l s u b g r ou p s ,
qu ot i e n t
HI N i
c om p le t e
E
H)
,
s t r uc tu r e
q u ot i e n t
e q u i v a le n c e
t he
[
p os s i b l e
as
the
5)
b e l ow .
P
that
of
2 2
H , a n d t ha t t h e ma p p i n g
g r ou p H I N . ,
c om p a t i b l e w i t h
HI E :
a s s oc i a t e d
ill
( 5,
set
then
is
of
l i s ted
de n ot e d
N ote
ill ,
descent
g r ou p ,
a re
2
=
c or r e s p on d i n g
q u ot i e n t
5
a ll
d ou b l e
f
H
c om p le t e
n or m a l s u b g r ou p N
in
x
C4 ,
t o d e r ive
Ii ) '
•
the
t he
t he
on
and
ii 1.. , OJ 1.
x
[2 ,
t r i v i a l s u b g r ou p
ob t a i n e d
c om p a t i b le
2
J ,
M4
a
p a r t i t i ons x
P
is
h, m, [) .
{ 13 , J 3 } ;
{ 22 ,
4
42 }
;
56
H e nce
and
{ Bll Z
B8l Z } w i t h Z { lZ , 3 4 } j B; Z i l l , 3 3 } j B� { H , 3 Z } ; B� Z { Z l , 4 3 } ; B! Z { Z 3 , 4 1 } j B� Z { Z 4 , 4 Z } . h l Z ( B� Z B!2 ) ( B� Z . B;z ) ( B� Z . m 1 2 ( B� Z Bt Z • B� Z B� Z ) ( a� Z ( Bi z . B� Z B� Z . B;z ) ( B �z f lZ - Z = ( m- ) 4 = ( - ) 4 = e( h lZ ) f lZ lZ lZ ' 1 1 { Bl 3 B8 3 } w i t h { l l , 1 3 } ; B� 3 { lz , 1 4 } ; { ZZ , Z4} ; B� 3 { 3 1 , 3 3 } ; { 41 , 4 3 } ; B� 3 { 42 , 44} .
PIZ B� Z Bt Z B; Z
•
•
Hence
X1 3
•
•
•
•
•
•
•
{ 13 , 3l } ; { Z 2 . 44 } ;
•
( P 1 3 ' h 1 3 • ml 3 , 1 13 ) w i t h ( B� 3 Bt 3 B� 3 B� 3 ) ( B� 3 , B 413 ) ( B 51 3 B� 3 ) ( B� 3 .
{ Z l , Z3 } j { 3 2 , 34 } ;
B� 3 ) , B� 3 a 6l3 ) ( a17 3 B� 3 ) , a 41 3 a 16 3 ' B� 3 )
•
and
I n a d d i t i on t o t h e t r i v i a l q u o t i e n t s t r u c t u r e XE t h e t h r e e qu o t i e n t s t r u c t u r e s w i t h p a r t i t i o n s of
or d e r
8,
XS ' XI Z '
a nd
X1 3
and
a s s oc i a t e d
t he r e a r e e x a c t ly s e v e n
q u ot i e n t s t r u c t u r e s o n p a r t i t i on s o f o r d e r 4 . T h e y a r e :
H/N4 : P 4 B41 B43 Hence X4
B�} w i t h i l l , Zl , 3 1 , 4l } i B� { l 3 , Z3 , 33 , 4 3 } j B� { Bi .
{ l Z , Z2 , 3 Z , 4Z} i { l4 . 24 , 34 , 44} . ( B41 , B4Z ' B43 , e 4 ( ii 4 ) 4 =
5 HIN : 6
Hence
{B
P
6 6 B 1 6 B 3
X6
'
Hence
(
HIN 5 :
Hence
1
'
(
9
1
9 3
, . . ,
= (
a
ii
( 6 B1 f
5 B } with 4
31 , 13 , 3 3 } ;
B )(B 4 3, 1 , 82 2 (- )2 = ID ) ii S S 9 1'
6
)
2
7 2 7 B 4
6
-
fD
=
6
e6
-
B52 B54
4-
33 , 42 } ;
{11,
24 ,
{13,
22 , 31 , 44} ;
9 2 9 B 4
8
=
,
B
34 , 4 1 } ;
{ l4 , 21 , 3 2 , 4 3 } .
32 ,
{12,
4 ( f7 )
14 ,
•
34 } ;
{ 2 2 , 4 2 , 2 4 , 4- 4 }
{ 12 , 2 1 ,
•
1O } w i th 4
34 , 43 } ;
{ 14 , 2 3 , 3 2 , 4 l } .
ID 9 ' f 9 ) w i t h h 9 = 9 ' /' 9 ' 9 9 9 ( B9 ( B9 B B f9 B 4_ l, 3, 2) , 1, ' 4 4 2 ( fD ) ( /' 9 ) ( f ) e9 ' 9 9 { Bi 0
6 B4 ) ,
•
{ l2 , 23 ,
B
•
=
6 6 B ) ( B2 , 3
'
34 , 4 2 }
5 S 5 S ) w i t h h 5 = ( B 1 B4 ) ( B 2 , B 3 ) , ' 5 S S 5 B ) ( 8 , 84 ) , (B ) ; £5 1 ' 2 3 2 ([ eS 5 ) '
9 B } w i th
(P
X9
{ l4 , 22 ,
=
B
{8
{ l 2 , 24 , 3 2 , 4 4 } ;
2
h 7 ' fD 7 ' f 7 ) w i t h fD7 = £7 = 4 7 7 ( ID ) B , B ) an d h7 e7 = 7 3 2
( p 5 ' /' 5 ID S f 5 ' ' 5 S s ( s
P9
PI
6 , f 2 ) 4 (m 6)
B
6
f6) w i t h
'
22 , 33 , 44} ;
{ B5 1
Xs
and 0:
6
{ 2 1 , 41 , 23 , 4 3 } ;
fD 9
HI N 1
fD
7 B } w i th 4
'
' { 11 ,
and
He n c e
1
7 B4 ,
s S B 1 5 B 3
B
4
6 3,
7
( P7 '
7
P
B
B
•
'
B
6 B 4
{ 13 , 24 , 3 1 , 42 } ;
ID S
HIN : 9
ii 6
6'
{ 11 ,
3 B
(P
{B
7 l 7
X7
21 , 3 3 , 4 1 } ;
( i, 6 )
P7
B
{ 13 ,
6 B 4-
and
B
6 B4 } w i t h
. . . ,
' { 1 1 , 23 , 31 , 43} ;
( B6 1
HIN 7 :
6 1
7
(
9 9 9 9 B ) , B )(B 4 2, 1 3 ' 9 9 9 B Bj ' 8 4) , 2 ' B
58
10 1 10 a 3 a
Hence
and
and
13 , 32 ) ;
( 2 1 , 44 ,
23 , 4 2) ;
10 2 10 a 4
a
(P
fl ) 1 0 ' ii 1 0 , lil l O O ' 0, 10 10 O a ( a B B � t ii 1 0 ) 4 2 ' ' 0 0 1 1 O O I (B Bt ) B2 ) ( a 3 111 1 0 1 ) 0 0 0 1 1 1 at 0 a a fl ( a1 2 , 3 O ' 4 2 4 (w ([ ( h10 ) 10 ) 10)
X1 0
=
ll
ii l l
El l
111 1
el l
1
{ 22 , 41 , 24 , 4 3 } .
, ,
, -
el 0
l al } w i t h 4 ll 1 4 , 13 , 12 ) ; a 2 ll 34 , 3 3 , 3 2 } ; a 4
( 31 , (P
33 ) ;
·
. . . ,
( 11 ,
Xl I
( 12 , 3 1 , 14 ,
w i th
=
=
ll ( a1
H!Nl l : P l l ll a 1 ll a 3 Hence
34 ,
(11 ,
'
-
ii l l
lil l I
, ll (a 1 (h
-
U
)
' ll B 2
4
[
{21 ,
24 ,
23 ,
22 } ;
{ 4 1 , 44 , 4 3 ,
42} .
) w ith 11 ll B Bt l ) , 3
(4 [11 )
T h e t h r e e q u o t i e n t s t r u c t u r e s c om p a t i b Ie w i t h a d u a 1
d i v is i on . o f S a r e : H!N : 2
P
z
i1
aZ 2
He nce
X
and
f
H!N : 1
P
z 2
I 1 a 1 1 8
H e n ce
X
and
ii
2
l
I
2 a } with 2 ' { ll , 2 1 , 3 1 , 41 , 13 , 23 ,
33 , 43}
{ l2 ,
22 ,
32
34 ,
(P
ii
w
{a
e (
2 1
2
2
'
=
a1 I
2 ,
( ii 2 )
2
2
, '
=
42 , 14 , 24 ,
[ 2 ) w i t h ii 2 (w )2 2
a1 } w i t h 2
=
and
44 } .
11/ 2
=
(a
•
' {l1,
22 , 33 , 44 ,
3 1 , 42 ,
13 ,
24 }
{ l2 ,
2 3 , 34 ,
32 , 43 ,
14 ,
21} .
(
P
el
I
'
=
41
,
m [ 1 ) w i t h 111 1 1 l ' ' 2 ( w- 2 = ( [ . 1) I
ii
)
2 1
=
[
1
=
'
2 8 ) 2
and
(
1 B1
'
8
1
2
)
,
59 {
P
BIN 3 ;
3 3 B 1 3 B2
H e nc e
X
and
m3
3 Bl
3 B2 } w i t h
,
{ 1 1 , 14 , 13 , 12 , 31 , 34 , 33 , 3 } and 2
3
{ 21 , 24 ,
2 3 , 2 2 , 4 1 , 44 , 4 3 , 4 2 } ,
(P
m3 ,
e3
3
'
h ' 3 ( ii
3
[ ) with h 3 3
)2
( £ )2 3
= £3
( B3
=
l
,
3 B2 ) ,
F i n a l ly , t h e r e i s t h e t r i v i a l o n e - b l oc k q u o t i e n t structure : { s} ,
h e n ce
X
H
T h i s c om p le x m a s s of i n f o r ma t i on m a y b e r e d u c e d t o m or e m a n a g e a b l e p r o p or t i on s b y i n t r od u c i n g t h e f o l l ow i n g d e f i n i t i o n s ,
C on s i d e r t h e s e t P of a l l p a r t i t i on s P
on S
i
c om pa t i b l e w i t h t h e k i n s h i p s t r u c t u r e M 4 x P , T h e n 4 P . i s a r e f i n e m e n t of P . ( n ot a t i on : P . < P . ) i f e a c h = J J � � b l oc k of P . i s t h e u n i on of a u n i qu e s u b s e t of b l oc k s J of P i ' i . e " i f t h e r e e x i s t s a m or p h i s m of t h e q u ot i e n t structure X . t he n _
�
o n t o t h e q u ot i e n t s t r u c t u r e
X . i s c a l le d a n J
_
a p p r o x i ma t i o n
X . ' If P . J
�
.$. P J. , -
or a r e d u c t i o n of
X . , s i n c e X . e x h i b i t s s ome , b u t n ot a l l of t h e s tr u c t u r a l J � c h a r a c t e r i s t i c s of X . ( s e e a 1 s o C ou r r e g e 1 9 7 4 : 3 1 6 - 3 1 7 l.
a n d B oy d 1 9 6 9 : 1 5 2 - 1 5 3 ) ,
I n t h e e x a m p le a b ov e , t h e pa r t i t i on P a i s a r e f i n e me n t
o f t h e p a r t i t i on s P ' P ' a n d P ' b u t n ot of P ' P ' 9 7 S 6 4 ' T h e r e f i ne me n t r e l a t i on i s a b i n a r y r e l a t i on or P P IO
ll
w h i c h i s r e f l e x i v e , a n t i s y mme t r i c , a n d t r a n s i t i v e . I t c a n b e s h ow n t o i n d u c e a p a r t i a l or d e r i n g of t h e s e t of qu o t i e n t s t r u c t u r e s of M
4
x P
4
w i t h g re a t e s t
l ow e r b ou n d
le a s t u p pe r b ou n d X , h e n c e X E ;s, X ;S, X f or a l l H H i E qu o t i e n t s t r u c t u r e s X . of M x P 4 • F i n a l ly , f o r X . � X . , J 4 • �
X
and
X . i s a c o v e r of X . i f X . J . � � < X ' t h a t Xi < X k
j
<
X . and
J
t h e r e i s n o Xk s u c h
60
The s y s tem
of r e l a t i on s b e t w e e n t h e q u o t i e n t s t r u c t u r e s
o f 11 4 x P ( a n d b e t w e e n t he c or r e s p on d i n g q u ot i e n t g r ou p s ) 4 i s d i a g r a m me d i n f i g u r e 1 . 6 . W a v y a r r ow s l i n k e a c h
q u ot ie n t s t r u c t u r e t o i t s c ov e r i ng s t r u c t u r e s . T h e d i a g r a m i s i n f a c t a l a t t i c e . i . e . , a p a r t i a l or d e r i n g s u c h t h a t
a le a s t u p pe r b ou n d a n d a g r e a t e s t l ow e r b ou n d e x i s t f or a n y t w o q u ot i e n t s t r u c t u r e s X . a n d i . . E a c h w a v y a r r ow � J a l s o r e p r e s e n t s a k i n s h i p m or ph i s m . H e n c e X . i s a n a r r ow s
J
_
a p pr ox i ma t i on
or a r e d u c t i on of X i i f t h e r e i s a c h a i n of linking X . t o X F i n a l l y , f or e a c h p a r t i c u l a r �
. •
]
q u ot i e n t s t r u c t u r e , t h e b a s i c m a p pi n g s h .
m .
and f ar e
d e n ot e d b y s o l i d a r r ow s , d o t t e d a r r ow s , a n d b r ok e n a r r ow s .
C OM P A R I S O N S A N D E X T E N S I O N S I n ow c om p a r e t he c om p le t e s e t
of q u o t i e n t s t r u c t u r e s of
11
x P 4 w i t h t h e r e s u l t s ob t a i n e d u n d e r t h e e a r l y L e i d e n 4 d ou b l e d e s c e n t p a r a d i g m .
I n t h e f i r s t p la c e , t h e f o l l ow i n g ' la t e n t ' s t r u c t u r e s a r e c l e a r l y d i s t i ng u i s he d
( s e e f i g u r e 1 . 1 a n d V a n W ou d e n
( 1 9 6 8 : 9 0 - 9 2 ) a n d P . E . d e J os s e l i n d e J on g 186 -188 »
;
( i ) a f ou r - ' c l a n '
( i i ) a f ou r -' cl a n '
( 1 980 : 3 7 -4 2 ,
ma t r i l i n e a l s t r u c t u r e , a n d
p a t r i l i ne a l s t r u c t u r e , b ot h . w i t h
e x c l u s i v e m a t r i l a t e r a l c r os s - c ou s i n m a r r i a g e ; ma t r i m oi e t y s t r u c t u r e ,
( i ii ) a
( i v ) a p a t r i m oi e t y s t r u c t u r e , a nd
( v ) a f ou r - ' c l a s s ' , d ou b le
phratry s t r u c ture .
In t h e se
t h r e e s t r u c t u r e s s i s t e r e x c h a n g e a n d d ou b le c r o s s - c ou s i n m a r r i ag e a r e p os s i b l e . T h e c or r e s p on d i n g q u ot i e n t s t r u c t u r e s of 11 4 x P a r e : 4 i . The ( i i ) X , ( i ii ) X ' ( iv ) X ' and ( v ) s 4 2 3 qu o t i e n t s t r u c t u r e X e x p r e s s e s t h e g e n e r a l p r i n c i p le of 7 g e n e r a t i on e n d og a my , w i t h ma r r i a g e p o s s i b i l i t i e s c on f i ne d
( i ) XU '
t o m e m b e r s of t h e s a me g e n e r a t i on a n d t h e c yc le r e pe a t i n g a f t e r f ou r c on s e c u t i v e g e n e r a t i on s . X
i s t he a n a l og ou s l d u a l s t r u c t u r e w i t h g e ne r a t i on e n d og a my a n d a l t e r n a t i ng g e ne r a t i on s . T h e s e t w o qu o t i e n·t s t r u c t ur e s a r e a l s o
9 XHH/H -,
•
� \ t-- '" � X3 H / N 2 ____-_ ! �" /.' .______ H / N 3 H/N , .. C:DMO':) Cot·:to,;:) (.·.·.:o�o;.·....-' ... ..
X2
•...•
I � 1� 'fl-Iiil ' '' Et!: ()m--+;Q t " � '!" XH /N o··Xl· · ·� '�;;;;:�III�I.t �::Jq
�N . / I •..... .
C
�
� i
... ... .
l at
�
"\
'
tt I i
'
�/N6 1 X '\, 6
,...I --+ 0 -0.,
. . . . ..
•
.,a.. , I
.i. .t \o .l.
U
0-0 ··.
l.n,
c ov e r i n g
L a t. t i c e
of
s tr uc tu r e .
; ;
� �
q u ot i e n t See
the
:
T
n_n � �
4[] -O+-- J
Fig ,
It 5 ' 1
st ruc tures
tex t
f or
0-9
r
of
M4
j t!/ Nl O ) X 'O /
H .o -o• . ,
x
X
i
. .:
•' X, :. .a-oC H
:
���'2 � �
P4 '
..
;. .0 -0, ,1'
.L : .o -o. ::
de ta i ls .
M
I
(��t= �: " ,
0;
@XE
f u r t her
. . - ...&I
'' A
I �" " I I ��'''··:.
: :,
t , , .o-o•. .
r � ��_r;:;'I�/�,....;
0 t-sr.
I . i
O+.:.� Ul!l::::::: � 0-0 o; H /N7� i � H /�9 � � I / �
X I I Ir+D-ot-hI I I I I-t-+O-D..-JI II II X, II
� / NB Xa
5
0-0
Wavy
a r r olV s
.
.
'
�/N ' 3 X '3
pOint
f r om
X
i
t o
a
'" t-'
62
i d e n t i f i e d b y V a n W ou d e n
( 1968 : 92 ) .
S e c o n d , t he i d e a of pa r t i t i on i n g t h e s i x t e e n d ou b l e descent
' c la s s e s '
i n t o a s e t of
c om pa t i b le w i t h t h e
l a r g e r g r ou p i n g s
or i g i n a l k i n s h i p s t r u c t u r e i s m a d e
e x p l i c i t i n d i a g r a ms b y V a n W ou d e n ( 1 9 6 8 : 9 3 ) a n d P . E . d e J o s se l i n d e J on g ( 1 9 8 0 : 4 1 ) 5 k in sh i p c h a r t 1 ) :
( s e e f i g u r e 1 . 2 , a d a p t e d f r om
T h i r d , n ot a l l of t h e q u ot i e n t s t r u c t u r e s a p p e a r i n a n a ly s e s of t h e I n d o ne s i a n m a t e r i a l . T h e f ou r - b l oc k structures X , X and X a n d t he e i g h t - b l oc k s t r u c t u r e s IO' 6 9 X , X and X a r e n ot d e r i v e d . T h i s om i s s i on i s c u r i ou s , 12 8 13 c on s i d e r i n g t h e i m p or t a n c e of f ou r f o ld a n d e i g h t f o ld s c h e me s of c la s s i f i c a t i on i n m a n y I n d o ne s i a n s oc i e t i e s ( c f . P.E. d e J o s s e l i n d e J on g 1 9 8 0 : 1 5 1 - 1 6 2 ) . M a n y o f t h e s e s t r u c t u r e s d o , h ow e v e r , f i g u r e p r o m i n e n t ly i n t h e c la s s i c d i s c u s s i o n s of k i n s h i p s y s t e m s f r om o t h e r f i e ld s of s t u d y : Au s t r a l i a a n d Ch i n a . i s t h e f ou r - g e ne r a t i on s t r u c t u r e w i t h d i r e c t Thus , X 12 e x c h a n g e d e s c r i b e d b y H ow i t t ( 1 8 8 9 : 4 3 - 4 6 ) f or t he War amun g a , b y S t a n ne r a n d by We b b t he
( 1 9 3 3 : 3 9 8 - 3 9 9 ) f or t he N a n g i ome r i ,
( 1 9 3 3 ) f or t he
' r e g u la r ' a n d
' M u r ng i n ' .
' a lt e r n a t e '
I t i s i s om or ph i c t o
s t r u c t u r e s i n Lev i - St r a u s s ' s
f igure 1 9 ( 1970 : 171 ) . X pa t r i l i ne
' L aw r e n c e '
i s t h e t w o - m a t r i l i ne , f ou r 8 s t r u c t u r e w i t h a s y m me t r i c e x c h a n g e "
( c f . B a r n e s 1 9 6 7 : 1 7 ) . I t i s i s om or p h i c t o L e v i - S t r a u s s ' s ' c om b i n e d r e g u l a r a n d a lt e r na t e M u r n g i n s y s t e m ' d e p i c t e d i n h i s f ig u r e 2 3
( 1 9 7 0 : 1 7 5 ) a n d i n a v a r i a n t n ot a t i on , b y
J . P . B . d e J os s e l i n d e J on g
( 1 9 5 2 : 42 ) . X
i s t h e hy poth e t i 6 c a l f ou r - c l a s s a s y m me t r i c a l s t r u c t u r e r e c o n s t r u c t e d b y Le v i - S t r a u s s ( 1 9 7 0 : 1 8 5 - 1 8 9 ) a s a n e c e s s a r y s t a g e i n t h e d e v e l opme n t
of t he f u l l
' Nu r n g i n ' s t r u c t u r e . T h i s m od e l i s
a l s o d e s c r i b e d b y J or i on ( 1 9 8 2 : 7 7 - 7 8 ) f or t h e K a r a d j e r i . X
i s t h e ' r e v e r s e d ' L a w r e n c e s t r u c t u r e w i t h a s y mm e t r i c 13 e x c h a n g e , f ou r m a t r i l i n e s a n d t w o p a t r i l i n e s d e s c r i b e d b y G r an e t
( 1 9 3 9 : 2 06 f i g . C , 2 3 2 - 2 3 3 f i g . G ) f or t h e C h i n e s e
s y s t e m . I t i s r e pr od u c e d b y L e v i - S t r a u s s a s h i s f i g u r e 5 8 a n d f ig ur e 66
( r i gh t )
( 1 9 7 0 : 3 24 , 343 ) .
( Granet a ls o
63
d e r i ved t h e '
' L a w r e n c e ' s t r u c t u r e X s ( 1 9 3 9 : 2 09 f i g . E ) . )
X 9 d i r e c t e x c h a n g e , a n d X I O ' t h e ' r e v e r s e d ' v e r s i on of L e v i - S t r a u s s ' s h y p o t he t i c a l f ou r - c l a s s ' Mu r n g i n ' m od e l ,
t h e f ou r - c l a s s , f ou r - g e n e r a t i on s t r u c t u r e w i t h
h a v e p r e v i ou s ly o n ly b e e n d e s c r i b e d a s t he o r e t i c a l ( X : L or r a i n 1 9 7 5 : 1 7 7 , T j on S i e F a t 1 9 7 5 : 2 4 - 2 5 , 9 De Me u r a n d J o r i on 1 9 S 1 : 1 6 ; X a n d X I O : K e m e n y e t a l . 1 9 6 6 9 [ 1 9 5 6 J : 4 3 2 ) . T h e r e a r e n o c le a r d e s c r i p t i on s o f t h e s e tw o
structures
s t r u c t u r e s a s m od e l s of a c t u a l k i n s h i p s y s t e m s . As f o r ma l i z e d a b ov e , t h e c l a s s of d ou b le d e s c e n t m od e l s d e v e l o pe d i n t h e 1 9 3 0 s a s a c om pr e h e n s i v e s c h e m e f or t h e c om p a r i s on of I n d o ne s i a n s oc i e t i e s r a i s e s a n u m b e r
of
i m p or t a n t i s s u e s . F i r s t , t h e c r u c i a l n o t i on of d i v e r s e p os s i b i li t i e s
' im p li c i t '
or
' la te n t '
i n a k i n s h i p m od e l
( L oc h e r 1 9 6 5 : i x ) i s m a d e m or e p r e c i s e b y t he c on c e p t of a q u o t i e n t s t r u c t u r e . T h e m a t h e m a t i c a l p r oc e d u r e i s e x h a u s t i v e : a l l p os s i b le
' la t en t '
or r e d u c e d s t r u c t u r e s of
M 4 x P 4 a r e c a t a l og u e d , w i t h t he m or e a r b i t r a r y s e le c t i o n p re v i ou s ly d e r i v e d u n d e r t he t r ad i t i o n a l a p p r oa c h i n c l u d e d a s a s u b s e t . T h e pa r t i a l r e a l i s a t i on o f t h e s e p o s s i b le s t r u c t u r e s i n d a t a f r om r e a l s oc ie t i e s i s a q u e s t i on f or empirica l researc h .
Se c ond , u n d e r t h e t r a d i t i o n a 1 a p p r oa c h , h y p ot h e t i c a 1
d e v e l op m e n t s e qu e n c e s h a v e b e e n p r o p os e d ,
l e a d i n g f r om ,
s a y , a m oi e t y s y s t e m t o a n e i g h t - c l a s s s y s t e m , v i a a d ou b Ie m oi e t y , f ou r - c l a s s s t r u c t u r e
(cf . Granet 1939 ,
a m on g m a n y o t h e r s ) . T h e l a t t i c e d i a g r a m of f i g u r e 1 . 6 s u m m a r i z e s t h e c ov e r i n g r e l a t i on s h i p s b e t w e e n t h e q u ot i e n t s t r u c t u r e s of M
• I f on e s o lV i s h e s , t h e l i n k i n g 4 x P4 k i n s h i p m or p h i s m s m a y b e i n t e r p r e t e d a s s i m p le p a t h s f o r s y s t e m s d e v e l o p me n t or c o l la p s e . T h e r e a r e i n d e e d m a n y p o s s i b le t r a j e c t o r i e s
li n k in g d ua l s t r u c t u r e s t o k i n s h i p
s t r u c t u r e s w i t h e i g h t c la s s e s . A n y r e a l i s t i c t h e or y of s t r u c t u r a l c h a n g e m u s t s e t ou t c r i t e r i a f or c h o os i n g a s pe c i f i c s e q u e n c e f r o m t h e s e t
of p os s i b le a l t e r n a t i v e s .
Re s e a r c h a l on g t h e s e l i n e s h a s b e e n i n i t i a t e d b y B oy d ( 1 969 )
a n d De ',1 e u r a n d J or i on
( 1981 ) .
6 4-
F i n a l ly , t h e m a t he ma t i c a l f or m a l i z a t i on p r ov i d e s t h e n a t u r a l f r a me w or k f or a n a l y s i n g t he c o d i n g p r o b l e m or ex t e n s i o n p r o b l e m in
r e l a t i on t o k i n s h i p s t r u c t u r e s . A
w e l l - k n ow n e x a m p le of c od i n g i n a n t hr o p o l og y i s t he c om p on e n t i a l r e p r e s e n t a t i on of A me r ic a n k i n t e r m s d e s c r i b e d b y W a l lace a n d A t k i n s
( 1 9 6 0 ) . H e r e a s e t of
{ fa th er , mother ,
c o u s in }
l e x e me s T
=
( L e . , t he A me r i c a n -E n g l i s h
c o n s a n g u i ne a I k i n t e r m s ) i s m a p p e d on t pr od u c t A x B x C of t h r e e s e t s
0
t h e C a r t e s i an
of d i s t i n c t i v e f e a t u r e s ,
{ C +2 , w h e r e A ( se x ) = { HALE , F E MALE } , B ( ge n e r a t i on ) l O 2 -l + C } , a n d C ( li n e a l i ty ) { L I NE A L , C O L I N EA L , , c , C , C -
=
AB L I N E A L } . T h e p r ob l e m i s t o d i s t i ng u i s h t h e k i n t e r m s b y r e p r e s e n t i n g t he i r t h e u n d e r ly i n g
' me a n i n g s ' a s c omb i n a t i on s
of v a lu e s
on
' s e m a n t i c d i me n s i on s ' A , B , a n d C . T he r e
a r e , u n f or t u na t e l y , a n u mb e r
of c om pe t i n g c om p one n t i a l
a n a ly s e s f or t h e A me r i c a n - E n g l i s h t e r m i n o l og y , b a se d on d i f f e r e n t d i me n s i on � a n d d i f f e r e n t s e t s of d i s t i n c t i v e features . An a n a l og ou s c od i n g pr ob le m oc c u r s i n k i n s h i p t h e or y . Thus , wr i t e r s
on A u s t r a l i a n k i n s h i p h a v e l a b e l le d t h e
basic c la s s e s in d i a g r a m s i s om or p h i c t o X with S
m =
=
{l, 2,
of t he s a me k i n s h i p s y s t e m i n
' Lawre nc e ' e i g h t - c la s s s t ru c t u r e
v a r i ou s w a y s . T he
( f ig . 1 . 6 ) i s d e f ined a s L
8 •
•
•
8} . h
,
=
( S , h , m.
f)
(1, 6, 5 , 2)(3, 8 , 7 , 4) ,
( 1 , 3 , 5 , 7 ) ( 2 , 4- , 6 , 8 ) , a n d f
( 6 , 7 ) . T h i s i s t he s c h e me
=
=
( 1 , 8 ) ( 2 , 3 ) ( 4- , 5 )
p u t f or w a r d b y B a r n e s
( 1 967 : 2 0 ) .
T h e r e a r e v a r i a n t s . L e v i - S t r a u s s i n t r od u c e s t w o a d d i t i on a l n ot a t i o n a l s c h e m e s
( 1 9 7 0 : 1 7 5 , 1 8 7 - 1 8 9 ) . A f ou r t h c on v e n t i on
i s e m p l oy e d b y J . P . B . d e J os s e l i n d e J o n g a l s o s u mm a r i ze s t h e
last three systems
( 1 9 5 2 : 3 9 ) ; he
of n ot a t i on i n h i s
Cha r t A ( 1 9 5 2 : 6 1 ) . T h e s e f ou r r e n d e r i n g s of t he t w o - m a t r i l i n e , f ou r pa t r i line
' L a w r e n c e ' e i g h t - c l a s s s y s t e m a r e s e t ou t
b e l ow i n t a b l e 1 . 2 ( w i t h t h e a s y m me t r i c m a r r i a g e c on n u b i a a n d t he m a t r i l i n e a l a n d p a t r i l i n e a l d e s c e n t c y c l e s d e f i n e d b y t he
pe r mu t a t i o n s h ,
m, and f ) .
65
:
3
4
5
B2
C2
D1
Sy
Qx
Py
4B
4A
3B
1
2
Al
L : Px 2 D e 3 os s e l i n d e 3 0 n g L 3 : l A
L
Barnes L ev i - S t r a u s s I L ev i - S t r a u s s I I
a
Ll
:
T a b I e 1 . 2 . A l t e r n a t i v e c od i n g s f or t h e T h e c h oi c e o f t he
7
8
A2
B1
Cl
D2
Rx
Qy
Sx
Ry
3A
2B
2A
IB
' Lawre nce ' s y s te m .
of s y mb o l s i n t h e s e i s om o r p h i c r e pr e s e n t a t i on s
' Lawre nce '
structure is not arbi trar y :
r e f le c t d i f f e r e n t t he or e t i c a l p oi n t s B oyd
6
t h e c od i n g s
of v ie w .
( 1 9 6 9 , 1 9 7 1 , 1 9 7 2 ) h a s d r a w n c le a r p a r a l le l s
b e t w e e n t h e c om p on e n t i a l a p pr oa c h i n a n t h r o p o l og y a n d t he m or e c om p r e h e n s i v e f i e ld s of m a t h e ma t i c a l c od i n g t h e or y a n d t h e t he or y
of g r ou p e x t e n s i on s . R ou g h ly , t h e e x t e n s i o n
p r ob l e m ( a s i t a p p l i e s t o g r ou p t he or y ) f oc u s s e s on t h e q u e s t i on of h ow t o d e s c r i b e a n a l g e b r a i c g r ou p a s t h e c om p o s i t i o n of s m a l le r s t r u c t u r e s . A k e y i s s u e i s t he r e qu i r e me n t t h a t t he b i n a r y o pe r a t i o n on t he g r ou p t o b e ' e x t e n d e d ' b e c od e d i n t e r m s o f ope r a t i on s d e f i n e d o n t h e s m a l le r s t r u c t u r e s . A m o r e t e c h n i c a l c h a r a c t e r i z a t i on i s g iv e n
in
t he f o l l ow i n g t h e or e m :
Th e orem
4
( a d a p t e d f r om B oy d 1 9 6 9 : 1 5 8 - 1 5 9 ) :
Le t
G be a
g r ou p w i t h n or m a l s u b g r ou p H a n d le t K b e a g r ou p
G/H . L e t X b e a le f t H i n G , i . e . , a s e t of e le me n t s of G
i s om or p h i c t o t he q u ot i e n t g r ou p t r a n s v e r s a l of
c on t a i n i n 9
on ly
one a n d
xH of H i n G , w i t h
e
a s g = xh f or s om e
x
-
one e l e me n t x f r om e a c h x
in X. The n
le f t
C
os e t
i s t h e r e pr e s e n t a t i v e of
t he c os e t a n d e a c h e le me n t g of G c a n b e u n i q u e l y d e s c r i b e d i n X a n d s om e h i n
on e - t 0- one m a p pi n g 8 f r om t h e s e t
C a r t e s i a n p r od u c t
H . T h e n t he r e i s a
of e le me n t s of G o n t 0 t h e
of K a n d H d e f i n e d b y
(g)8
( x H , h ) , a n d t h e p r od u c t of a n y t w o e 1 e m e n t s i s e qu i v a l e n t t o with h . k and d e t e r m ined by
m
x
gf
=
( xh ) ( yk )
i n H. and a
and y .
x.y
=
xym
=
xy ( a
=
g and
x , yy -
s om e e le me n t of
G i s s a i d t o be a n
b y K a n d t h e c om p le t e s e t of e le me n t s a
x,y
( xh ) 8
l
f of G
h yk )
,
H u n i q u e ly
exten s i o n
of H
i s t h e f a c t or
66 s e t o f t h e g r ou p e x t e n s i on .
( F o r a s k e tc h o f t h e p r o o f s e e
t h e a p pe nd i x . ) T w o i m p or t a n t s pe c i a l c a s e s t o b e c o n s i d e r e d a r e : ( l ) T he
le f t t r a n s v e r s a l X ( i . e . , t h e s y s t e m of
r e p r e s e n t a t i v e s f o r GI H ) f or ms a s u b gr o u p of G . H e n c e
l e a n d gf = ( xh ) ( yk ) = xy ( y - h Yk ) . x.y G i s c a l le d t h e s em i - d i r e c t pr o d u c t of t h e s u b g r ou p H b y X .
x y = xy , t h u s
a
=
( 2 ) T h e l e f t t r a n s v e r s a l X f or ms a n orma l s u b gr o u p of
Hence xy
and h in
H,
xy ,
gf
a
=
x'l
= e , a n d s i nce _
( xh ) ( yk )
=
_ _
xh
( xy ) ( h k ) .
h x f or a l l x i n
G is then the
pr o d u c t o f i t s n or ma l s u b g r ou p s H a n d X .
B oy d
X
G.
direct
( 1 9 6 9 : 1 5 6 - 1 6 6 ) h a s a p p l i e d t h e se f i n d i n g s t o t he
g r ou p s a s s oc i a t e d w i t h a n u m b e r
of t h e c la s s i c k i n s h i p
s t r uc t u r e s ( th e K a r ie r a , t he K a r a d j e r i , t h e Amb r y m , a n d t h e A r a n d a ) , d e r i v i n g t h e g r ou p e x t e n s i o n s a n d i n t e r pr e t i n g t h e s e a s c od i ng s
or c om p o ne n t i a l d e f i n i t i on s . H i s g e ne r a l
f r a me w or k c a n be e a s i l y r e f or m u l a t e d a n d a p p l i e d t o t he m or e s pe c i f i c C ou r r e g e - t y pe k i n s h i p m od e l s i n t r od u c e d i n t h i s c h a p t e r . F or r e a s on s o f s pa c e
I
o n l y e x a m i n e s e le c t e d
c a s e s r e l a t e d t o t h e d ou b le d e s c e n t s t r u c t u r e M � x P � . pa r t i c u l a r , i t i s i m p or t a n t t o e s t a b l i s h i f a k i n s h i p s t r uc t u r e X = ( S , h ,
m,
f ) w i t h g r ou p
In
G i s i s om or p h i c t o
t h e d i r e c t p r od u c t of i t s q u ot i e n t s t r u c t u r e s X a n d X 0 ' � J a n d t o d e t e r mi n e w h e t h e r or n ot s u c h a r e p r e s e n t a t i o n i s 0
i n d e e d u n i qu e . Re f e r r i n g n ow t o t h e a l t e r na t i v e c od i n g s g i v e n f or t he e i g h t c la s s e s of t h e
' L a w r e n c e ' s t r u c t u r e i n t a b le 1 . 2 ,
le t P 2 ; G 2 , M 2 , P4 ' A 4 , a n d K4 b e , r e s pe c t i v e l y , t h e k i n s h i p s t r u c t u r e s i s om or ph i c t o t h e q u ot i e n t s t r u c t u r e s X2 , X l ' X 3 , X4 , X , a n d X s o f f i g u r e 1 . 6 . T he s e a r e t h e 6 n on - t r i v i a l q u ot i e n t s t r u c t u r e s o f t h e ' L a w r e n c e ' s t r u c t u r e L ( i t s e l f i s om or p h i c t o x 8 ) . D i s r e g a r d i n g t he or d e r mu l t i p l i c a t i on , t he r e a r e e x a c t ly f o ur n on - t r i v i a l ,
of
i s om or ph i c r e p r e s e n t a t i o n s o r c od i n g s
of
of L i n t e r ms
i t s qu o t i e n t s t r u c t u r e s . T h e s e a r e : ( 1 ) L 3 = P 4 x M 2 ; X� x X 3 ;
i . e . , a s t h e pr od u c t of a
67
f ou r - pa t r i l i n e s t r u c t u r e w i t h g e n e r a l i z e d e x c h a n g e a n d a m a t r i m oi e t y s t r u c t u r e . T h i s i s t h e d ou b le - d e s c e n t c od i n g c h os e n b y J . P . B . d e J o s s e l i n d e J o n g ( 1 9 5 Z : 3 9 ) . ( Z ) LZ A x H Z :; X x X ; i . e . , a s t h e p r od u c t of a 4 6 3 f ou r - c l a s s s t r u c t u r e w i t h g e n e r a l i z e d e x c h a n g e a n d a n =
e x ot i c d e s c e n t r u l e
( a m a n ' s c h i ld r e n b e l on g t o t h e c l a s s
of t he i r m ot h e r ' s b r ot h e r ' s w i f e ) a n d a ma t r i m oi e t y s t r u c t u r e . T h i s i s t h e s e c on d s o lu t i on a d v oc a t e d b y Lev i - S t r a u s s of d ou b le ( 3 ) L4
( 1970 : 187-189 ) .
T h e c od i n g i s n o t i n t e r m s
( u n i l i ne a l l d e s c en t . =
P4 x
GZ
:; X 4 x X ; l
i . e . , a s t h e p r od u c t of a
f ou r - p a t r i l i n e s t r u c t u r e w i t h g e n e r a l i z e d e x c h a n g e a n d a n a l t e r na t i ng -g e n e r a t i o n s t r u c t u r e .
(4) L G z ;; X 6 x X l ; i . e . , a s t he p r od u c t of A 4 x 5 t he n on - u n i l i n e a l s t r u c t u r e d e s c r i b e d u nd e r ( 2 ) a n d a n =
a l t e r n a t i n g - g e n e r a t i on s t r u c t u r e . T h e s e f or t h e
' L a wr e n c e '
l a s t t w o c od i ng s
s t r u c t u r e h a v e n ot p r e v i ou s l y b e e n
p r e s e n t e d i n t h e l i t e r a t u r e on A u s t r a li a n k i n s h i p . W h a t , t h e n , of L , L e v i - S t r a u s s ' s f i r s t s o l u t i on ? L e t l K b e t h e k i n s h i p s t r u c t u r e on f ou r c la s s e s A , B , C . D 4
w h i c h i s i s om or p h i c t o X ' T h e n h (A. B) (C. D) , m = S (A . C) ( B . D ) , and f = (A . D ) ( B . C) and K r e pr e s e n t s t h e =
4
c la s s i c
' K a r i e r a ' f ou r - s e c t i on m od e l . T h e
'Karier a '
s t r u c t u r e i s i n d e e d a q u ot i e n t s t r u c t u r e of L ( ob t a i n e d
by se t t in g mZ equa l to
e) .
T h i s i s a p p a re n t ly e x pre s s e d
i n L e v i - S t r a u s s ' s c od i n g L , a n d i t c a n b e r e t r i e v e d b y l s u p p r e s s i n g t h e v a lu e s o f h i s s e c on d i n d e x . I n ot h e r w or d s , t h e ' K a r i e r a ' p a r t i t i on i n g o f L i s c om p a t i b I e with the
or i g i n a l k i n s h i p pe r mu t a t i on s . T h i s i s o b v i ou s ly
n o t t h e c a s e w i t h t h e p ar t i t i on i n g i n d u c e d b y t h e v a lue s 1 a n d Z fact , the
( or d u a l d i v i s i on )
of h i s s e c o n d i n d e x . I n
' L a w r e n c e ' s t r u c t u r e c a n n ot b e c od e d a s t h e
d i r e c t p r od u c t of t h e
' Ka r i e r a ' s t r uc t u r e w i t h
o n e of
t h e t h r e e r e g u l a r s t r u c t u r e s H Z ' P z a n d Gz ' L e v i - S t r a u s s ' s t w o c od i n g s of t he
r e l a t e d t o t he to the
tw
' La w r e n c e ' s t r u c t u r e a p p e a r t o b e
o p os s i b le e v o lu t i o n a r y s e q u e n c e s le a d i n g
' M u r n g i n ' t y pe
of k i n s h i p s y s t e m ( 1 9 7 0 : 1 7 5 - 1 7 6 , 1 8 6
68
- 1 96 ,
216 f i g .
44 ) .
H ow e ve r , h i s d i s c u s s i on i s a b s t r u s e ( cf . B a r n e s 1 9 6 7 :
a n d h i s a r g u m e n t a t i on l e s s t h a n c le a r 18-21 ) .
T he
' K a r i e r a ' f ou r - c l a s s s t r u c t u r e K
e x a m p le o f a k i n s h i p m od e l t h a t h a s
4
i s a n ot h e r
o c c a s i one d m u c h
c on t e n t i ou s d e b a t e . O n p u r e l y f or m a l g r ou n d s t he s t r u c t u r e m a y b e r e n d e r e d a s t h e d i r e c t p r od u c t o f i t s q u o t i e n t s t r u c t u r e s i n t h re e d i s t i n c t
( t h ou g h i s om or p h i c )
(with the ; M Z x P z ; GZ x M Z ; GZ x P z 4 or d e r ' of m u l t i p l i c a t i o n d i s r e g a r d e d ) , i . e . , a s t h e p r od u c t
c on f i g u r a t i on s : K
of m a t r i- a n d p a t r i - m oi e t i e s , o r a s t he
pr od u c t o f a n
a l t e r n a t i ng - g e ne r a t i on s t r u c t u r e w i t h e i t h e r a m a t r i - m oi e t y or a
pa t r i - m o i e t y s t r u c t u r e . A l l t h r e e c od i n g s h a v e h a d
t he i r p r o p o ne n t s s i n c e F i s o n a n d H ow i t t f i r s t p u b l i s h e d t h e i r Ka m i l a r o i a n d K u r n a i i n 1 8 8 0 . s e e Sc h e f f ler 1 9 7 8 : 4 3 Z -48 0 . ) F i n a l l y , i n p a s s i n g f r om t he
( F or a r e c e n t , d i s c u s s i on
' Lawre nce '
s t r u c t u r e t o t he
' K a r i e r a ' m od e l w e h a v e a r r i v e d w h e r e we s t a r t e d : w i t h k i n s h i p c h a r t 1 0 ( f i g u r e 1 . 1 ) a nd t he e a r l y L e i d e n p a r a d i g m . T h e f in a l d i ag r a m i n t h i s f u n d a me n t a l s c h e me i s o f c ou r s e t h e s t r u c t u r e M 4 x P 4 ' t h e
' c i r c u I a t i ng s y s te m
( pa t r i l i n e a l a nd m a t r i l i ne a l )' w i t h e x c l u s i v e m a t r i la t e r a l c r os s - c ou s i n m a r r i a g e . T h i s m od e l i s o b v i ou s ly c od e d a s a d ou b le - d e s c e n t s t r u c t u r e , a f or mu l a t i o n i n a c c or d a n c e w i t h t h e t he n p r e v a i l i n g L e i d e n v i e w . W i t h h i n d s i g h t , a n d w i t h t he r e s u l t s ob t a i ne d b y a p p l y i n g t he f or m a l a x i om a t i z a t i o n i n t r od u c e d i n t h i s c h a p t e r , t h e u n i q u e ne s s m a y n ow be
of t h i s c od i n g
q u e s t i on e d .
Le t P , A , G4 , K 4 , 84 , RA 4 a n d M d e n ot e , r e s pe c t i v e l y , 4 4 4
t he f ou r e le me n t q u ot i e n t s t r u c t u r e s x4 ' X 6 , X 7 , X 5 , X 9 , X and X of M x P 4 • ( T he s e a r e i n f a c t t h e on ly p os s i b l e ll 4 IO f ou r e le me n t r e g u l a r k i n s h i p s t r u c t u r e s . ) 4 6 T h e n one c a n e a s i l y p r ov e t h e e x i s t e n c e
of e x ac t l y e le v e n d i s t i n c t
d i r e c t p r od u c t r e p r e s e n t a t i ons i n a d d i t i on t o ( 1 ) M x P4 • 4 4 T h e s e a r e : ( 2 ) G4 x M4 ( 3 ) G 4 x P4 , ( ) G 4 x A 4 , ( 5 ) G x RA 4 ; i . e . , t he p r od u c t of a f ou r - g e ne r a t i o n s t r u c t u r e 4 ,
w i t h e i t he r a f ou r - m a t r i l i n e
or a f ou r - pa t r i l i ne s t r u c t u r e ,
69
w i t h L e v i - St r a u s s ' s e x o t i c
' or i g i n a l �l u r n g i n s t r u c t u r e ' ,
or w i t h i t s e qu a l l y e x o t i c
' re v e r se d ' v a r i a n t
(a
s tr uc ture
w i t h g e n e r a l i z e d e x c h a ng e a nd a n on - l i n e a l d e s c e n t r u le a l l oc a t i ng a w om a n ' s c h i l d r e n t o t h e c la s s of t h e i r
f a t he r ' s s i s te r ' s h u s b a n d ) ; t h e p r od u c t
( 6 ) M4 x A 4 ,
( 7 ) P4
of a f ou r - m a t r i l i ne s t r u c t u r e
pa t r i l i n e s t r uc t u r e w i t h t h e h y p o t h e t ic a l
s tructure
or i t s r e v e r s e ;
( 8 ) M4 x
(9)
84 ,
x
RA4 1 i . e ,
or a f ou r ' Mu r ng i n ' P4 x B4 ;
i,e , ,
t h e p r od u c t of f ou r - ma t r i l i n e or f ou r - p a t r i l i n e s t r u c t u r e s w i t h a f ou r - g e n e r a t i o n s t r u c t u r e w i t h d i r e c t e x c h a n g e ; a n d t he t h r e e e x o t i c p r od u c t s ( 1 2 ) A4
x
RA4 '
( 1 0 ) A 4 x 84 ,
( T h er e a r e n o d i re c t
( 1 1 ) R A 4 x 84 , a n d
p r od u c t s o f o r d e r t w o
w i t h or d e r e i g h t s t r u c t u r e s i s om or ph i c t o M4 x P4 ' ) T h e e l e v e n a d d i t i on a l r e pr e s e n t a t i o n s l i s t e d a b ove a r e f or ma l ly p os s i b le m od e l s , H ow e v e r , u nd e r t h e s t a n d a r d v i e w o n k i ns h i p , n ot a l l s u c h c od i ng s a r e
p l a u s i b le o r
i n t e r e s t i ng a l t e r n a t i v e s t o M 4 x P , N e v e r t h e le s s , i n t he 4 l i g h t of r e c e n t a n a ly s e s of N or t h M o l u c c a n s oc i e t i e s by a y ou n g e r g e n e r a t i o n of L e i d e n s c h o l a r s
( V i sser 1984 ,
P la t e n k a m p 1 9 8 8 ) , t h e p os s i b i l i t y of a l t e r n a t i v e d e c om p os i t i on s of
t h e c l a s s i c d ou b l e - d e s c e n t m od e l
r e pr e s e n t e d b y M 4 x P a s t h e p r od u c t of a f ou r - g e n e r a t i o n 4 s t r u c t u r e w i t h , s a y , a ma t r i - or pa t r i - d e sce n t s t r u c t ur e h a s s u d d e n l y b e c om e i n t e r e s t i n g , T h u s , P l a t e n k a m p , discussing
t h e T ob e l o a n d G a le l a c o n c e p t i o n s of i n c e s t ,
e x og a m y a n d
' t he s ev e r e n c e
of t h e
or i g i n ' i d e n t i f i e s t he
i d e a of a
' f ou r - g e n e r a t i on r u le ' a s a c e n t r a l s t r u c t u r a l
pr i n c i p le
( 1 9 8 8 : 2 25 - 23 5 ) , H e h a s
this t o say
a n t he
me t h od o l og i c a l p r ob le m of e x t e n d i n g t he c la s s i c k i n s h i p m od e l s t o n or t he r n H a l m a h e r a n s oc i e t i e s
( 19 8 8 : 25 7 ) :
T h i s f ou r f o ld d i v i s i on [of T ob e l o s oc i e t y ] i s n ot g e ne r a t e d b y a s y s t e m o f a s y mm e t r i c c on n u b i a l r e l a t i o ns b e t w e e n i d e o l og i c a l ly f o u r g r ou p s , a s i t h a s b e e n a n a l y s e d i n o t h e r p a r t s o f I n d one s i a ' " I t r e s u l t s f r om t he l i m i t a t i o n of t h e r e l a t l ,o n t o t h e ' or i g i n ' of ' li f e ' t o f ou r g e ne r a t i o n s , a n d f r om t he i d e a t h a t on l y i n a f i f t h d e s c e n d a n t g e ne r a t i o n ' l i f e ' c a n b e a l i e n a t e d f r om i t s ' ow n e r ' , I t s h ou ld b e e m p h a s i z e d t h a t t h e p r i n c i p le o f ' pe r i od i c a l e x t i n c t i o n of
70
e x og a m y a f t e r t h e f ou r t h d e s c e n d a n t g e ne r a t i o n , w h i c h i n we s te r n I nd one s i a c a n be i n t e g r a t e d w i t h mat r i la t e r a l c r os s - c ou s i n m a r r i a g e a nd d ou b le - u n i l i n e a 1 d e s c e n t i n t 0 one s t r u c t u r a 1 m od e 1 , i n n or t h e r n H a I m a h e r a i s a f u n c t i on of t h i s r u le of a l i e n a t i on , a nd n ot of t m O ma r r i a g e . I
•
•
•
•
T h e t r a d i t i on a l m od e l s
•
•
of I n d on e s i a n s oc i a l s t r u c t u r e
( i n c lu d i n g t h e i r f or m a l a n a l og u e s pr e s e n t e d h e r e ) a r e d e f i c i e n t a n d i n m a n y r e s pe c t s h i g h ly u nr e a li s t i c . P o s s i b le e x t e n s i on s a n d m od i f i c a t i on s c a n o n ly
be
f or m u l a t e d a n d t e s t e d a g a i n s t t h e b a c k g r ou nd o f f u r t h e r d e t a i l e d e t h n og r a ph i c a l m a t e r i a l . A s I s e e i t , f or m a l a x i om a t i z a t i o n s w i l l c on t i n u e t o p la y a k e y r o l e i n h i g h l i g h t i n g t h e s t r u c t u r a l c om p le x e s a n d r e la t i o n s ( or i n c on s i s te nc i e s ) a l l t o o e a s i ly n e g l e c t e d b y le s s r i g or ou s a
p pr
oa c h e s
.
I n t h e f o l l ow i n g c h a p t e r s a r e l a t e d s e r i e s of m or e s p e c i f i c e x t e ns i o n s t o t he c on v e n t i o n a l a n t h r o p o l og i c a l struc
k i nsh i p
ture s
is
In
d e v e l ope d .
e
ach
c ase
an
attempt
is m a d e t o p r ov i d e a n e x h a u s t i v e s pe C i f i c a t i o n o f t h e a s s oc i a t e d c la s s
of
p r o p e r k i n s h i p m od e l s .
APPE N D IX
K i n s h i p n o t a t i o n . K i n t y p e s a n d g e n e a l og i c a l r e l a t i o n s h i p s a r e c od e d b y m e a n s
of t he f o l l ow i n g s e t
of u p pe r c a s e
symb ols : M
m ot he r
F
f a t he r
P
pa r e n t
0
S
C
daughter
l
s on
B
b r ot h e r
Sb
s i b l i ng
ch i ld
C o n gr u e n c e s . T w o i n t e g e r s a a n d ( m o d u l o m Y w i t h r e s pe c t t o s om e i n t e g r a l mu l t i p le
W
wife
H
husband
Sp
s p ou s e .
b a r e c a l le d
c o n gr u e n t
s i s te r
in teger
of m . N ot a t i on :
a
=
b
m
if
( m od
(a - b )
m) .
An
i n t e g e r a i s s a i d t o be reduced modu l o m t o b i f a ( m od
m)
and 0 � b <
Iml .
A p os i t i v e i n t e g e r p i s
is a n
a
_
b
pr i me
71
i f p i s d i v i s i b le on ly b y 1 a n d
b a r e c o pr i me
p.
i f t h e i r g r e a t e s t c omm on
S e t s a n d r e l a t i o n s . T h e Ca r t e s i a n sets S an d
(5,
tl
A n y t w o i n t e g e r s a a nd
T c on s i s t s
d i v i s or i s u n i t y .
pr o d u c t 5
of a l l or d e r e d
x
T of
a n y tw o
pa i r s of e le me n t s
w i t h 5 i n 5 a n d t i n T . A b in�r y rel a t i on R i s a x
-s u b s e t of 5
T . I f R i s a b i n a r y r e l a t i on t he n t h e -l i nverse rela t i on R = f e b , a l l ( a , b l i n R) . A n e q u i va l en c e
r e l a t i o n R on
S i s a b i n a r y r e la t i on o n S ( i . e . , a s u b s e t
(1)
in
of 5 x 5 ) w h i c h i s r e f l e x i v e , s y m me t r i c , a n d t r a n s i t i v e : (a ,
t hen R,
a)
al
(b,
t hen
is
R f or a 1 1 a i n 5 ;
i s a ls o i n R ;
(a, c)
( 3 ) if
(2I
(a,
b)
if
(a ,
and
b)
(b,
in
is
R,
are in
cl
i n R . T h e c on g r u e n c e r e la t i o n :: on t h e
is
s e t o f i n t e g e r s i s a n e qu i v a l e n c e re la t i on . A b i n a r y r e l a t i on R i s a n t i s y mm e t r i c i f
(a,
b l i n R and ( b , a ) i n R
i m p ly a = b . A p a r t i t i o n P on t he s e t S i s a d e c o m p os i t i o n of S i n t
0
n o ne m p t y , d i s j oi n t s u b s e t s s u c h t h a t e v e r y
e le me n t of S b e l o n g s t o e x a c t ly
one s u b s e t , a nd S ma y b e
e x pr e s s e d a s t h e u ni on of s u b s e t s . I f R i s a n e qu i v a l e n c e r e l a t i on
d e f i n e t h e e q u i v a l e n c e c l a s s of a n e le me n t
on 5 ,
5 of S w i t h r e s pe c t t o R P
set
{ xR l x i n 5 }
is a
as
sR
=
{yl
(5,
y l in R) . Then
p a r t i t i o n o n 5 c a l le d t h e q u o t i e n t
o r f a c t or s e t o f 5
r e s pec t
with
t o R . N o t a t i on
:
P =
S I R . E a c h e q u i v a le n t c la s s xR i s a l s o c a l le d a b l o c k of
t h e p a r t i t i on P . C on v e r s e ly , i f P i s a p a r t i t i o n
on t h e
s e t S , t hen R
is
=
{ ( x , y l l x a n d y i n b l o c k B of p )
the
e q u i v a le n c e r e l a t i on on S g e n e r a t e d b y P . R i s c a l le d t h e c a n o n i c a l e q u i v a l e n c e r e l a t i on a s s oc i a t e d w i t h P . M a p p i n gs . A ma p p i n g f f r o m a s e t S i n t o a s e t
f: 5 (s,
+ T)
i s a s u b s e t of S
t l ) a nd
fo r ea ch
2
) are
in
x
T,
i .e .
(s)f t
in
=
( n ot a t i on :
a r e la t i on s u c h
f i f a n d o n ly i f
5 i n 5 t h e r e e x i s t s a n e le me n t
genera l , e le me n t
(5, t
T
t d e n ot e s t h e i ma g e o f
(5,
that
t l = t , and 2 t ) in f . In
5 under I , i . e . the
T t o w h i c h t he e le m e n t 5 i n 5 i s m a p pe d b y f .
T h e ma p p i n g f i s o n t o i f e v e r y
t
in
T is an
( 5 ) f f or a t
72 5
le a s t on e
i n S . T h e ma p pi n g f i s o n e - t o - o n e i f e a c h
e le m e n t o f 5 i s m a p pe d on t o o n e a n d on l y o ne e le me n t of T , L e . , i f t h e i nv e r s e r e la t i on f
f: S
+
with
g
by
T is
(slh
ont o and g:
+
T
U,
- l i s a ls o a m a p pi n g . I f
t h e n t h e c o m pos i t i o n of [
( t a k e n i n t h i s or d e r ) i s a m a p p i ng h : S + U d e f i n e d =
(s) (fg)
=
«
f or a l l 5 i n s . T h e t e r m
s lf l g
[ u n c t i o n w i l l s om e t i me s
b e u s e d a s a s y n on y m f or ma p pi n g .
A ny ma p p i n g f of 5 x 5 i n t o 5 i s c a l le d a b i n a r y o pe r a t i o n i n S . I n s t e a d of n ot a t i on 5 5
( ( 5 ' 5 » [ = 53 t h e mu l t i p l i c a t i v e 1 2 u s e d f or b i n a r y o p e r a t i on s . A
= 5 3 wi l l be
1 2 p e r m u t a t i o n p of
a set S i s a
f u n c t i on ) f r om S on t [ TJ p = { ( x l p l x i n
0
T}
one - t o- o n e m a p p i n g
( or
i t s e lf . 1 f T i s a s u b 5e t of S , t h e n
i s the image
of T u n d e r p .
Let R be a n
e q u i v a le n c e r e la t i on on S d e f i n i n g t h e p a r t i t i on P = s i R on S . a P if
pe r mu t a t i on p of S i s c o m p a t i b l e w i t h t h e pa r t i t i on
[ s R ] p i s a b l o c k of [sR ] p =
i .e . , i f Gr o u p s .
t h e p a r t i t i on P f or a I l s i n S I y l i n R}
({yl (s,
)p
under the b i n a ry ( xy ) z
G.
f er a l l x , y , a nd
( 4- ) E a c h e le me n t
x of
G has an
e a c h x a n d s om e x -
d e f i n i t i on g i v e n i n t h e t h a t xm
(1)
G f or a l l
x
I
z
i n G.
( 3 ) There
x e = x f or
G.
I 1 i n v e r s e . He n c e x x = x- x
in G.
( Se e a ls o t h e e q u i v a le n t
pr e v i ou s c h a pt e r . ) T h e or d e r of a n
of G i s t h e s m a l le s t p os i t i v e i n t e g e r m s u c h ( t he i d e n t i t y e le m e n t ) . T h e or d e r o f a g r ou p
e
( n ot a t i on :
I G I ) i s t h e n u m b e r o f d i s t i n c t e le me n t s of G . =
m a p p i n g 1jJ of G i n t o H s u c h t h a t
( x ) 1jJ ( y ) 1jJ f or
G.
x and
is an
a ll x in
A g r ou p i s c o m m u t a t i v e o r A b e l i a n i f x y y in
S.
The s e t i s c losed
o pe r a t i on . He n c e x y i s i n
i d e n t i t y e le me n t e s u c h t h a t e x
e le me n t
t in
( 2 l T h e b i n a r y o pe r a t i o n i s a s s o c i a t i v e . H e n c e
= x ( yz )
= e f or
s ome
A gr o u p G i s a s e t p r ov i d e d w i t h a b i n a r y o pe r a t i on
w h i c h h a s t he f o l l o w i n g p r o p e r t i e s : y in
= t R f or
A h o mo mo r p h i s m o f
yx f or
a l l x and
a g r ou p G i n t o a g r ou p H i s a
a n d y i n G . A n e n d o m o r p h i s m of
( x y ) 1jJ =
G i s a h om om or ph i s m of
i n t o G . G i s i s o m o r ph i c t o H ( n ot a t i on : G �
all x G
H ) i f a n d on ly
i f t h e r e is a on e - t o- on e h o m o m o r p h i s m o f G o n t o H . An
73
G i s a n i s om or ph i s m o f G on t o G .
a u t o m o r ph i s m of
u s u a l c om p os i t i on a u t om or ph i s ms gr o u p of
G.
of
If
of ma p p i n g s t he s e t A u t ( G )
Under the
of a l l
G f or m s a g r ou p c a l le d t h e a u t o mo r ph i sm
{p,
q,
•
•
•
•
r}
=
T is
a set
of
pe r mu t a t i on s
o n a s e t S , t h e n u nd e r t he n or ma l c om p o s i t i on of p e r m u t a t i ons
( i . e . , a b i na r y o p e r a t i on
of T g e n e r a t e t h e
i s t he s e t
of
on
pe r m u t a t i o n gr o u p ( S .
S ) t h e e le me n t s
G) . If
g e ne r a t or s , t he n ot a t i on G ( P .
q
{po
•
•
•
•
q.
r}
, r) will
T h e g r ou p g e n e r a t e d b y a s i n g le pe r mu t a t i on p m e) . G( p , p or d e r m i s t h e c y c l i c g r o u p C m
a ls o b e u se d . of
=
S u b gr o u ps a n d q u o t i e n t gr o u ps . A s u b gr o u p H of is a s u b s e t
of
o pe r a t i o n d e f i n i ng of t he f or m H g
a g r ou p G
G w h i c h i s i t s e l f a g r ou p u n d e r t h e b i n a r y
=
G . A r i gh t c o s e t o f H i n
{xix
hg and h in
G is a subse t g in
f or s ome
H}
A l e f t c o s e t of H i n G i s d e f i n e d a s g H = { x i x in H } f or s om e g i n G .
The se t
of H i n G c on s t i t u t e a
part i t i on o f H i n G ( see Baums lag
a n d C h a n d le r 1 9 6 8 : 1 0 9 f o r a
of r i g h t
( or
G.
gh a n d h
=
le f t ) " c os e t s
pr o of ) . A r i gh t
c os e t
p a r t i t i on .
of
transversal
G i s a c o m p l e t e sys t e m o f r e pr e se n t a t i v e s of
H in
the
I . e . , s e l e c t f r om e a c h r i g h t c os e t H g one
e le m e n t g ( t h e r e pr e s e n t a t i v e of Hg ) , w i t h e = e t he r e pr e s e n t a t i v e
of
=
He
H . T h e d e f i n i t i o n of a
lef t
t r a n s v e r s a l f o l l ow s b y a n a l og y . A s u b g r ou p H of normal o r i nvar i a n t i n Hg
=
gH f or a l l g i n G .
f or t he
G ( n o t a t i on : H
the
of a s u b g r ou p H of
g r ou p u n d e r t h e b i n a r y H( hg ) f or a l l h and �:
G to
n or m a l i n G ( s e e
h om om or p h i s m of
( Hh ) ( Hg )
g i n G . T h i s g r ou p i s c a l Ie d
The
( g ) W = Hg f or a l l g i n
G on t o G / H w i t h
(e)�
=
the n
of H in G f Of lll S a
o p e r a t i on d e f i n e d a s
gr o u p o r f a c t o r g r o u p G/ H .
G + GIH d e f i n e d a s
GI H .
on l y i f
a n d C h a n d le r 1 9 6 8 : 1 1 1 ) . I f H i s n or ma l i n G ,
p a r t i t i on c o n s t i t u t e d b y t h e c os e t s
quotient
G is
if and
A n e c e s s a r y a n d s u f f i c i e n t c on d i t i o n
le f t a nd r i g h t c os e t s
p r ov i d e t h e s a m e p a r t i t i on i s t h a t H i s Baums lag
G)
the
m a p p i ng G is a
H , the ide n t i ty
of
74 S ke t c h o f t h e pr o o f o f t h e o r e m 4 : X is
any
Le t H
�
G/H � K ,
G,
g in
xh w i t h xh a n d
f
i s a u n i q u e e x pr e s s i on of t h e f or m g =
there
G,
x in X and h in =
y k of
G it
Then ,
H.
F i r s t , f or a ny c os e t y H o f H i n yh f or s ome
h in
f or
any
8 in
G and
i s a u n i que
X and
2m w i t h z in x in X,
m
of
r e pre se nt a ti ve g
se t
g and
x .
1.
thi s
in X,
J
1.
J
.a 1. J x i .
write
x
1J with .
. •
, xj a . . f or
a
� , J
x i ' x] x
E v e r y e l e me n t where x . i s 1.
Xj
a
x.y
x
-1
W i t h ou t
j in G can
x
= xym
J
. .m , 1. J =
or
xy ( a
s ome e l e m e n t of
{x . l i 1.
(2)
h is
in
be
H'
l os s
in
in
as g
w r i t t e n u ni q u e ly Then
H. and
the
gf
thus
p r od u c t 1. .
=
1.
x .h
. k ) wi t h J _l hX k X X X i j j j
( 2 ) . An d s i n c e H i s a .
.
1. 0 ]
1
(x� hx .lk is in J J
a n e q u i v a le n t n ot a t i on ,
1
b y x a nd y .
a nd C h a nd l e r 1 9 6 8 : 2 3 2 - 2 3 3 . )
=
gf of a n y
(x h ) (x
y - h yk ) , w i t h h . k a n d
x ,y H determined
=
1. J i n f o r ma t i on ,
of
•
. .a . . < x -. l h x . k ) f r o m 1. J 1. , J J J
J
T h u s gf
Baums lag
in H.
G , x . hx . is
n or m a l i n
( xh ) ( yk )
=
i n X a n d h a n d k i n H . H e n c e gf =
= e e in K} .
( x . H ) ljJ ( x . H ) ljJ = i j . 1. J r e pr e s e n t a t i v e of t h e c os e t
of G can be wr i tt e n as
X .X . (x�Ihx .k) 1. J J J
H.
g
one -
the
b e u n a m b i g u ou s l y
n ot a t i o n , X
,x
in X an d
t w o e le me n t s xi a n d
i
H ont o K ,
( 1 ) i t f o l l ow s t h a t x . x .
T h e n f r om
a
of
( x . x .H ) lj.i = 1. J
w i t h i a n d j i n K . H e n ce t he x . x .H i s
ont o K i s a
G/H
=
X . De n ot e
i w i t h i i n K . N ot e t h a t x
=
Under
A ls o , f er x . a n d
of c os e t s
t h e c os e t g H c a n
( gH ) ljJ
e.
=
( eH } lj.i
since
t he of
a s xi i f
d e f i ne d
H.
gx b e l on g s t o s om e
H u n i q u e ly d e t e r m i n e d b y
(l) . , i . e . , gx = y a g .x g.x T h e n , s i n c e t h e i s om or p h i s m lj.i of ma p p i n g
in
G w i t h r e pr e s e n t a t i v e y . T h e r e f o r e g x
h by a
t o - one
g =
t w o e le m e n t s
m u s t b e s h ow n t h a t t he r e
e x p r e s s i o n o f t h e f or m gf =
x
and
a le f t t r a n s v e r s a l of H i n G a s d e f i ne d a b o v e . F or
m
gf in
H.
( Se e a l s o
and
75
N OT E S 1 2 3 4 5
6 7
8
9
10
11
F i r s t p u b l i s h e d i n 1 96 2 . My r e f e r e nc e s a r e t o t he s e c on d , e x p a n d e d v e r s i on of 1 9 7 0 . F or a c r i t i c a l d i s c u s s i on of t h e or e t i c a l r e c on s t r u c t i on i n a n t h r o p o l og y s e e B a r r e t t ( 1 9 8 4 ) . T h e i d e n t i f i c a t i on n u m b e r s a r e a r b i t r a r y c od i ng s a p p li e d r e c e n t ly . I a m i n d e b t e d t o M s . M a r g a v a n d e M u n t f or b r i n g i n g t h e s e c h a r t s t o m y n ot i c e . P e r s o n a l c om mu n i c a t i on . C h a r t n u m b e r 1 m a y e v e n h a v e b e e n t he or i g i n a l d r aw i n g p h ot og r a p h i c a l ly r e d u c e d i n V a n W ou d e n ' s t h e s i s ( 1 9 3 5 : 9 7 ) a n d i n t h e E n g l i s h t r a n s l a t i on ( 1 968 : 93 ) . A l t h ou g h t he r e a r e m a ny e x c e p t i on s t o t h e r u le , t h e ' s t a n d a r d ' L e i d e n n ot a t i o n a l s y s t e m e m p l oy e d n u m b e r s f or pa t r i l i n e s a n d c a p i t a l le t t e r s f or ma t r i l i n e s . J . P . B . de J o s s e l i n d e J on g w a s a p p Oi n t e d a s p a r t t i me p r of e s s or of G e n e r a l A n t h r o p o l og y a t L e i d e n U ni v e r s i t y i n 1 9 2 2 . H i s f i r s t i n a ug ur a l a d d r e s s , C u l t u ur t y p e n en C u l t u u r ph a s e s ( ' c u l t u r e t y pe s a n d c u l t u r e p h a s e s ' ) w a s a ls o d e l i v e r e d i n 1 9 2 2 . A ' f i e l d o f e t h n o l og i c a l s t u d y ' w a s d e f i n e d i n 1 9 3 5 a s a c e r t a i n a r e a of t h e e a r t h ' s s u r f a c e ' w i t h a p o pu l a t i o n w h os e c u l t u r e a p pe a r s t o b e s u f f i c i e n t l y h om og e n e ou s a nd u n i q u e t o f or m a s e pa r a t e o b j e c t of e t h n o l og i c a l s t u d y , a nd w h i c h a t t h e s a me t i me a p p a r e n t l y r e v e a ls s u f f i c i e n t l oc a l s h a d e s of d i f f e r e n c e s t o m a k e i n t e r na l c om pa r a t i v e r e s e a r c h w or t h w h i le ' ( 1 9 7 7 : 1 6 7 - 1 6 8 ) . S i n g le c u l t u r e s a r e t o b e c o ns i d e r e d a s v a r i a t i on s o n a c om m o n t he m e . F o r t h e I n d o n e s i a n ' f i e ld o f s t u d y ' , a s y s t e m m a d e u p o f f ou r f e a t u r e s ( a s y m me t r i c c on n u b i u m a nd d ou b le d e s c e n t , s oc i o - c os m i c d u a l i s m , a n d t h e s pe c i f i c ma n n e r i n w h i c h I nd on e s i a n i n d i g e n ou s c u l t u r e s r e a c t e d t o f or e i g n i n f l u e n c e s ) c o n s t i t u t e d t h e ' s t r u c t u r a l c or e ' ( 1 9 7 7 : 168-175 ) . M a n y of t he k e y t e x t s h a v e a p p e a r e d i n t h e Tr a n s l a t i o n S e r i e s of t h e K o n i n k l i j k I n s t i t u u t V a a l' Ta a l - , L a n d e n V o l k e n k u n d e . Se e i n p a r t i c u l a r t h e r e a d e r e d i t e d b y P . E . d e J o s se l i n d e J on g ( f i r s t p u b l i s he d i n 1977 ) . Cf . B a r n e s 1 9 8 5 , P . E . d e J os s e l i n d e J o n g 1 9 8 5 . T h e t e r m ' m od e l ' i s e m p l oy e d b y D u I' k h e i m a n d r� a u s s i n a n u m b e r of p l a c e s : ' T ou t e c la s s i f i c a t i on i m p l i q u e u n or d r e h i e r a r c h i q u e d o n t n 1 I e m o nd e s e n s i b le n i n ot r e c o n s c i e nc e n e n ou s offrent I e m od e l e ' ( 1 9 0 3 : 6 ) . Se e a l s o t h e u s e of t h e t e r m on p a g e 2 5 , 3 9 , 5 5 , 6 7 of t h e 1 9 0 3 a r t i c l e . T h i s ob s e r v a t i on c or r e c t s a s t a t e me n t m a d e pr e v i ou s l y ( T j on S i e F a t 1 9 8 8 : 2 3 9 , n ot e 4 ) . I t r e m a i n s i n t e r e s t i n g t o n ot e ( C h a o 1 9 6 2 : 5 5 9 ) t h a t t h e e a r l i e s t u s e of t h e t e r m ' m od e l ' i n l i n g u i s t i c s o n l y d a t e s t o t h e 1940s .
76
12 13 14
F r ie d e r i c y ' s t he s i s w a s a ls o pub li s h e d i n t h e B i j dr a g e n ( 1 9 3 3 , v o l u me 9 0 : 4 4 7 - 6 0 2 ) . T h e f i r s t F r e nc h e d i t i on w a s p u b l i s h e d i n 1 9 4 9 . U n le s s o t h e r w i s e s t a te d , I s h a l l c i t e t h e 1 9 7 0 E ng l i s h e d i t i o n .
S e e a ls o t h e d i s c u s s i on b y P . E . d e J os s e l i n d e J on g ( 1 9 8 0 : 2 2 2 - 2 2 7 ) i n t h e s u p p le m e n t a r y c h a p t e r t o h i s t h e s i s of 1 9 5 1 I n t h e i r r e c e n t ( 1 9 8 9 ) d i s c u s s i o n o f t h e d e v e l 0 p m e n t of c u l t u r a l a n t h r o p o l og y a t L e i d e n U n i v e r s i t y , P . E . d e J os s e l i n d e J o n g a nd H . F . V e r me u le n a p p ly t h e t e r m ' p os s i b i l i s t i c ' t o t h e c la s s o f m od e ls d e v e l o p e d b y t h e e a r ly Le i d e n a nt h r o p o l og i s t s . N ot a l l of t h e t h e s e s p r e p a r e d i n t he 1 9 3 0 s w e r e o f c ou r s e d e v ot e d t o t h e s t u d y of k i n s h i p . S e e t h e r e c e n t h i s t or i c a l o v e r v i e w b y L oc h e r ( 1 9 8 8 ) . I a m i n d e b t e d t o P r of e s s or L oc h e r f or pr ov i d i n g me w i t h a c o py of t h e le t t e r w r i t t e n b y J . P . B . d e J o s s e l i n d e J o n g ( 3 0 A u g u s t 1 9 3 0 ) w i t h s u g g e s t i o n s on h i s ( L oc h e r ' s ) d i s s e r t a t i on r e s e a r c h o n Au s t r a l i a n k i ns h i p . U n le s s o t h e r w i s e s t a t e d I s h a l l r e f e r t o t h e t h i r d ( 1 9 8 0 ) e d i t i on of h i s t h e s i s . N i c o l a s B ou r b a k i , f or me r ly of t h e R oy a l P o l d a v i a n A c a d e my a n d c u r r e nt ly on t h e f a c u I t y of t h e U n i v e r s i t y of �� a nc a g o . T he c o l le c t i v e p s e u d on y m f o r a g r ou p o f ( la r g e ly ) F r e nc h m a t h e m a t i c i a n s ( A nd r e W e i l , He n r i C a r t a n , Je a n D i e u d on n e , Je a n D e I s a r t e a n d o t h e r s ) w h 0 i n 1 9 3 4 s e t ou t t o a x i om a t i z e m a t h e ma t i c s . T h e n a m e i s t a k e n f r om a n ob s c u r e F r e n c h g e n e r a l , C h a r le s De n i s S a u t e r B ou r b a k i ( 1 8 1 6 - 1 8 9 7 ) w h o , a f t e r a n e m b a r r a s s i n g r e t r e a t , t r i e d t o s h o o t h i ms e I f i n t he h e a d , b u t m i s s e d . H e h a d p r e v i ou s ly b e e n of f e r e d t h e G r e e k t h r on e . F or f u r t h e r d e t a i l s s e e R e g i s ( 1 9 8 7 : 7 6 - 7 9 ) , D i e u d on n e ( 1 9 7 0 ) , a n d K r a me r ( 1 9 8 2 : 7 0 0 - 7 0 2 ) . F or r e m a r k s on t h e u s e of t h e c o n c e p t of ' s t r u c t u r e ' i n m a t he m a t i c s , s e e t h e d is c u s s i o n i n B a s t i de ( 1 96 2 : 1 3 9 - 1 4 1 ) . P i a g e t ( 1 9 6 8 ) i s o b v i ou s l y i n f lu e n c e d b y t h e B ou r b a k i . F or a c r i t i qu e o f h i s u s e of m a t h e ma t i c a l c o nc e pt s , s e e Se l t ma n a n d S e l t ma n ( 1 9 8 5 ) . G r a ng e r me n t i o n s t h e w or k o f M a r t i a l G u e r ou l t , V i c t or G o ld s c h mi d t , G i n e t t e D r e y f u s a n d J u l e s V u i l l e m i n . I . e . , t h e e le me n t s of a ny s u c h s y s t e m , a t t h e l e v e l of pr op os i t i o n s or c on c e p t s , a r e t h e ms e lv e s a lw a y s ' o pe n ' a nd o n ly p a r t i a l ly d e t e r m i n e d b y t h e i r r e c i p r oc a l r e l a t i o n s . R e c e i v e d V i e w : t h e t e r m i n t r od u c e d b y H i l a r y Pu t na m •
15
16
17
18 19
20 21
22
( 1962 ) . 23
24 25 26
A r g u a b ly t h e b e s t d i s c u s s i on i s p r ov i d e d i n S u p pe ( 1 9 7 7 ; t h e s e c o n d e d i t i o n w i t h a n e x t e n d e d A f t e r w or d ) . S e e S u p pe ( 1 9 7 7 ) , C h a p t e r 5 a n d t h e A f t e r w or d . S e e L e p l i n ( 1 9 8 4 ) . S ne e d ( 1 9 8 3 ) d i s c u s s e s t h e r e l a t i o n s b e t w e e n s t r u c t ur a li s m a nd s c i e n t i f i c r e a li s m . K e y t e x t s a r e S ne e d ( 1 9 7 9 ; f i r s t e d i t i on , 1 9 7 1 ) , S t e g m u l le r ( 1 9 7 6 , 1 9 7 9 ) , F e y e r a b e n d ( 1 9 7 7 ) , K u h n ( 1 9 7 6 ) , B a lz e r a n d S ne e d ( 1 9 7 7 , 1 9 7 8 ) , N i i n i l u ot o ( 1 9 8 4 ) , a n d
77
27 28
29
B a lz e r , M ou l i n e s , i1 n d S n e e d ( 1 9 8 7 ) . F or a s u mm a r y of t h e b a s i c ma t h e ma t i c a l c on c e p t s , s e e t h e a p pe nd i x t o t h i s c h a pt e r . A s S n e e d r e ma r k s , pa r t i c u la r g r ou ps m a y h av e a s e t G c om p os e d of p h y s i c a 1 o b j e c t s l i k e b i t s o f c la y , or of n on - ph y s i c a l o b j e c t s l i ke r ot a t i on s ( 1 9 7 9 : 1 0 ) . Se e B a l z e r e t a l. ( 1 9 8 7 : 1 - 3 5 ) f or a t e c h n i c a l d i s c u s s i on of t h e d i s t i n c t i on b e t w e e n M a n d M R ou g h l y , i n d e v e l o pe d t h e or i e s t h e f u nd a me n t a l l a w g e x p re s s n o n t r i v i a l c on ne c t i on s b e t w e e n t h e n o n - b a s e t e r ms . L a w s a r e f or mu l a s w h i c h a r e n e i t h e r t y p i f i c a t i o n s n or c h a l' a c t e l' i z a t i on s ( 1 9 8 7 : 1 4 ) . T h i s i s t h e p os i t i on s e t ou t b y N u t i n i i n h i s c r i t i qu e of a n t h r o p o l og i c a l s t r u c t u r a li s m . S e e N u t i n i ( 1 9 6 8 , •
30
1970 ) . 31
32
33
34
35
36
F or a t e c h n i c a l d i s c u s s i o n , s e e B a l z e r ( 1 9 8 3 ) . S om e of B a l z e r ' s f o r m a l d e f i ni t i on s a r e r e p r od u c e d i n T j on S i e F a t ( 1 9 8 8 ) . ' R a m s e y s e n t e nc e s ' ( s e e S t e g m u l le r ( 1 9 7 6 ) a n d S i m on a n d G r oe n ( 1 9 7 7 » a r e s pe c i a l c a s e s of t h e e m p i r i c a l c l a i m s i n t r od u c e d by B a l z e r . A t t h e le v e l of t h e f or ma l m od e l , ' ma r r i a g e c la s s e s ' a r e c od i f i e d i n t e r m s of a d ou b le i nd e x w h i c h u s u a l l y d e n ot.e s t h e i n t e r s e c t i on of a s y s t e m of ma t r i li ne s w i t h a s y s t e m of p a t r i l i n e s . S e e f i g u r e 1 . 1 . H o w e v e r , a d ou b le i n d e x c o d i n g m a y a ls o i n d i c a t e t h e i n t e r s e c t i on o f o t h e r , n on - u n i li n e a l t y pe s o f k i n s h i p s t r u c t u r e . E x a m p le s a r e d i s c u s s e d b e l ow . L e v i - S t r a u s s ( 1 9 7 0 : 4 9 6 ) , i h t h e f i n a l pa r a g r a p h s o f h i s b o ok , d oe s i n d e e d me n t i on t h e p a ra d o x o f w om e n ' a t on c e a s i g n a n d a v a l u e ' i n c o mmu n i c a t i on . H owe v e r , h i s f oc u s t h r ou g h ou t i s c le a r l y on ' a u n i v e r s a l f a c t , t h a t t h e re la t i on s h i p o f re c i p r oc i t y w h i c h i s t h e b a s i s o f ma r r i a g e i s n o t e s t a b l i s h e d b e t w e e n m e n a n d w ome n , b u t b e t w e e n me n b y me a n s o f w ome n , w h o a r e me re l y t he oc c a s i o n of t h i s re la t i on s h i p ' ( 1 9 7 0 : 1 1 6 ) . F o r a c l a s s i c d e s c r i p t i o n o f t h e e x c h a ng e v a l u e o f s pe c i f i c t y p e s o f g i f t s i n I n d on e s i a s e e O n v l e e ( 1 9 4 9 ) . T h e v i t a l i m p o r t a n ce o f r e c og n i z i ng s pe c i f i c ' i ma g e s ' of w ome n i n m a r r i a g e t r a ns a c t i on s h a s , s i n c e 1 9 5 2 , b e e n s t r e s s e d b y m a n y ot h e r r e s e a r c h e r s . Se e K o l e n d a ( 1 9 8 4 ) a n d P o s t e l - C o s t e r ( 1 9 8 5 ) . C u r i ou s ly , P os t e l C o s t e r d oe s n ot r e f e r t o J . P . B . d e J o s s e l i n d e 3 0 n g ' s e a r l y c r i t i qu e o f L e v i - S t r a u s s . L e v i - S t r a u s s ( p e r s on a l 8 0m m u n i c a t i o n , A p r i l 1 8 , 1 9 8 9 ) h a s k i n d l y p r o v i d e d t h e f o l l ow i n g c o m me n t s o n a n e a r l y d r a f t o f t h i s c h a p t e r :. ' I a g r e e t h a t m y b a s i c p o i n t o f d i s a g r e e m e n t w i t h t h e Le l d e n s c h oo l ( t o w h i c h l o w e s o m u c h ) i s a r e l u c t a n c e t o a d m i t d o u b l e d e sc e n t a s a n e x p l a n a t o r y m o d e l w h e n a n d w h e r e i t c a n n o t b e s h ow n t o e x i s t . O n t h e o t h e r h a n d i t i s n o t qu i te c or re c t t o w r i t e a s y o u d o . . . t h a t a c c or d i n g t o m e " a s ymme t r i c m a r r i a ge a l w a y s p r e s u p p o s e s a u n i l i n e a l m o d e o f d e s c e n t " . O n t h e c on t r a r y I h a ve em p h a s i ze d i n L e s St r u c t ures
78
37
38
t h a t "I e m a r i ag e d e s c ou s i n s c r oi s e s n e r e q u i e r t p o u r s on e x i s t e n ce a uc un e t h e o r i e un i l i n e a i re d e l a f i l i a t i on " ( p . 5 06 o f t h e 1 9 6 7 e d i t i on . S e e a l s o p . 1 3 9 , 1 5 4 ; An t h r o p o l o g i e s t r u c t ur a l e , p . 5 0 ; A n t h ropol ogie s t r u c t urale de ux . p . 1 2 6 ; L e Regard e l o i gn e , p . 9 0 , 1 3 3 - 1 3 6 ) . I t m a y s om e t i me s b e h e l p f u l t o e m pl o y u ni l i ne a l f i l i a t i o n a s a g r a ph i c c on v e n t i on w h i c h s i m pl i f i e s t h e d i a g r a m s . H ow e ve r I al w ay s t r i e d t o t h i n k i n t e r m s o f r e l a t i on s , n o t o f c l a s s e s e i t h e r un i l i ne a l l y o r b i l i ne a l l y d e t e rm i ne d . ' T h e q u e s t i on o f d ou b l e - u ni l i n e a l o r n o n - u ni l i ne a l c od i n g s o f e x c h a n g e u n i t s or ' c l a s s e s ' i s d i s c us s e d b r i e f l y i n t h e f i na l s e c t i o n o f t h i s c h a p t e r . F or i m p or t a n t d e v e l o pm e n t s of t h e c l a s s i c Le i d e n v i e w a f t e r 1 9 5 2 , s e e V a n W oud e n ( 1 9 7 7 ) a nd P . E . d e J os s e l i n d e J on g ( 1 9 7 7 ) , f i r s t p u b l i s h e d i n t h e s pe c i a l i s s ue o f t h e B i jdr a g e n s e r v i n g a s a Fes t s c h r i f t f or J . P . B . d e J os s e l i n d e J on g o n h i s r e t i r e me n t i n 1 9 5 6 . S e e a l s o P . E . d e J os s e l i n d e J on g ( 1 9 8 5 ) . Se e L e v i - S t r a us s ( 1 9 7 0 : 4 6 4 - 4 6 5 ) a n d J . P . B . d e J os s e l i n d e J o ng ( 1 9 5 2 : 2 9 ) As r e a l i z e d i n a c t u al k i n s h i p s y s t e ms , a r u l e o f e x cl us i ve pa t r i l a t e r a l c r os s - c o u s i n m a r r i a ge ma y i n d e e d e x h i b i t c e r t a i n d i s a d v a n t a g e s i n f u nc t i o ni ng a s a n a l l - e m b r a c i ng , ' t ot a l ' e x c h a n g e s y s te m f or t h e o r d e r i ng o f a f f i n a l r e l a t i on s b e t w e e n s oc i a l g r o u ps o r c a te g or i e s , a p o i n t r e c o g n i z e d l o n g a g o b y V a n W ou d e n i n h i s 1 9 3 5 d i s s e r t a t i on ( 1 9 6 8 : 9 0 ) a n d a c k n ow 1 e d g e d b y J . P B . d e J os 5 e l i n d e J o n g ( 1 9 5 2 : 4 9 ) H ow e v e r , a t t h e l e v e l of t h e s t r uc t ur a l m od e l ' l on g c yc l e s ' a r e e s s e n t i a l c h a r a c t e r i s t i c s o f t h e s t r u c t u re o f r e l a t i o n s . L e v i - S t r a us s ' 5 r e f e r e n c e t o ' o p t i c a l i l l us i o ns ' o r ' d e l u s i o n s ' i n s u c h k i n s h i p d i a g r a m s i s t h e r e f or e n ot c or r e c t ( l 9 7 0 : x x x i v ) : i f a f a i l u r e t o c l o s e e ve n t h e s h or t e s t c y c l e i s s e e n a s t h e ma r k o f a pa t r i l a t e r a l s y s te m ( l9 7 0 : x x x i v-x x x v ) , t h i s f e a t u r e c a n o n l y r e f e r t o t h e pa r t i a l r e a l i z at i o n o f c e r t a i n as pe c t s o f t h e f ul l m od e l i n s pe c i f i c e m p i r i c a l s y s t e m s of e x c h a n ge . T h e d i a g r a m i s p a r t of t h e m od e l ; b ot h a r e d i s t i n c t f r om e m pi r i c a l r e a l i t y . H e r e ag a i n L e v i - S t r a u s s ' s p e r s pe c t i v e o n p a t r i l a t e r a l m od e l s a p pe a r s t o b e l e s s s t r u c t u r a l t h a n t h a t o f h i s Le i d e n p r e d e c e s s or s . S e e P . E . d e J os s e l i n d e J o n g ( 1 9 7 7 ) . A pa r t f r om t h e w or k o f O ur k h e i m a nd M a us s , t h e i n f l u e n c e of R a d c l i f f e - B r ow n is i m p or t a n t . See a l s o P . E . d e J os s e l i n d e J on g ( 1 9 8 4 ) , L oc h e r ( 1 9 8 8 ) , a nd P . E . d e J os s e l i n d e J on g a n d V e r me ul e n ( 1 9 8 9 ) . A r g u ab l y t h e m os t f u n d a m e n t a l d i f f e r e nc e b e t w e e n t h e Le i d e n a n d L e v i - S t r a us s i a n a p p r oa c h e s i s n o t e x a m i n e d i n t h e 1 9 5 2 e s s a y : t h e f oc us o n r e g i o n a l c om pa r i s on a n d t h e s y s t e ma t i c a n a l y s i s o f l oc a l v a r i a t i o n s ( ve r s u s t h e e m p h a s i s o n u n i ve r s a l g e ne r a t i ve p r i nc i pl e s ) a s a me a n s of a r t i c ul a t i n g t h e or y a nd e m pi r i c a l r e s e a r c h . .
39
•
40
•
79
4- 1
42
43
44 45
46
T h e l i t e r a t u r e o n a l g e b r a i c k i n s h i p m od e l s a l o n e i s f a i rl y e x t e n s i ve . S e e C o u r r e g e ( 1 9 6 5 , 1 9 7 4 ) , Wh i te ( 1 9 6 3 ) , L o r r a i n ( 1 9 7 5 ) , B oy d ( 1 9 6 9 , 1 9 7 1 , 1 9 7 2 ) , J or i o n a n d D e Me u r ( 1 9 8 0 ) , D e Me u r ( 1 9 8 6 ) , R e ad ( 1 9 8 4 ) , B a l l on of f ( 1 9 7 4- a ) , T j on S i e F a t ( 1 9 8 1 , 1 9 8 3 a ) , L i u ( 1 9 8 6 ) a n d L uc i c h ( 1 9 8 7 ) f or a r e l e v a n t c r os s s e c t i on. B oy d ' s w or k , l i n k i n g t h e c l a s s i c pe r m u ta t i o n m od e l s w i t h c od i n g t h e or y , c om p o n e n t i a l a n a l y s i s a n d t h e m a t h e ma t i c s o f i n ve r s e s e m i g r o u p s , h a s un f o r t u n a t e l y b e e n n e gl e c t e d b y a n t h r o p o1 og i s t s . D u y v e nd a k ( 1 9 2 6 : 1 2 7 ) : P ; � r i e d e r i c y ( 1 9 3 3 : 1 4 1 - 1 4 3 ) : 4 M 2 , P Z ' M , P 3 ( s e e al s o f l g . 1 . 2 , t o p ) ; H e l d ( 1 9 3 5 : 3 5 4 - 5 9 , 6 3 , 9 5 ) : P , P 3 , P4 ( s e e a l s o f i g . 1 . 2 , m i d d l e 2 d i a g r a m ) ; V a n IV o u d e n ( 1 9 6 8 : 9 1 ) , a n d P . E . d e J os s e l i n d e J on g ' s 1 9 5 1 d i s s e r t a t i o n ( 1 9 8 0 : 3 7 - 3 9 , 1 8 5 - 1 8 6 ) . See Law r e nce ( 1 93 7 ) . F o r a n o t h e r c l e a r e x a m pl e , s e e C h a r t A i n J . P . B . d e J os s e l i n d e J o n g ' s 1 9 5 2 e s s a y . H e r e c od i n g s o f m a n y d i s t i n c t p a r t i t i o ns a r e s u pe r i m p o s e d o n a g e n e a l o g i c a l g r i d r e p r e s e n t i n g e x c l u s i ve M B D - m a r r i a g e a n d t h e al l oc a t i on o f k i n t e r m s . T h e r e a r e e x a c t l y s e v e n s u c h f o u r -e l e me n t s t r u c t u r e s , n o t s i x ( a s c l a i m e d b y K e me n y e t al . ( 1 9 6 6 : 4 3 2 ) a n d Wh i t e ( 1 9 6 3 : 8 2 » . A l l s e v e n a r e as s oc i a t e d w i t h a c om m u t a t i ve g r o u p a nd h e n c e a r e c om p a t i b l e w i t h M B D - m a r r i a ge .
80
81
2.
RECUR S I V E D E F I N I T IONS : MORE COMP L E X FORMULAE OF G E N E R A L I Z E D E X C HA N G E l
T h e fu n d a m e n t a l p ro p o s i t i o n d e v e l o p e d b y Lev i -S t ra u s s i n h i s f i r s t ma j o r t h e o r e t i c a l w o r k , L es S t r uc tures
� l �m e n t a i r e s d e l a p a r e n t � ( 1 9 7 0 ) 2 , i s t h a t o f t h e l i m i t ed range o f p o s s i b l e s o c i a l s t ru c t u r e s ( p . 4 9 3 ) : We h a v e t h u s e s t a b l i s hed t h a t s u pe r f i c i a l l y comp l i ca t ed and a r b i t ra r y r u l e s may b e r�duced t o a sma l l numb e r . There a re o n l y th ree possible e lemen t a r y k i n s h i p s t r u c t u r e s ; t h e s e t h r e e s t ru c t u r e s a r e c o n s t r u c t ed b y m e a n s o f t w o f o r m s o f e x c h a n g e ; a n d t h e s e t w o f o rm s o f e x c ha n g e t h ems e l v e s d e p e n d u p o n a s i n g l e d i f f e r e n t i a l c h a r a c t e r i s t i c , n am e l y t h e h a rmon i c o r d i s h a rmon i c character of the regime consi dered . T h e d om i n a n t t h e m e o f t h e b o o k i s e x c h a n g e , and genera l i z ed ,
r e s t r i c ted
and the r u l e s of p r e f e r e n t i a l m a r r i a g e
w i t h a certa in type o f relat ive which define elementary k in s h i p s t ructures are i nterpreted as a function o f t h e s e t w o s i m p l e e x c h a n g e f o rmu l a e . 3 Le v i - S t ra u s s ' s a im o f a g e n e r a l t h e o r y o f k i n s h i p a n d ma r r i a g e ( to w h i c h L e s S tr u c t ur e s w a s to h a v e p r o v i d ed only the i n t roduct i on )
h a s yet to be rea l i zed . A
compa n i o n vo lume o n com p l e x s t r u c t u r e s ( i . e . , which ,
as far as ma r r i age is concerned ,
s y s t ems
are based on
r u l es o r preferences not d i rectly expressed in terms of k i n sh i p ) w a s never w r i t t e n .
In Le v i -Strauss ' s o p i n i o n ,
a n y s o l u t i on t o t h e p rob lems t h a t a r i s e i n a t t em p t i n g t o e x t e n d h i s t he o r y o f mar r i a g e a s e x c h a n g e t o com p l e x s t r u c t u r e s o r e v e n to t h e s o - c a l l e d C r ow - Oma ha s y s t e m s m u s t a w a i t t h e d e v e l o p me n t o f s u i t a b l e m a t h e m a t i c a l t e c h n i q u e s ( 1 966 : 1 8 - 2 1 ;
1970 : xx x v i - x l i i ) . Hence t h e o n l y
v i a b l e o p t i o n cu r r e n t l y a v a i l a b l e i s t he u s e o f compu t e r methods and statistical analyses to tease out any
82
r e g u la r i t i e s
o f t h e e s s e n t i a l ly
I n my
p r ob a b i l i s t i c s t r u c t u r e
( 1 96 6 : 1 6 , 2 0 - 2 1 ;
o f e x c h a n ge e v e n t s
o p i n i on , L e v i - S t r a u s s
1 9 7 0 : x l -x li i ) .
i s b e i n g u nd u ly
pe s s i m i s t i c . N on - s t a t i s t i c a l m od e l s a n a ly s i s
of e l e me n t a r y This
i s a n i s s ue
a n t h r op o l og i c a l l y any
s h ou l d
i ndeed be
T h i s cha pter
of a f a m I l y
of
based
s t r u c t ur e s .
o r n ot
of k i n s h i p a nd m a r r i a g e
on e x c h a n g e
( i n a ll
i t s f orms ) .
t h e f or m a l d e r I v a t i on
incl ude
a s s pe c I a l c a s e s
s t r u c t u r e s w i t h u n i l a t e r a l c r os s - c ou s i n making
a few
pr e s e n t e d b y Then
pr e l i m i n a r y
hybrid
f or m u l a t e a n e x t e n d e d m od e l e x i s t in g
( and
qu e s t i o n o f w h e t h e r
s y s t e ms
i s c on c e r n e d w i t h
m ar r i a g e . Af t e r pr ob l e m s
of
to
s y s t e m s a r e a lr e a d y
s e pa r a t e f r o m t h e
s u c h m od e l s t h a t
the el ementary the
i m p or t a n t
ge ne r a l t h e or y
f or e x t e n d i n g t h e
ou t w a r d s
t h e C r ow - O m a h a
p os s i b l y t o i n c l u d e ) a v a i l a b le .
structures
ob s e r v a t i on s
s t r u c t ur e s ,
on
I shal l
of g e n e r a l i z e d e x c h a n g e
I s h a l l c o m b i n e t h e m od e l w i t h a n
m a t h e m a t i c a l m od e l
of e l e me n t a r y k i n s h i p
s t r uc t u r e s t o d e r i v e a f ur ther
s er i e s
of
k i n s h i p m od e l s .
H Y BR I D S T R U C T U R E S A N D A L T E R N A T I V E M A R R I AG E S T h e e l e m e n t a r y / c o m p l e x d i s t i n c t i on a n d c a n n ot be system . f r om t h e
Al l
i s a heur i s t ic dev ice
t h e s ol e c r i t e r i on f or
s y s t e m s c on t a i n a n
incest
pr oh i b i t i on s ,
de f in ing
' e l e m e n t ar y '
a kinshi p
c or e d e r I v e d
wh i le even i n the
s t r i c te s t e l emen t a r y s t r u c t ur e t h e
p os i t i v e m ar r i a g e
r u l e s a l l ow s o me f r e e d om
( L ev i - S t r a u s s
1970 : x x i i i -xxiv ) . xxiv )
the e x i s tence
ec onomic
c h oi c e
of
' c e r t a i n h y b r i d f or m s ,
1966 : 18 ; ( 1 970 :
where
p r i v i l e g e s a l l ow a s e c o n d a r y c h o i c e w i t h i n a
p r e s c r i b e d c a t e g or y
(marr iage
ma r r i a g e by e x c h an g e ) , p r e f er e n t i a l
The G i l yak are d iv ided or
by
or w h e r e
pu r c h a s e c om b I n e d w i t h t h e r e a r e sev er a l
s ol u t i on s . '
The G ilyak system is l ineages
of
L ev i - S t r a u s s a l s o a c k n ow l e d g e s
clans .
on e s u c h h y b r i d k i n s h i p s t r u c t u r e . i n t o p a t r i l i n e a l e x og a m ou s
I n Lev i - S t r a u s s ' s
an a l y s i s t h e
_. j
83
.-
-
II
III
-
-
IV
. . .-
V
.
2.1.
F ig .
A l tern a t i v e
g en e r a l i z e d e x c h ang e . t r i an g I e .
L ines I V
and
m a r r i ag e Eg o
' d i st ant fathe r s - in - l a w '
pre f e rr e d m arriage
fr om t h e i r their
i m gi
. ...
w i thin a sys t e m of
is r e pr e sent e d
by
and
l in e s V
and
' d i stant sons-in - l aw ' .
i s w i th mal e e g o's matr i l ateral obta in women
( ' fath e r s - in - l aw ' ) and g i v e w om en to
( ' s ons - in - l aw' ) .
E a c h w if e - g i v e r is in a
sub or d inate pos i ti on r e l a t i v e
t o hi s w ife - t a k er.
a x m a l k ! i m g i r e l at i on is e x t en d e d the w ife -g i v e r s
d ar k
I are h i s
M e m bers of mal e e go 's f am i l y
axm a l k
the
I I ar e h i s 'c I ose f athe r s - in
l aw ' an d 'c l os e son s-in - l aw ' ;
cross - c ousin.
-.
n
The
to the w if e -gi v er s of
and the w if e - t a k ers of the wife - t a k e r s ,
so that e a c h f ami l y
or c l an i s l in k e d to a t l e a s t f o u r
others i n an a sym m e tr i c sy ste m of e x c hang e .
The r e i s
a l so a c onv ention whi c h pl ac e s a tw o -gener ati on l i m i t on th e
asy m m e tr i c al r u l e
of e x og am y :
the
e x ch an g e c y cl e m ay b e r e v e r s e d o r d i sc ontinue d
( L e v i - Stra uss 1 9 7 0 : 2 9 2 - 9 6 ,
aft e r tw o genera t i o n s
303 ) .
The G i l y a k sy s t e m als o a l l ow s an al te r n a t i v e f or m , ' marr i age
by
p ur c hase ', base d
on a c om p l e x sy st e m
prestati ons and c o un t er - pr e s t a t i ons . e x tr e m e l y high , s o t h at the the rul e
p o or are o b l ige d
of cr ass - c o u sin m arriage .
H ow e v er ,
t o f o l l ow ' m ar r i a g e
pu r chase ' i s al w ay s a func t i on of the
k i n - ty pe
r ul e .
an o l d
It inv ol v e s the
partn e r shi p ,
r enun c i a t i on of
creating a t
of
Br i d e - pr i c e is
t h e same t i me
al l i anc e
a new cycle
f a mi l i e s l inke d by the e x t e n d e d a x m a l k / i m g i
by
m a r ri ag e
of
r e l a t i ons
84 (f ig .
M o r e ov e r ,
2.1).
the new
be
3 0 3 - 6 ) . Hence ,
paid
oc c u r r e d i n
(
L ev i - S t r a u s s 1 9 7 0 : of
t h e G i l y a k e x c h ang e
W h a t m a r r i a g e s a r e p os s i b l e or a n y p O i n t by t h e m a r r i a g e s
preced
i n g g e n e r a t i on s .
t o t w o g e n e r a t i on s '
l im i t ed
of
' r ul e
G iven a
( L ev i - S t r a u s s
g r ou p s
( f amil ies ,
t h e e me r g e n c e of a p e r i od i c s t r u c t u r e
c l an s ) ,
of a cer tain
of
de termined a t
1 9 7 0 : 2 9 6 ) a n d a f in i te n u m b er l in e ag e s ,
b r ot h e r s
c r e a t ing y e t an other
c on s t i t u t e a n i n v a r i a n t s e r i e s of a l l i a n c e s
is
e x og a my
owe d t o
i n c on t r a s t w i t h t h e b a s i c m od e l
b e t w e e n d e s c e n t g r ou p s . tha t have
( m ot h e r ' s
in w om e n ,
c r o s s - c ou s i n m a r r i a g e ,
d o n ot
pr oh i b i t e d
of
t h e b r i d e - pr i c e
o f a s y mm e t r i c e x c h a n g e
cycle
m a t r i l a t e r al cy c l e s
of
' d i s tan t f ather s-in - l a w '
the br i d e ) may l in ked
par t
t y p e af ter
a f e w g e n e r a t i on s m i g h t b e
e x pec t e d . A n o t h e r h y b r i d s tr uc t u r e
is the
I a t mu l
c on c e p t s d e v e l o p e d de scr i b e s t he
i n L es S t r u c t u r e s ,
I a t mu l
K or n
sy s t e m as a c l osed
I n an
sys tem .
a t t a c k o n t h e c on s i s t e n c y a n d a p p l i c a b i l i t y
of
the
( 1971 )
' a s y m me t r i c
p r e s c r i p t i v e s y s t e m w i t h f i v e l i n e s a n d a l t e r n a t i on b y g e n e a l og i c a l l e v e l '
number
basis
t e r m i n ol og y '
' r e l a t i on s h i p
patr i l ineal
on the
an a l y s i s
of
the
the a l l i an c e s be tween
and
d e s c e n t g r ou p s .
of her
S h e a t t e m p t s t o r e s ol v e a
l i c t s i n t h e r u l e s of m a r r i a g e a n d e x c h a n g e . T h e r u l e s a r e ( 1 ) ' a w o m a n s h ou l d c l i m b t h e of
c on f
s a me l a d d e r
that
F M ' s c l an ) ; m ot h e r ' :
( F M BSD ;
are eq uated ;
(FlD ) ;
mar r y
is
also,
t o
of
and
(4)
w a u ' s d a u g h t e r ' : F I� 3 D m a r r i a g e in
certain
pairs
p os t u l a t e
an
al liance
g r ou p s w i t h t w o k i n d s
of
.
pa t r i l i n e al c l a n s
o f c l an s u p on
t h e y e x c h a n g e w omen w i t h e a c h o t h e r s ol u t i on
mb e d ' :
' w om e n s h o u l d b e
(3)
a l t e r n a t e g e n e r a t i on s
r e c i p r oc a l r e l a t i on s h i p r e s t i n g
p a tr i l i n e al
i
a w om a n
in ter pre ted a s e xc h a n g e o f s i s ter s ;
' l a u a ' s s on w i l l a d d i t i on ,
in g e n e r a l ,
' t h e d a u g h t e r g oe s in p a y m e n t f or t h e
(2 )
mar r i ag e w i t h n a
e x c h an g e d ' : In
her f a ther ' s f a t her ' s s i s ter c l
his iai
a man mar r i e s
the ( pp .
are
in a
t r a d i t i on t h a t
1 03 - 8 ) .
m od e l f o r
K or n ' s
the
c l o se d c y c l e s
,
85
II
III
IV
V 1
2
1 MM B S C FZC
FFZSC FMB DC MFZDC
II
Ego
Sb
III
FMB S C MFZSC MMB DC
F F Z DC MBC
IV
v 2
1
2
MMB S C FFZSC M F Z DC
MFZSC FZC
Ego
Sb
FMB DC MB C
F F Z DC FMB S C MMB DC
F i g . 2 . 2 . S t � uc t ur a l i n c on s i s t e n c i e s i n a n a s y m me t r i c p r e s c r i p t i v e s y s t e m w i t h f i v e l i n e s a n d a l t e r n a t i on b y g e n e a l og i c a l l e v e l s ( a f t e r K o r n 1 9 7 1 : 1 1 6 ) .
86
e x h i b i t e d i n a l t e r n a t e g e n e r a t i on s : c on n e c t i n g a d j ac e n t d e s c e n t
line s
a d ir e c t cycle
and
( p . 1 1 1 ; s e e my
( 2 ) c on n e c t i n g a l t e r n a t e d e s c e n t l i n e s f ig . 2 . 2 ,
t op ) .
' r e 1 a t i on s h i p t e r m i n 0 1 o g y '
The
b e c on s i s t e n t l y a l l oc a t e d
t o the
(1)
i n d i r e c t c y c le
an
may
s oc i a l c a t e g o r i e s
the n
( K or n
1 9 7 1 : f ig s . 8 a n d 1 0 ) . A p a r t f r o m t h e t h e or e t i c a l on e
is attempting
pr ob l e m s t h a t a r i s e w h e n
t o e v a l u a t e a m od e l
an t i g e n e a l og i c a l a n d a n t i e x t e n s i o n a l k i n c l a s s i f i c a t i on a s
of
p r e m i s ed
on the
an a ly s i s o f s y s t e ms
a r e l at i ons h i p
t e r m i n o l og y
of
s o c i a l c a t e g or i e s , i t c a n b e s h ow n t h a t K or n ' s r e s u l t s
a r e n ot
i n t e r n a l l y c on s i s t e n t . F i g u r e
d i r e c t r e pr e s e n t a t i on
of
1 0 . N ow ,
f ig u r e s 8 and
pr e s u m a b l y ,
g r ou p I I I w h o m a r r i e s a c c or d i n g are =
t o b e f ou n d
MF l S D
=
MM3DD
in
c r o s s - c ou s i n s
2 .2
t h e i n f or m a t i on f or
1 ,
Al s o ,
iai .
if we
pr oc e e d
l ev e l a n d l ook at t h e
i .e . ,
f r o m g r ou p V ,
o f e g o ' s s on , w h o i s t o cycle 2 ,
b o t t om ) t h a t e g o ' s s p ou s e i s t a k e n
and Wife
F MB S D
=
= MMBDD
F F l D D i s den oted b y t w o d i s t i n c t t e r ms , N u m e r ou s
FFlDD
MBD
' r e l a t i on s h i p
of v i e w
a l s o i n g r ou p I I I b u t w h o m a r r i e s a c c or d i n g 2 .2 ,
F MB S D
t o t h e f ol l ow i n g
f r om t h e
p oi n t
=
e g o ' s m a t r i l a t e ia l
t e r m i n ol og y ' ( f ig .
h i s s p ou s e s
h i s F i� ' s g r ou p I V . H e n c e W i f e
g e n e r a t i on a l
we f i nd
is a
a ma le eg o in
to cycle
a r e i n h i s t�F t s g r o u p V ,
= m b u a m b o . N ow ,
( t op )
i n Korn ' s
= F F l DD . H e n c e
iai
and mbuamb o .
o t h e r d i s c r e p a n c i e s c a n b e f o u n d b y c om p a r i n g
t h e t w o s e c t i on s
o f f i g u r e 2 . 2 . T h e c on c l u s i on
is
obv i ou s : e i t h e r w e a c c e p t t h e f a c t t h a t K or n ' s m od e l l og i c a l l y
i n c on s i s t e n t ,
' r e l a t i on s h i p t e r m s '
so as
g e n e a 1 og i c a l r e f e r e n t , w h ich
t h e m od e l
or we
in
l a t m u l m od e l i s a n e x a m p l e of
k in
An oth er f or
h y br i d s y s t e m
the Saule .
of
Her e ,
in
any k i n d
is of
of
t h e v e r y d a t a u p on
the f ir s t
pl a c e .
K or n ' s
a n o n - h om og e n e ou s
l oc a t i on d e t e r m i n e s
t y pe e q u i v a l e n c e s .
t h e d e f i n i t i on
t o exclude
incIudi ng
was based
s t r u c t ur e : eg o ' s
adj u s t
4
t h e s p e c i f i c a t i on
i s descr i b e d by E t ie n n e a d d i t i on
t o pr i n c i p l e s
of
( 1975 )
87
d e s c e n t a n d a l li a n c e , t h e r e i s a s y s t em of
' a l li an c e
r i v a l r y ' ; c e r t a in r e l a t i v e s a r e d e s i g n a t e d a s
' r iv a ls '
a n d s e r v e a s f oc a l p ai n t s i n d e f i n i n g i n c om p a t i b l e a l l i a n c e s . N ot on l y d o m a r r i a g e e x c h a n g e s d e t e r m i n e
m a r r i ag e p o s s i b i l i t i e s a n d pr oh i b i t i on s i n s u c c e e d i n g
g e n e r a t i on s , b u t a n e w m a r r i a g e m a y r e s u l t i n t h e p r e s c r i b e d d i s s ol u t i on 2 1 -2 4 ) .
of
pr e v i ou s a l l i an c e s
( pp . 6-8 ,
E t i e n n e s h ow s t h a t t h e d i v e r s e e x p l a n a t i on s
p r o p ou n d e d b y
pr i n c i p l e of
the
S a u l e d e r i v e f r o m a m or e f un d a m e n t a l
' n on r e d u p l i c a t i o n
m os t e c o n om i c a l d e s c r i p t i on
of
of
m a r r i a g e b on d s ' . T h e
t h e B a u l e sys tem is a
m od e l w i t h e i g h t n od e s c om pr i s i n g
e x tended s i bl ing
g r ou p s , e a c h r e l a t e d t w i c e , a s g i v e r s a n d a s t a k e r s of w om e n , 26 ) .
t o a t ot a l
of f ou r
o t h e r g r ou p s
T h i s e i g h t - c l a s s m od e l , w i t h
i s s i mi lar
( pp .
11-1 3 ,
23-
i t s m u l t i p le a l l i a n ce s ,
t o t h e h y p o t h e t i c a l e i g h t - c l a s s m od e l
c on s t r uc t e d b y G r a n e t
( 1 9 3 9 : 2 3 8 - 4 2 ) f or
the
' or i g i n a l '
K ac h i n s y s t e m a n d s u b s e q ue n t l y d e m o l i s h e d b y L e v i - S t r a u s s ( 19 7 0 : 249-51 ) , Leach
( 1971 :73-74 ) ,
a n d Need h a m ( 19 6 1 :
1 04 - 6 ) .
T h e p a t r i l i n e a l Sw a z i d e s c r i b e d b y K u p e r
( 197 8 )
c o m b i n e a r a n k e d s oc i a l s y s t e m w i t h a m od i f i e d s y s t e m of a s y m me t r i c e x c h an g e . K i n s h i p - d e f i n e d m a r r i a g e r u l e s o pe r a t e a l on g s i d e o f s t a t u s - ma r r i a g e r u l e s a n d t h e p a y me n t o f b r i d e w e a l t h
.
Ku per
pr e s e n t s
an open s e v en - l i n e
m od e l o f m a r r i a g e w i t h m a l e e g o ' s F H B S D . S p ou s e s a r e ob t a i n e d i n a l t e r n a t e g e n e r a t i on s f r o m F M ' s l i n e a n d MF ' s
l i n e , b u t t h e d i r e c t I o n of e x c h a n g e s i s n o t r e v e r s e d ,
e v e n i n a l t e r n a t e g e n e r a t i on s : m a l e e g o m a r r i e s a w om a n o f t h e w i f e - g i v e r ' s w i f e g i v e r ' s l i n e of h i s f a t h e r . T h e -
pu r e l y
k i n - m a r r i a g e r u l e s a pp e a r t o b e r o o t e d ,
ref lected ,
or
in t h e d e v e l o p m e n t a l c y c l e of t h e d om e s t i c
g r ou p a n d a r e p ar t i a l l y d i s t i n c t f r om t h e s t a t u s m a r r i a g e -
r ul e s , w h i c h r e l a t e t o t h e p o l i t i c o j u r a l d om a i n ( p p . -
5 73 - 7 5 ,
5 77 ) .
A l l of t h e s e h y b r i d c a s e s a r e e s s e n t i a l l y v a r i a t i on s
on t h e s a me t h e me .
' Se c on d a r y ' m a r r i a g e s a n d m u l t i p l e
88
exchange
s t r a t eg i e s ,
e l e m e n t a r y c or e terms
t h ou g h o f c ou r s e
o f t h e r e la t i on s s e en
d om a i n
an
ar e d e s c r i b e d i n
t o h o ld w i t h i n
( s oc i a l c l a s s i f i c a t i o n , e c o n om i c
b r i d e w e a l t h t r a n s a c t i o n s , r i v a lr y , that
a s s oc i a t e d w i t h
o f k in - m a r r i a g e r u l e s ,
s om e
other
p r e s t a t i on s ,
e tc . ) . T o the exten t
s u c h e x p l a n a t i on s s e r v e t o e l u c i d a t e t h e
i n t e r r e l a t i on s h i p s a n d m u l t i - l e v e l l e d c om p l e x i t y
th a t
c a n b e f o u n d w i t h i n a s oc i a l s y s t e m , t h e y a r e c l e a r ly r e le v a n t .
