HANDBOOK OF
OPTICAL MATERIALS
The CRC Press Laser and Optical Science and Technology Series Editor-in-Chief: Marvin ...
89 downloads
1557 Views
3MB Size
Report
This content was uploaded by our users and we assume good faith they have the permission to share this book. If you own the copyright to this book and it is wrongfully on our website, we offer a simple DMCA procedure to remove your content from our site. Start by pressing the button below!
Report copyright / DMCA form
HANDBOOK OF
OPTICAL MATERIALS
The CRC Press Laser and Optical Science and Technology Series Editor-in-Chief: Marvin J. Weber A.V. Dotsenko, L.B. Glebov, and V.A. Tsekhomsky
Physics and Chemistry of Photochromic Glasses Andrei M. Efimov
Optical Constants of Inorganic Glasses Alexander A. Kaminskii
Crystalline Lasers: Physical Processes and Operating Schemes Valentina F. Kokorina
Glasses for Infrared Optics Sergei V. Nemilov
Thermodynamic and Kinetic Aspects of the Vitreous State Piotr A. Rodnyi
Physical Processes in Inorganic Scintillators Michael C. Roggemann and Byron M. Welsh
Imaging Through Turbulence Shigeo Shionoya and William M. Yen
Phosphor Handbook Hiroyuki Yokoyama and Kikuo Ujihara
Spontaneous Emission and Laser Oscillation in Microcavities Marvin J. Weber, Editor
Handbook of Laser Science and Technology Volume I: Lasers and Masers Volume II: Gas Lasers Volume III: Optical Materials, Part 1 Volume IV: Optical Materials, Part 2 Volume V: Optical Materials, Part 3 Supplement I: Lasers Supplement II: Optical Materials Marvin J. Weber
Handbook of Laser Wavelengths Handbook of Lasers
HANDBOOK OF
OPTICAL MATERIALS Marvin J. Weber, Ph.D. Lawrence Berkeley National Laboratory University of California Berkeley, California
CRC PR E S S Boca Raton London New York Washington, D.C.
3512 disclaimer Page 1 Thursday, August 8, 2002 11:14 AM
Library of Congress Cataloging-in-Publication Data Weber, Marvin J., 1932Handbook of optical materials / Marvin J. Weber. p. cm. Includes bibliographical references and index. ISBN 0-8493-3512-4 (alk. paper) 1. Optical materials—Handbooks, manuals, etc. 2. Lasers—Handbooks, manuals, etc. 3. Electrooptics—Handbooks, manuals, etc. I. Title. QC374 .W43 2002 621.36—dc21
2002073628
This book contains information obtained from authentic and highly regarded sources. Reprinted material is quoted with permission, and sources are indicated. A wide variety of references are listed. Reasonable efforts have been made to publish reliable data and information, but the author and the publisher cannot assume responsibility for the validity of all materials or for the consequences of their use. Neither this book nor any part may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, microfilming, and recording, or by any information storage or retrieval system, without prior permission in writing from the publisher. The consent of CRC Press LLC does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific permission must be obtained in writing from CRC Press LLC for such copying. Direct all inquiries to CRC Press LLC, 2000 N.W. Corporate Blvd., Boca Raton, Florida 33431. Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation, without intent to infringe.
Visit the CRC Press Web site at www.crcpress.com © 2003 by CRC Press LLC No claim to original U.S. Government works International Standard Book Number 0-8493-3512-4 Library of Congress Card Number 2002073628 Printed in the United States of America 1 2 3 4 5 6 7 8 9 0 Printed on acid-free paper
Preface The Handbook of Optical Materials is a compilation of the physical properties of optical materials used in optical systems and lasers. It contains extensive data tabulations but with a minimum of narration, in a style similar to that of the CRC Handbook of Chemistry and Physics. References to original or secondary sources of the data are included throughout. The objective of the handbook is to provide a convenient, reliable source of information on the properties of optical materials. Data in a handbook of optical materials can be presented by material (e.g., SiO2, CaF2, Ge), by property (e.g., refractive index, thermal expansion, hardness), by wavelength region (e.g., infrared, visible, ultraviolet), or by application (e.g., transmitting optics, laser hosts, polarizers). In this handbook data are grouped by material properties. Thereby one can compare different materials with respect to their properties and suitability for a particular application. The volume is divided into sections devoted to various forms of condensed matter (crystals, glasses, polymers, metals), liquids, and gases. Within each section physical properties, linear and nonlinear optical properties, and many special properties such as electrooptic, magnetoopic, and elastooptic properties of the materials are tabulated. The optical solids included are mainly inorganic materials; optical liquids are mainly organic substances. If by an optical material one means a material that exhibits some optical property such as transmission, absorption, reflection, refraction, scattering, etc., the number of materials to be considered becomes unmanageable. Thus the inclusion of materials in this volume is selective rather than exhaustive. In the case of commercial optical glasses, for example, properties of representative types of glasses are given but not properties for all compositional variations. Glasses with special properties or for special applications are included, however. Bulk materials rather than thin films and multilayer structures are considered. Although optical glasses epitomizes an engineered material, other engineered optical materials such as nanomaterials, quantum wells, or photonic crystals are also not included (although one of the last is listed in Appendix II). Although today optics can encompass x-ray and millimeterwave optics, coverage is limited to materials for the spectral range from the vacuum ultraviolet (~100 nm) to the infrared (up to 100 µm) portion of the electromagnetic spectrum. Among optical materials and properties not treated explicitly are photorefractive materials, liquid crystals, optical fibers, phase-change optical recording materials, luminescent materials (phosphors, scintillators), optical damage, and materials preparation and fabrication. Much of the numerical data in this handbook is from Volumes III, IV, V, and Supplement 2 of the CRC Handbook of Laser Science and Technology. These volumes should be consulted for more detailed descriptions of properties and their measurement (the contents of the volumes and the contributors are given in the following pages). In many instances the data in these volumes have been reformatted and combined with additions and recent developments. Several new sections have been added. For example, gases can play various roles as © 2003 by CRC Press LLC
an optical material—as transmitting media, active media for Faraday rotation, frequency conversion, filter, and phase conjugation. Physical and optical properties of a selected number of gases are therefore included in a final section. The discovery of new optical materials has been accompanied by a somewhat bewildering and befuddling proliferation of abbreviations and acronyms. An appendix has been added to decode several hundred of these terms. Common or mineralogical names for optical materials are also included. Methods of preparing optical materials and thin films have developed their own terminology; many of these abbreviations are given in another appendix. This volume has benefited from the efforts of many contributors to the CRC Handbook of Laser Science and Technology series. I am indebted to them for what in many cases have been very extensive compilations. In the course of preparing this volume I have also benefited from other input provided by Mark Davis, Alexander Marker, Lisa Moore, John Myers, and Charlene Smith; these are gratefully acknowledged. Finally, I appreciate the excellent help provided by Project Editors Samar Haddad and Joette Lynch, Production Supervisor Helena Redshaw, and the staff of the CRC Press in the process of preparing this handbook. Marvin J. Weber Danville, California
© 2003 by CRC Press LLC
The Author Marvin John Weber received his education at the University of California, Berkeley, and was awarded the A.B., M.A., and Ph.D. degrees in physics. After graduation, Dr. Weber continued as a postdoctoral Research Associate and then joined the Research Division of the Raytheon Company where he was a Principal Scientist working in the areas of spectroscopy and quantum electronics. As Manager of Solid State Lasers, his group developed many new laser materials including rare-earth-doped yttrium orthoaluminate. While at Raytheon, he also discovered luminescence in bismuth germanate, a scintillator crystal widely used for the detection of high energy particles and radiation. During 1966 to 1967, Dr. Weber was a Visiting Research Associate with Professor Arthur Schawlow’s group in the Department of Physics, Stanford University. In 1973, Dr. Weber joined the Laser Program at the Lawrence Livermore National Laboratory. As Head of Basic Materials Research and Assistant Program Leader, he was responsible for the physics and characterization of optical materials for high-power laser systems used in inertial confinement fusion research. From 1983 to 1985, he accepted a transfer assignment with the Office of Basic Energy Sciences of the U.S. Department of Energy in Washington, DC, where he was involved with planning for advanced synchrotron radiation facilities and for atomistic computer simulations of materials. Dr. Weber returned to the Chemistry and Materials Science Department at LLNL in 1986 and served as Associate Division Leader for condensed matter research and as spokesperson for the University of California/National Laboratories research facilities at the Stanford Synchrotron Radiation Laboratory. He retired from LLNL in 1993 and is at present a staff scientist in the Department of Nuclear Medicine and Functional Imaging of the Life Sciences Division at the Lawrence Berkeley National Laboratory. Dr. Weber is Editor-in-Chief of the multi-volume CRC Handbook Series of Laser Science and Technology. He has also served as Regional Editor for the Journal of Non-Crystalline Solids, as Associate Editor for the Journal of Luminescence and the Journal of Optical Materials, and as a member of the International Editorial Advisory Boards of the Russian journals Fizika i Khimiya Stekla (Glass Physics and Chemistry) and Kvantovaya Elektronika (Quantum Electronics). Among several honors he has received are an Industrial Research IR-100 Award for research and development of fluorophosphate laser glass, the George W. Morey Award of the American Ceramics Society for his basic studies of fluorescence, stimulated emission, and the atomic structure of glass, and the International Conference on Luminescence Prize for his research on the dynamic processes affecting luminescence efficiency and the application of this knowledge to laser and scintillator materials. Dr. Weber is a Fellow of the American Physical Society, the Optical Society of America, and the American Ceramics Society and a member of the Materials Research Society.
© 2003 by CRC Press LLC
Contributors Stanley S. Ballard, Ph.D. University of Florida Gainesville, Florida
Larry G. DeShazer, Ph.D. Spectra Technology, Inc. Bellevue, Washington
Lee L. Blyler, Ph.D. AT&T Bell Laboratories Murray Hill, New Jersey
Marilyn J. Dodge, Ph.D. National Bureau of Standards Washington, DC
James S. Browder, Ph.D. Jacksonville University Jacksonville, Florida
Albert Feldman, Ph.D. National Institute of Standards and Technology Washington, DC
Allan J. Bruce, Ph.D. AT&T Bell Laboratories Murray Hill, New Jersey Hans Brusselbach, Ph.D. Hughes Research Laboratory Malibu, California Bruce H. T. Chai, Ph.D. Center for Research in Electro-Optics and Lasers University of Central Florida Orlando, Florida Lloyd Chase, Ph.D. Lawrence Livermore National Laboratory Livermore, California Di Chen, Ph.D. Honeywell Corporate Research Center Hopkins, Minnesota Lee M. Cook, Ph.D. Galileo Electro-Optic Corp. Sturbridge, Massachusetts
James W. Fleming, Ph.D. AT&T Bell Laboratories Murray Hill, New Jersey Anthony F. Garito, Ph.D. Department of Physics University of Pennsylvania Philadelphia, Pennsylvania Milton Gottlieb, Ph.D. Westinghouse Science and Technology Center Pittsburgh, Pennsylvania William R. Holland, Ph.D. AT&T Bell Laboratories Princeton, New Jersey Ivan P. Kaminow, Ph.D. AT&T Bell Laboratories Holmdel, New Jersey Donald Keyes U.S. Precision Lens, Inc. Cincinnati, Ohio
Gordon W. Day, Ph.D. National Institute of Standards and Technology Boulder, Colorado
Marvin Klein, Ph.D. Hughes Research Laboratory Malibu, California
Merritt N. Deeter, Ph.D. National Institute of Standards and Technology Boulder, Colorado
Mark Kuzyk, Ph.D. Department of Physics Washington State University Pullman, Washington
© 2003 by CRC Press LLC
David W. Lynch, Ph.D. Iowa State University Ames, Iowa
Robert Sacher R. P. Cargille Laboratories, Inc. Cedar Grove, New Jersey
Fred Milanovich, Ph.D. Lawrence Livermore National Laboratory Livermore, California
William Sacher R. P. Cargille Laboratories, Inc. Cedar Grove, New Jersey
Monica Minden, Ph.D. Hughes Research Laboratory Malibu, California
N. B. Singh, Ph.D. Westinghouse Science and Technology Center Pittsburgh, Pennsylvania
Duncan T. Moore, Ph.D. University of Rochester Rochester, New York Lisa A. Moore, Ph.D. Corning, Inc. Corning, New York Egberto Munin, Ph.D. Universidade de Campinas Campinas, Brazil David M. Pepper, Ph.D. Hughes Research Laboratory Malibu, California Stephen C. Rand, Ph.D. Hughes Research Laboratory Malibu, California Charles F. Rapp, Ph.D. Owens Corning Fiberglass Granville, Ohio John F. Reintjes, Ph.D. Naval Research Laboratory Washington, DC Allen H. Rose, Ph.D. National Institute of Standards and Technology Boulder, Colorado
© 2003 by CRC Press LLC
Shobha Singh, Ph.D. AT&T Bell Laboratories Murray Hill, New Jersey, and Polaroid Corporation Cambridge, Massachusetts Charlene M. Smith, Ph.D. Corning, Inc. Corning, New York Stanley Stokowski, Ph.D. Lawrence Livermore National Laboratory Livermore, California David S. Sumida, Ph.D. Hughes Research Laboratory Malibu, California Eric W. Van Stryland, Ph.D. Center for Research in Electro-Optics and Lasers University of Central Florida Orlando, Florida Barry A. Wechsler, Ph.D. Hughes Research Laboratory Malibu, California
Contents of previous volumes on optical materials from the CRC HANDBOOK OF LASER SCIENCE AND TECHNOLOGY VOLUME III: OPTICAL MATERIALS PART 1: NONLINEAR OPTICAL PROPERTIES/RADIATION DAMAGE SECTION 1: NONLINEAR OPTICAL PROPERTIES 1.1 Nonlinear and Harmonic Generation Materials — Shobha Singh 1.2 Two-Photon Absorption — Walter L. Smith 1.3 Nonlinear Refractive Index — Walter L. Smith 1.4 Stimulated Raman Scattering — Fred Milanovich SECTION 2: RADIATION DAMAGE 2.1 Introduction — Richard T. Williams and E. Joseph Friebele 2.2 Crystals — Richard T. Williams 2.3 Glasses — E. Joseph Friebele VOLUME IV: OPTICAL MATERIALS PART 2: PROPERTIES SECTION 1: FUNDAMENTAL PROPERTIES 1.1 Transmitting Materials 1.1. 1 Crystals — Perry A. Miles, Marilyn J. Dodge, Stanley S. Ballard, James S. Browder, Albert Feldman, and Marvin J. Weber 1.1. 2 Glasses — James W. Fleming 1.1.3 Plastics — Monis Manning 1.2 Filter Materials — Lee M. Cook and Stanley E. Stokowski 1.3 Mirror and Reflector Materials — David W. Lynch 1.4 Polarizer Materials — Jean M. Bennett and Ann T. Glassman SECTION 2: SPECIAL PROPERTIES 2.1 Linear Electro-Optic Materials — Ivan P. Kaminow 2.2 Magneto-Optic Materials — Di Chen 2.3 Elasto-Optic Materials — Milton Gottlieb 2.4 Photorefractive Materials — Peter Günter 2.5 Liquid Crystals — Stephen D. Jacobs VOLUME V: OPTICAL MATERIALS PART 3: APPLICATIONS, COATINGS, AND FABRICATION SECTION 1: APPLICATIONS 1.1 Optical Waveguide Materials — Peter L. Bocko and John R. Gannon 1.2 Materials for High Density Optical Data Storage — Alan E. Bell 1.3 Holographic Parameters and Recording Materials — K. S. Pennington 1.4 Phase Conjugation Materials — Robert A. Fisher 1.5 Laser Crystals — Charles F. Rapp 1.7 Infrared Quantum Counter Materials — Leon Esterowitz SECTION 2: THIN FILMS AND COATINGS 2.1 Multilayer Dielectric Coatings — Verne R. Costich 2.2 Graded-Index Surfaces and Films — W. Howard Lowdermilk SECTION 3: OPTICAL MATERIALS FABRICATION 3.1 Fabrications Techniques — G. M. Sanger and S. D. Fantone 3.2 Fabrication Procedures for Specific Materials — G. M. Sanger and S. D. Fantone © 2003 by CRC Press LLC
SUPPLEMENT 2: OPTICAL MATERIALS SECTION 1. OPTICAL CRYSTALS — Bruce H. T. Chai SECTION 2. OPTICAL GLASSES — James W Fleming SECTION 3. OPTICAL PLASTICS — Donald Keyes SECTION 4. OPTICAL LIQUIDS — Robert Sacher and William Sacher SECTION 5. FILTER MATERIALS — Lee M. Cook SECTION 6. LINEAR ELECTROOPTIC MATERIALS — William R. Holland and Ivan P. Kaminow SECTION 7. NONLINEAR OPTICAL MATERIALS 7.1 Crystals — Shobha Singh 7.2 Cluster-Insulator Composite Materials — Joseph H. Simmons, Barrett G. Potter, Jr., and O. Romulo Ochoa SECTION 8. NONLINEAR OPTICAL PROPERTIES 8.1 Nonlinear Refractive Index : Inorganic Materials — Lloyd Chase and Eric W. Van Stryland Organic Materials — Anthony F. Garito and Mark Kuzyk 8.2 Two-Photon Absorption: Inorganic Materials — Lloyd Chase and Eric W. Van Stryland Organic Materials — Anthony F. Garito and Mark Kuzyk 8.3 Stimulated Raman and Brillouin Scattering — John F. Reintjes SECTION 9. MAGNETOOPTIC MATERIALS 9.1 Crystals and Glasses — Merritt N. Deeter, Gordon W. Day, and Allen H. Rose 9.2 Organic and Inorganic Liquids — Egberto Munin SECTION 10. ELASTOOPTIC MATERIALS — M. Gottlieb and N. B. Singh SECTION 11. PHOTOREFRACTIVE MATERIALS — Carolina Medrano and Peter Günter SECTION 12. OPTICAL PHASE CONJUGATION MATERIALS — David M. Pepper, Marvin Klein, Monica Minden, Hans Brusselbach SECTION 13. GRADIENT INDEX MATERIALS — Duncan T. Moore SECTION 14. LIQUID CRYSTALS — Stephen D. Jacobs, Kenneth L. Marshall, and Ansgar Schmid SECTION 15. DIAMOND OPTICS — Albert Feldman SECTION 16. LASER CRYSTALS — David S. Sumida and Barry A. Wechsler SECTION 17. LASER GLASSES 17.1 Bulk Glasses — Charles F. Rapp 17.2 Waveguide Glasses — Steven T. Davey, B. James Ainslie, and Richard Wyatt
© 2003 by CRC Press LLC
SECTION 18. OPTICAL WAVEGUIDE MATERIALS 18.1 Crystals — Patricia A. Morris Hotsenpiller 18.2 Glasses — Allen J. Bruce 18.3 Plastic Optical Fibers — Lee L. Blyler, Jr. SECTION 19. OPTICAL COATINGS FOR HIGH POWER LASERS — Mark R. Kozlowski, Robert Chow, and Ian M. Thomas APPENDIX 1. ABBREVIATIONS, ACRONYMS, INITIALISMS, AND MINERALOGICAL OR COMMON NAMES FOR OPTICAL MATERIALS APPENDIX 2. ABBREVIATIONS FOR METHODS OF PREPARING OPTICAL MATERIALS APPENDIX 3. DESIGNATIONS OF RUSSIAN OPTICAL GLASSES Leonid B. Glebov and Mikhail N. Tolstoi
© 2003 by CRC Press LLC
Table of Contents SECTION 1: CRYSTALLINE MATERIALS 1.1 Introduction 1.2 Physical Properties 1.2.1 Isotropic Crystals 1.2.2 Uniaxial Crystals 1.2.3 Biaxial Crystals 1.3 Optical Properties 1.3.1 Isotropic Crystals 1.3.2 Uniaxial Crystals 1.3.3 Biaxial Crystals 1.3.4 Dispersion Formulas for Refractive Index 1.3.5 Thermooptic Coefficients 1.4 Mechanical Properties 1.4.1 Elastic Constants 1.4.2 Elastic Moduli 1.4.3 Engineering Data 1.5 Thermal Properties 1.5.1 Melting Point, Heat Capacity, Thermal Expansion, Conductivity 1.5.2 Temperature Dependence of Heat Capacity for Selected Solids 1.5.3 Debye Temperature 1.6 Magnetooptic Properties 1.6.1 Diamagnetic Crystals 1.6.2 Paramagnetic Crystals 1.6.3 Ferromagnetic, Antiferromagnetic, and Ferrimagnetic Crystals 1.7 Electrooptic Properties 1.7.1 Linear Electrooptic Coefficients 1.7.2 Quadratic Electrooptic Materials 1.8 Elastrooptic Properties 1.8.1 Elastooptic Coefficients 1.8.2 Acoustooptic Materials 1.9 Nonlinear Optical Properties 1.9.1 Nonlinear Refractive Index 1.9.2 Two-Photon Absorption 1.9.3 Second Harmonic Generation Coefficients 1.9.4 Third-Order Nonlinear Optical Coefficients 1.9.5 Optical Phase Conjugation Materials SECTION 2: GLASSES 2.1 Introduction 2.2 Commercial Optical Glasses 2.2.1 Optical Properties 2.2.2 Internal Transmittance 2.2.3 Mechanical Properties 2.2.4 Thermal Properties 2.3 Specialty Optical Glasses © 2003 by CRC Press LLC
2.3.1 Optical Properties 2.3.2 Mechanical Properties 2.3.3 Thermal Properties 2.4 Fused Silica 2.5 Fluoride Glasses 2.5.1 Fluorozirconate Glasses 2.5.2 Fluorohafnate Glasses 2.5.3 Other Fluoride Glasses 2.6 Chalcogenide Glasses 2.7 Magnetooptic Properties 2.7.1 Diamagnetic Glasses 2.7.2 Paramagnetic Glasses 2.8 Electrooptic Properties 2.9 Elastooptic Properties 2.10 Nonlinear Optical Properties 2.10.1 Nonlinear Refractive Index 2.10.2 Two-Photon Absorption 2.10.3 Third-Order Nonlinear Optical Coefficients 2.10.4 Brillouin Phase Conjugation 2.11 Special Glasses 2.11.1 Filter Glasses 2.11.2 Laser Glasses 2.11.3 Faraday Rotator Glasses 2.11.4 Gradient-Index Glasses 2.11.5 Mirror Substrate Glasses 2.11.6 Athermal Glasses 2.11.7 Acoustooptic Glasses 2.11.8 Abnormal Dispersion Glasses SECTION 3: POLYMERIC MATERIALS 3.1 Optical Plastics 3.2 Index of Refraction 3.3 Nonlinear Optical Properties 3.4 Thermal Properties 3.5 Engineering Data SECTION 4: METALS 4.1 Physical Properties of Selected Metals 4.2 Optical Properties 4.3 Mechanical Properties 4.4 Thermal Properties 4.5 Mirror Substrate Materials SECTION 5: LIQUIDS 5.1 Introduction 5.2 Water 5.2.1 Physical Properties 5.2.2 Absorption © 2003 by CRC Press LLC
5.3
5.4
5.5
5.6
5.7
5.2.3 Index of Refraction Physical Properties of Selected Liquids 5.3.1 Thermal Conductivity 5.3.2 Viscosity 5.3.3 Surface Tension 5.3.4 Absorption Index of Refraction 5.4.1 Organic Liquids 5.4.2 Inorganic Liquids 5.4.3 Calibration Liquids 5.4.4 Abnormal Dispersion Liquids Nonlinear Optical Properties 5.5.1 Two-Photon Absorption Cross Sections 5.5.2 Nonlinear Refraction 5.5.3 Kerr Constants 5.5.4 Third-Order Nonlinear Optical Coefficients 5.5.5 Stimulated Raman Scattering 5.5.6 Stimulated Brillouin Scattering Magnetooptic Properties 5.6.1 Verdet Constants of Inorganic Liquids 5.6.2 Verdet Constants of Organic Liquids 5.6.3 Dispersion of Verdet Constants Commercial Optical Liquids
SECTION 6: GASES 6.1 Introduction 6.2 Physical Properties of Selected Gases 6.3 Index of Refraction 6.4 Nonlinear Optical Properties 6.4.1 Nonlinear Refractive Index 6.4.2 Two-Photon Absorption 6.4.3 Third-Order Nonlinear Optical Coefficients 6.4.4 Stimulated Raman Scattering 6.4.5 Brillouin Phase Conjugation 6.5 Magnetooptic Properties 6.6 Atomic Resonance Filters APPENDICES Appendix I Appendix II
Safe Handling of Optical Materials Abbreviations, Acronyms, Initialisms, and Mineralogical or Common Names of Optical Materials Appendix III Abbreviations for Methods of Preparing Optical Materials and Thin Films Appendix IV Fundamental Physical Constants Appendix V Units and Conversion Factors
© 2003 by CRC Press LLC
Section 1: Crystalline Materials
1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9
Introduction Physical Properties Optical Properties Mechanical Properties Thermal Properties Magnetooptic Properties Electrooptic Properties Elastooptic Properties Nonlinear Optical Properties
© 2003 by CRC Press LLC
Section 1: Crystalline Materials
3
Section 1 CRYSTALLINE MATERIALS 1.1 Introduction* Crystalline materials included in this section are insulators and semiconductors that have a transparent region within the range from the vacuum ultraviolet (from ~100 nm) to the infrared (up to 100 µm) portion of the electromagnetic spectrum. Crystals with wide band gaps are transparent from the ultraviolet through the visible region; crystals with a narrower band gap may appear opaque but are transparent in the infrared region. Using this broad transparency definition of optical crystals, virtually all known crystals can be included. Coverage, however, is limited to those crystals which either occur in nature or are produced in the laboratory for optical use or with potential for such use. For this reason hydrate or hydroxide crystals are generally excluded because they are thermally less stable and have limited tranmission range due to OH absorption. Highly hygroscopic materials are also excluded because of the obvious difficulty of handling, unless they have already been used, such as urea, KDP, CD*A, etc. Only pure compounds are considered. Compounds containing elements having intrinsic absorptions due to incompletely filled d or f shell electrons are also avoided. Other critical issues for the use of optical crystals are solid-state phase transitions that occur as a function of both temperature and pressure and polymorphism. Compounds that have a very small stability field or serious phase transition problems have limited use as optical materials. Phase change and decomposition temperatures of crystals are noted in Section 1.5 on thermal properties. Generally only the thermodynamically stable structure at room temperature and pressure are listed in this section. Compounds that have naturally occurring polymorphic forms are included, however, e.g., CaCO3, TiO2, and aluminum silicate Al2SiO5. In other cases, only the stable phase is listed, e.g., quartz (α-SiO2). Many compounds were considered appropriate as entries of optical crystals in Sections 1.1–1.3 regardless of the amount of information available. As Chai* has noted, merely showing the existence of a compound with its chemical constituents can help to estimate the stability of its isomorphs and the structural tolerance of doping or other modifications. Most of the basic material properties such as optical transparency and refractive indices of an unstudied compound can be estimated with reasonable accuracy based on its better studied isomorphs that have measured properties listed in the tables. Optical crystals in Sections 1.1–1.3 are classified into three categories: Isotropic crystals include materials through which monochromatic light travels with the same speed, regardless of the direction of vibration, and the vibration direction of a light ray is always perpendicular to the ray path. Whereas amorphous materials such as glasses and plastics are isotropic, only those crystals with cubic symmetry are isotropic.
* This section was adapted from “Optical crystals” by B. H. T. Chai, Handbook of Laser Science and Technology, Suppl. 2, Optical Materials (CRC Press, Boca Raton, FL, 1995), p. 3 ff (with additions). © 2003 by CRC Press LLC
Anisotropic crystals include materials through which a light ray may travel with different speeds for different directions of vibration and in which the angle between the vibration directions and ray path may not always be 90°. The index of refraction of such crystals varies according to the vibration direction of the light; the optical indicatrix is no longer a sphere but an ellipsoid. Depending on the geometry of the ellipsoid, it is necessary to divide the class of the anisotropic materials further into two subgroups. Crystals with tetragonal, hexagonal, and trigonal (or rhombohedral) symmetry exhibit a unique index of refraction (symbolized as e or ε) when light vibrates parallel to the c-axis (the extraordinary ray). For light vibrating at 90° to the c-axis (the ordinary ray), the refractive indices are the same (symbolized as o or ω) in all 360° directions. Crystals with these types of optical properties are called uniaxial crystals. Crystals with orthorhombic, monoclinic, and triclinic symmetry possess three significant indices of refraction, commonly symbolized as x, y, and z or α, β, and γ in the order from smallest to largest. The shape of the indicatrix is a three-dimensional ellipsoid with all central sections being ellipses, except for two. These two are circular sections with a radius of β. The normal of the two circular sections are called the optical axes. Crystals with these types of optical properties are called biaxial crystals. In Sections 1.2 and 1.3 crystals are grouped as isotropic, uniaxial, and biaxial. Crystal symmetry plays a critical role in the selection of material for optical applications. Optically isotropic crystals are used most frequently for windows and lenses although a uniaxial single crystal (such as sapphire) precisely oriented along the optical axis can be used as a window material. Faraday rotator crystals for optical isolators based must be cubic or uniaxial, not biaxial. Anisotropic single crystals are widely used for other specific optical applications such as the polarizers, optical wave plates, and wedges. In nonlinear frequency conversion, all the optical materials used at present must not only be crystalline but also highly anisotropic and noncentrosymmetric. For simplicity of crystal orientation and fabrication, materials with highest symmetry are preferred. It is easy to orient crystals with cubic (isometric), tetragonal, and hexagonal (uniaxial) symmetries. For the biaxial crystals, orthorhombic symmetry is still relatively easy to orient because all the crystallographic axes are still orthogonal and in alignment with the optical indicatrix axes. In monoclinic crystals, the crystallographic a- and c-axes are no longer orthogonal. With the exception of the b-axis, two of the optical indicatrix axes are no longer aligned with the crystallographic ones. With a few exceptions, crystals with triclinic symmetry are not listed because they are difficult to orient and have too many parameters to define (no degeneracy at all). The preceding symmetry properties of a crystal structure refer to space group operations. For measured macroscopic properties the point group (the group of operations under which the property remains unchanged) is of interest. Eleven of the 32 point groups are centrosymmetric. Except for cubic 432, the remaining groups exhibit polarization when the crystal is subject to an applied stress (piezoelectric). Ten of these latter groups possess a unique polar axis and are pyroelectric, i.e., spontaneous polarize in the absence of stress. Crystallographic point groups and related properties are listed in the following table.
© 2003 by CRC Press LLC
Crystallographic Point Groups and Properties Crystal system Cubic
Hexagonal
Tetragonal
Trigonal
Orthorhombic
Monoclinic
Triclinic
© 2003 by CRC Press LLC
International symbol m3m
Schoenflies symbol Oh
−43m
Td
432
O
m3
Th
23
T
6/mmm
D6h
−6m2
D3h
6mm
C6v
622
D6
6/m
C6h
−6
C3h
6
C6
4/mmm
D4h
−42m
D2d
4mm
C4v
422
D4
4/m
C4h
−4
S4
4
C4
−3m
D3d
3m
C3v
32
D3
−3
S6
3
C3
mmm
D2h
mm2
C2v
222
D2
2/m
C2h
m
Cs
2
C2
−1
Ci
1
C1
Centrosymmetric
Piezoelectric
Pyroelectric
Crystals in the following table are listed alphabetically by chemical name (with mineral name* and acronym in parentheses) and include the chemical formula, crystal system, and space group. In the space group notation, a negative number indicates inversion symmetry.
* A mineralogy database containing names, physical properties, and an audio pronunciation guide for a very large number of materials is available at www.webmineral.com. Name, Formula, Crystal System, and Space Group for Optical Crystals Name Aluminum antimonide Aluminum arsenate Aluminum arsenide Aluminum borate Aluminum borate Aluminum fluoride Aluminum fluorosilicate (topaz) Aluminum gallate Aluminum germanate Aluminum germanate Aluminum germanate Aluminum hafnium tantalate Aluminum molybdate Aluminum niobate Aluminum nitride Aluminum oxide (corundum, sapphire, alumina) Aluminum oxynitrate (ALON) Aluminum phosphate (berlinite) Aluminum phosphide Aluminum silicate (andalusite) Aluminum silicate (kyanite) Aluminum silicate (mullite) Aluminum silicate (sillimanite) Aluminum tantalate (alumotantite) Aluminum titanium tantalate Aluminum tungstate Amino carbonyl (urea) Ammonium aluminum selenate Ammonium aluminum sulfate Ammonium dihydrogen phosphate (ADP) Ammonium gallium selenate Ammonium gallium sulfate Ammonium pentaborate Antimony niobate (stibiocolumbite) Antimony oxide (senarmontite)
© 2003 by CRC Press LLC
Formula
Crystal system (Space group)
AlSb AlAsO4 AlAs AlBO3 Al4B2O9 AlF3 Al2SiO4F2 AlGaO3 Al2Ge2O7 Al6Ge2O13 Al6Ge2O13 AlHfTaO6 Al2(MoO4)3 AlNbO4 AlN Al2O3 Al23O27N5 AlPO4 AlP Al2SiO5 Al2SiO5 Al6Si2O13 Al2SiO5 AlTaO4 AlTiTaO6 Al2(WO4)3 (NH2)2CO NH4Al(SeO4)2 NH4Al(SO4)2 NH4H2PO4 NH4Ga(SeO4)2 NH4Ga(SO4)2 NH4B5O8•4H2O SbNbO4 Sb2O3
Cubic (F−43m) Trigonal (P312) Cubic (F−43m) Trigonal (R − 3 c) Orthorhombic (Pbam) Rhombohedral (R32) Orthorhombic (Pbnm) Hexagonal (P63mmc) Monoclinic (C2/c) Orthorhombic (Pbnm) Orthorhombic (Pbnm) Orthorhombic (Pbcn) Monoclinic (P21/a) Monoclinic (C2/m) Hexagonal (6 3mc) Trigonal (R − 3 c) Cubic (F d 3m) Trigonal (P312) Hexagonal (6 3mc) Orthorhombic (Pmam) Triclinic (P − 1 ) Orthorhombic (Pbnm) Orthorhombic (Pbnm) Orthorhombic (Pc21n) Tetragonal (P42/mmm) Orthorhombic (Pcna) Tetragonal (I−42m) Trigonal (P321) Trigonal (P321) Tetragonal (I−42m) Trigonal (P321) Trigonal (P321) Orthorhombic (Aba2) Orthorhombic (Pna21) Cubic (Fd3m)
Name, Formula, Crystal System, and Space Group for Optical Crystals—continued Name Antimony oxide (valentinite) Antimony tantalate (stibiotantalite) Arsenic antimony sulfide (getchellite) Arsenic oxide (arsenolite) Arsenic sulfide (orpiment) Arsenic sulfide (realgar) Barium aluminate Barium aluminate Barium aluminum borate Barium aluminum fluoride Barium aluminum germanate Barium aluminum silicate (celsian) Barium antimonate Barium beryllium fluorophosphate (babefphite) Barium beryllium silicate (barylite) Barium tetraborate Barium borate Barium cadmium aluminum fluoride Barium cadmium gallium fluoride Barium cadmium magnesium aluminum fluoride Barium calcium magnesium aluminum fluoride Barium calcium magnesium silicate Barium calcium silicate (walstromite) Barium carbonate (witherite) Barium chloroarsenate (movelandite) Barium chloroborate Barium chlorophosphate (alforsite) Barium chlorovanadate Barium fluoride-calcium fluoride (T-12) Barium fluoride (frankdicksonite) Barium fluoroarsenate Barium fluorophosphate Barium fluorovanadate Barium gallium fluoride Barium germanate Barium germanate Barium germanate Barium germanium aluminate Barium germanium gallate Barium hexa-aluminate Barium lithium niobate Barium lutetium borate Barium magnesium aluminum fluoride
© 2003 by CRC Press LLC
Formula Sb2O3 SbTaO4 AsSbS3 As2O3 As2S3 AsS BaAl2O4 Ba3Al2O6 BaAl2B2O7 Ba3Al2F12 BaAl2Ge2O8 BaAl2Si2O8 BaSb2O6 BaBe(PO4)F BaBe2Si2O7 BaB4O7 ß-BaB2O4 BaCdAlF7 BaCdGaF7 Ba2CdMgAl2F14 Ba2CaMgAl2F14 BaCa2Mg(SiO4)2 BaCa2Si3O9 BaCO3 Ba5(AsO4)3Cl Ba2B5O9Cl Ba5(PO4)3Cl Ba5(VO4)3Cl BaF2-CaF2 BaF2 Ba5(AsO4)3F Ba5(PO4)3F Ba5(VO4)3F BaGaF5 BaGeO3 BaGe2O5 BaGe4O9 BaGeAl6O12 BaGeGa6O12 BaAl12O19 Ba2LiNb5O15 Ba3Lu(BO3)3 Ba2MgAlF9
Crystal system (Space group) Orthorhombic (Pccn) Orthorhombic (Pc21n) Monoclinic (P21/a) Cubic (Fd3m) Monoclinic (P21n) Monoclinic (P21n) Hexagonal (P6322) Cubic (Pa3) Monoclinic (P2/c) Orthorhombic (Pnnm) Monoclinic (P21/a) Monoclinic (I2/a) Triclinic (P − 3 1m) Hexagonal(P –6c2) Orthorhombic (Pnma) Monoclinic (P21/c) Trigonal (R3c) Monoclinic (C2/c) Monoclinic (C2/c) Monoclinic (C2/c) Monoclinic (C2/c) Orthorhombic Triclinic(P−1) Orthorhombic (Pnam) Hexagonal(P63/m) Tetragonal (P4221 –2) Hexagonal(P63/m) Hexagonal(P63/m) Cubic (Fm3m) Cubic (Fm3m) Hexagonal(P63/m) Hexagonal(P63/m) Hexagonal(P63/m) Orthorhombic (P212121) Orthorhombic Monoclinic (P21/a) Hexagonal(P –6c2) Orthorhombic (Pnnm) Othorhombic (Pnnm) Hexagonal (P63/mmc) Orthorhombic (Im2a) Hexagonal(P63cm) Tetragonal (P4)
Name, Formula, Crystal System, and Space Group for Optical Crystals—continued Name Barium magnesium fluoride Barium magnesium fluoride Barium magnesium germanate Barium magnesium silicate Barium magnesium tantalate Barium magnesium vanadate Barium molybdate Barium niobate Barium nitrate (nitrobarite) Barium scandate Barium scandate Barium scandate Barium silicate (sabbornite) Barium sodium niobate Barium sodium phosphate Barium strontium niobate Barium strontium tantalate Barium sulfate (barite) Barium tantalate Barium tantalate Barium tin borate Barium tin silicate (pabstite) Barium titanate Barium titanate Barium titanium aluminate Barium titanium aluminate Barium titanium borate Barium titanium gallate Barium titanium oxide Barium titanium silicate (benitoite) Barium titanium silicate (fresnoite) Barium tungstate Barium vanadate Barium yttrium borate Barium yttrium fluoride Barium yttrium oxide Barium zinc aluminum fluoride Barium zinc fluoride Barium zinc fluoride Barium zinc fluoride Barium zinc gallium fluoride Barium zinc germanate Barium zinc germanate
© 2003 by CRC Press LLC
Formula BaMgF4 Ba2MgF6 Ba2MgGe2O7 Ba2MgSi2O7 Ba3MgTa2O9 BaMg2(VO4)2 BaMoO4 BaNb2O6 Ba(NO3)2 Ba2Sc4O9 BaSc2O4 Ba6Sc6O15 β-BaSi2O5 Ba2NaNb5O15 Ba2Na(PO5)5 Ba3SrNb2O9 Ba3SrTa2O9 BaSO4 BaTa2O6 BaTa2O6 BaSnB2O6 BaSnSi3O9 BaTiO3 BaTiO3 BaTiAl6O12 Ba3TiAl10O20 BaTiB2O6 BaTiGa6O12 BaTi4O9 BaTiSi3O9 Ba2TiSi2O8 BaWO4 Ba3(VO4)2 Ba3Lu(BO3)3 BaY2F8 BaY2O4 Ba2ZnAlF9 BaZnF4 Ba2Zn3F10 Ba2ZnF6 Ba2ZnGaF9 BaZnGeO4 Ba2ZnGe2O7
Crystal system (Space group) Orthorhombic (A21am) Tetragonal (I422) Tetragonal (P421m) Tetragonal (P421m) Cubic (Fm3m) Tetragonal (I41/acd) Tetragonal (I41/a) Orthorhombic (Pcan) Cubic (P213) Trigonal(R−3) Monoclinic (C2/c) Tetragonal Orthorhombic (Pmnb) Orthorhombic (Im2a) Orthorhombic (P212121)) Hexagonal (P63/mmc) Hexagonal (P63/mmc) Orthorhombic (Pbnm) Orthorhombic (Pcan) Orthorhombic (Pcan) Trigonal(R−3) Hexagonal (P − 6 c2) Cubic (Fm3m) Tetragonal (Pm3m) Orthorhombic (Pnnm) Monoclinic (C2/m) Trigonal(R−3) Orthorhombic (Pnnm) Orthorhombic (Pnmm) Hexagonal (P − 6 c2) Tetragonal (P4bm) Tetragonal (I41/a) Rhombohedral (R − 3 m) Hexagonal(P63cm) Monoclinic (C2/m) Orthorhombic (Pnab) Orthorhombic (Pnma) Othorhombic (C222) Monoclinic (C2/m) Tetragonal (I422) Monoclinic (P21/n) Hexagonal (P63) Tetragonal (P421m)
Section 1: Crystalline Materials Name, Formula, Crystal System, and Space Group for Optical Crystals—continued Name Barium zinc silicate Barium zinc silicate Barium zirconium silicate Barium zirconium silicate Barium zirconium silicate (bazirite) Beryllium aluminate Beryllium aluminate (chrysoberyl) Beryllium aluminum silicate (beryl) Beryllium fluoroborate (hambergite) Beryllium germanate Beryllium magnesium aluminate (taaffeite) Beryllium oxide (bormellite) Beryllium scandium silicate (bazzite) Beryllium silicate (phenakite) Bismuth aluminate Bismuth antimonate Bismuth borate Bismuth germanate Bismuth germanate Bismuth germanate Bismuth germanate (BGO) Bismuth metaborate Bismuth molybdate Bismuth molybdate Bismuth niobate Bismuth oxide (bismite) Bismuth oxymolybdate (koechlinite) Bismuth oxytungstate (rusellite) Bismuth silicate Bismuth silicate (eulytite) Bismuth silicate (sillenite, BSO) Bismuth tantalate Bismuth tin oxide Bismuth titanate Bismuth titanium niobate Bismuth titanium oxide Bismuth vanadate (clinobisvanite) Bismuth vanadate (dreyerite) Bismuth vanadate (pucherite) Boron nitride Boron phosphide Cadmium antimonade Cadmium borate
© 2003 by CRC Press LLC
Formula Ba2ZnSi2O7 BaZnSiO4 Ba2ZrSi2O8 Ba2Zr2Si3O12 BaZrSi3O9 BeAl6O10 BeAl2O4 Be3Al2Si6O18 Be2BO3F Be2GeO4 BeMg3Al8O16 BeO Be3Sc2Si6O18 Be2SiO4 Bi2Al4O9 BiSbO4 Bi4B2O9 Bi2Ge3O9 Bi2GeO5 Bi12GeO20 Bi4Ge3O12 BiB3O6 Bi2Mo2O9 Bi2Mo3O12 BiNbO4 Bi2O3 γ-Bi2MoO6 Bi2WO6 Bi2SiO5 Bi4Si3O12 Bi12SiO20 BiTaO4 Bi2Sn2O7 Bi4Ti3O12 Bi3TiNbO9 Bi12TiO20 BiVO4 BiVO4 BiVO4 BN BP Cd2Sb2O7 CdB4O7
Crystal system (Space group) Tetragonal (P421m) Hexagonal (P63) Tetragonal (P4bm) Cubic (P213) Hexagonal (P6322) Orthorhombic (Pca2) Orthorhombic (Pnma) Hexagonal (P6/mcc) Monoclinic (C21) Trigonal(R−3) Hexagonal Hexagonal (P63/mc) Hexagonal (P6/mcc) Trigonal(R−3) Orthorhombic (Pbam) Monoclinic (P21/c) Monoclinic (P21/c) Hexagonal (P63/m) Orthorhombic (Cmc21) Cubic (I23) Cubic (I43d) Monoclinic (2/m) Monoclinic (P21/m) Monoclinic (P21/m) Orthorhombic (Pann) Monoclinic (P21/c) Orthorhombic (Pba2) Orthorhombic (Pba2) Orthorhombic (Cmc21) Cubic (I43d) Cubic (I23) Orthorhombic (Pnna) Hexagonal (P63/m) Orthorhombic (B2cb) Orthorhombic (A21am) Cubic (I23) Monoclinic (I2/a) Tetragonal (I41/amd) Orthorhombic (Pnca) Cubic (F−43m) Cubic (F−43m) Cubic (Fd3m) Orthorhombic (Pbca)
9
10
Handbook of Optical Materials Name, Formula, Crystal System, and Space Group for Optical Crystals—continued Name
Cadmium borate Cadmium borate Cadmium borate Cadmium carbonate (otavite) Cadmium chloride Cadmium chloroarsenate Cadmium chlorophosphate Cadmium chlorovanadate Cadmium fluoride Cadmium fluorophosphate Cadmium gallate Cadmium germanate Cadmium germanium arsenide Cadmium germanium phosphide Cadmium indium oxide spinel Cadmium iodide Cadmium niobate Cadmium oxide (monteponite) Cadmium scandium germanate Cadmium selenide (cadmoselite) Cadmium silicon arsenide Cadmium silicon phosphide Cadmium sulfide (greenockite) Cadmium tellurite (Irtran 6) Cadmium tin arsenide Cadmium tin borate Cadmium tin phosphide Cadmium titanate Cadmium tungstate Cadmium vanadate Cadmium vanadate Calcium aluminate Calcium aluminate Calcium aluminate Calcium aluminate Calcium aluminate (brownmillerite) Calcium aluminate (mayenite) Calcium aluminum borate Calcium aluminum borate Calcium aluminum borate (johachidolite) Calcium aluminum fluoride Calcium aluminum fluoride Calcium aluminum fluoride (prosopite)
© 2003 by CRC Press LLC
Formula
Crystal system (Space group)
Cd2B2O5 Cd2B6O11 CdB2O4 CdCO3 CdCl2 Cd5(AsO4)3Cl Cd5(PO4)3Cl Cd5(VO4)3Cl CdF2 Cd5(PO4)3F CdGa2O4 Cd2GeO4 CdGeAs2 CdGeP2 CdIn2O4 CdI2 Cd2Nb2O7 CdO Cd3Sc2Ge3O12 CdSe CdSiAs2 CdSiP2 CdS CdTe CdSnAs2 CdSnB2O6 CdSnP2 CdTiO3 CdWO4 CdV2O6 Cd2V2O7 CaAl2O4 Ca3Al2O6 CaAl4O7 Ca5Al6O14 Ca2Al2O5 Ca12Al14O33 CaAlBO4 CaAl2B2O7 CaAlB3O7 CaAlF5 Ca2AlF7 CaAl2F8
Triclinic (P1) Monoclinic (P21/b) Cubic (P –43m) Rhombohedral (R − 3 c ) Rhombohedral (R−3m) Hexagonal (P63/m) Hexagonal(P63/m) Hexagonal (P63/m) Cubic (Fm3m) Hexagonal (P63/m) Cubic (Fd3m) Orthorhombic (Pbnm) Tetragonal (I−42d) Tetragonal (I−42d) Cubic (Fd3m) Hexagonal (P63mc) Cubic (Fd3m) Cubic (Fm3m) Cubic (Ia3d) Hexagonal (P6mm) Tetragonal (I−42d) Tetragonal (I−42d) Hexagonal (6mm) Cubic (Fm3m) Tetragonal (I−42d) Rhombohedral (R−3c) Tetragonal (I−42d) Rhombohedral(R−3) Monoclinic (P2/c) Monoclinic (C2/m) Monoclinic (C2/m) Monoclinic (P21/n) Cubic (Pa−3) Monoclinic (C2/c) Orthorhombic (C222) Orthorhombic Cubic (I43d) Otthorhombic (Pnam) Hexagonal (P6322) Orthorhombic (Cmma) Monoclinic (C2/c) Orthorhombic (Pnma) Monoclinic
Section 1: Crystalline Materials
11
Name, Formula, Crystal System, and Space Group for Optical Crystals—continued Name
Formula
Crystal system (Space group)
Calcium aluminum germanate Calcium aluminum germanate Calcium aluminum oxyfluoride Calcium aluminum silicate (anorthite) Calcium aluminum silicate (gehlenite, CAS) Calcium aluminum silicate (grossularite) Calcium antimonate Calcium antimonate Calcium barium carbonate (alstonite) Calcium beryllium fluorophosphate (herderite) Calcium beryllium phosphate (hurlbutite) Calcium beryllium silicate (gugiaite) Calcium borate Calcium borate Calcium borate Calcium borate Calcium borate (calciborite) Calcium boron silicate (danburite) Calcium carbonate (aragonite) Calcium carbonate (calcite) Calcium carbonate (vaterite) Calcium chloroarsenate Calcium chloroarsenate Calcium chloroborate Calcium chloroborate Calcium chlorophosphate Calcium chlorophosphate (chlorapatite) Calcium chlorovanadate Calcium chlorovanadate Calcium fluoride (fluorite, fluorspar, Irtran 3) Calcium fluoroarsenate (svabite, CAAP) Calcium fluoroborate (fabianite) Calcium fluorophosphate (apatite, FAP) Calcium fluorophosphate (spodiosite) Calcium fluorovanadate (VAP) Calcium gadolinium aluminate Calcium gadolinium double borate Calcium gadolinium oxysilicate Calcium gadolinium phosphate Calcium gallate Calcium gallate Calcium gallate Calcium gallium germanate
Ca2Al2GeO7 Ca3Al2Ge3O12 Ca2Al3O6F CaAl2Si2O8 Ca2Al2SiO7 Ca3Al2Si3O12 Ca2Sb2O7 Ca2Sb2O7 CaBa(CO3)2 CaBe(PO4)F CaBe2(PO4)2 Ca2BeSi2O7 Ca2B2O5 Ca2B6O11 CaB4O7 Ca3B2O6 CaB2O4 CaB2Si2O8 CaCO3 CaCO3 CaCO3 Ca2AsO4Cl Ca5(AsO4)3Cl Ca2BO3Cl Ca2B5O9Cl Ca2PO4Cl Ca5(PO4)3Cl Ca2VO4Cl Ca5(VO4)3Cl CaF2 Ca5(AsO4)3F CaB3O5F Ca5(PO4)3F Ca2(PO4)F Ca5(VO4)3F CaGaAlO4 Ca3Gd2(BO3)4 CaGd4(SiO4)3O Ca3Gd(PO4)3 CaGa2O4 Ca3Ga4O9 Ca5Ga6O14 Ca2Ga2GeO7
Tetragonal (P421m) Cubic (Ia3d) Hexagonal Triclinic(P−1) Tetragonal (P421m) Cubic (Ia3d) Orthorhombic (Imm2) Cubic (Fd3m) Orthorhombic (Pnam) Monoclinic Monoclinic (P21/a) Tetragonal (P421m) Monoclinic (P21/a) Monoclinic (P21/b) Monoclinic (P21/c) Rhombohedral (R−3c) Orthorhombic (Pnca) Orthorhombic (Pmam) Orthorhombic (Pnam) Rhombohedral (R−3c)) Hexagonal (P63/mmc) Orthorhombic (Pbcm) Hexagonal(P63/m) Monoclinic (P21/c) Tetragonal (P42212) Orthorhombic (Pbcm) Hexagonal(P63/m) Orthorhombic (Pbcm) Hexagonal(P63/m) Cubic (Fm3m) Hexagonal(P63/m) Orthorhombic (Pbn21) Hexagonal(P63/m) Orthorhombic (Pbcm) Hexagonal(P63/m) Hexagonal (P63/m) Orthorhombic (Pc21n) Tetragonal (I4/mmm) Cubic (I–43d) Monoclinic (P21/c) Orthorhombic (Cmm2) Orthorhombic (Cmc21) Tetragonal (P421m)
© 2003 by CRC Press LLC
12
Handbook of Optical Materials Name, Formula, Crystal System, and Space Group for Optical Crystals—continued Name
Calcium gallium germanate Calcium gallium germanium garnet Calcium gallium silicate (CGS) Calcium germanate Calcium germanate Calcium hexa-aluminate Calcium indate Calcium indium germanate Calcium indium oxide Calcium iodate (lautarite) Calcium lanthanum aluminate Calcium lanthanum borate Calcium lanthanum oxyphosphate Calcium lanthanum oxysilicate Calcium lanthanum phosphate Calcium lanthanum sulfide Calcium lithium magnesium vanadate Calcium lithium magnesium vanadate Calcium lithium zinc vanadate Calcium lithium zinc vanadate Calcium lutetium germanate Calcium magnesium borate (kurchatovite) Calcium magnesium carbonate (dolomite) Calcium magnesium carbonate (huntite) Calcium magnesium fluoroarsenate (tilasite) Calcium magnesium fluorophosphate (isokite) Calcium magnesium germanate Calcium magnesium silicate (akermanite) Calcium magnesium silicate (diopside) Calcium magnesium silicate (merwinite) Calcium magnesium silicate (monticellite) Calcium magnesium vanadate Calcium molybdate Calcium niobate Calcium niobate (rynersonite) Calcium niobium gallium garnet Calcium oxide (lime) Calcium phosphate Calcium phosphate Calcium scandate Calcium scandium germanate Calcium scandium silicate Calcium silicate (larnite)
© 2003 by CRC Press LLC
Formula Ca3Ga2Ge4O14 Ca3Ga2Ge3O12 Ca2Ga2SiO7 CaGe2O5 CaGe4O9 CaAl12O19 CaIn2O4 Ca3In2Ge3O12 Ca3In2O6 Ca(IO3)2 CaLaAlO4 CaLaBO4 Ca4La(PO4)3O CaLa4(SiO4)3O Ca3La(PO4)3 CaLa2S4 Ca2LiMg2V3O12 Ca3LiMgV3O12 Ca2LiZn2V3O12 Ca3LiZnV3O12 Ca3Lu2Ge3O12 CaMgB2O5 CaMg(CO3)2 CaMg3(CO3)4 CaMgAsO4F CaMgPO4F CaMgGe2O6 Ca2MgSi2O7 CaMgSi2O6 Ca3MgSi2O8 CaMgSiO4 CaMg2(VO4)2 CaMoO4 Ca2Nb2O7 CaNb2O6 Ca3(Nb,Ga)2Ga3O12 CaO β-CaP2O7 β-CaP2O7 CaSc2O4 Ca3Sc2Ge3O12 Ca3Sc2Si3O12 b-Ca2SiO4
Crystal system (Space group) Trigonal (P321) Cubic (Ia3d) Tetragonal (P421m) Monoclinic (P21/a) Hexagonal (P –6c2) Hexagonal (P63/mmc) Orthorhombic (Pbcm) Cubic (Ia3d) Orthorhombic (Pbam) Monoclinic Tetragonal (I4/mmm) Hexagonal (P6322) Hexagonal (P63/m) Hexagonal (P63/m) Cubic (I –43d) Cubic (I –43d) Cubic (Ia3d) Cubic (Ia3d) Cubic (Ia3d) Cubic (Ia3d) Cubic (Ia3d) Orthorhombic Rhombohedral (R−3c) Rhombohedral (R32) Orthorhombic Monoclinic (C2/c) Monoclinic (C2/c) Tetragonal (P421m) Monoclinic (C2/c) Monoclinic (P21/a) Orthorhombic (Pmnb) Tetragonal (I41/acd) Tetragonal (I41/a) Orthorhombic (Pn21a) Orthorhombic (Pcan) Cubic (Ia3d) Cubic (Fm3m) Hexagonal (P − 6 c2) Tetragonal (P41) Orthorhombic (Pnam) Cubic (Ia3d) Cubic (Ia3d) Monoclionic (P21/n)
Section 1: Crystalline Materials
13
Name, Formula, Crystal System, and Space Group for Optical Crystals—continued Name
Formula
Calcium silicate (rankinite) Calcium silicate (wollastonite) Calcium sodium magnesium vanadate Calcium sodium zinc vanadate Calcium sulfate (anhydrite) Calcium tantalate Calcium tellurate (denningite) Calcium tin borate (nordenskiöldine) Calcium tin oxide Calcium tin silicate (malayaite) Calcium titanate (perovskite) Calcium titanium germanate Calcium titanium silicate (sphene) Calcium tungstate (scheelite) Calcium vanadate Calcium vanadate Calcium vanadate Calcium yttrium aluminate Calcium yttrium borate Calcium gadolinium double borate Calcium yttrium magnesium germanium garnet Calcium yttrium oxysilicate Calcium yttrium oxysilicate (SOAP) Calcium zinc fluoride Calcium zinc germanate Calcium zinc silicate (esperite) Calcium zinc silicate (hardystonite) Calcium zirconium boron aluminate (painite) Calcium zirconium silicate (gittinsite) Calcium zirconium titanate (zirkelite) Calcium zirconium titanium silicate Carbon (diamond) Cesium aluminum sulfate Cesium beryllium fluoride Cesium borate (CBO) Cesium bromide Cesium cadmium bromide Cesium cadmium bromide Cesium cadmium chloride Cesium cadmium fluoride Cesium cadmium zinc fluoride Cesium calcium fluoride Cesium chloride
Ca3Si2O7 CaSiO3 Ca2NaMg2V3O12 Ca2NaZn2V3O12 CaSO4 CaTa2O6 Ca2Te2O5 CaSnB2O6 CaSnO3 CaSnSiO5 CaTiO3 CaTiGeO4 CaTiSiO5 CaWO4 CaV2O6 Ca2V2O7 Ca3(VO4)2 CaYAlO4 CaYBO4 Ca3Y2(BO3)4 CaY2Mg2Ge3O12 Ca4Y6(SiO4)6 CaY4(SiO4)3O CaZnF4 CaZnGe2O6 CaZnSiO4 Ca2ZnSi2O7 CaZrBAl9O18 CaZrSi2O7 CaZrTi2O7 Ca3(Zr,Ti)Si2O9 C CsAl(SO4)2 Cs2BeF4 CsB3O5 CsBr Cs2CdBr4 CsCdBr3 Cs2CdCl4 CsCdF3 Cs2CdZnF6 CsCaF3 CsCl
© 2003 by CRC Press LLC
Crystal system (Space group) Monoclinic Triclinic(P−1) Cubic (Ia3d) Cubic (Ia3d) Orthorhombic (Bbmm) Orthorhombic (Pcan) Tetragonal Trigonal (R − 3 m ) Orthorhombic (P212121) Monoclinic (P21/a) Cubic (Pm3m) Monoclinic (P21/a) Monoclinic (P21/a) Tetragonal (I41/a) Monoclinic (C2/m) Monoclinic (C2/m) Trigonal (R3c) Tetragonal (I4/mmm) Orthorhombic (Pnam) Orthorhombic (Pc21n) Cubic (Ia3d) Hexagonal (P63/m) Hexagonal (P63/m) Tetragonal (I41/a) Monoclinic (C2/c) Tetragonal (P−421m) Tetragonal (P−421m) Hexagonal (P63) Monoclinic (C2/m) Monoclinic (C2/m) Monoclinic Cubic (F−43m) Trigonal (P321) Orthorhombic (Pna21) Orthorhombic (P212121) Cubic (Fm3m) Orthorhombic (Pnma) Cubic (Pm3m) Tetragonal (I4/mmm) Cubic (Pm3m) Rhombohedral (R–3m) Cubic (Pm3m) Cubic (Fm3m)
14
Handbook of Optical Materials Name, Formula, Crystal System, and Space Group for Optical Crystals—continued Name
Cesium dideuterium arsenate Cesium dideuterium phosphate Cesium dihydrogen arsenate Cesium dihydrogen phosphate Cesium fluoride Cesium gadolinium molybdate Cesium gallium sulfate Cesium germanate Cesium iodide Cesium lanthanum tungstate Cesium lithium aluminum fluoride Cesium lithium aluminum fluoride Cesium lithium beryllium fluoride Cesium lithium borate (CLBO) Cesium lithium gallium fluoride Cesium lithium gallium fluoride Cesium lithium sulfate Cesium magnesium chloride Cesium mercury iodide Cesium niobium borate (CNB) Cesium niobium sulfate Cesium potassium aluminum fluoride Cesium potassium lanthanum fluoride Cesium scandium molybdate Cesium scandium tungstate Cesium silver fluoride Cesium sodium aluminum fluoride Cesium sodium aluminum fluoride Cesium sodium gallium fluoride Cesium sodium yttrium fluoride Cesium strontium fluoride Cesium tin germanate Cesium titanium germanate Cesium titano arsenate (CTA) Cesium zinc aluminum fluoride Cesium zinc bromide Cesium zinc chloride Copper bromide (cuprous) Copper chloride (cuprous, nantokite) Copper iodide (cuprous, marshite) Cuprous oxide (cuprite) Gadolinium aluminate Gadolinium aluminate
© 2003 by CRC Press LLC
Formula CsD2AsO4 CsD2PO4 CsH2AsO4 CsH2PO4 CsF CsGd(MoO4)2 CsGa(SO4)2 Ga2GeO5 CsI CsLa(WO4)2 Cs2LiAl3F12 Cs2LiAlF6 CsLiBeF4 CsLiB6O10 Cs2LiGa3F12 Cs2LiGaF6 CsLiSO4 Cs2MgCl4 Cs2HgI4 CsNbB2O6 CsNbO(SO4)2 Cs2KAl3F12 Cs2KLaF6 CsSc(MoO4)2 CsSc(WO4)2 Cs2AgF4 Cs2NaAl3F12 Cs2NaAlF6 Cs2NaGaF6 Cs2NaYF6 CsSrF3 Cs2SnGe3O9 Cs2TiGe3O9 CsTiOAsO4 CsZnAlF6 Cs2ZnBr4 Cs2ZnCl4 CuBr CuCl CuI Cu2O Gd4Al2O9 GdAlO3
Crystal system (Space group) Tetragonal (I−42m) Tetragonal (I−42m) Tetragonal (I−42m) Tetragonal (I−42m) Cubic (Fm3m) Orthorhombic (Pnma) Trigonal (P321) Orthorhombic (Pnnm) Cubic (Fm3m) Tetragonal (P42/nmc) Rhombohedral (R–3m) Hexagonal (P63/mmc) Monoclinic (P21/n) Tetragonal (I−42d) Rhombohedral (R–3m) Hexagonal (P63/mmc) Orthorhombic (Pc2) Orthorhombic (Pnma) Monoclinic (P21) Orthorhombic (Pn21m) Orthorhombic Rhombohedral (R–3m) Cubic (Fm3m) Trigonal (P−3m1) Trigonal (P−3m1) Tetragonal (I4/mmm) Rhombohedral (R–3m) Rhombohedral (R–3m) Rhombohedral (R–3m) Cubic (Fm3m) Cubic (Pm3m) Hexagonal (P63/m) Hexagonal (P63/m) Orthorhombic (P21nb) Orthorhombic Orthorhombic (Pnma) Orthorhombic (Pnma) Cubic (Fm3m) Cubic (Fm3m) Cubic (Fm3m) Cubic (Pm3m) Monoclinic (P21/a) Orthorhombic (Pbnm)
Section 1: Crystalline Materials
15
Name, Formula, Crystal System, and Space Group for Optical Crystals—continued Name Gadolinium aluminum borate Gadolinium aluminum germanate Gadolinium borate Gadolinium borate Gadolinium calcium oxyborate Gadolinium gallium borate Gadolinium gallium garnet (GGG) Gadolinium gallium germanate Gadolinium germanate Gadolinium germanium beryllate Gadolinium indate Gadolinium magnesium borate Gadolinium molybdate Gadolinium niobate Gadolinium niobate Gadolinium orthosilicate Gadolinium oxide Gadolinium oxymolybdate Gadolinium oxysulfate Gadolinium oxytungstate Gadolinium pentaphosphate Gadolinium phosphate Gadolinium scandate Gadolinium scandium aluminum garnet (GSAG) Gadolinium scandium gallium garnet (GSGG) Gadolinium strontium borate Gadolinium tantalate Gadolinium titanate Gadolinium tungstate Gadolinium vanadate Gallium antimonide Gallium arsenide Gallium germanate Gallium molybdate Gallium niobate Gallium nitride - wurtzite Gallium nitride - zincblende Gallium oxide Gallium phosphate Gallium phosphide Gallium selenide Gallium sulfide Gallium tungstate
© 2003 by CRC Press LLC
Formula
Crystal system (Space group)
GdAl3(BO3)4 GdAlGe2O7 Gd(BO2)3 GdBO3 GdCa4O(BO3)3 GdGa3(BO3)4 Gd3Ga5O12 GdGaGe2O7 Gd2GeO5 Gd2GeBe2O7 GdInO3 GdMgB5O10 Gd2(MoO4)3 GdNbO4 Gd3NbO7 Gd2SiO5 Gd2O3 Gd2MoO6 Gd2O2SO4 Gd2WO6 GdP5O14 GdPO4 GdScO3 Gd3Sc2Al3O12 Gd3Sc2Ga3O12 Gd2Sr3(BO3)4 Gd3TaO7 Gd2Ti2O7 Gd2(WO4)3 GdVO4 GaSb GaAs α-Ga4GeO8 Ga2(MoO4)3 GaNbO4 α-GaN β-GaN β-Ga2O3 GaPO4 GaP GaSe GaS Ga2(WO4)3
Trigonal (R32) Monoclinic (P21/c) Monoclinic (I2/a) Hexagonal (P63/mmc) Monoclinic (Cm) Trigonal (R32) Cubic (Ia3d) Monoclinic (P21/c) Monoclinic (P21/c) Tetragonal (P421m) Hexagonal (P63cm) Monoclinic (P21/c) Orthorhombic (Pba2) Monoclinic (I2/a) Orthorhombic (C2221) Monoclinic (P21/c) Monoclinic (C2/m) Monoclinic (I2/c) Orthorhombic Monoclinic (I2/c) Monoclinic (P21/c) Monoclinic (P21/n) Orthorhombic (Pbnm) Cubic (Ia3d) Cubic (Ia3d) Orthorhombic (P21cn) Orthorhombic (C2221) Cubic (Fd3m) Monoclinic (C2/c) Tetragonal (I41/amd) Cubic (F−43m) Cubic (F−43m) Monoclinic (C2/m) Monoclinic (P21/a) Monoclinic (C2) Hexagonal(P 63m c ) Cubic (F−43m) Monoclinic (A2/m) Trigonal (P312) Cubic (F−43m) Hexagonal(P –62m) Hexagonal(P –62m) Orthorhombic (Pcna)
16
Handbook of Optical Materials Name, Formula, Crystal System, and Space Group for Optical Crystals—continued Name
Germanium Germanium oxide (argutite) Hafnium oxide Hafnium silicate (hafnon) Indium antimonide Indium arsenide Indium borate Indium cadmium borate Indium calcium borate Indium gallate Indium molybdate Indium niobate Indium nitride Indium oxide Indium phosphate Indium phosphide Indium tantalate Indium tungstate Indium vanadate Iodic acid Lanthanum aluminate Lanthanum aluminum germanate Lanthanum aluminum germanate Lanthanum antimonade Lanthanum antimonade Lanthanum barium borate Lanthanum barium gallate Lanthanum barium germanate Lanthanum beryllate (BEL) Lanthanum borate Lanthanum boron germanate Lanthanum boron molybdate Lanthanum boron silicate (stillwellite) Lanthanum boron tungstate Lanthanum calcium aluminate Lanthanum calcium borate Lanthanum calcium gallate Lanthanum chloride Lanthanum fluoride (tysonite) Lanthanum gallate Lanthanum gallium germanate Lanthanum gallium germanate Lanthanum gallium silicate
© 2003 by CRC Press LLC
Formula Ge GeO2 HfO2 HfSiO4 InSb InAs InBO3 InCdBO4 InCaBO4 InGaO3 In2(MoO4)3 InNbO4 InN In2O3 InPO4 InP InTaO4 In2(WO4)3 InVO4 HIO3 LaAlO3 LaAlGe2O7 LaAlGe2O7 LaSbO4 La3SbO7 La2Ba3(BO3)4 BaLaGa3O7 LaBaGa3O7 La2Be2O5 LaBO3 LaBGeO5 LaBMoO6 LaBSiO5 LaBWO6 LaCaAl3O7 La2Ca3(BO3)4 LaCaGa3O7 LaCl3 LaF3 LaGaO3 LaGaGe2O7 La3Ga5GeO14 La3Ga5SiO14
Crystal system (Space group) Cubic (F−43m) Tetragonal (P42/mnm) Monoclinic (P21/c) Tetragonal (I41/amd) Cubic (F−43m) Cubic (F−43m) Rhombohedral (R−3c) Orthorhombic (Pnam) Orthorhombic (Pnam) Monoclinic (C2/m) Monoclinic (P21/a) Monoclinic (P2/c) Hexagonal(P 63m c ) Rhombohedral (R3c) Orthorhombic (Cmcm) Cubic (F−43m) Monoclinic (P2/c) Orthorhombic (Pcna) Monoclinic (C2/m) Orthorhombic (P212121) Trigonal (R –3m) Monoclinic (P21/c) Monoclinic (P21/c) Monoclinic (P21/c) Orthorhombic (Cmcm) Orthorhombic (P21cn) Tetragonal (P421m) Tetragonal (P421m) Monoclinic (C2/c) Orthorhombic (Pnam) Trigonal (C3m) Monoclinic (P21) Trigonal (C3m) Monoclinic (P21) Tetragonal (P421m) Orthorhombic (P21cn) Tetragonal (P421m) Hexagonal (P63/m) Trigonal (P−3c1) Orthorhombic (Pbnm) Monoclinic (P21/c) Trigonal (P321) Trigonal (P321)
Section 1: Crystalline Materials
17
Name, Formula, Crystal System, and Space Group for Optical Crystals—continued Name Lanthanum germanium beryllate Lanthanum indate Lanthanum lutetium gallium garnet (LLGG) Lanthanum magnesium borate Lanthanum magnesium hexa-aluminate (LMA) Lanthanum metaborate Lanthanum molbydate Lanthanum molybdate Lanthanum niobate Lanthanum niobate Lanthanum niobate Lanthanum niobogallate Lanthanum oxide Lanthanum oxybromide Lanthanum oxymolybdate Lanthanum oxysulfate Lanthanum oxysulfide Lanthanum oxytungstate Lanthanum pentaphosphate Lanthanum phosphate (monazite) Lanthanum scandate Lanthanum scandium borate Lanthanum silicate Lanthanum strontium borate Lanthanum strontium gallate Lanthanum tantalate Lanthanum tantalogallate Lanthanum titanate Lanthanum titanate Lanthanum tungstate Lanthanum yttrium tungstate Lathanium vanadate Lead antimonade Lead bismuth niobate Lead bromide Lead cadmium niobate Lead calcium chloroarsenate (hedyphane) Lead carbonate (cerussite) Lead chloride (cotunnite) Lead chloroarsenate (mimetite) Lead chlorophosphate (pyromorphite) Lead chlorovanadate (vanadinite) Lead fluoride
© 2003 by CRC Press LLC
Formula La2GeBe2O7 LaInO3 La3Lu2Ga3O12 LaMgB5O10 LaMgAl11O19 LaB3O6 La2(MoO4)3 La2(MoO4)3 LaNbO4 LaNb5O14 La3NbO7 La3Nb0.5Ga5.5O14 La2O3 LaOBr La2MoO6 La2O2SO4 La2O2S La2WO6 LaP5O14 LaPO4 LaScO3 LaSc3(BO3)4 La2SiO5 La2Sr3(BO3)4 LaSrGa3O7 La3TaO7 La3Ta0.5Ga5.5O14 La2TiO5 La2Ti2O7 La2(WO4)3 LaY(WO4)3 LaVO4 Pb2Sb2O7 PbBi2Nb2O9 PbBr2 Pb3CdNb2O9 Pb3Ca2(AsO4)3Cl PbCO3 PbCl2 Pb5(AsO4)3Cl Pb5(PO4)3Cl Pb5(VO4)3Cl PbF2
Crystal system (Space group) Tetragonal (P421m) Orthorhombic (Pbnm) Cubic (Ia3d) Monoclinic (P21/c) Hexagonal (P63/mmc) Monoclinic (I2/a) Monoclinic (C2/c) Tetragonal (I−42m) Monoclinic (I2/a) Orthorhombic (Pnam) Othorhombic (Cmcm) Trigonal (P321) Trigonal (P−3m1) Tetragonal (P4/nmm) Tetragonal (I−42m) Orthorhombic Trigonal (P−3m) Hexagonal (P63/mmc) Orthorhombic (Pcmn) Monoclinic (P21/n) Orthorhombic (Pbnm) Monoclinic Monoclinic Orthorhombic (P21cn) Tetragonal (P421m) Orthorhombic (Cmcm) Trigonal (P321) Orthorhombic (Pnam) Monoclinic (P21/c) Monoclinic (C2/c) Monoclinic (C2/c) Monoclinic (P21/c) Cubic (Fd3m) Othorhombic (Fmm2) Othorhombic (Pnma) Orthorhombic Hexagonal (P63/m) Orthorhombic (Pnam) Orthorhombic (Pnam) Hexagonal (P63/m) Hexagonal (P63/m) Hexagonal (P63/m) Cubic (Fm3m)
18
Handbook of Optical Materials Name, Formula, Crystal System, and Space Group for Optical Crystals—continued Name
Lead fluoroarsenate Lead fluorophosphate Lead fluorovanadate Lead germanate Lead germanate Lead germanate Lead germanate Lead hafnate Lead hexa-aluminate (magnetoplumbite) Lead indium niobate Lead iodide Lead magnesium niobate Lead molybdate (wulfenite) Lead niobate (changbaiite) Lead nitrate Lead oxide (litharge) Lead oxide (massicot) Lead phosphate Lead potassium niobate Lead scandium niobate Lead selenate (kerstenite) Lead selenide (clausthalite) Lead selenite (molybdomenite) Lead silicate (alamosite) Lead sodium niobate Lead sulfate (anglesite) Lead sulfide (galena) Lead tantalate Lead telluride (altaite) Lead titanate (macedonite) Lead titanium phosphate Lead tungstate (stolzite) Lead vanadate Lead vanadate (chervetite) Lead zinc niobate Lead zinc silicate Lead zinc silicate (larsenite) Lithium aluminate Lithium aluminate Lithium aluminate spinel Lithium aluminum borate Lithium aluminum fluorophosphate (amblygonite) Lithium aluminum germanate
© 2003 by CRC Press LLC
Formula Pb5(AsO4)3F Pb5(PO4)3F Pb5(VO4)3F PbGeO3 Pb3GeO5 Pb3Ge3O11 Pb5Ge2O7 PbHfO3 PbAl12O19 Pb2InNbO6 2H-PbI2 Pb3MgNb2O9 PbMoO4 PbNb2O6 Pb(NO3)2 PbO PbO Pb3(PO4)2 Pb2KNb5O15 Pb2ScNbO6 PbSeO4 PbSe PbSeO3 PbSiO3 PbNaNb5O15 PbSO4 PbS PbTa2O6 PbTe PbTiO3 PbTiP2O8 PbWO4 Pb3(VO4)2 Pb2V2O7 Pb3ZnNb2O9 Pb2ZnSi2O7 PbZnSiO4 Li5AlO4 γ-LiAlO2 LiAl5O8 Li6Al2(BO3)4 LiAl(PO4)F LiAlGe2O6
Crystal system (Space group) Hexagonal (P63/m) Hexagonal (P63/m) Hexagonal (P63/m) Monoclinic (P21/a) Monoclinic (P12) Trigonal (P3) Hexagonal Orthorhombic (Pbam) Hexagonal (P63/mmc) Rhombohedral Trigonal (P3m1) Orthorhombic Tetragonal (I41/a) Orthorhombic (Cm2m) Cubic (Pa3) Tetragonal (P4/nmm) Orthorhombic (Pbcm) Monoclinic (PC2/c) Orthorhombic (Im2m) Rhombohedral Orthorhombic (Pnma) Cubic (Fm3m) Monoclinic Monoclinic (Pn) Orthorhombic (Im2a) Orthorhombic (Pnma) Cubic (Fm3m) Orthorhombic (Cm2m) Cubic (Fm3m) Tetragonal (P4mm) Orthorhombic Tetragonal (I41/a) Monoclinic (P2/c) Monoclinic (P21/a) Orthorhombic Tetragonal (P421m) Orthorhombic (Pnam) Orthorhombic (Pbca) Tetragonal (P41212) Cubic (P4132) Triclinic(P−1) Triclinic(P−1) Monoclinic (P21/n)
Section 1: Crystalline Materials Name, Formula, Crystal System, and Space Group for Optical Crystals—continued Name Lithium aluminum germanate Lithium aluminum molybdate Lithium aluminum silicate Lithium aluminum silicate Lithium aluminum silicate (eucryptite) Lithium aluminum silicate (petalite) Lithium aluminum silicate (spodumene) Lithium barium aluminum fluoride (LiBAF) Lithium barium fluoride Lithium barium gallium fluoride Lithium beryllium fluoride Lithium beryllium silicate (liberite) Lithium borate Lithium borate Lithium bromide Lithium cadmium borate Lithium cadmium chloride Lithium cadmium indium fluoride Lithium calcium aluminum fluoride (LiCAF) Lithium calcium gallium fluoride (LiCGaF) Lithium calcium germanate Lithium calcium indium fluoride Lithium calcium silicate Lithium carbonate (zabuyelite) Lithium chloride Lithium fluoride (griceite) Lithium gadolinium borate Lithium gadolinium borate Lithium gadolinium molybdate Lithium gadolinium molybdate Lithium gadolinium oxide Lithium gadolinium tetrafluoride (GLF) Lithium gadolinium tetraphosphate Lithium gadolinium tungstate Lithium gallate Lithium gallate Lithium gallate spinel Lithium gallium germanate Lithium gallium germanate Lithium gallium germanate Lithium gallium silicate Lithium gallium silicate Lithium gallium tungstate
© 2003 by CRC Press LLC
Formula LiAlGeO4 LiAl(MoO4)2 LiAlSi2O6 LiAlSi4O10 LiAlSiO4 LiAlSi4O10 LiAlSi2O6 LiBaAlF6 LiBaF3 LiBaGaF6 Li2BeF4 Li2BeSiO4 LiBO2 LiB3O5 LiBr LiCdBO3 Li2CdCl4 LiCdInF6 LiCaAlF6 LiCaGaF6 Li2CaGeO4 LiCaInF6 Li2CaSiO4 Li2CO3 LiCl LiF Li3Gd2(BO3)3 Li6Gd(BO3)3 LiGd(MoO4)2 LiGd(MoO4)2 LiGdO2 LiGdF4 LiGdP4O12 LiGd(WO4)2 LiGaO2 Li5GaO4 LiGa5O8 LiGaGe2O6 LiGaGe2O6 LiGaGeO4 LiGaSi2O6 LiGaSiO4 LiGa(WO4)2
Crystal system (Space group) Trigonal(R−3) Triclinic(P−1) Monoclinic (C2/c) Monoclinic (P21/n) Rhombohedral(R−3) Monoclinic (P21/n) Rhombohedral(R−3) Monoclinic (P21/a) Cubic (Pm3m) Monoclinic (P21/a) Cubic (Fd3m) Monoclinic (Pn) Monoclinic (P21/c) Orthorhombic (Pna21) Cubic (Fm3m) Hexagonal (P –6) Cubic (Fd3m) Trigonal (P321) Trigonal(P−31c) Trigonal(P−31c) Tetragonal (I−42m) Trigonal (P321) Tetragonal (I−42m) Monoclinic (C2/c) Cubic (Fm3m) Cubic (Fm3m) Monoclinic (P21/n) Monoclinic (P21/b) Tetragonal (I41/a) Tetragonal (I41/a) Orthorhombic (Pnma) Tetragonal (I41/a) Monoclinic (I2/c) Tetragonal (I41/a) Orthorhombic (Pna21) Orthorhombic (Pnam) Cubic (P4132) Monoclinic (P21/c) Monoclinic (P21/c) Trigonal(R−3) Monoclinic (C2/c) Rhombohedral(R−3) Monoclinic (P2/c)
19
20
Handbook of Optical Materials Name, Formula, Crystal System, and Space Group for Optical Crystals—continued Name
Lithium germanate Lithium indium germanate Lithium indium molybdate Lithium indium oxide Lithium indium oxide Lithium indium silicate Lithium indium silicate Lithium indium tungstate Lithium iodate Lithium iodide Lithium lanthanum borate Lithium lanthanum molybdate Lithium lanthanum oxide Lithium lanthanum tetraphosphate Lithium lanthanum tungstate Lithium lutetium borate Lithium lutetium fluoride Lithium lutetium germanate Lithium lutetium oxide Lithium lutetium silicate Lithium lutetium tetraphosphate Lithium lutetium tungstate Lithium magnesium aluminum fluoride Lithium magnesium borate Lithium magnesium borate Lithium magnesium chloride Lithium magnesium gallium fluoride Lithium magnesium germanate Lithium magnesium indium fluoride Lithium niobate Lithium phosphate (lithiophosphate) Lithium scandate Lithium scandium germanate Lithium scandium germanate Lithium scandium silicate Lithium scandium silicate Lithium scandium tungstate Lithium silicate Lithium strontium aluminum fluoride (LiSAF) Lithium strontium gallium fluoride (LiSGF) Lithium tantalate (LT) Lithium tetraborate (diomignite) Lithium triborate (LBO)
© 2003 by CRC Press LLC
Formula Li2GeO3 LiInGe2O6 LiIn(MoO4)2 Li3InO3 LiInO2 LiInSiO4 LiInSi2O6 LiIn(WO4)2 α-LiIO3 LiI Li3La2(BO3)3 LiLa(MoO4)2 LiLaO2 LiLaP4O12 LiLa(WO4)2 Li6Lu(BO3)3 LiLuF4 LiLuGeO4 LiLuO2 LiLuSiO4 LiLuP4O12 LiLu(WO4)2 LiMgAlF6 LiMgBO3 Li2MgB2O5 Li2MgCl4 LiMgGaF6 Li2MgGeO4 LiMgInF6 LiNbO3 Li3PO4 LiScO2 LiScGeO4 LiScGe2O6 LiScSiO4 LiScSi2O6 LiSc(WO4)2 Li2SiO3 LiSrAlF6 LiSrGaF6 LiTaO3 Li2B4O7 LiB3O5
Crystal system (Space group) Orthorhombic (Cmc21) Orhtorhimbic (Pbca) Monoclinic (P21/c) Trigonal (P−3c1) Tetragonal(I41/amd) Orthorhombic (Pnma) Monoclinic (C2/c) Monoclinic (P2/c) Hexagonal (P63) Cubic (Fm3m) Monoclinic (P21/n) Orthorhombic (Pbca) Orthorhombic (Pbmm) Monoclinic (I2/c) Tetragonal (I41/a) Monoclinic (P21/b) Tetragonal (I41/a) Orthorhombic (Pbcn) Tetragonal (I41/amd) Orthorhombic (Pbcn) Monoclinic (I2/c) Monoclinic (P2/c) Trigonal (P321) Monoclinic (C2/c) Monoclinic Cubic (Fd3m) Tetragonal (P42/mmm) Orthorhombic (Pmn21) Trigonal (P321) Trigonal (R3c) Orthorhombic Tetragonal(I41/amd) Orthorhombic (Pbnm) Orthorhombic (Pbca) Orthorhombic (Pbnm) Monoclinic (C2/c) Monoclinic (P2/c) Orthorhombic (Ccm21) Trigonal(P−31c) Trigonal(P−31c) Trigonal (R3c) Tetragonal (I41cd) Orthorhombic (Pn21a)
Section 1: Crystalline Materials
21
Name, Formula, Crystal System, and Space Group for Optical Crystals—continued Name Lithium vanadate Lithium vanadate Lithium yttrium borate Lithium yttrium borate Lithium yttrium fluoride (YLF) Lithium yttrium germanate Lithium yttrium oxide Lithium yttrium silicate Lithium yttrium tungstate Lithium zinc borate Lithium zinc indium fluoride Lithium zinc niobate Lutetium aluminum borate Lutetium aluminum garnet Lutetium borate Lutetium calcium borate Lutetium gallium garnet Lutetium molybdate Lutetium orthosilicate Lutetium oxide Lutetium oxymolybdate Lutetium oxysulfate Lutetium oxytungstate Lutetium pentaphosphate Lutetium phosphate Lutetium scandate Lutetium scandium aluminum garnet (LSAG) Lutetium tantalate Lutetium titanate Lutetium tungstate Lutetium vanadate Magnesium aluminate (spinel) Magnesium aluminum borate (sinhalite) Magnesium aluminum borosilicate (grandidierite) Magnesium aluminum silicate (cordierite) Magnesium aluminum silicate (sapphirine) Magnesium aluminum silicate garnet (pyrope) Magnesium borate (kotoite) Magnesium borate (suanite) Magnesium carbonate (magnesite) Magnesium chloroborate (boracite) Magnesium fluoride (sellaite, Irtran 1) Magnesium fluoroborate
© 2003 by CRC Press LLC
Formula LiVO3 Li3VO4 Li3Y2(BO3)3 Li6Y(BO3)3 LiYF4 LiYGeO4 LiYO2 LiYSiO4 LiY(WO4)2 LiZnBO3 LiZnInF6 LiZnNbO4 LuAl3(BO3)3 Lu3Al5O12 LuBO3 LuCaBO4 Lu3Ga5O12 Lu2(MoO4)3 Lu2SiO5 Lu2O3 Lu2MO6 Lu2O2SO4 Lu2WO6 LuP5O14 LuPO4 LuScO3 Lu3Sc2Al3O12 LuTaO4 Lu2Ti2O3 Lu2(WO4)3 LuVO4 MgAl2O4 MgAlBO4 MgAl3BSiO9 Mg2Al3(Si5Al)O18 Mg4Al8Si2O20 Mg3Al2Si3O12 Mg3B2O6 Mg2B2O5 MgCO3 Mg3B7O13Cl MgF2 Mg2BO3F
Crystal system (Space group) Monoclinic (C2/c) Orthorhombic (Pmn21) Monoclinic (P21/n) Monoclinic (P21/b) Tetragonal (I41/a) Orthorhombic (Pbcn) Monoclinic (P21/c) Orthorhombic (Pbcn) Monoclinic (P2/c) Monoclinic (C2/c) Trigonal (P321) Tetragonal (P4122) Trigonal (R32) Cubic (Ia3d) Rhombohedral (R−3c) Orthorhombic (Pnam) Cubic (Ia3d) Orthorhombic (Pbcn) Monoclinic (C2/c) Cubic (Ia3) Monoclinic (I2/c) Orthorhombic Monoclinic (P2/c) Monoclinic (C2/c) Tetragonal (I41/amd) Cubic (Ia3) Cubic (Ia3d) Monoclinic (P2/a) Cubic (Fd3m) Orthorhombic (Pcna) Tetragonal (I41/amd) Cubic (Fd3m) Orthorhombic (Pnma) Orthorhombic Hexagonal (P6/mcc) Monoclinic (P21/a) Cubic (Ia3d) Orthorhombic (Pnma) Monoclinic Rhombohedral (R−3c) Orthorhombic Tetragonal (P42/mnm) Orthorhombic
22
Handbook of Optical Materials Name, Formula, Crystal System, and Space Group for Optical Crystals—continued Name
Magnesium fluoroborate Magnesium fluorophosphate (wagnerite) Magnesium gallate spinel Magnesium gallium borate Magnesium gallium germanate Magnesium germanate Magnesium germanate Magnesium molybdate Magnesium oxide (periclase, Irtran 5) Magnesium phosphate (farringtonite) Magnesium pyroarsenate Magnesium silicate (enstatite) Magnesium silicate (forsterite) Magnesium titanate Magnesium titanate Magnesium titanate (geikielite) Magnesium titanium sulfate Magnesium titanum borate (warwickite) Magnesium tungstate Magnesium vanadate Magnesium vanadate Magnesium vanadate Magnesium vanadate Manganese fluoride Manganese oxide (manganosite) Mercurous bromide (kuzminite) Mercurous chloride (calomel) Mercurous iodide (moschelite) Mercury antimonade Mercury chloride Mercury iodide Mercury oxide Mercury peroxide Mercury selenide (tiemannite) Mercury sulfide (cinnabar) Mercury tellurite (coloradoite) Neodymium calcium aluminum oxide Neodymium gallate Neodymium yttrium aluminum borate Niobium phosphate Potassium aluminum borate Potassium aluminum fluoride Potassium aluminum germanate
© 2003 by CRC Press LLC
Formula Mg5(BO3)3F Mg2PO4F MgGa2O4 MgGaBO4 Mg4Ga8Ge2O20 MgGeO3 Mg2GeO4 MgMoO4 MgO Mg3(PO4)2 Mg2As2O7 MgSiO3 Mg2SiO4 MgTi2O5 Mg2TiO4 MgTiO3 MgTi(SO4)2 Mg3TiB2O8 MgWO4 MgV2O6 MgVO3 Mg2V2O7 Mg3(VO4)2 MnF2 MnO Hg2Br2 Hg2Cl2 Hg2I2 Hg2Sb2O7 HgCl2 HgI2 HgO Hg2O2 HgSe HgS HgTe NdCaAlO4 NbGaO3 NdxY1-xAl3 (BO3)4 NbOPO4 K2A2lB2O7 K3AlF6 KAlGeO4
Crystal system (Space group) Orthorhombic (P*nb) Monoclinic (P21/a) Cubic (Fd3m) Orthorhombic (Pnam) Monoclinic (P21/a) Orthorhombic (Pbca) Orthorhombic (Pnma) Monoclinic (C2/m) Cubic (Fm3m) Monoclinic Monoclinic (C2/m) Monoclinic (P21/c) Orthorhombic (Pbcn) Orthorhombic (Bbmm) Cubic (Fd3m) Trigonal(R−3) Monoclinic (P21/n) Orthorhombic Monoclinic (P2/c) Orthorhombic (Pbcn) Monoclinic (Cmc21) Monoclinic (C2/m) Orthorhombic (Cmca) Tetragonal (P42/mnm) Cubic (Fm3m) Tetragonal (I4/mmm) Tetragonal (I4/mmm) Tetragonal (I4/mmm) Cubic (Fd3m) Orthorhombic (Pmnb) Tetragonal (P42/mmc) Orthorhombic (Pmna) Monoclinic (C2/m) Cubic (F43m) Trigonal (R32) Cubic (F43m) Tetragonal (I4/mmm) Orthorhombic (Pbnm) Trigonal (R32) Tetragonal (P4/n) Trigonal (P321) Cubic (Pm3m) Hexagonal (P63)
Section 1: Crystalline Materials
23
Name, Formula, Crystal System, and Space Group for Optical Crystals—continued Name Potassium aluminum molybdate Potassium aluminum silicate (kaliophilite) Potassium aluminum silicate (leucite) Potassium aluminum silicate (orthoclase) Potassium aluminum silicate hydroxide (mica) Potassium aluminum sulfate Potassium aluminum tetrafluoride Potassium beryllium fluoride Potassium beryllium fluoroborate (KBBF) Potassium bismuth niobate Potassium boron fluoride (avogadvite) Potassium bromide Potassium cadmium fluoride Potassium calcium fluoride Potassium calcium silicate Potassium calcium zirconium silicate (wadeite) Potassium chloride (sylvite) Potassium dideuterium phosphate (KDP) Potassium dihydrogen phosphate (KDP) Potassium fluoride (carobbiite) Potassium gadolinium niobate Potassium gadolinium tungstate Potassium gadolinium vanadate Potassium gallium germanate Potassium gallium silicate Potassium gallium silicate Potassium indium molybdate Potassium indium tungstate Potassium iodide Potassium iodide Potassium lanthanum molybdate Potassium lanthanum niobate Potassium lanthanum phosphate Potassium lanthanum tetraphosphate Potassium lanthanum tungstate Potassium lead chloride Potassium lithium beryllium fluoride Potassium lithium gadolinium fluoride (KLGF) Potassium lithium niobate (KLN) Potassium lithium yttrium fluoride (KLYF) Potassium lutetium tungstate
© 2003 by CRC Press LLC
Formula KAl(MoO4)2 KAlSiO4 KAlSi2O6 KAlSi3O8 KAl3Si3O10•(OH)2 KAl(SO4)2 KAlF4 K2BeF4 KBe2BO3F2 KBiNb5O15 KBF4 KBr KCdF3 KCaF3 K2CaSiO4 K2CaZr(SiO3)4 KCl KD2PO4 KH2PO4 KF K2GdNb5O15 KGd(WO4)2 K3Gd(VO4)2 KGaGeO4 KGaSi3O8 KGaSiO4 KIn(MoO4)2 KIn(WO4)2 KI KIO3 KLa(MoO4)4 K2LaNb5O15 K3La(PO4)2 KLaP4O12 KLa(WO4)2 KPb2Cl5 KLiBeF4 KLiGdF5 K3Li2Nb5O15 KLiYF5 KLu(WO4)4
Crystal system (Space group) Trigonal (P−3m1) Hexagonal (P63) Tetragonal (I41/a) Monoclinic (C2/m) Monoclinic Trigonal (P321) Tetragonal (P4/mbm) Orthorhombic (Pna21) Trigonal (R32) Tetragonal Orthorhombic (Cmcm) Cubic (Fm3m) Cubic (Pm3m) Cubic (Pm3M) Orthorhombic (Pnmm) Hexagonal (P63m) Cubic (Fm3m) Hexagonal (P63) Tetragonal (I−42m) Cubic (Fm3m) Tetragonal Monoclinic (C2/c) Monoclinic (P21/m) Hexagonal (P63) Monoclinic (C2/m) Hexagonal (P63) Orthorhombic (Pnam) Trigonal (P−3m1) Cubic (Fm3m) Monoclinic (P1) Tetragonal (I41/a) Tetragonal Monoclinic (P21/m) Monoclinic (P21) Monoclinic (C2/m) Monoclinic (P21/c) Hexagonal (P−3m1) Monoclinic (P21/c) Tetragonal (P4bm) Monoclinic (P21/c) Monoclinic (C2/c)
24
Handbook of Optical Materials
Name, Formula, Crystal System, and Space Group for Optical Crystals—continued Name Potassium lutetium vanadate Potassium magnesium chloride Potassium magnesium fluoride Potassium magnesium fluoride Potassium magnesium sulfate (langbeinite) Potassium niobate (KN) Potassium niobium borate Potassium nitrate (nitre) Potassium pentaborate Potassium scandium molybdate Potassium scandium tungstate Potassium scandium vanadate Potassium sodium aluminum fluoride (elpasolite) Potassium sodium gallium fluoride Potassium sodium lithium niobate Potassium sodium lithum niobate Potassium strontium sulfate (kalistrontite) Potassium tantalate Potassium tantalum borate Potassium tin germanate Potassium tin silicate Potassium titanium germanate Potassium titanium niobate Potassium titanium niobate Potassium titanoarsenate (KTA) Potassium titanophosphate (KTP) Potassium titanum silicate Potassium vanadate Potassium yttrium fluoride Potassium yttrium molybdate Potassium yttrium niobate Potassium yttrium tetrafluoride (KYF) Potassium yttrium tungstate Potassium yttrium vanadate Potassium zinc fluoride Potassium zinc fluoride Rubidium aluminum selenate Rubidium aluminum silicate Rubidium aluminum silicate Rubidium aluminum sulfate Rubidium aluminum tetrafluoride Rubidium beryllium fluoride Rubidium bismuth molybdate
© 2003 by CRC Press LLC
Formula
Crystal system (Space group)
K3Lu(VO4)4 K2MgCl4 K2MgF4 KMgF3 K2Mg2(SO4)3 KNbO3 KNbB2O6 KNO3 KB5O8•4H2O KSc(MoO4)2 KSc(WO4)2 KSc(VO4)2 K2NaAlF6 K2NaGaF6 KNaLi2Nb5O15 K2NaLi2Nb5O15 K2Sr(SO4)2 KTaO3 KTaB2O6 K2SnGe3O9 K2SnSi3O9 K2TiGe3O9 KTiNbO5 KTi3NbO9 KTiOAsO4 KTiOPO4 K2TiSi3O9 KVO3 KY3F10 KY(MoO4)2 K2YNb5O15 KYF4 KY(WO4)2 K3Y(VO4)2 K2ZnF4 KZnF3 RbAl(SeO4)2 RbAlSiO4 RbAlSi2O6 RbAl(SO4)2 RbAlF4 Rb2BeF4 RbBi(MoO4)2
Monoclinic (P21/m) Tetragonal (I4/mmm) Tetragonal (I4/mmm) Cubic (Pm3m) Cubic (P213) Orthorhombic (Amm2) Orthorhombic (Pn21m) Orthorhombic (Pmcn) Orthorhombic (Aba2) Tetragonal (P–3m1) Trigonal (P–3m1) Trigonal Cubic (Fm3m) Cubic (Fm3m) Trigonal Tetragonal (P4bm) Trigonal Cubic (Pm–3m) Orthorhombic (Pmm) Trigonal (P–3c1) Hexagonal (P63/m) Trigonal (P–3c1) Orthorhombic (Pnma) Orthorhombic (Pnmm) Orthorhombic (P21nb) Orthorhombic (P21nb) Hexagonal (P63/m) Orthorhombic (Pmab) Cubic (Fm3m) Orthorhombic (Pbna) Tetragonal Trigonal (P31) Monoclinic (C2/c) Monoclinic Tetragonal (I4/mmm) Tetragonal Trigonal (P321) Orthorhombic (Pcmn) Tetragonal (I41/a) Trigonal (P321) Tetragonal (P4/mmm) Orthorhombic (Pna21) Monoclinic (P21/c)
Section 1: Crystalline Materials
25
Name, Formula, Crystal System, and Space Group for Optical Crystals—continued Name Rubidium bromide Rubidium cadmium fluoride Rubidium calcium fluoride Rubidium chloride Rubidium dihydrogen arsenate (RDA) Rubidium dihydrogen phosphate (RDP) Rubidium fluoride Rubidium gadolinium bromide Rubidium gadolinium vanadate Rubidium gadolinium vanadate Rubidium gallium selenate Rubidium gallium sulfate Rubidium indium molybdate Rubidium indium tungstate Rubidium iodide Rubidium lanthanum niobate Rubidium lanthanum tungstate Rubidium lithium aluminum fluoride Rubidium lithium gallium fluoride Rubidium lutetium vanadate Rubidium lutetium vanadate Rubidium magnesium chloride Rubidium magnesium fluoride Rubidium niobium borate Rubidium pentaborate Rubidium potassium gallium fluoride Rubidium scandium molybdate Rubidium scandium tungstate Rubidium scandium vanadate Rubidium scandium vanadate Rubidium sodium beryllium fluoride Rubidium sodium indium fluoride Rubidium tantalum borate Rubidium tin germanate Rubidium tin silicate Rubidium titanium germanate Rubidium titanium silicate Rubidium titano arsenate (RTA) Rubidium titano phosphate (RTP) Rubidium yttrium vanadate Rubidium yttrium vanadate Rubidium zinc bromide Rubidium zinc chloride
© 2003 by CRC Press LLC
Formula
Crystal system (Space group)
RbBr RbCdF3 RbCaF3 RbCl RbH2AsO4 RbH2PO4 RbF RbGd2Br7 Rb3Gd(VO4)2 RbGd(VO4)2 RbGa(SeO4)2 RbGa(SO4)2 RbIn(MoO4)2 RbIn(WO4)2 RbI Rb2LaNb5O15 RbLa(WO4)2 Rb2LiAlF6 Rb2LiGaF6 Rb3Lu(VO4)2 RbLu(VO4)2 Rb2MgCl4 Rb2MgF4 RbNbB2O6 RbB5O8•4H2O Rb2KGaF6 RbSc(MoO4)2 RbSc(WO4)2 Rb3Sc(VO4)2 RbSc(VO4)2 Rb3NaBeF8 Rb2NaInF6 RbTaB2O6 Rb2SnGe3O9 Rb2SnSi3O9 Rb2TiGe3O9 Rb2TiSi3O9 RbTiOAsO4 RbTiOPO4 Rb3Y(VO4)2 RbY(VO4)2 Rb2ZnBr4 Rb2ZnCl4
Cubic (Fm3m) Cubic (Pm3m) Cubic (Pm3m) Cubic (Fm3m) Tetragonal (I41/a) Tetragonal ((I–42m) Cubic (Fm3m) Orthorhombic (Pnma) Trigonal Tetragonal (P4/mmm) Trigonal (P321) Trigonal (P321) Trigonal (P321) Trigonal (P321) Cubic (Fm3m) Tetragonal Monoclinic (C2/c) Rhombohedral (R–3m) Rhombohedral (R–3m) Trigonal Trigonal Tetragonal (I4/mmm) Tetragonal (I4/mmm) Orthorhombic (Pn21m) Orthorhombic (Aba2) Cubic (Fm3m) Trigonal (P–3m1) Trigonal (P–3m1) Trigonal Trigonal Hexagonal (P63) Cubic (Fm3m) Orthorhombic (Pn21m) Trigonal (P–3c1) Hexagonal (P63/m) Trigonal (P–3c1) Hexagonal (P63/m) Orthorhombic (P21nb) Orthorhombic (P21nb) Trigonal Trigonal Orthorhombic (Pnma) Orthorhombic (Pnma)
26
Handbook of Optical Materials Name, Formula, Crystal System, and Space Group for Optical Crystals—continued Name
Formula
Crystal system (Space group)
Rubidium zinc fluoride Rubidium zinc fluoride Scandium aluminum beryllate (SCAB)
Rb2ZnF4 RbZnF3 ScAlBeO4
Tetragonal (I4/mmm) Cubic (Pm3m) Orthorhombic (Pmcn)
Scandium borate Scandium calcium borate Scandium gallate Scandium germanate Scandium magnesium borate Scandium metaphosphate Scandium molybdate Scandium niobate Scandium orthosilicate Scandium oxide Scandium phosphate Scandium silicate Scandium tantalate Scandium titanate Scandium tungstate Scandium vanadate Scandium yttrium silicate (thortveitite) Selenium Selenium dioxide (downeyite) Silicon Silicon carbide (carborundum, moissanite) Silicon carbide Silicon dioxide (α-quartz) Silicon nitride Silver antimony sulfide (pyrargyrite) Silver arsenic selenide Silver arsenic sulfide (proustite) Silver arsenic sulfide (trechmannite) Silver bromide (bromyrite) Silver chloride (cerargyrite) Silver gallium selenide Silver gallium sulfide Silver iodide (iodargyrite) Silver mercury iodide Sodium aluminum borate Sodium aluminum chlorosilicate (sodalite) Sodium aluminum fluoride (chiolite) Sodium aluminum fluoride (cryolite) Sodium aluminum fluoroarsenate (durangite) Sodium aluminum fluorophosphate (lacroixite)
ScBO3 ScCaBO4 ScGaO3 Sc2GeO5 ScMgBO4 Sc(PO3)3 Sc2(MoO4)3 ScNbO4 Sc2SiO5 Sc2O3 ScPO4 Sc2Si2O7 ScTaO4 Sc2TiO5 Sc2(WO4)3 ScVO4 (Sc,Y)2Si2O7 Se SeO2 Si α-SiC (2H) β-SiC (3C) SiO2 Si3N4 Ag3SbS3 Ag3AsSe3 Ag3AsS3 AgAsS2 AgBr AgCl AgGaSe2 AgGaS2 AgI Ag2HgI4 Na2Al2B2O7 Na8Al6Si6O24Cl2 Na5Al3F14 Na3AlF6 NaAl(AsO4)F NaAl(PO4)F
Rhombohedral (R–31) Orthorhombic (Pnam) Monoclinic (A2/m) Monoclinic (B2/b) Orthorhombic (Pnam) Monoclinic (Cc) Orthorhombic (Pbcn) Monoclinic (P2/c) Monoclinic (I2/a) Cubic (I213) Tetragonal (I41/amd) Monoclinic (C2/m) Monoclinic (P2/c) Orthorhombic (Bbmm) Orthorhombic (Pcna) Tetragonal (I41/amd) Monoclinic (C2/m) Trigonal (32) Tetragonal (P42/nbc) Cubic (F–43m) Hexagonal (P63/m) Cubic (Fd3m) Trigonal (P312) Hexagonal (P63/m) Trigonal (R3c) Trigonal (R3c) Trigonal (R3c) Tetragonal (I–42d) Cubic (Fm3m) Cubic (Fm3m) Tetragonal (I–42d) Tetragonal (I–42d) Hexagonal (P63mc) Tetragonal (I –4) Tetragonal (I–42d) Cubic Tetragonal (P4/mnc) Monoclinic (P21/n) Monoclinic (C2/c) Monoclinic
© 2003 by CRC Press LLC
Section 1: Crystalline Materials
27
Name, Formula, Crystal System, and Space Group for Optical Crystals—continued Name Sodium aluminum germanate Sodium aluminum silicate (albite) Sodium aluminum silicate (nepheline) Sodium antimony beryllate (swedenburgite) Sodium barium phosphate Sodium barium titanium silicate (batisite) Sodium beryllium fluoride Sodium beryllium fluoroborate Sodium beryllium phosphate (beryllonite) Sodium beryllium silicate (chkalovite) Sodium beryllium silicate Sodium bismuth magnesium vanadate Sodium bismuth zinc vanadate Sodium boron fluoride (ferruccite) Sodium bromide Sodium cadmium magnesium fluoride Sodium cadmium phosphate Sodium cadmium zinc fluoride Sodium calcium fluorophosphate (arctite) Sodium calcium fluorophosphate (nacaphite) Sodium calcium magnesium phosphate (brianite) Sodium calcium phosphate (bushwaldite) Sodium calcium silicate Sodium calcium silicate (combeite) Sodium calcium yttrium fluoride (α-gagarinite) Sodium carbonate (natrite Sodium chloride (halite) Sodium fluoride (villiaumite) Sodium gadolinium arsenate Sodium gadolinium germanate Sodium gadolinium germanate Sodium gadolinium magnesium vanadate Sodium gadolinium molybdate Sodium gadolinium oxide Sodium gadolinium phosphate Sodium gadolinium pyrophosphate Sodium gadolinium silicate Sodium gadolinium silicate Sodium gadolinium silicate Sodium gadolinium tetraphosphate Sodium gadolinium tungstate Sodium gadolinium vanadate Sodium gallium borate
© 2003 by CRC Press LLC
Formula NaAlGeO4 NaAlSi3O8 NaAlSiO4 NaSbBe4O7 NaBaPO4 Na2BaTi2Si4O14 Na2BeF4 NaBe2BO3F2 NaBePO4 Na2BeSi2O6 Na2BeSiO4 Na2BiMg2V3O12 Na2BiZn2V3O12 NaBF4 NaBr NaCdMg2F7 NaCdPO4 NaCdZn2F7 Na2Ca4(PO4)3F Na2CaPO4F Na2CaMg(PO4)2 NaCaPO4 Na2CaSiO4 Na2Ca2Si3O9 α-NaCaYF6 Na2CO3 NaCl NaF Na3Gd(AsO4)2 NaGdGeO4 Na5GdGe4O12 Na2GdMg2V3O12 NaGd(MoO4)2 NaGdO2 Na3Gd(PO4)2 NaGdP2O7 NaGdSiO4 Na3GdSi3O9 Na5GdSi4O12 NaGdP4O12 NaGd(WO4)2 Na3Gd(VO4)2 Na2Ga2B2O7
