This content was uploaded by our users and we assume good faith they have the permission to share this book. If you own the copyright to this book and it is wrongfully on our website, we offer a simple DMCA procedure to remove your content from our site. Start by pressing the button below!
4?" Formulas for k > 4 are more complicated tban those for k < 4. Fot: those who b!\\'e some familiarity witb modular fOrIIlll, "'e remark that the generating function ".,n (q) for r2k (n) is a modular form of "''light k. For k:::; 4, the dimension of the spaee of modular forms in which Copyrigllted Material
B . C. BERNDT o;?k(q) lies is equal to l. For k > 4, the di_nsion exceeds (1111':, and so other modular f<>rIIIS playa role in formulas for ~k ( n), m&ki~ the.ie fOTIIlulas m Ore complicated. In the latler part of the nineteenth oentury and the early part of th
lu.,,,
E1ementllt)' texts in number theory <:(Intaining m ...!eri&! re\ ... ted to that gi,-rn in this chapter inclnde t h06e of HlITdy IIIld Wright [112, Chapter 20] and 1... K. Hua [127, pp. 115-120, 2(l.j,-21O, 301-309]. The moot e:o:lelll~ text On trum8 of squares is by GTO:!8>I-ald [101).
Chapter 4
Eisenstein Series
4.1. Berno ulli N umbe rs and Eisenste in SeriC5 in the definition of the c~ical EiSlCnsuin serWla are Bernoulli nwubeni, ..·hith we define first. Ap~
Definition 4.1.1. TM
8 .. , n > 0, "re /kfint:l1 l>y
B~nu>tl1Ii n~~.
tlu: gmera!ing /unctiDn
z
(4.1.1)
e'
" " :" B ",,! ,
, -:L
1:1 < 2"..
"~
(Note t bat the function :!(e' - I ) is analytic at : "" 0, and i~ neareIIt singularities to 0 are ±2,.-j: thus. the series On the riy,t side 01 (4.1.1) O:llwerges for 1%1 < 2>1". ) Tn particular,
, , 8"= 0,
B, __ "
85
0:.
0,
~ = 42 '
T
B~
- 0, ~ = O.
that 8 .. ., 0 when II is odd aM greater than I. This is easy to prct\-e. It
appelUll
T heorem 4. 1.2. For n?: I ,
B2ft +' '" O.
-
85
B . C. BERND T p roor. Define (4.l.2)
*' + I)I) '" ","",'c,+ _,I z_1 + EBft z:. e' I n.
I(z}''''
"-.
2(~
.
It is easily checked t hat.
I(-z) '" f(z), i.e. , 1(%) is an even function _ Hence, from (4 .1.2), _ oonclude thllt Bn '" O. when n is an odd integer at least equal to 3. 0 T heorem 4 .1.3. For 1%1< 2,,-,
= ='" ~ 2 cot 2 ~
{- l ).. B:tn~
(2n)!
.
P roof. Using (4.Ll ) with z '" -lz, ..... find that
-cot-,,--:r :r ;:r ~""'--, O 2 2 2 e'" I ;% ~ 8 {-.-:rr
---, +L.
m
m o'
Eioonstein series function
Il/'e
special
CI\OOI8
m.!
of Ramanujan's
IIlOJ'e
geDf'nl1
~
(4.1.3)
~~",(q}:-
E k~n'q"", ~ ... _
l
where r and if are nonnegative integers. Tri,~lLIIy, ~ •.• (q) '" ~ .... (q) _ For our PurpoIleII, tbe Il'IOO>I. important special CII.'ie8 are when r '" (I and 6 is an odd p06itive integer, and when r _ 1 and , is an e,= posith." integer. D efi nition 4.1.4 . For tach poMlIt: inUger T, rkfiruc (4.1.4)
c Br + I () "T:"-2(T +l)+ ~D.~q '"
SPIRlT OF RAM A NUJAN
87
Definition 4.1 .5. The c~col Ei3em1t:in a pori""," integer, an: Ikfined I>JI
~me.
E;,.(q) , wIi..,.., n i3
(4.1.5)
Tb""
'",-
E;~(q) '" -8- S~n_ h
(4.1.6)
n ::! l.
(Our ootation here is sligbtly different from the classical notatioo; oormally, E.t,,(T ) is defined by the right side of (4.1.,,) when q '"' eO.;, and lm T > 0.) In Ramaoujan'~ notation, Ihe three most important special cases of (4 _1.,,) are
P .. P(q) , .. E;(q) = I - 24
(4.1.1)
L-
1 '0'q" - - 248"
' 0' Q ~ Q(q) :- E.(q ) ~ I
(4 .1.8)
' 0'
R "" R(q):= &!(q) = I - 504
(4.1.9)
k~ t
""
+ 240 L
""
L
I
qqk" 240S~,
Ik~" qk" - 504S. _
b.
Our fint goal is to derive two re.;urnmCEl relations for fint of which .. Iso iDvo1""" 4',,'n _
82~+1 '
the
4.2. Trigo nome tric Series Our goal in tbis section is to present Ramanujan's elementary method 1186J, 11 9 2, pp. 136-162) for
stein serie!. We begin with an
exe~
Exercise 4 .2.1. Verify ~trnl)
(4.2.1 )
UOI"
u
the dtmento'l' idfntity
I +2
mo'
L
_0'
oos("O) + cos(m9) '" cot (!O) .in(m8),
valid Jor tm;h posilM inl"ger m.
C()I: yr
IXl
B. C. BERNDT
88
We use (4.2.1) when we sqUlU"e the left >
(1
, ' ,~ t/sin(kB)) , "" ('4"001 ( 400t '2 +L I
"J' + ;C-c (") L
~.1
~C<>'< ,w,
q -C
wbere the Fourier ooefficients en depend upon q but not UpOn 9. Squaring the left side of (4.2.2), Ullin,; (4.2.1) for the lermJI ilM,)/"i", cot( !6) &io(1;9), ""d using the identity sin l (k6) = ~ ( I - oos(zkO)), ,,"I: find that
. .-.
,-
= '2 2: (1 =
--
~L L
,)2
""1-
~. l"''''
I
mq'"
00
-"2 L
{4.2.a}
1
q ....
mo '
To e&.lculate C ... n 2: 1, ..,e need to be careful. FiNt oJ;",er.."!: that we obtain contributions from
.
,"
qi I q
.. 1 qI qi 1
r/'rI' ~(.,....(j -
k)8 - <Xl6(j + k )6),
for j, k > I. We ahIogain oontributions from the ten\UI cot(!8)sin{m8), fOf m
2: n. TillIS, we find !.hat, for n 2: I , I
q"
'"
._1
C"=2 1 qn + Ll I n_1
{4.2.4}
.-.
qk
q,,+k
""" qnH q"+k + L J 1/' 1 qn+l
._1
qn_k
-z L1 rtlqn.· Copyngh!ed I
a~al
SPIRIT OF RAMANUJAN
89
Using tho! easily verified elementary identities 1
g"H
q~ +k
•
(.
+ ,. ) . q"
2(1
1
q"
1
qk
q" )
+(
(
q"
1
,.
_ --,--q"'.'. . ) l - q"+~
qk
(n - l )q" 2( 1 q" )
q" ) ' I q"
g" ( . ") =lq"lq" - 2'
(4.2.5)
Substituting (4.2.3) and (4.2.5) in (4.2.2), we find that
(
~ oot ~8
4
f!..
2+ L..J h .1
1
(~ 001 ~8)2 ~qkOO5(k9) 4
qk
1
+ 2" L
(4.2.6)
+ L.., (I ,t V
2
t~ L
k,f
DO
I
k_ 1
k
q
( I - oos{k8)) .
This is the first of the two primary trigonometric series identities that we need. Using (4.2.6), we establish a recurrence formula for tbe functions S •. Appearing in the recurreTlOl n!lation are the funct ions from (4.1.3) 00
(4.2.7)
• 1/1" (q)
_
-
~
L.., m ... .k .. 1
Theorem 4.2.2. For n
(4.2.8)
> I,
00
k2"mk _ ~
q
k2 .. k
- L.., {I h ,1
q
'1" )1 '
B. C. BERNDT
90
P roof. From the eieme ntNy
iden ~ ity
(4.2.9)
and T heorem 4.1.3, "'" find thllt
Using Theorem 4. 1.3, (4.2.10), and the Maclaurin series fo£ and 00II(/<8) in (4.2.6), ,.," deduoe that
sin(~)
Collecting coefficients of like pa>."e11I of q in (4.2.1l ) and ffCIIlling the repreeenc.&tiono of S. and 4>r•• (q) gh"en in (4. \.4) and (4.2.7), respectively, ,,~ find that
+ S'q _ ( 1.. 'If! l!
S3eJ + S5 ~ _ ... 31
51
J'
~ _l_+ S, _ " 1 .2 ~+ 4> ,.411' _ . .. 41P 21 41
+'
(5311' _ S~8" + s,fI' _ .. .
221
41 6 1
J.
SPIRIT OF RAMANUJAN
91
Equating coefficientl! of (/h' , n 2: I , on both
(_1),,-1 Sz,,-+- l 2 (2n)1
~ ( 1)"-' - -
!idel
above, we lind ~ha\
(-1) ~
+ (2n)! "' ,,2~
(SI1!(2nSz,, _11)'+ 5,3! (2nSz,,_,3)! + ... + (2nSz,, _1I )! 51) I!
(- I)"Sz,, -+-l
+
(2n+l)! '
or, upon simplification,
.
(2n+3) '" ) S.. _ISz,,_>k-+-I , 2(2n + I)S2n-+-l- 4> 1 ,>n= ~ ~ ( 2k-1
,
o
which ill (4.2.8).
Our next tflSk iI! to Il.'le Theorem 4.2.2 to deri"" the three impor_ lant first order differential equations satisfied by P, Q, and R. From
(4.L5).
(4.2.12) by (4.2.7). In partieular, from Our table of &moulli numhllrft at tbe oopmung of Ulil! chapter lUld the detinitiOTlll (4.1 .7)--(4. 1.9),
(4.2.13) (4.2.14) (4.2.15)
Y'
m
B. C. BERNDT
92
Putting II = 1 in (4.2.8), ~'" find that (4.2.16)
"(4_ 2_17)
288~ 1.2 - Q - p' ;
putting II _ 2 in (4.2.8) . "" find that
7 lOSs - 4>1 ,_ = SS,S3. 7'204>1,_ '" PQ - R ;
(4.2.18)
IWd putting n
~
3 in (4.2.8), we lind that 9
1451 - 4> 1,6 -
12SIS~ + 2051.
or, witb the """ of the identity Q2 _ 4805" which "'" shall p ......... below in (4.2.38),
100841 ,,&,., Q2 _ PR.
(4.2.19)
He'll<''', putting (4 '2.17)--(4.2_1 9) in (4 _2.13)-(4.2 .15), respectively. we deduce the follo1'ling important theorem .
Thoorem 4.2.3.
W~
Iwvc
(4.2.20)
dP
P' - Q
qd<j =
12
(4. 2.21)
PQ - R q dq = 3
(4.2.22)
dQ
Ii'
The next theorem is also of enormOUll in,port.ance. Theorem 4.2.4. We "" vc
{4.2.Z3}
~(q) - ~(q)". 1728q(q; q)~.
Proof. By a .trD.igbtforward U8e of logarithmic differentiation, "" easily find t hat d q dq log (q{q;q): ) - P(q).
Copyngh!ed
a~al
SPIRlT OF RAM A NUJAN
93
On t.bo= other hand, using ~traightfo""''III"d d ifferentiation along "'-ith Thec:w~ 4.2.3, '""" find ~hat d
qdq log (ct(q) - ~ (q)) = P (q).
The la5t
tM;>
equal itie!l imply that
d
d
dq log (q(q; q)~) '" dq log (Q' (q) - ~(q),
"(4.2.U )
q(q; q):: .. c (ct(q) - R"(q) ,
for 8OtDe COWllant c. Equating ooefIicientsof q on each side of (4.2.U), "'., deduce that 1 ,. '-(3· U O + 2·504) = 17Z&,
and 80 .nth tile Vl\lue c .. 1/ 1728, Theorem 4.2.4 folm..'lI from (4. 2.24).
o Th obtain a SCC()nd rocurrence relation for 5" "'., begin ""ith ana_ logues of (4.2.1) and (4.'2.6).
Exerebe 4.2. 5. Fir,t,
(U 2S)
cot2 H8)
p~
that
(I - 00!I(n8))
.., "-,
_ (2n - I ) + 4 ~)n - ,I;; ) oos(k9) + COII(nD). Exercise 4 .2 .S. ( TIl., ., a t>ef1l difJieult aen;i.!e_) S«<md, using (4.'2.2S), ~ /lUll
(
1
(4.2.26)
L(9) ,.. 1
1
Ii cot
2
29 + 1'2 +
1 )2
= ( gcot2 29 + 12
f
11<»
,1;;
1 "'", (I - 00II(109»
.,
'
)
I "" Jilq'< + 121:: q'«5+00!I(ke))_: R(9) . 1
Theorem 4 . 2 .7 . For- etlCh po';Ii<.,
i"tefJ~
01 ,
(4.2.27)
ngntrd
I
ale
B. C. BERNDT
proor. Using (4.2.10), .."
(4.2.28)
1
1
,I
ii cot "2 8 + 12 '"
1 2(fl
l~
+"2 ~,
-'
Using (4.2.28) and the Maclaurin ""'ries ror 00fI(k8), ..."!: find that the left side or (4.2.2tl) has the rarm
(4.2.29)
£(8) '"
. .( L--, 2fJl +"2
~ k, ~ (_l)n+1A;2n
+~I ct~ For n
> I , the wclIicient or 8""'"
8"")'
(2n)!
within pareotheses
abm"
is equal t.o
by (4.1.4). Thus, the left side or (4.2.26), i.e., (4.2.29), is equal t.o
(4.2.30)
1
L(8) -
"" (_ 1)_'
(201 + _., L
{2n )1 s",+11f"
'.
)
Returning to (4.2.9) , we lind thM
,p
dIP <:018 '" 2 rot /l a;ci/l,
'"
diP cot 8 '" - 2 -
8cot2 8 - 6cot 4 8 d
- 6 +8 <18 cot 0 - 6cot" 0,
(4.2.31)
C
j1 !!d I alenal
•
SPUUT OF RAl\lANUJAN
95
ThUll, by (4.2.31), (4.2.9), and Thoorem 4.1.3, (4.2.32)
1
4
-00< 64
B+
1
2
- M 48
I
B+ 144
'" ..!.. (I + ~3~~ «>to _ 6 .!. J3 CQto) + "- (-1 _.!!... 001 9) + _,_ ~ . 48 ~ 144
,
,'"
-26. 32
00t8 27 .3 d03
•
_,_ ~ ( - l j"/J.rn2 2"(2n -1)(2 .. 27 .3;::' (2.. )1
' 26·:J2
,
'( 6
=
26,.
I
'"'
I'"
..
+ '15-3-5 - 2~.3 L,
3)02"- '
27nH
)
(2" + 4)(;,,)!
- rr - ls + L
=26. 32 - 27.3 1
"" ( l )"a,..
:2
2)(2,.
8'''
-So-
where in the penultimate line, we used the [act that 8. = Using (4.2.32) with /I rep~ by !9 ""d the Maclaurin!!eries for OOII(kS), we find that the right .ide of (4.2.26) is eqU&! 10 ( 4.2.33)
R (B)
1 - 484
I
+ ZS . 3.:;
I ~ (-I).. Ba.. .... ..a.. - z3. 3 L.. (2" + 4)(2,,),"-
..,
'"" k't/' ( "" ( _ ll" t2R n) +I1..!.. L, ql 6+L (2n)! £i1 . k_ 1
The C!lnst.nl
term
in (4.2.33) equals
I
2'. 3.5 +
(4.2.3-1)
.. _,
..,
I ~
k"t/
I
2: L.. I ql - 25 .,
by (4. 1.4). For n 2: I, the coefIicient of (J2n in (4.2.33) equals (
(4.2.35)
I )n+l ~......
24 (2,,+4)(2,,)!
+
( I )" "" k""+'q1" 12(2n)! f, I
-
( 1)" 12{2n )!s",+,!,
by (4.1.4). Hence. (4.2.33) can be ",,,Titten in the shape
_
(4.2.36)
1
R(O) - 48"
I
1 "" (- l )~ ~ (2.. )1 S:!ft+lg2 .
+ 283 + 12 L
..,
'
.. "' ,.
8. C. BERNDT
"
Hence, by (4.2.30) and (4.2.36), 11o-e deduce that
Equating coefficients of (fln , n
> 1, on both sides abo>~, """ find that
(4.2.37)
which completes the proof of Theorem 4.2. 7.
For example, putting n
=
o
2 in (4.2.27) and using (4.1.6) and
(4.1.8) yields
(4.2.38)
0,
P utting n = 3 in (4 .2.27) yields
(4.2.39)
Using (4.2.27). tbe definitions (4.1.8) and (4. 1.9). and induction on r , we show that, for each nonnegati'"
where the numbers c.... n an constants. It is dear that (4.2.40) is ,1I.Iid for r = 1, 2 by the definition (4.1.6) of 52T+ 10 800 for r = 3, -1 by (4.2.38) and (4.2.39), respectively. Assume that (4.2.40) holds. We prove (4.2.40) witll r repl~ by r + I. ,By Theorem 4.2.7 and the CopyrigJJted Malena'
SPIRIT OF R.A.?lANUJAN induction hypothesis, c...'.~' Q
.'
R",
.. ' ... '2:0
~_ l
.",' t6 .. ' . 7k+ l
...","~2:0 4 ... ~ +,,", ~ _2. _ 2k 4 '
m_ m' + m" ,n_ ,,' 4 " " 2:0 4_,,", _2r+4
Exercise 4.2.8. Sim@ri,l, u.tin9 (4_2_8), aJ.mg with 1M
t:.{,m, ..
P'Q'" 1(',
' ."',.. >0. /<1
UH", ..1m_:fr+2
""'ere tIu numben ct''''' ~ 0'" """"'t4nl.o. (4.2.16).
For 1M C
4.3. A C lass of Series from Ramanujan's Lost Notebook Expressible in Terms of P, Q,
and R On pages IllS and 369 orhis lost ~book, in the pagination of [194), Ramanujan examines the J!elies defined for 1, 1< I and e&eh nonnegati,." integer It: by (4.3.1) T zt := T 2II (q) ~
:.. 1 +
L (- I )" { (6n -
.-,
1)ztq"(3n-1)12 + (6n + J)U q"(3ftHln } _
Note that the exp<Jnentll n(3n ± 1)/2 >U"e the generalized pem&gOnalnumben and that when It: .. 0, (4.3.1 ) redlJCe8 to .he Beries in t he pentagunal number t heQrem , Corollary 1.3_5. Ramanujan records formw.. for T2l , It: .. 1, 2, .. . , 6, in termli of the Eiflen8tein !!tries P, Q, ILOd R , d/!fined by (4.\.1)- (4.1.9). Ram .... ujan ·s formulations of
COl
ed mall'
Ia)
B. C. BERNDT these formuJ3!I are cryptic. The first is gi\'en by Ram&.lluj&.ll in tbe form C '
.:'1c';;'q-=c',,',,';:'C+...c·_·. = P. q~+
In succeeding formulas, only the first t\\'O terms of the numerator ~ given, and in two ifL'ltances the denominator is replaced by a dash - . At the bottom of the page, he gives the first five terms of a general formula for T:u .
In this se<;tion, we indicate how to prove these se_-en formulas and one corollary. Keys to our proofs are the pentagonal number theorem ( 1.3.18), (4.3.2) (q; q)""
-
= I + 2) _I )n {q"(3"_1)/2 + q"(3"+I )/2} = To(q),
"-.
where Iql < I , and Ramanujan 's famoWl differential cquatioll!l (4.2.20}-(4.2.22). We now state Ramanujan 's sUe formulas for corollary and his general formula. Theorem 4 .3. 1. IjT1_ ..,
d~finw
T,_ followed by a
bll (4.3. 1) and P,Q, and R Of"f
definw by (4.1.1)-(4.1.9), then
(i) T, (q) = P, (q;q)""
(ii)
~~ (q) =3p 2 _ 2Q, (q, q}""
(iii ) Te (q) = 1:;p3 _ lVPQ+ 16R, (q;q)oo
(iv) (v)
rs(r) q;q
= 105P' - 420P'Q + 448PR - 132Q2 ,
00
r1 0 \q ) =94 ;,P; - 6300plQ + l00s0p2R- ;,940PQ' + 1216QR, q,q""
,wl (\'i )
rn\q }= 10395p6 - 103950P6PQR -
2712Q3 - 9T28Rl . Copyrigllted Material
196020p2Ql
•
SPIRIT OF RAMANUJAN
99
The first fonnulll bM 1111 interesting arithmetical interpretation.
Corollary 4.3.2. For n 2: 1, hI a (n) .. l:4!Rd,
-24
(- I )t oUI '"
Since .,-U) is nmltiplicat;''e,
(- 1)'(6r-lF, ifn;r(3r-l )/2, (- I r(6r + I?, ifn=r(3r + 1)/2, 0, note thllt .,U) is ever> except when
,,1)
j is II "'I.1lIL«' or '''-;ce II "'l."&Ce. Thl1.8, from CornUill)' 4.3.2, " ...,
!lee
that, unless n = r(3r ± \)/2, tbe !lumber of representations of n!lS .. s um of II square or twice II square and .. generalized pentagonal number .I:(3k ± 1)/2 ;. "'...... For
5= 4+1. In geneno.I, as Rllmanujan indicated, for cenain CQll.'llanl.$
Ct ...... ,
Tn ('ll = ('I)""
Important in OUt proofs are the simple identities (4.3.4)
(6n ± I?_ U n (3n± 1) +1. 2
We abo use the notation
(4.3.5)
lv,{P,Q, R) := Tn (q)_ ('Ii 'I)""
Proof of 'Thc:>,em 4.3.1. Obaen.,-, tbat
_.
d -
P('l ) '" 1+24qdqLIog{1 - 'I") d
= 1+ 24'1 dq Iog(q; 'I)""
= 1 + 24q £('1; 'I )"". ('I; 'I )"" COl r
ed malarial
B. C. BERNDT
' 00 Thus, using (4.3.2) &nd (4.3.4),
""l
find
~hat
(4.3.6)
(q; q).,.,P(q) - (1/; 9)"" ""
24q~
'"
(I + f:(-I)"
{q,,(3n-l)/2
+ 'I"(""+I)12})
-, '" Z
e
2
-
I )-I)" { (6n -
-,
2
I)' - t) q,,(3.o_1)/2 + «00 + If _ 1) q'"(3ntll/l}
00
_ 2:(-1)" { (6n - 1)''I,,(J.,.-I)/2 + (00 + J)2q";3n+l 1f2 }
.0'
- (q; q)"" + I - T,(q) - (q;q)ooThis completeS the proof of (il. In tile proofs of the .... msjning identities ofTboorem 4.3.1, in each case, we apply the operator to the preceding identity. in each proof we use the identici....
