A. OF
O.
GEL'FOND'S
TRANSCENDENTAL
A.
A.
METHOD
IN
THE
THEORY
NUMBERS
Shmelev
UDC
511
O b t a i n e d in t...
21 downloads
711 Views
509KB Size
Report
This content was uploaded by our users and we assume good faith they have the permission to share this book. If you own the copyright to this book and it is wrongfully on our website, we offer a simple DMCA procedure to remove your content from our site. Start by pressing the button below!
Report copyright / DMCA form
A. OF
O.
GEL'FOND'S
TRANSCENDENTAL
A.
A.
METHOD
IN
THE
THEORY
NUMBERS
Shmelev
UDC
511
O b t a i n e d in t h i s w o r k , w i t h the h e l p of a m e t h o d of A . O. G e l ' f o n d , a r e s e v e r a l r e s u l t s on a l g e b r a i c i n d e p e n d e n c e of the v a l u e s of an e x p o n e n t i a l function at n o n a l g e b r a i c p o i n t s .
In t h i s w o r k , u s i n g a m e t h o d of Ao 0 . G e l ' f o n d [1, 2] we o b t a i n s o m e r e s u l t s on the a l g e b r a i c n o n e x p r e s s i b i l i t y of c e r t a i n t r a n s c e n d e n t a l n u m b e r s , b e l o n g i n g to a p r e s c r i b e d c o l l e c t i o n , b y any one of t h e m . L e t C, Q a n d A b e the f i e l d s of c o m p l e x , r a t i o n a l , a n d a l l a l g e b r a i c n u m b e r s ; l e t Z b e t h e r i n g of i n t e g e r s , Z[x] the r i n g of p o l y n o m i a l s in x o v e r Z. If P(x) ~: 0, P(x) E Z[x] , then n(P) is the d e g r e e of P ( x ) , a n d h(P) the h e i g h t of P ( x ) . If 71 . . . . , "/s E A , t h e n Q ( ' r l . . . . . 7 s ) is the l e a s t e x t e n s i o n o f Q c o n t a i n i n g T1 . . . . , ~/s; i f D is s o m e a l g e b r a i c f i e l d , t h e n Z(D) is i t s r i n g of i n t e g e r s and u (D) i t s d e g r e e . F o r a n y y E A , t h e n n ( 7 ) , h ( ~ ) , and b(-y) a r e , r e s p e c t i v e l y , the d e g r e e , the h e i g h t , and t h e l e a d i n g c o e f f i c i e n t , o f t h e m i n i m a l p o l y n o m i a l f o r ~/. L e t 0 ~ A, a n d l e t Q (0) be the e x t e n s i o n of 0 b y a d j o i n i n g 0 to it; w e d e f i n e the r i n g l i o f i n t e g e r s of the f i e l d Q(0) a s t h e s e t of n u m b e r s w h i c h a r e p o l y n o m i a l s in 0 w i t h c o e f f i c i e n t s f r o m Z o If 01 is a r o o t of an a l g e b r a i c e q u a t i o n of d e g r e e u w i t h c o e f f i c i e n t s f r o m 1 , t h e n O~ is o u r t e r m f o r the f i e l d Q( 0, 0 i) o r , a s i m p l e a l g e b r a i c f i e l d o f f i n i t e d e g r e e . We s h a l l c a l l n u m e r i c a l i n t e g e r s of the f i e l d 0~ t h o s e p o l y n o m i a l s o v e r Z in 0 and 0i w h o s e d e g r e e in 0 ! d o e s not e x c e e d , - 1 ; w e s h a l l u s e the t e r m d e g r e e of a n u m e r i c a l i n t e g e r i t s d e g r e e in 0, a n d i t s h e i g h t , the m a x i m u m m o d u l u s o f i t s c o e f f i c i e n t s . T h e r i n g of i n t e g e r s of the f i e l d Q~ we d e n o t e b y I~. T H E O R E M 1. L e t the n u m b e r s fit, . . . . rid E C , b e s u c h that z t, . . . , d e n t o v e r Q s u c h t h a t m d >- 2 ( m + d), and s u c h t h a t the i n e q u a l i t y
Zm E C , a r e l i n e a r l y i n d e p e n -
I ti~l -t- .. 9 "+ Id~d ] > exp ( -- ~X in x),
0<1~11 1. . . . + / l ~ [ = x, X>Xo,
(i)