H ow e v e r ,
d i s t i n c t i on
of
if
t o o s t r i c t ly
' pr i m a r y '
and
adhered t o ,
' s e c on d a r y '
a n d t h e i r f u nc t i on a l c or r e l a t e s t e n d s a t t e n t i on a w a y f r o m t h e or e n c om p a s s i n g e lemen t a r y
p os s i b i l i t y
s t r u c t ur e
a s pe c t s
of
the
t o d ir e c t
of
of e xc h a n g e
the
m ar r i a g e r u l e s one ' s
a m or e f u nd a m e n t a l t o w h i c h b ot h t h e
system and its
' hy b r i d '
c h ar a c t e r i s t i c s m i g h t b e r e d u c e d . A s imi lar
ob s e r v a t i on c a n b e m a d e w i t h r e s p e c t t o t h e
c r os s - c u l t u r a l c om p a r i s o n o f a l l i a n c e s y s t e m s .
( 1982 ) ,
t o Kuper
l oc a l v a r i a t i on s
ma r r i a g e a n d b r i d e w e a l t h
in
a r r a n g e me n t s
A c c or d i n g
Southern Ban t u ( r ef l e c t e d i n
d i f f e r e n t f o l k a l l i a n c e m od e l s ) d i f f e r g r e a t l y , r e pr e s e n t d i r e c t t r a n s f or m a t i on s
of e a c h
or g a n i z a t i o n o f b r i d e w e a l t h s y s t e m s , s pe c i f i c
l oc a l c om b i n a t i on s
v a r y i n g f or m s
of
of
o f m a r r i a g e a l l i an c e c on s t i t u t e a n
( pp .
u p on
of
a n d f ou r
m od e s
or d e r e d s e r i e s .
n on - r e pe t i t i v e
a r e m od e l l e d a s t r a n s f o r m a t i on s s t r uc t ur e
pr e d i c a t e d
p a s t or a l i s m a n d a g r i c u l t ur e ,
p ol i t i c a l s t r a t i f i c a t i on ,
R e pe t i t i v e a s w e l l a s
and y e t
other . The
exchange
stra teg ies
a s i ng l e a l l i a n c e
157-162 ) .
A f a m i ly o f s u c h a l l i a n c e s t r uc t ur e s w i l l b e d e v e l o p e d her e .
S t a r t i n g w i t h L e v i - S t r a u s s ' s c on c l u s i on ,
a b ov e ,
the
A s pe c t s
of
f or m u l a t i n g
basic
m od e l w i l l b e
' c om p l e x i t y '
pr e m i s e d
w i l l t h en
a r e c u r s i v e d e f i n i t i on
be of
g e n e r a l i z e d e x c h a n g e . He n c e e xc h a n g e s which
oc c ur
at a
par t i c u l a r
d e te r mine t he s e quence
of
ci ted
on e x c h a n g e .
in t r od u c e d b y the cy c l e s
of
or m a r r i a g e s
m om e n t w i l l b e u s e d t o
p os s i b l e e x c h a n g e s i n
f ol l ow i n g g e n e r a t i on s o r e x c h a n g e c y c l e s .
the
89
T H E F OR M A L M O D E L T h e m a i n v ar i a b l e s of a n y m od e l l i n g p r oc e s s m a y b e c on v e n i e n t ly s u mm a r i z e d a s a n or d e r e d q u a d r u p l e R (S, P,
M,
T) :
t h e s ub j e c t S t a k e s , i n v i e w o f t h e
p u r p os e P , t h e e n t i t y 11 a s a m od e l f or t h e pr ot o t y pe T .
M y p u r p os e m a y b e g l os s e d a s s y s t e m r e s t r u c t u r a t i o n or s y s t e m ex t e n s i o n ( A p os t e l 1 9 6 1 : 5 - 7 ) . I f L e v i - S t r a u s s ' s t h e or y
of e l e me n t a r y k i n s h i p s t r uc t u r e s i s d e n o t e d b y T o ,
my g o a l i s t o e x t e n d h i s a n a l y s i s t o i n c l u d e v a r i ou s h y b r i d s y s t e m s a n d p os s i b l y a l s o C r ow - O ma h a s y s t e m s . I n i t i a l ly , on e s p e c i f i c
pr i n c i p l e - g e n e r a l i z e d e x c h a n g e
- i s s e l e c t e d , a n d t h e s t r a t e g y f ol l ow e d i s t o a t t e m p t t o c on s t r uc t a f or ma l m od e l o r a r e l a t e d f a m i l y
of
m od e l s w h i c h , w h i le r e m a i n i n g c om pa t i b l e w i t h t h e t h e or y d e v e l o p e d i n L e s S t r u c t u r e s , a l l ow s a n a l y s i s of d a t a f r om n on e l e me n t a r y s ou r c e s . A l t h ou g h t h e c h o i c e e x t e n s i on s i s l a r g e , i t i s on l y i nf i n i t e Buc h ler and F i sc h er
( 1981 »
( a s c la i me d b y
i n a t r i v i a l s e n s e : n ot
e v e r y a r b i t r a r y e x t e n s i on i s a n i n t e r e s t i ng r e c on s t r uc t i on
of t h e s e t
of
of
or v i a b l e
pr o p e r m od e l s of T o . I n
d e v e l op i ng m or e c om pl e x f or mu l a e o f g e n e r a l i z e d e x c h a n g e I c h o os e t o v a r y j us t
on e a s s u m p t i on
of T o . M y c h oi c e i s
e x pl i c i t l y m ot i v a t e d b y a n i m p or t a n t i s s u e r a i s e d i n t h e pr e f a c e t o t h e s e c on d e d i t i on of L e s S t r u c t u r e s e l e m e n t a i r es ,
w h e r e t he d i f f i c u l t i e s in d e t e r m i n ing t h e
c om b i n a t i v e p os s i b i l i t i e s
of C r ow - Om a h a s y s t e m s e i t h e r
b y v e c t or a l g e b r a or b y c o m p u t e r s i mu l a t i on a r e d i s c u s s e d ( l9 7 0 : xl i ) : i n or d e r t o c omme n c e o p e r a t i on s , a n i n i t i a l s t a t e w ou l d h a v e t o b e d e t e r m i ne d . T h e d a n g e r t h e n w ou l d b e t h a t o f b e i n g t r a p p e d i n a v i c i ou s c i r c l e , b e c a u s e i n a C r ow - O ma h a s y s t e m t h e s t a t e of t h e p os s i b l e or p r oh i b i t e d m a r r i a g e s i s c on s t a n t l y d e t e r m i n e d b y t h e m a r r i a g e s w h i c h h a v e oc c ur r e d i n p r e c e d i n g g e ne r a t i on s . T h e on l y s ol u t i on t o t h e p r ob l e m of d e t e r m i n i n g a n i n i t i a l s t a t e w h i c h d oe s n o t v i o l a t e f o r c e r t a i n on e of t h e r ul e s o f t h e s y s t e m w ou l d b e a r e g r e s s i on t o i n f i n i t y , u n l e s s on e w e r e p r e p a r e d t o w a g e r t h a t , d e s p i t e i t s a l e a t or y a p pe a r a n c e , a C r ow - O m a h a s y s t e m r e t u r n s on i t s e l f p e r i od i c a l l y i n .
•
•
90
s uc h a w a y t h a t , t a k i n g a n y i n i t i a l a f t e r a f e w g e n e r a t i on s a s t r u c t u r e must n e ce s s a r i l y emer g e . M y e x t e n s i on i t a ssumes exchange
an
of T o d oe s e x a c t l y a s L �v i - S t r a u s s s u g g e s t s : a r b i t r a r y i n i t i al
and def ines all
recurs i vel y . T h e r es u l t
a
i s n ot a n
of
To and
t h e s e m i n al
w i t h t h e p r ob l e m
a n d L or r a i n
m od e l c h os e n
w or k
of
( 1 975 ) ,
obj e c t s
We i l
(see
Wh i te
a m on g
o t h er s .
t h e or y .
I n t h i s s e c t i on
i n t r od u c e d .
The i n i t ial
is
a pp e n d i x ( 1 965 ) ,
T h e ma t he ma t i c a l
g r ou p s ,
etc . )
on
f r o m g r ou p t h e or y a n d
i .e . ,
l i n e ag e s ,
build ing
C ou r r e g e
t h e f or ma l
( w h i c h w i l l b e i n t e r pr e t e d
i s algebraical ,
the
t h e m a t h e ma t i c a l ( 1963 ) ,
a s pr i ma r y e x c h a n g e u n i t s ,
s t r uc t ur e o f
of v i c i o u s
i s al g e b r a i c a l ,
i t e m pl oy s a r e t a k e n
e l e m e n t a r y n u mb e r of
This
o f e xc h an g e c y c l e s .
1; .0 L �v i - S t r a u s s 1 9 7 0 ) , c on c e p t s
t y pe .
i n f i n i t e r e g r e s s i o n s ol v e d b y
r e c u r s i v e d e f i n i t i on T h e f or m a l
o f a c er t a i n
f o l l ow s d i r e c t l y f r o m L ev i - S t r a u s s ' s
c o mme n t s c i t e d a b ov e , c i r c ul a r i t y
i n f i n i t e r e g r e s s i on
b u t t h e n e c e s s a r y e me r g e n c e
p e r i od i c e x c h a n g e s t r uc t ur e
e x t e n s i on
set
state w i t h general ized
s ub s e q u e n t e x c h a n g e c y c l e s
( a s Lev i - S t r a u s s f e a r e d ) ,
of
s t a t e w h a t s oe v e r , of a c e r t a i n t y pe
a n t h r o p ol og i c a l l y
i n d i v id ual s
i t m a y b e h e l p f ul
o r s oc i a l
A l t h ou g h t h e m od e l
t o v i s ual i z e
the
i t s e l e me n t s a n d r e l a t i on s g e o m e t r i c a l l y . set
of f or m a l
d i m e n s i on a l g r i d ,
o b j e c t s m a ps
ou t
a flat ,
h or i z on t a l r ow s c o r r e s p on d i n g
t w o
to
e x c h a n g e c i r c u i t s w h i l e e a c h v e r t i c a l c ol u mn r e pr e s e n t s t he
( as i t wer e )
t r a j e c t or y
t h r ou g h t i m e . g e n e r a t i on s ,
a p a r t i c ul a r e xc h a n g e
r olV s
may be
c ol umn s a s d e s c e n t l i n e s .
s u b s e q uen t l y b e
i m p os e d
f u r t h e r c on s t r a i n t s o n
on the
i n a c l osed cyl i n d r ical h or i z on t a l l a y e r
of
pr oj e c t i on o f a
un i t
i n t e r pr e ted a s
' S t r uc t u r e '
t h i s b a s i c g r id
wil l
t h r ough
d e f i n i n g r e l a t i on s , r e s u l t i n g
m od e l
this
c y c l e l i n k i ng e xc h a n g e the
of
Al t e r n a t i v e l y ,
of
m od e l ,
un i t s
is
exchang e .
W i t h in each
a s pe c i f i c exc h an g e defined
r e c ur S i v e l y a s
pr e v i ou s e x c h a n g e c y c l e . A s t r uc t ur e
of g e n e r a l i z e d e x c h a n g e w i l l c on s i s t
of
t he e n t i r e s e t
91
of s u c h e x c h a n g e c y c l e s a n d w i l l r e pe a t i t s e l f a f t e r a f i n i t e n u mb e r
of c y c l e s .
O b je c t s a n d per m u t a t i o ns
L e t Z b e t h e s e t of i n t e g e r s a n d l e t I b e t h e i n d e x s e t I
=
(1, 2 ,
•
.
,
•
n} .
T h en O b j , t h e s e t o f o b je c t s , i s
d ef i n e d a s ( 0 . . I i i n Z a n d j i n n . IJ
L e t O b j ( i l b e t h e s u b s e t of O b j d e f i n e d a s ( 0 . . 1 j i n n
f or s om e i i n Z . F or a n y i , { ob j ( i l l i
=
1 0b j U I I
n,
IJ
a n d Gen
i n Z } i s a p a r t i t i o n of O b j , i . e . , a of O b j i n t o d i s j oi n t s u b s e t s s u c h t h a t
d e c om p os i t i on
e v e r y e l e m e n t O . . o f O b j b e l on g s t o s ome s u b s e t . IJ
Let 0 ( j ) be the subset
of 0 b j d e f i n e d a s { O . . I i i n Z } IJ
T a b le 2 . 1 . V a l u e s of E u l e r ' s f un c t i on ¢ ( n ) a n d e l e me n t s of K f or n l e s s t h a n 1 5 .
n
¢d n)
1
0
2
1
K
1
3
2
1,
4
2
1, 3
5
4
1, 2,
6
2
1,
5
7
6
1,
2,
8
4
9
6
10
4-
11
10
12
4-
13
12
14
6
2
3, 4 3, 4, S, 6
1, 3, S, 7
1, 2, 4, S , 7, 8 1, 3, 7, 9
1, 2 ,
3 ,
1, 5, 7, 1 ,
4- ,
S, 6, 7, 8,
11
2 , 3 , 4- , S ,
1 , 3, S, 9,
11,
,
0 .,
13
7, 8,
9,
10
9,
10,
1 1 , 12
92
f or
s o me
I.
j in
Lin
Ob j i n t o n n on ov e r l a p p i n g
C on s i d e r
j
in
r}
is a
subsets
of
i n f i n i te
(oU) I
=
p a r t i t i on
O b j ( i ) i n Gen . L e t c b e t h e
any
of
or d e r .
p e r m u t a t i on
0i c = ( Oi l ' 0i2 ' - ' 0in ) ; i .e . , c i s n l t h e c y cl i c p e r m u t a t i o n o f o r d e r n w h i c h m a ps 0 , , on t o
def ined oi
by
l. J
w i t h J' + l r e d u c e d m od u l o n .
j +l
L e mma 1 : L e t K b e t h e s e t
of
i n t eg e r s d e f i n e d by K
{ k l l'::;k < n , k a n d n c o pr i m e } . I t c a n e a s i ly K i s a g r ou p u n d e r mu l t i p l i c a t i on iden tit y
is
1 ,
and f or any k in K,
defined .
The
or d e r
f or
any
n . F or
<1:> ( 0 )
are
of K i s g iven n a
pr i m e ,
c o pr i m e t o n s o t h a t K
n- l .
The values
( m od u l o
( n )
of
=
)
t h e i nv er
by
.
5
s h ow n The e k-
that
1
is
t h e E u l e r f u n c t i on
all
{l,
be
n
=
i n teg e r s
2,
•
•
•
a n d t h e e l e me n t s
,
1
n-l }
of
< k < and
K f or
n
IKI
n < 15
a r e g iven i n table 2 . 1 .
L em m a 2 : C on s i d e r K a n d l e t c b e t h e c y c l i c
p e r m u t a t i on
c g e n e r a t e s t h e c y c l i c g r ou p n n w h os e e l e me n t s a r e { c x l l .::: x < n a n d c x = cn -x = e } . N ot e t h a t c T h e n t h e or d e r o f a n y e l e m e n t X C of G ( c ) e q u a l s n i f x i s i n K . F or a n y x n ot i n K , t h e of
or d e r of
G(c)
or d e r
of
mu l t i pl e
let
n d e f i n e d a b ov e .
or d e r
e
X
equals mix , where
of x a n d
n. 5
L em m a 3 : C on s i d e r K a s d e f i n e d a b ov e . F or a n y k i n K , p( k)
e l emen t s
be
the
or d e r
of K w i t h
of O ( j)
al l 0 ,
l J
. •
s
of
pO )
C on s i d e r a n y O ( j ) m a p pi n g f or
m i s t h e l e a s t c o m m on
k.
=
1,
and
any
p(n-l)
in Lin . Let s be
on t o i t s e l f is a
T h e n f or
1 an d
f or
n-l are
al l
>
n
t h e o n e - t a - on e
d ef ined by
t r a n s l a t i o n or a
n, = 2
(0 , ,)s 1. ]
= 0 '
1. +1 perm u t a t i on o f
i n f i n i t e o r d e r a n d g e n e r a t e s t h e g r ou p G ( s )
of
j
inf i n i te
or d e r w h o s e e l e m e n t s a r e { s x l x a n y i n t e g e r a n d s a = e } . X ont o 0 , F or a n y p o s i t i v e Any 0 i j i s ma pped by S l. + X J integer x , O . , i s c a l l e d t h e x t h s u c c e s s o r of O l. J, . l. + X J F o r x a neg a t i v e i n t e g er , O . , i s cal led the xth "
1.
+x
J
2 .
93
O. .
pr e d e c e s s or of
1. J
' O b j ( a ) a n d O b j ( b ) o f Ge n
C on s i d e r a n y t w o e l e me n t s
x . T h e n Ob j ( b ) i s c a l l e d t h e x t h successor o f O b j { a ) a n d O b j ( a ) t he x t h
f or w h i c h a
i .e . ,
< b,
predecessor of
b
a
=
+
Ob j{ b ) .
S t r u c t u r e s o f ge n era l i z e d e x c h a n ge C on s i d e r
the set
Let the
Lin .
def ined
o b j e c t s O b j w i t h p a r t i t i on s c
and
and
Ge n
s a n d t h e g r ou p K b e
a s a b ov e .
T h en ,
w O° b y 0
of
p e r m u t a t i on s
f or
. Wo
s o me O b j ( a ) = 0
aJ
aj
in
c f or a l l 0
Ge n , d e f i n e t h e p e r m u t a t i on . in Obj ( a ) .
aJ
N ow , f or s o me k i n K , d e f i n e t h e p e r m u t a t i on w I of by 0
Ob j ( a +l ) n.
w2 '
C on t i n u i n g
as 0
w3 '
etc .
a+
J
l
e tc . III
a
in
aj
{ wO )
k
ma n n e r ,
that
w
is
I
d e f i n e f ur t h e r 2
of
or d e r
p e r m u t a t i on s
a
k . ( wI ) s ,
J
a +2 J.s 141 3
=
0
a+
. ( "'2 )
2
J
k
s ,
of O b j { a + x ) m a y b e r e c u r s i v e l y d e f i n e d b y
a +x - l
s pe c i f y
. s 1o'
J
x
0
=
the
.(w
a +x - l J
i n i t i al
x-
k
1
pe r m u t a t i on
t he
p e r m u t a t i on
of O b j { a +x - l )
w
xis
Ob j ( a +x »
1
with
) s,
r ul e f or f i n d i n g of
H ote
s•
f or a n y p os i t i v e i n t e g e r x t h e p e r mu t a t i on
I n gener al , x
this
0a +1
=
0
r e s pe c t i v e l y , O b j { a + ) , O b j { a + 3 ) , e t c . ,
of ,
S W2
=
.s w 1 aJ
pe r m u t a t i on
Wo of III X
Wo
= c.
That
is ,
we
Ob j ( a ) a n d g i v e a on c e t h e
of Ob j ( a +x )
( t h e i m m e d i a t e p r e d e c e s s or
k n ow n . O b j ( a ) i s c a l l e d t h e
o r i gi n
of
Ob j .
A n e q ui v a l e n t n on r e c ur s i v e d e f i n i t i on f or by
0
.s x 1o'
aJ
hence
w
x
x
=
,
is
0
. ( 10' 0 aJ of
T h e d e f i n i t i on integers
-x
kX x ) s
or d e r c an
=
0
x That is , k-
=
k
w
s x . N ot e t h a t
i s g i v en
x c
kX, and
n .
be e x t e nded
b y t a k i n g f or k -
g r ou p g e n e r a t e d b y
.c
aJ
kX
t o i nc l ude n e g a t i v e
x t h e i n v e r s e o f k X f r om t h e
( u n d e r mu l t i p l i c a t i o n m od u l o n ) .
{ ) k P k - x w i t h p { k ) t h e or d e r of k .
94
H e n c e f or a n y xth
ex c h a n g e
i n t e g e r x t h e p e r m u t a t i on
c yc l e w i t h r e s p e c t t o t h e or i g i n O b j ( a ) .
i n d uc e d
10
.s a]
x
",
pe r i o d
The
x
= 0
.c a]
i s def in ed by
kX x
W(a,
of
the
o s o that 0 + a p(k)
k)
n,
x such that
in teg e r
W
c.
x
cs
n,
k)
s f or
=
i s t h e s m a l l e s t p os i t i v e
or d e r aj
IV ( a ,
all 0 . and any integer a]
f or
s
or i g i n
t h e p e r m u t a t i on s c a n d
on O b j b y
n a n d s om e k i n K , x
is called the
x
T h e s t r u c t u r e o f gener a l i z e d exc h a n g e w i t h
Ob j ( a ) ,
(w
W
T h e p e r i od
n,
lV ( a ,
of
x} .
k)
is
of
p(k) =
jWp ( k )
0a +p ( k )
jC .
D i r e c t a c c es s i b i l i t y a nd c o n s e c u t i v e s y m m e t r y . H a v i n g
f or m a l l y d e f i n e d a s t r u c t u r e o f g e n e r a l i z e d e x c h a n g e IV ( a ,
k) ,
n,
s pe c i f i c
w e a r e n ow a b l e t 0 d e r i v e a n u m b e r
of
m or e
pr op e r t i e s w h i c h w i l l e n a b l e u s t o d i f f e r e n t i a t e
b e t w e e n t h e v a r i ou s p os s i b l e s t r u c t u r e s . T h e s e p r o p e r t i e s (a)
are
d ir ec t
acc e s s i b i l i t y ,
i .e . ,
e x c h a n g e un i t i s l i n k e d d i r e c t l y t o s om e
other
s pe c if i e d u n i t
(c)
rever sed w i t h i n i .e . ,
c on t i n u i t y ,
( as g iver
Let W ( a ,
W
x
o
aJ
o
be
i s g en e r a te d b y c
of
j
n , k)
n.
or d e r
.s -"" w
+ .s
aJ
with
k x
x
X
::
t
( w- l ) x
X j + k
me m b e r s
has
0
=
of
di rec t
The aj
c
kX
( m od
o ==
g
k
x
=
n),
�e f i n e d
a f in i te
n u mb e r
0
a +x
and
k
x
. x ] +k
SX
0
( m od n ) . L e t
x
=
a +x
t h e s a me i n te g e r
any
to
ott)
if
0
0(j),
f or
x,
i s a c y c l i c p e r m u t a t i on Wx
-1
a +x t
j
-
k
0(
x
e x i s t s . Then
,
wi th
=
0
a +x
t ) and
g
0(g)
be
t h e p a r t i t i on L i n d e f i n e d e ar l i e r . T h e n
access
(b)
of cycl e s ;
i n r ou g h l y
a s a b ov e . F or
hence w
. ( c-1 )
aJ
or r e c e i v e r )
w h e t h e r t h e f l ow of e x c h a n g e s i n
i n v e r s e p e r m u t a t i on s
p a r t i c ul a r
e xc hange cy cl e ;
i n an
d i r e c t l y c on s e c u t i v e c y c l e s p r oc e e d s
d i r e c t i on .
a
i . e . , w h e t h e r t h e f l ow of e x c h a n g e s
c on s e c u t i v e s y mm e t r y , is e nt irely
whether
s om e
0
. a]
in O(j)
O(j)
t here
95
is an 0
in O ( t ) such that 0
a +x t
x .s w = 0 aJ x a +x t i d r e c t l y a c c e s s i b l e fro m O ( g )
C on v e r s e l y , O ( j ) i s
o o
in O { j ) t h e r e i s an 0
aJ
.
0
.sx ( w - 1 )
aJ
x
4:
Lemma
a +x g
i f f or
in O ( g ) such t h a t
a +x IS
L e t TO ( j ) d e n o t e t h os e e l e me n t s of L i n t o
w h i c h O ( j ) h a s d i r e c t a c c e s s , a n d l e t GO ( j ) d e n o t e t h e e l e m e n t s of L i n f r o m w h i c h O { j ) i s d i r e c t l y a c c e s s i b le . Then
I TO { j ) 1
=
I co { j ) 1
=:
f or a l l 0 ( j ) i n L i n .
p(k),
t h e p e r i od of W ( a . n . k ) ,
L e t TO ( j ) a n d CO ( j ) b e d e f i n e d a s a b ov e . T h e n t h e d e g r e e o f O ( j ) i s t h e n u m b e r o f e l e me n t s o f L i n c on t a i n e d i n t h e u n i on o f TO ( j ) a n d GO { j ) ,
I TO ( j ) U GO ( j ) I .
i .e. ,
T h e d e 9 r e e of e v e r y 0 ( j ) i n L i n i s t h e s a me ,
s o th a t i t
i s p os s i b l e t o d e f i n e t h e d e g r e e of W ( a . n . k ) a s t h e
d e g r e e of a n y 0 ( j ) i n L i n . L e t t h e i n t e r s e c t i on of TO U ) a n d GO { j ) b e n on e m p t y
f or s ome o U ) i n L i n . S u p p os e TO U ) n GO U )
f or s om e x a n d y . 0 -l o .s Y ( w ) aJ y
=:
0
a +y
aj
z '
X s w
x
-
-
0
a +x z '
O ( z ) . T h en
and
Any e x c h a n g e s t r uc t u r e W ( a . n . k )
f or w h i c h t h i s i s t r u e i s s a id
t o e x h i b i t c onsecu t i ve
T h i s d e f i n i t i on f or m a l i z e s t h e c on c e p t of
s ym m e t r y .
c on s e c u t i v e s y m m e t r y i n tr od u c e d i n d e J o s s e l i n d e J on 9 ( 1 9 62 : If. 6 ) . C o n t i n u o u s a n d d i s c o n t i n u o u s s t r u c t u r e s . Ac c or d i n g
L e m m a 3 , f or a n y n ,
1 a n d n - l a r e b ot h c op r i me t o n a n d
t h u s e l e m e n t s of K. He n c e W ( a ,
n,
1)
and W ( a ,
n,
a r e a l w a y s s tr u c t u r e s of g e n e r a l i z e d e x c h an g e . of W ( a ,
1)
n,
is p ( l )
1,
so that .
x
=: . 0
Al l e x c h a n g e c y c l e s a r e i d e n t i c a l a n d W ( a , t o be c o n t i n u o u s . F or p( n-l )
Wx
=
WI
=:
=:
2,
C
to
n > 2
t h e p e r i od
=:
a ,
C
of W ( a ,
n-l )
T h e p e r i od x .
f or a l l 1)
i s s a id
n,
n- l ) is
s o that . = . 0 =: C f or e v e n i n t e g e r s x a n d x -1 f or u n e v e n i n t e g e r s x . E x c h a n g e c y c l e s
r e v e r s e c om p l e t e l y i n s u c c e s s i v e c i r c u i t s a n d W ( a ,
n,
a-I)
i s s a i d t o b e d i s c o n t i n u o u s . T h e c on t i n u i t y / d i s c on t i n u i t y
96
T a b l e 2 . 2 . S t r u c t u r e s of g e n e r a l i z e d e x c h a n g e f or n le s s t h an 1 5 .
Structure W
P e r i od
( a . n . 1 )* W ( a . n . n-l )*
Degree
Gl oss
1
2
c on t in u ou s
2
2
d i s c on t i n u ou s ; c . s y ill .
(a, 5 , 2) W(a, 5 , 3)
4
4
4
4
c on t i n u ou s ; c . s y m .
7, 2) IV ( a , 7 , 3 )
3 6
6 6
c on t i n u ou s ; c . s y m .
W(a,
7, 4)
3
6
d i s c on t i n u ou s
IV ( a ,
7, 5)
6
6
IV ( a ,
8 , 3) lV ( a , 8 , 5 )
2
4-
c on t i n u ou s
2
4-
d i s c on t i n u ou 5
c on t i n u o u s ;
•
W
VI ( a ,
.
•
.
•
•
. . . .
d i s c on t i n u ou s ;
c
.sym .
c on t i n u ou s
d i s c on t i n u ou 5 ;
C
. sy m .
W (a, 9 , 2 )
6
6
W(a, 9 , 4) W(a, 9 , 5)
3
6
6
6
d i s c on t i n u ou s ; c . s y m .
W(a,
3
6
d i sc on t i n u ou s
( a, 10, 3 ) IV ( a , 1 0 , 7 )
4 4
4
c on t i n u ou s ; c . s y m .
4
d i sc on t i n u ou s ; c . s y m .
11 , 2 ) IV ( a , 1 1 , 3 ) W(a, II, 4)
10
10
5
10
c on t i n u ou s
5
10
c on t i n u ou s
9,
7. )
IV
IV ( a ,
c . sy m .
c on t i n u ou s
c on t i n u ou s ; c . s y m .
W ( a, 11 , 5 )
5
10
c on t in u ou s
W(a, II , 6) n
10
10
d i s c on t i n u ou s ; c . s y m .
10
10
W ( a , II , 8 )
10
10
d i s c on t i n u ou 5 ;
( a , II , 9 )
5
10
d i s c on t i n u ou s
W ( a , 12 , 5 ) ( a , 12 , 7 )
2
4
c on t i n u o u s
Z
4
d i s c on t i n u ou s
lV ( a , IV
IV
II,
d i s c on t i n u ou s ; c . s y m . C
.sy m .
97
T a b l e 2 . 2 . Co n t i n u e d .
P e r i od
S t r u c t ur e IV ( a .
13.
2)
12
G l os s
Degree
c on t i n u ou s ; c . s y m .
12
IV ( a .
13 .
6
c on t i n u ou s
13.
3) 4)
3
IV ( a .
6
6
c on t i n u ou s ; c . s y m .
W(a.
13 .
5)
4
4
c on t i n u ou s ; c . s y m .
IV ( a .
13 .
6)
12
13.
7)
12
IV ( a .
12
12
lV ( a .
13.
8
)
4
4
c ont i nuous ; c . s y m .
d i s c on t i n u ou s ; c . s y m . d i s c on t i n u ou s ; c . s y m .
lV ( a .
13.
9)
3
6
IV ( a .
13 ,
10)
6
6
lV ( a .
13 .
11 )
12
12
lV ( a .
14 .
3)
6
6
c on t in u ou s ; c . s y m .
6
6
c on t in u o u s ; c . s y m .
3
6
d i s c on t i n u ou s
IV ( a .
IV ( a ,
IV ( a .
*
14 .
5)
14 ,
9)
14 ,
11)
3
. . . .
D e f i n e d f or 2
d i s c on t i n u ou s ; c . s y m .
6
n .
<
d i s c on t i n u o u s d i s c on t in u ou s ; c . s y ," .
d i s c on t i n u o u s
c . sy m .
i s m e n t i on e d b y L e v i - S t r a u s s
c on s e c u t i v e s y m me t r y
( 1 9 7 0 : 478 , 445 ) .
It can be
e x t e n d e d t o a n y e x c h a n g e s t r u c t ur e IV ( a . n , k ) a s f ol l ow s . L e t -IV ( a . n . k ) b e a n y s t r uc t ur e
of g e n e r a l i z e d
e x c h a n g e . F or s om e n , K i s t h e s e t of i n t eg e r s k s u c h t h a t 1 < k < n . w i t h k a n d n c o pr i me . I f n i s e v e n . t h e n n can 2r
+
be wr i t t e n as n = 2 r .
1 . T h e n IV ( a .
v al ue s
n. k)
If
r
< k
t h en n
=
i s s a i d t o b e c o n t i n u 0 us f or
of k s u c h t h a t 1 < k <
k ( i . e . , f or
n is u n e v en ,
< n),
lV ( a .
r .
F or a l l o t h e r v a l ue s
of
n . k) i s s a i d t o b e
d i s c o n t i nuous .
A n e x c h a n g e c y c l e w i t h a l t er n a t i n g c yc l es , p e r i od
p(k)
=
2 .
e x a m p l e , IV ( a . 8 ,
i .e . , with
i s n o t n e c e s s a r i l y d i s c on t i n u ou s . F or 3),
IV ( a ,
8 , 5 ) an d IV ( a ,
- -- �
f J \.
�
C . :Le
��,
8.
7)
are al l
of
98
p e r i od 2 ,
5 and
wh i le
wh i le W { a , this
on l y
3 2 :: 5 2
i.e . ,
=
7 > 4
7 2 :: 1
::
�n,
5 ) a n d IV ( a ,
8 ,
( m od
h e n ce W ( a , 8,
8 ) , but 3
< 4
=
�n
3 ) i s c on t i n u ou s
8 ,
7 ) a r e d i s c on t i n u ou s , a n d
l a s t s t r u c t ur e e x h i b i t s t h e
pr o pe r t y
of
c on s e c u t i v e s y m m e t r y .
T a b l e 2 . 2 s u m mar iz e s t h e
struc tures
pr o p e r t i e s
of
a l l p os s i b l e
< n < 15 .
of g en e r a l i z e d e x c h a n g e w i t h 2
Fur ther e xa m p l e s c o m b i n a t i on s
may b e a d d e d t o t h i s
o f n an d
l i s t f or
ot h e r
if r e q u i r e d .
k
Gr a p h i c r e p r e s e n t a t i o n s a n d r e d u c e d s t r u c t u r e s
The
pe r h a ps b e b e t t e r v i s u a l i z e d b y r e f e r r i n g of
the
s
p e r m u t a t i on s c a n d of
c
( f ig . 2 . 3 ) .
or d e r
the
n;
or d e r
is of
s
k ) may
t o t h e g r a ph the
s ) g en e r a t e d by
i n f i n i t e g r ou p G { c ,
pe r m u t a t i on
n,
of g e n e r a l i z e d e x c h a n g e W ( a ,
s tr u c t u r e
a cy c l ic is
i n f in i te . ' The
e l e m e n t s 0 , . o f t h e s e t Ob j a r e r e p r e s e n t e d b y s q u a r e s . 1. J C ol u mn s d e n o t e e l e m e n t s O { j ) of t h e p a r t i t i on L i n ; h or i z on t a l pa r t i t i on
p l a n e s r e pr e s e n t e l e me n t s O b j U )
Gen .
y in G ( c ,
an d
pr od u c t
of
i s c o mm u t a t i v e ,
s)
G(c,
s ) , xy
p ow e r s
of
and
yx ,
any
x
of
i .e . ,
may
the
f or a n y x
b e w r i t ten
as
a
c a n d s . W i t h n o f ur t h e r c on s t r a i n t s
e ( c , s ) i s t h e g r o u p un d e r l y i n g t h e e x c h a n g e
i m p osed ,
s t r u c t ur e W ( a ,
n,
1 ) :
a l l e xc h ang e c y c l es
invar ian t
an d i d e n t i c a l
s t r uc t ur e
t h e a s s oc i a t e d g r ou p
t o c . F or
We n ow c h o o s e s ome D b j ( a )
as
i s n ot
w
x
are
other e xchange
any
c om m u t a t i v e .
or i g i n a n d d e f i n e t h e
o n t h e o r i g i n b y "' c . T h e n f or any 0 0 D b j ( a + x ) t h e a s s oc i a t e d e x c h a n g e c y c l e "' is def in ed x w i t h r e s p e c t t o t h e or i g i n b y t h e e q u a t i on kX D .s x ", s X . H e n c e ", i s t h e p r o j e c t i on of t h e 0 ' ( "' ) 0 aJ aJ x x
e x c h an g e c y c l e
"'
=
=
pe r m u t a t i on
c
kX
1d
T h e n VI ( a ,
n ,
with
Obj ( a
w
x
of
each
or d e r
of
0b j ( a )
c on s i s t s +
x)
on t o O b j ( a of
+
x
,
s;
( see f ig .
2.4)
d i s j oin t exc hange cycles ,
c on t a i n i n g e x a c t l y
n . T h e n G ( ",
x)
W)
den otes
on e
p e r mu t a t i on
t h e g r ou p
•
99
O(n-1)
O(n)
10bJ(0)
, ?&- Ci-+ .... :
o
:
.: ,
�. .
NU ·
'
,,; 1
�Ci�! ,
--0. ,_" .�
:
F i g . 2 . 3 . G r a p h of t h e c o m m u t a t i v e g r ou p G ( c , s ) . g e n e r a t or s o f G ( c , r e pr e s e n t
c,
s)
are
s h ow n a s a r r ow s :
d ot t e d a r r ows s .
s ol i d
The a r r olV s
1 00
I
origin Obj (a)
Obl (au)
--...... .. IIoJO..· · ·�
S
x
2 .4 .
.:
;
0
\ ... � r.?- A �o� .. w,� '
I
'"---0 - . . . _ 0
O(j)
Def i n i t i on
of
pr o j e c t i on f r o m O b j ( a )
a s s oc i a t e d w i t h Any W ( a .
n .
on t o s i m p l e r ,
t h e e xc h a n g e c y c l e
364 n . 3 ,
pr od u c t s a n d e x c h an g e p(k)
let
k)
i n te g e r s ( m od
p(k»
n .
k).
s t r uc t ur e s t h a t r e t a i n c e r t a i n
3 65 , 4 1 1 ) .
(cf .
L ev i - S t r a u s s
' R e d u c t i on s '
m a n y - t o - on e ma p p i n g s
s pe c i f i c
pr o p e r t i e s
F or
s om e W ( a ,
of
n,
the k)
t h e e q u i v a l e n c e r e l a t i on
p i n d uc e s
t h r ee r e l a t e d
1 97 0 :
are e s s en t i a l l y
that
pr e s e r v e or i g i n a l with
pe r i od
p a r t i t i on i n g
i n t o e q u i v a lence c l as s e s d e f i n e d b y .
a
an d i t s r e l a t e d g r o u p c a n b e ma p p e d
s t r uc t ur e . p be
wx a s
t h e e x c h a n g e s t r u c t ur e W ( a .
f e a t u r e s c on s i d e r e d e s s e n t i a l 362 ,
+ x).
on t o O b j ( a
' r e d uc e d '
h o m om or ph i s m s :
N
·
0(j-1)
F ig .
Wo
; -�
Wo
ma p pi n g s :
x
=
of
r
the
t he
101
e l e m e n t s of O b j , integr al
p ow e r s
of t h e e x c h a n g e c y c l e s , a n d s.
of t h e pe r m ut a t i on
r .
L e t r d e n o t e t h e e q u i v a le n c e c l a s s of
{ r I r E; { O ,
1,
•
•
.
,
p(k)-I} }
e q u iv a l en c e c I as se s ,
S
p:
(3)
x
S
+
r
•
in G (
wx '
S I
•
. + 0
. ; ( 2 ) p : w + w ; an d x a +x J a +r J r I n g e n e r a l , s i n c e p pr e s e r v e s t h e
( xy ) p
pr od u c t of p e r mu t a t i on s , y
Then R
al l
i . e . , t h e f a c t or s e t of t h e
i n t e g e r s w i t h r e s pe c t t o p Th en ( 1 ) p : 0
i s t h e s e t of
of t h e
W) .
Un d e r p , t h e p e r m u t a t i on
s
=
�J
�J
x
=
x
and
of i n f i n i t e or d e r i s
r e d u c e d t o a c y c l i ? a l p e r mu t a t i on
f or a n y 0 . . of O b j , O . . s
( x ) p ( y ) p f or a l l
O .
�
+x
of or d e r p ( k ) ,
., J
with i
m od u l o p ( k ) . H e n c e t h e p ( k ) t h s u c c e s s or
i n Ge n i s O b j ( a + r ) i t s e l f .
+
x
i .e . ,
r ed uced
of a n y 0 b j ( a + r )
p d e f i n e s t h e f a c t or s tr u c t ur e or r e d uc e d s t r u c t ur e n ,
W/p(a ,
k)
S I
a n d t h e a s s oc i a t e d f ac t or g r ou p G / p ( w '
x
IV )
of f i n i t e or d e r . G e om e t r i c a l l y , t h e e f f e c t of p i s t o m a p t h e c y l i n d r i c a l r e pr e s e n t a t i on
of t h e e x c h a n g e m od e l o n t o
t h e s u r f a c e of a t or u s b y i d e n t i f y i n g t h e e l e me n t s of m od u l o p ( k )
Gen
•
The effect
of
p i s e q u i v a l e n t t o f i n d i n g t h e f a c t or
s t r u c t u r e s i n d uc e d b y t h e n o r m a l s u b g r o u p N ( s l s p
(k)
e)
of G ( w , S ; W ) . O n e m a y o b t a i n t h e c o m p l e t e s e t of x
r e d uc e d
e x c h a n g e s t r uc t u r e s by c on s i d e r i n g t h e c om p l e t e
s e t o f n or ma l s u b g r ou ps a s s oc i a t e d w i t h a n y W ( a ,
n,
k).
Al t h ou g h t h i s i s a f a i r l y s t r a i g h t f or w ar d e x e r c i s e , i t g oe s b e y on d t h e s c o p e of t h i s c h a p t e r . A s an e x a m pl e , t h e r e d u c e d s t r u c t ur e s i n d u c e d by p f or t h e e x c h a n g e s t r uc t ur e s W ( a , 8 , W(a,
8,
1) ,
W(a, 8,
3),
5 ) a n d W ( a , 8 , 7 ) a r e pr e s e n t e d i n f i g ur e s 2 . 5 ,
2 . 6 , 2 . 7 a n d 2 . 8 ( t h e a s s oc i a t e d k i n s h i p s t r u c t u r e s a r e d i s c u s s e d b e l ow ) . T h e m a t h e m a t i c a l m od e l
of m or e c om p l e x f or mu l a e of
e x c h a n g e i s n ow c om p l e t e . T h e f a m i ly W(a,
n.
k ) i s e s sen t ia l l y
of s t r u c t ur e s
a b a s e on t o w h i c h a v a r i e t y
o f o t h e r a n t h r o p ol og i c a l s t r u c t u r e s m a y b e m a p pe d . On e
102
II
VIII
F F Z DC
F ig .
III
MFZDC FFZSC FZC
Ego Sb
FMB D C MFZSC
2 . 5 . Red uc e d s t r u c t u r e
a s s oc i a t e d w i t h W ( a .
8,
1) .
and
IV
V
FMB S C MMBDC MBC
MM B S C
VI
k in s h i p s t r u c t ur e
VII
103
VIII
FZC
Fig .
2 .6 .
a s s oc i a t e d
FMBDC
Reduced
II
III
IV
V
VI
VII
M F Z DC FFZSC
Ego Sb
FMB S C MMBDC
MF Z S C
MB C
MM B S C FFZDC
struc ture
with W ( a , 8 , 3 ) .
and
kinshi p
s t r u c ture
104
VIII
MBC
Fig .
MMB S C
II
III
IV
V
VI
VII
MFZDC FFZSC
Ego Sb
FMB S C MMBDC
F F Z DC
FZC
FMBDC MF Z S C
2 . 7 . R e d u c e d s t r u c t ur e an d
a s s oc i a t e d w i t h IV ( a , 8 ,
5 ) .
k i n s h i p s t r u c tu r e
10 5
-[ID
�I:m�
[]
s2 = e
�
(§J
'���/ .��- ��@] �rn... rn [i]/
W o
7 W 0
�
II
VIII
MFZSC
Fig .
2 . 8 .
a s s oc i a t e d
III
MFZDC FFZSC MB C
i'l e d u c e d with
Ego
Sb MM B S C FFZDC
structure
W ( a ,
8,
7 ) .
IV
V
FMB SC MMBDC FZC
FMBDC
and
kinsh i p
VI
s tr u c t u r e
VII
106
suc h
ma p p i n g
is
c on s i d e r e d
in
deta i l
in
t he
f o l l ow i n g
s e c t i on .
KINSHIP The to
S T R UC T U R E S
e le g an t
ma t h e ma t i c a l
r e pre s e n t
structures
was an
i n t r od u c e d
t he
set
or
r e pr e se n t t he
f
hm
=
man
of
(x)h
hm.
in
t he
and
f of
a
standard
pate r na l
x
' c la s s '
C ou r r e g e ' s
m od e l
( 1974 ,
L or r a i n
mathe matica l
resu 1t
i m p or t a n t c la s s i c
the
basic
ma r r i e d to
has
of
pe r m u t a t i o n
as
certain
ot h e r
be
s tudied
as
of
m a t h e ma t i c a l
of
descen t
m a t e r na l
that
the
to
' c la s s '
a
e q u a t i on
c h i ld r e n w om a n
(x)f
a
m od i f i e d of
m od e l s
kinshi p
s y s t e ms
is
One
t hat
the
as
we l l
g e n e a l og i c a l s t r u c t u r e s
r e p r e s e n t a t i ons s t ru c t u r e s
of
a
m or e
by
the
f u nc t o r s . es
of
of
'c lass '
« x )h )m. 6
=
terms a nd
of
l' e s e a l' c h
of
f)
m a p p i ng ,
L or r a i n ' s
ty pe s
the
line s ,
f
and
b e e n e x t e n s i v e ly
c a t e g or i e s
m.
g e n e a l og i c a l
the
1975 ) and recast in
t h e or y
the
mapping , w h i le
with
g e ne r a l
h, m
is
a l l oc a t e d
of
' c lasse s ' ,
a s s u m p t i on wh o
t he
pe r m u t a t i on s
m a p pi n g ,
t he
(S. h .
i n t e r p r e t a t i on ,
par t i t i oning
The
C ou r r e g e
c h a pter .
s t r ucture ,
s a t i s f y i ng
S
t he
c on j u g a l
m od e l s
be
by
kinsh i p
p r e v i ou s
s e t - t h e or e t i c
Unde r
.g r ou p s . t he
will
c on s t r u c t e d
e le me n t a r y
i n t o n o n - ov e r l a p p i n g
sib ling
and
a
r e pr e s e n t s
S
n e t w or k
=
f
as
h. m
permu t a t i ons
E X C HA N G E
e l e me n t a r y k i n s h i p s t r u c t ur e
re presented
e qu a t i o n
m od e l
Lev i - S t r a u s s ' s
B a s i c a l ly , is
AND GENERALIZED
g e ne r a l
may
c lass
q u a s i - h o m o gen e o u s
t e r me d
s p a c e s . ' I t i s a t e m p t i n g s pe c u l a t i on t h a t f u r t h e r research
a l on g
t he or e t i c a l t he
t he s e
f r a me w or k
C ou r r e g e - t y p e
p r i n c i p le s
a nd
F or
f or
k in s h i p
m a r r- i a g e
t r a n s f o r m a t i on a l kinshi p
l i ne s
m od e ls
might a
p r ov i d e
d i r- e c t
m od e l s
r u le s )
a
unitary
c om p a r i s o n
( a r t i c u la t i n g
with
g e n e r- a t i n g
t he t he
of ,
L ou n s b u r- y - t y pe s truc ture
t e r m i n o l og i e s . e x a m p le ,
pr ov i d e d
in
under
Chapter
1,
t he t he
standard
i n t e r p r e t a t i on
g e n e a l og i c a l
say ,
d e sce n t
ne t w o r k s
of
107
u n d e r l y i ng C ou r r e g e ' s r e g u l a r k i n s h i p s t r u c t u r e s a r e a s s umed
t o be reduced acc ord i n g
( a ) s a me - s e x
s i b l i n g s a nd
t o t w o p r i n c i p le s :
p a r a l le l c ou s i n s
are
c on s i d e r e d s t r u c t u r a l l y e q u i v a l e n t a n d h e n c e a r e d i s t i n g u i s h e d f r om e a c h pr e s c r i p t i on ,
i .e . ,
if
ot h e r , two
and
(b)
p e r s on s
a r e s t r u c t u r a l l y e qu i v a le n t ,
then
ma r r i a g e
o f t h e s a me s e x t h e i r s p ou s e s a r e
a l s o c o n s i d e r e d s t r u c t u r a l l y e qu i v a l e n t . n e t w or k r e d u c e d a c c or d i n g g r a p h i c a l ly
re p r e s e n t e d
N ow , f or a l l i mp l i e d the
by
r u le '
by
t o t he s e
a pp l i c a t i on of
in Cha pter 1 ,
( a ) and
i n c om b i n a t i on w i t h h i s
L ou n s b u r y - t y p e me r g i n g the
(b)
t o a sys tem
t w o f a mi l i e s
of
f or ma l p r i n c i p le s .
' ha lf - s i b l i n g may
of a l g e b r a i c L or r a i n
' f u n c t or i a l '
of
of
s t r u c t u r a l r e d u c t i ons
of me r g i n g
' f u n c t or i a l ' if
one
simi lar
t o be
t a ken up
(a) in
p u r p os e s , h ow e v e r ,
and
(b)
y d oe s
r u le s n ot
r e d u c t i on s of
r e qu i r e s a
t o that wh ich pr o pe r t i e s o f a
a r e u nd u l y r e s t r i c t i v e ,
f o l l ow i n g I employ
C o u r r e g e - L o r r a i n m od e l i n t r od u c e d t a b le
...
r u le s .
I n d e e d , p r i n c i p le s prese n t
i n d i ca ted
t o me r g i n g
( i .e . , X
c a n b e d e r i v e d f r om t h e m or e s pe c i f i c
p oi n t
r e d u c t i on s ,
t h e s a me
r u le s . F u r t h e r d e v e l o p me n t
t h e a l g e b r a i c m od e l s i s n e c e s s a r y
a
on
( 1 9 7 5 : 26 3 - 26 8 ) h a s
o r d e r e d , w h i le
f or m a n u n or d e r e d s e t
s ys t e m
of
... X ) , a n d a s y s t e m of m e r g i n g r u le s i s s o me t i me s
imply Y
h i e ra r c h ic a l ly
range
ru le '
p r od u c e c om pa r a b le
e q u i v a le nc e s d u e
a r e u n i d i r e c t i o n a l , . n o t s y m me t r i c
k i n t y pe s ob t a i n ed
a l t h ou g h a s y s t e m
m o d e l s a r e n ot b a s e d
i m p or t a n t d i f f e r e n c e s :
of
( t op ) . )
' s a me - s e x s i b l i n g
H ow e v e r ,
ru les
is
1.4
f igure
may a ls o b e
L ou n s b ur y ' s
( L ou n s b u r y 1 9 6 4 : 3 6 0 - 3 6 1 ) . resu lts
( ,\ k i n s h i p
p r i n c i p le s
p r a c t i c a l r e a s o n s , t h e me r g i n g
p r i n c i p le s
n ot
c h a pt e r s .
F or
t h e s t a nd a r d
i n C h a pt e r
1
(cf .
1 . 1 ) . T h e u nd e r l y i n g ma t h e ma t i c a l s t r u c t u r e i s
r e g u l a r a n d h o m o g e n e ou s . T h i s e x p r e s s e s t h e f a c t t h a t n o n od e
i n t h e r e d u c e d g e n e a l og i c a l ne t w o r k i s
pr i v i le g e d w i t h r e s p e c t t o a n y
ot h e r
S i n t e r m s o f k i n s h i p r e l a t i on s .
of
t h e e le m e n t s o f
1 08
T h e s t r uc t u r e
of g e n e r a l i z e d e x c h a n g e W ( a . n . k ) c an
b e c om b i n e d w i t h t h e C ou r r � g e - L or r a i n m od e l
of a n
(h. m.
e l e me n t a r y k i n s h i p s t r u c t u r e d e n o t e d b y
f) in tw o
s t e ps : 1 . Let O
�J .
t h e e l e me n t s
. •
which W ( a . n.
k)
of t h e i n f i n i t e s e t � b } on
i s d e f i n e d . b e i d e n t i f i e d a s n od e s i n
t h e r e d u c e d k i n s h i p n e t 1'1 or k S of 2.
( h.
L e t t h e s e t of e x c h a n g e c y c l e s
identif ied with h.
m.
f).
"'x;
of W ( a . n . k ) b e
t h e c on j ug a l m a p p i n g r e l a t i n g h u s b a n d
t o w i f e . Un i l i n e a l d e s c e n t r u l e s a r e s p e c i f i e d b y iden t i f y ing e i t h e r t h e matr i l i n e al ma p p i n g w i t h s . He n c e M ( h
x
•
s.
o r t h e pa t r i l i n e a l
t h e s u c c e s s or ma p p i n g d e f i n e d o n D b } .
f ) w i t h f = h s i s t h e m a t r i l i n ea l
k i n s h i p s t r u c t u r e a n d P .( h
x
•
x
s) with
m.
p a t r i l i n e a l k i n s h i p s t r u c t ur e ,
s
=
h m the x
b ot h i n d u c e d b y t h e
e x c h a n g e s t r uc t ur e W ( a . n . k ) . T h e ma p p i n g . e s s e n t i a l l y a n i s om or p h i s m f r om 'I1 { a . n . on t o ( h .
m.
k)
f ) . pr e s e r v e s t h e p r od u c t o f r e l a t i on s a n d
t h e r e g ul a r s t r u c t ur e of W ( a .
k) . Features
of t h e
e x c h a n g e s t r uc t ur e c or r e s p on d o w i t h p r o p e r t i e s
of t h e
k i n s h i p m od e l . F or e x a m pl e ,
n.
t h e p a r t i t i on Gen of t h e s e t
�b } ma y b e i n t e r pr e t e d a s a c l a s s i f i c a t i on of t h e n od e s of t h e k i n s h i p n e t w or k i n t o d i s c r e t e g e n e r a t i on l e v e l s . F or ma t r i l i n e a l
( r e s pe c t i v e l y , p a t r i l i n e a l ) s t r u c t ur e s
t h e pa r t i t i on L i n of � b } r e pr e s e n t s t h e n m a t r i l i n e s of t h e k i n s h i p m od e l .
( pa tr i - )
T h e f or ma l c on c e p t of
c on t i n u i t y c or r e s p on d s t o a s y s t e m of un i d i r e c t i on a l ma r r i a g e e x c h an g e s . C on v e r s e l y ,
i n d i s c on t i n u o u s
s t r uc t ur e s t h e d i r e c t i on o f t he e x c h a n g e c y c l e v ar i e s f r om g e n e r a t i on t o g e n e r a t i on . I n k i n s h i p s t r uc t ur e s w h i c h e x h i b i t c on s e c u t i v e s y mm e t r y ,
t h e s a me l i n e i s
b o t h w i f e - g i v e r an d w i f e - t a k e r t o m e n i n e g o ' s o w n l i n e in d if f e r en t
( n o t n e c e s s a r i l y a l t e r n a t i n g ) g e n e r a t i on s .
H os t i m p or t a n t ,
t h e r e c ur s i v e d e f i n i t i on of e x c h a n g e
p r ov i d e s a s i m p l e f or m u l a f or d e s c r i b i n g m a r r i ag e s i n t e r ms of t h e al l i a n c e s t h a t h av e t a k e n p l a c e i n p r e c e d i n g g e n e r a t i on s . He n c e t h e g l o b a l e x c h a n g e
109
s t r u c t ur e c a n
effectively
be g e n e r a t e d by a pp l y in g a
d e f i n ed mar r i ag e
r e c ur s i v e l y
r ul
e,
phr a s e d i n t e r ms
of
l o c a l c o n s t r a i n t s a n d p os s i b i l i t i e s . T h e ma pp in g
e l e me n t s O b j ( j )
the
of
of
Ge n on t o
g e n e r a t i o n l e v e l s i s d e f i n e d r e l a t i v e t o s om e e g 0 i n O Henc e C +2 Ob j ( -2 ) , c + 1 g e n e r a t i on c by C - j Ob j { j ) O Ob j ( 0 ) , c 1 = O b j ( +l l , e t c . A s a Ob j ( - l l , C =
c on s e q u e n c e , w h e n
on e i s c om p a r i n g t h e a l l oc a t i on
k i n t y p e s t o n od e s a n d
v
=
•
=
=
i e w of
eg o a n d ,
s ome
o f t h e g en er a t in g
desc en t
say ,
l i n e s f r om t h e
h i s s i s t e r ' s s on ,
s t r uc t ur e
must
f r om
p oi n t
the
i s n ow
IV ( a - I ,
and
the
n,
k).
of
or i g i n
n,
k).
v i e w of t h e s i s t e r ' s s on ,
of
w h o i s s i t u a t e d i n t h e f ol l ow i n g h a s r ec ed e d ,
the
s ui ta b l y ada pted .
be
E g o ' S k i n s h i p n e t w or k i s g e n e r a t e d b y W ( a , C on s i d e r e d
of
p o in t
g en
e r a t i on ,
t h e or i g i n
c or r e s p on d i n g g e n e r a t i n g
s t r u c t ur e
T h e p a t r i l i n e a l k i n s h i p s t r u c t u r e s a s s oc i a t e d w i t h t h e e x c h a n g e s tr uc t ur e s lV ( a , 8 , 1 ) , W ( a , 8 , 3 ) , W ( a , 8 , 5 ) and W ( a , 8 , 7 ) n umer al s
ar e
identify
s h o w n i n f i g u r e s 2 . 5 - 2 . 8 . R om a n (I
patr i li n e s
0( 1 ) , I I
=
=
I n t h e s e f ou r e x a m p l e s t h e or i g i n O b j ( a ) i s t h e C + z l ev e l , w i t h e xc h an g e c y c l e W o
l in e I I I in
n
od e
=
c .
sit
etc . ) .
ua t e d a t
Eg o i s in
t y pe s r e l a t i v e
0 0 3 , Al l k i n
0(2 ) ,
t o eg o c a n
b e d e r i v e d b y a p p l y i n g t h e c omp os i t e m a p p i n g s d e s c r i b e d e ar l i e r . F or e x a m p l e , t a k i n g g e n e r a t e d b y \v ( - 2 ,
8,
3)
( f ig .
)[- lh [ = ( 0 )S- lW S l 03 1 03 O g e n e r a t i on C and l ine V I . (0
=
p a t r i l i n e a l s t r u c t ur e
2 .6 ) ,
MBC :
(0
03
) m - 1[
( 0 0 3 ) c 3 = 0 06 , i . e . , i n
=
In l i k e man n er , al l C O k i n
t y p e s h a v e b e e n a l l oc a t e d t o 2 .5
the
t he
s t r u c t ur e s
of
f ig ur e s
- 2 .8. F ig ur e s 2 . 5 a n d 2 . 8 r e p r e s e nt t w o el emen t a r y
w h i c h h a v e b e e n t h e s u b j e c t of s o me of t h e m a j or
s t r u c t ur e s
t h e or e t i c a l d i s c u s s i on s i n a n t h r o p ol og y d ur i n g t h e l a s t
h a l f -c e n t ur y : g e n e r a l i z e d e x c h an g e
s
t r uc t ur e s w i t h
m a t r i l a t e r a l a n d p a t r i l a t e r a l c r o s s - c ou s i n m a r r i a g e . T h e
l i t e r a t u r e o n u n i l a t e r a l c r o s s - c ou s i n m a r r i a g e i s
e x t e n s i v e , a n d t h e f or m a l
p r o pe r t i e s o f b o t h t y p e s of
1 10
exchange structure are T h e s tudy
pr e s um e d t o b e c om m on k n ow le d g e .
of a l l i a n c e s t r u c t u r e s h a s b e e n m u d d l e d b y
t h e e x i s t e n c e o f n u me r ou s a n a ly s e s b a s e d o n c on f l i c t i n g a n d pa r t i a l ly i n c o m m e n s u r a b le t h e or e t ic a l a s s u m p t i on s . F or e x a m p le , s y s t e m s w i t h e x c lu s i v e m a t r i la t e r a l c r os s c ou s i n m a r r i a g e h a v e b e e n g l os s e d a s s t r u c tu r e s i n w h i c h (1)
' a m a n ma r r i e s
( or s h ou ld m a r r y ) h i s M B D ' , i . e . , a
p a r t i c u l a r g e n e a l og i c a l ly d e f i n e d r e l a t i on ;
(2)
' ther e
i s on e s pe c i f i c g r ou p ( or m ar r i a g e c la s s , c la n , l i n e a g e , l oc a l ! l n e , e t c . ) I I f r om w h i c h m e n
of g r ou p I I I ob t a i n
t h e i r s p ou s e s ; c on v e r s e l y , g r ou p I I I
(cf . f ig . 2 . 5 )
i n v a r i a b ly g i v e s w om e n t o g r ou p I V ' ;
(3)
' a m a n ma r r i e s
( or s h ou ld m a r r y ) a w om a n o f a p a r t i c u l a r s oc i a l c a t e g o r y or s t a t u s
( n ot e x c lu s i v e l y o r n e c e s s a r i ly d e t e r m i n e d b y
k i n s h i p ) d e n o t e d b y a p a r t i c u l a r r e l a t i on s h i p t e r m ' . A n y
of
t he s e p os i t i o n s m a y b e a m e n d e d b y d e f i n i n g m a r r i a g e
p os s i b i l i t i e s w i t h r e s pe c t t o f e m a l e e g o or b y f or m u l a t i n g a d d i t i on a l pr o h i b i t i on s o r n e g a t i v e r u le s . T h e f or ma l m a t h e ma t i c a l m od e l d e v e l o pe d h e r e i s c o m pa t i b le w i t h t h e or i e s pr e d i c a t e d e i t h e r o n t h e e x c h a n g e o f s p ou s e s b e tw e e n s oc i o l og i c a l g r ou ps
or
c a t e g or i e s , or w i t h
k in - d e f i n e d m a r r i a g e r u le s . T h e m od e l m a y b e u s e d t o r e pr e s e n t t h e s t r u c t u r e o f a c t u a l a l l i a n c e n e t w or k s , t h e p a r t i C i p a n t s ' m a r r i a g e i d e o l og y , o r t h e t h e or e t i c a l c on s t r u c t s of a n t h r 0 p o l og i s t s
•
M a r r i a g e r u le s e x pr e s s e d i n k i n t y p e n o t a t i on c a n a l s o b e d e f i n e d i n t e r m s o f w i f e - g i v e r s or w i f e - t a k e r s of ego ' s in
a
g r ou p o r l i n e . T h u s a H B D - ma r r i a g e r u le h o ld s
s y s t em
g e n e r a t i on i
or g a n i z e d s o t h a t
+
the w i f e -g iv e r s
in any
1 a r e t h e s a me a s i n t h e p r e c e d i n g
g e n e r a t i on , e . g . , w g ( i
+
1)
=
wg ( i ) . A s y s t e m w i t h
( ith ) a
F Z D - m a r r i a g e r u le i m p l i e s t h a t t h e w i f e - g i v e r s i n
g e n e r a t i on i + 1 a r e i d e n t i c a l t o t h e w i f e - t a k e r s i n t h e prec e d in g
( i t h ) g e n e r a t i on , e . g
.
,
wg
(i
+
1)
"
wt ( i ) and
t h e e x c h an g e c y c le s a r e c om p le t e ly r e v e r s e d i n c on s e c u t i v e g e n e r a t i on s
•
T h e a l t e r n a t i ng g e n e r a t i on s t r u c t u r e s
of f i g u r e s 2 . 6
111
and 2 . 7
b ot h s pe c i f y m a r r i a g e w i t h m a l e e g o ' s
F M 8 S D ) . M or e ov e r , l i n e s i n
( s t r u c t u r a l l y e q u i v a le n t t o b ot h s t r u c t u r e s a r e w i f e - t ak ing
linked
t o t w o w i f e -g iv in g
and
tw o
l i n e s . H ow e v e r , t h e e x c h a n g e r u l e e x p r e s s e d
i n f i g u r e 2 . 6 i s r e c u r s i v e ly d e f i n e d a n d t he
wg 3 ( i l
MMBDD
wg ( i
as
s t r u c t u r e i s c o n t i n u ou s .
f i g u r e 2 . 7 d e p i c t s a s t r u c t u r e f or w h i c h w t 3 ( i ) a n d t h e f l ow
of
+ 1)
=
I n c on t r a s t , +
wg ( i
1)
=
s p o u s e s c h a n g e s d i r e c t i on w h e n
c on s e c u t i v e c y c l e s a r e c om p a r e d . K i n s h i p t e r m i n o l og i e s h a v e t r a d i t i on a l l y b e e n c h a r a c t e r i z e d b y c l a s s i f y i n g f i r s t c o u s in s a s ' p a r a l le l '
A number
or
been made
t o e x t e n d t h e c r os s / p a r a l l e l d i s t i n c t i o n b e y on d
t he r a n g e
I ma k e u se
kin .
of
of
' c r os s '
a t t empts h a v e
o f c l os e
r e la t ive s .
Sc h e f f l e r ' s
I r oq u o i s a n d
D r a v i d i a n c r os s / pa r a l l e l e x t e n s i on s a s a d i a g n os t i c feature
of
t.h e e q u i v a l e n c e c l a s s s t r u c t u r e
d i f f e r e n t e x c h a n g e m od e l s
on
induced b y the
t h e g e n e a l og i c a l g r i d : 8
1 . A G O k i n t y pe i s I r o q u o i s - c r o s s i f t h e l i n k i n g k i n +1 ( pa r e n t s o f e g o a n d a l t e r ) a r e of t h e o p p os i t e
at G sex ;
i t i s I r o q u o i s - par a l l e l .
otherwise
2 . A G O k i n t y pe i s D r a v i d i a n - c r o s s i f e i t h e r t h e
link ing
sib ling
kin a t G + 1 pa i r
at
b u t n ot b o t h , a r e t y pe
is
( e g o ' s and a lt e r ' s
is g iven
Ir o q u o i s
or
t he
of
t he
o p p os i t e s e x ;
ot h e r w i s e t h e k i n
Dr a v i d i a n - pa r a l l e l .
T h e c l a s s i f i c a t i on t y pe s
pa r e n t s )
G +2 ( e g o ' s and a l ter ' s g r an d pa r e n t s ) ,
of a l l f i r s t- a n d s e c o n d - c ou s i n k i n
i n t a b le
is
2 . 3 . A k i n s h i p s t r uc t u r e
( Dr a v i d i a n l - c o m p a t i b l e i f
and
only
if cr oss
kin
t y p e s a r e me r g e d w i t h c r o s s a n d p a r a l l e l k in t y pe s w i t h p a r a l le l . F or e x a m p le , t h e f ou r k i n s h i p s t r u c t u r e s f ig u r e s 2 . 5
O
k i n t y pe s ,
but
on ly
t he
structures
of
r e s pe c t
to G
f ig u r e s
2 . 6 a n d 2 . 7 a r e a l s o I r oq u o i s - c o m p a t i b l e .
W h e n t h e d e f i n i t i on s a n d t h e or e m s d e r i v e d sec t i ons are
of
- 2 . 8 a r e a l l D r a v i d i a n - c om p a t i b l e w i t h
in
a p p l i e d t o t h e e xc ha n g e s tr uc t u r e s
p r e c e d i ng of
t a b le
2 . 2 , t h e c om p l e t e f a m i l y o f k i n s h i p m od e ls w i t h g e n e r a l i z e d e x c h an g e and
le s s
t han f i f te e n
lines
is
ob t a i n e d .
The
112
T a b le 2 . 3 . C r o s s / p a r a l l e l c l a s s i f i c a t i on
CO kin type
)
Drav idian
I r oq u o i s
MF Z SC
II
M F Z DC
X
MMBSC
II
�l f� B D C
X
II
"Be
X
X
X
II X
Sb
II
II
F ZC
X
X
X
II
F F Z SC F F Z DC
X
II
II
FMBSC
X
F f.t B DC
II
r�F B S C
X
X
MF B DC M M Z SC
II
II
X
X
M �1 Z D <:
II
II
II
II
r� Z C
X
II
F BC
F F B SC
of k i n t y pe s .
II
II
II
F F B DC
X
F M Z SC
II
II
F M Z DC
X
X
X
N ot e : Ad a p t e d f r om Sc h e f f l e r
( 1971 ) .
r e s u l t s a r e g i v e n in t a b le 2 . 4 . Pa t r i l i ne a l d e s c e n t i s a s s u me d a n d f or p u r p os e s of c om pa r i s on m a l e e g o i s c on s i s t e n t ly s i t u a t e d i n l i n e I I I . A r r ow s p o i n t f r om husband t o wife t h e f l ow
( r e v e r s i n g t h e m g i v e s t he d i r e c t i on of
of w o m e n ) . T h e
p e r i od of e a c h k i n s h i p s t r u c t u r e
113
( i . e . , t h e n u mb e r
of g e ne r a t i on s i n w h i c h t h e o r i g i n a l
e x c h a n g e c yc le i s r e n e w e d ) i s l i s t e d , t og e t h e r w i t h t h e w i f e -g i v e r s a n d w i f e - t a k e r s o f l i n e I I I , t h e e x c h a n g e
r u I e , a l i s t o f k i n t y p e s m e r g e d w i t h e g 0 ' s s p ou s e , a n d O c r os s / p a r a l l e l c om pa t i b i l i t y . O t h e r
t h e t y pe o f G
pr o pe r t i e s o f t h e k i n s h i p s t r u c t u r e - d e g r e e , c on t i n u i t y o f e x c h a n g e , c on s e c u t i v e s y m me t r y - h a v e a lr e a d y b e e n s u m ma r i z e d i n t a b l e 2 . 2 . T o sum u p :
O n ly t h e f i r s t t w o s t r u c t u r e s a l l o w
(l)
u n i la t e r a l f i r s t - c ou s i n m a r r i a g e F Z D ) . T h e s e a r e tw
0
( w i t h M B D , r e s pe c t i v e ly
of t h e e le m e n t a r y s t r u c t u r e s ( 2 ) Ex pan d i n g t he
d e s c r i b e d b y Le v i - St r a u s s a n d o t h e r s . c y c le number
of g e n e r a lized e x c h a ng e
( i . e . , i nc r e a s i n g
of e x c h a n g e u n i t s or d e s c e n t
n e c e s s a r i ly r e s u l t
n ,
t he
l i n e s ) w i l l n ot
in a c or r e s p on d i n g i n c r e a s e i n a
s t r u c t u r e ' s pe r i od .
( 3 ) F or e x c h a n g e c y c le s
of
le n g t h
g r e a t e r t h a n e ig h t , m a r r i a g e w i t h r e l a t iv e s s t r u c t u r a l ly d i s t i n g u i s h e d f r om b ot h f i r s t a n d s e c on d c ou s i n s b e c ome s p os s i b le . H ow e v e r , t h e r e i s n o s i m p le r e la t i on s h i p b e t w e e n t h e n u m b e r of d e s c e n t l i n e s a n d t h e v ar i ou s t y pe s o f s e c on d - c ou s i n m a r r i a g e .
( 4 ) A m a r r i a g e r u le
( d e f i n e d e i t h e r i n g e n e a l og i c a l t e r m s
or b y r e f e r e n c e t o
w i f e - g i v e r s a n d w i f e - t a k e r s ) i s n ot a lw a y s a s u f f i c i e n t c r i t e r i on f or e s t ab l i s h i n g u n i q u e s t r u c t u r e s . F or e x a m p Ie , f ou r s t r u c t u r e s i n t a b Ie 2 . 4 h a v e
' FF ZDD
ma r r i a g e ' , a n d t h e r e a r e f i v e i n w h i c h t he w i f e - g i v e r s of t h e w i f e - g i v e r s i n a pr e v i ou s e x c h a n g e c y c le p r ov i d e a s p o u s e f or ma le e g o ( i . e . , wg U + l ) m a r r i a g e r u le i s
o n ly on e
=
wg 2 ( i » .
A
of t h e r e l e v a n t s t r u c t u r a l
f e a t u r e s w h i c h , i n d i f f e r e n t c om b i n a t i on s , a c c ou n t f or t h e v a r i a t i on b e t w e e n t h e m od e l s .
( 5 ) F i n a l ly , t h e r e
is
n o d i r e c t a s s oc i a t i on b e t w e e n I r oq u o i s or D r a v i d i a n c om pa t i b i l i t y a n d s t ructure
o t h e r f e a t u r e s of
the k i n s h i p
( d e s c e n t , m a r r i a g e r u le , p e r i od i C i t y , e t c . ) .
O n l y t h e f i r s t t w o s t r u c t u r e s a r e c o n s i s te n t ly Dr a v i d i a n c om pa t i b le
( f or a n y n u mb e r
W i t h t h e e x c e p t i on
of l i n e s g r e a t e r t h a n t h r e e ) .
of t h e e le m e n t a r y s t r u c t u r e w i t h
1 14
T a b l e 2 . 4 . K i n s h i p s t r u c t u r e s w i t h g e ne r a l i zed e x c h a n g e . Exchange cycles
Genera ting Period
s tructure
1
II
n , n -1 )
2
II,
W (a ,
5,
2)
4
II ,
I,
IV ,
IV (a ,
5,
3)
4
II ,
V,
IV ,
IV (a ,
7, Z)
3
II,
I,
VI
W (a ,
7,
3)
6
W (a ,
n,
W (a ,
1)
=>
VII , VI ,
V I
4)
3
II ,
VI ,
IV (a ,
7,
5 )
6
II ,
V,
VI ,
IV ,
I,
VII
IV ,
II
V
=>
III
=>
IV,
V,
II,
I
I
=>
III
=
IV ,
I,
II ,
V
> III
=
>
IV ,
IV,
VI,
II,
VII ,
I
IV ,
VII ,
V
8,
3)
2
II,
VIII
IV (a ,
8,
5)
2
II ,
VI
IV ( a ,
9, 2)
6
II,
I,
VIII ,
IV ,
V,
VII
9, 4)
3
II ,
VIII ,
5)
6
IV (a ,
9,
7)
II ,
VII , VIII ,
3
II ,
V,
VIII
IV ,
9,
IV (a ,
10,
3)
4
II,
X,
IV (a ,
10 ,
7)
4
II ,
VI,
=>
=>
III
=>
> III
=>
> III
=
=>
IV ,
IV (a ,
III
=
=
V
V, I
IV ,
X
I,
VII , VI
>
IV ,
VI
IV,
VIII
IV,
V,
VII ,
II ,
I,
VIII
IV ,
VII ,
IV ,
V II I ,
II,
VII ,
>
IV,
I ,
=>
IV ,
VI ,
=
IV ,
X,
> III
=
>
=>
III
=>
=>
III
=>
III
> III
=
V,
V,
>
=>
VII
II ,
=
> III
V,
IV ,
III
=
VI
>
=>
=
IV (a ,
,
IV
>
=
7,
=> =
I
II, IV ,
III
Wife-givers
=> I I I
IV
IV (a ,
IV (a
Male ego
Wife-takers
=
>
I
I, V
Vll
II,
II ,
X
VI
1 15
C r os s / p a r a l le l E x c h a n ge
wg ( i +l )
wg( i )
MBD ,
wt ( i )
FZD
,
F M BS D
MMBDD ,
( F F Z D D f or w g ( i +1 )
with
S pouse me r g e d
r u Ie
= 3)
n
MMBDD , F MBSD
( M F Z S D f or
n
=
3)
c om pa t i b i l i t y Dr a v i d i a n ( f or
n > 3)
Dr a v idian ( f or
n > 3)
wg ( i +l )
wg 2 ( i )
FMBDD , F F ZSD ,
wg ( i + l )
wt 2 ( i )
�1 �1 B S D , F F Z S D , H F Z D D
wg { i +l )
wg 2 ( i )
FFZDD
w g { i +1 )
wg
3
(
i)
MF Z S D
I r oqu oi s
w g U +l )
wt
3
(i)
F F Z DD
I r o q u oi s
w g U +1 )
wt 2 ( i )
MF Z S D
wg ( i +1 )
wg 3 ( i )
H i1 B D D , F M d S D
w g U +1 )
wt
wg ( i + 1 )
wg2 ( i )
3
(i)
�1 11 B D D ,
�I F Z D D
I r oq u o i s
and
I r oq u o i s
and
Dravid ian
F i'H 3 S D
Dr a v i d i a n no first
or
s e c on d
or
s e c ond
Ir oqu oi s
or
sec ond
I r o q u oi s
or
second
c ou s i n
w g ( i +1 )
wg " ( i )
no first c ou s i n
wg ( i + l l
wt " ( i )
wg ( i + l )
wt
wg ( i + l )
wg 3 ( i )
w g ( i +l )
wt
2
(i)
no f irst
C
ous in
no f irst cous i n
3
(i )
F F Z S D , MF Z D D FFZSD ,
I r oqu ois
and
Dravidian
MF Z D D
I r oq u o i s Dr a v i d i a n
and
116
T a b l e 2 . 4 ( co n t i n u e d ) . Exchange cycles
Generating st ructure
Period
Wife- takers
Male ego
Wife-givers
W(a,
11, 2)
10
W(a ,
11,
3)
5
II , XI, V, IX, X
=> III =>
I V , VI , I , V I I I , VII
W(a,
11, 4)
5
II, X, IX, V , XI
= > I I I =>
IV , VII , VI I I , I , VI
W(a ,
11,
5)
5
I I , IX , XI , X, V
= > I I I =>
I V , VII I , VI , VII, I
W(a ,
11, 6)
10
II , VIII , Xl , = > I I I => VII , V , IV , IX, VI, X, I
I V , IX , VI , X, I , II, VII I , X I , VII , V
W(a ,
11,
7)
10
II , VII , IX, => III => I , XI , I V , X , VII I , V , VI
I V , X , VIII , V , VI, II , VII , IX , I , XI
W(a ,
11,
8)
10
II, VI, V, VIII , X , IV , = > I I I = > X I , I , I X , VII
IV, XI , I , I X , VII , II , VI , V , V I I I , X
W(a ,
11, 9)
5
I I , V, X , Xl , IX
= > I I I =>
I V , I , VI I , VI, VIII
I I , I , X , VI , => I X , IV , V , VII , X I , VIII
III
=>
I V , V , VII , X I , VIII , II , I , X , V I , IX
W(a , 12,
5)
2
II, X
= > III = >
IV, VIII
W(a,
12,
7)
2
II , VIII
=> III =>
IV, X
W(a ,
13 , 2 )
12
I I , I , XII , V I I I , XIII , X , = > I I I = > IV , V , VII , Xl , V I , IX
I V , V , VII , X I , VI , I X , I I , I , XI I , V I I I , XII I , X
W(a ,
13,
3
I I , X I I I , VII => I I I =>
IV , VI , X I I
3)
117
C r os s / p a r a l Ie I
5 p ou s e m e r g e d w i t h
E x c h a n g e r u le w g ( i +l )
=
wg 2 ( i )
n o f ir s t
c om pa t i b i l i t Y
or s e c on d
c ou s i n wg ( i +l )
wg 3 ( i )
F HB D D
w g ( i +l )
wg 4 ( i )
MMBSD
w g ( i +l )
wg 5 ( i )
w g ( i +l )
wt
5
I r oqu o i s a n d " Dr a v i d i an I r oqu o i s a n d
Drav i d ian
n o f i r s t o r s e c ond
I r oq u o i s
c ou s i n ( i)
n o f ir s t o r s e c o n d
I r oqu o i s
c ou s i n wg ( i +1 )
wg C i +l )
wt 4 ( i )
wt
3
( i)
FMBDD
I r oq u o i s a n d Dr a v i d i an I r oqu o i s a n d
MMBSD
D r a v i d i an wg ( i + 1 ) wg ( i +l ) w g C i +l )
wt 2 ( i ) wg S ( i ) wt
5
no first
or s e c on d
c ou s i n M M B D D , F MB S D
I r oq u o i s a n d Dravidian
(i)
M M B D D , F MB S D
I r oqu oi s
and
Dr a v i d i a n wg ( i +l )
wg2 ( i )
n o f ir s t
or s e c o n d
c ou s i n
I r oq u o i s a n d Drav idian
118
( c on t i n ue d ) .
Table 2 . 4
Exchange cyc l e s
Generating s tructure
Period
W(a,
13, 4)
6
W( a ,
13 ,
5)
4
W(a,
13, 6)
12
W(a,
13, 7)
12
W(a,
13, 8)
W(a,
13 ,
W(a,
W(a,
Male ego
Wife-takers
I I , X I I , XI I I , => = > III IV , V I I , V I
Wife- givers I V , V I I , VI , I I , XII , XIII
I I , XI , IV , V I I I
=> III =>
I V , VI I I , I I , XI
II, X, VI , VIII, VII , I , IV , I X , V I I I , XI , X I I , V
=>
III =>
I V , IX , V I I I , X I , XII , V , II , X, VI, VIII , VII , I
I I , IX , V I , XI , V I I , V , I V , X , XIII , VI I I , X I I , I
=> I I I =>
IV , X , V I I I , VIII , XII , I , I I , IX, VI, X I , VII , V
4
I I , VIII , IV , X I
=> III
=
>
IV , XI , I I , VIII
9)
3
II , VII , XIII
=>
III
=
>
IV , XI I , V I
13,
10)
6
I I , V I , VII , IV , X I I I , X I I
=>
I I I =>
13,
11)
12
I I , V, XII , XI, XIII , IX, IV , I , V I I , V I I I , VI , X
=> I I I = >
IV , X I I I , X I I , I I , VI , V I I IV , I , V I I , VIII , VI , X , II , V, XII , X I , XII I , IX
II , XIV, VIII , = > III => IV , V I , X I I
IV , V I , X I I , I I , XIV , V I I I
6
II, XII, VI, => III IV , V I I I , X IV
IV , V II I , XIV , I I , X I I , VI
9)
3
II , VIII , VI
=>
III = >
IV , X I I , XIV
11)
3
I I , VI , V I I I
=>
III =>
IV , XIV , XII
W ( a , 1 4,
3)
6
W(a ,
14 ,
5)
W(a ,
14 ,
W(a ,
14 ,
=
>
119
Cr os s / pa r a l Ie 1
S p ou s e m e r g e d w i t h
E x c h a n g e r u le
c om pa t i b i l i t Y
I r oq u o i s a n d Drav idian I r oqu o i s a n d Drav id ian wg 6 ( i l
n o f ir s t
or s e c on d
I r oqu o i s
n o f i r s t or s e c on d
Ir oqu o i s
c ou s i n s
w g ( i +I )
wt 6 ( i )
c ou s i n s
w g U +I )
wt s ( i )
F F I S D , MF l D D
Ir oqu ois
and
Drav id ian wg ( i + l )
wt 4 ( i )
FFlDD
w g U +1 )
wt
(i)
1�F I S D
w g ( i +l )
wt 2 ( i )
3
I r oqu o i s a n d Drav i d ian
I r oq U o i s a n d
Drav idian n o f ir s t
or s e c o n d
c ou s i n s
w g ( i +l )
wg 3 U )
n o f ir s t
or s e c on d
c ou s i n s w g ( i +1 )
wgS ( i )
wg U +1 )
wt5 ( i )
wg U +1 )
wt 3 U )
n o f ir s t
or s e c on d
c ou s i n s n o f irst c
c ou s i n s
I r o qu oi s a n d D l' a v i d i a n
or s e c on d
ou s i n s
n o f irs t
I r oq u o i s a n d Dr av i d i a n
or s e c on d
I r oq u o i s a n d
Dr a v i d i a n
I r oqu ois and
D r a v i d i an
120
m a t r' i l a t e r' a l c r' os s -c ou s i n s t r' u c t u r' e s
m a r' r i a g e , n on e
of
t h e k in s h i p
i s s t r' i c t ly t i me - i n v a r' i a n t . T h i s f o l l ow s ,
c ou r' s e , f r' om t h e r' e c u r' s i v e d e f i n i t i on
of
of e x c h a n g e c y c le s
a s a f u n c t i on of t h e
a l l i a n c e s o c c u r' r' i n g i n t h e
g e n e r' a t i on o r' c y c le .
E x c h a n g e c y c le s a r e i n v a r' i a n t i n t h e
s e n s e t h a t t h e y a l l b e l on g t o t h e g r' o u p of of t h e If
i n i t i a l c y c le
kl O = c
a u t o m o r p h i sms
n , k) . 9
of \V ( a ,
on e w i s h e s t o i n t e r' p r' e t t h i s
i n t e r' m s
of
a l l i a n c e s , t h e n m a le e g o a n d h i s s u c c e s s or' s s u c c e e d i n g g e n e r' a t i on s o f t h e s a me d e s c e n t i n t o d i f f e r' e n t r' e c u r' r' i n g
( i . e . , me n i n l i n e ) m a r r' Y
of g e n e r' a t i on s .
H ow e v e r' , a s t h e s t r' u c t u r' e s a r' e h om og e n e ou s , m a r' r' i a g e r' u le s a l l m e n
of e g o ' s d e s c e n t
of t h e s a me t y pe .
a t s ome s t a g e b e f or' e t h e
to the
of
l i n e c on t r' a c t ( an d v ic e v e r s a )
i n i t i a l a l l i a n c e c y c le r e pe a t s .
S t r' u c t u r' e s w i t h c o n t i n u ou s e x c h a n g e , pr' oc e e d s
i n t e r' m s
I n s t r' u c t u r' e s w i t h c on s e c u t i v e
s y mm e t r' y b r i d e - g i v e r' s b e c ome b r' i d e - t a ke r s
exchanges
i n t e r' g r' ou p
l i n e s , w i t h t h e s a me a l l i a n c e c y c le
o n l y a f t e r' a f i n i t e n u m b e r'
m a r' r' i a g e s
p r' e c e d i n g
in r' oug h ly
the
i n w h i c h t h e f l ow
s a me d i r' e c t i on
pr' e v i ou s c y c le ) , m a y b e g l os s e d a s
of
(relative
' m or' e i n v a r' i a n t '
w h e n c om p a r' e d w i t h d i s c on t i n u ou s s t r' u c t u r' e s .
I N T E N D E D A PP L I C A T I O N S A N D E MP I R I C A L C L A I M S I m u s t s t r e s s t h a t t h e c Or' r e s p on d e n c e e s t a b l i s h e d a b ov e b e t w e e n m y e x c h a n g e m od e l a n d t h e C o u r r' � g e - L or' r' a i n m od e l of e le me n t a r y k i n s h i p s t r uc t u r' e s d oe s n ot on l y s e t
o f i n t e n d e d a p p l i c a t i on s .
( 1979 :28 ) , c or e
of
on e m ig h t c la i m t h a t
t h e t h e or' Y
t h e f Or' m a l , m a t h e ma t i c a l
- c h a r' a c t e r' i z e d b y t h e p r e d i c a t e
a s t r u c t ur e o f g e n er a l i z e d e x c h a n g e W ( a , to a
n,
p a r t i c u l a r c u l t u r' a l s y s t e m o r d o m a i n ,
cu l t ur a l s y s t e m s d om a i n s
of
a c e r' t a i n k i n d .
t h e s u c c e s s or
k) '
or
-
' is
a pplies
to a ll
T h e i n d iv i d ua l
of d i f f e r e n t a p p l i c a t i on s m a y
F or e x ample , n ot
p r' ov i d e t h e
P a r' a p h r a s i n g S n e e d
ov e r l a p .
ma p pi n g s mig h t d e s i g n a t e
on l y m a t r i l i n e a l o r p a t r i l i ne a l d e s c e n t , b u t , s a y ,
121
some o r d e r o f p r e ce d e n c e h o l d i n g b e tween s i b l i n g s .
If
m a r ri ag e p o s s i b i l i t ie s a r e a f u n c t i o n o f b i r t h o rd e r ,
the
type of marriage contracted by the f i r s t brother ( or s i s t e r ) c o u l d d e t e r m i n e ( e i t h e r a b s o l u t e l y o r r e cu r s i v el y ) the m a r r i a g e s of succeed i n g s ib l i ng s .
Under such an
i n t e r p r e t a t i o n o f t h e e x c h a n g e mo d e l ,
the e lements of the
p a r t i t i o n G e n o f t h e s e t Obj w o u l d c o r r e s p o n d n o t t o s e p a r a t e g e n e r a t i o n s i n a k i n s h i p n e tw o r k , b u t t o c o n s e c u t i v e e x c h a n g e c y c l e s w i th i n e a c h g e n e r a t i o n .
The
c o - e x i s t ence o f s uch m u l t i p l e m a r r i a ge m o d e l s w i t h cou s i n exchange r u l es based on b i rt h order o f s i b l ings h a s r e ce n t l y b e e n r e p o r t e d f o r t h e B e n g i n I v o r y C o a s t ( Go t t l ieb 1986 ) .
T h e f o r m a l mod e l i s a p o s s i b l e f r am e w o r k
f o r t h e s y s tema t i c a na l y s i s o f b i r th - o r d e r d e pe n d e n t m a r r i ag e s t r a t e g i e s , a t h e m e neg l e ct e d i n a l l i a n ce s t u d i e s . O t h e r po s s i b l e a p p l i c a t i o n s o f t h e e xc h a n g e m o d e l i n c l u d e t h e k ula a n d o t h e r M e l a n e s i a n s y s t e m s I c f . D a m o n 1 9 80 ) , a n d t h e b a s i c s t ru c t u r e o f m a n y o f t h e g i f t r e p r o d u c t i o n s y s t ems d e s c r i bed b y G r e g o r y ( 1 9 8 2 ) . A d o p t i n g t h e S u� p e s - S n e e d - S t e g m u l l e r or
' s tructura l i s t '
theor y - e l eme nt
T =
f) is
t h e sma l l e s t u n i t w h i c h c a n
be u s ed t o f o rmu 1 a t e emp i r i c a 1 c 1a im s . K i s a t h e o r y - e l e m e n t core , w i t h M
model s , M the c l a ss o f mode l s , M poten t i a l models , v i ew ,
the
' n o n - s ta teme n t '
p r o g r a m m e s u mm a r i z e d i n C h a p t e r 1 , a
p pp
=
<11
p
,
M, M
pp
,
C>
the c l a s s of p o t e n t i a l t h e c l a s s o f pa r t i a l
and C the class of constraints . On this
' co n cep t u a l a p p a r a t u s ' K o f t h e t he o ry - e l em e n t
con s i s t s o f c e r t a i n c a t e g o r i e s o f s e t - t h e o r e t i c s t ru c t u r e s t h a t a r e u s e d t o s a y s o me t h i n g a b o u t s o m e a r r a y o f
' t h i n g s ' , t h e c l a s s o f inte n d e d a p p l i ca tio n s f ( S n e e d
1984 : 96 ) .
In genera l ,
f
i s understood to be a
p r a gma t i c a l l y d e t e r m i n e d , o p e n s e t , g r o u n d e d i n a s u b s e t
fO of a
t h e o r y - e l em e n t ' s p a r a d i g m a t i c a l l y s u c c e s s f u l applica t ions . 1 0 F o l l ow i ng t h e mo d i f i c a t i o n s i n t ro d u c e d b y Ba l z e r ( 1983 ) ,
part i a l poten t i a l mode l s are considered as
a r b i t ra ry
' substructures '
o f a t h e o r y - e l e m e n t ' s poten t i a l
122
m od e I s , a n d I i s a s u b s e t o f M 1 0- 1 1 ) :
pp
11
( Sa l z e r 1 9 8 3 :
Thus
i n t e n d e d a p p li c a t i on s a r e r e g a r d e d a s s u b s t r u c t u r e s of p o t e n t i a l m od e ls , t ha t i s , a s ' r e a l s y s t e m s p a r t ly e x h i b i t i n g T ' s c on c e p t s ' . T h e i d e a i s t o t a k e i n t o a c c ou n t on l y t h os e p a r t s of t h e r e a l s y s t e m s t h a t a r e k n ow n , i . e . a c t u a l ly ob s e r v e d , i d e n t i f i e d a n d m e a s u r e d . O t h e r ' pa r t s ' w h i c h e v e n t u a l ly c ou ld b e d e t e r m i n e d b u t ac t u a l ly a r e n ot , d o n o t occ u r i n m e m b e r s of I . A n i n t e n d e d a p p l i c a t i on t hu s d e s c r i b e s or c a p t u r e s t h e k n ow n ' d a t a ' a b ou t s om e s y s t e m . T h e e m pi r i c a l c la i m w e c a n f or mu l a t e w i t h s om e t he or y - e le me n t c or e K a n d a c o r r e s p on d i ng s e t I 5 M p p of i n t e nd e d a p p l i c a t i o n s t h e n s i m p ly s a y s t h a t t h e s u b s t r u c t u r e s i n I a r e i n f a c t ' pa r t s ' ( i . e . s u b s t r u c t u r e s ) o f pr o pe r m od e l s , a n d t h a t t h e s e m od e ls s a t i s f y t he c on s t r a i n t s I n f or ma l ly , t h e em p i r i c a l c la i m of T r e a d s a s f o l l ow s : T h e r e e x i s t s a s e t X o f e x t e n s i o n s o f i n t e nd e d a p p l i c a t i on s s o t h a t X i s a s e t of m od e l s a n d a l s o s a t i s f i e s t h e c o n s t r a i n t s . •
•
•
•
•
•
.
K i n s h i p d a t a c o l le c t e d by a n t h r o p o l og i s t s i n c lu d e a var iety
of
in d i g e n o u s
m od e l s . S u c h
m od e l s a r e of t e n s e l e c t iv e or
' h om e - ma d e '
or
' l oc a l '
p a r t i a l c on s t r u c t i o n s ,
e m b od y i n g o n ly t h o s e s t r u c t u r a l p r i n c i p le s g e n e r a l l y r e c og n i z e d or d e e me d i m p or t a n t by t h e p a r t i c i pa n t s . T he a n t h r o p o l og i s t , i n t e r p o la t i n g c e r t a i n t h e or e t i c a l a s s u m p t i o ns a n d c on s t r a in t s , a t t e m pt s t o f or mu l a t e a m o r e g e n e r a l s e r i e s of e x p la na t o r y c on s t r u c t s . T a k i n g s o m e s pe c i f i c c u l t u r a l s y s t e m a s a n i n t e n d e d a p p l i c a t i on of a f or m a l i z e d k i n s h i p t he or y , t h e f r a g me n t a r y s e l e c t i v e i n f or ma t i on r e p r e s e n t e d b y
or
p a r t i c i pa n t s '
m od e l s i s p o o le d w i t h o t h e r k i n d s of d a t a a n d t h e s e t of pa r t i a l s t r u c t u r a l r e la t i on s d e t e r m i n e d . O n e i s t h e n a b le t o m a k e a n e m p i r i c a l c la i m by
p os i t i n g t he e x i s t e n c e of
s u i t a b l e e x t e n s i on s t o s u c h pa r t i a l d a t a s t r u c t u r e s s o t h a t t h e y t h e n c on s t i t u t e a s e t of
pr o pe r m od e l s w h i c h
a l s o s a t i s f y t he c on s t r a i n t s o f t h e f or m a l i z e d k i n s h i p t h e or y . F r om t h e n on - s t a t e me n t
or s t r u c t u r a l i s t pe r s pe c t i v e ,
t h e s e le c t i o n of r e le v a n t k i n s h i p d a t a i s p a r t i c u la r ly s t r a i g h t f or w a r d : t r a d i t i on a l ly
none
of t h e v ar i ou s t y pe s of d a t a
i d e n t i f i e d b y a n t h r o p o l og i s t s
( c f . K u pe r
123
1 9 8 0 : 2 4- - 2 6 ) a r e s pe c i f i c a l ly e x c lu d e d , a t
le a s t in t h e
f i r s t i n s t an c e . B r o a d l y s p e a k i n g , t h e on ly i m p o r t a n t r e s t r i c t i o n i s t h a t t h e t y pe
of d a t a on e u s e s s h ou ld be
d i r e c t ly a me n a b le t o t h e f or mu l a t i on
of pa r t i a l m od e l s
a s s e t - t he or e t i c s t r u c t u r e s . T h e i n h e r e n t f le x i b i l i t y of t he n on - s t a t e m e n t a p pr o a c h i s i l l u s t r a t e d b y t he f o l l ow i n g e x a m p le . C o n s i d e r t he e x c h a ng e s t r u c t u r e W ( a , 7 , 2 ) . T h e s t a nd a r d k i n s h i p r e pr e s e n t a t i on a n d t he a s s oc i a t e d r e d u c e d s t r u c t u r e a r e g i v e n i n f i g u r e 2 . 9 . A s a pr o pe r m od e l i t d e s c r i b e s a h om og e n e ou s , g l oba l s t r u c t u r e w i t h s e v e n pa t r i li n e s a n d a l l i a n c e s r e pe a t e d i n e v e r y t h i r d g e n e r a t i on . Ma r r i ag e i s w i t h ma le e g o ' s F F Z D D ( m e r g e d w i t h h i s F F M B S S D ) a nd t h e s t r u c t u r e d oe s n ot e x h i b i t c on s e c u t i v e s y m me t r y . H e n c e t he t h r e e w i f e - g i v in g
li n e s
( F F M , M F F , F MF ) a r e d i s t i n c t f r o m t he t h r e e w i f e - t a k i n g l i n e s ( M MF , F M M , HFF ) a n d f r o m e g o ' s own
pa t r i l i n e
(FFF ,
me r g e d w i t h M M M ' s p a t r i l i n e ) . T h e r e c u r s i v e e x c h a n g e r u le i s wg l i +l ) MBW ' s line
i . e . e g o m ar r i e s i n t o h i s O ( h i s f a t h e r ' s w aw ' s l i n e ) . G k i n t y pe s a r e wg2 ( i ) ,
ne i t h e r D r a v i d i a n n or I r oq u o i s c o m pa t i b le
( as d e f i n e d
p r e v i ou s l y ) . I n t e r e s t i n g l y , i s om or p h i c v e r s i o n s
of t h i s s t r u c t u r e
h a v e b e e n pu t f or w a r d b y s e v e r a l a n t h r o p o l og i s t s a s t h e m os t c o n s i s t e n t a n d p ar s i m o n i ou s s c h e m e f or o r g a n i z i n g e n t i r e l y d i f f e r e n t s e t s o f d a t a f r om d i s t i n c t c u l t u r a l s y s t e m s . \V ( a , ( 1982 ,
1983 ,
7,
2)
1 987 )
i s t h e m od e l pr o p os e d b y K u p e r f or t h e T s on g a , a S ou t h e r n B a n t u
pe o p le . T o b e g i n w i t h , t h e g e n e r a l c u l t u r a l f or m u l a f or a l l S ou t h e r n 8 a n t u c u l t u r e s i s s u m ma r i z e d : m u s t f a r m , m e n i d e a l ly k e e p c a t t l e .
( a ) w om e n
( b ) To mar r y a
w i f e a m a n mu s t p a y b r i d e w e a l t h ( l o b o l o ) i n c a t t le . K u p e r t h e n a r g u e s t h a t t h e g e n e r a l e x c h a n g e f or mu l a ( w i v e s f or c a t t l e ) i s s y s t e m a t i c a l l y a d j u s t e d a n d t r a n s f or m e d i n t h e c on t e x t o f d i s t in c t l oc a l c o n d i t i on s . T h e T s on g a a n a ly s i s h i n g e s on t h e a r t i c u la t i on o f t h e l o b o l o e x c h a n g e s y s t e m w i t h t h e w e l l - d oc u me n t e d d a t a on
124
VII
II
I I FFZDC
FZC
III
IV
V
VI
Ego Sb
FMB S C MMB D C MF Z S C
MBC
�n-1 B S C
I
I
MFZDC FFZSC FMB DC
b
125
F ig . 2 . 9 ( o p p os i t e ) . R e d u c e d s t ru c t u r e a n d k i n s h i p s t r u c t u r e a s s oc i a t e d w i t h W ( a , 7 , 2 ) . j ok i n g a n d a v o i d a n c e r e la t i on s h i p s .
I n s u m ( K u pe r
1987 : 1 3 0 , 131 ) : t h e l o b o l o s y s t e m d om i n a t e s T s o n g a s oc i a l r e l a t i on s . t h i s ' Om a h a ' s y s t e m , i t i s t h e d e t e r m i n i n g i n s t i t u t i on i n t h e f i e l d of m a r r i a g e . T h e r u l e w h i c h u n d e r l i e s t h e i n s t i t u t i on i s t h a t l o b o l o b r i n g s a w i f e ; b u t t h e r e i s a n a m b i g u i t y a t i t s h e a r t . W h o p r ov i d e s t h e l o b o l o : a m a n o r h i s s i s t e r ? W h o r e c e i v e s i t : a w om a n ' s b r ot h e r or t h i s b r ot h e r ' s w i f e ' s b r ot h e r ? T h e W B W r e pr e s e n t s t h e u l t i m a t e s u r e t y f or a m a n ' s m a r r i a g e . S h ou l d h i s own ma r r i a g e f a i l , t h en u n le s s he i s g i v e n a s u b s t i t u t e w i f e , or r e c ov e r s h i s b r i d e w e a l t h f r om h i s b r o t h e r - in - la w , h e m a y i n t h e l a s t i n s t a n c e c la i m h i s b r ot h e r - i n - l a w ' s w i f e . C on v e r s e ly , w h e n a w om a n ' s h u s b a n d d i e s s h e m a y b e p a s s e d on t o t h e u l t i m a t e l o b o l o pr ov i d e r , h e r h u s b a n d ' s s i s t e r , a n d d i s p os e d of t o h e r s on T h e l og i c of t h e l o b o l o s y s t e m t h e r e f o r e e x p la i n s b ot h t h e a v o i d a n c e of t h e W B W a n d t� e j ok i n g r e la t i on s h i p w i t h t h e M B a n d M B W . T h e r u l e s a y s t h a t a l o b o l o pa y m e n t b r i n g s a w i f e : b u t t h e r u l e i s a m b i g u ou s , f o r t h e ' s a me ' pa ym e n t m a y ma r r y s e v e r a l w i v e s , o r h a v e s e v e r a l s ou r c e s . T h e c on t r a d i c t i on i s c r y s t a l l i z e d i n t h e r e l a t i on s h i p s w i t h t h e M B W a n d t h e WBW , a n d i t i s r e s olved ( i n t h e w a y t h a t R a d c l if f e B r own e x p l a i n e d ) b y a v o i d a n c e or j ok i n g . •
.
•
In
.
.
•
.
.
.
•
A l t h ou g h f r a g me n t a r y , t h e e v i d e n c e on m a r r i a g e p r e f e r e n c e s a n d p r oh i b i t i on s t e n d s t o s u p p or t t h e e x i s t e n c e of p r e f e r e n t i a l m a r r i a g e w i t h a w om a n a man ' s MB , MM8 , ma r r i e d
of t h e l i n e i n t o w h i c h
M M M B , a n d h i s F F F ( b u t n ot h i s F or F F )
( K u pe r 1 9 8 2 : 1 2 1 ) . T h e s e v e n - l i n e s t r u c t u r e
W ( a , 7 , 2 ) w i t h e x c h a n g e r u l e wg ( i +l )
= wg 2 ( i )
is indeed
t h e s i m p l e s t p r o pe r m od e l ( c f . t a b le 2 . 4 ) t o w h i c h t h e p a r t i a l s t r u c t u r e s i n t h e T s on g a d a t a c a n b e e x t e n d e d . L ou n s b u r y ' s m o d e r n c l a s s i c , the Pawnee k i n s h i p usage '
' A s e m a n t i c a n a ly s i s
of
( 1 9 5 6 ) , pr ov i d e s t h e s e c o n d
e x a m p le o f p a r t i a l d a t a s t r u c t u r e s e x t e nd e d t o t h e
p r o pe r m od e 1 W ( a , 7 , 2 ) . I n c on t r a s t w i t h t h e m i x e d c o l le c t i on
of d a t a u n d e r ly i ng K u pe r ' s T s on g a m o d e l ,
L ou n s b u r y ' s b a s i c i n f or m a t i on i s t a k e n f r om o n e d om a i n :
le x i c a l
t h e R e p u b l i c a n P a w n e e k i n s h i p t e r m in o l og y
o r i g i na l ly pu b l i s h e d b y L e w i s H e n r y H or g a n i n 1 8 7 1 .
126
T h e a n a ly s i s i s
p r i ma r i ly c on c e r n e d w i t h t h e s e m a n t i c s
of r e f e r e n c e . L ou n s b u r y ' s g oa l i s t o pr ov i d e a n a d e q u a t e c om p on e n t i a l d e s c r i p t i o n o f t h e k i n s h i p d a t a i n t e r ms of d i s t in c t iv e f e a t u r e s , i . e .
t o d e r i v e t h e u n de r ly i n g
s e ma n t i c s t r u c t u r e o f t h e P a w n e e t e r m i n o l og y s e t . T h e P a w n e e t e r m i n o l og y s y s t e m e x h i b i t s C r ow - t y pe s k e w i n g , w i t h ( a m on g o t h e r d i a g n os t i c f e a t u r e s ) m a le e g o ' s pa t r i la t e r a l c r os s - c ou s in s c l a s s i f i e d u pw a r d s a s ' f a t he r ' a n d
' m ot h e r ' , a n d m a t r i la t e r a l c r os s - c ou s i n s
d ow n w a r d s a s
' c h i ld r e n '
( L ou n s b u r y 1 9 5 6 : 1 6 4 - 1 6 5 ) . T h e
r a n g e o f me a n i n g of e a c h t e r m i s g i v e n b y
l i s t in g a l l
k i n t y p e s kn own t o b e i n c l u d e d a s r e f e r e n t s . L ou n s b u r y t he n p r o p os e s f i v e p r i n c i p a l d i me n s i o n s , t h e c a t e g or i e s o f w h i c h s u f f i c e f or a c om p on e n t i a l d e f i n i t i on o f t h e s t r u c t u r e o f t h e P a w n e e t e r m i n o l og y . T h e d i me n s i on s a r e : ( 1 ) S e x of e g o , w i t h c at e g or i e s M A L E v s . F E MA L E . o f k i n sm a n , w i t h M A L E v s . F E M A L E ,
SAME v s .
O P P O S I T E SE X .
(3)
or re lat ive
( 2 ) Sex
to e g o , a s
Ge n e r a t i o n , w i t h t h e u s u a l
c a t e g o r i e s Gn i n a s c e n d i n g , z e r o , a n d d e s c e n d i n g g e n e r a t i on s .
( 4 ) A g n a t i c g e n e r a t i o n , w i t h c a t e g or i e s A n ,
i . e . a g n a t i c k i n s m e n of t h e n t h g e n e r a t i o n . g e n e r a t i o n , w i t h c a t e g or i e s U
+
,
UO ,
U
-
,
(5)
U C er i n e
t og e t h e r w i t h
t h e i r t o t a l i t y U , i . e . u t e r i n e k i n s me n of a s c e n d i ng g e n e r a t i o n s , own g e ne r a t i on , d e s c e n d i n g g e ne r a t i on s , a n d t h e e n t i r e c la s s o f u t e r i n e k i n
( L ou n s b u r y 1 9 5 6 : 1 7 0 - 1 7 1 )
.
H ow e v e r , t h e a n a l y s i s i s s t i l l n ot c om p l e t e . T h e r e a r e a n u mb e r of c u r i ou s t h r e e - g e n e r a t i on c y c l e s i n t h e d a t a c omm e n t e d
on b y H or g a n . T h u s
( L ou n s b u r y 1 9 5 6 : 1 7 3 ) :
�1 0r g a n d e s c r i b e s w i t h s ome e x p l i c i t n e s s h ow one c a l l s on e ' s f a t h e r ' f a t h e r ' , a n d h i s f a t h e r i n t u r n ' g r an d f a t h er ' , a n d t he l a t t e r ' s f a t h e r ' u n c l e ' ( s a me t e r m a s f o r t h e m ot h e r ' s b r ot h e r ) , a n d h i s f a t h e r ' f a t h e r ' a g a i n , a n d s o o n i n d e f i n i t e ly i n a t h r e e g e n e r a t i on c y c l e . S i m i l a r l y h e d e s c r i b e s a t hr e e - g e n e r a t i on c y c l e i n d e s c e n d i n g g e n e r a t i on s , g oi n g ' s on ' , ' g r a n d s on ' , ' n e p h e w ' ( s a me a s s i s t e r ' s s on ) , ' s on ' , e t c . i n d e f i n i t e l y .
1 2
127
I n f a c t , s i m p le c om p on e n t i a l d e f i n i t i on s of t he t e r m i n o l o g i c a l c la s s e s c a n on l y b e ob t a in e d b y p os i t in g a d d i t i o n a l e q u iv a le n c e s : A n +
3
=
n A U
=
UA n - 3 ( w h e r e n i s
a p os i t i v e i n t e g e r o r z e r o ) . H ow e v e r r e lu c t a n t ly , L ou n s b u r y i s ob l i g e d t o e x p l a in t h e s e n e c e s s a r y s pe c i a l iden t i t i e s a t t he
le v e l of
t h e s e m a n t ic s t r u c t u r e of t h e
P a w n e e t er m i n o l og y b y a h y p ot h e s i s r e g a r d i n g s oc i a l b e h a v i ou r . H i s s o l u t i on i s t o p os t u l a t e t h e e x i s t e n c e of a r u le
p r e s c r i b in g m a r r i a g e w i t h a s e c o n d c ou s i n : e g o ' s
w i f e i s e q u i v a le n t t o h i s F F Z D D
( 1 956 : 1 8 1 - 1 8� ) .
L ou n s b u r y ' s c o nc l u s i on ( me n t i on e d i n a b r i e f n ot e ) i s s i g n i f i c a nt :
' It i s
ob v i ou s t h a t i f s u c h a r u l e w e r e
c on s i s t e n t ly i n o pe r a t i on ,
t h e s oc ie t y c ou ld c o n s i s t of
s e v e n a n d on l y s e v e n l i n e a g e s .
Pe r h a ps i t i s n ot
f or t u i t ou s t h a t t he C h e r o k e e h a v e s e v e n s i b s '
( 1956 : 182 ) .
H e r e a g a in t he s e v e n - l i n e e x c h a n g e s t r u c t u r e W ( a , 7 , 2 ) of f i g u r e 2 . 9 i s t h e s i m p le s t p r o pe r m od e l e n c om pa s s i n g t he u nd e r ly i n g s e m a n t i c s t r u c t u r e o f t h e Pa w n e e t e r m i n o l og y , t h e t hr e e - g e n e r a t i o n c y c l i n g , a n d t h e s e c o n d - c ou s i n m a r r i a g e r u l e . 1 3 M y f i n a l e x a m p le i s t a k e n f r om Z u i d e m a ' s ana l y s i s
( 1965 )
of t h e s t r u c t u r a l s i m i l a r i t i e s of s pe c i f i c
s oc i a l s y s t e m s f r om N or t h a n d S ou t h A me r i c a .
Re f e r r i n g
t o L ou n s b u r y ' s 1 9 5 6 a r t i c le a s h i s s t a r t i n g p oi n t , Z u i d e ma p r o p os e s a g r ou ps
' t h e or e t i c a l s c h e me ' i n w h i c h s e v e n
( l i ne a g e s ) a r e l i n k e d i n a s y m me t r i c c on n u b i u m .
M a r r i a g e i s w i t h m a le e g o ' s F F Z D D a n d t h e s c h e me ex h i b i t s
and b '
a t h r e e - g e n e r a t i on c y c l e . Z u i d e ma ' s
( 1 9 6 5 : 1 09 )
' sc heme I a
i s c le a r l y i s o m or p h i c t o t h e s t r u c t u r e
i n f i g u r e 2 . 9 , i . e . , t h e e x c h a ng e s t r u c t u r e W ( a , 7 , 2 ) i s a pr o pe r m od e l f or h i s Ame r i c a n d a t a . S i g n i f i c a n t l y , Z u i d e ma i s a t p a i n s t o s h ow t h a t h i s f or ma l s c h e m e i s c om pa t i b le w i t h a s y m me t r i c e x c h a n g e a n d ma t r i l i n e a l d e s c e n t , p a t r i l i n e a l d e s c e n t , o r p a r a l le l
descen t
-
t h u s e x t e n d i n g t he c la s s i c m od e l s of h i s L e i d e n pr e d e c e s s or s t o A me r i c a n c o n n u b i a l s y s t e ms . 1 4 I n a l l t h r e e of t he a b ov e e x a m p le s
( t he T s ong a , t h e
128
Paw n e e ,
ot he r N or t h a n d S ou t h A me r i c a n s y s t e m s ) t h e
a n t h r o p o l og i c a l d a t a a r e i n t e r pr e t e d a s pa r t i a l m od e l s , i . e . , a s s e t - t h e or e t i c s t r u c t u r e s b e l o ng i n g t o t h e t he o r y ' s c la s s
of i n t e nd e d a p p l i c a t i on s . T h e s pe c i f i c
e m p i r i c a l c la i m i s t he n :
There exi s t s a s e t
X of
e x t e n s i on s of t h e s e i n t e n d e d a p p l i c a t i on s s o t h a t X i s a s e t of
pr o pe r m od e l s
( i s om or p h i c t o W ( a , 7 , 2 »
s a t i s f y i n g t h e c on s t r a i n t s of t h e f or ma l k i n s h i p t h e or y .
M A R R I A G E P R O H IB I T I ON S A N D T H E L I M I T S OF G E N E R A L I Z E D E X C HANG E
I n L e v i - S t r a u s s ' s t he or y r e a l i s a t i on s o f
of k i n s h i p , t he v a r i ou s
' e le me n t a r y ' k i n s h i p s t r u c t u r e s a r e
b a s e d on t h e d i r e c t or g e n e r a l i z e d e x c h a n g e o f s p ou s e s , w i t h a l l i a n c e s b e t w e e n e x og a m ou s u n i t s c od e d i n t e r ms of p r e f e r e n t i a l f i r s t c r os s - c ou s i n m a r r i a g e r u l e s . T h e m a i n t h r u s t of m y a r g u me n t h a s b e e n t o d e m on s t r a t e t h e existence
of a n e n t i r e f a m i ly of g e n e r a l i z e d e x c h a n g e
s t r u c t u r e s c om pa t i b l e w i t h a s s or t e d s e c on d a n d t h i r d c r os s - c ou s i n m a r r i a g e f or m u l a e , a s w e l l a s w i t h ' d i s pe r s e d a l l i an c e ' a n d e x o g a my r u le s c od e d a s m a r r i a g e p r oh i b i t i on s w i t h t h e g r e a t - g r an d p a r e n t s .
' c la n '
of
one ' s g r a n d pa r e n t s or
' E l e me n t a r y ' k in s h i p s t r u c t u r e s a r e
d e r i v e d a s s pe c i a I c a s e s . T h i s l i n e o f r e s e a r c h i s s i mi l a r t o e a r l i e r t h e or e t i c a l w or k b y A c k e r m a n s e e T j on S i e F a t 1 9 8 1 : 3 8 9 - 3 9 0 ) .
( 1976 ;
I t c om p le me n t s t h e
i m p or t a n t c a s e s t u d i e s pr e s e n t e d b y K u pe r ( 1 9 7 8 , 1 9 8 2 , 1 9 8 7 ) f o r S ou t h e r n A f r i c a n s y s t e m s a n d b y H e r i t i e r ( 1 9 7 4- , 1 9 7 5 , 1 9 8 1 ) f or t h e S a rn o o f U p pe r V o l t a . 1 5 I n t h e r e m a i n i n g s e c t i on s
of t h i s c h a pt e r I d e m on s t r a t e h ow my
m od e l may b e a p p l i e d t o r e c e n t a n a ly s e s of s y s t e m s w i t h m a r r i a g e p r oh i b i t i on s , y i e ld i n g a n e n c om pa s s i n g structure
' l i mi t i n g '
of r e g u l a r a l l i a n c e s .
T h e f i r s t c l u s t e r of
ph e n ome n a r e la t e s t o pa r t i c u l a r
i n d i g e n ou s c on c e p t i o n s o f r e p r od u c t i on , f oc u s s i n g o n
129
native of
t h e or i e s r e g a r d i n g
' b l o od ' ,
' s ub s t a n c e ' ,
and
set
the
a r t i c u l a t i on
b ou n d s t o t h e
t r a n s m i s s i on
i n h e r i t a nc e
o f ma r r i a g e
i s f r om f a t h e r
d a u g hter , w i t h d i s t in c t a l o ng
lines
of
f re s h
on
shar ing
c harac teristics and I n man y c a s e s
a n d f r om m ot h e r
' s u b s t a nc e s '
shared
to
or e n c od e d
p u b l i c a t i on s
on G r e e k k i n s h i p
e x t e n s i v e f i e l d w o r k i n N or t h E u b oe a )
p e r s pe c t i v e
descen t ,
of
p r oh i b i t i o n s . t o s on
and
e t c . w h i c h a c c ou n t f or
p a r a l le l d e s c e n t .