Z4Q£
k ;:>: 0,
(4.3.7)
which foLl",,' from differentiation and the ust of (4.3.4) in exactly the same manner that "re employed aoo.-e in (4.3. 6) to pM\"f: the special
(·U8) We l\OYo' PfO\.", (ti). Applying the operator 24q£ to (4.3 .6) and using (4.3.7) and (4.3.8), "'" deduce t hat d
P (q) (To(ql - (q; q)oo) + (q; q),.,24q dq P (q) "" T. (q) - T 2 (q) .
Employing (il tosimplify and using the differential equation in (4.2.20), we ani,-e at
pl(q)(q;q)"" + 2 ( pl(q) - Q (q)) (q;q)oo '" T~ (q),
"' ,.
'"
SPllUT OF RAMANUJAN
"(4.3.9) a/:I
T4 (q) = (3p2(q) - 2Q(q»(q; 'I )"" ,
desired.
To prt)\"I! (iii), we apply the operator 24q~ to (4.3.9) and
Wle
(4.3.7) and (4.3.8) to deduce that
TG -
T~ "" 24 (6Pq ~ _ 2q: ) ('1:'1 )"" + (3p1 -
2Q) (T2 - ('1;'1)",,)
'"' ( 12P(P 2 _ Q) _ 16(PQ - R » ('I; 'I )""
+ (3pl -
2Q)(P - 1)('1:'1 )"",
where..., used (4.2.20), (4..2.21), ILIId (i). If "'"I! and simplify. ""I! conclude thai-
now
employ (4.3.9)
TG - (151"'- 30PQ + l(lR) ('1 ,'1 )"". In g~al, by applying the o!"'rator 24q~ to Tn and using (4.3.5) . (4.3.7), and (4.3.8). ".., Snd that d
T""u-T"" .. Uq dijfu (P, Q, R) ('I; '1 )",,+ h.{P ,Q, R )( P - l )(q; 'I )"" , where.".., ha'"I! \1900 the notation (4.3.5). Then J>roc:eooing by induotion while using the fonnula (4.3.5) for T2•• "'.., find that T:UH d ( . ) - 24Q .lj2k(P,Q,R) +Ph.(P.Q, R). '1,'1"" ....
Thus, in the ootation (4.3.5),
(4.3.10)
d
hH1( P,Q, R ) '" 24q-h. (P, Q , R ) + P fu (P, Q , R). d,
Exerd.... 4 . :J .:J . \Vith 1M. ...... 0/ (4.:J. IO) ..nd
th ~
dii!eren./iol o:qua-
lions (4.2.20)-{4.2.22), prot>e the nm1t1ining ;denlilia, (i")-{\i).
o Proof of Corollary 4.3.2. By expanding the summands of P(q) in (4.1.7) in geometric serifii and ooLlecting the ooefficif:nUi of 'I" for each posit""I! integer n , ""I! find that ~
P(q) = I - 24
~
L 07 (n)q" = - 24 L:IT(n )q" , .., ••• r:
ngntrd
t
ale
""
B . C. BERNDT
- ii.
upon using the definition 17(0) '" ThllS, by (4.3.1 ) !IIld (4.3.2), Th..."..,m 4.3.1(i) can be written in the form (4.3.11)
_24I:,u(J)r/ . (I + t <-l)k ,.e
{t/' (lk- I)/3
+ qk(1t+ lln})
k MI ~
..,
.. 1+ L (-l)n {(61'\ _ I)V·(:t..- l )/2 + (6 .. + 1)'q"(""H)n } .
Equllting coefficients of q", n ;:: I, on both sides of (4.3.11), ...-e complete the proof. 0
4.4 . Proofs of tbe Congruences p(5n + 4) = O(mod 5) and p(7n + 5) _
o(mod 7)
In his mWluscript [188]. [192, pp. 21(}-Z13], in addition to proving lhe oo~ (2.1 .2) - (2.L4) , Ramanujan prtr.-es furthN 00ItgnreD
(q" ;q'J)""
~
L p(13n -
..,
7)qH
=<
II
-
L
..,
,.-(n) qn + 13J.
He then writes, ~ It ill not nOO Pry to know all tm. detAils abo\-e in order to prxn-e (4.4.1). T he proof can be ''UY much simplified .... follows; using Theorem 4.2.3 and ... we can show that
(4.4.2) where J '" J {q) ill a JXW...... $
manujan realized this simplification at precisely this juncture while "'Tit ing hill paper, for he did not return to his proofs of (2_1.2)--{2.1.4 ) to utilize this observation...oo thereby simplify them. Instead of using further (more complicated) Eisenstein ileries identities, the differential equations of Theorem 4.2.3 /Ire employed. In his doctorAl dissertalion, J. M. RlllIhforth j201] used this ideo. to simplify Ramanuj&n 's proof of (2_\.4 ), lIS extracted by Hardy for (191]. In this section , we
Cor
o"d
I
SPIRlT OF RAMANU JA N
"3
use Ftamanujan's observation abo>-e along with (4.2.23) and (4_2_20)(4.2.22) to give simplified proof5 of (2. L2) and (2.1.3). The proof of (2.1. 4) is more tedious, and we refer to Berndt's paper [40] for the proof of (2.1.4), which is precisely that of Rushforth [201]. Theore m 4.4.1. For each IWIlnegaliff integer n, p(5n + 4) ;;; 0 (mod S).
(4.4.3)
Proof. From the definitions (4.1.8) and (4.1.9),
(4.4.4 )
~i\"ely,
R= P + SJ,
Q = I+5)
,ince II~ = II (mod S) by Fennat's little theorem. It follo~"S from (4.4_4) and (4.2.20) that
Q'J _ R2
:z
Q(1 +SJ )2 _
( P +S) ~
= Q - p2 + SJ
(4.4.S) But, by (4_2.23) and the binomial thoon'Dl,
(4.4.6) ..-.3 _ R2 =I72S (. )'l4= '" q q, q DO
3q (q; q)~+SJ = 3q (rt;rt)~+ SJ. (q;q)""
(q;q)",
Combining (4.4.S) and (4.4.6) and using the generating fUllCtion for "'II), "'e find that (4.4.7)
We now equate tbo5e terms on both sides of (4.4.7) whose J>O'"''eT5 are of the form qlm to find that (4.4.8) Rarnanujan's congruence (4.4_3) follows immediately from (4_4.8). T heor e m 4 .4 .2. Fur each 1l0llnegal;ff integer n ,
(4.4.9)
0
,..
B. C. BERNDT
p roor. The Ii..- two Sl~ of ow- proof are tbe -.me "" lboee of Ramanujan and Hanly \1911. 1192, p. ~l. From tbe definition of
R. ;t ill olwioull
that
R _ l+7J.
(4 .4.10)
Ueil1& one of the identities from (4.2.38), namely,
fermAt'. little theorem, aDd the definit ion (4 .1.7), _ abo tiD
(4.4.11 ) !felice, from (4.4..10), (4 ....11), (4.2.20), and (4..2.21 ), (~
_ R2)2 ... (PQ _ I ..-7) "
= P2q'l _ 2PQ + l + 7J "" P(Pl -
QJ - PQ + R + 7)
_ 12Pq dP _ 3qdQ + 7J (4.4 .12)
.. d
..
dQ dJ =6qdq~ - 3qdq + 7J _ 'dq +7J.
O n t he oI.ber hand, by (4.2.23) and the binomial theorem ,
"
() ('. ' )' (Q'l - R' )' = ,Pq;q"" + U - tl"q "'+ 7J
(q;q)...
('I;' ).,.
~
-
_ (q';q' )!., Lp(n)q"+' + 7J.
(4.4 .13)
We now equate the right &ldo! of (4..4. 12) and (4.4 .13) and then trllCl. \.ho8e ~rntlI irl\'olving 'IT. Equa.lilli them , "''e find that
e>;-
~
('I'; q7)!.
L )l{7n + 5),'''+? .. 7J, "".
ffOlQ
whwoe (4.4.9) irnUJO't'l;!Ite1y fo/lQlll'll.
o
SPIRlT OF RAMANUJ A N
lOS
4.5. N ot es Eisenstein series were first introduced and st udied extensively by G. Eisenstein {ST]. {S9 , pp. 357--478] in 1847_ In contemporary 1>0talion, the Eiseru!tein series G~j(T ) tuld E-.j(T) , where j ie a positive illteger exceeding one, are defined for 1m T :> 0 by
..........
( m." ),,{,l,O)
"d
(4 .~.1)
where (z) = E ::". l ,,-', Re z :> I, de""t"'! the Riemann zeta function, B", n 2: 0, denotes the nth Bernoulli number, and .,.~ (n) .. Edl" d". The serie« G~j( T) dual not oonveTge if j _ 1. ""d >0;) the firnt equality in (4_5.1 ) does not hold if j _ 1, although the series on the right side converges fnr j = I. We have defined Eiselllltein &«ries by the latter two repretientMions in (4_5_1)_ These u n be e
B.C. BERNDT
H"
These formulas are an8.logous t.o the lI.'iymptotic formula for p(n) of
Hardy and Ramanujan that was discll ved in (1.1.6) and the IIOtes for Chapter 1. Howe>-er, their forms and proofs are much different. For accounts of this work, ~ papers of Hardy and Ramanujllll (I l l ), [192, pp. 3W- 321J, Berndt and P. Bialek [42], and Berndt, Bialek, and A. J. Vee [431. For an account of aU of Ramanujan'B theorems OIl
Eisenstein series from his lost notebook, other unpublished papers, and letters, see the book [20J by G. E. Andrews and Berndl. For an expository survey of many of Ramanujan 's theorems on Eisenstein ser;!)5 from his lost notebook , see the paper [53] by Berndt and Vee.
In his notebooks (193), Ramanujan made further claims about Eisenstein series. In particular, in Entry 14 of ChapleT 15 of his 8eCond notebook, Ramanujan recorded another recurrence relation for Eisenstein series; see Berndt's book [33, p . 332). Also, Cbapters 17 and 21 in Ramanujan 's second notebook contain many claims about Eisenstein series. See Berndt's book [34] for proofs of all these theor rems.
An important function which "'e ha\'e not discussed in this book is the modular j ·invariant defined by
. Ql (q) '(T):'" (. }'" q q,q "" T he values of j(T) and its Fourier or po",er series coefficients are of great import ance in the theory of modular ro~. At about the same time that Ramanujan discm'ered the differelltial equation (4.2.20) satisfied by P(q), in 1911, J . Chazy [74] c0nsidered the third order differential equation
(4.5.2)
y'" '" 2!1/1" - 3(vf.
where y = y(t) and sh()';l.·ed that one solution is ,.;P(q), wbere Q = e l .". If ,,'e eliminate Q and R from the system (4.2.20)--(4.2.22). "1l deduce the differential equation (4.~.2) for P In fa<;t, the system of equatioM (4.2.20)-(4.2 _22) is equivalent to a system of three differential equatioM first studied by G. Ha.lphen [104J in ISS\. The equation (4.~. 2) is of fundamel\ta1 importance in tbe tbeory of integrable systems [1), [2J. [3J. [41. Copyrigll/ed Material
SPIRIT OF RAMANUJAN
107
The results in Sections 4.1 and 4.2 paper [186], [19 2, pp. 136-162].
an:!
tllken from Ramanujllll 's
Exen:;i.se 4.5. 1. SMW that &manuftm'. key identity (4.2.6) oon be deduttd from Vt:nkatachaliengar'6 ruult (3.8. 2). In her thesis [1.831, V. Ramamani extended Ramanujan's use of trigonometric series 10 study t ","O analogues of +•.• (q), namely,
-
L
II'r .• (q):=
-
L
Fr .. (q):=
(_I) .. -lm r n·q ....•
(2m _ 1)r n _q\2m-l)n/2,
...."--00 where Iql < I. Ramamani employed the classical theory of ellipti<: functions in her wurk . In extending Ramamani's study of II' r,.(q), in ber tbesis [102), n. Habn chiefly emp)~ ideas from RaIDanujan's viewpoint in tbe t heory of ellipt;': functions. H. H. Chan [68] derived an analogue of (4.2.2) with cot replaced by esc and used it to give new proofs of Ramanujan's famous formulas
-
L
"-,
(")
~
(.. ,,')~
q"
(I
q")1
=
q (q;q)""
;c.(")
" l + q" ( )' ( ' . 'I' 8q2 (qT;q7)!., ~"1 q (1 q"P "" qq ,q ""q , q 00+ (q,q)"" where (i) denote!! the Legendre symbol. These formulas lead, respectively, to proofs of Ramanujan 's congruenoes p(~n + 4) - 0 (mod~) and p(7n+~) = O(mod7). Z.-G. Liu [148) used the theory of elliptic functions and 1L!<'!OCiate.:! complex analysis to deri..e a trigonometric series ideutity invol\"iI1& tbeta functions that is analogous to R.am.a.nujan's trigouomet ric series identities. Whereas Ramanujao used his results to study sums of squares, Liu used his identity to obtain representations for tu (n). The contellt or Section 4.3 is takell from a paper by Berndt and Vee [~3) . K. Vellbt~31iYn'jftJg a!fr;atl-32) hll..'l gi,-en a similar
".
B. C. BERNDT
b ut mOre abbnwia.ted acnrunt of this work. On p&ge 369 in his \oI;t notebook [194J , RamanujlW offers another infinite class of series
(4.5.3)
-
F2~(q):'" 2:)- I )k(2k + 1)2n+!qk(k +l l {2
•••
that can be represented in tenD!< of polynomials in P , Q, IWd R. Obsene that ,,·hen,., = 0, Fo(q) = {q;q);:", by Jacobi'. ~tity, T heorem 1.3.9 . Thus, (q;q);, !ll1d Jacobi'6 ident ity play the roles iII the .. rorcmentioned ident;t;"" that (q; qj"" and the p
""".,.s
are
The proofs in Section 4.4 can be found in Berndt's paper 14.0J.
Rushforth's proof of the oonpuence p( lI n + 6) - 0 (mod 11) can be found in his thesis [201] IUld was reproduood in Berndt'. paper [40j. M indicated earlier, the key ideft behind th ..... proofs &rises from fut,. manujan's previOWliy unpublished manWlCript 011 tbe partition &lid
tau functions [194[, for whieb Berndt and 0 00 [50]
ga'" addition&!
details and references for several proofs. The latter ))II))l'r "''lIS extended and annotated st.iLl further by Andrtnro's &lid Berndt in their hook [21 ).
Copyngh!ed I
a~al
Chapter 5
The Connection Between Hypergeometric Functions and Theta Functions
In thi'l chapter, we prove one of the oonlral theorems in the theory of elliptic functions and, without a doubt, the primary theorem for Ramanl\ian in the development of his highly original approaclt to the theory of elliptic functions.
5.1. Definitions of Hypergcometric Series and Elliptic Integrals Firet, _review tho notation for a rising fac/orial Or II givw in (Ll.3). o."fine (a)Q = 1 and, for n;:>: 1,
(:;.1.1)
(a) .. :'=' a{a
.hift~Jacu,ritJl
+ 1)(0 +2)·· '(0 + " - I).
UnfQrtunately, the Il()tation (5.l.l) is the !!alDOl as that in ( 1.1.1).
However, the notations (1.1.1) and (&.1.1) are rarely used in the same context, and!lO no confusion ~ho"ld .... L~. Note that ( I ).. = n!. The ootllOOn (S.U) ill also called the Pochammcr 6ymbol in ~pecial.ly
-
H19
m
B. C. BERNDT
110
the older literature, but tbe notation is misnllffied, not suggesti\-e, and should be laid 1O mit. Definition 5.1.1.
ut II,
II, lind c be arllilnlry comp/n nwnbe ....
rwnJXlsitit'( inUgeJ". Then, for 1,1 < 1, /Ji( GIl .........n or ordinary h~_m:.e function , 1", (II, II; e; ~ ) .. dtfimd tzctpf liIat C CUrlJlOt /)(: a
b, ~
,F, (Il,b; c;z):-
(S.U)
L "~
Readers can easily apply the rali<;> test. to show that the series in
(5. 1.2) inde
Izi <
I.
Certain speci.al cases of hypergoometric funct.ions with elliptic inlegral$.
ILI"
oonnected
Definition 5. 1.2. Tht: compktt dlipfiI < I by (5.1.3) The number k i.! oolled the moduJlII, and 1M numba k' ., viI called the rompknumtary modul ..... Lem ma 5.1.3. For
It 1<
,p
it
I,
(5.1.4)
Proof. In our proof, we ~press the value of M integral in ternul of the daasical Gamma fun<:tlon r (z), and UlIe the well.known ,,,jue
r Hl
"',fii. Readen! unfamiliar with the GlLIDmll function might
e•...J.UlIte the integral below. Using the binomial series in the integrand of K (k) , inverting the order of
,,-ant to
Uge
indlKtion on n
10
"""mat;on and integnr.1.lon by .. bsolute ooo'wg"""" , and lL'ling the aforementioned ,...J.ue of the integral of sin2K Q m-er [0, .-/2], "'"/: find
"'
•
SPlRlT OF RAMANUJAN
that
/.'" ,j,
o Allhough not nee< saT)' for the dew~lopment of tIN: theo:wy in tbis chapter, we next define elliptic integJals of the 8OCOnd kind_
Definition 5.1 .4. TIw romp/de elliptic illlegml oj 1M M:anld kind it Ikfinl'lll fo r 1.1:1 < I by (5.1.5)
£ (k) "..
l~/l VI - Fsin~ ,pdJ.
Re&denI ,,·ill be familiar wit h complete integrals of the second kind from elementary calculus. Recall that if an elli(l'le is given by the pNlUlletric equat ions :.. =" 006 6, y = II sin o, then the length L of the per1nleter of this eJli(l
L _4a
/.'" ,Ii II
where "denotes the OCCC1lt ricity of the ellipse. (Not.\! that L can be e>:pl ~ by 3l\ elliptic integral of the SOlCOIld kind.) An llllIllogue of Lem.m.s 5.1 .3 holds for elliptic integrals of the second kind.
Exercise 5.1.5. Prove UUlt (5.1.6)
0
-'2''2,1; 01:, ) .
. (1 Ek=2~11 ("
We Del
COl r
ed malarial
B. C. BERNDT
112
Theorem 5 .1.6 (Landen's Transformation). For 0 < x < I, K
('"Ii) _(1 + x)K(xj, 1 +%
or, equiwlent/y. by Lemma ,s.1.3, (5. 1.7)
2 Fl
11 4.) =( l+xh F) (12' 2"1:I:x') . (2'2:I'(I+;[)2
Corollary 5.1.7. ForO
(a.LS) 2FJ Proof.
O. ~; I ; 1 -
O~""'ing
< z < I, (:
~
:Y)
= (I
+ xhF[
G. ~; I;X 2).
t hat
( I :XX)2 =1 - C~;)2 we see that (S. I_8) follows immooiawly from (5.1 .7). Copyrighted Material
o
SPIRIT OF RA M A NUJA N
113
The version of Landen 's transform~tion lhat ",-e have ginm is actually aspecial case of a mOre general Landen transformation. namely. (&.1.9) 2Fl (a,b;2b; ( I ':-x)2 ) = ( I + X)2g 2Fl
(01,0 -b+ ~;b + ~ ; Xl) .
By Lemma &.1.3 and Theorem 5.1.6, the special case of (&.1.9) that ,,-e ha\"e proved is for a = b = ~ . There ill still one further version of Landen's t ransformation. To describe this transfonnation, ",-e need to define incomplete elliptic integrals. Defin it ion 5 .1.8. 110 < a th~ first kind is defined by
~
12. the inrompJel,.
~J/iplv.
int,grrd ()I
We now state Landen's transformation for inoomplete elliptic integrals of the first kind. Exercise 5.1.9 .
Il lxl < I and
" sin II = sin(2,8 - a) ,
0$a<1I",OS,8<12,
prove that
(&.1.10)
(1+")1" o
Vi
When (> = 1< and {3 = 1 2, (5. 1.10) red uces to T heorem &. 1.6. We highly recommend that readers provide a rigorous proof of (&. 1.10). Examining closely the definition of ~Fl (!,!; 1; x ) as x ~ I, ~ conjecture that a partilll sum of 2Fl (!, ~; I; ,,) behaves like a partial Sum of the harmonic series. We mllke this observa.tion more precme in the following lemma, which is used In the next section.
Lemm a 5. 1. 10 . A8X - 0+ , ($.1.11 ) ",herr. C i.f
0
ronstonl-copyrfghled Material
B.C. BERNDT
11< P roof. By Lemma 5.1.3, it rruffices
to
prove that
2K(,Ji) '" - locO - z) + C.
(~. 1.I2)
In the I'(!presentation (5.1.3), Jet I _ li n ~, 110 that COlI 6 = ';1
,2.
Thus, (5. 1.13)
Note thM, for 0 <
%
< I,
J.
(5.1.14)
1
o
Now examine. for 0
xdt ""''0 .. - q() I xt
::!') .
< :z: < I , I
.
..
}~.
Ob&er,'e that R(:r ) is continuous at r,. 1-. [n fact .
(5. U S)
R(l )_
Thus, as
% -
y mlltoti<:
w
2(2
I}
-I - I
1-, the two integrals
i~
,, _
- - '" log2. J.'~ o l +t
(5. 1.1 3) and (t:>. L14 ) are
air
e!\Ch o the r, since their difference apprOllches a oonstant ,
namely, log:'!,
(5. 1.1 5).
fo' {I
\Ill
x - 1- , Hence, (5. 1.12) follows from (5. 1.14) and 0
5.2 . T he Main Theore m Briefly, our primary tOO is to
p~
that
where q is a certain function of x. We shall establish t his relation lifter P series of &ncillary lemmas.