Crystal system (Space group) Monoclinic (P21/n) Triclinic (P–1) Hexagonal (P63) Hexagonal (P63mc) Hexagonal (P–3m1) Orthorhombic Monoclinic (P21/n) Trigonal (R32) Monoclinic (P21/n) Orthorhombic (Fddd) Orthorhombic (Pca21) Cubic (Ia3d) Cubic (Ia3d) Orthorhombic (Cmcm) Cubic (Fm3m) Cubic (Fd3m) Orthorhombic (Pnma) Cubic (Fd3m) Trigonal Orthorhombic Orthorhombic Orthorhombic (Pnam) Cubic (Fm3m) Trigonal (P31221) Hexagonal Hexagonal (P63mc) Cubic (Fm3m) Cubic (Fm3m) Monoclinic (Cc) Orthorhombic (Pbn21) Trigonal (R32) Cubic (Ia3d) Tetragonal (I41/a) Tetragonal (I41/amd) Monoclinic Monoclinic Orthorhombic (Pbn21) Orthorhombic (P212121) Trigonal (R32) Monoclinic (P21/n) Tetragonal (I41/a) Monoclinic (Cc) Tetragonal
28
Handbook of Optical Materials Name, Formula, Crystal System, and Space Group for Optical Crystals—continued Name
Sodium gallium germanate Sodium gallium germanate Sodium gallium silicate Sodium germanate Sodium indate Sodium indium germanate Sodium indium molybdate Sodium indium silicate Sodium iodide Sodium lanthanum arsenate Sodium lanthanum borate Sodium lanthanum borate Sodium lanthanum borate Sodium lanthanum molybdate Sodium lanthanum oxide Sodium lanthanum phosphate Sodium lanthanum pyrophosphate Sodium lanthanum tetraphosphate Sodium lanthanum tungstate Sodium lanthanum vanadate Sodium lithium aluminum borosilicate (elbaite) Sodium lithium aluminum fluoride Sodium lithium aluminum fluorogarnet Sodium lithium gallium fluorogarnet (GFG) Sodium lithium indium fluorogarnet Sodium lithium niobate Sodium lithium scandium fluorogarnet Sodium lithium vanadate Sodium lithium yttrium silicate Sodium lithium zirconium silicate (Zektzerite) Sodium lutetium arsenate Sodium lutetium germanate Sodium lutetium germanate Sodium lutetium magnesium vanadate Sodium lutetium oxide Sodium lutetium phosphate Sodium lutetium pyrophosphate Sodium lutetium silicate Sodium lutetium silicate Sodium lutetium vanadate Sodium magnesium aluminum fluoride (weberite) Sodium magnesium carbonate (eitelite)
© 2003 by CRC Press LLC
Formula NaGaGeO4 NaGaGe2O6 NaGaSiO4 Na2GeO3 NaInO2 Na5InGe4O12 NaIn(MoO4)2 Na5InSi4O12 NaI Na3La(AsO4)2 Na3La(BO3)2 Na3La2(BO3)3 Na18La(BO3)7 NaLa(MoO4)2 NaLaO2 Na3La(PO4)2 NaLaP2O7 NaLaP4O12 NaLa(WO4)2 Na3La(VO4)2 Na(Li,Al)3Al6(BO3)3Si6O18(OH) Na2LiAlF6 Na3Li3Al2F12 Na3Li3Ga2F12 Na3Li3In2F12 Na3Li2Nb5O15 Na3Li3Sc2F12 NaLiV2O6 Na2LiYSi6O15 Na2LiZrSi6O15 Na3Lu(AsO4)2 NaLuGeO4 Na5LuGe4O12 Na2LuMg2V3O12 NaLuO2 Na3Lu(PO4)2 NaLuP2O7 NaLuSiO4 Na5LuSi4O12 Na3Lu(VO4)2 NaMgAlF7 Na2Mg(CO3)2
Crystal system (Space group) Monoclinic (P21/n) Monoclinic (C2/c) Monoclinic (P21/n) Orthorhombic (Cmc21) Rhombohedral (R3/m) Trigonal (R32) Triclinic (P–1) Trigonal (R32) Cubic (Fm3m) Orthorhombic (Pbc21) Monoclinic (P21/c) Orthorhombic (Amm2) Monoclinic Tetragonal (I41/a) Tetragonal (I41/amd) Orthorhombic (Pbc21) Orthorhombic Monoclinic (P21/n) Tetragonal (I41/a) Orthorhombic (Pbc21) Trigonal (R3m) Monoclinic (P21/n) Cubic (Ia3d) Cubic (Ia3d) Cubic (Ia3d) Tetragonal (P4bm) Cubic (Ia3d) Monoclinic (C2/c) Orthorhombic (Cmca) Orthorhombic (Cmca) Monoclinic (Cc) Orthorhombic (Pbn21) Trigonal (R32) Cubic (Ia3d) Tetragonal(I41/amd) Monoclinic Monoclinic Orthorhombic (Pbcn) Trigonal (R32) Monoclinic (P21/n) Orthorhombic (Imm2) Trigonal (R –3)
Section 1: Crystalline Materials
29
Name, Formula, Crystal System, and Space Group for Optical Crystals—continued Name Sodium magnesium fluoride (neighborite) Sodium magnesium gallium fluoride Sodium magnesium indium fluoride Sodium magnesium scandium fluoride Sodium magnesium silicate Sodium niobate (natroniobite) Sodium nitrate (soda-nitre) Sodium potassium titanoniobosilicate Sodium scandium germanate Sodium scandium germanate Sodium scandium germanate Sodium scandium indium vanadate Sodium scandium oxide Sodium scandium silicate Sodium scandium silicate Sodium scandium silicate (jervisite) Sodium scandium vanadate Sodium silicate Sodium silicate (natrosilite) Sodium strontium aluminum fluoride Sodium strontium aluminum fluoride (jarlite) Sodium strontium phosphate Sodium tantalate Sodium titanium silicate (lorenzenite) Sodium titanium silicate (natisite) Sodium vanadate Sodium yttrium fluoride Sodium yttrium fluorosilicate Sodium yttrium germanate Sodium yttrium germanate Sodium yttrium magnesium vanadate Sodium yttrium molybdate Sodium yttrium oxide Sodium yttrium silicate Sodium yttrium silicate Sodium yttrium silicate Sodium yttrium silicate Sodium yttrium tetrafluoride Sodium zinc chloride Sodium zinc fluoride Strontium aluminate Strontium aluminate Strontium aluminate
© 2003 by CRC Press LLC
Formula NaMgF3 NaMgGaF7 NaMgInF7 NaMgScF7 Na2MgSiO4 NaNbO3 NaNO3 Na2KTiNbSi4O14 NaScGeO4 NaScGe2O6 Na5ScGe4O12 Na3Sc1.5In0.5V3O12 NaScO2 Na3ScSi2O7 Na5ScSi4O12 NaScSi2O6 Na3Sc2V3O12 Na2SiO3 Na2Si2O5 NaSrAlF6 NaSr3Al3F16 Na2Sr(PO2)4 NaTaO3 Na2Ti2Si2O9 Na2TiOSiO4 NaVO3 5NaF–9YF3 Na5Y4(SiO4)4F NaYGeO4 Na5YGe4O12 Na2YMg2V3O12 NaY(MoO4)2 NaYO2 NaYSiO4 Na3YSi3O9 Na3YSi2O7 Na5YSi4O12 NaYF4 NaZnF3 Na2ZnCl4 SrAl2O4 SrAl4O7 Sr3Al2O6
Crystal system (Space group) Orthorhombic (Pcmm) Orthorhombic (Imm2) Orthorhombic (Imm2) Orthorhombic (Imm2) Monoclinic Orthorhombic (Pbma) Trigonal (R–3c) Orthorhombic Orthorhombic (Pbnm) Monoclinic (C2/m) Trigonal (R32) Cubic (Ia3d) Rhombohedral (R3/m) Orthorhombic (Pbcn) Trigonal (R32) Monoclinic (C2/c) Cubic (Ia3d) Orthorhombic (Cmc21) Monoclinic(P21/a) Orthorhombic (Pna21) Monoclinic Tetragonal (P4/nbm) Orthorhombic (Pbma) Orthorhombic (Pnca) Tetragonal (P4/nmm) Monoclinic (C2/c) Cubic (Ia3d) Rhombohedral (R–3) Orthorhombic (Pbn21) Trigonal (R32) Cubic (Ia3d) Tetragonal (I41/a) Monoclinic (P21/c) Orthorhombic (Pbcn) Orthorhombic (P212121) Hexagonal (P63/m) Trigonal (R32) Trigonal (P31) Orthorhombic (Pnmc) Orthorhombic (Pnma) Monoclinic (P21/n) Monoclinic (C2/c) Cubic (Pa3)
30
Handbook of Optical Materials Name, Formula, Crystal System, and Space Group for Optical Crystals—continued Name
Strontium aluminum fluoride Strontium aluminum germanate Strontium aluminum silicate Strontium aluminum silicate Strontium barium niobate (SBN) Strontium borate Strontium borate Strontium borate Strontium bromovanadate Strontium carbonate (strontianite) Strontium chloroarsenate Strontium chloroarsenate Strontium chloroborate Strontium chlorophosphate Strontium chlorovanadate Strontium chlorovanadate Strontium fluoride Strontium fluoroarsenate Strontium fluorophosphate (SFAP) Strontium fluorovanadate (SVAP) Strontium gadolinium aluminate Strontium gadolinium gallate (SGGM) Strontium gadolinium phosphate Strontium gadolinum oxide Strontium gallate Strontium gallium fluoride Strontium gallium germanate Strontium gallium silicate Strontium gallium silicate Strontium hexa-aluminate Strontium indium germanium garnet Strontium indium oxide Strontium lanthanum aluminate Strontium lanthanum borate Strontium lanthanum gallate Strontium lanthanum oxysilicate Strontium lanthanum phosphate Strontium lutetium oxide Strontium magnesium germanate Strontium magnesium silicate Strontium magnesium vanadate Strontium molybdate Strontium niobate
© 2003 by CRC Press LLC
Formula
Crystal system (Space group)
SrAlF5 SrAl2Ge2O8 SrAl2Si2O8 Sr2Al2SiO7 Sr0.6Ba0.4Nb2O6 SrB2O4 SrB4O7 Sr3B2O6 Sr2VO4Br SrCO3 Sr2AsO4Cl Sr5(AsO4)3Cl Sr2B5O9Cl Sr5(PO4)3Cl Sr2VO4Cl Sr5(VO4)3Cl SrF2 Sr5(AsO4)3F Sr5(PO4)3F Sr5(VO4)3F SrGdAlO4 SrGdGa3O7 Sr3Gd(PO4)3 SrGd2O4 SrGa2O4 SrGaF5 Sr3Ga2Ge4O14 SrGa2Si2O8 Sr2Ga2SiO7 SrAl12O19 Sr3In2Ge3O12 SrIn2O4 SrLaAlO4 SrLaBO4 SrLaGaO4 SrLa4(SiO4)3O Sr3La(PO4)3 SrLu2O4 Sr2MgGe2O7 Sr2MgSi2O7 SrMg2(VO4)2 SrMoO4 SrNb2O6
Tetragonal (P4) Monoclinic (P21/a) Monoclinic (P21/a) Tetragonal (P421m) Tetragonal Orthorhombic (Pnca) Orthorhombic (Pbca) Rhombohedral (R–3c) Orthorhombic (Pbcm) Orthorhombic (Pnam) Orthorhombic (Pbcm) Hexagonal(P63/m) Tetragonal (P42212) Hexagonal(P63/m) Orthorhombic (Pbcm) Hexagonal(P63/m) Cubic (Fm3m) Hexagonal(P63/m) Hexagonal(P63/m) Hexagonal(P63/m) Tetragonal (I4/mmm) Tetragonal (P421m) Cubic (I–43d) Orthorhombic (Pnma) Monoclinic (P21/n) Tetragonal (P4) Trigonal (P321) Monoclinic (P21/a) Tetragonal (P421m) Hexagonal (P63/mmc) Cubic (Ia3d) Orthorhombic (Pnma) Tetragonal (I4/mmm) Hexagonal (P6322) Tetragonal (I4/mmm) Hexagonal (P63/m) Cubic (I–43d) Orthorhombic (Pnma) Tetragonal (P421m) Tetragonal (P421m) Tetragonal (I41/acd) Tetragonal (I41/a) Orthorhombic (Pcan)
Section 1: Crystalline Materials
31
Name, Formula, Crystal System, and Space Group for Optical Crystals—continued Name Strontium niobate Strontium niobate Strontium niobate Strontium potassium niobate Strontium potassium tantalate Strontium scandate Strontium scandium germanium garnet Strontium silicate Strontium sodium niobate Strontium sulfate (celestite) Strontium tantalate Strontium tin borate Strontium tin oxide Strontium titanate Strontium titanate (tausonite) Strontium titanium borate Strontium tungstate Strontium vanadate Strontium vanadate Strontium vanadate Strontium vanadate Strontium vanadate Strontium yttrium borate Strontium yttrium oxide Strontium yttrium oxysilicate Strontium zinc fluoride Strontium zinc germanate Strontium zinc germanate Strontium zinc silicate Strontium zirconate Strontium zirconium borate Strontiun tantalate Strontiun tantalate Strontiun tantalate Strontiun tantalate Tantalum borate (behierite) Tantalum oxide (tantite) Tantalum oxyphosphate Tellurium Tellurium oxide (tellurite) Thallium aluminum selenate Thallium aluminum sulfate Thallium aluminum tetrafluoride
© 2003 by CRC Press LLC
Formula Sr2Nb2O7 Sr5Nb4O15 SrNb2O6 Sr2KNb5O15 Sr2KTa5O15 SrSc2O4 Sr3Sc2Ge3O12 SrSiO3 Sr2NaNb5O15 SrSO4 Sr2Ta2O7 SrSnB2O6 SrSnO3 Sr3Ti2O7 SrTiO3 SrTiB2O6 SrWO4 SrV2O6 β-Sr2V2O7 Sr3(VO4)2 β-Sr2V2O7 SrVO3 Sr3Y (BO3)3 SrY2O4 SrY4(SiO4)3O SrZnF4 SrZnGe2O6 Sr2ZnGe2O7 Sr2ZnSi2O7 SrZrO3 SrZrB2O6 SrTa2O6 Sr2Ta2O7 Sr5Ta4O15 Sr6Ta2O11 TaBO4 Ta2O5 TaOPO4 Te TeO2 TlAl(SeO4)2 TlAl(SO4)2 TlAlF4
Crystal system (Space group) Orthorhombic (Cmc21) Monoclinic (P21/m) Monoclinic (P21/c) Orthorhombic (Im2a) Orthorhombic (Im2a) Orthorhombic (Pnam) Cubic (Ia3d) Monoclinic (C2) Orthorhombic (Im2a) Orthorhombic (Pmma) Orthorhombic (Pnma) Trigonal (R–3) Cubic (P213) Tetragonal (I4/mmm) Cubic (Pm3m) Trigonal (R–3) Tetragonal (I41/a) Monoclinic (C2/m) Tetragonal (I41/amd) Rhombohedral (R –3m) Tetragonal (P41) Cubic (Pm3m) Trigonal (R–3) Orthorhombic (Pnma) Hexagonal (P63/m) Tetragonal (I41/a) Monoclinic (C2/c) Tetragonal (P421m) Tetragonal (P421m) Orthorhombic (Pnma) Trigonal (R–3) Orthorhombic (Pcan) Orthorhombic (Cmcm) Hexagonal Cubic Tetragonal (I41/amd) Orthorhombic (P2mm) Tetragonal (P4/n) Trigonal (32) Orthorhombic (Pbca) Trigonal (P321) Trigonal (P321) Tetragonal (P4/mmm)
32
Handbook of Optical Materials Name, Formula, Crystal System, and Space Group for Optical Crystals—continued Name
Thallium arsenic selenide Thallium arsenic sulfide (ellisite) Thallium bromide Thallium bromoiodide (KRS-5) Thallium chloride Thallium chlorobromide (KRS-6) Thallium gallium selenate Thallium gallium sulfate Thallium niobium borate Thallium oxide (avicennite) Thallium tantalium borate Thallium tin germanate Thallium titanium germanate Thorium oxide (thorianite) Thorium silicate (thorite) Tin dioxide (cassiterite) Titanium dioxide (rutile) Tourmaline (elbaite) Urea Vanadium oxide (shcherbinaite) Yttrium aluminate Yttrium aluminate (YAP, YALO) Yttrium aluminum borate (YAB) Yttrium aluminum garnet (YAG) Yttrium antimonade Yttrium arsenate (chernovite) Yttrium beryllate Yttrium beryllium aluminate Yttrium borate Yttrium calcium aluminate Yttrium calcium gallium beryllium silicate Yttrium calcium oxyborate Yttrium chlorosilicate Yttrium fluoride Yttrium gadolinium antimonade Yttrium gadolinium niobate Yttrium gadolinium tantalate Yttrium gallium borate Yttrium gallium garnet (YGG) Yttrium germanate Yttrium germanium beryllate Yttrium hafnium tantalate
© 2003 by CRC Press LLC
Formula Tl3AsSe3 Tl3AsS3 TlBr Tl(Br,I) TlCl Tl(Cl,Br) TlGa(SeO4)2 TlGa(SO4)2 TlNbB2O6 Tl2O3 TlTaB2O6 Tl2SnGe3O9 Tl2TiGe3O9 ThO2 ThSiO4 SnO2 TiO2 Na(Li,Al)3Al6(BO3)3Si6O18(OH) (NH2)2CO V2 O 5 Y4Al2O9 YAlO3 YAl3(BO3)4 Y3Al5O12 Y3SbO7 YAsO4 YBeBO4 Y2BeAl2O7 YBO3 YCaAl3O7 YCaGaBe2Si2O10 YCa4O(BO3)3 Y3(SiO4)2Cl YF3 Y2GdSbO7 YGd2NbO7 Y2GdTaO7 YGa3(BO3)4 Y3Ga5O12 Y2GeO5 Y2GeBe2O7 YHfTaO6
Crystal system (Space group) Trigonal (R3c) Trigonal (R3c) Cubic (Fm3m) Cubic (Fm3m) Cubic (Fm3m) Cubic (Fm3m) Trigonal (P321) Trigonal (P321) Orthorhombic (Pn21m) Cubic (Ia3d) Orthorhombic (Pn21m) Trigonal (P–3c1) Hexagonal (P63/m) Cubic (Fm3m) Tetragonal (I41/amd) Tetragonal (P42/mnm) Tetragonal (P42/mnm) Trigonal (R3m) Tetragonal (I – 4 2m) Orthorhombic (Pmmm) Monoclinic (P21/a) Orthorhombic (Pnma) Trigonal (R32) Cubic (Ia3d) Orthorhombic (C2221) Tetragonal (I41/amd) Monoclinic (C2/c) Tetragonal (P421m) Hexagonal (P63/mmc) Tetragonal (P421m) Monoclinic (P21/c) Monoclinic (Cm) Orthorhombic (Pnma) Orthorhombic (Pnma) Orthorhombic (C2221) Orthorhombic (C2221) Orthorhombic (C2221) Trigonal (R32) Cubic (Ia3d) Monoclinic (P21/c) Tetragonal (P421m) Orthorhombic
Section 1: Crystalline Materials
33
Name, Formula, Crystal System, and Space Group for Optical Crystals—continued Name Yttrium indate Yttrium indium gallium garnet Yttrium iron garnet (YAG) yttrium lithium fluoride (YLF) Yttrium magnesium beryllium silicate (gadolinite) Yttrium molybdate Yttrium niobate (fergusonite) Yttrium orthosilicate (YOS, YSO) Yttrium oxide (yttria) Yttrium oxychloride Yttrium molybdate Yttrium oxymolybdate Yttrium oxysulfate Yttrium oxytungstate Yttrium pentaphosphate Yttrium phosphate (xenotime) Yttrium scandate Yttrium scandium aluminum garnet (YSAG) Yttrium scandium gallium garnet (YSGG) Yttrium silicate (keiviite) Yttrium silicon beryllate Yttrium tantalate Yttrium tantalate (formanite) Yttrium titanate Yttrium titanium silicate (trimounsite) Yttrium titanium tantalate Yttrium tungstate Yttrium vanadate (wakefieldite) Yttrium zinc beryllium silicate Zinc aluminate (gahnite) Zinc antimonate (ordonezite) Zinc arsenate Zinc arsenide (reinerite) Zinc borate Zinc borate Zinc borate Zinc carbonate (smithsonite) Zinc chloride Zinc fluoride Zinc gallate Zinc germanate Zinc germanium arsenide Zinc germanium phosphide
© 2003 by CRC Press LLC
Formula
Crystal system (Space group)
YInO3 Y3In2Ga3O12 Y3Fe5O12 LiYF4 Y2MgBe2Si2O10 Y2(MoO4)3 YNbO4 Y2SiO5 Y2 O3 YOCl Y2Mo2O7 Y2MoO6 Y2OS2 Y2WO6 YP5O14 YPO4 YScO3 Y3Sc2Al3O12 Y3Sc2Ga3O12 Y2Si2O7 Y2SiBe2O7 Y3TaO7 YTaO4 Y2Ti2O7 Y2Ti2SiO9 YTiTaO6 Y2(WO4)3 YVO4 Y2ZnBe2Si2O10 ZnAl2O4 ZnSb2O6 ZnAsO4 Zn3(AsO3)2 Zn3(BO3)2 ZnB4O7 Zn4B6O13 ZnCO3 ZnCl2 ZnF2 ZnGa2O4 Zn2GeO4 ZnGeAs2 ZnGeP2
Hexagonal (P63cm) Cubic (Ia3d) Cubic (Ia3d) Tetragonal (I41/a) Monoclinic (P21/c) Orthorhombic (Pbcn) Monoclinic (C2/c) Monoclinic (C2/c) Cubic (Ia3) Rhombohedral (R–3m) Cubic (Fd3m) Monoclinic (I2/c) Monoclinic (P21/c) Monoclinic (P2/c) Orthorhombic (Pcmn) Tetragonal (I41/amd) Orthorhombic (Pbnm) Cubic (Ia3d) Cubic (Ia3d) Monoclinic (C2/m) Tetragonal (P421m) Orthorhombic (C2221) Monoclinic (P2/a) Cubic (Fd3m) Monoclinic Orthorhombic (Pbcn) Orthorhombic (Pcna) Tetragonal (I41/amd) Monoclinic (P21/c) Cubic (Fd3m) Tetragonal (P42/mnm Monoclinic (P21/c) Orthorhombic (Pbam) Monoclinic (P2/c) Othorhombic (Pbca) Cubic (I–43m) Rhombohedral (R –3c) Tetragonal (P42/mnm) Tetragonal (P42/mnm) Cubic (Fd3m) Tetragonal (I4122) Tetragonal (I–42d) Tetragonal (I–42d)
34
Handbook of Optical Materials Name, Formula, Crystal System, and Space Group for Optical Crystals—continued Name
Formula
Crystal system (Space group)
Zinc oxide (zincite)
ZnO
Hexagonal (6mm)
Zinc pyroarsenade
Zn2As2O7
Monoclinic (C2/m)
Zinc selenide (stilleite, Irtran 4)
ZnSe
Cubic (Fm3m)
Zinc silicate (willemite)
Zn2SiO4
Trigonal (R–3)
Zinc silicon arsenide
ZnSiAs2
Tetragonal (I–42d)
Zinc silicon phosphide
ZnSiP2
Tetragonal (I–42d)
Zinc sulfide (sphalerite, Irtran 2, zincblende)
β-ZnS
Cubic (Fm3m)
Zinc sulfide (wurtzite)
α-ZnS
Hexagonal (P6mm)
Zinc telluride
ZnTe
Cubic (Fm3m)
Zinc tin antimonide
ZnSnSb2
Tetragonal (I–42d)
Zinc tin arsenide
ZnSnAs2
Tetragonal (I–42d)
Zinc tin phosphide
ZnSnP2
Tetragonal (I–42d)
Zinc tungstate
ZnWO4
Monoclinic (P2/c)
Zinc vanadate
ZnV2O6
Monoclinic (C2)
Zirc silicon arsenate
ZnSiAs2
Cubic (F–43m)
Zirconium oxide
ZrO2
Tetragonal (P42/nmc)
Zirconium oxide (cubic zirconia, CZ)
ZrO2:0.12Y2O3
Cubic (Fm3m)
Zirconium silicate (zircon)
ZrSiO4
Tetragonal (I41/amd)
© 2003 by CRC Press LLC
Section 1: Crystalline Materials
35
1.2 Physical Properties* Physical properties of optical crystals in this section are grouped into three tables: isotropic crystals, uniaxial crystals, and biaxial crystals. Materials are listed alphabetically in order of the chemical formulas. The following properties are included: Density: Data are for room temperature. Hardness: This is an empirical and relative measure of a material’s resistance to wear. Average Knoop (indentation test) hardness numbers or range of values at room temperature are given when available. In many cases only Vicker (V) or Mohs hardness are known. This is indicated parentheses after the value. The hardness of a crystal varies with orientation even for cubic symmetry crystals. Cleavage: The ease of cleavage varies greatly depending on the crystal quality and the nature and direction of stress applied. In many crystals there can be more than one set of cleavage planes. Miller indices are used to denote the cleavage planes. The actual number of cleavage planes depends on the plane orientation relative to the symmetry of the crystal. Only the easiest cleavage plane for each crystal is listed. They are ranked qualitatively as perfect (p) or imperfect (i). A crystal listed with a perfect cleavage plane can crack along that direction with a smooth surface if a stress is applied. The imperfect cleavage plane means that the crack does not easily move along the plane, although a small area of oriented flat surfaces may form along the cracking surface when the crystal is fractured. Solubility : Solubility is defined as the weight loss in grams per 100 grams of water. The dissolution temperature in °C is included in parentheses, if given. If the solubility is less than 10-3 g/100 g, the material is generally considered to be insoluble. If a crystal is listed as insoluble, it means that, when submerged in water with a reasonable amount of time (a day or so), no noticeable loss of weight nor visible surface erosion of the crystal is observed. * This section was adapted from “Optical Crystals” by B. H. T. Chai, Handbook of Laser Science and Technology, Suppl. 2, Optical Materials (CRC Press, Boca Raton, FL, 1995), p. 30 ff (with additions). 1.2.1 Isotropic Crystals Physical Properties of Isotropic Crystalline Materials Cubic material AgBr AgCl AlAs Al23O27N5 (ALON) AlP AlSb As2O3 Ba(NO3)2 Ba2Zr2Si3O12 Ba3Al2O6
© 2003 by CRC Press LLC
Density 3
(g/cm ) 6.473 5.56 3.729 3.713 2.40 4.26 3.87 3.24 – 5.008
Hardness 2
(kg/mm ) 7 9.5 – 1850 – – 1.5 (Mohs) – – –
Cleavage
Solubility (ºC)
plane
(g/100 g H2O)
None None (111)-p – – – (111) None – –
1.2 × 10–5 (20) 1.5 × 10–4 (20) Insoluble Insoluble Slightly soluble Soluble Soluble Insoluble –
Physical Properties of Isotropic Crystalline Materials—continued Cubic material Ba3MgTa2O9 BaF2 BaF2-CaF2 Bi12GeO20 Bi12SiO20 Bi12TiO20 Bi4Ge3O12 Bi4Si3O12 BN BP C (diamond) Ca12Al14O33 Ca2LiMg2V3O12 Ca2LiZn2V3O12 Ca2NaMg2V3O12 Ca2NaZn2V3O12 Ca2Sb2O7 Ca3Al2Ge3O12 Ca3Al2Si3O12 Ca3Ga2Ge3O12 Ca3Gd(PO4)3 Ca3In2Ge3O12 Ca3La(PO4)3 Ca3Lu2Ge3O12 Ca3Sc2Ge3O12 Ca3Sc2Si3O12 CaF2 CaLa2S4 CaO CaTiO3 CaY2Mg3Ge3O12 Cd2Nb2O7 Cd2Sb2O7 Cd3Sc2Ge3O12 CdB2O4 CdF2 CdGa2O4 CdIn2O4 CdO CdTe Cs2KLaF6 Cs2NaYF6 CsBr © 2003 by CRC Press LLC
Density 3
(g/cm ) 6.435 4.83 4.89 9.22 9.20 9.069 7.13 6.60 3.48 2.97 3.51 2.68 3.447 3.726 3.414 3.976 – 4.357 3.60 4.837 3.900 5.063 3.678 5.668 4.203 3.514 3.180 4.524 3.3 3.98 – 6.216 – 5.749 4.58 6.64 – 7.00 8.24 6.20 3.95 4.397 4.44
Hardness 2
(kg/mm ) – 82(500) – 4.5(Mohs) – – 5.0 (Mohs) 4.5 (Mohs) 4600 3600 5700–10400 – – – – – – – 7 (Mohs) – – – – – – – 158 570 3.5 – – – – – – – – – 3 (Mohs) 56 – – 19.5
Cleavage
Solubility (ºC)
plane
(g/100 g H2O)
– (111)-p (111)-p None None None None (110)-i (111) – (111) None – – – – None None None None – None – None None None (111)-p – (100)-p – None None None None – (111)-p None None (111) (110)-p None None None
Insoluble 0.12 0.16 Insoluble Insoluble Insoluble Insoluble Insoluble Insoluble Insoluble Insoluble Insoluble – – – – Insoluble Insoluble Insoluble Insoluble Insoluble Insoluble Insoluble Insoluble Insoluble Insoluble 1.6 × 10–3 (18) – 0.13(10) Insoluble Insoluble Insoluble Insoluble Insoluble – 4.4 (20) Insoluble – – Very slightly soluble Slightly soluble Slightly soluble 124 (25)
Physical Properties of Isotropic Crystalline Materials—continued Cubic material
Density 3
(g/cm )
Hardness 2
(kg/mm )
CsCaF3 CsCdF3 CsCl CsF CsI CsSrF3 Cu2O CuBr CuCl CuI GaAs GaP GaSb Gd2Ti2O7 Gd3Ga5O12 Gd3Sc2Al3O12 Gd3Sc2Ga3O12 Ge Hg2Sb2O7 HgSe HgTe InAs InP InSb
4.123 5.62 3.9 4.638 4.510 4.299 6.11 4.77 4.14 5.68 5.316 4.13 5.619 6.52 7.02 5.82 – 5.35 – 8.266 – 5.66 4.8 5.78
– – – – 1–2 (Mohs) – 3.5 (Mohs) 21 2.5 (Mohs) 2.5 (Mohs) 721 – – 1114 6.5–7(Mohs) 7.5 (Mohs) 7.0 (Mohs) 800 – – – 330 430 225
K2Mg2(SO4)3 K2NaAlF6 K2NaGaF6 K3AlF6 KBr KCaF3 KCdF3 KCl KF KI KMgF3 KTaO3 KY3F10 La3Lu2Ga3O12 Li2BeF4 Li2CdCl4 Li2MgCl4 LiAl5O8 LiBaF3
2.83 2.99 3.34 – 2.75 2.709 4.264 1.984 2.48 3.12 3.15 7.015 4.312 – 2.289 2.956 2.119 3.625 5.242
3.5 (Mohs) 2.5 (Mohs) – – 7.0(200) – – 9.3(200) 2 (Mohs) 5 2.5 (Mohs) – 4.5 (Mohs) 7.0 (Mohs) – – – – –
© 2003 by CRC Press LLC
Cleavage
Solubility (ºC)
plane
(g/100 g H2O)
– – None (100)-p None – (111)-i – (110)-p (110)-p (111)-p (111)-p (111)-p None None None None (111) None – – (111)-p (111)-p (111)-p None None None None (100)-p – – (100)-p (100)-p (100)-p None – None None – – – None –
Slightly soluble – 186 (20) 367 (18) 44 (0) – Insoluble Very slightly soluble 6.1 × 10–3 – <5 × 10–3 (25) Insoluble Insoluble Insoluble Insoluble Insoluble Insoluble Insoluble Insoluble Insoluble – Insoluble Insoluble Insoluble Slightly soluble Slightly soluble Slightly soluble Soluble 65.2 (20) – – 34.7 (20) 92.3 (18) 144 (20) Insoluble Insoluble Insoluble Insoluble – – – Insoluble –
Physical Properties of Isotropic Crystalline Materials—continued Cubic material LiBr LiCl LiF LiGa5O8 LiI Lu2O3 Lu2Ti2O7 Lu3Al5O12 Lu3Ga5O12 Lu3Sc2Ga3O12 LuScO3 Mg2TiO4 Mg3Al2Si3O12 MgAl2O4 MgGa2O4 MgO MnO Na2BiMg2V3O12 Na2BiZn2V3O12 Na2CaSiO4 Na2GdMg2V3O12 Na2LuMg2V3O12 Na2YMg2V3O12 Na3Li3Al2F12 Na3Li3Ga2F12 Na3Li3In2F12 Na3Li3Sc2F12 Na3Sc2V3O12 Na8Al6Si6O24Cl2 NaBr NaCdMg2F7 NaCdZn2F7 NaCl NaF 5NaF -9YF3 NaI Pb(NO3)2 Pb2Sb2O7 PbF2 PbS PbSe PbTe Rb2KGaF6 © 2003 by CRC Press LLC
Density 3
(g/cm ) 3.464 2.068 2.635 5.819 4.076 9.426 7.31 6.695 7.828 – – 3.546 3.58 3.58 5.37 3.58 5.44 4.388 4.919 2.821 4.115 4.332 3.668 2.77 3.20 3.54 2.66 3.342 2.27 3.203 3.968 4.838 2.165 2.588 4.22 3.667 4.530 – 8.24 7.5 8.10 8.164 3.751
Hardness 2
(kg/mm )
Cleavage
Solubility (ºC)
plane
(g/100 g H2O)
– (100)-p – (100)-p 110 (600) (100)-p – None – (100)-p – – 1264 None 7.5 (Mohs) None 7.0 (Mohs) None 7.0 (Mohs) None – – – – 7.5 (Mohs) None 1140 (1000) None 7.0 (Mohs) None 690 (600) (100)-p 5.5 (Mohs) (100)-p – – – – – – – – – – – – 2 (Mohs) (011)-i 2 (Mohs) None 2 (Mohs) None 2 (Mohs) None – – 5.5 (Mohs) (110)-i – (100)-p – – – – 18 (200) (100)-p 60 (100)-p 2 (Mohs) None – (100)-p – – – None 200 (111)-p 2.5–2.75 (Mohs)(100)-p – (100)-p – (100)-p – None
145 (4) 63.7 (0) 0.27 (18) Insoluble 168 (20) – Insoluble Insoluble Insoluble Insoluble Insoluble Insoluble Insoluble Insoluble Insoluble 6.2 × 10–4 Insoluble – – Insoluble – – – – – – – – Insoluble 91 (20) – – 39.8 (0) 4.2 (18) Insoluble 179 (20) – Insoluble 0.064 (20) 6.6 × 10–5 Insoluble Insoluble –
Physical Properties of Isotropic Crystalline Materials—continued Cubic material Rb2NaInF6 RbBr RbCaF3 RbCl RbF RbI RbZnF3 Sb2O3 Sc2O3 Si β-SiC β-SiC (CVD) Sr3Al2O6 Sr3Gd(PO4)3 Sr3In2Ge3O12 Sr3La(PO4)3 Sr3Sc2Ge3O12 Sr6Nb2O11 Sr6Ta2O11 SrF2 SrSnO3 SrTiO3 SrVO3 ThO2 Tl(Br,I) Tl(Cl,Br) Tl2O3 TlBr TlCl Y2 O3 Y2Ti2O7 Y3Al5O12 Y3Ga5O12 Y3In2Ga3O12 Y3Sc2Al3O12 Y3Sc2Ga3O12 Zn4B6O13 ZnAl2O4 ZnGa2O4 β-ZnS β-ZnS (CVD) ZnSe ZnSiAs2 © 2003 by CRC Press LLC
Density 3
(g/cm ) 4.302 3.35 3.632 2.80 – 3.55 5.007 5.50 3.840 2.33 3.214 3.21 4.136 – 5.632 – 4.838 5.0 6.088 4.24 6.432 5.122 5.46 9.86 7.371 7.192 10.35 7.557 7.604 5.01 4.987 4.56 5.79 6.03 4.55 5.184 4.19 4.62 6.089 4.09 4.04 5.42 4.747
Hardness 2
(kg/mm ) – – – – – 1.0 (Mohs) – 2–2.5 (Mohs) – 1150 2880 2540 – – – – – – – 130 – 595 – 600 40 (500) 39 (500) – 12 (500) 13 (500) 875 1099 135 (200) 7.0 (Moh) – – 7.0 (Moh) – 7.5 (Moh) 7.0 (Moh) 178 178 137 –
Cleavage
Solubility (ºC)
plane
(g/100 g H2O)
None (100)-p – (100)-p (100)-p (100)-p – (111)-i – (111) – – – – None – None – – (111)-p – None – None None None – None None – None None None None None None – None None (110)-p – (110)-p –
– 98 (5) – 77 (0) 367 (18) 152 (17) – Insoluble Insoluble Insoluble Insoluble Insoluble – Insoluble Insoluble Insoluble Insoluble Insoluble Insoluble 0.012 (20) Insoluble Insoluble – Insoluble – <0.32 (20) Insoluble 0.05 (25) 0.32 (20) 1.8 x 10–5 (20) Insoluble Insoluble Insoluble Insoluble Insoluble Insoluble – Insoluble Insoluble 6.9 × 10–4 (18) – 0.001(25) Insoluble
Physical Properties of Isotropic Crystalline Materials—continued Cubic
Density 3
(g/cm )
material ZnTe ZrO2
6.34 5.64
Hardness 2
(kg/mm ) 82 990
Cleavage
Solubility (ºC)
plane
(g/100 g H2O)
(110)-p None
Insoluble Insoluble
1.2.2 Uniaxial Crystals Physical Properties of Uniaxial Crystalline Materials Uniaxial
Density
material
(g/cm )
Ag2HgI4 Ag3AsS3 Ag3AsSe3 Ag3SbS3 AgAsS2 AgGaS2 AgGaSe2 AgI Al2O3 AlAsO4 AlF3 AlGaO3 AlN AlPO4 AlTiTaO6 Ba2B5O9Cl Ba2MgAlF9 Ba2MgF6 Ba2MgGe2O7 Ba2MgSi2O7 Ba2Sc4O9 Ba2TiSi2O8 Ba2ZnF6 Ba2ZnGe2O7 Ba2ZnSi2O7 Ba2ZrSi2O8 Ba3(VO4)2 Ba3Sc4O9 Ba3SrNb2O9 Ba3SrTa2O9 Ba5(AsO4)3F
© 2003 by CRC Press LLC
3
6.091 5.49 6.521 5.82 – 4.702 5.70 5.7 3.98 3.359 3.192 4.78 3.261 2.566 6.26 3.762 4.157 5.08 4.79 4.265 5.372 4.43 5.514 – – – 5.176 5.318 – – 5.073
Hardness 2
(kg/mm ) – 2–2.5 (Mohs) – 2.5 (Mohs) – – – 1.5 (Mohs) 1370 (1000) – – – – 5 (Mohs) – – – – – – – 3.80 – – – – – – – – –
Cleavage
Solubility (ºC)
plane
(g/100 g H2O)
– (1011) – (1011)-i – (112)-p (112)-p (0001)-p None – – (0001)-p – None – – – – (001) (001) – (001)-i – (001) (001) – – – – – (1011)-i
– Insoluble Insoluble Insoluble Insoluble Insoluble Insoluble Insoluble 9.8 × 10–5 Insoluble – Insoluble Insoluble Insoluble Insoluble Insoluble – Insoluble Insoluble Insoluble Insoluble Insoluble Insoluble Insoluble Insoluble Insoluble – Insoluble Insoluble Insoluble Insoluble
Physical Properties of Uniaxial Crystalline Materials—continued Uniaxial material Ba5(AsO4)3Cl Ba5(PO4)3Cl Ba5(PO4)3F Ba5(VO4)3Cl Ba5(VO4)3F Ba6Sc6O15 BaAl12O19 BaAl2O4 β-BaB2O4 BaBe(PO4)F BaGe4O9 BaMg2(VO4)2 BaMoO4 BaSb2O6 BaSnB2O6 BaSnSi3O9 BaTiB2O6 BaTiO3 BaTiSi3O9 BaWO4 BaZnGeO4 BaZnSiO4 BaZrSi3O9 Be2GeO4 Be2SiO4 Be3Al2Si6O18 Be3Sc2Si6O18 BeMg3Al8O16 BeO(dreyerite) Bi2Ge3O9 BiVO4 (dreyerite) Ca2Al2GeO7 Ca2Al2SiO7 Ca2Al3O6F Ca2B5O9Cl Ca2BeSi2O7 Ca2Ga2GeO7 Ca2Ga2SiO7 Ca2MgSi2O7 Ca2Te2O5 Ca2ZnSi2O7 Ca3B2O6
© 2003 by CRC Press LLC
Density 3
(g/cm ) 5.086 4.802 4.81 4.728 4.766 5.115 4.075 4.080 3.85 4.31 – 4.226 4.946 – 4.848 4.03 4.211 6.02 3.64 6.383 5.12 4.706 3.85 3.893 2.96 2.66 2.77 3.60 3.01 6.20 6.25 3.421 3.04 2.95 2.639 – 4.14 4.07 2.94 5.05 3.39 3.09
Hardness 2
(kg/mm ) 4.5 (Mohs) – – – – – – – 4 (Mohs) – – – – – – 6 (Mohs) – 5 (Mohs) 6 (Mohs) – – – – – 1100 7.5–8 (Mohs) 6.5 (Mohs) 8.5 (Mohs) 1250 5.5 GPa – – 5.5 (Mohs) – – – – – 5.5 (Mohs) 4 (Mohs) 3.5 (Mohs) –
Cleavage
Solubility (ºC)
plane
(g/100 g H2O)
(0001)-i – (1011)-i (1011)-i (1011)-i – – – (0001)-i None None – – – – None – – None – – – None None (1010) None None – (1010)-i (0001)-p (110)-p (001) (001) (1011)-i – – (001) (001) (001)-i (001)-p (001) –
Insoluble Insoluble Insoluble Insoluble Insoluble Insoluble Insoluble Insoluble Slightly soluble Insoluble Insoluble – – – Insoluble Insoluble Insoluble Insoluble Insoluble Insoluble Insoluble Insoluble Insoluble Insoluble Insoluble Insoluble Insoluble Insoluble 2 × 10–5 (20) Insoluble Insoluble Insoluble Insoluble Insoluble Insoluble Insoluble Insoluble Insoluble Insoluble Insoluble Insoluble Insoluble
Physical Properties of Uniaxial Crystalline Materials—continued Uniaxial material Ca3Ga2Ge4O14 Ca4La(PO4)3O Ca4Y6(SiO4)6O Ca5(AsO4)3Cl Ca5(AsO4)3F Ca5(PO4)3Cl Ca5(PO4)3F Ca5(VO4) 3F Ca5(VO4)3Cl CaAl12O19 CaAl2B2O7 CaCO3–calcite CaCO3–vaterite CaGd4(SiO4)3O CaGdAlO4 CaGe4O9 CaLa4(SiO4)3O CaLaAlO4 CaLaBO4 CaMg(CO3)2 CaMg3(CO3)4 CaMoO4 CaSnB2O6 CaWO4 CaY4(SiO4)3O CaYAlO4 CaZrBAl9O18 Cd5(AsO4)3Cl Cd5(PO4)3Cl Cd5(PO4)3F Cd5(VO4)3Cl CdCl2 CdCO3 CdI2 CdS CdSe CdSnB2O6 CdTiO3 Cs2AgF4 Cs2CdCl4 Cs2CdZnF6 Cs2KAl3F12 Cs2LiAl3F12 © 2003 by CRC Press LLC
Density 3
(g/cm ) 4.590 – – 3.635 3.5 2.90 3.20 – 3.174 3.78 2.44 2.715 2.68 6.030 5.97 – 5.112 – 4.136 2.86 3.71 4.25 4.22 6.062 4.47 – 4.01 5.917 5.600 5.784 5.375 4.047 5.02 5.670 4.82 5.81 5.479 5.881 5.02 3.697 5.342 3.76 3.949
Hardness
Cleavage
Solubility (ºC)
(kg/mm )
plane
(g/100 g H2O)
– – – – 4.5 (Mohs) 5 (Mohs) 540 – – – – 75–135 3 (Mohs) – 716 – – – – 3.5 (Mohs) 335 4.0 (Mohs) 5.5 (Mohs) 4.5–5 (Mohs) 702 – 8 (Mohs) – – – – – – – 122 (25) 44–90 – – – – – – –
None – None – (1011)-i (0001)-i (0001)-i (1011)-i (1011)-i – – (1011)-p – None (001) None None (001) – (1011)-p (1011)-p (112)(110) (0001)-p (101)-i None – None (1011)-i (1011)-i (1011)-i (1011)-i – (1011)-p – (1122)-i – – – – – – – –
2
Insoluble Insoluble Insoluble Insoluble Insoluble Insoluble Insoluble Insoluble Insoluble Insoluble – 1.4 × 10–3 (25) Insoluble Insoluble Insoluble Insoluble Insoluble Insoluble Insoluble Insoluble Insoluble – Insoluble 6.4 × 10–4 (15) Insoluble Insoluble Insoluble Insoluble Insoluble Insoluble Insoluble 140 (25) Insoluble 86 (25) 1.3 × 10–4 (18) Insoluble Insoluble Insoluble – – – – –
Physical Properties of Uniaxial Crystalline Materials—continued Uniaxial material Cs2LiAlF6 Cs2LiGa3F12 Cs2LiGaF6 Cs2NaAl3F12 Cs2NaAlF6 Cs2NaGaF6 Cs2SnGe3O9 Cs2TiGe3O9 CsAl(SO4)2 CsH2AsO4 CsH2PO4 CsSc(MoO4)2 CsSc(WO4)2 α-GaN GaPO4 GaS GaSe GdAl3(BO3)4 GdBO3 GdGa3(BO3)4 GdInO3 GdVO4 GeO2 HfSiO4 Hg2Br2 Hg2Cl2 Hg2I2 HgI2 HgS In2O3 InBO3 K2BiNb5O15 K2CaZr(SiO3)4 K2GdNb5O15 K2LaNb5O15 K2MgCl4 K2MgF4 K2NaLi2Nb5O15 K2SnGe3O9 K2SnSi3O9 K2Sr(SO4)2 K2TiGe3O9 K2TiSi3O9 © 2003 by CRC Press LLC
Density 3
(g/cm ) 4.38 4.43 4.406 3.817 4.346 4.654 5.145 4.835 3.382 3.747 3.253 3.54 4.74 6.109 2.995 3.86 5.03 4.335 6.357 5.257 7.41 5.474 6.239 6.97 7.68 7.15 7.68 6.28 8.10 7.31 5.555 5.29 3.10 5.147 4.921 2.13 2.839 – 4.324 3.46 3.20 3.945 3.239
Hardness 2
(kg/mm ) – – – – – – – – – 1.5 (Mohs) 1.5 (Mohs) – – 750 4 (Mohs) – – 7 (Mohs) – – – – – – 1.5 (Mohs) 1.5 (Mohs) – – 2–2.5 (Mohs) – – – 5.5 (Mohs) – – – – – – – 2 (Mohs) – –
Cleavage
Solubility (ºC)
plane
(g/100 g H2O)
– – – – – – – – – (101)-p (101)-p (1011)-p (1011)-p — None – – (1011) – (1011) – (110)-p None (110)-i (110) (110)-i – – (1010)-p – (1011)-p – None – – – (001)-p (001)-p – – (0001)-p – –
– – – – – – Insoluble Insoluble – Very soluble Very soluble – – Insoluble Insoluble – – Insoluble Insoluble Insoluble – Insoluble Insoluble Insoluble Insoluble 3 x 10–4 Insoluble 0.0055 (35) 1 × 10–6 (18) – Insoluble – Insoluble Insoluble Insoluble – – Insoluble Insoluble Insoluble Slightly soluble Insoluble Insoluble
Physical Properties of Uniaxial Crystalline Materials—continued Uniaxial material K2YNb5O15 K2ZnF4 K3LiNb5O15 K3Sc(VO4)2 KAl(MoO4)2 KAl(SO4)2 KAlF4 KAlGeO4 KAlSi2O6 KAlSiO4 KD2PO4 KGaGeO4 KGaSiO4 KH2PO4 KIn(WO4)2 KLa(MoO4)2 KLiBeF4 KSc(MoO4)2 KSc(WO4)2 KYF4 KZnF3 La2GeBe2O7 La2MoO6 La2O2S La2O3 La2WO6 La3Ga5GeO14 La3Ga5SiO14 La3Nb0.5Ga5.5O14 La3Ta0.5Ga5.5O14 LaAlO3 LaBaGa3O7 LaBGeO5 LaBSiO5 LaCaAl3O7 LaCaGa3O7 LaCl3 LaF3 LaMgAl11O19 LaSrGa3O7 Li2B4O7 Li2CaGeO4 Li2CaSiO4 © 2003 by CRC Press LLC
Density 3
(g/cm ) 4.807 3.378 4.376 3.02 3.42 2.481 3.009 3.617 2.47 2.59 – 4.261 3.691 2.338 5.13 4.61 2.284 3.23 4.64 3.49 4.018 5.424 5.834 5.75 6.574 7.44 – 5.754 5.934 6.164 – 5.60 5.04 4.58 – – 3.85 5.94 4.285 5.64 2.44 3.63 2.935
Hardness 2
(kg/mm ) – – – – – – – – 5.5 (Mohs) 6 (Mohs) 1.5 (Mohs) – – 1.5 (Mohs) – – – – – 3 (Mohs) 2.5 (Mohs) – – 350–450 – – – – – – – – – – – – – 450 – – – – –
Cleavage
Solubility (ºC)
plane
(g/100 g H2O)
– (001)-p (001)-p – (1011)-p – – – None None (101)-p – – (101)-p (1011)-p – – (1011)-p (1011)-p None None (001) (100)-p – – – None None None None – (001) – – (001) (001) – (0001) – (001)-i None – –
Insoluble – Insoluble Slightly soluble – – – Insoluble Insoluble Insoluble Very soluble Insoluble Insoluble 33 (25) – – – – – Insoluble Insoluble Insoluble – – – – Insoluble Insoluble Insoluble Insoluble Insoluble Insoluble Insoluble Insoluble Insoluble Insoluble – Insoluble Insoluble Insoluble Slightly soluble Insoluble Insoluble
Physical Properties of Uniaxial Crystalline Materials—continued Uniaxial material Li3InO3 LiAlGeO4 γ-LiAlO2 LiAlSiO4 LiCaAlF6 LiCaGaF6 LiCaInF6 LiCdBO3 LiCdInF6 LiGaGeO4 LiGaSiO4 LiGd(MoO4)2 LiGd(WO4)2 LiGdF4 LiIO3 LiLa(WO4)2 LiLuF4 LiMgAlF6 LiMgGaF6 LiMgInF6 LiNbO3 LiSrAlF6 LiSrGaF6 LiTaO3 LiYF4 LiZnInF6 LiZnNbO4 LuAl3(BO3)4 LuBO3 LuPO4 LuVO4 Mg2Al3(Si5Al)O18 MgCO3 MgF2 MgTiO3 MnF2 Na2Al2B2O7 Na2Ca2Si3O9 Na2CO3 Na2Mg(CO3)2 Na2TiOSiO4 Na3Li2Nb5O15 Na3YSi2O7 © 2003 by CRC Press LLC
Density 3
(g/cm ) 4.394 3.338 2.615 2.66 2.983 3.517 – 4.53 – 4.077 3.445 5.273 7.19 5.343 4.487 6.57 6.186 3.14 3.772 4.267 4.644 3.45 3.600 7.43 3.99 – 4.504 4.569 6.871 – 6.263 2.53 3.00 3.18 4.03 4.478 2.62 2.840 2.27 2.74 – – 3.063
Hardness
Cleavage
Solubility (ºC)
(kg/mm )
plane
(g/100 g H2O)
– – – 6.5 (Mohs) 3.5 (Mohs) – – – – – – – – 3.5 (Mohs) 3.5 (Mohs) – 3.5 (Mohs) – – – 5 (Mohs) 3.0 (Mohs) 2.5 (Mohs) 6 (Mohs) 260–325 – – 7 (Mohs) – – – 7 (Mohs) 4 (Mohs) 415 5.5 (Mohs) – – – – 3.5 (Mohs) 3.5 (Mohs) – –
– None – (1011) None None None – None None – – – None – – None – – – (1011)-p None None (1011) None None – (1011) – – (110)-p (1010)-i (1011)-p (010),(110) (1011)-i – – – – (0001)-i (001)-p (001)-p –
2
– Insoluble Insoluble Insoluble 0.005 Very slightly soluble Very slightly soluble – Very slightly soluble Insoluble Insoluble – – Insoluble 80 (18) – Insoluble Insoluble Insoluble – Insoluble 0.05 0.10 Insoluble Insoluble Very slightly soluble – Insoluble Insoluble Insoluble Insoluble Insoluble Insoluble < 2 × 10–4 Insoluble 0.66 (40) – Insoluble Very soluble – Insoluble Insoluble Insoluble
Physical Properties of Uniaxial Crystalline Materials—continued Uniaxial material Na5Al3F14 Na5GdGe4O12 Na5GdSi4O12 Na5InGe4O12 Na5InSi4O12 Na5LuGe4O12 Na5LuSi4O12 Na5ScGe4O12 Na5ScSi4O12 Na5Y4(SiO4)4F Na5YGe4O12 Na5YSi4O12 NaAlSiO4 NaBaPO4 NaGd(WO4)2 NaGdO2 NaInO2 NaLa(MoO4)2 NaLaO2 NaNO3 NaSbBe4O7 NaScO2 NaYF4 NbCaAlO4 NdxY1-xAl3 (BO3)4 NH4Al(SeO4)2 NH4Al(SO4)2 NH4Ga(SeO4)2 NH4Ga(SO4)2 NH4H2PO4 Pb2InNbO6 Pb2ZnSi2O7 Pb3Ca2(AsO4)3Cl Pb3Ge2O7 Pb5(AsO4) 3F Pb5(AsO4)3Cl Pb5(PO4)3Cl Pb5(PO4)3F Pb5(VO4)3Cl Pb5(VO4)3F PbAl12O19 PbI2 PbMoO4 © 2003 by CRC Press LLC
Density 3
(g/cm ) 3.00 3.861 3.213 3.831 3.134 4.051 3.348 3.476 2.743 3.938 3.548 2.863 2.63 4.270 7.184 6.162 5.711 4.773 4.949 2.261 4.28 3.515 3.85 5.56 – 3.13 2.472 3.476 2.854 1.803 8.567 – 5.82 – – 7.28 7.04 6.868 6.88 7.155 4.731 6.16 6.92
Hardness 2
(kg/mm ) 3.5 (Mohs) – – – – – – – – – – – – 1.5 (Mohs) – – – – – 19.2(200) 8 (Mohs) – – – 8 (Mohs) – – – – 1 (Mohs) . – 4.5 (Mohs) – – 3.5 (Mohs) 3.5 (Mohs) 3 (Mohs) – – – 2.5–3 (Mohs)
Cleavage
Solubility (ºC)
plane
(g/100 g H2O)
(001)-p – – – – – – – – – – – – – – – – – – (1010)-p (0001)-i – – – – – – – (101)-p . (001) (1011)-i – (1011)-i (1011)-i (1011)-i (1011)-i None (1011)-i – – (011)
– Insoluble Insoluble Insoluble Insoluble Insoluble Insoluble Insoluble Insoluble – Insoluble Insoluble Insoluble – – Slightly soluble Slightly soluble – Soluble 92 (25) Insoluble Slightly soluble Insoluble Insoluble – – – – – 36.8 (20) Insoluble Insoluble Insoluble Insoluble Insoluble Insoluble Insoluble Insoluble Insoluble Insoluble Insoluble 0.076 (25) Insoluble
Physical Properties of Uniaxial Crystalline Materials—continued Uniaxial material PbO (litharge) PbTiO3 PbWO4 Rb2LaNb5O15 Rb2LiAlF6 Rb2LiGaF6 Rb2MgCl4 Rb2MgF4 Rb2SnGe3O9 Rb2SnSi3O9 Rb2TiGe3O9 Rb2TiSi3O9 Rb2ZnF4 Rb3Gd(VO4)2 Rb3Lu(VO4)2 Rb3NaBeF8 Rb3Sc(VO4)2 Rb3Y(VO4)2 RbAl(SeO4)2 RbAl(SO4)2 RbAlF4 RbAlSi2O6 RbCdF3 RbGa(SeO4)2 RbGa(SO4)2 RbH2AsO4 RbH2PO4 RbIn(MoO4)2 RbIn(WO4)2 RbSc(MoO4)2 RbSc(WO4)2 ScBO3 ScPO4 ScVO4 Se SeO2 α-SiC Si3N4 SiO2 SnO2 Sr2Al2SiO7 Sr2B5O9Cl Sr2Ga2SiO7 © 2003 by CRC Press LLC
Density 3
(g/cm ) 9.36 – 8.23 5.35 3.878 4.258 2.791 3.972 4.850 4.103 4.425 3.626 4.637 4.50 4.56 3.376 3.83 3.76 3.725 3.126 3.792 2.893 4.836 4.088 3.504 – – 3.88 5.19 3.41 4.68 3.45 – – 4.81 4.16 3.219 3.24 2.65 6.95 – 3.250 –
Hardness 2
(kg/mm ) – – 2.5–3 (Mohs) – – – – – – – – – – – – – – – – – – – – – – 1.5 (Mohs) 1.5 (Mohs) – – – – 5 (Moh) – – 2.6 (Moh) – 3720 3400 741(500) 6.5 (Mohs) – – –
Cleavage
Solubility (ºC)
plane
(g/100 g H2O)
(110)-p – (001)-i – – – – (001)-p – – – – (001)-p – – – – – – – – – – – – (101)-p (101)-p (1011)-p (1011)-p (1011)-p (1011)-p (1011)-p – – (0112)-i – None None None (100)-i (001) – (001)
1.7 × 10–3 (20) Insoluble Insoluble Insoluble – – – – Insoluble Insoluble Insoluble Insoluble – Slightly soluble Slightly soluble – Slightly soluble Slightly soluble – – – Insoluble – – – Very soluble Very soluble – – – – Insoluble Insoluble – Insoluble – Insoluble Insoluble Insoluble Insoluble Insoluble Insoluble Insoluble
Physical Properties of Uniaxial Crystalline Materials—continued Uniaxial material Sr2MgGe2O7 Sr2MgSi2O7 Sr2ZnGe2O7 Sr2ZnSi2O7 Sr3(VO4)2 Sr3B2O6 Sr3Ga2Ge4O14 Sr3Ti2O7 Sr5(AsO4) 3F Sr5(AsO4)3Cl Sr5(PO4)3Cl Sr5(PO4)3F Sr5(VO4) 3F Sr5(VO4)3Cl Sr5Nb4O15 Sr5Ta4O15 SrAl12O19 SrAlF5 (Sr0.6Ba0.4)Nb2O6 SrGaF5 SrGdAlO4 SrGdGa3O7 SrLa4(SiO4)3O SrLaAlO4 SrLaBO4 SrLaGaO4 SrMg2(VO4)2 SrMoO4 SrSnB2O6 SrTiB2O6 SrWO4 SrY4(SiO4)3O SrZrB2O6 Ta2O5 TaBO4 Te ThSiO4 TiO2 Tl2SnGe3O9 Tl2TiGe3O9 Tl3AsS3 Tl3AsSe3 TlAl(SeO4)2 © 2003 by CRC Press LLC
Density 3
(g/cm ) 4.266 – – 4.027 4.464 4.257 5.087 5.04 4.538 4.525 4.095 4.14 4.13 4.122 5.46 7.321 3.985 3.86 5.4 4.40 6.602 5.64 – 5.826 4.802 5.372 3.827 4.701 – – 6.354 – – 8.2 8.02 6.25 6.7 4.26 6.617 6.256 7.18 7.834 4.894
Hardness
Cleavage
Solubility (ºC)
(kg/mm )
plane
(g/100 g H2O)
– – – – – – – – – – – 380 – – – – – – 5.5 (Mohs) – – – – – – – – – – – – – – – 7.5 (Mohs) 18 4.5 (Mohs) 879 (500) – – – – –
(001) (001) (001) (001) – – None – (1011)-i – – (0001)-i (1011)-i (1011)-i – – – – – – (001)-p – None (001)-p – (001)-p – – – – – None – – (110)(010) None None (110)-i – – – – –
2
Insoluble Insoluble Insoluble Insoluble – Insoluble Insoluble Insoluble Insoluble Insoluble Insoluble Insoluble Insoluble Insoluble – Insoluble Insoluble Insoluble Insoluble Insoluble Insoluble Insoluble Insoluble Insoluble Insoluble Insoluble – – Insoluble Insoluble Insoluble Insoluble Insoluble Insoluble Insoluble Insoluble Insoluble 0.001 Insoluble Insoluble Insoluble Insoluble –
Physical Properties of Uniaxial Crystalline Materials—continued Uniaxial material TlAl(SO4)2 TlAlF4 TlGa(SeO4)2 TlGa(SO4)2 Y2BeAl2O7 Y2GeBe2O7 Y2SiBe2O7 YAl3(BO3)4 YAsO4 YBO3 YCaAl3O7 YGa3(BO3)4 YInO3 YPO4 YVO4 Zn2GeO4 Zn2SiO4 ZnCO3 ZnCl2 ZnF2 ZnGeP2 ZnO ZnSb2O6 ZnSiP2 ZnS (wurtzite) ZrO2 ZrSiO4
© 2003 by CRC Press LLC
Density 3
(g/cm ) 4.337 6.131 5.163 4.719 – 4.810 4.423 3.724 4.85 – – 4.684 6.032 4.31 4.23 4.781 4.25 4.43 2.907 4.95 – 5.606 6.64 – 3.98 5.861 4.56
Hardness 2
(kg/mm ) – – – – – – – 1890 4.5 (Mohs) – – – – 4.5 (Mohs) 480 – 5.5 (Mohs) 4 (Mohs) – – – 4 (Mohs) 6.5 (Mohs) – 3.5 (Mohs) – 1000
Cleavage
Solubility (ºC)
plane
(g/100 g H2O)
– – – – (001) (001) (001) (1011) – – (001) (1011) – (110)-p (110)-p – (0001)-i (1011)-p – – – (1010)-p – – (1120)-i – (110)-i
– – – – Insoluble Insoluble Insoluble Insoluble Insoluble Insoluble Insoluble Insoluble – Insoluble Insoluble Insoluble Insoluble Insoluble 408 (25) 1.62 (20) Insoluble 1.6 × 10–4 (20) – Insoluble Insoluble Insoluble Insoluble
1.2.3 Biaxial Crystals Physical Properties of Biaxial Crystalline Materials Biaxial material Al2(MoO4)3 Al2(WO4)3 Al2Ge2O7 Al2SiO4F2 Al2SiO5-andalusite Al2SiO5-kyanite Al2SiO5-sillimanite Al4B2O9 Al6Ge2O13 Al6Si2O13 AlHfTaO6 AlNb11O29 AlNbO4 AlTaO4 As2S3 AsS AsSbS3 Ba2CaMgAl2F14 Ba2CdMgAl2F14 Ba2LiNb5O15 Ba2NaNb5O15 Ba2Zn3F10 Ba2ZnAlF9 Ba2ZnGaF9 Ba3Al2F12 Ba3TiAl10O20 BaAl2B2O7 BaAl2Ge2O8 BaAl2Si2O8 BaBe2Si2O7 BaCa2Mg(SiO4)2 BaCa2Si3O9 BaCdAlF7 BaCdGaF7 BaCO3 BaGaF5 BaGe2O5 BaGeAl6O12 BaGeGa6O12
© 2003 by CRC Press LLC
Density 3
(g/cm ) 3.495 5.079 4.06 3.57 3.13 3.6 3.25 2.904 3.662 3.19 8.33 4.46 4.673 6.86 3.49 3.56 3.92 4.204 4.735 – 5.41 5.26 4.909 5.169 4.37 4.13 3.559 – 3.96 4.00 3.974 3.73 5.04 5.406 4.31 5.104 5.85 4.031 5.201
Hardness 2
(kg/mm ) – – – 8 (Mohs) 6.5 (Mohs) 4–7.5 (Mohs) 6.5 (Mohs) – – 1750 – – – – 1.5 (Mohs) 1.5 (Mohs) 1.5 (Mohs) 3.5 (Mohs) – – – – – – – – – – 6–6.5 (Mohs) 7 (Mohs) – 3.5 (Mohs) – – 3.5 (Mohs) – – – –
Cleavage
Solubility (ºC)
plane
(g/100 g H2O)
– (010)-p – (001)-p (110) (100)-p (010)-p – – (010)-i – – – – (010)-p (010)-i (001)-p (001)-p – – – – – – – – – – (001)-p (001)(100)-p – (011)(010)-p – – (010)-i – – – –
Insoluble Insoluble Insoluble Insoluble Insoluble Insoluble Insoluble – Insoluble Insoluble Insoluble Insoluble Insoluble Insoluble Insoluble Insoluble Insoluble – Insoluble Insoluble – – – – – – Insoluble Insoluble Insoluble Insoluble Insoluble – – Very slightly soluble – Insoluble – –
Physical Properties of Biaxial Crystalline Materials—continued Biaxial material BaGeO3 BaMgF4 BaNb2O6 BaSO4 BaTa2O6 BaTi4O9 BaTiAl6O12 BaTiGa6O12 BaY2F8 BaY2O4 BaZnF4 β-BaSi2O5 β-Ca2SiO4 Be2BO3F BeAl2O4 BeAl6O10 β-Ga2O3 Bi2Al4O9 Bi2GeO5 Bi2Mo2O9 Bi2Mo3O12 Bi2O3 Bi2SiO5 Bi2WO6 Bi3TiNbO9 Bi4B2O9 Bi4Ti3O12 γ-Bi2MoO6 BiB3O6 BiNbO4 BiSbO4 BiTaO4 BiVO4-clinobisvanite BiVO4-pucherite Ca(IO3)2 Ca2(AsO4)Cl Ca2(PO4)Cl Ca2(PO4)F Ca2(VO4)Cl Ca2Al2O5 Ca2B6O11 Ca2BO3Cl
© 2003 by CRC Press LLC
Density 3
(g/cm ) 5.072 4.538 – 4.50 7.824 4.52 3.791 4.981 5.047 5.806 5.178 3.77 3.31 2.37 3.75 3.75 5.95 6.229 – 6.518 6.196 9.37 – 7.35 – 8.185 8.045 7.068 5.03 – 8.48 8.958 6.95 6.63 4.48 – – – 3.075 3.73 2.85 2.766
Hardness 2
(kg/mm ) – – – 3 (Mohs) – – – – 250–350 – – 5 (Mohs) 6 (Mohs) 7.5 (Mohs) 1600–2300 (V) – – – – – – – – 3.5 (Mohs) – – 313 – 5–5.5 (Mohs) – – – – 4 (Mohs) 3.5 (Mohs) – – – – – – –
Cleavage
Solubility (ºC)
plane
(g/100 g H2O)
– – – (001)-p – – – – – – – (001) (100)-i (010)-p None – (010)-p – – – (100)-p – – – – – – – – – – – – (001)-p (011)-i (010)-p (010)-p (010)-p (010)-p – – –
Insoluble – Insoluble Insoluble Insoluble Insoluble – – – – – Insoluble Insoluble Insoluble Insoluble – Insoluble – Insoluble Insoluble Insoluble Very slightly soluble Insoluble – Insoluble – Insoluble – Insoluble Insoluble Insoluble Insoluble – – – – – Insoluble – – – –
Physical Properties of Biaxial Crystalline Materials—continued Biaxial
Density
material
(g/cm )
Ca2Nb2O7 Ca2Sb2O7 Ca2V2O7 Ca3(VO4)2 Ca3Al2O6 Ca3Ga4O9 Ca3MgSi2O8 Ca3Si2O7 Ca5Al6O14 Ca5Ga6O14 CaAl2F8 CaAl2O4 CaAl2Si2O8 CaAl4O7 CaAlB3O7 CaAlBO4 CaB2O4 CaB2Si2O8 CaB3O5F CaB4O7 CaBa(CO3)2 CaBe(PO4)F CaBe2(PO4)2 CaCO3-aragonite CaGa2O4 CaGe2O5 CaIn2O4 CaMg(PO4)F CaMgAsO4F CaMgB2O5 CaMgGe2O6 CaMgSi2O6 CaMgSiO4 CaNb2O6 CaSc2O4 CaSiO3 CaSnO3 CaSnSiO5 CaSO4 CaTa2O6 CaTiO3 CaTiSiO5 CaV2O6 © 2003 by CRC Press LLC
3
– 5.204 3.36 3.16 3.017 4.208 3.31 2.96 3.03 4.18 2.89 2.942 2.76 2.894 3.44 2.60 2.702 3.00 2.729 2.69 3.67 2.95 2.89 2.93 4.333 4.868 6.15 – 3.77 3.02 4.265 3.26 3.06 4.78 3.897 2.9 5.759 4.56 2.96 – 4.04 3.53 3.59
Hardness 2
(kg/mm ) – – 5.5 (Mohs) – – – 6 (Mohs) 5.5 (Mohs) – 5 (Mohs) 4.5 (Mohs) – 6–6.5 (Mohs) 8.5 (Mohs) 7.5 (Mohs) – – 7 (Mohs) – – 4 (Mohs) 5 (Mohs) 6 (Mohs) 3.5–4 (Mohs) – – – – 5 (Mohs) 4.5 (Mohs) – 6.5 (Mohs) 5.5 (Mohs) 5.5 (Mohs) – 5 (Mohs) – 4 (Mohs) 3.5 (Mohs) – – 5.5 (Mohs) –
Cleavage
Solubility (ºC)
plane
(g/100 g H2O)
– – (110)-p (110)(001)-p – – None – (001)-p – (111)-p – (001)-p – None – – None – – (110)-i (110)-i None (010)-i – – – – (101)-i (010)-p – (110)-i (010)-i None – (100)-p – – (010)(100) – – (110)-i (100)(001)-p
Insoluble Insoluble – – – – Insoluble Insoluble – – Insoluble – Insoluble – Insoluble – – Insoluble Insoluble – Very slightly soluble Insoluble Insoluble Very slightly soluble – Insoluble – Insoluble Very slightly soluble Very slightly soluble Insoluble Insoluble Insoluble Insoluble Insoluble Insoluble Insoluble Insoluble Very slightly soluble Insoluble Insoluble Insoluble –
Section 1: Crystalline Materials Physical Properties of Biaxial Crystalline Materials—continued Biaxial
Density
material
(g/cm )
CaYBO4 CaZnGe2O6 CaZnSiO4 CaZrSi2O7 CaZrTi2O7 Cd2B2O5 Cd2GeO4 CdB4O7 CdWO4 Cs2BeF4 Cs2CdBr4 Cs2HgI4 Cs2MgCl4 Cs2ZnBr4 Cs2ZnCl4 CsB3O5 CsGd(MoO4)2 CsLiBeF4 CsLiSO4 CsNbB2O6 CsLiSO4 CsNbB2O6 CsTiOAsO4 CsZnAlF6 Ga2(WO4)3 Ga2GeO5 GaNbO4 Gd(BO2)3 Gd2(MoO4)3 Gd2(WO4)3 Gd2GeO5 Gd2MoO6 Gd2O2SO4 Gd2O3 Gd2SiO5 Gd2Sr3(BO3)4 Gd2WO6 Gd3NbO7 Gd3TaO7 Gd4Al2O9 α-Ga4GeO8 GdAlGe2O7 GdAlO3 © 2003 by CRC Press LLC
3
3.783 4.807 4.25 3.63 4.407 5.24 6.313 3.51 8.005 4.128 4.069 4.357 2.952 4.034 3.357 3.39 – 3.411 3.455 – 3.455 – 4.511 4.04 – 4.97 5.01 4.84 4.65 7.475 – 7.068 6.483 8.33 6.77 5.266 8.339 7.459 8.414 6.467 5.65 – 7.437
Hardness 2
(kg/mm ) – – 5 (Mohs) – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – 6 (Mohs) – – – – – – – –
Cleavage
Solubility (ºC)
plane
(g/100 g H2O)
– – (010)(100) – – – – – – – – – – – – – (100)-p – – (001)-p – (001)-p None – (010)-p – – – – – – – – – (100)-p – – – – – – – –
– Insoluble Insoluble Insoluble Insoluble – Insoluble – – – – – – – – Soluble – – Very soluble Insoluble Very soluble Insoluble Insoluble – – Insoluble Insoluble – – – Insoluble – – – Insoluble – – Insoluble Insoluble – Insoluble Insoluble Insoluble
53
54
Handbook of Optical Materials Physical Properties of Biaxial Crystalline Materials—continued Biaxial
Density
material
(g/cm )
GdGaGe2O7 GdMgB5O10 GdNbO4 GdP5O14 GdPO4 GdScO3 HfO2 HgCl2 HgO HIO3 In2(MoO4)3 In2(WO4)3 InCaBO4 InGaO3 InNbO4 InPO4 InTaO4 InVO4 K2CaSiO4 K3Gd(VO4)2 K3La(PO4)2 K3Lu(VO4)2 K3Y(VO4)2 KAlSi3O8 KAl3Si3O10(OH)2 KBF4 KB5O8•4H2O KGaSi3O8 KIn(MoO4)2 KLaP4O12 KLu(WO4)2 KNbB2O6 KNbO3 KNO3 KPb2Cl5 KTaB2O6 KTaO3 KTi3NbO9 KTiNbO5 KTiOAsO4 KTiOPO4 KVO3 KY(MoO4)2 © 2003 by CRC Press LLC
3
6.08 4.309 – 3.55 5.986 6.642 10.11 5.490 11.14 4.637 3.92 5.619 4.536 6.447 6.27 4.830 8.296 4.50 2.865 3.15 5.293 3.15 3.15 2.57 2.78 2.51 1.740 2.887 4.17 – 7.759 3.151 4.617 2.11 4.78 4.262 5.996 ? 3.88 3.82 3.454 3.024 2.879 5.40
Hardness 2
(kg/mm ) – – – – 470 – – – 1.5–2.0 (Mohs) – – – – – – – – – – – – – – 6 (Mohs) – – 2.5 (Mohs) – – – – – – 2 (Mohs) 2.5 (Mohs) – – – – – 702 – –
Cleavage
Solubility (ºC)
plane
(g/100 g H2O)
– – – – – – – – (010)-p – – (010)-p – – (010)-p – (010)-p – – – – – – (001)-p – – (010)-p – – – – (001)-p – (011)-p – (001)-p – – – None None (010)-p –
Insoluble – Insoluble Insoluble Insoluble Insoluble Insoluble – – – – – – – Insoluble Insoluble Insoluble Insoluble Insoluble Slightly soluble Insoluble Slightly soluble Slightly soluble Insoluble Insoluble Slightly soluble – Insoluble – Insoluble – Insoluble Insoluble Soluble Insoluble Insoluble Insoluble Insoluble Insoluble Insoluble Insoluble – –
Section 1: Crystalline Materials Physical Properties of Biaxial Crystalline Materials—continued Biaxial
Density
material
(g/cm )
KY(WO4)2 LaB3O6 La2(WO4)3 La2Ba3(BO3)4 La2Be2O5 La2Ca3(BO3)4 La2O2SO4 La2SiO5 La2Sr3(BO3)4 La2Ti2O7 La2TiO5 La3NbO7 La3SbO7 La3TaO7 LaAlGe2O7 LaBMoO6 LaBO3 LaBWO6 LaGaGe2O7 LaGaO3 LaInO3 LaMgB5O10 LaNb5O15 LaNbO4 LaP5O14 LaPO4 LaSbO4 LaScO3 LaVO4 LaY(WO4)3 Li2BeSiO4 Li2CO3 Li2GeO3 Li2MgGeO4 Li2SiO3 Li3La2(BO3)3 Li3PO4 Li3VO4 Li3Y2(BO3)3 Li5AlO4 Li6Al2(BO3)4 Li6Lu(BO3)3 Li6Y(BO3)3 © 2003 by CRC Press LLC
3
6.56 4.216 6.626 5.353 6.061 4.157 5.467 – 4.783 5.782 5.5 6.25 6.558 7.139 5.18 5.293 5.304 6.185 – 7.21 – 3.923 6.264 5.914 3.290 5.067 6.30 5.79 – 6.53 2.69 2.097 3.489 3.31 2.527 4.50 2.48 2.645 3.50 2.251 2.58 3.538 2.76
Hardness 2
(kg/mm ) – – – – 900(100) – – – – 648 – – – – – – – – – – – – – – – 5.5 (Mohs) – – – – 7 (Mohs) – – – – – 4 (Mohs) – – – – – –
Cleavage
Solubility (ºC)
plane
(g/100 g H2O)
– (010)-p – – (010)-i – – – – (010)-p – – – – – – – – – – – – – – – (100)-i – – – – (010)-i – – – – – (010)-p – – – – – –
– – – – Insoluble – – Insoluble – Insoluble Insoluble Insoluble Insoluble Insoluble Insoluble – – – Insoluble Insoluble – – Insoluble Insoluble Insoluble Insoluble Insoluble Insoluble Insoluble – Insoluble Slightly soluble Insoluble Insoluble Insoluble – Insoluble Insoluble – – – – –
55
56
Handbook of Optical Materials Physical Properties of Biaxial Crystalline Materials—continued Biaxial
Density
material
(g/cm )
LiAl(MoO4)2 LiAl(PO4)F LiAlGe2O6 LiAlSi2O6 LiAlSi4O10 LiBaAlF6 LiBaGaF6 LiBO2 LiB3O5 LiGa(WO4)2 LiGaGe2O6 LiGaO2 LiGaSi2O6 LiGdO2 LiGdP4O12 LiIn(MoO4)2 LiIn(WO4)2 LiInGe2O6 LiInSi2O6 LiInSiO4 LiLa(MoO4)2 LiLaO2 LiLaP4O12 LiLu(WO4)2 LiLuGeO4 LiLuP4O12 LiLuSiO4 LiSc(WO4)2 LiScGe2O6 LiScGeO4 LiScSi2O6 LiScSiO4 LiVO3 LiY(WO4)2 LiYGeO4 LiYO2 LiYSiO4 LiZnBO3 Lu2MoO6 Lu2O2SO4 Lu2SiO5 Lu2WO6 LuCaBO4 © 2003 by CRC Press LLC
3
3.95 3.10 4.354 3.1 2.40 4.114 4.526 2.883 2.474 7.44 4.783 4.175 – 6.246 – 4.149 7.47 5.041 4.071 4.160 4.551 6.18 – 8.02 5.98 – 5.46 6.716 4.157 3.928 3.090 3.183 2.971 6.83 4.365 6.258 3.746 3.64 8.167 7.854 5.892 9.718 6.036
Hardness 2
(kg/mm ) – 5.5 (Mohs) – 7 (Mohs) 6.5 (Mohs) – – – 7 (Mohs) – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – 6.5 (Mohs) – –
Cleavage
Solubility (ºC)
plane
(g/100 g H2O)
– (100)(110)-p – (010)-p (001)-p – – – None – – – – – – – – – – – – – – – – – – – – – – – (100)-p – – – – – – – None – –
– Insoluble Insoluble Insoluble Insoluble – – – Insoluble – Insoluble Insoluble Insoluble – Insoluble – – Insoluble Insoluble Insoluble – Soluble Insoluble – Insoluble Insoluble Insoluble – Insoluble Insoluble Insoluble Insoluble Insoluble – Insoluble – Insoluble – – – Insoluble – –
Physical Properties of Biaxial Crystalline Materials—continued Biaxial
Density
material
(g/cm )
LuP5O14 LuTaO4 Mg2(PO4)F Mg2B2O5 Mg2BO3F Mg2GeO4 Mg2SiO4 Mg3(PO4)2 Mg3B2O6 Mg3B7O13Cl Mg3TiB2O8 Mg4Al8Si2O20 Mg4Ga8Ge2O20 Mg5(BO3)3F MgAl3BSiO9 MgAlBO4 MgGaBO4 MgGeO3 MgMoO4 MgSiO3 MgTi(SO4)3 MgTi2O5 MgWO4 Na(Sr,Ba)PO4 Na2BaTi2Si4O14 Na2BeF4 Na2BeSi2O6 Na2Ca(PO4)F Na2CaMg(PO4)2 Na2GeO3 Na2KTiNbSi4O14 Na2LiAlF6 Na2LiYSi6O15 Na2MgAlF7 Na2MgGaF7 Na2MgInF7 Na2MgScF7 Na2MgSiO4 Na2Si2O5 Na2SiO3 Na2Ti2Si2O9 Na2ZnCl4 Na3AlF6 © 2003 by CRC Press LLC
3
3.72 9.761 3.15 2.910 2.784 4.028 3.22 2.76 3.04 2.95 3.35 3.489 – 3.112 2.98 3.45 4.285 4.282 3.809 3.21 2.82 3.649 6.893 2.919 3.43 2.482 2.70 2.88 3.10 3.319 2.968 2.98 2.76 2.97 3.359 3.627 2.853 2.75 – 2.64 3.44 2.382 2.90
Hardness 2
(kg/mm ) – – 5 (Mohs) 5.5 (Mohs) – – 7 (Mohs) – 6.5 (Mohs) 7 (Mohs) 3.5 (Mohs) 7.5 (Mohs) – – 7.5 (Mohs) 7 (Mohs) – – – 5–6 (Mohs) – – – – 6 (Mohs) – 6 (Mohs) – 4.5 (Mohs) – 6.5 (Mohs) – – 3.5 (Mohs) – – – – – – 6 (Mohs) – 2.5 (Mohs)
Cleavage
Solubility (ºC)
plane
(g/100 g H2O)
– – (100)-i (hk0)-p – – (010)-i (100)(010) (110)-p None (100)-p (010)(001)-i – – (100)-p None – – – (110)-i – – – – (100)-i – (100)-i – – – – (001)-p – (110)-i – – – – (100)-p – (010)-i – (001)-p
Insoluble Insoluble Insoluble Insoluble Insoluble Insoluble Insoluble Insoluble Insoluble Slightly soluble Insoluble Insoluble Insoluble Insoluble Insoluble Insoluble Insoluble Insoluble – Insoluble – Insoluble – Insoluble Insoluble – Insoluble Insoluble Insoluble Insoluble Insoluble Slightly soluble Insoluble Slightly soluble – – – Insoluble Slightly soluble Insoluble Insoluble – Slightly soluble
Physical Properties of Biaxial Crystalline Materials—continued Biaxial
Density
material
(g/cm )
Na3GdSi3O9 Na3La(BO3)2 Na3La2(BO3)3 Na3ScSi2O7 Na3YSi3O9 NaAl(AsO4)F NaAl(PO4)F NaAlGeO4 NaAlSi3O8 NaBePO4 NaBF4 NaCaPO4 NaCdPO4 NaGaGe2O6 NaGaGeO4 NaGaSiO4 NaGdGeO4 NaGdP2O7 NaGdP4O12 NaGdSiO4 NaIn(MoO4)2 NaLaP2O7 NaLaP4O12 NaLiV2O6 NaLuGeO4 NaLuP2O7 NaLuSiO4 NaMgF3 NaNbO3 NaScGeO4 NaScSi2O6 NaSr3Al3F16 NaTaO3 NaVO3 NaYGeO4 NaYO2 NaYSiO4 NaZnF3 NH4B5O8•4H2O Pb2KNb5O15 Pb2NaNb5O15 Pb2V2O7 Pb3(PO4)2 © 2003 by CRC Press LLC
3
3.439 3.49 4.19 2.861 2.962 3.64 3.126 3.337 2.63 2.81 2.53 3.117 4.10 4.864 4.028 3.336 5.366 4.287 3.45 – 4.02 3.803 3.4 2.962 6.025 4.114 5.435 3.06 4.57 3.39 3.22 3.51 7.123 2.91 4.302 4.382 4.083 4.105 1.57 6.143 – 6.46 7.456
Cleavage
Solubility (ºC)
(kg/mm )
Hardness
plane
(g/100 g H2O)
– – – – – 5 (Mohs) 4.5 (Mohs) – 6–6.5 (Mohs) 5.5 (Mohs) 3 (Mohs) 3 (Mohs) – – – – – – – – – – – – – – – – 5.5 (Mohs) – – 4 (Mohs) – – – – – – 2.5 (Mohs) – – 3 (Mohs) –
– – – – – (110)-i (111)-i (010)-p (001)-p (010)-p (100)(010) – – – (010)-p (010)-p – – – – – – – – – – – – – – – None – (110)-p – – – – (100)-p (001) – – –
2
Insoluble – – Insoluble Insoluble Slightly soluble Insoluble Insoluble Insoluble Insoluble Soluble – – Insoluble Insoluble Insoluble Insoluble Insoluble Insoluble Insoluble – Insoluble Insoluble – Insoluble Insoluble Insoluble – Insoluble Insoluble Insoluble Slightly soluble Insoluble 0.8 Insoluble Slightly soluble Insoluble – – Insoluble Insoluble –
Physical Properties of Biaxial Crystalline Materials—continued Biaxial
Density
material
(g/cm )
Pb3(VO4)2 Pb3GeO5 Pb3MgNb2O9 Pb3ZnNb2O9 PbBi2Nb2O9 PbBr2 PbCl2 PbCO3 PbGeO3 PbO (massicot) PbNb2O6 PbSeO3 PbSeO4 PbSiO3 PbSO4 PbTa2O6 PbTiP2O8 PbZnSiO4 RbAlSiO4 RbB5O8•4H2O Rb2BeF4 RbBi(MoO4)2 RbGd2Br7 RbLa(WO4)2 RbNbB2O6 RbTaB2O6 RbTiOAsO4 RbTiOPO4 Sb2O3 SbNbO4 SbTaO4 Sc(PO3)3 Sc2(MoO4)3 Sc2(WO4)3 Sc2Si2O7 (Sc,Y)2Si2O7 Sc2SiO5 Sc2TiO5 ScAlBeO4 ScCaBO4 ScGaO3 ScGe2O5 ScMgBO4 © 2003 by CRC Press LLC
3
7.44 – – – 6.684 6.693 5.85 6.55 6.968 9.642 – 7.12 7.08 6.32 6.32 7.65 – 6.13 – 1.946 3.749 5.52 4.79 6.88 3.584 4.65 4.018 3.647 5.83 5.68 7.53 2.736 3.102 4.566 – 3.39 3.49 3.611 – 3.319 5.10 5.286 3.287
Hardness 2
(kg/mm ) – – – – – – 31 3 (Mohs) – – 3.5 (Mohs) 3.5 (Mohs) 4.5 (Mohs) 3.5 (Mohs) – – 3 (Mohs) – 2.5 (Mohs) – – – – – – – – 2.5–3 (Mohs) 5.5 (Mohs) 5–5.5 (Mohs) – – – – 6.5 (Mohs) – – – – – – –
Cleavage
Solubility (ºC)
plane
(g/100 g H2O)
– – – – – (001)-p (001)-p (110)(021)-i – (100)-p – (001)-p None (010)-p (001)(210) – – (120)-i – – – – – – (001)-p (001)-p None None (110)-p (010)-i (010)-i – – (010)-p – (110)-i – – None – (010)-p – –
– Insoluble Insoluble Insoluble Insoluble – 0.99 (20) Very slightly soluble Insoluble – Insoluble – – Insoluble Insoluble Insoluble Insoluble Insoluble Insoluble – – – Slightly soluble – Insoluble Insoluble Insoluble Insoluble Insoluble Insoluble Insoluble Insoluble – Slightly soluble Insoluble Insoluble Insoluble Insoluble Insoluble – Insoluble Insoluble –
Physical Properties of Biaxial Crystalline Materials—continued Biaxial
Density
material
(g/cm )
ScNbO4 ScTaO4 Sr2(AsO4)Cl Sr2(VO4)Br Sr2(VO4)Cl Sr2KNb5O15 Sr2KTa5O15 Sr2NaNb5O15 Sr2Nb2O7 Sr2Ta2O7 SrAl2Ge2O8 SrAl2O4 SrAl2Si2O8 SrAl4O7 SrB2O4 SrCO3 SrGa2O4 SrGa2Si2O8 SrGd2O4 SrIn2O4 SrLu2O4 SrNb2O6 SrSc2O4 SrSiO3 SrSO4 SrTa2O6 SrY2O4 SrZnGe2O6 TeO2 TlNbB2O6 TlTaB2O6 V2 O5 Y2(MoO4)3 Y2(WO4)3 Y2BeO4 Y2GdSbO7 Y2GdTaO7 Y2GeO5 Y2MgBe2Si2O10 Y2MoO6 Y2O2SO4 Y2Si2O7 Y2SiO5 © 2003 by CRC Press LLC
3
4.843 6.90 – 4.342 3.883 – – 5.19 5.204 7.074 3.714 3.554 3.13 3.266 3.350 3.79 4.85 3.797 7.287 6.854 8.496 – – 3.66 3.97 – 5.344 – 6.00 – – 3.37 3.3 – 4.582 6.443 7.102 – 4.152 5.366 4.813 4.3 4.543
Hardness 2
(kg/mm ) – – – – – – – – – – – – – – – 3.5 (Mohs) – – – – – – – – 3 (Mohs) – – – 2 (Mohs) – – – – – – – – – 6.5 (Mohs) – – 6 (Mohs) 6.5 (Mohs)
Cleavage
Solubility (ºC)
plane
(g/100 g H2O)
(010)-p (010)-p (010)-p – (010)-p – – – – – – – – – – (010)-i – – – – – – – – (001)-p – – – (010)-p (001)-p (001)-p – – (010)-p – – – – None – – None None
Insoluble Insoluble – – – Insoluble Insoluble Insoluble Insoluble Insoluble Insoluble – Insoluble – – Very slightly soluble – Insoluble Insoluble – Insoluble Insoluble Insoluble Insoluble Insoluble Insoluble – Insoluble Very slightly soluble Insoluble Insoluble – Very soluble Very soluble Insoluble Insoluble Insoluble Insoluble Insoluble – – Insoluble Insoluble
Physical Properties of Biaxial Crystalline Materials—continued Biaxial
Density
material
(g/cm )
Y2Ti2SiO9 Y2WO6 Y3SbO7 Y3TaO7 Y4Al2O9 YAlO3 YCa4O(BO3)3 YCaGaBe2Si2O10 YF3 YGd2Nb2O9 YHfTaO6 YNbO4 YP5O14 YScO3 YTaO4 YTiTaO6 Zn3(AsO3)2 Zn3(BO3)2 ZnB4O7 ZnWO4 ZrO2
© 2003 by CRC Press LLC
3
– 6.818 5.699 6.413 4.518 5.35 – 4.107 5.056 6.802 8.13 5.58 – 4.94 7.579 6.51 4.27 4.12 3.07 7.87 5.82
Hardness 2
(kg/mm ) – – – – – 1030–1450 6–6.5 (Mohs) 6.5 (Mohs) – – – – – – – – 5 (Mohs) – – – 6.5 (Mohs)
Cleavage
Solubility (ºC)
plane
(g/100 g H2O)
– – – – – (110)-p None None – – – – – – – – (110)-i – – – (001)-p
Insoluble – Insoluble Insoluble Insoluble Insoluble Insoluble Insoluble – Insoluble Insoluble Insoluble Insoluble Insoluble Insoluble Insoluble Insoluble – – – Insoluble
1.3 Optical Properties* The optical properties of crystals in this section are grouped into three tables: isotropic crystals, uniaxial crystals, and biaxial crystals. Materials are listed alphabetically in order of the chemical formulas. The following properties are included: Transmission Range: Electronic and lattice absorption edges are given in terms of the wavelengths between which the transmission of a 1-mm-thick sample at 300 K is ≥ 10%. The values cited are approximate and are intended to as a general guide because many factors such as impurities, imperfections, temperature, crystallographic orientations, and compositional variations can affect the values. Band Gap: Band gap data for transitions at room temperature unless noted otherwise. The energy gap depends on the structure of the material and varies with direction in anisotropic crystals. Optical transition: (D) – direct, (I) – indirect. Refraction Index (n): For isotropic crystals, there is only one refractive index. Uniaxial crystals with tetragonal, hexagonal, and trigonal (or rhombohedral) symmetry exhibit a unique index of refraction (symbolized as e or ε) when light vibrates parallel to the c-axis (the extraordinary ray). For light vibrating at 90° to the c-axis (the ordinary ray), the refractive indices are the same (symbolized as o or ω) in all 360° directions. Biaxial crystals with orthorhombic, monoclinic, and triclinic symmetry possess three significant indices of refraction, commonly symbolized as x, y, z or α, β, γ in the order from smallest to largest. Unless specified, the refraction indices are the average values for standard daylight or are the values measured at 632.8 nm at room temperature (the differences in the daylight and He-Ne values are within 0.1%). In a few instances, e.g., tellurides, these materials are opaque to visible light so that the refractive indices are measured with an infrared light source. In these cases, the wavelength used is listed with parentheses. Birefringence (∆ n): Birefringence of anisotropic materials is a measure of the maximum difference of the refractive indices within a crystal for a given wavelength. Dispersion formulas: Refractive indices at specific wavelengths within specified ranges can be derived from dispersion formulas given in Section 1.3.4. Note that several different functional forms have been used to represent the dispersion of the refractive index. Thermooptic coefficients (dn/dt): Thermooptic coefficients of optical crystals at various wavelengths are given in Section 1.3.5.
* This section was adapted from “Optical crystals” by B. H. T. Chai, Handbook of Laser Science and Technology, Suppl. 2, Optical Materials (CRC Press, Boca Raton, FL, 1995), p. 3 ff (with additions).
© 2003 by CRC Press LLC
Section 1: Crystalline Materials 1.3.1 Isotropic Crystals Optical Properties of Isotropic Crystalline Materials Cubic material AgBr AgCl AlAs Al23O27N5 (ALON) β-AlN AlSb As2O3 Ba(NO3)2 BaF2 BaF2-CaF2 Bi12GeO20 Bi12SiO20 Bi12TiO20 Bi4Ge3O12 Bi4Si3O12 BN BP Ca12Al14O33 Ca3Al2Si3O12 Ca3Ga2Ge3O12 C (diamond) CaF2 CaLa2S4 CaO CdF2 CdO CdTe CsBr CsCl CsF CsI Cu2O CuBr CuCl CuI GaAs β-GaN GaP GaSb Gd2Ti2O7 Gd3Ga5O12 Gd3Sc2Al3O12
© 2003 by CRC Press LLC
Transmission (µm) 0.49–35 0.42–28 0.6 –15 0.23–4.8 4.9 – – – 0.14–13 0.15–12 0.47–7 0.52– – 0.31–6 – 0.2–6 0.5–6 0.35–6 – – 0.24–2.7 0.12–10 0.65–14.3 0.2–10 0.13–12 – 0.9–30 0.23–440 0.19–30 0.27–>15 0.25–62 – 0.45–26 0.4–19 – 0.9–17.3 – 0.54–10.5 1.7–20 – 0.32–6 –
Band gap (eV) 2.7 (I), 4.3 (D) 3.2 (I), 5.1 (D) 2.153 (I) – – 1.63 (I), 2.22 (D) 4–5 – 9.1 – – – – 4.2 – 7.5 (I) 2 (I) – – – 5.47 10 – 7.7 6 2.3 1.56 (D) 6.9 7.4 10 (80 K) 6.2 2.1 (I), 2.6 (D) 3.0 (80 K) 3.3 (80 K) 3.1 1.42 (D) 3.3 2.26 (I), 2.78 (D) 0.726 (D) – – –
Refractive index n 2.242 2.0568 2.87 1.79 – – 1.755 1.5714 1.4733 – 2.5476 – 2.5619 1.835 2.051 ≈2.117 2.8 1.643 1.734 1.814 2.4175 1.433 2.7 1.838 1.562 2.49 2.817 1.6929 1.64 1.48 1.7806 – 2.117 1.97 2.346 4.02 – 3.350 3.82 (1.8 µm) 2.36 1.9637 1.901
63
64
Handbook of Optical Materials
Optical Properties of Isotropic Crystalline Materials—continued Cubic material Gd3Sc2Ga3O12 Ge HgS HgSe HgTe InAs β-InN InP InSb K2Mg2(SO4)3 K2NaAlF6 KBr KCl KF KI KMgF3 KTaO3 LiBaF3 LiBr LiCl LiF LiI Lu2O3 Lu2Ti2O7 Lu3Al5O12 Mg3Al2Si3O12 MgAl2O4 MgGa2O4 MgO MnO Na3Li3Al2F12 Na3Li3Ga2F12 Na3Li3In2F12 Na3Li3Sc2F12 Na8Al6Si6O24Cl2 NaBr NaCl NaF 5NaF -9YF3 NaI Pb(NO3)2 PbF2 PbI2 PbS © 2003 by CRC Press LLC
Transmission (µm) – 1.8–15 – 2.1–20 6–30 3.8–15 4.98 0.93–14 6–25 – – 0.20–306 0.18–25 0.146–16 0.25–39 – – – – 0.12–6.6 – – – – 0.21–5.3 – 0.16–9 – 0.15–13 0.15–13 0.15–13 0.15–13 – 0.2–24 0.17–18 0.13–12 – 0.26–24 – 0.29–12.5 – 3–7
Band gap (eV) – 0.664 (I) – 0.6 0.17 (D) 0.354 (D) – 1.344 (D) 0.17 – – 7.6 (D) 8.5 (D) 10.9 (D) 6.2 (D) – 3.5 – 7.9 (D) 9.3 (D) 13.6 (D) 6 (D) 3.9 (733 K) – – – – – 7.8 (D) 3.7 – – – – – 7.5 (D) 9.0 (D) 10.5 – 5.9 (D) – 5.0 2.4 0.42 (D)
Refractive index n 1.9628 4.052 (2.8 µm) 2.5 – – 4.10 – 3.43 5.13 1.53 1.376 1.5566 1.4879 1.362 1.6581 1.404 2.2 1.544 1.78 1.66 1.3912 1.95 – 2.57 1.842 1.713 1.715 1.879 1.735 2.18 1.3395 – – – 1.483 1.64 1.531 1.326 1.470 1.77 1.780 1.7611 – 4.1 (3 µm)
Section 1: Crystalline Materials Optical Properties of Isotropic Crystalline Materials—continued Cubic material PbSe PbTe RbBr RbCaF3 RbCl RbF RbI Sb2O3 Sc2O3 Si β-SiC SrF2 SrSnO3 SrTiO3 ThO2 Tl(Br,I) Tl(Cl,Br) Tl2O3 TlBr TlCl Y2 O3 Y2Ti2O7 Y3Al5O12 Y3Fe5O12 Y3Ga5O12 Y3Sc2Al3O12 ZnAl2O4 β-ZnS β-ZnS(CVD) ZnSe ZnSe (CVD) ZnSiAs2 ZnTe ZrO2 ZrO2:Y2O3
© 2003 by CRC Press LLC
Transmission (µm) 4.5–20 4–30 0.23–40 – 0.2–30 – 0.26–50 – – 1.1–6.5 0.5–4 0.13–12 – 0.4–5.1 0.22–9 0.58–42 0.42–27 – 0.44–38 0.4–30 0.29–7.1 – 0.21–5.2 – – – – 0.4–12.5 – 0.5–20 – – 0.55–25 0.35–7 0.38–6.0
Band gap (eV) 0.278 (D) 0.311 (D) 7.25 (D) – 8.3 (D) 10.4 (80 K) 5.83 (D) – – 1.124 (I) 2.6 (I) 9.4 – 4.1 5.7 – – – 3.1 (D) 3.6 5.6 – – – – – – 3.68 (D) – 2.71 (D) – 2.1 2.30 (D) 5.0 ~4.1
Refractive index n 4.59 (3 µm) 5.35 (3 µm) 1.55 – 1.49 – 1.64 2.087 1.964 3.4777 (1.55 µm) ~2.6 1.4371 1.90 2.3878 2.07 2.573 2.329 – 2.384 2.223 1.92 2.34 1.8289 2.25 (µm) 1.913 1.96 1.7902 2.3505 2.36 2.5907 2.59 – 2.962 2.1226 2.12
65
66
Handbook of Optical Materials
1.3.2 Uniaxial Crystals Optical Properties of Uniaxial Crystalline Materials Uniaxial material Ag3AsS3 Ag3SbS3 AgGaS2 AgGaSe2 β-AgI Al2O3 AlF3 α-AlN AlPO4 Ba2TiSi2O8 Ba2ZnSi2O7 Ba3(VO4)2 Ba5(AsO4)3Cl Ba5(VO4)3Cl BaAl2O4 β-BaB2O4 BaBe(PO4)F BaGe4O9 BaSnSi3O9 BaZrSi3O9 Be2GeO4 Be2SiO4 Be3Al2Si6O18 Be3Sc2Si6O18 BeMg3Al8O16 BeO Bi2Ge3O9 Ca2Al2SiO7 Ca2MgSi2O7 Ca2Te2O5 Ca2ZnSi2O7 Ca3Ga2Ge4O14 Ca5(AsO4)3F Ca5(PO4)3Cl Ca5(PO4)3F Ca5(VO4)3Cl CaAl12O19 CaAl2B2O7 CaCO3–calcite
© 2003 by CRC Press LLC
Transmission (µm) 0.61–13.5 0.7–14 0.5–13 0.78–18 – 0.19–5.2 – – 0.2–3.6 0.3–5 – 0.3–5.6 – – – 0.19–3.5 – – – – – – – – – 0.11–4.5 0.25–6.5 – – – – 0.26–6.5 – – – – – – 0.2–5.5
Band gap (eV)
Refractive index ne
Refractive index no
Birefringence ∆n
2.1 – 2.6 1.7 2.9 9.9 – 6.23 (D) – – – – – – – 6.2 – – – – – – – – – 10.6 (D) – – – – – – – – – – – – 5.9
2.738 2.67 2.507 2.676 2.21 1.7579 1.3765 2.13 1.5334 1.765 1.710 – 1.880 1.870 1.657 1.54254 1.632 – 1.674 1.6751 1.720 1.670 1.5682 1.607 1.717 1.7322 2.08 1.658 1.64 2.00 1.657 1.822 1.698 1.647 1.624 1.865 1.79 – 1.486
3.019 2.86 2.554 2.700 2.22 1.7659 1.3770 2.20 1.5243 1.775 1.724 – 1.884 1.900 ? 1.65510 1.629 – 1.685 1.6850 1.734 1.654 1.5746 1.627 1.722 1.7166 2.01 1.669 1.632 1.89 1.669 1.795 1.706 1.650 1.629 1.893 1.807 1.563 1.658
–0.281 –0.19 –0.047 –0.024 (1 µm) –0.01 –0.008 –0.0005 –0.07 0.0091 –0.001 –0.014 – 0.004 0.030 – 0.11256 0.003 5.147 –0.011 –0.0099 –0.014 0.016 –0.0064 0.02 0.005 0.0156 0.07 –0.011 0.008 0.11 –0.012 0.027 –0.008 –0.003 –0.005 0.028 –0.017 – –0.172
Section 1: Crystalline Materials Optical Properties of Uniaxial Crystalline Materials—continued Uniaxial material CaCO3–vaterite CaGdAlO4 CaGe4O9 CaLa4(SiO4)3O CaLaAlO4 CaMg(CO3)2 CaMg3(CO3)4 CaMoO4 CaSnB2O6 CaWO4 CaYAlO4 CaZrBAl9O18 CdCl2 CdCO3 CdI2 CdS CdSe CsD2AsO4 CsD2PO4 CsGa(SO4)2 CsH2AsO4 CsLiB6O10 α-GaN GaS GaSe Gd2GeBe2O7 GdAl3(BO3)4 GdBO3 GeO2 Hg2Br2 Hg2Cl2 Hg2I2 HgI2 HgS InN In2O3 InBO3 K2Al2B2O7 K2BiNb5O15 K2CaZr(SiO3)4 K2Sr(SO4)2 K3LiNb5O15 KAlSi2O6 © 2003 by CRC Press LLC
Transmission (µm) – 0.35–7 – – 0.35–7 – – – – 0.13–5.6 0.35–7 – – – – 0.51–14.8 0.75–20 0.27–1.66 0.27–1.66 – 0.26–1.43 0.18–2.7 – 0.65–18 – – – 0.25–5 0.4–30 0.36–20 0.45–40 – 0.6–28 – – – 0.18–3.6 – – – – –
Band gap (eV) – – – – – – – – – – – – 5.7 – 3.9 2.42 (D) 1.70 (D) – – – –
Refractive index ne 1.65 1.9564 1.78 1.7637 – 1.503 1.609 1.9796 1.660 1.9375 – 1.7875 1.681 – – 2.529 2.557 1.53 – – 1.53
3.37 (D) ~2.25 2.3 (I), 3.8 (D) – – 2.57 – – – 1.720 – 1.840 5.6 – 2.6 – 3.9 2.656 2.4 – 2.1 – 2 3.232 1.99 ~2.09 2.7 (I) – – 1.773 – – – 2.253 – 1.655 – 1.549 – 2.156 – 1.509
Refractive index no
Birefringence ∆n
1.55 1.9331 – 1.7915 ≈2.6 1.680 1.708 1.9703 1.778 1.9208 – 1.8159 1.719 1.842 1.574 2.506 2.537 1.55 – – 1.55
0.10 0.0233 – –0.028 – –0.177 0.099 0.0093 –0.118 0.017 – –0.0284 –0.038 – – 0.023 0.02 –0.02 – – –0.02
~2.29 – 2.91 – 1.780 1.824 1.6045 – 1.973 – – 2.885 – – 1.873 – 2.237 1.625 1.569 2.294 1.508
~0.04 – 0.34 (1 µm) – –0.060 0.016 – – 0.683 – – 0.347 – – –0.100 – 0.016 0.03 –0.020 0.148 0.001
67
68
Handbook of Optical Materials Optical Properties of Uniaxial Crystalline Materials—continued Uniaxial material
KAlSiO4 KBe2BO3F2 KD2PO4 KH2PO4 KZnF3 La2GeBe2O7 La2O3 La2WO6 La3Ga5GeO14 La3Ga5SiO14 La3Nb0.5Ga5.5O14 La3Ta0.5Ga5.5O14 LaAlO3 LaBaGa3O7 LaBSiO5 LaCaGa3O7 LaCl3 LaF3 LaSrGa3O7 Li2B4O7 LiAlSiO4 LiCaAlF6 LiGdF4 LiIO3 LiLuF4 LiNbO3 LiSrAlF6 LiTaO3 LiYF4 LuAl3(BO3)4 Mg2Al3(Si5Al)O18 MgCO3 MgF2 MgTiO3 MnF2 Na2Al2B2O7 Na(Li,Al)3Al6(BO3)3 -Si6O18(OH) NaNO3 NaSbBe4O7 NaScO2 NH4H2PO4 Pb3Ca2(AsO4)3Cl
© 2003 by CRC Press LLC
Transmission (µm) – 0.155 0.20–1.5 0.18–1.5 – – – – 0.24–7.5 0.35 – 0.29–6.7 0.29–6.7 – – – – – 0.2–10 – – – – – 0.38–5.5 – 0.35–5.0 – – 0.12–8 – – – 0.13–7.7 – – – variable 0.35–3 – – 0.19–1.5 –
Band gap (eV)
Refractive index ne
Refractive index no
Birefringence ∆n
– 1.5372 – 1.406 – 1.46 7.0 1.4669 – – – 1.905 2.9 (530 K) – – 2.18 – 1.940 – 1.9106 – 1.896 – 1.970 – – – 1.850 – 1.7753 – 1.831 – 1.8929 6.6 1.602 – 1.820 – 1.560 – 1.572 – 1.3852 – 1.474 4.0 1.7351 – 1.468 4.0 2.156 – 1.384 – 2.188 ~11 1.4762 – 1.712 – 1.527 – 1.510 10.8 1.3886 – 1.95 10.2 – – 1.504 – 1.615–1.632
1.541 1.472 1.49 1.5074 – 1.890 – 2.16 1.925 1.89965 1.955 1.945 – 1.845 1.7843 1.826 1.8265 1.606 1.806 1.605 1.56 1.3882 1.502 1.8815 1.494 2.232 1.380 2.183 1.4535 1.771 1.524 1.700 1.3768 2.31 – 1.540 1.635–1.65
–0.0038 –0.066 0.03 –0.0405 – 0.015 – 0.02 0.015 0.01141 0.059 0.025 – 0.005 –0.009 0.005 0.0664 0.004 0.014 –0.045 0.012 –0.003 –0.028 –0.1464 –0.026 –0.076 0.004 –0.005 0.0227 –0.059 0.003 –0.190 0.0118 –0.36 – –0.036 0.0180–0.0200
– – – 6.8 –
1.3361 1.770 – 1.48 1.948
1.5874 1.772 – 1.53 1.958
–0.251 0.002 – –0.0458 –0.010
Section 1: Crystalline Materials Optical Properties of Uniaxial Crystalline Materials—continued Uniaxial material Pb5(AsO4)3Cl Pb5(PO4)3Cl Pb5(PO4)3F Pb5(VO4)3Cl PbAl12O19 PbMoO4 PbO-litharge PbWO4 RbH2AsO4 RbH2PO4 ScBO3 Se α-SiC Si3N4 α-SiO2 SnO2 Sr2MgGe2O7 Sr3Ga2Ge4O14 Sr5(PO4)3F Sr5(VO4) 3F Sr5(VO4)3Cl SrAlF5 (Sr0.6Ba0.4)Nb2O6 SrGdGa3O7 SrLa4(SiO4)3O SrMoO4 Ta2O5 TaBO4 Te ThSiO4 TiO2 (rutile) Tl3AsS3 Tl3AsSe3 Y2SiBe2O7 YAl3(BO3)4 YAsO4 YBO3 YPO4 YVO4 Zn2SiO4 ZnCO3 ZnCl2 ZnF2
© 2003 by CRC Press LLC
Transmission (µm) – – – – – 0.4–5.9 – – 0.26–1.46 0.22–1.4 – 1–30 0.5–4 0.3–4.6 0.16–4.0 – (4.3) – 0.26–6.8 – – – 0.16–7 0.5–5.5 – – – – (4.6) – 3.5–32 – 0.42–4.0 1.26–17 1.3–16 – – – – – 0.35–4.8 – – ~0.4–~15 –
Band gap (eV)
Refractive index ne
– 2.106 – 2.408 – – – 2.350 – 1.88 3.6 2.2584 2.8 2.535 5.6 2.19 – 1.50 – 1.47 – 1.780 1.7 3.61 2.8 (I) ~2.6 5 – 8.4 1.56 2.5 (I), 3.4 (D) 2.091 – 1.800 – 1.85 – 1.6252 – 1.809 – 1.868 – – – 2.270 – 1.830 – 1.8227 – 1.9110 – 2.21 – > 2.12 0.33 4.929 1.79 3.5 (D) 2.872 – – – 3.227 – 1.80 – 1.704 – 1.879 – 1.802 – 1.816 – 2.2148 – 1.719 – 1.625 – – – 1.502
Refractive index no 2.124 2.058 – 2.416 1.80 2.3812 2.655 2.27 1.55 1.50 1.872 2.79 – 2.04 1.55 1.990 1.816 1.8336 1.6314 1.824 1.895 – 2.310 1.838 1.8567 1.9064 2.20 > 2.12 6.372 1.78 2.584 – 3.419 1.83 1.778 1.783 1.788 1.827 1.9915 1.691 1.850 – 1.529
Birefringence ∆n –0.018 –0.010 – –0.066 0.08 –0.123 0.130 –0.08 –0.05 –0.03 –0.092 0.82 (1µm) – – 0.0095 0.010 –0.016 0.0164 –0.062 –0.015 0.027 – 0.04 0.008 –0.034 0.0046 0.01 – –1.45 (4 µm) 0.01 0.288 – –0.192 –0.03 0.074 0.096 0.014 –0.011 0.2233 0.028 –0.275 – –0.027
69
70
Handbook of Optical Materials Optical Properties of Uniaxial Crystalline Materials—continued Uniaxial material
ZnGeP2 ZnO ZnSb2O6 α-ZnS ZrO2 ZrSiO4
Transmission (µm) 0.74–15 0.37– – – – 0.4–
Band gap (eV) – 3.35 (D) – – 4.99– –
Refractive index ne
Refractive index no
3.28 2.015 >1.95 2.378 – 1.967
3.23 1.998 >1.95 2.356 – 1.920
Birefringence ∆n 0.05 (1 µm) 0.017 – 0.022 – 0.042
1.3.3 Biaxial Crystals Optical Properties of Biaxial Crystalline Materials Biaxial
Transmission (µm)
Refractive
Refractive
Refractive
Birefringence
material
[Band gap (eV)]
index nx
index ny
index nz
∆n
Al2(WO4)3 Al2SiO4F2 Al2SiO5 (andalusite) Al2SiO5 (kyanite) Al2SiO5 Al4B2O9 Al6Ge2O13 Al6Si2O13 AlNb11O29 AlNbO4 As2S3 AsS AsSbS3 Ba2CaMgAl2F14 Ba2NaNb5O15 BaAl2Si2O8 BaBe2Si2O7 BaCa2Mg(SiO4)2 BaCa2Si3O9 BaCO3 BaMgF4 β-BaSi2O5 BaSO4 BaY2F8 Be2BO3F BeAl2O4 BiB3O6
© 2003 by CRC Press LLC
0.3–5.0 – – – – – – 0.21 – – [2.5] –
– 1.630 1.629 1.712 1.653 1.605 1.72 1.642 2.20 1.985 2.4 2.538
– 0.38–6.0 – – – – – 0.185–10 – – 0.2–9.5 – – 0.3–2.5
1.441 2.2177 1.587 1.694 1.731 1.668 1.530 1.4496 1.598 1.6362 1.5142 1.554 1.746 –
– 1.631 1.633 1.720 1.654 1.610 – 1.644 – – 2.81 2.684 >2.11 1.442 2.3205 1.593 1.70 – 1.684 1.679 1.4661 1.617 1.6373 1.5232 1.587 1.748 –
– 1.638 1.638 1.727 1.669 1.645 1.758 1.654 2.22 2.005 3.02 2.704 >2.73 1.444 2.3222 1.600 1.706 1.752 1.685 1.680 1.4738 1.625 1.6482 1.5353 1.628 1.756 –
– 0.008 0.009 0.015 0.023 0.040 0.046 0.012 0.02 0.02 ~0.6 0.116 >0.62 0.003 0.1045 0.013 0.012 0.021 0.017 0.150 0.0242 0.027 0.012 0.0211 0.074 0.010 –
Section 1: Crystalline Materials
71
Optical Properties of Biaxial Crystalline Materials—continued Biaxial
Transmission (µm)
Refractive
Refractive
Refractive
Birefringence
material
[Band gap (eV)]
index nx
index ny
index nz
∆n
Bi2Mo3O12 Bi2O3 Bi2WO6 BiSbO4 BiTaO4 BiVO4 (puucherite) Ca(IO3)2 β-Ca2SiO4 Ca2(VO4)Cl Ca2Al2O5 Ca2V2O7 Ca3(VO4)2 Ca3(Zr,Ti)Si2O9 Ca3MgSi2O8 Ca3Si2O7 Ca5Al6O14 Ca5Ga6O14 CaAl2F8 CaAl2Si2O8 CaAl4O7 CaAlB3O7 CaAlBO4 CaB2Si2O8 CaB3O5F CaBa(CO3)2 CaBe(PO4)F CaBe2(PO4)2 CaCO3-α CaGe2O5 CaMgAsO4F CaMgB2O5 CaMgSi2O6 CaMgSiO4 CaNb2O6 CaSc2O4 CaSiO3 CaSnSiO5 CaSO4 CaTiSiO5 CaV2O6 CaZnSiO4 CaZrSi2O7 Cd2B6O11 © 2003 by CRC Press LLC
0.42–5.2 [2.9] [2.8] – – – – – – – – – – – – – – 0.255–6.5 – – 0.23–5.1 – – – – – – – – – – – – – 0.3–5.5 0.3–6.5 – – – – – – – –
2.254 ? – 2.04 – 2.41 1.792 1.707 1.835 1.96 1.942 1.864 1.735 1.706 1.641 1.68 – 1.501 1.577 1.6178 1.712 1.558 1.630 1.612 1.5261 1.580 1.595 1.530 1.84 1.640 1.635 1.664 1.641 2.07 – 1.615 1.765 1.570 1.84 1.916 1.767 1.720 1.617
2.306 2.42 2.2 – 2.35 2.50 1.840 1.715 – 2.01 2.00 1.885 1.737 1.712 1.644 1.682 – 1.503 1.585 1.6184 1.717 1.585 1.633 1.636 1.6710 1.600 1.601 1.6810 – 1.660 1.681 1.671 1.649 2.10 – 1.627 1.784 1.575 1.870 1.995 1.770 1.736 1.630
2.497 ? – 2.14 – 2.51 1.888 1.730 1.865 2.04 2.132 1.890 1.758 1.724 1.650 1.685 – 1.510 1.590 1.6516 1.726 1.614 1.635 1.653 1.6717 1.610 1.604 1.6854 1.88 1.675 1.698 1.694 1.655 2.19 – 1.629 1.799 1.614 1.943 2.13 1.774 1.738 –
0.243 – – 0.10 – 0.10 0.096 0.023 0.03 0.08 0.19 0.026 0.023 0.018 0.009 0.005 – 0.009 0.013 0.0338 0.014 0.056 0.005 0.041 0.146 0.030 0.009 0.1554 0.04 0.035 0.063 0.030 0.014 0.12 – 0.014 0.034 0.044 0.103 0.214 0.007 0.018 –
72
Handbook of Optical Materials Optical Properties of Biaxial Crystalline Materials—continued Biaxial
Transmission (µm)
Refractive
Refractive
Refractive
Birefringence
material
[Band gap (eV)]
index nx
index ny
index nz
∆n
CsB3O6 CsNbO(SO4)2 CsTiOAsO4 β-Ga2O3 Gd2O3 Gd2(MoO4)3 Gd2SiO5 GdP5O14 HfO2 HgCl2 HIO3 InPO4 KAl3Si3O10(OH)2 KAlSi3O8 KBF4 KB5O8•4H2O KLaP4O12 KNbB2O6 KNbO3 KNO3 KPbCl KTiOAsO4 KTiOPO4 KVO3 La(BO2)3 La2Be2O5 La2Ti2O7 LaBO3 LaP5O14 LaPO4 Li2BeSiO4 Li2CO3 Li2GeO3 Li3PO4 Li3VO4 LiAl(PO4)F LiAlSi2O6 LiAlSi4O10 LiB3O5 LiBO2 LiGaO2 LiVO3 Lu2SiO5 © 2003 by CRC Press LLC
0.17–3.0 – 0.35–5.3 0.3–4.5 [2.9, 933 K] 0.32–5.2 0.2–5 – [5.5] – 0.3–1.8 – – – – 0.16–1.5 – 0.27–3.1 0.4–4.5 – 0.3–20 0.35–3.0 0.35–4.5 [3.5] 0.4–5.5 – 0.3–4 – – – – – – – – 0.32 – – – – 0.16–2.6 – 0.25–6 0.5–5.5 0.2–5
1.5294 1.597 1.8796 – – 1.8385 1.871 1.6094 – 1.725 2.37 1.608 1.552 1.518 1.324 1.422 1.592 1.773 2.168 1.332 1.8079 1.7614 – 1.694 1.9641 2.17 1.800 1.5956 1.774 1.622 1.430 ? 1.550 – 1.575 1.648 1.504 1.5742 1.540 1.730 1.850 1.797
1.5588 1.604 1.8961 1.962 – 1.8390 1.884 1.6158 – 1.859 2.5 1.618 1.582 1.520 1.325 1.435 1.600 1.773 2.279 1.505 n≈2 1.8138 1.7704 – 1.769 1.9974 2.24 1.877 1.6015 1.77 1.633 1.567 1.686 1.557 – 1.587 1.655 1.510 1.6014 1.612 1.758 1.970 1.803
1.5864 1.703 1.9608 – – 1.8915 1.910 1.6298 – 1.965 2.65 1.623 1.587 1.523 1.325 1.488 1.608 1.801 2.329 1.509
0.0570 0.106 0.0812 – – 0.053 0.039 0.0204 – 0.240 0.280 0.015 0.036 0.005 0.001 0.066 0.016 0.028 0.161 0.172
1.9044 1.8636 – 1.791 2.0348 2.265 1.882 1.6145 1.828 1.638 1.570 ? 1.566 – 1.590 1.662 1.516 1.6163 1.616 1.761 2.13 1.825
0.0965 0.1022 – 0.097 0.071 0.095 0.082 0.0189 0.054 0.016 0.140 – 0.016 – 0.015 0.014 0.012 0.0421 0.076 0.031 0.28 0.028
Section 1: Crystalline Materials
73
Optical Properties of Biaxial Crystalline Materials—continued Biaxial
Transmission (µm)
Refractive
Refractive
Refractive
Birefringence
material
[Band gap (eV)]
index nx
index ny
index nz
∆n
LuP5O14 Mg2(PO4)F Mg2B2O5 Mg2GeO4 Mg2SiO4 Mg3(PO4)2 Mg3B2O6 Mg3B7O13Cl Mg3TiB2O8 Mg4Al8Si2O20 Mg5(BO3)3F Mg2SiO4 MgAl3BSiO9 MgAlBO4 MgMoO4 MgSiO3 Na2BaTi2Si4O14 Na2BeSi2O6 Na2Ca(PO4)F Na2CaMg(PO4)2 Na2MgAlF7 Na2MgSiO4 Na2Si2O5 Na2Ti2Si2O9 Na3AlF6 NaAl(AsO4)F NaAl(PO4)F NaAlSi3O8 NaBe2BO3F2 NaBePO4 NaBF4 NaCaPO4 NaMgF3 NaNbO3 NaScSi2O6 NaSr3Al3F16 NaVO3 NaZnF3 NH4B5O8•4H2O Pb2KNb5O15 Pb2V2O7 PbBr2 PbCl2
– – – – – – – – – – – – – – – – – – – – – – – – – – – – ~0.15– – – – – – – – 0.4–5.5 – – –– – 0.36–30 [3.3] 0.35–20
© 2003 by CRC Press LLC
1.5950 1.569 1.596 1.698 1.635 1.540 1.652 1.658 1.806 1.701 1.614 1.635 1.590 1.667 1.82 1.654 1.727 1.544 1.508 1.598 1.346 1.534 1.507 1.91 1.338 1.634 1.545 1.527 1.370 1.552 1.301 1.607 – 2.10 1.683 1.429 – – 1.42 2.39 – 2.1992
1.6072 1.570 1.639 1.717 1.651 1.544 1.653 1.662 1.809 1.703 1.623 1.651 1.618 1.697 1.83 1.655 1.732 1.549 1.515 1.605 1.348 1.536 1.517 2.01 1.338 1.672 1.554 1.531 1.474 1.558 1.3012 1.610 1.364 2.19 1.715 1.433 – 1.440 1.43 2.445 2.2–2.6 – 2.2172
1.6125 1.580 1.670 1.765 1.670 1.559 1.673 1.668 1.830 1.705 1.648 1.670 1.623 1.705 1.84 1.665 1.789 1.549 1.520 1.608 1.350 1.543 1.521 2.03 1.339 1.685 1.565 1.538 1.474 1.561 1.3068 1.616 – 2.21 1.724 1.436 – – 1.48 2.46 – 2.2596
0.0175 0.011 0.074 0.067 0.035 0.015 0.021 0.010 0.024 0.004 0.034 0.035 0.033 0.038 0.02 0.011 0.062 0.005 0.012 0.010 0.004 0.009 0.014 0.12 0.001 0.051 0.020 0.011 0.104 0.009 0.0058 0.009 – 0.11 0.041 0.007 – – 0.06 0.07 0.279 – 0.0604
74
Handbook of Optical Materials Optical Properties of Biaxial Crystalline Materials—continued Biaxial
Transmission (µm)
Refractive
Refractive
Refractive
Birefringence
material
[Band gap (eV)]
index nx
index ny
index nz
∆n
PbCO3 PbO (massicot) PbSeO3 PbSeO4 PbSiO3 PbSO4 PbZnSiO4 RbNbB2O6 RbTiOAsO4 RbTiOPO4 Sb2O3 SbNbO4 SbTaO4 Sc2(WO4)3 Sc2Si2O7 Sc2SiO5 (Sc,Y)2Si2O7 Sr2(VO4)Cl Sr2Nb2O7 SrAl2O4 SrAl4O7 SrB2O4 SrCO3 SrGa2O4 SrSO4 SrZrO3 Ta2O5 TeO2 V2 O5 Y2BeO4 Y2MgBe2Si2O10 Y2Si2O7 Y2SiO5 Y4Al2O9 YAlO3 Zn3(AsO3)2 ZrO2
– [1.7] – – – – – 0.27–3.0 0.35–5.3 0.35–4.3 – – – 0.3–5.0 – – – – – – 0.2–5.5 – – – – 0.28–7.7 [4.6] 0.33–5.0 [3] [~2.3] – – – 0.2–5 – 0.2–7 – –
1.803 2.51 2.12 1.96 1.947 1.878 1.91 1.751 1.8294 1.7884 2.18 2.3977 2.3742 1.728 1.754 1.835 1.756 1.785 1.85 1.638 1.620 1.632 1.517 1.737 1.6215 – – 2.00 2.42 1.840 1.78 1.731 1.780 1.826 1.9243 1.74 2.13
2.074 2.61 2.14 1.97 1.961 1.883 1.95 1.771 1.838 1.7992 2.35 2.4190 2.4039 1.754 1.785 ? 1.793 – 2.044 – 1.636 1.650 1.663 – 1.6237 – – 2.18 ? – 1.80 1.738 1.784 1.830 1.9387 1.79 2.19
2.076 2.71 2.14 1.98 1.968 1.895 1.96 1.795 1.9186 1.8859 2.35 2.4588 2.4568 1.755 1.803 1.850 1.809 1.816 2.05 1.656 1.644 1.660 1.667 1.767 1.6308 – – 2.35 – 1.855 1.82 1.744 1.811 1.832 1.9478 1.82 2.20
0.273 0.200 0.02 0.02 0.021 0.017 0.05 0.044 0.0892 0.0975 0.17 0.061 0.083 0.027 0.049 – 0.053 0.03 0.20 0.018 0.024 0.028 0.150 0.03 0.0057 – – 0.35 – 0.015 0.04 0.013 0.031 0.006 0.0235 0.08 0.07
Section 1: Crystalline Materials
75
References: Berger, L. I. and Pamplin, B. R., Properties of semiconductors, CRC Handbook of Chemistry and Physics, 82nd edition, Lide, D. R., Ed. (CRC Press, Boca Raton, FL, 2001), p. 12–87. Chai, B. H. T., Optical crystals, Handbook of Laser Science and Technology, Suppl. 2, Optical Materials (CRC Press, Boca Raton, FL, 1995), p. 3. Frederikse, H. P. R., Structure, melting point, density, and energy gap of simple inorganic compounds, American Institute of Physics Handbook, 3rd edition, Gray, D. E., Ed. (McGraw-Hill, New York, 1972), p. 9–16. Strehlow, W. H. and Cook, E. L., Compilation of energy band gaps in elemental and binary compound semiconductors and insulators, J. Phys. Chem. Ref. Data 2, 163 (1973). Tropf, W. J., Thomas, M. F., and Harris, T. J., Properties of crystals and glasses, Handbook of Optics, Vol. II (McGraw-Hill, New York, 1995), p. 33.51.
1.3.4 Dispersion Formulas for Refractive Indices Dispersion formulas for the refractive indices of crystals at room temperature are given in the following pages. Tabulated values of refractive indices at many wavelengths are given in Refs. 1–4 for most of the crystals below. Dispersion formulas for several organic materials are given in Refs. 1 and 3.
© 2003 by CRC Press LLC
76
Dispersion Formulas for Refractive Indices 2
2
Range (µm)
2
no = 7.483 + 0.474/(λ − 0.09) − 0.0019λ 2 2 2 ne = 6.346 + 0.342/(λ − 0.09) − 0.0011λ
Ag3AsS3
2
2
2
2
2
no = 9.220 + 0.4454λ /(λ − 0.1264) + 1733λ /(λ − 1000) 2 2 2 2 2 2 ne = 7.007 + 0.3230λ /(λ − 0.1192) + 660λ /(λ − 1000) 2
2
2
2
AgBr
(n − 1)/(n − 2) = 0.452505 + 0.09939/(λ − 0.070537) − 0.001509λ
AgCl
(n − 1) = 2.062508λ /[λ − ( 0.1039054) ] + 0.9461465λ /[λ − (0.2438691) ] + 4.300785λ /[λ − (70.85723) ]
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
no = 3.6280 + 2.1686λ /(λ − 0.1003) + 2.1753λ /(λ − 950) 2 2 2 2 2 ne = 4.0172 + 1.5274λ /(λ − 0.1310) + 2.1699λ /(λ − 950)
AgGaSe2
no = 4.6453 + 2.2057λ /(λ − 0.1897) +1.8377λ /(λ − 1600) 2 2 2 2 2 ne = 5.2912 + 1.3970λ /(λ − 0.2845) + 1.9282λ /(λ − 1600)
β-AgI
AlAs AlN
ALON
© 2003 by CRC Press LLC
2
no = 2.184; ne = 2.200 @ 0.659 µm no = 2.104; ne = 2.115 @ 1.318 µm 2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
no = 1 + 1.43134936λ /[λ − (0.0726631) ] + 0.65054713λ /[λ − (0.1193242) ] + 5.3414021λ /[λ − (18.028251) ] 2 2 2 2 2 2 2 2 2 2 ne = 1 + 1.5039759λ /[λ − ( 0.0740288) ] + 0.55069141λ /[λ − (0.1216529) ] + 6.59273791λ /[λ − (20.072248) ] 2
2
2
2
2
2
2
2
2
2
n = 2.0729 + 6.0840λ /[λ − 0.2822) ] + 1.900λ /[λ –27.62) ] 2
2
2
2
no = 3.1399 + 1.3786λ /[λ − (0.1715) ] + 3.861λ /[λ − (15.03) ] 2 2 2 2 2 2 2 ne = 3.0729 + 1.6173λ /[λ − (0.1746) ] + 4.139λ /[λ − (15.03) ] 2
2
2
2
2
2
0.63–4.6 0.59–4.6
5
0.6–20
5
0.49–0.67
6
0.54–21.0
7
0.49–12
8
0.73–13.5
8
—
no = 1 + 6.585λ /[λ − (0.4) ] + 0.1133λ /[λ − (15) ] 2 2 2 2 2 2 2 ne = 1 + 5.845λ /[λ − (0.4) ] + 0.0202λ /[λ − (15) ]
Ag3SbS3
Al2O3
2
2
AgGaS2
2
2
2
n − 1 = 2.1375λ /[λ − (0.10256) ] + 4.582λ /[λ − (18.868) ]
Ref.
9
1.5–10.6
10
0.22–5.0
13
0.56–2.2
11
0.22–5.0
12
0.4–2.3
14
Handbook of Optical Materials
Dispersion formula (wavelength λ in µm)
Material
BaF2
2
2
2
no = 2.7405 + 0.0184/(λ − 0.0179) − 0.0155λ 2 2 2 ne = 2.3730 + 0.0128/(λ − 0.0156) − 0.0044λ
BaB2O4 2
2
2
2
2
2
2
2
2
2
2
BaTiO3
no = 1 + 4.187λ /[λ − (0.223) ] 2 2 2 2 ne = 1 + 4.064λ /[λ − 0.211) ]
BaMgF4
nx = 2.1462 + 0.00736λ /(λ –0.0090) 2 2 2 ny = 2.007 + 0.0076λ /(λ –0.00799) 2 2 2 nz = 2.1238 + 0.0086λ /(λ –0)
2
2
2
2
Ba2NaNb5O12
BeO
2
2
nx = 1 + 3.6008λ /(λ –0.032199) 2 2 2 ny = 1 + 3.9495λ /(λ –0.040140) 2 2 2 nz = 1 + 3.9495λ /(λ –0.040389) 2
2
2
2
2
2
2
no = 1 + 1.92274λ /[λ − (0.07908) ] + 1.24209λ /[λ − (9.7131) ] 2 2 2 2 2 2 2 ne = 1 + 1.96939λ /[λ − (08590) ] + 1.67389λ /[λ − (10.4797) ]
2
2
2
2
2
15
0.27–10.3
16
0.4–0.7
17
0.53–1.06
18
0.46–1.06
19, 20
0.44–7.0
38, 50
2
2
2
2
Bi4Ge3O12
n = 1 + 3.08959λ /(λ –0.01337)
Bi12GeO20
n = 1 + 4.601λ /[λ − (0.242) ]
2
2
2
2
117
2
0.48–1.06
2
0.48–0.7
2
2
n = 2.72777 + 3.01705λ /[λ − (0.266) ]
Bi12SiO20
2
2
2
2
n = 1 + 6.841λ /[λ − (0.267) ]
BP 2
2
2
2
2
2
2
n = 1 + 4.3356λ /[λ − (0.1.60) ] + 0.3306λ /[λ − (0.1750) ]
21 22, 32
0.4–0.7
23
0.48–0.7
24
0.225–∞
29
Section 1: Crystalline Materials
nx = 3.6545 + 0.0511λ /(λ − 0.0371) − 0.0226λ 2 2 2 2 ny = 3.0740 + 0.03233λ /(λ − 0.0316) − 0.01337λ 2 2 2 2 nz = 3.1685 + 00373λ /(λ − 0.0346) − 0.01750λ
BiB3O6
C (diamond)
2
no = 1 + 0.643356λ /[λ − (0.057789) ] + 0.506762λ /[λ − (0.10968) ] + 3.8261 /[λ − (14.3864) ]
0.22–1.06
77
© 2003 by CRC Press LLC
78
Dispersion Formulas for Refractive Indices—continued Range (µm)
2
2
Ca2Al2SiO7
no = 1 + 1.712/( λ –0.0196) 2 2 ne = 1 + 1.687/( λ − 0.01133)
Ca5(PO4)3F
no = 2.626769 + 0.014626/( λ − 0.012833) − 0.007653λ 2 2 2 ne = 2.620175 + 0.014703/( λ − 0.011037) − 0.007544λ 2
2
2
2
2
2
2
2
2
2
no = 1 + 0.8559λ /[λ − (0.0588) ] + 0.83913λ /[λ − (0.141) ] + 0.0009λ /[λ − (0.197) ] + 2 2 2 0.6845λ /[λ − (7.005) ] 2 2 2 2 2 2 2 2 2 ne = 1 + 1.0856λ /[λ − ( 0.07897) ] + 0.0988λ /[λ − (0.142) ] + 0.317λ /[λ − (1.468) ]
CaCO3
CaF2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
CaMoO4
no = 1 + 2.7840λ /[λ –(0.1483) ] + 1.2425λ /[λ − (11.576) ] 2 2 2 2 2 2 2 ne = 1 + 2.8045λ /[λ − (0.1542) ] + 1.0055λ /[λ − (10.522) ]
CaWO4
no = 1 + 2.5493λ /[λ − (0.1347) ] + 0.9200λ /[λ − (10.815) ] 2 2 2 2 2 2 2 ne = 1 + 2.6041λ /[λ − (0.11379) ] + 4.1237λ /[λ − (21.371) ]
CdGeAs2
no = 10.1064 + 2.2988λ /(λ − 1.0872) + 1.6247λ /(λ − 1370) 2 2 2 2 2 ne = 11.8018 + 1.2152λ /(λ − 2.6971) + 1.6922λ /(λ − 1370)
CdGeP2
no = 5.9677 + 4.2286λ /(λ –0.2021) + 1.6351λ /(λ –671.33) 2 2 2 2 2 ne = 61573 + 4.0970λ /(λ –0.2330) + 1.4925λ /(λ –671.33)
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
CdS
no = 1 + 3.96582820λ /[λ − (0.23622804) ] + 0.18113874λ /[λ − (0.48285199) ] 2 2 2 2 2 2 2 ne = 1 + 3.97478769λ /[λ − ( 0.22426984) ] + 0.26680809λ /[λ − (0.46693785) ] 2 2 2 +0.00074077λ /[λ − (0.50915139) ]
CdSe
no = 4.2243 + 1.7680λ /(λ − 0.2270) + 3.1200λ /(λ − 3380) 2 2 2 2 2 ne = 4.2009 + 1.8875λ /(λ − 0.2171) + 3.6461λ /(λ − 3629)
© 2003 by CRC Press LLC
2
n = 1 + 0.5675888λ /[λ − ( 0.050263605) ] + 0.4710914λ /[λ − (0.1003909) ] + 3.8484723λ /[λ − (34.649040) ]
2
2
2
2
2
Ref.