O u B ou l a y ' s r e c e n t ( ba s e d
t h e t r a n s m i s s i on ' image ' ,
on
ma r r i ag e ,
t he s y m b o l i c
incest
open
r e l a t i on s h i p s
p r oh i b i t i on s a n d
a
between
s pi r i t ua l
kinship
( 1 9 8 2 , 1 9 8 4 ) . T h e c e n t r a l , pe r v a s i v e i d e a i s
that
s ha r ed
of
' b l o od ' . T h u s
( d u B ou l a y
1984 : 5 3 5 ) :
. • . b l o od i s t h ou g h t t o b e i n h e r i t e d e q u a l l y f r om b o t h p a r e n t s , w i t h b ot h b l o o d - l i n e s b e i n g e q u a l l y m e r g e d i n t h e of f s p r i n g . • . . T h e p h r a s e s ' T h e y a r e b l o od ' ( e I n a i a l m a ) o r ' T h e y a r e n o t b l o od ' ( d h e n e I n a i a l m a ) , a r e c om m on w a y s of s a y i n g t h a t pe o p l e a r e o r a r e n o t i n t h e s a m e k i n d r e d , m a y o r m a y n ot m a r r y . ' B l o od ' i n t h i s c on t e x t i s u s e d i n a s e n s e i n d i s t i n g u i s h a b l e f r om t h a t w h i c h i s u n d e r s t o od b y t h e w or d ' k i n d r e d ' ( s 6 i ) - a IV or d w h i c h a l s o m e a n s ' s t oc k ' a n d w h i c h i s u s e d . . . i n r e s pe c t n ot on l y o f t h e k i n g r ou p b u t a l s o of p l a n t s a n d a n i m a l s . T h e p r os c r i p t i on on m a r r i a g e s w i t h i n t h e k i n d r e d i s , t h e n , i d e n t i c a l w i t h a pr os c r i p t i on o n t h e i n t e r m i n g l i n g of t h e s a m e b l o od , a n d t h i s u n d e r s t a n d i n g f i n d s s u c c i n c t e x pr e s s i on i n t h e s t a t e me n t , ' B l o od t h a t r e s e m b le s i t s e l f s h ou l d n o t b e j o i n e d ' • • • a n d i t s c or o l l a r y , ' T h e y a r e n o t b l o od : t h e y c a n m a r r y ' . T h u s t h e c on c e p t s of ' on e b l o od ' , ' k i n ' , ' n ot b e i n g a v a i l a b l e i n m a r r i a g e ' , a n d c e r t a i n d e g r e e s of r e l a t i on s h i p s u c h a s . . . t h os e u p t o a n d i n c lu d i n g s e c on d c ou s i n , a r e a l l s y n on y m ou s w i t h on e a n ot h e r ; w h i l e ' n ot b l o od ' ( o r ' s t r a n g e b l o od ' , x e n o a l m a ) , ' n ot k i n ' ( o r ' s t r a n g e r s ' , x e n o i ) , ' p e r m i s s i o n t o m a r r y ' , a n d c e r t a i n d e g r e e s of r e l a t i o n s h i p s u c h a s a l l t h o s e b e y o n d s e c o n d c ou s i n , f o r m t h e r e v e r s e i m a g e s .
I d e a l ly ,
' b l o od '
e nd ur i n g and
i s s e e n a s a u n i d i r e c t i o n a l v i t a l f or c e ,
a l l ow i n g
u p t o t h e se v en t h a
t he
zina
ri
me t a p h or f o r f a t h e r / s on
Ma r r i a g e
h ow e v e r ,
z i n ar i a :
a man
Thus ,
a t t he
may
p oi n t
is
on ly
inhe r i tance (turn
of
the
of
c haracter i s t ics
be lt ;
esse nt ia l ly
a n d m ot h e r / d a u g h t e r s t r ic t ly
links ) .
p r oh i b i t e d f or
t hree
marry h i s FFFF ZOOOO ,
a f ou r t h c ou s i n .
a t w h i c h ma r r i a g e
pe r m i t t e d ,
is
' t he
1 30
b l o od c h a n g e s ' ; a c t u a l ly
i n t h os e c a s e s i n w h i c h a ma r r i a g e t h e n
occ u r s ,
' t h e c i r c le c l o s e s '
D u B ou l a y ' s f i g u r e 5
( d u B ou l a y 1 9 8 4 : 5 4 2 ) .
( 1 9 8 4 : 5 4 4 ) , i l lu s t r a t i n g t h e
m a r r i a g e p r oh i b i t i on s a n d t h e c om p le t e d c i r c l e i s i d e n t i c a l t o my n u mb e r
f i g u r e 2 . 1 0 ( t o p , l e f t ) f or p e q u a l t o 4 ( p i s t h e of f a t h e r / s on a n d m o t h e r / d a ug h t e r
f r om a c omm on a n c e s t or ) . D u B o u l a y i s a t t h e cyc lic
pa tt er n
l i n k s , r e c k on e d pa i n s t o s t r e s s
s y m b o l i s m i nh e r e n t i n t he u n i d i r e c t i on a l
of m o v e m e n t c om i n g f u l l c i r c l e
( a s o p p os e d t o a
f u n c t i o n i n g s y s t e m of a c t u a l m a r r i a g e c y c l e s ) . T h u s B ou l a y
(du
1984 : 3 42 ) :
i n G r e e c e , w h e r e n o e v i d e n c e h a s e me r g e d of w e 1 1 d e f i n e d w i f e - g i v i n g a n d w i f e - t a k i n g g r ou ps , a n d w h e r e d e sc e n t g r ou ps a s s u c h h a v e n o m or e t h a n a s h a d ow y e x i s t e n c e i n a c e r t a i n pa t r i l i n e a l b i a s r e f le c t e d i n n a m i n g , r e s i d e n c e p a t t e r n s e t c . , s u c h a ' c i r c Ie ' of m a r r i a g e s w ou l d s e e m at b e s t t o be f e a s i b le on l y in a v e r y w e a k s e n s e , a n d w ou l d a p pe a r s i m p l y t o b e a w a y of c o n c e i v i n g t h e ' ou t w a r d ' m ov e me n t g e n e r a t e d b y t he r u l e o f e x og a my b e i n g p e r m i t t e d t o r e t ur n ' a f t e r a p r e s c r i b e d n u m b e r of g en e r a t i on s , w h e n t w o s u i t a b ly d i f f e r e n t d e s c e n d a n t s of t h e s a me or i g i n a l s e t of s i b l i n g s a r e m a r r i e d , a n d ' t h e c i r c le i s c l os e d ' . •
•
•
'
I
c la i m t h a t t h e t y pe of d a t a e x e m p l i f i e d b y d u B ou l a y ' s "
a n a l y s i s c a n b e e x t e n d e d t o a p r o pe r e x c h a n g e m od e l of t h e t y pe W ( a . n . k ) . T he
i ma g e
b ot h s e x e s
of a c on s i s t e n t a n d i r r e v e r s i b l e m o v e me n t of
' ou t w a r d s '
in
o p p o s i t e d i r e c t i on s , c om i n g f u l l
c i r c le a n d j o i n i n g i n m a r r i a g e on l y a f t e r a p r e s c r i b e d n u m b e r o f g e n e r a t i on s i s
of c o u r s e a l s o c o m p a t i b le w i t h
t h e c l a s s i c a n a l y s e s o f a s y mme t r ic c on n u b i u m ,
m a t r i la t e r a l
T h i s i s t h e m od e l d e v e l o p e d i n d e t a i l in
de J o s s e l i n
f i r s t c r os s -c ou s i n m a r r i a g e , a n d d ou b le - u n i l i n e a r d e s c e n t .
de
J o n g ' s M i n a n g k a b a u m o n og r a p h
195 1 .
( 1980;
P.E.
f ir s t pub lic a t i on
S e e t h e d i s c u s s i on i n C h a p t e r 1 . ) . G i v e n a s y s t e m
w i t h f ou r m a t r i - c l a n s
( c r o s s - c u t b y f ou r p a t r i - c l a n s )
t a k i n g p a r t i n a s y m m e t r i c a l c o n n u b i u m , t he i d e n t i c a l c o m b i n a t i on
of m a t r i - a n d p a t r i - c l a n s i s r e c o n s t i t u t e d
a f t e r f o u r g e n e r a t i o n s a n d f ou r
l i n k e d ma r r i a g e e x c h a n g e s ,
131
pr ov i d i n g f or the
the
M i n a ng k a b a u ,
e qu a l s she
the
may
ance stress
t h e r e f ore
ance s tr e s s J o s s e lin
of
de
n
A s i mi la r
f or m s
of of
line
of
On
the
f ir s t
(his
c y c le
of
descr ibed
the Western
l i n k i ng f ou r
as
pa t r i l i n e s
the New H e b r ides ,
of
s oc i a l s t r u c t u r e
t e r ms
men
of
lines
of
o f w om e n
of
c on s a n g u i n i t y and
i ni t i a l
s i st e r / b r other
is ca lled
i s f or w om a n
this
c h i ld r e n
raca
d o n ot .
s i b li n g
( r o ot )
as
p oi n t
' ta k i ng b ac k
the
n ot i on
s e x u a l r e la t i ons
of
( R u b in s t e i n
ag a i n
ide ntic a l t o my f igure
t he
of
s tr u c t u r e
t he
1981 : 328 ) .
Z u i d e ma ' s is
t he
all
i de a l
by a
( h is
the
Inca
panaca ,
i n d i g e n ou s
i s f or m u l a t e d
in
c o m p le me n t e d
the
H a l o t h e or y
c h i ldren
the
the
share
line
' b l o od ' ;
of
of
w om e n
( b r e ad f r u i t
pre f e r r e d men
( t he
c l os e n e s s
t ree
mar r i a g e
t o ma r r y
man
b r e adf r ui t
' 5
the
F F F Z DDD ) ,
t r ee
r o ot ' .
or
i mpur i t y
ma le a n d f e m a le
' At
l i ne s
Ru b i n s t e i n ' s f i g u r e
16
is
2 . 1 0 ( t op , r i g ht ) .
i d e n t i c a l m od e l i s d e v e l o pe d
r e a n a ly s i s
pr o h i b i t
H e c k one d f r om a n
line
incest ,
be tween
.
s oc i e t i e s
The
men ' ,
o f w om e n
y ou r
e nd s '
An
a
of
line
( t op »
mar r ia g e .
t away
o r r a c a i mb a e c a
t h e m a le d e s c e n d a n t
( The
( c r os s - c u t
In
pa i r ,
f ou r t h g e n e r a t i on ,
d e s c e n d e d f r om a
described
in
a
I n the
by
o f w om e n ' .
a f a t he r a n d h i s
a w om a n
r o ot ) .
her
' t r a n s ac t ed
' b or n
f ig u r e
h i s f i g ur e 6 . ) .
See
in
line
the
a n a s y m me t r i c a l
Ma l o I s land
a
f or
Se p i k
c on c e p t u a l i z a t i on
by
in
2.10
f i g u re
c r os s - c ou s i n
f or m u l a t e d
1981 .
o n ly
( P . E . de
p e qu a l t o 3 ) .
( and
i n wh i c h e g o ma r r i e s h i s
J u i l le r a t
and
i s a l s o e q u i v a le n t
r e pr e s e n t e d
s e c o n d - c ou s i n m a r r i a g e .
is
F or
an
parui "
a
MBD )
is
c o nve r s e
of
b a ck ,
b e c om i n g
unit ,
a ls o b e e n
Y a f ar
and
w om e n )
FFF Z DDD ;
the
m od e l h a s
a lliance
exc hange
wife
m a t r i la t e r a l f ir s t
e x a m p le ,
f or m
is
of
e x og a my .
g e ne r a t i on
I n g e n e a l og i c a 1 t e r m s , f o r
e q u a l t o 4-
M i n a n g k a b a u m od e l
of
f i f th
r o le
t he
T h i s s i t u a t i on
f or
pr o s c r i b i ng
the
f i v e g e ne r a t i ons
1980 : 89 ) .
m od e l e g o ' s
( t op) ,
of
a n e w i nd e pe nd e n t
t o h i s FFFZDDD .
F or
of
a s s u me
Jong
Minangkabau
2 . 10
p e r i od i c a l e x t i n c t i o n ' T h e w om a n
H er i t i e r ' s
in
ma t e r i a l . a g r ou p
of
Here
the
l oc u s
' b r ot h e r s '
and
of
132
' s i s te r s ' .
C on s a n g u i n i t y
i s r e c k on e d b y a r u le
pa r a l le l d e s c e n t f r om a c o m m on a n c e s t or a n d f e ma le
( He r i t i e r 1 9 8 1 : 1 3 8 - 1 4 6 ; c f . h e r f i g u r e s 4 6 ,
47 , 48 , 5 0 ) . n ow f or m a l i z e
p a r e n t / c h i ld pa ir .
my c l a i m .
p d e n ot e
Le t
l i n k s , r e c k on e d f r om an
F or a n y
integer
0,
p >
the
a s r e pr e s e n t i ng
t he number
l os s
of
of f i g u r e i n f or ma t i o n ,
p os i t i v e ma r r i a g e r u le w i t h a m a n ' s
a
I . e . , f or
1 , 2 , 3 , . . , e g o mar r i e s h i s F Z D , P h i s F F F Z D D D , e t c . U n d e r t h e a s s u m p t i on s of
h i s F F Z DD ,
=
n ,
t h e f o r m a l m od e l W ( a ,
k) set
ou t e a r l i e r ,
t he se
g e n e a l og i c a l c h a i n s m a y b e u n a m b i g u ou s ly t r a n s la t e d c h a in s g e n e r a t e d b y t he m a p p i n g s . w w w
s-p( w�ls ) ( w-;s )
P c
x
kX
f or
s o me
this P
L
c on g r u e n c e
def ine
k
°
== n
k and
pr o p e r m od e l s ,
c o p r i me .
Then
int o
f or
s ome
w �� l s ) . the
(1)
The
s o l u t i on s t o
(1)
l i m i t i n g s t r u c t u r e s f or
of f i g u r e 2 . 1 0 ( t o p ) . c o ng r u e n c e
of
(
n)
( m ad
0,
(1)
i n t r od u c e t w o o t h e r ,
I
par t i a l s t r u c t u r e s
t h a t f ig ur e
in
the
literature .
B ow d e n ' s a n a l y s i s is a
t h e I{ w om a
of
t h e K w oma
p a r a d i g m a t i c e x a m p le .
( l i k e m os t
d o n o t f or mu l a t e
other
of
Pa p u a N e w G u i n e a
Ac c or d i n g
t o B ow d e n ,
Pa pu a N e w G u i n e a s oc i e t i e s )
p os i t i v e m a r r i a g e r u le s ,
c once p t u a lize mar r i ag e s , t a k i ng
0
of
B e f or e s o lv i n g
( 1 983 )
i
P >
t h e p a r t i a l nTod e l s
r ecent
.
i s e q u i v a le n t t o s o lv i n g
a set
r e la t e d s e r i e s
and s
x
Y
F P Z D P i s e q u i v a le n t t o
P t h e e q u a t i on W
And s i nce
of
i n it i a l s ib ling
s t r u c t ur e s
2 . 1 0 ( t o p ) c a n b e g l os s e d , w i t h ou t
F PZ D P .
ma le a n d
l i n e s m e r g e a f t e r f ou r g e n e r a t i on s , e g o ma r r y i n g
h i s F F F Z DDD I
of
t he
s y mmeLTi c a l
or
a n d d o n ot
a s y m me t r i c a l ,
p l a c e b e t w e e n r e l a t i v e l y s t a b le w i f e - g i v i n g
w ife -taking
gr o u ps .
d i s pe r s e d , r a t h e r
Af f i n a l t i e s
are
t han c oncen t r a t e d ,
H ow e v e r , a m od i f i e d
' a l l i an c e '
i n f a c t w i d e ly b e t w e e n g r ou p s .
a p pr oa c h
le a d s
to
as
and
133
�
p
U
I
l
9
�
q
2.10.
Fig .
F PZ D P the
�
�
p
14 9
F
ZS
exhibits
r-l
t
D
the
t
I�
"
�
�
Par t i a l
( t op ) , r
�
+
F
?
9
9
�
II
�
III
Lf
�
?
m od e l s q-l
( b o t t om ,
c on s e c u t i v e
n
�
"
t �
r e pr e s e n t i n g mar r i a g e w i t h t h e q -l MBS D ( b o t t o m , le f t ) , a n d w i t h right ) . s y mme t r y .
This
last
s truc t ure
1 34
f r u i t f u l r e s u l t s i f one f oc u s s e s o n i nd i v i d u a l K w o m a m a r r i a g e s a n d t h e e n d u r i n g s e r i e s o f e xc h a n g e s b e t w e e n p a t r i l i n e s , n ot
Thus
d e s c e n t g r ou ps o r c la n s ( 1 9 8 3 : 7 4 8 ) .
( B ow d e n 1 9 8 3 : 7 4 9, 7 5 0 ) :
A l l f e r t i le ma r r i ag e s e s t a b l i s h a s y m me t r i c a l e x c h a ng e r e la t i o n s h i ps , a n d w i d e r s oc i a l a n d p o li t i c a l a l l i a n c e s , b e t w e e n t h e ma le me m b e r s of w i f e - g i v i n g a n d w i f e - t a k i n g p a t r i l i n e s t h a t e n d u r e f or u p t o f ou r g e n e r a t i on s I n a l l f ou r g e n e r a t i on s t h e a l l i a n c e i s u n d e r p i n n e d a n d m a i n t a i n e d b y a n a s y mm e t r i c a l e x c h a n g e of f o od a n d w e a l t h - ob je c t s - f o od g o i n g t o me m b e r s of t h e w i f e - t a k i n g l i n e , a n d w e a l t h t o t h e w i f e - g i v i ng l i ne - a n d a s y m me t r i c a l e x c h a n g e of v a r i ou s d o me s t ic , s oc i a l a n d p o l i t i c a l s e r v i c e s . F or t h e d u r a t i on o f a n a l l i a n c e , f u r t h e r m or e , n o a d d i t i on a l m a r r i a g e s m a y t a k e p la c e b e t we e n t he s a me t w o l i n e s . T h i s e n t a i l s , f or m a le e g o , m a r r i a g e t h a t i s pr oh i b i t e d w i t h a me m be r of W B ' s ( a n d B W B ' s ) , M B ' s , F M B ' s a n d F F M B ' s l i ne s , a s w e l l a s w i t h t h e h u s b a nd ' s s i s t e r , d a ug h t e r , s on ' s d a u g h t e r , s on ' s s on ' s d a u g h t e r a n d s on ' s s on ' s s on ' s d a u g h t e r of s a m e a n d a s c e nd i n g g e n e r a t i o n f e m a le me m b e r s of . ow n l i n e •
T h e K w om a h a v e a n
' O m a h a - t y pe '
•
with
t e r m i n o l og y ,
e x t e n s i v e c r os s - g e ne r a t i on a l a n d
•
l a t e r a l me r g i n g s .
B ow d e n a r g u e s i n m os t c on v i n c i n g d e t a i l
that
t he s e r i e s
o f e nd u r i n g e x c h a n g e r e l a t i on s h i ps e s t a b l i s h e d b e t w e e n m e n o f t w o m a r r i a g e - l i n k e d p a t r i l i n e s a n d e x t e n d i n g on d ow n
t he
lines
w i t h , and seen
to
t h e i r m a le d e s c e n d a n t s i s c or r e l a t e d
t o b e e x pr e s s e d b y , t h e c r os s - g e n e r a t i on a l
m e r g i n g s i n t he t e r m i n o l og y
( 1 9 8 3 : 7 5 0- 7 5 9 ) . F i n a l ly
( B ow d e n 1 9 8 3 : 7 5 6 ) : F o l l ow i n g t h e d e a t h of t h i r d d e s c e n d i ng g e n e r a t i on m a l e me m b e r s of t h e or i g i n a l w i f e - t a k i ng l i ne , a l l f or ma l a n d i n f or ma l e x c h a n g e r e l a t i on s h i p s b e t w e e n t h e t w o l i n e s c ome t o a n e n d . A t t h i s l e v e 1 t h e y a r e n ow s a i d t o b e ' u n r e la t e d ' ( a k i i r a ma l , a n d f ou r t h ( a n d l ow e r ) d e s c e n d i n g g e n e r a t i on me mb e r s of t h e w i f e - t a k i n g l i n e e m p l oy n o r e l a t i on s h i p t e r ms f or s u r v i v i n g me mb e r s of t h e w i f e - g i v i n g l i ne ( a n d v i c e v e r s a ) . I t i s on ly a t t h i s l e v e l , m or e ov e r , t h a t a f u r t h e r ma r r i a g e may t a k e p la c e b e t w e e n t h e t w o l i n e s . H e n s a y t h a t s u c h a ma r r i a g e s h ou ld i d e a l ly t a k e p la c e i n t h e o p p os i t e d i r e c t i on f r o m t he or i g i n a l ma r r i a g e , t o ' b a la nc e ' t h e e x c ha n g e of w o me n b e t w e e n t h e t w o l i n e s . .
•
.
B ow d e n ' s f i g ur e 1 ( 1 9 8 3 : 7 5 1 ) , s u m ma r i z i n g h i s a n a l y s i s , i s i d e n t i c a l t o my f i g u r e
2 .10
( b ot t om , r i g h t ) f o r r ( t h e
135
n u m b e r o f f a t he r / s on
l i n k s r e c k on e d f r om t h e i n i t i a l
m a r r i a g e e x c h an g e ) e q u a l t o 4 .
( I n my f i g u r e t h e
t e r m i n ol og y h a s of c ou r s e b e e n
om i t t e d . ) I n t e r ms
of my
m od e l , t h e K w o m a e x h i b i t a s y s t e m of c on s e c u t i v e s y mme t r y
l i n k i n g p a t r i l i ne s . A g a i n , t h i s pa r t i a l
s t r u c t u r e c a n b e e x te n d e d t o a f u l l m od e l of t y pe W(a.
n.
k) .
L e t r d e n ot e t h e n u m b e r f r om a n i n i t i a l m a r r i a g e r >
0,
of f a t h e r / s on l i n k s , r e c k one d
l i n k i n g t w o pa t r i l i n e s . F or a n y
t h e p ar t i a l e x c h a n g e s t r u c t u r e
of f i g u r e 2 . 1 0
( b ot t om , r i g h t ) c a n b e d e s c r i b e d a s r e pr e s e n t i n g a p os i t i v e m a r r i a g e r u le w i t h a m a n m a r r y i ng h i s F r Z S r I . e . , f or r
=
1 ,
2 , 3 ,
.
-I
O.
. . e g o ma r r i e s h i s F Z O , h i s
F F Z S O , h i s F F F Z S S D , e t c . T r a n s l a t i n g t h e k i n t y pe -l W F r Z S r O i n t o i t s a lg e b r a i c e q u i v a l e n t
e q u a t i on le a d s t
a
t h e f o l l ow i n g c on g r u e n c e (k
r
+ 1 ) :: 0 ( m od n ) ,
t o b e s o lv e d f or s ome
r
>
(2)
0 , k a n d n c o p r i me . A n y s u c h
s ol u t i on s t h e n d e f i n e t h e s i m p l e s t p r o pe r m od e l s c om pa t i b le w i t h t h e p a r t i a l s t r u c t u r e o f c on s e c u t i v e a s y mme t r i c a l e x c h a n g e a n d t h e e x t i nc t i on of e x og a my i n r g ene r a t i ons .
T h e f i n a l p a r t i a l e x c ha n g e s t r uc t u r e w i t h
li mi t in g
p r oh i b i t i on s o n m a r r i a g e i s e x e m p l i f i e d b y V i s s e r ' s ( 1 9 8 4 ) S a h u a n a ly s i s .
T h e S a h u c on c e p t i on of c o n s an g u i n i t y ( n g a u n u r e m a l a ' eme ,
o f one b l o od a n d o n e f le s h ) i s e x pr e s s e d
b i l a t e r a l l y . B ot h pa r e n t s c on t r i b u t e b l o od a n d f le s h t o t he i r o f f s pr i n g , a n d t o a l l f ur t he r d e s c e n d a n t s u p t o a n d i n c lu d i n g t he i r g r e a t - g r a n d c h i l d r e n . M a r r i a g e w i t h i n t h e c a t e g or y of s h a r e d b l o o d a n d f le s h i s f or b i d d e n ; this
pr os c r i b e d c a t e g or y i n c l u d e s m a l e e g o ' s f i r s t
c ou s i n s
( g i a - b i ' d a n ga ,
c ou s i n s
( g i a - n g o wa ' a , ' c h i l d r e n ' l . B y e x t e n s i on , e g o
' s i s t e r s ' ) , a n d h i s s e c on d
a ls o s h a r e s b l o od a n d f le s h w i t h a l l pe r s on s s i t u a t e d a t
136
h i s g e n e r a t i o n le v e l a n d t r a c i ng d e s c e n t f r om a t one
le a s t
of h i s e i g h t g r e a t - g r a n d p a r e n t s . R e l a t i on s b e t w e e n
a f f i n e s - of - a f f i ne s , i n p a r t i c u l a r b e t w e e n W B W a n d H Z H , a r e a l s o r i g or ou s ly p r os c r i b e d . I n S a h u t h e b a s i c s oc i a l , r i t u a l , r e s i d e n t i a l a n d a da t u n i t
i s t h e fam , w i t h m e m b e r s h i p i d e a l ly
c i r c u m s c r i b e d b y t he c r i t e r i on
of
pa t r i li ne a l d e s c e n t
r e c k on i n g . H ow e v e r , i n - m a r r y i n g w ome n a s w e l l a s c og n a t i c k i n
of t he c or e m e m b e r s m a y b e a d o pt e d i n t o t h e
f a m . A c c or d i n g
t o V i s s e r , t h e m os t i m p o r t a n t c h a r a c t e r i s
t i c of t h e f a m g r ou pi n g i s t h e r i g h t t o t r a n s f e r t i t le t o lan d
on t o m a le me m b e r s
of f o l l ow i n g g e n e r a t i o n s
( 1984 : 1 2 4 - 1 2 7 ) .
H e n c e , i n V i s s e r ' s m od e l ( 1 9 8 4 : 1 7 9 - 1 8 1 ) , i f a m a n f r om f a m A ma r r i e s a w om a n f r om f a m B h e a c q u i r e s , t hr ol! g h h i s w i f e , r i g h t s t o l a n d passed
of f a m B w h i c h m a y b e
o n t o h i s m a le d e s c e n d a n t s . A f t e r t h i s i n i t i a l
ma r r i a g e , me n of A a r e pr o h i b i t e d f r o m ma r r y i n g w o me n f r o m B f or t h r e e c on s e c u t i v e g e n e r a t i o n s b y t h e r u le o f s o u r o ' a n ge s u p u
( t h r e e t i me s ou t s i d e - a v a r i a n t of
d i s pe r s e d a l l i a n c e ) . B y c o m pe l l i n g one ' s s o n s , g r a n d s on s a n d g r e a t - g r a n d s on s
( i . e . , m a le d e s c e n d a n t s o f t he s a me
b l o od a n d f le s h ) t o ma r r y fam ' s
ou t , f u r t h e r r i g h t s i n o t h e r
l a n d a r e s e c u r e d . F i na l ly , i n t h e f ou r t h g e n e r a t i on ,
a g r e a t - g r e a t - g r a n d s on m a y a g a i n m a r r y a w om a n f r om B , w h o , a s a f ou r t h c ou s i n ( a F F F M B S S SD ) , i s n ot a me m b e r of t h e p r os c r i b e d b l o od and f le s h c a t e g or y . T h i s m a r r i a g e f or mu l a - f or w h i c h s ome p r e f e r e n c e i s e x p r e s s e d - i s c a l le d m a - s i - d i b o i n o ,
' b r i n g i n g i t b a c k ' : t h e or i g i na l
c la i m t o l a n d b e l on g i n g t o f a m B , f o l l ow i n g f r om t he m a r r i a g e of t h e g r e a t - g r e a t - g r a n d f a t h e r , h a s n ow b e e n r e n e we d . T h u s , i n o p po s i t i on t o t h e K w o m a m o d e l , t h e S a h u e x c ha n g e s t r a t e g y i s s t r i c t ly u n i d i r e c t i on a l a n d pr e m i s e d on t h e i d e a of r e n e w a l , n ot o n c on s e c u t i v e s y m me t r y a n d ( 1984 : 18 0 )
' b a l a n c e d ' r e c i pr oc i t y . V i s s e r ' s f i g u r e 9
i s i d e n t i c a l t o my f i g u r e 2 . 1 0 ( b ot t om ,
le f t )
137
f or
q ,
the
in i t i a l
n u mb e r
marr iage ,
Gene r a liz ing of
his
F
q -l
MBD ,
e qu a l
f or
MBS
h is
q
-
l
D ,
le f t )
i .e .
F MBSD ,
r e c k on e d
f r om
the
0 , t he p a r t i a l e x c h a n g e s t r u c t u r e
>
q
links
4.
to
2 . 1 0 ( b ot t o m ,
f igure
man ' s
f a t h e r / s on
of
f or
his
r e pr e s e n t s
q
=
1 ,
FF MBSSD ,
2 ,
etc .
c or r e s p o n d i n g a lg e b r a i c m a p p i n g s i n q -l q -l IV = F MBS D t h e n a l l ow s f o r t h e
mar r i a g e
3 ,
•
•
eg o
•
with
S u b s t i t u t in g
the
a
ma r r i e s t he
e q u a t i on
d e r i v a t i on
of
the
c on g r u e n c e (
to
be
s o lv e d
The
s om e
5
to
( t op)
oc c u r
sy s te m s
t he
in
1984 : 25 1 ;
that
of
of
use of
a
are
my
le f t )
a
In
r u le
a
pe r i od
of
but
a
( In
f or
and
in
t h-e
suc h may
le m m a
pa r t i a l be
de
ou t '
J on g
5 , under
e x c ha n g e s
structure
' ma r r y i n g
descen t
structures
( cf .
a
pe r s on s ,
a r t i c u la t e d
ma r r i a g e
t o
inter
of
J os s e lin t o
a
a c c or d a n c e
c or p or a t e
de
of
ref e r r i ng
c a t e g or i e s
P.E .
s oc i e t i e s
c on t e x t
pr i n c i p l e
Ac c or d i n g
such on
the
as
m od e 1
ma t r i l i n e s
a Is o
in
2 .10
f ig u r e
p a r a l le l d e s c e n t
r e c k on i n g .
of
in
d ou b le - u n i l i n e a r
' de scen t '
Se e
with
i n t e r p r e t a t i on .
or
or g a n i z e d ,
u n i d i r e c t i on a l 16
is
t he
p(k)
with
versa ,
l i ne s ) ,
s oc i e t y .
pa t r i l i n e s .
b ot t om ,
descent ,
vice
1 9 8 5 : 2 0 2 - 2 04 . ) of
(1)
c on g r u e n c e
p(k)
descr ibed
o pe r a t i n g
I
there
with
intriguing t y pe
c l a s s i f i c a t i on
n ot
=
+ 1
r e c og n i z i n g
t y pe
c o m p a t i b le
structure
the
or
v iew
t o the
q = p
(3 ) ,
p r o of .
W(a, n. k) .
( d ou b le
c og n a t i c
c on s t r a i n t s
f or m a l ly
s o l u t i on
t o an
of
r e c og n i t i on
or
then
p r i n c i p le s
g e n e r a t i on a l whe t he r
a
0,
s oc i e t i e s
Leiden
s t a t e d w i t h ou t
is
s i n g Ie - s e x
with
s oc i e t y ' s
tw o
i t s e lf
(3 )
n) ,
0 , n a n d k c o pr i m e .
>
is
c on g r u e n c e
p a t r i l i ne s
m a n i f e s t ly
q
struc ture
in
linear
g r ou p s
p >
0 ( m od
_
le m m a
pr i n c i p le s
b i s e c t i ng
t he
s om e
structures
descent
1)
-
t h er e
t he
le n d s
Par t i a l
with
If
exchange
L e m ma
with
f or
integer
s o l u t i on the
q
f o l l ow i n g
L emma 5 ; f or
k
fig .
ensures
as
are a
l i n k i ng
2 .10 t hat
the
138
or i g i n a l m a r r i a g e number
i s r en e w a b le
o f g e n e r a t i on s h a v e
The
le m ma
of e x og a my , pr e f e r r e d ,
is
pr e s c r i b e d
p g e n e r a t i on s
or
af t e r
w i t h a n e n g l ob i n g exc ha n g e w i t h
or
T h e c on s e q u e n c e s i n Her i t ier ' s
ma le
and
f e ma le
p
of
e i t he r
t y pe
of
le m ma
a sy s t e m
1977 )
excha nge
f r om
Als o ,
it
variant
of
du
in
c o m p a t i b le
genera lized
I nc a s t r u c t u r e
of
u n i d i r ec t i ona l pe r i od
in
me r g i n g
of
the
exchange
g e n e r a t i on f i v e
of
of
v a lues
OC C U I:
may
of as
m od e l W ( a ,
pl: o pe r t i e s
pa t l: i l i n e a g e s
in wh i c h
of
their
bisected
' elder
br ot h e r '
l i ne s
B ou l a y ' s G r e e k
k) .
s oc i a l
by
k i ns h i p
ma t r i l i n e s
u n i d i r e c t i on a l b r ot h e r '
l i ne s
( 8 i e r s ac k
take
1982 ) . that a
m od e l f or t h e c y c l i c
c l os i n g
the
of g e n e r a t i o n s
li nea g e s
of
c i r c le a f t e r
( see
a b ov e )
a
1 s c o mb i n e d
ma r r i a g e s a s a l l i a n c e s
( 1 9 8 4 : 5 4- 2 5 4- 3 ) -
.
C o nv e r s e ly ,
b e w o r- t h w h i l e
t o s e a r c h f or
of
ma r- r- i a g e w i t h t h e F F F Z D D D i n V i s s e r ' s
Sahu dat a .
Even a s a
of
pu r e l y
t h e S a h u m od e l , s u c h a f or
its
s o me e v i d e n c e
late n t
of
na t iv e
s t ruc t ur a l f e a t u r e
pa r t i a l s t r u c t u r e
p o s s i b le w i d e r
a
i t rn a y
c on c e p t i on
n ot e d
k,
p os s i b le
n ,
t o b e t h e c a s e i n T on g a n
i s c o m p l e me n t e d b y a
' b l o od '
n an d
p,
m a y b e r e c og n i z e d b y t h e
i n C or f u w i t h a c on c e p t i on 0
the
t he
marr iage
man i f e s t
p r e s c r i b e d n u mb e r t IV
of
pe r h a ps n o t e n t i r e ly f or t u i t ou s
p r og r e s s i o n o f
b e t II' e e n
of
t h e s a me e x c h a n g e
' y ou n g e r
is
lines
is
i n i t i a l ma r r i a g e .
s tructure
w ives
pe r m i t t e d ,
5 a r e c le a r l y i l l u s t r a t e d
I n t e r ms
s t r u c t u r e . T h i s a p pe a r s
( R og e r s
structure
patr i li ne s ,
b o t h t y pe s
p a r t i c i pa n t s a s
t he
s a me - s e x
1 .
pa r t I a l s t r u c t u r e
of
A l t e r n a t i v e ly ,
where
of
ma r r i a g e s ,
pa r t i c u l a l: c o mb i n a t i on
r e a l i z a t i on s
pr e s c r i b e d
3 , w i f e e q u a ls F F F Z D D D ,
=
i s f ou r , w i t h a
du plicating the F or a
+
lines .
a lli ances between c y c le
p linked
p
a
p e r i od i c e x t i n c t i on
e n c od e d a s
s u m ma r y d i a g r a m
f or
( 1 9 8 1 : 14 1 ) :
or
the
me r g i n g
l i m i t ing
p e r i od
after
pa s s e d .
m or e s pe c i f i c :
c on c e p t u a l i z e d or
on ly
sign i f icance :
s h ou l d b e it
a ls o
a p pe a r s i n t h e c l a s s i c a l m od e l s w i t h d ou b le d e s c e n t a n d
139
ma t r i la t e r a l c r os s -c ou s i n ma r r i a g e
( c f . P . E . d e J os s e l i n
d e J o ng 1 9 8 0 , V a n W ou d e n 1 9 6 8 ) . L e m ma 5 p oi n t s ou t t h e e x i s t e n c e o f s t r u c t u r a l i n v a r i an t s , f e a t u r e s c om m on t o b ot h
' e le me n t a r y ' m od e l s a n d
' m or e c om p le x ' s t r u c t u r e s
o f e x c h a ng e . I n ow pr ov i d e a l i s t of s o lu t i on s t o c on g r u e n c e s (2)
and
(3) ,
i . e . e x t e n s i on s t o pr o pe r m od e l s W ( a , n , k ) .
U n le s s s pe c i f i e d f or
n
ot h e r w i s e , a l l s o lu t i on s a r e d e r i v e d
< 1 5 a n d f or
p,
q and r
s o lu t i o n s a g e n e a l og i c a l g l os s
< 5 . F or e a c h c l a s s o f i s g i v e n f or t h e ma r r i a g e
r u le . T h e a u t h or s c i t e d e i t h e r r e f e r o f t he
(1) ,
t o t h e occ u r r e n c e
p a r t i a l s t r u c t u r e s i n t he i r d a t a o r p r ov i d e a
pr o pe r e x c h a n g e m od e 1 .
S o l u t i o n s t o c o n gr u e n c e ( 2) : s t r u c t ures w i t h c o n s e c u t i ve s ymme t r y . F or r = 1 , 3 , 5 , 7 , . . . t he g e n e r a l s o lu t i on i s W ( B , n , n - l ) , t he e le me n t a r y structures
IV
with n lines and W
=
F Z D . F or r = 2 a n d
p a r t i a l s t r u c t u r e d e s c r i b e d b y L i pu ma ( 1 9 8 3 ) f or t h e Ma r i n g of H i g h la n d Pa p u a N e w G u i n e a . 1 7 A l s o =
F FZSD ;
d e s c r i b e d b y R os ma n a n d R u b e l ( 1 9 7 5 ) a s an a l t e r n a t i v e , u n i l a t e r a l e x c h a n g e s t r u c t u r e f or t h e M a r i n g , t h e N a n g a a n d t h e W og e o , a l l H i g h la n d s oc i e t i e s :
' I n t h e i d i o m of
t h e s e t h r e e s oc i e t i e s , t h i s ma r r i a g e p r e f e r e n c e i s c on c e p t u a l i z e d a s t h e r e t u r n o f a w o man f or o n e g i v e n t w o g en e r a t i on s e a r l i e r '
( 1 9 7 5 : 1 2 3 ) . H ow e v e r , c on t r a r y t o
R os m a n a n d R u b e l' s e x pe c t a t i on s , a p r ope r m od e l d oe s n ot r e q u i r e a m i n i mu m of e i g h t g r ou ps . R u b e l a n d R os m an ( 19 7 8 : 25 2 - 25 8 )
a d d t h e K u ma as a f ou r t h e x a m p le . T h e s a me
p a r t i a l s t r u c t u r e i s d e s c r i b e d by Z u i d e ma ( 1 9 6 5 : 1 1 1 - 1 1 3 ) f or A me r i c a n I n d i a n s oc i a l s y s t e ms . H ow e v e r , h i s g l ob a l m od e l w i t h s e v e n
l i n e s i s n ot a h o m og e n e ou s s o lu t i on .
V a n D i j k a n d D e J on g e h a v e r e c e n t l y ( 1 9 8 7 : 6 3 ) f or w a r d t h e p r o pe r m od e l W ( a , 5 , 2 ) w i t h IV
t h e p e o p le
=
pu t F F Z S iJ f o r
of M a r s e la I s l a n d , S ou t h - e a s t M o lu c c a s .
P r o pe r s o l u t i on s f or
r
=
2 a r e lV ( a ,
5 , 2 ) ( ma r r i a g e
w i t h F F l S D , MF Z D D a n d F M B D D ) , W ( a , 5 , 3 )
( ma r r i a g e w i t h
F F Z S D , MF l D D a n d M M 8 S D ) , W ( a , 1 0 , 3 ) , W ( a , 1 0 , 7 ) ,
140
W ( a , 1 3 , 5 ) a n d W ( a , 1 3 , 8 ) , a l l w i t h ma r r i a g e t o F F Z S D and MFZDD . S o l u t i on s f or B ow d e n
r
= 3 and W
=
F F F Z S S D . D e s c r i be d b y
( 1 9 8 8 : f i g . 5 , 2 8 3 - 2 8 7 ) f or t he D a r i b i
of P a pua
N e w G u i n e a . P r o p e r m od e l s a r e W ( a , 7 , 3 ) , W ( a , 7 , 5 ) , W ( a , 1 3 , 4 ) and W ( a , 1 3 , 1 0 )
( w i t h marr iage t o MFZSD ) ;
W ( a , 9 , 2 ) , W ( a , 9 , 5 ) , W ( a , 14 , 3 ) and W ( a , 14 , 5 ) f i rst
(no
or s e c on d c ou s i n m a r r i a g e ) .
S o lu t i on s f or
r
=
4
W = F FF F Z SSSD . Des c r ibed b y
and
(1 9 8 3 ) f o r t h e K w oma
B ow d e n
of P a p u a N e w G u i n e a . T h e
s i m p 1 e s t p r o p e r m od e l i s IV ( a , 1 7 , 2 ) . T h i s 1 7 - I i n e m od e 1 i s f u l l y c om p a t i b le w i t h a p r oh i b i t i on on m a r r i a g e w i t h
f i r s t , s e c on d a n d t h i r d c ou s i n s ( i . e , w i t h a n y s a me g e n e r a t i on d e s c e n d a n t of e g o ' s e i g h t g r e a t - g r a n d pa r e n t s a n d t h e i r s i b l i ng s ) . E g o a n d h i s s i s t e r ma r r y f ou r t h
c ou s i n s : \V = F F F F Z S S S D , H = F F F M B S S S S . A l te r n a t i v e l y ,
t h e ma r r i a g e r u l e w g ( i + l ) = w g 2 ( i ) m a y b e c on c e p t u a l i z e d F Z H Z S . ( Se e H ae n e n 1 9 8 8 on t h e M oi , ) l B
a s IV = M B IV B D , H 4 ,
So l u t i o n s t o c o n gr u e n c e s ( 1 )
and
. . . t he g e n e r a l s o l u t i on i s W ( a ,
s t r u c t u r e w i t h n l i n e � a n d IV
=
(3) .
n .
F or q = 1 , 2 , 3 ,
1 ) , t he e le me n t a r y
M8D , F MBSD , MMBDD , e t c .
F or p = 1 a n d q = 2 t h e g e n e r a l s o l u t i on i s W ( a , n , n - l .) , t h e e le me n t a r y s t r u c t u r e w i t h n l i n e s a n d W
�I M B D D
(here
r
F Z D , F M8SD ,
e q ua l s 1 ) . F or p = 2 a n d q = 3 , W ( a , 3 , 1 )
i s t h e e le me n t a r y s t r uc t u r e w i t h 3 l i n e s , W
=
MBD , F F Z DD ,
F MB S D , M M B D D a n d F F M B S S D . D e s c r i b e d b y L ou n s b u r y f or t h e I n c a a n d b y C l a ma g i r a n d
a l t e r n a t i v e t h r e e - p a r t n e r b e i b e i ma r r i a g e t h e E rna of T i m or . F or p
=
2, q
( 1978 )
( 1 9 8 0 : 142 ) a s t he =
prac t ic e d b y
3 and W = FFZDD and
F F MB S S D b u t n ot H B D , pr o pe r m od e l s W ( a , 7 , 2 ) h a v e b e e n pr o p o s e d b y K u pe r Z u i d e ma
( 1 9 8 2 , 1 9 8 7 ) f o r t h e T s on g a , a n d b y
( 1 9 6 5 : 1 09 ) f or A me r i c a n I n d i an s y s t e m s .
L ou n s b u r y ' s
( 1 9 5 6 ) P a w n e e a n a ly s i s e x t e n d s a p a r t i a l
m od e l o f t h e t e r m i n o l og y t o a m or e e n c o m pa s s i n g p r o pe r m od e l o f t h e s a me t y pe . T h e c la s s o f s o l u t i on s i n c l u d e s
W ( a , 7 , 2 ) , W ( a , 7 , 4 ) a n d V l( a , 1 3 , 3 ) . F or p = 3 , q = 4 a n d W
=
MBD , F MBSD , MMBDD , F F F Z D D D
141
a n d F F F M B S S S D , W ( a , 4 , 1 ) i s t h e e le me n t a r y s t r u c t u r e w i t h f ou r W ou d e n
l i n e s . De s c r i b e d a s a g e n e r a l m od e l b y V a n and b y
( 1968 : 91 )
P .E.
d e J os s e l i n d e J on g
f or t h e M i n a n g k a b a u of S u m a t r a . p
F or
MBD ,
=
q = 4 , W
3 ,
( 1980 )
( Se e C h a p t e r 1 . )
= F F F l D D D a n d F F F M B S S S D b u t n ot
pa r t i a l s t r uc t u r e s h a v e b e e n d e s c r i b e d b y H e r i t i e r
( 1 9 8 1 : 1 4 1 ) f or
t h e I n c a a n d b y V i s s e r ( 1 9 8 4 ) f or t he S a h u of N or t h H a l m a h e r a . 1 9 T h e s i m p l e s t pr o p e r m o d e l pr oh i b i t i n g m a r r i a g e w i t h f i r s t a nd s e c ond c ou s i n s i s
W(a,
15 ,
F or p
2) . 4,
q
=
5 , W
F F F F l D D D D a n d F F F F i� B S S S S D b u t
=
n ot M B D , a p a r t i a l s t r u c t u r e h a s b e en d e s c r i b e d b y d u B ou l a y f or t h e G r e e k s y s t e m ( 1 9 8 4 ) . T h e s i m p l e s t pr o pe r m od e l pr oh i b i t i n g mar r i a g e w i t h f i r s t a n d s e c o n d c ou s i n s i s W ( a , 1 1 , 5 ) . I f f ur t he r pr oh i b i t i ons a r e r e qu i r e d t h e s t r u c t u r e mu s t b e e x t e n d e d t o W ( a , 3 1 , 2 ) . F i n a l l y , f or
q
=
2
but
p '* 1 ,
W
=
F M BSD a n d MMBDD
but
n ot F l D o r M B D . F M B S D - m od e l s h a v e b e e n d e s c r i b e d b y K u pe r
( 1 978 ,
1 9 8 2 : 9 4 - 1 07 ,
b y V a n D i j k a n d D, e J o n g e a n d b y K or n
( 19 7 1 ) and Rube l and
t h e I a t mu 1 . H ow e v e r , n on e
f or t h e S w a z i ,
1 9 8 7 : 1 2 2 - 12 4 ) ( 1 9 8 7 : 6 4 ) f or
I� a r s e l a I s l a n d ,
R o s ma n
( 1978 : 3 6 )
f or
of t h e s e a n a 1 y s e s i s s t r i c t 1 Y
h om og e n e ou s . T u r n e r ' s ( 1 9 8 0 : 1 0 3 ) e i g h t - l i n e U n g a r i n y i n
m od e l w i t h W = F M B S D , rl M B D D i s i s o m or p h i c t o W ( a , 8 , 5 ) ,
e x t e n d in g E l k in ' s e a r l i e r Ung a r i n y in s t r u c t ur e .
A
( 1 964 : 8 1 ) 2 0
and part i a l
s i m i la r h om og e n e ou s e i g h t - l i n e
m od e l h a s r e c e n t l y b e e n p r e s e n t e d b y V u y k
( 1 987 : 202 )
f or t h e ma t r i l i n e a l L e l e , e x t e n d i n g L e v i - S t r a u s s ' s pa r t i a l m od e l ; D e H e u s c h ' s e a r l i e r
( 1 964 : 1 01 )
( 1973 )
Lele
m od e l i s n ot h o m og e ne ou s . B lu nd e l l a n d L a y t o n ( 1 9 7 8 ) d e s c r i b e a 1 2 - ' c l a n ' e x c h a n g e m od e l f or c e r t a i n W e s t K i mb e r le y s oc i e t i e s
( i n c l u d i n g t h e W or or a , t h e
W i n a w i d j a g u , t he W u n a mb a l a n d t h e U n g a r i n y i n ) w i t h a lt e r n a t i n g g e n e r a t i on s a n d pr e s c r i p t i v e F M B S D - ma r r i ag e , e a c h c l a n l in k e d t o t w o w i f e - g i v i n g a n d t w o w i f e - t a k i n g c la n s
f or q
or c l u s t e r s of c la n s . T h e c la s s =
of
pr o p e r m od e l s
2 b u t p of. 1 i n c lu d e s W ( a , 8 , 3 ) , W ( a , 8 , 5 ) ,
1 42
W(a,
1 2 , 5 ) and W ( a ,
12 ,
7)
for n < 1 5 . E it her 1 2 - l in e
m o d e l a pp e a r s t o f i t t h e Wes t K i mb e r l ey d a t a .
S UM M A R Y A N D C O N C L U S I O N T h e e s s e n c e o f t h i s c h a p t e r c a n b e s u mm a r i z e d i n o n e short paragraph . Let C
b e t h e c y c l i� g r o u p g e ne r a t e d b y n t h e permu t a t i o n e = ( l , 2 , 3 , . . . , n ) o f o r d e r n . L e t
A u t ( C ) d e n o t e t h e a u t om o r p h i s m g r o u p o f C . T h e o r d e r n n o f A u t ( C ) i s e q u a l t o � ( n ) . H e n c e f o r s om e n t h e r e a r e n � ( n ) e l eme n t s 9 w h i c h a r e o n e - t o - o n e ma p p i n g s o f C o n t o n C . F o r e a c h s u c h e l em e n t 9 o f A u t ( C ) , t h e p e r m u t a t i o n c n n i s m a p p e d o n t o a n o t h e r e l emen t o f C of identical order n n i . e . ( e ) g = e k f o r s om e i n t e g e r k t h a t i s c o p r i m e w i t h n .
,
( Table 2 . 1 gives the values o f � ( n ) and the i n tegers k copr ime w i t h n . ) Then f o r e a c h 9 i n Au t ( C ) and some k , n k ( c ) g = c , « e ) g ) g = ( ck ) k , e t c . Le t t h e o r der o f 9 be denoted by p ( k ) ,
.
1.e., 9
p
(k )
=
( t h e i d e n t i t y a u t o morphi sm ) . p-l T h e n the o rdered p - tu p l e W = ( e , cg , e g2 , , eg ), 1
•
•
•
recur sively defined , i s interpreted a s a closed s t ructure o f general i z ed exchange , T h i s approach ,
repeating in p = p (
in which I define
k ) genera t i on s .
' mo r e comp l e x '
s t r u c t u r e s o f g e n e r a l i z e d e x c h a n g e b y m e a n s o f a u t om orph isms of a basic exchange network
will be applied in Chapter 4
t o s t r u c t u r e s o f d i r e c t ( s y mm e t r i c )
exchange .
I i n t roduce a s l i g h t l y d i fferent formal model ,
In Chapter 5 repre sen ting
e x c h a n g e s t r u c t u r e s a s d i s c r e t e d y n a m i c a l s y s t em s . A f e w b r i e f r em a r k s i n c o n c l u s i o n :
f i r s t , w h i l e reta i n i ng
the basic idea of c l osed exchange cycles and the periodic rep e t i t i on o f a l l i a n c e between d e s c e n t l i nes , my m o d e l s d o n o t a ssume t h e necessary e x i s tence o f corpora te descent groups . of t h e i r
They apply equa l ly to par t i c i p a n t s ' ' thought -of '
orders .
r e p r e s e n t ations
( E x a m p l e s , h o w e v e r s u mm a r y ,
h a v e b e e n p r o v i d e d a b o v e . ) S e co n d , w h i l e c o n c e r n e d w i t h p o s s i b l e c o r r e s p o n d e n c e s b e t we e n t e r m i n o l og ie s , d e s ce n t principles , a n d marriage r u l e s and prohib i tions ,
I have
1 43
n ot p r e d i c a t e d m y a n a ly s i s on a n y p a r t i c u l a r t h e ory
of
C r ow - O m a h a s y s t e m s . i-1y f r a me w or k a p pe a r s t o b e c o m p a t i b l e w i t h t h e ma j or t h e o r i e s . 2 1 On e p os s i b i l i t y f or e x t e n d i n g t h e s c ope
of t h e
p r e s e n t w or: k l i e s i n a c om p a r i s on o f t h e a l g e b r a i c m od e l s w i t h t h e t y pe of s t a t i s t i c a l a n a l y s i s u n d e r t a k e n b y Her i t i e r
( 1 9 7 4 , 1 9 7 5 , 1 9 8 1 ) f or h e r S a m o ma t e r i a l .
F i n a l l y , i f t h e f a m i l y of m od e l s i s s e e n a s a r a n g e p o s s i b l e s oc i a l s t r u c t u r e s ( e n c o m pa s s i n g t h e or: s e l e c t i v e c on s t r u c t s of t h e
of
pa r t i a l
pa r t i C i pan t s ) , a f u r t h e r
d e t a i le d c om p a r i s on o f t h e i r p os s i b l e t r a n s f or ma t i on s , c on t e x t u a l i z e d w i t h i n a s u i t a b le
' f i e l d of a n t h r o p o l og i
c a 1 r e s e a r c h ' , ma y le a d t o a m or e s o ph i s t i c a t e d a n d r e a l i s t i c s o lu t i on t o ou t s t a n d i n g
p r o b l e ms i n k i n s h i p
a n a ly s i s .
APPENDIX T h e or d e r of a n y C X i s t he le a s t
P r o o f o f l emma 2 :
p s u c h t ha t ( c x ) p
pos itive in teger
· c x ( p f a c t or s )
cXcx
h e n c e px
::
n ( m od n ) . F or a l l
F or a l l o t h e r is
x
c px • T h e
x
ob t a i n e d f or
( i . e . , f or a ll px
=
m,
and n . Hence P = m i x .
P r o o f of l emma 3 :
x
or d e r of c i s n ,
and x
( cx ) p
e . Thus
=
n
c o pr i me , P =
n ,
n ot i n K ) , a s o l u t i on
t h e le a s t c om m on mU l t i p le of
Ac c or d i n g t o le m m a 1 , K i s a g r ou p
u n d e r m u l t i p l i c a t i on ( m od u l o n ) . H e n c e , f or a n y k i n K ,
kk
•
•
•
k ( i f ac t or s )
=
k i i s a ls o i n
a r e c o pr i me . p (k ) i s t h e o r d e r
K , i .e . , ki and n
of k , h e n c e k P
(k)
= 1.
N ow , f or a n y n , 1 a n d n - l a r e a lw a y s c o p r i me t o n a n d ( 1 ) :: 1 ( m od n ) , h e n c e p ( 1 ) 1 . Le t thus in K . 1 P p( n -1 ) ( n -1 ) ::: 1 ( m od n ) . F or p ( n - 1 ) = 1 , ( n - 1 ) :: 1 =
( m od n )
on ly i f n e q u a l s 1 or 2 . F o r p ( n - l )
( n - l ) 2 ::: n 2 - 2 n +l
::
1
( m od n ) f or a l l
n .
=
He n c e
2 ,
p( n-l )
= 2
f or n > 2 . E a c h k i n K g e ne r a t e s a c y c l i c g r ou p of or d e r
144
p ( k ) u n d e r mu l t i p l i c a t i on ( m od u l o n ) . P r o o f of l emma n umber
of
4:
The
or d e r
d i s t i nc t i n te g e r s
of
t
TO ( j ) i s e q u a l t o t h e t o which
j
+
kX i s
n . T h e pe r i od of W ( a , n , k ) i s p ( k ) , k . Hence t h e r e a r e exa c t ly p ( k ) i n t eg e r s t s u c h t h a t j + k X = t ( m od n ) f or a n y j a n d t h e r e f or e
r e d u c e d m od u l o the
or d e r
I TO U ) I
=
of
p ( k ) . The
pr o o f
that
I CO ( j ) 1
e n t i r e ly a n a l o g ou s .
NOTES
1
2 3 4
5 6 7 8
9 10 11 12
T h i s c h a p t e r , c om p l e t e l y r e w r i t t e n f o r t h e p r e s e n t v o l u m e , d e v e l o p s a n d m od i f i e s t h e s u b s t a n c e o f a n e a r l i e r p a pe r ' M o r e c o m p l e x f o r m u l a e o f g e n e r a l i z e d e x c h a n g e ' i n C u r r e n t A n t h r o po l o gy ( 1 9 8 1 ) 2 2 ( 4 ) : 3 7 7 -
��� · or i g i n a l F r e n c h e d i t i on w a s p u b l i s h e d i n 1 9 4 9 . U n le s s ot h e r w i s e s t a t e d , I r e f e r t o t h e 1 9 7 0 E n g l i s h t r a n s l a t i on of t h e s e c o n d e d i t i o n . A s u m m a r y of t h e g e n e r a l a r g u me n t i s g i v e n b y J . P . B . d e J os s e l i n d e J o n g ( 1 9 5 2 ) . S c h e f f l e r ( 1 9 7 0 ) p r ov i d e s a c r i t i c a l r e v i e w of t h e r e v i s e d e d i t i o n . I n d e e d , a f i v e - l i n e m od e l w i t h F l D - m a r r i a g e � ou l d s e e m t o be a p l a u s i b l e , h om og e ne ou s , s o l u t i o n t o m os t o f t h e p r ob l e m s i n K or n ' s d a t a . A s k e t c h of t h e p r o o f of t h i s a n d s u b s e q u e n t le m m a s i s g i v e n in t h e c h a p te r a ppe nd i x . S e e C h a p t e r 1 . C o u r r e g e a c t u a l l y e m p l oy s t h e G r e e k s y m b 0 1 s W , ]J a n d TT , a n d de f i n e s t h e c om p o s i t i o n of m a p p i n g s i n r e v e r s e o r d e r ( iT = ]J w ) . F o r a d e f i n i t i o n s e e L or r a i n ( 1 9 7 5 : 4 9 ) . H e a l s o g i v e s a d e f i n i t i o n of a ' r e g u l a r s p a c e ' ( 1975 : 137 ) . A r e v i e w o f ot h e r c r os s / p a r a l l e l d i s t i n c t i o n s ( s o m e o f w h i c h c o i n c i d e w i t h Sc h e f f l e r ' s c r i t e r i a ) i s g i v e n i n B u c h le r a n d Se l b y ( 1 9 6 8 : 2 3 0 - 2 4 6 ) . S e e a l s o K a y ( 1 9 6 7 ) a n d Her i t ie r ( 1 9 8 1 ) . T h i s i d e a i s i n d e e d t h e t h e r a t i on a l e f o r t h e f o r m a l m od e l . Se e a l s o t h e m od e l of s y m m e t r i c e x c h a ng e i n Chapter 4 . S t e g m u l l e r ( 1 9 7 6 : 1 7 0 - 1 9 0 ) c o n c l u d e s t h a t i n or d e r t o d e t e r m i n e I , p r a g m a t i c c on c e p t s a n a l o g ou s t o W i t t g e n s t e i n ' s ' f a m i ly r e s e m b la n c e s ' m u s t b e u s e d . B a lz e r ( 1 9 8 3 ) d e s c r i b e s t h e s t r u c t u r e of M as a PP c om p le t e l a t t i c e . S e e C h a p t e r 1 . A s i m p l i f i c a t i o n o f t h e c om p o n e n t i a l d e f i n i t i o n s i s a c h i e v e d b y i n t r o d u c i n g a f o u r t h , d e r i v e d d i me n s i o n of a g n a t i c r a n k ( L ou n s b u r y 1 9 5 6 : 1 7 8 ) w i t h c a t e g or i e s A n + l UA - n , A n UA - n , A n U A - n - l •
145
13
14 15
16 17 18
19
20 21
A d e c a d e l a t e r , L ou n s b u r y ' s p os i t i on o n t h e i nc l u s i o n of m a r r i a g e r u l e s i n f o r m a l s e m a n t i c a n a ly s e s a p pe a r s t o h a v e h a r d e n e d ( L ou n s b u r y 1 9 6 5 : 1 8 5 ) . B u t a ls o c om p a r e h i s c o n t r o v e r s i a l 1 9 7 8 a n a l y s i s o f t h e I n c a t e r m i n o l og y a n d m a r r i a g e s y s t e m ! S c h e f f l e r c o m p l e t e l y r e j e c t s t h e i n c l u s i on o f m a r r i a g e r u le s ( 1 9 7 1 , 1 9 7 2 a , 1 9 7 2b , 1 9 7 8 , 1 9 8 2 , 1 9 8 4 ) . I n t h e s a m e p a pe r Z u i d e m a . a l s o d e v e l o p s o t h e r s c h e m e s b a s e d o n 7 - , 9 - , a n d 1 3 - p a r t i t i on s f o r t h e c om p a r i s o n o f A m e r i c a n s oc i a l s t r u c t u r e s . P r i o r t o 1 9 7 6 t h e f o r m u l a t i o n o f s i m p le h o m og e n e ou s k i n s h i p m od e l s w i t h g e n e r a l i z e d e x c h a n g e a n d e x c l u s i v e s e c o n d o r t h i r d c ou s i n m a r r i a g e r u l e s i s a n e g le c t e d t h e m e . A p a r t f r o m t h e w o r k o f L o u n s b u r y ( 1 9 5 6 ) , Z u i d e m a ( 1 9 6 5 ) , K o r n ( 1 9 7 1 ) a n d E t i e n ne ( 1 9 7 5 ) a l r e a d y m e n t i o n e d , t h e r e a r e i m p or t a n t r e m a r k s b y E l k i n ( 1 9 6 4 : 7 8 - 8 4 ; f i r s t pu b l i s h e d i n 1 9 3 8 ) , P . E . d e J o s s e l i n d e J o n g ( 1 9 6 2 ) , De H e u s c h ( 1 964 , 1 9 7 4 ) , F e s t i nger ( 19 70a , b ) and Lev i - S t r au s s ( 1 9 7 3 ) . Se e a l s o t h e pa pe r b y R u h e m a n n ( 1 9 6 7 ) . A n a n a l og ou s f o r m u l a t i o n i n t e r m s o f m a t r i l i n e s i s o f c ou r s e a l s o p os s i b l e . S e e a ls o t h e c or r e s p o n d e n c e w i t h B r o w n i n M a n ( B r ow n 1 9 8 5 ) . H a e n e n ( 1 9 8 8 ) pr e s e n t s a n e x t r e m e l y s i g n i f i c a n t a n a l y s i s of t h e s y s t e m o f m a r r i a g e a l l i a n c e s a m on g t h e 11 0i o f I r i a n J a y a ( I n d o ne s i a ) . T h e �1 0 i h a v e f or m u l a t e d a n u m b e r of e x c h a n g e r u le s , i n c lu d i n g m a r r i a g e w i t h t h e m a t r i l a t e r a l c r os s c ou s i n . T h e r e i s a ls o a r u le f o r ' h a u l i n g b a c k ' a w i f e , r e v e r s i n g t h e c i r c u l a t i o n of w om e n i n t h e f ou r t h d e s c e n d i n g g e ne r a t i o n ( H a e n e n 1 9 88 : 4 7 3 - 4 7 5 ) . T h i s r u le c or r e s p o n d s t o t h e f or m a l p r i n c i p le of c o n s e c u t i v e e x c h a n g e f or r = 4 ( L e . , w i f e = F F F F Z S S S D ) d e s c r i b e d i n p a r t i c u l a r H a e ne n ' s f i g u r e 4 f or t h e Kw o m a . S e e ( 1 9 8 8 : 4 7 3 ) . A f u l l d i s c u s s i o n of t h i s i m p or t a n t p a p e r g oe s b e y o n d t h e s c o p e o f t h i s c h a p t e r . A p r o pe r k i n s h i p m od e l w i t h s i s t e r e x c h a n ge . p = 3 , q 4 , W = FF F Z D D D a n d F F F M B S S S D i s d e v e l op e d i n C h a p t e r 4 . T h i s i s p r e s e n t e d a s a p r o pe r m od e l f or H e r i t i e r ' s S a m o a l l i a n c e s t ru c t u r e . F i r s t pu b l i s h e d i n 1 9 3 8 . A lt h o u g h n ot i n t e n d e d a s a g e n e r a l t h e o r y of C r ow - O m a h a s y s t e m s , K e t t e l ' s ( 1 9 8 2 ) f or m u l a t i o n o f =
x e x c h a n g e r u le s o f t h e t y pe wg C i + l ) = wg ( i ) , f or x e q u a l t o 1 , 2 or 3 p a r a l le ls my re s e a r c h . H i s a n a l y s i s of t h e T u g e n , t h e D a n , T e t e la a n d T s o ng a i s a l s o c o m p a t i b l e w i t h t h e m od e l s d e v e l o pe d i n K u p e r ' s m o r e d e t a i le d s t u d i e s o f A f r i c a n s y s t e m s ( 1 98 2 , 1987 ) .
1 1+ 6
147
3 . A GE M E T R I C S A N D T W I S T E D C Y L I N D E R S : P R E D I C T I ON S FROM A S TRUCTURAL MODEL l
A c e n t u r y h a s n ow g o n e b y s i n c e t h e p u b l i c a t i o n o f Macfarlane ' s
( 1882 )
' Analys i s of R e l a tionsh i ps o f
C o n s a ng u i n i t y a nd A f f i n i t y ' . Ma c fa r l a n e w a s an e x a m i n e r i n m a t hema t i c s a t E d i nburgh , n o t a n a n t h r o p o l og i s t . U r g e d b y T y l o r t o d e v e l o p a s y s t em a t i c n o t a t i o n f o r expressing the exact deg ree o f compound genealogical r e l a t i on s h i p s , he proposed a s o l u t ion a n a l ogous to t h e n o t a t i o n a l s cheme o f c h em i c a l a n a l y s i s . U n f o r t u n a t e l y , t h i s f i r s t i n g e n i o u s e x pe r i m e n t i n ma t h ema t i c a l modell ing was vir tually ignored by anthropolog i s t s . 2 A s i m i l a r f a t e b e f e l l G r e e n b e r g ' s 1 9 �9 p a p e r ' T h e Logical Ana l y s i s o f Kinship ' , a n a ttempt to provide a p o s i t i v i s t a x ioma t i c s y s tem f o r t h e a n a l y s i s o f k i n s h i p . J That same year a l s o saw the pub l i cation of ano ther paper o n t h e f o r m a l a n a l y s i s o f k i n s h i p : We i l ' s a p p e n d i x t o The
E l em e n � a r y St r uctures o f K i n s h i p
[ 1 949 ] ) . � We i l ' s
brief trea t i se ,
( L �v i - S t r a u s s 1 9 7 0
introduCing the group
theore tic approach , was to acqu i re the status of a new p a r a d igm , s t imu l a t i n g t h e d e v e l o pme n t o f a n e n t i re l i terature on the a lgebra o f k i n sh i p . s Evidence i s now accumu l a ting that challenges the a n th r o p o l o g i c a l a ssump t i o n s u n d e r l y i n g t h e s ta nd a r d group- theoret i c mode l s o f k in s h i p phenomena . S u c h m o d e l s are apparen t l y too conserva t i ve , c o n s i s t e n t l y igno r i ng ' ob l i q ue '
exchanges and the effects of age bias and
s y s t ema t i c m e a n a g e d i f f e r e n c e s o n t h e co n n u b i a l s y s t em . Hence t h e c l a s s ic fam i l y o f s u c h mod e l s i s e s s e n t i a l l y i ncomp lete w i th respect t o t h e range o f a c t u a l k i n s h i p p h e n o me n a .
R ecent research unde rscores the d i f fi cul t ies
i n v o l ved i n mode l l i ng age - b iased k i n s h i p s y s tems . F i eldwork among the Wanindiljaugwa ( Rose 1960 ) ,
the
148
W a l b i r i ( M e g g i t t 1 9 6 5 ) , a n d t h e A l y a w a r a ( De n h a m , M c D a n i e l , a n d A t k i n s 1 9 7 9 ) i n pa r t ic u l a r c l e a r ly d e m on s t r a t e s t h e i n c o m pa t i b i l i t y of l a r g e me a n a g e d i f f e r e n c e s b e t w e e n s p ou s e s w i t h s i m p l e m od e l s o f s i mu l t a n e ou s s i s t e r e x c h a n g e o r b i l a t e r a l c r os s c ou s i n ma r r i a g e . T h e s t r u c t u r a l i m p l i c a t i on s of
s y s t e ma t i c a g e d i s pa r i t i e s a l s o w e r e i n v e s t i g a t e d i n d e t a i l f or ma t r i l a t e r a l c r o s s - c ou s i n s i mul a t i ons
a s w e l l a s s t a t i s t i c a l me t h od s Ma r t i n
ma r r i a g e . C o m pu t e r
( H a mm e l a n d H u t c h i n s on 1 9 7 4 ; Ha m me l 1 9 7 6 )
( 1 9 8 1 ) e x t e n d s t h e s c o pe
( R e i d 1 9 7 4 ) w e r e a p pl i e d . of t h e s e i n v e s t i g a t i o n s
b y a r g u i n g t h a t g e n d e r - d e pe n d e n t b i r t h or d e r , a n d h e n c e s y s t e ma t i c. a g e d i f f e r e n c e s b e t w e e n o p p o s i t e - s e x s i b l i n g s , a r e a d d i t i o n a l f a c t or s d e l i m i t i n g t h e ma r r i a g e p os s i b i l i t i e s . 6 Since Schurtz
( 1 9 02 ) , a n t h r o p o l og i s t s h a v e t r a d i t i on a l l y
f oc u s s e d o n t h e r ol e of a g e i n t h e c on t e x t of
' age c l a s s '
s y s t e ms of s oc i a l o r g a n i z a t i on ( f or a s u r v e y of t h e l i t e r a tu r e I r e f e r t o S t e w a r t ( 1 9 7 7 ) a n d Be r n a r d i
( 1985 ) ) .
T h e r e i s n ow h e i g h t e n e d i n t e r e s t i n t h e i mp l i c a t i on s o f a g e a s a s t i mu l u s t o t he d e v e l o p me n t
of a n t h r o p o l og i c a l
t h e o r y . S i g n i f i c a n t ly , t h e r e c e n t c ol l e c t i on of e d i t e d b y K e r t z e r a nd K e i t h ( 1 9 8 4 )
pa pe r s
i s t i t l e d A ge a n d
A n t h r o po l o g i c a l T h e o r y . My p u r p os e i n t h i s c h a p t e r i s m or e l i m i t e d . M y a i m i s t o e x t e n d t h e f i e ld mod e I s , i n
of a p p l i c a t i on o f e le me n t a r y k i n s h i p
p a r t i c u l a r t h o s e d e v e l o pe d f o r g e n e r a l i z e d
exchange . The
pr o b l e m i s t o d e v i s e a m o r e c o m pr e h e n s i v e
m od e l of ma t r i l a t e r a l c r os s - c ou s i n ma r r i a g e f or s y s t e ms w i t h l a r g e s y s t e m a t i c me a n a g e d i f f e r e n c e s . M y s o l u t i o n i s t o me r g e a me t r i c a l s t r u c t u r e s i mi l a r t o t h a t o r i g i n a l l y pr o p o s e d b y H a c f a r l a n e
( 1 8 8 2 ) w i t h a We i l - t y p e
r e pr e s e n t a t i on of k i n s h i p s t r u c t u r e a s a c o m mu t a t i v e g r ou p . T h i s n e w m od e l i n c or p o r a t e s a f i n i t e s e t of
o pe n ,
h e l i c a l ma rr i a g e c y c le s a n d i n t e r g e n e r a t i on a l a g e s p i r a l s i n s t e a d of a n i n f i n i t e n u mb e r of c l os e d e x c h a n g e c i r c u i t s a n d d i s c r e t e g e n e r a t i o n s . I t h e n d e r i v e a s e r i e s of
149
h e l i ca l k i n s h i p s t r u c t u re s , many of w h i c h occur in d i s cu s s i on s o f a g e - b i a s e d k i n s h i p s y s t em s . My m o d e l i s i n te n d e d a s a r i g o r o u s g e n e r a l i z a t i o n o f t h e h e l i c a l scheme introduced by Denham et a l .
( 1979 ) for t h e
A l y a w a r a , a n d e a r l i e r , b y M c C o n n e l ( 1 940 ,
1950 ,
19 5 1 ) f o r
the Wikmunkan and other Cape York societies .
THE PROBLEM W i t h few e x c e p t i o n s , a n t h ro p o lo g i s t s '
' me c h a n i c a l '
m o d e l s o f ma r r i a g e a n d d e s c e n t ( i n c l u d i ng s i m p l e genealogical d iag rams ) embody variants o f the f o llowing a s sum p t i o n s : a . Un i t y o f t h e s i b l i n g g r o up ,
that is ,
same - sex
s i b l i n g s a n d p a r a l l e l co u s i n s a r e c o n s i d e r e d s t r u c tu r a l l y e q u i v a l e n t . T h i s p r i n c i p l e i s s om e t i m e s a p p l i e d i r respective o f gende r , conceptua l l y merging a l l s i b l i ngs and para llel cous ins . b . Ma r r i a g e p r e s c r i p t i o n ,
that i s ,
if persons of the
same sex are structur a l l y equival en t ,
then so are their
s pouses . c . Genera t i ona l c l o s ure , t h a t i s ,
there is an i n f i n i te
o r o p e n s e r i e s o f g e ne a l o g i c a l l y d e f i ned g e n e ra t i o n s , e a c h o f w h i c h i s n o t o n l y d i s c r e t e b u t c l o s ed . H e n c e ,
in
s y s t em s w i t h g e n e r a l i z e d e x c h a n g e , g e n e a l o g i c a l c h a i n s o f the type WBWBWB . . . o r Z H Z H Z H . . . may i n p r i n c i p l e cycle back to ego after a finite number of marriages . 7 d . H o m o g e n e i t y D f m a r r i a g e t yp e ,
that I s , within each
gener a t i o n all persons o f the same s e x contract the same type of primary m a r r i a g e . e . Hom o g e n e o u s p a r t i t i o n i n g o f t h e k i n s h i p u n i v e r s e , that is,
i n d i v i d u a l p o s i t i o n s i n t h e g e n e a l o g i c a l n e t wo r k
a r e m e r g e d accord i n g to p r i n c i p l e s a , disjoint
' s ibl ing g roups ' ,
b,
and c i n to
none of w h i ch occupy a
p r i v i leged p o s i t i on . A l terna t i ve l y ,
the e n t i r e society is
p a r t i t ioned i n to a nonoverlapping set of clan s ,
lineages ,
150
descent lines ,
l oc a l g r ou ps , s e c t i o n s , s u b s e c t i o n s , or
m a r r i a g e c l a s s e s . W h a t e v e r t he
pr i n c i pIe of d i v i s i on ,
a l l f u nd a me n t a l r e l a t i on s h i ps a m on g t h e b a s i c u ni t s a r e d e f i n e d e xc lu s i v e l y i n t e r ms of ma r r i a g e a n d d e s c en t . H o m og e n e i t y a s s u m p t i on s a r e of t e n i m p li c i t i n a n t h r o p o l og i s t s ' f or mu l a t i o n s . I n t h e n e w a g e - c on s t r a i n e d m od e l s d e v e l o p e d h e r e I m od i f y t h e pr i n c i p l e of g e n e r a t i on a l c l os u r e . s T o
s u m ma r i z e t h e c l a s s i c a l g e b r a i c a p pr oa c h t o k i n s h i p m od e l l i n g , I c o ns i d e r L or L' a i n ' s C ou r r e g e ' s w or k
( 1975 )
a d a pt a t i o n of
( 1 9 6 5 ) a s t h e p r ot o t y pe . L or r a i n
r e d u c e s a g e n e a l og i c a l n e t w or k b y me a n s
of t h e p r i n c i p le s
me n t i 0 ne d a b ov e t o a b a s i c s e t S o f d i s j oi n t n od e s
( ' s i b l i n g g r ou ps ' ) . T h r e e s u i t a b le f or ma l m a p p i n g s h , m ,
a n d f a r e t h e n d e f i n e d on t h e e le m e n t s x of S . He n c e , h , m , and
that
f a r e on e - t o - on e m a p p i n g s of S on t o i t s e l f , s u c h
( x) f =
« x) h ) m
i n v e r s e m a p pi n g s h
-1
=
(x)
, m
-1
hm f o r a 1 1 x in S , a n d t h e , and f
-1
e x i s t . Unde r t he
s t a nd a r d a n t h r o p o l og i c a l i n t e r pr e t a t i o n , h i s t h e
c on j u g a l m a p p i n g l i n k i n g a m a n t o h i s w i f e , m i s t h e ma t r i l i n e a l m a p p i n g l i n k i n g a w oma n t o h e r c h i l d r e n , a n d f is
t h e p a t r i l i n e a l m a p pi n g
l i n k i ng a m a n t o h i s
c h i l d r e n . M a r r i a g e a nd d e s c e n t a r e a r t i c u l a t e d t h r ou g h the equat i on f
=
h m . T h i s i mp li e s t h a t a n y man ' s c hi l d r e n
a r e i d e n t i c a l w i t h t he c h i l d r e n o f t h e w om a n t o w h om h e i s ma r r i e d . C o m p os i t e ma p p i n g s a re d e f i n e d o n S b y t a k i n g d i f f e r e n t c om b i n a t i o n s o f i n t e g r a l p ow e r s
of h ,
m ,
and f .
E a c h s u c h c om p o s i t e ma p pi n g i s i n t e r pr e t e d a s d e n o t i n g a p a r t i c u l a r s e t of k i n t y pe s ; c on v e r s e l y , a n y k i n t y pe c a n b e d e n ot e d b y s om e c om p os i t e · ma p pi n g I f ma l e e g o i s s i t u a t e d i n n o d e
x
( see Cha pter 1 ) . of t h e r e d u c e d k i n
n e t w or k , h i s s i b l i n g s a n d p a r a l le l c ou s i n s a r e t h u s -l (x)f f ( x ) m- l m ( x) e , t h e ide n t i t y
den oted by
=
=
ma p pi n g e , a n d a r e c on se q u e n t l y a l s o i n t h e s a me n od e a s
e g o . E g o ' s ma t r i la t e r a l c r os s - c ou s i n s ( M B C ) a r e d e n o t e d b y ( x ) m - l f , h i s p a t r i l a t e r a l c r os s - c ou s i n s ( F l C ) b y
( x ) f- l m , a n d h i s s p ouse a n d s po u s e ' s s i b l i n g s b y
(x)h.
151 T h e ma p p i n g s h . m . a n d f g e n e r a t e a m a t h e ma t i c a l g r ou p
G(h.
t y pe s
m.
f ) n ot n e c e s s a r i l y o f f i n i t e
or d e r . S pe c i f i c
of k i n s h i p s t r u c t u r e s a r e m od e l le d b y i m p o s i n g
a d d i t i on a l c on s t r a i n t s o n t h e g r ou p G ( h , instance , if
MBD
is the preferred
( x ) h s h ou l d i n v a r i a b l y e q u a l
m,
f ) . F or
or p r e s c r i b e d s p o u s e ,
( x ) m- l f .
A f u nd a me n t a l
t h e or y o f a l g e b r a i c k i n s h i p s t a t e s t h a t a n e c e s s a r y a n d s u f f i c i e n t c on d i t i on f or a k i n s h i p s t r uc t u r e t o b e c om pa t i b l e w i t h m a t r i l a t e r a l
c r os s - c ou s i n
mar r i a g e
is
t h a t t h e g r ou p G ( h , m , f ) b e c o m m u t a t i v e ( s e e C h a pt e r 1 ;
a p r o of i s pr ov i d e d b y L o r r a i n 1 9 7 5 : 1 4 1 - 1 4 2 ) . T h i s
i m p or t a n t t h e or e m r e ma i n s e q u a l l y v a l i d f o r m y he l i c a l e x t e n s i on of g e n e r a l i z e d e x c h a n g e s t r u c t u r e s . A s s u m p t i oms
of a m or e s t a t i s t i c a l n a t u r e a r e e m p l o y e d
i n p r e d i c t in g t he r e l a t i v e a v a i la b i l i t y a nd t he a g e d i s t r i b u t i ons o f s p ou s e s o f a pa r t i c u l a r g e n e a l og i c a l k i n t y pe .
My
pr ot ot y pe h e r e i s R e i d ' s
( 1 9 7 4 ) s t oc h a s t i c
a n a ly s i s o f c r o s s - c o u s i n m a r r i a g e , an e x t remely
r e le v a n t a p p li c a t i on o f t e c h n i q u e s d e v e l o pe d b y
geneticists
a n d p o pu la t i on d e m og r a ph e r s ( H a j n a l 1 9 6 3 ; C a v a l li - S f or z a , K i mu r a , a n d B a r r a i 1 9 6 6 ; K e y f i t z 1 9 7 7 ; J a g e r s 1 9 8 2 ; P i s o n 1 9 8 2 ) . Su p p os e t h a t i t i s i n pr i nc i p l e p os s i b le t o d e t e r mi n e t h e e x a c t g e n e a l og i c a l r e la t i on s h i p b e t w e e n a n y t w o i nd i v i d u a ls i n a r e a l k i n s h i p s y s t e m . L e t j a n d i be
t h e pa i r e d r e c i pr oc a l k i n t y pe s d e n ot i n g e g o ' s
r e la t i on s h i p t o a It e r a n d , c on v e r s e l y , a It e r ' s r e la t i on s h i p t o e g o . T h e n d ef i n e d
.
.
�J
a s t h e mean age di ffere n c e 9
f or a l l s u c h p a i r s of i n d i v i d u a l s d e n ot e d b y t h e r e c i pr oc a l k i n t y p e s i a n d j . w i t h d . . d e f i n e d a s t h e �J ( me a n a g e of pe r s on s d e n o t e d b y i ) ( me a n a g e of -
pe r s on s d e n o t e d b y j ) . U n d e r t h e a d d i t i on a l a s s u m p t i on t h a t r e l a t i v e a g e s c om p u t e d a l o n g a g e n e a l og i c a l pa t h a r e mu t u a l ly i n d e pe n d e n t , t h e f o l l ow i n g p r o pe r t i e s h o ld f or a l l me a n age d i f f e rences d . . : �J
d
.
.
�J
= 0
d
. �J .
-d . . J�
152
I t f o l l ow s , t h e n , t h a t me a n a g e d i f fe r e n c e s d B B a n d d ZZ c om p u t e d f or s a m e - s e x s i b l i n g s a lw a y s e q u a l z e r o . M e a n
a g e d i f f e r e n c e s d BZ = - d b e t w e e n o p p os i t e - s e x s i b l i n g s 2B ma y of c ou r s e d e p a r t s i g n i f i c a n t ly f r om z e r o , d u e t o v a r i a t i on s i n t h e s e x r a t i o w i t h b i r t h o r d e r
( C a v a l li
Sf o r z a e t a l . 1 9 6 6 : 4 7 ; Re i d 1 9 7 4 : 2 6 0 ; M a r t i n 1 9 8 1 ) . I f u r t h e r d e li mi t my m od e l b y a s s u mi n g t h a t i t a p p l i e s o n ly t o s oc i e t i e s f or w h i c h
d BZ
=
-d
2B
= O . H ence t he
m e a n a g e d i f f e r e n c e b e t w e e n S i b l i n g s , i r r e s pe c t iv e
of
g e n d e r , n e c e s s a r i ly e q u a l s z e r o . T h i s s t a t i s t i c a l r e q u i r e me n t e n s u r e s t h a t t h e a v e r a g e m a l e a g e a t a n od e , or
' s i b l i n g g r ou p ' , i s t h e s a me a s t h e me a n a g e
f e ma le s a t t h a t n od e
of
( a n od e c om p r i s e s s i b l i n g s a nd t h e i r
pa r a l le l c ou s i n s ) . Let d ' and d ' d e n o t e r e s pe c t i v e ly t h e me a n a g e HW d FC MC
d i f f e r e n c e s b e tw e e n h u s b a nd a n d w i f e , f a t h e r a n d c h i ld ,
a n d m o t h e r a nd c h i ld . I f t h e s e t h r e e a v e r a g e s a r e k n ow n , f or on e c a n a lw a y s c om pu t e t h e me a n a g e d i f f e r e n c e d �J .
.
a ny p a i r of r e c i pr oc a l k i n t y pe s a s a l i n e a r c h a i n o f
t h e s e b a s i c v a lu e s . N ot e t h a t d This i s FC = d HW + d MC .
t h e s t a t i s t i c a l c ou n t e r pa r t of t h e a lg e b r a i c e qu a t i o n f =
h m . F or t h e me a n a g e d i f f e r e n c e s b e t w e e n c r os s
c ou s i n k i n t y pe s , t h e n ,
d F2S HBD dNBS FZD
d eM + dZ B + dFC d C F + d B2 + d M C
- dt1C
+
d FC
- d FC + dMC
T h e r e f o r e , in g e n e r a l t he me a n a g e d i f f e r e n c e b e t w e e n a m a n a n d h i s ma t r i la t e r a l c r os s - c ou s i n s i s n ot e q u a l t o t h a t b e t w e e n a m a n a n d h i s p a t r i l a t e r a l c r os s - c ou s i n s . A g e d i f f e r e n c e s b e tw e e n a l l t y pe s e q u a l i f a n d on l y i f d HW = O .
of c r os s -c ou s i n a r e
=: d ' t h a t i s , i f a n d on l y i f NC dFC
I n r e a l s oc i e t i e s h u s b a nd s a r e u s u a l l y
ol d e r
t h a n t h e i r w i ve s . Quan t i t a t ive . re s e a r c h c i te d e a r l i e r h a s d r a w n o u r a t t e n t i on t o a n u mb e r o f s ys t e m s d HW i s s i g n i f i c a n t l y
f or
which
g r e a t e r than z e r o . In a ll s u c h
s oc i e t i e s t h e a g e d i f f e r e n c e c on s t r a i nt s e f f e c t i ve l y
153
r u l e ou t t h e p os s i b i l i t y of a m od e l w i t h s i s t e r e x c h a n g e a n d s i mu l t a n e ou s b i la t e r a l c r os s - c ou s i n ma r r i a g e , a l t h ou g h t h e e x c h a n g e o f c la s s if i c a t or y s i s t e r s
or o t h e r f e ma le
r e l a t i v e s ma y oc c ur . i'l or e ov e r , t h e c la s s i c m 'bd e l s of ma t r i l a t e r a l c r os s - c ou s i n m a r r i a g e a n d g e n e r a l i z e d e x c h a n g e a l s o b e c o me u n t e n a b le . A v a l u e of
d HW g r e a t e r
t h an z e r o i mp l i e s t he e x i s te n c e o f a n e n d l e s s a g e s pi r a l i n wh i c h <
d
ZH W B
d
<
Age s p i r a ls a r e
Z HZ H
�v Blv B <
d
Z l1ZHZ H
WBWBWB <
• • •
ob v i ou s l y n ot c om pa t i b l e w i t h t h e
pr i n c i p l e o f g e n e r a t i o n a l c l os u r e , w h i c h a s s u me s d i s c r e t e g e n e r a t i on s a n d c l os e d ma r r i a g e c y c l e s . a r g u m e n t c a n b e m a d e f or s y s t e ms w i t h
d HW l es s t h a n z e r o ;
cf . Hammel 1 9 7 6 . ) A m od e l of M B D - m a r r i a g e w i t h d
HW
f i g u r e 3. 1. F or s i t u a t i on s w h e r e dHW
( A s i mi l a r
=
>
0 i s s ke t c hed i n 0,
my s o l u t i on
r e p l a c e s t h e c l os e d m a r r i a g e c y c l e s w i t h o pe n h e l i c e s ( f i g . 3 . 2 ) w h i le r e t a i n i n g t h e a lg e b r a i c c on s t r a i n t of
a c omm u t a t i v e g r ou p s t r u c t u r e . I m od e l on l y me a n a g e
d i f f e r e n c e s , w h i c h d o n o t of c ou r s e , t e l l t h e w h o l e s t or y .
I n Re i d
IS
( 1 974 )
a n a l ys i s c om p u t a t i o n o f s t a n d a r d
d e v i a t i on s i s e s s e n t i a l , a s i s t h e a s s u m pt i on o f a n or ma l ( G a u s s i a n ) d i s t r i b u t i o n f or a g e d i f f e r e n c e s . H ow e v e r , g i v e n t h e pr e s e n t s t a t e of
o u r k n ow l e d g e ,
on e
c a n n o t a c c e p t t h e a s s u m p t i o n of n o r ma l i t y a s a g e ne r a l a x i om . 1 0 T he c o n s i d e r a t i on of s t a nd a r d d e v i a t i ons a n d h i g h e r m om e n t s o f a g e d i s t r i b u t i o n s i s n e c e s s a r y b u t mu s t a w a i t t h e r e s u l t s o f f u r t h e r d e t a i l e d e m pi r i c a l resea rch .
H E L I C A L M OD E L S A n a l og o u s t o t h e m o r e c om p l e x f or mu l a e o f e x c h a n g e d e v e l o pe d i n t h e p r e v i ou s c h a pt e r , a f a rll i l y o f s i m pl � me t r i c i z e d h e l i c a l e x c h a n g e s t r uc t u r e s i s d e f i n e d he r e .
1 54
T h e f or m a l s e t
of
ob j e c t s
( i n t e r p r e t e d a s pr i m a r y
e x c h a n g e u n i t s o r s i b l i n g g r ou ps ) i s d e f i n e d a s n od e s o n t he s u r f a c e of a c y l i nd e r
( c f . Lev i - S t r au s s 1 9 7 0 : xx xv i i )
a n d a b a s i c !; e t of ma p pi n g s i s i n t r od u c e d . E a c h n od e i s i n d e x e d b y me a ns of a d ou b le s u b s c r i pt . T h e s u b s c r i p t i i n d i c a t e s t he c o or d i n a t e
pa r a l le l
t o t he m a i n a x i s of
t h e c y l i n d e r a n d w i l i b e u s e d t o m a p r e la t i v e a g e a nd
d e s c e n t w i t h i n p a t r i d e s c e n t l i n e s ; s u b sc r i pt j r e f e r s t o s i b l i ng g r ou ps i n d i s t i n c t pa t r i l i n e s of t h e m od e l .
N o d e s a n d ma p pi n gs .
L e t Z b e t h e s e t of i n t e g e r s a n d {l, 2,
.
•
.
,
n } . Then
N,
le t l b e t h e i n d e x s e t
t he b a s i c s e t of
ob j e c t s
or n od e s,
MBD
F i g . 3 . 1 . �I a t r i la t e r a l c r os s - c ou s i n m a r r i a g e . C l os e d , c y c l i c a l m od e l w i t h
dHW
=
O.
155
F i g . 3 . 2 . ivla t r i l a t e r a l c r os s - c ou s i n m a r r i a g e . O pe n , dmv >
h e l i c a l m od e l w i t h
O.
I i i n Z a n d j i n £ } . L e t h be t h e b a s i c �J h e l i c a l ma p p i n g d e f i n e d b y ( N )h = N . 1 1 w i t h j +l 2+ J+ �J r e d u c e d m od u l o n . F or a n y x i n Z t h e c om p os i t e ma p pi n g x N. w i t h j +x r e d u c e d )h hX i s d e f ined a s ( N � +x J +x �J m od u l o n . T h e h e l i c a l m a p p i n g h l i n k s a m a n ' s n od e , or i s def ined as { N
.
.
.
.
.
=
.
.
.
s i b l i n g g r ou p , t o t h a t of h i s w i f e . N ow , f o r a n y p a r t i c u l a r n u mb e r l i m i t e d n u mb e r
n
of
p a t r i l i ne s , t h e r e a r e o n l y a
of p os s i b i l i t i e s f or c omb i n i n g e x c h a n g e
h e l i c e s a nd d e s c e n t ma p pi ng s a l o n g t h e s u r f a c e o f t h e c y l i n d e r . F or a n y s o l u t i on , t h e r e s u l t i n g m od e l w i l l b e ' h om og e n e ou s , t h a t i s , f r om a s t r u c t u r a l p o i n t o f v i e w
156
Table 3 . 1 . V a lues n
le
of
I BI
f or
ss than 15 .
B
IBI
n
1
0
2
1
2
3
1
3
4
2
2 , 4
5
1
5
6
3
2 , 3 , 6
7
1
7
8
3
2, 4, 8
9
2
3, 9
10
3
2 , 5 , 10
11
1
11
12
5
2 , 3 , 4 , 6 , 12
13
1
13
14
3
2 , 7 ; 14
there are no r a n g e of n u mb e r of
'
priv ileged
'
n od e s o r s i b l i n g g r o u ps . T h e
p o s s i b le s t r u c t u r e s i s n ow d e f i ne d f or a n y pa t r i l i n e s
( g i v e n t he b a s i c h e l i c a l ma ppin g
h d e f i n e d a b ov e ) . F o r a n y p os i t i v e
t h e s e t o f i n t e g e r s d e f i ne d b y d i v i s or of n } . T h e o r d e r
I BI
of
B
a n d e le me n t s of t h e s e t
of
a n d t h e e l e me n t s of
i n t a b le 3 . 1 . The
p a t r i l i n e a l m a p pi n g
B
B
B
i n te g e r n . l e t B b e
{bib
� 1
and
I BI .
i s den oted a s
b
a V a l ue s
f or a l l n < 1 5 a r e g i v e n
l i n k i n g t h e n od e of a m a n t o
t h a t of h i s c h i l d r e n i s n ow i n t r od uc e d . F o r a n y n a n d b ,
l e t s b e t h e t r a n s l a t i on d e f i n e d b y ( N
.
�J � +b J F o r a n y y i n Z , t h e c om p o s i t e ma p p i n g i s d e f i n e d a s (N
.
.
�J
) sY
N
. �. + b y J
.
.)
s
=
N.
T h e b a s i c ma p pi n g s h a n d s c a n b e
157
s h own
t o g e n e r a t e a c omm u t a t i v e g r ou p , e a c h e le m e n t s Y h x
d e n ot i n g
one
Lemma
h
of an d
1 :
in f i n i te . -1
or
an d
These
=
s) .
=
n , with
sY
(h
n
-l
s ) z are
x
=
y,
x ,
p os i t i v e i n t e g e r s
T h e s ma l l e s t
suc h t h a t hX z
s g e n e r a t e t h e c om mu t a t i v e g r ou p C ( h , s ) n = st , with b t = n . C ( h ) , C(s ) ,
or d e r a n d h
s ) a r e c y c l i c a l s u b g r ou p s of C ( h ,
C(h
Lemma 2 : a nd
m or e k i n t y p e r e l a t i on s .
n ( b- l ) ,
and
y
=
z
t(b-l ) ,
bt.
le mmas g u a r a n t e e
that the
p e r i od i c k i n s h i p
s t r u c t u r e s a s s oc i a t e d w i t h t h e g r ou p
s)
C(h.
are indeed
c om pa t i b l e w i t h m a t r i l a t e r a l c r o s s - c ou s i n ma r r i a g e .
t o t h e f u nd a me n t a l k i n s h i p t h e or e r.l m e n t i o ne d
Ac c or d i n g
e a r l i e r , c o m mu t a t i v i t y i s a n e c e s s a r y c on d i t i on f or a m od e l w i t h
and suff i c ie n t
m a t r i l a t e r a l c r os s - c ou s i n
ma r r i a g e .
He l i c a l e n v e l o pe s
and par t i t i on s .
T h e g r ou p G ( h , s ) i s n ow u s e d t o pa r t i t i on t h e b a s i c
n od e s
of t h e c y l i n d e r i nt o s u b s e t s c or r e s p on d i n g t o
p a t r i l i ne s a n d m a t r i l i n e s a n d h e l i c a l e x c h a ng e c y c l e s . L e t N an d G ( h . n = bt.
s)
T h e n f or
b e d e f i ne d f or s ome n a n d b . w i t h
s o me e l e me n t N
pq
of N ,
le t He l ( N
pq
{N . . IN . . =
)
1J 1J pq ) g , w i t h g i n e ( h , s ) } . He l ( N ) i s t h e h e l i c a l pq pq e n v e l o p e , or t h e h e l i c a l g r i d . i n d u c e d b y t h e g r ou p = a i s t h e o r i g i n of He l ( N ) . e ( h , $ ) on N , and N pq pq
be
the subset
of
N de f in e d b y He l ( N
)
(N
( N ot e t h a t t h e
=
or i g i n i s d e f i n e d i n a s l i g h t l y
d i f f e r e n t m a n n e r f or
he l ic a l s t r uc t u r es t h a n
i n the
p r e v i ou s c h a p t e r . ) T h e or i g i n i s i n t r od u c e d t o m a k e i t pos s i b le
to refer
t o t h e e x c h a ng e n od e s a n d g e n e a l og i c a l
p os i t i o n s r e l a t i v e t o s o me The set every
of
j in �
pa t r i l i n e s there exi sts
pa r t i c u l a r n od e
a.
i s i n t r od u c e d a s f o l l ow s . F o r an
integer
x
= j-q such that
158
(N
pq
) hx " N
( pa t r i l i n e
P N
" {N
j
. f or rJ
N
. P +J - q j
j)
) Ni j i s ome
J
, with N
(N
pq
Le t p .
) . . i n He l ( N rJ pq
b e t h e s u b s e t o f He l ( N ) h X s Y f or s Y i n
pq
J
) def ined as
C( s ) and
(N
pq
) hX
h X i n C ( h ) } . Le t 1 be t h e i n d e x s e t d e f i n e d ( t h e s e t of p a t r i l i n e s ) "
e a r lie r . T h e n pLin
{p . l j
.
rJ
i n 1 } i s a p a r t i t i o n of
He l ( N
pq
) ,
that is , a
d e c om p os i t i on i n t o d i s j o i n t s u b s e t s s u c h t h a t e v e r y n od e of
He l ( N
pq
b e l on g s . t o s o me
)
u n i qu e P
. •
J
T h e o r d e r of P L i n
i s n ( i . e . , t h e r e a r e e x a c t ly n p a t r i l i ne s ) . He l i c a l e x c h a n g e c y c le s a r e i n t r od u c e d i n a s i m i l a r
f a s h i on . Le t H
Hy
{N j i N j i i
"
b e t he s u b s e t of He l ( N
Y
(N
�
pq
) h X S Y f or
He n c e , H t
bt .
=
(N
subsets H . Let T be the index set
y
T h e n He x " { H i y i n T } i s a or d e r
y
t.
pq
Ha and there are
=
) def ined a s
hX in C ( h )
i n G ( s ) } . A c c o r d i n g t o l e mma 1 ,
n
pq
a n d s ome s Y
) hn , with pq exac t l y t d is t i n c t
) st " (N
{a,
( t-l ) } .
. .. ,
1 ,
pa r t i t i o n of He l ( N
pq
)
of
F i n a l l y , t h e s e t of m a t r i l i n e s i s i n t r od u c e d . L e t H b e t h e s u b s e t of M
=
y
=
{N j i N i ij
He l ( N (N
pq
pq
)
defined as
) g s Y f or
i n C ( s ) } . A c c or d i n g t o l e mma
(N
pq
) (h
-1
s)
n
ma t r i l i n e s ) . =
{M
or d e r d b - I ) N ot e t h a t t h e are
2 ,
(N
n
pq
a n d s ome s Y
) s d b-l l
=
and there b t . He n c e , M t ( b - l ) = Na n - t d i s t in c t s u b s e t s M ( i .e . , n -t y Le t U b e t h e i n d e x se t { a , 1 , . . . , d b - I ) } .
, w it h
a r e e x a c t ly t ( b - l ) Then MLin
g in G ( h - l s )
Y
=
Y
i Y in U }
n-t .
i s a p a r t i t i on of
He n c e
i PLin i
p a r t i t i on s P L i n ,
"
i He x i
+
He I ( N
P9
i l1l i n l
)
of
=
n .
He x , a n d M L i n o f He l ( N
pq
)
d e f i n e d h e r e w i t h ou t i n t r od u c i n g t h e m or e e f f i c i e n t
c os e t n ot a t i on a n d t h e c on c e p t of a f a c t or g r ou p . A l s o , i n t h e f o l l ow i n g s e c t i o n e x c h a n g e s t r u c t u r e s a r e d e f i n e d w i t h ou t ma k i n g e x pl i c i t u s e o f t h e a u t o m o r ph i s m g r ou p o f C(h .
s) .
159
S i m p l e a ge - b i a s e d exc h a nge s t r u c t ur e s
11
) w i t h or i g i n N PQ PQ p a r t i t i o n s p L i n , H e x , a nd ML i n . Le t T b e t h e
C on s i d e r t h e h e l i c a l e n v e l o pe H e l ( N =
a
and
i n d e x s e t d e f i ne d e a r l i e r . T h e n f or e a c h H
in Hex ,
y
( N . , ) s Yh �) Y ( Ni j ) sYh N i + b y + I j I f or a 1 1 N i j i n H 0 ' w i t h j + I + r e d u c e d m od u l o n a n d t he i n d e x y of h y r e d u c e d m od u l o
d e f i n e t h e i n d e x e d he l i c a l m a p p i ng h =
N ot e t h a t t h e s u pe r s c r i p t y
by
Y
of s y i s n o t t o b e r e d u c e d
m od u l o t . E a c h ma p p i n g h O ' h I '
•
•
•
•
t .
ht_l is thus def ined
o n t h e c or r e s p on d i n g s u b s e t H O ' H I ' H _ l of t h e c pa r t i t i o n H e x . T h e ma p pi ng h d e f i ne s t h e y - t h h e l i c a l •
•
• •
y
e x c h a n g e c yc le w i t h r e s pe c t t o t h e o r i g i n N
PQ
=
a.
F i n a l l y , t h e s i m p l e h e l i c a l s t r u c t u r e o f ge n er a l i zed
exc h a n ge i n d u c e d b y h a n d = a
is d e f i n e d b y t he
s
on He l ( N
pq
or d e r e d t r i p l e t
{ h I y in T} . y
) w i t h or i g i n N
H( a . n . b ) =
PQ
A g e me t r i c s H a v i n g d e r i v e d a c om mu t a t i v e e x c h a n g e s t r u c t u r e w i t h o pe n e n d e d h e l i c a l c y c l e s . a n a g e me t r i c d i s n ow d e f i n e d
on t h e n od e s N . . of H ( a . n . b ) . T h e ob j e c t i v e i s t o 1. )
ob t a i n a q u a n t i t a t i v e s c h e me f or c om pa r i ng t h e n od e s a n d
t h e r e b y t h e r e l a t i v e a g e o f t h e s i b l i ng g r ou ps a nd k i n t y pe r e la t i on s w i t h w h i c h t h e y a r e a s s oc i a t e d . T h i s i s d o ne b y d e f i n i n g d on t h e f i r s t c o o r d i na t e or s u b s c r i pt i nd e x of t h e n od e s on t h e s u r f a c e of t h e cy l i n d e r . F or a l l pa i r s
of n od e s N . . a n d N k of ill 1. )
He l ( N
k ) ) t h e me t r i c d a s d ( N . . • N km = ( - i . I t i s 1. )
d
) , define
ob v i ou s t h a t
s a t i s f i e s t h e f o l l ow i n g 1 . d (N
1. ) .
. •
3 .
d ( N 1. ) .
. •
p r o pe r t i e s : 0 i f a n d o n ly i f i
Nk ) m
2 . d UI . . • N km ) L) It
pq
Nk
m
)
+
- d ( Nk • N . . ) m 1. )
d ( N k m • N yz )
k;
; =
d(N . . • N
i s e a s y t o s e e t h a t t h e p r o pe r t i e s
1. )
yz
) .
of t h e me t r i c d
160
c or r e s p on d e x a c t l y
t o t h ose
of t h e s t a t i s t i c a l me a n a g e
d i f f e r en c e d . . d e s c r i b e d i n t h e i n t r od u c t or y s e c t i on s t o �)
t h i s c ha pt e r . T h e me t r i c d t h u s w i l l b e i nt er pr e t e d a s a n a ge metr ic ,
t h a t i s , a s a p o i n t e s t i ma t e a t t h e l e v e l
of t h e h e l i c a l e x c h a ng e m od e l f or t h e s t a t i s t i c a l me a n a g e d i f f e r e n c e s me a s u r ed i n a c t u a l s oc i e t i e s . A s c a le
of m e a s u r e me n t mu s t a ls o b e d e f i ne d . F or a n y
p os i t i v e r e a l n u mb e r r a n e w me t r i c d ' w i t h t h e s a m e d ' (N
p r o pe r t i e s a s d c a n a l w a y s b e d e f i ne d a s r ( k-
metr
i
.
. •
�)
Nk m )
:-i e nc e d ' = rd a n d r i s c a l l e d t h e s c a l e of t h e
) .
ic d ' .
r
T h e a g e me t r i c d ' w i t h s c a l e
c a n n ow b e u s e d t o
ob t a i n t h e d i f f e r e n c e b e t w e e n a n od e N . . a n d i t s i ma g e 1. )
u n d e r a n y ma p p i ng g of t h e c o m mu t a t i v e g r ou p
( Ni j ) g
s) .
G(h .
F or e x a m p l e ,
d ' ( Ni j '
d ' (N . . .
1. )
d ' ( Nij '
(Nij ) S )
d ' ( Ni j •
Ni
(N . .)h l 1. J
d ' (N . .• 1. J
N .
(N
.
.
1. J
)h
-l
+b
�+
1
s l = d ' ( N . . • N �. 1. J
j)
= rb ;
. J +1
)
+b
= r;
-1
'-l ) J
=
r{b-I ) ;
a n d s o on . T h i s i s g e n e r a l i z e d i n a s i m p le f or mu l a f or a l l e le me n t s g = s Y h x of t h e c omm u t a t i v e g r ou p G ( h . s l a n d h e n c e f or g e n e a l og i c a l r e l a t i o n s h i p s
o r k i n t y pe s
r e lat i v e t o eg o . L em m a d ' (N
.
3 : F or a ny e le m e n t . •
1. J
d ' (N . . ,
1. )
( N 1.. . ) g ) )
=
d ' (N
N ' . ) � + b y +x ) +x
.
. •
1. J
g = sYh
x
of G ( h . s ) d e f i n e
( N . . ) s Yh x ) 1. J
= r { b y +x ) .
T h i s r e s u l t c a n a l s o b e f or mu l a t e d b y d e f i n i n g d ' d i r e c t l y on t h e e le me n t s of t h e g r ou p . He n c e d'(e.
sYhx)
= r ( b y +x l .
the rat i o d' ( e . h
-1
s)/
In
pa r t i c u l a r
d ' (e.
s)
=
,
d'(e.
( b -l ) lb
e)
=
= I-lib
0 a nd is
i nd e pe n d e n t of t h e s c a l e r . T h e e a r l i e r n ot a t i on f or t h e
s i m p l e h e l i c a l e x c h a n g e s t r u c t u r e H ( a . n . b ) i s n ow a me n d e d s o a s t o i n c lu d e t h e r e le v a nt i n f or ma t i on pe r t a i n i n g t o t h e a g e me t r i c d ' w i t h s c a l e r . L e t H(a .
n .
b;
r.
I -lIb)
i
i
d e n o t e t h e r - me t r c z e d s i mp l e
161
s
h e l i c a l s t r u c t ur e i n d u c e d b y h a n d en ve l 0p e H e 1 (N c om p l e t e a n d
•
one
c a n ma p t h e s y s t e m
r e l a t i o ns d i r e c t l y t h a t t he
a n d c an ot her
he l i c a l
a ) w i t h or i g i n N pq pq of me t r i c i z e d e x c h a n g e s t r u c t u r e s
T h e m od e l
N ot e
on t he
of
on t o t h e v oc a b u l a r y
of k i n s h i p t h e o r y .
h e li c a l e x c h a n g e s t r u c t u r e i s a b a s e m od e l
a l s o b e u s e d t o r e pr e s e n t r e l a t i on s
t h a n kin s h i p and re lative age .
a n d h i e r a rc h i c a l r a nk i n g , d i f ferentia l , a nd T j on
i s n ow
ma t h e ma t i c a l
s p r i ng
or s y s t e ms w i t h a b r i d e pr i c e ( cf . Hamme l 1976
r e ad i l y t o m i n d
1 9 8 3 ) . F o r t h e i n t e n d e d a p pl i c a t i o n s ,
5ie Fat
t h e e I e rn e nt s N
i n d om a i n s
Re l a t i v e s t a t u s
. .
�J
of
He 1 ( N
g e n e a 1 0g 1 c a 1 n e t w o r k .
) a r e n od e s i n a r e d u c e d pq -1 T h e ma p p i n g s h , s , a n d h s h.
c or r e s p o n d r e s pe c t i v e l y t o t h e c on j u g a l m a p p i n g pa t r i l i n e a l m a p pi ng
f a n d t h e m a t r i l i n e a l ma p pi n g
i n t r od u c e d e a r l i e r . T h i s
pa r t i c u l a r
t h e m od e l i s c o ns i s t e n t w i t h t h e w or k
L or r a i n
and
of C o u r r e g e
pa r t i t i o n s p L i n , M L i n ,
c or r e s p on d t o t h e
( 1 96 5 )
pa t r i l i n e s , t h e
n
an d
He x
n - t ma t r i l i n e s , a n d
t he 1ice s of the a g e - b ia s e d kin s h i p s t r uc t u r e .
the
F i n a l l y , t he
me t r i c
s t a t i s t i c a l me a s u r e
d'
w i th
sc a le
r
i s m a p pe d
o f me a n a g e d i f f e r e n c e s d
t h e f o l l ow i n g e q u a t i on s :
He n c e ,
the rat i o
age diffe rence s , s tr uctures H ( a .
of n .
b;
r.
is equal t o I-li b .
m a t r i l a t e r a l c r os s - c ou s i n m a r r i a g e
s ) i s c o m m u t a t i v e ( l e m ma 1 ) .
F or
pr a c t i c a l r e a s on s , i n m os t
of
ma l e e g o i s s i t u a t e d a t t h e
on t h e h e l i x h O .
n i n n od e
�J
t h r ou g h
All
I - l i b ) a r e i n d e e d c o m pa t i b l e
G(h .
f o l l ow ,
ont o t h e
. .
m e a n m ot h e r - c h i l d a n d f a t h e r - c h i l d
d MC l d FC '
w i th
of
of
( 1 9 7 5 ) a n d w i t h t h e m od e l s d e v e l o pe d i n
o t h e r c h a pt e r s . T h e
N_ l
m
i n t e r pr e t a t i on
t he
Eg o ' s w i f e
is
s i n c e t h e g r ou p
the exam ples t o
a = N pq t h e r e b y c on s i s t e n t l y
or i g i n
(N o n t h e s a m e h e l i x . T h e pa r a m e t e r s = N )h OI O _In a l l s i m ple h e l i c a l s t r uc t ures H ( a , n , b ; r , I - l i b )
wi th
fewer t h a n 1 5
pa t r i l i n e s a r e
l i s te d
in
t a b le
3 .2 .
1 62
3 . 2 . P a r a m e t e r s of s i m p le h e l i c a l s t r u c t u r e s w i t h
T a b Ie
tha n 1 5
less
Number
of
pa t r i l i n e s n = bt
p a t r i I i ne s Number he lices t
of
Number
of
m a t r i li n e s n-t
D i v is or s of
Age r a t i 0
n
dM c l dFC
b
I-lib
2
1
1
2
. 5 00
3
1
2
3
.667
4
2
2
2
. 5 00
4
1
3
4
.750
5
1
4
5
. 8 00
6
3
3
2
. 5 00
6
2
4
3
.667
6
1
5
6
.833
7
1
6
7
.857
8
4
4
2
. 5 00
8
2
6
4
.750
8
1
7
8
. 875
9
3
6
3
.667
9
1
8
9
.889
10
5
5
2
. 5 00
10
2
8
5
. 800
10
1
9
10
. 90 0
11
1
10
11
. 909
12
6
6
2
. 5 00
12
4
8
3
.667
12
3 '
9
4
.750
12
2
10
6
.833
12
1
11
12
. 917
13
1
12
13
.923
14
7
7
2
. 5 00
14
2
12
7
.857
14
1
13
14
. 9 29
163
T a b l e 3 . 3 . V a l u e s of m e a n a g e d i f f e r e n c e s of d
v a r i o u s c omb i n a t i on s
MC
/d
FC
d d
/d
d HW '
dF C
f or
HW
2
4
6
8
10
12
14
16
18
20
22
. 5 00
4
8
16
20
24
28
32
36
40
44
.667
6
12
12
18
24
30
36
42
48
54
60
75 0
8
16
24
32
40
48
56
64
. 8 00
10
20
30
40
50
60
HC
.
FC
.833
12
24
36
48
60
.857
14
28
42
56
70
. 875
16
32
48
64
. 88 9
18
36
54
72
. 900
20
40
60
. 909
22
44
66
.917
24
48
72
. 92 3
26
52
78
.929
28
56
84
The s c a le d
and
HC
/d
FC
r
= d
HW
is
of c ou r s e i n d e pe n d e n t of t h e r a t i o
s o t h a t a n y h e l i c a l s t r uc t u r e i s c om pa t i b le w i t h
a n i n f i n i t e n u m b e r of v a lu e of d
HC
/d
FC
'
p os s i b le v a lu e s of
d
HW
f or a g i v e n
The r e s u l t s in t a b l e 3 . 2 a r e pe r h a ps
s u r pr i s i n g : t h e f a m i ly
of h e li c a l s t r u c t u r e s is
not
s y m me t r i c a l or i n v a r i a n t w i t h r e s pe c t t o t h e m od e of d e s c e n t . F or e x a m p le , t h e r e a r e s t r u c t u r e s w i t h f ou r pa t r i l i n e s a nd t w o ma t r i l i n e s b u t n o ' i n v e r t e d ' s t r u c t u r e w i t h f ou r ma t r i l i n e s a nd t w o pa t r i l i n e s . T h i s i m p or t a n t c onc lu s i o n f o l l ow s d i r e c t l y f r om t h e e x i s t e n c e po s i t i ve a v e r a g e
of
h u s b a nd - w i f e a g e d i f f e r e n c e s , a n
a s y m me t r i c c o n s t r a i n t t h a t r e f le c t s t h e ne a r l y u n i v e r s a l f e a t u r e t h a t w om e n m a r r y a n d g e t c hi l d r e n a t a y ou n g e r a g e t h a n t h e i r s po u s e s .
164
T a b le
3 . 4 . F our
c om pu t e d
se r i es
of m e a n a g e d i f f e r e n c e s
acc or d i n g t o t h e f or mu la
d by+x) .
Me a n a g e
Kin ty pe F F Z DC F F Z SC M F Z DC FZC I�F l S C Sb
Kinshi p
x s Yh
m a p pi n g
ma ppi n g
-2 2 m -2 [ m[ -1 -1 2 m m [ -1 [ m -1 -1 [ m m[ [
e
F t1 B D C
[
MBC
m
�I M B D C F MB S C HMBSC FFZC FSb MFZC F MBC MSb MMBC F Z DC ZC
-1 -1 m
-1
-1
m
m
f m
FFSb
[
Z DC DC Z SC SC
-1 2 [ -2
-1 - 1 m -1 -1 m [ -2 m 2 m [
[m m[ [2
-2 -1 -1 -1
e
e
h s s
5 5
s
s
b:
3
4
6
r:
20
1 4-
10
6
-40
-28
-20
-12
-20
- 1 4-
-10
-
-20
-14
-10
- 6
-20
- 14
-10
-
0
0
0
0
0
0
0
0
0
0
10
6
20
2
-1
h
-
-1 -1
-1 -1
1
0
14
10
14
10
6
6
6
20
14
40
28
20
12
20
h
d i f f e r e n c e s f or
2
0
e
h
[
MBSC
MMSb
h
[m -1 2 [ -2 2 m [ -2 [ m -1 [ -1 -1 m m [ -1 -1 [ m [ -1 m -2 m [ -1 2 [ ill
m
-2
C
HFSb
h
h
MBDC
F �l S b
h
[
[-1mf -1 [m m
F l SC
[m
h
( in years
6
-60
-56
-50
-42
-40
-42
-40
-36 -36
-40
-42
-40
h
-20
-28
-30
-30
h
-20
-28
-30
-30
0
- 14
- 20
- 24
20
24
-1 2 h
2
sh-1 sh -1 sh
20
s
0
14
28
30
30
28
30
30
40
42
40
36
s
40
42
40
36
sh -2 5 -2
60
56
50
42
5
5
-2
20
-80
-84
-80
-72
h
-60
-70
-70
-66
h
-60
-70
-70
-66
-40
-56
-60
-60
40
56
60
60
-2 2 5 h 2 -2 s h 2 -1 5 h 2 -1 s h 2 s
60
70
70
66
60
70
70
66
80
84
80
72
)
165
I n t h i s r e s pe c t m y h e l i c a l m od e l s d i f f e r f r om t h e c la s s o f s t r u c t u r e s w i t h c i r c u l a t i n g c on nu b i u m , M B D - ma r r i a g e , a n d d ou b le d e s c e n t d e v e l o pe d b y t h e L e i d e n a n t h r o p o l og i s t s . A s d e m on s t r a t e d i n C h a p t e r 1 , t h e c la s s i c m od e l s e mb od y or p e r m i t , a t t h e l e v e l of t h e f or ma l s t r u c t u r e , a n e q u a l n u m b e r of m a t r i a n d pa t r i d e s c e nt
l i n e s ; m a r r i a g e i s w i t h s a me - g e ne r a t i on
k i n . T h e r e i s , h ow e v e r , a n i nt r i g u i ng pa s s a g e i n V a n W ou d e n
( 1 9 6 8 : 9 4 ) i n w h i c h h e me n t i o n s t h e
p os s i b i l i t y o f i n t e r g e n e r a t i o n a l ma r r i a g e s , b u t
on l y
i f t h e n u m b e r s o f m a t r i a n d pa t r i l i n e s i n t h e m od e l a r e u ne qu a l ! of d f or v a r i ou s FC / d C a n d t h e i nd e pe nd e n t MC F v a r i a b l e d HW ; a l l v a lu e s a r e s c a le d i n y e a r s . F or T a b l e 3 . 3 p r e s e n t s v a lu e s
c om b i n a t i o n s o f t h e r a t i o d
ob v i ou s b i o l og i c a l r e a s o n s , o n l y a g e d i f f e r e n c e s of t h e
or d e r 1 2 y e a r s < d F C < 6 0 y e a r s a r e r e le v a n t . ( T h i s i s a c on s e r v a t i v e e s t i m a t e , c on s i d e r i n g t h e f a c t t h a t d FC i s t h e mean a g e d i f f e r e n c e . ) T h e m o s t i n t e r e s t i ng c om b i n a t i o n s
of t h e s e a g e c on s t r a i nt s a r e a t t h e l ow e r
r a ng e o f v a lu e s f or d C / d a n d h e n c e f o r s ma 1 1 b . A s FC M d C / d C a p p r oa c h e s e q u a l i t y , t h e h e l i c a l m od e l M F c on v e r g e s on t h e c on v e n t i o n a l m od e l w i t h d = 0 (cf . HW f i g s . 3 . 1 a nd 3 . 2 ) . O n e c a n a ls o u s e m y me t r i c i z e d h e l i c a l m od e l s t o a n a l y z e t h e d i s t r i b u t i on of me a n a g e d i f f e r e n c e s w i t h i n a g e n e a l og i c a l n e t w or k w i t h o u t r e f e r r i n g t o t h e t r a d i t i ona l c r i t e r i o n of
' g e n e r a t i on ' . I n t a b l e 3 . 4 t h e
c om p os i t e m a p p i n g s c or r e s p o nd i ng t o a b a s i c s e t o f 3 1 k i n t y pe s a r e l i s t e d . T h e C ou r r e g e - L or r a i n k i n s h i p ma p pi n g s ( g e n e r a t e d b y f a n d m ) a r e i n t h e s e c o n d c o l u m n w i t h t h e e q u i v a le n t h e l i c a l m a p p i n g s i n t h e t h i r d c o l u mn ( s u b s t i t u t i ng
s
f or f a n d s h - l f or m i n t h e f or mu l ae ,
a n d a s s u m i n g c om m u t at i v i t y ) . M e a n a g e d i f f e r e n c e s r e l a t i v e t o ma le e g o a r e c om pu t e d f o r f ou r d i f f e r e n t c om b i na t i o n s
of b a n d
r
f r om l e mma 3 . N ot e t h a t
b y mea ns r
of t h e f or mu l a r ( b y + x )
e q u a l s d HW ' T h e d N / d r a t i os C FC
166
are
. 5 00 ,
. 667 ,
. 75 0 , and
. 8 3 3 ( f or b e qua l t o 2 , 3 , 4 ,
and 6 ) .