First define, for 0 < (5.2. 1)
X
< I,
11'
SPIRIT OF RAMANUJAN
i;
By eontilluity, since 2F\ (t,~; 1;0) = I and ,F\ (t, I ;~) ~ 00, as l' ..... 1-. by Lemma 5.1.10. "'e C&rI extelld the definitioll of F (%) to z: '" 0 and z: = I by setting
F(O) = 0 Lemma $.2.1. ForO
F (I) = I.
< z < I,
F(~') .. F'
(5.2.2)
Proof. In (5. 1.7) replace
Cl :z),)·
by ( I - %)/( 1 + ~). Obsenll' that
~
..
,
% ~ 1 -( 1+%)l'
'x
,
(1+%),- 1-:2: , 2 1 +z:-c7C 1+<
Hence,
"'''l!
arrive at
(5.2.3) I ! x
IF\
G,~; I ; 1 -
(I
:zX)2) '" 2F\
G,~ ; I j 1 -
z2) .
Now divide (6.2.3) by (S. U ) to d<>duou t h.t ; I j l -%')
(5.'2.4)
, ,' I ,'~') .
Multiplying both side. of (5. 2.4) by - ,.. , exponentiating both sidea, and invoking the definition of F(z ) !rom (5.2. 1), "'''l! com plete the proof of (5. '2. 2). 0 Lemma 5.2.2 . 1/% , 0 < % < I,;" dtJintd by (52.5)
(5.2.6)
: : : ..
~~~) .., A .. A(Il).
B . C. BERNDT
116
Proof. By ( L3.32), (3.6.7), and the definition of >. in (5. 2.5 ),
>.2 2 _ rp4(_q') _ { (q ) -
rp4(ql ) ,
=
4"
2rp(q)rp( - q ) } ' rp1(q) + rp'( q) 4 !-" i+i
=
(1+1=)' ,..
(1+>.)7
= I _xl
. o
T his concludes the proof. Lemma 5.2.3 . If n
=
2 m,
wh~re
m u any nonntg
inttg~r,
(5.2.7) Proof. Replacing x by ( I - x)/( 1 + :::) in Lemma 5.2.1, "'-e readily find that (5.2.8) Applyi ng Lemma 5.2.2 to (5.2.8), we find that
(5.2.9) Iterate (5. 2.9 ) tQ deduce that
F(),'(q)) = F ' (>.2(q2J) = FO' (),2(qf'») = . .. = F'~ (),2(qr J) , that is to say,
o Le mma 5.2.4. If n = 2m . where m U <1"11 nonneg
(5.2.10) P roof. From the defini tion of F{x ) in (5.2.1 ) and Lemm a 5.2.3, we see that if rp4(-f~ )
COP~hle!MZfJri~/
SPIRIT OF RAMAN UJAN
'hm
'"
,FI(!.tj l ; l - xI) _n2Fl(\~; I ; I - % .. ) 2Fd!.P;X,) ,FI i,4;I;x .. ) .
We rewrite the IMt equality in the form
2FI ( , ; 1;xI) t F\ (~.~; I ; %") n 2F,( . ; I; I -x.) = ,H(!.t;I;1 x .. )· But thils implies that F"(1 - %1) =
Fn - %. ) ...·hich ill the same Ill!
0
~'I. Theorem 5.2.5. We haw
(~.2. 1I)
F
Proof. Write Lemma
(1- ¥')~~») = q.
~.I.IO
in the form
(~.2.12)
wbere 0(1) denotes a function which tmds to 0 as %
0". not l"IflC:IMaarily tbe same with each appearance below. Using (5. 2.12) and the definition (5. 2.1), \\~ lee that (5.2. 13) 11$
-
F(x) '" e""~-C"o(l) = Axeo(l) = Ax{ 1 + 0( 1»,
X _ 0". where A =e- C .
L<, (~.2.1 4 )
Note that Xn tend$ to 1 as n - 00. W~ now take the nth I"O()I. of both sides of (5. 2.10) &Ild let n tend to 00. We need to t ake care on the right side when letting n _ 00. TIll"', in t he notation (5.2.14) and with the use of (5.2. 13), we find that
F ( 1-
¥') ~~») = nl~'!, vr.,F-(~I-,~.I
.--
= lim y'A(l
% ..
)( 1 +0(1))
B.C. BERNDT
1I8
(::'.2 _15)
=
q,
where in the pen ultimate line we used (3.6.S). T his completes the proof of Theorem ::'.2.5. o
P roof. From (5.2.&) a nd (5.2.6),
(l + xf = 1+"'(1 _ ",2) = ",,' ('1) ",,4(_'1') 1 J: ~( q)
Le mma 5.2.7. We have
,
(5.2_18)
'P (q) = 2Fl
(I2' '1 2;
1; I -
",,-(-ql)
.
Proof. Iterate (5.2.16) m times to obtain the equalities ,F1 (
'
1
2' '2: 1; 1 -
(5.2.19)
10"4( _ '1 ) ) ,.l'(q) 'P' (q) = r (q4}
,F,
(' I
2' '2; I ; I -
(1 1 - "'=r (qo~ ) 2 Fl ",,'('1 )
",,4{_ q4) ) ",,' (tt )
-»).
2
""' (_'1 2'2 ; 1;1 -
Now let In _ 00 in (5.2.19). ObserviJ:g that
SPIRI T OF RAMA NUJAN
119
Theore m 5 .2.8. Recall that F(x ) i3
defillw loy (S.2.1 ). For 0 < x <
L
(S.2.2O) Of,
ill o/h.,.. words, if
(;'.2.21 )
(;'.2.22 )
P roof. W~ begin by sllmm,...i ...ing fi".t.I",mmil S.2.7 and second Theorem ;'.2.S. If
Fix) )
1.1:=
,,'
F (r) = F ( I - 1.1 ).
(".2.24 )
The last equality (".2.24) implies that (".2.25)
IF, U , ! ; J; I 2F,
x) _
(! '2;' I ; r ) -
2F, U, ~ ; I ; u)
("
2F' I . I ;I ; 1
u
).
Suppose that we can show that the denominators in (5.2.2S) ace equal. Le., that
(". 2.26) Then it will follow from (5.2.23) that
(! ,!; I ; r ),
i.e., (S.2.20) holds. We show that (:'.2.26) easily follows from the rnOllQtonid ty of 2F, ( i, 1; x ) o n (0,1). SUPp<>6
I;
of 2F"
B. C.BERNDT
120
It follows from (S.2.2S) that
,Fl
(i.!: 1;1(0) <
, F L (~,!: I: l - xo),
< I - 3:0, which is inoompat_ ihle with the previous condition I -Ito < Zo_ Hence, our assumption that there exists a j)Oint 3:(1 such that (5.2.26) does not hold has prowhich implies, by mOllotonicity, that Uo
duced a contradiction.
0
We place Theorem :>.2.8 in the context of the classical theory of elliptic functions and summarize some of Our principal results in this chapter. Set x = Ie', where, as abm-e, Ie ili the modulus. Also set (5.2.27)
so that the complementary modulus k' is
gi"'~n
by
;0'1 q)
(5.2.28)
r(q) .
T hen , by Theorem 5.2.8, (5.2.29) w here
(5.2.30)
»)
2 ~. (2Hti,!: 1 ;1 le '1 =~ -=<'Xp - ". F (i 1.}'1<2) 21
- cxp
(K') K ' -:If
2'2 "
where K = K (k) and K' = K (k' ).
5.3. Princi ples of Duplication and Dirnidiatioll In this section y.." show how a formula involving x (or k 2 ) , !I (defined by (5.2.30», and z (defined by (5. 2.29 )) can be converted tQ an equation involving 2y or 1//2.
Define, for 0 < (.~ .3. 1 )
~'
< 1, %
from which it follOW!! that (5.3.2)
<)' 1 + .l1-:r:
, = (1 /1
SPIRJT OF RAMANUJAN
121
FunherlDOre, define (~. 3.3)
By
e-·' ''''' Jo'(1")
and
(~. 2. 1 ), ( ~.3. 2), Lemma ~.2. I ,
(U4 )
%' -
and
2Jo'l (i. I: 1;1").
(~.3.3),
e-'_ F(X) =F( 4~ ) _JF(r)=e -,'f2 (1+
r )l
Hence, (~. 3.~)
11 -
FurtherlllOrf.!, by : = , F]
(~.2.29l,
(5.3.2),
(~. 1.7) ,
(~.3.3),
and
(~' ~;I;X) = ,F (~,~; I;( I :~)2 ) 1
tUG) ThIUl, !iOlving (5.3.6) for (~.3. 7)
iv'·
r
= (I
+ 1?)2 F I
- (I
+ .;;})I.
and lI!Iing
(~.3. 1 ),
.+
G ,~; I:X')
we find tbat
• 1 + ';1 - 2(
xl:·
Theorem 5.3.1 ( Pri nciple of Duplication). Suppose thaI IWO setA of pGrurnel erl, ::<, y, and z and r', y' and:', are re/aud by the tqUalwlUl (~.2.27), ( ~.2 .29). and (~.2.3O) with ::< . 11. lind % rep/aeal by r'. "'. and :'. ruptc.llw/y, Suppose /hey salasfy an equation of the form
fI(r',"" I) - 0, and z as rewltd 10 x' by ( ~.3.2). Then , ~ (5.3. 1). It'e obtain an equalion of the form
(~.3.~),
and (5.3.7).
Theore m 5.3.2 (Principle of Dilnidilition). A s III the previol/S thw · rem, s uppose that fw<:I sets of porornd erl, x, 11, and : alld r'. y'. and :', are rewted by the ~$Il&iilYeJh/f .29), and (5.2.30) ""th x,
B. C. BERNDT y, and z rt:placm. by x', an equation of /he form
11'.
and z', rt:$p8:tively. SIlPPOU they ..ati.!fy
ll{x',!I', l) = 0,
and we reuerse the role.! r1f x, !I, and z wi/h those r1f r', 11', ami z', =
n
((l :~P' ~y,
(1
+ .,ti):::)
= O.
5.4. A C atalogue of Formulas for Theta Functions and Eisen st e itl Series Using (5. 2.29), (5.2. 27), the principles of duplication and dimidiation from tbe previous sect.ion, and elementary thel-a function identities, such as thCl'le given in Thoorem 1.3.10, we can derive a plet hora of eva luations of the functions "', >/J. f . and X at di fferent powers of t he argument q in terms of z, x. and q. Using the tools mentioned above, readers should be able to easily derive each of the formulas below. Proofs of all the results in Theorems 5.4.1-5.4.4 can be found in 13 3 . pp_ l:!:!- I:t:>, Entries IU-I:!J. Alter we state the formulas, we offer a few proofs in iUustra t ion. ThCQre m 5.4.1. Ifx, q, and z art: related by (5.2. 27), (5.2.29), and (5. 2.30), tkn (i)
",(q) '" .,fi.,
(ii)
",(-q) '" .,(i.'(I-x)!/~ ,
(iii)
",(_q2) = .,fi.(1 _ x)!/8,
(iv)
",(l) '"
(v)
",(q4) =
(v i) (vii)
.fZ-Vi (1 + ,)1 x), ~.,fi. (I +(1 _ X)l/') ,
"'( v"1l = .,fi. (\
=
+ ,.Ix) !/2 ,
0(1- ,.Ix)! / 2.
Copyrighted Material
SPIRIT OF RAMANUJAN Proof. We offer proofs of (ii)-(iv ). To prO\"e (ii)- (iv), employ (i) a.nd use. re;;pe<:tively, (5.2.27), ( " 3.32), am! (3.6.7). 0 Theorem 5 .4.2. 11;t, q, and .: ore related by (5. 2.27), (5.2.29), and (5.2.30), then
(i)
~(q)
(ii)
~(-q) =
= jf"z(;t/q)I/S,
Jfz (;t(1 -
x)/ q)' /8,
(iii)
~(l) = !';:(;t/q)' /t ,
(iv)
~(qt) =
! Jfz {(1 _ ,,",-=-.") /q} 1/2 ,
(v)
~(q') =
i,fi{\ - ( I - z)"t}fq,
(vi) (vii)
>/i(,jii) lb(- ,jii)
= .;: H( I =
+ vTxl} 1/4 (z/q)l/lfi,
';:H(1 - .fi)}I/·(z/q)'/1~.
P roof. We prove ollly (i}--{iii). To prove (iii). use (3.6.8) along with Theorem 5A.l (i), (ii). To prove (i) , use (iii) and the principle of dimid iation. Part (ii) follows from ( J.3.30) and Theorems a. 4.1(i), (ii) and 5.4.2{i). 0 Theorem 5.4.3. lIz, q, and z are rdoted by (5. 2.27), (a.2.29), and (5.2.30), then
(iii)
I(q) = ';:2 -1/6 (z (l- z)/q}l/l4 , I (-q) = .h2- 1/ 6( 1 _ zi / 6(z / q)l/lt, I (- q' ) = ';:2- 1/ 3 {z(l - x )/q} lIn,
(iv)
I (- q' ) = ,fir I / 3(1 _ z)l /l t (X/ q)1/6.
(i) (ii)
Proof. We prove (i)- {iii). Bot h (ii) and (iii) follow from (1.3.34) and 0 previously proved results. Next employ (1.3.30) w prove (i). T heorem 5 .4.4. lIz. q , and z are ..dated by (5.2.27), (5. 2.29 ), and (r..2.30), t!.en
(i) (ii) (iii)
B.C. BERNDT
124 Exer cise 5.4.5. Provt $Ornc further \\'~
restd~
in Throret'll3
5.4.1~5.4 _4 .
conclude thi:; chapter by deriving repr
p {q2 ), Q(q), Q(q2), R(q), and R(q') in terms of x and z. However, first,,~ need the following two important lhooreDlS, the first of which readers (:aD easily prove.
Theorem 5.4.6. The function z = IF1(l,!; l ox) sotisfiu liLt differentia/. equation
vrz dz I :t( I - z).u 7 + (I - h)dx-;jz=O.
(5.4.1)
Exercise 5.4.7. The diilCllmtinl equction (5 A.I ) ho.s a ffgIllar singular po;>int ot X = O. Sollie (S.4..1 ) by Ihe method ()/ Frol>enitl.! to find that 1m!! of liLt two linearly independell,j soluti01M U ~Fl (~,
!; 1;%).
Those reade,." unfamiliar with sol.jug ordinary differential equations wi l h regular singular points may use the definition of ; = 2F.(!,~;1;:t) to easily check that z = 7Fl(~,~;I;:r:) is indeed a solution of (5.4. 1). Theorem 5.4.8. If y is defined by (5.2.30) and z is defintxl
(5. 2.29 ), then
~y
,
(5. 4.2)
:.::(1
X)Zl'
Proof. Using (5.2.27), (5.2.29), (1.2.4), and Thoorem 5.4.3(ii), (iv), we can readily establish the identity :.::
(5.4.3)
1
f8( - q' ) x = 16'1 fS( q)
(q4;q4)8
=]6'1 (q;q)~<>O.
'Thke the logarithm of both sides of (5.4.3). differentiate "";th respect to q, and multiply both sides by q to deduce that d.r 00 <>On 4 ,,,
="'--c:.::(1 x) d
(5.4.4)
=
1- 8"
~ I .. _ 1 00
=1+8 L l
.,"
n= l
nq
q'"
+8 "
~ I .. _ 1
nq
,"
n~n
n = .p4(q) = Z2.
q
Copyrighted Material
SP IRIT OF RAMA NUJAN
125
where ...-e ha.\-e employed the fifth line ill the displa.y (3.3.7), and (5_2.29). Using the trivial fact dq
.u. =
dy -qc/.x
o
in (5.4.4), we complete the proof. T henrem 5.4. 9 . \vith z defined by (~.2.29) ,
(5.4.5) (5.4.6)
P(q) = (1 - 5:r:)z1 + 12:r:( 1 - :r:)z
p (ql ) = (1- 2x)z2
+ 6J:(i
-
d::r,
:r:)Z ~ .
Proof. We prove ollly (5.4.6); the proof of (5.4.5) is similar. Applying the definition of P (q) , Theorem 5.U(iii ), the definition of I{ - q) from ( \.2.4 ), and l3Sl1y the chain rule along with Theorem 5.4.8, we find that
=
l - 12~ dy
f:
10&(1 -
e-2n~)
n .. '
= I _ 12 :y log( e _1~; e-2~)"" =
- ~ log{e - ~ l2(-e-~~)J
=
_!!.. Jog{e -~z62 -4.:z: ( I _ .:z:)e~}
d,
d, d
= - -log{ z6.:z:(1 -.:z:)} d, = .:z:{l _ .:z: )z1 Jog{z 6.:z:( I-.:z:)}
!
l'
d2
= (1 - .:z:) z - .:z:z + 6.:z:( 1- .:z:) z dx
, d, =( 1 - 2.:z:): + 6:J(1 - .:z: jzdx· Copyrighted Material
o
B. C. BERNDT
126
Exercise 5 .4 .10. AIJematiliely, applv the proce.s of dimidiation io (5.4.6) hi deril!e (5.4.5 ). T heorem 5 .4 . 11. We have (5.4.7)
(5.4.8)
Q(q ) = z4(1 + 14:1: + %~ ), Q(q2) = :4(1 -:I: + x' ).
P roo f. We 6rst Pr(lVC (5.4.8). Secondy, we establish (5.4.7) by applying the process of dimidiation to (5.4.8). From the diJlerential equation (4.2.20) and the chain rule, we find
lhol (5.4.9) From t he definition of q, i.e ., (5.2.30 ), Theorem 5.4.8, and the chain
rule, we next find that
(5.4.10)
dq dx
dll
- ~- -q -
dx
q
z (1
X) :2 "
It follows from (5.4.9) and (5.4.10) that (5.4.11)
x(l _ X1 z2dPJ:2) = P2(q' ) ; Q{ql) .
We next use (5.4.11 ) and Theorem 5.4.9 to establish (5.4.8). Differentiating (5.4.6) with respeo;t to :t, applying the prod u~ rule several times, ILIld 5irnplifying, ""E! deduce t hat (5.4.1 2)
dP {ql)
'" ,
d, (d')' +6x( l - x )z d'dJ;2, =-2z (z - 4{1- 2x )d') - + 6x( I - x ) (d')' +6z{ I - :r:)z-d' , dx dx d2;2 = - 2: + 8z( I - 2x) d:i; + 6x( l - z ) tU
d' , + 6x ( I - x ) (")~ d'z = - 2z .4x( l -x)d2;2 dx +6x(l-x )zdx2
~v. '
= - 2zx( l -x) dx d' ,2 + 6x ( l - x ) dx Copyrighted erial
SPIRlT OF RAMANUJAN :-2%(1 - ", )
127
,p, 3 (") tb; ' ) ( ztb;2-
•
"'here ie the antepenultimate uep we ~mployed the differential equation (~_4.1 ) . Using (5.4.12) and (5.4.6) in (5.4.1 I), "'C 6nd that Q(q2 ): ((1 _2%):2 + 00:(I _ ",)Z ::.)2
-6,{l - , ),' ( - 2x{l- ,) ( , =
(1 - 2Z)2 z·
+ 12x( 1 _
~: - 3 (~n
z)(1 _ 2z):3 ~
)
+ 12z'(1 _ x)2 z3 ~~
: (1 - 2x f z 4 + 12x(1 - x)( I - 2X)ZJ !;
+ 12x( 1 _ x): 3 ( -( 1-2X):; + ~z) = (I - ", +",')z' , where in the penultimate !iDe we utaiW
differen~ial
equation
We now use the Prieciple of Dimidiation to establish (5. 4.7). Ac-
cordingly, from (5. 4.8). Q(q) '" ( I
4Vi (1 + ViP
16X ) ~ .. z + (I + ,fi)' (I + v ) :
'" ( I + 14x + x' )z\
o
after simplification. Theorem 5 .4.12. W", hoOlt (5. 4.13) (5.4.1 4)
+ x)(1 - 34x + ",2), :6(1 + x)( 1 - ,! z ){ l - 2x).
R (q) = :6(1
R(l ) =
(5.4.14) and pr""""-'
(5.4.15)
3,{1 _ %lZ2~Q(ql) = 2P(q2) Q{, ') _ 2R(q'). CopyngIOd Matenal
8. C. BERNDT
128
Solving (aA.IS ) for R(q~) and employing (5 .4.6) lind (5 .4 .8) (twice), "'e find that
R (q2)
=
P(q~JQ(q~) _ ~Z( l _ X)Z2 d~2)
.., { (1 - 2x)z2 +6X( I -Z)Z:!; }
~x(l -
_ = 26
{(1 -
%)z2
{4Z~:(1
z4(1 _ z + x~)
_ z+ x 2) + : 4( _ 1 + 2% )}
2:1: )( 1 - x + ",2 ) + ~Z( l
= :6(1 - 2x)( I + %)
- x){ l -
h )}
(1- ~J:) ,
which completes tbe proof of (5.4.14). Applying the Principle of Dimidiation to (5 .4.14), we find that
• =. (1+ (1 '.fi) 8.fi) + ,/%)1 (1 - {I +.fi)1
R(q) = z( l + v z }
X(1 - (l!~2) '" 26 (I + 6.,.tX +x) (I - 6"fi +x) (l + x ) = 26( 1 + x)( 1 - 34x + 1?),
o
which complete!! the proof of (5A. 13).
Exercise 5.4.13. Pro1H: that P {q4) = 22 ( l - ~x) + 3x( l Q(q' ) = z' ( I - x+ R(q4 ) =
,,8 ( I _
~x)
d-
xl. ~ ,
h:r:2) , (1- X -
J~ X2) .
