Quantitation and Mass Spectrometric Data of Drugs and Isotopically Labeled Analogs
viii
© 2010 by Taylor and Francis G...
213 downloads
514 Views
10MB Size
Report
This content was uploaded by our users and we assume good faith they have the permission to share this book. If you own the copyright to this book and it is wrongfully on our website, we offer a simple DMCA procedure to remove your content from our site. Start by pressing the button below!
Report copyright / DMCA form
Quantitation and Mass Spectrometric Data of Drugs and Isotopically Labeled Analogs
viii
© 2010 by Taylor and Francis Group, LLC
Quantitation and Mass Spectrometric Data of Drugs and Isotopically Labeled Analogs Ray H. Liu Sheng-Meng Wang Dennis V. Canfield With the assistance of Meng-Yan Wu and Bud-Gen Chen Fooyin University and
Robert J. Lewis and Roxane M. Ritter U.S. FAA Civil Aerospace Medical Institute
Boca Raton London New York
CRC Press is an imprint of the Taylor & Francis Group, an informa business
viii
© 2010 by Taylor and Francis Group, LLC
CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742 © 2010 by Taylor and Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business No claim to original U.S. Government works Printed in the United States of America on acid-free paper 10 9 8 7 6 5 4 3 2 1 International Standard Book Number: 978-1-4200-9497-8 (Hardback) This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint. Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers. For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged. Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe. Visit the Taylor & Francis Web site at http://www.taylorandfrancis.com and the CRC Press Web site at http://www.crcpress.com
viii
© 2010 by Taylor and Francis Group, LLC
Contents Foreword --------------------------------------------------------------------------------------------------- vii Preface ------------------------------------------------------------------------------------------------------- ix About the Authors ------------------------------------------------------------------------------------------ xi PART ONE ISOTOPICALLY LABELED ANALOG AS INTERNAL STANDARD FOR DRUG QUANTITATION — METHODOLOGY Chapter 1. Quantitation of Drug in Biological Specimen — Isotopically Labeled Analog of the Analyte as Internal Standard ............................................................................ 3 INTRODUCTION ................................................................................................................ Significance of Accurate Quantitation ................................................................................. Preferred Calibration Method .............................................................................................. I. INTERNAL STANDARD AND QUANTITATION IONS ............................................... A. Inadequate Isotopic Purity — An Extrinsic Factor ........................................................ B. Cross-Contribution Derived from Ion Fragmentation Mechanism — An Intrinsic Factor .......................................................................................................... II. FITTING CALIBRATION DATA ...................................................................................... III. 2H- VERSUS 13C-ANALOGS AS INTERNAL STANDARDS ........................................ CONCLUDING REMARKS ............................................................................................... REFERENCES ...................................................................................................................
3 3 4 4 4 5 6 7 9 10
Chapter 2. Isotopically Labeled Analog of the Analyte as Internal Standard for Drug Quantitation — Chemical Derivatization and Data Collection and Evaluation ............... 11 INTRODUCTION .............................................................................................................. I. CHEMICAL DERIVATIZATION .................................................................................... A. Production of Most Favorable Ion-Pairs for Drug Quantitation .................................. B. Exemplar Studies .......................................................................................................... C. Isotopically Labeled Analogs and Chemical Derivatization Groups ........................... II. ION INTENSITY CROSS-CONTRIBUTION DATA ..................................................... A. Full-Scan Mass Spectra ................................................................................................ B. Selected Ion Monitoring and Calculation of Ion Cross-Contribution Data ................. 1. Direct Measurement ................................................................................................ 2. Normalized Direct Measurement ............................................................................ 3. Internal Standard Method ........................................................................................ 4. Standard Addition Method ...................................................................................... C. Assessing the Accuracy of Empirically Determined Cross-Contribution Data ........... 1. Empirically Observed Concentration ...................................................................... 2. Theoretically Calculated Concentration .................................................................. 3. Comparing Empirically Observed and Theoretically Calculated Concentrations — Graphic Presentation .................................................................................. 4. Summary ..................................................................................................................
v
© 2010 by Taylor and Francis Group, LLC
11 12 12 12 13 13 17 18 18 19 20 20 21 22 24 25 26
III. COMPILATION OF FULL-SCAN MASS SPECTRA AND ION INTENSITY CROSS-CONTRIBUTION TABLES ................................................................................ A. Derivatization Procedures, Instrumentation, and Analytical Parameters .................... B. Collection of Mass Spectrometric Data ....................................................................... C. Ion Intensity Cross-Contribution Data ......................................................................... CONCLUDING REMARKS ............................................................................................. REFERENCES ...................................................................................................................
26 26 26 27 28 28
PART TWO MASS SPECTRA OF COMMONLY ABUSED DRUGS AND THEIR ISOTOPICALLY LABELED ANALOGS IN VARIOUS DERIVATIZATION FORMS Table of Contents for Appendix One ..................................................................................... 33 Figure I. Stimulants .................................................................................................................... Figure II. Opioids ..................................................................................................................... Figure III. Hallucinogens ......................................................................................................... Figure IV. Depressants/Hypnotics ........................................................................................... Figure V. Antianxiety Agents .................................................................................................. Figure VI. Antidepressants ....................................................................................................... Figure VII. Others ....................................................................................................................
35 129 217 251 273 327 349
PART THREE CROSS-CONTRIBUTIONS OF ION INTENSITY BETWEEN ANALYTES AND THEIR ISOTOPICALLY LABELED ANALOGS IN VARIOUS DERIVATIZATION FORMS Table of Contents for Appendix Two ................................................................................... 375 Table I. Stimulants ................................................................................................................... Table II. Opioids ...................................................................................................................... Table III. Hallucinogens ........................................................................................................... Table IV. Depressants/Hypnotics ............................................................................................. Table V. Antianxiety Agents .................................................................................................... Table VI. Antidepressants ........................................................................................................ Table VII. Others ......................................................................................................................
vi
© 2010 by Taylor and Francis Group, LLC
377 409 437 449 459 477 485
Foreword The whole is more than the sum of its parts. — Aristotle The sum of all sums is eternity. — Lucretius To say that mass spectrometric analysis of drugs in biological media is similar to archeology may be a bit of a stretch to some, but consider the parallels. The archeologist looks at fragments and sees patterns suggesting whole structures. A pottery shard becomes the intact vessel that in turn reveals cultural aspects of past generations. Likewise, when the forensic toxicologist is presented with a biological specimen, they perform an archeological “dig” for evidence of drug residues. Instead of a shovel or trowel, mass spectrometry becomes the tool for uncovering remains. Pattern analysis of the evidence, a technique used in virtually all fields of scientific endeavor, becomes essential in drug interpretation. Comparisons to standards of known purity are essential. Bodily processes frequently alter pharmaceutical products and illicit drugs to metabolites more suitable for elimination. The “remains” of biological analysis are the analytical report that identifies and provides quantitative information on what was present in the specimen. The first and foremost goal of the analyst is to provide accurate and precise drug identifications and measurements. The power of chromatographic separation coupled with mass spectrometry allows this modern miracle to occur on drug residues that cannot be seen with the naked eye. The analytical report, thus, provides evidence of drug exposure based on what was present and identifiable and how much was present in the specimen. In many cases, the outcome of drug analysis is not a trivial issue and may be used in many circumstances such as guiding therapeutic outcome, accident, death and criminal investigations, and as a requirement in securing or continuing employment. Consequently, the analyst has to get it right! The results must be inconvertible. That is what this book is all about. One of the authors (RHL) and I have discussed the need for documentation of mass spectrometric data on drugs for many years. This work by the authors represents years of work compiling mass spectra of the many forms and derivatives of drugs and their metabolites and their isotopically labeled counterparts. This compilation should well serve those involved in drug analyses of biological specimens and those involved in interpretation of results. Edward J. Cone, Ph.D.
vii
© 2010 by Taylor and Francis Group, LLC
Preface The analysis of drugs and their metabolites in biological media are now expected to routinely achieve ±20% accuracy in the ng/mL concentration level. This is possible mainly because of the incorporation of the internal standard method, using isotopically labeled analogs of the analytes as the internal standards into the analytical protocols. The availability of various isotopically labeled analogs for a wide variety of drug analytes from commercial sources is also a helpful contributing factor. Using isotopically labeled analogs of the analytes as the internal standards, the most important issue affecting the accuracy of the quantitation results and the achievable linear calibration range is the cross-contribution to the intensities of ions designating the analytes and their isotopically labeled analogs serving as the internal standards. Thus, the availability and the selection of quality ion-pairs designating the analytes and their isotopically labeled analogs (internal standards) are crucial matters. Quality ion-pairs come from careful selections of the isotopically labeled analogs to serve as the internal standards and the derivatization groups for the analyte/internal standard pairs that require chemical derivatization and amenable to chromatography-mass spectrometry methods of analysis. With these understandings in mind, this book is prepared in three parts. Part One of this book includes two descriptive chapters illustrating crucial issues related to quantitative analysis using isotopically labeled analogs as the internal standards in the analytical protocols. Part Two of this book is a systematic compilation of full-scan mass spectra of drugs and their isotopically labeled analogs in various derivatization forms. Part Three of this book is a systematical compilation of crosscontribution data for ion-pairs, derived from various combinations of isotopically labeled analogs and chemical derivation groups that are potentially useful for designating the analytes and their internal standards. One hundred and three drugs along with 134 isotopically labeled analogs included in this study are grouped into 7 categories and accordingly presented in Parts Two and Three. Information included in these three parts should be of routine reference value to individuals and laboratories engaged in the analysis of drugs in biological media. The preparation of this book was conceptualized during the summer of 1990 when one of the authors (RHL) was on an Intergovernmental Personnel Assignment serving as a visiting scientist at the U.S. Addiction Research Center’s Laboratory of Chemistry and Drug Metabolism (Baltimore, Maryland), where Dr. Edward J. Cone then served as the Chief of the Laboratory. A major portion of the laboratory data was collected in 2004 under a contract (DTFAAC-04-C-00012) in the laboratory of Aeromedical Research Division, Civil Aerospace Medical Institute, U.S. Federal Aviation Administration (Oklahoma City, Oklahoma). Additional data collection, data preparation, and writing were completed at Fooyin University (Kaohsiung Hsien, Taiwan) with the support of a 3year (2004–2007) grant from the Taiwanese National Science Council (NSC 93-2745-M-242-003URD, NSC 94-2745-M-242-003-URD, NSC 95-2745-M-242-002-URD). In addition to the financial supports mentioned above, the following colleagues have also made invaluable contributions to the completion of this book project: Chief Toxicologist Dr. Dong-Liang Lin of the Institute of Forensic Medicine (Taipei, Taiwan), Professor Dr. Wei-Tun Chang of Central Police University (Taoyuan Hsien, Taiwan), Principal Scientist Dr. Shiv Kumar of ISOTECTM
ix
© 2010 by Taylor and Francis Group, LLC
(Miamisburg, Ohio). We are also indebted to the skillful assistance provided by the following undergraduate students from Fooyin University: Meng-Jie Sie (2009), Yu-Shin Lan (2009), ChiungDan Chang (2007), Yi-Chun Chen (2007), and Chia-Ting Wang (2006). Ray H. Liu, Ph.D. Sheng-Meng Wang, Ph.D. Dennis V. Canfield, Ph.D .
x
© 2010 by Taylor and Francis Group, LLC
About the Authors Ray H. Liu received a law degree from Central Police University (then Central Police College, Taipei, Taiwan) and a Ph.D. degree in chemistry from Southern Illinois University (Carbondale, IL) in 1976. He is currently a professor in the Department of Medical Technology, Fooyin University (Kaohsiung Hsien, Taiwan), and professor emeritus in the Department of Justice Sciences, University of Alabama at Birmingham. Before pursuing his doctoral training in chemistry, Dr. Liu studied forensic science under the guidance of Professor Robert F. Borkenstein at Indiana University (Bloomington) and received internship training in Dr. Doug Lucas’s laboratory (Centre of Forensic Sciences in Toronto, Canada). Dr. Liu has worked as an assistant professor at the University of Illinois at Chicago, as a chemist at the U.S. Environmental Protection Agency’s Central Regional Laboratory (Chicago, IL), and as a center mass spectrometrist at the U.S. Department of Agriculture’s Eastern Regional Research Center (Philadelphia, PA) and Southern Regional Research Center (New Orleans, LA). He was a faculty member at the University of Alabama at Birmingham for 20 years and retired in 2004 after serving for more than 10 years as the director of the University’s Graduate Program in Forensic Science. Dr. Liu’s works have been mainly in the analytical aspects of drugs of abuse (criminalistics and toxicology), with a significant number of publications in the following subject matters: enantiomeric analysis, quantitation, correlation of immunoassay and GC-MS test results, specimen source differentiation, and development of analytical methodologies. He has authored (or co-authored) several books and book chapters; more than 100 articles in refereed journals; and approximately 150 presentations in scientific meetings. He is qualified by the New York State Department of Health to serve as a laboratory director in forensic toxicology and he has served as a technical director in a U.S. drug-testing laboratory that held major contracts with military, federal, local, and private institutions. Dr. Liu has been an active member of the following professional organizations for more than (or close to) 30 years: the American Chemical Society, Sigma Xi—The Scientific Research Society, the American Academy of Forensic Sciences (fellow), and the American Society for Mass Spectrometry. He is also a member of the Society of Forensic Toxicologists and the American Society of Crime Laboratory Directors (academic affiliate). Dr. Liu consults with several governmental and nongovernmental agencies, including serving as a laboratory inspector for the U.S. and the Taiwanese workplace drug-testing laboratory certification programs. He is the editor-in-chief of Forensic Science Review (www.forensicsciencereview.com) and serves on the editorial boards of the following journals: Journal of Forensic Sciences (1998–2008), Journal of Analytical Toxicology, Journal of Food and Drug Analysis (Taipei), Forensic Toxicology (Tokyo), Forensic Science Journal (Taoyuan, Taiwan), and Fooyin Journal of Health Sciences (Kaohsiung, Taiwan).
Sheng-Meng Wang received a B.S. degree in forensic science from Central Police University (Taoyuan, Taiwan) in 1988 and a Ph.D. degree in chemistry from National Tsing Hua University (Hsingchu, Taiwan) in 1997. Dr. Wang is currently professor of forensic science and director of scientific laboratories, Central Police University. Dr. Wang has been a visiting associate professor at the Graduate Program in Forensic Science, University of Alabama at Birmingham, and conducted research at the U.S. Federal Aviation Administration’s Civil Aerospace Medical Institute (Oklahoma City, OK). Dr. Wang has been working in various areas of forensic toxicology and his current research activities include: evaluation of various chemical derivatization approaches in the sample preparation process, application of xi
© 2010 by Taylor and Francis Group, LLC
solid-phase microextraction to the analysis of drugs in biological fluids, and the characterizations of drug depositions in various biological specimens. Since 1988, Dr. Wang has been serving as a laboratory evaluator for the Drug Testing Laboratory Accreditation Program under the auspices of the (Taiwanese) National Bureau of Controlled Drugs. He has also been serving as the executive secretary for the Taiwan Academy of Forensic Science since 2006.
Dennis V. Canfield received a B.S. degree in biology from Lynchburg College (Lynchburg, VA) in 1971. He completed an M.S. degree in forensic science at John Jay College of Criminal Justice, City University of New York (New York, NY), in 1976. He earned a Ph.D. in forensic chemistry in 1988 at Northeastern University (Boston, MA). For the past 19 years, Dr. Canfield has been the manager of the Bioaeronautical Sciences Research Laboratory at the U.S. Federal Aviation Administration’s Civil Aerospace Medical Institute (CAMI) in Oklahoma City, OK, conducting research into forensic toxicology, biochemistry, radiobiology, functional genomics, and bioinformatics. Before joining CAMI, Dr. Canfield was a senior forensic chemist for the New Jersey State Police Crime Laboratory (Little Falls, NJ) for 5 years and worked as the director of forensic science at the University of Southern Mississippi (Hattiesburg, MS) for 10 years in a tenured associate professor position. Dr. Canfield has worked primarily in the areas of drug identification and toxicology, starting in 1971 at the New Jersey State Police Crime Laboratory, and has continued to the present. He has published numerous peer-reviewed articles on drug identification and toxicology and testified on numerous occasions in federal, state, and local courts as an expert in forensic science. Dr. Canfield has participated as an editor and author in Selected Powder Diffraction Data for Forensic Materials, and Carbon Monoxide and Human Lethality: Fire and Non-Fire Studies. Dr. Canfield is a fellow in the American Academy of Forensic Sciences, a member of the Society of Forensic Toxicologists, Sigma XI Research Society, and the Executive Board of the National Safety Council’s Committee on Alcohol and Other Drugs.
xii
© 2010 by Taylor and Francis Group, LLC
PART ONE ISOTOPICALLY LABELED ANALOG AS INTERNAL STANDARD FOR DRUG QUANTITATION — METHODOLOGY
© 2010 by Taylor and Francis Group, LLC
3
Chapter 1 Quantitation of Drug in Biological Specimen — Isotopically Labeled Analog of the Analyte as Internal Standard — INTRODUCTION ....................................................................................................................... 3 Significance of Accurate Quantitation ........................................................................................ 3 Preferred Calibration Method ..................................................................................................... 4 I. INTERNAL STANDARD AND QUANTITATION IONS ...................................................... 4 A. Inadequate Isotopic Purity — An Extrinsic Factor .............................................................. 4 B. Cross-Contribution Derived from Ion Fragmentation Mechanism — An Intrinsic Factor ................................................................................................................ 5 II. FITTING CALIBRATION DATA ............................................................................................. 6 III. 2H- VERSUS 13C-ANALOGS AS INTERNAL STANDARDS ............................................... 7 CONCLUDING REMARKS ...................................................................................................... 9 REFERENCES .......................................................................................................................... 10
INTRODUCTION The detection of drugs and their metabolites (collectively referred to as drugs hereafter) in biological tissues and fluids (collectively referred to as biological media hereafter) has always been an important component in clinical diagnostic analysis, forensic testing, pharmacological research, and drug discovery study. With advances in analytical instrumentation and a greater understanding of metabolism, we can now analyze drugs at a much lower concentration that was previously undetectable. Recent emphasis on monitoring illegal drug use in the workplace calls for massive testing of urine specimens, which has inspired the development and significant advances in specimen pretreatment technologies. Newer instrumentation, such as GC-MS/MS or LCMS/MS, capable of providing greater specificity and signal-to-noise ratio, are advantageous for identifying unknown metabolites at low concentrations. On the other hand, robust GC-MS methods are routinely used under therapeutic drug monitoring, emergency room drug screening, and workplace drug testing settings, in which the drugs of interest have previously been well characterized and often present at higher levels. Analytical instrumentation and specimen pretreatment technologies are “hardware” aspects of the analytical sciences; the development and implementation of comple-
mentary “software” components help reach the full potential made possible by hardware advances. For example, the development of the “internal standard” method [1,2], especially the adaptation of isotopically labeled analogs (ILAs) as the internal standards (ISs) [3,4], has greatly improved the accuracy in the quantitation of drugs in biological media. Developments related to the use of ILAs as the ISs for accurate quantitation are based on GCMS technology and readily adapted into GC-MS/MS, LC-MS, and LC-MS/MS applications. While many GCMS/MS, LC-MS, and LC-MS/MS studies utilize ILAs as ISs, they do not generate better quantitative results than GC-MS and we know none that was devoted to better understanding the methodology itself. Significance of Accurate Quantitation Recent government regulations in workplace drug testing activities include monitoring quantitative data [5]; thus, making quantitation an important aspect of quality control practices in the analysis of drugs in biological media. Furthermore, specific “cutoff” value has been adapted as one of the essential criteria for defining whether a specific test specimen is “positive” or “negative” for a targeted drug. Accurate quantitation has now become an essential part of the routine testing protocol; it has, in addition to being a scientific pursuit, evolved into a legal issue.
Chapter 1 — Isotopically Labeled Analog as Internal Standard © 2010 by Taylor and Francis Group, LLC
4
In many non-routine analytical settings, emphasis may be placed on the detection of a drug at very low concentrations and interpretation of quantitative data with small inter-specimen drug concentration differences. Furthermore, sample preparation approaches often result in a final aliquot with hundred- or thousand-folds concentration in drugs’ content; raw analytical result derived from the measurement step are then multiplied by a factor (of two or three orders of magnitude), thereby grossly magnifying any inaccuracies embedded in the raw data. Thus, proper interpretation and utilization of analytical findings rely heavily on the accuracy of the raw analytical data. This is especially critical in circumstances where drugs are present at a very low concentration level and interpretations are based on small inter-specimen differences, e.g., in hair-related studies where the objectives are on: a. Differentiating drugs derived from external contamination from incorporation through active ingestion [6]; b. Determining racial bias due to the drug incorporation process or drug recovery in the sample pretreatment step [7]; or c. Assessing variation in susceptibility to environmental contaminations due to differences in race origin [8] or hair treatments [9].
standards and test specimens are spiked with the same amount of the IS. Quantitation is achieved by comparing a selected drug-to-IS ion-pair intensity ratio observed in the test specimen with the same ratio observed in the calibration standard(s). With practically identical chemical property and mass spectrometric fragmentation characteristics, an ILA is a preferred IS because it offers the following advantages: a. Errors derived from (i) incomplete recovery of the drug in the sample preparation process or (ii) varying gas chromatographic and mass spectrometric conditions are compensated for; and b. The presence of interfering materials (or mechanisms) affecting the detection (or quantitation) of the drug will result in the absence of the IS in the final chromatogram [10] or altered response and ion intensity ratios [11]; thus, alerting the analyst to conduct further investigation.
I. INTERNAL STANDARD AND QUANTITATION IONS Under low resolution measurement conditions, the intensities of ions designating the drug and the IS are representative of these compounds’ concentrations only if the following conditions are met:
Preferred Calibration Method Accurate quantitation requires a proper calibration (standardization) procedure to fully account for artifacts derived from variations in specimen matrix, specimen preparation, and instrumental conditions. Three most commonly used calibration techniques are the analytical or working curve, standard additions, and internal standard methods [1,2]. Mass spectrometric methods have proven to be one of the most sensitive and specific methods for drug assay. In particular, selected ion monitoring (SIM) approach has been used for several decades to achieve better accuracy and precision in ion intensity measurements. This approach is still an integral part of the quantitation protocol involving various forms of mass spectrometric methods in where an internal standard method is used. A typical protocol involves monitoring several selected corresponding ions (referred to as "ion-pairs" hereafter) designating the targeted drug and the ILA adapted as the IS. One or several calibration standards, containing known amounts of the drug, are processed in parallel with test specimens throughout the entire analytical protocol. All calibration
a. The ILA is isotopically pure (an extrinsic factor); and b. An adequate number of the labeling isotopes are positioned at appropriate locations in the molecular framework, so that, after the fragmentation process, ions meeting the following requirements are present (an intrinsic factor): (i) with high-mass and significant intensities; (ii) retaining at least three labeling isotopes; and (iii) without (or with insignificant) cross-contribution or CC (see Section II in Chapter 2 for full description on this phenomenon) between the ions designating the drug and the IS.
A. Inadequate Isotopic Purity — An Extrinsic Factor If the ILA is not manufactured with sufficient isotopic purity, the addition of the IS, especially when a high concentration of the ILA is used, will result in the observation of a significant amount of the drug in a truly negative specimen. For a truly positive specimen, the resulting quantitative data will include systematic errors. This problem has been well illustrated by a benzoylecgonine (BZ) study [12] in which a high concentration of ILA IS (1,500 ng/mL BZ-d3) was adapted.
Isotopically Labeled Analog as Internal Standard for Drug Quantitation — Methodology © 2010 by Taylor and Francis Group, LLC
5
At the time of the study, a high concentration of IS (BZd3) was commonly used by laboratories engaged in testing workplace specimens. Since the concentration of BZ encountered in positive samples are typically high (>5,000 ng/mL), adapting a high IS concentration can minimize the following problems: a. To reduce the intensities of the ions designating the analyte (BZ), solvent volume used to reconstitute the extract may be so large that the resulting IS become too dilute to generate adequate ion intensity for reliable quantitative determination; and b. The contribution of the isotopic ions, derived from the naturally abundant 13C-atoms in the analyte, to the intensity of ions designating the IS may become very significant when the concentration of the latter is disproportionally low.
This study [12] examined two lots of 0.1 mg/mL BZd3 in methanol. With the addition of 4.5 μg BZ-d3 IS into 3 mL of urine samples (corresponding to 1,500 ng/mL), followed by solid-phase extraction, derivatization, and concentration down to 100 μL for GC/MS analysis, ions designating BZ (m/z 331, 272, and 210) were observed in truly negative test specimens. For a negative specimen, the concentration (X) of the observed BZ caused by the addition of these two lots of IS were 7.080 and 28.99 ng/ mL as calculated by Equation 1-1. X / (1,500 – X) = (Ion intensity of m/z 210) / (Ion intensity of m/z 213)
(1-1)
(where ions m/z 210 and 213 were used to designate BZ and the IS.) These concentrations correspond to 0.472% and 1.87% impurity of BZ in these two lots of BZ-d3 IS provided by that specific manufacturer in 1988. Isotopically impure ISs also introduced systematic errors embedded in the quantitative data derived from positive specimens. Data shown in Table 1-1 demonstrate the systematic errors exhibiting the following characteristics: a. No error is introduced if the concentration of the BZ in the test specimen is at the exact level of the BZ in the calibration standard. b. A higher apparent result will be observed if the concentration of the BZ in the test specimen is lower than the concentration of the BZ in the calibration standard, and vice versa. c. The degree of the above deviations increases as the isotopic impurity in the adapted IS increases.
Table 1-1. Quantitation error as a function of the isotopic impurity level of the internal standard and the difference between the analyte concentration in the calibration standard and the test sample Isotopic impuritya,b
7.080
27.99
Apparent concentrationa,c
True concentrationa,c
% Error
83.82 141.1 146.0 147.1 147.3 148.1 252.1
80.70 140.7 145.7 147.0 147.2 148.0 256.9
+3.87 +0.284 +0.206 +0.0680 +0.0679 +0.0676 –1.87
84.19 154.1 155.5 156.8 161.7 273.5 288.9 292.5 293.9 298.3
72.28 154.8 156.6 158.0 163.9 296.6 314.6 319.1 320.7 326.0
+16.5 –0.453 –0.702 –0.759 –1.34 –7.79 –8.17 –8.34 –8.36 –8.50
a Concentration in ng/mL. The concentration of the IS is 1,500 ng/ mL. The analyte’s (benzoylecgonine) concentration in the calibration standard is 150 ng/mL. b 7.080 and 27.99 ng/mL of benzoylecgonine are included in the 1,500 ng/mL of benzoylecgonine-d3 IS. c See the original reference [12] for the calculation of the apparent and true analyte concentrations.
B. Cross-Contribution Derived from Ion Fragmentation Mechanism — An Intrinsic Factor Under typical GC-MS analytical conditions, the drug and the IS are chromatographically inadequately resolved; thus, a proposed ILA IS must generate at least one (preferably two or three) ions relatively free from CC by the drug. There must also be at least one ion designating the drug that is relatively free from CC by the proposed ILA IS. (Current practice requires at least three “interference-free” ions derived from the drug allowing monitoring two ion-intensity ratios as an important criterion for drug confirmation.) To make this possible, the labeling isotopes in the ILA must be positioned at appropriate locations in the molecular framework, allowing the fragmentation process to generate a sufficient number of high-mass ions (with significant intensities) that (a) retain the labeling isotopes; and (b) will not interfere with the intensity measurement of ions derived from the drug. Otherwise, the [M + n] ion (derived from the drug) may, because of the naturally occurring isotope abundance, make a significant contribu-
Chapter 1 — Isotopically Labeled Analog as Internal Standard © 2010 by Taylor and Francis Group, LLC
6
II. FITTING CALIBRATION DATA Series of ions, [M – Hn], are typically seen in the EI fragmentation process [14,15]. The [M – Hn] processes, the presence of the naturally abundant 2H-atoms in the drug and the 1H-atoms in the 2H-labeled IS, the isotopic effect of the [M – Hn] processes [16,17], and varying conditions in each sample (test specimen or standard) prohibit quantitations based on direct comparison of intensities of ions derived from the drug and the corresponding ion of the IS. The effects of these phenomena are minimized by comparing the drug/ILA IS ion-pair intensity ratio observed in the test sample against those observed in one or a set of calibration standards.
35
a: m/z 196/200 b: m/z 181/185
30
Analyte/IS ion intensity ratio
tion to the intensity of the ion designating the ILA that corresponds to the [M] ion of the drug. (“M” is the mass of the ion derived from the drug and selected for monitoring; “n” is the nominal mass difference of the ions designating the drug and the ILA serving as the IS.) If deuterium, as in most currently available commercial products, is used as the labeling isotope, a difference in three mass units (n = 3) between the drug and the ILA is sufficient under normal circumstances. (If the concentration of the analyte is disproportionally higher than the concentration of the IS included in the assay process, the intensity of the [M + 3] ion originated from the analyte may become significant enough to require an additional analysis using a diluted aliquot.) Secobarbital/13C4-secobarbital (SB/13C4-SB) data shown in Figure 1-1 [13] illustrate how CC (of the intensities of ions designating SB and the IS) affects the accuracy in quantitation. In this example, CCs between the first pair of ions (m/z 196/200) are so insignificant (see CC data shown in the legend of the figure) that the linearity of the “SB/IS ion-pair intensity ratio” versus “SB concentration” plot (Figure 1-1-a) extends through a wide analyte concentration range. On the other hand, CCs between the two ions in the second ion-pair (m/z 181/185) are much more significant. In this latter case, significant errors can occur if the ion-pair intensity ratio generated from the test specimen is used directly to determine the analyte’s concentration using a linear calibration model. The error can become very serious if the drug’s concentration in the test specimen is significantly higher or lower (Figure 1-1-b) than the drug concentration adapted in the calibration standard (see further discussion in the next section — Fitting Calibration Data).
a
25 20
b 15 10 5 0 0
1000
2000
3000
5000
Figure 1-1. Fitting calibration data adapting linear (a) and hyperbolic (b) models using ion-pairs with different degrees of cross-contribution from the secobarbital/secobarbital-13C4 system. (a) m/z 196/200: 0.23% of the measured intensity of m/z 196 (designating secobarbital) is contributed by secobarbital13C ; while 0.017% of the measured intensity of m/z 200 4 (designating secobarbital-13C4) is contributed by secobarbital. (b) m/z 181/185: 1.6% of the measured intensity of m/z 181 (designating secobarbital) is contributed by secobarbital-13C4, while 0.29% of the measured intensity of m/z 185 (designating secobarbital-13C4) is contributed by secobarbital [13].
A typical quantitative GC-MS protocol usually involves monitoring several selected ions from the drug and the ILA IS. Quantitation is achieved by comparing a selected drug-to-ILA ion-pair intensity ratio observed from the test sample against the same ratio observed from the calibration standard. The calibration standard contains the same amount of the IS (as those added to the test specimens) and a known amount of the drug, and is processed in parallel with the test specimens. The drug’s concentration in the test specimen can be calculated using a onepoint calibration approach as shown Equation 1-2. The one-point calibration approach, in fact, is a twopoint linear calibration method using only one empirical data point with the assumption that: a. The drug-to-ILA ion-pair intensity ratio is zero when the drug’s concentration in the test specimens or the standards is zero, i.e., the ILA IS will not contribute to the intensity of the ion monitored for the drug; and b. The drug-to-ILA ion-pair intensity ratio will truly reflect the drug/ILA IS concentration ratio in the test specimens (and the standards), i.e., the drug will not contribute to the intensity of the ion monitored for the IS, and vice versa.
Isotopically Labeled Analog as Internal Standard for Drug Quantitation — Methodology © 2010 by Taylor and Francis Group, LLC
4000
Analyte concentration (ng/mL)
7
[Int. of ion designating the analyte) / (Int. of ion designating IS)]
Test specimen
[Int. of ion designating the analyte) / (Int. of ion designating IS)]
Cal. standard
In fact, these two assumptions are rarely valid for two reasons: a. The ILA IS often contains a small amount of isotopic impurity, i.e., the drug; and b. Ion fragmentation mechanisms often result in CC of the intensities of ions designating the drug and the IS.
Thus, drug concentrations derived from one-point calibration often include systematic errors as shown in Table 1-1 [12] and Figure 1-1-b (the m/z 181/185 ion-pair plot) [13]. The error is absent when the drug’s concentration in the test specimen is the same as that in the calibration standard, but systematically increases as the drug’s concentration in the test specimen is increasingly differently from that in the calibration standard. Multiple-point linear calibration approaches, in which the observed drug-to-ILA IS ion-pair intensity ratios are plotted against the drug’s concentration, are commonly used to extend quantitation to a wider concentration range. However, systematic errors still exist due to the inherently non-linear nature of the calibration curve. Basically, both of the abovementioned one-point and multiple-point approaches are based on linear models; thus, similar errors will be observed as long as the assumptions for the linear model are violated. For calibration purposes, a “linear with zero intercept” relationship between the measured response and the drug’s concentration is preferred. Thus, logarithmic-transformed ion-pair intensity ratio was proposed [18] to establish the standard curve, which was reportedly linear with an upper concentration of BZ up to 500,000 ng/mL. Theoretical considerations [19] and various correction approaches [20–22] addressing the CC phenomenon have been reported. Our studies [23] have demonstrated that the hyperbolic model works well in cases where calibration data are derived from ion-pairs with significant CCs. This is clearly demonstrated in Figure 1-1-b (the m/z 181/185 ion-pair plot). The effectiveness of the hyperbolic model is a result of its taking into account the CC phenomenon as shown in Equation 1-3 [24]. y = (xX + aA') / (xX' + aA); (x + aA'/X) / (xX'/X + aA/X); or (x + C1) / (C2 x + C3)
(1-3)
× (Analyte concentration) Cal. standard
where y = the observed ion-pair intensity ratio; x = moles of the analyte in each standard; X = intensity of the ion designating the analyte (generated by analyte); a = moles of the IS in all standards; A' = IS’s cross-contribution to the the intensity of the ion designating the analyte; X' = analyte’s cross-contribution to the intensity of the ion designating the IS; and A = intensity of the ion designating the IS (generated by IS).
Constant C1 expresses the CC of the IS to the intensity of ion designating the drug; constant C2 expresses the CC of the drug to the intensity of ion designating the IS; while constant C3 reflects the moles of the IS used, the relative purity of the drug and the IS used in preparing the standard solutions, and the relative intensities of the ions designating the same amount of the drug and the IS. Constant C3 equals the concentration of the IS when both the drug and the IS are 100% pure (chemically and isotopically) with identical mass spectral responses (no isotopic effect). In the absence of CC between the drug and the IS, C1 = C2 = 0; thus, the relationship between the drug/IS ion intensity and concentration ratios reduces to a linear function (Equation 1-4). y = Cx
(1-4)
where C = 1/C3. III. 2H- VERSUS 13C-ANALOGS AS INTERNAL STANDARDS While evaluating the effectiveness of the 13C4- and 5-analogs of SB [25] and butalbital (BB) [26] in serving as the ISs, we have observed an interference phenomenon in cases where 2H5-analogs of these two barbiturates were adapted. Specifically, the intensity ratios of the ion-pairs designating these two drugs and their respective 2H5analogs increase as the volume of the solvent (ethyl acetate) used to reconstitute the extraction/derivatization residue increases. This phenomenon was not observed when the respective 13C4-analogs were used as the ISs in parallel experiments. Since this interference phenomenon was observed only in the 2H-labeled, but not in the 13C-labeled systems, we do not believe the reported self-chemical ionization 2H
Chapter 1 — Isotopically Labeled Analog as Internal Standard © 2010 by Taylor and Francis Group, LLC
(1-2)
8
phenomenon [27,28] is the underlying cause. Since the 2H-atoms in the SB-d and BB-d are placed at allylic posi5 5 tions, it was hypothesized that hydrogen/deuterium exchange has taken place at the ion source. This hypothesis was disproved [29] by the observation of the same phenomenon for drug/2H-analog pairs with (such as SB, BB, and methohexital) and without (such as PB, and phenobarbital) this structural feature (Figure 1-2, Table 1-2). Drug/13C4-analog systems differ from the corresponding drug/2H5-analog systems in displaying an identical retention time for the drugs and the ILA ISs. Thus, retention time difference between the drug and the 2H-analog IS was hypothesized as the underlying factor causing the increase in the ion-pair intensity ratio observed for the drug/2H-analog systems (but not for the drug/13C-analog systems). To test this hypothesis, several series of experiments were performed, in which GC column temperature programming conditions were varied to modify the separation between the drug and the 2H-analog IS [29]. The resulting drug-to-IS ion-pair intensity-ratio changes were characterized and evaluated. SB/SB-13C4 system was again used as the control, the monitored ion-pair intensity ratio for this system remains constant as the reconstitution volume is increased and the temperature programming rate was changed from 30 to 15, and then to 5 oC/min. This was consistent with the hypothesis because the retention times for the drug and the 13C-analog IS remain the same (no separation) regardless of the programming rate. Data resulting from a series of parallel experiments for the SB/SB-d5 system are shown in Table 1-3. Here, as the programming rate was reduced from 30 to 15, and then to 5 oC/min, the separation between the drug and the 2Hanalog IS increased, with the percentage of m/z 196 overlapped (by m/z 201) reducing from 89.5 to 77.7, and then to 70.2%. Under these three temperature-programming conditions and when the reconstitution volume was changed from 20 to 200 μL, the monitored ion-pair inten-
CH 3
O
N
O
CH(CH 3)C3 H7
N H3 C
O
N
H3C
O
O
H 3C
O
CH2CH= CH2
N
(b-1)
O
CH3
O
O
CD2CD=CD2
H 3C
*
O
N
O
(c-2) CH3
CH3 N
O
O CH(CH3)C3H 7 C 2H 5
N
H 3C
O
N
2
O
(d-2)
CH3 N
CH3 O C 6 H5 C 2 H5
N
H 3C
O CH(CH3)C3 H7 C D5
N H 3C
(d-1) O
O CH(CH 3 )C≡ CC H 2 5 CD2CD=CD 2
N
H 3C
(c-1) O
CH2CH=CH 2
: 13C
CH3 O
O CH(CH 3 )C≡ CC 2H5 CH2 CH=CH2
N
H3 C
O
* : 13C
CH2CH(CH3)CH3
(b-3)
CH3
N
O
N * * N * *
(b-2) O
CH2CH= CH2
(a-* 3)
CH2CH(CH3)CH3
N H3C
* : 13C
CH(CH3)C3H7
: 13C
CH3
O
O CH2CH(CH3)CH3
N H3C
CD2CD=CD2
O
N
* * N * *
(a-2)
CH3
N
O
O CH(CH 3)C 3H7
N
CH CH = CH 2 2
(a-1) O
CH 3
CH3
O
O
(e-1)
O
N
C6H5 C2D5
N
H 3C
O
O
(e-2)
Figure 1-2. Structures of analytes/isotopically labeled analogs (all as methyl-derivatives): secobarbital/secobarbital-d5/ secobarbital-13C4 (a); butalbital/butalbital-d5/butalbital-13C4 (b); methohexital/methohexital-d5 (c); pentobarbital/pentobarbitald5 (d); phenobarbital/phenobarbital-d5 (e).
sity ratio for the SB/SB-d5 system changed 11.92%, 15.71%, and 18.35%, respectively. Another series of experiments for the SB/SB-d5 system were performed, in which the 2H-analogous IS, rather than the drug, was the major component. In this latter case, as the programming rate was reduced from 30 to 15, and then to 5 oC/min, the separation between the drug and the IS similarly increases, with the percentage
Table 1-2. Analyte/isotopic analog ion-pair intensity ratio as a function of molecular abundance— Analyte: 2,500 ng/mL; isotopically labeled analog: 400 ng/mL Reconstitute volume (μL) 10 30 60 100 150
Butalbital (196/201) 5.429 6.697 6.790 7.134 7.132
Analyte/2H5-analog (m/z) Secobarbital Methohexital Pentobarbital Phenobarbital (196/201) (261/266) (184/189) (232/237) 5.997 7.167 7.435 7.644 7.703
8.814 9.110 9.715 10.56 10.84
11.87 12.58 12.93 13.34 13.44
6.831 7.726 7.878 7.878 7.955
Analyte/13C4-analog (m/z) Butalbital Secobarbital (196/200) (196/200) 7.586 7.548 7.549 7.547 7.518
Isotopically Labeled Analog as Internal Standard for Drug Quantitation — Methodology © 2010 by Taylor and Francis Group, LLC
7.018 7.051 7.022 6.926 6.867
9
Table 1-3. Secobarbital/secobarbital-d5 (SB/SB-d5) ion-pair intensity ratio (m/z 196/201) as a function of molecular abundance under three temperature programming conditions resulting in different peak overlapping between SB and SB-d5 — SB: 4,800 ng/mL; SB-d5: 400 ng/mL Rec. vol. (μL) 20 30 40 60 80 120 160 200
30 oC/min temperature ramp Ion int. Ratio Overlapa ratio change (%) (%) 10.49 10.69 11.03 10.99 11.41 11.39 11.62 11.74
Average
1.91 5.15 4.77 8.77 8.58 10.77 11.92
—b 97.3 — 83.4 — 89.6 — 87.6
15 oC/min temperature ramp Ion int. Ratio Overlapa ratiochange (%) (%) 10.82 11.32 11.67 11.90 11.89 12.35 12.38 12.52
89.5
4.62 7.86 9.98 9.89 14.14 14.42 15.71
— 80.5 — 78.0 — 79.1 — 73.2
5 oC/min temperature ramp Ion int. Ratio Overlapa ratio change (%) (%) 11.50 11.89 12.35 12.50 12.87 12.99 13.36 13.61
77.7
3.39 7.39 8.70 11.91 12.96 16.17 18.35
— 70.0 — 71.8 — 73.2 — 66.0 70.2
a Percentage of overlaps are calculated by dividing the area of m/z 196 that is overlapped with m/z 201 by the total peak area of m/z 196. Percentages of overlap with 30, 15, and 5 oC/min temperature ramps are approximately 89.5 ([97.3 + 83.4 + 89.6 + 87.6]/4), 77.7 ([80.5 + 78.0 + 79.1 + 73.2]/4), and 70.2 ([70.0 + 71.7 + 73.2 + 66.0]/4), respectively. Area calculations were done by rectangular summation method [30]. b Data not calculated.
of m/z 201 overlapped (by m/z 196) reducing from 100 to 94.3, and then to 62.4%. Under these three temperature programming conditions and when the reconstitution volume was changed from 20 to 200 μL, the monitored ion-pair intensity ratio for the SB/SB-d5 system changed –7.65%, –14.2%, and –23.2%, respectively. The phenomena observed from these three series of experiments are rationalized as follows: • When two chromatographically closely-eluted compounds (such as drug/2H-analog pairs) with their overlapping portions appearing at the ion source at the same time, the non-overlapping portions will have a higher ionization efficiency; thus, over-all ionization efficiency of the major component will be lower than that of the minor one. • This difference in ionization efficiency between the major and the minor compounds becomes more significant when the total molecular population at the ion source is higher, i.e., with smaller reconstitution volume. This explains why, as the reconstitution volume is increased from 20 to 200 μL, the monitored ion-pair intensity ratios increase in Table 1-3 (SB as the major component), while decrease when SB-d5 is the major component. • As the drug and the 2H-analog IS are more closely eluted, larger portions of these two compounds will appear at the ion source at the same time. Since these portions are proportionally affected by the decrease in their ionization efficiencies, the difference in the overall ionization efficiency of these two compounds will decreases as they are more closely eluted. This explains why the rate of the changes (as the reconstitution volume is increased from 20 to 200 μL) in the monitored ion-
pair intensity ratio is much higher when the temperatureprogramming rate is decreased (drug and IS are better resolved).
The above reasonings are consistent with the observed peak overlapping data and ion-pair intensity ratio change characteristics shown in Table 1-3. They may also account for the reported interference on the quantitation of BZ caused by the coelution of fluconazole [11]. The authors attributed the observed “coeluting interference” to “saturation of the ionization chamber”, but did not mention non-proportional variations in BZ/BZ-d5 ionization efficiencies. CONCLUDING REMARKS Since the now well-known ion CC phenomenon exists in most (if not all) drug/ILA IS systems, calibration curves generated from these systems are likely nonlinear. In systems where ion CC is absent, calibration curves generated from a drug/2H-analog system is still inherently non-linear. This is due to the fact that the intensity ratio of an ion-pair (designating the drug/2Hanalog in a specific sample with the same concentration ratio) varies as their molecular abundances in the mass spectrometer ion source are changed. Variations can result from injecting different volume or injecting the same volume of a drug/2H-analog mixture with different concentration but the same ratio. The non-linear characteristics of the calibration curve are also affected by the separation between the drug and its 2H-analog IS,
Chapter 1 — Isotopically Labeled Analog as Internal Standard © 2010 by Taylor and Francis Group, LLC
10
which is affected by the number and position of the 2Hatoms placed in the molecular framework (an intrinsic factor) and the column temperature programming condition (an extrinsic factor). Thus, for most accurate quantitations, non-linear approaches [23] should be seriously considered for establishing the calibration curve. REFERENCES 1. Willard HH, Merritt LL Jr, Dean JA, Settle A Jr: Instrumental Methods of Analysis, 7th ed; Wadsworth Publishing: Belmont, CA, p. 32; 1988. 2. Krull I, Swartz M: Quantitation in method validation; LC•GC 16:1984; 1998. 3. De Leenheer AP, Lefevere MF, Lambert WE, Colinet ES: Isotope-dilution mass spectrometry in clinical chemistry; Advances in Clinical Chemistry, Vol 24; Academic Press: London, UK; pp 111–161; 1985. 4. Garland WA, Barbalas MP: Applications to analytical chemistry: an evaluation of stable isotopes in mass spectral drug assays; J Clin Pharmacol 26:412; 1986. 5. U.S. Department of Health and Human Services (Substance Abuse and Mental Health Services Administration): Mandatory guidelines for federal workplace drug testing programs; Fed Reg 73:71858; 2008. 6. Blank DL, Kidwell DA: Decontamination procedures for drugs of abuse in hair: are they sufficient? Forensic Sci Int 70:13; 1995. 7. Mieczkowski T, Newel R: An evaluation of racial bias in hair assays for cocaine: black and white arrestees compared; Forensic Sci Int 63:85; 1993. 8. Sellers JK: The Effects of Hair Treatment on Cocaine Contamination from External Exposure — Master’s thesis; Univ. of Alabama at Birmingham: Birmingham, AL, 1994. 9. Cirimele V, Kintz P, Mangin P: Drug concentration in human hair after bleaching; J Anal Toxicol 19:331; 1995. 10. Brunk SD: False negative GC-MS assay for carboxy THC due to ibuprofen interference; J Anal Toxicol 12:290; 1988. 11. Wu AH, Ostheimer D, Cremese M, Forte E, Hill D: Characterization of drug interferences caused by coelution of substances in GC-MS confirmation of targeted drugs in full-scan and selected ion monitoring modes; Clin Chem 40:216; 1994. 12. Liu RH, Baugh LD, Allen EE, Salud SC, Fentress JG, Ghadha H, Walia AS: Isotopic analogue as the internal standard for quantitative determination of benzoylecgonine: concerns with isotopic purity and concentration level; J Forensic Sci 34:986; 1989. 13. Liu RH, Lin T-L, Chang W-T, Liu C, Tsay W-I, Li J-H, Kuo T-L: Isotopically labeled analogues for drug quantitation; Anal Chem 74:618A; 2002. 14. Peterson DW, Hayes JM: In Hercules DM, Hieftje GM, Snyder LR, Evenson MA (Eds): Contemporary Topics in Analytical and Clinical Chemistry, Vol 3; Plenium Press: New York; pp. 217–252; 1978.
15. MacCoss MJ, Toth MJ, Matthews DE: Evaluation and optimization of ion-current ratio measurements by selected-ion-monitoring mass spectrometry; Anal Chem 73:2976; 2001. 16. Low IA, Liu RH, Barker SA, Fish F, Settine RL, Piotrowski EG, Damert WC, Liu J-Y: Selected ion monitoring mass spectrometry: parameters affecting quantitative determination; Biomed Mass Spectrom 12:633; 1985. 17. Benz W: Accuracy of isotopic label calculations for spectra with a (molecular ion – hydrogen) peak; Anal Chem 52:248; 1980. 18. Corburt MR, Koves EM: Gas chromatography/mass spectrometry for the determination of cocaine and benzoylecgonine over a wide concentration range (<0.005–5 mg/ dL) in postmortem blood; J Forensic Sci 39:136; 1994. 19. Pickup JF, McPherson L: Theoretical considerations in stable isotope dilution mass spectrometry for organic analysis; Anal Chem 48:1885; 1976. 20. Bush ED, Trager WF: Analysis of linear approaches to quantitative stable isotope methodology in mass spectrometry; Biomed Mass Spectrom 8:211; 1981. 21. Thorne GC, Gaskell SJ, Payne PA: Approaches to the improvement of quantitative precision in selected ion monitoring: high resolution applications; Biomed Mass Spectrom 11:415; 1984. 22. Barbalas MP, Garland WA: A computer program for the deconvolution of mass spectral peak abundance data from experiments using stable isotopes; J Pharm Sci 80:922; 1991. 23. Whiting TC, Liu RH, Chang W-T, Bodapati MR: Isotopic analogs as internal standards for quantitative analyses of drugs/metabolites by GC/MS — Non-linear calibration approaches; J Anal Toxicol 25:179; 2001. 24. Thorne GC, Gaskell S, Payne PA: Approaches to the improvement of quantitative precision in selected ion monitoring: high resolution applications; Biomed Mass Spectrom 11:415; 1984. 25. Chang W-T, Lin D-L, Low I-A, Liu RH: 13C4-Secobarbital as the internal standard for the quantitative determination of secobarbital — A critical evaluation; J Forensic Sci 45:659; 2000. 26. Chang W-T, Liu RH: Mechanistic studies on the use of 2Hand 13C-analogs as internal standards in selected ion monitoring GC-MS quantitative determination — Butalbital example; J Anal Toxicol 25:659; 2001. 27. Derrick PJ: Isotope effects in fragmentation; Mass Spectrom Rev 2:285; 1983. 28. Derrick PJ: Dynamics of unimolecular ionic decompositions: intermolecular kinetic isotope effects; In Beynon JH, McGlashan ML (Eds): Current Topics in Mass Spectrometry and Chemical Kinetics; Heyden: London, UK; p. 61; 1982. 29. Chang W-T, Smith J, Liu RH: Isotopic analogs as internal standards for quantitative GC/MS analysis — Molecular abundance and retention time difference as interference factors; J Forensic Sci 47:873; 2002. 30. Hinney RT, Thomas GB Jr: Calculus; Addison-Wesley: Reading, MA; Chap 5; 1990.
Isotopically Labeled Analog as Internal Standard for Drug Quantitation — Methodology © 2010 by Taylor and Francis Group, LLC
Chapter 2 Isotopically Labeled Analog of the Analyte as Internal Standard for Drug Quantitation — Chemical Derivatization and Data Collection and Evaluation — INTRODUCTION ..................................................................................................................... I. CHEMICAL DERIVATIZATION ........................................................................................... A. Production of Most Favorable Ion-Pairs for Drug Quantitation ........................................ B. Exemplar Studies ................................................................................................................ C. Isotopically Labeled Analogs and Chemical Derivatization Groups ................................. II. ION INTENSITY CROSS-CONTRIBUTION DATA ............................................................ A. Full-Scan Mass Spectra ...................................................................................................... B. Selected Ion Monitoring and Calculation of Ion Cross-Contribution Data ....................... 1. Direct Measurement ..................................................................................................... 2. Normalized Direct Measurement ................................................................................. 3. Internal Standard Method ............................................................................................ 4. Standard Addition Method ........................................................................................... C. Assessing the Accuracy of Empirically Determined Cross-Contribution Data ................. 1. Empirically Observed Concentration ........................................................................... 2. Theoretically Calculated Concentration ...................................................................... 3. Comparing Empirically Observed and Theoretically Calculated Concentrations — Graphic Presentation .................................................................................................... 4. Summary ...................................................................................................................... III. COMPILATION OF FULL-SCAN MASS SPECTRA AND ION INTENSITY CROSS-CONTRIBUTION TABLES ....................................................................................... A. Derivatization Procedures, Instrumentation, and Analytical Parameters .......................... B. Collection of Mass Spectrometric Data .............................................................................. C. Ion Intensity Cross-Contribution Data ............................................................................... CONCLUDING REMARKS .................................................................................................... REFERENCES ..........................................................................................................................
INTRODUCTION With internal standard method as the preferred calibration approach and an isotopically labeled analog (ILA) of the analyte as the internal standard (IS) of choice [1], the cross-contribution (CC) phenomenon—contribution of IS to the intensities of the ions designating the analyte, and vice versa—is undoubtedly the most significant interference factor in a quantitative determination protocol [2]. Successful quantitation of a drug in biological matrices relies on the availability of ion-pairs that are free of (or with minimal) CC for designating the analyte and the IS.
25 26 26 26 26 27 28 28
An ideal complementary ILA of the analyte serving as the IS, that can produce ion-pairs with the desirable characteristics, may be synthesized with full understanding of the analyte’s ion fragmentation pathways and skillful positioning of the labeling isotopic atoms in the analyte’s molecular framework. Desirable ion-pairs may also become available when the analyte/IS pair, possessing active functional groups, are derivatized with an appropriate derivatization group [3]. Sections included in this chapter illustrate the generation and selection of favorable ion-pairs using various derivatization groups and ILAs. Also illustrated
Chapter 2 — Chemical Derivatization and Mass Spectrometric Data Collection © 2010 by Taylor and Francis Group, LLC
11 12 12 12 13 13 17 18 18 19 20 20 21 22 24
12
are methods used to evaluate the quality of the ion-pairs of interest. Full-scan mass spectra of the analytes (and their ILAs) studied, in various derivatization forms, are compiled in Part Two (Appendix One, pp 31–371), while the CC data evaluated for potentially favorable ionpairs are shown in Part Three (Appendix Two, pp 373– 492) of this book. Information included in Parts Two and Three should be of valuable reference to those who are interested in the analysis of drugs in various forms. I. CHEMICAL DERIVATIZATION Chemical derivatization was traditionally incorporated into the sample preparation process to convert the analyte to a form that is more compatible to the chromatographic environment. Creating or optimizing separation and enhancing detection and structural elucidation efficiency have later become the reasons for practicing chemical derivatization prior to the instrumental measurement step [4]. The primary objective of chemical derivatization discussed in this chapter is the generation of favorable ion-pairs for designating the analyte and the ILA serving as the IS. Specifically, it is hoped that the chemically derivatized analyte and IS would produce ion-pairs that are free of (or with minimal) CCs between the intensities of ions designating the analyte and the IS. A. Production of Most Favorable Ion-Pairs for Drug Quantitation Approaches that may potentially help generate favorable ion-pairs for a specific analyte/ILA IS system include: a. Positioning the isotopic atoms at the most desirable positions in the molecular framework; b. Experimenting various chemical derivatization alternatives; and c. Selecting an alternate ionization method, such as chemical ionization.
All three approaches have their limitations. The number and positions of the isotopic atoms are determined in the manufacturing process and cannot be altered by the laboratory analyst, while positioning isotopic atoms in the analyte is constrained by the availability of practical synthesis routes. Chemical derivatization approach is limited by existing functional groups in the analyte and reagents that are available. For practical purposes, electron impact and chemical ionization are the only ionization
options. Chemical ionization procedure, typically yielding one ion for the designation of the drug and one for the IS, has been criticized for providing inferior discriminating power for definite identification under routine high throughput test environment [5]. In practice, the analyst can explore the best combination of ILA (serving as the IS) and derivatization options through a comprehensive evaluation process. This process includes the examination of empirical CC data of various derivatization products resulting from all combinations of available ILA and amenable derivatization alternatives. B. Exemplar Studies Fragmentation in the ion source of a mass spectrometer often includes [M – Hn] processes resulting in series of “cluster ions”, where n is the number of H-atom involved in the process. When this occurs, [M – 2Hn] processes originated from a 2H-analog of the analyte are likely to generate ions that may contribute to the intensities of ions designating the analyte. Thus, 13C-labeled analogs may cause less interference of this nature. A very limited number of 13C-labeled drug analogs are now commercially available and two of them have been thoroughly studied along with their 2H-counterparts [6–8]. The resulting CC data, as determined by various procedures for the secobarbital/secobarbital-d5 (SB/SB-d5), secobarbital/ secobarbital-13C4 (SB/SB-13C4) systems, indeed confirmed this rationale. With limited availability of 13C-analogs, 2H-analogs are more commonly used as the ISs in routine analysis and related studies. For example, various 2H-labeled analogs of amphetamine and methamphetamine, with different number of 2H-atoms and positions, were evaluated for their suitability in serving as the ISs for the analysis of these two drugs [9]. Suitability is judged primarily by the availability of three ions that are interference-free, retaining some of the drug’s structural feature, and with relatively high mass and sufficient intensity. Another study on this subject matter focused on evaluating the contribution (interference) of ions m/z 91 and 118, derived from the heptafluorobutyryl derivative of methamphetamine-d5, -d8, and -d11, to the intensities of these ions designating the analyte [10]. Since the analyte’s fragmentation pathways and the resulting ions may be altered by the attached derivatization group, derivatization agents can play an important role in generating more favorable ion-pairs. Methamphetamine
Isotopically Labeled Analog as Internal Standard for Drug Quantitation — Methodology © 2010 by Taylor and Francis Group, LLC
13
and several 2H-analogs were used as exemplar system to evaluate the effect of the derivatization factor [3]. This study concluded that ion-pairs with the most favorable CC varied with the ILA serving as the IS and the derivatization group selected in the assay protocol. Thus, if a specific derivatization procedure is preferred, a specific ILA that may generate the most favorable ion-pairs should be selected, and vice versa. Studies cited above [3,6–10] focused on examining the extent of CC between the ions designating the analyte and the IS. Studies examining the derivatization yield, that may affect the achievable limits of detection and quantitation, have also been reported [11,12]. These are also important factors affecting the effectiveness of a quantitation protocol, but they are not within the scope of this chapter.
derivatization routes that have been reported but were found to result in exceptionally low yield in our laboratories; and (c) inclusion of all derivatization groups in a series of analogs, such as methyl-, ethyl-, propyl-, and butyl-, may only add information of limited value. All drugs and these drugs’ ILAs included in this project were purchased from Cerilliant Corp. (Austin, TX) except those listed in Table 2-1. Chemical derivatization reagents used in this project and their sources are shown in Table 2-2. Shown in Table 2-3 are the protocols adapted to generate various forms of derivatives included in the mass spectra (Part Two) and ion CC tables (Part Three) sections of this book. The names of the drugs appeared in the titles of the references cited in Table 2-3 may appear irrelevant, but the derivatization procedures described in those publications were adapted in this study.
C. Isotopically Labeled Analogs and Chemical Derivatization Groups
II. ION INTENSITY CROSS-CONTRIBUTION DATA
Part Two (pp 31–371) of this book is a systematic collection of reference mass spectra representing seven categories of drugs and their ILAs in various forms of derivatives. Since it is the intention of this project to empirically examine the combinations of available ILA serving as the ISs and amenable derivatization routes for the generation of the most favorable ion-pairs, all drugs with commercially available ILAs and all reported derivatization alternatives for these drugs are within the scope of this project. However, for the reasons listed below, there are omissions within this scope: (a) certain ILAs that are available through sources unknown to the authors or become available after the conclusion of the laboratory work devoted to this project; (b) certain
Through its intrinsic ion fragmentation mechanisms, an ILA with adequate isotopic purity and mass difference from the analyte, meeting the requirements studied in Chapter 1, may still generate ions contributing to the intensities of ions designating the analyte, and vice versa. Understanding the fragmentation pathways of a compound serves well for selecting appropriate positions in where the labeling isotopes (2H or 13C) are placed in the ILA synthesis process. It does not, however, always help identify the sources of the cross-contributing ions. Crosscontributing ions may have low intensities and pathways leading to the generation of these ions are, in general, not well understood. Cross-contribution data for a specific analyte/ILA system requires empirical evaluation.
Table 2-1. Analytes and their isotopically labeled analogs obtained from sources other than Cerilliant Corp. Source
Compound
Research Triangle Institute (Research Triangle Park, NC)
Cannabinol/cannabinol-d3; tetrahydrocannabinol/tetrahydrocannabinol-d3; THC-OH/ THC-OH-d3; THC-COOH/THC-COOH-d3/THC-COOH-d9
Sigma-Aldrich Fine Chemicals (Saint Louis, MO)
Methylphenidate/methylphenidate-d3; ritalinic acid/ritalinic acid-d5;butalbital/butalbital-d5/ butalbital-13C4; codeine/codeine-d3/codeine-d6/codeine-13C4; secobarbital/secobarbital-d5/ secobarbital-13C4; norbuprenorphine
Alltech Associates (Deerfield, IL)
Amitriptyline/amitriptyline-d3
Cambridge Isotope Laboratories (Andover, MA)
Chloramphenicol/chloramphenicol-d5; clonidine/clonidine-d4
Lipomed, Inc. (Cambridge, MA)
MDA/MDA-d5; MDMA/MDMA-d5; diazepam/diazepam-d3/diazepam-d5; flunitrazepam/ flunitrazepam-d3/flunitrazepam-d7; anhydroecgonine methyl/anhydroecgonine methyl-d3; 6-acetylcodeine/6-acetylcodeine-d3; dihydrocodeine/dihydrocodeine-d3/ dihydrocodeine-d6
Chapter 2 — Chemical Derivatization and Mass Spectrometric Data Collection © 2010 by Taylor and Francis Group, LLC
14
Table 2-2. Derivatization group and related information Derivatization reagent and sourcea
Derivatization group
Group attached
Formula wt.b 1.00794
1. None (H)
None
None (Parent drug)
2. 3. 4. 5.
Iodomethane1 Iodoethane1 Iodopropane1 Iodobutane1
–CH3 –C2H5 –C3H7 –C4H9
2,2,3,3,3-Pentafluoro-1-propanol (PFP-OH)2 1,1,1,3,3,3-Hexafluoro-2-propanol (HFP-OH)2
–OCH2(C2F5) –OCH(CF3)2
149.03940 167.02986
Acetic anhydride (AA)3 Trichloroacetic anhydride (TCAA)2 N-Methyl-bis(trifluoroacetamide) (MBTFAA) 2 Trifluoroacetic anhydride (TFAA)2 Propionic anhydride (PA)1 Pentafluoropropionic anhydride (PFPA)2 Heptafluorobutyric anhydride (HFBA)2 4-Carboethoxyhexafluorobutyryl chloride (4-CBC)4 2,3,4,5,6-Pentafluorobenzoyl chloride (PFBC)2 N-Propyl chloroformate2 (S)-(-)-N-(Trifluoroacetyl)prolyl chloride (l-TPCC)5
–CO(CH3) –CO(CCl3) –CO(CF3) –CO(CF3) –CO(C2H5) –CO(C2F5) –CO(C3F7) –CO[C3F6CO(OC2H5)] –CO(C6F5) –CO(OC3H7)
43.04462 146.37890 97.01601 97.01601 57.07120 147.02357 197.03102 251.10322 195.06632 87.09718 187.07564
Methyl Ethyl Propyl Butyl
6. Pentafluoro-1-propoxy (PFPoxy) 7. Hexafluoro-2-propoxy (HFPoxy) 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18.
Acetyl Trichloroacetyl (TCA) Trifluoroacetyl (TFA) Trifluoroacetyl (TFA) Propionyl Pentafluoropropionyl (PFP) Heptafluorobutyryl (HFB) 4-Carboethoxyhexafluorobutyryl (4-CB) Pentafluorobenzoyl (PFB) Propylformyl l-N-(Trifluoroacetyl)prolyl
O C
a. l-TPC-l b. l-TPC-d
15.03452 29.06110 43.08768 57.11426
N
O CCF 3
19. l-α-Methoxy-α-trifluoromethylphenylacetyl
(–)-α-Methoxy-α-trifluoromethylphenylacetic acid (l-MTPAA)5
–CO[C(CF3)(C6H5)OCH3]
N-Methyl-N-trimethylsilyltrifluoroacetamide (MSTFA) with 1% trimethylchlorosilane (TMCS)6 N-Methyl-N-(t-butyldimethylsilyl) trifluoroacetamide (MTBSTFA) with 1% t-butyldimethylchlorosilane (TBDMCS)6
–Si(CH3)3
Methoxyamine7 Hydroxylamine7
=NOCH3 =NOH
217.16453
a. l-MTMP-l b. l-MTMP-d 20. Trimethylsilyl (TMS) 21. t-Butyldimethylsilyl (t-BDMS)
22. 23. 24. 25. 26. 27. 28.
Methoxyimino (MA) Hydroxylimino (HA) Methyl/trifluoroacetyl Ethyl/acetyl Ethyl/trimethylsilyl Ethyl/t-butyldimethylsilyl Propyl/trimethylsilyl
29. 30. 31. 32. 33. 34. 35. 36. 37. 38. 39. 40. 41. 42. 43.
Butyl/trimethylsilyl Pentafluoro-1-propoxy/pentafluoropropionyl Hexafluoro-2-propoxy/trifluoroacetyl Hexafluoro-2-propoxy/heptafluorobutyryl Acetyl/trimethylsilyl Acetyl/t-butyldimethylsilyl Trifluoacetyl/trimethylsilyl Trifluoacetyl/t-butyldimethylsilyl Pentafluoropropionyl/trimethylsilyl Pentafluoropropionyl/t-butyldimethylsilyl Heptafluorobutyryl/trimethylsilyl Heptafluorobutyryl/t-butyldimethylsilyl Methoxyimino/ethyl Methoxyimino/acetyl Methoxyimino/propionyl
a
b
44. 45. 46. 47. 48. 49. 50. 51. 52. 53. 54. 55. 56. 57.
–Si(CH3)2C(CH3)3
73.18906 115.26880
45.04066 31.01408
Methoxyimino/heptafluorobutyryl Methoxyimino/trimethylsilyl Methoxyimino/t-butyldimethylsilyl Methoxyimino/ethyl/propionyl Methoxyimino/ethyl/trimethylsilyl Methoxyimino/ethyl/t-butyldimethylsilyl Methoxyimino/acetyl/trimethylsilyl Methoxyimino/propionyl/trimethylsilyl Hydroxylimino/di-propionyl Hydroxylimino/trimethylsilyl Hydroxylimino/ethyl/propionyl Hydroxylimino/di-ethyl/propionyl Hydroxylimino/di-ethyl/trimethylsilyl Hydroxylimino/di-ethyl/t-butyldimethylsilyl
Sources of reagents: 1Acros Organic (Fairlawn, NJ); 2Acros Organic (Geel, Belgium); 3Ajax Finechem (Seven Hills, Australia); 4Harris Specialty Chemicals PCR (Gainesville, FL); 5Sigma-Aldrich (St. Louis, MO); 6Pierce Chemical (Rockford, IL); 7Yakuri Pure Chemical (Osaka, Japan). All formula weights were calculated based on the information listed below: H: 1.00794; D: 2.01400; C: 12.0107; 13C: 13.00335; N: 14.00674; O: 15.99940; F: 18.99840; Si: 28.08550; Cl: 35.4527.
Isotopically Labeled Analog as Internal Standard for Drug Quantitation — Methodology © 2010 by Taylor and Francis Group, LLC
15
Table 2-3. Procedure adapted for chemical derivatization (CD) of drugs and their isotopically labeled analogs CD groupa
Procedurea General step: To a 16 100-mm glass tube, add 5 μL analyte (1 mg/mL) or 50 μL internal standard (0.1 mg/mL). Evaporate the solvent to dryness under a stream of nitrogen at 50 oC.
Derivatization with one derivatization group Methyl
To the dried analyte (see the procedure described in the “General step” entry), add 100 μL freshly prepared TMAH/DMSO (1:20) solution and, 2 min later, 100 μL iodomethane. Vortex-mixed briefly, and incubate for 10 min at 40 oC in a heating block. Add 2 mL 0.1-N NaOH and 2 mL n-hexane. Mix thoroughly and centrifuge at 1500 rpm. Isolate the organic phase by decanting after freezing the lower aqueous layer in liquid nitrogen. Dry the organic phase at 50 oC under nitrogen. Reconstitute with ethyl acetate for GC-MS analysis [13,14].
Ethyl
Same as "Methyl" procedure, except iodoethane was used as the derivatization reagent [13,15].
Propyl
Same as "Methyl" procedure, except iodopropane was used as the derivatization reagent [13,15].
Butyl
Same as "Methyl" procedure, except iodobutane was used as the derivatization reagent [13,15].
PFPoxy
To the dried analyte (see the procedure described in the “General step” entry), add 50 μL PFP-OH. Cap the tube, mix and incubate for 30 min at 60 °C in a dry heating block. Cool the mixture, then evaporate to dryness at 50°C under nitrogen. Reconstitute with ethyl acetate for GC/MS analysis [16–21].
HFPoxy
Same as "PFPoxy" procedure, except HFP-OH was used as the derivatization reagent [16–21].
Acetyl
To the dried analyte (see the procedure described in the “General step” entry), add 50 μL AA and 200 μL pyridine. Cap the tube, mix, and incubate for 20 min at 80 oC in a heating block. Evaporate the solvent to dryness at 50 oC under nitrogen. Reconstitute with ethyl acetate for GC-MS analysis [13,15,22].
TCA
To the dried analyte (see the procedure described in the “General step” entry), add 150 μL 0.1 mg/mL dimethylaminopyridinein acetoneand 75 μL TCAA, then vortex-mixed for approximately 30 s. Wash the derivatized specimens with a solution of water, 1.5M carbonate buffer (pH = 9.5), and 1-N NaOH (1:0.5:0.4 by volume). Cap the tubes, vortex-mixed for 30 s, then incubate for 45 min at 60 oC in a heating block. Cool the mixture, then centrifuge for 5 min. Freeze the lower aqueous phase and decant the organic phase to a clean tube and evaporate to dryness under a stream of nitrogen at 50 oC. The residue was reconstituted with ethyl acetate for GCMS analysis [3,23].
TFA
To the dried analyte (see the procedure described in the “General step” entry), add 100 μL TFAA. Cap the tube, mix, and incubate for 20 min at 80 oC in a heating block. Evaporate the solvent to dryness at 50 oC under nitrogen. Cool the mixture for GC-MS analysis [9,15,23–26].
Propionyl To the dried analyte (see the procedure described in the “General step” entry), add 30 μL PA. Cap the tube, mix, and incubate for 15 min at 56 oC in a heating block. Add 1 mL hexane/chloroform (3:1) and 100 μL 50% ammonium hydroxide. Mix thoroughly and centrifuge at 1500 rpm. Isolate the organic phase by decanting after freezing the lower aqueous layer in liquid nitrogen. Evaporate the solvent to dryness at 50 oC under nitrogen. Reconstitute with ethyl acetate for GC-MS analysis [15]. PFP
To the dried analyte (see the procedure described in the “General step” entry), add 100 μL PFPA. Cap the tube, mix, and incubate for 20 min at 80 oC in a heating block. Evaporate the solvent to dryness at 50 oC under nitrogen. Cool the mixture for GC-MS analysis [3,9,15,24,26–28].
HFB
To the dried analyte (see the procedure described in the “General step” entry), add 100 μL HFBA. Cap the tube, mix, and incubate for 20 min at 80 oC in a heating block. Add 1 mL hexane/chloroform (3:1), and 100 μL 50% ammonium hydroxide. Mix thoroughly and centrifuge at 1500 rpm. Isolate the organic phase by decanting after freezing the lower aqueous layer in liquid nitrogen. Evaporate the solvent to dryness at 50 oC under nitrogen. Reconstitute with ethyl acetate for GC-MS analysis [3,9,15,23–30].
PFB
To the dried analyte (see the procedure described in the “General step” entry), add 100 μL acetone and 100 μL PFBC and 1 mL 1chlorobutane. Cap the tube, mix, and incubate for 30 min at 80 oC in a heating block. Evaporate the solvent to dryness at 50 oC under nitrogen. Reconstitute with ethyl acetate for GC-MS analysis [27,28].
4-CB
To the dried analyte (see the procedure described in the “General step” entry), add 200 μL of 4-CBC solution (1:100 in 1-chlorobutane, v/v, prepared fresh daily). Cap the mixture, vortex-mixed, and incubate for 30 min at 50–60 oC. Convert excess acid chloride to diethyl ester by adding 0.3 mL of anhydrous ethanol, vortex-mixed, and incubate for 30 min at 50–60 oC. Carefully evaporate to dryness (to avoid evaporative loss of derivatives). Reconstitute the residue with ethyl acetate for GC-MS analysis [9,31].
Propylformyl
To the dried analyte (see the procedure described in the “General step” entry), add 100 μL propyl chloroformate. Cap the tube, mix, and incubate for 20 min at 80 oC in a heating block. Evaporate the solvent to dryness at 50 oC under nitrogen. Cool the mixture for GC-MS analysis [23–26].
l-TPC
To the dried analyte (see the procedure described in the “General step” entry), add 0.5 mL saturated potassium carbonate.4 mL nhexane and 50 μL l-TPCC. Mix thoroughly and centrifuge at 3000 rpm. Isolate the organic phase by decanting after freezing the lower aqueous layer in liquid nitrogen. Evaporate the solvent to dryness at 50 oC under nitrogen. Reconstitute with ethyl acetate for GCMS analysis [22,29].
Chapter 2 — Chemical Derivatization and Mass Spectrometric Data Collection © 2010 by Taylor and Francis Group, LLC
16
Table 2-3. (Continued) CD groupa
Procedurea
l-MTPA
To the dried analyte (see the procedure described in the “General step” entry), add 50 μL N,N-dicyclohexycarbodiimide and 100 μL l-MTPA. Cap the tube, mix, and incubate for 20 min at 70 oC in a heating block. Evaporate the solvent to dryness at 50 oC under nitrogen. Reconstitute with ethyl acetate for GC-MS analysis [22].
TMS
To the dried analyte (see the procedure described in the “General step” entry), add 50 μL MSTFA (with 1% TMCS). Cap the tube, mix, and incubate for 20 min at 90 oC in a heating block. Cool the mixture, then add ethyl acetate for GCMS analysis [3,6,15,32–38].
t-BDMS
To the dried analyte (see the procedure described in the “General step” entry), add 50 μL acetonitrile and 50 μL MTBSTFA (with 1% TBDMCS). Cap the tube, mix, and incubate for 20 min at 90 o C in a heating block. Cool the mixture for GC-MS analysis [3,15,23,38,39].
Methoxyimino
To the dried analyte (see the procedure described in the “General step” entry), add 30 μL pyridine containing 2% methoxyamine HCl. Keep the tube at room temperature for 15 min. Evaporate the solvent to dryness under a stream of nitrogen at 50 oC. Reconstitute with ethyl acetate for GC-MS analysis [15,37,40–45].
Hydroxylimino
To the dried analyte (see the procedure described in the “General step” entry), add 2 mL 0.1-M acetate buffer (pH = 4.5) and 0.5 mL 10% hydroxylamine. Cap the tube, vortex, and incubate at 60 oC with in a heating block for 1 hr. Add 800 μL NaHCO3 to extract for 10 min and add 3 mL methyl dichloride. Mix thoroughly and centrifuge at 1500 rpm. Isolate the organic phase by decanting after freezing the lower aqueous layer in liquid nitrogen [35,36].
Derivatization with more than one derivatization group Ethyl/acetyl
Follow the “Ethyl” procedure to the point where the product is dried, then proceed with the “Acetyl” procedure [13,15,22].
Ethyl/TMS
Follow the “Ethyl” procedure to the point where the product is dried, then proceed with the “TMS” procedure [3,13,15,32–38].
Ethyl/t-BDMS
Follow the “Ethyl” procedure to the point where the product is dried, then proceed with the “t-BDMS” procedure [3,13,15,23,38,39].
Propyl/TMS
Follow the “Propyl” procedure to the point where the product is dried, then proceed with the “TMS” procedure [3,6,13,15,32– 38].
Butyl/TMS
Follow the “Butyl” procedure to the point where the product is dried, then proceed with the “TMS” procedure [3,6,13,15,32– 38].
Acetyl/TMS
Follow the “Acetyl” procedure to the point where the product is dried, then proceed with the “TMS” procedure [3,6,13,15,16,18,32– 38].
Acetyl/t-BDMS
Follow the “Acetyl” procedure to the point where the product is dried, then proceed with the “t-BDMS” procedure [3,13,15– 23,38,39].
TFA/methyl
Follow the “TFA” procedure to the point where the product is dried, then proceed with the “Methyl” procedure [9,13–15,23– 26,46,47].
TFA/HFPoxy
To the dried analyte (see the procedure described in the “General step” entry), add 50 μL TFAA and 50 μL HFP-OH. Cap the tube, mix and incubate for 30 min at 60 °C in a dry heating block. Cool the mixture, then evaporate to dryness at 50 °C under nitrogen. Reconstitute with ethyl acetate for GC/MS analysis [9,15,17–20,23–26,47].
TFA/TMS
Follow the “TFA” procedure to the point where the product is dried, then proceed with the “TMS” procedure [3,6,7,9,15,23– 26,32–38].
TFA/t-BDMS
Follow the “TFA” procedure to the point where the product is dried, then proceed with the “t-BDMS” procedure [3,9,15,23– 26,39].
PFP/PFPoxy
Same as "TFA/HFPoxy" procedure, except PFPA and PFP-OH were used as the derivatization reagents [3,9,15–20,24,26–28,47].
PFP/TMS
Follow the “PFP” procedure to the point where the product is dried, then proceed with the “TMS” procedure [3,6,9,15,21,24,26– 28,32–37].
PFP/t-BDMS
Follow the “PFP” procedure to the point where the product is dried, then proceed with the “t-BDMS” procedure [3,9,15,21,23,24, 26–29,38].
HFB/HFPoxy
Same as "TFA/HFPoxy" procedure, except HFBA and HFP-OH were used as the derivatization reagents [3,9,15,20,23–26,45,47].
HFB/TMS
Follow the “HFB” procedure to the point where the product is dried, then proceed with the “TMS” procedure [3,6,9,14,15,21,23– 30,32–39,48].
HFB/t-BDMS
Follow the “HFB” procedure to the point where the product is dried, then proceed with the “t-BDMS” procedure [3,5,9,15,21,23– 30,38].
Isotopically Labeled Analog as Internal Standard for Drug Quantitation — Methodology © 2010 by Taylor and Francis Group, LLC
17
Table 2-3. (Continued) CD groupa
Procedurea
Methoxyimino/ethyl
Follow the “Methoxyimino” procedure to the point where the product is dried, then proceed with the “Ethyl” procedure[13,15,37,40–45].
Methoxyimino/ethyl/propionyl
Follow the “Methoxyimino/ethyl” procedure to the point where the product is dried, then proceed with the “Propionyl” procedure [13,15,37,40–45].
Methoxyimino/ethyl/TMS
Follow the “Methoxyimino/ethyl” procedure to the point where the product is dried, then proceed with the “TMS” procedure [3,6,13,15,32–38,40–45].
Methoxyimino/acetyl/TMS
Follow the “Methoxyimino” procedure to the point where the product is dried, then proceed with the “Acetyl/ TMS” procedure [3,6,13,15,22,32–38,40–45].
Methoxyimino/propionyl
Follow the “Methoxyimino” procedure to the point where the product is dried, then proceed with the “Propionyl” procedure [13,15,37,40–45].
Methoxyimino/propinoyl/TMS
Follow the “Methoxyimino/propionyl” procedure to the point where the product is dried, then proceed with the “TMS” procedure [3,6,13,15,32–38,40–45].
Methoxyimino/HFB
Follow the “Methoxyimino” procedure to the point where the product is dried, then proceed with the “HFB” procedure [3,9,15,23–30,37,40–45].
Methoxyimino/TMS
Follow the “Methoxyimino” procedure to the point where the product is dried, then proceed with the “TMS” procedure [3,6,15,32–38,40–45].
Methoxyimino/t-BDMS
Follow the “Methoxyimino” procedure to the point where the product is dried, then proceed with the “t-BDMS” procedure [3,15,23,33,37–45].
Hydroxylimino/ethyl
Follow the “Hydroxylimino” procedure to completion, then proceed with the “Ethyl” procedure [13,15,35,36].
Hydroxylimino/ethyl/propionyl Follow the “Hydroxylimino/ethyl” procedure to the point where the product is dried, then proceed with the “Propionyl” procedure [13,15,35,36]. Hydroxylimino/ethyl/TMS
Follow the “Hydroxylimino/ethyl” procedure to the point where the product is dried, then proceed with the “TMS” procedure [3,6,13,15,32–38,42].
Hydroxylimino/propionyl
Follow the “Hydroxylimino” procedure to completion, then proceed with the “Propionyl” procedure [15,35,36].
Hydroxylimino/propionyl/TMS Follow the “Hydroxylimino/propionyl” procedure to the point where the product is dried, then proceed with the “TMS” procedure [6,15,32–38]. Hydroxylimino/HFB
Follow the “Hydroxylimino” procedure to completion, then proceed with the “HFB” procedure [3,9,23–30, 35,36].
Hydroxylimino/TMS
Follow the “Hydroxylimino” procedure to completion, then proceed with the “TMS” procedure [35,36].
a
Abbreviations for derivatization groups and derivatization reagents are shown in Table 2-2.
The CC data between the corresponding ions designating SB and its 2H- and 13C-analogs (SB-d5 and SB13C )—all as butyl derivatives—have been studied 4 thoroughly [8]. Using the protocol established in that study [8], SB and SB-d5—all as butyl derivatives—are adapted as the exemplar system, in the following sections, to illustrate the determination and evaluation of CC data for the ion-pairs designating the analytes and the ISs of interests. A. Full-Scan Mass Spectra Full-scan mass spectra of SB and SB-d5, are shown in Figure 2-1. Also shown in Figure 2-1 is the full-scan mass
spectrum of pentobarbital, serving as an IS in a later application to determine the intensities of ions resulting from SB and SB-d5. Since ion intensity data of full-scan spectra are inherently less accurate, they are not used directly to derive CC information. Rather, these data are used to preliminarily select analogous ion-pairs that are apparently free of (or with minimal) CC between SB and SB-d5. Ion-pairs thus selected for CC studies for the SB/ SB-d5 system (all as butyl derivatives) are m/z 207/212, 224/229, 279/284, 321/326, 263/268, and 350/355. The relative intensities of these ions in their respective fullscan mass spectra are shown in the second column of Table 2-4. Selected ion monitoring (SIM) protocols are then used to collect ion intensity data for these ions.
Chapter 2 — Chemical Derivatization and Mass Spectrometric Data Collection © 2010 by Taylor and Francis Group, LLC
18
Relative Int. (%)
100
A
109.1
Secobarbital, di-butyl derivative
263.2
H 2C HC H 2C N H 2C H 2C HC C 4H 9 O CH 3
H 3C
50
279.2
C 4H 9 O N
O
168.1
81.1
C20H34N2O3 MW: 350.49 207.1
224.2
321.3
309.3
350.3
0 50
100
150
Relative Int. (%)
100
B
D 2C DC D 2C H 2C H 2C HC
300
350
285.3
C20H29D5N2O3 MW: 355.53
CH 3
C 4H 9
O
400
Secobarbital-d5, di-butyl derivative
268.3
N
229.2
212.2
173.1
114.1
86.1
250
C 4H 9 O N
O H 3C
50
200
326.3
309.3
355.4
0 50
100
150
200
250
300
350
400
m/z
Relative Int. (%)
100
C
O H 3C
50
H 3C H 2C H 2C HC
H 2C
97.1 69.1
CH 3
251.2
C 4H 9 O N
Pentobarbital, di-butyl derivative
268.2
195.1
N O
C19H34N2O3 MW: 338.48
C 4H 9
156.1
213.2
309.3
170.1
141.1
337.3
0 50
100
150
200
250
300
350
Figure 2-1. Mass spectra and structures of secobarbital (A); secobarbital-d5 (B); and pentobarbital (C) — all as butyl-derivatives.
B. Selected Ion Monitoring and Calculation of Ion Cross-Contribution Data 1. Direct Measurement [8,13] Raw SIM intensities of the selected ions for the SB/ SB-d5 system are shown in the third column of Table 24. Intuitively, contribution by the IS to the intensity of the ion designating the analyte (and vice versa) can be determined by a direct measurement method [13]. Specifically, the intensities of the ions designating the analyte and the IS are determined in two separate SIM runs; each run includes only a single and equal quantity of these two compounds. To determine the CC of the IS to the analyte, the intensity of the ion of interest (the ion designating the analyte) measured during the IS run is divided by the intensity of this ion measured during the analyte run. Similarly, to determine the CC of the analyte to the IS, the intensity of the ion of interest (the ion designating the IS) measured during the analyte run is divided by the intensity of this ion measured during the IS run.
Cross-contribution data derived from the direct measurement method [46] are listed inside parentheses following the SIM ion intensity data in the third column. For example, the SIM intensities (peak area) observed for m/z 207, an ion designating SB, were 925,096 and 38,264 when equal quantities of SB and SB-d5 were analyzed. Thus, the CC of SB-d5 to m/z 207 designating SB is 38,264/925,096 or 4.14%. Similarly, the contribution of SB to m/z 212 designating SB-d5 is 38,464/744,493 or 5.17% (see the data shown in the lower section of the table). Several factors may affect the accuracy of the CC data derived from the direct measurement method [46]. The exact quantities of the analyte and the ILA introduced into the GC/MS system, in two separate injections for ion intensity measurements, may not be exactly the same. This is due to variations in the following factors associated with the overall sample preparation process: (a) errors associated with pipetting process and the exact concentrations of the standards; (b) degrees of completeness in the chemical derivatization step; and (c)
Isotopically Labeled Analog as Internal Standard for Drug Quantitation — Methodology © 2010 by Taylor and Francis Group, LLC
19
Table 2-4. Selected ion monitoring (SIM) ion intensity and cross-contribution (inside parentheses in %) data for ions designating secobarbital (SB) and its 2H5-analog (SB-d5), all as butyl-derivatives — “Direct”, “normalized direct”, and “internal standard” methods Secobarbital run (raw data) Ion Full-scan SIM ion intensity (m/z) (% int.) (% CC by SB-d5)a,c
Secobarbital-d5 run (raw data) Full-scan SIM ion intensity (% int.) (% CC by SB)
Normalizing the int. of m/z 355 to the int. of 350 (% CC by SB)b
Normalized based on the int. of m/z 251 (IS) in both runs (% CC by PB)c,d
Ions designating secobarbital 207 224 263 279 321 350
17.4 26.6 79.1 100 19.2 9.22
925,096 (4.14; 4.61; 4.44) 1,034,712 (3.02; 3.37; 3.24) 2,488,715 (0.24; 0.27; 0.26) 1,913,756 (15.4; 17.1; 16.5) 495,689 (7.02; 7.84; 7.54) 229,821 (0.00; 0.00; 0.00)
0.33 0.90 0.17 11.2 1.75 0.00
38,264 31,225 5,916 293,787 34,814 0
42,687 34,835 6,599 327,749 38,838 0
41,080 33,523 6,351 315,409 37,376 0
Ions designating secobarbital-d5 212 229 268 284 326 355 a
b c d
0.67 0.02 0.59 0.02 0.01 0.01
38,464 1,282 25,631 764 444 2,917
22.3 30.1 100 65.9 25.2 12.5
744,493 (5.17) 864,457 (0.15) 2,450,410 (1.05) 1,509,669 (0.051) 551,825 (0.080) 206,007 (1.42)
830,556 (4.63) 964,388 (0.13) 2,733,677 (0.94) 1,684,187 (0.045) 615,616 (0.072) 229,821 (1.27)
799,288 (4.81) 928,081 (0.14) 2,630,760 (0.97) 1,620,781 (0.047) 592,439 (0.075) 221,169 (1.32)
The first, second, and third “% CC” data shown inside parentheses were derived, respectively, from raw data, normalizing the intensities of the molecular ion for SB-d5 to that of SB, and normalizing the intensities of all ions for SB-d5 based on the intensities of the selected ion (m/z 251) of the IS (pentobarbital) observed in both runs. The ion intensities of all ions were normalized based on the assumption that the intensity of the molecular ion (m/z 355) of SB-d5 is the same as the molecular ion (m/z 350) of SB in two separate runs. New % CC data were calculated and included inside parentheses. SIM ion intensities of the IS (m/z 251) observed from the same amount of pentobarbital included in the SB and SB-d5 runs were 3,965,624 and 3,693,741, respectively. These normalized SIM ion intensity data were obtained by multiplying the corresponding raw SIM ion intensity data by a factor of “3,965,624/ 3,693,741 = 1.0736”. New % CC data were calculated and included inside parentheses.
losses due to adsorption and resolubitization. Secondly, the GC/MS conditions for measurement cannot be exactly reproduced in two separate experiments. Furthermore, the intensity of the “interfering” ion derived from the “interfering” isotopic analog is significantly lower than the intensity of the same ion derived from the isotopic analog accepting CC. Parameters, including threshold, peak width, peak position settings, that are required to generate the same level of accuracy for both low and high ion intensities, are not easily achievable [49]. Thus, other methods have also been studied for the derivation of CC data. 2. Normalized Direct Measurement [8,13] The normalized direct measurement approach assumes that equimolar amounts of the isotopic analogs produce the same base-ion intensities. Thus, the intensities of ions observed from two separate experiments for the analyte/ ILA pair are first normalized with the assumption that the intensities of their respective molecular ions (m/z 350 and 355, in this case) are the same. These normalized data are
taken as true ion intensities generated by the same amount of the isotopic pair and used for the calculation of CC data. Again, using the SB/SB-d5 data shown in Table 2-4 as the example, the intensity of the molecular ion for SB (m/z 350) observed during the SIM run, was 229,821. On the other hand, the intensity for the corresponding ion (m/z 355) for SB-d5, in the SB-d5 run, was 206,007 (see data shown in the lower section of the table). For intensity normalization purpose, all ion intensity data derived from the SB-d5 run were adjusted by a factor of 229,821/ 206,007 (or 1.1156) and shown in the 6th column in Table 2-4. For example, the normalized intensity for the ion m/z 207 collected during the run including only SB-d5 is now 38,264 1.1156 (or 42,687) and shown in the sixth column of the table. Thus, the CC of SB-d5 to m/z 207 designating SB is 42,687/925,096 or 4.61% and shown in the third column inside the parentheses after the data derived from the direct measurement method. Similarly, the CC of SB to m/z 212 designating SB is 38,464/830,556 or 4.63% (see the data shown in the lower section of the table).
Chapter 2 — Chemical Derivatization and Mass Spectrometric Data Collection © 2010 by Taylor and Francis Group, LLC
20
3. Internal Standard Method [8] For the internal standard method, a set amount of a chromatographically resolved third compound is incorporated into the two separate experiments for the analyte/ ILA pair to serve as the IS for ion intensity measurement. Variations in the GC-MS conditions and the sample preparation process are compensated for by normalizing the observed intensities of ions designating the analyte/ ILA pair to the intensity of a selected ion derived from the IS. The SB/SB-d5 system was again adapted in this study using pentobarbital as the IS. Pentobarbital was selected as the IS for ion intensity measurement because of the similarity in the structural features and presumably, the resulting spectral and chromatographic characteristics. For ion intensity normalization purpose, the intensity of the ion m/z 251 (designating pentobarbital) was adapted as the IS. Specifically, the intensities of ions observed in the SB-d5 runs are multiplied by a correction factor. This correction factor is the ratio of the intensities of the ion (m/z 251) derived from the same amount of pentobarbital incorporated into the SB and the SB-d5 runs. Since the intensities of m/z 251 observed in the SB and the SB-d5 runs were 3,965,624 and 3,693,741, respectively (footnote c in Table 2-4), the correction factor is 3,965,624/3,693,741 (or 1.0736). Thus, the normalized intensity of the ion m/z 207 (designating SB) collected during the SB-d5 run is: 38,264 1.0736 (or 41,080). Normalized data derived from the internal standard method are shown in the last column in Table 2-4. These data are then used for the calculation of CC data. For example, the CC of SB-d5 to m/z 207 (designating SB) based on the normalized intensity data is: 41,080/925,096 or 4.44% and shown in the third column as the last entry inside the parentheses. Similarly, the CC of SB to m/z 212 (designating SB-d5) is 38,464/ 799,288 or 4.81% (see the data shown in the lower section of the table). 4. Standard Addition Method Again, data derived from the SB/SB-d5 system (as butyl-derivatives) are used to illustrate the calculation of CC data by the standard addition method. The standard addition approach requires two sets of experiments for each analyte/ILA pair. Specifically, two sets of experiments required for evaluating the CC data between SB and SBd5 are: (a) the contribution of SB (interfering analog) to
the intensities of ions designating SB-d5 (analog suffering interference); and (b) the contribution of SB-d5 (interfering analog) to the intensities of ions designating SB (analog suffering interference). Using set “(a)” experiments as an example, the purpose is to find out to what percentages the intensities of ions m/z 212, 229, 268, and 285 (ions designating SB-d5—the analog suffering interference) are contributed by SB when the same amounts of SB and SB-d5 are present. Since these ions are used to designate SB-d5, their intensities derived from the presence of SB-d5 are much higher, while their intensities due to the presence of the same amount of SB would be minimal if any. Furthermore, the intensity for each of these ions resulting from the presence of a set amount of SB-d5 (or SB) will not be the same. Thus, the amount of each “addition” of the “standard” (SB-d5) that is needed to make the optimal increase in the intensity (1/2 to 2 times of the original signal derived from 5 μg of SB) also varies with the ion (m/z 212, 229, 268, and 285) to be evaluated. For this specific example, the amounts of the analog suffering interference (SB-d5) added in each of the four “addition” processes for each ion evaluated are shown in Table 2-5. Data derived from set “(a)” experiments for the evaluation of CC data for m/z 212 are shown in Table 26. Intensity data resulting from these “addition” experiments were used in three different ways to estimate the intensities of these ions before the “addition”—the intensity of m/z 212 in 5 μg of SB. First, ion intensities observed from each series of “additions”, which included the addition of none and four levels of SB-d5, were used directly (Row “A” in Table 2-6). For the second method (Row “B” in Table 2-6), ion intensities were first normalized to the base-ion intensity (m/z 279) resulting from the presence of 5 μg SB in each run. For the third method (Row “C” in Table 2-6), ion intensities were first normalized to the intensity of an ion (m/z 251) resulting from a set amount of a third compound (pentobarbital) Table 2-5. Quantities (μg) of SB-d5 used (in the standard addition method) to determine SB’s contribution to the intensities of ions (m/z) designating SB-d5
Aliquot
212
1st 2nd 3rd 4th 5th
0 0.10 0.20 0.30 0.40
Ion to be evaluated 229 268 0 0.10 0.20 0.30 0.40
Isotopically Labeled Analog as Internal Standard for Drug Quantitation — Methodology © 2010 by Taylor and Francis Group, LLC
0 0.075 0.15 0.25 0.30
285 0 0.025 0.050 0.075 0.10
21
Table 2-6. Calculation of SB’s contribution to m/z 212 (an ion designating SB-d5) by the “standard addition” method using raw (A) and normalized (B and C) SIM ion intensity data Method A B C
Quantity (μg) of SB-d5 added into 5 μg SB; Ion intensity observed with the addition of each aliquot 0 1.705 x 105 8.791 x 10-3 6.233 x 10-3
0.10 3.099 x 105 1.431 x 10-2 1.012 x 10-2
0.20 4.072 x 105 1.855 x 10-2 1.318 x 10-2
0.30 5.399 x 105 2.778 x 10-2 1.896 x 10-2
incorporated in each run. These normalized ion intensities data were then used for CC data evaluation for methods “B” and “C”. With the “standard addition” approach, the intensity (y) of the ion of interest observed in the test sample was plotted against the quantity (x) of the “standard” added. Least-square fit equation and correlation coefficient data for the exemplar set “(a)” experiments for ion m/z 212 are shown in the 3rd and the 2nd columns (from the right) in Table 2-6. The least-square fit equation was then used to calculate the equivalent quantity of the “standard” (SB-d5) in the test sample (5 μg SB) prior to the addition of the “standard”, i.e., the x value when y = 0 [50,51]. Resulting equivalent quantities of the “standard” are then divided by the quantity of the interfering compound (5 μg SB) and presented in percentage in the last column in Table 2-6. These are the percent CC data. Data derived from these three versions of the standard addition method for ion m/z 212 in the exemplar set “(a)” experiments are plotted in Figure 2-2. The quality of the regression lines derived from methods “A’ and “C” appear to be slightly better. This is also true for other data derived from the determination of CC data for others ions (data not shown).
0.40 5.906 x 105 2.960 x 10-2 2.128 x 10-2
Linearity regression Equation Coefficient y = 1077124x + 186834 r2 = 0.9831 y = 0.05508x + 0.008787 r2 = 0.9707 y = 0.03893x + 0.006169 r2 = 0.9867
Calculated contribution 3.47% 3.19% 3.17%
C. Assessing the Accuracy of Empirically Determined Cross-Contribution Data [38] Included in Table 2-7 are summaries of CC data for ion-pairs that may potentially be used for designating SB and SB-d5 in quantitative SIM GC/MS analytical protocols. These data were derived from direct measurement, normalized direct measurement, internal standard, and three variations of standard addition methods. All methods produce practically the same order in magnitude of CC data, among ion-pairs derived from each isotopic analog. Thus, all methods can be used to select the best ionpair within a selected analyte/ILA pair for the intended quantitative analysis protocol [8]. However, which method would produce the most accurate CC data requires further investigation. The six sets of CC data shown in Table 2-7 came from two sets of experiments. Specifically, the data derived from the direct measurement, normalized direct measurement and internal standard methods were obtained from one set of experiments, while those derived from the three versions of the standard addition method were obtained in another set of experiments. It is also noted that the three
Figure 2-2. Evaluation of ion intensity derived from the interfering analog by standard addition method. Ion intensities adopted for calculation are based on: (A) raw intensity data; (B) data normalized to the most intense ion of the interfering analog and (C) data normalized to a selected ion (m/z 251) derived from a reference compound (pentobarbital). Chapter 2 — Chemical Derivatization and Mass Spectrometric Data Collection © 2010 by Taylor and Francis Group, LLC
22
Table 2-7. Cross-contribution (in %) to intensities of ions designating the analyte and its isotopic analog Ion (m/z)
Direct
Normalized Internal direct standard
Mean
A
Standard additiona B C Mean
0.85 2.70 0.072 1.55 —b —
1.07 2.64 0.046 1.57 — —
0.89 2.72 0.049 1.49 — —
0.94 2.69 0.056 1.54 — —
3.47 0.068 0.13 0.030 — —
3.19 0.049 0.15 0.094 — —
3.17 0.070 0.16 0.086 — —
3.28 0.062 0.15 0.070 — —
Ions designating secobarbital, but contributed by secobarbital-d5 207 224 263 280 321 350
4.14 3.02 0.24 2.14 7.02 0.00
4.63 3.38 0.27 2.41 7.87 0.00
4.43 3.23 0.25 2.20 7.51 0.00
4.40 3.21 0.25 2.25 7.47 0.00
Ions designating secobarbital-d5, but contributed by secobarbital 212 229 268 285 326 355
4.90 0.19 1.22 0.062 0.035 0.59
4.34 0.16 1.08 0.055 0.031 0.52
4.76 0.18 1.19 0.060 0.034 0.57
4.67 0.18 1.16 0.059 0.033 0.56
a
Ion intensity its used to derive the cross-contribution data were the observed value (for Method A), normalized to the base ion intensity of the analog receiving contribution (for Method B), and normalized to a selected ion (m/z 251) from a reference compound (pentobarbital) (for Method C). b Not determined.
subsets of CC data derived from these two separate sets of experiments are similar. Thus, two sets of mean values are calculated and shown in columns 5 and 9 in Table 2-7. A three-step process has been developed [32] to assess whether a set of empirically determined CC data for a specific ion-pair designating an analyte/IS system is accurate. Steps of this approach are first outlined, while details of each step will be further illustrated later: (a) a series of standard solutions are prepared and then analyzed to obtain a set of empirically observed concentrations; (b) the set of CC data (to be assessed) is used to derive a set of theoretically calculated concentrations for this set of standard solutions; and finally, (c) deviations of the empirically observed and the theoretically calculated concentrations from the expected concentrations of the set of standard solutions are compared. The closeness of these two sets of deviations is an indication of the accuracy of the set of CC evaluated. The empirically observed concentrations of individual standards deviate from their respective true values as a result of the true CC imbedded in the adopted ion-pair designating the analyte and the IS. Whether the theoretically calculated concentrations would deviate from the respective true values, to the same extents as the empirically observed data, reflects the accuracy of the empirically determined CC values used in the calculation. Thus, if the set of CC data is accurate, deviations resulting
from the theoretically calculated data, using this set of CC, should coincide well with that derived from the empirically observed values (permitting random experimental errors). On the other hand, significant differences between these two sets of deviation data indicate existence of significant random and/or systematic errors in deriving this set of CC data under examination. 1. Empirically Observed Concentration Data shown in Table 2-7 for the SB/SB-d5 system are used as the example. First, a series of standard solutions containing 50–4000 ng/mL SB and 500 ng/mL SB-d5 (as the IS) were prepared. Two sets of ion-pairs (m/z 207/212 and 263/268) with different levels of CC are adopted to illustrate (a) the effect of CC values on achievable linear range; and (b) how the accuracy of the empirically determined CC values is assessed. (It should be noted that, in a normal analytical protocol, the ion-pair with the most favorable CC, m/z 350/355 in this case, would be selected for quantitation purpose.) As shown in Table 2-7, ion-pair m/z 263/268 exhibits minimal CC; thus, adopting this ion-pair for quantitation can generate high-quality data. Data are shown in the lower section of Table 2-8 to serve as the “control”, proving deviations resulting from the ion-pair m/z 207/ 212 are indeed caused by the significant CC imbedded in
Isotopically Labeled Analog as Internal Standard for Drug Quantitation — Methodology © 2010 by Taylor and Francis Group, LLC
23
Table 2-8. Comparison of empirically determined and theoretically calculated data derived from adapting ionpairs with different levels of cross-contribution — Secobarbital/secobarbital-d5 (as butyl-derivatives) example
Theor. conc.
Empirically observed Ion int. Observed conc. ratio (% deviation)
Theoretically calculated with CC derived from the mean of Direct and normalized methodsa Standard addition methods b Ion int. Calculated conc. Ion int. Calculated conc. ratio (% deviation) ratio (% deviation)
m/z 207/212 (cross-contribution data: 4.40%/4.67%a; 0.94%/3.28%b) 50 80 100 200 300 500 800 1,000 1,300 1,700 2,000 3,000 4,000
0.1158 0.1727 0.2101 0.4220 0.6099 1.044 1.688 2.042 2.648 3.336 3.822 5.065 6.507
55.5 (+10.9) 82.7 (+3.35) 100.6 (+0.57) 202.1 (+1.03) 292.1 (–2.67) 500.0 (0.00) 808.5 (–1.03) 977.9 (–2.23) 1,268 (–2.49) 1,598 (–6.05) 1,831 (–8.50) 2,426 (–19.2) 3,116 (–22.1)
0.1521 0.2140 0.2551 0.4580 0.6570 1.044 1.598 1.951 2.457 3.093 3.542 4.892 6.052
72.9 (+45.7) 102.5 (+28.1) 122.2 (+22.2) 219.3 (+9.67) 314.7 (+4.89) 500.0 (0.00) 765.4 (–4.33) 934.4 (–6.56) 1,177 (–9.47) 1,481 (–12.9) 1,696 (–15.2) 2,343 (–21.9) 2,899 (–27.5)
0.1167 0.1802 0.2225 0.4320 0.6387 1.044 1.632 2.012 2.564 3.269 3.775 5.339 6.737
55.9 (+11.8) 86.3 (+7.91) 106.6 (+6.56) 206.9 (+3.45) 305.9 (+1.96) 500.0 (0.00) 781.8 (–2.28) 963.7 (–3.63) 1,228 (–5.54) 1,566 (–7.91) 1,808 (–9.60) 2,557 (–14.8) 3,226 (–19.3)
0.1052 0.1679 0.2097 0.4187 0.6276 1.045 1.670 2.086 2.709 3.589 4.159 6.220 8.269
50.3 (+0.63) 80.3 (+0.43) 100.3 (+0.34) 200.3 (+0.17) 300.3 (+0.097) 500.0 (0.00) 799.1 (–0.11) 998.2 (–0.18) 1,296 (–0.27) 1,693 (–0.39) 1,990 (–0.49) 2,976 (–0.79) 3,956 (–1.09)
m/z 263/268 (cross-contribution data: 0.25%/1.16%a; 0.056%/0.15%b) 50 80 100 200 300 500 800 1,000 1,300 1,700 2,000 3,000 4,000 a
b
0.1050 0.1684 0.2096 0.4173 0.6201 1.046 1.688 2.043 2.746 3.578 4.425 6.367 8.513
50.2 (+0.46) 80.6 (+0.74) 100.3 (+0.31) 199.7 (–0.17) 296.7 (–1.10) 500.0 (0.00) 807.5 (+0.93) 977.4 (–2.26) 1,314 (+1.07) 1,712 (+0.71) 2,117 (+5.85) 3,047 (+1.55) 4,073 (+1.83)
0.1080 0.1711 0.2131 0.3423 0.6310 1.045 1.659 2.064 2.663 3.451 4.032 5.914 7.715
51.7 (+3.33) 81.8 (+2.31) 101.9 (+1.95) 202.2 (+1.08) 301.9 (+0.63) 500.0 (0.00) 793.7 (–0.78) 987.3 (–1.27) 1,274 (–1.97) 1,651 (–2.88) 1,929 (–3.54) 2,830 (–5.68) 3,692 (–7.71)
Ion cross-contribution data used for theoretically calculation are means of the value derived from direct measurement, normalized direct measurement, and internal standard methods. The contribution of secobarbital-d5 to the intensities of ion designating secobarbital were 4.40% for m/z 207 and 0.25% for m/z 263; the contribution of secobarbital to the intensities of ions designating secobarbital-d5 were 4.67% for m/z 212 and 1.16% for m/z 268. Ion cross-contribution data used for theoretically calculation are means of the value derived from standard addition methods. The contribution of secobarbital-d5 to the intensities of ion designating secobarbital were 0.94% for m/z 207 and 0.056% for m/z 263; the contribution of secobarbital to the intensities of ions designating secobarbital-d5 were 3.28% for m/z 212 and 0.15% for m/z 268.
ion intensity measurement. With significant CC, the ionpair m/z 207/212 will generate quantitation data with significant deviations from their expected values; thus, making the following phenomena more apparent: (a) the effect of CC on achievable linear range and (b) whether the CCs of the ion-pair under evaluation are accurate. The ion intensity ratios shown in the second column of Table 2-7 are the empirically observed values for the ion-pairs designating SB and SB-d5. The concentrations shown in the third column are the empirically observed concentrations of these standard solutions based on the ratios shown in the second column, using the 500 ng/mL standard as the calibration standard.
The percentage figures shown inside parentheses in the third column are percentage deviations of the empirically observed from the true (or expected) concentrations. For the standard solutions containing 50 and 4000 ng/mL of SB, deviations of the empirically observed from the expected concentrations are much higher when the ion-pair m/z 207/212 are used to derive the quantitation data. This is an indication that the CC between SB and SB-d5 is much more significant for the ion-pair m/z 207/212 than m/z 263/268. Thus, the achievable linear range would be able to reach a lower concentration level when the ion-pair m/z 263/268 is used to designate SB/SB-d5.
Chapter 2 — Chemical Derivatization and Mass Spectrometric Data Collection © 2010 by Taylor and Francis Group, LLC
24
2. Theoretically Calculated Concentration As reported earlier [14], the CC phenomenon will cause the intensity ratio values, shown in the second column (Table 2-8), to deviate from a linear relationship when plotted against their respective concentrations. This non-linear relationship and the need for correction have also been emphasized by Duncan et al. [52]. A formula has been developed for calculating the theoretical ratio of a pair of ions designating the analyte and the IS [32]. This formula is further modified as shown in Equation 2-1. The objective here is to evaluate the accuracy of a set of CC data. For this purpose, two sets of CC data for the ion-pair m/z 207/212 derived from the SB/SB-d5 system (Table 2-7) are used as the example. The first set is the mean of the three values derived from the direct measurement, normalized direct measurement, and internal standard methods, while the another set is the mean of the three values derived from the three variations of the standard addition methods. For the first set, the CC of the SB-d5 to SB and SB to SB-d5 are 4.40% and 4.67%, respectively, while for the second set, the corresponding CC values are 0.94% and 3.28%. Each set of the CC data is used to derive a set of theoretical ion intensity ratios for a series of standard solutions. The calculated intensity ratios were then used to derive the theoretically calculated concentrations for this series of standard solutions. With two sets of CC data, two sets of calculated ratio/concentration figures are derived. These two sets of data are shown in the fourth/ fifth and the sixth/seventh columns in Table 2-8 as further described below. Theoretically calculated concentrations are derived with the following stipulations and steps: (a) the intensities of the ions, designating the analyte and the IS, increase Rcal + Ra = 1 +
(a – Ccal) Ccal (a – Ccal) Ccal
× (Rcal – Rcal × x)
Rcal [1 + =
× (1 × y)
1 +
(a – Ccal) Ccal (a – Ccal) Ccal
and decrease linearly with their concentrations; (b) the CC values (i.e., “analyte’s contribution to the intensity of the ion designating the IS” and the “IS’s contribution to the ion designating the analyte”) as empirically determined, are applied to arrive a theoretical analyte/IS ion intensity ratio for a standard solution with a specific analyte concentration; and (c) the resulting theoretical analyte/IS intensity ratio is then used to derive the theoretical analyte concentration for that specific standard solution. Thus, if the empirically determined CCs are inaccurate, the approach adapted in step “b” would embed a systematic error in the calculated concentrations. This error would allow for assessing the trueness of the CC values as discussed in the next section. With these stipulations and steps, a sample calculation, using the formula shown above and the ion-pair m/z 207/ 212 designating SB/SB-d5 as the example, is shown below. At 500 ng/mL, the average of the intensity ratio between m/z 207 (I207) and m/z 212 (I212) observed from repeated measurement is: I207 / I212 = 1.0443 / 1. Applying the first set of CC values (4.40% and 4.67%, mean values derived from the direct measurement, normalized direct measurement, and internal standard methods) into Equation 2-1, the theoretical ion intensity ratio (Ra) for the standard at 4,000 ng/mL is:
I212
(4,000 – 500) × (1 – 0.044)] 500 = 6.052 (4,000 – 500) 1+[ × 0.0467] 500
1.0443 × [1 +
I207 =
With this theoretically calculated ion intensity ratio, the resulting theoretically calculated concentration (X) of the analyte for the standard at 4,000 ng/mL can be calculated as follows: 1.0443 / 500 = 6.052 / X; X = 6.052 500 / 1.0443 = 2,899 ng/mL × (1 – x)] (2-1)
(2-1)
× y
where Ra = theoretically calculated anayte-to-IS intensity ratio when the analyte’s concentration = a; Rcal = anayte-to-IS intensity ratio when the analyte’s concentration = the IS’s concentration (as observed in the one-point calibration standard); Ccal = concnetration of the anayte and the IS of the one-point calibration standard; x= the contribution of the IS to the intensity of the ion designating the analyte (in %); and y= the contribution of the analyte to the intensity of the ion designating the IS (in %). Isotopically Labeled Analog as Internal Standard for Drug Quantitation — Methodology © 2010 by Taylor and Francis Group, LLC
25
Thus, the calculated concentration of the analyte is (2899 – 4000) / 4000, or –27.53%, lower than the expected value, 4,000 ng/mL. The theoretically calculated concentrations for the standards at other concentrations (and their deviations from their respectively expected values) are similarly calculated and placed in the fourth and fifth columns of Table 2-8. The second set of CC values (0.94% and 3.28%, mean values derived from the three variations of the standard addition method) is also used to calculate the theoretical ion intensity ratios, then the resulting theoretical concentrations, for standards at various concentrations. The resulting data are shown in the sixth and the seventh columns of Table 2-8.
3. Comparing Empirically Observed and Theoretically Calculated Concentrations — Graphic Presentation Shown in the third column of Table 2-8 are the empirically observed concentrations for the series of standard solutions under examination, while the theoretically calculated concentrations using two different sets of CC values are shown in the fifth and the seventh columns in the same table. Deviations (in %) of these concentrations from their respectively expected values are shown inside parentheses following the concentration data. These deviations data shown in the third, fifth, and seventh columns (Table 2-8) are graphically presented in Figure 2-3A as lines “a”, “b”, and “c”. Line “b” is signifi-
Ion-pair studied: m/z 207/212
(a) Empirically observed value (b) Calculated value using CC data derived from the mean of direct measurement and normalized methods (4.40%/4.67%) (c) Calculated value using CC data derived from the mean of standard addition methods (0.94%/3.28%)
Ion-pair studied: m/z 263/268
(a) Empirically observed value (b) Calculated value using CC data derived from the mean of direct measurement and normalized methods (0.25%/1.16%) (c) Calculated value using CC data derived from the mean of standard addition methods (0.056%/0.15%)
Figure 2-3. Deviations (in %) of secobarbital concentrations from the expected values in a set of standard solutions ranging from 50 to 4000 ng/mL: empirically observed (a) and theoretically calculated based on the mean of the cross-contribution data derived from direct measurement, normalized direct measurement, and internal standard methods (b); and means of the cross-contribution data derived from three version of the standard addition method (c). Part A (upper): Ions m/z 207 and 212 are adopted for designating secobarbital and secobarbital-d5, respectively. For line “b”, the cross-contributions of the IS to the analyte and the analyte to the IS are 4.40% and 4.67%, respectively. For line “c”, the corresponding cross-contribution data are 0.94% and 3.28%, respectively. Part B (lower): Same as Part A, except the ions adopted for designating the analyte and the IS are m/z 263 and 268, respectively; the corresponding cross-contribution data are 0.25% and 1.16% for line “b” and 0.056% and 0.15% for line “c”. Chapter 2 — Chemical Derivatization and Mass Spectrometric Data Collection © 2010 by Taylor and Francis Group, LLC
26
cantly different from line “a”, especially at the lower concentration end. This is an indication that the 4.40% (contribution of SB-d5 to the intensity of the ion, m/z 207, designating SB) used for theoretical calculation is too high. Similarly, the higher percentage of the theoretically calculated deviations at the higher concentration end can be attributed to the over-estimated contribution (4.67%) of SB to the intensity of the ion (m/z 212) designating SBd5. On the other hand, line “c” coincides well with line “a”, indicating the second set of CC data (0.94% and 3.28%) is a good estimate of the true values. Corresponding data for the ion-pair (m/z 263/268) with much smaller CC values are shown in Figure 2-3B. As expected, the empirically observed concentrations do not deviated significantly from the expected concentrations. Again, the deviations of line “b” from line “a” is more significant at the higher concentration end, indicating that the 1.16% (contribution of SB to the intensity of the ion, m/z 268, designating SB-d5) used for theoretical calculation is too high. 4. Summary In essence, the evaluation of a set of CC data constitutes the following steps: (a) preparing sets of standard solutions ranging from low to high analyte concentrations; (b) comparing the empirically observed concentrations against the expected concentrations for each of these standard solutions, then plotting “the difference (in %) between these two values at each concentration” against “the concentration of the standard”; (c) calculating the concentrations that should theoretically be “observed” when the CC factor is taking into account, then plotting “the difference (in %) between this theoretically observed concentration and the prepared concentration” against “the concentration of the standard”; and (d) Comparing the plots obtained in steps “(b)” and “(c)” to assess the accuracy of the CC data used in calculating the “theoretically observed concentration” used in step “(c)”. III. COMPILATION OF FULL-SCAN MASS SPECTRA AND ION INTENSITY CROSSCONTRIBUTION TABLES In addition to providing an overview on quantitation by the internal standard method using the analytes’ ILAs as the ISs, the main objective of this book is the compilation of full-scan mass spectra and ion intensity CC data for all
drugs with commercially available ILAs. Since the analysis of these drugs are accomplished by various derivatization approaches, the mass spectra and CC data are derived from various derivatives of these drugs. Derivatization reagents and the adapted derivatization procedures are first summarized in Tables 2-2 and 2–3. Information related to the generation and presentation of the mass spectra (Appendix One, pp 31–371) and CC data (Appendix Two, pp 373–492) are further described in the following sections. A. Derivatization Procedures, Instrumentation, and Analytical Parameters Derivatization procedures and reagents, as described in Table 2-3, are not necessarily the most effective ones for generating the intended products. They were merely used to produce the derivatives to generate the mass spectrometric information (full-scan spectra and SIM data) for evaluation. GC-MS analyses were performed on the following two systems: (a) an Agilent 6890 gas chromatograph equipped with an Agilent (Wilmington, DE) HP-ULTRA1 capillary column (crosslinked 100% methyl siloxane phase; 12-m, 0.20-mm ID, 0.33-μm film thickness) interfaced to an Agilent 5973 mass selective detector (Palo Alto, CA); (b) an Agilent 6890N gas chromatograph equipped with an Agilent (Wilmington, DE) HP-5 capillary column (crosslinked 5% phenyl methyl siloxane phase; 12-m, 0.20-mm ID, 0.33-m film thicknesses) interfaced to an Agilent 5975 mass selective detector (Palo Alto, CA). These systems were operated at 70 eV with helium as the carrier gas (flow rate: 1.0 mL/min). Injector, GCMS interface, and the ion source temperatures were set at 250, 290, and 230 oC, respectively. Various GC oven temperature and programming parameters were adapted for the analyses of the analytes and their ISs in various derivatization status or forms. Since chromatographic resolution is not the emphasis of this study, temperature and programming rates are not critical parameters and are not provided for individual analyses. B. Collection of Mass Spectrometric Data (Appendix One, pp 31–371) As described in Section II of this chapter, typically, a full-scan mass spectrum of a drug of interest was obtained by injecting the drug (in various derivatization forms)
Isotopically Labeled Analog as Internal Standard for Drug Quantitation — Methodology © 2010 by Taylor and Francis Group, LLC
27
into the GC-MS system. With a few exceptions, full-scan mass spectra were collected starting at m/z 40 or 50 and ended at a mass higher than the molecular weights of the derivatized products, rounded to the next 50 or 100. The drug’s ILAs were analyzed separately. Information derived from these ion chromatograms (retention time and mass spectrometric data) was used to characterize the analytes and their ILAs. Full-scan mass spectrometric data from these two runs were reviewed to select ions that may be suited for designating the analytes and the ISs in routine GC-MS protocols. The same drugs and their derivatized products were again injected (separately) into the GC-MS operated under SIM mode. Ions selected from the full-scan MS data for both the analyte and the IS were monitored. Mass spectrometric data derived from these SIM runs were then used to evaluate the CC data using the normalized direct measurement method as described in Section II of this chapter. Details of the methodology have been described in our earlier publications [8,13]. For presentation purpose, full-scan mass spectra were stored as digital data and then converted by the DeltaGraph software (Seattle, WA) into mass spectra of a more desirable format as shown in Part Two of this book. The mass spectra in these figures (Appendix One) are organized as follows. All mass spectra of a drug and its ILAs are presented in one figure. The mass spectra resulting from the use of one derivatization group for a specific drug and its ILAs are grouped together, followed by the same set of mass spectra resulting from the use of a different derivatization group. The appearance order of these groups of mass spectra follows the order of the derivatization groups listed in Table 2-2. For example, the mass spectra for all forms of derivatization for amphetamine are included in Figure I-1 (pp 39–56), where “I” is the designation of compound category, stimulant; and “1” is the designation of the first compound in this drug category, amphetamine. The mass spectra for the acetyl-derivatives of amphetamine and its ILAs (amphetamine-d5, amphetamine-d6, amphetamine-d8, amphetamine-d10 and amphetamine-d11) are grouped together and presented first as Figure I-1-A, where “A” is the designation of the “acetyl” derivatization group in this case. Corresponding mass spectra of these compounds, with other derivatization groups attached (such as TCA, TFA, TFA/t-BDMS, PFP, PFP/t-BDMS, HFB, HFB/tBDMS, 4-CB, PFB, propylformyl, l-TPC, d-TPC, lMTPA, d-MTPA, TMS and t-BDMS) are grouped
together, respectively, and presented in sequence as Figure I-1-B to Figure I-1-Q. The mass spectra for various forms of derivatives for methamphetamine are similarly grouped and presented in Figure I-2 (pp 57–71). Many of the mass spectra included in Appendix One have not been published in literature generally available to the scientific community. Certainly, they have not been systematically compiled as presented here and, therefore, should be of routine reference value to laboratories engaged in drug analysis. C. Ion Intensity Cross-Contribution Data (Appendix Two, pp 373–492) The second set of data (ion intensity CC data), as presented in Part Three of this book in table format, are pairs of ions with potential for designating the drugs and their ILAs. Cross-contribution data are calculated based on data derived from SIM runs using the normalized direct measurement method described in Table 2-4 of Section II in this chapter. Ion-pairs adopted for the normalization process are underlined. Ion-pairs included in each table are limited at two levels. First, full-scan data showing an ion-pair having >10% CC or with <10% relative intensity are not included in SIM data collection. At the second level, ion-pairs with CC >5% (based on SIM data) are also excluded from the table. Common practices in choosing the linear model for calibration mandate the use of ion-pairs with low CC for quantitation (or as a criterion for qualitative confirmation purpose). This is especially true when the calibration is to be established for a reasonable concentration range (e.g., in three orders of magnitude), as demonstrated in an earlier study [14]. An ion-pair with significant CC can be noted by the presence of the cross-contributing ion in the full-scan mass spectrum of the corresponding isotopic analog. The CC data may appear to be irrelevant in cases where the number of the isotopic atoms in the ILAs is so large that the analytes and the ISs are practically resolved chromatographically. However, these analogs (such as methamphetamine-d14) are still included in this study for the following two reasons: (a) to optimize the analytical time and to keep the system clean, chromatography is normally conducted at high temperatures resulting in inadequate resolution between the analyte and the IS; and (b) the retention time window set for automatic integration of ion intensities may not always be properly adjusted.
Chapter 2 — Chemical Derivatization and Mass Spectrometric Data Collection © 2010 by Taylor and Francis Group, LLC
28
The sequence and manner adapted to present CC data are different from that adapted for presenting the full-scan mass spectra in Appendix One. Specifically, CC data are presented in table format and the CC data for all chemical derivatization products for one specific isotopic analog are included in one table. For example, with six ILAs included in this project, amphetamine’s CC data are presented in six tables, ranging from Table I-1a to Table I-1f (pp 381–388), where “I” is the designation of compound category, stimulant; “1” is the designation of the first compound in this category, amphetamine; and “a” to “f” are the designations of the six isotopically labeled analogs). These six tables summarize the CC data for the following analyte/ILA pairings: amphetamine/amphetamine-d5 (Table I-1a), amphetamine/amphetamine-d5(ring) (Table I-1b), amphetamine/amphetamine-d 6 (Table I-1c), amphetamine/amphetamine-d8 (Table I-1e), amphetamine/amphetamine-d10 (Table I-1e), and amphetamine/ amphetamine-d11 (Table I-1f). Similarly, methamphetamine's CC data are presented in Table I-2a to Table I-12e (pp 388–393). Each table includes all derivatization groups that have been attempted. The order of appearance of these derivatization groups in each table is the same as those listed in Table 2-2 in this chapter. CONCLUDING REMARKS Following a review on: (a) the structural features of commonly encountered drugs; (b) commercially available isotopically labeled analogs of these drugs; and (c) commonly utilized chemical derivatization approaches, the authors have carried out a series of chemical derivatization experiments and collected a set of full-scan mass spectra and CC data for ion-pairs with potential for designating the analytes and their ILAs serving as the ISs. An approach for evaluating the accuracy of a set of specific CC data has been presented; however, the CC data summarized in Appendix Two have not been systematic validated. Full-scan mass spectra compiled in Appendix One represent the most comprehensive collection of mass spectra for these drugs and their isotopic analogs in various chemical derivatization forms. Comprehensive listings of CC data shown in Appendix Two should save an enormous amount of time and efforts for practicing laboratories in their search for this analytical parameter to establish optimal quantitation protocols.
REFERENCES 1. SOFT/AAFS Forensic Toxicology Laboratory Guidelines (2006 Version); Section 8 (www.soft-tox.org). 2. Liu RH, Lin T-L, Chang W-T, Liu C, Tsay W-I, Li J-H, Kuo T-L: Isotopically labeled analogues for drug quantitation; Anal Chem 74:618A; 2002. 3. Lin DL, Chang WT, Kuo TL, Liu RH: Chemical derivatization and the selection of deuterated internal standard for quantitative determination — Methamphetamine example; J Anal Toxicol 24:275; 2000. 4. Lin DL, Wang SM, Liu RH: Chemical derivatization in drug analysis — A conceptual review; J Food Drug Anal 16:1; 2008. 5. Smith FP, Kidwell D: Commentary on minimal standards for the performance and interpretation of toxicology tests in legal proceedings; J Forensic Sci 45:237; 2000. 6. Chang WT, Lin DL, Low IA, Liu RH: 13C4-Secobarbital as the internal standard for the quantitative determination of secobarbital — A critical evaluation; J Forensic Sci 45:659; 2000. 7. Chang WT, Liu RH: Mechanistic studies on the use of 2Hand 13C-analogs as internal standards in selected ion monitoring GC-MS quantitative determination — Butalbital example; J Anal Toxicol 25:659; 2001. 8. Chang WT, Lin DL, Liu RH: Isotopic analogs as internal standards for quantitative analyses by GC/MS — Evaluation of cross-contribution to ions designated for the analyte and the isotopic internal standard; Forensic Sci Int 121:174; 2001. 9. Valtier S, Cody JT: Evaluation of internal standards for the analysis of amphetamine and methamphetamine; J Anal Toxicol 19:375; 1995. 10. Urry FM, Kushnir M, Nelson G, McDowell M, Jennison T: Improving ion mass ratio performance at low concentration in methamphetamine GC-MS assay through internal standard selection; J Anal Toxicol 20:592; 1996. 11. Wu C-H, Huang M-H, Wang S-M, Lin C-C, Liu RH: Gas chromatography-mass spectrometry analysis of ketamine and its metabolites — A comparative study on the utilization of different derivatization groups; J Chromatogr A 1157:336; 2007. 12. Wu C-H, Yang S-C, Wang Y-S, Chen B-G, Lin C-C, Liu RH: Evaluation of various derivatization approaches for gas chromatography-mass spectrometry analysis of buprenorphine and norbuprenorphine; J Chromatogr A 1182:93; 2008. 13. Liu RH, Foster G, Cone EJ, Kumar SD: Selecting an appropriate isotopic internal standard for gas chromatography/mass spectrometry analysis of drugs of abuse — Pentobarbital example; J Forensic Sci 40:983; 1995. 14. Whiting TC, Liu RH, Chang W-T, Bodapati MR: Isotopic analogs as internal standards for quantitative analyses of drugs/metabolites by GC/MS — Non-linear calibration approaches; J Anal Toxicol 25:179; 2001.
Isotopically Labeled Analog as Internal Standard for Drug Quantitation — Methodology © 2010 by Taylor and Francis Group, LLC
29
15. Chen B-G, Wang S-M, Liu RH: GC-MS analysis of multiply-derivatized opioids in urine; J Mass Spectrom 42:1012; 2007. 16. Szirmai M, Beck O, Stephansson N, Halldin MM: A GCMS study of three major acidic metabolites of delta-1tetrahydrocannabinol; J Anal Toxicol 20:573; 1996. 17. Huang W, Moody DE, Andrenyak DM, Smith EK, Foltz RL, Huestis MA, Newton JF: Simultaneous determination of delta-9-tetrahydrocannabinol and 11-nor-9-carboxydelta-9-tetrahydrocannabinol in human plasma by solidphase extraction and gas chromatography-negative ion chemical ionization-mass spectrometry; J Anal Toxicol 25:531; 2001. 18. Bourland JA, Hayes EF, Kelly RC, Sweeney SA, Hatab MM: Quantitation of cocaine, benzoylecgonine, cocaethylene, methylecgonine, and norcocaine in human hair by positive ion chemical ionization (PICI) gas chromatography-tandem mass spectrometry; J Anal Toxicol 24:489; 2000. 19. Moore C, Guzaldo F, Donahue T: The determination of 11nor-delta-9-tetrahydrocannabinol-9-carboxylic acid (THCCOOH) in hair using negative ion gas chromatographymass spectrometry and high-volume injection; J Anal Toxicol 25:555; 2001. 20. Baptista MJ, Monsanto PV, Marques EGP, Bermejo A, Avila S, Castanheira AM, Margalho C, Barroso M, Vieira DN: Hair analysis for delta-9-THC, delta-9-THC-COOH, CBN and CBD, by GC/MS-EI comparison with GC/MSNCI for Delta-9-THC-COOH; Forensic Sci Int 128:66; 2002. 21. Jurado C, Gimenez MP, Menendez M, Repetto M: Simultaneous quantitation of opiates, cocaine and cannabinoids in hair; Forensic Sci Int 70:165; 1995. 22. Toseland PA: Determination of amphetamine as its Nacetyl derivative by gas-liquid chromatography; Clin Chem Acta 25:75; 1969. 23. Hornbeck CL, Czarny RJ: Quantitation of methamphetamine and amphetamine in urine by capillary GC/MS Part. I. Advantages of trichloroacetyl derivatization; J Anal Toxicol 13:144; 1989. 24. Elian AA: Detection of low levels of flunitrazepam and its metabolites in blood and bloodstains; Forensic Sci Int 101:107; 1999. 25. Hornbeck CL, Carrig JE, Czarny RJ: Detection of a GC/ MS artifact peak as methamphetamine; J Anal Toxicol 17:257; 1993. 26. Reagent insert; Pierce Biotechnology Inc: Rockford, IL; 2003. 27. Gilbert RB, Peng PI, Wong D: A labetalol metabolite with analytical characteristics resembling amphetamines; J Anal Toxicol 19:84; 1995. 28. Gan BK, Baugh D, Liu RH, Walia AS: Simultaneous analysis of amphetamine, methamphetamine, and 3,4-methylenedioxymethamphetamine (MDMA) in urine samples by solidphase extraction, derivatization, and gas chromatography/ mass spectrometry; J Forensic Sci 36:1331; 1991.
29. Cody JT, Schwarzhoff R: Interpretation of methamphetamine and amphetamine enantiomer data; J Anal Toxicol 17:321; 1993. 30. Jones JB, Mell LD: A simple wash procedure for improving chromatography of HFAA derivatized amphetamine extracts for GC/MS analysis; J Anal Toxicol 17:447; 1993. 31. Czarny RJ, Hornbeck CL: Quantitation of methamphetamine and amphetamine in urine by GC/MS Part. II. Derivatization with 4-carbethoxyhexafluorobutyl chloride; J Anal Toxicol 13:257; 1989. 32. Ropero-Miller JD, Lambing MK, Winecker RE: Simultaneous quantitation of opioids in blood by GC-EIMS analysis following deproteination, detautomerization of keto analytes, solid-phase extraction, and trimethylsilyl derivatization; J Anal Toxicol 26:524; 2002. 33. Wang WL, Darwin WD, Cone EJ: Simultaneous assay of cocaine, heroin and metabolites in hair, plasma, saliva and urine by gas chromatography-mass spectrometry; J Chromatogr B Biomed Appl 660:279; 1994. 34. Chen BH, Taylor EH, Pappas AA: Comparison of derivatives for determination of codeine and morphine by gas chromatography/mass spectrometry; J Anal Toxicol 14:12; 1990. 35. Broussard LA, Presley LC, Pittman T, Clouette R, Wimbish GH: Simultaneous identification and quantitation of codeine, morphine, hydrocodone, and hydromorphone in urine as trimethylsilyl and oxime derivatives by gas chromatography-mass spectrometry; Clin Chem 43:1029; 1997. 36. Cremese M, Wu AHB, Cassella G, O’Connor E, Rymut K, Hill DW: Improved GC/MS analysis of opiates with use of oxime-TMS derivatives; J Forensic Sci 43:1220; 1998. 37. Nowatzke W, Zeng J, Sauders A, Bohrer A, Koenig J, Turk J: Distincttttttion among eight opiate drugs in urine by gas chromatography-mass spectrometry; J Pharm Biomed Anal 20:829; 1999. 38. Chen BG, Chang CD, Wang CT, Chang WT, Wang SM, Liu RH: A novel approach to evaluate the extent of crosscontribution to the intensity of ions designating the analyte and the internal standard in quantitative GC-MS analysis; J Am Soc Mass Spectrom 19:598; 2008. 39. Jones J, Tomlinson K, Moore C: The simultaneous determination of codeine, morphine, hydrocodone, hydromorphone, 6-acetylmorphine, and oxycodone in hair and oral fluid; J Anal Toxicol 26:171; 2002. 40. Meatherall R: GC-MS confirmation of codeine, morphine, 6-acetylmorphine, hydrocodone, hydromorphone, oxycodone, and oxymorphone in blood; J Anal Toxicol 29:301; 2005. 41. Fenton J, Mummert J, Childers M: Hydromorphone and hydrocodone interference in GC/MS assays for morphine and codeine; J Anal Toxicol 18:159; 1994. 42. Meatherall R: GC-MS confirmation of codeine, morphine, 6-acetylmorphine, hydrocodone, hydromorphone, oxycodone, and oxymorphone in urine; J Anal Toxicol 23:177; 1999.
Chapter 2 — Chemical Derivatization and Mass Spectrometric Data Collection © 2010 by Taylor and Francis Group, LLC
30
43. Smith ML, Hughes RO, Levine B, Dickerson S, Darwin WD, Cone EJ: Forensic drug testing for opiates. VI. Urine testing for hydromorphone, hydrocodone, oxymorphone, and oxucodone with commercial opiate immunoassays and gas chromatography-mass spectrometry; J Anal Toxicol 19:18; 1995. 44. Broussard LA, Presley LC, Tanous M, Queen C: Improved gas chromatography-mass spectrometry method for simultaneous identification and quantitation of opiates in urine as propionyl and oxime derivatives; Clin Chem 47:127; 2001. 45. Melgar R, Kelly RC: A novel GC/MS derivatization method for amphetamines; J Anal Toxicol 17:399; 1993. 46. Yoo YC, Chung HS, Kim IS, Jin WT, Kim MK: Determination of nalbuphine in drug abusers’ urine; J Anal Toxicol 19:120; 1995. 47. Bioaeronautical Sciences Research Laboratory: Laboratory Operation Manual; U.S. FAA Civil Aerospace Medical Institute: Oklahoma City, OK; 2004.
48. Valentine JL, Middleton R: GC-MS identification of sympathomimetic amine drugs in urine: rapid methodology applicable for emergency clinical toxicology; J Anal Toxicol 24:211; 2000. 49. Low IA, Liu RH, Barker SA, Fish F, Settine RL, Piotrowski EG, Damert WC, Liu JY: Selected ion monitoring mass spectrometry: parameters affecting quantitative determination; Biomed Mass Spectrom 12:633; 1985. 50. Willard HH, Merritt LL, Dean JA, Settle FA: Instrumental Methods of Analysis, 7th ed; Wadsworth Publishing: Belmont, CA; p. 32; 1988. 51. Krull I, Swartz M: Quantitation in method validation. LC•GC 16:1984; 1998. 52. Duncan MW, Gale PJ, Yergey AL: The Principles of Quantitative Mass Spectrometry; Rockpool Productions: Denver, CO; p. 97; 2006.
Isotopically Labeled Analog as Internal Standard for Drug Quantitation — Methodology © 2010 by Taylor and Francis Group, LLC
31
PART TWO MASS SPECTRA OF COMMONLY ABUSED DRUGS AND THEIR ISOTOPICALLY LABELED ANALOGS IN VARIOUS DERIVATIZATION FORMS
Figure I — Stimulants
© 2010 by Taylor and Francis Group, LLC
33
Appendix One Mass Spectra of Commonly Abused Drugs and Their Isotopically Labeled Analogs in Various Derivatization Forms Table of Contents for Appendix One Figure I. Mass spectra of commonly abused drugs and their isotopically labeled analogs in various derivatization forms — Stimulants ......................................................................................................................................................................................