w h e r e 7 > 0 is a c o n s t a n t , h o l d f o r a l l l 1. . . . . l d r Z . T h e n t h e m d n u m b e r s e f i i Z k (i = 1 . . . . . d; k = 1, . . . . m) c a n n o t b e a l g e b r a i c a l l y e x p r e s s e d b y one of t h e m . (In the c a s e w h e r e the n u m b e r s fil . . . . . rid, z 1. . . . . z m a r e r e a l , , c o n d i t i o n (1) c a n b e d r o p p e d . ) C O R O L L A R Y 1. L e t a t , a2 E A , l e t ~ b e a q u a d r a t i c i r r a t i o n a l i t y , and l e t In a 1, In a 2 b e l i n e a r l y i n d e p e n d e n t o v e r 0 * T h e n the f o u r n u m b e r s
~ , ~,
ln~at
~ r~v~,,
e
] 11~ a l ~ in a-~
c a n n o t b e a l g e b r a i c a l l y e x p r e s s e d t h r o u g h a n y one of t h e m . F o r the p r o o f , i n s e r t into T h e o r e m 1 la at
in ai
The truth of bound (1) f o l l o w s f r o m an inequality of A. O. G e l ' f o n d (see [2], p. 167, i n e q u a l i t y (117)). Moscow Scientific Research-Institute of Instruments Construction. Translated from Matematichesk i e Z a m e t k i , V o l . 10, No. 4, p p . 4 1 5 - 4 2 6 , O c t o b e r , 1971. O r i g i n a l a r t i c l e s u b m i t t e d N o v e m b e r 11, 1968.
9 1972 Consultants Bureau, a division of Plenum Publishing Corporation, 227 West 17th Street, New York, N. Y. lO011. All rights reserved. This article cannot be reproduced for any purpose whatsoever without permission of the publisher. A copy of this article is available from the publisher for $15.00.
672
C O R O L L A R Y 2. L e t fl be a q u a d r a t i c i r r a t i o n a l i t y ; l e t IDa l, lna 2 be l o g a r i t h m s of a l g e b r a i c n u m b e r s , l i n e a r l y i n d e p e n d e n t o v e r Q . T h e n a m o n g the n u m b e r s
a t l e a s t two a r e a l g e b r a i c a l l y i n d e p e n d e n t . Into the h y p o t h e s i s o f T h e o r e m 1 we i n s e r t t ~1 = ( l ~ , ~ = ~ f n a~. ~ = ~ ~/ln al, ~ = ~ ~flh-~a2, z~ = ]/-1Ta~, z 2 = ~ : z.~ = ~ ]/-h-~a~, z~ = ~ ] ( i n a ~ and u s e the G e l ' f o n d i n e q u a l i t y a l r e a d y r e f e r r e d to. C O R O L L A R Y 3. L e t /3 be a q u a d r a t i c i r r a t i o n a l i t y , l e t 0 not b e l o n g to the q u a d r a t i c f i e l d Q ([~), and l e t l n a l , lna 2 b e l o g a r i t h m s of a l g e b r a i c n u m b e r s , l i n e a r l y i n d e p e n d e n t o v e r O . T h e n the n u m b e r s ~0
~0
al, a2, a ~ a~, a~, a 2
c a n n o t be a l g e b r a i c a l l y e x p r e s s e d in t e r m s of any one o f t h e m . tn the h y p o t h e s i s of T h e o r e m 1 we put fit = l n a l , f~2 = fl ~ l n a l , f13 = lna2, /34 = f~ lna2, z i = 1, z 2 = 8 , z 3 = 0, z 4 = f~0. The b o u n d (1), a s a b o v e , f o l l o w s f r o m G e l ' f o n d ' s i n e q u a l i t y . T h e f o l l o w i n g t h e o r e m is a s t r e n g t h e n i n g of r e s u l t s of F r a n k l i n [3] and S c h n e i d e r ([4], T h e o r e m 27). F o r m u l a t i o n o f t h e s e r e s u l t s is a l s o to b e found on p a g e 36 o f the r e v i e w [5]. T H E O R E M 2. L e t a , f i e C , a ~ 0; 1, fl~/5 O ; ~, ~, ~3~-A, ~c/~ (2, m a x { n (~), n (~), n (~3)}~<~n0, w h e r e n o -> 2 is fixed; l e t H = m a x [h(~l), h(~2), h(~3)L T h e n f o r H > H0(n0, a , /3) the i n e q u a l i t y ]a - - ~ii nLI a~ - - ~ [ q- [ ~ - - ~ ] ~ exp (--ln~Hln~ lnH).