5.5. Notes We have fo!lov.-ed Rarnanujan 's presentation in Chapler 17 of his second notebook [193], as pre!lented by the author in 134, pp. 91-102, Sections 2-6J. in our devdopment of Thoorem ;'2.8. However. the clever proof of Thoorem ;'A .8 that we have given was communicated to US by H. II. Chan and is much simphlr than the proof in (34. p. 120J; Copyrighted Material
SPIRJT OF RAMANUJAN
129
_ Ilia paper with Y. L. Ong (71]. T he Principles of Duplication and Dimidia~ion are due 1.0 Jacobi [131 1. Ramanujan states the Principlp of Duplication in Entry 13(vii) of Chapter 17 in his second notebook [1931. [34 , p. 127]. It is dear that Ramanujan frequently used the Principles of Duplication and Dimidiation in his wo rk on elliptic func· tions. Our presentation of these principles is similar 1.0 t hat given in the author 's book [34, pp. 125-126]. Por Ramanujan , it was natural t.O ask whether there "'ere other theories of elliptic fWlctions in wbich the hypergeometric fnnc~ion ?F, (~, 1; x ) is T(>placed by other hypergeometric fnnctions. In his famous paper, Modular equatwns on~ approximations to 1r [184), [192, pp. 23- 391, Ramanujan Wl"Qt.e, ""There are <»r~pondi n& ~heo ries in which q is replaced by one Or other of the functions
i;
where
K, = 2Fl(l,1;I;x),
K2 =
2 Fl(!,i,I;x),
K 3 = 2F,(1,
1.l ;x).M
Pag"" 257-262 in Ramanujan's second no •.,book ","". .-1"""1....-1 .n.-1.... ''eloping these theories. The many claims 00 these six pages were first prowd by Berndt, S. Bhargava, and F. G. Garvan [41 ]. See also Chapter 33 in Berndt 's book [38]. Ho".ever, Raroarmja n's theories are by no means <»mplete, and since the appearance of [41 ), many other papers have been "'ritten on Ramanujan's alternati,'e theories, with still much remaioing 1.0 be accomplished. The fonnula (5.1.6 ) is due 1.0 the Scottish mathematician C. Maclaurin [153] in 1742. Our proof of Landen 's transformation, Theorem 5.1.6, is almost identical to the proof that the English astronomer J . l vory [129) ga\'e in 1796 for (5. 1.6). When h'Ory aubmit· ted tllS paper to editor John Piayr.. ir, he nat urally j",;luueU .........ver letter, but, rather surprisingly (at lealt 1.0 us), the cover letter was published along ",ith the paper. In this letter, he relat.es how he dis-<;overed his formula . ~ Having , Il8 you know , bestowed a good deaJ of time and attention o~~~Ql'Mm~IIl~~ of physical astronomy
B.C. BER NDT
'30
which relate!! to the mutual disturban<es of the planet.5, I have, naturally, been led wooDsider the various methods of resolving the formula (4~ + b~ - 2ab cos(,6)n into infinite series of t he form A + B 008 (,6 + C cos2¢ + &c. In the course of t hese investigations, a series for the rectification of the ellipsis occurred to me, remarkable for its simplicity, as well as its rapid convergency. As I believe it to be new, I send it to you .... "
Landen's transformation was introduced by J. Landen in a pa_ per written in 1771 {U T] but developed more com pletely in his paper 113S] published in 1775. This transformation was crucial in OUT proof of the fundamental Thoorem 5.2.8. The importance of Lan· den's transformation is conveyed by G. MittaJ:-Leffier, who. in his survey article (160J on elliptic li.mctions written in 1923, emphasizes, "Euler's addition theorem and the traz:sformation theor~m of Landen and Lagrange were the two fundamental idellS of which the tbeory of elliptic functions was in possession when this theory WlIs brough~ up for renewed consideration by Legendre in 1786.~ Born in 1719, Landen WlIs appointtd as t he land·agent to the Earl Fitzwilliam, a post he held until his retiremeut t"""O yean! before his death in 1790. According to an edition of Encyclopedia Britanniw published in 1882, ~H e [LandenJ lived a '~ry retired life, and saw little or nothing of sociely; when he did mingle in il , his dogmatism and pugnacity caused him to be generally sllunned. ~ Landen made several contributions to the Ladie5 Dillry , which Wlls published in England from 1704 to 1816 and "designed principally for the amusement and instruction of tbe fair sex.n As WlIs COmmOn with other contributors, Landen frequently used pseudonyms, !uch as Si r Stately Stiff, Peter Walton, Waltoniensis, C. Bumpkin, and Peter Puzzl~m, for problems he proposed and .'IOh"ed. The largest portion of each issue ,,"as de'"Oted to the presenta tion of mathematical problems and their s0lutions. Despite its name, of the 913 contributors of mathematical problems and solutions Over the years of its publication, only 32 were womcn. For additional informMion ahout Landen 8nd the Lo.di~. Diary, see a paper by G. Almkvist lind the lIutbar [llJ. Readers are also recommended to read G. N. Watton's article, Th~ marquu and th ~ land- ag~nt; a tale 0/ the eighteenth " nt'llT'll [2 17J. (You know the Copyrighted Material
SPIRIT OF RAMANUJA N
\31
identity of the land-agent; to augment your curiO/iity, we refrain from tellina: you the identity of th" m,.,.r",;~) Exercise 5.1.9 is just one of many beautiful transformation fOT_ (Iluias for elliptic integrals, many of which are due to Jacobi and / or Ramanujan [34, pp. 104-113J. We offer a few of these transformatiou formulas as exercises. Exercise 5 .5. 1. I/O < o,p <
ill" and tann
= .II
:z: tan,8, show
au" T he uext exercise is a form of the of elliptic functions.
~ddition
theorem in the theory
Exercise 5.5.2 . I/O < n, (J < ~1r ar.d ooto ootfJ
.,'
=
.II
:t, prow:
The following exercise gives the cbssical duplication formula for elliptic integrals.
Exe rcise 5.5.3. I/O < 0. , fJ <
!,,- and ooto.tan(.B/2) = JI
xsin 2 0.,
prove that
2[
' JI d:sin2 1/J =
t
JI d:ain2 1/J'
Exercise 5 .5.4. I/O < 0.,,8 < ~1f and (I (I +%)siuo, prow: that
+ :tsin2 0.)sin{J
=
T he transformation above is called Gauss's transformation and is similar in form to Landen 's transformation given in Exercise 5.1.9. Historically, the theory of elliptic :Unctions arose from the problem of inverting inco~~JH~~, such as the incomplete
B . C . BERNDT elliptic integral of the first kind given in Definition 5.L8. These in· version problems were motivated by the welJ-knOl"n inversion of tbe t rigonometric integral arcsinz =
f.' ". in ..,II ~2'
O
I.
Landen 's transformation for inoomple>e elliptic integrals is only one example of many beautiful relations that exist between elliptic integrals. many of which are due to Jacobi (131] and Ramanujan [193. Chapter 17, 5e<:tion 8], (34. pp. 1M- 1 13). T he text [180, C bapters 24) by V. P rasolov and Y . Solovyev is a superb introduction to elliptic integrals describing t he fundamental ,heorems of Legendre. Jacobi, ann N. H. AI,.,!. Lemma 5.1.10 is a primitive, special case of a much more general asymptotic formula for G aussian hypergeometric series; for example, see [33, pp. 77-18]. The catalogue of formulas for theta functions given in 5e<:tion 5.4 is taken from Sections 10-12 of Chapter 11 in Ramanujan's second notebook [1931. [33, pp. 122- 124J. T he formulas for Q (q) and R (q) in Theorems 5.4.1 1 and 5.4.12 can be fou1d in Section 13 of Chapter 11 in Ramanujan's second notebook (1931. [34, pp. 126- 121]. Although the formulas for P (q ) in Theorem 5.4.9 are not found in Section 13, from the appearances of other formulas for P (q) in that section, it is clear that Ramanujan knew Theorem 5.4.9. Ramanujan used his formulas for P (q), Q (q) , and R(q) to derive a multitude of elegant evaluations of infinite series in 5e<:tions 13-11 of Chapter 17 [34, pp. 126-139]. For example, I
~
1 + 22: ~_ l
cos
h(I ) = z y
"d
Copyrighted Material
Chapter 6
Applications of the Primary Theorem of Chapter 5
6. 1. Int ro duction Our goal in this chapter is to provide some applications of Theorem 5.2.8 and the several representations of theta functions and Eisenstein series in terms of z and 1: that ~ from T heorem 5.2.8. We first demoll5trate in Section 6.2 how the formula.!l we deri,~ for Ei!;
elegant formula for ta (n ). In ~ion 6.3 "'I) define one of the most important concepts in t ho! theory of elliptic fuoctioll.5. namely, a modular equation _ Landen's transformation, Theorem 5.1.6, can be thought of as II. modular equation of degnl
easy. There is no single method that one can use W produce modular equations. In Soction 6.3, we shall derive !;Orne modular equations of degree 3.
Copyrighted Material
->3,
H.C. BERNDT
'" 6.2. S ums of Squares and 'l)iangular Numbers
"'e firot offer ""me corolla.o. i"" of T heo. ~1l1 ;;.4.9. Recall tllIot 0 <.: '" <.: I
and q and z are defined by (5.2.30) and (5.2.29), respectively. Corollary 6.2.1. We have ~
(6.2 .1)
..,
2P(q2 ) _ P {q) = 1 + 24 '("""'
nq
"
t..... l + q ..
= z2( 1
+ x ).
Proof. Applying Theorem 5.4.9, we immediately deduce that (6.2.2) 0" t he o t her hand ,
(6.2.3)
~(" 2P(q1 )_ p (q) = 1+24'" _ nq 2" ~ I q" n~ l
")
+ I TU[ qn
=
1+24 '~, " nq . L.. l + q~
.. _ 1
Combining (6. 2.2) and (6.2.3). we deduce (6.2.1 ). Corollary 6.2.2. lVe
0
oo~e
2P(q4) - P(q2)=1 +24 f nq2:
n~ ll + qn
= Z2(1 _ ~%). 2
Proof. Using the process of duplication along with Corollary 6.2.1, we find that
o Corollary 6.2.3. lYe ha'l1e
1 + 8~ (
,. ,
1)"'Iq" :%2( I _ z).
I +q" Copyrighted Material
L..
SPIRIT OF RAMANUJAN
135
Proof. Using Corollaries 6.2.2 and 6.2.1 , we find that
o
from which Corollary 6 .2.3 is immediate.
Theorem 6 .2.4. Far (6.2.4 )
~ach
p<)5ilivt:
;n~egu
n,
r~(n ) = S:2.~d.
'1"
"'
Fi rst Proo f of Theorem 6.2.4. From Theorem 5.4.I(ii) and Corollary 6.2.3,
Iha~ IS,
w.th q replaced by - q,
which arises fTom (3.3.12) and (3.3.13) in OW" second proof of Thoorem 3.3.1 , i.e., Theorem 6.2.4 . T hus. the remainder of the proof of Theorem 6.2.4 is identical to that of the aforementioned proof. 0 We now give a second proof of Theorem 6.2.4 , which is a variation of Our first. proof above.
Second Proof of Theorem 6 .2.4. Recall that o(n) = L dln d. We extend the definit ion of d en) by sett ing den) = 0, if n is not an integer. With this ill ~ j ~ ~m 5.4.1, T heorem 5.4.9,
8 . C. BERNDT
136
and Exercise 5.4.13, we fi nd t hat 4 I ~ r. (n)q'· = ",'(q) = z~ = '3 P {q') - j"P(q)
= ;
(1 - 24f"("/4)q~) - ~ (I - 24 f: 0'(n)9") n~'
n~l
= 1+ L (8o'(nl - 32o{n/4)) q".
""'
Equating coefficients of q" , n > I , on the extremal sides above, we find that r ,(n} = So{") - 32q(n/4) = 8 d,
L
.,"."
o
which completes our second proof of Theorem 6. 2.4.
To re-deri\"e J acobi 's formula for r8 (n), ....e need the following consequence of T heorem 5.4.11. Corollary 6.2.:>. We (6.2_5)
haUl:
(
- ( I)""'" "q )
16O(q2) - Q(q)= 15 1+162: -] " _I
=15z'(I - :tf.
q
Proof. Dy a direct calculation, 16O(q2) - Q (q) = 15 + 16,240
00
32n
L In qq
2.. -
00
240
.. _ 1
= 15 ( I + 16
3"
L 1" q n .. q _ I
f: (-?'":q").
.. _ 1
q
On the other hand, using Theorem 5.4.11 , we find t hat 16O(q2) - Q (q) = 16z'(1 - x + ,,2) _ z'( I + 14% + xl ) = \:>z' (\ -
The desired result now follows from the last twO identities.
Theorem 6.2.6. For each pasiti"" intqer n, (6.2.6)
."
Copyrighted Material
:rf. 0
SPIRlT OF RAMA NUJAN Proof. From Theorem 5.4.I (ii ) and Corollary 6.2.5,
- (..,8( _q)=Z 4(l _ x )2 ,. 1+16'"
"-. L-
Thus , replacing q by -q , we deduce that
' J" "'I '" q"
I
which is preei.'lely (3.5.14) in our previous proof of Theorem 3.5.4, or Theorem 6.2.6. T he remainder of the proof is ~hen the same as 0 before. Exercise ti.:>.. 7. Gwe anotller proof 01 Tlleorem 6.2.6 in tile foUowing mannU. First, using formu lru for Q(q), Q(q2 ), ond Q (q4) from Theorem 5.4.11 and Exercise 5.4.13, re$pedively, proue that
-"-.
L r!(n )q"
= z4 = I
-
+L
( 1603(n ) - 3203(n/ 2)
+ 2560 3(n/ 4 )) q" ,
wh ~re
0"3(m ) = 0, ifm is not an intefJ". Second, by considering the cases n even and n odd sepamtely, shew that
1603(n ) - 320"3(n/2) + 25603 (n/~) = 16{-
W :~:) _I )d,f.
""
We DOW ~urn our a~t.en~ion \.0 sums of uiangular numbers. First, we give a proof of Theorem 3.6.3 along the lines of the previous proofs in tms section. The following simple exercise will be used in our proof below. Exerdse 6.2.8. If m u on even poritive integu,
th~
O" (m) - 3O" (m/ 2) + 2o (m/ 4) = O. Theorem 6.2.9. For each
nonnegati~e
integer n,
P roof. By Theorem 5.4.2(iii ), (6.2.7)
-
L !4 (n )q2n+1 = 'l'/>4 (q2 ) =
.
_ x z2. n_O Copyrighted Material 16
B.C. BERNDT
138
T hen, using (6.2.7) in conjunction with Corollaries 6.2.1 and 6.2.2 and Exercise 6.2.8, we deduce that 1 L"" t. (n)q2 n -l- l .. - 241 P(q) + gP(q2) "~
1 12 P(q4 )
~
.., L
=
(o(m)-Su(m/ 2) + 2o(m / 4)) q'"
~
L (J(2n + 1 ).2 ~+1.
=
Equating the coefficient.$ of CQmplete the proof.
q2n+l
on the extremal sides above, ....e
o
In the notes to Chapter 3, we mentioned a formula for ts(n), which we now prove. We first need another corollary_ C orollary 6. 2 .10.
IV~ ha,,~ 00
L ,.,
1..:1
1 sinh(ky) = gZ4 x .
P roo£. Using the definition (&.2.30) a.r.d T heorem 5.4.11, "..., find tbat (6.2.S)
"" L
,,3
co
smh(ky) = 2
k_ l
L
k_ l
=
J!l
ek~ e-k~
""
= 2
L
k3e- k~
I
e- >kv
k_ l
I • 8: x.
o Corollary 6 .2.11 . We
h
SPIRIT OF RAMANUJAN
139
proor. From ThooreDl M.2(i), I
q.,r.."(q) .. 16~'z. Employing Corollary 6.2.10 and (6.2.8), "'l' complete the proof.
0
Theorem 6.2. 12. For ach po.rihl/e illieger n .
I,{n) = 4J(fH-l)
('HI )I" _
Proof. By CoroUary 6.2.11,
..,
.... \
oil" ,,' " odd
Equaling coefficients of q"+1 on both sides aoo-.'l', "'l' complete the
0
proof.
R£call that in T heorem 4.2. 4 we established the following: fundamental theorem.
Theorem 6 .2. 13. lYe hove (6.2.9) Our repreaentations I'row Theorems 5.4.11 and 5.4. 12 enable to give a very sim ple proof of Theore m 6.2.13.
Wi
Proof. It will be simpler to use the argument 'I' instead of q. Thus, from Theorems 5.4.11 and 5.4.12, "'" find that
Q'(.r) - R2(q2) = Z12(1 _ Z + Z2)' _ Z12(1 + z)2(1 _ (6.2.10)
~;r)2 ( 1 _ 2z)2
= l3'zI2;r2(1 - z )',
titer a dOllage of eleDlentary algebra. On the other Iwld, by Theorem 5. 4.3(iii), 172&t (~ ; ~)!!
(6.2. 1I )
= ITZ8q' {"{-q') .. :r . 3''1' ~122-·:r:2{ 1
:r:)2/ .,2
_ ~3':12z2 ( 1 _ Z)2.
Combining (6.2.10) and (6_2.11) and repla.clng: 'I' by 'I, we complete
the proof.
Capyr;ghted Material
0
140
B . C . BERNDT
6.3. M odular Equatio ns Defi nit ion 6. 3 .1. LeI K. K', L, a"d f} denote complete ellip/ic integrals of the first kind a830ciated wilh the moduli k, k' : = ';J kl , t , and := ';1 (l , re3p«tively, where 0 < k . t < 1. Suppose that
e
K' £' "- ~ K L for s(lme positive integer n. A ..,lation between k and ( induced (6.3.1) is aJlted a modular e.quati(ln of degru n. (6 _3 _1)
b~
Following Ramanujan , set () _ k 2
,,'
We often say that jJ has degree n over (). Using Lemma ". 1.3, we may replace the defining relation (6.3.1) for a. modular equation by the equivalent relation
i;
(6.3.2)
n2F1(i, i, I ; 1 - Q) "" lF1(i, I ; 1 - jJ) 2F,(i, ~; 1, 0- ) lF1 ( i ,! : l;jJ)
U~i ng
(:>_2_29) and the formulas from Section ".4, we see that a modular equation can be considered as an identity amongst theta fun<;t.iOI15 with arguments q and theta functions with arguments q". In fact, moot often One ""t"bli.h""" moduJ...- o:quation of deg>ee" IIi first proving the requisite theta funct.ion identity. Then ,,~ use the formulas from Se.::tion :;.4 to e1Cpress theta functions with argument q in terms of Q , % = Zl, and (possibly) q. and the theta functions wi th argument qn in tcnru; of P. z.. , and (pa;sibly) q", where (6.3.3)
T he mult iplier m of degree n is defined by
(6.3.4 1
m = ",,2{q) .r{q")
=:!. : ..
We note that the method of establishing m<>
SPIRIT OF RAMANUJAN
'"
discover or construct modular equations. One need! to be resourceful and use II variety of tools. Generally, as the degree of the modular equation increases, the difficulty of establishing modular equations rises sharply. The foHowing simple, bu\ enormously useful, device ellabIes WI to produce new modular equations from previously derived modular equations. Theorem 6.3.2 (Method of Reciprocation). If wt rep/act a by 1- 13, P by J - Ct . and m by '111m in a moddar equation of dey""" n , thtn lOt oblain a new modular equation of lilt 3ame degru. Proof. Jfwe make the indicated substitutions in the definition (6.3.4) u( th" wultiplier, w
~'" 2F I(j,1;1;I-Pl m 2Fl(i,~;1;1 0 )
(6.3.~)
Rearranging
(6.3 .~ )
and using (6.3.4 ), we deduce that 2Fl
'
i.e., I!."Cohtain the defining relation (6.3.2) for a modular equation.
0
We now discuss modular equations of degree 3. We need several identities for Lambert series. Theorem 6.3.3. If (1) denQte~ the kgendre symbol, then
(ii) '0'(')
~(q3)
(iii)
= 1+
- Wr"+l (_ I )",jIn+2 ) 1 +( q)Jn+1 + 1 +( q)3nH '
("'"
qGn +l "" rfn ...S ) 1 tf"+1 - ~ 1 IIn+$
fi~
~(q) ¢(q3) = I +3
(iv)
~ (
~
Part (il is identical to Theorem 3.7.7, and part (ii) can be found in (3.7.8).
Copyrighted Material
B. C. BERNDT
142
Proof of (iii). Replacing q~ by q in (1.3.60) and employing the Ja.cobi triple product identit y, equation (1.3.11 ), we find that (6.3.6) M
't'2 ( ~ q) / ( _q ) =
L
n __ oo
=
(611 + l )q(3n' +n)/~
d
dz {Z/ (q2 :~ , q/~6l} 1 ' _ 1
d : / (q, q2 ) dz (log {zf (q2z6, q/ zG) }) I•• •
: I (q, qZ ) (1 + :. (log ( _ q/ 2 6 ; qJ) ",,(_ q226 ; t/ )",, (q\ q3)",, ) 1•• ,) . Using the /l. laclaurin series fOr Jog( l + z), inverting the order of sum· malion, and then summing the resulting geometric series, we find that , for lal < 1, M
(6.3.7)
log e- 0 ; q3 )"" =
..,
L log (l + aq3
ft )
Using (6.3.7) in (6.3.6), we find that
r( - q)/ (- q) ( d "" ( - qz -~t d "" (_qz z6) n) J (q, qZ ) = 1 - dz n (1 orn) - dz 0 (1 qJn)
L
L
n_ ]
n~ l
(6.3.8)
""
= 1- 6
L
n -o
<XI
L
,. \
q"n 'U I +q3n +2 '
n -fl
where we expanded the summands in geometric series and then inverted t he order of summation. Now, by Theorem 1.3.9, (1.3. 15), lUld Copyrighted Material
SPIRIT O F RAMA NUJAN
143
(3.2.7) , ",,2(q )f(q)
",,2 (q)( _ q ; _q )""
f ( q, q2 ) - (q; =
ql)",,( q2 ; ql ).,,( ql;
",,2 (q ) (- q;-q)." (q; q).., (q;
q3 )""
(q: q)oo
J( ) (tt; _ q3)"" = op q ( q3; qa)"" opl(q) = op(q3) '
(6.3.9)
Replacing q by - q in (6.3.8) and then using (6. 3.9), we complete the _~ ( ,q. 0
P roof of (iv) . The proof is similar to the previous proof. Using (1.3.61), the J acobi triple product identi~y in equation {1.3. 1I}, and (6.3.7), we find that (6.3.10) ~
~(q2 ) f2(_q) = ~ (3n + l )q3n'+2"
d
= dz {zf(q~:3,q/Z3)} 1'''1
d == / (q, q~) dz (log {z/(q5 .. 3, q/ z3)}lI •• , =
J(q, q~)
:z
(log { z(
- l ..3; q6 )",,(- q/ zl; q6 ).,,(q6; q6) oo} )1 •• 1
,(1 - 3~~ {q'"" t".'}) . 1 +q6n+I - I+q6n+S
= f {q, q )
Using ( \.3.11 ), (1.3.14), and ( \.3.15 ), we fiud that ~(ql1 f2{q)
_ f { q, qS)-
B. C . BERNDT
144
Replacing q by - q in (6.3.10) lind then using the calculation atxr.-e, we finish the proof. 0
to
In the theory of modular equatiom of degree 3, it is advantageous introduce the parameter p defined by
(6.3_11 )
m "" I
+ 2p.