35
Figure II. Mass spectra of commonly abused drugs and their isotopically labeled analogs in various derivatization forms — Opioids .......................................................................................................................................................................................... 129 Figure III. Mass spectra of commonly abused drugs and their isotopically labeled analogs in various derivatization forms — Hallucinogens ................................................................................................................................................................................ 217 Figure IV. Mass spectra of commonly abused drugs and their isotopically labeled analogs in various derivatization forms — Depressants/Hypnotics .................................................................................................................................................................. 251 Figure V. Mass spectra of commonly abused drugs and their isotopically labeled analogs in various derivatization forms — Antianxiety Agents ........................................................................................................................................................................ 273 Figure VI. Mass spectra of commonly abused drugs and their isotopically labeled analogs in various derivatization forms — Antidepresants ............................................................................................................................................................................... 327 Figure VII. Mass spectra of commonly abused drugs and their isotopically labeled analogs in various derivatization forms — Others ............................................................................................................................................................................................ 349
Figure I — Stimulants
© 2010 by Taylor and Francis Group, LLC
35
Summary of Drugs, Isotopic Analogs, and Chemical Derivatization Groups Included in Figure I (Stimulants) Compound
Isotopic analog
Chemical derivatization group (no. of spectra)
Figure #
Amphetamine
d5, d5 (ring), d6, d8, d10, d11
None, Acetyl, TCA, TFA, PFP, HFB, 4-CB, PFB, propylformyl, l-TPC, d-TPC, l-MTPA, d-MTPA, TMS, t-BDMS, TFA/t-BDMS, PFP/t-BDMS, HFB/t-BDMS (126)
I-1
Methamphetamine
d5, d8, d9, d11, d14
None, acetyl, TCA, TFA, PFP, HFB, 4-CB, PFB, propylformyl, l-TPC, d-TPC, l-MTPA, d-MTPA, TMS, t-BDMS (90)
I-2
Ephedrine
d3
None, acetyl, TCA, [TFA]2, [PFP]2, [HFB]2, 4-CB, PFB, propylformyl, d-TPC, d-MTPA, [TMS]2 (24)
I-3
Phenylpropanolamine
d3
None, acetyl, TCA, [TFA]2, [PFP]2, [HFB]2, 4-CB, PFB, l-TPC, d-TPC, l-MTPA, d-MTPA, [TMS]2, t-BDMS, [t-BDMS]2, TFA/[t-BDMS]2, PFP/[t-BDMS]2, HFB/[t-BDMS]2 (36)
I-4
None, acetyl, TCA, TFA, PFP, HFB, 4-CB, PFB, propylformyl, l-TPC, d-TPC, l-MTPA, d-MTPA, TMS, TFA/t-BDMS, PFP/t-BDMS, HFB/t-BDMS (34)
I-5
MDA
d5
MDMA
d5
None, acetyl, TCA, TFA, PFP, HFB, 4-CB, PFB, propylformyl, l-TPC, d-TPC, l-MTPA, d-MTPA, TMS (28)
I-6
MDEA
d5, d6
None, acetyl, TCA, TFA, PFP, HFB, 4-CB, PFB, propylformyl, l-TPC, d-TPC, l-MTPA, d-MTPA, TMS (42)
I-7
MBDB
d5
None, acetyl, TCA, TFA, PFP, HFB, 4-CB, PFB, propylformyl, l-TPC, d-TPC, l-MTPA, d-MTPA, TMS (28)
I-8
Selegiline
d8
None (2)
I-9
N-Desmethylselegiline d11
None, acetyl, TCA, TFA, PFP, HFB, 4-CB, TMS (16)
I-10
Fenfluramine
d10
None, acetyl, TCA, TFA, PFP, HFB, 4-CB (14)
I-11
Norcocaine
d4
None, TFA, PFP, HFB, TMS (10)
I-12
Cocaine
d3
None (2)
I-13
Cocaethylene
d3, d8
None (3)
I-14
Ecgonine methyl ester
d3
None, TFA, PFP, HFB, TMS, t-BDMS (12)
I-15
Benzoylecgonine
d3, d8
Methyl, ethyl, propyl, butyl, PFPoxy, HFPoxy, TMS, t-BDMS (24)
I-16
Ecgonine
d3
[TMS]2, [t-BDMS]2, HFPoxy/TFA, PFPoxy/PFP, HFPoxy/HFB (10)
I-17
Anhydroecgonine methyl ester
d3
None (2)
I-18
Caffeine
13C
None (2)
I-19
Methylphenidate
d3
None, TFA, PFP, HFB, 4-CB, TMS (12)
I-20
Ritalinic acid
d5
4-CB, [TMS]2, t-BDMS (6)
I-21
3
Total no. of mass spectra: 523
Figure I — Stimulants
© 2010 by Taylor and Francis Group, LLC
37
Appendix One — Figure I Mass Spectra of Commonly Abused Drugs and Their Isotopically Labeled Analogs in Various Derivatization Forms — Stimulants Figure I-1. Mass spectra of amphetamine and its deuterated analogs (amphetamine-d5, -d5 (ring), -d6, -d8, -d10, -d11): (A) underivatized; (B) acetyl-derivatized; (C) TCA-derivatized; (D) TFA-derivatized; (E) PFP-derivatized; (F) HFB-derivatized; (G) 4-CB-derivatized; (H) PFB-derivatized; (I) propylformyl-derivatized; (J,K) l-TPC-derivatized; (L,M) l-MTPAderivatized; (N)TMS-derivatized; (O) t-BDMS-derivatized; (P) TFA/t-BDMS-derivatized; (Q) PFP/t-BDMS-derivatized; (R) HFB/t-BDMS-derivatized ........................................................................................................................................................ 39 Figure I-2. Mass spectra of methamphetamine and its deuterated analogs (methamphetamine-d5, -d8, -d9, -d11, -d14): (A) underivatized; (B) acetyl-derivatized; (C) TCA-derivatized; (D) TFA-derivatized; (E) PFP-derivatized; (F) HFB-derivatized; (G) 4-CB-derivatized; (H) PFB-derivatized; (I) propylformyl-derivatized; (J,K) l-TPC-derivatized; (L,M) l-MTPAderivatized; (N) TMS-derivatized; (O) t-BDMS-derivatized ......................................................................................................... 57 Figure I-3. Mass spectra of ephedrine and its deuterated analogs (ephedrine-d3): (A) underivatized; (B) acetyl-derivatized; (C) TCA-derivatized; (D) [TFA]2-derivatized; (E) [PFP]2-derivatized; (F) [HFB]2-derivatized; (G) 4-CB-derivatized; (H) PFB-derivatized; (I) propylformyl-derivatized; (J) d-TPC-derivatized; (K) d-MTPA-derivatized; (L) [TMS]2-derivatized ............... 72 Figure I-4. Mass spectra of phenylpropanolamine and its deuterated analogs (phenylpropanolamine-d3): (A) underivatized; (B) acetyl-derivatized; (C) TCA-derivatized; (D) [TFA]2-derivatized; (E) [PFP]2-dervatized; (F) [HFB]2-derivatized; (G) 4-CB-derivatized; (H) PFB-derivatized; (I,J) l-TPC-derivatized; (K,L) l-MTPA-derivatized; (M) [TMS]2-derivatized; (N) t-BDMS-derivatized; (O) [t-BDMS]2-derivatized; (P) TFA/[t-BDMS]2-derivatized; (Q) PFP/[t-BDMS]2-derivatized; (R) HFB/[t-BDMS]2-derivatized ........................................................................................................................................................... 76 Figure I-5. Mass spectra of MDA and its deuterated analogs (MDA-d5): (A) underivatized; (B) acetyl-derivatized; (C) TCA-derivatized; (D) TFA-derivatized; (E) PFP-derivatized; (F) HFB-derivatized; (G) 4-CB-derivatized; (H) PFBderivatized; (I) propylformyl-derivatized; (J,K) l-TPC-derivatized; (L,M) l-MTPA-derivatized; (N) TMS-derivatized; (O) TFA/t-BDMS-derivatized; (P) PFP/t-BDMS-derivatized; (Q) HFB/t-BDMS-derivatized ........................................................... 82 Figure I-6. Mass spectra of MDMA and its deuterated analogs (MDMA-d5): (A) underivatized; (B) acetyl-derivatized; (C) TCA-derivatized; (D) TFA-derivatized; (E) PFP-derivatized; (F) HFB-derivatized; (G) 4-CB-derivatized; (H) PFBderivatized; (I) propylformyl-derivatized; (J,K) l-TPC-derivatized; (L,M) l-MTPA-derivatized; (N) TMS-derivatized ........... 88 Figure I-7. Mass spectra of MDEA and its deuterated analogs (MDEA-d5, -d6): (A) underivatized; (B) acetyl-derivatized; (C) TCA-derivatized; (D) TFA-derivatized; (E) PFP-derivatized; (F) HFB-derivatized; (G) 4-CB-derivatized; (H) PFBderivatized; (I) propylformyl-derivatized; (J,K) l-TPC-derivatized; (L,M) l-MTPA-derivatized; (N) TMS-derivatized ............ 93 Figure I-8. Mass spectra of MBDB and its deuterated analogs (MBDB-d5): (A) underivatized; (B) acetyl-derivatized; (C) TCA-derivatized; (D) TFA-derivatized; (E) PFP-derivatized; (F) HFB-derivatized; (G) 4-CB-derivatized; (H) PFBderivatized; (I) propylformyl-derivatized; (J,K) l-TPC-derivatized; (L,M) l-MTPA-derivatized; (N) TMS-derivatized .......... 100 Figure I-9. Mass spectra of selegiline and its deuterated analogs (selegiline-d8) ....................................................................... 105 Figure I-10. Mass spectra of N-desmethylselegiline and its deuterated analogs (N-desmethylselegiline-d11): (A) underivatized; (B) acetyl-derivatized; (C) TCA-derivatized; (D) TFA-derivatized; (E) PFP-derivatized; (F) HFB-derivatized; (G) 4-CBderivatized; (H) TMS-derivatized ................................................................................................................................................. 106 Figure I-11. Mass spectra of fenfluramine and its deuterated analogs (fenfluramine-d10): (A) underivatized; (B) acetylderivatized; (C) TCA-derivatized; (D) TFA-derivatized; (E) PFP-derivatized; (F) HFB-derivatized; (G) 4-CB-derivatized ............ 109 Figure I-12. Mass spectra of norcocaine and its deuterated analogs (norcocaine-d3): (A) underivatized; (B) TFA-derivatized; (C) PFP-derivatized; (D) HFB-derivatized; (E) TMS-derivatized ..................................................................................... 112 Figure I-13. Mass spectra of cocaine and its deuterated analogs (cocaine-d3) ........................................................................... 114 Figure I-14. Mass spectra of cocaethylene and its deuterated analogs (cocaethylene-d3, -d8) ................................................... 115 Figure I-15. Mass spectra of ecgonine methyl ester and its deuterated analogs (ecgonine methyl ester-d3): (A) underivatized; (B) TFA-derivatized; (C) PFP-derivatized; (D) HFB-derivatized; (E) TMS-derivatized; (F) t-BDMS derivatized .................. 116 Figure I-16. Mass spectra of benzoylecgonine and its deuterated analogs (benzoylecgonine-d3, -d8): (A) methyl-derivatized; (B) ethyl-derivatized; (C) propyl-derivatized; (D) butyl-derivatized; (E) PFPoxy-derivatized; (F) HFBoxy-derivatized; (G) TMS-derivatized; (H) t-BDMS-derivatized .................................................................................................................................... 118 Figure I-17. Mass spectra of ecgonine and its deuterated analogs (ecgonine-d3): (A) [TMS]2-derivatized; (B) [t-BDMS]2derivatized; (C) HFPoxy/TFA-derivatized; (D) PFPoxy/PFP-derivatized; (E) HFPoxy/HFB-derivatized ................................ 122 Figure I-18. Mass spectra of anhydroecgonine methyl ester and its deuterated analogs (anhydroecgonine methyl ester-d3) ............ 124
Figure I — Stimulants
© 2010 by Taylor and Francis Group, LLC
38
Figure I-19. Mass spectra of caffeine and its deuterated analogs (caffeine-13C3) ...................................................................... 125 Figure I-20. Mass spectra of methylphenidate and its deuterated analogs (methylphenidate-d3): (A) underivatized; (B) TFA-derivatized; (C) PFP-derivatized; (D) HFB-derivatized; (E) 4-CB-derivatized; (F) TMS-derivatized ............................. 126 Figure I-21. Mass spectra of ritalinic acid and its deuterated analogs (ritalinic acid-d5): (A) 4-CB-derivatized; (B) [TMS]2derivatized; (C) t-BDMS-derivatized ........................................................................................................................................... 128
Appendix One — Mass Spectra
© 2010 by Taylor and Francis Group, LLC
39
Figure I-1. Mass spectra of amphetamine (AM) and its deuterated analogs (AM-d5 [ring], -d5 [side chain], -d6, -d8, -d10, -d11): (A) underivatized; (B) acetyl-derivatized; (C) TCA-derivatized; (D) TFA-derivatized; (E) PFP-derivatized; (F) HFB-derivatized; (G) 4-CB-derivatized; (H) PFB-derivatized; (I) propylformylderivatized; (J,K) l-TPC-derivatized; (L,M) l-MTPA-derivatized; (N) TMS-derivatized; (O) t-BDMSderivatized; (P) TFA/t-BDMS-derivatized; (Q) PFP/t-BDMS-derivatized; (R) HFB/t-BDMS-derivatized. Relative Int. (%)
100
44.1
Amphetamine
I-1-A-i
C9H13N MW: 135.21
NH2 CH 2 –CH–CH 3
50 92.1
120.1
0 40 Relative Int. (%)
100
90 44.0
140 Amphetamine-d5
I-1-A-ii D
D
50 D
96.0
NH2 CH 2 –CH–CH 3
C9H8D5N MW: 140.24
D D
125.1
0 40 Relative Int. (%)
100
90 48.1
140 Amphetamine-d5
I-1-A-iii
C9H8D5N MW: 140.24
H
NH2 CD–CD–CD 3
50 92.0
122.1
0 40 Relative Int. (%)
100
90 48.1
140 Amphetamine-d6
I-1-A-iv
NH2 CD 2 –CD–CD 3
C9H7D6N MW: 141.24
50 93.0
123.1
0 40 Relative Int. (%)
100
90 47.1
140
I-1-A-v
Amphetamine-d8 D
D
NH2 CH 2 –CH–CD 3
C9H5D8N MW: 143.25
50 D
D D
96.1
125.1
0 40 Relative Int. (%)
100
90 48.1
140 Amphetamine-d10
I-1-A-vi D D
H
NH2 CD–CD–CD 3
50 D
97.1
D
D
127.1
0 40 100 Relative Int. (%)
C9H3D10N MW: 145.27
90 48.1
140
I-1-A-vii D
50
D
98.1
D
NH2 CD 2 –CD–CD 3
Amphetamine-d11 C9H2D11N MW: 146.27
D D
128.1
0 40
90
140 m/z
Figure I — Stimulants
© 2010 by Taylor and Francis Group, LLC
40
Figure I-1. (Continued) Relative Int. (%)
100
44.1
Amphetamine, acetyl derivative
I-1-B-i 86.1
NHCOCH3
118.1
50
C11H15NO MW: 177.24
CH 2 –CH–CH 3
91.1
0 40 Relative Int. (%)
100
90 44.1
140
190
I-1-B-ii
Amphetamine-d5, acetyl derivative 86.1 D
123.1
50
NHCOCH3
D
CH 2 –CH–CH 3
C11H10D5NO MW: 182.27
96.1 D
D D
0 Relative Int. (%)
100
40 48.1
I-1-B-iii
90
140
190 Amphetamine-d5, acetyl derivative
90.1
H
50
NHCOCH3
CD–CD–CD 3
122.1
C11H10D5NO MW: 182.27
92.1
0 40 Relative Int. (%)
100
90 48.1
140
190
I-1-B-iv
Amphetamine-d6, acetyl derivative 90.1
H
123.1
50
NHCOCH3
CD 2 –CD–CD 3
C11H9D6NO MW: 183.28
93.1
0 40 Relative Int. (%)
100
90 47.1
140
190
I-1-B-v
Amphetamine-d8, acetyl derivative 89.1
50
D
126.1 96.1
D
NHCOCH3
D
CH 2 –CH–CD 3
C11H7D8NO MW: 185.29
D D
0 Relative Int. (%)
100
40
90 48.1
140
190
I-1-B-vi
Amphetamine-d10, acetyl derivative 90.1
D
50
D
97.1
H
NHCOCH3
CD–CD–CD 3
C11H5D10NO MW: 187.30
127.1 D
D
D
0 40 Relative Int. (%)
100
90 48.1
140
190
I-1-B-vii
Amphetamine-d11, acetyl derivative 90.1
50
D
128.1
98.1 70.1
D
D
NHCOCH3 CD 2 –CD–CD 3
C11H4D11NO MW: 188.31
D D
0 40
90
140 m/z Appendix One — Mass Spectra
© 2010 by Taylor and Francis Group, LLC
190
41
Figure I-1. (Continued) Relative Int. (%)
100
I-1-C-i
118.1
Amphetamine, trichloroacetyl derivative
91.1
188.0
NHCOCCl3
50
CH 2 –CH–CH 3
C11H12Cl3NO MW: 280.58
0 50 Relative Int. (%)
100
100
150
200
250
123.0
I-1-C-ii
188.0
96.0
D
50
D
300
Amphetamine-d5, trichloroacetyl derivative NHCOCCl 3
D
C11H7D5Cl3NO MW: 285.61
CH 2 –CH–CH 3 D D
0 50
100
150
Relative Int. (%)
100
200
250
192.0
I-1-C-iii
123.1
H
92.1
50
300
Amphetamine-d5, trichloroacetyl derivative NHCOCCl3
CD–CD–CD 3
C11H7D5Cl3NO MW: 285.61
0 50 Relative Int. (%)
100
100
150
200
250
123.1
I-1-C-iv
Amphetamine-d6, trichloroacetyl derivative
192.0
93.1
300
NHCOCCl3 CD 2 –CD–CD 3
50
C11H6D6Cl3NO MW: 286.61
0 50
100
Relative Int. (%)
100
150
200
126.2
I-1-C-v
300
Amphetamine-d8, trichloroacetyl derivative
191.0
50
250
D
CH 2 –CH–CD 3
96.1 D
NHCOCCl3
D
C11H4D8Cl3NO MW: 288.63
D D
0 50 Relative Int. (%)
100
100
I-1-C-vi
150
200
250
192.0
128.1 97.1
D D
50
D
D
H
300
Amphetamine-d10, trichloroacetyl derivative NHCOCCl 3
CD–CD–CD 3
C11H2D10Cl3NO MW: 290.64
D
0 50
100
Relative Int. (%)
100
I-1-C-vii
150
200
250
128.2
300
Amphetamine-d11, trichloroacetyl derivative
98.1
192.0 D
50
D
D
NHCOCCl3 CD 2 –CD–CD 3
C11HD11Cl3NO MW: 291.64
D D
0 50
100
150
200 m/z
Figure I — Stimulants
© 2010 by Taylor and Francis Group, LLC
250
300
42
Figure I-1. (Continued) Relative Int. (%)
100
I-1-D-i
140.1
118.1
Amphetamine, trifluoroacetyl derivative NHCOCF3
91.1
50
CH 2 –CH–CH 3
C11H12F3NO MW: 231.21
0 50 Relative Int. (%)
100
100
I-1-D-ii
50
150 123.1
200
140.0
Amphetamine-d5, trifluoroacetyl derivative D
96.1
250
D
NHCOCF3
D
CH 2 –CH–CH 3
C11H7D5F3NO MW: 236.24
D D
0 50 Relative Int. (%)
100
100
150
200
144.1
I-1-D-iii
H
50
92.1
Amphetamine-d5, trifluoroacetyl derivative NHCOCF3
CD–CD–CD 3
123.1
250
C11H7D5F3NO MW: 236.24
0 50 Relative Int. (%)
100
100
I-1-D-iv
150
200
144.1
Amphetamine-d6, trifluoroacetyl derivative
123.1
50
NHCOCF3
CD 2 –CD–CD 3
93.1
250
C11H6D6F3NO MW: 237.25
0 50 Relative Int. (%)
100
100 126.1
I-1-D-v
50
150
200
143.1
Amphetamine-d8, trifluoroacetyl derivative
D
96.1
250
D
NHCOCF3
D
CH 2 –CH–CD 3
C11H4D8F3NO MW: 239.26
D D
0 50 Relative Int. (%)
100
100
I-1-D-vi
150
200
144.1
Amphetamine-d10, trifluoroacetyl derivative
D
50
97.1
D
128.1 D
D
H
NHCOCF3
CD–CD–CD 3
250
C11H2D10F3NO MW: 241.27
D
0 50 Relative Int. (%)
100
100
150
I-1-D-vii
200
144.1
Amphetamine-d11, trifluoroacetyl derivative
128.2 D
98.1
50
250
D
D
NHCOCF3 CD 2 –CD–CD 3
C11HD11F3NO MW: 242.28
D D
0 50
100
150 m/z
Appendix One — Mass Spectra
© 2010 by Taylor and Francis Group, LLC
200
250
43
Figure I-1. (Continued) Relative Int. (%)
100
190.1
I-1-E-i
50
Amphetamine, pentafluoropropionyl derivative
118.1
NHCOC 2F5 CH 2 –CH–CH 3
91.1
C12H12F5NO MW: 281.22
0 50 Relative Int.(%)
100
100
150
200
250
190.0
I-1-E-ii
300
Amphetamine-d5, pentafluoropropionyl derivative
123.1 D
50 96.1 119.0
D
NHCOC 2F5
D
CH 2 –CH–CH 3
C12H7D5F5NO MW: 286.25
D D
0 50 Relative Int. (%)
100
100
150
200
250
194.1
I-1-E-iii
Amphetamine-d5, pentafluoropropionyl derivative H NHCOC 2F5 CD–CD–CD 3
123.2
50 92.1
300
C12H7D5F5NO MW: 286.25
119.0
0 50 Relative Int. (%)
100
100
150
250
194.1
I-1-E-iv
50
200
300
Amphetamine-d6, pentafluoropropionyl derivative
123.1
NHCOC 2F5 CD 2 –CD–CD 3
93.1
C12H6D6F5NO MW: 287.26
119.0
0 50 Relative Int. (%)
100
100
150
I-1-E-v
200
250
193.1
126.2
300
Amphetamine-d8, pentafluoropropionyl derivative
D
50 96.1 119.0
D
NHCOC 2F5
D
C12H4D8F5NO MW: 289.27
CH 2 –CH–CD 3
D D
0 50 Relative Int. (%)
100
100
150
200
250
194.1
I-1-E-vi
Amphetamine-d10, pentafluoropropionyl derivative D
127.2
50
300
D
97.1 119.1
D
D
H
NHCOC 2F5
CD–CD–CD 3
C12H2D10F5NO MW: 291.28
D
0 50 Relative Int. (%)
100
100
150
200
250
194.1
I-1-E-vii
Amphetamine-d11, pentafluoropropionyl derivative
128.1 D
50
300
D
98.1 D
119.1
NHCOC 2F5 CD 2 –CD–CD 3
C12HD11F5NO MW: 292.29
D D
0 50
100
150
200 m/z
Figure I — Stimulants
© 2010 by Taylor and Francis Group, LLC
250
300
44
Figure I-1. (Continued) Relative Int. (%)
100
Amphetamine, heptafluorobutyryl derivative
240.1
I-1-F-i 118.1
NHCOC 3F7 CH 2 –CH–CH 3
50 91.1
C13H12F7NO MW: 331.23
169.0
0 50 Relative Int. (%)
100
100
150
200
250
300
Amphetamine-d5, heptafluorobutyryl derivative
240.0
I-1-F-ii 123.1
D
50 96.1
D
169.0
350
NHCOC 3F7 CH 2 –CH–CH 3
D
C13H7D5F7NO MW: 336.26
D D
0 50
100
150
200
Relative Int. (%)
100
I-1-F-iii 50
250
300
H NHCOC 3F7 CD–CD–CD 3
123.1 92.1
350
Amphetamine-d5, heptafluorobutyryl derivative
244.1
C13H7D5F7NO MW: 336.26
169.0
0 50 Relative Int. (%)
100
100
I-1-F-iv
50
150
200
250
300
244.1
123.1
350
Amphetamine-d6, heptafluorobutyryl derivative NHCOC 3F7 CD 2 –CD–CD 3
93.1
C13H6D6F7NO MW: 337.27
169.0
0 50
100
150
200
Relative Int. (%)
100
250
300
Amphetamine-d8, heptafluorobutyryl derivative
243.1
I-1-F-v
126.2 D
50 96.1
D
169.0
350
NHCOC 3F7 CH 2 –CH–CD 3
D
C13H4D8F7NO MW: 339.28
D D
0 50
100
150
200
Relative Int. (%)
100
250
I-1-F-vi
350
Amphetamine-d10, heptafluorobutyryl derivative H
NHCOC 3F7 CD–CD–CD 3
D
128.2
50
300
244.1
D
C13H2D10F7NO MW: 341.29
97.1 D
169.0
D
D
0 50
100
150
200
Relative Int. (%)
100
I-1-F-vii
250
300
128.2 D
50
350
Amphetamine-d11, heptafluorobutyryl derivative
244.1
D
98.1 D
169.0
NHCOC 3F7 CD 2 –CD–CD 3
C13HD11F7NO MW: 342.30
D D
0 50
100
150
200 m/z
Appendix One — Mass Spectra
© 2010 by Taylor and Francis Group, LLC
250
300
350
45
Figure I-1. (Continued) Relative Int. (%)
100
118.1
I-1-G-i
Amphetamine, 4-carboethoxyhexafluorobutyryl derivative
NHCO(CF2)3COOC2H5
50
CH 2 –CH–CH 3
91.1
266.1
248.0
294.1
C16H17F6NO3 MW: 385.30
220.0
195.0
0 50 Relative Int. (%)
100
100
150
200
I-1-G-ii
D
50
96.1
D
D D
Relative Int. (%)
100
150
250
294.0
300
123.1
I-1-G-iii
H
NHCO(CF2)3COOC2H5
270.1
298.1
CD–CD–CD 3
92.1
50
266.0
248.0 220.0
200
350
400
Amphetamine-d5, 4-carboethoxyhexafluorobutyryl derivative
CH 2 –CH–CH 3
195.0
50
300
NHCO(CF2)3COOC2H5
D
0
100
250
123.1
251.1
C16H12D5F6NO3 MW: 390.33
350
400
Amphetamine-d5, 4-carboethoxyhexafluorobutyryl derivative C16H12D5F6NO3 MW: 390.33
223.0
195.0
0 50 Relative Int. (%)
100
100
I-1-G-iv
150
200
250
NHCO(CF2)3COOC2H5 CD 2 –CD–CD 3
50
300
123.1 270.1
298.1
350
400
Amphetamine-d6, 4-carboethoxyhexafluorobutyryl derivative C16H11D6F6NO3 MW: 391.34
93.1 251.1 223.0
195.0
0 50 Relative Int. (%)
100
100
150
200
250
300
126.1
I-1-G-v
D
CH 2 –CH–CD 3
50
269.1 96.1
D
D
297.1
C16H9D8F6NO3 MW: 393.35
250.1
D
400
Amphetamine-d8, 4-carboethoxyhexafluorobutyryl derivative
NHCO(CF2)3COOC2H5
D
350
223.1
195.0
0 Relative Int. (%)
100
50
100
I-1-G-vi 97.1
50
150
200
250
300
350
400
128.2 D D
D
H
NHCO(CF2)3COOC2H5
270.1
298.1
CD–CD–CD 3
251.1
D D
C16H7D10F6NO3 MW: 395.36
223.0
195.0
Amphetamine-d10, 4-carboethoxyhexafluorobutyryl derivative
0 50 Relative Int. (%)
100
100
150
200
I-1-G-vii
300
D D
NHCO(CF2)3COOC2H5
D
CD 2 –CD–CD 3
98.1
50
250
128.2 298.1 270.1
D
400
Amphetamine-d11, 4-carboethoxyhexafluorobutyryl derivative C16H6D11F6NO3 MW: 396.37
251.1
D
350
223.0
195.0
0 50
100
150
200
250 m/z
Figure I — Stimulants
© 2010 by Taylor and Francis Group, LLC
300
350
400
46
Figure I-1. (Continued) Relative Int.(%)
100
Amphetamine, 2,3,4,5,6pentafluorobenzoyl derivative
195.0
I-1-H-i
238.0
50
NHCOC 6F5
C16H12F5NO MW: 329.26
CH 2 –CH–CH 3
118.1 167.0
91.1
0 50
100
150
200
Relative Int. (%)
100
250
300
195.0
I-1-H-ii
Amphetamine-d5, 2,3,4,5,6pentafluorobenzoyl derivative 238.0
50
D
D
123.1 167.0
96.1
350
D
NHCOC 6F5 CH 2 –CH–CH 3
C16H7D5F5NO MW: 334.29
D D
0 50 Relative Int. (%)
100
100
150
200
250
300
I-1-H-iii
50
350
Amphetamine-d5, 2,3,4,5,6pentafluorobenzoyl derivative
195.0
H
242.0
NHCOC 6F5
C16H7D5F5NO MW: 334.29
CD–CD–CD 3
92.1
167.0
123.1
0 50
100
150
200
Relative Int. (%)
100
250
300
195.0
I-1-H-iv
NHCOC 6F5
242.0
50
350
Amphetamine-d6, 2,3,4,5,6pentafluorobenzoyl derivative C16H6D6F5NO MW: 335.30
CD 2 –CD–CD 3
123.1
167.0
93.1
0 50 Relative Int. (%)
100
100
150
200
250
300
195.0
I-1-H-v
Amphetamine-d8, 2,3,4,5,6pentafluorobenzoyl derivative
241.0
50
D
D
126.1 167.0
96.1
350
D
NHCOC 6F5 CH 2 –CH–CD 3
C16H4D8F5NO MW: 337.31
D D
0 50 Relative Int. (%)
100
100
150
200
250
300
195.0
I-1-H-vi
Amphetamine-d10, 2,3,4,5,6pentafluorobenzoyl derivative 242.0
50 97.1
128.2
350
167.0
D D D
D
H
NHCOC 6F5 CD–CD–CD 3
C16H2D10F5NO MW: 339.33
D
0 50 Relative Int. (%)
100
100
150
200
250
300
I-1-H-vii
242.0
50 128.2
167.0
98.1
350
Amphetamine-d11, 2,3,4,5,6pentafluorobenzoyl derivative
195.0
D D
D
NHCOC 6F5 CD 2 –CD–CD 3
C16HD11F5NO MW: 340.33
D D
0 50
100
150
200 m/z
Appendix One — Mass Spectra
© 2010 by Taylor and Francis Group, LLC
250
300
350
47
Figure I-1. (Continued) Relative Int. (%)
100
I-1-I-i
Amphetamine, propylformyl derivative
130.1 NHCOOC3H7
50
C13H19NO2 MW: 221.30
CH 2 –CH–CH 3
91.0
0
Relative Int. (%)
50 100
100
I-1-I-ii
150
200
130.1 96.1
D
C13H14D5NO2 MW: 226.33
CH 2 –CH–CH 3
50 D
NHCOOC3H7
D
250
Amphetamine-d5, propylformyl derivative
D D
0 50 Relative Int. (%)
100
100
I-1-I-iii
150
200
134.1 H
NHCOOC3H7
Amphetamine-d5, propylformyl derivative C13H14D5NO2 MW: 226.33
CD–CD–CD 3
50
250
92.0
0 50 Relative Int. (%)
100
100
150
200
134.1
I-1-I-iv
NHCOOC3H7
C13H13D6NO2 MW: 227.33
CD 2 –CD–CD 3
50
250
Amphetamine-d6, propylformyl derivative
93.0
0 50 Reative Int. (%)
100
100
150 133.1
I-1-I-v
D
50
200
96.1
NHCOOC3H7
D
CH 2 –CH–CD 3
C13H11D8NO2 MW: 229.34
D
D
250
Amphetamine-d8, propylformyl derivative
D
0 50 Relative Int. (%)
100
100
150 134.1
I-1-I-vi
D D
50
200
97.1
D
D
H
NHCOOC3H7
250
Amphetamine-d10, propylformyl derivative
CD–CD–CD 3
C13H9D10NO2 MW: 231.36
D
0 50 Relative Int. (%)
100
100
150
200
134.1
I-1-I-vii
D
D
98.1
50
D
NHCOOC3H7
250
Amphetamine-d11, propylformyl derivative
CD 2 –CD–CD 3
C13H8D11NO2 MW: 232.36
D D
0 50
© 2010 by Taylor and Francis Group, LLC
100
150 m/z Figure I — Stimulants
200
250
48
Figure I-1. (Continued) Relative Int. (%)
100 CH 2 CH
50
l-Amphetamine, (S)-(–)-N(trifluoroacetyl)-prolyl derivative
166.0
O NH C
I-1-J-i
N O CCF 3
C16H19F3N2O2 MW: 328.33
237.1
CH 3
194.0
91.0
118.0
0 50
100
Relative Int. (%)
100
150
O D
CH 2 CH
50 D
D
250
I-1-J-ii
N
300
350
l-Amphetamine-d5, (S)-(–)-N(trifluoroacetyl)-prolyl derivative C16H14D5F3N2O2 MW: 333.36
O CCF 3
CH 3
D
166.1
C
NH
D
200
96.1
237.1
194.0
123.1
0 50
100
Relative Int. (%)
100
150 166.0
O H NH C CD
50
CD
200
250
N
CD 3
92.0
C16H14D5F3N2O2 MW: 333.36
241.1
194.0
350
l-Amphetamine-d5, (S)-(–)-N(trifluoroacetyl)-prolyl derivative
I-1-J-iii
O CCF 3
300
123.1
0 50
100
Relative Int. (%)
100
150
NH C CD 2 CD
50
200 166.0
O
250
I-1-J-iv
N O CCF 3
CD 3
350
C16H13D6F3N2O2 MW: 334.37
241.1
194.0 93.0
300
l-Amphetamine-d6, (S)-(–)-N(trifluoroacetyl)-prolyl derivative
123.1
0 50
100
150
Relative Int. (%)
100
166.0
O D
50
D
NH C
D
CH 2 CH D
D
200
250
300
l-Amphetamine-d8, (S)-(–)-N(trifluoroacetyl)-prolyl derivative
I-1-J-v
N
O CCF 3
CD 3
C16H11D8F3N2O2 MW: 336.38
240.1
194.0
350
126.1
96.0
0 50
100
Relative Int. (%)
100
150
O D
D
CD
50 D
H
D
D
NH C CD
200 166.0
250
N
C16H9D10F3N2O2 MW: 338.39
241.1 194.0
97.1
350
l-Amphetamine-d10, (S)-(–)-N(trifluoroacetyl)-prolyl derivative
I-1-J-vi
O CCF 3
CD 3
300
128.1
0 50
100
Relative Int. (%)
100
150
O
D
D
CD 2 CD
50 D
NH C
D
D
200
250
166.0
I-1-J-vii
N O CCF 3
CD 3
98.1
300
350
l-Amphetamine-d11, (S)-(–)-N(trifluoroacetyl)-prolyl derivative C16H8D11F3N2O2 MW: 339.40
241.1 194.0 128.1
0 50
100
150
200 m/z
Appendix One — Mass Spectra
© 2010 by Taylor and Francis Group, LLC
250
300
350
49
Figure I-1. (Continued) Relative Int. (%)
100
O
166.0
NH C CH 2 CH
50
I-1-K-i
N
d-Amphetamine, (S)-(–)-N(trifluoroacetyl)-prolyl derivative C16H19F3N2O2 MW: 328.33
O CCF 3
CH 3
194.0
91.0
237.1
118.0
0 50
100
Relative Int. (%)
100
150
O D
CH 2 CH
50 D
D
I-1-K-ii
N
300
350
d-Amphetamine-d5, (S)-(–)-N(trifluoroacetyl)-prolyl derivative C16H14D5F3N2O2 MW: 333.36
O CCF 3
CH 3
D
250
166.1
NH C
D
200
96.1
194.0
123.1
237.1
0 50
100
Relative Int. (%)
100
150
O
166.0
H NH C CD
50
CD
200
250
I-1-K-iii
N O CCF 3
300
C16H14D5F3N2O2 MW: 333.36
241.1
CD 3
350
d-Amphetamine-d5, (S)-(–)-N(trifluoroacetyl)-prolyl derivative
194.0
92.0
123.1
0 50
100
Relative Int. (%)
100
150
O
166.0
NH C CD 2 CD
50
200
250
I-1-K-iv
N
300
d-Amphetamine-d6, (S)-(–)-N(trifluoroacetyl)-prolyl derivative C16H13D6F3N2O2 MW: 334.37
O CCF 3
CD 3
350
241.1 194.0
93.0
123.1
0 50
100
Relative Int. (%)
100
150 166.0
O D
CH 2 CH
50 D
NH C
D
D
D
200
250
I-1-K-v
N O CCF 3
300
C16H11D8F3N2O2 MW: 336.38
240.1
CD 3
350
d-Amphetamine-d8, (S)-(–)-N(trifluoroacetyl)-prolyl derivative
194.0 96.0
126.1
0 50
100
Relative Int. (%)
100
150 166.0
O D
D
50 D
D
H
NH
CD
CD
D
C
CD 3
200
250
I-1-K-vi
N O CCF 3
300
350
d-Amphetamine-d10, (S)-(–)-N(trifluoroacetyl)-prolyl derivative C16H9D10F3N2O2 MW: 338.39
241.1 194.0
97.1
128.1
0 50
100
Relative Int. (%)
100
150 166.0
O D
CD 2 CD
50 D
NH C
D
D
D
200
I-1-K-vii
N O CCF 3
CD 3
98.1
250
194.0
300
350
d-Amphetamine-d11, (S)-(–)-N(trifluoroacetyl)-prolyl derivative C16H8D11F3N2O2 MW: 339.40
241.1
128.1
0 50
100
150
200 m/z
Figure I — Stimulants
© 2010 by Taylor and Francis Group, LLC
250
300
350
50
Figure I-1. (Continued) Relative Int. (%)
100
l-Amphetamine, (–)-α-methoxy-α-trifluoromethylphenylacetyl derivative
189.0
I-1-L-i 91.0
260.0
50
119.0
C19H20F3NO2 MW: 351.36
NHCOC(CF3)(C6H5)OCH3 CH 2 –CH–CH 3
234.0
162.1
351.1
0 50 Relative Int. (%)
100
100
150
200
I-1-L-ii
250
300
260.0 124.1
D
234.0
167.1
D
0 50 Relative Int. (%)
100
150
200
CH 2 –CH–CH 3 D
356.2
D
250
300
350
400
l-Amphetamine-d5, (–)-α-methoxy-α-trifluoromethylphenylacetyl derivative
264.1 93.0
C19H15D5F3NO2 MW: 356.39
NHCOC(CF3)(C6H5)OCH3
D
189.0
I-1-L-iii
50
400
l-Amphetamine-d5, (–)-α-methoxy-α-trifluoromethylphenylacetyl derivative
96.1
50
100
350
189.0
H
124.1
NHCOC(CF3)(C6H5)OCH3
CD–CD–CD 3
167.1
C19H15D5F3NO2 MW: 356.39
235.0
356.2
0 50 Relative Int. (%)
100
100
150
200
250
300
189.0
I-1-L-iv 93.0
50
350
l-Amphetamine-d6, (–)-α-methoxy-α-trifluoromethylphenylacetyl derivative
264.1
NHCOC(CF3)(C6H5)OCH3
125.1
CD 2 –CD–CD 3
168.1
400
C19H14D6F3NO2 MW: 357.40
236.0
357.2
0 50 Relative Int. (%)
100
100
150
200
250
300
189.0
I-1-L-v 97.1
127.1
D
170.1
235.0
400
l-Amphetamine-d8, (–)-α-methoxy-α-trifluoromethylphenylacetyl derivative
263.1
50
350
D
NHCOC(CF3)(C6H5)OCH3
D
CH 2 –CH–CD 3
C19H12D8F3NO2 MW: 359.41
D
359.2
D
0 Relative Int. (%)
100
50
100
150
200
250
300
189.0
I-1-L-vi 97.1
D
129.1 172.1
D
236.0
400
l-Amphetamine-d10, (–)-α-methoxy-α-trifluoromethylphenylacetyl derivative
264.1
50
350
D
H
NHCOC(CF3)(C6H5)OCH3
CD–CD–CD 3
C19H10D10F3NO2 MW: 361.42
D
361.2
D
0 Relative Int. (%)
100
50
100
150
200
250
300
189.0
I-1-L-vii
264.1 D
130.1 173.1
D
236.0
400
l-Amphetamine-d11, (–)-α-methoxy-α-trifluoromethylphenylacetyl derivative
98.1
50
350
NHCOC(CF3)(C6H5)OCH3
D
CD 2 –CD–CD 3
C19H9D11F3NO2 MW: 362.43
D D
362.2
0 50
100
150
200
250 m/z
Appendix One — Mass Spectra
© 2010 by Taylor and Francis Group, LLC
300
350
400
51
Figure I-1. (Continued) Relative Int. (%)
100
189.0 91.0
d-Amphetamine, (–)-α-methoxy-α-trifluoromethylphenylacetyl derivative
I-1-M-i 260.0
50
119.0
C19H20F3NO2 MW: 351.36
NHCOC(CF3)(C6H5)OCH3
162.1
CH 2 –CH–CH 3
234.0
351.1
0 50
100
150
Relative Int. (%)
100
200 189.0
250
260.0 124.1
D D
CH 2 –CH–CH 3 D
356.1
D
0 Relative Int. (%)
100
50
100
150
200 189.0
250
300
93.0
I-1-M-iii H
124.1
350
C19H15D5F3NO2 MW: 356.39
NHCOC(CF3)(C6H5)OCH3
CD–CD–CD 3
167.1 235.0
356.1
0 50
100
150
Relative Int. (%)
100
200 189.0
250
300
264.1
50 125.1
350
NHCOC(CF3)(C6H5)OCH3
168.1
CD 2 –CD–CD 3
C19H14D6F3NO2 MW: 357.40
236.0
357.1
0 50
100
150
Relative Int. (%)
100
200 189.0
250
300
I-1-M-v
97.1
127.1
D
170.1 235.0
D
350
NHCOC(CF3)(C6H5)OCH3
D
CH 2 –CH–CD 3
C19H12D8F3NO2 MW: 359.41
D
359.1
D
0 50
100
150
Relative Int. (%)
100
200 189.0
250
300
I-1-M-vi
97.1
129.1
D
D
D
H
NHCOC(CF3)(C6H5)OCH3
CD–CD–CD 3
172.1 235.0
350
C19H10D10F3NO2 MW: 361.42
D
361.1
D
0 50
100
150
Relative Int. (%)
100
200 189.0
50
250
300
264.1 130.1
D
173.1
236.0
D
350
NHCOC(CF3)(C6H5)OCH3
D
CD 2 –CD–CD 3
C19H9D11F3NO2 MW: 362.43
D
362.2
D
0 50
© 2010 by Taylor and Francis Group, LLC
100
150
200
250 m/z Figure I — Stimulants
400
d-Amphetamine-d11, (–)-α-methoxy-α-trifluoromethylphenylacetyl derivative
I-1-M-vii
98.1
400
d-Amphetamine-d10, (–)-α-methoxy-α-trifluoromethylphenylacetyl derivative
264.1
50
400
d-Amphetamine-d8, (–)-α-methoxy-α-trifluoromethylphenylacetyl derivative
263.1
50
400
d-Amphetamine-d6, (–)-α-methoxy-α-trifluoromethylphenylacetyl derivative
I-1-M-iv
93.0
400
d-Amphetamine-d5, (–)-α-methoxy-α-trifluoromethylphenylacetyl derivative
264.1
50
400
C19H15D5F3NO2 MW: 356.39
NHCOC(CF3)(C6H5)OCH3
D
234.0
167.1
350
d-Amphetamine-d5, (–)-α-methoxy-α-trifluoromethylphenylacetyl derivative
I-1-M-ii
96.1
50
300
300
350
400
52
Figure I-1. (Continued) Relative Int. (%)
100
Amphetamine, trimethylsilyl derivative
116.2
I-1-N-i
NHSi(CH3)3
73.1
50
C12H21NSi MW: 207.39
CH 2 –CH–CH 3
91.1
192.2
100.1
0 50 Relatine Int. (%)
100
100
150
I-1-N-ii
D
50
200
116.1 CH 2 –CH–CH 3
73.1 D
96.1
NHSi(CH3)3
D
250
Amphetamine-d5, trimethylsilyl derivative C12H16D5NSi MW: 212.42
D D
197.2
100.1
0 50 Relative Int. (%)
100
100
150
200
120.2
I-1-N-iii
H
50
NHSi(CH3)3
250
Amphetamine-d5, trimethylsilyl derivative C12H16D5NSi MW: 212.42
CD–CD–CD 3
73.1 92.1
197.2
104.1
0 50 Relative Int. (%)
100
100
150
I-1-N-iv
200
120.2 NHSi(CH3)3
250
Amphetamine-d6, trimethylsilyl derivative C12H15D6NSi MW: 213.42
CD 2 –CD–CD 3
50
73.1 93.1
198.2
104.1
0 50 Relative Int. (%)
100
100
150
I-1-N-v
D
50
200
119.2
D
103.1
C12H13D8NSi MW: 215.44
CH 2 –CH–CD 3
73.1 96.1
NHSi(CH3)3
D
250
Amphetamine-d8, trimethylsilyl derivative
D D
200.2
0 50 Relative Int. (%)
100
100
150
200
120.2
I-1-N-vi
D
50
D
73.1
D
97.2
104.1
D
H
NHSi(CH3)3
250
Amphetamine-d10, trimethylsilyl derivative C12H11D10NSi MW: 217.45
CD–CD–CD 3 D
202.2
0 50 Relative Int. (%)
100
100
150
I-1-N-vii
D
50
200
120.2 D
73.1 D
98.2
104.1
NHSi(CH3)3
250
Amphetamine-d11, trimethylsilyl derivative C12H10D11NSi MW: 218.45
CD 2 –CD–CD 3 D
D
203.2
0 50
© 2010 by Taylor and Francis Group, LLC
100
150 m/z Appendix One — Mass Spectra
200
250
53
Figure I-1. (Continued) Relative Int. (%)
100
158.1
I-1-O-i
50
Amphetamine, t-butyldimethylsilyl derivative
NHSi(CH3)2C(CH ) 3 3 CH 2 –CH–CH 3
C15H27NSi MW: 249.47
73.1 100.1
192.1 234.2
0 50 Relative Int. (%)
100
100
I-1-O-ii
150
200
158.1
Amphetamine-d5, t-butyldimethylsilyl derivative
250
D
C15H22D5NSi MW: 254.50
50 73.1 100.1
D
300 NHSi(CH3)2C(CH ) 3 3
D
CH 2 –CH–CH 3
D D
197.1 239.2
0 50 Relative Int. (%)
100
100
150 162.1
I-1-O-iii
50
200
250
Amphetamine-d5, t-butyldimethylsilyl derivative
H
197.2
104.1
239.2
0 50 Relative Int. (%)
100
100
150 162.2
I-1-O-iv
50
200
250
Amphetamine-d6, t-butyldimethylsilyl derivative
NHSi(CH3)2C(CH3)3
C15H21D6NSi MW: 255.50
73.1
300
CD 2 –CD–CD 3
198.2
104.1
240.2
0 50 100 Relative Int. (%)
NHSi(CH3)2C(CH ) 3 3
CD–CD–CD 3
C15H22D5NSi MW: 254.50
73.1
300
100
150 161.2
I-1-O-v
50
200 Amphetamine-d8, t-butyldimethylsilyl derivative C15H19D8NSi MW: 257.58
73.1 103.1
250
D D
300 NHSi(CH3)2C(CH ) 3 3
D
CH 2 –CH–CD 3
D D
200.2 242.2
0 50 Relative Int. (%)
100
100
150 162.2
I-1-O-vi
50
200 Amphetamine-d10, t-butyldimethylsilyl derivative C15H17D10NSi MW: 259.53
73.1
250
D
D
D
244.2
0 50 100 Relative Int. (%)
NHSi(CH3)2C(CH ) 3 3
CD–CD–CD 3
D
202.2
104.1
H
D
300
100
150 162.2
I-1-O -vii
200
C15H16D11NSi MW: 260.53
50 73.1
250
Amphetamine-d11, t-butyldimethylsilyl derivative
203.2
104.1
D D
300 NHSi(CH3)2C(CH ) 3 3
D
CD 2 –CD–CD 3 D
D
245.2
0 50
100
150
200 m/z
Figure I — Stimulants
© 2010 by Taylor and Francis Group, LLC
250
300
54
Figure I-1. (Continued) Relative Int. (%)
100
73.0
50
Amphetamine, trifluoroacetyl/ t-butyldimethylsilyl derivative
254.1
I-1-P-i
COCF 3 NSi(CH3)2C(CH3) 3 CH 2 –CH–CH 3
91.0
C17H26F3NOSi MW: 345.48 288.1
119.1
0 50
100
Relative Int. (%)
100
73.0
150
200
I-1-P-ii D
D
124.1 D
300 254.1
COCF 3
96.1
50
250
350
400
Amphetamine-d5, trifluoroacetyl/ t-butyldimethylsilyl derivative
NSi(CH3)2C(CH3) 3 CH 2 –CH–CH 3
C17H21D5F3NOSi MW: 350.51 293.1
D D
0 50
100
150
200
250
Relative Int. (%)
100
I-1-P-iii
73.0
300 258.1
COCF 3 NSi(CH3)2C(CH3) 3 CD–CD–CD 3 H
50
93.1
124.1
350
400
Amphetamine-d5, trifluoroacetyl/ t-butyldimethylsilyl derivative C17H21D5F3NOSi MW: 350.51
293.1
0 50
100
Relative Int. (%)
100
150
200
73.0
300 258.1
I-1-P-iv
50
250
NSi(CH3)2C(CH3)3 CD 2 –CD–CD 3
125.1
400
Amphetamine-d6, trifluoroacetyl/ t-butyldimethylsilyl derivative
COCF 3
93.1
350
C17H20D6F3NOSi MW: 351.51
294.1
0 50
100
150
200
Relative Int. (%)
100
I-1-P-v 73.0
D
D
50 97.1
127.1
D
250
COCF 3 NSi(CH3)2C(CH3) 3 CH 2 –CH–CD 3
D
300 257.1
350
400
Amphetamine-d8, trifluoroacetyl/ t-butyldimethylsilyl derivative C17H18D8F3NOSi MW: 353.52
296.1
D
0 50
100
150
200
Relative Int. (%)
100
I-1-P-vi D
73.0
50
D
97.1
129.1
D
D
250
300 258.1
COCF 3 NSi(CH3)2C(CH3) 3 CD–CD–CD 3
350
400
Amphetamine-d10, trifluoroacetyl/ t-butyldimethylsilyl derivative
H
C17H16D10F3NOSi MW: 355.54
D
298.1
0 50
100
150
200
250
Relative Int. (%)
100
I-1-P-vii 73.0
50
98.1 D
D
130.1 D
COCF 3 NSi(CH3)2C(CH3) 3 CD 2 –CD–CD 3
300 258.1
350
400
Amphetamine-d11, trifluoroacetyl/ t-butyldimethylsilyl derivative C17H15D11F3NOSi MW: 356.54 299.1
D D
0 50
© 2010 by Taylor and Francis Group, LLC
100
150
200
250 m/z Appendix One — Mass Spectra
300
350
400
55
Figure I-1. (Continued) Relative Int. (%)
100
304.1
I-1-Q-i
NSi(CH3)2C(CH3) 3 CH 2 –CH–CH 3
73.0 91.1
50
Amphetamine, pentafluoropropionyl/t-butyldimethylsilyl derivative
COC 2 F 5
119.1
C18H26F5NOSi MW: 395.48 338.1
0 50
100
Relative Int. (%)
100
150
200
50
96.1
D
D
343.1
200
250
300
Relative Int. (%)
100
93.1
H NSi(CH3)2C(CH3) 3 CD–CD–CD 3
124.1
400
450
Amphetamine-d5, pentafluoropropionyl/t-butyldimethylsilyl derivative
COC 2 F 5
73.0
50
350 308.1
I-1-Q-iii
450
C18H21D5F5NOSi MW: 400.51
D
150
400
Amphetamine-d5, pentafluoropropionyl/t-butyldimethylsilyl derivative
NSi(CH3)2C(CH3) 3 CH 2 –CH–CH 3 D
D
0 100
350
COC 2 F 5
124.1
50
300 304.1
I-1-Q-ii 73.0
250
C18H21D5F5NOSi MW: 400.51
343.1
0 50
100
Relative Int. (%)
100
150
200
73.0
300
350
COC 2 F 5 NSi(CH3)2C(CH3)3 CD 2 –CD–CD 3
93.1
400
450
Amphetamine-d6, pentafluoropropionyl/t-butyldimethylsilyl derivative
308.1
I-1-Q-iv
50
250
C18H20D6F5NOSi MW: 401.52
125.1
344.1
0 50
100
Relative Int. (%)
100
150
200
I-1-Q-v 73.0
50
127.1
300
D
400
450
Amphetamine-d8, pentafluoropropionyl/t-butyldimethylsilyl derivative
NSi(CH3)2C(CH3) 3 CH 2 –CH–CD 3
C18H18D8F5NOSi MW: 403.53
D
D
350 307.1
COC 2 F 5
D
97.1
250
346.1
D
0 50
100
Relative Int. (%)
100
150
200
D
COC 2 F 5 NSi(CH3)2C(CH3) 3 CD–CD–CD 3
D
D
73.0
D
98.1
300
350 308.1
I-1-Q-vi
50
250
H
450
C18H16D10F5NOSi MW: 405.54
129.1 D
400
Amphetamine-d10, pentafluoropropionyl/t-butyldimethylsilyl derivative
348.1
0 50
100
Relative Int. (%)
100 98.1
150
D
250
300
350 308.1
I-1-Q-vii
73.0
50
200
NSi(CH3)2C(CH3) 3 CD 2 –CD–CD 3
C18H15D11F5NOSi MW: 406.55
130.1 D
450
Amphetamine-d11, pentafluoropropionyl/t-butyldimethylsilyl derivative
COC 2 F 5
D
400
D
349.1
D
0 50
© 2010 by Taylor and Francis Group, LLC
100
150
200
250 m/z Figure I — Stimulants
300
350
400
450
56
Figure I-1. (Continued) Relative Int. (%)
100
I-1-R-i
Amphetamine, heptafluorobutyryl/ t-butyldimethylsilyl derivative
NSi(CH3)2C(CH3)3 CH 2 –CH–CH 3
73.0 91.0
50
354.1
COC 3 F 7
C19H26F7NOSi MW: 445.49
119.1
388.1
0 50
100
150
Relative Int. (%)
100
200
250
I-1-R-ii 73.0
50
D
96.1 124.1
D
300
354.1
COC 3 F 7 D
350
400
450
500
Amphetamine-d5, heptafluorobutyryl/ t-butyldimethylsilyl derivative
NSi(CH3)2C(CH3)3 CH 2 –CH–CH 3
C19H21D5F7NOSi MW: 450.52
D
393.1
D
0 50
100
150
Relative Int. (%)
100
200
250
350 358.1
I-1-R-iii
50
300
COC 3 F 7
400
93.0
500
Amphetamine-d5, heptafluorobutyryl/ t-butyldimethylsilyl derivative
H NSi(CH3)2C(CH3)3 CD–CD–CD 3
73.0
450
C19H21D5F7NOSi MW: 450.52
124.1
393.1
0 50
100
150
Relative Int. (%)
100
200
250
350 358.1
I-1-R-iv
COC 3 F 7
400
450
500
Amphetamine-d6, heptafluorobutyryl/ t-butyldimethylsilyl derivative
NSi(CH3)2C(CH3)3 CD 2 –CD–CD 3
73.0 93.0
50
300
C19H20D6F7NOSi MW: 451.53
125.1
394.1
0 50
100
150
Relative Int. (%)
100
200
250
I-1-R-v D
73.0
50
97.1
127.1
D
300
357.1
COC 3 F 7 D
350
400
450
500
Amphetamine-d8, heptafluorobutyryl/ t-butyldimethylsilyl derivative
NSi(CH3)2C(CH3)3 CH 2 –CH–CD 3
C19H18D8F7NOSi MW: 453.54
D
396.1
D
0 50
100
150
Relative Int. (%)
100
200
250
50
D
98.1
350 358.1
I-1-R-vi 73.0
300
COC 3 F 7 D
400
NSi(CH3)2C(CH3)3 CD–CD–CD 3 H
500
C19H16D10F7NOSi MW: 455.55
129.1 D
450
Amphetamine-d10, heptafluorobutyryl/ t-butyldimethylsilyl derivative
D
398.1
D
0 50
100
150
200
250
300
Relative Int. (%)
100
I-1-R-vii 98.1 73.0
50
D
130.1
D
350 358.1
COC 3 F 7 D
400
450
500
Amphetamine-d11, heptafluorobutyryl/ t-butyldimethylsilyl derivative
NSi(CH3)2C(CH3)3 CD 2 –CD–CD 3
C19H15D11F7NOSi MW: 456.56
D
399.1
D
0 50
100
150
200
250
300 m/z
Appendix One — Mass Spectra
© 2010 by Taylor and Francis Group, LLC
350
400
450
500
57
Figure I-2. Mass spectra of methamphetamine (MA) and its deuterated analogs (MA-d5, -d8, -d9, -d11, -d14): (A) underivatized; (B) acetyl-derivatized; (C) TCA-derivatized; (D) TFA-derivatized; (E) PFP-derivatized; (F) HFBderivatized; (G) 4-CB-derivatized; (H) PFB-derivatized; (I) propylformyl-derivatized; (J,K) l-TPC-derivatized; (L,M) l-MTPA-derivatized; (N) TMS-derivatized; (O) t-BDMS-derivatized.
Relative Int. (%)
100
I-2-A-i
58.1
Methamphetamine CH 3 CH 2 –CH–CH 3
50 91.0
134.1
0 50
100 Relative Int. (%)
C10H15N MW: 149.23
NH
100 62.1
150
200 Methamphetamine-d5
I-2-A-ii
CD 3
C10H10D5N MW: 154.26
NH
D
CH–CD–CH 3
50 92.0
139.1
0 50 Relative Int.(%)
100
100 65.1
150
I-2-A-iii
D
C10H7D8N MW: 157.28
NH
CH–CD–CD 3
50 92.0
200 Methamphetamine-d8
CD 3
139.1
0 50 Relative Int. (%)
100
100 65.1
150
200 Methamphetamine-d9
I-2-A-iv
CD 3
C10H6D9N MW: 158.29
NH CD 2 –CD–CD 3
50 93.0
140.1
0 50 Relative Int. (%)
100
100 64.1
150 CD 3
I-2-A-v D
CH 2 –CH–CD 3
50 D
96.1
D D
142.1
0 50 Relative Int. (%)
100
100 65.1
C10H4D11N MW: 160.30
NH
D
200 Methamphetamine-d11
150 CD 3
I-2-A-vi D
50
D
98.1
D
200 Methamphetamine-d14 C10HD14N MW: 163.32
NH CD 2 –CD–CD 3 D
D
145.1
0 50
100
150 m/z
Figure I — Stimulants
© 2010 by Taylor and Francis Group, LLC
200
58
Figure I-2. (Continued) Relative Int. (%)
100
58.1
I-2-B-i
CH 3
C12H17NO MW: 191.27
NCOCH3
50
CH 2 –CH–CH 3
91.1 134.1
0 50
100 Relative Int. (%)
Methamphetamine, acetyl derivative
100.1
100 62.1
I-2-B-ii
150
200
Methamphetamine-d5, acetyl derivative
CD 3
104.1
C12H12D5NO MW: 196.30
D
NCOCH3 CH–CD–CH 3
50 92.1
250
139.1
0 50 Relative Int. (%)
100
100 65.2
150
I-2-B-iii
NCOCH3 D CH–CD–CD 3
50 92.1
50 Relative Int. (%)
100
I-2-B-iv
150
200
NCOCH3 CD 2 –CD–CD 3
50 93.1
50 100
I-2-B-v
150
50
D
97.1
100 65.1
D
250 Methamphetamine-d11, acetyl derivative
NCOCH3 CH 2 –CH–CD 3
C12H6D11NO MW: 202.34
D D
142.1
0 50
200 CD 3
106.1 D
100
C12H8D9NO MW: 200.32
140.1
100 64.1
250 Methamphetamine-d9, acetyl derivative
CD 3
107.1
0
Relative Int. (%)
C12H9D8NO MW: 199.32
139.1
100 65.1
250 Methamphetamine-d8, acetyl derivative
CD 3
107.1
0
Relative Int. (%)
200
I-2-B-vi
150 107.1 D
D
50 D
98.1
200 CD 3
250 Methamphetamine-d14, acetyl derivative
NCOCH3 CD 2 –CD–CD 3
C12H3D14NO MW: 205.35
D D
145.1
0 50
100
150 m/z
Appendix One — Mass Spectra
© 2010 by Taylor and Francis Group, LLC
200
250
59
Figure I-2. (Continued)
Relative Int. (%)
100
202.0
I-2-C-i 50
CH 3
Methamphetamine, trichloroacetyl derivative C12H14Cl3NO MW: 294.60
NCOCCl 3 CH 2 –CH–CH 3
91.1 118.1
0 50
100
150
Relative Int. (%)
100
200
250
206.0
I-2-C-ii
300 CD 3
D
NCOCCl 3
C12H9D5Cl3NO MW: 299.63
CH–CD–CH 3
50 92.1
350
Methamphetamine-d5, trichloroacetyl derivative
119.0
0 50
100
150
Relative Int. (%)
100
200
250
209.0
I-2-C-iii
300 CD 3
D
Methamphetamine-d8, trichloroacetyl derivative
NCOCCl 3
C12H6D8Cl3NO MW: 302.65
CH–CD–CD 3
50 93.1
350
122.1
0 50
100
150
Relative Int. (%)
100
200
250
209.0
CD 3
I-2-C-iv 50
300
350
Methamphetamine-d9, trichloroacetyl derivative
NCOCCl 3 CD 2 –CD–CD 3
C12H5D9Cl3NO MW: 303.66
93.1 123.1
0 50
100
150
Relative Int. (%)
100
200
250
208.0
CD 3
I-2-C-v D
D
50 96.1
D
126.1
300
350
Methamphetamine-d11, trichloroacetyl derivative
NCOCCl 3 CH 2 –CH–CD 3
C12H3D11Cl3NO MW: 305.67
D D
0 50
100
150
Relative Int. (%)
100
200
250
209.0
CD 3
I-2-C-vi 50
D
98.1
D
128.2
300
D
350
Methamphetamine-d14, trichloroacetyl derivative
NCOCCl 3 CD 2 –CD–CD 3
C12D14Cl3NO MW: 308.69
D D
0 50
100
150
200 m/z
Figure I — Stimulants
© 2010 by Taylor and Francis Group, LLC
250
300
350
60
Figure I-2. (Continued)
Relative Int. (%)
100
154.1
I-2-D-i
CH 3 NCOCF3 CH 2 –CH–CH 3
50 91.1
110.0
Methamphetamine, trifluoroacetyl derivative
118.1
C12H14F3NO MW: 245.24
0 50
100
150
Relative Int. (%)
100
200 158.1
250 CD 3
I-2-D-ii
D
NCOCF3
Methamphetamine-d5, trifluoroacetyl derivative C12H9D5F3NO MW: 250.27
CH–CD–CH 3
50 113.1
300
120.1
92.1
0 50
100
150
Relative Int. (%)
100
200 161.1
I-2-D-iii
250 CD 3
D
NCOCF3
Methamphetamine-d8, trifluoroacetyl derivative C12H6D8F3NO MW: 253.29
CH–CD–CD 3
50 113.1 92.1
300
123.1
0 50
100
150
Relative Int. (%)
100
200
250
161.1
I-2-D-iv
CD 3
Methamphetamine-d9, trifluoroacetyl derivative
NCOCF3 CD 2 –CD–CD 3
50 113.1
300
C12H5D9F3NO MW: 254.30
123.1
93.1
0 50
100
150
Relative Int. (%)
100
200 160.1
CD 3
I-2-D-v D
50 113.1
126.1
250
D
96.1
NCOCF3
D
300
Methamphetamine-d11, trifluoroacetyl derivative
CH 2 –CH–CD 3
C12H3D11F3NO MW: 256.31
D D
0 50
100
150
Relative Int. (%)
100
200 161.1
I-2-D-vi
CD 3 D
50 98.1
113.1
128.2
250
D
D
NCOCF3
300
Methamphetamine-d14, trifluoroacetyl derivative C12D14F3NO MW: 259.33
CD 2 –CD–CD 3 D
D
0 50
100
150
200 m/z
Appendix One — Mass Spectra
© 2010 by Taylor and Francis Group, LLC
250
300
61
Figure I-2. (Continued)
Relative Int. (%)
100
204.1
CH 3
I-2-E-i
NCOC 2F 5
Methamphetamine, pentafluoropropionyl derivative C13H14F5NO MW: 295.25
CH 2 –CH–CH 3
50
91.1
160.0
118.1
0 50
100
150
200
Relative Int. (%)
100
208.1
CD 3 D
50
250
I-2-E-ii
NCOC 2F 5
300
350
Methamphetamine-d5, pentafluoropropionyl derivative C13H9D5F5NO MW: 300.28
CH–CD–CH 3
163.1
119.1 92.1
0 50
100
Relative Int. (%)
100
150
200 211.1
CD 3 D
NCOC 2F 5 CH–CD–CD 3
50
250
I-2-E-iii
300
350
Methamphetamine-d8, pentafluoropropionyl derivative C13H6D8F5NO MW: 303.30
163.1 92.1
123.1
0 50
100
150
200
Relative Int. (%)
100
211.1
CD 3
250
I-2-E-iv
NCOC 2F 5
300
Methamphetamine-d9, pentafluoropropionyl derivative C13H5D9F5NO MW: 304.30
CD 2 –CD–CD 3
50
350
163.1
123.1 93.1
0 50
100
Relative Int. (%)
100
150
200 210.1
CD 3 D
50
D
250
I-2-E-v
NCOC 2F 5
D
300
Methamphetamine-d11, pentafluoropropionyl derivative C13H3D11F5NO MW: 306.32
CH 2 –CH–CD 3
163.1
126.2
D D
350
96.1
0 50
100
Relative Int. (%)
100
150
200 211.1
CD 3 D
50
D
D
NCOC 2F 5
I-2-E-vi
300
98.1
350
Methamphetamine-d14, pentafluoropropionyl derivative C13D14F5NO MW: 309.33
CD 2 –CD–CD 3 D
D
250
163.1
128.2
0 50
100
150
200 m/z
Figure I — Stimulants
© 2010 by Taylor and Francis Group, LLC
250
300
350
62
Figure I-2. (Continued)
Relative Int. (%)
100
254.1
CH 3
I-2-F-i
Methamphetamine, heptafluorobutyryl derivative
NCOC 3F 7
C14H14F7NO MW: 345.26
CH 2 –CH–CH 3
50 91.1
210.0
118.1
0 50
100
150
200
250
Relative Int. (%)
100
I-2-F-ii
258.1
CD 3 D
50
300
350
400
Methamphetamine-d5, heptafluorobutyryl derivative
NCOC 3F 7
C14H9D5F7NO MW: 350.29
CH–CD–CH 3
213.1 92.1
119.1
0 50
100
150
200
Relative Int. (%)
100
250 261.1
CD 3
I-2-F-iii
D
300
350
400
Methamphetamine-d8, heptafluorobutyryl derivative
NCOC 3F 7
C14H6D8F7NO MW: 353.30
CH–CD–CD 3
50
213.1 92.1
123.1
0 50
100
150
200
250
Relative Int. (%)
100
I-2-F-iv
300 261.1
CD 3
350
Methamphetamine-d9, heptafluorobutyryl derivative
NCOC 3F 7
C14H5D9F7NO MW: 354.31
CD 2 –CD–CD 3
50 93.1
400
213.1
123.1
0 50
100
150
200
Relative Int. (%)
100
250 260.1
CD 3
I-2-F-v D
126.2 D
400
C14H3D11F7NO MW: 356.32
CH 2 –CH–CD 3
213.1
D
350
Methamphetamine-d11, heptafluorobutyryl derivative
NCOC 3F 7
D
50 96.1
300
D
0 50
100
150
200
Relative Int. (%)
100
D
98.1
128.2 D
D
300 261.1
CD 3
I-2-F-vi 50
250
350
400
Methamphetamine-d14, heptafluorobutyryl derivative
NCOC 3F 7
C14D14F7NO MW: 359.34
CD 2 –CD–CD 3
213.1
D D
0 50
100
150
200
250 m/z
Appendix One — Mass Spectra
© 2010 by Taylor and Francis Group, LLC
300
350
400
63
Figure I-2. (Continued)
Relative Int. (%)
100
I-2-G-i
308.1
CH 3
Methamphetamine, 4-carboethoxyhexafluorobutyryl derivative
NCO(CF2)3COOC2H5 CH 2 –CH–CH 3
50 91.1
118.1
C17H19F6NO3 MW: 399.33 280.1
195.0
0 50
100
150
200
Relative Int. (%)
100
250
CD 3
I-2-G-ii
D
300 312.2
NCO(CF2)3COOC2H5
350
92.1
119.1
450
Methamphetamine-d5, 4-carboethoxyhexafluorobutyryl derivative C17H14D5F6NO3 MW: 404.36
CH–CD–CH 3
50
400
284.1
195.0
0 50
100
150
200
Relative Int. (%)
100
250
315.2
CD 3
I-2-G-iii
D
300
NCO(CF2)3COOC2H5
350
93.1
C17H11D8F6NO3 MW: 407.38 287.1
195.0
123.1
450
Methamphetamine-d8, 4-carboethoxyhexafluorobutyryl derivative
CH–CD–CD 3
50
400
0 50
100
150
200
250
Relative Int. (%)
100
315.2
CD 3
I-2-G-iv
300
350
93.1
123.1
450
Methamphetamine-d9, 4-carboethoxyhexafluorobutyryl derivative
NCO(CF2)3COOC2H5 CD 2 –CD–CD 3
50
400
C17H10D9F6NO3 MW: 408.38 287.1
195.0
0 50
100
150
200
250
Relative Int. (%)
100
D
50 97.1
314.2
CD 3
I-2-G-v 126.1
D
D
300
350
D
195.0
450
Methamphetamine-d11, 4-carboethoxyhexafluorobutyryl derivative
NCO(CF2)3COOC2H5 CH 2 –CH–CD 3
D
400
C17H8D11F6NO3 MW: 410.39 286.1
0 50
100
150
200
250
Relative Int. (%)
100
I-2-G-vi D
98.1
315.2
CD 3
50 128.2
D
D
350
400
450
Methamphetamine-d14, 4-carboethoxyhexafluorobutyryl derivative
NCO(CF2)3COOC2H5 CD 2 –CD–CD 3 D
D
300
C17H5D14F6NO3 MW: 413.41 287.1
195.0
0 50
100
150
200
250 m/z
Figure I — Stimulants
© 2010 by Taylor and Francis Group, LLC
300
350
400
450
64
Figure I-2. (Continued)
Relative Int. (%)
100
195.0
CH 3
252.0
I-2-H-i
NCOC 6F 5
Methamphetamine, 2,3,4,5,6pentafluorobenzoyl derivative C17H14F5NO MW: 343.30
CH 2 –CH–CH 3
50
167.0
0 50
100
150
200
Relative Int. (%)
100
195.0
CD 3
D
250
300
256.0
I-2-H-ii
NCOC 6F 5
350
400
Methamphetamine-d5, 2,3,4,5,6pentafluorobenzoyl derivative C17H9D5F5NO MW: 348.26
CH–CD–CH 3
50
167.0
0 50
100
150
Relative Int. (%)
100
200
CD 3 D
250
195.0
259.1
NCOC 6F 5
300
I-2-H-iii
350
Methamphetamine-d8, 2,3,4,5,6pentafluorobenzoyl derivative
CH–CD–CD 3
50
400
C17H6D8F5NO MW: 351.24 167.0
0 50
100
150
200
Relative Int. (%)
100
250
195.0
CD 3
259.1
300
I-2-H-iv
NCOC 6F 5
350
Methamphetamine-d9, 2,3,4,5,6pentafluorobenzoyl derivative C17H5D9F5NO MW: 352.22
CD 2 –CD–CD 3
50
400
167.0
0 50
100
150
Relative Int. (%)
100
200
CD 3 D
195.0
258.0
NCOC 6F 5
D
300
I-2-H-v
CH 2 –CH–CD 3
50 D
250
350
400
Methamphetamine-d11, 2,3,4,5,6pentafluorobenzoyl derivative C17H3D11F5NO MW: 354.21
D D
167.0
0 50
100
150
200
Relative Int. (%)
100
195.0
CD 3 D
50
D
D
250 259.1
NCOC 6F 5
300
350
14, 2,3,4,5,6I-2-H-vi Methamphetamine-d pentafluorobenzoyl derivative
C17D14F5NO MW: 357.19
CD 2 –CD–CD 3
D
400
167.0
D
0 50
100
150
200
250 m/z
Appendix One — Mass Spectra
© 2010 by Taylor and Francis Group, LLC
300
350
400
65
Figure I-2. (Continued) Relative Int. (%)
100
144.1
I-2-I-i 50
NCOOC3H7 CH 2 –CH–CH 3
58.1
176.1
50
100
150
Relative Int.(%)
100
200
148.1
50
D NCOOC3H7 CH–CD–CH 3
62.1 106.1
250 Methamphetamine-d5, propylformyl derivative
CD 3
I-2-I-ii
C14H16D5NO2 MW: 240.35
92.0 181.1
0 50
100
100 Relative Int. (%)
C14H21NO2 MW: 235.32
102.0
91.0
0
150
200 151.1
I-2-I-iii
D
NCOOC3H7 CH–CD–CD 3
65.1
50
250 Methamphetamine-d8, propylformyl derivative
CD 3
C14H13D8NO2 MW: 243,37
109.1 92.0 184.1
0 50
100
150
100 Relative Int. (%)
Methamphetamine, propylformyl derivative
CH 3
200 151.1
I-2-I-iv 50
Methamphetamine-d9, propylformyl derivative
CD 3 NCOOC3H7 CD 2 –CD–CD 3
65.1 93.0
250
109.1
C14H12D9NO2 MW: 244.38
185.1
0 50
100
150
Relative Int. (%)
100
200
150.1
CD 3
I-2-I-v D
D
CH 2 –CH–CD 3
64.1
50
108.1
D
96.1
NCOOC3H7
Methamphetamine-d11, propylformyl derivative C14H10D11NO2 MW: 246.39
D D
187.2
0 50
100
150
100 Relative Int. (%)
250
151.1
I-2-I-vi 65.1
50
200
D
98.1
0 100
150 m/z
Figure I — Stimulants
© 2010 by Taylor and Francis Group, LLC
NCOOC3H7 CD 2 –CD–CD 3
C14H7D14NO2 MW: 249.41
109.1 D
50
Methamphetamine-d14, propylformyl derivative
CD 3 D
250
D D
190.2
200
250
66
Figure I-2. (Continued)
Relative Int. (%)
100
l-Methamphetamine, (S)-(–)-N(trifluoroacetyl)-prolyl derivative
166.0
I-2-J-i
H 3C O N C
58.1
50
N
CH 2 CH O CCF 3 CH 3
91.0
C17H21F3N2O2 MW: 342.36
251.1
119.1
0 50
100
150
Relative Int. (%)
100
200
250
300
166.0 D 3C
I-2-J-ii
D
62.1
50
O
N C
N
CH CD
400
C17H16D5F3N2O2 MW: 347.19
255.1
O CCF 3
CH 3
92.0
350
l-Methamphetamine-d5, (S)-(–)-N(trifluoroacetyl)-prolyl derivative
121.1
0 50
100
150
Relative Int. (%)
100
200 166.0
I-2-J-iii
250
300
D 3C O N C N CH CD O CCF 3 CD 3
50 93.0
400
C17H13D8F3N2O2 MW: 350.40
D
65.1
350
l-Methamphetamine-d8, (S)-(–)-N(trifluoroacetyl)-prolyl derivative 258.1
124.1
0 50
100
Relative Int. (%)
100
150
200
300
D 3C O N C
65.1
N
400
C17H12D9F3N2O2 MW: 351.41
258.1
CD 2 CD O CCF 3 CD 3
93.0
350
l-Methamphetamine-d9, (S)-(–)-N(trifluoroacetyl)-prolyl derivative
166.0
I-2-J-iv
50
250
125.1
0 50
100
Relative Int. (%)
100
150 166.0
I-2-J-v 64.1
50
200
D D
97.1 127.1
250
300
D 3C N
D
400
C17H10D11F3N2O2 MW: 353.42
O
CH 2 CH C CD 3
D
350
l-Methamphetamine-d11, (S)-(–)-N(trifluoroacetyl)-prolyl derivative 257.1
N O CCF 3
D
0 50
100
150
Relative Int. (%)
100
166.0
I-2-J-vi
D
65.1
50
200
D
D
300
N O CD 2 CD C D
350
400
l-Methamphetamine-d14, (S)-(–)-N(trifluoroacetyl)-prolyl derivative
D 3C
98.1 130.1
250
CD 3
258.1
C17H7D14F3N2O2 MW: 356.44
N
O CCF 3
D
0 50
100
150
200
250 m/z
Appendix One — Mass Spectra
© 2010 by Taylor and Francis Group, LLC
300
350
400
67
Figure I-2. (Continued)
Relative Int. (%)
100
I-2-K-i
H 3C O
166.0
N C
CH 2 CH O CCF 3 CH 3 251.1
58.1
50
d-Methamphetamine, (S)-(–)-N(trifluoroacetyl)-prolyl derivative
N
C17H21F3N2O2 MW: 342.36
91.0
0 50
100
Relative Int. (%)
100
I-2-K-ii
150
200
166.0
D 3C D
62.1
50
250
N C CH 3
350
400
d-Methamphetamine-d5, (S)-(–)-N(trifluoroacetyl)-prolyl derivative
O
CH CD
92.0
300
N O CCF 3
C17H16D5F3N2O2 MW: 347.19
255.1
0 50
100
Relative Int. (%)
100
I-2-K-iii
150
200
166.0
300
350
400
d-Methamphetamine-d8, (S)-(–)-N(trifluoroacetyl)-prolyl derivative
D 3C O
D
N C
N CH CD O CCF 3 CD 3
65.1
50
250
C17H13D8F3N2O2 MW: 350.40
258.1
93.0
0 50
100
Relative Int (%)
100
I-2-K-iv
150
200
166.0
300
N C N CD 2 CD O CCF 3 CD 3
93.0
350
400
d-Methamphetamine-d9, (S)-(–)-N(trifluoroacetyl)-prolyl derivative
D 3C O
65.1
50
250
C17H12D9F3N2O2 MW: 351.41
258.1
0 50
100
Relative Int. (%)
100
I-2-K-v
150 166.0
D
97.1
250
300
N
D
O
400
CD 3
C17H10D11F3N2O2 MW: 353.42
257.1
CH 2 CH C D
350
d-Methamphetamine-d11, (S)-(–)-N(trifluoroacetyl)-prolyl derivative
D 3C D
64.1
50
200
N O CCF 3
D
0 50
100
Relative Int. (%)
100
I-2-K-vi
150 166.0
98.1
250
300
D 3C D
65.1
50
200
D
N
D
D
CD 3
400
d-Methamphetamine-d14, (S)-(–)-N(trifluoroacetyl)-prolyl derivative
O
CD 2 CD C
350
C17H7D14F3N2O2 MW: 356.44
258.1
N O CCF 3
D
0 50
100
150
200
250 m/z
Figure I — Stimulants
© 2010 by Taylor and Francis Group, LLC
300
350
400
68
Figure I-2. (Continued)
Relative Int. (%)
100
189.0
CH 3 NCOC(CF3)(C6H5)OCH3
274.1
CH 2 –CH–CH 3
50
l-Methamphetamine, (–)-α-methoxy-α-trifluoromethylphenylacetyl derivative
I-2-L-i
C20H22F3NO2 MW: 365.39
91.0
0 50
100
Relative Int. (%)
100
150
250
I-2-L-ii
NCOC(CF3)(C6H5)OCH3
278.1
CH–CD–CH 3
50
300
189.0
CD 3 D
200
350
400
l-Methamphetamine-d5, (–)-α-methoxy-α-trifluoromethylphenylacetyl derivative C20H17D5F3NO2 MW: 370.42
93.1
0 50
100
Relative Int. (%)
100
150
CD 3
D
200 189.0
NCOC(CF3)(C6H5)OCH3
250
I-2-L-iii 281.1
CH–CD–CD 3
50
300
350
400
l-Methamphetamine-d8, (–)-α-methoxy-α-trifluoromethylphenylacetyl derivative C20H14D8F3NO2 MW: 373.44
93.1
0 50
100
150
Relative Int. (%)
100
200
250
300
189.0
CD 3
I-2-L-iv
NCOC(CF3)(C6H5)OCH3
281.1
350
l-Methamphetamine-d9, (–)-α-methoxy-α-trifluoromethylphenylacetyl derivative
CD 2 –CD–CD 3
50
400
C20H13D9F3NO2 MW: 374.44
93.1
0 50
100
Relative Int. (%)
100
150
50
D
300
280.1
CH 2 –CH–CD 3
350
400
l-Methamphetamine-d11, (–)-α-methoxy-α-trifluoromethylphenylacetyl derivative
I-2-L-v
NCOC(CF3)(C6H5)OCH3
D
250
189.0
CD 3 D
200
C20H11D11F3NO2 MW: 376.46
D
97.1
D
0 50
100
Relative Int. (%)
100
150
189.0
CD 3 D
50
D
D
200
NCOC(CF3)(C6H5)OCH3
250
300
I-2-L-vi 281.1
350
l-Methamphetamine-d14, (–)-α-methoxy-α-trifluoromethylphenylacetyl derivative
CD 2 –CD–CD 3 D
C20H8D14F3NO2 MW: 379.47
98.1
D
400
98.1
0 50
100
150
200
250 m/z
Appendix One — Mass Spectra
© 2010 by Taylor and Francis Group, LLC
300
350
400
69
Figure I-2. (Continued)
Relative Int. (%)
100
CH 3
189.0
NCOC(CF3)(C6H5)OCH3
274.1
CH 2 –CH–CH 3
50
d-Methamphetamine, (–)-α-methoxy-α-trifluoromethylphenylacetyl derivative
I-2-M-i
C20H22F3NO2 MW: 365.39
91.0 119.0
0 50
100
Relative Int. (%)
100
150
189.0
CD 3 D
200
NCOC(CF3)(C6H5)OCH3
250
300
I-2-M-ii 278.1
CH–CD–CH 3
50
92.1
350
400
d-Methamphetamine-d5, (–)-α-methoxy-α-trifluoromethylphenylacetyl derivative C20H17D5F3NO2 MW: 370.42
121.1
0 50
100
Relative Int. (%)
100
150
CD 3
D
200 189.0
NCOC(CF3)(C6H5)OCH3
250
I-2-M-iii
300
281.1
93.1
400
C20H14D8F3NO2 MW: 373.44
CH–CD–CD 3
50
350
d-Methamphetamine-d8, (–)-α-methoxy-α-trifluoromethylphenylacetyl derivative
124.1
0 50
100
150
Relative Int. (%)
100
200
250
300
189.0
CD 3
I-2-M-iv
NCOC(CF3)(C6H5)OCH3
281.1
400
C20H13D9F3NO2 MW: 374.44
CD 2 –CD–CD 3
50
350
d-Methamphetamine-d9, (–)-α-methoxy-α-trifluoromethylphenylacetyl derivative
93.1 125.1
0 50
100
150
Relative Int. (%)
100
200 189.0
CD 3
50
D D
250
I-2-M-v 280.1
NCOC(CF3)(C6H5)OCH3
D
300
D
97.1
400
d-Methamphetamine-d11, (–)-α-methoxy-α-trifluoromethylphenylacetyl derivative C20H11D11F3NO2 MW: 376.46
CH 2 –CH–CD 3 D
350
127.1
0 50
100
Relative Int. (%)
100
150
50
D
D
250
300
189.0
CD 3 D
200
I-2-M-vi
NCOC(CF3)(C6H5)OCH3
281.1
CD 2 –CD–CD 3 D
400
d-Methamphetamine-d14, (–)-α-methoxy-α-trifluoromethylphenylacetyl derivative C20H8D14F3NO2 MW: 379.47
98.1
D
350
130.1
0 50
100
150
200
250 m/z
Figure I — Stimulants
© 2010 by Taylor and Francis Group, LLC
300
350
400
70
Figure I-2. (Continued)
Relative Int. (%)
100
I-2-N-i
50
CH 3
NSi(CH3)3 CH 2 –CH–CH 3
73.1 58.1
Methamphetamine, trimethylsilyl derivative
130.1
C13H23NSi MW: 221.41
91.1
206.2
0 50
100
150
Relative Int. (%)
100
200
134.2
50
D
NSi(CH3)3 CH–CD–CH 3
73.1 62.1
Methamphetamine-d5, trimethylsilyl derivative
CD 3
I-2-N-ii
250
C13H18D5NSi MW: 226.44
92.1
211.2
0 50
100
150
Relative Int. (%)
100
I-2-N-iii 50
200
137.2
250 Methamphetamine-d8, trimethylsilyl derivative
CD 3 D
NSi(CH3)3 CH–CD–CD 3
C13H15D8NSi MW: 229.46
73.1 65.2
214.2
92.1
0 50
100
150
Relative Int.(%)
100
200
137.2
CD 3
I-2-N-iv
250 Methamphetamine-d9, trimethylsilyl derivative
NSi(CH3)3 CD 2 –CD–CD 3
50
C13H14D9NSi MW: 230.47
73.1 65.2
93.1
215.2
0 50
100
150
Relative Int. (%)
100
I-2-N-v
136.2 D
250 Methamphetamine-d11, trimethylsilyl derivative
CD 3 D
50
200
NSi(CH3)3 CH 2 –CH–CD 3
C13H12D11NSi MW: 232.48
73.1 D
64.2
96.2
D D
217.2
0 50
100
150
Relative Int. (%)
100
200
137.2
CD 3
I-2-N-vi D
50
D
250 Methamphetamine-d14, trimethylsilyl derivative
NSi(CH3)3 CD 2 –CD–CD 3
C13H9D14NSi MW: 235.50
73.1 65.2
98.2
D
D D
220.3
0 50
100
150 m/z
Appendix One — Mass Spectra
© 2010 by Taylor and Francis Group, LLC
200
250
71
Figure I-2. (Continued)
Relative Int. (%)
100
172.1
CH 3 NSi(CH3)2C(CH ) 3 3 CH 2 –CH–CH 3
73.1 75.1
50
Methamphetamine, t-butyldimethylsilyl derivative
I-2-O-i
C16H29NSi MW: 263.49
147.1 206.1 248.1
0 50
100
150
Relative Int.(%)
100
200 176.2
CD 3 NSi(CH3)2C(CH3)3 CH–CD–CH 3
D
50
73.1
75.1
250
300
Methamphetamine-d5, t-butyldimethylsilyl derivative
I-2-O-ii
C16H24D5NSi MW: 268.52 211.2
149.0
253.1
0 50
100
150
Relative Int. (%)
100
CD 3
D
50
73.1
200 179.2
250
300
Methamphetamine-d8, t-butyldimethylsilyl derivative
I-2-O-iii
NSi(CH3)2C(CH3)3
C16H21D8NSi MW: 271.54
CH–CD–CD 3
75.1
214.2 149.0
256.2
0 50
100
150
Relative Int. (%)
100 CD 3
50
73.1
200
300
Methamphetamine-d9, t-butyldimethylsilyl derivative
I-2-O-iv
NSi(CH3)2C(CH3)3 CD 2 –CD–CD 3
75.1
250
179.2
C16H20D9NSi MW: 272.55 215.2
149.0
257.1
0 50
100
Relative Int. (%)
100 73.1
150
D
50
178.2
CD 3
75.1
D
D
200
NSi(CH3)2C(CH3)3 CH 2 –CH–CD 3
300
Methamphetamine-d11, t-butyldimethylsilyl derivative
I-2-O-v
C16H18D11NSi MW: 274.56
149.0
D
250
217.2
D
258.1
0 50
100
150
Relative Int. (%)
100
50
75.1
D D
D
300
Methamphetamine-d14, t-butyldimethylsilyl derivative
I-2-O-vi
NSi(CH3)2C(CH ) 3 3 CD 2 –CD–CD 3 D
D
250
179.2
CD 3
73.1
200
C16H15D14NSi MW: 277.58 220.2
149.0
262.3
0 50
100
150
200 m/z
Figure I — Stimulants
© 2010 by Taylor and Francis Group, LLC
250
300
72
Figure I-3. Mass spectra of ephedrine and its deuterated analog (ephedrine-d3): (A) underivatized; (B) acetylderivatized; (C) TCA-derivatized; (D) [TFA]2-derivatized; (E) [PFP]2-derivatized; (F) [HFB]2-derivatized; (G) 4-CBderivatized; (H) PFB-derivatized; (I) propylformyl-derivatized; (J) d-TPC-derivatized; (K) d-MTPA-derivatized; (L) [TMS]2-derivatized. Relative Int. (%)
100
58.0
I-3-A-i
Ephedrine C10H15NO MW: 165.23
CH 3 CH–CH–NH–CH 3
50
OH
77.0
0 50
100
Relative Int. (%)
100
61.1
150
200 Ephedrine-d3
I-3-A-ii
CH 3
C10H12D3NO MW: 168.25
CH–CH–NH–CD 3
50
OH
77.0
0 50
100
150
200
m/z Relative Int. (%)
100
58.1
I-3-B-i
Ephedrine, acetyl derivative
COCH 3
100.1
CH–CH–N–CH 3
50
C12H17NO2 MW: 207.27
OH CH 3
77.1
0 50
100
Relative Int. (%)
100
61.1
150
I-3-B-ii
200
250 Ephedrine-d3, acetyl derivative
COCH 3
103.1
CH–CH–N–CD 3
50
C12H14D3NO2 MW: 210.29
OH CH 3
77.1
0 50
100
Relative Int. (%)
100
150 m/z
200
Ephedrine, trichloroacetyl derivative
201.9
I-3-C-i
COCCl 3 CH–CH–N–CH 3
50 117.0 56.0
250
C12H14Cl3NO2 MW: 310.60
OH CH 3
91.0
0 50
100
Relative Int. (%)
100
150
I-3-C-ii
200
250
350
Ephedrine-d3, trichloroacetyl derivative
204.9
COCCl 3 CH–CH–N–CD 3
50 117.0 59.0
300
C12H11D3Cl3NO2 MW: 313.62
OH CH 3
91.0
0 50
100
150
200 m/z
Appendix One — Mass Spectra
© 2010 by Taylor and Francis Group, LLC
250
300
350
73
Figure I-3. (Continued)
Relative Int. (%)
100
154.1
I-3-D-i
50
O
COCF 3
110.0 69.0
50
C14H13F6NO3 MW: 357.25
CH 3
244.1
0 100
150
100 Relative Int. (%)
Ephedrine, di-trifluoroacetyl derivative
COCF 3 CH–CH–N–CH 3
200
250
300
157.1
I-3-D-ii
350
Ephedrine-d3, di-trifluoroacetyl derivative
COCF 3 CH–CH–N–CD 3
50
O
113.1
C14H10D3F6NO3 MW: 360.27
CH 3
COCF 3
69.1
247.1
0 50
400
100
150
200
250
300
350
400
m/z Relative Int. (%)
100
204.1
I-3-E-i
CH–CH–N–CH 3
50
O
160.1
50
100
294.1
150
200
100
250
300
207.1
I-3-E-ii
O
400
450
500
Ephedrine-d3, di-pentafluoropropionyl derivative C16H10D3F10NO3 MW: 460.28
CH 3
COC 2 F 5
163.1 119.0
297.1
0 100
350
COC 2 F 5 CH–CH–N–CD 3
50
50
C16H13F10NO3 MW: 457.26
CH 3
COC 2 F 5
119.0
0
Relative Int. (%)
Ephedrine, di-pentafluoropropionyl derivative
COC 2 F 5
150
200
250
300
350
400
450
500
m/z Relative Int. (%)
100
254.1
I-3-F-i
CH–CH–N–CH 3 O
50 69.1
50 100
100
150
200
C18H13F14NO3 MW: 557.28
CH 3
COC 3 F 7
210.0 169.0
344.1
0
Relative Int. (%)
Ephedrine, di-heptafluorobutyryl derivative
COC 3 F 7
250
300
350
400
450
257.1
I-3-F-ii
500
CH–CH–N–CD 3 O
213.1
347.1
0 50
100
150
200
250
300
350 m/z
Figure I — Stimulants
© 2010 by Taylor and Francis Group, LLC
C18H10D3F14NO3 MW: 560.30
CH 3
COC 3 F 7
169.0
69.1
600
Ephedrine-d3, di-heptafluorobutyryl derivative
COC 3 F 7
50
550
400
450
500
550
600
74
Figure I-3. (Continued)
Relative Int. (%)
100
308.1
I-3-G-i
Ephedrine, 4-carboethoxyhexafluorobutyryl derivative
CO(CF2)3COOC2H 5
CH–CH–N–CH 3
50
C17H19F6NO4 MW: 415.33
OH CH 3
86.1
195.0
136.1
280.1
262.0
370.1
0 50 Relative Int. (%)
100
100
150
200
250
300
350 311.1
I-3-G-ii
CH–CH–N–CD 3
50
C17H16D3F6NO4 MW: 418.35
OH CH 3
89.1
139.1
147.1
50
100
100
150
450
Ephedrine-d3, 4-carboethoxyhexafluorobutyryl derivative
CO(CF2)3COOC2H 5
195.0
283.1
265.1
373.2
0
Relative Int. (%)
400
200
250 m/z
300
350
195.0
I-3-H-i
400
450
Ephedrine, 2,3,4,5,6-pentafluorobenzoyl derivative
252.0
COC 6 F 5 CH–CH–N–CH 3
50 167.0
C17H14F5NO2 MW: 359.29
OH CH 3
0 50 Relative Int. (%)
100
100
150
200
250
195.0
I-3-H-ii
300
350
400
Ephedrine-d3, 2,3,4,5,6-pentafluorobutyryl derivative
255.0
COC 6 F 5 CH–CH–N–CD 3
50
C17H11D3F5NO2 MW: 362.31
OH CH 3
167.0
0 50
100
150
200
250
300
350
400
m/z Relative Int. (%)
100
144.1
I-3-I-i
Ephedrine, propylformyl derivative COOC 3H 7 CH–CH–N–CH 3
58.1
50
102.0
C14H21NO3 MW: 251.31
OH CH 3
77.0
0 50
100
150
Relative Int. (%)
100
200
147.1
I-3-I-ii 61.1
50
COOC 3H 7 CH–CH–N–CD 3
105.0
250
300
Ephedrine-d3, propylformyl derivative C14H18D3NO3 MW: 254.29
OH CH 3
77.0
0 50
100
150
200 m/z
Appendix One — Mass Spectra
© 2010 by Taylor and Francis Group, LLC
250
300
75
Figure I-3. (Continued) Relative Int. (%)
100
166.0
CH 3
CH CH
N CH 3 O CCF 3
OH
50 69.1 96.1
d-Ephedrine, (S)-(–)-N-(trifluoroacetyl)-prolyl derivative
O N C
C17H21F3N2O3 MW: 358.36
I-3-J-i
251.1
194.1
0 50
100
150
Relative Int. (%)
100
200
250
166.1
61.1 69.1
N CD 3 O CCF 3
400
C17H18D3F3N2O3 MW: 361.37
I-3-J-ii
254.1 96.0
350
d-Ephedrine-d3, (S)-(–)-N-(trifluoroacetyl)-prolyl derivative
CH 3 O CH CH N C OH
50
300
194.0
0 50
100
150
200
250
300
350
400
m/z Relative Int. (%)
100
COC(CF3)(C6H5)OCH3
189.0
d-Ephedrine, (–)-α-methoxy− α−trifluoromethylphenylacetyl derivative
CH–CH–N–CH 3 OH CH 3
50 77.0
274.1
C20H22F3NO3 MW: 381.39
I-3-K-i
98.1
141.1
305.2
200.0
0 50
100
150
Relative Int. (%)
100
200
250
300
189.0 CH–CH–N–CD 3
277.1
OH CH 3
77.0
98.1
I-3-K-ii 141.1
400
d-Ephedrine-d3, (–)-α-methoxy− α−trifluoromethylphenylacetyl derivative
COC(CF3)(C6H5)OCH3
50
350
C20H19D3F3NO3 MW: 384.41
305.2
203.0
0 50
100
150
200
250
300
350
400
m/z Relative Int.(%)
100
130.2
Ephedrine, di-trimethylsilyl derivative
Si(CH3)3 CH–CH–N–CH 3 O CH 3
50 73.1
C16H31NOSi2 MW: 309.59
I-3-L-i
Si(CH3)3
0 50
100
Relative Int. (%)
100
150
200
250
300
133.2
350
Ephedrine-d3, di-trimethylsilyl derivative
Si(CH3)3 CH–CH–N–CD 3
50
O
73.1
400
CH 3
I-3-L-ii
Si(CH3)3
C16H28D3NOSi2 MW: 312.61
0 50
100
150
200
250 m/z
Figure I — Stimulants
© 2010 by Taylor and Francis Group, LLC
300
350
400
76
Figure I-4. Mass spectra of phenylpropanolamine (PPA) and its deuterated analog (PPA-d3): (A) underivatized; (B) acetyl-derivatized; (C) TCA-derivatized; (D) [TFA]2-derivatized; (E) [PFP]2-derivatized; (F) [HFB]2-derivatized; (G) 4-CB-derivatized; (H) PFB-derivatized; (I,J) l-TPC-derivatized; (K,L) l-MTPA-derivatized; (M) [TMS]2-derivatized; (N) t-BDMS-derivatized; (O) [t-BDMS]2-derivatized; (P) TFA/[t-BDMS]2-derivatized; (Q) PFP/[t-BDMS]2-derivatized; (R) HFB/[t-BDMS]2-derivatized. Relative Int. (%)
100
44.0
I-4-A-i
Phenylpropanolamine C9H13NO MW: 151.21
OH CH 3
50
NH2
77.0
0 40 Relative Int. (%)
100
90 47.1
140
I-4-A-ii
190 Phenylpropanolamine-d3
OH
C9H10D3NO MW: 154.22
CD 3 NH2
50 77.0
0 40
90
140
190
m/z
Relative Int. (%)
100
44.1
OH
86.1
I-4-B-i
Phenylpropanolamine, acetyl derivative
CH 3 NH
C11H15NO2 MW: 193.24
COCH 3
50 69.1
107.0
134.1
176.0
0 40 Relative Int. (%)
100
90 47.1
140
190 OH
I-4-B-ii
CD 3
89.1
Phenylpropanolamine-d3, acetyl derivative
NH
C11H12D3NO2 MW: 196.26
COCH 3
50 72.1
107.0
137.1
179.1
0 40
90
140
190
m/z Relative Int. (%)
100
Phenylpropanolamine, trichloroacetyl derivative
187.9
I-4-C-i
OH CH 3
50
C11H12Cl3NO2 MW: 296.58
NH
117.0
COCCl 3
160.0
277.9
77.0
0 50 relative Int. (%)
100
100
150
200
250
Phenylpropanolamine-d3, trichloroacetyl derivative
190.9
I-4-C-ii
OH CD 3
50
C11H9D3Cl3NO2 MW: 299.59
NH
118.9
COCCl 3
163.0
300
280.9
77.0
0 50
100
150
200 m/z
Appendix One — Mass Spectra
© 2010 by Taylor and Francis Group, LLC
250
300
77
Figure I-4. (Continued)
Relative Int. (%)
100
140.1
I-4-D-i
O
Phenylpropanolamine, di-trifluoroacetyl derivative
COCF 3 CH 3
50
C13H11F6NO3 MW: 343.22
N COCF 3 H
69.1
105.1
230.1 203.1
0 50
100
150
Relative Int. (%)
100
200
143.1
I-4-D-ii
O
250
COCF 3 CD 3
N COCF 3 H
50 69.1
300
105.1
350
Phenylpropanolamine-d3, di-trifluoroacetyl derivative C13H8D3F6NO3 MW: 346.24
233.1 203.1
175.1
0 50
100
Relative Int. (%)
100
150
200 m/z
250
300
190.1
I-4-E-i
Phenylpropanolamine, di-pentafluoropropionyl derivative
OCOC 2F 5 CH 3
50
N COC 2 F 5
119.0
105.1
225.1
253.1
C15H11F10NO3 MW: 443.24
H
280.1
350
0 50
100
Relative Int. (%)
100
150
200
300
350
400
193.1
1-4-E-ii
50
250
N
283.1
COC 2 F 5
C15H8D3F10NO3 MW: 446.25
H
253.1
105.1
500
Phenylpropanolamine-d3, di-pentafluoropropionyl derivative
OCOC 2F 5 CD 3
119.1
450
225.1
0 50
100
150
200
250
300
350
400
450
500
m/z Relative Int. (%)
100
240.1
I-4-F-i
Phenylpropanolamine, di-heptafluorobutyryl derivative OCOC 3F 7 CH 3
50 69.0
169.0
105.1
275.0
330.1
303.0
C17H11F14NO3 MW: 543.25
N COC 3 F 7 H
0 50
100
150
200
Relative Int. (%)
100
250
300
350
400
I-4-F-ii 50
OCOC 3F 7 CD 3
333.1 169.1 69.1
450
243.1
550
600
Phenylpropanolamine-d3, di-heptafluorobutyryl derivative C17H8D3F14NO3 MW: 546.27
N COC 3 F 7 H
275.1 303.1
105.1
500
0 50
100
150
200
250
300
350 m/z
Figure I — Stimulants
© 2010 by Taylor and Francis Group, LLC
400
450
500
550
600
78
Figure I-4. (Continued)
Relative Int. (%)
100
I-4-G-i
294.0
OH
Phenylpropanolamine, 4-carboethoxyhexafluorobutyryl derivative
CH 3 NH
50
CO(CF2)3COOC2H 5
117.1
195.0
C16H17F6NO4 MW: 401.30 384.1
266.0 248.0
338.0
0 50
100
150
200
250
300
Relative Int. (%)
100
350
297.0
I-4-G-ii
400
Phenylpropanolamine-d3, 4-carboethoxyhexafluorobutyryl derivative
OH CD 3 NH
50
CO(CF2)3COOC2H 5
119.0
C16H14D3F6NO4 MW: 404.32 387.1
269.0 250.0
195.0
450
341.0
0 50
100
150
200
relative Int. (%)
100
250 m/z
300
350
238.0
OH CH 3
50
C16H12F5NO2 MW: 345.26
NH COC 6 F 5
167.0
117.0
327.9
0 50
100
150
200
Relative Int. (%)
100
250
300
350
195.0
I-4-H-ii
241.0
CD 3
C16H9D3F5NO2 MW: 348.28
NH COC 6 F 5
167.0
117.0
400
Phenylpropanolamine-d3, 2,3,4,5,6-pentafluorobenzoyl derivative
OH
50
450
Phenylpropanolamine, 2,3,4,5,6-pentafluorobenzoyl derivative
195.0
I-4-H-i
400
331.0
0 50
100
150
200
250
300
350
400
m/z Relative Int. (%)
100
166.1
HO
I-4-I-i
CH 3
l-Phenylpropanolamine, (S)-(–)-N-(trifluoroacetyl)-prolyl derivative
O
NH C
50
N
C16H19F3N2O3 MW: 344.33
O CCF 3
237.1
194.0
69.1
96.1
220.1
0 50
100
150
Relative Int. (%)
100
200
250
300
HO CD 3 O NH C
50 69.0
100
150
200
250 m/z
Appendix One — Mass Spectra
© 2010 by Taylor and Francis Group, LLC
N O CCF 3
C16H16D3F3N2O3 MW: 347.35
223.1
0 50
240.1
194.0
96.0
400
l-Phenylpropanolamine-d3, (S)-(–)-N-(trifluoroacetyl)-prolyl derivative
166.1
I-4-I-ii
350
300
350
400
79
Figure I-4. (Continued)
Relative Int. (%)
100
166.1
I-4-J-i
HO CH 3 O
50
NH C
194.1
69.1
96.0
237.1
d-Phenylpropanolamine, (S)-(–)-N-(trifluoroacetyl)-prolyl derivative C16H19F3N2O3 MW: 344.33
N
O CCF 3
220.1
0 50
100
150
Relative Int. (%)
100
200
250
300
350
166.1
I-4-J-ii
HO CD 3 O
50
NH C
194.0
69.1
96.0
223.1
240.1
400
d-Phenylpropanolamine-d3, (S)-(–)-N-(trifluoroacetyl)-prolyl derivative N
C16H16D3F3N2O3 MW: 347.35
O CCF 3
0 50
100
150
200
250
300
350
400
m/z Relative Int. (%)
100
189.0
I-4-K-i 186.0
261.1
50 105.0 119.0 134.1
77.0
l-Phenylpropanolamine, (–)-α-methoxy-α-trifluoromethylphenylacetyl derivative CH 3 C19H20F3NO3 NH MW: 367.36
OH
229.0
160.1
COC(CF3)(C6H5)OCH3
0 50 Relative Int. (%)
100
100
150
200
250
300
I-4-K-ii
OH
186.0
CD 3
264.1
50
350
C19H17D3F3NO3 MW: 370.38
NH
105.0
77.0
119.0
137.1
232.1
163.1
400
l-Phenylpropanolamine-d3, (–)-α-methoxy-α-trifluoromethylphenylacetyl derivative
189.0
COC(CF3)(C6H5)OCH3
0 50
100
150
200
250
300
350
400
m/z Relative Int. (%)
100
189.0
I-4-L-i
186.0
261.1
OH
CH 3
50 105.0
77.0
119.0 134.1
229.0 160.1
d-Phenylpropanolamine, (–)-α-methoxy-α-trifluoromethylphenylacetyl derivative C19H20F3NO3 MW: 367.36
NH COC(CF3)(C6H5)OCH3
0 50 Relative Int. (%)
100
100
150
200
250
300
189.0
I-4-L-ii
OH
186.0 264.1
50 77.0
137.1
232.0
163.1
400
d-Phenylpropanolamine-d3, (–)-α-methoxy-α-trifluoromethylphenylacetyl derivative CD 3
NH
105.0 119.0
350
C19H17D3F3NO3 MW: 370.38
COC(CF3)(C6H5)OCH3
0 50
100
150
200
250 m/z
Figure I — Stimulants
© 2010 by Taylor and Francis Group, LLC
300
350
400
80
Figure I-4. (Continued) Relative Int. (%)
100
116.1
I-4-M-i
Phenylpropanolamine, di-trimethylsilyl derivative
OSi(CH3)3 CH 3
50
C15H29NOSi2 MW: 295.57
N Si(CH3)3
73.1
H
147.1
179.1
280.2
0 50
100
150
Relative Int. (%)
100
200
250
119.2
I-4-M-ii
Phenylpropanolamine-d3, di-trimethylsilyl derivative
OSi(CH3)3 CD 3
73.2
N
50
300
C15H26D3NOSi2 MW: 298.59
Si(CH3)3
H
147.2
283.2
179.2
0 50
100
150
200
250
300
m/z Relative Int. (%)
100
OH CH 3 Si(CH3)2C(CH3)3
134.1
50 100
208.1
149.1
0
Relative Int. (%)
C15H27NOSi MW: 265.47
NH
73.1
50
Phenylpropanolamine, t-butyldimethylsilyl derivative
158.1
I-4-N-i
100
150
200 161.3
I-4-N-ii
250
300
Phenylpropanolamine-d3, t-butyldimethylsilyl derivative
OH CD 3
C15H24D3NOSi MW: 268.48
NH
73.2
50
Si(CH3)2C(CH3)3
137.2
149.1
211.2
0 50
100
150
200
250
300
m/z Relative Int. (%)
100
158.1
I-4-O-i
OSi(CH3)2C(CH3)3 CH 3 NH
50
73.1 147.0
50 100
C21H41NOSi2 MW: 379.73
Si(CH3)2C(CH3)3
322.1
0
Relative Int. (%)
Phenylpropanolamine, di-t-butyldimethylsilyl derivative
100
150
200
250
300
161.2
I-4-O-ii
OSi(CH3)2C(CH3)3 CD 3
73.1
350
Phenylpropanolamine-d3, di-t-butyldimethylsilyl derivative
NH
50
C21H38D3NOSi2 MW: 382.74
Si(CH3)2C(CH3)3
147.1
400
325.2
0 50
100
150
200
250 m/z
Appendix One — Mass Spectra
© 2010 by Taylor and Francis Group, LLC
300
350
400
81
Figure I-4. (Continued) Relative Int. (%)
100
221.1
I-4-P-i
O CH 3
73.1
50
Phenylpropanolamine, trifluoroacetyl/di-t-butyldimethylsilyl derivative
Si(CH3)2C(CH3)3
N
115.1
COCF 3
C23H40F3NO2Si2 MW: 475.74
418.2
Si(CH3)2C(CH3)3
191.1
0 50
100
Relative Int. (%)
100
150
200
250
300
221.1
I-4-P-ii
350
O CD 3 N
500
C23H37D3F3NO2Si2 MW: 478.75
421.2
COCF 3
Si(CH3)2C(CH3)3
194.1
115.1
450
Phenylpropanolamine-d3, trifluoroacetyl/di-t-butyldimethylsilyl derivative
Si(CH3)2C(CH3)3
73.1
50
400
0 50
100
150
200
250
300
350
400
450
500
m/z Relative Int. (%)
100
221.1
I-4-Q-i
Phenylpropanolamine, pentafluoropropionyl/di-t-butyldimethylsilyl derivative
Si(CH3)2C(CH3)3 O
73.0
CH 3
50
N
117.0
190.1
249.1
COC 2 F 5
Si(CH3)2C(CH3)3
304.1
C24H40F5NO2Si2 MW: 525.74
468.2
0 50
100
150
200
Relative Int. (%)
100
250
300
350
221.1 73.0
400
Si(CH3)2C(CH3)3
I-4-Q-ii
CD 3 N
115.1
252.1
194.0
COC 2 F 5
Si(CH3)2C(CH3)3
307.1
500
550
Phenylpropanolamine-d3, pentafluoropropionyl/di-t-butyldimethylsilyl derivative
O
50
450
471.2
C24H37D3F5NO2Si2 MW: 528.76
0 50
100
150
Relative Int. (%)
100
200
I-4-R-i
250
300 m/z
350
221.1
400
O
73.0
CH 3 N
115.1
249.1
550
C25H40F7NO2Si2 MW: 575.74
COC 3 F 7
518.2
Si(CH3)2C(CH3)3
354.1
500
Phenylpropanolamine, heptafluorobutyryl/di-t-butyldimethylsilyl derivative
Si(CH3)2C(CH3)3
50
450
0 50
100
Relative Int. (%)
100
150
200
I-4-R-ii
250
300
350
400
221.1
450
Si(CH3)2C(CH3)3
CD 3
73.0 N
357.1
252.1
115.0
550
600
Phenylpropanolamine-d3, heptafluorobutyryl/di-t-butyldimethylsilyl derivative
O
50
500
COC 3 F 7
521.2
Si(CH3)2C(CH3)3
C25H37D3F7NO2Si2 MW: 578.76
0 50
100
150
200
250
300
350 m/z
Figure I — Stimulants
© 2010 by Taylor and Francis Group, LLC
400
450
500
550
600
82
Figure I-5. Mass spectra of 3,4-methylenedioxyamphetamine (MDA) and its deuterated analog (MDA-d5): (A) underivatized; (B) acetyl-derivatized; (C) TCA-derivatized; (D) TFA-derivatized; (E) PFP-derivatized; (F) HFBderivatized; (G) 4-CB-derivatized; (H) PFB-derivatized; (I) propylformyl-derivatized; (J,K) l-TPC-derivatized; (L,M) l-MTPA-derivatized; (N) TMS-derivatized; (O) TFA/t-BDMS-derivatized; (P) PFP/t-BDMS-derivatized; (Q) HFB/tBDMS-derivatized Relative Int. (%)
100
44.1
I-5-A-i
CH 3 CH 2–CH–NH 2
O
MDA C10H13NO2 MW: 179.22
O
50
136.0 77.0
0 40 Relative Int. (%)
100
90 48.1
140
I-5-A-ii
D
50
190 MDA-d5
CD 3
O
CH–C–NH 2
O
D
C10H8D5NO2 MW: 184.25 137.0
78.0
0 40
90
140
190
m/z Relative Int. (%)
100
I-5-B-i
CH 3 CH 2 –CH– NHCOCH
O
44.1
MDA, acetyl derivative
162.1
C12H15NO3 MW: 221.25
3
O
50
135.1 86.1
77.1
221.1
0 40 Relative Int. (%)
100
90 48.1
140 D
I-5-B-ii
CH–C– NHCOCH
O
D
O
50
190 167.1
CD 3
240 MDA-d5, acetyl derivative C12H10D5NO3 MW: 226.28
3
136.1
90.1
78.1
226.1
0 40
Relative Int. (%)
100
90
140 m/z 135.1
I-5-C-i
190
240
162.1
MDA, trichloroacetyl derivative
CH 3 O
50
C12H12Cl3NO3 MW: 324.59
CH 2 –CH– NHCOCCl3
O
77.1
188.0
105.1
323.0
0 50
100
150
Relative Int. (%)
100
200
250
136.1
I-5-C-ii
167.1
D
O
50
CD 3
350
MDA-d5, trichloroacetyl derivative C12H7D5Cl3NO3 MW: 329.62
CH–C– NHCOCCl3 D
O
78.1
300
192.0
110.1
328.1
0 50
100
150
200 m/z
Appendix One — Mass Spectra
© 2010 by Taylor and Francis Group, LLC
250
300
350
83
Figure I-5. (Continued) Relative Int. (%)
100
135.1
I-5-D-i
MDA, trifluoroacetyl derivative
CH 3 CH 2 –CH–NHCOCF3
O
162.1
50
C12H12F3NO3 MW: 275.22
O
275.1
77.1
0 50
100
Relative Int. (%)
100
150
200
250
136.1
I-5-D-ii
D
MDA-d5, trifluoroacetyl derivative
CD 3
CH–C–NHCOCF3
O
50
300
C12H7D5F3NO3 MW: 280.25
D
O
167.1 78.1
280.1
144.1
0 50
100
150
200
250
300
m/z Relative Int. (%)
100
MDA, pentafluoropropionyl derivative
135.1
I-5-E-i
162.1
50
O
CH 3 CH 2 –CH– NHCOC 2F5
C13H12F5NO3 MW: 325.23
O
77.1
119.0
325.1
190.0
0 50
100
150
Relative Int. (%)
100
200
250
I-5-E-ii
350
MDA-d5, pentafluoropropionyl derivative D
50
O
167.1 78.1
300
136.1
119.0
O
CD 3
C13H7D5F5NO3 MW: 330.26
CH–C– NHCOC 2F5 D
330.1
194.1
0 50
Relative Int. (%)
100
100
I-5-F-i
150
200 m/z
250
300
135.1 CH 3
162.1
O
50
350
MDA, heptafluorobutyryl derivative C14H12F7NO3 MW: 375.24
CH 2 –CH– NHCOC 3F7
O
77.1
375.1
240.0
0 50 Relative Int. (%)
100
100
I-5-F-ii
150
200
250
300
350
400
136.1 O
50
O
167.1
D CD 3 MDA-d5, heptafluorobutyryl derivative CH–C– NHCOC 3F7
C14H7D5F7NO3 MW: 380.27 380.1
D
244.1
69.1
0 50
100
150
200
250 m/z
Figure I — Stimulants
© 2010 by Taylor and Francis Group, LLC
300
350
400
84
Figure I-5. (Continued) Relative Int. (%)
100
MDA, 4-carboethoxyhexafluorobutyryl derivative
162.1
I-5-G-i
CH 3
135.1
O
266.1
248.0
50 Relative Int. (%)
100
100
150
200
250
300
350
136.1
I-5-G-ii
166.1
D
0 150
200
270.1
250 m/z
100
195.0 162.1
I-5-H-i
C17H12D5F6NO5 MW: 434.34
D
251.1
O
434.2
298.1
300
350
CH 3 CH 2 –CH– NHCOC 6F5
400
450
MDA, 2,3,4,5,6-pentafluorobenzoyl derivative C17H12F5NO3 MW: 373.27
O
50
450
MDA-d5, 4-carboethoxyhexafluorobutyryl derivative
CD 3
O
100
400
CH–C– NHCO(CF2)3COOC2H5
O
50
50
429.2
294.1
0
Relative Int. (%)
C17H17F6NO5 MW: 429.31
CH 2 –CH– NHCO(CF2)3COOC2H5
O
50
135.1 238.0
77.1
373.1
0 50 Relative Int. (%)
100
100
150
200
250
300
195.0
I-5-H-ii 167.1
50
D CD 3 CH–C– NHCOC 6F5
O
242.0
78.1
400
C17H7D5F5NO3 MW: 378.30
D
O
136.1
350
MDA-d5, 2,3,4,5,6-pentafluorobenzoyl derivative
378.1
0 50
100
150
200
250
300
350
400
m/z Relative Int. (%)
100
130.1
I-5-I-i
MDA, propylformyl derivative
CH 3 CH 2 –CH–NHCOOC3H7
O
50
162.0 77.0
O
105.0
C14H19NO4 MW: 265.31 265.1
206.1
0 50 Relative Int. (%)
100
100
150
200
250
134.1
I-5-I-ii
D
167.1 78.0
MDA-d5, propylformyl derivative
CD 3
CH–C– NHCOOC3H7
O
50
D
O
106.0
300
C14H14D5NO4 MW: 270.34 270.2
211.1
0 50
100
150
200 m/z
Appendix One — Mass Spectra
© 2010 by Taylor and Francis Group, LLC
250
300
85
Figure I-5. (Continued) Relative Int. (%)
100 162.0
I-5-J-i
166.0
CH 3 O
50
l-MDA, (S)-(–)-N-(trifluoroacetyl)-prolyl derivative
O
CH 2 CH NH C
N
C17H19F3N2O4 MW: 372.34
O CCF 3
O
194.0
135.0
237.1
372.1
0 50
100
150
Relative Int. (%)
100
200
250
166.0
I-5-J-ii
O
50
300
D CD 3 O CH C NH C D
O
350
C17H14D5F3N2O4 MW: 377.37
N
O CCF 3
194.0
136.0
241.1
377.2
0 50
100
400
l-MDA-d5, (S)-(–)-N-(trifluoroacetyl)-prolyl derivative
150
200
250
300
350
400
m/z Relative Int. (%)
100
I-5-K-i
162.1
166.0 O
50
CH 3 O CH 2 CH NH C
d-MDA, (S)-(–)-N-(trifluoroacetyl)-prolyl derivative N
C17H19F3N2O4 MW: 372.34
O CCF 3
O
194.0
135.0
237.1
372.2
0 50
100
150
Relative Int. (%)
100
200
250
300
166.1
I-5-K-ii
D O
50
CD 3
D
O
136.0
194.0
400
d-MDA-d5, (S)-(–)-N-(trifluoroacetyl)-prolyl derivative
O
CH C NH C
350
N O CCF 3
C17H14D5F3N2O4 MW: 377.37
241.1
377.2
0 50
100
150
200
250
300
350
400
m/z Relative Int. (%)
100
162.0
I-5-L-i
189.0
CH 3 O
50 105.0
77.0
l-MDA, (–)-α-methoxy-α-trifluoromethylphenylacetyl derivative C20H20F3NO4 MW: 395.37
CH 2 –CH– NHCOC(CF3)(C6H5)OCH3
O
135.0
206.0
260.0
0 50 Relative Int. (%)
100
100
150
200
250
189.0
I-5-L-ii
167.1
D O
50 105.0
CD 3
350
400
l-MDA-d5, (–)-α-methoxy-α-trifluoromethylphenylacetyl derivative
CH–C– NHCOC(CF3)(C6H5)OCH3 D
O
136.0 78.1
300
C20H15D5F3NO4 MW: 400.40
264.1
211.1
0 50
100
150
200
250 m/z
Figure I — Stimulants
© 2010 by Taylor and Francis Group, LLC
300
350
400
86
Figure I-5. (Continued) Relative Int. (%)
100
162.0
I-5-M-i
d-MDA, (–)-α-methoxy-α-trifluoromethylphenylacetyl derivative
189.0
50
CH 3 CH 2 –CH– NHCOC(CF3)(C6H5)OCH3
O
105.0
77.0
C20H20F3NO4 MW: 395.37
O
135.0 206.0
260.0
0 50
100
150
200
Relative Int. (%)
100
D
CD 3
211.1
400
d-MDA-d5, (–)-α-methoxy-α-trifluoromethylphenylacetyl derivative C20H15D5F3NO4 MW: 400.40
D
O
136.0 105.0
350
CH–C– NHCOC(CF3)(C6H5)OCH3
O
50 78.0
300
189.0
167.1
I-5-M-ii
250
264.1
0 50
100
150
200
250
300
350
400
m/z
Relative Int. (%)
100
116.2
I-5-N-i
O
50
MDA, trimethylsilyl derivative
CH 3 CH 2 –CH– NHSi(CH3)3
C13H21NO2Si MW: 251.40
O
73.1 135.1
236.2
0 50
100
Relative Int. (%)
100
150
200
I-5-N-ii
D O
50
250
120.2
73.1
300 MDA-d5, trimethylsilyl derivative
CD 3
CH–C– NHSi(CH3)3
C13H16D5NO2Si MW: 256.43
D
O
136.1
241.2
0 50
100
150
200
250
300
m/z Relative Int. (%)
100 73.1
I-5-O-i
50
135.0
254.1
CH 3 O
CH 2 –CH– NSi(CH3)2C(CH3)3
O
COCF 3
MDA, trifluoroacetyl/ t-butyldimethylsilyl derivative C18H26F3NO3Si MW: 389.48
163.0
77.0 115.1
332.0
389.1
0 50
100
150
Relative Int. (%)
100
200 D
I-5-O-ii 73.1
O
136.0 115.1
300
350
400
MDA-d5, trifluoroacetyl/ t-butyldimethylsilyl derivative
258.1
CH–C– NSi(CH3)2C(CH3)3
C18H21D5F3NO3Si MW: 394.51
D COCF 3
O
50
250
CD 3
168.1 337.1
394.2
0 50
100
150
200
250 m/z
Appendix One — Mass Spectra
© 2010 by Taylor and Francis Group, LLC
300
350
400
87
Figure I-5. (Continued) Relative Int. (%)
100
O
CH 3 CH 2 –CH– NSi(CH3)2C(CH3)3
O
COC 2 F 5
I-5-P-i
50 135.0
73.0
MDA, pentafluoropropionyl/ t-butyldimethylsilyl derivative
304.1
C19H26F5NO3Si MW: 439.49
163.0
382.0
439.1
0 50
100
150
200
Relative Int. (%)
100
D
I-5-P-ii
300
350
400
D COC 2 F 5
C19H21D5F5NO3Si MW: 444.52
73.0 136.0
115.1
450
MDA-d5, pentafluoropropionyl/ t-butyldimethylsilyl derivative
308.1
CH–C– NSi(CH3)2C(CH3)3
O
O
50
250
CD 3
168.1
387.1
444.2
0 50
100
Relative Int. (%)
100
150
200
250 m/z
CH 3
73.0 135.0 115.1
350
354.1
I-5-Q-i
50
300
O
CH 2 –CH– NSi(CH3)2C(CH3)3
O
COC 3 F 7
400
450
MDA, heptafluorobutyryl/ t-butyldimethylsilyl derivative C20H26F7NO3Si MW: 489.50
163.0
432.1 489.2
0 50
100
Relative Int. (%)
100
150
200
I-5-Q-ii
250 O
73.0 136.0 115.1
350
D CD 3 CH–C– NSi(CH3)2C(CH3)3
400 358.1
450
500
MDA-d5, heptafluorobutyryl/ t-butyldimethylsilyl derivative
D COC 3 F 7
O
50
300
C20H21D5F7NO3Si MW: 494.53
168.1 437.1 494.2
0 50
100
150
200
250
300 m/z
Figure I — Stimulants
© 2010 by Taylor and Francis Group, LLC
350
400
450
500
88
Figure I-6. Mass spectra of 3,4-methylenedioxymethamphetamine (MDMA) and its deuterated analog (MDMAd5): (A) underivatized; (B) acetyl-derivatized; (C) TCA-derivatized; (D) TFA-derivatized; (E) PFP-derivatized; (F) HFB-derivatized; (G) 4-CB-derivatized; (H) PFB-derivatized; (I) propylformyl-derivatized; (J,K) l-TPC-derivatized; (L,M) l-MTPA-derivatized; (N) TMS-derivatized. Relative Int. (%)
100
58.1
MDMA
CH 3
I-6-A-i
NH
C11H15NO2 MW: 193.24
CH 2 –CH–CH 3
O
50
O
77.0
135.0
0 50
100
Relative Int. (%)
100
62.1
150
200 MDMA-d5
CD 3
I-6-A-ii
D
50 78.0
NH
O
CH–C–CH 3
O
D
C11H10D5NO2 MW: 198.27
136.0
0 50
100
150
200
m/z Relative Int. (%)
100
MDMA, acetyl derivative
58.1
162.1
I-6-B-i
CH 3
C13H17NO3 MW: 235.28
NCOCH3
50
CH 2 –CH–CH 3
O
100.1
O
135.1
77.1
235.2
0 50
100
Relative Int. (%)
100
150
200
250 MDMA-d5, acetyl derivative
62.1
I-6-B-ii 50
C13H12D5NO3 MW: 240.31
CD 3 D
104.1
164.1 136.1
78.1
NCOCH3
O
CH–C–CH 3
O
D
240.2
0 50
100
150 m/z
Relative Int. (%)
100
200
250
MDMA, trichloroacetyl derivative
162.1
I-6-C-i
202.0
CH 3
NCOCCl 3
50
135.1 56.1
77.1
92.1
CH 2 –CH–CH 3
O
116.9
O
337.1
0 50
100
150
200
Relative Int. (%)
100
50 96.1
300 CD 3
164.1
D
136.1 78.1
250
206.0
I-6-C-ii 59.1
C13H14Cl3NO3 MW: 338.61
117.0
350
MDMA-d5, trichloroacetyl derivative
NCOCCl 3
O
CH–C–CH 3
O
D
C13H9D5Cl3NO3 MW: 343.64 342.1
0 50
100
150
200 m/z
Appendix One — Mass Spectra
© 2010 by Taylor and Francis Group, LLC
250
300
350
89
Figure I-6. (Continued)
Relative Int. (%)
100
154.1
I-6-D-i
162.1
135.1
50
O
110.0
NCOCF3 CH 2 –CH–CH 3
C13H14F3NO3 MW: 289.25
O
77.1
69.1
MDMA, trifluoroacetyl derivative
CH 3
289.1
0 50
100
150
Relative Int. (%)
100
200
250
MDMA-d5, trifluoroacetyl derivative
158.1 CD 3
I-6-D-ii
136.1
D
164.1
50 113.1 78.1
69.1
300
NCOCF3
O
CH–C–CH 3
O
D
C13H9D5F3NO3 MW: 294.28 294.1
0 50
100
150
200
250
300
m/z Relative Int. (%)
100
204.1
I-6-E-i 135.1
50
MDMA, pentafluoropropionyl derivative
CH 3
162.1 O
NCOC 2F 5 CH 2 –CH–CH 3
C14H14F5NO3 MW: 339.26
O
77.1
119.0
339.1
0 50
100
150
200
Relative Int. (%)
100
250
300
208.1
I-6-E-ii
D
136.1
50
NCOC 2F 5 CH–C–CH 3
O
C14H9D5F5NO3 MW: 344.29
D
O
119.0
78.1
MDMA-d5, pentafluoropropionyl derivative
CD 3
163.1
350
344.1
0 50
100
150
200 m/z
250
Relative Int. (%)
100
300
254.1
I-6-F-i 50
350
MDMA, heptafluorobutyryl derivative
162.1
CH 3
135.1
C15H14F7NO3 MW: 389.27
NCOC 3F 7
210.0
CH 2 –CH–CH 3
O
77.1
O
389.1
0 50
100
150
200
250
Relative Int. (%)
100
300
350
MDMA-d5, heptafluorobutyryl derivative CD
258.1
I-6-F-ii
D
50
136.1
164.1
213.1
400
3 NCOC 3F 7
O
CH–C–CH 3
O
D
C15H9D5F7NO3 MW: 394.30
78.1
394.2
0 50
100
150
200
250 m/z
Figure 1 — Stimulants
© 2010 by Taylor and Francis Group, LLC
300
350
400
90
Figure I-6. (Continued)
Relative Int. (%)
100
MDMA, 4-carboethoxyhexafluorobutyryl derivative
162.1
I-6-G-i 50 135.1
CH 2 –CH–CH 3
O O
280.1
262.1
195.0
105.1
CH 3 NCO(CF2)3COOC2H5
308.1
C18H19F6NO5 MW: 443.34
443.2
0 50 Relative Int. (%)
100
100
150
200
I-6-G-ii
164.1
250
300
350
MDMA-d5, 4-carboethoxyhexafluorobutyryl derivative
136.1
195.0
CD 3 D
284.1
266.1
78.1
NCO(CF2)3COOC2H5
O
CH–C–CH 3
O
D
448.2
0 50
100
150
200
250 m/z
Relative Int. (%)
100
300
350
400
CH 3
50
162.1
C18H14F5NO3 MW: 387.30
NCOC 6F 5
252.0
CH 2 –CH–CH 3
O O
135.1
77.1
387.0
0 50
100
150
200
Relative Int. (%)
100
250
300
195.0
350
D
50
256.0 164.1 136.1
3 NCOC 6F 5
O
CH–C–CH 3
O
D
C18H9D5F5NO3 MW: 392.33
392.0
0 100
400
MDMA-d5, 2,3,4,5,6-pentafluorobenzoyl derivative CD
I-6-H-ii 78.1
450
MDMA, 2,3,4,5,6-pentafluorobenzoyl derivative
195.0
I-6-H-i
50
450
312.2
C18H14D5F6NO5 MW: 448.37
50
400
150
200
250
300
350
400
m/z Relative Int. (%)
100
144.1
I-6-I-i
CH 3
O
50
MDMA, propylformyl derivative
NCOOC3H7
58.1
102.0
C15H21NO4 MW: 279.33
CH 2 –CH–CH 3
O
135.0
77.0
162.0
279.1
220.1
0 50 Relative Int. (%)
100
100
150
200
148.1
I-6-I-ii 62.1
106.1 136.0
78.0
NCOOC3H7
O
CH–C–CH 3
O
D
165.1
300
MDMA-d5, propylformyl derivative
CD 3
D
50
250
C15H16D5NO4 MW: 284.36 284.2
225.1
0 50
100
150
200 m/z
Appendix One — Mass Spectra
© 2010 by Taylor and Francis Group, LLC
250
300
91
Figure I-6. (Continued)
Relative Int. (%)
100
166.0
I-6-J-i
N C
O
50
58.1
O
105.0
l-MDMA, (S)-(–)-N-(trifluoroacetyl)-prolyl derivative
H 3C O
162.1
N CH 2 CH O CCF 3 CH 3
135.0
C18H21F3N2O4 MW: 386.37
251.1
194.0
386.2
0
Relative Int. (%)
50
100
100
150
200
250
I-6-J-ii
D 3C D
50
62.1
O
163.1 136.0
O
CH CD CH 3
350
400
l-MDMA-d5, (S)-(–)-N-(trifluoroacetyl)-prolyl derivative
N C
O
96.0
300
166.0
C18H16D5F3N2O4 MW: 391.40
N O CCF 3
255.1
194.0
391.2
0 50
100
150
200
250
300
350
400
m/z Relative Int. (%)
100
166.0
I-6-K-i
O
50
58.1
O
105.0
135.0
d-MDMA, (S)-(–)-N-(trifluoroacetyl)-prolyl derivative
H 3C O
162.1
N C N CH 2 CH O CCF 3 CH 3
C18H21F3N2O4 MW: 386.37
251.1
194.0
386.2
0 50
100
Relative Int. (%)
100
150
250
166.0
I-6-K-ii
50
200 D 3C D
164.1
62.1
O
96.0
O
CH CD CH 3
350
400
d-MDMA-d5, (S)-(–)-N-(trifluoroacetyl)-prolyl derivative
N C
O
136.0
300
C18H16D5F3N2O4 MW: 391.40
N O CCF 3
255.1
194.0
391.2
0 50
100
150
200
250
300
350
400
m/z Relative Int. (%)
100
189.0
I-6-L-i
NCOC(CF3)(C6H5)OCH3
162.0
O
50
CH 2 –CH–CH 3
O
77.0
105.0
l-MDMA, (–)-α-methoxyα-trifluoromethylphenylacetyl derivative
CH 3
C21H22F3NO4 MW: 409.40
274.0
135.0
0 50
100
150
200
Relative Int. (%)
100
250
300
350
CD 3
I-6-L-ii
D
50 164.0 105.0
NCOC(CF3)(C6H5)OCH3
O
CH–C–CH 3
O
D
136.0
400
450
l-MDMA-d5, (–)-α-methoxyα-trifluoromethylphenylacetyl derivative
189.0
C21H17D5F3NO4 MW: 414.43 278.1
0 50
100
150
200
250 m/z
Figure 1 — Stimulants
© 2010 by Taylor and Francis Group, LLC
300
350
400
450
92
Figure I-6. (Continued)
Relative Int. (%)
100
189.0
I-6-M-i 162.0
50
d-MDMA, (–)-α-methoxy-αtrifluoromethylphenylacetyl derivative
CH 3 NCOC(CF3)(C6H5)OCH3 CH 2 –CH–CH 3
O
C21H22F3NO4 MW: 409.40
O
77.0
105.0
274.1
135.0
0 50
100
150
200
Relative Int. (%)
100
250
189.0
I-6-M-ii
CD 3 D
50 164.0 105.0
300
NCOC(CF3)(C6H5)OCH3
O
CH–C–CH 3
O
D
350
400
450
d-MDMA-d5, (–)-α-methoxy-αtrifluoromethylphenylacetyl derivative C21H17D5F3NO4 MW: 414.43
278.1
136.0
0 50
100
150
Relative Int. (%)
100
200
250 m/z
350
400
CH 3 NSi(CH3)3
130.2
I-6-N-i 73.1
C14H23NO2Si MW: 265.43
O
58.1
450
MDMA, trimethylsilyl derivative
CH 2 –CH–CH 3
O
50
300
251.1
0 50
100
Relative Int. (%)
100
150
200
134.2
CD 3
I-6-N-ii
D
50 73.1
250
NSi(CH3)3
O
CH–C–CH 3
O
D
300
MDMA-d5, trimethylsilyl derivative C14H18D5NO2Si MW: 270.46 255.2
0 50
100
150
200 m/z
Appendix One — Mass Spectra
© 2010 by Taylor and Francis Group, LLC
250
300
93
Figure I-7. Mass spectra of 3,4-methylenedioxyethylamphetamine (MDEA) and its deuterated analogs (MDEA-d5, -d6); (A) underivatized; (B) acetyl-derivatized; (C) TCA-derivatized; (D) TFA-derivatized; (E) PFP-derivatized; (F) HFBderivatized; (G) 4-CB-derivatized; (H) PFB-derivatized; (I) propylformyl-derivatized; (J,K) l-TPC-derivatized; (L,M) l-MTPA-derivatized; (N) TMS-derivatized. Relative Int. (%)
100
72.1
I-7-A-i
MDEA
CH 3 CH 2 –CH– NHCH2CH3
O
50
C12H17NO2 MW: 207.27
O
135.0
0 50
100
Relative Int. (%)
100
77.1
150
200
I-7-A-ii
250 MDEA-d5
CH 3 CH 2 –CH– NHCD2CD3
O
50
C12H12D5NO2 MW: 212.30
O
135.0
0 50
100
Relative Int. (%)
100
78.1
150
200
250 MDEA-d6
I-7-A-iii
CD 3
C12H11D6NO2 MW: 213.31
CH 2 –CH– NHCH2CD3
O
50
O
135.0
0 50
Relative Int. (%)
100
100
72.1
150 m/z
200
I-7-B-i 162.1
50 114.1
250
MDEA, acetyl derivative
CH 3 COCH 3
C14H19NO3 MW: 249.31
CH 2 –CH– NCH 2CH 3
O O
135.1
0 50 Relative Int. (%)
100
100 77.2
150
I-7-B-ii
200
250
MDEA-d5, acetyl derivative
162.1 CH 3 COCH 3
50
C14H14D5NO3 MW: 254.34
CH 2 –CH– NCD 2CD 3
O
119.1
300
O
135.1
0 50 Relative Int. (%)
100
100 78.2
150
I-7-B-iii
200 165.1
120.1
300 MDEA-d6, acetyl derivative
CD 3 COCH 3 CH 2 –CH– NCH 2CD 3
O
50
250
C14H13D6NO3 MW: 255.34
O
135.1
0 50
100
150
200 m/z
Figure 1 — Stimulants
© 2010 by Taylor and Francis Group, LLC
250
300
94
Figure I-7. (Continued)
Relative Int. (%)
100
I-7-C-i
162.1
50
216.0
MDEA, trichloroacetyl derivative
135.1 56.1
77.1
O
106.1
351.1
0 50
100
150
200
Relative Int. (%)
100 162.1
I-7-C-ii 50
250
221.1
77.1
50 100
CH 3 COCCl 3 CH 2 –CH– NCD 2CD 3
O
150
200
250
300
222.1
I-7-C-iii
CD 3 COCCl 3 CH 2 –CH– NCH 2CD 3
O
135.1
400
C14H10D6Cl3NO3 MW: 358.68
O
112.1
357.1
0 100
350
MDEA-d6, trichloroacetyl derivative
165.1
50
50
C14H11D5Cl3NO3 MW: 357.67 356.1
100
59.1
400
O
111.1
77.1
350
MDEA-d5, trichloroacetyl derivative
135.1 58.1
300
0
Relative Int. (%)
C14H16Cl3NO3 MW: 352.64
CH 3 COCCl 3 CH 2 –CH– NCH 2CH 3
O
150
200
250
300
350
400
m/z Relative Int. (%)
100
168.1
I-7-D-i
CH 3 COCF 3
162.1
50 135.1
O
140.1
MDEA, trifluoroacetyl derivative C14H16F3NO3 MW: 303.28
CH 2 –CH– NCH 2CH 3
O
77.1
303.1
0 50 Relative Int. (%)
100
100
150
200
250
173.1
I-7-D-ii 135.1
O
141.1
CH 3 COCF 3 CH 2 –CH– NCD 2CD 3
C14H11D5F3NO3 MW: 308.31
O
77.1
350
MDEA-d5, trifluoroacetyl derivative
162.1
50
300
308.2
0 50 Relative Int. (%)
100
100
150
200
250
174.1
I-7-D-iii
165.1
50
CD 3 COCF 3 O
135.1
144.1
300
350
MDEA-d6, trifluoroacetyl derivative C14H10D6F3NO3 MW: 309.31
CH 2 –CH– NCH 2CD 3
O
309.2
77.1
0 50
100
150
200 m/z
Appendix One — Mass Spectra
© 2010 by Taylor and Francis Group, LLC
250
300
350
95
Figure I-7. (Continued)
Relative Int. (%)
100
MDEA, pentafluoropropionyl derivative
218.1
I-7-E-i
CH 3 COC 2 F 5 CH 2 –CH– NCH 2CH 3
162.1
50
O
190.0 135.1 77.1
C15H16F5NO3 MW: 353.28
O
119.0
353.1
0 50
100
150
200
Relative Int. (%)
100
250
300
CH 3 COC 2 F 5 CH 2 –CH– NCD 2CD 3
162.1
50
400
MDEA-d5, pentafluoropropionyl derivative
223.1
I-7-E-ii
O
191.0
C15H11D5F5NO3 MW: 358.31
O
135.1 77.1
350
119.0
358.1
0 50 Relative Int. (%)
100
100
150
200
250
300
350
224.1
I-7-E-iii
MDEA-d6, pentafluoropropionyl derivative
165.1
50
CD 3 COC 2 F 5 CH 2 –CH– NCH 2CD 3
O
135.1
194.1
400
C15H10D6F5NO3 MW: 359.32
O
119.0
77.1
359.2
0 50
100
150
200
250
300
350
400
m/z Relative Int. (%)
100
268.1
I-7-F-i
MDEA, heptafluorobutyryl derivative
162.1
50
240.0 135.1
O
CH 3 COC 3 F 7 CH 2 –CH– NCH 2CH 3
C16H16F7NO3 MW: 403.29
O
77.1
403.1
0 50
100
150
200
250
Relative Int. (%)
100
300
350
162.1
50
241.0 135.1
O
450
MDEA-d5, heptafluorobutyryl derivative
273.1
I-7-F-ii
400
CH 3 COC 3 F 7 CH 2 –CH– NCD 2CD 3
C16H11D5F7NO3 MW: 408.32
O
77.1
408.2
0 50
100
150
200
250
Relative Int. (%)
100
300
350
274.1
I-7-F-iii 165.1
50
O
244.0
135.1
400
450
MDEA-d6, heptafluorobutyryl derivative CD 3 COC 3 F 7 CH 2 –CH– NCH 2CD 3
C16H10D6F7NO3 MW: 409.33
O
77.1
409.2
0 50
100
150
200
250 m/z
Figure 1 — Stimulants
© 2010 by Taylor and Francis Group, LLC
300
350
400
450
96
Figure I-7. (Continued) Relative Int. (%)
100
MDEA, 4-carboethoxyhexafluorobutyryl derivative C19H21F6NO5 MW: 457.36
50
162.1
I-7-G-i
322.2 O
135.1 195.0
105.1
276.1
CH 3 CO(CF2)3COOC2H 5 CH 2 –CH– NCH 2CH 3
O
294.1
0 50 Relative Int. (%)
100
100
150
MDEA-d5, 4-carboethoxyhexafluorobutyryl derivative
50
C19H16D5F6NO5 MW: 462.39
200
250
300
350
450
500
327.2
I-7-G-ii
162.1
400
O
CH 3 CO(CF2)3COOC2H 5 CH 2 –CH– NCD 2CD 3
O
135.1
281.1
195.0
105.1
299.1
0 50 Relative Int. (%)
100
100
150
C19H15D6F6NO5 MW: 463.40
250
165.1
MDEA-d6, 4-carboethoxyhexafluorobutyryl derivative
50
200
300
350
I-7-G-iii
400
450
500
328.2 O
CD 3 CO(CF2)3COOC2H 5 CH 2 –CH– NCH 2CD 3
O
135.1
223.1
195.0
300.1
281.1
0 50
100
150
200
250
300
350
400
450
500
m/z Relative Int. (%)
100
195.0
MDEA, 2,3,4,5,6pentafluorobenzoyl derivative C19H16F5NO3 MW: 401.33
50
77.1
I-7-H-i 266.0
162.1
O
CH 3 COC 6 F 5 CH 2 –CH– NCH 2CH 3
O
135.0
0 50 Relative Int. (%)
100
100
150
200 195.0
MDEA-d5, 2,3,4,5,6pentafluorobenzoyl derivative C19H11D5F5NO3 MW: 406.36
50
250
300
350
400
450
I-7-H-ii 271.0
162.1
O
CH 3 COC 6 F 5 CH 2 –CH– NCD 2CD 3
O
77.1
135.0
0 50 Relative Int. (%)
100
100
150
200 195.0
MDEA-d6, 2,3,4,5,6pentafluorobenzoyl derivative
300
350
400
450
I-7-H-iii 272.1
C19H10D6F5NO3 MW: 407.36
50
250
165.1
O
CD 3 COC 6 F 5 CH 2 –CH– NCH 2CD 3
O
77.1
135.0
0 50
100
150
200
250 m/z
Appendix One — Mass Spectra
© 2010 by Taylor and Francis Group, LLC
300
350
400
450
97
Figure I-7. (Continued) Relative Int. (%)
100
158.1
MDEA, propylformyl derivative
I-7-I-i 50
72.1
116.0
O
135.0
50
100
150
200
100 Relative Int. (%)
293.2
234.1
0
I-7-I-ii 77.1
50
250
163.1 CH 3 COOC 3H 7 CH 2 –CH– NCD 2CD 3
O
121.1
300
MDEA-d5, propylformyl derivative C16H18D5NO4 MW: 298.39
O
135.0
298.2
239.1
0 50
100
100 Relative Int. (%)
C16H23NO4 MW: 293.36
CH 3 COOC 3H 7 CH 2 –CH– NCH 2CH 3
O
150
200
300
MDEA-d6, propylformyl derivative
164.1
I-7-I-iii
CD 3 COOC 3H 7 CH 2 –CH– NCH 2CD 3
O
78.1
50
250
122.1
C16H17D6NO4 MW: 299.39
O
135.0
299.2
240.1
0 50
100
150
200
250
300
m/z Relative Int. (%)
100
166.0
I-7-J-i 162.0
72.1
50 105.0
O
CH 3 O CH 2 CH N C
O
H 3CH 2C
135.0
l-MDEA, (S)-(–)-N-(trifluoroacetyl)-prolyl derivative
N
C19H23F3N2O4 MW: 400.39
O CCF 3
265.1
194.0
0 50
100
Relative Int. (%)
100
150
I-7-J-ii 77.1
200
250
166.0
CH 3 O
162.0
CH 2 CH
50
350
400
450
l-MDEA-d5, (S)-(–)-N-(trifluoroacetyl)-prolyl derivative
O
N C
D 3CD 2C
O
105.0
300
N
C19H18D5F3N2O4 MW: 405.42
O CCF 3
270.1
135.0 194.0
0 50
100
150
Relative Int. (%)
100
200
250
166.0
I-7-J-iii 78.1
50
108.1
136.0
0 50
100
150
300
O
CD 3 O CH 2 CH N C
O
D 3CH 2C
400
450
l-MDEA-d6, (S)-(–)-N-(trifluoroacetyl)-prolyl derivative N
C19H17D6F3N2O4 MW: 406.43
O CCF 3
271.1 194.0
200
250 m/z
Figure 1 — Stimulants
© 2010 by Taylor and Francis Group, LLC
350
300
350
400
450
98
Figure I-7. (Continued) Relative Int. (%)
100
166.0
I-7-K-i
O
CH 3 O CH 2 CH N C
O
H 3CH 2C
72.1
50
135.0
105.0
d-MDEA, (S)-(–)-N-(trifluoroacetyl)-prolyl derivative
N
C19H23F3N2O4 MW: 400.39
O CCF 3
265.1
194.0
0 50
100
150
Relative Int. (%)
100
200
250
350
CH 3
450
CH 2 CH N C
N
O
D 3CD 2C
O CCF 3
C19H18D5F3N2O4 MW: 405.42
270.1
135.0
105.0
O
O
77.1
400
d-MDEA-d5, (S)-(–)-N-(trifluoroacetyl)-prolyl derivative
166.0
I-7-K-ii 50
300
194.0
0 50
100
Relative Int. (%)
100
150
200
250
166.0
I-7-K-iii
CD 3 O
50
CH 2 CH
400
450
d-MDEA-d6, (S)-(–)-N-(trifluoroacetyl)-prolyl derivative N
C19H17D6F3N2O4 MW: 406.43
O CCF 3
271.1
194.0
135.0
350
O
N C
D 3CH 2C
O
78.1 108.1
300
0 50
RelativeInt. (%)
100
100
150
200
250 m/z
350
189.0
I-7-L-i
O
162.0 105.0
CH 2 –CH– NCH 2CH 3
O
135.0
400
450
l-MDEA, (–)-α-methoxy-αtrifluoromethylphenylacetyl derivative
CH 3 COC(CF3)(C6H5)OCH3
50 77.0
300
C22H24F3NO4 MW: 423.43
288.1
214.0
0 50
100
150
200
Relative Int. (%)
100
250
300
350
189.0
I-7-L-ii
CH 3 COC(CF3)(C6H5)OCH3 O
50
162.0 77.0
105.0
CH 2 –CH– NCD 2CD 3
O
135.0
400
450
l-MDEA-d5, (–)-α-methoxy-αtrifluoromethylphenylacetyl derivative C22H19D5F3NO4 MW: 428.46
293.1
219.1
0 50
100
150
200
Relative Int. (%)
100
250
O
50
165.0
350
CH 2 –CH– NCH 2CD 3
105.0
135.0
450
C22H18D6F3NO4 MW: 429.46
O
294.1 77.0
400
l-MDEA-d6, (–)-α-methoxy-αCD 3 COC(CF3)(C6H5)OCH3 trifluoromethylphenylacetyl derivative
189.0
I-7-L-iii
300
217.0
0 50
100
150
200
250 m/z
Appendix One — Mass Spectra
© 2010 by Taylor and Francis Group, LLC
300
350
400
450
99
Figure I-7. (Continued)
Relative Int. (%)
100
189.0
I-7-M-i
d-MDEA, (–)-α-methoxy-αtrifluoromethylphenylacetyl derivative
CH 3 COC(CF3)(C6H5)OCH3 O
50
162.0
CH 2 –CH– NCH 2CH 3
C22H24F3NO4 MW: 423.43
O
288.1 77.0
105.0
135.0
214.0
0 50
100
150
200
Relative Int. (%)
100
250
300
350
189.0
I-7-M-ii
CH 3 COC(CF3)(C6H5)OCH3
50
O
162.0 105.0
135.0
450
d-MDEA-d5, (–)-α-methoxy-αtrifluoromethylphenylacetyl derivative
CH 2 –CH– NCD 2CD 3
O
77.1
400
C22H19D5F3NO4 MW: 428.46
293.1
219.1
0 50
100
150
200
Relative Int. (%)
100
250
50
O
165.1 105.0
400
CH 2 –CH– NCH 2CD 3
O
77.0
350
450
d-MDEA-d6, (–)-α-methoxy-αtrifluoromethylphenylacetyl CD 3 COC(CF3)(C6H5)OCH3 derivative
189.0
I-7-M-iii
300
135.0
C22H18D6F3NO4 MW: 429.46
294.1
217.1
0 50
100
150
200
Relative Int. (%)
100
250 m/z
300
350
400
144.2
I-7-N-i 50
O
73.1
450
MDEA, trimethylsilyl derivative
CH 3 Si(CH3)3 CH 2 –CH– NCH 2CH 3
C15H25NO2Si MW: 279.45
O
135.1
264.2
0 50
100
150
Relative Int. (%)
100
200
149.2
I-7-N-ii
O
50 73.1
CH 3 Si(CH3)3 CH 2 –CH– NCD 2CD 3
250
300
MDEA-d5, trimethylsilyl derivative C15H20D5NO2Si MW: 284.48
O
135.1
269.2
0 50
100
150
Relative Int. (%)
100
200
150.2
I-7-N-iii 50
O
73.1
CD 3 Si(CH3)3 CH 2 –CH– NCH 2CD 3
250
300
MDEA-d6, trimethylsilyl derivative C15H19D6NO2Si MW: 285.49
O
135.1
270.2
0 50
100
150
200 m/z
Figure 1 — Stimulants
© 2010 by Taylor and Francis Group, LLC
250
300
100
Figure I-8. Mass spectra of N-methyl-1-(3,4-methylenedioxyphenyl)-2-butanamine (MBDB), and its deuterated analog (MBDB-d5): (A) underivatized; (B) acetyl-derivatized; (C) TCA-derivatized; (D) TFA-derivatized; (E) PFPderivatized; (F) HFB-derivatized; (G) 4-CB-derivatized; (H) PFB-derivatized; (I) propylformyl-derivatized; (J,K) lTPC-derivatized; (L,M) l-MTPA-derivatized; (N) TMS-derivatized. Relative Int. (%)
100
72.1
I-8-A-i
O
C12H17NO2 MW: 207.27
CH 2CH 3
O
50 135.0
88.6
178.1
0 50
100
100 Relative Int.(%)
MBDB
CH 2 –CH– NHCH3
76.1
150
200
I-8-A-ii
D O
50 136.0
MBDB-d5
D
CH–C– NHCD3
C12H12D5NO2 MW: 212.30
CH 2CH 3
O
91.1
250
182.1
0 50
Relative Int. (%)
100
100
72.1
150 m/z
200
MBDB, acetyl derivative
I-8-B-i
C14H19NO3 MW: 249.31
COCH 3
176.1
50
250
O
114.1
CH 2 –CH– NCH3 CH 2CH 3
O
135.1
0 50 Relative Int. (%)
100
100 76.2
150
200
250
300
MBDB-d5, acetyl derivative
I-8-B-ii
C14H14D5NO3 MW: 254.34
D COCH 3 CH–C– NCD3 D
50
O
118.1
178.1
CH 2CH 3
O
136.1
0 50
100
150
200
250
300
m/z Relative Int. (%)
100
I-8-C-i
176.1 216.0 COCCl 3
135.1
O
50
CH 2CH 3
351.1
0 50
100
100 relative Int. (%)
C14H16Cl3NO3 MW: 352.64
CH 2 –CH– NCH3
O
117.0
77.1
MBDB, trichloroacetyl derivative
150
200
I-8-C-ii
250
300
220.1 D
177.1 O
136.1
50
O
78.1
D COCCl 3 CH–C– NCD3 CH 2CH 3
117.0
100
150
200
250 m/z
Appendix One — Mass Spectra
© 2010 by Taylor and Francis Group, LLC
400
MBDB-d5, trichloroacetyl derivative C14H11D5Cl3NO3 MW: 357.67 356.1
0 50
350
300
350
400
101
Figure I-8. (Continued)
Relative Int. (%)
100
MBDB, trifluoroacetyl derivative
168.1
C14H16F3NO3 MW: 303.28
50
I-8-D-i
176.1
COCF 3 CH 2 –CH– NCH3
O
135.1
CH 2CH 3
O
110.1
77.1
303.1
0 50 Relative Int. (%)
100
100
150
MBDB-d5, trifluoroacetyl derivative
250
300
I-8-D-ii D COCF 3 CH–C– NCD3 D
O
178.1
136.1
CH 2CH 3
O
113.1
78.1
350
172.1
C14H11D5F3NO3 MW: 308.31
50
200
308.2
0 50
Relative Int. (%)
100
100
150
200 m/z
MBDB, pentafluoropropionyl derivative C15H16F5NO3 MW: 353.28
50
250
350
218.1 O
COC 2 F 5 CH 2 –CH– NCH3
O
CH 2CH 3
176.1 135.1 160.0
77.1
300
I-8-E-i
119.0
353.1
0 50 Relative Int. (%)
100
100
150
200
MBDB-d5, pentafluoropropionyl derivative C15H11D5F5NO3 MW: 358.31
50
78.1
250
300
350
222.1
400
I-8-E-ii D COC 2 F 5 CH–C– NCD3 D
O
178.1
136.1
163.1
CH 2CH 3
O
358.2
119.0
0 50
100
150
200
250
300
350
400
m/z Relative Int. (%)
100
268.1
MBDB, heptafluorobutyryl derivative C16H16F7NO3 MW: 403.29
50
O
135.1
I-8-F-i
COC 3 F 7
176.1 210.0
CH 2 –CH– NCH3 CH 2CH 3
O
77.1
403.1
0 50 Relative Int. (%)
100
100
150
200
250
C16H11D5F7NO3 MW: 408.32
350
400
272.1
MBDB-d5, heptafluorobutyryl derivative
50
300
I-8-F-ii
D COC 3 F 7 CH–C– NCD3 D
O
136.1
178.1
O
213.1
450
CH 2CH 3
78.1
408.2
0 50
100
150
200
250 m/z
Figure 1 — Stimulants
© 2010 by Taylor and Francis Group, LLC
300
350
400
450
102
Figure I-8. (Continued)
Relative Int. (%)
100
MBDB, 4-carboethoxyhexafluorobutyryl derivative
176.1
I-8-G-i
322.2
C19H21F6NO5 MW: 457.36
50
CO(CF2)3COOC2H 5 CH 2 –CH– NCH3
O
135.1
276.1
CH 2CH 3
O
294.1
77.1
0 50 Relative Int.(%)
100
100
150
200
250
300
MBDB-d5, 4-carboethoxyhexafluorobutyryl derivative C19H16D5F6NO5 MW: 462.39
50
350
400
450
D
D CO(CF2)3COOC2H 5
326.2
I-8-G-ii 178.1
136.1
280.1
78.1
500
298.1
O
CH–C– NCD3
O
CH 2CH 3
224.1
0 50
100
150
200
250
300
350
400
450
500
m/z Relative Int. (%)
100
MBDB, 2,3,4,5,6-pentafluorobenzoyl derivative
195.0
C19H16F5NO3 MW: 401.33
50
I-8-H-i O
COC 6 F 5 CH 2 –CH– NCH3
O
CH 2CH 3
266.0
176.1 135.0
77.1
0 50 Relative Int. (%)
100
100
150
200
250
195.0
MBDB-d5, 2,3,4,5,6-pentafluorobenzoyl derivative
350
I-8-H-ii
C19H11D5F5NO3 MW: 406.36
50
300
450
D D COC 6 F 5 CH–C– NCD3
O
270.1
400
CH 2CH 3
O
178.1 136.1
78.1
0 50
100
150
200
Relative Int. (%)
100
250 m/z
158.1
300
350
400
MBDB, propylformyl derivative
I-8-I-i COOC 3H 7
50
116.1
72.1
O
135.0
C16H23NO4 MW: 293.36
CH 2 –CH– NCH3 CH 2CH 3
O
234.1
293.2
0 50
100
150
relative Int. (%)
100
162.1
50
200
D
136.0
250
300
MBDB-d5, propylformyl derivative
I-8-I-ii
120.1
76.1
450
C16H18D5NO4 MW: 298.39
D COOC 3H 7
O
CH–C– NCD3
O
CH 2CH 3
239.1
298.2
0 50
100
150
200 m/z
Appendix One — Mass Spectra
© 2010 by Taylor and Francis Group, LLC
250
300
103
Figure I-8. (Continued) Relative Int. (%)
100
166.0
I-8-J-i
l-MBDB, (S)-(–)-N-(trifluoroacetyl)-prolyl derivative
H 3C O
176.1
72.1
O
50
CH 2 CH
N C N CH 2CH 3 O CCF 3
O
135.0 96.0
C19H23F3N2O4 MW: 400.39
265.1
194.0
400.2
0 50
100
Relative Int. (%)
100
150
200
250
300
166.0
I-8-J-ii
H
76.1
CD
O
50
O
178.1 136.0
D 3C O
350
400
l-MBDB-d5, (S)-(–)-N-(trifluoroacetyl)-prolyl derivative
CD N C N CH 2CH 3 O CCF 3
C19H18D5F3N2O4 MW: 405.42
269.1
96.0
450
405.2
194.0
0 50
100
Relative Int. (%)
100
150
200
166.0
I-8-K-i
250 m/z
350
176.1 O
CH 2 CH N C
135.0 96.0
265.1
194.0
400.2
0 50
100
Relative Int. (%)
100
150
I-8-K-ii
200
300 H
CD
O
76.1
50
250
166.0 178.1
O
D 3C O
CD
450
C19H23F3N2O4 MW: 400.39
N CH 2CH 3 O CCF 3
O
400
d-MBDB, (S)-(–)-N-(trifluoroacetyl)-prolyl derivative
H 3C O
72.1
50
300
N C
350
400
450
d-MBDB-d5, (S)-(–)-N-(trifluoroacetyl)-prolyl derivative
N CH 2CH 3 O CCF 3
C19H18D5F3N2O4 MW: 405.42
136.0 269.1
194.0
96.0
405.2
0 50
100
150
200
Relative Int. (%)
100
250 m/z
300
350
189.0
I-8-L-i O
176.0
CH 2 –CH– NCH3 CH 2CH 3
O
77.0
105.0
C22H24F3NO4 MW: 423.43
288.1
135.0
450
l-MBDB, (–)-α-methoxy-αtrifluoromethylphenylacetyl derivative
COC(CF3)(C6H5)OCH3
50
400
0 50
100
150
200
relative Int. (%)
100
250
300
189.0
I-8-L-ii
D
O
50
178.1 105.0
O
D COC(CF3)(C6H5)OCH3 CH–C– NCD3
350
450
l-MBDB-d5, (–)-α-methoxy-αtrifluoromethylphenylacetyl derivative C22H19D5F3NO4 MW: 428.46
CH 2CH 3
292.1
136.0
400
0 50
100
150
200
250 m/z
Figure 1 — Stimulants
© 2010 by Taylor and Francis Group, LLC
300
350
400
450
104
Figure I-8. (Continued) Relative Int. (%)
100
189.0
I-8-M-i
d-MBDB, (–)-α-methoxy-αtrifluoromethylphenylacetyl derivative
COC(CF3)(C6H5)OCH3
176.1
CH 2 –CH– NCH3
O
50
CH 2CH 3
O
135.0
C22H24F3NO4 MW: 423.43
288.1
105.0
77.0
0 50 Relative Int. (%)
100
100
150
200
I-8-M-ii
D
50 105.0
78.0
250
300
189.0
178.1 136.0
D COC(CF3)(C6H5)OCH3
O
CH–C– NCD3
O
CH 2CH 3
350
400
450
d-MBDB-d5, (–)-α-methoxy-αtrifluoromethylphenylacetyl derivative C22H19D5F3NO4 MW: 428.46
292.1
0 50
100
150
200
Relative Int. (%)
100
250 m/z
300
350
400
MBDB, trimethylsilyl derivative
144.2
I-8-N-i
Si(CH3)3
50
CH 2CH 3
O
73.1
C15H25NO2Si MW: 279.45
CH 2 –CH– NCH3
O
450
135.1
264.2
0 50
100
150
Relative Int. (%)
100
200
148.2
I-8-N-ii
D
50 73.1
D Si(CH3)3
O
CH–C– NCD3
O
CH 2CH 3
250
300
MBDB-d5, trimethylsilyl derivative C15H20D5NO2Si MW: 284.48 269.2
136.1
0 50
100
150
200 m/z
Appendix One — Mass Spectra
© 2010 by Taylor and Francis Group, LLC
250
300
105
Figure I-9. Mass spectra of selegiline and its deuterated analog (selegiline-d8).