(2)
h o ! d s . [ F o r t h e c a s e ~ a ~ O and n o -> 1, i n e q u a l i t y (2) is t r u e u n d e r the a d d i t i o n a l c o n d i t i o n In h ( ~ ) / l n H > co, w h e r e co > 0 is a f i x e d c o n s t a n t . ] C O R O L L A R Y 1. L e t ~ A , h ( ~ ) = H , n ( ~ ) - < n o, w h e r e n o >-- 1 i s fixed; let P ( x l , x 2) be a p o l y n o m i a l in two i n d e p e n d e n t v a r i a b l e s w i t h c o e f f i c i e n t s f r o m Z i r r e d u c i b l e o v e r O s u c h t h a t Op/3x~ ~ 0, 0 P / ~x 2 ~ 0; l e t g be a f i x e d t r a n s c e n d e n t a I r o o t of the e q u a t i o n P ( z , zZ) = 0. T h e n the i n e q u a l i t y [~ - - ~[ < exp (--lna
It in 4 In Hi
(3)
has only a finite number of solutions. C O R O L L A R Y 2.
L e t ~0 = (~2/~/I) be i r r a t i o n a l and l e t the i n e q u a l i t y ]q0 - - ~[ < exp (--In 4 H ln~ln H)
(4)
h a v e an i n f i n i t e s e t of s o l u t i o n s in n u m b e r s ~ ~ A o f f i x e d d e g r e e , h(~) = H. T h e n t h e t h r e e n u m b e r s ~0, e ~ 1, e~2 c a n n o t b e e x p r e s s e d in t e r m s of a n y one of t h e m . C o r o l l a r i e s 1 and 2 a r e r e a d i l y p r o v e d o n r e p e a t i n g r e a s o n i n g in N. I. F e l ' d m a n ' s w o r k [6] (p. 16) u s i n g b o u n d s g i v e n in L e m m a 5 of [7] and L e m m a 6, C h a p t e r 3, o f [2]. C O R O L L A R Y 3.
L e t t h e n u m b e r s a , fl be a l g e b r a i c a l l y i n d e p e n d e n t o v e r Q , a n d l e t the i n e q u a l i t y [a .... ~[ -k [[~ - - ~[ < exp (--ln ~ H ht ~ in H)
h a v e an i n f i n i t e s e t of s o l u t i o n s in ~l, ~2 ~ A , m a x ~n (~)1, n (r
(5)
-< n 0, w h e r e no -> 1 is f i x e d ,
[I = max {h'(~), hi(~)}, Inh:(~e)/lnH > c~, w h e r e c 1 > 0 i s a c o n s t a n t . T h e n t h e n u m b e r s a , fl a n d a/~ a r e a l g e b r a i c a l l y i n d e p e n d e n t . (If a m o n g the n u m b e r s ~ f i n i t e l y m a n y a r e i r r a t i o n a l , t h e n the c o n d i t i o n in h (~2)/ln H > c 1 c a n b e d r o p p e d . ) P r o o f . S u p p o s e the n u m b e r s a, fl, a/~ w e r e a l g e b r a i c a l l y d e p e n d e n t , i . e . , t h a t t h e r e e x i s t e d an i r r e d u c i b l e p o l y n o m i a l P ( x 1, x2, x~), c o n t a i n i n g xs, with c o e f f i c i e n t s f r o m g s u c h t h a t P (a, fl, aft) = 0. S u p p o s e P0 is the d e g r e e o f t h i s p o l y n o m i a l in the c o l l e c t i o n of v a r i a b l e s ~l = n(~l), u~ = n(~2)
i p (~, ~., a ' ) ] ~ ] P ( ~ , ~, a~) - - P (~, ~e, a~)[ q- ] P (a, ~, a~', -- P (~, ~, a ~ ) [ ~ ~-
f~:~~b ~
(~' x~, a~)
ia,,~ ~OP (x~, ~, a,~)dx~
dx~'<exp (--o-i-o- i la~ H In ~ In H ) . 673
L e t ~1 = ~l,l; l e t ~t,2 . . . . . The number
~l,v 1 b e a d j o i n t f o r ~l; l e t ~2 = ~2,1; l e t ~2,2 . . . . .