Theorem 6 .3.4 (Modular Equa tions of Degree 3). Let {J have deqru 3 over Ct, and let m denote the multiplier 0/ degree 3. Then
(il (ii) (iii)
(iv)
14~
SPlRlT OF RAMANUJAN
Proof of ( i ) . Using (iii) of Theorem 6.3.3 twice, once with q repiau
(6.3.12)
by Theorem 6.3.3{iv). Employing Thoorems ~.4 .I (i), (iii) aIld ~.4.2{i), we trll!l$Cribe (6.3.12) into the form / ~3/2 %3 2(1_ a )3/8 _,_+\
z~/2
''S/~'(~ - 2.~::-';:/"''' I .~/~q~)':;;/'
~~ '2( 1 -11)1/8 -
which upon oirnplification yi
2 -1n z~n(tllq )l'8 '
tru- first. equAlity !If (i).
The seoond equality of (i) ;5 the rociprocal of the first . Proof of (n ). From Theorem 6.3.3{ii),
,
,
-<,- (0) ( 1+'" ( q)~
(6.3.13)
1-0)")
- 1+q ~
0
B. C. BERNDT
'<6
by T heorem 6.l.l(i). Coowrting (6.3.l3) into a modular equation by applications of Theorems 5.4.I( i), (ii) ;md 5.4.2{iii), we deduce that .jZ1 ZJ - .,hjzJ{(l - o){l - PW l4 '" .jz] Z3 q(o j q}I/ 4{(J/ q3)1/ \
from whicll (ii) follows.
0
Proof of ( iii). Using Theorem 6.3.3(ili), ~(q)
"''l
find that
"'" ( (_I )"q3n+l (_ I)"q3nH) op(tf) +2'f( ;f) =3+6 L 1+( q)3"+! +1+( q)JnH
"-,
+ J2
~
L "=1
(q6n+2
q-Gn+4)
- 1+;fn+2+1+;fnH
~ 3('+2t.(j) ,+;"')") = 3rp(q)
(6.3.1 4)
by Theorem 6.3.3(ii). Using Theorem SA _I (i), (iii), (6.3.14 ) in the form 3/2 1/2 ZJ
Zj
"'~
may re"'rite
l /2( , - 0 )'" + 2 =31/2 ( 1 - (J)llS = 3.fi"iZl. Zj
Simplifying, we Qbtain the second equality of (iii). The first equality of (111) Is the reciprocal of t he second. 0 Before embarking on the proofs of the remaining modular eqU!It ions, we provide some useful parameterizatioIL'l that greatly facilitate the derivation of modula.r equations of degree 3. from Theorem 6.3.4(iii),
(6.3.15) Thus, from Thoorem 6.3.4(i) and (6 .3.15), (6.3.16 )
(\ _~3 )'/8
=1+ (~)1/8 = m;1
Next, from Theorem 6_3.4 (iii), (6.3.17)
( {l_oi\l/$
3-m
"&ob'lfiHhtJd Mater1Bf1
•
SPIRJT OF RAMANU JAN
147
Hence, from Thoorem 6.3.4(i) and (6.3. 17),
(~) '/' = 1+( {\~~3)'/.
(6.3.IS)
3+m 2m •
Taking the product of the cube of (6.3. IS) and (6.3.15), we find that ,( m:::.:~'~}(~3i+~m,,-)' 16m' ' while taking the product of the cube of (6.3.15) and (6.3.IS), that p = (m - I)3(3 +m). (6.3.20)
Q=
(6.3.19)
"'"e
find
16m
N""e multiply (6.3.21)
th~
cube of (6.3.17) by (6.3.16) to deduoe that I ~Q = ( m + I )(3~m)3 16m3
and lastly multiply the cube of (6.3.16) by (6.3.1 7) to find tha.t (6322) ..
1 _"' = (m +l)3(3_m). ~ 16m
P roof of ( iv). By (6.3.19), (6.3.20), and (6.3.18), m 2 a_{J=(,,?_I) 3+m 2m =(m1 _ 1)
(0')'1 7i ' ' o
from which (iv) is immediate.
P roof o f (v ). Substituting (6.3.11) L,to (6.3.19), (6.3.20), (6.3.21 ), and (6.3.22 ), we readily deduce the four formulas in (v ). 0 Proof of (vi). Using first (6.3.19) and (6.3.20) and seoondly (6.3.21 ) and (6.3.22), we find, respecth-eiy, that
P ) (
L/2
(6.3.23) ~d
(6.3.24)
Q
= m(m _ I ) 3+ m
'_ P)L12 = 1 ( Q
m(m I I ).
3
m
If we substitute (6.3.23) and (6. 3.24) in the right side of the first equa.lity of (vi) , ""e easily verify its truth. The second formula follows from the first by the ~lJrt,Ip.!Ml\l:iPn. 0
B. C. BERNDT
148 Prool of (v ii). From (6.3.19) and (6..3.20),
(0 .13")" .
= (m -
1~~3 + m ),
and from (6.3.21 ) and (6.3.22),
{(1 - 0 )( 1 _
.B)~p/. =
(m
+ 1~~3 -
m).
Hence,
(6.3.2b) by (6.3 . •9)-(S.3.?!). This
pl'O\'eS
the fint equality in (vii ).
By the principle of reciprocation, the second equali ty follows from
the first. Lastly, from (6.3.19)-(6.3.22),
(6.3.26)
1 + (0 /1)' / 2 + {(I - 0 )( \ _ ,ll)} L/2
= 1+
(m - 1)' (3 + rn )2 16m2
(3 + (m .j. 1)2 16m 2
m)2
=
"m,'~+;;-3L J' 8m 2
we multiply both sides of (6.3.26) by !, lake the squan root of both sidell, and appeal to t he !'init eq\l.llJity in (6.3.25). "''f! complete
I(
the proof of the third equality of (vii).
gives t ....,o further modulM tqW!.tioIl$ of degJft prototypes of modulu equations of further orders.
The next
3 that
Me
t~
Theorem 6.3.5. If P :",, (lf.n!1( I _ n )( l _,Bj} ' / B
(6.3.27)
0
SPIRIT OF RAMANUJAN
149
If then
(6.3.28)
~ = 2(P - ~).
Q-
Proof. From (6.3.19)- (6.3.22), we easily find that p2
= (m 2
1){9 _ m 2 )
-
8m' Thus, PQ -
m2 _ 1
- 2-12
Eliminating m from thili last pair of equatiollS yields
P Q
-
Rearranging thili last. equality, we readily deduce (6.3.27). T he proof of (6.3.28) is similar. From (6.3.19) and (6.3.20),
pl =(m
1)(3+m) 4m
and Q2 = m (m - l). 3+m
It follow! that
PQ = m-l 2 Eliminating
m
P Q
3+m 2m
from thili last pair of equatiollS, we find that p Q
2+PQ 2PQ+I '
which lIpon rearrangement yields (6.3.28).
o
With the use of (6.3.11 ) in conjunction with (6.3.15) and (6.3.17), it folloW!! that p > 0 and p < I, respectively, Or equivalently that 1 < m < 3. From the formul8.'l for () iUld fj in Theorem 6.3.4 (v}, we readily find that , for 0
da = 2(1 _
p}2{2 + p)1 >0
~OPyrighlJdMf1);ria/ -
,so
B. C. BERNDT
~d
dO = 6p1(l + p)2 > dp (1+2p)2-
o.
There is consequently a. one-to-one oorresp(lDdence between" and p and al90 between (J and p when 0
Theorem 6.3.6. kt p (6.3.29) 2FI
O, ~; l ; p
~ d~finM
Cz::pf)
by (6.3.11 ). Then
= (I +2pJ,F,
G,~; 1;p3
C2:~)).
Proof. Recall the definition (6.3.4) of the multiplier m and use The.Orem 5.2.8 and (6.3.3) to write thill definition in the form
2Fl ( ~ ' ! ; 1;0') = m2F'1( ~ ' ~; 1;p). Now use the repr(lS('ntatiOIlS for m , 0, and fJ given in (6.3.11 ) and Theorem 6.3.4 (v), and (6.3.29) follows immediately. 0
6.4 . Notes We are grateful to K. S. Williams for providing tbe second proof of T heorem 6.2.4, the proof of Theorem 6.2.9, and Exercise 6.2.7.
The theory of modular equations begins with Legendre's (139, vol. 1, p. 229j modular equation of degree 3 in 1825. namely, (6.4.1 )
(ap) I/4
+ {(l- o l( I -
(J )}1 / 4 = I.
In the century that followed , several mathematicians , including A. Berry, A , Cayley, A. Enneper, E. Fiedler, R. Ft-icke, C. Guet'l'laff, M. Hanna, C. G. J. Jacobi, F. Klei n. R. Russell, L. Schliifli, H. Schwter, L. A. Sohru:ke, G. N. Watson , and H. Weber, contributed to the growing list of modular equatiQn5. Ihw:e.-er, the mathematician whQ diso;wered far mQre modular equations than any Qf thew mathematicians was Ramanujan . whQ constructed over 200 modular equations. As indicated immediately above, the fonn of the modular eqll&tion given in T heorem 6.3. 4(ii) is due to Legend re [139, vol. I, p. 229).
and Can also be foundd3pWfg'hlia9.t¥J~~l text on ellipt.ic functiollS
SPI RIT OF RAMANUJ AN
151
(67, p. 100J and in Jacobi's epic wOfk 1131 , p. 68]. This type of modular equa tion has been established for &C"eral nth", cl"!';T""" In particular, formulas due to Schroter in hi.'l dissertation 1206] are useful in establishing such formulas: see also 134. pp. 66-72J. Thew modular equations are also called ~of Russell_type," after the Engli.'lh mathematician R. Russell , who derived seve ral modular equations of thi.'l sort. 1202], 12031. For example, tht modular equations of degrees 5 and 7 of this type are given by, respectively 134, pp. 280, 314], (a p) l /2
+ {(1 -
a )( 1 -
13»1/2 + 2{16aP( I- 0')(1 _ pnt /ti = I
(0:,8)1/8 + {( I _ 0: )( 1 _
i3W /8 '"
I.
The parameterizations for a and fJ given in (6.3.19) and (6.3.20), respecth"ely, ""ere first discovered by Legendre (139, \-01. 1, p. 223J and rediscovered by Jacobi (13 1, p. 25J. A. we have seen, the parameterizations of a and fJ in terms of the multiplier m are extremely useful in deriving modular equations of degree 3. Similar parameterizations exi.'lt for a and ,8 in the theory of modular equations of degree 5 (34, pp. 280-2881. but for higher degrees we do not know of any further parameterizations, which reHcct.s t he fact that witb increasing n , the shapes of modular equations become iucreasingly more oomplex, and finding them becomes increasingly mOTe difficult . The paper [105J by M. Hanna provides a summary of much of the "-ork w;wmplished on modular equations up until 1928. Ramanujan summarized much of his work on modular equations in fra~ent8 tba t were publi.'lhoo with his lost notelx>ok [194J On pages 55 and 350- 352. For accounts of these fra~eDts. see Chapter 17 in the book by AndreW>! and Berndt (19 J. In particular, the formulas for m in T heorem 6.JA("i) are examples of a large class of Similar formulas for m. AI~h<Juf,1I "." II ....., pm,,;deU .. bi,,,!,l,, vllJOf based on parameteriz.ation8 for a and p, in general, we do not know Ram anujan's methods for deriving them . In our Ix>ok (34), we used the theory of modular forms to verify sc\-eral of tbem ; Ramanujan most likely did DOt ~§ill'e'tf Material
B.C.BERNDT
'"
The modular equation in (6.3.27) is of "Schliilli-type~ [204]. and Ramanujan recorded many modular equations of this sort in his notebooks and lost notebook {HJ3], [1114]. See [111, Chap. j ', ], (M , Chaps. 19-201. lind !37, Chap. 25J.
In this short monograph prov;din& an introduction to Ramanu. jan's thoory of theta functions, we do not have the space to give applications of modular equations. The proofs of Ramanujan 's ""ngruences for p(n) modulo arbitrary powers of 5, 7, and II depend upon modular equatioru; (194], (501. [218), [28J. Many of the re5ults in the following Chapter 7 crucially utilize modular equations of degree 5.
Copyrighted Material
Chapter 7
The Rogers- Ramanujan Continued Fraction
7.1. Definition a nd His torical Background A continued fraction is an expiession of tbe IIOI"t (7. 1.l)
.. +
_______0·"_______
'"
_____'"e'_____
. 'hich is commonly written in the more compact rorm (7.1.2) The continued fraction (7.1.1) or (7.1.2) may I.('rmi nate, i.e., t he frae(iOTUi do nol continue indefinitely. f or example,
t!-
is a terminating continued lTaction. Mote illl.ert':$l.ing are Lhoseoontin\ted fractions that do not terminal.e, i.e., infinite (':Ontioued fractions. Copyrighted Material
153
B. C . BERNDT
154
Suppooo that we define the sequences p .. and Q n , " > -1 , by
+ Il"P.. _2
Pn = b"P.. _ l
Qn = b"Q .. _l + o"Q .. _. ,
P_ 1 = I, Exe r cise 7. 1.1.
Q_I = 0 ,
Pro~
n
> 0,
"
Po = bo,
Qn = I.
tluIt
(7.1.3)
The" if · -p" I ,m
n_"" Qn exists, we say that the continued fracticm (7. 1.2) oonvergcs; otherwise it di\~rges. Clearly, the first task in de,doping a theory of continued fractioJl.'i is to derive criteria for OOIl\'eTgen~ and divergence. In particular, when the numerators an and denominators b.. are functions of a complex variable, an eJ!tensive theory has been developed, and it continues to evolve. It is not the purpose of this monograph to develop such a theory, and 80 we refer lcaders to the excellent text by L. Lorent zen and H. Waadeland [151 . Chapter IJ for many criteria for convergence and divergence. In particular, see [15 1, p. 35, Theorem
3J. /l.1ost mathematics students first enCOunter continued rractions in a course in elementary number thoory. T he first infinite continued fractions that students may be asked to e\"8.1uate are those in the following exercise. Exe rcise 7.1.2. Prove thai (7.1 A )
"'" (7.1.~)
1
1
1
vv'5;';'+"1
-
-
1
./5 - 1
1+ , +, +, + . .. = - 2 1
1- -
1 + 1 - 1 +' "
,
T hese are, in fact , special cases of perhaps the mOOSt interesting continued fraction in mathematics, the Rogcrs-Ramanujan oontinued fraction. which first appeared in a paper b¥ L. J . Rogers [1981in 189-1. Copyrighted Matenal
SPIRlT OF RAMANUJAN
155
Definit ion 7.1.3. Tile Roger$- Ramanujan continued /ruction R(q) i3 defined by ql /~
(7.1.6)
provided tJw.t it
q
ql
rt
R(q):=-I- + l+l+ 1 + ... ' con~ergu. Furthermore, set
(7.1.7) .rnl
(7.1.8)
T(q): = _I_ = I +!! q2 qJ F(q) 1+1+1 + ·"
Readers will immediately ask, "W hy does q l/~ appear in the defi. nition of R(q)!" T he reason is that R (q) belon.g:s to the wOlrld of theta functiOl08, and R(q)'s modular properties are lOore symmetric and el· egant with q l/~ appearing in its definition than if ql/$ were absent. However, there are oe<:asi008 when the factor ql / 5 is nOlt helpful, and SO we then use ooe of the representations (7.1 .7) Olr (7. 1.8).
1.2. The Converge nce, Divergence, and Values of R(q) In the definitiOln above, we ha''e nOlt indicated where R(q) com'erges or where it diverges. By standard thoorems (151 , pp. 35, 94J, R(q) comoerges in the complex q--plane fOlr jq( < I , and it di''erges for (q( > 1. What happens if 1111 = I? Taking the redprocals of {7. 1.4} and (7.1.fl), "oe find, respe<:thoely, that (7.2. 1)
_ R(-I) '"
.J5 + 1,
2 where we have taken the root (_ I j1/~ '" - 1 in the definitiOln of R(q). FUrthermOlre, I. Schur [207, pp. 319-321), (208 , pp. 117- 136) and Ramanujan in his notebooks (1931 established the fOlliowi ng theorem (38, p_ 35). Theorem 7.2.1. Recall that T (q) i3 deji'led by (7.1.8). Let q be a primitive mth root of unity. If m is !I multiple of fl . T (q) divergu. Otherwise, T (q) converges and
(7.2.2 )
cWr~TJ8~~e;:;;)'$,
B.
l~
whe"" 0 denote! the Legend"" symbol residt>e 0/ m modulo a.
('W-)
c . BERNDT
and p i& /he leMt p
Thus, for a root of unity, we know when R(q) com'erges and when it diverges. What about other points on Iql '" I? We do not know the answer in general, but D. Bowman and J. McLaughlin (61) have found an uncountable set of measure 0 on the unit circle (not includ· ing anth roots of unity) where R(q) di''erges. It is conjectured that R(q) diverges on the unit circle except for those points of convergence described in Theorem 7.2.l.
All mentioned above, the RogeIll- Ranumujan conti nued fraction fiIllt defined by Rogers, who proved a few of itll properties. How· e''er, most of the results that ""'e know about this continued fraction are due to RAmanujan. $everal theorems about R(q) appear in his notebooks [193), but his lost notebook [194) contains considerably more material On R(q); see 119, Chapters 1- 5). In his first t,,"<) letten to G. H. Hardy [192, PI'. xxvii, xxvii( , [51 , pp. 29, 57), RAmanujan communicated !;
R(e- 2-) = J5 +2.;g _ ..;52+ 1
(7.2.3)
.w (7.2.4) where we ha''e set
S(q) = - R(-q).
(7.2.5)
In his second letter to Hardy [192, p. :o:viii), [5 1. p. a7]. Rrunanujan further asserted that
R (~-2_.;5)
=
..;5
I+V53/4(~)~/2 _ 1
2
In both letters, RAmanujan claimed that [192, p. xxvii), [51 . pp. 29, 57], "It is always possjble to find el<..u;tly the value of R(e-·.;n).~ c;opyrighfed Material
."
SPIRIT OF RAMAN UJ AN
The meaning of this last statement "'as not clarified until 1996 ",hen Berndt, H. H. Chan, and L.--C. Zhang [46\ demonstrated that if n is a positive integer and if the requisite c!ass i nvariants could be determined, then R(e - ~"r.;:) could be explicitly evaluated. (Class in,-aciants ~ certain mul tiple!! of Ramanujan's functioo X( ±~- · ';;;:) . Historically, they wer~ first brought into prom inence by H. Weber [ZZOj, who explicitly calculated many class invariants and who used them to generate Hilbert class fields. Ramanujan explicitly determined over 100 class invariants and used them to calculate ,-alues of certain quotients oflheta funct-lons and t he Rogers-Ramanujan continued fraction. Ramanujan's work on cla.ss in'"3riants is described in [38, Chapter 34]. For ao introductioo to class invariants and Ramanujan's applications oftbem , see [47].) Both in his notebooks [193] and his lost notebook [194], Ramanujan recorded many values for Lhe Rogers- Rama.nujan oontinued fraction. For example, On pages 204 and 210 of hill lost notebook [194], Ramanujan offered the \'lI.lue
where S(q ) ;5 defined by (7.2.5). For proofs of the5e clainu;, see 144J, [46J, and [19 , Chapter 21. Those readers with some background in aI(.~l"aic nwnber th~ry and who h"w: been exccptio""lI y oOOerV3nt will have observed t hat each of the \'3lu~ for R (q) that we have quoted is a unit in some algebraic number field. T his is t rue for all \'lI.lues of R(e-·.,{ii), when n is a positive inleger; see [46] for 1\ proof. We record one further result on R(q) communicated from India by Ramanujan to Hardy. Let 0" and {J be pooitive numbers such that u{J = ",1. In his second letter to Hardy, Ramanujan 119Z, p. xxviii], 151, p. 57] claimed that (7.2.6)
(I
+2.;s +
R(~-2"»)
(I
+2.;s + R(e- 2t1)) = 5 +z.;s,
which was first proved in print by Watson IZI6). T his result is also recorded as Entry 39(i) in Chapter 16 of Ramanujan's second notebook; see [34 , pp. 84-851 for another proof and furt·her reference!:l, 10 and also see !19 , p. 9'\!:ofjp~hMa WlriID0WS the value of R(e - )
s .C. BERNDT
>5'
for II certain 0, then (7.2.6) enables one to immediately calculate lin· other value R(e - 2t1 ). Thus, besides being II beautiful formula, (7.2.6) cnabl"" o ne to obtain two
valUC3
from one.
1.3. The Rogers- Ramanujan Functions The Rogers- Ramanujan continued fraction is intimately connected with the famous Rogers-Ramanujan functions G(q) and H(q), which are defined by ~d
(7.3.1 )
Both Rogers [1915J and RamanuJan 1193, Vol. II , Chapler 16, Sect. 15), [34 , p. 301 proved that
(7.3.2)
R (q) = q l/5
~:::.
which we nOw prove. In fact , we first prove II finilt form of (7.3.2), which can be found lIS Entry 16 in Chapter 16 of Ramanujan 's second
notebook [193J, [34, p. 311. and from which (7.3.2) follows as an immediate corollary.
Theorem 7.3. 1. For mch nonnegatil'e integer n, let (7.3.3)
jJ
,= p,,(a,q):=
(("+1)/2)
L
k_O
t
(q).. _ H ID q , (q)k{q)n_2Hl
(n/2) ( )
(7.3.4 )
k'
• k (HI )
v;= v .. (a , q):=L qt ) kt )q b .O
q ~ q n - l~
,
where {'I'] denote. the great""t integer less t/w.n or equol to
forn::,,:l, (7.3.5)
, aq
J.' = l+aq
1 +1 +·
1/
",,"
+ 1
Proof. For each nonnegative integer t, define l(n _ '+I)1~1 ( )
k
k (.+ k )
qn_r ~+Ia q b O {q) k(q) n- r _2Hl Copyrighted Material
F. := F. (a, q):=
L
'1'.