Relative Int. (%)
100
96.1
Selegiline (CAS NO.14611-51-9)
I-9-i CH 3
50
CH 2 –CH– N
56.1
CH 2 C CH 3
CH
C13H17N MW: 187.28
91.0
0 50
100
Relative Int. (%)
100
150
200
103.1
Selegiline-d8
I-9-ii D
62.1
CD 3
CH 2 C CH–C– N CD 3 D
50
CH
C13H9D8N MW: 195.33
92.0
0 50
100
150 m/z
Figure I — Stimulants
© 2010 by Taylor and Francis Group, LLC
200
106
Figure I-10. Mass spectra of N-desmethylselegiline and its deuterated analogs (N-desmethylselegiline-d11): (A) underivatized; (B) acetyl-derivatized; (C) TCA-derivatized; (D) TFA-derivatized; (E) PFP-derivatized; (F) HFBderivatized; (G) 4-CB-derivatized; (H) TMS-derivatized. Relative Int. (%)
100
82.1
I-10-A-i
N-Desmethylseleginine (CAS NO.18913-84-3) C12H15N MW: 173.25
CH 3 CH 2 –CH– NH– CH 2 C CH
50 91.0
65.0
0 50
100
Relative Int. (%)
100
150
200
86.1
I-10-A-ii
N-Desmethylseleginine-d11 D
D D
50
CD 3
C12H4D11N MW: 184.32
CD 2 –C– NH– CH 2 C CH
D
D
D
98.1
70.1
0 50
100
150
200
m/z Relative Int. (%)
100
82.1
I-10-B-i
N-Desmethylseleginine, acetyl derivative
CH 3 COCH 3
91.0
65.1
215.1
0 50 100 Relative Int. (%)
C14H17NO MW: 215.29
CH 2 –CH– N– CH 2 C CH
124.1
50
100
150
200
86.1
I-10-B-ii
128.1
50
D
D
D
D
D
250 N-Desmethylseleginine-d11, acetyl derivative
CD 3 CD 2 –C– N– CH 2 C CH
C14H6D11NO MW: 226.36
D COCH 3
98.1
70.1
226.2
0 50
Relative Int. (%)
100
100
150 m/z
CH 3 CH 2 –CH– N– CH 2 C CH
91.0
250
N-Desmethylseleginine, trichloroacetyl derivative
225.9
I-10-C-i
50
200
C14H14Cl3NO MW: 318.63
COCCl 3
118.0 65.0
318.9
0 50
100
150
200
Relative Int. (%)
100
229.9
I-10-C-ii
D
D
D
D
D
98.1
50
250
128.1
300
N-Desmethylseleginine-d11, trichloroacetyl derivative
CD 3
C14H3D11Cl3NO MW: 329.69
CD 2 –C– N– CH 2 C CH D COCCl 3
70.0
329.0
0 50
100
150
200 m/z
Appendix One — Mass Spectra
© 2010 by Taylor and Francis Group, LLC
350
250
300
350
107
Figure I-10. (Continued)
Relative Int. (%)
100
178.0
N-Desmethylseleginine, trifluoroacetyl derivative
I-10-D-i CH 3
50
118.1 91.1
55.1
C14H14F3NO MW: 269.26
CH 2 –CH– N– CH 2 C CH COCF 3
0 50
100
150
200
Relative Int. (%)
100
250
182.1
I-10-D-ii
D
D
D
50
128.1
D
98.1
D
300
N-Desmethylseleginine-d11, trifluoroacetyl derivative CD 3 CD 2 –C– N– CH 2 C CH
C14H3D11F3NO MW: 280.33
D COCF 3
59.1
0 50
100
150
200
250
300
m/z Relative Int. (%)
100
50
N-Desmethylseleginine, pentafluoropropionyl derivative
228.0
I-10-E-i
CH 3 CH 2 –CH– N– CH 2 C CH
118.1
C15H14F5NO MW: 319.27
COC 2 F 5
91.0 55.1
0 50
100
150
200
Relative Int .(%)
100
250
300
232.0
I-10-E-ii
D
50
D
D
128.1
98.1
D
59.1
D
350
400
N-Desmethylseleginine-d11, pentafluoropropionyl derivative
CD 3 CD 2 –C– N– CH 2 C CH D COC 2 F 5
C15H3D11F5NO MW: 330.34
0 50
100
150
200
250
300
350
400
m/z Relative Int. (%)
100
278.0
I-10-F-i
CH 3 CH 2 –CH– N– CH 2 C CH
50 91.1
N-Desmethylseleginine, heptafluorobutyryl derivative C16H14F7NO MW: 369.28
COC 3 F 7
118.1
55.1
169.0
0 50
100
150
200
250
Relative Int. (%)
100
300 282.0
I-10-F-ii
D
D
D
D
D
50
98.1
128.1
59.1
CD 3 CD 2 –C– N– CH 2 C CH
350
400
N-Desmethylseleginine-d11, heptafluorobutyryl derivative C16H3D11F7NO MW: 380.34
D COC 3 F 7
169.0
0 50
100
150
200
250 m/z
Figure I — Stimulants
© 2010 by Taylor and Francis Group, LLC
300
350
400
108
Figure I-10. (Continued)
Relative Int. (%)
100
332.0
I-10-G-i
CH 2 –CH– N– CH 2 C CH
91.1 118.1
50
N-Desmethylseleginine, 4-carboethoxyhexafluorobutyryl derivative
CH 3
C19H19F6NO3 MW: 423.35
CO(CF2)3COOC2H 5
195.0
65.1
304.0
423.1
0 50 Relative Int. (%)
100
100
150
200
250
300
350
400
336.0
I-10-G-ii
D
D
CD 2 –C– N– CH 2 C CH
D
128.1
C19H8D11F6NO3 MW: 434.42
D CO(CF2)3COOC2H 5
D
194.9
70.1
N-Desmethylseleginine-d11, 4-carboethoxyhexafluorobutyryl derivative
CD 3
D
98.1
50
450
434.1
308.0
0 50
100
150
200
Relative Int. (%)
100
250 m/z
300
400
154.1
I-10-H-i
450
N-Desmethylseleginine, trimethylsilyl derivative
CH 3 CH 2 –CH– N– CH 2 C CH
73.1
50
350
C15H23NSi MW: 245.44
Si(CH3)3
91.1
230.1
0 50
100
150
Relative Int. (%)
100
200 158.1
I-10-H-ii
D
D
D
50
73.1
D
CD 3
250
N-Desmethylseleginine-d11, trimethylsilyl derivative C15H12D11NSi MW: 256.50
CD 2 –C– N– CH 2 C CH D Si(CH3)3
D
98.1
300
241.2
0 50
100
150
200 m/z
Appendix One — Mass Spectra
© 2010 by Taylor and Francis Group, LLC
250
300
109
Figure I-11. Mass spectra of fenfluramine and its deuterated analogs (fenfluramine-d10): (A) underivatized; (B) acetylderivatized; (C) TCA-derivatized; (D) TFA-derivatized; (E) PFP-derivatized; (F) HFB-derivatized; (G) 4-CB-derivatized. Relative Int. (%)
100
72.1
CH 3 CH 2–CH–NH–CH 2CH 3
50
CF 3
Fenfluramine (CAS NO.458-24-2)
I-11-A-i
C12H16F3N MW: 231.26
159.0
109.1
212.1
231.1
0 50
100
Relative Int. (%)
100
150
81.1
200
CD 3 CH–C–NH–CD 2CD 3 D
50
250 Fenfluramine-d10
I-11-A-ii
C12H6D10F3N MW: 241.32
D
CF 3
160.0
110.1
223.1
240.2
0 50
100
Relative Int. (%)
100
150 m/z
200
72.0 114.0
CH 2 –CH–N–CH 2 CH 3
50
50
100
C14H18F3NO MW: 273.29
COCH 3
CF 3
159.0
87.0
100
Fenfluramine, acetyl derivative
I-11-B-i
CH 3
216.0
0
Relative Int. (%)
250
150
200
254.1
250
300
81.1
I-11-B-ii
CD 3
123.1
CH–C–N–CD 2 CD 3
50
D
160.0
223.0
0 50
100
C14H8D10F3NO MW: 283.35
D COCH 3
CF 3
87.0
150
Fenfluramine-d10, acetyl derivative
200
264.1
250
300
m/z Relative Int. (%)
100
216.0
I-11-C-i
CH 3 CH 2 –CH–N–CH 2 CH 3
159.0
50 70.0
COCCl 3
CF 3
187.0
Fenfluramine, trichloroacetyl derivative C14H15Cl3F3NO MW: 376.63
361.9
0 50
100
Relative Int. (%)
100
150
200
250
300
225.0
I-11-C-ii
CH–C–N–CD 2 CD 3 D
161.0 62.1
CF 3
D COCCl 3
C14H5D10Cl3F3NO MW: 386.69
192.0
74.0
370.1
0 50
100
150
200
250 m/z
Figure I — Stimulants
© 2010 by Taylor and Francis Group, LLC
400
Fenfluramine-d10, trichloroacetyl derivative
CD 3
50
350
300
350
400
110
Figure I-11. (Continued)
Relative Int. (%)
100
168.0
CH 3
Fenfluramine, trifluoroacetyl derivative
I-11-D-i
CH 2 –CH–N–CH 2 CH 3
50
COCF 3
CF 3
C14H15F6NO MW: 327.27
140.0 159.0
70.1
186.1
308.1
0 50
100
150
200
Relative Int. (%)
100
177.1
300
I-11-D-ii
CD 3 D CF 3
D COCF 3
145.0 74.1
50
100
C14H5D10F6NO MW: 337.33 160.0
318.1
192.1
150
200 m/z
100
250
218.0
300
I-11-E-i
CH 3 CH 2 –CH–N–CH 2 CH 3
50
350 Fenfluramine-d10, trifluoroacetyl derivative
CH–C–N–CD 2 CD 3
50
0
Relative Int. (%)
250
350
Fenfluramine, pentafluoropropionyl derivative C15H15F8NO MW: 377.27
COC 2 F 5
CF 3
190.0
75.0
159.0
119.0
358.0
0 50
100
150
200
250
Relative Int. (%)
100
300
227.1
350
I-11-E-ii
CD 3 CH–C–N–CD 2 CD 3
50
D CF 3
0 50
195.0
100
Fenfluramine-d10, pentafluoropropionyl derivative C15H5D10F8NO MW: 387.33
D COC 2 F 5
160.0
119.0
74.1
400
150
368.1
200
250
300
350
400
m/z Relative Int. (%)
100
268.0 CH 2 –CH–N–CH 2 CH 3
50
240.0 159.0
70.1
50
Fenfluramine, heptafluorobutyryl derivative C16H15F10NO MW: 427.28
COC 3 F 7
CF 3
0
100
150
408.0
200
250
100 Relative Int. (%)
I-11-F-i
CH 3
300 277.1
CD 3
350
I-11-F-ii
CH–C–N–CD 2 CD 3
50
D CF 3
400
Fenfluramine-d10, heptafluorobutyryl derivative C16H5D10F10NO MW: 437.34
D COC 3 F 7
245.0 160.0
62.1
418.1
0 50
100
150
200
250 m/z
Appendix One — Mass Spectra
© 2010 by Taylor and Francis Group, LLC
450
300
350
400
450
111
Figure I-11. (Continued)
Relative Int. (%)
100
322.0 CH 2 –CH–N–CH 2 CH 3
50
159.0 70.1
Fenfluramine, 4-carboethoxyhexafluorobutyryl derivative
CH 3
I-11-G-i
186.0
109.0
C19H20F9NO3 MW: 481.35
CO(CF2)3COOC2H 5
CF 3
220.0
276.0
294.0
462.1
0 50
100
150
200
250
300
350
Relative Int. (%)
100
I-11-G-ii
331.1
CD 3 D
161.0
CF 3
195.0
119.0
D CO(CF2)3COOC2H 5
224.0
284.0
450
C19H10D10F9NO3 MW: 491.41 303.0
472.2
0 50
100
150
200
250
300 m/z
Figure I — Stimulants
© 2010 by Taylor and Francis Group, LLC
500
Fenfluramine-d10, 4-carboethoxyhexafluorobutyryl derivative
CH–C–N–CD 2 CD 3
50 62.1
400
350
400
450
500
112
Figure I-12. Mass spectra of norcocaine, and its deuterated analog (norcocaine-d3): (A) underivatized; (B) TFAderivatized; (C) PFP-derivatized; (D) HFB-derivatized; (E) TMS-derivatized. Relative Int. (%)
100
168.1
Norcocaine
I-12-A-i
H
COOCH3 O H
N
50
68.0 77.0
105.0
O
136.0
108.0
C16H19NO4 MW: 289.33
C
H
289.1
0 50
100
150
200
Relative Int. (%)
100
I-12-A-ii 68.1
H
COOCD3 O H O C H
136.0
77.0
105.0
300 Norcocaine-d3
N
50
250
171.1
108.1
C16H16D3NO4 MW: 292.34
292.1
0 50
100
150
200
250
300
m/z Relative int. (%)
100
105.1
I-12-B-i
F 3COC
N
O
50
164.1
77.1
Norcocaine, trifluoroacetyl derivative
COOCH3 O H
C
194.1
C18H18F3NO5 MW: 385.33
263.1
H
232.1
280.1
316.1
385.2
0 50
100
Relative int. (%)
100
150 105.1
200
I-12-B-ii
F 3COC N
50
164.1
77.1
197.1
250
300
350
Norcocaine-d3, trifluoroacetyl derivative
COOCD3 O H O C H
C18H15D3F3NO5 MW: 388.35
266.1
232.1
283.1
319.2
0 50
100
150
200
400
250
300
388.1
350
400
m/z Relative Int. (%)
100
105.1
I-12-C-i
F 5 C 2 OC N
50
O
214.1 77.1
C
226.1
166.1
330.1
0 50
100
Relative Int. (%)
100
150
200
105.1
50
250 F 5 C 2 OC
I-12-C-ii
300
N
O
C
400
333.1
438.2
0 50
100
150
200
250 m/z
Appendix One — Mass Spectra
© 2010 by Taylor and Francis Group, LLC
450
C19H15D3F5NO5 MW: 438.36
316.1
226.1
169.1
435.2
Norcocaine-d3, pentafluoropropionyl derivative
H
197.1 119.1
350
COOCD3 O H
214.1 77.1
C19H18F5NO5 MW: 435.34
313.1
H
194.1 119.1
Norcocaine, pentafluoropropionyl derivative
COOCH3 O H
300
350
400
450
113
Figure I-12. (Continued) Relative Int. (%)
100
105.0
F 7 C 3 OC
O
50
C
264.0
H
77.0
Norcocaine, heptafluorobutyryl derivative
I-12-D-i
COOCH3 O H
N
194.0 333.9
119.0
100
Relative Int. (%)
100
150 105.0
200
F 7 C 3 OC
250
COOCD3 O H
N
O
50
300
350
400
264.0
C20H15D3F7NO5 MW: 488.37
366.0
197.0 337.0
383.1
0 100
150
200
250
300
500
Norcocaine-d3, heptafluorobutyryl derivative
I-12-D-ii
119.0
50
450
C
H
77.0
485.1
380.0
0 50
C20H18F7NO5 MW: 485.35
363.0
350
488.1
400
450
500
m/z Relative Int. (%)
100
I-12-E-i 73.0
(CH3)3Si
140.0
N
50 152.0
Norcocaine, trimethylsilyl derivative
240.1
179.0
105.0
224.0
COOCH3 O H O C H
C19H27NO4Si MW: 361.51 361.1
346.1
256.1
0 50 Relative Int. (%)
100
100
150
200
I-12-E-ii 105.0
73.0
250 243.1
140.0
179.0
300
(CH3)3Si
N
350
COOCD3 O H
O
50
C
349.1
H
152.0
400 Norcocaine-d3, trimethylsilyl derivative
C19H24D3NO4Si MW: 364.53 364.1
259.1
224.1
0 50
100
150
200
250 m/z
Figure I — Stimulants
© 2010 by Taylor and Francis Group, LLC
300
350
400
114
Figure I-13. Mass spectra of cocaine, and its deuterated analog (cocaine-d3).
Relative Int. (%)
100
I-13-i
82.0
182.1 N
50
105.0
77.0
Cocaine (CAS NO.50-36-2)
CH 3 COOCH 3 O H O C H
C17H21NO4 MW: 303.35
303.1 272.1
198.1
122.1
0 50
100
Relative Int. (%)
100
150
I-13-ii
85.1
200
250
185.1 CD 3 COOCH 3 N O H O
50 77.0
300
Cocaine-d3 (CAS NO.65266-73-1) C17H18D3NO4 MW: 306.37
C
H
105.0
306.1 275.1
201.1
125.1
350
0 50
100
150
200 m/z
Appendix One — Mass Spectra
© 2010 by Taylor and Francis Group, LLC
250
300
350
115
Figure I-14. Mass spectra of cocaethylene, and its deuterated analog (cocaethylene-d3,-d8). Relative Int. (%)
100
I-14-i
82.0
196.1
Cocaethylene (CAS NO.529-38-4) CH 3 COOCH CH 2 3 N O H
50
O
105.0
77.0
C
H
122.1
317.1
272.1
212.1
166.0
C18H23NO4 MW: 317.38
0 50
100
Relative Int. (%)
100
150
85.1
200
250
199.1
I-14-ii
O
105.0
320.1
275.1
215.1
169.1
C18H20D3NO4 MW: 320.40
C
H
125.1
350
Cocaethylene-d3 (CAS NO.136765-30-5) CD 3 COOCH CH 2 3 N O H
50 77.0
300
0 50
100
Relative Int. (%)
100
150
200
85.1
250
N
50
H
125.1
220.1
169.1
C18H15D8NO4 MW: 325.43
CD 3 COOCD CD 2 3 O H O
105.0
77.0
350
Cocaethylene-d8 (CAS NO.152521-09-0)
204.1
I-14-iii
300
C
325.2
275.1
0 50
100
150
200 m/z
Figure I — Stimulants
© 2010 by Taylor and Francis Group, LLC
250
300
350
116
Figure I-15. Mass spectra of ecgonine methyl ester, and its deuterated analog (ecgonine methyl ester-d3): (A) underivatized; (B) TFA-derivatized; (C) PFP-derivatized; (D) HFB-derivatized; (E) TMS-derivatized; (F) t-BDMSderivatized. Relative Int. (%)
100
82.1 96.1
N
I-15-A-i
CH 3 COOCH 3 H
Ecgonine methyl ester (CAS NO.7143-09-1) C10H17NO3 MW: 199.24
OH
50
H
55.1
112.0
168.1
140.1
199.1
182.1
0 50
100
Relative Int. (%)
100
150
85.1 N
99.1
200
CD 3 COOCH 3 H
250
I-15-A-ii
Ecgonine methyl ester-d3 (CAS NO.136765-34-9) C10H14D3NO3 MW: 202.26
OH
50
H
115.1
60.1
171.1
143.1
202.1
185.1
0 50
100
150 m/z
Relative Int. (%)
100
200
182.1 CH 3 COOCH 3 N H
82.0
50
94.0
H
I-15-B-i
Ecgonine methyl ester, trifluoroacetyl derivative C12H16F3NO4 MW: 295.25
OOC–CF 3
295.1
69.0 122.1
250
264.0
154.1
0 50
100
150
Relative Int. (%)
100
200
250
185.1 85.0
50
N
I-15-B-ii
CD 3 COOCH 3 H
97.0
H
300
C12H13D3F3NO4 MW: 298.27
OOC–CF 3
69.0 125.1
350
Ecgonine methyl ester-d3, trifluoroacetyl derivative
298.1
267.1
157.1
0 50
100
150
Relative Int. (%)
100
200 m/z 182.1
250
CH 3 COOCH 3 N H
82.0
50
H
94.0
300
I-15-C-i
Ecgonine methyl ester, pentafluoropropionyl derivative
OOC–C 2 F 5
C13H16F5NO4 MW: 345.26
119.0
69.0
350
345.0 314.0
0 50
100
150
Relative Int. (%)
100
200
250
185.1 N
CD 3 COOCH 3 H
85.0
50
H
97.0
I-15-C-ii
350
400
Ecgonine methyl ester-d3, pentafluoropropionyl derivative
OOC–C 2 F 5
118.9
69.0
300
C13H13D3F5NO4 MW: 348.28 317.0
348.1
0 50
100
150
200
250 m/z
Appendix One — Mass Spectra
© 2010 by Taylor and Francis Group, LLC
300
350
400
117
Figure I-15. (Continued)
Relative Int. (%)
100
182.1 82.0
50 69.0
H
94.0 119.0
Ecgonine methyl ester, heptafluorobutyryl derivative
I-15-D-i
CH 3 COOCH 3 N H
C14H16F7NO4 MW: 395.27
OOC–C 3 F 7
395.1
364.0
168.9
0 50
100
150
200
Relative Int. (%)
100
250
300
350
400
185.1 CD 3 COOCH 3 N H
85.0
50 69.0
H
97.1 119.0
I-15-D-ii
450
Ecgonine methyl ester-d3, heptafluorobutyryl derivative C14H13D3F7NO4 MW: 398.29
OOC–C 3 F 7
398.1
367.0
169.0
0 50
100
Relative Int. (%)
100
150
200
250 m/z
82.0 N
96.1
300
CH 3 COOCH 3 H
H
50 73.0
350
450
Ecgonine methyl ester, trimethylsilyl derivative
I-15-E-i
OSi(CH3)3
C13H25NO3Si MW: 271.43
182.1
155.0
400
271.1
240.1
0 50
100
Relative Int. (%)
100
150
200
85.1 99.1
N
CD 3 COOCH 3 H
50
H
73.0
250
I-15-E-ii
Ecgonine methyl ester-d3, trimethylsilyl derivative C13H22D3NO3Si MW: 274.45
OSi(CH3)3
185.1
158.1
300
243.1
274.1
0 50
100
150
200
250
300
m/z Relative Int. (%)
100
82.1 N
50
CH 3 COOCH 3 H
96.1
H
I-15-F-i
OSi(CH3)2C(CH3)3
182.1
C16H31NO3Si MW: 313.51
256.1
155.0
73.0
Ecgonine methyl ester, t-butyldimethylsilyl derivative
282.1
313.1
0 50
100
Relative Int. (%)
100
150
200
85.1 N
50
250
CD 3 COOCH 3 H
99.1
H
I-15-F-ii
C16H28D3NO3Si MW: 316.53
259.1
158.1
350
Ecgonine methyl ester-d3, t-butyldimethylsilyl derivative
OSi(CH3)2C(CH3)3
185.1 73.0
300
285.1
316.1
0 50
100
150
200 m/z
Figure I — Stimulants
© 2010 by Taylor and Francis Group, LLC
250
300
350
118
Figure I-16. Mass spectra of benzoylecgonine and its deuterated analog (benzoylecgonine-d3,-d8): (A) methylderivatized; (B) ethyl-derivatized; (C) propyl-derivatized; (D) butyl-derivatized; (E) PFPoxy-derivatized; (F) HFPoxyderivatized; (G) TMS-derivatized; (H) t-BDMS-derivatized.
Relative Int. (%)
100
82.0
I-16-A-i
182.1 N
CH 3
H O H
50 105.0
77.0
COOCH3
Benzoylecgonine (CAS NO.519-09-5) methyl derivative C17H21NO4 MW: 303.35
O C
303.1
198.1
122.0
272.0
0 50
100
Relative Int. (%)
100
150
85.0
I-16-A-ii
200
250
N
CD 3
105.0 123.0
COOCH3 H O H
350
Benzoylecgonine-d3, methyl derivative
185.1
50 77.0
300
O
C17H18D3NO4 MW: 306.37
C
306.1 275.1
201.1
0 50
100
Relative Int. (%)
100
150
I-16-A-iii
85.0
200
250
N
CD 3
50 82.0
300
185.1
110.0
COOCH3 OD H O C H D
Benzoylecgonine-d8, methyl derivative
D
C17H13D8NO4 MW: 311.40 311.1
D D
280.1
201.1
125.1
350
0 50
100
150
Relative Int. (%)
100
I-16-B-i
82.0
200 m/z
250
196.1 N
CH 3
C18H23NO4 MW: 317.38
C
H
105.0 122.0
317.1
272.1
212.1
166.0
350
Benzoylecgonine, ethyl derivative
COOC 2H 5 O H O
50 77.0
300
0 50
100
Relative Int. (%)
100
150
85.1
I-16-B-ii
200
250
199.1 N
CD 3
C18H20D3NO4 MW: 320.40 320.1
C
H
105.0 125.1
275.1
215.1
169.1
350
Benzoylecgonine-d3, ethyl derivative
COOC 2H 5 O H
O
50 77.0
300
0 50
100
Relative Int. (%)
100
85.1
150
I-16-B-iii
200
250 CD 3
COOC 2H 5 OD H
O
50 110.0 125.1
D
C18H15D8NO4 MW: 325.43 325.1
D
C
H
D
350
Benzoylecgonine-d8, ethyl derivative
199.1 N
82.1
300
D
280.1
215.1
169.1
0 50
100
150
200 m/z
Appendix One — Mass Spectra
© 2010 by Taylor and Francis Group, LLC
250
300
350
119
Figure I-16. (Continued)
Relative Int. (%)
100 82.1 N
105.1 77.1
Benzoylecgonine, propyl derivative
I-16-C-i
O
H O H
50
210.2
COOC 3H 7
CH 3
C19H25NO4 MW: 331.41
C
272.2
226.2
122.1
331.2
0 50
100
Relative Int. (%)
100
150
200
85.1 N
300
350
Benzoylecgonine-d3, propyl derivative
I-16-C-ii
O
H O H
105.1
77.1
213.2
COOC 3H 7
CD 3
50
250
C19H22D3NO4 MW: 334.39
C
275.2
334.2
229.2
125.1
0 50
100
Relative Int. (%)
100
150
200
250 213.2
85.1 N
CD 3
50 110.1 82.1
COOC 3H 7 OD H O C H D
300
I-16-C-iii
350
Benzoylecgonine-d8, propyl derivative
D
C19H17D8NO4 MW: 339.35
D D
339.3
280.2
229.2
125.1
0 50
100
Relative Int. (%)
100
150
82.0
50
O
100
350
Benzoylecgonine, butyl derivative
I-16-D-i
C20H27NO4 MW: 345.43
C
240.1
122.0
345.1
272.1
166.0
0 150
100 Relative Int. (%)
300
H
77.0
200
250 227.1
CD 3 COOC 4H 9 N O H
85.1
O
50
250
224.1
CH 3 COOC 4H 9 N O H
105.0
50
200 m/z
300
I-16-D-ii
C20H24D3NO4 MW: 348.45
77.0 125.1
400
Benzoylecgonine-d3, butyl derivative
C
H
105.0
350
243.1
169.0
348.1
275.1
0 50
100
Relative Int. (%)
100
150
N
CD 3
110.0 82.1 125.1
100
COOC 4H 9 OD H O C H D
150
I-16-D-iii
350
400
Benzoylecgonine-d8, butyl derivative C20H19D8NO4 MW: 353.48
D D
243.1
200
250 m/z
Figure I — Stimulants
© 2010 by Taylor and Francis Group, LLC
300
D
169.0
0 50
250 227.1
85.1
50
200
280.1
300
353.2
350
400
120
Figure I-16. (Continued)
Relative Int. (%)
100
CH 3 COOCH 2C 2F 5 N O H
82.1
50
Benzoylecgonine, pentafluoro-1-propoxy derivative
300.2
I-16-E-i
O
C19H20F5NO4 MW: 421.36 421.2
C
H
105.1
272.2
77.1
316.1
0 50
100
150
200
250
300
Relative Int. (%)
100
350
CD 3 COOCH 2C 2F 5 N O H
85.1
50
O
C19H17D3F5NO4 MW: 424.38
C
H
105.1
77.1
450
Benzoylecgonine-d3, pentafluoro-1-propoxy derivative
303.2
I-16-E-ii
400
275.2
424.2
319.1
0 50
100
150
200
250
300
Relative Int. (%)
100
350 303.2
85.1
I-16-E-iii
N
CD 3
50 110.1
COOCH 2C 2F 5 D OD H D O C H D D
82.1
280.2
400
450
Benzoylecgonine-d8, pentafluoro-1-propoxy derivative C19H12D8F5NO4 MW: 429.41 429.2
319.1
0 50
100
Relative Int. (%)
100
150
200
I-16-F-i N
CH 3
50
105.0
77.0
50
100
318.0
334.0
200
250
300
Relative Int. (%)
100 N
H O H
105.0
77.0
151.0
O
275.1
C19H19F6NO4 MW: 439.35 439.1
400
450
C19H16D3F6NO4 MW: 442.37 442.1
C
167.0
450
Benzoylecgonine-d3, hexafluoro-2-propoxy derivative
COOCH(CF3)2
CD 3
85.1
50
350 321.1
I-16-F-ii
400
Benzoylecgonine, hexafluoro-2-propoxy derivative
C
272.1
150
350
O
164.0
148.0
0
300
COOCH(CF3)2 H O H
82.0
250 m/z
337.0
0 50
100
Relative Int. (%)
100
150
200
I-16-F-iii N
50
CD 3
85.1 110.0 151.0
82.0
250
300
400
450
Benzoylecgonine-d8, hexafluoro-2-propoxy derivative
321.1
COOCH(CF3)2 D OD H O C D H D D
167.0
350
C19H11D8F6NO4 MW: 447.40 447.1 280.1
337.1
0 50
100
150
200
250 m/z
Appendix One — Mass Spectra
© 2010 by Taylor and Francis Group, LLC
300
350
400
450
121
Figure I-16. (Continued)
Relative Int. (%)
100
82.1 CH 3
N
COOSi(CH3)3 O H O
50
C19H27NO4Si MW: 361.51 361.2
C
H
105.1 73.1
Benzoylecgonine, trimethylsilyl derivative
I-16-G-i
240.2
256.2
122.1
346.2
0 50
100
Relative Int. (%)
100
150
200
85.1 CD 3
N
105.1 73.1
COOSi(CH3)3 H O H
50
250
300
400
Benzoylecgonine-d3, trimethylsilyl derivative
I-16-G-ii
243.2
O
350
C19H24D3NO4Si MW: 364.53
C
364.3
125.1
259.2
349.2
0 50
100
Relative Int. (%)
100
150
200
250
300
350
85.1 N
COOSi(CH3)3 D OD H O C D H D D
CD 3
50 110.1 73.1
Benzoylecgonine-d8, trimethylsilyl derivative
I-16-G-iii
243.2
400
C19H19D8NO4Si MW: 369.56
125.2
369.3
259.2
354.3
0 50
100
150
200
250
300
350
400
m/z Relative Int. (%)
100
82.0 N
50
105.0 73.0
CH 3 COOSi(CH3)2C(CH3)3 O H O C H
Benzoylecgonine, t-butyldimethylsilyl derivative
I-16-H-i
346.1 403.2
204.0
122.0
179.0
C22H33NO4Si MW: 403.59
282.1
298.1
0 50 Relative Int. (%)
100
100
150
200
85.1 N
CD 3
105.0 73.0
COOSi(CH3)2C(CH3)3 H O H
50
179.0
125.1
250
O
C
300
350
400
450
Benzoylecgonine-d3, t-butyldimethylsilyl derivative
I-16-H-ii 285.1
349.1 207.0
C22H30D3NO4Si MW: 406.61 406.2
301.1
0 50 Relative Int. (%)
100
100
150
200
85.1 N
50
110.0 73.0
125.1
CD 3
250
COOSi(CH3)2C(CH3)3 D OD H D O C H D D
184.0
212.1
300
350
I-16-H-iii 285.1
400
450
Benzoylecgonine-d8, t-butyldimethylsilyl derivative 354.1
C22H25D8NO4Si MW: 411.64 411.2
301.1
0 50
100
150
200
250 m/z
Figure I — Stimulants
© 2010 by Taylor and Francis Group, LLC
300
350
400
450
122
Figure I-17. Mass spectra of ecgonine and its deuterated analogs (ecgonine-d3); (A) [TMS]2-underivatized; (B) [tBDMS]2-underivatized; (C) HFPoxy/TFA-derivatized; (D) PFPoxy/PFP-derivatized; (E) HFPoxy/HFB-derivatized.
Relative Int. (%)
100
83.1
I-17-A-i
CH
N
96.1
50
Ecgonine, di-trimethylsilyl derivative
3 COOSi(CH3)3
H OSi(CH3)3
73.0
C15H31NO3Si2 MW: 329.58
H
147.0
314.1
212.1
329.1
0 50
100
Relative Int. (%)
100
150
85.1
200
I-17-A-ii
CD
N
99.1
50
250
300
350
Ecgonine-d3, di-trimethylsilyl derivative
3 COOSi(CH3)3 H OSi(CH3)3
C15H28D3NO3Si2 MW: 332.60
H
73.0
215.1
147.0
332.1
317.1
0 50
100
Relative Int. (%)
100
150
200 m/z
250
300
82.1
I-17-B-i 50
73.0
CH
N
Ecgonine, di-t-butyldimethylsilyl derivative
3 COOSi(CH3)2C(CH3)3
H OSi(CH3)2C(CH3)3
356.2
H
96.1
350
275.1
C21H43NO3Si2 MW: 413.74 398.2 413.2
0 50
100
Relative Int. (%)
100
150
200
250
300
350
400
85.1 CD
I-17-B-ii 50
73.0
N
Ecgonine-d3, di-t-butyldimethylsilyl derivative
3 COOSi(CH3)2C(CH3)3
H OSi(CH3)2C(CH3)3
359.2
H
99.1
450
275.1
C21H40D3NO3Si2 MW: 416.76 401.2 416.3
0 50
Relative Int. (%)
100
100
150
250 m/z
300
350
318.0
I-17-C-i
CH
N
50
200
82.0
3 COOCH(CF3)2 H OOC–CF 3
400
450
Ecgonine (CAS NO.481-37-8), hexafluoro-2-propoxy/ trifluoroacetyl derivative C14H14F9NO4 MW: 447.24
H
94.0
431.0
264.0
0 50
100
150
200
250
300
Relative Int. (%)
100
I-17-C-ii
CD
N
50
350 321.0
85.1
3 COOCH(CF3)2
H OOC–CF 3
400
450
500
Ecgonine-d3, hexafluoro-2propoxy/trifluoroacetyl derivative C14H11D3F9NO4 MW: 450.22
H
97.1
434.0
267.0
0 50
100
150
200
250
300 m/z
Appendix One — Mass Spectra
© 2010 by Taylor and Francis Group, LLC
350
400
450
500
123
Figure I-17. (Continued)
Relative Int. (%)
100 CH
N
50
Ecgonine, pentafluoro-1propoxy/pentafluoropropionyl derivative
300.0
I-17-D-i
3 COOCH 2 C 2 F 5 H OOC–C 2 F 5
82.0
C15H17F10NO4 MW: 481.28
H
94.0
314.0
119.0
463.0
0 50
100
150
200
250
300
Relative Int. (%)
100
350
400
I-17-D-ii 50
CD
N
3 COOCH 2C 2F 5
H OOC–C 2 F 5
85.1
450
C15H14D3F10NO4 MW: 484.30 466.0
H
97.1
317.0
119.0
500
Ecgonine-d3, pentafluoro-1propoxy/pentafluoropropionyl derivative
303.1
0 50
100
150
200
250
300
350
400
450
500
m/z Relative Int. (%)
100
318.0
I-17-E-i
CH
N
3 COOCH(CF3)2
H OOC–C 3 F 7
50 82.0
C16H14F13NO4 MW: 547.27
H
94.0
364.0
298.0
0 50
100
150
200
250
300
100 Relative Int. (%)
Ecgonine, hexafluoro-2propoxy/heptafluorobutyryl derivative
350
400
531.0
450
CD
N
50
3 COOCH(CF3)2
H OOC–C 3 F 7
600
C16H11D3F13NO4 MW: 550.28
H
85.1
550
Ecgonine-d3, hexafluoro-2propoxy/heptafluorobutyryl derivative
321.0
I-17-E-ii
500
97.0
367.0
301.0
534.1
0 50
100
150
200
250
300
350 m/z
Figure I — Stimulants
© 2010 by Taylor and Francis Group, LLC
400
450
500
550
600
124
Figure I-18. Mass spectra of anhydroecgonine methyl ester, and its deuterated analog (anhydroecgoninemethyl ester-d3).
Relative Int. (%)
100
152.0
I-18-i
CH 3 COOCH 3
N
Anhydroecgonine methyl ester (CAS NO.43021-26-7) C10H15NO2 MW: 181.23
50 181.1 82.1 57.1
94.0
122.1
166.0
138.0
0 50 Relative Int. (%)
100
100
150
200 155.0
I-18-ii N
Anhydroecgonine methyl ester-d3
CD 3 COOCH 3
C10H12D3NO2 MW: 184.25
50 184.1 85.1 60.1
97.1
125.1
141.0
169.1
0 50
100
150 m/z
Appendix One — Mass Spectra
© 2010 by Taylor and Francis Group, LLC
200
125
Figure I-19. Mass spectra of caffeine, and its deuterated analog (caffeine-13C3).
Relative Int. (%)
100 H 3C
109.1
50 55.1
67.1
194.1
CH 3
O
I-19-i
Caffeine (CAS NO.58-08-2)
N
N
N
O
C8H10N4O2 MW: 194.19
N
CH 3
82.1
165.1
136.0
0 50
100
150
Relative Int. (%)
100
O
I-19-ii
H 3 13 C
50
111.1 57.1
68.1
84.1
13
200
N
N 13
Caffeine-13C3 13C
C5
N
N
O
250
197.1
CH 3
3H10N4O2 MW: 197.17
CH 3
138.1
168.1
0 50
100
150 m/z
Figure I — Stimulants
© 2010 by Taylor and Francis Group, LLC
200
250
126
Figure I-20. Mass spectra of methylphenidate, and its deuterated analog (methylphenidate-d3): (A) underivatized; (B) TFA-derivatized; (C) PFP-derivatized; (D) HFB-derivatized; (E) 4-CB-derivatized; (F) TMS-derivatized.
Relative Int. (%)
100
84.1
I-20-A-i
Methylphenidate (CAS NO.113-45-1) C14H19NO2 MW: 233.30
H N
50
CH C O CH 3
O
91.1
56.1
115.0
150.1
0 50
100
Relative Int. (%)
100
I-20-A-ii
150
200
250 Methylphenidate-d3
84.1
C14H16D3NO2 MW: 236.32
H
50
N
91.1
56.1
CH C O CD 3 O
115.1
153.1
0 50
100
150 m/z
Relative Int. (%)
100
200
F 3COC N
50 67.1
Methylphenidate, trifluoroacetyl derivative
180.1
I-20-B-i
C16H18F3NO3 MW: 329.31
CH C O CH 3 O
150.0
126.0
91.1
250
0 50
100
150
200
Relative Int. (%)
100
250
300
Methylphenidate-d3, trifluoroacetyl derivative
180.0
I-20-B-ii
F 3COC N
50
C16H15D3F3NO3 MW: 332.32
CH C O CD 3 O
67.1
91.1
350
153.1
126.0
0 50
100
150
200 m/z
Relative Int. (%)
100
300
F 5 C 2 OC CH C O CH 3 O
N
50 67.0
50
150.0
118.9
100
C17H18F5NO3 MW: 379.32
175.9
150
200
250
100
300
230.0
I-20-C-ii
N
67.0
CH C O CD 3 O
153.0
118.9
350
400
Methylphenidate-d3, pentafluoropropionyl derivative
F 5 C 2 OC
50
350
Methylphenidate, pentafluoropropionyl derivative
230.0
I-20-C-i
0
Relative Int. (%)
250
C17H15D3F5NO3 MW: 382.34
175.9
0 50
100
150
200
250 m/z
Appendix One — Mass Spectra
© 2010 by Taylor and Francis Group, LLC
300
350
400
127
Figure I-20. (Continued)
Relative Int. (%)
100
Methylphenidate, heptafluorobutyryl derivative
280.0
I-20-D-i
F 7 C 3 OC CH C O CH 3 O
N
50 55.1
91.0
115.0
150.0
169.0
C18H18F7NO3 MW: 429.33
226.0
0 50
100
150
200
250
300
Relative Int. (%)
100
350
400
280.0
I-20-D-ii
CH C O CD 3 O
N
55.1
91.1
115.0
Methylphenidate-d3, heptafluorobutyryl derivative
F 7 C 3 OC
50 153.1
169.0
450
C18H15D3F7NO3 MW: 432.35
226.0
0 50
100
150
200
250 m/z
300
Relative Int. (%)
100
334.2
N
100
150
250
300
350 334.2
N
91.1
C O CD 3 O
100
150
400
I-20-E-ii
250
100
300 m/z
I-20-F-i
350
400
3(H3C)Si N
84.1
500
550
C17H27NO2Si MW: 305.49
290.1
150
100 Relative Int. (%)
450
CH C O CH 3 O
0 100
Methylphenidate-d3, 4-carboethoxyhexafluorobutyryl derivative
Methylphenidate, trimethylsilyl derivative
73.1
50
550
441.1
156.1
50
500
C21H20D3F6NO5 MW: 486.42
306.1
200
450
288.1
195.0
0 50
CH
Methylphenidate, 4-carboethoxyhexafluorobutyryl derivative
438.1
H 5C2OOC3(F2C)OC
50
450
C21H23F6NO5 MW: 483.40
306.1
200
400
288.1
195.0
91.1
50
CH C O CH 3 O
100 Relative Int. (%)
I-20-E-i
H 5C2OOC3(F2C)OC
50
0
Relative Int. (%)
350
200
250
156.1
I-20-F-ii
350
Methylphenidate-d3, trimethylsilyl derivative 3(H3C)Si N
50
300
C17H24D3NO2Si MW: 308.51
CH C O CD 3 O
73.1 84.1
293.1
0 50
100
150
200 m/z
Figure I — Stimulants
© 2010 by Taylor and Francis Group, LLC
250
300
350
128
Figure I-21. Mass spectra of ritalinic acid, and its deuterated analog (ritalinic acid-d5): (A) 4-CB-derivatized; (B) [TMS]2-derivatized; (C) t-BDMS-derivatized. Relative Int. (%)
100
334.1
I-21-A-i CH–C–OH
50
H 5C 2OOC(F2C)3OC– N
O
50
100
150
200
100
I-21-A-ii
D D
50
50
100
150
300
452.1
350
400
334.1
450
200
O
C20H16D5F6NO5 MW: 474.41
288.0 306.1
250
300
500
Ritalinic acid-d5, 4-carboethoxyhexafluorobutyryl derivative
D
D CH–C–OH
H 5C 2OOC(F2C)3OC– N
96.1
0
250 D
C20H21F6NO5 MW: 469.37
288.0 306.1
91.1
0
Relative Int. (%)
Ritalinic acid (CAS NO.19395-41-6) 4-carboethoxyhexafluorobutyryl derivative
457.2
350
400
450
500
m/z Relative int. (%)
100
Ritalinic acid, di-trimethylsilyl derivative
156.1
I-21-B-i
50
O
(H3C)3Si– N
84.1
265.0
0 50
100
150
100 Relative int. (%)
C19H33NO2Si2 MW: 363.64
CH–C–OSi(CH3)3
73.1
200
250
300
350
Ritalinic acid-d5, di-trimethylsilyl derivative
156.1
I-21-B-ii
D
50
D
73.1
D
D
O
270.1
0 50
100
150
C19H28D5NO2Si2 MW: 368.67
D CH–C–OSi(CH3)3
(H3C)3Si– N
84.1
200
400
250
300
350
400
m/z Relative Int. (%)
100
193.1
I-21-C-i
Ritalinic acid, t-butyldimethylsilyl derivative CH–C–OH
50
75.1
(H3C)3C(H3C)2Si– N
91.1
137.0
C19H31NO2Si MW: 333.54
O
165.1
0 50
100
150
200
Relative Int. (%)
100
198.1
I-21-C-ii 50
250 D D
75.1 96.1
142.1
300 D
Ritalinic acid-d5, t-butyldimethylsilyl derivative
D CH–C–OH
(H3C)3C(H3C)2Si– N
170.1
D
350
C19H26D5NO2Si MW: 338.57
O
0 50
100
150
200 m/z
Appendix One — Mass Spectra
© 2010 by Taylor and Francis Group, LLC
250
300
350
129
Summary of Drugs, Isotopic Analogs, and Chemical Derivatization Groups Included in Figure II (Opioids) Compound
Isotopic analog
Chemical derivatization group (no. of spectra)
Figure #
Heroin
d3, d9
None (3)
II-1
6-Acetylmorphine
d3, d6
None, acetyl, TFA, propionyl, PFP, HFB, TMS, t-BDMS (24)
II-2
Morphine
d3, d6
Ethyl, propyl, butyl, [acetyl]2, [TFA]2, propionyl, [propionyl]2, [PFP]2, [HFB]2, [TMS]2, t-BDMS, [t-BDMS]2, ethyl/acetyl, ethyl/TMS, propyl/TMS, propyl/t-BDMS, butyl/TMS, butyl/t-BDMS, acetyl/TMS, acetyl/t-BDMS, propionyl/TMS (63)
II-3
Hydromorphone
d3, d6
Acetyl, [acetyl]2, [TFA]2, propionyl, PFP, [PFP]2, HFB, [HFB]2, TMS, [TMS]2, t-BDMS, [t-BDMS]2, MA/ethyl, MA/acetyl, MA/propionyl, MA/TMS, MA/t-BDMS, HA/[TMS]2 (54)
II-4
Oxymorphone
d3
[acetyl]2, [acetyl]3, [TFA]2, propionyl, [propionyl]2, [propionyl]3, [PFP]2, [HFB]2, [TMS]2, [TMS]3, t-BDMS, MA/ethyl, MA/acetyl, MA/[acetyl]2, MA/propionyl, MA/[HFB]2, MA/ [TMS]2, MA/[t-BDMS]2, MA/ethyl/propionyl, MA/ethyl/TMS, MA/ethyl/t-BDMS, MA/acetyl/ TMS, MA/propionyl/TMS, HA/[TMS]3, HA/[ethyl]2/propionyl, HA/[ethyl]2/TMS (52)
II-5
6-Acetylcodeine
d3
None (2)
II-6
13C
Codeine
d3, d6,
None, acetyl, TFA, propionyl, PFP, HFB, TMS, t-BDMS (32)
II-7
Hydrocodone
d3, d6
1d3
None, ethyl, acetyl, TMS, t-BDMS, MA, HA/TMS (21)
II-8
Dihydrocodeine
d3, d6
None, acetyl, TFA, propionyl, PFP, HFB, TMS, t-BDMS (24)
II-9
Oxycodone
d3, d6
None, acetyl, [acetyl]2, propionyl, TMS, [TMS]2, t-BDMS, [t-BDMS]2, MA, MA/propionyl, MA/TMS, HA/[propionyl]2, HA/[TMS]2, HA/ethyl/propionyl (42)
II-10
Noroxycodone
d3
None, [acetyl]2, [TFA]3, propionyl, [PFP]2, [HFB]2, [TMS]2, [TMS]3, MA/ethyl, MA/acetyl, MA/[TFA]2, MA/propionyl, MA/PFP, MA/[HFB]2, MA/[TMS]2, MA/t-BDMS, MA/ethyl/ propionyl, MA/ethyl/TMS, MA/ethyl/t-BDMS, MA/acetyl/TMS, MA/propionyl/TMS, HA/[ethyl]2/TMS (44)
II-11
Buprenorphine
d4
Methyl, ethyl, acetyl, MBTFA, PFP, HFB, TMS, [TMS]2, t-BDMS (18)
II-12
Norbuprenorphine
d3
[Methyl]2, [ethyl]2, [acetyl]2, [MBTFA]2, [PFP]2, [HFB]2, [TMS]2, [TMS]3, t-BDMS (18)
II-13
Fentanyl
d5
None (2)
II-14
Norfentanyl
d5
None, acetyl, TCA, TFA, PFP, HFB, 4-CB, TMS, t-BDMS (18)
II-15
Methadone
d3, d9
None (3)
II-16
EDDP
d3
None (2)
II-17
Propoxyphene
d5, d7, d11
None (4)
II-18
Norpropoxyphene
d5
None (2)
II-19
Meperidine
d4
None (2)
II-20
Normeperidine
d4
None, ethyl, propyl, butyl, acetyl, TCA, TFA, PFP, HFB, 4-CB, TMS, t-BDMS (24)
II-21
Total no. of mass spectra: 454
Figure II — Opioids
© 2010 by Taylor and Francis Group, LLC
131
Appendix One — Figure II Mass Spectra of Commonly Abused Drugs and Their Isotopically Labeled Analogs in Various Derivatization Forms — Opioids Figure II-1. Mass spectra of heroin and its deuterated analogs (heroin-d3, -d9) ......................................................................... 133 Figure II-2. Mass spectra of 6-acetylmorphine and its deuterated analogs (6-acetylmorphine-d3, -d6): (A) underivatized; (B) acetyl-derivatized; (C) TFA-derivatized; (D) propionyl-derivatized; (E) PFP-derivatized; (F) HFB-derivatized; (G); (H) TMS-derivatized; (I) t-BDMS-derivatized ............................................................................................................................ 134 Figure II-3. Mass spectra of morphine and its deuterated analogs (morphine-d3, -d6): (A) ethyl-derivatized; (B) propylderivatized; (C) butyl-derivatized; (D) [acetyl]2-derivatized; (E) [TFA]2-derivatized; (F) propionyl-derivatized; (G) [propionyl]2-derivatized; (H) [PFP]2-derivatized; (I) [HFB]2-derivatized; (J) [TMS]2-derivatized; (K) t-BDMS-derivatized; (L) [t-BDMS]2-derivatized; (M) ethyl/acetyl-derivatized; (N) ethyl/TMS-derivatized; (O) propyl/TMS-derivatized; (P) propyl/t-BDMS-derivatized; (Q) butyl/TMS-derivatized; (R) butyl/t-BDMS-derivatized; (S) acetyl/TMS-derivatized; (T) acetyl/t-BDMS-derivatized; (U) propionyl/TMS-derivatized ...................................................................................................... 138 Figure II-4. Mass spectra of hydromorphone and its deuterated analogs (hydromorphone-d3, -d6): (A) acetyl-derivatized; (B) [acetyl]2-derivatized; (C) [TFA]2-derivatized; (D) propionyl-derivatized; (E) PFP-derivatized; (F) [PFP]2-derivatized; (G) HFB-derivatized (H) [HFB]2-derivatized; (I) TMS-derivatized; (J) [TMS]2-derivatized; (K) t-BDMS-derivatized; (L) [t-BDMS]2-derivatized; (M) MA/ethyl-derivatized; (N) MA/acetyl-derivatized; (O) MA/propionyl-derivatized; (P) MA/ TMS-derivatized; (Q) MA/t-BDMS-derivatized; (R) HA/[TMS]2-derivatized ........................................................................... 149 Figure II-5. Mass spectra of oxymorphone and its deuterated analogs (oxymorphone-d3): (A) [acetyl]2-derivatized; (B) [acetyl]3-derivatized; (C) [TFA]2-derivatized; (D) propionyl-derivatized; (E) [propionyl]2-derivatized; (F) [propionyl]3derivatized; (G) [PFP]2-derivatized; (H) [HFB]2-derivatized; (I) [TMS]2-derivatized; (J) [TMS]3-derivatized; (K) t-BDMSderivatized; (L) MA/ethyl-derivatized; (M) MA/acetyl-derivatized; (N) MA/[acetyl]2-derivatized; (O) MA/propionylderivatized; (P) MA/[HFB]2-derivatized; (Q) MA/[TMS]2-derivatized; (R) MA/[t-BDMS]2-derivatized; (S) MA/ethyl/ propionyl-derivatized; (T) MA/ethyl/TMS-derivatized; (U) MA/ethyl/t-BDMS-derivatized; (V) MA/acetyl/TMS-derivatized; (W) MA/propionyl/TMS; (X) HA/[TMS]3/propionyl-derivatized; (Y) HA/[ethyl]2HA/[ethyl]2/TMS-derivatized; (Z) HA/ [ethyl]2/TMS-derivatized .............................................................................................................................................................. 158 Figure II-6. Mass spectra of 6-acetylcodeine and its deuterated analogs (6-acetylcodeine-d3) ................................................. 167 Figure II-7. Mass spectra of codeine and its deuterated analogs (codeine-d3, -d6, 13C1-d3): (A) underivatized; (B) acetylderivatized; (C) TFA-derivatized; (D) propionyl-derivatized; (E) PFP-derivatized; (F) HFB-derivatized; (G) TMSderivatized; (H) t-BDMS-derivatized. .......................................................................................................................................... 168 Figure II-8. Mass spectra of hydrocodone and its deuterated analogs (hydrocodone-d3, -d6): (A) underivatized; (B) ethylderivatized; (C) acetyl-derivatized; (D) TMS-derivatized; (E) t-BDMS-derivatized; (F) MA-derivatized; (G) HA/TMSderivatized ..................................................................................................................................................................................... 174 Figure II-9. Mass spectra of dihydrocodeine and its deuterated analogs (dihydrocodeine-d3, -d6): (A) underivatizedderivatized; (B) acetyl-derivatized; (C) TFA-derivatized; (D) propionyl-derivatized; (E) PFP-derivatized; (F) HFBderivatized; (G) TMS-derivatized; (H) t-BDMS-derivatized ....................................................................................................... 178 Figure II-10. Mass spectra of oxycodone and its deuterated analogs (oxycodone-d3, -d6): (A) underivatized; (B) acetylderivatized; (C) [acetyl]2-derivatized; (D) propionyl-derivatized; (E) TMS-derivatized; (F) [TMS]2-derivatized; (G) tBDMS-derivatized; (H) [t-BDMS]2-derivatized; (I) MA-derivatized; (J) MA/propionyl-derivatized; (K) MA/TMSderivatized; (L) HA/[propionyl]2-derivatized; (M) HA/[TMS]2-derivatized; (N) HA/ethyl/propionyl-derivatized .................. 182 Figure II-11. Mass spectra of noroxycodone and its deuterated analogs (noroxycodone-d3): (A) underivatized; (B) [acetyl]2-derivatized; (C) [TFA]3-derivatized; (D) propionyl-derivatized; (E) [PFP]2-derivatized; (F) [HFB]2-derivatized; (G) [TMS]2-derivatized; (H) [TMS]3-derivatized; (I) MA/ethyl-derivatized; (J) MA/acetyl-derivatized; (K) MA/[TFA]2derivatized; (L) MA/propionyl-derivatized; (M) MA/PFP-derivatized; (N) MA/[HFB]2-derivatized; (O) MA/[TMS]2derivatized; (P) MA/t-BDMS-derivatized; (Q) MA/ethyl/propionyl-derivatized; (R) MA/ethyl/TMS-derivatized; (S) MA/ ethyl/t-BDMS-derivatized; (T) MA/acetyl/TMS-derivatized; (U) MA/propionyl/TMS-derivatized; (V) HA/[ethyl]2/TMSderivatized ..................................................................................................................................................................................... 189 Figure II-12. Mass spectra of buprenorphine and its deuterated analogs (buprenorphine-d4): (A) methyl-derivatized; (B) ethyl-derivatized; (C) acetyl-derivatized; (D) MBTFA-derivatized; (E)PFP-derivatized; (F) HFB-derivatized; (G) TMSderivatized; (H) [TMS]2-derivatized; (I) t-BDMS-derivatized ................................................................................................... 197 Figure II-13. Mass spectra of norbuprenorphine and its deuterated analogs (norbuprenorphine-d3): (A) [methyl]2derivatized; (B) [ethyl]2-derivatized; (C) [acetyl]2-derivatized; (D) [MBTFA]2-derivatized; (E) [PFP]2-derivatized; (F) [HFB]2-derivatized; (G) [TMS]2-derivatized; (H) [TMS]3-derivatized; (I) t-BDMS-derivatized ............................................. 200 Figure II-14. Mass spectra of fentanyl and its deuterated analogs (fentanyl-d5) ........................................................................ 203 Figure II — Opioids
© 2010 by Taylor and Francis Group, LLC
132
Figure II-15. Mass spectra of norfentanyl and its deuterated analogs (norfentanyl-d5): (A) underivatized; (B) acetylderivatized; (C) TCA-derivatized; (D) TFA-derivatized; (E) PFP-derivatized; (F) HFB-derivatized; (G) 4-CB-derivatized; (H) TMS-derivatized; (I) t-BDMS-derivatized ............................................................................................................................ 204 Figure II-16. Mass spectra of methadone and its deuterated analogs (methadone-d3, -d9) ........................................................ 207 Figure II-17. Mass spectra of EDDP and its deuterated analogs (EDDP-d3) ............................................................................. 208 Figure II-18. Mass spectra of propoxyphene and its deuterated analogs (propoxyphene-d5, -d7, -d11) ..................................... 209 Figure II-19. Mass spectra of norpropoxyphene and its deuterated analogs (norpropoxyphene-d5) .......................................... 210 Figure II-20. Mass spectra of meperidine and its deuterated analogs (meperidine-d4) .............................................................. 211 Figure II-21. Mass spectra of normeperidine and its deuterated analogs (normeperidine-d4): (A) underivatized-derivatized; (B) ethyl-derivatized; (C) propyl-derivatized; (D) butyl-derivatizedacetyl; (E) acetyl-derivatized; (F) TCA-derivatized; (G) TFA-derivatized; (H) PFP-derivatized; (I) HFB-derivatized; (J) 4-CB-derivatized; (K) TMS-derivatized; (L) t-BDMSderivatized ..................................................................................................................................................................................... 212
Appendix One — Mass Spectra
© 2010 by Taylor and Francis Group, LLC
133
Figure II-1. Mass spectra of heroin and its deuterated analogs (heroin-d3, -d9). Relative Int. (%)
100
Heroin (CAS NO. 561-27-3)
H3C-COO O
C21H23NO5 MW: 369.41
50
81.0
-
204.0
310.1
215.0
162.0
146.0
369.1 268.1
N CH 3
H3C-COO
124.0
327.1
II-1-i
284.1
0 50 Relative Int. (%)
100
100
150
Heroin-d3
H3C-COO
C21H20D3NO5 MW: 372.43
50
200
127.0
-
N CD 3
207.0
350
400
330.1 372.1 271.1
313.1
218.0
165.0
149.0
300
II-1-ii
O H3C-COO
81.0
250
287.1
0 50 Relative Int. (%)
100
100
150
200
D3C-COO
Heroin-d9 C21H14D9NO5 MW: 378.47
II-1-iii
O
50
-
128.1 149.1
300
350
400
334.2 272.1
378.2
316.2
N CD 3
D3C-COO
81.0
250
210.1
219.1
166.1
288.1
0 50
100
150
200
250 m/z
Figure II — Opioids
© 2010 by Taylor and Francis Group, LLC
300
350
400
134
Figure II-2. Mass spectra of 6-acetylmorphine and its deuterated analogs (6-acetylmorphine-d3, -d6): (A) underivatized; (B) acetyl-derivatized; (C) TFA-derivatized; (D) propionyl-derivatized; (E) PFP-derivatized; (F) HFB-derivatized; (G) TMS-derivatized; (H) t-BDMS-derivatized. Relative Int. (%)
100
HO
6-Acetylmorphine (CAS NO. 2784-73-8)
O
C19H21NO4 MW: 327.37
50
57.1
H 3C–COO
146.1
124.1
81.0
174.1
268.1
II-2-A-i
327.1
-
N CH 3
215.1
211.0
0 50 Relative Int. (%)
100
100
150
200
6-Acetylmorphine-d3 (CAS NO. 136765-25-8)
73.1
300
HO O
C19H18D3NO4 MW: 330.39
50
250
H 3C–COO
207.0
149.1
127.1
97.1
271.1
350 330.1
II-2-A-ii
-
N CD 3
218.1
174.0
0 50 Relative Int. (%)
100
100
150
200
O
C19H15D6NO4 MW: 333.41
D 3C–COO
149.1 73.1
300 271.1
HO
6-Acetylmorphine-d6 (CAS NO. 152477-90-2)
50
250
128.1
97.1
174.0
350
II-2-A-iii
333.2
-
N CD 3
218.1
210.1
0 50
Relative Int. (%)
100
100
6-Acetylmorphine, acetyl derivative
81.1
200 m/z
250
300
327.1
H 3C–COO
268.1
O
C21H23NO5 MW: 369.41
50
150
162.1
124.1 146.1
II-2-B-i 369.2
310.1
-
N CH 3
H 3C–COO
350
215.1
204.1
0 50 Relative Int. (%)
100
100
150
6-Acetylmorphine-d3, acetyl derivative C21H20D3NO5 MW: 372.43
50
81.1
200
H 3C–COO
149.1
300
350 330.2
H 3C–COO
271.1
O
127.1
250
-
N CD 3
165.1 207.1
II-2-B-ii
400
372.2
313.1 218.1
0 50 Relative Int. (%)
100
100
150
6-Acetylmorphine-d6, acetyl derivative
81.1
300
H 3C–COO
149.1
350
-
N CD 3
210.1
400
II-2-B-iii
271.1
D 3C–COO
128.1
250
333.2
O
C21H17D6NO5 MW: 375.45
50
200
375.2 313.2
218.1
166.1
0 50
100
150
200
250 m/z
Appendix One — Mass Spectra
© 2010 by Taylor and Francis Group, LLC
300
350
400
135
Figure II-2. (Continued) Relative Int. (%)
100
6-Acetylmorphine, trifluoroacetyl derivative
F 3C–COO O
C21H20F3NO5 MW: 423.38
50
II-2-C-i
423.1
-
N CH 3
H 3C–COO
311.0
204.1 81.1
162.1
124.1
364.1
380.0
0 50 Relative Int. (%)
100
100
150
200
250
6-Acetylmorphine-d3, trifluoroacetyl derivative
II-2-C-ii
O
400
450
367.1 426.1
-
N CD 3
H 3C–COO
207.1 165.1
127.1
81.1
350
F 3C–COO
C21H17D3F3NO5 MW: 426.40
50
300
314.1 383.1
0 50 Relative Int. (%)
100
100
150
200
250
6-Acetylmorphine-d6, trifluoroacetyl derivative
II-2-C-iii
O
450
429.1
-
314.1
166.1
128.1
400 367.1
N CD 3
D 3C–COO
210.1 81.1
350
F 3C–COO
C21H14D6F3NO5 MW: 429.42
50
300
383.1
0 50
Relative Int. (%)
100
100
150
200
6-Acetylmorphine, propionyl derivative
57.1
81.1
300
H 5C 2–COO
-
N CH 3
H 3C–COO
400
450
327.1
268.1
383.1
215.1
204.1
146.1
350
II-2-D-i
O
C22H25NO5 MW: 383.44
50
250 m/z
0 50 Relative Int. (%)
100
100
150
6-Acetylmorphine-d3, propionyl derivative
57.1
250
H 5C 2–COO
-
N CD 3
H 3C–COO
350
400
330.1
386.2
271.1
218.1
207.1 81.1
300
II-2-D-ii
O
C22H22D3NO5 MW: 386.46
50
200
149.1
0 50 Relative Int. (%)
100
100
150
6-Acetylmorphine-d6, propionyl derivative
81.1
300
II-2-D-iii
O
-
N CD 3
D 3C–COO
210.1 57.1
250
H 5C 2–COO
C22H19D6NO5 MW: 389.47
50
200
350
400
333.2
271.1
389.2
218.1
149.1
0 50
100
150
200
250 m/z
Figure II — Opioids
© 2010 by Taylor and Francis Group, LLC
300
350
400
136
Figure II-2. (Continued) Relative Int. (%)
100
6-Acetylmorphine, pentafluoropropionyl derivative
O
C22H20F5NO5 MW: 473.39
50
81.1
II-2-E-i
F 5 C 2 –COO
204.1
119.0
414.1 473.1
-
N CH 3
H 3C–COO
361.0 430.1
162.1
0 50 Relative Int. (%)
100
100
150
200
250
6-Acetylmorphine-d3, pentafluoropropionyl derivative
81.1
350
O
207.1
400
II-2-E-ii
F 5 C 2 –COO
C22H17D3F5NO5 MW: 476.41
50
300
500
417.1 476.1
-
N CD 3
H 3C–COO
364.0
165.1
119.0
450
433.1
0 50 Relative Int. (%)
100
100
150
200
250
6-Acetylmorphine-d6, pentafluoropropionyl derivative
73.1
400
II-2-E-iii
O
210.1
119.0
350
F 5 C 2 –COO
C22H14D6F5NO5 MW: 479.43
50
300
450
479.1
-
N CD 3
D 3C–COO
500
417.1
364.0
166.1
433.1
0 50
100
150
200
250
300
350
400
450
500
m/z Relative Int. (%)
100
6-Acetylmorphine, heptafluorobutyryl derivative
81.1
H 3C–COO
204.1
124.1
II-2-F-i
O
C23H20F7NO5 MW: 523.40
50
464.1
F 7 C 3 –COO
-
N CH 3
523.1 411.0
169.0
480.1
0 50 Relative Int. (%)
100
100
150
200
250
6-Acetylmorphine-d3, heptafluorobutyryl derivative
81.1
127.1
350
O
207.1
H 3C–COO
165.1
400
450
II-2-F-ii
F 7 C 3 –COO
C23H17D3F7NO5 MW: 526.42
50
300
500
550
467.1
526.1
-
N CD 3
414.1 483.1
0 50 Relative Int. (%)
100
100
150
200
250
6-Acetylmorphine-d6, heptafluorobutyryl derivative
81.1
128.1
350
O
210.1
D 3C–COO
400
450
II-2-F-iii
F 7 C 3 –COO
C23H14D6F7NO5 MW: 529.43
50
300
500
550
467.1
529.2
-
N CD 3
414.1
169.0
483.1
0 50
100
150
200
250
300 m/z
350
Appendix One — Mass Spectra
© 2010 by Taylor and Francis Group, LLC
400
450
500
550
137
Figure II-2. (Continued) Relative Int. (%)
100
6-Acetylmorphine, trimethylsilyl derivative
II-2-G-i
O
C22H29NO4Si MW: 399.56
50
399.1
(H3C)3Si–O
H 3C–COO
73.1
287.1 204.1
124.1
340.1
-
N CH 3
266.0
324.1
0 50 Relative Int. (%)
100
100
150
200
6-Acetylmorphine-d3, trimethylsilyl derivative
350
400
450 402.2
343.1
O
-
N CD 3
H 3C–COO
207.1
127.1
300
II-2-G-ii
(H3C)3Si–O
C22H26D3NO4Si MW: 402.57 73.1
50
250
290.1 327.1
266.0
0 50 Relative Int. (%)
100
100
150
200
6-Acetylmorphine-d6, trimethylsilyl derivative
(H3C)3Si–O
D 3C–COO
350
400
450 405.2
343.1
-
N CD 3
290.1 210.1
128.1
300
II-2-G-iii
O
C22H23D6NO4Si MW: 405.59 73.1
50
250
327.1
266.0
0 50
Relative Int. (%)
100
100
150
6-Acetylmorphine, t-butyldimethylsilyl derivative
50
200
250 m/z
450
441.3
-
N CH 3
384.2
267.1
204.1
162.1
400
II-2-H-i
O H 3C–COO
350
342.2
(H3C)3C(H3C)2Si–O
C25H35NO4Si MW: 441.64 73.1
300
324.1
0 50 Relative Int. (%)
100
100
150
6-Acetylmorphine-d3, t-butyldimethylsilyl derivative
50
200
250
300
(H3C)3C(H3C)2Si–O
II-2-H-ii
O
C25H32D3NO4Si MW: 444.65 73.1
H 3C–COO
400
450
500
345.2 444.3
-
N CD 3
387.2
267.1
207.1
165.1
350
327.2
0 50 Relative Int. (%)
100
100
150
6-Acetylmorphine-d6, t-butyldimethylsilyl derivative
200
300
(H3C)3C(H3C)2Si–O
II-2-H-iii
O
C25H29D6NO4Si MW: 447.67 73.1
50
250
D 3C–COO
450
500
447.3
-
267.1
400
346.2
N CD 3
210.1
149.1
350
390.2 327.2
0 50
100
150
200
250
300 m/z
Figure II — Opioids
© 2010 by Taylor and Francis Group, LLC
350
400
450
500
138
Figure II-3. Mass spectra of morphine and its deuterated analogs (morphine-d3, -d6): (A) ethyl-derivatized; (B) propylderivatized; (C) butyl-derivatized; (D) [acetyl]2-derivatized; (E) [TFA]2-derivatized; (F) propionyl-derivatized; (G) [propionyl]2-derivatized; (H) [PFP]2-derivatized; (I) [HFB]2-derivatized; (J) [TMS]2-derivatized; (K) t-BDMSderivatized; (L) [t-BDMS]2-derivatized; (M) ethyl/acetyl-derivatized; (N) ethyl/TMS-derivatized; (O) propyl/TMSderivatized; (P) propyl/t-BDMS-derivatized; (Q) butyl/TMS-derivatized; (R) butyl/t-BDMS-derivatized; (S) acetyl/ TMS-derivatized; (T) acetyl/t-BDMS-derivatized; (U) propionyl/TMS-derivatized. Relative Int. (%)
100
Morphine (CAS NO. 57-27-2), ethyl derivative
H 5 C 2 –O
O
C19H23NO3 MW: 313.39
50 57.1
97.1
HO
162.1
-
N CH 3
214.1
124.1
313.2
II-3-A-i 243.1
256.1
284.1
0 50
100
Relative Int. (%)
100
150
200
Morphine-d3 (CAS NO. 67293-88-3), ethyl derivative
57.1
97.1
300
165.1
HO
127.1
350 316.2
II-3-A-ii
H 5 C 2 –O O
C19H20D3NO3 MW: 316.41
50
250
-
N CD 3
217.1
246.1 256.2
287.2
0 50
100
Relative Int. (%)
100
150
200
Morphine-d6, ethyl derivative
H 5 C 2 –O
DD
O
C19H17D6NO3 57.1 MW: 319.43 97.1
50
250
168.1
HO
300
350 319.2
II-3-A-iii
D
-
N CD 3
220.1
127.1
249.2
256.2
290.2
0 50
100
Relative Int. (%)
100
150
200 m/z
Morphine, propyl derivative
-
N CH 3
214.1
124.1
81.1
59.1
HO
350
II-3-B-i
O
162.1
300
327.2
H 7 C 3 –O
C20H25NO3 MW: 327.42
50
250
284.1 257.1
270.1
310.2
0 50
100
Relative Int. (%)
100
150
200
Morphine-d3, propyl derivative
62.1
HO
127.1
81.1
350
II-3-B-ii
O
165.1
300
330.2
H 7 C 3 –O
C20H22D3NO3 MW: 330.44
50
250
-
N CD 3
217.1
260.2
270.1
287.1
313.2
0 50
100
Relative Int. (%)
100
150
Morphine-d6, propyl derivative
H 7 C 3 –O
O
C20H19D6NO3 MW: 333.45
50 65.1
168.1
HO
250
300
350 333.2
DD
II-3-B-iii
D
-
N CD 3
220.1
128.1
81.1
200
263.2
290.2 270.1
316.2
0 50
© 2010 by Taylor and Francis Group, LLC
100
150
200 m/z Appendix One — Mass Spectra
250
300
350
139
Figure II-3. (Continued) Relative Int. (%)
100
H 9 C 4 –O
Morphine, butyl derivative
O
C21H27NO3 MW: 341.44
50
59.1
81.1
II-3-C-i
162.1
341.2
-
N CH 3
HO
284.1 124.1
214.1
271.1
324.2
0 50 Relative Int. (%)
100
100
150
200
81.1
II-3-C-ii
O
C21H24D3NO3 MW: 344.46 62.1
300
H 9 C 4 –O
Morphine-d3, butyl derivative
50
250
165.1
400
350
400
350
400
344.2
-
N CD 3
HO
127.1
350
287.1
217.1
327.2
274.2
0 50 Relative Int. (%)
100
100
150
200
Morphine-d6, butyl derivative
H 9 C 4 –O
65.1
81.1
DD
168.1
300
II-3-C-iii -
N CD 3
HO
220.1
128.1
347.2
D
O
C21H21D6NO3 MW: 347.48
50
250
277.2
290.2 330.2
0 50
100
150
200
250
300
m/z Relative Int. (%)
100
Morphine, di-acetyl derivative C21H23NO5 MW: 369.41
50
81.1
H 3C–COO
II-3-D-i
O
369.2
268.1
-
310.1
N CH 3
H 3C–COO
327.1
204.1
215.1
146.1
124.1
0 50 Relative Int. (%)
100
100 Morphine-d3, di-acetyl derivative C21H20D3NO5 MW: 372.43
50
81.1
150
200
250
H 3C–COO
II-3-D-ii
O
271.1
-
N CD 3
H 3C–COO
127.1 149.1
300
207.1
350
400
330.2 372.2
313.2
218.1
165.1
0 50 Relative Int. (%)
100
100 Morphine-d6, di-acetyl derivative C21H17D6NO5 MW: 375.45
50
81.1
150
200
H 3C–COO O H 3C–COO
152.1 128.1
DD
250
300
II-3-D-iii
D
274.2
-
N CD 3
210.1
350
400
333.2 375.2
316.2
221.1
168.1
0 50
100
150
200
250 m/z
Figure II — Opioids
© 2010 by Taylor and Francis Group, LLC
300
350
400
140
Figure II-3. (Continued) Relative Int. (%)
100
Morphine, di-trifluoroacetyl derivative
50
O
C21H17F6NO5 MW: 477.35 69.0
364.1
F 3C–COO
II-3-E-i
-
N CH 3
F 3C–COO
477.1 307.0
115.1
0 50
100
Relative Int. (%)
100
150
200
Morphine-d3, di-trifluoroacetyl derivative
50
250
300
350
400 367.1
F 3C–COO O
C21H14D3F6NO5 MW: 480.37 69.0 115.1
450
II-3-E-ii
-
N CD 3
F 3C–COO
500
480.1 307.0
0 50
100
Relative Int. (%)
100
50
0
150
200
250
F 3C–COO
C21H11D6F6NO5 MW: 483.39 69.1 115.1
F 3C–COO
50
100
300
350
400
450
370.1
Morphine-d6, di-trifluoroacetyl derivative
DD
500
II-3-E-iii
D
O
-
N CD 3
483.1 317.1
150
200
250
300
350
400
450
500
m/z Relative Int. (%)
100
Morphine, propionyl derivative C20H23NO4 MW: 341.40
50
O HO
146.1
57.1
81.1
124.1
341.1
268.1
H 5C 2–COO
II-3-F-i
-
N CH 3
215.1
162.1
284.1
0 50
100
Relative Int. (%)
100
150
Morphine-d3, propionyl derivative
200
57.1
81.1
149.1 127.1
350
400
II-3-F-ii
271.1
O HO
300 344.2
H 5C 2–COO
C20H20D3NO4 MW: 344.42
50
250
-
N CD 3
218.1
165.1
287.1
0 50
100
Relative Int. (%)
100
150
Morphine-d6, propionyl derivative
200 H 5C 2–COO
C20H17D6NO4 MW: 347.44
50
O
HO
152.1 57.1
81.1
128.1
250 DD
300
350 347.2
274.2
400
II-3-F-iii
D
-
N CD 3
221.1
168.1
290.1
0 50
100
150
200
250 m/z
Appendix One — Mass Spectra
© 2010 by Taylor and Francis Group, LLC
300
350
400
141
Figure II-3. (Continued) Relative Int. (%)
100
Morphine, di-propionyl derivative
O
C23H27NO5 MW: 397.46
50
341.1
H 5C 2–COO
-
H 5C 2–COO
II-3-G-i
268.1
N CH 3
397.2 324.1
218.1
57.1 81.1
162.1
146.1
0 50 Relative Int. (%)
100
100
150
Morphine-d3, di-propionyl derivative
57.1
250
350
-
H 5C 2–COO
II-3-G-ii 400.2
271.1
N CD 3
450
327.1
221.1
165.1
149.1
400
344.1
O
81.1
300
H 5C 2–COO
C23H24D3NO5 MW: 400.48
50
200
0 50 Relative Int. (%)
100
100
150
Morphine-d6, di-propionyl derivative
250
H 5C 2–COO O
C23H21D6NO5 MW: 403.50
50
200
300
400
347.2 DD
274.2
N CD 3
450
II-3-G-iii
D
-
H 5C 2–COO
350
403.2
330.2
224.2
57.1
81.1
168.1
152.1
0 50
Relative Int. (%)
100
50
100
150
200
250 m/z
300
350
400
414.1
Morphine, di-pentafluoropropionyl derivative
F 5 C 2 –COO
C23H17F10NO5 MW: 577.37 119.0
F 5 C 2 –COO
O
450
II-3-H-i
-
N CH 3
577.1 430.1
357.0
0 50 Relative Int. (%)
100
100
150
200
Morphine-d3, di-pentafluoropropionyl derivative
300
350
400
450
500
417.1 O F 5 C 2 –COO
550
600
II-3-H-ii
F 5 C 2 –COO
C23H14D3F10NO5 MW: 580.39 119.0
50
250
-
N CD 3
580.1 357.0
433.1
0 50 Relative Int. (%)
100
50
100
150
200
250
300
350
400
450
500
420.1
Morphine-d6, di-pentafluoropropionyl derivative
F 5 C 2 –COO
C23H11D6F10NO5 MW: 583.41 119.0
F 5 C 2 –COO
DD
O
550
600
II-3-H-iii
D
-
N CD 3
583.1 367.1
436.1
0 50
100
150
200
250
300
350 m/z
Figure II — Opioids
© 2010 by Taylor and Francis Group, LLC
400
450
500
550
600
142
Figure II-3. (Continued) Relative Int. (%)
100
Morphine, di-heptafluorobutyryl derivative
O
C25H17F14NO5 MW: 677.38
50
F 7 C 3 –COO
464.1
II-3-I-i
F 7 C 3 –COO
-
N CH 3
169.0
69.0
677.1
480.1
0 50 Relative Int. (%)
100
100
150
200
250
Morphine-d3, di-heptafluorobutyryl derivative
350
400
O
F 7 C 3 –COO
450
550
600
650
700
-
N CD 3
169.0
69.0
500 467.1
II-3-I-ii
F 7 C 3 –COO
C25H14D3F14NO5 MW: 680.40
50
300
680.1
483.1
0 50 Relative Int. (%)
100
100
150
200
250
Morphine-d6, di-heptafluorobutyryl derivative
F 7 C 3 –COO
350 DD
F 7 C 3 –COO
400
450
500
550
600
650
D
-
N CD 3
683.1
169.0
69.0
700
470.1
II-3-I-iii
O
C25H11D6F14NO5 MW: 683.42
50
300
486.1
0 50
100
150
200
250
300
350
400
450
500
550
600
650
700
m/z Relative Int. (%)
100
Morphine, 73.1 di-trimethylsilyl derivative
-
N CH 3
(H3C)3Si– O
196.1
146.0
429.2
O
236.1
C23H35NO3Si2 MW: 429.70
50
(H3C)3Si– O
II-3-J-i
287.1
414.1
401.1
324.1
0 50
100
Relative Int. (%)
100 73.1
150
250
300
Morphine-d3, di-trimethylsilyl derivative C23H32D3NO3Si2 MW: 432.72
50
200
400
O
239.1
-
N CD 3
(H3C)3Si– O
290.1
450 432.2
(H3C)3Si– O
II-3-J-ii 199.1
149.1
350
417.2 404.1
327.1
0 50
100
Relative Int. (%)
100 73.1
150
Morphine-d6, di-trimethylsilyl derivative C23H29D6NO3Si2 MW: 435.74
50
200
250
300
II-3-J-iii 200.1
DD
O
293.1
400
450 435.2
(H3C)3Si– O
239.1 149.1
350 D
-
N CD 3
(H3C)3Si– O
420.2 404.1
330.1
0 50
100
150
200
250 m/z
Appendix One — Mass Spectra
© 2010 by Taylor and Francis Group, LLC
300
350
400
450
143
Figure II-3. (Continued) Relative Int. (%)
100
(H3C)3C(H3C)2Si–O
Morphine, t-butyldimethylsilyl derivative
O
C23H33NO3Si MW: 399.60
50
HO
162.1
73.1
-
399.2
N CH 3
229.1
216.1
124.1
342.2
II-3-K-i
272.1
285.1
329.2
0 50 Relative Int. (%)
100
100
150
200
250
(H3C)3C(H3C)2Si–O
Morphine-d3, t-butyldimethylsilyl derivative
HO
165.1
400
450
345.2
-
402.3
N CD 3
229.1
216.1
127.1
350
II-3-K-ii
O
C23H30D3NO3Si MW: 402.62 73.1
50
300
275.1
285.1 332.2
0 50 Relative Int. (%)
100
100
150
Morphine-d6, t-butyldimethylsilyl derivative
200
(H3C)3C(H3C)2Si–O O
C23H27D6NO3Si MW: 405.63
50
250
HO
D
350
400
450
348.2
II-3-K-iii
-
405.3
N CD 3
229.1
168.1
73.1
DD
300
278.1
128.1
335.2
0 50
Relative Int. (%)
100
100
150
200
250 m/z
73.1 (H3C)3C(H3C)2Si– O
350
400
413.2
-
N CH 3
(H3C)3C(H3C)2Si–O
456.3 281.1
207.0
146.0
450
Morphine, di-t-butyldimethylsilyl derivative
II-3-L-i
O
50
300
335.1
C29H47NO3Si2 MW: 513.86
238.1
513.4
0 50 Relative Int. (%)
100
100
150
200
250
300
73.1 (H3C)3C(H3C)2Si– O
400
450
II-3-L-ii
O
50
350
-
281.1
207.0
459.3 335.1
149.1
550
Morphine-d3, di-t-butyldimethylsilyl derivative
414.2
N CD 3
(H3C)3C(H3C)2Si–O
500
241.2
C29H44D3NO3Si2 MW: 516.88 516.4
0 50 Relative Int. (%)
100
100 73.1
150
200
(H3C)3C(H3C)2Si– O
DD
O
50
250
300
350
400
II-3-L-iii
D
-
207.0
149.1
415.2 463.3
N CD 3
(H3C)3C(H3C)2Si–O
450
281.1
500
550
Morphine-d6, di-t-butyldimethylsilyl derivative C29H41D6NO3Si2 MW: 519.90
337.1
242.2
519.3
0 50
100
150
200
250
300 m/z
Figure II — Opioids
© 2010 by Taylor and Francis Group, LLC
350
400
450
500
550
144
Figure II-3. (Continued) Relative Int. (%)
100
Morphine, ethyl/acetyl derivative C21H25NO4 MW: 355.43
50
O
162.1
296.2
-
N CH 3
H 3C–COO
71.2
355.2
II-3-M-i
H 5 C 2 –O
204.1
214.1
243.2
326.1
0 50
100
Relative Int. (%)
100
150
Morphine-d3, ethyl/acetyl derivative
81.1
250
400
299.2
-
N CD 3
H 3C–COO
165.1
350
II-3-M-ii
O
127.1
300
358.2
H 5 C 2 –O
C21H22D3NO4 MW: 358.45
50
200
207.1
217.1
246.2
329.2
0 50
100
Relative Int. (%)
100
150
Morphine-d6, ethyl/acetyl derivative
H 5 C 2 –O
81.2
DD
O
C21H19D6NO4 MW: 361.46
50
200
H 3C–COO
128.1
250 D
300
350 361.3
302.3
II-3-M-iii
400
-
N CD 3
210.1
220.2
249.2 332.3
168.1
0 50
100
150
200
250
300
350
400
m/z Relative Int. (%)
100
Morphine, ethyl/trimethylsilyl derivative
50
73.1
C22H31NO3Si MW: 385.57
O
192.1 234.1 243.1
146.1
385.2
H 5 C 2 –O
II-3-N-i
(H3C)3Si–O
-
N CH 3
357.2 328.1
280.1
0 50
100
Relative Int. (%)
100
150
Morphine-d3, ethyl/trimethylsilyl derivative
50
73.1
C22H28D3NO3Si MW: 388.59
200
250
300
350
O
195.1 237.1 246.1
(H3C)3Si–O
450
388.2
H 5 C 2 –O
II-3-N-ii 149.1
400
-
N CD 3
360.2 327.1
283.1
0 50
100
Relative Int. (%)
100
150
Morphine-d6, ethyl/trimethylsilyl derivative 73.1
50
C22H25D6NO3Si MW: 391.61
200
250
300
II-3-N-iii
195.1
350
H 5 C 2 –O
240.2
(H3C)3Si–O
249.2 286.2
450
391.3 DD
O
149.1
400
D
-
N CD 3
360.2 329.1
0 50
100
150
200
250 m/z
Appendix One — Mass Spectra
© 2010 by Taylor and Francis Group, LLC
300
350
400
450
145
Figure II-3. (Continued) Relative Int. (%)
100
50
73.1
206.1
146.1
C23H33NO3Si MW: 399.60
II-3-O-i
H 7 C 3 –O
Morphine, propyl/trimethylsilyl derivative 196.1
O
234.1
-
N CH 3
(H3C)3Si–O
257.1
399.2
371.2 356.2
280.1
0 50
100
Relative Int. (%)
100
150
200
73.1
C23H30D3NO3Si MW: 402.62
300
350
400
O
209.2 149.1
199.2
(H3C)3Si–O
237.2 260.2
450 402.3
II-3-O-ii
H 7 C 3 –O
Morphine-d3, propyl/trimethylsilyl derivative
50
250
-
N CD 3
374.2 359.2
283.1
0 50
100
Relative Int. (%)
100
150
200
Morphine-d6, propyl/trimethylsilyl derivative
50 73.1
C23H27D6NO3Si MW: 405.63
250
300
350
H 7 C 3 –O
209.2 149.1
O
240.2
200.2
(H3C)3Si–O
263.2
400
II-3-O-iii DD
450 405.3
D
-
N CD 3
374.2
286.2
362.2
300
350
0 50
Relative Int. (%)
100
100
73.1
150
200
H 7 C 3 –O
(H3C)3C(H3C)2SiO
400
341.3
II-3-P-i
O
50
250 m/z
-
299.2
271.2
N CH 3
384.3
238.2 310.2
94.2
Morphine, propyl/ t-butyldimethylsilyl derivative C26H39NO3Si MW: 441.68 398.2 441.2
206.2
146.2
450
0 50 Relative Int. (%)
100
100
150
200
H 7 C 3 –O
300
350
II-3-P-ii
O
50
250
341.3
73.1
(H3C)3C(H3C)2SiO
-
N CD 3
209.3
149.1
241.2
299.1
271.2
400
C26H36D3NO3Si MW: 444.70 401.3 444.5
313.3
97.1
450
Morphine-d3, propyl/ t-butyldimethylsilyl 387.4 derivative
0 50 Relative Int. (%)
100
100
150 H 7 C 3 –O
73.1
DD
O (H3C)3C(H3C)2SiO
50
200
250
300
350
400
343.3 D
-
II-3-P-iii
301.2
N CD 3
390.3
273.1
149.1
209.2
Morphine-d6, propyl/ t-butyldimethylsilyl derivative C26H33D6NO3Si MW: 447.71 404.3 447.4
315.3
242.0
450
97.2
0 50
100
150
200
250 m/z
Figure II — Opioids
© 2010 by Taylor and Francis Group, LLC
300
350
400
450
146
Figure II-3. (Continued) Relative Int. (%)
100
Morphine, butyl/trimethylsilyl derivative
50
C24H35NO3Si MW: 413.63
73.1
II-3-Q-i 220.1 196.1
146.1
413.2
H 9 C 4 –O O
234.1
-
N CH 3
(H3C)3Si–O
356.2
271.1
385.2
324.2
0 50
100
Relative Int. (%)
100
150
200
Morphine-d3, butyl/trimethylsilyl derivative
50
300
223.2 149.1
350
400
199.1
O
237.2
450 416.3
H 9 C 4 –O
II-3-Q-ii
C24H32D3NO3Si MW: 416.64
73.1
250
-
N CD 3
(H3C)3Si–O
388.2
274.2
359.2 327.2
0 50
100
Relative Int. (%)
100
150
200
Morphine-d6, butyl/trimethylsilyl derivative
50
II-3-Q-iii
300
350
H 9 C 4 –O
223.2 240.2
450
D
-
N CD 3
(H3C)3Si–O
200.2
400 419.3
DD
O
149.1
C24H29D6NO3Si MW: 419.66
73.1
250
388.2 362.2
277.2
0 50
100
Relative Int. (%)
100
150
200
H 9 C 4 –O
73.1
50
-
300
350
355.3 398.4
299.2
II-3-R-i
O
(H3C)3C(H3C)2Si–O
250 m/z
146.1
208.1
271.2 238.2
178.2
C27H41NO3Si MW: 455.70 455.5 427.5
327.2
107.1
450
Morphine, butyl/ t-butyldimethylsilyl derivative
220.1
N CH 3
400
0 50 Relative Int. (%)
100
100 73.1
150
200
H 9 C 4 –O
II-3-R-ii
O
50
(H3C)3C(H3C)2Si–O
115.0
250
-
N CD 3
223.0
149.0 179.2 211.0
300
271.2
350
400 355.2
299.2
401.3
450
500
Morphine-d3, butyl/ t-butyldimethylsilyl derivative C27H38D3NO3Si MW: 458.72 458.3 430.1
241.2 327.3 344.3
0 50
100
150
200
250
300
350
400
Relative Int. (%)
100 H 9 C 4 –O
73.1
50
DD
O
(H3C)3C(H3C)2Si–O
II-3-R-iii
D
-
N CD 3
404.3
223.2
273.2
357.3
301.2
207.1
242.2
329.3
500
Morphine-d6, butyl/ t-butyldimethylsilyl derivative C27H35D6NO3Si MW: 461.74
149.2
116.1
450
348.3
432.5
461.5
0 50
100
150
200
250
300 m/z
Appendix One — Mass Spectra
© 2010 by Taylor and Francis Group, LLC
350
400
450
500
147
Figure II-3. (Continued) Relative Int. (%)
100
Morphine, acetyl/trimethylsilyl derivative
50 73.1
124.1
340.2
O
C22H29NO4Si MW: 399.56
-
N CH 3
(H3C)3SiO
287.2
204.1
162.1
399.2
II-3-S-i
H 3C–COO
324.2
0 50
100
Relative Int. (%)
100
150
200
127.1
400
450 402.3
343.2
-
N CD 3
(H3C)3SiO
290.2
207.1
165.1
350
II-3-S-ii
O
C22H26D3NO4Si MW: 402.57
73.1
300
H 3C–COO
Morphine-d3, acetyl/trimethylsilyl derivative
50
250
327.2
0 50
100
Relative Int. (%)
100
73.2
150
200
Morphine-d6, acetyl/trimethylsilyl derivative
H 3C–COO
350
II-3-S-iii
D
400
450 405.4
346.3
-
N CD 3
(H3C)3SiO
128.1
300
DD
O
C22H23D6NO4Si MW: 405.59
50
250
293.2
210.2
168.1
330.4
0 50
100
Relative Int. (%)
100
150
200
250 m/z
342.2
O
204.1
162.1
450
441.3
-
267.1
229.1
400
II-3-T-i
N CH 3
(H3C)3C(H3C)2SiO
C25H35NO4Si MW: 441.64
73.1
350
H 3C–COO
Morphine, acetyl/ t-butyldimethylsilyl derivative
50
300
384.2
324.2
0 50
100
Relative Int. (%)
100
150
200
250
Morphine-d3, acetyl/ t-butyldimethylsilyl derivative
50
350 345.2
H 3C–COO O
C25H32D3NO4Si MW: 444.65
73.1
300
207.1
165.1
-
267.1
229.1
II-3-T-ii
N CD 3
(H3C)3C(H3C)2SiO
400
450
444.3
387.2
327.2
0 50 Relative Int. (%)
100
100 73.1
200
250
Morphine-d6, acetyl/ t-butyldimethylsilyl derivative 117.0
50
150
C25H29D6NO4Si MW: 447.67
300
H 3C–COO
348.2 DD
O
210.2
229.1
400
450
II-3-T-iii
D
-
N CD 3
(H3C)3C(H3C)2SiO
168.1
350
447.4 390.3
267.1
330.2
0 50
100
150
200
250 m/z
Figure II — Opioids
© 2010 by Taylor and Francis Group, LLC
300
350
400
450
148
Figure II-3. (Continued) Relative Int. (%)
100 73.1
Morphine, propionyl/trimethylsilyl 164.1 derivative
H 5C 2–COO
196.2
C23H31SiNO4 MW: 413.58 94.1
50
O
234.2
(H3C)3Si–O
215.1
357.3
267.2
II-3-U-i
413.3
-
N CH 3
329.2 398.3
0 50
100
Relative Int. (%)
100 73.1
50
150
Morphine-d3, propionyl/trimethylsilyl derivative
200
250
300
350 360.3
H 5C 2–COO
167.1 199.2
C23H28D3SiNO4 MW: 416.60 97.1
O
237.2
(H3C)3Si–O
218.2
270.2
400
II-3-U-ii
450 416.3
-
N CD 3
332.2 401.3
0 50
100
Relative Int. (%)
100 73.1
150
Morphine-d6, propionyl/trimethylsilyl derivative
250
300 H 5C 2–COO
167.1
O
240.2 200.1
C23H25D6SiNO4 MW: 419.62
50
200
(H3C)3Si–O
221.2
273.2
350 DD
363.3 D
400
II-3-U-iii
450 419.3
-
N CD 3
332.2 404.3
97.1
0 50
100
150
200
250 m/z
Appendix One — Mass Spectra
© 2010 by Taylor and Francis Group, LLC
300
350
400
450
149
Figure II-4. Mass spectra of hydromorphone and its deuterated analogs (hydromorphone-d3, -d6): (A) acetylderivatized; (B) [acetyl]2-derivatized; (C) [TFA]2-derivatized; (D) propionyl-derivatized; (E) PFP-derivatized; (F) [PFP]2-derivatized; (G) HFB-derivatized (H) [HFB]2-derivatized; (I) TMS-derivatized; (J) [TMS]2-derivatized; (K) tBDMS-derivatized; (L) [t-BDMS]2-derivatized; (M) MA/ethyl-derivatized; (N) MA/acetyl-derivatized; (O) MA/ propionyl-derivatized; (P) MA/TMS-derivatized; (Q) MA/t-BDMS-derivatized; (R) HA/[TMS]2-derivatized. Relative Int.(%)
100
Hydromorphone (CAS NO. 466-99-9), acetyl derivative
O
II-4-A-i
-
N CH 3
C19H21NO4 MW: 327.37
50
285.1
H 3C–COO
O
115.1
96.1
59.1
229.1
327.1
214.1
171.0
256.1
0 50 Relative Int. (%)
100
100
150
Hydromorphone-d3, acetyl derivative
250
288.1
O
350
II-4-A-ii
-
N CD 3 O
99.1
62.1
300
H 3C–COO
C19H18D3NO4 MW: 330.39
50
200
330.2
232.1 217.1
171.1
115.1
259.1
0 50 Relative Int. (%)
100
100
150 H 3C–COO
Hydromorphone-d6, acetyl derivative
65.1
250
300 291.2
DD
350
II-4-A-iii
D
O
C19H15D6NO4 MW: 333.41
50
200
-
N CD 3 O
99.1 115.0
333.2
235.1 220.1
171.1
262.2
0 50
relative Int. (%)
100
100
150
Hydromorphone, di-acetyl derivative
300
327.1
350
II-4-B-i
284.1
O
-
N CH 3
159.1 55.1
250
H 3C–COO
C21H23NO5 MW: 369.41
50
200 m/z
369.1
H 3C–COO
228.1
98.1 115.1
268.1
312.1
0 50 Relative Int. (%)
100
100
150
Hydromorphone-d3, di-acetyl derivative C21H20D3NO5 MW: 372.43
50
55.1
200
250
300
330.1
H 3C–COO
400
II-4-B-ii
287.1
O
159.1
350
-
N CD 3
372.2
H 3C–COO
271.1
228.1
98.1 115.1
312.1
0 50 Relative Int. (%)
100
100
150
Hydromorphone-d6, di-acetyl derivative
H 3C–COO
55.1
300
350 333.2
DD
D
-
N CD 3
II-4-B-iii 375.2
274.2
228.1
116.1
400
290.1
H 3C–COO
168.1 98.1
250
O
C21H17D6NO5 MW: 375.45
50
200
315.1
0 50
100
150
200
250 m/z
Figure II — Opioids
© 2010 by Taylor and Francis Group, LLC
300
350
400
150
Figure II-4. (Continued)
Relative Int. (%)
100
Hydromorphone, di-trifluoroacetyl derivative
50 69.1
F 3C–COO
O
-
N CH 3
C21H17F6NO5 MW: 477.35
477.1
II-4-C-i
F 3C–COO
380.1 258.1 322.1
115.1
364.1 462.1
420.0
0 50
100
Relative Int. (%)
100
150
200
Hydromorphone-d3, di-trifluoroacetyl derivative
F 3C–COO
C21H14D3F6NO5 MW: 480.37
50 69.1
250
300
350
400
450 480.1
II-4-C-ii
O
500
-
N CD 3
383.1 261.1
F 3C–COO
367.1 325.1
115.1
420.0
465.1
0 50
100
relative Int. (%)
100
150
200
Hydromorphone-d6, di-trifluoroacetyl derivative
F 3C–COO
C21H11D6F6NO5 MW: 483.39
50 69.1
250 DD
O
300
350
50
100
150
500 483.1
386.1
-
N CD 3 F 3C–COO
264.1
200
450
II-4-C-iii
D
370.1 328.1
115.1
0
400
250
300
468.1
420.1
350
400
450
500
m/z Relative Int. (%)
100
Hydromorphone, propionyl derivative
H 5C 2–COO O
C20H23NO4 MW: 341.40
50
-
N CH 3 O
57.1
285.1
II-4-D-i
341.1
229.1 214.1
96.1
256.1
0 50
100
Relative Int. (%)
100
Hydromorphone-d3, propionyl derivative
150 H 5C 2–COO
250
350
-
N CD 3 O
344.1
232.1
99.1
57.1
300 288.1
II-4-D-ii
O
C20H20D3NO4 MW: 344.41
50
200
217.1
259.1
0 50
100
Relative Int. (%)
100
Hydromorphone-d6, propionyl derivative
150 H 5C 2–COO O
C20H17D6NO4 MW: 347.43
50
200 DD
250
350
291.1
II-4-D-iii D
-
N CD 3 O
57.1
300
262.1
220.1
99.1
347.2
235.1
0 50
100
150
200 m/z
Appendix One — Mass Spectra
© 2010 by Taylor and Francis Group, LLC
250
300
350
151
Figure II-4. (Continued)
relative Int. (%)
100
Hydromorphone, pentafluoropropionyl derivative
II-4-E-i
50 96.1
119.0
57.1
F 5 C 2 –COO
431.1 375.1
O
-
N CH 3
C20H18F5NO4 MW: 431.35
O
284.1
402.1
346.1
0 50
100
150
Relative Int. (%)
100
250
Hydromorphone-d3, pentafluoropropionyl derivative
II-4-E-ii 50
200
300
400
F 5 C 2 –COO
450 434.1
378.1
O
-
N CD 3
C20H15D3F5NO4 119.0 MW: 434.37
99.1
350
O
60.1
287.1
405.1
349.1
0 50 Relative Int. (%)
100
100
150
200
250
Hydromorphone-d6, pentafluoropropionyl derivative
II-4-E-iii
300
F 5 C 2 –COO
400
450 437.1
DD
O
D
381.1
-
N CD 3
C20H12D6F5NO4 119.0 MW: 437.38
50
350
O
99.1
290.1
207.0
408.2
352.1
0 50
Relative Int. (%)
100
100
150
250 m/z
300
Hydromorphone, di-pentafluoropropionyl derivative
II-4-F-i
50
200
119.0
350
400
450
577.1
F 5 C 2 –COO
430.1
C23H17F10NO5 MW: 577.37
308.1
414.1
O
372.1
69.1
-
N CH 3 F 5 C 2 –COO
520.0
0 50 Relative Int. (%)
100
100
150
250
300
350
119.0
400
450
500
550
600
580.1
Hydromorphone-d3, di-pentafluoropropionyl derivative
II-4-F-ii
50
200
F 5 C 2 –COO
433.1
C23H14D3F10NO5 MW: 580.38
311.1
417.1
O
375.1
69.1
-
N CD 3 F 5 C 2 –COO
520.0
0 50 Relative Int. (%)
100
100
150
II-4-F-iii
50
200
250
300
350
450
500
550
600
583.1
Hydromorphone-d6, di-pentafluoropropionyl derivative
119.0
400
436.1
F 5 C 2 –COO O
C23H11D6F10NO5 MW: 583.40
314.1
420.1
D
-
N CD 3 F 5 C 2 –COO
378.1
69.0
DD
520.1
0 50
100
150
200
250
300
350 m/z
Figure II — Opioids
© 2010 by Taylor and Francis Group, LLC
400
450
500
550
600
152
Figure II-4. (Continued)
Relative Int. (%)
100
Hydromorphone, heptafluorobutyryl derivative
II-4-G-i 50 69.0
115.1
425.1
O
-
N CH 3
C21H18F7NO4 169.0 MW: 481.36
96.1
481.1
F 7 C 3 –COO
O
396.1
284.1
452.1
242.1
0 50
100
150
200
Relative Int. (%)
100
99.1
69.0
300
Hydromorphone-d3, heptafluorobutyryl derivative
II-4-G-ii 50
250
115.1
400
450
500 484.1
F 7 C 3 –COO
428.1
O
-
N CD 3
C21H15D3F7NO4 MW: 484.38
169.0
350
O
287.1
455.1
399.1
245.1
0 50
100
150
200
Relative Int. (%)
100
69.0
300
Hydromorphone-d6, heptafluorobutyryl derivative
II-4-G-iii 50
250
350
450
500 487.2
F 7 C 3 –COO
DD
O
431.1
D
-
N CD 3
C21H12D6F7NO4 169.0 MW: 487.40
100.1 115.1
400
290.1
O
458.1
402.1
248.2
0 50
100
150
200
250
300
350
400
450
500
m/z Relative Int. (%)
100
Hydromorphone, di-heptafluorobutyryl derivative
II-4-H-i 169.0
69.0
50 207.0
480.1 358.1
C25H17F14NO5 MW: 677.38
100.0
677.1
F 7 C 3 –COO
464.1
O
422.1
F 7 C 3 –COO
-
N CH 3
266.0
658.0
0 50
100
150
200
250
Relative Int. (%)
100
350
Hydromorphone-d3, di-heptafluorobutyryl derivative
II-4-H-ii 169.0
69.0
300
50
400
207.0
500
550
600
650
361.1
700
680.1
483.1
C25H14D3F14NO5 MW: 680.40 100.0
450
F 7 C 3 –COO
467.1
O
-
N CD 3
425.1
F 7 C 3 –COO
661.2
269.1
0 50
100
150
200
250
Relative Int. (%)
100
II-4-H-iii 169.0
69.0
50
300
350
400
Hydromorphone-d6, di-heptafluorobutyryl derivative
100.1
500
600
650
700
683.1 F 7 C 3 –COO
470.1
DD
O
D
-
N CD 3 F 7 C 3 –COO
428.1
207.0
550
486.1 364.1
C25H11D6F14NO5 MW: 683.42
450
664.1
272.2
0 50
100
150
200
250
300
350
400 m/z
Appendix One — Mass Spectra
© 2010 by Taylor and Francis Group, LLC
450
500
550
600
650
700
153
Figure II-4. (Continued)
Relative Int. (%)
100
Hydromorphone, trimethylsilyl derivative
(H3C)3Si–O O
C20H27NO3Si MW: 357.52
50
300.1
-
N CH 3 O
73.1 96.1
357.2
II-4-I-i 342.1
255.1
243.1
314.1
216.1
0 50
100
Relative Int. (%)
100
150
Hydromorphone-d3, trimethylsilyl derivative
50
200
300
350
(H3C)3Si–O
-
N CD 3 O
99.1
400 360.2
II-4-I-ii
O
C20H24D3NO3Si MW: 360.54
73.1
250
300.1
243.1
255.1
216.1
345.2 317.2
0 50
100
Relative Int. (%)
100
150
Hydromorphone-d6, trimethylsilyl derivative
200 (H3C)3Si–O
C20H21D6NO3Si MW: 363.56
50
O
250 DD
300
D
-
301.1
O
217.1
100.1
400 363.2
II-4-I-iii
N CD 3
73.1
350
255.1
243.1
348.2 320.2
0 50
100
150
200
250
300
350
400
m/z Relative Int. (%)
100
Hydromorphone, 73.1 di-trimethylsilyl derivative
50
O
234.1
C23H35NO3Si2 MW: 429.70
414.2
II-4-J-i
(H3C)3Si–O
429.2
-
N CH 3
357.1 371.1
(H3C)3Si–O
184.1
324.1
272.1
0 50 Relative Int. (%)
100
100
150
200
Hydromorphone-d3, 73.1 di-trimethylsilyl derivative
50
C23H32D3NO3Si2 MW: 432.72
250
300
350
417.2
O
-
N CD 3 (H3C)3Si–O
187.1
450 432.2
II-4-J-ii
(H3C)3Si–O
237.1
400
327.1
275.1
357.1 371.1
0 50 Relative Int. (%)
100
100
150
200
250
Hydromorphone-d6, 73.1 di-trimethylsilyl derivative
50
C23H29D6NO3Si2 MW: 435.74
300 (H3C)3Si–O O
240.2
350 DD
400
450 435.2
II-4-J-iii
417.2
D
-
N CD 3
(H3C)3Si–O
188.1
330.2 275.1
357.1
373.2
0 50
100
150
200
250 m/z
Figure II — Opioids
© 2010 by Taylor and Francis Group, LLC
300
350
400
450
154
Figure II-4. (Continued)
Relative Int. (%)
100
299.1
(H3C)3C(H3C)2Si–O O
II-4-K-i
Hydromorphone, t-butyldimethylsilyl derivative
-
N CH 3
50
C23H33NO3Si MW: 399.60
342.2
O
229.1
73.1
257.1
399.2
0 50
100
150
200
250
300
Relative Int. (%)
100
350
299.1
(H3C)3C(H3C)2Si–O O
400
II-4-K-ii
-
N CD 3
50
345.2
O
229.1
73.1
450
Hydromorphone-d3, t-butyldimethylsilyl derivative C23H30D3NO3Si MW: 402.62
257.1
402.2
0 50
100
150
200
250
300
Relative Int. (%)
100
350 301.1
(H3C)3C(H3C)2Si–O
DD
O
400
II-4-K-iii
D
-
50
N CD 3
348.2
O
73.1
231.1
450
Hydromorphone-d6, t-butyldimethylsilyl derivative C23H27D6NO3Si MW: 405.63
259.1
405.3
0 50
100
Relative Int. (%)
100
150
200
Hydromorphone, di-t-butyldimethylsilyl derivative 73.1
50
250 m/z
300
(H3C)3C(H3C)2Si–O
350
II-4-L-i
O
-
N CH 3
C29H47NO3Si2 MW: 513.86
400
450
456.2
413.2
(H3C)3C(H3C)2Si–O
207.1
513.3
498.3
0 50
100
Relative Int. (%)
100
150
200
250
Hydromorphone-d3, di-t-butyldimethylsilyl derivative
73.1
50
300
350
400
(H3C)3C(H3C)2Si–O
II-4-L-ii
O
-
N CD 3
C29H44D3NO3Si2 MW: 516.88
450
100
Relative Int. (%)
73.1
150
200
501.3
250
Hydromorphone-d6, di-t-butyldimethylsilyl derivative
300
350
(H3C)3C(H3C)2Si–O
DD
O
400 D
450
II-4-L-iii
-
N CD 3
C29H41D6NO3Si2 MW: 519.90
50
150
462.3
504.3
200
250
300 m/z
350
Appendix One — Mass Spectra
© 2010 by Taylor and Francis Group, LLC
550
415.2
207.0
100
500
516.3
(H3C)3C(H3C)2Si–O
0 50
459.3
413.2
207.1
50
550
(H3C)3C(H3C)2Si–O
0 100
500
400
450
500
519.3
550
155
Figure II-4. (Continued)
Relative Int. (%)
100
Hydromorphone, methoxyimino/ethyl derivative
H 5 C 2 –O O
C20H26N2O3 MW: 342.43
50 70.1
311.2
II-4-M-i
342.2
-
N CH 3 H 3CO–N
123.1
82.1 115.1
284.1
171.1
327.2
254.1
199.1
0 50
100
Relative Int. (%)
100
150
200
Hydromorphone-d3, methoxyimino/ethyl derivative
73.1
300
350 345.3
H 5 C 2 –O
314.2
II-4-M-ii
O
-
N CD 3
C20H23D3N2O3 MW: 345.45
50
250
H 3CO–N
126.1
85.1 115.0
285.2
171.1
330.2
254.1
199.0
0 50 Relative Int. (%)
100
100
150
200
Hydromorphone-d6, methoxyimino/ethyl derivative
H 5 C 2 –O
86.2
300
350 348.3
317.3 DD
II-4-M-iii
D
O
-
N CD 3
C20H20D6N2O3 MW: 348.47
50
250
H 3CO–N
115.1
127.1 171.1
199.1
254.1
285.1
333.2
0 50
100
Relative Int. (%)
100
150
200 m/z
Hydromorphone, methoxyimino/acetyl derivative
50 82.1
115.1
250
H 3C–COO
300
283.3
O
314.2
II-4-N-i
-
N CH 3
C20H24N2O4 123.1 MW: 356.42
350
356.3
257.1
H 3CO–N
325.3
0 50
100
Relative Int. (%)
100
150
200
Hydromorphone-d3, methoxyimino/acetyl derivative
50
115.2 85.1
250
300
H 3C–COO
286.3
O
350 317.3
II-4-N-ii
-
N CD 3
C20H21D3N2O4 126.1 MW: 359.43
359.3
257.2
H 3CO–N
400
328.2
0 50
100
Relative Int. (%)
100
150
200
Hydromorphone-d6, methoxyimino/acetyl derivative
50 86.2 115.2
250
300
350 320.3
H 3C–COO
DD
O
II-4-N-iii
289.3 D
-
362.3
N CD 3
127.2 C20H18D6N2O4 MW: 362.45
H 3CO–N
400
258.2
331.3
0 50
100
150
200
250 m/z
Figure II — Opioids
© 2010 by Taylor and Francis Group, LLC
300
350
400
156
Figure II-4. (Continued)
Relative Int. (%)
100
Hydromorphone, methoxyimino/propionyl derivative
50
283.1
O
-
N CH 3
C21H26N2O4 MW: 370.44 57.1
314.2
H 5C 2–COO
II-4-O-i
H 3CO–N
123.1
82.1
370.3
257.1
339.2
0 50
100
Relative Int. (%)
100
150
85.1
300
350
400
H 5C 2–COO
II-4-O-ii
O
286.2
-
N CD 3
C21H23D3N2O4 MW: 373.46 57.1
250
317.2
Hydromorphone-d3, methoxyimino/propionyl derivative
50
200
H 3CO–N
373.2
257.1
342.3
126.1
0 50
100
Relative Int. (%)
100
150
Hydromorphone-d6, methoxyimino/propionyl derivative
50
200
II-4-O-iii
86.1
300
350
400
320.2
H 5C 2–COO
DD
D
O
C21H20D6N2O4 MW: 376.48 57.1
250
289.2
-
N CD 3
376.3
H 3CO–N
127.1
257.2
345.2
0 50
100
150
200
250
300
350
400
m/z Relative Int. (%)
100
Hydromorphone, methoxyimino/ trimethylsilyl derivative 73.1
50
82.1
II-4-P-i
(H3C)3Si–O
355.2
O
H 3CO–N
153.1
207.0
371.2
-
N CH 3
C21H30N2O3Si MW: 386.56 123.1
314.1 340.2
243.1
216.1
386.3
0 50
100
Relative Int. (%)
100 73.1
50
150
200
Hydromorphone-d3, methoxyimino/ trimethylsilyl derivative C21H27D3N2O3Si MW: 389.58 126.1 85.1
II-4-P-ii
250
300
350 389.3
(H3C)3Si–O
358.3
O
-
374.3
N CD 3 H 3CO–N
156.1
207.1
216.1
400
314.2 343.2
243.1
0 50
100
Relative Int. (%)
100
150
Hydromorphone-d6, methoxyimino/ trimethylsilyl derivative 73.1
50
200
II-4-P-iii
250 (H3C)3Si–O O
300 DD
350 361.3
-
H 3CO–N
218.1
392.3
D
377.3
N CD 3
C21H24D6N2O3Si MW: 392.60 127.1 86.1
400
314.1 345.2
243.1
0 50
100
150
200
250 m/z
Appendix One — Mass Spectra
© 2010 by Taylor and Francis Group, LLC
300
350
400
157
Figure II-4. (Continued)
Relative Int. (%)
100
299.1
(H3C)3C(H3C)2Si–O Hydromorphone, methoxyimino/ O t-butyldimethylsilyl derivative
50
C24H36N2O3Si 73.1 MW: 428.64
-
N CH 3
342.2
H 3CO–N
216.1
229.1
203.1
II-4-Q-i
257.1
371.2
328.2
399.3
428.3
0 50
100
Relative Int. (%)
100
150
200
250
300
350
400
(H3C)3C(H3C)2Si–O
Hydromorphone-d3, methoxyimino/ t-butyldimethylsilyl derivative
50
73.1 C24H33D3N2O3Si MW: 431.66 126.1
374.2
O
450
II-4-Q-ii
-
N CD 3 H 3CO–N
203.1
275.2
216.1 229.1 255.1
299.1
328.2
431.4
343.2
400.3
0 50
100
Relative Int. (%)
100
150
200
250
300
73.1 C24H30D6N2O3Si MW: 434.68 127.1
DD
450
II-4-Q-iii
D
-
N CD 3
H 3CO–N
203.1
400 377.3
(H3C)3C(H3C)2Si–O Hydromorphone-d6, methoxyimino/ O t-butyldimethylsilyl derivative
50
350
434.4
330.2
278.2
299.1
346.2
218.1 231.1 257.1
403.3
0 50
Relative Int. (%)
100
100
73.1
150
Hydromorphone, hydroxylimino/ di-trimethylsilyl derivative C23H36N2O3Si2 MW: 444.71 123.1
50
200
250 m/z
300
350
(H3C)3Si–O
450
II-4-R-i
355.2
444.3
O
-
N CH 3
429.3
(H3C)3Si–O–N
216.1
400
372.2
339.1
243.1
0 50 Relative Int. (%)
100
100 73.1
150
200
Hydromorphone-d3, hydroxylimino/ di-trimethylsilyl derivative
126.1
300
350
400
(H3C)3Si–O
500
II-4-R-ii 447.3
-
432.3
(H3C)3Si–O–N
216.0
450
358.2
O
N CD 3
C23H33D3N2O3Si2 MW: 447.73
50
250
342.2
243.1
372.2
0 50 Relative Int. (%)
100
100 73.1
150
200
Hydromorphone-d6, hydroxylimino/ di-trimethylsilyl derivative
250
300
(H3C)3Si–O
DD
O
C23H30D6N2O3Si2 MW: 450.75
50
350
400
361.3
450.3
-
N CD 3
243.1
500
II-4-R-iii D
435.3
(H3C)3Si–O–N
127.2
450
345.2
373.1
0 50
100
150
200
250
300 m/z
Figure II — Opioids
© 2010 by Taylor and Francis Group, LLC
350
400
450
500
158
Figure II-5. Mass spectra of oxymorphone and its deuterated analogs (oxymorphone-d3): (A) [acetyl]2-derivatized; (B) [acetyl]3-derivatized; (C) [TFA]2-derivatized; (D) propionyl-derivatized; (E) [propionyl]2-derivatized; (F) [propionyl]3derivatized; (G) [PFP]2-derivatized; (H) [HFB]2-derivatized; (I) [TMS]2-derivatized; (J) [TMS]3-derivatized; (K) t-BDMSderivatized; (L) MA/ethyl-derivatized; (M) MA/acetyl-derivatized; (N) MA/[acetyl]2-derivatized; (O) MA/propionyl-derivatized; (P) MA/[HFB]2-derivatized; (Q) MA/[TMS]2-derivatized; (R) MA/[t-BDMS]2-derivatized; (S) MA/ethyl/propionyl-derivatized; (T) MA/ethyl/TMS-derivatized; (U) MA/ethyl/t-BDMS-derivatized; (V) MA/acetyl/TMS-derivatized; (W) MA/propionyl/ TMS; (X) HA/[TMS]3-derivatized; (Y) HA/[ethyl]2/propionyl-derivatized; (Z) HA/[ethyl]2/TMS-derivatized. Relative Int. (%)
100
Oxymorphone (CAS NO. 76-41-5), di-acetyl derivative
OOC–CH 3
O
C21H23NO6 MW: 385.41
50
343.1
H 3C–COO
-
N CH 3
II-5-A-i 300.1 385.1
O
203.1
115.1
284.1
226.1
0 50
100
Relative Int. (%)
100
150
200
250
50
206.1
115.1
100
II-5-A-ii
-
303.1
229 .1
200
388.2
287.1
250
300
350
400
m/z
100 Relative Int. (%)
150
400
N CD 3
O
0 50
OOC–CH 3
O
C21H20D3NO6 MW: 388.43
350 346.2
H 3C–COO
Oxymorphone-d3 (CAS NO. 142225-03-2), di-acetyl derivative
300
Oxymorphone, tri-acetyl derivative
H 3C–COO O
C23H25NO7 MW: 427.45
50
385.1
OOC–CH 3
II-5-B-i
-
N CH 3
427.2
H 3C–COO
342.1
226.1
282.1 326.1
0 Relative Int. (%)
100
50
100
150
200
250
Oxymorphone-d3, tri-acetyl derivative
300 OOC–CH 3
O
50
400
450
388.2
H 3C–COO
C23H22D3NO7 MW: 430.47
350
II-5-B-ii
-
430.2
N CD 3
H 3C–COO
285.1
226.1
345.1 329.1
0 50
100
Relative Int. (%)
100
150
200
250 m/z
Oxymorphone, di-trifluoroacetyl derivative
F 3C–COO
70.1
350
II-5-C-i
-
N CH 3
261.1
208.1
450 493.1
O
115.1
400
OOC–CF 3
O
C21H17F6NO6 MW: 493.35
50
300
396.1
368.1
312.1
474.1
0 50
100
Relative Int. (%)
100
150
200
250
Oxymorphone-d3, di-trifluoroacetyl derivative
50 73.1
300 F 3C–COO O
C21H14D3F6NO6 MW: 496.37
350
400
162.1
115.1
500 496.1
OOC–CF 3
II-5-C-ii
-
N CD 3
O
264.0
450
399.1 371.1
315.1
477.1
0 50
© 2010 by Taylor and Francis Group, LLC
100
150
200
250
300 m/z Appendix One — Mass Spectra
350
400
450
500
159
Figure II-5. (Continued)
Relative Int. (%)
100
Oxymorphone, propionyl derivative
II-5-D-i
OH
O
C20H23NO5 MW: 357.40
50
301.1
H 5C 2–COO
-
N CH 3
O
57.1
203.1
115.1
357.1
216.1
244.1
272.1
0 50
100
relative Int. (%)
100
150
200
Oxymorphone-d3, propionyl derivative
H 5C 2–COO
300
350
400
304.1
OH
O
C20H20D3NO5 MW: 360.42
50
250
II-5-D-ii
-
N CD 3
O
57.1
206.1
115.1
360.1
219.1
244.0
275.1
0 50
100
150
200
250
300
350
400
m/z Relative Int. (%)
100
Oxymorphone, di-propionyl derivative
50
OOC–C 2H 5
O
C23H27NO6 MW: 413.46
-
N CH 3
O
57.1
II-5-E-i
357.1
H 5C 2–COO
300.1 284.1
203.1
413.1 340.1
0 50
100
Relative Int. (%)
100
150
200
Oxymorphone-d3, di-propionyl derivative
250
400
450
II-5-E-ii
OOC–C 2H 5
O
-
N CD 3
303.1
O
57.1
350 360.1
H 5C 2–COO
C23H24D3NO6 MW: 416.48
50
300
287.1
206.1
416.2 343.1
0 50
100
Relative Int. (%)
100
150
200
Oxymorphone, tri-propionyl derivative
250 m/z
57.1
216.1 226.1
400
450
II-5-F-i
OOC–C 2H 5
O
H 5C 2–COO
350
413.1
H 5C 2–COO
C26H31NO7 MW: 469.53
50
300
-
N CH 3
469.2 282.1
340.1
356.1
322.1
396.2
0 50
100
Relative Int. (%)
100
150
200
Oxymorphone-d3, tri-propionyl derivative
250
H 5C 2–COO
219.1
226.1
400
450
500
II-5-F-ii
OOC–C 2H 5
O
57.1
350
416.2
H 5C 2–COO
C26H28D3NO7 MW: 472.55
50
300
-
N CD 3
472.2 285.1
343.1 325.1
359.1
399.2
0 50
100
150
200
250
300 m/z
Figure II — Opioids
© 2010 by Taylor and Francis Group, LLC
350
400
450
500
160
Figure II-5. (Continued)
Relative Int. (%)
100
Oxymorphone, di-pentafluoropropionyl derivative
50
-
N CH 3
446.1
O
311.0
258.0
593.1
II-5-G-i
OOC–C 2 F 5
O
C23H17F10NO6 MW: 593.37
119.0
70.1
F 5 C 2 –COO
418.1
574.1
0 50
100
150
Relative Int. (%)
100
200
250
300
350
Oxymorphone-d3, di-pentafluoropropionyl derivative 119.0
50
F 5 C 2 –COO
450
314.0 261.1
500
550
600
650
600
650
596.1
II-5-G-ii
OOC–C 2 F 5
O
C23H14D3F10NO6 MW: 596.39
73.1
400
-
N CD 3
449.1
O
421.1
577.1
0 50
100
150
200
250
300
350 m/z
400
Relative Int. (%)
100 F 7 C 3 –COO
169.0
69.0
O
50 207.0
O
115.1
OOC–C 3 F 7
-
N CH 3
361.0 308.1
450
500
550
II-5-H-i
Oxymorphone, di-heptafluorobutyryl derivative
496.1
C25H17F14NO6 MW: 693.38
468.2
693.1
674.1
0 50
100
150
200
250
Relative Int. (%)
100
F 7 C 3 –COO
169.0
73.1
300
O
50
350
500
550
499.1
-
N CD 3
364.0
600
650
Oxymorphone-d3, di-heptafluorobutyryl derivative
II-5-H-ii
311.1
207.0
450
OOC–C 3 F 7
O
115.1
400
700
750
696.1
C25H14D3F14NO6 MW: 696.40 677.1
471.1
0 50
100
Relative Int. (%)
100
150
200
Oxymorphone, di-trimethylsilyl derivative
50
73.1
C23H35NO4Si2 MW: 445.70
250
300
(H3C)3Si–O O
350
400 m/z
450
500
550
600
700
750
445.2
II-5-I-i
O–Si(CH3)3
650
-
N CH 3
O
260.1
287.1
331.1
371.3
430.2
0 50
100
Relative Int. (%)
100
150
200
Oxymorphone-d3, (H C) Si–O 3 3 di-trimethylsilyl derivative O
50
73.1
C23H32D3NO4Si2 MW: 448.72
250
300
350
400
500
450
500
448.2
II-5-I-ii
O–Si(CH3)3
450
-
N CD 3
O
331.1
263.1
371.3
433.2
0 50
100
150
200
250
300 m/z
Appendix One — Mass Spectra
© 2010 by Taylor and Francis Group, LLC
350
400
161
Figure II-5. (Continued)
Relative Int. (%)
100
73.1
Oxymorphone, tri-trimethylsilyl derivative
50
(H3C)3Si–O
O–Si(CH3)3
O
C26H43NO4Si3 MW: 517.88
502.2
-
N CH 3
(H3C)3Si–O
355.1
412.2
232.1
147.1
517.3
II-5-J-i
0 50 relative Int. (%)
100
100 73.1
150
200
250
Oxymorphone-d3, tri-trimethylsilyl derivative
350
(H3C)3Si–O
400
O–Si(CH3)3
O
C26H40D3NO4Si3 MW: 520.90
50
300
450
550 520.3
II-5-J-ii
505.2
-
N CD 3
(H3C)3Si–O
355.1 415.2
242.1
147.1
500
0 50
100
150
200
250
300 m/z
350
400
450
Relative Int. (%)
100 (H3C)3C(H3C)2SiO O
50
500
358.1
II-5-K-i
OH
Oxymorphone, t-butyldimethylsilyl derivative
-
N CH 3
255.1
O
C23H33NO4Si MW: 415.60
315.1 297.1
216.0
73.1
550
330.2
415.2
0 50
100
150
200
250
300
350
Relative Int. (%)
100 (H3C)3C(H3C)2SiO O
50
400 361.2
II-5-K-ii
OH
Oxymorphone-d3, t-butyldimethylsilyl derivative
-
N CD 3
255.1
O
73.1
C23H30D3NO4Si MW: 418.62
315.1 297.1
216.1
450
333.2
418.2
0 50
Relative Int. (%)
100
100
150
200
Oxymorphone, methoxyimino/ethyl derivative
70.1
300
350
400
450
358.2
H 5 C 2 –O
OH
O
C20H26N2O4 MW: 358.43
50
250 m/z
II-5-L-i
-
N CH 3
H 3CO–N
244.1
214.1
115.1
270.1
301.2
327.2
0 50 Relative Int. (%)
100
100
150
Oxymorphone-d3, methoxyimino/ethyl derivative
250
300
350
400 361.2
H 5 C 2 –O
OH
O
C20H23D3N2O4 MW: 361.45
50
200
II-5-L-ii
-
N CD 3
H 3CO–N
73.1 115.0
247.1
217.1
302.2
330.1
0 50
100
150
200
250 m/z
Figure II — Opioids
© 2010 by Taylor and Francis Group, LLC
300
350
400
162
Figure II-5. (Continued)
Relative Int. (%)
100
OH
O
C20H24N2O5 MW: 372.42
50
372.2
H 3C–COO
Oxymorphone, methoxyimino/acetyl derivative
II-5-M-i
-
N CH 3
H 3CO–N
216.1
329.2
258.1
115.0
355.2
281.1
0 50 Relative Int. (%)
100
100
150
200
Oxymorphone-d3, methoxyimino/acetyl derivative
50
250
350
400 375.2
H 3C–COO
OH
O
C20H21D3N2O5 MW: 375.43
300
II-5-M-ii
-
N CD 3
H 3CO–N
219.1
115.2
261.1
332.2
284.2
358.2
0 50
100
150
200
250
300
350
400
m/z Relative Int. (%)
100
H 3C–COO
Oxymorphone, methoxyimino/di-acetyl derivative
O
C22H26N2O6 MW: 414.45
50
372.2
OCOCH3
II-5-N-i
414.2
-
N CH 3
H 3CO–N
258.1
216.1
115.1
329.1
281.2
0 50 Relative Int. (%)
100
100
150
200
Oxymorphone-d3, methoxyimino/di-acetyl derivative
300
350
400
450
375.2
H 3C–COO
OCOCH3
O
C22H23D3N2O6 MW: 417.47
50
250
II-5-N-ii
417.2
-
N CD 3
H 3CO–N
218.2
115.1
261.2
332.2
284.1
0 50
100
Relative Int. (%)
100
150
200
250 m/z H 5C 2–COO
Oxymorphone, methoxyimino/propionyl derivative C21H26N2O5 MW: 386.44
50 57.1
70.1
300
O
177.2
115.0 157.1
350
400
450
330.2 OH
-
II-5-O-i
N CH 3
386.2
H 3CO–N
299.1
203.1
273.2
355.2
0 50
100
Relative Int. (%)
100
150
200
Oxymorphone-d3, methoxyimino/propionyl derivative
50 57.1 73.1
250 H 5C 2–COO O
C21H23D3N2O5 MW: 389.46
300
350
400
333.2 OH
II-5-O-ii
-
N CD 3
389.2
H 3CO–N
115.1
206.1
174.1
302.1
274.2
358.2
0 50
100
150
200
250 m/z
Appendix One — Mass Spectra
© 2010 by Taylor and Francis Group, LLC
300
350
400
163
Figure II-5. (Continued)
Relative Int .(%)
100
169.1
Oxymorphone, methoxyimino/di-heptafluorobutyryl derivative
69.1
50
II-5-P-i
F 7 C 3 CO–O
O–COC 3 F 7
O
C26H20F14N2O6 MW: 722.42
412.2
525.3
477.2 509.1
-
N CH 3
H 3CO–N
722.3
0 50
100
150
Relative Int .(%)
100
200
250
169.0
350
400
450
Oxymorphone-d3, methoxyimino/di-heptafluorobutyryl derivative
500
550
II-5-P-ii
600
650
F 7 C 3 CO–O
700
415.2
528.2
480.3 512.3
750
O–COC 3 F 7
O
C26H17D3F14N2O6 MW: 725.44
69.1
50
300
-
N CD 3
H 3CO–N
725.4
0 50
100
150
Relative Int. (%)
100
200
250
300
350
400 m/z
Oxymorphone, methoxyimino/ di-trimethylsilyl derivative 73.1
50
450
500
(H3C)3Si–O
600
650
750
474.3
-
N CH 3
H 3CO–N
459.3
287.2 312.1
260.1
700
II-5-Q-i
O–Si(CH3)3
O
C24H38N2O4Si2 MW: 474.74
550
353.2
401.2
417.2
0 50
100
Relative Int. (%)
100
150
200
250
300
Oxymorphone-d3, methoxyimino/ di-trimethylsilyl derivative 73.1
50
350
(H3C)3Si–O
450
500 477.3
II-5-Q-ii
O–Si(CH3)3
O
C24H35D3N2O4Si2 MW: 477.76
400
-
N CD 3
H 3CO–N
462.3
290.2 312.2
263.2
356.2
404.3
417.3
0 50
100
150
200
250
300
350
400
450
500
m/z Relative Int. (%)
100
73.1
50
Oxymorphone, methoxyimino/dit-butyldimethylsilyl derivative
C30H50N2O4Si2 91.1 MW: 558.59
208.1
(H3C)3C(H3C)2Si–O
O–Si(CH3)2C(CH3)3
O
255.1
-
440.4
H 3CO–N
369.4
299.2 329.3
II-5-R-i 501.3
N CH 3
543.1
402.1
558.4
0 50 Relative Int. (%)
100
100 73.1
89.1
50
150
200
250
Oxymorphone-d3, methoxyimino/dit-butyldimethylsilyl derivative C30H47D3N2O4Si2 MW: 561.92
300
350
400
(H3C)3C(H3C)2Si–O O
H 3CO–N
208.1
332.4
282.2
450
500
O–Si(CH3)2C(CH3)3
550
504.4
600
II-5-R-ii
-
N CD 3
390.5
443.3 546.5
561.3
0 50
100
150
200
250
300
350 m/z
Figure II — Opioids
© 2010 by Taylor and Francis Group, LLC
400
450
500
550
600
164
Figure II-5. (Continued)
Relative Int. (%)
100
H 5C 2–COO
Oxymorphone, methoxyimino/ethyl/ propiony derivative
II-5-S-i
C23H30N2O5 MW: 414.49
50
414.3
O–C 2 H 5
O
-
N CH 3
H 3CO–N
357.2
244.1
385.1
214.1
57.1
309.2
341.1
0 50
100
Relative Int. (%)
100
150
200
Oxymorphone-d3, methoxyimino/ethyl/ propiony derivative
250
II-5-S-ii
350
400
-
N CD 3
H 3CO–N
360.2 388.2
247.1
57.1
450 417.3
O–C 2 H 5
O
C23H27D3N2O5 MW: 417.51
50
300
H 5C 2–COO
312.2
217.1
344.2
0 50
100
Relative Int. (%)
100
150
200
Oxymorphone, methoxyimino/ethyl/ trimethylsilyl derivative
50
250 m/z
300
H 5 C 2 –O
II-5-T-i
214.1
100
-
415.3
243.1
Relative Int. (%)
373.2
309.1
150
200
Oxymorphone-d3, methoxyimino/ethyl/ trimethylsilyl derivative
250
300
H 5 C 2 –O
II-5-T-ii
350
401.2
400
450 433.3
O–Si(CH3)3
O
C23H31D3N2SiO4 73.1 MW: 433.63
50
430.3
N CH 3
0 50
450
H 3CO–N
115.1
100
400
O–Si(CH3)3
O
C23H34N2SiO4 73.1 MW: 430.61
350
-
N CD 3
H 3CO–N
217.1
246.2
115.1
373.2
312.2
418.3 404.3
0 50
100
150
Relative Int. (%)
100
200
H 5 C 2 –O O
50
250 m/z
300
350
358.2
II-5-U-i
O–Si(CH3)2C(CH3)3
-
N CH 3
400
Oxymorphone, methoxyimino/ethyl/ t-butyldimethylsilyl derivative C26H40N2O4Si MW: 472.69
H 3CO–N
70.1
214.1
115.1
450
301.2 327.2
244.1
0 50
100
150
Relative Int. (%)
100
200
H 5 C 2 –O O
50
250
300
350
II-5-U-ii
O–Si(CH3)2C(CH3)3
-
400 361.2
N CD 3
217.1
115.0
500
Oxymorphone-d3, methoxyimino/ethyl/ t-butyldimethylsilyl derivative C26H37D3N2O4Si MW: 475.71
H 3CO–N
73.1
450
247.1
301.2
330.1
0 50
100
150
200
250
300 m/z
Appendix One — Mass Spectra
© 2010 by Taylor and Francis Group, LLC
350
400
450
500
165
Figure II-5. (Continued)
Relative Int. (%)
100
Oxymorphone, methoxyimino/acetyl/ trimethylsilyl derivative
402.3
-
N CH 3
H 3CO–N
203.1
115.1
O–Si(CH3)3
O
215.1
73.1 C H N O Si 23 32 2 5 MW: 444.60
50
444.3
H 3C–COO
II-5-V-i
312.2
281.2
255.1
174.1
345.2
429.3
371.2
0 50
100
Relative Int. (%)
100
150
200
Oxymorphone-d3, methoxyimino/acetyl/ trimethylsilyl derivative
73.1
50
250
350
218.1
400
450 447.3
H 3C–COO
II-5-V-ii
C23H29D3N2O5Si MW: 447.62
O–Si(CH3)3
O
405.3
-
N CD 3
H 3CO–N
206.1
174.1
115.1
300
255.1
315.2
284.1
345.2
432.2
374.3
0 50
100
Relative Int. (%)
100
150
Oxymorphone, methoxyimino/propionyl/ trimethylsilyl derivative
50
C24H34N2O5Si MW: 458.63
73.1
200
250 m/z
300
II-5-W-i
H 5C 2–COO
350
400
450
458.3
402.3 O–Si(CH3)3
O
-
N CH 3
215.1 H 3CO–N
203.1
255.0
312.1
345.1
443.2
371.1
0 50
100
Relative Int. (%)
100
150
200
Oxymorphone-d3, methoxyimino/propionyl/ trimethylsilyl derivative
50
C24H31D3N2O5Si MW: 461.65
73.1
250
II-5-W-ii
300
350
400
450
500 461.3
405.2
H 5C 2–COO
O–Si(CH3)3
O
-
N CD 3
218.1 H 3CO–N
206.2
255.1
345.2
315.1
446.3
374.3
0 50
100
150
200
250
300
350
400
450
500
m/z Relative Int. (%)
100
73.1
Oxymorphone, hydroxylimino/ tri-trimethylsilyl derivative
II-5-X-i
(H3C)3Si–O O
C26H44N2O4Si3 MW: 532.89
50
427.3
0 50 Relative Int. (%)
100
100 73.1
150
200
Oxymorphone-d3, hydroxylimino/ tri-trimethylsilyl derivative
250
300
350
II-5-X-ii
400
(H3C)3Si–O O
C26H41D3N2O4Si3 MW: 535.91
50
290.2
150
200
250
300 m/z
Figure II — Opioids
© 2010 by Taylor and Francis Group, LLC
450
O–Si(CH3)3
517.3
500
550
535.3
-
N CD 3
430.3
0 100
459.2
(H3C)3Si–O–N
147.2
50
-
N CH 3
287.1 (H3C)3Si–O–N
147.0
532.3
O–Si(CH3)3
350
400
462.3
450
520.3
500
550
166
Figure II-5. (Continued)
Relative Int. (%)
100
Oxymorphone, hydroxylimino/di-ethyl/ propionyl derivative
50
H 5C 2–COO
II-5-Y-i
O
C24H32N2O5 MW: 428.53
57.2
244.2
115.1
-
N CH 3
371.3
H 5 C 2 –O–N
214.0
173.2
428.3 O–C 2 H 5
399.4
309.3 355.2
0 50
100
Relative Int. (%)
100
150
Oxymorphone-d3, hydroxylimino/di-ethyl/ propionyl derivative
50
200
250
II-5-Y-ii
H 5C 2–COO O
C24H29D3N2O5 MW: 431.55
57.1
115.1
300
350
400
431.4 O–C 2 H 5
374.2
-
N CD 3
247.3 H C –O–N 5 2
402.3
312.2 358.3
217.1
175.1
450
0 50
100
Relative Int. (%)
100 73.1
50
150
Oxymorphone, hydroxylimino/di-ethyl/ trimethylsilyl derivative C24H36N2O4Si MW: 444.63
200
250 m/z
300
H 5 C 2 –O
II-5-Z-i
O
350
400
450
444.4
O–Si(CH3)3
-
N CH 3
H 5 C 2 –O–N
214.2
231.1
243.2
429.4 309.3
325.3 371.3
399.3
0 50
100
Relative Int. (%)
100 73.1
50
150
Oxymorphone-d3, hydroxylimino/di-ethyl/ trimethylsilyl derivative C24H33D3N2O4Si MW: 447.65
200
250
300 H 5 C 2 –O
II-5-Z-ii
O
217.3
246.1 234.3
100
150
200
250 m/z
312.3
300
Appendix One — Mass Spectra
© 2010 by Taylor and Francis Group, LLC
400
450 447.3
O–Si(CH3)3
-
N CD 3
H 5 C 2 –O–N
0 50
350
432.3 328.2
350
374.3 402.3
400
450
167
Figure II-6. Mass spectra of 6-acetylcodeine and its deuterated analogs (6-acetylcodeine-d3).