~2,vi b e a d j o i n t f o r ~2.
~ ~j~= p(~,~, ~,j, a~) i s a p o l y n o m i a l in a f t o f d e g r e e n o t h i g h e r t h a n u0 ul u2 and of h e i g h t not g r e a t e r t h a n H'- ....... . U s i n g L e m m a 5 f r o m [7] and L e m m a 6 f r o m C h a p t e r 3 of [2], we g e t t h a t t h e r e e x i s t s ~:~ ~ A, n (G) < VoVaV:, h (G) H a'~o','~, s u c h t h a t
S i n c e m a x ~ ( ~ l ) , h(~2), h(~a)} -< H .~......... , and the d e g r e e s of t h e s e n u m b e r s a r e b o u n d e d , it f o l l o w s f o r H > H0 by Theorem 2 la - - ~ I + I~ - - ~ l + la:s - - GI ~ (--243v~v~v~In~ H .la~ h ~ / / ) , w h i c h c o n t r a d i c t s (6) and e s t a b l i s h e s the t r u t h of C o r o I l a r y 3. F r o m C o r o l l a r y 2 and A . O. G e l ' f o n d ' s T h e o r e m 2 ([2], p. 166) f o l l o w s a c e r t a i n s t r e n g t h e n i n g o f G e l ' f o n d ' s T h e o r e m 2, f o r m u l a t e d in T h e o r e m 3 and c o n s i s t i n g in d r o p p i n g the l i m i t a t i o n s on p a r a m e t e r s ~1 a n d ~2 ( s e e [2], p. 166, i n e q u a l i t y (114)), T H E O R E M 3. L e t the n u m b e r s ~1 and ~2 a s w e l l a s oq, a2, o~ = 1, be l i n e a r l y i n d e p e n d e n t o v e r Q~ T h e n at l e a s t one of the t e n n u m b e r s ~1, ~2, e l , ~ eC~i~k (i = 1, 2, 3; k = 1, 2) d o e s not b e l o n g to the f i e l d We note t h a t i n s t e a d o f C o r o l l a r y 2, f o r the d e r i v a t i o n o f T h e o r e m 3, w e c o u l d u s e s o m e r e s u l t s of [6]. W e a p p e n d s o m e c o r o l l a r i e s of T h e o r e m 3. C O R O L L A R Y 1. S u p p o s e 0 ~ Q is not a q u a d r a t i c i r r a t i o n a l i t y . T h e n the five n u m b e r s e 02, e 03, e 04 c a n n o t b e a l g e b r a i c a l l y e x p r e s s e d in t e r m s o f a n y one o f t h e m .