D I S C U S S I ON F or
OF
T HE
MODELS
a l l s i m p le h e l i c a l m od e l s , e g o ' s w i f e i s m e r g e d w i t h
h i s M B D , M M B D D , a n d F M B S D ( t h i s i s , o f c ou r s e , a l s o t r u e f or t h e s t a n d a r d n on h e l i c a l m od e ls w i t h m a t r i l a t e r a l c r os s - c ou s i n m a r r i a g e ) . T h e s e k i n t y pe s d e n o t e i n d i v i d u a l s of the
' c or r e c t ' m a r r i ag e a b le a g e . S i g n i f i c a n t l y , i n t h e
f i r s t a g e s e r i e s o f t a b l e 3 . 4 , Z D a n d F l S D a r e a l s o of ma r r i ag e a b l e age ;
i n t he s e c on d s e r i e s t h i s i s t h e c a s e
w i t h F Z D D . T h e s e ob s e r v a t i o n s l e a d d i r e c t ly t o t h e q u e s t i on o f w h e t h e r t h e r e a r e c omb i n a t i o n s of d W a n d H /d t h a t a l l ow ' ob l i q ue ' m a r r i a g e s w i t h k i n i n
d
MC
FC
addi t i o n t o
MBD ,
a n d F MB S D . T h e a n s w e r i s
MMBD D ,
s u m ma r i z e d i n t h e f o l l ow i ng
lemma .
L e mma 4 : W i t h i n t he r a ng e of t h e t a b l e 3 . 4 ( i . e . , f or a ny
31
b a s i c k i n t y pe s o f
p os i t i v e i nt e g e r b , b u t w i t h
x
a n d y l i mi t e d t o t h e v a l u e s - 2 , - 1 , 0 , 1 , 2 ) , t h e r e a r e e x a c t l y t w o h e l i c a l m od e l s w i t h n a me l y : H ( a . 2 , 2 ; r
•
.
ob l i q u e ma r r i a g e ,
5 00 ) , w i t h t w o pa t r i l i n e s ,
m a t r i l i ne . a n d o n e e x c h a n g e h e l i x Z D a nd F Z S D ) ;
and H ( a , 3 , 3;
r,
p a t r i l i ne s , t w o ma t r i li n e s , a nd
one
( w i f e i s me r g e d w i t h
.667 ) , w i th three o ne e x c h a ng e h e l i x ( w i f e
i s me r g e d w i t h F Z D D ) . T he s e
ob l i qu e s t r uc t u r e s a r e e x a m i n e d i n g r e a t e r d e t a i l
i n f i g u r e s 3 . 3 a n d 3 . 4 . T h e d i a g r a ms a r e ob t a i ned b y pr o je c t i n g t h e c y l i n d r i c a l m od e l o nt o a f la t s u r f a c e pa r a l le l t o t h e ma i n a x i s . H e li c a l e x c h a ng e c y c le s a r e r e pr e s e n t e d a s z i g - z a g
l i ne s a nd p a t r i li ne s a r e i n d i c a t e d
b y r oma n nu me r a l s , ma t r i li ne s b y c a p i t a l le t t e r s . T h e 3 1 b a s i c k i n t y pe s o f t a b le 3 . 4 a r e a l l oc a t e d t o t h e n o d e s of t h e m o d e l s . A l t h ou g h a l l h e l i c a l a g e - b i a s e d s t r u c t u r e s
(as defined
i n t h i s c h a pt e r ) a r e i n c o m pa t i b le w i t h s y mme t r i c s i s t er
167
Fig .
3 . 3 . He l i c a l e x c h a n g e s tr u c tu r e H ( a , 2 ,
' Ob l i q u e '
e x c h a n g e , t h e y d o n ot mean a g e e x c h a n g i n g marr i ag e ,
r ,
2;
. 5 00 ) .
marr i ag e w i t h l O and F lSO .
or even
pr e c l u d e t w o pe r s on s
o t h e r c l os e
the exi s tence
of
t h e s a me
f e ma l e r e l a t i v e s o f a c l os e d ,
in
a s ym m e t r i c
e x c h a n g e s y s t e m , w i t h m e n o f t h e s a me me a n a g e
pa s s i n g
o n f e m a le r e la t i v e s
ot h e r t h a n t he i r a c t u a l s i s t e r s .
i m p o r t a n t c or o l l a r y
of
of
the
b
with
He n c e ,
b
=
3
3 .2)
' c or r e c t ' =
2;
this
d e pe n d i n g ( wi th d
one
/d
lemma 4 i s t h a t
l O a nd F l S O a r e
m a r r i a g e a b le a g e f or a l l s t r u c t u r e s i s a l s o t he c a s e f or F l OO wi t h on t h e
ot h e r
r a t i o of
p a r a me t e r s , . 5 0 0 or
. 667 ;
f or see
FC NC m a y e x pe c t e i t h e r s y mm e t r i c e x c h a n g e
c i r c u l a t i n g c on n u b i a b a s e d FZSO ,
or F l O O .
O pe n e n d e d
c l os e d a s y m me t r i c
One
on t h e e x c h a n g e
of
b
b
3. 2
t a b le
or
or lO and
h e li c a l m od e l s e m b od y e i t h e r
s t r u c t ur e s
or
s y mme t r i c s t r u c t u r e s
of
1 68
MF S b , FMS b MS b , FMB C , FF l DC W,
MB C , FMB S C , MMB D C , FZ DC
MBS C , ZDC
lID
II
ho
FF S b ... • --------- @ MMMS b
--
MMS b ,
"' 0 �
FFZ C
0
(
--
MMB C ,
.... IID � F Z C ,
FF Z S C
..
rID !..
z sc ,
... IID ..... DC
8
F S b , MFZ C
C , MBD C DC ,
F ig .
3 .4 .
H(a .
3,
3;
Z SC
��::::::==:=_-:. rm ....
[ill] !..
�
�
� _ _
.. -= _........ . .... . .... . . . __......
@ SC
m
MMS b ,
FFS b FF Z C
MSb , FMB C , FFZ DC
b m """ !, -. [ill] ��� sc : FMB DC ------..
--__ _
-
[ill] _ .!. . __ _
.. ....
_
____ ___.... .....
I'ii1 Z C ,
t..!!J
FZ S C , MMB SC
OJ ZDC , <1111-------[IIJ !. ------...... .. ....
A l te rn a t i ve T ,
--........ .. .... .. .... .. .. ...
A ho [ill] 4I-�----- MMMS b , OJ !..
MMB C , F F Z S C , Ij'il , FZ C , M F Z DC L!..!.J MBC , F Z D C , FMB S C , MMBDC
MM B S C ,
-
zt' gj ..... FZ S C
0 !.
MF S b , FM S b
Ego , Sb , .... gj MF Z SC , FMB D C
' M F Z DC
�:-:':"""
-
w,
III
r e pre s e n t a t i o ns
fIIT1 S C
of t h e
. 6 6 7 ) a s a thre e - pa t r i l i n e
and a s a tw o-m a t r i line s t r uct ure mar r iag e w i th
FZDD .
MBS C
m od e l
s tr uc t ur e
( b o t t om ) .
( t op)
' Ob li q u e '
169
d ir e c t e xc h a n g e a s
' l a t e n t ' s u b s y s t e ms o r f or ma l
pos s i b i l i t ie s . T h e o b l i q u e s t r u c t u r e of f i g u r e 3 . 3 m od e l s a p a t r i m oi e t y s y s t e m w i t h u n i l a t e r a l c r os s - c ou s i n m a r r i a g e ,
n ot s i s t e r e x c h a n g e . I t c o nf or m s t o L e v i - S t r a u s s ' s 4 3 3 ) d e s c r i p t i on o f a
( 1970 :
' s t i l l more s i m p le s t r u c t u r e of
r e c i p r oc i t y t h a n t h a t f ou nd b e t w e e n t w o c r os s - c ou s i n s , v i z . , t h a t w h i c h r e s u l t s f r o m t h e c la i m t h a t a ma n w h o h a s g i v e n h i s s i s t e r c a n m a k e on t h e s i s t e r ' s d a u g h t e r . ' I n s y s t e ms w i t h
' av u n c u l a r p r i v i lege '
S ou t h A me r i c a a n d s ou t h e r n I nd i a ) ,
( d e s c r i b e d f or
'ego has a right t o
h i s s i s t e r ' s d a u g h t e r b e c a u s e h e h a s g i ve n h i s s i s t e r t o b e h i s n i e c e ' s m ot h e r , w h i le h e mu s t g i v e a w a y h i s ow n d a u g h t e r b e c a u s e h e h a s r e c e i v e d h i s d a u g h t e r ' s mot h e r a s h i s w i f e '
( L e v i - S t r a u s s 1 9 7 0 : 1 4 5 ) . M y m od e l
a d d s o n e n e w i t e m t o L e v i - S t r a u s s ' s a na ly s i s : i d e a l l y , the d
HC / d FC r a t i o s h ou ld a p p r ox i ma t e
.
5 00
.
A l t h ou g h d e s c r i p t i on s of m a r r i a g e w i t h own s i s t e r ' s d a u g h t e r h a d a p pe a r e d p r i or t o 1 9 4 9 ( pa r t i c u l a r l y i n d i s c u s s i on s o f d a t a f r om" s ou t h e r n I n d i a ; c f . K i r c h h of f 1 9 3 2 , H e ld 1 9 3 5 ; G o od 1 9 8 0 l i s t s ma n y s ou r c e s ) ,
of t h e e a r l y
L e v i - S t r a u s s ' s c ommen t s g e n e r a t e d a s p a t e
of
r e a c t i on s . M o s t o f t h e s u b s e q u e n t d i s c u s s i o n f oc u s s e d o n h i s c l a s s i f i c a t i o n o f Z D ma r r i a g e a s a n o b i i q u e s u b - t y pe o f pa t r i l a t e r a l c r os s - c ou s i n m a r r i a g e . ( 197 1: 5 9-6a
U 9 5 1 ] ) d i s c u s s e s t h i s t y pe
Leac h
of u n i on
w i t h i n t he c on t e x t of M B D m a r r i a g e ; M o or e ( 1 9 6 3 ) r e l a t e s ma r r i a g e t y pe t o d e s c e n t a n d t e r mi n o l og y . O t h e r a u t h or s d e s c r i b e
ob l i q ue m a r r i a g e a s
s e c o nd a r y u n i o n
a
( Sh a p i r o 1 9 6 6 ) , a s d i r e c t e x c h a n g e ( L a v e 1 9 6 6 ) ,
or ,
f o l l ow i n g L e v i - S t r a u s s , a s a v a r i a n t of p r e s c r i p t i v e p a t r i l a t e r a l c r os s - c ou s i n d i s c on t i n u ou s e x c h a n g e ' T h oma s
( 1979 )
ma r r i a g e , t h a t i s ,
' o b li q u e
( R i v i e r e 1 966a , 1 9 66b , 1 9 69 ) .
p oi n t s t o t h e c la s s i f i c a t i on of w i f e ' s
f a t h e r a s a b r ot h e r - i n - l a w a s a s o l u t i o n f or r e s o lv i n g
s t r a i n i n a f f i n a l r e la t i o n s h i p s . G o od s u mm a r i z e d ma n y
( 1 9 8 0 ) r e c e n t ly
of t h e s e d i s c u s s i o n s . 1 2
1 70
M y a n a l y s i s s i t u a t e s Z D m a r r i a g e f i r ml y w i t h i n t h e c la s s
of a g e - c on s t r a i n e d m a t r i l a t e r a l c r os s - c ou s i n
m a r r i a g e s . I t i s i n f a c t t h e m i n i ma l o r l i mi t i n g s t r u c t u r e i n t h e s e r i e s . T h i s i s a l s o t h e v i e w e x pr e s s e d b y B a r n a r d a n d G o od
( 1 984 : 98 - 100 ) . T h e qu a li f i c a t i on
' o b l i q u e ' w i t h i n t h e c on t e x t of h e l i c a l e x c h a n g e m od e l s i s a c t u a l l y i n c or r e c t , a s i t r e f e r s t o k i n t y pe s n o t i n eg o ' s
ow n g e n e r a t i o n . H o w e v e r , t h e t r a d i t i on a l c onc e p t
of g e n e r a t i on d oe s n o t r e a l l y a pp l y t o h e l i c a l s tr u c tu r e s :
ma r r i a g e i s b y d e f i n i t i o n a lw a y s w i t h i n t h e
s a me h e l i x , w h a t e v e r t h e k in t y pe . lD
ma r r i a g e m a y i n p r a c t i c e oc c u r i n f r e e v a r i a t i o n
w i t h o t h e r ma r r i a g e t y pe s . Re i d ' s
( 1 9 7 4 : 2 7 1 ) d a t a on
6 1 6 u n i on s a m o n g t h e T e l a g a - K a pu c a s t e
of c oa s t a l A n d r a
P r a d a s h f u r n i s h t h e f o l l ow i n g p e r c e n t a g e s f o r m a r r i a g e w i t h v a r i ou s t y pe s o f k i n : M B D 1 2 . 7 , lD 5 . 5 , FlD 2 . 8 ,
' d is t a nt k i n '
6 .5 ,
n ot r e l a t e d 7 2 . 5 . R e i d men t i o n s
c or r e c t e d me a n a g e d i f f e r e n c e s
of d
FC
= 36 . 6 years
and
d 2 6 . 9 y e a r s ( 1 9 7 4 : 2 6 1 - 2 6 3 ) . He n c e t h e a v e r a g e MC d /d r a t i o f or a l l ma r r i a g e s i s . 6 4 , s om ew h a t g r e a t e r MC FC =
t h an t h e v a l u e of
. 5 0 t h a t t h e m od e l p r e d i c t s f or
MBD / l D marr i a g e . Liv i - S t r a u s s ' s
4 4 7 - 44 9) a n a l y s i s of a v u nc u l a r
' pu r e '
( 1 9 7 0 : 4 2 8 -429 , 432 -437 ,
p r i v i l e g e a m o ng t h e
S a n y a s i a n d t h e K o r a v a o f s ou t h e r n I nd i a a l s o p o i n t s t o
t h e c oe x i s t e n c e of d i s t i n c t ma r r i a g e t y pe s or r u l e s
' w i t h ou t c on t r a d i c t i on o r o p p os i t i o n ' , a v i ew s h a r e d b y 13 ma n y of t h e a n t h r o p o l o g i s t s r e p o r t i n g o n l D ma r r i a g e .
T h e m od e l of l D m a r r i a g e s t r a d d l e s t h e b ou n d a r y b e t w e e n s y m me t r y a nd a s y m me t r y . T h e t h r e e - p a t r i l i ne , t w o - ma t r i l i ne k i n s h i p s t r u c t u r e of f i g u r e 3 . 4 of f e r s a n u mb e r
of f a s c i n a t i n g p r os pe c t s
f or f u r t h e r r e s e a r c h . T h e m a r r i a g e a b l e k i n t y p e s i n c l u d e F l DD j
t h a t i s , a m a n g i v e s h i s s i s t e r i n ma r r i a g e a n d
r e c e i v e s h e r d a u g h t e r ' s d a u g h t e r a s a w i f e f or h i s s o n .
Exchange
of w o m e n i s a s y m me t r i c w i t h r e s pe c t t o t h e
t h r e e p a t r i l i n e s b u t s y m me t r i c f r o m t h e pe r s pe c t i v e of
t h e m a t r i m o i e t i e s . B o t h p e r s pe c t i v e s a r e d i a g r a m me d i n
171
f ig u r e 3 .4 . A n i d e n t i c a l t h r e e - pa t r i l i n e m od e l w i t h u n i l a t e r a l ma r r i a g e w i t h M B D a nd F Z D D i s d e s c r i b e d b y M c C on n e l f or t h e Ngami t i ,
on e
d iagram 5 ) . Thus
of t h e C a pe Y 0 r k s oc i e t i e s
( 195 0 : 142 ,
( 1950 : 1 19 ) :
I n t h e N g a mi t i s y s t e m , a ma n ma r r i e s h i s m . b r . d . , w h o i s a l s o h i s f . s i s . d . d . T h a t i s t o s a y , a m a n ma r r i e s b a c k i n t o h i s m o t h e r ' s l i n e a nd t h e r e i s n o w . f line a s such A w o ma n ma r r i e s h e r f . s i s . s on , w h o i s a ls o h e r m . m . b r . s on . E g o a nd h i s s i s t e r t h u s ma r r y i n t o d i f f e re n t c l a s s i f i c a t or y l i n e s , s o t h a t t h e s y s te m i s c om p le t e ly u n i l a t e r a l T h e r e a r e t heref ore t h ree c la s s i f i c a t o r y li n e s : m . f . ( w . f . ) , f . f . a n d s i s . h u s b a n d . Th e e xc h a n g e r u le i s t h a t a ma n m a r r i e s h i s m . y . b r . d . a nd g i v e s h i s s i s t e r ' s d . t o h i s w . b r . , t o w h om s h e i s f . y . s i s . d . d . ; a w o ma n ma r r i e s h e r f . o . s i s . s on a n d g i v e s h e r d a u g h t e r t o h e r m . b r . s on . E g o ' s s i s t e r ' s s on ' s c h i ld i s Eg o ' s d . d . •
•
•
•
.
•
•
•
•
•
•
•
•
• •
T h e Y � r a id y a n a , a n e i g hb ou r i n g t r i b e , a l s o h a v e a F Z D D ma r r i a g e r u l e
( p r os c r i b i n g ma r r i a g e w i t h t h e M B D D )
( M c C on ne l 1 9 5 0 : 1 1 3 ) : T h e g en e r a l r u l e i s t h a t E g o ma r r i e s h i s f . y . s i s . d . d . a nd g i v e s h i s s i s t e r ' s d a u g h t e r t o h i s m . o . b r . s on . N e i t h e r E g o n or h i s s i s t e r ma r ry i n t o t h e m o t h e r ' s f a t h e r ' s l i n e . B o t h ma r r y i n t o a t h i r d c l a s s i f i c a t or y l i n e , w i t h w h i c h f . m . f . , m . m . f . a nd t h e ( t a b o o ) m . f . s i s . h u s b a nd ' s l i n e s a re i d en t i f i ed . T h e s e r u l e s a r e e mb e d d e d i n a m o r e e l a b o r a t e s y s t e m . Idea l ly , eg o ' s
' c orrec t '
ma r r i a g e i s n ot w i t h h i s F Z D D ,
b u t w i t h t h e d a u g h t e r ' s d a u g h t e r ' s d a u g h t e r of h i s f a t h e r ' s f at h e r ' s y ou n g e r b r ot h e r . I� o r e ov e r , e a c h of t h e three
' c l a s s i f i c a t or y
line s '
i s subd i vi d ed i n t o t h re e ,
g i v i n g a t ot a l of n i n e p a t r i d e s c e n t
l i n e s f or t h e
c o m p l e t e s y s t e m . A nd w h i le t h e s y s t e m i s u n i l a t e r a l , t h e Y a r a i d y a na a c k n ow l e d g e t h e p os s i b i li t y of b i l a t e r a l sister exchange
( M c C on n e l 1 9 5 0 : 1 1 3 - 1 1 9 ) .
A t h r e e - pa t r i l i n e , t w o - m a t r i l i n e m od e l a l s o s u g g e s t s c e r t a i n p a r a l le I s w i t h t h e 'a n om a l ou s ' A m b r y m s y s t e m . A m b r y m k i n s h i p h a s b e e n d e s c r i b e d i n t e r ms of d i r e c t e xc h a n g e w i t h s i x s e c t i o n s , i n t e r me d i a t e b e t w e e n t h e K a r i e r a a nd t h e A r a n d a . 1 4 L e v i - S t r a u s s ( 1 9 7 0 : 1 2 5 )
172
III
II
-
IV
@
FFSb
MBSC
F ig .
3.5.
He l i c a l e x c h a n g e s t r u c t u r e H ( a , 4 , 2 ;
K a r a d j e r i - t y pe w i t h d i r e c t e x c h a ng e
a pparen t l y d isag rees , r e f e r r i n g
r ,
of I D a nd F I S D .
t o t h e Amb r y m a s
.
5 00 )
.
' one
o f t h e m os t c om p l e x s y s t e ms k n ow n ' . F u r t h e r m or e ( Lev i - St r a u s s 1 9 7 0 : 4 6 5 ) , e v e n a s u pe r f i c i a l e x a m i n a t i o n s h ow s t h e m the A m b r y m / Pe n t a c os t s y s t e m s t o b e t h e r e s u l t o f t he c om b i n a t i o n of a d u a l i s t i c a n d a t r i a d i c r u l e of r e c i p r oc i t y , t h e i n t e n t i o n b e i n g t o ma k e t h e s e c o i n c i d e A s t h e c om b i n a t i o n of t h e pr i n c i p l e s o f r e s t r i c t e d a n d g e n e r a l i z e d e x c h a n g e s e e ms t o b e a t t h e h e a r t o f t h e s o - c a l le d C r ow - O ma h a s y s t e ms o f A me r i c a . . . , w e p r e f e r t h a t t h e e a s t e r n a r e a o f c o m p l e x s t r u c t u r e s s h ou ld s t a r t t o t h e s ou t h of Me l a n e s i a . •
•
•
.
B u t a l s o s e e h i s r e ma r k s ( 1 9 7 0 : 24 - 3 2 )
on t h e Am b r y m i n G u i l b a u d
•
C o nc e r n w i t h t h e r e l a t i o ns h i p b e t w e e n s y m m e t r y a n d a s y mm e t r y i s a r e c u r r e n t t h e me
in Amb r y m s t u d i e s , a s i s
•
•
173
t h e p r ob le m ma r r i a g e s '
of
r e la t i on s a n d of
r e c o nc i li n g t h e d a t a
w i t h a n a d e q u a t e m od e l
on
of
t h e k i n s h i p t e r m i n o l og y . A
t h e A mb r y m s y s t e m l i e s b e y o n d t h e
c h a pt e r .
How e v e r , a
f o r mu l a t e d t h a t I n ad d i t i o n , nu m b e r
of
p r o pe r
s c o pe
structure
of
the
f ig u r e
a v a i l a b le d a t a .
a l t e r n a t i v e A mb r y m m o d e l s a p p e a r a s is
( A pu b l i c a t i o n
t h e matr i line a l Yombe
ma r r i a g e w i t h t h e
of
in
C e nt r a l A f r i c a of
p a t r i l a t e r a l c r os s - c ou s i n
pr e f e r r e d
o nc e r e m o v e d ,
p a t e r n a l ma t r i l i n e a g e , i . e . , 5 ( D o u t r e l o u x 1 9 6 7 : 1 3 5 - 1 5 0 ) ! H o w e v e r , D o u t r e l ou x
ma r r i a g e .
His
t '? f or mu l a t e a m o d e l w i t h
s ol ut i o n i s
ma t r i l a t e r a l c r o s s - c ou s i n exchange w i th a
m od e l o f
t o c o mb i n e a
ob l i q u e
m od e l w i t h
ma rr i a g e a n d g en e r a l i z e d s y m me t r i c s i s t e r e x c h a n g e a n d
b i l a t e r a l c r os s - c ou s i n ma r r i a g e ,
pre s e n t i n g
t he m as
a l t e r n a t i v e ma r r i a g e s t r u c t u r e s f o r t h e Y o mb e 1967 : 139 , L ow e r
s i mi la r
f i gure
9;
144 - 1 4 7 ) . The
Z a i r e , c l o s e n e i g h b ou r s mar r i a g e
syste m .
of
( D o u t r e l ou x
ma t r i l in e a l B a K on g o of
the
Y ombe , h a v e a
A c c or d i n g t o M a c G a f f e y
9 0 - 9 9 ) t h e r e a r e c ong r u e n c e s b e t w e e n m od e l
m od e l
pre par a t i o n . )
f r o m t h e s e n i or
d o e s n o t a t t e mp t
of
quotient
m od e l i s a l s o a m o r e c o mp l e t e
yar a i d ya n a .
Finally ,
a F ZDD
this
3 . 4 a s we l l a s a
c o m b i n e a C r ow - t y pe t e r m i n o l o g y w i t h a r u l e c h os e n
of
analysis
9 - l i n e h e l i c a l s c h e me h a s b e e n
i s c om p a t i b l e w i t h
the
s tructures . This for the
' in t e r g e n e r a t i ona l
t h e i n t e r g r ou p
a l l i a n c e a n d d e s c en t
( 1986 :
t he i n d i g e n o u s
( a c o m p le x v a r i a n t
of
p a t r i l a t e r a l c r o s s - c ou s i n m a r r i a g e c o m b i n i n g e l e me n t s
b ot h c y c li c a l a l l i a n c e a n d d i r e c t e x c h a n g e ) ,
c o s m o l og y , c o nc e i v e d u n i ve r s e
of
as a
' r e c i p r oc a t i n g '
or
' s pira l '
i n w h i c h s u c c e s s i v e c y c le s i n t i me g e n e r a t e a
h e l i c a l s t r u c t u r e r a t h e r t h a n a s i m p l e r e p e t i t i on . t h e B a K on g o e m p h a s i s in
a l l a s pe c t s
on t he
of
a n d K o ng o
of
oc c u r r e n c e
on
With
s p i r a l s y m b o l i s m c le a r ly e v i d e n t
t he i r c u l t u r e , f u r t h e r i n v e s t i g a t i o n s o f n a t i v e m od e l s
o f h e li c a l k i n s h i p
s t ru c t u r e s m a y b e r ew a r d i n g . I
pr ov i d e d i a g r a ms
of t h r e e
ot h e r h e l i c a l s t r u c t u r e s .
T h e m od e l of f i g u r e 3 . 5 c om pr i s e s f ou r
pat ri lines ,
two
, MF Sb , FMSb
US b , FUB C W,
MB C , FMBS C , UMB DC
MBS C
fig, with
3.6 .
19
.. " -<
" 19
"-..-- .
o� ' .... . e �IlJl
�
J_
19 "'
�0
He l i e . ,
g e n e r a li z e
�@
,
MMBSC
©
d
q©
'"-=
o .e "," g e
exchan g e
@ "=>
�0
"
of
"e,o",
v
Sc
� @ MMSM b
0�
L!:!J
,v
-..
IMS b
lID ·
'"
....... FFl De �@
�lID
v,
@ FF Sb
FFZ C
�
�
FFZ S C ,
� F loc � 'C' l.!:::..I �
F Z C @] M "DC """"'"
, Sb , � lJi" Ego IFZ S C ,
�Z DC �ili F tSC , @
�® H(.,
ZD and F Z SD ,
6, 2;
""=
.
�lID
ZSC ,
DC
c ,
F Sb , I9 uF Z C
. 5 00 ) .
�
Ea r l y
l.!!I FMB DC
lIDMBDC C
@J SC
W i k moo k . o
' y pe
...... " .p-
1 75
ma t r i l i n e s , a n d t w o a l t e r n a t i n g h e l i c a l mar r i a g e c y c le s ;
dM C/ dFC e q u a l s
. 5 0 0 ( f or a n y v a l u e
of
d HW ) ' T h i s m od e l
i s a ls o s y mme t r i c i n t h e s e n s e t h a t men of t h e s a me me a n a g e e s p o u s e e a c h ot h e r ' s I D a n d F I S O . T h i s s t r u c t u r e w ou l d
p r e s u ma b l y a p pe a r i n K a r a d j e r i - t y pe a s y mme t r i c a l
s y s t e ms w i t h l a r g e h u s b a nd - w i f e a g e d i s pa r i t i e s . I t i s
c o m pa t i b le w i t h a d i v i s i on i n t o e i t h e r f ou r s e c t i on s
or
e i g h t s u b s e c t i on s . I nd e e d , i n r e d u c e d f o r m it i s i d en t i c a l t o L � v i - S t r a u s s ' s ( 1 9 7 0 : 3 4 3 ) f i g u r e 6 6 ( r i g h t ) , h a l f of h i s
' Mu r n g i n '
m o d e l . I t i s a l s o c o m p a t i b le w i t h
J . P . B . d e J os se li n d e J o n g ' s c o ns i d e r in g t h e r a n g e
( 1 9 5 2 ) an a l y s i s .
of e x t e n s i on
Howeve r ,
of t h e a c t u a l
' Mu r n g i n ' t e r m i n o l o g y ov e r s e v e n - od d p a t r i l i n e s a n d f i v e g e n e r a t i ons ( W a r n e r 1 964 [ 1 9 3 7 ] : 45 - 4 9 ) , and S h a p i r o ' s d a t a on t h e s y mme t r i c e x c h a n g e of Z O O ( n o t Z O ) - 3 5 1 ) , a d i f f e r e n t he l i c a l m od e l s e e ms
f or t h e Mu rn g in .
II
deve lo p
( 1 968 : 347
m or e a p p r o p r i a t e
s u c h a m od e l i n a
f u t u re
p u b l ica tion . )
T h e h e l i c a l s t r u c t u r e d e p i c t e d i n f i g u r e 3 . 6 b r in g s
u s t o t h e h e a r t o f t h e W i k mu n k a n c o n t r ov e r s y . T h i s m od e l i s b a s e d on s i x p a t r i li n e s , t h r ee ma t r i l i n e s , a n d t h r e e d i s t in c t a n d i n t e r tw i ned h e li c e s ;
d �I C / d F C i s
. 5 00 . T he
e x c h a n ge s t r u c t u r e c a n a l s o b e g l o s s e d a s t w o s e r i e s a s y mme t r i c c on n u b i a , e a c h l i n k i n g t h r e e pa t r i l i n e s
of
( II ,
I V , a nd V I v e r s u s I , I I I , a nd V ) , w i t h men of t h e s a me me a n a g e p a s s i n g o n t he i r Z D or F Z SO i n c l o s e d u n i la t e r a l c y c le s o f e x c h a n g e . L � v i - S t r a u s s
( 1970 : 209 )
M c C o nn e l ' s
a s f o l l ow s :
( 1 940 ) e a r l y a n a l y s i s
s u m ma r i z e s
T h e W i k mu n k a n p r a c t i c e a c h a r a c t e r i s t i c f o r m of ma r r i a g e w i t h t h e m ot h e r ' s y ou ng e r b r o t h e r ' s d a u g h t e r ; t h e m ot h e r ' s o ld e r b r o t h e r ' s d a u g h t e r i s p r oh i b i t e d . T h e s t r u c t u r e o f a l l i a n c e a n d k i n s h i p t h u s d oe s n o t s i m p l y p o s s e s s t h e c yc li c a l f o r m of s y s t e ms of g e n e r a l i z e d e x c h a n g e , . . . f o r t h e c yc l e t a k e s o n t h e a d d i t i o na l a p pe a r a n c e of a s pi r a l , a man a lw a y s m a r r y i n g i n t o a y ou n g e r b r a nc h , a n d a w o ma n i n t o a n o l d e r b r a nc h . T h e a d j u s t me n t i s ma d e b y c l o s i n g t h e c y c l e w i t h a n a b s o l u t e d i s p l a c e me n t o f t h r e e g e n e r a t i on s i n e v e r y s i x l i ne s •
•
.
II MF Sb , FMS b
MSb , FMB C
W , MB C , FMB S C , MMB DC
MB S C
(Q] � , .
I II
��
"":'
...
� -
-
MM S b
�
� � � fR1
�
C= _ ...-... ======== = ......, '-=-___
f!J � � '81
�
MMB C
�
lID
IV
rrl
V �
FF
[£J
-""" (QJ
�
-""" lfJ
� ffi1
FZC ,
��
__ c=:=========== '-"' = =-�.... � � (!J
lfJ �
.
� (QJ � � (!J
Z OC
F i g . 3 . 7 . H e li c a l ex c hange s t ructure H ( a , 6 , 3; w i t h d i r ec t e xc h a n g e o f F ZDD .
FZSC
__ -"""' 1'A1 �
�
� IID
� SC , -""" ZIID � DC
r ,
. 667 ) .
FSb ,
"FlC
F FZ S C ,
MF Z D C � - �= ""'O'-::-- MMB S C --�@J � C, F Z DC � Zf!J 7 �
L:::J
FFS b
ZC
� lfJ � (QJ
� :. [£J � H Z DC
VI
h� lfJ
E go , S b , MFZ S C , FMB DC
C , MBDC
SC
A l y a w a r a - W i k mu nk a n
t y pe
� " 0\
177
T h i s d e s c r i p t i on
( see , e . g . , f ig ure
u n f o r t u n a t e l y n o t a me n d e d a f t e r t h e
3 .6 ) was
1 9 4 9 e d i t i on
Eleme n t ary S t r u c t ures t o i n c l u d e M c C onn e l ' s 1 95 1 )
later
( 1 95 0 ,
c o r r e c t i on s a n d a d d i t i on s . H e r f i r s t a n a ly s i s
indeed
is
n o t e n t i r e l y c on s i s t e n t . R e a d i n g f r o m on e o f
u n c or r e c t e d k i n s h i p c h a r t s t h e exc h a n ge
struc ture
eg o ' s c h i ld r e n
f igure
3 . 6 is
i s c l os e d w i t h a d i s p la c e me n t
only
of
marr yi n g i n t o t h e g en e r a ti on
( G - l J . The he li c a l s tr uct ure
the
her
( t1c C on n e l 1 9 4 0 : 4 4 5 , D i a g r a m 3 A ),
t h r e e g e n e r a t i o ns , MMF ( G +3 )
of
of
in
my
h o m og e n e ou s s o l u t i o n , g i v e n
a s s u mp t i o n of e x a c t l y s i x patr i l i n e s . a r i s e w h e n t h e W i k mu n k a n k i n
Howe ve r ,
t e r ms a r e
ma p p e d
the
pr o b le m s on t o t h i s
e x c h a n g e s t r u c t u r e . Wi t h i n e a c h p a t r i l i n e t h e t e r mi n o l o g y r e pe a t s
i t s e lf
af t e r four g e n e r a t i ons ,
i nc o n s i s t e n c i e s a r e c or r e c t e d 195 1 ) in
n o te s , a n d
a new chart
later
in
h e r r e v i s e d W i k mu n k a n
( M c C o nn e l 1 9 5 0 : 1 2 1 ,
h e l i c a l m od e l w i t h s i x
not
McC onne l ' s
( G 0 ) , and
( G +2 )
ma r r y i n g
M c C o nn e l ' s
of
only
later ana lyses
after
are
. 667 .
four
en t i r e l y
c on s i s t e n t w i t h a h e l i c a l m od e l e m b o d y i n g s i x
pa t r i l i n e s ,
dMC/ dFC T h i s c o r r e s p o nd s t o t h e s c h e me d e v e l o pe d
f ou r m a t r i li n e s , r a t i o of
two
i n t o e g o ' s g e n e r a t i on
t h e t e r mi n o l o g y a g a i n r e pe a t s
g e n e r a t i on s .
He r e a g a i n , a
pos t u l a t e d , b u t n ow
t h e s t r u c t u r e c l o s e s w i t h a d i s p l a c e me n t g e n e r a t i o n s , I�F B
( 1950 ,
m od e l i s d e s c r i b e d
145 ) .
pa t r i l i n e s i s
T hese
three .
i nd e p e n d e n t l y b y
t w o a l t e r n a t i n g h e l i c e s , a nd
( 1 9 7 9 ) f o r t h e A ly a w a r a .
Denh a m e t a 1 .
N o t e ve r y one i s s a t i s f i e d b y
Mc C o n ne l ' s W i k m u n k a n
a n a l y s i s , h ow e v e r . N e e d h a m
( 1962 ,
Mc K n i g h t
( 1971 ) ,
in d i r e c t
o p p o s i t i on , d i s mi s s
a l l s uch
helical
m od e l s
g en er a l i z e d e x c h an g e . T h e y
subsc r ibe
of
1963 ,
1971 )
and ou t r i g h t
t o a s i m p l e s y s t e m o f m oi e t i e s w i t h d i r e c t
e x c h a ng e r e g u l a t e d b y a s c h e me ( A m oi e ty s t ru c t u r e i s s tr uc tu r es . )
The
d e a I t w i t h h e [' e ;
indeed
of on e
' s oc i a l c l a s s i f i c a t i o n '. of
the
mode l ' s q u o t i e n t
ma n y p o i n t s o f c o n t e n t i on c a n n o t b e
1 6
i n any
case , I
d o n ot f i n d t h e
N e e d h a m - M c K n i g h t W i k mu n k a n c r i t i q u e v e r y c o n v i n c i n g . T h e A l y a w a [' a s t r u c t u r e
( f ig .
3 .7)
is
i nd e e d
on e
of
my
178
he l i c a l m od e l s . A l l a g e - d i f f e r e n c e i n f e re n c e s a r e in pe r f e c t a g r e e me n t w i t h t h e a c t u a l v a l u e s r e p o r t e d :
d /d is = . 6 6 7 , h e n c e i f d HW i s 1 4 y e a r s , t h e n d MC FC MC 2 8 y e a r s a n d d F C i s 4 2 y e a r s . T h e c om p l e t e s e t o f me a n a g e d i f f e r e n c e s c a n b e r e a d f r om t a b l e 3 . 4 ( f or b 3 =
and r = 1 4 ) .
I t i s e s s e n t i a l t o r e me mb e r t h a t my
A l y a w a r a - W i k mu n k a n m od e l i s n o t d e r i ve d fr om t h e a c t u a l
A l y a w a r a a n d W i k m u n k a n f i e ld d a t a :
i t be longs t o an
e n t i r e c l a s s of f orma l he l i c a l s tr u c t u r e s d e v e l oped f r o m a b a s ic s e t o f s t r u c t u r a l a x i o m s . H e n c e , t h e f a c t t h a t t h i s p a r t i c u l a r p r o pe r m od e l i s a p e r f e c t f i t f o r t h e e mp i r i c a l d a t a i s n o t d u e t o a c i r c u l a r a r g u me n t . T h e A l yaw a r a s t r uc t u r e H ( a , 6 , 3 ;
14 ,
. 66 7 ) c a n be
r e d u c e d t o a f ou r - s e c t i on q u o t i e n t s t ru c t u r e , b u t i t i s n o t c o mp a t i b l e w i t h a r e d uc t i o n t o a n e i g h t - s u b s e c t i o n A r a n d a - t y pe k i n s h i p s t r u c t u r e . T h i s c on c l u s i o n i s a l s o reac hed b y Den h a m e t a 1 .
( 1 97 9 ) .
A s n ot e d b y D e n h a m a n d A t k i n s structure
( 1 9 82 ) , t he A l y a w a r a
pe r mi t s a f o r m of s y mm e t r i c e xc h a n g e , w i t h
me n of t h e s a me me a n a g e e s p ou s i n g e a c h o t h e r ' s F Z D D s . This
' latent '
in the
p r o pe r t y of t h e m od e l i s h i g h l y s i g n i f i c a n t "
li g h t of t-1c C on n e l ' s ( 1 9 5 0 ) d e s c r i pt i o n of t h e
N g a m i t i a n d Ya r a i d y a n a m a r r i a g e s y s t e ms w i t h t h r e e ' c la s s i f ic a t or y '
p a t r i l i ne s . I t i s a n i n t e r e s t i n g
p os s i b i l i t y t h a t t h e s i x - pa t r i li n e , f ou r - ma t r i li n e , tw o - h e li x A l y a w a r a - W i k mu n k a n m od e l , w i t h e x c h an g e
symm e t r i c
of F Z D D s , i s a t r a n s f or m o f t h e N g a m i t i s t r u c t u r �
U n d e r t h i s h y p ot h e s i s , a t hr e e - p a t r i lin e s t r u c t u r e w i t h a s ymme t r i c e x c h a ng e o f F Z D D s
i s t r an s f o r m e d
t h r ou g h f i s s i o n o f t h e d e s c e n t l i ne s i n t o
( possibly
' ju n i or ' a n d
' s e n i o r ' b r a n c h e s ) i n t o a s i x - pa t r i l i n e s t r u c t u r e , w i t h t he a g e d if f e rence a n d a g e r a t i o
c o n s t r a i n t s r e ma i n i n g
u n c h a n g e d . A r e v e r s e t r a n s f or m a t i o n f r om s i x l i n e s t o t h r e e i s a l s o p os s i b l e . A ny s u b s t a n t i v e t h e or y
of t he
t r an s i t i on a l c on f i g u r a t i o n s of A u s t r a l i a n s y s t e ms
(e .g . ,
T u r n e r 1 9 8 0 ) w i l l b e n e f i t f r om a s y s t e ma t i c i n v e s t i g a t i on of t h e c l a s s of h om om or p h i s ms l i n k i n g k i n s h i p m od e ls . l 7
179
I h a v e s o f a r n o t b e e n a b l e t o d i s c o v e r c l e a r e m p i rical e x a m p l e s of m a n y of t h e o t h e r s t r u c t u r e s l i s t e d in t a b l e 3 . 2 . Age d i f ferences have not a lways been reported i n e t hnog r a p h i c s tu d i e s .
I n a n y c a se , a d d i t io n a l con s t r a i n t s
on the basic model are cal led for , as i t i s hardly l i kely t h a t k i n s h i p s t ru c t u r e s w i t h l a r g e n u m b e r s o f h e l i c e s a n d a large husband-wife age d i fferen t i a l are viable descr i p t i ons o f rea l societies . T h e f o l l o w i n g e x t e n s i o n s t o t h e b a s i c he l i c a l s c h e me s h o u l d be e x p l o red . F i r s t ,
the b a s i c h e l i c a l ma p p i n g
g e n e r a t i n g a l l m od e l s i n t h i s c h a p t e r h a s b e e n d e f i n ed a s (N
.
.
IJ
)h
= N .
1 +1 J +1 .
( w i th j +l r e d u c ed m o d u l u n ) . Under t h i s
a s s u m p t i o n the m i n imum d
HC / d FC r a t i o i s . 5 0 0 . I t h a s b e e n MC / d F C r a t i o
p o i n ted out to me that mod e l s w i t h a m i n imum d less than
. 500 c a n n o t be e x c l u d ed a p r i o r i . l s
Second ,
the b a s i c helical model is compa t i b l e w i t h
m a t r i l a teral cross-cousin marr iage . As a consequence , t h e d a t a f r o m R o s e ' s ( 1 9 6 0 ) W a n i n d i l j a u g w a a n a l y s i s , perhaps t h e b e s t - k n o w n d e s c r i p t i o n o f an a g e - b i a s e d k i n s h i p s y s t e m , d o e s n o t f i t m y h e l i c a l s c heme . T h e m o d e l mu s t b e e x t e n d e d t o i n c l u de h e l i c a l s t ru c t u r e s p r o s c r i b i ng f i r s t cou s i n marriage . Finally,
t h e f a m i l y o f h e l i c a l m o d e l s ( s u i t a b l y e x t e n ded
a n d c o n s t ra i ned ) o f f e r s a u n i q u e f r amework f o r mode l l i n g t h e s t r u c t u r e a n d d y n a m i c s o f k i n s h i p s y s t e m s w h o s e a l liance s tructures are not based o n the exchange o f s i s ters
( the
s t andard assumption under the Lev i -S t raussian approach ) . T h e s e e x t e n s i o n s a r e s ke tched i n f i g u r e 3 . 8 .
The first
t w o examples i l lu s t rate the c l a s s i c models with s i ster e x c h a n g e . E g o ( i n d i c a t e d b y a s o l i d t r i a n g l e ) a n d s om e m a n a
m a r r y e a c h o t h e r ' s s i s t e r s . E x c h a n g e i s s y mm e t r i c ,
r e p e a t i n g t h e s ame p a t t e r n i n c o n s e c u t i v e g e n e r a t i o n s ( t o p , left ) or in a l ternating genera tions ( top ,
right) .
s i mp l e s t f u l l mod e l s a r e o f c o u r s e t h e ' mo i e t y ' a n d t h e ' A r a n d a ' - t y p e s t r u c tu r e .
The
structure
( T h e s y mm e t r i e s o f
r e s t r i c t e d e x c h a n g e are d i s c u s s e d i n C h a p t e r 4 w h e r e t h e s e r i e s i s ex tended beyond the classic s t r u c t u r e s men t i oned
180
A
B
D
A
B
D
A
B
a
F Z O, M B O MMBOO
A
B
MBD
A
B
D
ZO
A
MMB D D FZOOD
B
a
Fig.
3 . 8 . P a r t i a l mod e l s b a s e d o n t h e e x c h a n g e o f s i s t e r s
( top ) ,
si ster ' s daughters
( c e n t r e ) , a n d s i s t e r ' s daughter ' s
d a u g h t e r s ( b o t tom ) . Consecu t i v e a n d a l terna t i n g e x c h a n g e .
181
above . ) The d
uC
/d
FC
ratio is of course equal to unity i n
a l l s ta nd a r d mode l s . T h e l i t e r a tu re o n A u s t r a l i an k i n s h i p p r o v i d e s n ume r o u s
e x a m p l e s o f s i s t e r s b e i n g excha n g e d o r b e s t o we d , s p o u s e s b u t as mo t h e r - in - laws .
not as
T h i s i s f o rma l l y e q u i v a l e n t
t o a rule stating t h a t t w o m e n m a r r y e a c h other ' s s i s te r ' s d a u g h te r s ,
i . e . , a r u l e b a s ed o n t h e s ymme t r i c e x c h a n g e o f
Z O s . A p a r t i a l m o d e l i l l u s t r a t i n g t h e e x c h a n g e o f Z Ds by m e n f r om two m a t r i l i n e s
( w i t h t h e p a t t e r n r e p e a t i n g i n consecu tive
is g i v e n i n f i g u r e 3 . 6 ( c e n t r e ,
gener a t i on s )
left) .
The
s im p l e s t p roper m o d e l i s the f o u r - pa t r i l i ne , two -ma t r i l ine model with two h e l i c a l cycles H ( a ,
�,
2;
a b o v e in f i g u re 3 . 5 . O t h e r mo d e l s w i t h d .
500 a r e
r ,
Mc
/d
.
500 )
rc
p i c tu r ed
equa l to
a l s o p o s s i b l e ( see T ab le 3 . 2 ) . F igure 3 . 8
( centre ,
r i g h t ) shows a p a rt i a l structure based on the exchange of
s i s te r ' s d a u g h t e r s , w i t h t h e e x c h a n g e c y c l e repe a t i n g e v e r y two generations .
I n g e n e a l o g i c a l t e rm s , e g o ma r r i e s h i s
MMBDD w h o i s merged w i th h i s FZODD . I n contrast t o t h e p r e v i ou s m od e l , e go ' s MBO i s now a l l oc a ted t o a t h i r d
ma t r i l i n e . The simplest proper model i s a s t ructure w i t h d
Mc
/d
rc
equa l to
. 5 00 , d e f i ne d o n e i g h t p a t r i l i n es ,
matri l i nes , with four helical e xchange cycles .
four
It seems to
b e f u l l y c om p a t i b l e w i t h t h e d a t a o n t h e G i d j i n g a l i ( s e e Martin and Reddy 1987 ,
Hiatt 1965 ,
1968 ) .
A deta i led
a n a l y s i s o f this model w i l l be presented s h o r t l y .
T h e f i n a l e x a m p les ( f i g u r e 3 . 8 , b o t t o m r o w ) a r e o f m o d e l s
with d '
Mc
/d
equa l to
rc
genera t ions
matrilineal
' '
. 333 ,
i . e . , where patr i l ineal
a r e , o n a v e r a g e , t h r e e t i me s a s l o n g a s
generations .
exchange ( figure 3 . 8 ,
'
In the model with consecu tive
b o t t om ,
left ) ,
ego and man a e xc hange
s i s te r ' s d a u g h t e r s a s m o t h e r s - i n - l aw . T h e s i m p l e s t p r o p e r model
is a s i x - p a t r i l i n e ,
two - ma t r i l i n e mode l w i th f o u r
hel ical exchange cycles . T h i s helical model is i ndeed
compa t i b l e w i t h r e c e n t a na l y s es o f t h e m a t e r i a l ( see Morphy 1978 ,
' Murngi n '
Shapiro 1968 ,
1981 ,
( Yolngu )
Keen 1982 ,
Maddoc� 1970 , Liu 1986 , Hea th 1982 , Martin and Reddy 1987 , and
G l owczews k i a n d P r a d e 1 1 e s d e L a t o u r 1 9 8 7 ) . R e as o n s o f
182
s p a c e d o n o t p e rm i t f u r t h e r d i s c u s s i o n o f t h i s m o d e l
(a
more detailed presentation i s i n preparation ) . F inally ,
i n t h e l a s t e xa m p l e
( figure 3 . 8 ,
bottom ,
right)
s i s t e r ' s d a u g h t e r s a r e e x c h a n g e d o r b e s t owed a s mo t h e r s i n - l aw ,
with the cycle of e xc hange repea ted i n alternating
genera t i o n s o f the same matr i l ine , to
. 33 3 .
w i th d
MC
/d
FC
agai n equal
T h e c o r r e s p o n d i n g p r o p e r m o d e l s m u s t c on t a i n a t
l e a s t f o u r ma tr i l i ne s . T h e l a s t f o u r mod e l s i l l u s t ra t e a n impo r t a n t f e a t u r e a l ready st res sed i n sisters
t h i s c h a p t e r : a s y mm e t ric e x c h a n g e o f
( w i th o r w i t h o u t t h e po s s i b i l i t y o f MBD-ma r r i a g e )
i s c o m p a t i b l e w i t h a s t r u c t u r e g e n e r a t e d b y t h e s ym m e t r i c e xchange or bestowal of s i s te r ' s daughters as spouses o r mother s - i n - law. 1 9 Hence knowledge o f t h e form of exchange i n v o l v i n g s i s te r s
( s y mm e t r i c o r a s y m m e t r i c e x c h a n g e )
is
not a su f f i c i e n t c r i t e r i o n f o r c h a r a c t e r i z i n g a n e n t i re k i n s h i p structu re .
T h i s concl u s i on supports the a rgumen t
put forward long ago b y J . P . B .
46-49 )
d e Josselin d e Jong
( 1952 :
i n h i s d i s c u s s i o n o f t h e L e v i - S t r a u s s i a n s c h em e
( see Chapter } ) . ' A randa '
centre ,
and
I n fa c t ,
it c a n be d emon s t r a t e d
' Gi d j i n ga l i '
right ) ,
m od e l s
( f i gure 3 . 8 ,
that the
top and
r e p r e s en t i n g d i s t i n c t k i n s h i p s t r u c t u r e s ,
a r e b o t h a s s o c i a ted w i t h t h e same u n d e r l y i n g g r oup o f t r a n s f o rma t i o n s . 20
APPEND I X P r o o f of l emma
o f map p i ng s ,
1 :
U n d e r t h e u s u a l a s s o c i a t i ve comp o s i t io n
a n y f i n i te p rodu c t g
=
z z l 2
. . .
an i n t egral power of h o r s belongs t o G ( h , are an i n f i n i te number of such e l ements =
s Y hx .
Then
Y X )S h
(N and ij i +x +b y j +x w i t h j +x r e d u c e d m o d u l o n .
N
any
g
=
Z
1Z 2
. . .
Z
r
=
( N . . ) hx s Y 1J
(N
) hx
g . =
z w i t h zi r s ) . There
In pa r t i c u l a r , (N . . )sY = 1 +x J +x
Ni + b y +x j +x ' Y x s h , so that c a n a l w a y s b e r ew r i t t e n a s g = h P s q i +b y j X Hence , h sY
183
sqhP by
g is
a r e or d e r i n g
s in c e gg
h - Ps- q ,
of t h e f a c t or s
-I
s q s - q h O = s Oh O = e e = e .
g r ou p . N ow ( N N
i +b t
hn =
j
° .> hn �J
= N
�+ °
= s q h P h - Ps - q
st , and n and
t are
� O
The inverse
.
sqh
=
°
of
s-q
T h u s G ( h , s ) i s a c om mu t a t i v e N
+n n J °
S i n c e b y d e f i n i t i on b t =
'
z
and
� +n J °
°
n ,
(N
.>st
�J °
=
i t f o l l ow s t h a t
t h e s ma l l e s t p o s i t i v e i n t e g e r s
f or w h i c h t h i s i s t h e c a s e . F i n a l ly , u nd e r t h e
c om p o s i t i o n o f ma p p i n g s , a n y o ne e l e me n t g o f G ( h . s )
g e n e r a t e s a c y c l i c a l s u b g r ou p . G ( h ) , G ( s ) , a n d G ( h - l s ) ° ° -1 ° s = (h s) a r e s u c h s u b g r ou p s , w � t h h e °
=
•
P r o o f o f l e mma 2 : Ac c or d i n g t o l e mma 1 , h n pn (N . ) sPt h s P t f or a n y p . N ow ( N . ) h P n (N
an d
�J °
.> ( h
-1
P = b - l and
s u c h t h a t pn
Thus hn
z
( b -l )
=
dHW
=
r .
� J. > °
°
�J
� +z ( b - I ) °
J -Z °
N o � +pn
O J
Then
t h e s ma l le s t p os i t i ve i n t e g e r s
z ( b - l ) , w i t h j - z c on g r u e n t t o j m od u l o n .
s
=
t ( b -l )
Proof o f l emma 4 :
and
(N
n are
=
=
°
z
s)
�J -z z h s = N
=
(h-
l
s)
n
.
E g o ' s w i f e i s d e n o t e d b y t h e ma p p i n g h
A c c or d i n g t o le m m a 3 , m e a n a g e d i f f e r e n c e s
r e l a t i v e t o ma l e e g o a r e c om pu t e d b y t h e f o r mu l a r ( b y + x ) f or a n y c om p os i t e ma p pi n g s Y h t o d i s c ov e r c om b i n a t i o ns r ( b y +x )
x
• The genera l
pr ob l e m i s
of b . x . a n d y f o r w h i c h r
o r , e qu i v a le n t l y , b y +x
=
1 . T h e b a s i c s e t of 3 1
k i n t y pe s i n t a b le 3 . 4 i s r e s t r i c t e d f o r p o s i t i v e integers b by 1,
l i m i t i n g x a n d y t o t h e v a lu e s - 2 , - 1 , 0 ,
a n d 2 . B y s u b s t i t u t i o n i n t h e e q u a t i on i t i s e a s i l y
seen
on l y s o lu t i o n s a r e :
that the
a. y
M B D . f� M B D D . a n d
F t�B S O . b .
y
dMC / dFC c.
y
dMC/ dFC
O
f
1.
b
=
-1 ,
=
-2 , b
2;
sYhx
. 5 00 . I , x
3 ; sYhx
sh
-1
sh 2
lD and FlSO ; FlDD ;
. 667 .
c ou r s e , i f
ot h e r
x
one e x t e n d s t h e
l i s t of b a s i c k i n t y p e s ,
' o b l i q u e ' ma r r i a g e s b e c ome a s t r u c t u r a l p os s i b i l i t y .
184
F or e x a m p l e , F Z OOO = k i n t y pe s a r e
of t he
s 2h .
-
3
, a nd F F Z O O O
MC
/d
FC
equ a l t o
sh-3
•
These
' c or r e c t ' m a r r i a g e a b l e a g e f o r ,
r e s pe c t i v e ly , s t r u c t u r e s w i t h
d
=
. 5 0 0 a nd
b
=
2 and
b
=
4
( i . e . , f or
.750.
N OT E S 1
T h i s c h a p t e r i s a mu c h r e v i s e d a n d e x p a n d e d v e r s i on o f a pa pe r w i t h t h e s a m e t i t le p u b l i s h e d in A me r i c a n E t h n o l o g i s t ( 1 9 8 3 a ) 1 0 ( 3 ) : 5 8 5 - 6 0 4 . A nu mb e r of pe r s on s c om me n t e d on e a r l i e r d r a f t s a nd on t h e p u b l i s h e d ve r s i o n o f t h e 1 9 8 3 p a p e r I e s pe c i a l l y w i s h t o t h a nk J o h n A t k i n s , P a u l J o r i o n , a n d Wo o d y D e n h a m f o r t h e i r m a n y h e l pf u l s u g g e s t i o ns . M y h e l i c a l m od e l ow e s mu c h t o t h e a n a l y s i s of t h e A l y a w a r a d a t a p r e s e n t e d b y De n h a m , M c D a n i e l , a n d A t k i n s ( 1 9 7 9 ) . M a c f a r l a n e ' s p a pe r i s d i s c u s s e d i n N e e d h a m ( 1 9 7 1 ) a n d i s m e n t i o n e d i n t h e i n t r od u c t i o n t o B a l l o n o f f ( 1 9 7 4 a ) ; i t i s r e p r i n t e d in B a l l o n o f f ( l 9 7 4 b ) . O n e of t h e or i g i n a l d i s c u s s a n t s w a s S i r F r a n c i s G a l t o n , a c ou s i n of D a r w i n ' s a nd f o u n d e r of t h e s c i e n c e of e u g e n i c s . G a l t o n ' s n o n s t a t i s t i c a l c o n t r i b u t i o ns t o k i n s h i p t h e or y a r e l i m i t e d t o a f e w s h or t n o t e s ( G a l t on 1 8 8 9 ) . A c c o r d i n g t o N e e d h a m , R a d c l i f f e B r ow n ' s e a r l y a t t e m p t s a t f o r m a l i s i ng m a d e u s e o f a M a c f a r l a ne t y p e n o t a t i o n a l s y s t e m ( 1 9 7 1 : x x i v - x x v i i i ) . G r e e n b e r g ( 1 9 8 6 : 9 ) a c k n o w le d g e s a n e a r l y d e b t t o K r oe b e r ' s 1 9 0 9 pa pe r a n d t o C a r n a p a n d t h e l og i c a l p o s i t i v i s t s . I n t u rn , C a r n a p l a t e r i n c lu d e d a n e n t i r e s e c t i o n o n a x i om s y s t e m s f o r k i n s h i p r e la t i o n s i n h i s I n t r o d u c t i o n t o Symb o l i c L o g i c a n d i t s A p p l i c a t i o n s ( 1 9 5 8 : 2 2 0 - 2 2 5 , 2 3 0 ) , f i r s t p u b l i s h e d i n G e r ma n i n 1 9 5 4 . G e l l n e r ' s c on t r o v e r s i a l p a pe r on ' I d e a l K n ow l e d g e a n d K i n s h i p S t r u c t u r e ' ( 1 9 5 7 ) pa r a l l e l s G r e e n b e r g ' s 1 9 4 9 p r o p o s a l in m a n y w a y s . S e e a l s o h i s d i s c u s s i o n w i t h N e e d h a m a n d B a r n e s ( G e l ln e r 1 9 6 0 a n d 1963 ) A nd r e We i l ( b . 1 9 0 6 ) , i n t h e 1 9 3 0 s c o - f o u nd e r ( t og e t h e r w i t h J . D i e u d on n e a n d H . C a r t a n ) o f t h e g r o u p o f m a t h e ma t i c i a n s pu b l i s h i n g u nd e r t h e c o l l e c t i v e n o m d e p l u m e o f ' N i c o l a s B ou r b a k i ' . See C h a p t e r 1 , n ote 1 9 . S e e C h a p t e r 1 , n ot e 4 0 . S i m i l a r c on c l u s i o n s h a v e b e e n r e a c h e d b y d e m og r a ph e r s ( H e n r y 1 9 7 6 : 2 7 3 - 2 8 4 , C a v a l l i - Sf or z a e t a l . 1 9 6 6 , a n d C a s t e r l i n e e t a l . 1 9 8 6 ) . Re f e r e n c e s t o e a r l y d i s c u s s i o n s of a g e b i a s a re f o u n d i n N e e d h a m ( 1 9 6 6 ) a nd R i v ie r e ( 1 966c ) . L o r r a i n ( 1 9 7 5 : 1 2 7 - 1 28 ) s u m m a r i z e s t h e f i r s t t w o b a s i c a s s u m pt i on s . I t a k e t h e t e r m ' g e n e r a t i on a l .
2
-
3
•
4
5 6
7
185
S 9
10
11
12
13 14
c l o s u r e ' f r o m A t k i n s ( 1 9 8 1 ) . T h i s p r i n c i p le i s o f c ou r s e a ls o f ou n d i n t h e c l a s s i c m od e l s o f c i r c u l a t i n g c on n u b ium d i s c u s s e d i n C h a p t e r 1 a nd i n t h e g e n e r a lized e x c h a n g e s tr u c t u r e s of the p r e v i ou s c h a p te r . T h e u s e o f ' p re s c r i p t i on ' ( a s o p p os e d t o ' p r e f e r e n t i a l ' ) h a s e v o k e d o ne o f t h e m os t v i t r i o l i c d e b a t e s i n r e c e n t a n t h r o p o l og i c a l h i s t o r y . F or L ev i - S t r a u s s ( l 9 7 0 : x x x i i i ) , ' a p r e f e r e n t i a l s y s t e m i s p r e s c r i p t i v e a t t h e m od e l l e v e l ; a p r e s c r i p t i v e s y s t e m mu s t b e p r e f e r e n t i a l w h e n e n v i s a g e d a t t h e le v e l of r e a l i t y ' . F o r a r e c e nt d i s c u s s i o n s e e Ba r n a r d a n d G o od ( 1 9 8 4 : 1 0 0 - 1 06 ) . A l l nec e s s a r y ma t h e ma t i c a l c on c e p t s a r e s u mma r i z e d i n t h e a p pe n d i x , t og e t h e r w i t h s h or t p r o o f s o f t h e l e m m a s . S e e a l s o t h e a p pe nd i x t o C h a p t e r 1 . M y d e f i n i t i o n of d d i f f e r s f r om t h a t of R e i d 1. J .
.
( 1 9 7 4 ) . I r e f e r d i r e c t ly t o p a i r e d r e c i p r oc a l k i n t y pe s . C a v a l l i - Sf or z a e t a l . ( 1 9 6 6 : 5 5 ) s u g g e s t t h a t t h e n or m a l ( G a u s s i a n ) a p pr ox i ma t i o n m a y b e a d e q u a t e f o r a g e d i f f e r e n c e s b e t w e e n f i r s t c ou s i n s , b u t le s s s o f o r r e l a t i on s h i ps a c r os s g e ne r a t i on s . ' S i m p le ' i s n o t i d e n t i c a l t o ' e l e m e n t a r y ' . I u s e t h e term ' s i m p le ' i n t h e s e n se of G r a n g e r ( 1 9 8 3 : 1 3 5 ) ; s e e a l s o C h a p t e r 5 . A t a m or e p r a g m a t i c l e v e l , b y s i m p le s t r u c t u r e s I me a n t h o s e t h a t , w h e n i n t e r pr e t e d , a r e e x pr e s s e d b y me a n s of e a s i ly s t a t e d r u le s ; e . g . , ' O n e s h ou ld m a r r y a y ou ng e r w om a n f r om t h e v i l l a g e , li n e , b l o od , e t c . o f o n e ' s m ot h e r ' s b r o t h e r ' . T h i s p r a g m a t i c u s e o f ' s i m p le ' i s s u g g e s t e d by J o r i o n ( 1 9 8 1 : pe r s on a l c ommu n i c a t i o n ). A l t h ou g h h e s t r e s s e s t h e i m p o r t a n c e of r e la t i v e a g e ( a s o p p o s e d t o r e l a t i v e g e ne r a t i o n ) , G o od d e s c r i b e s l D ma r r i a g e a s r e f le c t i n g a ' s y m me t r i c p r e s c r i p t i v e t e r m i n o l og y ' , n o t a s y s t e m of e x c h a n g e . G o od ' s c o n c l u s i o n s a r e p h r a s e d i n r e f e re n c e t o N e e d h a m ' s d i s t i n c t i on s b e t w e e n p re f e re n c e a n d pr e s c r i p t i o n , a n d r u le s , c a t e g o r i e s , a nd b e h a v i ou r . S e e a ls o S h a p i r o ( 1 9 6 8 ) , B r u m b a u g h ( 1 9 7 8 ) , G o od ( 1 9 8 1 ) , B o s s e ( 1 9 8 3 ) , H e n le y ( 1 9 8 3 - 8 4 ) , B a r na r d a n d G o od ( 1 9 8 4 : 9 8 - 1 0 4 ) , a n d H o r n b or g ( 1 9 8 8 ) . T h e me r g i n g o f k i n t y pe s t h r ou g h v a r i ou s t y p e s of m a r r i a g e ( i nc l u d i n g l D - m a r r i a g e ) i s a l s o d i s c u s s e d b y K a s a k of f ( 1 9 7 4 ) . S e e a l s o Y a l m a n ( 1 9 7 1 ) . T h e S a n y a s i f o r m a c a s t e ; t h e K or av a ( L e v i - S t r a u s s 1 9 7 0 : 4 25 -4 26 ) a r e d i v i d e d i n t o t h r e e s e c t i o n s w h i c h a re a g a i n d i v i d e d i n t o t w o e x og a m ou s m o i e t i e s . R e f e r e n c e s t o t h e l i t e r a t u r e on A m b r y m c a n be f ou nd i n L a n e a n d L a n e ( 1 9 5 8 ) , P . E . d e J o s s e 1 i n d e J on g ( 1 9 6 6 ) , S c h e f f le r ( 1 9 7 0a , 1 9 8 4 ) . A n e x c e r p t f r om T . T . B a r n a r d ' s 1 9 2 4 d oc t o r a l d i s s e r t a t i o n h a s r e c e n t l y b e e n m a d e a v a i l a b le ( B a r na r d 1 9 8 6 ) . Se e a l s o J o r i o n ( 1 9 8 6 ) a nd t h e h i s t or i c a l o v e r v i e w b y L a n g h a m ( 1 9 8 1 ) . I h a v e n ow le a r n e d t h a t J o h n A t k i ns ( 1 9 8 2 : pe r s o na l
1 86
15
16
17 18 19 20
c o mm u n i c a t i o n ) o n c e p r o p o s e d a h e l i c a l s c h e m e f o r t h e Amb rym i d e n t i c a l t o t h e m o d e l o f f i g u r e 3 . 4 i n an unpublished paper . Indeed , many of the helical models presen ted in this chapter have been obta ined independently by Atkins . He is a lso the inventor o f t h e h e l i c a l s c h e m e i n D e n h am e t a l . ( 1 9 7 9 ) . S ignif icant l y , h i s metrical analyses ( A t k i ns 1974a , 1 9 74b , 1 9 74 c ) e x t e n d t h e r e s e a r c h p i o n e e r e d by M a c f a r l a n e n e a r l y a c e n t u r y e a r l i e r . Howev er , a s published , Atkins ' helical model is n o t developed a s a m e t r i c a l s t ru c t u r e s u p e r i m p o s e d o n a commu t a t i v e g r ou p . T h i s E n g l i s h g l o s s i s t a k e n f rom M a cCa f f e y ' s s u mma r y o f D o u t r e l o u x ' s m a r r i a g e r u l e s ( 1 9 8 6 : 2 6 3 , n o te 3 ) . L e v i - S t r a u s s h a s r e c e n t l y ( 1983a : 9 3 - 1 0 5 ) p u b l i s h e d his commen t s on McKn i g h t . Thomson ( 1972 ; e d i ted by S c he f f l e r ) p r e s e n t s a d d i t i o n a l m a t e r i a l on t h e k i n t e r m i n o l o g y s y s t em s i n t h e C ap e Y o r k a re a , i nc l ud i n g t h e W i k mu n k a n s y s t em . S e e B o y d ' s ( 1 969 ) sem i n a l a r t i c l e and De M e u r and J o r i o n ( 1 98 1 ) . D e n h am 198 2 : p e r sona l commu n i ca t i o n . S e e ?hapiro ( 1968 , 1969 , 197 1 a , 197 1 b , 1981 ) , Keen ( 1 98 6 ) , F o x ( 1 9 6 9 ) , M a d d o c k ( 1 9 6 9 , 1 9 7 2 : 4 5 - 7 1 ) , a n d Need ham ( 1 986 ) . T h e reduced ' G i d j i ng a l i ' helical model i s based on e i g h t p a t r i l i n e s , f o u r ma t r i l i n e s a n d f o u r h e l i c a l e x c h a n g e c y c l e s . T h e c o r r e s p on d i ng a l g e b r a i c g r o u p i s i somo r p h ic t o t h e g r o u p d e s c r i b e d b y T h omas a n d Wood ( 1980 ) a s ' ty pe 1 6 / 9 ' , i . e . t h e g r o u p g e n e r a t e d
4
2
4
by (m ) ( f G ) = ( h C ) = e , w i t h f C = h cmc . G T h i s g r oup i s a l so i somor p h i c t o t h e o r d e r - 1 6 g r o u p i n t r od u c e d b y D e M e u r a n d J o r i o n ( 1 9 8 1 ) i n a s o m e w h a t a d h oc f a s h i o n , a n d t o t h e ' e x p a n d e d A r a n d a ' 4 2 2 k i n s h i p m o d e i w i t h ( mA ) e. ( fA ) = (hA ) T h e ' G i d j i n ga l i ' a n d ' A ra nda ' g r o u p s a r e i somo r p h i c u n d e r t h e f o l l o w i n g mapp i ng : =
=
=
1
+->- m h C ; ( i i i ) hA h Cm G . C ; ( i i ) fA A B e t w e e n t h em , t h e l a t t i c e s o f q u o t i e n t s t r u c t u r e s contain near l y a l l of the c l a ss i c kinship s t ructures . T h e g r o u p c o n t a i n s 7 el emen t s o f order 2 a n d 8 o f order 4 ( together w i t h the ident i ty ) .
(i) m
+-+
-
+--+-
187
4.
S Y M M E T R I E S OF R E S T R I C T E D E X C HA N G E : T HE T W OF O L D P A T H T O C OH P L E X I T Y
T h e r e i s a c u r i ou s d e s c r i pt i on i n t he c l os i n g p a r a g r a ph of t he f i r s t v o l u me Phys i cs
of t he f a m ou s F e y n m a n L e c t u r e s o n
(Fey nman et a l . 1 9 6 3 : 5 2 - 1 2 ) :
W h y i s n a t u r e s o ne a r ly s y mme t r i c a l ? N o one h a s a ny i d e a w h y . T h e on l y t h i n g w e m i g h t s u g g e s t i s s ome t h i n g l i k e t h i s : T h e r e i s a g a te i n J a pa n , a g a t e i n N e i k o , wh i c h i s s ome t i me s c a l le d b y t he J a pa ne s e t he m o s t b e a u t i f u l g a t e i n a l l J a p a n ; i t w a s b u i l t i n a t i me w h e n t he r e w a s g r e a t i n f l u e nc e f r om Ch i ne s e a r t . T h i s g a t e i s v e r y e la b or a t e , w i t h l ot s o f g a b le s a nd b e a u t i f u l c a r v i n g a n d l ot s o f c o l u m n s a nd d r a g o n h e a d s a n d p r i n c e s c a r v e d i n t o t h e p i l I a r s , a nd s o o n . B u t w h e n o n e l o o k s c l o s e l y h e s e e s t h a t i n t he e la b or a t e a nd c om p le x d e s i g n a l ong one o f t he pi l la . s , o ne o f t he s m a l l d e s i g n e le me n t s i s c a r ve d u ps i d e d ow n ; o t h e rw i s e t he t hi n g i s c om p le t e l y s y mme t r i c a l . I f o n e a s k s w h y t h i s i s , t he s t or y i s t h a t i t w a s c a r v e d u ps i d e d o wn s o t ha t t h e g od s w i l l n ot b e j e a l o u s of t he pe r fe c t i o n o f ma n . 5 0 t he y p u r p os e l y pu t a n e r r or i n t h e r e , s o t h a t t he g od s w ou ld n o t be j e a l ou s a n d g e t a n g r y w i t h h u ma n b e i n g s . Pe r f e c t s y m me t r y a n d a b s o l u t e h a r m o n y m a y w e l l b e t he
p r e r og a t i v e of t h e g od s . H ow e v e r , t h e s e a r c h f or s y m me t r y - or d e r
par e x c e l l e n c e
-
r e m a i ns e m i n e n t ly f a s c i n a t i n g t o
t h e h u m a n m i n d . A n y n ot i on of s y m me t r y i m p l i e s i nv a r i a nc e : a t h i ng
( a n ob j e c t , a s t r u c t u r e , a b a s i c l a w ) i s
s y m me t r i c a l i f
o n e c a n s u b j e c t i t t o a c e r t a i n o pe r a t i on
a nd i t t he n a p pe a r s u n c h a n g e d . T h e r o le
of s y mme t r y o pe r a t i o n s i s n olV p a r a m ou n t i n
t h e e l u c i d a t i o n o f c om p l e x
p h e n ome n a :
ph y s i c a l l a w s a r e e x p r e s s e d b y a s e t
i n v a r i a n t s of of t r a n s f or ma t i o n s
t h a t f o r m a ma t h e ma t i c a l g r ou p . F or e x a m p l e , t he
s y mme t r y g r ou p o f N ew t on i a n ph y s i c s i s t he G a l i le a n g r ou p , t h a t of s pe c i a l r e l a t i v i t y t h e L or e n t z. g . ou p , a nd that of
of g e n e . a l r e l a t i v i t y t he g r ou p of a l l a u t om o r p h i s m s
t h e s pa c e - t i me m a n i f o l d . F o r q u a n t u m c h r om od y n a m i c s
188
(QeD )
t he
s y m me t r y
be lie ved f or of
by
phy s i c i s t s
a f e w s i m p le t h e u ni v e r s e
wi th the
g r ou p i s SU
3
, t he g r ou p o f u n i t a r y
i n t hr e e d i me n s i on s . 1
t r a n s f o r ma t i o n s
It
is
n ow w i d e l y
t he n e x t s t e p i n t h e q u e s t
that
l a w s u n d e r l y i n g t he a p pa r e n t c o m p l e x i t y
a n d u n i t i n g E i n s t e i n ' s t h e or y
p r e c e p t s o f q u a n t u m me c h a n i c s
of g r a v i t y
m i g h t b e ac hi e v e d
b y a m o r e c om p r e h e n s i v e , s u pe r s y m me t r i c t he or y of nature . 2 T o s tate p oi n t
made
t he
o b v i ou s :
a n t h r o p o l og y
h a s y e t ve n t u r ed
t o
phy s i c s ,
a
t he s t u d y
' n o one , s o f a r a s I
o f A u s t r a l i a n m a r.- r i a g e c l a s s e s : k n ow ,
i s n ot
l on g a g o b y F r a z e r w i t h r e g a r.- d
t o ma i n t a i n t h a t s oc i e t y
is
s u b j e c t t o a p h y s i c a l l a w , i n v i r t u e o f w h i c h c ommu n i t i e s , l i k e c r y s t a l s , t e nd a u t oma t i c a l l y a n d u n c o nc i ou s ly t o
i n te g r at e
a l on g ma t he ma t i c a l l i ne s , i nt o
or d i s i n t e g r a t e ,
( c i te d
e x a c t ly s y mme t r i c a l u n i t s ' 1 3 6 ) . H u ma n
r.- e s e a r c h s e t
out
paren t e , s t ru c tur e s
in
L e s S t r u c t ur e s e l eme n t a i r e s d e L a
of
ma r r i ag e e x c h a n g e
f r.- o m ma n ' s a b i l i t y t o t h i n k s y s tems
of
wh o a r e
ow n e d ;
o p p os i t i ons :
ki n s h i p ;
aware ness
or in
away ;
w h o ow n
a n d w o me n
be tween
b o n d s o f a l l i a nc e a n d
of
r e c i pr oc i t y .
s y m m e t r y , w h e t he r
' Du a l i t y , a l t e r.- n a t i o n
presented
in definite
i m pr.- e c i s e f or.- ms , a r e n o t s o m u c h ma t t e r s t o
be ex p la ine d ,
a s b a s i c a nd
i mme d i a t e d a t a of me n t a l a n d
s oc i a l r e a l i t y w h i c h s h o u l d b e a t te m p t a t e x p la na t i o n ' p a r a p h r.- a s e
men
s u c h o p p o s i t i o n s u nd e r.- l i e s a n d i s u s e d t o
s t r u c tur e
o p p o s i t i on a n d f or m s
b i o l o g i c a l r e l a t i on s a s
be twe en
b e t w e e n c o n s e c u t i v e n e s s a nd a l t e r n a t i o n . T h e
of
b u i ld u p a
of
a r i s e d i r ec t l y
b e t w e e n w i v e s wh o a r e a c q u i r e d a n d s i s t e r s
a nd d a u g h t e r s g i v e n of
L e v i - S t r a u s s 19 7 0 :
s e l f - r e f le x i ve . H e n c e , u n d e r t h e p r og r a m m e
f u n d a me n t a l ly of
in
s oc i e t i e s , a s o p p os e d t o n a t u r a l s y s t e m s , a r e
Lev i
- Str au s s ,
t h e s t a r t i n g - p oi n t o f a ny
( Lev i - St ra u s s 1 9 7 0 : 1 3 6 ) . t he
study
o f s y m me t r y
To
o pe r a t i o n s
( i n c l u d i n g d u a l i t y , a lt e r n a t i on a nd o p p o s i t i o n ) s h ou ld be
t he
start ing - point
of
a ny
atte mpt
a t e x p la i n i ng
the
o c c u r r e n c e o f pa r t i c u la r f or mu l a e o f e x c ha ng e . I t i s a t t h i s abstrac t
le v e l of a n a ly s i s , e x pe r i m e n t i n g
on t he
,
189
r u l e s g ov e r n i ng t h e s e t r a ns f o r m a t i on s a nd o pe r a t i o n s a s a g r ou p o f i n v a r i a n t s t h a t t h e L e v i - S t r a u s s i a n a p pr o a c h a p p r ox i m a t e s t he i n physics . 3
l e v e l of t he or e t i c a l d i s c ou r s e c u r r e n t
I n t h i s c h a pt e r I i nv e s t i g a t e t h e g l ob a l s y m me t r i e s of
o ne o f t he c la s s i c a l m od e s of r e c i p r oc i t y :
t he
s t r u c t u r e of r e s t r i c t e d e x c h a n g e , e x�r e s s e d i n t h e s y m me t r i c a l e x c h a ng e o f s i s t e r s f or w i v e s .
I c a r r y ou t
t hi s a na l y s i s b y c o n s t r u c t i ng a n e n t i r e f a m i l � of g r ou p - t he or e t i c m od e l s . S y m me t l' i e s of k i n s h i p s t r u c t u r e s a r e r e p r e s e n t e d a s a u t om or p h i s ms
of t he b a s i c s t r u c t u r e
o f d i r e c t s i s t e r - e x c h a n g e . H y pu r p os e i s t o e x t e nd a n d t o g e ne r a l i ze L e v i - S t r a u s s ' s t r e a t me n t f or m s
of t he
' pu r e '
of A u s t r a l i a n c l a s s s y s t e m s w i t h d u a l o r g a n i z a t i o n
a nd s i s te r - e x c h a ng e b a s e d
o n m oi e-t i e s , s e c t i o n s ,
or
s u b s e c ti o ns t o i n c lu d e r e c e n t l y d e s c r i b e d s y s t e ms w i t h ' e x c l u s i v e s t r a i g h t s i s te r - e x c h a n g e '
(in which first
or
s e c ond c r os s - c ou s i n ma r r i a g e i s f or b i d d e n ; c f . Hu l l e r 1 9 80 ) .
I d e m o n s t r a t e t h a t t he f a mi l y o f k i n s h i p m od e l s
d e v e l o pe d h e r e p r o v i d e s a d e qu a t e r e p r e s e nt a t i o n s f or ( 1 ) s y s t e ms w i t h e x c lu s i v e s t r a i g h t s i s t e r - e x c h a n g e a n d l i n e a l ma r r i a g e
p r oh i b i t i o n s or a p os i t i v e r u le f or t he
r e n e w a l of a l l i a n c e s on l y a f t e r a c e r t a i n nu m b e r g e n e r a t i o ns ;
(2)
of
t h e i n t r a - a nd i nt e r s y s t e mi c v a r i a t i o n
of a l l i a nc e s t r u c t u r e s w i t h d i r e c t e x c h a n g e .
I c onc l u d e
w i t h a d i s c u s s i o n o f h y b r i d f or ms a nd t h e p r ob le m of m od e l l i n g c om p le x m a r r i a g e s y s t e m s .
T H E R OA D T O E X C L U S I V E S T R A I G HT S I ST E R - E X C H A N G E L e v i - S t r a u s s ' s e le me n t a r y s t ru c t u r e o f r e s t r i c t e d e x c h a ng e , w h e r e t he g i f t o f a w o ma n i s r e c i p r oc a t e d d i r e c t l y , i s d e f i ne d a s f o l l o w s
( 1 9 70 : 1 46 ) :
T h e t e r m ' r e s t r i c t e d e x c h a n g e ' i nc l u d e s a ny s y s t e m w h i c h e f f e c t i v e l y or f u n c t i ona l l y d i v i d e s t he g r ou p i n t o a c e r t a i n n u m b e r of pa i r s o f e x c h a n g e u n i t s s o t h a t , f or a ny o n e pa i r X - V t he r e i s a r e c i pr oc a l
190
II
II
1
2
1
W2
F F Z DC FMBDC MMB S C �1F Z S C
Ego
Sb
MB C FZC
FFZSC FMB S C MMB D C M F Z DC
F i g . 4 . 1 . P a t r i m oi e t y s t r u c t u r e w i t h r e s t r i c t e d e x c h a ng e ( le f t ) ; K a r i e r a - t y pe f ou r - s e c t i on s y s t e m ( r i g h t ) .
e x c h a n g e r e l a t i on s h i p . I n o t h e r w or d s , w h e r e a n X m a n m a r r i e s a Y w om a n , a Y m a n m u s t a l w a y s be a b le t o ma r r y a n X w om a n . A c c or' d i n g t o L e v i - S t r a u s s , t he
' simplest '
f or m
of
r e s t r i c t e d e x c h a n g e i s e n c ou n t e r e d i n s oc i e t i e s w i t h d u a l ol' g a n i z a t i o n a n d pa t l' i l i ne a l Ol' m a t l' i J i n e a l e x og a m ou s m oi e t i e s . A n e x og a m ou s m Oi e t y d i v i s i o n p a r t i t i on s a l l f i r s t c ou s i n s i n t o c r os s a nd p a r a l le l c ou s i n s , e x c l u d i n g t h e
l a t t e l' a s p os s i b le s p ou s e s . I n
s u c h a n e le me n t a r y k i n s h i p s t r u c t u r e a l a w o f r e s t r i c t e d e x c h a n g e i s d i l' e c t l y e x p r e s s e d i n s t r a i g h t s i s t e r - e x c ha ng e a n d i n a ma r r i a g e r u l e p r e s c l' i b i n g m a r l' i a g e b e t w e e n
191
Fig .
4 .2 .
r e n e w a b le
FFZSC H1B S C MM B D C MFZDC
Ego Sb
FZC MBC
F F ZDC FMBDC MMB S C MFZSC
IV
III
II
A r a n d a - t y pe k i n s h i p s t r u c t u r e .
b i l a t e r a l f i r s t c r o s s - c ou s i n s . A m od e l structure is The
o n ly
pr e s e n t e d other
c ons idered b y Kariera and
i n f igur e 4 . 1
a
pa t r i m o i e t y
i n d e t a i l i n L e s S t r u c t ur e s
t w o c la s s i c a l A u s t r a l i a n s y s t e ms ,
t he A r a nd a . lines
of
a s c e n d i n g g e ne r a t i o n ,
( 1 9 1 3 : 1 5 3 - 1 5 6 ) r e c og n i z e d
pa t r i l i n e a l d e s c e n t i n i .e . ,
on t he d i r e c t e x c h a n g e
wh o was a ls o a F l O w h e n e v e r s oc i oc e n t r i c d i v i s i o n
of
t he
T h e K a r i e r a s y s t e m or i g i n a l ly
d e s c r i b e d b y R a d c l i f f e - B r ow n t w o s e pa r a t e
of
( le f t ) .
k i n s h i p s y s te ms w i t h r e s t r i c t e d e x c hange
Lev i - S t r a u s s
e l emen t a ir e s a r e
b ased
D i r e c t e x c h a ng e
i n a lte r n a t i ve g e n er a t i ons .
of F F of
and
t he sec ond
M F . t'l a r r i a g e ,
s i s t e r s , wa s wi t h t h e
p os s i b le .
I n ad d i t i on ,
t h e e n t i r e S OC i e t y
a
i n t o f ou r
�IB D ,
192
n amed se c t i ons
or c l a s s e s
P a l y e r i ) w a s s u pe r i m p os e d
( Ba n a k a , K a r i me r a , B u r u ng a n d o n t he k i n s h i p s y s t e m . I d e a l ly
( Lev i - S t r a u s s 1 9 7 0 : 1 5 6 ) : B a n a k a n e c e s s a r i ly m a r r i e s B u r u ng , a nd K a r i me r a , Pa l ye r i . T h e r u le of d e s c e n t i s t h a t t he c h i l d r e n of a B a n a k a m a n a nd a B u r u ng w om a n a r e P a l y e r i , w h i le t he c h i ld r e n o f a B u r u ng m a n a nd a B a na k a w om a n a r e K a r i me ra . L i k e w i s e , t h e c h i ld r e n of a K a r i me r a m a n a nd a P a l y e r i w om a n a re B u r u ng , a nd r e v e r s i n g t h e s e x e s w i t h t he c l a s s e s r e ma i n i n g t h e s a me t h e y a r e B a n a k a . E le v a t e d b y L e v i - S t r a u s s t o t h e s t a t u s of a s t r u c t u r a l m od e l , t he f ou r - s e c t i o n s y s t e m ma y b e g e n e r a t e d b y i m p os i n g a m a t r i l i n e a l d i c h ot omy pa t r i l i n e a l d i c h ot omy
(I, II) ,
( A , B ) u p on a
or v i c e v e r s a . A n
e qu i v a l e n t f ou r - s e c t i o n m od e l i s
ob t a i ne d b y t h e
i n t e r s e c t i on of a l t e r n a t i n g g e ne r a t i on s e i t h e r a pa t r i m oi e t y s t ructure .
(I,
2)
( I ", I I ) o r a m a t r i m oi e t y
wi t h (A, B)
I n a n y c a s e , t h e b a s i c s t r u c t u r e of r e s t r i c t e d
e x c ha nge r e ma i n s i d e n t i c a 1 t o t h a t
of a s i m p le m oi e t y
s y s t e m : b i l a t e ra l c r os s - c ou s i n m a r r i a g e a n d s i s t e r e x c h a n g e , r e n e we d i n c o n s e c u t i v e g e n e r a t i o ns 4.1,
(cf .
f igure
le f t a nd r i g h t . S e e a l s o t h e c od i n g s i n C h a p t e r 1 . ) .
A c c or d i n g t o L e v i - S t r a u s s , i t i s c on v e n i e n t t o
i n t e r p r e t t he m or e c om p le x A r a nd a - t y pe e i g h t - s u b s e c t i o n s t r u c t u r e a s a r i s i n g f r om a f u r t he r d i c h ot om y i m p os e d a K a r i e r a - t y pe m od e l . T h u s , a t t he
on
l e v e l of t he s e c o n d
a s c e n d i n g g e n e r a t i on , f ou r p a t r i l i n e s , n o t t w o , a re d i s t i n g u i s he d , i . e . ,
of t he F F , M F , F M B , a nd M M B . D i r e c t
e x c ha n g e o f s i s t e r s i s p r a c t i c e d , b u t w i t h t h e i d e n t i c a l e x c ha ng e n ow oc c u r r i n g i n a l t e r n a t i v e g e n e r a t i on s , n ot c on s e c u t i v e l y a s i n t he K a r i e r a a nd m Oi e t y s y s t e m s . F i r s t c r os s - c ou s i n s a r e d i s t i ng u i s h e d f r om pa r a l le l c ou s i n s ; b ot h c a t e g or i e s T h e c a t e g or y
of r e la t i v e s a r e c o ns i d e r e d u nm a r r i a g e a b le .
of s e c on d c ou s i n s i s n ow b i f u r c a t e d : F F l D C ,
F M B D C , �1 t� B S C , a nd MF l S C ( a l l u nm a r r i a g e a b le ) , v e r s u s F F l S C , F MB S C , M M B D C , a n d MF Z D C ( t h e p r e s c r i b e d s p ou s e c a t e g or y ) . F i n a l ly , t he s oc i e t y i s d i v i d e d i n t o e i g h t n o n - ov e r l a p pi n g s u b s e c t i on s
l i n k e d p a i rw i s e i n d i r e c t
193
e x c h a ng e . U nd e r t hi s i n t e r pr e t a t i o n , t he s u b s e c t i o n m od e l , i d e a l ly i n h a r m o n y w i t h t he k i n s h i p s y s t e m , d e r i v e s f r om t he i n t e r s e c t i on of f ou r pa t r i l i n e s ( I , I I , I I I , I V ) w i t h a m a t r i m oi e t y s t r u c t u r e ( c f . f i g u r e 4 . 2 ;
A a nd C v e r s u s B a n d D )
( L� v i - S t r a u s s 1 9 7 0 : 1 6 2 - 1 6 7 ) .
I n L e s S t r u c t ur e s d 1 6 m e n t a i r e s L � v i - S t r a u s s a r g u e s
t h a t t h e t r an s f or ma t i on a l o r g e n e r a t i v e p ot e n t i a l i t i e s of r e s t r i c t e d e x c h a ng e a r e r e a l i z e d b y i m p o s i n g a n e s t e d s e r i e s o f s i m p le d i c h ot om i e s u p o n t h e b a s i c s t r u c t u r e ( 197 0 : 146 ) : T h e s i m p le s t f or m of r e s t r i c t e d e x c h a ng e i s f ou nd i n t h e d i v i s i o n of t h e g r ou p i n t o p a t r i l i n e a l o r m a t r i l i n e a l e x og a m ou s m oi e t i e s . I f we s u p p os e d t h a t a d i c h o t omy b a s e d u p o n o ne o f t h e t w o m od e s o f d e s c e n t i s s u pe r i m p os e d u p on a d i c h ot omy b a s e d u p o n t h e ot h e r t h e r e s u l t w i l l be a f ou r - s e c t i on i n s t e a d o f a t w o- m oi e t y s y s t e m . I f t h e s a me p r oc e s s we r e r e pe a t e d , t he g r ou p w ou ld c om p r om i s e e i g h t s e c t i o n s i n s t e a d o f f ou r . T h i s i s a r e g u la r p r og r e s s i o n a n d e m b od i e s n ot hi n g f a i n t l y r e s e mb l i n g a c h a n g e i n p r i n c i p le o r a s u d d e n u p h e a v a l . H ow e v e r , a s t h e
' me c h a n i c a l ' d e v e l o pme n t ( i . e . , t he
i n c r e a se i n t he n u mb e r i n h a nd w i t h t h e e x c ha ng e
of p a r t i c i pa t i ng u ni t s ) g oe s h a nd
' or g a n i c ' d e v e l o p me n t of r e s t r i c t e d
( i . e . , d e v e l o pme n t i n t he d e g r e e o f i n t e r a c t i o n
b e t w e e n u ni t s ) , t h e p r oc e s s i s a p pa r e n t ly u l t i ma t e ly f u n c t i on a l ly s t e r i le ( 1 9 7 0 : 4 4 1 ) . L e v i - S t r a u s s a p p e a r s t o q u e s t i on t h e v e r y p os s i b i l i t y e x c h a ng e
of a r u Ie
of r e s t r i c t e d
( a s o p p o s e d t o g e n e r a l i ze d e x c ha ng e ) b e i ng
c om pa t i b le w i t h or a b le t o g e n e r a t e k i n s h i p s t r u c t u r e s o f a ny r e a l c o m p le x i t y
( 1970 : 265 ) :
w i t h g e n e r a l i z e d e x c h a ng e t he g r ou p c a n li v e a s r i c h ly a n d a s c om p le t e l y a s i t s s i z e , s t r u c t u r e a nd d e n s i t y a l l ow , w h e r e a s w i t h r e s t r i c t e d e x c h a n g e it c a n ne v e r f u nc t i o n a s a w h o le b ot h i n t i me a nd i n s p a c e . T h e l a t t e r . . . i s o b l i g e d , s o me t i me s f r o m t he s p a t i a l p oi n t of v i e w ( l o c a l g r ou ps ) , s o me t i me s f r om t h e t e m p or a l ( g e n e r a t i o n s a n d a g e c l a s s e s ) , a nd s ome t i me s f r om b ot h a t o nc e , t o f u nc t i o n a s i f i t we r e d i v i d e d i n t o m o r e r e s t r i c t e d u ni t s , e v e n t h ou g h t h e s e t h e ms e l v e s a r e i n t e rc on ne c t e d b y t h e r u le of d e s c e n t . T h e s e r u le s , h ow e v e r , on l y s u c c e e d i n r e s t or i n g u ni t y b y , a s i t w e r e , s p r e a d i n g i t ou t i n t i me , i n o t h e r w o r d s a t t h e p r i c e o f a l o s s , i . e . , t h e l o s s of t i me . •
•
.
194
A f u r t h e r d e v e l o p me n t t ow a r d s 8
o f t he d i s h a r m o n i c s e r i e s
' t h e o r e t i c a l t y pe s '
x n c la s s e s i s i n d i c a t e d
t he
t o e qu a l l y s i m p l e f o r m s
( 1 9 7 0 : 4 7 4 ) . H ow e v e r , e le me n t a r y of
t h e c r u c i a l t r a n s i t i on f r o m
the
a
f or
r e le g a t e d
s u b s t i t u t i on
or b y
the
p r ohi b i t i ons )
s i m p le f o r m
( Levi - S t r a u s s
I n t h i s d e v e l o p m e n t a l s e qu e n c e
w i t h r e s t r i c t e d e x c ha n g e a r e c le a r l y
t o a s e c o nd a r y
L ev i - S t r a u s s ' s
v iews
r o le . o n t h e t r a n s i t i o n t o c om p le x
s t r u c t u r e s h a v e r e c e n t ly b e e n c h a l le n g e d b y M u l le r 1982 ) .
M u l le r ' s c r i t i q u e
i m p or t a n t
qu e s t i o n
ha s
pa r t i c u l a r b e a r i n g
s c h e m e , w i t h t h e c om p l e x s t r u c t u r e s
of
A c c or d i n g
t o M u l le r (where
of r e s t r i c t e d
p os i t i o n i n t h e
( 19 8 0 : 5 18 ) ,
el emen t a i res :
first ,
e xc l u s i v e s t r a i g h t
s i s t e r - e x c h a n g e i s n o t f o l l ow e d
b y c r o s s - c ou s i n m a r ri a g e )
i s i l l-trea ted in
o n a c c ou n t
of a
w r i t te n ;
Le v i - S t r a u s s
s e c o nd ,
by the
t o c o n s i d e r e v en
f u nc t i o n i n g a s
m or e
seeming
the
than a
L e s · S t r u c t ur e s
pa u c i t y
a d e q u a t e l y d e s c r i b e d e t h n og r a p h i c a l c a s e s
sys tems
on t he
t r a n s i t i ons .
s i s t e r - e x c h a ng e
b o ok w a s
of
at
t h e t i me
re l u c t a n c e
p o s s i b i li ty
" ma r r i a g e b y e x c ha ng e " ' ,
( L e v i - S t r a u s s 1 9 7 0 : 1 4 3 - 1 4- 4 ) . T h e
n o t c on s i d e r e d
that e x c lu s i v e
C on s e q u e n t l y ,
i .e . , as a
s t r a i g h t s i s t e r -e x c ha n g e
s t ru c t u r a l l y i n t e r e s t i n g b y
o n a c c ou n t o f i t s s u p p o s e d i n a b i l i t y s u s t a i n a l li a nc e s
of
' t e c hn i c a l f o r m o f t h e
n o ns t r u c t u r a l f or m i m pr e s s i o n i s g i v e n
the
of s u c h
i n s t i tu ti on c a l led
is
( 1 98 0 ,
t he L e v i - S t r a u s s i a n
of h o w t o a m e n d
e x c h a n g e a w a r d e d a m or e p r om i n e n t se quence
can
of
m o r e c om p l e x f o r m
1 9 7 0 : x x x i x - x l i i , 4 7 1 , 4 7 4- ) . s t ruc tures
the
c ou s i n ,
ma r r i a g e
t y pe
r e a l i z e d b y r e n ou nc i n g a
genera l i zed e x c han ge
all
( t h r ou g h
r i g ht t o the
o f C r ow - O ma h a
i m p o s i t i on
as is
o f r e s t r i c t e d e x c ha n g e
t o c om p le x s t r u c t u r e s
b r i d e w e a l t h f or
on l y b e
( 19 70 : 2 1 6 , f i g . 44 ) ,
a nd
f r om s i m p le f or m s o f g e n e r a l i z e d
' r e g r e s s i on '
e x c ha n g e
w i t h r e s t r i c t e d e x c h a ng e
Lev i - S t r a u s s
to generate or
t h r ou g h t i m e b e t w e e n t h e
s a me g r ou p s .
r e s t r i c t e d e x c h a ng e s e e m s d o ome d
o n l y e l e me n t a r y s t r u c t u r e s b y r e v e r t i n g
to
t o c re a t e
t o t h e ma r r i a g e
195
of
c r os s - c ou s i n s i n c o n s e c u t i v e g e n e r a t i on s
1 9 8 0 : 5 20 - 5 2 1 )
•
H u l le r g oe s
on
t o demonstrate
h ow
s c h e m e i s p a r t l y i n v a l i d a t e d b y t he ( s ome
( M u l le r
of w h i c h w a s a l r e a d y
a v a i lab le
L ev i - S t r a u s s ' s
literature i n t he
o n Af r i c a
n i ne t e e n
t h i r t i e s ) . T h u s , c on t r a r y t o L e v i - S t r a u s s ' s e x pe c t a t i o n s , i n a r e l a t i ve l y
l a r g e nu mbe r
of A f r i c a n s oc i e t i e s w i t h
s i s t e r - e x c h a ng e , c r os s - c ou s i n m a r r i a g e i s s t r i c t l y f or b i d d e n ,
i .e . ,
t h e r e a r e n u m e r ou s e x a m p l e s
of
s oc i e t i e s
w h e r e e x c lu s i v e s t r a i g h t s i s t e r - e x c h a n g e c o n s t i t u t e s
the
b a s i c s t r u c t u r e o f ma r r i a g e . M o r e ove r , e x c l u s i v e s t r a i g h t s i s t e r - e x c h a ng e i s
often
seen
t o c oe x i s t w i t h a n
a l t e r n a t i ve m a r r i a g e f or m , m a r r i a g e w i t h b r i d e w e a l t h p a y m e n t s . F or only
L ev i - St r a u s s ,
oc c u r i n t he
b r i d e w e a l t h m a r r i a g e s h ou ld
t r a n s i t i o n of
g e n er a l i z e d e x c h a n g e
m or e c om p l e x s t r u c t u r e s o f e x c h a n g e
to
( L ev i - S t r ? u s s 1 9 7 0 :
4 7 1 ) . F i n a l ly , e x c lu s i v e s t r a i g h t s i s t e r - e x c ha ng e i s n o t re s t r i c t e d t o
' s i m p le ' ,
s ma l l - s c a le
s oc i e t i e s ,
or t o
s oc i e t i e s h a v i n g u nd e r g o ne d i s pe r s i o n a nd r e g r e s s i on . T h i s f o r m of
ma r r i a g e
( nu m b e r i n g a b ou t t he
s t ru c tu r e
i s d e s c r ibed f o r t he
Tiv
8 0 0 , 0 0 0 p e o p l e ) a n d t h e M o s s i , on e o f
m o s t c o m p le x k i n g d o m s
o f W e s t Af r i c a
( M u l le r
1 98 0 :
5 1 8 - 5 2 0 ) . F a r f r o m b e i n g a mi n o r t e c hn i c a l f o r m , ma r r i a g e s t r u c t u r e s b a s e d o n e x c lu s i v e s t ra i g h t s i s t e r - e x c h a n g e a re of
seen
t o b e f u l l y c om pa t i b l e w i t h h i g h l y c o m p l e x f o r ms
s o c i a l o r g a n i z a t i o n , i n c lu d i n g
ma r r i a g e w i t h
b r i d e w e a l t h t r a n s a c t i o n s a nd c om p l i c a t e d
poli t ic a l
s y s t e ms . On the basis
of t h i s e v i d e n c e , Mu l l e r s u g g e s t s tha t
t he L e v i - S t r a u s s i a n s c h e me p os s i b i l i t i e s f o r p a s s i n g
s tr u c t u r es . T h u s
( M u l le r
i s o n l y o ne
of s e v e r a l
f r o m e le m e n t a r y t o c o m p le x
1980 : 5 23 ) :
I a m i n c li n e d t o t h i n k t h a t a g o od nu mb e r of s o c i e t i e s h a v i n g ma r r i a g e w i t h b r i d e w e a l t h d o n o t d e r i v e f r om e le m e n t a r y s t ru c t u r e s , b u t h a v e t h e i r o r i g i n i n e x c l u s i v e s t r a i g h t s i s t e r - e x c h a n g e t h a t h a s e v o l v e d t o b e c ome b r i d e w e a l t h ma r r i a g e w i t h ou t p a s s i n g t h r ou g h t h e s t a g e o f a n e l e me n t a r y s t r u c t u r e . A m od a l i t y of c o m p l e x s t ru c t u r e - e x c l u s i v e s t ra i g h t s i s t e r - e x c h a n g e - h a s
196
s i mp ly b e e n r e p l a c e d b y a n ot h e r m od a li t y , ma r r i a g e w i t h b r i d e w e a lt h . Ot h e r t ra n s i t i on a l p os s i b i l i t i e s a r e a ls o e nv i s a g e d ( Mu l le r 1 9 8 0 : 5 2 6 ) : , t h e c h oi c e of r e p e t i t i on o f a l l i a nc e s t h r ou g h c r os s - c ou s i n ma r r i a g e , a nd t h e o p p os i t e c h oi c e o f d i ve r s i f y i n g t h e m , i s a l s o g i v e n f r om t h e s t a r t . S o me e x c lu s i ve s t r a i g h t s i s t e r - e x c h a ng e s y s t e ms b e c ome e l e me n t a r y s t r u c t u r e s , w h e r e a s o t h e r s c h o o s e t o r e ma i n w i t h i n c o m p le x s t r u c t u r e s , o r a t l e a s t w i t h i n s e mi c o m p le x s t r u c t u r e s , e i t h e r t h r ou g h r e ma i n i n g t h a t w a y o r t h r ou g h t h e s u b s t i t u t i v e f o r m o f b ri d e we a l t h ma r r i a g e . A l l t h i s i s p o s s i b le w i t h ou t a ny i d e a o f a n e v o lu t i o na r y s e qu e n c e . •
•
T h e p os s i b i l i t y
of t r e a t i n g s y s t e ms w i t h e x c l u s i v e
s t r a i g h t s i s t e r - e x c h a n g e a s s e m i - c om p le x s t r u c t u r e s i s
e x p l or ed i n m o r e d e t a i l i n H e r i t i e r ' s L / ex c e r c i c e d e l a paren t e
( 1981 ;
s e e a ls o M u l le r 1 9 8 2 )
, 5
I n s e mi - c o m p l e x
s y s t e m s a n e x t e n s i v e s e r i e s of l i n e a l ma r r i a g e p r oh i b i t i on s , t og e t he r w i t h a p r i v i l e g e d s p ou s e s
( n ot n e c e s s a r i ly d e f i ne d
c ho i c e o f
pu r e ly i n g e n e a l og i c a l
t e r m s ) e n s u r e s t h a t a n a l l i a nc e w i l l , i d e a l ly , b e r e n e w e d o n l y a f t e r a s pe c i f i c n u mb e r o f g e n e r a t i on s . T h i s i s t he ty pe
of m od e l I d e v e l o p i n t he f o l l ow i n g
s e c t i o n s , a r t i c u l a t i n g L e v i - S t ra u s s ' s
' pu r e / s y s t e ms
w i t h s i s t e r e x c h a ng e ( m o i e t i e s , t h e K a r i e r a , t h e A r a nd a ) w i t h t h e m o r e c om p l e x s y s t e ms o f r e s t r i c t e d e x c ha n g e
d e s c r i b e d b y M u l le r a nd H e r i t i e r .
S E M I - C OM P L E X S T R U C T U R E S A S A U T O M OR P H I S M G R O UP S Th e
Ba r d i
a n d t h e Nga w b e
T h e f a m i ly of a l g e b r a i c m od e l s e x t e n d i n g t h e b a s i c s t r u c t u r e of r e s t r i c t e d e x c h a n g e i s s u b j e c t t o a f a i r l y s t r i n g e n t s e t of c o n s t r a i n t s . F i r s t , a t t h e l ow e r l e v e l of c om p le x i t y , a l l c l a s s i c a l m od e l s e mb od y i n g t he p r i n c i p le
of r e s t r i c t e d e x c ha n g e
( i . e . , m oi e t ie s , t h e
197
K a r i e r a , t h e A r a nd a ) m u s t b e a d e q u a t e ly r e p r e s e n t e d . Se c on d , a s i m p le a nd u n a mb i g u ou s f or m a 1 p r oc e d u r e i s r e q u i r e d f or e x pa nd i n g t he b a s i c m od e l s o a s t o i n c lu d e , a t t h e m or e c om p l e x e n d
of t he s pe c t r u m , a s pe c t s
of t h e
s e m i - c o m p le x s t r u c t u r e s
of a l l i a nc e d e s c r i b e d b y M u l le r
( 1 9 8 0 , 1 9 8 2 ) a nd H e r i t i e r ( 1 9 8 1 ) . T h i r d , t h e f or ma l m od e l s h ou ld e n c o m pa s s a l l s t ru c t u r e s of r e s t r i c t e d e x c h a n g e oc c u r r i n g w i t h i n t he c o n t e x t of a pa r t i c u l a r k i n s h i p s y s t e m a s o p t i on a l s t r a t e g i e s o r f r e e v a r i a n t s . ( T h i s i s o n l y a m i n i ma l s e t of c o ns t r a i n t s w h i c h ma y b e e x p a nd e d i f n e c e s s a r y . ) T h e B a r d i - t y pe k i n s h i p s y s t e m p r ov i d e s c on s t r a i n t s o f the
t h i r d t y pe . A s d e s c r i b e d b y E l k i n
( 1 9 3 2 ) , the Ba r d i
s y s t e m , t h ou g h s i mi l a r t o t h e b e t t e r - k n ow n A r a nd a i n ma n y r e s pe c t s , h a d ne i t he r m oi e t i e s n o r s e c t i on s . 6 T h e Bardi the
( a nd t h e A r a nd a ) d i s t i n g u i s h e d f ou r p a t r i li n e s a t
l e v e l o f t h e s e c ond a s c e n d i n g
( ' g r a nd pa r e n t ' )
g e n e r a t i on : o f t h e F F , H F , F H B , a nd M M B . M a r r i a g e w a s
b a s e d o n t h e d i re c t e x c h a n g e of s i s t e r s . H ow e v e r , t h e B a r d i p r e f e r e n c e w a s f or a s p ou s e
ob t a i n e d f r om t h e
p a t r i - g r ou p o r p a t ri l i n e o f o ne ' s M M B , n ot , a s w i t h t he A r a nd a
o r t h e K a r i e r a , t he pa t r i l i n e
of t h e
F M ,
or t h a t
o f t h e MB . T u r n e r h a s r e c e n t l y pu b l i s h e d a n i n t e r e s t i n g r e a na l y s i s o f E lk i n ' s d a t a . He d e m o ns t r a t e s t h a t a n e n t i r e ly c on s i s t e n t s t ru c t u r e , i nc or p or a t i n g t h e B a r d i ma r r i a g e a nd e x c h a ng e p r e f e r e n c e s a s we l l a s t h e k i n s h i p t e r m i n o l og y c a n b e f or mu la t e d
( Tu F n e r 1 9 8 0 : 6 4 - 6 8 ) . T h e
B a r d i - t y pe s t r u c t u r e ( s e e m y f i g u r e 4 . 3 , i s o m o r p h i c w i t h T u r n e r ' s f i g u r e 1 2 ) i s b a s e d o n a r u le
of r e s t r i c t e d
e xc h a n g e li n k i n g f ou r pa t r i li n e s , w i t h t h e i d e n t i c a l a l li a nc e r e n e w e d e v e r y t h i rd g e n e r a t i on , n o t i n
a lt e r n a t i n g g en e r a t i ons
(cf .
t h e A randa , f i g . 4 . 2 ) o r
c on s e c u t i v e l y ( c f . t he K a r i e r a a nd m oi e t y s t r u c t u r e s , f i g . 4 . 1 ) . At the
le v e l of t h e m o d e l , t h e B a r d i i mp o s e
a s e r i e s o f d i c h ot omi e s o n r e l a t i v e s i n e g o ' s g e n e r a t i o n s i mi la r t o t h e A r a nd a m od e l . T h u s , f i rs t c r os s - c ou s i n s
198
a r e d i s t i n g u i s h e d f r om pa r a l le l c ou s i n s ; b ot h c a t e g o r i e s a r e u n ma r r i a g e a b le . T h e s e c o nd c ou s i n c a t e g or y i s a ls o b i f u r c a t e d : F F Z D C , F r� B D C , �1 M B S C , a nd MF Z S C , v e r s u s F F Z S C , F MB S C , M M B D C , a n d MF Z D C . H ow e v e r , i n d i r e c t o p p o s i t i o n t o t h e A r a n d a , t h e p r e f e r r e d s p ou s e i s ob t a i n e d f r om t h e c a t e g o r y o f t h e M M B S C , n ot t h e F M B S C . A s c a n b e s e e n i n f i g u r e 4 . 3 , e a c h o f t h e p a t r i l i n e s e n t e rs i n t 0 a n e x c h a ng e r e l a t i o ns h i p w i t h e a c h o f t h e r e ma i n i n g t h r e e i n t u rn ,
p r e c l u d i ng t h e f or ma t i o n o f a n e x og a m ou s m oi e t y
s t ructure . A s a n a ly s e d b y T u r n e r 311)
( 1 9 80 : 6 7 ) ,
suggest t h a t the Bardi
E lk i n ' s d a t a
( 19 3 2 :
re c og n i z e d a s a v a li d
a l t e r n a t i ve , m a r r i a g e w i t h t h e t1M B D C , i . e . , a n A r a nd a - t y pe ma r r i a g e p r e f e r e n c e ( c f . f i g . 4 . 3 a nd f i g . 4 . 2 ) .
In s u m :
t h r e e - g e n e r a t i on a nd t w o - g e n e r a t i on f or ms o f r e s t r i c t ed e x c ha ng e oc c u r a s a l t e r n a t i v e s w i t h i n t h e c on t e x t
of a
f ou r - pa t r i l i n e m od e l . T h e p h e n o me n on of a s oc i e t y a c k n ow le d g i n g t h e pos s i b i li ty
of t w o a p p a r e n t l y i n c om p a t i b le ma r r i a g e
p r e f e r e n c e s , b ot h hi n g i n g o n t h e d i r e c t e x c h a n g e o f Si sters ,
h a s b e e n d oc u me n t e d i n e ve n m or e c o n v i nc i n g
d e t a i l f or t h e N g a w b e or We s t e r n G u a y m { . A s d e s c r i b e d b y Y o u ng
( 1 9 70 ) ,
t h e N g a w b e , a C h i b c ha n - s pe a k i n g pe o p le
p r e s e n t l y i n h a b i t i ng t h e t h r e e w e s t e r n - m os t pr ov i n c e s o f t h e R e pu b li c o f Pa n a ma , d o n o t f or ma l ly r e c og n i z e a ny f or m o f u ni li ne a l d e s c e n t r e c k on i n g . T h e pr i ma r y k i n g r ou p i s c og n a t i c , c o n s i s t i n g
of a l l l i v i ng
pe o p le b or n
i n a g i v e n h a m le t w h o a r e c on s a n g u i n e a l l y r e l a t e d . t1 a r r i a g e , i d e a l l y ' sisters '
( or
a
di rect
( s y mme t r i c ) e xc h a ng e o f
' s i s t e r ' s d a u g h t e r s ' ) , i s c o nc e i v e d o f a s
t h e b a s i s o f a s y s t e m of a l l i a nc e b e t w e e n k i n g r ou ps , n o t a s a s i m p le u n i o n o f i nd i v i d u a l s . E g o ' s g e ne r a t i o n i s c ha r a c t e r i z e d b y a H a w a i i a n - t y pe c ou s i n t e r mi n o l og y , w i t h t e r ms g l os s e d a s ' o p p os i t e - s e x - s i b li n g '
' s a me - s e x - s i b l i n g ' ( n g wae )
( edaba) and
referring t o a ll f i rst
c ou s i n s , a l l pa r a l le l s e c o nd -c ou s i n s , a nd s o me s e c ond c r os s - c ou s i n s . N o n g wa e i s c on s i d e r e d m a r r i a g e a b le
( Y o u ng
199
FZC MBC
,v
'"
"
Ego
FFZDC FMBDC MMB S C MFZSC
Sb
FFZSC FMB S C MMB DC M F Z DC
F i g . 4 . 3 . B a r d i - t y pe k i n s h i p s t r u c t u r e . D i r e c t e x c h a n g e r e n e w a b l e e v e r y t h i r d g e n e r a t i on .
1 97 0 : 86 - 8 7 , 90 - 9 1 ) .
A c c o r d i n g t o Y o u ng
( 1970 : 87-88 )
t h e s a me t e r m u d u a w ,
' pa y me n t ' , i s u s e d w h e n r e f e r r i n g t o a w o m a n r e c e i v e d i n d i re c t e x c h a ng e a nd i n t he c on t e x t of g ood s o f a n y k i nd e x c h a ng e d . A l l ma r r i a g e e c o n om i c and
l i n k s f u n c t i on i n t h e c o n t e x t
of
p o li t i c a l m ob i l i s a t i o n , w i t h s o r o r a l
p o l y g y n y s t r e n g t h e n i ng e x i s t i ng
l i n k s , a n d n o ns o r o ra l
p o l yg yn y a l l ow i n g t h e f o r ma t i o n o f n e w a l l i a n c e s . F r om t h e p e r s pe c t i v e of ma l e eg
0 ,
s a me - s e x a nd
o pp os i t e -s e x
s i b l i n g t e r ms r e pe a t i n c y c l i c a l f a s h i o n e v e r y t h i r d g e n e r a t i on , w i t h F F F a nd ma l e s a me - s e x s i b li n g e q u a t e d .