Relative Int. (%)
100
6-Acetylcodeine (CAS NO. 6703-27-1) C20H23NO4 MW: 341.41
O
50 59.1
H3CO
115.0
81.0
H 3C–COO
124.0
II-6-i -
N CH 3
282.1 341.1
229.0
204.0
162.0
266.1
298.1
326.0
0 50 Relative Int. (%)
100
100
150
6-Acetylcodeine-d3
O H 3C–COO
62.1
115.0
81.0
250
H3CO
C20H20D3NO4 MW: 344.39
50
200
II-6-ii -
N CD 3
350 344.1
285.1
232.1
207.0
165.0
127.0
300
269.1
301.1
329.1
0 50
100
150
200 m/z
Figure II — Opioids
© 2010 by Taylor and Francis Group, LLC
250
300
350
168
Figure II-7. Mass spectra of codeine and its deuterated analogs (codeine-d3, -d6, 13C1-d3): (A) underivatized; (B) acetylderivatized; (C) TFA-derivatized; (D) propionyl-derivatized; (E) PFP-derivatized; (F) HFB-derivatized; (G) TMSderivatized; (H) t-BDMS-derivatized.
Relative Int. (%)
100
Codeine (CAS NO. 76-57-3) C18H21NO3 MW: 299.36
50
299.1
H3CO O
124.1
115.1
59.1
-
N CH 3
HO
162.1
II-7-A-i
229.1 214.1
188.1
282.1
0 50 Relative Int. (%)
100
100
150
200
Codeine-d3 (CAS NO. 70420-71-2)
302.2
O
165.1
350
II-7-A-ii
-
N CD 3
HO
232.1
127.1
115.1
62.1
300
H3CO
C18H18D3NO3 MW: 302.38
50
250
217.1
188.1
285.2
0 50 Relative Int. (%)
100
100
150
200
Codeine-d6
300 305.2
D3CO
C18H15D6NO3 MW: 305.40
50
250
O
165.1 127.1
115.1
62.1
II-7-A-iii
-
N CD 3
HO
235.1 217.1
191.1
350
288.2
0 50 Relative Int. (%)
100
100
150
200
Codeine-13C1-d3 C17 1H18D3NO3 MW: 303.38
303.2
O
166.1 128.1
115.1
63.1
300
H3CO
13C
50
250
II-7-A-iv
13 N— CD3
HO
218.1
188.1
350
233.1 284.2
0 50
Relative Int. (%)
100
100
II-7-B-i
150
341.2
-
N CH 3
124.1
81.1
300
350
Codeine, acetyl derivative
282.1
H 3C–COO
59.1
250
H3CO O
50
200 m/z
C20H23NO4 MW: 341.40
229.1 204.1
162.1
298.1
0 50 Relative Int. (%)
100
100
150
300
350
-
81.1
C20H20D3NO4 MW: 344.42
N CD 3
H 3C–COO
232.1 127.1
400 Codeine-d3, acetyl derivative
344.2 285.2
O
62.1
250
H3CO
II-7-B-ii
50
200
207.1
165.1
301.2
0 50
100
150
200
250
Appendix One — Mass Spectra
© 2010 by Taylor and Francis Group, LLC
300
350
400
169
Figure II-7. (Continued)
Relative Int. (%)
100
D3CO
II-7-B-iii
347.2
O
-
127.1
81.1
C20H17D6NO4 MW: 347.44
N CD 3
H 3C–COO
50 62.1
Codeine-d6, acetyl derivative
288.2
235.1 207.1
165.1
304.2
0 50
100
150
Relative Int. (%)
100
200
300
H3CO
II-7-B-iv 50 128.1
345.2
13
N— CD3
H 3C–COO
81.1
350
286.1
O
63.1
250
400
Codeine-13C1-d3, acetyl derivative C1913C1H20D3NO4 MW: 345.41
233.1
208.1
165.1
302.1
0 50
100
150
200
250
300
350
400
m/z Relative Int. (%)
100
50
282.1
Codeine, trifluoroacetyl derivative
H3CO
C20H20F3NO4 MW: 395.37
F 3C–COO
O
115.1
69.1
152.1
II-7-C-i
395.1
-
N CH 3
225.1
338.0
0 50 Relative Int. (%)
100
100
150
200
Codeine-d3, trifluoroacetyl derivative
50
O F 3C–COO
350
II-7-C-ii
400
450
398.1
-
N CD 3
225.1
152.0
115.0
300 285.1
H3CO
C20H17D3F3NO4 MW: 398.39 69.0
250
338.0
0 50 Relative Int. (%)
100
100
150
200
Codeine-d6, trifluoroacetyl derivative
50
O F 3C–COO
350
II-7-C-iii
400
450
401.1
-
N CD 3
228.1
152.0
115.0
300 288.1
D3CO
C20H14D6F3NO4 MW: 401.41 69.1
250
341.1
0 50 Relative Int. (%)
100
100
150
200
Codeine-13C1-d3, trifluoroacetyl derivative
50
250
286.1
H3CO
O
C1913C1H17D3F3NO4 MW: 399.38 69.0 115.1
F 3C–COO
152.1
300
100
150
250 m/z
Figure II — Opioids
© 2010 by Taylor and Francis Group, LLC
450
399.1
225.1
200
400
II-7-C-iv
13 N— CD3
338.0
0 50
350
300
350
400
450
170
Figure II-7. (Continued)
Relative Int. (%)
100
Codeine, propionyl derivative
H3CO O
C21H25NO4 MW: 355.43
50
-
229.1 218.1
162.1
124.1
355.1
N CH 3
H 5C 2–COO
57.1
II-7-D-i
282.1
298.1
0 50
100
Relative Int. (%)
100
150
200
Codeine-d3, propionyl derivative
300
H3CO
127.1
57.1
II-7-D-ii
400 358.2
-
N CD 3
H 5C 2–COO
232.1 221.1
165.1
350
285.2
O
C21H22D3NO4 MW: 358.45
50
250
301.1
0 50
100
Relative Int. (%)
100
150
200
Codeine-d6, propionyl derivative
300
350
D3CO
288.2
O
C21H19D6NO4 MW: 361.47
50
250
165.1
127.1
361.2
-
N CD 3
H 5C 2–COO
57.1
II-7-D-iii
400
235.1 221.1
304.2
0 50 Relative Int. (%)
100
100
150
200
Codeine-13C
1-d3, propionyl derivative
286.2
O N H 5C 2–COO
166.1
128.1
57.1
300
H3CO
C2013C1H22D3NO4 MW: 359.44
50
250
350
II-7-D-iv
400 359.2
-13CD3 233.1
222.1
302.1
0 50
100
150
200
250
300
350
400
m/z
Relative Int. (%)
100
Codeine, pentafluoropropionyl derivative
282.1
II-7-E-i
O
C21H20F5NO4 MW: 445.38
50
H3CO
F 5 C 2 –COO
119.0
-
N CH 3
445.1
225.1
165.0
0 50 Relative Int. (%)
100
100
150
200
Codeine-d3, pentafluoropropionyl derivative
250
300 285.1
II-7-E-ii
400
F 5 C 2 –COO
119.0
450
500
H3CO O
C21H17D3F5NO4 MW: 448.40
50
350
-
448.1
N CD 3
225.0
152.1
0 50
100
150
200
250
300
Appendix One — Mass Spectra
© 2010 by Taylor and Francis Group, LLC
350
400
450
500
171
Figure II-7. (Continued)
Relative Int. (%)
100
288.1
Codeine-d6, pentafluoropropionyl derivative
451.1
O
C21H14D6F5NO4 MW: 451.42
50
D3CO
II-7-E-iii
-
N CD 3
F 5 C 2 –COO
119.0
152.1
228.1
0 50
100
Relative Int. (%)
100
150
Codeine-13C1-d3, pentafluoropropionyl derivative
200
250
350
400
450
500
286.1 H3CO
II-7-E-iv
O
C2013C1H17D3F5NO4 MW: 449.39 119.0 152.1
50
300
13 N— CD3
F 5 C 2 –COO
449.1
225.0
0 50
100
150
200
250
300
350
400
450
500
m/z Relative Int. (%)
100
Codeine, heptafluorobutyryl derivative
282.1
II-7-F-i
495.1
O
C22H20F7NO4 MW: 495.39
50
H3CO
-
N CH 3
F 7 C 3 –COO
69.0
225.1
437.9
0 50
100
Relative Int. (%)
100
150
Codeine-d3, heptafluorobutyryl derivative
200
250
300
II-7-F-ii
400
450
H3CO
500
550
498.1
O
C22H17D3F7NO4 MW: 498.41
50
350
285.1
-
N CD 3
F 7 C 3 –COO
69.1
225.1
438.0
0 50
100
Relative Int. (%)
100
150
Codeine-d6, heptafluorobutyryl derivative
50
200
250
300
350
400
450
500
550
288.1
II-7-F-iii
D3CO O
C22H14D6F7NO4 MW: 501.42
F 7 C 3 –COO
69.0
501.1
-
N CD 3
228.1
441.1
0 50
100
Relative Int. (%)
100
150
Codeine-13C1-d3, heptafluorobutyryl derivative
50
62.1
200
250
II-7-F-iv
300
350
400
450
500
550
286.1 H3CO O
13
N— CD3
C2113C1H17D3F7NO4 MW: 499.40 152.0
F 7 C 3 –COO
224.0
499.1 438.0
0 50
100
150
200
250
300 m/z
Figure II — Opioids
© 2010 by Taylor and Francis Group, LLC
350
400
450
500
550
172
Figure II-7. (Continued)
Relative Int. (%)
100
Codeine, trimethylsilyl derivative
371.1
H3CO
II-7-G-i
O
50
C21H29NO3Si MW: 371.55
73.1
178.1
196.1
-
N CH 3
(H3C)3Si–O
234.1
146.0
280.1
94.1
313.1
343.1
0 50
100
Relative Int. (%)
100
150
200
Codeine-d3, trimethylsilyl derivative
250
300
350 374.2
H3CO
II-7-G-ii
O
50
C21H26D3NO3Si MW: 374.56
73.1
181.1
199.1
400
-
N CD 3
(H3C)3Si–O
237.1
149.1
283.1
97.1
313.1
346.1
0 50
100
Relative Int. (%)
100
150
200
Codeine-d6, trimethylsilyl derivative
50
300
350
D3CO
II-7-G-iii 184.1
199.1
400 377.2
O
C21H23D6NO3Si MW: 377.58
73.1
250
-
N CD 3
(H3C)3Si–O
237.1
149.1
316.1
288.1
97.1
349.2
0 50
100
Relative Int. (%)
100
150
200
Codeine-13C
1-d3, trimethylsilyl derivative
73.1
50
300
II-7-G-iv 182.1
C2013C1H26D3NO3Si MW: 375.56 150.1
250
350
H3CO O
200.1
400 375.2
13
N— CD3
238.2 (H3C)3Si–O
284.1
98.1
313.1
347.2
0 50
100
150
200
250
300
350
400
m/z
Relative Int. (%)
100
O
50
(H3C)3C(H3C)2Si–O
73.1 146.0
313.1
II-7-H-i
H3CO
Codeine, t-butyldimethylsilyl derivative
-
N CH 3
178.1
356.1 235.1
C24H35NO3Si MW: 413.64
285.1 413.2
0 50
100
Relative Int. (%)
100
150
200
O (H3C)3C(H3C)2Si–O
350
359.2 235.1
C24H32D3NO3Si MW: 416.65
285.1 416.2
0 50
100
150
200
250
Appendix One — Mass Spectra
© 2010 by Taylor and Francis Group, LLC
450
Codeine-d3, t-butyldimethylsilyl derivative
-
181.1
400
313.1
N CD 3
73.1 149.1
300
II-7-H-ii
H3CO
50
250
300
350
400
450
173
Figure II-7. (Continued)
Relative Int. (%)
100 D3CO O
50
(H3C)3C(H3C)2Si–O
73.1
149.1
II-7-H-iii
316.1
-
Codeine-d6, t-butyldimethylsilyl derivative 362.2
N CD 3
238.1 184.1
C24H29D6NO3Si MW: 419.66
288.1 419.3
0 50
100
Relative Int. (%)
100
150
200
O (H3C)3C(H3C)2Si–O
350
13 N— CD3
235.1
450
1-d3, t-butyldimethylsilyl derivative
360.2
182.1
400 Codeine-13C
II-7-H-iv
73.1 150.1
300 313.1
H3CO
50
250
C2313C1H32D3NO3Si MW: 417.64
285.2 417.3
0 50
100
150
200
250 m/z
Figure II — Opioids
© 2010 by Taylor and Francis Group, LLC
300
350
400
450
174
Figure II-8. Mass spectra of hydrocodone and its deuterated analogs (hydrocodone-d3, -d6): (A) underivatized; (B) ethyl-derivatized; (C) acetyl-derivatized; (D) TMS-derivatized; (E) t-BDMS-derivatized; (F) MA-derivatized; (G) HA/TMS-derivatized. Relative Int. (%)
100
Hydrocodone (CAS NO. 125-29-1) C18H21NO3 MW: 299.37
50
299.1
H3CO
HH
O
II-8-A-i
H
-
242.1
N CH 3 O
96.1
59.1
185.0
115.0
214.1
270.1 284.1
0 50 Relative Int. (%)
100
100
150
Hydrocodone-d3 (CAS NO. 136765-36-1) C18H18D3NO3 MW: 302.35
200
250
350 302.1
H3CO
HH
O
II-8-A-ii
H
-
N CD 3
50
O
99.1
62.1
300
242.1
185.0
115.0
273.1 287.1
214.0
0 50 Relative Int. (%)
100
100
150
Hydrocodone-d6
250
DD
O
350
II-8-A-iii
D
-
N CD 3 O
99.1
62.1
300 305.1
H3CO
C18H15D6NO3 MW: 305.32
50
200
245.1 188.0
115.0
217.1
276.1 287.1
0 50
Relative Int. (%)
100
100
Hydrocodone, ethyl derivative
150
70.0
115.1
300
350
327.3
O
298.2
-
N CH 3
190.2
77.2
250
H3CO
II-8-B-i
C20H25NO3 MW: 327.42
50
200 m/z
H 5C 2O
140.1
270.1
225.1
312.2
282.2
0 50 Relative Int. (%)
100
100
150
Hydrocodone-d3, ethyl derivative
II-8-B-ii
73.1
300
350 330.2
H3CO
301.2
-
N CD 3
193.2 115.1
77.0
250
O
C20H22D3NO3 MW: 330.44
50
200
H 5C 2O
270.2
225.2
143.1
312.2 285.2
0 50 Relative Int. (%)
100
100 Hydrocodone-d6, ethyl derivative
150
73.2
250 H3CO
II-8-B-iii
DD
304.2
-
H 5C 2O
143.2
273.2
228.1
77.1
350
D
N CD 3
193.2 115.1
300
333.3
O
C20H19D6NO3 MW: 333.45
50
200
315.2 288.2
0 50
100
150
200 m/z
Appendix One — Mass Spectra
© 2010 by Taylor and Francis Group, LLC
250
300
350
175
Figure II-8. (Continued)
Relative Int. (%)
100
H3CO
II-8-C-i
55.2
115.1
O
-
N CH 3
50
H 5COC–O
91.1
341.3
Hydrocodone, acetyl derivative
298.2
C20H23NO4 MW: 341.40 225.1
242.1 284.2
185.1
326.4
270.2
0 50
100
150
Relative Int. (%)
100
H3CO
115.1
II-8-C-ii
O
55.1
50 97.1
200
H 5COC–O
250
300
350 344.3
Hydrocodone-d3, acetyl derivative
-
N CD 3 C20H20D3NO4
301.4
242.2 285.2
MW: 344.42
185.1
225.1
326.1
273.1
0 50
100
150
Relative Int. (%)
100
II-8-C-iii
H3CO
115.1
O
55.1
50
H 5COC–O
97.1
200 DD
250
300
Hydrocodone-d6, acetyl derivative
D
350 347.4 304.3
C20H17D6NO4 N - CD 3 MW: 347.44 228.1 188.1
245.3
288.3 329.2
276.2
0 50
100
Relative Int. (%)
100 73.1
150
Hydrocodone, trimethylsilyl derivative
200 m/z
300
371.3
O
234.2
-
N CH 3 (H3C)3Si–O
184.1
115.1
350
H3CO
II-8-D-i
C21H29NO3Si MW: 371.54
50
250
356.2
314.2
282.2
0 50 Relative Int. (%)
100
100 73.1
150
Hydrocodone-d3, trimethylsilyl derivative
200
250
350
400 374.3
H3CO
II-8-D-ii
237.2 O
C21H26D3NO3Si MW: 374.56
50
300
-
N CD 3
(H3C)3Si–O
187.2
283.2
115.1
356.2
314.2
0 50 Relative Int. (%)
100
100 73.1
150
Hydrocodone-d6, trimethylsilyl derivative
200
250
II-8-D-iii
C21H23D6NO3Si MW: 377.58
50
H3CO
237.2
O
350
400 377.3
DD
D
-
N CD 3 (H3C)3Si–O
187.2
115.1
300
359.3
317.2
286.2
0 50
100
150
200
250 m/z
Figure II — Opioids
© 2010 by Taylor and Francis Group, LLC
300
350
400
176
Figure II-8. (Continued)
Relative Int. (%)
100
73.1
Hydrocodone, t-butyldimethylsilyl derivative
115.1
356.2
313.2
O
II-8-E-i
-
N CH 3
C24H35NO3Si MW: 413.63
50
H3CO
(H3C)3C(H3C)2Si–O
152.1
179.1
216.2
276.2 413.3
398.3
0 50
100
Relative Int. (%)
100
73.2
150
200
Hydrocodone-d3, t-butyldimethylsilyl derivative
115.1
152.0
300
H3CO
350
400
450
II-8-E-ii
313.2
O
C24H32D3NO3Si MW: 416.64
50
250
359.3
-
N CD 3
(H3C)3C(H3C)2Si–O
216.1
179.1
279.2
401.5
416.3
0 50
100
Relative Int. (%)
100
73.1
150
200
Hydrocodone-d6, t-butyldimethylsilyl derivative
115.2
152.1
H3CO
300
350
400
316.2
D
II-8-E-iii
-
N CD 3 (H3C)3C(H3C)2Si–O
179.2
216.1
279.3
100
Relative Int. (%)
100
150
200
Hydrocodone, methoxyimino derivative 57.1 71.2
50
419.4
401.2
0 50
450
362.3
DD
O
C24H29D6NO3Si MW: 419.66
50
250
C19H24N2O3 MW: 328.41 99.1 115.1
250 m/z
300
350
H3CO
II-8-F-i
O H3CO—N
400
450
328.2 297.2
-
N CH 3
207.0
271.1
240.1
313.1
0 50
100
Relative Int. (%)
100
150
Hydrocodone-d3, methoxyimino derivative
115.1
73.1
250
H3CO
H3CO—N
126.1
300
II-8-F-ii
O
C19H21D3N2O3 MW: 331.42
50
200
350 331.2
300.2
-
N CD 3
271.1 316.2
240.2
185.1
0 50
100
Relative Int. (%)
100
150
Hydrocodone-d6, methoxyimino derivative C19H18D6N2O3 MW: 334.44
50 73.1
85.1
115.1
200 H3CO O H3CO—N
126.1
149.1
250
DD
300
350 334.3
II-8-F-iii
303.2
D
-
N CD 3
188.2
243.1
274.2 316.2
0 50
100
150
200 m/z
Appendix One — Mass Spectra
© 2010 by Taylor and Francis Group, LLC
250
300
350
177
Figure II-8. (Continued)
Relative Int. (%)
100
Hydrocodone, hydroxylimino/trimethylsilyl derivative
50
297.2
H3CO
386.3
II-8-G-i
O
-
N CH 3
73.1 C21H30N2O3Si MW: 386.56 115.0
(H3C)3Si–O–N
185.1
329.1 371.2
213.0 282.2
0 50
100
Relative Int. (%)
100
150
200
73.1
350
H3CO
400 389.3
II-8-G-ii
O
C21H27D3N2O3Si MW: 389.58
300 300.2
Hydrocodone-d3, hydroxylimino/trimethylsilyl derivative
50
250
-
N CD 3 (H3C)3Si–O–N
185.1
115.1
213.1
329.2
285.2
374.2
0 50
100
Relative Int. (%)
100
150
Hydrocodone-d6, hydroxylimino/trimethylsilyl derivative
250
300
350
400
303.2 H3CO
DD
O
73.1 C21H24D6N2O3Si MW: 392.60
50
200
392.3
II-8-G-iii
D
-
N CD 3 (H3C)3Si–O–N
115.1
216.1
188.1
332.2
288.2
377.3
0 50
100
150
200
250 m/z
Figure II — Opioids
© 2010 by Taylor and Francis Group, LLC
300
350
400
178
Figure II-9. Mass spectra of dihydrocodeine and its deuterated analogs (dihydrocodeine-d3, -d6): (A) underivatizedderivatized; (B) acetyl-derivatized; (C) TFA-derivatized; (D) propionyl-derivatized; (E) PFP-derivatized; (F) HFBderivatized; (G) TMS-derivatized; (H) t-BDMS-derivatized. Relative Int. (%)
100
II-9-A-i
O
C18H23NO3 MW: 301.38
50
301.2
H3CO
Dihydrocodeine (CAS NO. 125-28-0)
-
N CH 3
HO
164.1
70.1
115.1
244.1
185.1
284.2
0 50 Relative Int. (%)
100
100
150
250
300
C18H20D3NO3 MW: 304.40
II-9-A-ii
O
-
N CD 3
HO
167.1 115.0
73.0
350 304.1
H3CO
Dihydrocodeine-d3
50
200
287.1
245.1
185.0
0 50 Relative Int. (%)
100
100
150
Dihydrocodeine-d6
250
300
II-9-A-iii
O
-
N CD 3
HO
167.1 73.1
350 307.2
D3CO
C18H17D6NO3 MW: 307.42
50
200
290.2
248.1
188.1
115.1
0 50
Relative Int. (%)
100
100
150
Dihydrocodeine, acetyl derivative
70.1
250
H3CO
350
343.2
-
N CH 3
H 3C–COO
115.1
300
II-9-B-i
O
C20H25NO4 MW: 343.42
50
200 m/z
284.2
226.1
300.1
185.0
146.1
0 50 Relative Int. (%)
100
100
150
200
Dihydrocodeine-d3, acetyl derivative
300
H3CO
350
II-9-B-ii
O
C20H22D3NO4 MW: 346.44
50
250
400
346.1
-
N CD 3
H 3C–COO
287.1
303.1
226.0
73.0
115.0
185.0
149.0
0 50 Relative Int. (%)
100
100
150
200
Dihydrocodeine-d6, acetyl derivative
73.1
-
N CD 3
H 3C–COO
149.1
350
II-9-B-iii
O
115.1
300
D3CO
C20H19D6NO4 MW: 349.45
50
250
227.1
290.2
400
349.2
306.2
183.1
0 50
100
150
200
250 m/z
Appendix One — Mass Spectra
© 2010 by Taylor and Francis Group, LLC
300
350
400
179
Figure II-9. (Continued)
Relative Int. (%)
100
Dihydrocodeine, trifluoroacetyl derivative
59.1
II-9-C-i
O
C20H22F3NO4 MW: 397.39
50
397.1
H3CO
-
N CH 3
F 3C–COO
284.1
185.0
115.1
300.1
227.1
340.1
0 50 Relative Int. (%)
100
100
150
200
Dihydrocodeine-d3, trifluoroacetyl derivative
62.1
300
350
450
II-9-C-ii
O
-
N CD 3
F 3C–COO
287.1
185.0
115.0
400 400.1
H3CO
C20H19D3F3NO4 MW: 400.41
50
250
303.1
227.0
340.0
0 50 Relative Int. (%)
100
100
150
200
Dihydrocodeine-d6, trifluoroacetyl derivative
300
350
400
450 403.2
D3CO
II-9-C-iii
O
C20H16D6F3NO4 MW: 403.42 62.1 115.1
50
250
-
N CD 3
F 3C–COO
290.2
188.1
306.2
230.1
343.1
0 50
Relative Int. (%)
100
100
150
200
Dihydrocodeine, propionyl derivative
70.1
300
400
450
II-9-D-i
O
-
N CH 3
H 5C 2–COO
284.1
300.1
226.1
199.1
146.1
350
357.2
H3CO
C21H27NO4 MW: 357.44
50
250 m/z
0 50 Relative Int. (%)
100
100
150
200
Dihydrocodeine-d3, propionyl derivative
73.1
300
400
II-9-D-ii
O
-
N CD 3
H 5C 2–COO
303.2
287.2 226.1
199.1
149.1
350 360.2
H3CO
C21H24D3NO4 MW: 360.46
50
250
0 50 Relative Int. (%)
100
100
150
200
Dihydrocodeine-d6, propionyl derivative
73.2
300
D3CO
H 5C 2–COO
350
400 363.2
II-9-D-iii
O
C21H21D6NO4 MW: 363.48
50
250
-
N CD 3
306.2
290.2 229.1
149.1
202.1
0 50
100
150
200
250 m/z
Figure II — Opioids
© 2010 by Taylor and Francis Group, LLC
300
350
400
180
Figure II-9. (Continued)
Relative Int. (%)
100
Dihydrocodeine, pentafluoropropionyl derivative
O
C21H22F5NO4 MW: 447.40
50
284.1 185.0
119.0
59.1
447.1
H3CO
II-9-E-i
-
N CH 3
F 5 C 2 –COO
300.1
227.1
390.1
432.1
0 50
100
Relative Int. (%)
100
150
200
Dihydrocodeine-d3, pentafluoropropionyl derivative
250
300
350
400
O
62.1
287.1 185.0
118.9
-
N CD 3
F 5 C 2 –COO
303.1
227.0
500 450.1
H3CO
II-9-E-ii
C21H19D3F5NO4 MW: 450.41
50
450
390.0
435.1
0 50
100
Relative Int. (%)
100
150
200
Dihydrocodeine-d6, pentafluoropropionyl derivative
250
300
62.1
400
188.1
-
N CD 3
F 5 C 2 –COO
306.2
230.1
500 453.2
O
290.2
119.0
450
D3CO
II-9-E-iii
C21H16D6F5NO4 MW: 453.43
50
350
393.1
435.1
0 50
100
150
200
250
300
350
400
450
500
m/z Relative Int. (%)
100
Dihydrocodeine, heptafluorobutyryl derivative
O
C22H22F7NO4 MW: 497.40
50
F 7 C 3 –COO
284.1
59.1
497.1
H3CO
II-9-F-i
146.1
185.1
227.1
-
N CH 3
300.1
440.0 482.0
0 50 Relative Int. (%)
100
100
150
200
Dihydrocodeine-d3, heptafluorobutyryl derivative C22H19D3F7NO4 MW: 500.42 62.1
50
250
300
350
400
F 7 C 3 –COO
-
N CD 3
303.1
227.0
550
500.1
O
287.1 185.0
500
H3CO
II-9-F-ii
149.0
450
440.0 485.1
0 50 Relative Int. (%)
100
100
150
200
Dihydrocodeine-d6, heptafluorobutyryl derivative
250
62.1
350
400
290.2 188.1
500
F 7 C 3 –COO
-
N CD 3
306.2
227.1
550 503.1
O
149.1
450
D3CO
II-9-F-iii
C22H16D6F7NO4 MW: 503.44
50
300
443.0 485.1
0 50
100
150
200
250
300 m/z
350
Appendix One — Mass Spectra
© 2010 by Taylor and Francis Group, LLC
400
450
500
550
181
Figure II-9. (Continued)
Relative Int. (%)
100
Dihydrocodeine, trimethylsilyl derivative
O
C21H31NO3Si MW: 373.56
50
(H3C)3Si–O
146.1
73.1
373.2
H3CO
II-9-G-i -
N CH 3
236.1
178.1
315.1
282.1
358.1
0 50
100
Relative Int. (%)
100
150
200
Dihydrocodeine-d3, trimethylsilyl derivative
300
350
O (H3C)3Si–O
149.0
73.0
400 376.2
H3CO
C21H28D3NO3Si MW: 376.58
50
250
II-9-G-ii -
N CD 3
239.1 285.1
181.0
315.1 361.1
0 50
100
Relative Int. (%)
100
150
200
Dihydrocodeine-d6, trimethylsilyl derivative
300
350
O (H3C)3Si–O
73.1
149.1
400 379.2
D3CO
C21H25D6NO3Si MW: 379.60
50
250
II-9-G-iii -
N CD 3
239.1
184.1
318.1
288.1
364.2
0 50
100
150
200
250
300
350
400
m/z Relative Int. (%)
100
H3CO
Dihydrocodeine, t-butyldimethylsilyl derivative
50 73.1
O
C24H37NO3Si MW: 415.64
(H3C)3C(H3C)2Si–O
315.1 358.2
-
N CH 3
207.0
II-9-H-i
297.1
282.1
146.1
415.2
0 50
100
Relative Int. (%)
100
150
200
Dihydrocodeine-d3, t-butyldimethylsilyl derivative
300
O (H3C)3C(H3C)2Si–O
350 315.0
H3CO
C24H34D3NO3Si MW: 418.65
50
250
400 361.1
450
II-9-H-ii
297.0
-
N CD 3
282.0
73.0
149.0
418.2
204.0
0 50
100
Relative Int. (%)
100
150
200
Dihydrocodeine-d6, t-butyldimethylsilyl derivative
50
73.1
250
300
D3CO O
C24H31D6NO3Si MW: 421.67
(H3C)3C(H3C)2Si–O
400 364.2
450
II-9-H-iii
300.1
-
N CD 3
207.0
149.1
350 318.1
282.1 421.3
0 50
100
150
200
250 m/z
Figure II — Opioids
© 2010 by Taylor and Francis Group, LLC
300
350
400
450
182
Figure II-10. Mass spectra of oxycodone and its deuterated analogs (oxycodone-d3, -d6): (A) underivatized; (B) acetylderivatized; (C) [acetyl]2-derivatized; (D) propionyl-derivatized; (E) TMS-derivatized; (F) [TMS]2-derivatized; (G) t-BDMS-derivatized; (H) [t-BDMS]2-derivatized; (I) MA-derivatized; (J) MA/propionyl-derivatized; (K) MA/TMSderivatized; (L) HA/[propionyl]2-derivatized; (M) HA/[TMS]2-derivatized; (N) HA/ethyl/propionyl-derivatized. Relative Int. (%)
100
315.1
Oxycodone (CAS NO. 76-42-6)
H3CO
C18H21NO4 MW: 315.36
50
O
-
N CH 3
O
70.0
115.1
II-10-A-i
OH
230.1
201.0
140.0
258.0
0 50 Relative Int. (%)
100
100
150
Oxycodone-d3 (CAS NO. 160227-46-3)
H3CO O
C18H18D3NO4 MW: 318.38
50
200
250
300
350 318.1
OH
II-10-A-ii
-
N CD 3
233.1
O
70.0
115.1
204.0
140.0
261.1
0 50 Relative Int. (%)
100
100
150
Oxycodone-d6 (CAS NO. 152477-91-3)
D3CO O
C18H15D6NO4 MW: 321.40
50
200
250
115.0
350 321.2
OH
II-10-A-iii
-
N CD 3
236.1
O
73.1
300
261.1
204.0
143.1
0 50
Relative Int. (%)
100
100
150
Oxycodone, acetyl derivative
H3CO
C20H23NO5 MW: 357.40
50
200 m/z
O
O
250
300
350
357.2
II-10-B-i
OOC–-CH3
314.1
-
N CH 3
212.1
115.1
230.1
298.1
342.1
0 50 Relative Int. (%)
100
100
150
250
300
350
400 360.2
Oxycodone-d3, acetyl derivative
H3CO
C20H20D3NO5 MW: 360.42
50
200
O
O
II-10-B-ii
OOC–CH 3
317.1
-
N CD 3
215.1
115.1
233.1
301.2
342.1
0 50 Relative Int. (%)
100
100
150
Oxycodone-d6, acetyl derivative
D3CO O
C20H17D6NO5 MW: 363.44
50
200
250
300
350
400 363.2
II-10-B-iii
OOC–CH 3
320.2
-
N CD 3
O
215.1
115.1
236.2
304.2
345.1
0 50
100
150
200
250 m/z
Appendix One — Mass Spectra
© 2010 by Taylor and Francis Group, LLC
300
350
400
183
Figure II-10. (Continued)
Relative Int. (%)
100
Oxycodone, di-acetyl derivative
H3CO O
C22H25NO6 MW: 399.44
50
399.2
II-10-C-i
OOC–CH 3
-
N CH 3
H 3C–COO
356.1 240.1
115.1
296.1
280.1
384.1
340.1
0 50 Relative Int. (%)
100
100
150
Oxycodone-d3, di-acetyl derivative
200 H3CO O
C22H22D3NO6 MW: 402.45
50
250
300
350
400
450 402.2
II-10-C-ii
OOC–CH 3
-
N CD 3
H 3C–COO
359.1
243.1 299.1
384.1
343.1
283.1
115.1
0 50 Relative Int. (%)
100
100
150
200
300
350
400
450 405.2
Oxycodone-d6, di-acetyl derivative
D3CO
C22H19D6NO6 MW: 405.47
50
250
O
II-10-C-iii
OOC–CH 3
-
N CD 3
362.2 243.1
H 3C–COO
302.1 286.1
115.1
387.1
346.2
0 50
Relative Int. (%)
100
100
Oxycodone, propionyl derivative
150
200
H3CO
C21H25NO5 MW: 371.43
50
O
250 m/z
300
350
400
371.1
II-10-D-i
OOC–C 2H 5
450
314.1
-
N CH 3
O
212.1
57.1
240.1
298.1 356.1
0 50 Relative Int. (%)
100
100 Oxycodone-d3, propionyl derivative
150 H3CO
C21H22D3NO5 MW: 374.45
50
200
O
250
300
350
II-10-D-ii
OOC–C 2H 5
400 374.2
317.1
-
N CD 3
O
215.1
57.1
244.1
301.1
356.1
0 50 Relative Int. (%)
100
100 Oxycodone-d6, propionyl derivative
150 D3CO
C21H19D6NO5 MW: 377.46
50
200
O
250
300
350
377.2
II-10-D-iii
OOC–C 2H 5
400
320.1
-
N CD 3
O
215.1 236.2
57.1
304.2
359.1
0 50
100
150
200
250 m/z
Figure II — Opioids
© 2010 by Taylor and Francis Group, LLC
300
350
400
184
Figure II-10. (Continued)
Relative Int. (%)
100
Oxycodone, trimethylsilyl derivative
H3CO O
C21H29NO4Si MW: 387.54
50
387.2
II-10-E-i
O–Si(CH3)3
-
N CH 3
O
73.1
372.2
229.1 273.1
214.1
115.1
330.1
0 50
100
Relative Int. (%)
100
150
200
Oxycodone-d3, trimethylsilyl derivative
250 H3CO
50
O
73.1
400
450
390.2
II-10-E-ii
-
N CD 3
232.1
375.2 276.1
214.1
115.1
350
O–Si(CH3)3
O
C21H26D3NO4Si MW: 390.56
300
333.1
0 50
100
Relative Int. (%)
100
150
200
Oxycodone-d6, trimethylsilyl derivative
250 D3CO O
C21H23D6NO4Si MW: 393.58
50
300
350
400
II-10-E-iii
O–Si(CH3)3
450
393.2
-
N CD 3
O
73.1
236.1
217.1
115.1
378.2
276.1
333.1
0 50
100
Relative Int. (%)
100
150
200
Oxycodone, di-trimethylsilyl derivative 73.1
H3CO O
C24H37NO4Si2 MW: 459.73
50
250 m/z
300
350
450
459.2
II-10-F-i
O–Si(CH3)3
-
N CH 3
(H3C)3Si–O
242.1
400
444.2
312.1
297.1
368.2
0 50
100
Relative Int. (%)
100
150
200
Oxycodone-d3, di-trimethylsilyl derivative 73.1
50
250 H3CO O
C24H34D3NO4Si2 MW: 462.74
300
350
400
500 462.2
II-10-F-ii
O–Si(CH3)3
-
N CD 3
(H3C)3Si–O
242.1
450
297.1
315.1
371.2
447.2
0 50
100
Relative Int. (%)
100
150
200
Oxycodone-d6, di-trimethylsilyl derivative 73.1
50
250 D3CO O
C24H31D6NO4Si2 MW: 465.76
300
350
400
450 465.3
II-10-F-iii
O–Si(CH3)3
500
-
N CD 3
(H3C)3Si–O
315.1
242.1 297.1
374.2
450.2
0 50
100
150
200
250
300 m/z
Appendix One — Mass Spectra
© 2010 by Taylor and Francis Group, LLC
350
400
450
500
185
Figure II-10. (Continued)
Relative Int. (%)
100
Oxycodone, t-butyldimethylsilyl derivative
50
372.1
II-10-G-i
H3CO O
C24H35NO4Si 73.1 MW: 429.62
O–Si(CH3)2C(CH3)3
-
N CH 3
O
216.1
179.1
327.1
301.1
429.2
0 50
100
Relative Int. (%)
100
150
200
Oxycodone-d3, t-butyldimethylsilyl derivative
50
250
II-10-G-ii
300
350
400
450
375.2 H3CO O
C24H32D3NO4Si 73.1 MW: 432.64
O–Si(CH3)2C(CH3)3
-
N CD 3
O
216.1
182.1
304.1
330.1 432.2
0 50
100
Relative Int. (%)
100
150
200
Oxycodone-d6, t-butyldimethylsilyl derivative 73.1
50
250
II-10-G-iii
300
350
D3CO O
C24H29D6NO4Si MW: 435.66
-
N CD 3
304.1
216.1
330.1 435.3
0 50
Relative Int. (%)
100
100
73.1
150
200
Oxycodone, di-t-butyldimethylsilyl derivative
II-10-H-i
250 m/z
300
H3CO O
50
C30H49NO4Si2 MW: 543.89
225.0
133.0
450
O–Si(CH3)2C(CH3)3
O
185.1
400 378.2
350
400
450
486.3 O–Si(CH3)2C(CH3)3
-
N CH 3
(H3C)3C(H3C)2Si–O
412.4
371.2
530.0
543.2
0 50 Relative Int. (%)
100
100 73.1
150
200
Oxycodone-d3, di-t-butyldimethylsilyl derivative
250
II-10-H-ii
350
226.1
133.2
400
450
Relative Int. (%)
100
100 73.1
50
150
-
N CD 3
(H3C)3C(H3C)2Si–O
415.3
374.0
533.1
200
Oxycodone-d6, di-t-butyldimethylsilyl derivative C30H43D6NO4Si2 MW: 549.92
250
II-10-H-iii
300
350
D3CO O
400
450
500
150
-
N CD 3
(H3C)3C(H3C)2Si–O
420.0
377.3
200
250
300 m/z
Figure II — Opioids
© 2010 by Taylor and Francis Group, LLC
550
492.4
549.3 535.2
0 100
546.4
O–Si(CH3)2C(CH3)3
233.0
147.0
50
550
O–Si(CH3)2C(CH3)3
0 50
500 489.3
H3CO O
C30H46D3NO4Si2 MW: 546.90
50
300
350
400
450
500
550
186
Figure II-10. (Continued) Relative Int. (%)
100
Oxycodone, methoxyimino derivative
II-10-I-i
OH
O
C19H24N2O4 MW: 344.40
50
344.2
H3CO
-
N CH 3
H3CO—N
70.1
230.2
127.1
115.0
256.1
313.2
287.1
0 50
100
100
150
200
250
350
400
347.2
Oxycodone-d3, methoxyimino derivative
H3CO
C19H21D3N2O4 MW: 347.42
50
300
II-10-I-ii
OH
O
-
N CD 3
H3CO—N
70.1
115.1
233.1
128.1
259.1
316.2
288.1
0 50
100
Relative Int. (%)
100
150
200
Oxycodone-d6, methoxyimino derivative
250 D3CO
C19H18D6N2O4 MW: 350.44
50 73.1
OH
O
300
350 350.3
II-10-I-iii
-
N CD 3
H3CO—N
115.1
400
236.2
127.1
259.1
319.2
290.1
0 50
100
150
200
250
300
350
400
m/z Relative Int. (%)
100
Oxycodone, methoxyimino/propionyl H3CO derivative
O
50
57.1 C22H28N2O5 MW: 400.47
400.3 O–CO(C2H5)
II-10-J-i
230.2
343.2
-
N CH 3
115.2 H3CO—N
240.1
295.0
369.3
0 50 Relative Int. (%)
100
50
100
150
200
Oxycodone-d3, methoxyimino/propionyl H3CO derivative C22H25D3N2O5 57.1 MW: 403.49
O
250
300
350
400
450 403.3
II-10-J-ii
O–CO(C2H5)
-
N CD 3
233.2
H3CO—N
117.0
243.1
346.3 298.2
372.1
0 50 Relative Int. (%)
100
100
150
200
Oxycodone-d6, methoxyimino/propionyl D3CO derivative O
C22H22D6N2O5 MW: 406.50 131.0 58.7
50
250
300
350
400
450 406.4
II-10-J-iii
O–CO(C2H5)
-
N CD 3
349.3
236.2
H3CO—N
248.4
301.0 376.3
0 50
100
150
200
250 m/z
Appendix One — Mass Spectra
© 2010 by Taylor and Francis Group, LLC
300
350
400
450
187
Figure II-10. (Continued)
Relative Int. (%)
100
Oxycodone, methoxyimino/trimethylsilyl derivative
O–Si(CH3)3
O
C H N O Si 73.1 22 32 2 4 MW: 416.59
50
416.3
H3CO
II-10-K-i 229.1
214.1
-
N CH 3
H3CO—N
295.2
401.2
359.2
326.1
0 50
100
Relative Int. (%)
100
150
200
300
350
400
450 419.3
Oxycodone-d3, methoxyimino/trimethylsilyl derivative
50
250 H3CO
II-10-K-ii
O–Si(CH3)3
O
C H D N O Si 73.1 22 29 3 2 4 MW: 419.60
232.1
214.1
-
N CD 3
H3CO—N
298.2
404.3
362.2
329.2
0 50
100
Relative Int. (%)
100
150
200
73.1
300
350
400
450 422.3
Oxycodone-d6, methoxyimino/trimethylsilyl derivative
50
250 D3CO
II-10-K-iii
O–Si(CH3)3
O
C22H26D6N2O4Si MW: 422.62
235.2
-
N CD 3
H3CO—N
217.1
407.3
362.2
332.2
301.2
0 50
Relative Int. (%)
100
100
Oxycodone, hydroxylimine/ di-propionyl derivative
50
150
139.1
200
250 m/z
300
350
400
450
H3CO
II-10-L-i
O–CO(C2H5)
O
C24H30N2O6 MW: 458.51
195.1
-
N CH 3
295.1
230.2 272.1
313.2
H5C2OC—O—N
328.2 369.3
442.3
386.3 402.2
0 50 Relative Int. (%)
100
100 Oxycodone-d3, hydroxylimine/ di-propionyl derivative
50
150 139.1
200
250
300
350
400
450 H3CO
II-10-L-ii 298.2 331.2
C24H27D3N2O6 MW: 461.53
316.2
275.1
195.2
O–CO(C2H5)
O
233.2 372.2
500
-
N CD 3
H5C2OC—O—N
445.2
389.3 405.2
0 50 Relative Int. (%)
100
100 Oxycodone-d6, hydroxylimine/ di-propionyl derivative
50
150 142.1
200
250
300
350
400
450 D3CO
II-10-L-iii
301.2
C24H24D6N2O6 MW: 464.55
334.2 375.1 319.3
278.1
198.1
O–CO(C2H5)
O
236.2
H5C2OC—O—N
391.3
500
-
N CD 3
448.3
408.2
0 50
100
150
200
250
300 m/z
Figure II — Opioids
© 2010 by Taylor and Francis Group, LLC
350
400
450
500
188
Figure II-10. (Continued)
Relative Int. (%)
100
50
C24H38N2O4Si2 MW: 474.74
474.3
H3CO
II-10-M-i
Oxycodone, hydroxylimino/ di-trimethylsilyl derivative
73.1
O–Si(CH3)3
O
229.1
214.1
-
N CH 3
(H3C)3SiO—N
459.3 401.2
385.2
295.1
417.2
0 50
100
Relative Int. (%)
100
150
200
250
Oxycodone-d3, hydroxylimino/ di-trimethylsilyl derivative
73.1
50
300
II-10-M-ii
350
450
O–Si(CH3)3
-
N CD 3
(H3C)3SiO—N
232.1 214.1
500 477.3
H3CO O
C24H35D3N2O4Si2 MW: 477.76
400
462.3 404.3
388.3
298.2
420.2
0 50
100
Relative Int. (%)
100
150
200
250
Oxycodone-d6, hydroxylimino/ di-trimethylsilyl derivative
73.1
50
300
II-10-M-iii
350
D3CO
450
-
N CD 3
(H3C)3SiO—N
235.2 217.1
500 480.3
O–Si(CH3)3
O
C24H32D6N2O4Si2 MW: 480.78
400
465.3 407.3
391.3
301.2
420.3
0 50
100
150
200
250
300
350
400
450
500
m/z Relative Int. (%)
100
Oxycodone, hydroxylimino/ethyl/propionyl derivative
II-10-N-i
O
C23H30N2O5 MW: 414.49
50
230.1
57.1 185.1
115.1
H3CO
414.3 O–CO(C2H5)
-
N CH 3
357.2
H5C2O—N
340.3
295.2
399.3
0 50
100
Relative Int. (%)
100
150
200
II-10-N-ii
Oxycodone-d3, hydroxylimine/ethyl/propionyl derivative 57.1
50
250
H3CO O
233.2
C23H27D3N2O5 MW: 417.51 115.1
300
350
450 417.3
O–CO(C2H5)
-
N CD 3
H5C2O—N
360.2
344.3
298.2
184.0
400
399.4
0 50
100
Relative Int. (%)
100
150
200
II-10-N-iii
Oxycodone-d6, hydroxylimino/ethyl/propionyl derivative
50 57.1
250
300 D3CO O
236.2
C23H24D6N2O5 MW: 420.53
350
400
450 420.3
O–CO(C2H5)
-
N CD 3
363.3
H5C2O—N
301.2
202.1
128.1
347.2
402.2
350
400
0 50
100
150
200
250 m/z
300
Appendix One — Mass Spectra
© 2010 by Taylor and Francis Group, LLC
450
189
Figure II-11. Mass spectra of noroxycodone and its deuterated analogs (noroxycodone-d3): (A) underivatized; (B) [acetyl]2derivatized; (C) [TFA]3-derivatized; (D) propionyl-derivatized; (E) [PFP]2-derivatized; (F) [HFB]2-derivatized; (G) [TMS]2derivatized; (H) [TMS]3-derivatized; (I) MA/ethyl-derivatized; (J) MA/acetyl-derivatized; (K) MA/[TFA]2-derivatized; (L) MA/propionyl-derivatized; (M) MA/PFP-derivatized; (N) MA/[HFB]2-derivatized; (O) MA/[TMS]2-derivatized; (P) MA/tBDMS-derivatized; (Q) MA/ethyl/propionyl-derivatized; (R) MA/ethyl/TMS-derivatized; (S) MA/ethyl/t-BDMS-derivatized; (T) MA/acetyl/TMS-derivatized; (U) MA/propionyl/TMS-derivatized; (V) HA/[ethyl]2/TMS-derivatized. relative Int. (%)
100
Noroxycodone
H3CO
C17H19NO4 MW: 301.34
50
II-11-A-i
OH
O
-
N H
216.0
O
188.0 175.0
126.0
115.0
301.1
258.0
0 50 Relative Int. (%)
100
100
150
Noroxycodone-d3
D3CO
C17H16D3NO4 MW: 304.36
200
250
300
II-11-A-ii
OH
O
-
N H
50
350 304.1
219.0
O
126.0
115.0
191.0
178.0
261.1
0 50 Relative Int. (%)
100
100
150
Noroxycodone, di-acetyl derivative
H3CO
250
300
239.0
325.1
350
II-11-B-i
269.0
N –COCH 3
282.0
O
115.0
55.1 73.1
207.0
O–COCH 3
O
C21H23NO6 MW: 385.41
50
200 m/z
385.1 300.0
153.2
0 50 Relative Int. (%)
100
100
150
Noroxycodone-d3, di-acetyl derivative
115.1
55.1 73.0
250
300
350
242.0
328.1
O–COCH 3
O
C21H20D3NO6 MW: 388.43
50
200
D3CO
N –COCH 3
207.0
400
II-11-B-ii
272.1 388.1
285.1
O
303.1
155.1
0 50
100
150
200
250
300
350
400
m/z Relative Int. (%)
100
69.0
Noroxycodone, tri-trifluoroacetyl derivative
H3CO
C23H16F9NO7 MW: 589.36
50
97.0
O
336.0
152.0
362.0
237.1
II-11-C-i
O–COCF 3 N –COCF 3
589.0
F 3C–COO
475.0
0 50 Relative Int. (%)
100
100 69.0
150
200
250
300
350
400
Noroxycodone-d3, tri-trifluoroacetyl derivative
D3CO O
C23H13D3F9NO7 MW: 592.38
50
97.0
450
339.0
152.0
500
550
600
650
II-11-C-ii
O–COCF 3 N –COCF 3
592.1
365.1 F C–COO 3 479.0
240.1
0 50
100
150
200
250
300
350 m/z
Figure II — Opioids
© 2010 by Taylor and Francis Group, LLC
400
450
500
550
600
650
190
Figure II-11. (Continued)
Relative Int. (%)
100
Noroxycodone, propionyl derivative
201.1
C20H23NO5 MW: 357.40
50
185.1
OH
O
239.1
57.1
357.1
H3CO
II-11-D-i
-
N COC 2H 5
258.1 O
228.1
301.1
115.1
0 50 Relative Int. (%)
100
100
150
Noroxycodone-d3, propionyl derivative
200
350
188.1
OH
O
242.1
400 360.1
D3CO
204.1
57.1
300
II-11-D-ii
C20H20D3NO5 MW: 360.42
50
250
-
N COC 2H 5
261.1 O
231.1
304.1
115.1
0 50
100
150
200
250
300
350
400
m/z Relative Int. (%)
100
239.0
II-11-E-i
105.0
H3CO O
50
163.0
77.0
119.0
Noroxycodone, di-pentafluoropropionyl derivative
O–COC 2 F 5 N –COC 2 F 5
C23H17F10NO6 MW: 593.37 593.0
O
211.0
430.1
0 50
100
150
Relative Int. (%)
100
200
250
300
350 D3CO
105.0
O
50 77.0
450
500
242.0
II-11-E-ii 119.0
400
163.0 214.1
550
600
Noroxycodone-d3, di-pentafluoropropionyl derivative
O–COC 2 F 5
C23H14D3F10NO6 MW: 596.39 596.0
N –COC 2 F 5
O
433.1
0 50
100
150
200
250
300
350
400
450
500
550
600
m/z Relative Int. (%)
100
239.0
II-11-F-i
H3CO O
50 69.0
169.0
211.0
Noroxycodone, di-heptafluorobutyryl derivative
O–COC 3 F 7
C25H17F14NO6 MW: 693.38
N –COC 3 F 7
O
480.1
693.1
0 50
100
150
200
Relative Int. (%)
100
250
300
350
242.0
II-11-F-ii
400 D3CO O
50 69.0
169.0
450
500
550
650
700
Noroxycodone-d3, di-heptafluorobutyryl derivative
O–COC 3 F 7 N –COC 3 F 7
C25H14D3F14NO6 MW: 696.40
O
214.1
600
696.1
483.0
0 50
100
150
200
250
300
350
400
450
m/z
Appendix One — Mass Spectra
© 2010 by Taylor and Francis Group, LLC
500
550
600
650
700
191
Figure II-11. (Continued)
Relative Int. (%)
100
73.1
Noroxycodone, di-trimethylsilyl derivative
H3CO
C23H35NO4Si2 MW: 445.70
50
O–Si(CH3)3
O
445.1
II-11-G-i
N –Si(CH3)3
O
312.0
297.0
226.1
430.1
354.1
0 50 Relative Int. (%)
100
100 73.1
150
200
250
Noroxycodone-d3, di-trimethylsilyl derivative
D3CO
350
O–Si(CH3)3
O
C23H32D3NO4Si2 MW: 448.72
50
300
400
450
500
450
500
448.2
II-11-G-ii
N –Si(CH3)3
O
229.0
315.0
297.0
433.1
357.2
0 50
100
150
200
250
300
350
400
m/z Relative Int. (%)
100
Noroxycodone, tri-trimethylsilyl derivative
73.0
H3CO
C26H43NO4Si3 MW: 517.88
50 102.0
O–Si(CH3)3
O
128.1
207.0
II-11-H-i
N –Si(CH3)3
445.1
(H3C)3Si–O
517.2
373.0
0 50 Relative Int. (%)
100
100
150
200
250
Noroxycodone-d3, tri-trimethylsilyl derivative
73.1
D3CO
128.1
102.1
350 O–Si(CH3)3
O
C26H40D3NO4Si3 MW: 520.90
50
300
400
450
500
550
II-11-H-ii
N –Si(CH3)3
448.2
(H3C)3Si–O
520.2
207.0
376.1
0 50
100
150
Relative Int. (%)
100
200
Noroxycodone, methoxyimino/ethyl derivative
84.1
300 m/z
350
400
450
500
O–C 2 H 5
550
358.2
II-11-I-i
H3CO O
C20H26N2O4 MW: 358.43
50
250
343.2
NH
H 3CO–N
244.2
115.0
327.2
287.0 299.1
0 50
100
Relative Int. (%)
100
150 Noroxycodone-d3, methoxyimino/ethyl derivative
50
C20H23D3N2O4 MW: 361.45 84.1
200
250
D3CO
O–C 2 H 5
O
300
350 361.2
II-11-I-ii 346.2
NH
H 3CO–N
247.1
115.1
400
290.1
330.2 302.2
0 50
100
150
200
250 m/z
Figure II — Opioids
© 2010 by Taylor and Francis Group, LLC
300
350
400
192
Figure II-11. (Continued)
Relative Int. (%)
100
Noroxycodone, methoxyimino/acetyl derivative
NH
H 3CO–N
217.1
286.1 341.1
184.0
124.8
60.8
II-11-J-i
O–COCH 3
O
C20H24N2O5 MW: 372.42
50
372.2
299.1
H3CO
354.2
329.1
0 50 Relative Int. (%)
100
100
150
C20H21D3N2O5 64.8 MW: 375.43
250
300
350
400 375.2
Noroxycodone-d3, methoxyimino/acetyl derivative
50
200
D3CO
O–COCH 3
O
289.1
NH
129.1 H3CO–N
II-11-J-ii
302.2
220.1
344.1
187.9
326.2
355.8
0 50
100
150
200
250
300
350
400
m/z Relative Int. (%)
100
Noroxycodone, methoxyimino/di-trifluoroacetyl derivative
69.1
H3CO O
C22H20F6N2O6 MW: 522.39
50 97.0
268.1
II-11-K-i
O–COCF 3 N –COCF 3
H 3CO–N
377.2
126.0
491.3
409.2
522.1
0 50 Relative Int. (%)
100
100 69.1
150
200
250
300
Noroxycodone-d3, methoxyimino/di-trifluoroacetyl derivative
350 D3CO
C22H17D3F6N2O6 MW: 525.41 97.0 126.0
271.2
450
500
550
II-11-K-ii
O–COCF 3
O
50
400
N –COCF 3
H 3CO–N
380.3
494.0
412.3
525.2
0 50
Relative Int. (%)
100
100
150
200
Noroxycodone, methoxyimino/propionyl 57.1 derivative
50
C21H26N2O5 MW: 386.44
250
H3CO O
300 m/z
350
450 299.2
500
550
II-11-L-i
O–COC 2H 5
386.3
NH
286.2
217.1
H 3CO–N
115.1
400
238.1
185.1
268.1
355.3 368.1 329.2 337.2
0 50 Relative Int. (%)
100
100
150
Noroxycodone-d3, methoxyimino/propionyl 57.1 derivative C21H23D3N2O5 MW: 389.46
50
200 D3CO O
250
350 302.2
O–COC 2H 5
400
II-11-L-ii 389.3
NH
220.2
H 3CO–N
271.2
289.2 358.2 371.3 332.3 340.3
241.1
188.1
115.1
300
0 50
100
150
200
250 m/z
Appendix One — Mass Spectra
© 2010 by Taylor and Francis Group, LLC
300
350
400
193
Figure II-11. (Continued)
Relative Int. (%)
100
119.1
II-11-M-i
217.1
50 144.2
O–COC 2 F 5
O
NH
H 3CO–N
C21H21F5N2O5 MW: 476.39 286.2 253.0
187.1 69.1
H3CO
Noroxycodone, methoxyimino/pentafluoropropionyl derivative
476.3 445.2
0 50
100
150
Relative Int. (%)
100
119.0
200
250
II-11-M-ii 220.1
50
350
400
Noroxycodone-d3, methoxyimino/pentafluoropropionyl derivative
144.0
450
D3CO
500
O–COC 2 F 5
O
C21H18D3F5N2O5 MW: 479.41 255.3 286.2
190.2 69.0
300
NH
H 3CO–N
479.2
448.4
0 50
100
150
200
250
300
350
400
450
500
m/z Relative Int. (%)
100
268.1
II-11-N-i
H3CO
69.1
169.1
O–COC 3 F 7
O
50
Noroxycodone, methoxyimino/di-heptafluorobutyryl derivative C26H20F14N2O6 MW: 722.42
N –COC 3 F 7
238.1 H 3CO–N
477.2
115.1
722.3
0 50
100
150
200
250
Relative Int. (%)
100
300
350
400
271.2
D3CO
69.1 241.2
500
550
600
II-11-N-ii
O–COC 3 F 7
O
169.0
50
450
650
N –COC 3 F 7
H 3CO–N
750
C26H17D3F14N2O6 MW: 725.44 725.4
480.2
115.1
700
Noroxycodone-d3, methoxyimino/di-heptafluorobutyryl derivative
0 50
Relative Int. (%)
100
100
150
200
250
300
350
400 m/z
Noroxycodone, methoxyimino/di-trimethylsilyl derivative
73.1
H3CO
100.1
147.1
500
600
II-11-O-i
700
750
474.3
359.2 287.1
275.2
650
N –Si(CH3)3
H 3CO–N
188.1
550
O–Si(CH3)3
O
C24H38N2O4Si2 MW: 474.74
50
450
443.3
459.2
0 50 Relative Int. (%)
100
100 73.1
150
200
250
Noroxycodone-d3, methoxyimino/di-trimethylsilyl derivative
50
D3CO
147.1
350 O–Si(CH3)3
O
C24H35D3N2O4Si2 MW: 477.76 100.1
300
278.2
450
II-11-O-ii
500
477.3
N –Si(CH3)3
H 3CO–N
191.1
400
362.2 290.2
446.3
462.3
0 50
100
150
200
250
300 m/z
Figure II — Opioids
© 2010 by Taylor and Francis Group, LLC
350
400
450
500
194
Figure II-11. (Continued)
Relative Int. (%)
100
75.1 Noroxycodone, methoxyimino/t-butyldimethylsilyl derivative C24H36N2O4Si MW: 444.64
50
H3CO
O–Si(CH3)2C(CH3)3
O
II-11-P-i
NH
H 3CO–N
387.3
302.2
226.2
272.3
325.2
355.2
444.0
0 50
100
Relative Int. (%)
100
150
200
75.1 Noroxycodone-d3, methoxyimino/t-butyldimethylsilyl derivative C24H33D3N2O4Si MW: 447.66
50
250 D3CO
300
350
O–Si(CH3)2C(CH3)3
O
400
450
II-11-P-ii
NH
390.3
305.3
H 3CO–N
229.0
275.2
331.1
360.3
447.0
0 50
100
Relative Int. (%)
100
150
200
Noroxycodone, methoxyimino/ethyl/ propionyl derivative
50
H3CO
350
400
450
414.3
II-11-Q-i
N –COC 2 H 5
357.2
244.1
H 3CO–N
57.1
300
O–C 2 H 5
O
C23H30N2O5 MW: 414.49
250 m/z
309.2
71.2
399.2
325.1 341.1
0 50 Relative Int. (%)
100
100
150
200
300
350
400
450 417.3
Noroxycodone-d3, methoxyimino/ethyl/ propionyl derivative
50
250
D3CO
C23H27D3N2O5 57.1 MW: 417.51
II-11-Q-ii
O–C 2 H 5
O
N –COC 2 H 5
360.3
247.2
H 3CO–N
312.2
71.1
328.2 344.2
402.3
0 50
100
Relative Int. (%)
100
150
200
250 m/z H3CO
Noroxycodone, methoxyimino/ethyl/ trimethylsilyl derivative
50
73.1
300
O
C23H34N2O4Si MW: 430.61
350
O–Si(CH3)3
400
430.3
II-11-R-i
N –C 2 H 5
H 3CO–N
188.1 199.1
228.1
450
415.3
243.1
359.2
309.1
399.3
0 50
100
Relative Int. (%)
100
150
200
250 D3CO
Noroxycodone-d3, methoxyimino/ethyl/ trimethylsilyl derivative
50 73.1
300
O
C23H31D3N2O4Si MW: 433.63
350
O–Si(CH3)3
400
228.1
433.3
II-11-R-ii
N –C 2 H 5
H 3CO–N
191.1 199.1
450
362.2
246.2
312.2
418.3 402.3
0 50
100
150
200
250 m/z
300
Appendix One — Mass Spectra
© 2010 by Taylor and Francis Group, LLC
350
400
450
195
Figure II-11. (Continued)
Relative Int. (%)
100
342.2
H3CO
II-11-S-i
Noroxycodone, methoxyimino/ethyl/ t-butyldimethylsilyl derivative
O–C 2 H 5
O
N –Si(CH3)2C(CH3)3
50
C26H40N2O4Si MW: 472.69
H 3CO–N
115.1 166.0
190.1
255.1 283.2
229.1
311.1
0 50
100
150
200
Relative Int. (%)
100
250
350
400
345.2
D3CO
II-11-S-ii
300
O
N –Si(CH3)2C(CH3)3
C26H37D3N2O4Si MW: 475.71
H 3CO–N
115.1 166.1
193.1
232.2
258.1
286.1
500
Noroxycodone-d3, methoxyimino/ethyl/ t-butyldimethylsilyl derivative
O–C 2 H 5
50
450
314.2
0 50
100
150
200
250
300
350
400
450
500
m/z Relative Int. (%)
100
Noroxycodone, methoxyimino/acetyl/ trimethylsilyl derivative
50
96.0
II-11-T-i
269.4
281.2
H3CO
O–Si(CH3)3
O
C23H32N2O5Si 181.0 MW: 444.60 153.4
222.2
323.0
N –COCH 3 413.1
444.2
371.0
H 3CO–N
0 50 Relative Int. (%)
100
100 73.1
150
200
Noroxycodone-d3, methoxyimino/acetyl/ trimethylsilyl derivative
50 89.1
C23H29D3N2O5Si MW: 447.61 164.2
250
300
II-11-T-ii
350
400
D3CO
284.3
O–Si(CH3)3
O
272.3 225.1
450
N –COCH 3
416.4
H 3CO–N
188.2
447.4
374.2
326.4
0 50
Relative Int. (%)
100
100
73.1
150
Noroxycodone, methoxyimino/propionyl/ trimethylsilyl derivative C24H34N2O5Si MW: 458.62
50
200
250 m/z
II-11-U-i
198.0 222.1
269.2
300
281.2
350
H3CO
N –COC 2 H 5
H 3CO–N
328.1
427.2
458.3
371.3 443.3
153.0
115.1
450
O–Si(CH3)3
O
238.2
400
401.3
0 50 Relative Int. (%)
100
100 73.1
150
Noroxycodone-d3, methoxyimino/propionyl/ trimethylsilyl derivative C24H31D3N2O5Si MW: 461.64
50
200
250
II-11-U-ii
300 272.2
350
284.3 D3CO
H 3CO–N
450
500
O–Si(CH3)3
O
200.9 225.1
400
430.3
N –COC 2 H 5
461.3
374.3 331.2 404.2
446.3
0 50
100
150
200
250
300 m/z
Figure II — Opioids
© 2010 by Taylor and Francis Group, LLC
350
400
450
500
196
Figure II-11. (Continued)
Relative Int. (%)
100
Noroxycodone, hydroxylimino/di-ethyl/ trimethylsilyl derivative
73.2
50
II-11-V-i
H3CO O
C24H36N2O4Si MW: 444.64 213.3
228.2
243.2
444.3 O–C 2 H 5 N –Si(CH3)3
H 5 C 2 –O–N
429.5 354.3
374.2
399.3
0 50
100
Relative Int. (%)
100
150
200
Noroxycodone-d3, hydroxylimino/di-ethyl/ trimethylsilyl derivative
50
250
300
II-11-V-ii
D3CO O
C24H33D3N2O4Si MW: 447.66
73.2
213.1
231.2
246.1
350
400
450 447.3
O–C 2 H 5 N –Si(CH3)3
H 5 C 2 –O–N
357.8
376.3
432.4
0 50
100
150
200
250 m/z
300
Appendix One — Mass Spectra
© 2010 by Taylor and Francis Group, LLC
350
400
450
197
Figure II-12. Mass spectra of buprenorphine and its deuterated analogs (buprenorphine-d4): (A) methyl-derivatized; (B) ethyl-derivatized; (C) acetyl-derivatized; (D) MBTFA-derivatized; (E)PFP-derivatized; (F) HFB-derivatized; (G) TMS-derivatized; (H) [TMS]2-derivatized; (I) t-BDMS-derivatized.
Relative Int. (%)
100
H 3C–O
Buprenorphine (CAS NO.52485-79-7), methyl derivative 55.1
50
392.2
O
C30H43NO4 MW: 481.67
-
H3CO HO– C –CH 3
101.2
181.1
100
Relative Int. (%)
100
150
200
250
448.3
366.2
300
350
400
H 3C–O
Buprenorphine-d4 (CAS NO.136781-89-0), methyl derivative
D N C
500
II-12-A-ii
D D D
-
H3CO HO– C –CH 3
428.3 452.3
370.2
C(CH3)3
101.2
481.3
450
396.2
O
C30H39D4NO4 59.1 MW: 485.69
50
424.3
C(CH3)3
0 50
II-12-A-i
H H N C
485.3
0 50
100
150
200
250
300
350
400
450
500
m/z Relative Int. (%)
100
Buprenorphine, ethyl derivative
H 5 C 2 –O
50 55.1
101.1
50 Relative Int. (%)
438.3
150
200
250
300
D N C
O
C31H41D4NO4 MW: 499.72
350
400
450
II-12-B-ii
D D
-
D
442.3
H3CO HO– C –CH 3
59.1
500
410.3
H 5 C 2 –O
Buprenorphine-d4, ethyl derivative
462.2 495.4
394.3
C(CH3)3
100
50
-
H3CO HO– C –CH 3
0 100
H H N C
O
C31H45NO4 MW: 495.69
406.2
II-12-B-i
101.2
466.3 499.5
398.2
C(CH3)3
0 50
100
150
200
250
300
350
400
450
500
m/z Relative Int. (%)
100
Buprenorphine, acetyl derivative
452.4
-
H3CO HO– C –CH 3
55.1 101.2
420.3
H H N C
O
C31H43NO5 MW: 509.68
50
II-12-C-i
H 3C–COO
408.3 394.3
C(CH3)3
494.4
509.5
0 50
100
Relative Int. (%)
100
150
Buprenorphine-d4, acetyl derivative
200
© 2010 by Taylor and Francis Group, LLC
150
200
450
250
300 350 m/z Figure II — Opioids
500
550
424.3 456.4
-
C(CH3)3
0
400
D D D D N C
H3CO HO– C –CH 3
101.2
100
350
II-12-C-ii
O
59.1
50
300
H 3C–COO
C31H39D4NO5 MW: 513.70
50
250
412.4 398.3
498.5
400
450
500
513.5
550
198
Figure II-12. (Continued)
Relative Int. (%)
100
F 3C–COO
Buprenorphine, trifluoroacetyl derivative
55.1
50
H H N C
O
C31H40F3NO5 MW: 563.65
-
H3CO HO– C –CH 3
101.0
474.2
II-12-D-i
506.1 448.2
C(CH3)3
563.3
0 50
100
Relative Int. (%)
100
150
200
250
Buprenorphine-d4, trifluoroacetyl derivative
55.0
300
400
D D D D N C
O
C31H36D4F3NO5 MW: 567.67
50
350
F 3C–COO
500
II-12-D-ii
550
600
478.2
-
510.1
H3CO HO– C –CH 3
101.0
450
452.0
C(CH3)3
567.1
0 50
100
150
200
250
300
350
400
450
500
550
600
m/z Relative Int. (%)
100
F 5 C 2 –COO
Buprenorphine, pentafluoropropionyl derivative
55.1
50
H H N C
O
C32H40F5NO5 MW: 613.66 101.0
524.2
II-12-E-i
-
H3CO HO– C –CH 3
556.2 512.2 498.2
C(CH3)3
598.3
0 50
100
Relative Int. (%)
100 59.1
50
150
200
250
300
350
F 5 C 2 –COO
Buprenorphine-d4, pentafluoropropionyl derivative
D D D D N C
O
C32H36D4F5NO5 MW: 617.68 101.0
450
100
100 55.1
150
200
250
300
350 m/z
400
650
560.2
450
500
602.4
550
-
H3CO HO– C –CH 3
617.3
600
650
574.2
II-12-F-i H H N C
O
C33H40F7NO5 MW: 663.66 101.1
50
600
528.2
516.3 502.2
F 7 C 3 –COO
Buprenorphine, heptafluorobutyryl derivative
550
-
C(CH3)3
50
500
II-12-E-ii
H3CO HO– C –CH 3
0
Relative Int. (%)
400
613.3
606.2 548.2
C(CH3)3
663.4
0 50 Relative Int. (%)
100
100
150
200
250
Buprenorphine-d4, 59.1 heptafluorobutyryl derivative
300
400
450
F 7 C 3 –COO D D D D N C
O
C33H36D4F7NO5 MW: 667.69 101.1
50
350
H3CO HO– C –CH 3
500
50
100
150
200
250
300
350
-
400
450
Appendix One — Mass Spectra
650
700
610.2 552.2
m/z
© 2010 by Taylor and Francis Group, LLC
600 578.2
II-12-F-ii
C(CH3)3
0
550
500
550
667.2
600
650
700
199
Figure II-12. (Continued)
Relative Int. (%)
100
(H3C)3Si–O
Buprenorphine, trimethylsilyl derivative 55.0
50
C32H49NO4Si MW: 539.82
73.1
H H N C
O
450.2
II-12-G-i
-
H3CO HO– C –CH 3
482.2 438.2 424.2
C(CH3)3
506.3 539.3
0 50
100
Relative Int. (%)
100
150
200
250
50
D N C
O
C32H45D4NO4Si MW: 543.85
73.1
350
(H3C)3Si–O
Buprenorphine-d4, trimethylsilyl derivative 59.1
300
400
450
550
454.2
II-12-G-ii
D D
500
D
-
H3CO HO– C –CH 3
486.3 428.3
C(CH3)3
510.3
442.3
543.2
0 50
100
150
Relative Int. (%)
100
200
250
173.2
300 m/z
(H3C)3SiO
207.0
450
500
555.2 506.4
-
438.3
C35H57NO4Si2 MW: 612.00 596.5
373.9
C(CH3)3
550
Buprenorphine, di-trimethylsilyl derivative
II-12-H-i
H3CO (H3C)3Si–O– C –CH 3
73.1 103.0
400
H H N C
O
50
350
612.1
0 50
100
150
Relative Int. (%)
100
200
250
173.1
300
350
400
(H3C)3SiO D D D D N C
O
50
450
209.0
99.2
550
-
558.3 510.4
C(CH3)3
378.2
350 m/z
400
600
650
Buprenorphine-d4, di-trimethylsilyl derivative
II-12-H-ii
H3CO (H3C)3Si–O– C –CH 3
73.1
500
C35H53D4NO4Si2 MW: 616.03
442.4
600.5
616.5
0 50
100
Relative Int. (%)
100
150
200
55.1
300
(H3C)3C(H3C)2Si–O
Buprenorphine, t-butyldimethylsilyl derivative
50
250
500
550
600
650
492.3
II-12-I-i H H N C
O
C35H55NO4Si MW: 581.90
450
-
506.3
H3CO HO– C –CH 3
480.3
C(CH3)3
524.3 548.3
424.2
581.4
0 50
100
Relative Int. (%)
100
150
200
300
350
(H3C)3C(H3C)2Si–O
Buprenorphine-d4, t-butyldimethylsilyl derivative
50
250
200
250
484.3
300
350 m/z
Figure II — Opioids
© 2010 by Taylor and Francis Group, LLC
600
510.3 528.3 552.4 585.4
428.3
0 150
550
496.3
-
C(CH3)3
100
500
D D D D N C
H3CO HO– C –CH 3
59.1
50
450
II-12-I-ii
O
C35H51D4NO4Si MW: 585.93
400
400
450
500
550
600
200
Figure II-13. Mass spectra of norbuprenorphine and its deuterated analogs (norbuprenorphine-d3): (A) [methyl]2derivatized; (B) [ethyl]2-derivatized; (C) [acetyl]2-derivatized; (D) [MBTFA]2-derivatized; (E) [PFP]2-derivatized; (F) [HFB]2-derivatized; (G) [TMS]2-derivatized; (H) [TMS]3-derivatized; (I) t-BDMS-derivatized.
Relative Int. (%)
100
352.1
H 3C–O
Norbuprenorphine (CAS NO.78715-23-8), di-methyl derivative
II-13-A-i
O
C27H39NO4 MW: 441.60
50
H3CO HO– C –CH 3
132.1 163.0
384.1
N –CH 3
366.2
310.0 326.2 340.1
C(CH3)3
408.3
441.3
0 50
100
Relative Int. (%)
100
150
200
250
400
450
352.2
II-13-A-ii
O
C27H36D3NO4 MW: 444.62 133.1
350
H 3C–O
Norbuprenorphine-d3, di-methyl derivative
50
300
D3CO HO– C –CH 3
161.1
387.2
N –CH 3
C(CH3)3
308.2
411.3
369.3
325.3 343.1
444.4
0 50
100
150
200
250 m/z
Relative Int. (%)
100
H 5 C 2 –O
Norbuprenorphine, di-ethyl derivative 87.1
50
300
350
400
450
380.2
II-13-B-i
O
C29H43NO4 MW: 469.66
H3CO HO– C –CH 3
218.1 232.1
N –C 2 H 5
412.2 397.2 347.0 368.2
C(CH3)3
454.4
422.2
469.3
0 50
100
150
200
250
Relative Int. (%)
100
300
400
50
C29H40D3NO4 MW: 472.67
D3CO HO– C –CH 3
50
100
150
200
250
415.2
N –C 2 H 5
354.1
C(CH3)3
270.4
0
500
II-13-B-ii
O
87.1
450
380.2
H 5 C 2 –O
Norbuprenorphine-d3, di-ethyl derivative
350
300
422.3
371.3
350
457.3
400
450
472.4
500
m/z Relative Int. (%)
100
H 3C–COO
Norbuprenorphine, di-acetyl derivative
O
C29H39NO6 MW: 497.62
50 57.2
101.1
440.3
II-13-C-i -
H3CO HO– C –CH 3
N COCH 3
408.3 366.3
C(CH3)3
123.1
422.3
380.3
482.4
0 50
100
Relative Int. (%)
100
150
200
250
300
101.1
450
550
443.3
-
D3CO HO– C –CH 3
N COCH 3
C(CH3)3
126.1
500
II-13-C-ii
O
C29H36D3NO6 MW: 500.64 57.1
400
H 3C–COO
Norbuprenorphine-d3, di-acetyl derivative
50
350
408.3 366.2
383.3
425.3
485.4
0 50
© 2010 by Taylor and Francis Group, LLC
100
150
200
250
300 350 m/z Appendix One — Mass Spectra
400
450
500
550
201
Figure II-13. (Continued)
Relative Int. (%)
100
F 3C–COO
Norbuprenorphine, di-trifluoroacetyl derivative
548.3
II-13-D-i
516.2
O
C29H33F6NO6 MW: 605.57
50
H3CO HO– C –CH 3
N –COCF 3
474.2
C(CH3)3
530.2
590.0
0 50
100
150
Relative Int. (%)
100
200
250
300
350
400
500
F 3C–COO
Norbuprenorphine-d3, di-trifluoroacetyl derivative
D3CO HO– C –CH 3
N –COCF 3
550
600
650
551.2
516.3
II-13-D-ii
O
C29H30D3F6NO6 MW: 608.58
50
450
474.2 533.2
C(CH3)3
593.3
0 50
100
150
200
Relative Int. (%)
100 57.1
250
300
F 5 C 2 –COO
II-13-E-i
O
H3CO HO– C –CH 3
119.0
223.1
400
450
500
Norbuprenorphine, di-pentafluoropropionyl derivative
101.1
50
350 m/z
N –COC 2 F 5
383.1
C(CH3)3
550
606.0 630.3 690.3
0 50
100
150
200
Relative Int. (%)
100
250
300
350
F 5 C 2 –COO
II-13-E-ii 57.1 101.1
D3CO HO– C –CH 3
119.0
400
450
500
550
600
Norbuprenorphine-d3, di-pentafluoropropionyl derivative
O
50
N –COC 2 F 5
C(CH3)3
650
Relative Int. (%)
100
100
150
200
250
300
350
400 m/z
608.3 633.2 693.5
O
50
69.0
117.0 169.0
H3CO HO– C –CH 3
233.1
500
550
600
Norbuprenorphine, di-heptafluorobutyryl derivative
F 7 C 3 –COO
57.1
450
N –COC 3 F 7
650
716.2 674.2 594.1
551.2
700
748.3
730.3 789.9
0 50 Relative Int. (%)
100
100
150
200
250
300
350
400
F 7 C 3 –COO
57.1 101.1 69.0
D3CO HO– C –CH 3
169.0
233.0
500
550
600
650
Norbuprenorphine-d3, di-heptafluorobutyryl derivative
O
50
450
N –COC 3 F 7
C(CH3)3
700
750
100
150
200
250
300
350
400
716.3
C33H30D3F14NO6 MW: 808.61 433.0 551.2 594.1
450 m/z
Figure II — Opioids
© 2010 by Taylor and Francis Group, LLC
500
550
600
800
850
II-13-F-ii 751.3
674.1 733.3 793.3
0 50
750
II-13-F-i
C33H33F14NO6 MW: 805.60 433.0
C(CH3)3
750
651.3
616.2
C31H30D3F10NO6 MW: 708.60 574.2 383.0 494.1
700
0 50
650
648.3
616.2
C31H33F10NO6 MW: 705.58 574.2 494.0
600
650
700
750
800
850
202
Figure II-13. (Continued)
Relative Int. (%)
100
(H3C)3Si–O
73.0
Norbuprenorphine, di-trimethylsilyl derivative
O
50
H3CO HO– C –CH 3
102.0
N –Si(CH3)3
II-13-G-i
468.2
C31H51NO4Si2 MW: 557.91
500.3
524.3 542.4
456.2 482.2
C(CH3)3
557.3
0 50 Relative Int. (%)
100
100
150
73.0
200
250
300
350
(H3C)3Si–O
D3CO HO– C –CH 3
102.0
450
Norbuprenorphine-d3, di-trimethylsilyl derivative
O
50
400
N –Si(CH3)3
500
550
II-13-G-ii
468.2
C31H48D3NO4Si2 MW: 560.93
600
503.3 527.3 545.4 560.3
459.3 485.3
C(CH3)3
0 50
100
150
200
250
300
350
400
450
500
550
600
m/z Relative Int. (%)
100
73.1
(H3C)3Si–O
173.2
O
50
H3CO (H3C)3Si–O– C –CH 3
102.1
N –Si(CH3)3
C(CH3)3
0 50 Relative Int. (%)
100
100
150
200
73.1
250
173.1
300
350
400
(H3C)3Si–O
C34H59NO4Si3 572.4 MW: 630.09
524.4
468.3 456.4
482.3
540.4
450
500
550
D3CO (H3C)3Si–O– C –CH 3
102.1
50
100
N –Si(CH3)3
468.2 459.3
C(CH3)3
150
100
II-13-I-i
200
250
300
73.1
400
450
O
550
650
452.3 494.3
C(CH3)3
246.1
600
470.3
-
N H
207.1
650
438.2
H3CO HO– C –CH 3
101.1
600
C34H56D3NO4Si3 MW: 633.11 527.4 576.0 485.4 542.4 617.4 632.6
500
(H3C)3C(H3C)2Si–O
Norbuprenorphine, t-butyldimethylsilyl derivative C31H49NO4Si MW: 527.81
50
350 m/z
615.0 630.5
Norbuprenorphine-d3, tri-trimethylsilyl derivative
II-13-H-ii
O
50
0
Relative Int. (%)
Norbuprenorphine, tri-trimethylsilyl derivative
II-13-H-i
527.4
0 50 Relative Int. (%)
100
100
150
II-13-I-ii
200
250
Norbuprenorphine-d3, t-butyldimethylsilyl derivative
73.1 101.1
350
400
550
455.3
D3CO HO– C –CH 3
497.3
C(CH3)3
246.1
500
473.3
-
N H
207.1
450 438.2
O
C31H46D3NO4Si MW: 530.83
50
300
(H3C)3C(H3C)2Si–O
530.4
0 50
100
150
200
250
300 m/z
350
Appendix One — Mass Spectra
© 2010 by Taylor and Francis Group, LLC
400
450
500
550
203
Figure II-14. Mass spectra of fentanyl and its deuterated analogs (fentanyl-d5).
Relative Int. (%)
100
245.1
Fentanyl (CAS NO.437-38-7) C22H28N2O MW: 336.47
50
II-14-i
–C 2 H 4 –N
146.1 189.1
57.1
105.0
77.0
50 100
100
150
50
250
300 D
151.1
O
207.1 281.0
100
150
200 m/z
Figure II — Opioids
© 2010 by Taylor and Francis Group, LLC
C D
D
D
C 2H 5
0 50
D
N
–C 2 H 4 –N
105.1
82.1
350
II-14-ii 194.1
57.1
336.3
281.0
250.2
Fentanyl-d5 (CAS NO.118357-29-2) C22H23D5N2O MW: 341.50
200
C C 2H 5
202.1
0
Relative Int. (%)
N O
250
300
341.0
350
204
Figure II-15. Mass spectra of norfentanyl and its deuterated analogs (norfentanyl-d5): (A) underivatized; (B) acetylderivatized; (C) TCA-derivatized; (D) TFA-derivatized; (E) PFP-derivatized; (F) HFB-derivatized; (G) 4-CB-derivatized; (H) TMS-derivatized; (I) t-BDMS-derivatized. Relative Int. (%)
100
83.1
50
O
C
C14H20N2O MW: 232.32
175.1
159.1
C 2H 5
120.1
68.1
150.1 203.1
0 50
100
Relative Int. (%)
100
150
83.0 HN
D
C D
D
N O
98.1
68.0
50
D
125.1
C 2H 5
232.2
200
250 Norfentanyl-d5
II-15-A-ii
D
C14H15D5N2O MW: 237.35
180.1 164.1
155.1 208.1
0 50
100
100 Relative Int. (%)
Norfentanyl
II-15-A-i
N
HN
93.1
150 m/z
83.1
200
250
O
125.1
132.1 158.1
H 3 C–C–N
N O
93.1
50
237.2
57.1
C C 2H 5
149.1
Norfentanyl, acetyl derivative
231.2
175.1
C16H22N2O2 MW: 274.36
II-15-B-i 217.1
274.2
0 50
100
Relative Int. (%)
100
83.1
150
200
125.1
D
O
137.1
163.1
O
154.1
57.1
Norfentanyl-d5, acetyl derivative D
C D
236.2
C16H17D5N2O2 MW: 279.39
D
II-15-B-ii
C 2H 5
180.2
300
D
N
H 3 C–C–N
98.1
50
250
222.2
279.2
0 50
100
150
200
250
300
m/z Relative Int. (%)
100
191.0
O Cl 3 C–C–N O
50 57.0
93.0
C
C16H19Cl3N2O2 MW: 377.69
C 2H 5
132.0
82.0
Norfentanyl, trichloroacetyl derivative
II-15-C-i
N
158.0
340.0
249.0
342.0
0 50
100
150
Relative Int. (%)
100
200
250
190.9
300 D
O
Cl 3 C–C–N
50
82.0 137.1 57.0
98.1
C D
D
C16H14D5Cl3N2O2 MW: 382.72
D
C 2H 5
163.1
400 Norfentanyl-d5, trichloroacetyl derivative
II-15-C-ii
D
N
O
350
254.0
345.0
347.0
0 50
100
150
200
250 m/z
Appendix One — Mass Spectra
© 2010 by Taylor and Francis Group, LLC
300
350
400
205
Figure II-15. (Continued)
Relative Int. (%)
100
150.1
F 3 C–C–N
N O
50
93.1
132.1
57.1
Norfentanyl, trifluoroacetyl derivative
O
II-15-D-i
C
C16H19F3N2O2 MW: 328.33
C 2H 5
179.1
77.1
272.1
237.1
328.1
0 50
100
150
Relative Int. (%)
100
200
250
300
350
155.1
II-15-D-ii 50
F 3 C–C–N
D
C D
D
N O
98.1
57.1
D
O
180.1
137.1
82.1
Norfentanyl-d5, trifluoroacetyl derivative
D
C16H14D5F3N2O2 MW: 333.36
C 2H 5
277.1
241.1
333.2
0 50
100
150
Relative Int. (%)
100
200 m/z
250
150.1
F 5 C 2 –C–N
N O
57.1
132.1
93.1
C
C17H19F5N2O2 MW: 378.34
C 2H 5
229.1
77.1
350
Norfentanyl, pentafluoropropionyl derivative
O
II-15-E-i 50
300
175.1
287.1
322.1
378.1
0 50
100
150
Relative Int. (%)
100
200
250
300
350
155.1 F 5 C 2 –C–N
50 82.1
98.1
D
C D
D
229.1
137.1
D
N
O
57.1
D
O
II-15-E-ii
Norfentanyl-d5, pentafluoropropionyl derivative C17H14D5F5N2O2 MW: 383.37
C 2H 5
180.1
400
291.1
327.1
383.2
0 50
100
150
200
250
300
350
400
m/z Relative Int. (%)
100
150.1 F 7 C 3 –C–N
N O
50 93.1
57.1
Norfentanyl, heptafluorobutyryl derivative
O
II-15-F-i 132.1
C
C18H19F7N2O2 MW: 428.34
279.0
C 2H 5
175.1
372.1
428.1
0 50
100
150
Relative Int. (%)
100
200
250
300
350
D
II-15-F-ii
O
57.1
82.1
137.1
D
N
F 7 C 3 –C–N
50
D
C D
450
Norfentanyl-d5, heptafluorobutyryl derivative
155.1 O
400
D
C18H14D5F7N2O2 MW: 433.37
279.0
C 2H 5
180.1
377.1
433.2
0 50
100
150
200
250 m/z
Figure II — Opioids
© 2010 by Taylor and Francis Group, LLC
300
350
400
450
206
Figure II-15. (Continued)
Relative Int. (%)
100
II-15-G-i
150.1
H 5C 2OOC(F 2C)3–C–N
N O
50
333.1
C 2H 5
175.1
C21H24F6N2O4 MW: 482.42
C
132.1
82.1
57.1
Norfentanyl, 4-carboethoxyhexafluorobutyryl derivative
O
259.0
437.1
482.2
0 50
100
150
Relative Int. (%)
100
200
250
300
O
D
350
400
155.1
II-15-G-ii
H 5C 2OOC(F 2C)3–C–N O
82.1
57.1
D
C D
137.1
C21H19D5F6N2O4 MW: 487.45
D
333.1
C 2H 5
180.1
500
Norfentanyl-d5, 4-carboethoxyhexafluorobutyryl derivative
D
N
50
450
259.0
442.1
487.2
0 50
100
150
200
250
300
350
400
450
500
m/z Relative Int. (%)
100
155.1
II-15-H-i
(H3C)3Si–N
73.1
O
50 128.1 102.1
Norfentanyl, trimethylsilyl derivative
N C
C17H28N2OSi MW: 304.50
247.2
C 2H 5
140.1
206.1
289.2
231.1
304.2
0 50
100
150
Relative Int. (%)
100
200
250
155.1
D
II-15-H-ii
(H3C)3Si–N
73.1
50 128.1
140.1 211.1
82.1
C D
350
Norfentanyl-d5, trimethylsilyl derivative
D D
N
O
300
C17H23D5N2OSi MW: 309.53
252.2
D
C 2H 5
294.2
236.2
309.2
0 50
100
150
200 m/z
Relative Int. (%)
100
250
300
206.1 (H3C)3C(H3C)2Si–N
N O
50
289.2
C
C20H34N2OSi MW: 346.58
73.1
231.1
331.2
0 100
150
200
Relative Int. (%)
100
O
137.1
D
D
C D
D
250
300
211.1 294.2 D
N
(H3C)3C(H3C)2Si–N
50
II-15-I-ii
236.2
150
200
250 m/z
Appendix One — Mass Spectra
© 2010 by Taylor and Francis Group, LLC
400
Norfentanyl-d5, t-butyldimethylsilyl derivative C20H29D5N2OSi MW: 351.61 336.3
0 100
350
C 2H 5
73.1
50
Norfentanyl, t-butyldimethylsilyl derivative
II-15-I-i
C 2H 5
132.1
50
350
300
350
400
207
Figure II-16. Mass spectra of methadone and its deuterated analogs (methadone-d3, -d9).
Relative Int. (%)
100
72.1
Methadone (CAS NO.76-99-3)
II-16-i
O H 3C
50
H 2C
C
C
CH 2 CH
N
CH 3
C21H27NO MW: 309.45
CH 3 CH 3
294.2 309.1
165.0
0 50 Relative Int. (%)
100
100
150
200
250
72.1
300
Methadone-d3 (CAS NO.60263-63-0)
II-16-ii
O D 3C
50
H 2C
C
C
CH 2 CH
N
CH 3
C21H24D3NO MW: 312.46
CH 3 CH 3
297.2
165.1
0 50 Relative Int. (%)
100
350
100
150
200
250
312.2
300
350
78.2 Methadone-d9
II-16-iii
O D 3C
50
H 2C
C
C
CH 2 CH CH 3
N
C21H18D9NO MW: 318.50
CD 3 CD 3
303.2
165.0
0 50
100
150
200 m/z
Figure II — Opioids
© 2010 by Taylor and Francis Group, LLC
250
300
318.3
350
208
Figure II-17. Mass spectra of EDDP and its deuterated analogs (EDDP-d3).
Relative Int. (%)
100
2-ethylidine-1,5-dimethyl-3,3diphenylpyrrolidine (CAS NO.32705-91-2)
50
C20H23N MW: 277.40
69.1
H 3C
115.0 91.0
277.1
II-17-i N CH 3
262.1
CH 2CH 3
165.0
200.1
178.0
220.1
0 50 Relative Int. (%)
100
100
150
200
50
72.1
H 3C
91.0
115.0
300 280.1
2-ethylidine-1,5-dimethyl-3,3diphenylpyrrolidine-d3 C20H20D3N MW: 280.42
250
II-17-ii N CH 3
CH 2CD 3
203.1
165.0
220.1
265.1
178.0
0 50
100
150
200 m/z
Appendix One — Mass Spectra
© 2010 by Taylor and Francis Group, LLC
250
300
209
Figure II-18. Mass spectra of propoxyphene and its deuterated analogs (propoxyphene-d5, -d7, -d11).
Relative Int. (%)
100
58.1
II-18-i
O
H 3C
50 91.1
H 2C
C
O C
CH
H 2C
CH 3
115.0
N
CH 3
C22H29NO2 MW: 339.47
CH 3
193.1
208.1
250.1
0 50 Relative Int. (%)
100
100
D
58.1
H 3C
50 91.1
50 Relative Int. (%)
100
D
200
H 2C
C
D O C
D CH
H 2C
CH 3
100
150 D O H 3C
50
N
D 2C
C
D
50
D CH
H 2C
CH 3
D
64.1
D
350
C22H24D5NO2 MW: 344.50
255.2
250
300
350 Propoxyphene-d7
N
CH 3
C22H22D7NO2 MW: 346.51
II-18-iii
CH 3
215.1
200
257.1
250
300
350
D
Propoxyphene-d11 O H 3C
50 91.1
0 100
H 2C
C
D O C
D CH
H 2C
CH 3
N
CD 3 CD 3
150
200 m/z
C22H18D11NO2 MW: 350.54
II-18-iv 213.1
119.1
Figure II — Opioids
© 2010 by Taylor and Francis Group, LLC
213.1
200
D O C
150
II-18-ii
CH 3
200.1
100
50
300
D
98.1
100
CH 3
198.1
119.0
58.1
0
250
D
Propoxyphene-d5 (CAS NO.136765-49-6) O
0
Relative Int. (%)
150
Propoxyphene (CAS NO.469-62-5)
261.1
250
300
350
210
Figure II-19. Mass spectra of norpropoxyphene and its deuterated analogs (norpropoxyphene-d5).
Relative Int. (%)
100
44.1
Norpropoxyphene (CAS NO.66796-40-5)
II-19-i 100.1
50 57.1
O H 3C
H 2C
C
234.1 O C H 2C
91.0
CH CH 2 NH
C21H27NO2 MW: 325.44
CH 3
CH 3
281.0
207.0
129.1
307.2
0 40 Relative Int. (%)
100
90 44.1
D
II-19-ii 100.1
50 57.1
140 O H 3C
H 2C
C
88.1
D
190
240
290
140
D CH
H 2C
CH 3
239.2 CH 2 NH
C21H22D5NO2 MW: 330.47
CH 3
207.0
281.0
190
240 m/z
Appendix One — Mass Spectra
© 2010 by Taylor and Francis Group, LLC
390
Norpropoxyphene-d5 D O C
129.1
90
340
D
0 40
325.0
290
312.2
327.0
340
390
211
Figure II-20. Mass spectra of meperidine and its deuterated analogs (meperidine-d4).
Relative Int. (%)
100
71.1
CH 3
COCH 2CH 3
50 57.1
247.1 172.1
C15H21NO2 MW: 247.33
218.1
O
103.0
91.0
Meperidine (CAS NO.57-42-1)
II-20-i
N
144.1
190.0
150
200
232.1
0 50
100
Relative Int. (%)
100
73.1
CH 3 D D
50
57.1
105.0 93.0
300
Meperidine-d4 (CAS NO.53484-73-4)
II-20-ii
N D D COCH 2CH 3
250
251.1
C15H17D4NO2 MW: 251.36
222.1
175.1
O
144.1
192.1
234.1
0 50
100
150
200 m/z
Figure II — Opioids
© 2010 by Taylor and Francis Group, LLC
250
300
212
Figure II-21. Mass spectra of normeperidine and its deuterated analogs (normeperidine-d4): (A) underivatizedderivatized; (B) ethyl-derivatized; (C) propyl-derivatized; (D) butyl-derivatizedacetyl; (E) acetyl-derivatized; (F) TCA-derivatized; (G) TFA-derivatized; (H) PFP-derivatized; (I) HFB-derivatized; (J) 4-CB-derivatized; (K) TMSderivatized; (L) t-BDMS-derivatized. Relative Int. (%)
100
57.1
H
Normeperidine (CAS NO.77-17-8)
II-21-A-i
C14H19NO2 MW: 233.31
N
COCH 2CH 3
50 91.0
77.0
103.0
233.1
O
158.1 131.0
187.0
204.1
0 50 Relative Int. (%)
100
100 59.1
150
200 H
Normeperidine-d4 (CAS NO.160227-47-4)
II-21-A-ii
C14H15D4NO2 MW: 237.33
D D
50 133.0
93.0
N
D D COCH 2CH 3
237.1
O
164.1
105.0 79.0
250
208.1
191.1
0 50
Relative Int. (%)
100
100
Normeperidine, ethyl derivative
150 m/z
200
N
C16H23NO2 MW: 261.36
50
246.1
C 2H 5
II-21-B-i
250
COCH 2CH 3
85.1 71.1
O
103.1
261.1
232.1
188.1
158.1
0 50 Relative Int. (%)
100
100 Normeperidine-d4, ethyl derivative
150
200
II-21-B-ii D
C16H19D4NO2 MW: 265.38
50
D D COCH 2CH 3
71.1
O
105.0
300
250.1
N
D
87.1
250
C 2H 5
265.1
236.1
192.1
161.1
0 50
100
150
200
250
300
m/z Relative Int. (%)
100
246.1
Normeperidine, propyl derivative
C 3H 7
II-21-C-i
N
C17H25NO2 MW: 275.39
50
COCH 2CH 3 O
103.0
202.1
275.1
0 50 Relative Int. (%)
100
100 Normeperidine-d4, propyl derivative
150
250
300
250.1
II-21-C-ii
C 3H 7
C17H21D4NO2 MW: 279.41
50
200
D
N
D
D D COCH 2CH 3 O
0 50
100
150
200 m/z
Appendix One — Mass Spectra
© 2010 by Taylor and Francis Group, LLC
279.2
206.2
105.1
250
300
213
Figure II-21. (Continued)
Relative Int. (%)
100
Normeperidine, butyl derivative
C 4H 9
C18H27NO2 MW: 289.41
50
246.1
II-21-D-i
N COCH 2CH 3 O
216.1
289.2
0 50 Relative Int. (%)
100
100
150
Normeperidine-d4, butyl derivative
C 4H 9
250
300
250.2
II-21-D-ii
N
D
C18H23D4NO2 MW: 293.44
50
200
D D COCH 2CH 3
D
O
220.2
293.2
0 50
100
150
200
250
300
m/z Relative Int. (%)
100
187.1
COCH 3 N
50
C16H21NO3 MW: 275.34
COCH 2CH 3
158.1
O
57.1
Normeperidine, acetyl derivative
II-21-E-i 232.1
202.1
275.1
103.1
91.1
0 50
100
Relative Int. (%)
100
150
200
COCH 3
D
D D COCH 2CH 3
50
236.2
C16H17D4NO3 MW: 279.36 279.2
105.1
93.1
0
206.2
161.1
O
59.1
300 Normeperidine-d4, acetyl derivative
II-21-E-ii
N
D
50
250
191.1
100
150
200
250
300
m/z Relative Int. (%)
100
COCH 2CH 3
143.0 103.0
II-21-F-i
N
C16H18Cl3NO3 MW: 378.68
50
342.0
COCCl 3
Normeperidine, trichloroacetyl derivative
117.0
O
158.0
268.0
232.1 304.0
0 50 Relative Int. (%)
100
100
150
200 COCCl 3
Normeperidine-d4, trichloroacetyl derivative D
119.0
350
400
346.1
D D COCH 2CH 3
236.1
O
146.0 105.0
300
II-21-F-ii
N
D
C16H14D4Cl3NO3 MW: 382.70
50
250
271.0
161.1
308.0
0 50
100
150
200
250 m/z
Figure II — Opioids
© 2010 by Taylor and Francis Group, LLC
300
350
400
214
Figure II-21. (Continued)
Relative Int. (%)
100
Normeperidine, trifluoroacetyl derivative
91.1
256.1
COCH 2CH 3
103.1
II-21-G-i
N
C16H18F3NO3 MW: 329.31
50
241.1
COCF 3
143.1
329.1
O
117.1
0 50 Relative Int. (%)
100
100
150
200
Normeperidine-d4, trifluoroacetyl derivative D
146.1
D
105.1 93.1
300
350
243.1
COCF 3
C16H14D4F3NO3 MW: 333.34
50
250
II-21-G-ii
N D D COCH 2CH 3
259.1 333.1
O
119.1
0 50
Relative Int. (%)
100
100
150
Normeperidine, pentafluoropropionyl derivative C17H18F5NO3 MW: 379.32 103.1
50
200 m/z
250
300
350
291.1
COC 2 F 5
II-21-H-i
N
143.1
306.1
COCH 2CH 3
379.1
O
117.1
176.0
202.0
360.1
0 50 Relative Int. (%)
100
100
150
200
250
Normeperidine-d4, pentafluoropropionyl derivative
D
350
II-21-H-ii
N D D COCH 2CH 3
D
119.1
400
293.1
COC 2 F 5
146.1
C17H14D4F5NO3 MW: 383.35 105.1
50
300
310.1
383.1
O
177.0
203.0
364.1
0 50
100
150
200
250
300
350
400
m/z Relative Int. (%)
100
Normeperidine, heptafluorobutyryl derivative C18H18F7NO3 MW: 429.33 103.1
50
341.1
COC 3 F 7
II-21-I-i
N
143.1 356.1
COCH 2CH 3
429.1
O
117.1
169.0
226.0
0 50 Relative Int. (%)
100
100
150
200
250
Normeperidine-d4, heptafluorobutyryl derivative
D
105.1
146.1
D
350
400
N
II-21-I-ii
D D COCH 2CH 3
360.1 433.1
O
119.1
169.0
450
343.1
COC 3 F 7
C18H14D4F7NO3 MW: 433.35
50
300
227.0
0 50
100
150
200
250 m/z
Appendix One — Mass Spectra
© 2010 by Taylor and Francis Group, LLC
300
350
400
450
215
Figure II-21. (Continued)
Relative Int. (%)
100
Normeperidine, 4-carboethoxyhexafluorobutyryl derivative
50
II-21-J-i
N
143.1
C21H23F6NO5 MW: 483.40 103.1
395.1
CO(CF2)3COOC2H 5
COCH 2CH 3
410.1
O
232.1
483.1 438.1
195.0
0 50 Relative Int. (%)
100
100
150
200
250
300
Normeperidine-d4, 4-carboethoxyhexafluorobutyryl derivative C21H19D4F6NO5 MW: 487.43 105.1
50
350
400
146.1
II-21-J-ii
N D D COCH 2CH 3
D
414.1
O
236.2
500
397.1
CO(CF2)3COOC2H 5 D
450
487.2 442.1
195.0
0 50
100
150
200
250
300
350
400
450
500
m/z Relative Int. (%)
100
73.1 Si(CH ) 33
129.1
Normeperidine, trimethylsilyl derivative
N
50
COCH 2CH 3
154.1
O
59.1
290.1
230.1
C17H27NO2Si MW: 305.49
304.2
276.1
198.1
II-21-K-i
248.1
0 50
100
Relative Int. (%)
100
150
73.1 Si(CH3)3 D
D D COCH 2CH 3
D
50
131.1
N
158.1
O
200
250
300
Normeperidine-d4, trimethylsilyl derivative C17H23D4NO2Si MW: 309.51
59.1
350 308.2
280.2 236.2
II-21-K-ii
294.2 250.1
202.1
0 50
100
150
200 m/z
Relative Int. (%)
100
II-21-L-i 50
250
290.2
Si(CH3)2C(CH3)3
132.1
300
N
350
Normeperidine, t-butyldimethylsilyl derivative C20H33NO2Si MW: 347.57
COCH 2CH 3
103.1
O
73.1
262.2
216.1
175.1
332.2 347.3
0 50 Relative Int. (%)
100
100
150
200
300 294.2
Si(CH3)2C(CH3)3
II-21-L-ii D
133.1
50
250
N
D
103.1
D D COCH 2CH 3
219.1
179.1
400
Normeperidine-d4, t-butyldimethylsilyl derivative C20H29D4NO2Si MW: 351.59
266.2
O
73.1
350
336.2 351.3
0 50
100
150
200
250 m/z
Figure II — Opioids
© 2010 by Taylor and Francis Group, LLC
300
350
400
217
Summary of Drugs, Isotopic Analogs, and Chemical Derivatization Groups Included in Figure III (Hallucinogens) Compound
Isotopic analog
Chemical derivatization group (no. of spectra)
Figure #
Cannabinol
d3
Methyl, ethyl, propyl, butyl, propionyl (10)
III-1
Tetrahydrocannabinol
d3
Methyl, ethyl, propyl, butyl, TFA, propionyl, PFP, HFB, TMS, t-BDMS (20)
III-2
THC-OH
d3
[Methyl]2, [ethyl]2, [propyl]2, [butyl]2, [TFA]2, propionyl, [PFP]2, [HFB]2, [TMS]2, [t-BDMS]2 (20)
III-3
THC-COOH
d 3, d 9
[Methyl]2, [ethyl]2, [propyl]2, [butyl]2, propionyl, [TMS]2, [t-BDMS]2, methyl/TFA, PFPoxy/PFP, HFPoxy/HFB (30)
III-4
Ketamine
d4
None, acetyl, TFA, HFB, PFB, TMS (12)
III-5
Norketamine
d4
None, acetyl, TCA, TFA, PFP, HFB, 4-CB, PFB, TMS, TFA/t-BDMS, PFP/t-BDMS, HFB/t-BDMS (24)
III-6
Phencyclidine
d5
None (2)
III-7
LSD
d3
None, TMS (4)
III-8
Mescaline
d9
Acetyl, TCA, TFA, PFP, HFB, 4-CB, [TMS]2, t-BDMS, TFA/TMS, TFA/t-BDMS, PFP/TMS, PFP/t-BDMS, HFB/TMS, HFB/t-BDMS (28)
III-9
Psilocin
d10
None, acetyl, [acetyl]2, [TMS]2, t-BDMS, [t-BDMS]2 (12) Total no. of mass spectra: 162
Figure III — Hallucinogens
© 2010 by Taylor and Francis Group, LLC
III-10
219
Appendix One — Figure III Mass Spectra of Commonly Abused Drugs and Their Isotopically Labeled Analogs in Various Derivatization Forms — Hallucinogens Figure III-1. Mass spectra of cannabinol and its deuterated analogs (cannabinol-d3): (A) methyl-derivatized; (B) ethylderivatized; (C) propyl-derivatized; (D) butyl-derivatized; (E) propionyl-derivatized ............................................................... 220 Figure III-2. Mass spectra of tetrahydrocannabinol and its deuterated analogs (tetrahydrocannabinol-d3): (A) methylderivatized; (B) ethyl-derivatized; (C) propyl-derivatized; (D) butyl-derivatized; (E) TFA-derivatized; (F) propionylderivatized; (G) PFP-derivatized; (H) HFB-derivatized; (I) TMS-derivatized; (J) t-BDMS-derivatized ................................... 222 Figure III-3. Mass spectra of THC-OH and its deuterated analogs (THC-OH-d3): (A) [methyl]2-derivatized; (B) [ethyl]2derivatized; (C) [propyl]2-derivatized; (D) [butyl]2-derivatized; (E) [TFA]2-derivatized; (F) propionyl-derivatized; (G) [PFP]2-derivatized; (H) [HFB]2-derivatized; (I) [TMS]2-derivatized; (J) [t-BDMS]2-derivatized ............................................. 226 Figure III-4. Mass spectra of THC-COOH and its deuterated analogs (THC-COOH-d3, -d9): (A) [methyl]2-derivatized; (B) [ethyl]2-derivatized; (C) [propyl]2-derivatized; (D) [butyl]2-derivatized; (E) propionyl-derivatized; (F) [TMS]2derivatized; (G) [t-BDMS]2-derivatized; (H) methyl/TFA-derivatized; (I) PFPoxy/PFP-derivatized; (J) HFPoxy/HFBderivatized ..................................................................................................................................................................................... 230 Figure III-5. Mass spectra of ketamine and its deuterated analogs (ketamine-d4): (A) underivatized; (B) acetyl-derivatized; (C) TFA-derivatized; (D) HFB-derivatized; (E) PFB-derivatized; (F) TMS-derivatized ........................................................... 235 Figure III-6. Mass spectra of norketamine and its deuterated analogs (norketamine-d4): (A) underivatized; (B) acetylderivatized; (C) TCA-derivatized; (D) TFA-derivatized; (E) PFP-derivatized; (F) HFB-derivatized; (G) 4-CB-derivatized; (H) PFB-derivatized; (I) TMS-derivatized; (J) TFA/t-BDMS-derivatized; (K) PFP/t-BDMS-derivatized; (L) HFB/tBDMS-derivatized ........................................................................................................................................................................ 237 Figure III-7. Mass spectra of phencyclidine and its deuterated analogs (phencyclidine-d5) ..................................................... 241 Figure III-8. Mass spectra of LSD and its deuterated analogs (LSD-d3): (A) underivatized-derivatized; (B) TMSderivatized ..................................................................................................................................................................................... 242 Figure III-9. Mass spectra of mescaline and its deuterated analogs (mescaline-d9): (A) acetyl-derivatized; (B) TCAderivatized; (C) TFA-derivatized; (D) PFP-derivatized; (E) HFB-derivatized; (F) 4-CB-derivatized; (G) [TMS]2-derivatized; (H) t-BDMS-derivatized; (I) TFA/TMS-derivatized; (J) TFA/t-BDMS-derivatized; (K) PFP/TMS-derivatized; (L) PFP/tBDMS-derivatized; (M) HFB/TMS-derivatized; (N) HFB/t-BDMS-derivatized ....................................................................... 243 Figure III-10. Mass spectra of psilocin and its deuterated analogs (psilocin-d10): (A) underivatized; (B) acetyl-derivatized; (C) [acetyl]2-derivatized; (D) [TMS]2-derivatized; (E) t-BDMS-derivatized; (F) [t-BDMS]2-derivatized ................................ 248
Figure III — Hallucinogens
© 2010 by Taylor and Francis Group, LLC
220
Figure III-1. Mass spectra of cannabinol and its deuterated analogs (cannabinol-d3): (A) methyl-derivatized; (B) ethyl-derivatized; (C) propyl-derivatized; (D) butyl-derivatized; (E) propionyl-derivatized.
Relative Int. (%)
100
Cannabinol (CAS NO.521-35-7), methyl derivative C22H28O2 MW: 324.46
50
309.1
CH 3
III-1-A-i
OCH3 H C O 3 H C 3
CH (CH ) CH 2 23 3
209.1
238.1
324.2
252.1
0 50 Relative Int. (%)
100
100
150
Cannabinol-d3, methyl derivative
250
350
III-1-A-ii
OCH3 H C O 3 H C 3
300 312.2
CH 3
C22H25D3O2 MW: 327.47
50
200
CH (CH ) CD 2 23 3
209.0
238.0
327.2
252.1
0 50
Relative Int. (%)
100
100
150
Cannabinol, ethyl derivative
250
300
H C O 3 H C 3
CH (CH ) CH 2 23 3
338.2 295.1
0 50 Relative Int. (%)
100
150
Cannabinol-d3, ethyl derivative
200
250
300
OC 2H 5 H C O 3 H C 3
CH (CH ) CD 2 23 3
341.2
238.1 298.1
0 50
100 Relative Int. (%)
350 326.2
III-1-B-ii
CH 3
C23H27D3O2 MW: 341.50
50
323.1
OC 2H 5
238.0
100
350
III-1-B-i
CH 3
C23H30O2 MW: 338.48
50
200 m/z
100
150
Cannabinol, propyl derivative
250
350
III-1-C-i
OC 3H 7 H C O 3 H C 3
300
337.2
CH 3
C24H32O2 MW: 352.51
50
200 m/z
CH (CH ) CH 2 23 3
238.0
352.2
295.1
0 50 Relative Int. (%)
100
100
150
Cannabinol-d3, propyl derivative
250
OC 3H 7 H C O 3 H C 3
300
III-1-C-ii
CH 3
C24H29D3O2 MW: 355.53
50
200
350
400
340.2
CH (CH ) CD 2 23 3
238.1
355.2
298.2
0 50
100
150
200
250 m/z
Appendix One — Mass Spectra
© 2010 by Taylor and Francis Group, LLC
300
350
400
221
Figure III-1. (Continued)
Relative Int. (%)
100
Cannabinol, butyl derivative C25H34O2 MW: 366.54
50
351.2
CH 3
III-1-D-i
OC 4H 9 H C O 3 H C 3
CH (CH ) CH 2 23 3
238.0
366.2
295.1
0 50 Relative Int. (%)
100
100
150
Cannabinol-d3, butyl derivative C25H31D3O2 MW: 369.56
50
200
250
350
400 354.2
CH 3
III-1-D-ii
OC 4H 9 H C O 3 H C 3
300
CH (CH ) CD 2 23 3
238.0
369.2
298.1
0 50
100
150
200
250
300
350
400
m/z Relative Int. (%)
100
Cannabinol, propionyl derivative C24H30O3 MW: 366.49
50
III-1-E-i
CH 3
295.1
H C O 3 H C 3
CH (CH ) CH 2 23 3
366.2
238.0 251.1
310.1
0 50 Relative Int. (%)
100
100
150
Cannabinol-d3, propionyl derivative C24H27D3O3 MW: 369.51
50
200
250
100
150
400 354.2
CH (CH ) CD 2 23 3
369.2
238.0 251.1
200
250 m/z
Figure III — Hallucinogens
© 2010 by Taylor and Francis Group, LLC
350
III-1-E-ii
OCOC 2H 5 H C O 3 H C 3
300 298.1
CH 3
313.2
0 50
351.1
OCOC 2H 5
300
350
400
222
Figure III-2. Mass spectra of tetrahydrocannabinol and its deuterated analogs (tetrahydrocannabinol-d3): (A) methylderivatized; (B) ethyl-derivatized; (C) propyl-derivatized; (D) butyl-derivatized; (E) TFA-derivatized; (F) propionylderivatized; (G) PFP-derivatized; (H) HFB-derivatized; (I) TMS-derivatized; (J) t-BDMS-derivatized. Relative Int. (%)
100
Tetrahydrocannabinol (CAS
CH
NO.5957-75-5),
328.2
OCH3
methyl derivative C22H32O2 MW: 328.49
50
313.2
III-2-A-i
3
245.1
H C 3 H C O 3
CH (CH ) CH 2 23 3
257.1
271.2
207.1
81.1
285.2 297.2
0 50 Relative Int. (%)
100
100 Tetrahydrocannabinol-d3 (CAS NO.81586-39-2), methyl derivative
200 CH
250
H C 3 H C O 3
100
150
97.1
300.2
250
300
III-2-B-i
3
350
342.3
327.2
OC 2H 5
C23H34O2 MW: 342.51
50 57.1
CH
288.2
272.2
200 m/z
Tetrahydrocannabinol, ethyl derivative
331.3
257.2 210.1
100
350 316.2
248.2
CH (CH ) CD 2 23 3
81.1
50
300
III-2-A-ii
3 OCH3
C22H29D3O2 MW: 331.51
50
0
Relative Int. (%)
150
H C 3 H C O 3
111.1
CH (CH ) CH 2 23 3
231.1
174.1
259.2 313.2 271.2 299.2 286.2
0 50
100
Relative Int. (%)
100
150
200
Tetrahydrocannabinol-d3, ethyl derivative
50
57.1
C23H31D3O2 MW: 345.53
97.1
CH
250
350
OC 2H 5
CH (CH ) CD 262.2 2 23 3
316.2
302.2 271.2 286.2
111.1 234.2
174.1
400
345.3
330.3
III-2-B-ii
3
H C 3 H C O 3
300
0 50
100
150
200
250
300
350
400
m/z Relative Int. (%)
100
Tetrahydrocannabinol, propyl derivative
CH
OC 3H 7
C24H36O2 MW: 356.54
50
57.1
81.1
H C 3 H C O 3
CH (CH ) CH 2 23 3
273.2
356.3
341.3
III-2-C-i
3
313.2
285.2 297.2
231.1
149.0
0 50 Relative Int. (%)
100
100
150
200
Tetrahydrocannabinol-d3, propyl derivative
CH
57.1
81.1
300
H C 3 H C O 3
350
400 359.3
344.3
III-2-C-ii
3
316.2
OC 3H 7
C24H33D3O2 MW: 359.56
50
250
CH (CH ) CD 2 23 3
276.2
300.2 285.2
234.2
149.0
0 50
100
150
200
250 m/z
Appendix One — Mass Spectra
© 2010 by Taylor and Francis Group, LLC
300
350
400
223
Figure III-2. (Continued)
Relative Int. (%)
100
Tetrahydrocannabinol, butyl derivative
CH
OC 4H 9
C25H38O2 MW: 370.57
50
370.3
355.2
III-2-D-i
3
H C 3 H C O 3
313.2
CH (CH ) CH 2 23 3
299.1
287.2
327.2
231.1
81.1
0 50
100
Relative Int. (%)
100
150
Tetrahydrocannabinol-d3, butyl derivative C25H35D3O2 MW: 373.59
50
200 CH
250
300
350 358.2
III-2-D-ii
3 OC 4H 9
H C 3 H C O 3
CH (CH ) CD 2 23 3
373.3
316.2 300.2
290.2
330.2
234.1
81.1
400
0 50
100
150
200
250
300
350
400
m/z Relative Int. (%)
100
Tetrahydrocannabinol, trifluoroacetyl derivative C23H29F3O3 MW: 410.47
50
69.1
CH
OCOCF3 H C 3 H C O 3
128.1
410.3
367.2 395.2
339.2
297.2
III-2-E-i
3
327.2
CH (CH ) CH 2 23 3
313.2
229.2
165.1
0 50
100
Relative Int. (%)
100
150
200
Tetrahydrocannabinol-d3, trifluoroacetyl derivative C23H26D3F3O3 MW: 413.49
50
69.1
CH
3
300
III-2-E-ii
OCOCF3 H C 3 H C O 3
128.1
250
350
300.3
400
339.1
450 413.3
370.2 398.2
330.2
CH (CH ) CD 2 23 3
316.2
232.2
165.1
0 50
100
Relative Int. (%)
100
150
200
Tetrahydrocannabinol, propionyl derivative
CH
350
400
450
297.2
H C 3 H C O 3
57.1
300
III-2-F-i
3 OCOC 2H 5
C24H34O3 MW: 370.52
50
250 m/z
313.2
CH (CH ) CH 2 23 3
231.1
149.0
243.1
271.1
370.2
0 50
100
Relative Int. (%)
100
150
Tetrahydrocannabinol-d3, propionyl derivative
CH
H C 3 H C O 3
300
III-2-F-ii
3
350
400
300.2
316.2 CH (CH ) CD 2 23 3
149.0
57.1
250
OCOC 2H 5
C24H31D3O3 MW: 373.54
50
200
234.1
243.1
274.1
373.2
0 50
100
150
200
250 m/z
Figure III — Hallucinogens
© 2010 by Taylor and Francis Group, LLC
300
350
400
224
Figure III-2. (Continued)
Relative Int. (%)
100
Tetrahydrocannabinol, pentafluoropropionyl derivative
CH
III-2-G-i
OCOC 2F 5 H C 3 H C O 3
C24H29F5O3 MW: 460.48
50
119.0
71.1
377.1 3
460.2 392.2 445.2
335.1
229.2
174.1
417.2
CH (CH ) CH 2 23 3
0 50
100
Relative Int. (%)
100
150
200
Tetrahydrocannabinol-d3, pentafluoropropionyl derivative
250
350
450
500
380.2 OCOC 2F 5
463.3 420.2
CH (CH ) CD 2 23 3
395.2 448.2
335.1
232.2
174.1
400
3
H C 3 H C O 3
119.1
74.1
CH
III-2-G-ii
C24H26D3F5O3 MW: 463.50
50
300
0 50
100
150
200
250
300
350
400
450
500
m/z Relative Int. (%)
100
Tetrahydrocannabinol, heptafluorobutyryl derivative
50
69.1
297.2
III-2-H-i
3 OCOC 3F 7
H C
C25H29F7O3 MW: 510.48 95.1
CH
169.0 H3 C O 3
467.2 495.2
510.3
427.1
CH (CH ) CH 2 23 3
313.2
229.2
128.1
439.1
453.2 482.2
413.1
0 50
100
Relative Int. (%)
100
150
200
Tetrahydrocannabinol-d3, heptafluorobutyryl derivative
50
69.1
250
CH
300
3 OCOC 3F 7
C25H26D3F7O3 169.0 H 3C O H C 3 MW: 513.50 91.1 128.1
350
300.2
CH (CH ) CD 2 23 3
400
III-2-H-ii
450 439.1
470.2
500
550 513.3
498.2
430.2 316.2
232.2
416.1
456.1 485.2
0 50
Relative Int. (%)
100
100
150
200
Tetrahydrocannabinol, trimethylsilyl derivative
300 m/z CH
350
H C 3 H C O 3
73.1
400
450
CH (CH ) CH 2 23 3
303.2
500
371.3
III-2-I-i
3 OSi(CH3)3
C24H38O2Si MW: 386.64
50
250
550 386.3
315.2 330.2
343.2
0 50 Relative Int. (%)
100
100
150
Tetrahydrocannabinol-d3, trimethylsilyl derivative C24H35D3O2Si MW: 389.66 73.1
50
200 CH
250
300
350 374.3
III-2-I-ii
3
400 389.3
OSi(CH3)3 H C 3 H C O 3
CH (CH ) CD 2 23 3
306.2
315.2 330.2
346.3
0 50
100
150
200
250 m/z
Appendix One — Mass Spectra
© 2010 by Taylor and Francis Group, LLC
300
350
400
225
Figure III-2. (Continued)
Relative Int. (%)
100
Tetrahydrocannabinol, t-butyldimethylsilyl derivative
50
CH
371.3
III-2-J-i
3 OSi(CH3)2C(CH3)3
428.4
H C 3 H C O 3
C27H44O2Si MW: 428.72 73.1
CH (CH ) CH 2 23 3
249.1
357.3 289.2
345.3
413.3
0 50 Relative Int. (%)
100
100
150
Tetrahydrocannabinol-d3, t-butyldimethylsilyl derivative
50
200 CH
300
350
400
OSi(CH3)2C(CH3)3
431.4
CH (CH ) CD 2 23 3
252.2
450
374.3
III-2-J-ii
3
H C 3 H C O 3
C27H41D3O2Si MW: 431.74 73.1
250
357.3 292.2
416.4
348.3
0 50
100
150
200
250 m/z
Figure III — Hallucinogens
© 2010 by Taylor and Francis Group, LLC
300
350
400
450
226
Figure III-3. Mass spectra of THC-OH and its deuterated analogs (THC-OH-d3): (A) [methyl]2-derivatized; (B) [ethyl]2-derivatized; (C) [propyl]2-derivatized; (D) [butyl]2-derivatized; (E) [TFA]2-derivatized; (F) propionyl-derivatized; (G) [PFP]2-derivatized; (H) [HFB]2-derivatized; (I) [TMS]2-derivatized; (J) [t-BDMS]2-derivatized. Relative Int. (%)
100
THC-OH (CAS NO.36557-05-8), di-methyl derivative C23H34O3 MW: 358.51
50
H C 3 H C O 3
314.2
III-3-A-i
271.2
CH (CH ) CH 2 23 3
174.0
91.1
299.2
231.1
CH OCH 3 2 OCH3
243.1
201.1
356.2
0 50 Relative Int. (%)
100
100
150
250
CH OCH 3 2 OCH3
THC-OH-d3, di-methyl derivative C23H31D3O3 MW: 361.53
50
200
H C 3 H C O 3
350
302.2
234.1
317.2
400
III-3-A-ii
274.2
CH (CH ) CD 2 23 3
174.1
91.1
300
243.1
196.1
359.2
0 50
100
150
200
250
300
350
400
m/z Relative Int. (%)
100
THC-OH, di-ethyl derivative C25H38O3 MW: 386.56
50
H C 3 H C O 3
337.1
III-3-B-i
CH OC 2H 5 2 OC 2H 5 CH (CH ) CH 2 23 3
252.0
71.1
352.2
309.1
0 50 Relative Int. (%)
100
100
150
THC-OH-d3, di-ethyl derivative C25H35D3O3 MW: 389.58
50
200
250
300
400
340.1
III-3-B-ii
CH OC 2H 5 2 OC 2H 5 H C 3 H C O 3
350
CH (CH ) CD 2 23 3
252.0
71.1
355.1
312.1
0 50
100
150
200
250
300
350
400
m/z Relative Int. (%)
100
H C 3 H C O 3
50
351.1
III-3-C-i
CH OC 3H 7 2 OC 3H 7
THC-OH, di-propyl derivative C27H42O3 MW: 414.62
CH (CH ) CH 2 23 3
309.0
252.0
366.2
0 50
100
150
200
250
Relative Int. (%)
100
H C 3 H C O 3
350
400 354.2
III-3-C-ii
CH OC 3H 7 2 OC 3H 7
50
300
450
THC-OH-d3, di-propyl derivative C27H39D3O3 MW: 417.64
CH (CH ) CD 2 23 3
369.2
312.1
252.0
0 50
100
150
200
250 m/z
300
Appendix One — Mass Spectra
© 2010 by Taylor and Francis Group, LLC
350
400
450
227
Figure III-3. (Continued)
Relative Int. (%)
100
THC-OH, di-butyl derivative C29H46O3 MW: 442.67
50
365.1
CH OC 4H 9 2 OC 4H 9 H C 3 H C O 3
III-3-D-i
CH (CH ) CH 2 23 3
309.1
380.2
252.0
407.3 429.1
0 50 Relative Int. (%)
100
100
150
200
THC-OH-d3, di-butyl derivative
300
H C 3 H C O 3
350
400
450
368.2
CH OC 4H 9 2 OC 4H 9
C29H43D3O3 MW: 445.69
50
250
III-3-D-ii
CH (CH ) CD 2 23 3
383.2
312.1
252.0
410.2
0 50
Relative Int. (%)
100
100
150
200
THC-OH, di-trifluoroacetyl derivative
CH OCOCF 3 2 OCOCF3
C25H28F6O5 MW: 522.47
50
250 m/z
H C 3 H C O 3
69.1
300
350
450
408.2
III-3-E-i 365.2
CH (CH ) CH 2 23 3
227.2
400
393.2
313.1
522.2
451.2
0 50 Relative Int. (%)
100
100
150
200
300
350
400
450
500
550
411.2
THC-OH-d3, di-trifluoroacetyl derivative
CH OCOCF 3 2 OCOCF3
C25H25D3F6O5 MW: 525.49
50
250
H C 3 H C O 3
69.1
III-3-E-ii 368.2
CH (CH ) CD 2 23 3
316.1
230.2
396.2
525.3
451.1
0 50
Relative Int. (%)
100
100
150
200
THC-OH, propionyl derivative
300 m/z
H C 3 H C O 3
350
400
368.2 269.1
Relative Int. (%)
100
150
297.1
353.2
200
250
300
CH OH 2 OCOC 2H 5
C24H31D3O4 MW: 389.54
H C 3 H C O 3
272.1
150
200
250 m/z
Figure III — Hallucinogens
© 2010 by Taylor and Francis Group, LLC
400
371.2
CH (CH ) CD 2 23 3
57.0
100
350
III-3-F-ii 300.1
0 50
385.2
315.2
THC-OH-d3, propionyl derivative
50
550
CH (CH ) CH 2 23 3
57.0
100
500
III-3-F-i
0 50
450
312.2
CH OH 2 OCOC 2H 5
C24H34O4 MW: 386.52
50
250
300
356.2
350
388.2
400
228
Figure III-3. (Continued)
Relative Int. (%)
100
H C 3 H C O 3
50 119.0
69.1
458.2
CH OCOC 2F 5 2 OCOC 2F 5
III-3-G-i
CH (CH ) CH 2 23 3
THC-OH, di-pentafluoropropionyl derivative C27H28F10O5 MW: 622.49
415.2 363.1
227.1
622.2
551.1
0 50
100
150
200
250
Relative Int. (%)
100
350
400
450
H C 3 H C O 3
50 119.0
500
550
461.3
CH OCOC 2F 5 2 OCOC 2F 5
III-3-G-ii
69.1
300
CH (CH ) CD 2 23 3
650
THC-OH-d3, di-pentafluoropropionyl derivative C27H25D3F10O5 MW: 625.51
418.2 366.1
230.2
600
625.3
551.1
0 50
100
150
200
250
Relative Int. (%)
100
300
350 m/z
400
450
H C 3 H C O 3
50
550
CH (CH ) CH 2 23 3
600
C29H28F14O5 MW: 722.50
465.2
169.0
69.1
227.1
650
THC-OH, di-heptafluorobutyryl derivative
508.2
CH OCOC 3F 7 2 OCOC 3F 7
III-3-H-i
500
722.3
413.1
0 50
100
150
200
250
Relative Int. (%)
100
300
400
450
500
H C 3 H C O 3
50 169.0
550
600
511.3
CH OCOC 3F 7 2 OCOC 3F 7
III-3-H-ii 69.1
350
CH (CH ) CD 2 23 3
650
700
THC-OH-d3, di-heptafluorobutyryl derivative C29H25D3F14O5 MW: 725.52
468.2
725.3
416.1
230.2
750
0 50
100
150
200
250
300
350
400 m/z
450
500
Relative Int. (%)
100
50
H C 3 H C O 3
600
371.3
CH OSi(CH3)3 2 OSi(CH3)3
III-3-I-i
550
700
C27H46O3Si2 MW: 474.82
73.1 459.3
50
100
150
100
200
250
300
350
H C 3 H C O 3
50
400 374.3
CH OSi(CH3)3 2 OSi(CH3)3
III-3-I-ii
73.1
100
150
200
250
500
THC-OH-d3, di-trimethylsilyl derivative
462.3
300 m/z
Appendix One — Mass Spectra
© 2010 by Taylor and Francis Group, LLC
450
474.3
C27H43D3O3Si2 MW: 477.84
CH (CH ) CD 2 23 3
0 50
750
THC-OH, di-trimethylsilyl derivative
CH (CH ) CH 2 23 3
0
Relative Int. (%)
650
350
400
450
477.4
500
229
Figure III-3. (Continued)
Relative Int. (%)
100
413.3
CH OSi(CH3)2C(CH3)3 2 OSi(CH3)2C(CH3)3
III-3-J-i
H C 3 H C O 3
50
THC-OH, di-t-butyldimethylsilyl derivative C33H58O3Si2 MW: 558.98
CH (CH ) CH 2 23 3
73.1
369.3
558.5
0 50
100
150
200
Relative Int. (%)
100
250
300
350
400
CH OSi(CH3)2C(CH3)3 2 OSi(CH3)2C(CH3)3
III-3-J-ii
H C 3 H C O 3
50
450 416.4
500
550
THC-OH-d3, di-t-butyldimethylsilyl derivative C33H55D3O3Si2 MW: 562.00
CH (CH ) CD 2 23 3
73.1
372.3
561.5
0 50
100
150
200
250
300
350 m/z
Figure III — Hallucinogens
© 2010 by Taylor and Francis Group, LLC
600
400
450
500
550
600
230
Figure III-4. Mass spectra of THC-COOH and its deuterated analogs (THC-COOH-d3, -d9): (A) [methyl]2-derivatized; (B) [ethyl]2-derivatized; (C) [propyl]2-derivatized; (D) [butyl]2-derivatized; (E) propionyl-derivatized; (F) [TMS]2derivatized; (G) [t-BDMS]2-derivatized; (H) methyl/TFA-derivatized; (I) PFPoxy/PFP-derivatized; (J) HFPoxy/HFBderivatized.