0.31–1.06
26
0.4–1.0
27
0.2–2.2
28
0.23–9.7
45
0.45–3.8
30, 50
0.45– 4.0
30, 50
2.4–11.5
8
5.5–12.5
31
0.51–1.4
93
1–12
8
Handbook of Optical Materials
Dispersion formula (wavelength λ in µm)
Material
2
2
2
2
2
2
2
n = 1 + 6.1977889λ /[λ − (0.317069) ] + 3.22438216λ /[λ − (72.0663) ]
CdTe
2
2
2
6–22
2
nx = 2.2916 + 0.02105λ /(λ − 0.06525)–0.000031848λ 2 2 2 2 ny = 3.34498 + 1.04863λ /(λ − 0.22044) − 0.01483λ 2 2 2 2 nz = 3.53666 + 1.10600λ /(λ − 0.24988]) − 0.01711λ
CsB3O5
2
2
2
2
2
2
0.35–1.06
2
2
2
2
CsBr
n = 1 + 0.9533786λ /[λ − (0.0905643) ] + 0.8303809λ /[λ − (0.1671517) ] + 2.847172λ /[λ − (119.0155) ]
CsCl
n = 1.33013 + 0.98369λ /[λ − (0.119) ] + 0.00009λ /[λ − (0.137) ] + 0.00018λ /[λ − (145) ] 2 2 2 2 2 2 + 0.30914λ /[λ − (0.162) ] + 4.320λ /[λ − (100.50) ]
2
2
2
2
2
2
2
2
2
2
2
2
CsD2AsO4
no = 1 + 1.40840λ /(λ –0.01299) 2 2 2 ne = 1 + 1.34731λ /(λ –0.01185)
CsH2AsO4
no = 1 + 1.39961λ /(λ –0.01156) 2 2 2 ne = 1 + 1.34417λ /(λ –0.01155)
CsI
2
2
2
2
2
2
2
2
2
2
2
no = 2.2049 + 0.0110259/(λ –0.0118119)–0.0000695625λ 2 2 2 ne = 2.05936 + 0.00864948/(λ –0.0128929) − 0.0000267532λ 2
2
2
2
2
2
2
nx = 3.74440 + 0.70733λ /(λ − 0.26033) − 0.01526λ 2 2 2 2 ny = 3.34498 + 1.04863λ /(λ − 0.22044) − 0.01483λ 2 2 2 2 nz = 3.53666 + 1.10600λ /(λ − 0.24988) − 0.01711λ
CsTiOAsO4
2
2
2
n = 3.580 + 0.03162λ /(λ − 0.1642) + 0.09288/λ
CuCl
2
2
2
2
2
2
2
2
no = 3.9064 + 2.3065λ /(λ − 0.1149) + 1.5479λ /(λ − 738.43) 2 2 2 2 2 ne = 4.3165 + 1.8692λ /(λ − 0.1364) + 1.7575λ /(λ − 738.43)
0.36–39
34
0.18–40
35
0.35–1.06
36
0.35–1.06
36
0.29–50
37
0.24–0.63
118
0.63–1.06
0.45–1.55
91
0.43–2.5
25
0.55–11.5
39, 116
79
© 2003 by CRC Press LLC
2
n = 1 + 0.34617251λ /[λ − (0.0229567) ] + 1.0080886λ /[λ − (0.1466) ] + 0.28551800λ /[λ − (0.1830) ] 2 2 2 2 2 2 + 0.39743178λ /[λ − (0.2120) ] + 3.3605359λ /[λ − (161.0) ]
no = 2.14318 + 0.0158749/(λ + 1.37559)–0.00062375λ 2 2 2 ne = 2.04195 + 0.0273245/(λ + 0.286672) − 0.000342718λ
CuGaS2
2
117
Section 1: Crystalline Materials
CsLiB6O10
2
2
33
80
Dispersion Formulas for Refractive Indices—continued 2
2
2
2
Range (µm) 2
no = 3.9064 + 2.3065λ /(λ − 0.1149) + 1.5479λ /(λ − 738.43) 2 2 2 2 2 ne = 4.3165 + 1.8692λ /(λ − 0.1364) + 1.7575λ /(λ − 738.43)
CuGaS2
2
2
2
2
2
0.55–11.5 2
GaAs
n = 3.5 + 7.4969λ /(λ − 0.4082) + 1.9347λ /[(λ − 37.17) ]
α-GaN
2
2
2
2
2
2
0.43–2.5
2
no = 3.6 + 1.75λ /[λ − (0.256) ] + 4.1λ /[λ − (17.86) ] 2 2 2 2 2 2 ne = 5.35 + 5.08λ /[λ − (18.76) ] + 1.0055λ /[λ − (10.522) ]
<10
2
2
2
2
2
2
2
2
2
2
2
2
2
n = 1 + 1.390λ /[λ − (0.172) ] + 4.131λ /[λ − (0.234) ] + 2.570λ /[λ − (345) ] + 2.056λ /[λ − (27.52) ]
GaSe
no = −0.05466λ + 0.48605λ + 7.8902–0.00824λ –0.00000276λ 2 2 2 2 ne = 6.0476 + 0.3423λ /(λ –0.16491)–0.001042λ
−4
2
−2
2
2
2
2
2
42
2
2
2
2
2
n = 1 + 2.510λ /(λ − 0.01537)
Gd3Sc2Ga3O12
n = 3.743782 + 1.9139566/(43.240392λ − 1) + 0.01067490λ /(0.01558170λ –1)
2
2
2
2
2
2
2
2
2
n = 9.28156 + 6.72880λ /(λ − 0.44105) + 0.21307λ /(λ − 3870.1) 2
2
α−HgS
2
no = 6.9443 + 0.3665/( λ − 0.1351) − 0.0019λ 2 2 2 ne = 8.3917 + 0.5405/( λ − 0.1380) − 0.0027λ 2
2
2
2
2
2
2
n = 11.1 + 0.71λ /[λ − (2.551) ] + 2.75λ /[λ − (44.66) ]
InP
n = 7.255 + 2.316λ /[λ − (0.6263) ] + 2.765λ /[λ − (32.935) ]
2
2
2
2
2
102
0.40–1.06
46
0.54–0.64
47
0.40–1.06
48
2–12 0.62–11
InAs 2
43 44
0.46–1.06
n = 3.749719 + 1.7083005/(39.509089λ − 1) + 0.01048372λ /(0.001855744λ –1) 2
0.8–10 —
Gd3Sc2Al3O12
© 2003 by CRC Press LLC
41
4
nx = 1 + 2.2450λ /( λ − 0.022693) 2 2 2 ny = 1 + 2.24654λ /( λ − 0.0226803) 2 2 2 nz = 1 + 2.41957λ /( λ − 0.0245458)
Gd2(MoO4)3
Ge
39, 116
2
GaP
Gd3Ga5O12
Ref.
49, 120 51
3.7–31.3 2
0.95–10
53, 122
Handbook of Optical Materials
Dispersion formula (wavelength λ in µm)
Material
2
2
nx = 1 + 1/(0.852497 − 0.0087588λ ) 2 2 ny = 1 + 1/(0.972682 − 0.0087757λ ) 2 2 nz = 1 + 1/(1.008157 − 0.0094050λ )
KB5O8•4H2O
0.23–0.76
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
KBr
n = 1.39408 + 0.79221λ /[λ − (0.146) ] + 0.01981λ /[λ − (0.173) ] + 0.15587λ /[λ − (0.187) ] 2 2 2 2 2 2 + 0.17673λ /[λ − (60.61) ] + 2.06217λ /[λ − (87.72) ]
KCl
n = 1.26486 + 0.30523λ /[λ − (0.100) ] + 0.41620λ /[λ − (0.131) ] + 0.18870λ /[λ − (0.162) ] 2 2 2 + 2.6200λ /[λ − (70.42) ]
KF
n = 1.55083 + 0.29162λ /[λ − (0.126) ] + 3.60001λ /[λ − (51.55) ]
2
2
2
2
2
2
2
2
2
2
2
2
KD2PO4
no = 1 + 1.2392348λ /(λ − 0.83531147) + 14.78889λ /(λ –0.8851187) 2 2 2 2 2 ne = 1 + 1.125324λ /(λ − 0.78980364) + 7.124567λ /(λ –1.190864)
KH2AsO4
no = 1 + 1.411981λ /(λ − 1.1955269) + 28.100751λ /(λ − 1.00681) 2 2 2 2 2 ne =1 + 1.260916λ /(λ − 1.1188613) + 5.258787λ /(λ − 1.055210)
KH2PO4
no = 1 + 1.256618λ /(λ − 0.84478168) + 33.89909λ /(λ –1.113904) 2 2 2 2 2 ne = 1 + 1.131091λ /(λ − 0.8145980) + 5.75675λ /(λ –0.8117537)
2
2
2
2
KTaO3
2
2
2
2
2
2
2
2
2
2
2
2
2
2
no = 1 + 3.708λ /(λ − 0.04601) 2 2 2 ne = 1 + 3.349λ /(λ − 0.03564) 2
2
2
2
2
2
2
2
nx = 1 + 2.49710λ /([λ − (0.12909) ] + 1.33660λ /[λ − (0.25816) ] − 0.025174λ 2 2 2 2 2 2 2 2 ny = 1 + 2.54337λ /([λ − (0.13701) ] + 1.44122λ /[λ − (0.27275) ] − 0.028450λ 2 2 2 2 2 2 2 2 nz = 1 + 2.37108λ /([λ − (0.11972) ] + 1.04825λ /[λ − (0.25523) ] − 0.019433λ 2
2
2
2
n = 1 + 3.591λ /([λ − (0.193) ]
0.18–35
35
0.15–22
35
0.4–1.06
2
2
35
0.4–1.06
n = 1.47285 + 0.16512λ /[λ − (0.129) ] + 0.41222λ /[λ − (0.175) ] + 0.44163λ /[λ − (0.187) ] 2 2 2 2 2 2 2 2 2 + 0.16076λ /[λ − (0.219) ] + 0.33571λ /[λ − (69.44) ] + 1.92474λ /[λ − (98.04) ]
K3Li2Nb5O15
KNbO3
2
0.2–40
55, 56
55, 56
0.4–1.06
56
0.25–50
35
0.45–0.68
57
0.40–3.4
59
0.4–1.06
60
Section 1: Crystalline Materials
KI
2
2
54, 121
81
© 2003 by CRC Press LLC
82
Dispersion Formulas for Refractive Indices—continued 2
2
2
Range (µm)
2
2
KTiAsO4
nx = 2.388887 + 0.77900λ /(λ − (0.23784) − 0.01501λ 2 2 2 2 2 ny = 2.11055 + 1.03177λ /[λ − (0.21088) − 0.01064λ 2 2 2 2 2 nz = 2.34723 + 1.10111λ /(λ − (0.24016) − 0.01739λ
KTiOPO4
nx = 2.16747 + 0.83733λ /([λ − (0.04611) ] − 0.01713λ 2 2 2 2 2 ny = 2.19229 + 0.83547λ /([λ − (0.04970) ] − 0.01621λ 2 2 2 2 2 nz = 2.25411 + 1.06543λ /([λ − (0.05486) ] − 0.02140λ
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
nx = 2.45768 + 0.0098877λ /([λ − (0.026095) ] − 0.013847λ 2 2 2 2 2 ny = 2.52500 + 0.017123λ /([λ − (0.0060517) ] − 0.0087838λ 2 2 2 2 2 nz = 2.58488 + 0.012737λ /([λ − (0.016293) ] − 0.016293λ 2
2
2
no = 1.92552 + 0.00492/( λ − 0.00569) − 0.00421λ 2 2 2 ne = 1.92155 + 0.00494/( λ − 0.00617) − 0.00373λ
LiCaAlF6
2
2
2
2
2
2
2
n = 1 + 0.92549λ /[λ − (0.7376) ] + 6.96747λ /[λ − (32.79) ]
LiF 2
2
2
0.45–1.55
58, 91
0.4–1.06
61–64
0.49–0.63
nx = 1 + 2.7990λ /( λ + 0.01875) 2 2 2 ny = 1 + 2.9268λ /( λ − 0.01918) 2 2 2 nz = 1 + 3.0725λ /( λ − 0.01950)
La2Be2O5
© 2003 by CRC Press LLC
2
no = 1 + 1.53763λ /([λ − (0.0881) ] 2 2 2 2 ne = 1 + 1.5148λ /([λ − (0.08781) ]
LaF3
LiIO3
2
no = 1 + 2.235λ /(λ − (0.01734) 2 2 2 ne = 1 + 2.469λ /(λ − (0.017674)
LaCl3
LiB3O5
2
2
2
no = 2.03132 + 1.37623λ /(λ − 0.0350823) + 1.06745λ /(λ − 169.0) 2 2 2 2 2 ne =1.83086 + 1.08807λ /(λ − 0.0313810) + 0.554582λ /(λ − 158.76)
Ref.
65
0.35–0.70
66
0.6–2
67
0.29–1.06
68
0.4–1.0
69
0.1–10
35
0.5–5
71
Handbook of Optical Materials
Dispersion formula (wavelength λ in µm)
Material
2
2
2
2
2
2
2
LiNbO3
no = 2.39198 + 2.51118λ /[λ − (0.217) ] + 7.1333λ /[λ − (16.502) ] 2 2 2 2 2 2 2 ne = 2.32468 + 2.25650λ /[λ − ( 0.210) ] + 14.503λ /[λ − (25.915) ]
LiSrAlF6
no = 1.97673 + 0.00309/( λ − 0.00935) − 0.00828λ 2 2 2 ne = 1.98448 + 0.00235/( λ − 0.10936) − 0.01057λ 2
2
2
2
2
2
2
+ 0.0046614λ
−4
2
2
− 0.0009334λ 2
−6
+ 0.0000737λ
−8
2
2
2
2
2
2
2
no = 1 + 0.48755108λ /[λ − (0.04338408) ] + 0.39875031λ /[λ − (0.09461442) ] + 2.3120353λ /[λ − 2 (23.793604) ] 2 2 2 2 2 2 2 2 2 2 ne = 1 + 0.41344023 /[λ − (0.03684262) ] + 0.50497499λ /[λ − (0.09076162) ] + 2.4904862λ /[λ − (12.771995) ] 2
2
2
2
2
2
2
2
2
2
2
2
n = 1 + 1.111033λ /[λ − (0.0712465) ] + 0.8460085λ /[λ − (0.1375204) ] + 7.808527λ /[λ − (26.89302) ] 2
2
2
2
2
2
2
2
2
2
no = 1 + 1.6346λ /(λ − 0.010734) 2 2 2 ne = 1 + 1.57256λ /(λ − 0.011346) 2
2
2
2
2
2
2
n = 1 + 1.3194λ /[λ − (0.09) ] + 0.2357λ /[λ − (0.2) ]–0.0174λ 2
2
2
2
2
2
2
2
2 2
n = 1.00055 + 0.19800λ /[λ − (0.050) ] + 0.48398λ /[λ − (0.100) ] + 0.38696λ /[λ − (0.128) ] 2 2 2 2 2 2 2 2 2 2 2 2 + 0.25998λ /[λ − (0.158) ] + 0.08796λ /[λ − (40.50) ] + 3.17064λ /[λ − (60.98) ] + 0.30038λ /[λ − (120.34) ] 2
2
2
2
2
2
2
2
2
2
2
2
2
2
n = 1.41572 + 0.32785λ /[λ − (0.117) ] + 3.18248λ /[λ − (40.57) ]
0.4–1.2
73
0.23–2.6
74
0.44–1.2
75
0.35–5.5
50, 76
0.4–3.1
77
0.36–5.4
78
0.21–34
35
0.48–1.06
79
—
2
n = 1 + 1.1825λ /[λ − (0.09) ] + 0.07992λ /[λ − (0.185) ]–0.00864λ
72
2
80
0.2–30
35
0.23–0.72
81
0.15–17
35
Section 1: Crystalline Materials
n = 1.06728 + 1.10463λ /[λ − (0.125) ] + 0.18816λ /[λ − (0.145) ] + 0.00243λ /[λ − (0.176) ] 2 2 2 2 2 2 + 0.24454λ /[λ − (0.188) ] + 3.7960λ /[λ − (74.63) ]
NaBrO3
NaF
−2
2
2
(Na,Ca)(Mg,Fe)3B3Al6Si6(O,OH,F)31 (tourmaline)
NaClO3
2
n = 1 + 1.8938λ /[λ − (0.09942) ] + 3.0755λ /[λ − (15.826) ]
2
NaCl
2
2
MgAl2O4
NaBr
2
n = 3.3275151 − 0.0149248λ + 0.0178355λ
Lu3Al5O12
MgO
2
no = 1.38757 + 0.70757λ /(λ − 0.00931) + 0.18849λ /(λ − 50.99741) 2 2 2 2 2 2 2 ne = 1.31021 + 0.84903λ /(λ − ( 0.00876) + 0.53607λ /(λ − 134.9566)
LiYF4
MgF2
2
2
0.4–3.1
83
© 2003 by CRC Press LLC
84
Dispersion Formulas for Refractive Indices—continued
[NH4] 2CO
2
2
Range (µm)
2
no = 2.1823 + 0.0125λ /(λ − 0.0300) 2 2 2 2 ne = 2.51527 + 0.0240λ /(λ − 0.0300) + 0.020(λ− 1.52)/[(λ − 1.52) + 0.8771 2
2
2
2
2
NH4D2AsO4
no = 1 + 1.418168λ /(λ − 1.2246852) + 24.39162λ /(λ − 1.175687) 2 2 2 2 2 ne = 1 + 1.262661λ /(λ − 1.1728953) + 6.250606λ /(λ − 0.9188848)
NH4H2AsO4
no = 1 + 1.441185λ /(λ − 1.2290244) + 30.08674λ /(λ − 0.8843874) 2 2 2 2 2 ne = 1 + 1.274199λ /(λ − 1.1750136) + 11.96164λ /(λ − 1.041567)
NH4H2PO4
no = 1 + 1.298990λ /(λ − 0.0089232927) + 43.17364λ /(λ − 1188.531) 2 2 2 2 2 ne = 1 + 1.162166λ /(λ − 0.085932421) + 12.01997λ /(λ − 831.8239)
PbMoO4
2
2
2
2
2
2
2
2
2
2
PbTiO3
© 2003 by CRC Press LLC
2
2
2
2
2
2
2
2
2
2
2
2
2
2
no = 1 + 3.54642λ /[λ − (0.18518) ] + 0.582703λ /[λ − (0.33764) ] 2 2 2 2 2 2 2 ne = 1 + 3.52555λ /[λ − ( 0.17950) ] + 0.20660λ /[λ − (0.32537) ] 2
2
2]
nx = 1 + 4.124λ /[(λ − (0.202) 2 2 2] 2 ny = 1 + 4.139λ /[λ − (0.2011) 2 2 2] 2 nz = 1 + 4.246λ /([λ − (0.2014) 2
PbTe
2
2
2
PbSe
2
2
n = 1 + 0.66959342λ /[λ − (0.00034911) ] + 1.3086319λ /[λ − (0.17144455) ] 2 2 2 2 2 2 + 0.01670641λ /[λ − (0.28125513) ] + 2007.8865λ /[λ − (796.67469) ]
PbNb4O11
PbS
2
n = 1.478 + 1.532λ /[λ − (0.170) ] +4.27λ /[λ − (86.21) ]
NaI PbF2
2
2
2
2
2
2
2
2
n = 1 + 15.9λ /([λ − (0.77) ] + 133.2λ /([λ − (141) ] 2
2
2
2
n = 1 + 21.1λ /([λ − (1.37) ] 2
2
2
2
2
2
2
n = 1 + 30.046λ /([λ − (1.563) ] 2
no = 1 + 5.363λ /([λ − (0.224) ]
Ref.
0.3–1.06
82
0.4–1.06
55, 56
0.4–1.06
55, 56
0.4–1.06
55, 56
0.25–17
35
0.3–11.9
83
0.44–1.08
50, 84
0.45–1.55
85
3.5–10
86
5–10
86
4.0–12.5
87
0.45–1.15
Handbook of Optical Materials
Dispersion formula (wavelength λ in µm)
Material
2
2
2
2
ne = 1 + 5.366λ /([λ − (0.0217) ] 2
2
2
2
2
2
2
2
2
2
RbD2AsO4
no = 1 + 1.371661λ /(λ − 1.1700309) + 16.30710λ /(λ − 1.0114844) 2 2 2 2 2 ne = 1 + 1.269201λ /(λ − 1.1202311) + 4.300136λ /(λ − 1.149464)
RbD2PO4
no = 1 + 1.237455λ /(λ − 0.8274984) + 17.69334λ /(λ − 0.8839832) 2 2 2 2 2 ne = 1 + 1.154309λ /(λ − 0.81539261) + 585751λ /(λ − 0.8927180)
RbH2AsO4
no = 1 + 1.37723λ /(λ − 0.01301) 2 2 2 ne = 1 + 1.272831λ /(λ − 0.01157)
RbH2PO4
no = 1 + 1.2068λ /(λ − 0.01539) 2 2 2 ne = 1 + 1.15123λ /(λ − 0.010048)
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
RbTiOPO4
nx = 2.38494 + 0.73603λ /([λ − (0.23891) ] − 0.01583λ 2 2 2 2 2 ny = 2.15559 + 0.93307λ /[λ − (0.20994) ] − 0.01452λ 2 2 2 2 2 nz = 2.27723 + 1.11030λ /([λ − (0.23454) ] − 0.01995λ
Se
no = 2.790; ne = 3.608 @ 1.06 µm no = 2.64; ne = 3.41 @ 10.6 µm
Si
n = 1 + 10.66842933λ /[λ − (0.3015116485) ] + 0.003043475λ /[λ − (1.13475115) ] 2 2 2 + 1.54133408λ /[λ − (1104.0) ]
2
2
2
2
2
2
2
2
α-SiC
no = 1 + 5.5515λ /([λ − (0.16250) ] 2 2 2 2 ne = 1 + 5.7382λ /([λ − (0.16897) ]
β-SiC
n = 1 + 5.5705λ /([λ − (0.1635) ]
2
55, 56
2
2
89
0.48–1.06
90
0.45–1.55
91
0.45–1.55
91
—
2
2
0.4–1.06
1.36–11
92
93, 94
0.49–1.06
95
0.47–0.69
96
Section 1: Crystalline Materials
nx = 1.97756 + 1.25726λ /[(λ − (0.20448) ] − 0.00865λ 2 2 2 2 2 ny = 2.22681 + 0.99616λ /[λ − (0.21423) ] − 0.01369λ 2 2 2 2 2 nz = 2.28779 + 1.20629λ /([λ − (0.23484) ] − 0.01583λ
2
55, 56
—
RbTiOAsO4
2
0.4–1.06
85
© 2003 by CRC Press LLC
86
Dispersion Formulas for Refractive Indices—continued
SiO2 (α-quartz)
SrF2
2
2
2
2
2
2
Range (µm)
2
2
2
2
no = 1 + 0.663044λ /[λ − (0.060) ] + 0.517852λ /[λ − (0.106) ] + 0.175912λ /[λ − (0.119) ] 2 2 2 2 2 2 + 0.565380λ /[λ − (8.844) ] + 1.675299λ /[λ − (20.742) ] 2 2 2 2 2 2 2 2 2 2 ne = 1 + 0.665721λ /[λ − (0.060) ] + 0.503511λ /[λ − (0.106) ] + 0.214792λ /[λ − (0.119) ] 2 2 2 2 2 2 + 0.539173λ /[λ − (8.792) ] + 1.807613λ /[λ − (197.709) ] 2
2
2
2
2
2
2
n = 1 + 0.67805894λ /[λ − (0.05628989) ] + 0.37140533λ /[λ − (0.10801027) ] 2 2 2 + 3.8484723λ /[λ − (34.649040) ] 2
2
2
2
2
2
2
SrMoO4
no = 1 + 2.4839λ /[λ − (0.1451) ] + 0.1015λ /[λ − (4.603) ] 2 2 2 2 2 2 2 ne = 1 + 2.4923λ /[λ − ( 0.1488) ] + 0.1050λ /[λ − (4.544) ]
SrTiO3
n = 2.28355 + 0.035906/(λ – 0.028) + 0.001666/(λ − 0.028) − 0.0061335λ − 00001502λ
2
2
2
2
2
2
2
Sr5(VO4)3F
no = 3.29417 + 0.047212/( λ − 0.048260) − 0.008518λ 2 2 2 ne = 3.24213 + 0.043872/( λ − 0.053139) − 0.008773λ
Tb2(MoO4)3
nx = 1 + 2.273955λ /(λ − 0.02333) 2 2 2 ny = 1 + 2.2724λ /(λ − 0.023359) 2 2 2 nz = 1 + 2.4430166λ /[λ − 0.05133)
Te
2
2
2
2
2
2
2
2
2
2
2
2
2
no = 18.5346 + 4.3289λ /(λ − 3.9810) + 3.7800λ /(λ − 11813) 2 2 2 2 2 ne = 29.5222 + 9.3068λ /(λ − 2.5766) + 9.2350λ /(λ − 13521) no = 4.0164 + 18.8133λ /(λ − 1.1572) + 7.3729λ /(λ − 10000) 2 2 2 2 2 ne = 1.9041 + 36.8133λ /(λ –1.0803) + 6.2456λ /(λ − 10000) 2
2
2
2
2
2
2
TeO2
no = 1 + 2.584λ /[λ − (0.1342) ] + 1.157λ /[λ − (0.2638) ] 2 2 2 2 2 2 2 ne = 1 + 2.823λ /[λ − ( 0.1342) ] + 1.542λ /[λ − (0.2631) ]
TiO2
no = 5.913 + 0.2441λ /(λ − 0.0803)
© 2003 by CRC Press LLC
2
2
2
4
Ref.
0.18–0.71
97
0.21–11.5
98
0.45–2.4
30
0.4–5.4
99
0.5–1.0
100
0.46–1.06
101
4–14
8
8.5–30
8
0.4–1
103
0.43–1.5
104
Handbook of Optical Materials
Dispersion formula (wavelength λ in µm)
Material
2
2
2
2
Tl3AsSe3
2
2
2
n = 1 + 3.821λ /[λ − (0.02234) ] − 0.000877λ
Tl[Br,Cl]
TlCl
2
(n − 1)/(n − 2) = 0.48484 + 0.10279/(λ − 0.090000) − 0.0047896λ
TlBr
Tl[Br,I]
2
2
ne =7.097 + 0.3322λ /(λ − 0.0843)
rutile
2
2
2
2
2
2
0.54–0.65
2
2
2
2
2
n = 1 + 1.8293958λ /[λ − (0.150) ] + 1.6675593λ /[λ − (0.250) ] + 1.1210424λ /[λ − (0.350) ] 2 2 2 2 2 2 + 0.04513366λ /[λ − (0.450) ] + 12.380234λ /[λ − (164.59) ] 2
2
2
(n − 1)/(n − 2) = 0.47856 + 0.078588/(λ − 0.08277) − 0.00881λ 2
2
2
2
2
2
2
2
no = 1 + 10.210λ /[λ − (0.444) ] + 0.522λ /[λ − (25.0) ] 2 2 2 2 2 2 2 ne = 1 + 8.933λ /[λ − ( 0.444) ] + 0.308λ /[λ − (25.0) ] 2
2
2
2
2
2
2
n = 1 + 2.578λ /[λ − (0.1387) ] + 3.935λ /[λ − (22.936) ]
Y2 O3
2
2
2
nx = 1 + 2.61960λ /( λ + 0.012338) 2 2 2 ny = 1 + 2.67171λ /( λ − 0.012605) 2 2 2 nz = 1 + 2.70381λ /( λ − 0.012903)
Y2SiO5
nx = 3.0895 + 0.0334/( λ + 0.0043) + 0.0199λ 2 2 ny = 3.1173 + 0.0283/( λ − 0.0313) 2 2 nz = 3.1871 + 0.03022/( λ − 0.138)
YVO4
no = 1 + 2.7665λ /(λ − 0.026884) 2 2 2 ne = 1 + 3.5930λ /(λ − 0.032103)
2
2
2
2
2
2
2
2
2
2
2
2
2
n = 1 + 2.293λ /[λ − (0.1095) ] + 3.705λ /[λ − (17.825) ] 2
2
2
Y3Ga5O12
n = 1 + 2.5297λ /(λ − 0.019694)
Y3Sc2Al3O12
n = 1 + 2.4118λ /(λ − 0.01477)
2
2
2
6
0.6–24
106
0.58–39.4
107
0.43–0.66
105
2–12
108
0.2–12
109
0.4–1.06
110
0.44–0.64
111
0.5–1.06
112, 113
0.4– 4.0
30
0.46–0.63
48
0.53–0.65
115
Section 1: Crystalline Materials
YAlO3
Y3Al5O12
2
87
© 2003 by CRC Press LLC
88
Dispersion Formulas for Refractive Indices—continued 2
2
2
2
Range (µm) 2
no = 4.4733 + 5.2658λ /(λ − 0.1338) + 1.49090λ /(λ − 662.55) 2 2 2 2 2 ne = 4.6332 + 5.3422λ /(λ − 0.1426) + 1.4580λ /(λ − 662.55)
ZnGeP2
2
2
2
2
2
no = 2.81419 + 0.87968λ /([ λ − (0.00569) ] − 0.00711λ 2 2 2 2 2 ne = 2.80333 + 0.94470λ /([ λ − (0.3004) ] − 0.00714λ
ZnO
2
2
2
2
α−ZnS
no = 4.4175 + 1.73968λ /([ λ − (0.2677) ] 2 2 2 2 ne = 4.42643 + 1.7491λ /([ λ − (0.2674) ]
β−ZnS
n = 1 + 0.3390426λ /([ λ − (0.31423026) ] + 3.7606868λ /([ λ − (0.1759417) ] 2 2 2 + 2.7312353λ /([ λ − (33.886560) ]
ZnSe
n = 1 + 4.2980149λ /([ λ − (0.1920630) ] + 0.62776557λ /([ λ − (0.37878260) ] 2 2 2 + 2.8955633λ /([ λ − (46.994595) ]
ZnTe
n = 9.921 + 0.42530λ /([ λ − (0.37766) ] + 2.63580/([λ /(56.5) − 1]
ZrO2: 12%Y2O3
© 2003 by CRC Press LLC
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
n = 1 + 1.347091λ /([ λ − (0.062543) ] + 2.117788λ /([ λ − (0.166739) ] + 9.452943λ /([ λ − (24.320570) ]
Ref.
0.4–12
40
0.45–4.0
30
0.36–1.4
50, 105
0.55–10.5
98
0.55–18
98
0.55–30
114
0.36–5.1
116
Handbook of Optical Materials
Dispersion formula (wavelength λ in µm)
Material
Section 1: Crystalline Materials
89
References: 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26.
Singh, S., Nonlinear optical materials, Handbook of Laser Science and Technology, Vol. III: Optical Materials, Part 1 (CRC Press, Boca Raton, FL. 1986), p. 54. DeShazer, L. G., Rand, S. C., and Wechsler, B. A., Laser crystals, Handbook of Laser Science and Technology, Vol. V: Optical Materials, Part 3 (CRC Press, Boca Raton, FL, 2000), p. 281. Singh, S., Nonlinear optical materials, Handbook of Laser Science and Technology, Suppl. 2: Optical Materials (CRC Press, Boca Raton, FL. 1995), p. 237. Wechsler, B. A. and Sumida, D. S., Laser crystals, Handbook of Laser Science and Technology, Suppl. 2: Optical Materials (CRC Press, Boca Raton, FL, 1995), p. 595. Hulme, K. F., Jones, O., Davies, P. H., and Hobden, M.V., Synthetic proustile (Ag3AsS3); a new crystal for optical mixing, Appl. Phys. Lett. 10, 133 (1967) Schröter, H., On the refractive indices of some heavy metal halides in the visible and calculation of interpolation formulas for dispersion, Z. Phys. 67, 24 (1931). Tilton, L. W., Plyler, E. K., and Stephens, R. E., Refractive index of silver chloride for visible and infrared radiant energy, J. Opt. Soc. Am. 66, 72 (1976). Bhar, G. C., Refractive index interpolation in phase matching,. Appl.Opt.15, 305 (1976). Levine, B. F., Nordland, W. A., and Silver, J. W., Nonlinear optical susceptibility of AgI, IEEE J. Quantum Electron. QE-9, 468 (1973). Feichtner, J. D., Johannes, R. and Roland, G. W., Growth and optical properties of single crystal pyragyrite (Ag3SbS3), Appl. Opt. 9, 1716 (1970). Fern, R. E. and Onton, A., Refractive index of AlAs. J. Appl. Phys. 42, 3499 (1971). Pastrnak and Roslovcova, L., Refractive index measurements on AlN single crystals. Phys. Stat. Sol. 14, K8 (1966). Malitson, I. H. and Dodge, M. J., Refractive index and birefringence of synthetic sapphire, J. Opt. Soc. Am. 62, 1405 (1972). Tropf, W. J. and Thomas, M. E., Aluminum oxynitride (ALON) spinel, Handbook of Optical Constants of Solids II, Palik, E. D., Ed. (Academic Press, Orlando, FL, 1991), p. 775. Eimerl, D., Davis, L., and Velsko, S., Optical, mechanical, and thermal properties of barium borate, J. Appl. Phys. 62, 1968 (1987). Malitson, I. H., Refractive properties of barium fluoride, J. Opt. Soc. Am. 54, 628 (1964). Wemple, S. H., DiDomenico, M., and Camlibel, I., Dielectric and optical properties of meltgrown BaTiO3, J. Phys. Chem. Solids 29, 1797 (1968). Bechhold, P. S. and Haussühl, S., Nonlinear optical properties of orthorhombic barium formate and magnesium barium fluoride, Appl. Phys. 14, 403 (1977). Singh, S., Draegert, D. A., and Geusic, J. E., Optical and ferroelectric of barium sodium niobate, Phys. Rev. B 2, 2709 (1970). Potopowicz, J. R., Temperature dependence of the refractive indices of barium sodium niobate (unpublished). Singh, S. and Pawelek, R. (unpublished). Vedam, K. and Hennessey, P., Piezo- and thermal-optical properties of Bi12GeO20, J. Opt. Soc. Am., 65, 442 (1975). Gospodnov, M., Haussühl, S., Seveshtarov, P., Tassev, V., and Petkov, N., Physical properties of cubic Bi12SiO20, Bulgarian J. Phys. 15, 140 (1988). Wettling, W. and Windscheif, J., Elastic constants and refractive index of boron phosphide, Solid State Commun., 50, 33 (1854). Feldman, A. and Horowitz, D., Refractive index of cuprous chloride, J. Opt. Soc. Am. 59, 1406 (1969). Burshtein, Z., Shimony, Y., and Levy, I., Refractive-index anisotropy and dispersion in gehlenite, Ca2Al2SiO7, between 308 and 1064 nm, J. Opt. Soc. Am. A 10, 2246 (1993).
© 2003 by CRC Press LLC
90
Handbook of Optical Materials
27.
Payne, S. A., Smith, L. K., DeLoach, L. D., Kway, W. L., Tassano, J. B., and Krupke, W. F., Laser, optical, and thermomechanical properties of Yb-doped fluorapatite, IEEE J. Quantum Electron. 30, 170–179 (1994). Gray, D. E., (Ed.), American Institute of Physics Handbook, 3rd ed. (McGraw-Hill, New York, 1972). Peter, F., Refractive indices and absorption coefficients of diamond between 644 and 226 micrometers, Z. Phys. 15, 358 (1923). Bond, W. L., Measurement of the refractive index of several crystals, J. Appl. Phys. 36, 1674 (1965). Boyd, G. D., Buehler, E., Stroz, F. G., and Wernick, J. H., Linear and nonlinear optical II IV V properties of ternary A B C2 chalcopyrite semiconductors, IEEE J. Quantum Electron. QE8, 419 (1972). Burattine, E., Cappuccio, G., Grandolfo, M., Vecchia, P., and Efendiev, Sh. M., Near-infrared refractive index of bismuth germanium oxide (Bi12GeO20), J. Opt. Soc. Am., 73, 495 (1983). DeBell, A. G., Dereniak, E. L., Harvey, J., et al., Cryogenic refractive indices and temperature coefficients of cadmium telluride from 6 µm to 22 µm, Appl. Opt. 18, 3114 (1979). Rodney, W. S. and Spindler, R. J., Refractive index of cesium bromide for ultraviolet, J. Nat. Bur. Stand. 51, 123 (1953). Li, H. H., Refractive index of alkali halides and its wavelength and temperature derivatives, J Phys. Chem. Ref. Data 5, 329 (1976). Kato, K., Second harmonic generation in CDA and CD*A, IEEE J. Quantum Electron. QE-10, 616 (1974). Rodney, W. S., Optical properties of cesium chloride, J. Opt. Soc. Am. 45, 987 (1955). Edwards, D. F. and White, R. H., Beryllium oxide, Handbook of Optical Constants of Solids II, Palik, E. D. (Ed., (Academic Press, Orlando, 1991), p. 805. Boyd, G. D., Kasper, H., and McFee, J. H., Linear and nonlinear optical properties of AgGaS3, CuGaS3, and CuInS3, IEEE J. Quantum Electron. QE-7, 563 (1971). Bhar, G. C. and Ghosh, G., Termperature-dependent Sellmeier coefficients and coherence lengths for some chalcopyrite crystals, J. Opt. Soc. Am. 69, 730 (1979). Kachare, A. H., Spitzer, W. G., and Fredrickson, J. E., Refractive index of ion-implanted GaAs, J. Appl. Phys. 47, 4209 (1976). Barker, A. S. and Hegems, M., Infrared lattice vibrations and free-electron dispersion in GaN, Phys. Rev. B 7, 743 (197). Parsons, D. F. and Coleman, P. D., Far infrared optical constants of gallium phosphide, Appl. Opt. 10, 1683 (1971). Abdullaev, G. B.,Kulevskii, L. A., Prokhorov, A. M., et al., a new effective material for nonlinear optics, JETP Lett. 16, 90 (1972). Malitson, I. H., A redetermination of some optical properties of calcium fluoride, Appl. Opt. 2, 1103 (1963). Hoefer, C. S., Kirby, K. W., and DeShazer, L. G., Therno-optic properties of gadolinium garnet laser crystals, J. Opt. Soc. Am. (1985). Wemple, S. H., and Tabor, W. J., Refractive index behavior of garnets, J. Appl. Phys. 44, 1395–1396 (1973). Wang, H. L., Diamagnetic Faraday Effects in the Garnets YAG, YGG, and GGG, Ph.D. dissertation, University of Southern California, Los Angeles (1975). Barnes, N. P. and Piltch, M. S., Temperature-dependent Sellmeier coefficients and nonlinear optics average power limit for germanium, J. Opt. Soc. Am. 69, 178 (1979). Tropf, W. J., Thomas, M. F., and Harris, T. J., Properties of crystals and glasses, Handbook of Optics, Vol. 2 (McGraw-Hill, New York, 1995), p. 33.61. Bond, W. L., Boyd, G. D. and Carter, H. L., Jr., Refractive indices of HgS (cinnabar)between 0.62 and 11 µ, J. Appl. Phys. 38, 4090 (1967).
28. 29. 30. 31.
32. 33. 34. 35. 36. 37. 38. 39. 40. 41. 42. 43. 44. 45. 46. 47. 48. 49. 50. 51.
© 2003 by CRC Press LLC
Section 1: Crystalline Materials 52. 53. 54. 55. 56. 57.
58. 59. 60. 61. 62. 63.
64.
65. 66. 67. 68. 69.
70. 71. 72. 73.
74.
91
Lorimor, O. G. and Spitzer, W. G., Infrared refractive index and absorption of InAs and CdTe, IEEE J. Quantum Electron. QE-9, 468 (1973). Pettit, G. D. and Turner, W. J., Refractive index of InP, J. Appl. Phys. 36, 2081 (1965). Dewey, C. F., Cook, W. R., Hodgson, R. T. and Wynne, J. J., Frequency doubling in KB5O8•4H2O and NH4B5O8•4H2O to 217.3 nm, Appl. Phys. Lett. 26, 714 (1975). Eimerl, D., Electro optic, linear, and non-linear optical properties of KDP and its isomorphs, Ferroelectrics. 72, 95 (1987) Kirby, K.W., and Deshazer, L.G., Refractive indices of 14 nonlinear crystals isomorphic to KH2PO4, J. Opt. Soc. Am. B4, 1072 (1987). Van Uitert, L. G., Singh, S., Levinstein, H. J., Geusic, J. E., and Bonner, J. R., A new and stable nonlinear optical material, Appl. Phys. Lett. 11, 161 (1967); Van Uitert, L. G., et al., Errata, Appl. Phys. Lett. 12, 224 (1968). Bierlein, J.D., Vanherzeele, H., and Ballman, A.A., Linear and nonlinear optical properties of flux grown KTiOAsO4, Appl. Phys. Lett. 54, 783 (1989). Zysset, B., Biaggio, I., and Gunter, P., Refractive indices of orthorhombic KNbO3 I: dispersion and temperature dependence. J. Opt. Soc. Am. B9, 380 (1992). Fujii, Y. and Sakudo, T., Dielectric and optical properties of KTaO3, J. Phys. Soc. Japan 41, 888 (1976). Bierlein, J. D., Vanherzeele, H., Potassium titanyl phosphate: properties and new applications, J. Opt. Soc. Am. B6, 622 (1989). Vanherzeele, H., Bierlein, J. D., Magnitude of the nonlinear optical coefficients of KTiOPO4, Opt. Lett. 17, 982 (1992). Fan, T.Y., Huang, C.E., Hu, B.Q., Eckardt, R.C., Fan, Y.X., Byer, R., and Feigelson, R.S., Second harmonic generation and accurate index of refraction measurements in flux-grown KTiOPO4, Appl. Opt. 26, 2390 (1987). Shen, H.Y., Zhou, Y.P., Lin, W.X., Zeng Z.D., Zeng, R.R., Yu, G.F., Huang, C.H., Jiang, A.D., Jia, S.Q., and Shen, D.Z., Second harmonic generation and sum frequency mixing of dual wavelength Nd: YAlO3 laser in flux grown KTiOPO4 crystals, IEEE J. Quantum Electron. 28, 48 (1992). LaFrance, T. S., Magnetic dipole radiation in crystals, Ph.D. dissertation, University of Southern California, Los Angeles (1970). Laiho, R. and Lakkisto, M., Investigation of the refractive indices of LaF3, CeF3, PrF3, and NdF3, Phil. Mag. B 48. 203 (1983). Jenssen, H. P., Begley, R. F., Webb, R., and Morris, R. C., Spectroscopic properties and laser 3+ performance of Nd in lanthanum beryllate, J. Appl. Phys. 47, 1496 (1976). Hanson, F. and Dick, D., Blue parametric generation from temperature-tuned LiB3O5, Opt.Lett. 16, 205 91991). Woods, B. W., Payne, S. A., Marion, J. E., Hughes, R. S., and Davis, L. E., Thermomechanical and thermo-optical properties of the LiCaAlF6:Cr3+ laser material, J. Opt. Soc. Am. B 8, 970 (1991). Chen, C., Wu, Y., Jiang, A. et al., J. Opt. Soc. Am. B 6, 6166 (1989). Choy, M. M. and Byer, R. L., Accurate second-order susceptibility measurements of visible and infrared nonlinear crystals, Phys. Rev. B 14, 1693 (1976). Nelson, D. F. and Mikulyak, R. M., Refractive indices of conguently melting lithium niobate, J. Appl. Phys. 45, 3688 (1974). Perry, M. D., Payne, S. A., Ditmire, T., Beach, R., Quarles, G. J., Ignatuk, W., Olson, R., and Weston, J., Better materials trigger Cr:LISAF laser development, Laser Focus World, 85, (September 1993). Barnes, N. P. and Gettemy, D. J., Temperature variation of the refractive indices of yttrium lithium fluoride, J. Opt. Soc. Am. 70, 1214 (1980).
© 2003 by CRC Press LLC
92
Handbook of Optical Materials
75.
Ovanesyan, K. L., Petrosyan, A. G., Shirinyan, G. O., and Avetisyan, A. A., Optical dispersion and thermal expansion of garnets, Izv. Akad. Nauk SSSR Neorg. Mater. 17(3), 459–462 (1981 (trans. in Inorg. Mater. 17(3), 308–310 (1981). Tropf, W. J. and Thomas, M. E., Magnesium aluminum spinel (MgAl2O4) spinel, Handbook of Optical Constants of Solids II, Palik, E. D., Ed.. (Academic Press, Orlando, FL, 1991), p. 881. Dodge, M. J., Refractive properties of magnesium fluoride, Appl. Opt. 23, 1980 (1984). Stephens, R. E. and Malitson, I. H., Index of refraction of magnesium oxide, J. Nat. Bur. Stand. 49, 249 (1952). Singh, S., Potopowicz, J. R., and Pawelek, R., Second harmonic properties of tourmaline (unpublished). Chandrasekhar, S. and Madhav, M. S., Optical rotary dispersion of crystals of sodium chlorate and sodium bromate, Acta Crystallogr. 23, 911 (1967). Chandrasekhar, S., Optical rotary dispersion of crystals, Proc. Royal Soc. A259, 531 (1961). Rosker, M. J., Cheng, K., and Tang, C. L., Practical urea optical parametric oscillator for tunable generation throughout the visible and near-infrared, IEEE J. Quantum Electron. QE-21, 1600 (1985). Malitson, I. H. and Dodge, M. J., Refraction and dispersion of lead fluoride, J. Opt. Soc. Am. 59, 500A (1969). Malitson, I. H., quoted by Wolfe, W. L., in Handbook of Optics, (McGraw-Hill, New York, 1978). Singh, S., Bonner, W. A., Potopowicz, J. R., and Van Uitert, L. G., Nonlinear optical properties of lead niobate, Electrochem. Soc. Meeting, Los Angeles, May 1970; Miller, R. C. (private communication). Zemel, J. N., Jensen, J. D., and Schoolar, R. B., Electrical and optical properties of epitaxial films of PbS, PbSe, PbTe, and SnTe, Phys. Rev. 140A, 330 (1965). Weiting, F. and Yixun, Y., Temperature effects on the refractive index of lead telluride and zinc sulfide, Infrared Phys. 30, 371 (1990). Singh, S., Remeika, J. P., and Potopowicz, J. R., Nonlinear optical properties of ferroelectric lead titanate, Appl. Phys. Lett. 20, 135 (1972). Barnes, N. P. Gettemy, D. J., and Adhav, R. S., Variation of the refractive index with temperature and the tuning rate for KDP isomorphs, J. Opt. Soc. Am. 72, 895 (1982). Singh, S., Potopowicz, J. R., Bonner, W. A., and Van Uitert, L. G., Nonlinear optical properties of rubidium dihydrogen phosphate (unpublished). Cheng, L.T., Cheng, L.K., and Bierlein, J.D., Linear and nonlinear optical properties of the arsenate isomorphs of KTP, Proc. SPIE 1863 (1993). Gample, L, and Johnson, F. M., Index of refraction of single-crystal selenium, J. Opt. Soc. Am. 59, 72 (1969) Taitian, B., Fitting refractive index data with the Sellmeier dispersion formula, Appl. Opt. 23, 4477 (1984). Edwards, D. F. and Ochoa, E., Infrared refractive index of silicon, Appl. Opt. 19, 4130 (1980). Singh, S., Potopowicz, J. R., Van Uitert, L. G., and Wemple, S. H., Nonlinear optical properties of hexagonal silicon carbide, Appl. Phys. Lett. 19, 53 (1971). Schaffer, P. T. B., Refractive index, dispersion, and birefringence of silicon carbide polytypes, Appl. Opt. 10, 1034 (1971). Radhakrishnan, T., Further studies on the temperature variation of the refractive index of crystals, Proc. Indian Acad. Sci., A33, 22 (1951). Feldman, A., Horowitz, D., Walker, R.M., and Dodge, M. J., Optical Materials Characterization Final Report, February 1, 1978–September 30, 1978, NBS Technical Note 993, February 1979. Driscoll, W. G. and Vaughan, W., Eds. Handbook of Optics, Optical Society of America, (McGraw-Hill, New York, 1978), p. 7.
76. 77. 78. 79. 80. 81. 82.
83. 84. 85.
86. 87. 88. 89. 90. 91. 92. 93. 94. 95. 96. 97. 98. 99.
© 2003 by CRC Press LLC
Section 1: Crystalline Materials
93
100. Payne, S. A., Smith, L. K., Beach, R. J., Chai, B. H. T., Tassano, DeLoach, L. D., Kway, W. L., Solarz, R. W., and Krupke, W. F., Properties of Cr:LiSrAlF6 crystals for laser operation, Appl. Opt. 33, 20 (1994). 101. Singh, S., Potopowicz, J. R., Bonner, W. A., and Van Uitert, L. G. (unpublished). 102. Singh, S., Potopowicz, J. R., Bonner, W. A., and Van Uitert, L. G., Handbook of Lasers, Pressley, R. J., Ed. (Chemical Rubber Co, Cleveland, 1971), p. 511. 103. Uchida, N., Optical properties of single crystal paratellurite (TeO2), Phys. Rev. B 4, 3736 (1971). 104. DeVore,J. R., Refractive index of rutile and sphalerite, J. Opt. Soc. Am. 41, 416 (1951). 105. Bieniewski, T. M. and Czyzak, S. J., Refractive indexes of single hexagonal ZnS and CdS crystals. J. Opt. Soc. Am. 53, 496 (1963). 106. Hettner, G. and Leisegang, G., Dispersion of the mixed crystals TlBr-TlI (KRS-5) and TlClTlBr (KRS-6) in the infrared, Optik 3, 305 (1948). 107. Rodney, W. S. and Malitson, I. H., Refraction and dispersion of thallium bromide iodide, J. Opt. Soc. Am. 46, 956 (1956). 108. Ewbank, M. D., Newman, P. R., Moat, N. L., et al., The temperature dependence of optical and mechanical properties of Tl3AsSe3, J . Appl. Phys. 51, 3848 (1980) and Appl.Opt. 11, 993 (1972). 109. Nigara, Y., Measurement of the optical constants of yttrium oxide, Jap. J. Appl. Phys. 7. 404 (1968). 110. Martin, K. W. and DeShazer, L. G., Indices of refraction of the biaxial crystal YAlO3, Appl. Opt. 12, 941 (1973). 111. Beach, R., Shinn, M. D., Davis, L., Solarz, R. W., and Krupke, W. F., Optical absorption and stimulated emission of neodymium in yttrium orthosilicate, IEEE J. Quantum Electron. 26(8), 1405–1412 (1990). 112. Maunder, E. A. and DeShazer, L. G., Use of yttrium orthovanadate for polarizers, J. Opt. Soc. Am. 61, 684A (1971). 113. Lomheim, T. S. and DeShazer, L. G., Optical absorption intensities of trivalent neodymium in the uniaxial crystal yttrium orthovanadate, J. Appl. Phys. 49, 5517 (1978). 114. Li, H. H., Refractive index of ZnS, ZnSe, and ZnTe and its wavelength and temperature derivatives, J. Phys. Chem. Ref. Data 13, 103 (1984). 115. Duncanson, A. and Stevenson, R. W. H., Proc. Phys. Soc. 72, 1001 (1958). 116. Wood, D. L. and Nassau, K., Refractive index of cubic zirconia stabilized with yttria, Appl.Opt. 21, 2978 (1982). 117. Wu, Y., Sasaka, T., Nakai, S., et al., CsB3O5: A new nonlinear optical crystal, Appl. Phys. Lett. 62, 24 (1993). 118. Producer’s literature. 119. Dodge, M. J., Refractive index, Handbook of Laser Science and Technology,VoL. IV: Optical Materials, Part 2 (CRC Press, Boca Raton, FL, 1986), p. 21. 120. Icenogle, H. W., Platt, B. C., and Wolfe, W. L., Refractive indexes and temperature coefficients of germanium and silicon, Appl. Opt. 15, 2348 (1976). 121. Cook, W. R., and Hubby, L. M., Indices of refraction of potassium pentaborate, J. Opt. Soc. Am. 66, 72 (1976). 122. Pikhtin, A. N. and Yas’kov, A. D., Dispersion of the refractive index of semiconductors with diamond and zinc-blende structures, Sov. Phys. Semicond. 12, 622 (1978).
© 2003 by CRC Press LLC
Section 1: Crystalline Materials 1.3.5 Thermooptic Coefficients Thermooptic Coefficients Material
Wavelength (nm)
–6
dn/dt (10 /K)
Temperature (K)
Ref.
AgBr
3390 10600
–61 –50
RT RT
1 1
AgCl
610 633 3390 10600
–61 –61 –58 –35
298 RT RT RT
4 1 1 1
258 (o) 255 (e) 176 (o) 179 (e) 154 (o) 155 (e) 153 (o) 155 (e)
RT RT RT RT RT RT RT RT
1 1 1 1 5 5 1 1
633
98 (o) 66 (e) 74 (o) 43 (e) 58 (o) 46 (e) 1.8 (o) 1.9 (e) 11.7 (o) 12.8 (e) 15.4 (o) 16.9 (e) 13.6 (o) 14.7 (e) 12.6
RT RT RT RT RT RT 93 93 293 293 473 473 RT RT RT
5 5 5 5 5 5 4 4 4 4 4 4 1 1 1
Al23O27N5
633
11.7
RT
1
BaB2O4
404.7
–16.4 (o) –9.4 (e) –16.6 (o) –9.8 (e) –16.8 (o) –8.8 (e)
RT RT RT RT RT RT
1 1 1 1 1 1
–7.8 –15.6
90 293
4 4
AgGaS2
600 1000 3390 10000
AgGaSe2
1064 3390 10600
Al2O3
457.9
589
579 1014
BaF2
© 2003 by CRC Press LLC
457.9
94
Section 1: Crystalline Materials
Thermooptic Coefficients—continued Material
Wavelength (nm)
BaF2 632.8 1150
3390 10600
Ba2NaNb5O15
1064
BeAl2O4
1064
BeO
458 633 1064
Bi12GeO20
C (diamond)
CaCO3
–15.6 –18.8 –16.3 –8.1 –16.2 –19.3 –15.9 –7.3 –14.5 –17.5 –25 (y) 80 (z)
293 473 313 90 293 473 RT 90 293 473 RT
8
300
8.2 (o) 13.4 (e) 8.2 (o) 13.4 (e) 8.18 (o) 13.40 (e)
Ref. 4 4 2 4 4 4 1 4 4 4 5 5
RT RT RT RT RT RT
1 1 1 1 5 5
–34.5 –34.9
RT RT
1 1
546 587 30000
10.1 10 9.6
RT 300 RT
1 4 1
21.5 (o 22.0 (e) 3.6 (o) 14.4 (e) 3.2 (o 13.2 (e) 3.2 (o) 13.1 (e) 2.1 (o) 11.9 (e)
334 334 RT RT 334 334 RT RT RT RT
4 4 1 1 4 4 1 1 1 1
RT
1
93
4
293
4
473
4
313
2
211
441 458 633
254 457.9
632.8 663 1150
© 2003 by CRC Press LLC
Temperature (K)
510 650
365
CaF2
–6
dn/dt (10 /K)
–7.5 –3.9 –11.0 13.4 –11.5 –10.4 –4.1
95
Section 1: Crystalline Materials
Thermooptic Coefficients—continued Material
Wavelength (nm)
CaF2 3390
–6
dn/dt (10 /K) –11.5 –14.1 –8.1
Temperature (K)
Ref.
RT
1
93
4
293
4
473
4
RT
1
CaMoO4
587.6
–9.6 (o) –10.0 (e)
273–373 273–373
4 4
Ca5(PO4)3F
500–1000
–10 (o) –8 (e)
293–338 293–338
3 3
CaWO4
546.1 546.1
–7.1 (o) –10.2 (e)
293 293
4 2
–4.3 –9.2 –12.4 –5.7 –11.5 –15.1 –5.3 –11.1 –14.8
93 293 473 93 293 473 93 293 473
4 4 4 4 4 4 4 4 4
RT RT
1 1
CdF2
457.9
1150
3390
CdS
10600
CdTe
1150 3390 10600
147 98.2 98.0
RT RT RT
1 1 1
CsBr
254 288 400 633 640 1150 3400 10600 17000 30000
–82 –86 –86 –84.7 –85 –84 –84 –83 –82 –75.8
RT 293 293 RT 293 293 293 293 293 RT
1 4 4 1 4 4 4 4 4 1
CsCl
288 365 400
–79 –78.7 –78
293 293 293
4 1 4
© 2003 by CRC Press LLC
58.6 (o) 62.4 (e)
96
Section 1: Crystalline Materials
Thermooptic Coefficients—continued Material
Wavelength (nm)
–6
dn/dt (10 /K)
Temperature (K)
Ref.
CsCl
633 640 1150 3400 10600 17000 20000
–77.4 –77 –77 –76 –75 –72 –70.0
293 293 293 293 293 293 RT
1 4 4 4 4 4 1
CsF
288 400 640 1150 3400 10600 17000
–41 –42 –42 –42 –42 –39 –32
293 293 293 293 293 293 293
4 4 4 4 4 4 4
CsI
300 365 633 1000 10000 20000 30000 40000 50000
–79 –87.5 –99.3 –98.6 –91.7 –89.3 –88.0 –86.2 –78.5
288–307 RT RT 288–307 288–307 288–307 288–307 288–307 288–307
4 1 1 4 4 4 4 4 4
GaAs
1150 3390 10600
250 200 200
RT RT RT
1 1 1
GaN
1150
61
RT
1
GaP
546 633
200 160
RT RT
1 1
GaSb
1550 3700
380 312
80 100–400
4 4
Gd3Sc2Al3O12
543 1152
8.9 5.05
298–308 308–313
3 3
Gd3Sc2Ga3O12
441.6 543 632.8 1064 1152
13.46 13.3 10.76 10.7 9.04
308–313 298–308 308–313 283–303 308–313
3 3 3 3 3
Ge
2500 5000
RT RT
1 1
© 2003 by CRC Press LLC
462 416
97
Section 1: Crystalline Materials
Thermooptic Coefficients—continued Material
Wavelength (nm)
–6
dn/dt (10 /K)
Temperature (K)
Ref.
Ge
20000
401
RT
1
InAs
3250 4000 6000 10000
315 500 400 300
300–600 RT RT RT
4 1 1 1
InP
5000 10600 20000
83 82 77
RT RT RT
1 1 1
560 460
120–360 100–400
4 4
–28.5 –39.3 –43.8 –30.5 –41.9 –46.3 30.6 41.1 45.6
93 293 473 93 293 473 93 293 473
4 4 4 4 4 4 4 4 4
–22.6 –34.9 –39.6 –23.5 –36.2 –41.1 –23.3 –34.8 –39.1
93 293 473 93 293 473 93 293 473
4 4 4 4 4 4 4 4 4
–19.9 –21 –22 –23 –23 –23 –17 3
RT 293 293 293 293 293 293 293
1 4 4 4 4 4 4 4
InSb
KBr
2000–40000 5000–200000 457.9
1150
10600
KCl
457.9
1150
10600
KF
254 288 400 640 1150 3400 10600 17000
KH2PO4
624
–39.6 (o) –38.2 (e)
RT RT
1 1
KI
288 400
268 5
293 293
4 4
© 2003 by CRC Press LLC
98
Section 1: Crystalline Materials
Thermooptic Coefficients—continued Material KI
KNbO3
Wavelength (nm) 458 640 1150 3400 10600 17000 30000 436
1064
3000
KTiOPO4
365 532
LiB3O5
532
1064
LiBr
LiCaAlF6
LiCl
© 2003 by CRC Press LLC
288 355 640 1150 3400 10600 17000 546, 764
288 640 1150 3400 10600
–6
dn/dt (10 /K)
Temperature (K)
Ref.
–41.5 –49 –66 –72 –66 –52 –30.8
RT 293 293 293 293 293 RT
1 4 4 4 4 4 1
–67 (x) –26 (y) 125 (z) 23 (x) –34 (y) 63 (z) 21 (x) –23 (y) 55 (z)
RT RT RT RT RT RT RT RT RT
1 1 1 1 1 1 1 1 1
–6.5 (x) –7.4 (x) –0.9 (y) –13.5 (z) –1.9 (x) –13.0 (y) –7.4 (z)
RT RT RT RT RT RT RT
5 5 5 5 1 1 1
–1.9 (x) –13.0 (y) –8.3 (z)
RT RT RT
5 5 5
56 2 –39 –48 –50 –37 –1
293 293 293 293 293 293 293
4 4 4 4 4 4 4
293–353 293–353
3 3 4
–4.6 (o) –4.2 (e) 9.9 –32 –37 –38 –21 –16
293 293 293 293 293 293
4 4 4 4 4
99
Section 1: Crystalline Materials
Thermooptic Coefficients—continued Material LiF
Wavelength (nm) 457.9 632.8 1150
3390
LiI
LiIO3
288 410 640 1150 3400 10600 17000 400 1000
LiNbO3
660 3390
–6
dn/dt (10 /K)
Temperature (K)
Ref.
–3.3 –21.6 –17.0 –3.8 –16.7 –19.9 –4.0 –14.5 –18.0
93 473 313 93 293 473 93 293 473
4 4 2 4 4 4 4 4 4
268 5 –49 –66 –72 –66 –52
293 293 293 293 293 293 293
4 4 4 4 4 4 4
–74.5 (o) –63.5 (e) –84.9 (o) –69.2 (e)
RT RT RT RT
1 1 1 1
4.4 (o) 37.9 (e) 0.3 (o) 28.9 (e)
RT RT RT RT
1 1 1 1
LiSrAlF6
900
–4.0 (o) –2.5 (e)
293–353 293–353
3 3
LiTaO3
468
62 (o) 12 (e) 58 (o) 7 (e) 52 (o) 5 (e)
298 298 298 298 298 298
3 3 3 3 3 3
–0.54 (o) –2.44 –0.67 (o) –2.30 (e) –0.91 (o) –2.86 (e)
RT RT RT RT RT RT
1 1 1 1 1 1
RT 93 293
1 4 4
546 644
LiYF4
436 546 578
MgAl2O4
© 2003 by CRC Press LLC
589
9.0 1.8 1.5
100
Section 1: Crystalline Materials
Thermooptic Coefficients—continued Material MgF2
Wavelength (nm) 457.9
632.8 1150
3390
MgO
365 404.7
546 589.3
767.9
Mg2SiO4 NaBr
NaCl
© 2003 by CRC Press LLC
–6
dn/dt (10 /K)
Temperature (K)
Ref.
2.4 0.9 0.6 0.1 1.12 (o) 0.58 (e) 2.0 1.4 0.9 0.3 –0.1 –0.7 2.0 1.5 1.1 0.6 0.3 –0.3
93 293 473 473 293 293 93 93 293 293 473 473 93 93 293 293 473 473
4 4 4 4 2 2 4 4 4 4 4 4 4 4 4 4 4 4
19.5 18.9 19.1 19.3 16.5 15.3 15.5 15.7 13.6 13.8 14.0
RT 293 303 313 RT 293 303 313 293 303 313
1 4 4 4 1 4 4 4 4 4 4
298–313
3
488
2.8
288 350 365 640 1150 3400 10600 17000
12.9 –29 –30.4 –39 –40 –40 –38 –32
293 293 RT 293 293 293 293 293
4 4 1 4 4 4 4 4
–20.6 –34.2 –39.2
93 293 473
4 4 4
457.9
101
Section 1: Crystalline Materials
Thermooptic Coefficients—continued Material NaCl
Wavelength (nm) 633 1150
3390
NaF
457.9
632.8 1150
3390
NaI
NH4H2PO4 PbMoO4
288 325 640 1150 3400 10600 17000 624
588
–6
dn/dt (10 /K)
Temperature (K)
Ref.
–35.4 –22.2 –36.4 –41.4 22.4 –36.6 –41.8
RT 93 293 473 93 293 473
1 4 4 4 4 4 4
–4.1 –11.9 –14.7 –13.0 –4.5 –13.2 –15.9 –4.5 –12.5 –14.9
93 293 473 313 93 293 473 93 293 473
4 4 4 2 4 4 4 4 4 4
72 3 –46 –50 –50 –49 –44 –47.1 (o) –4.3 (e)
293 293 293 293 293 293 293 RT RT
4 4 4 4 4 4 4 1 1
–75 (o) –41 (e)
273–373 273–373
4 4
RT RT RT
1 1 1
PbS
3390 5000 10600
PbSe
3390 5000 10600
–2300 –1400 –860
RT RT RT
1 1 1
PbTe
3390 5000 10600
–2100 –1500 –1200
RT RT RT
1 1 1
RbBr
288 400 640
–40 –44 –45
293 293 293
4 4 4
© 2003 by CRC Press LLC
–2100 –1900 –1700
102
Section 1: Crystalline Materials
Thermooptic Coefficients—continued Material
Wavelength (nm)
–6
dn/dt (10 /K)
Temperature (K)
Ref.
RbBr
1150 3400 10600 17000
–45 –45 –44 –43
293 293 293 293
4 4 4 4
RbCl
288 400 640 1150 3400 10600 17000
–38 –39 –39 –39 –39 –38 –35
293 293 293 293 293 293 293
4 4 4 4 4 4 4
RbI
288 400 640 1150 3400 10600 17000
–37 –55 –56 –56 –56 –56 –55
293 293 293 293 293 293 293
4 4 4 4 4 4 4
Si
1407 2500 3826 5000 10600
206 166 174 159 157
291 RT 312 RT RT
4 1 4 1 1
RT RT RT RT RT RT
1 1 1 1 1 1
SiO2 (α-quartz)
254 365 546
–2.9 (o) –4.0 (e) –5.4 (o) –6.2 (e) –6.2 (o) –7.0 (e)
Sr5(VO4)3F
750–1000
–11 (o) –8 (e)
293–338 293–338
3 3
SrF2
457.9
–54 –12.0 –13.4 –12.5 –5.5 –12.6 –14.0 –3.5 –9.8 –12.0
93 293 473 313 93 293 473 93 293 473
4 4 4 2 4 4 4 4 4 4
632.8 1150
10600
© 2003 by CRC Press LLC
103
Section 1: Crystalline Materials
Thermooptic Coefficients—continued Material TeO2
Wavelength (nm) 436 644
TiO2 (rutile)
Tl[Br,I] KRS-5
405
576.9 1014 11035 25970 39380
Tl5AsSe3
2–10
–6
dn/dt (10 /K)
Temperature (K)
Ref.
30 (o) 25 (e) 9 (o) 8 (e)
RT RT RT RT
1 1 1 1
4 (o) –9 (e)
RT RT
1 1
292–304 292–304 292–304 292–304 292–304
4 4 4 4 4
RT RT
1 1
–254 –240 –233 –202 –154 –45 (o) 36 (e)
YVO4
—
3.9 (o) 8.5 (e)
— —
3 3
YVO4
—
3 (o) 8.5 (e)
— —
3 3
Y2 O3
633
8.3
RT
1
Y2SiO5
546.1
9.05 (x) 5.70 (y) 6.73 (z)
298–343 298–343 298–343
3 3 3
Y3Al5O12
YAlO3 b–axis rod ZnGeP2
457.9 476.5 488.8 496.5 501.7 514.5 543 632.8 1064.2 1064
640 1000 10000
© 2003 by CRC Press LLC
11.89 12.00 11.60 11.38 11.37 10.57 9.7 10.35 9.05 9.8 (a) 14.5 (c) 359 (o) 376 (e) 212 (o) 230 (e) 165 (o) 170 (e)
303–318 303–318 303–318 303–318 303–318 303–318 298–308 303–318 303–318
2 2 2 2 2 2 3 2 2
— —
4 4
— — — — — —
1 1 1 1 1 1
104
Section 1: Crystalline Materials
Thermooptic Coefficients—continued Material β-ZnS
Wavelength (nm) 633 1150
1 4 4 1 4 4 4 4 4 4 4
633 1150 3390 10600
63.5 49.8 45.9 46.3
RT RT RT RT
6 6 6 6
633
76 106 121 59.7 50 62 67 49 61 69
93 293 473 RT 93 293 473 93 293 473
4 4 4 1 4 4 4 4 4 4
633 1150 3390 10600
1.6 70 62 61
RT RT RT RT
6 6 6 6
360 458 633 800 1690
16 10.0 7.9 7.2 6.2
RT 293–403 RT RT 293–403 293–403
1 4 1 1 4 4
1150 3390
10600
ZnSe (CVD)
ZrO2:12%Y2O3
(o) ordinary ray (e) extraordinary ray RT room temperature
© 2003 by CRC Press LLC
Ref.
RT 93 293 RT 473 93 293 473 93 293 473
10600
ZnSe
Temperature (K)
63.5 35 46 49.8 50 28 42 46 27 41 47
3390
β-ZnS (CVD)
–6
dn/dt (10 /K)
105
Section 1: Crystalline Materials
106
References: 1. Topf, W. J., Thomas, M. F., and Harris, T. J., Properties of Crystals and glasses, Handbook of Optics, Vol. II (McGraw–Hill, New York, 1995), p. 33.57 and references cited therein. 2. DeShazer, L. G., Rand, S. C., and Wechsler, B. A., Laser crystals, Handbook of Laser Science and Technology,Vol. V: Optical Materials, Part 3 (CRC Press, Boca Raton, FL, 1987), p. 595 and references cited therein. 3. Wechsler, B. A. and Sumida, D. S., Laser crystals, Handbook of Laser Science and Technology, Suppl. 2: Optical Materials (CRC Press, Boca Raton, FL, 1995), p. 595 and references cited therein. 4. Dodge, M. J., Refractive index, Handbook of Laser Science and Technology,VoL. IV: Optical Materials, Part 2 (CRC Press, Boca Raton, FL, 1986), p. 21 and references cited therein. 5. Singh, S., Nonlinear optical materials, Handbook of Laser Science and Technology, Vol. III: Optical Materials, Part 1 (CRC Press, Boca Raton, FL. 1986), p. 54 ff. 6. Klein, C., Raytheon Company.
© 2003 by CRC Press LLC
Section 1: Crystalline Materials
107
1.4 Mechanical Properties 1.4.1 Elastic Constants The following tables are from the CRC Handbook of Chemistry and Physics, 82nd edition, Lide, D. R., Ed. (CRC Press, Boca Raton, FL, 2001), p. 12–37, with additions from the Handbook of Optics, Vol. 2 (McGraw–Hill, New York, 1999) and the Handbook of Laser Science and Technology, Vol. IV and Suppl. (CRC Press, Boca Raton, FL, 1995). The elastic constants Cij for single crystals are given in units of 1011 N/m2 (equivalent to 100 GPa or 1012 dyn/cm2). The values are for room temperature. A useful compilation of published values from various sources may be found in Simmons, G., and Wang, H., Single Crystal Elastic Constants and Calculated Aggregate Properties: A Handbook, 2nd edition, (The MIT Press, Cambridge, MA, 1971). Temperature and pressure coefficients of the elastic constants for many materials are included in Landolt–Börnstein, New Series, III/11, Hellwege, K.–H. and Hellwege, A. M., Eds. (Springer–Verlag, New York, 1979).
Cubic Crystals Elastic constants (10 Material AgBr AlAs Al23O27N5 AlSb Ba(NO3)2 BaF2 Bi4Ge3O12 Bi4Si3O12 BN BP C (diamond) CaF2 CaLa2S4 CdTe CsBr CsCl CsI GaAs GaP GaSb Gd3Ga5O12 Gd3Sc2Al3O12 Gd3Sc2Ga3O12
© 2003 by CRC Press LLC
11
2
N/m )
Temperature (K)
C11
C12
C44
300 RT RT 300 293 298 RT RT RT RT RT 298 RT 298 298 298 298 298 300 298 RT RT RT
0.5920 1.163 3.93 0.8939 0.2925 0.9199 1.250 1.298 7.83 3.15 10.40 1.6420 0.98 0.5351 0.3063 0.3644 0.2446 1.1877 1.4120 0.8839 2.85 2.99 2.77
0.3640 0.576 1.08 0.4427 0.2065 0.4157 0.324 0.297 1.46 1.00 1.70 0.4398 0.47 0.3681 0.0807 0.0882 0.0661 0.5372 0.6253 0.4033 1.14 1.01 1.049
0.0616 0.541 1.19 0.4155 0.1277 0.2568 0.249 0.247 4.18 1.60 5.50 0.8406 0.50 0.1994 0.0750 0.0804 0.0629 0.5944 0.7047 0.4316 0.897 0.89 0.8036
Ref. 48 117 117 2 7 6 117 117 117 117 117 8 117 9 11 11 11 17 18 16 118 119 119
108
Handbook of Optical Materials Cubic Crystals—continued Elastic constants (10 Material
Ge HgTe InAs InP InSb KBr KCl KCN KF KI KMgF3 KTaO3 LiBr LiCl LiF LiI Lu3Al5O12 MgAl2O4 MgO MnO NaBr NaBrO3 NaCl NaClO3 NaF NaI NH4Br NH4Cl Pb(NO3)2 PbF2 PbS PbSe PbTe RbBr RbCl RbI Si β-SiC Sr(NO3)2 SrF2 SrO
© 2003 by CRC Press LLC
Temperature (K) 298 290 293 RT 298 298 298 RT 295 300 RT RT RT 295 RT RT RT 298 298 298 300 RT 298 RT 300 300 300 290 293 300 RT RT 303.2 300 300 300 298 RT 293 300 300
11
2
N/m )
C11
C12
C44
1.2835 0.548 0.8329 1.0220 0.6720 0.3468 0.4069 0.1940 0.6490 0.2710 1.32 4.31 0.3940 0.4927 1.1397 0.2850 3.39 2.9857 2.9708 2.23 0.3970 0.5450 0.4947 0.4920 0.9700 0.3007 0.3414 0.3814 0.3729 0.8880 1.26 1.178 1.0795 0.3152 0.3624 0.2556 1.6578 3.50 0.4255 1.2350 1.601
0.4823 0.381 0.4526 0.5760 0.3670 0.0580 0.0711 0.1180 0.1520 0.0450 0.396 1.03 0.1880 0.2310 0.4767 0.1400 1.14 1.5372 0.9536 1.20 0.1001 0.1910 0.1288 0.1420 0.2380 0.0912 0.0782 0.0866 0.2765 0.4720 0.162 0.139 0.0764 0.0500 0.0612 0.0382 0.6394 1.42 0.2921 0.4305 0.435
0.6666 0.204 0.3959 0.4600 0.3020 0.0507 0.0631 0.0150 0.1232 0.0364 0.485 1.09 0.1910 0.2495 0.6364 0.1350 1.13 1.5758 1.5613 0.79 0.0998 0.1500 0.1287 0.1160 0.2822 0.0733 0.0722 0.0903 0.1347 0.2454 0.171 0.1553 0.1343 0.0380 0.0468 0.0278 0.7962 2.56 0.1590 0.3128 0.590
Ref. 20 36 23 24 22 11 11 32 33 42 118 117 32 33 34 32 119 53 20 35 33 32 11 50 51 52 3 4 29 28 117 117 30 45 45 45 46 117 29 54 55
Section 1: Crystalline Materials
109
Cubic Crystals—continued Elastic constants (10
11
2
N/m )
Material
Temperature (K)
C11
C12
C44
SrTiO3 ThO2 TiC TlBr TlCl Tl[Br,I], KRS-5 Tl[Br,Cl], KRS-6 Y2 O3 Y3Al5O12 Y3Fe2(FeO4)3 Y3Sc2Ga3O12 Y2.25Yb0.75Al5O12 ZnS ZnSe ZnTe ZrC
RT 298 RT 298 RT RT RT RT RT 298 RT RT 298 298 298 298
3.4817 3.670 5.00 0.3760 0.403 0.341 0.397 2.33 3.49 2.680 2.75 4.55 1.0462 0.8096 0.7134 4.720
1.0064 1.060 1.13 0.1458 0.155 0.136 0.149 1.01 1.21 1.106 1.00 1.54 0.6534 0.4881 0.4078 0.987
4.5455 0.797 1.75 0.0757 0.0769 0.0579 0.0723 0.67 1.14 0.766 0.85 1.51 0.4613 0.4405 0.3115 1.593
Ref. 56 61 107 59 117 117 117 117 119 19 119 119 68 68 68 63
Trigonal Crystals—Point Groups 32, 3m, –3m Elastic constants (10 Material Ag3AsS3 Al2O3 AlPO4 β-Ba3B6O12 CaCO3 Fe2O3 LiCaAlF6 LiNbO3 LiSrAlF6 LaF3 LiTaO3 NaNO3 Se α-SiO2 Te Tourmaline*
Temp. (K) RT 300 RT RT 300 RT RT RT RT RT RT RT RT 298 RT RT
C11 0.570 4.9735 1.0503 1.238 1.4806 2.4243 1.18 2.030 1.17 1.80 2.330 0.8670 0.198 0.8680 0.3257 2.7066
* Na3Al6Si6O18 (BO3)2(O,H,F) 4
© 2003 by CRC Press LLC
C12 0.318 1.6397 0.2934 0.603 0.5578 0.5464 0.412 0.530 — 0.88 0.470 0.1630 0.066 0.0704 0.0845 0.6927
C13 — 1.1220 0.6927 0.494 0.5464 0.1542 0.535 0.750 — 0.59 0.800 0.1600 0.202 0.1191 0.257 0.0872
C14 — -0.2358 -0.1271 0.123 -0.2058 -0.1247 ±0.192 0.090 — <0.005 -0.110 0.0820 |0.069| -0.1804 |0.1238| -0.0774
11
2
N/m ) C33
0.364 4.9911 1.3353 0.533 0.8557 2.2734 1.07 2.450 0.94 2.22 2.750 0.3740 0.836 1.0575 0.717 1.6070
C44 0.090 1.4739 0.2314 0.078 0.3269 0.8569 0.504 0.600 — 0.34 0.940 0.2130 0.183 0.5820 0.3094 0.6682
Ref. 117 111 73 117 113 82 119 114 119 117 114 12 117 115 117 82
110
Orthorhombic Crystals—Point Groups 222, m22, mmm Elastic constants (1011 N/m2)
Al2SiO3(OH,F)2 BaSO4 BeAl2O4 CaCO3 CaSO4 Cs2SO4 HIO3 K2SO4 KB5O8·4H2O KNbO3 KTiOPO4 LiNH4C4H4O6•4H2O (MgFe)SiO3 (MgFe)SiO4 Mg2SiO4 MgSO4•7H2O (Na,Al)SiO3 Na2C4H4O6•2H2O (NH4)2SO4 NaK(C4H4O6) •4H2O NaNH4C4H4O6•4H2O NiSO4•7H2O Rb2SO4 Sr(CHO2)2•2H2O
© 2003 by CRC Press LLC
C11
C12
RT RT RT RT RT 293 RT 293 RT RT RT RT RT RT 298 RT RT RT 293 RT RT RT 293 RT
2.8136 0.8941 4.32 1.5958 0.9382 0.4490 0.3030 0.5357 0.582 2.26 1.59 0.3864 1.876 3.240 3.2848 0.325 0.716 0.461 0.3607 0.255 0.3685 0.353 0.5029 0.4391
1.2582 0.4614 — 0.3663 0.1650 0.1958 0.1194 0.1999 0.229 0.96 — 0.1655 0.686 0.590 0.6390 0.174 0.261 0.286 0.1651 0.141 0.2725 0.198 0.1965 0.1037
C13 0.8464 0.2691 — 0.0197 0.1520 0.1815 0.1169 0.2095 0.174 — — 0.0875 0.605 0.790 0.6880 0.182 0.297 0.320 0.1580 0.116 0.3083 0.201 0.1999 −0.149
C22
3.8495 0.7842 4.64 0.8697 1.845 0.4283 0.5448 0.5653 0.359 2.70 1.54 0.5393 1.578 1.980 1.9980 0.288 0.632 0.547 0.2981 0.381 0.5092 0.311 0.5098 0.3484
C23
0.8815 0.2676 — 0.1597 0.3173 0.1800 0.0548 0.1990 0.231 — — 0.2007 0.561 0.780 0.7380 0.182 0.297 0.352 0.1456 0.146 0.3472 0.201 0.1925 −0.014
C33
C44
C55
C66
Ref.
2.9452 1.0548 5.11 0.8503 1.1180 0.3785 0.4359 0.5523 0.255 2.80 1.75 0.3624 2.085 2.490 2.3530 0.315 1.378 0.665 0.3534 0.371 0.5541 0.335 0.4761 0.3746
1.0811 0.1190 1.45 0.4132 0.3247 0.1326 0.1835 0.195 0.164 0.743 — 0.1190 0.700 0.667 0.6515 0.078 0.196 0.124 0.1025 0.134 0.1058 0.091 0.1626 0.1538
1.3298 0.2874 1.52 0.2564 0.2653 0.1319 0.2193 0.1879 0.046 0.250 — 0.0667 0.592 0.810 0.8120 0.156 0.248 0.031 0.0717 0.032 0.0303 0.172 0.1589 0.1075
1.3089 0.2778 1.42 0.4274 0.0926 0.1323 0.1736 0.1424 0.057 0.955 — 0.2326 0.544 0.793 0.8088 0.090 0.423 0.098 0.0974 0.098 0.0870 0.099 0.1407 0.1724
82 82 120 82 84 81 73 81 71 117 117 12 78 87 85 86 78 12 81 71 12 86 81 12
Handbook of Optical Materials
Material
Temp. (K)
SrSO3 TlSO4 ZnSO4•7H2O
RT 293 RT
1.044 0.4106 0.3320
0.773 0.2573 0.1720
0.605 0.2288 0.2000
1.061 0.3885 0.2930
0.619 0.2174 0.1980
1.286 0.4268 0.3200
0.135 0.1125 0.0780
0.279 0.1068 0.1530
0.266 0.0751 0.0830
12 81 86
Tetragonal Crystals—Point Groups 4, −4, 422, 4/m Elastic constants (1011 N/m2) Material
298 RT RT RT RT
C11
C12
C13
C16
C33
C44
C66
1.447 1.44 1.09 1.19 1.21
0.664 0.648 0.680 0.620 0.609
0.466 0.448 0.530 0.480 0.526
0.134 −0.142 −0.140 −0.120 −0.077
1.265 1.26 0.920 1.04 1.56
0.369 0.369 0.267 0.349 0.409
0.451 0.461 0.335 0.420 0.177
Ref. 79 117 117 117 117
Section 1: Crystalline Materials
CaMoO4 CaWO4 PbMoO4 SrMoO4 LiYF4
Temperature (K)
111
© 2003 by CRC Press LLC
112
Tetragonal Crystals—Point Groups 4mm, −42m, 422, 4/mmm
Material AgGaS2 BaTiO3 CdGeAs2 KH2AsO4 KH2PO4 MgF2 NH4H2AsO4 NH4H2PO4 (NH4) 3CO NiSO4·6H2O RbH2PO4 TeO2 TiO2 ZrSiO4
© 2003 by CRC Press LLC
RT 298 RT RT RT RT 298 293 RT RT 298 RT 298 RT
C11 0.879 2.7512 0.945 0.530 0.7140 1.237 0.6747 0.6200 0.217 0.3209 0.5562 0.5320 2.7143 2.585
C12 0.584 1.7897 0.596 −0.060 −0.049 0.732 −0.106 −0.050 0.089 0.2315 −0.064 0.4860 1.7796 1.791
C13 0.592 1.5156 0.597 −0.020 0.1290 0.536 0.1652 0.1400 0.24 0.0209 0.0279 0.2120 1.4957 1.542
C33
C44
C66
0.758 1.6486 0.834 0.370 0.5620 1.770 0.3022 0.3000 0.532 0.2931 0.4398 1.0850 4.8395 3.805
0.241 0.5435 0.421 0.120 0.1270 0.552 0.0685 0.0910 0.0626 0.1156 0.1142 0.2440 1.2443 0.733
0.308 1.1312 0.408 0.070 0.0628 0.978 0.0639 0.0610 0.0045 0.1779 0.0350 0.5520 1.9477 1.113
Ref. 117 70 117 12 71 72 69 69 117 73 74 76 75 78
Handbook of Optical Materials
Elastic constants (1011 N/m2) Temperature (K)
Section 1: Crystalline Materials
113
Monoclinic Crystals Elastic Constants (10
11
2
N/m )
Material
Temp. (K)
C11
C12
C13
C15
C22
Ref.
(C6H5CH)2 (CaMg)Si2O6 C14H10 CoSO4•7H2O FeSO4•7H2O K2 C4 H4 O6 KAlSi3O8 KHC4H4O6 Li2SO4•H2O (NaFe)Si2O6 (NH2CH2COOH)3• H2SO4 (TGS) Na2S2O3 Y2SiO5
RT RT RT RT RT RT RT RT RT RT RT
0.0930 2.040 0.0852 0.335 0.349 0.3110 0.664 0.4294 0.5250 1.858 0.4550
0.0570 0.884 0.0672 0.205 0.208 0.1720 0.438 0.1399 0.1715 0.685 0.1720
0.0670 0.0883 0.0590 0.158 0.174 0.1690 0.259 0.3129 0.1730 0.707 0.1980
-0.003 -0.193 -0.0192 0.016 -0.020 0.0287 -0.033 -0.0105 -0.0196 0.098 -0.030
0.0920 1.750 0.1170 0.378 0.376 0.3900 1.710 0.3460 0.5060 1.813 0.3210
94 91 90 86 86 32 92 12 32 89 32
RT RT
0.3323 0.658
0.1814 —
0.1875 —
0.0225 ±0.706
0.2953 1.85
12 119
Monoclinic Crystals—continued Elastic Constants (10 Material (C6H5CH)2 (CaMg)Si2O6 C14H10 CoSO4•7H2O FeSO4•7H2O K2 C4 H4 O6 KAlSi3O8 KHC4H4O6 Li2SO4•H2O (NaFe)Si2O6 (NH2CH2COOH)3•H2SO4 Na2S2O3 Y2SiO5
11
2
N/m )
C23
C25
C33
C35
C44
0.0485 0.482 0.0375 0.158 0.172 0.1330 0.192 0.1173 0.0368 0.626 0.2080
-0.005 -0.196 -0.0170 -0.018 -0.019 0.0182 -0.148 0.0176 0.0571 0.094 -0.0036
0.0790 2.380 0.1522 0.371 0.360 0.5540 1.215 0.6816 0.5400 2.344 0.2630
-0.005 -0.336 -0.0187 -0.047 -0.014 0.0710 -0.131 0.0294 -0.0254 0.214 -0.0500
0.0325 0.675 0.0272 0.060 0.064 0.0870 0.143 0.0961 0.1400 0.692 0.0950
0.0050 -0.113 0.0138 0.016 0.001 0.0072 -0.015 -0.0044 -0.0054 0.077 -0.0026
0.1713 —
0.0983 —
0.4590 0.835
-0.0678 ±0.330
0.0569 0.465
© 2003 by CRC Press LLC
C46
C55
C66
0.0640 0.588 0.0242 0.058 0.056 0.1040 0.238 0.1270 0.1565 0.510 0.1110
0.0245 0.705 0.0399 0.101 0.096 0.0826 0.361 0.0841 0.2770 0.474 0.0620
-0.0268 0.1070 ±0.0014 1.87
0.0598 0.656
114
Handbook of Optical Materials Hexagonal Crystals—Point Groups 6, –6, 622, 6mm, –62m, 6/mmm Elastic Constants (10 Material
β-AgI AlN Be3Al2Si6O18 BeO Ca5(PO4)3(OH,F,Cl) CdS CdSe GaN LiTiO3 α-SiC TiB2 ZnO ZnS
Temp. (K) RT RT RT RT RT 298 298 RT RT RT RT 298 298
C11 0.293 3.45 2.800 4.70 1.667 0.8431 0.7046 2.96 0.8124 5.02 6.90 2.0970 1.2420
11
2
N/m )
C12
C13
C33
C44
Ref.
0.213 1.25 0.990 1.68 0.131 0.5208 0.4516 1.30 0.3184 0.95 4.10 1.2110 0.6015
0.196 1.20 0.670 1.19 0.655 0.4567 0.3930 1.58 0.0925 056 3.20 1.0510 0.4554
0.354 3.95 2.480 4.94 1.396 0.9183 0.8355 2.67 0.529 5.65 4.40 2.1090 1.4000
0.0373 1.18 0.658 1.53 0.663 0.1458 0.1317 2.41 0.1783 1.69 2.50 0.4247 0.2864
117 117 12 96 12 98 68 117 117 117 107 110 96
References: 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30.
Thomas, J. F., Phys. Rev., 175, 955–962 (1968). Bolef, D. I. and M. Menes, J. Appl. Phys., 31, 1426–1427 (1960). Garland, C. W. and C. F. Yarnell, J. Chem. Phys., 44, 1112–1120 (1966). Garland, C. W. and R. Renard, J. Chem. Phys., 44, 1130–1139 (1966). Gsänger, M., H. Egger and E. Lüscher, Phys. Letters, 27A, 695–696 (1968). Wong, C. and D. E. Schuele, J. Phys. Chem. Solids, 29, 1309–1330 (1968). Haussühl, S., Phys. Stat. Sol., 3, 1072–1076 (1963). Wong, C. and D. E. Schuele, J. Phys. Chem. Solids, 28, 1225–1231 (1967). McSkimin, H. J. and D. G. Thomas, J. Appl. Phys., 33, 56–59 (1962). Kollarits, F. J. and J. Trivisonno, J. Phys. Chem. Solids, 29, 2133–2139 (1968). Slagle, D. D. and H. A. McKinstry, J. Appl. Phys., 38, 446–458 (1967). Hearmon, R. F. S., Adv. Phys., 5, 323–382 (1956). Sumer, A. and J. F. Smith, J. Appl. Phys., 34, 2691–2694 (1963). Alexandrov, K. S. et al., Sov. Phys. Sol. State, 10, 1316–1321 (1968). Epstein, S. G. and O. N. Carlson, Acta Metal., 13, 487–491 (1965). McSkimin, H. J., et al., J. Appl. Phys., 39, 4127–4128 (1968). McSkimin, H. J., et al., J. Appl. Phys., 38, 2362–2364 (1967). Weil, R. and W. O. Groves, J. Appl. Phys., 39, 4049–4051 (1968). Bateman, T. B., J. Appl. Phys., 37, 2194–2195 (1966). Bogardus, E. H., J. Appl. Phys., 36, 2504–2513 (1965). Golding, B., S. C. Moss and B. L. Averbach, Phys. Rev., 158, 637–645 (1967). Bateman, T. B., H. J. McSkimin and J. M. Whelan, J. Appl. Phys., 30, 544–545 (1959). Gerlich, D., J. Appl. Phys., 35, 3062 (1964). Hickernell, F. S. and W. R. Gayton, J. Appl. Phys., 37, 462 (1966). MacFarlane, R. E., et al., Phys. Letters, 20, 234–235 (1966). Leese, J. and A. E. Lord Jr., J. Appl. Phys., 39, 3986–3988 (1968). Miller, R. A. and D. E. Schuele, J. Phys. Chem. Solids, 30, 589–600 (1969). Wasilik, J. H. and M. L. Wheat, J. Appl. Phys., 36, 791–793 (1965). Haussühl, S., Phys. Stat. Sol., 3, 1072–1076 (1963). Houston, B., et al., J. Appl. Phys., 39, 3913–3916 (1968).
© 2003 by CRC Press LLC
Section 1: Crystalline Materials 31. 32. 33. 34. 35. 36. 37. 38. 39. 40. 41. 42. 43. 44. 45. 46. 47. 48. 49. 50. 51. 52. 53. 54. 55. 56. 57. 58. 59. 60. 61. 62. 63. 64. 65. 66. 67. 68. 69. 70. 71. 72. 73. 74. 75. 76. 77. 78. 79.
115
Trivisonno, J. and C. S. Smith, Acta Metal., 9, 1064–1071 (1961). Alexandrov, K. S. and T. V. Ryzhova, Sov. Phys. Cryst., 6, 228–252 (1961). Lewis, J. T., A. Lehoczky and C. V. Briscoe, Phys. Rev., 161, 877–887 (1967). Drabble, J. R. and R. E. B. Strathen, Proc. Phys. Soc., 92, 1090–1995 (1967). Oliver, D. W., J. Appl. Phys., 40, 893 (1969). Alper, T., and G. A. Saunders, J. Phys. Chem. Solids, 28, 1637–1642 (1967). Dickinson, J. M. and P. E. Armstrong, J. Appl. Phys., 38, 602–606 (1967). Bolef, D. I., J. Appl. Phys., 32, 100–105 (1961). Rayne, J. A., Phys. Rev., 112, 1125–1130 (1958). MacFarlane, R. E., et al., Phys. Letters, 18, 91–92 (1965). Smith, P. A. and C. S. Smith, J. Phys. Chem. Solids, 26, 279–289 (1965). Norwood, M. H. and C. V. Briscoe, Phys. Rev., 112, 45–48 (1958). Simmons, G. and F. Birch, J. Appl. Phys., 34, 2736–2738 (1963). Gutman, E. J. and J. Trivisonno, J. Phys. Chem. Sol., 28, 805–809 (1967). Ghafelehbashi, M., et al., J. Appl. Phys., 41, 652–666 (1970). McSkimin, H. J. and P. Andreatch Jr., J. Appl. Phys., 35, 2161–2165 (1964). Neighbours, J. R. and G. A. Alers, Phys. Rev., 111, 707–712 (1958). Hidshaw, W., J. T. Lewis, and C. V. Briscoe, Phys. Rev., 163, 876–881 (1967). Daniels, W. B., Phys. Rev., 119, 1246–1252 (1960). Viswanathan, R., J. Appl. Phys., 37, 884–886 (1966). Miller, R. A. and C. S. Smith, J. Phys. Chem. Sol., 25, 1279–1292 (1964). Claytor, R. N. and B. J. Marshall, Phys. Rev., 120, 332–334 (1960). Schreiber, E., J. Appl. Phys., 38, 2508–2511 (1967). Gerlich, D., Phys. Rev., 136, A1366–A1368 (1964). Johnston, D. L., P. H. Thrasher and R. J. Kearney, J. Appl. Phys., 41, 427–428 (1970). Poindexter, E. and A. A. Giardini, Phys. Rev., 110, 1069 (1958). Soga, N., J. Appl. Phys., 37, 3416–3420 (1966). Bartlett, R. W. and C. W. Smith, J. Appl. Phys., 38, 5428–5429 (1967). Morse, G. E. and A. W. Lawson, J. Phys. Chem. Sol., 28, 939–950 (1967). Armstrong, P. E., O. N. Carlson and J. F. Smith, J. Appl. Phys., 30, 36–41 (1959). Macedo, P. M., W. Capps and J. B. Wachtman, J. Am. Cer. Soc., 47, 651 (1964). Beattie, A. G., J. Appl. Phys., 40, 4818–4821 (1969). Chang, R. and L. J. Graham, J. Appl Phys., 37, 3778–3783 (1966). Lowrie, R. and A. M. Gonas, J. Appl. Phys., 38, 4505–4509 (1967). Graham, L. J., H. Nadler and R. Chang, J. Appl. Phys., 34, 1572–1573 (1963). Wachtman, J. B. Jr., et al., J. Nucl. Mat., 16, 39–41 (1965). Bolef, D. I., J. Appl. Phys., 32, 100–105 (1961). Berlincourt, D., H. Jaffe and L. R. Shiozawa, Phys. Rev., 129, 1009–1017 (1963). Adhav. R. S. J. Acoust. Soc. Am., 43, 835–838 (1968). Berlincourt, D. and H. Jaffe, Phys. Rev., 111, 143–148 (1958). Huntington, H. B., in Solid State Pysics, Vol. 7, Seitz, F., and Turnbull, D., Ed., pp. 213–285; Academic Press, New York 1958). Cutler, H. R., J. J. Gibson and K. A. McCarthy, Sol. State Comm., 6, 431–433 (1968). Mason, W. P., Piezoelectric Crystals and Their Application to Ultrasonics, D. Van Nostrand Co., Inc., New York (1950). Adhav, R. S., J. Appl. Phys., 40, 2725–2727 (1969). Manghnani, M. H., J. Geophys. Res., 74, 4317–4328 (1969). Uchida, N. and Y. Ohmachi, J. Appl Phys., 40, 4692–4695 (1969). House, D. G. and E. Y. Vernon, Br. J. Appl. Phys., 11, 254–259 (1960). Ryzhova, T. V., et al., Bull. Acad. Sci. USSR, Earth Phys. Ser., Engl. Transl., 2, 111 (1966). Alton, W. J. and A. J. Barlow, J. Appl. Phys., 38, 3817–3820 (1967).
© 2003 by CRC Press LLC
116 80. 81. 82. 83. 84. 85. 86. 87. 88. 89. 90. 91. 92. 93. 94. 95. 96. 97. 98. 99. 100. 101. 102. 103. 104. 105. 106. 107. 108. 109. 110. 111. 112. 113. 114. 115. 116. 117. 118.
119. 120.
Handbook of Optical Materials Michard, F., et al., C. R. Acad. Sci., Paris, 265, 565–567 (1967). Haussühl, S., Acta Cryst., 18, 839–842 (1965). Hearmon, R. F. S., Rev. Mod. Phys., 18, 409–440 (1946). Heseltine, J. C. W., D. W. Elliott and O. B. Wilson, J. Chem. Phys., 40, 2584–2587 (1964). Schwerdtner, W. M., et al., Canad. J. Earth Sci., 2, 673–683 (1965). Kumazawa, M. and O. L. Anderson, J. Geophys. Res., 74, 5961–5972 (1969 . Alexandrov, K. S., et al., Sov. Phys. Cryst., 7, 753–755 (1963). Verma, R. K., J. Geophys. Soc., 65, 757–766 (1960). McSkimin, H. J. and E. S. Fisher, J. Appl. Phys., 31, 1627–1639 (1960). Alexandrov, K. S. and T.V. Ryzhova, Bull. Acad. Sci. USSR, Geophys. Ser., English Transl., no.8, 871–875 (1961). Afanaseva, G. K., et al, Phys. Stat. Sol., 24, K61–K63 (1967). Alexandrov, K. S., et al., Sov. Phys. Cryst., 8, 589–591 (1964). Alexandrov, K. S. and T. V Ryzhova, Bull Acad. Sci. USSR, Geophys. Ser., English Transl., no.2, 129–131 (1962). Alexandrov, K. S., et al., Sov. Phys. Cryst., 8, 164–166 (1963). Teslenko, V. F., et al., Sov. Phys. Cryst., 10, 744–747 (1966). Smith, J. F. and C. L. Arbogast, J. Appl. Phys., 31, 99–102 (1960). Cline, C. F., H. L. Dunegan and G. M. Henderson, J. Appl. Phys., 38, 1944–1948 (1967). Chang, Y. A. and L. Himmel, J. Appl. Phys., 37, 3787–3790 (1966). Gerlich, D., J. Phys. Chem. Solids, 28, 2575–2579 (1967). McSkimin, H. J., J. Appl. Phys., 26, 406–409 (1955). Fisher, E. S. and D. Dever, Trans. Met. Soc. AIME, 239, 48–57 (1967). Fisher, E. S. and D. Dever, Proc. Conf. Rare Earth Res., 6th, Gatlinburg, TN, 522 (1967). Fisher, E. S. and C. J. Renken, Phys. Rev., 135, A482–A494 (1964). Proctor, T. M. Jr., J. Acoust. Soc. Am., 39, 972–977 (1966). Chandrasekhar, B. S. and J. A. Rayne, Phys. Rev., 124, 1011–1041 (1961). Wazzan, A. R. and L. B. Robinson, Phys. Rev., 155, 586–594 (1967). Ferris, R. W., et al., J. Appl. Phys., 34, 768–770 (1963). Gilman, J. J. and B. W. Roberts, J. Appl. Phys., 32, 1405 (1961). Smith, J. F. and J. A. Gjevre, J. Appl. Phys., 31, 645–647 (1960). Alers, G. A. and J. R. Neighbours, J. Phys. Chem. Solids, 7, 58–64 (1908). Bateman, T. B., J. Appl. Phys., 33, 3309–3312 (1962). Tefft, W. E., J. Res. Natl. Bur. Stand., 70A, 277–280 (1966). DeBretteville, Jr., A. et al., Phys. Rev., 148, 575–579 (1966). Dandekar, D. P. and A. L. Ruoff, J. Appl. Phys., 39, 6004–6009 (1968). Warner, A. W., M. Onoe and G. A. Coquin, J. Acoust. Soc. Am., 42, 1223–1231 (1967). McSkimin, H. J., P. Andreatch and R. N. Thurston, J. Appl. Phys., 36, 1624–1632 (1965). Mort, J., J. Appl. Phys., 38, 3414–3415 (1967). Topf, W. J., M. F. Thomas, and T. J Harris, Properties of crystals and glasses, Handbook of Optics, Vol. II (McGraw–Hill, New York, 1995), p. 33.57 and references cited therein. DeShazer, L. G., S. C. Rand, , and B. A. Wechsler, Laser crystals, Handbook of Laser Science and Technology,Vol. V: Optical Materials, Part 3 (CRC Press, Boca Raton, FL, 2000), p. 595 and references cited therein. Wechsler, B. A. and D. S. Sumida, Laser crystals, Handbook of Laser Science and Technology, Suppl. 2: Optical Materials (CRC Press, Boca Raton, FL, 2000), p. 595. Cline, C. F., R. C. Morris, M. Dutoit, and P. J. Harget, J. Mater. Sci. 14, 941 (1979).
© 2003 by CRC Press LLC
Section 1: Crystalline Materials
117
1.4.2 Elastic Moduli The mechanical response of a material to an applied force is described by various moduli. Young’s modulus E (extension in tension) and the modulus of rigidity or shear G are related to Poisson’s ratio µ (ratio of lateral to longitudinal strain under unilateral stress) by µ = E/2G) – 1. The bulk modulus B (1/isothermal compressibility) is related to the above moduli by B = E/3(1 – µ). Elastic Moduli
Material Ag3AsS3 AgBr AgCl AgGaS2 β–AgI AlAs AlN Al2O3 ALON BaB2O4 BaF2 BaTiO3 BeAl2O4 BeO Bi12GeO20 Bi12SiO20 BN BP C (diamond) CaCO3 CaF2 CaLa2S4 CaMoO4 CaWO4 CdGeS2 CdS CdSe CdTe CsBr CsCl CsI CuCl GaAs GaN GaP
© 2003 by CRC Press LLC
Poisson’s ratio 0.38 0.39 0.41 0.37 0.4 0.27 0.26 0.23 0.24 0.41 0.31 0.36 — 0.23 0.28 0.28 0.11 0.19 0.10 0.31 0.29 0.25 0.29 0.29 0.32 0.38 0.37 0.35 0.27 0.27 0.26 0.30 0.24 0.25 0.24
Young’s E (GPa)
Moduli Rigidity G (GPa)
Bulk B (GPa)
28 24.7 22.9 52 12 108 294 400 317 30 65.8 145 469 395 82 84 833 324 1100 83 110 96 103 96 74 42 42 8.4 22 25 18 24.8 116 294 140
10 8.8 8.1 19 4.4 42.4 117 162 128 11 25.1 53 — 162 32 33 375 136 500 32 42.5 38.4 40 37 28 15 15.3 14.2 8.8 10.0 7.3 8.9 46.6 118 56.5
37 40.5 44.0 67 24 77.2 202 250 203 60.6 57.6 174 — 240 63.3 63.1 358 172 460 73.2 85.7 64 80 78 70 59 53 42.9 15.8 18.2 12.6 39.3 75.0 195 89.3
118
Handbook of Optical Materials Elastic Moduli—continued
Material
Poisson’s ratio
Young’s E (GPa)
Ge InAs InP KBr KCl KF KH2PO4 KI KNbO3 KTaO3 LaF3 LiF LiIO3 LiNbO3 LiSrAlF6 LiYF4 MgAl2O4 MgF2 MgO NaBr NaCl NaF NaI [NH4] 2CO NH4H2PO4 PbF2 PbMoO4 PbS PbSe PbTe Se Si α–SiC β–SiC β–SiC (CVD) SiO2, α–quartz SrF2 SrMoO4 SrTiO3 Te TeO2 TiO2
0.20 0.30 0.30 0.30 0.29 0.28 0.26 0.30 0.22 0.27 0.32 0.22 0.23 0.25 0.3 0.32 0.26 0.26 0.18 0.26 0.26 0.24 0.28 0.41 0.32 0.33 0.35 0.28 0.28 0.26 0.27 0.22 0.16 0.17 0.21 0.08 0.29 0.30 0.23 0.25 0.33 0.27
132 74 89 18 22 41 38 14 250 316 120 110 55 170 109 85 276 137 310 29 37 76 22 ~9 29 59.8 66 70.2 64.8 56.9 24 162 455 447 466 95 89 87 283 35 45 293
© 2003 by CRC Press LLC
Moduli Rigidity G (GPa)
Bulk B (GPa)
54.8 28 34 7.2 8.5 16 15 5.5 71 124 46 45 22.4 68 — 32 109 53.9 131 11.6 14.5 30.7 8.4 ~3 11 22.4 24 27.5 25.4 22.6 9 66.2 197 191 — 44 34.6 33 115 14 17 115
75.0 61 72.7 15.2 18.4 31.8 28 11.9 95 230 100 65.0 33.5 112 — 81 198 99.1 163 19.9 25.3 48.5 16.1 17 27.9 60.5 72 52.8 48.5 39.8 17 97.7 221 224 — 38 71.3 73 174 24 46 215
Section 1: Crystalline Materials
119
Elastic Moduli—continued
Material TlBr Tl[Br,I] KRS-5 TlCl Tl[Br,Cl], KRS-6 Y3Al5O12 Y3Fe5O12 Y2 O3 ZnO α-ZnS β-ZnS β-ZnS (CVD) ZnSe ZnSe (CVD) ZnTe ZrO2: 12%Y2O3
Poisson’s ratio
Young’s E (GPa)
0.32 0.34 0.33 0.33 0.24 0.29 0.30 0.35 0.30 0.32 0.29 0.30 0.28 0.30 0.31
24 19.6 25 24 280 200 173 127 87 82.5 74.5 75.4 70.3 61.1 233
Moduli Rigidity G (GPa)
Bulk B (GPa)
8.9 7.3 9.3 9.0 113 — 67 47 33 31.2 — 29.1
22.4 20.4 23.8 32.2 180 — 145 144 74 76.6 — 61.8
23.5 88.6
51.0 205
The above table was adapted from Tropf, W. J., Thomas, M. F., and Harris, T. J., Properties of crystals and glasses, Handbook of Optics, Vol. II (McGraw-Hill, New York, 1995), p. 33.48.
1.4.3 Engineering Data The following engineering properties can depend on the production method and exhibit sample–to–sample variations. Material strength may also depend on subsurface damage resulting from grinding and polishing. Therefore, the data should be considered only as a guide. Engineering Data
Material AgCl AgSb Al2O3 AlN Al23O27N5 α-AgI BaB2O4 BaF2 Be3Al2Si6O18 BeO C (diamond)
© 2003 by CRC Press LLC
Flexure strength (MPa)
Fracture toughness 1/2 (MPa m )
Volume compressibility –1 (Tpa )
26 1200 225 310
3
57.1 1.36 || c 1.22 || a
3 1.4 41 1.5
27 6.65 275 2940
2.0
Ref. 1 4 1 1 1 1 4 1 1 2 1 1
120
Handbook of Optical Materials Engineering Data—continued
Material Ca5(PO4)3F CaF2 CaLa2S4 CaMoO4 CaWO4 CdS CdSe CdSiAs2S4 CdTe CsBr CsI GaAs GaN GaP GaSbs Gd2(MoO4)3 Gd3Ga5O12 Gd3Sc2Ga3O12 Ge InAs InP InSb KBr KCl KMgO3 LaB3O6
Flexure strength (MPa)
90 81
0.5 0.68
Volume compressibility –1 (TPa ) 13.2 11.64 12.5 13.3
28 21 4.3 26 8.4 5.6 55 70 100
0.9
100
1.2 0.66
77.1 11.0 45.7 27.2 5.88
54.9 73.5 44.2 11 10 14.4
Ref. 2 1,2 1 2 2 1 1 4 1 1 1 1,4 1 1,4 4 2 2 3 1 4 4 4 1 1 2
1.9 (111) 0.38 (10–1)
LaF3 LiB3O5 LiCaAlF6
33
LiF LiNbO3 LiSrAlF6 LiYF4 Lu3Al5O12 MgAl2O4 MgF2 MgO MnF2
27
© 2003 by CRC Press LLC
Fracture toughness 1/2 (MPa m )
1 2.0 0.18 || c 0.37 ⊥ c 15.05 8.8 0.40 || c
35 170 100 130
1.1 1.5 1.0
10.1 6.2 4.3 || a 2.0 ⊥ c
3 3 1,2 2 3 1 3 1 1 1 2 2
Section 1: Crystalline Materials
121
Engineering Data—continued
Material
NaCl Si β-SiC β-SiC (CVD) Sr5(PO4)3F Sr5(VO4)3F Te Tl[Br,Cl], KRS-6 Tl[Br,I] KRS-5 Y2.25Yb0.75Al5O12 Y2 O3 Y2SiO5
Y3Al5O12 Y3Al5O12 Y3Fe5O12 Y3Ga5O12 α-ZnS β-ZnS (CVD) ZnSe ZnSe (CVD) ZnTe ZrO2: 12%Y2O3
Flexure strength (MPa)
9.6 130 250
Fracture toughness 1/2 (MPa m )
Volume compressibility –1 (TPa )
1 1 1
0.95 3.3 0.51 0.36 || c
11 21 26 150
1.3 0.7 0.54 || a 0.70 || b 0.78 || c 1.0, 1.4 5.34 6.15 5.73
69 60 55 52 24 200
0.8 0.32 ≈1 2.0
Ref.
3 3 1 1 1 3 1 3 3 3 3 2 2 2 1 1 1 1 1
References: 1. Tropf, W. J., Thomas, M. F., and Harris, T. J., Properties of crystals and glasses, Handbook of Optics, Vol. II 2 (McGraw–Hill, New York, 1995), p. 33.48. 2. DeShazer, L. G., Rand, S. C., and Wechsler, B. A., Laser crystals, Handbook of Laser Science and Technology,Vol. IV: Optical Materials, Part 3 (CRC Press, Boca Raton, FL, 1987), p. 595. 3. Wechsler, B. A. and Sumida, D. S., Laser crystals, Handbook of Laser Science and Technology, Suppl. 2: Optical Materials (CRC Press, Boca Raton, FL, 1995), p. 595. 4. Berger, L. I. and Pamplin, B. R., Properties of semiconductors, CRC Handbook of Chemistry and Physics, 82nd edition, Lide, D. R., Ed. (CRC Press, Boca Raton, FL, 2001), p. 12–87.
© 2003 by CRC Press LLC
122
Handbook of Optical Materials
1.5 Thermal Properties 1.5.1 Melting Point, Heat Capacity, Thermal Expansion, and Thermal Conductivity Values for the heat capacity and the thermal expansion coefficient are those at or near room temperature; thermal conductivity values are for the temperatures T indicated. Thermal Properties Material
Melting point (K)
Heat capacity (J/g K)
Thermal expansion –6 (10 K)
Thermal conductivity (W/ m K)
T (K)
Ref.
Ag3AsS3
763
1
AgBr
705
0.2790
33.8
1.11 0.93 0.57
250 300 500
2 2 2
AgCl
728
0.3544
32.4
1.25 1.12 1.1
250 295 373
2 1 4
AgGaS2
1269
0.40
28.5 || a –18.7 || c
1.5
300
1 1
AgGaSe2
1129
0.30
35.5 || a –15.0 || c
1.1
300
1 1
AgGaTe2
990
1.0
300
3
β-AgI
423p
0.4
300
2
58 46 24.2
250 300 500
2 2 2
0.242
Al2O3
2319
0.777
Al6Si2O13
2190
0.75
AlAs
2013
0.452
6.65 || a 7.15 || c
2 3.5 3.1
AlN
3273
0.796
5.27 || a 4.15 || c
ALON
2323
0.830
5.66
AlP
2820
AlPO4 AlSb
© 2003 by CRC Press LLC
84
300
1 3
500 320 150
250 300 500
2 2 2
12.6 7.0
300 500
2 2
92
300
3
>1730
2.9
~6
300
1
1330
4.2
60
300
3
Section 1: Crystalline Materials
123
Thermal Properties—continued Material
Melting point (K)
Heat capacity (J/g K)
Thermal expansion –6 (10 K)
Thermal conductivity (W/ m K)
Ref.
BaB2O4
1200p 1370
0.49
4 || a 34 || c
BaF2
1550
0.4474
18.4
BaF2-CaF2
1330
0.13
21.0
Ba3Lu (BO3)3
1540
BaTiO3
278p 406p 1870
0.439
16.8 || a –9.07 || c
6
300
2 2 1
BaY2F8
1230
17 || a 18.7 || b 19.4 || c
6
300
5 5 5
Ba2NaNb5O12
1710
28.5 || a –18.7 || c
10.4 || a,b 11.4 || c
BeAl2O4
2140
0.830
6.3 || a 6.0 || b 6.5 || c
Be2SiO4 Be3Al2Si6O18
BeO
0.84 1730
0.84
2.1 || a 2.7 || c
2373p 2725
1.028
5.64 || a 7.47 || c
BiB3O6
0.5 (330 K)
1.2 || a 1.6 || c
T (K)
7.5 12 10.5
300 300
2 2
250 300 370
2 2 4 1
5 5 23
300
5 5 5
3.3
300
2
5
300
1 1
420 350 200
250 300 500
2 2 2
48.1 (x) 44 (y) –26.9 (z)
Bi4Ge3O12
1320
7
1
Bi12GeO20
1200
16.8
1
Bi2Te3
BN BP
© 2003 by CRC Press LLC
853
1100p 3240 1400d
0.513
3.5
0.71
3.65
2.8 3.6 4.6
204 303 370
4 4 4
760 36.2 460
300 1047 250
2 1,4 2
124
Handbook of Optical Materials Thermal Properties—continued
Material
Melting point (K)
Heat capacity (J/g K)
Thermal expansion –6 (10 K)
BP C (diamond)
1770p
0.5169
1.25
C (diamond) Ca(NbO3)2
1830
Ca2Al2SiO7
1860
Ca3Gd2(BO3)3
1680
Ca3Y2(BO3)3
1630
Ca5(PO4)3F
1920
0.745
9.4 || a 10 || c
CaCO3 ( calcite)
323p 1610
0.8820
–3.7 || a 25.1 || c
CaF2
1424p 1630
0.9113
18.9
CaLa2S4
2083
0.36
CaMoO4
1750
0.690
CaO
2890
0.75
CaTiO3
2250
CaWO4
1855
CaY4(SiO4)O
2320
CdCl2
781
CdF2
1370
CdGeS2
© 2003 by CRC Press LLC
900p 943
Thermal conductivity (W/ m K)
T (K)
360
300
2
2800 2200 1300
250 300 500
2 2 2
Ref.
5 11.4 || a
3 || c 4.4 ⊥ c
300 300
6 6
5 5 5.1 || a 6.2 || c 4.5 || a 5.4 || c 3.4 || a 4.2 || c
250 250 300 300 500 500
2 2 2 2 2 2
39.0 13 9.7 5.5
83 250 300 500
5 2 1,2 2
14.6
1.7 1.5
300 500
2 2
19 || a 25 || c
3.95 || a 3.82 || c
300 300
5 5
450
1
18
7 0.396
6.35 || a 12.38 || c 7.1 || a 5.1 || c
6 11.3
300 422
1,2 2,4 5 5 1
27 8.4 || a 0.25 || c
1 2 2
Section 1: Crystalline Materials
125
Thermal Properties—continued Material
Melting point (K)
Heat capacity (J/g K)
Thermal expansion –6 (10 K)
Thermal conductivity (W/ m K)
T (K)
Ref.
CdI2
760
1
CdS CdS
1560
0.3814
4.6 || a 2.5 || c
27 13
300 500
2 2
CdSe
1580
0.272
4.9 || a 2.9 || c
9
300
1,2 2
CdTe
1320
0.210
5.0
8.2 6.3
250 300
2 2
CsBr
908
0.2432
47.2
1.2 0.85 0.77
223 300 373
4 2 4
CsCl
918
0.3116
45.0
0.84
360
3
CsF
955
0.33
32
4.2
300
2
CsI
898
0.2032
48.6
1.4 1.05 0.95
223 300 373
4 2 4
CsLiB6O10
1120
Cu2GeS3
1210
0.51
7.2
1.2
300
3
Cu2GeSe3
1030
0.34
8.4
2.4
300
3
Cu2SnS3
1110
0.44
7.8
2.8
300
3
Cu2SnSe3
960
0.31
8.9
3.5
300
3
CuBr
777
CuCl
700
CuF
1181
CuGaS2
1553
CuGase2
1970
5.4
4.2
300
3
CuGaTe2
2400
6.9
2.7
300
3
CuInSe2 CuInTe2
1600 1660
6.6 7.1
3.7 4.9
300 300
3 3
CuSnTe3
680
14.4
300
3
Ga2O3 © 2003 by CRC Press LLC
2170
19 0.490
14.6
1 1.0 0.8 0.5
250 300 500
2 2 2 3
0.452
0.46
11.2 || a 6.9 || c
2 2
1
126
Handbook of Optical Materials Thermal Properties—continued
Material
Melting point (K)
Heat capacity (J/g K)
Thermal expansion –6 (10 K) 8.9
Thermal conductivity (W/ m K)
T (K)
Ref.
Ga2Se3
1020
Ga2Te3
1063
GaAs
1511
0.345
5.0
α-GaN
1160d 2370
0.49
3.17 || a 5.59 || c
GaP
1740
0.435
5.3
GaS
1240
7
GaSe
1235
7
GaSb
720
0.079
Gd2(MoO4)3
1410
0.42
Gd3Ga5O12
2100
Gd3Sc2Al3O12
2110
0.424
Gd3Sc2Ga3O12
2130
Ge
6.9
50
300
3
47
300
3
65 54 27
250 300 500
2 2 2
130 || c
300
2 2
120 100 45
250 300 500
2 2 2
44
300
1,2 5
60 9.0
70 300
5 1
6.9
5.6
300
6
0.4023
7.32
6.1
300
6
1211
0.3230
5.7
74.9 59.9 33.8
250 300 500
2 2 2
GeO2
1360
0.54
4.5
HgI2
532
7
Hg2I2
563
7
Gd2(MoO4)3
1410
Gd3Ga5O12
2100
Gd3Sc2Al3O12
2110
0.424
Gd3Sc2Ga3O12
2130
Ge Ge
GeO2 © 2003 by CRC Press LLC
1
0.42
5 60 9.0
70 300
5 1
6.9
5.6
300
6
0.4023
7.32
6.1
300
6
1211
0.3230
5.7
74.9 59.9 33.8
250 300 500
2 2 2
1360
0.54
4.5
1
Section 1: Crystalline Materials
127
Thermal Properties—continued Material
Melting point (K)
Heat capacity (J/g K)
Thermal expansion –6 (10 K)
Thermal conductivity (W/ m K)
T (K)
Ref.
HgI2
532
7
Hg2I2
563
7
HgInSe2
1053
3.0
300
3
HgInTe2
1053
3.0
300
3
HgS
857s
0.21
1
HgSe
Subl.
4.8
HgTe
943
4.8
InAs
1216
0.2518
α-InN
1373
InP
InSb
5.5
110
1
12
100
1
4.4
50 27.3 15
250 300 500
2 2 2
0.32
2.9–3.8
55.6
300
3
1345
0.3117
4.5
90 68 32
250 300 500
2 2 2
798
0.144
4.7
16
300
3
KAl3Si3O10 (OH)2 1473–1573
0.87
27
0.25–0.59
293
8
KBr
1007
0.4400
38.5
5.5 4.8 2.4
250 300 500
2 2 2
KCl
104
0.6936
36.5
8.5 6.7 3.8
250 300 500
2 2 2
KF
1131
0.8659
31.4
8.3
300
2
KH2PO4
123p 450p 526
0.88
22.0 || a 39.2 || c
2.0 2.1
250 300
2 2 2
KI
954
0.3192
40.3
2.1
300
2
KNbO3
223p 498p
37
KTaO3 KTaO3 KTiOPO4
© 2003 by CRC Press LLC
1210p 1423
0.728
11 || a 9 || b 0.6 || c
2 2 0.2 0.17
250 300
2 2
2.0 || a 3.0 || b 3.3 || c
300 300 300
2 2 2
128
Handbook of Optical Materials Thermal Properties—continued
Material
Melting point (K)
Heat capacity (J/g K)
Thermal expansion –6 (10 K)
Thermal conductivity (W/ m K)
T (K)
Ref.
K2NaAlF6
1210
6
La2B6O10
1107p
2
La2Be2O5
1630
LaAlO3
2350
LaB3O6
1420
LaF3
1700
0.508
LaCl3
1130
0.422
La2O2S
LiBr LiCaAlF6
7–7.9 ⊥ 9.50 || c 10
4.7
300
1 1
15.8 || a 11.0 || c
5.4 5.1
250 300
2 2 5
6 || c 3 || a
5 5
823 1100
LiCl
878
LiF
1115
LiGdF4
1010
1 0.935
3.6 || c 22 || c
1.2
44
1.6200
34.4
5.14 || c 4.58 ⊥ c
300 300
6 6 1
19 14 7.5
250 300 500
2 2 2
LiI
720
58
2
LiIO3
520p 693
28 || a 48 || c
2 2
LiNbO3
1523
LiSrAlF6
1065
LiTaO3
1932
LiYF4 LiYF4
1092
Lu3Al5O12
2260
MgAl2O4
2408
© 2003 by CRC Press LLC
0.63
14.8 || a 4.1 || c –10.0 || c 18.8 || c
0.42
0.79
0.8191
5.6
300
3.09 ||c
6 6
4.1 || c 16.1 || c 13.3 || a 8.3 || c
2 2
6 6 6.3
300
2 2
8.8
31
300
6
6.97
30 25
250 300
2 2
Section 1: Crystalline Materials
129
Thermal Properties—continued Material
Melting point (K)
Heat capacity (J/g K)
Thermal expansion –6 (10 K)
Thermal conductivity (W/ m K)
T (K)
Ref.