0, e 0,
C O R O L L A R Y 2, L e t ~1 ~ Q , and l e t In a l , In a2, In a 3 b e l o g a r i t h m s o f a l g e b r a i c n u m b e r s , l i n e a r l y i n d e p e n d e n t o v e r Q . T h e n the n u m b e r s ~ , a~t, a2~, a~, In a~, In a2, In a 3 c a n n o t be a l g e b r a i c a l l y e x p r e s s e d in t e r m s of a n y one of t h e m . P r o o f of T h e o r e m 1. S u p p o s e t h a t on a j o i n i n g to the f i e l d O the n u m b e r s e f i i Z k (i = 1 . . . . . d; k = 1..... m) the f i e l d O~ h a s b e e n o b t a i n e d . By a t h e o r e m of S. L a n g ([8], p . 8) a t l e a s t one of t h e s e n u m b e r s is t r a n s c e n d e n t a l . H e n c e we s h a l l a s s u m e t h a t the f i e l d O[ i s g e n e r a t e d b y the n u m b e r s 0 and 01~ W i t h o u t l o s s of g e n e r a l i t y we c a n c o n s i d e r t h a t t h e h i g h e s t c o e f f i c i e n t of the e q u a t i o n f o r 0~ i s 1 and t h a t t h e r e m a i n i n g c o e f f i c i e n t s a r e n u m b e r s o f the r i n g t7. L e t 02 . . . . . 0v b e a d j o i n t f o r 0i r e l a t i v e to the f i e l d Q (0). By a s s u m p t i o n , the m d n u m b e r s
e3iZk
(~=1,
..,d;
k=t
(7)
. . . . ,m)
c o i n c i d e with m d n u m b e r s o f the f i e l d SitT~
w h e r e S i , T i 611" (i = 1 . . . . .
(i = t , . . . , rod),
(8)
T = T~. . . T~d,
rod).
Consider the function ](z)
N "X~N C - e(~q-'"l-tca~a)z t = ~k~=0 " d-J,~ 0 ~.......d
1
(9)
w h e r e N ~ Z h e r e a n d t h r o u g h o u t t h e s e q u e l d e n o t e s a l a r g e enough p o s i t i v e n u m b e r . L e t Xi > 0 (i ~: 1, 2 . . . . ) be c o n s t a n t s n o t d e p e n d i n g on N . R e p e a t i n g c o n s i d e r a t i o n s i n t r o d u c e d in the p r o o f of T h e o r e m 1, C h a p t e r 3 [2] (page 196) we c o n c l u d e t h a t t h e r e e x i s t Ck0,k I . . . . . kd ~ Z , in a g g r e g a t e d i f f e r e n t f r o m z e r o , 0 < m a x tCk0,kl, . . . . . k d [ < exp (XlN(m+d)/m) s u c h t h a t f ( z ) = 0 a t the p o i n t s
674
z -- l,zt +. 9 .q- l,~z,~, O.<_li~[7.=Nel"],
•
•
Let g ~ C be an arbitrary number. . . . . )o
1 ~i~m.
(t0)
Define t h e s y m b o l (g) b y the r e l a t i o n (g) = m i n l g - k f
(k = 0,
In [2] (p. 180) the i n e q u a l i t y ~ L + v Ig -- k i > (g) 2-L-~ L!.
(ii)
k~p
w a s d e m o n s t r a t e d . U s i n g i n e q u a l i t i e s (1) a n d (11), w e g e t , f o r , 8'1 : f&f + (1/l&f, o -< L i tkil+ . ~ +Ikdt >0,
~,=-L~" 9
kd=_~d l h~, + . . +.
~=_~ ke~l > (~) -(N<e I~ '~-~0=_~ 9 . . _Vf.~N-Ld (k= ~~ +. ..
+
<- N (i : 1 , . . . .
d),
,~ ' ~7)~d (i2)
• 2-N-1 N! > (~)-(N+I)d 2-(N+I)d (N!)(N+I)~-Ie-~'(N+1)em N > e - 2 ~ ,,
2/2
W e u s e L e m m a 3, C h a p t e r 3 [2], s u b s t i t u t i n g into it T1 ~ y t h a t l e m m a a t l e a s t one o f t h e n u m b e r s
=
l / d , T0 : 2 / m , s = l / d , T0 = 2 / m , s : i / d ,
= 2T/d,
is d i f f e r e n t f r o m z e r o . S u p p o s e r 1 = [8(1 + d + T) 1 / m N d / m ] + 1, z 0 = ll,0Z 1 + . . . +l m,0Zm, 0 <-- Zi, 0 --< r , - - 1 , 1 ~ i --< m , i s one s u c h n u m b e r s o t h a t L (Zo) = T ~'~ ] (1~,o z~ + . . .