Relative Int. (%)
100
Carboxytetrahydrocannabinol (CAS NO.104874-50-2), di-methyl derivative
50
OCH3 H C 3 H C O 3
C23H32O4 MW: 372.50
313.2
III-4-A-i
COOCH3
357.2
CH (CH ) CH 2 23 3
207.1
372.2 245.1
341.2
0 50 Relative Int. (%)
100
50
100
150
200
Carboxytetrahydrocannabinol-d3 (CAS NO.136844-96-7), di-methyl derivative
COOCH3
C23H29D3O4 MW: 375.52
250
300
350 316.2
III-4-A-ii
OCH3 H C 3 H C O 3
400
360.2
CH (CH ) CD 2 23 3
210.1
375.3 248.1
344.2
0 50 Relative Int. (%)
100
100
150
200
Carboxytetrahydrocannabinol-d9, di-methyl derivative
COOCH3
C23H23D9O4 MW: 381.55
50
250
300
350
400
322.3
III-4-A-iii
OCH3 D C 3 D C O 3
363.2
CH (CH ) CD 2 23 3
213.1
381.3
234.1
350.3
0 50
100
150
200
250
300
350
400
m/z Relative Int. (%)
100
Carboxytetrahydrocannabinol, di-ethyl derivative
III-4-B-i
OC 2H 5
C25H36O4 MW: 400.55
50
327.2 COOC 2H 5
H C 3 H C O 3
CH (CH ) CH 2 23 3
69.1
371.2
385.3 400.3
355.2
245.1
0 50 Relative Int. (%)
100
100
150
Carboxytetrahydrocannabinol-d3, di-ethyl derivative C25H33D3O4 MW: 403.57
50
200
250
300
450
III-4-B-ii
OC 2H 5
CH (CH ) CD 2 23 3
69.1
400
330.3
COOC 2H 5
H C 3 H C O 3
350
374.2
388.3 403.3
358.2
248.1
0 50 Relative Int. (%)
100
100
150
Carboxytetrahydrocannabinol-d9, di-ethyl derivative C25H27D9O4 MW: 409.61
50
200
250
III-4-B-iii
COOC 2H 5 OC 2H 5 D C 3 D C O 3
300
350
400
336.3
CH (CH ) CD 2 23 3
380.3
248.1
450
391.3 409.3
364.2
0 50
100
150
200
250 m/z
Appendix One — Mass Spectra
© 2010 by Taylor and Francis Group, LLC
300
350
400
450
231
Figure III-4. (Continued)
Relative Int. (%)
100
341.3
Carboxytetrahydrocannabinol, di-propyl derivative C27H40O4 MW: 428.60
50
57.1
COOC 3H 7
III-4-C-i
OC 3H 7 H C 3 H C O 3
CH (CH ) CH 2 23 3
385.2
149.0
97.1
413.3 428.3
369.3
283.1
0 50 Relative Int. (%)
100
100
150
200
Carboxytetrahydrocannabinol-d3, di-propyl derivative C27H37D3O4 MW: 431.62
50
57.1
300
350
400
450
344.3
COOC 3H 7
III-4-C-ii
OC 3H 7 H C 3 H C O 3
97.1
250
CH (CH ) CD 2 23 3
388.3
149.0
416.3
431.3
372.3
286.2
0 50 Relative Int. (%)
100
100
150
200
Carboxytetrahydrocannabinol-d9, di-propyl derivative C27H31D9O4 MW: 437.66
50
250
300
400
450
350.3
COOC 3H 7
III-4-C-iii
OC 3H 7 D C 3 D C O 3
350
CH (CH ) CD 2 23 3
394.3
419.3 437.4
378.3
289.2
0 50
Relative Int. (%)
100
100
150
200
Carboxytetrahydrocannabinol, di-butyl derivative C29H44O4 MW: 456.66
50
250 m/z
350
III-4-D-i
COOC 4H 9 OC 4H 9 H C 3 H C O 3
300
400
450
355.3
399.2
CH (CH ) CH 2 23 3
441.3 456.3
283.1
383.2
0 50 Relative Int. (%)
100
100
150
200
Carboxytetrahydrocannabinol-d3, di-butyl derivative C29H41D3O4 MW: 459.68
50
250
300
COOC 4H 9
III-4-D-ii
OC 4H 9 H C 3 H C O 3
350
400
450
500
358.3
CH (CH ) CD 2 23 3
402.3
444.3 459.3
286.2
386.2
0 50 Relative Int. (%)
100
100
150
200
Carboxytetrahydrocannabinol-d9, di-butyl derivative C29H35D9O4 MW: 465.71
50
250
300
400
450
500
364.3
COOC 4H 9
III-4-D-iii
OC 4H 9 D C 3 D C O 3
350
CH (CH ) CD 2 23 3
408.3
447.3 465.4
392.3
289.2
0 50
100
150
200
250
300 m/z
Figure III — Hallucinogens
© 2010 by Taylor and Francis Group, LLC
350
400
450
500
232
Figure III-4. (Continued)
Relative Int. (%)
100
258.1 COOH
50
H C 3 H C O 3
Carboxytetrahydrocannabinol, propionyl derivative
314.1
III-4-E-i
OCOC 2H 5
C24H32O5 MW: 400.51
CH (CH ) CH 2 23 3
57.0
299.1
243.1
337.1
0 50
100
Relative Int. (%)
100
150
200
250
300
H C 3 H C O 3
400
450
Carboxytetrahydrocannabinol-d3, propionyl derivative
317.1
III-4-E-ii
OCOC 2H 5
50
350
258.1
COOH
370.2
C24H29D3O5 MW: 403.53
CH (CH ) CD 2 23 3
57.0
302.1
243.0
373.2
340.1
0 50
100
Relative Int. (%)
100
150
200
300
350
264.1
COOH
D C 3 D C O 3
C24H23D9O5 MW: 409.56 305.1
246.1
100
Relative Int. (%)
150
200
50
73.1
250 m/z
350
371.3
OSi(CH3)3 H C 3 H C O 3
C27H44O4Si2 MW: 488.81
300
COOSi(CH3)3
Carboxytetrahydrocannabinol, di-trimethylsilyl derivative
379.2
343.1
0
100
450
CH (CH ) CD 2 23 3
57.1
50
400
Carboxytetrahydrocannabinol-d9, propionyl derivative
323.2
III-4-E-iii
OCOC 2H 5
50
250
CH (CH ) CH 2 23 3
400
450
III-4-F-i 473.3 489.3
208.7
147.1
297.2 355.2
0 50
100
Relative Int. (%)
100
150
200
250
Carboxytetrahydrocannabinol-d3, di-trimethylsilyl derivative
50
73.1
C27H41D3O4Si2 MW: 491.83
300
400 374.3
COOSi(CH3)3 OSi(CH3)3 H C 3 H C O 3
CH (CH ) CD 2 23 3
450
500
550
III-4-F-ii 476.3 492.3
300.2
208.7
147.1
350
358.2
0 50
100
Relative Int. (%)
100
150
200
250
Carboxytetrahydrocannabinol-d9, di-trimethylsilyl derivative
50
73.1
300
450
500
550
III-4-F-iii
OSi(CH3)3 CH (CH ) CD 2 23 3
479.3 306.2
211.7
147.1
400 380.3
COOSi(CH3)3
D C 3 D C O 3
C27H35D9O4Si2 MW: 497.86
350
498.4
361.2
0 50
100
150
200
250
300 m/z
350
Appendix One — Mass Spectra
© 2010 by Taylor and Francis Group, LLC
400
450
500
550
233
Figure III-4. (Continued)
Relative Int. (%)
100
Carboxytetrahydrocannabinol, di-t-butyldimethylsilyl derivative
OSi(CH3)2C(CH3)3
C33H56O4Si2 MW: 572.97
73.1
50
H C 3 H C O 3
229.6
147.1
515.4
413.3
COOSi(CH3)2C(CH3)3
III-4-G-i
CH (CH ) CH 2 23 3
297.2
572.4
557.4
355.2 471.3
0 50
100
Relative Int. (%)
100
150
200
250
Carboxytetrahydrocannabinol-d3, di-t-butyldimethylsilyl derivative 73.1
50
300
350
500
550
600
518.4
OSi(CH3)2C(CH3)3
III-4-G-ii
CH (CH ) CD 2 23 3
229.7
147.1
450 416.4
COOSi(CH3)2C(CH3)3
H C 3 H C O 3
C33H53D3O4Si2 MW: 575.98
400
300.2
575.5
560.4
358.3 474.3
0 50
100
Relative Int. (%)
100
150
200
250
Carboxytetrahydrocannabinol-d9, di-t-butyldimethylsilyl derivative
350
450
500
550
600
524.4
422.4
OSi(CH3)2C(CH3)3
III-4-G-iii
CH (CH ) CD 2 23 3
581.5
364.3
232.7
147.1
400
COOSi(CH3)2C(CH3)3
D C 3 D C O 3
C33H47D9O4Si2 MW: 582.02
73.1
50
300
563.4
306.2
480.4
0 50
100
150
200
250
300
350
400
450
500
550
600
m/z Relative Int. (%)
100
Carboxytetrahydrocannabinol, methyl/trifluoroacetyl derivative
III-4-H-i
OCOCF3 H C 3 H C O 3
C24H29F3O5 MW: 454.48
50
439.2
COOCH3
395.2
CH (CH ) CH 2 23 3
281.2
69.1
341.2 379.2
313.1
454.2
411.2
0 50
100
Relative Int. (%)
100
150
200
Carboxytetrahydrocannabinol-d3, methyl/trifluoroacetyl derivative
300
350
400
450
500
442.2
COOCH3
III-4-H-ii
OCOCF3 H C 3 H C O 3
C24H26D3F3O5 MW: 457.50
50
250
CH (CH ) CD 2 23 3
69.1
284.2
398.2
457.3
344.2 382.2
316.1
414.2
0 50
100
Relative Int. (%)
100
150
200
Carboxytetrahydrocannabinol-d9, methyl/trifluoroacetyl derivative C24H20D9F3O5 MW: 463.53
50
250
300
350
450
500
445.2
COOCH3
III-4-H-iii
OCOCF3 D C 3 D C O 3
400
404.3 CH (CH ) CD 2 23 3
69.1
290.2
463.3
350.3
316.1
385.2
414.2
0 50
100
150
200
250
300 m/z
Figure III — Hallucinogens
© 2010 by Taylor and Francis Group, LLC
350
400
450
500
234
Figure III-4. (Continued)
Relative Int. (%)
100
459.2
COOCH2(C2F5) Carboxytetrahydrocannabinol, pentafluoro-1-propanyl/ OCOC 2F 5 445.2 pentafluoropropionyl derivative H C 3 CH (CH ) CH 429.1 H C O 2 23 3 119.1 C27H28F10O5 3 363.1 MW: 622.49 281.2
50 69.1
622.2
607.2
III-4-I-i 473.2 489.2
579.2
551.1
0 50
100
150
Relative Int. (%)
100
119.0
50 69.1
200
250
300
350
400
3 H C O 3
500
448.2
600 610.2
III-4-I-ii
650 625.3
476.2
CH (CH ) CD 432.2 2 23 3
492.2
366.1
284.2
550
462.2
Carboxytetrahydrocannabinol-d3, COOCH2(C2F5) pentafluoro-1-propanyl/ OCOC 2F 5 pentafluoropropionyl derivative H C C27H25D3F10O5 MW: 625.51
450
582.2
551.1
0 50
100
Relative Int. (%)
100
150
200
250
300
350
400
3 D C O 3
119.0 C27H19D9F10O5 MW: 631.55 75.2
454.3
CH (CH ) CD 2 23 3
366.1
289.2
500
550
600
468.3
Carboxytetrahydrocannabinol-d9, COOCH2(C2F5) pentafluoro-1-propanyl/ OCOC 2F 5 pentafluoropropionyl derivative D C
50
450
650
613.2
631.3
III-4-I-iii 482.3
498.3
432.2
582.2
557.2
0 50
100
Relative Int. (%)
100
150
200
250
Carboxytetrahydrocannabinol, hexafluoro-2-propanyl/ heptafluorobutyryl derivative
50
69.0 C28H27F13O5 MW: 690.49
300
400
450
500
477.2
COOCH(CF )2 3 OCOC 3F 7 H C 3 H C O 3
169.0
350 m/z
CH (CH ) CH 2 23 3
550
600
650
III-4-J-i 690.2
495.2 523.2 539.2
389.1
675.2
647.1
0 50
100
Relative Int. (%)
100
150
200
250
Carboxytetrahydrocannabinol-d3, hexafluoro-2-propanyl/ heptafluorobutyryl derivative
50
C28H24D3F13O5 MW: 693.51
69.0
300
400
450
500
550
600
650
700
750
480.2
COOCH(CF )2 3 OCOC 3F 7 H C 3 H C O 3
169.0
350
III-4-J-ii
CH (CH ) CD 2 23 3
693.2
498.2 526.2 542.2
678.2
392.1
650.1
0 50
100
Relative Int. (%)
100
150
200
250
Carboxytetrahydrocannabinol-d9, hexafluoro-2-propanyl/ heptafluorobutyryl derivative
50 75.1
300
400
450
500
550
486.2
COOCH(CF )2 3 OCOC 3F 7 D C 3 D C O 3
C28H18D9F13O5 MW: 699.54 169.0
350
CH (CH ) CD 2 23 3
600
650
700
750
III-4-J-iii
504.2 532.2 548.2
681.2
699.3
650.2
0 50
100
150
200
250
300
350
400 m/z
450
Appendix One — Mass Spectra
© 2010 by Taylor and Francis Group, LLC
500
550
600
650
700
750
235
Figure III-5. Mass spectra of ketamine and its deuterated analogs (ketamine-d4): (A) underivatized; (B) acetylderivatized; (C) TFA-derivatized; (D) HFB-derivatized; (E) PFB-derivatized; (F) TMS-derivatized. Relative Int. (%)
100
180.0
Cl
Ketamine (CAS NO. 6740-88-1)
III-5-A-i
O
C13H16ClNO MW: 237.72
50
NH
182.0
CH 3
138.0
102.0
209.1
152.0
237.0
0 50 Relative Int. (%)
100
100
150
III-5-A-ii
D
Cl
C13H12D4ClNO MW: 241.75
250
184.1
D
Ketamine-d4
50
200
O D
D
186.1
NH
106.1
142.0
CH 3
213.1
156.0 241.1
0 50
100
Relative Int. (%)
100
Ketamine, acetyl derivative
150 m/z
C15H18ClNO2 MW: 279.76 115.0 56.2 75.1 102.1
50
180.1
152.1
III-5-B-i
200
208.1
250
Cl
216.2
O
N COCH 3
125.0
CH 3
251.1
279.2
0 50
100
Relative Int. (%)
100
150
Ketamine-d4, acetyl derivative
III-5-B-ii
C15H14D4ClNO2 MW: 283.78
50 56.1
200
250
300 D
220.2
184.1 212.1
Cl
D D N COCH 3
129.1
78.0 106.1 119.1
D
O
156.1
CH 3
255.1
283.3
0 50
100
150
200
250
300
m/z Relative Int. (%)
100
110.1
Ketamine, trifluoroacetyl derivative
69.1
152.1
125.1
50 75.1
III-5-C-i
C15H15ClF3NO2 236.2 MW: 333.73 262.1 208.1 228.1 179.1
Cl
O
270.2 N COCF 3
298.2
305.1
CH 3
333.1
0 50
100
Relative Int. (%)
100
150
200
110.1 69.1
156.1 129.1
50 78.1
Ketamine-d4, trifluoroacetyl derivative
250
300 D
III-5-C-ii
C15H11D4ClF3NO2 240.2 MW: 337.75 266.2 212.2 232.2 183.1
Cl
100
150
200 m/z Figure III — Hallucinogens
© 2010 by Taylor and Francis Group, LLC
250
D
O
274.2
302.2
0 50
350
300
309.2
D D N COCF 3 CH 3
337.2
350
236
Figure III-5. (Continued)
Relative Int. (%)
100
210.0
Ketamine, heptafluorobutyryl derivative C17H13F7ClNO2 MW: 433.74
50 69.1
362.0
III-5-D-i
236.1 N COC 3 F 7
152.0
125.0
115.1
370.1
Cl
O
CH 3
398.1
328.1
434.1
0 50
100
Relative Int. (%)
100
150
200
Ketamine-d4, heptafluorobutyryl derivative
50
69.1
250
350
400
D
366.1
D
240.1
D N COC 3 F 7 CH 3
156.1
III-5-D-ii
374.2
O
129.1
450
D Cl
C17H9D4F7ClNO2 MW: 477.37 119.1
300
210.0
402.1
332.1
437.2
0 50
Relative Int. (%)
100
100
150
200
195.0
Ketamine, pentafluorobenzoyl derivative
50
350
400
368.1 360.0
Cl
450
III-5-E-i
208.0 N COC 6 F 5
167.0 178.0
125.0
102.1
300
O
152.0
C20H15ClF5NO2 MW: 431.79
250 m/z
CH 3
304.1
403.1 431.1
396.1
326.1
0 50 Relative Int. (%)
100
100
150
200
50
350
400
372.1 364.1
D Cl
D
208.0
D D N COC 6 F 5 CH 3
167.0 182.1
304.1
407.1 435.1
400.2
330.1
450
III-5-E-ii
O
156.1
129.1
106.1
300
195.0
Ketamine-d4, pentafluorobenzoyl derivative C20H11D4ClF5NO2 MW: 435.81
250
0 50
Relative Int. (%)
100
100
73.1
150
200
250 m/z
Ketamine, trimethylsilyl derivative
93.1
115.1
350
400
O
III-5-F-i
N Si(CH3)3 CH 3
278.2
153.1
182.1
198.3
243.2
266.2 309.1
0 50 Relative Int. (%)
100
100 73.1
150
200
Ketamine-d4, trimethylsilyl derivative
250
93.1
300
350 D Cl
III-5-F-ii
C16H20D4ClNOSi MW: 313.93
50
198.2 182.2
247.3
D
O
282.2
120.1 156.1
450
Cl
C16H24ClNOSi MW: 309.90
50
300
270.2
313.5
D D N Si(CH3)3 CH 3
0 50
100
150
200 m/z
Appendix One — Mass Spectra
© 2010 by Taylor and Francis Group, LLC
250
300
350
237
Figure III-6. Mass spectra of norketamine and its deuterated analogs (norketamine-d4): (A) underivatized; (B) acetylderivatized; (C) TCA-derivatized; (D) TFA-derivatized; (E) PFP-derivatized; (F) HFB-derivatized; (G) 4-CB-derivatized; (H) PFB-derivatized; (I) TMS-derivatized; (J) TFA/t-BDMS-derivatized; (K) PFP/t-BDMS-derivatized ; (L) HFB/tBDMS-derivatized. Relative Int. (%)
100
166.0
Norketamine
III-6-A-i
Cl
C12H14ClNO MW: 223.70
O
50
NH2
168.0
195.1
131.0
102.0
223.0
0 50 Relative Int. (%)
100
100
150
Norketamine-d4
200
D
C12H10D4ClNO MW: 227.72
250
170.0
Cl
III-6-A-ii
D
O
50
D
D NH2
172.0
199.1
135.1
106.1
227.1
0 50
Relative Int. (%)
100
100
150 m/z
Norketamine, acetyl derivative
250
202.2
166.1
III-6-B-i
230.2 Cl
C14H16ClNO2 MW: 265.73
50
200
75.1
O
138.1
102.1
160.1 NH
194.1
115.1
COCH 3
0 50 Relative Int. (%)
100
100
150
Norketamine-d4, acetyl derivative
250
300
206.2
III-6-B-ii
234.2
170.2
D
Cl
D
O
C14H12D4ClNO2 MW: 269.75
50
200
106.1
78.1
142.1
164.2
D
198.2
119.2
D
NH COCH 3
0 50
100
150
200
250
300
m/z Relative Int. (%)
100
Norketamine, trichloroacetyl derivative C14H13Cl4NO2 MW: 369.07 102.0
50
304.0
Cl
334.0
O D
125.0
III-6-C-i
NH
179.0
COCCl 3
239.9
0 50 Relative Int. (%)
100
100
150
200
Norketamine-d4, trichloroacetyl derivative C14H9D4Cl4NO2 MW: 373.09
50
250 Cl
D
300
350
400
308.0 D
338.0
O D
129.0
106.0
D
III-6-C-ii
NH
183.0
COCCl 3
244.0
0 50
© 2010 by Taylor and Francis Group, LLC
100
150
200
250 m/z Figure III — Hallucinogens
300
350
400
238
Figure III-6. (Continued) Relative Int. (%)
100
69.1
Cl
102.1
O
115.1
50
75.1
III-6-D-i
214.1 D
138.1
239.2
NH
125.1
COCF 3
167.1
194.1
Norketamine, trifluoroacetyl derivative
284.2
256.2
222.2
275.2
C14H13F3ClNO2 MW: 319.70
262.2
319.1
0 50
100
Relative Int. (%)
100
150
200
69.1 106.1
D
Cl
250
III-6-D-ii
D
O
218.2
119.2 129.1 142.1
50 78.2
D
D
300
350 Norketamine-d4, trifluoroacetyl derivative
288.2
260.2 243.2
279.2
C14H9D4F3ClNO2 MW: 323.73
NH
171.2
198.1
COCF 3
266.2
226.1
323.1
0 50
Relative Int. (%)
100
100
150
Norketamine, pentafluoropropionyl derivative
200 m/z
350
334.1 306.1
O
264.0
D
III-6-E-i
325.0
290.0
NH
149.0
115.1
102.0
300
Cl
C15H13ClF5NO2 MW: 369.71
50
250
COC 2 F 5
222.1
369.0
0 50 Relative Int. (%)
100
100
150
200
Norketamine-d4, pentafluoropropionyl derivative
Cl
300
350
D
119.0
310.1
D
268.0
D
III-6-E-ii
329.0
294.1
NH
147.1
106.1
400
338.1
O
C15H9D4ClF5NO2 MW: 373.74
50
D
250
226.1
COC 2 F 5
373.1
0 50
100
150
200
250
300
350
400
m/z Relative Int. (%)
100
Norketamine, heptafluorobutyryl derivative
50
69.1
O
314.1
C16H13F7ClNO2 MW: 419.72 102.1
115.1
194.1
340.1 375.1
NH
149.0
384.1
356.1
Cl
III-6-F-i
COC 3 F 7
222.1
419.0
0 50
100
Relative Int. (%)
100
150
200
250 Cl
360.1
106.1
119.1
318.1
C16H9D4F7ClNO2 MW: 423.74
400
D
344.1 379.1
D
III-6-F-ii
NH
153.1 198.1
226.1
COC 3 F 7
423.1
0 50
100
150
200
250 m/z
300
Appendix One — Mass Spectra
© 2010 by Taylor and Francis Group, LLC
450
388.1
D
O
69.1
350
D
Norketamine-d4, heptafluorobutyryl derivative
50
300
350
400
450
239
Figure III-6. (Continued)
Relative Int. (%)
100
Norketamine, 4-carboethoxyhexafluorobutyryl derivative
O
438.1
C19H18ClF6NO4 MW: 473.79
50
410.1
Cl
NH
125.0
CO(CF2)3COOC2H 5
222.1
179.1
102.1
III-6-G-i
429.1
368.1 393.1
0 50 Relative Int.(%)
100
100
150
200
250
Norketamine-d4, 4-carboethoxyhexafluorobutyryl derivative C19H14D4ClF6NO4 MW: 477.82
50
300
350
400
450
D D
Cl
O
442.1 D
D
226.1
183.1
106.1
372.1 397.1
CO(CF2)3COOC2H 5
III-6-G-ii
433.1
NH
129.1
477.1
0 50
100
150
200
500
414.2
250
300
350
400
450
500
m/z
Relative Int. (%)
100
195.0
Norketamine, pentafluorobenzoyl derivative
167.0
102.1
75.1
382.1
O
C19H13ClF5NO2 MW: 417.76
50
354.1 Cl
III-6-H-i
NH
138.0
346.0
312.1
COC 6 F 5
417.0
0 50 Relative Int. (%)
100
100
150
200
D
167.0
106.1
142.1
78.1
Relative Int. (%)
100
200
386.1
350.1
316.1
421.1
300
350
Relative Int. (%)
100 73.1
138.1
III-6-I-i 210.1
225.1 267.2
Si(CH3)3
150 Norketamine-d4, trimethylsilyl derivative
93.0
Cl
D
200
250
D
242.2
100
D
142.1
150
214.2
350
229.2 271.2
Si(CH3)3
200 m/z
Figure III — Hallucinogens
© 2010 by Taylor and Francis Group, LLC
300
III-6-I-ii 284.2
0 50
295.2
D
NH
106.2 119.1
280.2
O
C15H18D4ClNOSi MW: 299.90
50
450
238.2
0 50
400
Cl
NH
115.2
III-6-H-ii
O
C15H22ClNOSi MW: 295.87 93.1 102.1
D
250 m/z
Norketamine, trimethylsilyl derivative
50
450
358.1 D
COC 6 F 5
150
73.1
100
400
NH
0
100
D
Cl
350
O
C19H9D4ClF5NO2 MW: 421.78
50
300
195.0
Norketamine-d4, pentafluorobenzoyl derivative
50
250
250
299.3
300
350
240
Figure III-6. (Continued) Relative Int. (%)
100
Norketamine, trifluoroacetyl/ t-butyldimethylsilyl derivative 73.1
C20H27ClF3NO2Si MW: 433.97
50
125.0
236.0
O
263.0
224.0
169.0
Cl
376.0
III-6-J-i
NCOCF3
274.0
336.1
308.0
Si(CH3)2C(CH3)3
433.1
0 50
100
Relative Int. (%)
100
150
200
250
300
Norketamine-d4, trifluoroacetyl/ t-butyldimethylsilyl derivative
73.0
400 380.1
236.0
C20H23D4ClF3NO2Si MW: 437.99 129.0
50
350
III-6-J-ii
Cl
267.0 278.0
D D NCOCF3
340.1
312.0
Si(CH3)2C(CH3)3
437.2
0 50
100 Relative Int. (%)
D
O
224.0
173.1
450 D
100
150
200
250 m/z
73.1 Norketamine, pentafluoropropionyl/ t-butyldimethylsilyl derivative C21H27ClF5NO2Si MW: 483.97 125.0
50
300
350
400 426.1
Cl O
286.0 296.0
263.0 220.0
450
III-6-K-i
324.0
169.0
NCOC 2F 5
358.0 Si(CH ) C(CH ) 32 33
190.0
483.2
0 50
100
Relative Int. (%)
100
150
200
250
300
Norketamine-d4, pentafluoropropionyl/ t-butyldimethylsilyl derivative
73.1
C21H23D4ClF5NO2Si MW: 488.00 129.0
50
350
400 Cl
267.1
286.0 300.0
220.1
D
450
500
430.1 D
O
173.1
III-6-K-ii
D D NCOC 2F 5
328.0 362.0
Si(CH3)2C(CH3)3
487.2
0 50
100
150
200
250
300
350
400
450
500
m/z Relative Int. (%)
100 73.1
C22H27ClF7NO2Si MW: 533.98 125.0
50
476.1
Cl
Norketamine, heptafluorobutyryl/ tbutyldimethylsilyl derivative
O
336.0
263.0
374.0
190.0
NCOC 3F 7
408.0
III-6-L-i
Si(CH3)2C(CH3)3
533.2
0 50 Relative Int. (%)
100
100
150
200
250
300
Norketamine-d4, heptafluorobutyryl/ t-butyldimethylsilyl derivative
73.1
C22H23D4ClF7NO2Si MW: 538.01 194.0 129.0
50
350
400 Cl
336.0
267.0
450 D
550
480.1 D
O
D D NCOC 3F 7
378.1
500
III-6-L-ii
412.0 Si(CH ) C(CH ) 32 33
537.2
0 50
100
150
200
250
300 m/z
350
Appendix One — Mass Spectra
© 2010 by Taylor and Francis Group, LLC
400
450
500
550
241
Figure III-7. Mass spectra of phencyclidine and its deuterated analogs (phencyclidine-d5): (A) underivatized. Relative Int. (%)
100
200.1
III-7-A-i
C17H25N MW: 243.38
50
243.2
91.1 84.1
Phencyclidine (CAS NO. 77-10-1)
N
166.1
117.1
186.1
0 50
100
150
200
Relative Int. (%)
100
205.2
D
D
96.1 84.1
C17H20D5N MW: 248.41
N
50
D
166.1
122.1
300 Phencyclidine-d5
D
D
III-7-A-ii
250
190.1
248.2
0 50
100
150
200 m/z
Figure III — Hallucinogens
© 2010 by Taylor and Francis Group, LLC
250
300
242
Figure III-8. Mass spectra of LSD and its deuterated analogs (LSD-d3): (A) underivatized-derivatized; (B) TMSderivatized. Relative Int. (%)
100
221.1
O H 5C 2 N C H 5C 2
44.1
H
50
181.1
72.1
N H
0 40 Relative Int. (%)
LSD (CAS NO. 50-37-3) C20H25N3O MW: 323.43
207.0
140
190
240
290
O H 5C 2 N C H 5C 2 H
N
LSD-d3 C20H22D3N3O MW: 326.45
181.0 207.0
44.0
N
72.0
128.1
H
40
90
100 73.1
167.0
140 O 5H 2C N C 5H 2C H
190 m/z
240
CH 3 H
N
0 50
100
207.0
Si(CH3)3
150
200
337.2
250
O 5H 2C N C 5H 2C H
73.1
CD 3 H
N
LSD-d3, trimethylsilyl derivative
271.1 279.1
C23H30D3N3OSi MW: 398.63
207.0
Si(CH3)3
350
296.1
III-8-B-ii
50 128.1
300 253.1
N
395.2
C23H33N3OSi MW: 395.61
279.1 268.1
128.1
340
LSD, trimethylsilyl derivative
293.1
III-8-B-i
50
100
290
253.1 N
340 326.2
224.1
III-8-A-ii
CD 3 H
50
0
Relative Int. (%)
323.2
167.1
128.1
90
100
Relative Int. (%)
III-8-A-i
CH 3 N H
400 398.2
337.2
0 50
100
150
200
250 m/z
Appendix One — Mass Spectra
© 2010 by Taylor and Francis Group, LLC
300
350
400
243
Figure III-9. Mass spectra of mescaline and its deuterated analogs (mescaline-d9): (A) acetyl-derivatized; (B) TCAderivatized; (C) TFA-derivatized; (D) PFP-derivatized; (E) HFB-derivatized; (F) 4-CB-derivatized; (G) [TMS]2derivatized; (H) t-BDMS-derivatized; (I) TFA/TMS-derivatized; (J) TFA/t-BDMS-derivatized; (K) PFP/TMS-derivatized; (L) PFP/t-BDMS-derivatized; (M) HFB/TMS-derivatized; (N) HFB/t-BDMS-derivatized. Relative Int. (%)
100
Mescaline (CAS NO. 54-04-6), acetyl derivative
194.1 CH 2–CH 2–NHCOCH 3
CH3O
C13H19NO4 MW: 253.30
III-9-A-i
181.1
179.0
50
OCH OCH3 3
253.1
151.0
148.0
0 50
100
150
200
Relative Int. (%)
100
250
300
203.1
Mescaline-d9, acetyl derivative
CH 2–CH 2–NHCOCH 3
50
CD3O
185.1
OCD OCD3 3
190.1
C13H10D9NO4 MW: 262.23
III-9-A-ii
262.2
157.1
152.1
0 50
100
150
200
250
300
m/z Relative Int. (%)
100
181.0
Mescaline, trichloroacetyl derivative
194.0
CH 2–CH 2–NHCOCCl 3
III-9-B-i 50
CH3O
C13H16Cl3NO4 MW: 356.62
OCH OCH3 3
151.0
148.0
357.0
354.9
238.0
0 50
100
150
200
Relative Int. (%)
100
190.1
250
300
350
CH 2–CH 2–NHCOCCl 3
C13H7D9Cl3NO4 MW: 365.55
III-9-B-ii
50
CD3O
400
Mescaline-d9, trichloroacetyl derivative
203.1
OCD OCD3 3
364.0
366.0
247.1
157.1
152.0
0 50
100
150
200
250
300
350
400
m/z Relative Int. (%)
100
181.1
Mescaline, trifluoroacetyl derivative
CH 2–CH 2–NHCOCF 3
III-9-C-i 50
CH3O
OCH OCH3 3
194.1
307.1
C13H16F3NO4 MW: 307.27
179.1 151.1
148.0
0 50
100
150
200
Relative Int. (%)
100
250
190.1
300
Mescaline-d9, trifluoroacetyl derivative
CH 2–CH 2–NHCOCF 3
III-9-C-ii 50
CD3O
OCD OCD3 3
316.1
203.1 152.1
350
C13H7D9F3NO4 MW: 316.20
185.1 157.1
0 50
100
150
200 m/z Figure III — Hallucinogens
© 2010 by Taylor and Francis Group, LLC
250
300
350
244
Figure III-9. (Continued) Ralative Int. (%)
100
181.1
Mescaline, pentafluoropropionyl derivative
50
C14H16F5NO4 MW: 357.27
194.1
CH3O
179.1
119.0
CH 2 –CH 2 –NHCOC 2 F 5
III-9-D-i
OCH OCH3 3
357.1
151.1
148.0
0 50 Relative Int. (%)
100
100
150
200
203.1
CD3O
185.1
400
100
III-9-D-ii 366.1
OCD OCD3 3
157.1
152.1
119.0
50
350
CH 2 –CH 2 –NHCOC 2 F 5
C14H7D9F5NO4 MW: 366.20
0
300
190.1
Mescaline-d9, pentafluoropropionyl derivative
50
250
150
200
250
300
350
400
m/z Relative Int. (%)
100
181.1
Mescaline, heptafluorobutyryl derivative
50
194.1
C15H16F7NO4 MW: 407.28
III-9-E-i
CH 2 –CH 2 –NHCOC 3 F 7
CH3O
179.1
OCH OCH3 3
407.1
151.1
0 50 Relative Int. (%)
100
100
150
200
Mescaline-d9, heptafluorobutyryl derivative
50
250
300
350
400
450
190.2 CH 2 –CH 2 –NHCOC 3 F 7
203.1
C15H7D9F7NO4 MW: 416.21
CD3O
185.1
III-9-E-ii
OCD OCD3 3
416.2
157.1
0 50
Relative Int. (%)
100
100
150
181.1
Mescaline, 4-carboethoxyhexafluorobutyryl derivative
50
C18H21F6NO6 MW: 461.35
200
250 m/z
300
194.1
350
Relative Int. (%)
100
100
III-9-F-i CH3O
OCH OCH3 3
151.1
150
200
250
300
203.2
350
OCD OCD3 3
157.1
500
150
470.2 425.1
200
250
300 m/z
Appendix One — Mass Spectra
© 2010 by Taylor and Francis Group, LLC
450
III-9-F-ii CD3O
0 100
400
CH 2–CH2–NHCO(CF2)3COOC 2H 5
185.1
C18H12D9F6NO6 MW: 470.28
50
461.1 416.1
190.2
Mescaline-d9, 4-carboethoxyhexafluorobutyryl derivative
50
450
CH 2–CH2–NHCO(CF2)3COOC 2H 5
0 50
400
350
400
450
500
245
Figure III-9. (Continued) Relative Int. (%)
100
Mescaline, di-trimethylsilyl derivative
174.1 CH 2–CH 2–N–Si(CH3)3
III-9-G-i
Si(CH3)3
50
CH3O
73.1
C17H33NO3Si2 MW: 355.62
OCH OCH3 3
340.2
86.1
354.2
0 50
100
150
200
Relative Int. (%)
100
250
300
350
174.1 Si(CH3)3
50
CD3O
73.1
Mescaline-d9, di-trimethylsilyl derivative
CH 2–CH 2–N–Si(CH3)3
III-9-G-ii
C17H24D9NO3Si2 MW: 364.46 349.2 363.2
OCD OCD3 3
86.1
0 50
100
150
200
400
250
300
350
400
m/z Relative Int. (%)
100
144.1
50
Mescaline, t-butyldimethylsilyl derivative
CH2–CH2–NHSi(CH3)2C(CH3)3
III-9-H-i CH3O
73.1 88.1
OCH OCH3 3
181.1
209.1
310.2
0 50
100
150
Relative Int. (%)
100
200
250
CD3O
73.1 88.1
212.1
181.1
319.2
0 50
Relative Int. (%)
100
100
150
Mescaline, trifluoroacetyl/trimethylsilyl derivative
200 m/z
250
334.2
300
350
181.1 CH 2 –CH 2 –N–COCF 3
III-9-I-i
Si(CH3)3
C16H24F3NO4Si MW: 379.45 73.0
50
C17H22D9NO3Si MW: 334.45
277.2
OCD OCD3 3
350
Mescaline-d9, t-butyldimethylsilyl derivative
CH 2–CH2–NHSi(CH3)2C(CH3)3
50
325.0
300
144.1
III-9-H-ii
C17H31NO3Si MW: 325.52
268.1
CH3O
OCH OCH3 3
379.1
198.0
0 50 Relative Int. (%)
100
100
150
Mescaline-d9, trifluoroacetyl/trimethylsilyl derivative
50
200
250
300
350
400
190.1 CH 2 –CH 2 –N–COCF 3
III-9-I-ii
Si(CH3)3
C16H15D9F3NO4Si MW: 388.38 73.0
CD3O
OCD OCD3 3
388.2
203.1
0 50
100
150
200
250 m/z
Figure III — Hallucinogens
© 2010 by Taylor and Francis Group, LLC
300
350
400
246
Figure III-9. (Continued)
Relative Int. (%)
100
Mescaline, trifluoroacetyl/ t-butyldimethylsilyl derivative
50
C19H30F3NO4Si MW: 421.53 73.0
181.1
III-9-J-i
CH 2 –CH 2 –N–COCF 3 Si(CH3)2C(CH3)3 CH3O
OCH OCH3 3
195.1 220.1 240.1
148.0
421.2
268.0
0 50 Relative Int. (%)
100
100
150
200
C19H21D9F3NO4Si MW: 430.46 73.0
300
350
400
190.1
Mescaline-d9, trifluoroacetyl/ t-butyldimethylsilyl derivative
50
250
450
III-9-J-ii
CH 2 –CH 2 –N–COCF 3
Si(CH3)2C(CH3)3 CD3O
204.1 229.1
152.0
249.1
OCD OCD3 3
430.2
277.1
0 50
100
Relative Int. (%)
100
Mescaline, pentafluoropropionyl/ trimethylsilyl derivative
50
50
100
100 Relative Int. (%)
200
50
100
100
CH3O
195.1
150
50
C20H30F5NO4Si MW: 471.53
400
450
III-9-K-i
OCH OCH3 3
429.1
248.0
200
250
300
350
400
190.1
450
III-9-K-ii
CH 2 –CH 2 –N–COCF 3
Si(CH3)2C(CH3)3 CD3O
204.1
150
Mescaline, pentafluoropropionyl/ t-butyldimethylsilyl derivative
350
Si(CH3)2C(CH3)3
C17H15D9F5NO4Si MW: 438.38 73.0 152.0
0
300
CH 2 –CH 2 –N–COCF 3
Mescaline-d9, pentafluoropropionyl/ trimethylsilyl derivative
50
250 m/z
181.1
C17H24F5NO4Si MW: 429.45 73.0 148.0
0
Relative Int. (%)
150
200
OCD OCD3 3
248.0
250 m/z
181.1
438.2
300
350
400
CH 2 –CH 2 –N–COC 2 F 5
III-9-L-i
Si(CH3)2C(CH3)3
195.1
CH3O
OCH OCH3 3
73.0
290.1
450
471.2
318.0
414.1
0 50 Relative Int. (%)
100
100
150
Mescaline-d9, pentafluoropropionyl/ t-butyldimethylsilyl derivative
50
200
250
190.1
300
350
400
CH 2 –CH 2 –N–COC 2 F 5
204.1
CD3O
III-9-L-ii
OCD OCD3 3
73.0
299.1
480.2
327.1
423.1
0 100
150
200
250
300 m/z
Appendix One — Mass Spectra
© 2010 by Taylor and Francis Group, LLC
500
Si(CH3)2C(CH3)3
C20H21D9F5NO4Si MW: 480.46
50
450
350
400
450
500
247
Figure III-9. (Continued) Relative Int. (%)
100
Mescaline, heptafluorobutyryl/ trimethylsilyl derivative
50 73.0
181.0
CH 2 –CH 2 –N–COC 3 F 7
III-9-M-i
Si(CH3)3 CH3O
C18H24F7NO4Si MW: 479.46 195.0
OCH OCH3 3
479.1
298.0
0 50
100
Relative Int. (%)
100
150
200
73.0
300
350
190.1
Mescaline-d9, heptafluorobutyryl/ trimethylsilyl derivative
50
250
400
450
500
CH 2 –CH 2 –N–COC 3 F 7
III-9-M-ii
Si(CH3)3 CD3O
C18H15D9F7NO4Si MW: 488.39 204.1
OCD OCD3 3
488.2
298.0
0 50
100
150
200
250
300
350
400
450
500
m/z Ralative Int. (%)
100
181.0
III-9-N-i
Si(CH3)2C(CH3)3
50
CH3O
195.0
73.0
0 50
100
150
Ralative Int. (%)
200
250
300
190.1
III-9-N-ii
350
204.1
73.0
349.1
0 100
150
200
250
300 m/z
350
Figure III — Hallucinogens
© 2010 by Taylor and Francis Group, LLC
450
550
C21H21D9F7NO4Si MW: 530.47 530.2
377.1
400
500
Mescaline-d9, heptafluorobutyryl/ t-butyldimethylsilyl derivative
OCD OCD3 3
326.1
50
400
Si(CH3)2C(CH3)3 CD3O
521.2
340.0 368.0
CH 2 –CH 2 –N–COC 3 F 7
50
C21H30F7NO4Si MW: 521.54
OCH OCH3 3
317.0
100
Mescaline, heptafluorobutyryl/ t-butyldimethylsilyl derivative
CH 2 –CH 2 –N–COC 3 F 7
450
500
550
248
Figure III-10. Mass spectra of psilocin and its deuterated analogs (psilocin-d10): (A) underivatized; (B) acetylderivatized; (C) [acetyl]2-derivatized; (D) [TMS]2-derivatized; (E) t-BDMS-derivatized; (F) [t-BDMS]2-derivatized. Relative Int. (%)
100
58.1
Psilocin (CAS NO. 520-53-6)
OH
CH 3
CH 2CH 2N
III-10-A-i
50
C12H16N2O MW: 204.26
CH 3
N H
204.1
146.0
0 50
100
Relative Int. (%)
100
150
66.1
200
OH
III-10-A-ii
Psilocin-d10
CD 3
CD 2CD 2N
50
250
C12H6D10N2O MW: 214.32
CD 3
N H
214.2
148.1
0 50
Relative Int. (%)
100
100
150 m/z
58.1
200
Psilocin, acetyl derivative
COCH 3 O
III-10-B-i
50
CH 3
CH 2CH 2N
C14H18N2O2 MW: 246.30
CH 3
N H
146.1
246.1
0 50 100 Relative Int. (%)
250
100
150
66.1
200
250
COCH 3 O
III-10-B-ii
50
300 Psilocin-d10, acetyl derivative
CD 3
CD 2CD 2N
C14H8D10N2O2 MW: 256.36
CD 3
N H
148.1
0 50
100
150
256.2
200
250
300
m/z Relative Int. (%)
100
58.1
COCH 3
O
III-10-C-i
Psilocin, di-acetyl derivative
CH 3
CH 2CH 2N
C16H20N2O3 MW: 288.34
CH 3
50 N
Si(CH3)2C(CH3)3
146.0
0 50 100
100
160.1
288.1
150
66.1
200
250
COCH 3 O
III-10-C-ii
CD 2CD 2N
50
300 Psilocin-d10, di-acetyl derivative
CD 3 CD 3
C16H10D10N2O3 MW: 298.40
N Si(CH3)2C(CH3)3
148.1
0 50
100
165.1
150
298.2
200 m/z
Appendix One — Mass Spectra
© 2010 by Taylor and Francis Group, LLC
250
300
249
Figure III-10. (Continued) Relative Int. (%)
100
290.2
Si(CH3)3 O
58.1
CH 3
CH 2CH 2N
50 73.1
C18H32N2OSi2 MW: 348.63
CH 3
N
348.2
Si(CH3)3
0 50
100
202.1
174.0
150
333.2
200
250
300
100 Relative Int. (%)
Psilocin, di-trimethylsilyl derivative
III-10-D-i
Si(CH3)3
66.2
O
73.1
C18H22D10N2OSi2 MW: 358.69 358.3
CD 3
N Si(CH3)3
0 50
100
150
343.2
204.1
175.1
400
Psilocin-d10, di-trimethylsilyl derivative
III-10-D-ii
CD 3
CD 2CD 2N
50
350
292.2
200
250
300
350
400
m/z Relative Int. (%)
100
58.1
Psilocin, t-butyldimethylsilyl derivative
Si(CH3)2C(CH3)3 O
III-10-E-i
CH 3
CH 2CH 2N
50
C18H30N2OSi MW: 318.52
CH 3
N
188.1
H
73.1
202.1
0 50
100
Relative Int. (%)
100
66.2
250
300
CD 2CD 2N
50
CD 3
III-10-E-ii
CD 3
C18H20D10N2OSi MW: 328.59 328.2
N H
73.1
100
100
58.1
150
261.1
200 m/z
250
300
CH 2CH 2N
73.1
III-10-F-i
CH 3
375.2
CH 3
350
Psilocin, di-t-butyldimethylsilyl derivative
Si(CH3)2C(CH3)3 O
50
204.1
190.1
350 Psilocin-d10, t-butyldimethylsilyl derivative
Si(CH3)2C(CH3)3
50
N
C24H44N2OSi2 MW: 432.79
Si(CH3)2C(CH3)3
432.3
177.1
0 50 100 Relative Int. (%)
200
O
0
Relative Int. (%)
150
318.2
259.1
100
150
200
300
350
Si(CH3)2C(CH3)3
66.1
O CD 2CD 2N
73.1
50
250
CD 3
III-10-F-ii 376.2
CD 3
400
Psilocin-d10, di-t-butyldimethylsilyl derivative C24H34D10N2OSi2 MW: 442.85
N
Si(CH3)2C(CH3)3
442.3
179.1
0 50
100
150
200
250 m/z
Figure III — Hallucinogens
© 2010 by Taylor and Francis Group, LLC
450
300
350
400
450
251
Summary of Drugs, Isotopic Analogs, and Chemical Derivatization Groups Included in Figure IV (Depressants/Hypnotics) Compound
Isotopic analog
Pentobarbital
d5
Phenobarbital
d5, d5 (ring)
Chemical derivatization group (no. of spectra)
Figure #
None, [methyl]2, [ethyl]2, [propyl]2, [butyl]2, [TMS]2, [t-BDMS]2 (14)
IV-1
[Methyl]2, [ethyl]2, [propyl]2, [butyl]2, [TMS]2, [t-BDMS]2 (18)
IV-2
d 5,
13C
4
None, [methyl]2, [ethyl]2, [propyl]2, [butyl]2, [TMS]2, [t-BDMS]2 (21)
IV-3
Sceobarbital
d 5,
13C
4
None, [methyl]2, [ethyl]2, [propyl]2, [butyl]2, [TMS]2, [t-BDMS]2 (21)
IV-4
Methohexital
d5
None, methyl, ethyl, propyl, butyl, TMS, t-BDMS (14)
IV-5
γ-Hydroxybutyric acid d6
[TMS]2, [t-BDMS]2 (4)
IV-6
γ-Butyrolactone
None (2)
IV-7
Butabital
d6
Total no. of mass spectra: 94
Figure IV — Depressants/Hypnotics
© 2010 by Taylor and Francis Group, LLC
253
Appendix One — Figure IV Mass Spectra of Commonly Abused Drugs and Their Isotopically Labeled Analogs in Various Derivatization Forms — Depressants/Hypnotics Figure IV-1. Mass spectra of pentobarbital and its deuterated analogs (pentobarbital-d5): (A) underivatized; (B) [methyl]2derivatized; (C) [ethyl]2-derivatized; (D) [propyl]2-derivatized; (E) [butyl]2-derivatized; (F) [TMS]2-derivatized; (G) [t-BDMS]2-derivatized .......................................................................................................................................................... 254 Figure IV-2. Mass spectra of phenobarbital and its deuterated analogs (phenobarbital-d5, -d5 ring): (A) [methyl]2derivatized; (B) [ethyl]2-derivatized; (C) [propyl]2-derivatized; (D) [butyl]2-derivatized; (E) [TMS]2-derivatized; (F) [t-BDMS]2-derivatized ............................................................................................................................................................ 257 Figure IV-3. Mass spectra of butabital and its deuterated analogs (butabital-d5, -13C4): (A) underivatized; (B) [methyl]2derivatized; (C) [ethyl]2-derivatized; (D) [propyl]2-derivatized; (E) [butyl]2-derivatized; (F) [TMS]2-derivatized; (G) [t-BDMS]2-derivatized ........................................................................................................................................................... 260 Figure IV-4. Mass spectra of secobarbital and its deuterated analogs (secobarbital-d5, -13C4): (A) underivatized; (B) [methyl]2-derivatized; (C) [ethyl]2-derivatized; (D) [propyl]2-derivatized; (E) [butyl]2-derivatized; (F) [TMS]2-derivatized; (G) [t-BDMS]2-derivatized ........................................................................................................................................................... 264 Figure IV-5. Mass spectra of methohexital and its deuterated analogs (methohexital-d5): (A) underivatized; (B) methylderivatized; (C) ethyl-derivatized; (D) propyl-derivatized; (E) butyl-derivatized; (F) TMS-derivatized; (G) t-BDMSderivatized ..................................................................................................................................................................................... 268 Figure IV-6. Mass spectra of γ-hydroxybutyric acid (GHB) and its deuterated analogs (GHB-d6): (A) [TMS]2-derivatized; (B) [t-BDMS]2-derivatized ........................................................................................................................................................... 271 Figure IV-7. Mass spectra of γ-butyrolactone (GBL) and its deuterated analogs (GBL-d6) ...................................................... 272
Figure IV — Depressants/Hypnotics
© 2010 by Taylor and Francis Group, LLC
254
Figure IV-1. Mass spectra of pentobarbital and its deuterated analogs (pentobarbital-d5): (A) underivatized; (B) [methyl]2-derivatized; (C) [ethyl]2-derivatized; (D) [propyl]2-derivatized; (E) [butyl]2-derivatized; (F) [TMS]2derivatized; (G) [t-BDMS]2-derivatized. Relative Int. (%)
100
H
IV-1-A-i H 3C
50
O
H 3C H 2C H 2C H 2C HC
156.0
141.0
Pentobarbital (CAS NO.76-74-4)
O
N
C11H18N2O3 MW: 226.13
N H
O
CH 3
55.0
98.0
69.0
197.0
0 50 Relative Int. (%)
100
100
H 3C
H 2C
O
D 3C D 2C H 2C HC
161.0
Pentobarbital-d5 (CAS NO.52944-66-8) C11H13D5N2O3 MW: 231.30
143.0 H
O
100.0
71.1
250
O
N
N
CH 3
55.1
200
H
IV-1-A-ii
50
150
197.1
0 50
100
150 m/z
Relative Int. (%)
100
IV-1-B-i 50
H 3C
H 3C H 2C H 2C HC
H 2C
97.0
Pentobarbital, di-methyl derivative
184.0
C13H22N2O3 MW: 254.33
N CH 3
O
CH 3
69.0
250
169.0
CH 3 O N
O
200
112.0
225.1
0 50
100
150
Relative Int. (%)
100
IV-1-B-ii 50
H 3C
CH 3 O N
O D 3C D 2C H 2C HC
H 2C
74.1
0 50
171.0
250
189.1
300 Pentobarbital-d5, di-methyl derivative C13H17D5N2O3 MW: 259.36
N
CH 3
102.0
200
CH 3
O
114.0
225.1
100
150
200
250
300
m/z Relative Int. (%)
100
IV-1-C-i 50
H 3C
O
H 2C
H 3C H 2C H 2C HC
Pentobarbital, di-ethyl derivative
212.2
C15H26N2O3 MW: 282.37
N
CH 3
97.1
69.1
197.1
C 2H 5 O N C 2H 5
O
253.2
169.1
126.1
0 50 Relative Int. (%)
100
100
150
IV-1-C-ii
50
H 3C
O H 2C
D 3C D 2C H 2C HC
102.1
70.1
50
100
217.2
C 2H 5 O N
300 Pentobarbital-d5, di-ethyl derivative
199.1
C15H21D5N2O3 MW: 287.40
O
C 2H 5
253.2
171.1
128.1
150
200 m/z
Appendix One — Mass Spectra
© 2010 by Taylor and Francis Group, LLC
250
N
CH 3
0
200
250
300
255
Figure IV-1. (Continued)
Relative Int. (%)
100
IV-1-D-i H 3C
50
H 2C
C 3H 7 O N
O H 3C H 2C H 2C HC
N
CH 3
97.1 69.1
Pentobarbital, di-propyl derivative C17H30N2O3 MW: 310.43
156.1
C 3H 7
O
240.2
198.1
225.2
181.1
141.1
281.2
309.2
0 50 Relative Int. (%)
100
100
150
IV-1-D-ii
50
C 3H 7 O N
O D 3C D 2C H 2C HC
H 2C
H 3C
300
245.2
350
Pentobarbital-d5, di-propyl derivative C17H25D5N2O3 MW: 315.46
161.1
C 3H 7
O
250 203.2
N
CH 3
102.1 74.1
200
227.2
185.1
143.1
281.2
315.2
0 50
Relative Int. (%)
100
100
150
IV-1-E-i H 3C
50
H 3C H 2C H 2C HC
97.1 69.1
250
300
251.2
C 4H 9 O N
O
H 2C
200 m/z
Pentobarbital, di-butyl derivative
268.2
195.1
350
N
CH 3
C19H34N2O3 MW: 338.48
C 4H 9
O
156.1
213.2
309.3
170.1
141.1
337.3
0 50 Relative Int. (%)
100
100
150
IV-1-E-ii H 3C
50
O
H 2C
D 3C D 2C H 2C HC
102.1 74.1
50
Relative Int. (%)
100
256.3
CH 3
O
100.0
Pentobarbital-d5, di-butyl derivative 273.3
C19H29D5N2O3 MW: 343.51
218.2
161.1
309.3
175.1
150
200 m/z
H 3C
H 2C
250
H 3C H 2C H 2C HC
300
Si(CH3)3
300.1
269.1
147.0
350
IV-1-F-i
N O
343.3
285.1
Si(CH3)3 O N
O
CH 3
73.0
350
C 4H 9
Pentobarbital, di-trimethylsilyl derivative
50
300
N
100
C17H34N2O3Si2 MW: 370.63
250
200.2
143.1
0
200
C 4H 9 O N
355.2 341.2
370.2
0 50 Relative Int. (%)
100
100
150
200
Pentobarbital-d5, di-trimethylsilyl derivative C17H29D5N2O3Si2 MW: 375.66
50
73.1
250
H 3C
H 2C
D 3C D 2C H 2C HC
100.0
O
147.0
400
IV-1-F-ii
305.2
N
CH 3
350
290.1
Si(CH3)3 O N
O
300
360.2
Si(CH3)3
274.1
341.2
375.3
0 50
100
150
200
250 m/z
Figure IV — Depressants/Hypnotics
© 2010 by Taylor and Francis Group, LLC
300
350
400
256
Figure IV-1. (Continued)
Relative Int. (%)
100
Pentobarbital, di-t-butyldimethylsilyl derivative C23H46N2O3Si2 MW: 454.79
50
Si(CH3)2C(CH3)3 O N
O
H 3C
H 2C
H 3C H 2C H 2C HC
100.1
IV-1-G-i
N
Si(CH3)2C(CH3)3
O
CH 3
73.1
397.3 327.2
269.1
439.3
369.2
174.1
454.4
0 50 Relative Int. (%)
100
100
150
200
Pentobarbital-d5, di-t-butyldimethylsilyl derivative C23H41D5N2O3Si2 MW: 459.82
50
73.1
H 3C
250
Si(CH3)2C(CH3)3 O N
O D 3C D 2C H 2C HC
H 2C
350
400
450
332.2
IV-1-G-ii
O
Si(CH3)2C(CH3)3
274.1
174.1
444.3
374.3
459.4
0 50
100
150
200
250
300 m/z
Appendix One — Mass Spectra
© 2010 by Taylor and Francis Group, LLC
500
402.3
N
CH 3
100.1
300
350
400
450
500
257
Figure IV-2. Mass spectra of phenobarbital and its deuterated analogs (phenobarbital-d5, -d5 ring): (A) [methyl]2derivatized; (B) [ethyl]2-derivatized; (C) [propyl]2-derivatized; (D) [butyl]2-derivatized; (E) [TMS]2-derivatized; (F) [t-BDMS]2-derivatized.
Relative Int. (%)
100 H 3C
50
CH 3 O N
O H 2C
Phenobarbital (CAS NO.50-06-6), di-methyl derivative
N
103.0
77.0
IV-2-A-i
C14H16N2O3 MW: 260.28
CH 3
O
232.1
117.0
146.0
175.0
188.0
245.0
0 50
100
Relative Int. (%)
100
50
200
CH 3
105.0
122.1
151.1
176.0
233.1
IV-2-A-ii
190.0
77.0
247.1
0 50
100
Relative Int. (%)
100 H 3C
50
D
D
200
CH 3
108.1
180.0
151.1
123.1
82.0
0 50
300
237.1
VI-2-A-iii
C14H11D5N2O3 MW: 265.31
N
D
265.1
250
Phenobarbital-d5, di-methyl derivative
N
DO
D
150
CH 3 O
O H 2C
300
C14H11D5N2O3 MW: 265.31
N
O
250
Phenobarbital-d5 (CAS NO.52944-66-8), di-methyl derivative
CH 3 O N
O D 2C
D 3C
150
260.1
100
150
193.1
250.1 265.1
200
250
300
m/z Relative Int. (%)
100
260.2
Phenobarbital, di-ethyl derivative C16H20N2O3 MW: 288.34
50
146.1
O H 2C
H 3C
117.1
IV-2-B-i
C 2H 5 O N
N C 2H 5
O
103.1
202.1
232.1
273.2 288.2
0 50 Relative Int. (%)
100
100
150
200
300 261.2
Phenobarbital-d5, di-ethyl derivative 151.1
C16H15D5N2O3 MW: 293.37
50
250
105.1
O D 2C
D 3C
C 2H 5 O N N C 2H 5
O
122.1
IV-2-B-ii
204.1
233.1
275.2
293.2
0 50 Relative Int. (%)
100
100
150
200
Phenobarbital-d5, di-ethyl derivative C16H15D5N2O3 MW: 293.37
50
151.1 108.1
H 3C
D
O H 2C
122.1
C 2H 5 O N
D
IV-2-B-iii
300 265.2
N DO
D
250
D
C 2H 5
207.2
237.2
278.2
293.2
0 50
100
150
200 m/z
Figure IV — Depressants/Hypnotics
© 2010 by Taylor and Francis Group, LLC
250
300
258
Figure IV-2. (Continued)
Relative Int. (%)
100
Phenobarbital, di-propyl derivative
H 3C
C18H24N2O3 MW: 316.39
50
146.1
C 3H 7 O N O H 2C N
117.1
288.2
IV-2-C-i
C 3H 7
O
246.1
204.1
103.1
275.2
174.1
316.2
0 50 Relative Int. (%)
100
100
150
200 151.1
Phenobarbital-d5, di-propyl derivative C18H19D5N2O3 MW: 321.42
50
D 3C
105.1
122.1
C 3H 7 O N O D 2C N C 3H 7 O
250
300
IV-2-C-ii
289.2
247.1
205.1
179.2
350
280.2
321.3
0 50 Relative Int. (%)
100
100
150
Phenobarbital-d5, di-propyl derivative
151.1 H 3C
C18H19D5N2O3 MW: 321.42
50
200
122.1
D
179.1 D
300
IV-2-C-iii
N C 3H 7
DO
251.2
209.1
D
280.2
321.3
0 50
Relative Int. (%)
100
100
150
C20H28N2O3 MW: 344.44
50
91.1
200 m/z
250
146.1
Phenobarbital, di-butyl derivative
C 4H 9 O N
O H 2C
H 3C
117.1
174.1
300
IV-2-D-i
289.2
350
316.2
N C 4H 9
O
103.1
350
293.2
C 3H 7 O N
O H 2C
D
108.1
250
189.1
260.2
233.1
344.3
0 50 Relative Int. (%)
100
100
150
C20H23D5N2O3 MW: 349.47 105.1
250
151.1
Phenobarbital-d5, di-butyl derivative
50
200 C 4H 9 O N
O D 2C
D 3C
122.2
179.2
IV-2-D-ii
350
294.2
N C 4H 9
O
91.1
300
194.2
317.2 261.2
234.2
349.3
0 50 Relative Int. (%)
100
100
150
Phenobarbital-d5, di-butyl derivative C20H23D5N2O3 MW: 349.47
50
96.1
200
250
151.1 H 3C
122.1
D
O H 2C
179.2
194.2
D
300
IV-2-D-iii
294.2
100
150
D
200 m/z
Appendix One — Mass Spectra
© 2010 by Taylor and Francis Group, LLC
321.3
C 4H 9
238.2
265.2 349.3
0 50
350
N DO
D
108.1
C 4H 9 O N
250
300
350
259
Figure IV-2. (Continued)
Relative Int. (%)
100
Phenobarbital, di-trimethylsilyl derivative
146.0 H 3C
C18H28N2O3Si2 MW: 376.60
50
O H 2C
Si(CH3)3 O
IV-2-E-i
N
N Si(CH3)3
O
361.1
117.0
73.0
261.1
289.1
50 Relative Int. (%)
100
100
150
200 151.1
Phenobarbital-d5, di-trimethylsilyl derivative
73.0
O D 2C
D 3C
C18H23D5N2O3Si2 MW: 381.63
50
250
300
Si(CH3)3 O
376.2
347.1
0
350
400
IV-2-E-ii
N
N
366.2
Si(CH3)3
O
266.1
122.1
294.1
347.1
381.2
0 50 Relative Int. (%)
100
100
150
200 151.1
Phenobarbital-d5, di-trimethylsilyl derivative
H 3C
C18H23D5N2O3Si2 MW: 381.63
50
250
D
O H 2C
73.0
122.1
Si(CH3)3 O N
D
350
400
IV-2-E-iii
N DO
D
300
366.2
Si(CH3)3
266.1
D
294.1
352.1
381.2
0 50
100
150
200
250
300
350
400
m/z Relative Int. (%)
100
Phenobarbital, di-t-butyldimethylsilyl derivative H 3C
C24H40N2O3Si2 MW: 460.75
50
O H 2C
100.0
IV-2-F-i
N Si(CH3)2C(CH3)3
O
73.1
403.2
Si(CH3)2C(CH3)3 O N
445.2
317.1
147.1
460.3
0 50
100
Relative Int. (%)
100
150
200
250
Phenobarbital-d5, di-t-butyldimethylsilyl derivative
50
73.1
O D 2C
D 3C
C24H35D5N2O3Si2 MW: 465.78
300
350
400
450
500
408.2
Si(CH3)2C(CH3)3 O N
IV-2-F-ii
N Si(CH3)2C(CH3)3
O
100.0
450.3
317.1
147.1
465.3
0 50
100
Relative Int. (%)
100
150
200
250
Phenobarbital-d5, di-t-butyldimethylsilyl derivative
50
73.1
C24H35D5N2O3Si2 MW: 465.78 100.0
H 3C
D
O H 2C
D
147.1
350
Si(CH3)2C(CH3)3 O
400
450
500
408.2
IV-2-F-iii
N
N DO
D
300
Si(CH3)2C(CH3)3
D
450.3
322.1
465.3
0 50
100
150
200
250
300 m/z
Figure IV — Depressants/Hypnotics
© 2010 by Taylor and Francis Group, LLC
350
400
450
500
260
Figure IV-3. Mass spectra of butabital and its deuterated analogs (butabital-d5, -13C4): (A) underivatized; (B) [methyl]2derivatized; (C) [ethyl]2-derivatized; (D) [propyl]2-derivatized; (E) [butyl]2-derivatized; (F) [TMS]2-derivatized; (G) [t-BDMS]2-derivatized.
Relative Int. (%)
100
168.0
H O H 2C
50
HC HC
H 2C H 2C
H 3C CH 3
53.1
67.1
N
Butalbital (CAS NO.77-26-9)
IV-3-A-i
O
C11H16N2O3 MW: 224.25
N
H
O
124.0
97.0
181.0
141.0 153.0
0 50
100
Relative Int. (%)
100
150
200 173.1
H O DC D 2C HC H 2C H 3C CH 3
D 2C
50
C11H11D5N2O3 MW: 229.28
N H
O
129.0
100.1 55.1
Butalbital-d5 (CAS NO.125-40-6)
IV-3-A-ii
O
N
250
70.0
186.0
141.0
156.0
0 50
100
Relative Int. (%)
100
150 H
O HC H 2C HC H 2C H 3C CH 3
68.1
Butalbital-13C4 C713C4H16N2O3 MW: 228.22
* * ** N
H 2C
50
250
172.1
IV-3-A-iii
O
N
200
H
O
13 99.1 * = C
127.1
145.0
185.1
157.0
213.1
0 50
100
Relative Int. (%)
100 O H 2C
50
HC HC
H 2C H 2C
H 3C CH 3
150 m/z CH 3 O N
Butalbital, di-methyl derivative C13H20N2O3 MW: 252.30
N CH 3
O
181.0 138.0
169.0
209.1 237.1
0 50
100
150
200
Relative Int. (%)
100 O
DC D 2C HC H 2C H 3C CH 3
58.1
250
C13H15D5N2O3 MW: 257.34
N O
CH 3
143.1
116.1
300 Butalbital-d5, di-methyl derivative
201.1
IV-3-B-ii
CH 3 O N
D 2C
50
250
196.1
IV-3-B-i
111.1
58.1
200
169.0
184.1
214.1
242.1
0 50
100
150
Relative Int. (%)
100 O
HC H 2C HC H 2C H 3C CH 3
H 2C
50 68.1
CH 3 O
200 200.1
IV-3-B-iii
N
O
141.1
86.0
100
185.1 213.1
173.1
241.1
150
200 m/z
Appendix One — Mass Spectra
© 2010 by Taylor and Francis Group, LLC
C913C4H20N2O3 MW: 256.28
CH 3
* = 13C 113.1
300 Butalbital-13C4, di-methyl derivative
* * ** N
0 50
250
250
300
261
Figure IV-3. (Continued)
Relative Int. (%)
100
224.2 C 2H 5 O N
O H 2C
HC H 2C HC H 2C H 3C CH 3
50
C15H24N2O3 MW: 280.36
N C 2H 5
O
95.1
67.1
Butalbital, di-ethyl derivative
IV-3-C-i 196.1
125.1
109.1
168.1
209.1
237.2
265.2 280.2
0 50
100
150
200
250
Relative Int. (%)
100 C 2H 5 O N
O DC D 2C HC H 2C H 3C CH 3
D 2C
50
Butalbital-d5, di-ethyl derivative
IV-3-C-ii
C15H19D5N2O3 MW: 285.39
N C 2H 5
O
201.1
100.1 113.1
70.1
300
229.2
130.1
171.1
212.1
242.2
270.2
0 50
100
150
200
250
Relative Int. (%)
100 HC H 2C HC H 2C H 3C CH 3
68.1
Butalbital-13C4, di-ethyl derivative
IV-3-C-iii
* * ** N
H 2C
50
300
228.1
C 2H 5 O N
O
97.1
C1113C4H24N2O3 MW: 284.33
C 2H 5
O
200.1 213.1
127.1
* = 13C
155.0
241.1
172.0
269.1 284.2
0 50
285.2
100
150
200
250
300
m/z Relative Int. (%)
100
IV-3-D-i
O
H 2C
HC H 2C HC H 2C H 3C CH 3
50
N C 3H 7
O
95.1
67.1
Butalbital, di-propyl derivative
252.2
C 3H 7 O N
138.1
C17H28N2O3 MW: 308.41
210.1
168.1 180.1
265.2 235.2
293.2
308.3
0 50
100
150
Relative Int. (%)
100
IV-3-D-ii
O
DC D 2C HC H 2C H 3C CH 3
50
300
C17H23D5N2O3 MW: 313.44
C 3H 7
O
270.2 185.2
143.1
350
Butalbital-d5, di-propyl derivative
215.2
173.1
N
100.1
72.1
250 257.2
C 3H 7 O N
D 2C
200
240.2
298.3
313.3
0 50 Relative Int. (%)
100
100
150
IV-3-D-iii H 2C
50 68.1
O HC HC
H 2C H 2C
H 3C CH 3
97.1
200
250
C 3H 7 O N
256.1
* * ** N
O
300
172.0
Butalbital-13C4, di-propyl derivative
214.1
C1313C4H28N2O3 MW: 312.39
C 3H 7
* = 13C 141.1
183.1
350
269.1
229.1
297.2
312.2
0 50
100
150
200 m/z
Figure IV — Depressants/Hypnotics
© 2010 by Taylor and Francis Group, LLC
250
300
350
262
Figure IV-3. (Continued)
Relative Int. (%)
100 H 2C
50
HC HC
H 2C H 2C
IV-3-E-i
Butalbital, di-butyl derivative 279.2
C19H32N2O3 MW: 336.46
N C 4H 9
O
H 3C CH 3
182.1 207.2
168.1
138.1
95.1
67.1
263.2
C 4H 9 O N
O
293.2
224.2
321.3 336.3
0 50
100
150
Relative Int. (%)
100 D 2C
DC D 2C HC H 2C H 3C CH 3
300
350 Butalbital-d5, di-butyl derivative
IV-3-E-ii
C19H27D5N2O3 MW: 341.49
N
C 4H 9
O
285.3 187.1 212.2
173.1
100.1
72.1
250 268.3
C 4H 9 O N
O
50
200
298.3
229.2
143.1
326.3
341.3
0 50
100
150
200
250
300
Relative Int. (%)
100 O H 2C
50 68.1
HC HC
H 2C H 2C
C 4H 9 O N
267.2
IV-3-E-iii
4, di-butyl derivative
283.1
* * ** N
H 3C CH 3
O
C 4H 9
172.1
186.1
297.2
228.1
211.1
* = 13C
350 Butalbital-13C
C1513C4H32N2O3 MW: 340.43 325.2 340.2
0 50
Relative Int. (%)
100
100
150
200 m/z
Butalbital, di-trimethylsilyl derivative
O
73.0
100.0
HC H 2C HC H 2C H 3C CH 3
Si(CH3)3 O N
H 2C
C17H32N2O3Si2 MW: 368.62
50
147.0
250
300
353.2
IV-3-F-i
N
312.1 325.1
Si(CH3)3
O
297.1 269.0
210.1
368.2
0 50 Relative Int. (%)
100
100
150
200
Butalbital-d5, di-trimethylsilyl derivative
O
C17H27D5N2O3Si2 MW: 373.65
50
73.0
100.0
DC D 2C HC H 2C H 3C CH 3
250 Si(CH3)3 O N
D 2C
147.0
300
400 358.2
317.1
Si(CH3)3
215.1
350
IV-3-F-ii
N O
350
330.2
269.0
302.1 373.2
0 50 Relative Int. (%)
100
100
150
200
Butalbital-13C4, di-trimethylsilyl derivative C1313C4H32N2O3Si2 MW: 372.58 73.1 101.1
50
O H 2C
147.1
HC H 2C HC H 2C H 3C CH 3
250
300
* * ** N
316.2 Si(CH3)3
* = 13C
301.1
329.2
273.1
372.2
0 50
100
150
200
250 m/z
Appendix One — Mass Spectra
© 2010 by Taylor and Francis Group, LLC
400 357.2
IV-3-F-iii
Si(CH3)3 O N
O
350
300
350
400
263
Figure IV-3. (Continued)
Relative Int. (%)
100
C23H44N2O3Si2 MW: 452.77
50
73.1
50
100
O
H 2C
HC HC
H 2C H 2C
H 3C CH 3
100.1
0
Relative Int. (%)
395.3
Butalbital, di-t-butyldimethylsilyl derivative
100
200
250
100.1
300
452.3
350
400
450
DC D 2C HC H 2C H 3C CH 3
N Si(CH3)2C(CH3)3
O
442.3
297.1
457.4
0 50 Relative Int. (%)
100
100
150
200
250
Butalbital-13C
4, di-t-butyldimethylsilyl derivative
C1913C4H44N2O3Si2 MW: 456.74
50
73.1
O H 2C
HC HC
H 2C H 2C
H 3C CH 3
101.1
300
350
400 399.3
Si(CH3)2C(CH3)3 O N
450
100
* * ** N
O
Si(CH3)2C(CH3)3
* = 13C
147.1
150
200
441.3
301.2
250
300 m/z
Figure IV — Depressants/Hypnotics
© 2010 by Taylor and Francis Group, LLC
500
IV-3-G-iii
357.2
456.3
0 50
500
IV-3-G-ii
Si(CH3)2C(CH3)3 O N
D 2C
147.1
437.3
400.3 O
C23H39D5N2O3Si2 MW: 457.80 73.1
Si(CH3)2C(CH3)3
297.1
Butalbital-d5, di-t-butyldimethylsilyl derivative
50
N
O
147.1
150
IV-3-G-i
Si(CH3)2C(CH3)3 O N
350
400
450
500
264
Figure IV-4. Mass spectra of secobarbital and its deuterated analogs (secobarbital-d5, -13C4): (A) underivatized; (B) [methyl]2-derivatized; (C) [ethyl]2-derivatized; (D) [propyl]2-derivatized; (E) [butyl]2-derivatized; (F) [TMS]2derivatized; (G) [t-BDMS]2-derivatized.
Relative Int. (%)
100
IV-4-A-i
50
168.0
H
C12H18N2O3 MW: 238.28
N H 2C HC H 2C N H 2C H 2C HC H O CH 3
H 3C
124.0
53.1
Secobarbital (CAS NO.76-73-3)
O
O
195.1
153.0
79.1
223.1
0 50 Relative Int. (%)
100
100
150 H O N DC D 2C
IV-4-A-ii D 2C
H 2C
H 3C
50
HC
H 2C
173.0
250
O
C12H13D5N2O3 MW: 243.31
N
H
O
CH 3
102.1 55.0
200
Secobarbital-d5 (CAS NO.145243-97-6)
129.0
200.1
155.0
83.1
0 50
100
150
Relative Int. (%)
100
200
H O
IV-4-A-iii
H 2C
H 3C
50
H 2C
HC
H 2C
H 2C
HC
*=
55.1
O
C813C4H18N2O3 MW: 242.26
* * ** N
CH 3
13C
N
250 Secobarbital-13C4
172.1
O
H
127.0
199.1
157.0
80.1
227.1
0 50
100
Relative Int. (%)
100 O
H 3C
50
150 m/z
CH 3 O
200
196.0
IV-4-B-i
N
H 2C HC H 2C N H 2C H 2C HC CH 3 O CH 3
250
Secobarbital, di-methyl derivative C14H22N2O3 MW: 266.33
181.0 138.0
111.0
223.0 237.1
58.0
266.1
0 50
100
Relative Int. (%)
100 O H 3C
50
150 CH 3 O N
250 201.1
IV-4-B-ii
D 2C DC D 2C N H 2C H 2C HC CH 3 O CH 3
300 Secobarbital-d5, di-methyl derivative C14H17D5N2O3 MW: 271.37
183.0
116.1
58.0
200
228.1 242.1
143.0
271.2
0 50
100
150
Relative Int. (%)
100
CH 3 O
O H 2C H 3C
50
H 2C
HC
H 2C
H 2C
HC
* * ** N
CH 3
* = 13C
54.1
N
O
200 200.1
C1013C4H22N2O3 MW: 270.31
185.1 141.1
223.1
252.1 270.1
227.1
173.1
0 50
100
150
200 m/z
Appendix One — Mass Spectra
© 2010 by Taylor and Francis Group, LLC
300 Secobarbital-13C4, di-methyl derivative
IV-4-B-iii
CH 3
113.1
250
250
300
265
Figure IV-4. (Continued)
Relative Int. (%)
100
C 2H 5 O N
O
H 2C HC H 2C N H 2C H 2C HC C 2H 5 O CH 3
H 3C
50
224.2
IV-4-C-i
81.1
C16H26N2O3 MW: 294.38 209.1
125.1
109.1
Secobarbital, di-ethyl derivative
196.1
152.1
294.3
265.2
237.2
0 50
100
150
Relative Int. (%)
100
130.1
113.1
86.1
300 Secobarbital-d5, di-ethyl derivative
229.2
C16H21D5N2O3 MW: 299.41
D 2C DC D 2C N H 2C H 2C HC C 2H 5 O CH 3
H 3C
50
250
IV-4-C-ii
C 2H 5 O N
O
200
201.1
157.1
212.1
270.2
237.2
299.3
0 50
100
150
Relative Int. (%)
100 O H 3C
50
Pentobarbital-13C4, di-ethyl derivative C1213C4H26N2O3 MW: 298.35
127.1
200.1 155.1
213.1
172.1
100
150
269.1
200.1
0 50
300
C 2H 5
112.0
71.1
250 228.1
IV-4-C-iii
* * ** N
H 2C HC H 2C H 2C H 2C HC O CH 3 * = 13C
200 m/z
C 2H 5 O N
200
298.2
250
300
m/z Relative Int. (%)
100 O
H 3C
50
C 3H 7 O N
252.2
IV-4-D-i
H 2C HC H 2C N H 2C H 2C HC C 3H 7 O CH 3
C18H30N2O3 MW: 322.44
210.1 168.1
124.1
81.1
Secobarbital, di-propyl derivative
293.2
237.2
322.3
0 50
100
150
Relative Int. (%)
100 O H 3C
50
C 3H 7 O N
200
300 257.2
IV-4-D-ii
D 2C DC D 2C N H 2C H 2C HC C 3H 7 O CH 3
350
Secobarbital-d5, di-propyl derivative C18H25D5N2O3 MW: 327.47
215.2
173.1
298.3
240.2
129.1
86.1
250
327.3
0 50
100
150
Relative Int. (%)
100 O
50
H 3C
57.1
C 3H 7 O N
H 2C HC H 2C ** * * N H 2C H 2C HC C 3H 7 O 13 CH *= C 3
82.1
200 m/z
250
300 256.1
IV-4-D-iii
Secobarbital-13C4, di-propyl derivative C1413C4H30N2O3 MW: 326.41
214.1
172.0
127.0
297.1
241.1
0 50
100
150
200 m/z
Figure IV — Depressants/Hypnotics
© 2010 by Taylor and Francis Group, LLC
350
250
300
326.2
350
266
Figure IV-4. (Continued)
Relative Int. (%)
100 O
H 3C
50
279.2
C 4H 9 O N
IV-4-E-i
H 2C HC H 2C N H 2C H 2C HC C 4H 9 O CH 3
109.1
Secobarbital, di-butyl derivative
263.2
C20H34N2O3 MW: 350.49
168.1
224.2
207.1
81.1
321.3
309.3
350.3
0 50
100
150
Relative Int. (%)
100 O H 3C
50
200
IV-4-E-ii
D 2C DC D 2C N H 2C H 2C HC C 4H 9 O CH 3
86.1
300
350
400
Secobarbital-d5, di-butyl derivative
268.3
C 4H 9 O N
285.3
C20H29D5N2O3 MW: 355.53 229.2
212.2
173.1
114.1
250
326.3
309.3
355.4
0 50
100
150
Relative Int. (%)
100 O H 3C
50
200
300
350
283.2
4, di-butyl derivative
C1613C4H34N2O3 MW: 354.46
C 4H 9
228.1
186.1
172.1
400
Secobarbital-13C
267.2
IV-4-E-iii
* * ** N
H 2C HC H 2C H 2C H 2C HC O CH 3 * = 13C
250 m/z
C 4H 9 O N
325.2
313.2
83.1
354.3
0 50
100
150
200
250
300
350
400
m/z Relative Int. (%)
100
Secobarbital, di-trimethylsilyl derivative C18H24N2O3Si2 MW: 382.64
50 73.1
100.0
109.0
IV-4-F-i H 3C
147.0
297.1
Si(CH3)3 O N
O
H 2C HC H 2C N H 2C H 2C HC CH 3 O CH 3
182.0
312.1
339.1
367.2
281.1
225.0
0 50
100
Relative Int. (%)
100
150
200
Secobarbital-d5, di-trimethylsilyl derivative
50 73.1
IV-4-F-ii
C18H19D5N2O3Si2 H 3C MW: 387.67 100.0 147.0 114.1
250
D 2C DC D 2C H 2C H 2C HC
100
Relative Int. (%)
100
150
50 73.1
IV-4-F-iii
C1413C4H24N2O3Si2 H 3C MW: 386.91 101.1 147.1 111.1
344.2
CH 3
O
286.1
230.1
200
Secobarbital-13C4, di-trimethylsilyl derivative
400 372.2
317.2
N
CH 3
0 50
350 302.1
Si(CH3)3 O N
O
187.1
300
250 O
300
H 2C
229.1
185.1
400
301.2
Si(CH3)3 O N
HC H 2C ** * * N H 2C H 2C HC CH 3 O 13 CH *= C 3
350
316.2
371.2 343.2
285.1
0 50
100
150
200
250 m/z
Appendix One — Mass Spectra
© 2010 by Taylor and Francis Group, LLC
300
350
400
267
Figure IV-4. (Continued)
Relative Int. (%)
100
Secobarbital, di-t-butyldimethylsilyl derivative
50
C24H46N2O3Si2 MW: 466.80 73.1 100.1
O
H 3C
Si(CH3)2C(CH3)3 O N
H 2C HC H 2C N H 2C H 2C HC CH 3 O CH 3
281.1
409.3
IV-4-G-i 339.2
311.1
451.3
381.2
0 50 Relative Int. (%)
100
100
150
200
Secobarbital-d5, di-t-butyldimethylsilyl derivative
50
C24H41D5N2O3Si2 MW: 471.83 73.1 100.1
250
Si(CH3)2C(CH3)3 O N
O H 3C
300
D 2C DC D 2C N H 2C H 2C HC CH 3 O CH 3
350
50 Relative Int. (%)
100
200
Secobarbital-13C4, di-t-butyldimethylsilyl derivative
50
C2013C4H46N2O3Si2 MW: 471.07 73.1 101.1
250
H 2C H 3C
H 2C
HC
H 2C
H 2C
HC
* = 13C
300 Si(CH3)2C(CH3)3 O N
O
* * ** N
O
500
344.2
286.1 311.1
150
450 414.3
IV-4-G-ii
456.3
386.2
0 100
400
350
400
450
500
413.3
IV-4-G-iii 343.2
CH 3
CH 3
285.1
315.2
455.3
385.2
0 50
100
150
200
250
300 m/z
Figure IV — Depressants/Hypnotics
© 2010 by Taylor and Francis Group, LLC
350
400
450
500
268
Figure IV-5. Mass spectra of methohexital and its deuterated analogs (methohexital-d5): (A) underivatized; (B) methylderivatized; (C) ethyl-derivatized; (D) propyl-derivatized; (E) butyl-derivatized; (F) TMS-derivatized; (G) t-BDMSderivatized. Relative Int. (%)
100
79.0
O
53.0
50 65.0
93.0
H 3C
CH 3 O
H 2C HC H 2C H 2C C C HC
108.1 120.1
N H 164.0
O CH 3
221.0
IV-5-A-i
N
Methohexital (CAS NO.151-83-7) 233.0
178.0
C14H18N2O3 MW: 262.30
247.1
261.1
205.0
0 50
100
150
200
Relative Int. (%)
100 79.0 O
53.0
50
H 3C
65.0
96.1
111.1 124.1
164.0
N
221.0
IV-5-A-ii
CH 3 O N
D 2C DC D 2C H 2C C C HC
250
Methohexital-d5 (CAS NO.160227-45-2) C14H13D5N2O3 MW: 267.33
178.0 252.1
238.1
H
O CH 3
300
266.1
209.1
0 50
100
150
200
250
300
m/z Relative Int. (%)
100 O
79.0
50
H 3C
53.0
H 2C HC H 2C H 2C C C HC
93.0 120.0
138.0
235.0
CH 3 O N
178.0
247.0 261.1
N
195.0
CH 3
O CH 3
Methohexital, methyl derivative
IV-5-B-i
C15H20N2O3 MW: 276.33 275.1
219.1
0 50
100
150
Relative Int. (%)
100 O
79.0
50 53.0
H 3C
96.0
200
D 2C DC D 2C H 2C C C HC
178.0
CH 3
266.1
200.1
143.0
300 Methohexital-d5, methyl derivative
IV-5-B-ii
N
O CH 3
124.1
250 235.1
CH 3 O N
C15H15D5N2O3 MW: 281.36
252.1 223.1
280.1
0 50
100
150
200
250
300
m/z Relative Int. (%)
100 O
50
79.1 53.1
H 3C
91.1
H 2C HC H 2C H 2C C C HC
Methohexital, ethyl derivative
IV-5-C-i
N
178.1
C 2H 5
O CH 3
120.1
249.2
CH 3 O
N
209.1 194.1
261.2 233.2
161.1
138.1
C16H22N2O3 275.2 MW: 290.36 290.2
0 50
100
150
Relative Int. (%)
100 O
50
79.1 53.1
H 3C
96.1
D 2C DC D 2C H 2C C C HC
124.1
200
CH 3 O N
250
IV-5-C-ii
249.2
Methohexital-d5, ethyl derivative C16H17D5N2O3 MW: 295.39
N
O CH 3
143.1
C 2H 5
178.1
164.1
300
196.1
214.2
280.2 238.2
266.2
295.3
0 50
100
150
200 m/z
Appendix One — Mass Spectra
© 2010 by Taylor and Francis Group, LLC
250
300
269
Figure IV-5. (Continued)
Relative Int. (%)
100 O
50
H 2C HC H 2C H 2C C C HC
H 3C
79.1
CH 3 O
53.1
Methohexital, propyl derivative C17H24N2O3 MW: 304.38
N C 3H 7
O CH 3
105.1
263.2
IV-5-D-i
N
178.1
223.2 197.1
138.1
289.2
275.2 247.2
303.2
0 50
100
150
Relative Int. (%)
100 O
50
79.1
CH 3 O N
D 2C DC D 2C H 2C C C HC
H 3C
200
114.1
300 263.2
IV-5-D-ii
350 Methohexital-d5, propyl derivative C17H19D5N2O3 MW: 309.41
N C 3H 7
O CH 3
53.1
250
178.1 294.2
221.1 187.1
143.1
280.2
252.2
309.3
0 50
100
150
Relative Int. (%)
100 O
50
79.1 53.1
CH 3 O N
H 2C HC H 2C H 2C C C HC
H 3C
200 m/z
93.1
120.1
300
C 4H 9
221.1 237.2
178.1
161.1
211.1
150
200
350
277.2
IV-5-E-i
N
O CH 3
250
Methohexital, butyl derivative C18H26N2O3 MW: 318.41
303.2
289.2 318.2
0 50
100
Relative Int. (%)
100 O H 3C
50 79.1 53.1
CH 3 O
124.1
350 Methohexital-d5, butyl derivative
N
O CH 3
96.1
300 277.2
IV-5-E-ii
N
D 2C DC D 2C H 2C C C HC
250
C 4H 9
178.1
164.1
308.3
221.1 242.2
214.2
C18H21D5N2O3 MW: 323.44
294.2
323.3
0 50
100
150
200 m/z
Relative Int. (%)
100
IV-5-F-i
O H 3C
50 73.0
300
239.1
CH 3 O N
H 2C HC H 2C H 2C C C HC
350
Methohexital, trimethylsilyl derivative
N Si(CH3)3
O CH 3
100.0
250
178.0
319.1
264.1
211.0
138.0
C17H26N2O3Si MW: 334.48
293.1
333.1
0 50
100
150
200
Relative Int. (%)
100
IV-5-F-ii
O H 3C
50 73.0
D 2C DC D 2C H 2C C C HC
300
244.1
CH 3 O N
O CH 3
100.0
250
Methohexital-d5, trimethylsilyl derivative
N
C17H21D5N2O3Si MW: 339.51 324.1 339.2
293.1
Si(CH3)3
178.0 269.2
213.0
143.0
350
0 50
100
150
200 m/z
Figure IV — Depressants/Hypnotics
© 2010 by Taylor and Francis Group, LLC
250
300
350
270
Figure IV-5. (Continued)
Relative Int. (%)
100
IV-5-G-i 50
H 3C
75.1
O
239.1
CH 3 O N
H 2C HC H 2C H 2C C C HC
319.2
N
Methohexital, t-butyldimethylsilyl derivative C20H32N2O3Si MW: 376.56
Si(CH3)2C(CH3)3
O CH 3
100.1
211.1
361.2
281.1
0 50 Relative Int. (%)
100
100
IV-5-G-ii H 3C
50
73.1
150 O
D 2C DC D 2C H 2C C C HC
200
250
300
244.1
CH 3 O
N
324.2
N
O CH 3
Si(CH3)2C(CH3)3
100.1
213.1
286.2
0 50
100
150
200
250 m/z
Appendix One — Mass Spectra
© 2010 by Taylor and Francis Group, LLC
350
300
376.2
400
Methohexital-d5, t-butyldimethylsilyl derivative C20H27D5N2O3Si MW: 381.60 366.2 381.3
350
400
271
Figure IV-6. Mass spectra of γ-hydroxybutyric acid (GHB) and its deuterated analogs (GHB-d6): (A) [TMS]2derivatized; (B) [t-BDMS]2-derivatized.
Relative Int. (%)
100
γ-Hydroxybutyric acid (CAS NO.591-81-1), di-trimethylsilyl derivative
147.1
IV-6-A-i
O 3(H3C)SiO-CH2-CH2-CH2-C-OSi(CH3)3
50
C10H24O3Si2 MW: 248.47
233.1 73.1
117.1
204.1
0 50
100
150
Relative Int. (%)
100
200
250
147.1
IV-6-A-ii
O 3(H3C)SiO-CD2-CD2-CD2-C-OSi(CH3)3
300
γ-Hydroxybutyric acid-d6, di-trimethylsilyl derivative C10H18D6O3Si2 MW: 254.50
50 239.1 73.1
206.1
121.1
0 50
100
150
200
250
300
m/z Relative Int. (%)
100
IV-6-B-i
147.1 275.1 O
73.1
50
(H3C)3C(H3C)2SiO-CH2-CH2-CH2-C-OSi(CH3)2C(CH3)3
C16H36O3Si2 MW: 332.62
133.0
317.2
201.1
0 50
100
100 Relative Int. (%)
γ-Hydroxybutyric acid, di-t-butyldimethylsilyl derivative
150
IV-6-B-ii
200
250
300
γ-Hydroxybutyric acid-d6, di-t-butyldimethylsilyl derivative
(H3C)3C(H3C)2SiO-CD2-CD2-CD2-C-OSi(CH3)2C(CH3)3
C16H30D6O3Si2 MW: 338.65
O
50
73.1
350
281.2
147.1
133.0 323.2
207.1
0 50
100
150
200 m/z
Figure IV — Depressants/Hypnotics
© 2010 by Taylor and Francis Group, LLC
250
300
350
272
Figure IV-7. Mass spectra of γ-butyrolactone (GBL) and its deuterated analogs (GBL-d6).
Relative Int. (%)
100
γ-Butyrolactone (CAS NO.94-48-0) O
C4H6O2 MW: 86.09
50
IV-7-i
86.1
O
56.1 85.1 55.1
0 50 Relative Int. (%)
100
100 γ-Butyrolactone-d6 C4D6O2 MW: 92.13
50
60.1
D O O D D D D D
92.1
IV-7-ii
90.1
58.1
0 50
100 m/z
Appendix One — Mass Spectra
© 2010 by Taylor and Francis Group, LLC
273
Summary of Drugs, Isotopic Analogs, and Chemical Derivatization Groups Included in Figure V (Antianxiety Agents) Compound
Isotopic analog
Chemical derivatization group (no. of spectra)
Figure #
Oxazepam
d5
None, [methyl]2, [ethyl]2, [propyl]2, [butyl]2, [TMS]2, t-BDMS (14)
V-1
Diazepam
d3, d5
None (3)
V-2
Nordiazepam
d5
None, methyl, ethyl, propyl, butyl, TMS, t-BDMS (14)
V-3
Nitrazepam
d5
Methyl, ethyl, propyl, butyl, TMS, t-BDMS (12)
V-4
Temazepam
d5
None, methyl, ethyl, propyl, butyl, acetyl, TMS, t-BDMS (16)
V-5
Clonazepam
d4
Methyl, ethyl, propyl, butyl, TMS, t-BDMS (12)
V-6
7-Aminoclonazepam
d4
[Methyl]3, [ethyl]2, [ethyl]3, propyl, [propyl]2, butyl, [butyl]2, PFP, HFB, [TMS]2, t-BDMS, [t-BDMS]2, TFA/[TMS]2, [TFA]2/t-BDMS, TFA/[t-BDMS]2, PFP/TMS, PFP/[TMS]2, PFP/[t-BDMS]2, HFB/[t-BDMS]2 (38)
V-7
Prazepam
d5
None (2)
V-8
Lorazepam
d4
[Methyl]2, [ethyl]2, [propyl]2, [butyl]2, HFB, [TMS]2, [t-BDMS]2 (14)
V-9
Flunitrazepam
d3, d7
None (3)
V-10
7-Aminoflunitrazepam
d3, d7
None, [methyl]2, ethyl, [ethyl]2, propyl, butyl, acetyl, TFA, PFP, HFB, TMS, TFA/TMS, TFA/t-BDMS, PFP/TMS, PFP/t-BDMS, HFB/TMS, HFB/t-BDMS (51)
V-11
N-Desalkylflurazepam
d4
None, methyl, [methyl]2, ethyl, propyl, butyl, acetyl, TMS,, t-BDMS (18)
V-12
N-Desmethylflunitrazepam
d4
[Methyl]2, ethyl, propyl, butyl, acetyl, TMS, t-BDMS (14)
V-13
2-Hydroxyethylflurazepam
d4
None, butyl, TMS, t-BDMS (8)
V-14
Estazolam
d5
None (2)
V-15
Alprazolam
d5
None (2)
V-16
α-Hydroxyalprazolam
d5
TMS, t-BDMS (4)
V-17
α-Hydroxytriazolam
d4
TMS, t-BDMS (4)
V-18
Mianserin
d3
None (2)
V-19
Methaqualone
d7
None (2)
V-20
Haloperidol
d4
TMS (2)
V-21
Total no. of mass spectra: 237
Figure V — Antianxiety Agent
© 2010 by Taylor and Francis Group, LLC
275
Appendix One — Figure V Mass Spectra of Commonly Abused Drugs and Their Isotopically Labeled Analogs in Various Derivatization Forms — Antianxiety Agents Figure V-1. Mass spectra of oxazepam and its deuterated analogs (oxazepam-d5): (A) underivatized; (B) [methyl]2derivatized; (C) [ethyl]2-derivatized; (D) [propyl]2-derivatized; (E) [butyl]2-derivatized; (F) [TMS]2-derivatized; (G) [tBDMS]2-derivatized ...................................................................................................................................................................... 276 Figure V-2. Mass spectra of diazepam and its deuterated analogs (diazepam-d3, -d5) ............................................................... 279 Figure V-3. Mass spectra of nordiazepam and its deuterated analogs (nordiazepam-d5): (A) underivatized; (B) methylderivatized; (C) ethyl-derivatized; (D) propyl-derivatized; (E) butyl-derivatized; (F) TMS-derivatized; (G) t-BDMSderivatized ..................................................................................................................................................................................... 280 Figure V-4. Mass spectra of nitrazepam and its deuterated analogs (nitrazepam-d5): (A) methyl-derivatized; (B) ethylderivatized; (C) propyl-derivatized; (D) butyl-derivatized; (E) TMS-derivatized; (F) t-BDMS-derivatized ............................. 283 Figure V-5. Mass spectra of temazepam and its deuterated analogs (temazepam-d5): (A) underivatized; (B) methylderivatized; (C) ethyl-derivatized; (D) propyl-derivatized; (E) butyl-derivatized; (F) acetyl-derivatized; (G) TMS-derivatized; (H) t-BDMS-derivatized .............................................................................................................................................................. 285 Figure V-6. Mass spectra of clonazepam and its deuterated analogs (clonazepam-d4): (A) methyl-derivatized; (B) ethylderivatized; (C) propyl-derivatized; (D) butyl-derivatized; (E) TMS-derivatized; (F) t-BDMS-derivatized ............................. 288 Figure V-7. Mass spectra of 7-aminoclonazepam and its deuterated analogs (7-aminoclonazepam-d4): (A) [methyl]3derivatized; (B) [ethyl]2-derivatized; (C) [ethyl]3-derivatized; (D) propyl-derivatized; (E) [propyl]2-derivatized; (F) butylderivatized; (G) [butyl]2-derivatized; (H) PFP-derivatized; (I) HFB-derivatized; (J) [TMS]2-derivatized; (K) t-BDMSderivatized; (L) [t-BDMS]2-derivatized; (M) TFA/[TMS]2-derivatized; (N) [TFA]2/t-BDMS-derivatized; (O) TFA/[tBDMS]2-derivatized; (P) PFP/TMS-derivatized; (Q) PFP/[TMS]2-derivatized; (R) PFP/[t-BDMS]2-derivatized; (S) HFB/ [t-BDMS]2-derivatized .................................................................................................................................................................. 290 Figure V-8. Mass spectra of prazepam and its deuterated analogs (prazepam-d5) ..................................................................... 297 Figure V-9. Mass spectra of lorazepam and its deuterated analogs (lorazepam-d4): (A) [methyl]2-derivatized; (B) [ethyl]2derivatized; (C) [propyl]2-derivatized; (D) [butyl]2-derivatized; (E) HFB-derivatized; (F) [TMS]2-derivatized; (G) [tBDMS]2-derivatized ...................................................................................................................................................................... 298 Figure V-10. Mass spectra of flunitrazepam and its deuterated analogs (flunitrazepam-d3, -d7) ............................................... 301 Figure V-11. Mass spectra of 7-aminoflunitrazepam and its deuterated analogs (7-aminoflunitrazepam-d3, -d7): (A) underivatized; (B) [methyl]2-derivatized; (C) ethyl-derivatized; (D) [ethyl]2-derivatized; (E) propyl-derivatized; (F) butylderivatized; (G) acetyl-derivatized; (H) TFA-derivatized; (I) PFP-derivatized; (J) HFB-derivatized; (K) TMS-derivatized; (L) TFA/TMS-derivatized; (M) TFA/t-BDMS-derivatized; (N) PFP/TMS-derivatized; (O) PFP/t-BDMS-derivatized; (P) HFB/TMS-derivatized; (Q) HFB/t-BDMS-derivatized .............................................................................................................. 302 Figure V-12. Mass spectra of N-desalkylflurazepam and its deuterated analogs (N-desalkylflurazepam-d4): (A) underivatized; (B) methyl-derivatized; (C) [methyl]2-derivatized; (D) ethyl-derivatized; (E) propyl-derivatized; (F) butyl-derivatized; (G) acetyl-derivatized; (H) TMS-derivatized; (I) t-BDMS-derivatized ............................................................................................. 311 Figure V-13. Mass spectra of N-desmethylflunitrazepam and its deuterated analogs (N-desmethylflunitrazepam-d4): (A) [methyl]2-derivatized; (B) ethyl-derivatized; (C) propyl-derivatized; (D) butyl-derivatized; (E) acetyl-derivatized; (F) TMS-derivatized; (G) t-BDMS-derivatized ................................................................................................................................. 314 Figure V-14. Mass spectra of 2-hydroxyethylflurazepam and its deuterated analogs (2-hydroxyethylflurazepam-d4): (A) underivatized; (B) butyl-derivatized; (C) TMS-derivatized; (D) t-BDMS-derivatized ............................................................... 317 Figure `V-15. Mass spectra of estazolam and its deuterated analogs (estazolam-d5) ................................................................. 319 Figure V-16. Mass spectra of alprazolam and its deuterated analogs (alprazolam-d5) .............................................................. 320 Figure V-17. Mass spectra of α-hydroxyalprazolam and its deuterated analogs (α-hydroxyalprazolam-d5): (A) TMSderivatized; (B) t-BDMS-derivatized ........................................................................................................................................... 321 Figure V-18. Mass spectra of α-hydroxytriazolam and its deuterated analogs (α-hydroxytriazolam-d4): (A) TMSderivatized; (B) t-BDMS-derivatized ........................................................................................................................................... 322 Figure V-19. Mass spectra of mianserin and its deuterated analogs (mianserin-d3) .................................................................. 323 Figure V-20. Mass spectra of methaqualone and its deuterated analogs (methaqualone-d7) ..................................................... 324 Figure V-21. Mass spectra of haloperidol and its deuterated analogs (haloperidol-d4): (A) TMS-derivatized ......................... 325
Figure V — Antianxiety Agent
© 2010 by Taylor and Francis Group, LLC
276
Figure V-1. Mass spectra of oxazepam and its deuterated analogs (oxazepam-d5): (A) underivatized; (B) [methyl]2derivatized; (C) [ethyl]2-derivatized; (D) [propyl]2-derivatized; (E) [butyl]2-derivatized; (F) [TMS]2-derivatized; (G) [t-BDMS]2-derivatized. Relative Int. (%)
100
V-1-A-i
C15H11ClN2O2 MW: 286.71
77.0
50
269.0
Cl
Oxazepam (CAS NO.604-75-1)
241.0
205.1
NH N
104.1
233.0
O
177.0
OH
136.0
0 50
100
Relative Int. (%)
100
150
Oxazepam-d5 (CAS NO.65854-78-6) C15H6D5ClN2O2 MW: 291.74
82.1
50
Cl
D
D
D
D
V-1-A-ii
D
109.1
54.1
200
250
300 274.0
246.0 210.1
NH N
O
OH
136.0
238.1 181.0
0 50
100
150
200
250
300
m/z Relative Int. (%)
100
271.0 Cl
V-1-B-i 50
N N
77.1
Oxazepam, di-methyl derivative C17H15ClN2O2 MW: 314.77
255.0
CH 3
314.0
O O CH 3
0 50
100
150
Relative Int. (%)
100
200
250
300 276.0
Cl
V-1-B-ii
D
D
D
N CH 3 N D O O CH 3
D
50 82.1
350
Oxazepam-d5, di-methyl derivative C17H10D5ClN2O2 MW: 319.80
260.1
319.1
0 50
100
150
200 m/z
250
Relative Int. (%)
100
50
N N
77.0
350
Oxazepam, di-ethyl derivative
285.0
Cl
V-1-C-i
300
C19H19ClN2O2 MW: 342.82
C 2H 5
257.0
O O C 2H 5
241.0 342.1
0 50
100
150
Relative Int. (%)
100
200
D
82.1
350 Oxazepam-d5, di-ethyl derivative
D
D D
300 290.1
Cl
V-1-C-ii 50
250
D
N
C19H14D5ClN2O2 MW: 347.85
N C 2H 5
262.0
O O C 2H 5
246.0
347.1
0 50
100
150
200 m/z
Appendix One — Mass Spectra
© 2010 by Taylor and Francis Group, LLC
250
300
350
277
Figure V-1. (Continued)
Relative Int. (%)
100
299.0
Cl
V-1-D-i 50
N N
77.0
Oxazepam, di-propyl derivative C21H23ClN2O2 MW: 370.87
257.0
C 3H 7
O O C 3H 7
241.0
370.1
328.0
0 50
100
150
Relative Int. (%)
100
250
300
D
D
D
N C 3H 7 N D O O C 3H 7
D
82.1
350
400
Oxazepam-d5, di-propyl derivative
304.1
Cl
V-1-D-ii 50
200
C21H18 D5ClN2O2 MW: 375.90
262.0 246.0
375.2
333.1
0 50
100
150
200
250
300
350
400
m/z Relative Int. (%)
100
313.1
Oxazepam, di-butyl derivative
Cl
V-1-E-i 50
N N
57.1
O O C 4H 9
C23H27ClN2O2 MW: 398.93
257.0
C 4H 9
298.1
241.0
342.0
398.1
0 50
100
150
200
250
300
Relative Int. (%)
100
350
Cl
V-1-E-ii 50
D
D
D
N C 4H 9 N D O O C 4H 9
D
57.1
400
450
Oxazepam-d5, di-butyl derivative
318,1
C23H22D5ClN2O2 MW: 403.96
262.0
304.1
246.0
347.1
403.2
0 50
100
Relative Int. (%)
100
150
200
Oxazepam, di-trimethylsilyl derivative
250 m/z
350
Cl
73.1 C21H27ClN2O2Si2 MW: 431.08
50
300
147.1
450
429.1
V-1-F-i N
N
400
Si(CH3)3
313.0
O O Si(CH3)3
340.1
401.1
0 50 Relative Int. (%)
100
100
150
200
73.1 Oxazepam-d5, di-trimethylsilyl derivative C21H22D5ClN2O2Si2 MW: 436.11 147.1
50
250
300
350
Cl D
D
D
D
D N
400 433.1
V-1-F-ii N Si(CH3)3
318.1
O O Si(CH3)3
450
406.1 345.1
0 50
100
150
200
250 m/z
Figure V — Antianxiety Agent
© 2010 by Taylor and Francis Group, LLC
300
350
400
450
278
Figure V-1. (Continued)
Relative Int. (%)
100 73.1
50
Oxazepam, di-t-butyldimethylsilyl derivative
Cl
V-1-G-i
Si(CH3)2C(CH3)3 O O Si(CH3)2C(CH3)3 N
N
147.1
457.1
C27H39ClN2O2Si2 MW: 515.23 383.1
313.0
513.2 499.2
0 50
100
150
200
250
300
350
Relative Int. (%)
100 73.1
50
D
D
D
D
D
147.1
N
450
N Si(CH3)2C(CH3)3 O O Si(CH3)2C(CH3)3
318.1
500
550
462.2
Oxazepam-d5, di-t-butyldimethylsilyl derivative
Cl
V-1-G-ii
400
C27H34D5ClN2O2Si2 MW: 520.26 387.1
519.3 504.2
0 50
100
150
200
250
300 m/z
350
Appendix One — Mass Spectra
© 2010 by Taylor and Francis Group, LLC
400
450
500
550
279
Figure V-2. Mass spectra of diazepam and its deuterated analogs (diazepam-d3, -d5). Relative Int. (%)
100
Diazepam (CAS NO.439-14-5),
261.0
Cl
283.0
C16H13ClN2O MW: 284.74
50
V-2-i N
221.0
165.0
110.1
77.0
N CH 3 O
0 50 Relative Int. (%)
100
100
150
Diazepam-d3
200
250 259.0
Cl
C16H10D3ClN2O MW: 287.76
50
N
111.6
77.0
N CD 3
300 286.0
V-2-ii
O
224.0
167.0
0 50 Relative Int. (%)
100
100
150
Diazepam-d5 (CAS NO.65854-76-4), C16H8D5ClN2O MW: 289.77
50
Cl D
D
D
D
D
112.4
82.1
200
N
250
300
261.0
V-2-iii
287.0
N CH 3 O
226.1
170.1
0 50
100
150
200 m/z
Figure V — Antianxiety Agent
© 2010 by Taylor and Francis Group, LLC
250
300
280
Relative Int. (%)
Figure V-3. Mass spectra of nordiazepam and its deuterated analogs (nordiazepam-d5): (A) underivatized; (B) methylderivatized; (C) ethyl-derivatized; (D) propyl-derivatized; (E) butyl-derivatized; (F) TMS-derivatized; (G) t-BDMSderivatized. 100
Nordiazepam (CAS NO.1088-11-5)
242.0
Cl
C15H11ClN2O MW: 270.71
50
269.0
V-3-A-i NH
N
103.0
77.0
O
207.0
151.0
0 50 Relative Int. (%)
100
100
150
Nordiazepam-d5 (CAS NO.65891-80-7) C15H6D5ClN2O MW: 275.74
50
250
300
247.0
Cl
V-3-A-ii
D
D
D
N D
D
275.0
273.0
NH
105.5
78.1
200
O
155.0
212.1
0 50
100
150
200
250
300
m/z Relative Int. (%)
100
Nordiazepam, methyl derivative C16H13ClN2O MW: 284.74
50
N
89.0
77.0
256.0
V-3-B-i
Cl
N CH 3 O
221.0
165.0
110.0
193.1
283.0
241.0
0 50 Relative Int. (%)
100
100
150
Nordiazepam-d5, methyl derivative
D
D
D
N D
D
300 287.0
V-3-B-ii N CH 3 O
112.5
82.1
250 261.0
Cl
C16H8D5ClN2O MW: 289.77
50
200
170.1
226.1 246.0
198.1
0 50
100
150
200
250
300
m/z Relative Int. (%)
100
Nordiazepam, ethyl derivative C17H15ClN2O MW: 298.77
50
V-3-C-i
Cl
N
91.1
N C 2H 5 O
270.0
297.0
241.0
165.0
207.1
0 50 Relative Int. (%)
100
100
150
Nordiazepam-d5, ethyl derivative C17H10D5ClN2O MW: 303.80
50
200
D
D
N D
D
96.1
300
350
275.1
Cl D
250
301.1
V-3-C-ii N C 2H 5 O
246.1
170.1
212.1
0 50
100
150
200 m/z
Appendix One — Mass Spectra
© 2010 by Taylor and Francis Group, LLC
250
300
350
281
Figure V-3. (Continued)
Relative Int. (%)
100
50
Nordiazepam, propyl derivative
Cl
C18H17ClN2O MW: 312.79 91.1
N
311.1
269.0
284.1
V-3-D-i N C 3H 7 O
165.1
193.1
241.0
227.0
0 50 Relative Int. (%)
100
100
150
Nordiazepam-d5, propyl derivative C18H12D5ClN2O MW: 317.82 96.1
50
200
Cl D
D
D
N D
D
250
170.1
198.1
350 315.1
289.1
273.1
V-3-D-ii N C 3H 7 O
300
246.1
232.1
0 50
Relative Int. (%)
100
100
150
Nordiazepam, butyl derivative
250
V-3-E-i
350
165.1
325.1 298.1
N C 4H 9 N O
91.1
300
269.0
Cl
C19H19ClN2O MW: 326.82
50
200 m/z
241.0 193.1
0 50 Relative Int. (%)
100
100
150
Nordiazepam-d5, butyl derivative C19H14D5ClN2O MW: 331.85 96.1
50
200
D
D
N D
D
300
350 329.1
273.1
Cl D
250
V-3-E-ii
303.1
N C 4H 9 O
170.1
246.1 198.1
0 50
Relative Int. (%)
100
100
150
Nordiazepam, trimethylsilyl derivative
250
300
350
341.1
Cl
V-3-F-i
C18H19ClN2OSi MW: 342.89 73.1
50
200 m/z
N
N Si(CH3)3 O
327.0
91.1
227.0
269.0
0 50 Relative Int. (%)
100
100
150
Nordiazepam-d5, trimethylsilyl derivative C18H14D5ClN2OSi MW: 347.93 73.1 96.1
50
200
Cl D
D
D
N D
D
250
100
345.1
N Si(CH3)3 O
332.1 232.0
150
200 m/z
Figure V — Antianxiety Agent
© 2010 by Taylor and Francis Group, LLC
350
V-3-F-ii
0 50
300
250
273.0
300
350
282
Figure V-3. (Continued)
Relative Int. (%)
100
327.1
Nordiazepam, t-butyldimethylsilyl derivative
50
Cl
C21H25ClN2OSi MW: 384.97
N
73.1
V-3-G-i N Si(CH3)2C(CH3)3 O
383.1
0 50 Relative Int. (%)
100
100
150
200
300
350
400
332.1
Nordiazepam-d5, t-butyldimethylsilyl derivative
50
250
Cl
C21H20D5ClN2OSi MW: 390.00
D
D
D
N D
D
V-3-G-ii N Si(CH3)2C(CH3)3 O
73.1
389.1
0 50
100
150
200
250 m/z
Appendix One — Mass Spectra
© 2010 by Taylor and Francis Group, LLC
300
350
400
283
Figure V-4. Mass spectra of nitrazepam and its deuterated analogs (nitrazepam-d5): (A) methyl-derivatized; (B) ethyl-derivatized; (C) propyl-derivatized; (D) butyl-derivatized; (E) TMS-derivatized; (F) t-BDMS-derivatized.
Relative Int. (%)
100
O 2N
Nitrazepam (CAS NO.146-22-5), methyl derivative C16H13N3O3 MW: 295.29
50
57.1
N
N CH 3
294.0
248.1
221.0 207.0
O
165.1 192.0
110.1
85.1
267.1
V-4-A-i
281.0
0 50 Relative Int. (%)
100
100
150
Nitrazepam-d5 (CAS NO.136765-45-2), methyl derivative D C16H8D5N3O3 MW: 300.32 57.1 85.1
50
200 O 2N
D
111.1
300
N
N CH 3
207.0
O
350
272.1
V-4-A-ii
D
D D
250
298.1 252.1
225.1
300.1 284.0
170.0 197.0
0 50
Relative Int. (%)
100
100
150
Nitrazepam, ethyl derivative
N
91.1
250
300
281.1
234.1
N C 2H 5 O
207.1
165.1
57.1
350
308.1
V-4-B-i
O 2N
C17H15N3O3 MW: 309.32
50
200 m/z
262.1
0 50 Relative Int. (%)
100
100
150
Nitrazepam-d5, ethyl derivative
50
D
96.1
D
N
300
V-4-B-ii
D
D
250
350 312.1
O 2N D
C17H10D5N3O3 MW: 314.35
200
286.1
N C 2H 5
239.1
O
266.1
211.1
170.1
57.1
0 50
Relative Int. (%)
100
100
150
Nitrazepam, propyl derivative
O 2N
C18H17N3O3 MW: 323.35 91.1
50
200 m/z
N
250
300
350
322.1
V-4-C-i 280.1
N C 3H 7
295.1
234.1
O
206.1
165.1
276.1
0 50 Relative Int. (%)
100
100
150
Nitrazepam-d5, propyl derivative C18H12D5N3O3 MW: 328.38 96.1
50
200
O 2N D
D
D
N
300
284.1
N C 3H 7
350 326.1
V-4-C-ii
D
D
250
300.1
238.1
O
211.1
170.1
280.2
0 50
100
150
200 m/z
Figure V — Antianxiety Agent
© 2010 by Taylor and Francis Group, LLC
250
300
350
284
Figure V-4. (Continued) Relative Int. (%)
100
Nitrazepam, butyl derivative
V-4-D-i 50
91.1
336.1
O 2N
C19H19N3O3 MW: 337.37
N
280.1 234.1
N C 4H 9
309.1
O
205.1
165.1
252.1
57.1
0 50
100
Relative Int. (%)
100
V-4-D-ii 96.1
50
150
200
Nitrazepam-d5, butyl derivative C19H14D5N3O3 MW: 342.40
250
300
D
D
D
D N
N C 4H 9
314.2
238.1
O
257.1
211.1
170.1
57.1
340.2
284.1
O 2N D
350
0 50
100
Relative Int. (%)
100
V-4-E-i
150
200 m/z
Nitrazepam, trimethylsilyl derivative
N
73.1 91.1
300
350
352.1
O 2N
C18H19N3O3Si MW: 353.45
50
250
N Si(CH3)3
306.1
O
338.1
145.6
0 50
100
Relative Int. (%)
100
V-4-E-ii 50
150
C18H14D5N3O3Si MW: 358.48
73.1 96.1
250
300
100
O 2N D
D
D
D
D
150
350
N
400 356.2
N Si(CH3)3
310.1 343.1
O
147.6
0 50
200
Nitrazepam-d5, trimethylsilyl derivative
200
250
300
350
400
m/z Relative Int. (%)
100
V-4-F-i 50
Nitrazepam, t-butyldimethylsilyl derivative C21H25N3O3Si MW: 395.53
73.1
338.1
O 2N
N
N Si(CH3)2C(CH3)3 O
292.1 394.2
145.7
0 50
100
Relative Int. (%)
100
V-4-F-ii
150
200
Nitrazepam-d5, t-butyldimethylsilyl derivative
300
D
D
D
D
D N
350
400
450
O
297.1 398.2
148.0
0 100
150
200
250 m/z
Appendix One — Mass Spectra
© 2010 by Taylor and Francis Group, LLC
450
N Si(CH3)2C(CH3)3
73.1
50
400
343.2
O 2N
C21H20D5N3O3Si MW: 400.56
50
250
300
350
285
Figure V-5. Mass spectra of temazepam and its deuterated analogs (temazepam-d5): (A) underivatized; (B) methylderivatized; (C) ethyl-derivatized; (D) propyl-derivatized; (E) butyl-derivatized; (F) acetyl-derivatized; (G) TMSderivatized; (H) t-BDMS-derivatized. Relative Int. (%)
100
Temazepam (CAS NO.846-50-4) C16H13ClN2O2 MW: 300.74
50
77.1
228.0
Cl
300.0 257.0
195.0 N CH 3 N O 165.1 OH
91.1 105.0
V-5-A-i 271.0
0 50 Relative Int. (%)
100
100
150
50
Cl
D
96.1
300
227.1
195.0
350
262.1
D
D
82.1
250
305.1
Temazepam-d5 (CAS NO.136765-51-0) C16H8D5ClN2O2 MW: 305.77
200
110.1 D
D
N
O
V-5-A-ii 276.1
N CH 3
169.1
OH
0 50
100
Relative Int. (%)
100
150
250
300
50
N
77.1
127.0
350
271.0
Cl
V-5-B-i
57.1
200 m/z
N CH 3 O O CH 3
Temazepam, methyl derivative C17H15ClN2O2 MW: 314.77
255.0 314.1 207.0
165.0
0 50
100
150
Relative Int. (%)
100 D
300
D
N
D
127.0
82.1
350
276.1
Temazepam-d5, methyl derivative
D
D
57.1
250
Cl
V-5-B-ii 50
200
N CH 3 O O CH 3
C17H10D5ClN2O2 MW: 319.80
261.1
319.1 207.0
170.1
0 50
100
150
Relative Int. (%)
100
250
50
N
85.1
300
350
271.0
Cl
V-5-C-i 57.1
200 m/z
Temazepam, ethyl derivative C18H17ClN2O2 MW: 328.79
N CH 3
255.0
O O C 2H 5
328.1
207.0
0 50
100
Relative Int. (%)
100
150
85.1
300
350
276.1
D
D
D
N CH 3 N D O O C 2H 5
D
57.1
250
Cl
V-5-C-ii
50
200
400 Temazepam-d5, ethyl derivative
C18H12D5ClN2O2 MW: 333.82 260.1 333.1
207.0
0 50
100
150
200
250 m/z
Figure V — Antianxiety Agent
© 2010 by Taylor and Francis Group, LLC
300
350
400
286
Figure V-5. (Continued)
Relative Int. (%)
100
271.0
Cl
Temazepam, propyl derivative
V-5-D-i 50
N
77.1
C19H19ClN2O2 MW: 342.82
N CH 3
255.0
O O C 3H 7
300.1
342.1
0 50
100
150
200
Relative Int. (%)
100
250
D
D
N
D
71.1
400
Temazepam-d5, propyl derivative
D
D
50
350
276.1
Cl
V-5-D-ii
300
C19H14D5ClN2O2 MW: 347.85
N CH 3
260.1
O O C 3H 7
305.1
347.2
0 50
100
150
200
250
300
350
400
m/z Relative Int. (%)
100
97.1
57.1
50
271.0
Cl
V-5-E-i
N CH 3 N O O C 4H 9
111.1 125.1
Temazepam, butyl derivative C20H21ClN2O2 MW: 356.85
257.0 300.0
356.1
0 50
100
150
200
250
Relative Int. (%)
100
300
350
276.1
V-5-E-ii 50
Cl D
D
D
D
97.1
57.1
D
111.1 125.1
N
N CH 3 O O C 4H 9
400 Temazepam-d5, butyl derivative
C20H16D5ClN2O2 MW: 361.88
262.1 305.1
361.1
0 50
100
150
200
250
300
350
400
m/z Relative Int. (%)
100
271.1
Cl
V-5-F-i 50
N
N CH 3 O O COCH 3
Temazepam, acetyl derivative C18H15ClN2O3 MW: 342.78
257.1
300.0
165.1
77.1
342.1
0 50 Relative Int. (%)
100
100
150
V-5-F-ii
200
D
300 276.1
Cl D
D
N
C18H10D5ClN2O3 MW: 347.81
N CH 3 O O COCH 3
262.1
305.1
170.1
82.1
350 Temazepam-d5, acetyl derivative
D
D
50
250
347.1
0 50
100
150
200 m/z
Appendix One — Mass Spectra
© 2010 by Taylor and Francis Group, LLC
250
300
350
287
Figure V-5. (Continued)
Relative Int. (%)
100
Temazepam, trimethylsilyl derivative
50
73.1
343.1
Cl
V-5-G-i
C19H21ClN2O2Si MW: 372.92
N CH 3 N O O Si(CH3)3
178.1
257.1 283.1
357.1
372.1
0 50
100
Relative Int. (%)
100
150
200
Temazepam-d5, trimethylsilyl derivative
73.1
300
D
D
D
D
D
180.1
N
350
400
348.1
Cl
C19H16D5ClN2O2Si MW: 377.95
50
250
V-5-G-ii N CH 3 O O Si(CH3)3
262.1 288.1
362.1
377.1
0 50
100
150
200
250
300
350
400
m/z Relative Int. (%)
100
Temazepam, t-butyldimethylsilyl derivative
50
Cl
C22H27ClN2O2Si MW: 415.00 73.1
N
357.1
V-5-H-i 283.1
N CH 3
255.1
O
178.1 O Si(CH3)2C(CH3)3
102.1
385.2
399.1
0 50 Relative Int. (%)
100
100
150
Temazepam-d5, t-butyldimethylsilyl derivative
50
C22H22D5ClN2O2Si MW: 420.03 73.1
200
250
300
Cl D
D
D
D
D N
350
V-5-H-ii N CH 3 O O Si(CH3)2C(CH3)3
400
260.1 390.2
404.2
0 50
100
150
200
250 m/z
300
Figure V — Antianxiety Agent
© 2010 by Taylor and Francis Group, LLC
450
362.1
288.1
180.1
102.1
415.2
350
400
420.2
450
288
Figure V-6. Mass spectra of clonazepam and its deuterated analogs (clonazepam-d4): (A) methyl-derivatized; (B) ethyl-derivatized; (C) propyl-derivatized; (D) butyl-derivatized; (E) TMS-derivatized; (F) t-BDMS-derivatized.