Mg2SiO4
2160
0.74
8.7 || a 15.4 || b 13.3 || c
MgF2
1536
1.0236
9.4 || a 13.6 || c
30 || a 21 || c
300 300
2 2
MgO
3073
0.9235
10.6
73 59 32
250 300 500
2 2 2
MnF2
1130
0.75
MnO
2112
0.67
Na3AlF6
1000
NaBr
1028
0.5046
41.8
5.6
300
2
NaCl
1074
0.8699
41.1
8 6.5 4
250 300 500
2 2 2
NaF
1266
1.1239
33.5
250 500
2 2
NaI NaNO3
934 580
0.3502 1.05
44.7 11 || a 12 || c
500
2 1 1
[NH4] 2CO
408
1.551
NH4H2PO4
148p 463
1.26
27.2 || a 10.7 || c
PbCl2
774
0.27
31
PbF2
422p 1094
0.3029
29.0
PbI2
685 1145d
0.27
31
7
PbMoO4 PbMoO4
1338
0.326
8.7 || a 20.3 || c
2 2
PbO (massicot) PbS
1160 1390
2.0 0.209
19.0
2.5
300
1 2
PbSe
1338
0.175
19.4
2 1.7
250 300
2 2
© 2003 by CRC Press LLC
5 5 5
6.1
1
13
1 1
22 17 4.7
1 1.26 || a 0.71 || c
300 300
2 1,2 1
28
300
2 1
130
Handbook of Optical Materials Thermal Properties—continued
Material
Melting point (K)
Heat capacity (J/g K)
Thermal expansion –6 (10 K)
PbSe PbTe
1190
0.151
19.8
Thermal conductivity (W/ m K)
T (K)
Ref.
1
500
2
2.5 2.3 1.8
250 300 500
2 2 2
4 2.8
300 500
2 2
12.2
105
1
PbTiO3
763p
RbBr
966
0.31
RbCl
991
0.42
36
7.6
124
1
RbI
920
0.24
39
9.9
84
1
Se
490
0.3212
69.0 || a –0.3 || c
1.5 || a 5.1 || c 1.3 || a 4.5 || c
250 250 300 300
2 2 2 2
Si
1680
0.7139
2.62
191 140 73.6
250 300 500
2 2 2
33
300
1 1
7.5 || a 12.7 || c 6.2 || a 10.4 || c 3.9 || a 6.0 || c
250 250 300 300 500 500
2 2 2 2 2 2
450 || a
300
2
490
300
2
250 300
2 2
Si3N4
SiO2 (α-quartz)
>2300
845p
1.1 || a 2.1 || c 0.7400
α-SiC
3110
0.690
β-SiC
3103d
0.670
SrF2
1710
0.6200
SrGaO4 SrGdGa3O7 SrLaAl O4 SrMoO4
1870 1870 1920 1763
SrTiO3
110p 2358
Sr3Y(BO3)3
1670
© 2003 by CRC Press LLC
12.38 || a 6.88 || c
2.77 18.1
11 8.3
6 0.619
0.536
4.0 || a 4.2 || c 8.3
12.5 11.2
300 300
2 2
250 300
2 2
Section 1: Crystalline Materials
131
Thermal Properties—continued Material
Melting point (K)
Heat capacity (J/g K)
Sr3Y4(SiO4)3O
2270
Sr5(PO4)3F
2040
0.50
Sr5(VO4)3F
1920
0.513
Ta2O5
2140
Te
621p 723
Thermal expansion –6 (10 K)
Thermal conductivity (W/ m K)
2.0
T (K)
300
Ref.
6 6 6
7.3 || a 10.8 ⊥ c
1 0.202
27.5 || a –1.6 || c
2.5 || a 4.9 || c 2.1 || a 3.9 || c 1.5 || a 2.5 || c
250 250 300 300 500 500
2 2 2 2 2 2
15.0 || a 4.9 || c
3
295
1,2 2
TeO2
1006
0.41
ThO2
3600
0.24
7.8
15
300
1
TiO2 rutile
2128
0.6910
6.86 || a 8.97 || c
8.3 || a 11.8 || c 7.4 || a 10.4 || c 5.5 || a 8.0 || c
250 250 300 300 500 500
2 2 2 2 2 2
Tl[Br,Cl]
697
0.201
51
0.50
300
2
Tl[Br,I]
687
0.16
58
0.32
300
2
Tl3AsSe3
583
0.19
28 || a 18 || c
0.35
300
2 2
TlBr
740
0.1778
51
0.53
300
2
TlCl Y2 O3
703 2650
0.2198 0.4567
52.7 6.56
0.74 13.5
300 300
2 2
YAlO3
2140
0.42
4.3–9.5 ⊥ c 11 || c 7.38 (ave)
11
323
1 1
YCa4O(BO3)3
YVO4
Y3Al5O12
© 2003 by CRC Press LLC
~2100
2220
11.4 || a 4.4 ⊥ c 0.625
7.7
2.60 || a 2.33 || b 3.01 || c
300 300 300
5.1 || a 5.2 || c
300 300
1,6 1,6
226 300
6 1,2
14.5 13.4
132
Handbook of Optical Materials Thermal Properties—continued
Material
Melting point (K)
Heat capacity (J/g K)
Thermal expansion –6 (10 K)
Thermal conductivity (W/ m K)
T (K)
Ref.
9.5
322
6
41.0 7.4
70 300
5 5
39 9.0
70 300
5 5
11
300
6
7.3
300
6
0.313
562.9
8
Y3Fe5O12
1830
Y3Ga5O12
2100
Y3Sc2Al3O12
2170
0.57
6.5
Y3Sc2Ga3O12
2180
0.534
8.1
ZnCl2
563
0.525
ZnF2
1140
0.63
ZnGeAs2
1150
ZnGeP2
1225p 1300 2248
0.495
α-ZnS
2100
0.4723
6.54 || a 4.59 || c
β-ZnS
1293p
0.4732
6.8
16.7
300
2
ZnSe
1790
0.339
7.1
13
300
2
ZnSnAs2
1048
15
300
3
ZnSnSb2
870
7.6
300
3
ZnO
10.4
9.8
7.8 || a 5.0 || c 6.5 || a 3.7 || c
1 11
300
3
18
300
30 15
300 500
3 3 2 2 2 2
ZnTe ZrO2
1510 ~3000
0.218 0.42
8.4 8.8
10 10.5
300 260
1 1
ZrO2:
3110
0.46
10.2
1.8
300
2
1.9
500
2
6.3
300
1
12%Y2O3 ZrSiO4
2820
2.7
p – phase change, d – decomposes
References: 1. Ballard, S. S. and Browder, J. S., Thermal properties, Handbook of Laser Science and Technology, Vol. IV, Optical Materials, Part 2 (CRC Press, Boca Raton, FL, 1986), p. 49. 2. Tropf, W. J., Thomas, M. F., and Harris, T. J., Properties of crystals and glasses, Handbook of Optics, Vol. 2 (McGraw-Hill, New York, 1995), p. 33.51. 3. Berger, L. I. and Pamplin, B. R., Properties of semiconductors, CRC Handbook of Chemistry and Physics, 82nd edition, Lide, D. R., Ed. (CRC Press, Boca Raton, FL, 2001), p. 12-87. 4. Powell, R. L. and Childs, G. E., American Institute of Physics Handbook, 3rd Edition, Gray, D. E., Ed. (McGraw-Hill, New York, 1972).
© 2003 by CRC Press LLC
Section 1: Crystalline Materials
133
5. DeShazer, L. G.,Rand, S. C., and Wechsler, B. A., Laser crystals, Handbook of Laser Science and Technology,Vol. V: Optical Materials, Part 3 (CRC Press, Boca Raton, FL, 2000), p. 595. 6. Wechsler, B. A. and Sumida, D. S., Laser crystals, Handbook of Laser Science and Technology, Suppl. 2: Optical Materials (CRC Press, Boca Raton, FL, 2000), p. 595. 7. Browder, J. S., Ballard, S. S., and Klocek, P., Physical property comparisons of infrared optical materials, Handbook of Infrared Optical Materials (Marcel Dekker, New York, 1991).
1.5.2 Temperature Dependence of Heat Capacity for Selected Solids Temperature dependence of the molar heat capacity at constant pressure for representative crystalline solids and semiconductors in the range 200 to 600 K. Molar Heat Capacity Cp in J/mol K Name
200 K
250 K
300 K
400 K
500 K
600 K
Al2O3
51.12
67.05
79.45
88.91
106.17
112.55
CaCO3 CaO CsCl Cu2O
66.50
75.66
83.82
91.51
104.52
109.86
33.64 50.13 34.80
38.59 51.34 —
42.18 52.48 42.41
45.07 53.58 44.95
49.33 56.90 49.19
50.72 59.10 50.83
77.01
89.25
99.25
107.65
127.19
136.31
— 48.44 43.35 — 46.89 15.64 32.64
— 50.10 46.08 — 48.85 18.22 39.21
23.25 51.37 48.10 37.38 50.21 20.04 44.77
23.85 52.31 49.66 40.59 51.25 21.28 49.47
24.96 54.71 53.34 45.56 53.96 23.33 59.64
25.45 56.35 55.59 47.30 55.81 24.15 64.42
CuSO4 Ge KCl LiCl MgO NaCl Si SiO2
References: Chase, M. W., et al., JANAF Thermochemical Tables, 3rd ed., J. Phys. Chem. Ref. Data, 14, (1985). Garvin, D., Parker, V. B., and White, H. J., CODATA Thermodynamic Tables (Hemisphere Press, New York, 1987). DIPPR Database of Pure Compound Properties, Design Institute for Physical Properties Data, (American Institute of Chemical Engineers, New York, 1987).
1.5.3 Debye Temperature References: 1. Tropf, W. J., Thomas, M. F., and Harris, T. J., Properties of crystals and glasses, Handbook of Optics, Vol. II (McGraw-Hill, New York, 1995), p. 33.51. 2. Physics, 82nd edition, Lide, D. R., Ed. (CRC Press, Boca Raton, FL, 2001), p. 12-87.
© 2003 by CRC Press LLC
134
Handbook of Optical Materials
Material
Debye temperature (K)
Ref.
AgBr AgCl AgGaS2 AgGaSe2 AgGaTe2 β-AgI Al2O3 AlAs AlN AlP AlSb BaF2 BeO BN BP C (diamond) CaF2 CdGeS2 CdS CdSe CdSiP2 CdSnP2 CdTe CsBr CsCl CsI Cu2GeS3 Cu2GeSe3 Cu2SnS3 Cu2SnSe3 Cu3AsSe4 Cu3SbSe4 CuCl CuGaS2 CuInTe2 GaAs GaP GaSb Ge HgTe InP InAs
145 162 255 156 212 116 1030 417 950 588 292 283 1280 1900 985 2240 510 253 215 181 282 195 160 145 175 124 254 168 214 148 169 212 179 356 195 344 460 320 380 242 321 249
1 1 1 1 2 1 1 2 1 2 2 1 1 1 1 1 1 1 1 1 2 2 1 1 1 1 2 2 2 2 2 2 1 1 2 1 1 2 1 2 2 2
© 2003 by CRC Press LLC
Material InSb KBr KCl KF KI KTaO3 LaF3 LiF LiNbO3 MgAl2O4 MgF2 MgO NaBr NaCl NaF NaI PbF2 PbS PbSe PbTe Se Si β-SiC SiO2, α-quartz SrF2 Te TiO2 Tl[Br,Cl], KRS-6 Tl[Br,I] KRS-5 TlBr TlCl Y2 O3 Y3Al5O12 ZnGeAs2 ZnGeP2 ZnO α-ZnS β-ZnS ZnSe ZnTe ZrO2:12%Y2O3
Debye temperature (K)
Ref.
144 174 235 336 132 311 392 735 560 850 535 950 225 321 492 164 225 227 138 125 151 645 1000 271 378 152 760 120 110 116 126 465 754 271 428 416 351 340 270 225 563
2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1
Section 1: Crystalline Materials
135
1.6 Magnetooptic Properties 1.6.1 Diamagnetic Materials Verdet Constants V of Diamagnetic Crystals (room temperature)* Wavelength Crystal AgBr AgCl Al2O3 BaF2 Ba(NO3)2 BaTaO3 (403 K)
BaTiO3 Bi4Ge3O12
Bi12GeO20 C (diamond) CaCO3 CaF2 CsBr CsCl CsCN CsF CsH2AsO4 CsI CsNO2 CuCl Cu2O GaP GaSe
© 2003 by CRC Press LLC
(nm) 633 633 546 589 633 633 427 496 620 826 620 442 633 633 1064 1064 633 589 633 589 589 633 633 633 633 633 633 633 633 546 633 633 633 633
V
CTE α
(rad/(m T))
(10–6/K)
26.8 22.8 4.0 3.5 3.75 2.9 276 111 52.4 21.0 –51.0 84.1 30.1 28.8 7.6 7.5 60.3 6.8 5.81 5.6 5.6 2.49 10.8 8.3 5.51 4.71 6.49 17.4 4.24 58.1 31.9 147 154 22
30
19 17.5
(1/V)dVdT + α (10–4/K)
3.2
–0.2 0.7
2.0
1.4 0.87 0 19 47 46 33
0.9 0.8 0.7 3 0.3
49
2.5
30 0 5.81
3.0 5.2 3.3
Ref. 1 1 3 3 1 1 16 16 16 16 3 4 2 4 4 4 1 5 1 6 4 1 1 1 1 1 7 1 1 8 1 1 1 9
136
Handbook of Optical Materials Verdet Constants of Diamagnetic Crystals—continued Wavelength
Crystal Gd3Al5O12 Hg3Te2Cl2 KAl(SO4)•12 H2O KBr
KCl KCN KH2PO4 KH2AsO4 KI
KTaO3
LaF3 (H || c)
LiBaF3 LiBr LiCl LiF LiH MgAl2O4 MgO NaBr NaCl
NaClO3 NaI NH4 NH4Al(SO4)•12 H2O NH4Br
© 2003 by CRC Press LLC
(nm) 633 633 589 546 589 633 633 633 633 633 546 589 633 352 413 496 620 826 325 442 633 1064 633 633 633 633 633 589 633 633 546 633 546 589 633 546 589 633 633 589 589 633
V
CTE α
(rad/(m T))
(10–6/K)
13.3 83 3.6 14.5 12.4 10.1 6.68 3.89 3.72 69.3 24.1 20.4 17.5 128 55 28 –14 6.4 16 8.1 3.5 1.8 3.72 14.2 9.3 2.33 24.6 6.1 7.6 9.2 18.1 13.2 11.9 10.0 8.5 3.1 2.4 22.5 12.6 3.7 14.7 8.9
3.35
38.4 36.2 49
(1/V)dVdT + α (10–4/K)
Ref.
–2.2
1 1 13 10 10 1 1 1 7 7 10 10 1 13 13 13 3 13 4 4 4 4 1 1 1 1 1 14 1 1 13 1 10 10 1 13 13 1 1 13 13 1
1.0 2.1 0.5
2.2
43
27 38 35 25 32
0.7 2 1.3 3.0 1.7
8.82 13
0.9 1.7 1.8
39.8
1.2
43 53
1.9 2
48
0.9
Section 1: Crystalline Materials
137
Verdet Constants V of Diamagnetic Crystals—continued Wavelength Crystal NH4Cl
NH4H2AsO4 NH4H2PO4 NH4I NiSO4•H2O RbH2PO4 RbH2AsO4 SiO2 Sm3Ga5O12 SrTiO3
TiO2 Y3Ga5O12 ZnS
ZnSe
ZnTe
(nm) 546 589 633 633 633 633 546 589 633 633 546 589 633 413 496 633 826 620 633 546 589 633 476 496 514 587 633 633
V
CTE α
(rad/(m T))
(10–6/K)
11.9 10.5 6.60 69.3 40.2 18.3 7.4 6.4 3.72 6.17 5.6 4.9 11.8 227 90.2 –49.0 –19.2 –45 11.7 83.4 65.8 52.8 436 302 244 154 118 188
37
6.39
9.4
5
(1/V)dVdT + α (10–4/K)
3.0
1.24
–1.8
1.23
10.0
3.7
Ref. 13 13 7 15 15 1 14 14 7 7 11 11 1 16 16 1 3 3 1 5 5 1 12 12 12 12 12 1
* The above table was adapted from Deeter, M. N., Day, G. W., and Rose, A. H., Magnetooptic materials: crystals and glasses, Handbook of Laser Science and Technology, Suppl. 2: Optical Materials (CRC Press, Boca Raton, FL, 1995), p. 367, with additions.
References: 1. 2. 3. 4.
5. 6.
Haussühl, S., and Effgen, W., Faraday effect in cubic crystals, Z. Kristallogr., 183, 153 (1988). Baer, W. S., Intraband Faraday rotation in some perovskite oxides, J. Phys. Chem. Solids, 28, 677 (1977). Ramaseshan, S., Faraday effect and birefringence, II–Corundum, Proc. Indian Acad. Sci. A, 34, 97 (1951). W eb er, M . J. , F arad ay ro tato r m ateri als fo r laser sy stem s, P ro c. S o c. P h o to O p t. In stru m . E n g ., 6 8 1 , 7 5 (1 9 8 6 ), an d Weber, M. J., Faraday Rotator Materials, Lawrence Livermore Laboratory Report M-103 (1982). Ramaseshan, S., The Faraday effect in diamond, Proc. Indian Acad. Sci. A, 24, 104 (1946). Chauvin, J. Physique, 9, 5, 1890).
© 2003 by CRC Press LLC
138 7. 8. 9. 10. 11. 12. 13. 14. 15. 16.
Handbook of Optical Materials Munin, E., and Villaverde, A. B., Magneto-optical rotatory dispersion of some non-linear crystals, J. Phys. Condens. Matter, 3, 5099 (1991). Gassmann, G., Negative Faraday effect independent of temperature, Ann. Phys. (Leipzig), 35, 638 (1939). Villaverde, A.B., and Donnati, D. A., GaSe Faraday rotation near the absorption edge, J. Chem Phys., 72, 5341 (1980). Ramaseshan, S., The Faraday effect and magneto-optic anomaly of some cubic crystals, Proc. Ind. Acad. Sci. A, 28, 360 (1948). Ramaseshan, S., Determination of the magneto-optic anomaly of some glasses, Proc. Ind. Acad. Sci. A, 24, 426 (1946). Wunderlich, J. A., and DeShazer, L. G., Visible optical isolator using ZnSe, Appl. Opt., 16, 1584 (1977). Ramaseshan, S., Proc. Indian Acad. Sci., 28, 360 (1948). O’Connor. Beck, and Underwood, Phys. Rev., 60, 443 (1941). Koralewski, M. Phys. Status. Solidi A, 65, K49 (1981). Baer, W. S., J. Chem. Solids 28, 677 (1977).
1.6.2 Paramagnetic Materials Verdet Constants for Representative Paramagnetic Crystals* Crystal 3+
CaF2:Ce (30%)
3+
CaF2:Pr (5%)
CeF3
EuF2
LiTbF4
NdF3
© 2003 by CRC Press LLC
Wavelength λ (nm) 325 442 633 1064 266 325 442 633 1064 442 633 1064 450 500 550 600 633 650 1064 325 442 633 1064 442 633 1064
Refractive index n 1.516 1.502 1.494 1.489 1.471 1.461 1.451 1.445 1.441 1.613 1.598
1.544 1.518 1.493 1.481 1.473 1.469 1.60 1.59 1.58
V (rad/(m T) –278 –86.4 –32.3 –10.2 –50.1 –23.8 –4.9 –1.31 –306 –118 –33 –1310 –757 –466 –320 –262 –233 –55.3 –553 –285 –128 –38 –161 –60.8 –28.2
Ref. 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 1 2 1 3 3 3 3 1 1 1
Section 1: Crystalline Materials
139
Verdet Constants for Representative Paramagnetic Crystals—continued Wavelength λ (nm)
Crystal KTb3F10
Refractive index n
325 442 633 1064 500 570 633 830 1064
Tb3Ga5O12
V (rad/(m T)
1.531 1.518 1.510 1.505
Ref.
–633 –272 –112 –33.2 –278 –169 –134 –61 –35
1.976 1.954
3 3 3 3 4 4 1 4 1
* The above table was adapted from Deeter, M. N., Day, G. W., and Rose, A. H., Magnetooptic materials: crystals and glasses, Handbook of Laser Science and Technology, Suppl. 2: Optical Materials (CRC Press, Boca Raton, FL, 1995), p. 367, with additions.
References: 1 . W eb er, M . J. , F arad ay ro tato r m ateri als fo r laser sy stem s, P ro c. S o c. P h o to O p t. In stru m . E n g ., 6 8 1 , 7 5 (1 9 8 6 ); Weber, M. J., Faraday Rotator Materials, Lawrence Livermore Laboratory Report M-103 (1982). 2. Suits, J. C., Argyle, B. E., and Freiser, M. J., Magneto-optical properties of materials containing divalent europium, J. Appl. Phys., 37, 1391 (1966). 3. Weber, M. J., Morgret, R. Leung, S. Y., Griffin, J. A., Gabbe, D., and Linz, A., J. Appl. Phys. 49, 3464 (1978). 4. Dentz, D. J., Puttbach, R. C., and Belt, R. F., Magnetism and Magnetic Materials, AIP Conf. Proc. No. 18 (American Institute of Physics, New York, 1974).
Rare Earth Aluminum Garnets Verdet constant V (rad/T m) at wavelength in nm Material
Temp. (K)
405
450
480
520
578
670
Ref.
Tb3Al5O12
300 77 4.2 1.45 300 300 300 300 298 77
–659.4 — — — –361 –206 –55.0 43.9 83.5 209
–455.4 –29728 — –58476 –274 –93.1 –69.8 30.0 62.6 157
375.4 24284 — –50203 –234 –75.7 –44.8 27.1 54.1 140
–302.3 –997 –18860 –40530 –194 –97.5 –47.1 22.1 40.7 114
–229 –757 –15650 –32380 –151 –87.0 –42.2 17.2 33.8 87.9
–158 –528 –13140 –27185 –104 –59.9 –25.9 — — —
1 1 2 2 1 1 1 1 3 3
Dy3Al5O12 Ho3Al5O12 Er3Al5O12 Tm3Al5O12 Yb3Al5O12
References: 1. 2. 3.
R u b in stein , C . B ., V an U itert, L . G ., an d Grodkiewicz, W. H., J. Appl. Phys. 35, 3069 (1964). Desorbo, W., Phys. Rev. 158, 839 (1967). R u b in stein , C . B . an d B erg er, S . B ., J. Appl. Phys. 36, 3951 (1965).
© 2003 by CRC Press LLC
140
Handbook of Optical Materials
1.6.3 Ferromagnetic, Antiferromagnetic, and Ferrimagnetic Materials The following symbols are used in the tables below: Tc = Curie temperature
4πMS = saturation induction at 0 K, gauss
Tp = phase transition temperature
F = specific Faraday rotation, deg/cm
TN = Neel temperature
α = absorption coefficient (cm )
T∞ = compensation temperature
λ = measurement wavelength, nm
–1
Transition Metals* Material
Critical
4πMS
F
Absorp.
(structure)
temp.
(gauss)
(deg/cm)
Fe (bcc)
Tc = 1043
21800
4.4 × 10 5 3.5 × 10 5 6.5 × 10 5 7 × 10 5 7 × 10
Co (hcp)
Tc = 1390
18200
2.9 × 10 5 3.6 × 10 5 5.5 × 10 5 5.5 × 10 5 4.8 × 10
Ni (fcc)
Tc = 633
6400
0.8 × 10 5 0.99 × 10 5 2.6 × 10 5 1.5 × 10 5 1 × 10 5 7.2 × 10
Material
Critical
4πMS
5
5
5
Temp. –1
coeff. α (cm )
(K)
λ (nm)
6.5 × 10 5 7.6 × 10 5 5 × 10 5 4.2 × 10 5 3.5 × 10
300 300 300 300 300
500 546 1000 1500 2000
— 5 8.5 × 10 5 6.1 × 10 5 4.5 × 10 5 3.6 × 10
300 300 300 300 300
500 546 1000 1500 2000
— 5 8.0 × 10 5 5.8 × 10 5 4.8 × 10 5 4.1 × 10 4.2
300 300 300 300 300
500 546 1000 1500 2000 4000
Absorp.
Temp.
5
Binary Compounds* F
–1
coeff. α (cm )
(structure)
temp.
(gauss)
(deg/cm)
MnBi (NiAs)
Tc = 639
7700 7500 (300 K)
4.2 × 10 5 5.0 × 10 5 7.0 × 10 5 7.7 × 10 5 7.6 × 10 5 7.5 × 10 5 7.4 × 10
5
6.1 × 10 5 5.8 × 10 5 5.1 × 10 5 4.5 × 10 5 4.3 × 10 5 4.2 × 10 5 4.1 × 10
MnAs (NiAs)
Tc = 313
5
5.0 × 10 5 4.9 × 10
© 2003 by CRC Press LLC
0.44 × 10 5 0.49 × 10
5
5
(K)
λ (nm)
300 300 300 300 300 300 300
450 500 600 700 800 900 1000
300 300
500 600
Section 1: Crystalline Materials
141
Binary Compounds*—continued Material
Critical
4πMS
F
Absorp.
(structure)
temp.
(gauss)
(deg/cm)
coeff. α (cm )
MnAs
Temp. –1
0.78 × 10 5 0.62 × 10
5
4.5 × 10 5 4.4 × 10
5
2.0 × 10 5 1.2 × 10 5 0.6 × 10
5
3.3 × 10
CrTe (NiAs)
Tc = 334
0.5 × 10 5 0.4 × 10 5 0.4 × 10
FeRh
Tp = 334
0.9 × 10
Material
Critical
5
5
5
(K)
λ (nm)
300 300
800 900
300 300 300
550 900 2500
348
700
Ferrites* 4πMS
F
Absorp.
Temp. –1
(structure)
temp.
(gauss)
(deg/cm)
coeff. α (cm )
(K)
λ (nm)
Y3Fe5O12 (garnet)
TN = 560
2500
2400 1750 1250 900 800 750 240 175
1500 1350 1400 670 1150 450 0.069 <0.06
300 300 300 300 300 300 300 300
555 588 625 715 667 770 1200 5000– 1500
Gd3Fe5O12 (garnet)
TN = 564 T∞ = 286
7300
–2000 –1050 –450 –300 –220 –80
6000 900 400 100 230 70
300 300 300 300 300 300
500 600 700 800 900 1000
NiFeO4 (spinel)
TN = 858
3350
2.0 × 10 4 2.4 × 10 4 –0.75 × 10 4 –1.0 × 10 4 0.12 × 10 –120 40 75 110 110
300 300 300 300 300 300 300 300 300 300
286 330 400 500 660 1500 2000 3000 4000 5000
CoFeO4 (spinel)
TN = 793
4930
2.75 × 10 4 3.8 × 10 4 3.6 × 10
300 300 300
286 330 400
© 2003 by CRC Press LLC
4
5.9 × 10 4 7.4 × 10 4 16 × 10 4 10 × 10 4 1 × 10 38 32 15 15 32
4
4
12 × 10 4 14 × 10 4 17 × 10
4
142
Handbook of Optical Materials Ferrites*—continued
Material (structure)
Critical temp.
4πMS (gauss)
F
Absorp.
(deg/cm) 4
Temp. –1
coeff. α (cm ) 4
(K)
λ (nm)
1.3 × 10 4 –2.5 × 10
13 × 10 4 6 × 10
300 300
500 660
MgFeO4 (spinel)
–60 –40 0 30 35 50
100 40 12 4 6 13
300 300 300 300 300 300
2500 3000 4000 5000 6000 7000
BaFe12O19 (hexagonal)
–50 75 130 150 160 165
38 20 13 20 20 22
300 300 300 300 300 300
2000 3000 4000 5000 6000 7000
Ba2Zn2Fe12O19 (hexagonal)
90 80 75 70
120 70 65 85
300 300 300 300
5000 6000 7000 8000
Halides* Material
Critical
4πMS
F
Absorp.
(structure)
temp.
(gauss)
(deg/cm)
coeff. α (cm )
(K)
λ (nm)
RbNiF3 (perovskite)
TN = 220
1250
360 210 70 –70 310 100 75
35 12 10 30 70 60 25
77 77 77 77 77 77 77
450 500 600 700 800 900 1000
RbFeF3 (perovskite)
Tp = 102
3400 160 950 620 420 300
7 3 4.6 1.5 1.2 2.5
82 82 82 82 82 82
300 400 500 600 700 800
FeF3
Tc = 365
670 415 180
14 8.2 4.4
300 300 300
349 404 522.5
© 2003 by CRC Press LLC
40 (300 K)
Temp. –1
Section 1: Crystalline Materials
143 Halides*—continued
Material
Critical
4πMS
F
Absorp.
(structure)
temp.
(gauss)
(deg/cm)
CrBr3 (BiI3)
Tc = 32.5
3390
3 × 10 5 1.6 × 10
CrCl3 (BiI3)
Tc = 16.8
3880
2000 –500 –1000
CrI3 (BiI3)
Tc = 68
2690
1.1 × 10 5 0.8 × 10
5
5
Temp. -1
coeff. α (cm )
(K)
λ (nm)
3 × 10 4 1.4 × 10
1.5 1.5
478 500
20 3 30
1.5 1.5 1.5
410 450 590
1.5 1.5
970 1000
3
3
6.3 × 10 3 3 × 10
Borates* Material
Critical
4πMS
F
Absorp.
(structure)
temp.
(gauss)
(deg/cm)
coeff. α (cm )
(K)
λ (nm)
FeBO3 (calcite)
Tc = 115 (300 K)
115
140 40 100 38
300 300 300 300
500 525 600 700
3200 2300 1100 450
Temp. –1
Chalcogenides* Material
Critical
4πMS
F
Absorp.
(structure)
temp.
(gauss)
(deg/cm)
coeff. α (cm )
EuO
Tc = 69
23700
–1.0 × 10
(NaCl)
7500
EuS (NaCl)
Tc = 16.3
EuSe (NaCl)
Tc = 7
*
5
5
3.2 × 10 5 5 × 10 5 3.6 × 10 5 0.5 × 10 4 3 × 10 660 5
–1.6 × 10 5 –9.6 × 10 5 5.5 × 10 5 5.1 × 10 13200
5
1.45 × 10 5 1.17 × 10 5 0.95 × 10
Temp. –1
0.5 × 10
4
(K)
λ (nm)
5
1100
7.5 × 10 4 9.7 × 10 4 9.7 × 10 4 7.8 × 10 5 >0.5 ≥1.0
5 5 5 5 20 20
800 700 600 500 2500 10600
~0 4 3.3 × 10 5 1.2 × 10 5 1.0 × 10
6 6 6 6
825 690 563 495
4.2 4.2 4.2
750 775 800
4
80 70 60
The data in the above tables are from Di Chen, Magnetooptical materials, Handbook of Laser Science and Technology, Vol. IV, Optical Materials, Part 2 (CRC Press, Boca Raton, FL, 1986), p. 287.
© 2003 by CRC Press LLC
144
Handbook of Optical Materials
Room-Temperature Saturation Kerr Rotation Data for Ferromagnetic Materials Material
Tc (K)
Fe Co Ni FeCo MnBi PtMnSb CeSba
1043 1388 627 NA 633 582 16
λ (nm)
θK (°)
Ref.
633 633 633 633 633 720 2500
–0.41 –0.35 –0.13 –0.54 –0.70 –1.27 14
1 1 1 1 2 3 4
Measured at T = 2 K.
Faraday Rotation Data For Nonmetallic Ferro– and Antiferromagnetic Materials µ0H (T)
Material
Tc (K)
EuO EuSe EuS CrBr3 CdCr2S4 CdCr2Se4 CoCr2S4 YFeO3 FeBO3 UO2
69 7 16 36 84 130 221
0.6 0.45 0.4
348 30.8
4.0
2.1 2.0 0.675
λ (nm) 660 755 670 493 1000 1050 10,600 600 525 276
θ ′F (°/cm) 4.9 × 105 1.4 × 105 5.5 × 105 1 × 105 3800 5.5 × 104 320 ~8 × 103 2300 4.8 × 104
Ref.
Comments
5 6 7 8 9 10 11 12 13 14
1,4 1,2,4,8 1,4 1,5 1,5 1,4 ferri, 4 3,5,7 3,5,7 2,4,8
Comments: (1) ferromagnetic; (2) antiferromagnetic; (3) canted antiferromagnetic; (4) electrically semiconducting; (5) electrically insulating; (6) electrically conducting; (7) birefringent; (8) measured in unsaturated state. (The ferrimagnet CoCr2S4 is included because of its chemical similarity to the ferromagnets CdCr2S4 and CdCr2Se4.)
Saturation Kerr Rotation/Ellipticity Data for Nonmetallic Ferromagnetic Materials Material TmS TmSe US USe UTe CuCr2Se4 CoCr2S4
Tc (K) 5.2 1.85 177 160 104 432 221
µ0H (T) 4 4 4 4 4 2 1.5
λ (nm) 440 540 350 420 830 1290 1800
θK[εK] (°)
Ref.
Comments
[–2.4] [–3.6] [3.4] [4.0] 3.1 [–1.19] –4.6
15 15 16 16 16 17 18
1,6,8 1,6,8 1,6 1,6 1,6 1,6 ferri, 4
For materials which possess greater values of Kerr ellipticity than Kerr rotation, the ellipticity is reported in brackets [ ]. Comments: (1) ferromagnetic; (2) antiferromagnetic; (3) canted antiferromagnetic; (4) electrically semiconducting; (5) electrically insulating; (6) electrically conducting; (7) birefringent; (8) measured in unsaturated state.
© 2003 by CRC Press LLC
Section 1: Crystalline Materials
145
Room–Temperature Saturation Faraday Rotation and Absorption Data for Selected Iron Garnets at λ = 633 nm Material Y3Fe5O12 Gd3Fe5O12 Bi3Fe5O12 Y3Fe4.07Ga0.93O12 Y3Fe3.54Ga1.46O12 Y2.3Bi0.7Fe5O12 Y0.5Bi2.5Fe5O12 Y2.0Ce1.0Fe5O12
θ ′F ( °/cm)
α (cm–1)
835 345 –5.5 × 104 855 645 –1.25 × 104 –7.5 × 104 2.2 × 104
870 750
Growth technique LPE LPE sputtering LPE flux method flux method MOCVD sputtering
650 530 1000 540
Ref. 25 20 21 19 19 22 23 24
Room–Temperature Saturation Faraday Rotation and Absorption Data for Selected Iron Garnets at λ = 1064 nm Material Y3Fe5O12 Pr3Fe5O12 Nd3Fe5O12 Sm3Fe5O12 Eu3Fe5O12 Gd3Fe5O12 Tb3Fe5O12 Dy3Fe5O12 Ho3Fe5O12 Er3Fe5O12 Gd2.0Bi1.0Fe5O12 Y2.0Ce1.0Fe5O12
θ ′F (°/cm) 280 65 535 15 107 65 535 310 135 120 –3300 –22000
α (cm–1) 9 10
10
< 10 1700
Growth technique flux method flux method flux method flux method flux method flux method flux method flux method flux method flux method flux method sputtering
Ref. 25 26 26 25 25 25 25 25 25 25 27 24
Room–Temperature Saturation Faraday Rotation and Absorption Data for Selected Iron Garnets at λ = 1300 nm Material θ ′F (°/cm) α (cm–1) Growth technique Ref. Y3Fe5O12 Gd3Fe5O12 Tb3Fe5O12 Dy3Fe5O12 Tm3Fe5O12 Pr3Fe5O12 Nd3Fe5O12 Y1.7Bi1.3Fe5O12 Gd2.0Bi1.0Fe5O12 Y2.0Ce1.0Fe5O12
210 60 320 175 110 –1060 –690 –2100 –2100 –120000
0.3 1.0
70 < 50 < 10 250
flux method flux method flux method flux method flux method flux method LPE LPE flux method sputtering
28 28 26 26 26 26 26 29 27 24
LPE (liquid phase epitaxy), sputtering, and MOCVD (metal–organic chemical vapor deposition) are thin–film growth techniques. The flux method yields bulk crystals.
© 2003 by CRC Press LLC
146
Handbook of Optical Materials
The preceding tables were adapted from Deeter, M. N., Day, G. W., and Rose, A. H., Magnetooptic materials: crystals and glasses, Handbook of Laser Science and Technology, Suppl. 2: Optical Materials (CRC Press, Boca Raton, FL, 1995), p. 367 (with additions).
References: 1. 2. 3. 4. 5. 6. 7. 8. 9.
10. 11. 12. 13. 14. 15.
16. 17.
18. 19. 20. 21.
Buschow, K. H. J., Van Engen, P. G., and Jongebreur, R., Magneto–optical properties of metallic ferromagnetic materials, J. Magn. Magn. Mater., 38, 1 (1983). Egashira, K., and Yamada, T., Kerr–effect enhancement and improvement of readout characteristics in MnBi film memory, J. Appl. Phys., 45, 3643 (1974). Van Engen, P. G., Buschow, K. H. J., and Jongebreur, R., PtMnSb, a material with very high magneto–optical Kerr effect, Appl. Phys. Lett., 42, 202 (1983). Reim, W., Schoenes, J., Hulliger, F., and Vogt, O., Giant Kerr rotation and electronic structure of CeSbxTe1–x, J. Magn. Magn. Mater, 54–57, 1401 (1986). Dimmock, J. O., Optical properties of the europium chalcogenides, IBM J. Res. Dev., 14, 301 (1970), and references therein. Suits, J. C., Argyle, B. E., and Freiser, M. J., Magneto–optical properties of materials containing divalent europium, J. Appl. Phys., 37, 1391 (1966). Guntherodt, G., Schoenes, J., and Wachter, P., Optical constants of the Eu chalcogenides above and below the magnetic ordering temperatures, J. Appl. Phys., 41, 1083 (1970). Dillon, J. F., Jr., Kamimura, H., and Remeika, J, P., Magneto–optical studies of chromium tribromide, J. Appl. Phys., 34, 1240 (1963). Ahrenkiel, R. K., Moser, F., Carnall, E., Martin, T., Pearlman, D., Lyu, S. L., Coburn, T., and Lee, T. H., Hot–pressed CdCr2S4: an efficient magneto–optic material, Appl. Phys. Lett., 18, 171 (1971). Golik, L. L., Kun’kova, Z. É., Aminov, T. G., and Kalinnikov, V. T., Magnetooptic properties of CdCr2Se4 single crystals near the absorption edge, Sov. Phys. Solid State, 22, 512 (1980). Jacobs, S. D., Faraday rotation, optical isolation, and modulation at 10.6 µm using hot–pressed CdCr2S4 and CoCr2S4, J. Electron. Mater., 4, 223 (1975). Tabor, W. J., Anderson, A. W., and Van Uitert, L. G., Visible and infrared Faraday rotation and birefringence of single–crystal rare–earth orthoferrites, J. Appl. Phys., 41, 3018 (1970). Kurtzig, A. J., Wolfe, R., LeCraw, R. C., and Nielsen, J. W., Magneto–optical properties of a green room–temperature ferromagnet: FeBO3, Appl. Phys. Lett., 14, 350 (1969). Reim, W., and Schoenes, J., Magneto–optical study of the 5f 2 → 5f 16d 1 transition in UO2 , Solid State Commun., 39, 1101 (1981). Reim, W., Hüsser, O. E., Schoenes, J., Kaldis, E., Wachter, P., Seiler, K., and W. Reim, , First magneto–optical observation of an exchange–induced plasma edge splitting, J. Appl. Phys., 55, 2155 (1984). Reim, W., Schoenes, J., and Vogt, O., Magneto–optics and electronic structure of uranium monochalcogenides, J. Appl. Phys., 55, 1853 (1984). Brändle, H., Schoenes, J., Wachter, P., Hulliger, F., and Reim, W., Large room–temperature magneto–optical Kerr effect in CuCr2Se4–xBrx, x = 0 and 0.3, J. Magn. Magn. Mater., 93, 207 (1991). Ahrenkiel R. K., and Coburn, T. J., Hot–pressed CoCr2S4: a magneto–optical memory material, Appl. Phys. Lett., 22, 340 (1973). Hansen, P., and Witter, K., Magneto–optical properties of gallium–substituted yttrium iron garnets, Phys. Rev. B, 27, 1498 (1983). Hansen, P., Witter, K., and Tolksdorf, W., Magnetic and magneto–optical properties of bismuth–substituted gadolinium iron garnet films, Phys. Rev. B, 27, 4375 (1983). Okuda, T., Katayama, T., Satoh, K., and Yamamoto, H., Preparation of polycrystalline Bi3Fe5O12 garnet films, J. Appl. Phys., 69, 4580 (1991).
© 2003 by CRC Press LLC
Section 1: Crystalline Materials 22. 23.
24. 25. 26. 27. 28. 29.
147
Scott, G. B., and Lacklison, D. E., Magnetooptic properties and applications of bismuth substituted iron garnets, IEEE Trans. Magn., MAG–12, 292 (1976). Okada, M., Katayama, S., and Tominaga, K., Preparation and magneto–optic properties of Bi–substituted yttrium iron garnet thin films by metalorganic chemical vapor deposition, J. Appl. Phys., 69, 3566 (1991). Gomi, M., Satoh, K., Furuyama, H., and Abe, M., Sputter deposition of Ce–substituted iron garnet films with giant magneto–optical effect, IEEE Transl. J. Magn. Jpn., 5, 294 (1990). Wemple, S. H., Dillon, J. F., Jr., Van Uitert, L. G., and Grodkiewicz, W. H., Iron garnet crystals for magneto–optic light modulators at 1.064 µm, Appl. Phys. Lett., 22, 331 (1973). Dillon, J. F., Jr., Albiston, S. D., and Fratello, V. J., Magnetooptical rotation of PrIG and NdIG, in Advances in Magneto–Optics (Magnetics Society of Japan, Tokyo, 1987), p. 241. Takeuchi, H., Ito, S., Mikami, I., and Taniguchi, S., Faraday rotation and optical absorption of a single crystal of bismuth–substituted gadolinium iron garnet, J. Appl. Phys., 44, 4789 (1973). Booth, R. C. and White, E. A. D., Magneto–optic properties of rare earth iron garnet crystals in the wavelength range 1.1–1.7 µm & their use in device fabrication, J. Phys. D., 17, 579 (1984). K am ad a, O ., M in em o to , H . , an d Ish izu k a, S ., A p p l icatio n o f b ism u th – su b st itu ted iro n g arn et film s to m ag n etic field sen so rs, In A d va n ces in M a g n eto – O p tics (T h e M ag n etics S o ciety o f J ap an , T o k y o , 1 9 8 7 ), p . 4 0 1 . a
Faraday Rotation and Magnetooptic Properties of Orthoferrites
Intrinsic specific Faraday rotation (deg/cm) at 300 K 4πMS
b
Material
(gauss)
EuFeO3 GdFeO3 TbFeO3 DyFeO3 HoFeO3 ErFeO3 TmFeO3 YbFeO3 LuFeO3
83 94 137 128 91 81 140 143 119
SmFeO3 YFeO3 LaFeO3 PrFeO3 NdFeO3
84 105 83 71 62
Abs. –1
600 nm 800 nm 1000 nm 1200 nm 1400 nm 1600 nm coeff. (cm )
8000
3400
2200
|| c 1000
700
|| a 400
800
300
700
200
600
~38 ~10 ~29 ~40 ~10 ~15 ~5 ~12.5 ~5
150
~50 ~10 ~10 ~35 ~10
c
a Strong natural birefringence interferes with the Faraday effect. b Saturation induction. c
At a wavelength of 1250 nm.
References: Bobeck, A. H., Fisher, R. F., Perneski, A. J., Remeika, J. P., and Van Uitert, L. G., IEEE Trans.Magn. MAG–5, 544 (1969). Tabor, W. J., Anderson, A. W., and Van Uitert, L. G., J. Appl. Phys. 41, 3018 (1970). Chetkin, M. V. and Shcherbakov, A., Sov. Phys. Solid State 11, 1313 (1969).
© 2003 by CRC Press LLC
148
Handbook of Optical Materials
1.7 Electrooptic Properties 1.7.1 Linear Electrooptic Coefficients The linear electrooptic effect occurs in acentric crystals. Only 21 acentric groups (those lacking a center of inversion) may have nonvanishing coefficients. Reduced electrooptic matrix forms are given in the two references below. If the electrooptic coefficient rij is determined at constant strain (by making the measurement at high frequencies well above acoustic resonances of the sample) the crystal is clamped, as indicated by S. If the rij is determined at constant stress (at low frequencies well below the acoustic resonances of the sample) the sample is free, as indicated by T. The electrooptic coefficients are generally those for room temperature. Typical accuracies for rij are ±15%. Unless shown explicitly, the signs of rij have not been determined. As a rule, rij has little optical wavelength dependence in the transparent region of the crystal. The following tables were adapted from: Kaminow, I. P., Linear Electrooptic Materials, Handbook of Laser Science and Technology, Vol. IV (CRC Press, Boca Raton, FL, 1986), p. 253. Holland, W. R. and Kaminow, I. P., Linear Electrooptic Materials, Handbook of Laser Science and Technology, Suppl. 2 (CRC Press, Boca Raton, FL, 1995), p. 133. A comprehensive table of electrooptic constants including extensive data on refractive indices and curves of wavelength and temperature dependence of electrooptic coefficients is given in Cook, W. R., Hearmon, R. F. S., Jaffe, H., and Nelson, D. F., Piezooptic and electrooptic coefficient constants, Landolt-Börstein, Group III, Vol. 11, Hellewege, K.-H. and Hellewege, A. M., Eds. (Springer-Verlag, New York, 1979), p. 495. The following tables are divided according to the general structure of the electrooptic materials, i.e., tetrahedally coordinated binary AB compounds that are semiconductors, ABO3-type compounds that are ferroelectric or pyroelectric, isomorphs of ferroelectric KH2PO4 and antiferroelectric NH4H2PO4, other compounds that do not fit the previous categories, and organic compounds. Although nonlinear optic coefficients have been measured for many organic crystal and can be converted to equivalent electrooptic coefficients, only direct phase retardation measurements of the electrooptic effect are included in the last table. AB-Type Compounds Material CdS
Symmetry
T/S
6mm
T T T S S T T
© 2003 by CRC Press LLC
Electrooptic coeff.*
Wavelength
rij (10-12 m/V)
λ (µm)
rc = 4
0.589
r51 = 3.7 rc = 5.5 r33 = 2.4 r13 = 1.1 rc = 4.8 ± 0.2 r42 = 1.6 ± 0.2
0.589 10.6 0.633
Section 1: Crystalline Materials
149
AB-Type Compounds—continued Material
Symmetry
CdS
CdSe
6mm
T/S
Electrooptic coeff.*
Wavelength
rij (10-12 m/V)
λ (µm)
T T T T T T T T T T T T
r33 = 3.2 ±0.2 r13 = 3.1 ± 0.2 rc = 6.2 ± 0.2 r42 = 2.0 ± 0.2 r33 = 2.9 ± 0.1 r13 = 3.5 ± 0.1 rc = 6.5 ± 0.2 r42 = 2.0 ± 0.2 r33 = 2.75 ± 0.08 r13 = 2.45 ± 0.08 rc = 5.2 ± 0.3 r42 = 1.7 ± 0.3
1.15
S S
r33 = 4.3
3.39
3.39
10.6
r13 = 1.8 3
CdS0.75Se0.25
6mm
T
n1 rc = 70
0.63
CdTe
-43m
T T
r41 = 6.8
3.39
r41 = 6.8
10.6
T
r41 = 5.5
23.35
T
r41 = 5.0
27.95
S
n0 r41 = 100 ± 10
10.6
T S
r41 = 0.85
0.525
r41 = -2.5
0.63
S
r41 = -3.0
1.15
S
r41 = -3.0
3.39
T T
r41 = 3.6 r41 = 3.2
0.633 10.6
S
r41 = 2.35
0.633
S
r41 = 2.20
3.39
S
r41 = -2.35
0.63
S
r41 = -2.5
3.39
T
r41 = -5
0.55
CuBr
CuCl
-43m
-43m
3
3
CuI
-43m
T
n0 r41 = 30
0.63
GaAs
-43m
S S
r41 = 1.2
0.9–1.08
r41 = -1.5
3.39
S+T
r41 = 1.2 – 1.6
1.0 – 3.0
T
r41 = 1.0 – 1.2
2.0 – 12.0
T
r41 = 1.6
10.6
S
r41 = -1.33
1.06
© 2003 by CRC Press LLC
150
Handbook of Optical Materials
AB-Type Compounds—continued Material
Symmetry
GaAs
T/S
Electrooptic coeff.*
Wavelength
rij (10-12 m/V)
λ (µm)
T
r41 = 1.24 ± 0.04
3.39
T
r41 = 1.51 ± 0.05
10.6
GaP
-43m
S T S
r41 = -1.07 – -0.97 r41 = 0.79–0.80 (200 Hz) r41 = 0.95–0.87 (9.45 GHz)
0.56 – 3.39 0.552 – 1.15
GaSe
-6m2
T T
r22 = 22 n13r22 = 27.5
0.63 1.06
HgS
32
S S S S
r11 = 3.1 r41 = 1.4 r11 = 4.2 r41 = 2.4
0.633 0.633 3.39 3.39
InP
-43m
S S
r41 = -1.34 r41 = -1.68
1.06 1.50
β-SiC
43m
T
r41,52,63 = 2.7±0.5
0.633
ZnO
6mm
S
r33 = +2.6 r13 = -1.4 r33 = +1.9 r13 = +0.96 r51 = -3.1 r31 - r33 = -1.4
0.633 0.633 3.39 3.39 0.4 0.4
T T
r41 = 1.2
0.4
r41 = 2.1
0.65
S
r41 = 1.6
0.633
S
r41 = 1.4
3.39
T
r41 = -1.9
0.63
T S
r41 = 2.0
0.546
r41 = 2.0
0.633
T
r41 = 2.2
10.6
T
r41 = 1.9
0.55
T T
r41 = 4.45 – 3.95
0.59 – 0.69
r41 = 1.4
10.6
S
r41 = 4.3
0.633
S
r41 = 3.2
3.39
T
r41 = 4.2 ± 0.3 r41 = 3.9 ± 0.2
10.6
S
T ZnS
-43m
ZnS
6mm
ZnTe
-43m
T 3
3
* rc = r33 – (n1 / n3 )r33
© 2003 by CRC Press LLC
3.41
Section 1: Crystalline Materials
151
ABO3-Type Compounds Material BaxNaNb5O15
Symmetry
Electrooptic coeff.*
Wavelength
rij (10-12 m/V)
λ (µm)
T/S
mm2
rC = 34
0.633
r33 = 48 r42 = 92 r13 = 15 r33 = +29 42 = 75 r13 = 6.1 3
n3 r33 = 265 3
n1 r13 = 76 Ba2-ySryKxNa1-xNb5O15 (0.5<x<0.75) (0.6
no3 ro = 730
4mm
Ba1.5Sr0.5K0.75Na0.25Nb5O15
4mm
r33 = 110 r51 = 250
Ba0.5Sr1.5K0.5Na0.75Nb5O15
4mm
r33 = 180 r51 = 300
Ba0.5Sr1.5K0.25Na0.75Nb5O15
4mm
r33 = 200
BaTiO3
4mm
KNbO5
KSrxNb5O15
© 2003 by CRC Press LLC
0.561
T T T T T S S S S S
r13 = 19.5 ± 1 r33 = 97 ± 7 rc = 76 ± 7 rc = 108 r51 = 1640 rc = 23 r51 = 820 rc = 19 r33 = 28 r13 = 8
0.5145
mm2
S S S S S T T T T
r33 =25 ± 8 r42 = 270 ± 40 r13 = 10 ± 2 r51 = 23 ± 3 r23 = 2 ± 1 r33 = 64 ± 5 r42 = 380 ± 50 r13 = 28 ± 2 r51 = 105 ± 13 r23 = +1.3 ± 0.5
0.633
4mm or 4
T
rc =130
0.633
0.546
0.633
152
Handbook of Optical Materials
ABO3-Type Compounds—continued Material LiIO3
LiNbO5
LiTaO5
© 2003 by CRC Press LLC
Electrooptic coeff.*
Wavelength
rij (10-12 m/V)
λ (µm)
Symmetry
T/S
6
S S S S
r33 = +6.4 r41 = 1.4 r13 = +4.1 r51 = +3.3
0.633
3m
T T T T T T T T T S S S S S S S S S S S S S S
rc = 17.4 r22 = 6.8 r51 = 32 r33 = +32.2 r13 = +10 rc = 17 r22 = 5.7 rc = 16 r22 = 3.1 r33 = +30.6 r13 = +8.6 r51 = +28 r33 = 28 r22 = 3.1 r13 = 65 r51 = 23 r33 = +28.8 r51 = +18.2 r13 = +7.68 r33 = 27.2 r13 = +6.65 r33 = +25.5 r13 = +5.32
0.633
T S S S S S S S S S S S S T T
rc = 22 r33 = 30.3 r51 = 20 r33 = 27 r51 = 15 r13 = 4.5 r22 = 0.3 r13 = 6.2 r33 = 26.7 r51 = 8.9 r13 = 5.2 r33 = 25.2 r13 = 4.4 r33 = 30.5 ± 2 r13 = 8.4 ± 0.9
3m
1.15 3.39 0.633
3.39
0.633
1.152 3.391
0.633
3.39
1.152
3.39 0.633
Section 1: Crystalline Materials
153
ABO3-Type Compounds—continued Material
Symmetry
K5Li2Nb5O15
4mm
KTaxNb1-xO5
4mm
Lay(Sr.5Ba0.5)1-1.5yNb2O6 (0
4mm
T/S
T T
Electrooptic coeff.*
Wavelength
rij (10-12 m/V)
λ (µm)
r33 = 78 r13 = 8.9
0.633
rc = 450 r51 = +50
0.633
rc = 145-669
0.6328
rc = r33–(n1/n3)3r13 PbTiO5
4mm
S S
r33 = 5.9 r13 = 13.8
0.633
Sr0.61Ba.0.39Nb2O6
4mm
T T
r13 = 47±5 r33 = 235±21
0.5145
Sr0.75Ba.0.25Nb2O6
4mm
T T T T S
rc = 1410 r33 = 1340 r51 = 42 r15 = 67 rc = 1090
0.633
Sr0.5Ba.0.5Nb2O6
4mm
T
rc = 218
0.633
Sr0.46Ba.0.54Nb2O6
4mm
T T
r33 = 35 ± 3 r13 = 180 ± 30
0.633
Sr0.3Ba.0.79Nb2O6
4mm
T
r13 = -266 r33 = +113
0.633
3
3
* rc = r33 – (n1 / n3 )r33
KDP- and ADP-Type Compounds Material KH2PO4 (KDP)
Symmetry* -42m
T/S
Electrooptic coeff.
Wavelength
rij (10-12 m/V)
λ (µm)
T T S
r63 = 9.4 ± 0.4 r41 = +8.6 r63 = 8.8
0.633
KD2PO4 (DKDP)
-42m
T T T S
r63 = 23.8 ± 0.6 r41 = 8.8 r61 < 0 r63 = 24.0
0.633
KH2AsO4 (KDA)
-42m
T T
r63 = 10.9 r41 = = 12.5
0.633
KD2AsO4 (DKDA)
-42m
T
r63 = 18.2
0.633
© 2003 by CRC Press LLC
154
Handbook of Optical Materials
KDP- and ADP-Type Compounds—continued Material
Symmetry*
Electrooptic coeff.
Wavelength
rij (10-12 m/V)
λ (µm)
T/S
RbH2PO4 (RDP)
-42m
T S
r63= 15.5 r63 = 0.91
0633
RbH2AsO4 (RDA)
-42m
T
r63 = 13.0
0.633
RbD2AsO4 (DRDA)
-42m
T
r63 = 21.4
0633
CsH2AsO4 (CDA)
-42m
T
r63 = 18.6
0633
CsD2AsO4 (DCDA)
-42m
T
r63 = 36.6
0633
NH4H2PO4 (ADP)
-42m
T T S
r63 = -8.5 r41 = 24.5 r63 = 5.5
0633
NH4D2PO4 (DADP)
-42m
T
r63 = 11.9
0633
NH4H2AsO4 (ADa)
-42m
T
r63 = 9.2
0633
* Above Tc
Other Compounds Material AgGaS2
Symmetry -42m
T/S T
Electrooptic coeff..
Wavelength
rij (10-12 m/V)
λ (µm)
T
r63 = 3.0 r41 = 4.0
0.633
AgGaSe2
-42m
T T T T
r63 = 6.9 r41 = 4.5 3 n r63 = 76 3 n r41 = 85
(CH3NH3)5Bi2Br11
mm2
T
1/2 (n3 r33– n2 r23)=5.8±0.8
BaB2O4 (BBO)
3m
1.15
3
3
3
3
0.6328
T
1/2 (n3 r33– n1 r13)=3.5±0.7
T
r22 = 2.7±0.4 r31 = 0 r61 = 0.055 r22 = 2.5±0.1 rc = 0.17±0.02 r22 = 2.1±0.3 rc = 0.11±0.02
0.6328
T T T T S S Bi4Ge3O20 (BGO)
23
T T
r41 = 1.03 r41 = 0.95
0.45–0.62 0.63
Bi4Si3O20
23
T
r41 = 0.54
0.63
Bi40Ga2O63
23
T
n0 r41 = 54.9
© 2003 by CRC Press LLC
3
0.633
Section 1: Crystalline Materials
155
Other Compounds—continued Material Bi12GeO20
Symmetry 23
(BGO) Bi12SiO20
23
T
(BSO) Bi12TiO20
r41 = 3.67 ± 0.11 r41 = 3.29 ± 0.10
0.633
r41 = 4.1 ± 0.1 r41 = 4.25 ± 0.13
0.650
0.633
r41 = 5.75 ± 0.10 r41 = 3.81 ± 0.11
2
T T S S S S S S
r22 – (n1/n2) r12 = 12 3 r22 – (n1/n3) r32 = 14 3 r22 – (n3/n2) r32 = 0.6 r12 = 6.7 r22 = 25.5
-4
CHI3•3S8
3m
Cs3Sr[Cu2(SCN)9]
42m
CuGaS2
-42m
Gd2(MoO4)3 (450 K)
λ (µm)
T
S CdGaS2
Wavelength
rij (10-12 m/V)
23
(BTO) Ca2Nb2O7
Electrooptic coeff.. T/S
-42m
T T
3
0.850
0.633
0.63
r32 = 6.4 r13 = 0.37 r41 =2.7 r52 = <0.6 r63 = 0.9 r13 = 0.37
0.50
r63 = 3.5 r12 = 4.4 ± 2.5 r13 = – 0.512 r33 = 0.29 ± 0.12
0.633
T
r63 = +0.06±.002
0.633
S S S S S S
r63 = +1.35 r41 = +1.76
0.63
r63 = +1.66 r41 = +1.9
1.15
T
n1 r63 = 17
3
r63n0 r41 r41 = +1.1
3.39
3 3
3
0.633
Gd2(MoO4)3 (30 K)
mm2
T
n1 r13 – n3 r33 = 17.5
0.633
KTiOAsO4
mm2
T
r33 = 40±1 r33 = 21±1 r13 = 15±1
0.6328
r13 = +9.5±0.5 r23 = +15.7±0.8 r42 = 9.3±0.9 r13 = +8.8±0.8 r23 = +13.8±1.4
0.6328
(KTA)
KTiOPO4 (KTP)
T T mm2
T T T S S
© 2003 by CRC Press LLC
156
Handbook of Optical Materials
Other Compounds—continued Material
Symmetry
KTiOPO4
T/S
Electrooptic coeff..
Wavelength
rij (10-12 m/V)
λ (µm)
S S
r33 = +35.0±3.5 r51 = 6.9±1.4
S
r42 = 8.8±1.8
K2Mg2(SO4)3
23
T
r41 = 0.40
0.546
K2Mn2(SO4)3
23
T
r41 = 2.0
0.453–0.642
K2Ni2(SO4)3
23
T
r41 = 0.4
0.453–0.642
K2 S 2 O6
32
T
r11 = 0.26
0.546
LiInS2
mm2
T
r33 – (n1 /n3 )r13 = +0.67 3 3 r33 – (n2 /n3 )r23 = +0.60
LiInSe2
mm2
T
r33 – (n1 /n3 )r13 = +1.39 3 3 r33 – (n2 /n3 )r23 = +1.55
0.63
LiKSO4
6
T
rc = 1.6
0.546
LiNaSO4
3m
T
r22 = <0.02
0.546
NaClO3
23
T
r41 = 0.4
3
3
3
3
0.63
0.589 3
NaNO2
mm2
T T T T T
r22 – (n1/n)) r32 = 4.1 3 r32 – (n1/n)) r12 = 4.2 3 r22 – (n1/n2) r12 = 0.6 r43 = -1.9 r61 = -3.0
Na2SbS4•9H2O
23
T T T T
n1 r41 = 5.66 3 n1 r41 = 5.62 r22 = 0.82 r22 = 0.77
0.42 1.08 0.52 0.60
(NH4)3Cd2(SO4)3
23
T
r41 = 0.70
0.546
(NH2) 2CO
-42m
T T
r63 = 0.52 r41 = 0.50
0.63
(NH4)3Mn2(SO4)3
23
T
r41 = 0.53
0.546
Pb5Ge3O11
3
T T T T T T T
r11 = 0.27 r22 = 0.23 r13 = 10.5 r33 = 15.3 r41 = 0.6 r51 = 6 rc = 5.3
0.63
© 2003 by CRC Press LLC
3
0.546
Section 1: Crystalline Materials
157
Other Compounds—continued Material
Symmetry
Electrooptic coeff..
Wavelength
rij (10-12 m/V)
λ (µm)
T/S
Rb2Mn2(SO4)3
23
T
r41 = 1.9
0.453–0.642
SbSI
mm2
T T
r33 = 2x10 (293 K) r33 = 2000 (288 K)
Se
32
S S
n1 r11 = 89 r11 = ~2.5
1.15 10.6
SiO2
32
T T
r11 = -0.47 r41 = 0.20
0.409–0.605
S
r11 = 0.174
0.633
4
3
0.7
TeO2
422
T S
r41 = -0.76 r41 = +0.62
0.63
Tl2Mn2(SO4)3
23
T
r41 = 2.1
0.453–0.642
Tl2Cd2(SO4)3
23
T
0.546
tourmaline
3m
T S
r41 = 0.37 r22 = 0.3 r13 = 1.7
ZnGeP2
-42m
S S
r63 = -0.8 r41 = +1.6
3.39
0.589 0.633
Organic Compounds Material
Symmetry
T/S
Electrooptic coeff.
Wavelength
rij (10-12 m/V)
λ (µm)
(CH2)6N2:HMThexamethylenetetramine, hexamine
-43m
T T S
r41 = 0.72 ± 0.01 r41 = 0.78 r41 = <0.14
0.5 0.633
C(CH2OH)4
2
T T
r52 = 1.45 | r12 – r32| = 0.7
0.46–0.70
C6H4(NO2)NH2 meta-nitroaniline
mm2
T T T
r33 = 16.7 ± 0.2 r23 = 0.1 ± 0.6 r13 = 7.4 ± 0.7
0.63
Cs2C4H4O6
32
T
r11 = 1.0
0.546
DBNMNA 2,6-dibromo-Nmethyl-4-nitroaniline
mm2
T T T
n3a r13–n3c r33 = 148 r42= 86 r51 = 83 n3a r13–n3c r33 =32
0.5145
T T T
© 2003 by CRC Press LLC
r42 = 20.4 r51 = 41.4
0.6328
158
Handbook of Optical Materials
Organic Compounds—continued Material
Symmetry
DBNMNA
T/S
Electrooptic coeff.
Wavelength
rij (10-12 m/V)
λ (µm)
T T T
n3a r13–n3c r33 =18.3 r42 = 11.5 r51 = 31
0.810
T T T
r53 = 39.9±8 r23 = 19.3±4 rc2 = 30.0±3
0.6328
—
r11 = 67±25
0.6328
MMONS 3-methyl-4-methoxy4;pr-nitrostilbene
mm2
MNA 2-methyl-4-nitroaniline
m
POM 3methyl 4-nitropyridine 1-oxide
222
T T T
63 = 2.6 ± 0.3 r52 = 5.1 ± 0.4 r41 = 3.6 ± 0.6
0.63
PNP 2-(N-Prolinol)5-nitropyridine
2
T T T T
r12 = 20.2±0.3 r22 = 28.3±0.4 r12 = 13.1±0.2 r22 = 13.1±0.2
0.514
SPCD styrlpyridinium cyanine dye
mm2
r33 = 430
0.6328
—
1.7.2 Quadratic Electrooptic Materials Kerr Constants of Ferroelectric Crystals1,2 Material BaTiO3 SrTiO3 KTa0.65Nb0.35O3 KTaO3 LiNbO3 LiTaO3 Ba0.8Na0.4Nb2O6
Ttrans (K) 406 — 330 13 1483 938 833
λ (µm)
g11 (1010 esu)
g12 (1010 esu)
g11-g12 (1010 esu)
g44 (1010 esu)
0.633 0.633 0.633 0.633 — — —
1.33 — 1.50 — 0.94 1.0 1.55
-0.11 — -0.42 — 0.25 0.17 0.44
1.44 1.56 1.92 1.77 0.7 0.8 1.11
— — 1.63 1.33 0.6 0.7 —
References 1. Narasimhamurty, T. S., Photoelastic and Electro-Optic Properties of Crystals, Plenum Press, New York, 1981, p. 408. 2. Gray, D. E., Ed., AIP Handbook of Physics, McGraw Hill, New York, 1972, p. 6-241. See, also, Cook, W. R., Hearmon, R. F. S., Jaffe, H., and Nelson, D. F., Piezooptic and electrooptic coefficient constants, Landolt-Börstein, Group III, Vol. 11, Hellewege, K.-H. and Hellewege, A. M., Eds. (Springer-Verlag, New York, 1979), p. 495.
© 2003 by CRC Press LLC
Section 1: Crystalline Materials
159
1.8 Elastooptic Properties 1.8.1 Elastooptic Coefficients The following tables of elastooptic coefficients (photoelastic constants) are from the CRC Handbook of Chemistry and Physics, 82nd edition, Lide, D. R., Ed. (CRC Press, Boca Raton, FL, 2001), p. 12–180. Materials are listed alphabetically by chemical composition. Data have been measured at room temperature, except for rare gas crystals. Cubic Crystals; Point Groups 43m, 432, m3m Elastooptic coefficients Material
Wavelength (µm)
p11
p12
p44
p11–p12
Ref.
0.540–0.589 0.55–0.65 1.06 0.633 0.633 0.633 1.15 0.633 0.514 3.39 0.589 0.633 0.546 0.590 0.589 0.589 0.589 0.589 0.633 0.589 0.589 0.589 0.589 0.589 0.633 0.633 0.633 0.633 0.633 1.15 0.633 0.633
–0.278 0.038 –0.152 0.072 0.120 0.032 –0.165 –0.151 –0.086 –0.151 0.212 0.22 0.26 0.212 — 0.02 0.148 0.115 0.08 — 0.142 0.293 0.288 0.262 0.080 0.15 –0.451 –0.140 –0.029 0.025 0.091 0.091
0.123 0.226 –0.017 0.195 0.250 0.151 –0.140 –0.082 –0.027 –0.128 0.165 0.16 0.20 0.171 — 0.13 0.184 0.159 0.20 — 0.245 0.185 0.172 0.167 0.269 0.095 –0.337 0.149 0.0091 0.073 0.019 –0.01
–0.161 0.0254 –0.057 –0.083 –0.082 –0.068 –0.072 –0.074 –0.078 –0.072 –0.022 –0.025 –0.029 — –0.0177 –0.045 –0.0036 –0.011 –0.03 0.0048 0.042 –0.034 –0.041 –0.023 0.0185 0.072 –0.164 –0.0725 –0.0615 0.041 0.079 0.075
–0.385 –0.183 –0.135 –0.123 –0.130 –0.119 –0.025 –0.069 –0.059 –0.023 0.047 0.06 0.06 0.041 –0.0407 –0.11 –0.035 –0.042 –0.12 –0.0141 –0.103 0.108 0.116 0.095 –0.189 — –0.114 –0.289 –0.038 — — 0.101
13 11 10 12 12 12 15 15 23 14 5 4 1 6 3 5 1 2 1 3 9 7,8 7,8 7,8 16 17 19,20 18,20 15 15 17 15
C (diamond) CaF2 CdTe CuBr CuCl CuI GaAs GaP Gd3Ga5O12 Ge KBr KCl KF KI LiCl LiF NaBr NaCl NaF NaI NH4Cl RbBr RbCl RbI SrF2 SrTiO3 Tl(Br,Cl) Tl(Br,I) Y3Al5O12 Y3Fe5O12 Y3Ga5O12 ZnS
© 2003 by CRC Press LLC
Cubic Crystals; Point Groups 23, m3 Elastooptic coefficients Material
Wavelength (µm)
Ba(NO3)2
0.589
NaBrO3 NaClO3 Pb(NO3)2 Sr(NO3)2
0.589 0.589 0.589 0.41
p11 — 0.185 0.162 0.162 0.178
p12
p44
p11–p22 = 0.992 0.218 0.24 0.24 0.362
–0.0205 –0.0139 –0.0198 –0.0198 –0.014
p13 p11–p13 = 0.713 0.213 0.20 0.20 0.316
Ref. 13 26 26 24,25 27
Trigonal Crystals; Point Groups 3m, 32, –3m Elastooptic coefficients Wavelength (µm)
Material Ag3AsS3 Al2O3 CaCO3 HgS LiNbO3 LiTaO3 NaNO3 SiO2 Te
0.633 0.644 0.514 0.633 0.633 0.633 0.633 0.589 10.6
p11
p12
±0.10 –0.23 0.062
±0.19 –0.03 0.147
±0.034 –0.081
±0.072 0.081 ±0.21 0.27 0.130
0.16 0.155
p13 ±0.22 0.02 0.186 ±0.445 ±0.139 0.093 ±0.215 0.27 —
p14
P31
0.00 –0.011
±0.24 –0.04 0.241
±0.066 –0.026 ±0.027 –0.030 —
±0.178 0.089 ±0.25 0.29 —
Trigonal Crystals; Point Groups 3m, 32, 3m —continued Elastooptic coefficients Material
Wavelength (µm)
Ag3AsS3 Al2O3 CaCO3 α–HgS LiNbO3 LiTaO3 NaNO3 α–SiO2 Te
© 2003 by CRC Press LLC
0.633 0.644 0.514 0.633 0.633 0.633 0.633 0.589 10.6
P33 ±0.20 –0.20 0.139 ±0.115 ±0.060 –0.044 0.10 —
P41 — 0.01 –0.036 — ±0.154 –0.085 0.055 –0.047 —
P44 — –0.10 –0.058 — ±0.300 0.028 –0.06 –0.079 —
Ref. 38 15,32 33 36 15,34 15,35 39 37 15
Section 1: Crystalline Materials
161
Tetragonal Crystals; Point Groups 4/mmm, –42m, 422 Elastooptic coefficients Material
Wavelength (µm)
p11
p12
p13
P31
(NH4)H2PO4 BaTiO3 CsH2AsO4 MgF2 Hg2Cl2 KH2PO4 RbH2AsO4 RDP Sr0.75Ba0.25Nb2O6 Sr0.5Ba0.5Nb2O6 TeO2 TiO2 (rutile)
0.589 0.633 0.633 0.546 0.633 0.589 0.633 0.633 0.633 0.633 0.633 0.633
0.319 0.425 0.267 — ±0.551 0.287 0.227 0.273 0.16 0.06 0.0074 0.017
0.277 — 0.225 — ±0.440 0.282 0.239 0.240 0.10 0.08 0.187 0.143
0.169 — 0.200 — ±0.256 0.174 0.200 0.218 0.08 0.17 0.340 –0.139
0.197 — 0.195 — ±0.137 0.241 0.205 0.210 0.11 0.09 0.090 –0.080
Tetragonal Crystals; Point Groups 4/mmm, –42m, 422—continued Elastooptic coefficients Material
Wavelength (µm)
p33
p44
p66
Ref.
(NH4)H2PO4 BaTiO3 CsH2AsO4 MgF2 Hg2Cl2 KH2PO4 RbH2AsO4 RDP Sr0.75Ba0.25Nb2O6 Sr0.5Ba0.5Nb2O6 TeO2 TiO2 (rutile)
0.589 0.633 0.633 0.546 0.633 0.589 0.633 0.633 0.633 0.633 0.633 0.633
0.167 — 0.227 — –0.010 0.122 0.182 0.208 0.47 0.23 0.240 –0.057
–0.058 — — ±0.0776 — –0.019 — — — — –0.17 –0.009
–0.091 — — ±0.0488 ±0.047 –0.064 — — — — –0.046 –0.060
40 41 42 43 44 45 41 41 46 46 47 48
Tetragonal Crystals; Point Groups 4, –4, 4/m Elastooptic coefficients Material
Wavelength (µm)
CdMoO4 PbMoO4 NaBi(MoO4)2
0.633 0.633 0.633
© 2003 by CRC Press LLC
p11
p12
p13
P16
P31
0.12 0.24 0.243
0.10 0.24 0.205
0.13 0.255 0.25
— 0.017 —
0.11 0.175 0.21
162
Handbook of Optical Materials Tetragonal Crystals; Point Groups 4, –4, 4/m—continued Elastooptic coefficients
Material
Wavelength (µm)
CdMoO4 PbMoO4 NaBi(MoO4)2
0.633 0.633 0.633
p33
p44
p45
p61
p66
Ref.
0.18 0.300 0.29
— 0.067 —
— –0.01 —
— 0.013 —
— 0.05 —
49 52 —
Hexagonal Crystals; Point Groups mmc, 6mm Elastooptic coefficients Material
Wavelength (µm)
Be3Al2Si6O18 CdS ZnO ZnS
p11
0.589 0.633 0.633 0.633
0.0099 –0.142 ±0.222 –0.115
p12
p13
0.175 –0.066 ±0.099 0.017
0.191 –0.057 –0.111 0.025
p31
p33
0.313 –0.041 ±0.088 0.0271
p44
0.023 –0.20 –0.235 –0.13
Ref.
–0.152 –0.099 0.0585 –0.0627
28 2,15 30 31
Orthorhombic Crystals; Point Groups 222, m22, mmm Elastooptic coefficients Material
Wavelength (µm)
Al2SiO4 (OH,F)2 BaSO4 HIO3 NaKC4H4O6 NH4ClO4 (NH4)2SO4
p12
p11
p13
p21
p22
p23
—
–0.085
0.069
0.052
0.095
–0.120
0.065
0.589 0.633 0.589 0.633 0.633
0.21 0.302 0.35 — 0.26
0.25 0.496 0.41 0.24 0.19
0.16 0.339 0.42 0.18 ±0.260
0.34 0.263 0.37 0.23 ±0.230
0.24 0.412 0.28 — ±0.27
0.19 0.304 0.34 0.20 ±0.254
Orthorhombic Crystals; Point Groups 222, m22, mmm —continued Elastooptic coefficients Material
p31
Al2SiO4(OH,F)2 BaSO4 HIO3 NaKC4H4O6 NH4ClO4 (NH4)2SO4
0.095 0.28 0.251 0.36 0.19 0.20
© 2003 by CRC Press LLC
p32 0.085 0.22 0.345 0.35 0.18 ±0.26
p33 –0.083 0.31 0.336 0.36 ±0.02 0.26
p44 –0.095 0.002 0.084 –0.030 <±0.02 0.015
p55 –0.031 –0.012 –0.030 0.0046 — ±0.0015
p66 0.098 0.037 0.098 –0.025 ±0.04 0.012
Ref. 28 55 54 53 51 52
Section 1: Crystalline Materials Rare Gas Crystals Elastooptic coefficients p11
p12
p44
Ne (T = 24.3 K)
0.157
0.168
Ar (T = 82.3 K)
0.256
Kr (T = 115.6 K) Xe (T = 160.5 K)
Rare Gas
p11 – p12
Ref.
0.004
–0.011
59
0.302
0.015
–0.046
60
0.34
0.34
0.037
—
59
0.284
0.370
0.029
–0.086
60
Measured made at a wavelength of 488 nm.
References: 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. 32. 33. 34. 35. 36. 37. 38.
Petterson, H. E., J. Opt. Soc. Am., 63, 1243 (1973). Burstein, E. and Smith, P. L., Phys. Rev., 74, 229 (1948). Pakhnev, A. V., et al., Sov. Phys. J. (transl.), 18, 1662 (1975). Feldman, A., Horovitz, D., and Waxler, R. M., Appl. Opt., 16, 2925 (1977). Iyengar, K. S., Nature (London), 176, 1119 (1955). Bansigir, K. G. and Iyengar, K. S., Acta Crystallogr., 14, 727 (1961). Pakhev, A. V., et al., Sov. Phys. J. (transl.), 20, 648 (1975). Bansigir, K. G., Acta Crystallogr., 23, 505 (1967). Krishna Rao, K. V. and Krishna Murty, V. G., Ind. J. Phys., 41, 150 (1967). Weil, R. and Sun, M. J., Proc. Int. Symp. CdTe (Detectors), XIX–1 Strasbourg, (1972). Schmidt, E. D. D. and Vedam, K., J. Phys. Chem. Solids, 27, 1563 (1966). Biegelsen, D. K., et al., Phys. Rev. B, 14, 3578 (1976). Hellwege, K. H., Landolt–Börnstein, New Series III/II ( Springer–Verlag Berlin, 1979). Feldman, A., Waxler, R. M., and Horovitz, D., J. Appl. Phys., 49, 2589 (1978). Dixon, R. W., J. Appl. Phys., 38, 5149 (1967). Shabin, O. V., et al., Sov. Phys. Solid State (transl.), 13, 3141 (1972). Reintjes, J. and Schultz, M. B., J. Appl. Phys., 39, 5254 (1968). Rivoallan, L. and Favre, F., Opt. Commun., 8, 404 (1973). Rivoallan, L. and Favre, F., Opt. Commun., 11, 296 (1974). Afanasev, I. I., et al., Sov. J. Opt. Technol., 46, 663 (1979). Rand, S. C., et al., Phys. Rev. B, 19, 4205 (1979). Sipe, J. E., Can J. Phys., 56, 199 (1978). Christyi, I. L., et al., Sov. Phys. Solid State (transl.), 17, 922 (1975). Narasimhamurty, T. S., Curr. Sci. (India), 23, 149 (1954). Smith, T. M. and Korpel, A., IEEE J. Quant. Electron., QE–1, 283 (1965). Narasimhamurty, T. S., Proc. Indian Acad. Sci., A40, 164 (1954). Rabman, A., Bhagarantam Commem. Vol., Bangalore Print. and Publ., 173 (1969). Eppendahl, R., Ann. Phys. (IV), 61, 591 (1920). Laurenti, J. P. and Rouzeyre, M., J. Appl. Phys., 52, 6484 (1981). Sasaki, H., et al., J. Appl. Phys., 47, 2046 (1976). Uchida, N. and Saito, S., J. Appl. Phys., 43, 971 (1972). Waxler, R. M. and Farabaugh, E. M., J. Res. Natl. Bur. Stand., A74, 215 (1970). Nelson, D. F., Lazay, P. D., and Lax, M., Phys. Rev., B6, 3109 (1972). O’Brien, R. J., Rosasco, G. J., and Weber, A., J. Opt. Soc. Am., 60, 716 (1970). Avakyants, L. P., et al., Sov. Phys., 18, 1242 (1976). Sapriel, J., Appl. Phys. Lett., 19, 533 (1971). Narasimhamurty, T. S., J. Opt. Soc. Am., 59, 682 (1969). Zubrinov, I. I., et al., Sov. Phys. Solid State (transl.), 15, 1921 (1974).
© 2003 by CRC Press LLC
163
164
Handbook of Optical Materials
39. 40. 41. 42. 43. 44. 45. 46. 47. 48. 49. 50. 51. 52. 53. 54. 55. 56. 57. 58. 59. 60.
Kachalov, O. V. and Shpilko, I. O., Sov. Phys. JETP (transl.), 35, 957 (1972). Narasimhamurty, T. S., et al., J. Mater. Sci., 8, 577 (1973). Tada, K. and Kikuchi, K., Jpn. J. Appl. Phys., 19, 1311 (1980). Aleksandrov, K. S., et al., Sov. Phys. Solid State (transl.), 19, 1090 (1977). Afanasev, I. I., et al., Sov. Phys. Solid State (transl.), 17, 2006 (1975). Silvestrova, I. M., et al., Sov. Phys. Cryst. (transl.), 20, 649 (1975). Veerabhadra Rao, K. and Narasimhamurty, T. S., J. Mater. Sci., 10, 1019 (1975). Venturini, E. L., et al., J. Appl. Phys., 40, 1622 (1969). Vehida, N. and Ohmachi, Y., J. Appl. Phys., 40, 4692 (1969). Grimsditch, M. H. and Ramdus, A. K., Phys. Rev. B, 22, 4094 (1980). Schinke, D. P. and Viehman, W., unpublished data. Coquin, G. A., et al., J. Appl. Phys., 42, 2162 (1971). Vasquez, F., et al., J. Phys. Chem. Solids, 37, 451 (1976). Luspin, Y. and Hauret, G., C.R. Ac. Sci. Paris, B274, 995 (1972). Narasimhamurty, T. S., Phys. Rev., 186, 945 (1969). Haussühl, S. and Weber, H. J., Z. Kristallogr., 132, 266 (1970). Vedam, K., Proc. Ind. Ac. Sci., A34, 161 (1951). Yano, T., Fukumoto, A., and Watanabe, A., J. Appl. Phys., 42, 3674 (1971). Manenkov, A. A. and Ritus, A. I., Sov. J. Quant. Electr., 8, 78 (1978). Eschler, H. and Weidinger, F., J. Appl. Phys., 46, 65 (1975). Rand, S. C., Rao, B. S., Enright, G. D., and Stoicheff, B. P., Phys. Rev. B, 19, 4205 (1979). Sipe, J. E., Can. J. Phys., 56, 199 (1978).
1.8.2 Acoustooptic Materials A figure of merit for an acoustooptic material is M = n6 p2/ρv3, where n is the refractive index, p is the photoelastic constant, ρ is the density, and ν is the sound velocity. Properties of Selected Acoustooptic Materials Material
Transparency range (µm)
Ge Hg2Br2 Hg2Cl2 Hg2I2 LiNbO3 PbBr2 PbCl2 PbMoO4 SiO2 TeO2
2–20 0.40–30 0.36–20 0.45–40 0.35–5.0 0.36–60 0.35–20 0.42–5.5 0.12–4.5 0.35–5.0
Tl3AsS3
1.3–17
Acoustic mode/ direction L <111> S <110> S <110> S <110> L <100> S <010> S <001> L <001> L <100> L <001> S <110> L <001>
Acoustic velocity ((km/s) 5.5 0.273 0.347 0.254 6.5 2.30 2.51 3.63 5.72 4.2 0.62 2.15
Figure of merit 840 2600 700 3200 4.6 550 136 36.3 2.38 34.5 793 416
All measurements at 0.633 µm, except for Ge at 10.6 µm; L = longitudinal, S = shear.
Reference: Gottlieb, M. and Singh, N. B., Elastooptic materials, Handbook of Laser Science and Technology, Suppl. 2: Optical Materials (CRC Press, Boca Raton, FL, 1995), p. 416.
© 2003 by CRC Press LLC
Section 1: Crystalline Materials
165
1.9 Nonlinear Optical Properties 1.9.1 Nonlinear Refractive Index* Nonlinear refraction is commonly defined either in terms of the optical field intensity I n = n0 + γI or in terms of the average of the square of the optical electric field <E2> n = n0 + n2<E2>, where n0 is the ordinary linear refractive index, γ is the nonlinear refractive coefficient, and n2 is the nonlinear refractive index. The conversion between n2 and γ is given by n2[cm3/erg] = (cn0/40π) γ[m2/W] = 238.7 n0 γ[cm2/W], where c is the speed (in m/s) of light in vacuum. (3)
In terms of third-order susceptibility tensor χ (-ω,ω,ω,-ω) of the medium, the nonlinear refractive indices for a linearly polarized wave and a circularly polarized wave in an isotropic material are n2(LP) = (12π/n0)χ
(3)
and n2(CP) = (24π/n0)χ
(-ω,ω,ω,-ω)
1111
(3)
(-ω,ω,ω,-ω).
1122
Whereas in a cubic material the linear refractive index is isotropic, n2 is not. If θ is the angle made by the electric field vector with the [100] axis for a wave propagating along, say, (3) [001], the effective value of χ is given by n2(θ) = 12π/n0{χ
(3)
2
[1 + σsin(θ) /2]},
1111
where σ = [χ
(3) 1111
– χ(3)1122 + 2χ(3)1212]/χ(3)1111.
For a circularly polarized beam propagating along [100] n2(CP,100) = 6π/n0[χ
(3) 1111
+ 2χ(3)1122 – χ(3)1212]
and for a circularly polarized beam propagating along [111] n2(CP,111) = 4π/n0[χ
(3) 1111
+ 4χ(3)1122 – χ(3)1212].
The nonlinear refractive index is not a unique quantity for a given material because several physical mechanisms contribute to the polarization that is cubic in the applied optical elect* This section was adapted from Chase, L. L. and Van Stryland, E. W., Nonlinear Refractive index: inorganic materials, Handbook of Laser Science and Technology, Suppl. 2: Optical Materials (CRC Press, Boca Raton, FL, 1995), p. 269.
© 2003 by CRC Press LLC
166
Handbook of Optical Materials
ric field. These physical mechanisms require a material response that can take place on various time scales. The mechanisms that contribute most strongly to n2 , and their characteristic time scales (in parentheses) are bound electrons (10–15 s), optically created free carriers (>10–12 s), Raman-active optical phonons (10–12 s), electrostriction (>10–9 s), and thermal excitation (~10–9 s). Several methods listed below have been employed to measure n2. The details of the measurements determine the relative contributions from the various possible physical mechanisms to the measured n2. In general, experiments done with picosecond pulses and nondegenerate mixing are less likely to be affected by the “slow” electrostrictive or thermal effects than those done in the nanosecond pulse regime and with degenerate mixing. Most of the measurements include the effects of both electronic and vibrational (Raman) contributions to n2. Techniques for Measuring the Nonlinear Refractive Index Method DFWM DHG DTLC ER KE NDFWM OKE PDF PST RSS SFL SPA SPM SSMG TBI TII TRI TWR WFC ZS
Degenerate four-wave mixing Dynamic holographic grating Damage threshold for linear vs. circular polarization Ellipse rotation DC Kerr effect Nondegenerate four-wave mixing Optical Kerr effect Power-dependent focus Power for self-trapping Raman scattering spectroscopy Self-focal length Spatial profile analysis Self-phase modulation Small-scale modulation growth Two-beam interferometry Time-integrated interferometry Time-resolved interferometry Temporal waveform reshaping Wavefront conjugation Z-scan
Ref. 2 3 4 5 6 7,8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
In the following tables of nonlinear refractive parameters, values in parentheses were calculated by Chase and Van Stryland1 from the quantities reported in the original references. Refractive indices in parentheses were obtained from extrapolation of available data. For noncubic crystals, or for cubic crystals where the polarization is not along a cube (3) axis or is not specified in the original reference, the value tabulated for χ 1111 is an (3) effective value of χ . Unless noted otherwise, measurements were made at room temperature.
© 2003 by CRC Press LLC
Measured Nonlinear Refractive Parameters Pulse duration Crystals
3 0.17 0.02 0.028 0.016 3 0.030 3 3 ~1 — 0.027 0.017 4 0.125 0.3 0.028 0.02 0.016 3 1.5 × 10–4 4 3
(nm) 1064 308 532 1064 355 560, 590 1064 1064 1064 1064 850–810 532 308 592, 575 1064 1064 1064 532 355 1064 532 545, 545-ε 560, 590
index 2.02 (1.814) 1.8 1.75 1.8 (1.76) (1.76) 1.75 1.75 1.76 NA (1.476) (1.500) (1.47) 1.47 1.468 1.47 1.48 1.5 1.73 — (2.42) (1.66)
(10
cm
3
(1.25) (0.088) (0.066) (0.056) (0.076) (0.11) (0.060) (0.060) (0.057) (0.069) — (0.031) (0.077) 0.069 (0.39) (0.026) 0.019 0.029 0.039 (0.67) — 0.46 (0.14)
erg) (10
n2,LP −13 3 cm
erg)
23.3 (1.82) (1.4) (1.2) (1.6) 2.4 1.3 1.3 1.23 1.48 –(2.2–3.3) × 104 0.8 (1.94) (1.8) (1.00) 0.67 (0.5) (0.73) (0.97) 1.46 5 (7.2) 3.2
(10
γL P −16
2
cm / W )
(48.3) 4.2 3.3 2.9 3.7 (5.7) (3.1) (3.11) (2.94) (3.52) — (2.27) 5.42 (5.0) 2.85 (1.91) 1.4 2.1 2.7 (3.54) — (12.6) (8.1)
Ref. 23 a 24 25 25 25 8 26 7 7 27 28 b 29 24 30 32 7 25 25 25 7 33 31 n 28 c
167
© 2003 by CRC Press LLC
NDFWM PDF ZS ZS ZS NDFWM PDF NDFWM NDFWM TRI TRI ZS PDF NDFWM TRI DFWM ZS ZS ZS NDFWM OKE NDFWM NDFWM
(ns)
χ1111
−13
Section 1: Crystalline Materials
AgCl Al2O3 Al2O3 Al2O3 Al2O3 Al2O3 Al2O3 Al2O3 (E||c) Al2O3 (E⊥c) Al2O3:Cr AlGaAs BaF2 BaF2 BaF2 BaF2 BaF2 (100) BaF2 (100) BaF2 (100) BaF2 (100) BeAl2O4 Bi 12SiO 20 C (diamond) CaCO3
Method
Linear Wavelength refractive
168
Measured Nonlinear Refractive Parameters—continued
Crystals CaCO3 (E || c) CaCO3 (E ⊥c) CaF2 CaF2 CaF2 CaF2 CaF2 CaMg2Si2O 6 CaO (100) CaWO4 (E ⊥ c) CaWO4 (E || c) CdF 2 CdF 2 CdF 2 (100) CdS CdS CdS (E||c) CdS(E⊥c) CdS 0.18Se 0.82 CdS 0.5Se 0.5 CdS 0.5Se 0.5 CdSe CdTe
© 2003 by CRC Press LLC
Method NDFWM NDFWM PDF NDFWM NDFWM TRI PDF NDFWM NDFWM NDFWM NDFWM NDFWM TRI NDFWM ZS SPA NDFWM NDFWM SPA ZS SPA ZS ZS
(ns) 3 3 0.017 4 3 0.125 0.030 3 3 3 3 4 0.125 3 0.03 20 3 3 20 0.03 20 0.03 0.04
Linear Wavelength refractive (nm) 1064 1064 308 592, 575 560, 590 1064 1064 1064 1064 1064 1064 575, 575-ε 1064 1064 532 694 1064 1064 694 1064 694 1064 1064
index 1.48 1.643 (1.453) (1.43) (1.43) 1.43 1.43 1.67 1.83 1.89 1.91 (1.57) 1.57 1.56 2.34 (2.42) 2.34 2.33 (2.6) 2.45 (2.5) 2.56 2.84
χ1111
(10
−13
cm
3
(0.033) (0.048) (0.026) 0.04 (0.055) (0.025) 0.105 (0.077) (0.25) (0.25) (0.28) 0.145 (0.061) (0.16) (–211) (130) (17.5) (18.8) (1500) (65) (230) (–6.1) (–150)
erg) (10
n2,LP −13 3 cm
0.83 1.11 (0.67) (1.1) 1.46 0.65 2.8 1.73 5.2 4.2 5.6 (3.48) (1.46) 3.95 –3400 2 × 103 283 304 2.2 × 104 1000 3.5 × 103 –90 –2000
erg)
(10
γL P −16
2
cm / W )
(2.35) (2.83) 1.92 (3.1) (4.3) 1.90 (8.1) (4.34) (11.9) (9.3) (12.3) (9.29) 3.87 (10.6) (–6090) (3.5 × 103) (507) (547) (3.5 × 104) (1710) (5.9 × 103) (–147) (–3000)
Ref. 23 23 24 30 8 32,34 10 7 7 7 7 31 32 7 35 36 7 7 36 35 36 35 35
Handbook of Optical Materials
Pulse duration
CdTe
15 3 0.125 0.006 0.006 — 3 3 0.03 ~200 2.7 × 10–3 3 3 3 0.06 ~200 2.3 — 300 CW CW CW — 3 0.030 3 0.030
1064 1064 1064 1064 1064, 532 1064, 532 773, 694 1064 1064 1064 9200–11800 577 1064 1064 1064 10600 9200–11800 10590 10600 38000 10640 5313 5405–5714 10600 1064 1064 1064 1064
2.84 ~3 ~1.6 ~1.6 (1.64) — (1.94) 1.96 1.96 3.47 (3.3) (3.396) 1.945 1.891 1.943 3.47 4. (4.) 4. 4.0 4.25 (4) (4) (4) 1.544 1.544 1.479 1.479
±150
±2100
2.5 × (0.055) (0.066) 0.086 0.029 33 (0.24) (0.30) (~249) 120 2.1 × 103 (0.30) (0.20) (0.28) (290) 1000 250 — 400 — (–6. × 1010) — ~2 × 106 (0.12) 0.58 (0.079) 0.13 105
37 d
±3100
(3.1 × 1.3 (1.55) (2.0) — 640 4.53 5.8 ~2700 (1.4 × 103) (2.33 × 104) 5.8 4.0 5.5 2700 (9.4 × 103) (2.3 × 103) — (3.8 × 103) [n = –7 × 10–3 I1/3] (–6. × 1011) 100 (~2 × 107) 2.93 14.2 2.01 3.3 106)
(4.4 × (3.4) 4.06 (5.1) — 1400 (9.7) (12.4) (~3260) (1.7 × 103) (2.87 × 104) (12.5) (8.9) (11.9) (2800) (9.9 × 103) (2.5 × 103) — (3.9 × 103) — –6 × 1011 — (~2 × 107) (8.0) (38.5) (5.7) (9.3) 106)
38 7 32 39 39 e 40m 7 7 35 41 42 7 7 7 35 41 43 44 f 45 46 g 47 l 48 h 49 i 7 10 7 59
169
© 2003 by CRC Press LLC
WFC NDFWM TRI NDFWM NDFWM NDFWM NDFWM NDFWM ZS NDFWM TDFWM NDFWM NDFWM NDFWM ZS NDFWM ER NDFWM WFC SPA SPA SPA NDFWM NDFWM PDF NDFWM PDF
0.04
Section 1: Crystalline Materials
CdTe CeF3 CeF3 CsCl CsCl CuCl Er2O3 Ga2O3 GaAs GaAs GaP Gd3Ga5O12 Gd3Sc2Al3O12 Gd3Sc2Ga3O12 Ge Ge Ge Ge Ge HgCdTe InSb InSb InSb KBr KBr KCl KCl
DFWM
170
Measured Nonlinear Refractive Parameters—continued
Crystals KF KF KH2PO4 KH2PO4 KH2PO4 (||c) KH2PO4 (⊥c) KI KI KI KTaO3 KTiOPO4 KTiOPO4 La2Be2O5:Nd La3Lu2Ga3O12 LaF3 LaF3 (||c) LAP, x + z LAP,y LiCl LiCl LiF LiF LiF LiF
© 2003 by CRC Press LLC
Method NDFWM NDFWM TRI PDF NDFWM NDFWM NDFWM NDFWM PDF NDFWM NDFWM ZS PDF NDFWM TRI NDFWM NDFWM NDFWM NDFWM NDFWM ZS ZS NDFWM TRI
(ns) 0.006 0.006 0.10 0.030 3 3 0.006 0.006 0.030 3 3 0.04 0.030 3 0.125 3 3 3 0.006 0.006 0.028 0.02 3 0.125
Linear Wavelength refractive (nm) 1064, 532 1064, 532 1064 1064 1064 1064 1064, 532 1064, 532 1064 1064 1064 1064 1064 1064 1064 1064 1064 1064 1064,532 1064,532 1064 532 560, 590 1064
index (1.36) — (1.49) 1.49 1.460 1.494 (1.7) 1.638 2.25 1.74 1.78 (1.98) 1.930 1.60(o) 1.60 1.51 1.559 (1.67) — 1.39 1.4 (1.39) 1.39
χ1111
(10
−13
cm
3
0.014 0.020 (0.040) 0.14 (0.028) (0.031) 0.38 0.13 0.49 (1.73) (0.26) (0.47) (0.11) (0.30) (0.064) (0.059) (0.12) (0.077) 0.069 0.027 (0.01) (0.011) (0.034) (0.013)
erg) (10
n2,LP −13 3 cm
(0.39) — 1.0 3.6 0.72 0.78 (8.4) — 11.2 29 5.73 (10) 2.1 5.8 1.51 1.4 3.0 1.87 (1.56) — (0.27) (0.3) 0.92 0.35
erg)
(10
γL P −16
2
cm / W )
(1.2) — (2.8) (10) (2.1) (2.2) (20) — (29) (54) (13.8) 24 (4.4) (12.6) 3.95 (3.7) (8.4) (5.0) (3.9) — (0.81) 0.9 (2.8) 1.05
Ref. 39 39 e 34 7 7 7 39 39 e 10 7 7 50 26 10 86 7 7 7 39 39 e 51 51 8 32,34
Handbook of Optical Materials
Pulse duration
5 0.125 3 3 0.028 0.02 0.016 0.125 3 3 0.030 3 0.030 3 0.125 0.030 0.125 ~200 20 3 3 3 4 0.125 3 3 3 0.08
577 1064 1064 1064 1064 532 355 1064 1064 1064 1064 1064 1064 1064 1064 1064 1064 9200–11800 694 1064 1064 1064 592, 575 1064 1064 1064 1064 1064
(2.31(o)) 1.45(o) 1.72 1.374 1.38 1.38 1.4 1.37(o) 1.72 1.623 1.62 1.531 1.532 1.321 1.32 1.321 1.76 (3.4) 2.68 1.534 1.543 1.433 (1.43) 1.43 1.81 2.31 2.48 (2.48)
— (0.023) (0.068) (0.0091) (0.0073) (0.008) (0.0085) (0.011) (0.073) (0.14) 0.41 (0.065) 0.26 (0.012) (0.015) 0.03 (0.23) 60 (36) (0.046) (0.047) (0.019) 0.052 (0.023) (0.24) (1.63) (3.67) (7.75)
— 0.60 1.5 0.25 (0.20) (0.22) (0.23) 0.30 1.61 3.26 9.6 1.59 6.5 0.34 0.43 0.9 4.94 660. 510 1.12 1.16 0.50 (1.4) 0.60 5.07 26.7 55.8 (118)
— 1.72 (3.65) (0.76) 0.61 0.67 0.69 0.92 (3.92) (8.41) (25) (4.35) (18) (1.1) 1.37 (2.9) 11.7 (820) (800) (3.06) (3.15) (1.46) (4.0) 1.76 (11.7) (48) (94) 200
52 32 7 7 51 51 25 32,34 7 7 10 7 10 7 32 10 32 41 53 7 7 7 30 32 7 7 7 2
171
© 2003 by CRC Press LLC
NDFWM TRI NDFWM NDFWM ZS ZS ZS TRI NDFWM NDFWM PDF NDFWM PDF NDFWM TRI PDF TRI NDFWM SPA,TWR NDFWM NDFWM NDFWM NDFWM TRI NDFWM NDFWM NDFWM DFWM
Section 1: Crystalline Materials
LiNbO3 LiYF4 MgAl2O4 MgF 2 MgF 2 MgF 2 MgF 2 MgF 2 MgO NaBr NaBr NaCl NaCl NaF NaF NaF PbF 2 Si SiC SiO2 (⊥c) SiO2 (||c) SrF2 SrF2 SrF2 SrO (110) SrTiO3 TiO2 TiO2
172
Measured Nonlinear Refractive Parameters—continued
Crystals Y 2O 3 Y3Al5O12 Y3Al5O12 Y3Al5O12 Y3Al5O12 Y3Al5O12:Nd Y3Ga5O12 YAlO3 ZnO (E⊥χ) ZnO (E||c) ZnS ZnS (E||c) ZnS (E⊥c) ZnSe ZnSe ZnSe ZnSe ZnTe ZrO2 ZrO2 ZrO2
Method NDFWM TRI NDFWM TRI ER PDF NDFWM NDFWM NDFWM NDFWM ZS NDFWM NDFWM ZS DFWM ZS DFWM ZS SFL SFL NDFWM
(ns) 3 0.15 3 ~1 13 0.030 3 3 3 3 0.03 3 3 0.03 0.04 0.03 0.03 0.03 0.045 0.03 3
Linear Wavelength refractive (nm) 1064 1064 560,590 1064 694 1064 1064 1064 1064 1064 1064 1064 1064 1064 1064 532 532 1064 1064 1064 1064
index 1.92 (1.83) (1.83) 1.83 1.829 1.82 1.912 1.933 1.99 1.96 2.40 2.29 2.29 2.48 2.48 2.70 2.70 2.79 (1.92) (1.92) 2.12
χ1111
(10
−13
cm
(0.27) (0.15) (0.22) (0.17) (0.21) 0.17 (0.26) (0.17) (1.32) (1.20) (3.1) (2.98) (2.85) (11) 18 (–29) ±30 (61) (0.41) (0.31) (0.33)
3
erg) (10
n2,LP −13 3 cm
5.33 3.16 4.5 3.47 4.27 3.5 5.2 3.37 25 23 48 49 47 170 (270) –400 (±420) 830 8 6 5.8
erg)
(10
γL P −16
2
cm / W )
(11.6) (7.2) (10) (7.9) (9.8) (8.1) (11.4) (7.3) (53) (49) (84) (90) (87) (290) (460) (–621) (±650) (1250) (17) (12.9) (11.5)
Ref. 7 54 i 8 27 5k 7 7 7 7 7 35 7 7 35 37 35 37 d 35 55 56 7
a polycrystalline sample; b wavelength dependent; c E || optic axis ; d absolute values measured; e in 5 mol/O acq. sc; f relative spect; impurity; 175 K, I i n W/cm2; g 175 K, I in W/cm2; h 77 K, free electrons; i 4 K, free electrons; j 4 K || [111]; k E || [100]; l 5 K, free electrons; m 15 K; n dispersion also given.
© 2003 by CRC Press LLC
Handbook of Optical Materials
Pulse duration
Section 1: Crystalline Materials Dispersion of the Nonlinear Refractive Index n2 x 10 Material LiF MgF2 BaF2 SiO2 Al2O3 BaB2O4 KBr CaCO3 LiNbO3 KTiOPO4
Energy gap (eV) 13.6 10.8 9.1 8.4 9.9 6.2 7.6 5.9 4.0 3.5
-14
173
*
esu
266 nm
355 nm
532 nm
1064 nm
4.0 ± 1.0 5.0 ± 1.0 11 ± 2 28 ± 6 26 ± 5 1 ± 0.3 — 46 ± 9 — —
1.9 ± 0.4 2.2 ± 0.4 9.7 ± 1.9 8.5 ± 1.7 16 ± 3 14 ± 3 — 14 ± 3 — —
1.9 ± 0.4 1.9 ± 0.4 7.5 ± 1.5 7.8 ± 1.6 14 ± 3 21 ± 4 47 ± 9 11 ± 2 440 ± 70 98 ± 15
2.5 ± 0.5 1.9 ± 0.4 5.0 ± 1.0 7.4 ± 1.5 13 ± 3 11 ± 2 29 ± 6 11 ± 2 48 ± 7 100 ± 20
*
DeSalvo, R., Said, A. A., Hagan, D. J., Van Stryland, E. W., and Sheik-Bahae, M., Infrared to ultraviolet measurements of two-photon absorption and n2 in wide bandgap solids, IEEE J. Quantum Electron. 32, 1324 (1996). See also, Adair, R., Chase, L. L., and Payne, S. A., dispersion of the nonlinear refractive index of optical crystals, Opt. Mater. 1, 185 (1992).
References: 1.
2. 3.
4. 5. 6. 7. 8. 9. 10.
11. 12.
Chase, L. L., and Van Stryland, E. W., Nonlinear refractive index: inorganic materials, in Handbook of Laser Science and Technology, Suppl. 2: Optical Materials (CRC Press, Boca Raton, FL, 1995), p. 269. Friberg, S. R., and Smith, P. W., Nonlinear optical glasses for ultrafast optical switches, IEEE J. Quantum Electron. QE-23, 2089 (1987). Odulov, S. G., Reznikov, Y. A., Soskin, M. S., and Khizhnyak, A. I., Photostimulated transformation of molecules—A new type of “giant” optical nonlinearity in liquid crystals, Sov. Phys. JETP 55(5), 854 (1982). Feldman, A., Horowitz, D., and Waxler, R. M., Mechanisms for self-focusing in optical glasses, IEEE J. Quantum Electron. QE-9, 1054 (1973). Owyoung, A., Ellipse rotation studies in laser host materials, IEEE J. Quantum Electron. QE9(11), 1064 (1973). Hellwarth, R. W., and George, N., Nonlinear refractive indices of CS2-CCl4 mixtures, Opt. Electron. 1, 213 (1969). Adair, R., Chase, L. L., and Payne, S. A., Nonlinear refractive index of optical crystals, Phys. Rev. B39, 3337 (1989). Levenson, M. D., Feasibility of measuring the nonlinear index of refraction by third-order frequency mixing, IEEE J. Quantum Electron. QE-10(2), 110 (1974). Ho, P. P., and Alfano, R. R., Optical Kerr effect in liquids, Phys. Rev. A 20(5), 2170 (1979). Smith, W. L., Bechtel, J. H., and Bloembergen, N., Dielectric-breakdown threshold and nonlinear-refractive-index measurements with picosecond laser pulses, Phys. Rev. B 12, 706 (1975). Wang, C. C., Nonlinear susceptibility constants and self-focusing of optical beams in liquids, Phys. Rev. 152(1), 149 (1966). Yang, T. T., Raman scattering and optical susceptibilities of Nd-doped glasses, Appl. Phys. 11, 167 (1976).
© 2003 by CRC Press LLC
174 13. 14. 15. 16.
17. 18.
19.
20.
21. 22.
23. 24. 25.
26.
27.
28. 29. 30. 31. 32. 33.
Handbook of Optical Materials Hongyo, M., Sasaki, T., and Yamanaka, C., Nonlinear effects of POCl3 liquid laser, Technol. Rep. Osaka Univ. 23 (1121–1154), 455 (1973). Bjorkholm, J. E. and Ashkin, A., cw self-focusing and self-trapping of light in sodium vapor, Phys. Rev. Lett. 32(4), 129 (1974). Stolen, R. H., and Lin, C., Self-phase-modulation in silica optical fibers, Phys. Rev. A 17(4), 1448 (1978). Smith, W. L., Warren, W. E., Vercimak, C. L., and White, W. T., III, Nonlinear refractive index at 351 nm by direct measurement of small-scale self-focusing, Paper FB4, Digest of Conference on Lasers and Electro Optic, (Optical Society of America, Washington, DC, 1983), p. 17. Owyoung, A., and Peercy, P. S., Precise characterization of the Raman nonlinearity in benzene using nonlinear interferometry, J. Appl. Phys. 48(2), 674 (1977). Witte, K. J., Galanti, M., and Volk, R., n2-Measurements at 1.32 µm of some organic compounds usable as solvents in a saturable absorber for an atomic iodine laser, Opt. Commun. 34(2), 278 (1980). Milam, D., and Weber, M. J., Measurement of nonlinear refractive-index coefficients using time-resolved interferometry: application to optical materials for high-power neodymium laser, J. Appl. Phys. 47(6), 2497 (1976). Hanson, E. G., Shen, Y. R., and Wong, G. K. L., Experimental study of self-focusing in a liquid crystalline medium, Appl. Phys. 14, 65 (1977); Self-focusing: from transient to quasi-steadystate, Opt. Commun. 20(1), 45 (1977); Wong, G. K. L., and Shen, Y. R., Transient self-focusing in a nematic liquid crystal in the isotropic phase, Phys. Rev. Lett. 32(10), 527 (1974). Grischkowsky, D., Shiren, N. S., and Bennett, R. J., Generation of time-reversed wave fronts using a resonantly enhanced electronic nonlinearity, Appl. Phys. Lett. 33(9), 805 (1978). Sheik-Bahae, M., Said, A. A., Wei, T. H., Hagan, D. J., and Van Stryland, E. W., Sensitive measurement of optical nonlinearities using a single beam, IEEE J. Quantum Electron. 26, 760 (1990). Adair, R., Chase, L. L., and Payne, S. A., Nonlinear refractive index of optical crystals, Phys. Rev. B39, 3337 (1989). Kim, Y. P., and Hutchinson, M. H. R., Intensity-induced nonlinear effects in UV window materials, Appl. Phys. B49, 469 (1989). Sheik-Bahae, M., DeSalvo, J. R., Said, A. A., Hagan, D. J., Soileau, M. J., and Van Stryland, E. W., Nonlinear refraction in UV transmitting materials, Laser-Induced Damage in Optical Materials: 1991, SPIE 1624, 25 (1992). Smith, W. L., and Bechtel, J. H., Laser-induced breakdown and nonlinear refractive index measurements in phosphate glasses, lanthanum beryllate, and Al2O3, Appl. Phys. Lett. 28, 606 (1976). Moran, M. J., She, C. Y., and Carman, R. L., Interferometric measurements of the nonlinear refractive index coefficient relative to CS2 in laser-system-related materials, IEEE J. Quantum Electron. QE-11(6), 159 (1975). LaGasse, M. J., Anderson, K. K., Wang, C. A., Haus, H. A., and Fujimoto, J. G., Femtosecond measurements of the nonresonant nonlinear index in AlGaAs, Appl. Phys. Lett. 56, 417 (1990). Sheik-Bahae, M. Said, A. A., and Van Stryland, E. W., High-sensitivity, single-beam n2 measurements, Opt. Lett. 14, 955 (1989). Lynch, R. T., Jr., Levenson, M. D., and Bloembergen, N., Experimental test for deviation from Kleinman’s symmetry in the third order susceptibility tensor, Phys. Lett. 50A(1), 61 (1974). Levenson, M. D., and Bloembergen, N., Dispersion of the nonlinear optical susceptibility tensor in centrosymmetric media, Phys. Rev. B10(10), 4447 (1974). Milam, D., Weber, M. J., and Glass, A. J., Nonlinear refractive index of fluoride crystals, Appl. Phys. Lett. 31(12), 822 (1977). Le Saux, G., Salin, F., Georges, P., Roger, G., and Brun, A., Measurement of the nonlinear index n2 of BSO crystals, Appl. Opt. 27, 2812 (1988).
© 2003 by CRC Press LLC
Section 1: Crystalline Materials 34. 35.
36.
37.
38. 39. 40. 41. 42. 43. 44. 45. 46. 47. 48. 49. 50. 51. 52. 53. 54. 55.
56.
175
Milam, D., and Weber, M. J., Time-resolved interferometric measurements of the nonlinear refractive index in laser materials, Opt. Commun. 18(1), 172 (1976). Sheik-Bahae, M., Said, A. A., Wei, T. H., Wu, Y. Y., Hagan, D. J., Soileau, M. J., and Van Stryland, E. W., Z-scan: a simple and sensitive technique for nonlinear refraction measurements, SPIE 1148, 41 (1989). Borshch, A. A., and Brodin, M. S., Nonlinear polarizability of some binary and mixed semiconductors, Bull. Acad. Sci. U.S.S..R, Phys. Ser. (USA) 43(2), 98 (1978); Borshch, A. A., Brodin, M. S., Krupa, N. N., Lukomiskii, V. P., Pisarenko, V.G., Petropaviovskii, A.I., and Chernyi, V.V., Determination of the coefficients of the nonlinear refractive index of a CdS crystal by the nonlinear refraction method, Sov. Phys. JETP 48(1), 41 (1978). Canto-Said, E .J., Hagan, D. J., Young, J., and Van Stryland, E. W., Degenerate four-wave mixing measurements of high-order nonlinearities in semiconductors, IEEE J. Quantum Electron. 27, 2274 (1991). Kremenitskii, V., Odulov, S., and Soskin, M., Backward degenerate four-wave mixing in cadmium telluride, Phys. Status Solidi (A) 57, K71 (1980). Penzkofer, A., Schmailzi, J., and Glas, H., Four-wave mixing in alkali halide crystals and aqueous solutions, Appl. Phys. B 29, 37 (1982). Kramer, S. D., Parson, F. G., and Bloembergen, N., Interference of third-order light mixing and second-harmonic exciton generation in CuCl, Phys. Rev. B9(4), 1853 (1974). Wynne, J. J., Optical third-order mixing in GaAs, Ge, Si, InAs, Phys. Rev. 178, 1295 (1969). Rhee, B. K., Bron, W. E., and Kuhl, J., Determination of third-order nonlinear susceptibility χ(3) through measurements in the picosecond time domain, Phys. Rev. B30, 7358 (1984). Watkins, D. E., Phipps, C. R., and Thomas, S. J., Determination of the third-order nonlinear optical coefficients of germanium through eclipse rotation, Opt. Lett. 5(6), 248 (1980). Wood, R. A., Kahn, M. A., Wolff, P. A., and Aggarwal, R. L., Dispersion of the nonlinear optical susceptibility of N-type germanium, Opt. Commun. 21(1), 154 (1977). Depatie, D., and Haueisen, D., Multiline phase conjugation at 4 µm in germanium, Opt. Lett. 5(6), 252 (1980). Hill, J. R., Parry, G., and Miller, A., Nonlinear refractive index changes in CdHgTe at 175 K with 10.6 µm radiation, Opt. Commun. 43(2), 151 (1982). Weaire, D., Wherrett, D. S., Miller, D. A. B., and Smith, S. D., Effect of low-power nonlinear refraction on laser-beam propagation in InSb, Opt. Lett. 4(10), 331 (1979). Miller, D. A. B., Seaton, C. T., Prise, M. E., and Smith, S. D., Band-gap-resonant nonlinear refraction in III-V semiconductors, Phys. Rev. Lett. 47(3) (197 (1981). Yuen, S. Y., and Wolff, P. A., Difference-frequency variation of the free-carrier-induced, thirdorder nonlinear susceptibility in n-InSb, Appl. Phys. Lett. 40(6), 457 (1982). DeSalvo, R., Hagan, D. J., Sheik-Bahae, M., Stegeman, G., and Van Stryland, E. W., Selffocusing and self-defocusing by cascaded second-order effects in KTP, Opt. Lett. 17, 28 (1992). Van Stryland, E. W., Dispersion of n 2 in solids, Laser-Induced Damage in Optical Materials: 1990, SPIE 1441, 430 (1991). Wynne, J. J., Nonlinear optical spectroscopy of χ(3) in LiNbO3, Phys. Rev. Lett. 29, 650 (1972). Borshch, A. A., Brodin, M. S., and Volkov, V. I., Self-focusing of ruby-laser radiation in singlecrystal silicon carbide, Sov. Phys. JETP 45(3), 490 (1977). Bliss, E. S., Speck, D. R., and Simmons, W. W., Direct interferometric measurements of the nonlinear refractive index coefficient n2 in laser materials, Appl. Phys. Lett. 25(12), 728 (1974). Mansour, N., Soileau, M. J., and Van Stryland, E. W., Picosecond damage in Y2O3 stabilized zirconia, in Laser-Induced Damage in Optical Materials, National Bureau of Standards Special Publication 727 (National Bureau of Standards, Washington, DC, 1984), p. 31. Guha, S., Mansour, N., and Soileau, M. J., Direct n2 measurement in yttria stabilized cubic zirconia, in Laser-Induced Damage in Optical Materials, National Bureau of Standards Special Publication 746 (National Bureau of Standards, Washington, DC, 1985), p. 80.
© 2003 by CRC Press LLC
176
Handbook of Optical Materials
1.9.2 Two-Photon Absorption* Two-photon absorption (2PA) occurs in all materials at sufficiently high irradiance when the combined energy of two quanta of light matches a transition energy between two states of the same parity. The fundamental equation describing this loss of irradiance I with depth z in a material is 2
dI/dz + βI , where β is the two-photon absorption coefficient. The coefficient β is proportional to the (3) (3) imaginary part of χ (–ω,ω,ω,–ω). The relationship between n2, β, and χ is analogous to the relationship between n0, the linear absorption coefficient α, and the linear susceptibility χ. The two-photon absorption coefficient β depends not only on the frequency arguments but also on the state of polarization, propagation direction, and crystal symmetry as β is derived (3) (3) from the imaginary part of the third-order susceptibility tensor χ . Relations for χ for cubic crystals for several polarization orientations are presented in reference 1. These (3) relations are valid for both the real and imaginary parts of χ . For a linear or circularly polarized wave: 2
2 2
(3)
2
2 2
(3)
β(LP) = (32π ω/n c )3χ 1111 and β(CP) = (64π ω/n c )3χ 1122. Because these equations are in cgs units (esu), β is in cm s/erg rather than the more common mixed unit of cm/W. Several methods have been used to measure the two-photon absorption coefficient in solids. Direct transmission measurements as a function of irradiance have been the primary method to determine absolutely calibrated values of β as well as two-photon absorption spectra. Several other techniques have been utilized to obtain calibrated as well as relative measurements and two-photon absorption spectra. These are listed in the table to follow. Many of these methods require calibration. Direct transmission experiments are best suited for absolute calibration. Because to give a value for β a measurement of the absolute irradiance is needed, single-beam experiments are most easily calirated. Once absolute calibration is obtained at a single wavelength, relative measurements and spectral measurements can be calibrated. * This section was adapted from Van Stryland, E. W. and Chase, L. L., Two-photon absorption: inorganic materials, Handbook of Laser Science and Technology, Suppl. 2: Optical Materials (CRC Press, Boca Raton, FL, 1995), p. 299.
© 2003 by CRC Press LLC
Section 1: Crystalline Materials
177
Techniques for Measuring Two-Photon Absorption Method AI1 AI2 AIS C CR EPR FCC GTA IA L HGE PA PC TCN TL TRT Z-scan
Attenuation vs. irradiance for a single beam Attenuation vs. irradiance; two beams, usually one scanned in ω Attenuation vs. irradiance; broad spectrum treated simultaneously Calorimetry Comparison of 2-photon loss and Raman gain Elliptical polarization rotation F-center coloration Gain measurement in a 2-photon-pumped amplifier Intracavity absorption Luminescence or fluorescence Harmonic generation efficiency Photoacoustics Photoconductivity or photo-Hall effect Two-channel normalization Thermal lensing Time-resolved transmission A propagation method to measure β and n2
Ref. 3, 4 5 6 7 8, 9 10 11 12 13 14, 15 16 17 18, 19 20 21 22 23
The experimental data on two-photon absorption coefficients (β in cm per GW) are presented in the following table. Materials are listed alphabetically. The method of measurement (using the above table), the pulse duration tp, the input two-photon excitation energy 2hω (or range of energies if spectra are given), band gap energy Eg (if given in the reference) or absorption cutoff energy for wide-gap materials, and linear index n0(hω) are listed. The linear refractive indices are taken from reference 2. The following shorthand notation is used in the table: Anisot. = anisotropy; βl and βc = β measured with linearly or circularly polarized light, respectively; Cleartran = brand name of heat-treated ZnS that makes it water clear and is grown by CVD = chemical vapor deposition; Dir. = direct; K = Kelvin; L = length; Mag. = magnetic; Pol. = polarized; SHG = second harmonic generation; T = temperature; t = time; E for SHG, means that the electric field and propagation direction are aligned for SHG phase matching.