Then,
SPIRlT OF RAMANUJAN Observe
'"
tha~
(7.3.6)
Fo =
jl
Also note that and
(7.3.7 )
We nOW develop a recurrence relation for F•. When ""e combine the two sums in the first step below. we use the fact that 1/( q) _ , = 0 by ( \.3.35). To that end,
(7.3.8)
= aq
.+' r.+ ''' l ·
Using (7.3.6), (7.3.8) rcpeat.cd.ly, and lastly (7.3.7), we conclude that
B.C.BERNDT
160 = l + aq I aq
= 1+I
,
+
all
I
aqn _ 1
+ .. + F,,_ J/Fn aqn - '
aq~
+
-I
+
+
I
",.
+
I
o
(7.3.9)
Proof. Let n
+ ...
---> 00
o
in (7.3.5).
T he continued fraction in (7.3 _9) is called the Genernliud R amarlUjan Continued Huction.
lWg~r3-
T he renowned Rogers-Ramlltlujall identities, which we do not prove in this book, are given by (7.3.10) I 'od C(q) .. (q;q'J""(q";q ' J",,
Using (7.3.1 0),
"'~
I
H (q) = (q';q"",,{
immedia tely deduce the elegant representation for
R(q) in the next tboorcm. Theorem 7.3.3. We have
(7 _3_1l ) Proof. Set a" I in Corollary 7.3.2, take the reciprocal of both sides, use the definitiOflll (7.3. 1), and lastly use (7.3. 10). 0
T he results in this se(:lion can be greatly generalized in that maoy more general oontinued fractions can :,e rep!'('5ented as quotients of two q-series . See, in particular, i19 , Cbapter 6J and 134, pp. 30- 31]. Copyrighfed Maten'al
SPIRIT OF RA MANU J AN
161
7.4. Identities for R(q) Ramanujan discovered tW(l beautiful identities connecting R{q) and l / R(q), which we prove in this lIe<:t ion The fir8t is given below. Theore m 7.4.1. Recall that T(q) .. defined in (7.1.8). Then (7.4.1) Com(>3ring (7.4.1) with (2. 3.13) in tbe proof of Theorem 2.3.4,
we see that the unidentified aeries J, (d and J1 {q) are equal to T (q) and - I / T (q ), respectively. We now prove a more general theorem rrom wh ich Theorem 7.4. 1 follows by specialization. It will be oot:>-enient to introduce tbe nota·
,..,
(01 , , 012 , ... , a", ; q) ... = (a, : q ),.,{a2; q)_ ..• {a ... ; q)"" .
Theorem 7.4.2. For anll complex n~kr a, (7.4.2) (a, a2,q/ a, q/ a 2, q; q)""
"
(a~q;() ... (a -~ q~ ;qS)""
(lI~q2 ; q&) ... {a-~q';q5 ) ""
-(<{, v )"" {q;,f) ... (q( ;of )"" II (q' ;of )""{q';of )",, _a' (a5.f;.f)...,(1I - 5q' ; ,fl"" + 013 (a5q( ; .f)_{o-Sq;
I"' ''I~I'';''I~
r)",,) .
I""I~I"' ''I~
Bef~
proving Theorem 7.4.2, ,,~shoo.> thM Theorem 7.4. 1 fol· low! immediately from Theorem 7.4.2. Proof of T heo re m 7 .4 . 1. If,,~ replaoe II by
forthwith.
0
The decompositions in Theorems 7. 4. 1 and 1.4.2 ~ called ~ dwtelioM , because in the former thecrem, the .eries tenru! of (q;q )"" are separated out in powen of q accordi", to their residue classes modulo 5, and in the latter theorem , the terms are separated out in powenl or a acrordin~r",~rQf.11es modulo 5.
162
B . C . BERNDT
proor or Theore m 7.4.2. Using the Jaoobi triple prod uct idellti ty (1.3.1I) twice, we 6nd that
, I I ' .) _ (a,a,qa,qa,q,q",, _
(a,q/a,q;q)""{a~,q/al,q;q)",, ()
q; q ""
~
=
~
L
L
1 (_I)"a'q(" - 'l/l (_ I )'a1'q(" -')1l (q;q)"" ' _ _ 00 • _ _ 00 ~
L (q;q)"" ,.,__
(_Ij" t 'a· tl 'q(.,- .t" - '1/ 2
= "."'-
00
~
(7.4.3)
=
L
n __ oo
a"c,,(q),
where, for - 00 < n < 00, I
c,,(q):= (q;q)"" '. '~-"" .tl.~
..
We now determine c,,(q) a.crording 5
to
the residue class of II modulo
First, oonsider the residue class 0 (mod 5). Replace II by 5... and make the change of variables r = II - 2t and s = 2n + t. Note that r + 2s .. 5.... Then, simplifying and applying the J aoobi triple product identity (1.3.11 ), we find that
L ~
I (_I )nH q((n-2' )' (q;q)"" ' _ _00
(_l)~q(.n'
(7.4.4)
-
(n-lt)+(2 .. H)'_(2"t,j)1l
3nl/2
(q; q~ )",, ( q';.r)"" .
5«:o1ld, oonsider the residue class I (mod 5). Set r = II - 21 + I and 3 = 2n + t, so thtJtfpyri(;flmJWlIiJnafhen. u[lQn simplification
SPIRIT OF RAMANUJAN
163
and the use of the Jaoobi triple product identity (1. 3.11), we see that C~n+1(q) =
1
~
L (_1)-+'+1
(q;q)oo , _ _ <»
X q((n - Z'+1l' -(n -2' +'1+(2n+' l' _(2n+1))12 l )n +1 (~ .. '-n )/2 <» = (q (_ I }'q{~" - 3'l/2 {q;q)"" ''' - 00 (- 1In+ 1q(~n' - .. )/2 = . f(_q,_q4) (q, q )"" (- 1)n+ 1q(~'" - n )12 (q2; qS }<XI«(rl;~) "" .
L
(7.4.5 )
It should now be clear how to calculate the three remaining cases. Exercise 7.4 .3. ProlJ(! that (7.4.6)
( - 1)".j- lq(~n'+nl/2
CSn+2(q) =
(q2;~)
( _1)"q(m'+3,,1/2
(q;tf)oo(
(7.4.7)
CS"H(q) =
(7.4.8)
CSnH(q) = O.
Substitute (7.4.4)- (7.4.8) in (7.4.3) !LIId use the Jacobi triple product identity ( 1.3.11 ) foUl" times to conclude that (a, a2 , q/a, q/a 2 , q; q)."
B. C. BERNDT
164
Prom Theorem 7.4.2, we derive the second major identity involv. ing R (q) or T (q). Theorem 7 .4.4. lVe have 5
(7.4.9)
~
ql O
_
(qS ; ~ )~
r {q ) - 11q - ~ (q) - (Q2~; q15 )~ '
Proof. The proof is almost identical to II portion of the proof of Theorem 2.3.1. We therefore forego most of the details. Write (7.4.1 ) in the form (7.4.10)
( q, q23 ,9 , q' , 'I~'~1 , 'I "" "'T(
(qZ5 ;q25)""
51 __ q
q
q' T(~ )
Let W be any fifth root of unity, lind replace q by wq in (7.4.10) to find that l--1 . 4 5 . ...5) " ( "'q,w 22 q , W q-,w q ,'I . '1 "" - T ( ' I "q (7.4.1 1) ('12$ , '125)"" q -wq - T (qS) Now multiply aU five "'lualiti.." (7 .4.L l ) tog~th=. 0" ~he left oide
of Our product, IlOO precisely the same argument that was used in (2.3.18)- (2.3.21 ) to arrive at the right-hand side of (7.4.9) . For the right-hand side of ou r product of the expressions in (7.4.11 ), employ the same argument that was used in dtducing (2_3_23 ) from (2.3.22). We then obtain the left-hand side of (7.4.9) to complete the proof 0
Although the proo£S are essentially the same. the use of Theorem 7.4 .4 leads to a somewhat cleaner and more satisfying proof of The<)rem 2.3.1 than the proof em ploying the pentagonal number theorem. Jacobi 's identity. and the division of power series in Chapter 2. We ~"m[ll .. te OUT work on the Rog....- Ramanujan continued f.""tion in t his section by giving this alwrnath-e l>roof of T heorem 2.3.1. Theorem 7.4 .5. For each nonnegative inleger n.
(7.4.12)
p(tm+41=- O{m04 5j.
GOPyrigh ed Material
lOS
SPffilT OF RAMA NU JAN Proof. Write (7.4.9) in the form
(q>li.qn ). ( ,. ) ... rs(qi) _ llq5 _ -'i;'", (q5 ;q5)t, 1'1{q5) .
(7.4.13)
1=·
Divide both s ides of (7.4. 13) by (7.4.1 ) in the form
(q;q) ... -
(qU:q2~)oo (T(¢)- q - T~» )'
Then, U!lins: IonS divillion and tbe abbreviated oot.ation '" = T(~ ). _ 6nd that f:P{n)q~ _ (q15 : q15)~ r& (qS) ~_
(qS;q6)t,
11<1 -
T{qS)
_ (q15: q:z:5 )~ (",.
(If : q~ )t,
q
qlo/r&(~ )
q3fT(q5)
+ qz3 + 2q2",2 + 3q32; + 5q~
_~ +2q8 _q7 +rt) '" ",2 r' ",4'
(7.4.14)
We !IO?' extract those terms from both sidell of (7.4.14) that involve only the po-t.-e1"S t nH , n > 0, to ded uce that ...
(7.4.1$)
( 36.
25)6
"' p($n+ 4)q--S"H_5q4 q , q ~
"".
(q6; q~)t,
DIVid mg both sId es of ( 7.4.1.5) by q' and ",.,I""j,,1S 'I" loy q, we com-
plete the proof.
0
Theorenu 7.4 .1 and 7.4.4 ""ere found by G. N. Watson [215]. ]216] in Ramanujan's notebooks lind p~"Cd by him [215] in order kl eflubl.i$b (7.2.3) and (7.2.4). Observe thllt if _ can e\'alll.ll.t.e the riSht side of either (7.4. 1) or (7.4.9) rOT a certain \-alue of q, then we can find the \'8.lue of R(q) by limply «>I\'inS" quadratic equalion. Exercise 7.4 .6 . '17tlllhifttd FibonaCCI n.,mber& 1ft. n > 0 , are definc;l
b)'/o= b - 1and (H .IG)
£Stab/WI th e lolllJI
2: l!tq" -
I
'.
...0 (A)P)'I'/{}J llell 'Milenal
lql <
I.
8. C. BERNDT
166 Next
pro~
that
-=
Conclude thai / Sn H O(modS). In p
O(mod25). ( To prom: !hu k>st oongrumoe, you will probably nl'd to I/.!e furth er pro~rt;es of Fibonacci numb..rs. ) The previous exercise relating p(5n + 4) to Fibonacci numben; was suggested by M. O. Hirscllhorn [125J. to [124J, he used the fact 5115"+4 and a variation of the argument we gil"'" aoo.-e in our 1'1Oof uf Tin,,,]',,,,, 7.4.5, ..... I'.ive" silUil~r "rour or The<>rem 7.4.5. See al50 (2.3.25). It is remarkable that '~H and h~n +24 obey the same congruences as p(Sn + 4) and p(25n + 24 ), respedively. Ramanujan 's original conjecture (2.1..5) in the case that,s = 53 is p(12Sn + 99) ~ o {mod 125). Unfortunately, in general, it is not hue that fn~ .. +99 is divisible by 12[', and so the analogy fails for 53,
7.5. Modular Equations for R(q) Recall that a mooular equation of degrN! n can be tllQught of as a relation allloLlg theta f" ...:tiuu:s wit h "'-11"'''~''l" and the"" functioIL'l '. rith argument '1ft. We dose this chapter by offering some of Ramanujan's modular equations for R (q).
First, on page 326 in his second notebook [193J, [38, p. 12], Ramanujan reoorded a relation between R(q) and R (q2 ) in different notation, which was also proved by RQgers (199, eq. (5.4)). Theor em 7.5.1.
ut u ' ''''
R (q) and v := R (q2 ). Then 2 .~
--
v_,,1
V+ ,,2 '
Aloo on P<'ge 326, narnanuj an adroi t ly deli".,,; the pan.."et.er
and states t he following two elegant and symmetric relations (38, p . l3J.
Copyrighted Material
SPIRIT OF RAMANUJAN
167
Theore m 7.5.2. With k defined by (7.5.1),
J?5{q) -k(:::r
and
J?5{~) =k2C+:) .
In his 1000t notebook (194), Rrunanuj/Ul recorded!le\-eral exquisite identities for theta functions in the argument k of (7.5.1); see !l9, Sect.s. 1.8, 1.9). The nut beautiful modulM equation of degree 3 is found on page 321 in Ram&lluj&ll's sooond notebook [193]. [38. p . 17). and was.u.o established by Rogers [38, p. 392]. ThAOrElll 7.5.3.
Let It :=- R(I,I ) and tI: .. R{q-l). TIIen (tI-
,,3){1
+ w') _
3,,~~.
Lastly. we ooncill(k .... ith a modular equation of degl ~ 5 for R(q) that Ramanujan communicated in his first letter to Hardy [107, p. xxvii), (51 , p. 29]. and that is found on page 289 of Rrunanujan 'l second notebook [193J, [38, pp. 19-20J. Again, this modular equation was first. established by Rogei . 1199, p. 392). For referenoes to further proofs, !Iee [38, p. 20) or [51, p. 43). T heoNl ill 7.5. 4. Let u:. R(q) and ~:_ R(rt). TIIen ~
1 - 2t1+ 4 t12_3v"+~~
" = tll+3t1+4t1~+2"'+v4'
7.6. Notes The Rogef$-Rrun/Uluj&ll oontinued fraction was one of RamanujlUl'l fa>-orit.e functions. We have related to readers IIOme of it.s IJlOfit fa&cinating properties. but Ramanujan recorded many further re!!ult.ll, esp«ially in his lost IlOtebook [194]. We hope readCi'll will be stimu· lated to read about these discoveries in Chapters i - 6 of (19), which is the most com plete souroe of theorems and referencea on the Rage ...... Ramanujan continued fraction. An eqM)OIltory aca>l.u,t vf "",,,,,,a1I~ orems on the Rogers-Ramanujan CQntinued fraction ean be found in [45J. A !ubset of the TeIlulta proved in [19) are established in [49]. Hardy WlIS intrigued by Ramanujan 's claims about thc RogersRamanuj&ll oontinuecC~I!~"NIU6nly wrote to RBmanujan
B. C. BERNDT
'"
urging him to write a pa~r about it. In a letter probably written On 24 December 1913. Hardy exhorted {51, p. 871
)fyou will send me your proof written out carefully (so that it is easy to follow), I will (assuming that I agree ,,~th it-of which [ have very liule doubt) try to get it published for YOll in England. Write it in the form of a paper "On lac continued fraction
1 + 1 + 1 + "
"
giving a full proof of the principal and most rem"rkAhl~ th...,r"m. viz. that the fraction can be expr med in finite terms ",he., :J: = e - w ';;;, when.!! is rationaL
However, Ramanujan ncver followed Hardy 's advice. The history of the famolls Rogers- Ramanujan identities (7.3.10) is now well known. They werc originally disoo'1'red by Rogers [198J and rediscovered by Ramanlljan, who a t first did nOt have proofs of them. One day while at Cambridge, Rarnanujan was perusing back issues of the Pr0cee4ing$ of the Lo"da" Mathematical Society and found Rogers 's paper [198) giving pr()Ofs of (i.3.10). Ramanujan soon fOWid his own pr()Ofs and published them in [189), [192, pp. 214- 215J. Far further historical accounts, see Hardy's book [107, pp. 00-99). Andre ....s·s text [14. Chapter 7). or Berndt's book [34 . pp. 77- 79). Many proofs of the identiti~ nOw exist; a description and classificat-ion of all known proofs up to 1989 can be found in Andrews's paper 117). The identities ( 7.3.10) ha\l~ beautiful combinatorial interp~ta tions. In the definition of G(q) given in (7.3.1), write ,,1 = 1 + 3 + ... + (2n - l ). The 6rst identity in (7.3.10) is equh-alent to the assert ion that the number of partitions of a positive integer N jnto distinct partS with differences at least 2 equals the number of partitions of N into pacUi congruent to either 1 or 4 modulo 5. For example, there ar~ 6"e partitions of 9 into distin<;t pacl..>! with differences bet ....een parI..>! at least 2. namely, 9, 8+ I , 7 +2.6 +3, and &+3+ I. The 6,... partitiom; of 9 into parts congruent to either 1 or 4 modulo & are 9 , 6+ I + I + I .
HH I, 4 + 1 + I + I + tthyil3~'~~ Mater;~" For the second identit)',
SPIRlT OF RAMANUJAN
'"
in the definition of H (q), write n(n + 1) = 2+4 + .. ·+2n. The second Rogers- Ramallujan identity in (7.3.10) i~ an analytic statement of the f1lCl. that t he number of partitions of N into distinct parts with differences at least 2 and with no I's is equal to the number of partitions of N into parts congruent to either 2 or 3 modulo 5. For example, the three partitions of 8 into distinct parts with parts differing by at least 2 and with no 1'8 are 8, 6 + 2, and 5 + 3, while the three partitioDll of 8 into parts congruent to either 2 Of 3 modulo 5 are 8, 3 + 3 + 2, 8nd2+2+2+2.
Exercise 7.6.1. Pro~ that I~ Roger3- Rumanujan idrnt itiu have the combinatorial interpretation.! de.IJcriW in !he p~in9 pamgraph. Theorem 7.4.2 is due to Hirschhorn [1231, and the proofs of Theorems 7.4. \ and 7.4.2 that we ha''e gh·en are also due to Hirschhorn [123]. The only other proof of Theorem 7.4. 1 known to us is by Wat.son [215J, who employed the quintuple product identity. Hirschhorn's proof is !lQmewhat simpler. The proof of Theorem 7.4.\ given by Berndt [34, p . 267J is similar to that of Watson. Qill deduction of Theorem 7.4.4 from Theorem 7. 4.1 is the same as that given in the aforementioned works of Watson, Bendt , and Hirschhorn. Exercise 7.4.6 arose from the oombined efforts of Hirschhorn, P. C rut<:her , O. Yest Chan, and thc ..·.lthor.
An approach to the Rogers-Ramanujan continued fraction via modular fomlS has beo:!n written by W. Duke [85].
Copyrighted Material
Bibliography
Ablowj,~,
S. Cl .......... ,· ... ,y,
...,d
R. G. U«llmrd , Th~ ~.auliU
[I ] M. J.
(1998), HI. [2J M. J.
Ab~·;a.
S. Ch&ha.va.-ty, and R. G. Halbur
tm!Ji:a Ch.uy equation from Appl. lIIath. lOS ( 1999). 75-88.
th~ .df-d~.u;I~
Th~
yen· equ
[S[ M. J. Ablowit:z, S. Chakra'arty, and R. G. Halburd , inteyrobl. $11'~"'" and rwlucUoru oj rh • • ~-d1J.ol Yang-MilLs eq""tioru. lnl"9"'Mlit~. !()pOlogica.I.oIiton8,.nd beyond. J . Math. Ph),s. 44 (2003), 31473173.
'\1'-
[41 M. J . Ablowitz , S. Chakravany, and L. A. Til.khtaian, /n~~ self-dual Yang-Milts equatill'fl.t and """nut;" .... wiUl modular f"tm$, in Noni.Mor Pmblt:ms in Bn9",,,,,rin9 a"d Sriencc- Num.r0l1 and Anal~ti<xl.! Approach, S. T . X i"" and X. C. Hu , 00 •. , Science Press, Beijing, 1992, pp_ \ - 15.
t."""
[5] C. Adiga., B. C. Berndt , S. BhargL"", and G. N. Wal.SOn,
Cho>pUr
16 oj Ramon"j.",', S«x>nd NotclKKJJ:., ncto-furu;tilm$ and q-.triu, Mem. Anter. Math. Soc., No. 31.'), 53 ( 19S5). American Mathematical Society, Provide",,", RI , 19S5.
[6) S. Ahlgre". Di.rtri/rulion of parity ~f !he partition Junction ;n arith",etic progrt!IJioru, Ind&g. Math. , N. S. !O (1999). 173-181 . [7) S. Ahlgren, The parti!ion Junco"" modulo o>mpaJite onf"9"rs At, ~bth Ann . 3 18 (2000). 7%---803.
[S) S. Ahlgren and M. Boylan , Arilhrneto.: prY)perti~~ of th~ partition junction, Invent. Math . 153 (2003) , 487- 502.
Copyrighted Material
-
B. C. BERNDT
172
(9) S. Ahlgre n and K. 000, Add,tion .nd countiny.· The .. rithmclic of part,tion&, Notices Amer. Math. 50<. 48 (2001 ), 978-984. 110) 3 . Ahlg'~H ",,0.1 K 0",,", 0.,''11''''''''-'' 1""l"" li~. fm u,~ 1"" !iI;,,.. function, Proc . Nat. Acad. Sci. 98 (2001 ), 12882-12884.
(II) G. Ahnkvist and B. C. Berndt , Ga".u, Lo>nkn, Raman"jan, !k a"thme/ie'geometric mtan. dlipseJ, >r, and the Lo>dieJ Dillfl', Amer. Math. Monthly 94 (19S7), 585-608.
[12) G. E. Andrew. , A sirnpk proof of the Jacobi topic prod""t idn>I'I~, Proc. Amer. Math . Soc. 16 ( I~) , :\33-334. [13) G. E. And"lWS, Applio:otio.... of bari.: hypergeom clricju"ctio .... , SIAM Review 16 (1974 ), 441-184 . (U ) G . E. Andre .... , The Theory of Partlif,On.t, Addi$on-Wesley. Reading , MA , 1976; reissuoo : Cambridge Unh",rsity Press , Cambridge. 1998. (15) G. E. Andrews. Ge" ..rali~ed l"n>ben, .... Pllrt,jions, Mem. Amer. Math. Soc., No. 301 , 49 ( 19S4), American Mathematical Society, Ptovi· denae, R I, 1984.