Relative Int. (%)
100
O 2N
Clonazepam (CAS NO.1622-61-3), methyl derivative C16H12ClN3O3 MW: 329.74
50
75.0
Cl
N
N CH 3
328.0
302.0
266.0
O
191.0
165.1
127.1
294.1
248.1
V-6-A-i 220.0
313.1
0 50
100
Relative Int. (%)
100
150
200
Clonazepam-d4 (CAS NO.170082-15-2), methyl derivative D C16H8D4ClN3O3 D MW: 333.76
50
O 2N
129.0
78.1
N
Cl
300 298.1
V-6-A-ii
D
D
250
350
306.1
252.1
333.1 331.1
N CH 3
270.1
O
169.1
224.1
195.1
317.1
0 50
100
Relative Int. (%)
100
150
O 2N
Clonazepam, ethyl derivative C17H14ClN3O3 MW: 343.76 57.1 97.1
50
200 m/z
300
308.1
V-6-B-i N C 2H 5
N Cl
125.1
250
280.1
350
342.1 316.1
234.1 268.0
O
205.1
177.1
327.0
0 50
100
Relative Int. (%)
100
150
Clonazepam-d4, ethyl derivative C17H10D4ClN3O3 MW: 347.79
50 57.1
200 O 2N
D
D
D
N Cl
129.1
300
347.1
284.1
N C 2H 5
350 312.1
V-6-B-ii
D
97.1
250
320.1
238.1
O
266.1 181.1
209.1
331.1
0 50
Relative Int. (%)
100
100
150
O 2N
Clonazepam, propyl derivative C18H16ClN3O3 MW: 357.80
50
89.1
200 m/z
125.0
Cl
151.0
250
V-6-C-i
315.0 356.1 322.1
O
205.1
177.1
350
280.1
234.1
N C 3H 7
N
300
330.1
268.0
0 50 Relative Int. (%)
100
100
150
200
Clonazepam-d4, propyl derivative
50
V-6-C-ii
O 2N D
C18H12D4ClN3O3 MW: 361.82
250
D
D
155.1
97.5
Cl
284.1
238.1
D
129.1
300
N
O
209.1
400
319.1 326.1
N C 3H 7
181.1
350
361.1
334.1
271.0
0 50
100
150
200
250 m/z
Appendix One — Mass Spectra
© 2010 by Taylor and Francis Group, LLC
300
350
400
289
Figure V-6. (Continued)
Relative Int. (%)
100
Clonazepam, butyl derivative
315.0 336.1
234.1
C19H18ClN3O3 MW: 371.82
50
280.1
V-6-D-i
O 2N
125.0
N Cl
370.1
N C 4H 9 O
177.1
344.1
268.0
205.1
0 50 Relative Int. (%)
100
100
150
200
Clonazepam-d4, butyl derivative
D
D
D
N Cl
350
400
284.1 319.1
340.1
238.1
D
129.1
300
V-6-D-ii
O 2N
C19H14D4ClN3O3 MW: 375.84
50
250
N C 4H 9
373.1
O
209.1
181.1
348.1
271.1
0 50
100
150
200
250
300
350
400
m/z Relative Int. (%)
100
73.1
Clonazepam, trimethylsilyl derivative
O 2N
387.1
352.1 306.1
C18H18ClN3O3Si MW: 387.89
50
V-6-E-i
N Cl
125.0
N Si(CH3)3
372.1
O
250.1
177.1
326.1
272.0
0 50 Relative Int. (%)
100
100 73.1
150
200
Clonazepam-d4, trimethylsilyl derivative
O 2N D
C18H14D4ClN3O3Si MW: 391.92
50
250
Cl
350 356.2
V-6-E-ii
D
400 391.1
310.1
D D
300
N
129.0
N Si(CH3)3
376.1
O
250.1
181.1
330.1
276.0
0 50
100
150
200
250
300
350
400
m/z Relative Int. (%)
100
Clonazepam, t-butyldimethylsilyl derivative
O 2N
C21H24ClN3O3Si MW: 429.97
50
Cl
73.1
N
372.1
V-6-F-i N Si(CH3)2C(CH3)3 O
326.1
429.2
0 50 Relative Int. (%)
100
100
150
200
250
Clonazepam-d4, t-butyldimethylsilyl derivative
O 2N
C21H20D4ClN3O3Si MW: 433.99
50
300
D
D
D
Cl
D N
73.1
350
400
450
376.1
V-6-F-ii N Si(CH3)2C(CH3)3 O
330.1
433.2
0 50
100
150
200
250 m/z
Figure V — Antianxiety Agent
© 2010 by Taylor and Francis Group, LLC
300
350
400
450
290
Figure V-7. Mass spectra of 7-aminoclonazepam and its deuterated analogs (7-aminoclonazepam-d4): (A) [methyl]3derivatized; (B) [ethyl]2-derivatized; (C) [ethyl]3-derivatized; (D) propyl-derivatized; (E) [propyl]2-derivatized; (F) butyl-derivatized; (G) [butyl]2-derivatized; (H) PFP-derivatized; (I) HFB-derivatized; (J) [TMS]2-derivatized; (K) tBDMS-derivatized; (L) [t-BDMS]2-derivatized; (M) TFA/[TMS]2-derivatized; (N) [TFA]2/t-BDMS-derivatized; (O) TFA/[t-BDMS]2-derivatized; (P) PFP/TMS-derivatized; (Q) PFP/[TMS]2-derivatized; (R) PFP/[t-BDMS]2derivatized; (S) HFB/[t-BDMS]2-derivatized. Relative Int. (%)
100
7-Aminoclonazepam (CAS NO.4959-17-5), tri-methyl derivative
327.0 298.0
C18H18ClN3O MW: 327.81
50
V-7-A-i
N(CH3)2
N Cl
N–CH 3 O
131.6
284.0
0 50 Relative Int. (%)
100
100
150
200
300
350
400
331.0
7-Aminoclonazepam-d4, tri-methyl derivative
N(CH3)2 D
C18H14D4ClN3O MW: 331.83
50
250
302.0
D D
V-7-A-ii
D N Cl
N–CH 3 O
288.0
133.6
0 50
150
200
250
300
350
400
m/z
100 Relative Int. (%)
100 7-Aminoclonazepam, di-ethyl derivative C19H20ClN3O MW: 341.83
50
N Cl
341.0
V-7-B-i
NHC 2H 5
312.0
N–C 2 H 5
278.0
O
326.0
131.4
0 50 Relative Int. (%)
100
100
150
200
300
350
400
345.1
7-Aminoclonazepam-d4, di-ethyl derivative
NHC 2H 5
C19H16D4ClN3O MW: 345.86
50
250
D
D
D
N Cl
D
V-7-B-ii
N–C 2 H 5
317.0 282.1
O
133.4
330.0
0 50
150
200
250
300
350
m/z
100 Relative Int. (%)
100 7-Aminoclonazepam, tri-ethyl derivative
N(C2H5)2
C21H24ClN3O MW: 369.89
50
N Cl
400 354.0
V-7-C-i
369.1
N–C 2 H 5 O
267.9
296.0
326.0
0 50 Relative Int. (%)
100
100
150
200
7-Aminoclonazepam-d4, tri-ethyl derivative
N(C2H5)2 D
C21H20D4ClN3O MW: 373.91
50
250
D
D D
N Cl
300
350
400 358.1
V-7-C-ii
373.1
N–C 2 H 5 O
266.1
300.0
330.0
0 50
© 2010 by Taylor and Francis Group, LLC
100
150
200
250 m/z Appendix One — Mass Spectra
300
350
400
291
Figure V-7. (Continued)
Relative Int. (%)
100
7-Aminoclonazepam, propyl derivative
NHC 3H 7
C18H18ClN3O MW: 327.81
50
NH N Cl
250.0
285.0
O
299.0
220.0
180.0
147.0
103.9
327.0
V-7-D-i
0 50 Relative Int. (%)
100
100
150
200
7-Aminoclonazepam-d4, propyl derivative
NHC 3H 7
C18H14D4ClN3O MW: 331.83
50
D
D
D
N Cl
D
300
350 331.0
V-7-D-ii
NH
147.0
105.0
250
254.0
O
289.0
303.0
224.0
184.0
0 50
Relative Int. (%)
100
100
150
200 m/z
7-Aminoclonazepam, di-propyl derivative
NHC 3H 7
300
350
369.1
V-7-E-i 340.0
C21H24ClN3O MW: 369.89
50
250
N Cl
N–C 3 H 7
298.0
O
255.0
203.0
0 50 Relative Int. (%)
100
100
150
200
7-Aminoclonazepam-d4, di-propyl derivative
NHC 3H 7 D
C21H20D4ClN3O MW: 373.91
50
250
350
400 373.1
V-7-E-ii
D
344.1
D
N Cl
D
300
N–C 3 H 7
302.0
O
259.0
203.0
0 50
100
150
200
250
300
350
400
m/z Relative Int. (%)
100
7-Aminoclonazepam, butyl derivative C19H20ClN3O MW: 341.83
50
NH N Cl
147.0
341.0
V-7-F-i
NHC 4H 9
250.0
285.0
O
313.0
220.0
180.0
0 50 Relative Int. (%)
100
100
150
200
7-Aminoclonazepam-d4, butyl derivative
NHC 4H 9
C19H16D4ClN3O MW: 345.86
50
250
D
D
D
N Cl
D
147.0
350
254.0
400
345.1
V-7-F-ii
NH
184.0
300
289.0 317.0
O
224.0
0 50
100
150
200
250 m/z
Figure V — Antianxiety Agent
© 2010 by Taylor and Francis Group, LLC
300
350
400
292
Figure V-7. (Continued)
Relative Int. (%)
100
7-Aminoclonazepam, di-butyl derivative C23H28ClN3O MW: 397.94
50
397.1
NHC 4H 9
V-7-G-i
N Cl
255.0
N–C 4 H 9
354.0
O
312.0
298.0
0 50 Relative Int. (%)
100
100
150
200
7-Aminoclonazepam-d4, di-butyl derivative
250
300
400
D
D
D
N Cl
D
N–C 4 H 9
358.1
O
316.1
302.0
259.0
450 401.1
NHC 4H 9
V-7-G-ii
C23H24D4ClN3O MW: 401.96
50
350
0 50
Relative Int. (%)
100
100
150
250 m/z
300
7-Aminoclonazepam, pentafluoropropionyl derivative
V-7-H-i
50
200
C18H11ClF5N3O2 MW: 431.74 167.1 193.0
119.0 69.0
350
50
100
150
Relative Int. (%)
119.0
50
220.1
200
256.0
282.0
250
C18H7D4ClF5N3O2 MW: 435.77 171.1 197.1
69.0
O
100
Relative Int. (%)
100
150
69.1
50
350
D
D
N Cl
224.1
169.0
100
Relative Int. (%)
100
150
260.0
O
286.0
250 m/z
100
150
V-7-I-i
400
450
452.0 481.0
446.0
NHCOC 3F7
207.0
220.1
N Cl
256.0
200
250
391.1
300
350
224.1
260.0
200
250
400
450 450.0
V-7-I-ii
NHCOC 3F7 D
D
D
N Cl
D
207.0
418.0
O
282.0
500 456.0
485.1
NH
286.0
300 m/z
Appendix One — Mass Spectra
© 2010 by Taylor and Francis Group, LLC
372.1
350
422.1
O
395.0
0 50
435.0
345.0
300
69.0 C19H7D4ClF7N3O2 MW: 485.78 169.0 119.0
406.0
NH
7-Aminoclonazepam-d4, heptafluorobutyryl derivative
50
450
NH
0 50
400 400.0
NHCOC 2F5 D
C19H11ClF7N3O2 MW: 481.75 119.0
368.0
300
D
200
7-Aminoclonazepam, heptafluorobutyryl derivative
431.0
341.1
0 50
396.0
NH N Cl
7-Aminoclonazepam-d4, pentafluoropropionyl derivative
V-7-H-ii
450
402.0
NHCOC 2F5
0 100
400
350
400
450
500
293
Figure V-7. (Continued)
Relative Int. (%)
100
NHSi(CH3)3
7-Aminoclonazepam, di-trimethylsilyl derivative
50
C21H28ClN3OSi2 MW: 430.09
73.1
429.2
394.2
V-7-J-i
N–Si(CH3)3
N Cl
414.1
O
314.1
219.1
0 50
100
Relative Int. (%)
100
150
200
250
7-Aminoclonazepam-d4, di-trimethylsilyl derivative
50
D
D
D
N Cl
D
350
400 398.2
V-7-J-ii
NHSi(CH3)3
C21H24D4ClN3OSi2 MW: 434.06
73.1
300
450 433.2
418.2
N–Si(CH3)3
318.1
O
219.1
0 50
100
Relative Int. (%)
100
150
200
250 m/z
7-Aminoclonazepam, t-butyldimethylsilyl derivative
50
300
350
400
450
342.1
NHSi(CH3)2C(CH3)3
V-7-K-i
NH
C21H26ClN3OSi MW: 399.99
N Cl
73.1
153.6
147.1
O
242.1
399.1
364.2
328.1
0 50
100
Relative Int. (%)
100
150
200
250
7-Aminoclonazepam-d4, t-butyldimethylsilyl derivative
50
D
D
D
N Cl
D
400
450
346.1
V-7-K-ii
NH O
246.1
155.6
147.1
350
NHSi(CH3)2C(CH3)3
C21H22D4ClN3OSi MW: 403.99 73.1
300
403.2
368.2
332.1
0 50
Relative Int. (%)
100
100
73.1
150
250 m/z
7-Aminoclonazepam, di-t-butyldimethylsilyl derivative C27H40ClN3OSi2 MW: 514.25
50
200
300
350
400
450
456.1
NHSi(CH3)2C(CH3)3
V-7-L-i N Cl
173.6 199.6
N–Si(CH3)2C(CH3)3
513.2
O
306.1
420.1
478.3
0 50 Relative Int. (%)
100
100 73.1
50
150
200
250
300
7-Aminoclonazepam-d4, di-t-butyldimethylsilyl derivative C27H36D4ClN3OSi2 MW: 518.27 175.3
350
400
450
D
D
N Cl
D
201.6
V-7-L-ii
N–Si(CH3)2C(CH3)3
517.2
O
310.1
424.2
0 50
100
150
200
250
300 m/z
350
Figure V — Antianxiety Agent
© 2010 by Taylor and Francis Group, LLC
550
460.2
NHSi(CH3)2C(CH3)3 D
500
400
450
482.3
500
550
294
Figure V-7. (Continued)
Relative Int. (%)
100
73.0
7-Aminoclonazepam, trifluoroacetyl/di-trimethylsilyl derivative
N(Si(CH3)3)2
C23H27ClF3N3O2Si2 MW: 526.10
50
147.0
N Cl
V-7-M-i 525.1
490.1
N–COCF 3
510.1
O
221.0
410.0
348.1
0 50 Relative Int. (%)
100
100 73.0
150
200
250
7-Aminoclonazepam-d4, trifluoroacetyl/di-trimethylsilyl derivative
147.0
350
400
N(Si(CH3)3)2 D
D
D
N Cl
D
C23H23D4ClF3N3O2Si2 MW: 530.12
50
300
450
500 529.1
494.2
V-7-M-ii
550
N–COCF 3
514.1 414.1
O
352.1
221.0
0 50
Relative Int. (%)
100
100
73.1
200
250
300 m/z
350
400
450
N Cl
500
N–Si(CH3)2C(CH3)3
C25H24ClF6N3O3Si MW: 592.01
O
151.0
50 100
100 73.1
150
590.0
200
250
300
V-7-N-ii
350
400
450
500
D
D
D
N Cl
D
550
600
C25H20D4ClF6N3O3Si MW: 596.03
N–Si(CH3)2C(CH3)3 O
147.0
594.0
0
Relative Int. (%)
100
100
73.1
150
200
250
300
7-Aminoclonazepam, trifluoroacetyl/di-t-butyldimethylsilyl derivative
350 m/z
400
COCF 3 N(SiCH3)2C(CH3)3
C29H39ClF3N3O2Si2 MW: 610.26
50
650
7-Aminoclonazepam-d4, di-trifluoroacetyl/t-butyldimethylsilyl derivative
N(COCF3)2
50
50
550
7-Aminoclonazepam, di-trifluoroacetyl/t-butyldimethylsilyl derivative
N(COCF3)2
V-7-N-i
50
0
Relative Int. (%)
150
N Cl
450
500
V-7-O-i
550
600
650
552.1
N–SiCH3)2C(CH3)3 O
368.0
609.2
438.0
0 50 Relative Int. (%)
100
100 73.1
150
200
250
7-Aminoclonazepam-d4, trifluoroacetyl/di-t-butyldimethylsilyl derivative
350
400
COCF 3 N(SiCH3)2C(CH3)3
C29H35D4ClF3N3O2Si2 MW: 614.28
50
300
D
D
D
N Cl
D
149.0
450
500
550
600
650
556.1
V-7-O-ii
N–SiCH3)2C(CH3)3 O
372.0
613.2
442.0
0 50
100
150
200
250
300
350 m/z
400
Appendix One — Mass Spectra
© 2010 by Taylor and Francis Group, LLC
450
500
550
600
650
295
Figure V-7. (Continued)
Relative Int. (%)
100 73.0
50
468.1
7-Aminoclonazepam, pentafluoropropionyl/ trimethylsilyl derivative
NHSi(CH3)3
C21H19ClF5N3O2Si MW: 503.92 125.0
N Cl
V-7-P-i
503.1 488.0
N–COC 2 F 5
388.0
O
0 50
100
Relative Int. (%)
100 73.0
50
150
200
250
300
350
400
450
500
550
472.1
7-Aminoclonazepam-d4, pentafluoropropionyl/ trimethylsilyl derivative
V-7-P-ii
NHSi(CH3)3
C21H15D4ClF5N3O2Si MW: 507.95
D
D
D
N Cl
D
507.1 492.1
N–COC 2 F 5
392.0
O
129.0
0 50
100
Relative Int. (%)
100 73.0
150
200
250
7-Aminoclonazepam, pentafluoropropionyl/ di-trimethylsilyl derivative
350
N(Si(CH3)3)2
C24H27ClF5N3O2Si2 MW: 576.11
50
300 m/z
N Cl
400
450
500
550
540.2 575.2
V-7-Q-i
N–COC 2 F 5
560.1
460.1
O
348.1
125.0
420.1
0 50
100
Relative Int. (%)
100 73.0
150
200
250
7-Aminoclonazepam-d4, pentafluoropropionyl/ di-trimethylsilyl derivative C24H23D4ClF5N3O2Si2 MW: 580.13
50
300
350
D
D
N Cl
D
50
100
450
200
250
N–COC 2 F 5
350
600
579.2 564.2
464.1
O
300
550
V-7-Q-ii 424.1
352.1
150
500 544.2
N(Si(CH3)3)2 D
129.0
0
400
400
450
500
550
600
m/z Relative Int. (%)
100
7-Aminoclonazepam, pentafluoropropionyl/ di-t-butyldimethylsilyl derivative
50
731.
COC 2 F 5 N(SiCH3)2C(CH3)3
C30H39ClF5N3O2Si2 MW: 660.27
N Cl
602.2
V-7-R-i
N–Si(CH3)2C(CH3)3 O
659.3
440.1
368.1
0 50
100
Relative Int. (%)
100
150
200
250
300
7-Aminoclonazepam-d4, pentafluoropropionyl/ di-t-butyldimethylsilyl derivative
50
73.1
C30H35D4ClF5N3O2Si2 MW: 664.29
350
400
COC 2 F 5 N(SiCH3)2C(CH3)3 D
D
D
N Cl
D
450
500
550
600
650
700
606.2
V-7-R-ii
N–Si(CH3)2C(CH3)3 O
663.3
444.1
372.1
0 50
100
150
200
250
300
350
400
450
m/z
Figure V — Antianxiety Agent
© 2010 by Taylor and Francis Group, LLC
500
550
600
650
700
296
Figure V-7. (Continued)
Relative Int. (%)
100
73.1
50
7-Aminoclonazepam, heptafluorobutyryl/ di-t-butyldimethylsilyl derivative
N(Si(CH3)2C(CH3)3
652.1
C31H39ClF7N3O2Si2 MW: 710.27
0 50 Relative Int. (%)
N Cl
368.0
100
100 73.1
50
150
200
250
300
350
7-Aminoclonazepam-d4, heptafluorobutyryl/ di-t-butyldimethylsilyl derivative
200
250
D
D
D
N Cl
D
372.0
150
O
450
500
709.2
550
300
350
400 m/z
600
650
O
450
700
656.2
494.0
500
750
V-7-S-ii
N–Si(CH3)2C(CH3)3
Appendix One — Mass Spectra
© 2010 by Taylor and Francis Group, LLC
490.0
N(Si(CH3)2C(CH3)3
0 100
400
N–Si(CH3)2C(CH3)3
COC 3 F 7
C31H35D4ClF7N3O2Si2 MW: 714.30
50
V-7-S-i
COC 3 F 7
713.3
550
600
650
700
750
297
Figure V-8. Mass spectra of prazepam and its deuterated analogs (prazepam-d5).
Relative Int. (%)
100 91.0
Cl
Prazepam (CAS NO.2955-38-6) C19H17ClN2O MW: 324.80
50
N
55.1 165.0
116.0
269.0
V-8-i N CH 2 O
295.0
241.0
324.0
205.0
0 50
100
Relative Int. (%)
100 96.1
150
200
Prazepam-d5 (CAS NO.152477-89-9) C19H12D5ClN2O MW: 329.83
50
D
Cl
D
V-8-ii
D
D
55.1
D
166.0
120.0
250
N
N CH 2 O
300 273.0
350
300.1 329.1
246.0
210.1
0 50
100
150
200 m/z
Figure V — Antianxiety Agent
© 2010 by Taylor and Francis Group, LLC
250
300
350
298
Figure V-9. Mass spectra of lorazepam and its deuterated analogs (lorazepam-d4): (A) [methyl]2-derivatized; (B) [ethyl]2-derivatized; (C) [propyl]2-derivatized; (D) [butyl]2-derivatized; (E) HFB-derivatized; (F) [TMS]2-derivatized; (G) [t-BDMS]2-derivatized. Relative Int. (%)
100
V-9-A-i
C17H14Cl2N2O2 MW: 349.21
50
305.0
Cl
Lorazepam (CAS NO.846-49-1), di-methyl derivative
N Cl
177.0
75.0
N CH 3
313.1
O O CH 3
289.0
255.0
348.0
0 50 Relative Int. (%)
100
100
150
200
300
350
C17H10D4Cl2N2O2 MW: 353.23
D
D
D
N Cl
D
181.1
75.0
400
309.0
Cl
Lorazepam-d4 (CAS NO.84344-15-0), di-methyl derivative
50
250
V-9-A-ii N CH 3
317.1
O O CH 3
293.0
259.0
352.1
0 50
100
150
200
250
300
350
400
m/z Relative Int. (%)
100
319.0
Cl
Lorazepam, di-ethyl derivative
V-9-B-i 50
N Cl
102.1
N C 2H 5
C19H18Cl2N2O2 MW: 377.26
291.0
O O C 2H 5
177.1
138.0
275.0
305.1
341.1
376.1
0 50
100
150
Relative Int. (%)
100
200
250
300
350 323.1
Cl
V-9-B-ii
D
D
D
N Cl
D
50
N C 2H 5 O O C 2H 5
142.0
106.1
C19H14D4Cl2N2O2 MW: 381.29
295.0 181.1
279 .0
400
Lorazepam-d4, di-ethyl derivative
309.1
380.1
345.1
0 50
100
150
200
250
300
350
400
m/z Relative Int. (%)
100
333.1
Cl
V-9-C-i 50
N Cl
N C 3H 7 O O C 3H 7
138.0
57.1
177.0
Lorazepam, di-propyl derivative C21H22Cl2N2O2 MW: 405.34
291.0
275.0
369.2
404.1
0 50
100
150
Relative Int. (%)
100
200
250
300
337.1
Cl
V-9-C-ii
D
D
D
N Cl
D
50
N C 3H 7 O O C 3H 7
142.0
57.1
350
181.1
400
450
Lorazepam-d4, di-propyl derivative C21H18D4Cl2N2O2 MW: 409.36
295.0 279.0
373.1
408.2
0 50
100
150
200
250 m/z
Appendix One — Mass Spectra
© 2010 by Taylor and Francis Group, LLC
300
350
400
450
299
Figure V-9. (Continued) Relative Int. (%)
100
347.0
Cl
V-9-D-i 50
N Cl
57.1 138.1
C23H26Cl2N2O2 MW: 433.37
291.0
N C 4H 9 O O C 4H 9 207.0
275.0
Lorazepam, di-butyl derivative
333.1
432.1
397.2
0 50
100
150
200
Relative Int. (%)
100
250
300
350
Cl
V-9-D-ii
D
D
D
N Cl
D
50 57.1
142.1
400 351.1
O O C 4H 9
C23H22D4Cl2N2O2 MW: 437.39
295.0
N C 4H 9
279.0
207.1
337.1
401.1
0 50
100
150
200
Relative Int. (%)
100
300
350
69.0 119.0
N Cl
150.0
323.0
273.0
202.0
450
Lorazepam, heptafluorobutyryl derivative 442.0
N COC 3 F 7 O OH
436.3
400
407.0
Cl
V-9-E-i 50
250 m/z
450
Lorazepam-d4, di-butyl derivative
C19H9F7Cl2N2O3 MW: 517.18
423.0
387.0
0 50
100
150
200
250
Relative Int. (%)
100
300
350
400 411.1
Cl
V-9-E-ii
D
450
D
446.0 D
69.0
50
119.0
N COC 3 F 7 N D Cl O OH 207.0
150.0
550
Lorazepam-d4, heptafluorobutyryl derivative C19H5D4F7Cl2N2O3 MW: 521.20
327.0 390.0
277.0
500
427.0
0 50
100
Relative Int. (%)
100
150
200
250
300 m/z
73.1
400
450
500
V-9-F-i
Cl
C21H26Cl2N2O2Si2 MW: 465.52
N Si(CH3)3
N Cl
147.1
O
O Si(CH3)3
449.1
347.0
0 50
100
Relative Int. (%)
100
150
200
250
73.1
300
350
400
450
C21H22D4Cl2N2O2Si2 MW: 469.54
D
D
D
N Cl
D
N Si(CH3)3 O O Si(CH3)3
453.1
351.1
0 100
150
200
250
300 m/z
Figure V — Antianxiety Agent
© 2010 by Taylor and Francis Group, LLC
500
V-9-F-ii
Cl
147.1
50
464.2
433.2
Lorazepam-d4, di-trimethylsilyl derivative
50
550
429.2
Lorazepam, di-trimethylsilyl derivative
50
350
350
400
450
468.2
500
300
Figure V-9. (Continued) Relative Int. (%)
100
73.1
Lorazepam, di-t-butyldimethylsilyl 147.1 derivative
50
Cl
V-9-G-i
491.2
513.3
N Si(CH3)2C(CH3)3 N Cl O O Si(CH3)2C(CH3)3 347.0
C27H38Cl2N2O2Si2 MW: 549.68
533.2
549.2
0 50 Relative Int. (%)
100
100 73.1
150
200
250
300
Lorazepam-d4, di-t-butyldimethylsilyl 147.1 derivative
50
C27H34D4Cl2N2O2Si2 MW: 553.70
350 Cl D
D
D
N Cl
D
351.1
400
450
V-9-G-ii
500 495.2
550 517.3
N Si(CH3)2C(CH3)3 O O Si(CH3)2C(CH3)3
537.2
0 50
100
150
200
250
300
350 m/z
Appendix One — Mass Spectra
© 2010 by Taylor and Francis Group, LLC
400
450
600
500
550
553.2
600
301
Figure V-10. Mass spectra of flunitrazepam and its deuterated analogs (flunitrazepam-d3, -d7).
Relative Int. (%)
100
Flunitrazepam (CAS NO.1622-62-4) O N 2 C16H12FN3O3 MW: 313.29
50 F
73.0
266.0 N CH 3
N
238.0
O
207.0
183.1
109.0
312.1
285.0
V-10-i
294.1
248.1
170.0
0 50 Relative Int. (%)
100
100
150 O 2N
Flunitrazepam-d3 C16H9D3FN3O3 MW: 316.31
50
N
CD 3
300
350 315.0
288.0 269.0
241.0
297.0
O
170.0
111.6
250
V-10-ii N
F
75.0
200
251.0
184.0
0 50 Relative Int. (%)
100
100
150
Flunitrazepam-d7
D
73.1
F
113.1
N
174.1
300
350 318.1
V-10-iii
D
D
250 292.1
O 2N D
C16H5D7FN3O3 MW: 320.23
50
200
N CD 3 O
245.1 188.1
272.1
301.1
255.1
207.0
0 50
100
150
200 m/z
Figure V — Antianxiety Agent
© 2010 by Taylor and Francis Group, LLC
250
300
350
302
Figure V-11. Mass spectra of 7-aminoflunitrazepam and its deuterated analogs (7-aminoflunitrazepam-d3, -d7): (A) underivatized; (B) [methyl]2-derivatized; (C) ethyl-derivatized; (D) [ethyl]2-derivatized; (E) propyl-derivatized; (F) butyl-derivatized; (G) acetyl-derivatized; (H) TFA-derivatized; (I) PFP-derivatized; (J) HFB-derivatized; (K) TMSderivatized; (L) TFA/TMS-derivatized; (M) TFA/t-BDMS-derivatized; (N) PFP/TMS-derivatized; (O) PFP/t-BDMSderivatized; (P) HFB/TMS-derivatized; (Q) HFB/t-BDMS-derivatized. Relative Int. (%)
100
7-Aminoflunitrazepam (CAS NO.34084-50-9) C16H14FN3O MW: 283.30
50
283.1
H 2N
255.0
V-11-A-i
N
F
N CH 3 O
264.1
0 50 Relative Int. (%)
100
100
150
200
7-Aminoflunitrazepam-d3
250
300 286.1
H 2N
C16H11D3FN3O MW: 286.32
V-11-A-ii
50
258.1 N CD 3 N O F
267.1
0 50 Relative Int. (%)
100
100
150
200
7-Aminoflunitrazepam-d7
50
300 290.1
H 2N
V-11-A-iii
C16H7D7FN3O MW: 290.34
250
D
D
D
F
D N
262.1 N CD 3 O
271.1
0 50
100
150
200
250
300
m/z Relative Int. (%)
100
7-Aminoflunitrazepam, di-methyl derivative C18H18FN3O MW: 311.35
50
311.1
N(CH3)2
V-11-B-i
N
F
282.1
N CH 3 O
266.0
127.0
0 50 Relative Int. (%)
100
100
150
7-Aminoflunitrazepam-d3, di-methyl derivative C18H15D3FN3O MW: 314.37
50
200
250
300
N(CH3)2
V-11-B-ii
N
F
350 314.1
285.1
N CD 3 O
269.1
128.5
0 50 Relative Int. (%)
100
100 7-Aminoflunitrazepam-d7, di-methyl derivative
150
250
300
D
350 318.1
N(CH3)2
V-11-B-iii
C18H11D7FN3O MW: 318.40
50
200
D
289.1
D D
F
N
N CD 3 O
273.1
130.5
0 50
100
150
200 m/z
Appendix One — Mass Spectra
© 2010 by Taylor and Francis Group, LLC
250
300
350
303
Figure V-11. (Continued)
Relative Int. (%)
100
7-Aminoflunitrazepam, ethtyl derivative C18H18FN3O MW: 311.36
50
311.1
V-11-C-i
NHC 2H 5
282.1 N CH 3 N F O
57.1
296.1
268.1
207.0
149.0
0 50
100
Relative Int. (%)
100
150
200
7-Aminoflunitrazepam-d3, ethtyl derivative
N
F
300
285.1
N CD 3 O
149.0
350 314.1
V-11-C-ii
NHC 2H 5
C18H15D3FN3O MW: 314.37
50
250
299.0
271.0
212.0
0 50
100
Relative Int. (%)
100
150
7-Aminoflunitrazepam-d7, ethtyl derivative C18H11D7FN3O MW: 318.40
50
200
250
300 318.2
V-11-C-iii
NHC 2H 5 D
D
D
N CD 3 N O F
350
289.2 D
57.1
303.2
207.0
150.4
275.2
0 50
Relative Int. (%)
100
100
150
7-Aminoflunitrazepam, di-ethyl derivative
250
300
350 324.1
N(C2H5)2
C20H22FN3O MW: 339.41
50
200 m/z
V-11-D-i
N CH 3 N F O
339.1
266.1
311.1
0 50 Relative Int. (%)
100
100
150
200
7-Aminoflunitrazepam-d3, di-ethyl derivative
50
N
F
300
350 327.1
N(C2H5)2
C20H19D3FN3O MW: 342.43
250
V-11-D-ii
342.1
N CD 3
O
269.0
313.1
0 50 Relative Int. (%)
100
100
150
7-Aminoflunitrazepam-d7, di-ethyl derivative C20H15D7FN3O MW: 346.45
50
200
300
350 331.2
N(C2H5)2
V-11-D-iii
D
D
D
N CD 3 N O F
D
250
346.2
273.1
318.2
0 50
100
150
200 m/z
Figure V — Antianxiety Agent
© 2010 by Taylor and Francis Group, LLC
250
300
350
304
Figure V-11. (Continued)
Relative Int. (%)
100
7-Aminoflunitrazepam, propyl derivative C19H20FN3O MW: 325.38
50
N
F
57.1
296.1
NHC 3H 7
V-11-E-i
325.1
N CH 3 O
268.1
207.0
147.5
0 50
100
Relative Int. (%)
100
150
200
7-Aminoflunitrazepam-d3, propyl derivative
N
F
300
350
299.1
NHC 3H 7
C19H17D3FN3O MW: 328.40
50
250
328.1
V-11-E-ii
N CD 3 O
271.0
149.0
0 50
100
Relative Int. (%)
100
150
200
7-Aminoflunitrazepam-d7, propyl derivative
NHC 3H 7 D
C19H13D7FN3O MW: 332.43
50 57.1
250
D
N
F
350 303.2
V-11-E-iii
D
D
300
332.2
N CD 3 O
275.1
207.0
150.6
0 50
Relative Int. (%)
100
100
150
200 m/z
7-Aminoflunitrazepam, butyl derivative
N
F
300
339.2
V-11-F-i
N CH 3 O
310.2 268.1
207.0
147.5
350
296.1
NHC 4H 9
C20H22FN3O MW: 339.41
50
250
320.2
0 50 Relative Int. (%)
100
100
150
200
7-Aminoflunitrazepam-d3, butyl derivative
N
F
300
350
299.1
NHC 4H 9
C20H19D3FN3O MW: 342.42
50
250
342.1
V-11-F-ii
N CD 3 O
313.1 271.0
149.0
323.1
0 50 Relative Int. (%)
100
100
150
200
7-Aminoflunitrazepam-d7, butyl derivative
D
D
D
F
D
149.0
N
300
350 303.1
NHC 4H 9
C20H15D7FN3O MW: 346.45
50
250
346.2
V-11-F-iii
N CD 3 O
317.2 275.2
207.0
327.2
0 50
100
150
200 m/z
Appendix One — Mass Spectra
© 2010 by Taylor and Francis Group, LLC
250
300
350
305
Figure V-11. (Continued)
Relative Int. (%)
100
7-Aminoflunitrazepam, acetyl derivative C18H16FN3O2 MW: 325.34
50
325.1
NHCOCH3
V-11-G-i
N CH 3 N F O
255.0
297.0
306.1
0 50 Relative Int. (%)
100
100
150
200
7-Aminoflunitrazepam-d3, acetyl derivative
NHCOCH3
C18H13D3FN3O2 MW: 328.36
50
250
300
V-11-G-ii
N CD 3 N F O
350 328.1
300.1 309.1
258.0
0 50 Relative Int. (%)
100
100
150
200
7-Aminoflunitrazepam-d7, acetyl derivative
D
D
D
F
D N
300
350 332.1
NHCOCH3
C18H9D7FN3O2 MW: 332.38
50
250
V-11-G-iii
N CD 3 O
304.1 313.1
262.1
0 50
Relative Int. (%)
100
100
150
200 m/z
7-Aminoflunitrazepam, trifluoroacetyl derivative
F
N
300
350
351.1
NHCOCF3
C18H13F4N3O2 MW: 379.31
50
250
V-11-H-i
N CH 3 O
379.1
360.1 280.1
69.1
0 50 Relative Int. (%)
100
100
150
200
7-Aminoflunitrazepam-d3, trifluoroacetyl derivative
250
50
F
N
350
400 354.0
NHCOCF3
C18H10D3F4N3O2 MW: 382.33
300
382.1
V-11-H-ii
N CD 3 O
363.1 283.0
69.0
0 50 Relative Int. (%)
100
100
150
200
7-Aminoflunitrazepam-d7, trifluoroacetyl derivative
NHCOCF3
C18H6D7F4N3O2 MW: 386.35
50
250
D
D
D
F
D N
300
350
400 358.1
V-11-H-iii
386.1
N CD 3
367.1
O
287.1
69.1
0 50
100
150
200
250 m/z
Figure V — Antianxiety Agent
© 2010 by Taylor and Francis Group, LLC
300
350
400
306
Figure V-11. (Continued)
Relative Int. (%)
100
7-Aminoflunitrazepam, pentafluoropropionyl derivative C19H13F6N3O2 MW: 429.32
50
400.1
NHCOC 2F5
N
F
429.1
V-11-I-i
N CH 3 O
119.0
410.1
226.1
254.1
0 50 Relative Int. (%)
100
100
150
200
7-Aminoflunitrazepam-d3, pentafluoropropionyl derivative
300
N
F
350
400
450 432.1
404.0
V-11-I-ii
NHCOC 2F5
C19H10D3F6N3O2 MW: 432.33
50
250
N CD 3
413.1
O
119.0
229.0
257.0
0 50 Relative Int.(%)
100
100
150
200
7-Aminoflunitrazepam-d7, pentafluoropropionyl derivative C19H6D7F6N3O2 MW: 436.36
50
250
300
D
F
N
450
V-11-I-iii
D
D
400 408.1
NHCOC 2F5 D
350
436.2 417.1
N CD 3 O
233.1
119.0
261.1
0 50
Relative Int. (%)
100
100
150
7-Aminoflunitrazepam, heptafluorobutyryl derivative
50
200
250 m/z
300
350
400
451.1
C20H13F8N3O2 MW: 479.32
N
F
226.1
69.1
479.1
NHCOC 3F7
V-11-J-i
450
460.1
N CH 3 O
254.1
0 50 Relative Int. (%)
100
100
150
7-Aminoflunitrazepam-d3, heptafluorobutyryl derivative
200
250
300
350
N
F
229.0
69.0
450 454.1
NHCOC 3F7
V-11-J-ii
C20H10D3F8N3O2 MW: 482.34
50
400
500 482.1
463.1
N CD 3 O
257.0
0 50 Relative Int. (%)
100
100
150
7-Aminoflunitrazepam-d7, heptafluorobutyryl derivative C20H6D7F8N3O2 MW: 486.37 69.0 131.0
50
200
250
300
350
D
233.1
F
N
500 486.1
D
D D
450 458.1
NHCOC 3F7
V-11-J-iii
150.0
400
467.1
N CD 3 O
261.1
0 50
100
150
200
250
300 m/z
Appendix One — Mass Spectra
© 2010 by Taylor and Francis Group, LLC
350
400
450
500
307
Figure V-11. (Continued)
Relative Int. (%)
100
7-Aminoflunitrazepam, trimethylsilyl derivative
V-11-K-i
C19H22FN3OSi MW: 355.48
50
355.2
NHSi(CH3)3
F
73.1
N
N CH 3 O
327.1 336.1
254.1
0 50 Relative Int. (%)
100
100
150
200
7-Aminoflunitrazepam-d3, trimethylsilyl derivative
250
350
400 358.1
NHSi(CH3)3
V-11-K-ii
330.1
C19H19D3FN3OSi MW: 358.50
50
300
N CD 3 N O F
73.1
339.1
257.1
0 50 Relative Int. (%)
100
100
150
200
7-Aminoflunitrazepam-d7, trimethylsilyl derivative
250
50
350
D
400 362.2
NHSi(CH3)3
V-11-K-iii
C19H15D7FN3OSi MW: 362.52
300
D
334.2 D D
73.1
F
N
N CD 3 O
343.1
261.1
0 50
100
150
200
250
300
350
400
m/z Relative Int. (%)
100
451.2
7-Aminoflunitrazepam, trifluoroacetyl/trimethylsilyl derivative
Si(CH3)3
V-11-L-i
NCOCF3
C21H21F4N3O2Si MW: 451.49
50
280.0
73.0
F
N
423.1
432.1
N CH 3 O
0 50 Relative Int. (%)
100
100
150
200
7-Aminoflunitrazepam-d3, trifluoroacetyl/trimethylsilyl derivative
250
350
400
Si(CH3)3
V-11-L-ii
C21H18D3F4N3O2Si MW: 454.51
50
300
450
500 454.2
426.1
NCOCF3
283.1
73.0
F
N
435.2
N CD 3 O
0 50 Relative Int. (%)
100
100
150
200
7-Aminoflunitrazepam-d7, trifluoroacetyl/trimethylsilyl derivative
50
250
300
350 Si(CH3)3
V-11-L-iii 287.1
450
500 458.2
430.2
NCOCF3 D
C21H14D7F4N3O2Si MW: 458.53
400
D
D
73.0
D
F
N
439.1
N CD 3 O
0 50
100
150
200
250
300 m/z
Figure V — Antianxiety Agent
© 2010 by Taylor and Francis Group, LLC
350
400
450
500
308
Figure V-11. (Continued)
Relative Int. (%)
100 73.1
50
7-Aminoflunitrazepam, trifluoroacetyl/t-butyldimethylsilyl derivative C24H27F4N3O2Si MW: 493.57
436.1
Si(CH3)2C(CH3) 3
V-11-M-i
NCOCF3
287.1
196.1
280.1
219.1
F
N
N CH 3 O
493.2 386.1
0 50
100
Relative Int. (%)
100
150
200
250
7-Aminoflunitrazepam-d3, trifluoroacetyl/t-butyldimethylsilyl derivative
50 73.0
300
350
199.0
222.0
283.0
450
500
439.1
Si(CH3)2C(CH3) 3
V-11-M-ii
C24H24D3F4N3O2Si MW: 496.59
400
NCOCF3
496.2
290.0 F
N
N CD 3 O
389.1
0 50
100
Relative Int. (%)
100
150
200
250
7-Aminoflunitrazepam-d7, trifluoroacetyl/t-butyldimethylsilyl derivative
50
73.1
300
350
287.1
500
443.2
NCOCF3
290.1
199.1
450
Si(CH3)2C(CH3) 3
V-11-M-iii
C24H20D7F4N3O2Si MW: 500.61 149.0
400
D
D
D
F
D
222.1
N
N CD 3 O
393.1 498.2
0 50
100
150
200
250
300
350
400
450
500
m/z Relative Int. (%)
100
7-Aminoflunitrazepam, pentafluoropropionyl/ trimethylsilyl derivative
50
Si(CH3)3
C22H21F6N3O2Si MW: 501.50 73.0
N
F
N CH 3 280.1 O
501.2
473.1
V-11-N-i
NCOC 2F 5
482.1 352.1
0 50
100
Relative Int. (%)
100
150
200
250
7-Aminoflunitrazepam-d3, pentafluoropropionyl/ trimethylsilyl derivative
Si(CH3)3
73.0
N
F
N CD 3 O
350
400
450
500
550 504.2
476.2
V-11-N-ii
NCOC 2F 5
C22H18D3F6N3O2Si MW: 504.52
50
300
485.2 355.1
283.1
0 50
100
Relative Int. (%)
100
150
200
250
7-Aminoflunitrazepam-d7, pentafluoropropionyl/ trimethylsilyl derivative C22H14D7F6N3O2Si MW: 508.54
400
450
500
550 508.2
V-11-N-iii
NCOC 2F 5 D
D D
73.0
350
480.2
Si(CH3)3 D
50
300
F
N
N CD 3 O
489.2 359.1
287.1
0 50
100
150
200
250
300 m/z
350
Appendix One — Mass Spectra
© 2010 by Taylor and Francis Group, LLC
400
450
500
550
309
Figure V-11. (Continued)
Relative Int. (%)
100
50
73.1
7-Aminoflunitrazepam, pentafluoropropionyl/t-butyl dimethylsilyl derivative
V-11-O-i
C25H27F6N3O2Si MW: 543.58
246.1
Si(CH3)2C(CH3) 3
486.1
NCOC 2F 5
337.1 280.1
N CH 3 O
N
F
543.2
0 50
100
150
200
250
300
350
400
Relative Int. (%)
100 7-Aminoflunitrazepam-d3, pentafluoropropionyl/t-butyl dimethylsilyl derivative
50
73.0
C25H24D3F6N3O2Si MW: 546.59
450
Si(CH3)2C(CH3) 3
V-11-O-ii 249.0
500
550
600
550
600
489.1
NCOC 2F 5
340.0 283.0
F
546.2
N CD 3 O
N
0 50
100
Relative Int. (%)
100
150
200
7-Aminoflunitrazepam-d7, pentafluoropropionyl/t-butyl dimethylsilyl derivative
50
73.1
250
300
350
400
Si(CH3)2C(CH3) 3
V-11-O-iii
500 493.2
NCOC 2F 5 D
C25H20D7F6N3O2Si MW: 550.62
450
D
340.1
249.1
D
287.1
D
F
550.3
N CD 3 O
N
0 50
100
150
200
250
300
350
400
450
500
550
600
m/z Relative Int. (%)
100
7-Aminoflunitrazepam, heptafluorobutyryl/ trimethylsilyl derivative
50 73.0
551.2
Si(CH3)3
V-11-P-i
523.1
NCOC 3F 7
C23H21F8N3O2Si MW: 551.50 280.1
N
F
532.2
N CH 3 O
402.1
0 50
100
Relative Int. (%)
100
150
200
7-Aminoflunitrazepam-d3, heptafluorobutyryl/ trimethylsilyl derivative
50 73.1
250
300
350
400
450
500
550 554.2
Si(CH3)3
V-11-P-ii
526.1
NCOC 3F 7
C23H18D3F8N3O2Si MW: 554.52 283.1
N
F
600
535.2
N CD 3
405.1
O
0 50
100
Relative Int. (%)
100
150
200
7-Aminoflunitrazepam-d7, heptafluorobutyryl/ trimethylsilyl derivative
50 73.0
C23H14D7F8N3O2Si MW: 558.55
250
300
350
400
450
500
550
600 558.2
Si(CH3)3
V-11-P-iii
530.2
NCOC 3F 7
287.1
D
D
D
N CD 3 N F O
D
539.2 409.1
0 50
100
150
200
250
300
350 m/z
Figure V — Antianxiety Agent
© 2010 by Taylor and Francis Group, LLC
400
450
500
550
600
310
Figure V-11. (Continued)
Relative Int. (%)
100
7-Aminoflunitrazepam, heptafluorobutyryl/t-butyldimethylsilyl derivative 73.1
50
Si(CH3)2C(CH3) 3
V-11-Q-i
NCOC 3F 7
296.1
C26H27F8N3O2Si MW: 593.58
387.1
280.1
536.1
N
F
N CH 3 O
593.2
0 50
100
Relative Int. (%)
100
150
200
250
300
7-Aminoflunitrazepam-d3, heptafluorobutyryl/t-butyldimethylsilyl derivative
50
73.0
350
400
450
500
Si(CH3)2C(CH3) 3
V-11-Q-ii
550
600
650
600
650
539.1
NCOC 3F 7
299.0
C26H24D3F8N3O2Si MW: 596.60
390.0
283.0
N
F
596.2
N CD 3 O
0 50
100
Relative Int. (%)
100
150
200
250
7-Aminoflunitrazepam-d7, heptafluorobutyryl/t-butyldimethylsilyl derivative 73.1
50
300
350
400
450
V-11-Q-iii 299.1
C26H20D7F8N3O2Si MW: 600.63
390.1
287.1
500
Si(CH3)2C(CH3) 3
550 543.2
NCOC 3F 7
D
D
D
F
D N
600.3
N CD 3 O
0 50
100
150
200
250
300
350 m/z
400
Appendix One — Mass Spectra
© 2010 by Taylor and Francis Group, LLC
450
500
550
600
650
311
Figure V-12. Mass spectra of N-desalkylflurazepam and its deuterated analogs (N-desalkylflurazepam-d4): (A) underivatized; (B) methyl-derivatized; (C) [methyl]2-derivatized; (D) ethyl-derivatized; (E) propyl-derivatized; (F) butyl-derivatized; (G) acetyl-derivatized; (H) TMS-derivatized; (I) t-BDMS-derivatized. Relative Int. (%)
100
N-Desalkylflurazepam (CAS NO.2866-65-9), C15H10ClFN2O MW: 288.70
50
259.0
Cl
V-12-A-i
288.0
NH F
73.0
111.9
N
O
269.0 207.0
177.1
138.0
231.9
0 50 Relative Int. (%)
100
100
150
200
N-Desalkylflurazepam-d4 D
D
D
F
V-12-A-ii
D
73.0
292.0
NH
N
O
138.0
114.0
300
263.0
Cl
C15H6D4ClFN2O MW: 292.73
50
250
273.0 207.0
181.0
235.0
0 50
100
150
200
250
300
m/z Relative Int. (%)
100
N-Desalkylflurazepam, methyl derivative
Cl
C16H12ClFN2O MW: 302.73
50
F
N
V-12-B-i N CH 3
301.0
283.0
O
183.0
109.1
274.0
211.0
239.0
0 50 Relative Int. (%)
100
100
150
N-Desalkylflurazepam-d4, methyl derivative
50
300
350 306.0
278.0
D
D D
250
V-12-B-ii
Cl
D
C16H8D4ClFN2O MW: 306.75
200
F
N
110.1
287.0
N CH 3 O
187.0
215.0
243.0
0 50
Relative Int. (%)
100
100
150
N-Desalkylflurazepam, di-methyl derivative
200 m/z Cl
C17H14ClFN2O MW: 316.75
50
F
N
250
V-12-C-i
350
275.0
N CH 3
315.0 297.0
OCH3
183.0
102.0
300
211.0
239.0
0 50 Relative Int. (%)
100
100
150
N-Desalkylflurazepam-d4, di-methyl derivative C17H10D4ClFN2O MW: 320.78
50
200 Cl
D
D
D
F
D
106.0
N
250
V-12-C-ii N CH 3
300
350
279.0
301.0 318.0
OCH3
187.0
215.0
243.0
0 50
100
150
200 m/z
Figure V — Antianxiety Agent
© 2010 by Taylor and Francis Group, LLC
250
300
350
312
Figure V-12. (Continued)
Relative Int. (%)
100
N-Desalkylflurazepam, ethyl derivative C17H14ClFN2O MW: 316.76
50
288.0
Cl
F
109.0
N
V-12-D-i N C 2H 5
297.0 259.0
O
183.0
162.9
315.0
245.0
0 50 Relative Int. (%)
100
100
150
N-Desalkylflurazepam-d4, ethyl derivative
D
113.0
F
N
300
350
V-12-D-ii
D
D
250
292.0
Cl D
C17H10D4ClFN2O MW: 320.78
50
200
320.1 301.0
N C 2H 5
263.0
O
187.0
166.0
249.0
0 50
Relative Int. (%)
100
100
150
N-Desalkylflurazepam, propyl derivative
200 m/z Cl
C18H16ClFN2O MW: 330.78
50
N
F
109.0
250
V-12-E-i N C 3H 7 O
300
288.0
166.0
329.0
302.0 311.0
269.0
183.0
350
259.0 211.0
0 50 Relative Int. (%)
100
100
150
N-Desalkylflurazepam-d4, propyl derivative
D
F
113.0
N
300
V-12-E-ii
D
D
250
350
292.0
Cl
D
C18H12D4ClFN2O MW: 334.81
50
200
O
166.0
315.1
273.0
N C 3H 7
332.1
306.0
263.0 187.0
215.0
0 50
Relative Int. (%)
100
100
150
N-Desalkylflurazepam, butyl derivative 109.0 C19H18ClFN2O MW: 344.81
50
200 m/z
Cl
N
F
250
300
287.0
V-12-F-i N C 4H 9
183.0
259.0
211.0
O
350
343.0 269.0
316.0
325.1
245.0
75.0
0 50 Relative Int. (%)
100
100
150
N-Desalkylflurazepam-d4, butyl derivative C19H14D4ClFN2O MW: 348.83
50
200
Cl
113.1
D
D
D
F
D N
250
V-12-F-ii N C 4H 9
187.1
263.0
215.1
O
300
350
292.0 346.1
273.0 320.1
329.1
249.0
75.0
0 50
100
150
200 m/z
Appendix One — Mass Spectra
© 2010 by Taylor and Francis Group, LLC
250
300
350
313
Figure V-12. (Continued)
Relative Int. (%)
100
N-Desalkylflurazepam, acetyl derivative
V-12-G-i
259.0
C17H12ClFN2O2 MW: 330.74 109.0
50
288.0
Cl
N
F
165.9
N COCH 3
269.0 302.0
O
75.0
330.0
0 50
100
Relative Int. (%)
100
150
200 Cl
C17H8D4ClFN2O2 MW: 334.76
D
D
350
D
F
V-12-G-ii 263.0
D
165.9
113.0
300 292.0
N-Desalkylflurazepam-d4, acetyl derivative
50
250
273.0
N COCH 3
N
306.0
O
71.1
334.0
0 50
100
Relative Int. (%)
100
150
200 m/z
N-Desalkylflurazepam, trimethylsilyl derivative
50
73.1
250
Cl
300
350
359.1
V-12-H-i 341.1
C18H18ClFN2OSi MW: 360.89
N
F
N Si(CH3)3 O
245.0
166.0
109.1
0 50
100
Relative Int. (%)
100
150
200
N-Desalkylflurazepam-d4, trimethylsilyl derivative 73.1
50
250
D
N
F
400 364.1
V-12-H-ii
D
D
350 345.1
Cl D
C18H14D4ClFN2OSi MW: 364.91
N Si(CH3)3 O
166.0
113.1
300
249.1
0 50
100
150
200
250
300
350
400
m/z Relative Int. (%)
100
N-Desalkylflurazepam, t-butyldimethylsilyl derivative
50
C21H24ClFN2OSi MW: 402.96
N
F
73.1
345.1
Cl
V-12-I-i N Si(CH3)2C(CH3)3 O
192.1
402.1
0 50 Relative Int. (%)
100
100
150
200
250
400
450
V-12-I-ii
Cl D
D
D
F
D
C21H20D4ClFN2OSi MW: 406.99 73.1
350 349.1
N-Desalkylflurazepam-d4, t-butyldimethylsilyl derivative
50
300
N
N Si(CH3)2C(CH3)3 O
196.1
406.2
0 50
100
150
200
250 m/z
Figure V — Antianxiety Agent
© 2010 by Taylor and Francis Group, LLC
300
350
400
450
314
Figure V-13. Mass spectra of N-desmethylflunitrazepam and its deuterated analogs (N-desmethylflunitrazepam-d4): (A) [methyl]2-derivatized; (B) ethyl-derivatized; (C) propyl-derivatized; (D) butyl-derivatized; (E) acetyl-derivatized; (F) TMS-derivatized; (G) t-BDMS-derivatized. Relative Int. (%)
100
N-Desmethylflunitrazepam (CAS NO.2558-30-7), di-methyl derivative
50
V-13-A-i
O 2N
C17H14FN3O3 MW: 327.31
N CH 3
N
F
286.0
238.1
OCH3
326.1
308.1
183.1
0 50 Relative Int. (%)
100
100
150
200
N-Desmethylflunitrazepam-d4, di-methyl derivative D
300
350
290.1
V-13-A-ii
O 2N
C17H10D4FN3O3 MW: 331.33
50
250
D
D D
N CH 3 OCH3
N
F
312.1
242.1
329.1
187.1
0 50
Relative Int. (%)
100
100
150
200 m/z
N-Desmethylflunitrazepam, ethyl derivative
350
V-13-B-i 300.1
N C 2H 5 O
N
F
109.1
300
326.1
O 2N
C17H14FN3O3 MW: 327.31
50
250
252.1 224.1
183.1
308.1 280.1
0 50 Relative Int. (%)
100
100
150
200
300
350 329.1
N-Desmethylflunitrazepam-d4, ethyl derivative
O 2N
C17H10D4FN3O3 MW: 331.33
50
250
D
D
D
F
D
113.1
N
V-13-B-ii N C 2H 5 O
256.1
228.1
187.1
304.1 312.1 283.1
0 50
Relative Int. (%)
100
100
150
200 m/z
N-Desmethylflunitrazepam, propyl derivative
O 2N
C18H16FN3O3 MW: 341.34
50
109.1
300
350
299.0
V-13-C-i
N C 3H 7 N F O
183.1
250
340.1
313.1 322.1
252.1 280.1
224.1
0 50 Relative Int. (%)
100
100
150
200
N-Desmethylflunitrazepam-d4, propyl derivative C18H12D4FN3O3 MW: 345.36
50
O 2N D
113.1
D
F
N
300
O
187.1
343.1
317.1 326.1
284.1
N C 3H 7
350 303.1
V-13-C-ii
D
D
250
255.1
227.1
0 50
100
150
200 m/z
Appendix One — Mass Spectra
© 2010 by Taylor and Francis Group, LLC
250
300
350
315
Figure V-13. (Continued)
Relative Int. (%)
100
N-Desmethylflunitrazepam, butyl derivative C19H18FN3O3 MW: 355.36
50
O 2N
109.1
N
F
298.1
V-13-D-i 252.1
N C 4H 9 O 183.1
224.1
280.1
354.1
327.1
57.1
0 50 Relative Int. (%)
100
100
150
N-Desmethylflunitrazepam-d4, butyl derivative C19H14D4FN3O3 MW: 359.39
50
200
D
D
D
F
300
350
400 357.1
301.1
V-13-D-ii
O 2N
284.1
D
113.1
250
N
N C 4H 9 O
57.1
228.1
187.1
331.1
255.1
0 50
100
150
200
250
300
350
400
m/z Relative Int. (%)
100
260.0
O 2N
50
123.0 75.0
57.0
F
95.0
N
N-Desmethylflunitrazepam, acetyl derivative
V-13-E-i
C17H12FN3O4 MW: 341.29
N COCH 3 O
179.0
165.0
213.0
302.0
241.0
0 50
100
150
200
250
300
Relative Int. (%)
100 O 2N D
50 99.0
127.0
D D
57.1 71.1
V-13-E-ii
D
350
N-Desmethylflunitrazepam-d4, 264.0 acetyl derivative C17H8D4FN3O4 MW: 345.32
N COCH 3 N F O 179.0
165.0
245.0
217.0
306.0
0 50
100
Relative Int. (%)
100 73.1
150
200 m/z
300
350
371.1
N-Desmethylflunitrazepam, trimethylsilyl derivative
O 2N
C18H18FN3O3Si MW: 371.44
50
250
V-13-F-i 352.1
N Si(CH3)3 N F O
109.1
250.1
154.6
356.1
324.1 306.1
0 50 Relative Int. (%)
100
100 73.1
150
200
N-Desmethylflunitrazepam-d4, trimethylsilyl derivative C18H14D4FN3O3Si MW: 375.46
50
250 O 2N
D
V-13-F-ii
D
D D
113.1
F
300
N
N Si(CH3)3 O
250.1
156.5
350
400 375.1
356.1 360.1
310.1
327.1
0 50
100
150
200
250 m/z
Figure V — Antianxiety Agent
© 2010 by Taylor and Francis Group, LLC
300
350
400
316
Figure V-13. (Continued)
Relative Int. (%)
100
356.1
N-Desmethylflunitrazepam, t-butyldimethylsilyl derivative
50
C21H24FN3O3Si MW: 413.52 73.1
V-13-G-i
O 2N
F
N
N Si(CH3)2C(CH3)3 O
310.1
154.6
398.1
0 50 Relative Int. (%)
100
100
150
200
350
400
D
D
D
F
D N
N Si(CH3)2C(CH3)3 O
314.1
156.5
402.2
0 50
100
150
200
250 m/z
Appendix One — Mass Spectra
© 2010 by Taylor and Francis Group, LLC
450
V-13-G-ii
O 2N
C21H20D4FN3O3Si MW: 417.54 73.1
300
360.1
N-Desmethylflunitrazepam-d4, t-butyldimethylsilyl derivative
50
250
413.2
300
350
400
417.2
450
317
Figure V-14. Mass spectra of 2-hydroxyethylflurazepam and its deuterated analogs (2-hydroxyethylflurazepam-d4): (A) underivatized; (B) butyl-derivatized; (C) TMS-derivatized; (D) t-BDMS-derivatized. Relative Int. (%)
100
2-Hydroxyethylflurazepam (CAS NO.29071-53-3) C17H14ClFN2O2 MW: 332.76
50
288.0
Cl
V-14-A-i
N CH2CH2OH N F O 183.0
109.0
75.0
211.0
273.0 331.0
304.0
245.0
152.0
0 50 Relative Int. (%)
100
100
150
2-Hydroxyethylflurazepam-d4 D
D
F
113.0
N
300
350
292.0
V-14-A-ii
D
D
75.0
250
Cl
C17H10D4ClFN2O2 MW: 336.78
50
200
N CH2CH2OH O
308.0
249.0
215.0
187.0
277.0 334.1
152.0
0 50
100
150
200 m/z
250
Relative Int. (%)
100
288.0
Cl
50
N
F
57.1
300
2-Hydroxyethylflurazepam, butyl derivative
V-14-B-i N CH 2—CH 2O—C 4H 9 O
207.0
183.1
117.1
350
C21H22ClFN2O2 MW: 388.86
273.1 260.0 315.0
245.0
388.1
0 50
100
150
200
250
Relative Int. (%)
100 Cl D
D
57.1
F
N
N CH 2—CH 2O—C 4H 9 O
187.1 207.0
117.0
350
400
2-Hydroxyethylflurazepam-d4, butyl derivative
V-14-B-ii
D
D
50
300 292.1
C21H18D4ClFN2O2 MW: 392.89
277.1 264.0 249.1
319.1
392.1
0 50
100
150
200
250
300
350
400
m/z Relative Int. (%)
100
Cl
50
73.1
F
N
288.0
V-14-C-i N CH2—CH2O—Si(CH3)3 O
183.1
117.1
2-Hydroxyethylflurazepam, trimethylsilyl derivative C20H22ClFN2O2Si MW: 404.94 389.1
273.1 360.1
245.0
404.1
0 50
100
150
Relative Int. (%)
100
200
Cl D
731.
D
F
N
117.1
300 292.1
V-14-C-ii
D
D
50
250
350
C20H18D4ClFN2O2Si MW: 408.96
277.1 187.1
450
2-Hydroxyethylflurazepam-d4, trimethylsilyl derivative
N CH2—CH2O—Si(CH3)3 O
400
364.1
249.1
393.1 408.2
0 50
100
150
200
250 m/z
Figure V — Antianxiety Agent
© 2010 by Taylor and Francis Group, LLC
300
350
400
450
318
Figure V-14. (Continued)
Relative Int. (%)
100
389.1
2-Hydroxyethylflurazepam, t-butyldimethylsilyl derivative C23H28ClFN2O2Si MW: 447.02
50
F
73.1
V-14-D-i
Cl
N
N CH2CH2O—Si(CH3)2C(CH3)3 O
345.1
100.0
431.2
0 50 Relative Int. (%)
100
100
150
200
C23H24D4ClFN2O2Si MW: 451.04 73.1
300
350
400
V-14-D-ii
Cl D
D
D
F
D N
N CH2CH2O—Si(CH3)2C(CH3)3 O
100.0
349.1
435.2
0 50
100
150
200
250 m/z
Appendix One — Mass Spectra
© 2010 by Taylor and Francis Group, LLC
450
393.1
2-Hydroxyethylflurazepam-d4, t-butyldimethylsilyl derivative
50
250
300
350
400
450
319
Figure V-15. Mass spectra of estazolam and its deuterated analogs (estazolam-d5).
Relative Int. (%)
100
Estazolam (CAS NO.29975-16-4)
259.1
Cl
C16H11ClN4 MW: 294.74
50
V-15-i
205.0 239.0
N
77.1
N
137.0
294.1
N
N
163.1
0 50 Relative Int. (%)
100
100
150
Estazolam-d5 (CAS NO.170082-16-3) C16H6D5ClN4 MW: 299.77
50
200
82.1
264.1
Cl
D
D
D
D
300 299.1
350
V-15-ii
210.0
D
137.0
250
N
N
N
N
244.0
163.0
0 50
100
150
200 m/z
Figure V — Antianxiety Agent
© 2010 by Taylor and Francis Group, LLC
250
300
350
320
Figure V-16. Mass spectra of alprazolam and its deuterated analogs (alprazolam-d5).
Relative Int. (%)
100
Alprazolam (CAS NO.28981-97-7)
Cl
C17H13ClN4 MW: 308.76
50
204.0
N
N
245.1
177.0
137.0
308.1
273.1
CH 3
N
N
77.0
279.0
V-16-i
0 50 Relative Int. (%)
100
100
150
Alprazolam-d5
250
Cl D
C17H8D5ClN4 MW: 313.80
209.1
D
D
50 82.1
200
D
137.0
N
V-16-ii
350
284.1 313.1
CH 3
N D
300
N
N
250.1
278.1
181.1
0 50
100
150
200 m/z
Appendix One — Mass Spectra
© 2010 by Taylor and Francis Group, LLC
250
300
350
321
Figure V-17. Mass spectra of α-hydroxyalprazolam and its deuterated analogs (α-hydroxyalprazolam-d5): (A) TMSderivatized; (B) t-BDMS-derivatized.
Relative Int. (%)
100
α-Hydroxyalprazolam (CAS NO.37115-43-8),
381.1 Cl
trimethylsilyl derivative C20H21ClN4OSi MW: 396.95
50
V-17-A-i N
N
73.1
CH2OSi(CH3)3
154.1 173.1
N
396.1
N
207.0
346.1
293.1
0 50 Relative Int. (%)
100
100
150
200
250
300
α-Hydroxyalprazolam-d5 (CAS NO.136765-24-7),
73.1
D
D
D
154.1
175.7
450
V-17-A-ii
Cl
C20H16D5ClN4OSi MW: 401.98
400 386.1
trimethylsilyl derivative
50
350
D
207.0
CH2OSi(CH3)3
N D
N
N
401.1
N
293.0
351.2
0 50
Relative Int. (%)
100
100
150
200
250 m/z
α-Hydroxyalprazolam,
C23H27ClN4OSi MW: 439.03 173.1
400
381.1
N
N
207.0
423.1
0 50 Relative Int. (%)
100
100
150
200
250
300
α-Hydroxyalprazolam-d5, t-butyldimethylsilyl derivative
50
175.6
207.0
D
N
N
N
428.2
0 50
100
150
200
250 m/z
Figure V — Antianxiety Agent
© 2010 by Taylor and Francis Group, LLC
450
CH2OSi(CH3)2C(CH3)3
N D
400 386.1
D
D
75.1
350
V-17-B-ii
Cl D
C23H22D5ClN4OSi MW: 444.06
450
CH2OSi(CH3)2C(CH3)3
N N
75.1
350
V-17-B-i
Cl
t-butyldimethylsilyl derivative
50
300
300
350
400
450
322
Figure V-18. Mass spectra of α-hydroxytriazolam and its deuterated analogs (α-hydroxytriazolam-d4): (A) TMSderivatized; (B) t-BDMS-derivatized.
Relative Int. (%)
100
α-Hydroxytriazolam (CAS NO.37115-45-0), trimethylsilyl derivative C20H20Cl2N4OSi MW: 431.39
50
CH2OSi(CH3)3
N Cl
73.1
N
N
430.1
N
207.0
190.1
114.1
415.1
V-18-A-i
Cl
380.1
277.1
0 50
100
Relative Int. (%)
100
150
200
250
α-Hydroxytriazolam-d4,
350
D
C20H16D4Cl2N4OSi MW: 435.41
207.0
73.1
419.1
CH2OSi(CH3)3
N N Cl
N
192.1
114.1
450
D
D D
400
V-18-A-ii
Cl
trimethylsilyl derivative
50
300
434.1
N
281.1
384.1
0 50
Relative Int. (%)
100
100
150
α-Hydroxytriazolam,
200
250 m/z
400
450
Cl
V-18-B-i
C23H26Cl2N4OSi MW: 473.47
CH2OSi(CH3)2C(CH3)3
N
75.1
350
415.1
t-butyldimethylsilyl derivative
50
300
N Cl
207.0
190.0
N
N
380.1
457.2
0 50 Relative Int. (%)
100
100
150
200
α-Hydroxytriazolam-d4,
250
400
450
500
Cl
V-18-B-ii
C23H22D4Cl2N4OSi MW: 477.49
D
D
D
75.1
350
419.1
t-butyldimethylsilyl derivative
50
300
D
207.0
192.1
CH2OSi(CH3)2C(CH3)3
N N Cl
N
N
384.1
461.1
0 50
100
150
200
250
300 m/z
Appendix One — Mass Spectra
© 2010 by Taylor and Francis Group, LLC
350
400
450
500
323
Figure V-19. Mass spectra of mianserin and its deuterated analogs (mianserin-d3).
Relative Int. (%)
100
193.0
Mianserin (CAS NO.24219-97-4)
V-19-i N
50
264.1
N
72.1
165.0
CH 3
220.1
C18H20N2 MW: 264.36
249.1
0 50
100
150
200
Relative Int. (%)
100
193.0
V-19-ii
250
Mianserin-d3 (CAS NO.81957-76-8)
N
267.1
50
300
C18H17D3N2 MW: 267.38
N
75.1
165.0
CD 3
220.1
249.1
0 50
100
150
200 m/z
Figure V — Antianxiety Agent
© 2010 by Taylor and Francis Group, LLC
250
300
324
Figure V-20. Mass spectra of methaqualone and its deuterated analogs (methaqualone-d7).
Relative Int. (%)
100
Methaqualone (CAS NO.72-44-6) C16H14N2O MW: 250.30
50
235.0
CH 3
N
V-20-i
N O H 3C
91.0 65.0
250.1
143.0
0 50 Relative Int. (%)
100
100
150
Methaqualone-d7 (CAS NO.136765-41-8)
CH 3
N
C16H7D7N2O MW: 257.34
50
200
N
250 242.1
V-20-ii
D D
O D 3C
98.1 70.0
300
D
257.1
D
143.0
0 50
100
150
200 m/z
Appendix One — Mass Spectra
© 2010 by Taylor and Francis Group, LLC
250
300
325
Figure V-21. Mass spectra of haloperidol and its deuterated analogs (haloperidol-d4): (A) TMS-derivatized.
Relative Int. (%)
100
296.1
V-21-A-i
O
206.0
73.1
F
C
Haloperidol (CAS NO.52-86-8), trimethylsilyl derivative
OSi(CH3)3 N
50
C24H31ClFNO2Si MW: 448.05
103.0
Cl
430.1
0 50
100
150
200
250
Relative Int. (%)
100
300
350
296.1
V-21-A-ii 206.0
73.1
D
DO
D
D
F
50
C
400
450
500
Haloperidol-d4 (CAS NO.136765-35-0), trimethylsilyl OSi(CH3)3 derivative N
C24H27D4ClFNO2Si MW: 452.07
103.0
Cl
434.1
0 50
100
150
200
250
300 m/z
Figure V — Antianxiety Agent
© 2010 by Taylor and Francis Group, LLC
350
400
450
500
327
Summary of Drugs, Isotopic Analogs, and Chemical Derivatization Groups Included in Figure VI (Antidepressants) Compound
Isotopic analog
Chemical derivatization group (no. of spectra)
Figure #
Imipramine
d3
None (2)
VI-1
Desipramine
d3
None, acetyl, TCA, TFA, PFP, 4-CB, TMS, t-BDMS (16)
VI-2
Trimipramine
d3
None (2)
VI-3
Clomipramine
d3
None (2)
VI-4
Nortriptyline
d3
None, acetyl, TCA, TFA, PFP, HFB, 4-CB, TMS, t-BDMS (18)
VI-5
Protriptyline
d3
None, acetyl, TCA, TFA, PFP, HFB, 4-CB, TMS, t-BDMS (18)
VI-6
Doxepin
d3
None (2)
VI-7
Dothiepin
d3
None (2)
VI-8
Amitriptyline
d3
None (2)
Maprotiline
d3
None, acetyl, TCA, TFA, PFP, HFB, 4-CB, TMS, t-BDMS (18)
VI-9
Total no. of mass spectra: 82
Figure VI — Antidepressant
© 2010 by Taylor and Francis Group, LLC
VI-10
329
Appendix One — Figure VI Mass Spectra of Commonly Abused Drugs and Their Isotopically Labeled Analogs in Various Derivatization Forms — Antidepressants Figure VI-1. Mass spectra of imipramine and its deuterated analogs (imipramine-d3) .............................................................. 330 Figure VI-2. Mass spectra of desipramine and its deuterated analogs (desipramine-d3): (A) underivatized; (B) acetylderivatized; (C) TCA-derivatized; (D) TFA-derivatized; (E) PFP-derivatized; (F) 4-CB-derivatized; (G) TMS-derivatized; (H) t-BDMS-derivatized ............................................................................................................................................................... 331 Figure VI-3. Mass spectra of trimipramine and its deuterated analogs (trimipramine-d3) ......................................................... 334 Figure VI-4. Mass spectra of clomipramine and its deuterated analogs (clomipramine-d3) ...................................................... 335 Figure VI-5. Mass spectra of nortriptyline and its deuterated analogs (nortriptyline-d3): (A) underivatized; (B) acetylderivatized; (C) TCA-derivatized; (D) TFA-derivatized; (E) PFP-derivatized; (F) HFB-derivatized; (G) 4-CB-derivatized; (H) TMS-derivatized; (I) t-BDMS-derivatized ........................................................................................................................... 336 Figure VI-6. Mass spectra of protriptyline and its deuterated analogs (protriptyline-d3): (A) underivatized; (B) acetylderivatized; (C) TCA-derivatized; (D) TFA-derivatized; (E) PFP-derivatized; (F) HFB-derivatized; (G) 4-CB-derivatized; (H) TMS-derivatized; (I) t-BDMS-derivatized ............................................................................................................................ 339 Figure VI-7. Mass spectra of doxepin and its deuterated analogs (doxepin-d3) ......................................................................... 342 Figure VI-8. Mass spectra of dothiepin and its deuterated analogs (dothiepin-d3) .................................................................... 343 Figure VI-9. Mass spectra of amitriptyline and its deuterated analogs (amitriptyline-d3) ......................................................... 344 Figure VI-10. Mass spectra of maprotiline and its deuterated analogs (maprotiline-d3): (A) underivatized; (B) acetylderivatized; (C) TCA-derivatized; (D) TFA-derivatized; (E) PFP-derivatized; (F) HFB-derivatized; (G) 4-CB-derivatized; (H) TMS-derivatized; (I) t-BDMS-derivatized ............................................................................................................................ 345
Figure VI — Antidepressant
© 2010 by Taylor and Francis Group, LLC
330
Figure VI-1. Mass spectra of imipramine and its deuterated analogs (imipramine-d3).
Relative Int. (%)
100
58.1
234.1
VI-1-i N
85.1
50
CH 2
CH 2
CH 2 N
130.1
CH 3
Imipramine (CAS NO.50-49-7) C19H24N2 MW: 280.41
193.1
CH 3
220.1
280.2
165.1
0 50
100
Relative Int. (%)
100 61.1
150
200
250 234.1
VI-1-ii
Imipramine-d3 C19H21D3N2 MW: 283.43
N
50
88.1
CH 2
CH 2
CH 2 N
130.0
CD 3
300
193.0
CH 3
220.0
283.1
165.0
0 50
100
150
200 m/z
Appendix One — Mass Spectra
© 2010 by Taylor and Francis Group, LLC
250
300
331
Figure VI-2. Mass spectra of desipramine and its deuterated analogs (desipramine-d3): (A) underivatized; (B) acetylderivatized; (C) TCA-derivatized; (D) TFA-derivatized; (E) PFP-derivatized; (F) 4-CB-derivatized; (G) TMSderivatized; (H) t-BDMS-derivatized. Relative Int. (%)
100
195.0
VI-2-A-i
234.1
Desipramine (CAS NO.50-47-5) C18H22N2 MW: 266.38
208.0
N
50
CH 2 –CH 2 –CH 2 –NH–CH 3
71.1
220.0
91.0
266.1
165.0
130.0
0 50
100
150
200
Relative Int. (%)
100
195.0
VI-2-A-ii CH 2 –CH 2 –CH 2 –NH–CD 3
74.1
Desipramine-d3 C18H19D3N2 MW: 269.40 269.1
220.0
165.0
130.0
91.0
300
208.0
N
50
250 234.1
0 50
100
150
200
250
300
m/z Relative Int. (%)
100
208.0
VI-2-B-i
Desipramine, acetyl derivative
N
50
193.0
CH 2 –CH 2 –CH 2 –N–CH 3
114.0
C20H24N2O MW: 308.42
308.1
COCH 3
222.1
0 50
100
150
Relative Int. (%)
100
200
250
300
350
208.0
VI-2-B-ii
Desipramine-d3, acetyl derivative
N
50
193.0
CH 2 –CH 2 –CH 2 –N–CD 3
117.0
311.1
COCH 3
C20H21D3N2O MW: 311.44
222.1
0 50
100
150
200 m/z
Relative Int. (%)
100
250
300
350
Desipramine, trichloroacetyl derivative
208.1
VI-2-C-i N
50
CH 2 –CH 2 –CH 2 –N–CH 3
193.0
C20H21Cl3N2O MW: 411.75
COCCl 3
234.1
410.0
0 50
100
150
200
Relative Int. (%)
100
250
300
350
208.1
400
450
Desipramine-d3, trichloroacetyl derivative
VI-2-C-ii
C20H18D3Cl3N2O MW: 414.77
N
50 193.9
CH 2 –CH 2 –CH 2 –N–CD 3
234.1
COCCl 3
413.0
0 50
100
150
200
250 m/z
Figure VI — Antidepressant
© 2010 by Taylor and Francis Group, LLC
300
350
400
450
332
Figure VI-2. (Continued)
Relative Int. (%)
100
Desipramine, trifluoroacetyl derivative
208.1
VI-2-D-i
C20H21F3N2O MW: 362.39
N
50
193.1
CH 2 –CH 2 –CH 2 –N–CH 3
362.2
COCF 3
0 50
100
150
200
Relative Int. (%)
100
250
300
350
VI-2-D-ii
C20H18D3F3N2O MW: 365.41
N
50
193.1
400
Desipramine-d3, trifluoroacetyl derivative
208.1
CH 2 –CH 2 –CH 2 –N–CD 3
365.2
COCF 3
0 50
100
150
200
250
300
350
400
m/z Relative Int. (%)
100
208.1
Desipramine, pentafluoropropionyl derivative
VI-2-E-i
C21H21F5N2O MW: 412.40
N
50
193.1
CH 2 –CH 2 –CH 2 –N–CH 3
119.0
412.2
COC 2 F 5
234.1
0 50
100
150
200
Relative Int. (%)
100
250
300
350
208.1
VI-2-E-ii 50
400
C21H18D3F5N2O MW: 415.41 415.2
N
193.1
CH 2 –CH 2 –CH 2 –N–CD 3 COC 2 F 5
234.1
119.0
450
Desipramine-d3, pentafluoropropionyl derivative
0 50
100
150
200
Relative Int. (%)
100
250 m/z
300
350
208.1
VI-2-F-i
400
Desipramine, 4-carboethoxyhexafluorobutyryl derivative C25H26F6N2O3 MW: 516.48
N
50
450
CH 2 –CH 2 –CH 2 –N–CH 3
193.1
516.2
CO(CF2)3COOC2H 5
234.1
322.1
0 50
100
150
200
Relative Int. (%)
100
250
300
350
400
208.1
450
500
550
Desipramine-d3, 4-carboethoxyhexafluorobutyryl derivative
VI-2-F-ii
C25H23D3F6N2O3 MW: 519.49
N
50
CH 2 –CH 2 –CH 2 –N–CD 3
193.1 234.1
325.1
CO(CF2)3COOC2H 5
519.2
0 50
100
150
200
250
300 m/z
350
Appendix One — Mass Spectra
© 2010 by Taylor and Francis Group, LLC
400
450
500
550
333
Figure VI-2. (Continued)
Relative Int. (%)
100
73.1
50
116.1
Desipramine, trimethylsilyl derivative
234.1
VI-2-G-i
CH 2 –CH 2 –CH 2 –N–CH 3
208.1
102.1
C21H30N2Si MW: 338.56
N
193.1
143.1
Si(CH3)3
266.1
338.2
0 50
100
150
200
Relative Int. (%)
100
VI-2-G-ii 73.1
50
119.1
250
300
N
193.1
146.1
350
Desipramine-d3, trimethylsilyl derivative
234.1
CH 2 –CH 2 –CH 2 –N–CD 3
208.1
105.1
269.2
C21H27D3N2Si MW: 341.58
Si(CH3)3
341.2
0 50
100
Relative Int. (%)
100
150
200 m/z
250
300
102.1
Desipramine, t-butyldimethylsilyl derivative
VI-2-H-i
235.1
156.1
C24H36N2Si MW: 380.64
N
50 73.1
350
CH 2 –CH 2 –CH 2 –N–CH 3
193.1
Si(CH3)2C(CH3)3
129.1
380.2
0 50
100
Relative Int. (%)
100
150
200
250
300
350
105.1
Desipramine-d3, t-butyldimethylsilyl derivative
VI-2-H-ii 235.1 158.1
132.1
C24H33D3N2Si MW: 383.66
N
50 73.1
400
CH 2 –CH 2 –CH 2 –N–CD 3
193.1
Si(CH3)2C(CH3)3
383.3
0 50
100
150
200
250 m/z
Figure VI — Antidepressant
© 2010 by Taylor and Francis Group, LLC
300
350
400
334
Figure VI-3. Mass spectra of trimipramine and its deuterated analogs (trimipramine-d3).
Relative Int. (%)
100
58.1
VI-3-i
Trimipramine (CAS NO.739-71-9)
249.1
N
50
CH 2
84.0
99.1
CH 3 CH CH 2 N CH 3 CH 3
193.0
208.0
234.1
C20H26N2 MW: 294.43 294.1
165.0
0 50 Relative Int. (%)
100
100
150
200
250
61.1
VI-3-ii N
50
CH 2
87.1
102.1
CH
CH 2 N
CH 3
193.0
CD 3
208.0
300
249.1
Trimipramine-d3
234.1
C20H23D3N2 MW: 297.45
CH 3
297.2
165.0
0 50
100
150
200 m/z
Appendix One — Mass Spectra
© 2010 by Taylor and Francis Group, LLC
250
300
335
Figure VI-4. Mass spectra of clomipramine and its deuterated analogs (clomipramine-d3).
Relative Int. (%)
100
58.1 N
Cl
85.1
50
CH 2 –CH 2 –CH 2 –N
165.0
130.0
Clomipramine (CAS NO.303-49-1) 269.0 C19H23ClN2 MW: 314.85
VI-4-i CH 3 CH 3
228.0
193.0
314.1
0 50 Relative Int. (%)
100
100
150
200
250
CH 2 –CH 2 –CH 2 –N
130.0
165.0
C19H20D3ClN2 MW: 317.87
CD 3 CH 3
193.0
350 Clomipramine-d3
VI-4-ii
N
Cl
88.1
50
300 269.0
61.1
227.0
317.1
0 50
100
150
200 m/z
Figure VI — Antidepressant
© 2010 by Taylor and Francis Group, LLC
250
300
350
336
Figure VI-5. Mass spectra of nortriptyline and its deuterated analogs (nortriptyline-d3): (A) underivatized; (B) acetyl-derivatized; (C) TCA-derivatized; (D) TFA-derivatized; (E) PFP-derivatized; (F) HFB-derivatized; (G) 4CB-derivatized; (H) TMS-derivatized; (I) t-BDMS-derivatized. Relative Int. (%)
100
44.1
Nortriptyline (CAS NO.72-69-5)
VI-5-A-i
C19H21N MW: 263.38
50 CH 2 –CH 2 –CH 2 –NH–CH 3
202.0 263.1
0 40 Relative Int. (%)
100
90
140
190
240
290
47.1
Nortriptyline-d3
VI-5-A-ii
C19H18D3N MW: 266.40
50 CH 2 –CH 2 –CH 2 –NH–CD 3
202.0 266.1
0 40
90
140
190
240
290
m/z Relative Int. (%)
100
232.2
VI-5-B-i
50
C21H23NO MW: 305.41
217.1
CH 2 –CH 2 –CH 2 –N–CH 3
202.1
COCH 3
86.1
Nortriptyline, acetyl derivative
141.1
305.2
0 50
100
150
200
Relative Int. (%)
100
250 232.2
VI-5-B-ii
50
COCH 3
350 Nortriptyline-d3, acetyl derivative C21H20D3NO MW: 308.43
217.1
CH 2 –CH 2 –CH 2 –N–CD 3
89.1
300
202.1
141.1
308.2
0 50
100
150
200 m/z
Relative Int. (%)
100
250
300
232.1
Nortriptyline, trichloroacetyl derivative
VI-5-C-i 50
350
C21H20Cl3NO MW: 408.74
219.1 CH 2 –CH 2 –CH 2 –N–CH 3
91.0
191.0
117.0
COCCl 3
409.0
0 50
100
150
200
Relative Int. (%)
100
250
300
350
232.1
C21H17D3Cl3NO MW: 411.76
219.1 91.0
CH 2 –CH 2 –CH 2 –N–CD 3 COCCl 3
191.0
117.0
412.0
0 50
100
150
200
250 m/z
Appendix One — Mass Spectra
© 2010 by Taylor and Francis Group, LLC
450
Nortriptyline-d3, trichloroacetyl derivative
VI-5-C-ii 50
400
300
350
400
450
337
Figure VI-5. (Continued)
Relative Int. (%)
100
232.1
Nortriptyline, trifluoroacetyl derivative
VI-5-D-i 50
C21H20F3NO MW: 359.39
217.1 91.1
CH 2 –CH 2 –CH 2 –N–CH 3 COCF 3
191.1
141.1
359.1
0 50
100
150
200
250
Relative Int. (%)
100
300
350
232.1
Nortriptyline-d3, trifluoroacetyl derivative
VI-5-D-ii 50
C21H17D3F3NO MW: 362.40
217.1 91.1
CH 2 –CH 2 –CH 2 –N–CD 3
191.1
141.1
400
COCF 3
362.2
0 50
100
150
200
250
300
350
400
m/z Relative Int. (%)
100
232.1
Nortriptyline, pentafluoropropionyl derivative
VI-5-E-i 50
217.1 91.1
141.1
100
150
C22H20F5NO MW: 409.39
CH 2 –CH 2 –CH 2 –N–CH 3
204.1
COC 2 F 5
409.1
0 50
200
250
Relative Int. (%)
100
300
350
400
232.1
VI-5-E-ii 50
217.1 CH 2 –CH 2 –CH 2 –N–CD 3
204.1 91.1
450
Nortriptyline-d3, pentafluoropropionyl derivative C22H17D3F5NO MW: 412.41
COC 2 F 5
141.1
412.1
0 50
100
150
200
Relative Int. (%)
100
250 m/z
300
350
400
232.1
Nortriptyline, heptafluorobutyryl derivative
VI-5-F-i 217.1
50
CH 2 –CH 2 –CH 2 –N–CH 3
204.1 91.1
450
C23H20F7NO MW: 459.40
COC 3 F 7
169.0
459.1
0 50
100
150
200
250
Relative Int. (%)
100
300
350
400
232.1
219.1
CH 2 –CH 2 –CH 2 –N–CD 3
204.1 91.1
C23H17D3F7NO MW: 462.41
COC 3 F 7
169.0
462.2
0 50
100
150
200
250
300 m/z
Figure VI — Antidepressant
© 2010 by Taylor and Francis Group, LLC
500
Nortriptyline-d3, heptafluorobutyryl derivative
VI-5-F-ii 50
450
350
400
450
500
338
Figure VI-5. (Continued)
Relative Int. (%)
100
232.1
219.1
50 204.1 91.1
50
CO(CF2)3COOC2H 5
141.1
100
294.1
150
200
250
100 Relative Int. (%)
C26H25F6NO3 MW: 513.47
CH 2 –CH 2 –CH 2 –N–CH 3
0
513.2
300
350
400
450
500
VI-5-G-ii
C26H22D3F6NO3 MW: 516.49
219.1
50
CH 2 –CH 2 –CH 2 –N–CD 3
204.1 91.1
50
CO(CF2)3COOC2H 5
141.1
100
297.1
150
100
VI-5-H-i
200
250
516.2
300 m/z
350
400
116.1
450
500
C22H29NSi MW: 335.56
CH 2 –CH 2 –CH 2 –N–CH 3
73.1
202.1
Si(CH3)3
320.2
0 50
100
Relative Int. (%)
150
200
250
300
119.1
C22H26D3NSi MW: 338.57
50 CH 2 –CH 2 –CH 2 –N–CD 3
73.1
202.1
Si(CH3)3
323.2
0 100
150
Relative Int. (%)
100
200 m/z
250
300
158.2
50
C25H35NSi MW: 377.63
CH 2 –CH 2 –CH 2 –N–CH 3
73.1
Si(CH3)2C(CH3)3
102.1
0 50
100
150
Relative Int. (%)
200
250
320.2
300
377.2
350
161.2
50
C25H32D3NSi MW: 380.65
CH 2 –CH 2 –CH 2 –N–CD 3
73.1
Si(CH3)2C(CH3)3
323.2
105.1
379.3
0 100
150
200
250 m/z
Appendix One — Mass Spectra
© 2010 by Taylor and Francis Group, LLC
400
Nortriptyline-d3, t-butyldimethylsilyl derivative
VI-5-I-ii
50
350
Nortriptyline, t-butyldimethylsilyl derivative
VI-5-I-i
100
350
Nortriptyline-d3, trimethylsilyl derivative
VI-5-H-ii
50
550
Nortriptyline, trimethylsilyl derivative
50
100
550
Nortriptyline-d3, 4-carboethoxyhexafluorobutyryl derivative
232.1
0
Relative Int. (%)
Nortriptyline, 4-carboethoxyhexafluorobutyryl derivative
VI-5-G-i
300
350
400
339
Figure VI-6. Mass spectra of protriptyline and its deuterated analogs (protriptyline-d3): (A) underivatized; (B) acetylderivatized; (C) TCA-derivatized; (D) TFA-derivatized; (E) PFP-derivatized; (F) HFB-derivatized; (G) 4-CB-derivatized; (H) TMS-derivatized; (I) t-BDMS-derivatized. Relative Int. (%)
100
191.0
Protriptyline (CAS NO.438-60-8)
VI-6-A-i
70.0
C19H21N MW: 263.38
50 CH 2 –CH 2 –CH 2 –NH–CH 3
165.0 263.1
0 50
100
150
200
Relative Int. (%)
100
250
191.0
300
Protriptyline-d3 (CAS NO.136765-50-9)
VI-6-A-ii
73.1
50
C19H18D3N MW: 266.39
CH 2 –CH 2 –CH 2 –NH–CD 3
165.0 266.1
0 50
100
150
200
250
300
m/z Relative Int. (%)
100
191.2
Protriptyline, acetyl derivative
VI-6-B-i 50
C21H23NO MW: 305.41
CH 2 –CH 2 –CH 2 –N–CH 3 COCH 3
305.2
165.1
114.1
0 50
100
150
200
Relative Int. (%)
100
250
300
191.2
Protriptyline-d3, acetyl derivative
VI-6-B-ii
C21H20D3NO MW: 308.43
50 CH 2 –CH 2 –CH 2 –N–CD 3 COCH 3
165.1
117.1
350
308.2
0 50
100
150
Relative Int. (%)
100
200 m/z
250
300
191.1
350
Protriptyline, trichloroacetyl derivative
VI-6-C-i 50
CH 2 –CH 2 –CH 2 –N–CH 3
C21H20Cl3NO MW: 408.75
COCCl 3
165.0
409.0
0 50
100
150
200
Relative Int. (%)
100
250
300
350
191.1
400
450
Protriptyline-d3, trichloroacetyl derivative
VI-6-C-ii
C21H17D3Cl3NO MW: 411.77
50 CH 2 –CH 2 –CH 2 –N–CD 3 COCCl 3
165.0
412.0
0 50
100
150
200
250 m/z
Figure VI — Antidepressant
© 2010 by Taylor and Francis Group, LLC
300
350
400
450
340
Figure VI-6. (Continued)
Relative Int. (%)
100
Protriptyline, trifluoroacetyl derivative
191.1
VI-6-D-i
C21H20F3NO MW: 359.38
50
CH 2 –CH 2 –CH 2 –N–CH 3 COCF 3
165.1
359.1
0 50
100
150
200
Relative Int. (%)
100
250
300
350
400
Protriptyline-d3, trifluoroacetyl derivative
191.1
VI-6-D-ii 50
C21H17D3F3NO MW: 362.40
CH 2 –CH 2 –CH 2 –N–CD 3 COCF 3
165.1
362.1
0 50
100
150
200
250
300
350
400
m/z Relative Int. (%)
100
191.1
Protriptyline, pentafluoropropionyl derivative
VI-6-E-i 50
C22H20F5NO MW: 409.39
CH 2 –CH 2 –CH 2 –N–CH 3 COC 2 F 5
165.1
409.1
0 50
100
150
200
Relative Int. (%)
100
250
300
350
191.1
400
450
Protriptyline-d3, pentafluoropropionyl derivative
VI-6-E-ii 50
C22H17D3F5NO MW: 412.41
CH 2 –CH 2 –CH 2 –N–CD 3 COC 2 F 5
165.1
412.1
0 50
100
150
Relative Int. (%)
100
200
250 m/z
300
350
191.1
400
450
Protriptyline, heptafluorobutyryl derivative
VI-6-F-i 50
C23H20F7NO MW: 459.40
CH 2 –CH 2 –CH 2 –N–CH 3 COC 3 F 7
165.1
459.1
0 50
100
150
Relative Int. (%)
100
200
250
300
350
400
191.1
450
500
Protriptyline-d3, heptafluorobutyryl derivative
VI-6-F-ii
C23H17D3F7NO MW: 462.42
CH 2 –CH 2 –CH 2 –N–CD 3
50
COC 3 F 7
165.1
462.1
0 50
100
150
200
250
300 m/z
Appendix One — Mass Spectra
© 2010 by Taylor and Francis Group, LLC
350
400
450
500
341
Figure IV-6. (Continued)
Relative Int. (%)
100
Protriptyline, 4-carboethoxyhexafluorobutyryl derivative
191.1
VI-6-G-i 50
C26H25F6NO3 MW: 513.47
CH 2 –CH 2 –CH 2 –N–CH 3 CO(CF2)3COOC2H 5
165.1
513.2
0 50
100
150
200
Relative Int. (%)
100
250
300
350
400
450
500
VI-6-G-ii 50
C26H22D3F6NO3 MW: 516.49
CH 2 –CH 2 –CH 2 –N–CD 3 CO(CF2)3COOC2H 5
165.1
516.2
0 50
100
150
Relative Int. (%)
100
550
Protriptyline-d3, 4-carboethoxyhexafluorobutyryl derivative
191.1
200
250
300 m/z
350
400
450
116.1
550
Protriptyline, trimethylsilyl derivative
VI-6-H-i 142.1
50
500
191.1
73.1
C22H29NSi MW: 335.56
CH 2 –CH 2 –CH 2 –N–CH 3 Si(CH3)3
320.2 335.2
0 50
100
Relative Int. (%)
100
150
200
250
300
119.1
350
Protriptyline-d3, trimethylsilyl derivative
VI-6-H-ii
C22H26D3NSi MW: 338.58
145.1
50
73.1
191.1
CH 2 –CH 2 –CH 2 –N–CD 3 Si(CH3)3
323.2 338.2
0 50
100
150
Relative Int. (%)
100
200 m/z
250
191.1
300
320.2
VI-6-I-i 50
350
Protriptyline, t-butyldimethylsilyl derivative
CH 2 –CH 2 –CH 2 –N–CH 3
158.1
C25H35NSi MW: 377.64
Si(CH3)2C(CH3)3
73.1 102.1
377.2
0 50
100
150
Relative Int. (%)
100
200
250
300
191.1 323.2
VI-6-I-ii 50
C25H32D3NSi MW: 380.66
Si(CH3)2C(CH3)3
105.1
380.2
0 50
100
150
200
250 m/z
Figure VI — Antidepressant
© 2010 by Taylor and Francis Group, LLC
400
Protriptyline-d3, t-butyldimethylsilyl derivative
CH 2 –CH 2 –CH 2 –N–CD 3
161.2
73.1
350
300
350
400
342
Figure VI-7. Mass spectra of doxepin and its deuterated analogs (doxepin-d3).
Relative Int. (%)
100
58.1
Doxepin (CAS NO.1668-19-5)
O
VI-7-i 50
CH–CH 2 –CH 2 –N
C19H21NO MW: 279.38
CH 3 CH 3
165.1
277.1
0 50 Relative Int. (%)
100
100
150
200
61.2
50
CH–CH 2 –CH 2 –N
C19H18D3NO MW: 282.39
CH 3 CD 3
165.1
280.1
0 50
100
150
200 m/z
Appendix One — Mass Spectra
© 2010 by Taylor and Francis Group, LLC
300
Doxepin-d3 (CAS NO.138387-16-3)
O
VI-7-ii
250
250
300
343
Figure VI-8. Mass spectra of dothiepin and its deuterated analogs (dothiepin-d3).
Relative Int. (%)
100
58.1
VI-8-i
Dothiepin (CAS NO.113-53-1) S
C19H21NS MW: 295.44
50 CH–CH 2 –CH 2 –N
CH 3 CH 3
202.1
295.1
221.0
0 50 Relative Int. (%)
100
100
150
200
250
61.2
VI-8-ii 50
300 Dothiepin-d3
S
CH–CH 2 –CH 2 –N
C19H18D3NS MW: 298.46
CH 3 CD 3
202.1
221.0
298.1
0 50
100
150
200 m/z
Figure VI — Antidepressant
© 2010 by Taylor and Francis Group, LLC
250
300
344
Figure VI-9. Mass spectra of amitriptyline and its deuterated analogs (amitriptyline-d3).
Relative Int. (%)
100
58.1
Amitriptyline (CAS NO.50-48-6)
VI-9-i 50 CH–CH 2 –CH 2 –N
C20H23N MW: 277.40
CH 3 CH 3
202.0 215.0
0 50 Relative Int. (%)
100
100
150
200
250
61.1
300 Amitriptyline-d3
VI-9-ii 50
CH–CH 2 –CH 2 –N
C20H20D3N MW: 280.42
CD 3 CH 3
202.0
218.0
0 50
100
150
200 m/z
Appendix One — Mass Spectra
© 2010 by Taylor and Francis Group, LLC
250
300
345
FigureVI-10 Mass spectra of maprotiline and its deuterated analogs (maprotiline-d3): (A) underivatized; (B) acetylderivatized; (C) TCA-derivatized; (D) TFA-derivatized; (E) PFP-derivatized; (F) HFB-derivatized; (G) 4-CBderivatized; (H) TMS-derivatized; (I) t-BDMS-derivatized. Relative Int. (%)
100
44.1
Maprotiline (CAS NO.10262-69-8)
VI-10-A-i
C20H23N MW: 277.40
50
CH 2 –CH 2 –CH 2 –NH–CH 3
70.1
277.1
203.1
178.1
0 40 Relative Int. (%)
100
90 47.1
50
140
190
240
290
Maprotiline-d3 (CAS NO.136765-39-4)
VI-10-A-ii
C20H20D3N MW: 280.42
73.1
280.1
CH 2 –CH 2 –CH 2 –NH–CD 3
203.0
178.0
0 40
90
140
190
240
290
m/z Relative Int. (%)
100
Maprotiline, acetyl derivative
291.2
VI-10-B-i 218.1
50
CH 2 –CH 2 –CH 2 –N–CH 3
C22H25NO MW: 319.44
191.1
COCH 3
178.1
100.1
319.2
0 50
100
150
200
250
Relative Int. (%)
100
300
Maprotiline-d3, acetyl derivative
294.2
VI-10-B-ii 50
CH 2 –CH 2 –CH 2 –N–CD 3
218.1
C22H22D3NO MW: 322.46
191.1
COCH 3
350
178.1
103.1
322.2
0 50
Relative Int. (%)
100
100
150
200 m/z 191.0
Maprotiline, trichloroacetyl derivative C22H22Cl3NO MW: 422.77
50
95.5
250
300
VI-10-C-i
203.0
350
393.0
CH 2 –CH 2 –CH 2 –N–CH 3 COCCl 3
178.0 138.0
276.0
423.0
0 50 Relative Int. (%)
100
100
150
200
C22H19D3Cl3NO MW: 425.79
350
VI-10-C-ii
203.0
400 396.0
COCCl 3
139.5
279.1
426.1
0 50
100
150
200
250 m/z
Figure VI — Antidepressant
© 2010 by Taylor and Francis Group, LLC
450
CH 2 –CH 2 –CH 2 –N–CD 3
178.0 95.5
300
191.0
Maprotiline-d3, trichloroacetyl derivative
50
250
300
350
400
450
346
Figure VI-10. (Continued)
Relative Int. (%)
100
Maprotiline, trifluoroacetyl derivative
VI-10-D-i
191.1
C22H22F3NO MW: 373.41
50
345.1
CH 2 –CH 2 –CH 2 –N–CH 3 COCF 3
203.1 140.1
373.2
0 50 Relative Int. (%)
100
100
150
200
250
300
VI-10-D-ii
191.1
C22H19D3F3NO MW: 376.43
CH 2 –CH 2 –CH 2 –N–CD 3
0 100
COCF 3
203.1
143.1
50
400
348.2
Maprotiline-d3, trifluoroacetyl derivative
50
350
376.2
150
200
250
300
350
400
m/z Relative Int. (%)
100
395.1
Maprotiline, pentafluoropropionyl derivative
VI-10-E-i
191.1
C23H22F5NO MW: 423.42
50
CH 2 –CH 2 –CH 2 –N–CH 3 COC 2 F 5
203.1
119.0
423.1
0 50 Relative Int. (%)
100
100
150
200
250
350
400
450
398.1
Maprotiline-d3, pentafluoropropionyl derivative
VI-10-E-ii
191.1
C23H19D3F5NO MW: 426.44
50
300
CH 2 –CH 2 –CH 2 –N–CD 3 COC 2 F 5
203.1
119.0
426.2
0 50
Relative Int. (%)
100
100
150
Maprotiline, heptafluorobutyryl derivative
200
250 m/z
350
VI-10-F-i
191.1
C24H22F7NO MW: 473.43
50
300
400
450
445.1
CH 2 –CH 2 –CH 2 –N–CH 3 COC 3 F 7
203.1
473.1
0 50 Relative Int. (%)
100
100
150
200
250
300
400
450
VI-10-F-ii
191.1
C24H19D3F7NO MW: 476.44
CH 2 –CH 2 –CH 2 –N–CD 3
203.1
COC 3 F 7
476.2
0 50
100
150
200
250
300 m/z
Appendix One — Mass Spectra
© 2010 by Taylor and Francis Group, LLC
500
448.2
Maprotiline-d3, heptafluorobutyryl derivative
50
350
350
400
450
500
347
Figure VI-10. (Continued)
Relative Int. (%)
100
Maprotiline, 4-carboethoxyhexafluorobutyryl derivative
499.2
C27H27F6NO3 MW: 527.50
50
VI-10-G-i
191.1
CH 2 –CH 2 –CH 2 –N–CH 3
218.1
CO(CF2)3COOC2H 5
178.1
527.2
0 50 Relative Int. (%)
100
100
150
Maprotiline-d3, 4-carboethoxyhexafluorobutyryl derivative
200
300
350
400
450
500
550 502.2
191.1
C27H24D3F6NO3 MW: 530.52
50
250
VI-10-G-ii CH 2 –CH 2 –CH 2 –N–CD 3
218.1
CO(CF2)3COOC2H 5
178.1
530.2
0 50
100
150
Relative Int. (%)
100
200
250
300 m/z
350
400
450
116.1
500
550
Maprotiline, trimethylsilyl derivative
VI-10-H-i 50
C23H31NSi MW: 349.59
CH 2 –CH 2 –CH 2 –N–CH 3 Si(CH3)3
73.1 191.1
349.2
277.2
0 50
100
150
Relative Int. (%)
100
200
250
300
350
119.1
VI-10-H-ii 50
C23H28D3NSi MW: 352.60
CH 2 –CH 2 –CH 2 –N–CD 3
73.1
Si(CH3)3
191.1
100
150
352.2
280.2
0 50
400
Maprotiline-d3, trimethylsilyl derivative
200
250
300
350
400
m/z Relative Int. (%)
100
334.2
VI-10-I-i 102.1
50
Maprotiline, t-butyldimethylsilyl derivative
158.1 191.1
C26H37NSi MW: 391.66
CH 2 –CH 2 –CH 2 –N–CH 3
73.1
Si(CH3)2C(CH3)3
306.1 391.3
0 50
100
Relative Int. (%)
100
150
200
250
300 337.2
VI-10-I-ii 105.1
50
161.2
350
191.1
Maprotiline-d3, t-butyldimethylsilyl derivative C26H34D3NSi MW: 394.68
CH 2 –CH 2 –CH 2 –N–CD 3
73.1
400
309.2
Si(CH3)2C(CH3)3
394.3
0 50
100
150
200
250 m/z
Figure VI — Antidepressant
© 2010 by Taylor and Francis Group, LLC
300
350
400
349
Summary of Drugs, Isotopic Analogs, and Chemical Derivatization Groups Included in Figure VII (Others) Compound
Isotopic analog
Chemical derivatization group (no. of spectra)
Figure #
Diphenhydramine
d3
None (2)
VII-1
Cotinine
d3
None (2)
VII-2
Nicotine
d4
None (2)
VII-3
5-α-Estran-3α-ol-17-one d3
None, acetyl, TMS (6)
VII-4
5-β-Estran-3α-ol-17-one d3
None, acetyl, TMS (6)
VII-5
Stanozolol
d3
None, acetyl, [TMS]2, t-BDMS (8)
VII-6
3-Hydroxystanozolol
d3
[TMS]2, [t-BDMS]2 (4)
VII-7
Promethazine
d3
None (2)
VII-8
Chlorpromazine
d3
None (2)
VII-9
Acetaminophen
d4
None, [acetyl]2, TCA, TFA, PFP, HFB, 4-CB, TMS, [TMS]2, t-BDMS, [t-BDMS]2 (22)
VII-10
Clonidine
d4
None, acetyl, [acetyl]2, TMS, [TMS]2, [t-BDMS]2 (12)
VII-11
Chloramphenicol
d5
None, [acetyl]2, TMS, [TMS]2 (8)
VII-12
Melatonin
d7
None, acetyl, TFA, PFP, HFB, TMS (12)
VII-13
Total no. of mass spectra: 88
Figure VII — Others
© 2010 by Taylor and Francis Group, LLC
351
Appendix One — Figure VII Mass Spectra of Commonly Abused Drugs and Their Isotopically Labeled Analogs in Various Derivatization Forms — Others Figure VII-1. Mass spectra of diphenhydramine and its deuterated analogs (diphenhydramine-d3) ......................................... 352 Figure VII-2. Mass spectra of cotinine and its deuterated analogs (cotinine-d3) ....................................................................... 353 Figure VII-3. Mass spectra of nicotine and its deuterated analogs (nicotine-d4) ....................................................................... 354 Figure VII-4. Mass spectra of 5-α-estran-3α-ol-17-one and its deuterated analogs (5-α-estran-3α-ol-17-one-d3): (A) underivatized; (B) acetyl-derivatized; (C) TMS-derivatized ....................................................................................................... 355 Figure VII-5. Mass spectra of 5-β-estran-3α-ol-17-one and its deuterated analogs (5-β-estran-3α-ol-17-one-d3): (A) underivatized; (B) acetyl-derivatized; (C) TMS-derivatized ....................................................................................................... 356 Figure VII-6. Mass spectra of stanozolol and its deuterated analogs (stanozolol-d3): (A) underivatized; (B) acetylderivatized; (C) [TMS]2-derivatized. (D) t-BDMS-derivatized ................................................................................................... 357 Figure VII-7. Mass spectra of 3-hydroxystanozolol and its deuterated analogs (3-hydroxystanozolol-d3): (A) [TMS]2derivatized; (B) [t-BDMS]2-derivatized ....................................................................................................................................... 359 Figure VII-8. Mass spectra of promethazine and its deuterated analogs (promethazine-d3) ..................................................... 360 Figure VII-9. Mass spectra of chlorpromazine and its deuterated analogs (chlorpromazine-d3) ............................................... 361 Figure VII-10. Mass spectra of acetaminophen and its deuterated analogs (acetaminophen-d4): (A) underivatized; (B) [acetyl]2-derivatized; (C) TCA-derivatized; (D) TFA-derivatized; (E) PFP-derivatized; (F) HFB-derivatized; (G) 4-CBderivatized; (H) TMS-derivatized; (I) [TMS]2-derivatized; (J) t-BDMS-derivatized; (K) [t-BDMS]2-derivatized ................... 362 Figure VII-11. Mass spectra of clonidine and its deuterated analogs (clonidine-d4): (A) underivatized; (B) acetylderivatized; (C) [acetyl]2-derivatized; (D) TMS-derivatized; (E) [TMS]2-derivatized; (F) [t-BDMS]2-derivatized ................. 366 Figure VII-12. Mass spectra of chloramphenicol and its deuterated analogs (chloramphenicol-d5): (A) underivatized; (B) [acetyl]2-derivatized; (C) TMS-derivatized; (D) [TMS]2-derivatized ......................................................................................... 368 Figure VII-13. Mass spectra of melatonin and its deuterated analogs (melatonin-d7): (A) underivatized; (B) acetylderivatized; (C) TFA-derivatized; (D) PFP-derivatized; (E) HFB-derivatized; (F) TMS-derivatized ....................................... 370
Figure VII — Others
© 2010 by Taylor and Francis Group, LLC
352
Figure VII-1. Mass spectra of diphenhydramine and its deuterated analogs (diphenhydramine-d3).
Relative Int. (%)
100
58.1
Diphenhydramine (CAS NO.58-73-1),
VII-1-i
CH 3
50
O
73.1
165.1 227.1
0 50 100 Relative Int. (%)
C17H21NO MW: 255.35
N CH 3
100
150
200
250
61.1
Diphenhydramine-d3
CH 3
VII-1-ii O
C17H18D3NO MW: 258.37
N CD 3
50 76.1
300
165.1 230.1
0 50
100
150
200 m/z
Appendix One — Mass Spectra
© 2010 by Taylor and Francis Group, LLC
250
300
353
Figure VII-2. Mass spectra of cotinine and its deuterated analogs (cotinine-d3).
Relative Int. (%)
100
98.0
Cotinine (CAS NO.486-56-6)
VII-2-i
N N
50
176.1
119.0
78.0
C10H12N2O MW: 176.21
O
CH 3
147.0
0 50
100
Relative Int. (%)
100
150 101.1
Cotinine-d3 (CAS NO.66269-66-7)
VII-2-ii
N
N
50 118.0
78.0
200
C10H9D3N2O MW: 179.23
O
CD 3
179.1 147.0
0 50
100
150 m/z
Figure VII — Others
© 2010 by Taylor and Francis Group, LLC
200
354
Figure VII-3. Mass spectra of nicotine and its deuterated analogs (nicotine-d4).
Relative Int. (%)
100
84.1
Nicotine (CAS NO.54-11-5)
VII-3-i
C10H14N2 MW: 162.23
N N
50
CH 3
133.1 162.1 119.0
92.0
65.1
0 50
100
Relative Int. (%)
100
150
200 Nicotine-d4
84.1
VII-3-ii
D
C10H10D4N2 MW: 166.20
D
N
50
D N D CH 3
136.1 68.1
96.1
166.1
123.1
0 50
100
150 m/z
Appendix One — Mass Spectra
© 2010 by Taylor and Francis Group, LLC
200
355
Figure VII-4. Mass spectra of 5-α-estran-3α-ol-17-one and its deuterated analogs (5-α-estran-3α-ol-17-one-d3): (A) underivatized; (B) acetyl-derivatized; (C) TMS-derivatized. Relative Int. (%)
100
5-α−Estran-3α−ol-17-one
VII-4-A-i
C18H28O2 MW: 276.41
50 79.1
55.1 67.1
91.1
202.2 187.2
232.2
131.1 146.1 159.2
105.1
276.2
H 3C O
HO
214.2
258.2
H
0 50 Relative Int. (%)
100
100
67.1
79.1
200
250
93.1
205.2
C18H25D3O2 MW: 279.43
217.2
190.2
D HO
148.1 162.2
107.1
55.1
300 279.3
H 3C O
5-α−Estran-3α−ol-17-one-d3
VII-4-A-ii
50
150
261.2
D D
134.1
235.2
0 50
100
150
200
250
300
m/z Relative Int. (%)
100
5-α−Estran-3α−ol-17-one, acetyl derivative 79.1
50
91.1
C20H30O3 MW: 318.45 119.1
146.1
258.2
VII-4-B-i
H 3C O
202.1
187.1
H3COCO
214.2
H
240.1
318.2
0 50
100
Relative Int. (%)
100 93.1 79.1
150
200
5-α−Estran-3α−ol-17-one-d3, acetyl derivative C20H27D3O3 MW: 321.47 149.1 122.1
50
250
VII-4-B-ii
205.2
300
350
261.2 H 3C O
217.2
190.2
D H3COCO
243.2
D D
321.2
0 50
100
150
Relative Int. (%)
100
VII-4-C-i 75.1
50
129.1 91.1
200 m/z
250
300
5-α−Estran-3α−ol-17-one, trimethylsilyl derivative
H 3C O
C21H36O2Si MW: 348.59 155.1
350
333.2
258.2 201.2
230.2
3(H3C)SiO
348.3
H
0 50 Relative Int. (%)
100
100 75.1
150
VII-4-C-ii 130.1
50 93.1
200
250
5-α−Estran-3α−ol-17-one-d3, trimethylsilyl derivative
350 H 3C O
261.2
C21H33D3O2Si MW: 351.61
400
336.3
D
204.2
157.1
300
233.2
3(H3C)SiO
D D
351.3
0 50
100
150
200
250 m/z
Figure VII — Others
© 2010 by Taylor and Francis Group, LLC
300
350
400
356
Figure VII-5. Mass spectra of 5-β-estran-3α-ol-17-one and its deuterated analogs (5-β-estran-3α-ol-17-one-d3): (A) underivatized; (B) acetyl-derivatized; (C) TMS-derivatized. Relative Int. (%)
100
5-β−Estran-3α−ol-17-one C18H28O2 91.1 MW: 276.41 79.1 67.1 55.1
50
H 3C O
VII-5-A-i 145.1
105.1
160.1
276.2
232.2
202.2
214.2
187.2
HO
H
131.1
258.2
0 50 Relative Int. (%)
100
100
150
5-β−Estran-3α−ol-17-one-d3 C18H25D3O2 MW: 279.43 79.1 67.1 55.1
50
200
250
204.2
VII-5-A-ii
235.2 217.2
148.1 161.2
91.1
279.3
HO
190.2
107.1 120.1
300 H 3C O
D
261.2
D D
0 50
100
150
200
250
300
m/z Relative Int. (%)
100
91.1
79.1
105.1 VII-5-B-i 145.1
202.2 214.1
187.1
258.2
119.1
50
5-β−Estran-3α−ol-17-one, acetyl derivative H 3C O C20H30O3 MW: 318.45
230.2 274.2
H3COCO
318.2
H
0 50
100
150
Relative Int. (%)
100 107.1
148.1
120.1
250 204.2
VII-5-B-ii
93.1
79.1
200
300
350
5-β−Estran-3α−ol-17-one-d3, acetyl derivative
217.2 190.2
261.2
50 233.2
H 3C O
C20H27D3O3 MW: 321.47 H3COCO
277.2
D
321.2 D D
0 50
100
150
200 m/z
Relative Int. (%)
100
H 3C O
VII-5-C-i
75.1
250
300
258.2
5-β−Estran-3α−ol-17-one, trimethylsilyl derivative
216.2
129.1
50
91.1
105.1
3(H3C)SiO
350
C21H36O2Si MW: 348.59
333.2 H
230.2 349.3
0 50 Relative Int. (%)
100
100 75.1
150
H 3C O
VII-5-C-ii 130.1
50
200
250
300
217.2
350
5-β−Estran-3α−ol-17 one-d3, trimethylsilyl derivative
261.2
C21H33D3O2Si MW: 351.61
3(H3C)SiO
93.1
D
107.1
D D
400
336.3
233.2
351.3
0 50
100
150
200
250 m/z
Appendix One — Mass Spectra
© 2010 by Taylor and Francis Group, LLC
300
350
400
357
Figure VII-6. Mass spectra of stanozolol and its deuterated analogs (stanozolol-d3): (A) underivatized; (B) acetylderivatized; (C) [TMS]2-derivatized. (D) t-BDMS-derivatized.
Relative Int. (%)
100
96.1
Stanozolol (CAS NO.10418-03-8) C21H32N2O MW: 328.49
H 3C H 3C
133.1 119.1
147.1
VII-6-A-i
328.2
N HN
50 55.1
OH CH 3
H
175.1
257.2
270.2
207.0
295.2
0 50
100
Relative Int. (%)
100
150
200
250
Stanozolol-d3 (CAS NO.88247-87-4)
96.1
H 3C
C21H29D3N2O MW: 331.51
50 119.1
H 3C
300
OH CD 3
350
VII-6-A-ii 331.2
N HN
133.1 147.1
55.1
H
175.1
257.2
270.2
207.0
298.2
0 50
100
150
Relative Int. (%)
100
200 m/z
250
138.1
H 3C H 3C
96.1
300
OCOCH3 CH 3
350
Stanozolol, acetyl derivative
VII-6-B-i
C23H34N2O2 MW: 370.53 370.2
N HN
50
257.2
H
71.1
147.1
175.1
327.2
313.2
215.2
0 50
100
150
Relative Int. (%)
100
200
250
138.1
H 3C H 3C
96.1
300 OCOCH3 CD 3
350
VII-6-B-ii
C23H31D3N2O2 MW: 373.55 373.3
N HN
50 147.1
74.1
257.2
H
175.2
330.2
313.2
218.2
400
Stanozolol-d3, acetyl derivative
0 50
100
150
200
250
300
350
400
m/z Relative Int. (%)
100
VII-6-C-i
143.1 H 3C H 3C
50
Stanozolol, di-trimethylsilyl derivative
OSi(CH3)3 CH 3
C27H48N2OSi2 MW: 472.85
N (H3C)3SiN
73.1
H
168.1
472.3
342.2
0 50 Relative Int. (%)
100
100
VII-6-C-ii
150
200
250
300
146.1 H 3C H 3C
400
450
C27H45D3N2OSi2 MW: 475.87
H
168.1
500
Stanozolol-d3, di-trimethylsilyl derivative
OSi(CH3)3 CD 3
N (H3C)3SiN
73.1
50
350
475.3 343.2
0 50
100
150
200
250
300 m/z
Figure VII — Others
© 2010 by Taylor and Francis Group, LLC
350
400
450
500
358
Figure VII-6. (Continued)
Relative Int. (%)
100
Stanozolol, t-butyldimethylsilyl derivative
VII-6-D-i H 3C
C27H46N2OSi MW: 442.75 73.1
50
H 3C
386.3
OSi(CH3)2C(CH3)3 CH 3
N HN
152.1
H
358.2
442.3
0 50 Relative Int. (%)
100
100
150
Stanozolol-d3, t-butyldimethylsilyl derivative
250
300
350
400
450
389.3
VII-6-D-ii
H 3C H 3C
C27H43D3N2OSi MW: 445.78 73.1
50
200
OSi(CH3)2C(CH3)3 CD 3
N HN
152.1
H
445.4
361.3
0 50
100
150
200
250 m/z
Appendix One — Mass Spectra
© 2010 by Taylor and Francis Group, LLC
300
350
400
450
359
Figure VII-7. Mass spectra of 3-hydroxystanozolol and its deuterated analogs (3-hydroxystanozolol-d3): (A) [TMS]2derivatized. (B) [t-BDMS]2-derivatized.
Relative Int. (%)
100
254.1
3’-Hydroxystanozolol (CAS NO.125709-39-9), di-trimethylsilyl derivative
73.1
C27H48N2O2Si2 MW: 488.85
50
147.1
H 3C HO H C 3
VII-7-A-i
OSi(CH3)3 CH 3
473.3
N N
488.4
(H3C)3Si
207.0
H
417.2
448.3
0 50
100
Relative Int. (%)
100
150
200
250
3’-Hydroxystanozolol-d3 (CAS NO.170082-17-4), di-trimethylsilyl derivative
73.1
C27H45D3N2O2Si2 MW: 491.87
50
300
350
400
450
254.1
500
476.3 H 3C
VII-7-A-ii
HO H C 3
OSi(CH3)3 CD 3
491.3
N N
147.1
(H3C)3Si
198.1
H
417.3
451.3
0 50
100
150
200
250
300
350
400
450
500
m/z Relative Int. (%)
100
VII-7-B-i 73.1 147.1
50
515.4
3’-Hydroxystanozolol, di-t-butyldimethylsilyl derivative
H 3C HO H C 3
C33H60N2O2Si2 MW: 573.01
N N (H3C)3C(H3C)2Si
OSi(CH3)2C(CH3)3 CH 3
459.3
H
497.3
572.5
0 50 Relative Int. (%)
100
100
150
VII-7-B-ii 73.1
50
147.1
200
250
300
3’-Hydroxystanozolol-d3, di-t-butyldimethylsilyl derivative
350
400 H 3C
HO H C 3
450
500
550
600
518.4
OSi(CH3)2C(CH3)3 CD 3
N
C33H57D3N2O2Si2 N MW: 576.03 (H3C)3C(H3C)2Si
462.3
H
500.4
575.4
0 50
100
150
200
250
300
350 m/z
Figure VII — Others
© 2010 by Taylor and Francis Group, LLC
400
450
500
550
600
360
Figure VII-8. Mass spectra of promethazine and its deuterated analogs (promethazine-d3).
Relative Int. (%)
100
72.1
CH 3
50
Promethazine (CAS NO.60-87-7)
VII-8-i
CH 3 CH 2–CH–N CH 3 N
C17H20N2S MW: 284.42
199.0
S
167.1
213.0
284.1
0 50 Relative Int. (%)
100
100
150
75.1
200
300
CD 3 CH 2–CH–N CH 3 N S
350 Promethazine-d3
VII-8-ii
CH 3
50
250
C17H17D3N2S MW: 287.44
199.0 167.1
213.0
287.1
0 50
100
150
200 m/z
Appendix One — Mass Spectra
© 2010 by Taylor and Francis Group, LLC
250
300
350
361
Figure VII-9. Mass spectra of chlorpromazine and its deuterated analogs (chlorpromazine-d3).
Relative Int. (%)
100
58.1
VII-9-i
Chlorpromazine (CAS NO.50-53-3)
S Cl
50 86.1
C17H19ClN2S MW: 318.86
N CH 3 CH 2 –CH 2 –CH 2 –N CH 3
196.0
318.0
272.0
232.0
0 50 Relative Int. (%)
100
100
150
200
250
61.1
VII-9-ii 50 89.1
350
Chlorpromazine-d3 (CAS NO.136765-28-1)
S Cl
300
C17H16D3ClN2S MW: 321.88
N CD 3 CH 2 –CH 2 –CH 2 –N CH 3
196.0
232.0
321.1
272.0
0 50
100
150
200 m/z
Figure VII — Others
© 2010 by Taylor and Francis Group, LLC
250
300
350
362
Figure VII-10. Mass spectra of acetaminophen and its deuterated analogs (acetaminophen-d4): (A) underivatized; (B) [acetyl]2-derivatized; (C) TCA-derivatized; (D) TFA-derivatized; (E) PFP-derivatized; (F) HFB-derivatized; (G) 4CB-derivatized; (H) TMS-derivatized; (I) [TMS]2-derivatized; (J) t-BDMS-derivatized; (K) [t-BDMS]2-derivatized.
Relative Int. (%)
100
Acetaminophen (CAS NO.103-90-2)
109.0
VII-10-A-i
C8H9NO2 MW: 151.16
NH–C–CH 3 O
50
HO
151.0
80.0
53.0
0 50
100
150
Relative Int. (%)
100
200
112.0
VII-10-A-ii
Acetaminophen-d4 D
D
50
C8H5D4NO2 MW: 155.19
NH–C–CH 3 O
HO D
83.0
154.0
D
55.0
0 50
100
150
200
m/z Relative Int. (%)
100
109.1
COCH 3 N–C–CH 3
C12H13NO4 MW: 235.24
151.0
O
50
Acetaminophen, di-acetyl derivative
VII-10-B-i
H3COCO
193.0 80.1
235.0
0 50
100
Relative Int. (%)
100 D H3COCO
D
D
C12H9D4NO4 MW: 239.26
197.1 84.1
50
239.1
100
100
150 m/z
200
250
Acetaminophen, trichloroacetyl derivative
108.0 COCCl 3
VII-10-C-i
O
HO
252.9
134.0
80.0
50
C10H8Cl3NO3 MW: 296.53
N–C–CH 3
50
294.9 223.9
0 100
100 Relative Int. (%)
Acetaminophen-d4, di-acetyl derivative
155.1
O
50
250
VII-10-B-ii
N–C–CH 3
0
Relative Int. (%)
200
113.1
COCH 3
D
150
150
200
250
112.0
VII-10-C-ii
D
50
D
O D
138.0
84.0
C10H4D4Cl3NO3 MW: 300.56 298.9
227.0
100
150
200 m/z
Appendix One — Mass Spectra
© 2010 by Taylor and Francis Group, LLC
256.9
D
0 50
Acetaminophen-d4, trichloroacetyl derivative
COCCl 3 N–C–CH 3
HO
300
250
300
363
Figure VII-10. (Continued)
Relative Int. (%)
100
Acetaminophen, trifluoroacetyl derivative
108.0
VII-10-D-i
COCF 3
205.0
N–C–CH 3
50
HO
69.0
C10H8F3NO3 MW: 247.17
O
247.0
80.1
0 50
100
150
Relative Int. (%)
100
200
112.1
VII-10-D-ii
D
D
50
300
Acetaminophen-d4, trifluoroacetyl derivative
COCF 3 N–C–CH 3
209.0
C10H4D4F3NO3 MW: 251.19
O
HO D
69.0
250
D
251.0
84.1
0 50
100
150
200
250
300
m/z Relative Int. (%)
100
108.0
COC 2 F 5
VII-10-E-i
N–C–CH 3
50
O
HO
208.0
0 50
100
Relative Int. (%)
100
150
200
112.1
VII-10-E-ii
D
D
50
Relative Int. (%)
Acetaminophen-d4, pentafluoropropionyl derivative
COC 2 F 5
259.0
D
C11H4D4F5NO3 MW: 301.20
301.0 212.0
0 100
VII-10-F-i
350
119.0
84.1
100
300
O D
50
250
N–C–CH 3
HO
69.1
C11H8F5NO3 MW: 297.18
297.0
119.0
80.1
69.0
Acetaminophen, pentafluoropropionyl derivative
255.0
150
200 m/z
250
300
108.0
Acetaminophen, heptafluorobutyryl derivative
COC 3 F 7 N–C–CH 3
50
305.0
O
HO
350
C12H8F7NO3 MW: 347.19
347.0 69.0
134.0
169.0
0 50
100
Relative Int. (%)
100
VII-10-F-ii
150
200
300
350
112.1 D
50
D
309.0
O D
138.1
400
Acetaminophen-d4, heptafluorobutyryl derivative
COC 3 F 7 N–C–CH 3
HO
69.0
250
D
351.0
C12H4D4F7NO3 MW: 351.21
169.0
0 50
100
150
200
250 m/z
Figure VII — Others
© 2010 by Taylor and Francis Group, LLC
300
350
400
364
Figure VII-10. (Continued)
Relative Int. (%)
100
108.0 CO(CF2)3COOC2H 5
HO
359.0 401.0
80.1
50
134.0
100
Relative Int. (%)
100
C15H13F6NO5 MW: 401.26
O
243.0
0 150
200
250
300
350
400
112.0 D
50
D
O
HO D
84.1
50
D
100
405.0 247.1
150
200
250 m/z
Acetaminophen, trimethylsilyl derivative 73.1
50
C15H9D4F6NO5 MW: 405.28
363.0
138.1
100
VII-10-G-ii
N–C–CH 3
450
Acetaminophen-d4, 4-carboethoxyhexafluorobutyryl derivative
CO(CF2)3COOC2H 5
0
Relative Int. (%)
VII-10-G-i
N–C–CH 3
50
Acetaminophen, 4-carboethoxyhexafluorobutyryl derivative
C11H17NO2Si MW: 223.34
300
450
223.1
VII-10-H-i
N–C–CH 3 O
HO
400
181.1
166.0
Si(CH3)3
350
208.1 106.1
93.0
55.1
150.0
0 50
100
Relative Int. (%)
100 73.1
150
Acetaminophen-d4, trimethylsilyl derivative C11H13D4NO2Si MW: 227.37
50 55.1
D
D
Si(CH3)3
227.1
VII-10-H-ii
O
HO D
250
170.1
N–C–CH 3
D
212.0
110.0
93.1
200 185.1
147.1
0 50
100
Relative Int. (%)
100
150 m/z
Acetaminophen, di-trimethylsilyl derivative
50
73.1
200
206.1
Si(CH3)3
280.1 295.1
VII-10-I-i
N–C–CH 3
C14H25NO2Si2 MW: 295.52
250
O (H3C)3SiO
166.1
116.1
181.1
223.1 237.1
0 50
100
Relative Int. (%)
100
150
Acetaminophen-d4, di-trimethylsilyl derivative 73.1
50
C14H21D4NO2Si2 MW: 299.55
D
200 D
210.1
Si(CH3)3 N–C–CH 3
D
299.2
D
170.1
116.1
300 284.1
VII-10-I-ii
O (H3C)3SiO
250
185.1
227.1 241.1
0 50
100
150
200 m/z
Appendix One — Mass Spectra
© 2010 by Taylor and Francis Group, LLC
250
300
365
Figure VII-10. (Continued)
Relative Int. (%)
100
Acetaminophen, t-butyldimethylsilyl derivative
208.0 Si(CH3)2C(CH3)3
VII-10-J-i
N–C–CH 3
50 73.1
C14H23NO2Si MW: 265.42
O
HO
265.1 166.0
106.1
250.0
0 50
100
150
200
Relative Int. (%)
100
VII-10-J-ii 50
D
D
D
269.1
73.1
170.0
110.1
100
212.1
Si(CH3)2C(CH3)3 O
D
50
300 Acetaminophen-d4, t-butyldimethylsilyl derivative
N–C–CH 3
HO
0
250
C14H19D4NO2Si MW: 269.45
254.1
150
200
250
300
m/z Relative Int. (%)
100
Acetaminophen, di-t-butyldimethylsilyl derivative C20H37NO2Si2 MW: 379.68 73.1
50
Si(CH3)2C(CH3)3
VII-10-K-i
N–C–CH 3 O
248.1
(H3C)3C(H3C)2SiO
157.1
206.1
192.1
322.2
308.1
364.2
379.2
0 50 Relative Int. (%)
100
100
150
Acetaminophen-d4, di-t-butyldimethylsilyl derivative
50
C20H33D4NO2Si2 MW: 383.71 73.1
200 D
D
250
Si(CH3)2C(CH3)3 N–C–CH 3
300
VII-10-K-ii
100
157.1
D
252.2
D
210.1
196.1
312.2
150
383.2 368.2
200
250 m/z
Figure VII — Others
© 2010 by Taylor and Francis Group, LLC
400
O (H3C)3C(H3C)2SiO
0 50
350 326.2
300
350
400
366
Figure VII-11. Mass spectra of clonidine and its deuterated analogs (clonidine-d4): (A) underivatized; (B) acetylderivatized; (C) [acetyl]2-derivatized; (D) TMS-derivatized; (E) [TMS]2-derivatized; (F) [t-BDMS]2-derivatized.
Relative Int. (%)
100
229.0
Clonidine (CAS NO.4205-90-7)
H N
C9H9Cl2N3 MW: 230.09
50
N
N H
75.0
108.9
123.9
VII-11-A-i
Cl
171.9
Cl
194.0
144.9
0 50 Relative Int. (%)
100
100
150
Clonidine-d4
D D D D
C9H5D4Cl2N3 MW: 234.11
50
108.9
75.0
123.9
H N
200
250 233.0
VII-11-A-ii
Cl N
N H
Cl
171.9
198.0
144.9
0 50
100
Relative Int. (%)
100
200
250
236.0
194.0
H N
150 m/z
Clonidine, acetyl derivative
VII-11-B-i
Cl N
C11H11Cl2N3O MW: 272.13
N
50
Cl
H 3COC
171.9
85.0
270.9
135.9
108.9
208.0
0 50
100
Relative Int. (%)
100
D N D D N D H 3COC
50
150
200
250
198.0
H
Cl
300
240.0
Clonidine-d4, acetyl derivative
VII-11-B-ii
N
C11H7D4Cl2N3O MW: 276.15
Cl
171.9
89.0
109.0
275.0
212.0
135.9
0 50
100
150
200
250
300
m/z Relative Int. (%)
100
H 3COC
Cl
N
VII-11-C-i
236.0
194.0
278.0
Clonidine, di-acetyl derivative
N
C13H13Cl2N3O2 MW: 314.16
N
50
Cl
H 3COC
171.9
128.0
85.0
313.0
208.0
0 50 Relative Int. (%)
100
100 H 3COC D N D D N D H 3COC
50
89.1
150
200
250 240.0
198.0 Cl N
300
Clonidine-d4, di-acetyl derivative
282.0
VII-11-C-ii
350
C13H9D4Cl2N3O2 MW: 318.19
Cl
132.0
171.9
317.0
212.0
0 50
100
150
200 m/z
Appendix One — Mass Spectra
© 2010 by Taylor and Francis Group, LLC
250
300
350
367
Figure VII-11. (Continued)
Relative Int. (%)
100
VII-11-D-i 50
N
73.0
Clonidine, trimethylsilyl derivative
Cl
C12H17Cl2N3Si MW: 302.27
N
N
142.0 99.0
Cl
266.0
H
(H3C)3Si
117.0
301.0
242.9
0 50
100
150
200
Relative Int. (%)
100
H D N D D N D (H3C)3Si
VII-11-D-ii 146.0
50 99.0
73.0
250
300
350
Cl
Clonidine-d4, trimethylsilyl derivative
Cl
C12H13D4Cl2N3Si MW: 306.29
270.0 N
305.0 242.9
123.9
0 50
Relative Int. (%)
100
100
150
Clonidine, di-trimethylsilyl derivative
200 m/z
N
300
350
338.1
(H3C)3Si
VII-11-E-i
C15H25Cl2N3Si2 MW: 374.45
50
250
Cl N
N
214.1
73.0
Cl
(H3C)3Si
322.0
172.1
358.0
373.1
0 50 Relative Int. (%)
100
100
150
Clonidine-d4, di-trimethylsilyl derivative
200
(H3C)3Si D N D D N D
VII-11-E-ii
C15H21D4Cl2N3Si2 MW: 378.48
50
250
218.1
(H3C)3Si
73.0
300
350
400
342.1 Cl
N Cl
362.1
326.1
176.1
377.1
0 50
100
150
200
250
300
350
400
m/z Relative Int. (%)
100
252.1
(H3C)3C(H3C)2Si N
N
C21H37Cl2N3Si2 MW: 458.61
N
50
(H3C)3C(H3C)2Si
Cl
286.0
93.0
0 50
100
150
200
250
100 Relative Int. (%)
Clonidine, di-t-butyldimethylsilyl derivative
VII-11-F-i
Cl
256.1
(H3C)3C(H3C)2Si Cl D N D N D N D Cl (H3C)3C(H3C)2Si
50
300
150
290.0
200
250
300 m/z
Figure VII — Others
© 2010 by Taylor and Francis Group, LLC
400
450
500
Clonidine-d4, di-t-butyldimethylsilyl derivative C21H33D4Cl2N3Si2 MW: 462.63
93.0
100
350
VII-11-F-ii
0 50
343.1
347.1
350
400
450
500
368
Figure VII-12. Mass spectra of chloramphenicol and its deuterated analogs (chloramphenicol-d5): (A) underivatized; (B) [acetyl]2-derivatized; (C) TMS-derivatized; (D) [TMS]2-derivatized.
Relative Int. (%)
100
99.0
NO2
VII-12-A-i
50
Chloramphenicol (CAS NO.56-75-7) C11H12Cl2N2O5 MW: 323.13
HO CH
115.0
70.0
HC N COCHCl 2 H
162.0 207.0
179.0
HOH2C
0 50
100
Relative Int. (%)
100
150
99.0
200
250
VII-12-A-ii
NO2
D
300
Chloramphenicol-d5
D
C11H7D5Cl2N2O5 MW: 328.15
D D HO CD
50 70.0
HC
167.0
120.0
212.0
184.0
HOH2C
350
N COCHCl 2 H
0 50
Relative Int. (%)
100
100
43.0
150
VII-12-B-i
200 m/z
250
NO2
153.0
50
169.9
350
Chloramphenicol, di-acetyl derivative C15H16Cl2N2O7 MW: 407.20
H3COCO CH
213.9
HC
118.0
70.0
300
N COCHCl 2
HOH2C COCH 3
281.0
0 40 Relative Int. (%)
100
90 43.0
140
190
240
290
171.9
50
211.9
118.0
NO2
390
440
D
Chloramphenicol-d5, di-acetyl derivative
D D H3COCO CD
C15H11D5Cl2N2O7 MW: 412.23
D
158.0
VII-12-B-ii
70.0
340
HC N COCHCl 2 HOH2C COCH 3
286.0
0 40
Relative Int. (%)
100
90
140
190
240 m/z
73.0
290
340
NO2
224.0
390
Chloramphenicol, trimethylsilyl derivative
VII-12-C-i
C14H20Cl2N2O5Si MW: 395.31
HO CH
50 84.0
103.0
147.0
HC N COCHCl 2
252.0
215.1
440
HOH2C Si(CH3)3
321.0
351.1
0 50 Relative Int. (%)
100
100
150
200
250 229.0
73.0
VII-12-C-ii
50 84.0
103.0
147.0
257.0
215.0
300
350
400
D
Chloramphenicol-d5, trimethylsilyl derivative
D D HO CD
C14H15D5Cl2N2O5Si MW: 400.34
D
NO2
HC N COCHCl 2 Si(CH3)3
HOH2C
326.1
356.1
0 50
100
150
200
250 m/z
Appendix One — Mass Spectra
© 2010 by Taylor and Francis Group, LLC
300
350
400
369
Figure VII-12. (Continued)
Relative Int. (%)
100
NO2
73.0
VII-12-D-i
314.0 297.1
50 147.0
C17H28Cl2N2O5Si2 MW: 467.49
(H3C)3SiO CH
224.0 98.0
Chloramphenicol, di-trimethylsilyl derivative
HC
244.0
HOH2C
N COCHCl 2 Si(CH3)3
455.1
0 50 Relative Int. (%)
100
100
150
200
250
300
350 314.0
73.0
VII-12-D-ii 229.0 98.0
147.0
NO2
D D (H3C)3SiO CD
C17H23D5Cl2N2O5Si2 MW: 472.52
HOH2C
N COCHCl 2 Si(CH3)3
460.2
0 50
100
150
200
250
300 m/z
Figure VII — Others
© 2010 by Taylor and Francis Group, LLC
500
Chloramphenicol-d5, di-trimethylsilyl derivative
HC
244.0
450
D
D
302.1
50
400
350
400
450
500
370
Figure VII-13. Mass spectra of melatonin and its deuterated analogs (melatonin-d7): (A) underivatized; (B) acetylderivatized; (C) TFA-derivatized; (D) PFP-derivatized; (E) HFB-derivatized; (F) TMS-derivatized. Relative Int. (%)
100
160.1
VII-13-A-i
50
173.1
Melatonin (CAS NO.73-31-4)
CH 2CH 2 O
H3CO
NH
N
C
C13H16N2O2 MW: 232.27
CH 3
H
145.0
117.1
80.1
232.1
0 50
100
150
Relative Int. (%)
100
200
250
162.1
VII-13-A-ii
50
Melatonin-d7
CD 2CD 2 O
H3CO
C
NH
N
176.1
C13H9D7N2O2 MW: 239.32
CD 3
H
119.1
80.1
147.0
239.1
0
Relative. Int. (%)
50
100
100
160.1
CH 2CH 2 O
H3CO
NH
N
50
150 m/z
C
200
173.1
Melatonin, acetyl derivative
VII-13-B-i
CH 3
C15H18N2O3 MW: 274.31
COCH 3
145.0
117.1
80.1
274.1 232.1
0 50 Relative. Int. (%)
250
100
150
100 NH
N
50
162.1
CD 2CD 2 O
H3CO
C
200 176.1
250
300 Melatonin-d7, acetyl derivative
VII-13-B-ii
CD 3
C15H11D7N2O3 MW: 281.35
COCH 3
147.1
119.1
80.1
281.1 239.1
0 50
100
150
200
250
300
m/z Relative Int. (%)
100
CH 2CH 2 O
H3CO
NH
N
50
C
CH 3
269.0
VII-13-C-i
Melatonin, trifluoroacetyl derivative C15H15F3N2O3 MW: 328.29
COCF 3
72.1
159.1
144.0
116.1
256.0
328.1
0 50
100
150
Relative Int. (%)
100
CD 2CD 2 O
H3CO
NH
N
50
200
C
CD 3
250 272.1
VII-13-C-ii
300
Melatonin-d7, trifluoroacetyl derivative C15H8D7F3N2O3 MW: 335.32
COCF 3
161.1 69.0
118.0
350
258.0
146.1
335.1
0 50
100
150
200 m/z
Appendix One — Mass Spectra
© 2010 by Taylor and Francis Group, LLC
250
300
350
371
Figure VII-13. (Continued)
Relative Int. (%)
100
319.0
Melatonin, pentafluoropropionyl derivative
CH 2CH 2 O
H3CO
C16H15F5N2O3 MW: 378.29
50
NH
N
C
VII-13-E-i
CH 3
COC 2 F 5
159.1
306.0
144.1
89.0
378.1
0 50 Relative Int. (%)
100
100
150
200
C
VII-13-E-ii
CD 3
308.0
146.0
100
400
COC 2 F 5
161.1
50
NH
N
91.0
350
CD 2CD 2 O
H3CO
C16H8D7F5N2O3 MW: 385.33
0
300 322.1
Melatonin-d7, pentafluoropropionyl derivative
50
250
385.1
150
200
250
300
350
400
m/z Relative Int. (%)
100
Melatonin, heptafluorobutyryl derivative C17H15F7N2O3 MW: 428.30
50
369.0
CH 2CH 2 O
H3CO
NH
N
C
VII-13-F-i
CH 3
COC 3 F 7
159.1 144.1
69.0
356.0
428.1
0 50 Relative Int. (%)
100
100
150
200
Melatonin-d7, heptafluorobutyryl derivative
250
350
N
NH
C
VII-13-F-ii
CD 3
146.1
358.0
435.1
0 50
Relative Int. (%)
100
100
150
VII-13-G-i
250 m/z
NH
C
300
350
232.1
CH 2CH 2 O N
73.1
50
200
H3CO
450
COC 3 F 7
161.1 69.0
400 372.1
CD 2CD 2 O
H3CO
C17H8D7F7N2O3 MW: 435.34
50
300
245.1
400
450
Melatonin, trimethylsilyl derivative
CH 3
C16H24N2O2Si MW: 304.45
Si(CH3)3
304.1
0 50 Relative Int. (%)
100
100
VII-13-G-ii
200
250 234.1
CD 2CD 2 O
H3CO
NH
N
73.1
50
150
C
248.1
300
350
Melatonin-d7, trimethylsilyl derivative
CD 3
C16H17D7N2O2Si MW: 311.50
Si(CH3)3
310.1
0 50
100
150
200 m/z
Figure VII — Others
© 2010 by Taylor and Francis Group, LLC
250
300
350
373
PART THREE CROSS-CONTRIBUTIONS OF ION INTENSITY BETWEEN ANALYTES AND THEIR ISOTOPICALLY LABELED ANALOGS IN VARIOUS DERIVATIZATION FORMS
Table I — Stimulants
© 2010 by Taylor and Francis Group, LLC
375
Appendix Two Cross-Contributions between Ions Designating Drugs and Their Isotopically Labeled Analogs in Various Derivatization Forms Table of Contents for Appendix Two Table I. Cross-contributions between ions designating drugs and their isotopically labeled analogs in various derivatization forms — Stimulants ........................................................................................................................................................................ 377 Table II. Cross-contributions between ions designating drugs and their isotopically labeled analogs in various derivatization forms — Opioids ............................................................................................................................................................................ 409 Table III. Cross-contributions between ions designating drugs and their isotopically labeled analogs in various derivatization forms — Hallucinogens .................................................................................................................................................................. 437 Table IV. Cross-contributions between ions designating drugs and their isotopically labeled analogs in various derivatization forms — Depressants/Hypnotics ..................................................................................................................................................... 449 Table V. Cross-contributions between ions designating drugs and their isotopically labeled analogs in various derivatization forms — Antianxiety Agents .......................................................................................................................................................... 459 Table VI. Cross-contributions between ions designating drugs and their isotopically labeled analogs in various derivatization forms — Antidepresants ................................................................................................................................................................. 477 Table VII. Cross-contributions between ions designating drugs and their isotopically labeled analogs in various derivatization forms — Others .............................................................................................................................................................................. 485
Table I — Stimulants
© 2010 by Taylor and Francis Group, LLC
377
Summary of Drugs, Isotopic Analogs, and Chemical Derivatization Groups Included in Table I (Stimulants) Compound
Isotopic analog
Chemical derivatization group
Table #
Amphetamine
d5, d5 (ring), d6, d8, d10, d11
None, acetyl, TCA, TFA, PFP, HFB, 4-CB, PFB, propylformyl, l-TPC, d-TPC, l-MTPA, d-MTPA, TMS, t-BDMS, TFA/t-BDMS, PFP/t-BDMS, HFB/t-BDMS
I-1
Methamphetamine
d5, d8, d9, d11, d14
None, acetyl, TCA, TFA, PFP, HFB, 4-CB, PFB, propylformyl, l-TPC, d-TPC, l-MTPA, d-MTPA, TMS, t-BDMS
I-2
Ephedrine
d3
None, acetyl, TCA, [TFA]2, [PFP]2, [HFB]2, 4-CB, PFB, propylformyl, d-TPC, d-MTPA, [TMS]2
I-3
Phenylpropanolamine
d3
None, acetyl, TCA, [TFA]2, [PFP]2, [HFB]2, 4-CB, PFB, l-TPC, d-TPC, l-MTPA, d-MTPA, [TMS]2, t-BDMS, [t-BDMS]2, TFA/[t-BDMS]2, PFP/[t-BDMS]2, HFB/[t-BDMS]2
I-4
MDA
d5
None, acetyl, TCA, TFA, PFP, HFB, 4-CB, PFB, propylformyl, l-TPC, d-TPC, l-MTPA, d-MTPA, TMS, TFA/t-BDMS, PFP/t-BDMS, HFB/t-BDMS
I-5
MDMA
d5
None, acetyl, TCA, TFA, PFP, HFB, 4-CB, PFB, propylformyl, l-TPC, d-TPC, l-MTPA, d-MTPA, TMS
I-6
MDEA
d5, d6
None, acetyl, TCA, TFA, PFP, HFB, 4-CB, PFB, propylformyl, l-TPC, d-TPC, l-MTPA, d-MTPA, TMS
I-7
MBDB
d5
None, acetyl, TCA, TFA, PFP, HFB, 4-CB, PFB, propylformyl, l-TPC, d-TPC, l-MTPA d-MTPA, TMS
I-8
Selegiline
d8
None
I-9
N-Desmethylselegiline d11
None, acetyl, TCA, TFA, PFP, HFB, 4-CB, TMS
Fenfluramine
d10
None, acetyl, TCA, TFA, PFP, HFB, 4-CB
I-11
Norcocaine
d3
None, TFA, PFP, HFB, TMS
I-12
Cocaine
d3
None
I-13
Cocaethylene
d3, d8
None
I-14
Ecgonine methyl ester
d3
None, TFA, PFP, HFB, TMS, t-BDMS
I-15
Benzoylecgonine
d3, d8
Methyl, ethyl, propyl, butyl, PFPoxy, HFPoxy, TMS, t-BDMS
I-16
Ecgonine
d3
[TMS]2, [t-BDMS]2, HFPoxy/TFA, PFPoxy/PFP, HFPoxy/HFB
I-17
Anhydroecgonine methyl ester
d3
None
I-18
Caffeine
13C
None
I-19
Methylphenidate
d3
None, TFA, PFP, HFB, 4-CB, TMS
I-20
Ritalinic acid
d5
4-CB, [TMS]2, t-BDMS
I-21
3
Table I — Stimulants
© 2010 by Taylor and Francis Group, LLC
I-10
379
Appendix Two — Table I Cross-Contributions Between ions Designating the Drugs and Their Isotopically Labeled Analogs in Various Derivatization Forms — Stimulants Table I-1a. Relative intensity and cross-contribution data of ions with potential for designating the analyte and the adapted internal standard — Amphetamine/amphetamine-d5 .................................................................................................................... 381 Table I-1b. Relative intensity and cross-contribution data of ions with potential for designating the analyte and the adapted internal standard — Amphetamine/amphetamine-d5 (ring) ......................................................................................................... 382 Table I-1c. Relative intensity and cross-contribution data of ions with potential for designating the analyte and the adapted internal standard — Amphetamine/amphetamine-d6 .................................................................................................................... 383 Table I-1d. Relative intensity and cross-contribution data of ions with potential for designating the analyte and the adapted internal standard — Amphetamine/amphetamine-d8 .................................................................................................................... 384 Table I-1e. Relative intensity and cross-contribution data of ions with potential for designating the analyte and the adapted internal standard — Amphetamine/amphetamine-d10 .................................................................................................................. 385 Table I-1f. Relative intensity and cross-contribution data of ions with potential for designating the analyte and the adapted internal standard — Amphetamine/amphetamine-d11 .................................................................................................................. 387 Table I-2a. Relative intensity and cross-contribution data of ions with potential for designating the analyte and the adapted internal standard — Methamphetamine/methamphetamine-d5 .................................................................................................... 388 Table I-2b. Relative intensity and cross-contribution data of ions with potential for designating the analyte and the adapted internal standard — Methamphetamine/methamphetamine-d8 .................................................................................................... 389 Table I-2c. Relative intensity and cross-contribution data of ions with potential for designating the analyte and the adapted internal standard — Methamphetamine/methamphetamine-d9 .................................................................................................... 390 Table I-2d. Relative intensity and cross-contribution data of ions with potential for designating the analyte and the adapted internal standard — Methamphetamine/methamphetamine-d11 ................................................................................................... 391 Table I-2e. Relative intensity and cross-contribution data of ions with potential for designating the analyte and the adapted internal standard — Methamphetamine/methamphetamine-d14 .................................................................................................. 392 Table I-3. Relative intensity and cross-contribution data of ions with potential for designating the analyte and the adapted internal standard — Ephedrine/ephedrine-d3 ............................................................................................................................... 393 Table I-4. Relative intensity and cross-contribution data of ions with potential for designating the analyte and the adapted internal standard — Phenylpropanolamine/phenylpropanolamine-d3 ......................................................................................... 394 Table I-5. Relative intensity and cross-contribution data of ions with potential for designating the analyte and the adapted internal standard — MDA/MDA-d5 ............................................................................................................................................. 395 Table I-6. Relative intensity and cross-contribution data of ions with potential for designating the analyte and the adapted internal standard — MDMA/MDMA-d5 ...................................................................................................................................... 396 Table I-7a. Relative intensity and cross-contribution data of ions with potential for designating the analyte and the adapted internal standard — MDEA/MDEA-d5 ........................................................................................................................................ 397 Table I-7b. Relative intensity and cross-contribution data of ions with potential for designating the analyte and the adapted internal standard — MDEA/MDEA-d6 ........................................................................................................................................ 398 Table I-8. Relative intensity and cross-contribution data of ions with potential for designating the analyte and the adapted internal standard — MBDB/MBDB-d5 ........................................................................................................................................ 399 Table I-9. Relative intensity and cross-contribution data of ions with potential for designating the analyte and the adapted internal standard — Selegiline/selegiline-d8 ................................................................................................................................ 400 Table I-10. Relative intensity and cross-contribution data of ions with potential for designating the analyte and the adapted internal standard — N-Desmethylselegiline/N-desmethylselegiline-d11 ..................................................................................... 401 Table I-11. Relative intensity and cross-contribution data of ions with potential for designating the analyte and the adapted internal standard — Fenfluramine/fenfluramine-d10 .................................................................................................................... 401 Table I-12. Relative intensity and cross-contribution data of ions with potential for designating the analyte and the adapted internal standard — Norcocaine/norcocaine-d3 ............................................................................................................................ 402 Table I — Stimulants
© 2010 by Taylor and Francis Group, LLC
380
Table I-13. Relative intensity and cross-contribution data of ions with potential for designating the analyte and the adapted internal standard — Cocaine/cocaine-d3 ...................................................................................................................................... 402 Table I-14a. Relative intensity and cross-contribution data of ions with potential for designating the analyte and the adapted internal standard — Cocaethylene/cocaethylene-d3 ..................................................................................................................... 403 Table I-14b. Relative intensity and cross-contribution data of ions with potential for designating the analyte and the adapted internal standard — Cocaethylene/cocaethylene-d8 ..................................................................................................................... 403 Table I-15. Relative intensity and cross-contribution data of ions with potential for designating the analyte and the adapted internal standard — Ecgonine methyl ester/ecgonine methyl ester-d3 ......................................................................................... 403 Table I-16a. Relative intensity and cross-contribution data of ions with potential for designating the analyte and the adapted internal standard — Benzoylecgonine/benzoylecgonine-d3 ......................................................................................................... 404 Table I-16b. Relative intensity and cross-contribution data of ions with potential for designating the analyte and the adapted internal standard — Benzoylecgonine/benzoylecgonine-d8 ......................................................................................................... 404 Table I-17. Relative intensity and cross-contribution data of ions with potential for designating the analyte and the adapted internal standard — Ecgonine/ecgonine-d3 .................................................................................................................................. 405 Table I-18. Relative intensity and cross-contribution data of ions with potential for designating the analyte and the adapted internal standard — Anhydroecgonine methyl ester/anhydroecgonine methyl ester-d3 .............................................................. 406 Table I-19. Relative intensity and cross-contribution data of ions with potential for designating the analyte and the adapted internal standard — Caffeine/caffeine-13C3 .................................................................................................................................. 406 Table I-20. Relative intensity and cross-contribution data of ions with potential for designating the analyte and the adapted internal standard — Methylphenidate/methylphenidate-d3 .......................................................................................................... 406 Table I-21. Relative intensity and cross-contribution data of ions with potential for designating the analyte and the adapted internal standard — Ritalinic acid/ritalinic acid-d5 ......................................................................................................................................................................... 407
Appendix Two — Ion Intensity Cross-Contribution Data
© 2010 by Taylor and Francis Group, LLC
381
Table I-1a. Relative intensity and cross-contribution dataa of ionsb with potential for designating the analyte and the adapted internal standard — Amphetamine/amphetamine-d5 CD Groupc
Amphetamine Ion (m/z)d Rel. int. Analog’s cont.