© 2003 by CRC Press LLC
178
Two-Photon Absorption Data
Ag3AsS3 Ag3AsS3 Ag3AsS3 AgCl AgCl AgCl AgGaSe2 α-AgI A1As-GaAs Al2O3 Al2O3 Al2O3 As2S3 BaF2 BaF2 BaF2 BaTiO3 BaTiO3 Bi4Ge3O12 Bi4Ge3O12 Bi4Ge3O12 Bi4Ge3O12 C (diamond) C (diamond)
Method AI2 AI1 AI1 L L L AI1 A12 L AI1 AI1 AI1 AI2 AI1 AI1 AI1 AI2 AI2 L L L AI2 CR AI1
© 2003 by CRC Press LLC
Bandgap
τp (ns)
Eg (eV)
10 25 20
2.1
3.2 9 9 ~0.01
0.017 0.015 0.12 30 0.017 0.015 0.0007 17 0.0012 ~10 9 9 10 4.0 0.021
1.1 2.9 1.7 9.9
2.5 9.1
3.5 4.2
5.47
2hhω (eV) 2.7–3.2 3.56 2.34 4.0–4.4 6.6–7.6 3.3–4.2 2.33 3.0–3.06 1.65–1.8 6.99 9.32 8.05 2.4–3.6 6.99 9.32 10.0 3.4–4.2 4.16 4.1–5.1 4.27–4.83 4.2–5 4.8–5.7 4.55 4.66
Index
2PA coefficient
n0 (hhω)
(cm/GW)
~2.7 ~2.7 ~2.7 2.0 2.07 2.7
~1.79 ~1.84 ~1.8 ~2.6 1.49 ~1.5 ~1.5 ~2.4 2.1 2.1 2.1 2.42 2.42
Abs. spectr. (10 @ 3.1 eV) 20 <3 Abs. spectr. (0.5 @ 4.3 eV) Relative spectrum Relative spectrum 1.4 Relative spectrum Relative spectrum <0.0016 0.27 0.0276 Abs. spectr. (25 @ 3.4 eV) <0.0036 <0.0040 0.11 Abs. spectr. (4 @ 4 eV) 0.1 Relative spectrum Abs. spectr. (50 @ 4.5eV) Relative spectrum Abs. spectr. (10 @ 5.6 eV) <0.003 <0.26
Additional Ref. 24, 25 26 26 27 28 28 29 30 191 3 3 31 32 33 33 34 35 36 37 38 39 40 9 41
information
Indirect gap 77 K 80 K 1.6 K
392 K Photorefraction 80 K 80 K 80 K
Handbook of Optical Materials
Material
Pulse
0.000135 0.015 0.015 4.0 0.015 0.0007 0.12 4.0 0.017 0.015 9
15 3 × 105 30 40 30 30
30 30 5 0.006 30 300
5.9 10
6
3.9
2.42
8.0 6.99 9.32 4.31 9.32 10.0 8.05 4.31 6.99 9.32 3.5–4.4 2.34 3.56 2.4–3.2 3.56 2.5–3.5 2.5–3.4 3.56 2.5–3.5 2.54–3.6 2.54–3.6 3.56 2.65–3.45 2.54–2.55 2.5–3.5 2.550–2.554 3.56 2.5–2.6
~2.5 ~2.5 ~1.5–1.8 1.43 1.46 1.47 1.46
~2.42 2.35–2.42 2.35–2.4 ~2.42 2.3–2.4 2.35–2.44 2.35–2.44 ~2.42 2.35–2.4 ~2.35 2.35–2.42 ~2.35 ~2.42 ~2.35
0.74 0.3 0.24 <0.004 <0.02 0.0083 0.00092 <0.03 <0.042 1.6 Relative spectrum 160 800 Abs. spectr. (11 @ 2.9 eV) 12 Abs. spectr. (20 @ 2.8 eV) Abs. spectr. (14.7 @ 3.4 eV) 30 Relative spectrum Abs. spectr. (30 @ 3.0 eV) Abs. spectr. (30 @ 3.0 eV) 100 Abs. spectr. (35 @ 4 eV) Relative spectrum Abs. spectr. (18 @ 3.35 eV) Relative spectrum 15; 20 Abs. spect. (4000 @2.54 eV)
42 43 3 9 3 34 31 9 33 33 39 44 44 45 46 47 48 49 50 51 51 52 53 54 55 56 57 58
Indirect gap k || [001]
Indirect gap
123 K
Anisotropy 77 K 77 K β vs. length
1.6 K E || c; E ⊥ c
179
© 2003 by CRC Press LLC
AI1 Z-scan AI1 CR AI1 AI1 AI1 CR AI1 AI1 L TRT TRT AI2 L AI2 AI2 AI1 AI2 AI2 AI2 AI1 AI2 AI1 AI2 L AI1 AI2
Section 1: Crystalline Materials
C (diamond) C (diamond) CaCO3 CaF2 CaF2 CaF2 CaF2 CdF2 CdF2 CdF2 CdI2 CdP2 CdP2 CdP2 CdS CdS CdS CdS CdS CdS CdS CdS CdS CdS CdS CdS CdS CdS
180
Two-Photon Absorption Data—continued Method
CdS CdS CdS CdS CdS
L AI1 AI1 AI2 PC
CdS
CR
CdS CdS CdS.25Se.75 CdS0.5Se0.5 CdS0.5Se0.5 CdS0.8Se0.2 CdS0.9Se0.1 CdSe CdSe CdSe CdSe CdSe CdSe CdSe CdSe
AI1 AI1 AI1 C AI1 AI1 AI1 AI1 AI1 AI1 AI1 AI1 AI1 TRT C
© 2003 by CRC Press LLC
Pulse
Bandgap
τp (ns)
Eg (eV)
2hhω (eV)
~2.35 ~2.42 ~2.42
2.58
2.56–2.62 3.56 3.56 2.5–3.6 ~5.1–5.2 3.91
~2.5
~25 20 45 ~10
2.5 2.4 2.5
8
0.027 0.038 11; 26 0.038 30 30
1.78 1.93
1.7
20 15 0.030 ~20 16
4.66 4.66 2.33 2.33 2.33 3.56 3.56 2.33 2.33 2.33 2.33 2.33 2.33 1.88; 2.33 2.33
Index
2PA coefficient
n0 (hhω)
(cm/GW)
~2.8
~2.64 2.51 2.45
2.56 2.56 2.56 2.56 2.56 2.56 2.5; 2.56 2.56
Relative spectrum 56 120; 56 Abs. spectr. (20 @ 3.2 eV) Magnetospectra 0 < B < 10 Tesla 120; k || c; 110 k ⊥ c, E ⊥ c 140 k ⊥ c, E ⊥ c 0.9; 1.8 5.5 15 32;135 10 130 70 950 900; 390 200 60–140 40 30 2; <20 50
Additional Ref. 107 106 82 62 63 65 66 67 67 7 67 49 49 68 69 70 71 72 73 26 74
information
Self-focusing E || c; E ⊥ c β vs. pol. A-excitons 1.8 K β vs. T and resistance E || c; E ⊥ c
E ⊥ z; E || z
Handbook of Optical Materials
Material
C PA C AI1 AI1 AI1 AI1 AI1 AI1 AI1 AI1 TCN C C C PA TCN AI1 AI1 AI1 Z-scan AI2 AI1 AI1 AI2
11; 26 0.040 79 0.038 ~200 0.006 30
1.9–2.4 1.56
0.030 0.030 16 11; 38 79 0.040 20 0.005 0.038 0.035 0.040 ~10 0.017 0.017 ~106
6.9
6.2
2.33 2.33 1.88 2.33 3.65 2.36 3.56 2.33, 3.56 2.33 2.33 2.33 2.33 2.33 2.33 1.88 2.33 2.33 2.34 2.33 2.33 2.33 7.2–8.0 6.99 6.99 5.7–6.8
2.56 2.56 ~2.5 2.56 ~2.6 2.56
2.84 2.84 2.84 2.84 2.84 2.84 ~2.7 2.84 2.84 2.84 2.84 2.84 2.84 ~1.8–1.9 1.6 1.6 ~1.8–1.9
25; 38 35 67 18 ~106 18 100–1700 Relative spectrum 200 180 25 βCdTe/βGaAs = 0.78 130 53; 78 120 50 170 12; 8 22; 15 8 26 Abs. spectr. (10 @ 7.5 eV) 0.051; 0.080 0.028 Relative spectrum
7 75 7 67 76 77 78 79 70 80 73 20 74 7 7 75 81 82 67 83 84 85 3 3 86,87
4.2K, t resol. No dep. SHG 300 K, 77 K
300 K, 85 K, E || z
270 K; 100 K Cryst., polycryst. Polycrystal 20 K E || z; E ⊥ z
Section 1: Crystalline Materials
CdSe CdSe CdSe CdSe CdSe CdSe CdSxSe1–x CdSxSe1–x CdTe CdTe CdTe CdTe CdTe CdTe CdTe CdTe CdTe CdTe CdTe CdTe CdTe CsBr CsD2AsO4 CsH2AsO4 CsI
181
© 2003 by CRC Press LLC
182
Two-Photon Absorption Data—continued
CsI CsI CsI CsI CsI Cu2O Cu2O Cu2O CuBr CuBr CuCl CuCl CuCl CuCl CuCl CuCl CuCl CuCl CuCl CuCl CuI FeBO3 GaAs GaAs
© 2003 by CRC Press LLC
Method AI2 AI2 L AI1 AI1 AI2 AI2 AI2 AI2 AI1 AI2 AI2 AI1 AI2 AI1 AI2 AI2 EPR L L AI1 AI2 AI1 AI1
Pulse
Bandgap
τp (ns)
Eg (eV)
~10 5 6 0.00035 40 0.0005 30 45 ~10
2.1
3 3.3
16 ~5 45 ~10 5 9 9 45 12
3.1 ~2.5 1.42
2hhω (eV) 6.2–6.8 6.0–6.8 7.0 6.99 8.05 2.0–2.8 3.4–3.9 2.03–2.17 2.97–3.10 3.56 3.2–4.25 3.21–3.56 3.16–3.20 3.16–3.18 3.56 3.2–5.4 3.2–5.4 3.18–3.19 3.34–4.1 3.34–4.1 3.56 2.6–3.6 2.33 2.33
Index
2PA coefficient
n0 (hhω)
(cm/GW)
~1.8–1.9 ~1.8–1.9 1.89 1.89 ~1.9
2.1 2.1 ~2 1.97 1.95 1.95 1.97 ~2 ~2 1.95 1.92 1.92 1.97 3.43 3.43
Abs. spectr. (40 @ 6.5 eV) Relative spectrum Relative spectrum 6 4.5 Relative spectrum Relative spectrum Relative spectrum Relative spectrum 200 Relative spectrum Relative spectrum 1 × 106 ~3 × 106 45 Relative spectrum Relative spectrum Relative spectrum Abs. spectr. (30 @ 3.5 eV) Relative spectrum 89 Abs. spectr. (5 @ 3.4 eV) 300 20
Additional Ref. 85 88 89 90 91 92 93 94 95 62 96 97 98 4 62 99 100 10 38 39 62 101 68 70
information 20 K 20 K
3 × 1018 Na+ 20 K Excitons
20 K 4.2 K 4 K, 77 K 4.2 K
4.3 K, β vs Pol 4K 80 K 80 K 108 K
Handbook of Optical Materials
Material
AI1 AI1, PC AI1 AI1 AI1 AI1 AI1 AI1 AI1 L L AI1 C AI1 AI1 AI1 AI1 AI2, L AI2 AI1 A12 AI1 Z-scan AI1 AI1 TCN CR
22 ~125 30 ~50 15 0.030 ~10 5 0.008 0.030 30 ~0.035 0.038 0.045 0.005 0.035 0.05 0.027 0.08 0.040 50 0.030
2.26
2.33 2.33 1.88 2.33 2.33 1.5–2.33 2.33 2.33 2.33 1.4–1.8 2.33 2.33 2.33 2.33 1.3–1.7 2.33 2.33 2.34 2.33 2.33 2.33 2.33 2.33 2.33 2.33 3.92 3.18
3.43 3.43 ~3.4 3.43 3.43 ~3.4 3.43 3.43 3.43 ~3.35 3.43 3.43 3.43 3.43 3.43 3.43 3.43 3.43 3.53 3.43 3.43 3.43 3.12 3.12 3.35 3.18
800 360 33 230 80 Abs. spectr. (1100 @ 1.5eV) 60 28 35; 78 Abs. spectr. (5.1 @ 1.6eV) 70 15 30 100 Relative spectrum 23 26 45 27 29 18, 22 26 26 1.7 0.2 250 250
49 102 103 104 80 105 72 46 106 107 108 109 7 110 111 67 112 113 114 115 116 117 84 118 73 119 59
n-type
300 K, 85 K
E || z
100 K
295 K, 103 K Cross-pol. In Chinese
No anisotropy Indirect gap E || [110]
Section 1: Crystalline Materials
GaAs GaAs GaAs GaAs GaAs GaAs GaAs GaAs GaAs GaAs GaAs GaAs GaAs GaAs GaAs GaAs GaAs GaAs GaAs GaAs GaAs GaAs GaAs GaP GaP GaP GaP
183
© 2003 by CRC Press LLC
184
Two-Photon Absorption Data—continued
GaS GaS GaSe Ge Ge Ge Hg.0.78Cd0.22Te Hg.0.78Cd0.22Te Hg2Cl2 Hg2Cl2 Hg2Cl2 InP InP InP InP InSb InSb InSb InSb InSb InSb InSb InSb InSb
© 2003 by CRC Press LLC
Method AI1 PC AI1 AI1 AI1 AI1; PC TRT TRT L L, AI1 L TRT AI1, PC AI1 AI1 PC PC PC AI1 PC AI1 AI1; PC TRT TRT
Bandgap
τp (ns)
Eg (eV)
2hhω (eV)
20 20 20 80 100 ~480 ~200 300 2 2
2.8 2.3 2.0 0.66
200 22 30 100 ~200 ~200 ~200 ~10 ~200 30 ~150 ~200 300
1.34
3.56 2.33 2.33 1.06 0.8–1.0 0.916 0.233 0.233 4.7–5.2 4.1–5.7 4–5.5 2.33 2.33 2.33 2.34 0.233 0.233 0.257 0.233 0.257 0.233 0.233 0.233; 0258 0.233
0.17 3.9
0.17
Index
2PA coefficient
n0 (hhω)
(cm/GW)
~4 ~4 4.05
3.33 3.33 3.33 3.33 3.95 3.95 3.95 3.95 3.95 3.95 3.95 3.95 3.95
100 0.05 110 50 2500 160 14000 1 × 104, 3 × 104 Relative spectrum Relative spectrum Polarization dependence 210 260 1800 60 59.6–119 0 1151–1419 16000 946–1850 15000 220 8000; 14000 4800
Additional Ref. 120 120 120 121 122 19 123 124 125 126 127 104 102 110 128 129 129 129 130 129 104 19 123 124
information Direct gap Indirect gap
300 K; 150 K 8.5 K, E || c 8.5 K 8.5 K
βl/βc = 1.8 77 K 2K 77 K 2K
Handbook of Optical Materials
Material
Pulse
300 130 CW 0.045 15 ~10 0.015 15 10 8 0.015 10 0.017 0.030 0.030 0.017 0.017 0.017 0.015 0.5 15
20 0.017 0.015 15
7.6
8.5
7.0
7.0
0.233 0.233 0.26 0.234; 0.258 7.12 7.0–8.0 9.32 6.7 7.18 9.32 9.32 8.1–8.5 6.99 9.32 9.32 6.99 6.99 6.99 9.32 9.32 7.12 6.0–7.5 6.1–7.7 6.23–6.36 7.12 6.99 9.32 6.7
3.95 3.95 3.95 3.95 ~1.6 ~1.6 ~1.6 ~1.6 ~1.6 1.6 1.6 1.6 ~1.6 1.57–1.51 1.57–1.51 1.53–1.49 ~1.6 1.53–1.49 1.57–1.51 1.57–1.51 ~1.9 ~1.7–1.9 ~1.7–1.9 ~1.7–1.8 ~1.9 ~1.9 2.0 ~1.9
220 2000–5600 2900 2500; 1700 3.3 Relative spectrum 2.0 8.0 βKBr = 0.64 βKI 1.5 2.2 Abs. spectr. (400 @ 8.5eV) 0.027 0.027 0.027 0.0054 0.048 0.0059 0.27 0.5 4.4 Relative spectrum Relative spectrum Relative spectrum 10 7.3 3.7 18
124 130 131 132,133 134 135 3 136 137 11 3 138 3 139 140 3 3 3 3 141 134 142 88 143 144 3 3 136
77 K Magnetic field 300 K 20 K, 80 K
20 K
k⊥c
E ⊥ opt.axis
20 K
185
© 2003 by CRC Press LLC
TRT AI2 PC AI1 AI1 AI2 AI1 CR AI1 FCC AI1 AI2 AI1 AI1 AI1 AI1 AI1 AI1 AI1 Model AI1 AI2 AI2 AI2 PC AI1 AI1 CR
Section 1: Crystalline Materials
InSb InSb InSb InSb KBr KBr KBr KBr KBr KCl KCl KCl KD2AsO4 KD2PO4 KD2PO4 KD2PO4 KH2AsO4 KH2PO4 KH2PO4 KH2PO4 KI KI KI KI KI KI KI KI
186
Two-Photon Absorption Data—continued
KI KI KI KRS-V KTa0.7Nb0.3O3 KTaO3 KTP LiF LiIO3 LiNbO3 LiNbO3 LiNbO3 LiYF4 MgF2 MgF2 NaBr NaCl NaCl NH4H2AsO4 NH4H2PO4 NH4H2PO4 NH4H2PO4 NH4H2PO4 NH4H2PO4
© 2003 by CRC Press LLC
Method AI1 AI1 AI2 C AI1 AI2 Z-scan AI1 AI2 AI1 AI1 AI2 AI1 AI1 AI1 AI1 AI1 AI2 AI1 AI1 AI1 AI1 Model Model
Pulse
Bandgap
τp (ns)
Eg (eV)
0.024 10 10 38 0.010 17 0.019 0.015 10 30 0.025 10 0.015 0.017 0.015 0.015 0.015 10 0.017 0.030 0.015 0.017 0.5 0.5
3.5 3.5 13.6 4.0 4.0
~11 10.8 7.5 9.0
6.8
2hhω (eV) 7.12 7.12 6.0–6.7 2.33 4.66 3.9–4.6 4.66 9.32 4.4–4.8 3.56 4.66 4.4–4.8 9.32 6.99 9.32 9.32 9.32 8.1–8.6 6.99 9.32 9.32 6.99 9.32 4.67 + 5.83
Index
2PA coefficient
n0 (hhω)
(cm/GW)
~1.9 ~1.9 2.44
1.8 1.4 1.75–1.9 ~2.2 2.3–2.2 2.3–2.2 1.5 1.4 1.4 1.8 ~1.64 ~1.6 1.59–1.53 1.59–1.53 1.55–1.50 1.59–1.53 ~1.6
8 Relative value Abs. spectr. (300 @ 6.5 eV) 1.6 14 Abs. spectr. (1 @ 4.4 eV) 0.1 <0.02 <0.4 10. 3.4 Abs. spectr. (1.5 @ 4.66 eV) <0.004 <0.0062 <0.0028 2.5 3.5 Abs. spectr. (200 @ 8.5 eV) 0.035 0.11 0.24 0.0068 0.35 1
Additional Ref. 145 137 138 7 146 35 147 3 148 49 149 148 33 33 33 3 3 138 3 139 3 3 141 141
information
20 K
E for SHG
20 K No pol., k ⊥ c
E ⊥ opt. axis E for 5th harmonic
Handbook of Optical Materials
Material
0.5 20 ~10 50 ~10 0.017 0.015 15 10 0.015 0.017 0.017 ~10 0.017 0.015 10 200 25 0.020 79 0.004–0.1 0.00009 30 20 0.015 ~10
2.4 3.6 7.25
8.3
5.83
1.12 “1.1”
2.6 8.4 3.4
11.66 3.56 2.46–2.55 3.2–4.2 7.0–8.0 6.99 9.32 6.7 7.12 9.32 6.99 6.99 6.1–7.0 6.99 9.32 7.12 2.33 2.33 1.62–2.2 2.33 1.88 2.33–2.34 4–4.5; 4.0 3.56 3.0–4.6 9.32 3.555–3.573
~1.6
~1.6 1.6 1.7 1.6 1.6 1.6
1.7 1.73 2.0 1.73 3.52 3.52 ~3.5 3.52 ~3.5 3.52 ~3.8 2.6 ~2.6 1.6
9.5 250 Relative spectrum Abs. spectr. (5 @ 4 eV) Relative spectrum 2.43 2.18 11 βRbBr = 0.55 βKI 1.1 0.050 0.059 Relative spectrum 5.1 2.5 βRbBr = 0.51 βKI 40 7300 Relative spectrum 1.9; 1.5 21 1.5 15–36; 34.6 200 Relative spectrum <0.045 Relative spectrum
141 120 150 151–52 135 3 3 136 137 3 3 3 135 3 3 137 153 70 154 155 7 156 156,157 49 159 3 160
E for 5th harmonic 1.6–300 K 80 K, 300 K 20 K, 80 K
20 K
T dependence 20 K; 100 K
Dir. Eg = 3.43 E || c; E ⊥ c
187
© 2003 by CRC Press LLC
Model AI1 AI2 AI2 AI2 AI1 AI1 CR AI1 AI1 AI1 AI1 AI2 AI1 AI1 AI1 AI1 AI1 AI2 AI1 C AI1 AI2 AI1 L AI1 AI2
Section 1: Crystalline Materials
NH4H2PO4 PbI2 PbI2 PbMoO4 RbBr RbBr RbBr RbBr RbBr RbCl RbH2AsO4 RbH2PO4 RbI RbI RbI RbI Si Si Si Si Si Si Si SiC SiC SiO2 (quartz) SnO2
188
Two-Photon Absorption Data—continued
SnO2 SrF2 SrF2 SrF2 SrTiO3 SrTiO3 SrTiO3 SrTiO3 SrTiO3 SrTiO3 Te TiO2 TiO2 TiO2 TiO2 TiO2 TiO2 TICl TlCl TlCl V2 O5 Y3Fe5O12 Zn.0.85Cd0.15Se Zn0.12Cd0.88Se
© 2003 by CRC Press LLC
Method AI1 AI1 AI1 AI1 AI1 CR AI2 AI2 PA AI2 AI2 AI2 AI1 AI1 CR CR AI1 AI2 AI2 AI2 AI1 AI2 AI1 AI1
Bandgap
τp (ns)
Eg (eV)
45 0.017 0.015 0.0007 ~30
9.4
4.1
17 5 200
0.33 3.5
0.004 0.004
45 20 20 ~10 60 17 10 10
3.6
~2.3 2.66 2.65 1.92
2hhω (eV) 3.56 6.99 9.32 10.0 3.56 3.92 3.2–4.4 4.1; 4.7; 5.0 3.2–5.5 3.3–4.2 0.342 3.3–4.1 4.66 3.96 3.92 4.1; 4.7; 5.0 3.56 3.4–4.4 3.4–4.4 3.39–3.56 3.56 2.5–3.5 3.56 3.56
Index
2PA coefficient
n0 (hhω)
(cm/GW)
1.45 1.47 1.47 2.38 2.4 ~2.4 2.4–2.5 ~2.4–2.5 ~2.4 ~5–6 ~2.5–2.9 ~2.6–3 ~2.6–2.9 ~2.6–2.9 ~2.6–3 ~2.5–2.9 2.2–2.26 2.2–2.26 2.2
300; 34 <0.0057 <0.0054 0.011 2.9 3 Abs. spectr. (4 @ 4.2 eV) 1.3; 4.1; 10.2 Abs. spectr. (5 @ 5.0 eV) Abs. spectr (2 @ 4.1 eV) 800 Abs. spectr. (300 @ 4 eV) 14 6.5 23 12.7; 87; 170. 150; 120 Abs. spectr. (0.45 @ 3.8 eV) Abs. spectr. (4.7 @ 4.0 eV) Relative spectrum 720 Abs. spectr. (300 @ 3.51 eV) 56 620; 260
Additional Ref. 62 33 33 34 161 119 35,162 163 17 164 140 166 167 167 119 163 62 165 169 170 171 172 173 173
information E || c; E ⊥ c
E || c; E ⊥ c
4, 20, 77 K E || [001] T dep., β vs. pol. E ⊥ z; E || z
Handbook of Optical Materials
Material
Pulse
AI1 AI2 AI2 AI2 AI1:AI2 AI2 AI2 CR AI1 AI2 AI1 L TRT TRT AI2 AI2 AI2 AI2 AI2 PC AI1 PA AI2 AI1 AI1 AI1 AI2
45 35
~3 2.62
20
3.35
~10 45 50 0.027 9
15 25 15
2.22 3.68
20 45 5 0.027 30 10 40
2.71
3.56 2.6–3.6 2.6–3.4 3.42–3.45 3.56 3.42–3.43 3.42–3.48 4.1; 4.7; 5.0 3.56 3.4–4.2 4.67 3.4–4.2 2.34 3.56 2.4–3.2 2.2–2.7 2.4–3.4 3.7–4.2 3.6–4.0 3.56 3.56 3.65–5.5 3.7–5.3 4.67 3.56 3.56 2.6–3.6
2.0 2.0 2.0 2.0–2.1 2.0 2.0 2.05 2.0
~2.36 ~2.35 ~2.35 ~2.35 2.35–2.5 2.4 ~2.6 ~2.6 ~2.5–2.6
60 Abs. spectr. (20 @ 3.4 eV) Abs. spectr. (10 @ 3 eV) Relative spectrum 26; 21 Abs. spectr. (2 @ 3.4 eV) Relative spectrum 19.8; 20.9; 47.8 34; 16 Abs. spectr. (10 @ 3.8 eV) 5.0 Abs. Spectr. (10 @ 3.5 eV) 120 650 Abs. spectr. (10 @ 2.9 eV) Abs. spectr. (10 @ 2.6 eV) Relative spectrum Abs. spectr. (2.3 @ 4.0 eV) Relative spectrum 4.3 20; 0 Relative spectrum Abs. spectrum (2 @ 4.1 eV) 2.0; 3.5 40 45 Abs. spectr. (4 @ 3.0 eV)
62 174 63 175 176 177 88 163 62 133 67 28,38 44 44 45 179 180 154 181 18 62 17 63 67 49 173 182
β vs. pol. k⊥c 4.2 K in 42 kG field 1.6 K E || c; E⊥c β vs. pol. 80 K
Impurities
Cu-doped E || c; E ⊥ c E || z β vs. pol Cleartran, CVD
Section 1: Crystalline Materials
Zn0.5Cd0.5S Zn0.5Cd0.5S Zn0.5Cd0.5S ZnO ZnO ZnO ZnO ZnO ZnO ZnO ZnO ZnO ZnP2 ZnP2 ZnP2 ZnP2 ZnP2 ZnS ZnS ZnS ZnS ZnS ZnS ZnS ZnSe ZnSe ZnSe
189
© 2003 by CRC Press LLC
190
Two-Photon Absorption Data—continued
ZnSe ZnSe ZnSe ZnSe ZnSe ZnSe ZnSe ZnSe ZnSe ZnSe ZnTe ZnTe ZnTe ZnTe ZnTe ZnTe ZnTe ZnTe ZnxCd1–xSe Zn0.12Cd0.88Se Zn0.5Cd0.5Se Zn0.85Cd0.15Se ZrO2-(Y2O3)
© 2003 by CRC Press LLC
Method AI2 CR AI1 AI2 TCN AI2 AI2 AI1 AI1 Z-scan AI1 AI1 AI1 AI1, TCN AI1 AI2 AI1 Z-scan AI1 AI1 AI1 AI1 AI1
Bandgap
τp (ns)
Eg (eV)
40 45 15 20 15 20 0.027 0.03 30
2.3
0.030 20 45 30 0.038 0.040 10 45 10 0.03
2.45–3.55 1.92 ~3 2.65 ~4.1
Index
2PA coefficient
2hhω (eV)
n0 (hhω)
(cm/GW)
2.75–3.45 3.18 3.56 2.7–3.75 3.56 2.7–3.8 2.9–3.7 3.56 4.67 4.67 2.33 3.56 2.33 2.34; 3.56 3.56 2.8–4 2.33 2.33 3.56 3.56 3.5 3.56 4.66
~2.5–2.6 ~2.53 ~2.6 ~2.5–2.6 ~2.6 ~2.5–2.6 ~2.5–2.6 ~2.6 2.7 2.7 2.79 2.91 2.79 2.79; 2.91 2.91 ~3 2.79 2.79
2.12
Abs.spectr. (13 @ 3.45 eV) 60 17000 Abs. spectr. (10 @ 3.5 eV) 80 Abs. spectr. (10 @ 3.4 eV) Abs. spectr. (10 @ 3.4 eV) 4–15 5.5 5.8 34 500 8.0 20; 300 8000 Abs. spectr. (4 @ 3.1 eV) 4.5 4.2 50–1 620, 260 60 56 0.013
Additional Ref.
information
183 59 62 45 81 63 184 185 67 84 104 186 73 187 62 188 67 84 189 173 62 173 190
Impurity resonances 300 K, cubic
β vs. pol β vs Cu doped β vs Cu doped
77 K E || z T-tuned band gap Arb. pol. Time resolved
Anistropy
Independent of Y2O3
Handbook of Optical Materials
Material
Pulse
Section 1: Crystalline Materials
191
References: 1.
2. 3. 4.
5. 6. 7. 8. 9. 10. 11. 12. 13.
14. 15. 16.
17. 18. 19. 20. 21. 22. 23.
Chase, L. L., and Van Stryland, E. W., Nonlinear refractive index: inorganic materials, in Handbook of Laser Science and Technology, Suppl. 2: Optical Materials (CRC Press, Boca Raton, FL, 1995), p. 269. Dodge, M. J., Refractive index, Handbook of Laser Science and Technology, Vol. IV: Optical Materials, Part 2 (CRC Press, Boca Raton, FL, 2000), p. 21 Liu, P., Smith, W. L., Lotem, H., Bechtel, J. H., Bloembergen, N., and Adhav, R. S., Absolute two-photon absorption coefficients at 355 and 266 nm, Phys. Rev. B 17(12), 4620 (1978). Bivas, A., Levy, R., Phach, V. D., and Grun, J. B., Biexciton two-photon absorption in the nanosecond and picosecond range in copper halides, in Physics of Semiconductors 1978, Inst. Phys. Conf. Ser. No. 43, (AIP, New York, 1979). Fröhlich, D., and Sondergeld, M., Experimental techniques in two-photon spectroscopy, J. Phys. E 10, 761 (1977). Göppert-Mayer, M., Über Elementarakte mit zwei Quantensprüngen, Ann. Phys. 9, 273 (1931). Stewart, A. F., and Bass, M., Intensity-dependent absorption in semiconductors, Appl. Phys. Lett. 37(11), 1040 (1980). Lotem, H., and Lynch, R. T., Jr., Destructive interference of imaginary resonant contributions to χ(3), Phys. Rev. Lett. 37(6), 334 (1976). Levenson, M. D., and Bloembergen, N., Dispersion of the nonlinear optical susceptibliltiy tensor in centrosymmetric media, Phys. Rev. B 10, 4447 (1974). Kuwata, M., and Nagasawa, N., Self-induced polarization rotation effect of an elliptically polarized beam in CuCl, J. Phys. Soc. Jpn. 51, 2591 (1982). Mollenauer, L. F., Bjorklund, G. C., and Tomlinson, W. J., Production of stabilized coloration in alkali halides by a two-photon absorption process, Phys. Rev. Lett. 35(24), 1662 (1975). Topp, M. R., and Rentzepis, P. M., Picosecond stimulated emission in a fluorescent solution following two-photon absorption, Phys. Rev. A 3(1), 358 (1971). Reilly, J. P., and Clark, J. H., Broadband detection of two-photon absorption by intracavity dye laser spectroscopy, in Advances in Laser Chemistry, Zewail, A. H., Ed. (Springer-Verlag, Berlin 1978), p. 354. Hermann, J. P., and Ducuing, J., Absolute measurement of two-photon cross sections, Phys. Rev. A 5(6), 2557 (1972). Webman, I., and Jortner, J., Energy dependence of two-photon absorption cross sections anthracene, J. Chem. Phys. 50(6), 2706 (1969). Begishev, I. A., Ganeev, R. A., Gulamov, A. A., Erfeev, E. A., Kamalov, Sh. R., Usmanov, T., and Khadzhaev, A. D., Generation of the fifth harmonic of a neodymium laser and two-photon absorption in KDP and ADP crystals, Sov. J. Quantum Electron. 18, 224–228 (1988). Bae, Y., Song, J. J., and Kim, Y. B., Photoacoustic study of two-photon absorption in hexagonal ZnS, J. Appl. Phys. 53(1), 615 (1982). Cingolani, A., Ferrero, F., Minafra, A., and Trigiante, D., Two-photon conductivity in ZnS and CdS, Il Nuovo-Cimento 4B, 217 (1971). Gibson, A. F., Hatch, C. B., Maggs, P. N. D., Tilley, D. R., and Walker, A. C., Two-photon absorption in indium antimonide and germanium, J. Phys. C 9, 3259 (1976). Lotem, H., Bechtel, J. H., and Smith, W. L., Normalization technique for accurate measurements of two-photon absorption coefficients, Appl. Phys. Lett. 28, 389 (1976). Twarowski, A. J., and Kliger, D. S., Mulitphoton absorption spectra using thermal blooming, Chem. Phys. 20, 259 (1977). Smith, W. L., Lawrence Livemore National Laboratory, 1981 Laser Program Annual Report, U.C.R.L. - 50021-81, p. 7–23. Sheik-Bahae, M., Said, A. A., Wei, T. H., Hagan, D. J., and Van Stryland, E. W., Sensitive measurements of optical nonlinearities using a single beam, IEEE J. Quantum Electron. 26, 760–769 (1990).
© 2003 by CRC Press LLC
192 24. 25. 26. 27. 28. 29. 30.
31. 32. 33. 34. 35.
36. 37. 38. 39. 40. 41.
42.
43.
44.
45.
Handbook of Optical Materials Bredikhin, V. I., Genkin, V. N., and Soustov, L. V., Two-photon spectroscopy of proustite (Ag3AsS3), Sov. J. Quantum Electron. 6(4), 409 (1976). Aleksandrov, A. P., Bredikhin, V. I., and Genkin, V. N., Two-photon absorption spectrum of proustite, Sov. Phys. Solid State 17(8), 1645 (1976). Hanna, D. C., and Turner, A. J., Nonlinear absorption measurements in proustite (Ag3AsS3) and CdSe, Opt. Quantum Electron. 8, 213 (1976). Casalboni, M., Crisanti, F., Francini, R., and Grassano, U. M., Two-photon spectroscopy in AgCl, Solid State Commun. 35, 833 (1980). Catalano, I. M., Cingolani, R., and Lepore, M., Two-photon absorption spectra of direct and indirect materials: ZnO and AgCl, Phys. Rev. B33, 7270–7273 (1986). Miller, A., and Ash, G. S., Two-photon absorption and short pulse stimulated recombination in AgGaSe2, Opt. Commun. 33(3), 297 (1980). Dinges, R., Fröhlich, D., and Uihlein, Ch., Two-photon absorption of anisotropic exitons in βAgI, Phys. Status Solidi (B) 76, 613 (1976); Dinges, R., and Frölich, D., Polarizaton tuning by two-photon Stark effect in wurtzite AgI, Solid State Commun. 19, 61 (1976). Kim, Y. P., and Hutchinson, M. H. R., Intensity-induced nonlinear effects in UV window materials, Appl. Phys. B 49, 469–478 (1989). Nasyrov, U., Two-photon absorption spectrum of crystalline and glassy As2S3, Sov. Phys. Semicond. 12(6), 720 (1978). Liu, P., Yen, R., and Bloembergen, N., Two-photon absorption coefficients in UV window and coating materials, Appl. Opt. 18(7), 1015 (1979). Taylor, A. J., Gibson, R. B., and Roberts, J. P., Two-photon absorption at 248 nm in ultraviolet window materials, Opt. Lett. 13, 814–816 (1988). Shablaev, S. I., Danishevskii, A. M., and Subashiev, V. K., The band structure of the oxygenoctahedral ferroelectrics BaTiO3, SrTiO3, and KTaO3, determined from data of two-photon spectroscopy, Sov. Phys. JETP 59, 1256–1263 (1985). Boggess, T. F., White, J. O., and Valley, G. C., Two-photon absorption and anisotropic transient energy transfer in BaTiO3 with 1-psec excitation, J. Opt. Soc. Am. B 7, 2255–2258 (1990). Casalboni, M., Francini, R., Grassano, U. M., Musilli, C., and Pizzoferrato, R., Two-photon excitation of the luminescence in bismuth germanate, J. Lumin. 31–32, 93–95 (1984). Catalano, I. M., Cingolani, R., and Lepore, M., Spectral behaviour of the two-photon absorption coefficient in ZnO, CuCl and Bi4Ge3O12, Il Nuovo Cimento 9D, 1313–1322 (1987). Catalano, I. M., Cingolani, A., Cingolani, R., and Lepore, M., Interband two-photon absorption mechanisms in direct and indirect gap materials, Phys. Scrip. 37, 579–582 (1988). Casalboni, M., Francini, R., Lohmeier, F. J., and Grassano, U. M., Two-photon absorption of bismuth germanate, Phys. Status. Solidi B151, 347–352 (1989). Liu, P., Yen, R., and Bloembergen, N., Dielectric breakdown threshold, two-photon absorption, and other optical damage mechanisms in diamond, IEEE J. Quantum Electron. QE-14(8), 574 (1978). Dadap, J. I., Focht, G. B., Reitze, D. H., and Downer, M. C., Two-photon absorption in diamond and its application to ultraviolet femtosecond pulse-width measurement, Opt. Lett. 16, 499–501 (1991)). Sheik-Bahae, M., DeSalvo, J. R., Said, A. A., Hagan, D. J., Soileau, M. J., and Van Stryland, E. W., Nonlinear refraction in UV transmitting materials, NIST Special Publication, Proceedings of the Boulder Damage Symposium, Boulder, CO (1991). Listsa, M. P. Mozol, P. E., and Fekeshagazi, I. V., Laser pulse lengthening with the aid of nonlinearly absorgin semiconductors CdP2 and ZnP2, Sov. J. Quantum Electron. 4(1), 110 (1974). Mozol, P. E., Patskun, I. I., Sal’kov, E. A., and Fekeshgazi, I. V., Two-photon and two-step transitions in the wide-band semiconductors CdP2, ZnP2, and ZnSe, Bull. Acad. Sci. U.S.S.R. Phys. Ser. 45(6), 1092 (1981).
© 2003 by CRC Press LLC
Section 1: Crystalline Materials 46. 47. 48. 49. 50. 51.
52.
53. 54. 55. 56. 57. 58. 59. 60. 61.
62. 63.
64. 65. 66.
67.
193
Mak, P. S., Davis, C. C., Forster, B. J., and Lee, C. H., Measurements of picosecond light pulses with two-photon photoconductivity detector, Rev. Sci. Instrum. 51, 647 (1980). Konyukhov, V. K., Kulveskii, L. A., and Prokhorov, A. M., Two-photon absorption spectrum by excitons in CdS near the fundamental absorption edge, Sov. Phys. Doklady 12(4) (1967). Regensburger, P. J., and Panizza, E., Two-photon absorption spectrum of CdS, Phys. Rev. Lett. 18(4), 113 (1967). Arsen’ev, V. V., Dneprovskii, V. S. Klyshko, D. N., and Penin, A. N., Nonlinear absorption and limitation of light intensity in semiconductors, Sov. Phys. JETP 29(3), 413 (1969). Bespalov, M. S., Kulevskii, L. A., Makarov, V. P., Prokhorov, M. A., and Tikhonov, A. A., Anistropy in the two-photon absorption spectrum in CdS, Sov. Phys. JETP 28, 77 (1969). Pradere, F., and Mysyrowicz, A., Two-photon absorption spectrum by excitons in CdS, Proceedings Tenth International Conference on Physics of Semiconductors, Keller, S. P., Ed. (U.S. Atomic Energy Commission, 1970), p. 101). Baltrameyunas, R., Vaitkus, Y. Y., Vishchakas, Y. K., and Gavryushin, V. I., Dependence of the two-photon absorption coefficient on the thickness of CdS single cyrstals, Opt. Spectrosc. 36(6), 714 (1974). Bredikhin, V. I., and Genkin, V. N., Two-photon absorption spectrum of CdS, Sov. Phys. Solid State 16(5), 860 (1974). Svorec, R. W., and Chase, L. L., Two-photon absorption in the vicintiy of the exciton absorption in CdS, Solid State Commun. 17, 803 (1975). Penzkofer, A., Falkenstein, W., and Kaiser, W., Two-photon spectroscopy using picosecond light continua, Appl. Phys. Lett. 28(6), 319 (1976). Itoh, T., Nozue, Y., and Ueta, M., Giant two-photon resonance Raman scattering in CdS, J. Phys. Soc. Jpn. 40(6), 1791 (1976). Baltrameyunas, R., Gavryushin, V., and Vaitkus, Yu., Sov. Phys. Solid State 18, 660 (1976). Ngyen, V. T., Damen, T. C., and Gornik, E., Two-photon absorption spectroscopy of the intrinsic exciton fine structure in CdS, Appl. Phys. Lett. 30(1), 33 (1977). de Araujo, C. B., and Lotem, H., New measurements of the two-photon absorption in GaP, CdS, and ZnSe relative to Raman cross sections, Phys. Rev. B 18(1), (1978). Jackel, J., and Mahr, H., Nonlinear optical measurements in the excitonic region of CdS at 4.2 K, Phys. Rev. B 17(8), 3387 (1978). Catalano, I. M., and Cingolani, A., Non-linear self-action and absolute two-photon absorption coefficeint in CdS, Solid State Commun. 34, 761 (1980); Catalano, I. M., Cingolani, A., and Minafra, A., Transmittance, luminescence, and photocurrent in CdS under two-photon excitation, Phys. Rev. B 9(2), 707 (1974). Kobbe, G., and Klingshrin, C., Quantitative investigation of the two-photon absorption of rubylaser-light in various semiconductors, Z. Phys. B37, 9 (1980). Baltrameyunas, R., Vaitkus, Yu., Vishchakas, Yu., Gavryushin, V., Kubertavichyus, V., and Rachyukaitus, G., Spectal and polarization investigations of two-photon absorption of group A2B6, Bull. Acad. Sci. U.S.S.R. Phys. Ser. 46, 1–9 (1982). Seiler, D. G., Heiman, D., Feigenblatt, R., Aggarwal, R. L., and Lax, B., Two-photon magnetospectroscopy of A-exciton states in CdS, Phys. Rev. 25, 7666–7677 (1982). de Souza, M. E., and De Araujo, C. B., Two-photon absorption in hexagonal-CdS, Solid State Commun. 48, 967–970 (1983). Borshch, A. A., Brodin, M. S., Marchevskii, F. N., and Semioshko, V. N., Anisotropy of the nonlinear susceptibility of cadmium sulfide crystals, Sov. J. Quantum Electron. 14, 1367–1371 (1985). Van Stryland, E. W., Vanherzeele, H., Woodall, M. A., Soileau, M. J., Smirl, A. L., Guha, S., and Boggess, T. F., Two-photon absorption, nonlinear refraction, and optical limiting in semiconductors, Opt. Eng. 24, 613–623 (1985).
© 2003 by CRC Press LLC
194 68. 69. 70.
71. 72.
73. 74. 75. 76.
77. 78.
79.
80. 81.
82. 83. 84.
85. 86. 87.
Handbook of Optical Materials Basov, N. G., Grasyuk, A. Z., Efimov, V. F., Zubarev, I. G., Katulin, V. A., and Popov, J. M., Semiconductor lasers using optical pumping, J. Phys. Soc. Jpn. Suppl. 21, 276 (1966). Grasyuk, A. Z., Zubarev, I. G., and Menster, A. N., Anistrophy of two-photon absorption in optical excitation of CdSe semiconductor lasers, Sov. Phys. Solid State 10(2), 427 (1968). Ralston, J. M., and Chang, R. K., Optical limiting in semiconductors, Appl. Phys. Lett. 15, 164 (1969; Nd:Laser induced absorption in semiconductors and aqueous PrCl3 and NdCl3 , Opt. Electron. l, 182 (1969). Bryukner, F., Dneprovskii, V. S., and Khattatov, Z. Q., Two-photon absorption in cadmium selenide, Sov. J. Quantum Electron. 4, 749 (1974). Dneprovskii, V. S. and Ok, S. M., Role of absorption by nonequilibrium carriers in determination of two-photon absorption coefficient of CdSe and GaAs crystals, Sov. J. Quantum Electron. 6(3), 298 (1976). Bechtel, J. H., and Smith, W. L., Two-photon absorption in semiconductors with picosecond laser pulses, Phys. Rev. B 13(8), 3515 (1976). Bass, M., Van Stryland, E. W., and Stewart, A. F., Laser calorimetric measurement of twophoton absorption, Appl. Phys. Lett. 34(2), 142 (1979). Van Stryland, E. W., and Woodall, M. A., Photoacoustic measurement of nonlinear absorption in solids, NBS Spec. Publ. 620, 50 (1980). Ananchenko, V. V., Vlasenko, Yu. V., Onishchenko, N. A., Polishchuk, S. V., Stolyarenko, A. V., Pendyur, S. A., and Talenskii, O. N., Nonlinear absorption spectroscopy of CdSe single crystals, Sov. J. Quantum Electron. 18, 1195–1198 (1988). Penzkofer, A., Schuffner, M., and Bao, X., Two-photon absorption and resonant non phasematched second harmonic generation in CdSe, Opt. Quantum Electron. 22, 351–367 (1990). Brodin, M. S., Demidenko, Z. A., Dmitrenko, K. A., and Rexnichenko, V. Y., Temperature dependence of the two-photon absorption coefficient of CdSxSel–x crystals near resonance, Sov. J. Quantum Electron. 5(7), 861 (1975); Brodin, M. S., Dmitrenko, K. A., and Rexnichenko, V. Y., Two-photon absorption in CdSxSe l–x mixed cyrstals at ruby laser frequencies, Sov. Phys. Solid State 13(6), 1328 (1971). Brodin, M. S., Demidenko, Z. A., Dmitrenko, K. A., Rexnichenko, V. Y., and Strshnikova, M. I., Frequency dependences of the one- and two-photon absorption of crystals with nonparabolic conduction bands similar to CdS, Sov. Phys. Semicond. 8, 43 (1974). Bepko, S. J., Anistropy of two-photon absorption in GaAs and CdTe, Phys. Rev. B 12(2), 669 (1975). Catalano, I. M., and Cigolani, A., Non-parabolic band effect on two-photon absorption in ZnSe and CeTe, Solid State Commun. 43(3), 213 (1982); Catalano, I.M., and Cingolani, A., Evidence of nonparabolic band effect on two photon spectrum of ZnSe, Phys. Rev. B28, 1130–1131 (1983). Baltrameyunas, R., Vaitkus, Yu., and Pyatrrauskas, M., Absorption of picosecond light pulses by CdTe single crystals, Opt. Spectrosc. (USSR) 53, 341–342 (1983). Ruckmann, I., Kornack, J., Kolenda, J., and Petrauskas, M., Transient energy transfer in ps twophoton absorption in CdTe at room temperature, Phys. Status Solidi 158, 769–780 (1990). Said, A. A., Sheik-Bahae, M., Hagan, D. J., Wei, T. H., Wang, J., Young, J., and Van Stryland, E. W., Determination of bound and free-carrier nonlinearities in ZnSe, GaAs, CdTe, and ZnTe, J. Opt. Soc. Am. B 9, 405–414 (1992). Fröhlich, D., Staginnus, B., and Onodera, Y., Two-photon spectroscopy in Csl and CsBr, Phys. Status Solidi 40, 547 (1970). Hopfield, J. J., Worlock, J. M., and Park, K., Two-quantum absorption sepctrum of KI, Phys. Rev. Lett.11(9), 414 (1963). Hopfield, J. J., and Worlock, J. M., Two-quantum absorption spectrum of KI and CsI, Phys. Rev. 135(5A), A1455 (1965).
© 2003 by CRC Press LLC
Section 1: Crystalline Materials 88.
89. 90. 91. 92. 93.
94. 95. 96. 97. 98. 99. 100. 101. 102. 103. 104. 105.
106. 107. 108. 109. 110. 111.
195
Fröhlich, D. M., Two-photon spectroscopy in solids, in Proceedings Tenth International Conference On Physics of Semiconductors, Keller, S. P., Ed., U.S. Atomic Energy Commission (1970, 95). Chen, C. H., and McCann, M. P., Luminescence of alkali halide crystals by multiphoton excitation, Chem. Phys. Lett. 126, 54–57 (1986). Chen, C. M., McCann, M. P., and Wang, J. C., Room temperature two-photon induced luminescence in pure CsI, Solid State Commun. 61, 559 (1987). Deich, R., Noack, F., Rudolph W., and Postovalov, V., Two-photon luminescence in CsI(Na) under UV femtosecond pulse excitation, Solid State Commun. 74, 269–273 (1990. Rustagi, K. C., Pradère, F., and Mysyrowicz, A., Two-photon absorption in Cu2O, Phys. Rev. B 8(6), 2721 (1973). Antonetti, A., Astier, R., Martin, J. L., Migus, A., Hulin, D., and Mysyrowicz, A., Picosecond spectroscopy in Cu2O: exciton dynamics and two-photon absorption, Opt. Commun. 38, 431 (1981). Frohlich, D., Two- and three-photon spectroscopy in solids, Phys. Scrip. T35, 125–128 (1991). Marange, C., Bivas, A., Levy, R., Grun, J. B., and Schwab, C., Two-photon absorption in CuBr, Opt. Commun. 6(2), 138 (1972). Fröhlich, D., Staginnus, B., and Schönherr, E., Two-photon absorption spectrum of CuCl, Phys. Rev. Lett. 19(18), 1032 (1967). Bivas, A., Marange, C., Grun, J. B., and Schwab, C., Two-photon absorption in CuCl, Opt. Commun. 6(2), 142 (1972). Gale, G. M., and Mysyrowicz, A., Direct creation of excitonic molecules in CuCl by giant twophoton absorption, Phys. Rev. Lett. 32(13), 727 (1974). Fröhlich, D., and Volkenandt, H., Determination of r3 valence band in CuCl by two-photon absorption, Solid State Commun. 43(3), 189 (1982). Fröhlich, D., and Volkenandt, H., Determination of r3 valence band in CuCl by two-photon absorption, Solid State Commun. 43, 189–191 (1982). Shalaev, S. I., Two-photon spectroscopy of light absorption by electronic states in iron borate (FeBO3), Sov. Phys. JETP 70, 1105–1108 (1990). Lee, C. C., and Fan, H. Y., Two-photon absorption and photoconductivity in GaAs and InP, Appl. Phys. Lett. 20, 18 (1972). Kleinman, D. A., Miller, R. C., and Nordland, W. A., Two-photon absorption of Nd laser radiation in GaAs, Appl. Phys. Lett. 23(5), 243 (1973). Lee, C. C., and Fan, H. Y., Two-photon absorption with exciton effect for degenerate valence bands, Phys. Rev. B 9(8), 3502 (1974). Grasyuk, A. Z., Zubarev, I. G., Mironov, A. B., and Poluektov, I. A., Spectrum of two-photon interband absorption of laser radiation in semiconducting GaAs, Sov. J. Quantum Electron. 5(8), 997 (1976). Zubarev, I. G., Mironov, A. B., and Mikhailov, S. I., Influence of deep impurity levels on nonlinear absorption of light GaAs, Sov. Phys. Semicond. 11(2), 239 (1977). van der Ziel, J. P., Two-photon absorption spectra of GaAs with 2ω near the direct band gap, Phys. Rev. B 16(6), 2775 (1977). Saissy, A., Azema, A., Botineau, J., and Gires, F., Absolute measurement of the 1.06 µm twophoton absorption coefficient in GaAs, Appl. Phys. 15, 99 (1978). Bosacchi, B., Bessey, J. S., and Jain, F. C. Two-photon absorption of neodymium laser radiation in gallium arsenide, J. Appl. Phys. 49(8), 4609 (1978). Bendorius, R. A., and Maldutis, E. K., Nonlinear absorption of laser radiation in InP and GaAs, Sov. Phys.-Collection 23, 69–72 (1983). Akhmanov, S. A., Zheludev, N. I., and Zadoyan, R. S., New amplitude and polarization nonlinear effects for interaction of picosecond light pulses with semiconductor crystals, Bull. Acad. Sci..U.S.S.R., Phys. Ser. 48, 103–108 (1984).
© 2003 by CRC Press LLC
196
Handbook of Optical Materials
112. Boggess, T. F., Smirl, A. L., Moss, S. C., Boyd, I. A. and Van Stryland, E. W., Optical limiting in GaAs, IEEE J. Quantum Electron. QE-21, 488–494 (1985). 113. Penzkofer, A., and Bugayev, A. A., Two-photon absorption and emission dynamics of bulk GaAs, Opt. Quantum Electron. 21, 283–306 (1989). 114. Valley, G. C., Boggess, T. F., Dubard, J., and Smirl, A. L., Picosecond pump-probe technique to measure deep-level, free-carrier, and two-photon cross sections in GaAs, J. Appl. Phys. 66, 2407–2413 (1989). 115. Hai-Mimg, Ma, Self-transitions of picosecond light pulses in GaAs, in Chinese, Chin. J. Phys. 38, 1530–1533 (1989). 116. Bugaev, A. A., Dunaeva, T. Yu., and Lukoshkin, V. A., Influence of nonlinear refraction, absorption by free carriers, and multiple reflection on the determination of the two-photon absorption coefficient of GaAs, Sov. Phys. Solid State 31, 2031–2034 (1990). 117. Aitchison, J. S., Oliver, M. K., Kapon, E., Colas E., and Smith, P. W. E., Role of two-photon absorption in ultrafast semiconductor optical switching devices, Appl. Phys. Lett. 56, 1305–1307 (1990). 118. Yee, J. H., and Chan, H. H. M., Two-photon indirect transitions in GaP crystal, Opt. Commun. 10, 56 (1974). 119. Lotem, H., and de Araujo, C. B., Absolute determination of the two-photon absorption coefficient relative to the inverse Raman cross section, Phys. Rev. B 16(4), 1711 (1977). 120. Catalano, I. M., Cingolani, A., and Minafra, A., Multiphoton processes in layered structures, Il Nuovo Cimento 38B(2), 579 (1977); Adduci, F., Catalano, I. M., Cingolani, A., and Minafra, A., Direct and indirect two-photon processes in layered semiconductors, Phys. Rev. B 15(2), 926 (1977). 121. Zubov, B. V., Murina, T. M., Olovyagin, B. R., and Prokhorov, A. M., Investigation of nonlinear absorption in germanium, Sov. Phys. Semicond. 4(4), 559 (1971). 122. Wenzel, R. G., Arnold, G. P., and Greiner, N. R., Nonlinear loss in Ge in the 2.5–4 µm range, Appl. Opt. 12(10), 2245 (1973). 123. Miller, A., Johnston, A., Dempsey, J., Smith, J., Pidgeon, C. R., and Holah, G. D., Two-photon absorption in InSb and Hg1-xCdxTe, J. Phys. C 12, 4839 (1979). 124. Johnston, A. M., Pidgeon, C. R., and Dempsey, J., Frequency dependence of two-photon absorption in InSb and Hgl–xCdxTe, Phys. Rev. B 22(2), 825 (1980). 125. Pelant, I., Ambroz, M., Hala, J., Kohlova, V., and Barta, C., Two-photon absorption in Hg2Cl2 crystals, Phys. Lett. 107A, 145–148 (1985). 126. Pelant, I., Lhotska, V., Hala, J., Ambroz, M., Kohlova, V., and Barta, C., Two-photon spectroscopy of Hg2Cl2 crystals, J. Lumin. 35, 37–42 (1986). 127. Pelant, I., Popova, M. N., Hala, J., Ambroz, M., Lhotska, V., and Vacek, K., Two-photon absorption and energy band structure of orthorhombic Hg2Cl2 crystals, Czech. J. Phys. B37, 1183–1197 (1987). 128. Areshev, I. P., Subashiev, V. K., and Faradzhev, B. G., Linear-circular dichroism of two-photon absorption and self-defocusing of neodymium laser radiation in n-type InP crystals, Sov. Phys. Semicond. 22, 199–200 (1987). 129. Fossom, H. J., and Chang, D. B., Two-photon excitation rate in indium antimonide, Phys. Rev. B 8(6), 2842 (1973). 130. Areshev, I. P., Guseinaliev, M. G., Danishevskii, A. M., Kochegarov, S. F., and Subashiev, V. K., Investigation of nonlinear absorption of light in indium antimonide by the two-beam method, Sov. Phys. Solid State 22(5), 849 (1980); Double-beam linear dichroism investigation of the two-photon absorption in InSb, Phys. Status Solidi (B) 102, 383 (1980). 131. Seiler, D. G., Goodwin, M. W., and Weiler, M. H., High-resolution two-photon spectroscopy in InSb at milliwatt cw powers in a magnetic field, Phys. Rev. B 23(12), 6806 (1981). 132. Sheik-bahae, M., Rossi, T., and Kwok, H. S., Frequency dependence of the two-photon absorption coefficient in InSb: tunneling effects, J. Opt. Soc. Am. B4 1964–1969 (1987). © 2003 by CRC Press LLC
Section 1: Crystalline Materials
197
133. Sheik-bahae, M., and Kwok, H. S., Picosecond CO2 laser-induced self-defocusing in InSb, IEEE J. Quantum Electron. QE-23 1974–1980 (1987). 134. Geller, M., DeTemple, T. A., and Taylor, H. F., Quantum efficiency for F-center production by two-photon absorption, Solid State Commun. 7, 1019 (1969). 135. Fröhlich, D., and Staginnus, B., New assignment of band gap in the alkali bromides by twophoton spectroscopy, Phys. Rev. Lett. 19(9), 496 (1967). 136. Prior, Y., and Vogt, H., Measurements of uv two-photon absorption relative to known Raman cross sections, Phys. Rev. B 19, 5388 (1979). 137. de Araujo, C. B., and Lotem, H., Ultraviolet two-photon absorption in alkali-halides, Phys. Rev. B 26, 1044 (1982). 138. Piacentini, M., Two-photon absorption using synchrotron radiation, Phys. Scrip. T19, 612–616 (1987). 139. Reintjes, J. F., and Eckardt, R. C., Two-photon absorption on ADP and KD*P at 266.1 nm, IEEE J. Quantum Electron. QE-13(9), 791 (1977); Efficient harmonic generation from 532 to 266 nm in ADP and KD*P, Appl. Phys. Lett. 30(2), 91 (1977). 140. Oudar, J., Schwartz, C. A., and Batifol, E. M., Influence of two-photon absorption on secondharmonic generation in semiconductors. II. Measurement of two-photon absorption in tellurium, IEEE J. Quantum Electron. QE-11(8), 623 (1975). 141. Penzkofer, A., and Kaiser, W., Nonlinear loss in Nd-doped laser glass, Appl. Phys. Lett. 21(9), 427 (1972). 142. Park, K., and Stafford, R. G., Evidence for an optical transition at a noncentrosymmetric point of the Brillouin zone in KI, Phys. Rev. Lett. 22(26), 1426 (1969). 143. Stafford, R. G., and Park, K., LO-phonon-assisted absorption in KI, Phys. Rev. Lett. 25(24), 1652 (1970); LO-phonon-assisted transitions in the two-photon absorption spectrum of KI, Phys. Rev. B 4(6), 2006 (1971). 144. Catalano, I. M., Cingolani, A., and Minafra, A., Multiphoton transitions in ionic crystals, Phys. Rev. B 5, 1629 (1972). 145. Blau, W., and Penzkofer, A., Intensity detection of picosecond ruby laser pulses by two-photon absorption, Opt. Commun. 36(5), 419 (1981). 146. von der Linde, D., Glass, A. M., and Rodgers, K. F., High sensitivity optical recording in KTN by two-photon absorption, Appl. Phys. Lett. 26(1), 22 (1975). 147. DeSalvo, R., Hagan, D. J., Sheik-Bahae, M., Stegeman, G., and Van Stryland, E. W., Selffocusing and self-defocusing by cascaded second-order effects in KTP, Opt. Lett. 17, 28–30 (1992). 148. Bityurin, N. M., Bredikhin, V. I., and Genkin, V. N., Nonlinear optical absorption and energy structure of LiNbO3 and α-LilO3 crystals, Sov. J. Quantum Electron. 8(11), 1377 (1978); Twophoton absorption and the characteristics of the energy spectrum of LiNbO3 and α-LilO3 crystals, Bull. Acad. Sci. U.S.S.R. Phys. Ser. USA 43(2), (1979). 149. Kurz, H., and Von der Linde, D., Nonlinear optical excitation of photovoltaic LiNbO3, Ferroelectrics 21, 621 (1978). 150. Fröhlich, D., and Kenlies, R., Two-photon absorption in PbI2, Il Nuovo Cimento 38B(2), 433 (1977). 151. Efendiev, Sh., Gavryushin, V., Raciukaitis, G., Puzonas, G., Kazlauskas, A., Darvishov, N., and Shakhdgan, S., Two-photon spectroscopy of PbMoO4 single crystals, Phys. Status Solidi B156, 697–704 (1989). 152. Baltrameyunas, R., Gavryushin, V., Rachyukaitis, G., Puzonas, G., Kaslauskas, A., Efendiev, Sh., Darvishov, N., and Bagiev, V., Indirect interband transitions in PbMoO4 single crystals.Two-photon spectroscopy, Sov. Phys. Solid State 31, 1455–1456 (1990). 153. Geusic, J. E., Singh, S., Tipping, D. W., and Rich, T. C., Three-photon stepwise optical limiting in silicon, Phys. Rev. Lett. 19(19), 1126 (1967). 154. Panizza, E., Two-photon absorption in ZnS, Appl. Phys. Lett. 10(10), 265 (1967). © 2003 by CRC Press LLC
198
Handbook of Optical Materials
155. Reintjes, J. F., and McGroddy, J. C., Indirect two-photon transitions in Si at 1.06 µm, Phys. Rev. Lett. 30(19), 901 (1973). 156. Boggess, T. F., Bihnert, K. M., Mansour, K., Moss, S. C., Boyd, I. A., and Smirl, A. L., Simultaneous measurement of the two-photon coefficient and free-carrier cross section above the bandgap of crystalline silicon, IEEE J. Quantum Electron. QE-22, 360–368 (1986). 157. Reitze, D. H., Zhang, T. R., Wood, Wm. M., and Downer, M. C., Two-photon spectroscopy of silicon using femtosecond pulses at above-gap frequencies, J. Opt. Soc. Am. B7, 84–89 (1990). 158. Downer, M. C., Reitze, D. H., and Focht, G., Ultrafast laser probe of interband absorption edges in 3D and 2D semiconductors, SPIE 1282, 121–131 (1990). 159. Lisitsa, M. P., Kulish, N. R., and Stolyarenko, A. V., Two-photon absoprtion spectrum of αSiC(6H), Sov. Phys. Semicond. 14(10), 1208 (1980). 160. Fröhlich, D., and Kenklies, R., Band-gap assignment in SnO2 by two-photon spectroscopy, Phys. Rev. Lett. 41(25), 1750 (1978). 161. Maker, P. D., and Terhune, R. W., Study of optical effects due to an induced polarization third order in the electric field strength, Phys. Rev. 137(3A), A801 (1965). 162. Shablaev, S. I., Danishevskii, A. M., Subashiev, V. K., and Babashkin, A. A., Investigation of the energy band structure of SrTiO3 by the two-photon spectroscopy method, Sov. Phys. Solid State 21(4), 662 (1979). 163. Lee, J. H., Scarparo, M. A. F., and Song, J. J., Two-photon absorption measurements of crystals relative to the Raman cross section, Proceedings of the VIIth International Conference on Raman Spectroscopy, Ottawa, Canada (1980), p. 684. 164. Shablev, S. I., and Subashiev, V. K., Band structure change in the transition from the cubic to the tetragonal phase in single-domain SrTiO3, determined from two-photon absorption spectra, Sov. Phys. JETP 64, 846–850 (1986). 165. Matsuoka, M., and Yajima, T., Two-photon absorption spectrum in thallous chloride, Phys. Lett. 23(1), 54 (1966). 166. Waff, H. S., and Park, K., Structure in the two-photon absorption spectrum of TiO2 (rutile), Phys. Lett. 32A(2), 109 (1970). 167. Penzkofer, A., and Falkenstein, W., Direct determination of the intensity of picosecond light pulses by two-photon absorption, Opt. Commun. 17(1) (1976). 168. Matsuoka, M., Angular dependence of two-photon absorption in thallous chloride, J. Phys. Soc. Jpn. 23(5), 1028 (1967). 169. Fröhlich, D., Staginnus, B., and Thurm, S., Symmetry assignments of two-photon transitions in TlCl, Phys. Status Solidi 40, 287 (1970). 170. Fröhlich, D., Treusch, J., and Kottler, W., Multiphonon processes in the two-photon absorption of TlCl and the temperature dependence of the band edge, Phys. Rev. Lett. 29(24), 1603 (1972). 171. Bakos, J. S., Foldes, I. B., Hevesi, I., Kovacs, J., Nanai L., and Szil, E., Two-photon absorption in V2O5 single crystals with q-switched ruby laser pulses, Appl. Phys. Lett. A37, 247–249 (1985). 172. Shablaev, S. I., and Pisarev, R. V., Nonlinear optical spectroscopy of electronic states in the yttrium iron garnet Y3Fe5O12, JETP Lett. 45, 626–631 (1987). 173. Brodin, M. S., and Goer, D. B., Two-photon absorption of ruby laser radiation by semiconductor crystals of ZnSe and ZnxCdl–xSe, Sov. Phys. Semicond. 5(2), 219 (1971). 174. Baltrameyunas, R., Vaitkus, Yu., Gavryushin, V. I., and Dmitrenko, K. A., Two-photon absorption spectra of mixed Zn0.1Cd0.9S single crystals, Sov. Phys. Semicond. 11, 60–61 (1977). 175. Staginus, G., Fröhlich, D., and Caps, T., Automatic 2-photon spectrometer, Rev. Sci. Instrum. 39(8), 1129, (1968). 176. Mollwo, E., and Pensl, G., Two-photon absorption in ZnO-crystals, Z. Phyzik 228, 193 (1969). 177. Dinges, R., Fröhlich, D., Staginnus, G., and Staude, W., Two-photon magnetoabsorption in ZnO, Phys. Rev. Lett. 25(14), 922 (1970).
© 2003 by CRC Press LLC
Section 1: Crystalline Materials
199
178. Kaule, W., Polarization dependence of the two quantum absorption spectrum of intrinsic excitons in ZnO, Solid State Commun. 9, 17 (1971). 179. Baltrameyunas, R., Vishchakas, Yu., Gavryushin, V., Kubertavichyus, V., and Tichina, I., Investigation of the spectral dependences of two-photon absorption in tetragonal ZnP2 single crystals, Sov. Phys. Solid State 25, 2131–2133 (1984). 180. Mozol, P. E., Patskun, I. I., Salkov, E. A., and Skubenko, N. A., Optical absorption induced by pulsed laser radiation in tetragonal ZnP2 crystals, Sov. Phys. Semicond. 20, 313–315 (1986). 181. Park, K., and Waff, H. S., Two-photon absorption spectrum of ZnS, Phys. Lett. 28A(4), 305 (1968). 182. Baltrameyunas, R., Gavryushin, V., and Vaitkus, Y., Frequency dependence of the coefficient of two-photon absorption in ZnSe, Sov. Phys. Solid State 17(10), 2020 (1976). 183. Baltrameyunas, R., Vaitkus, Y., and Gavryushin, V., Influence of impurities on the two-photon absorption spectrum of ZnSe single crystals, Sov. Phys. Solid State 18(10), 1723 (1976). 184. Borshch, V. V., Mozol’, P. E., Sal’kov, E. A., Patskun, I. I., and Fekeshgazi, I. V., Nonlinear absorption spectra of copper-doped ZnSe single crystals, Sov. Phys. Semicond. 16, 684–687 (1982). 185. Borshch, V. V., Mozol, P. E., Patskun, I. I., and Fekeshgazi, I. V., Influence of copper impurities on two-photon absorption of light in ZnSe, Sov. Phys. Semicond. 16, 213–214 (1982). 186. Yablonskii, G. N., Photoconductivity of laser-excited zinc telluride, Sov. Phys. Semicond. 8, 881–882 (1975). 187. Catalano, I. M., and Cingolani, A., Absolute two-photon absorption line shape in ZnTe, Phys. Rev. B 19(2), 1049 (1979). 188. Balrameyunas, R., Vaitkus, J., and Gavryushin, V., Light absorption by nonequilibrium, twophoton generated, free and localized carriers in ZnTe single crystals, Sov. Phys. JETP 60, 43–48 (1984). 189. Brodin, M. S., Shevel’s, S. G., Kodzhespirov, F. F., and Mozharovskii, L. A., Two-photon absorption of ruby laser radiation in mixed ZnxCd l–xS crystals, Sov. Phys. Semicond. 5(12), 2047 (1972). 174. Mansour, N., Mansour, K., Soileau, M. J., and Van Stryland, E. W., Observation of two-photon absorption prior to laser induced damage in dielectric ZrO2, NIST Special Publication, No. 756, Proceedings of the Boulder Damage Symposium, p. 501, Boulder, CO (1987). 191. van der Ziel, J. P., and Gossard, A. C., Two-photon absorption spectrum of AlAs-GaAs monolayer crystals, Phys. Rev. B 17(2), 765 (1978).
© 2003 by CRC Press LLC
200
Handbook of Optical Materials
1.9.3 Second Harmonic Generation Coefficients Crystal System—Cubic Cubic material
Symmetry class
dim (pm/V)
Wavelength λ (µm)
NaBrO3
23
d14 = 0.19
0.6943
NaClO3
23
d14 = 0.46
0.6943
AlSb
–43m
d14 = 49 ± 36
1.058
Bi4Ge3O12
–43m
d14 = 1.28
1.064
CdTe
–43m
d14 = 167.6 ± 63 d14 = 59.0 ± 24
10.6 28.0
CuBr
–43m
d14 = 8.04 ± 30% d14 = –4.38 ± 20% d14 = –6.37 ± 20% d14 = –6.53 ± 20%
10.6 1.318 1.064 0.946
CuCl
–43m
d14 = 6.7 ± 30% d14 = –4.0 ± 20% d14 = –3.97 ± 20% d14 = –3.47 ± 20%
10.6 1.318 1.064 0.946
CuI
–43m
d14 = 8.04 ± 30% d14 = –5.47 ± 20% d14 = –6.08 ± 20% d14 = –6.04 ± 20%
10.6 1.318 1.064 0.946
GaAs
–43m
d14 = 134.1 ± 41.9 d14 = 209.5 ± 13.3 d14 = 256.5
10.6 1.058 0.694
GaP
–43m
d14 = 71.8 ± 12.3 d36 = 59.5 ± 6.0 d14 = +70.6
1.058 1.318 3.39
GaSb
–43m
d14 = +628 ± 6.3
10.6
InAs
–43m
d14 = 364 ± 47 d14 = 249 ± 62
1.058 10.6
InP
–43m
d14 = 143
InSb
–43m
d14 = 520 ± 47 d14 = 16345 ± 503 d14 = 560 ± 230
N4(CH2)6
–43m
d14 = 4.1
β-ZnS
–43m
d14 = 30.6 ± 8.4 d36 = 20.7 ± 1.3
© 2003 by CRC Press LLC
1.058 1.058 10.6 28 1.06 10.6 1.058
Crystal System—Cubic—continued Cubic material
Symmetry class
dim (pm/V)
Wavelength λ (µm)
ZnSe
–43m
d14 = 78.4 ± 29.3 d36 = 26.6 ± 1.7
10.6
ZnTe
–43m
d14 = 92.2 ± 33.5 d14 = 83.2 ± 8.4 d36 = 89.6 ± 5.7
10.6 1.058 1.058
Crystal System—Hexagonal Hexagonal material
Symmetry class
dim (pm/V)
LiIO3
6
d31 = ±10.17 ± 0.32 d33 = –5.15 ± 0.32 d31 = –4.96 ± 0.32 d33 = –5.54 ± 0.61 d31 = –6.82
0.5145 1.064 1.064 1.318 1.318
LiKSO4
6
d31 = 0.38 d33 = 0.71
0.6943 0.6943
GaS
6m2
d16 =135
0.6943
GaSe
6m2
d22 = 75.4 ± 10.8 d16 = 972
InSe
6m2
d16 = 281
0.6943
AgI
6mm
d31 = +8.2 ± 20% d33 = – 16.8 ± 22%
1.318 1.318
AlN
6mm
d31 = <0.30 d33 = 7.42 ± 35%
1.064 1.064
BeO
6mm
d33 = –0.20 ± 0.01 d31 = –0.15 ± 0.01
1.064 1.064
CdS
6 mm
d33 = 25.8 ± 1.6 d31 = –13.1 ± 0.8 d15 = 14.4 ± 0.8 d33 = +44.0 ± 12.6 d31 = –26.4 ± 6.31 d15 = 28.9 ± 7.1
1.058 1.058 1.058 1.064 1.064 1.064
CdSe
6 mm
d33 = 66.9 ± 4.2 d31 = –26.8 ± 2.7 d33 = 54.5 ± 12.6
1.064 1.064 1.064
© 2003 by CRC Press LLC
Wavelength λ (µm)
10.6 0.6943
Crystal System—Hexagonal System—continued Hexagonal material
Symmetry class
dim (pm/V)
Wavelength λ (µm)
LiClO4•3H2O
6mm
SiC
6mm
d31 = +0.22 ± 20% d33 = +0.25 ± 20% d15 = +0.25 ± 20% d31 = +8.6 ± 0.9 d33 = -14.4 ± 1.3 d15 = +8.0 ± 0.9
1.064 1.064 1.064 1.064 1.064 1.064
Zn3AgInS5
6mm
d31 = +7.2 ± 20% d33 = ±15.9 ± 20%
1.064 1.064
Zn5AgInS7
6mm
d31 = +9.22 ± 20% d33 = +20.95 ± 20%
1.064 1.064
ZnO
6mm
d33 = –5.86 ± 0.16 d31= 1.76 ± 0.16 d15 = 1.93 ± 0.16
1.058 1.058 1.058
α-ZnS
6mm
d33 = 11.37 ± 0.07 d33 = 37.3 ± 12.6 d31 = –18.9 ± 6.3 d15 = 21.37 ± 8.4 d15 = 6.7 ± 1.0 d31 = –7.6 ± 1.5 d33 = +13.8 ± 1.7
1.058 10.6 10.6 10.6 1.064 1.064 1.064
Crystal System—Tetragonal Tetragonal material
Symmetry class
dim (pm/V)
Wavelength λ (µm)
BaTiO3
4mm
d33 = 6.8 ± 1.0 d31 = 15.7 ± 1.8 d15 = 17.0 ± 1.8
1.064 1.064 1.064
Ba6Ti2Nb8O3
4mm
d31 = 9.7 ± 1.8 d33 = 13.2 ± 1.8
1.064 1.064
K3Li2Nb5O15
4mm
d33 = 11.2 ± 1.6 d31 = 6.18 ± 1.28 d15 = 5.45 ± 0.54
1.064 1.064 1.064
K0.8Na0.2Ba2Nb5O15
4mm
d31 = 13.6 ± 1.6
1.064
PbTiO3
4mm
d33 = 7.5 ± 1.2 d31 = 37.6 ± 5.6 d15 = 33.3 ± 5
1.064 1.064 1.064
© 2003 by CRC Press LLC
Crystal System—Tetragonal System—continued Tetragonal material
Symmetry class
dim (pm/V)
Wavelength λ (µm)
SrBaNb5O15
4mm
d33 = 11.3 ± 3.3 d31 = 4.31 ± 1.32 d15 = 5.98 ± 2
1.064 1.064 1.064
AgGaS2
-42m
d36 = 18 ± 2.7 d36 = 23.36 ± 3.52
10.6 1.064
AgGaSe2
-42m
d36 = 37.4 ± 6.0 d36 = 67.7 ± 13
10.6 2.12
AgInSe2
-42m
d36 = 55.9 ± 10%
10.6
CdGeAs2
-42m
d36 = 351 ± 105
10.6
BeSO4•4H2O
-42m
d36 = 0.30 d36 = 0.29 ± 0.03
CdGeP2
-42m
d36 = 162 ± 30%
CsD2AsO4
-42m
d36 = 0.40 ± 0.05
1.064
CsH2AsO4
-42m
d36 = 0.22 d36 = 0.40 ± 0.05
0.6943 1.064
CuGaSe2
-42m
d36 = 44.2 ± 10%
10.6
CuGaS2
-42m
d36 = 14.5 ± 15%
10.6
CuInS2
-42m
d36 = 10.6 ± 15%
10.6
KD2PO4 (KD*P)
-42m
d36 = 0.38 ± 0.016 d36 = 0.34 ± 0.06 d14 = 0.37
1.058 0.694 1.058
KH2PO4 (KDP)
-42m
d36 = 0.44 d36 = 0.47 ± 0.07
1.064 0.694
KD2AsO4 (KD*A)
-42m
d36 = 0.39
1.064
KH2AsO4 (KDA)
-42m
d36 = 0.43 ± 0.025 d36 = 0.39 ± 0.4
1.06 0.694
ND4H2PO4 (AD*P)
-42m
d36 = 0.495 ± 0.07
0.6943
NH4H2PO4 (ADP)
-42m
d36 = 0.762 d36 = 0.85 d36 = 0.85
1.064 0.6943 0.694
(NH2)2CO (urea)
-42m
d36 = 1.35
1.06
RbH2AsO4 (RDA)
-42m
d36 = 0.39 ± 0.04
0.6943
© 2003 by CRC Press LLC
0.6328 0.5321 10.6
Crystal System—Tetragonal System—continued Tetragonal material
Symmetry class
dim (pm/V)
Wavelength λ (µm)
RbH2PO4 (RDP)
-42m
d36 = 0.414 ± 0.045 d36 = 0.38 ± 0.04
ZnGeP2
-42m
d36 = 111.2 ± 30%
TeO2
422
d14 = 0.34 ± 0.05 d14 = 0.38 ± 0.03 d14 = 4.13 ± 1.03
1.318 1.064 0.659
CdGa2S4
-4
d36 = 25.6 ± 3.8
1.064
HgGa2S4
-4
d36 = 25.6 ±7.7
1.064
InPS4
-4
d36 = 20.1 ± 2.1 d31 = 26.3 ± 2.58
1.064 1.064
0.6943 1.064 10.6
Crystal System—Trigonal Trigonal material
Symmetry class
dim (pm/V)
Wavelength λ (µm)
PbGe3O11
3
d11 = 0.96 ± 0.16 d22 = –2.1 ± 0.3 d31 =+0.51 ± 0.07 d33 = –0.79 ± 0.12
1.064 1.064 1.064 1.064
AlPO4
32
d11 = 0.35 ± 0.03 d14 <0.008
1.058 1.058
HgS
32
d11 = 50.3 ± 17 d11 = 47.2 ± 4
Nd0.2Y0.8Al3(BO3)4
32
d11 = d12 = 1.36 ± 0.16 d14 = d12 <0.01
1.32 1.32
PbS2O6•4H2O
32
d11 = 0.096 d11 = 0.15
1.0645 0.694
RbS2O6
32
d11 = 0.081 ± 0.03
0.6943
Se
32
d11 = 79.6 ± 42
SrS2O6•4H2O
32
d11 = 0.06 ± 0.02
Te
32
d11 = 650 ± 30
SiO2 (quartz)
32
d11 = 0.335
1.064
(C6H5CO)2 (benzil)
32
d11 = 3.6 ± 0.5
1.064
© 2003 by CRC Press LLC
10.6 1.32
10.6 0.6943 10.6
Crystal System—Trigonal—continued Trigonal material
Symmetry class
dim (pm/V)
Wavelength λ (µm)
Ag3AsS3 (proustite)
3m
d31 = 16.8 ± 1 d22 = 26.8 ± 4 d22 = 20.0 d31 = 12.0
10.6 10.6 1.152 1.152
Ag3SbS3 (pyrargerite)
3m
d31 = 12.6 ± 4 d22 = 13.4 ± 4
10.6 10.6
β-BaB2O4 (BBO)
3m
d22 = 13.4 ± 4 d31 = 12.6 ± 4
1.06 1.06
(CN3H6)As(SO4)2•6H2O (GASH)
3m
d22 = −1.05 ± 0.017 d31 = +0.008 ± 0.017 d33 = +0.020 ± 0.003
1.064 1.064 1.064
LiNbO3
3m
d33 = −34 ± 8.6 d31 = –4.88 ± 0.7 d22 = +2.58 ± 0.25 d31 = –4.35 ± 0.4 d22 = +2.1 ± 0.8 d33 = −31.8 d31 = −29.1
1.058 1.058 1.058 1.152 1.152 1.318 1.318
LiTaO3
3m
d33 = –16.4 ± 2 d31 = –1.07 ± 0.2 d22 = +1.7 ± 0.2
1.058 1.058 1.058
d15 = 0.24 ± 0.04 d31 = 0.14 ± 0.03 d22 = 0.07 ± 0.01 d33 = 0.50 ± 0.06
1.064 1.064 1.064 1.064
(Na,Ca)(Mg,Fe)(BO3)3Al6Si6(OH,O,F) (tourmaline)
3m
TlIO3
3m
d15 = 3.49 ± 20% d31 = 3.36 ± 20% d23 = 1.11 ± 20% d 24 = 3.85 ± 20% d32 = 3.98 ± 20% d33 = 6.85 ± 20%
1.064 1.064 1.064 1.064 1.064 1.064
SbI3•3S8
3m
d22 = 5.2 d33 = 7.23 d31 = 4.8
1.064 1.064 1.064
© 2003 by CRC Press LLC
206
Handbook of Optical Materials Crystal System—Orthorhombic
Orthorhombic material
Symmetry class
dim (pm/V)
Wavelength λ (µm)
Ba(COOH)2
222
d14 = 0.11 ± 11% d25 = 0.11 ± 14% d36 = 0.13 ± 11%
1.064 1.064 1.064
α−HIO3
222
d36 = 5.15 ± 0.16
1.064
NO2•CH3NOC5H4 (POM)
222
d36 = 6.4 ± 1.0
1.064
Sr(COOH)2
222
d34 = 0.51
1.064
BaMgF4
mm2
d31 = 0.023 ± 20% d32 = ±0.035 ± 12% d33 = 0.0094 ± 14% d24 = 0.025 ± 17%
1.064 1.064 1.064 1.064
Ba2NaNb5O15
mm2
d33 = –17.6 ± 1.28 d32 = –12.8 ± 0.64 d31 = –12.8 ± 1.28
1.064 1.064 1.064
BaZnF4
mm2
d32 = 0.08 ± 20% d15 = 0.011 ± 20% d33 = 0.035 ± 20%
1.06 1.06 1.06
C6H4(NO2)2 [MDB]
mm2
d33 = 0.74 d32 = 2.7 d31 = 1.78
1.064 1.064 1.064
Gd2(MoO4)3
mm2
d33 = –0.044 ± 0.008 d32 = +2.42 ± 0.36 d31 = –2.49 ± 0.37
1.064 1.064 1.064
KB5O8•4H2O
mm2
d31 = 0.046 d32 = 0.003
0.4342 0.4342
mm2
d31 = ±0.57 ± 25% d32 = ±0.16 ± 25% d33 = ±2.79 ± 25% d15 = 0.49 ± 25% d24 = 0.25 ± 25%
1.064 1.064 1.064 1.064 1.064
K2La(NO3)4•2H2O
mm2
d31 = d15 = –1.13 ± 0.15 d32 = d24 = –1.10 ± 0.1 d33 = 0.13 ± 0.1
1.064 1.064 1.064
KNbB2O6
mm2
d24 = 6.10 d32 = 3.00 d33 = 1.44
1.064 1.064 1.064
KIO2F2
© 2003 by CRC Press LLC
Section 1: Crystalline Materials Crystal System—Orthorhombic—continued Orthorhombic material
Symmetry class
dim (pm/V)
KNbO3
mm2
d33 = –19.58 ± 1.03 d32 = +11.34 ± 1.03 d31 = –12.88 ± 1.03
1.064 1.064 1.064
KTiOPO4 [KTP]
mm2
d33 = 13.7 d32 = ±5.0 d31 = ± 6.5 d24 = 7.6 d15 = 6.1
1.06 1.06 1.06 1.06 1.06
LiB3O5
mm2
1.064
LiGaO2
mm2
d15 = +0.85 d24 = –0.67 d33 = +0.04 d31 = d15 = –1.13 ± 0.15 d33 = –0.59 ± 0.06
LiH2PO3
mm2
d31 = 0.03 d32 = 0.16 d33 = 0.43 d15 = 0.035 d24 = 0.17
1.064 1.064 1.064 1.064 1.064
LiInO2
mm2
d31 = 9.9 ± 15% d32 = 8.58 ± 15% d33 = 15.8 ± 15%
1.064 1.064 1.064
Na(COOH)
mm2
d15 = –0.22 ± 0.11 d32 = d15 ≈ 0.22 d33 = 0.33 ± 0.16
1.064 1.064 1.064
NaNO2
mm2
d31 = 0.074 ± 0.008 d32 =1.89 ± 0.25 d33 = 0.094 ± 0.008 d15 = 0.04 ± 0.008 d24 = 1.80 ± 0.25 d31 = d15 = 0.18 d32 = d24 = 0.76
1.064 1.064 1.064 1.064 1.064 1.153 1.153
NO2•C6H4NH2 [mNA]
mm2
d33 = 13.12 ± 1.28 d32 = 1.02 ± 0.22 d31 = 12.48 ± 1.28
1.064 1.064 1.064
PbNb2O11
mm2
d31 = +6.5 ± 0.97 d32 = −5.87 ± 0.88 d33 = −8.88 ±1.32 d15 = +5.89 ± 0.88 d24 = −5.42 ± 0.39
1.064 1.064 1.064 1.064 1.064
© 2003 by CRC Press LLC
Wavelength λ (µm)
1.064 1.064
207
208
Handbook of Optical Materials Crystal System—Orthorhombic—continued
Orthorhombic material
Symmetry class
dim (pm/V)
Wavelength λ (µm)
RbNbB2O6
mm2
d24 = 2.40 d32 = 2.30 d33 = 0.94
1.064
Sr(COOH)2
222
d34 = 0.51
1.064
SbNbO4
mm2
d32 = 4.72 ± 0.82
1.058
SbTaO4
mm2
d32 = 4.1 ± 0.82
1.058
Tb2(MoO4)3
mm2
d31 = –2.99 ± 0.35 d32 = +2.22 ± 0.33 d33 = −0.11 ± 0.03 d15 = –2.52 ± 0.38 d24 = +2.55 ± 0.35
1.064 1.064 1.064 1.064 1.064
Tb2(MoO4)3
Crystal System—Monoclinic Monoclinic material
Symmetry class
dim (pm/V)
Wavelength λ (µm)
GdCa4O(BO3)4
Cm
d11 = 0.04 d12 = 0.128 d13 = −0.17 d31 = 0.148 d32 = 0.64 d33 = 0.58
1.064 1.064 1.064 1.064 1.064 1.064
GdCa4O(BO3)4
Cm
d11 = −0.104 d12 = 0.015 d13 = −0.253 d31 = 0.12 d32 = 1.36 d33 = −0.93
1.064 1.064 1.064 1.064 1.064 1.064
CH3-NH2−NO2-C6H4 [MNA]
m
d11 = 160 ± 40 d12 = 24 ± 6
1.064 1.064
4-(CH3)2N-C6H4 [DAST]
m
d11 = 600 ± 200 d22 = 10 ± 30 d12 = 30 ± 10
1.064 1.064 1.064
C10H12N3O6 [MAP]
2
d23 = 10.67 ± 1.3 d22 = 11.7 ± 1.3 d21 = 2.35 ± 0.5 d25 = –0.35 ± 0.3
1.064 1.064 1.064 1.064
© 2003 by CRC Press LLC
Section 1: Crystalline Materials
209
Crystal System—Monoclinic—continued Monoclinic material
Symmetry class
dim (pm/V)
Wavelength λ (µm)
C14H17NO2 [DMC]
2
d21 = 4.1 d22 = 1.6 d23 = 0.53
1.06 1.06 1.06
N’-(4-nirophenyl)-(s)proplinol (NPP)
2
d21 = ~84 d22 = 29
1.06 1.06
Li2SO4•H2O
2
d22 = 0.4 ± 0.06 d23 = 0.29 ± 0.04 d34 = 0.25 ± 0.04
1.064 1.064 1.064
(NH2CH2COOH)3H2SO4 [TGS]
2
d23 = 0.32
0.694
PbHPO4
2
d31 = 0.11 d11 = 0.4 d33 = 0.23
1.064 1.064 1.064
The above data are from tables of S. Singh, Nonlinear optical materials, Handbook of Laser Science and Technology, Vol. III: Optical Materials, Part 1 (CRC Press, Boca Raton, FL, 1986), p. 54 ff and S. Singh, Nonlinear optical materials, Handbook of Laser Science and Technology, Suppl. 2: Optical Materials (CRC Press, Boca Raton, FL 1995), p. 237 ff. These references list the original sources of the data; they also contain additional nonlinear coefficients for other organic materials and powders.
1.9.4 Third-Order Nonlinear Optical Coefficients Coefficient
Nonlinear Crystal
Cjn × 10
optical process (3)
20
2
m V
Wavelength –2
(µm)
Al0.2Ga0.8As
(−2ω2− ω1; ω1, ω1, −ω2)
χ
Al2O3
(−2ω1+ ω2; ω1, ω1, −ω2) (−ω; ω, ω,−ω)
C11 = 0.0159 ± 0.002 C11 ≤ 0.28
0.5250 0.6943
BaF2
(−2ω1+ ω2; ω1, ω1, −ω2)
C11 = 0.0387 ± 0.00042 C18 = 0.0159 ± 0.00014
0.5750 0.5750
Bi1−xSbx
(−2ω2− ω1; ω1, ω1, −ω2)
χ
C (diamond)
(−3ω; ω, ω, −ω) (−2ω1+ ω2; ω1, ω1, −ω2)
C11 + 3C18 = 0.1456 ± 10% C11 + 3C18 = 0.163 ± 0.046 C11 + 3C18 = 0.0738 ± 0.0019 C18 = 0.01218 ± 0.0009 C11 = 0.02147 C18 = 0.00803 ± 0.0003
© 2003 by CRC Press LLC
(3)
= 116.7
0.84
8
= 4.18 x 10
10.6 1.06 1.06 0.407 0.407 0.545 0.545
210
Handbook of Optical Materials Third-Order Nonlinear Optical Coefficients—continued Coefficient
Nonlinear Crystal
optical process
Cjn × 10
20
2
m V
Wavelength -2
(µm)
CaCO3
(−2ω1+ ω2; ω1, ω1, −ω2)
C11 = 0.0084 ± 0.0037 C11 = 0.0078 ± 0.00033 C33 = 0.0047 ± 0.0009
0.530 0.556 0.530
CaF2
(−2ω1+ ω2; ω1, ω1, −ω2)
C11 = 0.002 ± 0.0006 C18 = 0.00089 ± 0.00023 C11 = 0.005 C18 = 0.0025
0.575 0.575 0.6943 0.6943
CdF2
(−2ω1+ ω2; ω1, ω1, −ω2)
C11 = 0.0068 ± 0.0010 C18 = 0.0022 ± 0.0003
0.5750 0.5750
CdGeAs2
(−3ω; ω, ω, ω)
C11 = 182 ± 84 C16 = 175 C18 = −35
CdS
(−2ω1+ ω2; ω1, ω1, −ω2)
C11 = 2.24
GaAs
(−2ω1+ ω2; ω1, ω1, −ω2)
C11 = 16.80 ± 10% C18 = 4.2 ± 0.168
10.6 10.6
Ge
(−2ω1+ ω2; ω1, ω1, −ω2)
C11 = 140 ± 50% C18 = 85.4 ± 2.8 C11 = 42.8 ± 80% C18 =12 ± 3.6
10.6 10.6 10.6 10.6
(−3ω; ω, ω, −ω)
10.6 10.6 10.6 0.6943
HgCdTe
(−2ω1+ ω2; ω1, ω1, −ω2)
C11 = 1.75
10.6
InAs
(−2ω1+ ω2; ω1, ω1, −ω2)
C11 = 63
10.6
KBr
(−2ω1+ ω2; ω1, ω1, −ω2)
C11 = 0.042 C18 = 0.0154 C11 = 0.0392
0.6943 0.6943 1.06
(−3ω; ω, ω, −ω)
C11 = 0.0266 C18 = 0.0081 C11 = 0.0168
0.6943 0.6943 1.06
KH2PO4
(−3ω; ω, ω, −ω)
C11 – C18 = 0.04
1.06
KI
(−2ω1+ ω2; ω1, ω1, −ω2)
C11 = 0.0035 C18 = 0.00216
0.6943 0.6943
LiF
(−2ω1+ ω2; ω1, ω1, −ω2)
C11 = 0.0048 ± 0.0008 C11 = 0.0028 C18 = 0.00126 C11 = 0.0014 ± 0.00002 C11 = 0.0042
0.5250 0.6943 0.6943 1.89 1.06
(−3ω; ω, ω, −ω) KCl
(−2ω1+ ω2; ω1, ω1, −ω2)
(−3ω; ω, ω, −ω)
© 2003 by CRC Press LLC
Section 1: Crystalline Materials
211
Third-Order Nonlinear Optical Coefficients—continued Coefficient
Nonlinear Crystal
optical process
Cjn × 10
20
Wavelength
2
m V
-2
(µm)
LiIO3
(−3ω; ω, ω, −ω)
C12 = 0.2285 C35 = 6.66 ± 1
1.06 1.06
MgO
(−2ω1+ ω2; ω1, ω1, −ω2)
C11 = 0.014 C18 = 0.0077 C11 =0.0336
0.6943 0.6943 1.06
C11 = 0.0238 C18 = 0.0101 C11 =0.0168 C18/C11 = 0.4133
0.6943 0.6943 1.06 1.06
(−3ω; ω, ω, −ω) NaCl
(−2ω1+ ω2; ω1, ω1, −ω2) (−3ω; ω, ω, −ω)
NaF
(−3ω; ω, ω, −ω)
C11 = 0.0035
1.06
NH4H2PO4
(−3ω; ω, ω, −ω)
C11 = 0.0104 C18 = 0.0098
1.06 1.06
Si
(−2ω1+ ω2; ω1, ω1, −ω2)
C11 = 8.4 ± 10% C18 = 4.03 ± 0.252 C11 = 60.7 ± 9.7
(−3ω; ω, ω, −ω)
10.6 10.6 1.06
α−SiO2
(−2ω1+ ω2; ω1, ω1, −ω2)
C11 = 0.014 C11 = 0.0059 ± 50%
0.6943 1.89
SrF2
(−2ω1+ ω2; ω1, ω1, −ω2)
C11 = 0.00205 ± 0.0005 C18 = 0.0014 ± 0.00019
0.575 0.575
SrTiO3
(−2ω1+ ω2; ω1, ω1, −ω2)
C11 = 5.6 C18 = 2.63
0.6943 0.6943
Tb3Al5O12
(−2ω1+ ω2; ω1, ω1, −ω2)
C11 = (3.1 ± 0.62) x 10 6 C18 = (0.95 ± 0. 2) x 10
4.0 4.0
Y3Al5O12
(−2ω1+ ω2; ω1, ω1, −ω2)
C11 = 0.03052 ± 0.0018 C18 = 0.0084
0.5250 0.694
6
The above data are from tables of S. Singh, Nonlinear optical materials, Handbook of Laser Science and Technology, Vol. III: Optical Materials, Part 1 (CRC Press, Boca Raton, FL 1986), p. 54 ff and S. Singh, Nonlinear optical materials, Handbook of Laser Science and Technology, Suppl. 2: Optical Materials, (CRC Press, Boca Raton, FL, 1995), p. 237 ff. These references list the original sources of the data; they also contain additional nonlinear coefficients for other organic materials and powders.
© 2003 by CRC Press LLC
212
Handbook of Optical Materials
1.9.5 Optical Phase Conjugation Materials* Photorefractive and semiconducting media are widely used for optical phase conjugation. Photorefractive materials are electrooptic photoconductors in which a refractive index grating can be written by charge generation, transport, and trapping. The most general interaction used to produce phase conjugation in photorefractive materials is degenerate four−wave mixing (DFWM). 1
Photorefractive materials may be classified into several major structural categories.
Ferroelectric oxides, including LiNbO3, BaTiO3, KNbO3, and Sr1–xBaxNb2O6 (SBN). These materials have large electrooptic coefficients and are thus characterized by large values of diffraction efficiency, gain coefficient, and phase conjugate reflectivity. They are not effective photoconductors;, thus the response times in these materials with typical CW beams are slow. Cubic oxides or sillenites, including Bi12SiO2 0 (BSO), Bi12 GeO 20 (BGO) and Bi12TiO 20 (BTO). These materials have relatively small electrooptic coefficients, but they are good photoconductors, thus their response times are fast. In order to improve the phase conjugate reflectivity of the sillenites, applied DC or AC electric fields are generally used. Bulk compound semiconductors, including GaAs, InP, and CdTe. These materials have small electrooptic coefficients but they are excellent photoconductors, with response times approaching the fundamental limit for bulk photorefractive materials. As with the sillenites, both DC and AC electric fields have been used to enhance the gain and phase conjugate reflectivity of semiconductor conjugators. Other photorefractive materials include multiple quantum wells in the GaAs/AlGaAs or CdZnTe/ZnTe systems. These materials require an applied AC electric field; the periodic space charge field is due to periodic screening of the applied field. Photorefractive multiple quantum wells are faster than bulk semiconductors, but are relatively inefficient, because of the small thickness (typically 1 mm) of the active layers. Organic crystals. Organic crystals are in principle easier to grow than inorganics, but they are also more difficult to handle. Only limited work on these materials has been performed. Polymer films. These materials are simple and inexpensive to fabricate. In addition, there is great flexibility in modifying the structure to separately optimize the electro−optic properties and the charge transport properties. 1
Fisher, R. A., Phase conjugation materials, Handbook of Laser Science and Technology, vol. V, Optical Materials, Part 3, (CRC Press, Boca Raton, FL 1987), p. 261.
* This section was adapted from Pepper, D. M., Minden, M. L., Bruesselbach, H. W., and Klein, M. B., Nonlinear optical phase conjugation materials, Handbook of Laser Science and Technology, Suppl. 2: Optical Materials (CRC Press, Boca Raton, FL, 1995), p. 467.
© 2003 by CRC Press LLC
Section 1: Crystalline Materials
213
Semiconducting media possess a wide range of nonlinearities and materials are available at wavelengths from the visible spectral region to 10.6 µm and beyond. The variety of nonlinearities in semiconductors results from the presence of free carrier states, as well as the bound carrier states which are present in all optical materials. Large concentrations of free carriers can be created through doping or through optical excitation. Semiconductors are particularly useful materials in the infrared spectral region because in most cases the nonlinear susceptibility increases rapidly as the operating wavelength increases. In addition, the susceptibility is larger in materials with smaller values of band gap energy. Nonlinear processes in semiconductors can be broadly divided into two categories: resonant and nonresonant. In general, nonresonant nonlinearities involve virtual transitions and are quite fast. By contrast, resonant nonlinearities involve real transitions (usually involving free carrier generation), and are thus slower. Nonlinear processes used for phase conjugation via DFWM in semiconductors include anharmonic response of bound electrons, nonlinear motion of free carriers, plasma generation by valence−to−conduction band transitions, interband population modulation through optically induced carrier temperature fluctuations, saturation of exciton absorption in multiple quantum wells, and saturation of intersubband transitions in multiple quantum wells.
General References on Nonlinear Optical Phase Conjugation Fisher, R. A., Ed., Optical Phase Conjugation, (Academic Press, New York, 1983). Pepper, D. M., Nonlinear optical phase conjugation, The Laser Handbook, Vol. 4, M. Bass and M. L. Stitch, Eds. (North−Holland Press, Amsterdam, 1985). Zel’dovich, B. Ya., Pilipetsky, N. F., and Shkunov, V. V., Principles of Phase Conjugation, Springer Ser. Opt. Sci. 42, T. Tamir, Ed. (Spinger−Verlag, Berlin, 1985). Pepper, D. M., Guest Ed., Special issue on nonlinear optical phase conjugation, IEEE J. Quantum Electron. 25, (1989). Günter, P., and Huignard, J.−P., Photorefractive materials and their applications I and II, Topics in Applied Physics, Vol. 61 (Springer-Verlag, Berlin, 1988).
© 2003 by CRC Press LLC
214
Semiconductor Phase Conjugate Materials
Material
(µm )
Pump χ(3)
Nonlinearity
Temp.
width
intensity
mechanism
(K)
(ns)
(W/cm 2 )
Reflectivity
(esu)
4 × 107 1.2 × 108 1.2 × 107 10 6 10 7 7 × 106
2% 800% 0.14% 1%** 150% 100%
2 × 10–10 — 4 × 10–11 — 10 – 7 —
1 7 3 4 5,6 7 8,9 10 11 8,12,13
50 1.5 — 10 15 15
Ref.
Ge Ge Ge Si Si Si
10.6 10.6 3.8 1.06 1.06 1.06
AMBE NLPlasma AMBE Plasma Plasma Plasma
300 300 300 300 300 300
InAs InSb InSb InSb
10.6 5.3 5.3 10.6
3PA-Plasma Plasma Plasma 2PA-Plasma
300 5 80 300
~200 CW CW ~200
1.8 × 106 40 1 10 5
13% 1% 20% 30%
2.5 × 10–7 — 1.1 2 × 10–5
n-Hg0.768Cd0.232Te n-Hg0.78Cd0.22Te n-Hg0.78Cd0.22Te
10.6 10.6 10.6
CBNP Plasma Plasma
295 77 120
200 CW CW
10 7 1 12
9% 8% 2%
4 × 10–8 3 × 10–2 5 × 10–2
14 15 16
HgTe CdTe CdS ZnSe
10.6 1.06 0.53 0.69
Plasma* TSA-Plasma Plasma TSA-Plasma
300 300 300 300
∼200
5 × 105 10 7 2 × 107 5 × 107
— 200% — 200%
2 × 10–4
17 18 19 20
15 15
3 × 10–9 —
AMBE, anharmonic motion of bound electrons; Plasma, nonlinearity due to index change from free carriers; also known as band filling nonlinearity; NL Plasma, plasma nonlinearity induced by high-order nonlinear absorption; 2PA-Plasma, plasma nonlinearity induced by two-photon absorption; 3PA-Plasma, plasma nonlinearity induced by three-photon absorption; SIA, saturation of intersubband absorption; SEA, saturation of exciton absorption; CBNP, conduction band nonparabolicity; TSA-Plasma, plasma nonlinearity induced by two-step absorption via impurity states; *Fast (5 ps) interband population modulation; **Diffraction efficiency.
© 2003 by CRC Press LLC
Handbook of Optical Materials
Wavelength
Pulse
Section 1: Crystalline Materials
215
References: 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20.
Bergmann, E. E., Bigio, I. J., Feldman, B. J., and Fisher, R. A., Opt. Lett. 3, 82 (1978). Watkins, D. E., Phipps, Jr., C. R., and Thomas, S. J., Opt. Lett. 6, 26 (1981). DePatie, D., and Haueisen, D., Opt. Lett. 5, 252 (1980). Woerdman, J. P., Opt. Commun. 2, 212–14 (1970). Jain, R. K., and Klein, M. B., Appl. Phys. Lett. 35, 454 (1979). Jain, R. K., Klein, M. B., and Lind, R. C., Opt. Lett. 4, 328 (1979). Eichler, H. J., Chen, J., and Richter, K., Appl. Phys. B 42, 215 (1987). Basov, N. G., Kovalev, V. I., and Faizulov, F. S., Bull. Acad. Sci. U.S.S.R Phys. Ser. 51, 67 (1987). Basov, N. G., Kovalev, M. A., Musaev, M. A., and Faysullov, F. S. (Nova Science Publishers, Commack, NY, 1988). Miller, D. A. B., Harrison, R. G., Johnston, A. M., Seaton, C. T., and Smith, S. D., Opt. Commun. 32, 478 (1980). MacKenzie, H. A., Hagan, D. J., and Al−Attar, H. A., Opt. Commun. 51, 352 (1984). Erokhin, A. I., Kovalev, V. I., and Shmelev, A. K., Sov. J. Quantum Electron. 17, 742 (1987). An, A. A., and Kovalev, V. I., Sov. J. Quantum Electron. 17, 1075 (1987). Khan, M. A., Kruse, P. W., and Ready, J. F., Opt. Lett. 5, 261 (1980). Khan, M. A., Bennet, R. L. H., and Kruse, P. W., Opt. Lett. 6, 560 (1981). Jain, R. K., and Steel, D. G., Opt. Commun., 43, 72 (1982). Wolff, P. A., Yuen, S. Y., Harris, Jr., K. A., Cook, J. W., and Schetzina, J. F., Appl. Phys. Lett. 50, 1858 (1987). Kremenitskii, V., Odoulov, S. G., and Soskin, M. S., Phys. Status Solidi A 57, K71 (1980). Jain, R. K., and Lind, R. C., J. Opt. Soc. Am. 73, 647 (1983). Borshch, A., Brodin, M., Volkov, V., and Kukhtarev, N. V., Opt. Commun. 35, 287 (1980).
© 2003 by CRC Press LLC
216
Photorefractive Phase Conjugation Materials
Ferroelectric oxide BaTiO3
BaTiO3:Co
SBN:Ce SBN:Rh BSKNN:Ce KNbO3:Fe KNbO3:Fe Sillenite BSO BTO
© 2003 by CRC Press LLC
Wavelength (µm )
0.515 1.09 0.532 0.532 0.515 0.515 0.85 0.515 0.442 0.532 0.515 0.458 0.488 0.488
0.568 0.568 0.633 0.633 0.633
Gain coeff. (cm -1 )
—
Response time(s)
Intensity (W/cm 2 )
Interaction
Reflectivity 4
Ref.
Notes
— 14
— 500 10–8 3 × 10–11 10–3 — — 0.021 0.3 10–8 10 100 5 × 10–5 10 – 3
— 1 2 × 106 3 × 108 4 — — 1 0.5 10 6 1 1 1 300
DFWM Ring TWM — — SPBS Internal — Internal Internal TWM Internal — Ring
100 (10 %) 17% — 3 × 10–6 — 60% 70% — 30% 29% — 28% — 60%
1 2 3 4 5 6 7 8 9 10 11 12 13 14
f g h i
12 9 35 35
0.2 0.2 — — 10
0.1 0.1
DFWM TWM Mutual Ring TWM
270% — 40% 7% —
15 16 17 18 19
j k l m n
15 — — — 38 — — 60
0.1 0.1
b c d a e
Handbook of Optical Materials
Structural category and material
Bulk semiconductor InP:Fe
GaP CdTe:V GaAs:Cr GaAs ZnTe:V Organic crystal COANP
1.32 1.064 0.970 0.633 1.32 1.5 1.064 1.064 1.064 0.633
0.676
2.5 11 31 0.4 10 2.4 6 7.7 0.4
0.1%
10 –3 0.1 0.1
0.1 0.07 0.023
Ring Mutual Ring
10–3 2 × 10–3 0.040 — — 1.5 × 10–5
0.075 0.003 0.050 0.02 4.7
TWM TWM TWM DFWM Ring TWM
500% 3% —
20 21 18 22 23 24 25 26 27 28
10 3
3.2
—
—
29
11% 74% 0.3% 0.3% — —
o p q r s t u u v
Section 1: Crystalline Materials
a Reflectivity constant from 0.6–0.9 µm; b Experiment performed with 10-ns pulses; c Experiment performed with 30-ps pulses; d Samples operated at 120°C; e 45-degree cut sample; f Rhodium concentration = 0.07 wt %; g Ba1.5Sr0.5K 0.75Na 0.25Nb 5O 15 (BSKNN-1) and Ba 0.5Sr1.5K 0.50Na 0.50Nb 5O 15 (BSKNN-2); h Electrochemically reduced sample; i Reflection grating geometry; j DC electric field (E=10 kV/cm) with moving grating; beam ratio=10 4 ; k DC electric field (E=10 kV/cm) with moving grating; beam ratio=10 5 ; l AC square-wave electric field (E=20 kV/cm; f=50 Hz); m,n AC square-wave electric field (E=10 kV/cm; f=60 Hz); beam ratio=10 5 ; o AC square-wave electric field (E=10 kV/cm); p DC electric field (E=13 kV/cm); temperature/intensity resonance; q DC electric field (E=10 kV/cm); beam ratio=106; r band edge resonance and temperature/intensity resonance; s AC square-wave electric field (E=23 kV/cm; f=230 kHz); t beam ratio=10 4 ; u DC electric field (E=5 kV/cm) with moving grating; beam ratio=10 4 ; v DC electric field (E=12 kV/cm).
217
© 2003 by CRC Press LLC
218
Handbook of Optical Materials
References: 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29.
Feinberg, J., and Hellwarth, R. W., Opt. Lett. 5, 519 (1980). Cronin−Golomb, M., Lau, K. Y., and Yariv, A., Appl. Phys Lett. 47, 567 (1985). Barry, N., and Damzen, M. J., J. Opt. Soc. B 9, 1488 (1992). Smirl, A. L., Valley, G. C., Mullen, R. A., Bohnert, K., Mire, C. D., and Boggess, T. F., Opt. Lett. 12, 501 (1987). Rytz, D., Klein, M. B., Mullen, R. A., Schwartz, R. N.,Valley, G. C., and Wechsler, B. A., Appl. Phys. Lett. 52, 1759 (1988). Mullen, R. A., Vickers, D. J., West, L., and Pepper, D. M., J. Opt. Soc. Am. B 9, 1726 (1992). Rytz, D., Stephens, R. R., Wechsler, B. A., Keirstad, M. S., and Baer, T. M., Opt. Lett. 15, 1279 (1990). Garrett, M. H., Chang, J. Y., Jenssen, H. P., and Warde, C., Opt. Lett. 17, 103 (1992). Salamo, G., Miller, M. J., Clark III, W. W., Wood, G. L., and Sharp, E. J., Opt. Commun. 59, 417 (1986). Monson, B., Salamo, G. J., Mott, A. G., Miller, III, M. J., Sharp, E. J., Clark, W. W., Wood, G. L., and Neurgaonkar, R. R., Opt. Lett. 15, 12 (1990). Vasquez, R. A., Neurgaonkar, R. R., and Ewbank, M. D., J. Opt. Soc. Am. B 9, 1416 (1992). Rodriguez, J., Siahmakoun, A., Salamo, G., Miller, III, M. J., Clark, W. W., Wood, G. L., Sharp, E. J., and Neurgaonkar, R. R., Appl. Opt. 26, 1732 (1987). Voit, E., Zha, M. Z., Amrein, P., and Günter, P., Appl. Phys. Lett. 51, 2079 (1987). Dyakov, V. A., Korolkov, S. A., Mamaev, A. V., Shkunov, V. V., and Zozulya, A. A., Opt. Lett. 16, 1614 (1991). Rajbenbach, H., Huignard, J. P., and Refregier, P., Opt. Lett. 9, 558 (1984). Refregier, P., Solymar, L., Rajbenbach, H., and Huignard, J. P., J. Appl. Phys. 58, 45 (1985). Petrov, M. P., Sochava, S. L., and Stepanov, S. I., Opt. Lett. 14, 284 (1989). Millerd, J. E., Garmire, E. M., and Klein, M. B., J. Opt. Soc. Am. B 9, 1499 (1992). Millerd, J. E., Garmire, E. M., Klein, M. B., Wechsler, B. A., Strohkendl, F. P., and Brost, G. A., J. Opt. Soc. Am. B 9, 1449 (1992). Bylsma, R. B., Glass, A. M., Olson, D. H., and Cronin−Golomb, M., Appl. Phys. Lett. 54 (1968 (1989). Vieux, V., Gravey, P., Wolffer, N., and Picoli, G., Appl. Phys. Lett. 58, 2880 (1991). Itoh, M., Kuroda, K., Shimura, T., and Ogura, I., Jpn. J. Appl. Phys. 29, L1542 (1990). Ziari, M., Steier, W. H., Ranon, P. M., Klein, M. B., and Trivedi, S., J. Opt. Soc. Am. B 9, 1461 (1992). Partovi, A., Millerd, J., Garmire, E. M., Ziari, M., Steier, W. H., Trivedi, S. B., and Klein, M. B., Appl. Phys Lett. 57, 846 (1990). Imbert, B., Rajbenbach, H., Mallick, S., Herriau, J. P., and Huignard, J.−P, Opt. Lett. 13, 327 (1988). Rajbenbach, H., Imbert, B., Huignard, J. P., and Mallick, S., Opt. Lett. 14, 78 (1989). Chua, P. L., Liu, D. T. H., and Cheng, L. J., Appl. Phys. Lett. 57, 858 (1990). Ziari, M., Steier, W. H., Ranon, P. M., Trivedi, S., and Klein, M. B., Appl. Phys. Lett. 60, 1052 (1992). Sutter, K., Hulliger, J., and Günter, P., Solid State Commun. 74, 867 (1990); Sutter, K. and Günter, P., J. Opt. Soc. Am. B 7, 2274 (1990).
© 2003 by CRC Press LLC
Section 2: Glasses
2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 2.10 2.11
Introduction Commercial Optical Glasses Specialty Optical Glasses Fused Silica Fluoride Glasses Chalcogenide Glasses Magnetooptic Properties Electrooptic Properties Elastooptic Properties Nonlinear Optical Properties Special Glasses
© 2003 by CRC Press LLC
Section 2: Glasses
221
Section 2 GLASSES 2.1 Introduction Classification and Designation Optical glasses are characterized and designated by their refractive index and dispersion. The most common measure is the refractive index at the wavelength of the He d line (587.6 nm) or the Na D line (589.3 nm). The difference in the refractive index at the hydrogen F (486.1 nm) and C (656.3 nm) lines, nF – nC is called the average or principal dispersion. The ratio (nF – nC)/(nd – 1) is called the relative dispersion; the reciprocal of this quality is the Abbe number νd. i.e., νd = (nd – 1)/(nF – nC). A useful code for finding information on a specific optical glass composition is the mil spec designation. This is a six-digit number where the first three digits designate the refractive index nd with the preceding “l” omitted and the last three digits designate the Abbe number νd with the decimal point omitted. Thus a borosilicate glass BK 7 having an nd = 1.51680 and νd = 64.17 has a designation 517 642. Glasses having nd > 1.60, νd > 50 or nd < 1.60, νd > 55 are called “crown” (K) glass; other glasses are called “flint” (F). These letters, plus others, are usually contained in the manufacturer's designation of optical glasses. Representative manufacturer’s designations, glass types, and principal compositional components of commercial optical glasses are given in Table 2.1.1. Designations vary with the country of origin and some alternate designations are given in parentheses. “Light” or “dense” indicate the relative amounts of heavy metal oxides such as PbO or La2O3. Glasses with prefixes U or IR denote extended ultraviolet or infrared transmitting glasses. Other designators are used for glasses for special applications such as LG—laser glass, FR—Faraday rotator glass, and AO—acoustooptic glass. Various manufacturers of multicomponent optical glass use their own designations. Table 2.1.2 relates these designations to actual composition in terms of major components. The table is comprehensive for Schott Optical Glass Inc. (Duryea, PA), Hoya Glass Works Ltd (Japan), Ohara Optical Glass Manufacturing Company, and Chance–Pilkington (England) glass designations. Corning Glass Works (France) uses another form of identification in which glass type does not play as signficant a role in the name. A cross-reference chart from Corning is presented in Table 2.1.2. There are more than 200 types of optical glasses. Some are always available, others are generally available or available on short notice, and others are available on request. Section 2.2 presents properties of representative types of glasses that are generally preferred or standard glasses. Data are for Schott glasses; however, as indicated in Table 2.1.2, comparable glasses are offered by other companies. Most optical glasses are oxides; only a few nonoxide optical glasses such as heavy metal fluorides and chalcogenides are available commercially. Some of these are included as specialty glasses in Section 2.3.
© 2003 by CRC Press LLC
222
Handbook of Optical Materials Table 2.1.1 Designation, Type, and Major Compositional Components of Optical Glasses
Designation FB FA FP(FK) FZ FK(FC) BK(BSC) PK(PC) PSK(DPC, PCD) K(C) ZK(ZC, ZnC) BaK(BaC, LBC) SK(DBC, BCD) SSK(EDBC, BCDD) LaK(LaC, LaCL) LaSK LgSK TiK TiF TiSF(FF) KzF(CHD, SbF) KzFS(ADF) KF(CF, CHD) LLF(BLF, FEL) LF(FL) F(DF, FD) SF(EDF, FDS) SFS BaLF(LBC, BCL) BaF(BF, FB) BaSF(DBF, FBD) LaF(LaFL) LaSF TaK TaF TaSF NbF NbSF
Glass Type
Compositiona
Fluoroberyllate Fluoroaluminate Fluorophosphate Fluorozirconate Fluorocrown Borosilicate crown Phosphate crown Dense phosphate crown Crown Zinc crown Barium crown Dense barium crown Extra-dense barium crown Lanthanum crown Dense lanthanum crown Special long crown Titanium crown Titanium flint Dense titanium flint Short flint Dense short flint Crown flint Extra light flint Light flint Flint Dense flint Special dense flint Light barium flint Barium flint Dense barium flint Lanthanum flint Dense lanthanum flint Tantalum crown Tantalum flint Dense tantalum flint Niobium flint Dense niobium flint
BeF2-AF3-RF-MF2 AlF3-RF-MF2-(Y,La)F3 P2O5-AlF3-RF-MF2 ZrF4-RF-MF2-(Al,La)F3 SiO2-B2O3-K2O-KF SiO2-B2O3-R2O-BaO P2O5-B2O3-R2O-BaO P2O5-(B,Al)2O3-R2O-MO SiO2-R2O-(Ca,Ba)O SiO2(B2O3)-ZnO SiO2(B2O3)-BaO-R2O SiO2-B2O3-BaO SiO2-B2O3-BaO B2O3(SiO2)-La2O3-ZnO-MO B2O3(SiO2)-La2O3-ZnO-MO B2O3-Al2O3-MF2
}SiO2(B2O3)-TiO2-Al2O3-KF SiO2-B2O3-R2O-Sb2O3 B2O3(Al2O3)-PbO-MO
}SiO2-R2O-PbO-MO }SiO2-R2O-MO-TiO2 }SiO2-B2O3-BaO-PbO-R2O B2O3(SiO2)-La2O3-MO-PbO B2O3(SiO2)-La2O3-MO-PbO B2O3-La2O3-(Gd,Y)2O3-(Ta,Nb)2O5 B2O3-La2O3-(Gd,Y)2O3-(Ta,Nb)2O5 B2O3-La2O3-ZnO-Nb2O5 B2O3(SiO2)-La2O3-ZnO-(Ti,Zr)O2
a R and M denote one or more alkali or alkaline earth elements, respectively.
© 2003 by CRC Press LLC
Section 2: Glasses Table 2.1.2 Designations for Equivalent Optical Glasses Mil spec
Schott type
Hoya type
Corning type
465-657 486-817 487-704 510-635 511-604
FK 3 FK 52 FK 5 BK 1 K7
FC PFC FC BSC C
A63-65 A86-82 A87-70 B10-63 B11-60
517-642 518-603 518-651 523-594 529-518
BK 7 BaLK N3 PK 2 K5 KzF 2
BSC C BSC C CHD
B16-64 B18-60 B18-65 B23-59 B29-52
540-597 548-457 548-535 564-609 569-560
BaK 2 LLF 1 BaLF 5 SK 11 BaK 4
BCL FeL FBL BCD BCL
B39-59 B48-46 B48-53 B64-61 B69-56
573-575 581-408 589-612 604-381 606-439
BaK 1 LF 5 SK 5 F5 BaF 4
BCL FL BCD FD FB
B72-57 B81-41 B89-61 C04-38 C06-44
607-566 609-590 613-443 613-585 614-564
SK 2 SK 3 KzFS N4 SK 4 SK 6
BCD BCD FSB BCD BCD
C07-57 C09-59 C13-44 C13-58 C13-56
618-551 620-363 620-603 623-531 623-569
SSK 4 F2 SK 16 SSK 2 SK 10
BCD FD BCD BCDD BCD
C17-55 C20-36 C20-60 C23-53 C23-57
623-581 624-469 626-356 637-353 639-555
SK 15 BaF 8 F1 F6 SK N18
BCD FB FD FD BCD
C23-58 C24-47 C26-36 C37-35 C39-56
© 2003 by CRC Press LLC
223
224
Handbook of Optical Materials Table 2.1.2—continued Designations for Equivalent Optical Glasses
Mil spec
Schott type
641-601 648-339 650-392 651-559 652-585
LaK 21 SF 2 BaSF 10 LaK22 LaK N7
BCS FDD FBD BCS BCS
C41-60 C48-34 C51-39 C51-56 C52-58
658-572 659-510 667-331 667-484 670-471
LaK11 SSK N5 SF 19 BaF N11 BaF N10
BCS BCDD FDD FB FB
C57-57 C58-51 C67-33 C67-48 C70-47
678-555 689-312 689-496 691-548
LaK N12 SF 8 LaF 23 LaK N9
BCS FeD FBS BCS
C78-56 C89-31 C90-50 C90-55
697-554 699-301 702-411 713-538 717-295
LaK N14 SF 15 BaSF 52 LaK 8 SF 1
BCS FeD FBD BCS FeD
C97-55 C99-30 D01-41 D13-54 D17-29
717-480 720-503 724-380 728-284 734-514
LaF N3 LaK 10 BaSF 51 SF 10 LaK N16
FBS BCS FBD FeD BCS
D17-48L D20-50 D23-38 D28-28 D34-51
740-281 744-448 755-276 762-269 785-258
SF 3 LaF N2 SF 4 SF 55 SF 11
FeD FBS FeD FeD FeD
D40-28 D44-45 D56-27 D62-27 D85-25
785-259 788-474 803-464 805-255 878-385
SF 56 LaF 21 LaSF N30 SF 6 LaSF 15
FeD FBS FBS FeD FBS
D85-26 D88-47 E03-47 E05-25 E78-38
© 2003 by CRC Press LLC
Hoya type
Corning type
Section 2: Glasses
225
2.0
1.9
TaSF LaSF
1.8
LaSK TaF
Refractive index nd
LaF
SF
NbF 1.7
SFS
LaK
BaSF BaF
SK
1.6
PSK
SSK
BaK FZ
1.5 FP
PK
BK
K
F
KzFS BaLF KF
TiSF
LF LLF TiF
TiK
FK SiO2
FA
1.4 FB 1.3
BeF2 100
80
60 Abbe number νd
40
20
Figure 2.1.1 Glass map of the optical glass compositions in Table 2.1.1.
Refractive Index Optical glasses cover a general range of refractive indices nd = 1.4 to 2.0 and reciprocal dispersions νd = 20 to 90. These are almost exclusively oxide glasses. The location of the glasses is shown in the glass map above, where the lines divide the main compositional types. The range of nd – νd in this figure is larger than that given in the ordinary glass catalogs so as to include low-index, low-dispersion fluoride glasses. Amorphous SiO2 and BeF2 are added to indicate the extrema for oxide and fluoride glasses. Many higher index chalcogenide glasses cannot be located in an nd – νd plot because the absorption edge extends into the visible and it is not always possible to measure νd. Therefore for infrared materials, plots are made using a reciprocal dispersion based on measurements of refractive index at longer wavelengths. Manufacturer’s data sheets usually report the refractive index (the mean value for a number of melts) at a number of specific wavelengths. Wavelengths of a number of commonly used spectral lines and laser wavelengths are given in Table 2.1.3. For interpolating values of the refractive index at the other wavelengths, glass manufacturers use an approximate dispersion formula derived from a power series expansion of the form n2 = A0 + A12 + A2 λ-2 + A3 λ-4 + A4 λ-6 + A5 λ-8, where the constants Ai are determined from a least squared fit of the measured values.