/16) G. E. Andu ..... , E" ....kI1! nurn =
~
+
~
+ 6 , J.
Number Thy. 2S
( 1986), 285- 293.
[17] G. E. Andrews, On the proof< oj Ihe ROger'~ Ramanujan idenli/,es, in q- S eriu and Pllrt,Ii(lI1,I, D . Stanton. 00 .• Springer· Verlag , New York . 1989, pp . 1- 14.
(1 8] G. E. Andre ..... R. A. kltey, and R. Roy, SP«VJJ fb""hol1,l, University Press, Cambridge , 1999. [19) G. E. Andre....s and B. C. Berndt , I. Springer, New York , 2005.
&"" ", ..j"n·$ Lost Notebook, P"rt
(20) G. E. And",..... and B. C. Berndt , &""'n"J",, '$ Lo.t Notebook. Parl. II , Springer, to appear.
{21 J G. E. Andu .... and B. C . iktndt, &""'''I<)"n'$ Lo, 1 Notebook. Parl. 1lI, Springer , to appear.
{22) G. E. And", ....., S. B. Ekhad , and D. z"ilberger. A short proof of JaaJ/n ', formul" for the "umber oj ""plU~Rtat;OI1,l af an inlegu .... a sum of four ' quares, Amer. Math. Monthly 100 ( 1(93), 274- 276.
{n ] G . E Anduws and K. Eriksson , /n ~ P"rlihol1,l. Cambridge Un;' versity P"""" Cambridge.
2OQ.I .
[24J G . E. Andrews and R . Roy, Ramon <)an ', mclAod i" q·8trie8 (XIn9'"" ""
(WI R. Askey. flamonl<)an', ,~ , ""d formnl. Lou",nt seriQ, Indian J . Math . 29 {19S7).... IOI- IOS .
....opyrighled Material
SPIRlT OF RAMA NUJ AN
173
[ZT[ R. Askey, The num/IeT oj rqruent4tioru oj an "'ttger as lAe .... m oj two
'qua,..,.,
Indian J. Mal.h. 32 (IWO), 187-192.
[28] A. 0. L. Atkin, ProoJ oj a am"..,t",.., oj Ramon"jan, GI ...g",,' Math. J. 8 (1967), 14-32.
[29] A. O. L. Atkin,
MuUlplicali~ am~
pn;>pef1ie. and deruity prob. krru Jor p(n), P""". London Math. Soc. (3) 18 (1968), 563-[076.
[30] A. 0 . L Atkin and J . N. O'Bri~, Some pn>p:ford ) (2) 3 ( 1%2), 158- 160.
[3'2] P. Barrllcand , S. Cooper, and M Hirschhorn , Relal;am bel.....,n .quaru and Inangle., Discrete Math . 248 (2002), 24&-247. (33] B. C. Berndt, Ramonujan'. Nateboob, Part II , S pringer_Verlag, New Yark , 1989.
{M] B. C. Berndt, Raman"jan'. Not.book., Part Ill , Springer_Verlag, New York , 1991.
(3$] B. C . Berndt, On from
Filzro~
"""unn Ihdo.jLndion In 0 Idl-tr oj Raman"jon HO\J-$t, Gani\.8 43 (1992), 33---43. a
[36] B. C. Berndt, Ra .....nujan'$ Ihmry ollhdo."",d.o,,", in Thdo Funclions: From tAe CI&oricall<> /lie Mukm, M_ Ram Murty, ed. , CRM Proc. and Lecture Notes , VoL I, American Mathematical Society, Prov>deoce, RI, 1993, pp. 1--63. (37] B- C. Berndt, n.."",n"j.>n'. Nol.lxx>b, Port IV, York ,I994.
Spri"se,- V~" sg,
New
[lS] B. C. Scrnd t , Ramanuj.>n'. Noleboob, Port V, Springer_Verlag, Nev.'
York, I998.
(39] B. C. Berndt, Frogmen'" boy RQmanujan on Lambo1 'erie., in Num_ /leT Th.,.",.. ond ' ''' Applicatioru, S. KanemiuiII and K. GyOf)', eds., KI""",r, Dordrecb! , 1999, pp. 35---49
140] B. C. Berndt, Romanujd:n" CO"9""""""'" Jor
th~
porti/ion junction,
mod"'" 5, 7, ond 11 , subrniUe.d for pUblication, [41) B. C. Bernd! , S. Bharp"", a nd F. G. Garvao , Ro"",nujan', Iht<>riu of d/iptil:junclio .... 10 Dltemal''''' Iw~" 'nan •. Arner. Math. Soc. 3 41 {1995), 41 63--4244 . {42] B. C. Berndt and P. R. Bi alek, 0.. the ~ .erie.o """ffic<en'" of arto,n quoll""'" of £;"""",rin . en.., '1',-",,$. Arner. Math . 50<:. 3~7 (2005), 4379-4412.
143) B. C. Berndt, P. Bialek, and A . J. Yee, Form"l.... 01 Rafflllnu}on
JO<" th'" power
'"i!bP?F~gta,.'n quoti""tJ of
E;.,,,,,,Utn
174
B. C. BERNDT
,rna,
International Mathematial Researcl! Notioes 2002, 110. 21 , 1077- 1109.
{44J B. C. &rndt and H. H. CIl ..... , Sorn~ """"'"' lor Ur.~ iWsI=- Ra"umujlln conlin ...... fraction, Canad. J. Math. 4 7 (1995), 897-91 4. (4&] S . C. s"rndt, H. H. Chan, 5 - 5 . Huang, S.-Y . Kang, J. Sohn, and S. H . Son, The Rog"",- R4"",nujan cominu"" frac!Um J. Com· put. App!. Math. 105 (1999), 9-24.
(46) S. C. s"rnd t , H. H. Ch"", lind L.-C. Zh""g, Ezplicil evaluati"", oj 1M Rog .... - RallUlnujon continued frac!iorr, J. I«>ine Ange .... Math. 4 80 (1996), 14 1-1 59.
(H ] B. C . s"rndt, H. H. Chan, ""d L.-C. Zhang, R411U1n ..jan'. cltw in· """"nU .....th oppiiCIIlicm to 1M tl
[50) B. C. Berndt and K. Ono, RollUlnujon'. unpubli$hed IIUIn"".:ripl on the partil;on end teu functi(nU .....th prooj, end comlMlltory, 5ern. Lotharingien de Com\)inatoi .... 42 (1 999), 63 pp.; in The An· d...,."" Fuuchrijl, D. F'oata. and G.-N. lIan, eds .• Springer· Verlag, s"rlin. 2001. pp. 39-110. [51) S . C. s"rndt and R. A . Rankin. &menujon. Letw'. end Comm"". "'ry, Arnerkan Mathematical Society, P rovidence, N , 199&; London Mathematical Society, London, 199~.
[52) S. C. Berndt and R. A. Rankin , Ramanujon: E.,<>y, and S!JS",",yo, American Ma.thematical Society, Providence, N , 2001; London Mathematical Societ;y, London, 2001.
(53) S. C. Berndt and A. J . Vee, A P
Copyrighted Material
SPlRlT OF RAMA NUJ A N
'"
[56) B C. ikrndt , A. J . Yee, and A. Zah~Il. New tAcorenu .... 1M pa .....ly oj partili .... juw;/ia ... , J. ~ine Angew. Math. 566 (2004), 91 -
""
[57] S. Bharga,.,., A .,mple prooJ of 1M qu'nl~ple prnduct ;a'enllly, J. In. dian Math. Soc. 6 1 (1 99.'» , 226-228.
[58) S. Bharga.'.,. and C. Adiga, S,mpu. prooJ. of Ja<:o/ri'. two ana' foW" squa'" th.,."...".., Inter . J . Math. Ed Sci. Tech. 19 (1988). 779-782 . [59) S. Bhargava., C. Adiga, and D. D. Somashekara, Rq>~ah .... oj an inleger a.t a sum oj a '<;Ua'" and Ihrift a 'qua"', [n· ter. J . Math. Ed. Sci. Tech. 24 (1993), 493-400. [50) S. Bhargava, C. Adiga and O. O. Sornashekara, Ramanujan'. .ummllli.... ana' an ;nlerelling genem/iUltion of an idomlilll of Ja<:obi, [ndian J. Math. 41 (1999). 39-42. [61 ) O. Bowman ""d J. McLaugh.J.in, On the di""'Yence oj the RogtTSRamanujon continuM fmclion on the un,1 cin:k, Trans. Amer. Ma.th. Soc. 3.'>6 (ZOOt ), 3325-3347. [62] L. C&rlit~, Note 1m .u..... oj JouT ana' '''' squar"e!l, Proc. Amer. Ma.th . Soc. 8 ( 1957), 120--124. [63) L. Culi t~ and M. V. Subbarao, A . ,mple prooJ oj the quintuple prnd· ""t identily, Pmc. Amer. MMh. ~. 3 2 (1972), 42-44. [64] G. S. C&rr, A Synop.is oj Elemento'Y Result.;n p,.", Mothematia, C. F . Hodgson and Son, London, l~, 1886; reprinted by Chelsea, New York , 1970, under the t;tle Funnula!J and TIl...,.,.., ...... n Po'" A{othemalia. [liS] A. Cauchy, Mima;", 'ur l'oppliati .... a'u co/c...t dn rtoid..., au ~wppem.nt tk.$ prnd.ntJ compos .. d'un nomhn: infin; tk. facteur., C. R. Acad.. Sci. (Pui.) 17 (1843), ~72-SS1. [66) A. Cauchy, OnlVTU, Ser. I, Vol. 8, Gauthier.Villars, I'&ris, 1893. [67] A. Cayley, An EI~"'~nto'Y TI-mtisc on HUiptic Fuw;ti.,.... 2nd ed., Dover, New York. 1001. [68) H. H. Ch ..... New proof. of Ramanuj4n'~ P
,w,
I.'"
appear. [71) H . H. Chan and Y. L. Ong, On Ei.e ... t";n .ena ana' ..--... ~ ... n _ _ ... q . . . . . . K .. K , Pmc. Am... Math. Soc. 1 27 (1 999), 17:u.-
,
1744.
,'
Copyrighted Material
176
B. C. BERNDT
[72) S. H Chan. An dement.>ry prwf of }<. T hy_ 132 (2005) , 14!HS3. (74) J . Cha zy, St. .. I... "'l"ati''''$ difftn:ntiellu du trwitme om're d d'rmJrt: .upirie.. r doni /'mUgmk 9"ntraie a s ... points critique. fizu. Acta Math. 34 (19 11 ), 317- 385_ [75] S. D Chowl .. , Congroe-noe properties of JI
(76) S. Cooper, On rurn< of an e""" number of ''l''aru. and a" e<>en num· her of tna"'lUfur num""",,. an clemnt4ry approoch ba.ed on Ralll4nu· Jan'. 'v, rum ....... formtda, in q·3mu with Appl,,:"I,,",", to C"",· brnato"CJ, Number Theory, and Phg.ia. B. C. Berndt and K OlIO, eds _, Contemporary Math" Vol. 291, American 1\'lath<>mlltlc.al Sod· ety, Providence. RI , 2001. 1'1'_ lla-137_
w"
(77) S. Cooper, Su",", of ji"", u""n anJ nine (200"2), 469-190.
.'1"" .......
RamanujlUl J_ 6
(78) S. Cooper. On the number of rt:prUentallO"" of oorIai" i"I"9 ..... ... 'urn< of II or 13 squa"" , J. Number Thy. 103 (2003), 13.'.- 162.
(79) S. Cooper, The qumtuple prod""l idenlrlll. Internat , J. Number Thy. 2 (2006), l) :;--161. [SO) S. Cooper and H. Y. Lam , Su",", oj two, four . • u "nd ~9hl ''l'''''''' a"d tnanguLar n ..",/I...-$: an ekme"la'1l aw_eh, Indian J. Math. 44 (2002), 21-40. [81] P. Deligne, L4 CO")<'CIU'" de \VeiL I. Inst. Hautes Eludes Sci. Publ. Math . (1974), 00. 43, 273-307.
(82) P. C. L. Dirichlet, Recherch .. 'ur" JIVe"'" applications d. I'arwl~.e injinit ~timale a la thione de. nomm: •. J. Reine Angew . "'atb. 21 (1 840). 1-12.
(S3] J _M. Dobbie. A .impk prwf oj '0"'" parotion farmulM of Roman". Jan, Qu&rt. J . Math . (Ox/ord) 6 (1~""). 193-196. {84] J . L. Drost, A shorter prooj oj the Ra'rn",ujan con9"'en"" modulo 5, Arner. Math . Monthly 104 {1 997), 963- 964 .
[SS] W. Duke. Continuo>' /radio", and mooul" .. funclio"", Bull. A""". ~ t ath. Soc. 42 (2005 ), 13;- 162. {WJ 0 , E i~Lhum, A " "'" I""",r oo .. "d "'" Ihe numkr af ad4 ooJUC5 af Ihe rmJ,n"I"Y ""rttl"". funclion. to appear. [87] G. Eisenstein , G~na"e Unter.uch."g der ""end/iellen Doppcipro-d""te, a .... welch"" die elliptuellen Flinetionen 00 QIIO/ienten ,warnme,lIu'n9enden Doppel,.,illen (00 ei.... neue Begrijndu"y••-6>e
Copyrighted Material
SPlRlT OF RAMANUJAN The<m~ d~r ellipl"'ch~n Ftmctionen, mil belonderer Beriicksichliglmg
ilIrer Anal"9.e :ru den K,.".../tmdio~nl. J. Reine Ang" ... , Math . 35 ( 1&11). 153- 214. (SSj G . Eisenstein. Not.( tur 14 rq>r-60enl<>tion d'"" nom/n'e par /" tomme tk conQ "",.,..... J. Rei"e Ang.,.... Math. 35 (l8~1), 368. (89) G . Eisenstein, M"lM:mat;'ch~ IV"".... , M . I, Chelse .... New York, 1915. (90) G . Eisenstein , Malh emal"'c~ L\I~, Bd. !t. Chelse ... , New York, 1975.
(91 ) L. Eule r. Introductio in A n
(n) R. J. E>"ana. The'" jundfun otkntilie$. J . Math . AnaJ. Applics. 147 (1 990), 97- 121. (93) J . Fabrykow1iki and 1\1. V. Subbaroo. Some net
(%) F. G. Gan'aIl , A ,imple proof of Wat.on'. parlitton a>ngnoen= for PO""''''' of7, J . Austral. Math. Soc. (Series A) 3 6 ( I!lS4), 316-334, (96) G . G M"",r and M, Rahman . BMi<: H~metric Sene', second ed ., Encycl. Math. Applies., Yol. 3.5 , Cambridge Uni""l'IIity Pn:tIIl, Cambridge. 2O().t.
[<17) r.. F . C;"" .... H"f"l~rl Th"""""", iihr t/i;, n"""" 1h-a ....~"""'d....un, in 1Ver*c. &I. 3. K. Ges.ell. Wiss. GOtting"n , 1876, pp. 461 -469. (98) C . F . G a uss,
IV"""",
Bd. 10, B. G. Teubner, Leipzig , 1911.
[99) J. W. L. Glaisher, On /he nurnb
(103) W. Ha.hn. S ",trdg" zur Tit""",, der Hc;nuchen Rri/u:n. Math . Nacbr. 2 ( 1949), 340-371'1. [H14) C. Halph"n, Sur une ,~.Umc d'equ.tllio,,-, d'JJ&enhell~. C. R. Acad. Sci. Paris 92 (l88l:1v,bj.9/g11Mld'Matenal
B. C. BERNDT
178
(105) M. HlUlnt., The mod~I"r "'I1',,'iotu, F mc. london Ma~h. Soc. (2) 28 (1 928),46-52.
(106) G. II . H...-dy. A chapter from IWmanuj""" note-b.ook, Pro<:. Cam. bridge Phi",". Soc. {2} 2 1 (1923), 4 ~2-SOO.
[107j G. H. Hardy, &mll ....j""," 1'w"'"" £Un....'.. on SUbfr.i;tJ S!J9guj~ bv II" Life and LV",*, Cambridge Unive ... i1y P re;s, Cambridge. 19'i(1; reprinted by Chelsea, New York, 1960; re printed by ~he American M athem8t ~
Society, Providence, Rl, 1999.
[lOB) G. H. Hardy, Coll«ted P{lper" Vol . , Clarendon Press, Oxford , 1969. (109) G. II. Hardy MId S. Ramanujan, The no""", .. umber "/P';"",jadon 0/ a """'''"'', Quart. J. Math. 48 ( 1917),76-92 . [\ ]0) C . H. Hardy and S. RrunanujlUl , Asrmptotoc !O
(112) G. H. Hardy and E. M. Wright. An Introduction to the Th""ll of N"m~, 5th ed., Clarendon Press, Oxford, 1979.
(Il 3( E. Heeke, O&er Moouljunklionen urod die Di..w.let.""m Rtohm mil Eultr.chtr Prndu.l:tenUuic.l;lu,,!/, I, Matb. Ann. 114 (1937), 1 ~28; II , Mat h. Ann. 114 (1937), 316-351. (11 ~)
M. D. Hirschhorn, A SImple prOOJoJ Jaco/n'. Jour'~'f'i.ore theorem, J. Austral. Math . Soc. Ser. A 32 (1982), 61-67 .
(115) M. D. Hiruhhorn, A .nmp/e prOOJ oj J..",,/n's lwo·''f'i."re the»rem, Amer. Math. Monthly 92 ( 19S5), 5j'g~~. (116) M. D. Hirothhorn, A .nmp/e prOOJ oj Jacooi'. Jour· • ."."re theo",,~ Proc. Amer. Math. Soc. 101 (1987), 436-438. (II ?] M. D. Hi rschhorn, A gentro/i:otion oj W",.".isj '. identity and" eon· Jecture oj R"m"""jon, J . Indian Math. Soc. Sl ( 19/:17 ), 49-S5. (11 8) M. D. Hi rschhorn, R"m"nuJon'. "..rtllion congrornces, D~ Math. 13 1 (1 99-1 ). 351 - lM. [119) M. D. Hirschhorn , JMO/n '. two-square the»rem "nd ...,loIm idenlitiu, J. 3 ( 1999), 153- 158.
Ramanujan
""rt,·
(120) M. D. Hirschhorn, Anoth"" .hort proof of Ramonu.1<"'" moo 5 tion co~, and m""" Amer. Math. Monthly 106 (199'9), SSG-
=.
(121 J M. D. HimchhQrn, Parhol jruCIIOIU <>nd Jour cu....iroJ Ihe<>re ..... oj numlln" Ihe<>n;. Amer. Math. Monthly 107 (2000). 200-264. (122] M . D. Hi rschhorn , Arithmetic COfU"1uen"". of Jaro/n', 1""'•• 'lI'''..... l/leo",,,,,
Ramanujeo/iyfftpWOMMbhal
SPIRI T OF RAMANUJA N
179
]123] M. D: Hirschhorn, An iden!it~ of Ram"""jan, ond Oppli(>llio..., in v-Sene$ from a Canl<:mP<ml'l' Pt1"SJ>e<;tive. M. E. H. Ismail and D. W. Stanton, eda., Contemp. Math. , No. 254 , American Math.... matical Society, Providence , RJ , 2000. ]124] M . D. Hi~horu, Romanuj
11 26] M. D. Hinochhorn and D. C. Hunt, .4 rimpf
]128] J. G. Huard, Z. M. Du, B. K. Spear",an, and K. S. Williams, Ekm<'fl'
.mull".,. ...".. ;".,.,J,.,>''Y divi>Qr func. riono, in Nllmkr ThW11l for 1M M illennium, Vol. 2, M. A . Bennett, B. C. Berndt , N. Booton , H. G. Di amond, A . J . IUldebtand. and W. Philipp, eds., A K Pete ... , Natidt, MA , 2002, pp. 229-274. fa'1l C....J....tiOR 01 ""'..... n "" ..
[1 29] J. Ivory, A new uric. Jor 1M rodifiClllicn oj Ihe ellip,u; u,gelAe<" with .ome o~,,,",,,/i<>ru on 1M evoiutWn al the JOrTRul4 (,,' + Ii 2ab <:(lO~)", Trans. Royal Soc. Edinburgh 4 ( 1796), 177- 190.
[130] M. Jackoo", On Lerch's lnI...cendent and the koi<: ~ilo/entl hypnye. """,/"';",eriu J . London Math. Soc. 25 (1950), 189-196. [131] C. G. J. Ja.cobi, Fhndam<'flta N",..a ThMriae Ameli""um EJlipli-
,4>"
mn.m, Bonlujger, R.egiornonti, 1829. 11321 W. P. Johruon, H_ C .. udI~ mi...
III', ....mma.fion,
(1331 S.-Y. Kan,g , A new proaf of Winqui.o:'. id<'fltitll, J. Comh. Thy., Ser. A 78 (1 997), 313-318. [1341 R. Kanigel,
Th~
Man Who Knew /nfintlv, Scribner'" New York, 1991.
[135] O. Kolberg, Nott "" 1M ""'"""II 01 the pam/io" /unction, Math. Scaod. 7 (1959), 377- 378. ]136] S. KongsiriwolIg and Z.-G. Liu, Vai/ann proaJ. 01 V-.oie.-prnduct iden!i/;e.o, Results Math. 44 (2003), 312-339. (137) J. Landen, A di.o"",iriti"" <>:>lIl:emi-og eerto.in f/u<'flls, which a~ <18.ignable by the arc.! of the ami<: $
[1 38J J. Laoden , A" invatigatio" oJ" gtntntl Ih",,'
.m Jor firn/.ing the length
of onv "'" 01 "nil cxmic h!iP<' bola, by m"" ... 01 I"", elliptic arc.!, ""Ih .ome 01Ae<" new "nd we/u/ IA....-em. daluaJ then/r<>m, Phi_ los. Tr!lIlS. Royal ~~aMWflA-l 283-289.
B. C. BER N DT
180
(\39) A. M. r...g~nd.." 7huU d~ F<>nelions ElbptlqtU!S, Huzard--<:Ourciff, Paris , 1828. [14(1) I). H. Lehmer, On u.~ Hardy -Ramanu)an senn tor t.h~ part.u<>n function, J. London Math . Soc. 12 (1 937) , 171-\76. (1 41 ) D. H. Lehmer, The von .... h'ng
<>/
Rt>ma .. ujan'~ function r(n), Duke
Malh. J . 14 (l9n), 429-433. (142) N. Levinson and R. Redheff.... , C"m;>/a Van4bte.., Holden_Day, Oak· land , CA, 1970. (1 43) J .-F . Lin , Tk num.b<:r "i ..,p""6D1lah".... 0/ en "'1"ger .... "!Urn 0/ eighllriangular numbers, Chinese Quart. J. Ma~h. 15 (2(00), 66-68.