Amphetamine-d5 Ion (m/z)d Rel. int. Analog’s cont.
None
44
100
3.76
48
100
0.00
Acetyl
44 86
100 62.4
— 0.60
48 90
100 60.9
— 0.21
118 190
100 66.2
4.09 1.02
123 194
74.9 94.8
0.29 1.96
TCA TFA
140
100
0.23
144
100
0.85
PFP
118 190
73.0 100
3.48 0.10
123 194
44.3 100
0.19 0.14
HFB
118 223 240
57.3 3.35 100
3.77 0.69 0.09
123 227 244
33.9 5.11 100
0.38 0.50 0.01
4-CB
118 248 266 294
100 35.0 41.8 43.6
3.14 0.29 0.19 0.19
123 251 270 298
100 33.4 68.2 77.3
0.14 0.94 0.08 0.06
PFB
118 238
26.9 48.8
3.92 0.27
123 242
14.4 44.0
0.10 0.02
Propylformyl
130 162
100 3.40
0.03 0.27
134 167
100 3.31
0.96 0.27
l-TPC (l-l)
118 237
16.4 39.4
4.28 0.07
123 241
10.2 40.2
0.74 0.04
l-TPC (d-d)
118 237
17.3 40.3
4.10 0.07
123 241
10.2 42.6
0.68 0.04
l-MTPA (l-l)
91 162 260
65.8 14.7 55.7
— 2.51 1.70
93 167 264
33.2 16.7 55.5
— 2.45 0.11
l-MTPA (d-d)
91 162 260
71.9 17.3 57.9
— 2.75 1.92
93 167 264
37.1 19.5 56.2
— 4.90 0.11
TMS
116 192
100 7.80
0.54 1.85
120 197
100 7.77
0.73 0.20
t-BDMS
100 158 192 234
16.0 100 20.0 3.66
2.02 0.20 0.27 0.95
104 162 197 239
15.4 100 21.0 2.68
1.30 0.37 0.00 0.00
TFA/ t-BDMS
91 119 254 288 289
37.1 19.8 100 24.8 4.76
2.59 4.60 0.08 0.17 0.63
93 124 258 293 294
35.8 32.9 100 25.2 5.18
0.91 0.46 0.12 0.16 0.24
PFP/ t-BDMS
91 304 338 339
48.0 100 14.4 3.17
2.39 0.12 0.15 0.56
93 308 343 344
28.0 100 15.9 3.48
0.65 0.05 0.00 0.03
HFB/ t-BDMS
91 354 388 389
47.8 100 13.1 3.09
2.32 0.14 0.14 0.43
93 358 393 394
24.3 100 15.2 3.48
0.79 0.05 0.00 0.00
a
Relative intensities are based on full-scan data (see corresponding mass spectra in Appendix One), while cross-contributions (CC) are derived from selected ion monitoring (SIM) data. b Ion-pairs with 5% (or higher) CC by the analog are not listed. Table I — Stimulants
© 2010 by Taylor and Francis Group, LLC
382
Table I-1a. (Continued) c d
See Table 2 in Chapter 2 for the abbreviations for the derivatization groups. The SIM intensities of the underlined ion-pair observed in two separate runs (for the analyte and its analog) were used to normalize the intensties of all ions for the calculations of CC data listed in the table.
Table I-1b. Relative intensity and cross-contribution dataa of ionsb with potential for designating the analyte and the adapted internal standard — Amphetamine/amphetamine-d5 (ring) CD Groupc
Amphetamine Ion (m/z)d Rel. int. Analog’s cont.
Amphetamine-d5 Ion (m/z)d Rel. int. Analog’s cont.
None
91
16.7
2.37
96
13.6
0.00
Acetyl
91 117 118
17.6 11.4 26.4
0.77 1.46 3.75
96 122 123
31.2 13.6 47.6
0.00 0.00 0.00
TCA
91 118
63.8 100
1.44 3.02
96 123
53.2 100
0.44 0.40
TFA
91 117 118
36.3 16.1 83.9
0.49 1.89 1.60
96 122 123
37.2 13.5 88.9
1.21 0.54 0.06
PFP
91 117 118
29.9 12.4 68.1
0.54 2.12 1.75
96 122 123
29.9 10.6 73.6
0.64 1.08 0.08
HFB
91 117 118
27.7 11.0 60.7
0.49 2.17 1.76
96 122 123
25.8 8.28 60.7
0.13 1.19 0.20
4-CB
91 118
49.9 100
0.54 1.36
96 123
43.3 100
0.45 0.17
PFB
91 118
11.3 26.9
1.02 2.42
96 123
10.4 27.9
0.16 0.05
Propylformyl
91
63.3
0.26
96
56.7
0.22
l-TPC (l-l)
91 117 118
21.8 3.87 16.4
— 3.26 3.40
96 122 123
29.6 3.35 15.1
— 1.99 0.45
l-TPC (d-d)
91 117 118
22.2 4.09 17.3
— 3.22 3.26
96 122 123
27.0 3.20 14.8
— 3.48 0.44
l-MTPA (l-l)
91 118 162
65.9 10.8 14.7
— 3.33 0.72
96 123 167
53.7 13.8 12.9
— 4.53 4.82
l-MTPA (d-d)
91
71.9
—
96
55.2
—
TMS
91 192
9.28 8.43
0.92 0.00
96 197
9.61 8.42
1.54 0.65
t-BDMS
91 192 234
7.29 20.0 3.66
1.03 0.35 0.70
96 197 239
8.35 19.4 3.50
2.93 0.13 0.25
TFA/ t-BDMS
91 288 289
37.1 24.8 4.76
0.41 0.11 0.28
96 293 294
66.2 21.7 4.46
0.35 0.02 0.19
PFP/ t-BDMS
91 338 339
48.0 14.4 3.17
0.38 0.06 0.62
96 343 344
43.9 14.3 3.13
0.85 0.01 0.02
HFB/ t-BDMS
91 388 389
47.8 13.1 3.09
0.54 0.04 0.65
96 393 394
43.6 12.3 3.03
0.09 0.00 0.00
a–d
See the corresponding footnotes in Table I-1a. Appendix Two — Ion Intensity Cross-Contribution Data
© 2010 by Taylor and Francis Group, LLC
383
Table I-1c. Relative intensity and cross-contribution dataa of ionsb with potential for designating the analyte and the adapted internal standard — Amphetamine/amphetamine-d6 CD Groupc
Amphetamine Ion (m/z)d Rel. int. Analog’s cont.
Amphetamine-d6 Ion (m/z)d Rel. int. Analog’s cont.
None
44
100
3.50
48
100
2.28
Acetyl
44 86 118
100 62.4 45.4
0.96 0.68 2.08
48 90 123
100 58.5 43.9
0.69 1.00 0.13
TCA
91 118 190
63.8 100 66.2
4.47 1.65 0.55
93 123 194
59.2 100 72.4
1.45 0.30 3.15
TFA
140
100
0.26
144
100
0.87
PFP
91 118 190
36.0 73.0 100
4.69 2.42 0.09
93 123 194
30.4 69.8 100
2.47 0.12 0.19
HFB
91 118 223 240
27.0 57.3 3.35 100
4.27 2.46 0.57 0.06
93 123 227 244
33.7 76.4 5.52 100
3.28 0.23 0.64 0.01
4-CB
91 118 248 266 294
42.1 100 35.0 41.8 43.6
3.01 1.21 0.12 0.12 0.11
93 123 251 270 298
39.6 100 23.2 48.1 56.0
3.74 0.20 1.48 0.17 0.13
PFB
118 238
26.9 48.8
2.75 0.17
123 242
24.4 47.9
0.13 0.12
Propylformyl
91 130 162
41.7 100 3.40
3.78 0.00 0.10
93 134 168
37.1 100 3.50
1.20 1.00 0.02
l-TPC (l-l)
118 237
16.4 39.4
2.78 0.13
123 241
16.2 43.0
0.45 0.02
l-TPC (d-d)
118 237
17.3 40.3
2.69 0.14
123 241
17.1 44.0
0.39 0.01
l-MTPA (l-l)
91 162 234 260
65.8 14.7 15.3 55.7
— 0.21 2.12 0.23
93 168 236 264
57.0 17.7 9.78 53.9
— 0.84 1.54 0.18
l-MTPA (d-d)
91 162 234 260
71.9 17.3 16.1 57.9
— 0.32 3.12 0.30
93 168 236 264
56.2 19.1 10.3 58.6
— 1.91 1.59 0.18
TMS
116 192
100 7.80
0.30 1.74
120 198
100 7.82
0.47 1.04
t-BDMS
100 158 192 234
16.0 100 20.0 3.66
0.97 0.19 0.21 0.87
104 162 198 240
15.4 100 22.5 2.79
1.07 0.39 0.02 0.00
TFA/ t-BDMS
91 119 254 288 289
37.1 19.8 100 24.8 4.76
1.51 4.28 0.11 0.18 0.16
93 125 258 294 295
49.6 28.8 100 26.9 5.40
0.58 0.28 0.10 0.03 0.12
PFP/ t-BDMS
91 304 338 339
48.0 100 14.4 3.17
1.27 0.10 0.07 0.20
93 308 344 345
46.1 100 16.7 3.63
0.44 0.05 0.00 0.07
Table I — Stimulants
© 2010 by Taylor and Francis Group, LLC
384
Table I-1c. (Continued) CD Groupc HFB/ t-BDMS
a–d
Amphetamine Ion (m/z)d Rel. int. Analog’s cont. 91 354 388 389
47.8 100 13.1 3.09
1.22 0.18 0.09 0.00
Amphetamine-d6 Ion (m/z)d Rel. int. Analog’s cont. 93 358 394 395
45.0 100 14.6 3.43
0.53 0.06 0.00 0.00
See the corresponding footnotes in Table I-1a.
Table I-1d. Relative intensity and cross-contribution dataa of ionsb with potential for designating the analyte and the adapted internal standard — Amphetamine/amphetamine-d8 CD Groupc
Amphetamine Ion (m/z)d Rel. int. Analog’s cont.
Amphetamine-d8 Ion (m/z)d Rel. int. Analog’s cont.
None
44 91
100 15.6
— 4.41
47 96
100 11.8
— 0.16
Acetyl
44 86 91 118
100 62.4 31.6 45.4
2.10 1.97 0.89 0.41
47 89 96 126
100 62.2 24.3 40.7
0.01 1.71 0.02 0.03
TCA
91 118 188 190
63.8 100 70.0 66.2
0.84 — 4.48 4.05
96 126 191 193
38.9 100 73.1 69.6
0.23 — 3.54 1.59
TFA
91 118 140
43.4 89.3 100
0.52 0.25 4.05
96 126 143
39.6 100 98.9
3.40 0.15 0.14
PFP
91 118 173 190
36.0 73.0 1.07 100
0.40 0.28 3.54 1.99
96 126 176 193
29.3 78.2 6.36 100
0.98 0.33 0.93 0.08
HFB
91 118 192 240
27.0 57.3 3.81 100
0.43 0.20 2.40 1.97
96 126 195 243
27.4 77.0 4.12 100
0.24 0.08 1.43 0.03
4-CB
91 118 220 248 266 294
42.1 100 12.4 35.0 41.8 43.6
0.32 0.16 2.37 1.96 1.75 1.78
96 126 223 250 269 297
26.8 100 7.25 19.4 41.1 46.5
0.57 0.05 2.44 2.19 0.55 0.15
PFB
91 118 238 239
11.3 26.9 48.8 5.04
0.32 1.51 1.89 4.58
96 126 241 242
10.8 25.5 47.7 5.27
0.05 0.07 0.06 1.08
Propylformyl
118 130 162
6.96 100 3.40
1.79 1.96 0.28
126 133 170
6.21 100 2.35
0.32 0.51 0.80
l-TPC (l-l)
237
39.4
1.84
240
43.0
0.10
l-TPC (d-d)
237
40.3
1.83
240
45.2
0.10
l-MTPA (l-l)
91 118 260
65.8 10.8 55.7
— 2.87 4.43
97 126 263
36.2 14.5 58.0
— 0.26 0.06
Appendix Two — Ion Intensity Cross-Contribution Data
© 2010 by Taylor and Francis Group, LLC
385
Table I-1d. (Continued) CD Groupc
Amphetamine Ion (m/z)d Rel. int. Analog’s cont.
Amphetamine-d8 Ion (m/z)d Rel. int. Analog’s cont.
l-MTPA (d-d)
91 118 260
71.9 12.1 57.9
— 3.00 4.88
97 126 263
39.9 15.3 57.9
— 0.21 0.06
TMS
91 116 192
11.5 100 7.80
1.71 2.18 2.05
96 119 200
9.97 100 6.64
2.37 0.74 2.58
t-BDMS
100 158 159 192 234
16.0 100 15.5 20.0 3.66
4.47 1.85 2.77 0.13 0.80
103 161 162 200 242
17.6 100 14.8 19.8 2.67
3.33 0.52 2.79 0.00 0.80
TFA/ t-BDMS
91 119 254 255 288 289
37.1 19.8 100 15.9 24.8 4.76
0.29 1.59 1.83 2.03 0.08 0.18
97 127 257 258 296 297
26.8 23.4 100 16.7 25.2 5.04
0.58 0.94 0.54 0.59 0.01 0.00
PFP/ t-BDMS
91 119 304 305 338 339
48.0 21.9 100 18.1 14.4 3.17
0.30 3.76 1.92 2.17 0.11 0.20
97 127 307 308 346 347
31.8 22.4 100 18.1 14.6 3.21
0.48 0.71 0.54 0.29 0.00 0.00
HFB/ t-BDMS
91 119 354 355 388 389
47.8 21.7 100 19.7 13.1 3.09
0.45 3.73 1.91 2.13 0.06 0.00
97 127 357 358 396 397
29.0 21.0 100 19.8 13.1 3.01
0.40 0.06 0.59 0.29 0.00 4.15
a–d
See the corresponding footnotes in Table I-1a.
Table I-1e. Relative intensity and cross-contribution dataa of ionsb with potential for designating the analyte and the adapted internal standard — Amphetamine/amphetamine-d10 CD Groupc
Amphetamine Ion (m/z)d Rel. int. Analog’s cont.
Amphetamine-d10 Ion (m/z)d Rel. int. Analog’s cont.
None
44 91
100 15.6
1.60 0.14
48 97
100 11.5
0.38 0.65
Acetyl
44 86 118
100 62.4 45.4
0.81 0.54 0.21
48 90 127
100 61.0 27.1
0.06 0.73 0.17
TCA
91 92 118
63.8 8.81 100
1.13 2.53 0.40
97 98 128
63.1 37.4 89.5
3.89 3.43 1.35
TFA
91 118 140
43.4 89.3 100
0.30 0.17 0.44
97 128 144
37.7 51.8 100
3.14 1.02 0.85
PFP
91 118 190
36.0 73.0 100
0.21 0.20 0.08
97 128 194
32.7 47.9 100
0.23 1.03 0.22
HFB
91 118 223
27.0 57.3 3.35
0.27 0.09 0.49
97 128 227
31.3 47.3 7.98
0.17 0.72 0.43
Table I — Stimulants
© 2010 by Taylor and Francis Group, LLC
386
Table I-1e. (Continued) CD Groupc
Amphetamine Ion (m/z)d Rel. int. Analog’s cont.
Amphetamine-d10 Ion (m/z)d Rel. int. Analog’s cont.
4-CB
91 118 248 266 294
42.1 100 35.0 41.8 43.6
0.45 0.19 0.27 0.18 0.15
97 128 251 270 298
52.8 100 33.3 69.2 82.9
0.16 0.42 1.01 0.06 0.04
PFB
91 118 238 239
11.3 26.9 48.8 5.04
0.32 1.42 0.15 2.01
97 128 242 243
11.3 15.0 48.8 4.98
0.02 0.11 0.04 0.17
Propylformyl
91 118 130 162
41.7 6.96 100 3.40
0.54 2.55 0.93 0.89
97 126 134 172
34.5 2.75 100 2.47
0.29 0.82 1.08 0.00
l-TPC (l-l)
237
39.4
0.05
241
44.9
0.05
l-TPC (d-d)
91 237
22.2 40.3
4.64 0.06
97 241
16.2 46.4
4.93 0.02
l-MTPA (l-l)
91 118 162 234 260 261
65.8 10.8 14.7 15.3 55.7 7.73
— 2.31 0.30 4.11 0.17 2.29
97 128 172 236 264 265
38.1 10.2 13.8 5.75 56.0 7.49
— 2.17 0.14 1.48 0.10 0.14
l-MTPA (d-d)
91 118 162 260 261
71.9 12.1 17.3 57.9 7.93
— 2.83 0.48 0.33 2.64
97 128 172 264 265
41.6 11.1 16.3 59.3 8.01
— 2.00 0.16 0.10 0.16
TMS
91 116 192
11.5 100 7.80
2.50 0.30 2.11
97 120 202
10.3 100 7.20
1.05 0.51 1.04
t-BDMS
91 100 158 159 192 234
7.29 16.0 100 15.5 20.0 3.66
3.40 1.72 0.03 1.40 0.40 0.46
97 104 162 163 202 244
6.19 18.2 100 14.6 20.9 2.48
1.35 0.95 0.40 0.63 0.00 0.00
TFA/ t-BDMS
91 119 254 255 288 289
37.1 19.8 100 15.9 24.8 4.76
0.28 0.81 0.06 1.06 0.09 0.18
97 129 258 259 298 299
31.3 25.6 100 16.8 25.9 5.07
0.55 0.34 0.10 0.31 0.00 0.00
PFP/ t-BDMS
91 119 304 305 338 349
48.0 21.9 100 18.1 14.4 3.17
0.28 2.81 0.05 1.13 0.06 0.25
98 129 308 309 348 349
36.4 26.9 100 18.5 15.4 3.37
0.25 0.36 0.05 0.08 0.02 0.00
HFB/ t-BDMS
91 119 354 355 388 389
47.8 21.7 100 19.7 13.1 3.09
0.50 4.12 0.07 1.86 0.00 0.00
98 129 358 359 398 399
39.0 28.8 100 18.4 12.9 3.01
0.29 0.94 0.05 0.09 0.38 1.15
a–d
See the corresponding footnotes in Table I-1a. Appendix Two — Ion Intensity Cross-Contribution Data
© 2010 by Taylor and Francis Group, LLC
387
Table I-1f. Relative intensity and cross-contribution dataa of ionsb with potential for designating the analyte and the adapted internal standard — Amphetamine/amphetamine-d11 CD Groupc
Amphetamine Ion (m/z)d Rel. int. Analog’s cont.
Amphetamine-d11 Ion (m/z)d Rel. int. Analog’s cont.
None
44 91 120
100 15.6 3.54
4.96 3.80 3.98
48 98 128
100 12.0 2.99
2.68 3.88 2.31
Acetyl
44 86 91 118
100 62.4 31.6 45.4
0.19 0.06 3.51 0.18
48 90 98 128
100 61.1 34.4 42.9
0.43 1.26 0.16 0.28
TCA
91 118 190
63.8 100 66.2
0.82 0.27 2.45
98 128 194
66.8 100 68.3
2.18 1.38 3.41
TFA
91 118 140
43.4 89.3 100
0.30 0.17 0.38
98 128 144
41.6 82.3 100
0.35 0.64 0.86
PFP
91 118 190
36.0 73.0 100
0.15 0.20 0.09
98 128 194
36.1 72.7 100
0.13 0.63 0.00
HFB
91 118 223 240
27.0 57.3 3.35 100
0.19 0.09 0.53 0.06
98 128 227 244
38.5 74.8 7.08 100
0.08 0.45 0.47 0.01
4-CB
91 118 248 266 294
42.1 100 35.0 41.8 43.6
0.28 0.12 0.13 0.12 0.11
98 128 251 270 298
46.3 100 21.9 46.3 56.6
0.10 0.46 1.53 0.15 0.12
PFB
118 238
26.9 48.8
1.42 0.18
128 242
24.4 29.9
0.10 0.09
Propylformyl
91 130 118 162
41.7 100 6.96 3.40
0.32 — 0.47 0.00
98 134 126 173
46.8 100 3.84 2.19
0.01 — 0.72 0.68
l-TPC (l-l)
237
39.4
0.04
241
45.0
0.03
l-TPC (d-d)
237
40.3
0.05
241
45.7
0.02
l-MTPA (l-l)
91 118 162 234 260 261
65.8 10.8 14.7 15.3 55.7 7.73
— 1.21 0.11 1.83 0.06 4.77
98 128 173 236 264 265
71.1 10.7 14.9 10.4 55.9 7.43
— 3.49 0.77 1.20 0.17 0.32
l-MTPA (d-d)
91 118 162 234 260
71.9 12.1 17.3 16.1 57.9
— 1.36 0.21 2.73 0.13
98 128 173 236 264
70.5 11.0 16.3 11.1 59.7
— 3.54 0.77 1.26 0.14
TMS
91 116 192
11.5 100 7.80
2.70 0.09 0.11
98 120 203
12.5 100 6.51
2.85 0.54 1.44
t-BDMS
100 158 159 192 234
16.0 100 15.5 20.0 3.66
0.58 0.21 4.77 0.29 0.76
104 162 163 203 245
19.0 100 14.4 21.5 2.73
0.84 0.40 0.56 0.00 1.51
TFA/ t-BDMS
91 119 254 255 288 289
37.1 19.8 100 15.9 24.8 4.76
0.24 0.70 0.04 4.04 0.19 0.34
98 130 258 259 299 300
56.1 25.9 100 16.9 26.5 5.18
0.12 0.47 0.09 0.32 0.00 0.57
Table I — Stimulants
© 2010 by Taylor and Francis Group, LLC
388
Table I-1f. (Continued) CD Groupc
Amphetamine Ion (m/z)d Rel. int. Analog’s cont.
Amphetamine-d11 Ion (m/z)d Rel. int. Analog’s cont.
PFP/ t-BDMS
91 119 304 305 338 339
48.0 21.9 100 18.1 14.4 3.17
0.29 2.83 0.07 3.96 0.08 0.27
98 130 308 309 349 350
65.9 26.6 100 18.5 15.8 3.22
0.17 0.55 0.05 0.03 0.00 0.00
HFB/ t-BDMS
91 119 354 355 388 389
47.8 21.7 100 19.7 14.4 3.17
0.35 3.16 0.05 4.10 0.00 0.00
98 130 358 359 399 400
59.4 23.7 100 19.3 14.0 3.22
0.16 1.54 0.05 0.11 0.21 0.23
a–d
See the corresponding footnotes in Table I-1a.
Table I-2a. Relative intensity and cross-contribution dataa of ionsb with potential for designating the analyte and the adapted internal standard — Methamphetamine/methamphetamine-d5 CD Groupc
Methamphetamine Ion (m/z)d Rel. int. Analog’s cont.
Methamphetamine-d5 Ion (m/z)d Rel. int. Analog’s cont.
None
58
100
3.40
62
100
0.60
Acetyl
58 100
100 76.1
0.54 0.25
62 104
100 73.7
0.18 0.39
TCA
204
95.6
0.07
208
95.5
3.52
TFA
110 154
24.5 100
0.63 0.14
113 158
23.6 100
0.49 0.57
PFP
160 204
28.7 100
0.49 0.05
163 208
26.7 100
0.12 0.03
HFB
210 254
29.7 100
0.50 0.04
213 258
26.7 100
0.05 0.01
4-CB
262 280 308 309
11.3 13.2 100 11.7
0.06 0.01 0.06 0.81
266 284 312 313
10.6 12.9 100 11.7
0.17 0.88 0.04 0.07
PFB
252 253
83.7 9.69
0.23 0.96
256 257
85.4 9.63
0.01 0.44
Propylformyl
58 102 144 176
41.7 30.5 100 3.92
0.95 0.50 0.04 0.00
62 106 148 181
43.4 30.3 100 4.07
0.39 0.39 1.29 0.13
l-TPC(l-l)
58 176 251
46.8 2.01 45.8
0.35 1.70 0.04
62 181 255
50.2 2.16 49.6
0.22 0.78 0.03
l-TPC(d-d)
58 176 251
45.1 1.84 45.3
0.42 1.75 0.06
62 181 255
48.7 2.04 48.2
0.19 0.65 0.03
l-MTPA(l-l)
176 200 274 275
4.58 7.02 57.1 8.50
1.48 1.52 3.18 2.75
181 204 278 279
4.30 4.68 54.2 8.00
0.22 0.61 0.01 0.11
l-MTPA(d-d)
176 200 274 275
4.16 7.26 60.8 8.59
2.31 4.31 0.78 0.34
181 204 278 279
4.20 5.20 61.2 9.32
0.34 0.12 0.01 0.11
Appendix Two — Ion Intensity Cross-Contribution Data
© 2010 by Taylor and Francis Group, LLC
389
Table I-2a. (Continued) CD Groupc
Methamphetamine Ion (m/z)d Rel. int. Analog’s cont.
Methamphetamine-d5 Ion (m/z)d Rel. int. Analog’s cont.
TMS
130 206
100 7.05
0.13 0.37
134 211
100 6.28
0.62 0.17
t-BDMS
172 206 248
100 16.2 2.58
0.26 0.32 0.00
176 211 253
100 14.1 3.06
1.20 1.42 0.00
a–d
See the corresponding footnotes in Table I-1a.
Table I-2b. Relative intensity and cross-contribution dataa of ionsb with potential for designating the analyte and the adapted internal standard — Methamphetamine/methamphetamine-d8 CD Groupc
Methamphetamine Ion (m/z)d Rel. int. Analog’s cont.
Methamphetamine-d8 Ion (m/z)d Rel. int. Analog’s cont.
None
58 134
100 2.79
— 3.24
65 139
100 2.05
— 4.40
Acetyl
58 100
100 76.1
0.39 0.25
62 107
100 72.9
3.10 0.02
TCA
202 204 206
100 95.6 30.6
0.96 0.38 2.13
209 211 213
100 96.4 31.3
0.21 0.08 0.07
TFA
110 154
24.5 100
0.41 0.22
113 161
23.1 100
0.54 0.09
PFP
160 204
28.7 100
0.12 0.04
163 211
27.3 100
0.08 0.01
HFB
210 254
29.7 100
0.17 0.05
213 261
23.3 100
0.07 0.01
4-CB
262 280 308 309
11.3 13.2 100 11.7
0.05 0.09 0.07 0.00
268 287 315 316
7.56 11.4 100 11.6
0.21 0.00 0.01 0.02
PFB
252 253
83.7 9.69
0.21 0.93
259 260
84.2 9.68
0.01 0.43
Propylformyl
102 144 176
30.5 100 3.92
0.31 0.04 0.12
109 151 184
31.0 100 4.19
0.13 0.02 0.11
l-TPC (l-l)
58 176 251
46.8 2.01 45.8
0.29 1.66 0.04
65 184 258
53.6 2.25 50.6
4.61 0.30 0.56
l-TPC (d-d)
58 176 251
45.1 1.84 45.3
0.31 1.66 0.04
65 184 258
51.7 2.13 50.5
4.65 0.38 0.60
l-MTPA (l-l)
176 200 274 275
4.58 7.02 57.1 8.50
0.37 1.22 3.31 3.28
184 204 281 282
4.23 4.88 57.2 8.18
0.21 0.09 0.00 0.23
l-MTPA (d-d)
176 200 274 275
4.58 7.26 60.8 8.59
1.27 2.64 2.11 2.48
184 204 281 282
4.09 5.41 63.8 9.35
0.48 0.13 0.00 0.31
TMS
130 206
100 7.05
0.00 0.07
137 214
100 6.26
0.03 1.54
Table I — Stimulants
© 2010 by Taylor and Francis Group, LLC
390
Table I-2b. (Continued) CD Groupc t-BDMS a–d
Methamphetamine Ion (m/z)d Rel. int. Analog’s cont. 172 206
100 16.2
0.83 0.96
Methamphetamine-d8 Ion (m/z)d Rel. int. Analog’s cont. 179 214
100 16.3
0.00 0.13
See the corresponding footnotes in Table I-1a.
Table I-2c. Relative intensity and cross-contribution dataa of ionsb with potential for designating the analyte and the adapted internal standard — Methamphetamine/methamphetamine-d9 CD Groupc
Methamphetamine Ion (m/z)d Rel. int. Analog’s cont.
None
58
100
—
Acetyl
58 100
100 76.1
TCA
91 202 204
TFA
Methamphetamine-d9 Ion (m/z)d Rel. int. Analog’s cont. 65
100
—
0.43 0.26
65 107
100 70.4
4.00 0.82
42.8 100 95.6
4.14 0.10 0.19
93 209 211
32.6 100 96.2
1.54 0.24 0.16
110 118 154
24.5 29.4 100
0.72 4.87 0.29
113 123 161
23.1 26.2 100
0.51 0.62 0.12
PFP
160 204
28.7 100
0.12 0.05
163 211
26.6 100
0.10 0.01
HFB
91 118 210 254
16.8 23.9 29.7 100
4.89 4.97 0.17 0.06
93 123 213 261
10.3 18.0 25.3 100
2.14 0.15 0.06 0.01
4-CB
91 118 262 280 308 309
19.5 14.8 11.3 13.2 100 11.7
2.47 3.89 0.06 0.09 0.08 0.14
93 123 268 287 315 316
16.4 11.6 7.63 12.1 100 11.7
0.77 0.04 0.17 0.09 0.07 0.09
PFB
252 253
83.7 9.69
0.15 0.74
259 260
82.4 9.12
0.08 0.52
Propylformyl
102 144 176
30.5 100 3.92
0.00 0.00 0.23
109 151 185
32.5 100 3.98
0.14 0.03 0.21
l-TPC (l-l)
58 176 251
46.8 2.01 45.8
0.34 1.74 0.04
65 185 258
51.3 2.30 50.6
4.56 1.25 0.57
l-TPC(d-d)
58 176 251
45.1 1.84 45.3
0.35 1.74 0.04
65 185 258
49.1 2.19 50.1
4.62 1.53 0.61
l-MTPA (l-l)
176 200 274 275
4.58 7.02 57.1 8.50
0.82 0.50 0.08 0.22
185 204 281 282
4.35 4.87 57.8 8.50
1.28 0.49 0.00 0.00
l-MTPA (d-d)
176 200 274 275
4.58 7.26 60.8 8.59
0.96 1.43 0.11 0.14
185 204 281 282
4.17 5.57 63.9 9.09
2.02 0.32 0.00 0.00
TMS
130 206
100 7.05
0.00 0.00
137 215
100 6.35
0.02 0.00
Appendix Two — Ion Intensity Cross-Contribution Data
© 2010 by Taylor and Francis Group, LLC
391
Table I-2c. (Continued) CD Groupc t-BDMS
a–d
Methamphetamine Ion (m/z)d Rel. int. Analog’s cont. 172 206 248
100 16.2 2.58
0.72 1.01 0.00
Methamphetamine-d9 Ion (m/z)d Rel. int. Analog’s cont. 179 215 257
100 17.9 2.09
0.17 0.34 4.82
See the corresponding footnotes in Table I-1a.
Table I-2d. Relative intensity and cross-contribution dataa of ionsb with potential for designating the analyte and the adapted internal standard — Methamphetamine/methamphetamine-d11 CD Groupc
Methamphetamine Ion (m/z)d Rel. int. Analog’s cont.
Methamphetamine-d11 Ion (m/z)d Rel. int. Analog’s cont.
None
58 91 134
100 11.1 2.79
3.49 4.00 3.72
64 96 142
100 7.21 2.07
0.63 0.11 0.19
Acetyl
58 91 100 118
100 18.2 76.1 9.50
— 1.40 0.40 0.86
64 96 106 126
100 9.80 74.1 4.88
— 0.00 0.11 0.00
TCA
91 202 204 206
42.8 100 95.6 30.6
1.16 0.05 0.67 1.20
96 208 210 212
23.0 100 95.3 30.6
1.60 3.21 0.07 0.14
TFA
91 118 154
14.5 29.4 100
1.16 0.27 0.12
96 126 160
9.69 30.2 100
2.98 0.87 0.18
PFP
91 118 160 204
13.1 22.0 28.7 100
0.63 0.28 1.36 0.06
96 126 163 210
7.75 21.8 25.8 100
0.66 0.56 0.10 0.00
HFB
91 118 210 254
16.8 23.9 29.7 100
0.68 0.25 0.28 0.05
96 126 213 260
8.25 21.3 26.9 100
0.47 0.22 0.05 0.00
4-CB
91 118 262 280 308 309
19.5 14.8 11.3 13.2 100 11.7
0.53 0.25 0.08 0.01 0.07 0.53
97 126 267 286 314 315
10.4 16.3 7.80 11.9 100 11.6
0.42 0.23 0.20 0.24 0.01 0.47
PFB
91 118 252 253
7.97 6.62 83.7 9.69
0.73 4.45 0.25 0.97
96 126 258 259
6.85 6.18 83.1 9.80
0.28 0.49 0.02 0.89
Propylformyl
58 91 102 144
41.7 26.2 30.5 100
1.37 1.83 0.51 0.10
64 96 108 150
45.9 16.0 30.5 100
0.60 0.20 0.59 0.13
l-TPC (l-l)
58 119 251
46.8 7.35 45.8
0.38 2.49 0.04
65 127 257
50.3 8.76 50.8
0.44 1.92 2.96
l-TPC (d-d)
58 119 251
45.1 7.59 45.3
0.39 2.35 0.04
65 127 257
47.3 9.09 52.0
0.45 1.93 3.13
Table I — Stimulants
© 2010 by Taylor and Francis Group, LLC
392
Table I-2d. (Continued) CD Groupc
Methamphetamine Ion (m/z)d Rel. int. Analog’s cont.
Methamphetamine-d11 Ion (m/z)d Rel. int. Analog’s cont.
l-MTPA (l-l)
176 200 274 275
4.58 7.02 57.1 8.50
0.49 1.19 0.31 0.11
187 203 280 281
3.71 6.65 57.2 8.86
4.68 1.05 0.02 0.00
l-MTPA (d-d)
176 200 274 275
4.58 7.26 60.8 8.59
0.84 2.07 0.43 0.16
187 203 280 281
3.77 7.54 61.5 9.64
1.34 2.03 0.01 0.00
TMS
91 130 206
8.68 100 7.05
2.32 0.00 0.00
96 136 217
6.79 100 7.03
0.44 0.09 0.15
t-BDMS
172 206
100 16.2
1.37 2.71
178 217
100 18.2
0.24 0.00
a–d
See the corresponding footnotes in Table I-1a.
Table I-2e. Relative intensity and cross-contribution dataa of ionsb with potential for designating the analyte and the adapted internal standard — Methamphetamine/methamphetamine-d14 CD Groupc
Methamphetamine Ion (m/z)d Rel. int. Analog’s cont.
Methamphetamine-d14 Ion (m/z)d Rel. int. Analog’s cont.
None
58 91 134
100 11.1 2.79
— 0.97 1.25
65 98 145
100 8.75 2.17
— 1.87 3.23
Acetyl
58 91 100 118
100 18.2 76.1 9.50
0.28 0.80 0.37 0.07
65 98 107 128
100 16.9 70.7 7.93
3.29 0.18 0.11 0.63
TCA
91 202 204
42.8 100 95.6
0.47 0.24 0.08
98 209 211
41.9 100 95.6
0.05 0.30 0.02
TFA
91 118 154
14.5 29.4 100
1.60 0.23 0.28
98 128 161
13.6 25.7 100
1.99 3.31 0.12
PFP
91 118 160 204
13.1 22.0 28.7 100
0.32 0.21 0.56 0.13
98 128 163 211
12.8 20.2 26.7 100
0.71 2.56 0.11 0.00
HFB
91 118 210 254
16.8 23.9 29.7 100
0.29 0.15 0.16 0.03
98 128 213 261
13.7 17.5 24.8 100
0.33 2.34 0.06 0.00
4-CB
91 118 262 280 308 309
19.5 14.8 11.3 13.2 100 11.7
0.36 0.17 0.10 0.09 0.08 0.00
98 128 268 287 315 316
19.7 11.7 7.63 12.2 100 12.0
0.16 0.64 0.16 0.04 0.02 0.00
PFB
91 118 252 253
7.97 6.62 83.7 9.69
0.24 4.50 0.02 0.58
98 128 259 260
8.98 5.27 80.6 9.17
0.08 0.72 0.03 0.44
Appendix Two — Ion Intensity Cross-Contribution Data
© 2010 by Taylor and Francis Group, LLC
393
Table I-2e. (Continued) CD Groupc
Methamphetamine Ion (m/z)d Rel. int. Analog’s cont.
Methamphetamine-d14 Ion (m/z)d Rel. int. Analog’s cont.
Propylformyl
91 102 144 176
26.2 30.5 100 3.92
1.52 0.23 0.41 0.45
98 109 151 190
30.9 32.5 100 3.09
0.12 0.18 0.03 2.71
l-TPC (l-l)
58 119 251
46.8 7.35 45.8
0.46 4.51 0.02
65 130 258
48.9 8.23 53.2
4.81 1.81 0.56
l-TPC (d-d)
58 119 251
45.1 7.59 45.3
0.46 4.73 0.02
65 130 258
48.3 8.44 51.0
4.74 1.72 0.58
l-MTPA (l-l)
200 274 275
7.02 57.1 8.50
0.57 0.02 0.07
204 281 282
5.11 59.9 8.82
0.90 0.00 0.00
l-MTPA (d-d)
200 274 275
7.26 60.8 8.59
0.46 0.25 0.31
204 281 282
5.15 64.1 9.78
0.24 0.00 0.00
TMS
91 130
8.68 100
1.89 0.50
98 137
9.26 100
0.82 0.02
t-BDMS
172 206
100 16.2
0.64 1.27
179 220
100 18.3
0.00 0.00
a–d
See the corresponding footnotes in Table I-1a.
Table I-3. Relative intensity and cross-contribution dataa of ionsb with potential for designating the analyte and the adapted internal standard — Ephedrine/ephedrine-d3 CD Groupc
Ephedrine Ion (m/z)d Rel. int. Analog’s cont.
Ephedrine-d3 Ion (m/z)d Rel. int. Analog’s cont.
None
58
100
2.49
61
100
0.05
Acetyl
58 100 101 189
100 69.4 27.0 2.07
2.22 0.60 1.14 2.05
61 103 104 192
100 65.8 26.3 2.18
0.18 1.38 1.80 2.98
TCA
42 202 204
10.2 100 95.9
1.52 0.74 3.37
45 205 207
9.69 100 95.2
3.18 2.14 0.20
[TFA]2
110 154 244
20.0 100 3.34
0.55 0.06 2.86
113 157 247
19.4 100 4.15
0.42 0.11 0.17
[PFP]2
160 204 294
21.8 100 3.72
0.57 0.22 2.59
163 207 297
20.8 100 4.84
0.23 0.17 0.21
[HFB]2
210 254 344
19.4 100 5.40
0.50 0.30 2.10
213 257 347
22.6 100 3.81
0.41 0.46 0.43
4-CB
166 262 280 308 309
9.88 18.0 21.1 100 79.2
3.64 1.22 1.35 1.16 1.50
169 265 283 311 312
10.3 17.2 20.3 100 78.9
2.58 2.35 0.36 1.07 0.42
PFB
252 253
90.8 10.9
0.41 4.10
255 256
94.8 11.3
0.11 0.26
Table I — Stimulants
© 2010 by Taylor and Francis Group, LLC
394
Table I-3. (Continued) CD Groupc
Ephedrine Ion (m/z)d Rel. int. Analog’s cont.
Ephedrine-d3 Ion (m/z)d Rel. int. Analog’s cont.
Propylformyl
58 144
50.9 100
2.31 0.08
61 147
50.1 100
0.20 0.50
l-TPC (d-d)
58 251
20.1 13.9
1.45 1.05
61 254
31.4 22.6
0.00 0.00
l-MTPA (d-d)
200 274 275
6.96 52.9 16.4
2.26 1.34 1.64
203 277 278
6.90 52.7 16.5
0.16 0.23 0.07
[TMS]2
130 294
100 2.31
0.31 0.72
133 297
100 2.29
1.55 1.68
a–d
See the corresponding footnotes in Table I-1a.
Table I-4. Relative intensity and cross-contribution dataa of ionsb with potential for designating the analyte and the adapted internal standard — Phenylpropanolamine/phenylpropanolamine-d3 CD Groupc
Phenylpropanolamine Ion (m/z)d Rel. int. Analog’s cont.
Phenylpropanolamine-d3 Ion (m/z)d Rel. int. Analog’s cont.
None
44
100
2.76
47
100
0.01
Acetyl
86 176
100 6.35
0.36 4.69
89 179
93.1 5.42
3.83 0.68
TCA
160 188 190
18.0 100 94.8
3.63 1.64 2.22
163 191 193
18.6 100 95.0
3.67 4.86 1.71
[TFA]2
140
100
3.42
143
100
0.01
[PFP]2
190 280
100 17.6
1.66 4.97
193 283
100 43.4
0.12 0.11
[HFB]2
240
100
1.76
243
100
0.05
4-CB
248 266 294 295 338 384
19.3 30.6 100 11.0 6.09 15.8
0.28 0.23 0.31 3.40 0.40 0.33
250 269 297 298 341 387
9.57 27.8 100 10.7 6.22 15.4
4.43 0.18 0.09 0.09 1.97 0.21
PFB
238 239
69.3 7.32
0.40 2.17
241 242
69.7 7.53
0.13 0.00
l-TPC (l-l)
220 237
5.97 25.4
3.91 3.80
223 240
5.69 23.8
0.00 0.13
l-MTPA (l-l)
229 260 261
17.6 20.4 56.6
1.10 0.88 1.00
232 263 264
16.6 19.6 55.5
0.74 3.53 0.25
l-MTPA (d-d)
229 260 261
19.2 20.2 58.6
1.40 0.83 0.93
232 263 264
17.5 19.0 56.6
0.73 3.50 0.17
[TMS]2
116
100
3.71
119
100
1.01
t-BDMS
158
100
4.24
161
100
0.71
[t-BDMS]2
None (No ion pair meets the selection criteria)
Appendix Two — Ion Intensity Cross-Contribution Data
© 2010 by Taylor and Francis Group, LLC
395
Table I-4. (Continued) CD Groupc
Phenylpropanolamine Ion (m/z)d Rel. int. Analog’s cont.
Phenylpropanolamine-d3 Ion (m/z)d Rel. int. Analog’s cont.
TFA/ [t-BDMS]2
191 254 418 419
7.33 5.50 35.8 11.7
4.14 1.75 0.24 0.45
194 257 421 422
6.35 5.68 41.9 13.6
1.90 0.84 2.35 1.30
PFP/ [t-BDMS]2
304 468 469
6.07 36.9 12.2
1.39 0.25 0.96
307 471 472
6.14 33.5 10.5
1.16 2.51 1.40
HFB/ [t-BDMS]2
191 354 518 519
4.41 6.99 19.6 6.60
4.68 1.51 0.25 0.53
194 357 521 522
4.33 7.41 25.0 8.67
4.18 3.78 2.50 1.35
a–d
See the corresponding footnotes in Table I-1a.
Table I-5. Relative intensity and cross-contribution dataa of ionsb with potential for designating the analyte and the adapted internal standard — MDA/MDA-d5 CD Groupc
MDA Ion (m/z)d Rel. int.
Analog’s cont.
None
44
100
—
Acetyl
44 86 162 221
56.6 12.4 100 6.31
TCA
162 190 323
TFA
MDA-d5 Ion (m/z)d Rel. int.
Analog’s cont.
48
100
—
2.71 2.82 2.98 4.02
48 90 166 226
95.6 17.2 95.6 11.9
0.01 1.86 0.02 0.24
100 13.5 4.21
1.06 1.75 1.25
167 194 328
68.6 16.2 6.03
0.07 2.07 2.39
135 162 275
100 45.6 15.7
— 0.47 0.26
136 167 280
100 27.5 16.9
— 0.03 0.00
PFP
135 162 190 325
100 48.7 8.11 12.7
— 0.46 0.64 0.25
136 167 194 330
100 29.6 8.75 13.8
— 0.04 0.24 0.00
HFB
135 162 240 375
100 54.6 9.69 12.8
— 0.45 0.65 0.25
136 167 244 380
100 33.5 10.7 13.8
— 0.09 0.03 0.00
4-CB
162 248 266 429
100 8.86 9.08 4.99
1.30 2.35 2.64 1.23
166 251 270 434
74.4 7.37 12.6 7.79
0.09 0.57 0.05 0.00
PFB
162 238 373
77.6 16.5 4.82
0.78 1.44 2.86
166 232 378
35.9 15.9 5.96
0.09 0.12 0.00
Propylformyl
130 162 206 265
100 37.8 8.21 25.5
0.34 0.70 0.52 0.40
134 167 211 270
100 24.3 9.69 28.6
2.04 1.28 0.10 0.00
l-TPC (l-l)
135 237 372
19.2 7.51 7.65
— 0.51 0.35
136 241 377
12.1 4.73 5.31
— 0.10 0.02
Table I — Stimulants
© 2010 by Taylor and Francis Group, LLC
396
Table I-5. (Continued) CD Groupc
MDA Ion (m/z)d Rel. int.
Analog’s cont.
MDA-d5 Ion (m/z)d Rel. int.
Analog’s cont.
l-TPC (d-d)
135 237 372
19.1 8.92 6.77
— 0.53 0.33
136 241 377
11.7 5.67 5.27
— 0.00 0.07
l-MTPA (l-l)
162 163 206 228 260
100 22.6 5.03 3.66 5.38
0.20 4.98 0.85 0.57 0.15
166 167 211 232 264
74.8 86.9 8.04 3.18 7.29
0.07 0.30 0.59 0.87 0.21
l-MTPA (d-d)
162 163 206 228 260
100 24.0 6.00 3.82 5.48
0.23 4.51 0.83 0.63 0.23
166 167 211 232 264
76.5 88.4 9.21 3.14 6.87
0.06 0.34 0.33 0.93 0.30
TMS
116 236
100 6.22
0.21 0.85
120 241
100 3.53
0.22 0.11
t-BDMS
100 158 236 278
6.60 100 3.98 2.10
2.89 0.04 0.49 0.13
104 162 241 286
5.80 100 4.40 2.00
7.35 0.52 0.08 0.26
TFA/ t-BDMS
163 254 332 389
20.5 100 8.12 12.1
1.61 0.04 0.98 0.11
168 258 337 394
20.7 100 9.36 14.0
0.24 0.23 0.20 0.03
PFP/ t-BDMS
163 304 382 439
12.4 100 9.50 14.9
0.75 0.03 0.69 2.75
168 308 387 444
18.1 100 10.7 13.6
0.56 0.50 0.36 0.20
HFB/ t-BDMS
163 354 432 489
16.3 100 8.44 10.6
0.73 0.03 0.24 0.12
168 358 437 494
25.0 100 7.97 8.32
0.12 0.17 0.30 0.45
a–d
See the corresponding footnotes in Table I-1a.
Table I-6. Relative intensity and cross-contribution dataa of ionsb with potential for designating the analyte and the adapted internal standard — MDMA/MDMA-d5 CD Groupc
MDMA Ion (m/z)d Rel. int.
Analog’s cont.
MDMA-d5 Ion (m/z)d Rel. int.
Analog’s cont.
None
58
100
2.38
62
100
0.67
Acetyl
58 162 235
100 89.3 2.70
1.20 2.37 1.77
62 164 240
100 46.1 2.32
0.35 2.24 0.00
TCA
162 204
100 82.0
1.43 0.14
164 208
66.4 94.7
3.79 3.60
TFA
110 154 289
29.7 100 14.0
0.37 0.04 0.04
113 158 294
30.0 100 15.1
0.08 0.02 0.00
PFP
204 339
100 9.81
0.02 0.09
208 344
100 10.1
0.02 0.00
HFB
162 210 254 389
71.7 37.8 100 7.35
1.56 0.60 0.03 0.05
164 213 258 394
39.7 36.5 100 7.32
3.44 0.02 0.00 0.00
Appendix Two — Ion Intensity Cross-Contribution Data
© 2010 by Taylor and Francis Group, LLC
397
Table I-6. (Continued) CD Groupc
MDMA Ion (m/z)d Rel. int.
Analog’s cont.
MDMA-d5 Ion (m/z)d Rel. int.
Analog’s cont.
4-CB
162 262 280 308 443
100 17.0 19.6 66.6 2.04
1.91 0.17 0.14 0.11 0.11
164 266 284 312 448
84.6 24.9 29.0 100 3.18
2.97 0.14 0.05 0.01 0.00
PFB
162 252 253 387
43.2 39.7 4.62 1.36
2.64 0.57 2.36 3.96
164 256 257 392
23.6 40.4 4.62 1.51
1.27 0.02 0.24 0.00
Propylformyl
58 102 144 220 279
38.2 35.5 100 4.71 7.82
0.68 0.36 0.02 3.73 0.32
62 106 148 225 284
41.5 41.5 100 4.91 6.78
0.57 3.10 0.92 0.25 0.32
l-TPC (l-l)
58 251 386
39.0 12.7 2.71
0.30 0.08 0.04
62 255 391
40.0 13.0 3.37
0.35 0.07 0.03
l-TPC (d-d)
58 251 386
30.8 11.4 3.42
0.33 0.06 0.05
62 255 391
38.6 9.86 2.44
0.43 0.06 0.08
l-MTPA (l-l)
162 200 274
53.4 5.91 16.7
1.95 0.86 0.38
164 204 278
31.4 4.31 18.6
2.05 0.58 0.05
l-MTPA (d-d)
162 200 274
52.4 5.90 16.7
2.07 0.94 0.43
164 204 278
30.7 4.44 17.7
2.10 0.71 0.05
TMS
130 250
100 3.90
0.11 1.26
134 255
100 5.98
0.40 0.23
t-BDMS
172 173
100 15.8
0.01 0.43
176 177
100 16.0
0.30 1.30
a–d
See the corresponding footnotes in Table I-1a.
Table I-7a. Relative intensity and cross-contribution dataa of ionsb with potential for designating the analyte and the adapted internal standard — MDEA/MDEA-d5 CD Groupc
MDEA Ion (m/z)d Rel. int.
Analog’s cont.
MDEA-d5 Ion (m/z)d Rel. int.
Analog’s cont.
None
72
100
1.22
77
100
7.21
Acetyl
72 114
100 28.4
— 0.54
77 119
100 29.5
— 0.90
TCA
216 218
100 93.3
0.10 0.10
221 223
100 93.0
2.04 0.30
TFA
168 303
100 8.26
0.02 0.02
173 308
100 9.29
0.14 0.00
PFP
218 353
100 6.16
0.01 0.06
223 358
100 6.00
0.05 0.00
HFB
268 403
100 4.92
0.03 0.14
273 408
100 4.54
0.07 1.33
4-CB
276 294 322 323
10.7 13.0 81.6 10.8
0.21 0.17 0.04 0.18
281 299 327 328
11.7 15.1 100 13.1
0.55 0.12 0.03 0.08
Table I — Stimulants
© 2010 by Taylor and Francis Group, LLC
398
Table I-7a. (Continued) CD Groupc
MDEA Ion (m/z)d Rel. int.
Analog’s cont.
MDEA-d5 Ion (m/z)d Rel. int.
Analog’s cont.
PFB
266 267
46.8 6.59
0.07 1.54
271 272
46.0 5.63
0.23 1.55
Propylformyl
158 116 234 293
100 32.0 2.55 3.42
— 0.36 0.17 0.04
163 121 239 298
100 31.9 3.00 3.45
— 1.80 0.35 0.07
l-TPC (l-l)
72 265 400
60.1 14.9 1.22
— 0.05 0.00
77 270 405
56.1 18.4 2.03
— 0.05 0.00
l-TPC (d-d)
72 265 400
54.0 12.8 1.57
— 0.08 0.00
77 270 405
50.1 15.5 2.57
— 0.07 0.05
l-MTPA (l-l)
214 262 288 289
6.84 2.52 27.5 4.31
0.34 4.45 0.18 0.27
219 267 293 294
6.59 2.52 26.7 4.16
0.34 0.00 0.07 0.28
l-MTPA (d-d)
214 288 289
6.51 27.7 4.26
0.48 0.23 0.29
219 293 294
6.72 26.6 4.27
0.34 0.12 0.35
TMS
144 264
100 5.92
0.06 0.26
149 269
100 7.09
0.70 0.13
a–d
See the corresponding footnotes in Table I-1a.
Table I-7b. Relative intensity and cross-contribution dataa of ionsb with potential for designating the analyte and the adapted internal standard — MDEA/MDEA-d6 CD Groupc
MDEA Ion (m/z)d Rel. int.
Analog’s cont.
MDEA-d6 Ion (m/z)d Rel. int.
Analog’s cont.
None
72
100
1.00
78
100
1.67
Acetyl
72 114 162
100 28.4 57.1
0.72 0.63 1.64
78 120 165
100 29.2 75.1
2.00 0.59 0.16
TCA
162 216 218 220 351
75.7 100 93.3 2.28 2.64
1.24 0.09 0.11 1.31 0.04
165 222 224 226 357
78.6 100 92.6 30.4 3.12
0.34 3.28 0.06 0.10 3.89
TFA
140 162 168 303
36.2 63.0 100 8.26
0.25 1.09 0.10 0.01
144 165 174 309
26.4 68.5 100 9.36
0.39 0.12 0.19 0.00
PFP
162 190 218 353
58.6 41.1 100 6.16
0.75 0.29 0.06 0.00
165 194 224 359
63.1 29.1 100 5.73
0.23 0.05 0.01 0.00
HFB
162 240 268 403
55.5 43.0 100 4.92
1.26 0.67 0.04 0.05
165 244 274 409
59.8 29.5 100 4.38
0.17 0.02 0.01 0.00
Appendix Two — Ion Intensity Cross-Contribution Data
© 2010 by Taylor and Francis Group, LLC
399
Table I-7b. (Continued) CD Groupc
MDEA Ion (m/z)d Rel. int.
Analog’s cont.
MDEA-d6 Ion (m/z)d Rel. int.
Analog’s cont.
4-CB
162 163 276 294 322 323
100 31.2 10.7 13.0 81.6 10.8
0.95 3.01 0.09 0.11 0.04 0.10
165 166 281 300 328 329
100 31.3 8.28 11.1 82.9 10.8
0.27 0.45 0.61 0.09 0.01 0.05
PFB
162 266 267
39.3 46.8 6.59
1.02 0.43 0.00
165 272 273
40.7 50.3 6.48
0.18 0.07 0.42
Propylformyl
72 116 158 234 293
40.7 32.0 100 2.55 3.42
0.15 0.20 0.01 0.11 0.02
78 122 164 240 299
41.5 33.4 100 2.78 3.37
4.59 1.19 0.92 0.19 0.06
l-TPC (l-l)
72 162 265
60.1 65.8 14.9
0.56 0.94 0.16
78 165 271
49.3 59.3 13.6
3.72 1.23 0.24
l-TPC (d-d)
72 162 265
54.0 85.3 12.8
0.62 0.90 0.11
78 165 271
41.6 75.3 11.7
4.16 0.99 0.26
l-MTPA (l-l)
162 163 214 288 289
44.5 11.2 6.48 27.5 4.31
0.68 2.39 0.49 0.14 0.21
165 166 217 294 295
45.1 11.2 6.56 25.8 4.18
0.26 0.24 0.10 0.07 0.00
l-MTPA (d-d)
162 163 214 288 289
41.8 10.0 6.51 27.7 4.26
1.06 3.07 0.48 0.24 0.35
165 166 217 294 295
42.7 10.3 6.58 26.2 4.18
0.31 0.30 0.18 0.08 0.00
TMS
144 264
100 5.92
0.07 0.23
150 270
100 6.75
0.17 0.20
a–d
See the corresponding footnotes in Table I-1a.
Table I-8. Relative intensity and cross-contribution dataa of ionsb with potential for designating the analyte and the adapted internal standard — MBDB/MBDB-d5 CD Groupc
MBDB Ion (m/z)d Rel. int.
Analog’s cont.
MBDB-d5 Ion (m/z)d Rel. int.
Analog’s cont.
None
72
100
4.43
76
100
0.66
Acetyl
72 114 249
100 34.6 1.27
0.70 0.59 0.98
76 118 254
100 32.3 1.24
0.61 3.39 0.71
TCA
176 218 351
100 91.4 3.74
1.83 0.32 0.33
178 222 356
61.5 93.8 4.25
1.72 2.13 2.89
Table I — Stimulants
© 2010 by Taylor and Francis Group, LLC
400
Table I-8. (Continued) CD Groupc
MBDB Ion (m/z)d Rel. int.
Analog’s cont.
MBDB-d5 Ion (m/z)d Rel. int.
Analog’s cont.
TFA
110 168 303
18.2 100 11.6
0.37 0.03 0.02
113 172 308
18.1 100 12.1
0.45 0.07 0.00
PFP
160 176 190 218 353
28.3 67.8 5.25 100 7.75
0.43 1.03 1.87 0.02 0.04
163 178 194 222 358
28.2 37.5 3.29 100 8.10
0.65 4.02 0.66 0.03 0.10
HFB
176 210 268 403
61.9 27.6 100 5.86
0.95 1.63 0.02 0.03
178 213 272 408
34.1 26.2 100 6.00
3.21 0.20 0.03 0.00
4-CB
176 276 294 322 457
100 28.4 24.5 75.3 2.35
1.97 0.13 0.32 0.09 0.30
178 280 298 326 462
71.2 33.8 30.9 100 3.43
2.15 0.19 0.03 0.02 0.00
PFB
176 266
46.0 51.8
2.56 0.45
178 270
25.4 53.2
3.57 0.08
Propylformyl
72 116 158 234 293
42.1 44.5 100 3.15 4.26
0.30 0.85 0.00 0.75 0.02
76 120 162 239 298
39.2 43.3 100 3.82 5.36
1.49 0.89 0.31 0.03 0.00
l-TPC (l-l)
72 265 400
58.3 16.3 3.21
0.37 0.00 0.00
76 269 405
63.2 16.3 3.27
0.59 0.02 0.00
l-TPC (d-d)
72 265 400
52.2 12.5 2.54
0.43 0.00 0.00
76 269 405
52.2 13.3 3.04
0.63 0.03 0.10
l-MTPA (l-l)
176 248 288
55.8 4.41 20.2
2.36 2.84 1.05
178 252 292
30.4 2.62 20.4
1.47 0.29 0.07
l-MTPA (d-d)
176 248 288
55.3 4.35 20.8
2.51 4.08 1.25
178 252 292
31.2 2.60 21.1
1.43 0.33 0.07
TMS
144 250 264
100 2.14 4.53
0.08 1.22 0.29
148 255 269
100 2.07 4.42
0.65 0.00 0.10
a–d
See the corresponding footnotes in Table I-1a.
Table I-9. Relative intensity and cross-contribution dataa of ionsb with potential for designating the analyte and the adapted internal standard — Selegiline/selegiline-d8 CD Groupc None a–d
Selegiline Ion (m/z)d Rel. int. 96
100
Analog’s cont. 0.49
Selegiline-d8 Ion (m/z)d Rel. int. 103
100
See the corresponding footnotes in Table I-1a.
Appendix Two — Ion Intensity Cross-Contribution Data
© 2010 by Taylor and Francis Group, LLC
Analog’s cont. 1.03
401
Table I-10. Relative intensity and cross-contribution dataa of ionsb with potential for designating the analyte and the adapted internal standard — N-Desmethylselegiline/N-desmethylselegiline-d11 CD Groupc
N-Desmethylselegiline Ion (m/z)d Rel. int. Analog’s cont.
N-Desmethylselegiline-d11 Ion (m/z)d Rel. int. Analog’s cont.
None
82 91
100 16.3
3.61 0.73
86 98
100 15.0
0.14 0.30
Acetyl
82 91 124
100 16.9 44.6
2.21 1.60 1.25
86 98 128
100 18.7 48.9
0.30 2.69 1.53
TCA
91 228
49.8 96.0
1.25 0.79
98 232
51.7 95.5
0.05 3.55
TFA
91 118 178
24.2 41.1 100
0.50 0.47 0.16
98 128 182
24.8 36.8 100
0.32 2.90 0.04
PFP
91 118 228
29.3 37.9 100
1.43 1.50 1.15
98 128 232
26.5 29.2 100
0.20 4.83 0.00
HFB
91 118 278
27.3 35.4 100
1.39 2.75 1.20
98 128 282
32.6 32.6 100
0.11 2.79 1.04
4-CB
91 118 304 332
55.0 43.9 4.90 100
0.99 1.85 0.76 0.19
98 128 308 336
54.5 31.9 4.67 100
0.00 3.01 2.64 0.06
TMS
91 154 230
11.4 100 3.02
1.64 0.99 1.99
98 158 241
12.8 100 3.53
1.40 0.01 0.79
a–d
See the corresponding footnotes in Table I-1a.
Table I-11. Relative intensity and cross-contribution dataa of ionsb with potential for designating the analyte and the adapted internal standard — Fenfluramine/fenfluramine-d10 CD Groupc
Fenfluramine Ion (m/z)d Rel. int. Analog’s cont.
Fenfluramine-d10 Ion (m/z)d Rel. int. Analog’s cont.
None
72 73 230
100 6.51 2.73
0.58 3.96 1.66
81 82 239
100 7.32 1.10
0.73 3.84 3.14
Acetyl
72 114 216 254
100 58.8 3.35 2.39
0.13 0.69 0.36 0.29
81 123 223 264
100 55.1 2.53 2.56
0.08 0.10 0.00 0.00
TCA
159 216 218 220
58.0 100 95.4 30.7
2.70 0.25 0.29 1.29
161 225 227 229
32.5 100 94.6 30.6
0.53 0.01 0.07 0.84
TFA
159 168 186 308
13.5 100 4.60 4.48
2.68 0.61 2.61 0.00
161 177 191 318
4.91 100 2.27 4.21
2.73 0.10 1.98 0.00
PFP
159 218 358
13.7 100 4.02
2.25 0.11 0.11
161 227 368
5.66 100 3.82
2.72 1.54 1.22
Table I — Stimulants
© 2010 by Taylor and Francis Group, LLC
402
Table I-11. (Continued) CD Groupc
Fenfluramine Ion (m/z)d Rel. int. Analog’s cont.
Fenfluramine-d10 Ion (m/z)d Rel. int. Analog’s cont.
HFB
159 240 268 269 408
15.4 26.3 100 9.04 3.39
2.94 0.74 0.13 0.38 0.00
161 245 277 278 418
6.66 22.2 100 8.92 3.32
1.19 0.03 0.00 0.06 0.00
4-CB
159 220 276 294 322
39.5 8.98 8.12 9.55 100
3.83 2.45 0.47 0.57 0.29
161 224 284 303 331
20.5 9.44 5.48 7.79 100
0.84 3.26 0.89 0.23 0.00
a–d
See the corresponding footnotes in Table I-1a.
Table I-12. Relative intensity and cross-contribution dataa of ionsb with potential for designating the analyte and the adapted internal standard — Norcocaine/norcocaine-d3 CD Groupc
Norcocaine Ion (m/z)d Rel. int. Analog’s cont.
Norcocaine-d3 Ion (m/z)d Rel. int. Analog’s cont.
None
168 289
100 11.0
1.18 0.85
171 292
100 10.6
0.16 0.26
TFA
100 194 263 280 316 385
32.5 30.5 38.1 5.00 3.47 2.43
1.44 0.58 0.09 0.14 0.07 0.00
103 197 266 283 319 388
34.1 32.0 39.7 5.26 3.61 2.67
1.19 0.35 0.18 0.37 0.34 0.38
PFP
100 194 435
32.1 30.8 2.77
3.25 1.22 0.97
103 197 438
33.9 31.8 2.81
1.18 0.23 0.41
HFB
194 334 363 380 485
27.8 9.10 43.0 4.28 2.98
0.45 2.25 0.07 0.53 0.05
197 337 366 383 488
26.5 7.38 37.2 3.91 2.55
0.70 0.60 0.22 0.26 0.29
TMS
240 256 346 361
100 7.56 31.6 15.7
0.62 0.67 0.51 0.28
243 259 349 364
100 7.98 36.8 19.0
0.75 1.89 1.00 0.99
a–d
See the corresponding footnotes in Table I-1a.
Table I-13. Relative intensity and cross-contribution dataa of ionsb with potential for designating the analyte and the adapted internal standard — Cocaine/cocaine-d3 CD Groupc None
a–d
Cocaine Ion (m/z)d Rel. int. 82 182 198 272 303
91.1 100 11.9 10.6 26.4
Analog’s cont. 4.15 0.82 0.99 1.10 0.65
Cocaine-d3 Ion (m/z)d Rel. int. 85 185 201 275 306
94.3 100 9.98 10.5 26.0
See the corresponding footnotes in Table I-1a. Appendix Two — Ion Intensity Cross-Contribution Data
© 2010 by Taylor and Francis Group, LLC
Analog’s cont. 0.42 0.10 0.73 0.70 0.36
403
Table I-14a. Relative intensity and cross-contribution dataa of ionsb with potential for designating the analyte and the adapted internal standard — Cocaethylene/cocaethylene-d3 CD Groupc None
a–d
Cocaethylene Ion (m/z)d Rel. int. Analog’s cont. 82 196 212 272 317
100 96.9 12.6 18.0 27.8
3.20 0.81 1.01 0.45 0.56
Cocaethylene-d3 Ion (m/z)d Rel. int. Analog’s cont. 85 199 215 275 320
100 96.2 10.1 18.0 28.4
0.48 0.14 0.72 0.29 0.37
See the corresponding footnotes in Table I-1a.
Table I-14b. Relative intensity and cross-contribution dataa of ionsb with potential for designating the analyte and the adapted internal standard — Cocaethylene/cocaethylene-d8 CD Groupc None
a–d
Cocaethylene Ion (m/z)d Rel. int. Analog’s cont. 82 196 212 272 317
100 96.6 12.6 18.0 27.8
2.83 0.07 0.08 0.09 0.07
Cocaethylene-d8 Ion (m/z)d Rel. int. Analog’s cont. 85 204 220 275 325
100 94.5 9.92 14.4 26.8
0.48 0.07 0.03 0.34 0.04
See the corresponding footnotes in Table I-1a.
Table I-15. Relative intensity and cross-contribution dataa of ionsb with potential for designating the analyte and the adapted internal standard — Ecgonine methyl ester/ecgonine methyl ester-d3 CD Groupc
Ecgonine methyl ester Ion (m/z)d Rel. int. Analog’s cont.
Ecgonine methyl ester-d3 Ion (m/z)d Rel. int. Analog’s cont.
None
82 96 182 199
100 68.1 8.24 15.6
— 4.40 2.60 2.26
85 99 185 202
100 69.8 7.83 15.2
— 0.86 1.02 0.12
TFA
182 264 295
100 12.7 25.3
4.78 0.72 0.47
185 267 298
100 13.4 24.0
0.12 3.79 0.18
PFP
182 314 345
100 11.2 20.3
4.60 0.16 0.19
185 317 348
100 12.0 21.8
0.09 4.18 0.17
HFB
182 364 395
100 11.7 19.4
— 0.15 0.21
185 367 398
100 11.4 18.7
— 3.79 0.18
TMS
82 83 96 271
100 85.9 75.5 12.4
4.40 2.68 1.81 0.51
85 86 99 274
100 66.1 73.9 11.2
1.57 0.41 1.56 0.98
t-BDMS
82 83 96 182 256 313
100 54.9 41.2 26.5 22.1 5.37
2.54 2.63 2.25 0.96 0.52 0.55
85 86 99 185 259 316
100 45.2 42.5 25.7 20.1 4.46
1.71 0.67 2.57 3.67 0.73 0.94
a–d
See the corresponding footnotes in Table I-1a.
Table I — Stimulants
© 2010 by Taylor and Francis Group, LLC
404
Table I-16a. Relative intensity and cross-contribution dataa of ionsb with potential for designating the analyte and the adapted internal standard — Benzoylecgonine/benzoylecgonine-d3 CD Groupc
Benzoylecgonine Ion (m/z)d Rel. int. Analog’s cont.
Benzoylecgonine-d3 Ion (m/z)d Rel. int. Analog’s cont.
Methyl
82 83 182 198 272 303
83.6 33.4 100 12.4 10.4 26.2
3.51 3.93 3.60 0.31 0.10 0.12
85 86 185 201 275 306
83.5 22.3 100 9.82 10.3 26.4
1.42 0.72 0.08 0.59 0.75 0.29
Ethyl
82 196 212 272 317
79.7 100 13.2 18.9 29.7
2.81 2.63 0.33 0.12 0.13
85 199 215 275 320
89.4 100 10.8 20.2 32.5
0.52 0.09 0.45 0.28 0.33
Propyl
82 210 226 272 331
86.2 100 13.8 21.4 22.7
2.15 0.44 0.23 0.18 0.17
85 213 229 275 334
98.9 100 10.9 21.1 21.7
0.41 0.12 0.21 0.22 0.38
Butyl
82 224 240 272 345
100 99.1 14.6 20.6 25.5
2.32 2.19 0.13 0.10 0.11
85 227 243 275 348
92.1 100 12.1 22.4 29.8
0.49 0.12 0.54 0.20 0.30
Pentafluoro-1propoxy
82 272 300 316 421
47.0 13.0 100 13.0 21.2
3.01 1.75 0.25 0.19 0.12
85 275 303 319 424
56.8 12.7 100 9.60 19.6
0.26 0.69 0.11 0.17 0.32
Hexafluoro2-propoxy
164 272 318 334 439
11.5 9.65 100 12.6 20.5
1.21 0.55 — 0.39 0.10
167 275 321 337 442
11.8 9.51 100 9.71 20.5
3.35 0.68 — 0.15 0.20
TMS
82 240 256 346 361
100 71.6 11.6 7.59 21.7
1.95 0.73 0.45 1.03 0.18
85 243 259 349 364
100 71.9 9.36 7.53 21.5
0.52 0.76 0.89 1.37 1.36
t-BDMS
82 83 282 298 346 403
100 35.5 51.7 9.15 40.7 28.6
2.36 4.03 2.52 0.25 0.12 0.15
85 86 285 301 349 406
100 25.3 45.0 6.21 31.9 20.2
0.67 0.80 0.97 1.43 1.31 1.41
a–d
See the corresponding footnotes in Table I-1a.
Table I-16b. Relative intensity and cross-contribution dataa of ionsb with potential for designating the analyte and the adapted internal standard — Benzoylecgonine/benzoylecgonine-d8 CD Groupc Methyl
Benzoylecgonine Ion (m/z)d Rel. int. Analog’s cont. 182 198 272 303
100 12.4 10.4 26.2
3.86 0.83 0.09 0.08
Benzoylecgonine-d8 Ion (m/z)d Rel. int. Analog’s cont. 185 201 280 311
100 9.98 10.1 25.2
Appendix Two — Ion Intensity Cross-Contribution Data
© 2010 by Taylor and Francis Group, LLC
0.15 0.54 0.10 0.02
405
Table I-16b. (Continued) CD Groupc
Benzoylecgonine Ion (m/z)d Rel. int. Analog’s cont.
Benzoylecgonine-d8 Ion (m/z)d Rel. int. Analog’s cont.
Ethyl
196 212 272 317
100 13.2 18.9 29.7
2.38 0.57 0.06 0.07
199 215 280 325
100 10.6 20.4 33.8
0.13 0.44 0.08 0.04
Propyl
82 210 226 272 331
— 100 13.8 21.4 22.7
— 0.25 0.25 0.11 0.12
85 213 229 280 339
95.4 100 11.1 20.5 21.7
— 0.14 0.22 0.06 0.18
Butyl
105 224 240 272 345
37.5 99.1 14.6 20.6 25.5
1.69 2.68 0.21 0.06 0.06
110 227 243 280 353
32.7 100 12.2 22.1 29.5
4.86 0.17 0.62 0.07 0.01
PFPoxy
300 316 421
100 13.0 21.2
0.23 0.17 0.05
303 319 429
100 9.75 19.3
0.10 0.16 0.11
HFPoxy
164 272 334 439
11.5 9.65 12.6 20.5
0.89 0.29 0.33 0.01
167 280 337 447
13.3 9.26 10.3 24.1
4.73 0.08 0.16 0.00
TMS
82 122 240 256 346
— 10.3 71.6 11.6 7.59
— 4.43 0.66 0.40 0.16
85 125 243 259 354
100 8.73 72.6 9.54 7.86
— 1.81 0.79 1.00 0.24
t-BDMS
82 204 282 346 403
— 20.9 51.7 40.7 28.6
— 0.24 2.63 0.06 0.05
85 212 285 354 411
100 13.9 50.9 39.6 27.5
— 1.93 0.78 0.01 0.00
a–d
See the corresponding footnotes in Table I-1a.
Table I-17. Relative intensity and cross-contribution dataa of ionsb with potential for designating the analyte and the adapted internal standard — Ecgonine/ecgonine-d3 CD Groupc
Ecgonine Ion (m/z)d Rel. int.
Analog’s cont.
Ecgonine-d3 Ion (m/z)d Rel. int.
Analog’s cont.
[TMS]2
82 83 96 212 329
96.3 100 59.3 9.21 8.99
5.00 3.00 3.27 3.19 0.86
85 86 99 215 332
100 76.6 58.2 8.66 8.53
1.10 0.28 1.69 3.84 1.80
[t-BDMS]2
82 83 96 356 357 413
100 69.2 29.2 42.3 12.8 2.80
1.92 2.04 3.59 0.49 1.44 0.49
85 86 99 359 360 416
100 56.0 29.8 38.2 11.7 2.54
2.16 0.45 4.71 2.47 1.59 3.61
HFPoxy/TFA
264 318 431
11.6 100 18.4
0.81 1.75 0.89
267 321 434
11.5 100 17.2
1.53 0.09 0.19
Table I — Stimulants
© 2010 by Taylor and Francis Group, LLC
406
Table I-17. (Continued) CD Groupc
Ecgonine Ion (m/z)d Rel. int.
Analog’s cont.
Ecgonine-d3 Ion (m/z)d Rel. int. Analog’s cont.
PFPoxy/PFP
300 314 463
100 12.8 14.9
2.47 1.03 0.56
303 317 466
100 13.0 14.2
0.09 2.35 0.21
HFPoxy/HFB
318 364 531
100 10.6 11.6
2.87 0.62 0.67
321 367 534
100 10.5 11.1
0.10 0.17 0.25
a–d
See the corresponding footnotes in Table I-1a.
Table I-18. Relative intensity and cross-contribution dataa of ionsb with potential for designating the analyte and the adapted internal standard — Anhydroecgonine methyl ester/anhydroecgonine methyl ester-d3 CD Groupc None a–d
Anhydroecgonine methyl ester Ion (m/z)d Rel. int. Analog’s cont. 152 181
100 33.5
1.99 1.58
Anhydroecgonine methyl ester-d3 Ion (m/z)d Rel. int. Analog’s cont. 155 184
100 34.9
0.15 0.11
See the corresponding footnotes in Table I-1a.
Table I-19. Relative intensity and cross-contribution dataa of ionsb with potential for designating the analyte and the adapted internal standard — Caffeine/caffeine-13C3 CD Group
c
None a–d
Ion
Caffeine Rel. int.
Analog’s cont.
46.7 100
3.84 2.93
(m/z)d
109 194
Caffeine-13C3 Ion (m/z)d Rel. int. Analog’s cont. 111 197
43.1 100
2.68 0.23
See the corresponding footnotes in Table I-1a.
Table I-20. Relative intensity and cross-contribution dataa of ionsb with potential for designating the analyte and the adapted internal standard — Methylphenidate/methylphenidate-d3 CD Groupc
Methylphenidate Ion (m/z)d Rel. int. Analog’s cont.
Methylphenidate-d3 Ion (m/z)d Rel. int. Analog’s cont.
None
150
1.85
—
153
2.01
—
TFA
150
7.94
0.69
153
7.61
3.83
PFP
150
5.66
0.41
153
5.71
1.76
HFB
150
3.74
1.98
153
3.69
3.32
4-CB
438
3.19
0.15
441
2.74
0.31
TMS
59
3.24
—
62
0.60
—
a–d
See the corresponding footnotes in Table I-1a.
Appendix Two — Ion Intensity Cross-Contribution Data
© 2010 by Taylor and Francis Group, LLC
407
Table I-21. Relative intensity and cross-contribution dataa of ionsb with potential for designating the analyte and the adapted internal standard — Ritalinic acid/ritalinic acid-d5 CD Groupc
Ritalinic acid Ion (m/z)d Rel. int. Analog’s cont.
4-CB
424 452
[TMS]2
118
t-BDMS
91 137 165 193 194
a–d
1.09 3.49
0.46 0.27
429 457
1.27 2.92
2.36
—
123
2.29
—
12.4 6.28 4.70 100 16.6
0.42 2.71 0.64 0.23 0.18
96 142 170 198 199
13.6 6.10 4.03 100 16.6
0.12 0.00 0.00 0.00 0.00
See the corresponding footnotes in Table I-1a.
Table I — Stimulants
© 2010 by Taylor and Francis Group, LLC
Ritalinic acid-d5 Ion (m/z)d Rel. int. Analog’s cont. 1.97 0.00
409
Summary of Drugs, Isotopic Analogs, and Chemical Derivatization Groups Included in Table II (Opioids) Compound
Chemical derivatization groupa
Isotopic analog
Table #
Heroin
d3 , d 9
None
II-1
6-Acetylmorphine
d3 , d 6
None, Acetyl, TFA, propionyl, PFP, HFB, TMS, t-BDMS
II-2
Morphine
d3 , d 6
Ethyl, propyl, butyl, [acetyl]2, [TFA]2, propionyl, [propionyl]2, [PFP]2, [HFB]2, [TMS]2, t-BDMS, [t-BDMS]2, ethyl/acetyl, ethyl/TMS, propyl/TMS, propyl/t-BDMS, butyl/TMS, butyl/t-BDMS, acetyl/TMS, acetyl/t-BDMS, propionyl/TMS
II-3
Hydromorphone
d3 , d 6
Acetyl, [acetyl]2, [TFA]2, propionyl, PFP, [PFP]2, HFB, [HFB]2, TMS, [TMS]2, t-BDMS, [t-BDMS]2, MA/ethyl, MA/acetyl, MA/propionyl, MA/TMS, MA/t-BDMS, HA/[TMS]2
II-4
Oxymorphone
d3
[acetyl]2, [acetyl]3, [TFA]2, propionyl, [propionyl]2, [propionyl]3, [PFP]2, [HFB]2, [TMS]2, II-5 [TMS]3, t-BDMS, MA/ethyl, MA/acetyl, MA/[acetyl]2, MA/propionyl, MA/[HFB]2, MA/ [TMS]2, MA/[t-BDMS]2, MA/ethyl/propionyl, MA/ethyl/TMS, MA/ethyl/t-BDMS, MA/acetyl/TMS, MA/propionyl/TMS, HA/[TMS]3 , HA/[ethyl]2/propionyl, HA/[ethyl]2/TMS
6-Acetylcodeine
d3
None
II-6
Codeine
d3, d6, 13C1d3
None, acetyl, TFA, propionyl, PFP, HFB, TMS, t-BDMS
II-7
Hydrocodone
d3 , d 6
None, ethyl, acetyl, TMS, t-BDMS, MA, HA/TMS
II-8
Dihydrocodeine
d3 , d 6
None, acetyl, TFA, propionyl, PFP, HFB, TMS, t-BDMS
II-9
Oxycodone
d3 , d 6
None, acetyl, [acetyl]2, propionyl, TMS, [TMS]2, t-BDMS, [t-BDMS]2, MA, MA/propionyl, II-10 MA/TMS, HA/[propionyl]2, HA/[TMS]2, HA/ethyl/propionyl
Noroxycodone
d3
None, [acetyl]2, [TFA]3, propionyl, [PFP]2, [HFB]2, [TMS]2, [TMS]3, MA/ethyl, MA/acetyl, II-11 MA/[TFA]2, MA/propionyl, MA/PFP, MA/[HFB]2, MA/[TMS]2, MA/t-BDMS, MA/ethyl/ propionyl, MA/ethyl/TMS, MA/ethyl/t-BDMS, MA/acetyl/TMS, MA/propionyl/TMS, HA/[ethyl]2/TMS
Buprenorphine
d4
Methyl, ethyl, acetyl, MBTFA, PFP, HFB, TMS, [TMS]2, t-BDMS
II-12
Norbuprenorphine
d3
[Methyl]2, [ethyl]2, [acetyl]2, [MBTFA]2, [PFP]2, [HFB]2, [TMS]2, [TMS]3, t-BDMS
II-13
Fentanyl
d5
None
II-14
Norfentanyl
d5
None, acetyl, TCA, TFA, PFP, HFB, 4-CB, TMS, t-BDMS
II-15
Methadone
d3 , d 9
None
II-16
EDDP
d3
None
II-17
Propoxyphene
d5, d7, d11
None
II-18
Norpropoxyphene
d5
None
II-19
Meperidine
d4
None
II-20
Normeperidine
d4
None, ethyl, propyl, butyl, acetyl, TCA, TFA, PFP, HFB, 4-CB, TMS, t-BDMS
II-21
a
MA: methoxyimino; HA: hydroxylimino.
Tanle II — Opioids
© 2010 by Taylor and Francis Group, LLC
411
Appendix Two — Table II Cross-Contributions Between ions Designating the Drugs and Their Isotopically Labeled Analogs in Various Derivatization Forms — Opioids Table II-1a. Relative intensity and cross-contribution data of ions with potential for designating the analyte and the adapted internal standard — Heroin/heroin-d3 ............................................................................................................................. 413 Table II-1b. Relative intensity and cross-contribution data of ions with potential for designating the analyte and the adapted internal standard — Heroin/heroin-d9 ............................................................................................................................. 413 Table II-2a. Relative intensity and cross-contribution data of ions with potential for designating the analyte and the adapted internal standard — 6-Acetylmorphine/6-acetylmorphine-d3 ........................................................................................ 413 Table II-2b. Relative intensity and cross-contribution data of ions with potential for designating the analyte and the adapted internal standard — 6-Acetylmorphine/6-acetylmorphine-d6 ........................................................................................ 414 Table II-3a. Relative intensity and cross-contribution data of ions with potential for designating the analyte and the adapted internal standard — Morphine/morphine-d3 ................................................................................................................... 415 Table II-3b. Relative intensity and cross-contribution data of ions with potential for designating the analyte and the adapted internal standard — Morphine/morphine-d6 ................................................................................................................... 416 Table II-4a. Relative intensity and cross-contribution data of ions with potential for designating the analyte and the adapted internal standard — Hydromorphone/hydromorphone-d3 .............................................................................................. 418 Table II-4b. Relative intensity and cross-contribution data of ions with potential for designating the analyte and the adapted internal standard — Hydromorphone/hydromorphone-d6 .............................................................................................. 419 Table II-5. Relative intensity and cross-contribution data of ions with potential for designating the analyte and the adapted internal standard — Oxymorphone/oxymorphone-d3 ..................................................................................................... 420 Table II-6. Relative intensity and cross-contribution data of ions with potential for designating the analyte and the adapted internal standard — 6-Acetylcodeine/6-acetylcodeine-d3 .............................................................................................. 422 Table II-7a. Relative intensity and cross-contribution data of ions with potential for designating the analyte and the adapted internal standard — Codeine/codeine-d3 ........................................................................................................................ 422 Table II-7b. Relative intensity and cross-contribution data of ions with potential for designating the analyte and the adapted internal standard — Codeine/codeine-d6 ........................................................................................................................ 423 Table II-7c. Relative intensity and cross-contribution data of ions with potential for designating the analyte and the adapted internal standard — Codeine/codeine-13C1-d3 ................................................................................................................ 423 Table II-8a. Relative intensity and cross-contribution data of ions with potential for designating the analyte and the adapted internal standard — Hydrocodone/hydrocodone-d3 ....................................................................................................... 424 Table II-8b. Relative intensity and cross-contribution data of ions with potential for designating the analyte and the adapted internal standard — Hydrocodone/hydrocodone-d6 ....................................................................................................... 425 Table II-9a. Relative intensity and cross-contribution data of ions with potential for designating the analyte and the adapted internal standard — Dihydrocodeine/dihydrocodeine-d3 ............................................................................................... 425 Table II-9b. Relative intensity and cross-contribution data of ions with potential for designating the analyte and the adapted internal standard — Dihydrocodeine/dihydrocodeine-d6 ............................................................................................... 426 Table II-10a. Relative intensity and cross-contribution data of ions with potential for designating the analyte and the adapted internal standard — Oxycodone/oxycodone-d3 .............................................................................................................. 427 Table II-10b. Relative intensity and cross-contribution data of ions with potential for designating the analyte and the adapted internal standard — Oxycodone/oxycodone-d6 .............................................................................................................. 428 Table II-11. Relative intensity and cross-contribution data of ions with potential for designating the analyte and the adapted internal standard — Noroxyocodone/noroxyocodone-d3 ............................................................................................... 429
Tanle II — Opioids
© 2010 by Taylor and Francis Group, LLC
412
Table II-12. Relative intensity and cross-contribution data of ions with potential for designating the analyte and the adapted internal standard — Buprenorphine/buprenorphine-d4 ................................................................................................... 430 Table II-13. Relative intensity and cross-contribution data of ions with potential for designating the analyte and the adapted internal standard — Norbuprenorphine/norbuprenorphine-d3 ........................................................................................ 431 Table II-14. Relative intensity and cross-contribution data of ions with potential for designating the analyte and the adapted internal standard — Fentanyl/fentanyl-d5 ....................................................................................................................... 432 Table II-15. Relative intensity and cross-contribution data of ions with potential for designating the analyte and the adapted internal standard — Norfentanyl/norfentanyl-d5 ............................................................................................................ 432 Table II-16a. Relative intensity and cross-contribution data of ions with potential for designating the analyte and the adapted internal standard — Methadone/methadone-d3 ............................................................................................................... 433 Table II-16b. Relative intensity and cross-contribution data of ions with potential for designating the analyte and the adapted internal standard — Methadone/methadone-d9 ............................................................................................................... 433 Table II-17. Relative intensity and cross-contribution data of ions with potential for designating the analyte and the adapted internal standard — EDDP/EDDP-d3 ............................................................................................................................. 433 Table II-18a. Relative intensity and cross-contribution data of ions with potential for designating the analyte and the adapted internal standard — Propoxyphene/propoxyphene-d5 .................................................................................................... 434 Table II-18b. Relative intensity and cross-contribution data of ions with potential for designating the analyte and the adapted internal standard — Propoxyphene/propoxyphene-d7 .................................................................................................... 434 Table II-18c. Relative intensity and cross-contribution data of ions with potential for designating the analyte and the adapted internal standard — Propoxyphene/propoxyphene-d11 ................................................................................................. 434 Table II-19. Relative intensity and cross-contribution data of ions with potential for designating the analyte and the adapted internal standard — Norpropoxyphene/norpropoxyphene-d5 ......................................................................................... 434 Table II-20. Relative intensity and cross-contribution data of ions with potential for designating the analyte and the adapted internal standard — Meperidine/meperidine-d4 .............................................................................................................. 434 Table II-21. Relative intensity and cross-contribution data of ions with potential for designating the analyte and the adapted internal standard — Normeperidine/normeperidine-d4 .................................................................................................. 435
Appendix Two — Ion Intensity Cross-Contribution Data
© 2010 by Taylor and Francis Group, LLC
413
Table II-1a. Relative intensity and cross-contribution dataa of ionsb with potential for designating the analyte and the adapted internal standard — Heroin/heroin-d3 CD Groupc None
a–d
Heroin Ion (m/z)d Rel. int. Analog’s cont. 215 268 327 328 369
30.6 57.8 100 21.1 70.5
3.75 2.62 0.95 3.89 0.73
Heroin-d3 Ion (m/z)d Rel. int. Analog’s cont. 218 271 330 331 372
29.3 56.2 100 21.4 71.9
1.86 1.41 0.32 0.16 0.42
See the corresponding footnotes in Table I-1a.
Table II-1b. Relative intensity and cross-contribution dataa of ionsb with potential for designating the analyte and the adapted internal standard — Heroin/heroin-d9 CD Groupc None
a–d
Heroin Ion (m/z)d Rel. int. Analog’s cont. 268 310 327 369
58.0 51.0 100 69.0
1.82 0.02 0.12 0.00
Heroin-d9 Ion (m/z)d Rel. int. Analog’s cont. 272 316 334 378
64.0 76.0 100 81.0
0.19 0.01 0.01 0.00
See the corresponding footnotes in Table I-1a.
Table II-2a. Relative intensity and cross-contribution dataa of ionsb with potential for designating the analyte and the adapted internal standard — 6-Acetylmorphine/6-acetylmorphine-d3 CD Groupc
6-Acetylmorphine Ion (m/z)d Rel. int. Analog’s cont.
6-Acetylmorphine-d3 Ion (m/z)d Rel. int. Analog’s cont.
None
268 327 328
89.7 100 22.8
2.07 1.04 2.29
271 330 331
86.1 100 20.5
0.61 0.24 0.23
Acetyl
215 268 310 327 369
38.1 69.6 55.9 100 68.6
3.76 2.61 0.61 0.93 0.49
218 271 313 330 372
36.7 68.8 56.7 100 68.9
1.85 1.10 0.64 0.34 0.45
TFA
204 311 364 380 423
29.4 29.0 100 10.4 61.2
2.66 1.77 1.36 1.57 1.14
207 314 367 383 426
31.6 29.6 100 10.6 57.1
4.69 0.47 0.49 0.64 0.44
Propionyl
215 268 383 384
20.2 49.7 50.7 12.5
3.51 2.48 0.19 2.50
218 271 386 387
19.6 47.6 51.2 12.7
1.91 1.65 0.47 0.18
PFP
361 414 473
30.1 100 57.1
3.55 3.16 2.87
364 417 476
29.9 100 57.2
0.36 0.47 0.21
Tanle II — Opioids
© 2010 by Taylor and Francis Group, LLC
414
Table II-2a. (Continued) CD Groupc
6-Acetylmorphine Ion (m/z)d Rel. int. Analog’s cont.
6-Acetylmorphine-d3 Ion (m/z)d Rel. int. Analog’s cont.
HFB
411 464 480 523
30.9 100 10.6 54.1
1.79 1.56 1.75 1.19
414 467 483 526
29.8 100 10.5 53.7
0.45 0.51 0.69 0.50
TMS
399
100
2.13
402
100
1.38
t-BDMS
342 441 442
100 61.4 20.6
0.75 0.20 2.42
345 444 445
100 65.4 21.6
1.14 1.72 0.77
a–d
See the corresponding footnotes in Table I-1a.
Table II-2b. Relative intensity and cross-contribution dataa of ionsb with potential for designating the analyte and the adapted internal standard — 6-Acetylmorphine/6-acetylmorphine-d6 CD Groupc
6-Acetylmorphine Ion (m/z)d Rel. int. Analog’s cont.
6-Acetylmorphine-d6 Ion (m/z)d Rel. int. Analog’s cont.
None
268 327 328
89.7 100 22.8
1.87 1.38 1.15
271 333 334
100 91.6 20.7
2.06 0.04 0.00
Acetyl
215 268 310 327 369
38.1 69.6 55.9 100 68.6
4.01 1.49 0.34 0.39 0.30
218 271 313 333 375
38.4 69.3 58.1 100 68.0
1.80 1.11 0.67 0.04 0.04
TFA
311 364 380 423
29.0 100 10.4 61.2
0.87 0.31 0.42 0.02
314 367 383 429
28.3 100 6.78 58.6
1.33 1.35 2.68 0.09
Propionyl
215 268 383 384
20.2 49.7 50.7 12.5
3.66 1.72 0.15 0.19
218 271 389 390
21.7 51.0 50.1 12.5
2.10 1.78 0.00 0.00
PFP
361 414 430 473
30.1 100 10.4 57.1
3.40 2.77 4.05 2.54
364 417 433 479
29.3 100 7.08 55.6
2.63 2.33 4.04 0.00
HFB
411 464 480 523
30.9 100 10.6 54.1
3.10 2.50 2.81 2.18
414 467 483 529
30.4 100 6.79 51.4
1.76 1.86 3.24 0.00
TMS
399
100
4.96
405
100
0.05
t-BDMS
342 384 441 442
100 42.5 61.4 20.6
0.80 2.95 0.12 0.14
346 390 447 448
100 48.3 73.9 25.0
0.17 0.00 0.00 0.00
a–d
See the corresponding footnotes in Table I-1a.
Appendix Two — Ion Intensity Cross-Contribution Data
© 2010 by Taylor and Francis Group, LLC
415
Table II-3a. Relative intensity and cross-contribution dataa of ionsb with potential for designating the analyte and the adapted internal standard — Morphine/morphine-d3 CD Groupc
Morphine Ion (m/z)d Rel. int. Analog’s cont.
Morphine-d3 Ion (m/z)d Rel. int. Analog’s cont.
Ethyl
313
100
1.27
316
100
0.38
Propyl
327
100
0.47
330
100
0.30
Butyl
341 342
100 23.3
0.77 0.09
344 345
100 23.5
0.32 0.13
[Acetyl]2
215 268 310 327 369
36.8 67.6 55.1 100 66.6
3.49 2.16 0.42 0.59 0.32
218 271 313 330 372
38.5 67.7 57.0 100 67.8
1.81 1.05 0.53 0.31 0.44
[TFA]2
311 364 380 458 477
6.24 100 6.32 1.51 37.4
1.43 0.17 0.35 0.00 0.13
314 367 383 461 480
6.54 100 6.51 1.80 37.9
0.42 0.29 0.39 2.31 0.41
Propionyl
268 341
95.0 100
2.43 2.47
271 344
89.1 100
0.45 0.37
[Propionyl]2
268 324 341 342 397
51.1 39.7 100 22.0 45.9
1.82 0.28 0.48 4.13 0.25
271 327 344 345 400
48.0 39.7 100 22.5 48.1
0.96 2.55 0.34 0.19 0.53
[PFP]2
361 414 430 558 577
5.35 100 6.98 3.77 26.1
1.45 0.31 0.94 0.00 0.28
364 417 433 561 580
5.40 100 7.11 3.95 26.2
5.45 0.33 0.34 1.71 0.56
[HFB]2
266 411 464 480 658 677
4.41 5.36 100 7.42 5.19 18.0
4.06 2.41 1.46 1.43 1.22 1.38
269 414 467 483 661 680
4.56 5.43 100 8.15 5.94 18.8
2.33 0.71 0.35 0.43 1.16 0.61
[TMS]2
236 401 429
57.8 25.8 100
— 2.89 0.48
239 404 432
54.3 26.2 100
— 2.88 3.50
t-BDMS
342 399
100 53.8
3.08 0.65
345 402
100 52.1
1.14 1.58
[t-BDMS]2
146 456 485 513
17.9 53.2 3.92 6.51
— 2.08 0.00 0.00
149 459 488 516
18.4 46.7 3.94 6.24
— 4.31 0.00 0.00
Ethyl/acetyl
243 296 326 355
21.3 56.8 15.6 100
4.65 0.81 0.46 0.37
246 299 329 358
20.2 53.7 14.0 100
0.58 1.98 0.51 0.36
Ethyl/TMS
146 357 385 386
37.6 26.8 100 29.5
1.50 4.04 0.18 1.78
149 360 388 389
37.0 26.4 100 29.9
2.11 1.40 1.65 0.78
Propyl/TMS
206 146 196 371 399
60.2 39.7 46.1 28.1 100
— 1.98 3.92 0.74 0.16
209 149 199 374 402
51.9 34.3 39.5 27.3 100
— 2.25 4.60 1.44 1.64
Tanle II — Opioids
© 2010 by Taylor and Francis Group, LLC
416
Table II-3a. (Continued) CD Groupc
Morphine Ion (m/z)d Rel. int. Analog’s cont.
Morphine-d3 Ion (m/z)d Rel. int. Analog’s cont.
Propyl/t-BDMS
146 384 398 441
39.2 64.5 9.02 10.7
4.15 0.00 0.00 0.00
149 387 401 444
33.0 71.2 9.05 11.9
2.59 0.00 0.00 0.00
Butyl/TMS
220 146 234 385 413
63.9 41.5 42.1 29.8 100
— 2.98 2.90 3.03 1.44
223 149 237 388 416
64.1 43.1 43.1 28.9 100
— 2.87 4.29 2.37 1.80
Butyl/t-BDMS
398 427 455
85.1 8.36 17.1
0.00 0.00 0.00
401 430 458
79.9 7.52 16.2
0.00 0.00 0.00
Acetyl/TMS
324 399
10.5 100
3.16 0.51
327 402
11.1 100
0.86 3.17
Acetyl/t-BDMS
342 441 442
100 70.6 22.8
1.46 0.94 3.59
345 444 445
100 73.4 24.5
1.15 1.58 0.79
Propionyl/TMS
357 413
100 78.0
1.92 0.36
360 416
100 82.1
1.12 1.43
a–d
See the corresponding footnotes in Table I-1a.
Table II-3b. Relative intensity and cross-contribution dataa of ionsb with potential for designating the analyte and the adapted internal standard — Morphine/morphine-d6 CD Groupc
Morphine Ion (m/z)d Rel. int. Analog’s cont.
Morphine-d6 Ion (m/z)d Rel. int. Analog’s cont.
Ethyl
284 313 314
24.5 100 20.9
4.87 1.47 2.04
290 319 320
22.8 100 21.8
0.12 0.04 0.23
Propyl
284 327 328
23.9 100 22.7
1.70 0.60 1.02
290 333 334
22.7 100 22.4
0.36 0.02 0.00
Butyl
341 342
100 23.3
0.21 0.22
347 348
100 23.4
0.05 0.09
[Acetyl]2
268 284 310 327 369
67.6 9.18 55.1 100 66.6
1.75 0.95 0.41 0.35 0.32
274 290 316 333 375
68.9 8.64 60.0 100 68.0
0.02 0.00 0.00 0.00 0.00
[TFA]2
311 364 380 477
6.24 100 6.32 37.4
2.77 0.12 0.24 0.09
317 370 386 483
6.70 100 6.21 34.9
1.22 0.00 0.07 0.00
Propionyl
268 341 342
95.0 100 21.3
1.87 2.15 2.60
274 347 348
91.4 100 2.00
0.00 0.00 0.00
[Propionyl]2
268 324 341 342 397
51.1 39.7 100 22.0 45.9
2.69 0.21 0.32 0.84 0.19
274 330 347 348 403
48.8 40.6 100 22.1 46.8
0.03 0.03 0.00 0.00 0.02
Appendix Two — Ion Intensity Cross-Contribution Data
© 2010 by Taylor and Francis Group, LLC
417
Table II-3b. (Continued) CD Groupc
Morphine Ion (m/z)d Rel. int. Analog’s cont.
Morphine-d6 Ion (m/z)d Rel. int. Analog’s cont.
[PFP]2
361 414 430 577
5.35 100 6.98 26.1
3.51 0.84 1.66 0.78
367 420 436 583
5.54 100 6.92 26.0
1.27 0.00 0.02 0.00
[HFB]2
266 464 480 658 677
4.41 100 7.42 5.19 18.0
4.39 3.88 3.64 3.78 3.74
272 470 486 664 683
3.79 100 8.14 6.41 20.5
1.13 0.01 0.00 2.94 0.00
[TMS]2
236 324 401 414 429
57.8 18.2 25.8 44.9 100
— 3.69 2.44 1.30 1.02
239 330 404 420 435
60.7 17.3 30.6 42.4 100
— 2.36 2.85 0.00 0.00
t-BDMS
162 342 399
22.8 100 53.8
3.87 3.03 0.65
168 348 405
20.6 100 51.8
4.87 0.07 0.00
[t-BDMS]2
413 146 456 513
61.8 17.5 53.2 6.51
— 2.76 1.27 0.00
415 149 462 519
63.8 20.4 54.0 6.75
— 4.73 0.00 0.00
Ethyl/acetyl
266 296 312 326 355 356
15.9 76.3 9.75 19.6 100 19.4
0.00 0.00 0.00 0.00 3.50 4.27
272 302 318 332 361 362
12.9 82.3 10.6 15.8 100 27.5
0.00 0.00 0.00 0.00 0.00 0.00
Ethyl/TMS
146 357 385 386
37.6 26.8 100 29.5
2.96 1.13 0.09 0.30
149 360 391 392
44.1 28.6 100 30.4
2.43 1.53 0.11 0.14
Propyl/TMS
206 146 371 399
60.2 39.7 28.1 100
– 2.74 0.56 0.09
209 149 374 405
59.7 38.3 29.7 100
— 2.55 1.49 0.04
Propyl/t-BDMS
384 441
64.5 10.7
0.00 0.00
390 447
59.1 15.2
0.00 0.00
Butyl/TMS
220 146 385 413
63.9 41.5 29.8 100
— 3.54 2.52 0.97
223 149 388 419
71.0 45.3 32.6 100
— 3.19 2.57 0.48
Butyl/t-BDMS
398 455
85.1 17.1
0.00 0.00
404 461
67.8 6.41
0.00 0.00
Acetyl/TMS
287 340 399
47.2 75.8 98.3
2.48 0.00 0.00
293 346 405
37.7 71.3 79.7
4.69 0.00 0.00
Acetyl/t-BDMS
342 343 384 441
100 24.7 45.6 50.2
0.00 0.00 0.00 0.00
348 349 388 447
100 28.0 36.5 48.3
0.00 0.00 0.00 0.00
Propionyl/TMS
384
64.5
—
390
59.1
—
a–d
See the corresponding footnotes in Table I-1a. Tanle II — Opioids
© 2010 by Taylor and Francis Group, LLC
418
Table II-4a. Relative intensity and cross-contribution dataa of ionsb with potential for designating the analyte and the adapted internal standard — Hydromorphone/hydromrophone-d3 CD Groupc
Hydromorphone Ion (m/z)d Rel. int. Analog’s cont.
Hydromorphone-d3 Ion (m/z)d Rel. int. Analog’s cont.
Acetyl
256 285 327
10.3 100 26.3
4.52 2.40 1.84
259 288 330
10.2 100 26.7
3.47 0.37 0.41
[Acetyl]2 (enol)
237
100
—
330
100
—
[TFA]2 (enol)
258 364 380 477
36.1 27.3 49.3 100
3.05 1.99 0.36 0.52
261 367 383 480
37.2 27.6 50.4 100
1.21 3.41 0.29 0.37
Propionyl
285
100
—
288
100
—
PFP
431
100
—
434
100
—
[PFP]2 (enol)
308 414 430 577
41.8 37.6 63.9 100
1.74 1.45 0.28 0.52
311 417 433 580
39.3 36.4 63.8 100
1.33 0.62 0.33 0.43
HFB
481
100
—
484
100
—
[HFB]2 (enol)
358 464 480 677
61.5 56.0 100 95.9
3.57 3.06 1.34 1.50
361 467 483 680
60.4 57.9 95.3 100
2.51 3.43 1.62 1.30
TMS
342 357
25.9 100
3.44 0.78
345 360
24.8 100
1.85 1.64
[TMS]2 (enol)
234 429 430
55.3 100 35.5
2.25 0.60 3.59
237 432 433
58.2 100 36.5
4.19 3.77 2.45
t-BDMS
342 399
28.1 7.23
— 2.60
345 402
26.8 6.81
— 2.48
[t-BDMS]2 (enol)
456 513
100 8.27
2.18 3.46
459 516
100 8.39
3.82 4.61
Methoxyimino/ ethyl
342 343
100 21.4
0.62 4.34
345 346
100 21.6
0.31 0.13
Methoxyimino/ acetyl
314 356
100 44.9
0.42 0.00
314 359
100 49.7
0.00 0.00
Methoxyimino/ propionyl
314 370
100 38.9
1.18 0.54
317 373
100 38.3
0.29 0.43
Methoxyimino/ TMS
355 371 386 387
82.7 45.6 100 29.5
1.48 2.25 0.33 2.97
358 374 389 390
80.6 42.0 100 27.0
4.86 1.26 1.34 0.58
Methoxyimino/ t-BDMS
371 428
31.3 11.2
1.41 0.33
374 431
100 33.5
1.33 1.67
Hydroxyimino/ [TMS]2
355 429 444
79.3 34.6 64.8
0.55 1.22 0.00
358 432 447
64.5 37.5 56.5
1.62 2.79 2.91
a–d
See the corresponding footnotes in Table I-1a.
Appendix Two — Ion Intensity Cross-Contribution Data
© 2010 by Taylor and Francis Group, LLC
419
Table II-4b. Relative intensity and cross-contribution dataa of ionsb with potential for designating the analyte and the adapted internal standard — Hydromorphone/hydromorphone-d6 CD Groupc
Hydromorphone Ion (m/z)d Rel. int. Analog’s cont.
Hydromorphone-d6 Ion (m/z)d Rel. int. Analog’s cont.
Acetyl
285 327
100 26.3
1.93 1.65
291 333
100 25.5
0.10 0.04
[Acetyl]2 (enol)
326 327 369
31.4 100 44.5
4.18 1.71 2.45
332 333 375
30.1 100 44.9
0.72 0.07 0.38
[TFA]2 (enol)
258 364 380 476 477
36.1 27.3 49.3 45.6 100
2.57 0.32 0.15 0.08 0.09
264 370 386 482 483
32.7 29.1 55.1 33.1 100
2.27 0.03 0.00 0.00 0.00
Propionyl
285
100
—
291
100
—
PFP
431
100
—
437
100
—
[PFP]2 (enol)
308 414 430 577 578
41.8 37.6 63.9 100 24.1
1.58 0.30 0.05 0.12 1.00
314 420 436 583 584
37.3 39.0 68.9 100 25.3
0.23 0.03 0.02 0.00 0.00
HFB
425
75.9
—
431
72.8
—
[HFB]2 (enol)
464 480 677 678
56.0 100 95.9 25.1
1.35 0.85 0.61 2.87
470 486 683 684
57.4 98.0 100 26.7
0.07 0.04 0.00 0.00
TMS
314 342 357 358
19.7 25.7 100 27.8
3.49 0.87 0.43 1.18
320 348 363 364
17.5 25.9 100 27.9
0.58 0.34 0.16 0.08
[TMS]2 (enol)
184 234 324 414 429 430
24.8 55.3 17.1 91.6 100 35.5
3.42 2.67 3.95 1.71 0.12 0.76
188 240 330 420 435 436
28.0 54.4 18.0 72.8 100 36.3
1.86 3.62 3.08 0.11 0.14 0.11
t -BDMS
299 342 399
100 28.1 7.23
— 2.91 1.35
301 348 405
100 28.0 6.86
— 0.66 0.59
[t-BDMS]2 (enol)
456 457 513
100 38.4 8.23
1.75 4.51 3.18
462 463 519
100 38.1 7.85
0.32 0.33 0.60
Methoxyimino/ ethyl
311 342 343
85.0 100 21.4
0.39 0.12 1.20
317 348 349
85.7 100 23.1
0.02 0.00 0.00
Methoxyimino/ acetyl
283 314 325 356
79.8 100 19.5 44.9
0.55 0.31 0.00 0.00
289 320 331 362
75.1 100 15.5 42.3
0.00 0.00 0.00 0.00
Methoxyimino/ propionyl
283 314 315 339 370
58.7 100 20.8 9.48 38.9
0.56 0.50 2.32 0.22 0.12
289 320 321 345 376
58.4 100 20.9 9.24 37.3
0.04 0.00 0.21 0.31 0.01
Tanle II — Opioids
© 2010 by Taylor and Francis Group, LLC
420
Table II-4b. (Continued) CD Groupc
Hydromorphone Ion (m/z)d Rel. int. Analog’s cont.
Hydromorphone-d6 Ion (m/z)d Rel. int. Analog’s cont.
Methoxyimino/ TMS
355 356 371 386 387
90.7 24.5 40.3 100 29.7
5.60 7.88 0.83 0.06 1.37
361 362 377 392 393
86.4 24.0 41.3 100 41.3
0.09 0.10 0.14 0.06 0.04
Methoxyimino/ t-BDMS
371 397 428
31.3 5.45 11.2
1.36 0.24 0.04
377 403 434
100 15.0 32.9
0.09 0.44 0.00
Hydroxyimino/ [TMS]2
339 355 356 429 444
12.5 79.3 19.7 34.6 64.8
0.00 0.00 3.47 0.08 0.00
345 361 362 435 450
8.63 59.8 15.2 34.4 48.6
1.16 0.75 0.83 0.00 0.00
a–d
See the corresponding footnotes in Table I-1a.
Table II-5. Relative intensity and cross-contribution dataa of ionsb with potential for designating the analyte and the adapted internal standard — Oxymorphone/oxymorphone-d3 CD Groupc
Oxymorphone Ion (m/z)d Rel. int. Analog’s cont.
Oxymorphone-d3 Ion (m/z)d Rel. int. Analog’s cont.
[Acetyl]2
300 343 344 385
37.6 100 21.4 30.4
2.10 1.31 2.82 1.08
303 346 347 388
37.6 100 21.1 31.0
0.50 0.45 0.41 0.51
[Acetyl]3 (enol)
342 385 386 427
23.9 100 23.5 54.1
1.78 0.72 1.61 0.74
345 388 389 430
23.1 100 23.4 54.0
0.87 0.43 0.32 0.85
[TFA]2
396 493
26.6 100
2.01 1.72
399 496
26.0 100
0.89 0.50
Propionyl
301
100
—
304
100
—
[Propionyl]2
357
100
—
360
100
—
[Propionyl]3 (enol)
356 396 413 414 469
15.5 6.88 100 25.2 33.7
3.42 2.66 2.15 3.38 1.99
359 399 416 417 472
14.9 7.26 100 25.0 34.6
2.11 2.48 1.67 1.37 1.85
[PFP]2
446 593
33.1 100
2.62 2.64
449 596
37.5 100
0.43 0.52
[HFB]2
308 496 693
21.0 52.5 100
2.88 3.16 3.38
311 499 696
19.5 56.7 100
1.67 0.80 0.64
[TMS]2
430 445 446
20.6 100 36.2
1.82 0.34 1.86
433 448 449
20.6 100 35.8
2.80 2.84 1.74
[TMS]3 (enol)
502 518
77.0 40.4
— 2.45
505 521
73.6 39.1
— 3.07
t-BDMS
358
100
4.89
361
100
1.50
Appendix Two — Ion Intensity Cross-Contribution Data
© 2010 by Taylor and Francis Group, LLC
421
Table II-5. (Continued) CD Groupc
Oxymorphone Ion (m/z)d Rel. int. Analog’s cont.
Oxymorphone-d3 Ion (m/z)d Rel. int. Analog’s cont.
Methoxyimino/ ethyl
329 358 359
10.1 100 24.1
1.65 0.00 0.00
332 361 362
11.8 100 21.7
0.07 0.00 0.03
Methoxyimino/ acetyl
329 341 355 372
19.9 6.75 9.07 100
4.26 0.00 0.00 0.03
332 344 358 375
14.8 6.15 7.25 100
0.00 0.00 0.00 0.00
Methoxyimino/ [acetyl]2
329 341 355 371 372 414
17.8 6.20 6.89 25.6 100 70.4
0.00 0.00 0.00 0.00 0.00 0.00
332 344 358 374 375 417
19.6 5.10 6.92 25.8 100 65.1
0.33 0.00 3.28 0.00 0.40 0.53
Methoxyimino/ propionyl
299 355 386
23.0 7.97 53.0
1.85 0.00 4.22
302 358 389
11.9 4.61 51.4
0.00 0.00 0.00
Methoxyimino/ [HFB]2
412 477 509 525 722
16.9 4.00 5.47 18.0 16.9
0.00 0.00 0.00 0.00 0.00
415 480 512 528 725
15.3 3.19 4.22 17.3 15.4
0.00 0.00 0.00 0.00 0.00
Methoxyimino/ [TMS]2
459 474 475
14.6 100 36.5
0.69 0.17 1.72
462 477 478
15.2 100 38.1
2.90 3.25 1.86
Methoximino/ [t-BDMS]2
440 501 558
34.5 57.0 5.96
0.00 0.00 0.00
443 504 561
23.2 71.2 9.04
0.00 0.00 0.00
Methoxyimino/ ethyl/propionyl
244 341 357 385 414 415
25.6 7.94 35.1 21.2 100 24.5
4.32 3.84 1.32 0.36 0.00 1.32
247 344 360 388 417 418
22.1 8.75 33.0 21.4 100 25.5
0.75 0.92 0.33 0.42 0.58 0.17
Methoxyimino/ ethyl/TMS
415 430
14.7 100
0.64 0.06
418 433
12.1 100
1.31 1.31
Methoxyimino/ ethyl/t-BDMS
329 358 359
10.1 100 24.1
1.65 0.00 0.00
332 361 362
11.8 100 21.7
0.07 0.00 0.03
Methoxyimino/ acetyl/TMS
215 402 444 445
59.0 62.5 100 30.9
3.98 0.79 0.06 2.86
218 405 447 448
64.9 63.3 100 31.5
2.96 1.38 1.57 0.75
Methoxyimino/ propionyl/TMS
215 402 403 443 458
42.8 100 31.8 15.6 91.9
4.96 0.94 1.88 0.09 0.06
218 405 406 446 461
41.6 100 25.8 18.0 90.8
1.87 1.40 0.70 1.52 1.64
Hydroxylimino/ [TMS]3
459 533
4.44 31.6
0.00 0.64
462 536
4.92 32.1
4.52 2.93
Hydroxylimino/ [ethyl]2/propionyl
371 399 428 429
34.1 23.4 100 30.0
1.79 0.00 2.58 0.00
374 402 431 432
58.7 27.6 100 27.3
0.00 0.00 0.53 0.00
Tanle II — Opioids
© 2010 by Taylor and Francis Group, LLC
422
Table II-5. (Continued) CD Groupc Hydroxylimino/ [ethyl]2/TMS
a–d
Oxymorphone Ion (m/z)d Rel. int. Analog’s cont. 309 399 429 444 445
5.79 7.97 15.1 100 32.1
0.00 0.00 0.00 0.00 0.00
Oxymorphone-d3 Ion (m/z)d Rel. int. Analog’s cont. 312 402 432 447 448
10.7 10.0 16.4 100 25.9
0.00 0.00 0.00 0.00 0.00
See the corresponding footnotes in Table I-1a.
Table II-6. Relative intensity and cross-contribution dataa of ionsb with potential for designating the analyte and the adapted internal standard — 6-Acetylcodeine/6-acetylcodeine-d3 CD Groupc None
a–d
6-Acetylcodeine Ion (m/z)d Rel. int. Analog’s cont. 229 282 341
59.7 100 89.4
3.75 1.45 1.50
6-Acetylcodeine-d3 Ion (m/z)d Rel. int. Analog’s cont. 232 285 344
43.4 85.5 100
0.75 1.58 0.39
See the corresponding footnotes in Table I-1a.
Table II-7a. Relative intensity and cross-contribution dataa of ionsb with potential for designating the analyte and the adapted internal standard — Codeine/codeine-d3 CD Groupc
Codeine Ion (m/z)d Rel. int.
Analog’s cont.
Codeine-d3 Ion (m/z)d Rel. int.
Analog’s cont.
None
299
100
0.92
302
100
0.25
Acetyl
229 282 298 341 342
39.5 76.5 8.92 100 22.8
4.22 0.98 2.23 0.54 4.24
232 285 301 344 345
37.9 75.9 8.57 100 22.8
0.69 3.10 0.47 0.32 0.14
TFA
282 395
100 83.3
0.64 0.49
285 398
100 81.2
0.36 0.33
Propionyl
229 282 355 356
30.2 71.1 100 23.6
3.46 0.77 0.57 3.88
232 285 358 359
33.2 75.5 100 24.2
0.68 0.54 0.38 0.16
PFP
282 445
100 56.7
2.49 2.31
285 448
100 57.4
0.24 0.37
HFB
282 495
100 62.0
1.96 1.25
285 498
100 66.0
0.25 0.43
TMS
343 371
18.6 100
4.36 0.83
346 374
18.7 100
1.08 1.17
t-BDMS
356 413
49.2 3.21
2.94 2.70
359 416
48.3 2.95
1.23 2.65
a–d
See the corresponding footnotes in Table I-1a.
Appendix Two — Ion Intensity Cross-Contribution Data
© 2010 by Taylor and Francis Group, LLC
423
Table II-7b. Relative intensity and cross-contribution dataa of ionsb with potential for designating the analyte and the adapted internal standard — Codeine/codeine-d6 CD Groupc
Codeine Ion (m/z)d Rel. int.
Analog’s cont.
Codeine-d6 Ion (m/z)d Rel. int.
Analog’s cont.
None
282 299 300
10.4 100 20.2
2.71 1.01 1.27
288 305 306
11.0 100 21.1
0.05 0.01 0.08
Acetyl
282 298 341 342
76.5 8.92 100 22.8
0.46 0.62 0.35 0.39
288 304 347 348
77.4 8.59 100 23.1
0.02 0.06 0.00 0.00
TFA
266 282 338 395
10.4 100 5.73 83.3
1.95 0.22 1.03 0.13
269 288 341 401
9.70 100 5.45 77.7
3.36 0.02 1.93 0.00
Propionyl
282 298 355 356
71.1 12.8 100 23.6
0.35 0.40 0.37 0.50
288 304 361 362
68.3 8.90 100 23.7
0.01 0.04 0.00 0.00
PFP
282 388 445
100 4.17 56.7
3.37 4.16 3.20
288 391 451
100 4.82 62.3
0.01 0.31 0.00
HFB
282 438 495
100 4.48 62.0
3.14 3.36 2.24
288 441 501
100 4.97 58.2
0.02 0.57 0.05
TMS
371
100
0.40
377
100
0.07
t-BDMS
313 314 356 357
100 25.4 49.2 13.5
0.82 2.00 0.55 2.33
316 317 362 363
100 25.2 49.1 13.6
1.02 0.66 0.00 0.00
a–d
See the corresponding footnotes in Table I-1a.
Table II-7c. Relative intensity and cross-contribution dataa of ionsb with potential for designating the analyte and the adapted internal standard — Codeine/codeine-13C1d3 CD Groupc
Codeine Ion (m/z)d Rel. int.
Analog’s cont.
Codeine-13C1d3 Ion (m/z)d Rel. int. Analog’s cont.
None
229 282 299 300
27.8 11.9 100 19.5
3.09 1.29 0.15 1.29
233 286 303 304
26.4 11.1 100 19.8
0.84 1.52 0.13 0.11
Acetyl
229 282 298 341 342
42.4 81.5 9.06 100 22.5
2.67 1.05 2.38 0.61 0.89
233 286 302 345 346
43.7 81.2 9.31 100 21.8
0.67 0.20 0.06 0.04 0.02
TFA
282 283 395 396
100 20.2 50.7 11.1
0.50 1.64 0.16 0.46
286 287 399 400
100 19.1 54.0 11.5
0.13 0.35 0.13 0.10
Propionyl
229 282 355 356
30.2 71.1 100 23.6
1.84 0.48 0.34 0.63
233 286 359 360
32.3 73.9 100 22.7
0.68 0.13 0.04 0.07
Tanle II — Opioids
© 2010 by Taylor and Francis Group, LLC
424
Table II-7c. (Continued) CD Groupc
Codeine Ion (m/z)d Rel. int.
Analog’s cont.
Codeine-13C1d3 Ion (m/z)d Rel. int. Analog’s cont.
PFP
282 283 445 446
100 20.5 39.0 9.06
0.49 1.61 0.13 0.49
286 287 449 450
100 19.2 35.3 7.84
0.08 0.10 0.04 0.00
HFB
58 282 283 495 496
28.1 100 20.9 35.6 8.82
0.89 1.45 3.97 0.45 0.59
62 286 287 499 500
27.8 100 19.5 32.3 7.20
0.99 0.04 0.13 0.07 0.00
TMS
178 343 371 372
75.8 21.6 100 29.1
— 1.38 0.13 0.94
182 347 375 376
66.6 21.1 100 28.0
— 0.16 0.17 0.10
t-BDMS
313 356 357
100 45.9 13.4
— 2.55 3.99
316 360 361
100 51.5 12.6
— 0.43 0.33
a–d
See the corresponding footnotes in Table I-1a.
Table II-8a. Relative intensity and cross-contribution dataa of ionsb with potential for designating the analyte and the adapted internal standard — Hydrocodone/hydrocodone-d3 CD Groupc
Hydrocodone Ion (m/z)d Rel. int. Analog’s cont.
Hydrocodone-d3 Ion (m/z)d Rel. int. Analog’s cont.
None
299
100
2.39
302
100
0.27
Ethyl
282 298 327
21.0 54.6 100
2.28 0.82 0.44
285 301 330
19.4 49.5 100
2.98 0.37 0.17
Acetyl
298 341 342
77.0 100 16.8
0.11 0.00 0.00
301 344 345
79.3 100 24.3
0.00 0.00 0.00
TMS
234 371
60.5 100
1.12 0.34
237 374
66.9 100
2.79 1.19
t-BDMS
276 356 357 398 413
18.2 93.3 27.1 7.28 7.16
0.00 0.00 0.00 0.00 0.00
279 359 360 401 416
16.8 59.7 14.7 4.32 5.44
0.00 0.00 0.00 0.00 0.00
Methoxyimino
297 328
80.7 100
1.91 0.47
300 331
70.9 100
4.75 0.34
Hydroxylimino/ TMS
297 386
100 89.7
1.29 0.19
300 389
100 89.5
0.90 1.31
a–d
See the corresponding footnotes in Table I-1a.
Appendix Two — Ion Intensity Cross-Contribution Data
© 2010 by Taylor and Francis Group, LLC
425
Table II-8b. Relative intensity and cross-contribution dataa of ionsb with potential for designating the analyte and the adapted internal standard — Hydrocodone/hydrocodone-d6 CD Groupc
Hydrocodone Ion (m/z)d Rel. int. Analog’s cont.
Hydrocodone–d6 Ion (m/z)d Rel. int. Analog’s cont.
None
242 256 284 299
48.3 11.1 13.3 100
4.30 4.80 2.70 2.16
245 262 287 305
32.3 7.85 10.2 100
2.97 0.33 1.86 0.04
Ethyl
282 298 312 326 327
21.0 54.6 46.3 21.3 100
1.15 0.79 0.07 0.00 0.05
288 304 315 332 337
19.8 49.3 38.7 25.4 100
0.04 0.04 0.28 0.00 0.00
Acetyl
298 326 341
80.0 22.0 100
0.00 0.00 0.00
304 329 347
96.6 8.95 100
0.00 0.00 0.00
TMS
234 313 356 370 371
60.5 23.1 45.0 36.6 100
2.12 4.46 0.18 0.00 0.00
237 317 359 376 377
61.3 23.1 31.8 37.7 100
3.96 1.61 1.50 0.04 0.00
t-BDMS
313 356 357 398 413
100 93.3 27.1 7.28 7.16
0.00 0.00 0.00 0.00 0.00
316 362 363 401 419
86.1 86.5 22.5 4.47 6.68
0.00 0.00 0.00 0.00 0.00
Methoxyimino
297 298 328 329
80.7 21.6 100 26.8
0.08 0.00 0.00 0.00
303 304 334 335
77.4 16.7 100 20.5
0.00 0.00 0.00 0.00
Hydroxylimino/ TMS
297 298 329 371 386
100 22.4 14.6 18.4 89.7
0.40 2.35 2.27 4.67 0.05
303 304 332 377 392
100 22.7 15.2 13.8 87.7
1.24 1.61 2.89 0.00 0.00
a–d
See the corresponding footnotes in Table I-1a.
Table II-9a. Relative intensity and cross-contribution dataa of ionsb with potential for designating the analyte and the adapted internal standard — Dihydrocodeine/dihydrocodeine-d3 CD Groupc
Dihydrocodeine Ion (m/z)d Rel. int. Analog’s cont.
Dihydrocodeine–d3 Ion (m/z)d Rel. int. Analog’s cont.
None
301
100
—
304
100
—
Acetyl
300 343 344
30.9 100 22.0
1.17 0.79 4.57
303 346 347
31.1 100 30.9
0.67 0.36 0.12
TFA
284 300 397 398
39.2 13.5 100 23.0
1.53 0.69 0.41 4.46
287 303 400 401
34.2 12.0 100 31.3
0.73 0.28 0.36 0.18
Propionyl
284 357
31.9 100
1.47 0.69
287 360
32.2 100
2.49 0.38
Tanle II — Opioids
© 2010 by Taylor and Francis Group, LLC
426
Table II-9a. (Continued) CD Groupc
Dihydrocodeine Ion (m/z)d Rel. int. Analog’s cont.
Dihydrocodeine–d3 Ion (m/z)d Rel. int. Analog’s cont.
PFP
284 300 447
43.7 14.0 100
1.72 1.27 0.72
287 303 450
45.0 14.4 100
0.51 0.52 0.38
HFB
284 300 360 497
43.0 14.5 4.57 10.0
2.17 1.41 1.61 1.01
287 303 363 500
44.3 14.8 4.58 100
0.72 0.84 0.31 0.40
TMS
146 373 374
22.7 100 29.2
3.78 0.37 3.29
149 376 377
20.3 100 38.1
2.54 1.47 0.60
t-BDMS
358
83.0
3.91
361
82.5
1.23
a–d
See the corresponding footnotes in Table I-1a.
Table II-9b. Relative intensity and cross-contribution dataa of ionsb with potential for designating the analyte and the adapted internal standard — Dihydrocodeine/dihydrocodeine-d6 CD Groupc
Dihydrocodeine Ion (m/z)d Rel. int. Analog’s cont.
Dihydrocodeine–d6 Ion (m/z)d Rel. int. Analog’s cont.
None
284 300 301 302
14.0 18.7 100 20.2
0.55 0.62 0.47 0.78
290 306 307 308
14.5 19.9 100 20.2
0.11 0.28 0.05 0.03
Acetyl
284 300 328 343 344
37.2 34.1 8.40 100 22.8
0.46 0.43 0.78 0.40 0.44
290 306 331 349 350
37.7 33.1 5.39 100 22.4
0.08 0.00 0.65 0.00 0.00
TFA
284 300 340 382 397
36.5 12.7 9.74 9.15 100
0.48 0.63 1.62 0.80 0.31
290 306 343 385 403
39.9 13.6 10.5 5.59 100
0.04 0.19 0.44 0.88 0.00
Propionyl
284 300 342 357 358
31.9 38.8 7.23 100 23.4
0.60 0.47 1.12 0.39 0.44
290 306 345 363 364
32.2 32.5 4.63 100 23.9
0.00 0.00 2.73 0.00 0.00
PFP
284 300 390 432 447
43.3 14.2 8.67 8.05 100
2.00 2.55 3.17 2.60 1.83
290 306 393 435 453
44.0 13.6 8.97 4.96 100
0.06 0.11 0.33 1.16 0.00
HFB
497
100
—
503
100
—
TMS
373
100
—
379
100
—
t-BDMS
315 316 358 415
100 27.9 81.8 8.89
0.80 1.64 0.72 2.96
318 319 364 421
100 25.1 79.2 7.93
1.07 0.58 0.00 0.00
a–d
See the corresponding footnotes in Table I-1a.
Appendix Two — Ion Intensity Cross-Contribution Data
© 2010 by Taylor and Francis Group, LLC
427
Table II-10a. Relative intensity and cross-contribution dataa of ionsb with potential for designating the analyte and the adapted internal standard — Oxycodone/oxycodone-d3 CD Groupc
Oxycodone Ion (m/z)d Rel. int. Analog’s cont.
Oxycodone-d3 Ion (m/z)d Rel. int. Analog’s cont.
None
315
100
4.67
318
100
0.52
Acetyl
314 357 358
55.4 100 22.8
1.13 0.61 2.94
317 360 361
53.7 100 23.2
0.38 0.42 0.34
[Acetyl]2 (enol)
356 399
39.5 100
2.57 0.77
359 402
39.3 100
0.90 0.57
Propionyl
298 314 315 371 372
22.5 65.2 14.9 100 23.8
4.25 0.92 2.75 0.86 3.20
301 317 318 374 375
19.9 62.0 14.5 100 23.2
1.03 0.36 0.18 0.44 0.20
TMS
387 388
100 29.7
0.41 1.98
390 391
100 28.7
1.33 0.76
[TMS]2 (enol)
459
100
1.13
462
100
3.11
t-BDMS
372
100
—
375
100
—
[t-BDMS]2 (enol)
486 487 543
78.8 63.7 7.65
1.63 2.23 0.00
489 490 546
99.4 42.2 2.68
1.15 0.00 0.00
Methoxyimino
287 313 344
9.12 12.9 100
0.93 0.39 0.34
290 316 347
10.1 12.4 100
0.63 2.80 0.35
Methoxyimino/ propionyl
295 343 400
19.4 53.7 100
3.58 1.96 1.79
298 346 403
15.1 40.6 100
0.00 0.00 0.00
Methoxyimino/ TMS
416 417
100 29.9
0.13 1.87
419 420
100 28.2
1.43 0.64
Hydroxylimino/ [propionyl]2
230 295 313 328 386 442
45.0 50.0 14.1 30.3 11.4 21.5
0.00 0.00 0.00 0.00 0.00 0.00
233 298 316 331 389 445
60.2 48.2 17.0 32.1 12.7 20.8
0.00 0.00 0.00 0.00 0.00 0.00
Hydroxylimino/ [TMS]2
385 474 475
11.0 82.6 32.3
2.03 0.06 0.55
388 477 478
9.67 90.6 33.7
3.75 3.11 1.63
Hydroxylimino/ ethyl/propionyl
357 414 415
43.5 100 20.2
0.00 0.00 0.00
360 417 418
43.1 100 24.0
0.00 0.00 0.00
a–d
See the corresponding footnotes in Table I-1a.
Tanle II — Opioids
© 2010 by Taylor and Francis Group, LLC
428
Table II-10b. Relative intensity and cross-contribution dataa of ionsb with potential for designating the analyte and the adapted internal standard — Oxycodone/oxycodone-d6 CD Groupc
Oxycodone Ion (m/z)d Rel. int. Analog’s cont.
Oxycodone-d6 Ion (m/z)d Rel. int. Analog’s cont.
None
315
100
–
321
100
-
Acetyl
298 314 357 358
17.0 55.4 100 22.8
0.76 0.29 0.32 0.49
304 320 363 364
16.0 53.4 100 21.6
0.21 0.02 0.01 0.00
[Acetyl]2 (enol)
296 340 356 399 400
19.1 10.4 39.5 100 24.9
1.10 1.26 0.88 0.38 0.81
302 346 362 405 406
16.7 10.1 38.7 100 23.2
0.82 0.65 0.16 0.05 0.31
Propionyl
298 314 315 371 372
22.5 65.2 14.9 100 23.8
1.06 0.96 1.07 0.93 0.99
304 320 321 377 378
19.0 57.5 12.2 100 22.7
0.00 0.00 0.00 0.00 0.00
TMS
387 388
100 29.7
0.24 0.48
393 394
100 27.6
0.05 0.26
[TMS]2 (enol)
444 459 460
24.4 100 36.8
1.64 1.48 1.94
450 465 466
20.9 100 36.0
0.38 0.13 0.55
t-BDMS
372
100
—
378
100
—
[t-BDMS]2 (enol)
486 487 543
78.8 63.7 7.65
0.00 0.00 0.00
492 493 549
85.7 29.3 7.05
0.00 0.00 0.00
Methoxyimino
287 313 344 345
9.12 12.9 100 20.3
2.47 0.66 3.57 1.07
290 319 350 351
10.4 13.0 100 21.0
0.60 0.00 0.12 1.75
Methoxyimino/ propionyl
230 295 343 400 401
78.1 19.4 53.7 100 29.4
0.00 0.00 0.00 0.00 0.00
236 301 349 406 407
53.6 22.3 12.1 100 16.1
0.00 0.00 0.00 0.00 0.00
Methoxyimino/ TMS
326 401 416 417
6.00 15.2 100 29.9
4.25 0.00 0.00 0.00
332 407 422 423
6.17 14.0 100 29.3
3.23 0.03 0.07 0.06
Hydroxylimino/ [propionyl]2
139 230 295 328 442
100 45.0 50.0 30.3 21.5
0.00 0.00 0.00 0.00 0.00
142 236 301 334 448
100 29.3 71.5 28.1 36.9
0.00 0.00 0.00 0.00 0.00
Hydroxylimino/ [TMS]2
385 459 474 475
11.0 19.4 82.6 32.3
0.39 0.00 0.00 0.49
391 465 480 481
7.91 16.4 65.8 26.7
0.35 0.00 0.00 0.00
Hydroxylimino/ ethyl/propionyl
230 357 414 415
42.4 10.7 100 20.2
0.00 0.00 0.00 0.00
236 363 420 421
53.1 54.7 100 32.1
3.38 0.00 0.00 0.00
a–d
See the corresponding footnotes in Table I-1a.
Appendix Two — Ion Intensity Cross-Contribution Data
© 2010 by Taylor and Francis Group, LLC
429
Table II-11. Relative intensity and cross-contribution dataa of ionsb with potential for designating the analyte and the adapted internal standard — Noroxycodone/noroxycodone-d3 CD Groupc
Noroxycodone Ion (m/z)d Rel. int. Analog’s cont.
Noroxycodone-d3 Ion (m/z)d Rel. int. Analog’s cont.