© 2003 by CRC Press LLC
226
Handbook of Optical Materials Table 2.1.3 Principal Wavelengths Used for Refractive Index Measurements
Wavelength (nm)
Spectral line
365.0 404.7 435.8 480.0 486.1 546.1 587.6 589.3 632.8 643.8
i n g F' F e d D He-Ne laser C'
Element
Wavelength (nm)
Spectral line
656.3 706.6 768.2 852.1 1014.0 1060.0 1064 1529.6 1970.1 2325.4
C r A' s t Nd glass laser Nd:YAG laser
Hg Hg Hg Cd H Hg He Na Cd
Element H He K Cs Hg
Hg Hg Hg
Using the above equation, refractive indices in the wavelength range 365-1014 nm can be calculated to an accuracy of ± 5 x 10−6 or better. The thermal coefficient of refractive index depends on the wavelength, temperature, and pressure. Transmission The transmission of optical glasses is frequently given in terms of the internal transmission Ti after correction for reflective losses R, that is, Ti = T/R. The deviation of Ti from 100% is a measure of absorption due to impurities and scattering due to defects. The internal transmittance is usually reported at a number of standard wavelengths from the ultraviolet to the infrared. The transmission (I/Io) and the absorption coefficient α for a sample of length l are related by αl = ln(Ι0/Ι) = 2.303OD, where OD = log10(Io/I) is the absorbance or optical density. The absorption cross section σ is derived from α = σN, where N is the number of absorbing centers to unit volume. Glasses exist that are optically transparent in the vacuum ultraviolet and in the mid-infrared. Variations of the ultraviolet and infrared absorption edges of representative optical glasses are illustrated below. 100
Transmission (%)
80
Fused silica
Fluorophosphate (LG–810) Fluorozirconate
60
Borosilicate (BK 7)
40 Lead silicate (SF 6)
20 0 150
200
250 300 Wavelength (nm)
350
400
Figure 2.1.2. Ultraviolet absorption edge of representative optical glasses. Sample thicknesses: 5 mm except for SiO2 and LG 810 which are 2 mm. © 2003 by CRC Press LLC
Section 2: Glasses
227
100 Fluorohafnate
Transmission (%)
80 As2S3 Silicate
60
As2Se3
Germanate As2Te3
40 Tellurite 20
0
2
4
6
8 10 12 Wavelength (µm)
14
16
18
20
Figure 2.1.3. Infrared absorption edge of representative optical glasses. Sample thicknesses: 2 mm.
Thermal Properties The temperature range in which a glass transforms from its solid state into a “plastic” state is called the transformation region. A transformation (annealing) temperature Tg is used to define this region and is determined from a standard thermal expansion measurement. The viscosity of the melt at Tg is approximately 1013.4 poise. The softening temperature is that temperature at which, in a standard test, the glass deforms under its own weight and corresponds to a melt viscosity of 107.6 poise. Thermal expansion varies the dimensions of glass and affects refractive optics subject to either uniform or gradient temperature variations. The coefficient of thermal expansion α of glass ranges from near zero for special low expansion glasses such as titania-doped SiO2 and tailored glass ceramics to values greater than 20 x 10–6/K. For optical glasses α ranges from about 4 to 16 x 10–6/K. The thermal expansion coefficient increases with increasing temperature, exhibiting a nonlinear increase up to about room temperature, followed by an approximately linear range until the glass begins to exhibit plastic behavior, and then a rapid increase with increasing structural mobility in the glass. Therefore, mean thermal expansion coefficients are given for a specific temperature range. Because of its disordered atomic structure, the thermal conductivity of glass is much lower than that for crystalline materials. The thermal conductivity of optical glasses ranges from about 0.5 to 1.5 W/m K, being high for silica and low for glasses containing large quantities of heavy elements such as lead, tantalum, barium, and lanthanum. The thermal conductivity of glass increases with temperature but only slightly above 300 K. Mechanical Properties The mechanical response of a glass to an applied force is described by various moduli. Optical glass catalogs usually list moduli such as Young’s modulus E (extension in tension) and the modulus of rigidity or shear G which are important for thermal and mechanical stress determinations. These are related to Poisson’s ratio µ (ratio of lateral to longitudinal strain under unilateral stress) by µ + 1 = E/2G. © 2003 by CRC Press LLC
228
Handbook of Optical Materials
The bulk modulus B (1/isothermal compressibility) is related to the above moduli by B = E/3(1 − µ). Elastic moduli can also be expressed in terms of the longitudinal and transverse sound velocities and the density. The hardness of a glass is usually measured from the indentation of Knoop or Vickers penetrators. Values (Knoop) for oxide glasses range from ~250 for high-lead-content glasses to 2 >600 kg/mm for lanthanum crown glasses. The Knoop hardness generally correlates with Young’s modulus. The stress-optical coefficient K varies with glass type and wavelength. It is usually positive, although it can become negative (so-called Pockels glasses) for silicate glasses having a high lead content. The stress-optical coefficient is measured in units of 1 Brewster = (TPa)–1 = 10–12 m2/N. Values of K are included in the table and generally range from –2 < K < 4 TPa–1 for oxide glasses to –40 < K < 20 TPa–1 for chalcogenide glasses.
Chemical Properties An important consideration for many optical glasses is their chemical reactivity with slurries during cutting and polishing of components such as lenses, windows, and prisms and with its environment where it may be subject to chemical attack by water, water vapor, gases, acids, etc. Corrosion, dimming, and straining occur and vary greatly depending on the chemical composition of the glass. No simple test and parameter is sufficient to characterize chemical reactivity under all conditions. Thus many terms and tests are used to rank glasses with respect to their resistance to acids, straining, climate, weathering, etc. Manufacturers typically list several categories of acid and alkali resistance to cover the above ranges.
2.2 Commercial Optical Glasses Data for selected commercial optical glasses representative of the various glass types are presented in Sections 2.2 and 2.3 are from manufacturers’ catalogs and data sheets and from the Handbook of Optics, Vol. II (McGraw-Hill, New York, 1995), chapter 33, and references cited therein.
© 2003 by CRC Press LLC
Section 2: Glasses 2.2.1
Optical Properties
Glass type
Refractive index nd
FK 5 FK 51 PK 2 PSK 3 PSK 53 BK 7 BaLK N3 K5 UK 50 ZK 1 ZK N7 BaK 50 SK 2 SK 14 KF 9 BaLF 4 SSK 4 SSK N5 LaK N7 LaK 10 LLF 6 BaF 4 BaF N10 LF 5 F2 BaSF 2 BaSF 51 LaF N2 LaF N21 LaSF 30 LaSF 31 SF 2 SF 59 SF N64 TiK 1 TiF 1 TiF 6 KzF N1 KzFS N4 LgSK 2
1.48749 1.48656 1.51821 1.55232 1.62014 1.51680 1.51849 1.52249 1.52257 1.53315 1.50847 1.56774 1.60738 1.60311 1.52341 1.57957 1.61765 1.65844 1.65160 1.72000 1.53172 1.60562 1.67003 1.58144 1.62004 1.66446 1.72373 1.74400 1.78831 1.80318 1.88067 1.64769 1.95250 1.70585 1.47869 1.51118 1.61650 1.55115 1.61340 1.58599
70.41 84.47 65.05 63.46 63.48 64.17 60.25 59.48 60.38 57.98 61.19 57.99 56.65 60.60 51.49 53.71 55.14 50.88 58.52 50.41 48.76 43.93 47.11 40.85 36.37 35.83 38.11 44.77 47.39 46.45 41.10 33.85 20.36 30.30 58.70 51.01 30.97 49.64 44.30 61.04
NbF 1
1.74330
59.23
* dn/dT in air; 0/+20˚C
© 2003 by CRC Press LLC
Abbe number νd
Dispersion -3 nF − nC(x10 ) 6.924 5.760 7.966 8.704 9.769 8.054 8.606 8.784 8.654 9.196 8.310 9.790 10.721 9.952 10.166 10.790 11.201 12.940 11.134 14.282 10.905 13.787 14.222 14.233 17.050 18.545 18.991 16.618 16.633 17.292 21.429 19.135 46.774 22.295 8.155 10.022 19.904 11.103 13.848 9.600 –
-6
dn/dT (10 /K)* 435.8 nm 1060 nm −1.1 −5.9 3.7 – −1.7 3.4 3.1 2.4 – 4.4 6.8 8.7 5.6 3.6 5.1 6.3 4.0 – 1.7 5.8 4.4 5.1 – 4.4 5.9 – 12.1 3.4 6.1 – 6.2 −1.8 – 4.3 −1.8 −0.1 – 5.0 6.2 −2.5 7.9 (633 nm)
−1.8 −6.4 2.3 – −2.6 2.3 1.9 1.1 – 2.8 6.1 7.7 3.9 2.3 3.3 4.3 2.2 – 0.5 3.8 2.6 2.6 – 1.6 2.8 – 8.1 1.1 3.8 – 3.5 −2.6 – 0.9 −2.6 −1.5 – 3.1 4.4 −4.0 –
229
230
Handbook of Optical Materials
2.2.2 Internal transmittance (5 mm) Wavelength Glass type
320 nm
400 nm
700 nm
1530 nm
2325 nm
FK 5 FK 51 PK 2 PSK 3 PSK 53 BK 7 UBK 7 BaLK N3 K5 UK 50 ZK 1 ZK N7 BaK 50 SK 2 SK 14 KF 9 BaLF 4 SSK 4 SSK N5 LaK N7 LaK 10 LLF 6 BaF 4 BaF N10 LF 5 F2 BaSF 2 BaSF 51 LaF N2 LaF 21 LaSF 30 LaSF 31 SF 2 SF 59 SF N64 TiK 1 TiF 1 TiF 6 KzF 1 KzFS N4 LgSK 2
0.975 0.87 0.84 0.85 0.05 0.81 0.920 0.82 0.78 0.92 0.77 0.69 0.36 0.71 0.73 0.41 0.08 0.4 – 0.46 0.20 0.84 0.15 – 0.60 0.20 – – 0.02 – – 0.13 0.01 – – 0.17 – – 0.46 0.50 0.07
0.998 0.996 0.998 0.997 0.96 0.998 0.998 0.998 0.997 0.998 0.996 0.992 0.998 0.995 0.994 0.996 0.995 0.994 0.981 0.992 0.981 0.998 0.994 0.965 0.998 0.998 0.963 0.956 0.968 0.975 0.975 0.93 0.994 0.60 0.93 0.94 0.981 0.90 0.986 0.988 0.970
0.999 0.999 0.999 0.999 0.997 0.999 0.999 0.999 0.999 0.997 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.998 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.998 0.999 0.999 0.999 0.999 0.999 0.994 0.999 0.998 0.998 0.996 0.999 0.999 0.996
0.993 0.999 0.999 0.996 0.985 0.997 0.997 0.997 0.998 0.996 0.995 0.995 0.994 0.998 0.994 0.999 0.997 0.997 0.997 0.997 0.998 0.998 0.999 0.997 0.999 0.999 0.998 0.999 0.996 0.999 0.999 0.998 0.999 0.999 0.998 0.999 0.999 0.998 0.990 0.996 0.979
0.91 0.999 0.975 0.91 0.94 0.89 0.88 0.91 0.91 0.92 0.92 0.92 0.93 0.952 0.90 0.90 0.94 0.94 0.93 0.89 0.87 0.90 0.951 0.93 0.92 0.93 0.959 0.89 0.93 0.88 0.87 0.961 0.94 0.950 0.950 – 0.89 0.68 0.92 0.790 –
© 2003 by CRC Press LLC
Section 2: Glasses 2.2.3 Mechanical Properties Glass type FK 5 FK 51 PK 2 PSK 3 PSK 53 BK 7 BaLK N3 K5 UK 50 ZK 1 ZK N7 BaK 50 SK 2 SK 14 KF 9 BaLF 4 SSK 4 SSK N5 LaK N7 LaK 10 LLF 6 BaF 4 BaF N10 LF 5 F2 BaSF 2 BaSF 51 LaF N2 LaF N21 LaSF 30 LaSF 31 SF 2 SF 59 SF N64 TiK 1 TiF 1 TiF 6 KzF N1 KzFS N4 LgSK 2 NbF 1
Density 3 (g/cm ) 2.45 3.73 2.51 2.91 3.60 2.51 2.61 2.59 2.62 2.71 2.49 2.93 3.55 3.44 2.71 3.17 3.63 3.71 3.84 3.81 2.81 3.50 3.76 3.22 3.61 3.90 4.31 4.54 4.44 4.56 5.24 3.86 6.26 3.00 2.39 2.47 2.79 2.71 3.20 4.15 4.17
© 2003 by CRC Press LLC
Young’s modulus E 3 2 (10 N/mm ) 62 79 84 84 77 81 72 71 73 68 71 81 78 86 67 76 79 88 90 111 63 66 89 59 58 66 80 87 120 124 123 55 51 93 40 58 65 60 60 76 108
Poisson’s ratio µ
Knoop hardness 2 (kg/mm )
0.205 0.287 0.209 0.226 0.287 0.208 0.212 0.227 0.240 0.214 0.259 0.263 0.261 0.202 0.244 0.265 0.278 0.277 0.288 0.205 0.247 0.281 0.226 0.225 0.245 0.289 0.293 0.294 0.290 0.298 0.231 0.269 0.250 0.254 0.239 0.263 0.225 0.276 0.290 0.308 –
450 360 520 510 370 520 470 450 460 430 450 520 460 490 440 460 460 470 460 580 420 400 480 410 370 410 450 450 630 630 620 350 250 500 330 440 410 500 380 340 675
Stress-optical coefficient -1 K (TPa) 2.91 0.67 – – – 2.74 – – – – 3.62 – – 2.00 – – – – – – – – – 2.81 – – – 1.65 – – – 2.65 −1.46 – – – – – – – –
231
232
Handbook of Optical Materials
2.2.4 Thermal Properties Glass type FK 5 FK 51 PK 2 PSK 3 PSK 53 BK 7 BaLK N3 K5 UK 50 ZK 1 ZK N7 BaK 50 SK 2 SK 14 KF 9 BaLF 4 SSK 4 SSK N5 LaK N7 LaK 10 LLF 6 BaF 4 BaF N10 LF 5 F2 BaSF 2 BaSF 51 LaF N3 LaF N21 LaSF 30 LaSF 31 SF 2 SF 59 SF N64 TiK 1 TiF 1 TiF 6 KzF N1 KzFS N4 LgSK 2 NbF 1 * 20/300˚C
© 2003 by CRC Press LLC
Thermal expansion* ( 10-6/K) 9.2 16.9 6.9 7.4 10.7 7.1 9.0 8.2 8.1 7.5 5.4 4.6 7.0 7.0 638 6.4 6.1 7.9 8.2 6.9 8.5 8.8 7.9 9.1 8.2 9.3 6.4 9.1 6.9 7.1 7.9 9.2 10.3 9.7 10.3 9.1 16.7 7.5 5.5 12.1 5.3
Thermal conductivity (W/m K)
Specific heat ( J/g K)
0.925 – 1.149 0.990 0.612 1.114 1.029 0.950 0.964 0.894 1.042 1.044 0.776 0.851 1.01 0.827 0.806 – – – – 0.766 0.798 0.866 0.780 – 0.722 0.670 – – – 0.735 0.506
0.818 – 0.80 0.682 0.603 0.858 0.749 0.783
0.773 0.953 – – 0.769 0.866 0.845
0.842 0.81 – – 0.64 0.51 0.48
0.77 0.770 0.758 0.595 0.636 0.75 0.67 0.57 0.574 – – – 0.557 0.595 0.657 0.557 – 0.536 0.481 – – – 0.498 0.306
Transform. temp. (˚C) 464 403 568 602 614 563 562 583 554 562 528 629 654 649 445 569 639 641 618 620 422 521 630 419 432 493 522 616 667 684 753 441 362 578 340 443 410 470 492 515 590
Softening temp. (˚C) 672 – 721 736 – 766 738 720 735 732 721 820 823 773 661 731 791 751 716 703 627 694 745 585 593 640 630 736 – – – 600 – 666 – – 494 675 594 – 625
Section 2: Glasses
233
2.3 Specialty Optical Glasses Designation Vycor (Corning 7913) Pyrex (Corning 7740)
Glass type
Composition
silica borosilicate
96% SiO2 SiO2–B2O3–Na2O–Al2O3
alkali borosilicate borosilicate
SiO2–B2O3–Na2O + . . . SiO2–B2O3–Na2O–CaO + . . .
Infrared transmitting glasses Fused germania Corning 9753 Corning 9754 Barr&Stroud BS-39B Kigre BGA Schott IRG 2 Schott IRG 9 Schott IRG 11 Schott IRG 100 Arsenic trisulfide Arsenic triselenide AMTIR-1 AMTIR-3
germanium oxide calcium aluminate calcium aluminate calcium aluminate germanate germanate fluorophosphate calcium aluminate chalcogenide chalcogenide chalcogenide chalcogenide chalcogenide
100% GeO2 SiO2–CaO–Al2O3 GeO2–CaO–Al2O3–BaO–ZnO CaO–Al2O3–MgO BaO–Ga2O3–GeO2
Fluoride glass Ohara HTF-1
fluoride
Low expansion glasses CLEARCERAM 55 (Ohara) CLEARCERAM 63 (Ohara) LE30 (Hoya) Zerodur (Schott) ULE (Corning 7971)
glass ceramic glass ceramic glass ceramic glass ceramic glass ceramic
aluminosilicate SiO2–Al2O3–P2O5 + . . . SiO2–TiO2
Athermal glasses Schott PSK 54 Schott TiF 6
dense phosphate crown titanium flint
P2O5– (B,Al)2O3–R2O–MO SiO2(B2O3) –TiO2–Al2O3–KF
Acoustooptic glasses Hoya AOT-5 Hoya AOT-44B
tellurite tellurite
TeO2 + . . . TeO2 + . . .
Ultraviolet transmitting glasses Corning 9741 Schott UBK 7 ULTRAN 30 (Schott) Hoya UBS250
Low nonlinear refractive index glass Schott FK 54 fluorophosphate
© 2003 by CRC Press LLC
P 2 O5 + . . . CaO–Al2O3 + . . . 100% As2S3 100% As2Se3 Ge33As12Se55 Ge28As12Se60
P 2 O5 + . .
234
Handbook of Optical Materials
2.3.1 Optical Properties
Glass type Vycor (Corning 7913) Pyrex (Corning 7740)
Transmission range (µm)
Refractive index n d
Abbe number νd
0.3–2.4 1.474
Ultraviolet transmitting glasses Corning 9741 Schott UBK 7 ULTRAN 30 (Schott) Hoya UBS250
0.25– 0.32–2.1 0.28– 0.27–
1.47 1.5168 1.5483 1.472
65 64.3 74.3 65.8
Infrared transmitting glasses Fused germania Corning 9753 Corning 9754 Barr&Stroud BS-39B Kigre BGA Schott IRG 2 Schott IRG 9 Schott IRG 11 Schott IRG 100 Arsenic trisulfide Arsenic triselenide AMTIR-1 AMTIR-3
0.30–4.9 0.38–4.3 0.36–4.8 0.38–4.9 0.5–5.0 0.44–5.1 0.38–4.1 0.44–4.75 0.93–13 0.62–11.0 0.87–17.2 0.75–14.5 0.93–16.5
1.60832 (nD) 1.60475 (nD)) 1.6601 (nD) 1.6764 (nD) 1.663 (nD) 1.8918 1.4861 1.6809 2.7235 (n1) 2.47773 (n1) 2.7728 (n12) 2.6055 (n1) 2.6366 (n3)
41.2
Fluoride glass Ohara HTF-1
0.21–6.9
1.44296
92.5
Low expansion glasses CLEARCERAM 55 (Ohara) CLEARCERAM 63 (Ohara) LE30 (Hoya) Zerodur (Schott) ULE (Corning 7971)
0.42– 0.40– 0.35– 0.4–2.3 0.23–3.9
1.547 1.547 1.532 1.5424 1.5418
55.0 55.1 56.1 75.2
Athermal glasses Schott PSK 54 Schott TiF 6
0.4–1.7
1.5860 1.6165
64.6 31.0
Acoustooptic glasses Hoya AOT-5 Hoya AOT-44B
2.10238 1.97961
18.10 20.58
Low nonlinear refractive index glass Schott FK 54 0.35–2.5
1.4370
90.7
© 2003 by CRC Press LLC
dn/dT (10-6/K)
46.5 44.5 45.6 30.0 81.0 44.2
−5.8 (546 nm)
7.4 (589.3 nm) 12
103 (2.5 µm) 85 (0.6 µm) 55 (0.83 µm) 101 (1 µm) 98 (3 µm)
15.7 −5.5
−5.68 (546 nm)
Section 2: Glasses
235
2.3.2 Mechanical Properties
Glass type Vycor (Corning 7913) Pyrex (Corning 7740)
Density (g/cm3)
Young’s modulus E (103 N/mm2)
Poisson’s ratio µ
Knoop hardness (kg/mm2)
2.18 2.23
68.8 62.8
0.19 0.200
487 418
Ultraviolet transmitting glasses Corning 9741 Schott UBK 7 ULTRAN 30 (Schott) Hoya UBS250
2.17 2.51 4.02 2.26
72 81 76 59.1
0.23 0.212 0.297 0.222
500 380 488
Infrared transmitting glasses Fused germania Corning 9753 Corning 9754 Barr&Stroud BS-39B Kigre BGA Schott IRG 2 Schott IRG 9 Schott IRG 11 Schott IRG 100 Arsenic trisulfide Arsenic triselenide AMTIR-1 AMTIR-3
3.60 2.798 3.581 3.1 3.6 5.00 3.63 3.12 4.67 3.20 4.69 4.41 4.67
43.1 98.6 84.1 104 84.1 95.9 77.0 107.5 21 15.8 18.3 22.1 21.4
0.192 0.28 0.290 0.29 0.29 0.282 0.288 0.284 0.261 0.295 0.288 0.27 0.26
Fluoride glass Ohara HTF-1
3.94
64.2
0.28
320
Low expansion glasses CLEARCERAM 55 (Ohara) CLEARCERAM 63 (Ohara) LE30 (Hoya) Zerodur (Schott) ULE (Corning 7971)
2.56 2.57 2.58 2.53 2.205
95.8 95.5 75.4 91 67.3
0.25 0.25 0.159 0.24 0.17
680 660 657 630 460
Athermal glasses Schott PSK 54 Schott TiF 6
3.52 2.79
65
0.262
340 310
Acoustooptic glasses Hoya AOT-5 Hoya AOT-44B
5.87 5.06
Low nonlinear refractive index glass Schott FK 54 3.18
© 2003 by CRC Press LLC
0.286
3.9
600 560 560 481 346 610 150 180 120 170 150
290 226
76
Stress-optic coefficient K (TPa)-1
320
2.9 3.0 4.0
236
Handbook of Optical Materials
2.3.3 Thermal Properties
Glass type Vycor (Corning 7913) Pyrex (Corning 7740)
Thermal expansion (10-6/K) 0.75 3.25
Ultraviolet transmitting glasses Corning 9741 Schott UBK 7 ULTRAN 30 (Schott) Hoya UBS250
3.8 8.3 13.9 5.6
Infrared transmitting glasses Fused germania Corning 9753 Corning 9754 Barr&Stroud BS-39B Kigre BGA Schott IRG 2 Schott IRG 9 Schott IRG 11 Schott IRG 100 Arsenic trisulfide Arsenic triselenide AMTIR-1 AMTIR-3
6.3 6.0 6.2 6.3 6.3 8.8 16.1 8.2 15.0 26.1 24.6 12.0 13.5
Fluoride glass Ohara HTF-1
16.1
Low expansion glasses CLEARCERAM 55 (Ohara) CLEARCERAM 63 (Ohara) LE30 (Hoya) Zerodur (Schott) ULE (Corning 7971)
0.2 −2.1 0.4 0.5 0.03
Athermal glasses Schott PSK 54 Schott TiF 6 Acoustooptic glasses Hoya AOT-5 Hoya AOT-44B
Thermal conduct. (W/m K) 1.38 1.13
0.667 0.96
2.3 0.81
0.91 0.88 1.13 0.3 0.17 0.20 0.25 0.22
Specific heat ( J/g K) 0.75 1.05
0.58
0.746 0.795 0.54 0.865 0.495 0.695 0.749 0.473 0.349 0.293 0.276
Transform. Softening temp. (K) temp. (K) 890 560
1200 821
733 563 513 449
978 716 600 645
800 1015 1008 741 975 696 1075 550 436 635 550
1147 970 873
624 573 345 678 570
658
1.62 1.62
0.76 0.73
1.64 1.31
0.821 0.776
690
921
1000
1490
11.9 16.7
486 410
568 494
16.1 20.1
332 296
347 314
Low nonlinear refractive index glass Schott FK 54 16.9
403
© 2003 by CRC Press LLC
Section 2: Glasses
237
2.4 Fused (Vitreous) Silica* Different types of silica have been commercially available from several suppliers (Corning Incorporated, Hereaus Amersil, Thermal Syndicate Ltd, General Electric Co., Quartz et Silice [France], Dynasil Corp. of America, NSG Quartz [Japan], Westdeutsche Quartzschmelze GmbH (Germany), Nippon Glass [Japan]). The glasses are compositionally the same except for metallic impurities, structural defects, and water content, but these differences and fabrication variations cause the properties of the silicas to differ significantly. The vitreous silicas can be distinguished by the source of raw material used and the process of melting or consolidating the raw material into bulk vitreous silica. It is produced commercially from naturally occurring quartz of high purity and from silicon tetrachloride liquid or vapor or from tetraethyl orthosilicate liquid. These precursors are 1 processed in several different ways. Hetherington et al. divided the different silicas into four types based on manufacturing method In one method, naturally occurring quartz is purified to varying degrees by preselection of clean crystalline material, fragmented to a fine powder, and fused to bulk glass. The fusion is performed by electric melting in a refractory crucible or container under vacuum, an inert atmosphere, or a hydrogen atmosphere. This produces a type of vitreous silica designated as type I. If the same raw material is fused using an oxyhydrogen torch or an isothermal plasma torch, then the resultant vitreous silica is designated type II. The principal differences between these are the lower hydroxyl content and different impurities of type I. Melting atmosphere influences the glass structure and properties. After fusion, various amounts of hot working are performed to homogenize the resultant silica glasses. The synthetic precursors, mainly SiCl4, are fused to a solid glass with an oxyhydrogen torch producing a very pure but wet material denoted type III. These precursors also can be used to produce vitreous silica under relatively dry conditions such as those present using an oxygen or argon plasma torch. This material has been designated type IV. The principal difference between types III and IV fused silica is OH content which introduces strong absorption around 2.8 µm. Using similar torches but depositing on a cooler bait, the synthetic material can also be formed into a porous boule that is subsequently consolidated to a fully dense silica boule in a furnace. Consolidation of the porous silica body can involve firing in different atmospheres and can be achieved at a temperature several hundred degrees below that used for fusion of the type III and type IV silica. The commercialization of this latter technology has occurred principally in the fabrication of optical fibers based on vitreous silica. Certain manufacturers have used this technology for the fabrication of bulk silica. This vitreous silica is similar to type III or IV depending on the method of consolidation, but the processing is sufficiently different that it should be considered in a class by itself. Although there is varied opinion on what kind of silica should be designated type V, there is general agreement that there are many types of vitreous silica which, because of the dependence on 2 fabrication, do not fall into the earlier established four types. Fleming has viewed the consolidated soot sufficiently close to type III and IV that it is designated type V in the following tables. Fluoride-doped, low-OH silica glass has recently been developed for deep 3 UV and vacuum UV applications and is designated as modified silica. Optical, mechanical, and thermal properties of the various types of silicas are compared below. * From Fleming, J. W., Optical glasses, Handbook of Laser Science and Technology, Suppl. 2: Optical Materials (CRC Press, Boca Raton, 1995), p. 69 (with additions).
© 2003 by CRC Press LLC
238
Handbook of Optical Materials
Glass Type
Brand name
Source
SiO2 I
IR-Vitreosil Infrasil Pursil 453, Ultra GE 104, 105, 201, 204, 124, 125
4 5 6 7
SiO2 II
Herasil, Homosil, Ultrasil, Optosil Vitreosil 055, 066, 077
5 4
SiO2 III
Suprasil Spectrosil 7940, 7980 (HPFS) Dynasil Tetrasil NSG-ES GE 151 Synsil
SiO2 IV
Suprasil W Spectrosil WF
SiO2 V
Nippon Sheet Glass
12
Sol gel SiO2
Gelsil
13
5 4 8 9 6 10 7 11 5 4
Refractive Index Properties14
λ (nm) 193 238 248 308 365 405 436 486 546 588 633 644 656 1064 1500 2000 2500 3000 3500
Refractive index Homosil/ Herasil/ Infrasil Suprasil 1.56077 1.50855 1.48564 1.47447 1.46962 1.46669 1.46313 1.46008 1.45846 1.45702
1.560841
1.47462 1.46975 1.46681 1.46324 1.46018 1.45856
1.45637
1.45646
1.44462 1.43809 1.42980 1.41925 1.40589
1.44473 1.43821 1.42995 1.41941 1.40605
© 2003 by CRC Press LLC
HPFS 7980
1.508601 1.485663 1.474555 1.469628 1.466701 1.463132 1.460082 1.458467 1.457021 1.456370 1.449633
λ (nm) 193 238 248 308 365 405 436 486 546 588 633 644 656 1064 1500 2000 2500 3000 3500
dn/dT (10-6/K) Homosil/ Herasil/ Infrasil Suprasil
HPFS 7980 20.6
14.6
15.2
11.0
11.5
9.9 9.8
10.6 10.5
9.6
10.4
14.2 12.1 11.2 10.8 10.6 10.4 10.2 10.1 10.0 9.9 9.6
Section 2: Glasses
239
Optical Properties Glass type
Data source
Transmission range (µm)
Refractive index nd
Abbe number νd
dn/dT (10-6/K) 10.5
SiO2 I
4,5,7
0.21–2.8
1.45867
67.56
SiO2 II
4,5
0.19–3.5
1.45857
67.6
SiO2 III
5,8
0.17–2.2
1.45847
67.7
SiO2 IV
5
0.18–3.5
–
–
–
SiO2 V
12
0.18–3.5
1.45847
67.7
9.9
Sol gel SiO2
13, 15
0.17–3.5
1.458–1.463
Mod. SiO2
16,17
0.155–3.5
1.65423 (157 nm)
9.9
66.4–67.8
–
–
39 (157 nm)
Resistance to humidity: fused silica exhibits no or very little surface deterioration due to climatic conditions. 18
Dispersion formula 2
2
(wavelength λ in µm)
2
2
2
Range (µm)
2
2
n = 1 + 0.6961663λ /[λ − (0.0684043) ] + 0.4079426λ /[λ − (0.1162414) ] 2
2
0.21–3.71
2
+ 0.8974794λ /[λ − (9.896161) ]
Mechanical Properties Glass type
Density (g/cm3)
Young’s modulus E (103 N/mm2)
Poisson’s ratio µ
Hardness (Knoop) (kg/mm2)
Stress-optical coefficient K (TPa)-1
SiO2 I
2.203
72
0.17
570
3.5
SiO2 II
2.203
70
0.17
600
–
SiO2 III
2.201
70
0.17
610
–
SiO2 IV
2.201
70
0.17
600
–
SiO2 V
2.201
70
0.17
600
–
Sol gel SiO2
2.204
73
–
–
–
Mod. SiO2
2.201
69
0.17
–
–
Thermal Properties Glass type
Thermal expansion ( 10-6/K)
Thermal conductivity (W/m K)
Specific heat (J/g K)
Transformation temperature (°C)
Softening temperature (°C)
SiO2 I
0.55
1.4
0.67
1215
1683
SiO2 II
0.55
1.38
0.75
1175
1727
SiO2 III
0.60
1.38
0.74
1080
1590
SiO2 IV
0.55
1.38
0.75
1110
1650
SiO2 V
0.60
1.38
0.74
Sol gel SiO2
0.57
–
–
Mod. SiO2
0.51*
1.37
0.77
* 0–300ºC
© 2003 by CRC Press LLC
1080
1590
~1160
–
–
–
240
Handbook of Optical Materials 19
Properties of Modified Silica
Refractive Index Data For Fluorine-Doped Silica Blanks Wavelength (nm) 435.8 480 546.1 589.3 632.8 643.8 777 1300 1541
0% F
0.17 wt.% F 0.67 wt.% F 0.8 wt.% F 1.12 wt.%F 1.48 wt.%F
1.4671 1.4639 1.4605 1.4588 1.4576 1.4572 1.4533 1.4472 1.4441
1.466 1.4628 1.4594 1.4578 1.4568 1.4561 1.4526 1.4461 1.4433
1.4638 1.4606 1.4573 1.4556 1.4546 1.4539 1.4502 1.4444 1.4409
1.4634 1.4603 1.4569 1.4552 1.4542 1.4536 1.4499 1.4436 1.4405
1.4618 1.4586 1.4553 1.4537 1.4529 1.452 1.4485 1.4423 1.4393
1.4604 1.4573 1.4539 1.4524 1.4515 1.4507 1.4474 1.4411 1.438
Coeff. thermal expansion (10-6/K)
0.59
–
–
0.51
–
0.43
Anneal point (°C)
1094
962
883
866
833
807
References: 1. Hetherington, G., Jack, K. H., and Kennedy, J. C., The viscosity of vitreous silica, Phys. Chem. Glass 5, 123 (1970). 2. Flerming, J. W., Optical glasses, Handbook of Laser Science and Technology, Suppl. 2: Optical Materials (CRC Press, Boca Raton, 1995), p. 69. 3. Smith, C. M. and Moore, L. A., Proc. SPIE 3676, 834 (1999). 4. Thermal Syndicate Ltd, Montville, NJ 5. Hereaus Amersil, Duluth, GA 6. Quartz et Silice, France 7. General Electric Co., Cleveland, OH 8. Corning Incorporated 9. Dynasil Corp. of America, Berlin, NJ 10. NSG Quartz, Japan 11. Westdeutsche Quartzschmelze GmbH, Germany 12. Nippon Sheet Glass, Japan 13. Hench, L. L., Wang, S. H., and Nogues, J. L., Gel-silica optics, Proc. SPIE 878, 76 (1988). 14. Data from Hereaus Amersil (Suprasil, Homosil, Herasil, Infrasil) and Corning (HPFS, 7980). 15. Shoup, R. D., Gel-derived fused silica for large optics, Ceramic Bull. 70, 1505 (1991). 16. Smith, C. M., Modified silica transmits vacuum UV, Optoelectronics World (July 2001), p. S15. 17. Moore, L. A. and Smith, C. M., Fused silica for 157-nm transmittance, Proc. SPIE 3673, 392 (1999). 18. Rodney, W. S. and Spinder, R. J., Index of refraction of fused quartz glass for ultraviolet, visible, and infrared wavelengths, J. Res. Nat. Bur. Stand. 53, 185 (1954). 19. Moore, L. A. and Smith, C. M. (private communication, 2002).
© 2003 by CRC Press LLC
Section 2: Glasses
241
2.5 Fluoride Glasses 2.5.1 Fluorozirconate Glasses Fluorozirconate Glass Compositions Glass ZBL ZBG ZBGA ZBT ZTL ZBAN ZBLA ZBGA ZBLAL ZBLYAL ZBLAN
Composition (mol %) LaF3 YF3 AlF3
ZrF4
BaF2
GdF3
62 63 61 60 60 58 57 60 52 49 56
33 33 32 33
– 4 4 –
5 – – – 7
– – – –
15 34 32 20 22 14
– 4 – – –
5 – 5 3 6
– – – 3 –
– – 3 – – 6 4 4 3 3 4
ThF4
LiF
NaF
– – – 7 23
– – – – –
– – – – –
– – 20 20 –
– – – – – 21 – – – – 20
Optical Properties Glass type
Transmission range (µm)
ZBL ZBT ZBLA ZBLAN
Refractive index nD
0.25–7.0 0.32–6.8 0.29–7.0 0.25–6.9
dn/dT (10−6/K) 435.8 nm 1060 nm
Abbe number νd
1.523 1.53 1.521 1.480
– – 62 64
– – – −14.5 (633 nm)
– – – –
Mechanical Properties Glass type
Density 3 (g/cm )
ZBL ZBT ZBLA ZBLAN
4.78 4.8 4.61 4.52
Young’s modulus E 60 60 60.2 60
Poisson’s ratio µ 0.31 0.28 0.25 0.31
Hardness (Knoop)
Stress-optical coeff. K (TPa) −1
228 250 235 225
– – – –
Thermal Properties Glass type
Thermal expansion −6 ( 10 /K)
ZBL ZBT ZBLA ZBLAN
© 2003 by CRC Press LLC
18.8 4.3 18.7 17.5
Thermal conductivity (W/m K) – – – 0.4
Specific heat ( J/g K) 0.538 0.511 0.534 0.520
Transformation temperature (K) 580 568 588 543
Softening temperature (K) – 723 – –
242
Handbook of Optical Materials
2.5.2 Fluorohafnate Glasses Fluorohafnate Glass Composition (mol %) Glass
HfF4
HBL HBT HBLA
62 60 58
BaF2
LaF3
AlF3
33 33 33
5 – 5
– – 4
ThF4 – 7 –
Optical Properties Glass type HBL HBT HBLA
Transmission range (µm) 0.25–7.3 0.22–7.7 0.29–7.3
Refractive index nD 1.498 1.53 1.504
dn/dT (10−6/K) 435.8 nm 1060 nm
Abbe number νd – – –
– – –
– – –
Mechanical Properties Glass type
Density 3 (g/cm )
HBL HBT HBLA
5.78 6.2 5.88
Young’s modulus E 55 55 56
Poisson’s ratio µ 0.3 0.3 0.3
Hardness (Knoop) 228 250 240
Stress-optical coeff. K (TPa) −1 – – –
Thermal Properties Glass type
Thermal expansion (10−6/K)
HBL HBT HBLA
18.3 6.0 17.3
Thermal conductivity (W/m K) – – –
Specific heat ( J/g K) 0.413 0.428 0.414
Transformation temperature (K) 605 593 580
Softening temperature (K) – – –
Data in the tables of Sections 2.5.1 and 2.5.2 are from the Handbook of Optics, Vol. II (McGraw-Hill, New York, 1995), chapter 33, and references cited therein.
© 2003 by CRC Press LLC
Section 2: Glasses
243
2.5.3 Other Fluoride Glasses Fluoroberyllate Glasses Composition (mol %) Glass
BeF2
BF BLK BACK BAMCBa
MgF2
100 60 49 35
– – – 19
CaF2
BaF2
AlF3
LiF
KF
– – 14 10
– – – 14
– – 10 22
– 20 – –
– 20 27 –
Properties of Fluoroberyllate Glasses Glass
Density (g/cm3)
BF BACK BAMCBa
Refractive index nD
2.122 2.621 3.247
Abbe number
Nonlinear index (m2/W)
1.275 1.3459 1.3538
0.75 1.03 1.14 (calc.)
Hardness (kg/mm2)
105 96 ~95
300 215 315
Barium Indium Fluoride Glasses Glass
BaF3
InF3
30 30
30 18
BIZnYbT BlG
Composition (mol %) GaF3 ZnF2 YbF3 – 12
20 20
ThF4
ZrF4
10 6
– 4
10 10
Aluminofluoride Glasses Composition (mol %)
YABC CLAP ABC
AlF3
BaF2
CaF2
40 30.6 30.2
20 – 9.9
20 – 19.2
© 2003 by CRC Press LLC
YF3
SrF2
20 – 8.3
– – 12.4
MgF2
CdF2
– – 3.5
– 26.1 –
LiF
NaF
ZrF4
PbF2
– 10 –
– – 3.8
– – 10.2
– 33.3 2.5
244
Handbook of Optical Materials
2.6 Chalcogenide Glasses Chalcogenide Glass-Forming Systems System
Example glass (atomic %)
As-S As-Se Ge-S Ge-Se Ge-As-S Ge-As-Se Ge-As-Te Ge-Se-Te Ge-Sb-Se Ge-P-S Ge-As-Se-Te
As 40, S 60 As 40, Se 60 Ge 20, S 80 Ge 20, Se 80 Ge 25, As 15, S 60 Ge 33, As 12, Se 55 Ge 10, As 20, Te 70 Ge 22, Se 20, Te 58 Ge 28, Sb 12, Se 60 Ge 70, P 5, S 25 Ge 30, As 13, Se 27, Te 30
Refractive Indices of Chalcogenide Glasses Refractive Index (nλ), λ in µm
Glass (atomic %)
n2
As40, S60 2.4268 As40, Se60 – Ge20, Se80 – Ge25, As15, Se60 2.22 Ge10, As20, Se70 – Ge10, As30, Se60 – Ge10, As40, Se50 – Ge33, As13, Se55 2.5310 Ge10, As20, Te70 – Ge28, Sb12, Se60 – Ge30, As13, Se27, Te30 –
[dn/dT]λ
(10–5K–1)
n3
n4
n5
n8
n10
n12
2.4152 – – – – – – 2.5184 – 2.6266 2.8818
2.4116 – – – – – – 2.5146 – 2.6210 2.8732
2.4074 – – – – – – 2.5112 3.55 2.6173 2.8688
2.3937 2.7789 2.4071 – 2.4649 2.6256 2.6108 2.5036 – 2.6088 2.8610
2.3822 2.7789 2.4027 – 2.4594 2.6201 2.6067 2.4977 – 2.6023 2.8563
– 2.7738 2.3973 – 2.4526 2.6135 2.6016 2.4902 – 2.5942 2.8509
[0.9]5 – – – – – [7.2]10.6 – [9.1]10 [15]10
Physical Properties of Chalcogenide Glasses Glass (atomic %)
Tg (°C)
Thermal expansion (10–6/°C)
Density (g/cm3)
As40, S60 As40, Se60 Ge20, Se80 Ge25, As15, Se60 Ge10, As20, Se70 Ge10, As30, Se60 Ge10, As40, Se50 Ge 33, As13, Se55 Ge10, As20, Te70 Ge28, Sb12, Se60 Ge30, As13, Se27, Te30
180 178 154 425 159 210 222 362 – 277 262
21.4 21.0 24.8 12.8 24.8 190 20.9 12.0 18.0 13.5 12.8
3.15 4.62 4.37 3.00 4.47 4.51 4.49 4.40 – 4.67 4.91
K, Knoop; V, Vickers © 2003 by CRC Press LLC
Hardness (kg/mm2) 109(K) – 147(V) 200(K) 154(V) 176(V) 173(V) 170(K) 111(K) 159(K) 226(V)
Young’s modulus (G Pa) 15.9 – – – 16.5 18.0 15.9 22.1 – 21.5 –
Fracture toughness (N mm–3/2) – – – – 6.7 ± 0.4 7.1 ± 0.6 7.4 ± 0.8 – – – –
Section 2: Glasses
245
Chalcohalide Glass-Forming Systems As-based systems
Ge-based systems
As-S-Cl As-S-Br As-S-I As-Se-Br As-Se-I As-Se-In-I As-Te-Br As-Te-I
Ge-S-Br Ge-S-I Ge-S-Ag-I Ge-As-S-I Ge-Se-Br Ge-Se-I Ge-Te-I
Te-based systems
Other systems
Te-Cl Te-Br Te-S-Cl Te-S-Br Te-S-I Te-Se-Cl Te-Se-Br Te-Se-I Te-Se-As-I
Sb-S-Br Sb-S-I Sb-Se-I Si-S-Cl Si-S-I Si-Se-I Cs-Al-S-Cl Cs-Ga-S-Cl
Properties of Chalcohalide Glasses Glass (atomic %) As 30, S 60, Br 10 As 30, Se 60, Br 10 As 30, Te 60, Br 10 As 40, S 50, Cl 10 As 30, S 60, Cl 10 Ge 30, S 60, Br 10 Ge 30, S 60, I 10 Te 60, Cl 40 Te 60, Br 40 Te 60, I 40 Te 50, Sl6.7, Cl 33.3 Te 50, Se16.7, Cl 33.3 Te 30, S 50, Cl 20 Te 30, S 50, Br 20 Te 50, S 16.7, Br 33.3 Te 50, Se 30, Br20 Te10, Se 70, I 20 Te 30, Se 25, I 45 Te 30, Se 30, I 40 Te 20, Se 30, As 40 I 10
Tg (°C)
Thermal expansion (10–6/°C)
120 70 95 145 122 322 370 82 73 44 80 81 73 64 71 – 53 49 48 120
– – – 46.7 49.0 – – 31.0 – – 33.0 – 74 60 33 – 44.6 – 62.7 –
Density (g/cm3) 3.1 4.33 4.92 2.62 4.26 – 2.90 4.63 – – – 4.2 – – – – 4.6 – 5.0 4.71
Hardness (kg/mm2) 110 110 110 71 40 – – – – – – – – – – – – – – –
nλ (λ in µm) – – – – – 1.883 (0.63) 2.0 (0.63) – – – – – – – – 2.86 (10.6) – – 2.80 (10.6) 2.87 (10.6)
Tables in Section 2.6 are from Bruce, A. J., Optical waveguide materials:glasses, Handbook of Laser Science and Technology, Suppl. 2 (CRC Press, Boca Raton, FL, 1998), p. 691.
© 2003 by CRC Press LLC
246
Handbook of Optical Materials
2.7 Magnetooptic Properties 2.7.1 Diamagnetic Glasses Verdet Constants and Dispersion of Commercial Diamagnetic Glasses1 V=π λ Glass typea FK 3 FK 5 FK 51 FK 52 PK 2 BK 3 BK 7 BaLKN3 K3 BaK 50 SK 16 SSK N 5 LaKN12 LaKN14 LF 3 F2 FN 11 F 13 LaSFN31 LaSF 32 SF 1 SF 2 SF 6 SF 14 SF 18 SF 53 SF 57 SF 58 SF 59 SFN 64 TiK 1 TiF 3 TiF 6 KzFSN 4 LgSK 2
n 1.4630 1.4860 1.4853 1.4848 1.5165 1.4967 1.5151 1.5167 1.5164 1.5657 1.6182 1.6557 1.6753 1.6941 1.5793 1.6166 1.6175 1.6188 1.8762 1.7981 1.7124 1.6438 1.7988 1.7561 1.7165 1.7232 1.8396 1.9091 1.9432 1.7011 1.4770 1.5450 1.6125 1.6105 1.5840
n2(λ)- 1 n(λ)
V (633 nm) (rad/(m Τ))
λo (nm)
A (10–7 rad/T)
4.1 4.7 3.5 3.2 4.7 4.4 4.9 5.2 5.2 5.8 5.5 5.8 6.1 4.9 8.4 10.8 2.6 10.8 5.5 2.6 15.4 11.6 20.1 15.1 15.7 15.1 21.8 27.1 28.5 1.5 4.7 2.3 2.3 7.9 6.1
95.3 92.3 84.7 86.2 96.4 96.1 97.0 100.0 101.0 102.6 101.2 110.6 106.5 106.5 120.4 129.7 130.1 130.4 125.4 143.9 144.7 134.6 156.4 152.8 145.2 146.7 161.7 170.5 175.3 142.8 100.8 119.9 140.6 117.8 100.6
7.2702 7.3531 5.4805 4.1070 7.1672 6.8316 5.5387 5.9938 1.2978 7.2536 5.5302 8.3749 6.7875 6.4470 9.4425 11.1061 1.2158 10.6164 7.0445 0.9594 13.4192 7.0169 15.7116 12.3008 12.2097 11.0378 16.7417 18.2033 22.6382 0.7433 9.1198 5.9402 0.9432 8.7691 8.2800
aSchott glass designations. Similar glasses are available from other sources.
© 2003 by CRC Press LLC
A+
B 2
2
λ - λ0 B (10–19 m2 rad/T) 1.3333 1.2647 1.2695 1.6842 1.5350 1.5282 2.1116 2.2601 3.8205 1.9887 2.1438 1.2103 1.8439 1.0542 3.4867 4.0872 1.2041 4.3176 0.5728 0.9845 5.4231 5.7546 6.3430 4.9536 5.8514 5.8444 6.7168 7.7697 6.8410 37.1043 1.4464 0.0959 1.0387 2.8597 1.7067
Section 2: Glasses
247
Verdet Constants V of Noncommercial Diamagnetic Glasses Glass
Composition
type
(wt %)
V (rad/(m T), wavelength (nm) 442
633
700
853
–
–
B2 O3
100 B2O3
–
3.77
Bi2O3
95 Bi2O3, 5 B2O3
–
–
25.0
PbO
95 PbO, 5 B2O3 82 PbO, 18 SiO2 50 PbO, 15 K2O, 35 SiO2
– – –
– – –
Tl2O
95 Tl2O, 5 B2O3 82 Tl2O, 18 SiO2 50 Tl2O, 15 K2O
– – –
SnO
76 SnO, 13 B2O3, 11 SiO2
CdO
1060
Ref.
–
2
14.8
9.6
3
27.1 22.3 9.3
17.8 13.1 5.8
9.1 7.9 3.1
3 3 3
– – –
26.7 29.1 10.5
17.8 19.5 6.5
9.3 12.6 3.5
3 3 3
–
–
20.6
13.4
7.5
3
47.5 CdO, 52.5 P2O5
9.6
6.5
–
–
–
4
ZnO
36.4 ZnO, 63.6 P2O5
12.7
5.8
–
–
–
4
TeO2
75 TeO2, 25 Sb2O3 88.9 TeO2, 11.1 P2O5 80 TeO2, 20 ZnCl2 84 TeO2, 16 BaO 70 TeO2, 30 WO3 20 TeO2, 80 PbO
– 57.1 – – – –
– 22.2 – – – –
22.2 – 21.3 16.2 15.2 37.2
15.2 – 13.4 11.9 10.1 21.8
9.3 6.5 7.3 8.4 6.5 14.0
3 3 3 3 3 3
Sb2O3
25 Sb2O3, 75 TeO2 – – 75 Sb2O3, 20 Cs2O, 5 Al2O3 75 Sb2O3, 10 Cs2O, 10 Rb2O, 5 Al2O3
– – –
22.2 21.5 22.7
15.2 12.7 15.2
9.3 7.3 8.7
3 3 3
ZrF4
63.1 ZrF4, 14.9 BaF2, 7.2LaF3, 1.9 AlF3, 9.1 PbF2, 3.8 LiF
3.1
–
–
–
2
V (rad/(m T), wavelength (nm) Chalcogenide glasses
500
633
700
1000
Ref.
As2S3
–
0.28
0.21
0.081
5,6
As20S80
0.22
0.12
0.093
As2Se3
–
–
–
0.110
6
As40 S57 Se3
–
0.31
0.23
6
Ge20 As20S60
–
0.20
0.155
6
© 2003 by CRC Press LLC
6
248
Handbook of Optical Materials Verdet Constants of SiO2
λ(nm)
V (rad/T m)
254 410 436
29.8 11.0 7.68 8.38 8.12
Ref.
λ(nm)
7 8 9 10 11
500 578 620 633
V (rad/T m) 7.2 4.35 4.40 4.5 3.67
Ref. 8 9 11 8 11,12
Wavelength Dependence of Verdet Constants (300 K) Glass type
435.8 nm
SF 59 SF 58 SF 57 SF 6 SF 1 SF 5 SF 2 F2 BK 7
69.8 63.1 52.4 45.1 34.9 29.7 27.1 24.2 9.6
V (rad/(m T)) 546.1 nm 632.8 nm 37.2 34.3 28.8 25.3 19.8 16.9 15.4 13.7 5.8
25.9 23.9 20.1 17.6 13.7 11.9 11.1 9.9 4.1
1060 nm 8.1 7.6 6.7 6.1 4.9 4.1 3.8 3.5 1.7
From Schott Optical Glass, Technical Information Optical Glass, Tl. No. 11.
Temperature Dependence of the Faraday Effect in Several Glasses13,14
1 d (VL ) (VL ) 0 dT
1 dV V0 dT Glass
V (rad/(m T)
Theory (10–4/K)
Experiment –4 (10 /K)
Experiment –4 (10 /K)
α –6 (10 /K)
SF-57 SiO2 BK-7
21.8 3.7 4.9
1.29 0.81 0.56
1.26 ± 0.08 0.69 ± 0.03 0.63 ± 0.06
1.35 ± 0.08 0.69 ± 0.03 0.71 ± 0.06
9.2 0.55 8.3
Values for 633 nm.
References: 1. 2. 3. 4.
5. 6.
Faraday effect in optical glass–the wavelength dependence of the Verdet constant, Tech. Information No. 17, Schott Glaswerke, Postfach 2480, D-6500 Mainz, Germany. Pye, L. D., Cherukuri, S. C., Mansfield, J., and Loretz, T., The Faraday rotation in some noncrystalline fluorides, J. Non-Cryst. Solids, 56, 99 (1983). Borelli, N. F., Faraday rotation in glasses, J. Chem. Phys. 41, 3289 (1964). Weber, M. J., Faraday Rotator Materials, Lawrence Livermore Laboratory Report M-103 (1982) and Faraday rotator materials for laser systems, Proc. Soc. Photo Opt. Instrum. Eng. 681, 75 (1986). R o b in so n , C . C ., T h e F arad ay ro tatio n o f d iam ag n etic g lasses fro m 0 .3 3 4 µ to 1 .9 µ, Appl. Opt. 3, 1163 (1964). Qui, J., Kanbara, H., Nasu, H. and Hirao, K., J. Ceram. Soc. Jpn. 106, 228 (1998).
© 2003 by CRC Press LLC
Section 2: Glasses 7. 8. 9. 10. 11. 12. 13. 14.
249
Dexter, J. L., Landry, J., Cooper, D. G., and Reintjes, J., Opt. Commun. 80, 115 (1990). Khalilov, V. Kh., Malyshkin, S. F., Amosov, A. V., Kondratev, Yu. N., and Grigoreva, L. Z., Faraday effect in crystalline and vitreous SiO2, Opt. Spectrosc. 38, 665 (1975). Ramaseshan, S., Determination of the magneto-optic anomaly of some glasses, Proc. Ind. Acad. Sci. A, 24, 426 (1946). Herlack, F., Knoepfel, H., Luppi, R., and Van Montfoort, J. E., Proceedings of the Conference on Megagaus Magnetic Field Generation by Explosives and Related Experiments (1965). Garn, W. B., Caird, R. S., Fowler, C. M., and Thomson, D. B., Measurement of Faraday rotation in megagauss fields over the continuous visible spectrum, Rev. Sci. Instrum. 39, 1313 (1968). George, N., Waniek, R. W., and Lee, S. W., Faraday effect at optical frequencies in strong magnetic fields, Appl. Opt. 4, 253 (1965). Faraday effect in optical glass—the wavelength dependence of the Verdet constant, Tech. Information No. 17, Schott Glaswerke, Postfach 2480, D-6500 Mainz, Gemany. Williams, P.A., Rose, A. H., Day, G. W., Milner, T. E., and Deeter, M. N., Temperature dependence of the Verdet constant in several diamagnetic glasses, Appl. Opt. 30, 1176 (1991).
2.7.2 Paramagnetic Glasses Verdet Constants V of Paramagnetic Glasses (295 K) Rare earth ion Host glass Ce
Ion conc. (1021/cm3)
V (rad/(m T), wavelength (nm) 400
500
633
700
1064
Ref.
3+
aluminoborate phosphate silicophosphate
8.33 6 4.8
– –196(a) –169
– –94.9 –
–64 –50.3(b) 39.9
– –38.4 –
– – –9.0
1 2 3
Pr3+ aluminoborate borate lanthanum borate metaphosphate phosphate silicate
6.64 9.2 5.0 3.32 5.3 3.79
–178 – –111(a) – –130 –
– – –64.0 –125(c) –76.0 –
– – – –39.6(b) –43.7(b) –)
– –59.1 – – –35.8 –20.9
– –17.5 – –12.3 – –7.9
3 4 5 6 1 4
Eu3+ aluminoborate
4.1
–343
–86.7
–32.9(d)
–26.5
Tb3+ aluminosilicate fluoroberyllate fluorophosphate lanthanum borate phosphate
6.6 2.92 4.72 5.5 5.4
– – – –149(a) –163(a)
– –25.2(c) –52.4(c) –83.8 –94.0
–73.6 –10.7 –23.3 –48.6(b) –55.3(b)
– – – – –43.6
–20.1 –2.9 –5.4 – –
8 6 6 5 2
Dy3+ aluminoborate borate phosphate silicate
8.6 5.8 6.2 3.46
–271 –127(a) –157(a) –
– –79.4 –96.3 –
–70.1 –46.3(b) –57.3(b) –
– – –46.3 –19.5
– – – –9.3
3 5 2 4
(a)
405 nm, (b) 635 nm, (c) 442 nm, (d) 650 nm.
© 2003 by CRC Press LLC
7
250
Handbook of Optical Materials Verdet Constants of Commercial Paramagnetic Glasses (295 K) V (rad/(m T), wavelength (nm)
Glass type Hoya FR-4 (discontinued) (cerium phosphate)
325
442
532
633
1064
Ref.
–
–82.6
–
–30.5
–8.4
9
–444
–174
–
–71.0
–20.6
9
–
–82.3
–
–34.9
–9.6
6
–
–
–74.8
–
–20.6
10
–
–
–88.2
–
–26.1
10
–
–
–98.4
–
–29.0
10
–273
–98
—
–41.9
–11.9
6
–
–
–
–
–11
6
Hoya FR-5 (terbium borosilicate) Hoya FR-7 (terbium fluorophosphate) Kigre M-18 (terbium boroaluminosilicate) Kigre M-24 (terbium boroaluminosilicate) Kigre M-32 (terbium boroaluminosilicate) Ownes-Illinois EY-1 (discontinued) (terbium silicate) Ownes-Illinois EY-2(discontinued) (terbium silicate)
References: 1. 2.
Asahara, Y. and Izumitani, T., Proc. 1968 Meeting, Ceramic Assoc. of Jpn. A10 (1968). Berger, S. B., Rubenstein, C. B., Kurkjian, C. R., and Treptow, A. W., Faraday rotation of rareearth (III) phosphate glasses, Phys. Rev. 133, A723 (1964). 3. Petrovskii, G. T., Edelman, I. S., Zarubina, T. V. et al., J. Non-Cryst. Solids 130, 35 (1991). 4. Borrelli, N. F., J. Faraday rotation in glasses, Chem. Phys. 41, 3289 (1964). 5. Rubenstein, C. B., Berger, S. B., Van Uitert, L. G., and Bonner, W. A., Faraday rotation of rareearth (III) borate glasses, J. Appl. Phys. 35, 2338 (1964). 6 . Web er, M. J. , Faraday Rotator Materials, Lawrence Livermore Laboratory Report M-103 (1982) and F arad ay ro ta to r m aterials fo r laser sy stem s, P ro c. S o c. P h o to O p t. In stru m . E n g . 6 8 1 , 7 5 (1 9 8 6 ). 7. Shafer, M. W., and Suits, J., Preparation and Faraday rotation of divalent europium glasses, J. Am. Ceram. Soc. 49, 261 (1966). 8. Ballato, J. and Snitzer, E., Fabrication of fibers with high rare-earth concentration for Faraday isolator applications, Appl. Opt. 34, 6848 (1995). 9. Data sheets, Hoya, Inc. 10. Data sheets, Kigre, Inc.
© 2003 by CRC Press LLC
Section 2: Glasses
251
2.8 Electrooptic Properties Electric-field-induced birefringence, the DC electrooptic Kerr effect, is given by 2
n = n – n⊥ = λBE ,
n = n|| - n⊥
where λ is the wavelength in centimeters, E is the applied electric field strength in volts per centimeter, n and n⊥ are the refractive indices in the directions parallel and perpendicular to the electric field, and B is the Kerr constant in centimeters per volt squared. In terms of the third-order nonlinear susceptibilities [in electrostatic units (esu )], χeff(–ω,ω,0,0) = χ
(3) 1111
–χ
(3)
1122 =
4
(9λBn/24π) 10 .
A positive electrooptic constant is obtained when the induced index change in the direction of the applied field is larger than the induced index change for the perpendicular direction. A negative sign for B implies that the major effect is a large decrease in the refractive index in the direction of the electric field. DC Electrooptic Kerr Constants
1,2
nD
ε
B(10–14 m/V2)
Commercial glasses: Schott Schott Schott Schott Schott
SF 6 SF 57 SF 58 SF 59 LASF 7
1.805 1.847 1.918 1.962 1.850
15.7 16 18 23 19
Corning Corning Corning Corning Corning Corning
8310 8363 8391 8393 8427 8463
– 1.94 – – – 1.97
– 20 – – – –
0.07 0.2 0.06 0.08 0.09 0.36
2.48
–
8.7
40 SiO2 - 60 PbO
2.06
–
0.38
60 SiO2 - 40 Tl2O
2.0
–
1.10
54 SiO2 - 41 Tl2O - 5 PbO
–
–
0.96
76 SiO2 - 9 Tl2O - 15 K2O
–
–
0.30
73 SiO2 - 14 K2O - 13 Ta2O5
–
–
–0.57
85 TeO2 - 7.5 BaO - 7.5 ZnO
2.17
–
0.7
60 TeO2 - 20 BaO - 20 ZnO
2.02
–
0.5 1.1
Arsenic trisulfide
As2S3
0.08 0.11 0.16 0.30 –0.22
Experimental glasses (mol %):
36 TeO2 - 51 PbO - 12 SiO2
–
–
32 Tl2O - 28 Bi2O3 - 40 GeO2 –
–
1.15
© 2003 by CRC Press LLC
252
Handbook of Optical Materials
DC Electrooptic Kerr Constants1,2—continued ε
nD
B(10–14 m/V2)
57 PbO - 25 Bi2O3 - 18 Ga2O3
2.46
28.4
1.4
34 Nb2O5 - 36 SiO2 - 30 Na2O
–
–
2.80
70 PbO - 12 Ga2O3 - 6 Tl2O - 12 CdO
2.31
21
1.6
57 PbO - 18 Bi2O3 - 18 Ga2O3 - 7 Tl2O
2.30
25.5
1.4
48 PbO - 14 Bi2O3 - 10 Ga2O3 - 14 Tl2O - 14 CdO
2.27
23
1.4
43 SiO2 - 15.5 Li2O - 11.5 K2O - 4 Al2O3 - 31 Ta2O5
1.81
17.4
–0.8
20 SiO2 - 20 B2O3 - 20 Na2O - 20 Na2O - 20 Nb2O5 - 20 TiO2
1.93
15.3
–1.23
41 B2O3 - 10 ZnO - 11 La2O3 - 22 ThO2 - 5Ta2O5 - 11 Nb2O5
1.94
–
–0.18
23 PbO - 22 SiO2 - 11 MgO - 14 BaO - 16 TiO2 - 4 Al2O3 - 8Nb2O5
–
22
–0.4
46 PbO - 42 Bi2O3 - 11 Ga2O3- 9 Tl2O
2.46
29
1.4
46 PbO - 33 Bi2O3 - 12 Ga2O3 - 9 Tl2O
2.31
26
1.2
71.6 PbO - 26.5 SiO2 - 0.5 Na2O - 0.9 K2O - 0.5 As2S3
1.79
16
0.14
66.5 PbO - 28.1 SiO2 - 3.4 TiO2 - 0.5 Na2O - 1.0 K2O - 0.5 As2S3
1.84
16
0
54.2 PbO - 32.0 SiO2 - 11.6 TiO2 - 0.6 Na2O - 1.1 K2O - 0.5 As2S3
1.82
16
-0.22
71.6 PbO - 26.5 SiO2 – 3.4 TiO2 - 0.6 Na2O - 1.2 K2O - 0.5 As2S3
1.86
16
0.25
Measured at 633 nm. References: 1. Hall, D. W. and Borrelli, N. F., Nonlinear optical properties of glasses, Optical Properties of Glass, Kreidl, N. and Uhlmann, D. R., Eds., American Ceramic Society (1991), pp. 87–125. 2. Borrelli, N.F., Aitken, B.G., Newhouse, M.A., and Hall, D.W., Electric-field induced birefringence properties of high refractive under glasses exhibiting large Kerr nonlinearaties, J. Appl. Phys. 70, 2774 (1991). See, also, Borrelli, N.F., Electric field induced birefringence in glass, Phys. Chem. Glass 12, 9 (1971) and Paillette, M., Temperature dependent behavior of the Kerr constant in the vitreous state, J. NonCryst. Solids 91, 253 (1987).
© 2003 by CRC Press LLC
Section 2: Glasses
253
2.9 Elastooptic Properties The stress optic coefficients are defined as Kp = dnp/dP and Ks = dns/dP, where the ordinary and extraordinary indices of refractive are designated ns and np, respectively, according as the light polarization is perpendicular (s) or parallel ( p) to the pressure vector. The elastooptic coefficients can be calculated from the experimentally determined values of the stress optic coefficients through the relations p11 = 2E[2µKs + (1 – µ)Kp]/[n3(2µ – 1)(µ + 1)] and p12 = 2E[µKp + Ks]/[n3(2µ – 1)(µ + 1)], where E is the elastic modulus and µ is Poisson’s ratio. The elastooptic coefficients for several representative glasses are given below. Elastooptic Coefficients Glass
Wavelength (µm)
p11
p12
p44
Ref.
fused silica (SiO2) tellurite glass As2S3 Ge33Se55As12 LaSF SF4 TaFd7
0.633 0.633 1.15 1.06 0.633 0.633 0.633
0.121 0.257 0.308 0.21 0.088 0.215 0.099
0.270 0.241 0.299 0.21 0.147 0.243 0.138
-0.075 0.0079 0.0045 — -0.030 -0.014 -0.020
1 2 1 1 3 3 3
1. Pinnow, D. A., Elasto-optical materials, CRC Handbook of Lasers, Pressley, R. J., Ed. (The Chemical Rubber Co., Cleveland, OH, 1971). 2. Yano, T., Fukomoto, A., and Watanabe, A., Tellurite glass: a new acousto-optic material, J. Appl. Phys. 42, 3671 (1971). 3. Eschler, H. and Weidinger, F., J. Appl. Phys., 46, 65 (1975).
Two acoustooptic figures of merit, M1 and M2, are: M1i = n7p1i/ρν1 and M2i = n6p1i/ρν31. A compilation of these properties for most of the optical glasses carried in the Schott Optical Glass Catalog is given in Modification of the refractive index of optical glass by tensile and compressive stresses, Schott Technical Information TI No. 20, 4/88 and in Gottlied, M. and Singh, N. B., Elastooptic materials, Handbook of Laser Science and Technology, Suppl. 2: Optical Materials (CRC Press, Boca Raton, FL, 1995), p. 415.
© 2003 by CRC Press LLC
254
Handbook of Optical Materials Elastooptic Properties of Schott Glasses –Kpa
–Ksa
FK 3 FK 5 FK 51 FK 52 FK 54
1.0 0.9 1.1 1.1 0.8
4.9 3.8 1.8 1.8 1.6
0.15 0.14 0.17 0.16 0.14
0.24 0.23 0.20 0.19 0.17
3 2 2 2 1
7 6 3 3 2
1 1 1 1 0
2 1 1 1 0
PK 1 PK 2 PK 3 PK 50 PK 51A
0.8 0.4 0.5 1.2 1.4
3.9 3.1 3.1 3.4 1.9
0.14 0.11 0.11 0.14 0.16
0.25 0.22 0.21 0.21 0.18
2 1 2 3 3
7 6 6 6 3
0 0 0 1 1
1 1 1 1 1
PSK 2 PSK 3 PSK 50 PSK 52 PSK 53A
0.6 0.8 1.2 1.0 1.5
2.9 3.3 3.1 2.4 2.6
0.13 0.14 0.16 0.14 0.17
0.21 0.23 0.21 0.18 0.20
2 3 3 3 5
6 7 6 5 6
0 0 1 1 1
1 1 1 1 1
BK 1 BK 3 BK 6 BK 7 UBK 7
0.6 0.5 0.4 0.5 0.5
3.4 3.8 2.9 3.3 3.3
0.12 0.12 0.11 0.12 0.12
0.21 0.24 0.20 0.22 0.23
2 2 1 2 2
6 7 5 6 6
0 0 0 0 0
1 1 1 1 1
BK 8 BK 10 BaLK 1 BaLK N3 K3
0.4 0.7 1.4 0.7 1.2
3.1 3.9 4.1 4.0 4.1
0.11 0.13 0.17 0.13 0.16
0.21 0.24 0.26 0.24 0.26
1 2 4 2 3
5 7 9 8 9
0 0 1 0 1
1 1 2 2 2
K4 K5 K7 K 10 K 11
0.8 0.6 0.7 1.4 1.1
3.5 3.7 3.8 4.6 4.1
0.12 0.13 0.12 0.15 0.14
0.21 0.23 0.23 0.26 0.24
2 2 2 3 2
6 7 7 8 7
0 0 0 1 1
1 1 1 2 2
K 50 UK 50 K 51 ZK 1 ZK 5
0.5 0.5 1.0 0.3 0.3
3.7 3.8 4.6 4.0 3.8
0.12 0.13 0.15 0.13 0.12
0.23 0.24 0.27 0.24 0.22
2 2 3 2 2
7 7 9 8 7
0 0 1 0 0
1 1 2 2 2
Glass type
© 2003 by CRC Press LLC
P11
P 12
M11b
M12b
M21c
M22c
Section 2: Glasses
255
Elastooptic Properties of Schott Glasses—continued –Kpa
–Ksa
P11
P 12
M11b
M12b
M21c
M22c
ZK N7 BaK 1 BaK 2 BaK 4 BaK 5
0.3 0.7 1.0 0.5 0.9
3.8 3.2 3.6 3.2 3.6
0.11 0.13 0.14 0.12 0.15
0.23 0.20 0.22 0.21 0.23
2 2 3 2 3
7 6 7 6 7
0 1 1 0 1
1 1 2 1 2
BaK 6 BaK 50 SK 1 SK 2 SK 3
0.8 0.0 0.7 0.8 0.7
3.2 3.0 3.0 3.0 2.6
0.14 0.11 0.13 0.14 0.12
0.21 0.21 0.20 0.20 0.18
3 2 3 3 2
6 6 6 6 5
1 0 1 1 0
1 1 1 1 1
SK 4 SK 5 SK 6 SK 7 SK 8
0.6 0.8 0.7 0.8 0.8
2.5 2.8 3.0 2.6 3.1
0.12 0.14 0.14 0.13 0.14
0.18 0.21 0.20 0.19 0.21
2 3 3 3 3
5 6 6 5 7
0 1 1 1 1
1 1 1 1 2
SK 9 SK 10 SK 11 SK 12 SK 13
0.8 0.8 0.7 0.5 0.9
3.1 2.6 3.2 2.8 3.2
0.14 0.13 0.13 0.11 0.15
0.21 0.19 0.22 0.19 0.22
3 3 2 2 3
7 5 6 5 7
1 1 0 0 1
2 1 1 1 2
SK 14 SK 15 SK 16 SK N18 SK 19
0.8 0.8 1.0 0.5 1.0
2.6 2.7 2.8 2.4 2.8
0.13 0.14 0.16 0.13 0.14
0.19 0.20 0.22 0.19 0.20
3 3 4 3 3
5 6 7 6 6
1 1 1 1 1
1 1 1 1 1
SK 20 SK 51 SK 52 SK 55 KF 1
0.6 1.1 0.0 0.2 1.3
3.0 2.7 2.3 2.2 4.3
0.12 0.15 0.10 0.10 0.16
0.20 0.20 0.18 0.17 0.25
2 4 2 1 3
5 6 5 4 9
0 1 0 0 1
1 1 1 1 2
KF 3 KF 6 KF 9 KF 50 BaLF 3
0.8 1.2 1.4 1.1 0.8
3.8 4.1 4.5 4.3 3.9
0.13 0.14 0.16 0.14 0.15
0.22 0.23 0.25 0.23 0.24
2 2 3 3 3
6 7 9 8 8
0 1 1 1 1
1 2 2 2 2
Glass type
© 2003 by CRC Press LLC
256
Handbook of Optical Materials Elastooptic Properties of Schott Glasses—continued –Kpa
–Ksa
P11
P 12
M11b
M12b
M21c
M22c
BaLF 4 BaLF 5 BaLF 6 BaLF 8 BaLF 50
0.2 0.9 0.4 0.8 0.6
3.3 4.0 3.1 3.7 2.9
0.11 0.14 0.11 0.12 0.12
0.20 0.23 0.19 0.21 0.19
2 3 2 2 2
6 7 6 6 5
0 1 0 1 0
1 2 1 2 1
BaLF 51 SSK 1 SSK 2 SSK 3 SSK 4
0.9 0.9 1.2 0.9 0.8
3.3 3.1 3.4 3.2 2.9
0.13 0.14 0.16 0.14 0.13
0.21 0.21 0.22 0.20 0.20
3 3 4 3 3
6 7 8 6 6
1 1 1 1 1
1 2 2 2 1
SSK N5 SSK N8 SSK 50 SSK 51 SSK 52
0.5 0.7 0.9 1.1 –
2.3 3.1 2.7 3.3 –
0.11 0.13 0.14 0.16 –
0.17 0.21 0.19 0.23 –
2 3 3 4 –
5 7 6 8 –
0 1 1 1 –
1 1 1 2 –
LaK N6 LaK .N7 LaK 8 LaK 9 LaK 10
1.0 0.6 0.1 0.3 0.1
2.6 2.1 1.9 2.0 2.0
0.15 0.11 0.10 0.11 0.10
0.20 0.16 0.16 0.17 0.16
3 2 2 2 2
6 4 5 5 5
1 0 0 0 0
1 1 1 1 1
LaK 11 LaK N12 LaK L12 LaK N13 LaK N14
0.5 0.8 0.0 1.2 0.2
2.3 2.3 1.6 2.5 2.0
0.12 0.13 0.07 0.15 0.10
0.17 0.17 0.13 0.19 0.17
2 3 1 4 2
5 5 3 6 5
0 1 0 1 0
1 1 0 1 1
LaK 16A LaK 21 LaK L21 LaK N22 LaK 23
– 0.1 1.0 0.0 0.7 0.7
1.8 2.8 2.0 2.5 2.2
0.08 0.16 0.09 0.13 0.12
0.15 0.22 0.17 0.18 0.16
1 4 1 3 2
4 7 5 5 4
0 1 0 1 1
1 1 1 1 1
0.2 0.1 0.3 1.7 1.6
2.0 1.7 1.7 4.7 4.6
0.11 0.09 0.10 0.15 0.15
0.17 0.15 0.15 0.23 0.23
6 4 5 8 8
0 0 0 1 1
1 1 1 2 2
Glass type
LaK 28 LaK 31 LaK 33 LLF 1 LLF 2
© 2003 by CRC Press LLC
2 1 2 3 3
Section 2: Glasses
257
Elastooptic Properties of Schott Glasses—continued –Kpa
–Ksa
P11
P 12
M11b
LLF 3 LLF 4 LLF 6 LLF 7 BaF 3
1.4 1.5 1.5 1.5 0.8
4.2 4.5 4.7 4.6 3.8
0.15 0.15 0.15 0.14 0.12
0.23 0.24 0.25 0.23 0.20
3 4 3 3 2
8 9 8 8 6
1 1 1 1 1
2 2 2 2 2
BaF 4 BaF 5 BaF N6 BaF 8 BaF 9
1.3 1.3 1.3 0.8 0.8
3.9 4.0 3.8 3.1 2.9
0.14 0.17 0.16 0.12 0.13
0.21 0.24 0.24 0.19 0.19
3 4 4 3 3
7 9 9 6 6
1 1 1 1 1
2 2 2 1 1
BaF N10 BaF N11 BaF 12 BaF 13 BaF 50
0.7 0.4 0.7 1.1 0.9
2.7 2.3 2.9 2.9 2.7
0.14 0.11 0.12 0.15 0.14
0.20 0.16 0.19 0.20 0.19
3 2 3 4 3
7 5 6 7 7
1 0 1 1 1
1 1 1 2 1
BaF 51 BaF 52 BaF 53 BaF 54 LF 1
0.2 0.8 0.3 0.5 1.9
2.4 3.1 2.5 2.3 4.9
0.09 0.12 0.10 0.11 0.17
0.16 0.19 0.17 0.16 0.24
2 3 2 2 4
5 6 5 5 9
0 1 0 0 1
1 1 1 1 3
LF 2 LF 3 LF 4 LF 5 LF 6
1.9 1.8 1.5 2.3 1.9
4.6 4.6 4.6 5.2 4.8
0.16 0.16 0.14 0.18 0.16
0.23 0.23 0.22 0.25 0.23
4 4 3 6 4
9 9 8 11 9
1 1 1 2 1
3 3 2 3 3
LF 7 LF 8 F1 F2 F3
2.2 2.1 2.7 2.4 2.3
5.3 5.1 5.4 5.2 5.2
0.18 0.18 0.18 0.17 0.17
0.25 0.25 0.23 0.23 0.23
5 5 6 5 5
10 10 11 10 10
2 1 2 2 2
3 3 4 3 3
F4 F5 F6 F7 F8
2.3 2.0 2.6 2.7 1.8
5.2 4.9 5.1 5.6 4.9
0.16 0.15 0.17 0.19 0.16
0.22 0.22 0.22 0.25 0.23
5 4 6 7 4
9 9 10 12 9
2 1 2 2 1
3 3 3 4 3
Glass type
© 2003 by CRC Press LLC
M12b
M21c
M22c
258
Handbook of Optical Materials Elastooptic Properties of Schott Glasses—continued –Kpa
–Ksa
P11
P 12
M11b
F9 F N11 F 13 F 14 F 15
2.0 0.3 2.9 1.9 2.4
4.7 3.4 5.8 4.9 5.3
0.16 0.10 0.19 0.15 0.17
0.23 0.20 0.25 0.22 0.24
5 2 7 4 5
9 7 12 9 10
1 0 2 1 2
3 1 4 3 3
BaSF 1 BaSF 2 BaSF 5 BaSF 6 BaSF 10
1.4 1.7 1.8 1.2 1.6
4.1 4.1 4.2 3.2 3.8
0.14 0.15 0.15 0.15 0.15
0.20 0.20 0.21 0.20 0.21
3 4 4 4 4
7 8 8 8 8
1 1 1 1 1
2 3 2 2 2
BaSF 12 BaSF 13 BaSF 14 BaSF 50 BaSF 51
1.4 1.1 1.8 0.9 0.6
3.5 2.9 3.8 3.1 2.8
0.15 0.13 0.17 0.13 0.12
0.20 0.18 0.22 0.19 0.17
4 4 6 4 3
8 7 10 7 6
1 1 2 1 1
2 2 3 2 1
BaSF 52 BaSF 54 BaSF 55 BaSF 56 BaSF 57
0.3 2.5 1.3 1.9 1.2
2.6 3.9 3.5 4.3 3.2
0.11 0.18 0.15 0.17 0.14
0.17 0.21 0.20 0.22 0.19
2 8 5 5 3
6 11 8 10 7
0 2 1 2 1
1 3 2 3 2
BaSF 64 LaF 2 LaF 3 LaF N7 LaF N8
– 0.1 0.7 0.6 1.2 0.2
2.4 2.2 2.1 2.9 2.2
0.09 0.11 0.11 0.13 0.10
0.17 0.15 0.15 0.17 0.16
1 3 2 4 2
6 5 5 7 5
0 1 0 1 0
1 1 1 2 1
LaF 9 LaF N10 LaF 11A LaF 13 LaF 20
3.5 0.2 2.6 1.2 0.8
4.3 1.9 4.1 2.6 2.6
0.19 0.10 0.18 0.15 0.14
0.21 0.15 0.21 0.18 0.19
11 2 8 5 3
13 5 11 8 7
4 0 2 1 1
4 1 3 2 1
LaF N21 LaF 22A LaF N23 LaF N24 LaF 25
0.1 0.5 1.2 – 0.2 – 0.5
1.4 2.0 2.8 1.6 1.6
0.07 0.09 0.15 0.06 0.05
0.12 0.14 0.19 0.13 0.11
1 2 4 1 0
3 4 7 3 3
0 0 1 0 0
0 1 2 0 0
Glass type
© 2003 by CRC Press LLC
M12b
M21c
M22c
Section 2: Glasses
259
Elastooptic Properties of Schott Glasses—continued –Ksa
P11
P 12
M11b
0.1 0.1 0.0 2.0 0.3
2.1 1.4 1.8 3.5 2.1
0.09 0.07 0.08 0.17 0.09
0.14 0.12 0.14 0.21 0.14
2 1 2 8 2
4 3 5 12 6
0 0 0 2 0
1 0 1 3 1
0.3 0.3 0.3 0.6 – 0.1
1.5 1.6 1.7 1.7 2.3
0.08 0.08 0.10 0.10 0.07
0.11 0.11 0.14 0.14 0.14
2 2 2 3 1
4 4 5 5 6
0 0 0 1 0
1 1 1 1 1
LaSF 33 SF 1 SF 2 SF 3 SF 4
0.7 4.5 3.3 4.4 4.6
2.5 6.2 5.9 6.0 5.9
0.11 0.22 0.19 0.20 0.20
0.16 0.25 0.25 0.23 0.23
3 12 8 11 12
7 16 13 15 15
1 5 3 5 5
1 6 5 6 6
SF 5 SF 6 SF L6 SF 7 SF 8
3.1 6.0 0.2 2.7 3.6
5.4 6.8 3.0 5.5 5.9
0.18 0.24 0.09 0.17 0.19
0.22 0.25 0.16 0.23 0.24
7 19 3 6 9
11 21 8 11 13
3 8 0 2 3
4 9 1 4 5
SF 9 SF 10 SF 11 SF 12 SF 13
3.2 3.6 3.8 2.8 3.3
5.8 5.6 5.0 5.3 5.2
0.20 0.20 0.19 0.18 0.18
0.25 0.24 0.21 0.24 0.22
8 10 10 7 9
13 15 13 12 13
3 3 4 2 3
5 5 5 4 4
SF 14 SF 15 SF 16 SF 17 SF 18
3.8 3.0 3.3 3.3 4.1
5.4 5.1 6.0 6.1 5.9
0.20 0.18 0.20 0.20 0.20
0.23 0.22 0.25 0.25 0.23
11 7 8 8 11
15 11 13 13 14
4 3 3 3 4
5 4 5 5 6
SF 19 SF 50 SF 51 SF 52 SF 53
3.1 – 2.3 3.5 3.8
5.5 – 4.7 5.7 5.4
0.18 – 0.16 0.20 0.19
0.23 – 0.21 0.24 0.22
7 – 5 9 10
12 – 9 14 13
3 – 2 3 4
4 – 3 5 5
Glass type
–Kpa
LaF 26 LaF N28 LaSF 3 LaSF 8 LaSF N9 LaSF N15 LaSF N18 LaSF N30 LaSF N31 LaSF 32
© 2003 by CRC Press LLC
M12b
M21c
M22c
260
Handbook of Optical Materials Elastooptic Properties of Schott Glasses—continued –Kpa
–Ksa
P11
P 12
M11b
SF 54 SF 55 SF 56 SF L56 SF 57
4.7 4.3 4.8 0.0 6.7
6.4 5.7 5.8 2.8 6.7
0.22 0.20 0.21 0.07 0.23
0.26 0.22 0.22 0.15 0.23
14 11 13 2 20
18 14 16 6 20
5 5 5 0 9
7 6 6 1 9
SF 58 SF 59 SF 61 SF 62 SF 63
8.2 9.0 4.5 3.5 4.2
7.2 7.6 6.0 5.8 5.8
0.24 0.25 0.21 0.19 0.20
0.23 0.24 0.23 0.24 0.22
29 34 12 8 11
26 30 15 13 14
14 17 5 3 4
13 15 6 5 6
SF N64 TiK 1 TiF 1 TiF 2 TiF 3
0.2 2.3 1.1 1.1 1.1
3.1 6.1 4.2 4.5 4.4
0.10 0.19 0.15 0.15 0.15
0.18 0.27 0.23 0.25 0.24
2 5 3 4 4
8 10 7 9 9
0 2 1 1 1
1 3 2 2 2
TiF 4 TiF N5 TiF 6 KzF N1 KzF N2
0.9 0.6 0.7 1.0 1.3
4.2 3.9 3.0 4.2 5.0
0.14 0.12 0.11 0.13 0.14
0.23 0.21 0.16 0.21 0.24
3 3 2 3 3
9 8 5 7 9
1 1 0 1 1
2 2 1 2 2
KzF 6 KzFS1 KzFS N2 KzFS N4 KzFS N5
1.7 1.0 0.1 0.6 0.7
5.8 4.2 3.8 3.8 3.4
0.16 0.15 0.12 0.13 0.12
0.26 0.21 0.23 0.20 0.18
4 4 2 3 3
10 8 8 7 7
1 1 0 1 1
3 2 2 2 2
KzFS 6 KzFS N7 KzFS 8 KzFS N9 LgSK 2
0.6 0.6 1.5 0.4 1.1
4.0 3.1 3.7 3.5 2.2
0.14 0.12 0.15 0.12 0.15
0.22 0.18 0.20 0.20 0.18
3 3 5 2 3
8 7 9 7 4
1 1 1 1 1
2 1 2 2 1
Glass type
a 10–6 mm2/N;
b
© 2003 by CRC Press LLC
10–7 cm2 s/g; c 10–18 s3/g.
M12b
M21c
M22c
Section 2: Glasses
261
2.10 Nonlinear Optical Properties 2.10.1 Nonlinear Refractive Index* Nonlinear refraction is commonly defined either in terms of the optical field intensity I n = n0 + γI or in terms of the average of the square of the optical electric field <E2> n = n0 + n2 <E2>, where n0 is the ordinary linear refractive index, γ is the nonlinear refractive coefficient, and n0 is the nonlinear refractive index. The conversion between n2 and γ is given by n2[cm3/erg] = (cn0/40π) γ[m2/W] = 238.7 n0 γ[cm2/W], where c is the speed(in m/s) of light in vacuum. In terms of third-order susceptibility tensor χ(3)(−ω,ω,ω,−ω) of a medium, the nonlinear refractive indices for a linearly polarized wave and for a circularly polarized wave in an isotropic material are n2(LP) = (12π/n0) χ(3)1111(−ω,ω,ω,−ω) and n2(CP) = (24π/n0) χ(3)1122(−ω,ω,ω,−ω). The two-photon absorption coefficient β is proportional to the corresponding imaginary part of χ(3)(–ω,ω,ω,–ω). The relationship between n2, β, and χ(3) is analogous to the relationship between n0, the linear absorption coefficient α, and the linear susceptibility χ. The nonlinear refractive index is not a unique quantity for a given material because a number of physical mechanisms contribute to the polarization that is cubic in the applied optical electric field. The mechanisms that contribute most strongly to n2 , and their characteristic time scales (in parentheses) are bound electrons (10–15 s), optically created free carriers (>10–12 s), Raman-active optical phonons (10–12 s), electrostriction (>10–9 s), and thermal excitation (~10–9 s). Several methods listed below have been employed to measure n2. The details of the measurements determine the relative contributions from the various possible physical mechanisms to the measured n2. In general, experiments done with picosecond pulses and nondegenerate mixing are less likely to be affected by the “slow” electrostrictive or thermal effects than those done in the nanosecond pulse regime and with degenerate mixing. Most of the measurements include the effects of both electronic and vibrational (Raman) contributions to n2. In the following tables values of the parameters in parentheses were calculated by Chase and Van Stryland1 from the quantities reported in the original references. Refractive indices in parentheses were obtained from extrapolation of available data. For noncubic crystals, or for cubic crystals where the polarization is not along a cube axis or is not specified in the original reference, the value tabulated for χ(3)1111 is an effective value of χ(3). * This section was adapted from Chase, L. L., and Van Stryland, E. W., Nonlinear refractive index: inorganic materials, Handbook of Laser Science and Technology, Suppl. 2: Optical Materials (CRC Press, Boca Raton, FL, 1995), p. 269. © 2003 by CRC Press LLC
Techniques for Measuring the Nonlinear Refractive Index Method DFWM DTLC ER NDFWM OKE PDF RSS SPM SSMG TII TRI TWM TWR
Ref.
Degenerate four-wave mixing Damage threshold for linear vs. circular polarization Ellipse rotation Non-degenerate four-wave mixing Optical Kerr effect Power-dependent focus Raman scattering spectroscopy Self-phase modulation Small-scale modulation growth Time-integrated interferometry Time-resolved interferometry Three-wave mixing Temporal waveform reshaping
2 3 4 5, 6 7 8 9 10 11 12 13 5 14
Boling, Glass, and Owyoung15 derived an empirical formula relating n2 at wavelengths much longer than the interband absorption to the linear refractive index and its dispersion. This formula for estimating n2 is accurate to within about 25% for a wide range of crystals and glasses.6,16 The equation is generally not applicable to chalcogenide glasses. Lines of constant n2 predicted from this equation are plotted as a function of nd and νd in the figure below and are superimposed on regions of known oxide and fluoride glasses.
2.0
Oxide glasses
Refractive index nd
1.8
20 Fluoride glasses
1.6
10
5
SiO2
1.4
3 2
1.2
© 2003 by CRC Press LLC
n2 (10–20 m2/W)
1
BeF2 100
80
60 Abbe number υd
40
20
Measured Nonlinear Refractive Parameters of Glasses Glass
Refractive
χ1111
n2,LP
γLP
(nm)
index
(10–13 cm3erg)
(10–13 cm3erg)
(10–16 cm2/W)
3 0.15 3 3 20 20 0.125 0.17 3 12. 20 0.15 3 3 3 3 3 0.125 0.125 0.125 3 0.09 0.09 0.09
1064 1064 1064 1064 1064 694 1064 355 560,590 694 1064 1064 1064 1064 1064 1064 1064 1064 1064 1064 1064 1064 1064 1064
(1.6637) 1.28 (1.606) (1.5168) 1.51 1.52 1.52 1.50 1.51 (1.50) 1.73 1.34 (1.4899) (1.4372) (1.4423) (1.4511) (1.4364) 1.49 1.49 1.49 (1.5314) 2.48 2.30 1.84
(.116) (0.0078) (0.080) (0.052) (1.150) (0.056) (0.050) (0.024) (0.092) (0.080) (0.38) (0.012) (0.032) (0.023) (0.027) (0.026) (0.025) (0.028) (0.027) (0.042) (0.049) 4.2 0.8 0.48
2.64 0.26 1.88 1.30 1.24 1.4 1.24 0.6 2.3 2.0 8.3 0.33 0.80 0.61 0.70 0.68 0.65 0.71 0.69 1.07 1.21 (227) (15.7) (9.66)
(6.6) (0.75) (4.9) (3.59) (3.44) (3.86) 3.43 1.7 (6.4) (5.6) (20.) (1.0) (2.25) (1.78) (2.03) (1.96) (1.90) 2.0 1.94 3.01 (3.31) (383) (29) (22)
Ref. 16 17 16 16 3a 19b 13 20 5 21 3 17 16 16 16 16 16 21 13 13 16 22 22 77
263
© 2003 by CRC Press LLC
NDFWM TRI NDFWM NDFWM DTLC ER TRI TRI TWM TWR DTLC TRI NDFWM NDFWM NDFWM NDFWM NDFWM TRI TRI TRI NDFWM DFWM DFWM DFWM
Wavelength
length (ns)
Section 2: Glasses
Aluminate L-65 Beryllium fluoride Borate L-109 Borosilicate BK-7 Borosilicate 517 Borosilicate BK-7 Borosilicate BK-7 Borosilicate BK-10 Borosilicate BSC Borosilicate BSC-2 Flint SF-55 Fluoroberyllate:Nd Fluorophosphate E-115 Fluorophosphate E-131 Fluorophosphate E-132 Fluorophosphate E-133 Fluorophosphate K-1172 Fluorophosphate A86-82 Fluorophosphate FK-51 Fluorosilicate FC-5 Fluorozirconate 9028 Gallate “RN” Germanate Q-5 Germanate VIR-3
Method
Pulse
264
Measured Nonlinear Refractive Parameters of Glasses—continued
Phosphate:Ce FR-4 Phosphate EV-1 Phosphate LHG-5 Phosphate:Nd LHG-5 Phosphate LHG-6 Posphate:Nd LHG-6 Phosphate:Nd LHG-5 Phosphate:Nd LHG-6 Phosphate Q-88 Phosphate P-108 Phosphate 5037 Phosphate 5038 Silica (Dynasil 4000) Silica (fiber) Silica (Suprasil II) Silica (Suprasil II) Silica, SiO2 Silica, SiO2 Silica, SiO2 Silica, SiO2 Silica, SiO2 Silica, SiO2 Silica, SiO2 Silica, SiO2
© 2003 by CRC Press LLC
Wavelength
Refractive
Method
length (ns)
(nm)
Index
χ1111 –13 (10 cm3erg)
TRI TRI NDFWM TRI NDFWM TRI PDF PDF NDFWM NDFWM NDFWM NDFWM TRI SPM TRI SSMG NDFWM OKE TII TII/SPM/SS PDF ER NDFWM DTLC
0.15 0.125 3 0.125 3 0.125 0.030 0.030 3 3 3 3 0.125 ~0.15 0.17 1.1 3 10–4 20 0.004 0.17 13 3 20
(1.56) 1.51 (1.51) 1.54 (1.53) 1.53 1.54 1.53 (1.5449) (1.5312) (1.5772) (1.5915) 1.46 (1.47) 1.50 1.50 (1.46) 1.4519 (1.46) (1.508) (1.489) 1.45 1.46 1.45
(0.081) (0.036) (0.058) (0.047) (0.045) (0.040) (0.061) (0.061) (0.052) (0.052) (0.065) (0.072) (0.037) (0.044) (0.036) (0.024) (0.033) 0.024 0.044 (0.06–0.08) (0.042) (0.039) (0.070) (0.036)
1064 1064 1064 1064 1064 1064 1064 1064 1064 1064 1064 1064 1064 514 355 351 1064 620 1064 249 308 694 560,590 1064
n2,LP –13 (10 cm3erg) 1.95 0.91 1.44 1.16 1.12 1.01 1.5 1.5 1.27 1.28 1.56 1.71 0.95 1.14 0.9 0.6 0.85 0.62 (1.1) 1.5–2.0 (1.07) 1.00 1.8 0.93
γLP –16 (10 cm2/W)
Ref.
(5.2) 2.53 (4.0) 3.15 (3.07) 2.76 (4.1) (4.1) (3.44) (3.50) (4.14) (4.50) 2.73 (3.2) 2.5 1.7 (2.44) (1.80) (3.3) (4.2–5.6) 3.0 (2.88) (5.2) (2.7)
23 24 16 24 19 24 25 25 16 16 16 16 13 10 20 11 16 26 27 28 29 4 5 3a
Handbook of Optical Materials
Glass
Pulse
0.08 0.09 ~1 ~1 3 ~1 10–4 0.08 3 ~1 0.125 0.125 0.15 3 3 0.030 13 3 13 0.15 0.08 0.08 10–4 0.08 3 ~1
1064 1064 1064 1064 647 1064 1064 620 1064 1064 1064 1064 1064 647 1064 1064 560,590 1064 694 1064 694 1064 1064 1064 620 1064 1064 1064
1.56–1.95 1.94 1.50 1.50 1.51 (1.5418) 1.53 1.8050 1.93 (1.57) (1.57) 1.57 1.57 (1.57) (1.57) (1.5714) 1.55 1.55 1.56 (1.6008) 1.61 (1.61) 1.77 1.77 1.8052 1.81
(0.072–0.97) 1.0 (0.073) (0.073) (0.060) (0.063) (0.084) 0.48 (1.16) (0.066) (0.064) (0.059) (0.059) (0.075) (0.063) (0.064) (0.011) (0.086) (0.072) (0.072) (0.088) (0.076) (0.61) (0.39) 0.42 (0.46)
1.75–18.8 (19.4) 1.83 1.83 1.5 1.54 2.08 (10.0) (22.6) 1.58 1.53 1.41 1.41 1.8 1.52 1.53 2.6 2.1 1.73 1.69 2.06 1.77 (13.1) (8.4) (8.77) (9.5) 1.93 1.16
(4.7–40) (42) (5.1) (5.1) (4.2) (4.18) (5.7) (23.) 49 (4.22) (4.1) 3.77 3.77 (4.8) (4.1) (4.08) (7.0) (5.7) (4.6) (4.42) (5.4) (4.6) 31 20 (20) 22
30 22 31 31 9c 16 31 26 2 16 31 21 13 9c 23 16 5 25 4 16 32 3 2 2 26 2 16 34
265
© 2003 by CRC Press LLC
DFWM DFWM TRI TRI RSS NDFWM TRI OKE DFWM NDFWM TRI TRI TRI RSS TRI NDFWM NDFWM PDF ER NDFWM ER TRI DFWM DFWM OKE DFWM NDFWM PDF
Section 2: Glasses
Silicate (Si-Nb-Ti-Na) Silicate 8463 Silicate C835 Silicate C1020 Silicate C1020 Silicate C-2828 Silicate C2828 Silicate E-0525 Silicate E-1 Silicate ED-2 Silicate ED-2 Silicate ED-2 Silicate ED-2:Nd Silicate ED-2:Nd Silicate ED-2:Nd Silicate ED-3 Silicate ED-4 Silicate ED-4 Silicate ED-4 Silicate ED-8 Silicate EY-1 Silicate EY-1 Silicate FD-6 Silicate FD-60 Silicate FD-60 Silicate FDS-9 Silicate FR-5 Silicate GLS-1
266
Measured Nonlinear Refractive Parameters of Glasses—continued
Silicate La SF30 Silicate LG-650 Silicate K-8 Silicate KGSS-1621 Silicate LGS-247 Silicate LSO Silicate Q-246 Silicate “QR” Silicate SF-56 Silicate SF-57 Silicate SF-57 Silicate SF-58 Silicate SF-58 Silicate SF-59 Silicate SF-59 Silicate SF-6 Silicate SF-6 Silicate SF-6 Silicate SF-7 Silicate:TB FR-5 Silicate ZF-7 Tellurite 3151 Tellurite K-1261
Method OKE NDFWM TII PDF PDF ER NDFWM DFWM DFWM DFWM OKE DFWM DFWM DFWM OKE NDFWM OKE TRI ER TRI TII NDFWM NDFWM
Wavelength
Refractive
length (ns)
(nm)
index
10–4 3 10 ~1 ~1 13 3 0.09 0.08 0.08 10–4 0.09 0.08 0.09 10–4 3 10–4 ~1 20 0.125 3 3
620 1064 694 1064 1064 694 1064 1064 1064 1064 620 1064 1064 1064 620 1064 620 1064 694 1064 532 1064 1064
1.8032 (1.5214)
0.12 (0.058) 1.5
1.51 (1.558) 2.02 1.75 1.81 1.8467 1.88 1.88 1.91 1.9176 (1.77) 1.8052 1.77 1.67
(0.058) (0.054) 1.1 (0.51) (0.85) 0.51 0.52 (1.10) 0.75 0.78 (0.38) 0.45 (0.42) (0.093)
2.05 2.05
(1.31) (1.25)
a total n2; b electronic assumption; c also nuclear/electronic ratio; d low frequency assumption.
© 2003 by CRC Press LLC
χ1111 –13 (10 cm3erg)
n2,LP –13 (10 cm3erg) (2.51) 1.44 1.07 1.17 1.44 1.31 (20.7) (10.9) (17.7) (10.4) (10.3) (22) (14.6) (15.3) 8.0 (9.40) 9.0 5.9 2.1 0.7 24 23
γLP –16 (10 cm2/W) (5.83) (3.96)
(3.25) (4.0) (3.52) (43) 26 41 (23.6) (23) 49 (32) (33.5) (18.9) (21.8) (21) (15) 5.2 (49) (47)
Ref. 26 16 35 34 34 4 16 22 2 2 26d 22 2 22 26d 16 26d 31 19b 13 35 16 16
Handbook of Optical Materials
Glass
Pulse
Section 2: Glasses
267
References: 1.
2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14.
15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26.
Chase, L. L., and Van Stryland, E. W., Nonlinear refractive index: inorganic materials, in Handbook of Laser Science and Technology, Suppl. 2: Optical Materials (CRC Press, Boca Raton, FL, 1995), p. 269. Friberg, S. R., and Smith, P. W., Nonlinear optical glasses for ultrafast optical switches, IEEE J. Quantum Electron. QE-23, 2089 (1987). Feldman, A., Horowitz, D., and Waxler, R. M., Mechanisms for self-focusing in optical glasses, IEEE J. Quantum Electron. QE-9, 1054 (1973). Owyoung, A., Ellipse rotation studies in laser host materials, IEEE J. Quantum Electron. QE9(11), 1064 (1973). Levenson, M. D., Feasibility of measuring the nonlinear index of refraction by third-order frequency mixing, IEEE J. Quantum Electron. QE-10, 110 (1974). Adair, R., Chase, L. L., and Payne, S. A., Nonlinear refractive index of optical crystals, Phys. Rev. B39, 3337 (1989). Ho, P. P., and Alfano, R. R., Optical Kerr effect in liquids, Phys. Rev. A 20(5), 2170 (1979). Smith, W. L., Bechtel, J. H., and Bloembergen, N., Dielectric-breakdown threshold and nonlinear-refractive-index measurements with picosecond laser pulses, Phys. Rev. B 12, 706 (1975). Yang, T. T., Raman scattering and optical susceptibilities of Nd-doped glasses, Appl. Phys. 11, 167 (1976). Stolen, R. H., and Lin, C., Self-phase-modulation in silica optical fibers, Phys. Rev. A 17(4), 1448 (1978). Smith, W. L., Warren, W. E., Vercimak, C. L., and White, W. T., III, Nonlinear refractive index at 351 nm by direct measurement of small-scale self-focusing, Paper FB4, Digest of Conference on Lasers and Electro Optics (Optical Society of America, Washington, DC, 1983), p. 17. Witte, K. J., Galanti, M., and Volk, R., n 2-Measurements at 1.32 µm of some organic compounds usable as solvents in a saturable absorber for an atomic iodine laser, Opt. Commun. 34(2), 278 (1980). Milam, D., and Weber, M. J., Measurement of nonlinear refractive-index coefficients using time-resolved interferometry: application to optical materials for high-power neodymium laser, J. Appl. Phys. 47(6), 2497 (1976). Hanson, E. G., Shen, Y. R., and Wong, G. K. L., Experimental study of self-focusing in a liquid crystalline medium, Appl. Phys. 14, 65 (1977); Self-focusing: from transient to quasi-steadystate, Opt. Commun. 20(1), 45 (1977); Wong, G. K. L., and Shen, Y. R., Transient self-focusing in a nematic liquid crystal in the isotropic phase, Phys. Rev. Lett. 32(10), 527 (1974). Boling, N. L., Glass, A. J., and Owyoung, A., Empirical relationships for predicting nonlinear refractive index changes in optical solids, IEEE J. Quantum Electron. QE-14, 601 (1978). Adair, R., Chase, L .L., and Payne, S. A., Nonlinear refractive index measurements of glasses using three-wave frequency mixing, J. Opt. Soc. Am. B4, 875 (1987). Weber, M. J., Cline, C. F., Smith, W. L., Milam, D., Heiman, D., and Hellwarth, R. W., Measurements of the electronic and nuclear contributions to the nonlinear refractive index of beryllium fluoride glasses, Appl. Phys. Lett. 32(7), 403 (1978). Owyoung, A., Hellwarth, R. W., and George, N., Intensity-induced changes in optical polarizations in glasses, Phys. Rev. B5(2), 628 (1972). White, W. T., III, Smith, W. L., and Milam, D., Direct measurement of the nonlinear refractive index coefficient γ at 355 nm in fused silica and in BK-10 glass, Opt. Lett. 9, 10 (1984). Newnham, B. E., and DeShazer, L. B., Direct nondestructive measurement of self-focusing in laser glass, NBS Spec. Publ. 356, 113 (1971). Garaev, R. A., Vlasov, D. V., and Korobkin, V. V., Need to allow for slow nonlinearity in measurements of n2, Sov. J. Quantum Electron. 12(1), 100 (1982). Hall, D. W., Newhouse, M. A., Borelli, N. F., Dumbaugh, W. H., and Weidman, D. L., Nonlinear optical susceptibilities of high-index glasses, Appl. Phys. Lett. 54, 1293 (1989). Bliss, E. S., Speck, D. R., and Simmons, W. W., Direct interferometric measurements of the nonlinear refractive index coefficient n2 in laser materials, Appl. Phys. Lett. 25(12), 728 (1974). Milam, D., and Weber, M. J., Nonlinear refractive index coefficient for Nd phosphate laser glasses, IEEE J. Quantum Electron. QE-12, 512 (1976). Smith, W. L., and Bechtel, J. H., Laser-induced breakdown and nonlinear refractive index measurements in phosphate glasses, lanthanum beryllate, and Al2O3, Appl. Phys. Lett. 28, 606 (1976). Thomazeau, I., Etcheparre, J., Grillon, G., and Migus, A., Electronic nonlinear optical susceptibilities of silicate glasses, Opt. Lett. 10, 223 (1985).
© 2003 by CRC Press LLC
27. 28. 29. 30. 31. 32. 33. 34. 35. 36.
Altshuler, G. B., Barbashev, A. I., Karasev, V. B., Krylov, K. I., Ovchinnikov, V. M., and Sharlai, S. F., Direct measurement of the tensor elements of the nonlinear optical susceptibility of optical materials, Sov. Tech. Phys. Lett. 3(6), 213 (1977). Ross, I. N., Toner, W. C., Hooker, C. J., Barr, J. R. M., and Coffey, I., Nonlinear properties of silica and air for picosecond ultraviolet pulses, J. Mod. Opt. 37, 555 (1990). Kim, Y. P., and Hutchinson, M. H. R., Intensity-induced nonlinear effects in UV window materials, Appl. Phys. B49, 469 (1989). Vogel, E. M., Kosinski, S. G., Krol, D. M., Jackel, J. L., Friberg, S. R., Oliver, M. K., and Powers, J. D., Structural and optical study of silicate glasses for nonlinear optical devices, J. Non-Cryst. Solids 107, 244 (1987). Moran, M. J., She, C. Y., and Carman, R. L., Interferometric measurements of the nonlinear refractive index coefficient relative to CS2 in laser-system-related materials, IEEE J. Quantum Electron. QE-11, 159 (1975). Owyoung, A., Nonlinear refractive index measurements in laser media, NBS Spec. Publ. 387, 12 (1973). Miller, D. A. B., Seaton, C. T., Prise, M. E., and Smith, S. D., Band-gap-resonant nonlinear refraction in III-V semiconductors, Phys. Rev. Lett. 47, 197 (1981). Weaire, D., Wherrett, D. S., Miller, D. A. B., and Smith, S. D., Effect of low-power nonlinear refraction on laser-beam propagation in InSb, Opt. Lett. 4, 331 (1979). Chi, K., Interferometric measurement of nonlinear refractive index of ZF-7 glass, Laser J. (China) 8, 48 (1981). Veduta, A. P., and Kirsanov, B. P., Variation of refractive index of liquids and glasses in a high intensity field of a ruby laser, Sov. Phys. JETP 27, 736 (1968).
2.10.2 Two-Photon Absorption Two-Photon Absorption Data Glass As2S3 As2S3 BK 3 (Schott) BK 7 (Schott) BK 7 (Schott) BK 10 (Schott) BK 10 (Schott) Holmium oxide LG630:Nd (Schott) Silica 7940 (Corning) Silica (Suprasil) Silica (Suprasil) Silica (Suprasil) Silica (Suprasil) Silica (fused) Silica (fused) Silica (fused) Silica (fused) Silica (fused)
Pulse width tp (ns)
Band gap Eg (eV)
2hhω (eV)
~30 30 1.2 1.1, 7 1.2 1.1, 7 1.2 – 0.006 1.1, 7 0.017 0.015 0.015 0.00045 0.0007 ~10 0.008 0.00028 0.004
– 2.3 4.4 3.9 4.0 4.1 4.5 – – 7.8 7.8 7.8 7.8 7.8 7.8 – – 7.8 –
3.56 2.4–3.6 4.67 7.07 4.67 7.07 4.67 4.26–4.32 2.33 7.07 6.99 9.32 9.32 10.0 10.0 12.8 10.0 10.0 10.0
(a) Relative spectrum, (b) Absorption spectrum (30 @ 3.1 eV)
© 2003 by CRC Press LLC
Index n0(hhω) ~2.58 2.5–2.6 – 1.54 1.52 – – – ~1.6 ~1.6 ~1.6 ~1.6 ~1.6 ~1.6 – ~1.6 ~1.6 ~1.6
2PA coeff. β (cm/GW) 14 (a) 0.0006 0.0060 0.0029 0.0045 0.0004 (b) 0.004 <0.0005 <0.0012 <0.045 0.017 0.058 0.045 0.11 0.08 0.014 0.06
Ref. 1 2 3 4 3 4 3 5 6 4 7 7 8 9 10 11 12 13 14
The preceding table was adapted from Van Stryland, E. W. and Chase, L. L., Two-photon absorption: inorganic materials, in Handbook of Laser Science and Technology, Suppl. 2: Optical Materials (CRC Press, Boca Raton, FL, 1995), p. 299. References: 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14.
Maker, P. D., and Terhune, R. W., Study of optical effects due to an induced polarization third order in the electric field strength, Phys. Rev. 137(3A), A801 (1965). Nasyrov, U., Two-photon absorption spectrum of cyrstalline and glassy As2S3, Sov. Phys. Semicond. 12(6), 720 (1978). White III, W. T., Henesian, M. A., and Weber, M. J., Photothermal-lensing measurements of twophoton absorption and two-photon-induced color centers in borosilicate glasses at 532 nm, J. Opt. Soc. Am. B 2, 1402–1408 (1985). Smith, W. L., Lawrence Livemore National Laboratory, 1981 Laser Program Annual Report, U.C.R.L. - 50021-81, p. 7–23. Munir, Q., Wintner, E., and Schmidt, A. J., Optoacoustic detection of nonlinear absorption in glasses, Opt. Commun. 36(6), 467 (1981). Penzkofer, A., and Kaiser, W., Nonlinear loss in Nd-doped laser glass, Appl. Phys. Lett. 21(9), 427 (1972). Liu, P., Smith, W. L., Lotem, H., Bechtel, J. H., Bloembergen, N., and Adhav, R. S., Absolute two-photon absorption coefficients at 355 and 266 nm, Phys. Rev. B 17(12), 4620 (1978). Liu, P., Yen, R., and Bloembergen, N., Two-photon absorption coefficients in UV window and coating materials, Appl. Opt. 18(7), 1015 (1979). Simon, P., Gerhardt, H., and Szatmari, S., Intensity-dependent loss properties of window materials at 248 nm, Opt. Lett. 14, 1207–1209 (1989). Taylor, A. J., Gibson, R. B., and Roberts, J. P., Two-photon absorption at 248 nm in ultraviolet window materials, Opt. Lett. 13, 814–816 (1988). Devine, R. A. B., Defect creation and two-photon absorption in amorphous SiO2, Phys. Rev. Lett. 62, 340 (1989). Tomie, T., Okuda, I., and Yano, M., Three-photon absorption in CaF2 at 248.5 nm, Appl. Phys. Lett. 55, 325 (1989). Hata, K., Watanabe, M., and Watanabe, S., Nonlinear processes in UV optical materials at 248 nm, Appl. Phys. B 50, 55–59 (1990). Ross, I. N., Toner, W. T. Hooker, C. J., Barr, J. R. M., and Coffey, I. C., Nonlinear properties of silica and air for picosecond pulses, J. Modern Opt. 37, 555–573 (1990).
2.10.3 Third-Order Nonlinear Optical Coefficients Glass BK–7 Borosilicate ED–4 glass K-8 LaSF–7 LSO-glass SF–7 Silica, SiO2
TF–7
Nonlinear optical process (−ω; ω, ω, −ω) (−2ω1+ ω2; ω1, ω1, −ω2) (−2ω1+ ω2; ω1, ω1, −ω2) (−ω; ω, ω, −ω) (−ω; ω, ω, −ω) (−ω; ω, ω, −ω) (−ω; ω, ω, −ω) (−2ω1+ ω2; ω1, ω1, −ω2) (−ω; ω, ω,−ω) (−2ω1+ ω2; ω1, ω1, −ω2)
Coefficient 20 2 -2 Cjn x 10 m V C11 = 0.00257 C11 = 0.0018 C11 = 0.01498 ± 0.0011 C11 = 0.21 ± 0.042 C11 = 0.014 C11 = 0.0026 C11 = 0.01108 C11 = 0.098 C18 = 0.0017 C11 = 0.672 ± 0.126 C11 = 0.42 ± 0.098
Wavelength (µm) 0.6943 0.6943 0.525 0.6943 0.694 0.694 0.694 0.6943 0.694 0.6943 0.6943
Table adapted from Singh, S., Nonlinear optical materials, Handbook of Laser Science and Technology, Vol. III: Optical Materials, Part 1 (CRC Press, Boca Raton, FL, 1986), p. 54.
© 2003 by CRC Press LLC
2.10.4 Brillouin Phase Conjugation Glasses Used for Brillouin Phase Conjugation Glass Silica, SiO2
Wavelength λ (nm)
Brillouin shift at λ (GHz)
1064
532 488
Linewidth ∆vb (MHz)
Gain g (cm/GW)
16 29–75(a) 29 43–162(b)
4.7, 5 2.5 2.3 2.9 4.48
1 2 3 4 5
25.18
Ref.
Silicate glass
488
21.79–23.41
170–208
2.78–5.18
5
Borate glass
488
17.54–23.31
100–138
3.44–14.29
5
Halide glasses(c) ZBL ZBLA ZBLAN HBL HBLA HBLAPC BeF2 95BeF2-5ThF4 91BeF2-9ThF4 88BeF2-12ThF4
488 488 488 488 488 488 488 488 488 488
2.832 1.713 3.608 1.127 0.96 1.023 16.06 11.54 12.44 24.69
5 5 5 5 5 5 5 5 5 5
17.64 17.80 18.82 15.83 15.63 17.82 17.19 17.61 19.33 18.40
213.6 98.7 96.0 151.4 162.3 179.5 52.5 74.8 42.8 21.3
(a) The authors report gain narrowing. (b) The authors report the transverse and longitudinal linewidth, respectively. (c) Gain calculated from the authors measurements of other parameters.
The above table was adapted from Pepper, D. M., Minden, M. L., Bruesselbach, H. W. and Klein, M. B., Nonlinear optical phase conjugation materials, in Handbook of Laser Science and Technology, Suppl. 2: Optical Materials (CRC Press, Boca Raton, FL, 1995), p. 467. References: 1. Bespalov, V. I., and Pasmanik, G. A., Nonlinear Optics and Adaptive Laser Sytems (Nauka, Moscow, USSR, 1985). Trans. by Translation Division, Foreign Technology Division, Wright Patterson Air Force Base, OH, document FTD-ID(RS)T-0889-86. 2. Gaeta, A. L., and Boyd, R. W., Stochastic dynamics of stimulated Brillouin scattering in an optical fiber, Phys. Rev. A (Atomic, Molecular, and Optical Physics), 44, 3205 (1 Sept. 1991). 3. Tsun, T.-O. Wada, A., Sakai, T., and Yamauchi, R., Novel method using white spectral probe signals to measure Brillouin gain spectra of pure silica core fibres, Electron. Lett. 28, 247–249 (30 Jan. 1992). 4. Faris, G. W., Jusinski, L. E., Dyer, M. J., Bischel, W. K., and Hickman, A. P., High-resolution Brillouin gain spectroscopy in fused silica, Opt. Lett. 15, 703–705 (15 June 1990). 5. Hwa, L.-G., et al., J. Opt. Soc. Am. B (Opt. Phys.), Topical Meeting on Nonlinear Optical Properties of Materials, 833 (1989).
© 2003 by CRC Press LLC
2.11 Special Glasses 2.11.1 Filter Glasses There are three general types of filter glasses: (1) colorless—optical glasses with different ultraviolet cutoffs, (2) ionically colored by heavy metal or rare earth ions, and (3) colloidically colored. The optical, thermal, and mechanical properties, chemical resistance, and internal quality of these glasses are carefully controlled and are generally similar to those of optical glasses. Manufacturer’s catalogs should be consulted for specific transmission curves and transmittance. Several of the colored filter glasses exhibit photoluminescence [see W. H. Turner, Photoluminescence of color filter glasses, Appl. Opt. 12, 480 (1973) and tables later in this section]. Glass filters may be classified according to their optical properties—short wavelength cutoff, long wavelength cutoff, bandpass, band blocking, and neutral density. Filter glasses produced by major manufacturers are listed by groups in the following table. Commercial Filter Glasses Corning
UV cutoff filters (visible and IR transmitting)
Near UV and visible cutoff filters
© 2003 by CRC Press LLC
Glass no.
C.S. no.
Hoya
Schott
7940 UV 7940 7910 7906 7058 — 7740 — 9754 7953 7380 — — 3850 — 3060 3391 — 3389 3387 — 3385 3384 3486 3484 3482 3480
9-57 9-58 9-54 9-30 0-56 — 0-53 — 9-56 9-55 0-52 — — 0-51 — 3075 3-74 3-144 3-73 3-72 — 3-71 3-70 3-69 3-68 3-67 3-66
— — UV-22 UV-28 — UV-30 — UV-32 UV-34 — UV-36 L-36 L-38 L-39 L-40
— — WG-230 WG-280 — WG-395 WG-305 WG-320 WG-335 WG-345 WG-360 — GG-375 GG-385 GG-395 GG-400 GG-420 — GG-435 GG-455 GG-475 GG-495 OG-515 OG-530 OG-550 — OG-570
L-42 — L-44 Y-46 Y-48 Y-50 Y-52 O-54 O-56 — O-58
272
Handbook of Optical Materials Commercial Filter Glasses—continued Corning Glass no.
C.S. no.
Hoya
Schott
Near UV and visible cutoff filters
2434 2424 2418 2412 2408 2404 2403 2030
2-73 2-63 2-62 2-61 2-60 2-59 2-58 2-64
IR transmitting sharp cutoff filters
— — — — — 2550 — 2563 2540 — 2600 5970 9863 — 5860 5840 5113 5073 5071 5330 5070 — — 5030 5113 5850 5874 5031 5562 — — 5900 5900
— — — — — 7-57 — 7-99 7-56 — 7-69 7-51 7-54 — 7-37 7-60 5-58 7-64 7-63 1-64 7-62 — — 5-57 5-58 7-59 7-39 5-56 5-61 — — 1-62 1-62
— R-60 — R-62 V — R-64 R-66 R-68 R-70 R-72 IR-76 IR-80 IR-83 IR-85 RM-86 RM-90 — RM-1000 — B-370 U-330 U-340 U-350 U-360 — M-30 M-50 B-380 — — M-10 M-30 M-50 — — B-410 B-390 — — LB-80 LB-20
— OG-590 RG-610 — RG-630 — RG-645 RG-665 — RG-695 RG-715 — RG-780 RG-830 RG-850 — — — RG-1000 — UG-1 UG-5 UG-11 — — — UG-3 — BG-1 BG-1 BG-3 BG-24 — — — — — BG-12 BG-25 BG-37 BG-34 BG34
UV transmitting, visible rejection (variable IR transmission)
UV, IR transmitting, visible rejection (blue-violet glass)
Blue transmitting, red IR absorbing
© 2003 by CRC Press LLC
Section 2: Glasses Commercial Filter Glasses—continued Corning
Blue transmitting, red IR absorbing
Blue, green transmitting, red, IR absorbing
Green transmitting
IR absorbing, visible transmitting
© 2003 by CRC Press LLC
Glass no.
C.S. no.
Hoya
Schott
5900 5900 5900 5900 5900 5900 5900 5433 5543 4308 4303 4305 — — 4060 4-74 4309 9788 9782 — — — — 9780 4784 — 4015 5300 — — 4010 — — — — — 4084 9830 3961 3962 3965
1-62 1-62 1-62 1-62 1-62 1-62 1-62 5-59 5-60 4-70 4-72 4-71 — — 4-67 4-74 4-39 4-97 4-96 — — — — 4-76 4-94 — 4-65 4-106 — — 4-64 — — — — — 4-68 4-77 1-56 1-57 1-58
LB-40 LB-60 LB-100 LB-120 LB-145 LB-165 LB-200 B-430 B-440 — B-460 — B-480 — — — CS-500 C-500 CM-500 C-500 CL-500 CC-500 — — — — — — — G-530 G-5633 G-545 G-550 — — — — — — — —
BG-34 BG34 BG-34 BG34 BG-34 BG34 BG-34 — — BG-14 BG-23 BG-26 BG-28 BG-13 BG-7 BG-7 BG-38 — BG-39 — — — BG-40 — BG-18 VG-4 VG-5 — VG-6 — VG-9 — VG-10 VG-14 GG-4 GG-10 GG-19 — KG-1 KG-2 KG-3
273
274
Handbook of Optical Materials Commercial Filter Glasses—continued Corning
IR absorbing, visible transmitting
IR transmitting, visible absorbing filters
Neutral density filters
Fluorescent color compensating filters Signal yellow and uranium yellow filters
Color converion filters
Calibration filters
Glass no.
C.S. no.
Hoya
Schott
3966 4605 — 2600 2540 2550 — — — — — 8364 — — — 3390 — — — — 3304 3307 3750 3780 3718 5572 — — — — — — — — — — 5121 311 — —
1-59 1-75 — 7-69 7-56 7-57 — — — — — 7-98 — — — 7-58 — — — — 3-76 3-77 3-79 3-80 3-94 1-61 — — — — — — — — — — 1-60 3-142 — —
HA-20 HA-30 HA-50 HA-60 RT-830 RM-86 RM-89 RM-100 — ND-03 ND-25 ND-40 ND-50
KG-4 — KG-5 RG-9 RG-1000 — — — NG-1 NG-3 — NG-4 NG-5 NG-9
ND-13 ND-0 ND-70 — FLD-60 FLW-85 — — — — — — LA-20 LA-40 LA-60 LA-80 LA-100 LA-120 LA-140 1-1B — HY-1 V-10 V-30
NG-10 NG-4 NG-12 — — — — — — — FG-3 — FG-6 FG-13 FG-15 FG-16 — — — — — — — BG-20 BG-36
Table from Cook, L. M. and Stokowski, S. E., Filter materials, Handbook of Laser Science and Technology, Vol. IV, Optical Materials, Part 2 (CRC Press, Boca Raton, FL, 1986), p. 93.