200
H ow e v e r , f r om t h e f e ma l e p o i n t o f v i e w , t h e k i n s h i p t e r m i n o l o g y e x h i b i t s a n u mb e r of a l t e r n a t e g e n e ra t i o n e qu i v a le n c e s . The Ngawbe c ou s i n .
p r oh i b i t m a r r i a g e w i t h a l l t y pe s
Y ou ng r e p or t s
of f i r s t
' a t he ore t i c a l p r e f e r e n c e ' f or
m a r r i a g e w i t h a m a n ' s F F Z D D , a p a t r i l a t e r a l s e c on d c r os s - c ou s i n ( 1 9 7 0 : 9 0 ) . H i s f i g u r e 1
( 1970 : 89 )
i n c or p or a t e s a l l of t he a b ov e - me n t i o n e d f e a t u r e s ; a s a s t r u c t u r e o f r e s t r i c t e d e x c ha ng e i t i s i s om o r p h i c w i t h t h e B a r d i - t y pe t h r e e - g e n e r a t i o n m od e l i l l u s t r a t e d i n m y f i g u r e 4 . 3 . I n a d d i t i o n , t he N g a w b e r e c og n i z e t he
opt i on
o f r e - e s t a b l i s h i n g a n i n i t i a l a l l i a nc e a f t e r o n l y t w o g e n e r a t i o n s : i n t h i s c a s e m a r r i a g e i s wi t h a m a t ri l a t e r a l s e c ond c r os s - c ou s i n ( e g o ' s M M B D D ) .
7
If
pr a c t i c e d
s y s t e ma t i c a l l y , t h i s o p t i o n w i l l g e n e r a t e t he A r a nd a - t y pe s t ru c t u r e o f f i g u r e 4 . 2 . T h e s e m a r r i a g e s t r a t e g i e s a r e c om p le me n t a r y :
t he N g a w b e f or b i d m a r r i a g e w i t h a pe r s on
w h o i s b ot h F F Z D D a n d M M B D D t o m a l e e g o ( 1 9 7 0 : 9 1 - 9 3 ) . I
n ow i n t r od u c e a s e t of f or ma l e x c h a n g e m od e l s t h a t
i s f u l l y c om pa t i b le w i t h t he c o n s t r a i n t s me n t i o ne d a b ov e , i n c l u d i n g t h e B a r d i - N g a w b e t y pe o f i n t r a - s y s t e mi c varia t i on. A u t o m o r p h i s ms o f t h e d i h e dr a l gr o u p
T h e f a m i ly
of d i r e c t e x c h a n g e m od e l s p r e s e n t e d h e r e i s
d e v e l o pe d i n c om p le t e a n a l og y t o t he m od e l s o f g e n e r a l i z e d e x c h a n g e i n t r od u c e d e a r l i e r . " T h u s , t he s e t of f or ma l ob j e c t s
( e x c h a n g e u n i t s ) i s ob t a i n e d b y m a p pi n g a t w o
d i me n s i o n a l c o o rd i n a t e g r i d o n t o t he s u r f a c e o f a cy linde r .
' De s c e n t li ne s '
( i . e . , t he t r a j e c t or i e s o f
pa r t i c u l a r u ni t s t h r ou g h t i me )
ma i n a x i s ,
wi t h
' g e n e r a t i o ns '
p a r a l le l t he c y l i nd e r ' s l oc a t e d o n d i s t i n c t p l a ne s
of s i mu l t a ne i t y pe r pe n d i c u l a r t o t h e m a j or
( t i me ) a x i s .
A f t e r d e f i n i n g a b a s i c s t r u c t u r e o f re s t r i c t e d e x c ha ng e
a s a pe r mu t a t i o n r of o r d e r 2 , t he · e x c ha n g e c o n f i g u r a t i on i n e a c h s u cc e s s i v e g e ne r a t i on i s d e f i n e d r e cu r s i v e l y a s
201
a n a u t om or ph i s m o f i t s i m me d i a t e p r e d e c e s s o r . I n a lg e b r a i c t e r ms , a s e m i - c om p le x s t r u c t u r e of r e s t r i c t e d e x c h a ng e i s d e f i n e d b y me a n s o f t h e a u t o m or ph i s ms o f t he d i h e d r a l g r ou p o f w h i c h
r
i s o ne
pe r mu t a t i on s .
Le t I b e t h e i n d e x s e t I
=
of t h e t w o g e n e r a t i n g
{I, 2,
.
,
. , 2m} and let
Z
b e t h e s e t of i n t e g e r s . O b j , t h e b a s i c s e t of ob j e c t s , i s d e f i ned as { Oi ! i in Z and j i n I } . Let Obj( i ) be the
j
of O b j d e f i n e d a s { O i ! j i n I } f or s ome i i n Z . j A s me n t i o n e d i n C h a pt e r 2 , C e n { Obj ( i ) ! i in z } i s a p a r t i t i o n of O b j ( r e pr e s e n t i n g a p a r t i t i o n i n t 0 n on subset
ov e r la p p i n g g e n e r a t i on s ) .
C o n s i d e r a n y O b j ( i ) i n G e n . De f i n e t h e pe r mu t a t i on s r
a n d q of
o r d e r tw 0 a s r
=
q
and
( O i ' 0 i 2 ) ( O i 3 ' ° i4 ) l ) ( ( O i 2 m ' °il ) Oi2 ' °i3
•
•
•
•
•
( O i 2 m_ l ' ° i 2 m ) (O
•
i2m_2 ' °i2m_ l ) ' r ,
T o s i m p l i f y t h e n ot a t i on , i n t h e f o l l ow i n g s e c t i ons q and
o t h e r p e r mu t a t i on s d e f i n e d on
i Ob j ( ) w i l l b e
f or mu la t e d a s pe r mu t a t i o n s o f t h e i n d e x s e t I , e . g . , r
q
=
0 ,
2)(3 , 4)
.
(2m, 1)(2, 3 )
.
.
• .
( 2 m- l , 2 m ) a n d .
( 2 m- 2 , 2 m - I ) .
B y d i r e c t c om p u t a t i o n , rq
=
(1 , 3 , 5 ,
and hence ( r q ) m
.
=
.
e
•
•
•
2m-l ) ( 2 m , 2m-2 ,
,
•
•
.
, 6, 4, 2)
( t h e i d e n t i t y p e r mu t a t i on ) .
T h e g r ou p D ( r . q ; r
m
2
=
q
2
= e.
(rq
)
m
=
e ) g enera ted
b y r a n d q i s t h e d i h e d r a l g r o u p of o r d e r 2 m . D
m
i s o n e of t h e c la s s i c a l g r ou ps a r i s i n g i n t h e
s t u d y o f s y m me t r y o pe r a t i on s a nd t h e i n v a r i a n t pr o pe r t i e s o f f i n i t e pa t t e r n s . F o r e x a m p le , i t r e p r e s e n t s t h e g r ou p o f r ot a t i on a l s y m me t r i e s o f a r e g u l a r m- s i d e d p r i s m , a t h r e e - d i me n s i on a l o b j e c t , a l l s y mme t r i e s
or e q u i v a le n t ly , t h e g r ou p o f
( i n c lu d i n g r e f l e c t i on s ) o f a p la n e
d i me n s i o n a l ) r e g u I a r m - S i d e d p o l y g on . C
n
( t h e c yc l i c g r ou p of
orde r
n
9
In f ac t . D
( tw o
m
and
a s s oc i a t e d w i t h t h e
a u t o m or p h i s m s o f g e n e r a l i z e d e x c h a n g e s t r u c t u r e s ; c f . C h a p t e r 2 ) a r e t h e o n l y p os s i b le i n f i n i t e f a mi l i e s o f
202
f i n i t e s y m me t r y g r ou ps i n t h r ee - d i me n s i on a l s pa c e . l O
I n c on t r a s t w i t h t h e c yc li c a l g r ou p e n g e n e r a t e d b y
t h e o n e pe r mu t a t i on c " ( 1 , 2 ,
.
•
•
,
of
n)
or d e r n , e v e r y
d i h e d r a l g r ou p D
r e qu i r e s t w o g e n e r a t or s . C on v e r s e l y , i f m a g r ou p i s g e n e r a t e d b y t w o pe L' mu t a t i o n s o f or d e r t w 0 , i t
i s a lw a y s d i he d r a l . H owe v e r , t he r e a r e a l t e r n a t i v e w a y s " o f d e f i n i n g D ' F or r a n d q a s b e f or e , le t a rq be t h e m 2 pe r mu t a t i o n of or d e L' m d e f i n e d on I . T h e n r am " e ,
ra
a
-I
r a r e o p t i o n a l d e f i n i n g L' e l a t i o n s
f oL'
D . m I n ow s k e t c h t he s t r a t e g y t o b e f o l l ow e d . F i r s t , f oL'
s ome i n d e x s e t I " { I , 2 ,
•
.
•
, 2 m } , d e f i n e t he pe r mu t a t i on s
r q a n d g e n e r a t e t h e d i h e d r a l g r ou p r , q , and a 2 l m D (r. a; r a " e. ra a - r ) . T h e pe r mu t a t i on r m r e pr e s e n t s t h e b a s i c s t r u c t u r e o f r e s t r i c t e d e x c ha ng e "
l i n k i n g t he 2 m e x c h a n g e u n i t s o f
Ob j ( i )
i n p a i r s . Se c o n d ,
d e r i v e t he a u t om or ph i s m g L' OU p A u t ( D ) of D
m
m
•
A m on g t h e
s e le c t t h e s u b s e t A of t h os e w h i c h
a u t om or p h i s m s of D
m d o n o t le a v e t h e pe L' mu t a t i on r i n v a r i a n t . T h e n , f or a n y a in A ,
1
aP
( t h e i d e n t i t y a u t o m o L' p h i s m ) f or s o me
i n t e g e r p . F i n a l ly , t he
( r ) (/
,
..
.
, ( r ) aP - 1 ) ,
or d e r e d p - t u p le D = ( r .
recurs ive
(r)a,
ly d ef i n e d , i s in t er pr e t e d
a s a c l o s e d , s e m i - c om p le x s t r u c t u r e of r e s t r i c t e d e xc h a n g e d e f i n e d o n 2 m d e s c e n t l i n e s a nd r e pe a t i n g a f t e r p g e n e L' a t i o n s .
S t r u c t ur e s of r e s t r i c t e d ex c h a n ge D (r , al r
Le t
of
m
2
" a
m
" e . ra
= a
orde r 2 m g e n e r a t e d b y r an d
c y c li c a l s u b g r ou ps of D
-I
a.
r ) b e t h e d i h e d r a l g r ou p L e t H a n d K b e t he
g e n e r a t e d b y , r e s pe c t i v e l y , r
m a n d a . F o r m > 2 , K i s t h e o n l y c y c l i c s u b g r ou p of
orde r m . a n d K i s a n or ma l s u b g r ou p o f D . 1 1 N o t e t h a t m K n H = { e } . T h e n e v e r y e le me n t g of D o a n b e e x pr e s s e d as D
m
g
=
r iaj ,
HK .
w h e r e i i s 0 or
1 and
m
0 � j < m , i .e . ,
L e t Au t ( D ) b e t h e a u t o m o r p h i s m g r ou p o f D ' F o r a a n m m a u t om or ph i s m a n d r a n d a e le me n t s o f D ' t h e n l e t m
203
f or s ome i n t eg e r s i a n d j . w i t h j r e l a t i v e l y p r i me t o m
and 0 � i
<
m . C o n v e r s e l y , f or a n y i n t e g e r s i a nd j ,
w i t h j r e l a t i v e ly o or
1 and 0
< t
a
pr i me t o m , t h e ma p pi n g
i t s e lf d e f i n e d b y a : r a
t
of D .
j t i s f or ) (a )
s
< m , i s a n a u t o m or p h i s m o f
D
S
... ( r a
A l l a u t om or p h i s m s of D
m
in t o
e qu a l t o
m
(m
>
2) .
c a n be s y s t e ma t i c a l ly d e r i v e d
m f r om t h e g e n e r a t i n g pe r m u t a t i on s r a n d
B
of Dm by
o b t a i n i n g ma p pi n g s f or a l l c om b i n a t i o n s of i n t e g r a l v a lu e s
of s .
i and
t .
j
( a s c on s t r a i n e d a b o v e ) . T h e
a u t om or p h i s m g r ou p Au t ( D ) c a n b e f or mu la t e d a s m A u t ( D ) = H O K O ' w h e r e H O i s t h e s e t of a l l a u t om or ph i s m s m w h i c h le a v e B i n v a r i a n t , a n d K i s t h e s e t of a l l O
a u t om or p h i s m s w h i c h l e a v e r i n v a r i a n t . N ot e t h a t KO
n
HO
=
{ d , with
\
t h e i d e n t i t y a u t om or ph i s m . H O i s a
n or ma l c y c l i c s u b g r ou p of
ord e r
111 ,
a n d K O i s a n a b e li a n
g r ou p o f o r d e r ¢ ( m ) , w h e r e ¢ i s t h e E u l e r f u n c t i on ( s e e C h a p t e r 2 , t a b le 2 . 1 ) . F i n a l ly , t h e f o l l ow i n g p r o p os i t i on i s pr e s e n t e d
( s e e t h e A p pe n d i x f or a d e f i n i t i o n of t h e
i m po r t a n t c o n s t r u c t i (In c a l le d a s e m i d i r e c t p r o d u c t )
L e mma
.1 2
1 :
C on s i d e r D m w i t h s u b g r ou ps H a n d K a n d A u t ( D ) w i t h s u b g r ou ps HO a n d K O a s d e f i n e d a b ov e . T h e n m D i s i s o m or ph i c t o t h e s e m i d i r e c t p r od u c t o f H b y K ,
m
a n d A u t ( D ) i s i s o m or p h i c t o t h e s e m i d i r e c t p r od u c t o f m HO b y KO ' i . e . , D = H X f K , a nd A u t ( D ) = HO X g K O . m m T h e g r ou p- t h e or e t i c a p p a r a t u s i s n ow a p p ll e d t o t h e
c y l i n d r i c a l s t r u c t u r e O b j . F or s ome O b j ( a ) i n G e n ,
d e f i n e. t h e d i r e c t e x c h a ng e p e r mu t a t i on Wo b y 0 i w O BJ
BJ
O _ . r f or a l l 0 _
.
in O b j ( a ) . L e t s , t h e
j
l i ne a l s u c c e s s or
m a p pi n g , b e t h e o ne - t o - on e t r a n s la t i on d e f i n e d b y (0
ij
)s
s ub se t
0i +1
p e r mu t a t i on WI
of
j f or
a l l 0 i j ' N ow , f or s ome
111
of Au t ( O ) wh i c h d oe s n o t r
a
i n A ( the
le a v e t h e b a s i c
i n v a r i a n t ) , d e f i n e t h e e x c h a n g e pe r mu t a t i on
O b j ( a +1 )
b y 0a swl j
=
(O
aj
w O ) as .
C on t i n u i n g i n t h i s
204
m a n n e r , d e f i n e f u r t h e r e x c h a n g e m a p p i n g s "' 2 ' \>' 3 ' e t c . o f , r e s pe c t i ve l y , O b j Ui + 2 ) , O b j Ui +3 ) , e t c . , a s O . 1 . s "' 2 ( O i + l j "' l ) a s ,
=
0 i + 2 j S "' 3
etc . j "' 2 I as ,
( 0� +2
I n g e n e r a l , f or a n y po s i t i ve i n t e g e r e x c h a n g e pe r m u t a t i on ", def i n e d b y
J. 5 '"x
o.
a +x · 1
x
x
J
a+
=
t h e d i re c t
o f O b j ( i +x ) m a y b e r e c u r s i ve l y =·
( 0 a.
+x · 1
'" l I a s , w i t h J. x ·
"' 0
r.
=
A n e q u i v a le n t n on · r e c u r s i v e d e f i n i t i on i s g i v e n b y O . .s aJ
x
'"
x
(O
=
•
.
aJ
) x x "'0 a s .
T h e s t r u c t u r e o f r e s t r i c t e d e x c h a n g e w i t h or i g i n Obj ( a l , D
i n d u c ed o n O b j b y t he
m
{ '" I f or a l l i n t e g e r s x
x
}
.
g i v e n b y p ( ct ) , t h e o r d e r x
s
pe r mu t a t i on s r a n d
a n d s ome a i n A , i s d e f i n e d b y D ( .3' , 2 m , a J
f or
=
T h e p e r i o d of D ( 8 , 2 m , a J i s of
ct ,
a n d i s t h e s ma l le s t
s u c h t h a t "' = r "' 0 ' x I n t h e f o l l ow i n g s e c t i on I a p p l y t h e s e r e s u l t s ,
p os i t i v e i n t e g e r
d e r i v i n g a l l p os s i b le k i n s h i p s t r u c t u r e s w i t h r e s t r i c t e d e x c h a n g e a n d u p t o t e n d e s c e n t l i n e s , i . e , t h e c om p le t e D s e t o f e x c h a ng e m od e ls g e n e r a t e d b y D I S , ?2 ' D 3 , D4 ,
a n d t h e i r a u t om o r p h i s m g r ou ps . Th e c l a s s i c a l s y s t e m s :
a u t o m o r p h i s ms � f D
F or I = { I , 2 } , i . e . , f or
m
=
1 , def ine 2
and D
]
2
t he basic
= e ) , t he d i h e d r a l pe r m u t a t i on r = ( l , 2 ) . T h e n D ( r ; r l 2 g r ou p of o r d e r , i s t he on l y d i he d r a l g r ou p g e n e r a t e d
b y a s i n g le pe r mu t a t i on . V I i s i s om or ph i c t o C Z ' t he c y c l i c g r ou p of o r d e r 2 , a nd Au t ( D ) ;; E ( c ) , t h e t r i v i a l l a u t om or p h i s m g r ou p c on s i s t i n g o f t h e i d e n t i t y a u t om or p h i s m I n t e r p r e t e d a s a k i n s h i p s t r u c t u r e , V I a nd A u t ( D ) l g i v e r i s e t o a s i m p le e x o g a m ou s m o i e t y s t ru c t u re w i t h 1.
s i s t e r e x c h a n g e a n d b i l a t e r a l f i rs t c r os s - c ou s i n m a r r i a g e . S u c c e s s i ve e x c h a n g e c y c le s a r e i de n t i c a l : r
f or D ( 8' ,
a11 x. 2,
1 1 i s iden t ic a l t o
W ( 8' ,
2 ,
"'
x
1 ) , t he
= "'
0
=
(r)l
limiting
s t r u c t u r e ob t a i n e d b y a p p ly i n g t h e f or mu l a o f g e n e r a li z e d e x c ha n g e t o a t w o- l i n e s y s t e m . T h e r e d u c e d s t r u c t u r e of
205
p( t l =
pe r i od in
1 a s s oc i a t e d w i t h 0 ( 8' ,
f igure 4 .4
m od e l i s 4.4 ,
( t op ,
le f t ) .
tl
is
pr e s e n t e d
T h e K a r i e r a f ou r - s e c t i o n
o b t a i n e d b y d ou b l i n g
t op ,
2 ,
t he b a s ic
pe r i od
( f i g u re
right ) .
F o r I = { I , 2 , 3 , 4 } , i . e . , f or m = 2 , d e f i n e t h e . b a s i c p e r mu t a t i o n s r = ( 1 , 2 ) ( 3 , 4 ) a n d a = ( 1 , 3 ) ( 4 , 2 ) . 2 2 = e, T h e n r a = ( 4 , 1 ) ( 2 , 3 ) , a nd D ( r , a i r a 2 r a = a r ) i s t h e c o m mu t a t i v e d i h e d r a l g r ou p o f o r d e r 4 . a u t o m or ph i s ms
c a nn o t b e ob t a i n e d 2 b y s u b s t i t u t i n g t h e a p pr o p r i a t e v a l u e s f o r s , t , i a n d J i s in t h e ma p pi n g r S a t + ( r a ) ( a J ) t . 2 3 S y d i r e c t c o m pu t a t i o n , A u t ( D ) ( a , a ; 13 = 1 , a 2 S a· = a Z 13 ) i s ob t a i n e d , w i t h 13 = ( a , r a j a n d a = ( r , r a , a ) . S i n ce
m = 2,
A ls o ,
Au t ( D
the
of
D
) :; D , h e n c e I A u t ( D ) 1 = 6 . T h e r e m a i n i n g 2 2 3 aa f ou r e le me n t s a r e t h e i d e n t i t y 1 , a Z = ( r , a , r a ) , ( r , r a ) , a n d l3 a 2 = ( r , a ) . T h e i n v a r i a n t s u b g r ou p s f or a
and m
=
r a r e H0
=
< 3 , HOKO =
{ I) , a
2
,
Sa,
{ 1. , 13 a } a n d K = { l , B } . H ow e v e l' , a s 2 0 { l , 13 , S a , a } * A u t ( D ) . A = A u t ( D } 2 Z t h e r e a r e e x a c t ly
hence
2
Sa } ;
KO
-
f ou r e x c h a n g e
s t r u c t u r e s b a s e d on f o u r d e s c e n t l i n e s : 0 ( 8' , 4 , a ) a n d 2 2 0 ( 8' , 4 , 1) ) o f p e r i od 3 , a n d 0 ( 8 , 4 , S a ) a n d D ( 8 , 4- , l3 ( ) of
pe r i ad
By
Z.
a s i m p le r e n u mb e r i n g
s t r u c t u r e s c an b e kinsh i p structure ,
or N g a w b e - t y pe
s t ru c t u re s O ( a , 4 , Ba r d i
or Ng awbe )
b ot h
pe r i od
t h e s a me
2
basic
t h e A r a n d a - t y pe e i g h t - s e c t i o n s y s t e m .
S i m i l a r ly , b ot h e x c h a n g e
t h e Bardi
p r oc e d u r e ,
s h ow n t o r e p r e s e n t s t ru c t u r e s
of
p e r i od
k i n s h i p s t r u c t u re .
( t h e A r a nd a ) a nd O ( li ,
13 1)
a r e i l lu s t r a t e d
3
The 4 ,
i n f i g u re 4 . 4
re prese n t reduced 2 ( ) ( the ( b e l ow ;
c om pa r e w i t h f i g u r e s 4 . 2 a n d 4 . 3 ) .
Th e B u n a n d F or I
a u t o mor ph i sms o f D
t h e Ma n g a :
= {I , 2 ,
<
�
,
4,
<;
�
,
6} ,
i .e . ,
f or
m
=
3 3 ,
define
( 1 , 2 ) ( 3 , 4 ) ( 5 , 6 ) and a = ( 1 , 3 , 5 ) ( 6 , 4 , 2 ) • D ( r , , 3 2 2 3 = Ii r e , r a = a r ) • T h e ot h e r f ou r e l e me n t s a r e 2 = (5 the identity e , , 3 , 1 ) ( 2 , 4 , 6 ) , ra = a
r = aj
206
M O I E TY
s =e
'A RANDA
Fig .
�.�.
a s s oc i a t e d left ) ,
a nd
Reduced
BARDI
s tructures
w i t h 0 ( 03 , 2 , 0 ( 8' ,
� ,
(2 )
of
l ) ( t op) , ( b o t t om ,
re s t r ic t ed e x c h a nge 0 ( 03 ,
� ,
right ) .
Sa)
( b o t t om ,
207
I ) (2
(6,
ID
s ince
, 3 ) ( 4 , 5 ) , a nd ra
>
2 ,
2
(1 , 4) (2 ,
t h e c om p le t e s e t
of
e a s i ly b e
ob t a in e d b y s u bs t i t u t i ng
a nd
< 3 in
0 < t
and
rSat
( 3 , 6 ) . N ow , S = 0
t he v a lu e s
( g i v i n g a l l e l e me n t s
g of
t h e n d e r i v i n g e a c h a u t om or p h i s m y a s a m a p p i n g s g = r S a t + ( r a i ) ( a J ) t f or c om b i n a t i on s of v a l u e s
y:
i and
i
=
g
5 )
a u t om or p h i s m s c a n
j.
The
0 and j
=
pr i m e t o m ,
1
i d e n t i t y a u t om o r ph i s m =
I
( n ote
that
j = l
i .e . ,
is
ob t a i n e d
or
I
D ) , 3 of
f or
0 < i < 3 , a n d J i s r e la t i v e ly
or 2 ) .
In
like
ma n n e r , a l l o f
o t h e r a u t o m or ph i s m s a r e d e r i v e d :
the
a a
I; 1 a nd j r a , r a 2 ) f or i 2 l ; a n d ( r , r a , r a ) f or i j 2 2 2 :;: 0 f or a n d 2 ; i ( a , a ) ( ra . ra ) j 2 1 and j 2 ; a n d f i n a l ly , ( a , a ) ( r . r a j f or i 2 2 and j = 2 . ( a , a ) ( r , r a 2 ) f or i (r,
2
13
Sa
S a2 Th i s
=
is
I Au t ( D
indeed )
I
=
m
3 g r ou p i s A u t ( D
t h e c om p l e t e s e t
x
of
a u t om o r p h i s m s ,
since
3 x 2 :;: 6 . H e n c e t h e a u t o m o r ph i s m 3 2 2 = 1 , Sa = a S ) . 13 = a
=
�(m)
) ( S , a; 3 i n v a r i a n t s u b g r ou p s of a a n d r a r e H O 2 { I , a , a } a n d K O = { I , S } , w i t h HOK O = A u t ( D ) . T h e n 3 2 2 Aut ( D ) - K { a , a , S a , Sa } a n d t h e r e a r e e x a c t l y A 3 O f ou r s t r u c t u r e s of r e s t r i c t e d e x c h a n g e b a s e d o n s i x The
=
=
=
descent and
line s :
0 ( 03 , ·6 ,
4 .5 )
Sa)
a ) a n d D ( a , 6 , (2 ) o f 2 a n d D ( a , 6 , S ( ) o f pe r i od 2
D ( a,
6,
( see f igure
•
O n e m a y n ow d e r i v e
t h e c om p le t e f a m i ly
k i n s h i p m od e l s w i t h r e s t r i c t e d e x c h a n g e . s u r pr i s in g f e a tu r e s a r e t he r e a re
on ly
is e i ther
h i s FM BSD and F F l S D .
oc c u r s a nd a
on ly
r e v e a le d .
tw o d i s t i nc t s e t s
m a l e e g o ' s s p ou s e (2)
pe r i od 3 ,
r u le ,
A number
of
ma r r i a g e
of
place ,
p os s i b i l i t i e s :
M M B D D a nd MF l D D ,
or
S e c o n d , M M B D D a n d HF l D D m a r r i a g e pa t r i l i n e a l d e s c e n t
or w i t h ma t r i l i n e a l d e s c e n t
a nd a l t e rn a t i n g g e n e r a t i ons . mar r i age
s i x - li ne
I n t he f ir s t
( 1 ) his
i n c om b i n a t i on w i t h
3 - g e n e r a t i on
of
C on v e r s e l y , F M B S D a n d F F l S D
i s a s s oc i a t e d e i t h e r w i t h a 3 - g e n e r a t i on
ma t r i s t ru c t u r e
or w i t h a n a l t e r n a t i ng g e n e r a t i on
structure based
on
p a t r i l i ne a l d e s c e n t . F i n a l l y , a n y
208
F ig .
4.5.
R e d u c e d s t r u c t u r e s o f res t r i c t e d e x c ha n g e
a s s o c i a t e d w i t h D ( � , 6 , Ba ) ( t op ) ( b o t t om ) .
a nd
w i t h D ( � , 6 , a2 )
209
D
c
8
A
F
E
w,
M M MMB D C MFZDC
Ego Sb
FZC
F F Z DC FM B D C
MBC
MMBSC MFZSC
FFZSC FMB S C
W2
F i g . 4 . 6 . Bu n - t y p e k i n s h i p s t r u c t u r e b a s e d o n s i x
ma t r i l i n e s a nd t h e 2 - g e n e r a t i on s t r u c t u r e D ( a , 6 , S a ) . L a t e n t 3 - g e n e r a t i on s t r u c t u r e b a s e d o n s i x a n d t h e e x c h a n g e s t ru c t u r e D ( 8 , 6 ,
a2 ) .
pa t r i l i n e s
s i n g le k i n s h i p m od e l i s s e e n t o i n c or p or a t e t w o d i s t i n c t e x c h a n ge s t r u c t u r e s w i t h
s e e mi n g l y i nc o m pa t i b le
pe r i od i c i t i e s .
T h e s e f e a t u r e s are h i g h l i g h t e d i n f ig u r e 4 . 6 . T h e d i a g r a m d e p i c t s a s i x ma t r i l i n e s t r u c t u r e w i t h r e s t r i c t e d
e x c h a n g e . M a le e g o m a r r i e s h i s M M B D D ( me r g e d w i t h h i s MF Z D D ) a nd t h e e x c h a n g e s t ru c t u r e r e pe a t s i t s e l f i n
a l t e r n a t i ng g e n e r a t i on s . W i t h t h e s i x m a t r i l i ne s c od e d as A
=
1 ,
B
=
2 ,
"
'
,
F
=
6 , t he a s s oc i a t e d e x c h a n g e
s t r u c t u r e i s D e i , 6 , S c d . H ow e v e r , i f t h e f or ma l s t r u c t u r e of s i x •
.
•
,
' s u b me r g e d '
pa t r i l i ne s ( n u mb e r e d I , I I ,
V I ) i s t r a c e d ou t i n t h e m od e l , a d i f f e r e n t
s t r u c t u r e o f r e s t r i c t e d e x c ha ng e i s s e e n t o a p p ly . I n t e r ms o f pa t r i li n e a l d e s c e n t , t he u n d e r l y i ng e x c h a n g e
210 2
s t r u c t u r e i s D ( i , 6 , a ) , w i t h m a r r i a g e s be t w e e n t he s a me
p a t r i l i n e s r e pe a t i n g i n t h r e e g e n e r a t i o n s , n ot
t w o . I n f ac t , i f
one s o w i s h e s , t h e s e a p p a r e n t
i n c o n s i s t e n c i e s m a y b e r e s o l v e d b y n o t i ng t h a t t he m od e l of f i g u r e 4 . 6 , double -descen t ,
be i n g
p i c t u r e d a s a s t ru c t u r e o f
r e pe a t s i n e x a c t l y s i x g e n e r a t i on s
( six
of c ou r s e t h e le a s t c om m o n m u l t i p le of t w o a nd
t hree ) . " 1y m od e l i s i d e n t i c a l t o t h e s i x m a t r i li ne m od e l of s i s t e r - e x c h a n g e m a r r i a g e p r e s e n t e d b y Mc D ow e l l ( 1 9 7 7 : 180 , f ig . )
f or t he B u n , a N e w G u i n e a pe o p le l i v i n g
a l ong t he Yu a t r i v e r i n t he E a s t S e p i k D i s t r i c t . T r a d i t i on a l l y t h e B u n , c l o s e n e i g h b ou r s o f t h e �1 u nd u g u m or , r e c og n i z e d s i x n a me d , m a t r i l i ne a l c l a n s : P a r r ot , R a t , P i g , C r oc od i le , C a s s ow a r y , a n d G r e a t H o r n b i l l ( t h e l a s t t w o n ow b e i n g e x t i nc t ) . I d e a l l y , c l a n s a r e e x og a m ou s , b u t i n t r a - c l a n m a r r i a g e s o c c u r . C l a n me m be r s h i p i s r e le v a n t i n t w o c on t e x t s :
l a nd t e n u r e
a n d ma r r i a g e . S i n c e t i t l e t o c l a n l a nd c a n b e c la i me d b y a n y one w h os e f a t h e r b e l o n g e d t o t h e g r ou p , a m a r r i e d
c ou p l e
i de a l ly h a s r i g h t s t o t r a c t s
of land
( an d t he
p r od u c e ) a s s oc i a t e d w i t h t h e f o l l o w i n g f ou r c la n s : h u s b a n d ' s , w i f e ' s , h u s b a nd ' s f a t h e r ' s , a n d w i f e ' s f a t h e r ' s ( Mc D ow e l l 1 9 7 7 : 1 7 6 - 1 7 7 ) . C l a n s d o n o t , h owe v e r , i n a ny r e a l s e n s e ma r ri a g e e xc h a ng e s .
' T h e pe o p le
' regu late '
of B u n d o n ot
c on c e p t u a l i z e e x c h a ng e s a s o c c u r r i n g b e t w e e n c l a n s , b u t b e t w e e n s i b li n g s e t s .
�
•
.
m a r r i a g e a r r a ng e m e n t s a r e
a lw a y s d i s c u s s e d i n t e r m s o f " r oa d s "
•
•
•
t h e s e re l a t i on s
a r e n o t c onc e pt u a l i z e d a s s t r u c t u r e s o r po s i t i o n s b u t a s m ov e me n t s a nd
pr oc e s s '
( t4c D o w e l l 1 9 7 7 : 1 8 1 ) .
S i s t e r e x c h a ng e i s t h e i d e a l ( a s w e l l a s t h e s t a t i s t i c a l n or m ) . M a r r i a g e i s f o r b i d d e n w i t h i n o n e ' s own a n d on e ' s f a t h e r ' s c la n , a nd w i t h a l l c a t e g or i e s o f k i n e x c e pt c l a s s i f i c a t or y c r os s - c ou s i ns . F u r t h e r m o r e , m a r r i a g e s s h ou l d b e a r ra n g e d s o t h a t t h e s t ru c t u r a l r e l a t i on s r e pe a t i n a l t e r n a t i n g g e n e r a t i on s ( t h e c ou p l e
211
F FZDC FMBDC
Fig .
4 .7 .
IV
V
VI
F F Z SC FMB S C
MM B S C MFZSC
FZC MBC
III
"
Ego
MMB DC MFZOC
Sb
M a n g a - t y pe k i n s h i p s t r u c t u r e b a s e d
six
on
13 0 2 ) .
pa t r i l i n e s a n d t h e Z - g e n e r a t i o n s t r u c t u r e 0 ( 8" , 6 , La t e n t
then as
3 - g e n e r a t i on s t ru c t u r e b a s e d 6 ,
t h e e x c h a n g e s t ru c t u r e O ( a ,
a nd
re-estab lishing rights
p r i n c i p le
c re a t ed
t h e ide a l
a n d m a i n t a i ne d
( Mc D o w e l l 1 9 7 7 : 1 7 8 - 1 7 9 , m od e l s u m ma r i z e s
the
of
sys tems
s ix - li n e of
is
the
r e i n t e g r a t i on
i n t e r - c on n e c t e d n e s s
182-183 ) .
o f e x c h a ng e
M c D ow e l l ' s
six
line
o n k i n s h i p a nd e x c h a n g e .
T h e B u n m od e l i s a t r a n s f o r m a t i on a l v a r i a n t s e c o nd
_
Ge u n r e f e r s t o t h e
b y t h e s t ru c t u r e
Bun data
of
( ge u n )
' r o pe '
o f e x c h a n g e s a nd e x pre s s e s
o f B u n s oc i e t y a nd
la nd s
a lt e r n a t i n g d e s c e n t
of
u s e d me t h a ph o r i c a l l y b y t h e B u n . r e d u p l i c a t i on
ma t r i l i n e s
I n t h e c o nt e x t
t h e c ru c i a l t e r m
ma r r i a g e a nd d e s c e n t ,
six
a c c e s s t o t h e s a me
of
t h e i r ma t r i l i n e a 1 g r a n d pa r e n t s ) .
a s s oc i a t e d w i t h a
on
0) .
m od e l t h a t m a y b e a p p l i e d
of
a
t o t he k i n s h i p
o t h e r N e w G u i n e a s oc i e t i e s i n t h e Se pi k a r e a .
212
I n c on t r a s t w i t h t h e Bu n , t h e M a n g a , M a r i n g a nd K u m a r e c o g n i z e e x og a m ou s
pa t r i c I a n s . A s
B u n , d i r e c t s i s t e r - e x c ha ng e s i s te rs )
is the c a s e w i t h t h e
( o f r e a l o r c la s s i f i c a t o r y
i s t h e i d e a l , w i t h t h e s a me m a r r i a g e e xc h a n g e
r e ne w a b l e i n a l t e r n a t i n g g e n e r a t i o n s . M a r r i a g e w i t h a n y f i r s t c ou s i n i s f or b i d d e n ;
there i s a
p r e f e r e n c e f or
m a r r i a g e w i t h a s e c on d c ou s i n , s pe c i f i e d f o r t h e M a n g a a n d t h e Ma r i n g a s
the F F ZSD
( not
t h e M M B D D o r MF Z D D )
( R o s ma n a nd R u b e l 1 9 7 5 : 1 1 5 ) . I n n a t i v e t e r ms , t h e r e n e w a l o f ma r r i a g e s i n a l t e rn a t i n g g e ne r a t i o n s i s described a s
' f o l l ow i n g
w o ma n r oa d ' ,
or
o ne ' s r oa d ' ,
' f or m i ng a
t h e g r a nd d a u g h t e r ma r ry i n g b a c k i n t o t h e c l a n pa t r i l i n e
pi g
' r e t u r n i n g t h e p l a n t i n g ma t e r i a l ' , w i t h
o f h e r g r a nd m o t h e r
or
( R os ma n a n d R u b e l 1 9 7 5 : 1 1 5 ;
R u b e l a n d R o s ma n 1 9 7 8 : 25 3 ) . T h e k i n s h i p s t r u c t u r e o f f i g u r e 4 . 7 i s t h e s i m p le s t p r o p e r m od e l f or t h e i'l a n g a , l'1 a r i n g a nd K u ma d a t a . T h e m od e l
( e mb od y i n g s i x
pa t r i l i n e s )
i s a s s oc i a t e d w i t h t h e l 13 e ) . H ow e v e r ,
2 - g en e r a t i on e x c h a ng e s t r u c t u r e D ( a , 6 , if six
o n e i d e n t i f i e s t h e e x c h a n g e s t r u c t u r e d e f i ne d f o r ma l m a t r i l i n e s A , B ,
on the
. . . , F , t h i s t u r n s ou t t o
b e t h e J - g e n e ra t i on s t r u e t u r e D ( a , 6 ,
ex ) . I� y m o d e l i s
c e r t a i n l y m o r e f a i t h f u l t o t h e e t h n og r a ph i c d a t a t h a n t h e A r a nd a - t y pe
m od e l p r o p o s e d b y C o ok
R o s ma n a n d R u b e l 1 9 7 5 : 1 1 5 ;
( d esc ribed i n
Rube l a n d Rosman 1 9 7 8 : 25 6 ) ,
i n w h i c h eg o ' s s pouse i s d e s c r i b e d a s F F Z S D a n d F MBSD , b u t a ls o M M B D D a n d MF Z D D . In
1 3
su m : i t c a n e a s i ly be d e mons t r a ted t h a t , u p t o a n
i s o m or p h i s m , t h e k i n s h i p m o d e ls o f f i g u r e s 4 . 6 a nd 4 . 7 a r e t he
on ly d i s t i n c t m od e l s g e n e r a t e d b y t h e f ou r
s i x - l i n e s t ru c t u r e s
of
re s t r i c t ed e x c h a ng e . A ny
c o mb i n a t i o n o f s t r u c t u r e s pa t r i - s t r u c t u r e b a s e d
( e . g . , c o mb i ni n g a
wi th a 2 - g e n e r a t i o n 2 ma t r i - s t r u c t u r e a s s oc i a t e d w i t h D ( a , 6 , 13 ex ) ) m a y , b y a
s i m p le
p r oc e s s
of
on D ( a , 6 ,
ot h e r
3 - g e n e r a t i on
ex )
r e nu mb e r i n g , b e i d e nt i f i e d w i t h
t h e t w o k i n s h i p m od e ls d e s c r i b e d
i n t h i s s e c t i on .
on e
of
213
of D 4
A u t o mo r p h i s m s
I
F or
= {I,
def ine r
2 ,
3 ,
4,
5 ,
6,
g r ou p D ( r . a l r 4
2
a
=
4
=
e ,
ra
r e ma i n i n g s i x e le me n t s o f D
a a
2
=
3
ra
2
ra
3
ra
(1 ,
5 ) (2,
3 a �)
=
a r e t he
6)(3 ,
4 7 ) (4 ,
5 ,
3 ,
1)(2,
4,
6 ,
8 ) ,
(8 ,
1 ) ( 2 ,
3 ) (4 ,
5 ) (6 ,
7 ) ,
(1 ,
6 ) ( 2 ,
5 ) ( 3 ,
8 ) (4 ,
7) ,
(l, 4)(2 .
7)( 3 ,
6 ) (5 ,
8 ) .
'( o f
D
4
( th e i d e n t i ty ) f or i
a a
(r,
2
(r.
3
(r.
i3
Sa Sa Sa
(a,
(a.
2
(a.
3
(a.
{
=
t ,
{a,
2
3
r a . ra ) f 3 ) ( ra . ra ) f 2 3 ra , ra . r a ) f 3 3 f a ) ( ra . ra ) 2 3 a ) ( r , ra ) ( r a . 3 f a ) ( r . raZ ) 3 3 a ) ( r . ra ) ( r a . ra , 2
ra
0,
=
and
0(8,
=
j
=
1 ,
or i
Z ,
i
3 ,
or
or i ra
or ra
3
i 2
,
i . e . , f or s =
or 3 .
=
au
3 a B) • 2 3 a , a , a } and 3 2 a , a , B a , B et Z ,
KO
3
8 , ( ) 8 ,
of
0
They are :
1 ., 1;
j
1;
j
l ;
j
3;
0, j
) )
t
1
or i
3;
f or
i
2 ,
l , j
j
3 ;
and
3 ,
j
f or i
2
=
4
=
3 . t
•
HO
A u t ( D4 ) KO S et } , ge ne r a t i n g s i x s t r u c t u r e s o f =
3
i t , B}
•
d i r e c t e x c h a ng e o n e i g h t d e s c e n t o(8,
5 , 7 )
e ,
p i s A u t ( D 4 ) ( B , a ; 13 a T h e i n v a r i a n t s u b g r ou p s o f a a n d r a r e
T h e a u t om or ph i s m g r Ba
3 ,
a r e ob t a in e d b y s u b s t i t u t i on
< t < 4, 0 0 < i < 4 , and j
a
4 ,
o f ord e r 8 . T h e identity
f r om t h e m a p pi n g '( : r S a t + ( r a i ) s ( a j )
t
=
(1 ,
=
8 ) ,
( 7 ,
T h e a u t om or p h i s ms or 1 ,
m
8 } , i . e . , f or
7,
( 1 , 2 ) ( 3 , 4 ) ( 5 , 6 ) ( 7 , 8 ) and a
4 , 2 ) . T h e s e pe r m u t a t i on s d e f i n e t h e d i h e d r a l
6,
(8 ,
=
He nce A
=
lines : 0 ( 8 , 8 ,
p e r i od 4 , a nd 0 ( a , 8 ,
(
2
) ,
==
a ) a nd
B et ) , O ( a , 8 , f3 a Z ) , a n d O ( a , 8 , S ( 3 ) , a l l of
pe r i od 2 . H ow e v e r , n o t a l l k i n s h i p m od e l s a s s oc i a t e d w i t h t h e s e s t r u c t u r e s a r e u n i q u e . F i r s t , s i n c e t h e a u t om o r p h i s m s 2 a
and
f3 c/
b ot h m a p t h e b a s i c
pe r m u t a t i on r on t o r a 2 , t h e
a s s oc i a t e d k i n s h i p m od e l s w i l l b e i d e n t i c a l . b ot h
of
In fact ,
t h e s e s t r u c t u r e s ' m a y b e c om p le t e ly d i s r e g a r d e d ,
a s t h e y s i m p l y d e s c r i b e t w o s e pa r a t e Ar a nd a - t y pe
214
f ou r - l i n e s t r u c t u r e s , n o t a n i n t e g r a t e d k i n s h i p m od e l s pa n ni n g t h e e n t i r e s e t
of e i g h t d e s c e n t
i n a n a l o g y t o t h e m od e l s
on s i x
l i n e s . F i n a l ly ,
line s , the remaining
f ou r s t r u c t u r e s c a n b e s h ow n t o c om b i ne s o a s ( u p t o a n i s omor p h i s m )
t o p r od u c e
o n ly t w o d i s t i n c t k i n s h i p m o d e l s :
( 1 ) c om b i n a t i o ns o f a 4 - g e ne r a t i on m a t r i s t r u c t u r e ( e . g . ,
D(a, 8 ,
cd
or D ( a , 8 ,
(e . g . ,
patri s tructure
a3 »
w i t h a 2 - g e ne r a t i o n Sa)
D ( a, 8 ,
or D C a ,
S a3 »
8,
;
ma rr i a g e i s w i t h t h e F F Z SD o r F M BSD ;
( 2 ) c om b i na t i on s
ma t r i s t r u c t u r e ;
M M B D D o r MF Z D D .
a 4 - g e n e r a t l on
The avaI lab le
of
pa t r i s t r u c t u re w i t h a 2 - g e ne r a t i o n ma r r i a g e i s w i t h t h e
l i t e r a t u r e d oe s n o t
p r ov i d e c le a r - c u t
e x a m p l e s of e i g h t - l i n e k i n s h i p s y s t e ms w i t h d i r e c t e x c h a ng e a nd a r u l e
of s e c on d c r os s - c ou s i n Illa r r i a g e .
A u t o m o r p h i s ms o f D : 5
F or I
{I, 2 ,
=
•
(1 , 2 ) (3 , 4 ) (5 , (10, 2
r
.
, 1 0 } , i . e . , f or m
6)(7 , 8)(9,
8 , 6, 4, 2 ) 5 a = e , ra
=
.
m o d e l l i n g t h e S a rn o
=
10)
and
= 5 ,
a
=
d e f i ne r
(1,
a r e t he i d e n t i t y e , t og e t h e r w i t h 5 ( 1 , 5 , 9 , 3 , 7 ) ( 10 , 6 , 2 , 8 , 4 ) ,
of D
(1 , 7 ,
3 ,
(1 ,
9,
7 ,
ra
(10,
1 ) ( 2 , 3 ) (4 , 5 ) ( 6 , 7 ) ( 8 , 9 ) , 8 ) ( 2 , 5 ) ( 3 , 10 ) ( 4 , 7 ) ( 9 , 6 ) , 6 ) ( 2 , 7 ) ( 3 , 8 ) ( 4 , 9 ) ( 5 , 1 0 ) , a nd
ra ra
2
(1,
3
(1,
4
9,
5 ) ( 10 , 4 , 8 ,
2 , 6 ) ,
5 ,
3) (10,
6 ,
¢(m)
= 5
x
4,
8) ,
10 )
•
a u t om o r ph i s m g r ou p i s
of
or d e r
A s b e f o r e , a l l a u t o m or p h i s m s y
= 20 .
¢( 5 )
2,
6) (5 , 8)(7 ,
(1 , 4) (2, 9) (3,
A c c o r d i ng t o L e m m a 1 t he m x
9)
and h e n c e t h e d i h e d r a l g r ou p D 5 ( r , a l 4 a r ) of or d e r 1 0 . T h e r e ma i n i ng e i g h t
e le me n t s 2 a 3 a 4 a ra
=
3 , 5 , 7 ,
a r e ob t a i n e d b y s u b s t i t u t i on f r om t h e rn a p p i n g y : of D S i s s t + J t 0 or 1 , 0 < t < 5 , ( ra ) ( a ) , i . e . , f or s r a =
0 < i
a
a
< 5 ,
and J = 1 ,
2,
3
( t h e i d e n t i t y ) f or i
2
(r, (r,
2
3
r a , ra , ra , 2 4 ra , ra , ra ,
or 4 . T h e y a r e : =
ra ra
4 3
0, ) , ) ,
J
i i
=
1 ;
1 ,
J
2 , J
1; 1;
215 a
a
3
4
(r,
ra
(r,
ra
(a,
a
a
(a,
(a,
Sa � Qa
Q �
a
(a,
Z
3
(a
(a,
a4 ) 4 ) 4 a ) 4 a )
(a,
(a
a 2 3 6 a 3 3 S a 4 S 3 o.
,
a
(a,
3
3
)
a2 ,
(a,
6 2 4 6 a Q I...l
t
(a,
a3
4
,
a2 , Z a , Z a •
(a,
4 Sa Z 6 a 2 ,, a Z � 2
a
2
3
4
.
a
(a,
a
(a,
a
3
3
3
,
, ,
ra ,
ra 4 , 2 (a , 4 a , 4 a , 4 a , 4 a , 4 a ,
3
a
( a2 ,
(a (a ( a
,
,
a
a
2
2
Z
4 4
ra
a
a
a
a
a
,
a
,
a
a
,
a4 ,
ra
•
2
3
3 3
3
)
(r ,
) (r.
) (r,
) (r,
3) (r, 3
3
2
ra
) ,
2
ra
{
ra
) (r,
ra
3
4
a
{a,
2
,
Z
a
{ Sa , Sa ,
3
,
13 a
1;
a2 ) ( r . Z ) (r,
a
(
ra
2
a4 } 3
=
, A2 { i3 a , 4 ' , Sa } , and A 4
3
) ( ra ,
,
) (ra ,
4
,
i
) , ,
) ( 13 , a ;
Z
0 , j
2, j 3 , j
i " 4,
3 ,
j
13 4
i
a and 3
Z;
" Z;
j
4;
=
J
.
=
4; 4;
j
4;
1 ,
j
3 ,.
Z ,
j
= 4 ,
j
= 3 ,
a
s
3 ;
j
= 3; 3 .
=
1 ,
HO
r are
f3 , S } . Le t A l 2 2 2 4 Z 3 f3 a , i3 a , 6 ct } , A 3 3 4 3 3 2 3 " { S Ct , i3 Ct , i3 Ct 3 , S Ct }
.
A U A T h e n A = Au t ( D ) - K O U A U A • Hen ce t h e r e S l Z 3 4 a r e p r e c i s e ly 1 6 s t r u c t u r e s of r e s t r i c t e d e x c h a ng e on =
ten descent
lines .
Ag a i n , n o t a l l of t h e k i n s h i p m od e ls a s s oc i a t e d w i t h t h e s e e x c h a n g e s t r u c t u r e s a r e u n i q u e . F i r s t , f or
Y
in
l
A I ' a l l pa t r i l i n e a l k i n s h i p s t r u c t u r e s g e ne r a t e d b y
0 ( 8' , l a , Y l ) a r e o f pe r i od S . E g o ' s s p o u s e i s e q u i v a le n t t o a s e c o nd c ou s i n ( h i s M I1 B D D o r MF Z D D ) , a nd e a c h p a t r i
s t r u c t u r e e n c om pa s s e s a n a l t e r n a t i n g g e n e r a t i on m a t r i 2 structure D ( a , 10 , Y ) such that Y Y " 13 • C on v e r s e ly , all
with
Z Z I patr i li ne a l s t r u c t u r e s g en e r a t ed by Y
2
in A
2
are
of
p e r i od
2 ,
Y ) Z e g o ' s s p ou s e i s me r g e d D(a,
10 ,
w i t h h i s F M B S D o r F F Z S D , a n d t h e a s s oc i a t e d m a t r i st r u ct ur e D ( a ,
10 ,
Y )
1
is
of
S e c on d , a l l s t r u c t u r e s D ( a ,
pe r i od S
10,
( w i th
y ) with Y i n
y Y Z 1 A
3
=
3 ;
2;
4 ,
.....;
i
2,
=
2;
j
1 ,
j
i
4;
0 , i.
i
i " 1 , .
,
2;
0, j
i
i
ra ) , � Z ra ) , i 3 ra ) , i
3
of
1;
.....;
,
ra 4 , r a ) , 3 ra2 • ra , ra j , 3 r a , r a 2 , r a4 ) 2 4 ra , ra , ra ) ,
) ( r , ra ,
" (13 ) .
1 ,
j j
4
S T h e i n v a r i a n t s u b g r o u ps 3 Z {l, S, a , a , a , a4 } a n d K 0
2
" 3 ,
,
2)
T h e a u t o m or p h i s m g r ou p i s Au t ( D Sa
i
ra , ra ) 3 4 ra I r a , r a ) 3 4 ra , ra2 , ra Z r a ) ( r a , r a4 )
) (r,
4 2 a3 , a , a ) ( r t
(a t
2
, ra , r a j , i = 4 , 3 2 '4 3 a ) ( r a , ra , r a , r a ) , 4 2 3 3 a ) ( ra , ra ) ( ra , ra ) , 2 3 4 2 a ) ( r a , ra , r a ra ) , Z 3 3 a ) ( r , ra , ra , ra ) , i
,
,
4
i3 2 ) .
or A
4
216
F i g . 4 . 8 . Re d u c e d s t r u c t u r e of r e s t r i c t e d e x c h a n g e a s s oc i a t e d w i t h 0 ( Ii , 1 0 , (3 c '? ) .
217
are
of
p e r i od 4 a n d
pr o s c r i b e d . F o r
a l l f ir st
or
s e c on d c ou s i n s
are eg o
h i s F F F Z D D D , F F MB D D D , M M M B S S D ,
m a r r i e s a t h i r d c ou s i n ,
M MF Z S S D . t1 o r e o v e r , f or
y in A
and
a l l a s s oc i a t e d k i n s h i p s t r u c t u r e s ,
p a t r i l i ne a l s t r u c t u r e s
( a n d m a t r i l i ne a l s t r u c t u r e s w i t h y i n A
wi t h ) ,
3 F M M B D S D a nd F M F Z D S D a l s o b e l o n g t o t h e s p ou s e
4 c a teg ory .
C on v e r s e ly ,
( a nd 3 and h i s
f or m a t r i l i n e a l s t r u c t u r e s wi t h y i n A
pa t r i s t r u c t u r e s
u p t o a n i s om or p h i s m , t h e on l y
e x c h a n g e a nd
16 exchange
ten matri
or
wi t h r e s t r i c t ed
pa t r i l i ne s .
t h e r e d u c e d s t r u c t u r e of 3 pe r i od 4 a s s oc i a t e d w i t h D ( a , 1 0 , 8 � ) i n f i g u r e 4 . 8 . Interpreted a s a t he
I
He n c e ,
s t ructures
f ou r b a s i c k i n s h i p m od e l s
As an exam ple ,
y in A
4 t o t h e s p ou s e c a t e g or y .
t1f" M B S D D a r e a l l oc a t e d
generate
wi t h
) , e g o ' s MF F Z S D D
pr e s e n t
p a t r i l i n e a l k i n s h i p m od e l 5
f o r m a l s u c c e s s or m a p p i ng
pa t r i l i n e a l d e s c e n t ) , between
t he d i r e c t e x c ha nge
t w o pa t r i l i n e s
g e ne r a t i on s .
In
s p ou s e s m u s t b e
i s r e n e wa b le
t h e i n t e r v e n i ng ob t a i n e d
figure 4 . 9 ) . me a n
T h e m od e l a l l oc a t e s
This
e nc om p a s s e s a
' la t e nt '
p a r t i c u la r
w i t h t h e s a me ma r r i a g e \ 2 D ( .i , 1 0 , 8 � ) . 1 4 T h e f a m i ly
In
see
n ot
c ou s i n s a r e
t h e f o l l ow i n g
t o t h e s p ou s e c a t e g or y :
MMF Z S S D , F F F Z D D D , F F M B D D D , F M M B D S D ,
third
MMMBSS D ,
a n d F MF Z D S D
( see
pa t r i l i ne a l s truc t ur e
4 - g e ne r a t i o n m a t r i s t r u c t u r e p os s i b i l i t i e s ,
o f a l l i a nc e
b u t g e ne r a t e d b y
of t h i r d
m od e l s w i t h a v a r i e t y
a n d f ou r t h c ou s i n m a r r i a g e of
p a t r i l i ne s .
( m e r g e d wi t h h i s F F F M B S S S D ;
f igure 4 . 10 ) .
struc ture
f ou r
w i t h a f ou r t h c o u s i n ,
t ha t a l l ma r r i a g e s wi t h t h i r d
pr os c r i b e d .
of s i s t ers
on ly a f t er
H o we v e r , a 4 - g e ne r a t i o n r u l e d oe s
c ou s i n k i n t y pe s
of
t h r e e g e n e r a t i on s
f r om o t h e r
g e n e a l og i c a l t e r m s , m a r r i a g e i s m a le e g o ' s F F F F Z S S S D
(i .e . , with
r e pr e s e n t i n g a r u le
p os s i b i l i t i e s , a n d w i t h t h e
S i s t e r - e x c h a n g e r e n e w a b l e a f t e r f ou r
g e ne r a t i on s i s
pa r t i c u l a r l y
Her i t i e r ' s r e s e a r c h
o n t he
p o p u l a t i o n o f a b ou t 1 2 0 , 0 0 0
i n t e r e s t i ng
in
t he
li g ht
of
The
Sa m o
S a m o o f U p pe r V o l t a . i s d i s t r i b u t ed a m ong
a nu m b e r
218
-
t- -
-
o
a if '1=:::== ======
c=====
L ====:l ======�
h
Fig
.
4 . 9 . P a r t i a l m od e l s a s s oc i a t e d wi t h
4 - g e ne r a t i o n p a t r i I i n e a 1 s t r u c t u r e
S i s t e r -e x c h a n g e a nd mar r i a g e
with
D ( a,
t he
10 ,
i3 a 3 ) .
FFFFZ SSSD and
F FF M B S S S D ( c f . H � r i t i e r 1 9 8 1 : 1 1 3 , f i g .
38 ) .
219
4 . 1 0 . P a r t i a l m od e l s a s s oc i a t e d w i t h t h e
Fig .
4 - g e n e r a t i on
pa t r i l i ne a l s t r u c t u r e 0 ( 8 ,
10 ,
S a. 3 ) .
S i s t e r - e x c h a n g e a n d m a r r i a g e w i t h M M M B S S O , M MF Z S S D , F F F Z D O D , F FMBDOD , FMMBDSD , a nd FMFZDSO 1 9 8 1 : 1 15 , f ig .
( c f . H er i t i e r
39) .
l o o s e a s s oc i a t i on s
of v i l l a g e c l u s t e r s ,
t h ree
of
or
f ou r v i l l a g e s wh i c h c on s t i t u t e a n e nd og a m ou s c om m u n i t y . H e r i t i e r h a s r e c e n t ly s h e c ol le c t e d
p r e s e n t e d a n a n a ly s i s
on e s u c h v i l la g e c lu s t e r
in
of t he d a t a
( Her i t ie r
1 9 8 1 : 7 3 - 1 6 ) . T h e t ot a l p o pu l a t i on o f t h e t h r e e S a m o 3 v i l l a g e s D a l 0 , G on o a nd T w a r e i s a b ou t 1 , 5 0 0 , d i v i d e d
2 6 pa t r i l i n e a l
ov e r
' l i ne s '
( g u l e:) .
s e g me n t s w h o s e
' l i ne a g e s '
( so ) and
92 d i screte
L i ne s a r e g e n e a l og i c a l l y d e f i n e d a n c e s t o r s a r e i d e n t i f i e d a s c l a s s i f i c a t or y
l i n e a g e b r ot h e r s . T h e S a m o have a n e x t e ns i v e s e r i e s pr o h i b i t i on s . F i r s t , a m a n m a y ;) i s or
o lV n pa t r i li ne a g e , of
t h e d e sc e nt
of t h e
lines
of m a r r i a g e
n ot ma r r y a w oma n f r om
pa t r i l i n e a g e o f h i s m o t h e r ,
o f h i s f a t he r ' s m ot he r
or
220
m o t he r ' s m ot h e r . s p ou s e f r om a ny membe r o f h i s mar r ie d .
ow n o r h i s
f a t h e r ' s g e n e r a t i o n h a s a lr e a d y
s ome t i me s pe r m i t t e d . )
i n t o a ny
of h i s
l a wf u l
l i ne a g e
( U nd e r s pe c i a l c i r c u ms t a nc e s a s e c on d a r y
ma r r i a g e i s marry
Se c o n d , a m a n m a y n ot t a k e a l i ne a g e i n t o w h i c h a m a le
of
t h e f ou r
p r e v i ou s s p ou s e s
( wi fe ' s
p a t r i l i ne a g e s
of any
l i ne a g e , w i f e ' s m o t h e r ' s
l i ne a g e , w i f e ' s f a t h e r ' s m o t h e r ' s mother ' s mother ' s
T h i r d , a m a n m a y n ot
' basic '
l i n e a g e , a nd w i f e ' s
l i ne a g e ) . F i n a l ly , t h e r e a r e a n u mb e r
of
ot h e r p r oh i b i t i on s o n ma r r i a g e w i t h t h e a f f i n a l k i n
of
one ' s ow n a f f i ne s
( He r i t i e r
1981 : 86 ) .
A s a n a ly s e d b y H e r i t i e r , t he a p pea r s t o h in g e
on a r u le
or
pattern
of
p r e f e r e nce
S a m o a l li a n c e s
f or s t r a i g h t
s i s t e r - e x c h a n g e , r e ne wa b le b e t w e e n l i n e a g e s o r l i ne s o n ly a f t e r
f ou r g e ne r a t i on s a nd c on s t r a i n e d b y a w i d e
r a ng i n g s e t o f s c he me ,
p r oh i b i t i on s . H ow e v e r , a s a n a na ly t i c
t he c la s s i c
' u ni li n e a l '
c om b i n e d w i t h p r o h i b i t i on s
pr o h i b i t i ons , e v e n w h e n
o n t he
r e p l i c a t i on of
p r e v i ou s a l l i a n c e s a nd w i t h f u r t h e r i n j u n c t i on s
on
mar r i a g e w i t h d i s t a nt c ons a ng u i n e a l a n d a f f i n a l k i n , d o n ot a p pe a r t o c on s t i t u t e a s e t w h i c h i s b ot h ne c e s s a r y a n d s u f f i c i e nt . e x i s t e nc e
t o p os t u l a t e t h e
H e r i t i e r ' s s o lu t i on i s
of a n a d d i t i on a l s e r i e s
of
' c og n a t i c '
p r oh i b i t i o n s s pa n n i n g t h r e e g e ne r a t i o n s S h e i s t he n a b l e
( 1 9 8 1 : 1 00 - 1 0 5 ) .
t o d e r i v e a r e g u la r a l l i a nc e
t he S a m o ( 1 9 8 1 : 1 1 3 ,
fig .
m od e l f or
38 ) .
T h e m od e l a r t i c u l a t e s a b a s i c 4 - g e ne r a t i on s t ru c t u r e of
r e s t r i c t e d e x c h a ng e
( wi fe
i s F F F M B S SSD a nd FFFFlSSS D )
w i t h a s u p p le me nt a r y s t r u c t u r e
d i f f e r e nt s p ou s e . ma r r i a g e
l i ne s
In
of
of
e ffect ,
t he
p a t r i li ne a g e s
a ma n i s
a c l a s s i f i c a t or y
b u t n ot t he ma r r i a g e
of
of t he s a me t y pe of
pe r mi t t e d
l i nk i ng
e g o a nd h i s
t o r e p l i c a t e t he
' f a t he r ' s f a t he r '
( a FF B ) ,
his actua l F F .
H e r i t ie r ' s S a m o m od e l i s i n c or p or a t e d a s a p r o pe r s u b s t r u c t u r e o f t he 4 - g e ne ra t i o n k i ns h i p m od e l s k e t c h e d in
f igure 4 . 9 .
This
par t icu lar
ob s e r v a t i on i s h i g h l y
s i g n i f i c a n t , a s H e r i t i e r ' s a l l i a nc e
m od e l i s a n
221
empir i c a l gener a l i z a t ion , t he of
g e ne a l og i e s her
Samo
f or ma l
k i ns h i p
m od e l
of
i de a l
marriage
of
My
t he
Samo
Her i t i e r ' s t r a nsac t i ons 142
d ata
a nd
struc ture
a a
as
a
on
pe r mi t
g r a n d f a t he r s
is
t he
g r a nd m o t he r ,
in
49
t he
f u r t he r ,
a c tu a l cases
�s
m o t he r ,
to
t hat
of
eg o ' s
mother ' s
m ot h e r
D(8,
S
mode ls .
d e f i ne d
y)
10 ,
with
a
of
t he
r e prese n t a t i ons
T hus ,
y
in
WMMM ' s
p a t r i l i ne pa t r i l i ne :
g r e a t - g r a nd p a r e n t s ;
=
A3
to
a nd
wi f e ' s
in
ma y by
be
the
the
g re a t
eg o;
cases
cases f ig .
c om p a r e d
t he
tw o
( 21 % )
(15%) 39) .
t o t he
types
the
in
of
s u b se t s
of
s t ru c t u r e s
f o l l ow i n g
f r om
of
30
20
i n
Thus ,
grea t
g re a t
( 1 981 : 1 15 ,
pa t r i l i n e
d i s t in c t
tes t i ng .
t ha t
A3 a n d A 4 p a t r i l i ne a l
g ive
ma r r i a g e
ego's
his
f or
a ll
eg o ' s
of
wi f e ' s
mothe r ;
pre d i c te d
e a r lie r ,
IY M F M ' s
IY F M M ' s
ego's
i d e n t i f ica t i ons
e q u i v a le nc e s
of
identical
f a t he r ' s
4 - g e ne r a t i on
of
m od e l
ma l e
eg o ' s
ego's
)
of
of
b r o t he r
( 35%)
of
Au t ( D
of
of
' s t a t i s t ic a l '
d e t a i le d
one
t ha t
linea l
that
pa t t e r n
more
whi c h
in
pa t r i li ne to
actua l
cases
of
A
t o e q u i v a le n t
to
These
nu m b e r a
e x a m p le
' me c h a ni c a l '
le a d
is
t h e or y
a u t o m o r p h i s ms e xc h a nge .
f r om
lar ge
m od e l
s pe c i f i c genera l
43
series
a
system.
mar r i a g e s
( 30% )
as
f r om
rest r i cted
data
g r a nd m o t h e r ' s
4 - g e ne r a t i o n
d e f i ne d
of
a l l i a nc e
the
extracted
deduced
s t ru c t u r e s
s t ru c t u r e
of
s t r uc t ur e h i s t or i e s
s i s t e r -e x c ha nge
basic
t he
a
marr i a g e
i n f or m a n t s .
c on s t r u c t i o n
s t ra i g ht
of
a nd
( wife
c o r r e s p o n d e nc e s ; =
FFFZDDD ) ;
pa t r i l i ne s
pa t r i l i ne
ego' s
FM'S
pa t r i l i ne
(wi f e
p a t r i l i ne
eg o ' s
MM ' s
pa t r i l i n e
( w i fe
of
eg o ' s
F MF Z D S D ) ; WF F M ' s I�MF Z S S D )
•
F u r t h e r mo r e , with
y in A
ide n t i t ies :
4
a ll
pe r m i t
p a t r i l i ne a l the
d e r i v a t i on
IY M M M ' s
pa t r i li n e
eg o ' s
W MF M ' s
p a t r i l i he
e g o ' s' M ' s
MFF Z S O O ) ;
0 ( 8' ,
s t ru c tu r es
10 , y )
o f t h e f o l l ow i n g
pa t r i l i n e
( wi f e
p a t r i l i ne
= F F F Z DDD ) i
(wife
=
222
WFMM ' s
pa t r i l i n e : d i s t i nc t f r o m t he
p a t r i l i ne s o f
e g o ' s e i g h t g r e a t - g r a nd pa r e n t s ;
pa t r i l i n e = e g o ' s M M ' s
IVF F M ' s M MF Z S S D ) .
T h e c o n c l u s i on i s o b v i ou s :
pa t r i l i n e
i f b ot h t y pe s o f
4 - g e ne r a t i o n s t r u c t u r e a r e a l l ow e d , t h e f or ma l m od e l a r e s e e n
the
p r ed i c t i ons
of
to be f u l ly c o mpa t i b le w i t h
Her i t ie r ' s f in d in g s . T h e s e more
( wi f e
r e s u l t s c a n b e f o r mu l a t e d
pr e c i s e l y b y t a k i n g u p a s u g g e s t i o n o f C ou r r e g e ' s
( 1 974 : ) 34 )
. 1 5
Defi n i t ion
1 :
Let
A b e t h e s u b s e t of Au t ( D ) d e f i n e d
e a r l i e r . B y t h e s p e c t r u m of w i t h s i s t e r - e x c h a ng e d e f i n e d
m the k in s h i p system K , ( D )
o n 2 m de sce nt
�
line s i s
m
me a n t t h e c o l l e c t i on o f k i n s h i p s t r u c t u r e s {0(a,
m ,
y) I y
c on s t r a i n t s I
in C , (A ) } , w here C , ( A ) J
i m p os e d
on A .
p r o p o s e t h e f o l l ow i n g h y p o t h e s i s :
Sa m o k i n s h i p s y s t e m c o ns i s t s kinsh i p s tructu res
is a set
J
of
of
t h e s pe c t ru m o f t h e
t h e c o l le c t i o n o f
with s i s t e r- e x c h a nge d e f i n e d as
( O ( a , 1 0 , y ) j y i n A ) a nd A 4 } . T h e h y p ot h e s i s m a y b e
t e s te d b y r e f e r r in g
t o tw o d i s t in c t
t ypes of d a t a :
f i r s t , b y c om pa r i s on w i t h a d d i t i on a l i n f or ma t i on S a m o a l li a nc e
S e c on d , b y c o m pa r i s on w i t h t he a c t o r s ' s e le c t i v e r e p r e s e n t a t i on s . c le a r l y d i s t i n g u i s h e d
a p p l i c a t i ons
( T h i s t y pe
i d e a l m o d e l s a nd of d a t a i s
not
f r om t he a n t h r o p o l og i s t ' s m o d e l s
i n H e r i t i e r ' s a na l y s i s . ) c la i m i s t h a t
on t he
p a t t e r n s a nd a c tu a l m a r r i a g e c h oi c e s .
the data ,
I n b ot h c a s e s t he e m pi r i c a l i nt er preted
of t he f orma l t h e ory
as intended
( i . e . , as
pa r t i a l
s t r u c t u r e s ) , ma y b e e x t e n d e d t o a s e t o f p r o pe r k i n s h i p mode ls
o f t h e t y pe 0 ( .3' ,
6 10 , y) . 1
T h e n o t i o n of a n e n t i r e s pe c t r u m structures i s cruc i a l if
of e x c h a n g e
o n e w i s h e s t o m od e l m a r r i a g e
s y s t e m s c o n s t r a i ne d b y a w i d e - r a ng i ng se r i e s p r oh i b i t i o n s o n t he r e p l i c a t i o n of T h u s , i n t he c a s e
of
pr e v i ou s a l l i a nc e s .
of t h e S a rn o , a m a n may n o t
ob t a i n a
223
s p ou s e f r om a n y
l i n e a g e i n t o w h i c h h i s l i n e a g e b r ot h e r s
h a v e a lr e a d y m a r r i e d , or f r om t he g r a n d pa r e n t s ' o f h i s ow n p r e v i ou s s p ou s e s . A t t h e
l in e a g e s
l e v e l o f t he m od e l
t h i s i s a c c om p l i s h e d b y d i s c a r d i n g t h e n ot i on of a s i n g le g l ob a l , s oc i oc e n t r i c e x c h an g e s t r u c t u r e . a m or e r e a l i s t ic r e p r e s e n t a t i on i s ob t a in e d i f
In s t ead , one
e n v i s a g e s t h e a c t u a l p a t t e r n of m a r r i a g e a l l i a n c e s a s r e s u l t i n g f r om a c om p l e x s u pe r p o s i t i o n 1 7 of
l oc a l ly
d e f i ne d , i n t e r d e pe n d e n t e x c h a n g e s t r u c t u r e s
of s i m i l a r
t y pe . T h u s , a s i l l u s t r a t e d i n f ig u r e 4 . 9 1 9 8 1 : 1 1 3 , f ig .
( s e e a ls o H e r i t i e r
3 8 ) , i f a ma n ' s ma r r i a g e i s m od e l le d
a c e 0 r d i n g t 0 s o me e x c h a n g e s t r u c t u r e D ( a , 1 0 , S C! 3 ) , a l i n e a g e b r o t h e r may ob t a in a s p ou s e
( w i t h n o v i o la t i o n
of t h e a l l i a n c e p r oh i b i t i o n s ) b y ma r r y i n g
w i t h s o me o t h e r s t r u c t u r e 0 ( 5 , 1 0 , y ) e x c h a n g e s pe c t r u m .
in a c c o rd a n c e
of t h e s a me
I n t h e c a s e of t he S a m o , t he
pa r t i c u l a r
s pe c t r u m of e x c h a n g e s t r u c t u r e s w i t h s i s t e r - e x c h a n g e a n d pe r i od 4- d e f i n e d a b ov e i s c on s i s t e n t w i t h t h e d a t a on a c t u a l ma r r i a g e s p u b l i s h e d b y H e r i t ie r
( 198 1 : 1 1 5 ) .
F u r t h e r d e v e l 0 p me n t of a r e a l i s t ic ma t h e ma t i c a 1
t he o r y
of s u pe r p os i t i on s , i n w h i c h a p r ob a b i l i s t i c
d e s c r i p t i o n of
ma r r i a g e p a t t e r n s a n d pr e f e r e n c e s i s
d e r i v e d f r om t h e p r o pe r t ie s
of a p p r o p r i a t e e n s e m b l e s 1 B
of a l l i a n c e s t r u c t u r e s i s e s s e n t i a l i f on e i s t o me a s u r e t h e e x t e n t t o w h i c h t h e r e p or t e d r a n g e
of S a m o ma r r i a g e
c h oi c e s d i v e r g e s f r o m c h a n c e d i s t r i b u t i on ( c f . K u pe r 1 982a : 15 8 - 1 5 9 ) . . F u r t h e r a n a ly s i s s h ou ld a l s o i nd i c a t e w h e t h e r o r n o t e v i d e n c e f or a n o t he r i m p or t a n t p r e d i c t i o n f r o m my m od e l - r e g u l a r a l l i a n c e c i r c u i t s e n c o m pa s s i n g ten
l i n e s - m a y b e u nc ov e r e d .
I t i s p e r h a ps n o t e n t i r e l y
f or t u i t ou s t h a t t h e k i n s h i p s y s t e m of t h e I nc a , o ne of t h e s oc i e t i e s w h os e c o m p le x a l l i a n c e s t r u c t u r e a p pe a r s t o b e q u i t e s i m i l a r t o t h a t of t h e S a m o ( H e r i t i e r 1 9 8 1 : 1 3 7 - 1 4 6 ) , h a s r e c e n t ly b e e n a n a l y s e d i n t e r ms
of a
t e n f o l d d i v i s i o n ( Z u i d e ma 1 9 8 6 : 2 3 - 2 4 , 2 7 , 3 1 , 3 7 ) .
224
BR OK E N S Y M M E T R I E S T h e d o m i n a n t t h e me i n L e s S t r u c t u r e s e l em e n t 8 i r e s , d e v e l o pe d pe r s u a s i v e ly i n t h e c ou r s e of m or e t ha n 5 0 0 pa g e s i s c le a r : t he s or t s of ma r r i ag e e x c h a n g e w h i c h t a k e p la c e i n e le me n t a r y k in s h i p s y s t e ms may b e c a t e g o r i z e d a s o n ly t w o ma in f or ms , r e s t r i c t e d e x c h a n g e a n d g e n e r a l i z e d e x c h a n g e . P a r a d ox i c a l ly , t h i s c o nc l u s i o n i s p a r t i a l ly u nd e r m i n e d i n t h e pe n u l t i ma t e c h a p t e r i n w h i c h t h e t r a n s i t i on t o c om p l e x s t r u c t u r e s i s b r i e f ly d i s c u s s e d ( L ev i - S t r a u s s 1 9 7 0 : C h . X X V I I , 4 5 9 - 4 7 7 ) . T h e d i s t in c t i on t e n d s t o b lu r . I n t h e f i n a l a n a ly s i s , t h e t w o s t r u c t u r a l ly d i s t i n c t m od e s of e x c h a n g e a r e f ou n d on l y i n ' i m pu r e ' , ' c or r u pt e d ' o r ' c on t a m i n a t e d ' f o r ms : ' W h e r e v e r t h e r e i s r e s t r i c t e d e x c h an g e t h e r e i s g e n e r a l i z e d e x c h a n g e , a n d g e n e r a l i z e d e x c h a n g e i s ne v e r f r e e o f a l l og e n e ou s f or m s ' ( Lev i - S t r a u s s 1 9 7 0 : 4 6 4 ) . E v e n i n Au s t r a l i a ( a pr i v i le g e d t e r r i t or y f or e le me n t a r y s t r u c t u r e s ) , re s t r ic t e d e x c h a n g e i s e mb e d d e d i n a c on t e x t of m a t r i la t e r a l or p a t r i la t e r a l s y s t e ms ( 1 9 7 0 : 4 6 3 ) . I n m or e a b s t r a c t t e r ms , t h e b a s ic s y m me t r y of t h e s i m p l e f or m s o f e x c h a n g e i s b r oken . I n ph y s i c s , i n v a r i a n c e s i n s y m me t r y o pe r a t i on s i m p ly t h e e x i s te n c e of c on s e r v e d q u a l i t i e s . C on v e r s e ly , t h e s p on t a n e ou s a p pe a r a n c e o f a b r ok e n s y mme t r y s i g n a l s a p h a s e t r a n s i t i on - t he t r a n s f or ma t i on of a s i m p le s y s t e m t o a m or e c om p le x s t a t e o r c on f i g u r a t i o n . A s i m i l a r p r oc e s s m a y b e d i s c e r n e d i n t he s y mme t r i e s o f ma r r i a g e exchan ge . T h e c l a s s i c v i e w ( s u m ma r i z e d b y B l oc h 1 9 7 8 : 2 1 ) i s a s f o l l ow s . I d e a l ly , i n s y s t e ms w i t h s i s t e r - e x c h a n g e , w h e r e t he g i f t o f a w om a n i s r e C i p r oc a t e d d i r e c t ly a n d b o t h p a r t i e s e x c h a n g e i d e n t i c a l t h i n g s , o n e w ou ld e x pe c t t h e r e la t i o n s h i p b e t w e e n w i f e - g i v e r s a nd w i f e - t a k e r s t o b e s � r a i g h t f orw a r d ly e g a l i t a r i a n . I n a v e r y r e a l s e n s e e q u a l i t y i s c on s e r v e d a n d a n y s t a t u s or p r e s t i g e d i f f e r e n t i a l m i n i m i z e d . C o n v e r s e l y , i n s y s t e ms w i t h
225
g e n e r a l i z e d e x c h a n g e , e v e n w h e r e t h e g l ob a l s t r u c t u r e c onc e i v e d o f a s
a c l os e d c i r c le
of
l ong - t e r m e q u a l i t y , w i f e - g i v e r s d i f f e r e nt
k in d s
t e m p or a r i ly ) t he
s h or t
of
g a in
thing s . a w oman
t e r m t he e x c h a n g e
r e l a t i on s h i p i s c on s e q u e n c e . the is
Under
p r i n c i p le s be s t
at
of
t he
in
( cf .
( i n c lud ing
b r i d e we a l t h
p e r s pe c t i v e .
h e nc e
or the
In
t he
ot h e r a
of
g e ne r a l i z e d e x c h a n g e of
1 9 7 0 : 4 6 4 - 465 ) . 1 9
m or e c om p le x
sys tems w i t h a wide
pr a c t i c e s ) h a s
T h e e m ph a s i s
l i k e ly
a n y c o m b i n a t i on
Lev i - S t r a u s s
the ana l y s i s
ma t r i m on i a l s y s te m s
le a s t othe r .
hierarchic a l and
on e w a y
re s t ricted and
I n recent years
(at
f r om t h e
c l a s s ic v ie w ,
p r ob l e m a t i c
v a r i at i on in
man
i s u ne q u a l ;
p o t e n t i a l ly
is
i m p ly i n g
a n d w i f e - ta k e r s e x c h an g e
O ne s i d e w i l l or a
d i f f e r e n t i a t i on of s ta tu s
ma r r i a g e s
led
i s n ow m or e
to a
shift
on t h e i n t e r n a l
d y n a m i c s a n d t h e i n h e r e n t t r a n s f or m a t i o n a l p os s i b i l i t i e s of
a
s truc ture .
oc c u r r e n c e of
of
marr iage
are
re lated
M o r e ov e r ,
Thus ,
' It
t he
var iants is
t he
Ru b e l d e s c r i b e
based
p la y
the
s oc i e t i e s
a p p r oa c h :
Ie
depar t que
pe n s e
of
in
a n u mb e r
pa t t e r n s
t y pe
of
' in
S c h w i mme r
q u ' o n pe u t
N o u v e l l e - G u i n ee
New
c om p le m e n sug g e s t s
a
ob t e n i r d e b i e n si
l ' on
s o n t s i m u l t a n e me n t
s y s t e me d ' a l l i a n c e e s t
s u p p os e
presen t s e t
1 a r esu l t an t e d e
( 1970 : 33 ) .
( 1 9 7 8 ) , c on f r o n t e d w i t h a c o m b i n a t i o n
s t r u c t u r a l t y pe s
t he i r
pre f e r e n t i a l s i s t e r
l ' i n t e r a c t i o n d e c e s d i v e r s e s f o r me s ' Mu l le r
and
s tr u c ture w i t h
le s ec h a n g e s r e s t r e i n t , g e n e r a l i s e
e le m e n t a i r e e t c o m p le x e Ie
v a r i an ts
a n d v a r i ou s m a r r i a g e f o r m s
( 1975 : 1 1 5 - 116 ) . ' Je
s oc i e t y )
( 1 9 8 3 : 3 5 0 ) . R o s ma n a n d
a lte r n a t i ve
me i l l e u r s r e s u l t a t s e n
que
these
p r oh i b i t i o n s
d is tr i b u t i on '
s i mi lar des
of
t h a t e n d ow s t h e
c o - oc c u r r e n c e
as
- f or m s
( a J i v a r oa n
a s i n g le u n d e r l y i n g s t r u c t u r e .
ind irect exchange ,
on ex ten s i ve
Gu inea tary
of
f le x i b i l i t y a n d d y n a m i s m '
exch ange ,
c on t r a d i c t or y
N o r t he r n Ac h u a r
i n t e r n a l c o n t r a d i c t i on s its
( 1 9 8 3 ) a r g u e s t h a t t he
s e v e r a l - a p p a r e n t ly
a m ong as
T a y l or
of
Rukuba
mar r i age
w i t h h i g h b r i d e we a l t h , , a n d
(a
of
Fina l ly , two
' pr e s c r i p t i v e '
ma r r i a g e
by
' r an d om
226
ch oice ' w i t h in the f o l l ow i n g
o p p os i t e m o i e t y ) v e n t u r e s t h e
i n t r i g u i n g s u g g e s t i on :
' T h i s c omb i n a t i on i s
n o t j u s t a j u x t a p o s i t i on o f t w o s y s t e ms b u t f or m s a m od e l s u i g e n e r i s w h i c h n e g a t e s i n s e v e r a l w a y s t he s t r u c t u r a l i m p l i c a t i ons ta ken in
i s a 1 a t i on '
of
t h e t w o t y pe s o f m a r r i a g e
( 1 978 : 165 ) .
Mu l l e r ' s b r i e f r e ma r k t ou c h e s u p o n t h e c o r e p r ob l e m :
t h e e me r g e n c e
of new
leve ls
of
the
o f o r g a n i z: a t i on
i n c om p le x s y s t e m s . C om p l e x k i n s h i p s t r u c t u r e s a r e , pe r h a ps , n ot r e a l ly r e d u c i b le t o a j u x t a p os i t i o n o f e le me n t a r y m od e l s .
The
o l d s y mme t r i e s m a y b e t o o
T h e c h a l le n g e i s t h u s t o m od e l c om p l e x m a r r i a g e 20 s y s t e m s a s pr i m a r y i n t he i r ow n r i g h t . s i m p le .
A P PE N D I X T h e c o nc e p t
of a s e m i d i r e c t
s li g h t ly d i f f e r e n t man n e r Se m i d i r e c t
pro d u c t
is def ined
i n t h e a p pe nd i x
in a
t o Cha pter
pr o d u c t . F or H a n d K a n y t w o g r ou ps ,
f : K + A u t ( H ) b e a h om o m or p h i s m
K in t o the
of
1 .
le t
a u t om or p h i s m
( k k2 ) f « k l ) f ) « k ) f l f or a l l k in l i 2 K a n d ( ki ) f i n A u t ( H ) . Le t f r a t h e r t h a n ( k ) f d e n ot e t h e k v a lu e of f a t k i n K . S i n c e f i s a n e l e me n t o f Au t ( H ) , k i s i t s e l f a f u nc t i on f r om H i n t o H . I f h i s i n H , f k at h b y ( h l f • Then H X K , the d e n o t e t h e v a l u e of f k k s e t o f or d e r e d pa i r s ( h , k ) w i t h h i n H an d k i n K . g r ou p of H .
i .e . ,
=
f or m s a g r ou p w h e n =
(h(h ' lf
e
kk ' ) .
t h e semi direc t where
p r od u c t i s d e f i n e d b y
(h ,
T h i s g r ou p ( d e n ot e d H X
prod u c t of H b y K .
e d e n ote s t h e
iden t i ty
The
K)
k)(h' ,
f iden t ity
k' )
i s c a l le d is
(e. e)
in b ot h H a nd K , a nd
-1 k1 , th e i nv e r se of ( h . k l , -1 -1 ) . N ote t h a t w h e n If -1 ' k h k
(h,
i s de f i ned
«
f m a p s t he w h o l e of K
ont o the
i d e n t i t y a u t om o r ph i s m
1
of
as
H , the semidirect
p r od u c t b e c ame s t h e d i r e c t p r od u c t o f H a n d K .
227
F o r a p r o of o f l e m ma 1 , s e e D i x on
( 1 9 7 3 : Z 6 , 1 03 )
p r o b l e ms 4 . 1 a n d 4 . Z , a n d W e i n s t e i n
( 1 9 7 7 ) s e c t i on 1 . 2
a n d e x a m p le 4 . 1 . We i n s t e i n a ls o i n t r od u c e s a n u mb e r of o t h e r i n t e r e s t i n g c on s t r u c t i on s , i n c l u d i n g w r e a t h p r od u c t s .
NOTES 1 Z 3
4 5
6
7
8 9 10
S e e F r i e d ma n ( 1 9 8 3 ) a n d E l l i o t t a n d D a w b e r ( 1 9 8 5 , 1 9 8 6 ) . H a r g i t t a i ( 1 9 8 6 ) h a s n u m e r ou s e x a m p le s . S e e f or e x a m p le , H a b e r a n d K a n e ( 1 9 8 6 ) . T h e r e i s a c l e a r o p p os i t i on b e t w e e n L � v i - S t r a u s s ' s h o pe f or a f u t u r e a w a k e n i n g o f a n t h r o p o l og y a m o n g the n a tu r a l sc iences ( s tated in h i s inaugur a l a d d r e s s of 1 9 6 0 ; s e e L e v i - S t r a u s s 1 9 7 8 : 1 9 ) a n d t h e p os i t i on s u m m a r i z e d i n t h e f i n a l s e n t e n c e o f P . E . d e J o s s e l i n d e J on g ' s f a r e w e l l l e c t u r e ( 1 9 8 7 : 3 6 ) . L e v i - S t r a u s s ( 1 9 7 0 : 2 1 5 ) : ' A h a r m on i c r e g i me i s o n e i n w h i c h t h e r u le o f r e s i d e n c e i s s i mi l a r t o t h e r u le of d e s c e n t , a nd a d i s h a r m on i c r e g i me i s o n e i n w h i c h t h e y a r e o p p os e d . ' T h e c o n c e p t of a s e m i - c om p l e x a l l i a n c e s t r u c t u r e d e r i v e s f r om L e v i - S t r a u s s ' s d i s c u s s i o n of C r ow - Om a h a s y s t e m s i n h i s f a m ou s H u x le y M e m or i a l L e c t u r e ( pu b l i s h e d i n 1 96 6 ) . H e r i t i e r ' s w o r k i s i t s e l f a f u r t h e r d e v e l o pme n t o f t h e r e s e a r c h p r o g r a mm e o n k i n s h i p s e t ou t b y L e v i - S t r a u s s i n L e s S t r u c t u r e s e l eme n t a i r e s a n d i n T h e P u t u r e o f K i n s h i p S t u d i e s . T h i s i s pr o b a b l y t h e r e a s o n f or L e v i - S t r a u s s n ot i nc l u d i n g t h e Ba r d i i n h i s d i s c u s s i on of t h e c la s s i c A u s t r a l i a n s y s t e m s . E l k i n ( 1 9 3 2 ; c i t e d a s ' E lk i n 1 9 3 1 ' ) i s i n c l u d e d i n h i s r e f e r e nc e s , b u t t h e B a r d i o r B a r d o n l y f i g ur e i n h i s n o t e 1 o n p a g e Z 1 9 a s a n e x a m p le o f a s y s t e m w i t h ou t a c le a r m Oi e t y d i v i s i o n ( Le v i - S t r a u s s 1 9 7 0 ) . Y o u n g d oe s n ot s t a t e h i s c r i t e r i a f o r c la s s i f y i n g s e c ond c r os s - c ou s i n s ; F F Z D D i s I r o q U Oi s - c r os s , w h i le M M B D D i s D r a v i d i a n - c r os s . S e e C h a p t e r 2, t a b le 2.3. S e e t h e d i s c u s s i on i n t h e p r e v i ou s c h a p t e r s a n d T j on Sie F a t 198 1 . S e e L oc k w o o d a n d M a c m i l l a n ( 1 9 7 8 : 1 1 - 1 Z ) , a n d B u d d e n ( 1 9 7 Z : 1 8 7 - 2 1 3 , Ch . 1 3 ) . T h e on l y p o s s i b l e f i n i t e s y mme t r y g r ou ps i n t h r e e d i me n s i on a l s pa c e a r e : C , D ' A 4 ( t h e te t r a h e d r a l n
m
( t h e c u b i c g r ou p ) , a n d A 5 ( t h e i c os a h e d r a l 4 g r ou p ) . I f o p p os i t e s y m me t r i e s o f t h r e e - d i me n s i on a l o b j e c t s a r e pe r m i t t e d , t h e f o l l ow i n g d i r e c t pr od u c t g r ou p s m a y b e a d d e d : C X C Z ' D X C 2 , A 4 X C , 2 m n g r ou p ) , 5
ZZ8 x CZ ' a n d A S X CZ ' 4 F or a d e f i n i t i on o f t e c h n i c a l t e r m s , s e e t h e a p p e n d i x a n d t h e d i s c u s s i on i n pr e v i ou s c h a p t e r s . S t r i c t l y s pe a k i n g , L e m m a 1 a n d t h e c on s t r u c t i o n a r e on l y w e l l - d e f i n e d f or m > Z . T h e n I H o l m and I Ko l
8
11 lZ
=
13
14
=
(I>< m ) .
�I a n y H i g h l a nd N e w G u i n e a s oc i e t i e s ( i n <;: l u d i n g t h e M a n g a ) a p p a r e n t l y r e c og n i z e t h e f or mu l a o f g e ne r a l i z e d e x c h a n g e a s a v a l i d o pt i on . A n a l t e r n a t i v e m od e l b a s e d o � a s y mme t r i c a l e x c h a n g e a n d m a r r i a g e w i t h t h e F F Z S D h a s a lr e a d y b e e n d e s c r i b e d i n C h a p t e r Z . T h e m od e l o f f i g u r e 4 . 7 i s a ls o i d e n t i c a l t o a 6 - l i n e m od e l f i r s t d e s c r i b e d b y P . E . d e J os s e l i n d e J on g ( 1 9 6 6 : 7 Z , d i a g . d ). A n y 4 - g e n e r a t i on ma t r i or p a t r i - s t r u c t u r e D ( a , 1 0 , S i aj ) e n c om pa s s e s a
la t e n t s t r uc tu r e o f t h e
o p p os i t e d e s c e n t t y p e g e ne r a t e d b y 0 ( 8' , 1 0 , S 4 - i aS - j ) ( u p t o a n i s o m or ph i s m ) i f t h e o r i g i n a i s s i t u a t e d a t g e n e r a t i on l e v e l G +3 a n d t h e b a s i c e x c h a n g e c y c l e r on t h e m a t r i l i n e s a n d pa t r i l i n e s i s d e f i n e d a s ( A , B ) (C , 0) ( 1 , J ) a s w e l l a s ( I , I I } ( I I I , IV ) • • •
( IX , X ) .
15
16 17
18 19
I t r a n s la t e t h e F r e n c h t e r m s pe c t r e a s ' s pe c t r u m ' , n o t ' s pe c t r e ' ( c f . C ou r r e g e 1 9 7 4 : 3 3 4 , t r a n s l a t e d f r om C ou r r e g e 1 9 6 5 ) . T h i s i s m o r e i n l i n e w i t h s t a n d a r d m a t h e ma t i c a l u s a g e , e . g . , ' t h e s pe c t r a l d e c om p os i t i o n o f l i n e a r t r a n s f or ma t i on s ' . S e e t he me t h od o l o g i c a l s u m m a r y i n C h a pt e r s 1 a n d Z . A s a f i r s t a p p r ox i ma t i on , I u s e t h e c on c e p t of s u pe r p os i t i on i n i t s c I a s s i c s e n s e , n o t a s a s u pe r p os i t i on of m a c r o s c o pi c a l l y o p p o s e d s t a t e s ( a s i n l a t e r d e v e l o pme n t s o f q u a n t u m m e c h a n i c s ) . L e v i - S t r a u s s ' s ' r e g u l a r ' a n d ' a l t e r n a t e ' �'I u r n g i n s y s t e ms ( 1 9 7 0 : 1 7 1 , f i g . 1 9 ) m a y be de s c r i b e d a s s u pe r p os i t i on s o f a n i d e n t i c a l e x c h a n g e s t r u c t u r e . T h e s t an d a r d i n t e r pr e t a t i on of p r ob a b i l i t y i n t h e n a t u r a l s c i e n c e s h a s i t t h a t pr ob a b i l t y d e a l s w i t h r e l a t i v e f r e q u e n c i e s w i t h i n a n e ns e mb le . A c c o r d i n g t o L e v i - S t r a u s s , t h e ' c on t a m i n a t i on ' of g e ne r a l i z e d e x c h a n g e i s on e o f i t s i n t r i n s i c p r o pe r t i e s . I n c on t r a s t , t h e c on t a m i n a t i on of r e s t r i c t e d e x c h a n g e a p pe a r s t o t a k e a n e x t r i n s i c f or m ( 1 9 7 0 : 4 6 4 ) . I n a p r og r a mma t i c s t a t e me n t , t h e t r a n s i t i on t o c om p le x k i n s h i p s t r u c t u r e s a n d C r ow - O ma h a s y s t e m s i s s e e n a s r e s u l t i n g f r o m t h e c om b i n a t i o n of t h e e le me n t a r y m od e s o f e x c h a n g e , r e s u l t i n g i n ' ne w c o n t r a d i c t i o n s w h i c h a r e h e n c e f or t h i n h e r e n t i n t h e s e s y s t e m s ' ( 1 9 7 0 : 4 6 5 ) . I n a p a p e r p r e s e n t e d a t a s e m i n a r c onduc t e d by E . R . Leach at K i n g ' s C o l le g e , Cambr idge , i n F e b r u a r y 1 9 6 3 , t h e r e l a t i on s h i p b e t w e e n s y mme t r i c a l a n d a s y m me t r i c a l ma r r i a g e s y s t e m s i s s u m ma r i z e d b y P . E . d e J 0 s s e 1 i n d e J o n g a s f o l l ow s : ' I n s u m , t h e s y m me t r i c a l a n d t he a s y m me t r i c a l t y pe s p r ov e n ot t o
229
20
b e m u t u a l l y i n c o m p a t i b l e . T h e r e a r e c om b i n a t i o n s , b o r d e r l i n e ca s e s , and trans i t i on s ' ( 1 966 : 6 6 ) , S e e a l s o t h e m o r e r e c e n t r em a r k s b y D u p r e ( 1 9 8 1 ) . C f . Da v i e s ( 19 8 7 : 2 1 - 2 3 ) . T h i s conc l u s ion i s a l s o imp l i c i t in Muller ( 19 80 ) . The notions o f ' e l e m en t a r y ' a n d ' co m p l e x ' s t r u c t u r e s ( a s d e f i n e d b y L e v i - S t r a u s s a n d e l a b o r a t e d b y H er i t i e r ) r e q u i r e f u r t h e r d i s c r i m i n a t i on s t o be m a d e . I p r o v i d e a n u m b e r o f s u gg e s t i o n s f o r f o rma l i z i n g ' mo r e comp l e x ' fami l i e s of kinship mode l s i n th e follow i ng chap ter . The more conservative type o f model deve loped in t h e p receeding chap t e r s may s t i l l be a p p l i e d w i t h s ome s u c c e s s t o s u b s t a n t i a l b o d i e s o f e thnographic data . For examp l e , Mosko ( 19 8 5 ) describes a series o f e xchange models for the Bush Mekeo . These include superp o s i t ions of ' Aran da ' - type s tru ctures ( 1 985 : 143 , f ig . 6 . 1 1 ; 146 , f ig . 6 . 1 2 ) , and supe r pos i t i o n s o f a type o f s t r u cture w i th a fou r - g e n e r a t i o n c y c l e b a s ed o n e i g h t d e s c e n t l i n e s . T h e e x c h a n g e cycles are : (1 ,
Wo
(1,
WI
(1,
w3 =
5,
(1, 4,
w2
a n d w4
2,
Wo
7,
3,
4) (5,
3,
7)(2,
3 , 2 ) (5 , 3,
5)(2,
6,
7,
6,
4,
B,
8,
7,
8) ;
B) ;
6)
4, 6)
( c f . Mosko 1985 : 147 ,
Wo WI
-1 -1
fig . 6 . 13 ) .
F u r t h e r a n a l y s i s o f M o s ko ' s d a t a , a n d o f t h e comp l e t e s e t o f morp h i sms l i nking the fami ly of Bush Mekeo models should prove f ru i tful . See a l so Chapter 3 , n o t e 20 .
230
231
5 . K I NS H I P ,
C OM P LE X I T Y ,
A ND T H E D I SC R E T E D Y N A M I C S OF
S I M P LE S Y S T E M S
Compl exi ty
and
Yan g ,
are
for
v a gr a n t
it
a
h a rdl y
wh a t
is
s i mp l i c i t y ,
me t a p h y s i c a l
dual s ;
conne c t ion
makes
c a l l ed
a
l i ke
to
Yin
and
excep t
i n t u i t i on ,
d i ffer e n c e
which .
D av i d B e r l i n s k i , Th e
T h e u n d e r s t a n d i ng
L a n g u a ge
of
L i fe . 1
of c om pl e x i t y r e ma i n s a f un d a me n t a l
c h a l l e n g e f or k i n s h i p t h e or y . T r a d i t i on a l l y , mu c h a n t h r o p ol og i c a l r e s e a r c h h a s b e e n m o t i v a t e d b y w h a t Friedrich
( 1 98 8 : 4 3 5 ) h a s
te rmed a
' r a g e f or o r d e r ' : a
p r e oc c u pa t i on w i t h pr e d i c t a b i l i t y a n d w i t h t h e e x t r a c t i on o f s i m pl e r u l e s ,
pa t te r n s or s t r u c t u r e s f r om
c om p l e x s oc i a l c on te x t s . M a k i n g is
s i m pl i f y i n g a s s u m p t i on s
of c ou r s e a k e y c h a r a c te r i s t i c
of t h e s c i e n t i f i c
m e t h od : a n y s c i e n t i f i c r e p r e s e nt a t i o n i n v ol ve s t h e s t r i p pi n g a w a y o f u n n e c e s s a r y d e t a i l . S c i e n t i f i c m od e l s d e pe nd
o n a t r a n s f or m a t i on o f c om m o n - s e n s i c a l k n ow l e d g e ,
c a r v i n g s i g n i f i c a n t el e me n t s a nd e ve n t s o u t o f a w i d e r set
of
p h e n om e na a nd r e c o n s t i t u t i n g t h e r e l a t i o n s s o
e x t r a c te d i n a s t r uc t u r a l d e s c r i p t i o n
( c f . G r a ng e r 1 9 8 3 ) .
T h e t r i c k i s t o k n ow w h i c h d e t a i l s m e r i t c on s i d e r a t i o n . A d a i r y f ar me r ad vice
once w r ate
t o t h e l oc a l
u n i ve r s i ty f or
on i m p r ov i n g m i l k pr od u c ti o n . A m u l t i d i s c i pl i n a r y
t e a m of s c i e n t i s t s w as a s s e mb l e d , a nd a f t e r a n i n t e n s i ve p e r i od o f on - s i t e i n ve s t i g a t i on a r e p or t w as T h e f a r m e r r e c e i ve d t h e w r i t e - u p , read
on t h e f i r s t l i n e :
a nd
p r e pa r e d .
ope ned i t ,
' C on s i d e r a s ph e r i c a l c ow
onl y t o •
•
•
' . 2
232
B e h i n d t h i s cau tionary
tale l i es a n important message :
w h e n m o d e l l i n g h i g h l y co m p l e x p h e n o me n a ,
beware the lure
of spurious oversimplif ication . Under the conve n t i onal approa ch ,
sys tems research has
concentra ted m a i n l y on the dynami cs o f closed ,
' simple '
phenomena :
stable sys tems whose long- term beha v i ou r ,
d e s c r i be d b y a few f u n d am e n t a l l a w s , comp l e te l y pred i c tab l e . S i m p l e s y s t em s , compo n e n t s ,
i s a ssumed t o be
There shou l d be no s u r p r i s e s .
i n v o l v i n g o n l y a f a i r l y sma l l n u m b e r o f
d i s p la y beha v iou ra l p a t t ern s t h a t are
i n t u i t i v e l y w e l l - u n d e r s t o o d a n d d i r ec t l y d e d u c i b l e f r om
k n o w l e d g e of
t h e i n p u t s a c t i n g u p o n t h e s y s t em .
S l i gh t
changes i n t h e i n i t i a l cond i t i ons or t h e i nputs should only b ring about s l i g h t changes i n the behavioural characteri stics .
S imple sys tems should therefore exh i b i t
s imple dynamics . ' Comple x i t y '
has gene r a l l y been d e f i ne d i n d i rect
oppo s i t io n to s i mp l i c i ty . paper on has
this
Th e A r c h i t e c t u r e
to say
( 1 969 : 86 ) :
F o r examp le ,
o f C o mp l e x i t y
in
his classic
H e r b e r t S im o n
R o u g h l y , by a comp l e x s y s t e m I m e a n o n e made u p of a l a r ge numbe r o f p a r t s t h a t i n t e r a c t i n a n o n s i m p l e way . I n such sys tems , t h e w h o l e i s m o r e t h a n t h e sum o f t h e p a r t s , n o t i n a n u l t i m a te , m e t a p h y s i c a l s e n s e , b u t i n t h e impo r t a n t p ragma t i c sense t ha t , g i ve n the prope r t i e s o f t h e p a r t s and the laws of t h e i r i n t e r a c t i on , i t i s not a t r iv i a l m a t t e r t o i n f e r t h e p ro p e r t i e s o f t h e who l e . I n s ho r t ,
t h e n o t i o n o f s y s t em com p l e x i t y i s a s s o c i a t ed
w i t h t h e e x i s t e n c e o f l a r g e n u m b e r s o f h i g h l y c o n ne c t e d s y s tem compo ne n t s ,
w i th unpred ictable s u r p r i se s and
h i g h l y c o u n t e r - i n tu i t i v e b e h a v i o u r a l m o d e s . C om p l e x s y s t ems b e h a v e i n c om p l e x wa y s . Until
recen t l y ,
classical science ei ther ignored
comp l e x i t y o r trea ted
i t a s a n e m b a r r a s s i n g c om p l i c a t i o n .
W h e r e com p l e x r e su l t s w e r e o b t a i n e d ,
one e i ther sought
a n approximate mode l or s o l u t i on to the exact p roblem , o r a n e x a c t s o l u t i on a p p roxima t i on
to a much s i mp l i f i e d or reduced
o f the o r i g i na l ,
i n t r a c t a b l e s y s tem .
If
233
nece s s a ry , a n e l em e n t o f randomn e s s o r i nd e t e r m i n a c y c o u l d b e b u i l t into t h e model b y add i n g on
' n o i se '
or
' error ' terms to i t s equat i on s . By modell ing the exten s i ve d a t a o b t a i n e d f r o m comp l i ca t e d s y s t e m s w i t h m a n y d i s t i n c t v a r i a b l e s and huge n u m b e r s o f compone n t s a s p a t t e r n s o f averaged qua n t i t ie s ,
the s t a t i s tical method enabled one
t o a p p r ox im a t e t h e s t r u c t u re a n d b e h a v i o u r o f s y s t ems s o comp l e x t h a t t h e y a p p ea r ed r a n dom . T h u s , a c co r d i n g to S tewa r t ( 1 9 8 9 : 5 4 ) , b y t h e beg i n n i n g o f t h e 2 0 t h c e n t u r y s c i e n c e h a d a c q u i r e d two v e r y d i s t i n c t p a r a d i g ms f o r ma t h ema t i ca l mod e l l i ng : No longer was order synonymous w i th law , and d i sorder w i t h l a w l e s s n e s s . B o t h o r d e r a nd d i so r d e r h a d l aw s . B u t the laws were two d i s ti nc t codes o f behav iou r . One law f o r t h e o r d e r e d , a n o t h e r f o r t h e d i s o r d e re d . T w o p a r a d i g m s , two t e c h n i qu e s . Two w a y s t o v i ew t h e wor l d . T w o m a t h ema t i c a l i d e o l og i e s , e a c h a p p l y i ng o n l y w i t h i n i t s own s p h e r e o f i n f l uence . D e t e r m i n i s m f o r s im p l e s y s t e m s w i t h few d e g r e e s o f f r eedom , s t a t i s t i c s for comp l i ca ted s y s tems w i t h many d e g r e e s o f f r eedom . E i t h e r a s y s t em w a s r a n d om , o r i t wasn ' t . If i t was , scienti s t s reached for something sto c ha s t i c ; i f n o t , t h e y p o l i s h e d u p t h e i r d e t e rm i n i s t i c equa t i on s . T h e t w o p a r a d i gm s w e r e e q u a l p a r t n e r s , equa l l y accepted in t h e scien t i f i c world , equa l l y useful , equa l l y i m p o r t a n t , e q u a l l y m a t h em a t i c a l . E q u a l . B u t d i f f e r e n t . Tota l l y , irreconci lably d i f ferent . Scient ists knew they were d i f ferent , a nd t hey knew why : simple systems behave i n s i m p l e ways , comp l i cated s y s tems behave i n comp l i ca te d way s . Between s i m p l i c i t y and comp l e xi t y there can be no c om m o n g r o u n d . T h e s e a s s um p t i o n s w o u l d s o o n b e c h a l l e n g e d .
ON
THE
COMP L E X I T Y O F K I N S H I P S T R U C T U R E S
Sc i en t i f i c revo l u t i o n s , a ccord ing t o Kuhn ( 19 70 ) ,
invo lve
f u n d a m e n t a l c h a n g e s i n w o r l d v i e w : t r a n s f o r ma t i o n s o f t h e e n t i r e c o n s� e l l a t i o n o f b e l i e f s d e t e r m i n e d b y t h e o l d paradigm.
The
' th i rd revo lution '
- c h a o s - i s now swe e p i n g t h r o u g h t h e n a tu r a l and s o c i a l s c i e n ce s . ] U n d e r t h e r e c e n t pa r a d i g m s h i f t ,
complex i t y , not s im p l i c i ty , now holds
2 34
c e n t r e s ta g e . T he f o c u s i s n o w o n t h e u n f o l d i n g o f o r g a n i z e d c o m p l e x i t y , n o t o n r e d u c t i o n i sm o r s p u r i o u s a p p r o x i m a t i o n . T h e n e w b u z z w o r d s a r e s e l f - o r ga n i z a t i o n , fra c ta l s ,
d i s s i p a t i v e s t r uc t u r e s ,
a t tractors ,
d o w n wa r d c a u s a t i o n ,
b i furca t i o n s ,
non - l i ne a r
s t ran ge
d y n am i c s ,
and
W h a t i s b e i n g s o u g h t i s n o t h i n g l e s s t h a n a general
cha o s .
t h e o r y o f o r g a n i z a t i o n , w i t h t h e n e w a p p r o a c h t o complexity c u t t i n g a c r o s s t h e t r a d i t i o n a l b o u n d a r i e s of s c i e n t i f i c d i s c i p l i n e s . C h a o s , p r e v i ou s l y d e f i n e d a s
' complete
d isorder , u t ter confusion ' , has taken on the paradoxical mean i n g of
' stocha s t i c [ i . e . ,
i n a d e t erm i n i s t i c s y s tem ' t he o l d p a r a d i gm , random '
the
random ] beha viour occurring
( S tewa r t 1 9 8 9 : 1 6 - 1 7 ) . U n d e r
' s i m p l e /comp l e x ' a n d
d i cho tomies co i n c ided :
' d e t e rm i n i s t i c /
a s y s t em w a s t h o u g h t t o
be e i t h e r d e t e rm i n i s t i c o r s t o c h a s t i c . T h i s i s n o l on ger the case . The r e g i o n s o f p r e d i c t a b i l i t y a n d chaos are now seen t o b e c l o s e l y i n terwove n , a n d t h e t y p e s o f t r a n s f o rm a t i o n t h a t m e d i a t e be tween t h e m a r e o f p a r am o u n t i m p o r tance . I n s tead of two o p p o s e d p o l a r i t i e s , we now s t u d y an e n t i r e s p e c t r u m : a t y p i c a l s y s t em m a y e x h i b i t a v a r i e t y o f states ,
some ordered , o t h e r s cha o t i c ( S tewa r t 1 98 9 : 2 2 ) .
A s s u mm a r i z e d b y S t e w a r t ( 1 9 8 9 : 2 8 6 ) t h e l e s s o n i s c l e a r : s i m p l e m o d e l s c a n h a v e s i m p l e s o l u t i o n s - o r c o m p l e x ones . C o m p l e x m o d e l s c a n h a v e c om p l e x s o l u t i o n s - o r simple one s . Thu s ,
i r regular phenomena d o not neces s a r i l y require
comp l i ca ted e q ua t i o n s ;
converse l y , even simple equa t i o n s
m a y g e n e r a t e o r mode l the b e h a v i o u r of comp l e x s y s tem s . T h e p r o v o c a t i ve g e n e r a l i z a t i o n s o f c h a o s t h e o r y p r o v i d e , a t t h e v e r y l ea s t , a n e x c i t i n g c a t e g o r y o f n e w i m a g e s a n d scien t i f ic metaphors . ' T h e s e s p e c t a c u l a r new d e v e l o p me n t s h a v e y e t t o m a k e their mark o n k i n s h i p theory .
Thus ,
as d i scussed in
previous c h a p t e r s , u n d e r t h e L e v i - S t r a u s s i a n p a r a d i g m u n d e r p i n n i n g the s t a n d a r d v i ew o n k i n s h i p ,
' e lementa ry '
k i n s h i p s t r u c t u r e s a r e a s s o c i a t e d w i t h d e t e rm i n i s t i c m o d e l s o f a l l i a n c e . Ma r i t a l c h o i c e i s f u l l y d e t e r m i n e d
235
b y a p o s i t i v e r u l e p r e s c r i b i ng ma r r i age w i t h a certa i n t y p e o f r e l a t i v e ( d r a w n f rom a p a r t i c u l a r e x c h a n g e u n i t , a t e r m i n o l o g i ca l l y e n c o d e d c a t e g or y , o r d e f i n e d g e n e a l o g i c a l l y ) . E l emen t a r y s y s t ems a r e b o u n d e d o r c l o s e d , w i t h t h e c y c l e o f r e c i p r o c i t y gene r a t e d by t h e p r i n c i p l e of d i r e c t ( s ymm e t r i c ) exchange .
exchange or genera l ized
( a symmetr ic )
The under l y i ng rel a t i o n a l proper t i es of
e l em e n t a ry k i n s h i p s y s t ems r e q u i r e o n l y t h e f o rmu l a t i o n o f s imple ,
' me c h a n i c a l ' mode l s .
' Complex '
k i n s h i p s t r u c t u r e s a r e s i t u a t e d a t the
o p po s i t e end o f the scale .
In
the Preface t o the f i r s t
( 1 9 4 9 ) e d i t i o n o f L e s S t r u c t u re s ,
s t ructure '
i s reserved f o r s y s tems
the term
' c omp l e x
' w h i c h l im i t t h em
se lves to d e f i n i n g the c i r c l e of relat ives and leave the de termi nation of the spouse to other mechan isms , economic or psychological .
s y s t ems
. . .
a
which are based on
t r a n s f e r o f we a l t h o r o n free c h o i c e , would be c l a s s i f i ed a s comp l e x s t r u c t u r e s' ( Lev i - S t ra u s s 1 9 7 0 : xx i i i ) . F i f t e e n years later ,
i n t h e 1 9 6 5 H u x l e y M em o r i a l L e c t u r e o n t h e
future of k i ns h i p s t u d i es ,
t h e e l e m e n t a r y - c om p l e x
d i s t i n c t i on i s a g a i n d e f i n e d i n o p p o s i t i o n a l t e rms . ' e lementary '
In
s t r u c t u r e s t h e r e l a t i o n s h i p b e tween
prospective spouses
( whether prescri bed or preferred )
f o rmula ted in terms of the s o c i a l s t ructure ( i . e . ,
is
in
r e f e r e n c e t o mem b e r s h i p o f a p a r t i c u l a r s o c i a l g r o u p o r k i n s h i p category ) . On the other hand ,
in
' c om p l e x '
s tructures mar i t a l presc r i p t ions or preferences are never d e f i n e d i n t e r m s p e rt a i n i n g to t h e s o c i a l s t ru c t u r e ( Le v i - S t r a u s s 1 9 66 : 1 8 ) .
T h e c r i te r i o n o f social structure
i s s t ressed yet a g a i n in the P r eface t o t h e second
edi t ion o f Les St ructures
( Le v i - S t r a u s s
1970 : xx x i v ) .
I f e l eme n t a r y k i n s h i p s t r u c t ur e s c o u l d i n d e e d be adequ a t e l y represented by s imple mech a n i c a l mode l s , Lev i
S t rauss a p p a r e n t l y despa i red o f ever ex tend i ng a s im i l a r
c o n ce p t u a l f r amewo r k t o t h e s t u d y o f comp l e x s y s tems ( t h i s category wou l d a l so i n c l u de
' moder n '
soci e t i e� ) .
W i t h s i m p l e d e t e r m i n i s t i c mo d e l s a p p a r e n t l y r u l e d o u t ,
236
p r o ba b i l i s t i c methods seemed to o f f e r t he o n l y v i able s o l u t i o n . Come t h e r e v o l u t i on ,
t h e p r o b l em s o f c o m p l e x
s t r u c t u r e s wo u l d b e r e s o l v e d . A s L e v i - S t r a u s s s p e c u l a t e d ( 1 966 : 2 1 ) : For such a p r o g r a m to be i n i t i a t e d , t h e c o n c e p t u a l f r ame w o r k o f o u r s t u d i es w i l l h a v e t o u n d e r g o a t r a n s f orma t i o n w h o s e m a g n i t u d e i s com p a r a b l e t o t h e o n e w h i c h m a y b e s a i d t o e x i s t b e tw e e n K e p l e r i a n a n d qua n tum mec h a n i c s . F o r the w o r l d we s h o u l d prepare o u r s e l ves to e n t er , w i l l n o l o n g e r b e c o m p o s e d o f c o mm u t a t i v e c l a s s e s a n d n e t w o r k s endowed w i t h a p e r i o d i c a l s t r u c tu r e , but of u n p r e d ictab l e events whose sta t i s t i c a l d i s t r i b u t i o n o n l y w i l l show regul a r i t i e s and p r o v i d e mean i ng f u l clues . W i t h h i nd s i gh t ,
L e v i - S t r auss ' s v i s i o n o f d e v e l o pme n t s i n
t h e f u t u r e of k i n s h i p s t u d i e s , e x t r a p o l a t i n g f rom t h e domina n t research s trategies o f 2 0 t h centu r y ,
the f i r s t half of the
now s e e m s o v e r l y c o n s e r v a t i v e . P h e n omena
that look compl i cated might just be gove rned
by a
s im p l e - t h o u g h ch a o t i c - mod e l . P r o b ab i l i s t i c m o d e l s a n d s t a t i s t ical d i s t r i bu t io n s a re not t h e o n l y techniques f o r e x t r a c t i n g p a t t e r n s f r o m comp l e x i t y . s
S Y S T E M S OF I N TERMED I A T E COMPLE X I T Y Lev i - S t rauss h a d a l ready p o s e d t h e problem o f quan t i f y i n g t h e comple x i t y o f k i n s h i p s y s t em s m o r e t h a n a d e c a d e before he p resented t h e 1 9 6 5 H u x l e y Lecture .