None
301
100
—
304
100
—
[Acetyl]2
239
70.3
—
242
55.7
—
[TFA]3 (enol)
336 362 475 589
37.9 33.1 12.0 39.3
— 3.28 0.41 0.32
339 365 478 592
33.5 29.3 10.9 33.6
— 1.39 3.32 0.70
Propionyl
301 357 358
17.8 100 22.5
2.84 1.59 2.79
304 360 361
17.8 100 22.1
0.52 0.42 0.31
[PFP]2
239 430 593
100 6.99 20.1
1.12 1.15 0.87
242 433 596
100 7.25 20.2
2.31 0.14 0.21
[HFB]2
239 449 480 693
100 3.78 6.00 11.1
3.54 4.82 4.42 3.29
242 452 483 696
100 3.59 6.56 12.2
2.38 2.68 0.91 1.21
[TMS]2
445
73.3
—
448
76.9
—
[TMS]3 (enol)
445 446 517 518
35.8 16.6 16.4 8.69
1.56 3.28 0.64 2.50
448 449 520 521
32.1 12.3 15.9 7.47
2.67 1.39 4.41 2.40
Methoxyimino/ ethyl
343 358
51.9 100
4.97 1.50
346 361
46.0 100
0.08 0.08
Methoxyimino/ acetyl
299 341 354 372
100 36.1 6.58 98.1
1.71 1.59 2.02 0.66
302 344 357 375
100 35.5 8.42 95.3
0.32 0.44 3.58 0.39
Methoxyimino/ [TFA]2
268 377 409 522
20.9 16.5 4.91 14.0
0.00 0.00 0.00 0.00
271 380 412 525
23.3 10.7 4.96 16.6
0.00 0.00 0.00 0.00
Methoxyimino/ propionyl
299 355 386
100 20.0 58.0
1.28 1.04 0.72
302 358 389
100 20.9 65.3
0.30 0.68 0.41
Methoxyimino/ PFP
476
24.4
0.00
479
25.5
0.00
Methoxyimino/ [HFB]2
477 509 691 722
15.4 5.53 2.23 8.51
0.97 0.44 0.00 0.69
480 512 694 725
17.1 5.65 2.71 10.1
1.59 2.35 1.33 0.59
Methoxyimino/ [TMS]2
359 474 475
29.2 100 38.2
2.63 0.36 1.04
362 477 478
27.9 100 36.9
1.57 3.15 1.28
Methoxyimino/ t-BDMS
283 357 387
9.48 6.27 30.7
0.00 0.00 0.00
286 360 390
10.7 14.6 30.7
0.00 0.00 0.00
Methoxyimino/ ethyl/propionyl
244 357 414
36.0 41.8 100
3.92 4.77 0.42
247 360 417
31.7 40.9 100
0.00 0.00 1.06
Methoxyimino/ ethyl/TMS
359 430
16.2 100
4.84 0.41
362 433
15.5 100
1.95 1.46
Tanle II — Opioids
© 2010 by Taylor and Francis Group, LLC
430
Table II-11. (Continued) CD Groupc
Noroxycodone Ion (m/z)d Rel. int. Analog’s cont.
Noroxycodone-d3 Ion (m/z)d Rel. int. Analog’s cont.
Methoxyimino/ ethyl/t-BDMS
342 343
100 22.1
1.02 1.26
345 346
100 22.0
0.53 0.00
Methoxyimino/ acetyl/TMS
371 413 444
36.2 44.8 32.2
0.00 0.00 0.00
373 416 447
13.2 32.0 14.7
0.00 0.00 0.00
Methoxyimino/ propionyl/TMS
269 427 458
73.7 51.2 55.4
— 0.00 0.00
272 430 461
73.3 54.4 53.1
— 0.00 0.00
Hydroxylimino/ [ethyl]2/TMS
243 373 429 444 445
30.6 11.0 23.6 100 39.8
0.00 0.00 0.00 0.00 0.00
246 376 432 447 448
23.2 19.0 15.4 100 26.9
0.00 0.00 0.00 0.00 0.00
a–d
See the corresponding footnotes in Table I-1a.
Table II-12. Relative intensity and cross-contribution dataa of ionsb with potential for designating the analyte and the adapted internal standard — Buprenorphine/buprenorphine-d4 CD Groupc
Buprenorphine Ion (m/z)d Rel. int. Analog’s cont.
Buprenorphine-d4 Ion (m/z)d Rel. int. Analog’s cont.
Methyl
366 392 424 434 448 481
8.99 100 32.4 5.32 9.02 6.09
2.88 0.19 1.89 0.03 0.89 0.39
370 396 428 438 452 485
10.8 100 37.8 8.70 8.15 8.02
0.10 0.01 0.01 0.60 0.02 0.03
Ethyl
380 394 406 438 448 495
7.91 15.3 100 37.2 5.75 6.58
3.22 2.21 1.15 2.08 1.82 1.26
384 398 410 442 452 499
10.3 15.6 100 34.8 6.04 7.06
3.72 3.09 1.12 1.22 3.60 3.08
Acetyl
394 408 420 421 452
12.1 21.1 100 27.9 58.5
2.37 1.37 0.40 0.76 2.61
398 412 424 425 456
13.1 20.9 100 27.6 59.8
0.64 0.71 0.33 0.41 0.10
TFA (MBTFA)
474 506 516 548
100 43.3 7.46 3.84
0.09 0.36 0.51 0.10
478 510 520 552
100 38.6 3.38 4.18
3.15 1.20 2.26 2.38
PFP
498 512 524 556
9.85 20.2 100 32.0
1.51 0.01 0.29 1.04
602 516 528 560
3.52 20.0 100 28.6
4.89 0.02 0.78 0.35
HFB
562 574 606 630 663
15.6 100 41.7 3.87 4.08
4.42 2.65 4.75 0.00 2.80
566 578 610 634 667
19.8 100 31.2 1.11 2.42
1.08 0.91 1.32 1.91 0.08
Appendix Two — Ion Intensity Cross-Contribution Data
© 2010 by Taylor and Francis Group, LLC
431
Table II-12. (Continued) CD Groupc
Buprenorphine Ion (m/z)d Rel. int. Analog’s cont.
Buprenorphine-d4 Ion (m/z)d Rel. int. Analog’s cont.
TMS (MSTFA)
424 438 450 482 492 506 524 539
9.86 13.3 100 32.6 15.6 25.2 8.46 6.68
2.24 3.27 0.48 1.48 0.18 0.03 4.78 0.08
428 442 454 486 496 510 528 543
10.2 13.1 100 33.0 16.3 23.6 7.29 6.20
3.23 4.65 1.26 0.91 1.48 1.47 1.11 0.69
[TMS]2
438 506 554 555 611
30.8 41.5 48.3 52.1 11.7
3.50 1.70 0.00 2.25 0.00
442 510 558 559 615
14.4 26.3 35.4 14.6 2.23
2.50 0.95 1.46 0.00 0.00
t-BDMS
492 493 506 524 581
100 38.2 34.5 39.4 5.09
0.33 0.99 0.60 2.05 0.00
496 497 510 528 585
100 36.8 34.3 37.7 4.93
0.47 0.00 1.33 0.00 0.00
a–d
See the corresponding footnotes in Table I-1a.
Table II-13. Relative intensity and cross-contribution dataa of ionsb with potential for designating the analyte and the adapted internal standard — Norbuprenorphine/norbuprenorphine-d3 CD Groupc
Norbuprenorphine Ion (m/z)d Rel. int. Analog’s cont.
Norbuprenorphine-d3 Ion (m/z)d Rel. int. Analog’s cont.
[Methyl]2
384
72.5
4.38
387
51.2
1.37
[Ethyl]2
412 469
41.9 8.62
4.92 1.59
415 472
50.5 0.44
1.12 1.66
[Acetyl]2
422 440 441 482
10.6 100 27.6 2.65
2.66 1.20 1.79 0.07
425 443 444 485
9.53 100 26.6 1.85
1.84 0.68 0.23 0.90
[TFA]2 (MBTFA)
548 530
100 5.87
0.77 0.92
551 533
100 15.4
3.31 4.68
[PFP]2
648 630
54.1 9.19
2.63 0.59
651 633
91.3 6.80
0.24 0.00
[HFB]2
748 730
41.0 3.72
0.17 1.49
751 733
47.6 4.02
1.02 2.17
[TMS]2 (BSTFA)
500 557
37.8 6.43
4.34 4.82
503 560
27.8 5.01
3.97 4.30
[TMS]3
524
42.6
—
527
16.9
—
t-BDMS
452 470 527
41.8 59.4 3.10
1.71 1.45 0.00
455 473 530
41.3 60.8 2.79
2.36 2.09 0.00
a–d
See the corresponding footnotes in Table I-1a.
Tanle II — Opioids
© 2010 by Taylor and Francis Group, LLC
432
Table II-14. Relative intensity and cross-contribution dataa of ionsb with potential for designating the analyte and the adapted internal standard — Fentanyl/fentanyl-d5 CD Groupc None
a–d
Fentanyl Ion (m/z)d Rel. int. Analog’s cont. 146 189 245
54.0 40.0 100
0.81 1.00 0.19
Fentanyl-d5 Ion (m/z)d Rel. int. Analog’s cont. 151 194 250
54.0 38.0 100
0.20 0.19 0.13
See the corresponding footnotes in Table I-1a.
Table II-15. Relative intensity and cross-contribution dataa of ionsb with potential for designating the analyte and the adapted internal standard — Norfentanyl/norfentanyl-d5 CD Groupc
Norfentanyl Ion (m/z)d Rel. int. Analog’s cont.
Norfentanyl-d5 Ion (m/z)d Rel. int. Analog’s cont.
None
93 159 175 232
64.8 44.6 55.0 2.19
4.08 3.82 4.65 3.42
98 164 180 237
48.5 37.9 50.1 2.45
0.71 0.05 0.02 0.28
Acetyl
93 132 158 175 231 274
46.2 73.5 65.7 14.6 66.2 8.33
1.74 1.20 0.70 1.60 0.73 2.18
98 137 163 180 236 279
45.0 64.2 59.2 13.0 62.1 8.42
2.62 0.07 1.01 0.20 0.06 0.06
TCA
93 132 175 249 285 340
15.1 29.3 9.06 5.45 4.70 9.27
3.39 1.62 4.51 0.91 2.26 0.23
98 137 180 254 290 345
15.4 28.1 8.33 5.02 4.12 8.16
0.55 3.97 2.33 0.22 2.13 3.26
TFA
93 104 132 150 272 328
38.8 10.6 29.6 100 9.09 6.32
1.43 2.56 2.69 1.65 0.68 0.51
98 109 137 155 277 333
39.0 9.05 27.9 100 8.84 6.69
1.37 0.89 0.13 0.11 0.00 0.00
PFP
93 132 150 175 322 378
27.0 28.3 100 14.0 7.10 4.23
1.21 1.27 1.18 1.91 0.42 0.28
98 137 155 180 327 383
26.7 26.3 100 13.2 7.66 4.72
1.02 0.06 0.08 0.37 0.85 0.36
HFB
93 132 150 175 372 428
22.7 28.5 100 13.0 7.21 3.63
1.65 1.46 1.52 1.68 0.70 0.48
98 137 155 180 377 433
23.2 26.9 100 12.4 6.42 3.25
0.87 0.09 0.06 0.30 0.04 0.05
4-CB
93 132 150 175 437
20.0 28.1 100 11.9 6.46
2.13 2.08 2.11 1.93 0.76
98 137 155 180 442
20.8 26.7 100 11.3 5.28
1.07 0.25 0.08 0.51 0.02
Appendix Two — Ion Intensity Cross-Contribution Data
© 2010 by Taylor and Francis Group, LLC
433
Table II-15. (Continued) CD Groupc
Norfentanyl Ion (m/z)d Rel. int. Analog’s cont.
Norfentanyl-d5 Ion (m/z)d Rel. int. Analog’s cont.
TMS
206 231 247 289 304
22.5 13.9 49.9 21.4 9.92
1.46 0.87 0.52 0.54 3.54
211 236 252 294 309
19.8 13.0 46.3 20.0 8.83
0.18 0.15 0.08 0.10 0.27
t-BDMS
132 206 207 231 289 290
31.1 100 18.6 4.32 72.7 17.7
0.77 0.42 1.55 0.42 0.34 0.38
137 211 212 236 294 295
31.2 100 18.5 4.69 79.5 19.6
0.79 0.02 0.64 0.23 0.01 0.02
a–d
See the corresponding footnotes in Table I-1a.
Table II-16a. Relative intensity and cross-contribution dataa of ionsb with potential for designating the analyte and the adapted internal standard — Methadone/methadone-d3 CD Groupc None
a–d
Methadone Ion (m/z)d Rel. int. Analog’s cont. 223 294 309
26.1 5.68 12.8
1.30 0.28 0.64
Methadone-d3 Ion (m/z)d Rel. int. Analog’s cont. 226 297 312
22.0 27.1 9.79
0.64 0.47 0.00
See the corresponding footnotes in Table I-1a.
Table II-16b. Relative intensity and cross-contribution dataa of ionsb with potential for designating the analyte and the adapted internal standard — Methadone/methadone-d9 CD Groupc None
a–d
Methadone Ion (m/z)d Rel. int. Analog’s cont. 72 223 294 309
100 2.00 2.00 0.15
0.74 55.8 1.16 1.62
0.08b 0.48c 5.70 44.7 0.12 0.87 0.16 3.60
Methadone-d9 Ion (m/z)d Rel. int. Analog’s cont. 78 226 303 318
100 4.00 3.00 0.30
0.03 0.04 0.00 0.00
0.28b 0.37 0.00 0.00
0.05c 0.03 0.00 0.00
See the corresponding footnotes in Table I-1a.
Table II-17. Relative intensity and cross-contribution dataa of ionsb with potential for designating the analyte and the adapted internal standard — 2-ethylidine-1,5-dimethyl-3,3-diphenylpyrrolidine/2ethylidine-1,5-dimethyl-3,3-diphenylpyrrolidine-d3
CD Groupc None
a–d
2-ethylidine-1,5-dimethyl3,3-diphenylpyrrolidine Ion (m/z)d Rel. int. Analog’s cont. 276 277
100 99.6
1.18 2.09
See the corresponding footnotes in Table I-1a. Tanle II — Opioids
© 2010 by Taylor and Francis Group, LLC
2-ethylidine-1,5-dimethyl3,3-diphenylpyrrolidine-d3 Ion (m/z)d Rel. int. Analog’s cont. 279 280
95.5 100
2.11 0.15
434
Table II-18a. Relative intensity and cross-contribution dataa of ionsb with potential for designating the analyte and the adapted internal standard — Propoxyphene/propoxyphene-d5 CD Groupc None a–d
Propoxyphene Ion (m/z)d Rel. int. Analog’s cont. 208 250
5.00 1.00
4.50 0.36
Propoxyphen-d5 Ion (m/z)d Rel. int. Analog’s cont. 213 255
3.00 1.00
0.24 0.25
See the corresponding footnotes in Table I-1a.
Table II-18b. Relative intensity and cross-contribution dataa of ionsb with potential for designating the analyte and the adapted internal standard — Propoxyphene/propoxyphene-d7 CD Groupc None
a–d
Propoxyphene Ion (m/z)d Rel. int. Analog’s cont. 91 193 250
6.10 4.00 1.50
— 3.53 0.19
Propoxyphen-d7 Ion (m/z)d Rel. int. Analog’s cont. 98 200 257
3.76 1.91 1.55
— 3.06 0.00
See the corresponding footnotes in Table I-1a.
Table II-18c. Relative intensity and cross-contribution dataa of ionsb with potential for designating the analyte and the adapted internal standard — Propoxyphene/propoxyphene-d11 CD Groupc None
a–d
Propoxyphene Ion (m/z)d Rel. int. Analog’s cont. 58 178 250
100 3.00 1.00
0.21 2.73 0.00
Propoxyphen-d11 Ion (m/z)d Rel. int. Analog’s cont. 64 183 261
100 0.14 1.22
0.14 0.12 1.04
See the corresponding footnotes in Table I-1a.
Table II-19. Relative intensity and cross-contribution dataa of ionsb with potential for designating the analyte and the adapted internal standard — Norpropoxyphene/norpropoxyphene-d5 CD Groupc None
a–d
Norpropoxyphene Ion (m/z)d Rel. int. Analog’s cont. 178 220 234
6.00 9.00 65.0
3.19 3.20 0.86
Norpropoxyphen-d5 Ion (m/z)d Rel. int. Analog’s cont. 183 225 239
5.00 10.0 71.0
0.94 0.39 0.06
See the corresponding footnotes in Table I-1a.
Table II-20. Relative intensity and cross-contribution dataa of ionsb with potential for designating the analyte and the adapted internal standard — Meperidine/meperidine-d4
CD Groupc None a–d
Meperidine Ion (m/z)d Rel. int. Analog’s cont. 71 247
100 52.6
— 3.64
Meperidine-d4 Ion (m/z)d Rel. int. Analog’s cont. 73 251
100 56.6
See the corresponding footnotes in Table I-1a. Appendix Two — Ion Intensity Cross-Contribution Data
© 2010 by Taylor and Francis Group, LLC
— 0.78
435
Table II-21. Relative intensity and cross-contribution dataa of ionsb with potential for designating the analyte and the adapted internal standard — Normeperidine/normeperidine-d4 CD Groupc
Normeperidine Ion (m/z)d Rel. int. Analog’s cont.
None
57
100
—
Ethyl
232 246 247 260 261
17.8 100 17.1 14.6 20.5
Propyl
202 218 246 247 275
Butyl
Normeperidine-d4 Ion (m/z)d Rel. int. Analog’s cont. 59
100
—
0.86 0.17 0.46 0.18 0.67
236 250 251 264 265
18.1 100 17.4 15.2 20.2
0.05 0.06 0.04 0.33 0.05
4.66 2.83 100 17.1 2.94
2.12 0.24 0.08 0.15 2.24
206 222 250 251 279
4.85 2.66 100 17.5 3.02
0.04 0.06 0.02 0.03 0.06
246 247 289
100 18.4 2.92
0.07 0.31 1.40
250 251 293
100 18.1 2.90
0.03 0.11 0.18
Acetyl
158 187 188 202 232 275
30.9 100 14.0 28.0 31.5 30.2
1.82 0.70 1.42 0.63 0.65 0.61
161 191 192 206 236 279
27.6 100 15.3 32.3 34.8 34.2
4.45 0.34 0.47 0.17 0.12 0.08
TCA
342 232 344
100 34.5 66.3
— 1.82 0.38
346 236 348
100 38.9 66.4
— 3.97 0.37
TFA
143 241 255 256 329
72.7 100 33.5 48.8 38.5
2.56 0.42 0.52 0.64 0.04
146 243 259 260 333
55.2 100 32.4 51.6 38.6
0.73 1.10 0.18 3.16 0.02
PFP
143 291 305 306 379
66.6 100 30.7 43.4 36.5
2.72 0.49 0.53 0.80 0.03
146 293 309 310 383
54.0 100 30.4 47.5 38.5
2.34 1.24 0.18 0.07 0.02
HFB
341 355 356 429
100 29.6 42.6 34.5
— 0.08 0.10 0.03
343 359 360 433
100 29.4 46.9 37.4
— 2.21 4.23 0.24
4-CB
143 395 410 438 483
44.2 100 29.8 9.85 31.6
4.21 1.38 1.45 0.49 0.49
146 397 414 442 487
40.2 100 33.5 9.66 28.5
1.80 2.46 0.04 0.05 0.05
TMS
276 304 305
68.9 82.8 82.0
0.13 0.13 0.13
280 308 309
64.1 74.8 75.1
0.21 0.82 0.25
t-BDMS
262 274 290 291
13.8 7.82 100 23.4
0.89 0.37 0.02 0.04
266 278 294 295
22.1 8.26 100 23.9
0.12 0.28 0.14 0.02
a–c
See the corresponding footnotes in Table II-1A.
Tanle II — Opioids
© 2010 by Taylor and Francis Group, LLC
437
Summary of Drugs, Isotopic Analogs, and Chemical Derivatization Groups Included in Table III (Hallucinogens) Compound
Isotopic analog
Chemical derivatization group
Table #
Cannabinol
d3
Methyl, ethyl, propyl, butyl, propionyl
III-1
Tetrahydrocannabinol
d3
Methyl, ethyl, propyl, butyl, TFA, propionyl, PFP, HFB, TMS, t-BDMS
III-2
THC-OH
d3
[Methyl]2, [ethyl]2, [propyl]2, [butyl]2, [TFA]2, propionyl, [PFP]2, [HFB]2, [TMS]2, [t-BDMS]2
III-3
THC-COOH
d3 , d9
[Methyl]2, [ethyl]2, [propyl]2, [butyl]2, propionyl, [TMS]2, [t-BDMS]2, methyl/TFA, PFPoxy/PFP, HFPoxy/HFB
III-4
Ketamine
d4
None, acetyl, TFA, HFB, PFB, TMS
III-5
Norketamine
d4
None, acetyl, TCA, TFA, PFP, HFB, 4-CB, PFB, TMS, TFA/t-BDMS, PFP/t-BDMS, HFB/t-BDMS
III-6
Phencyclidine
d5
Acetyl, TFA, HFB, PFB, TMS
III-7
LSD
d3
None, TMS
III-8
Mescaline
d9
Acetyl, TCA, TFA, PFP, HFB, 4-CB, [TMS]2, t-BDMS, TFA/TMS, TFA/t-BDMS, PFP/TMS, PFP/t-BDMS, HFB/TMS, HFB/t-BDMS
III-9
Psilocin
d10
None, acetyl, [acetyl]2, [TMS]2, t-BDMS, [t-BDMS]2
Table III — Hallucinogens
© 2010 by Taylor and Francis Group, LLC
III-10
439
Appendix Two — Table III Cross-Contributions Between Ions Designating the Drugs and Their Isotopically Labeled Analogs in Various Derivatization Forms — Hallucinogens Table III-1. Relative intensity and cross-contribution data of ions with potential for designating the analyte and the adapted internal standard — Cannabinol/cannabinol-d3 ............................................................................................................................ 440 Table III-2. Relative intensity and cross-contribution data of ions with potential for designating the analyte and the adapted internal standard — Tetrahydrocannabinol/tetrahydrocannabinol-d3 ............................................................................. 440 Table III-3. Relative intensity and cross-contribution data of ions with potential for designating the analyte and the adapted internal standard — THC-OH/THC-OH-d3 .................................................................................................................... 441 Table III-4a. Relative intensity and cross-contribution data of ions with potential for designating the analyte and the adapted internal standard — THC-COOH/THC-COOH-d3 ......................................................................................................... 442 Table III-4b. Relative intensity and cross-contribution data of ions with potential for designating the analyte and the adapted internal standard — THC-COOH/THC-COOH-d9 ......................................................................................................... 442 Table III-5. Relative intensity and cross-contribution data of ions with potential for designating the analyte and the adapted internal standard — Ketamine/ketamine-d4 .................................................................................................................... 444 Table III-6. Relative intensity and cross-contribution data of ions with potential for designating the analyte and the adapted internal standard — Norketamine/norketamine-d4 ......................................................................................................... 444 Table III-7. Relative intensity and cross-contribution data of ions with potential for designating the analyte and the adapted internal standard — Phencyclidine/phencyclidine-d5 ..................................................................................................... 446 Table III-8. Relative intensity and cross-contribution data of ions with potential for designating the analyte and the adapted internal standard — LSD/LSD-d3 ................................................................................................................................... 446 Table III-9. Relative intensity and cross-contribution data of ions with potential for designating the analyte and the adapted internal standard — Mescaline/mescaline-d9 .................................................................................................................. 446 Table III-10. Relative intensity and cross-contribution data of ions with potential for designating the analyte and the adapted internal standard — Psilocin/psilocin-d10 ....................................................................................................................... 447
Table III — Hallucinogens
© 2010 by Taylor and Francis Group, LLC
440
Table III-1. Relative intensity and cross-contribution dataa of ionsb with potential for designating the analyte and the adapted internal standard — Cannabinol/cannabinol-d3 CD Groupc
Cannabinol Ion (m/z)d Rel. int. Analog’s cont.
Cannabinol-d3 Ion (m/z)d Rel. int. Analog’s cont.
Methyl
309 310 324
100 23.6 12.9
0.33 4.70 0.40
312 313 327
100 24.0 13.0
0.52 0.30 13.3
Ethyl
323
100
0.30
326
100
0.75
Propyl
337
100
0.61
340
100
2.24
Butyl
351 366
100 12.0
0.51 0.65
354 369
100 12.0
0.61 2.10
Propionyl
295 351 352
100 93.1 23.4
2.24 2.09 10.3
298 354 355
100 90.2 23.2
0.21 0.45 0.18
a–d
See the corresponding footnotes in Table I-1a.
Table III-2. Relative intensity and cross-contribution dataa of ionsb with potential for designating the analyte and the adapted internal standard — Tetrahydrocannabinol/tetrahydrocannabinol-d3 CD Groupc
Tetrahydrocannabinol Ion (m/z)d Rel. int. Analog’s cont.
Tetrahydrocannabinol-d3 Ion (m/z)d Rel. int. Analog’s cont.
Methyl
245 285 313 328
44.2 33.0 100 74.1
1.59 2.56 0.33 0.09
248 288 316 331
42.3 32.4 100 74.8
1.07 0.49 0.26 0.28
Ethyl
259 313 327 328 342
40.2 40.6 100 24.2 88.7
3.14 0.73 0.00 2.41 0.00
262 316 330 331 345
39.5 40.2 100 24.3 91.8
1.14 0.52 0.29 0.16 0.35
Propyl
313 341 356
72.5 100 95.0
1.68 0.77 0.69
316 344 359
69.7 100 95.4
0.33 0.39 0.39
Butyl
313 327 355 370
61.7 20.4 100 99.3
4.98 3.72 1.49 0.31
316 330 358 373
64.1 20.6 100 99.6
0.82 0.51 0.42 0.40
TFA
297 313 327 367 395 410
74.8 33.4 53.5 83.4 83.7 100
— 1.13 1.23 0.73 0.52 0.09
300 316 330 370 398 413
64.9 31.3 51.3 80.8 80.7 100
— 1.13 0.49 0.33 0.31 0.39
Propionyl
313 314 341 370
50.2 21.7 100 9.26
1.48 2.69 — 0.93
316 317 344 373
49.2 21.0 100 8.66
0.93 0.22 — 0.54
PFP
377 378 417 445 460
100 20.1 45.9 10.6 59.0
0.63 4.53 0.80 1.03 0.08
380 381 420 448 463
100 20.2 44.3 9.78 54.8
1.39 1.01 0.51 0.48 0.48
Appendix Two — Ion Intensity Cross-Contribution Data
© 2010 by Taylor and Francis Group, LLC
441
Table III-2. (Continued) CD Groupc
Tetrahydrocannabinol Ion (m/z)d Rel. int. Analog’s cont.
Tetrahydrocannabinol-d3 Ion (m/z)d Rel. int. Analog’s cont.
HFB
297 313 427 467 495 510
100 34.1 54.0 80.2 73.7 98.1
1.39 1.92 1.44 1.42 1.77 0.99
300 316 430 470 498 513
100 33.8 53.5 80.9 73.5 97.8
0.47 0.69 0.07 0.46 0.42 0.49
TMS
303 343 371 386 387
47.5 30.6 100 91.7 29.1
1.12 3.44 0.44 0.09 2.33
306 346 374 389 390
47.6 29.0 100 92.7 29.5
1.85 1.39 1.26 1.24 0.52
t-BDMS
345 371 413 428
18.4 100 30.4 53.3
2.86 2.88 0.87 0.43
348 374 416 431
18.1 100 30.5 54.7
2.15 1.74 1.61 1.66
a–d
See the corresponding footnotes in Table I-1a.
Table III-3. Relative intensity and cross-contribution dataa of ionsb with potential for designating the analyte and the adapted internal standard — THC-OH/THC-OH-d3 CD Groupc
THC-OH Ion (m/z)d Rel. int.
Analog’s cont.
THC-OH-d3 Ion (m/z)d Rel. int. Analog’s cont.
[Methyl]2
231 299 314
85.9 100 81.2
2.03 1.96 1.87
234 302 317
83.7 100 81.0
0.42 0.17 0.18
[Ethyl]2
377
100
—
340
100
—
[Propyl]2
351
100
—
354
100
—
[Butyl]2
365
100
—
368
100
—
[TFA]2
313 340 365 408 409 522
9.38 8.02 34.4 100 45.4 7.86
1.90 3.72 1.24 0.07 0.89 0.00
316 343 368 411 412 525
9.15 7.81 33.3 100 45.2 7.84
1.35 1.87 1.32 1.06 0.26 0.55
Propionyl
312 368 369
100 48.8 18.4
1.47 0.90 5.34
315 371 372
100 46.0 17.6
0.51 1.30 0.54
[PFP]2
363 415 458 459 622
9.41 33.5 100 47.8 5.45
1.09 1.71 0.11 0.69 0.00
366 418 461 462 625
9.04 31.6 100 46.7 5.36
1.26 1.28 1.19 0.34 0.77
[HFB]2
413 465 508 509 722
9.50 30.6 100 47.6 3.34
2.44 2.83 1.11 1.71 1.23
416 468 511 512 725
8.78 29.7 100 47.4 3.68
2.62 1.53 1.27 0.33 0.81
[TMS]2
371 459 474
100 3.77 5.03
0.58 2.68 0.62
374 462 477
100 3.86 5.27
1.40 3.74 3.91
[t-BDMS]2
413
100
1.26
416
100
1.55
aa–d
See the corresponding footnotes in Table I-1a.
Table III — Hallucinogens
© 2010 by Taylor and Francis Group, LLC
442
Table III-4a. Relative intensity and cross-contribution dataa of ionsb with potential for designating the analyte and the adapted internal standard — THC-COOH/THC-COOH-d3 CD Groupc
THC-COOH Ion (m/z)d Rel. int. Analog’s cont.
THC-COOH-d3 Ion (m/z)d Rel. int. Analog’s cont.
[Methyl]2
313 341 357 372
100 8.54 64.4 33.9
— 2.19 0.64 0.33
316 344 360 375
100 7.89 62.1 32.5
— 1.14 0.40 0.44
[Ethyl]2
327 371 385 400
100 32.7 40.4 25.9
0.59 0.94 0.56 0.28
330 374 388 403
100 33.8 40.6 26.0
1.66 0.42 0.47 0.61
[Propyl]2
341 385 413
100 38.9 41.0
0.66 0.61 0.00
344 388 416
100 38.9 40.6
0.98 0.49 0.96
[Butyl]2
355 399 441 456
100 41.8 41.3 22.0
2.91 2.12 2.74 0.00
358 402 444 459
100 42.0 41.8 22.2
0.58 0.70 0.62 0.70
Propionyl
314 337 370
87.9 2.60 6.04
1.82 3.12 1.94
317 340 373
84.5 2.96 5.78
0.37 1.06 0.62
[TMS]2
371 473 488
100 36.3 22.3
0.97 0.91 0.80
374 476 491
100 37.2 23.3
1.58 3.31 3.35
[t-BDMS]2
413 515 516 557
95.5 100 43.3 29.8
1.55 2.00 7.80 1.47
416 518 519 560
96.5 100 42.4 29.8
2.67 3.73 2.00 4.71
Methyl/TFA
379 395 411 439 454
20.5 49.5 9.54 100 46.3
1.70 0.79 4.33 0.53 0.12
382 398 414 442 457
21.1 50.7 9.35 100 46.5
2.42 2.33 0.42 0.46 0.48
PFPoxy/PFP
445 459 489 579 607 622
69.8 100 32.5 23.3 82.5 71.6
1.44 0.95 1.14 1.71 0.95 0.19
448 462 492 582 610 625
68.0 100 32.6 22.8 82.5 72.2
1.24 0.59 0.63 0.58 0.55 0.62
HFPoxy/HFB
477 495 523 539 690
100 28.0 27.3 39.0 38.6
— 4.17 1.84 0.83 0.82
480 498 526 542 693
100 27.8 27.6 39.2 38.2
— 1.96 0.54 0.63 0.00
a–d
See the corresponding footnotes in Table I-1a.
Table III-4b. Relative intensity and cross-contribution dataa of ionsb with potential for designating the analyte and the adapted internal standard — THC-COOH/THC-COOH-d9 CD Groupc [Methyl]2
THC-COOH Ion (m/z)d Rel. int. Analog’s cont. 313 314 341 357 372
100 24.1 8.54 64.4 33.9
0.24 1.79 0.87 0.00 0.00
THC-COOH-d9 Ion (m/z)d Rel. int. Analog’s cont. 322 323 350 363 381
100 22.2 7.38 46.2 32.3
Appendix Two — Ion Intensity Cross-Contribution Data
© 2010 by Taylor and Francis Group, LLC
0.02 0.73 0.00 0.00 0.00
443
Table III-4b. (Continued) CD Groupc
THC-COOH Ion (m/z)d Rel. int. Analog’s cont.
THC-COOH-d9 Ion (m/z)d Rel. int. Analog’s cont.
[Ethyl]2
327 328 355 371 385 400
100 24.7 8.32 32.7 40.4 25.9
0.08 0.41 0.28 0.00 0.02 0.00
336 337 364 380 391 409
100 22.9 7.82 34.3 39.5 26.1
0.01 0.33 0.00 0.00 0.00 0.00
[Propyl]2
341 342 369 385 413 428
100 25.9 8.97 38.9 41.0 23.8
0.00 0.00 0.00 0.00 0.00 0.00
350 351 378 394 419 437
100 24.1 11.3 37.3 40.7 23.8
0.01 0.20 0.00 0.00 0.00 0.00
[Butyl]2
355 399 441 456
100 41.8 41.3 22.0
2.91 2.12 2.74 0.00
364 408 447 465
100 41.8 40.6 22.9
0.58 0.70 0.62 0.00
Propionyl
258 259 271 299 314
100 18.2 16.6 18.1 87.9
2.08 4.78 1.36 0.80 0.62
264 265 277 305 323
100 18.0 12.3 16.0 88.9
0.05 1.19 0.48 0.19 0.13
[TMS]2
371 473 488
100 36.3 22.3
4.58 2.70 4.05
380 479 497
100 27.8 24.0
0.05 0.09 0.00
[t-BDMS]2
413 515 516 557 572
95.5 100 43.3 29.8 36.1
1.47 1.24 1.96 1.17 1.18
422 524 525 563 581
94.6 100 40.7 22.1 36.8
0.13 0.00 0.00 0.00 0.00
Methyl/TFA
341 379 395 411 439 454
31.4 20.5 49.5 9.54 100 46.3
4.92 0.25 0.15 3.64 0.04 0.00
350 385 404 414 445 463
31.7 14.1 53.8 9.44 100 50.0
0.79 2.56 0.46 0.41 0.00 0.00
PFPoxy/PFP
445 459 473 489 579 607 622
69.8 100 38.7 32.5 23.3 82.5 71.6
0.81 0.66 0.51 2.25 0.36 0.06 0.00
454 468 482 498 582 613 631
68.5 100 36.0 31.3 21.1 80.8 70.1
0.48 0.27 0.98 4.27 0.40 0.00 0.00
HFPoxy/HFB
477 495 523 539 675 690
100 28.0 27.3 39.0 23.7 38.6
0.79 0.27 0.29 0.23 0.50 0.04
486 504 532 548 681 699
100 27.1 25.4 38.6 24.9 37.3
0.08 5.36 0.15 0.96 0.00 0.00
a–d
See the corresponding footnotes in Table I-1a.
Table III — Hallucinogens
© 2010 by Taylor and Francis Group, LLC
444
Table III-5. Relative intensity and cross-contribution dataa of ionsb with potential for designating the analyte and the adapted internal standard — Ketamine/ketamine-d4 CD Groupc
Ketamine Ion (m/z)d Rel. int.
Analog’s cont.
Ketamine-d4 Ion (m/z)d Rel. int. Analog’s cont.
None
138 180 209
13.0 100 24.0
1.28 0.75 1.19
142 184 213
15.0 100 32.0
3.61 0.66 0.18
Acetyl
180 208 216 251
83.2 100 100 9.43
0.45 0.36 0.46 1.04
184 212 220 255
71.3 100 91.9 9.04
1.64 0.60 0.73 0.59
TFA
236 262 270 298
40.3 43.4 74.2 21.0
0.21 2.62 0.93 0.50
240 266 274 302
44.9 47.7 85.8 22.8
3.62 1.32 1.25 0.04
HFB
152 236 328 362 364 370 398
59.4 46.3 7.79 41.5 12.5 44.9 5.80
— 0.18 0.75 0.14 0.44 0.32 0.38
156 240 332 366 368 374 402
67.0 53.8 10.7 47.9 14.5 48.9 6.02
— 3.11 0.49 1.06 0.84 1.62 0.53
PFB
152 326 360 362 368 369 396 403 431
57.0 5.91 80.6 26.4 88.5 19.2 8.93 9.76 2.81
2.38 2.38 0.77 1.64 0.92 1.42 1.14 3.13 3.16
156 330 364 366 372 373 400 407 435
56.2 5.54 78.6 26.3 85.8 18.2 8.74 9.05 2.88
1.29 2.40 0.64 0.21 0.22 1.31 0.33 1.32 0.89
TMS
152 294
41.9 8.63
2.32 3.42
156 298
41.1 8.21
0.40 3.67
a–d
See the corresponding footnotes in Table I-1a.
Table III-6. Relative intensity and cross-contribution dataa of ionsb with potential for designating the analyte and the adapted internal standard — Norketamine/Norketamine-d4 CD Groupc
Norketamine Ion (m/z)d Rel. int. Analog’s cont.
Norketamine-d4 Ion (m/z)d Rel. int. Analog’s cont.
None
102 166 195
10.0 100 25.0
3.75 0.85 0.83
106 170 199
11.0 100 33.0
0.76 0.38 0.17
Acetyl
102 194 202 203 230 231
46.9 15.6 100 14.2 78.3 12.1
0.72 0.77 0.06 0.35 0.23 0.13
106 198 206 207 234 235
47.1 13.4 100 14.7 77.3 12.8
2.44 2.59 1.42 5.01 0.23 0.06
TCA
102 306
28.0 96.0
2.02 0.25
106 310
22.8 95.1
0.32 4.73
TFA
284 102 214 239 256 275
100 76.6 67.7 47.0 56.2 37.1
— 0.85 0.13 0.43 0.31 0.15
288 106 218 243 260 279
100 72.7 60.4 38.3 55.8 37.0
— 1.39 0.79 2.48 4.69 1.89
Appendix Two — Ion Intensity Cross-Contribution Data
© 2010 by Taylor and Francis Group, LLC
445
Table III-6. (Continued) CD Groupc
Norketamine Ion (m/z)d Rel. int. Analog’s cont.
Norketamine-d4 Ion (m/z)d Rel. int. Analog’s cont.
PFP
264 289 290 306 325 334
55.3 45.2 50.5 77.1 44.9 100
1.03 1.86 8.83 0.93 0.98 0.88
268 293 294 310 329 338
54.1 42.7 5.00 78.6 45.2 100
0.10 0.23 0.84 0.43 0.48 0.02
HFB
102 314 339 356 375 377 384
58.9 69.1 43.8 100 41.8 13.1 84.8
2.06 0.39 1.09 0.29 0.33 2.85 0.21
106 318 343 360 379 381 388
57.1 69.8 41.0 100 40.8 12.8 90.8
0.52 0.09 0.35 0.26 0.54 0.10 0.03
4-CB
410 411 429 438
100 21.2 20.2 57.1
0.49 0.59 0.53 0.43
414 415 433 442
100 21.9 22.0 57.3
0.16 0.31 1.28 0.04
PFB
102 312 346 354 355 382
16.9 12.3 13.5 98.5 19.7 66.5
2.12 1.31 3.11 0.49 1.35 0.43
106 316 350 358 359 386
16.2 11.3 12.5 95.1 18.6 62.5
1.16 1.33 1.06 0.06 0.35 0.02
TMS
210 224 238 239 267 280
31.4 29.7 100 17.9 11.9 11.3
2.10 2.26 0.64 1.79 0.63 0.38
214 229 242 243 271 284
32.5 33.6 100 25.5 15.4 10.1
2.24 1.30 1.46 0.72 1.83 1.36
TFA/t-BDMS
336 376 378
25.8 100 38.3
0.71 0.29 0.46
340 380 382
26.4 100 37.8
3.69 2.18 0.17
PFP/t-BDMS
263 296 309 324 358 426 428
62.6 51.0 35.8 35.4 20.6 100 37.9
1.58 2.25 5.85 2.89 1.75 0.04 0.41
267 300 313 328 362 430 432
55.0 51.2 28.2 34.3 19.8 100 38.4
3.83 10.7 2.74 4.44 4.41 2.41 0.19
HFB/t-BDMS
263 359 374 476 478
44.4 27.7 35.3 100 38.8
0.75 2.83 0.62 0.03 0.51
267 363 378 480 482
57.2 25.9 40.4 100 38.5
2.52 3.78 4.61 2.16 0.12
a–d
See the corresponding footnotes in Table I-1a.
Table III — Hallucinogens
© 2010 by Taylor and Francis Group, LLC
446
Table III-7. Relative intensity and cross-contribution dataa of ionsb with potential for designating the analyte and the adapted internal standard — Phencyclidine/phencyclidine-d5 CD Groupc None
a–d
Phencyclidine Ion (m/z)d Rel. int. Analog’s cont. 91 186 200 242
30.0 22.0 100 35.0
0.53 0.16 0.03 0.02
Phencyclidine-d5 Ion (m/z)d Rel. int. Analog’s cont. 96 190 205 246
28.0 15.0 100 28.0
1.01 0.00 0.02 0.10
See the corresponding footnotes in Table I-1a.
Table III-8. Relative intensity and cross-contribution dataa of ionsb with potential for designating the analyte and the adapted internal standard — LSD/LSD-d3 CD Groupc
LSD Ion (m/z)d Rel. int.
Analog’s cont.
LSD-d3 Ion (m/z)d Rel. int.
Analog’s cont.
None
221 323
100 99.3
1.48 0.62
224 326
93.0 100
4.11 0.23
TMS
293 395 396
81.1 93.8 29.0
— 0.69 4.04
296 398 399
78.2 90.0 27.8
— 1.56 1.11
a–d
See the corresponding footnotes in Table I-1a.
Table III-9. Relative intensity and cross-contribution dataa of ionsb with potential for designating the analyte and the adapted internal standard — Mescaline/mescaline-d9 CD Groupc
Mescaline Ion (m/z)d Rel. int. Analog’s cont.
Mescaline-d9 Ion (m/z)d Rel. int. Analog’s cont.
Acetyl
179 181 194 195 253
47.1 47.9 100 13.0 16.3
1.17 1.29 1.13 1.32 1.14
185 190 203 204 262
46.8 48.0 100 10.5 16.2
0.07 0.15 0.01 0.14 0.03
TCA
179 181 194 195 355 357
34.5 100 97.4 20.8 17.6 17.1
0.52 0.46 0.23 1.04 0.11 0.05
185 190 203 204 364 366
32.5 100 98.8 19.1 22.5 21.9
0.34 0.29 0.05 1.05 0.00 0.02
TFA
179 181 194 307
22.2 100 35.3 34.8
0.36 0.47 0.38 0.25
185 190 203 316
22.0 100 34.4 37.9
0.06 0.06 0.06 0.00
PFP
179 181 194 357
25.4 100 38.6 38.8
0.20 0.33 0.21 0.11
185 190 203 366
25.6 100 38.1 40.2
0.12 0.16 0.02 0.00
HFB
179 181 194 407
27.3 100 42.5 39.2
0.35 0.28 0.21 0.07
185 190 203 416
27.1 100 41.3 39.5
0.08 0.08 0.03 0.00
Appendix Two — Ion Intensity Cross-Contribution Data
© 2010 by Taylor and Francis Group, LLC
447
Table III-9. (Continued) CD Groupc
Mescaline Ion (m/z)d Rel. int. Analog’s cont.
Mescaline-d9 Ion (m/z)d Rel. int. Analog’s cont.
4-CB
179 181 194 416 461
40.2 100 94.8 4.00 27.8
0.70 0.92 0.75 0.74 0.37
185 190 203 425 470
36.2 100 92.3 4.40 31.4
0.15 0.12 0.04 0.35 0.00
[TMS]2
266 340 354
1.06 9.19 0.24
1.96 0.04 1.65
275 349 363
1.05 11.0 0.29
0.08 0.00 0.60
t-BDMS
181 268 269 310
8.06 37.1 7.46 3.03
4.93 0.50 1.06 0.33
190 277 278 319
8.65 38.0 6.66 3.04
2.69 0.05 0.42 0.08
TFA/TMS
181 182 194 379 380
100 12.4 4.45 24.1 5.76
0.49 1.38 2.64 0.25 0.34
190 191 203 388 389
100 9.76 4.47 26.0 5.49
0.14 0.66 0.50 0.01 0.06
TFA/t-BDMS
181 182 195 220 421
100 13.1 24.0 13.5 22.4
0.26 2.46 0.83 0.46 0.01
190 191 204 229 430
100 10.0 24.6 14.9 27.6
0.27 1.61 0.70 0.39 0.02
PFP/TMS
181 182 195 429 430
100 12.9 8.14 30.3 7.57
0.43 0.95 0.88 0.15 0.15
190 191 204 438 439
100 10.5 8.71 30.2 6.72
0.27 0.96 1.23 0.02 0.03
PFP/t-BDMS
181 195 414 471
100 33.6 4.69 26.3
0.25 0.34 0.04 0.02
190 204 423 480
100 33.1 3.42 19.6
0.32 0.46 0.05 0.01
HFB/TMS
181 182 195 479 480
100 11.8 8.00 24.3 6.20
0.33 0.98 2.81 0.17 0.17
190 191 204 488 489
100 9.42 7.98 21.2 4.80
0.08 2.92 1.17 0.00 0.10
HFB/t-BDMS
181 195 521
100 28.6 22.4
0.34 0.32 0.04
190 204 530
100 28.6 17.0
0.25 0.76 0.23
a–d
See the corresponding footnotes in Table I-1a.
Table III-10. Relative intensity and cross-contribution dataa of ionsb with potential for designating the analyte and the adapted internal standard — Psilocin/psilocin-d10 CD Groupc None
Psilocin Ion (m/z)d Rel. int. 58 59 204 205
100 3.93 22.4 3.12
Analog’s cont. 1.45 2.30 1.21 1.54
Psilocin-d10 Ion (m/z)d Rel. int. 66 67 214 215
Table III — Hallucinogens
© 2010 by Taylor and Francis Group, LLC
100 4.17 21.6 3.30
Analog’s cont. 0.25 2.55 0.09 0.24
448
Table III-10. (Continued) CD Groupc
Psilocin Ion (m/z)d Rel. int.
Analog’s cont.
Psilocin-d10 Ion (m/z)d Rel. int.
Analog’s cont.
Acetyl
58 59 146 160 246
100 4.02 4.87 2.36 3.74
0.26 0.05 3.13 3.64 0.21
66 67 148 165 256
100 3.87 2.47 1.08 3.11
0.10 1.25 2.00 0.42 0.02
[Acetyl]2
58 59 146 160 288
100 3.76 3.67 2.09 0.58
0.22 0.96 3.52 3.92 2.70
66 67 148 165 298
100 3.78 2.11 0.91 0.46
0.08 1.73 2.34 0.85 1.47
[TMS]2
58 290 333 348 349
56.7 100 4.97 28.2 8.84
0.38 — 0.11 0.04 0.05
66 292 343 358 359
64.3 100 6.22 32.3 10.1
0.03 — 0.50 0.01 0.05
t-BDMS
58 303 318 319
100 1.28 16.2 4.23
0.52 0.36 0.18 0.23
66 313 328 329
100 1.43 15.8 4.23
0.06 4.48 0.15 0.33
[t-BDMS]2
58 432 433
100 11.1 4.27
0.60 0.16 0.00
66 442 443
100 11.7 4.42
0.01 0.00 0.87
a–d
See the corresponding footnotes in Table I-1a.
Appendix Two — Ion Intensity Cross-Contribution Data
© 2010 by Taylor and Francis Group, LLC
449
Summary of Drugs, Isotopic Analogs, and Chemical Derivatization Groups Included in Table IV (Depressant/Hypnotics) Compound
Isotopic analog
Chemical derivatization group
Table #
Pentobarbital
d5
None, [methyl]2, [ethyl]2, [propyl]2, [butyl]2, [TMS]2, [t-BDMS]2
IV-1
Phenobarbital
d5, d5 (ring)
[Methyl]2, [ethyl]2, [propyl]2, [butyl]2, [TMS]2, [t-BDMS]2
IV-2
d5 ,
13C
4
None, [methyl]2, [ethyl]2, [propyl]2, [butyl]2, [TMS]2, [t-BDMS]2
IV-3
Sceobarbital
d5 ,
13C
4
None, [methyl]2, [ethyl]2, [propyl]2, [butyl]2, [TMS]2, [t-BDMS]2
IV-4
Methohexital
d5
Butalbital
None, methyl, ethyl, propyl, butyl, TMS, t-BDMS
IV-5
γ-Hydroxybutyric acid d6
[TMS]2, [t-BDMS]2
IV-6
γ-Butyrolactone
None
IV-7
d6
Table IV — Depressants/Hypnotics
© 2010 by Taylor and Francis Group, LLC
451
Appendix Two — Table IV Cross-Contributions Between ions Designating the Drugs and Their Isotopically Labeled Analogs in Various Derivatization Forms — Depressants/Hypnotics Table IV-1. Relative intensity and cross-contribution data of ions with potential for designating the analyte and the adapted internal standard — Pentobarbital/pentobarbital-d5 ....................................................................................................... 452 Table IV-2a. Relative intensity and cross-contribution data of ions with potential for designating the analyte and the adapted internal standard — Phenobarbital/phenobarbital-d5 ...................................................................................................... 452 Table IV-2b. Relative intensity and cross-contribution data of ions with potential for designating the analyte and the adapted internal standard — Phenobarbital/phenobarbital-d5 (ring) ........................................................................................... 453 Table IV-3a. Relative intensity and cross-contribution data of ions with potential for designating the analyte and the adapted internal standard — Butalbital/butalbital-d5 ................................................................................................................... 453 Table IV-3b. Relative intensity and cross-contribution data of ions with potential for designating the analyte and the adapted internal standard — Butalbital/butalbital-13C4 ................................................................................................................. 454 Table IV-4a. Relative intensity and cross-contribution data of ions with potential for designating the analyte and the adapted internal standard — Secobarbital/secobarbital-d5 ........................................................................................................... 455 Table IV-4b. Relative intensity and cross-contribution data of ions with potential for designating the analyte and the adapted internal standard — Secobarbital/secobarbital-13C4 ....................................................................................................... 455 Table IV-5. Relative intensity and cross-contribution data of ions with potential for designating the analyte and the adapted internal standard — Methohexital/methohexital-d5 ........................................................................................................ 456 Table IV-6. Relative intensity and cross-contribution data of ions with potential for designating the analyte and the adapted internal standard — γ-Hydroxybutyric acid/γ-Hydroxybutyric acid-d6 ................................................................................ 457 Table IV-7. Relative intensity and cross-contribution data of ions with potential for designating the analyte and the adapted internal standard — γ-Butyrolactone/γ-butyrolactone-d6 .................................................................................................... 457
Table IV — Depressants/Hypnotics
© 2010 by Taylor and Francis Group, LLC
452
Table IV-1. Relative intensity and cross-contribution dataa of ionsb with potential for designating the analyte and the adapted internal standard — Pentobarbital/pentobarbital-d5 CD Groupc
Pentobarbital Ion (m/z)d Rel. int. Analog’s cont.
Pentobarbital-d5 Ion (m/z)d Rel. int. Analog’s cont.
None
156 157
100 21.6
2.83 3.35
161 162
100 23.3
1.41 1.60
[Methyl]2
184
82.5
4.73
189
100
0.00
[Ethyl]2
184 197 212 213
5.63 100 93.0 12.5
1.59 1.62 3.39 4.18
189 199 217 218
6.29 76.5 100 13.2
0.01 1.35 0.00 0.00
[Propyl]2
97 156 181 198 225 240
24.6 51.9 15.0 83.5 23.4 100
3.74 0.63 1.86 0.65 3.41 4.56
102 161 186 203 227 245
23.9 53.5 16.9 83.9 18.9 100
0.02 0.01 0.14 0.01 1.75 0.00
[Butyl]2
97 156 195 251
26.2 29.4 70.1 100
2.66 4.10 0.52 0.22
102 161 200 256
25.4 27.9 67.0 100
0.45 0.52 0.07 0.27
[TMS]2
169 184
100 82.5
3.25 2.97
171 189
90.4 100
0.94 0.00
[t-BDMS]2
327
74.4
—
332
73.5
—
a–d
See the corresponding footnotes in Table I-1a.
Table IV-2a. Relative intensity and cross-contribution dataa of ionsb with potential for designating the analyte and the adapted internal standard — Phenobarbital/phenobarbital-d5 CD Groupc
Phenobarbital Ion (m/z)d Rel. int. Analog’s cont.
Phenobarbital-d5 Ion (m/z)d Rel. int. Analog’s cont.
[Methyl]2
232 260
100 2.67
— 0.09
233 265
100 4.28
— 0.00
[Ethyl]2
146 260 288
49.9 100 1.60
4.20 — 0.07
151 261 293
58.0 100 2.22
0.03 — 0.05
[Propyl]2
146 189 275
87.1 12.5 13.0
2.49 1.73 1.54
151 194 280
100 14.6 16.8
0.05 0.41 0.55
[Butyl]2
146 189 289 344
27.8 9.10 43.0 2.98
3.13 3.73 0.77 0.11
151 194 294 349
26.5 7.38 37.2 2.55
0.08 0.39 0.02 0.06
[TMS]2
146
100
—
151
100
—
[t-BDMS]2
403
100
—
408
100
—
a–d
See the corresponding footnotes in Table I-1a.
Appendix Two — Ion Intensity Cross-Contribution Data
© 2010 by Taylor and Francis Group, LLC
453
Table IV-2b. Relative intensity and cross-contribution dataa of ionsb with potential for designating the analyte and the adapted internal standard — Phenobarbital/phenobarbital-d5(ring) CD Groupc
Phenobarbital Ion (m/z)d Rel. int. Analog’s cont.
Phenobarbital-d5(ring) Ion (m/z)d Rel. int. Analog’s cont.
[Methyl]2
117 146 175 188 232 260
23.6 17.8 18.6 9.82 100 2.67
1.24 0.52 0.35 0.26 0.04 0.05
122 151 180 193 237 265
17.4 16.4 18.4 9.97 100 2.38
0.12 0.02 0.02 0.02 0.01 0.04
[Ethyl]2
103 117 146 202 232 260
11.3 31.8 49.9 9.28 17.4 100
0.92 1.79 1.85 0.50 0.47 0.04
108 122 151 207 237 265
10.8 23.9 47.8 8.84 16.1 100
0.22 0.09 0.03 0.09 0.06 0.00
[Propyl]2
117 146 204 246 275 288
42.5 87.1 23.3 40.3 13.0 100
1.09 0.64 0.35 0.04 1.29 0.02
122 151 209 251 280 293
35.5 91.3 26.8 39.5 12.8 100
0.08 0.06 1.00 0.73 0.62 0.03
[Butyl]2
117 146 260 289 299 316
52.3 100 17.0 73.4 29.0 5.97
1.07 0.69 0.62 0.24 0.11 0.06
122 151 265 294 304 321
41.1 100 17.0 71.5 28.5 66.7
0.27 0.10 0.53 0.04 0.50 0.06
[TMS]2
146
100
—
151
100
—
[t-BDMS]2
403
100
—
408
100
—
a–d
See the corresponding footnotes in Table I-1a.
Table IV-3a. Relative intensity and cross-contribution dataa of ionsb with potential for designating the analyte and the adapted internal standard — Butalbital/butalbital-d5 CD Groupc
Butalbital Ion (m/z)d Rel. int. Analog’s cont.
Butalbital-d5 Ion (m/z)d Rel. int. Analog’s cont.
None
168
100
—
173
100
—
[Methyl]2
181 196 237
26.8 100 2.42
4.46 1.09 1.54
184 201 242
17.9 100 2.76
0.22 0.00 0.00
[Ethyl]2
209 223 224 265
15.1 59.7 100 3.81
3.86 4.16 0.65 0.53
212 228 229 270
15.1 63.3 100 3.86
0.77 0.01 0.00 0.00
[Propyl]2
210 251 252 293
58.4 81.2 100 7.08
1.11 1.84 0.61 0.48
215 256 257 298
64.8 63.7 100 8.05
0.03 0.02 0.00 0.00
[Butyl]2
224 263 279 280 293
22.5 100 64.0 47.6 24.0
4.77 0.16 1.41 1.28 3.61
229 268 284 285 298
21.9 100 40.1 40.2 25.0
0.46 0.02 0.06 0.01 0.08
[TMS]2
353
100
—
358
100
—
Table IV — Depressants/Hypnotics
© 2010 by Taylor and Francis Group, LLC
454
Table IV-3a. (Continued) CD Groupc [t-BDMS]2 a–d
Butalbital Ion (m/z)d Rel. int. Analog’s cont. 395
100
—
Butalbital-d5 Ion (m/z)d Rel. int. Analog’s cont. 400
100
—
See the corresponding footnotes in Table I-1a.
Table IV-3b. Relative intensity and cross-contribution dataa of ionsb with potential for designating the analyte and the adapted internal standard — Butalbital/butalbital-13C4 Butalbital CD Group
c
Ion
(m/z)d
Rel. int.
Analog’s cont.
Ion
(m/z)d
Butalbital-13C4 Rel. int.
Analog’s cont.
None
168
100
—
172
100
—
[Methyl]2
138 169 181 195 196 209
17.5 14.0 27.8 71.2 100 15.9
2.01 2.15 0.39 0.35 0.16 0.50
141 173 185 199 200 213
20.1 14.3 28.6 76.5 100 16.1
2.79 0.07 0.02 0.11 0.01 0.35
[Ethyl]2
196 209 223 224 237 265
15.7 15.1 59.7 100 12.9 3.81
1.48 1.37 1.29 0.88 1.50 1.40
200 213 227 228 241 269
16.1 15.1 63.3 100 13.2 3.86
0.10 0.14 0.17 0.01 0.57 0.00
[Propyl]2
210 251 252 265 293
60.1 86.4 100 22.1 6.27
0.82 0.77 0.55 1.91 1.01
214 255 256 269 297
61.0 90.7 100 22.4 6.43
0.25 0.15 0.01 0.79 0.04
[Butyl]2
224 263 279 280 293
21.7 100 69.1 48.2 24.4
2.67 0.46 1.09 0.74 0.72
228 267 283 284 297
21.7 100 70.5 46.0 24.4
1.54 0.19 0.27 0.04 0.97
[TMS]2
269 297 312 325 353 354
13.5 23.5 43.9 30.6 100 29.5
4.78 2.50 2.22 2.06 2.12 2.18
273 301 316 329 357 358
13.4 23.3 42.9 30.3 100 26.1
1.51 0.60 0.67 3.13 0.65 0.44
[t-BDMS]2
297 395 396 397 437
12.5 100 39.4 15.6 11.4
1.29 1.23 1.56 3.64 0.80
301 399 400 401 441
11.9 100 34.1 26.6 11.0
0.37 0.52 0.38 0.62 0.61
a–d
See the corresponding footnotes in Table I-1a.
Appendix Two — Ion Intensity Cross-Contribution Data
© 2010 by Taylor and Francis Group, LLC
455
Table IV-4a. Relative intensity and cross-contribution dataa of ionsb with potential for designating the analyte and the adapted internal standard — Secobarbital/secobarbital-d5 Secobarbital CD Groupc
Ion (m/z)d Rel. int.
Secobarbital-d5
Analog’s cont.
Ion (m/z)d Rel. int.
Analog’s cont.
None
168
100
3.78
173
100
1.93
[Methyl]2
138 196
18.0 100
4.77 1.55
143 201
13.2 100
3.05 0.00
[Ethyl]2
196 224
15.3 100
4.54 1.63
201 229
16.7 100
0.41 0.36
[Propyl]2
210 252 322
50.1 100 5.35
1.40 2.37 0.26
215 257 327
54.9 100 6.87
0.07 0.03 0.55
[Butyl]2
224 263 279 350
26.1 84.4 100 7.39
4.77 0.40 — 0.14
229 268 284 355
29.1 100 63.2 9.29
0.09 2.14 — 0.65
[TMS]2
297 312 339 367
100 54.0 50.3 61.6
— 4.64 4.17 3.78
302 317 344 372
100 60.4 62.5 78.0
— 0.06 0.36 0.29
[t-BDMS]2
339
49.5
—
344
47.8
—
a–d
See the corresponding footnotes in Table I-1a.
Table IV-4b. Relative intensity and cross-contribution dataa of ionsb with potential for designating the analyte and the adapted internal standard — Secobarbital/secobarbital-13C4 Secobarbital CD Group
c
Ion
(m/z)d
Rel. int.
Analog’s cont.
Ion
(m/z)d
Secobarbital-13C4 Rel. int.
Analog’s cont.
None
168
100
—
172
100
—
[Methyl]2
138 181 195 196
19.1 42.1 74.8 100
3.10 1.79 0.50 0.55
141 185 199 200
20.9 44.1 81.1 100
2.26 0.17 0.12 0.01
[Ethyl]2
196 209 223 224
14.1 21.0 67.4 100
2.12 0.59 0.41 0.48
200 213 227 228
14.1 21.8 72.1 100
0.11 0.23 0.16 0.01
[Propyl]2
210 237 251 252
48.5 11.5 94.0 100
1.06 1.85 0.48 0.58
214 241 255 256
48.9 12.0 98.9 100
0.20 0.79 0.15 0.01
[Butyl]2
168 224 279 280
23.1 24.1 100 84.5
4.01 2.74 0.56 0.65
172 228 283 284
22.2 23.5 100 79.4
0.17 0.34 0.68 0.15
[TMS]2
297 311 312 339 367
100 30.4 58.8 53.9 64.5
1.48 1.47 1.25 1.39 1.12
301 315 316 343 371
100 32.4 58.1 53.7 64.7
0.68 3.67 0.47 2.32 0.78
Table IV — Depressants/Hypnotics
© 2010 by Taylor and Francis Group, LLC
456
Table IV-4b. (Continued) CD Groupc [t-BDMS]2
a–d
Secobarbital Ion (m/z)d Rel. int. Analog’s cont. 281 339 381 409 410 451
9.33 53.4 4.82 100 36.1 8.81
2.00 1.07 0.97 1.06 1.26 0.85
Secobarbital-13C3 Ion (m/z)d Rel. int. Analog’s cont. 285 343 385 413 414 455
9.13 52.3 4.65 100 32.5 8.54
0.86 0.45 0.98 0.53 0.53 4.85
See the corresponding footnotes in Table I-1a.
Table IV-5. Relative intensity and cross-contribution dataa of ionsb with potential for designating the analyte and the adapted internal standard — Methohexital/methohexital-d5 Methohexital CD Groupc
Ion (m/z)d Rel. int.
Methohexital-d5
Analog’s cont.
Ion (m/z)d Rel. int.
Analog’s cont.
None
233 247 261
51.8 52.4 15.0
1.20 0.43 0.15
238 252 266
31.7 41.1 9.01
0.08 0.09 0.00
Methyl
247 261 275
42.1 46.0 15.6
3.48 0.55 0.04
252 266 280
21.3 34.4 8.84
0.31 0.30 0.51
Ethyl
209 275 289
38.5 39.4 14.8
— 0.86 0.00
214 280 294
20.9 27.8 7.51
— 0.02 0.10
Propyl
223 289 303
40.7 39.2 14.4
— 0.86 0.18
228 294 308
20.8 29.2 7.55
— 0.02 0.29
Butyl
237 303 318
39.0 39.9 15.3
— 2.02 0.50
242 308 323
19.6 30.7 13.6
— 0.17 0.35
TMS
239 305 319 333
100 13.6 38.7 7.56
2.33 3.91 0.17 0.20
244 310 324 338
100 10.5 39.1 4.59
0.11 0.10 0.01 0.23
t-BDMS
239 240 319
100 18.5 52.2
0.62 2.26 0.51
244 245 324
100 18.1 51.6
0.04 0.39 0.04
a–d
See the corresponding footnotes in Table I-1a.
Appendix Two — Ion Intensity Cross-Contribution Data
© 2010 by Taylor and Francis Group, LLC
457
Table IV-6. Relative intensity and cross-contribution dataa of ionsb with potential for designating the analyte and the adapted internal standard — γ-Hydroxybutyric acid/γ-hydroxybutyric acid-d6 CD Groupc
γ-Hydroxybutyric acid Ion (m/z)d Rel. int. Analog’s cont.
γ-Hydroxybutyric acid-d6 Ion (m/z)d Rel. int. Analog’s cont.
[TMS]2
233 234 235
27.9 5.55 2.52
1.49 1.60 2.71
239 240 241
29.9 6.12 2.84
0.75 0.79 0.84
[t-BDMS]2
275 276 277 317
76.6 18.7 7.78 3.00
0.06 0.08 0.37 0.09
281 282 283 323
100 24.4 10.1 4.39
0.01 0.01 0.03 0.27
a–d
See the corresponding footnotes in Table I-1a.
Table IV-7. Relative intensity and cross-contribution dataa of ionsb with potential for designating the analyte and the adapted internal standard — γ-Butyrolactone/γ-butyrolactone-d6 CD Groupc None
a–d
γ-Butyrolactone Ion (m/z)d Rel. int. Analog’s cont. 42 56 86
100 36.2 85.7
— 0.73 0.16
γ-Butyrolactone-d6 Ion (m/z)d Rel. int. Analog’s cont. 48 60 92
See the corresponding footnotes in Table I-1a.
Table IV — Depressants/Hypnotics
© 2010 by Taylor and Francis Group, LLC
100 32.4 65.6
— 0.00 0.00
459
Summary of Drugs, Isotopic Analogs, and Chemical Derivatization Groups Included in Table V (Antianxiety Agents) Compound
Isotopic analog
Chemical derivatization group
Table #
Oxazepam
d5
None, [Methyl]2, [ethyl]2, [propyl]2, [butyl]2, [TMS]2, [t-BDMS]2
V-1
Diazepam
d 3, d 5
None
V-2
Nordiazepam
d5
None, methyl, ethyl, propyl, butyl, TMS, t-BDMS
V-3
Nitrazepam
d5
Methyl, ethyl, propyl, butyl, TMS, t-BDMS
V-4
Temazepam
d5
None, methyl, ethyl, propyl, butyl, acetyl, TMS, t-BDMS
V-5
Clonazepam
d4
Methyl, ethyl, propyl, butyl, TMS, t-BDMS
V-6
7-Aminoclonazepam
d4
[Methyl]3, [ethyl]2, [ethyl]3, propyl, [propyl]2, butyl, [butyl]2, PFP, HFB, [TMS]2, t-BDMS, [t-BDMS]2 TFA/[TMS]2, TFA/[t-BDMS]2, [TFA]2/t-BDMS, PFP/TMS, PFP/[TMS]2, PFP/[t-BDMS]2, HFB/[t-BDMS]2
V-7
Prazepam
d5
None
V-8
Lorazepam
d4
[Methyl]2, [ethyl]2, [propyl]2, [butyl]2, HFB, [TMS]2, [t-BDMS]2
V-9
Flunitrazepam
d 3, d 7
None
V-10
7-Aminoflunitrazepam
d 3, d 7
None, [methyl]2, ethyl, [ethyl]2, propyl, butyl, acetyl, TFA, PFP, HFB, TMS, TFA/TMS, TFA/t-BDMS, PFP/TMS, PFP/t-BDMS, HFB/TMS, HFB/t-BDMS
V-11
N-Desalkylflurazepam
d4
None, methyl, [methyl]2, ethyl, propyl, butyl, acetyl, TMS, t-BDMS
V-12
N-Desmethylflunitrazepam d4
[Methyl]2, ethyl, propyl, butyl, acetyl, TMS, t-BDMS
V-13
2-Hydroxyethylflurazepam d4
None, butyl, TMS, t-BDMS
V-14
Estazolam
d5
None
V-15
Alprazolam
d5
None
V-16
α-Hydroxyalprazolam
d5
TMS, t-BDMS
V-17
α-Hydroxytriazolam
d4
TMS, t-BDMS
V-18
Mianserin
d3
None
V-19
Methaqualone
d7
None
V-20
Haloperidol
d4
TMS
V-21
Table V — Antianxiety Agents
© 2010 by Taylor and Francis Group, LLC
461
Appendix Two — Table V Cross-Contributions Between Ions Designating the Drugs and Their Isotopically Labeled Analogs in Various Derivatization Forms — Antianxiety Agents Table V-1. Relative intensity and cross-contribution data of ions with potential for designating the analyte and the adapted internal standard — Oxazepam/oxazepam-d5 ................................................................................................................. 463 Table V-2a. Relative intensity and cross-contribution data of ions with potential for designating the analyte and the adapted internal standard — Diazepam/diazepam-d3 ................................................................................................................... 463 Table V-2b. Relative intensity and cross-contribution data of ions with potential for designating the analyte and the adapted internal standard — Diazepam/diazepam-d5 ................................................................................................................... 464 Table V-3. Relative intensity and cross-contribution data of ions with potential for designating the analyte and the adapted internal standard — Nordiazepam/nordiazepam-d5 ........................................................................................................ 464 Table V-4. Relative intensity and cross-contribution data of ions with potential for designating the analyte and the adapted internal standard — Nitrazepam/nitrazepam-d5 .............................................................................................................. 465 Table V-5. Relative intensity and cross-contribution data of ions with potential for designating the analyte and the adapted internal standard — Temazepam/temazepam-d5 ............................................................................................................. 465 Table V-6. Relative intensity and cross-contribution data of ions with potential for designating the analyte and the adapted internal standard — Clonazepam/clonazepam-d4 ........................................................................................................... 466 Table V-7. Relative intensity and cross-contribution data of ions with potential for designating the analyte and the adapted internal standard — 7-Aminoclonazepam/7-aminoclonazepam-d4 ................................................................................ 467 Table V-8. Relative intensity and cross-contribution data of ions with potential for designating the analyte and the adapted internal standard — Prazepam/prazepam-d5 ................................................................................................................... 468 Table V-9. Relative intensity and cross-contribution data of ions with potential for designating the analyte and the adapted internal standard — Lorazepam/lorazepam-d4 ............................................................................................................... 469 Table V-10a. Relative intensity and cross-contribution data of ions with potential for designating the analyte and the adapted internal standard — Flunitrazepam/flunitrazepam-d3 ..................................................................................................... 469 Table V-10b. Relative intensity and cross-contribution data of ions with potential for designating the analyte and the adapted internal standard — Flunitrazepam/flunitrazepam-d7 ..................................................................................................... 469 Table V-11a. Relative intensity and cross-contribution data of ions with potential for designating the analyte and the adapted internal standard — 7-Aminoflunitrazepam/7-Aminoflunitrazepam-d3 ........................................................................ 470 Table V-11b. Relative intensity and cross-contribution data of ions with potential for designating the analyte and the adapted internal standard — 7-Aminoflunitrazepam/7-Aminoflunitrazepam-d7 ........................................................................ 471 Table V-12. Relative intensity and cross-contribution data of ions with potential for designating the analyte and the adapted internal standard — N-Desalkylflurazepam/N-desalkylflurazepam-d4 .......................................................................... 472 Table V-13. Relative intensity and cross-contribution data of ions with potential for designating the analyte and the adapted internal standard — N-Desmethylflunitrazepam/N-desmethylflunitrazepam-d4 ........................................................... 473 Table V-14. Relative intensity and cross-contribution data of ions with potential for designating the analyte and the adapted internal standard — 2-Hydroxyethylflurazepam/2-hydroxyethylflurazepam-d4 ........................................................... 474 Table V-15. Relative intensity and cross-contribution data of ions with potential for designating the analyte and the adapted internal standard — Estazolam/estazolam-d5 ................................................................................................................. 474 Table V-16. Relative intensity and cross-contribution data of ions with potential for designating the analyte and the adapted internal standard — Alprazolam/alprazolam-d5 .............................................................................................................. 474 Table V-17. Relative intensity and cross-contribution data of ions with potential for designating the analyte and the adapted internal standard — α-Hydroxyalprazolam/α-hydroxyalprazolam-d5 ........................................................................... 475 Table V-18. Relative intensity and cross-contribution data of ions with potential for designating the analyte and the adapted internal standard — α-Hydroxytriazolam/α-hydroxytriazolam-d4 ................................................................................ 475 Table V-19. Relative intensity and cross-contribution data of ions with potential for designating the analyte and the adapted internal standard — Mianserin/mianserin-d3 .................................................................................................................. 475 Table V — Antianxiety Agents
© 2010 by Taylor and Francis Group, LLC
462
Table V-20. Relative intensity and cross-contribution data of ions with potential for designating the analyte and the adapted internal standard — Methaqualone/methaqualone-d7 ..................................................................................................... 476 Table V-21. Relative intensity and cross-contribution data of ions with potential for designating the analyte and the adapted internal standard — Haloperidol/haloperidol-d4 ............................................................................................................. 476
Appendix Two — Ion Intensity Cross-Contribution Data
© 2010 by Taylor and Francis Group, LLC
463
Table V-1. Relative intensity and cross-contribution dataa of ionsb with potential for designating the analyte and the adapted internal standard — Oxazepam/oxazepam-d5 CD Groupc
Ion (m/z)
Oxazepam Rel. int. Analog’s cont.
Ion (m/z)
Oxazepam-d5 Rel. int. Analog’s cont.
None
205 241 269 270
69.1 71.4 100 74.0
4.24 4.36 3.04 4.29
210 246 274 275
68.6 81.2 100 93.0
0.21 0.22 0.30 0.20
[Methyl]2
255 256 271 273 314
48.7 32.6 100 32.4 24.5
0.47 0.83 0.51 4.67 0.37
260 261 276 278 319
43.2 31.6 100 35.1 24.8
1.19 0.16 0.04 0.34 0.06
[Ethyl]2
257 270 285 287 342
34.7 19.1 100 34.1 11.8
1.20 1.49 0.56 3.11 0.40
262 275 290 292 347
32.5 19.3 100 33.3 12.8
0.56 0.46 0.29 0.00 1.33
[Propyl]2
241 257 285 299 370
18.4 47.4 20.7 100 9.48
2.06 1.19 1.09 0.31 1.05
246 262 290 304 375
18.7 46.0 20.8 100 8.26
0.34 0.28 0.21 0.07 0.15
[Butyl]2
241 257 299 313 315 398
16.7 45.1 21.4 100 34.3 5.83
1.49 0.89 0.80 0.20 0.54 1.29
246 262 304 318 320 403
15.9 42.6 20.5 100 33.7 5.37
0.95 1.87 0.11 0.07 0.00 1.59
[TMS]2
313 340 401 415 429 430
26.0 12.4 14.9 15.1 100 54.7
1.54 0.84 3.75 0.22 — 0.15
318 345 406 420 433 435
42.9 19.2 31.8 22.8 100 86.9
0.35 2.03 0.40 0.57 — 0.40
[t-BDMS]2
313 457 458 459
19.6 100 36.8 45.6
3.02 1.44 1.52 1.57
318 462 463 464
20.7 100 37.7 45.6
1.73 1.02 0.55 0.09
a–d
See the corresponding footnotes in Table I-1a.
Table V-2a. Relative intensity and cross-contribution dataa of ionsb with potential for designating the analyte and the adapted internal standard — Diazepam/diazepam-d3 CD Groupc None a–d
Ion (m/z) 256 257
Diazepam Rel. int. Analog’s cont. 100 44.8
— 3.11
Ion (m/z) 259 260
See the corresponding footnotes in Table I-1a.
Table V — Antianxiety Agents
© 2010 by Taylor and Francis Group, LLC
Diazepam-d3 Rel. int. Analog’s cont. 100 44.5
— 2.83
464
Table V-2b. Relative intensity and cross-contribution dataa of ionsb with potential for designating the analyte and the adapted internal standard — Diazepam/diazepam-d5 CD Groupc None
a–d
Ion (m/z) 256 258 283 285
Diazepam Rel. int. Analog’s cont. 100 36.3 91.3 40.7
0.36 1.69 0.09 1.25
Ion (m/z) 261 263 287 289
Diazepam-d5 Rel. int. Analog’s cont. 100 36.1 86.4 79.3
0.12 0.02 4.39 0.04
See the corresponding footnotes in Table I-1a.
Table V-3. Relative intensity and cross-contribution dataa of ionsb with potential for designating the analyte and the adapted internal standard — Nordiazepam/nordiazepam-d5 CD Groupc
Ion (m/z)
Nordiazepam Rel. int. Analog’s cont.
Nordiazepam-d5 Ion (m/z) Rel. int. Analog’s cont.
None
241 242 270
88.0 100 68.8
4.06 3.74 3.23
246 247 275
77.2 100 73.0
1.91 0.16 0.05
Methyl
255 256 257 283 284
44.1 100 46.4 89.8 69.4
1.18 0.41 2.69 0.11 0.13
260 261 262 287 289
41.5 100 44.6 84.2 78.1
3.42 0.12 0.03 4.76 0.04
Ethyl
270 271 297 298
100 55.6 98.3 62.7
0.16 0.96 0.08 0.10
275 276 301 303
100 40.1 89.8 70.5
0.14 0.04 3.73 0.04
Propyl
269 270 284 311 312
90.3 59.4 81.9 100 58.7
0.16 0.35 0.15 0.09 0.11
273 275 289 315 317
82.9 70.2 84.2 100 71.7
3.14 0.11 0.14 3.01 0.03
Butyl
255 269
18.3 100
2.27 0.83
260 273
18.8 98.0
0.63 2.91
270 298 325 326
57.1 60.8 96.3 43.6
0.50 0.37 0.08 0.09
275 303 329 331
76.0 64.8 100 58.2
0.06 0.19 2.57 0.04
TMS
91 227 327 341 342 343
7.72 5.55 20.2 100 57.8 46.9
4.54 3.85 0.67 — 0.56 1.58
96 232 332 345 346 347
8.76 5.73 21.6 100 29.6 71.5
0.73 2.45 0.26 — 3.43 0.19
t-BDMS
313 327 328 329 369
3.52 100 27.5 40.1 3.07
2.95 2.15 2.37 4.45 1.95
318 332 333 334 374
4.15 100 28.3 40.4 3.22
0.42 0.37 0.19 0.06 0.40
a–d
See the corresponding footnotes in Table I-1a.
Appendix Two — Ion Intensity Cross-Contribution Data
© 2010 by Taylor and Francis Group, LLC
465
Table V-4. Relative intensity and cross-contribution dataa of ionsb with potential for designating the analyte and the adapted internal standard — Nitrazepam/nitrazepam-d5 CD Groupc
Ion (m/z)
Nitrazepam Rel. int. Analog’s cont.
Nitrazepam-d5 Ion (m/z) Rel. int. Analog’s cont.
Methyl
220 267 294 295
53.0 100 86.6 60.5
0.00 1.57 0.88 1.30
225 272 298 300
41.3 100 81.4 45.1
4.55 0.00 0.11 0.00
Ethyl
234 281 282 308 309
39.7 65.6 59.9 100 44.5
0.67 0.66 3.75 0.41 0.41
239 286 287 312 314
22.5 66.5 62.8 100 30.1
2.09 0.02 0.00 0.08 0.00
Propyl
295 296 322
54.0 49.1 100
0.47 4.44 0.21
300 301 326
56.6 50.1 100
0.02 0.00 0.10
Butyl
280 309 336 337
74.6 43.7 100 35.4
0.38 0.47 0.20 0.25
284 314 340 341
86.0 45.3 100 24.5
0.10 0.03 0.07 0.09
TMS
306 352 353
34.2 100 61.7
4.13 4.24 4.25
310 356 357
28.6 100 28.2
1.87 0.54 0.24
t-BDMS
292 338 339 380 394
16.6 100 26.3 0.78 6.59
1.23 0.98 1.93 1.58 0.95
297 343 344 385 398
15.7 100 26.4 2.89 5.94
1.44 0.02 0.02 0.09 0.75
a–d
See the corresponding footnotes in Table I-1a.
Table V-5. Relative intensity and cross-contribution dataa of ionsb with potential for designating the analyte and the adapted internal standard — Temazepam/temazepam-d5 CD Groupc
Ion (m/z)
Temazepam Rel. int. Analog’s cont.
Ion (m/z)
Temazepam-d5 Rel. int. Analog’s cont.
None
228 257 300
100 60.8 89.4
— 2.54 0.37
232 262 305
78.7 67.2 100
— 0.05 0.11
Methyl
255 256 271 314
48.0 33.2 100 29.5
0.97 1.71 0.95 0.59
260 261 276 319
42.5 33.9 100 26.3
1.47 0.11 0.03 0.00
Ethyl
255 256 257 271 273 328
30.0 23.2 24.7 100 33.7 12.9
0.76 0.62 1.37 0.35 4.00 1.08
260 261 262 276 278 333
30.0 24.9 24.4 100 34.0 12.8
3.25 0.78 0.44 0.28 0.19 0.00
Propyl
255 257 271
33.1 31.3 100
4.54 3.04 2.12
260 262 276
32.3 31.2 100
3.20 0.07 0.04
Butyl
255 257 271 300
33.3 37.6 100 12.3
0.40 1.44 0.23 0.70
260 262 276 305
32.2 37.3 100 12.6
3.99 0.07 0.06 0.98
Table V — Antianxiety Agents
© 2010 by Taylor and Francis Group, LLC
466
Table V-5. (Continued) CD Groupc
Ion (m/z)
Temazepam Rel. int. Analog’s cont.
Temazepam-d5 Ion (m/z) Rel. int. Analog’s cont.
Acetyl
228 256 257 271 300
7.42 22.7 27.3 100 25.7
4.35 1.10 3.76 0.66 0.57
233 261 262 276 305
5.82 24.8 27.4 100 25.2
1.29 0.41 0.05 0.04 0.07
TMS
283 343 345 357 372
28.5 100 38.6 21.3 19.8
0.86 0.58 2.99 0.50 0.84
288 348 350 362 377
28.1 100 39.1 22.2 20.2
0.18 0.31 0.01 0.32 0.33
t-BDMS
255 256 283 357 359 385
28.6 24.3 48.6 100 38.7 10.7
2.14 3.44 0.60 0.42 0.59 0.41
260 261 288 362 364 390
27.7 23.9 46.8 100 39.8 11.0
1.22 0.42 0.17 0.42 0.02 0.55
a–d
See the corresponding footnotes in Table I-1a.
Table V-6. Relative intensity and cross-contribution dataa of ionsb with potential for designating the analyte and the adapted internal standard — Clonazepam/clonazepam-d4 CD Groupc
Ion (m/z)
Clonazepam Rel. int. Analog’s cont.
Ion (m/z)
Clonazepam-d4 Rel. int. Analog’s cont.
Methyl
248 294 302 329
97.1 100 95.9 91.3
1.20 0.75 1.05 0.74
252 298 306 333
83.5 100 76.5 83.1
1.23 1.37 0.77 0.70
Ethyl
234 262 280 308 316 342
50.1 35.7 62.8 100 60.5 98.4
3.37 3.70 0.76 0.60 2.34 —
238 266 284 312 320 345
45.1 30.0 56.4 100 46.5 62.4
3.30 1.66 2.56 0.93 0.48 —
Propyl
234 315 357
58.3 100 50.6
2.38 2.03 0.63
238 319 361
60.6 100 49.3
4.79 0.67 0.76
Butyl
280 315 336
100 83.3 80.7
0.89 0.61 0.43
284 319 340
100 73.7 71.7
1.59 0.96 1.84
TMS
306 352 372 387
58.3 78.1 39.7 82.0
3.68 3.69 3.85 3.57
310 356 376 391
61.3 87.9 40.8 86.2
1.03 3.23 2.23 2.33
t-BDMS
326 372 373 374 414
12.3 100 26.0 39.3 2.39
1.97 1.35 1.52 1.58 1.25
330 376 377 378 418
12.0 100 26.3 38.8 2.40
4.38 2.37 1.38 0.16 2.72
a–d
See the corresponding footnotes in Table I-1a.
Appendix Two — Ion Intensity Cross-Contribution Data
© 2010 by Taylor and Francis Group, LLC
467
Table V-7. Relative intensity and cross-contribution dataa of ionsb with potential for designating the analyte and the adapted internal standard — 7-Aminoclonazepam/7-aminoclonazepam-d4 CD Groupc
Ion (m/z)
7-Aminoclonazepam Rel. int. Analog’s cont.
7-Aminoclonazepam-d4 Ion (m/z) Rel. int. Analog’s cont.
[Methyl]3
284 298 299 327 328
14.0 55.6 23.6 100 24.7
1.74 0.93 0.72 0.31 0.96
288 302 303 331 332
14.2 55.3 24.1 100 21.1
4.79 2.56 0.53 0.67 0.23
[Ethyl]2
306 313 341 342
19.5 33.3 100 28.7
0.70 0.82 0.45 1.33
310 317 345 346
22.6 32.8 100 22.9
3.89 0.67 0.73 0.24
[Ethyl]3
354 356 369
100 35.6 64.0
0.16 1.90 0.12
358 360 373
100 34.3 67.4
0.81 0.09 0.56
Propyl
250 256 285 299 327 328
39.7 26.8 28.0 33.8 100 28.9
2.62 4.06 1.40 0.99 0.98 1.79
254 260 289 303 331 322
40.4 24.7 28.3 31.3 100 21.4
3.91 2.15 0.77 0.70 0.73 3.11
[Propyl]2
298 340 341 369 370
27.7 59.4 27.4 100 28.9
2.00 0.92 2.03 0.33 0.79
302 344 345 373 374
26.3 57.7 26.9 100 24.8
1.04 2.59 0.64 0.96 0.32
Butyl
250 256 285 306 341 342
4.30 32.2 40.2 22.1 100 28.7
2.69 3.85 1.11 1.65 0.78 1.51
254 260 289 310 345 346
49.0 33.2 42.8 25.6 100 23.2
3.75 2.47 0.99 1.21 0.84 0.36
[Butyl]2
298 312 354 369 397 398
17.5 17.6 45.8 11.4 100 29.1
1.22 2.81 0.35 1.48 0.22 0.59
302 316 358 373 401 402
18.6 18.0 45.2 11.6 100 27.0
2.04 1.32 0.97 1.05 1.27 0.38
PFP
368 396 402 403 431
23.5 89.4 99.6 69.2 100
0.26 1.73 3.99 1.88 1.52
372 400 406 407 435
23.2 100 97.7 72.2 99.8
0.69 0.75 4.81 0.83 0.71
HFB
418 446 452 453 481
23.2 91.0 97.5 75.9 100
3.06 2.03 — 2.59 2.10
422 450 456 457 485
23.8 98.1 99.4 73.6 100
0.00 0.63 — 1.12 0.72
[TMS]2
314 394 395 414 429 430
30.5 98.3 34.1 37.8 100 44.3
1.30 0.53 2.22 0.34 0.49 1.44
318 398 399 418 433 434
29.1 100 34.7 36.8 98.8 35.6
3.08 1.72 3.12 4.09 4.41 2.57
Table V — Antianxiety Agents
© 2010 by Taylor and Francis Group, LLC
468
Table V-7. (Continued) CD Groupc
Ion (m/z)
7-Aminoclonazepam Rel. int. Analog’s cont.
Ion (m/z)
7-Aminoclonazepam-d4 Rel. int. Analog’s cont.
t-BDMS
242 328 342 343 344 399
9.65 8.99 100 27.3 39.5 17.7
2.90 4.06 0.59 1.42 1.24 0.56
246 332 346 347 348 403
9.67 9.26 100 27.9 39.5 18.1
2.83 2.04 2.42 1.35 0.41 2.91
[t-BDMS]2
456 457 458
92.2 35.5 42.3
0.51 0.83 1.37
460 461 462
88.4 34.1 40.3
4.85 2.83 0.57
TFA/[TMS]2
410 491 525
20.1 19.8 59.0
3.20 1.77 1.40
414 495 529
26.5 29.2 84.0
2.59 1.25 2.67
TFA/[t-BDMS]2
368 438 552 553 554
15.1 5.21 76.9 30.4 35.5
4.70 3.04 — 1.23 1.53
372 442 556 557 558
12.4 6.48 82.8 34.7 39.0
2.37 4.12 — 3.05 0.54
[TFA]2/t-BDMS
590
2.12
—
594
1.88
—
PFP/TMS
388 468 469 503
25.4 100 29.5 69.0
0.81 0.23 0.81 0.37
392 472 473 507
23.0 100 29.0 64.4
2.75 0.29 1.89 1.34
PFP/[TMS]2
460 540 541 575 576
40.1 100 37.2 96.7 44.9
2.79 0.79 1.39 0.33 1.13
464 544 545 579 580
35.2 100 36.7 91.9 35.3
3.14 0.31 1.53 4.95 2.85
PFP/[t-BDMS]2
440 602 603 604
11.3 100 45.4 50.4
0.96 — 0.32 0.68
444 606 607 608
10.9 100 44.0 48.8
2.51 — 3.56 0.64
HFB/[t-BDMS]2
490 652 653 654
5.87 35.1 14.6 16.4
1.11 — 0.27 0.57
494 656 657 658
6.17 30.7 12.9 14.5
2.55 — 3.05 0.75
a–d
See the corresponding footnotes in Table I-1a.
Table V-8. Relative intensity and cross-contribution dataa of ionsb with potential for designating the analyte and the adapted internal standard — Prazepam/prazepam-d5 CD Groupc None
a–d
Ion (m/z) 91 241 269 295 296 324
Prazepam Rel. int. Analog’s cont. 78.6 41.1 100 81.2 54.0 38.7
4.09 3.62 2.60 2.22 2.22 1.74
Ion (m/z) 96 246 273 300 301 329
Prazepam-d5 Rel. int. Analog’s cont. 80.7 45.0 100 82.4 61.3 48.5
See the corresponding footnotes in Table I-1a.
Appendix Two — Ion Intensity Cross-Contribution Data
© 2010 by Taylor and Francis Group, LLC
1.62 1.75 0.63 0.56 0.07 0.08
469
Table V-9. Relative intensity and cross-contribution dataa of ionsb with potential for designating the analyte and the adapted internal standard — Lorazepam/lorazepam-d4 CD Groupc
Ion (m/z)
Lorazepam Rel. int. Analog’s cont.
Ion (m/z)
Lorazepam-d4 Rel. int. Analog’s cont.
[Methyl]2
255 305 307 348
9.21 100 65.3 12.1
4.27 — 1.17 0.95
259 309 311 352
8.83 100 65.1 12.3
1.89 — 0.27 11.2
[Ethyl]2
293 319 321 341
24.3 100 67.1 8.17
1.69 — 0.32 0.88
297 323 325 345
23.3 100 65.3 7.68
1.33 — 0.33 1.08
[Propyl]2
293 333 335
31.4 100 66.0
4.00 — 0.87
297 337 339
32.1 100 66.1
3.00 — 0.37
[Butyl]2
347 349
100 68.0
— 1.05
351 353
100 68.2
— 0.15
[HFB]2
407 409
100 36.1
0.25 1.40
411 413
100 33.4
0.75 0.15
[TMS]2
429 430 431
100 34.9 44.6
0.52 0.57 0.86
433 434 435
100 35.3 43.9
4.78 3.06 3.47
[t-BDMS]2
491 493 515
75.4 58.7 32.4
— 0.57 0.55
495 497 519
85.2 65.3 36.7
— 2.34 0.86
a–d
See the corresponding footnotes in Table I-1a.
Table V-10a. Relative intensity and cross-contribution dataa of ionsb with potential for designating the analyte and the adapted internal standard — Flunitrazepam/flunitrazepam-d3 CD Groupc None
a–d
Ion (m/z) 238 285 286 312 313
Flunitrazepam Rel. int. Analog’s cont. 44.4 91.8 93.6 100 70.7
3.85 2.16 4.23 0.95 0.90
Ion (m/z) 241 288 289 315 316
Flunitrazepam-d3 Rel. int. Analog’s cont. 49.1 97.6 95.0 100 70.0
3.20 1.91 0.17 1.48 0.17
See the corresponding footnotes in Table I-1a.
Table V-10b. Relative intensity and cross-contribution dataa of ionsb with potential for designating the analyte and the adapted internal standard — Flunitrazepam/flunitrazepam-d7 CD Groupc None
a–d
Ion (m/z) 238 266 285 312
Flunitrazepam Rel. int. Analog’s cont. 43.6 56.0 95.8 100
2.58 0.18 0.43 0.77
Ion (m/z) 245 272 292 318
See the corresponding footnotes in Table I-1a.
Table V — Antianxiety Agents
© 2010 by Taylor and Francis Group, LLC
Flunitrazepam-d7 Rel. int. Analog’s cont. 39.4 44.7 100 99.4
0.59 0.94 0.16 0.00
470
Table V-11a. Relative intensity and cross-contribution dataa of ionsb with potential for designating the analyte and the adapted internal standard — 7-Aminoflunitrazepam/7-aminoflunitrazepam-d3 CD Groupc
7-Aminoflunitrazepam Ion (m/z) Rel. int. Analog’s cont.
7-Aminoflunitrazepam-d3 Ion (m/z) Rel. int. Analog’s cont.
None
283
100
—
286
100
—
[Methyl]2
282 283 311 312
57.5 39.2 100 20.3
0.98 4.29 0.43 1.94
285 286 314 315
55.1 37.8 100 20.5
0.10 0.01 0.21 0.07
Ethyl
283 311 312
41.7 100 20.7
0.42 0.65 3.57
286 314 315
42.5 100 20.7
0.40 0.16 0.00
[Ethyl]2
310 324 339
7.16 100 60.0
2.39 0.27 2.59
313 327 342
5.32 100 54.4
0.04 1.74 0.13
Propyl
268 296 325 326
14.9 100 81.4 19.0
4.48 0.75 1.13 3.68
271 299 328 329
13.1 100 82.7 18.7
0.82 0.46 0.24 0.06
Butyl
268 296 310 339
14.7 100 27.7 95.5
3.16 — 0.87 0.99
271 299 313 342
15.9 100 28.6 97.7
0.31 — 1.47 0.47
Acetyl
297 306 324 325
67.4 24.1 53.1 100
0.64 0.35 0.44 0.34
300 309 327 328
64.5 24.4 53.2 100
0.29 2.03 4.61 0.24
TFA
351
100
—
354
100
—
PFP
401 410 428 429
100 34.5 80.6 91.8
3.48 2.42 2.51 2.94
404 413 431 432
100 35.1 81.8 93.7
0.36 3.52 2.90 0.25
HFB
451
100
—
454
100
—
TMS
327 355
47.3 100
2.92 0.44
330 358
49.3 100
1.31 0.89
TFA/TMS
280 423 424 432 451
22.9 81.9 24.0 17.9 100
1.20 0.53 0.95 0.56 0.50
283 426 427 435 454
26.3 84.1 24.9 18.7 100
2.73 1.22 0.57 2.50 1.17
TFA/t-BDMS
386 436 493
20.7 100 39.7
4.19 4.17 4.12
389 439 496
20.3 100 41.6
1.76 1.35 1.61
PFP/TMS
352 473 474 482 501
15.0 85.2 25.6 21.4 100
1.12 0.25 0.71 0.27 0.26
355 476 477 485 504
15.3 84.7 25.2 21.6 100
2.59 1.34 0.55 1.51 1.06
PFP/t-BDMS
486
100
—
489
100
—
HFB/TMS
280 402 523 524 532 551
17.4 15.4 81.5 25.0 21.2 100
2.41 1.08 0.59 1.30 0.35 0.27
283 405 526 527 535 554
16.6 14.7 79.0 24.2 21.3 100
2.50 1.44 0.98 0.42 1.76 1.31
HFB/t-BDMS
536
100
—
539
100
—
a–d
See the corresponding footnotes in Table I-1a. Appendix Two — Ion Intensity Cross-Contribution Data
© 2010 by Taylor and Francis Group, LLC
471
Table V-11b. Relative intensity and cross-contribution dataa of ionsb with potential for designating the analyte and the adapted internal standard — 7-Aminoflunitrazepam/7-aminoflunitrazepam-d7 CD Groupc
Ion (m/z)
7-Aminoflunitrazepam Rel. int. Analog’s cont.
Ion (m/z)
7-Aminoflunitrazepam-d7 Rel. int. Analog’s cont.
None
255 283
62.9 100
0.60 0.24
262 290
68.1 100
0.51 0.00
[Methyl]2
266 282 310 311 312
14.8 57.2 23.5 100 20.5
1.18 2.74 0.33 0.27 0.36
273 289 316 318 319
12.7 57.0 19.8 100 20.6
0.10 0.00 0.03 0.00 0.01
Ethyl
268 282 283 296 310 311
18.5 55.9 43.0 10.8 29.9 100
1.51 1.20 4.79 0.60 0.25 0.68
275 289 290 303 316 318
9.13 56.5 43.5 12.0 26.4 100
0.47 0.12 0.76 0.04 0.09 0.04
[Ethyl]2
266 324 325 339
19.4 100 23.1 60.2
0.99 0.19 0.63 0.19
273 331 332 346
17.6 100 22.2 59.0
0.08 0.00 0.06 0.01
Propyl
268 296 297 325 326
14.1 100 31.5 80.7 17.7
1.29 0.42 1.44 0.32 0.27
275 303 304 332 333
13.3 100 31.8 83.9 17.4
0.93 0.05 1.27 0.00 0.00
Butyl
268 296 297 310 339 340
13.4 100 18.9 28.1 92.5 21.7
2.13 0.30 4.80 0.82 0.04 0.11
275 303 304 317 346 347
14.2 100 20.4 29.6 99.1 22.6
1.46 0.04 0.25 0.00 0.00 0.00
Acetyl
255 296 297 324 325
22.9 27.6 67.4 53.1 100
2.05 3.72 3.32 0.06 0.25
262 303 304 330 332
23.3 30.4 72.6 50.1 100
1.65 0.06 0.56 0.02 0.01
TFA
350 351 378 379
31.2 100 66.5 86.5
1.55 1.41 1.39 1.41
357 358 384 386
30.9 100 55.7 72.3
0.08 0.45 0.02 0.03
PFP
400 401 428 429
37.5 100 75.5 86.0
2.40 2.24 2.30 2.09
407 408 434 436
36.3 100 64.6 70.1
0.47 1.26 1.06 0.80
HFB
450 451 478 479
33.7 100 74.9 85.2
2.75 2.61 2.56 2.69
457 458 484 486
33.3 100 63.8 68.9
0.13 0.28 0.01 0.10
TMS
326 355 356
43.0 100 27.3
1.96 0.66 0.71
333 362 363
44.7 100 27.3
0.07 0.01 0.02
TFA/TMS
423 424 450 451
81.9 24.0 43.5 100
0.47 0.60 0.57 0.60
430 431 456 458
91.5 26.8 39.9 100
0.37 3.75 0.06 0.00
Table V — Antianxiety Agents
© 2010 by Taylor and Francis Group, LLC
472
Table V-11b. (Continued) CD Groupc
7-Aminoflunitrazepam Ion (m/z)d Rel. int. Analog’s cont.
7-Aminoflunitrazepam-d7 Ion (m/z)d Rel. int. Analog’s cont.
TFA/t-BDMS
436 437 493
100 28.3 37.5
0.19 0.24 0.18
443 444 500
100 28.0 40.6
0.01 0.24 0.00
PFP/TMS
352 473 474 500 501 502
15.0 85.2 25.6 45.4 100 30.3
1.30 0.21 0.29 0.17 0.20 0.26
359 480 481 506 508 509
16.4 92.8 27.8 42.3 100 30.2
0.28 0.53 4.99 0.04 0.00 0.00
PFP/t-BDMS
486
100
—
493
100
—
HFB/TMS
402 523 524 550 551
15.4 81.5 25.0 43.9 100
1.36 0.55 2.11 0.41 0.40
409 530 531 556 558
17.7 89.0 27.9 40.5 100
0.12 0.40 3.60 0.06 0.00
HFB/t-BDMS
296 536 537 593
56.3 100 30.2 29.0
4.73 2.95 3.05 2.81
299 543 544 600
62.9 100 29.8 27.3
1.95 0.22 0.43 0.00
a–d
See the corresponding footnotes in Table I-1a.
Table V-12. Relative intensity and cross-contribution dataa of ionsb with potential for designating the analyte and the adapted internal standard — N-Desalkylflurazepam/N-desalkylflurazepam-d4 CD Groupc
N-Desalkylflurazepam Ion (m/z)d Rel. int. Analog’s cont.
N-Desalkylflurazepam-d4 Ion (m/z)d Rel. int. Analog’s cont.
None
259
100
—
263
100
—
Methyl
274 275 283 301 302
100 44.9 34.3 88.0 82.9
3.43 3.10 1.85 — 2.17
278 279 287 304 306
100 44.1 43.2 75.0 91.0
0.39 0.08 0.63 — 0.09
[Methyl]2
239 275 297 316
12.5 100 28.1 31.8
1.43 — 0.37 1.02
243 279 301 320
9.39 100 37.4 33.7
2.49 — 0.00 0.51
Ethyl
259 288 289 297 315 316
26.1 100 51.2 36.9 99.3 80.2
4.08 0.45 4.36 0.44 — 0.17
263 292 293 301 318 320
25.3 100 38.8 46.5 76.4 80.6
1.11 1.28 0.30 2.13 — 0.41
Propyl
259 288 302 311 330
34.9 100 81.8 38.5 71.1
3.96 0.53 0.18 0.38 0.24
263 292 306 315 334
32.3 100 76.8 49.2 74.8
1.79 0.30 0.68 0.63 0.20
Butyl
287 288 316
100 82.8 45.4
— 1.50 0.69
290 292 320
86.3 100 48.4
— 0.37 1.68
Appendix Two — Ion Intensity Cross-Contribution Data
© 2010 by Taylor and Francis Group, LLC
473
Table V-12. (Continued) CD Groupc
N-Desalkylflurazepam Ion (m/z)d Rel. int. Analog’s cont.
Acetyl
260 269 288 302
59.4 39.5 100 26.8
TMS
360
t-BDMS
345 346 347 402
a–d
N-Desalkylflurazepam-d4 Ion (m/z)d Rel. int. Analog’s cont.
0.99 0.27 0.26 0.06
264 273 292 306
56.7 48.4 100 25.6
0.80 3.20 0.46 0.70
90.7
0.65
364
100
2.07
100 27.4 40.7 7.58
1.08 2.91 2.25 1.07
349 350 351 406
100 28.6 41.5 819
0.24 1.30 0.12 2.52
See the corresponding footnotes in Table I-1a.
Table V-13. Relative intensity and cross-contribution dataa of ionsb with potential for designating the analyte and the adapted internal standard — N-Desmethylflunitrazepam/Ndesmethylflunitrazepam-d4 CD Groupc
N-Desmethylflunitrazepam Ion (m/z)d Rel. int. Analog’s cont.
N-Desmethylflunitrazepam-d4 Ion (m/z)d Rel. int. Analog’s cont.
238
28.9
3.40
242
26.6
1.07
285 286 326
33.7 100 33.0
3.19 0.67 0.45
289 290 329
35.7 100 25.5
0.46 0.09 0.54
Ethyl
299 300 308 326 327
53.0 54.5 32.3 100 51.8
2.03 2.46 0.55 0.52 0.68
303 304 312 329 331
62.7 63.1 50.7 100 40.6
1.75 0.02 2.14 0.99 0.02
Propyl
298 299 313 322 340 341
74.3 95.7 48.8 34.0 100 57.5
4.47 2.04 2.33 0.56 0.45 0.97
301 303 317 326 343 345
72.5 99.0 56.9 52.4 100 44.4
2.55 0.02 0.17 1.80 1.20 0.02
Butyl
298 327 354
100 37.0 93.7
1.74 3.14 0.09
301 331 357
100 43.2 92.6
1.78 0.29 1.00
Acetyl
213 260 302
17.3 100 26.7
2.86 0.60 0.45
216 262 306
12.0 100 30.8
0.66 1.53 0.10
TMS
324 371
29.7 100
3.45 2.14
327 375
26.4 100
2.92 0.11
t-BDMS
310 356 357 413
12.5 100 26.5 2.76
2.43 1.41 1.65 1.21
314 360 361 417
11.9 100 26.4 2.57
0.77 0.13 0.06 0.25
[Methyl]2
a–d
See the corresponding footnotes in Table I-1a.
Table V — Antianxiety Agents
© 2010 by Taylor and Francis Group, LLC
474
Table V-14. Relative intensity and cross-contribution dataa of ionsb with potential for designating the analyte and the adapted internal standard — 2-Hydroxyethylflurazepam/2hydroxyethylflurazepam-d4 CD Groupc
2-Hydroxyethylflurazepam Ion (m/z)d Rel. int. Analog’s cont.
2-Hydroxyethylflurazepam-d4 Ion (m/z)d Rel. int. Analog’s cont.
None
288 313
100 15.3
2.85 1.97
292 317
100 19.2
0.64 1.35
Butyl
183 260 288
16.9 31.0 100
4.24 3.90 1.11
187 264 292
11.3 30.3 100
1.48 0.90 0.67
TMS
260 288 360
26.6 100 16.0
4.74 2.28 1.09
264 292 364
25.5 100 15.5
1.11 0.55 3.42
t-BDMS
345 389 390 391 431
8.87 100 26.7 38.7 2.63
1.30 0.71 0.93 1.76 1.85
349 393 394 395 435
8.83 100 27.9 39.1 2.58
2.73 2.39 1.33 0.10 2.96
aa–d
See the corresponding footnotes in Table I-1a.
Table V-15. Relative intensity and cross-contribution dataa of ionsb with potential for designating the analyte and the adapted internal standard — Estazolam/estazolam-d5 CD Groupc None
a–d
Estazolam Ion (m/z)d Rel. int. Analog’s cont. 205 239 259 394
66.5 45.4 100 62.7
4.90 1.19 0.78 0.39
Estazolam-d5 Ion (m/z)d Rel. int. Analog’s cont. 210 244 264 299
66.1 27.4 98.9 100
0.52 0.37 0.77 0.20
See the corresponding footnotes in Table I-1a.
Table V-16. Relative intensity and cross-contribution dataa of ionsb with potential for designating the analyte and the adapted internal standard — Alprazolam/alprazolam-d5 CD Groupc None
a–d
Alprazolam Ion (m/z)d Rel. int. Analog’s cont. 204 273 279 308
76.6 58.5 100 70.7
4.60 4.52 — 0.50
Alprazolam-d5 Ion (m/z)d Rel. int. Analog’s cont. 209 278 284 313
71.4 30.4 100 74.8
See the corresponding footnotes in Table I-1a.
Appendix Two — Ion Intensity Cross-Contribution Data
© 2010 by Taylor and Francis Group, LLC
0.16 2.78 — 0.07
475
Table V-17. Relative intensity and cross-contribution dataa of ionsb with potential for designating the analyte and the adapted internal standard — α-Hydroxyalprazolam/α-hydroxyalprazolam-d5 CD Groupc
α-Hydroxyalprazolam Ion (m/z)d Rel. int. Analog’s cont.
α-Hydroxyalprazolam-d5 Ion (m/z)d Rel. int. Analog’s cont.
TMS
364 381 383 396 398
3.59 100 38.1 33.4 12.6
4.84 4.52 4.91 4.41 4.46
369 386 388 401 403
3.90 100 39.3 33.7 12.8
3.92 0.45 0.10 0.49 0.09
t-BDMS
381 382 383 423
100 27.9 39.0 2.89
2.54 2.60 2.80 2.31
386 387 388 428
100 28.2 38.7 2.79
0.40 0.16 0.06 0.51
a–d
See the corresponding footnotes in Table I-1a.
Table V-18. Relative intensity and cross-contribution dataa of ionsb with potential for designating the analyte and the adapted internal standard — α-Hydroxytriazolam/α-hydroxytriazolam-d4 CD Groupc
α-Hydroxytriazolam Ion (m/z)d Rel. int. Analog’s cont.
α-Hydroxytriazolam-d4 Ion (m/z)d Rel. int. Analog’s cont.
TMS
415
100
—
419
100
—
t-BDMS
380 415 417
6.82 100 70.1
2.38 — 2.34
384 419 421
6.46 100 69.7
3.23 — 1.14
a–d
See the corresponding footnotes in Table I-1a.
Table V-19. Relative intensity and cross-contribution dataa of ionsb with potential for designating the analyte and the adapted internal standard — Mianserin/mianserin-d3 CD Groupc None
a–d
Mianserin Ion (m/z)d Rel. int. Analog’s cont. 204 273 264
76.6 58.5 46.0
4.60 4.52 0.88
Mianserin-d3 Ion (m/z)d Rel. int. Analog’s cont. 209 278 267
See the corresponding footnotes in Table I-1a.
Table V — Antianxiety Agents
© 2010 by Taylor and Francis Group, LLC
71.4 30.4 46.5
0.16 2.78 0.31
476
Table V-20. Relative intensity and cross-contribution dataa of ionsb with potential for designating the analyte and the adapted internal standard — Methaqualone/methaqualone-d7 CD Groupc None a–d
Methaqualone Ion (m/z)d Rel. int. Analog’s cont. 235
100
—
Methaqualone-d7 Ion (m/z)d Rel. int. Analog’s cont. 242
100
—
See the corresponding footnotes in Table I-1a.
Table V-21. Relative intensity and cross-contribution dataa of ionsb with potential for designating the analyte and the adapted internal standard — Haloperidol/haloperidol-d4 CD Groupc TMS a–d
Haloperidol Ion (m/z)d Rel. int. Analog’s cont. 123
5.05
—
Haloperidol-d4 Ion (m/z)d Rel. int. Analog’s cont. 127
4.44
See the corresponding footnotes in Table I-1a.
Appendix Two — Ion Intensity Cross-Contribution Data
© 2010 by Taylor and Francis Group, LLC
—
477
Summary of Drug, Isotopic Analogs, and Chemical Derivatization Groups Included in Table VI (Antidepressants) Compound
Isotopic analog
Chemical derivatization group
Table #
Imipramine
d3
None
VI-1
Desipramine
d3
None, acetyl, TCA, TFA, PFP, 4-CB, TMS, t-BDMS
VI-2
Trimipramine
d3
None
VI-3
Clomipramine
d3
None
VI-4
Nortriptyline
d3
None, acetyl, TCA, TFA, PFP, HFB, 4-CB, TMS, t-BDMS
VI-5
Protriptyline
d3
None, acetyl, TCA, TFA, PFP, HFB, 4-CB, TMS, t-BDMS
VI-6
Doxepin
d3
None
VI-7
Dothiepin
d3
None
VI-8
Amitriptyline
d3
None
Maprotiline
d3
None, acetyl, TCA, TFA, PFP, HFB, 4-CB, TMS, t-BDMS
VI-9
Table VI — Antidepressants
© 2010 by Taylor and Francis Group, LLC
VI-10
479
Appendix Two — Table VI Cross-Contributions Between Ions Designating the Drugs and Their Isotopically Labeled Analogs in Various Derivatization Forms — Antidepressants Table VI-1. Relative intensity and cross-contribution data of ions with potential for designating the analyte and the adapted internal standard — Imipramine/imipramine-d3 ............................................................................................................. 480 Table VI-2. Relative intensity and cross-contribution data of ions with potential for designating the analyte and the adapted internal standard — Desipramine/desipramine-d3 .......................................................................................................... 480 Table VI-3. Relative intensity and cross-contribution data of ions with potential for designating the analyte and the adapted internal standard — Trimipramine/trimipramine-d3 ....................................................................................................... 480 Table VI-4. Relative intensity and cross-contribution data of ions with potential for designating the analyte and the adapted internal standard — Clomipramine/clomipramine-d3 ..................................................................................................... 481 Table VI-5. Relative intensity and cross-contribution data of ions with potential for designating the analyte and the adapted internal standard — Nortriptyline/nortriptyline-d3 ......................................................................................................... 481 Table VI-6. Relative intensity and cross-contribution data of ions with potential for designating the analyte and the adapted internal standard — Protriptyline/protriptyline-d3 .......................................................................................................... 481 Table VI-7. Relative intensity and cross-contribution data of ions with potential for designating the analyte and the adapted internal standard — Doxepin/doxepin-d3 ....................................................................................................................... 482 Table VI-8. Relative intensity and cross-contribution data of ions with potential for designating the analyte and the adapted internal standard — Dothiepin/dothiepin-d3 ................................................................................................................... 482 Table VI-9. Relative intensity and cross-contribution data of ions with potential for designating the analyte and the adapted internal standard — Amitriptyline/amitriptyline-d3 ........................................................................................................ 483 Table VI-10. Relative intensity and cross-contribution data of ions with potential for designating the analyte and the adapted internal standard — Maprotiline/maprotiline-d3 ............................................................................................................. 483
Table VI — Antidepressants
© 2010 by Taylor and Francis Group, LLC
480 Table VI-1. Relative intensity and cross-contribution dataa of ionsb with potential for designating the analyte and the adapted internal standard — Imipramine/imipramine-d3 CD Groupc None
a–d
Imipramie Ion (m/z)d Rel. int. Analog’s cont. 58 85 265 280
89.7 47.4 32.0 20.6
1.75 1.55 3.43 0.79
Imipramine-d3 Ion (m/z)d Rel. int. Analog’s cont. 61 88 268 283
73.3 37.7 0.40 21.9
0.85 1.40 0.26 0.16
See the corresponding footnotes in Table I-1a.
Table VI-2. Relative intensity and cross-contribution dataa of ionsb with potential for designating the analyte and the adapted internal standard — Desipramine/desipramine-d3 CD Groupc
Desipramine Ion (m/z)d Rel. int. Analog’s cont.
Desipramine-d3 Ion (m/z)d Rel. int. Analog’s cont.
None
44 266
46.4 31.7
— 1.32
47 269
30.0 29.4
— 0.12
Acetyl
114 308
26.3 36.4
1.61 0.99
117 311
26.1 34.2
4.81 0.22
TCA
303 410
1.42 13.0
0.93 —
306 413
1.43 12.3
1.69 —
TFA
362
31.8
1.49
365
25.6
0.21
PFP
412 413
29.3 7.06
0.11 4.00
415 416
32.7 8.03
0.24 0.08
4-CB
276 294 322 501 516 517
1.01 1.42 7.67 0.47 20.6 5.96
1.79 1.25 0.67 4.70 0.56 3.99
279 297 325 504 519 520
0.87 1.20 6.05 0.37 16.3 4.77
1.06 0.50 0.40 2.76 0.63 0.22
TMS
116 143 338
44.8 43.6 13.5
— 3.36 2.03
119 146 341
41.6 41.0 10.7
— 0.59 1.44
t-BDMS
102 380
100 7.84
1.31 1.06
105 383
100 6.94
0.46 1.93
a–d
See the corresponding footnotes in Table I-1a.
Table VI-3. Relative intensity and cross-contribution dataa of ionsb with potential for designating the analyte and the adapted internal standard — Trimipramine/trimipramine-d3 CD Groupc None
a–d
Trimipramine Ion (m/z)d Rel. int. Analog’s cont. 58 84 294
100 16.9 16.3
1.86 3.16 1.61
Trimipramine-d3 Ion (m/z)d Rel. int. Analog’s cont. 61 87 297
17.5 17.1 21.9
See the corresponding footnotes in Table I-1a.
Appendix Two — Ion Intensity Cross-Contribution Data
© 2010 by Taylor and Francis Group, LLC
0.01 2.08 0.18
481
Table VI-4. Relative intensity and cross-contribution dataa of ionsb with potential for designating the analyte and the adapted internal standard — Clomipramine/clomipramine-d3 CD Groupc None a–d
Clomipramine Ion (m/z)d Rel. int. Analog’s cont. 58 85
100 47.0
Clomipramine-d3 Ion (m/z)d Rel. int. Analog’s cont.
2.53 2.86
61 88
100 48.9
0.12 1.37
See the corresponding footnotes in Table I-1a.
Table VI-5. Relative intensity and cross-contribution dataa of ionsb with potential for designating the analyte and the adapted internal standard — Nortriptyline/nortriptyline-d3 CD Groupc
Nortriptyline Ion (m/z)d Rel. int. Analog’s cont.
Nortriptyline-d3 Ion (m/z)d Rel. int. Analog’s cont.
None
44
100
2.26
47
100
0.02
Acetyl
44 305 306
30.6 7.33 1.89
1.11 0.45 1.99
47 308 309
42.3 6.92 1.74
0.00 0.71 0.55
TCA
301 372 407
0.80 0.24 1.23
4.92 1.40 —
304 375 410
0.75 0.23 1.10
2.00 4.67 —
TFA
320 359
0.09 2.47
1.52 0.50
323 362
0.08 2.18
4.44 0.19
PFP
409
1.63
0.70
412
1.49
0.25
HFB
240 459
10.4 1.02
0.32 0.80
243 462
10.6 1.22
0.60 0.34
4-CB
294 468 513
3.45 0.61 0.50
— 0.61 1.00
297 471 516
3.25 0.43 0.34
— 0.59 0.79
TMS
116 117 320 334
100 12.1 2.68 0.16
0.45 4.33 0.39 3.02
119 120 323 337
100 11.9 3.17 0.20
0.27 0.11 1.27 2.77
t-BDMS
102 158 159 320 362 376
5.15 100 16.4 4.08 1.81 0.29
2.95 0.04 1.17 1.06 0.13 1.14
105 161 162 323 365 379
5.22 100 16.4 3.46 1.48 0.25
2.94 0.49 0.30 1.21 1.61 1.48
a–d
See the corresponding footnotes in Table I-1a.
Table VI-6. Relative intensity and cross-contribution dataa of ionsb with potential for designating the analyte and the adapted internal standard — Protriptyline/protriptyline-d3 CD Groupc
Protriptyline Ion (m/z)d Rel. int. Analog’s cont.
Protriptyline-d3 Ion (m/z)d Rel. int. Analog’s cont.
None
44 70
40.6 61.7
1.87 2.30
47 73
57.3 67.4
0.03 0.05
Acetyl
114 305 306
5.81 10.6 2.55
1.79 0.57 0.76
117 308 309
5.91 8.92 2.18
2.03 0.38 0.83
TCA
299 407
0.37 2.25
1.03 —
302 410
0.38 2.10
4.78 —
Table VI — Antidepressants
© 2010 by Taylor and Francis Group, LLC
482
Table VI-6. (Continued) CD Groupc
Protriptyline Ion (m/z)d Rel. int. Analog’s cont.
Protriptyline-d3 Ion (m/z)d Rel. int. Analog’s cont.
TFA
345 359 360
0.06 4.71 1.10
3.64 0.15 0.47
348 362 363
0.06 5.14 1.22
0.00 0.24 0.07
PFP
336 395 409 410
0.05 0.08 5.00 1.23
1.58 3.18 0.14 0.58
369 398 412 413
0.05 0.07 3.81 0.92
0.74 0.00 0.25 0.07
HFB
240 268 445 459 460
2.68 0.71 0.07 5.29 1.39
0.30 0.60 1.97 0.06 0.34
243 271 448 462 463
2.64 0.70 0.07 5.61 1.46
0.21 1.21 0.00 0.35 0.11
4-CB
322 468 513 514
1.17 0.80 4.21 1.24
1.92 0.78 0.74 0.91
325 471 516 517
0.96 9.56 2.88 0.85
0.87 0.56 0.49 0.27
TMS
116 142 320 335
100 51.3 3.95 2.46
2.33 1.98 2.86 2.18
119 145 323 338
100 52.7 4.37 2.87
0.32 0.39 1.36 2.16
t-BDMS
158 184 320 321 377
28.0 41.3 82.2 24.2 2.38
1.15 1.06 1.03 1.52 1.15
161 187 323 324 380
28.1 42.4 81.6 24.4 2.36
0.81 1.75 1.25 0.47 1.79
a–d
See the corresponding footnotes in Table I-1a.
Table VI-7. Relative intensity and cross-contribution dataa of ionsb with potential for designating the analyte and the adapted internal standard — Doxepin/doxepin-d3 CD Groupc None
a–d
Doxepin Ion (m/z)d Rel. int. 58 84 294
100 16.9 16.3
Analog’s cont. 1.86 3.16 1.61
Doxepin-d3 Ion (m/z)d Rel. int. Analog’s cont. 61 87 297
17.5 17.1 21.9
0.01 2.08 0.18
See the corresponding footnotes in Table I-1a.
Table VI-8. Relative intensity and cross-contribution dataa of ionsb with potential for designating the analyte and the adapted internal standard — Dothiepin/dothiepin-d3 CD Groupc None a–d
Dothiepin Ion (m/z)d Rel. int. Analog’s cont. 58
100
1.84
Dothiepin-d3 Ion (m/z)d Rel. int. Analog’s cont. 61
100
See the corresponding footnotes in Table I-1a.
Appendix Two — Ion Intensity Cross-Contribution Data
© 2010 by Taylor and Francis Group, LLC
0.04
483
Table VI-9. Relative intensity and cross-contribution dataa of ionsb with potential for designating the analyte and the adapted internal standard — Amitriptyline/amitriptyline-d3 CD Groupc None a–d
Amitriptyline Ion (m/z)d Rel. int. Analog’s cont. 58
100
Amitriptyline-d3 Ion (m/z)d Rel. int. Analog’s cont.
0.38
61
100
0.02
See the corresponding footnotes in Table I-1a.
Table VI-10. Relative intensity and cross-contribution dataa of ionsb with potential for designating the analyte and the adapted internal standard — Maprotiline/maprotiline-d3 CD Groupc
Maprotiline Ion (m/z)d Rel. int. Analog’s cont.
None
44
100
—
Acetyl
100 291 292 319
10.5 100 23.5 33.3
TCA
304 393
TFA
Maprotiline-d3 Ion (m/z)d Rel. int. Analog’s cont. 47
100
—
2.87 0.52 0.66 0.63
103 294 295 322
11.5 100 23.7 3.10
1.81 0.21 0.11 0.30
4.94 100
1.22 —
307 396
5.18 100
0.57 —
345 346 373
100 23.5 1.25
0.14 0.35 0.21
348 349 376
100 23.7 1.18
0.21 0.06 0.30
PFP
304 395 396 423
0.82 100 24.1 0.95
0.29 0.09 0.32 0.00
307 398 399 426
0.80 100 24.3 0.93
0.74 0.23 0.07 0.31
HFB
240 254 304 445 446 473
4.52 3.61 0.46 100 25.6 0.77
0.74 0.48 0.37 0.06 0.28 0.00
243 257 307 448 449 476
4.72 3.56 0.48 100 26.4 0.77
1.10 0.23 1.97 0.26 0.07 0.32
4-CB
482 499 500
1.90 100 29.2
1.01 0.75 1.00
485 502 503
1.89 100 29.3
1.45 0.47 0.25
TMS
116 277 334 349
100 3.26 2.20 10.2
0.65 1.76 2.32 0.28
119 280 337 352
100 3.08 2.38 10.8
0.25 0.48 1.33 1.36
t-BDMS
102 158 306 334 335 391
50.8 43.1 17.7 100 30.4 8.13
0.87 0.71 0.32 0.07 3.42 0.28
105 161 309 337 338 394
48.2 41.9 17.7 100 31.0 8.58
0.27 0.46 0.98 1.24 0.42 1.61
a–d
See the corresponding footnotes in Table I-1a.
Table VI — Antidepressants
© 2010 by Taylor and Francis Group, LLC
485
Summary of Drugs, Isotopic Analogs, and Chemical Derivatization Groups Included in Table VII (Others) Compound
Isotopic analog
Chemical derivatization group
Table #
d3
None
VII-1
Cotinine
d3
None
VII-2
Nicotine
d4
None
VII-3
5-α-Estran-3α-ol-17-one
d3
None, acetyl, TMS
VII-4
5-β-Estran-3α-ol-17-one
d3
None, acetyl, TMS
VII-5
Stanozolol
d3
None, acetyl, [TMS]2, t-BDMS
VII-6
3-Hydroxystanozolol
d3
[TMS]2, [t-BDMS]2
VII-7
Promethazine
d3
None
VII-8
Chlorpromazine
d3
None
VII-9
Acetaminophen
d4
None, [acetyl]2, TCA, TFA, PFP, HFB, 4-CB, TMS, [TMS]2, t-BDMS, [t-BDMS]2
VII-10
Clonidine
d4
None, acetyl, [acetyl]2, TMS, [TMS]2, [t-BDMS]2
VII-11
Chloramphenicol
d5
None, [acetyl]2, TMS, [TMS]2
VII-12
Melatonin
d7
None, acetyl, TFA, PFP, HFB, TMS
VII-13
Diphenhydramine
Table VII — Others
© 2010 by Taylor and Francis Group, LLC
487
Appendix Two — Table VII Cross-Contributions Between Ions Designating the Drugs and Their Isotopically Labeled Analogs in Various Derivatization Forms — Others Table VII-1. Relative intensity and cross-contribution data of ions with potential for designating the analyte and the adapted internal standard — Diphenhydramine/diphenhydramine-d3 ........................................................................................... 488 Table VII-2. Relative intensity and cross-contribution data of ions with potential for designating the analyte and the adapted internal standard — Cotinine/cotinine-d3 ......................................................................................................................... 488 Table VII-3. Relative intensity and cross-contribution data of ions with potential for designating the analyte and the adapted internal standard — Nicotine/nicotine-d4 ......................................................................................................................... 488 Table VII-4. Relative intensity and cross-contribution data of ions with potential for designating the analyte and the adapted internal standard — 5-α−Estran−3α−ol-17-one/5-α−estran−3α−ol-17-one-d3 ............................................................... 488 Table VII-5. Relative intensity and cross-contribution data of ions with potential for designating the analyte and the adapted internal standard — 5-β−Estran−3α−ol-17-one/5-β−estran−3α−ol-17-one-d3 ............................................................... 489 Table VII-6. Relative intensity and cross-contribution data of ions with potential for designating the analyte and the adapted internal standard — Stanozolol/stanozolol-d3 .................................................................................................................. 489 Table VII-7. Relative intensity and cross-contribution data of ions with potential for designating the analyte and the adapted internal standard — 3-Hydroxystanozolol/3-hydroxystanozolol-d3 ................................................................................. 489 Table VII-8. Relative intensity and cross-contribution data of ions with potential for designating the analyte and the adapted internal standard — Promethazine/promethazine-d3 ........................................................................................................ 490 Table VII-9. Relative intensity and cross-contribution data of ions with potential for designating the analyte and the adapted internal standard — Chlorpromazine/chlorpromazine-d3 ................................................................................................. 490 Table VII-10. Relative intensity and cross-contribution data of ions with potential for designating the analyte and the adapted internal standard — Acetaminophen/acetaminophen-d4 ................................................................................................... 490 Table VII-11. Relative intensity and cross-contribution data of ions with potential for designating the analyte and the adapted internal standard — Clonidine/clonidine-d4 ..................................................................................................................... 491 Table VII-12. Relative intensity and cross-contribution data of ions with potential for designating the analyte and the adapted internal standard — Chloramphenicol/chloramphenicol-d5 ............................................................................................. 492 Table VII-13. Relative intensity and cross-contribution data of ions with potential for designating the analyte and the adapted internal standard — Melatonin/melatonin-d7 .................................................................................................................... 492
Table VII — Others
© 2010 by Taylor and Francis Group, LLC
488 Table VII-1. Relative intensity and cross-contribution dataa of ionsb with potential for designating the analyte and the adapted internal standard — Diphenhydramine/diphenhydramine-d3 CD Groupc None a–d
Diphenhydramine Ion (m/z)d Rel. int. Analog’s cont. 58
100
0.93
Diphenhydramine-d3 Ion (m/z)d Rel. int. Analog’s cont. 61
100
0.09
See the corresponding footnotes in Table I-1a.
Table VII-2. Relative intensity and cross-contribution dataa of ionsb with potential for designating the analyte and the adapted internal standard — Cotinine/cotinine-d3 CD Groupc None
a–d
Cotinine Ion (m/z)d Rel. int. 98 175 176
100 10.0 37.0
Analog’s cont. 1.82 2.04 1.89
Cotinine-d3 Ion (m/z)d Rel. int. 101 178 179
100 11.0 41.0
Analog’s cont. 0.25 3.00 0.25
See the corresponding footnotes in Table I-1a.
Table VII-3. Relative intensity and cross-contribution dataa of ionsb with potential for designating the analyte and the adapted internal standard — Nicotine/nicotine-d4 CD Groupc None
a–d
Nicotine Ion (m/z)d Rel. int. 92 133 161
7.00 36.0 21.0
Analog’s cont. 17.0 — 2.12
Nicotine-d4 Ion (m/z)d Rel. int. 96 136 165
6.00 22.0 19.0
Analog’s cont. 0.13 — 0.02
See the corresponding footnotes in Table I-1a.
Table VII-4. Relative intensity and cross-contribution dataa of ionsb with potential for designating the analyte and the adapted internal standard — 5-α−Estran−3α−ol-17-one/5-α−estran−3α−ol17-one-d3 CD Groupc
5-α-Estran-3α-ol-17-one Ion (m/z)d Rel. int. Analog’s cont.
5-α-Estran-3α-ol-17-one-d3 Ion (m/z)d Rel. int. Analog’s cont.
None
276
100
2.47
279
100
0.21
Acetyl
258 318
100 7.60
1.05 1.19
261 321
100 18.3
0.53 0.53
TMS
129 333 348
34.7 100 25.6
— 0.45 0.83
130 336 351
43.3 87.4 11.4
— 1.91 4.03
a–d
See the corresponding footnotes in Table I-1a.
Appendix Two — Ion Intensity Cross-Contribution Data
© 2010 by Taylor and Francis Group, LLC
489
Table VII-5. Relative intensity and cross-contribution dataa of ionsb with potential for designating the analyte and the adapted internal standard — 5-β−Estran−3α−ol-17-one/5-β−estran−3α−ol-17one-d3 CD Groupc
5-β-Estran-3α-ol-17-one Ion (m/z)d Rel. int. Analog’s cont.
5-β-Estran-3α-ol-17-one-d3 Ion (m/z)d Rel. int. Analog’s cont.
None
276
100
—
279
95.9
—
Acetyl
258 318
100 33.9
1.77 1.18
261 321
67.5 24.9
0.56 0.24
TMS
216 258 333 348
86.8 100 47.3 8.08
— 3.73 1.06 2.05
217 261 336 351
100 76.4 34.5 6.12
— 0.43 2.10 1.99
a–d
See the corresponding footnotes in Table I-1a.
Table VII-6. Relative intensity and cross-contribution dataa of ionsb with potential for designating the analyte and the adapted internal standard — Stanozolol/stanozolol-d3 CD Groupc
Stanozolol Ion (m/z)d Rel. int.
None
328
61.5
Acetyl
327
[TMS]2
143 473
t-BDMS
358 386 387 442
a–d
Analog’s cont.
Stanozolol-d3 Ion (m/z)d Rel. int. Analog’s cont.
—
331
59.2
—
21.2
—
330
20.7
—
100 7.60
3.49 4.98
146 476
100 7.62
2.02 3.55
12.0 100 30.4 7.47
3.49 1.97 4.34 1.97
361 389 390 445
11.7 100 31.6 7.19
1.44 1.33 0.56 2.28
See the corresponding footnotes in Table I-1a.
Table VII-7. Relative intensity and cross-contribution dataa of ionsb with potential for designating the analyte and the adapted internal standard — 3-Hydroxystanozolol/3-hydroxystanozolol-d3 CD Groupc
3-Hydroxystanozolol Ion (m/z)d Rel. int. Analog’s cont.
3-Hydroxystanozolol-d3 Ion (m/z)d Rel. int. Analog’s cont.
[TMS]2
473 488 489
96.2 36.8 15.1
— 3.52 4.63
476 491 492
100 39.4 15.7
— 3.94 1.58
[t-BDMS]2
459 515 516 517
26.0 100 71.4 28.5
2.55 — 1.31 3.10
462 518 519 520
24.6 100 71.5 28.4
4.23 — 2.63 0.77
a–d
See the corresponding footnotes in Table I-1a.
Table VII — Others
© 2010 by Taylor and Francis Group, LLC
490 Table VII-8. Relative intensity and cross-contribution dataa of ionsb with potential for designating the analyte and the adapted internal standard — Promethazine/promethazine-d3 CD Groupc None a–d
Promethazine Ion (m/z)d Rel. int. Analog’s cont. 72 284
100 6.91
1.18 1.51
Promethazine-d3 Ion (m/z)d Rel. int. Analog’s cont. 75 287
100 6.49
0.58 1.21
See the corresponding footnotes in Table I-1a.
Table VII-9. Relative intensity and cross-contribution dataa of ionsb with potential for designating the analyte and the adapted internal standard — Chlorpromazine/chlorpromazine-d3 CD Groupc None a–d
Chlorpromazine Ion (m/z)d Rel. int. Analog’s cont. 58
100
2.26
Chlorpromazine-d3 Ion (m/z)d Rel. int. Analog’s cont. 61
100
0.36
See the corresponding footnotes in Table I-1a.
Table VII-10. Relative intensity and cross-contribution dataa of ionsb with potential for designating the analyte and the adapted internal standard — Acetaminophen/acetaminophen-d4 CD Groupc
Acetaminophen Ion (m/z)d Rel. int. Analog’s cont.
Acetaminophen-d4 Ion (m/z)d Rel. int. Analog’s cont.
None
109
100
—
112
100
—
[Acetyl]2
109 151 193 235
100 53.5 36.4 3.09
0.40 0.15 0.09 0.23
113 155 197 239
100 56.0 38.2 3.33
0.02 0.01 0.02 0.05
TCA
108 134 255 297
100 18.0 36.5 15.6
0.32 0.83 0.40 0.46
112 138 259 301
100 19.1 39.2 17.2
1.48 0.89 3.49 3.59
TFA
108 205 206 247
100 63.9 6.14 33.7
0.76 0.56 1.10 0.54
112 209 210 251
100 63.7 6.23 34.9
0.04 0.07 0.10 0.04
PFP
108 208 236 255 297
100 3.72 2.86 65.7 36.4
0.46 0.65 0.64 0.27 0.29
112 212 240 259 301
100 3.60 2.96 62.9 35.6
0.20 0.37 4.24 0.14 0.11
HFB
80 108 134 286 305 347
9.25 100 5.89 3.27 50.4 27.9
4.39 0.40 4.63 0.26 0.21 0.20
84 112 138 290 309 351
8.96 100 5.96 3.18 49.0 27.6
0.56 0.14 0.46 0.35 0.07 0.07
4-CB
108 243 359 401
100 3.43 34.1 19.1
0.94 1.04 1.02 0.75
112 247 363 405
100 3.28 33.9 19.3
0.04 0.04 0.01 0.01
Appendix Two — Ion Intensity Cross-Contribution Data
© 2010 by Taylor and Francis Group, LLC
491
Table VII-10. (Continued) CD Groupc
Acetaminophen Ion (m/z)d Rel. int. Analog’s cont.
Acetaminophen-d4 Ion (m/z)d Rel. int. Analog’s cont.
TMS
166 181 208 223
84.3 100 23.9 75.9
1.39 0.47 0.40 0.39
170 185 212 227
78.7 100 23.7 73.9
0.33 0.34 0.26 0.20
[TMS]2
181 206 223 280 295
26.2 100 17.7 87.3 64.5
2.86 0.39 1.55 0.23 0.25
185 210 227 284 299
27.1 100 18.9 89.0 65.3
0.18 0.43 0.32 0.40 0.57
t-BDMS
166 208 209 250 265
11.4 100 22.0 2.46 31.0
2.49 0.12 0.28 0.55 0.06
170 212 213 254 269
11.6 100 21.6 2.63 31.6
0.38 0.12 0.05 0.03 0.03
[t-BDMS]2
223 248 308 322 323 379
14.0 44.2 17.9 100 35.1 5.93
0.71 0.24 0.37 0.13 0.75 0.14
227 252 312 326 327 383
14.2 43.1 18.2 100 34.9 6.06
0.42 4.32 0.34 0.47 0.30 1.85
a–d
See the corresponding footnotes in Table I-1a.
Table VII-11. Relative intensity and cross-contribution dataa of ionsb with potential for designating the analyte and the adapted internal standard — Clonidine/clonidine-d4 CD Groupc
Clonidine Ion (m/z)d Rel. int.
Analog’s cont.
Clonidine-d4 Ion (m/z)d Rel. int. Analog’s cont.
None
194 229
32.8 100
2.90 1.45
198 233
32.2 100
0.60 10.9
Acetyl
194 208 236 238
95.9 9.27 100 32.7
2.83 3.33 2.89 2.82
198 212 240 242
99.9 10.6 100 32.3
0.37 1.87 0.48 0.23
[Acetyl]2
194 236 238 278 280
87.4 100 33.7 71.8 24.3
0.79 0.82 0.72 0.28 0.23
198 240 242 282 284
86.7 100 33.2 71.7 23.9
0.25 0.34 0.46 0.56 0.03
TMS
142 266 268
38.8 100 36.9
2.74 1.35 3.46
146 270 272
44.7 100 37.6
4.70 2.92 1.42
[TMS]2
214 322 338 340
36.0 17.3 100 42.5
1.34 0.46 0.89 2.73
218 326 342 344
40.2 14.4 100 42.7
2.83 4.43 3.74 0.44
[t-BDMS]2
252 254
100 39.8
0.44 4.23
256 258
100 39.9
1.81 0.24
a–d
See the corresponding footnotes in Table I-1a.
Table VII — Others
© 2010 by Taylor and Francis Group, LLC
492 Table VII-12. Relative intensity and cross-contribution dataa of ionsb with potential for designating the analyte and the adapted internal standard — Chloramphenicol/chloramphenicol-d5 CD Groupc
Chloramphenicol Ion (m/z)d Rel. int. Analog’s cont.
Chloramphenicol-d5 Ion (m/z)d Rel. int. Analog’s cont.
None
115 162
26.2 23.9
— 3.25
120 167
17.9 22.4
— 0.11
[Acetyl]2
153
100
—
158
90.2
—
TMS
224 225 235 252 321 351
99.6 17.2 11.9 14.1 14.3 8.39
0.79 3.37 1.49 1.85 0.67 0.43
229 230 240 257 326 356
100 17.1 12.4 15.7 15.6 9.79
0.19 1.28 0.88 0.36 0.71 1.13
[TMS]2
297 298
79.8 20.3
0.21 1.62
302 303
84.1 21.0
0.12 0.42
a–d
See the corresponding footnotes in Table I-1a.
Table VII-13. Relative intensity and cross-contribution dataa of ionsb with potential for designating the analyte and the adapted internal standard — Melatonin/melatonin-d7 CD Groupc
Melatonin Ion (m/z)d Rel. int.
Analog’s cont.
Melatonin-d7 Ion (m/z)d Rel. int. Analog’s cont.
None
160 173 174 232
100 97.9 13.1 20.8
4.17 3.19 4.54 2.25
162 176 177 239
100 79.3 26.5 18.5
0.84 0.41 0.34 0.25
Acetyl
117 145 160 173 174 274
14.4 18.7 98.3 100 14.5 15.6
4.53 3.42 0.81 0.26 1.24 0.88
119 147 162 176 177 281
14.5 17.6 100 92.4 16.6 15.1
0.84 3.11 0.62 0.12 0.13 2.90
TFA
144 159 256 269 270 328
11.3 19.9 14.8 100 15.0 9.55
1.93 1.60 2.03 0.63 2.15 1.00
146 161 258 272 273 335
13.6 21.5 17.1 100 22.8 9.49
0.29 1.49 1.37 0.07 0.02 0.00
PFP
159 306 319 320
24.1 15.4 100 15.9
2.95 2.26 0.52 1.58
161 308 322 323
23.6 17.0 100 23.5
3.60 2.39 0.54 0.43
HFB
159 356 359 428
25.8 13.5 100 8.17
2.64 1.41 0.43 0.76
161 358 372 435
27.0 14.4 100 5.81
1.97 1.64 0.15 0.68
TMS
232 245 246 304
100 74.1 16.6 18.5
— 0.68 2.31 0.70
234 248 249 311
100 73.8 19.0 12.6
— 0.94 0.42 0.20
a–d
See the corresponding footnotes in Table I-1a.
Appendix Two — Ion Intensity Cross-Contribution Data
© 2010 by Taylor and Francis Group, LLC