© 2003 by CRC Press LLC
Section 2: Glasses
275
Fluorescence Data for Schott Filter Glasses Filter type UG-3 UG-10 BG-13 BG-14 BG-23 BG-38 BG-39 BG-39 BG-38 VG-3 VG-13 GG-17 GG-21 GG-375 GG-400 GG-420 GG-435 GG-455 GG-475 GG-495 OG-515 OG-530 OG-550 OG-570 OG-590 WG-9 WG-10 WG-230 WG-280 WG-295 WG-305 WG-320 WG-335 WG-345 WG-360 FG-1 FG-4 FG-5 FG-12 RG-610
© 2003 by CRC Press LLC
Xenon-arc lamp Emission Intensity max. (nm) relative to GG-17 520 515 542 522 520 520 515 480 490 515 515 532 532 432 565 570 590 620 620 630 660 670 650 670 680 440 465 540 530 515 425 430 450 460 530 555 515 515 515 660
0.2 2.7 0.7 1.9 0.3 4.1 0.3 0.1 0.04 0.5 5.2 100 87 2.5 12.4 30 13 30 30 19 8.2 4.5 4.1 2.1 0.6 21 0.02 0.03 0.08 0.08 0.02 0.2 0.3 0.1 0.4 0.05 1.8 0.9 2.5 0.6
Mercury-arc lamp Emission Intensity max. (nm) relative to GG-17 432 450 525 490 490 505 460 510 500 520 515 532 535 460 548 575 580 580 580 590 575 585 595 605 625 460 465 420 530 525 435 455 455 500 490 610 450 460 455 660
0.3 1.4 0.4 0.8 0.3 2.8 0.2 0.2 0.2 0.05 0.1 100 72 0.5 0.9 4.1 1.6 1.7 3.2 1.9 1.4 0.4 0.6 0.6 0.3 0.6 1.7 1.6 1.1 1.0 6.4 2.8 3.3 0.5 0.6 0.2 0.7 0.5 1.4 0.2
276
Handbook of Optical Materials Fluorescence Data for Schott Filter Glasses—continued
Filter type RG-630 RG-645 RG-665 RG-695 RG-715
Xenon-arc lamp Emission Intensity max. (nm) relative to GG-17 660 635 690 710 680
Mercury-arc lamp Emission Intensity max. (nm) relative to GG-17
0.8 3.3 0.3 0.08 1.0
660 680
0.18 0.4
Fluorescence Data for Corning Filter Glasses Filter number 0-54 0-51 0-52 0-53 3-75 3-74 3-73 3-72 3-71 3-70 3-69 3-68 3-67 3-66 2-73 2-63 2-62 2-61 3-79 3-94 4-69 4-69 4-71 9-30 9-54
Excitation wavelength (nm) 300 350 345 225 350 400 420 420 450 470 440 420 440 450 450 450 450 450 300 400 345 250 345 250 250
Emission peak (nm) 405 560 420 420 560 570 570 620 630 680 685 730 735 740 740 780 780 790 535 535 510 500 500 390 395
Fluorescence intensity 1.0 0.0031 0.286 0.077 0.0064 0.104 0.108 0.065 0.065 0.022 0.014 0.0024 0.0008 0.0005 0.0004 0.0003 0.0002 0.0002 1.513 0.098 0.0014 0.111 0.0059 0.314 0.154
Preceding two tables are from Cook, L. M. and Stokowski, S. E., Filter materials, Handbook of Laser Science and Technology, Vol. IV, Optical Materials, Part 2 (CRC Press, Boca Raton, FL, 1986), p. 93.
© 2003 by CRC Press LLC
Section 2: Glasses
277
2.11.2 Laser Glasses Compositions of commercial laser glasses are rarely published. Most current glasses are similar to the following: • Silicate glasses of the Li2 O-CaO-SiO2 or Li2O-Na2O-SrO-SiO2 type. Examples of these glasses include the Schott LG-680, Kigre Q-246, and Hoya LSG-91H. These glasses generally have excellent physical properties and, because of their high Li2O content, can be strengthened by ion exchange. Therefore, these glasses can be very resistant to thermal shock. • Potassium-barium-phosphate glasses with a high cross section for stimulated emission. Examples of these glasses include Schott LG-760, Hoya LGH-80, and Kigre Q-98. These glasses are often modified with Na2O, Li2O, Al2O3, etc. to produce a glass with a near-zero optical distortion. Examples of these athermal glasses include Schott LGLG-760, Hoya LGH-8, and Kigre Q-98. • Lithium-aluminum-phosphate glasses with a relatively high thermal shock resistance for high average power applications. These glasses can usually be ion exchanged to further improve their resistance to breakage. Examples of these glasses include Schott APG-1 and Hoya HAP-4. • Fluorophosphate glasses feature a low nonlinear refractive index which reduces spatial beam breakup due to small scale self-focusing. An example is Schott LG-810. In addition to commercial laser glasses, a large number of different glasses have been used in experimental lasers. Below is a summary of the range of spectroscopic properties that have been obtained for the 4F3/2–4I11/2 transition of Nd3+. For additional data of glass lasers, see the Handbook of Lasers (CRC Press, Boca Raton, FL, 2000), p. 161. Spectroscopic Properties for Nd3+ Observed in Different Glasses at 295 K Radiative Effective Peak Cross Refractive lifetime linewidth wavelength section index Host (µs) (nm) (µm) (pm2) (nd) glass Oxides Silicate Germinate Tellurite Phosphate Borate Halides
1.46–1.75 1.61–1.71 2.0–2.1 1.49–1.63 1.51–1.69
0.9–3.6 1.7–2.5 3.0–5.1 2.0–4.8 2.1–3.2
1.057–1.088 1.060–1.063 1.056–1.063 1.052–1.057 1.054–1.062
34–55 36–43 26–31 22–35 34–38
170–1090 300–460 140–240 280–530 270–450
Beryllium fluoride Aluminum fluoride Heavy metal fluoride Chloride Oxyhalides
1.28–1.38 1.39–1.49 1.50–1.56 1.67–2.06
1.6–4.0 2.2–2.9 2.5–3.4 6.0–6.3
1.046–1.050 1.049–1.050 1.048–1.051 1.062–1.064
19–29 28–32 25–29 19–20
460–1030 540–650 360–500 180–220
Fluorophosphate Chlorophosphate Chalcogenides
1.41–1.56 1.51–1.55
2.2–4.3 5.2–5.4
1.049–1.056 1.055
27–34 22–23
310–570 290–300
Sulfide Oxysulfide
2.1–2.5 2.4
6.9–8.2 4.2
1.075 1.075
21 28
64–100 92
© 2003 by CRC Press LLC
278
Handbook of Optical Materials
Glass designation Glass type
Properties of Hoya Laser Glasses LHG-5 LHG-8
Lasing Properties Peak laser wavelength (nm) Stimulated emission cross section (pm2) Specific gain coefficient (cm–1/J/cm3) Loss at lasing wavelength (cm–1) Fluorescence linewidth FWHM (nm) Effective (nm) Fluorescence lifetime (µs) at [Nd3+] (1020 / cm3)
Nd-doped phosphate
1054 4.1 0.217 0.0015 22.0 – 290 3.2
Nd-doped phosphate
1054 4.2 0.223 0.0015 21.8 – 315 3.1
LHG-80 Nd-doped phosphate
1054 4.8 0.255 0.0015 20.2 – 320 3.1
Optical properties Refractive index at
lasing wavelength (nm) 633 587 nm, nd Abbe value Nonlinear refractive index, n2 (10-13 esu) Temperature coefficient of refractive index, dn/dT (20–40°C) (10–6/°C) Temperature coefficient of optical path length, w = CTE (n – 1) + dn/dT (20–40°C) (10–6/°C) Stress optical coefficient (nm/cm/kgf/cm2) Thermal Properties Coefficient of thermal expansion, dl/dT (10–6/°C) (20–40°C) (100–300°C) Thermal conductivity (W/m K) Specific heat (J/g K) Glass transformation temperature, Tg (°C) Other Properties Density (g/cm3) Young’s modulus, E (kgf/mm2) Poisson’s ratio Knoop hardness (kgf/mm2)
© 2003 by CRC Press LLC
1.5308 1.5391 1.5410 63.5 1.28
1.5200 1.5279 1.5296 66.5 1.13
1.5329 1.5415 1.5429 64.7 1.24
–0.4
–5.3
–3.8
4.2 2.26
0.6 1.93
1.8 1.77
8.4 9.8 0.77 0.71 455
11.2 12.7 0.58 0.75 485
10.2 13.0 0.63 0.63 402
2.68 6910 0.237 429
2.83 5110 0.258 350
2.92 5100 0.267 342
Section 2: Glasses
279
Properties of Hoya Laser Glasses—continued Glass designation Glass type
Lasing Properties Peak laser wavelength (nm) Stimulated emission cross section (pm2) Specific gain coefficient (cm–1/J/cm3) Loss at lasing wavelength (cm–1) Fluorescence linewidth FWHM (nm) Effective (nm) Fluorescence lifetime (µs) at [Nd3+] (1020 / cm3) Optical properties Refractive index at lasing wavelength (nm) 632.8 nm 587 nm, nd Abbe value Nonlinear refractive index, n2 (10-13 esu) Temperature coefficient of refractive index, dn/dT (20–40°C) (10–6/°C) Temperature coefficient of optical path length, w = CTE (n – 1) + dn/dT (20–40°C) (10–6/°C) Stress optical coefficient (nm/cm/kgf/cm2)
LSG-91H Nd-doped silicate
1062 2.7 0.144 0.0015 27.4 – 300 3.0
1.5498 1.5590 1.5611 56.6 1.58
HAP-4 Nd-doped phosphate
1054 3.6 0.197 0.0015 27.0 – 350 3.2
1.5331 1.5416 1.5433 64.6 1.25
LEG-30 Er-doped phosphate
1535 0.77 – – 32.0 – 8.7 –
1.527 1.5402 1.5419 65.4 1.22
1.6
1.8
–3.0
6.6 2.16
5.7 2.44
2.2 –
Thermal Properties Coefficient of thermal expansion, dl/dT (10–6/°C) (20–40°C) (100–300°C) Thermal conductivity (W/m K) Specific heat (J/g K) Glass transformation temperature, Tg (°C)
9.0 10.5 1.03 0.63 465
7.2 8.5 1.02 0.71 486
9.6 10.9 – 0.55 515
Other Properties Density (g/cm3) Young’s modulus, E (kgf/mm2) Poisson’s ratio Knoop hardness (kgf/mm2)
2.81 8890 0.237 590
2.70 7020 0.236 470
3.09 5640 0.26 346
© 2003 by CRC Press LLC
280
Handbook of Optical Materials Properties of Kigre Laser Glasses
Glass designation Glass type Lasing Properties Peak laser wavelength (nm) Stimulated emission cross section (pm2) Specific gain coefficient (cm–1/J/cm3) Loss at lasing wavelength (cm–1) Fluorescence linewidth FWHM (nm) Effective (nm) Fluorescence lifetime (µs) at [Nd3+] (1020 / cm3) Optical properties Refractive index at lasing wavelength (nm) 632.8 nm 587 nm, nD Abbe value Nonlinear refractive index, n2 (10-13 esu) Temperature coefficient of refractive index, dn/dT (20–40°C) (10–6/°C) Temperature coefficient of optical path length, w = CTE (n – 1) + dn/dT (20–40°C) (10–6/°C) Stress optical coefficient (nm/cm/kgf/cm2) Thermal Properties Coefficient of thermal expansion dl/dT (10–6/°C) (20–40°C) (100–300°C) Thermal conductivity (W/m K) Specific heat (J/g K) Glass transformation temperature, Tg (°C) Other Properties Density (g/cm3) Young’s modulus, E (kgf/mm2) Poisson’s ratio Knoop hardness (kgf/mm2)
© 2003 by CRC Press LLC
Q-88 Nd-doped phosphate
1054 4.0 – 0.0008 21.9 26.3 326 –
Q-98 Nd-doped phosphate
1053 4.5 – 0.0008 21.1 25.5 308 –
Q-100 Nd-doped phosphate
1054 4.4 – 0.0008 21.2 25.1 357 –
1.504 1.513 1.515 67.5 1.08
1.516 1.524 1.526 68.2 1.08
1.508 1.514 1.519 69.2 1.02
–3.2
–5.1
–6.8
2.3 2.1
0.8 1.8
–0.4 2.0
10.9 – 0.69 0.84 458
11.4 – 0.52 0.72 450
12.5 – 0.60 0.75 350
2.63 6181 0.243 320
2.83 5110 0.256 290
2.60 5477 0.267 310
Section 2: Glasses
281
Properties of Kigre Laser Glasses—continued Glass designation Glass type Lasing Properties Peak laser wavelength (nm) Stimulated emission cross section (pm2) Specific gain coefficient (cm–1/J/cm3) Loss at lasing wavelength (cm–1) Fluorescence linewidth FWHM (nm) Effective (nm) Fluorescence lifetime (µs) at [Nd3+] (1020 / cm3) Optical properties Refractive index at lasing wavelength (nm) 632.8 nm 587 nm, nD Abbe value Nonlinear refractive index, n2 (10-13 esu) Temperature coefficient of refractive index, dn/dT (20–40°C) (10–6/°C) Temperature coefficient of optical path length, w = CTE (n–1) + dn/dT (20–40°C) (10–6/°C) Stress optical coefficient (nm/cm/kgf/cm2) Thermal Properties Coefficient of thermal expansion dl/dT (10–6/°C) (20–40°C) (100–300°C) Thermal conductivity (W/m K) Specific heat (J/g K) Glass transformation temperature, Tg (°C) Other Properties Density (g/cm3) Young’s modulus, E (kgf/mm2) Poisson’s ratio Knoop hardness (kgf/mm2)
© 2003 by CRC Press LLC
Q-246 Nd-doped phosphate
MM-2 Er-doped phosphate
QE-7S Er-doped phosphate
1054.5 3.5 0.186 0.0015
1535 0.8 – –
23.0 26.65 350 2.0
55
30
7900 –
8000 –
1.526 1.535 1.537 67.7 1.13
1.53 – 1.54 – –
1.535 0.8 – 0.002
1.531 – 1.542 – –
1.2
-3.8
6.3
5.2 2.2
3.3 2.1
0.3
7.6 – 0.83 0.84 450
7.3 8.4 0.85
11.4 – 0.82 0.80 462
2.64 7242 0.239 315
506
2.70 7100 0.24 435
2.94 7210 0.24 556
282
Handbook of Optical Materials Properties of Kigre Laser Glasses—continued
Glass designation Glass type Lasing Properties Peak laser wavelength (nm) Stimulated emission cross section (pm2) Specific gain coefficient (cm–1/J/cm3) Loss at lasing wavelength (cm–1) Fluorescence linewidth FWHM (nm) Effective (nm) Fluorescence lifetime (µs) at [Nd3+] (1020 / cm3) Optical properties Refractive index at lasing wavelength (nm) 632.8 nm 589.3 nm, nD Abbe value Nonlinear refractive index, n2 (10-13 esu) Temperature coefficient of refractive index dn/dT (20–40°C) (10–6/°C)
QX/Nd Nd-doped phosphate
1054 3.8 – – – 27.2 – 353 –
1.53 – 1.538 66.0 1.17 −0.4
QX/Er Nd-doped phosphate
1535 0.8 – – – 55.0 – 7900 –
1.521 – 1.538 64.5 1.22
QX/Yb Nd-doped phosphate
1025-1060 1.4 – – – 56.5 – 2000 –
1.52 – 1.535 61.1 1.22
0
0
Temperature coefficient of optical path length, w = CTE (n – 1) + dn/dT (20–40°C) (10–6/°C) Stress optical coefficient (10-6 mm2/N)
5.1 2.1
3.3 2.3
3.3 2.3
Thermal Properties Coefficient of thermal expansion dl/dT (10–6/°C) (20–40°C) (20–100°C) Thermal conductivity (W/m K) Specific heat (J/g K) Glass transformation temperature, Tg (°C)
7.2 8.4 0.85 – –
8.2 9.4 0.85 – –
8.3 9.5 0.85 – –
2.66 7100 0.24 503
2.90 6700 0.24 435
2.81 6700 0.24 435
Other Properties Density (g/cm3) Young’s modulus, E (103 N/ mm2) Poisson’s ratio Knoop hardness (kgf/mm2)
© 2003 by CRC Press LLC
Section 2: Glasses
283
Properties of Schott Laser Glasses Glass designation Glass type Lasing Properties Peak laser wavelength (nm) Stimulated emission cross section (pm2) Specific gain coefficient (cm–1/J/cm3) Loss at lasing wavelength (cm–1) Fluorescence linewidth FWHM (nm) Effective (nm) Fluorescence lifetime (µs) at [Nd3+] (1020 / cm3) Optical properties Refractive index at lasing wavelength (nm) 632.8 nm 587 nm, nd Abbe value Nonlinear refractive index, n2 (10-13 esu) Temperature coefficient of refractive index dn/dT (20–40°C) (10–6/°C) Temperature coefficient of optical path length, w = CTE (n – 1) + dn/dT (20–40°C) (10–6/°C) Stress optical coefficient (nm/cm/kgf/cm2) Thermal Properties Coefficient of thermal expansion dl/dT (10–6/°C) (20–40°C) (100–300°C) Thermal conductivity (W/m K) Specific heat (J/g K) Glass transformation temperature, Tg (°C) Other Properties Density (g/cm3) Young’s modulus, E (103 N/mm2) Poisson’s ratio Knoop hardness (N/mm2)
© 2003 by CRC Press LLC
LG-700
LG-750
LG-760
Nd-doped phosphate
Nd-doped phosphate
Nd-doped phosphate
1053 3.7 0.195 0.0015 22.3 26.6 350 2.0
1053.5 4.0 0.212 0.0020 21.5 25.5 360 2.0
1053.5 4.2 0.223 – 19.6 23.6 350 2.0
1.504 1.513 1.515 67.5 1.08
1.516 1.524 1.526 68.2 1.08
1.508 1.514 1.519 69.2 1.02
–3.2
–5.1
–6.8
2.3 2.1
0.8 1.8
–0.4 2.0
10.9 – 0.69 0.84 458
11.4 – 0.52 0.72 450
12.5 – 0.60 0.75 350
2.63 6181 0.243 320
2.83 5110 0.256 290
2.60 5477 0.267 310
284
Handbook of Optical Materials Properties of Schott Laser Glasses–continued
Glass designation Glass type
LG-660 Nd-doped silicate
Lasing Properties Peak laser wavelength (nm) Stimulated emission cross section (pm2) Specific gain coefficient (cm–1/J/cm3) Loss at lasing wavelength (cm–1) Fluorescence linewidth FWHM (nm) Effective (nm) Fluorescence lifetime (µs) at [Nd3+] (1020 / cm3) Optical properties Refractive index at lasing wavelength (nm) 632.8 nm 587 nm, nd Abbe value Nonlinear refractive index, n2 (10-13 esu) Temperature coefficient of refractive index dn/dT (20–40°C) (10–6/°C) Temperature coefficient of optical path length, w = CTE (n – 1) + dn/dT (20–40°C) (10–6/°C) Stress optical coeff. (546 nm) (nm/cm/N/mm2) Thermal Properties Coefficient of thermal expansion dl/dT (10–6/°C) (20–40°C) (100–300°C) Thermal conductivity (W/m K) Specific heat (J/g K) Glass transformation temperature, Tg (°C) Other Properties Density (g/cm3) Young’s modulus, E (103 N/mm2) Poisson’s ratio Knoop hardness (N/mm2)
© 2003 by CRC Press LLC
LG-670 (ED-2) Nd-doped silicate
1057 2.0 0.106 0.002
1061 2.7 0.144 <0.003
24.9 33.3 480 1.4
27.8 34.4 330 1.4
LG-680 (ED-3) Nd-doped silicate
1061 2.9 0.155 0.002 28.2 34.7 >350 2.0
1.509 1.517 1.519 58.2 1.34
1.561 1.570 1.572 57.5 1.41
1.560 1.568 1.570 57.7 1.6
1.1
2.9
2.9
6.5 29
8.0 21.0
8.1 20
10.7 12.2 1.05 0.72 395
9.26 10.3 1.35 0.92 468
9.3 – 1.35 0.92 468
2.60 69.4 0.233 4415
2.54 90.1 0.242 5876
2.54 9190 0.242 599
Section 2: Glasses
285
Properties of Schott Laser Glasses—continued Glass designation Glass type
Lasing Properties Peak laser wavelength (nm) 2 Stimulated emission cross section (pm ) –1 3 Specific gain coefficient (cm /J/cm ) –1 Loss at lasing wavelength (cm ) Fluorescence linewidth FWHM (nm) Effective (nm) Fluorescence lifetime (µs) 3+ 3 at [Nd ] (1020 / cm ) Optical properties Refractive index at lasing wavelength (nm) 632.8 nm 587 nm, nd Abbe value 2 –13 Nonlinear refractive index, n (10 esu) Temperature coefficient of refractive index dn/dT (20–40°C) (10–6/°C) Temperature coefficient of optical path length, w = CTE (n – 1) + dn/dT (20–40°C) (10–6/°C) 2 Stress optical coeff. (546 nm) (nm/cm/N/mm ) Thermal Properties Coefficient of thermal expansion dl/dT (10–6/°C) (20–40°C) (100–300°C) Thermal conductivity (W/m K) Specific heat (J/g K) Glass transformation temperature, Tg (°C) Other Properties Density (g/cm3) Young’s modulus, E (103 N/mm2) Poisson’s ratio Knoop hardness (N/mm2) * Properties are not final. ** −30–+70°C
© 2003 by CRC Press LLC
APG-1 Nd-doped phosphate
1054.5 3.5 0.186 0.0015 23.0 26.65 350 2.0
1.526 1.535 1.537 67.7 1.13
LG-810 Nd-doped fluorophosphate
1051 2.6 0.138 <0.002 26.1 31.0 470 1.4
LG-812 Nd-doped fluorophosphate*
1051 2.7 0.15 0.005 22 – 400 2.86
1.429 1.434 1.435 91 0.52
1.428 – 1.435 91.0 0.5
1.2
−7.7
−7.7
5.2 2.2
−1.4 9.3
−1.4 9.3
7.6 – 0.83 0.84 450
14.5** 16.5 1.06 0.71 395
14.5** – 1.06 0.71 401
2.64 7242 0.239 315
3.19 75.3 0.275 3237
3.19 75.3 0.275 330
286
Handbook of Optical Materials
2.11.3 Faraday Rotator Glasses Diamagnetic Glasses The Verdet constant of diamagnetic glasses is proportional to the dispersion of the refractive index, dn/dλ. Thus high index, large dispersion glasses are generally used for Faraday rotation applications. Data for representative diamagnetic glasses are given below.* Schott BK 7
435.8
Verdet constant, V(rad/T m) –1 Loss coefficient, α (cm ) Index of refraction, n
9.6 0.0017 1.5267
Schott SF 6
435.8
Verdet constant, V(rad/T m) –1 Loss coefficient, α (cm ) Index of refraction, n
Schott SF 57 Verdet constant, V(rad/T m) –1 Loss coefficient, (cm ) Index of refraction, n
Schott SF 59 Verdet constant, V(rad/T m) –1 Loss coefficient, α (cm ) Index of refraction, n
As2S3 Verdet constant, V(rad/T m) –1 Loss coefficient, α (cm ) Index of refraction, n
48.1 0.024 1.8470
435.8 52.4 0.0205 1.8939
435.8 69.8 — 2.0156
435.8 86.7 — 2.636
Wavelength (nm) 480.0 546.1 7.6 — 1.5228
5.8 0.0016 1.5187
Wavelength (nm) 480.0 546.1 34.9 0.008 1.8297
25 0.002 1.8126
Wavelength (nm) 480.0 546.1 39.6 — 1.8742
29 0.002 1.8550
Wavelength (nm) 480.0 546.1 — — 1.9890
37.2 — 1.9635
Wavelength (nm) 480.0 546.1 56.4 — 2.562
38.7 — 2.521
* Schott glass designations. Similar glasses are available from other sources.
© 2003 by CRC Press LLC
632.8
1060
4.1 — 1.5151
1.7 — 1.5067
632.8
1060
18 — 1.7988
6.1 — 1.7738
632.8
1060
20 0.002 1.8396
6.7 0.002 1.8118
632.8
1060
25.9 — 1.9432
8.1 — 1.9078
632.8
1060
19 — 2.465
13 — 2.448
Section 2: Glasses Paramagnetic Glasses Data from manufacturer’s data sheets. Hoya FR 4 (discontinued)
325
Verdet constant, V(rad/T m) –1 Loss coefficient, α (cm ) Index of refraction, n
— — —
Hoya FR 5
325
Verdet constant, V(rad/T m) –1 Loss coefficient, α (cm ) Index of refraction, n
Hoya FR 7
–444 — 1.731
325
Wavelength (nm) 442 632.8 –82.6 1.584
–30.5 0.00597 1.570
Wavelength (nm) 442 632.8 –174 — 1.701
–71.0 0.0291 1.684
Wavelength (nm) 442 632.8
Verdet constant, V(rad/T m) –1 Loss coefficient, α (cm ) Index of refraction, n
— — —
–82.3 — 1.540
Kigre M-18
543.1
Wavelength (nm) 632.8 830.0
Verdet constant, V(rad/T m) –1 Loss coefficient, α (cm ) Index of refraction, n
–103 — —
–70.9 — 1.6845 (nD)
Verdet constant relative to FR 5 measured at 21.7 rad/T m.
Kigre M-24 Verdet constant, V(rad/T m) –1 Loss coefficient, α (cm ) Index of refraction, n
Kigre M-32 Verdet constant, V(rad/T m) –1 Loss coefficient, α (cm ) Index of refraction, n
© 2003 by CRC Press LLC
Wavelength (nm) 532 1064 –87 — 1.701 (nD)
–26 — 1.687
Wavelength (nm) 532 1064 –98 — 1.727 (nD)
–29 — 1.713
–34.9 — 1.530
–37.9 — —
1064 –8.4 0.0054 1.561
1064 –20.6 0.0086 1.673
1064 –9.6 — 1.524
1064 –21.3 — 1.664
287
Section 2: Glasses
O-I EY-1 (discontinued)
Wavelength (nm 442 632.8
325
–273
Verdet constant, V(rad/T m) –1 Loss coefficient, α (cm ) Index of refraction, n
O-I EY-2 (discontinued) Verdet constant, V(rad/T m) –1 Loss coefficient, α (cm ) Index of refraction, n
–98.0
–41.9
— 1.665
— 1.639
— 1.624
325 —
Wavelength (nm) 442 632.8 — —
— —
— —
288
1064 –11.9 <0.005 1.615
1064
–11
— —
<0.010 1.607
Optical Properties of Paramagnetic Faraday Rotator Glasses Glass type
Transmission range (µm)
Refractive index nD
Abbe number νD
dn/dT (10-6/K)
Nonlinear index n2 calc. (10--13esu)
FR-4 FR-5 FR-7
~0.4–2.0 ~0.4–1.5* ~0.4–1.5*
1.5732 1.6864 1.5316
58.0 53.5 74.9
2.8 7.5 –
1.59 2.45 0.95
M-18 M-24 M-32
~0.4–1.5* ~0.4–1.5* ~0.4–1.5*
1.682 1.701 1.727
48.8 52.0 51.1
7.5 – –
2.7 2.6 2.9
3+
* Tb
absorption line at ~0.54 µm.
Mechanical and Thermal Properties of Paramagnetic Faraday Rotator Glasses Glass type
Density (g/cm3)
Young’s modulus E (103 N/mm2)
Poisson’s ratio µ
Knoop hardness (N/mm2)
FR-4 FR-5 FR-7
3.10 4.28 4.32
65.2 108 –
0.244 0.22 –
6020 7310 5070
M-18 M-24 M-32
4.33 4.45 4.85
113 121 120
0.339 0.326 0.306
7380 7500 7930
Data from manufactures’ sheets.
© 2003 by CRC Press LLC
Thermal expansion ( 10-6/°C) 98 47 17.1 5.63 5.59 6.00
Transform. temp (°C) 625 756 398 757 775 774
Section 2: Glasses
289
2.11.4 Gradient-Index Glasses Gradient-index (GRIN) glasses are ones in which the index of refraction varies spatially within the glass. A radial gradient is one that is symmetric about a line; therefore the surfaces of constant index of refraction are cylinders. There are two commonly used mathematical representations for such gradients. The first, used to specify products manufactured by Nippon Sheet Glass, is N(r)= N0(1 – Ar2/2 + h4r4 + h6r6 + . . . ); the second is N(r)= N 00 + N10r2 + N 20r4 + . . . ). In both cases, the quadratic coefficient determines the focal length, numerical aperture, and other first-order properties of the lens. The higherorder coefficients determine the image quality. The tables below present catalog data for Nippon Sheet Glass (NSG) materials and those of Gradient Lens Corporation(GLC) together with calculated maximum numerical aperture (NA) and quarter-pitch length. Other diameters and numerical apertures may be available; the reader should contact the appropriate vendor for current data. NSG Radial Gradient Lenses (Selfoc) SLS Numerical aperture Diameter (mm) Wavelength (µm) Square root A N00 N10 ∆N Index at edge Quarter-pitch length
SLS
SLW
SLW
SLW
SLW
0.37 0.37 0.46 0.46 0.46 0.46 1 2 1 1.8 2 31.8 0.63 0.63 0.63 0.63 0.63 0.63 –1 –2 –1 –1 –2 6.10E 3.70E 1.15E 9.24E 4.24E–2 2.49E 0.499 0.247 0.608 0.339 0.304 0.206 1.5637 1.5637 1.6075 1.6075 1.6075 1.6075 –1.95E–1 –4.77E–2 –2.97E–1 –9.24E–2 –7.43E–2 –3.41E–2 –4.87E–2 –4.77E–2 –7.43E–2 –7.48E–2 –7.43E–2 –7.67E–2 1.515 1.516 1.5332 1.5326 1.5332 1.5307 3.15 6.36 2.58 4.63 5.17 7.63
SLH 0.6 0.634 1.85E–1 0.43 1.6576 –1.53E–1 –1.24E–1 1.5334 3.65
Data from SELFOC Product Guide, NSG America, Inc., Somerset, NJ 08873.
GLC Radial Gradient Lenses (BIG GRINS)
Numerical aperture Diameter (mm) Wavelength (µm) A Square root A N00 N10 ∆N Index at edge Quarter-pitch length
BG 30
BG 40
0.19 3 0.63 5.78E–3 0.076 1.643 –4.74E–3 –1.07E–2 1.6323 20.67
0.19 4 0.63 3.25E–3 0.057 1.643 –2.67E–3 –1.07E–2 1.6323 27.56
BG 50 0.19 5 0.63 2.12E–3 0.046 1.643 –1.74E–3 –1.09E–2 1.6321 34.15
Data from Gradient Lens Corporation Data Sheets, Rochester, NY 14608. Tables from Moore, D. T., Gradient-index materials, Handbook of Laser Science and Technology, Suppl. 2: Optical Materials (CRC Press, Boca Raton, 1995), p. 499.
© 2003 by CRC Press LLC
Section 2: Glasses
290
2.11.5 Mirror Substrate Glasses Properties of Mirror Substrate Glasses Material (supplier)
Density (g/cm3)
Thermal expansion coefficient (10-6/K)
Knoop hardness (kg/mm2)
Stress-optical coefficient (TPa–1)
BK 7 (various)
2.51
8.3
520
2.7
fused silica*
2.20
0.55
635
3.5
LE30 (Hoya)
2.58
0.4
657
2.9
Pyrex (Corning)
2.23
3.2
418
3.9
ULE (Corning)
2.21
0.03
460
4.0
Zerodur® (Schott)
2.53
0.10
630
3.0
* For a list of suppliers, see the section on fused silica.
2.11.6 Athermal Glasses Athermal glass compositions are selected such that the optical path length, defined as the refractive index times the actual geometric distance the light traverses in the glass, is independent of temperature. The change in optical path length ∆W with temperature is ∆W = s[α(n – 1) + dn/dT]∆T = sGT, where s is the actual distance in the glass, α is the coefficient of thermal expansion, n is the refractive index, and T is the temperature. G is the thermo-optical coefficient. For ∆w to approach zero, the gradient of the refractive index as a function of temperature must be negative. Examples of glasses with this property can be found in the FK, PK, PSK, SSK, BaLF, F, TiF, and BaSF families on the glass map. Data for several representative athermal optical and laser glasses are given in the table (see, also, sections 2.2.2 and 2.9.2). Properties of Athermal Glasses dn/dT (10-6/K)**
nd
νd
Thermal expansion coefficient α (10-6/K)*
Optical glasses Ultran (Schott) PSK 54 (Schott) TiF 6 (Schott) FK 54 (Schott) ATF4 (Hoya)
1.5483 1.5860 1.6165 1.4370 1.65376
74.2 64.6 31.0 90.7 44.72
11.9 11.9 13.9 14.6 12.9
–6.5 –7.0 –6.4 –5.9 –6.6
Nd-doped laser glasses LHG-8 (Hoya) Q-98 (Kigre) LG-760 (Schott) LG-810 (Schott)
1.530 1.555 1.519 1.537
66.5 63.6 69.2 67.7
11.2 9.9 12.5 14.5
–5.3 –4.5 –6.8 –7.7
Glass type
*
–30 – +70°C; ** +20 – +40°C
© 2003 by CRC Press LLC
Section 2: Glasses
291
2.11.7 Acoustooptic Glasses Acoustic waves create a time-varying refractive index grating in a material via the photoelastic effect. The grating spacing is equal to the acoustic wavelength; the grating depth is determined by the drive power of the transducer. A light beam traversing the medium is deflected by the grating at the Bragg angle Θ B from the normal to the sound propagation direction given by sin ΘB = (1/2)λ/ Λ, where λ and Λ are the wavelengths of the light and sound beams. The diffraction efficiency for a transducer of height H and interaction length L is 2
6 2
3
I/I0 = (π /2)(L/H)(n p /νn )Pa/λ
2
where Pa is the acoustic power, p is the photoelastic constant, ρ is the density, and ν is the sound velocity. Thus an acoustooptic material, in addition to having low losses at the acoustic and optical wavelengths, should also have a large index of refraction and small sound velocity. A figure of merit for an acoustooptic material is M = n6 p2/ρv3. Properties and figures of merit for several glasses are compared below. Properties of Acoustooptic Glasses Transmission range (µm)
Acoustic wave polar.
Sound velocity (km/sec)
Optical wave polar.
Refract. index (632.8 nm)
Relative merit(a)
fused silica (SiO2)
0.2–4.0
long.
5.96
⊥
1.46
1.0
lead silicate (Schott SF 4)
0.38–1.8
long.
3.63
⊥
1.62
3.0
lead silicate (Schott SF 59)
0.46–2.5
long.
3.20
or
⊥
1.95
12.6
tellurite (Hoya AOT 5)
0.47–2.7
long. shear
3.40 1.96
⊥ or ⊥
2.090
23.9
tellurite (Hoya AOT 44B)
0.43–2.5
long.
3.33
1.971
20.9
arsenic trisulfide (As2S3)
0.6–11
long.
2.6
2.61
256
Ge55As12S33
1.0–14
2.52
2.52
⊥
Glass
54
(a) Figure of merit relative to that of SiO2. Data from Gottlieb, M., Elastooptic materials, Handbook of Laser Science and Technology, Vol. 4 (CRC Press, Boca Raton, FL, 1986), p. 319.
© 2003 by CRC Press LLC
Section 2: Glasses
292
2.11.8 Abnormal Dispersion Glass Various relative partial dispersions Px,y = (nx – ny)/(nF – nC) are defined for other wavelengths x and y. The relative partial dispersion of most glasses obeyed a linear relationship on νd of the form Px,y ≈ axy + bxy νd , where a and b are constants. It is not possible to correct for second-order chromatic aberrations using so-called “normal” glasses that satisfy this equation. Because of the linear relationship between the relative partial dispersions and Abbe number, the difference in partial dispersions will always be the same for normal glasses. Correction for second-order chromatic aberration (secondary spectrum) is accomplished using glasses with equal partial dispersions for different Abbe values (the corrected systems are called apochromats). These abnormal dispersion glasses depart from the “normal line” and the linear relationship above. The relative dispersion (ng – nF)/(nF – nC ) of optical glasses is plotted in the figure below and shows the magnitude of the deviations from the normal line that are possible. The deviations can be either positive or negative. Optical glass catalogs list deviations of the relative partial dispersions from the normal for glasses covering a wide range of νd values. 0.65
nF – nc
Pg,f =
ng – nF
0.60
0.55
0.50 100
80
60
νd
40
20
Deviation of the relative partial dispersion Pg,f of optical glasses from the normal line (Schott Optical Glass Catalog).
© 2003 by CRC Press LLC
Section 3: Polymeric Materials
3.1 3.2 3.3 3.4 3.5
Optical Plastics Index of Refraction Nonlinear Optical Properties Thermal Properties Engineering Data
© 2003 by CRC Press LLC
Section 3: Polymeric Materials
295
Section 3 POLYMERIC MATERIALS Of the large number of known polymers, several exhibit useful optical properties. Various properties of optical plastics are compared with those of glasses below. The documentation of optical properties and the accuracy of data on plastics are generally not comparable to that of optical glasses. In addition, mechanical and chemical resistance properties should be checked with the material supplier because they may vary widely within a polymer group. Numerous caveats about the use and application of plastics in optical systems are noted in reference 1. Property Optical Refractive index (nd) Abbe number (vd) Index homogeneity Index change with temperature (10−6 K−1) Birefringence (nm/cm) Transmission range (nm) Mechanical Density (g/cm3) Young modulus (103 N/mm2) Poisson’s ratio Thermal Expansion coefficient (10−6 K−1) Heat capacity (J g−1 K−1) Thermal conductivity (W m−1 K−1) Softening temperature (°C)
Plastic
Glass
1.31–1.65 92–20 ±1 x 10-4 −143 to −100 60–80,000 200–2500
1.28–1.95 91–20 ± 1 x 10-6 −8.5 to 6.0 5 150–3500
0.83–1.46 1–10
2.3–6.3 46–129 0.192–0.309
25–130 1–2 0.1–0.3 360–430
3.7–14.6 0.31–0.89 0.51–1.28 750–1100
From Cook, L. M. and Stokowski, S. E., Filter materials, Handbook of Laser Science and Technology, Volume IV: Optical Materials, Part 2 (CRC Press, Boca Raton, FL, 1995), p. 151.
Common optical plastics include: polymethyl methacrylate (PMMA) (acrylic) polystyrene (styrene) (PS) methyl methacrylate styrene copolymer (NAS) stryrene acrylonitrile (SAN), acrylic/styrene copolymer polycarbonate (PC) polymethylpentene (TPX) acrylonitrile, butadienne, and styrene terpolymer (ABS) nylon, amorphous polyamide polyetherimide (PEI) polysulfone allyl diglycol carbonate (CR-39) Telfon (Telfon AF® ) (TPFE), fluorinated-(ethylenic-cyclo oxyaliphatic substituted ethylenic) copolymer
In the following tables properties of these and other optical plastics are given in order of decreasing index of refraction.
© 2003 by CRC Press LLC
296
Handbook of Optical Materials
3.1 Optical Plastics Properties of Optical Plastics–I Polymer Polyetherimide (PEI)
Trade name
Manufacturer
Density (g/cm3)
Ultem
G.E. Plastics
Polyarylsulfone
Radel
Amoco Performance
1.37
1.651
Polyurethane
Isoplast 301
Dow
1.2
1.64–1.65
Polysulfone
Udel P-1700
Amoco Performance
1.24
1.633
Polyarylate
1.27
Index nD 1.658
Durel 400
Hoecsht Celanese
1.21
1.61
Ardel D-100
Amoco Performance
1.21
1.61
Poly α-methylstyrene
Resin 18
Amoco Chemical
1.075
1.61
Polyamide, amorphous nylon
Durethan T40
Miles Inc.
1.185
1.590
Aliphatic/aromatic
22.5
(Bayer AG)
Polystyrene (PS)
Styron
Dow
1.06
1.589
Polyamide, amorphous nylon
Zytel 330
DuPont
1.18
1.588
Polycarbonate (PC)
Abbe νD
31
Calibre
Dow
1.20
1.586
30
Lexan
G.E. Plastics
1.20
1.586
30.3
Makrolon
Miles Inc.
1.2
1.586
30
Polystyrene co-maleic anhydride (SMA)
Dylark 232
Arco
1.08
1.586
31.8
Modified polyestercarbonate
Lexan SP
G.E. Plastics
1.18
1.582
Polystyrene-butadiene copolymer
K Resin
Phillips 66
1.01
1.571
Polystyrene-
Lustran
Monsanto
1.07
1.57
coacrylonitrile (SAN)
Lustran Sparkle
Monsanto
1.07
1.57
Tyril 990
Dow
1.07
1.57
Polyester (PETG)
Kodar 6763
Eastman
1.27
1.567
Polyamide, amorphous (nylon type 6/3)
Trogamid T
Huls-America
1.12
1.566
Polystyrene co-methylmethacrylate (2:1) (SMMA)
NAS 30
Novacor
1.09
1.564
Epoxy casting resin
OS-4000
Dexter Corp. (Hysol)
A = 1.15
A = 1.563
B = 1.22
B = 1.565
Amorphous polyolefin
35.3
35
APO
Mitsui Petrochem.
1.05
1.54
Cycolac CTBZ
G.E. Plastics
1.07
1.536
Polyamide, amorphous (nylon type 12)
Grilamid
EMS-AmericaGrilon
1.06
1.535
Polystyrene comethylmethacrylate (1:2)
NAS-55
Novacor
1.13
1.535
41.15
ZEONEX
Zeon Chemicals
1.01
1.528
55.7
from dicyclopentadiene Acrylonitrile-butadiene-
35
styrene terpolymer (ABS)
(SMMA) Amorphous polyolefin (APO)
© 2003 by CRC Press LLC
Section 3: Polymeric Materials
297
Properties of optical plastics–I—continued Polymer
Trade name
Manufacturer
Density (g/cm3)
Index nD
Abbe νD
Dicyclopolyolefin
Telene
B F Goodrich
1.0
1.528
55.3
Epoxy molding compound
MG-18
Dexter Corp. (Hysol)
1.35
1.52
Tricyclodecyl
OZ-1000
Hitachi Chemical
1.16
1.500
Low moisture acrylic
WF-201
Mitsubishi Rayon
1.495
58
Allyl diglycol carbonate
CR-39
PPG Industries
1.32
1.498
59.3
Polymethylmethacrylate
Plexiglas
Rohm and Haas
1.19
1.491
57.4
PMMA, acrylic
Acrylite
Cyro
1.19
1.491
57.4
CP
ICI
1.18
1.491
57.4
Perspex
ICI
1.18
1.491
57.4
Shinkolite P
Mitsubishi Rayon
1.19
1.491
57.4
57
co-methacrylate (TCDMA)
Polymethylmethacrylate impact modified, 20%
MI-7
Rohm and Haas
1.17
1.49
impact modified, 40%
DR-G
Rohm and Haas
1.15
1.49
Poly(4-methylpentene-1)
TPX RT-18
Mitsui Plastics
0.833
1.463
56.3
Cellulose acetate butyrate
Tenite
Eastman
1.15–1.2
1.46–1.49
51.9
Teflon AF 1600
DuPont
1.8
1.32
92
(CAB) Fluoropolymer (TPFE)
Optical Transmission Optical plastics transmit well in the visible and the near infrared, but absorb strongly in the ultraviolet (fluoropolymers are an exception) and throughout the infrared. Most plastics degrade somewhat both in physical and optical properties when exposed to ultraviolet radiation.
Transmission spectra of optical plastics. sample thickness: 3.2 mm.
© 2003 by CRC Press LLC
298
Handbook of Optical Materials Properties of Optical Plastics–II Polymer
Relative hazea
Hueb
Deflect.c temp. (˚C)
Comments
Polyetherimide (PEI)
light
amber
200
Good thermal/chemical resistance, high color but good in near IR
Polyarylsulfone Polyurethane
light light
yellow colorless
204 88
Polysulfone
light
yellow
174
Polyarylate
noticeable
light straw
158
Tough Can be custom tailored, good chemical resistance Good thermal and moisture stability, high temperature High temperature, good UV resistance
Poly α-methylstyrene
slight
colorless
n/a
Brittle, can be modifier for K resin
Polyamide, amorphous nylon
slight
light straw
110
Tough, hard
Polystyrene (PS)
low
colorless
82110
Polyamide, amorphous nylon
noticeable
colorless
123
Low haze grades available Good abrasion resistance, moisture sensitive
Polycarbonate (PC)
slight
light straw
123129
Very tough, high impact
Polystyrene co-maleic anhydride (SMA)
slight
colorless
96
Brittle
Modified polyestercarbonate Polystyrene-butadiene copolymer
slight noticeable
light straw light straw
107 76
Processes at lower temperature Tough
Polystyrene-coacrylonitrile ∂8 (SAN)
slight
light straw
93104
Tougher than polystyrene
Polyester (PETG) Polyamide, amorphous (nylon type 6/3)
slight noticeable
light straw straw
70 124
Film extruding Good abrasion resistance
Polystyrene co-methylmethacrylate (2:1) (SMMA) Amorphous polyolefin from dicyclopentadiene Acrylonitrile-butadienestyrene terpolymer (ABS) Polyamide, amorphous (nylon type 12) Polystyrene co-methylethacrylate (1:2) (SMMA)
slight
colorless
98
Optical quality
n/a
n/a
Tg = 141
Optical quality, very low moisture
noticeable
yellow
79
Tough
noticeable
straw
150
Good abrasion resistance
slight
colorless
99
Optical quality
Amorphous polyolefin (APO)
slight
light straw
123
Optical quality
Dicyclopolyolefin
slight
light straw
107
Very low moisture (0.01%)
Epoxy molding compound
slight
colorless
120
Semiconductor embedment
Tg = 110
Two-part casting resin
Tricyclodecyl co-methacrylate (TCDMA)
low
colorless
Low moisture acrylic
sligth
light straw
Allyl diglycol carbonate
low
light straw
Epoxy casting resin
© 2003 by CRC Press LLC
Lower moisture than PMMA (1.2%) 103
Optical quality
91
Cast thermoset, hard
55–65
Ophthalmic use
Section 3: Polymeric Materials
299
Properties of optical plastics–II—continued Relative hazea
Polymer
Hueb
Polymethylmethacrylate
low to
light straw
PMMA, acrylic
slight
to colorless
light light
Poly(4-methylpentene-1)
Cellulose acetate butyrate (CAB) Fluoropolymer (TPFE)
Impact modified, 20% Impact modified, 40%
Deflect.c temp. (˚C)
Comments
72–102
Optical quality, hard, widely used, scratch resistant
colorless colorless
85 79
Tougher than PMMA Tough, will creep with mild force
slight
colorless
90 at 66 psi
Unusual properties, lowest density of all thermoplastics, infrared transmission, very tough
noticeable
light straw
43–88
Tough
noticeable
colorless
154
Very low index of refraction, good ultraviolet transmission.
aRelative haze estimates: low (<0.7%); slight (to 1.5 %); light (to 3%); noticeable (>3%). bHue (yellowness) estimates: colorless, light straw, straw, yellow, amber. cHeat deflection temperature at 264 psi.
The above tables are from D. Keyes, Optical plastics, Handbook of Laser Science and Technology, Suppl. 2: Optical Materials (CRC Press, Boca Raton, FL, 1995), pp. 85–94.
Loss Contributions (in dB/km) for PS, PMMA, and PMMA-d8 Core Fibers Core material
PS
PMMA
PMMA-d8
Wavelength (nm)
552
580
624
672
518
567
650
680
780
850
Total loss Absorption Electronic transition tail Rayleigh scattering Structural imperfections Loss limit
162 0 22 95 45 117
138 4 11 78 45 93
129 22 4 58 45 84
114 24 2 43 45 69
57 1 0 28 28 29
55 7 0 20 28 27
128 88 0 12 28 100
20 0 0 10 10 10
25 9 0 6 10 15
50 36 0 4 10 40
Source: Kaino, T., Fujiki, M., and Jinguji, K., Preparation of plastic optical fibers, Rev. Electr. Commun. Lab. 32, 478 (1984).
© 2003 by CRC Press LLC
300
Handbook of Optical Materials
3.2 Index of Refraction Index of Refraction of Common Optical Plastics Wavelength (nm) 365.0 404.7 435.8 480.0 486.1 546.1 587.6 589.3 643.9 656.3 706.5 852.1 1014.0 Abbe number
PMMA
Polystyrene
Polycarb.
SAN
1.5136 1.5066 1.5026 1.4983 1.4978 1.4938 1.4918 1.4917 1.4896 1.4892 1.4878 1.4850 1.4831
1.6431 1.6253 1.6154 1.6052 1.6041 1.5950 1.5905 1.5903 1.5858 1.5849 1.5820 1.5762 1.5726
1.6432 1.6224 1.6115 1.6007 1.5994 1.5901 1.5855 1.5853 1.5807 1.5799 1.5768 1.5710 1.5672
1.6125 1.5971 1.5886 1.5800 1.5790 1.5713 1.5674 1.5673 1.5634 1.5627 1.5601 1.5551 1.5519
57.4
30.9
29.9
34.8
PEI
NAS
— — — 1.687 — 1.668 1.660
TPFE
1.651 — — — —
— — — — 1.574 — — 10564 — 1.558 — — —
— — — — — — — 1.31 — — — — —
18.3
34.7
92
Adapted from a table of J. D. Lytle, Handbook of Optics, Vol. II (McGraw-Hill, New York, 1995), Chapter 34 ( with additions).
Being carbon-based materials, the index of refraction and dispersion of polymers differ significantly from those of glasses and crystals. The locations of optical plastics relative to optical glasses are shown in the refractive index–Abbe number diagram below. 2.0
1.9
TaSF LaSF
1.8
LaSK TaF
Refractive index nd
LaF
NbF 1.7
SFS
LaK
BaSF BaF
SK
1.6
PSK FZ
1.5 FP
PK FK
SSK
F
KzFS BaLF
SF
PEI p-sulfone p-styrene
LF
p-carbonate BaK SAN LLF KF NAS-55 ABS K BK CR-39 CR-39 PMMA TPX
1.4 fluoropolymer (TPFE) 1.3 100
© 2003 by CRC Press LLC
80
60 Abbe number νd
40
20
Section 3: Polymeric Materials
3.3 Nonlinear Optical Properties Abbreviations 3-BCMUr 3-DDCTP 4-BCMUr 4-BCMUy AO AY BBB BBL BBPEN BSQ DCV DEANS DNBA DNTA DR1 ISQ LTFPG MDCB MDNB Mg:OPTAP MNA MV757 NFAI NPCV OMPS PBT PC PDES PDTT PMMA PPMS PPV PS PT PTS PTS-PDA PVK rB SiNc SiPc TCDU: TCV TNF TPO-N
© 2003 by CRC Press LLC
Material Red form of poly-3-BCMU Poly(3-dodecylthiophene) Red form of poly-4-BCMU Yellow form of poly-4-BCMU Acridine orange Acridine yellow Poly(6,9-dihydro-6,9-dioxobisbenzimidazo[2,1b:1',2'j]benzo[1mn] [3,8]phenanthroline-3,12-diyl) Poly{(7-oxo-7,10H-benz[de]imidazo[4',5':5,6]benzimidazo[2,1a]isoquinoline 3,4:10,11-tetrayl)-10-carbonyl} Bis[n-butyl, 2-phenyl-1,2-ethenedithiolato(2-)-S,S'] nickel 1,3-Bis(4'-N,N-dibutylamino-2'-hydroxyphenyl)-cyclobutene-2,4-dione 4-N,N-Diethylamino-4'-b,b-dicyanovinyl (azobenzene) 4-Diethylamino-4'-nitrostilbene 4-Nitrobenzylidenyl (4'-N,N-dimethylaminoanilide) 4-Nitrothenylidenyl (4'-N,N-dimethylaminoanilide) Disperse red 1 1,3-Bis(3',3'-dimethyl-2'-indoleninylidenyl)-cyclobutene-2,4-dione Lead-tin fluorophosphate glass m-Dicyanobenzene m-Dinitrobenzene Magnesium octaphenyl tetra-azaporphyrin 2-Methyl-4-nitroaniline MV757 commercial epoxy resin 5-Nitro(2-furanacroleindenyl (4'-N,N-dimethylaminoanilide) 4-N,N-Dibutylamino-4'-(b-cyano-b-(4≤-nitrophenyl) vinyl) (azobenzene) Poly(n-octylmethylpolysilane Poly-p-phenylenebenzobisthiazole Polycarbonate Polydiethynylsilane Polydithieno(3,2-b,2',3'-b)thiophene Poly(methyl) methacrylate Polyphenylmethylsilane Poly ( p-phenylene vinylene) Polysilane Polythiophene Bis-( p-toluene sulfonate) of 2,4-hexadiyne-1,6 diol (polydiacetylene) Single crystal poly PTS polydiacetylene Poly-N-ninyl carbazole Rhodamine B Silicon naphthalocyanine Silicon phthalocyanine Bis-(phenylurethane) of 5,7-dodecadiyne-1,2-diol (polydiacetylene) 4-N,N-Diethylamino-4'-tricyanovinyl (azobenzene) 2,4,7-Trinitrofluorenone Thiophene oligomer with N units
301
302
Handbook of Optical Materials Bulk Two-Photon Absorption Coefficients
Material
Excitation duration(ns)
Applied two-photon energy (eV)
Two-photon cross section (cm/GW)
Ref.
Additional information
3-BCMU
0.033
2.33
0.52
33
Benzene chloride 2.3% blue gel
4-BCMU
0.033
2.33
0.76
33
Benzene chloride 1.7% red gel
4-BCMU
0.033
2.33
<0.1
33
14% yellow form solution in DMF
4-BCMU
0.06
1.88
<0.25
34
Polymer waveguide
PPV
0.00006
4
6.8
35
PTS
0.015
2.28
28
36
PPV in silica solgel Pump @1.17 eV
PTS
0.015
2.55
300
36
Pump @1.17 eV
PTS
0.015
2.78
500
36
Pump @1.17 eV
PTS
0.015
2.96
900
36
Pump @1.17 eV
TCDU
0.015
2.2
1
36
Pump @0.81 eV
TCDU
0.015
2.3
14
36
Pump @1.17 eV
TCDU
0.015
2.4
3
36
Pump @0.81 eV
TCDU
0.015
2.6
6.4
36
Pump @0.81 eV
TCDU
0.015
2.6
54
36
Pump @1.17 eV
TCDU
0.015
2.9
80
36
Pump @1.17 eV
From Garito, A. E. and Kuzyk, M. G., Two-photon absorption: organic materials, Handbook of Laser Science and Technology, Suppl. 2: Optical Materials (CRC Press, Boca Raton, FL, 1995), p. 329.
Techniques for Measuring Nonlinear Refraction Abbreviation DFWM KE MSI OKE SA TBC TRI
Method Degenerate four-wave mixing DC Kerr effect Modified Sagnac interferometry Optical Kerr effect Saturated absorption Two-beam coupling Time-resolved interferometry
All measurements in the following tables were made at room temperature.
© 2003 by CRC Press LLC
Ref. 1 2 3 4 5 5 6
Section 3: Polymeric Materials
303
Nonlinear Refraction Data for Polymers ( 3)
( ) ( ) χ1111 − χ1122 (10 – 1 2 c m 3 /erg) R e f . 3
3
Meth.
Pulse duration (ns)
4-BCMUr 4-BCMUy
DFWM DFWM DFWM DFWM DFWM DFWM DFWM DFWM DFWM DFWM
0.0004 0.00006 0.00035 0.00035 0.00035 0.00035 0.00035 0.00035 0.0005 0.0005
620 620 590 602 705 590 602 705 605 605
4-BCMUy
DFWM
0.033
1064
( 3) χ 1212 = 1.4
4-BCMUy
DFWM
0.033
1064
( 3) χ 1212 = 9.0
4-BCMUy BBB BBL BBL BBLc OMPS PBT PDES PDTT PDTT PDTT PDTT PDTT Poly(4-BCMU) PPMS PS PT PT PT PT PT PTS-PDA PTS-PDA PTS-PDA PTS-PDA PTS-PDA PTS-PDA PTS-PDA PTS-PDA a TPO-1 TPO-2 TPO-3 TPO-4 TPO-5 TPO-6
DFWM DFWM DFWM DFWM DFWM DFWM DFWM DFWM DFWM DFWM DFWM DFWM DFWM TRI OKE OKE DFWM DFWM DFWM DFWM DFWM DFWM DFWM DFWM DFWM DFWM DFWM MSI TRI DFWM DFWM DFWM DFWM DFWM DFWM
0.033 0.035 0.025 0.035 0.035 10 0.0005 0.00009 0.008 0.008 0.008 0.008 0.008 0.06 0.003 0.008 0.008 0.008 0.008 0.008 0.008 0.006 0.006 0.006 0.006 0.006 0.006 0.06 0.1 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004
1064 1064 532 1064 1064 532 585–604 620 530 585 605 630 1060 1319 1060,532 1060,532 530 585 605 630 1060 651.5 661 671 681 691 701.5 1060 1060 602 602 602 602 602 602
Material 3-DDCTP 3-DDCTP 3-DDCTPa 3-DDCTPa 3-DDCTPa 3-DDCTPb 3-DDCTPb 3-DDCTPb
Wavelength (nm)
χ 1111
Linear index n
1.585 1.585 1.585 1.61 1.61 1.61
2 2 2 2 2
2 2 2 2 2 3 3 3 3 3 3 3 3 1.529 1.562 1.581 1.600 1.623
(10 – 1 2 c m 3 /erg) 330 55 450 330 40 700 500 40 400 25
5.5 2000 15 20 2.9 9 3000 11,400 7,700 5,500 1,300 30 0.456 2.0 2 6,680 5,000 3,000 700 30 9,000 7,275 2,317 1,025 380 500 1250 6840 0.14 0.50 2.6 11 30 100
7 7 8 8 8 8 8 8 9 9
( 3) χ 1212 = 13 3.7 1300 10 13
10 10 10 11 11 11 11 12 13 14 15 15 15 15 15 16 17 18 15 15 15 15 15 19 19 19 19 19 19 3 20 21 21 21 21 21 21
a Chemically prepared; b Electrochemically prepared; c Electrochemically doped; d Single crystal waveguides.
© 2003 by CRC Press LLC
304
Handbook of Optical Materials Nonlinear Refraction Data for Solid Solutions and Copolymers
Dye
Host
AO AO AY AY BBPEN BEPEN BSQ BSQ DCV DCV DCV DEANS DNBA DNTA DR1 DR1 DR1 ISQ ISQ ISQ ISQ ISQ MDCB MDNB Mg:OPTAP MNA NFAI NPCV PPV
LTFPG LTFPG LTFPG LTFPG PMMA PMMA PMMA PMMA PMMA PMMA PMMA PC PMMA PMMA PMMA PMMA PMMA PMMA PMMA PMMA PMMA PMMA PMMA PMMA PMMA PMMA PMMA PMMA Sol-gel silica Sol-gel silica Sol-gel silica MV757 PMMA PMMA PMMA PVK PVK PVK PVK PVK
PPV PPV rB SiNc SiPcc TCV TNF TNF TNF TNF TNF
Dye density ( 1 0 2 2 cm – 3 )
Meth.
0.00008 0.00008 0.000077 0.000077 saturation saturation 0.0028 0.0028 0.0148 0.0148 0.0148 17 0.0137 0.0276 0.01 0.0244 0.04 0.0019 0.0019 0.0019 0.0019 0.0019 0.109 0.124 5 wt% 0.143 0.0240 0.0119 1:1 by weight
SA TBC SA TBC DFWM DFWM MSIb KE KE KE KE KE KE KE KE KE KE KE KE KE KE KE KE KE DFWM OKEb KE KE DFWM
15,000 15,000 15,000 15,000 0.1 0.1 0.06 8 kHz 8 kHz 8 kHz 8 kHz 500 Hz 8 kHz 8 kHz 8 kHz 8 kHz 8 kHz 8 kHz 8 kHz 8 kHz 8 kHz 8 kHz 8 kHz 8 kHz 0.001 8 kHz 8 kHz 0.00006
514 514 514 514 1064 1064 1064 799 632.8 676 799 597 632.8 632.8 632.8 632.8 632.8 479 570 632.8 680 799 632.8 632.8 598 1064 632.8 632.8 620
1:1 by weight
DFWM
0.0004
1:1 by weight
OKE
0.0077 M/l 30 wt% 10 wt% 0.0218 1:2 molar ratio 1:4 molar ratio 1:8 molar ratio 1:16 molar ratio 1:32 molar ratio
DFWM DFWM DFWM KE DFWM DFWM DFWM DFWM DFWM
Pulse (ns)
Wavelength (nm)
(3) χ1111 Linear ( 1 0 – 1 2 i n d e x c m 3/erg) R e f .
3 x 1010 4 x 1010 6 x 1010 2 x 1010 29.9 131 2.8 0.97a 1.8a 0.53a 0.156a 6 0.093a 0.282a 0.23a 0.51a 0.84a 0.263a 0.341a 0.155a 0.418a 0.387a 0.0274a 0.0205a 11.7 2.08 0.471a 0.315a 45
22 22 22 22 23 23 24 25 26 26 26 27 26 26 26 26 26 26 26 26 26 26 26 26 28 29 26 26 30
608
91
30
0.00006
620
38
30
0.00035 0.001 0.001 8 kHz 0.002 0.002 0.002 0.002 0.002
595 598 598 632.8 602 602 602 602 602
10.7 20.9 94 3.9a
31 28 28 26 32 32 32 32 32
1.77 1.77 1.77 1.77 1.49 1.49 1.48 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.48 1.5 1.5 1.5
1.81 1.434 1.42 1.5
20 12 7.4 3.4 2.0
a Assumes χ(3)1111 = 3 χ(3)1133. b Waveguide measurement; c Copolymer. From Garito, A. E. And Kuzyk, M. G., Nonlinear refractive index: organic materials, Handbook o f Laser Science and Technology, Suppl. 2 (CRC Press, Boca Raton, FL 1995), p. 289.
© 2003 by CRC Press LLC
Section 3: Polymeric Materials
305
References: 1. 2. 3.
4. 5. 6.
7.
8. 9.
10. 11.
12.
13.
14.
15.
16.
17.
18.
Friberg, S. R., and Smith, P. W., Nonlinear optical glasses for ultrafast optical switches, IEEE J. Quantum Electron. QE-23, 2089 (1987). Hellwarth, R. W., and George, N., Nonlinear refractive indices of CS2-CCl4 mixtures, Opt. Electron. 1, 213 (1969). Gabriel, M. C., Whitaker, Jr., N. A., Dirk, C. W., Kuzyk, M. G., and Thakur, M., Measurement of ultrafast optical nonlinearities using a modified Sagnac Interferometer, Opt. Lett. 1 6 (17), 1334 (1991). Ho, P. P., and Alfano, R. R., Optical Kerr effect in liquids, Phys. Rev. A 20(5), 2170 (1979). Tompkin, W. R., Boyd, R. W., Hall , D. W., Tick, P. A., J. Opt. Soc. Am. B 4 (6), 1030 (1987). Milam, D., and Weber, M. J., Measurement of nonlinear refractive-index coefficients using time-resolved interferometry: application to optical materials for high-power neodymium laser, J. Appl. Phys. 47(6), 2497 (1976). Pang, Y., and Prasad, P. N., Photoinduced processes and resonant third-order nonlinearity i n poly(3-dodecylthiophene) studied by femtosecond time resolved degenerate four wave mixing, J. Chem. Phys. 93(4), 2201 (1990). Singh, B. P., Samoc, M., Nalwa, H. S., and Prasad, P. N., Resonant third-order nonlinear optical properties of poly(3-dodecylthiophene), J. Chem. Phys. 92 (5), 2756 (1990). Rao, D. N., Chopra, P., Goshal, S. K., Swiatkiewicz, J., and Prasad, P. N., Third-order nonlinear optical interaction and conformational transition in poly-4-BCMU polydiacetylene studied by picosecond and subpicosecond degenerate four wave mixing, J. Chem. Phys. 84(12), 7049 (1986). Nunzi, J. M., and Grec, D., Picosecond phase conjugation in polydiacetylene gels, J. Appl. Phys. 62(6), 2198 (1987). Lindle, J. R., Bartoli, F. J., Hoffman, C. A., Kim, O.-K., Lee, Y. S., Shirk, J. S., and Kafafi, Z. H., Nonlinear optical properties of benzimidazobenzophenanthroline type ladder polymers, Appl. Phys. Lett. 56(8), 712 (1990). McGraw, D. J., Siegman, A. E., Wallraff, G. M., and Miller, R. D., Resolution of the nuclear and electronic contributions to the optical nonlinearity in polysilanes, Appl. Phys. Lett. 54(18), 1713 (1989). Rao, D. N., Swiatkiewicz, J., Chopra, P., Ghoshal, S. K., and Prasad, P. N., Third order nonlinear optical interactions in thin films of poly-p-phenylenebenzobisthiazole polymer investigated by picosecond and subpicosecond degenerate four wave mixing, Appl. Phys. Lett. 48(18), 1187 (1986). Wong, K. S., Han, S. G., Vardeny, Z. V., Shinar, J., Pang, Y., Ijadi-Maghsoodi, S., Barton, T. J., Grigoras, S., and Parbhoo, B., Femtosecond dynamics of nonlinear optical response i n polydiethynylsilane, Appl. Phys. Lett. 58(16), 1695 (1991). Dorsinville, R., Yang, L., Alfano, R. R., Zamboni, R., Danieli, R., Ruani, G., and Taliani, C., Nonlinear-optical response of polythiophene films using four-wave mixing techniques, Opt. Lett. 14(23), 1321 (1989). Rochford, K., Zanoni, R., Stegeman, G. I., Krug, W., Miao, E., and Beranek, M. W., Measurement of nonlinear refractive index and transmission in polydiacetylene waveguides at 1.319 µm, Appl. Phys. Lett. 58(1), 13 (1991). Yang, L., Wang, Q. Z., Ho, P. P., Dorsinville, R., Alfano, R. R., Zou, W. K., and Yang, N. L., Ultrafast time response of optical nonlinearity in polysilane polymers, Appl. Phys. Lett. 53(14), 1245 (1988). Yang, L., Dorsinville, R., Wang, Q. Z., Zou, W. K., Ho, P. P., Yang, N. L., and Alfano, R. R., Third-order optical nonlinearity in polycondensed thiophene-based polymers and polysilene polymers, J. Opt. Soc. Am. B 6(4), 753 (1989).
© 2003 by CRC Press LLC
306 19.
20. 21.
22. 23.
24.
25. 26. 27.
28. 29. 30.
31. 32.
33. 34.
35.
36.
Handbook of Optical Materials Carter, G. M., Thakur, M. K., Chen, Y. J., and Hryniewicz, J. V., Time and wavelength resolved nonlinear optical spectroscopy of a polydiacetylene in the solid state using picosecond dye laser pulses, Appl. Phys. Lett. 47 (5), 457 (1986). Krol, D. M., and Thakur, M., Measurement of the nonlinear refractive index of single-crystal polydiacetylene channel waveguides, Appl. Phys. Lett. 56(15), 1406 (1990). Zhao, M.-T., Singh, B. P., and Prasad, P. N., A systematic study of polarizability and microscopic third-order optical nonlinearity in thiophene oligomers, J. Chem. Phys. 89 (9), 5535 (1988). Tompkin, W. R., Boyd, R. W., Hall , D. W., Tick, P. A., J. Opt. Soc. Am. B 4, 1030 (1987). Winter, C. S., Oliver, S. N., Rush, J. D., Hill, C. A. S., and Underhill, A. E., Large third-order optical nonlinearities of nickel-dithiolene-doped polymethylmethacrylate, J. Appl. Phys. 71(1), 512 (1992). Gabriel, M. C., Whitaker, Jr., N. A., Dirk, C. W., Kuzyk, M. G., and Thakur, M., Measurement of ultrafast optical nonlinearities using a modified Sagnac Interferometer, Opt. Lett. 16(17), 1334 (1991). Kuzyk, M. G., Paek, U. C., and Dirk, C. W., Appl. Phys. Lett. 59(8), 902 (1991). Kuzyk, M. G., Sohn, J. E., and Dirk, C. W., Mechanisms of quadratic electrooptic modulation of dye-doped polymer systems, J. Opt. Soc. Am. B 5(5), 842 (1990). Uchiki, H., and Kobayashi, T., New determination method of electro-optic constants and relevant nonlinear susceptibilities and its application to doped polymer, J. Appl. Phys 64(5), 2625 (1988). Norwood, R. A., and Sounik, J. R., Third-order nonlinear-optical response in polymer thin films incorporating porphyrin derivatives, Appl. Phys. Lett. 60(3), 295 (1992). Goodwin, M. J., Edge, C., Trundle, C., and Bennion, I., Intensity-dependent birefringence i n nonlinear organic polymer waveguides, J. Opt. Soc. Am. B 5(2), 419 (1988). Pang, Y., Samoc, M., and Prasad, P. N., Third-order nonlinearity and two-photon-ionduced molecular dynamics: femtosecond time-resolved transient absorption, Kerr gate, and degenerate four-wave mixing studies in poly (p-phenylene vinylene)/sol-gel silica film, J. Chem. Phys. 94(8), 5282 (1991). Rossi, B., Byrne, H. J., and Blau, W., Degenerate four-wave mixing in rhodamine doped epoxy waveguides, Appl. Phys. Lett. 58(16), 1712 (1991). Ghoshal, S. K., Chopra, P. C., Singh, B. P., Swiatkiewicz, J., and Prasad, P. N., Picosecond degenerate four-wave mixing study of nonlinear optical properties of the poly-N-vinyl carbazole: 2,4,7-trinitrofluorenone composite polymer photoconductor, J. Chem. Phys. 90(9), 5078 (1989). Nunzi, J. M., and Grec, D., Picosecond phase conjugation in polydiacetylene gels, J. Appl. Phys. 62(6), 2198 (1987). Rockford, K., Zanoni, R., Stegeman, G. I., Krug, W., Miao, E., and Beranek, M. W., Measurement of nonlinear refractive index and transmission in polydiacetylene waveguides, Appl. Phys. Lett. 58(1), 13 (1991). Pang, Y., Samoc, M., and Prasad, P. N., Third-order nonlinearity and two-photon-induced molecular dynamics: femtosecond time-resolved transient absorption, Kerr gate, and degenerate four-wave mixing studies in poly(p-phenylene vinylene)/sol-gel silica film, J. Chem. Phys. 94(8), 5282 (1991). Lequime, M. and Hermann, J. P., Reversible creation of defects by light in one dimensional conjugated polymers, Chem. Phys. 26, 431 (1977).
© 2003 by CRC Press LLC
Section 3: Polymeric Materials
307
3.4 Thermal Properties Thermal Properties of Common Plastics Thermal conductivity (W m – 1 K– 1 )
Material
Linear thermal expansion ( 1 0 – 5 K– 1 )
Refractive index dn/dT (10– 4 K –1)
Maximum service temp. (K)
polymethylmethacrylate
0.16–0.24
3.6–6.5
–1.05
360
polystyrene
0.10–0.13
6.0–8.0
–1.2– –1.4
350
NAS
0.18
5.6–6.5
styrene acrylonitrile (SAN)
0.11
6.4–6.7
–1.1
350
polycarbonate
0.19
6.6–7.0
–1.07– –1.43
390
polymethyl pentene (TPX)
0.16
polyamide (Nylon)
0.2–0.23
360
11.7
385
8.2
350
polyarylate
0.28
6.3
polysulfone
0.11
2.5
polyallyl diglycol carbonate
0.20
12.0
370
cellulose acetate butyrate
0.16–0.32
polyethersulfone
0.13–0.17
5.5
470
polychloro-trifluoroethelyne
0.25
polystyrene co-butadiene
430
7.8–12
4.7
470
polyvinylidene fluoride
7.4–13
420
polyetherimide
5.6
440
From a table of J. D. Lytle, Handbook of Optics, Vol. II (McGraw-Hill, New York, 1995), Chapter 34 (with additions).
3.5 Engineering Data Engineering Data for Transparent Polymers–I Tensile strength Manufacturer yield psi
Tensile modulus 1 0 5 , psi
Flexural Impact modulus s t r e n g t h 1 0 5 , psi ( I z o d )
Magnum
Dow
7300
3.8
4.2
2
Cycolac
GE Plastics
Plexiglas
Rohm & Haas
9400–10800
4.5–4.7
2.5–4.5
0.4–1.2
CP
ICI
Acrylite
CYRO
Lucite
Dupont
Generic family Transparent ABS
Acrylic (PMMA)
Trade name
Allyl diglycol carbonate CR-39 Cellulosics (acetate, Tenite butyrate, proponiate)
PPG
5500
3
2.5–3.3
0.2–0.4
Eastman
2000–7800
0.6–2.15
1.5–3.4
1.5–7.8
Nylon, amorphous
Zytel 330
Dupont
9800–11000
4. 05
3.86
1.8–2.8
Grilamid
EMS
Trogamid T
Huls America
© 2003 by CRC Press LLC
308
Handbook of Optical Materials Engineering Data for Transparent Polymers–I—continued Generic family
PET
Trade name
Tensile strength Manufacturer yield psi
Kodapak
Eastman
Petlon
Miles Inc.
Selar
Dupont
PETG
Kodar
Polyarylate
T e n s i l e Flexural Impact modulus modulus s t r e n g t h 1 0 5 , psi 1 0 5 , psi (Izod)
8500–10500
4–6
3.5–4.5
0.25–0.7
Eastman
7100
2.5
2.9
1.7
Durel
Hoescht Celanese
9500–10500
2.9–3.05
3.3
4.2–5.5
Arylon
Dupont
Ardel
Amoco
9000–10500
3.4
3.5
14–18
Performance Polycarbonate
Calibre
Dow
Markrolon
Miles Inc. (Bayer)
Lexan
GE Plastics
Polyetherimide
Ultem
GE Plastics
15200
4.3
4.8
0.6–1.0
Polyester (polypthalate)
Lexan PPC
GE Plastics
9500
n/a
2.94–3.38
10
carbonate Polyethersulfone
Victrex
ICI
12200
n/a
3.73
1.6
Poly-4-methylpentene-1
TPX
Mitsui Plastics
3000
2
n/a
2.0–3.0
Polyphenylsulfone
Radel
Amoco Performance
10400
3.1
0.124
12
Polystyrene
Styron
Dow
5000–12000
4–5
4–4.7
0.25–0.4
Polystyrol
BASF
Hostyren
Hoescht Celanese
Bapolan
Bamberger
polystyrene
Chevron
polystyrene
Dart, Mobil
polystyrene
Amoco, Novacor
polystyrene
Huntsman
Polysulfone
Udel
Amoco
10200
3.6
3.9
1.3
PVC, rigid
Geon
B.F. Goodrich
6000–7700
3.6–3.7
3.6–5
0.5–1.6
PVC, rigid
Georgia Gulf
Oxyblend
Occidental
Unichem
Colorite
Styrene acronylitrile)
Tyril
Dow
9000–1200
4–5.6
5–5.5
0.35–0.5
(SAN
Lustran
Monsanto
Styrene butadiene Styrene maleic anhydride
Luran
BASF
Blendex
GE Plastics
K Resin Dylark
Phillips Arco
4000 7400
1.8 4.4
2.4 4.6–4.9
0.25–0.40 0.4
Novacorp Dow
9000 9000
4.5–5.0 2.6
3.5–3.9 3.4
0.2–0.3
Styrene methylmethacrylate NAS Thermoplastic Isoplast 301 polyurethane, rigid
© 2003 by CRC Press LLC
1.5
Section 3: Polymeric Materials
309
Engineering Data for Transparent Polymers–II Chemical Generic family Transparent ABS
Trade name Magnum
A l i p h . Arom. C o n c . HC HC base
resistance C o n c . Dilute Dilute i n o r g . i n o r g . acid acid base
F
P
G
G
P
G
G
P
F/P
G
P
G
Cycolac Acrylic (PMMA)
Plexiglas CP Acrylite Lucite
Allyl diglycol carbonate Cellulosics (acetate, butyrate, proponiate)
CR-39 Tenite
G F
G P
G P
G F
G P
G F
Nylon, amorphous
Zytel 330
EX
EX
G
EX
P
F
G
P/F
P
F
G/F
G
Grilamid Trogamid T PET
Kodapak Petlon Selar
PETG
Kodar
G
P/F
P
F
G/F
G
Polyarylate
Durel
P/F
P
P
N/A
F
G
F
P
P
P/F
F
G
Arylon Ardel Polycarbonate
Calibre Markrolon Lexan
Polyetherimide
Ultem
EX
EX
N/A
N/A
EX
EX
Polyester (polypthalate)
Lexan PPC
F
F/P
P
F
F
G
Polyethersulfone
Victrex
G
F
G
G
G
G
Poly-4-methylpentene-1
TPX
F
P
EX
EX
EX
EX
Polyphenylsulfone
Radel
G
P
G
G
N/A
N/A
Polystyrene
Styron
P
P
G
G
EX
G
carbonate
Polystyrol Hostyren Bapolan polystyrene Polysulfone
Udel
P/F
P
EX
EX
EX
EX
PVC, rigid
Geon
G
P
EX
EX
G
EX
Oxyblend Unichem
© 2003 by CRC Press LLC
310
Handbook of Optical Materials Engineering Data for Transparent Polymers–II—continued Chemical
Generic family Polyarylate
Trade name Durel
resistance C o n c . Dilute A l i p h . Arom. C o n c . Dilute i n o r g . i n o r g . acid acid HC HC base base P/F
P
P
N/A
F
G
F
P
P
P/F
F
G
Arylon Ardel Polycarbonate
Calibre Markrolon Lexan
Polyetherimide
Ultem
EX
EX
N/A
N/A
EX
EX
Polyester (polypthalate)
Lexan PPC
F
F/P
P
F
F
G
Polyethersulfone
Victrex
G
F
G
G
G
G
Poly-4-methylpentene-1
TPX
F
P
EX
EX
EX
EX
Polyphenylsulfone
Radel
G
P
G
G
N/A
N/A
Polystyrene
Styron
P
P
G
G
EX
G
carbonate
Polystyrol Hostyren Bapolan polystyrene Polysulfone
Udel
P/F
P
EX
EX
EX
EX
PVC, rigid
Geon
G
P
EX
EX
G
EX
G
P
G
G
G
G
P F/G
P P
P G
F/G P
P F
F/G G
Styrene methylmethacrylate NAS
F/P
P
F
G
F
G
(SMMA) Thermoplastic polyurethane, rigid
EX
EX
EX
EX
F/G
EX
PVC, rigid Oxyblend Unichem Styrene acronylitrile (SAN)
Tyril Lustran Luran Blendex
Styrene butadiene Styrene maleic anhydride (SMA)
K Resin Dylark
Isoplast 301
Chemical resistance codes: Aliphatic hydrocarbons; aromatic hydrocarbons; concentrated base; dilute base; concentrated inorganic acid; dilute inorganic acid. Excellent; Good; Fair; Poor.
The above tables are from Keyes, D., Optical plastics, Handbook of Laser Science and Technology, Suppl. 2: Optical Materials (CRC Press, Boca Raton, FL, 1995), pp. 85–94.
© 2003 by CRC Press LLC
Section 4: Metals
4.1 4.2 4.3 4.4 4.5
Physical Properties of Selected Metals Optical Properties Mechanical Properties Thermal Properties Mirror Substrate Materials
© 2003 by CRC Press LLC
Section 4: Metals
313
Section 4 METALS Metals are used in optical systems as reflective optical components, optical thin films, structural elements, and mirror substrates. For these optical applications only a limited number of metals are useful. The materials and properties included in this section are therefore necessarily selective. Depending upon the application, various physical, optical, mechanical, and thermal properties are of interest; for example, structural stiffness with low mass, thermal diffusivity to reduce thermal gradients and associated distortions, and smooth surface finish to accept of optical coatings. Thermal, elastic, electrical and magnetic properties may be anisotropic, thus crystal structure is also important.
4.1 Physical Properties of Selected Metals Metal
Symbol
Crystal structure
Space group
Aluminum
Al
cubic
Fm3m
Beryllium
Be
hexagonal
P63/mmc
Chromium
Cr
cubic
Copper
Cu
cubic
Atomic weight
Density (g/cm3)
26.98
2.70
9.01
1.85
Im3m
52.00
7.15
Fm3m
63.55
8.96
Germanium
Ge
cubic
Fd3m
72.61
Gold
Au
cubic
Fm3m
196.97
19.3
5.32
Iridium
Ir
cubic
Fm3m
192.22
22.5
Iron
Fe
cubic
Im3m
55.85
Magnesium
Mg
hexagonal
P63/mmc
24.30
Molybdenum
Mo
cubic
Im3m
95.94
7.87 1.74 10.2
Nickel
Ni
cubic
Fd3m
58.69
8.9
Niobium
Nb
cubic
Im3m
92.91
8.57
Osmium
Os
hexagonal
P63/mmc
190.23
22.59
Palladium
Pd
cubic
Fm3m
106.42
12.0
Platinum
Pt
cubic
Fm3m
195.08
21.5
Rhenium
Re
cubic
Fm3m
186.21
20.8
Rhodium
Rh
cubic
Fm3m
102.91
12.4
Silicon
Si
cubic
Fd3m
28.09
2.33
Silver
Ag
cubic
Fm3m
107.87
10.50
Tantalum
Ta
cubic
Im3m
180.95
16.4
Tin
Sn
tetragonal
Fd3m
118.71
7.28
Titanium
Ti
cubic
Im3m
47.88
4.5
183.84
19.3
Tungsten
W
cubic
Im3m
Zinc
Zn
hexagonal
P63/mmc
65.39
7.14
Zirconium
Zr
hexagonal
P63/mmc
91.22
6.51
© 2003 by CRC Press LLC
314
Handbook of Optical Materials Electrical Resistivity of Pure Metals (nohm m)
Temp. (K) Aluminum Beryllium Chromium Copper Gold Iron Molybdenum Nickel Palladium Platinum Silver Tantalum Tungsten Zinc Zirconium
10 0.0010 0.332 — 0.0200 0.226 0.238 0.0089 0.057 0.0242 0.154 0.0115 1.02 0.00137 0.112 0.253
20 0.00755 0.336 — 0.0280 0.35 0.287 0.0261 0.140 0.0563 1.17 0.042 1.46 0.0196 0.387 0.357
80 2.45 0.75 — 2.15 4.81 6.93 4.82 5.45 1.75 19.22 2.89 26.2 6.06 11.5 6.64
200
300
15.87 12.9 77 10.46 14.62 52.0 31.3 36.7 6.88 67.7 10.29 86.6 31.8 38.3 26.3
27.33 376 127 17.25 22.71 99.8 55.2 72.0 10.80 108 16.29 135 54.4 60.6 43.3
400
600
38.7 67.6 158 24.02 31.07 161 80.2 118 14.48 146 22.41 182 78.3 83.7 60.3
61.3 132 247 37.92 48.7 329 131 255 21.2 219 35.3 274 130 134.9 91.5
From the CRC Handbook of Chemistry and Physics, 82nd edition, Lide, D. R., Ed. (CRC Press, Boca Raton, FL, 2001), p. 12-45. Values of resistivity at other temperatures are given in this reference.
4.2 Optical Properties The following tables list the index of refraction n, the extinction coefficient k, and the normal incidence reflection R(φ = 0) as a function of photon energy E expressed in electron volts (eV). The dielectric function ε = ε1 + iε2 can be computed from the complex index of refraction N = n + ik using ε1 = n2 – k2 and ε2 = 2nk. The tables are from Weaver, J. H. and Frederikse, H. P. R., Optical properties of selected elements, in CRC Handbook of Chemistry and Physics, 82nd edition, Lide, D. R., Ed. (CRC Press, Boca Raton, FL, 2001), p. 12-133. The optical constants in these tables are abridged 1-3 from three more extensive tabulations. For critical applications the reader should refer to the original work. References for individual metals are listed at the end of the tables. Generally tabulated values for the optical properties are accurate to better than 10%. Data in parentheses are extrapolated or interpolated values. For most elements the spectral range covered is from the far infrared (0.010 or 0.10 eV) to the far ultraviolet (10, 30, or 300 eV). The intervals between successive energies in the tables are chosen in such a way that the major spectral features are preserved. Tables of n, k, and R(φ = 0) are given for the following metals: Aluminum Chromium Copper Germanium Gold Iridium
© 2003 by CRC Press LLC
Iron Magnesium Molybdenum Nickel Niobium Osmium
Palladium Platinum Rhenium Rhodium Silicon Silver
Tantalum Titanium Tungsten Zinc Zirconium
Section 4: Metals
315
Aluminum4 Energy eV
n
0.040 0.050 0.060 0.070 0.080 0.090 0.100 0.125 0.150 0.175 0.200 0.250 0.300 0.350 0.400 0.500 0.600 0.700 0.800 0.900 1.000 1.100 1.200 1.300 1.400 1.500 1.600 1.700 1.800 1.900 2.000 2.200 2.400 2.600 2.800 3.000 3.200 3.400 3.600 3.800 4.000 4.200 4.400 4.600 4.800 4.000 4.200
98.595 74.997 62.852 53.790 45.784 39.651 34.464 24.965 18.572 14.274 11.733 8.586 6.759 5.438 4.454 3.072 2.273 1.770 1.444 1.264 1.212 1.201 1.260 1.468 2.237 2.745 2.625 2.143 1.741 1.488 1.304 1.018 0.826 0.695 0.598 0.523 0.460 0.407 0.363 0.326 0.294 0.267 0.244 0.223 0.205 0.294 0.267
© 2003 by CRC Press LLC
k 203.701 172.199 150.799 135.500 123.734 114.102 105.600 89.250 76.960 66.930 59.370 48.235 40.960 35.599 31.485 25.581 21.403 18.328 15.955 14.021 12.464 11.181 10.010 8.949 8.212 8.309 8.597 8.573 8.205 7.821 7.479 6.846 6.283 5.800 5.385 5.024 4.708 4.426 4.174 3.946 3.740 3.552 3.380 3.222 3.076 3.740 3.552
R(φ = 0) 0.9923 0.9915 0.9906 0.9899 0.9895 0.9892 0.9889 0.9884 0.9882 0.9879 0.9873 0.9858 0.9844 0.9834 0.9826 0.9817 0.9806 0.9794 0.9778 0.9749 0.9697 0.9630 0.9521 0.9318 0.8852 0.8678 0.8794 0.8972 0.9069 0.9116 0.9148 0.9200 0.9228 0.9238 0.9242 0.9241 0.9243 0.9245 0.9246 0.9247 0.9248 0.9248 0.9249 0.9249 0.9249 0.9248 0.9248
Energy eV
n
k
4.400 4.600 4.800 8.000 8.500 9.000 9.500 10.000 10.500 11.000 11.500 12.000 12.500 13.000 13.500 14.000 14.200 14.400 14.600 14.800 15.000 15.200 15.400 15.600 15.800 16.000 16.200 16.400 16.750 17.000 17.250 17.500 17.750 18.000 18.500 19.000 19.500 20.000 20.500 21.000 21.500 22.000 22.500 23.000 23.500 24.000 24.500
0.244 0.223 0.205 0.072 0.063 0.056 0.049 0.044 0.040 0.036 0.033 0.033 0.034 0.038 0.041 0.048 0.053 0.058 0.067 0.086 0.125 0.178 0.234 0.280 0.318 0.351 0.380 0.407 0.448 0.474 0.498 0.520 0.540 0.558 0.591 0.620 0.646 0.668 0.689 0.707 0.724 0.739 0.753 0.766 0.778 0.789 0.799
3.380 3.222 3.076 1.663 1.527 1.402 1.286 1.178 1.076 0.979 0.883 0.791 0.700 0.609 0.517 0.417 0.373 0.327 0.273 0.211 0.153 0.108 0.184 0.073 0.065 0.060 0.055 0.050 0.045 0.042 0.040 0.038 0.036 0.035 0.032 0.030 0.028 0.027 0.025 0.024 0.023 0.022 0.021 0.021 0.020 0.019 0.018
R(φ = 0) 0.9249 0.9249 0.9249 0.9269 0.9272 0.9277 0.9282 0.9286 0.9293 0.9298 0.9283 0.9224 0.9118 0.8960 0.8789 0.8486 0.8312 0.8102 0.7802 0.7202 0.6119 0.4903 0.3881 0.3182 0.2694 0.2326 0.2031 0.1789 0.1460 0.1278 0.1129 0.1005 0.0899 0.0809 0.0664 0.0554 0.0467 0.0398 0.0342 0.0296 0.0258 0.0226 0.0199 0.0177 0.0157 0.0140 0.0126
316
Handbook of Optical Materials Aluminum4—continued
Energy eV
n
k
R(φ = 0)
Energy eV
n
25.000 25.500 26.000 27.000 28.000 29.000 30.000 35.000 40.000 45.000 50.000 55.000 60.000 65.000 70.000 72.500 75.000 77.500 80.000
0.809 0.817 0.826 0.840 0.854 0.865 0.876 0.915 0.940 0.957 0.969 0.979 0.987 0.995 1.006 1.025 1.011 1.008 1.007
0.018 0.017 0.016 0.015 0.014 0.014 0.013 0.010 0.008 0.007 0.006 0.005 0.004 0.004 0.004 0.004 0.024 0.025 0.024
0.0113 0.0102 0.0092 0.0076 0.0063 0.0053 0.0044 0.0020 0.0010 0.0005 0.0003 0.0001 0.0000 0.0000 0.0000 0.0002 0.0002 0.0002 0.0002
85.000 90.000 95.000 100.000 110.000 120.000 130.000 140.000 150.000 160.000 170.000 180.000 190.000 200.000 220.000 240.000 260.000 280.000 300.000
1.007 1.005 0.999 0.991 0.994 0.991 0.987 0.989 0.990 0.989 0.989 0.990 0.990 0.991 0.992 0.993 0.993 0.994 0.995
0.028 0.031 0.036 0.030 0.025 0.024 0.021 0.016 0.015 0.014 0.011 0.010 0.009 0.007 0.006 0.005 0.004 0.003 0.002
0.0002 0.0002 0.0003 0.0002 0.0002 0.0002 0.0001 0.0001 0.0001 0.0001 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
k
R(φ = 0)
k
R(φ = 0)
Chromium5 Energy eV
n
k
R(φ = 0)
Energy eV
n
0.06 0.10 0.14 0.18 0.22 0.26 0.30 0.42 0.54 0.66 0.78 0.90 1.00 1.12 1.24 1.36 1.46 1.77 2.00 2.20 2.40 2.60
21.19 11.81 15.31 8.73 5.30 3.91 3.15 3.47 3.92 3.96 4.13 4.43 4.47 4.53 4.50 4.42 4.31 3.84 3.48 3.18 2.75 2.22
42.00 29.76 26.36 25.37 20.62 17.12 14.28 8.97 7.06 5.95 5.03 4.60 4.43 4.31 4.28 4.30 4.32 4.37 4.36 4.41 4.46 4.36
0.962 0.955 0.936 0.953 0.954 0.951 0.943 0.862 0.788 0.736 0.680 0.650 0.639 0.631 0.629 0.631 0.632 0.639 0.644 0.656 0.677 0.698
2.80 3.00 3.20 3.40 3.60 3.80 4.00 4.20 4.40 4.50 4.60 4.70 4.80 4.90 5.00 5.10 5.20 5.40 5.60 5.80 6.00 6.20
1.80 1.54 1.44 1.39 1.26 1.12 1.02 0.94 0.90 0.89 0.88 0.86 0.86 0.86 0.85 0.86 0.87 0.93 0.95 0.97 0.94 0.89
© 2003 by CRC Press LLC
4.06 3.71 3.40 3.24 3.12 2.95 2.76 2.58 2.42 2.35 2.28 2.21 2.13 2.07 2.01 1.94 1.87 1.80 1.74 1.74 1.73 1.69
0.703 0.695 0.670 0.657 0.661 0.660 0.651 0.639 0.620 0.607 0.598 0.586 0.572 0.557 0.542 0.523 0.503 0.466 0.443 0.437 0.444 0.446
Section 4: Metals
317
Chromium5—continued Energy eV 6.40 6.60 6.80 7.00 7.20 7.40 7.60 7.80 8.00 8.20 8.50 9.0 9.50 10.00 10.50 11.00 11.50 12.00 12.50 13.00 13.50 14.00 14.50 15.00 15.50 16.00
n 0.85 0.80 0.75 0.74 0.71 0.69 0.66 0.67 0.68 0.71 0.74 0.83 0.92 0.98 1.01 1.05 1.09 1.13 1.15 1.15 1.12 1.09 1.03 1.00 0.96 0.92
k
R(φ = 0)
1.66 1.59 1.51 1.45 1.39 1.33 1.23 1.15 1.07 1.00 0.92 0.81 0.74 0.73 0.72 0.69 0.69 0.70 0.73 0.77 0.80 0.82 0.82 0.82 0.80 0.77
0.447 0.444 0.439 0.425 0.414 0.404 0.378 0.347 0.315 0.278 0.235 0.170 0.132 0.120 0.112 0.103 0.100 0.101 0.108 0.119 0.128 0.135 0.142 0.143 0.141 0.139
Energy eV 16.50 17.00 17.50 18.00 18.50 19.00 20.00 20.5 21.0 21.5 22.0 22.5 23.0 23.5 24.0 24.5 25.0 25.5 26.0 26.5 27.0 27.5 28.0 29.0 30.0
n 0.31 0.90 0.88 0.87 0.84 0.82 0.77 0.76 0.74 0.72 0.71 0.70 0.69 0.68 0.68 0.67 0.68 0.68 0.70 0.71 0.72 0.73 0.75 0.77 0.78
k 0.75 0.73 0.72 0.70 0.69 0.68 0.64 0.63 0.58 0.55 0.52 0.50 0.48 0.45 0.43 0.39 0.36 0.33 0.31 0.28 0.26 0.25 0.23 0.22 0.21
R(φ = 0) 0.134 0.132 0.130 0.129 0.130 0.131 0.130 0.129 0.121 0.116 0.112 0.109 0.105 0.101 0.096 0.089 0.080 0.072 0.063 0.055 0.048 0.043 0.037 0.032 0.030
Copper6 Energy eV 0.10 0.50 1.00 1.50 1.70 1.75 1.80 1.85 1.90 2.00 2.10 2.20 2.30 2.40 2.60 2.80
© 2003 by CRC Press LLC
n
k
R(φ = 0)
29.69 1.71 0.44 0.26 0.22 0.21 0.21 0.22 0.21 0.27 0.47 0.83 1.04 1.12 1.15 1.17
71.57 17.63 8.48 5.26 4.43 4.25 4.04 3.85 3.67 3.24 2.81 2.60 2.59 2.60 2.50 2.36
0.980 0.979 0.976 0.965 0.958 0.956 0.952 0.947 0.943 0.910 0.814 0.673 0.618 0.602 0.577 0.545
Energy eV 3.00 3.20 3.40 3.60 3.80 4.00 4.20 4.40 4.60 4.80 5.00 5.20 5.40 5.60 5.80 6.00
n
k
R(φ = 0)
1.18 1.23 1.27 1.31 1.34 1.34 1.42 1.49 1.52 1.53 1.47 1.38 1.28 1.18 1.10 1.04
2.21 2.07 1.95 1.87 1.81 1.72 1.64 1.64 1.67 1.71 1.78 1.80 1.78 1.74 1.67 1.59
0.509 0.468 0.434 0.407 0.387 0.364 0.336 0.329 0.334 0.345 0.366 0.380 0.389 0.391 0.389 0.380
318
Handbook of Optical Materials Copper6—continued
Energy eV 6.50 7.00 7.50 8.00 8.50 9.00 9.50 10.00 11.00 12.00 13.00 14.00 14.50 15.00 15.50 16.00 17.00 18.00 19.00 20.00 21.00 22.00 23.00 24.00 25.00 26.00 27.00 28.00 29.00 30.00 31.00 32.00 33.00 34.00 35.00 36.00 37.00
n
k
R(φ = 0)
0.96 0.97 1.00 1.03 1.03 1.03 1.03 1.04 1.07 1.09 1.08 1.06 1.03 1.01 0.98 0.95 0.91 0.89 0.88 0.88 0.90 0.92 0.94 0.96 0.96 0.92 0.88 0.86 0.85 0.86 0.88 0.89 0.90 0.91 0.92 0.92 0.92
1.37 1.20 1.09 1.03 0.98 0.92 0.87 0.82 0.75 0.73 0.72 0.72 0.72 0.71 0.69 0.67 0.62 0.56 0.51 0.45 0.41 0.38 0.37 0.37 0.40 0.40 0.38 0.35 0.30 0.26 0.24 0.22 0.21 0.20 0.20 0.19 0.19
0.329 0.271 0.230 0.206 0.189 0.171 0.154 0.139 0.118 0.111 0.109 0.111 0.111 0.111 0.109 0.106 0.097 0.084 0.071 0.059 0.048 0.040 0.035 0.035 0.040 0.044 0.043 0.039 0.032 0.025 0.020 0.017 0.015 0.014 0.013 0.012 0.011
Energy eV 38.00 39.00 40.00 41.00 42.00 43.00 44.00 45.00 46.00 47.00 48.00 49.00 50.00 51.00 52.00 53.00 54.00 55.00 56.00 57.00 58.00 59.00 60.00 61.00 62.00 63.00 64.00 65.00 66.00 67.00 68.00 69.00 70.00 75.00 80.00 85.00 90.00
n
k
R(φ = 0)
0.93 0.93 0.93 0.94 0.94 0.94 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.96 0.96 0.96 0.96 0.96 0.96 0.97 0.97 0.97 0.97 0.96 0.96 0.97 0.97 0.97 0.97 0.97 0.97 0.98 0.98 0.97 0.96
0.18 0.17 0.17 0.16 0.16 0.15 0.15 0.15 0.15 0.14 0.14 0.14 0.13 0.13 0.13 0.12 0.12 0.12 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.10 0.10 0.10 0.10 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.08
0.010 0.009 0.009 0.008 0.007 0.007 0.007 0.006 0.006 0.006 0.006 0.005 0.005 0.005 0.005 0.004 0.004 0.004 0.004 0.004 0.004 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.002 0.002 0.002 0.002 0.002 0.002 0.002
n
k
R(φ = 0)
(4.0060)
1.50E-03 1.50E-03 1.60E-03 1.60E-03
0.361
Germanium7 Energy eV
n
k
R(φ = 0)
Energy eV
0.01240 0.01364 0.01488 0.01612
(4.0065) 4.0063 (4.0060) (4.0060)
3.00E-03 2.40E-03 1.70E-03 1.55E-03
0.361 0.361 0.361 0.361
0.01736 0.01860 0.01984 0.02108
© 2003 by CRC Press LLC
Section 4: Metals
319
Germanium7—continued Energy eV 0.02232 0.02356 0.02480 0.02604 0.02728 0.02852 0.02976 0.03100 0.03224 0.03348 0.03472 0.03596 0.03720 0.03844 0.03968 0.04092 0.04215 0.04339 0.04463 0.04587 0.04711 0.04835 0.04959 0.05083 0.05207 0.05331 0.05455 0.05579 0.05703 0.05827 0.05951 0.06075 0.06199 0.06323 0.06447 0.06571 0.06695 0.06819 0.06943 0.07067 0.07191 0.07315 0.07439 0.07514 0.07749 0.07999
© 2003 by CRC Press LLC
n
3.9827
(3.9900)
(3.9930)
(3.9955)
3.9992
(4.0000)
4.0009 4.0011
k 1.55E-03 1.53E-03 1.50E-03 1.25E-03 8.50E-04 6.50E-04 7.00E-04 8.50E-04 1.55E-03 2.75E-03 3.55E-03 3.05E-03 2.75E-03 2.70E-03 2.90E-03 2.95E-03 3.20E-03 6.30E-03 3.40E-03 2.50E-03 2.10E-03 2.00E-03 8.00E-04 1.40E-03 1.35E-03 1.10E-03 8.00E-04 6.00E-04 9.0 E-04 6.5 E-04 4.6 E-04 4.0 E-04 3.98E-04 4.0 E-04 4.3 E-04 4.4 E-04 4.3 E-04 3.1 E-04 3.3 E-04 3.8 E-04 3.3 E-04 2.5 E-04 1.9 E-04 1.58E-04 9.55E-05 1.71E-04
R(φ = 0)
0.358
0.359
0.359
0.360
0.360
0.360
0.360 0.360
Energy eV 0.08266 0.08551 0.08920 0.09460 0.09840 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4.0 4.1
n 4.0013 4.0015
4.0063 4.0108 4.0246 4.0429 (4.074) (4.104) 4.180 4.275 4.285 4.325 4.385 4.420 4.495 4.560 4.635 4.763 4.897 5.067 5.380 5.588 5.748 5.283 5.062 4.610 4.340 4.180 4.082 4.035 4.037 4.082 4.141 4.157 4.128 4.070 4.020 3.985 3.958 3.936 3.920 3.905 3.869
k
R(φ = 0)
9.78E-05 5.77E-05 3.98E-05 4.59E-05 3.51E-05 3.70E-05
0.360 0.360
6.58E-07 1.27E-04 5.67E-03 7.45E-02 8.09E-02 0.103 0.123 0.167 0.190 0.298 0.345 0.401 0.500 0.540 0.933 1.634 2.049 2.318 2.455 2.384 2.309 2.240 2.181 2.140 2.145 2.215 2.340 2.469 2.579 2.667 2.759 2.863 2.986 3.137 3.336 3.614
0.361 0.361 0.362 0.364 0.367 0.370 0.377 0.385 0.386 0.390 0.395 0.398 0.405 0.411 0.418 0.428 0.439 0.453 0.475 0.495 0.523 0.516 0.519 0.508 0.492 0.480 0.471 0.464 0.461 0.463 0.471 0.482 0.490 0.497 0.502 0.509 0.517 0.527 0.539 0.556 0.579
320
Handbook of Optical Materials Germanium7—continued
Energy eV 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5.0 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 6.0
n 3.745 3.338 2.516 1.953 1.720 1.586 1.498 1.435 1.394 1.370 1.364 1.371 1.383 1.380 1.360 1.293 1.209 1.108 1.30
k
R(φ = 0)
4.009 4.507 4.669 4.297 3.960 3.709 3.509 3.342 3.197 3.073 2.973 2.897 2.854 2.842 2.846 2.163 2.873 2.813 2.34
0.612 0.659 0.705 0.713 0.702 0.690 0.677 0.664 0.650 0.636 0.622 0.609 0.600 0.598 0.602 0.479 0.632 0.641 0.517
Energy eV 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 20.0 22.0 24.0 26.0 28.0 30.0 32.0 34.0 36.0 38.0 40.0
n 1.10 1.00 0.92 0.92 0.92 0.93
k 2.05 1.80 1.60 1.40 1.20 1.14 1.00 0.86 0.237 0.179 0.144 0.110 0.0747 0.1020 0.0999 0.0856 0.0740 0.0651 0.0604
R(φ = 0) 0.489 0.448 0.348 0.282 0.262 0.167
Gold8 Energy eV 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 1.20 1.40 1.60 1.80 2.00 2.10 2.20 2.40 2.50 2.60 2.70 2.80
© 2003 by CRC Press LLC
n 8.17 2.13 0.99 0.59 0.39 0.28 0.22 0.18 0.15 0.13 0.10 0.08 0.08 0.09 0.13 0.18 0.24 0.50 0.82 1.24 1.43 1.46
k 82.83 41.73 27.82 20.83 16.61 13.78 11.75 10.21 9.01 8.03 6.54 5.44 4.56 3.82 3.16 2.84 2.54 1.86 1.59 1.54 1.72 1.77
R(φ = 0)
Energy eV
n
k
R(φ = 0)
0.995 0.995 0.995 0.995 0.994 0.994 0.994 0.993 0.993 0.992 0.991 0.989 0.986 0.979 0.953 0.925 0.880 0.647 0.438 0.331 0.356 0.368
2.90 3.00 3.10 3.20 3.30 3.40 3.50 3.60 3.70 3.80 3.90 4.00 4.10 4.20 4.30 4.40 4.50 4.60 4.70 4.80 4.90 5.00
1.50 1.54 1.54 1.54 1.55 1.56 1.58 1.62 1.64 1.63 1.59 1.55 1.51 1.48 1.45 1.41 1.35 1.30 1.27 1.25 1.23 1.22
1.79 1.80 1.81 1.80 1.78 1.76 1.73 1.73 1.75 1.79 1.81 1.81 1.79 1.78 1.77 1.76 1.74 1.69 1.64 1.59 1.54 1.49
0.368 0.369 0.371 0.368 0.362 0.356 0.349 0.346 0.351 0.360 0.366 0.369 0.368 0.367 0.368 0.370 0.370 0.364 0.354 0.344 0.332 0.319
Section 4: Metals
321
Gold8—continued Energy eV 5.20 5.40 5.60 5.80 6.00 6.20 6.40 6.60 6.80 7.00 7.20 7.40 7.60 7.80 8.00 8.20 8.40 8.60 8.80 9.00 9.20 9.40 9.60 9.80 5.60 5.80 6.00 6.20 6.40 6.60 6.80 7.00 7.20 7.40 7.60 7.80 8.00 8.20 8.40 8.60 8.80 9.00 9.20 9.40 9.60 9.80
© 2003 by CRC Press LLC
n 1.21 1.21 1.21 1.21 1.22 1.24 1.25 1.27 1.30 1.34 1.36 1.38 1.38 1.35 1.31 1.30 1.30 1.31 1.31 1.30 1.31 1.33 1.36 1.37 1.21 1.21 1.22 1.24 1.25 1.27 1.30 1.34 1.36 1.38 1.38 1.35 1.31 1.30 1.30 1.31 1.31 1.30 1.31 1.33 1.36 1.37
k
R(φ = 0)
1.40 1.33 1.27 1.20 1.14 1.09 1.05 1.01 0.97 0.95 0.95 0.96 0.98 0.99 0.96 0.92 0.89 0.88 0.86 0.83 0.81 0.78 0.78 0.79 1.27 1.20 1.14 1.09 1.05 1.01 0.97 0.95 0.95 0.96 0.98 0.99 0.96 0.92 0.89 0.88 0.86 0.83 0.81 0.78 0.78 0.79
0.295 0.275 0.256 0.236 0.218 0.203 0.190 0.177 0.167 0.162 0.161 0.164 0.169 0.171 0.165 0.155 0.147 0.144 0.140 0.133 0.126 0.122 0.121 0.124 0.256 0.236 0.218 0.203 0.190 0.177 0.167 0.162 0.161 0.164 0.169 0.171 0.165 0.155 0.147 0.144 0.140 0.133 0.126 0.122 0.121 0.124
Energy eV 10.00 10.20 10.40 10.60 10.80 11.00 11.20 11.40 11.60 11.80 12.00 12.40 12.80 13.20 13.60 14.00 14.40 14.80 15.20 15.60 16.00 16.40 16.80 17.20 17.60 18.00 18.40 18.80 19.20 19.60 20.00 20.40 20.80 21.20 21.60 22.00 22.40 22.80 23.20 23.60 24.00 24.40 24.80 25.20 25.60 26.00
n
k
R(φ = 0)
1.37 1.36 1.35 1.34 1.34 1.34 1.34 1.35 1.36 1.38 1.39 1.44 1.45 1.42 1.37 1.33 1.29 1.26 1.24 1.22 1.21 1.20 1.19 1.19 1.19 1.19 1.19 1.20 1.21 1.21 1.18 1.14 1.10 1.05 1.00 0.94 0.89 0.85 0.82 0.80 0.80 0.80 0.80 0.82 0.83 0.84
0.80 0.80 0.80 0.79 0.77 0.76 0.74 0.73 0.72 0.71 0.71 0.73 0.79 0.84 0.86 0.86 0.86 0.84 0.83 0.81 0.79 0.78 0.76 0.75 0.74 0.74 0.73 0.74 0.76 0.80 0.83 0.85 0.87 0.88 0.88 0.86 0.83 0.79 0.75 0.70 0.66 0.62 0.58 0.56 0.54 0.52
0.126 0.127 0.125 0.123 0.120 0.116 0.113 0.111 0.109 0.108 0.109 0.115 0.127 0.137 0.140 0.140 0.139 0.135 0.132 0.127 0.123 0.119 0.116 0.114 0.111 0.109 0.109 0.110 0.116 0.125 0.133 0.141 0.149 0.156 0.162 0.164 0.163 0.157 0.149 0.138 0.125 0.113 0.101 0.090 0.084 0.079
322
Handbook of Optical Materials Gold8—continued
Energy eV 26.40 26.80 27.20 27.60 28.00
n 0.85 0.85 0.86 0.86 0.87
k 0.51 0.50 0.49 0.49 0.48
R(φ = 0) 0.074 0.071 0.068 0.065 0.063
Energy eV 28.40 28.80 29.20 29.60 30.00
n 0.88 0.88 0.88 0.87 0.86
k 0.48 0.48 0.48 0.48 0.48
R(φ = 0) 0.062 0.062 0.062 0.064 0.064
Iridium9 Energy eV 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.60 0.70 0.80 0.90 1.00 1.10 1.20 1.30 1.40 1.50 1.60 1.70 1.80 1.90 2.00 2.10 2.20 2.30 2.40 2.50 2.60 2.70 2.80 2.90 3.00 3.20
© 2003 by CRC Press LLC
n 28.49 15.32 9.69 6.86 5.16 4.11 3.42 3.05 2.98 2.79 2.93 3.14 3.19 3.15 3.04 2.96 2.85 2.72 2.65 2.68 2.69 2.64 2.57 2.50 2.40 2.29 2.18 2.07 1.98 1.91 1.85 1.81 1.77 1.73 1.62
k 60.62 45.15 35.34 28.84 24.25 20.79 18.06 15.82 14.06 11.58 9.78 8.61 7.88 7.31 6.84 6.41 6.07 5.74 5.39 5.08 4.92 4.81 4.68 4.57 4.48 4.38 4.26 4.14 4.00 3.86 3.73 3.61 3.51 3.43 3.26
R(φ = 0) 0.975 0.973 0.972 0.969 0.967 0.964 0.960 0.954 0.944 0.925 0.895 0.862 0.840 0.822 0.808 0.791 0.779 0.767 0.750 0.728 0.716 0.710 0.704 0.699 0.697 0.695 0.692 0.689 0.682 0.673 0.665 0.655 0.646 0.640 0.629
Energy eV 3.40 3.60 3.80 4.00 4.20 4.40 4.60 4.80 5.00 5.20 5.40 5.60 5.80 6.00 6.20 6.40 6.60 6.80 7.00 7.20 7.40 7.60 7.80 8.00 8.20 8.40 8.60 8.80 9.00 9.20 9.40 9.60 9.80 10.00 10.20
n 1.53 1.52 1.61 1.64 1.58 1.45 1.31 1.18 1.10 1.04 1.00 0.98 0.96 0.95 0.94 0.94 0.94 0.95 0.97 0.99 1.02 1.03 1.08 1.13 1.18 1.22 1.26 1.29 1.33 1.36 1.39 1.42 1.44 1.45 1.45
k 3.05 2.81 2.69 2.68 2.71 2.68 2.60 2.49 2.35 2.22 2.09 1.98 1.86 1.78 1.68 1.59 1.50 1.42 1.34 1.27 1.20 1.14 1.06 1.03 1.00 0.98 0.96 0.95 0.94 0.95 0.95 0.97 0.99 1.01 1.04
R(φ = 0) 0.610 0.573 0.541 0.535 0.549 0.561 0.567 0.570 0.559 0.543 0.522 0.499 0.474 0.454 0.427 0.401 0.375 0.345 0.318 0.290 0.262 0.241 0.208 0.191 0.179 0.171 0.164 0.160 0.157 0.159 0.161 0.163 0.169 0.175 0.182
Section 4: Metals
323
Iridium9—continued Energy eV
n
k
R(φ = 0)
10.40 10.60 10.80 11.00 11.20 11.40 11.60 11.80 12.00 12.40 12.80 13.20 13.60 14.00 14.40 14.80 15.20 15.60 16.00 16.40 16.80 17.20 17.60 18.00 18.40 18.80 19.20
1.44 1.43 1.41 1.38 1.34 1.31 1.28 1.25 1.24 1.21 1.19 1.18 1.17 1.16 1.17 1.18 1.19 1.20 1.21 1.23 1.25 1.28 1.30 1.30 1.27 1.24 1.20
1.07 1.09 1.12 1.13 1.14 1.13 1.12 1.10 1.08 1.05 1.01 0.98 0.95 0.91 0.88 0.87 0.84 0.83 0.83 0.82 0.82 0.83 0.87 0.93 0.97 1.00 1.03
0.187 0.193 0.200 0.206 0.208 0.208 0.206 0.203 0.199 0.191 0.181 0.173 0.165 0.155 0.147 0.142 0.136 0.133 0.131 0.129 0.127 0.131 0.140 0.154 0.166 0.176 0.187
Energy eV 19.60 20.00 20.50 21.00 21.50 22.00 22.50 23.00 23.50 24.00 24.50 25.00 25.50 26.00 26.50 27.00 27.50 28.00 28.50 29.00 29.50 30.00 32.00 34.00 36.00 38.00 40.00
n 1.15 1.10 1.04 0.99 0.94 0.89 0.84 0.79 0.76 0.73 0.70 0.69 0.68 0.67 0.67 0.66 0.66 0.66 0.66 0.65 0.64 0.64 0.62 0.64 0.69 0.73 0.76
k 1.05 1.06 1.05 1.04 1.02 1.00 0.99 0.96 0.92 0.87 0.83 0.79 0.76 0.72 0.69 0.66 0.63 0.61 0.59 0.57 0.55 0.53 0.44 0.35 0.27 0.24 0.22
R(φ = 0) 0.197 0.205 0.210 0.215 0.220 0.222 0.228 0.232 0.228 0.223 0.218 0.209 0.200 0.192 0.181 0.174 0.166 0.158 0.151 0.148 0.145 0.140 0.119 0.091 0.059 0.044 0.034
Iron10 Energy eV
n
k
R(φ = 0)
Energy eV
n
k
R(φ = 0)
0.10 0.15 0.20 0.26 0.30 0.36 0.40 0.50 0.60 0.70 0.80 0.90 1.00 1.10
6.41 6.26 3.68 4.98 4.87 4.68 4.42 4.14 3.93 3.78 3.65 3.52 3.43 3.33