In his
c e l e b r a t e d p a p e r o n s o c i a l s t r u c t u r e ( re a d a t t h e 1 9 5 2 C h i c a g o sympos i um ) , h e suggests a measure based number of available marriage choice s .
This
on
the
suggestion
d e r i v e s f r o m t h e m a t h e m a t i c a l t h e o r y o f c o mm u n i c a t i o n ( deve l oped by C l aude Shannon , a t MIT in the 1940s ) .
Thus
Norbert Wiener and others
( Levi-S trauss
1953: 538 ) :
I n the terminology o f t h i s theory i t i s p o s s i b l e to speak o f t h e i n f o rm a t i o n o f a m a r r i a g e s y s t em b y t h e n u m b e r o f choices at the observer ' s disposal to define the marr iage s t a t u s o f a n i n d i v i d u a l . T h u s t h e i n f o rm a t i o n i s u n i t y f o r a d u a l e x o g a m o u s s y s t em , a n d , i n a n A u s t r a l i a n k i n d
237
of
kinship
of
the
where with be
typology ,
number
of
everybody no
the of
cou l d
redundanc y ,
d e t e rm i ne d
content
it
of
' fre e '
by
under choices
n u me r i c a l
s i nce
in
in
wou l d
e s t ima tes
thus
bridging
studies a
mod e l s
. . .
founda t ion
Hence
a
the
and
a
deal
for
a
ma rr i a g e of
2
to
The
matter
states
a
of
and
offer
to
and t rans late
vice
be tween
versa ,
popu l a t i o n
thereby
high
of
en tropy
r a n d om n e s s :
specify with
its
only
( de f i ned ( Fo r
s ec t i on
of
is
lay ing
a
needs
Converse
po s s i b l e
t he
logari thm
d iscu ssion
s y s t ems
is
one
s t a t e.
two
as
the
and
w i th
For
in
H
=
mea s u r e k inship
terms
be
see
of
Bu c h l e r
comp l i ca ted
not
the
-
had
of
of
of
content
of
and
1
p "
the
a
By
T hus ,
sys tem ,
of
an
the not
initial
7
than
possi b l e
all
content
ensemb l e
opt imism ,
t he
Instead
f a i l ed
e l em e n t a r y
a
the
to
seeking
-
as
' log n .
m i d - 1960 s of
of of
the
ensemb l e mere ly
in
one
i ts
occurrence ,
comp l e x i t y
theory .
of
with
Pi
s h i f t e d.
of
i n f o rma t i o n
system
l p 1, ' l o g
all
equ iprobab le .
co l l e c t i o n
probabi l i t y
di f ferentiation
dimension
a
Levi-S trauss ' s
Wiener in
or
evaluate
i n f orma t i on as
more
g ene r a l ,
will
e nsemb l e ,
research
of
further
of
bit
In
i n f o rma t i o n c o n t e n t
s t a te.
def ined
spite
a
sys tem
t he
the
each
revo l u t i on
focus
to
u n i t y.
and
actual l y
s t a te s ,
Shannon a
with
s y s t em
entropy
is
kinship
ind iv idual
measure
In
is
consider
s t a te s ,
who l e
( not
pos tulated
action . 6
degree
Levi -Strauss .
t o def ine
possible
n
2)
ba se
by
ea ch
the
measures
suggested
mu s t
mo i e t y
of
percentage
absolute
ones ,
and
i n f o rmat ion
choices , the
existing
system
la rge
ones
not
1968 : 279-309 . )
Selby
order
of
a
simple
i n f o rma t i on
still
gap
kinship
by
certain both
s y s t em
sys tem
wou l d
the
possible 'to
me c h a n i c a l
a
redundancy
the
i t wou l d become pos s i b l e
into
l o g a r i t hm
po s i t i v e
popu l a t i on
to
become
the
s tu d y i n g
e n t ropy ,
foresight
comp lex
great
ly ,
i ts
a n thropolog i ca l
for
characterized
re l a t i on
thus
of
rel a tive . As a consequen ce , statistical
con s t i t u t e s
be
choice
wh i l e
By
the
wou l d
ma r r i a g e
choices ,
ma t r imon i a l
a
with
A t h e o r e t i ca l
everybody
each
rules
but
it
i nc rease
classes .
considerat i o n .
a b s o l u t e l y f ree , cond i t i ons ) ,
marry
prev ious
mar r i a ge
sys tem
would
ma t r imon i a l
provoke the a
c om p l e x
a quan t i t at Ive measu re,
L�v i - S t rauss
238
n ow co ncen t ra te d o n o n e p a r t i c u l a r c a t e g o r y o f k i n s h i p s y s t e m s o f i n te r m ed i a t e comp l e x i t y .
If,
i ndeed , t h e very
n a t u r e o f k i n s h i p i t s e l f c h a n g e s i n p a s s i n g f r om ' s i m p l e ' societies to
' c om p l e x '
ones ,
the p rob lem o f iden t i f y i ng
t h e m o d e s o f t r a n s i t i o n m i g h t be r e s o l v e d b y s t u d y i n g a t y p e o f s y s t e m w h i c h appears t o m e d i a t e t h e e l e m e n t a r y c o m p l e x d i c h o t om y : t h e 5 0 - c a l l e d Tra d i tionally the terms
' C r ow '
' C r ow - Omaha ' and
' Omaha '
sys tems .
refer to
p a r t i c u l a r types of k i nship terminol ogy systems with i n te r g e n e r a t i on a l s k ew i n g .
Thu s ,
a n i d e a l i zed
t e r m inology h a s a t l e a s t t h e e q u a t i o n s F l
Conversely ,
in an
' Om a h a '
t e r m i n o l o g y MB
FlD
MBS
L e v i - S t r au s ' s u s a g e o f t h e t e rm ' C r ow - Omah a ' di fferen t .
' Crow - Omaha '
' Crow '
FlDD .
M B S S .8 is slightly
s y s tems , a c co r d i ng t o h i s v i ew ,
l a c k p o s i t i v e ma r r i a g e r u l e s . Ma r r i a g e p o s s i b i l i t i e s a r e d e f i n e d nega t ive l y , b y m e a n s o f a n extremely w i de - r a n g i n g series of l ineal prohibi t ions . Typically a man is forbidden to marry into the l i nes or clans of h i s four g r andparents ( a n d p e r h a p s o t h e r l i n e s to o ) . A s t h e s e p r oh i b i t io n s o p e r a t e d i n s oc i e t i e s w i t h r e l a t i v e l y s m a l l p o p u l a t i o n s
and a l imi ted number of l ines o r c l a n s ,
the negative r u l es
m i gh t produce a s t a t i s t i ca l pattern of exchange cycles in many respects quite
similar to the p a t tern generated
b y d e t e r m i n i s t i c m a r r i a g e r u l e s i n e l em e n t a r y k i n s h i p s t r u c t u r e s . A s L e v i - S t r a u s s s ta t e d ( 1 96 6 : 1 9 ) ,
' the
g e n e r a l i s e d d e f i n i t i o n o f a C r ow - O m a h a s y s t e m m a y b e s t be f o r m u l a t ed by s a y i n g t h a t w h e n e v e r a d e s c e n t l i n e i s p i c k ed u p t o p r o v i d e a ma te , a l l i n d i v i d u a l s b e l o n g i ng t o t h a t l i n e a r e e x c l u d e d f r om t h e r a n g e o f p o t e n t i a l m a t e s for the f i r s t l i neage , du r i ng a p e r i od cov e r i ng several g e n e r a t i o n s ' , w i t h t h i s p ro c e s s repea t i ng i t s e l f w i t h e a c h s u b s e q u e n t ma r r i a g e . M o r e o v e r , w h i l e e l em e n t a r y s t ruc t u r e s w i t h po s i t i ve ,
k i n -based marriage rules in
e f fe c t t r a n s f o rm k i n smen i n t o a f f i n e s ,
' a C r ow - O m a h a
s y s t e m t a k e s t h e o p po s i te s ta n d by t u r n i ng a f f i n e s i n t o k i n sme n ' Omaha '
( 1 966 : 1 9 ) .
I n Lev i - S t raus s ' s view the
' C row -
s y s t e m s p r o v i d e t h e h i n ge a r t i cu l a t i n g e l eme n t a r y
239 s t ru c t u r e s w i t h comp l ex s t ru c t u re s , e l em e n t s o f b ot h .
s i n c e t h e y e n c om p a s s e d
( Le v i - S trau s s 1966 : 19 ) :
Thus
C r o w - Oma h a s y s t e m s s t i l l b e l o n g t o t h e e l em e n t a r y s t r u c t u re s f rom t h e p o i n t o f v i ew o f t h e m a r r i a ge p r oh i b i t i o n s t h e y f r ame i n soc i o l og i c a l t e r m s [ i . e . , i n t e r m s of the k i n s h i p s t ructure ] , but they a l ready b e l ong to the comp l e x s t r u c t u r e s f r om t h e p o i n t o f v iew o f t h e p r o b a b i l i s t a l l i a n c e n e t w o r k w h i c h t h e y p r oduce . I n m y t e rm i n o l o gy , they u se a neg a t i ve mecha n i c a l model a t t h e l e v e l o f t h e no rms , t o g e n e r a t e a p o s i t i v e , s t a t i s t i c a l mod e l a t t h e l e ve l o f t h e f a c t s . A great deal
of e f f o r t
- O m a h a p r o b l em ' ,
has
been put into
' solving
the
i n c l u d i n g a num b e r o f a t t emp t s Crow d e v e l o p L e v i - S t r a u s s ' s i d e a s a b o u t s u c h s y s t em s . 9 F r any o i se Her i t i e r ' s r e s e a r c h V o l t a men t i o n e d
in
to
among the Samo o f Upper
previous chapters
is perhaps
t h e mo s t
i n t e r e s t i ng o f t h e r e c e n t a t temp t s t o p u r s u e t h e o r t ho d o x L e v i - S t r a u s s i a n p r o g r amme o f r e s e a r c h . her work cen tres on
the
T h e ma i n
thrust of
r e l a t i o n s b e tw e e n t h e i d e o l o g i ca l
mod e l s represen t i ng Samo m a r r i age p roh i b i t i o n s and s ta t i s t ic a l p a t t e r n o f a c t u a l ma r r i a ge s ,
t he
o b t a i n ed b y
compu ter a n a l y s i s o f an e x te n s ive body o f genea l o g i c a l material
( c f . H er i t i e r 1 9 8 1 ) .
I n He r i t ie r ' s s cheme t h e
' C r o w - Oma h a '
s y s t em s ( to ge t h e r w i t h ce r t a i n
and
type s )
' Ha wa i i a n '
ex tens i ve category ,
are
' I roquoi s '
i n c l u d e d a s memb e r s o f a m o r e
the so-cal l ed
' semi -comp l e x s y s tems
a l l i a n c e ' . H e r i t i e r h a s ref i n e d Lev i - S t rau s s ' s o r i g i n a l d e f i n i t i o n o f s u c h s y s t e m s o f i n t e rmed i a r y comp l ex i t y b y of
s t r e s s i n g the following o f proh i b i t ions on
b y same - s e x
kin
oppos i t e - sex k i n a l l iances
i m po r t a n t f e a t u r e :
t h e e x i s t e n ce
t h e r e d u p l i c a t i o n o f ma r r i a g e p a t t e r n s
a nd ,
converse l y ,
t o re pe a t t h e
( H er i t i e r 1 9 8 1 : 1 2 ,
t h e o b l i g a t i on o f
pattern of previous
1 27 ) .
( T h e inverse comb ina
t i o n o f n e g a t i v e a n d po s i t i v e r u l e s
i s a l s o env i sa g ed ;
s e e H e r i t i e r 1 9 8 1 : 1 6 9 . ) T h e c u mu l a t i ve r e s u l t o f s u c h prohibi tions and preferences w i l l
be r e f lected
eme rgence o f g l o b a l c y c l e s o f e x c h a n g e or
i n comp l e t e )
in the statis tical
in
the
( however pa r t i a l
patterning of actually
2 40
contracted m a r r i ages . I n s p i te o f i t s u n d ou b t e d
success
in
elucidating
the
f u n c t i o n i n g o f t h e S arn o k i n s h i p s y s t e m , H e r i t i e r ' s s c h e m e , as
a
g e n e r a l r e s e a r c h p r o g r amme ,
I n the f in a l analy s i s , category of
i s f u n d a m e n t a l l y f l awe d .
the existence of a n intermed iate
' s e m i - c omp l e x '
all iance s tructures is
p o s t u l a t e d i n o r d e r t o m e d i a t e L ev i - S t r a u s s ' s o r i g i n a l e l em e n t a r y - c o m p l e x d i c h o t o m y . A s I h a v e s k e t c h e d a b o v e in
the introductory sect ion to this chapter ,
d i c h o t omy
is
this
i t s e l f mere l y a r e f l ec t i o n o f t h e f u n d ame n t a l
o p p o s i t i on b e t w e e n t h e t w o p a r a d i gm s f o r m a t hema t i c a l mo d e l l i n g t h a t h a v e h i t h e r t o co n s t ra i n e d s y s t ems r e s ea rc h . W i t h t he o l d s i mp l i c i t y - comp l e x i ty d i ch o tomy ( a s a p p l i e d t o s y s tems mo d e l l i n g ) n o w t r a n s f o rmed , o n e m u s t n o w a l s o question the necess i t y of a d d res s i ng a separa t e , med i a t i n g c a t eg o r y o f
' s em i - co m p l e x '
or
' C r ow - Oma h a '
structure s .
Le v i - S t rau s s ' s i n f orm a t i o n - t h e o r e t i c a p p roach to
s y s t ems com p l e x i t y s u f f e r s f r om a n o t h e r c o n c e p t u a l s h o r t c om i n g .
The
c o m p l e x i t y o f a k i n s h i p s y s t em i s d e f i n e d
exclusively in terms o f structural features such a s the number of k i n s h i p u n i t s or poss i b l e marriage cho i ce s . As Casti h a s r e c e n t l y a r g u e d
( 1986 ,
1 9 89 : 1 7 - 1 9 ) , com p l e x i t y i s
a l s o a s s o c i a t e d w i t h a s y s t em ' s b e h a v i o u r a l c h a r a c t e r i s t i c s such
as
coun t e r i ntu i t i ve respon se s , mu l t i p l e modes o f
opera t ion , and irreproduc i b l e surprises .
Thus
(Casti and
Karlqv ist 1986 : xi ) : W h i l e the structural features are , by and large , objective p ro p e r t i e s o f t h e s y s tem p e r se , t h e b e h a v i o u r a l c o m p on e n t s o f comp l e x i t y a r e d e c i d e d l y s ub j e c t i v e : wha t i s coun t e r i n t u i tive , s u r p r i sing , a n d so o n i s as much a property of t h e s y s t em d o i n g t h e o b s e r v i n g a s i t i s a f e a t u re o f t h e p r o c e s s u n d e r s t u d y . T h u s , a n y mat h e ma t i c a l f o rmu l a t i o n s o f t h e n o t i o n o f c om p l e x i t y m u s t r e s p e c t t h e s u b j e c t i v e , a s w e l l a s t h e o b j ec t i v e , a s p e c t s o f t h e c o n ce p t . F rom t h i s v i ew p o i n t comp l e x i t y , b i o l o g i c a l o r s o c i a l s y s t ems ,
e s p e c i a l l y i n the realm o f
is a contingent , rather than
intrinsic , property that emerges from the in teract ion b e t w e e n t h e s y s t em a n d i t s o b se r v e r .
2 4- 1 g i v e n a s y s t e m N i n t e r a c t i n g w i t h a s y s t em a
R ou g h l y ,
( i . e . , an observer ) , under the relativistic view of s y s t em comp l e x i t y p u t f o r w a r d by C a s t i , a two-way relation .
interaction is
For a g i v e n mode o f i n teraction , t h e
system N d i s p l a y s a certa i n level of complex i t y relat ive t o 0;
c o n v e r s e l y, a h a s a l e v e l o f c om p l e x i t y r e l a t i v e t o
( C a s t i 1 9 8 6 : 1 4- 9 ) .
N
Only i n special cases such as
c l a ss i cal phys i c s where one of these r e c i p rocal inter ac t i o n s i s s o m u c h weaker t h a t i t can be i g n o r e d w i l l t h e c l a s s i c a p p r o a c h t o c om p l e x i t y a s a n i n t r i n s i c p r o p e r t y o f t h e o b s e r ved s y s tem N a p p l y . L e t C i N ) a n d C ( O ) O
N
represent , respe c t i v e l y , . t he compl e x i t y o f N a s seen b y 0 ,
a n d t h e c om p l e x i t y o f a a s s e e n b y N . C a s t i ( 1989 : 18 ) , C
O
iN)
and C ( O ) N
Then , a c c o r d i n g to
it i s the rec i p roca l r e l a t i o n b e t ween t h a t is o f c r u c i a l imp o r t a n c e , n o t one o r
the other i n i so l a t i o n .
T h e qu a n t i t y C i N ) O
is defined as
t h e n u m b e r o f n o n e q u i va l e n t d e s c r i p t i o n s o f N f o r m e d b y
the observer o .
(C
N
(O)
i s d e f i n e d a n a l o g ou s l y . )
The idea of nonequivalent descriptions has been f orma l i zed and made more e x p l i c i t ( see C a s t i 1 9 86 : 1 5 1 - 1 5 7 , 1 9 8 9 : 4- - 3 6 ) .
Intuitively ,
i f a can i n t e ract w i t h o r describe
a s y s t em N i n a l a r g e number o f d i f f e re n t ways , w i l l r e g a r d N a s comp l e x ;
conve r s el y ,
then a
if a has only a
sm a l l n u m b e r o f m o d e s o f i n t e r a c t i o n w i t h N o r c a n f o rm o n l y a few descr i ptions , then N appears simp l e .
Casti uses
the f o l lowing ana logy ( 1986 : 1 5 1 ) : The pen I used t o w r i te this manus c r i p t i s a simple system t o me . The only mode o f i n t e r a c t i o n w i th it that I h a v e a v a i l a b l e i s t o u s e it a s a w r i t i n g sys tem ; howe v e r , i f I w e r e , s a y , a c h em i c a l e n g i ne e r , t h e n many m o r e m o d e s become ava i l ab l e . I could ana l y z e the p l a s t i c compound of w h i c h i t i s made , t h e compos i t i o n o f c h em i c a l s f o rm i ng t h e ink , t h e d e s ign o f t h e w r i t i ng b a l l a t i ts t i p , a n d so f o r t h . S o , f o r a c h e m i c a l e n g i n e e r my ba l l p o i n t pen b e c om e s a far more comp l e x o b j e c t than it i s f o r me . I n sum : comp l e x i t y e m e r g e s f rom s imp l i c i t y w h e n a l t e r n a t i v e desc r i p t ions o f a sys tem are not redu c i b l e to each other ( C a s.. t i 1 9 8 6 : 1 5 7 ) . 1 0
242 Cast i ' s propos a l s need considerable further elabor a t ion b e f o r e t h e y c a n con s t i tu t e a v i a b l e r e s e a r c h p r o g r amme for ident i f ying and managing
the comp l e x i t y of
i n t e r a c t i n g s y s tems . A s he a c k n ow l e d g e s ( Ca s t i 1 986 : 1 6 6 168 ) ,
it w i l l be necessary to devel o p a more genera l
t h e o r y o f m o d e l s a p p l i ca b l e t o t h e b e h a v i ou r a l s c i e n c e s as well as to the natural sciences . A s u f f i c i e n t l y rich t h e o r e t i c a l f ramewo r k i s requ i r ed f o r the form a l mod e l l i n g o f t h e p r o c e s s e s a n d eme r g e n t p r ope r t i e s encountered i n the socia l ,
beha v i o u r a l and cul tural
e n v i ronmen ts , w i th particular empha s i s o n features a s s o c i a t ed w i t h a d a p t a b i l i t y , h i e r a r c h y , a n d s h i f t s f r o m one behavioural or s t ructural mode t o a n other
( bifurca
t i o n s ) . C a s t i ' s r e c e n t b o o k , A l terna t e Rea l i t i e s : Ma t h e m a t i c a l
Mo de l s o f N a t u r e a n d Ma n
( 1989 )
is a
refreshing and h i g h l y acces sible i n troduction t o some of these matters .
T hese inves t i g a t ions p ro v i d e a s t a r t ing
p o i n t f o r t h e d e v e l o p m e n t o f s i m p l e m a t h ema t i c a l mo d e l s t h a t h a v e g r e a t e r e x p l a n a t o r y p o w e r a n d p r ed i c t i v e c a p ab i l i t y t h a n t h e t r a d i t i o n a l
' s p h e r i ca l - c ow ' a p p ro ac h .
T h e b r i e f re v i ew o f r e c e n t d e v e l o pm e n t s i n t h e s e i n t r o d u c t o r y se c t i o n s h a v e c l e a r i m p l i c a t i o n s f o r t h e L 8v i - S t r a u s s i a n p r o g r a m m e .
First ,
a s the a d v a n ce s i n c h a o s
t h e o r y h a v e demo n s t r a ted , .the t r a d i t i o n a l a p p r oa c h t o t h e p r o b l e m o f s y s t em s c o m p l e x i t y ( a s s o c i a t e d w i t h r a n d o m n e s s or uncertainty ) by means of probabi l i ty theory ( e . g . , L ev i - S t r a u s s ' s s t a t i s t i c a l mode l s a n d i n f o rma t i o n - t h eo r e t i c a l m e a s u re s ) h a s come u n d e r i n c r e a s i ng a t t a c k . A v a r i e t y o f a l t e r na t i ve s t o p r o b a b i l i t y t h e o r y h a v e now b e e n a d v a n c e d for r e p r e s e n t i n g r a n d om - l i ke p r o p e r t i e s o f sys tems i n a nonprobab i l i s t i c fash i on . Second ,
comp le x i ty
i t s e l f i s a s s o c i a t ed w i t h a s y s t em ' s b e h a v i o u r a l c h a r a c te r i s t i c s a s wel l as i t s s t r u c t u r a l f ea t u r es .
It
c a n n o t b e m e a s u r e d s o l e l y i n t e rm s o f i n t r i n s i c p r o p e r t i e s o f t h e o b s e r v e d s y s t em : comp l e x i ty e m e r g e s f r om t h e i n t e ra c t i o n be t ween t h e s y s tem a n d t h e v a r i e ty o f mo d e l s p rov ided b y the observe r .
2 1+ 3
Under the Lev i -Straussian s cheme , o f a l l i ance '
n
( i ncluding the
' semi - c omp l e x
' Crow - Oma ha '
s y s t e ms
s y s tems )
c o n s t i t ute a u n i form category i n t ermed i a te be tween t h e ' elementary ' the
s y s t e m s b a s e d o n p o s i t i v e m a r r i a g e r u l e s , a nd
' co m p l e x '
k i n s h i p s y s t em s w i t h e x t e n s i v e p r o h i b i t i o n s
o r proba b i l i s t i c rules . two respects . F i rs t , sequence : as
i t s t r a d d l e s t h e d e v e l o pme n t a l s t r u c t u r e s ( s e e n b y Le v i - S t r a u s s
' e leme n t a r y '
the basic ,
This c a tegory is i ntermed i a t e in
l o g i ca l ,
p r i me v a l o r
c f . Muller 1980 : 5 2 7 ) pass over to
' natura l '
' complex '
structures ;
structures ,
a n d t h e t ra n s i t i o n i s e f f ec ted t h r ough the c a t e g o r y o f ' sem i - com p l e x '
s tructures . Second ,
for the formal characterisation of
t h e mode l s n e c e s s a r y ' s e m i - c om p l e x '
s t ru c t u r e s ( a n d a b o u t w h o s e d e v e l opme n t Le v i - S t r a u s s , w r i t i n g i n the 1960 s ,
i s f a i r l y p e s s i m i s t i c ) must be a b l e
t o m e d i a t e b e t w e e n d e t e r m i n i sm a n d r a n d o m n e s s . T h e f i r s t p o i n t has occa s i o n ed
the s p i l l i n g of much
o r not a s i n g l e i n t e rmed i a r y c a tegory o f or
' sem i - co m p l e x '
ink . 1 2
WAether
' C row - O m a h a '
s y s tems a c tu a l l y e x i s t s ,
a n d w h e t h e r o t'
n o t a t t em p t s t o d e v e l o p a t ru l y g e n e r a l t h e o r y o f k i n s h i p r a i se
' tremendous d i f f i cu l t ie s w h i ch are the prov i n c e ,
n o t o f t h e s o c i a l a n t h r o p o l og i s t , b u t o f the m a t hema t i c i a n ' ( L ev i -Strauss 1970 : x x x v i ) are s t i l l open ques tions . Under t h e n e w p a r a d i g m f o r c o m p l e x i t y - d e t e rm i n i s t i c c h a o s a n d w i t h a g r o w i n g n u m b e r o f d e t a i l e d em p i r i c a l s t u d i e s o f ind i v i d u a l soc i e t i e s becom i n g a v a i l a b l e , w e a r e now b e g i n n i n g to d e v e l o p a d e e p e r u n d e r s t a n d i ng of the r e a l d i f f i cu l t i e s i n v o l v e d i n m o de l l i n g k i n s h i p s y s t ems .
In the
rem a i n i ng s e c t i o n s o f t h i s c h a p t e r I i n t ro d u c e o n e o f
the
exc i t i n g new c lasses of simple dynamical mode l s - c e l l u l a r a u t om a ta .
I then cons ider how t h i s examp l e ,
e l em e n t a r y a s
i t i s , m a y provide a u s e f u l a n a logy for mode l l i n g t h e d iscrete dynamics of
kinship
s y s t em s .
Semi groups a re
i n t ro d u ce d a s a m e a n s o f e x te n d i n g t h e b a s i c m o d e l s .
I
conclude w i th a discussion of structures with e x tended s i b l i ng g roups , s y s t em .
t a k i n g as an e x amp l e t h e Be l i y a n m a r r i a g e
Z44
C E L L U LAR AUTOMATA AND D ISCRE TE D Y NAM I C A L S Y S T E MS
Consider a one-dimensional array of cell s ( i . e . ,
lattice
p o i n t s o r n o d e s a r r a n g e d a l on g a l i n e ) , e a c h o f w h i ch c a n o n l y t a k e on a v a l u e 0 o r 1 .
If we have a finite array of
N cel l s ,
the total number of p o s s i b l e con f i gurat ions or N s ta t es t h a t t h e sys tem can a s sume eq u a l s Z . C o n s i de r one
s p ec i f i c c o n f i g u r a t i on ( t h e i n i t i a l s t a t e o f the s y s t em ) . Assume t h a t the v a l u e o f each ce l l i s upd a ted accor d i ng to a rule of tran s i t ion i nv o l v i ng o n l y the values o f i t s two nea r e s t n e i g h b ou r s . F o r e x a mp l e , t h e r u l e o f t r a n s i t i o n could define the value of a cel l a t a part icular instant t o be t h e s u m ( u nder a dd i t ion modu lo 2 ) o f the v a l u e s o f i t s t w o nearest nei ghbours a t t h e previous t i m e per iod . T h e s y s tem s h o u l d e v o l v e s y n c h r o n ou s l y i n d i sc r e t e t i m e s teps , w i th the same tran s i t i on rule a p p l y i ng to each cel l .
Given a
rule o f evolu t i on o r state- tran s i t ion and
s o m e i n i t i a l s t a t e , we c a n a s k t h e f o l l ow i n g f u n dame n t a l q u e s t i o n ( c f . Casti 1 9 8 9 : 46 ) : W h a t h a p p e n s t o t h e s y s t em as time goes on?
T h e m o d e l d e s c r i b e d a b o v e i s a n e xamp l e f r om t h e c l a s s
o f o n e - d i m e n s i o n a l c e l l u l a r a u t o ma t a , d i s c r e t e d y n a m i c a l sys tems o f s imp le c o n s t r u c t i o n b u t w h i c h may d i s p l a y com p l e x a n d v a r i e d b e h a v i ou r . C e l l u l a r a u toma t a were i n t ro d u c e d in t h e 1940s b y J o h n v o n Neuma n n ,
a
following
s u g g e s t i o n by t h e ma t h e m a t i c i a n S t a n i s l aw U l am , a
c o l l e a gu e a t L o s A l a mo s .
Von Neumann was in terested i n
t h e c o n s t r u c t i o n o f f o rma l m o d e l s o f a u t oma t a ca p a b l e o f r e p r o d u c i ng t h e ms e l v e s i n a n o n t r i v i a l way . A t t h e t ime , U l am w a s b u s y i nv e n t i n g p a t t e r n g a m e s f o r t h e f i r s t g e n e r a t i o n o f compu t e r s d e v e l o p e d f o r t h e M a n h a t t a n
Projec t .
U l am ' s g a m e s were p l a y e d on huge g r i d s o f
square ce l l s ,
essen t ia l l y l im i t l e s s chessboards
l a r o r h e x a g o n a l t i l in g s w e r e a l so t r i ed ) .
( tr iangu
The computer
w o u l d be g i ven a s e t o f recu r s i ve l y d e f i n e d r u l e s f o r g en e r a t i n g t h e p a t t e r n s a n d w o u l d t h e n p r i n t o u t a com p l e t e
245
s e q u e n c e o f d i a g r a m s d o c u me n t i n g t h e g r o w t h a n d c h a n g e o f the o r i g i na l p a ttern . All changes took p lace in d i s c r e t e j u m p s , w i t h t h e f a t e o f e a c h c e l l o n l y d e t e rm i n e d b y t h e values of n e i g hbou ring cel l s . a d o p t e d by V o n N e um a n n . i 3
This is the framework
He p r e s e n t ed h i s theory i n a l e c t u r e g i v e n i n Sep tembe r 1948 entitled
' T h e G e n e r a l a n d L o g i c a l T h e o r y o f A u t om a ta '
( re p r i n t ed i n Von Neumann 1 9 6 1 - 196 3 : 2 8 8 - 3 2 8 ) . V o n Neumann ' s cellular automaton model
( he used the term
' ce l lular spaces ' ; his array employed 29 d i f fe r e n t s t a t e s , including the empty s tate ,
for each ce l l ) proved that
s e l f - r e p r o d u c t i o n - a l o g i c a l f o rm a b s t r a c t e d f r om t h e sel f - reprodu ction o f natural sy s tems - could i n deed be a c h i e v e d b y ma c h i n e s .
The growth of crysta l s i s an example
of trivial replication .
I n o r d e r t o m o d e l r e p r o d uc t i o n
m o r e a k i n t o the character i s t i c behaviour o f l i v ing o r g a n i sm s , V o n N e u m a n n ' s a b s t r a c t m a c h i n e c o n t a i n e d a complete descript ion of its own organization . i n f o rma t i o n i s u s e d i n two wa y s :
This
first , as a set of
i n s t r u c t i o n s w h i c h t h e o r i g i n a l a u toma ton t hen e xecutes to make a copy of i t se l f . Second , a s p a s s i v e d a ta to be d u p l i c a t e d a n d a t ta c h e d to t h e o f f s p r i ng , p ro v i d i ng i t with the self -description necessary for i t ,
in turn ,
t o reproduce . Von Neuman n ' s i n s i g h ts were b r i l l ia n t l y c o n f i rm e d w i t h t h e d i s c o v e r y o f D NA ' s s t r u c t u r e a n d t h e genetic code . H i s theory o f automata succeeded in f o r mu l a t i n g t h e s im p l e s t t r u l y g e n e r a l mode l o f s e l f r e p r o d u c t i on ,
not only for machines , but for liv ing
o r g a n i sm s them s e l v e s .
Theoret ical research since Von Neumann has taken several
d i r e c t i o n s . T h e r e c e n t v o l u m e A r t i fic i a l L i fe e d i t e d b y C h r i s topher Langton
( 1 989 )
presents a fascinating
account
o f t h e g e n e r a l r e s e a r c h t h e m e s a s we l l a s t h e d i v e r s i t y o f i d e a s now be i ng pursued . Many o f t h e se impo rtant themes may b e i l l u s t r a t e d u s i n g t h e s i mp l e m o d e l o f o n e - d i m e n s i o n a l c e l l u l a r au tomata i n troduced above . Many of the rece n t d e v e l o pmen t s m a y p r o v i de v a l u a b l e i n S i g h t s i n t o t h e d y n am i c s
246
o f s o c i a l s t ru c t u re s .
L oc a l
r u l e s a n d eme r gen t p rope r t i e s
F o r all e x a m p l e s o f o n e - d i me n s i o n a l c e l l u l a r a u t o m a t a ) let a � t denote the value
(0 or 1 )
1
c o n s i d e r e d b e l ow ,
of
ce l l i a t time t . A l l N c e l l values are updated at the s a m e t i me . U p d a t i n g o c c u r s i n a s e q u e n c e o f d i s c r e t e t im e s teps ,
with the new v a l ue o f each c e l l o n l y d e p e n d i n g on
i t s p r e v i o u s va lue and the p r e v i o u s v a l u e s o f i t s two i mm e d i a t e n e i g h b o u r s . A l l c e l l v a l u e s o f t h e a u t o m a t o n a r e upda ted a c c o r d i n g to the s a m e tr a n s i t i o n r u l e F ,
w h i ch
c a n be e x p r e s s e d a s f o l l o w s : 1 ,
( t +1 )
a . 1
F
a
=
0,
2,
3,
. . . ,
N and
2,
1,
For exam p l e , u n d e r the modu l o 2 r u l e d e s c r i b ed ea r l i e r ,
i s de f i ned a s : ( t +1 )
1
(a ( t )
=
1 -
1
t + a(
» ) modulo 2 for a l l
i +l
i
and
t .
Under the
c o n v e n t i o n i n t ro d u c e d i n W o l f ram ( 1 9 8 3 : 604 ) , F c a n b e d e f i ned explic i t l y . T here are exact l y e i g h t p o s s i b l e of
states of t r iplets
t +1 :
III
110
101
0
1
0
c e l l s at t ime t : 1 00 1
011
0 10
001
000
1
0
1
0
:
'" F
90
The l o w e r l i ne t h e n s h ows the v a l u e s of t h e c e n t r a l c e l l a t t ime t + l ( u n d e r t h e modu l o 2 r u l e ) . H e n c e a n y t r a n s i t i o n rule F may be s p e c i f i ed by a sequence o f eight binary digits .
The modu lo 2 rule defi ned above i s thus rule
01011010 ,
or i n decimal nota t ion ,
precisely 28
=
rule 90 . There are
256 possible tran s i t ion rules for the class
of cellular automata
and F22 are d i sc u s s e d h e r e . F4 , F S O
other tran s i tion rules def ined as : t
t+l : t t+l :
III
101
1 00
011
0 10
001
000
0
0
0
1
0
0
1 10
101
1 00
011
0 10
001
000
0
1
1
0
0
1
0
1 10
0
0
III 0
'" F , 4
'"
F SO
and
247
III 0
1 10 0
101
1 00
0
011
1
0 10
001
1
0
000
1
: '" F 2 2 '
0
T h e t r a n s i t i o n r u l e s a r e de t e r m i n i s t i c
they are
Boolean functions taking the va lues 0 and 1 and comb i n i n g
t h em b y o p e r a t i o n s o f c o n j u n c t i o n , d i s j u n c t i o n , negation .
list
( A com p l e t e
and
o f a l l rules with t he i r Boo l e a n
f o r mu l a t i o n i s p r o v i d e d i n T a b l e 1 o f t h e A p p e n d i x t o W ol fram ( 1 9 8 6 ) . ) T h e r u l e s a r e a p p l i e d r e c u r s i v e l y :
v a l ues
a t t + l a r e n o t o b t a i n e d b y d i r e c t s u b s t i t u t i o n i n a formu la the rules a re
b u t f rom v a l ues a t t ime step t . F in a l ly ,
s p a t i a l l y a n d t empo r a l l y l oca l : e a c h new v a l u e o f a c e l l d e p e n d s o n l y on the v a l u e s of a c l o s e neighbour hood o f s u r ro u n d i n g c e l l s ( no t n e c e s s a r i l y o n l y t h e two a d j o i n i n g c e l l s ) , f o r a f i x e d n u m b e r o f p r e c e d i n g t i m e s t e p s ( usua l l y j u s t one s t e p ) .
The three rules F
4
' F
and F 2 2 are now compared by
'
50
applying them in turn to the same randomly generated i n i t i a l c o n f i g u r a t i o n of 40 ce l l s .
The rules are appl ied
u n d e r t h e a s s ump t i on t h a t t h e c e l l s l i e o n a c i r c l e ,
i.e. ,
w i t h c e l l s 1 and 40 a d j o i n i n g . R u l e F y i e l d s t h e f o l l o w i n g s e qu e n c e : 4 o
t
1 2
ItO 1 2 3 tt 5 6 7 8 9 '
•
•
•
.
•
.
•
.
•
.
.
•
•
.
•
.
.
•
•
.
•
•
•
•
•
•
.
.
ltD 1 2 3
0 1 1 1 1 0 1 0 0 1 0 0 0 0 1 1 0 1 1 1 0 1 1 00 0 1 0 1 1 0 1 0 0 0 0 0 1 1 1 0 1 1 1 000000100 100000000000000 0 0 1 0 0 0 0 1 000000000000 000000 1 0 0 1 00000000000000 0 0 1 0 00 0 1 000000000000
'"
F4
T h e c o n f i g u r a t i o n g e n e r a t e d at t i m e s t e p 1 i s ma i n t a i n e d u n c h a n g e d a t all f o l l ow i n g s t ep s :
the au toma ton h a s
a c h i ev e d a s t e a d y - s ta t e . T h e e v o l u t i o n a r y s e q u e n c e. o b t a i n e d b y a p p l y i n g r u l e to the same i n i t i a l pattern i s q u i t e d i f feren t : t
=
0 1 2
3
4 5
40 1 2 3 4 5 6 7 8 9
.
.
•
.
.
•
•
•
•
.
.
.
.
.
.
•
.
.
.
.
•
•
•
•
•
•
.
•
•
40 1 2 3
FSO
0 1 1 1 1 0 1 0 0 1 0 00 0 1 1 0 1 1 1 0 1 1 0 0 0 1 0 1 1 0 1 0 0 0 0 0 1 1 1 0 1 1 1 1 0 0 0 0 1 0 1 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 1 0 1 0 0 1 0 1 0 0 0 1 0 0 0 1 0 0 0 '" F S O 0 1 0 0 1 0 1 00 1 0 1 1 0 1 1 0 1 0 1 0 1 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 00 1 0 1 1 0 1 0 1 1 0 1 00 1 00 1 0 1 0 1 0 0 1 0 1 0 1 0 0 1 0 10 1 0 1 0 1 0 1 0 1 1 0 1 0 0 1 0 1 00 1 0 1 1 0 1 1 0 1 0 10 1 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 00 1 0 1 1 0 1 0 1 1 0 1 00 1 00 1 0 1 0 1 0 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1
248
F ro m s t e p 2 o n t h e a u t om a t o n e x h i b i t s a g l ob a l p a t t e r n o f c y c l i c b e h a v i ou r , w i t h t h e s am e c o n f i gu r a t i on r e p e a t i n g i n a l te rnat i ng t i m e s t e p s .
6,
8,
.
7,
9,
. . .
(I.e. ,
.
the patterns at step 2,
as a re t h e patterns a t s t e p 3 ,
. . a r e i d e n t i ca l , )
F i na l l y , a ft e r 38 t ime steps , rule F
4, 5,
the automaton g o v e r n e d by
c o n t i n u e s to g e n e r a t e new p a t t e r n s ( a l t h o u g h i t
22 may eventu a l l y g i ve r i se to a c y c l i c pattern w i t h periodicity greater than 38 ) : t = 0
1
2 3
4 5 6 7 8
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
29 30
31 32 33 34 35 36 37 38
40 I 2 3 4 5 6 7 8 9
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
40 I 2 3
0 1 1 1 1 0 1 00 1 0 000 1 1 0 1 1 1 0 1 1 0 00 1 0 1 1 0 1 0 0000 1 1 1 0 1 1 1 00000 0 1 1 1 1 1 00 1 000000000 1 0 1 1 000001 0001 0000000 + F 2 2 00000 1 00000 1 1 1 1 0000000 1 1 0 0 0 1 000 1 1 1 0 1 1 1 000000 0000 1 1 1 00 0 1 00001 00000 1 00 1 0 1 1 1 0 1 000 0000 1 00000 000 1 0 00 1 0 1 1 1 00 1 1 1 000 1 1 1 1 1 00000 1 1 00000 1 1 1 00 0 1 1 0 1 1 1 0 1 1 0000 1 1 000 1 0 1 00000 1 00 0 1 0 0 1 00 0 1 0 00 1 0 1 1 1000000 0 1 0 0 1 00 1 0 1 1 0 1 1 00 0 1 1 1 0 1 1 1 1 1 1 0 1 1 1 0 1 1 000 0 1 00000 1 1 1 1 1 1 1 1 000000 1 0 1 0000000000000000 0 1 00 1 1 1 00 0 1 0000000 0 1 0000 1 1 0 1 1 0 00 000000000000 1 1 1 0 0001 0 1 1 1 000000 1 1 1 00 1 0000 0 1 000000000000 0 1 0 0 0 1 1 0 1 1 0000 1 0000 1 00 0 1 1 1 1 000 1 1 1 0 0000000000 1 1 1 0 1 1 0000 1 00 1 1 1 00 1 1 1 0 1 0000 1 0 1 0 0 0 1 0000000001 000000 000 1 1 1 1 00 0 1 1 00 00 1 1 00 1 1 0 1 1 0 1 1 1 0000000 1 1 1 0000 1 00 1 0000 1 0 1 00 1 0 0 1 0 0 1 1 000000000 1 00000 1 000 1 00 1 0 1 1 1 1 00 1 1 0 1 1 1 1 1 1 1 1 1 00 1 0000000 1 1 1 0 0 0 1 1 1 0 1 1 1 1 1 1 0000 1 1 000000000000 1 1 1 1 00 0 0 0 1 000 1 0 1 0000000000 000 1 00 1 0000000000 1 00001 0 00 1 1 1 0 1 1 0 1 1 000000001 00 1 1 1 1 1 1 00000000 1 1 1 00 1 1 1 0 1 000000000 1 000000 1 1 0 1 00000 0 1 0000001 000 1 1 00 0 0 1 1 0000000 1 1 1 0000 1 00 1 1 1 0000 1 1 1 0000 1 1 1 0 1 00 1 00 1 00 1 00000 1 00 0 1 00 1 1 1 0 000 1 00 1 00 0 1 0 0 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 000 1 1 1 0 1 1 1 1 00 0 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 0 0 1 0000000000 0 1 0 1 0 0000000 1 0 1 1 1 00000000000000 1 1 1 1 000000000 1 1 0 1 1 000000 1 1 000 0 1 000000000000 1 00001 0000000 1 00000 1 0000 1 0 0 1 00 1 1 1 0000000000 1 1 1 00 1 1 1 00000 1 1 1 00 0 1 1 1 0 0 1 1 1 1 1 1 0 000 1 00000000 1 0 00 1 1 00 0 1 0 0 0 1 000 1 0 1 0 00 1 1 00 0 0 0 0 1 0 0 1 1 1 00 0 0 0 0 1 1 1 0 1 0 0 1 0 1 1 1 0 1 00 0 1 1 0 1 1 0 1 0 0 1 0 0 0 0 1 1 0 1 000 1 00001 00001 1 1 1 00 0 0 0 1 1 0 1 0000001 1 1 1 1 0 0 1 00 1 1 1 0 1 1 1 00 1 1 1 00 1 00 0 0 1 0 0 0 1 0 0 0 1 1 0000 1 0000 0 1 1 1 1 0 0000000 1 1 00 0 1 1 1 1 00 1 1 1 0 1 1 1 0 1 0 0 1 00 1 1 1 0 0 0 1 0 0000 0000001 00 1 0 1 0000 1 1 00000000 1 1 1 1 1 1 0 00 1 0 1 1 1 0000 1 0000 1 1 1 1 1 0 1 1 00 1 0 0 1 0 0 0 0 0 0 1 0000 00 1 0 1 1 00 0 0 1 000 1 1 0 0 1 00 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 1 1 1 0 00 0 1 1 00 0 1 00 1 1 1 00 0 0 1 1 1 1 00000010000000 1 00 1 00 0 1 00 1 00 1 0 1 1 1 1 000 1 1 0 1 00001 0000 1 1 1 00000 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 00000 1 0 1 00 0 1 1 00 1 1 1 00 1 000 1 00 0 1 0000000000000001 000 1 1 0 1 1 0 000 1 1 00 0 1 1 1 1 0 1 1 1 0 1 1 1 00 0 0 00 00 00000 1 1 1 0 1 000001 0 0 1 0 0 1 0 1 00000000000 0 1 0000000000010000 1 1 00 0 1 0 0 1 1 1 1 1 0 1 1 0 000000000 1 1 1 00000000 0 1 1 1 00 1 0 0 1 0 1 1 1
249
These examp l e s of the
' ev o l u t i o n ' o f c e l l u l a r a u toma t a
f r o m a r a n d om i n i t i a l s t a t e i l l u s t r a t e t h r e e q u a l i t a t i v e l y d i s t i n c t c l a s s e s o f b e h a v i ou r : e v o l u t i o n t o a s te a d y - s t a t e ( r u l e F4 ) ,
t o a periodic s tructure ( rule F50 ) , o r to a c h a o t i c o r a p e r i o d i c s e q u e n c e o f p a t t e r n s ( ru l e F 22 ) .
S imple transition rules yield a variety of behavioral p a t te r n s ,
' s i m p l e ' a s we l l a s
' co m p l e x ' . P e r h a p s t h e m o s t
remarkable fact is that the i ndependence of the cell values
i n the i n i t i a l , random con f i g u r a t i o n i s des troyed :
the r u l e s genera t e corre l a t i on s b e tween the v a lues o f ce l l s separated b o t h spat i a l l y a n d tempo ra l ly . F o r example, r u l e F2 2 c a u s e s t he i n i t i a l ra ndom s t a t e to e v o l v e t o a
s e q u e n c e o f s t a t e s co n t a i n i n g l o n g - r a n g e c o r r e l a t i o n s a n d nonlocal structure.
I n t h e s pa c e - ti me d i a g r a m a b o v e ,
this
fea ture i s exemp l i f ie d b y the d i s t inctive pattern of downward-pointing ' triangular '
s t ructures made up of zer o s .
T h i s i s t h e p h e n o me n o n o f s e l f - o r g a n i z a t i o n 60 7 ,
( Wo l f r am 1 98 3 :
1 9 8 4 ; C a sti 1 9 8 9 : 5 2 - 5 3 ) . A s y s t e m g o v e r n e d e x c l u s i v e l y
b y a s e t o f l o ca l r u l e s m a y , global
i n t ime , e x h i b i t h i g h e r - l e v e l ,
s t r u c t u r e s a nd d y n am i c s . C om p l e x b e h a v i o u r a n d
g l o b a l s t r u c t u r e s a r e t h u s e m e r g e n t p h e n o m e n a , impl i c i t in the i n t e r a c t i o n of s i m p l e ,
local rules .
T h i s s u r p r i s i n g i n s i ght
l e a d s d i r e c t l y to t h e e x c i t i n g p o s s i b i l i t y t h a t m u c h o f the c o m p l e x b e h a v i o u r e x h i b i t e d by k i n s h i p s y s t e m s m a y be t h e resu l t of local i n teractions governed by simple rules . Le v i - S t r a u s s ' s p r o g r amme m i g h t s t i l l b e s a l va g e d .
Ex c h a n g e s t r u c t u r e s a s
di s c r e t e dynami ca l
s y s t em s
T h e ce l l u l a r a u t oma ta i n t ro d u c e d a b o v e s e r v e as e x a m p l e s of a more gene r a l category o f m a t h ema t i c a l mode l s : dynami ca l
s ys tems .
I n t h e f o l l o w i n g s e c t i o n s I s umma r i z e
some o f the general features of d y n amica l sys tems a n a l y s i s a s deve loped by C a s t i
( 1986 ,
1 9 89 ) a n d Lou i e ( 1 98 5 ) .
I n t u i t i v e l y , a s y s t em i s a p a r t i c u l a r s u b s e t o f t h e real wo r l d con s i d ered a s the object o f s t u d y . A s t a t e i s a s p ec i f i c a t io n o f t h e s y s t em a t a p a r t i c u l a r t i m e - t h e
Z50
a s sump t i on b e i n g t h a t t h e s y s t e m c a n e x i s t i n a s e t o f physi c a l ly d i s t inct states . Note that under the ' relativistic ' Casti
( 1986 ,
state '
v i ew o f s y s t e m c o m p l e x i t y s u p p o r t e d b y
1989 : 4 ) , wha t counts as a
' p h y s i c a l l y d is t i nct
is n o t an i n t r i n s i c p r o p e r t y o f t h e s y s t e m . A g i v e n
sys tem w i l l usu a l l y have many sets of a b s t r a c t sta tes . W h i c h s e t i s u s e d d e p e n d s c ru c i a l l y u p o n t h e o b s e r v e r ' s choice o f ' measur ing apparatus '
and the means at h i s
d i s p o s a l f o r p r o b i n g t h e s t ru c t u r e a n d b e h a v i o u r o f t h e s y s t e m . A n o b s e r va b l e o f a s y s t e m i s s o m e c h a r a c t e r i s t i c o f t h e s y s t e m t h a t c a n , a t l e a s t i n p r i n c i p l e , be meas u r e d . M o r e p r e c i s e l y , a s y s t em 5 i s c o m p o s e d o f a n a b s tr a c t s e t states n =
of
( WI '
f i n i t e or i n f i n i te ) . i.e.,
w
z
'
}
w ' 3
( no te t h a t n m a y b e
Then an observable is a map f: n + R ,
a rule assoc i a t i ng a real number w i t h each state W
o f n . A n y o b s e r v a b l e f i nd u c e s a n e q u i v a l e n c e r e l a t i o n R
o n n d e f i n e d a s f o l l ow s : ( WI ) f =
(w
Z
) f.
(WI '
wZ )
i f
i s in R f i f and only i f
A s s u mm a r i z e d b y L o u i e ( 1 9 8 5 : 8 3 - 8 4 ) , a n
o b s e r v a b l e f w i l l i n g e n e r a l o n l y c o n v e y l i m i t e d i n f o r m ation a b o u t i t s d om a i n n,
b e c a u s e i t c a nn o t d i s t i n g u i s h b e tw e e n
s ta t es lying i n the same equival ence class - e f fe c t i v el y , t h e s t a te s o f t h e s y s tem a r e r e d u c e d n/R
f
.
T h i s i s w h y ' a l terna t e '
o f a s y s tem a r e c r u c i a l :
or
to t h e q u o t i e n t s e t
' n o n e q u i v a l e n t ' desc r i p tions
t h e more o b s e r v a b l e s we have , t h e
m o r e i n f orma t i o n we h a v e on t h e w o r k i n g s o f the s y s t e m . T h i s o b s e r v a t i o n t i e s i n w i t h Ca s t i ' s d e f i n i t i o n o f t h e
comp l e x i t y o f S a s s e e n b y t h e o b se r v e r : co t S ) of n o n e quiva l e n t d e s c r i p t i o n s o f S f o r m e d b y o . can " see"
( " know " ) o f a s y s t e m ,
1 9 89 : 1 8 ) . F inally ,
' T h e m o r e we
t h e f iner d i sc r im i n a t i o n s
w e c a n m a k e a b o u t i t s s t r u c t u r e a n d b e ha v i ou r , consequen t l y ,
i s t h e number
and
t h e more comp l e x it w i l l a p p e a r t o u s '
(Casti
a dynam i c o n a n a b s t r a c t s t a t e - s p a c e n i s a
o n e - pa r a me t e r f a m i l y o f t r a n s f orma t i o n s T : n i n R . An observable f on n i s s a i d to T
t
+ n, with t t b e c ompa t i b l e w i t h
i f a n y t w o s t a t e s W I a n d Wz t h a t a r e e q u i v a l e n t u n d e r f (W ) " ( w ) f ) , are such that ( W ) T for = ( WZ ) T z I l t t
( i .e . ,
=
251 a l l t i n R . H e n c e f a n d T t are c o m p a t i b l e i f T
t
t h e e q u i v a l e n c e c l a s s e s o f Rf ( C a s t i 1 9 8 9 : 3 5 ) .
preserves
T h e o n e - p a r a m e t e r f a m i l y o f t r a n s f o r ma t i o n s T
t i m e b e i n g t h e p a r a m e t e r t ) defi nes
t
( with
a g r o u p o f a u t o m orp h i sms
o n t h e s e t o f a b s t r a c t s t a t e s ( se e L o u i e 1 9 8 5 : 1 00 ) . A di s c r e t e
i s o b t a i ned b y co n s i d e r i n g t i me to b e
dynam i c s
c o m p o s e d o f a s u c c e s s i o n o f ' e l em e n t a r y s t e p s ' .
The
p a r am e t e r t i s t h u s n o t d e f i n e d on t h e c o n t i n uum o f r e a l
numbers R but on the i ntegers Z 2,
J.
3,
Then ,
=
{.
. . ,
-3,
-2,
d y n a m i c s o n fl i s a m a p p i n g T f r o m fl x Z t o fl , each
t
in Z,
that ( i ) (ii )
each (w, O)T
(w,
=
t ) f is a
w for all w
t1) T,
( (w,
-1,
0,
1,
fo l l owing L o u i e ( 1 9 8 5 : 1 1 6 ) , a d i s c r e te
t2) T
=
i.e. ,
for
b i j ec t i o n f r om n to n such
i n fl , a n d t + t 2 ) T f o r a l l w i n fl (w, l
i n Z . F u r t h e rm o r e , ( w , n ) T ( (w, 1 ) T)n , and a l l t ' t 2 1 h e n c e a d i s c r e t e d y n a m i c s i s a c y c l i c s u b g r o up o f t h e =
a u t o m o r p h i s m g r o u p A u t ( fl ) g e n e r a t e d b y T .
T h e e s sence of the idea of a d i sc r e t e dynamical sys tem has a l r e a d y been i l lu s t r ated in t h e e x amp l e s o f t h e o n e - d im e n s i o n a l c e l l u l a r a u t om a ta p r o v i d ed a b o v e . T h e trans i t i on rule
F
( de f i n ed loca l l y ) c o r r e s p o n d s to t h e
mapping T , and the a bs t ract sta tes are the patterns of I now sketch how the
o n e s a n d z e r o s a t each t im e s te p .
e x change structures i n t r oduced i n e a r l i e r chapters may be r e f o r m u l a t e d a s d i s c r e t e d y n a m i c a l s y s t em s . I n C h a p t e r 2 t h e p e r mu t a t i o n recursively as
Wx
o f O b j ( a +x ) w a s d e f i n e d
I<
- j ( w _ ) s , w i t h W o the p e rmu t a t i o n o f a +x l x 1 t h e o r i g i n Ob j ( a ) d e f i n e d a s IV O = C = ( 1 , 2 , 3 , . . . , n ) =
0
and k some i� teger copr ime to
n .
Roug h l y , a structure of
g e n er a l i zed e x change on n l i n e s w i t h o r i g i n Obj ( a )
then
consists of a finite sequence o f permutations ( exchange m a p p i ng s ) o f o r d e r n ,
r e pea t i n g a f te r p s te p s . E a c h
p e r m u t a t i o n i s o b t a i n e d b y t a k i n g t h e kth p o w e r o f t h e p e r mu t a t i o n a t t h e p r e v i o u s st e p .
Let en be the c y c l i c
g r o u p generated b y t h e permu t a t ion c of o r d e r n .
Let
252 A u t ( C } d e n o t e t h e a u t o mo r p h i s m g r o u p o f C n · B o t h C n n a n d A u t ( C } a r e A b e l i a n , w i t h t h e o r d e r of A u t ( C n ) e q u a l n to � ( n ) , the value o f the Euler function for n ( see T a b l e T h e n f o r s o me e l e m e n t g o f A u t ( C ) , n k k « c } g ) g = ( c ) , e t c . H e n c e e a c h e l em e n t o f
2 . 1 in Chapter 2 ) . (c)g
=
c
k
,
A u t ( C ) d e f i n e s a d i s c r e t e d y n am i c s a s f o rmu l a t e d b y n L o u i e ( 1 9 8 5 : 1 1 6 ) , w i t h t r a n s i t io n r u l e d e f i n e d i n t e rms of k .
( T h e s t r u c t u r e s o f s y mm e t r i c e x c h a n g e f o r m u l a t e d i n
Chapter 4 may be redefined as dynamical structures in a s imilar manner . ) There are , howev e r ,
a number o f d i f f e r e n c e s b e t we e n t h e
c e l l u l a r a u toma t o n m o d e l a n d t h e a bo v e r e f o rmu l a t i o n o f e x c h a ng e s t r u c t u r e s a s d i s c r e t e d y n a m i c a l s y s t em s . F i r s t , the tran s i tion r u l e for exchange structures is d e f i ned
g l ob a l l y ,
n o t l oc a l l y . The e n t i r e e x c h a n g e c i r c u i t at t ime
s t e p i +l is def ined recursively in terms o f the excha nge c i r c u i t a t t ime s t e p i
( under the
' standard '
t h e t i m e s t e p s a r e i n t e r p r e t e d as d i s c r e t e However ,
a n equ i va l e nt
' l oca l '
f o r mu l a t e d . F o r e x a m p l e , (i.e. ,
i n t e r p r e t ation
' generations ' ) .
d e f i n i tion has already been
the exchange structure W ( a ,
7,
2)
the seven - l ine st ructure w i t h origin at generation
level a and with k equal to 2; and f i gure 5 . 1 oppos i t e )
s e e f i gu re 2 . 9 i n C h a p t e r 2
i s a l so o b t a i n ed i f o n e s p ec i f i e s
that a man shou l d acqu i r e a spouse f r om t h e same l i n e i n to w h i c h h i s m o t h e r ' s b r o t h e r m a r r i e d i n t he p r e v i o u s generation ( assuming patr i l ineal descent ) . The local rule ( s t a t e d r e cu r s i ve l y )
is thus :
wg ( i + l )
=
wg 2 ( i ) .
I f ma l e s
i n all seven descent l ines apply this rule they will be r e p l i c a t i n g t h e mar r i a ge s o f their MB , MMB , MMMB ( a nd t h e i r F FF ) ,
and the result will be a g lobal structure which
repeats with a period o f three generations ( ' s ta tes ' ) . There are other p o s s ib i l i t ies . structure of W ( a ,
7,
For example ,
the global
2 } w i l l a l s o b e g e n e r a t ed i f e v e r y
m a l e m a r r i e s h i s F F l D D . A l t e r n a t i v e l y ( s e e L emma 5 i n
Chapter 2 ) ,
t h i s i s e q u i v a l e n t t o s t a t i n g t h a t two p a t r i
l i nes renew an a l l i a nce o n l y after
' ma r r y ing out '
for
two consec u t i ve generat ions ( i n genealogical terms , a man
253
t
o
t
I
t
2
Fig.
(c )
=
c
8
K i nship s t ructure W (a , 7 ,
5.1.
s y s t em
wi th
= c ( cf .
period-3 cyc le ,
a
Fig .
i.e. ,
D i s c r e t e d y namical for t = 3 , « (c ) 2 ) 2 ) 2
2 ) .
2.9).
m a r r i e s h i s F F MB S S D ) . S u c h l o c a l r u l e s m a y i n d e e d b e expressed or encoded by the p a r t i cipants i n a number of ways :
i n t e r m s o f t h e i r f u ndame n t a l s o c i a l c a t e g o r i e s ,
m e a n s o f t h e k i n s h i p t e rm i n o l o g y s y s t e m , o r i n t h e
by
s o c i e t y ' s k e y metaphors ( for e xamples , s e e C h a p t e r 2 and Fox ( 1 980 ) ) . T he r e fo r mu l a t i o n o f systems
is
f ramework
kinship
s truc tures
as
d y n am i c
c o m p a t i b l e w i t h t h e m o r e g e n e r a l m e t h o d o l o gi c a l ( the
non - s t a teme n t
or
s tructura l i s t
i n t roduced e a r l i e r . Rough l y ( s ee F i g .
v i ew )
5 . 2 below ) ,
' local
ru les ' may be assoc i a ted with a spec i a l subclass of a theory ' s
'
part ial
potential
model s ' ;
the
' g lobal '
s t r uctures
III
IV
III
t
III
F FMBSSD
VII
IV
~ wg ( i + l )
W
F ig .
5 . 2 .
structure
' Loca l '
rules
=
wg 2 ( j )
MBWBD
( pa rt i a l
triangle
v
VI VII
O /:;.
O /:;.
O /:;.
O /:;.
0 /:;.
� br
(c)
(c)2
�I ) ' 1 �" f1 �" ,;rl rl, aVI " ) ft:iGUttt}t:«( o > ' ) 2 ) 2 � «0 )'
h--+-'-
' � 2
,
p o t e n t i a l mode l s )
and
2
= c
gene r a t i n g
W ( a , 7 , 2 ) w i t h se ven l i ne s and period-3 cycle .
are i n d i c a ted by a sol id
IV
0
t = I
FF ZDD
III
VII
IV
circl e . ( See a l s
o
the
' g loba l '
exchange
Identical genealogica l
Fig .
2 . 9 and Fig .
5.1 . )
positions
�
255
generated by their dynamics ( w i t h a suitable s e t o f necessary a n d sufficient constra ints o n t h e local rules ) a r e m em b e r s o f t h e c l a s s o f p r o p e r m o d e l s . L o u i e ' s ( 1 9 8 5 ) e x t e n s i o n o f s y s t e m t h eo r y , u s i n g t h e f r am e w o r k o f t h e m a t h ema t i c a l t h e o r y o f c a t e go r i e s a nd f u n c t o r s ,
provides
t h e n a t u r a l b r i d g e b e tw e e n t h e S t e g mu l l e r - S n e e d a p p r o a c h and C a s t i ' s ( 1986 ,
1989 ) d i sc r e t e d y n a m i c a l s y s tems .
T h e s e cond d i f f e re n c e w i t h t h e c e l lu l a r au toma t o n mod e l relates to the definition of the initial state or pattern of e xchanges .
T h e s t ru c t u r e o f g e n e r a l i z ed e x c h a n g e ( c f .
C h a p t e r 2 ) i s d e f i n e d o n t h e i n i t i a l p e r mu t a t ion (1, 2,
3,
.
.
c
=
. , n ) of order n . T h e analogous d e f i n i t ion o f
the mathematical s tructure o f r e s t r icted e xchange ( Chapter 4)
i s b a s e d o n t h e p e rm u t a t i o n
( 2m - I ,
r
=
(1, 2)(3, 4)
. . .
2m ) o f o r d e r 2 . T h e f u l l r a n g e o f e x c h a n g e p a t t e r n s
s t a t e s ) o f t h e s t r u c t u r e s W ( a , n , k ) a n d D ( a , 2m , n )
(i.e. ,
n
i s t h e n o b t a i n e d f r o m t h e a u t o m o r p h i sm g r o u p s A u t ( C ) a n d
A u t ( O ) o f , r e s p e c t i ve l y , t h e c y c l i c g r o u p Cn g e n e r a t e d b y m c and the dihedral group O g e n e r a t e d b y r a n d t h e p e r muta m , 2 m - l ) ( 2m , 2m - 2 , 6 , 4 , 2 ) of tion a = ( 1 , 3 , 5 , .
order m.
.
.
In both cases ,
the i n i t i a l e x c h a n g e p a t t e r n s a r e
c h o s e n s o a s t o c o n f o rm t o t h e c l a s s i c a n t h r o p o l o g i c a l t h e o r y o f e leme n t a r y k i n s h i p s t r u c t u re s . s t a t e s a r e thu s . d e c i d e d l y n o n - r a n d o m .
These initial
( C e l l u l a r a u toma ta
can of c o u r s e a l so b e d e f i n e d o n e q u a l l y s p e c i f i c i n i t i a l patterns . ) T h e r e i s a t p r e s e n t no g e n er a l t h e o r y a va i l a b l e f o r t h e d y namics o f k i n s h i p s y s tems in w h i ch some nont r i v i a l i n i t ia l e x c h a n g e c o n f i g u r a t i o n o t h e r t h a n t h e p e r mu t a t i o n s
c
and
r
y i e l d s comp l i c a t e d p a t t e r n s u n d e r t h e a p p l i c a t i o n
o f a v a r i e t y o f l o c a l r u l e s . F ig u r e 5 . 3 g i v e s s om e i n s i g h t i n t o t h e t y p e s o f e v o l u t i on a ry b e h a v i o u r t h a t m a y eme r g e
f r om s u c h a g e n e r a l a p p ro a c h .
In the first exampl e ( left )
the dynamics o f the s tandard mod e l W ( a ,
8 , 3 ) with
g e n e r a l i zed e x c h a n g e o n e i g h t l i n e s i s summa r i zed . U n d e r t h e g e n e a l o g i c a l i n t e r p r e ta t i o n g i v e n e a r l i e r ( s e e F i g . 2 . 6 in Chapter 2 ) ,
this structure represents a kinship model
�®�0 Wo
' " O�� Wo J 8� �
�® """"'"
t ,: O
0.J
«
t
�0� 1
0�0�
./ 0
0----,,
"R
2
Wo
"'-- . � .� . � �a ,
8 ,
Cycl
iC
�_}_
})
iod � ?er
al Gl ob
}�i) g W ,: ) l + i t Wg
r ig
r gene
d if f
bY
a te d
er en
t
8.
Wo
J
----,0 , �0�
N V' 0'
�' �
----i �
.�/ . Y--- '�'� .
(
�----.-'®-
�
. �� " W � � ·
,:
, " 0
th e
�
' " 't:' .�,� �. "'-- .� .
�
t
2)
str u
c tur
l l oca fro
iai init
m
sta
es
rule th r e t es
-
,:
} ;::.
��
w} � .� �.��. . .....,
liC Cy c
e st e a
dY
st at
e
� ?er
iod
2)
257
i n w h i c h male ego m a r r i e s h i s MMBDD o r FMBSD a n d t h e e x c h a n g e s t r u c t u r e r e p e a t s i t s e l f i n a l t e r n a t i n g generations ( i . e . , w i t h a period-2 cycl e ) . A l ternative l y , g i ven a s y stem based on e i gh t descent l i nes or
' exchange u n i t s ' ,
the global pattern i s generated by assuming that a l l m e n m a r r y a c c o r d i n g t o t h e l o c a l r u l e wg ( i + l ) I n t h e s e c o nd e xa m p l e ( F i g . 5 .
rule
wg
( i +l )
=
wg3 ( i )
is
i n i t ia l c o n f i gu r a t i o n , l ine 6
marries
a p p l i ed
3
,
wg 3 ( i ) .
=
centre ) the same local
to
a
d i ffe re nt
slightly
again def ined on e i g h t l i nes . Here
line I as well as into l i ne 7 ,
into
thus
t a k i n g a d v a n t ag e o f t h e m a r r i a g e p o s s i b i l i t i e s d e f i ne d for succe ssive generations
the
under
previous
e x a mp l e .
S u r p r i s i n g l y , a f t e r o n l y two t im e i n t e r v a l s ( g e n e r a t i o n s ) , f r om t
t h e s y s t em h a s a t t a i ned a new g l o b a l p a t t e r n : on ,
3
=
i n s tead of a n exchange structure with general ized
exchange ,
the exchange s tructure is now based on d i rect w i t h t h e s a m e p a t t e r n ( w ) m a i n t a i ned
( s ymme t r i c ) e x ch a n g e ,
3
u n c h a n g e d f r o m t h e n o n . T h e m o d e l h a s e v o l v e d to a s t e a d y s t a t e u n d e r t h e l o c a l r u l e wg ( i +l ) e x c h a n g e i s n o w s y mm e t r i c a l ,
=
wg 3 ( i ) .
And s ince
t h i s rule may i t s e l f be
r e p l a c e d or f o rmu l a t ed m o r e e l e g a n t l y a s : wg ( i +l ) I n t h e t h i r d e x am p l e ( F i g .
5.3,
now marry i n t o two other lines : t h e r u l e wg ( i +l )
w9 3 ( 1 )
=
structure of period 2 , exchanges reversing now
be
l ine
I
and
l i ne 5 . Under
but w i th t h e p a t tern o f marriage
i tself
in
ea ch gene r a t i o n .
o ne ' s w i f e - g i vers are d e f ined
as
I nstead
t he k i n s h i p s t r u c t u r e
g e n e r a t e d b y t h e r u l e wg ( i +l )
previous genera t io n ,
wg ( i ) .
t h e s y s t em t h e n y i e l d s a g l o b a l
o f a s e c o n d - c ou s i n m a r r i a g e ru l e , may
=
r i g h t ) men i n l i n e 4
the
=
i.e.
wt ( i ) ,
w i f e - takers
of
the
a n d t h e m a r r i a g e p a t t e r n i s c o m patible
w i t h a r u l e of p a t r i l a t e r a l c r o s s - c o u s i n m a r r i a g e . T h e s e e x a m p l e s o f a s y s t em ' s d y n a m i C S g i v i n g r i s e t o a variety of exchange structures have not , of
course ,
been
e x t r a c t e d f r om k i n s h i p d a t a or e t h n o g r a p h i c d e s c r i p t i o n s of actual societ i e s . poss ibility :
real
' short circui ts '
T h e mode l s i l l u s t r a t e t h e f o l l ow i n g
k i n s h i p n e tw o r k s c o n t a i n a n y n u m b e r o f o r a l t e r n a t i v e w a y s o f t r a c i n g genealogical
258
rela t i on s h i p .
The a p p l i c a t i o n of a s imp l e ,
rule f o r the a ll o c a t i on o f spouses m a y , applied ,
if con s i s t e n t l y
r e s u l t i n a f a r - r e a c h i n g t r a n s f o r ma t i o n o f t h e
original system,
e i t h e r a t t h e l e v e l o f t h e em p i r i c a l
of kinship relations or in
ne t work
loca l l y defined
conc e p tion
of
t er m s
t h e s oc i e t y ' s
of
the i d e a l s t ructure of exchang e .
Here aga i n ,
s im p l e ru l e s m a y g i v e r i s e t o u n e x p e c t e d d y n am i c s .
P R OH I B I T I O N S , M U L T I P L E E X C H A N G E S A N D S E M I G R O U P S
T h e i n t r odu c t i o n o f m u l t i p l e e x c h a n g e s a n d a l t e r n a t e ma r r i a g e s in t h e i n i t i a l s t a t e o f t h e mode l W ( a , ( s ee F i g . 5 . 3 )
req u i res
8,
C ourr e g e - L or r a i n
mode l . U n d e r t h e s t a n d a rd
mod e l
introduced
i n C h a p te r 1 a n d a p p l i e d t h r o u g h o u t t h i s b oo k , an e l em e n t a r y k i n s h i p associa ted h,
m,
3)
an e x t e n s i o n t o t h e b a s i c k i n s h i p
structure
p e r m u t a t i o n gr o u p
X
=
(5,
(5,
G)
h, is
m, on l y
r)
with
the
defined
a n d f are o n e - t o - on e ma p p i n g s o f 5 o n t o 5 ,
if
i.e.,
u n d e r t h e a s s u m p t i o n t h a t t h e y a r e p e rm u t a t i o n s o f 5 s u c h that f
=
hm
( u n d e r t h e usual comp o s i t i o n o f map p i ng s ) .
U n d e r t h e s e a s s u m p t i o n s t h e s e t o f p e rm u t a t i o n s o n 5 generated by h , m ,
a n d f forms a g r o u p :
the compo s i t ion o f
p e rmu t a t i o n s i s a s s o c i a t i v e , t h e r e i s a u n iq u e i d e n t i t y
p e rm u t a t i o n e , a n d e v e r y p e r m u t a t i o n
such that xx- l
=
1) .
Wo
x - Ix
= e
x
has an inverse x-I
( s ee a l s o t h e a p p end i x to C h a p t e r
I n f i g u r e 5 . 3 ( t o p , c e n t r &) t h e i n i t i a l c o n f i g u r a t i o n i s not based on
a
o n e - t o - o n e ma p p i n g : e leme n t 6 i s
m a p p e d o n t o e l eme n t 7 a s we l l a s o n t o e l em e n t 1 . I n o t h e r wo r d s ,
de scen t l i n e 6 h a s t w o w i f e - g i v i n g l i ne s : mu l t i p l e
exc hanges a n d a l te r n a t e
ma
rriages cannot b e
permu t a t i on s , and t h e k i ns h i p
associa ted wi th a
grou p .
A
s t ruc ture
mor e
w i ll
re p r e s e n t e d not
by
be
general approach is needed .
One obvious solut ion i s to loosen the g roup con s tr a i n t s , i.e. ,
drop e i ther one
or
b o t h o f t h e st i p u l a t i o n s f o r an
259
i d en t i t y e l eme n t a n d i n v e r s e mapp i n g s .
T h e s im p l e s t a n d
m o s t g e n e r a l m a t h em a t i c a l s t r u c t u r e f u l f i l l i ng t h e s e c o n d i t i o n s i s a s e m i g r o up . Semi groups
A s em i g r o up
is a set provided w i th an a s s oc i a t i v e b i na r y
o p e r a t i o n t h a t i s c l o s ed . S em i g r o u p s a r e o f w i de s i g n i f i cance : under t h e usual composi t i o n of r e l a t i on s , a n y s e t o f b i n a r y r e l a t i o n s g e n e r a t e s a sem i g r o u p . F o r e x am p l e , l e t R a n d 5 b e b i n a r y r e l a t i o n s o n s o me s e t O b j .
c omp o s i t i o n
Then the
o f R with 5 i s t h e b i n a r y r e l a t i o n RS o n Obj
d e f i n e d a s RS
{(x,
=
z)
I (x , y ) in R and ( y ,
z )
def ined as
{(y, x) 1 (x, y)
c a l l e d t h e i n ve r s e o f R ) A n e l em e n t R
S}.
in
Reca l l that the con verse of any b i nary r e l a t i o n R
is
in R } . The converse o f R ( also
i s denoted b y R
-1
a semigroup Sc i s regul a r i f and o n l y i f t h e r e i s a n X i n S c s u c h t h a t RXR = R . A s e m i g r o u p i s of
r e g u l a r i f a l l o f i t s e l eme n t s
are
regul ar
.
An important
c l a s s o f s e m i g r o u p s i s t h e c l a s s o f i n v e r s e s e m i g r o up s . A semigroup S
c e l eme n t R i n S
RXR
=
i s c a l l e d a n i n v e r s e s e m i g r o up i f f o r e v e r y
there e x i s t s a n element X i n S such that c c R a n d XRX = X ( cf . B o y d e t a l . 1972 : 40-41 ) . R and X
a r e c a l l e d g e n e r a l i zed i n v e r s e s
and i t can be shown that
r e g u l a r i ty i mp l i e s t h e e x i s te n c e o f g e n e r a l i ze d i n v er s e s ( K i m a n d R o u s h 1 9 8 3 : 5 4 ) . S em i g r o u p s m a y c o n t a i n a z e r o
e l emen t
0:
an e l ement w i t h t h e p ro p e r t y t ha t ,
e l em e n t i n S C ' O R i de n t i t y e l e m e n t
SC '
=
RO
=
O . Finally,
of Sc if IR
=
I
for every
i s c a l l ed an
RI = R holds
I f z e ro e l eme n t s a n d i d en t i t i e s e x i s t ,
for all R in they can be
s ho w n t o be u n i q u e . A s e m ig r o u p w i t h a n i de n t i t y e l e m e n t is
c a l l e d a m o n o i d . Therefore
a g r o up i s a m o n o i d i n w h i c h
e v e r y e l em e n t h a s a n i nv e r s e . T here
is
a simple way to re l a te the theory
of
semi groups
t o t h e e x a m p l e s o f d y n a m i c a l s y s t e m s w i t h mu l t i p l e e x c hanges i l l u s t r a t ed i n f i gu r e 5 . 3 ( ce n t re a n d r ig h t ) . F i r st ,
b inary relat ions defi ned on a f i n i t e set Obj ,
for
it is o ften
c o n v e n i e n t t o c o n s i d e r t h e B o o l e a n ma t r i x R a s s o c i a t e d
w i t h e a c h b i n a r y r e l a t i o n R . T h e r o w s a n d c o l um n s o f R are indexed by Obj , w i t h R [ i , j ] is in R , case .
=
I
i f i Rj , a n d R [ i , j ]
i.e. ,
if and only if ( i , j )
o if
this i s not
the
T h i s g i v e s a o n e - t o - o n e c o r r e s p o n d e n ce b e tween t h e
b i na r y r e l a t i o n s o n O b j and n x n Boolean ma t r i ce s . any binary relation R,
the converse relation R-
I
c o r r e s p o n d s t o t h e t r a n sp o s e R T o f t h e m a t r i x R ,
For
then i.e,
the
B o o l e a n ma t r i x o b t a i n e d b y i n t e r c h a n g i n g t h e r o w s a n d
T h a t i s , R U , j ] = R [ j , i ] . C om p o s i t i o n o f T
c o l um n s o f R .
r e l a t i o n s ( t he a s s o c i a t i v e sem i g r o u p o p e r a t i o n ) t h e n
c o r r e s p o n d s t o t h e B o o l e a n p r o du c t o f m a t r i c e s . T h i s p r o d u c t i s t h e s a m e a s t h e p r o d u c t o f o r d i n a r y ma t r i c e s , except that add i tion and mul t i pl ica t ion are Boolean . =
H e n c e RS [ i , j ] 0 + 0
o
I
I
I
+
L R[ i , k ] S [ k , k
I
o
0
+
o
0
j ] , with o and
0
I + I
I
1.
L e t Wo b e t h e B o o l e a n m a t r i x c o r r e s p o n d i n g t o t h e i n i t i a l
p a t t e r n o f e x c h a n g e r e l a t i o n s W o i n f i g u r e 5 . 3 ( t o p , centre ) . T h e n , u n d e r t h e e x c h a n g e r u l e d e f i n e d a s wg ( i + l ) I 0 0 0 0 a a
0
I
a 0
0 0 0
o
I
0 0
0 0 0 0 0
I 0
0 0 0 0 0
1
0 a 0
1 0 a 0
W
,
(W )3 0
l
I 0
0 0
I
0 0 0
W
2
(
W
I
)
3
1
I
0
0
0
I 0 0 0 0 0
I 0 0 0
I 0 1 0 0
0 0
I
0
1
I 0 0 0 I 0
1 0 0 0 0 0 I
I 0
1
0 0 0
0 0
0 0
0 0 0 0 0
,
etc.
1
I 0 0 0 0 0 I 0 0 0 0 0
I 0 0 0 0 0 0
a 0
I 0 0 0 1 0 I 0
0
0
0
I 0 0 0 0 0 0 0 0
1
I a 0 0 0 0 1 0 I 0 I
I
0 0 0 0 0 0 0
3
I a a a 0
0 0 0 0
I 0 0 a 0
0 0 0 0
W
0 0 a
0 0 0 0 a
wg
I 0 0 0 0 0
,
(i ) ,
261
0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 Hence "
4-
"
3
( "2
)3
1 0 1 0 1 0 1 0 0 1 0 1 0
0 1
and the s y s tem
1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0
e v o l ves to a steady s t a t e . Note t h a t ( " ) T 3 "3 ' corresponding to the fact that the exchange rela tion =
i s symme t r i c f o r a l l t � 3 .
IV
t
T h i s t y p e o f e x c h a n g e s y s t em i s g e n e r a t e d b y r e l a t i o n s
w h i c h a r e n o t n e c e s s a r i l y o n e - t o - o n e m a pp i n g s o r p e r mu t a t i o n s . T he m o d e l c a n b e forma l i zed a s a k i n s h i p s t r u c t u r e i n a n a logy to the procedure sketched in Chapter 2 . L e t t h e b a s i c s e t Obj ( co n s i st i ng of t h e k i n s h i p u n i t s
d e f i n e d o n n d e s ce n t l i n e s ) b e p a r t i t i on e d i n t o gen e r a t i on l evel s ,
with each G c o r respond i n g to the state of the t s y s tem at t ime i n te r v a l t . Define the pat r i l i ne a l a nd
m a t r i l ineal relat ions f and m on the product Gt x G and t+l t h e m a r r i a g e rela t i on h on G x G . T h e n , i n a n a logy to t t t h e C o u r r e g e - L o r r a i n m o d e l , ( Ob j , h , m , f ) w i t h f hm =
d e f i ne s a k i n s h i p s t r u c t u r e a s s o c i a te d w i t h the sem i g roup g e n e r a t e d by h , m , a n d f ( w i t h compound r e l a t i o n s d e f i n ed o n the relevant products o f gener a t io n levels ) . A l l relations may of course be expressed as
n
x n Boolean
matrices . However ,
t h i s exten s i on of the model s t i l l assumes that
t h e b a s i c e l e m e n t s o f t h e s e t O b j a r e d e f i n e d i n a c c o r dance w i t h the two rules introduced in Chapter 1 :
( a ) t h e u n i ty
o f t h e s i b l i n g g r o u p ( me r g i n g s a m e - s e x s i b l i n g s a n d parallel c ou s i n s ) , a n d ( b ) ma r r iage p r e s c r i p t i o n ( i . e . , s p o u s e s o f s tructu r a l l y eq u i v a l e n t p e r s o n s a r e c o n s i d e r e d t o b e s tructu r a l l y equi valen t ;
s e e f i g u r e 1 . 4- i n C h a p t e r 1 ) .
U n de r t h e s e a s sump t i o n s t h e e l emen t s o f Obj c o r r e s p o n d to t h e reduced s i b l i n g g r o u p s r e p re s e n ted ( u nder the s t a n d a r d genea logical nota t io n ) by a cir cle and a t r iangle .
262
H e n c e , u n d e r t h e m o d e l ( Ob j , h , m , f rela tions
such that f
=
f) ,
w i th h , m , and
the s i b l ing relation i s
hm ,
a s sumed t o b e equal t o t h e id e n t i ty r e l a t i o n e . A r e f i n e m e n t o f t h e mod e l m a y b e o b t a i ned i f o n e i n t r o d u c e s o n e or more types of s i b l ing relation not necessarily equa l to the iden t ity . Boyd , Haehl and Sailer ( 1972 )
h a v e dem o n s t r a t e d t h a t a
model based on inverse semigroups exists which i s a b l e t o p roduce a range of s tructural redu c t i o n s s im i l a r to that o b t a i n e d f r om a L o u n s b u r y - t y p e m o d e l o f a n Oma h a s y s tem ( c f . Lounsbury 1964 ;
i n v e r s e s e m i g r o u p s can a l s o be a p p l i ed
to a n y o f t h e o t h e r w e l l known t yp e s o f k i n s h i p s y s t em ) . T h e i r m o d e l is b a s e d o n t h e f o l l ow i n g a s sump t i o n s . F i r s t , there is a set 5
=
{d, �,
,
*}
+,
( t he ba s i s o r a l p ha b e t ) l �
t h e e l eme n t s o f w h i c h m a y b e com b i n e d i n s t r i n gs . H o w ev e r ,
n o t a l l s t r i n g s o f b a s i c s y m b o l s a r e p e r m i t t e d . W e l l - de f i ned s t r i n g s a r e i n t r o d u c e d by
adjoining
a
z e r o e l em e n t 0 a n d
t h e fol lowing equa t io n s : uO
Ou
=
( 3 ) aa
a ,
and
(1)
(2)
(4)
xy
°,
+a - = * ,
{d,
for all u in
{d, �} .
Ix = xl
=
00
0,
�o
d�
'j' ,
+,
0,
*} ,
x,
y
in
{+, -} ,
and
a
in
In addition , a n identity element 1 is def ined by =
x for a l l strings
x.
T h e i d e n t i t y e l eme n t i s
i n t e r p r e t e d a s t h e emp t y s t r i n g ,
i.e.
the s t r i ng cons i s t in g
of no symbol s . U n d e r t h e s e c o n s t ra i n t s , combined .
The
c o n ca te n a t i on
b a s i c s ym b o l s a n d s t r i n g s m a y be of
associative b inary operation ,
s t r i ng s i s clearly a n i . e . x ( yz ) = ( x y ) z a n d t h e
comp o s i t i o n o f s t r i n g s c a n b e w r i t t e n unamb i g u ou s l y w i t ho u t parentheses
as
xyz .
as kinship relations
We l l - d e f i ned s t r i n g s a re i n t e r p r e ted ( the
n o t a t i o n i s equ i va l e n t to
the
s c h em e i n t r o d u c e d b y R o m n e y a n d D ' A n d r a d e ( 1 9 6 4 ) ) . B o y d e t al. x
i n t r od u ce o n e a d d i t i o n a l a s s um p t i on :
for every s t r i n g
t h e r e i s a unique reciprocal or i nverse x- I
k i n s h i p rela tion ) such tha t :
( the converse
263
xx- 1x
(5)
x a n d x - 1 xx - 1
=
x
-1
T h e r e s u l t i ng m a t h e ma t i ca l s t r u c t u r e i s a n i n v er s e s em i
g r o u p c a l l e d t h e f r e e i n v e r s e s e m i g r o up f o r k i n s h i p a n d i s abbreviated FISK . As i nt erp r e te d by Boyd et a l .
( 1972 :
4 3 - 4 5 ) FISK i s a g e n e r a l s t ru c t u r e . E v e r y o t h e r k i n s h i p s y s t e m c a n t h e n b e c o n s i d e r e d a s a c o n g r u e n c e o n F I SK ,
i . e . a s a f u r t h e r r e d u� t i o n o b t a i n e d b y d e f i n i n g a s u itable s e t of e q u i v a l e n c e r e l a t i o n s on t h e s t r i n g s o f F I SK . N o t e that an equ ivalence relation C o n a semigroup i s a congruence if
i s c om p a t i b l e w i t h t h e s e m i g r o u p b i n a r y
C
operat ion .
I n the case of FISK ,
d i n F ISK .
F u r t h e rm o r e ,
is a congruence if and
C
o n l y i f a Cb a n d c C d i m p l y ( a b ) C ( c d ) f o r a l l a , b , c , a n d i f C i s a c o n g r u e n c e o n F IS K ,
t h e n F I S K / C i s a s e m i g r o u p c a l l e d t h e f a c t o r s e m i g r o up o r quotient
s em i g r o up � f F I S K
(a )t =
+ FISK /C d e f i ne d a s a)
over C a n d t h e m a p p i n g t : FISK
[a ] ( th e equivalence c lass of
i s c a l l e d t h e c a n o n i c a l h om o m o rp h i s m . T h e m a i n focus o f Boyd e t a l .
i s o n t h e u s e o f s em i
g r o u p t h e o r y a s a m e a n s o f g ene ra t i ng a n d compa r i n g
d i f f e r e n t s y s t e m s o f k i n t e r m i n o l o g y . A k i n s h i p termi nol ogy i s d e f i n e d as a f u n c t i o n f f r o m t h e f r e e i n v e r s e s e m i g r o u p FISK onto
t h e s e t o f k i n s h i p t e rms
term ' undef i ned ' ) . F I SK ,
namel y ,
c o n g ru en c e .
ff
-1
f i n d u c e s an
( augmented by a special
equ i valence relation on
, which i s i n general not necessarily a
I f r i s a t e r m i n o l o g i c a l equ i v a l e n ce on FISK ,
t h e n , a c c o r d i n g t o B o y d e t a 1 . ( 1 9 7 2 : 44 - 4 5 ) , t o f ind t h e ' large s t '
or
' co a r se s t '
t h e p r o b l em i s
congruence C r that i s
c o n t a i ne d i n T s u c h t h a t i f C i s a n y o t h e r c o n g r u e n c e contained in T, defined as C FISK
}.J
S
Thus ,
t h e n C i s a l so c o n t a i ne d i n C ' C
{ (x ,
=
T
'1 )
I ( sx t ,
T
syt )
in T for all
s, r
is t
in
for the s o - c a l l e d Omah a I k i n s h i p t e rminology
s y s t e m s ( s e e L o u n s b u r y 1 9 64 ) ,
t h e m a x i m a l c o n g r u e nc e
conta i ned i n the termi n ology appears to be i nduced by the f o l l ow i n g s e t o f t h r e e e q u a t i o n s : ( 6 ) +0( 7 ) a *a
+� -
a
* ( Ha l f - s i b l i ng r u l e ) ,
f o r a 0 o r � ( S ame - se x merg i n g r u l e ) ,
264
(8)
+�*o-
=
+�* ( S k e w i n g rule I ) .
Omaha I I t e r m i n o l o g y s y s tems are ob t a i ned by s u b s t i t u t i n g t h e f o l lowing equa t i o n f o r S k e w i ng r u l e I : ( 9 ) �*o-
�.. ( Sk e w i n g r u l e I I ) .
=
A third variety of
' Om a h a '
s y s te m s ( Omaha I I I ) i s o b t a ined
b y t h e f o l l ow i n g r u l e : ( 10 ) �*o
�+o ( Skewing rule I II ) .
=
L o u n s b u r y ' s O m a h a I V s y s t em s a r e g e n e r a t e d b y a p p l y i n g S k ewing r u l e s I I and I I I ( to g e t h e r w i th t h e h a l f - S i b l i n g and merg ing rules ( 6 ) and ( 7 » g e n e r a te a f i f t h v a r i e t y ,
. F inal l y , B o y d e t al .
the so - c a l l ed Omaha L i neage
s y s t em s , b y a d d i n g t h e f o l l o w i n g e q u a t i o n t o t h e O m a h a I rule s : ( 1 1 ) a -b +a = a f o r a a n d b i n { d , � } . 1 6 ( U n i q u e P a r e n t hood a x i om ; 1 9 7 2 : 43 -44 , 4 7 . ) As demon s t ra t e d b y Boyd e t a l .
( 1 9 7 2 : 4 6 - 49 ) ,
c o n g r u e n c e s a s s o c i a t e d w i t h t h e Oma ha I , ' l i nea ge '
II,
the
III,
IV and
te rmi nolog ies are related by i n c l u s i o n mapping s .
F o r example ,
t h e c o n g ruence a s so c i a ted w i t h t h e Omaha I I
e q u a t i o n s i s a r e du c t i o n o f t h e c o n g r u e n c e g i v e n b y t h e Omaha I rules r e fi n emen t
( cf . Chapter 1 )
( c o n v e r s e l y , Om a h a I i s a
of Omaha I I ) s i nce the
eq u i v a l en c e c l a s s e s
genera ted by Omaha I a r e a l l conta ined i n c l a s s e s g i ven b y the congruence under the Omaha II rules : equiva lence of s t r i n g s i n Omaha I impl ies Omaha II equ i v a lence . More precisely ,
the quo tient semigroup a s socia ted w i th the
O m a h a I I c o n g r u e n c e i s a h o m o mo r p h i c i m a g e o f t h e q u o t i e n t s em i g r o u p a s s o c i a t e d w i t h t h e O m a h a I c o n g r u e n c e o n F I S K under the
' inclusion
respectively ,
I
m a p p i n g q> .
That is ,
if X and Y are ,
equi valence classes a s s o c i ated w i t h Oma ha I
and Omaha I I s y stems ,
t h e n ( X ) q> = Y i f a n d o n l y i f X i s a
s u b s e t o f Y ( B o y d e t a l . 1 9 7 2 : 46 ) . T hu s ,
IV ;
t h e Omaha L i n e a g e s y s tem i s a red u c t i o n o f Oma ha
Omaha IV is a reduc t i on o f Omaha I I I as w e l l as Omaha
I I , and b o t h Omaha I I and Omaha III are reduc t i o n s of Omaha I . F i na l l y , an
importan t
c l a s s o f i s o mo r p h i sm s be t w e e n
265
FISK c o n g r u e n c e s
cr
i s genera ted by the
that i n terchanges the
� in certain
' ma l e '
and
s ym b o l s � a n d
r u l e s o r e qu a t i on s . F o r e x am p l e , a p p l y i n g ( +�*�-
t o the Omaha Skewing rule I gives : ( +� * � - = + 0 * )
' sex chang e ' mapping ' fe ma l e ' =
cr
+ � * ) cr =
whic h i s equivalent to Lounsbury ' s Crow
Skewing rule 1 . 17
The other C r ow e q u a t i o n s are e a s i l y
o b t a ined b y app l y i ng T h e Boyd , H a eh l ,
cr
t o t h e rema i n i n g Omaha rules .
a n d S a i l e r a p p l i ca t i o n o f s e m i g r o u p
theory has rece n t l y been i ntroduced as an example i n a textbook on a p p l i ed abstract a lgebra for graduate students
i n m a t hema t i c s ( L i d l a n d P i lz 1 984 : 3 9 7 - 408 ) . W i t h i n
a n th r o p o l o g y t h e r e i s now a sma l l b u t g ro w i n g c o r p u s o f a n a l y s e s r e p r e s e n t i n g a s p e c t s o f k i n s h i p s y s tems i n t e rm s o f s em i g ro u p s t ru c t u re s . R ec e n t w o r k by L i u ( 1 9 8 6 ) a n d ,
in
p a r t i c u l a r , by Read ( 1 984 ) provides a m o s t wel come d em o n s t r a t i o n o f h o w k i n t e r m i n o l o g y s t r u c t u r e s m a y b e
r e l a t ed t o the a l g e b r a i c f ramew o r k of s e m i g r o u p t h eo r y . 18 in
The a lgebraic a pproach need not ,
i n f a c t , b e f o r mu l a t e d
terms o f genea l o g i c a l a ssump t i o n s and i s l o g i c a l l y
i ndependent o f the
' extensionist ' pos ltion defended by Lounsbury ( 1 96 5 ) and Scheffler and Lounsbury ( 19 7 1 ) . 1 9 T h e u s e o f sem i g r o u p t h e o r y a s t h e p r e fe r red f ramewo rk f o r r e p r e s en t i n g and ana l y s ing r e l a t i o n a l com p l e x e s d i s c e r n i b l e a t d i s t i n c t l e v e l s o f k i n s h i p p h e n om e n a (e.g . ,
genealog ical space , kin terminology ,
a p p l y i n g k i n t e rm s ,
rules for
the marriage system and mode l s of
a l l i a n c e a n d e x c h a n g e ) , a s w e l l a s f o r t h e c om p a r i s o n o f
d i f f e r e n t k i n s h i p s y s t ems h a s a n o b v i o u s a d v a n t a ge . T he
p r o p e r t i e s o f d i s p a r a t e s t r u c t u r e s m a y b e p r e c i s e l y d e f ined a n d c o m p a r e d by e x p l o r i n g t h e p o s s i b i l i t y o f h om o m o r p h i c m a p p i n g s and homo l o g i e s . F u r t h e rm o r e ,
the a lgebraic theory
o f f o r m a l l a n g u a g e s a n d a u t o m a t a makes e x t e n s i v e u s e o f
s em i g r oups ( e . g . ,
P i n 1986 , L e Chenadec 1986 ) .2 0
The
f u r t h e r d e v e l o pme n t o f s e m i g r o u p mode l s prom i s e s a new
s y n t h e s i s i n k i n s h i p s t u d i es and the p r o s p e c t of a dd r e s s
i n g t h e f u nd a me n t a l p r o b l e m o f how a s y s t em ' s c o n s t i t u a n t
p a r t s a n d subdoma i n s a c t t o g e t h e r
t o p r o d u c e t h e c o m p l e x i ty
266
o f the who l e . However , a n y e x t e n s i o n t o t h e c l a s s i c e x c h a n g e p a r a d i gm m u s t
wi th the p r o b lems posed by the
first deal
e x i s tence o f neg a t i v e m a r r iage r u l e s a n d p r o h i b i t io n s .
P r o h i b i t i o n s o n t h e r e d up l i c a t i o n o f r e l a t i o n s
A numb er o f p r o h i b i t i o n s g o v e r n i n g m a r r i a g e and t h e
s t r u c t u r e o f a l l ia nce rela t i o n s o c c u r in both and
k i n s h i p s y s t em s . F o r e xa mp l e , acco r d i n g t o
' complex '
Van Wouden
( 1968 : 9 - 10 ) ,
d e s c r i b ed b y P .
Drabbe
t h e s y s tem o f so c i a l o r g a n i s a t i o n
f o r J amde n a ,
the
central
t h e T a n i mb a r g r o u p i n e a s t e r n I n d o n e s i a , by
a t ri ple classi ficatio n :
g r o u p ( m i r w a n ' a wa i , ( n duwe ,
wi fe - g i v er s
' e l em e n t a r y '
t a ke r s ( uranak ,
'
one ' s
l i te r a l l y '
lord ' ,
'
is
cha racteri sed
patril ineal
' me n brothers ' ) ;
descent
on e ' s
mas t e r ' ) ; a n d one ' s w i f e
sister s child ' ) '
gives one ' s daughters
own
i s l a nd o f
-
t h e g r oup to wh i c h o n e
and w h i ch is regarded a s i n f e r i o r .
T h e ma r r i a g e s t r u c t u r e i s a s y mme t r i c a l a n d e x c l u s i v e m a t r i l a t er a l by which may or
the
e i t h e r ma r r y a an
swa l l
o f o n e ' s n du w e
( b a t - wa l j e t e ) .
int ai ned .
One
( b a t e n duwe )
Marr iage with an
is proscribed ' because in tha t case we should
ow i n g
our
a s pouse
mo t h e r
occu r ,
own
b
loo d
'
( 19 6 8 : 1 0 ) .
'
f r om t h e n d u w e g r o u p ( t h e p a t r i g r o u p o f
s b r o t h e r ) , Howe v e r , a l t h o u g h l e v i r a t i c u n i o n s
two b r o t h e r s m a y n o t marry t w o s i s t e r s - t h e f i r s t
married
wou ld consider t h i s a s
even as
' ma k i n g u s e o f h i s w i f e '
The
ma
Idea l l y , one son ( the eldest o r the y ounges t ) shou l d
obtain his
r e l a t ionship is
daughter
u n re l a t ed woman
u r a n a k - w o ma n be
c r o s s - c o u s i n m a r r i a g e i s t h e de s i g n a t ed m e a n s
n d u we - u r a n a k
e l emen t a r y
' a b l ow in the f a ce ' , o r ( V a n Wouden
1968 : 10 ) .
s tr u c t u r e o f ma t r i l a te r a l c r o s s - c ou s i n
marriage i s t hu s constrained by a r u l e prohi b i ting t h e r e p l i c a t i o n o f n du we - u r a n a k
relations by
s i m i l a r res tr i c t i o n i s r e p o r ted f o r e l de s t
son is
mother ' s
the
two
b r o the r s .
Kei
i s l a nd s :
ob l i ge d t o m a r r y t h e e l d e s t daug h t e r o f h i s
brot her - b u t once t h i s mar riage has been
conc luded,
A
an
a l l o t h e r s o n s a r e p r oh i b i te d f rom m a r r y i n g
267
' in t h i s degree o f consangu i n i t y '
( 1966 : 1 2 ) .
The Nuer r u l es of e xogamy and incest ana lyzed by
E v a n s - P r i t c h a r d i n h i s c o n t r i b u t i o n t o t h e 1 9 4 9 F e s t s c h r i ft i n h o n o u r o f R a dc l i f f e - B rown p r o v i d e a n o t h e r e xa m p l e o f a
clear proh i b i t i o n on the redu p l i ca t io n of r e l a t ions , a k i n s h i p s y s t e m w i t h no
f r om
' e l e me n t a r y ' m a r r i a g e p r e s c r i p
t i o n s . Thus ( E v a n s - P r i t c h a r d 1 9 4 9 : 6 5 - 8 6 ) , t h e l i m i t s o f p a t r i c l a n e x o g amy e x t e n d t o p e r s o n s a b l e t o t r a c e common d e s ce n t t h ro u g h m a l e l i n k s f r om an a n c e s t o r a s f a r back a s ten generations .
I n addi tion , a m a n m a y n o t marry a c l ose
cognate i f r e l a t i o n s h i p can b e t raced t hrough ei ther male o r fema l e l i nks a s far back a s s i x generations . M a r r i a g e i s n o t p e r m i t t e d b e t w e e n c l o s e k i n f o l k b y a d o p t i o n , b e tween c l o s e a f f i nes , and
' daughters '
or b e t w e e n p e r s o n s c l a s s i f i e d a s
' fathers '
i n t h e a g e - s e t s y s t em .
However , a man may n o t take h i s wife ' s s i ster o r a n y
near k i nswoman of h i s wife as a second spou s e , two brothers marry sisters or
' c lose cou s i ns '
nor can
( 1949 : 68 ) .
T h e m a r r i ag e p ro h i b i t i o n s a r e comp l em e n t e d b y an e x t e n s i v e
s e r i e s o f i n c e s t ( ru a l ) r u l e s p r o s c r i b i n g s e x u a l r e l a t i o n s w i t h c l o s e k i n o r a f f i n e s . E v a n s -P r i t c h a r d a n a l y z e s t h e
e n t i r e s e � of rules as in stances o f a more general Nuer regu l a t i o n w h i ch f o r b i d s , a s r ua l ,
t w o c l o s e k in sm e n f r om
h a v i n g r e l a t i o n s w i t h t h e s a m e w om a n ( a n d , c o n v e r s e l y , t w o c l o s e l y r e l a t e d women f rom h a v i n g s a m e ma n ) . F o r E v a n s - P r i t c h a r d ,
relations with the
the Nuer rules o f exogamy
a n d incest function so a s t o prevent conf u s i o n b e tween d i f ferent k in s h i p categories and the patterns of behaviour i n which the relationships a re expressed ,
thereby main
t a i n i n g t h e con s i s te n c y o f t h e k i n s h i p s y s t em a n d t h e p a ym e n t a n d d i s t r i b u t i o n o f b r i d ewe a l t h ( 1949 : 1 0 1 ) . 2 1 The Nuer e xample ci ted above ,
together with similar
mater i a l on i n c e s t p ro h i b i t i ons ,
illicit relationships
a n d e x og amy f r om a l a r g e number o f o t h e r soc i e t i e s ( t h e Gusii ,
the Baul e ,
Moss i ,
and of course ,
the Ashanti ,
the Kaguru ,
the Mkako ,
t h e S amo , a m o n g o t h e r s )
provides
t h e e t h n o g r a p h i c b a c k g r o und to F ra n yo i s e He r i t i e r ' s
the
268
a n a l y s i s of the symb o l i c s o f incest ( 1982 ) . 2 2 W h i l e she a c c e p t s t h e L ev i - S t r a u s s i a n p o s t u l a t e o n t h e n e c e s s i t y o f exchange a s ' t h e f o u n da t io n of a n y s o c i e t y , Her i t i er focusses on concep t i on s o f i n c e s t and i n c e s t proh i b i t i o n s as
' t o t a l e n s em b l e s o f r e p r e s e n t a t i o n s c o n c e r n i n g t h e
p e r s o n , the wor l d ,
social o r g a n i z a t i on ,
and the multiple
i n t e r r e l a t i o n s amo ng t h e s e t h ree u n i v e r s e s '
( 1982 : 1 53 ) .
T h e r e l a t i o n s l i n k i n g s u c h d i v e r s e o r d e r s o f r e p r e s e n ta tions a r e b a s e d on an d i f fe r e n c e
' e l e m e n t a r y s ymbo l i c s '
( 1982 : 1 58 ) .
of i d e n c i t y a n d
I n p a r ticu l a r , representat ions of
t h e c o n s t i t u e n t s o f t h e p e r s o n , o f t h e r e l a t i o n s h i p between the sexes , and of the vertical and horizontal f lows and exchanges that operate through c h a n n e l s of descent or c o n t a g a t i o n a n d w h i c h become m a n i f e s t i n r u l es f o r b i d d i n g certain sexua l relat ionships and a l l iances are cons trued a s i n s t a n c e s o f a f u n d a me n t a l
' pr i n c i p le o f n o n du p l i c a t i o n
of relationships ' . T h i s principle underl ies the extensive series of p ro h i b i t io n s that characterize the Samo k i nship s y s t e m , H e r i t i e r ' s p a r a d i gm a t i c e x a m p l e o f a ' s e m i - c o m p l e x s y s tem o f a l l i a n c e '
( 1982 : 1 58- 160 ,
16 2 - 166 ) .
T h e s e a r g u m e n t s r e c e i v e f u r t h e r e l a b o r a t i o n i n He retier ' s monograph
L 'exe r c i ce
de
l a pa r en t e
( 1981 )
where cri teria
b a sed on t h e r e d u p l i c a t i o n o f r e l a t i o n s h i p s a r e e m p l o y e d i n h e r c l a s s i f i c a t i o n o f e l e m e n t a r y , s e m i - c o m p l e x , a n d c o m p lex a l l i a n c e s y s t e m s . H e r i t i e r d i s t i n g u i s h e s f o u r p o s s i b i l i t ies ( 1 9 8 1 : 1 69 ) : (A)
Repe t i t i o n o f a p r evious a l l ia nce by same - se x
c o n s a n g u i n e s i s p e rm i t t e d . ( a ) Repe t i ti o n of a previous a l l iance b y same - se x consanguines is forbidden . ( B ) Repet i tion of a previous a l l ia nce by oppos i te - sex c o n s a n g u i n e s i s p e rm i t t e d . ( b ) R e p e t i t i o n o f a p r ev i ou s a l l i a n c e b y o p p o s i t e - s e x consanguines i s forb idd en . H e n c e a n e l e m e n t a r y k i n s h i p s y s t e m w i t h a s y mm e t r i c e x c hange a n d m a t r i l a t e r a l c r o s s - c o u s i n m a r r i a g e i s b a s e d on t h e c om b i n a t i o n A b ;
semi -complex sys tems on aBo
T h e c o m b i n at i o n
269
(ii)
0)
( i ii )
6��!.9
ZHBWZ
( iv )
F i g . 5 . 4 . Proh i b i t ions on the repe t i t io n a l l i ance by : sibling ; affine .
(i)
a same - se x s ib l i n g ;
( i i i ) a n o p po s i t e - se x
of
a previous
( i i ) a n opposi te -sex
affine;
( iv)
a same - sex
A d a p ted f r om E t i e n n e ( 1 9 7 5 : 9 - 10 ) .
AS i s comp a t i b l e
with
either
an
e l em e n t a r y
or
a semi
c o m p l e x s t r u c t u r e w i t h s ymme t r i c e x c h a n g e . T h e f i n a l comb i n a t i o n , a b , h a s b e e n d e s c r i b e d b y P i e r r e E t ie n n e for the
Saule
( 19 7 5 ) .
( I ndeed ,
t h e t e r m ' n o n - r e d u p l i ca tion
o f ma t r i mo n i a l b o nd s ' w a s f ir s t s u gg e s t ed b y E t i e n n e . ) F i g u r e 5 . 4 i l l u st ra t es some o f t h e b a s i c p ro h i b i t i o n s descr ibed by E t ienne for k i n s i t u a ted a t the same genera t i onal leve l .
I n H �r e t i e r ' s c l a s s i f ic a t o r y s c h eme
t h e com b i n a t i o n ab d e f i n e s a s em i - comp l e x s y s t e m . Unfortunate l y ,
a l though
the fourfold classification
d e sc r ibed a b o v e does possess a cert a i n heu r i s t i c v a l u e ,
i t proves i n adequ a te when c o n f r o n t e d w i t h the fu l l r a n g e
270
o f m a r r i a g e p o s s i b i l i t i e s f rom a c t u a l s o c i e t i e s . T hu s , in the case of the eastern Indon e s i a n examples ci ted abov e ,
o n l y o n e s o n i s p e rm i t ted o r r e q u i r ed t o r e p e a t
t h e a l l i a n c e p r ev i o u s l y m a d e b y h i s f a t h e r a n d ma r r y h i s m a t r i l a te r a l c r o s s - c o u s i n . A l l o t h e r s o n s a r e p r o h i b i t ed f r om m a r r y i n g a s i s t e r of t h e i r b r o t h e r ' s w i f e . H e n ce repet ition of an a l l iance contracted i n the previous g e ne r a t i on b y a same - se x c o n s a n g u i n e i s p e rm i t ted ,
but
t h e r e p e t i t i o n o f a l l i a n c e s b y s a me - s e x c o n s a n g u i n e s i n
t h e same g e n e r a t i o n i s f o r b i d d e n , g i v i n g t h e comb i n a t i o n
A a - a p o s s i b i l i t y n o t c o n s i d e r e d b y H er i t i e r . A t t h e v e r y l e a s t , H er i t i e r ' s f o u r p o s s i b i l i t i e s ( A , a , B ,
and b )
mu s t b e c o n t e x t u a l i z e d b y s t a t i n g t h e g e n e r a t i o n a l l e v e l at which the
' p r e v i ou s '
Her i t i e r h a s n o t ,
a l l iance h a s occu rred .
I t h i n k , provided a def i n i t i ve
s o l u t i o n t o t h e p r o b l em o f m o d e l l i n g s e m i - c o m p l e x a l l i a n c e s y s t em s . H o w e v e r , m a n y o f h e r a r g u m e n t s a r e h i g h l y o r i g i n a l a n d w i l l u n d o u b t e d l y p r o v o k e a r e a s s e s sm e n t o f t h e t r a d i t i o n a l s t u d i e s o f C ro w - O m a h a s y s tem s .
In any
ca se , her c laim t h a t actual marr iage patterns are r e f l e c t i o n s o f s p e c i f i c comb i n a t i o n s o f r u l e s a n d r e s t r i c t i o n s on the repe t i t i o n o f p r e v i o u s a l l iances between close k i n ( same - s ex o r oppo s i t e - se x r e l a t i ve s ) h a s c l e a r i mp l i c a t i o n s f o r t h e a l g e b r a i c mod e l s d ev e l o p e d in the present work . F i r s t , by defining a l liance pos s i b i l i ties recurs ively , i . e . , i n t e rm s o f p r e v i o u s m a r r i a g e s a n d a l l i a n c e s , H e r i t i e r ' s p r i n c i p l e o f ' no n du p l i ca t i o n ' o f e x c h a n g e p r o v i d e s t h e l i n k b e tw e e n t h e a n a l y s i s o f m a r r i a g e proh i b i t i o n s and the recu r s iv e l y de f i ned model s of m a r r i ag e and exchange developed in C h a pt e rs for s y s tems w i t h p o s i t i v e o r
' preferentia l '
2
and 4
ru l e s . T h i s
sugg e s t s t h e pos s i b i l i t y o f e x t e n d i n g t h e f am i l y of
m a t h em a t i c a l s t r u c t u r e s to the a n a l y s i s o f He r i t i e r - t y p e s em i - c om p l e x s y s t e m s . S e c o n d , He r i t i e r ' s w o r k p r o v i d e s add i t i on a l j u s t i f i c a t i o n f o r f i n a l l y abandon i n g , o v e r l y r e s t r i ct i ve , t w o o f the c l as s i c p r i nc ip l e s
as
271
u n d e r l y i n g a l l a t t e m p t s a t mode l l i n g a l l i an c e s t ru c t u r e s a s g e ne a l o g i c a l n e tw o r k s :
( a ) the u n i ty o f the s i b l ing
g r o u p ( i n t e r p re t e d a s t h e s t r u c t u r a l e q u i v a l e nc e o f s am e - s e x s i b l i n g s a n d p a r a l l e l c o u s i n s ) , a n d ( b ) m a r r i a g e prescription
( es s e n t i a l l y the a s sump t i o n t h a t the spouses
o f s a me - s e x s i b l i n g s a n d p a r a l l e l c o u s i n s a r e s t r u c t u r al l y equ i va l en t ) .
T h e p o s s i b i l i t y o f m o d i f y i n g t h e s e assumptions
u n d e r a s e m i g ro u p f r a m e w o r k h a s a l r e a d y b e e n d i s c u s s e d above . He r i t i e r ' s research ( her case study o f the S amo i n p a r t i cu l a r ) offers
compe l l i n g n e w
e v i dence f o r the i r
r e pu d i a t i on . In
t h e f i n a l s e c t i o n o f t h i s c h a p t e r t h e a r gume n t s
i n t roduced above are made more concrete by exploring the f o r m u l a t i o n o f mod e l s d e s i g n e d t o e x p l i c a t e t h e s t ru c t u r a l comp l e x i ty o f e t h n o g r a p h i c d a t a f r om W e s t A f r i ca .
OF BROTHERS AND S I STERS The basic model ( 5 , h ,
m ,
f)
i n t ro d u c e d i n C h a p t e r 1 a n d
e l a borated i n subsequent chapters d e f i n e s an algebraic s t ru c t u r e on t h e e l em e n t s o f t h e s e t S ,
i . e . , on the
set o f nodes o f a reduced k i n s h i p netwo r k . Under the s ta n d a r d i n t e r p r e t a t i on e l eme n t s of 5 c o r r e s p o n d to r e d u ced s i b l i ng g r o u p s co n s i s t i n g of a b r o t he r - s i s t e r d ya d . T hu s , w h i le t h e b a s i c mod e l i s compa t i b l e w i t h t h e c ro s s - s i b l i n g ( B I Z ) d i s t i n c t i on , para l l e l - s i b l i n g re l a t io n s h i p s
i t must be expanded if
( i . e . , BIB and Z / Z ) are to
b e d i s t i n g u i s he d . A f a i r l y o b v i o u s s o l u t i o n i s to d e f i n e a mode l i n w h i c h e a c h s i b l i n g g r o u p i s e x p a n d e d t o i n c l u d e t w o b r o t h e r s and two s i ster5
.
Thus
{n J
i5
e x p a n d e d to
W i t h t h e s i b l i n g s numb e r ed a s a b o v e ,
{l r r V . 1 3 4 2
the f o l lowing
relations are defined with i n each expanded sibling group : (i) b
=
{(1,
2),
(2,
1 ) } , t h e same - se x r e l a tion l i nking
272
a man to his brother ; ( iil
z =
{O,
4),
(4,
3 ) } ,
t h e s a me - s e x r e l a t i o n
l inking a woman to her s i ster ; x =
( iii )
{(l,
3) ,
(1,
4) ,
(2,
3 ) ,
(2,
4) } ,
the
oppos i te-sex relat ion l i n k i n g a man to his s is ter s ; ( iv ) the converse relation x 0 ,
2)},
(4,
2) ,
-1
=
{(3,
1 ) ,
(4,
1) ,
i . e . t h e o p po s i t e - se x r e l a t i o n l i n k i n g
a woman to h e r b r o t h e r s . It
is
easy
to
s how z ,
of relation s ) , b , 5
that
( under
u s u a l compo s i t i o n
the
a n d x gener a t e a n i n v e r s e semi g roup
( t he inverse semigrou p w i t h r e l a t ions defi ned on the
5b
expa nded four-element s ib l ing u n i t ) w i t h nine d istinct z ,
e l eme n t s b , o
i s t he
x,
-1
x
b
,
2
,
Z
2
,
xx
-1
,
x
-1
x ,
z e r o e l em e n t c o n s i s t i n g o f t h e e m p t y s e t o f
r e l a t i on s a n d t h e rema i n i n g e l eme n ts o f S b
as:
{O, (3,
2
=
{O, (1,
1) , 4) ,
and o .
(4,
(2,
1) , 2) ,
3) ,
(2, (4,
2) } ; 1 ) ,
z
2
(2,
=
{O,
2 ) } ;
3) ,
5b (4,
are d e f i n ed xx - l
4)};
and x-Ix = { ( 3 , 3 ) ,
4J l.
The i n verse semigroup 5
i s embedded in a gener a l i ze d
Sb
k i n s h i p s t ru c t u r e a s f o l l ow s . x
i s a spec i a l i z a t i on o f a n e l eme n t a r y k i n s h i p s t r u c t u r e
( SEKS ) x
i f a n d o n l y i f t h e r e e x i s t Ob i ,
such that (1) (2)
( Ob ) ,
X =
f,
b,
z,
m,
Let S h,
m,
(i)
o f,
h :
3' =
S
oi 4
U Si
b,
�
o
onto ) ; ( ii )
m'
( iii )
f:
S
b:
S
( iy )
S
z
� o o
5
},
0
z
and
U
S . 1
III
l'
°j 3 ' oi } Z
oi 4 } and S .