[144 ( J .-F. Li n, The RUm""" of ..,pusenll1h" .... 0/ <>n ,nI"9
[146] J. Liouville, Thiorim~ """""",0r.1 In nDmb",. r,;"ngu/a;,..., J . Math. Pures AppJ. 7 (1862), ·107-4()8 (147) J . Liouville, N"uve.aw: tht<>rem"" ""'''''' ffl4nt /"" 1I0mb",~ '''-.. nyu. Ioira, J. Math . Pur.... App!. 8 (1863), 73-8-1.
(148) Z.---C:. Liu, An ldenhl~ of R4JII,,"ujall "lid Ih~ repraenlation of onle· ge ... tl$ ~ "ffl.f 01 tri<>lIgu/or Ramanujan J . 7 (2003), 40i-43-1 .
""",beT"
[14!Jj S. L. Loney, Pia"" 1hgono",et'll, Parts I, II, Cambridge U"i~nity Press, Cambridge, 1893.
[150] L. Long and Y. Yang, A &hort. pr"l)(Jf 01 Milnc ·. 10roou1.4s forst!"'"' of ml"9"'" .quara, Inter"at. J, Number Thy. 1 (2005),533- 551. [IS]] L. Lo"'"I"''' and H . Wudel .. nd. C~lItmuM Fmc/;"n.! ,,~t.h App/iw· hOM, North Holland. Amliteroam. 1992. (152) L. Lorenz. Bidmg Iii loIkne& tkori, Tidskkr. Math, (3) 1 (1871), 97-114. (153) C. Maclaurin, A 'Il-m/m ill FIII$io ... in Two Book3, Vol . 2, T. W. and Ruddimaotl!, EdinbDTsh, 1142. (154) E. McAfee and K. S. Williams , $ .."1$ of ';Z ~qu""'~, Fa.: East J. Math. Sci. 16 (2005), 17---41. [ISS) P. K. Menon, On R""",,,u]an·. oonlllluM fmcho" arId ",lotM idenhliu, J. LoDdon Math. Soc. 40 (196-5), 49-054.
[1M ) S. C. Mil..." New ;njinilC I"mlll~ 01 uru:1 .Il.... 01 .quara lor. mu/tl$, J"CO~I eJliplu, juncl", .... • nd R"man ..jall'& l
SPIRIT OF RAMANUJAN
lSI
P. Kitschenhofer, C. Krattenthaler . D. Krob . and H. Prodi!>ger, ~. , (1997) , 403-417.
(158) S. C. Milne, /"finil~ lam,/iu "I e>:
"I numbo-r-. "" Ih~ nom "/2..qtoaru, Quart. J. P ure and Appl. 1.lath. 48 ( 1917), 93-104 . (163) \... J. Mordeil . An idrnttl~ .n com/»natonai analy . ..... Proc. Glasgo..' M81h.
Assoc. 5 ( 1962), 197- 200.
[164) M. R. Murty, The Ro"",nuJan r /tnction, in Ra .....n"jan Revisited, G. E. Andre ..."!;. R. A. Askey, B. C. Berndt , K. G. Ramanathan, and R. A. Rankin , eds., Academic Pres> , San Diego , HIS!! , pp . 269-288. [165) M. R. Murty, V. K. Murty, and T . N. Shorey, Odd valuel 01 tAt & ..... n"lan ... -/unction, Bull. Math . Soc. France 115 (1987), 39 1- 395. il 66] V. K. Murty, Romanuj«n and 1I.......h·Chandm, Math . Intel!. IS (1993).33-39. fiG\'] M. D. N" •.h,,>on, Elem",,/=¥ M elhod!. '" N .. "obt;~ Th
Verlag, New Yark , 2000.
(1681 M. Ne"' man , P~riodiedll modulo m and ditMibiJit,l p"'p"rtiu of tlt~ pal1,ti""/tonction. Tn, ..... Amer. M ~lh . SM. 97 ( 1960), 225- 236. (169] J.-\... Nicolas , Vale~ NI impai"-' de III lone/ion de 1'<'l1it,on p(n), In_ l<: rn ,.~ . J . Number Thy., \.0 appear.
11m] (171 )
[1721 [mj [174.)
J.-\... Nicol,..., I. Z. R llZSa and A. S..,.koty. 0.. tAl: 1'<'"/11 &1 addi""" rqI"-'entation/unctio ..... \Vlth an appendu ~¥ J.- P. S~rn, J . Number Thy. 73 (1998), 292- 317. J. - L. Nioolas and A. Sarkijzy, 0.. Ut~ parity 01 partition /tondia ...., llIinoili J. Mat h. 39 ( 1995), 58&-597. I. Ni,..,n , H . S. Zuckerman , and H. L. Montgomery, An I,,/rodu(:llon /0 the ThfflO'lI 01 Number.<, 5~h ed .. Wiley. I"ew York, IW I. !\- Ono, Parily althe partu ..m /tonetion In llrilhmette progre,o ..o .... , J. Reine Ange"·. M3tIl. 472 (1996), 1~ 1 5 . K . Ono. The ....11.ll0n I,melion on antAmdU: pro9u .."' .... , Math. Ann . 312 ( 1998). t:Hppfifghied Material
B . C. BERNDT
182 [ 17~1
K. 0..0, DUlriktiOtl (if th£ poutit>an ft-ndoon 171<1duk> rn, ADD. of Math . (2) l S I (20(0), 293-307.
[1T6J K. 000, Repru~f
a.I "'''''
(if .qua....., J . Number
(177] K. Ono, S. Robillll, alld P. T . Wahl, 0.. W reprucnto!ion of inUgao ...."".. of l,,;oJ\glllar 1I1<1I\ben, Aequa. M..th. 50 ( 1995), 73-94.
[178] T. R. Pukin and O. ShanD, On the dUtributicm 01 ""roll in W ","','um fundian, Matb . Comp. 21 (1967), 4M 'SO
(179) J . PIaDa, Mbnoin ItIr '" Uolone
du~,
Mem. Mad. Thrill (2)
20 (1863), I 13- ISO.
[180] V. PrasoIoY and Y. Solovyev, £IiiI'm F'un.ct....... and Ello'p~ In' American Mac.hem .. tJeal Society, Providence. RI , 1991.
j' /',
[1811 II. RMieIIlaChe •• On the p
[183J V. R· ma",...,,; , Some 1d~'llU C....jcctw-cd ~ S ...... _ Ra ....... ujcuo FatUla .n Hio wlAograplletl NDfu C""""",letl ....th Partili<m 'I'Iw:or}I and Elliptic. M~ " Flo...",..... - 17Ieu- Proof. - IruefWfl"':di.... ..rII v ............. Othu T&p1U '" rAe 'I'Ito:>r) of Numkr, and S ome G....eraI· uati<mr Tht:m:>n, Ph. D. Th""i3, Uni""",ity of M)'f(m!, 1970. [1841 S. Ramanuj"'" ModulDr _ Iiofu .nd DpprvrimDlioM ID II , Quart . J Mat h. 45 (1\lI ~), 350-372. [ISS) S. Ramanujan, H.ghly armponte number., Proc. LoDdon Math. Soc. 14 (l91!» , 347--409. (186) S. Ramanujan , On ""Din "rith~1lC:Id jomeliOn.!, 1'1-..... PhiloA. Soc. 22 ( 1916), 1!>9--184.
(187) S. Ramanuja.., On liOn.! ," thc ~ ( 1917), 259-276.
CambricJ&t
CCf14'" In9O'l<"'lctriml ""M 0/
,,~ mben,
and th",r "PP""'· Tr..... Cambri
(188) S, Ramanujan, Some prop
(1921) , 147- 1.53. Copyrighted Material
SPlRIT OF RAMANUJAN
183
[192] S .. Ramanujan, C~lIttted PQP'=, Cmlbridge Univ.m;ity PTe6s, Cam. bridge, 1927; rePrinted by Chelsea. Ne .... York. 1962; reprinl.ed by the American M&thcmatic,,1 Society, Providence, RI, 2000. (193) S. fuunam.jan. Noteboob (2 volumes), Tat .. Institute of Fundamental R.e!oo>,.,..,b , Bombay, 19:>7. . [194) S. RamanujlUl , The Lo.t Notebook ond OrM<- Unp"WUhed Papa., Narosa, New Delhi, 1988. [1 9:» R. A. Rankin , Ceqrgc Nellilic IV"",,,,,. J. London Math. Soc. 4 1
( 1966),551-!>6S.
[J(6) R. A. Rankin , Modular Forms and fbnclion.o, Ca.mbt;';ge Univeroily Pr_, Cambridge, 1977. (197) R. A. RAnkin, The Roman"iom T /-ncIKm, in R""",nujan RwU
)198) L. J . Rogers, Second memoir on Ih<: apan.rion 01 certain infinite prod. """, Proc. London Math. Soc. 25 (1894 ). 318-343. )199) L. J . &.g..rs, On a type 01 modular relation, Proc. London M"'b. Soc. 19 (1920). 387- 397. )200) R. Roy, Review of Quantum CakuI ...., by V. Kac ....d P. Cheung,
Amer. Math. Monthly 110 (2000), 552-657. )201 ) J. M. Rushforth, C....".,..,.,ce Propcrli .. ol/he Parolion fbnclion and A •• lI<"ialM' FUnction.<. Doctoral Thesis, University of Birmingham, Birmingham. UK, 19:>0.
)202) R. R""""U . 0" 1<.1. - 11.1.' ",<>
"'.
(205] B. Schoeneber&, SII'ptw: Modular F.nclion.<, Springer. Verlag, Berlin, 1974. [m [ H. Schroter, lk Aoquah<>inilJ.u.o MotfuiarilJ.u.o, Dio::Itrtatio Inauguralis, Alberti"" L;~ter",um UnivenilAte, R.egiomomi , 18M.
[20'] I. Schur, S in Batmy :roT additi""" ZothkntMonc und :roT Th«>rie d.,.. Kettcnbriiche, S. B. PreUSS. Akad. Wis9 . I'lIys.- Math. 1( 1. ( J917). 302-321. (208) I. Schur , C ... ammcltc AbhandlungC1l. BBnd II, Springer· Verla&. Berlin , 1973. [2m] A. Selberg. CoJlecf!ttYH'§h1'e»,,w!t§fflif'&er-Verb& , Berlin, 1989.
,,,
B. C. BERNDT
(210) B. K . Spearman and K . S. Willi""",. TM timple
[211J M. V. Subbar&o, Some ",,,,,,rb "" 1m partitiQn junClion, Amer. Math. Monthly 73 ( 1966), 851-854. [212) Z.- H. Sun and K. S. Williams, R
""
[215J G. N. Watson, Th..,,,,,,,,, .lolM by Ramanuja" (VII ): Th~ on contl"u(d jrru:.lion$, J. london Mallo. Soc. .lr:n. J . Reine An&ew . ).Ialh. 119 ( 1938). 97-128. [219) R. Weaver, New rong"",n"".. far 1M. parhllOn jrmClifm, Ramanujan J. S (2001), 53~3 . [22OJ H. Weber. uhrl>11.ch dn- AIg<'bm, dntter Band, Chelsea. Ne ..· York, 1961. [221J E. T. Whittaker and G . N. Watson, A Ca .....e of Mc>dern ArI4IysU, 4th 00. , Cambridge Uni''el"6i(y p,est. Cambridge. \966. [n2J J. M. Whittaker. Gwrg<' Nevillc 1¥,wan, Biographical Memoirs of Fellows of the Royal Socirty 12 ( 1966), 521-<>30. 1223) S. Wigert, S .. r I 'oron- de grnnde .. r~" narnb .... dM di ......eur. d'"n "". licr, Ark. Mat . "'stron. Fya. 3 (1906-1907), 1- 9. 1224] K. S. Williams, Same Lam/.Jcrl .en:... e%pQns'ans af prnd!J
Ra,,,,,,, ..
'qu"""
1227[ L. Winqu ist, An elementary prool of p(llm + 6 ) J . Comb. Thy. 6 ( 1969). 56-59. Copyrighted Material
=
O( mod 11 ),
Index
"l.el. N_ 11-. ' 3~ addition theorem. 131 Adlp. Co. 23. 1'11, 83 A111c"'D, S .. ~4, 110, ~I A1mk _Iot, G .. 130 And,~. G . E .. 22- 24. 32, N. 82. 106. L08. L~I. 168 Apootol, T. M .• I ~ Asl:ey. R. A_. 25. 83 Atkin, A . O . L .. 28. M
B.iloy. W. 1'1_. 81 ~d.P.. 81 _ hype."",m."ic ..,,; ... 24 , 32 Boe,,,,,,,1h "umboo.. , ~ [1 ... , . ,-., S . • U, "". 7», 83, ,29 8 ..... k , P•• 106 bilo.~.&1 ... m ....ion, 15
01
-,,>nd kl"". 1\) ooo\lDu<>
'ho
C<x>"",.
0.11,,,.,, P.,
»
Dir ichlet, P. C. L .. 83 d,-",iQD., l$, Dobb~ . J . M .• 81 0.00', J . , 49
Duk<. W .• 168 duplico';on formula, 131
Eichho
.,(
f",o.~I_.
In
Bouni&k
0-0>.""', D ., 1M Boylan, M " 110
'beo'.....
Cay..,., A . • no
"
.-,,,,,i... ""..ion. 13
comb;'•
Chon, H. II.. M. H>1, 108. lUI, 157 et..o, O.-V ., 169 S. H., 24. 1\0, <>3, 80, 108
a......
ChO<)'.
'''''''pk«o ~"'p"< 'n"'V"
J_. 106
Cbowla, S .• ZS <:'10 ..... ''- ~ • 0l.4 d,d ..... bod. ~m. 22 .1_ in......-i ...... 151 «>mple'" e!lipl'" Inu,," of ,I>< ~m xl...!, 110. 140
Eul .. . L .. 23 E........ . R. J .,
~
F.-bf)'l
Copyrighted Material
-
'85
~ ~ ~
,
"d "
ill
-
, .
,,
j c ", ,~;l~
R£":;lJS! :!Ii
9.j~
' • a'r.....
~i~;~~.jg
10. •
Q,"'Wj t,. ;H
"11_"·1 !
11 § iii a I-
,
:H~;:l :H.B oS
-
;:;
~
.II
• ,
!
!!
I.
Ii!~R,
..
:l '. ... '! • ... ~ &
~Hi
t] g
l
Z ZZ a
:I
j
J. I~ ~ ~4 ~~~ '!-,
~
...
'~
11
I
_
.__
.i
.j
.." .~
"!
~
~~~ ~ .::;; ..,...i...... )00)( •.
_ . _ N
,; . ' jo.
,
G:I"I ' ~
,
"
2i;:l;
j ",8
j-; B
•i jIi ,~~ - "j
'I~ ...
';
1~~ ",
jH
N ·",·S
!:!~
•
~f
i-
n,
, ,!
..>"
Hl ....
~ J ! Tilli:!", , ..d~ .z ~!~"ll ': 'll '&~;> '3 :g ',- n l
"1~; "8~81"'~J·ii;"
~ .
,,; - ;:!
.:: !i I:i
i-::... .
g'
.,
Jj
'"
l!
(.)
,! '-, =,'J".' .... .d' ii-hnm .J
!t:Ulla:·;
~.. II .. l -. j,i8 ,~" Ii!:i
. • !..;~;;
.lI
~
~ :. i-if'!, 'll'i ~i l H£~ ' ~ B. ,,~
..;
a• ' o~ol
;l;
.; ai
. .
..
- . " -"' . -.
. Os
-
SlQ":
~or
".- . ''''':i i€ "' . , ·• . , . ... -" , i I"
~ .:!:" " ,.;- , ~ ... .! .. '"'-:..: , -" '" a'" ("l 51 •• ::;. ~'ii;ju-:S.
"fa ..,.., . , . . l l~J
I t1nWHol
Ol::!lI. -:;-
.·11' •,d .~ !f r ! e :;;Si ,~ ' (,)0
i
.c~..
::Ii ' .J
, , , ..' -1·-· ··· • '-1 i - .. -
,.:.:=..;
~~*~~~
,.~.:lIi·. ~ J! 'o"';!j": ", (,) . .:,pn ~ __ ~)( ,~8~~~~~jl :liJ ~.j ~i~
"·1 '," .,
"P"!" i~I_1.111~1,llllr
.-
~
....
u=
'!
':I
tl
.-"
.
ri
~:';..;
~'i
~-:
·s · -" -a: " 'd..
::! f.l ~g,.;s
•
h
oR , - . : - . " ' , " ; "
, '"
:z:H:2
.t,)
-;!;
~~~~~e~~~~aa~.i~2
• .i "h. _ 'i e
l C til -1i" '~.f.r:~'
-
t ... . J~,t.;§! 1~~~~. ir"'IHhtH i~m;~1ji1ij
~~jL H dh,J
SPIRIT OF RAMANUJAN ..bi_iod , _...., II, '13. 24 .. _ ...., 6 ",...dratic bm, 56, 13 qu"''''pIe pro
'"
~I'-s, ... ., :n Shonk D_. 43 ohin..d ~ . 2. 109 ~, T . N_ , 49
~ .. , V., I32 Soraubebra, D. D., !!3 s,..-m..., B . K., 79. S2 s.. __.... M. V. , 2:i , 43. 51 ..... of 'Ior ...... ~ d ..... ben, 12 ....... of Oq ....... 61 ....... of __ Oq"*'oa. 59 ....... of olx oquu", 63
:n.
Rackmact..r. IL , 22
RolI_. M _. :Z:; ~,
V .• 14, 1(17 !tarnaDaj.., illDOM, xiii. !cl.
life.
187
"'ch'
I - D V
Iooc _ _ , >
_ofoq_~, 1)4 ....... of ~ _mtwrs,
Rarnaruoj ... ' ........... maliGn. IS, 23, sa. 6"2. 64, 61, l1l.I RarnaruoJ ..... •• ce-rod tMu. f""ct;,XI.,
•
R.-aDuja,D '.
cou"",' ur .., 52 0&1-.1......9 R.onki.., fl. .... , ~ , 105 Rio " M ut.a fw>c.loa, 105 Robi''' ' 8.. 110. II 1ID&cn, 1.- J., I~, 1.\.8. 166-161 II.oc .....R '''''ouja,D """"..-d fro.ctioa. ~ 1 69 _ , 15<1- 157
dcIi""lon, 11>1> d'_C
'M
....... of'.... Oq_56 Sua, Z .- H .• ~2
Swi
'rob, P. Co . 101 ~w
..' .....
".,6
W_land. H., 1M Wahl. P. T " 80, 81 Wat.ooa . C_ N .• 23, 2:i, 21, 150, 165, 169 W_..... . fl.. 51 W eber, H ., 150, I S1 W....., , _ p-fubrt;"a, !1
lldI.c>e"",ber c. B ..
I~
Sc::hrOte<, H_. 150. 151
s.t....., I ••
r.o,
IlD.
W~ , S ~ 44,41
W illiams, K . S o. 52, 1'9. 1 1-33. lr.G WiDq,,""', idomi.y, r.G w",qu"". 1.-. so Wric .... &. ~ ., 1'9. 14
y_, y _. at Vee, .... J .• 40, 4., llXi. 1(17 V"';!yun . H., 50. 108 Vi. J _. 40
SUkOsy...... U
Sd.litli. 1.-, 1.100. 152
5S, 71 .
Zahor-eo
ZI>o.nc:, L.-e... 15T
155
Copyrighted Malerial
Titles
This Series
III
3<1 Bruce C . Berndt . Nwnber theory in
13 Rekha R. Too", ... , Le<:rur<:lO in ~mrtri<: cornbinMorKs. 2006 32 S heldon K . t z , Enumerat i.... pomeuy and otrint; thoo
31 Jobn McC.... ry, A first
CO\1rM ' "
topology: Contillui'y and din>msioo,
"""
JO Serp Tabacbnikov. Gellmetry and billiard.S, '2005 29 Kriotopoor Tapp, Matrix poUI» for uod.,....,nduat'"'" ~ 28 Emm.n ....1 Lesicn e. He&l ill ~ilily,
2005
'21 Reinhard mner , C . Sean Bobun, Samantba M c Collum, .nd T hea "", n Rood e. MMbo.", ... icaJ modem"" A cue ot udiea aPl>f'Ol'th. 2()(6 '26 Robert H udt , Edit .... , Six tbo.me5 OIl otari,..ion. 2QO.I '25 S . V . D..,.bin and B. D. Cbebotarevsky, Tt~iongoul»"" I>qinn~,
U
2QO.I
BruOl! M . Landm .. n and Aaron I\ob,."""n.
R~
tb.ory
01>
tho
int.egen.. 2004
23 S . K . Lando. Lectures
QO
C~ttMi",
functions, 2003
'22 Andreas Arvanitoyo:o'll"" An in' rod"",ioa '0 Lie gool» and tbe ~ry of homogeneous _ _ 2000 '21
W . J . K ti:SOI' and M . T . N.-..k, J>robl.. .... in 111: iDUgTatioo>. 2003
mat~,..icaI
""a1ysi11
20 Kia"" Huld< , Ekroo:m.o.ry aJe;braic ~l)", 2003 19 A . Shen and N . K . Veresbchagin, Computablo, functions, 200J 18 V. V . Yaschenlro. Editor , Crypt
CUNoeI -
mri_ - manifolds .
loS G e rd F iocher, p~ ~hraic cun"", 2001 14 V . A . Vassiliev , Introduction to .opokcy . 2001 13 ~ri<:k J. A lmgren , Jr., Plilleau's proM.m: An in.itMion to vuifold tp:J<J>et ry.
200 1
1"2 \V . J . K . czor and M . T. N ........... PrabJo,,,,, in ma.heo-natical &DaI)":m R Conti" .. and dif£_ntiatioo, 2001
i.,.
For a rompJete li>il of l ilies in t his series, viM! t he AMS Boob~ at www ... nlS.org/ bookstore/ .
Copyrighted Maleria!