+ l~,~z~) ,~- 0.
t t f o l t o w s f r o m (9) a n d (13) t h a t f0(z0) ~ I 1. U s i n g (9), (10), a n d (13), we bound t h e q u a n t i t y If0(z0) t :
+ w h e r e 17 ts t h e c i r c l e t g t = N ( d + j / m ,
n: C [z[ -< 8 r , ( 1 + l z , [ + 9 9 9 + t z m ] ) .
(-, It f o l l o w s f r o m (14) t h a t
If0 (zo) I < exp (--)~sN a tn N).
(i5)
F r o m (9) a n d (13) t h e i n e q u a l i t y
s ~--!
v--I
follows, whore (16) L e t f 0 ( z 0 ) = f i , o ; c o n s i d e r the n u m b e r s f~,o = ~ i - o l ~ , 5 ~ Dr,r~0~0[' It is known t h a t f i , 0
* 0 (i = 2 . . . . .
( i = 2 . . . . . ~).
u)~ H e n c e
r (0) = I-L1 ]~,~4= 0; b e s i d e s 5~(0) is a p o l y n o m i a l in 0 w i t h c o e f f i c i e n t s f r o m Z , w h o s e h e i g h t h(~) and d e g r e e n ( ~ ) , a c c o r d i n g to (16), s a t i s f y t h e i n e q u a l i t y max {n ((D), in h (r
~ %8N (m+a)lm.
(17)
I t f o l l o w s f r o m i n e q u a l i t i e s (15) and (16) t h a t ]rb (0)[ < exp (--)~ N a in N).
(18)
To the s e q u e n c e of p o l y n o m i a l s (I,(0), o b t a i n e d f o r d i f f e r e n t N, w e now a p p l y L e m m a 7 f r o m C h a p t e r 3 of [2], c h o o s i n g a (N) = 3 ~ N ( m + d ) / m , 0(N) = (X7/9), ~ In N; w e o b t a i n t h a t 0,5=_ A w h i c h c o n t r a d i c t s t h e c h o i c e of 0. P r o o f of T h e o r e m 1 in the r e a l c a s e p r o c e e d s w i t h o u t u s i n g c o n d i t i o n (1) s i n c e i n s t e a d o f L e m m a 3, C h a p t e r 3, [2], w e a p p l y L e m m a 1 of C h a p t e r 12 of [9].
675
P r o o f of T h e o r e m 2. Suppose T h e o r e m 2 is untrue; i.e., the inequality Ia
-
h a s an infinite s e t of s o l u t i o n s .
/(z)
=
-~-t~ -- ~ai < e x p ( - i n 4 H I n s i n H )
~lt + l a ~ - - ~If
-
Put N = [ln H In 1/4 In H] and c o n s i d e r the function
Xf.
~.
C~z
a , 3[~ ==[N~In'/,N],
w h e r e Ck~,k 2 ~ Z in a g g r e g a t e d i f f e r f r o m z e r o . v~ = n (~)
(19)
(i = t, 2, 3),
(20)
M~ ~= [Nln-V,N],
Let
1,,~ = I (l~ + l # ) , 0 ~ l~ ~ ~V~
(~ = 1, 2),
(21)
~t~,l 2 being n u m b e r s obtained by r e p l a c i n g , in the q u a n t i t i e s f l l , l 2 a by ~I, aft by ~2, fl by ~3,
(22) w h e r e the n u m b e r s Bl~,l~, . . . .