1
o
and
�
is a bijection ( one- to-one and
�
�
and x a r e ma p p i n g s s u c h t h a t
+
Ob i ;
+
S
+
b,
xl ;
and 5i n 5 . o 1 � 5
f,
such that
( i ) Ob i = U s . w i t h s . = { O i 1 1 l ' °iZ ' S . n s . 111 f o r a l l i a n d j ; 1 J = Si wi th 5j U s . = {O i ( i i ) S 1. 1� o {01
(3 )
m,
h,
Ob i i s a n o n - em p t y s e t
h,
Ob i ; o
is a bijection , with
�
273
b
{ ( Oi l
oi
(0 i 2 ' Oi l ) f o r a l l i ' } i s a b i jection , wit h z ( v) { ( 0i 3 ' oi 4 ) ' 5 ,? 5 '? i ; ( Oi a l l f o r O 4' n )} (vi) x: S o + 5 ,? w i t h x = { ( 0 i l ' o i 3 ) ' ( O i l ' o i 4 ) , (0 for all i ; ) , ( Oi i 2 ' oi 3 ) 2 ' 01 4 } « Oi j ) h )m f o r a l l O . . i n 50 ' ( Oi j ) f =
z:
(4)
->-
'
) Z ,
,
=
1
Briefly, ture
J
a spec i a l i za t ion o f an e l ementary k i n s h i p s t r u c
( S E KS ) i s forma l i z e d
pre d i ca t e . previou s l y ,
by defining a s e t - theore tical
U n d e r t h e me t h o d o l og i c a l f ramew o r k i n t r o d u c e d prope r models o f the expanded
a r e d e f i n e d a s se t - t h e o re t i c a l e n t i t i e s
kinship theory which satisfy
t h e p r e d i c a t e , a n d o n t o w h i c h t h e p a r t i a l o r i n c om p l e t e s t ru c t u r e s e n coun t e r e d i n d a t a f rom a c t u a l k i n s h i p s y s t ems are mapped .
2 3
Each SEKS i s a s sociated w i t h a semig roup . t h e fam i l y o f sets s i b l i ng groups )
c o n s t i t u t e s a p a r t i t i o n o f Ob j g e n e r a t e d
b y t h e e q u i va l ence r e l a t i on ( - I f ( o r m - lm ) .
z
I n effec t ,
( representing expanded four -e leme n t
5i
Taking b and
a s e q u i v a l e n c e r e l a t i o n s i n t r o d u ce s a f u r t h e r d i v i s i o n
of each 5j
e lemen tary
and thus a f i n e r par t i t ion on Obj . kinship
s t ructures
( EKS )
The
defined in previous
c h a p t e r s a re ea s i l y reco v e r a b l e as q u o t i e n t s t ru c t u res o f S E K S ( s p e c i a l i z a t i o n s o f e l em e n t a r y k i n s h i p s t r u c t u r e s ) . Al though further sophis t ication can
i n t roduced ,
( a nd s h ou l d )
be
this d e f i n i t i on of the class of m o d e l s o f SEKS
i s a b l e t o c o p e w i t h m o s t o f t h e r e l e v a n t d e t a i l specified f o r H e r i t i e r ' s c a t eg o r y o f sem i - c o m p l e x s t r u c t u re s .
example ,
For
the f o u r proh i b i t i o n s i l lu s t r a ted i n f i g u r e 5 . 4
are characterized as : (1)
W
t BWZ
->
h
->
h
( i v ) W t Z H B W Z->
h
( i i ) W t ZHZ
( i i i ) W t B W Z H Z -> A l so ,
h
t bhz -1 x t xh -1 x t bhzh -1 x h b h z . t
one may now d i s t inguish both types o f parallel
c o u s i n f r om e a c h o t h e r a n d f r om s i b l i n g s ,
(i.e. ,
FBC
=
f l b f and M Z C
=
l m - zm )
an operation not feasible under the
274
e a r l i e r f o r ma l i za t i o n o f e l em e n t a r y k i n s h i p s t r u c t u re s . Fina l l y ,
i f o n e w i s h e s t o s pe c i f y a c l a ss o f e x c h a n g e
m o d e l s a s d i s c r e t e d y n am i c a l s y s t em s , a d d i t i o n a l c r i te r i a wou ld need
to be added to the s e t - t heoretical d e f i n i ti o n
o f SEKS . T h e s e woul d include a n appropriate set o f s t a t e s Q
{WI '
=
w ' w ' 2 3
T fr om Q x Z o n t o Q
}
a n d a m a p p i n g ( a d i s c r e t e d y n am i cs )
( s ee
above ) .
F u r t h e r s p e c i f i c a t i o n o f t h i s n e w c l a s s o f mo d e l s i s
t h e s u b j e c t o f f u tu r e r e s e a rc h .
I n o w p r o v i d e e x am p l e s
f r om t h e o r e t i c a l d i s c u s s i o n s a n d p a r t i a l d a t a f rom a c t u a l k i n s h i p s y s t ems t o i l l u s t r a te some t h i n g o f t h e r a n g e o f s t ructural phenome na t o be t ak e n i n t o a ccoun t ( a s
' i n tended a pp l i ca t i o ns ' ) b y a n y such forma l i z a t i o n . As a
2 �
f i r s t e x a m p l e I p r e s e n t a h y p o t h e s i s f o rmu l a t e d
by He r i t i e r f o r ( 1 9 8 1 : 9 1 -9 2 ) ,
' Om a h a '
s y s t em s . A c c o r d i n g t o H e r i t i e r
' Om a h a ' - t y p e s y s t ems o f a l l ian c e ( a s u b
category of her
' s em i - c o m p l ex
'
a l l i a n ce s y s t em s ) a r i s e
f r om t h e i n t e r s e c t i o n o f t w o d i s t i n c t c l a s s e s o f pro h i b i t ions . On the one hand , proh i b i t io n s that def ine the l im i t s of exogamy : certain consanguineals ( l i n e a l s a s we l l
a s c o l l a t e r a l s ) , s p e c i f ie d w i th re sp ec t t o some
common a s c e n d a n t , w i l l b e p ro s c r i be d a s m a r r i a ge p a r t n e r s for ego and his or her full sib l i n g s . On the other hand , proh i b i t i o n s on r e l a ti o n s o f a f f i n i ty :
i n j u n c t i o n s on
o b t a i n i n g a s p o u s e f ro m t h e l i n e o r kin g r o u p o f o n e ' s mo t h e r ,
one ' s grandmother , etc .
I.e. ,
r e d u p l i ca t i o n o f p r e v i o u s a l l i a n ce s , s p e c i f i ed n u m b e r o f g e n e r a t i o n s .
p ro h ib i t i o n s on t h e
t o be o b s e rved f o r a
He r i t i e r l i nks t h e ex i stence o f s u c h e x t e n s i v e c l a s s e s
o f p r oh i b i t i o n s t o a m o r e s pe c i f i c h y p o t he s i s . '
Om a h a
'
s y s t em s ( g e n e r a l l y a s s o c i a t e d w i t h
a
Thus ,
in
rule of
pa t r i l i n e a l descent ) c o n s a ng u i n i ty m u s t be we l l - d e f i n e d a n d e x p r e s s e d u n a m b i g u ou s l y : a l l r e l a t i on s h i p s b e tw e e n mem b e r s o f t h e
same
descent
line
( l i gna ge )
are traced
t h r o u g h a g e n e a l o g i ca l c h a i n w h o s e i n t e rme d i a t e l i n k s a r e
only connected th rough males . D i st i n c t p r i n c i p les o f u n i 1 i nea 1 descent are not t o b e comb ined : one ' s agnates
275
are never ,
simultaneou s l y ,
( Her i t i e r 198 1 : 92 ) . ( 198 1 : 9 2 ,
fig .
one ' s
cognates
Her i t ie r g i ves the f o l lowing example
26 ) :
O r , s i m o n p e r e e p o u s e u n e f emme a p p a r e n t e e a l a m e r e d ' u n d e s e s f r e r e s , l a f i l l e d u f r e r e d e ce t t e f emme p a r e x e mp l e , a l o r s c e f r e r e d e m o n p e r e d e v i e n t e g a l em e n t p o u r m o i u n p a r e n t p a r l e s f emme s . N o u s nous r e t r o u v o n s tous deux dans Ie statut mutuel de deux neveux u te r i n s d a n s I e meme l i gn a g e m a t e r n e l . L e n o n - redou b l eme n t d e l ' a l l i a nce previent cette s i tuation . H e r i t i e r ' s s u mm a r y d i a g r a m
( her figure 26 )
g a i ns
c o n s i d e r a b l e c l a r i t y a n d p r e c i s i on of p re s e n ta t i o n w h e n e x t e nd e d s i b l i ng g ro u p s a re emp l oy e d a n d t h e m a r r i a g e s r e p l icated i n consecu tive g e n e r a tions are empha s i zed . As represented below ( f igure 5 . 5
(i»
,
i f a ma n r e p e a t s
t h e a l l i a n c e m a d e b y h i s f a t h e r ' s b r o t h e r a n d ma r r i e s h i s FBWBD ,
e
then a and
a s M F l S / MBDS .
are r e l a ted a s FFBS /FBSS a s w e l l
I n o ther word s ,
n o t o n l y do
a
and e belong
t o t h e s a m e p a t r i l i n e -- s o d o t h e i r m o t h e r s .
e
Hence
a
and
are agnates who are also related through their mothe r s .
Ac c o r d i n g t o H� r i t ie r t h i s s t a t e o f a f f a i r s i s p r e c l u d e d in
' Om a h a '
s y s t em s
by mea n s of
r e p e t i t i o n o f p r e v i o u s a l l iances
a prohibi tion on the
by same - s ex consangui nes .
A simi lar contamina tion o f k i nship relationships does not occu r if a man repea t s the previous a l l iance of h i s fa t h e r ' s s i s t e r
( i .e . ,
m a r r i e s h i s F l H BD
an oppo s i t e - se x consangui n e ) a n d
( see figure 5 . 5
a d a p t a t i o n o f H e r i t i e r ' s f i gu re 2 7 genealogical terms ,
( ii i )
which is a n
( 1 98 1 : 9 3 »
and
e
do not b e l o n g to t h e same p a t r i l i n e
n e i ther do t h e i r mothers : mother ' s patr i l i n e and type of exchange the structure , w i th
with
' Om a h a '
In
a man mar r i e s h i s FlHBD a n d a a n d e
a r e r e l a t e d a s F F l S /MBSS a n d as MFBS/FBDS .
a
.
in fact ,
v ice vers a .
' i n v e r se '
the imp l i ca t ion
a
In this case (or matril ine) ;
is a member o f e ' s
Heri tier considers this
o f the p r e v i o u s ( pa r t ia l ) t h a t i t i s f u l l y compat i b l e
prohibitions encountered i n actual kinship
s y stems . A l t h o u g h n o t f o rmu l a t e d by H e r i t i e r ,
the analogous
j
(1)
( ii )
FBWBD
N " 0\
( iii )
Fig .
5.5.
P a r t i a l s t ructures repre sen t i ng t h e repe t i t i o n o f
same - sex consanguine ( i ) ,
( 1v )
a pre v i ou s a l l i ance b y a
( i i ) , and by an oppos i te - s e x consanguine ( i i i ) ,
( iv ) .
1
(v)
( v1 )
FBWZO
[ wg ( i + l )
wg 2 ( i ) ] e
e
N '-I '-I
(viii )
( vii )
[ wg ( i + l ) Fig.
5 . 5
a l l iance (vi i i ) .
( con t i nued ) . by
a
wt 2 ( i ) ]
Par t i a l
e
s t ructures
same - sex consanguine
(v) ,
re p r e s e n t i n g
(vi ) ,
and
by
the
repe t i t i on
an oppos ite-sex
of a
previous
consa n g u ine
(vii ) ,
278
h y p o t h e s i s f o r ma t r i l i n e a l
' Crow '
s y s t ems i s eas i l y
o b t a i ned b y i n t er c h a n g i n g t h e ' ma l e ' a n d ' fema l e ' ( t h e t riangles a n d c i r c l e s ) i n f i g u r e 5 . 5
(i).
s ym b o l s
Thu s ,
if a
man repe a t s the previous marriage o f h i s mother ' s brother (a
s ame - s ex m a t r i l i n e a l r e l a t i v e ) a n d m a r r i e s h i s MBWlD
( see f igure 5 . 5
(ii»
, a and
e
( the o f f s p ri n g from the two
marriages )
a r e n o t o n l y r e l a t ed a s M M Z S / M l D S b u t a l s o a s
FMBS/FlSS .
Hence
their fathers .
a
and
e
are matr i l i neal kin , and s o are
( Strictly speaking , under the ' sex change '
m a p p i n g a a n d e s h o u l d r e p r e s e n t w o m e n , a n d f r om a f e m a l e e g o ' s p o i n t o f v i ew a w o m a n m a r r i e s h e r M l Hl S , the m a r r i a g e o f h e r mo t h e r ' s s i s t e r . imp l i c a t ions a r e , o f course ,
identica l . )
a n d a g a i n i n a n a l og y to He r i t i e r ' s
Converse l y , hypothes i s ,
rep l i c a t i ng
The s tructur a l
in matri l ineal
' Crow '
' Omaha '
s y s tems a man should be
a b l e to repeat t h e m a r r i age o f h i s mo t h e r ' s s i s t e r ( a n
o p p o s i te - s e x ma t r i l i ne a l re l a t i v e ) a n d m a r r y h i s M l H Z D . I f t h i s occurs ( see f igure 5 . 5 ( iv »
,
there i s no inter
s e c t i o n o r c ro s s - cu tt i n g o f k i n s h i p categor i e s :
belongs
a
t o e ' s f a t h e r ' s ma t r i l ine , and v ice versa . T h e s e f o u r s t ru c t u r e s do n o t , howeve r ,
exhaust a l l of
t h e poss i b i l i ti es f o r rep l ic a t i ng a previous m a r r i age . There are exactly e i g h t d i s t i nct p o s s i b l e rea l iz a t i o n s of a rule e i ther p r e s c r i b i n g o r f o r b i d d i ng m a r r i a ge w i th o n e ' s pa rent ' s s i b l i ng ' s spouse ' s s i b l i ng ' s o f f s p r i ng ( PS b S p S b C ) . T h e s e a r e ( fo r a m a l e e go ) : (ii) W MBWBD ;
=
MBWlD ;
(vi) W
=
( iii) W FBWlD ;
=
FlHBD ;
(vii) W
=
( iv ) W
(i) =
W
=
MlHlD ;
FBWBD ; (v) W
F lHlD ; a nd ( v i i i ) W
MlHBD . T he com p l e t e r a n g e o f s t r u c tu r e s i s summ a r i z ed i n f igure 5 . 5 . Types ( v ) and ( v i i )
have been i n t r oduced p r e v i ou s l y :
t h e y b e l o n g t o t h e f a m i l y o f mo d e l s f o rmu l a ted i n C h a p t e r 2
( see Tab l e 2 . 4 )
a n d d e f i n e d o n u n e x pa n de d ( i . e . ,
memb e r ) s i b l i n g g r o u p s . T he p r o p e r m o d e l W ( a ,
7,
2)
two is
t h e p a r a d i gm a t i c e x a mp l e , a s e v e n - l i ne m o d e l d e s c r i be d for the Swa z i ,
the P awnee t e rm i n o l og y ,
Ame r i c a n k i n s h i p s y s tems
and
various
( see t h e d i s c u s s i o n i n C h a p t e r 2 ,
279
f igure 2 . 9 , and figures 5 . 1 and 5 . 2 above ) . The g lobal s t r u c t u r e o f e x c h a n g e i s g e n e r a t e d b y t h e r e c u r s i v e f o r m u l a wg ( i + l ) 2 = wg ( i ) , i . e . , o n e ' s w i f e - g i v e r s a r e t h e w i f e - g i v e r s t o t h e w i f e - g iv e r s o f t h e p r e v i o u s g e n e r a t i o n ,
with male ego
ma r r y i n g i n t o h i s MBW ' s l i n e ( h i s f a t h e r ' s WBW ' s l i ne ) . I n g e n e a l o g i c a l t e r m s , m a r r i a g e i s w i t h a F F Z D D , m e r g ed w i t h t h e F F M B SS D .
K i n s h i p categories i n tersect a t the
generational level of the grandparents . Thus , 5.5
in f i g u re
( v ) , e ' s mother ( father ) belongs to a ' s mother ' s
p a t r i l i ne ( fa ther ' s matril ine ) ;
conversely , a ' s mother
( f a th e r ) b e l o n g s to e ' s mother ' s p a t r i l i n e ( f a ther ' s ma t r i l i n e ) . Type
( v i i ) i s a s s o c i a ted w i t h a g l o b a l s t r u c t u r e o f
e x c h a n g e g e n e r a t e d b y t h e f o r m u l a wg ( i + l ) = w t 2 ( i ) ,
i.e. ,
o n e ' s w i f e - g i v e r s a r e t h e w i f e - t a k e r s t o t h e w i f e - ta k e r s o f t h e previou s gene r a t i on .
In f i g ure 5 . 5 ( v i i ) e ' s mother
( f a t he r ) b e l o n g s t o a ' s f a t h e r ' s m a t r i l i n e ( mo t h e r ' s
p a t r i l i ne ) , a n d a ' s m o t h e r ( f a t h e r ) i s a mem b e r o f e ' s f a t h e r ' s p a t r i l i n e ( mo t h e r ' s ma t r i l i n e ) . Ma r r i a g e w i t h t h e FZHZD is described by Jonckers for the Minyanka in Mali ( 1983 : 8 1 ,
f i g . 2 ) . T h e p a t r i l i n e a l M i n y a n k a h a v e a s y s tem
of m a r i t a l a l l i a n c e s b a s e d u p on
the e x c h a n g e o f
a s well a s on an extended set o f The terminology exhibits t o Joncker s '
' Om a h a ' - t y p e s kewi n g . A cc o r d i n g
ana l y s i s , a man may not marry his MBD or his
F Z D , b u t m a r r i a g e w i t h a F ZHBD ( t y p e ( i i i » ( ty pe ( v i i »
or a FZHZD
i s p e r m i t t e d ( am o n g s t o t h e r p o s s i b i l i t i e s ) ,
and a g l ob a l s tructure ( 1 98 3 : 80 - 8 6 ,
' s ister s '
' O m a h a ' - t y p e p r o h i b i t i o ns .
i s repeated in
three gene rations
9 2 - 94 ) .
A l t h o u g h f u r t h e r a n a l y s i s i s req u i r ed , t h e M i n y a n k a d a t a t e n d t o s u p p o r t H e r i t i e r ' s ' Om a h a ' h y p othes i s on t h e r e p l i c a t i on o f oppos i te - s e x a l l i a nces . I n type ( v i ) s t r u c t u r es , ego m a r r i e s h i s FBWZD , repeating the a l liance made by h i s father ' s brother . H o w e v e r ( s ee f i gu r e 5 . 5 ( v i »
,
e
a nd
a
both belong to the
s a m e p a t r i l i n e a n d t o t h e s a m e m a t r i l i n e -- h e n c e , u n d e r H e r i t i e r ' s h y po t h e s i s t h i s t y p e o f a l l i an ce s t ru c t u r e should not occur under either an
' Om a h a '
or a
' C r ow '
280
reg ime . In the final structure ( figure 5 . 5 ,
type ( vi i i »
,
ego
r e p e a ts the a l l i ance o f his m o t h e r ' s s i s te r a n d ma r r i e s h i s M l HBD .
e ' s mother ( fa t he r ) b elongs t o a ' s father ' s
p a t r i l i n e ( mo t h e r ' s m a t r i l i n e ) , a n d a ' s m o t h e r ( fa t h e r ) b e l o n g s t o e ' s f a t h e r ' s m a t r i l i n e ( mo t h e r ' s p a tr i l i n e ) . T h e deve l o pm e n t o f mode l s b a s e d o n e x t e n d e d s i b l i n g g r o u p s i s esse n t i a l i f He r i t i e r ' s
' Om a h a '
hypothes is i s
t o b e r e f i ned and a r t iculated w i t h d at a a n d r e l a t i o n a l c om p l e x e s f r o m o t h e r c u l t u r a l d o m a i n s .
The partial
e x c h a n g e s t ructures of f i gure 5 . 5 a r e a l r eady a co n s i d e r a b l e i m p r o v eme n t o n t h e c l a s s i c a s s u m p t i o n s . F o r e x a m p l e , under the suppo s i tion that s a m e - s e x s i b l i n g s a r e s t r u c t u r a l l y e q u i v a l e n t ( o r t h e a n a l o g o u s t e rm i n o l o g i c a l a s s u m p t i o n e x emp l i f ie d b y , s a y , L o u n s b u r y ' s ( 1 9 6 4 ) s a m e - se x s i b l i n g m e r g i n g ru l e ) ,
a FBWBD ( i ) o r a MBWZD ( i i ) a r e e q u a t e d
w i t h a MBD , a F l HBD
( i i i ) or a MlHlD ( iv ) with a FlD , and
a FBWlD ( v i ) o r a MlHBD ( v i i i ) w i th a l .
T h e s e a re a l l
d i s t i n c t t y p e s u n d e r t h e e x t e n d e d f r a mewo r k . F u t u r e r e s e a r c h s h ou l d a l s o f o c u s on t h e c l a s s o f k i n s h i p s t r u c t u r e s embod y i ng w h a t m a y b e c o n s i d e r e d t h e reverse o f Her i tier ' s a n a l ogue ) :
' Om a h a '
h y p o t h e s i s ( a nd i t s
' Crow '
systems t h a t embrace o r spec ify the exact
comb i n a t i o n o f marriage a l l iances p r o h i b i ted under ( or
' Om a h a '
' Crow ' ) modes o f exchang e . K o lenda ' s i ns i g h t ful
compa r i son
o f wed d i ng r i tu a l s a nd t h e summa r y i m a g e s o f
the b r ide i n two I n d i a n subcu l tu r e s p r o v i des a c l e a r
e x a mp l e o f s u c h a s t r u c t u r e ( K o l e n d a 1 9 8 4 ) .
T hus , the
R a j p u t s ( t h e d o m i n a n t l a n d ow n i n g g r o u p i n t h e n o r t h I n d i a n v i l l a g e o f K h a l a p u r ) p r a c t i c e v i l l a g e a n d go tra ( p a t r i c I a n ) e x o g a m y . T h e y a l s o a v o i d m a r r i a g e s w i t h i n t he g e o g r a p h i c a l s u b s e c t i o n t ha m ba
(a
unit
i n c l ud i n g t h e
caste
c h a p t e r s i n a c l u s t e r o f v i l l a g e s ) o f t h e m o t h e r ' s go t r a . Exchange i s a symmetr ic a l : m a r r i a g e i s hypergamous , w i t h the permanent subordination of the b ride ' s family to the g room ' s . U n d e r s u c h a h y p e rgamous regime , no s i s t e r -
281
e x c h a n g e i s p o s s i b l e : men f rom t h e b r i d e ' s pa t r i l i n e a g e ( th e lower ranking g roup ) cann o t , o f course , w i v e s f r om t h e g r o o m ' s p a t r i l i n e a g e . gotra
e x og a m y p r e v e n t t h e m a r r i a g e o f
obtain
The Rajput rules of cross -cous ins :
a
m a n c a n n o t m a r r y h i s MBD ( a s s h e b e l o n g s t o t h e g o t ra thamba
o f h i s m o t h e r ) , o r a g i r l h e r MBS ( wh o ,
conversely ,
i s a m e m b e r o f h e r m o t h e r ' s gotra - thamba ) . Howev er , e n d u r i n g t i e s m a y e x i s t b e t w e e n v i l l a g e s o r m i n o r l i neage s , a nd a g r o o m may a s k for h i s b r i d e ' s s i s te r a s a s p o u s e f o r h i s b r o t h e r . P o s s i b l e s p o u s e s a r e a man ' s BWZ ,
his
FBSWZ o r h i s FBWBD , empha s i z i n g t h e r e p l i ca t i o n o f prev ious a l l i ance s Kolenda
( K o l e nda
characte r i ze s
1984 : 101 - 1 02 , 1 1 1 - 1 1 4 ) .
the R a j p u t e x c h a n g e s y s t em a s
f o l l ows ( 1 984 : 102 ) : T h e R a j p u t s y s t em i s a s y s t em ; o n e c a n n o t ' re p e a t ' h i s b r o t h e r marr iage by marr y i ng m a l e p a r a l l e l cou s i n
o n e o f de f l e c t e d a l l i a n c e I n such marry a cross cou s i n but a man can ' s o r his m a l e par a l l e l cou s i n ' s t h a t m a n ' s WZ , or he c a n m a r r y a ' s f ema l e c r o s s c ou s i n . • •
.
K o l e n d a c o n s i d e r s t h e R a j p u t ma r r i a g e s y s t e m a s a m o d i f i e d f orm o f gene r a l ized exchange ( 1984 : 10 1 ) .
In
He r i tier ' s
t e r m i n o l o g y t h e a l l i a n c e s t ru c t u r e i s b a s e d o n t h e i n te r s e c t i o n o f t h e ( l i n e a l ) g o t ra - t hamba r u l e s o f e x o g a m y with a set of rules which ( 1 )
forbid the repe t i tion o f a
p r e v i o u s a l l i a n c e b y an o p p o s i t e - s e x s i b l i n g ;
(2)
p e rm i t
t h e repe t i tion of a p rev i ous a l l ia n c e by a same- sex s i b l i n g or p a r a l l e l c ou s i n ;
(3)
permit the repe t i t i o n of
a previous a l l i ance by a man ' s fathe r ' s brothe r ,
m a r r i a g e w i t h a F BWBD ( f i g u r e 5 . 5 ,
type ( i »
i.e
.
T h e focus of K o l e nd a ' s a n a l y s i s i s a c t u a l l y on t h e
compar a t i v e symbo l ogy o f r i t u a l per formance ,
as cod i f i ed
a n d v a l idat e d i n w e d d i n g s o f t h e n or t h I nd i a n K ha l ap u r R a j puts a n d the south I n d i a n N a t t a t i Nadars . Howeve r ,
her
a ttempt a t prov i d i n g c u l tu r a l content for L e v i - Strau ss ' s s u p r em e c a t e g o r y o f t h e g i f t -- w o m a n -- i s i m p o r t a n t t o any extension of the classic exchange mode l s . D i ffer e n t s u mm a r y i m a g e s o f t h e b r i d e i n I n d i a n c u l t u r e ( R a j p u t :
282
woman a s t r ib u t e ; N a da r : woma n a s f l owe r ) g o t o g e t h e r w i t h d i f f e r e n t c o n c e p t u a l i z a t i o n s o f f e r t i l i t y a n d o f t he valuation of exchange relations .
In the f inal analysis ,
any r e a l i s t i c f r amewo r k f o r t h e comp a r i s on o f k i n s h i p s y s tems m u s t be a b l e t o d e a l w i t h t h e a r t i c u l a tion o f c u l t u r a l content w i th s tructur a l f orm . T o summa r i z e some o f the themes i n t roduced a b ov e : t h e f i r s t p l ace ,
in
I think i t i s safe to say that the
fundame n t a l oppos i t ion between
' e l em e n t a r y '
and
' compl e x '
k i n s h i p systems i n t roduced by Lev i -S trauss h a s o n l y been p a r t i a l l y s u c c e s s f u l . A r g u m e n t s b a s e d o n t h e i n v e s t i ga tion o f r e a l - w o r l d s y s t ems ,
t o g e t h e r w i t h a c r i t i q u e of
the
d i c h o tomy a s a d e t e rm i n i n g f a c t o r i n t h e s p ec i f i ca t ion o f p o s s i b l e mod e l s ( e i th e r
' mechan i ca l '
or
point to certain fundamental l im i t a t i ons .
' st a t i s t i ca l ' ) The field of
k i nship theory awa i t s an a p p ro p r i a te , natura l measure o f ' c omp lex i t y '
( a s d o ma n y o t h e r f i e l d s ) .
I n the second p l a ce , a number o f constraints e v i d e n t in standard representations o f kinship s tructures are overly restrictive and impose severe l imitations on the d e v e l o pme n t o f a m o r e r e a l i s t i c t h e o r y . F o r e x a mp l e ,
the
p r e s u p po s i t i o n c o n c e r n i n g t h e equ i v a l e n c e o f s a me - s e x s i b l i n g s w i t h r e s pe c t t o t h e i r m a r r i a g e p o s s i b i l i t i e s must be recon s i dered . As a f i r s t s t e p , f a m i l y o f mod e l s
I
introduce a
( t o b e f o r m a l i z e d a s s e m i - g r o u p structures )
b a s e d o n e x t en d e d ( f o u r - e l eme n t ) s i b l i n g g r ou p s .
( See
Chapter 3 for a d iscu s s i on of a d i f ferent extension to the standard models , e . g . , age-constra ined , helical s tructures of exchange . )
F i n a l l y , e x c i t in g n e w d e v e l o pm e n t s i n c e l l u l a r a u t o m a t a
t h e o r y a n d d y n a m i ca l s y s tems a n a l y s i s h i g h l i g h t t h e i m p o r t a n c e o f s t u d y i n g s t r u c t u r e s a s e m e r g e n t p h e n om e n a : c o m p l e x , g l oba l d yn a m i � s a n d d e v e l o pme n t a l p r o c e s s e s m a y e m e r g e f r om t h e s t r i c t l y l o ca l i n t e r a c t i o n s o f compo n e n t s o r e n t i t i e s g o v e r ne d b y a l i m i ted s e t o f s i m p l e r u l e s . I n t e r p r e t e d a s a p r o g r amme o f r e s e a r c h f o r k i n s h i p a n d t h e d y n a m i c s o f e x c h a n g e s y s t em s , t h i s a p p r o a c h f o c u s s e s
283
o n t h e p r o b l em o f i d e n t i fy i n g t h e a p p r o p r i a t e s e t o f l o c a l r u l e s ( some o f w h i c h m a y b e d e f i n ed r e c u r s i v e l y ) . S u c h a p r o g r a mme o f r e s e a r c h a p p e a r s e s p e c i a l l y we l l s u i ted t o mod e l l i ng Heritier ' s hypotheses o n the ( non ) replication of previous a l liances .
There i s a n impo r t a n t
a d v a n t a g e . O n e m a y d i s po s e o f t h e p r o b lem o f a t t em p t i n g t o d e f i ne or classify real k i n s h i p s ystems a s ' se m i - co mp l e x ' o r
' complex '
' s imple ' ,
in terms of the consti tuent
components o f t h e soc i a l s tructure ( e . g . ,
the number of
e x c h a n g e u n i t s ) , t h e u n d er l y i ng m e c h a n i sm o f e x c h a n g e ( e . g . , k i n sh i p , t h e t r a n s f e r o f we a l t h , o r f r ee c h o i c e ) , the type o f mar i t a l rule
( p r e sc r i p t i o n ,
p r o h i b i t i o n ) , o r t h e k i n d o f mo d e l deterministic or
preference , or
( ' mech a n i c a l '
' s t a t i s t i ca l ' - p ro b a b i l i s t i c ) . Comp l e x i t y
i s a n emer g e n t prope r t y .
The recur s i ve spec i f i cation o f
exchange a s a set of loca l rules yields a family of model s w i t h t h e potent i a l f o r descri b i ng e i ther a periodic s t ructure o f a l l i ance or a more chao tic beha vioural complex . 25 Dynamic behaviour i n exchange mod e l s depends on the speci f ication of local
r u l e s w h i c h d e t e rm i n e t h e
i n teract ion of the s y s tem ' s b a s i c u n i t s ( extended s i b l i n g g ro u p s o r s om e o t h e r k i n s h i p u n i t ) , a n d t h u s t h e t ra n s fo r ma t i on o f i t s s t a t e s a t d i s c r e t e t i me s t e p s . T h e m od e l s d e v e l o p e d h e r e a r e a l l c o n s t r a i n ed b y w r a p p i n g
the
b a s i c e x c h a n g e g r i d o r k i n s h i p n e t w o r k a r o u n d a c y l i n d r ical s t r u c t u r e , w i th d e s c e n t l i n e s o r i e n t ed a l o n g t h e ma i n ( t i me ) a x i s . Under t h e
classic
a s s um p t i o n s , a l l i a n c e cycles
a r e s i tua ted a t d i screte gene r a t i o n l e v e l s correspond i n g t o t h e s y s t e m ' s s t a t e s . Howeve r , a s dem o n s t r a ted i n Chapter 3,
further elaboration of such structure s to
represent the possib i l ity of la rge average husband -wife age diff erences ( or , equivalent l y ,
t h e e x c h a n g e o f s is ter ' s
daughters or other close k i n other than s i s t er s )
leads
d i re c t l y to a series o f models w i t h h e l i ca l structures of exchange . A l l i a nce netwo rks are neither clo sed nor c o n f i n e d t o s e p a r a t e g e n e r a t i o n l e v e l s b u t w i n d a c r o s s the
28�
surface of the cy l i nder in a series o f i n terconnected s p i r a l s . A r t i cu l a t e d a s a f am i l y o f d i s c r e t e d y n am i c a l s y s t ems ,
t h i s imp l i es that c l o s e d
circuits or exchange
t r a j e c t o r i e s a r e not all o c a t e d t o s e p a r a t e s t a t e s o f t h e sys tem . T h e d e v e l o pm e n t of a g e - c o n s t r a i ne d mod e l s i n c o r po r a t i n g e xtended s i b l i n g groups is more than just a n o v e l tec h n i c a l c h a l l en g e . S u c h e x t e n s i o n s t o t h e c l a s s i c mod e l s o f a l l i a n c e t h e o r y a r e re q u i r ed i f r e c e n t m a te r i a l o n v a r i o u s f o rm s o f We s t A f r i c a n m a r r i a g e sy s t ems i s t o b e trea ted adequa t e l y .
M y f i n a l e x a m p l e ou t l i n e s a few s t e p s
i n t h e d i rection of s u c h a c l ass o f extension s . The model I
d i s c u s s a c commmo d a t e s d a t a f r o m
the B e l i yan or Bassa r i ,
one of the Tenda peoples . 2 6 T h e Tenda const i tute a group o f related societies w i t h s t r u c t u r a l s i m i l a r i t i e s ( p r e s u ma b l y r e f l e c t i n g a c o m m o n o r i g i n ) as we l l as d i f f e r e n c e s : a p p r o x imate l y 1 5 , 000 ) ,
t h e C o n i a g u i ( numb e r i n g
the B e l i y a n ( a bout 1 2 , 000 ) ,
B o i n ( a p p r o x i m a t e l y 1 , 000 ) ,
t h e B adyarank e
the
( n e a r l y 6 , 0 00 ) ,
the B e d i k ( a b o u t 1 , 5 00 ) , and t h e T e nda Mayo ( le s s t h a n 1 , 000 ) .
The Te nda i n hab i t an area l y i ng across the
f r o n t i e r of south-ea stern Seneg a l and the Republic of G u i nie ; T e n d a p o pu l a t i o n s a r e a l so f ou n d i n G u i n�e B i s s a u a n d t h e G a m b i a ( Ge s s a i n a n d d e L e s t r a n g e 1 9 80 ) . The Coniagui and Beliyan are ma tri l ineal w i th Crow - t y pe terminologies ;
the Badyaranke a r e apparen t l y b i l inea l ,
wh i le the B o i n and t h e Bed i k a r e b o t h p a t r i l i ne a l ( th e r e i s l i t t l e i n f o r ma t i o n o n t h e d e s c e n t s y s t em o f t h e T e n d a Mayo ) . T h e Boin are
eviden tly a Beliyan group which
c o n v e r t e d t o I s l a m i n t h e 1 9 t h c e n tu r y ; is now taking p lace among the Badyaranke
a s im i l a r p rocess ( Ge s s a i n a n d d e
Lestrange 1980 ; S immons 1980 ) . Beliyan society i s essen t i a l l y a gerontocracy , with
power and authority vested in the elders . There is a
h i g h l y s t r u c tu red s y s t em of m a l e a n d fema l e a g e - cl a s s e s , w i t h recru i tment occurring a t about the age of seven . P r om o t i o n a n d c l a s s p r o g r e s s i o n t a k e
p l a ce at s i x -year
285
i n t er va l s , w i th t h e r i tu a l o f p romo t i o n i n t i m a t e l y a s s o c i a t e d w i t h r i g h t s a n d d u t i e s r e l a t ed t o t h e s y s t e m of a g r i cu l tu r e a n d commu n a l l a b o u r ( No l an 1 9 7 5 ; G e s s a i n : 1 9 7 1 ; Dupr e 1 9 6 5 ) . According to Ge s s a i n ( 19 7 1 : 1 5 9 ,
175)
t h e r e l a t i on s h i p terms applied w i t h i n the a g e - c l a s s s y s tem are l i nked to the k i n terminology a n d the k i n s h i p s y s tem .
Thus ,
' r ea l '
in the case of consecu t i ve c l a s se s ,
membe rs o f t h e senior age-class are the
' fathers '
( or the
' m o t h e r s ' ) o f m em b e r s o f t h e s u c c e e d i n g c l a s s ( t h e i r ' so n s '
or
' daughters ' ) ;
authority .
r e f e r to each o t h e r a s ( t y a t ya )
the relationship i s one of s t r ict me m b e r s o f a l t e r n a t i n g c l a s s e s
S im i l a r l y ,
' g randparen t s '
and
' g randch i l d r en '
i n what m a y b e regard ed a s a rec i p rocal j o k i n g
r e l a t i o n s h i p . T h e a g e - c l a s s i d i om o f j o k i n g a n d r e s p e c t may be e x tended to the actual children
of
age- c l ass
member s . B e l i ya n marriage pos s i b i l i t i e s are c o n s t r a i ned b y the f o l l ow i ng set
rules
of
( c f . Ge s s a i n 1 9 6 3 ,
1 98 2 ;
Ferry and
Guignard 1984 ) : ( 1 )
E x o g a m y o f t h e ma t r i l i n e a g e :
persons w i th the same
l i n e a g e name s h ou l d no t i n t e rma r r y . (2)
The necess i ty o f reci procal exchanges : when a man
marries ,
h i s ma t r i l i ne shou l d ,
in turn ,
provide a young
g i r l as a ma r r i age p a r t n e r for a man o f his w i fe ' s m a t r i l i n e ( Ge s s a i n 1 9 6 3 : 1 4 5 ) . Howe v e r , s i s te r s a r e n o t e x c h a n g e d s y mm e t r i c a l l y , n o r a r e t w o b r o t h e r s p e r m i t t e d to m a r r y two s i s ters
( Ferry and Guignard 1984 : 54 - 56 ) .
( 3 ) M a r r i a g e be tween f i r s t cous i n s i s f o r b i dden . Howe v e r ,
the f o l l o w i ng k i n - type marriages a r e a l lowed
( Fe r r y and Guigna r d 1984 : 54 - 5 6 ) :
(i) W
=
ZHBD ;
e qu i va l en tly
a man o b t a i n s h i s b r o t h e r ' s d a u g h t e r as a s p o u s e f o r h i s
w i fe ' s brothe r ;
(ii) W
=
FZSD ;
i . e . , a man g i v es h i s ZSD
( a c l a s s i f i c a t o r y d a u g h t e r u n d e r a C r ow t e r m i n o l o g y ) t o
his s o n a s a w i f e . A l ter na t i ve l y , s ame m a t r i l ineage F M B S ) a r e f u wi s
-
( f or e xamp l e ,
s ince sons of men o f the
the r e c i proc a l pair FZSS/
' of f s hoots of the same yam s ta l k '
( F e r ry a n d Gu i g n a r d 1 9 8 4 : 36 , 4 8 - 49 ) , a m a n m a r r i e s t h e
286
s i s t e r o f h i s r uwi s - ' b r o t h er ' ; extension of ( ii ) ,
( iii) W
=
MZHZSD , an
i . e . , a man m a r r i e s the FZSD o f h i s
MZS , a l i neage b r o t h e r . ( 4 ) Around 1930 the average husband-wife age d i f f erence d
HW w a s a p p r o x i ma t e l y 6
years ( the span o f one age -class ) ,
w i t h m o s t women m a r r y i ng a n d g i v i ng b i r t h t o t h e i r f i r s t c h i l d a t t h e a g e o f 1 8 - 2 3 y e a r s . E a r l i e r , dH W m a y h a v e " been g r e a ter ; i t h a s s i n c e d e c r e a s e d , t o g e t h e r w i t h t h e a v e r a g e a g e a t m a r r i a g e f o r b o t h m e n a n d wom e n ( Ge s s a i n 1 9 8 2 : 6 3 6 - 64 7 ) .
Gessa i n ' s data
However , even as recently as 1970 ( if o n E t y o l o v i l l a g e c a n b e g e ne r a l i ze d )
Beliyan society e x h i b i te d
' gerontocratic '
tendencies , with
t h e o l d e r m e n c l a i m i n g a d i s p r o p o r t i o n a t e n um b e r o f s p o u se s . T hu s ,
a l l 27 men aged 42 or o l d e r were m a r r i e d ;
t h e a v e r age
n u m b e r of s p o u s e s w a s 2 . 4 w i t h a r a n g e of 1 - 5 w o m e n p e r man . In c o n t ra s t ,
the 5 9 men younger t h a n 42 were m a r r i e d to 7 3
women f o r an average number of spouses equa l to 1 . 2 ;
14
men rema ined single and the maximum number o f spouses f o r t h i s a g e g r o u p w a s o n l y 3 ( a d a p t e d f r om G e s s a i n 1 9 8 2 : 6 4 2 , Table VI ) .
( The relative imbalance may be even greater , a s
a n u m b e r o f unma r r i e d y o u n g men h a d
l e f t Etyo l o . See
Nolan 1975 . )
( 5 ) F i n a l ly , t h e B e l i ya n m a r r i a g e s y s t em i s f a i r l y
closed ,
w i t h o v e r 8 5% o f t h e ma r r i a ges t a k i n g p l a c e w i t h i n
t h e v i l l a g e o r a sma l l g r o u p o f v i l l a g e s a l re a d y l i n k e d th rough previous a l l iances ( Gessain 1963 : 17 2 ,
1982 :637 ) .
T h e mi xed set of Bel i yan rules i n v o l v e s l i neal prohibitions ,
p r o h i b i t i on s o n t h e r e pe t i t i o n o f m a r r i a g e s
b y s i b l i n g s , a s w e l l a s d i re c t i ve s o n t h e impo r ta n c e o f r e c i p r o c a l e x c h a n ge s . M o r eo v e r ,
the occu r rence of r e l a t i v e
a g e cons t r a i n t s o n ma r r i a g e ( a n d t h u s
of
dlf fer�n t
Chapter ) )
' ob l ique '
a v e rage generation lengths for m a l e s and fema l e s ; leads to the possibi l i ty of
ma r r i age w i t h the ZHBD , FZSD , o r MZHZSD ,
see
unions :
a l l s i tua ted a t
t h e g e n e r a t i on l e v e l b e l ow m a l e e g o . Perhaps surpri sing l y ,
this miscel laneous set of rules
a n d c o n s t r a i n t s can be accommod a t e d b y a f a i r l y s i m p l e
287
e x c h a n g e mod e l b a s e d o n extended s i b l i n g group s .
I
present the m a i n characte r i s t i c s o f such a model a s a p a r t i a l s tructure in f igure 5 . 6 . More preci sel y ,
I claim
t h a t m u c h o f the information provided f o r the Be l i y a n m a r r i a g e s y s t em c a n b e r e f o r m u l a t e d a s a s e t o f p a r t i a l s t r u c t u r e s w h i c h m a y t h e n be e x t e n d e d t o p r o p e r mo d e l s o f t h e t ype d e s c r i be d e a r l i e r a s s p ec i a l i za t i o n s o f e l em e n t a r y k i n s h i p s t r u c t u res . T h e p a r t i a l model o f f i gure 5 . 6 comp r i s e s f i ve d i s t i n c t c l u s t e r s o f m a t r i l i n e s , e a c h c l u s t e r representing some named
' ma t r i l i neage ' . Though not expl i c i t l y
d i a g r ammed , c o l l a te r a l l i n e s a r e s u pe r i mp o s e d . H e n c e c l u s t e r 3 i n c ludes ego ' s m a t r i l i ne a s wel l a s the m a t r i l i n e o f h i s MZ , h i s MMZ , e t c . N o t e t h a t w h i l e ma t r i p a r a l l e l k i n ( e . g . , S b a n d MZC , a l l oca ted to the same c l u ster ,
MSb a n d MMZC , e tc . ) a r e patri-parallel kin are not,
s ince brothers are requi red to marry into d i f ferent
mat r i l ineages . There a re a number of ways in which a g lo b a l s t ructure of a l l iance i s generated by a r u l e o f e x c h a n g e . F o r e x a m p l e , b y a s s u m i n g t h e s y m m e t r i c a l e x c hange o f s i s te r ' s daughters , not s i s te rs : two men i n d i f ferent ma t r i l i neages marry each other ' s s i ster ' s daughter t h u s e qu i v a l e n t w i t h ZDH ) ,
( W MB i s
and the cycle of exchange
repeats i n a l terna t i ng genera t i ons , n o t consecut ive l y .
T h i s p a r t i c u l a r f o rmu l a t i o n o f a g e n e r a t i n g r u l e i s
compa t i b l e w i th a number of terminological equatio n s . F o r e x a m p l e , t h e Be l i y a n k i n t e rm a yu i s a p p l i e d s e l f r e c iproca l l y . T he class o f i t s denotata includes the f o l l o w i n g k i n t y p e s : MB / a Z C , M M Z S / aM Z D C , W S b / Z H , W M Z C / MZD H , a Z H Z / � 8 W8 , a Z H Z S / aMB W8 , H M B / aZ S W ( F e r r y a n d G u i g n a r d 1 9 8 4 : 5 1 - 5 2 ; F e r r y 1 9 7 4 : 6 2 4 - 6 2 7 . K i n t y p es i n i t a l i c s a r e n o t g i ven explicitly but are implied by the p r inciple of s e l f - r e c i p r o c i t y . ) . As c a n b e s e e n f r o m f i g u r e 5 . 6 , ayu i s a p p l i e d t o e g o ' s MB a n d Z H , a n d e g o ' s W M Z C
( and their
rec iproc a l s ; among o t h e r kintype s ) , suggesting t h e possible gloss
' e x c h a ng e p a r t n e r s ' . T h i s i n t e r p r e ta t i o n
i s s u p p o r t e d b y comme n t s made b y F e r r y ( 1 9 7 4 : 6 2 6 - 62 7 ) a n d
288
by Ferry and Guignard ( 1984 : 53 ) . MB and ZS are a l s o , sense ,
in a
' e xchange p a r tn e r s ' , s in c e a man may i n he r i t o r
c l a im h i s M B W ( h i s a i i n da w o n , t h e s a m e t e r m u s e d f o r W a n d BW )
( Fe r r y a n d G u i g n a r d 1 984 : 49 ,
53 ) .
F u r t h e r mo r e , a s s um i n g a c l o s e d s t r u c t u r e o f a l l i a n c e based on f i ve ma t r i l i neages o r c l u s t e r s o f matr i l i n e s , t h e m o d e l o f f i g u r e 5 . 6 r e p r o d u c e s t h e k i n t y p e s p ec i f i ca tions with
( see ( 3 ) a b o v e ) : W o r B W i s e q u a t e d w i t h ZHBD a n d FZSD
and MlHlSD ( i f these last two kintypes are not
c l a s s e d a s c r o s s - c ou s i n s ) . A g a i n , with the ava i l a b l e data : lineages ,
t h i s i s i n ag reeme n t
there a r e only seven major
and i n 11 v i l lages stud i ed by Gessa i n ( 19 6 3 : 160 )
more t h a n 90% o f t h e i n h a b i t a n t s can be a l l oc a ted to f i ve
or
s i x i n t e r m a r r y i n g l i n e a g e s . F ive i s t h u s a p l a u s i b l e
cons t r a i n t f o r a clo sed s t r u ct u r e . Final l y ,
in terpreted a s an a g e - constra ined structure ,
the model i s compa t i b l e w i th l a r g e husband-w i f e age
d i f fe rences . I n f ac t , assuming that dFC
d
= d
=
d
HW
+
d
UC
'
and ideally , d ( th e mean age d i f ference between HW UC FC f a t h e r a n d c h i l d ) s h o u l d b e t w i c e a s g r e a t a s due ( t h e
m e a n a g e d i f fe r ence b e t w e e n mo t h e r a n d c h i l d ) . T h i s prediction conf orms t o a n even more
' g erontocr a t i c '
m o d e l than i s a c t u a l l y d e s c r i b e d f o r t h e B e l i y a n . A s men tioned in Chapter 3 ,
in this c lass of age-constrained
mo d e l s all a g e d i f f e re n c e s b e tween s i b l i n g s a r e i g n o r e d . T h e a s sump t i o n s m a y b e a d a p t e d i f such a d i s t i n c t i o n i s requ i red . I t i s n o t m y i n t e n t i o n i n t h i s c h a p te r t o p re s e n t a fu l l y a r t iculated , dynamic theory o f Beliyan kins h i p ; t h e p a r t i a l s t ructure o f f i gure 5 . 6 i s o f course only a p r o g r a mma t i c s k e t c h ,
i n d i c a t ing the impo r t a n t g a i n s to be
made b y a d o p t i n g a more comp r e h e n s i v e f ramewo r k .
The ma i n
t h r u s t o f m y a r gume n t i s t h a t a c l a s s o f ' mo r e c o m p l e x ' k i n s h i p mode l s , f o rmu l a t e d on e x t e n d e d S i b l i n g g r oups , can be d e f ined d i r e c t l y as a lgebraic structures . I ndeed , I ma i n t a i n t h a t t h e f u r t h e r d e v e l o p m e n t o f s u c h a
1
2
3
4
(1 )
5
t
t +1
t+ 2
BW ZHBO M M BOO FZSO
Fig .
5.6.
with
the
s t ructure
MBO MZHZSO
Parti a l Z HBD on
and f i ve
mode l the
ZO
represent i ng
exchange
clusters
of
t he Be l i yan k i ns h i p
s i ster ' s
o f ma t r i l i n es
daughter s
with
t+3
W ZHBO MMBDO M Z H Z SO
M BO FZSO
st ruc ture .
O b l i que ma r r i age
g e n e ra t e s a n a l t e r n a t i ng g e n e r a t i on
dHC / d F C e q u a l
to
. 500 .
N 00 '"
290
formu l a tion is manda tory i f any t h i n g l i ke an adequate t h e o r y r i c h e n o u g h t o c a p t u r e t h e f u l l r a n g e o f structural a n d d y n a m i c a l p h e n o m e n a e x h i b i t e d by r e a l k i n s h i p s y s t e m s is to be real ized . Moreover ,
any general treatment o f k i n s h i p structure
s h o u l d p r o v i d e i n s i g h t s i n t o t h e d e v e l o pm e n t o f s p e c i f i c l o c a l v a r i a n t s o f k i n s h i p s y s t em s . U n d e r t h e r e s e a r c h p r o g r amme c ha r a c t e r i zed b y t h e w o r k o f t h e L e i d e n s c h o o l ( see Chapter 1 and Kuper 1987 : 1 10 - 1 3 3 ) ,
speci f i c local
c o n f i g u r a t i on s ( i n c l u d i ng v a r i a t i o n i n k i n ma r r i a g e f o r mu l a e ) a r e e x a m i n e d a n d e x p l a i n e d a s t r a n s f o r m a t i o n s of a shared cul tural tradition .
In
s t a tement c o n c e p t i o n o f t he o r i e s ,
t erms of the n o n local variat i on ( both
w i t h i n and between t h e members o f a s e r i e s o f h i s t o r i ca l ly rela ted cul tures )
i s r e p r e s e n t e d b y t he c l a s s o f p a r t i a l
structures , sub s t ru c t u res o f the c l a s s of proper mode l s d i rectly specif ied as a set -theoretical predica t e . A s s t ressed b y Kuper ( 1987 : 1 10 - 1 1 1 ,
131-133 ) ,
a
f u n dame n t a l wea k n e s s o f Lev i - S t r a u s s ' s c l a s s i c t h e o r y o f e l emen t a r y s t r u c t u r e s ( a n d by i mp l i c a t i o n , a w e a k n e s s s h a r e d b y H e r i t i e r ' s m o r e r e c e n t e x t e n s i o n t o s e m i - complex structure s )
i s t h e c l e a r p r i o r i t y g i v e n to u n i v e r s a l l y
v a l i d , c u l t u r e - free f o rmu l a t i o n s o f e x c h a n g e . W i ves are exchanged for s i s t er s ,
a n d a l l m a r r i a g e f o rmu l a e a r e
l a r g e l y i n d ep e n d e n t o f l o c a l c u l tu r a l , h i s t o r i c a l a n d ecological cons t ra in t s . On the a rgument of Kuper e t a l . t h e m e t h o d o f r e g i o n a l s t ru c t u r a l c o m pa r i s o n p r o d u c e s m o r e s o p h i s t i ca t e d r e s u l t s .
T h e n e x t s t e p i s t o genera l i z e
t h e B e l i y a n a n a l y s i s s k e t c h e d a b o v e t h r o u g h a s y s t em a t i c examination o f the regional configu r a tion o f variables and historical factors for the entire group of Tenda societies ,
in conjunction w i t h a formal ana l y s i s of the
st ructural transformations operating on the class of proper k i nship mode l s . Final ly , the notions o f and
' com p l e x '
' e l em e n t a r y ' ,
' sem i - comp l e x '
kinship structures central to the
s t ru c t u r a l i s t p r og ramme m u s t be r e c o n s i d e red . A t the v e r y
291
l ea s t , t h e r e i s no necessary or contingent r e l a t i o n s h i p w i t h d i s t i n c t c l a s s e s o f k i n s h i p s t r u c t u r e s o r f o rma l mode l s ,
a point made r e peated l y i n t h i s chapter .
historical crit ique ,
Kuper ' s
Th e I n v e n t i o n o f P r i m i t i v e S O C i e t y .
T r a n s f o rma t i o n s o f a n I l l u s i o n
( 1988 ) points to a more
f u n d a m e n t a l d e f e c t . O n K u p e r ' s a r g u m e n t , L ev i - S t r a u s s ' s t h e o r y o f m a r r i a g e e x c h a n g e ( a n d i nd e e d , mo s t o f k i n s h i p theory ) i s severely constrained by the idea of society '
' p rim i t ive
which crysta l l i zed in the late nineteenth
c e n t u r y . A l t h o u g h c y c l i ng t h r o u g h r e p e a t e d t ra n s forma t i o n s , a l l v a r i a n t s o f t h e b a s i c p a r a d i gm c o n t i n u e d t o b e f o rmu l a t e d r e f l e x i ve l y , a s a c o n t r a r y v i s i o n o f t h e o w n s oc i e t y o r b y n e g a t i ng and i n v e r t i ng t h e mode l s o f o n e ' s p r e d e c e s so r s . T h u s ( Ku p e r 1 9 88 : 2 4 0 - 2 4 1 ) : The most powerful i m a g e s o f p r i m i t i v e s o c i e t y w e r e p r o d u c e d b y v e r y d i s p a r a t e p o l i t i c a l t h i n k e r s -- M a i n e , E n g e l s , D u r k h e im a n d F r e u d . Y e t a l l w e r e t r a n s f o rm a t i o n s o f a s in g l e b as i c mode l . What each did , i n e f fe c t , was t o use it a s a f o i l . They had particular ideas about modern society and constructed a d irectly contrary account of p r i m i t i v e s o c i e t y . P r i m i t i v e SOC i e t y w a s t h e m i r r o r i m a g e o f m o d e r n s o c i e t y -- o r , r a t h e r , p r i m i t i v e s o c i e t y a s they i m a g i n e d i t i n v e r t e d t h e c h a r a c t e r i s t i c s of m o d e r n s o c i e ty a s t h e y s a w i t . . . . O n c e e s t a b l i s h e d , t h i s k i n d o f thinking was susta i ned by social iner tia , l i ke any other orthodox y . A t t h e same t ime i t w a s never s t a t i c . I t l e n t i t s e l f to t h e m o s t d a z z l i n g t r a n s f o r m a t i o n s . . . . B o a s c o u l d cons truct a n a l t e r n a t i v e to M o r g a n , R a d c l i f f e - B r o w n to R i v e r s , L e a c h t o L ev i - S t ra u s s , s im p l y b y r e a l i z i n g a new t r a n s forma t i o n o f the basic mode l . I n the fi nal analysis ,
L e v i - S t r a u s s ' s c a t e g o r y of elementary
s t r u ct u r e s ( c l o s e d , homoge n e o u s s y s tems w i t h exo gamous k i n groups
in which the Maussian principle of rec i procity
g e n e r a t e s a l i m i t e d r a n g e o f k i n m a r r i a g e f o r mu l a e ) r e p r e s e n t s y e t a n o t h e r moda l i t y o f t h e n o t i o n o f p r im i t i v e s o c i et y , o p p o s e d to t h e c a t e g o r y o f com p l e x s t r u c t u r e s and open sys tems i n which mode rn society i s s i tuated ( Kuper 1988 : 2 10 - 2 3 0 ) . The mode l s and research s t r a t e g i e s i n troduced i n the p r e s en t s t u d y r e p r e s e n t a powe r f u l n e w e x t e n s i o n t o t h e s t ru cture of orthodox k i n s h i p t h eory .
If Kuper ' s analysis
292
i s va l id ( a n d , adm i t t ed l y , h i s a rg u m e n t s a r e m o s t p e r s u a s i v e ) , furt h e r p r o g r e s s m u s t i n v o l v e a n e v e n m o r e radica l rethinking of our key assumptions .
NOTES
1 2
3
4
5
6
7
B e r l i n s k i ( 1 9 8 6 : 24 1 ) . T h e a n e c d o t e i s recou n t ed i n J o h n H a r t e ' s sp l e n d i d i n t r o d u c t i o n t o t h e m o d e l l i n g o f e n v i r o n me n t a l p r ob l e m s . S e e a l s o S t ew a r t ( 1 9 8 9 : 2 1 5 ) . T h e f i r s t r e v o l u t i o n i s i d e n t i f i e d w i t h t h e institution of s c i e n t i f i c m e t h o d by G a l i l e o , N e w t o n , a n d t h e i r successors . The second revo l u t ion i n t roduced the theory of r e la t i v i ty , quan tum physics and other f u n dame n t a l p a r a d i gm s h i f t s a ro u n d t h e t u r n o f t h e c e n t u r y . I n t e r m s o f t h e K u h n i a n f r a m e wo r k , t h e s e f u ndame n t a l t r a n s f o r m a t i o n s a re n o t , o f c ou r s e , t h e only s c i en t i f i c revol u t i o n s t h a t have occu rred ( c f . K uhn 1 9 70 ) . The so-ca l led ' th i rd revo l ut i o n ' i n the s t u d y of com p l e x i t y and ' c h a o s ' now s w e e p i n g t h ro u g h a number o f d i s c i p l i nes was n o t o f course treated in Kuhn ' s anal ys i s . See the references in note 4 below . G l e ick ( 198 7 ) , D a v i e s ( 1987 ) , and Stewart ( 1989 ) p r e s e n t f a s c i n a t i n g a c c o u n t s o f r e c e n t d e v e l o pm e n t s . G l e i c k ' s h i g h l y read a b l e book has a l so been rev iewed f o r a n a n t h r o po l o g i c a l j o u r n a l ( s ee F r i ed r i c h 1 9 8 8 ) . For a more techn i c a l in troduc t i o n to the l i terature o n c h a o t i c d y n am i c s a nd n o n l i n e a r s y s t em s , s e e Barnsley ( 1988 ) , Mandelbrot ( 1982 ) ( o n fracta ls ) , and B e r r y e t a l . ( 19 8 7 ) , Glass and Mackey ( 1 9 88 ) , Hao B a i L i n ( 1 985 ) , Holden ( 198 7 ) , P r i gog i ne and Stengers ( 1 9 8 4 ) , a n d S c h u s t e r ( 1 9 8 4 ) . O t h e r r e l e v a n t p u b l ications a r e men t i oned throughout t h i s c h a p te r . A l t h o u g h L �v i - S t r a u s s o p p o s e s ' m e c h a n i c a l ( or determi n i s t i c ) mod e l s t o ' s t a t i s t i ca l ' mode l s , I w o u l d a r g u e t h a t t h e t e rm ' p r o b a b i l i s t i c ' p r o v i d e s a b e t t e r g l o s s f o r m a n y o f t h e ' s t a t i s t i ca l ' e x a m p l e s h e r e f e r s t o ( c f . Levi -S trauss 1 95 3 , 1 966 ) . I am i n d e b t e d to p r o f e s s o r P . E . de J o s s e l i n de Jong f o r p o i n t i n g o u t the f o l l ow i n g p a s s a g e i n t h e f i n a l c h a p t e r o f Tr i s t e s T r op i q u e s ( L e v i - S t r a u s s 1 9 7 6 [ 1 9 5 5 ] : 543 ) : ' Anthropology cou ld w i t h advantage be changed i n t o " e n t r op o l o g y " [ m y e m p h a s i s ] , a s t h e n a m e o f t h e d i sc i p l ine concerned w i th the study of the h i gh e s t man i festations o f t h i s process of d i s i n te r g r a t i on ' . B y a c u r i o u s c o i n c i d e n c e , C l a u d e L ev i S t r a u s s a n d C l a u d e E l w o o d S h a n n o n o n c e l i v e d i n t h e s a m e apartmen t b u i l d ing in Gree nw ich V i l l age d u r ing the 19405 '
-
293
8
( L ev i - S t r a u s s 1 9 8 3 : 3 4 7 ) . For a more comprehensive d i scussion , see Barnard a n d Good ( 19 8 4 : 1 0 4 - 106 ) , L o u n s b u r y ( 1 96 4 ) , B u c h l e r a n d Selby ( 1968 ) . S t r i c t l y speaking , the c l a s s i c ' Crow ' equa tions a r e : FlS F , FlO F l , oMBC o C , �M B C = �B C , a n d t h e a n a l o g o u s ' Om a h a ' e q u a t i o n s a r e : M B S MB , MBD = M , oFlC = olC , � F l C �C . See L o w i e ( 1 9 1 7 ) and Murdock ( 1 949 : 166 - 167 ) . See McKinley ( 19 71 a , 1 97 1 b ) and Barnes ( 1976 , 1984 ) . C a s t i ' s r e l a t i v i s t i c a p p r oa c h t o t h e s t u d y o f comp l e x i t y i s f o r e s h a d owed i n e a r l i e r work b y W . R . A s h b y , H . S im o n , a n d o t h e r s ( C a s t i 1 9 86 : 1 6 9 ) . T h e t e r m i s H e r i t i e r ' s . S e e H er i t i e r ( 1 9 8 1 ) . See in p a r t i c u l a r , De Heusch ( 1974 ) , Barnes ( 1 9 7 5 , 1 9 8 2 , 1 9 84 ) , M c K i n l ey ( 19 7 1 a , 1 9 7 1 b } , a n d Mu l l e r ( 1 9 7 8 , 1 9 80 , 1 98 1 , 1 9 8 2 ) . F r o m i n f o rm a t i o n i n P o u n d s t o n e ( 1 9 8 7 ) . U l a m h a s t o l d J e r emy C ampbe ll ( 1 9 84 : 108 ) t h a t N o a m C homsky ' s e a r l y w o r k o n g e n e r a t i v e g r a mm a r s w a s t h e p o i n t o f d e p a r t u r e f o r h i s o w n w o r k o n c om p u t e r g a m e s . A s d e f i n e d by Romney a n d D ' A n d r a d e ( 1 964 ) , a s t a n d s f o r ' m a l e ' , 'l- f o r ' f e m a l e ' , + f o r ' p a r e n t o f ' , - f o r ' ch i ld of ' , and * for ' si b l ing of ' . For examp le , the s t r i n g o+ �*o- � stands for a man ' s mother ' s brother ' s daughter . See t h e d i scu s s i on o f t h e l a t ti c e o f quo t i e n t structures of H x P and the def i n i t i o n o f a ' cover ' 4 4 i n C h a p t e r 1 ( e s p e c i a l l y f i g u r e 1 . 6 ) f o r a n ana logous procedure . L o u n s b u r y ( 1964 ) a c t u a l l y d e f i n e s the Oma h a s ke w i n g r u l e s a s f o l l ows : S k e w i n g r u l e I ( F l . . . � l . . . ) . . . 'l-B ) a n d ( . . . � B D ... w i t h c o r a 1 1 a r y ( . . . �B S . . . �l ) ; S k e w i n g r u l e I I ( F l � l ) w i t h c o r o l l a r y ( �B S ... �B ) a n d ( �BD ... �l ) ; S k e w i n g r u l e I I I ( ol . . . ... . ) w i t h c o r o l l a r y ( . . . �B ... . . . �F ) . H e n c e B o y d 00 e t a l . o n l y d e f i n e the corol l a r i es to Lounsbury ' s skew i n g r u l e s . Howeve r , i f n e ce s s a r y , t h e c om p l e t e set of rules and their corol l a r ies may be e a s i ly d e f i n e d a s a s e t o f e q u a t i o n s ( C row r u l e s a s we l l a s Om a h a r u l e s ) . S e e a l s o t h e d i s c u s s i o n b y G r e e c h i e a n d Ottenheimer ( 1 974 ) . Actua l l y , t o t h e coro l l ar y o f Louns bury ' s ( 1964 ) Crow skewing rule I . See note 1 6 above . F o r o t h e r i m p o r t a n t d e v e l o pm e n t s o f t h e s e m i g r o u p a p p r o a c h t o k i n s h i p s t u d i e s , s e e L e h m a n a n d W i t z ( 1974 ) a n d o t h e r c on t r i b u t i o n s i n B a l l o n o f f ( 1 9 7 4 a ) , a n d t h e p a p e r b y S y d n e y Go u l d . L e v i n ' s m e t h o d o f a n a l y s i s ( 1 974 ) i s a p a r a l l e l d e v e l o pme n t , a l t ho u g h n o t e x p l i c i t l y f o r m u l a t ed i n t e rms o f s em i g r o u p t h e o r y . See a l s o L i u ( 1 98 6 ) ; L i u h a s c o l l a b o r a t e d w i t h G o u l d o n t h e f o rm a l i z a t i o n o f k i n s h i p s t r u c t u r e s . S e e a l s o t h e c o mm e n t s b y R e a d ( 1 9 8 6 ) , G r e e c h i e a n d O t tenheimer ( 1 974 ) , Ottenhe imer ( 19 8 5 ) , and Jorion ( 1980 , 1 98 1 , 1 9 8 6 ) . S c h e f f l e r ' s a s s ump t i o n s a r e a p p a r e n t l y n o t s u b j e c t t o d i s c u s s i o n : a n y f o r m a l theory =
=
=
=
=
9 10 11 12 13
14
15
16
�
.
17 18
19
.
294
20
21
22 23
24
25
26
of s y s tems o f kin c l a s s i f i c a t io n must be cons i s te n t w i t h t h e f o rm a l p r o p e r t i e s o f g e n e a l o g i c a l e x t e n s i o n ( S che f f l e r 1 9 8 6 : 36 9 ) . See a l s o S c h e f f l e r ( 19 8 2 , 1 98 4 ) . F o r a m o r e g e n e r a l c r i t iq u e o f t r an s f o rm a t i o n a l a n a l y s i s a s a p p l i e d t o k i n s h i p s e m a n t i c s , s e e F j e llman ( 1 978 ) , Borland ( 1979 ) , Shapiro ( 1982 ) , Woolford ( 1 9 8 4 ) , H i r s c h f e l d ( 1 9 8 6 ) , a n d G i v on ( 1 9 8 9 : 3 5 5 - 3 6 7 ) . In the social sciences , semigroup theory has a l so been a p p l i e d to the mode l l i n g o f i nterac t i v e behaviou r , social networks and role s t ructures , and other a p p l i c a t i o n s f a l l i n g u n d e r t h e t e rm ' b l o ckm o d e l a l ge b r a s ' . S e e t h e s h o r t b i b l i og r a p h y i n L i d l a n d P i l z ( 1 9 8 4 : 5 3 0 ) , a n d t h e p a p e r b y L o r r a i n a n d W h i te ( 197 1 ) . H o w e ve r , t h e N u e r s a y ' t u t t h i l k e r u a l ' ( ' t h e r e i s no i n c e s t amo n g b u l l s ' ) : w i v e s o f a ma n ' s p a t e r n a l h a l f uncles , paternal half -brothers a n d paternal cousins are ' w ives of our cattle ' , and i n a general soc i a l sense the w i v e s of the ' bu l l s ' , i . e . , of t h e j o i n t f a m i l y a n d o f t h e l i ne a g e . T o h a v e r e l a t i o n s w i th t h e wives of these close agnates is not consi dered rual , a l t h o u g h i t s ho w s l a c k o f r e s p e c t and comp e n s a t i o n m a y be a sked f o r ( Ev a n s - P r i tchard 1949 : 92 , 100 ) . T h e French v e r s i o n w a s f i r s t pu b l i s hed in 1979 . T h e i n fo rma l n o t i o n o f ' s pecia l i z a t i o n ' app l i ed h e r e should not be confused with the techn ical concep t o f an ' id e a l i z ed s p ec i a l i z a t i o n r e l a t i o n ' a s d e f i n e d b y Balzer et a l . ( 1987 : 170 ) . F u r t he r s pe c i a l i z a t i on o f t h e s a me - s e x a n d o p p o s i t e sex sibl ing relations is also necessary i f one is to cope -w i t h t h e p r o b l e m o f mo d e l l i n g p a r a l l e l - c o u s i n marriage and with the i n f luence o f b i r t h -order c o n s t r a i n t s o n m a r r i a g e c h o i ce s . See , f o r e x a m p l e , G o t t l i e b ' s d i s c u s s i o n o f t h e multiple a l l i a n c e m o d e l s co-ex i st i ng wi thin t h e Beng marri age system and the i r relationship w i t h b i r th -order ( Go t t l i e b 1986 ) . I t i s s u g g e s t e d t h a t such a p e r s pec t i v e , mode l l i n g the interaction of individual choices ( from among a l im i t e d n u m b e r o f a l te r n a t i ve s ) a n d t h e e m e r g e n t p r o pe r t i e s o f t h e g l ob a l s y s te m o f e x c h a n ge , m i g h t e n c om p a s s t h e w i d e r a n g e o f e x c h a n g e p h e n o m e n a described b y , say , T apper ( 19 8 1 ) for the Durra�i P a s h t u n s o f A f g h a n T u r k e s t a n ( o r s i m i l a r s y s tem s ) w i t h i n a s i ng l e , u n i f ied f ramework . T h e r e i s a sma l l b u t g r ow i n g n u m b e r o f p u b l i ca t i o n s o n t h e T e n d a . S e e i n p a r t i c u l a r t he v o l ume e d i t e d b y Gessain and de Les t rang e ( 1980 ) which includes a bibliography .
295
REFERENCES A c k e rma n , C .
( 1 9 7 6 ) , O m a h a a n d ' Om a h a ' . A m e r i c a n 3 : 55 5-572 . A d a m s , D . ( 1 9 7 9 - 1 9 8 5 ) , Th e Hi t c h H i k e r ' s G u i de t o t h e Ga l a x y . ( A Tr i l o g y i n F o u r Pa r t s . ) L o n d o n : P a n . A po s t e l , L . ( 1 9 6 1 ) , T o w a r d s t h e f o r m a l s t u d y o f mo d e l s i n t h e n o n - f o r ma l s c i e n c e s . I n H . F r e u d e n t h a l ( e d . ) Ethnol ogi s t
Th e C o n c ep t a n d t h e R o l e o f t h e M o de l i n Ma t h e ma t i c s a n d Na t u r a l a n d So c i a l S c i e n c e s . D o r d r e c h t : R e i d e l . A s h m o r e , M . ( 1 9 8 9 ) , Th e R e f l e x i v e Th e s i s : Wr i g h t i n g S o c i o l o g y o f S c i e n t i f i c K n o w l e d ge . C h i c a g o : U n i v e r s i t y
o f C h i c a g o Pre s s . A t k i n s , J . R . ( 1 974a ) , On t h e fundamen t a l c o n s a n g u i n e a l num b e r s a n d t h e i r s t r u c t u r a l b a s i s . Ame r i ca n E th n o l ogi s t 1 : 1 - 3 1 . - - - - ( 1 9 7 4 b ) , C o n s a n g u i nea l d i s t a n c e measu re s : a ma t hema t i c a l a n a l y s i s . I n P . B a l l o n o f f ( ed . ) Ma t h e m a t i c a l M o de l s o f S o c i a l a n d C o g n i t i v e S t r u c t ur e s . U rbana : U n i v e r s i ty o f I l l i n o i s P r e s s .
- - - - ( 1 9 7 4c ) , GRAF I K : a m u l t i p urpose k i n s h i p metala nguage . I n P . B a l l o n o f f ( e d . ) G e n e a l o g i c a l Ma t h e m a t i c s . P a r i s : Mou t o n . - - - - ( 1 9 8 1 ) , C o m m e n t s o n F . E . T j o n S i e F a t , M o r e c om p l e x f o rm u l a e o f g e n e ra l i z e d e x c h a ng e . Curren t A n t h r op o l o g y 2 2 : 3 9 0 - 3 9 1 . B a l 1 o n o f f , P . ( e d . ) ( 1 9 7 4 a ) , G e n e a l o g i c a l Ma t h e ma t i c s . P a ri s : Mouton . - - - - ( ed . ) ( 1 9 7 4b ) , Gen e t i cs a n d Soc i a l S t r uc t u r e : Ma t h ema t i c a l S t r u c t u r a l i s m i n P o p u l a t i o n G e n e t i c s a n d So c i a l Theo r y . S t r o u d s bu r g , P a . : Dowd e n ,
Hutchinson and Ros s . B a l z e r , w . ( 1 98 2 ) , E m p i r i c a l c l a i m s i n e x c h a n g e economi c s . In W . Stegmul l e r , W . Balzer and W . Spohn ( ed s . ) Ph i l o s o p h y o f Economi c s . B e r l i n : S p r i n g e r . - - - - ( 1 9 8 3 ) , T h e o r y a n d measu reme n t . Erkenn tni s 19 : 3-25 . Ba lzer , W . , C . U . Mou l i ne s and J . D . Sneed ( 1 9 8 7 ) , An A r ch i t e c t on i c
for S c i ence .
T h e S t r u c t u ra l i s t Prog ram .
Dordrech t : Reide l . B a l z e r , W . and J . D . S need ( 1 97 7 ) , Gen era l i ze d n e t s t r u c t u r e s o f em p i r i c a l t h e o r i e s I . S t u d i a L o g i c a 36 : 195-211 . - - - - ( 1 9 78 ) , Gene r a l i ze d n e t s t r u c t u r e s o f emp i r i c a l t h e o r i e s I I . S t u d i a L o g i ca 3 7 : 1 6 7 - 1 9 4 . Barnard , T . T . ( 1986 [ 1924 ] ) , The regulation of marriage i n A m b r y m a n d P a a m a . I n G . d e M e u r ( e d . ) N e w Tr e n d s i n Ma t h ema t i c a l A n t h r o p o l o g y . L o n d o n : R o u t l e d g e & Kegan Pau l . B a r n a r d , A . a n d A . G o o d ( e d s . ) ( 1 9 8 4 ) , Re s e a r c h P r a c t i c e s i n t h e S t u d y o f K i n s h i p . L o n d o n : A c a d em i c . B a r n e s , J . A . ( 19 6 7 ) , I n q u e s t o n t h e M u r ng i n . Occa s i on a l Pa p e r s o f t h e R o y a l A n t h r o p o l o g i c a l I n s t i t u t e N o . 2 6 . B a r n e s , R . H . ( 19 75 ) , E leme n t a r y a n d c o m p l e x s t ru c tu re s . Ma n ( N . S . ) 1 0 : 4 7 2 - 4 7 3 .
296
- - - - ( 197 6 ) , D ispersed a l l i ance and the proh i b iti o n of ma r r i ag e : r e c o n s i d e r a t i on o f McK i n l e y ' s e x p l a n a t i on o f C r o w - Om a h a t e r m i n o l o g i e s . M a n ( N . S . ) 1 1 : 3 8 4 - 3 9 9 . - - - - ( 1 98 2 ) , K i n s h i p e x e r c i s e s . C u l t ur e 2 : 1 1 3 - 1 1 8 . - - - - ( 1 9 8 4 ) , Two C r o w s D e n i e s I t : A H i s t o r y o f C o n t r o v e r s y i n Oma h a S o c i o l o g y . L i n c o l n : U n i v e r s i t y o f N e b r a s k a Pres s . - - - - ( 198 5 ) , T he Leiden version o f t h e comparat ive method in S o u t h e a s t A s i a . J o u r n a l o f t h e A n t h rop o l og i ca l Soc i e t y o f Oxford 1 6 : 8 7 - 1 1 0 . B a r n s l e y , M . ( 1 98 8 ) , Frac ta l s E ve r ywher e . B o s t o n : A c a d em i c . B a r r e t t , S . R . ( 1 9 8 4 ) , The R eb i r t h o f A n t h r op o l o g i c a l Th e o r y . T o r o n t o : U n i v e r s i t y o f T o r o n t o P r e s s . B a s t i d e , R . ( ed . ) ( 1 9 6 2 ) , Sens e t u s a g e s d u te rme s t r u ct u re dans les sci e nces huma i n e s e t s o c i a l e s . J a n ua L i n g u a r um N o . 1 6 . T h e H a g u e : M o u t o n . B a u m s l a g , B . a n d B . C h a n d l e r ( 1 9 6 8 ) , Th e o r y a n d P r o b l e m s o f G r o up Th e o r y . N e w Y o r k : M c C r a w - H i l l . B e r l i n sk i , D . ( 1 9 86 ) , The language o f l i f e . In J . L . C a s t i a n d A . K a r l q v i s t ( e d s . ) C omp l e x i t y , L a n g u a g e , a n d L i f e : M a t h e m a t i c a l A p p r o a c h e s . B i om a t h e m a t i c s V o L 16 . Berli n : Springer . B e r n a r d i , B . ( 1 9 8 5 ) , A g e C l a s s S y s t em s : S o c i a l I n s t i t u t i on s a n d P o l i t i e s b a s e d o n A ge . C a m b r i d g e : C a m b r i d g e University Press . B e r r y , M . V . , I . C . P e r c i v a l a n d N . O . We i s s ( ed s . ) ( 1 9 8 7 ) , D y n am i c a l Ch a o s . P r o c e e d i n g s o f t h e Roya l S o c i e t y o f L o n do n , S e r i e s A , V o l . 4 1 3 ( N o . 1 8 4 4 ) . Biersack , A . ( 19 8 2 ) , Tongan exchange structure s : beyond d e s c e n t a n d a l l i a n c e . Th e J o u r n a l o f t h e P o l y n e s i a n Soc i e t y 9 1 : 1 8 1 - 2 1 2 .
B l oc h , M . · ( 1 9 78 ) , M a r r i a g e a m o n g s t e q ua l s : a n a n a l y s i s o f t h e ma r r i a g e c e r e m o n y o f t h e M e r i na o f M a d a g a s c a r . Ma n ( N . S . ) 1 3 : 2 1 - 3 3 . B lunde l l , V . and R . Layton ( 1 9 78 ) , M ar r iage , myth a n d m o d e l s o f e x c h a n g e i n t h e W e s t K i m b e r l e y s . Ma n k i n d 11 : 231 -245 . B o r l a n d , C . H . ( 1 9 7 9 ) , K i n s h i p t e r m g r amma r : a r e v i ew . A n t h r op o s 7 4 : 3 2 6 - 3 5 2 . B o s s e , O . ( 1 9 83 ) , Le v o c a bu l a i r e d e p a r e n te t e l u g u . L ' H omme 2 3 : 9 7 - 1 0 8 . Bou l a y , J . du ( 1982 ) , T he Creek vamp ire : a study o f cyclic s y mb o l i sm i n m a r r i a g e a nd d ea t h . Man ( N . S . ) 1 7 : 2 1 9 - 2 3 8 . - - - - ( 1 9 8 4 ) , T h e b l o o d : symbo l i c r e l a t io n s h i p s b e tween d e s c e n t , m a r r i a g e , i n c e s t p r o h i b i t i o n s a n d sp i r i tual k i n s h i p in G r e e c e . Ma n ( N . S . ) 1 9 : 5 3 3 - 5 5 6 . B o wd e n , R . ( 1 9 8 3 ) , K w o m a t e r m i n o l o g y a n d m a r r i a g e a l l i a n c e : t h e ' O m a h a ' p r o b l e m r e v i s i t e d . Ma n ( N . S . ) 1 8 : 7 4 5 - 7 6 5 . - - - - ( 1 98 8 ) , K woma d e a t h p a yme n t s a n d a l l i a n c e t h eo r y . Ethnol ogy 27 : 2 7 1 -290 .
Boyd ,
J.P.
( 1 969 ) , The a l g e b r a o f g roup k i n sh i p . Journal P s y ch o l o g y 6 : 1 3 9 - 1 6 7 . - - - - ( 1 9 7 1 ) , Compo n e n t i a l a na l y s i s a n d t h e s u b s ti t u t i o n p r o p e r t y . I n P . K a y ( e d . ) E x p l o r a t i o n s i n Ma t h e ma t i ca l A n t h ropo l o g y . C a m b r i d g e , Ma . : M I T . o f Ma t h em a t i c a l
297
- - - - ( 1 9 7 2 ) , I n f o r m at ion d i s t a n c e f o r d i s c r e t e s t r u c t u r e s . I n R . N . S h e pa r d , A . K . R om n e y a n d S . B . N e r l o v e ( e d s . ) M u l t i d i m e n s i o n a l S c a l i n g . Th e o r y a n d A p p l i c a t i o n s t h e B e h a v i o r a l S c i e n c e s . Vo l u m e I : Th e o r y .
in
New York : Semina r . Boyd , J . P . , J . H . Haehl and L . D . Sai ler ( 1972 ) , Kinship s y s t e m s a n d i n v e r s e s em i g r o u p s . J o u r n a l o f Ma t h e ma t i c a l Soci o l o g y 2 : 3 7 -6 1 . B r o w n , D . J . J . and E . L i puma ( 1 9 8 5 ) , On t h e p r e f e rence f o r m a r r i a g e r u l e s ( c o r r e s p o n d e n c e ) . Ma n ( N . S . ) 2 0 : 3 4 5 - 346 . B r u m b a u g h , R . C . ( 1 9 7 8 ) , K i n s h i p a n a l y s i s : m e t h o d s , resu l ts , a n d t h e S i r i o n 6 d e m o n s t r a t i o n c a s e . B i j d r a g e n t o t de Ta a l - , L a n d - e n Vo l l< e n k u n de 1 3 4 : 1 - 2 9 . B u c h l e r , I . R . a n d M . F i s c h e r ( 1 9 8 1 ) , C omme n t s o n F . E . Tjon S i e F a t , M o r e c om p l e x f o r m u l a e o f g e n e r a l i z e d exchange . C u r r e n t A n t h r op o l o g y 2 2 : 3 9 1 - 3 9 2 . B u c h l e r , I . R . a n d H . A . S e l b y ( 1 9 6 8 ) , Ki n ship an d Soc i a l Organ i za t i on : An Introduc t i on to Th eor y and Me thod. New Yor k : r�acm i l l a n . B u d d e n , F . J . ( 1 9 7 2 ) , Th e F a s c i n a t i o n o f G r o up s . Camb r i d g e : C a m b r i d g e U n i v e r s i t y P re s s . C a m p b e l l , J . ( 1 9 8 4 ) , G r a m m a t i c a l Ma n . I n fo r m a t i o n , Entrop y , L a n g u a g e a n d L i fe . H a r m o n d s w o r t h : P e n g u i n . C a r n a p , R . ( 1 9 5 8 [ 1 9 5 4 ] ) , I n t r o du c t i o n t o Sym b o l i c L o g i c a n d i t s A pp l i c a t i o n s . N e w Y o r k : D o v e r . C a s t e r l i n e , J . B . , L . W i l l i ams a n d P . McDo n a l d ( 1 9 86 ) , T h e a g e d i f f e re n c e b e t w e e n s p ou s e s : v a r i a t i o n s a mo n g d e v e l o p i n g c o u n t r i e s . P op u l a t i o n S t u d i e s 4 0 : 3 5 3 - 3 7 4 . C a s t i , J . L . ( 1 9 86 ) , O n s y s t em comp l ex i t y : i d e n t i f i ca t i o n , m e a s u r eme n t , a nd m a n a g emen t . I n J . L . C a s t i a n d A . K a r l q v i s t ( e d s . ) C o mp l e x i t y , L a n g ua g e , a n d L i fe . Ma t h e m a t i c a l A p p r o a c h e s . B i o m a t h e m a t i c s V o l . 1 6 . Berli n : Springer . - - - - ( 1 9 8 9 ) , A l t e r n a t e R ea l i t i e s . Ma t hema t i c a l M o de l s o f Na t u r e a n d Ma n . N e w Y o r k : J o h n W i l e y a n d S o n s . C a s t i , J . L . a n d A . K a r l q v i s t ( e d s . ) C o mp l e x i t y , L a n g u a g e , a n d L i fe . Ha t h e m a t i c a l A p p r o a c h e s . B i o m a t h e m a t i c s Vol . 16 . Ber l i n : S p r i ng e r . C a v a l l i -Sforza , L . L . , M . K imura a n d I . Barrai ( 1 966 ) , The p r o b a b i l i ty o f consanguineous m a r r i a g e s . Gen e t i cs 5 4 : 37 -60 . C h ao , Y . R . ( 1 9 6 2 ) , M od e l s i n l i n g u i s t i c s a n d m o d e l s i n genera l . I n E. Nage l , P . Suppes and A. Tarski ( ed s . ) Logi c ,
He t h o d o l o g y a n d P h i l o s o p h y o f S c i e n c e .
S t a n f o r d : S t a n f o r d U n i v e r s i t y P re s s . C lama g i rand , B . ( 19 80 ) , The soc i a l orga n i z a t i o n o f the E m a o f T i m o r . I n J . J . F o x ( e d . ) Th e F l o w o f L i f e : E s s a y s on E a s t e r n Indon e s i a . C a mb r i d g e , Ma . : H a r v a rd Univers ity Press . C ou r r e g e , P h . ( 1 9 6 5 ) , U n m o d e l e m a t hema t i que d e s s t r u c t u r e s e l e m e n t a i r e s d e p a r e n t e . L ' H o m m e 5 : 2 4 8 - 290 . - - - - ( 1974 ) , A mathematical model of the structure o f k i n s h i p . I n P . B a l l o n o f f ( e d . ) Ge n e t i c s a n d S o c i a l S t r u c t u r e : Ma t h ema t i c a l S t r u c t u r a l i s m i n P op u l a t i o n G e n e t i c s a n d S o c i a l Th e o r y . S t r o u d b u r g , P a . : D o w d e n ,
Hu t c h i n so n a n d R o s s .
298
D a mo n , F . H . ( 1 9 8 0 ) , T h e K u l a a nd g e n e r a l i z ed e x c h a ng e : c o n s i d e r i n g s o m e u n c o n s i d e r e d a s p e c t s o f Th e E l e me n t a r y S t r u c t u r e s o f K i n s h i p . Han ( N . S . ) 1 5 : 267 -292 . D a v i e s , P . ( 1 9 8 7 ) , T h e C o s m i c B l u ep r i n t . L o n d o n : H e i n e ma n n . De nham , W . W . and J . R . Atkins ( 1982 ) , More on the doub l e - h e l i x k i n s h i p mod e l . Ame r i can E thno l ogi s t 9 : 191-192 . D e n h a m , W . W . , C . K . McD a n i e l a n d J . R . A t k i n s ( 1 9 79 ) , A r a n d a and A l yawara k i n s h i p : a qua n t i t a t i v e a rgument for a doub l e - h e l i x mode l . Ame r i can E t h no l o gi s t 6 : 1 - 2 4 . D i ed e r i c h , W . ( 1 989 ) , T he d e v e l o pme n t o f s t r u c t u r a l i sm . Erken n t n i s 3 0 : 363 - 3 8 6 . D i e d e r i c h , W . , A . I b a r r a a n d T . M o r m a n n ( 1 9 8 9 ) , Bibliography o f s t r u c t u r a l i sm . Erkenn t n i s 3 0 : 3 8 7 - 4 0 7 . D i e u d o n n e , J . ( 1 970 ) , T h e w o r k o f N i c h o l a s B o u r ba k i . A m e r i c a n M a t h e ma t i c a l M o n t h l y 7 7 : 1 3 4 . D i x o n , J . D . ( 1 9 7 3 ) , P r o b l e m s i n G r o up Th e o r y . N e w Y o r k : D o v e r- . D o u t r- e l o u x , A . ( 1 9 6 7 ) , L ' o mb r e d e s f e t i c h e s : s o c i e t e e t cu l t u r e Yomb e . L o u va i n : N a u w e l a e r t s . Dupre , G . ( 196 5 ) , Aspects techn iques e t sociaux de l ' a g r i c u l t u r e e n p a y s B a s s a r i . B u l l e t i n s e t M em o i r e s de l a S o c i e t e d ' A n t h r op o l o g i e d e Pa r i s 8 ( l I e s e r i e , fascicule 1-2 ) : 7 5- 159 . D u p r e , M . C . ( 1 9 8 1 ) , S o u s l ' e c h a n g e , l ' i n c e s t e . L ' Homme 21 : 27-37 . Durkh e im , E . and M . Mauss ( 1903 ) , D e que lques f ormes p r- i m i t i v e s d e c l a s s i f i c a t i o n . A n n e e S o c i o l o g i q u e 6 : 1-72 . D u y v e n d a k , J . P . ( 1 9 2 6 ) , H e t Kakean -genoo t s chap v a n S e r a n . A l m e l o : H i l a r- i u s . D i j k , T . van and N . de Jonge ( 198 7 ) , The house on the h i l l ; m o i e t i e s a n d d o u b l e d e s c e n t i n B a b a r- . B i j d r a g e n t o t de Ta a l - , L a n d - e n Vo l k e n k u n d e 1 4 3 : 5 4 - 1 0 4 . E l k i n , A . P . ( 1 9 3 2 ) , S o c i a l o r g a n i z a t i o n i n t h e K i m b e r- l e y d i v i s i o n , N o r t h w e s t e r n A u s t r a l i a . Ocea n i a 2 : 2 9 6 - 3 3 3 . - - - - ( 1 9 64 ) , The A us t r a l i a n A b o r i g i n e s . G a r d e n C i t y , N . Y . : Doub leday . E l i o t , T . S . ( 1 9 6 3 ) , C o l l e c t e d P o e m s 1 9 0 9 - 1 96 2 . L o n d o n : F a b e r- a n d F a b e r . E l l i o t t , J . P . a n d P . G . D a w b e r- ( 1 9 8 5 ) , S y m m e t r y i n P hy s i cs . Vo l u m e
1 :
Pri ncip l es
and
S i mp l e A p p l i c a t i o n s .
London : Macmi l la n . - - - - ( 1 9 8 6 ) , S ymm e t r y i n P h y s i c s . V o l u m e 2 : F u r t h e r A p p l i c a t i o n s . L o n d o n : M a cm i l l a n . E t i e n n e , P . ( 1 9 7 5 ) , L e s i n t e r- d i c t i o n s d e m a r- i a g e c h e z l e s B a o u l e . L ' Homme 1 5 : 5 - 2 9 . E v a n s - P r- i t c h a r- d , E . E . ( 1 9 4 9 ) , N u e r- r- u l e s o f e x o g a m y a n d i n c e s t . I n M . F o r t e s ( ed . ) Soc i a l S t r u c t u r e . S t ud i e s P r e s e n t e d t o A . R . R a dc l i f f e - B r o wn . O x f o r d : C l a r e n d o n . F e r r y , M . - P . ( 1 9 7 4 ) , T e r- m e s d e p a r- e n t e u t i l i s e s p a r l e s p o p u l a t i o n s d u de p a r t e m e n t d e K e d o u g o u ( S e n e g a l ) . B u l l e t i n de l ' I n s t i t u t
F o n da m e n t a l
d ' A fr i q u e
N o i re
299
3 6 ( s er i e B ) : 6 1 3 - 6 2 7 . Ferr y , M . -P . and E . Guignard ( 19 84 ) , T i g e s d e mi l , tiges d ' igname . Essai sur la parente chez les Bedik et les B e l i y a n ( S e n e g a l o r i e n t a l ) . L ' H omme 2 4 : 3 5 - 6 0 . F e s t i n g e r , G . ( 1 970a ) , N o u ve l l e a n a l y se f o rme l l e d e l a t e rm i n o l o g i e d e p a r e n t e S e n e c a . L ' H o m m e 1 0 : 7 7 - 9 3 . - - - - ( 1 9 7 0 b ) , C o n d i t i o n s d e s y me t r i e d e s p r oh i b i t i on s l i g n a g e r e s d e m a r i a g e . L ' Homme 1 0 : 1 0 9 - 1 1 5 . F e y e r a b e n d , P . ( 1 9 7 7 ) , C h a n g i n g p a t t e r n s o f r e c o n structio n .
Br i ti sh
f o r t h e Phi l osophy o f Sci ence 2 8 : 3 5 1 - 3 6 9 . A ga i n s t Me t h o d : O u t l i n e o f a n A n a r c h i s t i c Th e o r y o f K n o w l e d g e . L o n d o n : V e r s o . F ey n ma n , R . P . , R . B . L e i g h t o n a n d M . S a n d s ( 1 96 3 ) , The F e y n m a n L o c t u r e s o n P h y s i c s . Vo l u m e 1 : Ma i n l y M e c h a n i c s , Ra d i a t i o n , a n d H e a t . R e a d i n g , M a . ; - - - - ( 1984
JournaJ
[ 1975 ] ) ,
A d d i s o n - Wes l e y . F i s o n , L . a n d A . I . How i t t
( 1 8 80 ) , Kami 1 a r o i a n d K urna i . G r o up Ma r r i a g e a n d R e 1 a t i o ; s h i p , a n d Ma r r i a g e b y E l opemen t . M e l b ou r n e : G e o r g e R o b e r t s o n .
F j e l lm a n , S . M . ( 1 9 78 ) , T h e e x t e n s i o n i s t h y p o t h e s i s a n d ma r k i n g r u l e s i n the formal a n a l y s i s o f k i n s h i p t e r m i n o l o g y . J o u r n a l o f A n t h r o p o l o g i c a l Re s ea r c h 3 4
;
5 40 - 56 0 .
Fox,
J . J . ( 1 9 80 ) , Mode l s a n d m e t a p h o r s : compa r a t i ve r e s e a r c h i n E a s t e r n I n d o n e s i a . I n J . J . F o x ( e d . ) The F l o w o f L i fe : E s s a y s o n E a s t e r n I n d o n e s i a . C a m b r i d g e , Ma . : Ha rvard U n i versi ty Pres s . - - - - ( 1 988 ) , R e v iew o f P . E . Jos s e l i n d e Jong , Uni t y i n D i v e r s i t y . I n do n e s i a a s a F i e l d o f A n t h r op o l o g i c a l S t u d y . B i j d r a g e n t o t d e Ta a 1 - , L a n d - e n Vo l k e n k u n d e 144 : 1 78 - 1 8 1 -
Fox , R . ( 1969 ) , A l l i ance and the Australians : a response t o D r . H i a t t . Ma n k i n d 7 : 1 5 - 1 8 . F r i e d e r i c y , H . J . ( 1 9 3 3 ) , D e s t a n d e n b i j de B o e g i n e z e n e n Ma k a s s a r e n . T h e H a g u e : M a r t i n u s N i j h o f f . F r i e d m a n , M . ( 1 9 8 3 ) , F o u n da t i o n s o f S p a c e - T i m e Th e o r i e s . R e l a t i v i s t i c Ph y s i c s a n d P h i l o s o p h y o f S c i e n c e .
P r i nc e t on , N . J . : P r i n c e t o n U n i v e r s i t y P r e s s . F r i ed r i c h , P . ( 1 98 8 ) , E e r i e c h a o s a n d e e r i e r o r d e r ( re v i ew a r t i c l e ) . J o u r n a l o f A n t h r op o l o g i c a l R e s e a r c h 44 : 4 3 5 - 4 44 .
Galton , F .
Journal
70 - 7 2 .
Ge l l ne r , E .
( 1 889 ) ,
of
the
( 1957 ) ,
Ph i l o s op h y
of
N o t e on Aus t r a l i a n ma r r i a g e systems .
Roya l
A n t h r op o l o g i ca l
In s t i t u t e
18 :
I d e a l l a n g u a g e a n d k i n s h i p s t ru c t u r e .
'S c i e n c e 2 4 : 2 3 5 - 2 4 2 .
T h e concept o f k i n s h i p ; w i th spec i a l reference t o M r . Needham ' s ' Descent sys tems and ideal l a n g u a g e ' . Ph i l o s o p h y o f S c i e n c e 2 7 : 1 8 7 - 2 0 4 . - - - - ( 1963 ) , Na ture a nd society i n social a n t h ropology . - - - - ( 1 96 0 ) ,
P h i l o s op h y o f S c i e n c e
30 : 2 36 - 2 5 1 .
G e s s a i n , M . ( 1 9 6 3 ) , E t u d e s o c i o - d e m o g r a p h i q u e d u ma r i a g e c h e z l e s C o n i a g u i e t B a s s a r i . R e f l e x i o n s s u r l ' endogamie . B u l l e t i n s e t M � m o i r e s de 1 a S o c i � t � d ' A n t h r o p o l o g i e Pa r i s 5 ( l I e s � r i e , f a s c i c u l e 3 - 4 ) ; 1 2 3 - 2 2 2 .
de
300
Les c l a s s e s d ' a g e chez les B a s s a r i d ' E t y o l o ( Se negal oriental ) . In D . Paulme ( ed . ) Classes et a s s o c i a t i o n s d ' a g e e n A fr i q u e d e l ' o u e s t . P a r i s : P I o n . ( 1 9 8 2 ) , Dem o g ra p h i e h i s to r i q u e d e s B a s s a r i ( Sene g a l o r i e n t a l ) : l ' e v o l u t i o n d u m a r i a g e . L ' A n t h r op o l o g i e
----( 1971 ) ,
- - - -
( Pa r i s ) Gessain , M .
8 5 -8 6 : 62 7 - 650 .
a n d M . - T h . d e L e s t r a n g e ( e d s . ) T e n da 1 9 8 0 . Pa r i s : S o c i e t e d e s A f r i ca n i s te s . G i e r e , R . N . ( 1 9 8 8 ) , E xp l a i n i n g S c i e n c e . A C o g n i t i v e Approa ch . C h i ca g o : U n i v e r s i t y o f C h i c a g o P r e s s . G i v a n , T . ( 1 9 8 9 ) , M i n d , C o de a n d C o n t e x t . E s s a y s i n P r a gma t i c s . H i l l s d a l e , N . J . : L a w r e n c e E r l b a u m . G l a s s , L . a n d M . C . M a c k e y ( 19 8 8 ) , From Cl ock s to Cha o s . Th e R h y t h m s o f L i f e . P r i n c e t o n , N . J . : P r i n c e t o n U n iversity Press . G l e i c k , J . ( 1 9 8 7 ) , C h a o s . Ma k i n g a /l e w S c i e n c e . N e w Y o r k : V i k i ng . G l ow c z ew s k i , B . a n d C h . - H . P r a d e l l e s d e L a to u r ( 1 98 7 ) , L a d i a g o n a l e d e l a b e l l e - m e r e . L ' H omme 2 7 : 2 7 - 5 3 . Good , A . ( 1 980 ) , E ld e r si ster ' s daughter marriage in S o u t h A s i a . J o u r n a l o f A n t h r op o l o g i c a l R e s e a r c h 3 6 :
4 7 4 - 5 00 . - - - - ( 1 9 8 1 ) , Presc r i p t ion , preference and pract ice : ma r r i a g e p a t t e r n s among the Kond a i y anko t t a i M a r a v a r of S ou t h I n d ia . M a n ( N . S . ) 1 6 : 108 - 1 2 8 . Gottlieb , A . ( 1 986 ) , Cou s i n marriage , b irth order and gende r : a l l i ance mode l s among the Beng o f Ivory Coas t . Man ( N . S . ) 2 1 : 6 9 7 - 7 2 2 . G o u l d , S . A . ( 1 9 7 8 ) , A x i om a t i z a t i o n o f k i n s h i p t h eo r y , C o n f e r e n c e o n C o mp l e x A n a l y s i s a n d I t s A p p l i c a t i o n s .
r� o s c o w . G r a n e t , M . ( 1 9 3 9 ) , C a t e g o r i e s m a t r i mo n i a l e s e t relations de p r o x i m i t e d a n s la C h i n e a n c i e n n e . A n n a l e s S o c i o 1 0 g i q u e s , S e r i e B , S o c i o l o g i e r e l i gieus e , fasc icules 1 -3 : 1 -2 5 4 . G r a n g e r , G . - G . ( 1 9 8 3 [ 1 9 6 0 ] ) , F o r m a l Th o u g h t a n d t h e S c i e n c e s o f Ma n . D o r d r e c h t : R e i d e l . G r e e c h i e , R . J . a n d M . O t t e n h e i m e r ( 1 9 7 4 ) , An i n t r o d u c t i o n to a mathema t i c a l approach to the s tudy o f kins h i p . I n P . B a l l o n o f f ( e d . ) G e n e a l o g i c a l Ma t h e m a t i c s . P a r is : Mou ton . G r e e n b e rg , J . H . ( 19 49 ) , T h e l o g i c a l a n a l y s i s o f k i n s h i p .
Ph i l o s op h y o f S c i e n c e 1 5 : 5 8 - 6 4 . - - - - ( 1 986 ) , On b e i n g a l i ng u i s t i c a n t h r o p o lo g i s t . A n n ua l R e v i e w o f A n t h r opo l o g y 1 5 : 1 - 2 4 . G r e g o r y , C . A . ( 1 9 8 2 ) , G i f t s a n d Comm o d i t i e s . L o n d o n :
A c a d em i c . G u i l ba u d , G . ( 1 9 70 ) , S y s t eme pare n t a l e t m a t r imon i a l a u N o r d A m b r y m . J o u r n a l d e 1 a S o c i e t e de s O c e a n i s t e s 26 : 9-32 .
Habe r , H . E . and G . L .
K a n e ( 1 9 8 6 ) , I s n a t u r e supersymmetric? Sc i en t i f i c Ame r i ca n 2 5 4 ( 6 ) : 42 - 5 0 . Haenen , P . ( 1988 ) , Marriage a l l iance among the Moi o f I r i a n J a y a ( I n d o n e s i a ) . B i j d r a g e n t a t de Ta a l - , L a n d e n Vo 1 k e n k u n de 1 4 4 : 4 6 4 - 4 7 7 .
301
H a j na l , J . ( 1 96 3 ) , C o n c e p t s o f r a n d om m a t i n g a n d t h e f re q u e n c y o f c o n s a n g u i n e o u s m a r r i a g e s . Proceedi n g s o f t h e R o y a l A n t h r op o l o g i c a l S o c i e t y 1 5 9 : 1 2 7 - 1 7 7 . H a m me l , E . A . ( 1 9 7 6 ) , T h e ma t r i l a t e r a l imp l i c a t i o n s o f structural cros s -cou s i n marriage . I n E . Zub row ( ed . ) D emograp h i c A n t h r op o l o g y . A lbuquerque , N . M . : U n i v e r s i t y o f New M e x i co P r e s s . H a m m e l , E . A . a n d D . H u t c h i n so n ( 1 9 7 4 ) , T w o t e s t s o f compu t e r m i c r o s i mu l a t i o n : t h e e f f e c t o f a n i n c e s t tabu o n po pu l a t i on v i a b il i t y , a n d the e f fect o f age d i f f e re n c es b e tween s p u se s o n t h e skew i n g o f c o n s a ng u i ne a l r e l a t i o n s h i p s b e tween t hem . I n B . D y k e a n d J . W . M a cC l u e r ( e d s . ) C o mp u t e r S i m u l a t i o n i n Huma n P op u l a t i o n S t u d i e s . N e w Y o r k : A c a d e m i c . H a o , B a i - L i n ( e d . ) ( 1 9 8 5 ) , Ch a o s . S i n g a p o r e : W o r l d Scienti f ic . H a r g i t t a i , 1 . ( e d . ) ( 1 9 8 6 ) , S ymme t r y : Un i f y i n g H u ma n U n de r s t a n d i n g . Modern A p p l i e d M a t h e m a t i c s a n d C o m p u t e r S c i e n c e , Vo lume 1 0 . N e w Y o r k : P e r g a mo n . H a r t e , J . ( 1 9 8 5 ) , C o n s i de r a Sp h e r i c a l C o w . A C o u r s e i n E n v i r o nm e n t a l P r o b l e m S o l v i n g . L o s A l t o s , C a . : W i l l i a m K a u f ma n n . H ea t h , J . ( 1982 ) , Where is that ( knee ) ? : b a s i c a n d supp l ementary kin t e r m s i n Dhuwal ( Yu u l ngu /Murng i n ) . I n J . H e a t h , F . M e r l a n a n d A . R u m s e y ( e d s . ) The L a n g u a g e s o f K i n s h i p in A b o r i g i n a l A u s t r a l i a . O c e a n i a L in g u i s t i c Monog raph N o . 24 . Sydne y : U n i v e r s i ty o f Sydney Pres s . H e l d , G . J . ( 1 9 3 5 ) , T h e Na h a b h a r a t a . A n E t h n o l o g i c a l S t udy .
Ams terdam :
Holland .
H en l e y , P . ( 19 8 3 - 1 984 ) , Intergenera tional marriage a m o n g s t t h e C a r i b - s p e a k i n g p eo p l e s o f t h e G u i a n a s : a p r e l i m i n a r y s u r v e y . A n t r op o l o g i c a 5 9 - 6 2 : 1 5 5 - 1 8 1 . H e n r y , L . ( 1 9 7 6 ) , P op u l a t i o n A n a l y s i s a n d Mo de l s . London : Edward Arnold . H e r i t i e r , F . ( 1 9 7 4- ) , S y s t e m e s O m a h a d e p a r e n t e e t d ' a l l i a n c e . E t u d e e n o r d i n a t e u r d u f o n c t i o n n e me n t m a t r i m o n i a l r ee l d ' u ne soci ete a f r i ca i n e . I n P . B a l l o n o f f ( e d . ) Ge n e a l o g i c a l Ma t h em a t i c s . P a r i s : Mouton . - - - - ( 1975 ) , L ' ordi nateuF et l ' etude du fonctionnement m a t r i m o n i a l d ' u n s y s t em e O m a h a . I n M . A u g e ( e d . ) L e s Doma i n e s de l a p a r e n t e . Pari s : Maspero . - - - - ( 1 9 8 1 ) , L ' e x e r c i c e de l a p a r e n t e . P a r i s : B a l l i m a r d . - - - - ( 1982 [ 1 979 ] ) , The symbol i c s o f i ncest and i t s proh i b i t ion . I n M . Izard a n d P . S m i th ( eds . ) Be tween Be l i e f a n d Tra n s gr e s s i on . Structura l i s t Essays in Re l i g i o n , Hi s t o r y , a n d M y t h . C h i c a g o : U n i v e r s i t y o f
Ch i cago Press . H e s s e , M . ( 1 9 6 5 ) , F o r c e s a n d F i e l ds : a S t u d y o f A c t i o n a t a D i s tance i n the Hi story o f Physi c s . Totowa : L i t t l e f i e l d and Adams . - - - - ( 1 9 6 6 ) , M o de l s a n d A n a l o g i e s i n S c i e n c e . N o t r e Dame : U n i ve r s i ty o f N o t r e Dame Pre s s . - - - - ( 1 9 8 0 ) , R e v o l u t i on s a n d R e c o n s t r u c t i o n s i n t h e
302
P h i l o s o p h y o f S c i e n c e . B r ig h t o n : H a r v e s t e r . Heusch , L . de ( 1964 ) , S tructure e t p r a x i s sociales chez l e s L e l e d e K a s a i . L ' H omme 4 : 8 7 - 1 0 9 . - - - - ( 1 9 74 ) , T h e d e b t o f t h e ma t e r n a l u n c l e : c o n t r i b u t i o n t o t h e s t u d y o f c o m p l e x s t r u c t u r e s o f k i n s h i p . Ma n ( N . S . ) 9 : 60 9 -6 1 9 . H i a t t , L . R . ( 1 9 6 5 ) , K i n s h i p a n d C o n f l i c t . A S t u dy o f a n Abor i gi na l
Commun i t y
in
No r t h e r n A r n h em L a n d .
Canbe r ra : Australian National Un iversity P r es s . ( 1 9 68 ) , G i d j i n g a l i m a r r i a g e a r r a n g em e n t s . I n R . B . L e e a n d I . D e V o r e ( e d s . ) Ma n t h e H un t e r . C h i c a g o : A l d i n e . H i l l i e r , B . , A . Leaman , P . Stansa l l and M . Bedford ( 1 978 ) , S p a c e s y n t a x . I n D . G r e e n , C . H a s e l g r o v e a n d M . Spriggs ( e d s . ) S o c i a l O r g a n i z a t i o n a n d S e t t l e m e n t : Con t r i b u t i on s - - - -
f r om A n t h r o p o l o g y ,
A r c h a e o l o g y a n d G e o g rap h y .
Par t
II.
O x f o r d : BAR I n t e r n a t i o n a l S e r i e s ( S u p p l e m e n t a r y ) 4 7 (II) . H i rsch f e l d , L . A . ( 198 6 ) , K i n s h i p and cogn i t ion : genea logy a n d t h e m e a n i n g o f k i n s h i p t e r m s . C u r r e n t A n t h r opology 2 7 : 21 7-242 . H o l d e n , A . V . ( e d . ) ( 1 9 8 7 ) , Ch a o s . M a n c h e s t e r : M a n c h e s t e r Univers i t y P r es s . D ua l i sm a n d H i e r a r c h y i n L o w l a n d ( 1988 ) , Hornbuz� , A . S o u t h A me r i c a . Organ i z a t i on .
Tra j e c t o r i e s o f I n di g e n o u s S o c i a l
A l mqv i s t a n d W i k s e l l . H ow i t t , A . W . ( 1 8 8 9 ) , F u r t h e r n o t e s o n t h e Au s t r a l i a n c l a s s s y s t e m s . J o u r n a l o f t h e R o y a l A n t h r o p o l o g i c a l In s t i t ute 18 : 3 1 -7 0 . Jagers , P . ( 1982 ) , H ow probable i s i t t o b e f i r s t born? and other branc h i n g - p rocess appl ications to k i n s h i p p r o b l e m s . Ma t h em a t i c a l B i o s c i e n c e s 5 9 : 1 - 1 5 . J o n c ke r s , D . ( 1 9 8 3 ) , Le s y s t e m e de p a r e n t e M in y a nka e s t - i l d e t y p e Oma h a ? L ' H omm e 2 3 : 7 9 - 9 6 . J o r i on , P . ( 1 9 80 ) , R e v i ew o f A us t ra l i an K i n C l a s s i fi c a t i on , b y H . W . S c h e f f l e r . Ma n ( N . S . ) 1 5 : 4 0 1 - 4 0 2 . Ma n - - - - ( 1981 ) , Australian kin classification [ letter ] . ( N . S . ) 1 6 : 14 l . - - - - ( 1 98 2 ) , R e l a t i o n s g e n ea l o g i q u e s e t ca t e g o r i e s cosmo l o g i q u e s dans I e ma r i ag e a u s t r a l i e n ( de How i t t a R a d c l i f f e - B r o w n ) . R e v u e E u r o p e e n e de s S c i e n c e s Soci a l e s 20 : 63-83 . - - - - ( 1 986 ) , A l t e r n a t i ve a p p r o a c h e s t o Amb r y m e s e k i n s h i p t e r m i n o l o g y : a c r i t i q ue o f S c he f f l e r . I n G . d e M e u r ( e d . ) N e w T r e n ds i n Ma t h e m a t i c a l A n t h r op o l o g y . L o n d o n : Routledge & Kegan Pau l . Jorion , P . and G . de Meur ( 1980 ) , La que s t i o n Murngin , un a r t e f a c t d e l a l i t t e r a t u r e a n t h r o p o l o g i q u e . L ' Homme 20 : 39-70 . J 0 r i o n , P . , G . d e M e u r a n d T . V u Y k ( 1 9 8 2 ) , L e m a r i a g e p e nde . L ' Homme 1 2 : 5 3 - 7 3 . J o s s e l i n d e J o n g , J . P . B . d e ( 1 9 2 2 ) , C u l t u u r t yp e n e n c u l t u u r fa s e n . T h e H a g u e : A d i P o e s t a k a . - - - - ( 1 9 3 0 ) , T h e N a t c h e z s o c i a l s y s te m . Proceedi ngs o f the Uppsala :
Twen t y - t h i r d I n t e r n a t i o n a l Ne w Y o r k ( 1 92 8 ) : 5 5 3 - 5 6 2 .
Con g r e s s
o f Am e r i c a n i s t s ,
303
- - - - ( 1 9 52 ) , L �vi - S t ra us s ' s Ma r r i a g e . M e d e d e l i n g e n
Theory on K i nship and
v a n h e t R i j k sm u s eum v o o r
Volkenkunde 10 . Leiden : Bri l l . - - - - ( 1977 [ 1935 ] ) , The Malay Archipelago a s a field o f e t h n o l o g i ca l s tu d y . I n P . E . d e J o s s e l i n d e J o n g ( ed . ) S t r u c t u ra l
A n t h r op o l o g y i n
t h e Ne t h e r l a n ds .
A R e a de r .
Kon i n k l i j k I n s t i tuut voor Taa l - , Land- e n Vol kenkunde , T r a n s l a t i on Series 17 . The Hague : Martinus N i jho f f . J o s s e l i n de J o n g , P . E . de ( 1 962 ) , A new a p p r o a c h t o k i n s h i p s t u d i e s . B i j d r a g e n t o t de
Taa l - ,
L a n d- e n
1 1 8 : 42 - 6 7 . - - - - ( 1 96 6 ) , Ambrym a n d o t h e r c l a s s s y s tems : a f u r t h e r n o t e o n s y mm e t r y a n d a s y m m e t r y . B i j d r a g e n t o t d e Ta a l - , L a n d - e n Vo l k e n k u n d e 1 2 2 : 6 4 - 8 1 . - - - - ( 1 9 7 7 [ 1 9 5 6 J ) , T h e p a r t i c i p a n t s ' v i ew o f t h e i r cu l t u r e . I n P . E . d e J o s s e l i n d e J o n g ( e d . ) S t r uc t u r a l A n t h r op o l o g y i n t h e N e t h e r l a n ds . A R e a de r . K o n i n k l i j k I n s t i t u u t v o o r T a a l - , L a n d - e n V o l k e n k u n d e , Trans l a t i on Series 17 . The Hague : Martinus N i jhoff . - - - - ( 1 9 8 0 [ 1 9 5 1 ] ) , M i n a n g k a b a u a n d Ne g r i Semb i l a n . S o c i o - P o l i t i c a l S t r u c t u r e i n I n do n e s i a . T h e H a g u e : Mar t i nus N i j hoff . - - - - ( 19 8 4 ) , Summ a r y a n d c o n c l u s i on . I n P . E . de J o s s e l i n de Vo l k e n k u n de
l o n g ( e d . ) Un i t y i n D i v e r s i t y . I n do n e s i a a s a F i e l d o f A n t h r op o l o g i c a l S t u d y . V e r h a n d e l i n g e n v a n h e t
Kon i n k l i j k Ins t i tu u t voor T a a l - , Land- e n Volkenkunde 103 . Dordrecht : For i s . - - - - ( 1 9 8 5 ) , T h e com p a r a t i v e m e t h o d i n So u t he a s t A s i a : i d e a l a n d p r a c t i c e . J o u r n a l o f t h e A n t h r op o l o g i c a l S o c i e t y o f Dx f o r d 1 6 � 1 9 7 - 2 0 8 . - - - - ( 1 9 8 7 ) , G e n e r a 1 i s a t i e i n de C u 1 t u r e 1 e A n t r o p o l o g i e . Leiden : Bri l l . J o s s e l i n d e l o n g , P . E . d e ( ed . ) ( 1977 ) , Struct ural A n t h r o p o l o g y i n t h e N e t h e r l a n d s . A R e a de r . K o n i n k l i j k I n s t i t u u t v o o r T a a l - , L a n d - e n V o l k e n k u n d e , T r a n s l a tion Se r i e s 1 7 . The Hagu e : Mar t i n u s N i jh o f f . ( 1 9 8 4 ) , Un i t y i n D i ve r s i t y . I n do n e s i a a s a F i e l d o f An th ropo l o g i c a l S t u d y . V e rha nde l i nge n v a n h e t Kon i n k l i j k I n s t i tuu t v o o r T a a l - , L a n d - e n V o l ke n k u n d e 103 . Dordrech t : For i s . J o s s e l i n d e J o n g , P . E . d e a n d H . F . V e rm e u l e n ( 1 9 8 9 ) , C u l tu r a l A n t h r o p o l o g y a t L e i d e n U n i v e r s i t y : f rom encyc l o p e d i sm t o s t ru c t u r a l i s m . I n W . O t t e r s p e e r ( e d . ) - - - -
L e i de n D r i e n t a 1
J u i l l e ra t ,
B.