n~ ~ Z and f o r ll, 12 s a t i s f y i n g (21), the bound
holds. U s i n g L e m m a 5, C h a p t e r 12, [0], Ckl,k ~ ~
Z c a n be so chosen that f o r 0 -< lI, 12 ~ L I =
N :~
7
the s u m , t a k e n in b r a c e s in E q s . (22) v a n i s h e s , and 1 ~ m a x tCkl,k 2 l< exp (5 NI). F o r this c h o i c e of Ckl,k 2 ~,~=
0, O~l~, l ~ L ~ = [
l
N~]
(23)
Since f o r 0 --< II, 12 -< N 3 (24) it follows, f o r tl, t2, s a t i s f y i n g (23), that tf/l,/2}< exp ( - ( 9 / 1 2 ) N 4 In 2 N). We bound f r o m below ~he q u a n t i t i e s ili +12~ I, 0 -< li, 12 - N3~ F r o m the inequality ik l + k2fll> Ik 1 + k 2 ~ t - f k 2 ( ~ 3 - f i ) t and the bound lk t + k 2 ~ l > 10e-N, N > N 2, c o n s t i t u t i n g the c o r o l l a r y of L e m m a 2 [10], in the light of (19), we get that tk i +k2fii> 9e-N. Suppose p = 3e -N. Applying the Hermit(an interpolation formula for I z [ -< N2 In N LI
L~
w h e r e the c o n t o u r F is the c i r c l e I ~i = N 3, and w h e r e Fll,12 is the c i r c l e t ~-ll-12fil = p. It follows f r o m (20) and (25) that (26) U s i n g the m e t h o d of [I1], we bound the i n t e g r a l o v e r Yli,l 2. L e t
R e p e a t i n g the r e a s o n i n g applied in [11] (on p. 486), we get ~ pa (Ll -- 2)! 2L~-3
whence follows max It follows f r o m (27) and (25) that
676
I-L=0 l]k==o ~ - kl - k~ < exp (2N' In N).
(27)
__L ~L~
L~
i
L~
L~
~-k,-~.l~ ; - ,
/<exPt,--Ti-N~'ln'N)
'
(28)
and finally, f o r t z l ~ N 2 In N t N a In N ) " 9v~v~va
(29)
I 2 ~ L2 = L.V2hL'/'Nt,
(30)
If (z) [ < exp ( C o n s i d e r the q u a n t i t i e s
St,,z~, ( ) ~ l . f o r t h e s e l i, l 2 we show that ~Plll2 = O~
Suppose that f o r at l e a s t one p a i r II, 12, gVll,l 2 ~ 0; then by L e m m a 2 of [10] I ~vlt,12f> e x p ( - 4 ~ l ~2~3N4) and lfll,l 2 t> ] gv/1,/2t-]~vll,12--fll,121, which gives the l o w e r bound I fz,.z~[ > exp (-- 5vlv~%N4),
(31)
c o n t r a d i c t i n g the bound (29). T h u s , f o r It, I2, s a t i s f y i n g (15) ~vll, l ~ = O. It follows f r o m (24) that ii~,,l~[~exp(---~N41rPN,,
O~l~, l~<~L~.
(32)
A g a i n we u s e the H e r m i t i a n i n t e r p o l a t i o n f o r m u l a , r e p l a c i n g L 1 by L2, the c o n t o u r r by the c o n t o u r ~1 - the c i r c l e l ~ I = N31n 1/2 N f o r ] z I -< N 3 In 2/~ N~ Bounding the modulus of the f i r s t t e r m in (25) we get
F o r the s e c o n d t e r m , we r e p e a t the r e a s o n i n g u s e d in d e r i v i n g bound (28); we get
F r o m (33) and (34) it follows, f o r lz] ~ N ~ In 2/5 N
]/(z)]<
e x p ( - - ~ 3 NalnV, N lnln N ) .
(35)
Let
it follows f r o m the definition o f f l ( z ) that i n e q u a l i t y (35) is fulfilled f o r f l ( z ) w h e r e I Zl ! -< i In a t N31n 2/s N. U s i n g L e m m a 8 of [11] we obtain that max /~l,k2 I 6',. ' ,. [ < exp ( - - t-~ N ' I n ' / . N l n l n N )
P
(36)
and, by choice of c o e f f i c i e n t s max [ Ck,,~ [>~ t. /r
(37)
T h e l a s t two bounds contradict, whence follows the truth of T h e o r e m 2 for i r r a t i o n a l ~3. K ~3 ~ O, ~3 = T1/T2 (TI, T2) = 1, then f o r Jkll + jk21 -< 1n6T2 it follows f r o m the inequality Ik 1 + k2/71 ~ tk 1 +k2~3-1tk2(/7-~3)t and f r o m the condition In h (~3)/In H > c o that tk 1 +k2/71 > 1/(2T). The e n s u i n g r e a s o n i n g b e g i n ning with Eq~ (25) c o i n c i d e s v e r b a t i m with that introduced a b o v e . We r e m a r k that r e a s o n i n g a n a l o g o u s to that u s e d in the p r o o f of T h e o r e m 2 e s t a b l i s h e s t r a n s e e n d e n t a ! i t y of the n u m b e r s ~1, if ~ and ~ a d m i t "too good" a s i m u l t a n e o u s a p p r o x i m a t i o n by a l g e b r a i c n u m b e r s . T h i s r e s u l t s f r o m s o m e s t r o n g e r known r e s u l t s of R i c c i , F r a n k l i n , P l a t o n o v (see [5], p. 36 and the b i b l i o graphy) in c a s e one of the n u m b e r s ~, 77 is not a l g e b r a i c , and the a p p r o x i m a t i n g e l e m e n t s have fixed d e g r e e . T H E O R E M 4. L e t ~, ~i ~ C be fixed and let the inequality [~ - - ~11 -~ Iq -- ~21 < exp (--ln3H In In H) h a v e an infinite s e t of solutions in ~l, ~2 ~ A ,
(38)
;
m a x tm(~l), n(~2)} ~ n0, w h e r e no -> 1 is c o n s t a n t ,
677
tt=max{h(~l), h(~)},
inH
>c,
where e > 0 is constant. (In the ease where among the numbers ~2 an infinite set is irrational, the eondition In h (~2)/ln H > c can be dropped.) Then the number is transcendental. Considered in the p r o o f is the auxiliary function
f(z)
~.M~ --M~
~i~1=0>~=0
A~.~zk,~k2z, M 1 = [N-'lnV~A:],
M 2 = [Nln'/-N],
where Aktk2 E Z in aggregate different f r o m z e r o , N = [In H In 1/~ In H]. LITERATURE 1. 2. 3. 4. 5. 6. 7. 8. 90 10. Ii.
678
CITED
A . O . Gel'fond, "On algebraic independence of transcendental numbers of certain c l a s s e s , " Uspekhi Matem. Nauk, 4, No. 5 (33), 14-48 (1949). A . O . Gel'fond, T r a n s c e n d e n t a l and Algebraic Numbers [in Russian], Moscow (1952). P. Franklin, "A new class of transcendental n u m b e r s , " T r a n s , A m e r . Math. Soc., 42, 155-182 (1937). T. Schneider, Einfi~hriJng in die transzendente Zahlen, Berlin, 1957. N . I . F e l ' d m a n and A. B. Shidlovskii, "The development and p r e s e n t state of the theory of t r a n s cendental n u m b e r s , " Uspekhi Matem. Nauk, 22, No. 3 (135), 3-81 (1967). N~ I. F e l ' d m a n , "Arithmetic p r o p e r t i e s of the solutions of a transcendental equation," Vestnik Moskv. Gos. Univ., Ser. I, No. 1, 13-20 (1964). N . I . Fel'dman, "Approximation of some transcendental numbers, I" Izv. Akad. Nauk SSSR, Set. Matem., 15, 53-74 (1951). S. Lang, Introduction to Transcendental Numbers, London (1966). A . O . Gel'fond and Yu. V. Linnik, E l e m e n t a r y Methods in Analytic Number Theory [in Russian], Moscow (1962). N . I . F e l ' d m a n , "Refinement of bounds of linear f o r m s in logarithms of algebraic n u m b e r s , " Matem. Sbornik, 7__~7(119), No. 3, 423-436 (1969). N . I . F e l ' d m a n , "On approximation by algebraic numbers of logarithms of algebraic n u m b e r s , " Izv. Akad. Nm~k SSSR, Ser. Matem., 2 4 , 4 7 5 - 4 9 2 (1960).