C o n ne c t i o n s
1 8 5 0 - 1 94 0 .
Leiden :
Br i l l .
( 1 98 1 ) , O r g a n i s a t i o n dua l i s te e t c o m p l em e n t a r i t e s e x u e l l e d a n s I e S e p i k o c c i d e n t a l . L ' H omme 2 1 : 5 - 3 8 . K a s a ko f f , A . B . ( 1 9 7 4 ) , How many r e l a t i v e s ? I n P . B a l l o n o f f ( e d ) G e n e a l o g i c a l Ma t h em a t i c s . Pari s : M o u t o n . K a y , P . ( 1 9 6 7 ) , O n t h e mu l t i p l i c i t y o f c r o s s / p a r a l l e l d i s t i nc t ions .
A m e r i c a n A n t h r op o l o g i s t
69 : 8 3 - 8 5 .
K e e n , I . ( 1 9 8 2 ) , H o w s om e M u r n g i n m e n m a r r y t e n w i v e s : t h e m a r i ta l i m p l i c a t i o n s o f m a t r i l a te r a l c ro s S - C ou s i n s t r u c t u r e s . Ma n ( N . S . ) 1 7 : 6 2 0 - 6 4 2 . - - - - ( 1 9 8 6 ) , N e w p e r s p e c t i v e s o n Y o l n g u a f f i n i t y . Dcea n i a
304
56 : 2 1 8 -230 . Kemeny , J . G . , J . L . S n e l l a n d G . L . I n t r o du c t i o n
to
Thompson ( 1966 [ 1 9 56 ] ) , Englewood C l i f f s ,
F i n i t e Ma t h e m a t i c s .
N . J . : P r e n t i ce -H a l l . K e r t z e r , D . l . a n d J . K e i t h ( 1 9 8 4 ) , A g e a n d Anthropol ogical Th e o r y . I t h a c a : C o r n e l l U n i v e r s i t y P r e s s . K e t t e l , D . ( 1 98 2 ) , C o g n i t i o n and c o n t r a d i c ti o n : o n the o r i g i n o f i n c e s t t a b o o s a n d O e d i p a l f a n ta s i e s . D i a l e c t i c a l A n t h r op o l o g y 7 : 3 1 - 4 5 . K e y f i t z , N . ( 1 9 7 4 ) , A p p l i e d Ma t h e m a t i c a l D em o g r a p h y . N e w Yor k : J o h n Wi ley & Sons . K i m , K . H . a n d F . W . R o u s h ( 1 9 8 3 ) , A pp l i e d A b s t r a c t A l g e b r a . C h i c h e s t e r : E l l i s Ho rwoo d . K i r c h h o f f , P . ( 1 9 3 2 ) , Verwa n t s ch a f t s b e z e i c h n u n g e n und V e rwa n d t e n h e i r a t . Z e i t s c h r i f t f u r E t h n o l o g i e 6 4 : 4 1 -7 1 . K o l e nd a , P . ( 1 984 ) , Woman a s t r i b u t e , woman a s f l owe r : i m a g e s o f ' w o m a n ' i n w e d d i n g s i n N o r t h a n d S o u t h I nd i a . Ame r i c a n E t h n o l o g i s t 1 1 : 9 8 - 1 1 7 . Korn , F . ( 1 97 1 ) , A question o f p r e ference s : the Iatmul c a s e . I n R . N e e d h a m ( e d . ) Re t h i n k i n g K i n s h i p a n d ma r r i a g e . L o n d o n : T a v i s t o c k . K o r n , F . a n d R . N e e d h a m ( 1 9 7 0 ) , P e rmu t a t i o n mo d e l s a n d p r e s c r i p t i v e s y s t e m s : t h e T a r a u c a s e . Ma n ( N . S . ) 5 : 3 9 3 -420 . K r a m e r , E . E . ( 1 9 8 2 ) , Th e Na t u r e a n d G r o w t h o f M o d e r n Ma t h e ma t i c s . P r i n c e t o n , N . J . : P r i n c e t o n U n i v e r s i t y Press . K r o e be r , A . L . ( 1 90 9 ) , C l a s s i f i c a t o r y s y s t ems o f r e l a t i o n s h i p . Jo u r n a l o f t h e R o y a l A n t h r op o l o g i c a l In s t i t u t e 3 9 : 7 7 - 8 4 . K u h n , T . S . ( 1 9 7 0 [ 1 9 6 2 ] ) ., T h e S t r u c t u r e o f S c i e n t i f i c Re v o l u t i o ns . I n t e r n a t i o n a l E n c y c l o p e d i a o f U n i f i e d S c i e n c e , V o l u m e 2 , n u m be r 2 . C h i c a g o : U n i v e r s i t y o f Chicago Pres s . - - - - ( 1 9 7 6 ) , Theo r y - ch a n g e a s s t r u c t u r e - c h a ng e : comm e n t s on t h e S n e e d f o rma l i s m . E r k en n tn i s 1 0 : 1 7 9 - 1 9 9 . - - - - ( 1 9 7 7 ) , Th e E s s e n t i a l Te n s i o n . S e l e c t e d S t u d i e s i n S c i e n t i f i c Tr a d i t i o n a n d C h a n g e . C h i c a g o : U n i v e r s i t y of Chicago Press . Kupe r , A . J . ( 19 78 ) , Rank and p r e f e r e n t i a l ma r r i a g e i n s o u t h e r n A f r i c a : t h e S w a z i . Ma n ( N . S . ) 1 3 : 5 6 7 - 5 7 9 . - - - - ( 1980 ) , The man i n the study and the man i n t h e f ie l d : ethnography , theory and compa r i son i n social a n t h r o p o l og y . European J o u r n a l o f S oc i o l o g y 2 1 : 14 - 3 9 . - - - - ( 1 9 8 2 ) , W i v e s fo r C a t t l e : B r i de we a l t h a n d M a r r i a g e i n S o u t h e r n A fr i ca . L o n d o n : R o u t l e d g e & K e g a n P a u l . ( 1 9 8 2 a ) , A f r i c a n - O m a h a . B i j d r a g e n t o t de Ta a l - , L a n d e n V o l k e n k u n de 1 3 8 : 1 5 2 - 1 6 0 . - - - - ( 1 9 8 3 ) , D e s f emme s c o n t r e d e s b o e u f s . R �p o n s e � Luc d e H e u s c h . L ' Homme 2 3 : 3 3 - 5 4 . - - - - ( 1 9 8 7 ) , S o u t h A f r i c a a n d t h e A n t h r op o l o g i s t . L o n d o n : Routledge & Kegan Pau l . - - - - ( 1 9 8 8 ) , Th e In v e n t i o n o f P r i m i t i v e S o c i e t y . Tr a n s fo r m a t i o n s o f a n I l l u s i o n . L o n d o n : R o u t l e d g e . L a n e , R . a n d B . L a n e ( 1 9 5 8 ) , T h e e v o l u t i o n o f A m b r ym - - - -
305
k i n s h i p . S o u t h w e s t e r n J o u r n a l o f A n t h r op o l o g y 1 4 : 1 07 - 1 3 5 . L a n g h a m , 1 . ( 1 9 8 1 ) , Th e B u i l d i n g o f B r i t i s h S o c i a l
A n t h r op o l og y : W . H . R . R i v e r s a n d h i s Camb r i dge D i s c i p l e s i n t h e D e v e l op m e n t o f K i n s h i p S t u d i e s , 1 8 9 8 - 1 9 .3 1 . D o r d r e c h t : R e i d e l . L a n g t o n , C . G . ( e d . ) ( 1 9 8 9 ) , A r t i fi c i a l L i f e . S a n t a F e
I n s t i tu t e S t u d i es i n t h e Sc i e n ce s o f Comp l e x i t y , V o l u me 6 . R e d w o o d C i t y , C a . : A d d i s o n - W e s l e y . L a v e , J . C . ( 1 9 6 6 ) , A f o rm a l a n a l y s i s o f p r e f e r e n t i a l m a r r i a g e w i t h t h e s i s t e r ' s d a u g h t e r . Ma n ( N . S . ) 1 : 18 5 - 200 . L awrence , W . E . ( 19 3 7 ) , Al ternating generations i n Au s t ra l i a . I n G . P . M u r d o c k ( ed . ) S t udi e s i n the Sci ence of Soci e t y Presen ted t o A . G . Kel l e r . New York : Yale Univers i t y P ress . L e a c h , E . R . ( 1 9 6 4 ) , R e v i e w o f H . C . W h i t e , A n A n a t om y o f K i n s h i p : Ma t h e m a t i c a l M o de l s C um u l a t e d R o l e s . M a n 6 4 : 1 5 6 .
for S t r u c t u res o f
- - - - ( 1 9 7 1 [ 1 9 5 1 ] ) , T h e st ructural imp l i c a t i o n s of ma t r i l a t e r a l c r o s s -cou s i n m a r r i age . In E . R . Leach R e t h i n k i n g A n t h r op o l o g y . L o n d o n S c h o o l o f E c o n o m i c s M o n o g r a p h s on S o ci a l An t h ropo l ogy N o . 2 2 . L o n do n : Athlone . - - - - ( 1 9 7 1 [ 1 9 6 1 ] ) , Re t h i nk i n g A n t h r o p o l o g y . L o n d o n S c h o o l o f E c o n om i c s M o n o g r a p h s on S o c i a l A n t h r opology N o . 2 2 . L o n d o n : ·.Athl o n e . - - - - ( 1978 ) , Does s pace syntax real l y ' consti tute the socia l ' ? I n D . Green , C . Haselg rove and M. Spriggs ( e d s . ) S o c i a l O r ga n i z a t i o n a n d S e t t l e m e n t : Con t r i b u t i ons from A n t h r op o l o g y ,
A rchaeo l o g y a n d Geograp h y .
Pa r t
II.
Oxford : BAR I n te r n a t i o n a l Series ( Supp lementa r y ) 47 (II) . L e C he n a d e c , P h . ( 19 86 ) , Canon i c a l Forms i n F i n i t e l y P r e s e n t e d A l g e b r a s . L o n d o n : P i tm a n . L e h ma n , F . K . a n d K . W i t z ( 1 9 74 ) , P r o l egomena to a f o rma l t h e o r y o f k i n s h i p . I n P . B a l l o n o f f ( e d . ) Ge n e a l o g i c a l Ma t h e m a t i c s . P a r i s : M o u t o n . L e p l i n , J . ( e d . ) ( 1 9 8 4 ) , Sc i e n t i f i c R e a l i s m . B e r k e l e y , C a . : U n i v e r s i t y of C a l i fornia Press . L ev i n , Y u . ( 1 9 74 ) , A d e s c r i p t i on o f s y s t em s o f k i n s h i p t e r m i n o l og y . I n Yu . B ro m l e y ( e d . ) , So v i e t E t h n o l o g y a n d A n t h r o p o l o g y T o da y . T h e H a g u e : M o u t o n . L e v i - S t r a u s s , c . ( 1 9 5 3 ) , S o c i a l s t r u c t u r e . I n A . L . Kroeber ( e d . ) A n t h r op o l o g y T o da y . A n E n c y c l o p e d i c In v e n t o r y . Chicago : U n i ve r s i ty of Ch i cago Press . - - - - ( 1 9 5 5 ) , L e s m a t h em a t i qu e s d e l ' h omme . B u l l e t i n In t e r n a t i o n a l d e s S c i e n c e s S o c i a 1 e s 6 : 6 4 3 - 6 5 3 . - - - - ( 1 9 6 6 ) , T h e f u t u r e o f k i n s h i p s t u d i e s . P r o c e e di n g s o f t h e R o y a l A n t h r o p o l o g i c a l I n s t i t u t e fo r 1 9 6 5 , pp . 1 3 - 22 . - - - - ( 1 9 7 0 [ 1 9 4 9 ] ) , Th e E l e m e n t a r y S t r u c t u r e s o f K i n s h i p ( L e s S t r u c t u r e s e 1 em e n t a i r e s d e 1 a p a r e n t e ) . L o n d o n : E y r e & S p o t t i s woo d e . - - - - ( 1 9 7 0 [ 1 9 6 4 ] ) , T h e Ra w a n d t h e C o o k e d . I n t r o d u c t i o n t o a S c i en c e o f M y t h o l o g y : I . New York : Harper T orch .
306
- - - - ( 1 9 7 3 ) , R e f l e x i o n s s u r 1 ' a t o m e d e p a r e n t e . L ' H omme 1 3 : 5 -30.
- - - - ( 1 9 7 4 [ 1 9 6 2 ] ) , Th e S a v a g e M i n d ( L a P e n s e e s a u v a g e ) . L o n d o n : We i d e n f e l d a n d N i c o l s o n . - - - - ( 1 9 7 6 [ 1 9 5 5 ] ) , Tr i s t e s T r op i q u e s . H a rm o n d s w o r t h : Pengui n . - - - - ( 1 9 7 8 ) , S t r u c t u r a l A n t h r o p o l o g y V o l ume 2 . H a r m o n d s wo r t h : P e n g u i n . - - - - ( 1 9 8 3 ) , L e R e ga r d e l o i g n e . P a r i s : P I o n . - - - - ( 1983a ) , U n ' atome de parente ' australien . I n C . L e v i - S t r a u s s L e R e g a r d el o i g n e . P a r i s : P I o n . L i d l , R . a n d G . P i l z ( 1 9 84 ) , App l i e d A b s t ra c t A l gebra . New York : S p r i ng e r . L i puma , E . ( 19 83 ) , On the preference f o r marriage rules : a M e l a n e s i a n e x a m p l e . Man ( N . S . ) 1 8 : 7 6 6 - 7 8 5 . L i u , P i n - h s i u n g ( 1 9 8 6 ) , F o u n da t i o n s o f K i n s h i p Ma t h e m a t i c s . I n s t i t u t e o f E t h n o l o g y A c a d e m i a S i n i c a M o n o g r a p h S e r i e s A , N o . 2 8 . N a n k a n g , T a i p e i : Academia Sinica . Loche r , G . W . ( 1 96 8 ) , P r e f ace . I n F . A . E . van Wouden T yp e s o f S o c i a l S t r u c t u r e i n E a s t e r n I n d o n e s i a . K o n i n k l i j k I n s t i t u u t v o o r T a a l - , L a n d - e n Volkenkund e , T r anslation Series 1 1 . T h e H a g u e : M a r t i n u s N i j h o f f . - - - - ( 1988 ) , J . P . B . de Jossel i n de Jong en het Leidse s t r u c t u r a l i sm e . A n t r op o l o g i s c h e Ve r k e n n i n g e n 7 : 5 1 - 7 4 . L o c k w o o d , E . H . a n d R . H . M a cm i l l a n ( 1 9 7 8 ) , G e o m e t r i c S ymme t r y . C am b r i d g e : C a m b r i d g e U n i v e r s i t y P r e s s . L o r ra i n , F . ( 1 9 74 ) , S o c i a l s t ru c t u r e , s o c i a l c l a s s i f i c a tions , and the logic of a n a logy . In P . B a l l o n o f f ( e d . ) Ma t h e ma t i c a l M o de l s o f S o c i a l a n d C o gn i t i ve S t r u c t u r e s . U r b a n a : U n i v e r s i t y o f I l l i n o i s Press ; - - - - ( 1 9 7 5 ) , R es e a ux s o c i a u x e t c l a s s i fi c a t i on s s o c i a 1 e s : E s sa i s ur 1 ' a 1 geb r e e t 1 a socia 1 es . Par i s : Hermann .
g e om e t r i e
des
s t ruc t u r e s
L o r r a i n , F . a n d H . C . W h i t e ( 1 9 7 1 ) , S t r u c t u r a l equivalence o f i n d i v i d u a l s i n social netwo rk s . Journ a l o f Ma t h e m a t i c a l S o c i o l o g y 1 : 4 9 - 8 0 . L o u i e , A . H . ( 1 9 8 5 ) , C a t e g o r i c a l s y s t e m t h e o r y . I n R . Rosen ( e d . ) Th e o r e t i c a l B i o l o g y a n d C o mp l e x i t y . Th r e e Essays
on
t h e Na t ura l
Ph i l o s op h y o f C omp l e x S y s t e m s .
O r l a n d o : A c a d em i c .
Lounsbu r y ,
F . G . ( 1956 ) , A seman t i c a n a l y s i s o f the Pawnee k i n s h i p usage . Lan guage 3 2 : 1 58 - 194 . - - - - ( 1964 ) , A f o rma l accou n t o f C r o w - a n d Oma h a - ty p e k i n s h i p t e rm i n o l og i e s . I n W . G o o d e n o u g h ( e d . ) E xp l o r a t i o n s
i n
C u l t u ra l
A n t h rop o l o g y .
New York :
McGraw - Hi l l . - - - - ( 1 96 5 ) , A n o t h e r v i ew o f t h e T r o b r i a n d k i n s h i p c a t e g o r i e s . I n E . A . H a m m e l ( e d . ) F o r m a l S ema n t i c A n a l y s i s . A m e r i c a n A n t h r o p o l o g i s t S p e c i a l P u b l i cation 67 ( 5 , p a r t 2 ) . M e n a s h a , W i s . : A m e r i c a n A n t h r o p o l o g i c a l Assoc i a t i on . - - - - ( 1 9 7 8 ) , A s p e c t s d u s y s t em e d e p a r e n t e I n ca . A n n a l e s 3 3 : 99 1 - 100 5 .
307
Lowie , R . H . ( 19 17 ) , Cul ture and Ethnol o g y . New York : Horace l i ve r i gh t . l u c i c h , P . ( 1 9 8 7 ) , G e n e a l o g i c a l S ym m e t r y . R a t i o n a l F o u n da t i o n s o f A u s t r a l i a n K i n s h i p . A r m i d a l e , N . S . W . : l i g h t S tone . M cC o n ne l l , U . ( 1 940 ) , S o c i a l o r g an i z a t i o n o f t h e t r i b e s o f the Cape York pen insula , North Queen s land . Ocea n i a 1 0 : 54 - 72 , 4 3 4 - 45 5 . - - - - ( 1 9 5 0 ) , J u n i o r m a r r i a g e s y s t em s : compa r a ti v e s u r v e y . O c ea n i a 2 1 : 1 0 7 - 1 4 5 . - - - - ( 19 5 1 ) , Junior marriage sys tems : corr igenda e t a d d e n d a . Ocea n i a 2 1 : 3 1 0 - 3 1 2 . M c D o we l l , N . ( 1 9 7 7 ) , T h e mea n i n g o f ' ro p e ' i n a Yua t v i l l a ge . E t h n o l ogy 16 : 1 7 5 - 1 8 3 . M a cC a f fe y , W . ( 1 9 8 6 ) , Re l i g i on a n d Soc i e t y i n Cen t r a l A f r i c a . Th e B a K o n g o o f L o w e r Za i r e . C h i c a g o : U n i ve r s i t y o f C h icago P r es s . McK i n l ey , R . ( 1 971 a ) , A cri tique o f the r e f l e c t i o n i s t t h e o r y o f k i n s h i p t e r m i n o l o g y : t h e C row / Om a h a c a s e . Man ( N . S . ) 6 : 2 2 8 - 2 4 7 . - - - - ( 1 9 7 1 b ) , Why d o C r ow and Oma ha k i n s h i p term i n o l o g i e s exist? A soc iology o f knowledge interpreta tion . Ma n ( N . S . ) 6 : 4 0 8 - 4 2 6 . McKn i g h t , D . ( 19 7 1 ) , Some problems conc e r n i n g t h e W i k - m u n g k a n . I n R . N e e d h a m ( e d . ) Re t h i n k i n g K i n s h i p a n d Marri a ge . l o n do n : T a v i s t o c k . Macfar lane , A . ( 1882 ) , Analysis of relationships of c o n s a ng u i n i t y a n d a f f i n i ty . Jour n a l o f t h e Roya l A n t h r o p o l o g i c a l In s t i t u t e 1 2 : 4 6 - 6 3 . M a c k a y , A . L . ( 1 9 7 7 ) , Th e H a r v e s t o f a (J u i e t E y e . A S e l e c t i on o f S c i en t i fi c Quo t a t i on s . B r i s t o l : T h e I n s t i tu te o f P h y s i c s . M a d d o c k , K . ( 1 96 9 ) , A l l i a n c e a n d e n t a i l m e n t i n A u s t r a l i a n m a r r i a g e . Mank i n d 7 : 1 9 - 2 6 . - - - - ( 1 9 7 0 ) , R e t h i n k i n g t h e Mu r n g i n p r o b l e m : a r e v i e w a r t i c l e . Ocean i a 4 1 : 7 7 - 8 9 . - - - - ( 1 9 7 2 ) , Th e A u s t r a l i a n A b o r i g i n e s . A P o r t ra i t o f t he i r Soc i e t y . H a r m o n d s wo r th : P e ng u i n . M a l i n o w s k i , B . ( 1 9 3 0 ) , K i n s h i p . Man 3 0 : 1 9 - 2 9 . M a n d e l b r o t , B . B . ( 1 9 8 2 [ 1 9 7 7 ] ) , The F r a c t a l G e ome t r y o f N a t u r e . F r eema n . Ma r t i n , J . F . ( 1981 ) , Genea logical st ructure and c o n s a n g u i n e o u s m a r r i a g e . C u r r e n t A n t h r op o l o g y 2 2 : 401 -4 12 . M a r t i n , J . F . and P . C . Reddy ( 1987 ) , Gidj ingali and Yolngu p o l y g y n y : a g e s t ructure and t h e c o n t r o l o f ma r r i age . Oceania 5 7 : 24 3 - 260 . M e gg i t t , M . J . ( 1 9 6 5 ) , M a r r i a g e a m o n g t h e Wa l b i r i o f Central Austra l ia : a s t a t i s t i ca l exami n a t ion . In R . M . B e r n d t a n d C . H . B e r n d t ( e d s . ) A b o r i g i n a l Ma n i n A us t ra l i a . S i d n e y : A n g u s a n d R o b e r t s o n . M e u r , C . d e ( e d . ) ( 1 9 8 6 ) , N e w Tr e n d s i n Ma t h e ma t i c a l A n t h ropo l o g y . londo n : Rout ledge & K e g a n P a u l . M eu r , C . de and P . Jorion ( 19 8 1 ) , A poss i b l e genealogy o f Au s t r a l i a n m a r r i ag e s y s t em s : m o r p h i sm s i n
308
' m a t r i m o n i a l c l a s s ' s y s t e m s . Ma t h e m a t i c a l S o c i a l Sc i ence s 2 : 9 - 2 1 . Moo re , S . F . ( 1 96 3 ) , O b l i q u e a n d a s ymme t r i c a l c r os s c o u s i n m a r r i ag e a n d C ro w - O m a h a t e rm i n o l og y . Ameri can A n th rop o l o gi s t 6 5 : 2 9 6 - 3 1 1 . Morphy , H . ( 1978 ) , Rights in paintings and rights in women : a c o n s i d e r a t i on o f some o f t h e bas i c prob l em s p o s e d b y t h e a s ymme t r y o f t h e ' Mu r n g i n s y s t em ' . Ma n k i n d 1 1 : 2 0 8 - 2 1 9 . M o s k o , M . S . ( 1 9 8 5 ) , Q u a d r i p a r t i t e S t r u c t u r e s . Ca t e go r i e s , Re l a t i o n s ,
a n d H o m o l o g i e s i n B u s h Me k e o C u l t u r e .
Cambr idge : Cambr idge U n i v e r s i ty P r es s . M u l l e r , J . - C . ( 1 9 7 8 ) , O n b r i d ew e a l t h a n d m e a n i n g a m o n g t h e R u k u b u , P l a t e a u S t a t e , N i g e r i a . A Tr i c a 4 8 : 1 6 1 - 1 7 5 . - - - - ( 1980 ) , S t r a i g h t s i s te r - exchange and the tra n s i t ion f r o m e l e m e n t a r y t o c o m p l e x s t r u c t u r e s . A me r i c a n E t h no l o g i s t 7 : 5 1 8 - 52 9 . - - - - ( 1 9 8 1 ) , O u b o n u s a g e du s e x e . e t du ma r i a g e . S t r u c t u r e s ma t r i m on i a 1 es du h a u t p l a t e a u n i g �r i a n . Q u e b e c : S e r g e F leury . - - - - ( 1 9 8 2 ) , S t r u c t u r e s s e m i - c om p l e x e s e t s t r u c t u r e s c o m p l e x e s d e I ' a l l i a nce m a t r i m o n i a le . A n t h ropo l o gi e e t Soci � t�s 6 : 1 5 5 - 1 7 2 . M u r d o c k , G . P . ( 1 9 4 9 ) , So c i a l S t r u c t u r e . N e w Y o r k : Macmi l lan . N a g e l , E . ( 1 9 6 1 ) , The S t r u c t u r e o f S c i e n c e : P r o b l em s i n t h e L o g i c O T S c i e n t i fi c Exp l a n a t i o n . L o n d o n : Rout l edge & Kegan Pau l . Needham , R . ( 1 9 6 1 ) , N o t e s o n the a n a l y s i s o f a symme t r i c a l l i a n c e . B i j d r a gen t o t d e Taa l - , L a n d- e n Vo 1 k enk unde 117 :93-117 . - - - - ( 196 2 ) , Genea logy and category in Wikmunkan society . Ethnology 1 : 223 -264 . - - - - ( 1 9 6 3 ) , A n o t e o n W i k m u n k a n M a r r i a g e . M a n 6 3 : 44 - 4 5 . - - - - ( 1 9 6 6 ) , A g e , ca t e g o r y , a n d d e s c en t . B i j d r a g e n t o t de Ta a 1 - , L a n d - e n V o l k e n k u n de 1 2 2 : 1 - 3 5 . - - - - ( 1 9 7 1 ) , I n t r o d u c t i o n . I n R . N e e d h a m ( e d . ) Re th i nk i n g K i n s h i p a n d Ma r r i a g e . L o n d o n : T a v i s t o c k . - - - - ( 1 9 8 6 ) , A l l i a n c e . Oc e a n i a 5 6 : 1 6 5 - 1 8 0 . N i i n i l u o t o , I . ( 1 9 8 4 ) , T h e g r ow t h o f t h e o r i e s : c om m e n t s on the s t ructu r a l i s t approac h . In I . N i i n i luoto Is Sci ence Progres s i ve ? D o r d r e ch t : R e i d e l . Nolan , R . W . ( 1 9 7 5 ) , Labour m i g r a t ion and the B a ssa r i : a c a s e o f r e t r o g r a d e d e v e l o p m e n t ? M a n ( N . S . ) 1 0 : 5 7 1 - 588 . N u t in i , H . G . ( 1968 ) , On t h e concep t s o f e p i s temo l o g ical o r d e r a n d c o o r d i n a t i v e d e f i n i t i o n s . B i j dragen t o t de T a a l - , L a n d - e n Vo 1 k e n k u n d e 1 2 4 : 1 - 2 1 . - - - - ( 1970 ) , Lev i -St raus s ' s concep t ion o f science . I n J . Pou i l l o n and P . Maranda ( ed s . ) Echanges et c ommun i c a t i o n s I . T h e H a g u e : M o u t o n . Onvlee , L . ( 1 949 ) , N a a r a a n l e i d ing v a n de s tuwdam i n M a n g i l i . B i j d r a g e n t o t d e Ta a 1 - , L a n d - e n V o l k e n k u n de 1 0 5 : 44 5 - 4 5 9 . O t t e n h e i me r , M . ( 1 9 8 5 ) , R e p l y t o ' a f u r t h e r n o t e Ame r i ca n E t h n o l o g i s t 1 2 : 5 4 7 - 5 4 9 .
309
P e a r c e , P . ( 1 9 8 7 ) , R o a d s t o C o mm e n s u r a b i l i t y . D o r d r e c h t : Reidel . P i a g e t , J . ( 1 9 6 8 ) , L e S t r u c t u ra l i sme . P a r i s : P r e s s e s U n i ve r s i t a i r e s d e F r a n c e . - - - - ( 1 9 7 1 ) , S t ruc t ura l i sm . L o n d o n : R o u t l ed g e & K e g a n Pau l . P i n , J . E . ( 1 9 8 6 ) , Va r i e t i e s o f F o r m a l L a n g u a g e s . L o n d o n : N o r t h O x f o r d A c a d em i c . P i s o n , C . ( 19 8 2 ) , Dynami que d ' une popul a t i on t r a di t i o n e l l e . D em o g r a p h i e , a p p a r e n t e m e n t e t ma r i a g e d a n s u n e p op u l a t i o n d ' e f f e c t i f l i m i t e : l e s P e u l s B a n d e ( S en e g a l o r i e n t a l ) . P a r i s : P r e s s e s
Un iversitaires de France . P l a t e n k a m p , J . D . M . ( 1 9 8 8 ) , Tob e l o : I dea s a n d Va l u e s o f a N o r t h Mol uccan Soci e t y . L e i d e n : R e p r o P s y c h o l og i e . P o s t e l - C o s t e r , E . ( 1 9 8 5 ) , H e t om h e i n d e k w e e k b e d : Ma c h t s v e r h o u d i n g e n
Delf t : Eburon . P o u n d s t o n e , W . ( 1 987 ) ,
i n d e Mi n a n g k a b a u s e
fami l i e roma n .
Th e R e c u r s i ve U n i v e r s e . C o s m i c C o mp l e x i t y a n d t h e L i m i t s o f S c i e n t i f i c K n o w l e d g e .
Oxford : Oxford University Press . P r i g o g i n e , I . a n d I . S t e n g e l' s ( 1 9 8 4 ) , O r d e r O u t o f C h a o s : Ma n ' s N e w D i a l o g u e w i t h N a t u r e . T o r o n t o : B a n t a m . Putnam , H . ( 1 962 ) , What theories are no t . In E . Nagel , P . S u p p e s a n d A . T a r s k i ( e d s . ) L o g i c , Me t h o do l o g y a n d Ph i l o s o p h y o f S c i en c e . S t a n f o r d : S t a n f o r d University Press . R a dc l i f f e - B r ow n , A . R . ( 1 9 1 3 ) , T h re e t r i b e s o f W e s t e r n A u s t r a l i a . Jo u r n a l o f t h e R o ya l A n t h r op o l o g i c a l Ins t i t ute 43 : 1 4 3 -194 . - - - - ( 1930- 1 9 3 1 ) , The social organ i z a t i on of Aust r a l i a n t r i b e s . Ocean i a 1 : 34 - 6 3 , 204 - 2 4 6 , 3 2 2 - 3 4 1 , 4 2 6 - 4 5 6 . - - - - ( 1 9 5 7 ) , A Na t u r a l S c i e n c e o f S o c i e t y . G l e n c o e , I l l . :
F ree P ress . R e a d , D . W . ( 1 9 8 4 ) , A n a l g e b r a i c a c c o u n t o f t h e Am e r i c a n k i n s h i p t e rm i n o l o g y . C u r r e n t A n t h r op o l o g y 2 5 : 4 1 7 - 4 4 9 . R e g i s , E . ( 1 9 8 7 ) , Wh o g o t E i n s t e i n ' s O f f i c e ? E c c e n t r i c i t y a n d Gen i us a t
t h e In s t i t u t e
for A dvanced S t udy .
Ma . : Addison -Wes ley . Reading , R e i d , R . M . ( 1 9 74 ) , R e l a t i v e a g e a n d a s ymme t r i c a l c r o s s cou s i n ma r r i a g e i n a S o u t h I n d i a c a s t e . I n P . B a l l o n o f f ( e d . ) G e n e a l o g i c a l Ma t h e m a t i c s . P a r i s : Mouto n . R i v ier e , P . ( 1966a ) , A note on marriage w i t h the s i ster ' s d a u g h t e r . Man ( N . 5 . ) 1 : 5 5 0 - 5 5 6 . - - - - ( 1 9 6 6 b ) , O b l i q u e d i s con t i n u o u s e x cha n g e : a new f o r m a l type o f p rescr i p t i ve a l l i a nce . Ame r i can A n t h ropol ogi s t
68 : 7 38 - 740 . - - - - ( 1 9 6 6 c ) , Age : a d e t e r m i n a n t o f s o c i a 1 c I a s s i f i c a t i o n . S o u t h w e s t e r n J o u r n a l o f A n t h ropo l o g y 2 2 : 4 3 - 6 0 . - - - - ( 1 9 6 9 ) , Ma r r i a g e A m o n g t h e T r i o . O x f o r d : C l a r e n d o n . R o g e r s ., C . ( 1 9 7 7 ) , ' T h e f a t h e r ' s s i s t e r i s b l a c k ' : a con s i d e r a t i o n o f f ema le rank a n d ·powe r Th e J o u r n a l
R om n e y , A . K .
in Tonga .
o f t h e Po l yn e s i a n S o c i e t y 8 6 : 1 5 7 - 1 8 2 .
and R . C .
D ' Andrade
( 1964 ) , Cog n i t i ve aspects
310
o f E n g l i s h kin terms . I n R . G . D ' Andrade ( ed . ) Tran s cu l t u r a l S t udi e s i n C o g n i t i on . Amer i c a n A n t h r o po l o g i s t S p e c i a l P u b l i c a t i o n 66 ( 3 , p a r t 2 ) . M e n a s h a , W i s . : Ame r i ca n A n t h r o p o l o g i c a l A s s o c i a t i o n . R o s e , F . G . G . ( 1 960 ) , Cl a s s i f i c a t i on o f K i n , A ge S t r u c t u r e a n d Ma r r i a g e A m o n g s t t h e G r o o t e E y l a n d t A b o r i g i n e s . A S t u d y i n Me t h o d a n d a T h e o r y o f A u s t r a l i a n K i n s h i p .
B e r l i n : A k a d em i e -V e r l a g . R o s ma n , A . a n d P . G . R u b e l ( 1 9 75 ) , M a r r i a g e r u l e s a n d t h e s t ru c ture o f r e l a t i o ns h i p s between g roups i n New G u i n e a s o c i e t i e s . S o c i a l S c i e n c e I n f o r m a t i o n 1 4- : 109- 125 . R u b e l , P . G . a n d A . R o s m a n ( 1 9 7 8 ) , Y o u r O wn P i g s Y o u Ma y Not
Ea t .
A
C o mp a r a t i v e S t u d y o f N e w G u i n e a S o c i e t i e s .
Ch icago : University of Chicago Press . R u b i n s t e i n , R . L . ( 1 9 8 1 ) , S i b l i n g s i n M a l o cu l t u r e . I n M . M a r s h a l l ( ed . ) Sibl i ngship i n Oceani a . S tudi es i n the Mean i n g o f K i n Re l a t i o n s . A n n A r b o r : U n i v e r s i t y o f Michigan Press . R u h e m a n n , B . ( 1 96 7 ) , P u r p o s e a n d m a t h e m a t i c s . A p r o b l e m i n t h e a n a l y s i s o f c l as s i ficatory k i n & h i p systems . B i jdragen
tot
de
Ta a l - ,
L and- en
V o l k e n k u n de
1 2 3 : 8 3 -124 .
Sangren , P . S . ( 1988 ) , Rhetoric and the authority o f e t h no g r a ph y . ' P os tm o d e r n i sm ' a n d t h e s o c i a l r e p r o d u c t i o n o f t e x t s . C u r r e n t A n t h r op o l o g y 2 9 : 4 0 5 - 4 3 5 . S c h e f f l e r , H . W . ( 1 9 7 0 ) , Th e E l e m e n t a r y S t r u c t u r e s o f K i n s h i p b y C l a u d e Liv i -S t r a u s s : a r e v i e w a r t i c l e . A me r i c a n A n t h r op o l o g i s t 7 2 : 2 5 1 - 268 . - - - - ( 1970a ) , Ambrym rev i s i ted : a pre liminary repo r t . S o u t h we s t e r n J o u r n a l o f A n t h r o p o l o g y 2 6 : 5 2 - 6 6 . - - - - ( 1 9 7 1 ) , D r a v i d i a n - I ro q uo i s : t h e Me l a n e s i a n e v i d e n ce . I n L . R . H i a t t a n d E . J a y a w a r d e n a ( e d s . ) A n t h r op o l o g y in Ocean i a . Sydney : Angus a n d Robertson . - - - - ( 1 9 7 2 a ) , Systems of k i n c la s s i f ication : a s t r u c t u r a l t y p o l o g y . I n P . R e i n i n g ( ed . ) K i n s h i p S t udi e s i n the M o r g a n C e n t e n n i a l Yea r . Wa s h i n g t o n , D . C . :
Anthropological Society o f Wash i n g ton .
- - - - ( 1 9 7 2 b ) , K i n s h i p sema n t i c s . A n n u a l Re v i e w o f A n th ropo l o gy 1 : 3 09- 328 . - - - - ( 1 9 78 ) , A us t ra l i a n K i n C l a s s i f i ca t i on . C a mb r i d g e :
Cambridge University Press . Theory a n d method i n s o c i a l an thropolog y : on t h e s t ru c t u r e o f s y s tems o f k i n c l a s s i f i c a t io n .
- - - - ( 1982 ) ,
Ame r i c a n E t h n o l o g i s t 9 : 16 7 - 1 8 4 . - - - - ( 1984 ), K i n c l a s s i fication a s social s t ructur e : the Ambrym c a s e . Ame r i ca n E th n o l o g i s t 1 1 : 7 9 1 - 8 0 6 . - - - - ( 1 9 86 ) , E x t e n s i o n r u l e s a n d ' g e n e r a t i v e ' m o d e l s . Ame r i c a n E t h n o l o g i s t 1 3 : 3 69 - 3 7 0 . Sche f f l er , H . W . a nd F . G . Lounsbury ( 1 9 7 1 ) , A S t udy i n S t r u c t u r a l S e m a n t i c s . Th e S i r i o n o K i n s h i p S y s t e m .
E n g lewood C l i f f s , N . J . : P r e n t i c e - Ha l l . S c h u r t z , H . ( 1 9 0 2 ) , A l t e r s k l a s s e n u n d Ma n n e r b ii n de . B e r l i n : Georg R e imar . S c h u s t e r , H . G . ( 1 9 8 4 ) , D e t e r m i n i s t i c C h a o s . A n I n t r o d u c t i on . Weinheim : Physik-Verla g . S c h w i mm e r , E . ( 1 9 7 0 ) , A l t e r n a n c e d e l i c h a n g e r e s t r e i n t e t '
311
d e l ' ec h a n g e g e n e r a l i s e d a n s I e s y s t e m e m a t r i m o n i a l O r o k a i v a . L ' H omme 1 0 : 5 - 3 4 . S e l tma n , M . a n d P . S e l tman ( 1 9 8 5 ) , P i a ge t ' s L o gi c : A C r i t i q u e o f G e n e t i c Ep i s t e m o l o g y . L o n d o n : A l l e n a n d Unwi n . S h a p i r o , W . ( 1966 l , Secondary unions and k i n s h i p terminology : the case o f avuncular marriage . Bi jdragen
tot
de
Ta a l - ,
L an d-
en
Volkenkun d e
122 :
82-89 . - - - - ( 1 9 68 ) , T he exchange o f sis ter ' s daughter ' s daughters i n N o r t h e a s t A r n h em L a n d . S o u t h w e s t e rn Journa l o f A n t h r op o l o g y 2 4 : 3 4 6 - 3 5 3 . - - - - ( 1969 ) , Semi-moiety orga n i z a t i o n and mothe r - i n - law b e s t o w a l i n N o r t h e a s t A r n h e m L a n d . Ma n ( N . S . ) 4 : 6 2 9 640 . - - - - ( 1 9 7 1 a ) , L o c a l exogamy a n d t h e w i fe ' s m o t h e r i n A bo r i g i n a l A u s t ra l i a . I n R . M . B e r n d t ( e d . ) A u s t ra l i a n A b o r i gi na l An th ropo l ogy . N e d l a n d s : U n i v e r s i t y o f Western Australia Press . - - - - ( 19 7 1 b ) , P a t r i - g rou p s , p a t r i - c a te g o r i e s , a n d sec t i o n s i n A u s t r a l i a n a b o r i g i n a l s o c i a l c l a s s i f i c a t i o n . Ma n ( N . S . ) 6 : 590-600 . - - - - ( 1 9 8 1 ) , M i w u y t Ma r r i a g e : Th e C u l t u r a l A n t h r o p o l o g y o f A f fi n i t y i n No r t h e a s t A r n h em L a n d . P h i l a d e l p h i a : I n s t i tute for the S tudy of Human Issues . - - - - ( 1 9 8 2 ) , T h e p l a c e o f co g n i t i v e e x t e n s i o n i s m i n t h e h i s tory o f anthropological thought ( re v i ew o f H . W . S c he f f l e r , A u s t ra l i an K i n C l a s s i f i ca t i on ) . The Journal o f the Pol yne s i a n Soc i e t y 9 1 : 2 5 7 - 2 9 7 . S immon s , W . ( 1 9 80 ) , I s l am b a d y a r a n k e . I n M . G e s s a i n a n d M . - T h . d e L e s t r a n g e ( e d s . ) T e n da 1 9 8 0 . P a r i s : Societe des A f r i can istes . S imon , H . A . ( 19 69 ) , The a r c h i t e c t u r e o f comp l e x i t y . I n H . A . S i m o n Th e S c i e n c e s o f t h e A r t i f i c i a l . C a m b r i d g e , Ma . : MIT . S imon , H . A . and G . J . Groen ( 1 9 7 7 ) , Ramsey e l im i nab i l i t y and the testa b i l i ty o f sc ienti f i c theories . I n H . A . S i m o n M o de l s o f O i s c o v e r y a n d O t h e r Top i c s i n t h e Me t h o ds o f S c i e n c e . D o r d r e c h t : R e i d e l . S n e e d , J . D . ( 1 9 7 9 [ 1 9 7 1 ] ) , The L o g i c a l S t r uc t u r e o f Ma t h e m a t i c a l P h y s i c s . D o r d r e c h t : R e i d e l . - - - - ( 1 9 8 3 ) , S t r u c t u r a l i sm a n d s c i e n t i f i c r ea l i sm . Erkenntn i s
19 : 345-370.
- - - - ( 1 9 84 ) , R ed u c t i o n , i n t e r p r e t a t ion a n d i n v a r i a nc e . W. Balzer , D . A . Pearce and H . - J . Schmidt ( eds . )
In
R e d u c t i o n i n S c i e n c e : S t r u c t u r e , E x a mp l e s , P h i l o s o p h i c a l P r o b l em s . D o r d r e c h t : R e i d e l .
S t a n n e r , W . E . H . ( 19 3 3 ) , The O a l y R iver t r i be s . A report o f f i e ldwork i n N o r t h A u s t r a l i a . Ocea n i a 3 : 3 7 7 -40 5 . S t e g m u l l e r , W . ( 1 9 7 6 ) , The S t r u c t u r e a n d D y n am i c s o f Th e o r i e s . N e w Y o r k : S p r i n g e r . - - - - ( 1 9 7 9 ) , Th e S t r u c t u r a l i s t V i e w o f Th e o r i e s : A P o s s i b l e A n a l o g u e o f t h e B o u r b a k i P r o g r a mm e i n Ph y s i c a l S c i e n c e . B e r l i n : S p r i n g e r . S t e w a r t , F . H . ( 1 9 7 7 ) , F u n da m e n t a l s o f A g e - G r o up S y s t e m s .
312
N e w York : Academic . S t e w a r t , 1 . ( 1 9 8 9 ) , D o e s G o d P l a y D i c e ? T h e Ma t h em a t i c s o f Ch a o s . O x f o r d : B l a c k we l l . S u p p e , F . ( 1 9 8 9 ) , T h e S e ma n t i c C o n c e p t i o n o f Th e o r i e s a n d S c i e n t i f i c R e a l i s m . U r b a n a : U n i v e r s i t; y o f I llinois Pres s . S u p p e , F . ( ed . ) ( 1 9 7 7 ) , The S tr uc t u r e of S c i e n t i fi c The o r i e s . U r b a n a : U n i v e r s i t y o f I l l i n o i s P r e s s . S u p p e s , P . ( 1 9 5 7 ) , In t r o du c t i o n t o L o g i c . N e w Y o r k : Van Nostrand Reinhold . - - - - ( 1 9 68 ) , T h e d e s i ra b i l i ty o f f o rma l i za t i on i n s c i en c e . The J o u r n a l o f P h i l o s o p h y 6 5 : 6 5 1 - 6 6 _ . Tappe r , N . ( 198 1 ) , D i rect exchange and b r idepr ice : a l t e r n a t i v e f o r m s i n a c o m p l e x m a r r i a g e s y s t em . Ma n ( N . S . ) 1 6 : 387 -_07 . T a y l o r , A . C . ( 1 9 8 3 ) , T h e ma r r i a g e a l l i a nce a n d i ts s t r u c t u r a l v a r i a t i o n s i n J i v a ro a n s o c ie t i e s . S o c i a l S c i e n c e I n fo rma t i o n 2 2 : 3 3 1 - 3 5 3 . T e n n e r , E . ( 1 9 8 9 ) , T e c h - S p e a k , O r H o w t o Ta l k H i g h T e c h . London : Kogan Page . T h o m a s , A . D . a n d G . V . W o o d ( 1 9 8 0 ) , G r o up Ta b l e s . Orpington : Shiva . T h oma s , D . J . ( 1 9 7 9 ) , S i s t e r ' s d a u g h t e r ma r r i a g e amo n g t he Pemo n . E t h n o l ogy 1 8 : 60 - 7 0 . T h o m p s o n , P . ( 1 9 8 9 ) , Th e S t r u c t u r e o f B i o l o g i c a l Th e o r i e s . A lbany , N . Y . : SUNY . T h oms o n , D . F . ( 1 9 7 2 ) , K i n s h i p a n d Beha vi o u r i n No r th Gueen s l a n d : A Pre l im i n a r y A c coun t o f K i n s h i p a n d S o c i a l Orga n i z a t i on on Cape Y o r k Peni n s u l a . Australian Aboriginal Studies N o . 51 . Canberra : Aus t r a l i an I n s t i tute of Abor i g i n a l Studies . T j o n S i e F a t , F . E . ( 1 9 7 5 ) , C i r c u l a t i n g C o n n u b i um a n d D o u b l e D e s c e n t : T h e A l g e b ra i z a t i o n o f t h e M i n a n g k a b a u .
I n s t i tute o f C u l tu r a l An thropo l o gy P u b l i c a t i o n s N o . 4 . L e i d e n : I n s t i tu te o f Cu l t u r a l A n th r o p o l o g y . - - - - ( 1 9 8 1 ) , More comp l e x formulae o f gene ralized exchange . C u r r e n t A n t h r op o l o g y 2 2 : 3 7 7 - 3 9 9 . - - - - ( 1 9 8 3 ) , C i r cu l a t i n g c o n n u b i u m a n d t r a n s i t i v e r a n k i n g : a s e c o n d s o l u t i o n t o L e a c h ' s p r o b l em . B i j d r a g e n t o t d e T a a l - , L a n d - e n V o l k e n k u n de 1 3 9 : 1 _ 0 - 1 5 1 . - - - - ( 1 9 8 3 a ) , A g e me t r i cs a n d t w i s t e d c y l i n d e r s : p r e d i c t i o n s f r om a s t r u ct u r a l mode l . Ameri can E thnol ogi s t 10 : 5 8 5 -604 . - - - - ( 1988 ) , Converg i n g met hodolog i e s : Sneed i a n s t r u c t u r a l i sm a n d t h e l o g i c a l r e c o n s t r u c t i o n o f a n thropo logical theory . I n H . J . M . C l a e s s e n and D . S . M o y e r ( e d s . ) Time Pa s t , Time P r e sen t , Time Fu t ur e : P e r spec t i v e s o n Indone s i an C u l ture . E s s a y s i n Hon o ur o f P r o f e s s o r P . E . de J o s s e l i n de J o n g . K o n i n k l i j k
I n s t i t u u t v o o r T a a l - , L a n d- e n V o l k e n k u n d e , V erhande l i ngen 13 1 . Dordrecht : For i s . Tur n e r , D . H . ( 1980 ) , Austra l i an Abori ginal S o c i a l Organ i za t i on . C a n be r r a : Huma n i t i e s . V a n F r a a s s e n , B . C . ( 1 9 8 7 [ 1 9 8 0 ] ) , Th e S c i e n t i f i c Ima g e . Oxford : Clarendon . - - - - ( 1 9 8 9 ) , L a w s a n d S ymme t r y . O x f o r d : C l a r e n d o n .
313
Visser ,
L . E . ( 1 9 8 4 ) , Mi j n t u i n i s m i jn k i n d . E e n a n t r op o l o g i s c h e s t u d i e v a n d e d r o g e r i j s t t e e l t i n S a h u ( In do n e s i i ) . L e i d e n : R e p r o P s y c h o l o g i e . V o n N e u ma n n , J . ( 1 9 6 1 - 1 9 6 3 ) , C o l l e c t e d Wo r k s ( e d i t e d b y A . H . T a u b ) . New Y o r k : Macmi l l a n . V u y k , T . ( 19 8 7 ) , C o n c e p t u a l i z a t i o n a n d o r g a n i z a t i o n pol i tical power i n L e l e a n d Kuba s o c i e ty . I n R . R i d d e r a n d J . A . J . K a r r e m a n s ( e d s . ) T h e L e i de n Tra d i t i o n of
in
of de
A n t h r op o l o g y . E s s a y s i n de Jon g . Leiden : Bril l . Wa l l ace , A . F . C . and J . A t k i n s ( 1960 ) , T h e mea n i n g o f k i n s h i p t e r m s . Ame r i can A n th ropol o g i s t 6 2 : 5 8 - 8 0 . War n e r , W . L . ( 1964 [ 19 37 ] ) , A B l ack Ci vi l i za t i on : A S o c i a l S t u d y o f a n A u s t r a l i a n Tr i b e . N e w Y o r k : Harper & Row . W e b b , T .T . ( 1 9 3 3 ) , T r i b a l o r g a n i z a t i on s i n E a s t e r n A r n hem L a n d . Ocean i a 3 : 40 6 - 4 1 1 . W e i l , A . ( 1970 [ 19 49 ] ) , On the a l g e b r a i c study o f certa i n t y p e s o f ma r r i a g e l a w s ( M u r n g i n s y s t em ) . A p p e n d i x t o Th e E l e m e n t a r y S t r u c t u r e s o f K i n s h i p , by C. L�v i Honour
Straus s .
S t ruc tural
P . E.
de
London :
Jo s s e l i n
E y r e a n d S p o t t i swood e .
W e i n s t ei n , M . ( 19 7 7 ) , Examp l e s o f Groups . Passai c , N . J . : Polygona l . W h i t e , H . C . ( 1 9 6 3 ) , A n A n a t om y o f K i n s h i p : Ma t h e m a t i c a l M o de l s fo r S t r u c t u r e s o f C u m u l a t e d Rol es . E n g l ewood C l i f f s , N . J . : P re n t i ce H a l l . W o l f r a m , S . ( 1 9 8 3 ) , S t a t i s t i c a l me c h a n i c s o f c e l l u l a r a u t o m a t a . R e v i e w s o f Mo de r n P h y s i c s 5 5 : 6 0 1 - 6 4 4 . - - - - ( 1 9 84 ) , U n i v e r sa l i t y and comp l e x i t y i n c e l l u l a r a u t o ma t a . Ph y s i ca 1 0 0 : 1 - 3 5 . Wol f ram , S . ( ed . ) ( 1 9 8 6 ) , Th e o r y a n d A p p l i c a t i o n s o f Cel l ul a r
A u t oma t a .
Advanced
Series
on
Complex
S y s t em s , V o l u m e 1 . S i ng ap o r e : W o r l d S c i e n t i f i c . Woo l ford , E . ( 1984 ) , Universals and rule options in k i ns h i p termi n o l ogy : a syn the s i s o f three formal a p p r o a c h e s . Ame r i can E th n ol o g i s t 1 1 : 7 7 1 - 7 9 0 . W ou d e n , F . A . E . v a n ( 1 9 6 8 [ 1 9 3 5 ] ) , T yp e s o f S o c i a l S t r u c t u r e i n E a s t e rn I n do n e s i a . Kon i n k l i j k I n s t i tu u t voor Taa l - , Land- en Volkenkunde , T ra n s l a t i o n S e r i e s 1 1 . The Hague : M a r t i n u s N i j ho f f . - - - - ( 1 9 7 7 [ 1 956 ] ) , Loca l g roups and doub l e descent i n K o d i , W e s t Sumba . I n P . E . d e J o s se l i n d e J o n g ( ed . ) S t r u c t u ra l
A n t h r op o l o g y
i n
the
N e t h e r l a n ds .
A
K o n i n k l i j k I n s t i tuu t voor T aa l - , Land e n Volkenkunde , T r a n s l a t i o n Seri e s 1 7 . The Hague : Martinus N i jhoff . Y a l m a n , N . ( 1 9 7 1 ) , Un d e r t h e B o T r e e . S t u d i e s i n C a s t e , R e a de r .
Ki nship ,
and
Ma r r i a g e
in
the
In t e r i o r o f C e y l o n .
Berkel e y : U n i ve r s i ty o f Cal i fo r n i a P r e s s . Young , P . O . ( 1 970 ) , A s t ructu r a l mod e l o f N g awbe ma r r i a g e . E t h n o l o g y 9 : 8 5 - 9 5 . Z u i d e m a . R . T . ( 1 9 6 5 ) , Am e r i c a n s o c i a l s y s t e m s a n d t h e i r m u t u a l s i m i l a r i t y . B i j d r a g e n t o t de Ta a l - , L a n d - e n V o l k e n k u n de 1 2 1 : 1 0 3 - 1 1 9 . - - - - ( 1 9 86 ) , L a C i v i l i s a t i on i n ea
Pari s :
au
CuzeD .
Presses Universitaires de France .
3 14
I ND E X OF
NAMES
A c k e r ma n , C . , 1 2 8 Adams , D . , x Apo s tel , L . , . 89 Ashby , W . R . , 293n . 10 A s hmo r e , M . , 9 n . 2 Atkins , J . R . , 64 , 1 48 , 1 78 , 1 84n . 1 , 1 8 5 - 1 8 6 n n . 7 , 1 4 B a l l ono f f , P . , 7 9 n . 41 , 184n . 2 , 293n . 18 Balzer , W . , 5 , 6 , 9n . 4, 3033 , 76-77nn . 26 , 29 , 3 1 , 32 , 1 2 1 - 1 2 2 , 1 44 n . 1 1 , 294 n . 23 B a r n a rd , A . , 1 7 0 , 1 8 4 - 1 8 5 n n . 7 , 12 , 14 , 293n . 8 B a r n a rd , T . T . , 1 8 5 n . 1 4 Barnes , J . A . , 62 , 64 , 68 , 184n . 3 Barnes , R . H . , 75n . la , 293nn . 9 , 12 B a r n s l e y , t1 . , 2 9 2 n . 4 Barra i , 1 . , 1 5 1 Barrett , S .R . , 2 , 75n . 2 Bastide , R . , 76n . 19 Baums lag , B . , 48 , 7 3 - 74 Berlinski , D . , 2 3 1 , 292 n . 1 Bernard i , B . , 148 Berry , M . V . , 292n . 4 Biersack , A . , 138 B l och , M . , 2 2 4 Blundell , V . , 141 Boas , F . , 291 Borland , C . H . , 29 3 - 294n . 1 9 Bosse , 0 . , 1 85 n . 12 Boulay , J . du , 1 29 - 1 30 , 1 3 8 , 141 Bourbaki , C . D . S . , 76n . 19 B o u r b a k i , N . , 2 4 - 2 5 , 30 , 40 , 76n . 1 9 , 184n . 4 Bowden , R . , 1 3 2 , 1 3 4 , 140 B o y d , J . P . , 46 , 5 9 , 6 3 , 6 5 66 , 79nn . 41 , 42 , 186n . 1 7 , 259 , 262-265 , 293n . 16 Brown , D . J . J . , 145n . 1 7 B rum b a u g h , R . C . , 1 8 5 n . 1 2 Buch l e r , l . R . , 89 , 144n . 8 , 237 , 293n . 8 Budden , F . J . , 227n . 9
Campbe l l , J . , 293 n . 1 3 Carnap , R . , 184n . 3 C a r t a n , H . , 7 6 n . 1 9 , 1 8 4 n . 4. Caste r l i n e , J . B . , 184n . 6 C a s t i , J . L . , 240- 242 , 244 , 249 - 25 1 , 2 5 5 , 293n . 10 Cava l l i -Sforza , L . L . , 1 5 1 1 5 2 , 184n . 6 , 185n . 10 C h a nd l e r , B . , 4 8 , 7 3 - 7 4 C ha o , Y . R . , 7 5 n . 1 1 Chomsky , N . , 29 3 n . 1 3 C 1 a ma g i r a n d , B . , 1 4 0 Cook , E . , 212 C o u r r e g e , Ph . , 40 , 4 5 - 4 8 , 59 , 66 , 79n . 4 1 , 90 , 1 0 6 1 0 8 , 1 2 0 , 1 44 n . 6 , 1 50 , 161 , 165 , 222 , 228 n . 1 5 , 258 , 261 Damo n , F . E . , 1 2 1 D ' Andrade , R . C . , 262 , 293 n. 14 Darwin , C . , 184n . 2 Davie s , P . , 229n . 20 , 292 n. 4 Dawbe r , P . C . , 2 2 7 n . 1 Del s a r t e , J . , 76n . 19 Denham , W . W . , 148 - 149 , 1 7 7 178 , 184n . 1, 186nn . 14 , 18 D i ed e r i c h , W . , 9 n . 4 D ieudonne , J . , 76n . 19 , 184 n. 4 D i xo n , J . D . , 2 2 7 D ou t r e l oux , A . , 1 7 3 , 1 8 6 n . 15 D ra b b e , P . , 2 6 6 Dreyfus , G . , 76n . 20 Dupre , C . , 2 8 5 Dupr e , M . C . , 2 2 8 - 2 29 n . 1 9 Dur k h e im , E . , 1 6 , 7 5 n . 1 1 , 7 8 n . 40 , 2 9 1 Duyvendak , J . P . , 16-17 , 79 n . 43 Dijk , T . van , 139 , 141 E i n s te i n , A . , 188 Eliot , T . 5 . , 1 1 Elkin , A . P . , 141 , 145n . 197 - 198 , 227n . 6
15,
315
E l l iott , J . P . , 227 n . 1 Engels , F . , 291 E t i e n n e , P . , 8 6 - 8 7 , 1 4- 5 n .
H a nson , N . R . , 2 7 H a o , B a i - l i n , 2 9 2 n . 415 , Hargittai , 1 . , 227n . 1 269 H a r te , J . , 2 9 2 n . 2 E v a n s -P r i t c h a r d , E . E . , 2 6 7 , H e a th , J . , 1 8 2 2 9 4- n . 2 1 Held , G . J . , vii , 1 5 , 18-21 , 36 , 5 1 , 53 , 169 F e r ry , M . -P . , 285 , 287 -288 Henley , P . , 185n . 12 F e s t i n g e r , G . , 1 4- 5 n . 1 5 H e n r y , L . , 1 8 4- n . 6 F e y e ra b e n d , P . , 1 - 2 , 2 7 , 7 6 n . Her i t i e r , F . , 1 2 8 , 1 3 1 - 1 3 2 , 26 1 3 8 , 1 4- 1 , 1 4- 3 , 1 4- 4- n . 8 , Feynman , R . P . , 187 1 4- 5 n . 1 9 , 1 9 6 - 1 9 7 , 2 1 7 F ischer , M . , 89 223 , 227n . 5, 229n . 20 , F ison , L . , 68 2 3 9 - 2 4-0 , 2 6 7 - 2 7 1 , 2 7 3 - 2 7 5 , F j e l l m a n , S . M . , 2 9 3 - 2 9 4- n . 1 9 278-28 1 , 290 , 29 3 n . 1 1 Fox , J . J . , 16, 253 Hesse , M . , 27 Fox , R . , lS6n . 1 9 H e u s c h , L . d e , 1 4- 1 , 1 4- 5 n . F razer , J . G . , lS8 IS , 293n . 12 F reud , S . , 291 Hiatt , L . R . , 182 F r i e d e r i c y , H . J . , V l. l. , 1 8 - 1 9 , H i l l i e r , B . , 3 7 6 n . 1 2 , 7 9 n . 4- 3 H i r s c h f e l d , L . A . , 2 9 3 - 2 9 4- n . F r i e d ma n , M . , 2 2 7 n . 1 1 9 F r i e d r i c h , P . , 2 3 1 , 2 9 2 n . 4H o l d e n , A . V . , 2 9 2 n . 4H o rnborg , A . , 18 Sn . 12 Gal i lei , G . , x , lS7 , 292n . 3 Howi t t , A . W . , 62 , 68 G a l t o n , F . , l S 4- n . 2 H u t c h i n s o n , D . , 1 4- S G e l l n e r , E . , 1 8 4- n . 3 H u x l e y , T . H . , 2 2 7 n . , 2 3 S , 236 G e s s a i n , M . , 2 8 4- - 2 8 6 , 2 8 8 , 2 9 4- n . 2 6 Jager s , P . , 1 5 1 G i e r e , R . N . , 9 n . 4Jo n c k e r s , D . , 2 7 9 G i v a n , T . , 2 9 3 - 2 9 4- n . 1 9 J o n g e , N . d e , 1 3 9 , 1 4- 1 G l a s s , L . , 2 9 2 n . 4J o r- i o n , P . , 6 2 - 6 3 , 7 9 n . 4- 1 , G l e i c k , J . , 2 9 2 n . 4l S 4- n . 1 , l S 5 n n . 1 1 , 1 4- , G lowczewsk i , B . , 1 8 2 1 8 6 nn . 1 7 , 20 , 293n . 19 Go l dschm i d t , V . , 76n . 20 Josselin de Jon9 , J . P . B . de , G o o d , A . , 1 6 9 1 7 0 , 1 8 4- - 1 8 5 1 2 , 1 5 - 17 , 2 0 , 34- 3 S , 62 , nn . 7 , 1 2 , 2 9 3n . 8 64 , 67 , 75n . 7 , 7 6 n . 17 , G o t t l i e b , A . , 1 2 1 , 2 9 4- n . 2 477n . 35 , 78nn . 37 - 39 , 79 Gou l d , S . A . , 2 9 3n . 18 n. 4S , 1 44n . 3 , 1 7 5 , lS2 Granet , M . , 62-63 , 87 J o s se l i n d e Jo n 9 , P . E . d e , Granger , G . -G . , 2 3 -27 , 76n . 1 2 , 1 6 , 2 0 -2 1 , 5 3 , 60 , 62 , 20 , 185 n . 1 1 , 2 3 1 7 S n n . 9 - 1 0 , 7 6 n n . 1 4- - l S , Greechie , R . J . , 293nn . 1 6 , 1 9 7 8 n n . 3 7 , 40 , 7 8 n . 3 7 , 7 9 G r e e n b e r g , J . H . , 1 4- 7 , l S 4- n . 3 n . 4- 3 , 9 S , 1 3 0 - 1 3 1 , 1 3 7 , Gregor y , C . A . , 1 2 1 1 3 9 , 1 4- 1 , 1 4- 5 n . 1 S , 1 8 S n . Groe n , G . J . , 7 7 n . 32 14, 227 n . 3 , 228nn . 13 , 1 9 , Gueroul t , M . , 76n . 20 Inn . 6 Gu i gnard , E . , 28 5 , 2 8 7 - 2 88 Ju i l 1 e r a t , B . , 1 3 1 Guil baud , G . , 172 K a ne , G . L . , 2 2 7 n . 2 H a be r , H . E . , 2 2 7 n . 2 Ka r l qv i s t , A . , 240 H a eh l , J . H . , 262 , 2 6 5 K a s a ko f f , A . B . , 18 S n . 12 H a e n e n , P . , 1 4- 0 , 1 4- 5 n . 1 8 Ka y , P . , 1 44 n . 8 Hajnal , J . , 151 Keen , r . , 18 2 , l S 6 n . 19 H a m m e l , E . A . , 1 4- 8 , 1 5 3 , 1 6 1 K e i t h , J . , 1 4- S -
316
K e m e n y , J . G . , 6 3 , 7 9 n . 1> 6 K e r t z e r , D . l . , 1 1> 8 K e t t e l , D . , 1 1> 5 n . 2 1 Keyfitz , N . , 1 5 1 Kim , K . H . , 2 59 K imura , M . , 1 5 1 Kirchhoff , P . , 169 Kolenda , P . , 7 7 n . 3 5 , 280282 K o r n , F . , 9 n . 3 , 8 1> - 8 6 , 1 1> 1 , H5n . 1 5 K r am e r , E . E . , 7 6 n . 1 9 K r o e b e r , A . L . , 1 8 1> n . 3 Kuh n , T . S . , 6 , 1 1 , 1 5 , 2 7 , 76n . 26 , 2 3 3 , 292 n . 3 Kuper , A . J . , 2 , 5 , 87-88 , 1 2 2 - 1 2 3 , 1 2 5 , 1 2 8 , 1 1> 0 1 1> 1 , 1 1> 5 n . 2 1 , 2 2 3 , 2 9 0 292 L a n e , B . , 1 8 5 n . 1 1> L a n e , R . , 1 8 5 n . 1 1> L a n g h a m , I . , 1 8 5 n . 1 1> L a n g t o n , e . G . , 2 1> 5 Lave , J . C . , 169 L a w r e n c e , W . E . , 7 9 n . 1> 1> L a y t o n , R . , 1 1> 1 L e a c h , E . R . , 1 , 3 - 1> , 9 n n . 1 , 3 , 8 7 , 169 , 228n . 19, 291 L e Chenadec , Ph . , 2 6 5 Lehma n , F . K . , 29 3 n . 1 8 Lep l i n , J . , 76n . 25 L e s t r a n g e , M . - T h . d e , 2 8 1> , 2 9 1> n . 2 6 Lev i n , Yu . , 293 n . 1 8 L e v i - S t r a u s s , C . , v , 2 , 1> , 7-8 , 9n . 3 , 1 1 , 1 2 , 18 , 2 0 , 3 1> - 3 8 , 1> 0 , 6 2 - 6 4 , 6 7 , 6 9 , 7 7 n n . 3 1> - 3 6 , 7 8 n n . 3 8 - 1> 0 , 8 1 - 8 4 , 8 7 - 9 0 , 9 7 , 1 0 0 , 1 0 6 , 1 1 3 , 1 2 8 , 1 1> 1 , 1 1> 5 n . 1 5 , 1 1> 7 , 1 5 4 , 1 6 9 172 , 175 , 179 , 182 , 185 nn . 7 , 1 3 , 186n . 16 , 1 8 8 196 , 224-2 2 5 , 2 2 7 nn . 3 - 6 , 2 2 8 nn . 1 7 , 1 9 , 229n . 2 0 , 2 3 1> - 2 40 , 2 4 2 - 2 1> 3 , 2 4 9 , 268 , 2 8 1 - 2 8 2 , 290 - 29 1 , 292 -293nn . 5-7 L i d l , R . , 265 , 294n . 2 0 L i puma , E . , 1 3 9 Liu , Pin-hsiung , 79n . 4 1 , 1 8 2 , 265 , 293 n . 1 8 Loche r , G . W . , 1 7 , 2 0 -2 1 , 63 , 7 6 n n . 1 6 - 1 7 , 7 8 n . 1>0
L o ckwood , E . H . , 227 n . 9 Loren t z , H . A . , 1 8 7 L o r r a i n , F . , 4 0 - 4 2 , 1> 1> , 6 3 , 7 9 n . 1> 1 , 9 0 , 1 0 6 - 1 0 8 , 1 2 0 , 1 1>4 n . 7 , 1 5 0 - 1 5 1 , 1 6 1 , 1 6 5 , 1 84 n . 7 , 2 5 8 , 2 6 1 , 2 94 n . 2 0 L o u i e , A . H . , 2 1> 9 - 2 5 1 , 2 5 5 Lounsbur y , F . G . , 106 - 107 , 1 2 5 - 1 2 7 , 1 4 0 , 1 1> 1> n . 1 2 , 145nn . 1 3 , 15 , 262 -265 , 280 , 293nn . 8 , 1 6 , 17 Low i e , R . H . , 2 9 3 n . 8 L u c i c h , P . , 7 9 n . '+- 1 M c C o n n e l l , U . , 1 1> 9 , 1 7 1 , 175 , 177 - 178 M c D a n i e l , C . K . , 1 1> 8 , 1 8 '+- n . 1 M c D o we l l , N . , 2 1 0 - 2 1 1 MacGaffey , W . , 1 7 3 , 186n . 1 5 �1 c K i n l e y , R . , 2 9 3 n n . 9 , 1 2 McKnight , D . , 177 , 186n . 1 6 Macfarlane , A . , 147-148 , 184 n. 2 Mackay , A . L . , x M a c k e y , M . C . , 2 9 2 n . I> Macmi l lan , R . H . , 227n . 9 Maddo c k , K . , 1 8 2 , 186n . 19 Maine , H . , 291 M a l i nowsk i , B . , 1 , 3 , 9n . 3 M a n d e l b r o t , B . B . , 2 9 2 n . I> Mart i n , J . F . , 148 , 1 52 , 182 Mauss , M . , 1 6 , 7 5 n . 1 1 , 78n. 1> 0 , 2 9 1 M e g g i t t , M . J . , 1 1> 8 11 e u r , G . d e , 6 3 , 7 9 n . 1> 1 , 186nn . 1 7 , 20 Moore , S . F . , 169 Morgan , L . H . , 125-126 , 291 M o r ph y , H . , 1 8 2 Mosko , M . S . , 229n . 20 M o u 1 i ne s , C . U . , 7 6 - 7 7n . 2 6 M u l le r , J . - C . , 1 8 9 , 1 9 4 197 , 225-226 , 2 29n . 20 , 2 1> 3 , 2 9 3 n . 1 2 Mun t , M . van de , 75n . 3 Murdoc k , G . P . , 293n . 8 I . , 76n . 26 Nutin i , H . G . , 77n . 30
Niiniluoto ,
Onv lee , L . , 77n . 35 O s s en b r u g ge n , F . D . E . v a n , 1 6 O t t e n h e i m e r , M . , 2 9 3 n n . 1 6 , 19
317
Pearce , P . , 38 Piage t , J . , 76n . 19 P i l z , G . , 2 6 5 , 2 9 4- n . 2 0 P i n , J .E . , 265 P ison , G . , 15 1 P l a ten kamp , J . D . M . , 6 9 - 7 0 P o s t e l - C o s t e r , E . , 7 7 n . 35 P o u n d s t o n e , W . , 29 3 n . 1 3 Pradelles de Latou r , C . -H . , 182 P r i g o g i n e , 1 . , 2 9 2 n . 4Putnam , H . , 76n . 2 2 R a d c l i f f e - B r o w n , A . R . , 3 , 4- , 9 n . 3 , 2 1 , 4-2 , 78n . 40 , 125 , 1 8 4- n . 2 , 1 9 1 , 267 , 2 9 1
R a s s e r s , \V . H . , 1 6 Read , D . W . , 79 n . 4 1 , 265 , 29 3n . 19 Redd y , P . G . , 182 Reg i s , E . , 76n . 19 R e i d , R . M . , 1 48 , 1 5 1 - 1 5 3 , 170 , 185n . 9 Rivers , W . H .R . , 291 R i v i e r e , P . , 1 6 9 , 1 8 4- n . 6 Rogers , G . , 138 Romney , A . K . , 262 , 2 93 n . 1 4 Rose , F . G . G . , 147 , 1 7 9 R o s m a n , A . , 1 3 9 , 141 , 2 1 2 , 2 2 5 Rousch , F . W . , 259 R u b e l , P . G . , 1 3 9 , 1 4 1 , 2 1 2 , 225 R u b i n ste i n , R . L . , 1 3 1 R u hemann , B . , 14 5 n . 1 5 Sailer ,
262 , P.S. , 2
265
7
Shapiro , W . , 169 , 1 8 5 n . 1 2 , 1 86n . 2 94n . 1 9 S i m m o n s , W . , 2 8 4Simon , H . A . , 77n . 293n .
S nee d ,
U 1 am ,
S. ,
2 4- 4 ,
32 ,
232
,
6,
9n .
4,
23 ,
293 n.
13
5 , 9n . 4 20 , 76n . 1 5 ,
B.C . ,
H.F . ,
7 8 n . 40 Visser , L . E . , 69 , 1 3 5 - 1 36 , 1 3 8 , 1 41 Von Neumann , J . , 244-245 V u i 1 1 em l n , J . , 7 6 n . 2 0 Vuy k , T . , 141 Wa l l ace , A . F . C . , 6 4 W a r n e r , \V . L . , 1 7 5 Web b , T . T . , 62 We l l , A . , 40 , 7 6 n . 1 9 , 90 , 147 - 148 , 184n . 4 We i n s t e i n , M . , 2 2 7 W h i t e , H . C . , 3 , 7 6 n n . 4 1 , 46 , 90 ,
175 , 182 , 19, 293-
10
J.D. ,
.
,
Vermeulen ,
Sa u s s u re , F . d e , 2 4 - 2 5 Sche f fler , H . W . , 68 , 1 1 1 1 1 2 , 14-4-nn . 3 , 8 , 1 4- 5 n . 1 3 , 2 6 5 , 2 9 3 - 294n . 1 9 Schurtz , H . , 148 S c hu s te r , H . G . , 2 9 2 n . 4 S ch w imme r , E . , 2 2 5 S e l b y , H . A . , 144n . 8 , 2 3 7 , 293 n . 8 S e l tm a n , M . , 7 6n . 1 9 S e l tm a n , P . , 7 6 n . 1 9 Shannon , C . E . , 236-237 , 292n .
Tapper , N . , 2 94n . 2 5 Taylor , A . C . , 2 2 5 Tenner , E . , i i T h o m a s , A . D . , 5 4- , 1 8 6 n . 2 0 Thoma s , D . J . , 169 Thompson , P . , 9n . 4 T h om s o n , D . F . , 1 8 6 n . 1 6 Tjon Sie Fat , F . E . , 6 3 , 75 n . I i" , 7 7 n . 3 1 , 7 9 n 41 , 128 , 161 227n . 8 Toulmin , S . , 27 T u r n e r , D . H . , 141 , 178 , 197- 198 T y 1 o r , E . B . , 1 4- 7
Van F raass e n ,
L.D . ,
Sangren ,
2 7 - 3 2 , 38 , 7 6 - 7 7 n n . 2 5 26 , 28 , 120 - 1 2 1 , 2 5 5 Stanner , W . E . H . , 62 S t e g m u l 1 e r , W . , 6 , 9 n . 4- , 2 3 , 27-28 , 31 , 3 3 , 38 , 7 6 n . 26 , 7 7 n . 32 , 1 2 1 , 1 4- 4- n . 1 0 , 2 5 5 Stenger s , I . , 292n . 4 S t ew a r t , F . H . , 1 4 8 Stewart , 1 . , 2 3 3 - 2 34 , 293 nn . 2 - 3 S u p p e , F . , 5 , 9 n . 4- , 7 6 nn . 2 3 - 2 4 S u p p e s , P . , 5 , 2 3 , 2 7 -29 , 12 1 Swan son , J . R . , 1 7
2 94 n .
20
W i e n e r , Ii . , 2 3 6 - 2 3 7 II' i g n e r , E . P . , x W i t t g e n s t e i n , L . , 1 4-4 n . 1 0 Witz , K . , 293n . 18 W o l f r a m , S . , 2 4 6 - 2 4- 7 , 2 4 9 W o o d , G . V . , 5 4- , 1 8 6 n . 2 0 Wo o l f o r d , E . , 2 9 3 -294n . 1 9
318
Woude n , F . A . E . v a n , 1 2 , 1 5 , 2 1 - 2 2 , 3 6 , 5 0 - 5 1 , 60 , 6 2 , 75n . 5 , 78nn . 37 , 39 , 78 n. 39 , 79n . 43 , 139 , 141 , 165 , 266
Yalman , N . , 1 8 5 n . 12 Y o u n g , P . O . , 1 9 8 - 2 00 , 2 2 7 n. 7 Z u i d em a , R . T . , 1 2 7 , 1 3 1 , 1 3 9 - 1 40 , 1 4 5 n n . 14- 1 5 , 223
G E N E R A L I N DEX
N a m e s o f s o c i e t i e s a r e in i t a l i c s . F o r n u m e r o u s t e c h n i c a l t e rms u sed t h r o u g h o u t t h e w o r k o n l y t h e m o s t i m po r t a n t r e f e r e n c e o r t h e p l a c e o f d e f i n i t i o n i s indicated i n b o l d .
A f g h a n T u r ke s tan , 2 94 n . 2 5 A frican systems , 145n . 2 1 A shanti , 267
B a dy a r a n k e , 2 8 4 BaKongo , 1 7 3 Bau1 e , 86 , 8 7 , 267 , 269 B e di k , 2 8 4 B e l l !j a n ( B a s s a r i ) , i x , 2 4 3 ,
284-290 B en g , 1 2 1 , 294n . 24 B o1 n , 284 Con 1 a g u 1 , 2 8 4 Dan , 14 5 n . 21 G us i i , 2 6 7 Kaguru , 267 L el e , 141 M i n yanka , 2 7 9 Mkak o , 2 6 7 Mas s i , 1 9 5 , 2 6 7 Nuer , 267 , 294n . 21 Rukuba , 2 2 5 S a rn o , 1 2 8 , 1 4 3 , 1 4 5 n . 1 9 , 214 , 217 , 220-223 , 239 , 240 , 2 6 7 , 2 7 1 S wa z i , 8 7 , 1 4 1 , 2 7 8 Te n da , 2 8 4 , 2 9 0 , 2 9 4 n . 2 6 Te n da Ma y o , 2 8 4 Te t e l a , 1 4 5 n . 2 1 Ti v , 1 9 5 T s o n ga , 1 2 3 , 1 2 5 , 1 2 7 , 1 4 0 , 145 n . 2 1 Tuge n , 1 4 5 n . 2 1 Yomb e , 1 7 3 A g e d l f f erence s , see C h . 3 ; 7 , 147 - 148 , 1 5 1 - 1 5 3 , 1601 6 1 , 1 6 3 - 1 66 , 1 70 , 1 7 8 ,
1 7 9 , 2 8 3 , 2 86 , 2 8 8 Ame r i ca , 1 7 2 A m e r i c a n - E n g l i s h t e r m i n ology , 64 A m e r i c a n s t r u c t u r e s , s y s tems , 1 2 7 , 1 2 8 , 1 3 9 , 140 , 169 , 278 Ch e r o k e e , 1 2 7 I n c a , 1 3 1 , 138 , 140- 141 , 145n . 1 3 Na t c h e z , 1 6 , 1 7 N g a wb e
196 ,
( We s t e r n G u a y m e ) ,
1 9 8 , 200 , 205
No r t h e r n A c h u a r
225 Pa wn e e ,
( J i va r o ) ,
125-12 8 ,
See a1 so Crow, Om a h a
140 , 2 7 8
Iroquoi s ,
Andra Pradash , 176 Aus t r a l i a , 62 , 224 Aus t r a l ian kinship , 64 , 67 , 76n . 1 7 , 182 , 236 Au s t ra l i an marr iage c l a s s es 188 A u s t r a l i a n s y s t em s , 2 1 , 1 7 8 , 189 , 227 n . 6 A 1 y a wa r a , 1 4 8 , 1 4 9 , 1 7 6 , 177 , 178 A r a n da , 3 7 , 6 6 , 1 7 1 , 1 9 7 , 198 - - model , 182 , 1 86 n . 20 , 197 , 212 - - s tructure , vi i i , 37 , 178 , 1 7 9 , 1 9 1 , 1 9 2 , 200 , 206 , 2 1 3 , 229n . 20 -- sys tem , 1 2 , 37 , 191 , 205 B a r di , 1 9 6 - 1 9 8 , 2 2 7
3 19
China , 67 200 type , 200 C i r c u l a t i n g c o n n u b i um , s e e s t r u c tu r e , v i i i , 1 9 7 , Ch . 1 ; 7 , 1 2 , 1 8 , 20 , 22 , 1 9 9 , 20 5 , 206 2 3 , 4 9 , 50 , 5 1 - 7 0 , 1 8 4 - 1 8 5 - - s y s tem , 1 9 7 n. 7 G i dj i n g a l i , 1 8 2 , 183 , 186n . 20 S e e a l so g e n e r a l i z e d Kami l a ro i , 6 8 exchange K a r a dj e r i , 3 7 , 6 2 , 6 6 , 1 7 2 , C o m p l e x , c o m p l e x i t y , s e e C h . 175 5 ; v i , x , 4 , 5 , 7 , 8 , 14 , K a r i e ra , 3 7 , 6 2 , 1 7 1 , 1 9 1 , 25 , 8 1 -83 , 88 , 139 , 142 , 197 144n . 1 , 1 5 3 , 1 7 3 , 1 8 7 - 1 8 9 , - - mode l , 67 , 6 8 , 2 0 5 192- 197 , 223-226 , 228 - 229 - - structure , v ii i , 2 1 , 67 , nn . 1 9 , 20 , 2 3 1 , 2 3 2 , 2 3 3 6 8 , 1 9 7 , 2 06 2 3 7 , 240-241 , 2 4 2 , 2 44 , - - s y s tem , 1 2 1 , 1 9 0 - 1 9 2 2 4 9 , 250 , 2 6 5 , 2 7 1 , 2 8 2 , K ur n a i , 6 8 283 , 288 ' L a wr e n c e ' s y s t e m , See a l so e lemen tary and structure , 62 -68 ( sem i - ) complex k i n s h i p reversed , 62 s y s t e m s ; S i m p l e , S imp l i c ity Mara , 3 7 C o d i n g ( or extens i on ) p roblem , 64 - 69 M u r n g i n ( Yo l n g u ) , 1 2 , 3 7 , 62 , 181 Codi ngs o f M x P ' 68-70 4 4 - - mode l , 1 7 5 - - of the Lawrence , 6 3 , 69 reversed s tr u c t u re , 6 4 -6 8 , 7 9 n . 4 5 - - s t r u c tu re , 6 2 , 6 9 Kar i era s truc -- of the ture , 68 - - s y s t e m , 3 7 , 6 2 , 2 2 8 n . 17 C o n g r u e n ce s , 70 N a n g i o me r i , 6 2 F I SK - , 2 6 3 - 2 6 5 Ngami t i , 1 7 1 , 1 7 8 S e e a 1 s o ( s e m i - ) g r o u p theory U n ga r i n y i n , 1 4 1 Corfu , 1 38 Wal b i r i , 1 4 8 Coset , 73 Wan i n di l j a u gwa , 1 4 7 , 1 7 9 Crow , 238 , 279 , 280 Wa r a m u n g a , 6 2 - - hypothes i s , 278 , 280 W i k m u n k a n , 149 , 1 74 - 8 , 186n . 16 - - rules , 265 , 293nn . 8 , W i n a w i dj a g u , 1 4 1 16 , 1 7 Worora , 1 4 1 - - system , 278 Wunamba 1 , 1 4 1 - - t e rm i n o l og y , 1 2 5 - 1 2 7 , Yara i dy a n a , 1 7 1 , 1 7 3 , 1 7 8 173 , 2 38 , 284 A u t o m o r p h i sm s , 7 3 - - o f C , 1 2 0 , 1 4 2 , 252 , 255 S e e a l s o C r o w - Om a h a , Om a h a ; n semi -complex structu res - - of D , 200 - 2 2 3 , 2 5 5 - - o n t� e s e t o f s t a t e s o f C r o w - Om a h a : a d y n am i c a l s y s t e m , 2 5 1 prohibitions , 194 - - s t r u c t u r e s , 2 40 A x i oma t i z a t i on , 24-26 , 2 7 , - - syst ems , 8 1 - 8 2 , 8 9 -90 , 2 8 , 29 , 68 , 70 143 , 1 45 n . 2 1 , 1 7 2 , 2 27 n . B inary opera t io n , 72 5 , 2 28 n . 1 9 , 2 3 8 -2 39 , 2 4 3 , Boolean : 2 70
mode l ,
- Nga wbe
I
I
I
I
_ _
I
I
I
I
-
f u nc t io n s ,
247
matr i x , 260-261 product of m a t r i ces , 260 C a pe Y o r k , 149 , 1 7 1 , 1 86 n . 16 C e l l u l a r a u t o m a t a , 2 4 4 - 249 , 251 , 252 , 255 , 282 Central Africa , 173
See
a l so
Crow ,
Omaha ;
complex structures
Direct
product
s t ructure s ,
of
s em i
kinship
SO - 5 3
semi d i rect product of groups , 65-66 , 226-227 Doub l e desce n t , see
Ch .
1 ;
320
7 ,
1 1 ,
36 ,
n.
12,
4- 3 , 8,
1 4- ,
50 ,
4- 9 ,
77 -78n .
137 ,
1 38 ,
1 7 - 2 3 , 3 4- 5 1 -70 ,
36,
165 ,
o f gener a l i zed exchange , 108 , Ill , 120. H e l i c a l e x c h a n g e s tructures H ( a , n , b ; r , I - l ib ) , see Ch. 3 ; viii , 8 , 153-182 ,
75
9 5 -9 8 ,
1 30 ,
210
Dravid ia n , see Iroquoi s a n d Dravidian D u r r a n i P a s h t u n s , 2 9 4- n . 2 5 Dynam i c a l sys tems , v i , i x , 1 4- 2 ,
2 4 4- ,
2 7 4- ,
282 ,
249 - 2 5 3 ,
255 ,
203 ,
4;
91 ,
2 52
7 ,
see a l so
14,
21,
200 ,
202 , 216,
252 ,
257 ,
See a l so
204 , 269 ,
287
228 n .
1 4- ,
19 ,
and
Ch .
20 ,
3 5 - 38 ,
90 ,
93 ,
3 ;
94 ,
v ,
44 ,
7,
109 ,
120 ,
135 ,
142 ,
145n.
88,
106 , 131 ,
1 5 ,
148 ,
167 ,
172 ,
178 ,
182 ,
184-185n .
224 ,
225 ,
195 ,
18 ,
128 ,
153 ,
19,
1 4- ,
8 1 -8 3 ,
95 -98 ,
108 ,
1 7 4- ,
175 , 7 ,
228 n n .
193-
13,
2 5 1.
Mode l s o f general i zed exchange structures W (a ,
120 ,
n ,
k ) ,
2 5 1 -258
89-93 ,
287 -
94 ,
95-
-
,
169 ,
194 ,
195- 196 ,
210 ,
212 ,
279 -281 , 196 ,
217
212 ,
exclusive straight 220 ,
( expanded )
271 ,
243 ,
173,
192 ,
189-191 ,
210,
20.
37 ,
189 ,
2 2 4- ,
198 ,
t h e Gamb i a , G i l ya k ,
2 5 5.
G e n e r a l i z e d ( a s ymme t r i ca l , i nd i rect ) exchange , see Ch 2
285 ,
14 ,
36,
--,
189,
221 Sibling 272- 280 ,
F i eld of a nthropolog i c a l research , 143 F i eld of ( e thno logica l ) study , 1 5 - 1 6 , 62 , 75n . 8 See a l so L e i d e n a p p ro a c h F unc t ion , 72
206 -209 , 228n.
223 ,
288
3 5 - 38 ,
2 2 4- ,
204 ,
217 ,
groups ,
s i ster exchange. Mod e l s o f restricted exchange structures D (a , 2m , (1 ) , v i i i , 2 0 0 223 ,
179 - 18 2 ,
E x t e n d ed
4-4 - 4 5 , 8 1 , 1 4- 2 , 1 6 6 , 1 6 9 , 172 , 176- 182 , 187 , 189212 ,
166-167 ,
148 ,
d irect
k i n s h i p s t ru c t u r e s. D i rect ( restr icted , s y mme t r i c a l ) e x c h a n g e , s e e
Ch .
84 ,
194- 196 ,
E x c h a n g e , e x c h a n g e s t r u ctures : t h r o u gh o u t ;
1 8 5 - 186nn .
177 ,
2 8 4-
E ndomo r p h i sm , 72 Equiva lence class , 71 E u l e l' ( ' s ) f u n c t i o n , v i i , 92 ,
159- 160 ,
S i ster exchang e ,
.
284
8 2 - 8 4-
G l ob a l / l oca l , 1 2 2 -- r u l e s , 247 , 249 , 2 5 1 2 5 8 , 2 8 3 , 294 n . 2 5 - - s t r u c t u r e s , d y n am i c s , 1 0 8 - 1 0 9, 249 ,
123 ,
2 5 2 - 2 58 ,
G r e e c e , 1 30 Greek kinshi p ,
223 , 279 ,
225, 28 2 ,
239 , 287
1 2 9 - 1 30 ,
1 38 ,
141
G r o u p , 29 , 72 - 73 - - e x t e n s i o n s , 6 5 - 66 , 7 4 a u t o m o r p h i sm - - , 7 3 cyclic - - - , 73 d i h e d r a l - - - , 2 0 1 - 20 2 permutat ion - - , 73 quotient ( or factor ) 46-48 ,
73
s u b g r ou p , 7 3 n ormal ( or i n v a r i a n t ) 1 2 0 - 1 4- 3 subgroup , 73 - - w i t h c o n s e c u t i v e symmetry , -- of C x C , 53-55 4 4 9 5 -98 , 108 , 120 , 1 3 2 - 1 3 5 , See a l s o exchange struc 1 3 9 - 140 ture s ; semigroup theory d i rect acces s i b i l i t y G u i n ee B i s s a u , 2 8 4 defined for - - , 94-95 ( di s ) co n t i nuous s t ructures Ha 1mahera , 141 i n t e n d ed a p p l i c a t i o n s emp i r i c a l c l a im s o f
and
32 1
n o r t h e r n H a lm a h e r a n s o c i e t ie s , 69 S e e a l s o Ga l e l a , To b e l o
Sa h u ,
Ha w a i i a n t y p e , 1 9 8 , 2 3 9 H o m o mo r p h i s m , 7 2 g r o u p - - , 46
e l em e n t a r y - - , 7 , 1 2 , 1 8 , 20 , 3 4 - 3 5 , 38 , 81 -82 , 89 , 106 , 128 , 188 , 189-195 , 2 2 4 - 22 6 , 2 28n . 19 , 234 , 2 3 5 , 2 3 8 , 2 39 , 243 , 2 9 0 , 291 - - differences with the Leiden approach , 34-38 , 60-64 , 77 -78n . 3 6 , 78nn . 39 , 40 m o d e l s of e l e m e n t a r y - ( E KS ) , v i i , i x , 39 , 40 -49 , 106 - 109 , 150 - 1 5 1 , 2 7 4 , 278 , 279 - - with double descent ( M n x P n ) , 49 - 50 , 5 1 - 7 0 regu l a r - - , 39 semi - complex - - , vi , 196 , 197 , 20 1 , 202 , 227n . 5 , 2 3 8 - 2 39 , 240 , 24 2 2 4 3 ,
I n d i a , 1 6 9 , 1 70 , 2 8 0 , 2 8 1 Indones i a , 1 5 , 69 eastern , 2 1 , 266 , 270 mod e l s o f I n d o n e s ia n soc i a l s t r u c tu r e , 70 Indonesian societ ies , 35 , 63 8 ug i s , 1 8 Ema , 1 4 0 Ga l e l a , 6 9 Jamden a , 2 6 6 Kei , 5 1 , 266 Ma k a s s a r e s e , 1 8 268 - 2 70 , 2 7 3 , 274-2 7 5 , Ma r s e l a I s l a n d 1 3 9 141 283 , 290 M i n a n g k a b a u , 2 1 , 130 , 1 3 1 , 1 4 1 S e e a l s o C r o w - Om a h a systems N e g r i S em b i l a n , 2 1 specialization o f an Sahu, 135 , 136 , 138 , 141 elementary - ( sE K s ) , 2 7 2 {abe l a , 6 9 27 3 , 2 8 7 I r i an Jaya , 145 n . 18 K o ra va , 1 7 0 , 1 8 5 n . 1 3 I roquois , 239 K u h n i a n f r amewo rk , p a r a d i g m , Iroquois and Dravidian 2 , 6-7 , 1 1 , 15 , 2 3 3 , 292 -- cross /parallel class i n. 3 f ication of kintypes , 111Leiden , v , x i , 1 1 , 1 2 , 1 5 , 112 , 2 2 7 n . 7 2 3 , 3 4 , 38 , 49 , 7 5 n . 6 , - - cross /para l l e l compa t i 76n . 15 b i l i ty , Ill , 1 1 3 , 1 1 5 , - - approach , argumen t , 117 , 119 , 123 pa rad igm , p o s i t ion , p r o cross/parallel exten g ramme , s c h oo l , t ra d i t i o n , sions , III t r e n d , v i ews , e tc . , 7 , 1 5 I somo r p h i sm , 7 2 2 3 , 60 , 68 , 78nn . 3 7 , 39 , Ivory Coas t , 1 2 1 127 , 137 , 16 5 , 298 correspondences and d i f Japan , 1 87 ferences w i t h t h e Lev i S t r a u s s i a n p a r a d i gm , 3 4 - 38 , K a ch i n , 8 7 60-69 , 7 7 - 78 n . 36 , 78nn . K i n s hip : th roughou t ; 39 , 40 m a p p i n g , 42 , 4 3 , 1 6 4 - - m o r p h i sm , 45-47 Mali , 279 - - n o t a t i o n , 70 K i n s h i p s t r u c t u r e s , systems : Mapping s , 72-72 see a l s o e xcha n g e compo s i t ion of , 72 c o m p l e x - - , 8 1 , 2 3 5 - 2 37 , kinship - - , 42-45 2 38 - 240 , 242 - 24 3 , 266 , 268 , Melanes i a , 1 7 2 282 , 28 3 , 290 , 291 A m b r ym , 66 , 1 7 1 - 173 , 185 - 186n . S e e a l s o c o m p l e x , compl e x i t y 14 ' hybrid ' - - , 82-89 Ambrym/Pentacost sys tems , 1 7 2 Le vi -strauss ' s theory of 8un , v i i i , 2 0 5 , 2 09 - 2 1 2 - -
-
,
,
-
322
2 29 n . 2 0 140 Ia tmul , 84 , 8 6 , 1 4 1 K um a , 1 3 9 , 2 1 2 K w oma , 1 3 2 , 1 3 4 , 135 , 1 3 6 Ha l o , 1 3 1 Ha n g a , v i i i , 1 3 9 , 2 0 5 , 2 1 1 , 2 1 2 , 228 n . 1 3 Ha r i n g , 139 , 212 ( I r i a n J a ya ) , 1 4 0 , 2 4 5 Hoi n . 18 H u n d u g um o r , 2 1 0 Wo g e o , 1 3 9 Ya fa r , 1 3 1 Model : th roughout ; s e e a l so exchange , exchange struc tures ; kinship s tructure s , sys tems ; non - s tatement v i ew of t h e o r i e s ; s ta t i s t i c a l /mechan i c a l ; s t r u c ture ear l ie s t use of the term ' mo del ' i n an thropolog y , 16- 17 , 75n . 11 i n l i ng u i s t i c s , 7 5 n . 1 1 Moiety ( ph ra t r y ) d i v i s io n , s t r u c t u r e , s y s tem , 1 2 - 2 2 , 60 , 67 , 68 , 177 , 179 , 1901 9 3 , 1 9 6 - 1 9 8 , 2 04 B u s h Hek e o , Dari b i ,
- - t e r m i n o l og y , 1 3 4 , 2 3 8 , 263-265 S e e a l s o C r o w , C r o w - Oma h a ; semi -complex structures P e rm u t a t i o n , 7 2 280 , 281 Recu rsion , recu r sively , v , 7, 8 1 , 88 , 90 , 9 3 , 12 1 , 1 4 2 , 200 , 202 , 283 R e d u c t i o n , r e d u c e d s t r u c ture , 59 , 100 - 1 0 1 -- of H x P ' 55-63 4 4 S e e a 1 s o q u o t i e n t o r factor s tructure R e f l e x ive , reflex iv ity , 1 , 2 , 9 n . 5 , 188 R e l a t i o n s , 7 1 , 2 5 9 - 26 1 b inary - - , 71 equiva lence - - , 7 1 inverse --, 71 R e p u b l i c o f G u i n ee , 2 8 4 Rep u b l ic o f Pa nama , 198 R o y a l P o l d a v i a n A c a d emy , 7 6 n . 19 See a l s o N . B ou r b a k i
R a jp u t s ,
Sa n ya s i , 1 7 0 , 1 8 5 n . 1 3 S e m i g r o u p t h e o r y , 2 5 8 , 259 , N a da r , 2 8 1 , 2 8 2 260 - 266 , 2 7 1 - 2 7 4 , 294n . 20 New Guinea , 210 , 2 1 1 , 225 f r e e i n v e r s e sem i g ro u p for Papua - - , 132 , 139 , 170 , k i n s h i p ( F I SK ) , 2 6 3 - 2 6 5 228n . 13 i n v e r s e s e m i g rou p SSb ' New Hebrides , 1 3 1 271 -273 Non ( re ) d u p l i c a t i o n o f al lian specialization of an ele ces , bonds , marri age pat mentary k i nship s tructure terns , relationsh i p s , 87 , ( SEKS ) , 272-273 2 3 9 , 268 , 2 6 9 , 2 7 0 , 2 7 4 S e e a l so g r o u p S e e a l s o C r o w - Om a h a s y s Senegal , 284 t e m s ; s e m i - c o m p l e x kinship Sep i k , 1 3 1 , 2 10 , 2 1 1 sys tems Set s , 7 1 North Euboea , 129 71 Cartes ian p roduct of par t it ion on a set , 71 Oblique exchanges , marriages , r e f i nement of a parti t i o n , 59 structures , union s , see quotient ( or facto r ) set , 71 Ch . 3 ; 147 , 1 66 - 1 70 , 1 7 3 , Set theory , theoretic , 25 , 28 286 , 289 -- predicate , 2 9 , 39 , 273 , 290 Om a h a , 2 3 8 , 2 7 9 , 2 8 0 -- structures , 7 , 27 , 28 , 2 9 , h y p o t h e s i s , 2 7 4 , 2 7 8 - ,280 33 , 106 , 121 , 123 , 128 , 27 3 , 274 -- prohibitions , 275 , 279 Simp l e , s i mp l i c i t y , i i i , vi , -- rules , 263-265 , 279 , x , 2 0 , 2 3 , 24 , 3 9 , 6 3 , 8 1 , 293nn . 8 , 16 149 , 1 5 3 , 159-162 , 166 , s t ructure , 16 , 17 1 6 9 , 1 7 3 , 1 7 9 , 1 8 1 , 185n . - - s y s t e m , 1 2 5 , 2 6 4 , 2 74-275 1 1 , 1 8 8 , 1 9 0 , 1 9 2 - 1 9 5 , 197 ,
323
1 9 8 , 2 1 2 , 2 3 1 , 232-233 , 2 34 - 2 3 8 , 241 , 2 4 2 - 2 4 5 , 249 , 259, 283 S e e a l so c om p l e x , comp l e x i t y ; e l e m e n t a r y a n d s em i comp lex kinship sys tems S ou t h - e a s t M o l u cc a s , 1 3 9 S ou t h e r n A f r i c a n s y s tems , 1 28 S e e a l s o Swaz i , Tsonga Southern Ban t u , 8 8 , 1 2 3 S e e a l s o S wa z i , Ts o n ga
S t a t i s t i c a l /mec h a n i c a l , 8 1 , 1 4 3 , 1 5 1 , 1 5 2 , 1 60 - - model s , 149 , 2 2 1 , 2 3 5 2 3 9 , 2 8 3 , 292 n . 5 S e e a l s o C r o w - O m a h a s ystems ; s em i - comp l e x k i n s h i p s t r u c tures S t r u c tu r e : t h r o ugh o u t ; see a l so excha nge ; model ; n o n s t a t e m e n t v i e w o f theories B o u r ba k i n o t i on o f - - , 2 4 - 2 5 , 2 9 - 30 ' l a t e n t ' - - , 7 , 14 , 20 , 2 1 , 2 3 , 49 , 60 , 6 3 , 2 2 8 n . 14 See a l s o r e d u c e d s t r u c t u re metrical - - , 159-166 See a l s o h e l i ca l e x c h a n g e s t ructures quotient 46-47 x P ' 53q u o t i e n t - - of H 4 4 63 s t r u c t u r a l de s c r i p t i o n , t r e a t me n t , 24-26 S u ma t r a , 1 4 1 -
Tanimbar ,
,
266
Te l a ga - K a p u c a s t e ,
170 Theore t i ca l , 2 , 14 , 20 , 30 , 5 1 , 106 , 1 1 0 , 1 2 8 , 194 , 2 4 2 , 2 74 - - /non- theoretical terms , 4 , 26 , 2 7 , 30 , 3 1 T - - - , T - theore t i c i t y , 30-
32
T h e o r y , t h eo r i e s , 2 , 5 , 6 , 9 n . 5 , 12 , 26-33 , 63 , 89 , 1 10 , 120 , 128 , 145 n . 21 , 178 , 188 , 242 , 2 5 5 , 259 , 2 8 2 , 2 8 8 , 2 9 0 , 2 9 3 - 2 9 4 n . 19 anthropological - - , xi , 1 , 2 , 2 7 -28 , 3 1 , 3 2 , 148 -- of categories and func tors , 106 , 2 5 5
8,
o f c e l l u l a r a u t oma t a ,
244 - 249 , 2 6 5 , 2 8 2
change , x i , chaos - - , 234 - - compar ison , kinship - - , xi 23 , 28 , 64 , 82 234, 237, 255 , 291
5 -7
, ,
5 , 38
3, 6, 7, 122 , 231 , 273, 282 ,
See a l so Levi-Strauss ' s
t h e o r y of e l eme n t a r y k i n sip s t ructure s ; excha nge m a t h e m a t i c a l - - o f c om mu n i c a t i o n , 2 3 6 - 2 3 7
n o n - s t a t eme n t o r s t r u c t u ra l i s t v i e w o f - - , v , 6 , 7 , 9 n . 4 , 2 3 , 2 7 , 28 - 3 3 , 36 , 76n . 25 , 121 -123 , 253 ,
290 actual or proper models H , 30 - 3 3 , 70 , 1 2 1 , 1 3 0 , 132 , 1 3 5 , 139-142 , 178 , 181 , 182 , 212 , 222 , 255 , 273 , 287 , 290 c o n s t r a i n t s C , 3 2 - 3 3 , 121 core K o f a theory ele men t , 3 3 , 1 2 1 emp i r i c a l c l a im o f a t h e o r y e l eme n t , v , 3 3 , 120 - 122 , 1 2 8 i ntended applicat ions I , v , 2 8 , 32 - 3 3 , 4 2 , 1 2 1 123 , 128 , 222 , 274 p a r t i a l poten t i a l mode l s H v i i i , i x , 3 0 - 3 3 , 121 , p p'" U 2 , 133 , 135 , 1 3 7 , 180 , 181 , 218 , 2 1 9 , 253 , 254 , 287 , 289 , 290 p a r t i a l structures , 7 , 1 3 8 , 142 , 1 8 1 , 276 , 277 , 280, 287 p a r t i a l m o d e l s Mp ' 2 9 - 3 3 , 121
t h e o r y - e l e m e n t T , 3 3 , 121 sema n ti c conce p t ion o f - - , 5, 6, 9n. 4 - - a s c l a s s e s o f m o d e l s and s t r u c tures , 6 qua l i tita tive - - , 3 1 , 32 Rece i v e d V i e w on Sc i e n t i f i c - - , 4 , 5 , 26-28 , 30 , 76n . 22 - - a s l i n g u i s t i c e n t i t ies , 4-5 syn t a c t i c concep t i o n o f
324
5, 9 n . 4 See a l s o mo d e l ;
T imo r ,
140
Tonga . 1 3 8 T opo logy , 3 T rans versal , Uni vers ity
of
Upper
s t ru c tu r e
128 ,
217 ,
239
We s t
Af r i ca ,
195 ,
27 1 ,
284
Wes t
K imber ley ,
Z a i re ,
73 Nancago ,
Volta ,
76 n .
19
173
141 ,
1 42
325
D U T C H S U M MA R Y
O i t b o e k i s b e d o e l d a l s een p l e i d o o i v o o r h e t f o rma l i s e r e n van t h e o r i een b i n n e n de culturele a n t ropolog i e ,
in he t
b i j z o n d e r v a n t h e o r i e e n d ie b e t r e k k i n g h e b b e n o p v e rw a n t schap e n sociale o rg a n i sa t ie . Theo r i e - ve r a nd e r i n g b i nnen de antropologie wordt vaak gekenschetst als een n ie t cumu l a t i e f v e r sc h i j n se l : p a r a d igma ' s v e rd r i ng e n e l k a a r , zander
dat
me
n kan s p reken van een
wezen
l i jke
cumu l a t i e
aan
n i e u w e l n z i c h t e n . D e o n t w i k k e l i n g v a n e e n a d e q u a a t raamwerk voor
he
t
weergeven
en
verkla ren van
ve rwantschapsversch i j n
se le n v e r e i s t a l le r e e r s t e e n sys t ema t i s c h e a n a l y s e v a n theo r i e - s tructuren ; e e n s tr u c t u r e le recons t r uc t i e v a n centrale delen van
nood zake l i j k ,
is
v e rw a n t s c h a p s t h e o r i e
w i l m e n k o m e n t o t t h e o r i e - v e r g e l i j k i n g e n t o t e e n k r i t i sche e v a l u a t i e v a n m o ge l i j ke t h eo r i e - v e r a n d e r i ng . cen t r a le thesen b i j d i t
O i t z i j n de
onderzoek .
H e t methodologi sche perspec t i e f op de recons t r u c t i e van v e rwan tschapstheorieen is gebaseerd op d e ti sche '
v o o r o n d e r s t e l l i n gen v a n Joseph S n eed , Wo l f g a ng
S t e g m fi l l e r , W o l f g a n g B a l z e r e n a n d e r e n : g e s p e c t f i c e e r rl a l s turen ,
' structura l i s
klassen
en n i e t ( zo a l s
het
t h eo r i e � n w o r d e n
v a n mode l l en en h u n su b s L ru c
l o g i s c h - p o s i t i v i sme v e r o n d e r
s t e l t ) , a l s d e geln terpre teerde u i t s praken e n formu les van een forme l e calcu l u s .
De
' s em a n t i e k '
van een theo r i e
w o r d t g e i n t r o d u c e e r d d o o r d e centra l e k l as s e v a n mod e l l e n rechtstreeks te de f i n ie ren theore tisch
predicaa t ,
doo r
middel
van
d e n t i e rege l s . De mode l le n van een bepaa lde ma t hema t i s c h e
een
st ruc tu re n ,
en
de
relatie
die
s t e l d i s e e n r e l a t i e v a n homomo r f i e : een
zijn
theo rie tussen
mo d e l l en e n d e o n d e r z o c h t e v e r s c h i j n s e l e n wo r d t bewering '
v e r z a melings
en n i e t m e t b e h u l p v a n c o r r e s p o n deze
veronder
' em p i r i s c h e
is een t o e t s b a r e u i t spraak over struc ture l e
o v e r e e n koms ten t u s s e n de s y s temen v a n r e l a t i e s d i e b i n n e n e e n d o m e i n v a n v e r s c h i j n ie l e n w o r d e n o n d e r s c h e i d e n , b e p a a l d e s u b s t ru c t u re n ,
d . w . z . , s u b s t r u c tu r e n v a n
de
en
326
m o d e l l e n d i e v o o r e e n b e p a a l d e t h e o r i e z i j n g e d e f i n i eerd . D e z e a l g e m e n e u i t g a n g s p u n t e n w o r d e n i n d i t b o e k toegepast o p e e n a a n t a l c e n t r a l e t h e o r i ee n d i e b i n n e n d e a n t ropologie z i j n o n t w i k k e l d v o o r de b e s t u d e r i n g v a n v e r w a n t s c h a p . I n Hoo fdstuk
1
i n troduceer ik een aantal van de vroege
v e r wa n t s c h a p smod e l l e n d i e d o o r d e
' Le idse r i ch t i ng '
ontwikkeld .
' structural i st i sche '
Daarna bespreek ik de
zijn
benade r i n g van theorieen en pas deze toe op de k lassieke m o d e l l e n v a n d u b b e l - u n i l i n e a l e a f s t a mm i n g e n c i r c u l e r e n d c o n n u b ium .
Door deze mode l l e n te forma l i seren
theoretische s t ructuren
is
kla sse van
' g e re d u c e e r d e '
' l a t e n te '
of
ais
g r o e pe n
h e t m o g e l i j k o m de v o l l e d i g e s tructuren die
u i t d e aan names v a n de v roege Leidse antropologen volgen , af
te
leiden ,
e n om d e z e s t r u c t u r e n
te v e r g e l i j ken met
v e r wa n ts c h a p s s t ru c t u r e n d i e b e s c h r e v e n z i j n d o o r C l a u d e Lev i-Strauss en anderen . De belangr i j kste methodo l o g i sche aa nnames e n w i skundige c o n c e p t e n werden in H o o f d s tuk 1 ge i n troducee r d ; stuk 2 pas
ik deze toe op de theorie van
verwantschapsstructuren '
in Hoofd
' e leme n t a i r e
die door Levi -Strauss
is ontw i k
k e l d . E e n meer v o l l e d i g e f am i l i e v a n v e r wa n t s c h a p s s t r u c t u r e n m e t a s y mm e t r i s c h e
ruil wordt a fge l e i d door ru i l r e
lat ies recu r s i e f t e d e f i n ieren ,
d.w.z. ,
o peenvolgende
c y c l i worden g e f o r m u l e e r d a l s au tomo r f i smen van een s p e c i f i e k s y s teem v a n a s ymme t r i sc h e r e l a t i e s .
Vervolgens toon
ik aan dat substructuren van deze u itgebreide klasse van mod e l l e n i somo r f z i j n a a n v e r wa n t s c h a p s t ru c t u r e n d i e a f k oms tig z i j n u i t e t n o g r a f i s che b e s c h r i j v i n g e n . Deze procedure wordt ook
t
oegep a s t i n Hoo f d s t u k 4 ,
waar
d e L e v i - S t r a u s s i a a n s e m o d e l l e n v a n s y mm e t r i s c h e s t r u c tu ren w o r d e n g e f o rma l i s e e r d e n v e r d e r g e g e n e r a l i s e e r d . stuk
3
I n Hoo f d
f o rmu l e e r i k e e n u i t b r e i d i n g v o o r d e k l a s s i e k e
mod e l l e n met exc l u s i e f matr i l a t e r a a l cross-cousin huwe I i j k . E e n groepen-t h e o r e t i s c h e s t r u c t u u r m e t
' hel ische '
r u i l c i rcuits
( i n p l a a t s v a n de t r a d i t i o n e l e g e s i o t e n c o n n u b i a l w o r d t g e c om b i n e e r d m e t e e n m e t r i s c h e s t r u c t u u r ;
deze n ieuwe
k l a s s e v a n mod e l l e n b i e d t mog e l i j k h e d e n v o o r d e a n a l y s e
327
v a n v e r w a n t s c h a p s s y s te m e n w a a r v o o r s y s t e m a t l s c h e r e l a t i e v e l e e f t i j d s v e r sch i l l e n t u s s e n ech t g e n o t e n w o r d e n b e s c h r e v e n . O o k h i e r b l i j kt h e t mog e l i j k t e z i j n om i s omo r f e r e l a t i e s v a s t te s t e l l en t u s s e n de model l e n e n voorb e e l d e n a f k o m s t i g u i t e t n o g ra f i s c he besch r i j v i n g e n .
De a n a l y s e
laa t
t e v e n s z i e n d a t d e o o r s p r o n k e l l j k e t h e o r i e v a n L e v i - S trauss
te beperkt is :
de n i e u w e k l a s s e v a n
i s compa t i be l m e t rege l s v o o r d e
' he l i sche '
' ruil '
van
mode l l en
andere nauwe
v r o u w e l i j k e v e r w a n t e n d a n a I l e e n m a a r zusters
( zoals
door
Lev i -S t rauss w o r d t a an genomen ) .
In Hoofdstuk 5 tens lotte ga ik
scheid
dat
mentai re ' en
door
en
nader
in op het
L e v i - S t r a u s s wordt gema a k t tussen
' c omp l e xe
' me c h a n i s c h e '
en
'
' ele
enerzijds ,
ve rwantsch a p s sy s temen
' s ta t i s t i s c h e '
ond e r
mode l l en anderz i j d s .
N a e e n same n v a t t i n g v a n r e c e n t e o n tw i k k e l i n g e n m e t b e trekking tot
' comple x i te i t '
en
' chaos ' - theorie
i n trod u
c e e r i k v o o r b e e l d e n v a n d y n a m i s c h e s y s t em e n u i t d e t h e o r i e v a n c e l l u l a i r e a u t om a t e n . zien
dat
' s impele '
Deze voorbeeiden l a ten
rege l s e n mod el len n i e t noodzakel i j k
b e p e r k t z i j n t o t h e t g e n e r e r en v a n Deze bevindingen ,
gaande hoofds tukken , iaanse oppo s l t l e s ' mechan i sch '
vs.
' s impe l e '
c o n f i g u ra ties .
tezamen met d e r e su l t a te n u i t v o o r a f maken duide l i j k dat d e Levi - S t ra u s s
( ' e l eme n t a l r ' ' statistisch ' )
vs .
' complex '
en
moeten worden h e r z i en .
H e t h oo f d s t u k w o r d t a f g e s l o t e n me t e e n a a n t a l c o n c r e t e voorstellen voor een verdere u i tbreiding van de model len en suggesties voor
de
verwantschapstheo rie .
noodzake l i j ke recons tructie van
328
CURR I CULUM V I T AE
F r a n k l i n Edmund T j o n S i e F a t werd geboren op 1 947
november
23
t e W i l lemstad , C u r a9a o . Na het behalen van het HBS -
B d i p l oma
a a n d e A l g e m e n e M i d d e l b a r e S c h o o l te Parama r i b o ,
Suri name ,
g ing hij in
1 964
Wiskunde s tuderen a a n d e
R i j k sun ive r s i t e i t t e L e i d e n ; d e z e s tud i e w e r d n i e t a f g e maak t .
I n 1970 begon h i j aan de studie Culturele
A n t r o p o l o g i e a a n d e R i j k s u n i ve r s i te i t t e L e i d e n . H e t kand i d a a t sexamen werd i n
1974
a f ge l egd , waar n a i n
1978
h e t d o c t o r a a l e x a� e n i n d e C u l tu r e l e A n t r o p o l o g i e w e r d behaa l d . Van
1973
tot en met
1978
w a s h i j w e r k z a am a l s
s t udent - a s s i s ten t , eerst b i j d e Vakgroep Methoden e n T e c h n i e k e n ( Su b F a k u l t e i t C u l tu r e l e A n t r o p o l o g i e / S o c i o l o g i e der Niet-Westerse Volken ) , theo r i e . Van 1986
was hij
1978
l a ter bij de a fd e l i n g Data
tot en met
1 980 ,
en van
1983
tot en met
( me t onderbrekingen l op ver scheidene korte
aanste l l ingen verbonden aan de R i j ksun i v e r s i t e i t t e L e i den . In
1981
v e r r i c h t te h i j onder zoek o p S t . Maarten ( Neder
landse An t i l l en ) S i nds j u l i
1986
n a a r a s pe c t e n v a n s o c i a l e o r g a n i sa t i e . i s h i j a l s p a r t - t ime u n i v e r s i t a i r docent
v e r b o n d e n a a n h e t I n s t i tu u t v o o r C u l tu r e l A n t r o p o l o g i e van d e R i j k s u n i v e r s i t e i t te L e i de n .