33.07 22.82 18.23 13.68 12.05 10.44 9.75 8.02 6.95 6.17 5.60 5.16 4.79 4.52
0.978 0.956 0.958 0.911 0.892 0.867 0.858 0.817 0.783 0.752 0.725 0.700 0.678 0.660
1.20 1.30 1.40 1.50 1.60 1.70 1.80 1.90 2.00 2.10 2.20 2.30 2.40 2.50
3.24 3.16 3.12 3.05 3.00 2.98 2.92 2.89 2.85 2.80 2.74 2.65 2.56 2.46
4.26 4.07 3.87 3.77 3.60 3.52 3.46 3.37 3.36 3.34 3.33 3.34 3.31 3.31
0.641 0.626 0.609 0.601 0.585 0.577 0.573 0.563 0.563 0.562 0.563 0.567 0.567 0.570
© 2003 by CRC Press LLC
324
Handbook of Optical Materials Iron10—continued
Energy eV
n
k
R(φ = 0)
2.60 2.70 2.80 2.90 3.00 3.10 3.20 3.30 3.40 3.50 3.60 3.70 3.83 4.00 4.17 4.33 4.50 4.67 4.83 5.00 5.17 5.33 5.50 5.67 5.83 6.00 6.17 6.33 6.50 6.67 6.83 7.00 7.17 7.33 7.50 7.67 7.83 8.00 8.17 8.33 8.50 8.67 8.83 9.00 9.17 9.33
2.34 2.23 2.12 2.01 1.88 1.78 1.70 1.62 1.55 1.50 1.47 1.43 1.38 1.30 1.26 1.23 1.20 1.16 1.14 1.14 1.12 1.11 1.09 1.09 1.10 1.09 1.08 1.04 1.02 1.00 0.97 0.96 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.92 0.93 0.92 0.91
3.30 3.25 3.23 3.17 3.12 3.04 2.96 2.87 2.79 2.70 2.63 2.56 2.49 2.39 2.27 2.18 2.10 2.02 1.93 1.87 1.81 1.75 1.17 1.65 1.61 1.59 1.57 1.55 1.51 1.47 1.43 1.39 1.35 1.30 1.26 1.23 1.21 1.18 1.16 1.14 1.12 1.10 1.08 1.07 1.06 1.04
0.576 0.575 0.580 0.580 0.583 0.580 0.576 0.572 0.565 0.556 0.548 0.542 0.534 0.527 0.510 0.494 0.482 0.470 0.451 0.435 0.425 0.408 0.401 0.383 0.373 0.366 0.365 0.365 0.358 0.351 0.346 0.333 0.327 0.311 0.298 0.288 0.279 0.272 0.265 0.258 0.251 0.246 0.240 0.236 0.233 0.231
© 2003 by CRC Press LLC
Energy eV 9.50 9.67 9.83 10.00 10.17 10.33 10.50 10.67 10.83 11.00 11.17 11.33 11.50 11.67 11.83 12.00 12.17 12.33 12.50 12.67 12.83 13.00 13.17 13.33 13.50 13.67 13.83 14.00 14.17 14.33 14.50 14.67 14.83 15.00 15.17 15.33 15.50 15.67 15.83 16.00 16.17 16.33 16.50 16.67 16.83 17.00
n 0.90 0.90 0.89 0.88 0.87 0.87 0.87 0.88 0.89 0.91 0.92 0.93 0.93 0.93 0.92 0.91 0.90 0.89 0.98 0.87 0.86 0.85 0.84 0.84 0.83 0.82 0.81 0.81 0.80 0.80 0.79 0.79 0.78 0.78 0.78 0.78 0.77 0.77 0.77 0.77 0.78 0.78 0.78 0.77 0.78 0.78
k 1.02 1.00 0.99 0.97 0.94 0.91 0.89 0.87 0.85 0.83 0.83 0.84 0.84 0.84 0.84 0.84 0.84 0.83 0.83 0.82 0.81 0.80 0.79 0.78 0.77 0.76 0.75 0.73 0.72 0.71 0.79 0.69 0.67 0.66 0.65 0.64 0.63 0.62 0.61 0.60 0.58 0.58 0.57 0.56 0.55 0.55
R(φ = 0) 0.226 0.221 0.218 0.213 0.203 0.196 0.189 0.179 0.170 0.162 0.159 0.159 0.160 0.162 0.163 0.163 0.165 0.164 0.165 0.166 0.166 0.162 0.161 0.160 0.159 0.157 0.154 0.151 0.149 0.146 0.144 0.141 0.138 0.135 0.131 0.238 0.126 0.123 0.119 0.116 0.112 0.110 0.107 0.106 0.103 0.102
Section 4: Metals
325
Iron10—continued Energy eV
n
k
R(φ = 0)
17.17 17.33 17.50 17.67 17.83 18.00 18.17 18.33 18.50 18.67 18.83 19.00 19.17 19.33 19.50 19.67 19.83 20.00 20.17 20.33 20.50 20.67 20.83 21.00 21.17 21.33 21.50
0.78 0.78 0.77 0.77 0.78 0.78 0.78 0.78 0.77 0.77 0.77 0.77 0.76 0.76 0.75 0.75 0.75 0.74 0.74 0.74 0.74 0.73 0.73 0.73 0.72 0.72 0.72
0.54 0.54 0.53 0.52 0.51 0.51 0.51 0.50 0.50 0.50 0.49 0.49 0.49 0.48 0.47 0.47 0.46 0.45 0.44 0.44 0.42 0.43 0.42 0.41 0.40 0.39 0.38
0.100 0.098 0.097 0.095 0.092 0.091 0.090 0.089 0.089 0.088 0.087 0.087 0.088 0.087 0.086 0.085 0.084 0.083 0.081 0.081 0.080 0.079 0.078 0.077 0.076 0.074 0.073
Energy eV 21.67 21.83 22.00 22.17 22.33 22.50 22.67 22.83 23.00 23.17 23.33 23.50 23.67 23.83 24.00 24.17 24.33 24.50 24.67 24.83 25.00 26.00 27.00 28.00 29.00 30.00
n 0.72 0.72 0.72 0.71 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.73 0.73 0.74 0.74 0.74 0.74 0.74 0.75 0.75 0.75 0.76 0.78 0.79 0.81 0.82
k 0.38 0.37 0.36 0.35 0.34 0.34 0.33 0.32 0.31 0.30 0.29 0.28 0.28 0.27 0.27 0.26 0.26 0.25 0.25 0.24 0.24 0.21 0.18 0.16 0.14 0.13
R(φ = 0) 0.071 0.070 0.068 0.067 0.064 0.063 0.062 0.059 0.058 0.056 0.054 0.050 0.049 0.047 0.045 0.044 0.043 0.042 0.040 0.039 0.038 0.031 0.026 0.021 0.017 0.014
Magnesium11 (evaporated) Energy eV
n
k
2.145 2.270 2.522 2.845 3.064 5.167
0.48 0.57 0.53 0.52 0.52 0.10
3.71 3.47 2.92 2.65 2.05 1.60
© 2003 by CRC Press LLC
R(φ = 0)
Energy eV
0.880 0.843 0.805 0.777 0.681 0.894
5.636 6.200 6.889 7.750 8.857 10.335
n 0.15 0.20 0.25 0.20 0.15 0.25
k 1.50 1.40 1.30 1.20 0.95 0.40
R(φ = 0) 0.832 0.765 0.693 0.722 0.730 0.419
326
Handbook of Optical Materials Molybdenum12
Energy eV
n
k
0.10 0.15 0.20 0.25 0.30 0.34 0.38 0.42 0.46 0.50 0.54 0.58 0.62 0.66 0.70 0.74 0.78 0.82 0.86 9.90 1.00 1.10 1.20 1.30 1.40 1.50 1.60 1.70 1.80 1.90 2.00 2.10 2.20 2.30 2.40 2.50 2.60 2.70 2.80 2.90 3.00 3.10 3.20 3.30 3.40
18.53 8.78 5.10 3.36 2.44 2.00 1.70 1.57 1.46 1.37 1.35 1.34 1.38 1.43 1.48 1.51 1.60 1.64 1.70 1.74 1.94 2.15 2.44 2.77 3.15 3.53 3.77 3.84 3.81 3.74 3.68 3.68 3.76 3.79 3.59 3.36 3.22 3.13 3.08 3.05 3.04 3.03 3.05 3.06 3.06
68.51 47.54 35.99 28.75 23.80 20.84 18.44 16.50 14.91 13.55 12.36 11.34 10.44 9.67 8.99 8.38 7.83 7.35 6.89 6.48 5.58 4.85 4.22 3.74 3.40 3.30 3.41 3.51 3.58 3.58 3.52 3.45 3.41 3.61 3.78 3.73 3.61 3.51 3.42 3.33 3.27 3.21 3.18 3.18 3.19
© 2003 by CRC Press LLC
R(φ = 0) 0.985 0.985 0.985 0.984 0.983 0.982 0.980 0.978 0.975 0.971 0.966 0.960 0.952 0.942 0.932 0.921 0.906 0.892 0.876 0.859 0.805 0.743 0.671 0.608 0.562 0.550 0.562 0.570 0.576 0.576 0.571 0.565 0.562 0.578 0.594 0.591 0.582 0.573 0.565 0.566 0.550 0.544 0.540 0.540 0.541
Energy eV 3.50 3.60 3.70 3.80 3.90 4.00 4.20 4.40 4.60 4.80 5.00 5.20 5.40 5.60 5.80 6.00 6.20 6.40 6.60 6.80 7.00 7.20 7.40 7.60 7.80 8.00 8.20 8.40 8.60 8.80 9.00 9.20 9.40 9.60 9.80 10.00 10.20 10.40 10.60 10.80 11.00 11.20 11.40 11.60 11.80
n 3.06 3.05 3.04 3.04 3.04 3.01 2.77 2.39 2.06 1.75 1.46 1.22 1.07 0.96 0.89 0.85 0.81 0.79 0.78 0.78 0.80 0.81 0.81 0.75 0.71 0.69 0.67 0.66 0.65 0.65 0.65 0.67 0.69 0.71 0.74 0.77 0.81 0.86 0.91 0.98 1.05 1.12 1.18 1.23 1.25
k 3.21 3.23 3.27 3.31 3.40 3.51 3.77 3.88 3.84 3.76 3.62 3.42 3.20 2.99 2.80 2.64 2.50 2.36 2.24 2.13 2.04 1.98 1.95 1.90 1.81 1.73 1.65 1.57 1.49 1.41 1.33 1.25 1.19 1.12 1.05 0.99 0.93 0.88 0.83 0.79 0.77 0.78 0.80 0.85 0.89
R(φ = 0) 0.543 0.546 0.550 0.554 0.564 0.576 0.610 0.640 0.658 0.678 0.695 0.706 0.706 0.700 0.688 0.674 0.660 0.641 0.619 0.592 0.568 0.548 0.542 0.552 0.542 0.530 0.512 0.495 0.475 0.450 0.420 0.385 0.355 0.320 0.285 0.250 0.217 0.188 0.162 0.138 0.125 0.123 0.125 0.135 0.145
Section 4: Metals
327
Molybdenum12—continued Energy eV
n
k
12.00 12.40 12.80 13.20 13.60 14.00 14.40 14.80 15.00 15.60 16.00 16.60 17.00 17.60 18.00 18.60 19.00 19.60 20.00 20.60 21.00 21.60 22.00 22.60 23.00
1.26 1.25 1.23 1.20 1.17 1.15 1.13 1.13 1.14 1.15 1.14 1.10 1.04 0.94 0.87 0.77 0.71 0.66 0.64 0.62 0.61 0.61 0.60 0.59 0.58
0.92 0.98 1.00 1.02 1.02 1.01 1.00 0.99 0.99 1.01 1.04 1.10 1.12 1.14 1.12 1.08 1.02 0.94 0.89 0.81 0.77 0.71 0.69 0.63 0.60
Energy eV
R(φ = 0) 0.154 0.168 0.178 0.185 0.187 0.185 0.182 0.179 0.179 0.184 0.194 0.216 0.233 0.257 0.270 0.283 0.284 0.275 0.264 0.245 0.234 0.215 0.207 0.195 0.185
23.60 24.00 24.60 25.00 25.60 26.00 26.50 27.00 27.50 28.00 28.50 29.00 29.50 30.00 31.00 32.00 33.00 34.00 35.00 36.00 37.00 38.00 39.00 40.00
n 0.58 0.58 0.60 0.62 0.66 0.68 0.71 0.73 0.76 0.79 0.81 0.83 0.86 0.88 0.92 0.92 0.90 0.91 0.87 0.82 0.81 0.81 0.82 0.83
k 0.53 0.49 0.43 0.39 0.35 0.33 0.31 0.29 0.28 0.27 0.26 0.26 0.26 0.26 0.29 0.32 0.33 0.34 0.37 0.34 0.30 0.27 0.25 0.23
R(φ = 0) 0.166 0.151 0.124 0.106 0.085 0.072 0.060 0.050 0.041 0.036 0.031 0.028 0.025 0.023 0.024 0.030 0.032 0.034 0.043 0.043 0.038 0.033 0.029 0.025
Nickel13 Energy eV
n
k
R(φ = 0)
0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.50 0.60 0.70 0.80 0.90 1.00 1.10
9.54 5.45 4.12 4.25 4.19 4.03 3.84 4.03 3.84 3.59 3.38 3.18 3.06 2.97
45.82 30.56 22.48 17.68 15.05 13.05 11.43 9.64 8.35 7.48 6.82 6.23 5.74 5.38
0.983 0.978 0.969 0.950 0.934 0.918 0.900 0.864 0.835 0.813 0.794 0.774 0.753 0.734
© 2003 by CRC Press LLC
Energy eV 1.20 1.30 1.40 1.50 1.60 1.70 1.80 1.90 2.00 2.10 2.20 2.30 2.40 2.50
n 2.85 2.74 2.65 2.53 2.43 2.28 2.14 2.02 1.92 1.85 1.80 1.75 1.71 1.67
k 5.10 4.85 4.63 4.47 4.31 4.18 4.01 3.82 3.65 3.48 3.33 3.19 3.06 2.93
R(φ = 0) 0.721 0.708 0.695 0.688 0.679 0.677 0.670 0.659 0.649 0.634 0.620 0.605 0.590 0.575
328
Handbook of Optical Materials Nickel13—continued
Energy eV 2.60 2.70 2.80 2.90 3.00 3.10 3.20 3.30 3.40 3.50 3.60 3.70 3.80 3.90 4.00 4.20 4.40 4.60 4.80 5.00 5.20 5.40 5.60 5.80 6.20 6.40 6.60 6.80 7.00 7.20 7.40 7.60 7.80 8.00 8.20 8.40 8.60 8.80 9.00 9.20 9.40 9.60 9.80 10.00 10.20
© 2003 by CRC Press LLC
n
k
R(φ = 0)
Energy eV
n
1.65 1.64 1.63 1.62 1.61 1.61 1.61 1.61 1.62 1.63 1.64 1.66 1.69 1.72 1.73 1.74 1.71 1.63 1.53 1.40 1.27 1.16 1.09 1.04 1.00 1.01 1.01 1.02 1.03 1.03 1.03 1.02 1.01 1.01 1.00 0.99 0.98 0.97 0.97 0.96 0.95 0.95 0.95 0.95 0.95
2.81 2.71 2.61 2.52 2.44 2.36 2.30 2.23 2.17 2.11 2.07 2.02 1.99 1.98 1.98 2.01 2.06 2.09 2.11 2.10 2.04 1.94 1.83 1.73 1.54 1.46 1.40 1.35 1.30 1.27 1.24 1.22 1.18 1.15 1.13 1.11 1.08 1.05 1.01 0.99 0.96 0.93 0.89 0.87 0.83
0.557 0.542 0.525 0.509 0.495 0.480 0.467 0.454 0.441 0.428 0.416 0.405 0.397 0.393 0.392 0.396 0.409 0.421 0.435 0.449 0.454 0.449 0.435 0.417 0.371 0.345 0.325 0.308 0.291 0.282 0.273 0.265 0.256 0.248 0.242 0.235 0.228 0.220 0.211 0.203 0.194 0.185 0.175 0.166 0.155
10.40 10.60 10.80 11.00 11.25 11.50 11.75 12.00 12.25 12.50 12.75 13.00 13.25 13.50 13.75 14.00 14.25 14.50 14.75 15.00 15.25 15.50 15.75 16.00 16.50 17.00 17.50 18.00 18.50 19.00 19.50 20.00 20.50 21.00 21.50 22.00 22.50 23.00 23.50 24.00 24.50 25.00 26.00 27.00 28.00
0.95 0.97 0.99 1.01 1.04 1.05 1.07 1.07 1.07 1.08 1.08 1.08 1.08 1.07 1.07 1.07 1.06 1.05 1.04 1.03 1.02 1.01 1.00 0.99 0.98 0.96 0.94 0.92 0.91 0.90 0.90 0.89 0.89 0.90 0.91 0.91 0.91 0.92 0.91 0.90 0.90 0.89 0.88 0.87 0.87
k 0.80 0.76 0.75 0.73 0.72 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.70 0.70 0.71 0.70 0.70 0.70 0.70 0.69 0.69 0.68 0.67 0.66 0.64 0.63 0.61 0.58 0.56 0.54 0.51 0.49 0.47 0.46 0.45 0.44 0.44 0.44 0.43 0.43 0.42 0.39 0.37 0.35
R(φ = 0) 0.145 0.129 0.123 0.115 0.111 0.109 0.108 0.108 0.107 0.106 0.106 0.105 0.105 0.105 0.105 0.106 0.106 0.106 0.107 0.107 0.106 0.105 0.104 0.103 0.101 0.098 0.096 0.092 0.087 0.082 0.077 0.071 0.066 0.061 0.057 0.055 0.053 0.051 0.052 0.051 0.051 0.050 0.046 0.042 0.040
Section 4: Metals
329
Nickel13—continued Energy eV
n
k
29.00 30.00 35.00 40.00 45.00 50.00 60.00
0.86 0.86 0.86 0.87 0.88 0.92 0.96
0.34 0.32 0.24 0.18 0.13 0.10 0.08
R(φ = 0) 0.037 0.034 0.022 0.014 0.008 0.004 0.002
Energy eV
n
k
0.98 0.96 0.94 0.94 0.94 0.94
0.09 0.12 0.11 0.09 0.07 0.06
Energy eV
n
k
3.00 3.10 3.20 3.30 3.40 3.50 3.60 3.70 3.80 3.90 4.00 4.20 4.40 4.60 4.80 5.00 5.20 5.40 5.60 5.80 6.00 6.20 6.40 6.60 6.80 7.00 7.20 7.40 7.60 7.80
2.51 2.48 2.45 2.44 2.46 2.48 2.52 2.56 2.59 2.62 2.64 2.64 2.53 2.39 2.32 2.26 2.16 2.00 1.81 1.63 1.49 1.38 1.31 1.26 1.24 1.23 1.22 1.20 1.14 1.07
65.00 68.00 70.00 75.00 80.00 90.00
R(φ = 0) 0.002 0.004 0.004 0.003 0.002 0.002
Niobium14 Energy eV 0.12 0.20 0.24 0.28 0.35 0.45 0.55 0.65 0.75 0.85 0.95 1.05 1.15 1.25 1.35 1.45 1.55 1.65 1.75 1.85 1.95 2.05 2.15 2.25 2.35 2.45 2.55 2.65 2.75 2.85
© 2003 by CRC Press LLC
n 15.99 7.25 5.47 4.26 3.11 2.28 1.83 1.57 1.41 1.35 1.35 1.44 1.55 1.65 1.76 1.95 2.15 2.36 2.54 2.69 2.82 2.89 2.92 2.93 2.92 2.89 2.83 2.74 2.66 2.58
k 53.20 34.14 28.88 24.95 20.03 15.58 12.67 10.59 9.00 7.74 6.70 5.86 5.18 4.63 4.13 3.68 3.37 3.13 2.99 2.89 2.86 2.87 2.87 2.87 2.88 2.90 2.92 2.90 2.86 2.80
R(φ = 0) 0.979 0.976 0.975 0.974 0.970 0.964 0.956 0.947 0.935 0.918 0.893 0.857 0.814 0.768 0.715 0.650 0.595 0.552 0.527 0.510 0.505 0.505 0.505 0.505 0.506 0.509 0.512 0.511 0.507 0.500
2.68 2.60 2.53 2.45 2.38 2.33 2.29 2.27 2.28 2.29 2.33 2.42 2.56 2.56 2.52 2.57 2.62 2.68 2.67 2.60 2.49 2.38 2.25 2.14 2.04 1.96 1.91 1.88 1.85 1.78
R(φ = 0) 0.485 0.475 0.465 0.453 0.442 0.435 0.428 0.426 0.427 0.429 0.434 0.447 0.467 0.470 0.465 0.475 0.487 0.505 0.518 0.522 0.520 0.512 0.496 0.480 0.460 0.441 0.430 0.427 0.430 0.428
330
Handbook of Optical Materials Niobium14—continued
Energy eV 8.00 8.20 8.40 8.60 8.70 8.80 9.00 9.20 9.40 9.60 9.80 10.00 10.20 10.40 10.60 10.80 11.00 11.20 11.40 11.60 11.80 12.00 12.40 12.80 13.20 13.60 14.00 14.40 14.80 15.00 15.60 16.00 16.60 17.00 17.20 17.40
© 2003 by CRC Press LLC
n
k
1.02 1.00 0.99 0.99 0.99 1.00 1.01 1.04 1.07 1.10 1.13 1.18 1.23 1.27 1.30 1.32 1.32 1.31 1.30 1.28 1.27 1.25 1.24 1.24 1.24 1.23 1.20 1.16 1.11 1.08 0.99 0.92 0.85 0.80 0.79 0.77
1.69 1.60 1.51 1.43 1.39 1.36 1.29 1.22 1.18 1.13 1.09 1.05 1.04 1.04 1.06 1.08 1.10 1.12 1.13 1.13 1.13 1.12 1.10 1.09 1.09 1.12 1.13 1.15 1.16 1.16 1.14 1.11 1.04 0.99 0.96 0.93
R(φ = 0) 0.412 0.390 0.365 0.340 0.328 0.315 0.290 0.265 0.245 0.227 0.209 0.194 0.187 0.185 0.190 0.195 0.200 0.204 0.207 0.209 0.210 0.209 0.204 0.200 0.201 0.208 0.216 0.225 0.234 0.238 0.247 0.250 0.245 0.240 0.236 0.230
Energy eV 17.80 18.00 18.60 19.00 19.60 20.00 20.60 21.00 21.60 22.00 22.60 23.00 23.60 24.00 24.60 25.00 25.60 26.00 26.60 27.00 27.60 28.00 28.60 29.00 29.60 30.00 31.00 32.00 33.00 34.00 35.20 36.00 37.50 39.50 40.50
n 0.75 0.74 0.73 0.72 0.72 0.72 0.71 0.72 0.75 0.78 0.82 0.85 0.88 0.91 0.94 0.96 0.99 1.00 1.03 1.04 1.06 1.08 1.11 1.13 1.16 1.18 1.18 1.20 1.21 1.20 1.17 1.15 1.07 0.95 0.92
k 0.87 0.85 0.77 0.72 0.66 0.62 0.55 0.50 0.43 0.40 0.35 0.33 0.30 0.29 0.28 0.27 0.26 0.26 0.25 0.25 0.25 0.24 0.24 0.25 0.26 0.28 0.31 0.34 0.38 0.42 0.47 0.50 0.53 0.50 0.47
R(φ = 0) 0.217 0.209 0.185 0.170 0.150 0.137 0.119 0.100 0.075 0.063 0.045 0.038 0.029 0.025 0.022 0.020 0.018 0.017 0.016 0.015 0.015 0.015 0.016 0.017 0.020 0.023 0.026 0.031 0.038 0.044 0.051 0.056 0.064 0.063 0.059
Section 4: Metals Osmium (polycrystalline)15 Energy eV
n
0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00 1.10 1.20 1.30 1.40 1.50 1.60 1.70 1.80 1.90 2.00 2.10 2.20 2.30 2.40 2.50 2.60 2.70 2.80 2.90 3.00 3.20 3.40 3.60 3.80 4.00 4.20
4.08 2.90 2.44 2.35 2.23 2.33 2.45 2.43 2.41 2.33 2.21 2.11 2.02 2.00 2.00 2.01 2.03 2.05 2.09 2.15 2.16 2.25 2.49 2.84 3.36 3.70 3.78 3.81 3.98 4.26 4.58 4.84 5.10 5.28 5.36 5.30 5.07 4.65 4.05 3.29 2.93 2.75 2.73 2.71 2.53
© 2003 by CRC Press LLC
k 50.23 33.60 25.11 19.99 16.54 14.06 12.32 11.02 9.97 9.12 8.37 7.68 7.04 6.46 5.95 5.51 5.10 4.74 4.41 3.84 3.35 2.77 2.23 1.80 1.62 1.75 1.83 1.75 1.60 1.54 1.62 1.76 2.01 2.38 2.82 3.29 3.78 4.18 4.40 3.96 3.79 3.45 3.32 3.34 3.44
R(φ = 0) 0.994 0.990 0.985 0.977 0.969 0.955 0.940 0.927 0.913 0.901 0.890 0.877 0.862 0.842 0.820 0.796 0.769 0.742 0.712 0.651 0.592 0.506 0.419 0.369 0.379 0.411 0.423 0.418 0.418 0.432 0.457 0.479 0.506 0.532 0.557 0.580 0.603 0.624 0.639 0.614 0.607 0.577 0.562 0.565 0.584
Energy eV 4.40 4.60 4.80 5.00 5.20 5.40 5.60 5.80 6.00 6.20 6.40 6.60 6.80 7.00 7.20 7.40 7.60 7.80 8.00 8.20 8.40 8.60 8.80 9.00 9.20 9.40 9.60 9.80 10.00 10.20 10.30 10.40 10.50 10.60 10.80 11.00 11.20 11.40 11.60 11.80 12.00 12.40 12.80 13.20 13.60
n 2.24 2.01 1.88 1.74 1.58 1.46 1.36 1.27 1.20 1.13 1.06 1.01 0.97 0.95 0.92 0.91 0.90 0.90 0.91 0.91 0.94 0.96 0.98 1.01 1.04 1.08 1.10 1.13 1.16 1.19 1.20 1.22 1.23 1.24 1.25 1.24 1.23 1.19 1.17 1.16 1.15 1.14 1.15 1.16 1.17
k 3.44 3.31 3.19 3.12 3.00 2.88 2.77 2.65 2.54 2.44 2.33 2.21 2.11 2.00 1.91 1.81 1.72 1.63 1.55 1.48 1.40 1.34 1.29 1.24 1.19 1.16 1.14 1.11 1.10 1.08 1.08 1.08 1.09 1.10 1.11 1.13 1.14 1.15 1.12 1.10 1.08 1.03 1.01 0.98 0.97
R(φ = 0) 0.599 0.598 0.592 0.596 0.597 0.593 0.589 0.582 0.575 0.571 0.562 0.548 0.532 0.514 0.497 0.476 0.451 0.426 0.400 0.375 0.344 0.319 0.296 0.274 0.255 0.238 0.229 0.217 0.209 0.203 0.201 0.200 0.201 0.203 0.206 0.213 0.217 0.223 0.216 0.211 0.205 0.191 0.183 0.174 0.170
331
332
Handbook of Optical Materials Osmium (polycrystalline)15—continued
Energy eV 14.00 14.40 14.80 15.20 15.60 16.00 16.40 16.80 17.20 17.60 18.00 18.40 18.80 19.20 19.60 20.00 20.40 20.80 21.20 21.60 22.00 22.40 22.80 23.20 23.60
n 1.17 1.16 1.16 1.17 1.20 1.25 1.28 1.28 1.27 1.26 1.23 1.19 1.14 1.10 1.05 0.96 0.93 0.89 0.86 0.83 0.80 0.78 0.77 0.75 0.75
k
R(φ = 0)
0.96 0.94 0.91 0.89 0.86 0.87 0.90 0.94 0.97 1.01 1.04 1.08 1.10 1.10 1.11 1.10 1.09 1.05 1.02 0.99 0.96 0.93 0.90 0.88 0.86
0.169 0.165 0.156 0.148 0.140 0.140 0.147 0.157 0.167 0.178 0.189 0.200 0.210 0.219 0.227 0.239 0.240 0.240 0.237 0.235 0.230 0.226 0.220 0.217 0.211
Energy eV 24.00 24.40 24.80 25.20 25.60 26.00 26.40 26.80 27.20 28.00 28.40 28.80 29.20 29.60 30.00 31.00 32.00 33.00 34.00 35.00 36.00 37.00 38.00 39.00 40.00
n 0.73 0.72 0.70 0.69 0.67 0.66 0.65 0.63 0.65 0.64 0.64 0.65 0.65 0.65 0.65 0.65 0.66 0.68 0.70 0.72 0.74 0.77 0.79 0.81 0.84
k 0.84 0.82 0.80 0.77 0.75 0.72 0.69 0.66 0.62 0.59 0.57 0.55 0.53 0.51 0.49 0.45 0.41 0.37 0.34 0.31 0.29 0.27 0.26 0.26 0.26
R(φ = 0) 0.209 0.207 0.205 0.202 0.199 0.195 0.189 0.183 0.165 0.156 0.148 0.140 0.134 0.128 0.121 0.111 0.095 0.079 0.068 0.057 0.048 0.040 0.035 0.031 0.026
Palladium15 Energy eV
n
k
0.10 0.15 0.20 0.26 0.30 0.36 0.40 0.46 0.50 0.56 0.60 0.72 0.80 1.00 1.10
4.13 3.13 3.07 3.11 3.56 3.98 4.27 4.27 4.10 3.92 3.80 3.51 3.35 2.99 2.81
54.15 35.82 26.59 20.15 17.27 14.41 13.27 12.11 11.44 10.49 9.96 8.70 8.06 6.89 6.46
© 2003 by CRC Press LLC
R(φ = 0) 0.994 0.990 0.983 0.971 0.955 0.932 0.916 0.902 0.896 0.883 0.876 0.854 0.840 0.811 0.800
Energy eV 1.20 1.30 1.40 1.50 1.60 1.70 1.80 1.90 2.00 2.10 2.20 2.30 2.40 2.50 2.60
n
k
R(φ = 0)
2.65 2.50 2.34 2.17 2.08 2.00 1.92 1.82 1.75 1.67 1.60 1.53 1.47 1.41 1.37
6.10 5.78 5.50 5.22 4.95 4.72 4.54 4.35 4.18 4.03 3.88 3.75 3.61 3.48 3.36
0.790 0.781 0.774 0.767 0.755 0.745 0.737 0.729 0.721 0.714 0.707 0.700 0.693 0.685 0.676
Section 4: Metals Palladium15—continued Energy eV
n
2.70 2.80 2.90 3.00 3.10 3.20 3.30 3.40 3.50 3.60 3.70 3.80 3.90 4.00 4.20 4.40 4.60 4.80 5.00 5.20 5.40 5.60 5.80 6.00 6.20 6.40 6.60 6.80 7.00 7.20 7.40 7.60 7.80 8.00 8.20 8.40 8.60
1.32 1.29 1.26 1.23 1.20 1.17 1.14 1.12 1.10 1.08 1.07 1.06 1.05 1.03 1.04 1.03 1.03 1.01 0.96 0.90 0.85 0.81 0.78 0.76 0.74 0.73 0.72 0.73 0.73 0.75 0.77 0.79 0.83 0.88 0.94 0.96 1.00
© 2003 by CRC Press LLC
k
R(φ = 0)
3.25 3.13 3.03 2.94 2.85 2.77 2.68 2.60 2.52 2.45 2.38 2.31 2.25 2.19 2.09 2.01 1.94 1.90 1.86 1.79 1.70 1.62 1.54 1.45 1.37 1.29 1.21 1.13 1.05 0.98 0.91 0.85 0.78 0.73 0.70 0.70 0.65
0.668 0.658 0.648 0.639 0.630 0.622 0.613 0.602 0.591 0.581 0.570 0.558 0.547 0.537 0.510 0.493 0.476 0.470 0.472 0.474 0.463 0.449 0.437 0.418 0.397 0.375 0.350 0.316 0.287 0.255 0.223 0.195 0.163 0.133 0.117 0.114 0.097
Energy eV 8.80 9.00 9.50 10.00 10.50 11.00 11.50 12.00 12.50 13.00 13.50 14.00 14.50 15.00 15.50 16.00 16.50 17.00 17.50 18.00 18.50 19.00 19.50 20.00 20.50 21.00 21.50 22.00 22.50 23.00 23.50 24.00 25.00 26.40 27.80 29.20
n 1.04 1.07 1.12 1.14 1.16 1.18 1.19 1.20 1.19 1.18 1.18 1.17 1.15 1.13 1.10 1.08 1.06 1.07 1.06 1.07 1.07 1.08 1.08 1.07 1.03 0.99 0.95 0.91 0.88 0.86 0.85 0.84 0.81 0.80 0.81 0.82
k 0.65 0.64 0.65 0.65 0.65 0.64 0.65 0.66 0.67 0.67 0.67 0.67 0.68 0.69 0.68 0.66 0.63 0.61 0.61 0.59 0.59 0.59 0.61 0.65 0.67 0.67 0.66 0.64 0.62 0.59 0.56 0.54 0.51 0.43 0.38 0.35
R(φ = 0) 0.094 0.090 0.089 0.088 0.087 0.086 0.087 0.089 0.091 0.091 0.092 0.093 0.095 0.098 0.096 0.092 0.086 0.081 0.080 0.077 0.077 0.077 0.080 0.090 0.098 0.103 0.103 0.103 0.101 0.097 0.091 0.086 0.084 0.066 0.052 0.046
333
334
Handbook of Optical Materials Platinum16
Energy eV
n
0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00 1.10 1.20 1.30 1.40 1.50 1.60 1.70 1.80 1.90 2.00 2.10 2.20 2.30 2.40 2.50 2.60 2.70 2.80 2.90 3.00 3.20 3.40 3.60 3.80 4.00 4.20
13.21 8.18 5.90 4.70 3.92 3.28 2.81 3.03 3.91 4.58 5.13 5.52 5.71 5.57 5.31 5.05 4.77 4.50 4.25 3.86 3.55 3.29 3.10 2.92 2.76 2.63 2.51 2.38 2.30 2.23 2.17 2.10 2.03 1.96 1.91 1.87 1.83 1.79 1.75 1.68 1.63 1.58 1.53 1.49 1.45
© 2003 by CRC Press LLC
k 44.72 31.16 23.95 19.40 16.16 13.66 11.38 9.31 7.71 7.14 6.75 6.66 6.83 7.02 7.04 6.98 6.91 6.77 6.62 6.24 5.92 5.61 5.32 5.07 4.84 4.64 4.43 4.26 4.07 3.92 3.77 3.67 3.54 3.42 3.30 3.20 3.10 3.01 2.92 2.76 2.62 2.48 2.37 2.25 2.14
R(φ = 0) 0.976 0.969 0.962 0.954 0.945 0.936 0.922 0.882 0.813 0.777 0.753 0.746 0.751 0.759 0.762 0.763 0.765 0.763 0.762 0.753 0.746 0.736 0.725 0.716 0.706 0.697 0.686 0.678 0.664 0.654 0.642 0.636 0.626 0.616 0.605 0.595 0.585 0.575 0.565 0.546 0.527 0.507 0.491 0.472 0.452
Energy eV
n
4.40 4.60 4.80 5.00 5.20 5.40 5.60 5.80 6.00 6.20 6.40 6.60 6.80 7.00 7.20 7.40 7.60 7.80 8.00 8.20 8.40 8.60 8.80 9.00 9.20 9.40 9.60 9.80 10.00 10.20 10.40 10.60 10.80 11.00 11.20 11.40 11.60 11.80 12.00 12.40 12.80 13.20 13.60 14.00 14.40
1.43 1.39 1.38 1.36 1.36 1.36 1.36 1.36 1.38 1.39 1.42 1.45 1.48 1.50 1.50 1.49 1.48 1.48 1.47 1.47 1.47 1.47 1.47 1.48 1.49 1.49 1.49 1.48 1.46 1.43 1.40 1.37 1.35 1.33 1.31 1.30 1.29 1.29 1.29 1.29 1.29 1.31 1.31 1.31 1.30
k 2.04 1.95 1.85 1.76 1.67 1.61 1.54 1.47 1.40 1.35 1.29 1.26 1.24 1.24 1.25 1.23 1.22 1.20 1.18 1.17 1.15 1.14 1.13 1.12 1.11 1.12 1.13 1.15 1.15 1.16 1.15 1.14 1.12 1.10 1.08 1.06 1.04 1.01 1.00 0.97 0.94 0.93 0.93 0.93 0.93
R(φ = 0) 0.432 0.415 0.392 0.372 0.350 0.332 0.315 0.295 0.276 0.261 0.246 0.236 0.231 0.230 0.231 0.228 0.225 0.221 0.216 0.212 0.209 0.205 0.202 0.200 0.198 0.200 0.203 0.207 0.209 0.211 0.210 0.207 0.203 0.199 0.194 0.188 0.183 0.177 0.173 0.165 0.158 0.155 0.155 0.155 0.156
Section 4: Metals Platinum16—continued Energy eV 14.80 15.20 15.60 16.00 16.50 17.00 17.50 18.00 18.50 19.00 19.50 20.00 20.50 21.00 21.50 22.00
n 1.27 1.27 1.25 1.24 1.24 1.25 1.27 1.31 1.30 1.28 1.23 1.18 1.11 1.03 0.94 0.87
k
R(φ = 0)
0.93 0.93 0.92 0.89 0.87 0.86 0.85 0.88 0.94 0.99 1.03 1.06 1.09 1.10 1.08 1.04
0.157 0.155 0.151 0.146 0.142 0.138 0.135 0.142 0.157 0.171 0.184 0.197 0.212 0.226 0.238 0.240
Energy eV 22.50 23.00 23.50 24.00 24.50 25.00 25.50 26.00 26.50 27.00 27.50 28.00 28.50 29.00 29.50 30.00
n 0.81 0.77 0.75 0.74 0.73 0.73 0.73 0.74 0.74 0.74 0.74 0.75 0.75 0.75 0.74 0.73
k 0.98 0.92 0.87 0.82 0.77 0.73 0.70 0.67 0.65 0.63 0.62 0.60 0.59 0.58 0.58 0.58
R(φ = 0) 0.235 0.226 0.213 0.201 0.187 0.174 0.162 0.150 0.142 0.136 0.130 0.125 0.121 0.118 0.120 0.124
Rhenium (single crystal)8 E c Energy eV 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00 1.10 1.20 1.30 1.40 1.50
© 2003 by CRC Press LLC
n 6.06 4.66 4.16 4.03 4.37 4.50 4.53 4.53 4.53 4.50 4.29 4.07 3.80 3.48 3.21 2.96 2.73 2.56 2.45 2.38 2.35 2.39 2.44 2.50
k 51.03 33.96 25.36 20.10 16.69 14.53 12.96 11.78 10.88 10.26 9.75 9.35 8.94 8.55 8.10 7.68 7.24 6.79 6.36 5.61 5.02 4.54 4.13 3.79
R(φ = 0) 0.991 0.984 0.975 0.962 0.943 0.925 0.909 0.893 0.878 0.867 0.861 0.856 0.853 0.850 0.846 0.841 0.835 0.826 0.813 0.778 0.742 0.702 0.662 0.624
Energy eV 1.60 1.70 1.80 1.90 2.00 2.10 2.20 2.30 2.40 2.50 2.60 2.70 2.80 2.90 3.00 3.20 3.40 3.60 3.80 4.00 4.20 4.40 4.60 4.80
n
k
2.59 2.70 2.82 2.90 2.97 3.03 3.06 3.07 3.06 3.02 2.96 2.89 2.89 2.99 3.11 2.90 2.83 2.93 2.86 2.81 2.86 2.81 2.56 2.41
3.49 3.27 3.10 3.00 2.91 2.86 2.84 2.82 2.81 2.80 2.77 2.68 2.57 2.47 2.57 2.68 2.50 2.48 2.56 2.51 2.55 2.74 2.83 2.71
R(φ = 0) 0.587 0.557 0.535 0.520 0.510 0.504 0.501 0.499 0.498 0.497 0.493 0.482 0.468 0.457 0.470 0.482 0.459 0.457 0.467 0.460 0.466 0.489 0.504 0.493
335
336
Handbook of Optical Materials Rhenium (single crystal)8 E c—continued
Energy eV 5.00 5.20 5.40 5.60 5.80 6.00 6.20 6.40 6.80 7.00 7.20 7.40 7.60 7.80 8.00 8.20 8.40 8.60 8.80 9.00 9.20 9.40 9.60 9.80 10.00 10.20 10.40 10.60 10.80 11.00 11.20 11.40 11.60 11.80 12.00 12.40 12.80 13.20 13.60 14.00 14.40 14.80 15.20 15.60 16.00
© 2003 by CRC Press LLC
n 2.39 2.34 2.20 2.02 1.83 1.65 1.54 1.45 1.32 1.26 1.20 1.16 1.12 1.08 1.05 1.05 1.05 1.06 1.09 1.11 1.13 1.16 1.18 1.20 1.23 1.25 1.28 1.29 1.30 1.30 1.29 1.28 1.26 1.24 1.23 1.22 1.21 1.22 1.22 1.24 1.27 1.29 1.29 1.26 1.23
k
R(φ = 0)
2.68 2.75 2.81 2.84 2.80 2.71 2.59 2.50 2.31 2.23 2.15 2.06 1.99 1.89 1.80 1.71 1.62 1.55 1.48 1.43 1.39 1.34 1.32 1.29 1.26 1.25 1.25 1.25 1.26 1.27 1.28 1.28 1.28 1.26 1.24 1.21 1.18 1.16 1.13 1.12 1.11 1.15 1.19 1.22 1.25
0.488 0.500 0.515 0.530 0.538 0.541 0.532 0.526 0.508 0.500 0.493 0.480 0.470 0.454 0.435 0.411 0.386 0.360 0.336 0.317 0.301 0.281 0.274 0.264 0.252 0.246 0.242 0.242 0.244 0.247 0.249 0.252 0.252 0.249 0.244 0.237 0.230 0.222 0.215 0.209 0.204 0.213 0.225 0.236 0.248
Energy eV 16.40 16.80 17.00 17.40 18.00 18.40 18.80 19.20 19.60 20.00 20.40 20.80 21.20 21.60 22.00 22.40 22.80 23.20 23.60 24.00 24.40 24.80 25.20 25.60 26.00 26.40 26.80 27.20 27.60 28.00 29.00 30.00 31.00 32.00 33.00 34.00 35.00 36.00 37.00 38.00 39.00 40.00 42.00 44.00 46.00
n 1.19 1.14 1.12 1.07 0.99 0.93 0.87 0.81 0.77 0.73 0.70 0.67 0.64 0.61 0.58 0.55 0.53 0.51 0.50 0.48 0.48 0.47 0.47 0.47 0.47 0.48 0.48 0.49 0.50 0.51 0.54 0.57 0.62 0.66 0.68 0.72 0.76 0.79 0.82 0.85 0.89 0.88 0.88 0.89 0.85
k 1.27 1.29 1.30 1.30 1.30 1.29 1.28 1.25 1.21 1.18 1.14 1.11 1.08 1.04 1.01 0.97 0.93 0.89 0.85 0.80 0.76 0.72 0.68 0.65 0.61 0.57 0.54 0.51 0.48 0.45 0.39 0.33 0.29 0.26 0.24 0.21 0.20 0.20 0.19 0.20 0.21 0.26 0.26 0.29 0.32
R(φ = 0) 0.259 0.269 0.275 0.286 0.300 0.311 0.321 0.330 0.332 0.333 0.332 0.332 0.334 0.335 0.340 0.341 0.338 0.334 0.329 0.319 0.207 0.296 0.282 0.270 0.255 0.240 0.225 0.208 0.193 0.176 0.145 0.114 0.086 0.065 0.054 0.041 0.031 0.025 0.021 0.018 0.016 0.022 0.022 0.026 0.035
Section 4: Metals Rhenium (single crystal)8 E c —continued Energy eV 48.00 50.00 52.00
n 0.82 0.80 0.78
k
R(φ = 0)
0.30 0.30 0.30
0.036 0.038 0.044
Energy eV 54.00 56.00 58.00
n 0.72 0.66 0.65
k 0.30 0.24 0.16
R(φ = 0) 0.055 0.061 0.055
Rhenium (single crystal)8 E ⊥ c Energy eV
n
0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00 1.10 1.20 1.30 1.40 1.50 1.60 1.70 1.80 1.90 2.00 2.10 2.20 2.30 2.40 2.50 2.60 2.70 2.80
4.25 3.28 3.28 3.47 3.73 3.93 3.99 4.17 4.34 4.45 4.53 4.44 4.13 3.77 3.55 3.39 3.26 3.17 3.09 3.05 3.08 3.20 3.23 3.23 3.29 3.38 3.47 3.54 3.63 3.74 3.83 3.93 4.00 4.01 3.90 3.74 3.57
© 2003 by CRC Press LLC
k 42.83 28.08 20.66 16.27 13.44 11.54 10.15 9.03 8.26 7.73 7.40 7.26 7.09 6.75 6.32 5.95 5.61 5.27 4.96 4.39 3.89 3.56 3.38 3.12 2.88 2.72 2.59 2.50 2.43 2.40 2.38 2.44 2.55 2.70 2.84 2.92 2.88
R(φ = 0) 0.991 0.984 0.971 0.951 0.926 0.900 0.875 0.846 0.821 0.801 0.788 0.784 0.784 0.779 0.766 0.752 0.737 0.719 0.701 0.658 0.613 0.578 0.559 0.532 0.507 0.491 0.480 0.473 0.469 0.470 0.472 0.481 0.492 0.505 0.514 0.517 0.511
Energy eV 2.90 3.00 3.20 3.40 3.60 3.80 4.00 4.20 4.40 4.60 4.80 5.00 5.20 5.40 5.60 5.80 6.00 6.20 6.40 6.80 7.00 7.20 7.40 7.60 7.80 8.00 8.20 8.40 8.60 8.80 9.00 9.20 9.40 9.60 9.80 10.00 10.20
n 3.49 3.53 3.55 3.34 3.25 3.24 3.19 3.05 2.88 2.67 2.44 2.25 2.10 1.96 1.84 1.73 1.61 1.51 1.42 1.28 1.22 1.16 1.12 1.12 1.08 1.05 1.05 1.05 1.06 1.07 1.09 1.11 1.14 1.17 1.20 1.24 1.29
k 2.75 2.71 2.84 2.88 2.83 2.84 2.94 3.06 3.15 3.18 3.17 3.12 3.04 2.96 2.88 2.81 2.74 2.64 2.56 2.37 2.28 2.19 2.08 1.98 1.93 1.83 1.74 1.66 1.58 1.52 1.46 1.41 1.36 1.31 1.27 1.24 1.22
R(φ = 0) 0.497 0.493 0.506 0.508 0.501 0.502 0.513 0.526 0.539 0.548 0.554 0.556 0.555 0.553 0.551 0.549 0.549 0.545 0.541 0.526 0.517 0.508 0.493 0.468 0.463 0.443 0.418 0.397 0.372 0.351 0.327 0.309 0.290 0.273 0.258 0.244 0.234
337
338
Handbook of Optical Materials Rhenium (single crystal)8 E ⊥ c —continued
Energy eV
n
k
10.40 10.60 10.80 11.00 11.20 11.40 11.60 11.80 12.00 12.40 12.80 13.20 13.60 14.00 14.40 14.80 15.20 15.60 16.00 16.40 16.80 17.00 17.40 18.00 18.40 18.80 19.20 19.60 20.00 20.40 20.80 21.20 21.60 22.00 22.40
1.33 1.36 1.38 1.37 1.36 1.33 1.31 1.28 1.26 1.23 1.22 1.20 1.19 1.20 1.22 1.27 1.31 1.31 1.28 1.24 1.17 1.14 1.06 0.95 0.88 0.82 0.76 0.72 0.67 0.64 0.61 0.60 0.58 0.57 0.56
1.23 1.25 1.28 1.31 1.33 1.34 1.34 1.33 1.32 1.29 1.26 1.23 1.20 1.16 1.13 1.12 1.17 1.23 1.28 1.33 1.37 1.38 1.39 1.38 1.36 1.33 1.29 1.25 1.21 1.15 1.10 1.06 1.02 0.98 0.95
R(φ = 0) 0.233 0.238 0.245 0.253 0.259 0.264 0.266 0.266 0.264 0.257 0.251 0.245 0.236 0.225 0.214 0.207 0.218 0.234 0.251 0.270 0.288 0.297 0.314 0.334 0.346 0.355 0.360 0.363 0.369 0.364 0.357 0.349 0.342 0.336 0.328
Energy eV 23.20 23.60 24.00 24.40 24.40 24.80 25.20 25.60 26.00 26.40 26.80 27.20 27.60 28.00 29.00 30.00 31.00 32.00 33.00 34.00 35.00 36.00 37.00 38.00 39.00 40.00 42.00 44.00 46.00 48.00 50.00 52.00 54.00 56.00 58.00
n 0.53 0.52 0.50 0.49 0.49 0.48 0.47 0.47 0.46 0.46 0.46 0.47 0.48 0.49 0.51 0.55 0.59 0.64 0.67 0.70 0.74 0.77 0.80 0.84 0.88 0.87 0.87 0.88 0.84 0.82 0.80 0.77 0.71 0.66 0.64
k 0.89 0.85 0.82 0.79 0.79 0.75 0.72 0.68 0.64 0.61 0.57 0.53 0.50 0.47 0.41 0.34 0.29 0.26 0.24 0.22 0.20 0.19 0.19 0.19 0.21 0.25 0.25 0.28 0.31 0.30 0.30 0.30 0.29 0.23 0.16
R(φ = 0) 0.322 0.317 0.314 0.309 0.309 0.303 0.295 0.286 0.276 0.263 0.249 0.231 0.216 0.198 0.164 0.129 0.097 0.072 0.060 0.047 0.036 0.029 0.023 0.018 0.016 0.023 0.023 0.026 0.035 0.036 0.039 0.044 0.055 0.061 0.055
Rhodium9 Energy eV
n
k
0.10 0.20 0.30 0.40 0.50 0.60
18.48 8.66 5.85 4.74 4.20 3.87
69.43 37.46 25.94 19.80 16.07 13.51
© 2003 by CRC Press LLC
R(φ = 0) 0.986 0.977 0.967 0.955 0.941 0.925
Energy eV 0.70 0.80 0.90 1.00 1.10 1.20
n 3.67 3.63 3.62 3.71 3.67 3.51
k 11.72 10.34 9.36 8.67 8.26 7.94
R(φ = 0) 0.908 0.887 0.867 0.848 0.837 0.832
Section 4: Metals Rhodium9—continued Energy eV
n
k
1.30 1.40 1.50 1.60 1.70 1.80 1.90 2.00 2.10 2.20 2.30 2.40 2.50 2.60 2.70 2.90 3.00 3.10 3.20 3.30 3.40 3.50 3.60 3.70 3.80 3.90 4.00 4.20 4.40 4.60 4.80 5.00 5.20 5.40 5.60 5.80 6.00 6.20 6.40 6.60 6.80 7.00 7.20 7.40 7.60
3.26 3.01 2.78 2.60 2.42 2.30 2.20 2.12 2.05 2.00 1.94 1.90 1.88 1.85 1.80 1.63 1.53 1.41 1.30 1.20 1.11 1.04 0.99 0.95 0.91 0.88 0.86 0.83 0.80 0.78 0.79 0.79 0.79 0.80 0.80 0.79 0.76 0.73 0.70 0.68 0.67 0.66 0.66 0.66 0.67
7.63 7.31 6.97 6.64 6.33 6.02 5.76 5.51 5.30 5.11 4.94 4.78 4.65 4.55 4.49 4.36 4.29 4.20 4.09 3.97 3.84 3.71 3.58 3.45 3.34 3.23 3.12 2.94 2.76 2.60 2.46 2.34 2.23 2.14 2.06 2.00 1.93 1.85 1.77 1.69 1.60 1.52 1.43 1.35 1.27
© 2003 by CRC Press LLC
R(φ = 0) 0.829 0.827 0.823 0.818 0.813 0.805 0.798 0.789 0.780 0.772 0.765 0.756 0.748 0.743 0.742 0.748 0.753 0.760 0.764 0.767 0.769 0.768 0.764 0.759 0.753 0.747 0.739 0.722 0.706 0.684 0.659 0.635 0.613 0.591 0.573 0.561 0.556 0.544 0.534 0.518 0.498 0.476 0.452 0.423 0.394
Energy eV
n
7.80 8.00 8.20 8.40 8.60 8.80 9.00 9.20 9.40 9.60 9.80 10.00 10.60 11.00 11.60 12.00 12.60 13.00 13.60 14.00 14.60 15.00 15.60 16.00 16.50 17.00 17.50 18.00 18.50 19.00 19.50 20.00 20.50 21.00 21.50 22.00 22.50 23.00 23.50 24.00 24.50 25.00 25.50 26.00 26.50
0.68 0.69 0.71 0.74 0.78 0.83 0.88 0.95 1.01 1.07 1.12 1.17 1.26 1.29 1.32 1.32 1.32 1.32 1.32 1.32 1.30 1.28 1.25 1.24 1.23 1.22 1.22 1.23 1.25 1.24 1.18 1.10 1.00 0.91 0.86 0.83 0.81 0.79 0.75 0.73 0.70 0.69 0.67 0.66 0.65
k 1.20 1.12 1.04 0.97 0.89 0.83 0.77 0.73 0.71 0.69 0.69 0.69 0.73 0.76 0.80 0.82 0.82 0.83 0.85 0.86 0.89 0.90 0.90 0.89 0.88 0.88 0.87 0.88 0.92 0.98 1.05 1.09 1.09 1.05 1.00 0.95 0.92 0.90 0.87 0.84 0.81 0.77 0.74 0.70 0.66
R(φ = 0) 0.363 0.329 0.288 0.252 0.212 0.179 0.148 0.125 0.110 0.102 0.098 0.098 0.106 0.113 0.124 0.127 0.129 0.131 0.134 0.138 0.144 0.147 0.147 0.147 0.145 0.144 0.143 0.145 0.155 0.172 0.193 0.213 0.230 0.234 0.228 0.219 0.214 0.213 0.214 0.210 0.208 0.202 0.195 0.188 0.176
339
340
Handbook of Optical Materials Rhodium9—continued
Energy eV
n
27.00 27.50 28.00 29.00 30.00 31.00 32.00
0.65 0.65 0.65 0.65 0.66 0.64 0.61
k
R(φ = 0)
0.64 0.61 0.59 0.54 0.51 0.49 0.44
0.168 0.159 0.152 0.137 0.127 0.127 0.126
Energy eV 33.00 34.00 35.00 36.00 37.00 38.00 39.00
n 0.60 0.65 0.69 0.73 0.74 0.74 0.75
k 0.37 0.30 0.28 0.27 0.28 0.27 0.25
R(φ = 0) 0.110 0.074 0.058 0.049 0.047 0.045 0.041
Silicon (single crystal)17 Energy eV 0.01240 0.01488 0.01736 0.01984 0.02480 0.03100 0.04092 0.04463 0.04959 0.05703 0.06199 0.06943 0.07439 0.08059 0.08679 0.09299 0.09919 0.1054 0.1116 0.1178 0.1240 0.1364 0.1488 0.1612 0.1736 0.1798 0.1860 0.1922 0.1984 0.2046 0.2108
© 2003 by CRC Press LLC
n
k
0.65 3.4190 3.4192 3.4195 3.4197 3.4199 3.4200
2.90E-04 2.30E-04 1.90E-04 1.70E-04
1.08E-04 9.15E-05 1.56E-04 3.4204 2.86E-04 3.84E-04 7.16E-04 (3.4207) 1.52E-04 1.02E-04 2.59E-04 1.77E-04 1.53E-04 2.02E-04 1.22E-04 3.4215 6.76E-05 5.49E-05 2.41E-05 2.49E-05 (3.4230) 1.68E-05 2.45E-05 2.66E-06 1.74E-06 8.46E-07 5.64E-07 (3.4244) 4.17E-07 3.4201
R(φ = 0) 0.300 0.300 0.300 0.300 0.300 0.300 0.300 0.300 0.300
0.300
0.300
0.300
0.300
Energy eV 0.2170 0.2232 0.2294 0.2356 0.2418 0.2480 0.3100 0.3626 0.4568 0.6199 0.8093 1.033 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9
n
k 4.05E-07 3.94E-07 3.26E-07 2.97E-07 2.82E-07 1.99E-07
3.4261 3.4294 3.4327 3.4393 2.50E-09 3.4490 3.4784 3.5193 (3.5341) 1.30E-05 1.80E-04 2.26E-03 7.75E-03 3.673 5.00E-03 3.714 8.00E-03 3.752 1.00E-02 3.796 0.013 3.847 0.016 3.906 0.022 3.969 0.030 4.042 0.032 4.123 0.048 4.215 0.060 4.320 0.073 4.442 0.090 4.583 0.130 4.753 0.163 4.961 0.203
R(φ = 0)
0.300 0.301 0.301 0.302 0.303 0.306 0.311 0.312
0.327 0.331 0.335 0.340 0.345 0.351 0.357 0.364 0.372 0.380 0.390 0.400 0.412 0.426 0.442
Section 4: Metals Silicon (single crystal)17—continued Energy eV 3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5.0 5.1 5.2 5.3 5.4 5.5 5.6
n 5.222 5.570 6.062 6.709 6.522 5.610 5.296 5.156 5.065 5.016 5.010 5.020 4.888 4.086 3.120 2.451 1.988 1.764 1.658 1.597 1.570 1.571 1.589 1.579 1.471 1.340 1.247
k
R(φ = 0)
0.269 0.387 0.630 1.321 2.705 3.014 2.987 3.058 3.182 3.346 3.587 3.979 4.639 5.395 5.344 5.082 4.678 4.278 3.979 3.749 3.565 3.429 3.354 3.353 3.366 3.302 3.206
0.461 0.486 0.518 0.561 0.592 0.575 0.564 0.563 0.568 0.577 0.591 0.614 0.652 0.703 0.726 0.740 0.742 0.728 0.710 0.693 0.675 0.658 0.646 0.647 0.663 0.673 0.675
Energy eV 5.7 5.8 5.9 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 12.0 14.0 16.0 18.0 20.0 22.14 24.31 26.38 28.18 30.24 31.79 34.44 36.47 38.75 40.00
n 1.180 1.133 1.083 1.010 0.847 0.682 0.563 0.478 0.414 0.367 0.332 0.306 0.257 0.275 0.345 0.455 0.567 0.675 0.752 0.803 0.834 0.860 0.877 0.899 0.913 0.925 0.930
k 3.112 3.045 2.982 2.909 2.73 2.45 2.21 2.00 1.82 1.66 1.51 1.38 0.963 0.641 0.394 0.219 0.0835 0.0405 0.0243 0.0178 0.0152 0.0138 0.0132 0.0121 0.0113 0.0104 0.0100
R(φ = 0) 0.673 0.672 0.673 0.677 0.688 0.691 0.693 0.691 0.688 0.683 0.672 0.661 0.590 0.460 0.297 0.159 0.079 0.038 0.020 0.012 0.008 0.006 0.004 0.003 0.002 0.002 0.001
Silver6 Energy eV
n
0.10 0.20 0.30 0.40 0.50 1.00 1.50 2.00 2.50 3.00 3.25 3.50
9.91 2.84 1.41 0.91 0.67 0.28 0.27 0.27 0.24 0.23 0.23 0.21
© 2003 by CRC Press LLC
k 90.27 45.70 30.51 22.89 18.32 9.03 5.79 4.18 3.09 2.27 1.86 1.42
R(φ = 0) 0.995 0.995 0.994 0.993 0.992 0.987 0.969 0.944 0.914 0.864 0.816 0.756
Energy eV
n
3.60 3.70 3.77 3.80 3.90 4.00 4.10 4.20 4.30 4.50 4.75 5.00
0.23 0.30 0.53 0.73 1.30 1.61 1.73 1.75 1.73 1.69 1.61 1.55
k 1.13 0.77 0.40 0.30 0.36 0.60 0.85 1.06 1.13 1.28 1.34 1.36
R(φ = 0) 0.671 0.475 0.154 0.053 0.040 0.103 0.153 0.194 0.208 0.238 0.252 0.257
341
342
Handbook of Optical Materials Silver6—continued
Energy eV
n
k
5.50 6.00 6.50 7.00 7.50 8.00 9.00 10.00 11.00 12.00 13.00 14.00 14.50 15.00 16.00 17.00 18.00 19.00 20.00 21.00 21.50 22.00 22.50 23.00 23.50 24.00 24.50 25.00 25.50 26.00 26.50 27.00 27.50 28.00
1.45 1.34 1.25 1.18 1.14 1.16 1.33 1.46 1.52 1.61 1.66 1.72 1.64 1.56 1.42 1.33 1.28 1.27 1.29 1.35 1.37 1.34 1.26 1.17 1.10 1.04 0.99 0.95 0.91 0.90 0.89 0.89 0.89 0.90
1.34 1.28 1.18 1.06 0.91 0.75 0.56 0.56 0.56 0.59 0.64 0.78 0.88 0.92 0.91 0.86 0.80 0.75 0.71 0.75 0.80 0.87 0.93 0.94 0.93 0.90 0.87 0.83 0.78 0.74 0.69 0.65 0.62 0.59
R(φ = 0) 0.257 0.246 0.225 0.196 0.157 0.114 0.074 0.082 0.088 0.100 0.112 0.141 0.152 0.156 0.151 0.139 0.124 0.111 0.103 0.112 0.124 0.141 0.157 0.163 0.165 0.165 0.160 0.154 0.144 0.133 0.121 0.109 0.099 0.090
Energy eV
n
29.00 30.00 31.00 32.00 33.00 34.00 35.00 36.00 38.00 40.00 42.00 44.00 46.00 48.00 50.00 52.00 54.00 56.00 58.00 60.00 62.00 64.00 66.00 68.00 70.00 72.00 74.00 76.00 78.00 80.00 85.00 90.00 95.00 100.00
0.92 0.93 0.93 0.92 0.90 0.88 0.86 0.89 0.89 0.90 0.90 0.90 0.90 0.89 0.88 0.89 0.88 0.87 0.87 0.87 0.88 0.88 0.88 0.87 0.83 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.86 0.87
k 0.56 0.54 0.53 0.53 0.51 0.49 0.45 0.44 0.39 0.37 0.35 0.33 0.32 0.31 0.29 0.28 0.17 0.26 0.24 0.22 0.21 0.21 0.21 0.21 0.20 0.18 0.17 0.16 0.15 0.14 0.11 0.08 0.06 0.04
R(φ = 0) 0.079 0.074 0.072 0.072 0.071 0.067 0.061 0.055 0.043 0.039 0.036 0.033 0.031 0.030 0.027 0.024 0.024 0.024 0.021 0.018 0.016 0.016 0.016 0.017 0.021 0.016 0.014 0.013 0.013 0.012 0.011 0.009 0.007 0.005
Tantalum12 Energy eV
n
0.10 0.15 0.20 0.26 0.30 0.38
10.14 9.45 5.77 3.67 2.87 2.03
© 2003 by CRC Press LLC
k 66.39 46.41 35.46 27.53 23.90 18.87
R(φ = 0) 0.9380 0.983 0.982 0.981 0.980 0.978
Energy eV 0.50 0.58 0.70 0.78 0.90 1.00
n 1.37 1.15 0.96 0.89 0.84 0.89
k 14.26 12.19 9.92 8.77 7.38 6.47
R(φ = 0) 0.974 0.970 0.962 0.956 0.942 0.996
Section 4: Metals
343
Tantalum12—continued Energy eV
n
k
1.10 1.20 1.30 1.40 1.50 1.60 1.70 1.80 1.90 2.00 2.10 2.20 2.30 2.40 2.50 2.60 2.70 2.80 2.90 3.00 3.20 3.40 3.60 3.80 4.00 4.20 4.40 4.60 4.80 5.00 5.20 5.40 5.60 5.80 6.00 6.20 6.40 6.60 6.80 7.00 7.20 7.40 7.60 7.80 8.00 8.20 8.40
0.93 0.98 1.00 1.04 1.09 1.15 1.24 1.35 1.57 1.83 2.10 2.36 2.56 2.68 2.75 2.80 2.84 2.85 2.84 2.81 2.73 2.61 2.49 2.40 2.36 2.35 2.39 2.45 2.53 2.58 2.52 2.31 2.06 1.83 1.63 1.48 1.37 1.29 1.23 1.18 1.15 1.13 1.12 1.11 1.11 1.12 1.13
5.75 5.14 4.62 4.15 3.73 3.33 2.95 2.60 2.24 1.99 1.84 1.81 1.86 1.92 1.98 2.02 2.08 2.14 2.20 2.24 2.31 2.33 2.30 2.22 2.14 2.06 2.01 2.00 2.06 2.20 2.44 2.61 2.67 2.63 2.56 2.45 2.33 2.22 2.11 2.01 1.91 1.82 1.75 1.68 1.61 1.55 1.50
© 2003 by CRC Press LLC
R(φ = 0) 0.899 0.872 0.842 0.805 0.762 0.707 0.640 0.560 0.460 0.388 0.354 0.351 0.365 0.378 0.388 0.395 0.405 0.412 0.420 0.425 0.432 0.435 0.430 0.418 0.406 0.392 0.384 0.384 0.394 0.416 0.450 0.480 0.501 0.510 0.515 0.512 0.504 0.492 0.478 0.462 0.445 0.425 0.406 0.390 0.370 0.350 0.332
Energy eV 8.60 8.80 9.00 9.20 9.40 9.60 9.80 10.00 10.20 10.40 10.60 10.80 11.00 11.20 11.40 11.60 11.80 12.00 12.20 12.40 12.60 12.80 13.00 13.60 14.00 14.60 15.00 15.60 16.00 16.60 17.00 17.60 18.00 18.60 19.00 19.60 20.00 20.60 21.00 21.60 22.00 22.60 23.00 23.60 24.00 24.60 25.00
n
k
1.14 1.17 1.19 1.21 1.21 1.21 1.21 1.20 1.19 1.18 1.16 1.15 1.13 1.11 1.09 1.07 1.05 1.02 1.00 0.98 0.96 0.94 0.93 0.91 0.90 0.85 0.80 0.72 0.68 0.63 0.60 0.60 0.55 0.53 0.53 0.53 0.54 0.55 0.57 0.64 0.64 0.69 0.73 0.80 0.80 0.82 0.83
1.45 1.41 1.40 1.38 1.38 1.38 1.37 1.37 1.37 1.37 1.36 1.36 1.35 1.35 1.34 1.33 1.32 1.31 1.29 1.28 1.26 1.24 1.22 1.16 1.15 1.15 1.13 1.08 1.04 0.97 0.92 0.92 0.79 0.71 0.65 0.57 0.52 0.44 0.39 0.34 0.32 0.27 0.24 0.26 0.26 0.25 0.25
R(φ = 0) 0.317 0.301 0.294 0.289 0.287 0.285 0.285 0.286 0.286 0.287 0.288 0.289 0.290 0.292 0.293 0.294 0.295 0.296 0.295 0.294 0.292 0.289 0.286 0.272 0.272 0.285 0.293 0.301 0.304 0.301 0.296 0.296 0.274 0.254 0.236 0.207 0.185 0.152 0.127 0.089 0.081 0.058 0.043 0.033 0.034 0.029 0. 026
344
Handbook of Optical Materials Tantalum12—continued
Energy eV
n
k
25.60 26.00 26.60 27.00 27.60 28.00 28.60 29.00 29.60 30.00
0.86 0.88 0.87 0.87 0.89 0.90 0.91 0.92 0.94 0.95
0.24 0.25 0.26 0.25 0.23 0.23 0.22 0.22 0.22 0.22
R(φ = 0) 0.022 0.022 0.023 0.022 0.019 0.017 0.015 0.014 0.014 0.014
Energy eV 31.00 32.00 33.00 34.00 35.00 36.00 37.00 38.00 39.00 40.00
n
k
0.97 0.98 0.98 0.99 0.99 0.99 0.99 0.98 0.97 0.95
0.23 0.24 0.25 0.25 0.26 0.27 0.28 0.28 0.29 0.29
n
k
R(φ = 0) 0.014 0.015 0.015 0.016 0.017 0.018 0.019 0.021 0.022 0.023
Titanium (polycrystalline)18 Energy eV
n
0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.60 0.70 0.80 0.90 1.00 1.10 1.20 1.30 1.40 1.50 1.60 1.70 1.80 1.90 2.00 2.10 2.20
5.03 3.00 2.12 2.05 6.39 2.74 2.49 3.35 4.43 4.71 4.38 4.04 3.80 3.62 3.47 3.35 3.28 3.17 2.98 2.74 2.54 2.36 2.22 2.11 2.01 1.92
© 2003 by CRC Press LLC
k 23.38 15.72 11.34 8.10 9.94 6.21 4.68 3.25 3.22 3.77 3.89 3.82 3.65 3.52 3.40 3.30 3.25 3.28 3.32 3.30 3.23 3.11 2.99 2.88 2.77 2.67
R(φ = 0) 0.965 0.954 0.939 0.890 0.833 0.792 0.708 0.545 0.555 0.597 0.603 0.596 0.582 0.570 0.560 0.550 0.546 0.549 0.557 0.559 0.557 0.550 0.540 0.530 0.520 0.509
Energy eV 2.30 2.40 2.50 2.60 2.70 2.80 2.90 3.00 3.10 3.20 3.30 3.40 3.50 3.60 3.70 3.80 3.85 3.90 4.00 4.20 4.40 4.60 4.80 5.00 5.20 5.40
1.86 1.81 1.78 1.75 1.71 1.68 1.63 1.59 1.55 1.50 1.44 1.37 1.30 1.24 1.17 1.11 1.08 1.06 1.04 1.05 1.13 1.17 1.21 1.24 1.27 1.17
2.56 2.47 2.39 2.34 2.29 2.25 2.21 2.17 2.15 2.12 2.09 2.06 2.01 1.96 1.90 1.83 1.78 1.73 1.62 1.45 1.33 1.29 1.23 1.21 1.20 1.16
R(φ = 0) 0.495 0.483 0.471 0.462 0.456 0.451 0.447 0.444 0.442 0.442 0.442 0.443 0.443 0.441 0.436 0.430 0.423 0.413 0.389 0.333 0.284 0.265 0.244 0.236 0.228 0.228
Section 4: Metals
345
Titanium (polycrystalline)18—continued Energy eV
n
5.60 5.80 6.00 6.20 6.40 6.60 6.80 7.00 7.20 7.40 7.60 7.80 8.00 8.20 8.40 8.60 8.80 9.00 9.20 9.40 9.60 9.80 10.00 10.20 10.40 10.60 10.80 11.00 11.20 11.40 11.60 11.80 12.00 12.80 13.20 13.60 14.00
1.24 1.21 1.15 1.11 1.08 1.04 1.05 1.06 1.07 1.11 1.09 1.11 1.10 1.10 1.08 1.04 1.02 1.00 0.97 0.95 0.94 0.91 0.89 0.86 0.85 0.81 0.80 0.79 0.81 0.81 0.79 0.78 0.77 0.76 0.76 0.76 0.77
© 2003 by CRC Press LLC
k 1.21 1.22 1.21 1.18 1.14 1.06 1.02 0.97 0.95 0.94 0.92 0.93 0.94 0.95 0.95 0.96 0.95 0.94 0.93 0.91 0.90 0.88 0.88 0.85 0.83 0.79 0.76 0.72 0.69 0.69 0.68 0.67 0.65 0.55 0.52 0.48 0.45
R(φ = 0) 0.234 0.241 0.244 0.240 0.232 0.212 0.198 0.182 0.175 0.167 0.165 0.165 0.169 0.171 0.175 0.181 0.181 0.182 0.182 0.181 0.179 0.179 0.180 0.178 0.175 0.167 0.162 0.152 0.139 0.139 0.139 0.137 0.132 0.106 0.097 0.087 0.077
Energy eV 14.40 14.80 15.20 15.60 16.00 16.40 16.80 17.20 17.60 18.00 18.40 18.80 19.20 19.60 20.00 20.40 20.60 21.20 21.60 22.00 22.40 22.80 23.20 23.60 24.00 24.5 25.0 25.5 26.0 26.5 27.0 27.5 28.0 28.5 29.0 30.0
n 0.77 0.79 0.79 0.79 0.83 0.84 0.87 0.90 0.93 0.94 0.94 0.95 0.96 0.97 0.98 0.98 1.00 0.99 0.99 0.98 0.98 0.97 0.96 0.95 0.92 0.91 0.91 0.89 0.89 0.88 0.86 0.85 0.84 0.82 0.83 0.84
k 0.42 0.38 0.36 0.32 0.31 0.28 0.27 0.25 0.25 0.24 0.23 0.24 0.25 0.25 0.27 0.27 0.29 0.31 0.31 0.32 0.33 0.33 0.34 0.35 0.35 0.34 0.33 0.33 0.33 0.32 0.31 0.30 0.29 0.26 0.25 0.22
R(φ = 0) 0.069 0.058 0.052 0.045 0.037 0.030 0.025 0.020 0.017 0.165 0.017 0.016 0.016 0.017 0.018 0.019 0.020 0.023 0.024 0.025 0.027 0.028 0.030 0.031 0.033 0.032 0.032 0.032 0.032 0.032 0.032 0.033 0.033 0.029 0.027 0.022
346
Handbook of Optical Materials Tungsten19
Energy eV
n
0.10 0.20 0.25 0.30 0.34 0.38 0.42 0.46 0.50 0.54 0.58 0.62 0.66 0.70 0.74 0.78 0.82 0.86 0.90 0.94 0.98 1.00 1.10 1.20 1.30 1.40 1.50 1.60 1.70 1.80 1.90 2.00 2.10 2.20 2.30 2.40 2.50 2.60 2.70 2.80 2.90 3.00 3.10 3.20 3.30
14.06 3.87 2.56 1.83 1.71 1.86 1.92 1.69 1.40 1.23 1.17 1.28 1.45 1.59 1.83 2.12 2.36 2.92 3.11 3.15 3.15 3.14 3.05 3.00 3.12 3.29 3.48 3.67 3.84 3.82 3.70 3.60 3.54 3.49 3.49 3.45 3.38 3.34 3.31 3.31 3.32 3.35 3.39 3.43 3.45
© 2003 by CRC Press LLC
k 54.71 28.30 22.44 18.32 15.71 13.88 12.63 11.59 10.52 9.45 8.44 7.52 6.78 6.13 5.52 5.00 4.61 4.37 4.44 4.43 4.36 4.32 4.04 3.64 3.24 2.96 2.79 2.68 2.79 2.91 2.94 2.89 2.84 2.76 2.72 2.72 2.68 2.62 2.55 2.49 2.45 2.42 2.41 2.45 2.55
R(φ = 0) 0.983 0.981 0.980 0.979 0.973 0.963 0.954 0.952 0.952 0.948 0.938 0.917 0.888 0.856 0.810 0.759 0.710 0.661 0.660 0.658 0.653 0.649 0.627 0.590 0.545 0.515 0.500 0.494 0.507 0.518 0.518 0.512 0.506 0.497 0.494 0.493 0.487 0.480 0.472 0.466 0.461 0.459 0.460 0.465 0.476
Energy eV 3.40 3.50 3.60 3.70 3.80 3.90 4.00 4.20 4.40 4.60 4.80 5.00 5.20 5.40 5.60 5.80 6.00 6.20 6.40 6.60 6.80 7.00 7.20 7.40 7.60 7.80 8.00 8.20 8.40 8.60 8.80 9.00 9.20 9.40 9.60 9.80 10.00 10.20 10.40 10.60 10.80 11.00 11.20 11.40 11.60
n 3.39 3.24 3.13 3.05 2.99 2.96 2.95 3.02 3.13 3.24 3.33 3.40 3.27 2.92 2.43 2.00 1.70 1.47 1.32 1.21 1.12 1.06 1.01 0.98 0.95 0.93 0.94 0.94 0.96 0.99 1.01 1.01 1.02 1.03 1.05 1.09 1.13 1.19 1.24 1.27 1.29 1.28 1.27 1.25 1.22
k 2.66 2.70 2.67 2.62 2.56 2.50 2.43 2.33 2.32 2.41 2.57 2.85 3.27 3.58 3.70 3.61 3.42 3.24 3.04 2.87 2.70 2.56 2.43 2.30 2.18 2.06 1.95 1.86 1.76 1.70 1.65 1.60 1.55 1.50 1.44 1.38 1.34 1.33 1.34 1.36 1.39 1.42 1.44 1.46 1.48
R(φ = 0) 0.485 0.488 0.482 0.476 0.468 0.460 0.451 0.440 0.442 0.455 0.475 0.505 0.548 0.586 0.618 0.637 0.643 0.646 0.640 0.631 0.619 0.607 0.593 0.573 0.556 0.533 0.505 0.481 0.449 0.422 0.401 0.388 0.369 0.352 0.329 0.307 0.287 0.274 0.270 0.274 0.282 0.290 0.297 0.305 0.313
Section 4: Metals
347
Tungsten19—continued Energy eV
n
11.80 12.00 12.40 12.80 13.20 13.60 14.00 14.40 14.80 15.20 15.60 16.00 16.40 16.80 17.20 17.60 18.00 18.40 18.80 19.20 19.60 20.00 20.40 20.80 21.20 21.60 22.00 22.40
1.20 1.16 1.10 1.04 0.98 0.94 0.91 0.90 0.90 0.93 0.97 0.98 0.97 0.94 0.90 0.85 0.80 0.74 0.69 0.64 0.60 0.56 0.54 0.52 0.50 0.50 0.49 0.49
k 1.48 1.48 1.47 1.44 1.40 1.35 1.28 1.23 1.17 1.13 1.12 1.14 1.17 1.19 1.21 1.21 1.20 1.18 1.15 1.11 1.07 1.02 0.97 0.92 0.87 0.82 0.77 0.73
R(φ = 0) 0.318 0.323 0.329 0.333 0.332 0.325 0.312 0.296 0.276 0.255 0.246 0.249 0.260 0.273 0.289 0.304 0.317 0.330 0.340 0.347 0.353 0.354 0.350 0.342 0.331 0.318 0.303 0.287
Energy eV 22.80 23.20 23.60 24.00 24.40 24.80 25.20 25.60 26.00 26.40 26.80 27.00 27.50 28.00 28.50 29.00 29.50 30.00 31.00 32.00 33.00 34.00 35.00 36.00 37.00 38.00 39.00 40.00
n 0.49 0.49 0.48 0.49 0.50 0.51 0.53 0.55 0.57 0.59 0.61 0.62 0.64 0.67 0.69 0.71 0.73 0.75 0.78 0.79 0.82 0.84 0.85 0.85 0.84 0.83 0.81 0.80
k 0.69 0.66 0.62 0.57 0.53 0.49 0.46 0.43 0.40 0.38 0.37 0.36 0.34 0.32 0.31 0.30 0.30 0.29 0.29 0.29 0.28 0.29 0.31 0.32 0.33 0.33 0.33 0.33
R(φ = 0) 0.272 0.263 0.252 0.234 0.213 0.191 0.171 0.150 0.132 0.117 0.105 0.099 0.085 0.073 0.065 0.057 0.052 0.047 0.042 0.040 0.033 0.032 0.033 0.036 0.039 0.040 0.042 0.045
Zinc, E c20 Energy eV 0.7514 0.827 0.866 0.952 0.992 1.033 1.078 1.127 1.181 1.240 1.305
© 2003 by CRC Press LLC
n 1.9241 1.7921 1.5571 1.4824 1.5762 1.5407 1.5853 1.7768 1.9808 2.8821 3.2039
k 7.5619 6.9973 6.7753 6.2296 5.8843 5.3192 4.9013 4.5307 4.2004 3.4766 3.0042
R(φ = 0) 0.883 0.874 0.881 0.868 0.847 0.823 0.793 0.748 0.701 0.575 0.520
Energy eV 1.377 1.459 1.550 1.653 1.722 1.823 1.937 1.984 2.066 2.094 2.119
n 2.9459 3.2523 3.8086 3.7577 3.5908 3.4234 3.0132 1.8562 1.4856 1.2525 1.0017
k 3.5761 4.2447 4.6212 4.6239 4.4614 4.3232 3.9974 3.9706 4.0555 3.9961 3.8683
R(φ = 0) 0.584 0.640 0.657 0.659 0.650 0.642 0.624 0.690 0.737 0.762 0.789
348
Handbook of Optical Materials Zinc, E c20—continued
Energy eV 2.275 2.445 2.666 2.917
n 0.7737 0.6395 0.4430 0.3589
R(φ = 0)
k 3.9129 3.4013 3.1379 2.8140
0.832 0.821 0.851 0.853
Energy eV 3.220 3.594 4.065 4.678
n 0.3069 0.2737 0.2510 0.2354
k 2.5088 2.1737 1.8528 1.6357
R(φ = 0) 0.847 0.828 0.799 0.776
Zinc, E ⊥ c20 Energy eV 0.751 0.827 0.866 0.952 0.992 1.033 1.078 1.127 1.181 1.240 1.305 1.377 1.459 1.550 1.653
n 1.4469 1.4744 1.3628 1.3165 1.3835 1.2889 1.3095 1.6897 1.9701 2.8717 3.3991 3.1807 3.5064 4.1241 4.0269
k
R(φ = 0)
7.4158 6.9688 6.6886 6.2212 5.8910 5.4001 4.9025 4.4062 4.0176 3.2873 2.7684 3.4709 4.1994 4.7768 4.8027
0.905 0.892 0.892 0.881 0.863 0.850 0.822 0.746 0.684 0.555 0.497 0.569 0.630 0.664 0.667
Energy eV 1.722 1.823 1.937 1.984 2.066 2.094 2.119 2.275 2.255 2.666 2.917 3.220 3.594 4.06 4.678
n 3.9369 3.7549 3.4512 3.2515 2.0802 1.7084 1.3329 0.9725 0.7568 0.5470 0.4774 0.3911 0.3147 0.3013 0.2806
k 4.6356 4.3042 4.1942 4.2980 4.7231 4.7923 4.4751 4.2879 3.7627 3.4277 3.0476 2.7463 2.3041 2.0077 1.7997
R(φ = 0) 0.657 0.635 0.631 0.644 0.738 0.774 0.791 0.825 0.824 0.845 0.834 0.835 0.821 0.789 0.770
Zirconium (polycrystalline)20 Energy eV
n
k
R(φ = 0)
Energy eV
0.10 0.15 0.20 0.26 0.30 0.36 0.40 0.46
6.18 3.37 2.34 2.24 2.59 3.17 3.09 3.36
1.76 1.30 1.08 1.06 1.14 1.26 1.24 1.30
0.300 0.123 0.058 0.052 0.073 0.110 0.105 0.123
0.50 0.56 0.60 0.70 0.80 0.90 0.96 1.00
© 2003 by CRC Press LLC
n 4.13 5.01 5.18 4.54 4.03 3.74 3.69 3.66
k 1.44 1.58 1.61 1.51 1.42 1.37 1.36 1.35
R(φ = 0) 0.175 0.231 0.242 0.202 0.168 0.149 0.145 0.143
Section 4: Metals
349
Zirconium (polycrystalline)20—continued Energy eV
n
k
R(φ = 0)
Energy eV
1.10 1.20 1.30 1.40 1.50 1.60 1.70 1.80 2.00 2.10 2.20 2.30 2.40 2.50 2.60 2.70 2.80 2.90 3.00 3.10 3.30 3.40 3.50 3.60 3.70 3.80 3.90 4.00 4.20 4.40 4.60 4.80 5.00 5.20 5.40 5.60 5.80 6.00 6.20 6.40 6.60 6.80 7.00 7.20 7.40 7.60 7.80
3.65 3.53 3.25 3.10 3.02 2.88 2.68 2.49 2.14 1.99 1.87 1.78 1.71 1.62 1.54 1.46 1.40 1.34 0.30 1.26 1.19 1.16 1.13 1.10 1.07 1.04 1.01 0.98 0.94 0.89 0.85 0.81 0.78 0.77 0.77 0.80 0.87 1.00 1.11 1.23 1.33 1.42 1.49 1.54 1.58 1.61 1.63
1.35 1.33 1.27 1.25 1.23 1.20 1.16 1.12 1.03 1.00 0.97 0.94 0.92 0.90 0.88 0.86 0.84 0.82 0.81 0.80 0.77 0.76 0.75 0.74 0.73 0.72 0.71 0.70 0.68 0.67 0.65 0.64 0.63 0.62 0.62 0.63 0.66 0.71 0.75 0.78 0.81 0.84 0.86 0.88 0.89 0.90 0.90
0.142 0.134 0.116 0.106 0.100 0.091 0.078 0.067 0.047 0.040 0.034 0.030 0.027 0.024 0.022 0.019 0.018 0.016 0.016 0.015 0.014 0.013 0.013 0.013 0.013 0.012 0.012 0.012 0.013 0.013 0.014 0.014 0.015 0.016 0.016 0.014 0.013 0.012 0.013 0.014 0.016 0.018 0.020 0.022 0.023 0.024 0.025
8.00 8.20 8.40 8.60 8.80 9.00 9.20 9.40 9.60 9.80 10.00 10.20 10.40 10.50 10.60 10.80 11.00 11.20 11.40 11.60 11.80 12.00 12.40 12.80 13.20 13.60 14.00 14.40 14.80 15.20 15.60 16.00 16.40 16.80 16.40 16.80 17.20 17.60 18.00 18.40 18.80 19.20 19.60 20.00 20.60 21.00 21.60
© 2003 by CRC Press LLC
n 1.66 0.67 1.68 1.68 1.66 1.65 1.63 1.60 1.57 1.52 1.47 1.42 1.35 1.32 1.28 1.23 1.19 1.16 1.13 1.11 1.09 1.08 1.05 1.01 0.98 0.95 0.92 0.89 0.90 0.92 0.95 0.98 1.01 1.04 1.01 1.04 1.09 1.13 1.17 1.21 1.24 1.27 1.29 1.30 1.29 1.27 1.23
k 0.91 0.91 0.92 0.92 0.91 0.91 0.90 0.89 0.89 0.87 0.86 0.84 0.82 0.81 0.80 0.78 0.77 0.76 0.75 0.74 0.74 0.73 0.72 0.71 0.70 0.69 0.68 0.67 0.67 0.68 0.69 0.70 0.71 0.72 0.71 0.72 0.74 0.75 0.76 0.78 0.79 0.80 0.80 0.81 0.80 0.80 0.78
R(φ = 0) 0.026 0.026 0.026 0.026 0.026 0.025 0.025 0.024 0.023 0.021 0.020 0.018 0.016 0.016 0.015 0.014 0.014 0.013 0.013 0.013 0.013 0.013 0.012 0.012 0.012 0.013 0.013 0.013 0.013 0.013 0.013 0.012 0.012 0.012 0.012 0.012 0.013 0.013 0.014 0.014 0.014 0.015 0.015 0.015 0.015 0.015 0.014
350
Handbook of Optical Materials Zirconium (polycrystalline)20—continued
Energy eV
n
k
R(φ = 0)
22.00 22.60 23.00 23.60 24.00 24.60 25.00 25.60 26.00
1.20 1.15 1.12 1.08 1.05 1.02 1.00 0.97 0.95
0.77 0.76 0.75 0.73 0.73 0.71 0.71 0.69 0.69
0.014 0.013 0.013 0.013 0.013 0.012 0.012 0.012 0.013
Energy eV 26.60 27.00 27.60 28.00 28.60 29.00 29.60 30.00
n 0.91 0.88 0.84 0.83 0.82 0.81 0.82 0.82
k 0.67 0.66 0.65 0.64 0.64 0.64 0.64 0.64
R(φ = 0) 0.013 0.013 0.014 0.014 0.014 0.014 0.014 0.014
References: 1. Weaver, J. H. Krafka, C., Lynch, D. W. and Koch, E. E., Optical Properties of Metals, Volumes I and II, Physics Data, Nr. 18-1 and 18-2, (Fachinformationzentrum, Karlsruhe, Germany). 2. Palik, E. D., Ed., Handbook of Optical Constants, Vol. I and Vol. II ( Academic Press, New York, 1985 and 1991). 3. Gray, D. E., Coord. Ed., American Institute of Physics Handbook, 3rd Edition ( McGraw-Hill Book Co., New York, 1972). 4. Shiles, E., Sasaki, T., Inokuti, M., and Smith, D. Y., Phys. Rev. Sect. B, 22, 1612 (1980). 5. Bos, L. W., and Lynch, D. W., Phys. Rev. Sect. B, 2, 4567 (1970). 6. Hagemann, H. J., Gudat, W., and Kunz, C., J. Opt. Soc. Am., 65, 742 (1975). 7. Potter, R. F., Handbook of Optical Constant, Vol. I ( Academic Press, New York, 1985), p. 465. 8. Olson, C. G., Lynch, D. W., and Weaver, J. H., unpublished. 9. Weaver, J. H., Olson, C. G., and Lynch, D. W., Phys. Rev. Sect. B, 15, 4115 (1977). 10. Weaver, J. H., Colavita, E., Lynch, D. W., and Rosei, R., Phys. Rev. Sect. B, 19, 3850 (1979). 11. Priol, M. A., Daudé, A., and Robin, S., Compt. Rend., 264, 935 (1967). 12. Weaver, J. H., Lynch, D. W., and Olson, D. G., Phys. Rev. Sect. B, 10, 501 (1973). 13. Lynch, D. W., Rosei, R., and Weaver, J. H., Solid State Commun., 9, 2195 (1971). 14. Weaver, J. H., Lynch, D. W., and Olson, C. G., Phys. Rev. Sect. B, 7, 431 (1973). 15. Weaver, J. H., and Benbow, R. L., Phys. Rev. Sect. B, 12, 3509 (1975). 16. Weaver, J. H., Phys. Rev. B, 11, 1416 (1975). 17. Edwards, D. F., in Handbook of Optical Constants, Vol. I ( Academic Press, New York, 1985), p. 547. 18. Johnson, P. B., and Christy, R. W., Phys. Rev. Sect. B, 9, 5056 (1974). 19. Weaver, J. H., Lynch, D. W., and Olson, C. G., Phys. Rev. Sect. B, 12, 1293 (1975). 20. Lanham, A. P., and Terherne, D. M., Proc. Phys. Soc., 83, 1059 (1964).
Spectra Spectra of n and k and of the normal incidence absorptance A and reflectance R are shown graphically in Figures 4.2.1–4.2.24 for the following metals [figures are from Lynch, D. W., Mirror and reflector materials, Handbook of Laser Science and Technology, Vol. IV, Optical Materials, Part 2 (CRC Press, Boca Raton, FL, 1986), p. 185]. Aluminum Copper Germanium
© 2003 by CRC Press LLC
Gold Iron Molybdenum
Nickel Niobium Platinum
Silicon Silver Tungsten
Section 4: Metals
Figure 4.2.1 Real (n) and imaginary (k) part of the index of refraction for aluminum.
Figure 4.2.2 Reflectance and absorptance (A) for aluminum calculated for normal incidence from the data of Figure 4.2.1. Note that A = 1 – R and a semi-infinite sample is assumed, i.e., the sample is thick enough to be opaque.
© 2003 by CRC Press LLC
351
352
Handbook of Optical Materials
Figure 4.2.3 Real (n) and imaginary (k) part of the index of refraction for copper.
Figure 4.2.4 Reflectance and absorptance (A) for copper calculated for normal incidence from the data of Figure 4.2.3. Note that A = 1 – R and a semi-infinite sample is assumed, i.e., the sample is thick enough to be opaque.
© 2003 by CRC Press LLC
Section 4: Metals
Figure 4.2.5 Real (n) and imaginary (k) part of the index of refraction for germanium.
Figure 4.2.6 Reflectance (R) for germanium calculated for normal incidence from the data of Figure 4.2.4. Germanium is transparent for wavelengths >1.8 µm and no effect from a second surface has been considered in calculating R.
© 2003 by CRC Press LLC
353
354
Handbook of Optical Materials
Figure 4.2.7 Real (n) and imaginary (k) part of the index of refraction for gold.
Figure 4.2.8 Reflectance and absorptance (A) for gold calculated for normal incidence from the data of Figure 4.2.7. Note that A = 1 – R and a semi-infinite sample is assumed, i.e., the sample is thick enough to be opaque.
© 2003 by CRC Press LLC
Section 4: Metals
Figure 4.2.9 Real (n) and imaginary (k) part of the index of refraction for iron.
Figure 4.2.10 Reflectance and absorptance (A) for iron calculated for normal incidence from the data of Figure 4.2.9. Note that A = 1 – R and a semi-infinite sample is assumed, i.e., the sample is thick enough to be opaque.
© 2003 by CRC Press LLC
355
356
Handbook of Optical Materials
Figure 4.2.11 Real (n) and imaginary (k) part of the index of refraction for molybdenum.
Figure 4.2.12 Reflectance and absorptance (A) for molybdenum calculated for normal incidence from the data of Figure 4.2.11. Note that A = 1 – R and a semi-infinite sample is assumed, i.e., the sample is thick enough to be opaque.
© 2003 by CRC Press LLC
Section 4: Metals
Figure 4.2.13 Real (n) and imaginary (k) part of the index of refraction for nickel.
Figure 4.2.14 Reflectance and absorptance (A) for nickel calculated for normal incidence from the data of Figure 4.2.13. Note that A = 1 – R and a semi-infinite sample is assumed, i.e., the sample is thick enough to be opaque.
© 2003 by CRC Press LLC
357
358
Handbook of Optical Materials
Figure 4.2.15 Real (n) and imaginary (k) part of the index of refraction for niobium.
Figure 4.2.16 Reflectance and absorptance (A) for niobium calculated for normal incidence from the data of Figure 4.2.15. Note that A = 1 – R and a semi-infinite sample is assumed, i.e., the sample is thick enough to be opaque.
© 2003 by CRC Press LLC
Section 4: Metals
Figure 4.2.17 Real (n) and imaginary (k) part of the index of refraction for platinum.
Figure 4.2.18 Reflectance and absorptance (A) for platimum calculated for normal incidence from the data of Figure 4.2.17. Note that A = 1 – R and a semi-infinite sample is assumed, i.e., the sample is thick enough to be opaque.
© 2003 by CRC Press LLC
359
360
Handbook of Optical Materials
Figure 4.2.19 Real (n) and imaginary (k) part of the index of refraction for silicon.
Figure 4.2.20 Reflectance and absorptance (A) for silicon calculated for normal incidence from the data of Figure 4.2.19. Silicon is transparent for wavelengths > 1.2 µm and no effect from a second surface has been considered in calculating R.
© 2003 by CRC Press LLC
Section 4: Metals
Figure 4.2.21 Real (n) and imaginary (k) part of the index of refraction for silver.
Figure 4.2.22 Reflectance and absorptance (A) for silver calculated for normal incidence from the data of Figure 4.2.21. Note that A = 1 – R and a semi-infinite sample is assumed, i.e., the sample is thick enough to be opaque.
© 2003 by CRC Press LLC
361
362
Handbook of Optical Materials
Figure 4.2.23 Real (n) and imaginary (k) part of the index of refraction for tungsten.
Figure 4.2.24 Reflectance and absorptance (A) for tungsten calculated for normal incidence from the data of Figure 4.2.23. Note that A = 1 – R and a semi-infinite sample is assumed, i.e., the sample is thick enough to be opaque.
© 2003 by CRC Press LLC
Section 4: Metals
363
Emittance Emittance is the ratio of radiated emitted power of a surface (W/m2) to the emissive power of a blackbody at the same temperature. The total emittance is an integral over all wavelengths; the spectral emittance is given as a function of wavelength at constant temperature. Normal Spectral Emittance (650 nm) Metal
Emissivity
Beryllium
0.61
Chromium
0.34
Copper
0.10
Gold
0.14
Iron
0.35
Iron (cast)
0.37
Molybdenum
0.37
Nickel
0.36
Nickel (80) -chromium (20) Palladium
0.35
Platinum
0.30
Silver
0.07
Steel
0.35
Tantalum
0.49
Titanium
0.63
Tungsten
0.43
Zirconium
0.32
0.33
From the CRC Handbook of Chemistry and Physics, 75th edition, Lide, D. R., Ed. (CRC Press, Boca Raton, FL, 1994), p. 10-296.
© 2003 by CRC Press LLC
364
Handbook of Optical Materials Total Emittance Metal Aluminum polished oxidized Chromium polished Copper oxidized unoxidized polished Gold carefully polished unoxidized Iron, cast oxidized unoxidized Molybdenum Nickel polished unoxidized
Nickel (80) -chromium (20) Platinum polished unoxidized
Silver polished unoxidized Steel 8%Ni, 18%Cr cast, polished oxidized unoxidized Tantalum unoxidized Tungsten unoxidized
Zinc polished unoxidized
Temperature (˚C)
Emissivity
50–500 200 600
0.04–0.06 0.11 0.19
50 500–1000
0.1 0.28–0.38
50 500 100 50–100
0.6–0.7 0.88 0.02 0.02
200–600 100
0.02–0.03 0.02
200 600 100 600–1000
0.64 0.78 0.21 0.08–0.13
200–400 25 100 500 1000
0.07–0.09 0.045 0.06 0.12 0.19
100 600
0.87 0.87
200–600 25 100 500
0.05–0.1 0.017 0.047 0.096
200–600 100 500
0.02–0.03 0.02 0.035
500 750–1050 200–600 100
0.35 0.52–0.56 0.8 0.08
1500
0.21
25 100 500
0.024 0.032 0.071
200–300 300
0.04–0.05 0.05
From the CRC Handbook of Chemistry and Physics, 75th edition, Lide, D. R., Ed. (CRC Press, Boca Raton, FL, 1994), p. 10-295.
© 2003 by CRC Press LLC
Section 4: Metals
365
Reflectance of Freshly Evaporated Mirror Coatings Normal Incidence Reflectance (%) λ (nm)
Aluminum
220 240 260 280 300 320 340 360 380 400 450 500 550 600 650 700 750 800 850 900 950 1000 1500 2000 3000 4000 5000 6000 7000 8000 9000 10000
91.5 91.9 92.2 92.3 92.3 92.4 92.5 92.5 92.5 92.4 92.2 91.8 91.5 91.1 90.5 89.7 88.6 86.7 86.7 89.1 92.4 94.0 97.4 97.8 98.0 98.2 98.4 98.5 98.6 98.7 98.7 98.7
Copper
Gold
Platinum
Rhodium
Silver
40.4 39.0 35.5 33.0 33.6 36.3 38.5 41.5 44.5 47.5 55.2 60.0 66.9 93.3 96.6 97.5 97.9 98.1 98.3 98.4 98.4 98.5 98.5 98.6 98.6 98.7 98.7 98.7 98.7 98.8 98.8 98.9
27.5 31.6 35.6 37.8 37.7 37.1 36.1 36.3 37.8 38.7 38.7 47.7 81.7 91.9 95.5 97.0 97.4 98.0 98.2 98.4 98.5 98.6 99.0 99.1 99.3 99.4 99.4 99.4 99.4 99.4 99.4 99.4
40.5 46.9 51.5 54.9 57.6 60.0 62.0 63.4 64.9 66.3 69.1 71.4 73.4 75.2 76.4 77.2 77.9 78.5 79.5 80.5 80.6 80.7 81.8 81.8 90.6 93.7 94.9 95.6 95.9 96.0 96.1 96.2
57.8 63.2 67.7 70.7 73.4 75.5 76.9 78.0 78.1 77.4 76.0 76.6 78.2 79.7 81.1 82.0 82.6 83.1 83.4 83.6 83.9 84.2 87.7 91.4 95.0 95.8 96.4 96.8 97.0 97.2 97.4 97.6
28.0 29.5 29.2 25.2 17.6 8.9 72.9 88.2 92.8 95.6 97.1 97.9 98.3 98.6 98.8 98.9 99.1 99.2 99.2 99.3 99.3 99.4 99.4 99.4 99.4 99.4 99.5 99.5 99.5 99.5 99.5
Reference: Hass, G., in Applied Optics and Optical Engineering, vol. III, Kingslake, R., Ed., (Academic Press, New York, 1965), p. 309. See also, Palmer, J. M., Handbook of Optics (McGrawHill, New York, 1995), Chapter 25 and references cited therein.
© 2003 by CRC Press LLC
366
Handbook of Optical Materials
4.3 Mechanical Properties Elastic Constants Elastic stiffness constants (1011 N/m2)
Metal Cubic crystals
C11
C12
C44
Aluminum
1.0675
0.6041
0.2834
Chromium
3.398
0.586
0.990
Copper
1.683
1.221
0.757
Germanium
1.2835
0.4823
0.6666
Gold
1.9244
1.6298
0.4200
Iridium
5.80
2.42
2.56
Iron
2.26
1.40
1.16
Molybdenum
4.637
1.578
1.092
Nickel
2.841
1.529
1.242
Niobium
2.4650
1.3450
0.2873
Palladium
2.2710
1.7604
0.7173
Platinum
3.4670
2.5070
0.7650
Silicon
1.6578
0.6394
0.7962
Silver
1.2399
0.9367
0.4612
Tantalum
2.6023
1.5446
0.8255
Tungsten
5.2239
2.0437
1.6083
C11
C12
C13
C33
C55
Beryllium
2.923
0.267
0.140
3.364
1.625
Magnesium
0.5950
0.2612
0.2180
0.6155
0.1635
Zinc
1.6368
0.3640
0.5300
0.6347
0.3879
Zirconium
1.434
0.728
0.657
1.648
0.320
Hexagonal crystals
Reference: Frederikse, H. P. R., Elastic constants of single crystals, Handbook of Chemistry and Physics, 82nd edition (CRC Press, Boca Raton, FL, 1994), p. 12-37.
Elastic Moduli and Poisson’s Ratio Material
Young’s modulus (GN/m2)
Shear modulus (GN/m2)
Bulk modulus (GN/m2)
Poisson’s ratio
Aluminum 5086-O 6061-T6
71.0
26.4
—
0.33
68.9
25.9
—
0.33
Beryllium (I-701-H)
315.4
148.4
115.0
0.043
Copper
129.8
48.3
137.8
0.343
79.9
29.6
—
0.32
Germanium Gold
78.5
26.0
171.0
0.42
Invar 36
144.0
26.0
99.4
0.259
Iron
211.4
57.2
169.8
0.293
© 2003 by CRC Press LLC
Section 4: Metals Elastic Moduli and Poisson’s Ratio—continued Material
Young’s modulus (GN/m2)
Shear modulus (GN/m2)
Bulk modulus (GN/m2)
Poisson’s ratio
Molybdenum
324.8
81.6
261.2
0.293
Nickel
199.5
125.6
177.3
0.312
Platinum
170.0
76.0
276.0
0.39
Silicon
113.0
60.9
—
0.42
CVD
461.0
39.7
reaction sintered
413.0
Silicon carbide
Silver
0.21
—
—
0.24
103.6
0.367
83.9
—
0.27
215.0
80.0
166.0
0.283
200
62.2
—
0.27
82.7
30.3
304
193.0
416 430
Stainless steel
77.0
Tantalum
185.7
Tungsten
411
160.2
196.3
0.342
311.0
0.28
Table adapted from Palmer, J. M., Handbook of Optics, Vol.II (McGraw-Hill, New York, 1995), p. 35.73.
Strength Properties Material Aluminum 5086-O 6061-T6 Beryllium (I-701-H) Copper Gold Invar 36 Molybdenum Nickel Platinum Silver Stainless steel 304 416 430 Tantalum Tungsten 2
Yield strength (MN/m2)
115 276 276 195 125 276 600 148 150 130 241 950 380 220 780
Microyield strength (MN/m2)
40 160 30 12 37
Elongation (in 50 mm) %
22 15 4 42 30 35 47 35
Hardness
47
55 (Rockwell B) 95 (Rockwell B) 80 (Rockwell B) 10 (Rockwell B) 30 (Knoop*) 70 (Rockwell B) 150 (Knoop*) 109 (Rockwell B) 40 (Knoop*) 32 (Knoop*)
60 12 25 30 2
80 (Rockwell B) 41 (Rockwell C) 86 (Rockwell B) 120 (Knoop*) 350 (Knoop*)
* kg/mm Table adapted from Palmer, J. M., Handbook of Optics, Vol.II (McGraw-Hill, New York, 1995), p. 35.74.
© 2003 by CRC Press LLC
367
368
Handbook of Optical Materials
4.4 Thermal Properties Thermal Properties Metal Aluminum Beryllium Chromium Copper Gold Iridium Iron Magnesium Molybdenum Nickel Niobium Osmium Palladium Platinum Rhenium Rhodium Silver Tantalum Tin Titanium Tungsten Zinc Zirconium
Density(a) (g/cm3) 2.70 1.85 7.15 8.96 19.3 22.5 7.87 1.74 10.2 8.9 8.57 22.59 12.0 21.5 20.8 12.4 10.5 16.4 7.28 4.5 19.3 7.14 6.52
Melting point (˚C)
Coeff. linear expansion(a) (10-6 K-1)
660.3 1287 1907 1084.6 1064.3 2446 1538 650 2623 1455 2477 3033 1555 1768.4 3186 1964 961.8 3017 231.9 1668 3422 419.5 1855
23.1 11.3 4.9 16.5 14.2 6.4 11.8 24.8 4.8 13.4 7.3 5.1 11.8 8.8 6.2 8.2 18.9 6.3 22.0 8.6 4.5 30.2 5.7
Specific heat capacity (J/g K) 0.897 1.825 0.449 0.385 0.129 0.131 0.449 1.023 0.251 0.444 0.265 0.130 0.246 0.133 0.137 0.243 0.235 0.140 0.228 0.523 0.132 0.388 0.278
Thermal conductivity(b) (W/m K) 237 200 93.7 401 317 147 80.2 156 138 90.7 53.7 87.6 71.8 71.6 47.9 150 429 57.5 66.6 21.9 174 116 27.7
(a) 25˚C, (b) 27˚C. From the CRC Handbook of Chemistry and Physics, 82nd edition, Lide, D. R., Ed. (CRC Press, Boca Raton, FL, 2001), p. 12-219.
Temperature Dependence of Linear Thermal Expansion Coefficient (ppm/K) Temperature (K) Aluminum (6061) Beryllium Copper Gold Iron Molybdenum Nickel Silicon Silicon carbide (α) Silver Stainless steel (304) Stainless steel (416)
100
200
12.2 1.32 10.3 11.8 506 2.8 6.6 -0.4 0.14 14.2 11.4 6
20.9 7.00 15.2 13.7 10.1 4.6 11.3 1.5 1.5 17.8 13.2 7.9
293 22.5 11.3 16.5 14.2 11.8 4.8 13.4 2.6 3.3 18.9 14.7 9.5
400 25.0 13.6 17.6 14.8 13.4 4.9 14.5 3.2 4 19.7 16.3 10.9
500 27.5 15.1 18.3 15.4 14.4 5.1 15.3 3.5 4.2 20.6 17.5 12.1
600 30.1 16.6 18.9 15.9 15.1 5.3 15.9 3.7 4.5 21.5 18.6 12.9
Adapted from Palmer, J. M., Properties of metals, in Handbook of Optics, Vol.II (McGraw-Hill, New York, 1995), p. 35.60.
© 2003 by CRC Press LLC
Section 4: Metals
369
Temperature Dependence of Molar Heat Capacity (J/mol K) Temp. (K)
200
250
300
350
400
500
600
Aluminum
21.33
23.08
24.25
25.11
25.78
26.84
27.89
Beryllium
9.98
13.58
16.46
18.53
19.95
21.94
23.34
Chromium
19.86
22.30
23.47
24.39
25.23
26.63
27.72
Copper
22.63
23.77
24.48
24.95
25.33
25.91
26.48
Germanium
—
—
23.25
23.85
24.31
24.96
25.45
Gold
—
—
25.41
25.37
25.51
26.06
26.65
Iron
21.95
23.94
25.15
26.28
27.39
29.70
32.05
Magnesium
22.72
24.02
24.90
25.57
26.14
27.17
28.18
Silicon
15.64
18.22
20.04
21.28
22.14
23.33
24.15
25.36
25.55
25.79
26.36
26.99
Silver Tantalum
24.08
24.86
25.31
25.60
25.84
26.35
26.84
Titanium
22.37
24.07
25.28
26.17
26.86
27.88
28.60
Tungsten
22.49
23.69
24.30
24.65
24.92
25.36
25.79
Zinc
24.05
25.02
25.45
25.88
26.35
27.39
28.59
Zirconium
23.87
24.09
25.22
25.61
25.93
26.56
27.28
From the CRC Handbook of Chemistry and Physics, 82nd edition, Lide, D. R., Ed. (CRC Press, Boca Raton, FL, 2001), p. 12-218.
Temperature Dependence of Thermal Conductivity (W/m K) Temp. (K) Aluminum Chromium Copper Germanium
4
20
15700
11700
80
200
300
400
600
432
237
237
240
231
160
593
184
111
16200
10800
557
413
877
1490
325
1580
332
Iron
677
1540
175
94
80.2
69.5
54.7
Nickel
859
1650
210
107
90.7
80.2
65.6
Platinum
880
495
Silicon
297
4810
1340
264
148
Silver
14700
5100
471
430
429
Tin
18100
320
Titanium Tungsten
5.75 5630
27.5 4050
91.5 32.6 229
72.6
73.3 24.5 185
317
71.6
66.6 21.9 174
43.2
80.7 379
2090
323
59.9
90.9 393
Gold
81.5
96.8
93.7 401
311
27.3 298
71.8
73.2
98.9
61.9
425 62.2 20.4 159
412 — 19.4 137
From the CRC Handbook of Chemistry and Physics, 82nd edition, Lide, D. R., Ed. (CRC Press, Boca Raton, FL, 2001), p. 12-221.
© 2003 by CRC Press LLC
370
Handbook of Optical Materials
4.5 Mirror Substrate Materials Tables adapted from Palmer, J. M., Properties of metals, in Handbook of Optics, Vol.II (McGraw-Hill, New York, 1995), p. 35.11.
Mirror Substrate Materials Material Fused silica Beryllium (I-70) Aluminum (6061) Copper Stainless steel (304) Invar (36) Silicon Silicon carbide (30% Si) Silicon carbide CVD)
Density (g/cm3)
Young’s modulus (GN/m2)
2.19 1.85 2.70 8.94 8.00 8.05 2.33 2.89 3.21
Specific stiffness (arbitrary units)
72 287 68 117 193 141 131 330 465
33 155 25 13 24 18 56 114 145
Thermal Properties of Substrate Materials Material Fused silica Beryllium (I-70) Aluminum (6061) Copper Stainless steel (304) Invar (36) Silicon Silicon carbide (30% Si) Silicon carbide CVD)
Coeff. linear expansion (106 K-1)
Specific heat capacity (J/g K)
0.50 11.3 22.5 16.5 14.7 1.0 2.6 2.6 2.4
750 1925 896 385 500 515 710 670 733
Thermal conductivity (W/m K 1.4 216 167 391 16.2 10.4 156 155 198
Thermal diffusivity (10-6 m2/s) 0.85 57.2 69 115.5 4.0 2.6 89.2 81.0 82.0
Thermal Distortion of Substrate Materials Material Fused silica Beryllium (I-70) Aluminum (6061) Copper Stainless steel (304) Invar (36) Silicon Silicon carbide (30% Si) Silicon carbide CVDi)
Steady state distortion coefficient(a) (µm/W) 0.36 0.05 0.13 0.53 0.91 0.10 0.02 0.02 0.01
(a) Linear expansion coefficient/thermal conductivity. (b) Linear expansion coefficient/thermal diffusivity.
© 2003 by CRC Press LLC
Transient distortion coefficient(b) (s/ m2 K) 0.59 0.20 0.33 0.14 3.68 0.38 0.03 0.03 0.03
Section 5: Liquids
5.1 5.2 5.3 5.4 5.5 5.6 5.7
Introduction Water Physical Properties of Selected Liquids Index of Refraction Nonlinear Optical Properties Magnetooptic Properties Commercial Optical Liquids
© 2003 by CRC Press LLC
Section 5: Liquids
373
Section 5 LIQUIDS 5.1 Introduction Liquids in this section include water (H2O), heavy water (D2O), and the following selected organic materials (CAS – Chemical Abstract Service Registry Number): CAS no. 100 10411
Liquid
CAS no.
acetic acid, C2H4O2
5672
acetone, C3H6O
5569
867
benzene, C6H6
10186
998
Liquid ethanol, C2H6O ethylene glycol, C2H6O2 glycerine (glycerol), C3H8O3
bromobenzene, C6H5Br
6355
heptane, C7H16
3993
carbon disulfide, CS2
6632
hexadecane, C16H34
7540
carbon tetrachloride, CCl4
6731
hexane, C6H14
7554
chloroform, CHCl3
7581
methanol, CH4O
4305
cyclohexane, C6H12
4426
methylcyclohexane, C7H14
5529
1,2-dichloroethane, C2H4Cl2
7915
1-methylnaphthalene, C11H10
7499
dichloromethane, CH2Cl2
2049
nitrobenzene, C6H5NO2
7529
dimethylsulfoxide, C2H6OS
1947
toluene, C7H8
5187
1,4-dioxane, C4H8O2
8848
2,2,4-trimethylpentane, C8H18
5.2 Water 5.2.1 Physical Properties Density, specific heat capacity at constant pressure (Cp), viscosity, vapor pressure, thermal conductivity, dielectric constant, and surface tension of water. All values (except vapor pressure) at for a pressure of 100 kPa (1 bar). Temperature scale is IPTS-68. Temp. (ºC) 0 10 20 30 40 50 60 70 80 90 100
Density (g/cm3) 0.99984 0.99970 0.99821 0.99565 0.99222 0.98803 0.98320 0.97778 0.97182 0.96535 0.95840
Cp (J/g K) 4.2176 4.1921 4.1818 4.1784 4.1785 4.1806 4.1843 4.1895 4.1963 4.2050 4.2159
Visc. (µPa s) 0.6113 1.2281 2.3388 4.2455 7.3814 12.344 19.932 31.176 47.373 70.117 101.325
Vapor press. (kPa) 1793 1307 1002 797.7 653.2 547.0 466.5 404.0 354.4 314.5 281.8
Therm. cond. (mW/m K)
Diel. const.
Surf. tens. (mN/m)
561.0 580.0 598.4 615.4 630.5 643.5 654.3 663.1 670.0 675.3 679.1
87.90 83.96 80.20 76.60 73.17 69.88 66.73 63.73 60.86 587.12 55.51
75.64 74.23 72.75 71.20 69.60 67.94 66.24 64.47 62.67 60.82 58.91
From the CRC Handbook of Chemistry and Physics, 82nd edition, Lide, D. R., Ed. (CRC Press, Boca Raton, FL, 2001), p. 6-3.
© 2003 by CRC Press LLC
374
Handbook of Optical Materials
5.2.2 Absorption Linear Absorption Coefficient α of Water* λ (nm)
α
185 186 187 188 189 190 400 410 420 430 440 450 460.7 469.4 480.7 490.1 499.9 510.1 520.7 529.0 540.4 546.3 574.5 580 585 590 595 598.6 600 602.2 605 610 615 620 625 630 635 640 645 649.2 650 655
14600 9700 6000 3800 2300 1400 5.8 4.7 3.8 4.0 3.2 3.3 2.11 2.05 1.86 1.89 2.33 3.13 3.80 4.09 4.80 5.28 8.05 10.9 11.9 17.2 21.4 19.25 27.2 23.2 29.3 29.3 30.0 30.9 30.5 32.0 32.5 33.4 33.9 32.3 35.1 38.7
© 2003 by CRC Press LLC
(10-4
cm-1)
Ref.
λ (nm)
1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 2 2 2 2 3 2 3 2 2 2 2 2 2 2 2 2 3 2 2
660 665 670 675 680 685 690 690 694.2 695 700 702 705 710 714 715 720 725 725 730 735 735 740 745 746 750 752 755 758 760 769 770 780 781 790 794 806 813 820 833 847 862
α (10-4 cm-1) 40.7 41.9 42.5 43.8 44.7 46.7 49 51.5 52.6 56.9 64.8 69 75.0 90.4 98 111.4 137.5 134 175.6 230.9 238 260.8 269.8 271.2 275 268.3 281 269.6 272 268.5 251 251.9 234.6 230 205.2 210 195 191 199 308 387 428
Ref. 2 2 2 2 2 2 4 2 3 2 2 4 2 2 4 2 2 4 2 2 4 2 2 2 4 2 4 2 4 2 4 2 2 4 2 4 4 4 4 4 4 4
Section 5: Liquids
375
Linear Absorption Coefficient α of Water*—continued λ (nm)
α (10-4 cm-1)
877 893 909 926 935 943 952 962 973 980 990 1000 1010 1020 1031 1042 1053 1070 1087 1099 1111 1124 1136 1149 1163 1176 1190 1205 1220 1235 1250 1266 1282 1299 1316 1333 1351
506 609 750 1190 1580 2140 3220 4710 5140 5020 4690 4160 3510 2850 2310 1900 1640 1480 1660 1920 2320 3230 5480 9700 11800 12300 12500 12500 12200 11700 11100 10700 11300 13400 16700 22500 38700
Ref.
λ (nm)
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
1370 1389 1408 1429 1443 1471 1493 1515 1538 1563 1587 1613 1639 1667 1695 1724 1754 1786 1802 1818 1852 1887 1927 1961 2000 2041 2083 2128 2198 2273 2326 2381 2439 2500 2564 2632
α (10-4 cm-1) 54500 91300 215000 310000 317000 285000 217000 156000 121000 96800 80700 68000 60700 56500 56500 62300 76000 91800 94800 94400 108000 575000 1240000 1090000 692000 450000 310000 236000 193000 230000 293000 418000 635000 957000 1110000 1930000
Ref. 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
* Measurements made at room temperature (Ref. 1 – 298 K; Ref. 2 – 296 ± 1.5 K; Ref. 4 – 300 K).
References: 1. Barrett, J. and Mansell, A. L., Ultra-violet absorption spectra of the molecules H2O, HDO and D2, Nature 187, 138 (1960).
© 2003 by CRC Press LLC
376
Handbook of Optical Materials
2. Sullivan, S. A., Experimental study of the absorption in distilled water, artificial sea water, and heavy water in the visible region of the spectrum, J. Opt. Soc. Am. 53, 962 (1963). This reference contains additional values of α at wavelengths intermediate to those given above. 3. Tam, A. C. and Patel, C. K. N., Optical absorption of light and heavy water by laser optoacoustic spectroscopy, Appl. Opt. 18, 3348 (1979). 4. Palmer, K. F. and Williams, D., Optical properties of water in the near infrared, J. Opt. Soc. Am. 64, 1107 (1974).
Absorption Coefficient α for Water in the Infrared (T = 298 K) λ (nm)
α (cm-1)
0.700 0.725 0.750 0.775 0.800 0.825 0.850 0.875 0.900 0.925 0.950 0.975 1.00 1.20 1.40 1.60 1.80 2.00 2.20 2.40 2.60 2.65 2.70 2.75 2.80 2.85 2.90 2.95 3.00 3.05 3.10 3.15 3.20 3.25 3.30 3.35 3.40
0.00602 0.0159 0.0261 0.0240 0.0196 0.0277 0.0433 0.0562 0.0678 0.144 0.374 0.449 0.363 1.04 12.4 67.2 80.3 69.1 16.5 50.1 153 318 845 2700 5120 8160 11600 12700 11400 9890 7780 5390 3630 2360 1400 979 720
© 2003 by CRC Press LLC
λ (nm) 3.45 3.50 3.6 3.7 3.8 3.9 4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5.0 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 6.0 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 7.0
α (cm-1) 481 338 180 122 112 122 145 172 206 247 294 374 402 420 393 351 312 274 244 232 240 265 319 448 715 1330 2240 2700 1800 1140 882 758 678 632 604 579 575
λ (nm)
α (cm-1)
7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 8.0 8.2 8.4 8.6 8.8 9.0 9.2 9.4 9.6 9.8 10.0 10.5 11.0 11.5 12.0 12.5 13.0 13.5 14.0 14.5 15.0 15.5 16.0 16.5 17.0 17.5 18.0 18.5
566 560 554 550 546 542 540 540 539 539 538 540 544 550 557 567 579 594 614 639 793 1110 1550 2080 2600 2950 3190 3320 3360 3370 3360 3320 3260 3170 3060 2970 2860
Section 5: Liquids
377
Absorption Coefficient α for Water in the Infrared (T = 298 K)—continued λ (nm)
α (cm-1)
λ (nm)
19.0 19.5 20.0 21.0 22 23 24 25 26 27 28 29 30
2740 2600 2470 2290 2130 2010 1890 1780 1690 1600 1520 1440 1370
32 34 36 38 40 42 44 46 48 50 60 70 80
α (cm-1) 1270 1220 1200 1190 1210 1220 1250 1260 1280 1290 1230 1030 859
λ (nm)
α (cm-1)
90 100 110 120 130 140 150 160 170 180 190 200
749 669 607 551 497 449 415 390 367 348 331 317
Reference: Hale, G M. and Querry, M. R., Optical constants of water in the 200-nm to 200-_m wavelength region, Appl. Opt. 12, 555 (1973).
Heavy Water Absorption Coefficient α for Heavy water* λ (nm) 400 410 420 430 440 450 460 470 480 490 500 510 520 530
α (10-4 cm-1) 31.8 28.5 26.3 23.4 20.8 18.2 15.6 14.1 13.1 11.6 10.1 8.9 8.6 7.4
λ (nm) 540 550 560 570 580 590 600 610 620 630 640 650 660 670
α (10-4 cm-1) 6.3 5.8 5.3 5.4 4.9 4.4 4.2 4.0 4.0 3.3 3.2 3.4 2.9 3.5
λ (nm) 680 690 700 710 720 730 740 750 760 770 780 790
α (10-4 cm-1) 3.2 3.3 4.5 5.1 5.4 5.9 6.7 6.9 6.9 6.5 6.7 7.4
Temperature: 296 ± 1.5 K * 99.7% D2O
Reference: Sullivan, S. A., Experimental study of the absorption in distilled water, artificial sea water, and heavy water in the visible region of the spectrum, J. Opt. Soc. Am. 53, 962 (1963). This reference contains additional values of α at wavelengths intermediate to those given above.
5.2.3 Index of Refraction
© 2003 by CRC Press LLC
378
Handbook of Optical Materials Index of Refraction n of Water (298 K)
λ (µm) 0.200 0.225 0.250 0.275 0.300 0.325 0.350 0.375 0.400 0.425 0.450 0.475 0.500 0.525 0.550 0.575 0.600 0.625 0.650 0.675 0.700 0.725 0.750 0.775 0.800 0.825 0.850 0.875 0.900 0.925 0.950 0.975 1.00 1.20 1.40 1.60 1.80 2.00 2.20 2.40 2.60 2.65
n(λ) 1.396 1.373 1.362 1.354 1.349 1.346 1.343 1.341 1.339 1.338 1.337 1.336 1.335 1.334 1.333 1.333 1.332 1.332 1.331 1.331 1.331 1.330 1.330 1.330 1.329 1.329 1.329 1.328 1.328 1.328 1.327 1.327 1.327 1.324 1.321 1.317 1.312 1.306 1.296 1.279 1.242 1.219
λ (µm) 2.70 2.75 2.80 2.85 2.90 2.95 3.00 3.05 3.10 3.15 3.20 3.25 3.30 3.35 3.40 3.45 3.50 3.6 3.7 3.8 3.9 4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5.0 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 6.0
n(λ) 1.188 1.157 1.142 1.149 1.201 1.292 1.371 1.426 1.467 1.483 1.478 1.467 1.1450 1.432 1.420 1.410 1.400 1.385 1.374 1.364 1.357 1.351 1.346 1.342 1.338 1.334 1.332 1.330 1.330 1.330 1.328 1.325 1.322 1.317 1.312 1.305 1.298 1.289 1.277 1.262 1.248 1.265
λ (µm) 6.0 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 7.0 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 8.0 8.2 8.4 8.6 8.8 9.0 9.2 9.4 9.6 9.8 10.0 10.5 11.0 11.5 12.0 12.5 13.0 13.5 14.0 14.5 15.0 15.5
n(λ) 1.265 1.319 1.363 1.357 1.347 1.339 1.334 1.329 1.324 1.321 1.371 1.314 1.312 1.309 1.307 1.304 1.302 1.299 1.297 1.294 1.291 1.286 1.281 1.275 1.269 1.262 1.255 1.247 1.239 1.229 1.218 1.185 1.153 1.126 1.111 1.123 1.146 1.177 1.210 1.241 1.270 1.197
Index of Refraction n of Water (298 K)—continued λ (µm)
© 2003 by CRC Press LLC
n(λ)
λ (µm)
n(λ)
λ (µm)
n(λ)
Section 5: Liquids
15.5 16.0 16.5 17.0 17.5 18.0 18.5 19.0 19.5 20.0 21.0 22 23 24 25
1.197 1.325 1.351 1.376 1.401 1.423 1.443 1.461 1.476 1.480 1.487 1.500 1.511 1.521 1.531
26 27 28 29 30 32 34 36 38 40 42 44 46 48 50
1.539 1.545 1.549 1.551 1.551 1.546 1.536 1.527 1.522 1.519 1.522 1.530 1.541 1.555 10587
60 70 80 90 100 110 120 130 140 150 160 170 180 190 200
379
1.703 1.821 1.886 1.924 1.957 1.966 2.004 2.036 2.056 2.069 2.081 2.094 2.107 2.119 2.130
Reference: Hale, G M. and Querry, M. R., Optical constants of water in the 200-nm to 200-µm wavelength region, Appl. Opt. 12, 555 (1973).
Index of refraction n of water (300 K) λ (nm) 214.44 303.4 360 404.66 408 435.84 449 486.13 508.6 546.07 556 587.56 589.3 632.8 656.28 670.8 690
© 2003 by CRC Press LLC
n
Ref.
1.4032 1.3581 1.353 1.342742 1.344 1.340210 1.337 1.337123 1.3360 1.334466 1.333 1.333041 1.332988 1.331745 1.331151 1.3308 1.332
1 1 3 2 3 2 3 2 1 2 3 2 2 2 2 1 3
λ (nm) 746 752 758 769 781 794 806 813 820 833 847 862 877 893 909 926 935
n 1.332 1.332 1.332 1.331 1.331 1.331 1.331 1.331 1.330 1.330 1.330 1.330 1.330 1.329 1.329 1.329 1.329
Ref. 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
380
Handbook of Optical Materials Index of Refraction n of Water (300 K)—continued
λ (nm) 990 1000 1010 1020 1031 1042 1053 1070 1087 1099 1111 1124 1136 1149 1163 1176 1190 1205 1220 1235 1250 1266 1282 1299 1316 1333 1351 1370 1389 1408 1429 1443
n 1.328 1.328 1.328 1.328 1.328 1.328 1.328 1.328 1.327 1.327 1.327 1.327 1.326 1.326 1.326 1.326 1.325 1.325 1.325 1.325 1.324 1.324 1.324 1.324 1.324 1.323 1.323 1.323 1.322 1.322 1.321 1.321
Ref. 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
λ (nm) 1471 1493 1515 1538 1563 1587 1613 1639 1667 1695 1724 1754 1786 1802 1818 1852 1887 1927 1961 2000 2041 2083 2128 2198 2273 2326 2381 2439 2500 2564 2632
n 1.321 1.320 1.320 1.319 1.319 1.318 1.318 1.317 1.316 1.315 1.314 1.314 1.313 1.312 1.312 1.311 1.310 1.309 1.307 1.306 1.305 1.303 1.301 1.296 1.291 1.285 1.281 1.276 1.268 1.257 1.239
Ref. 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
References: 1. Kaye, G. W. and Laby, T. H., Tables of Physical and Chemical Constants (Longmans, Green & Co., London, 1959). 2. James, A. M. and Lord, M. P., Macmillan's Chemical and Physical Data (Macmillan, London, 1992). 3. Palmer, K. F. and Williams, D., J. Opt. Soc. Am. 64, 1107 (1974).
© 2003 by CRC Press LLC
Section 5: Liquids
381
Index of Refraction of Water at Different Temperatures and Wavelengths Wavelength (nm) T (ºC) 0 10 20 30 40 50 60 70 80 90 100
226.50
361.05
404.41
589.00
632.80
1.39450 1.39422 1.39336 1.39208 1.39046 1.38854 1.38636 l.38395 1.38132 1.37849 1.37547
1.34896 1.34870 1.34795 1.34682 1.34540 1.34373 1.34184 1.33974 1.33746 1.33501 1.33239
1.34415 1.34389 1.34315 1.34205 1.34065 1.33901 1.33714 1.33508 1.33284 1.33042 1.32784
1.33432 1.33408 1.33336 1.33230 1.33095 1.32937 1.32757 1.32559 1.32342 1.32109 1.31861
1.33306 1.33282 1.33211 1.33105 1.32972 1.32814 1.32636 1.32438 1.32223 1.31991 1.31744
1013.98 1.32612 1.32591 1.32524 1.32424 1.32296 1.32145 1.31974 1.31784 1.31576 1.31353 1.31114
Reference: From Schiebener, P., Straub, J. Levelt Sengers, J. M. H., and Gallagher, J. S., J. Phys. Chem. Ref. Data 19, 677 (1990) and the CRC Handbook of Chemistry and Physics, 75th edition, Lide, D. R., Ed. (CRC Press, Boca Raton, FL, 1994).
Temperature Derivative of the Index of Refraction n of Water λ (nm) 226.50 361.05 404.41 404.66 435.84 486.13 546.07 587.56
dn/dT × 106 (K–1) –128 (293–303 K) –113 (293–303 K) –110 (293–303 K) –101 (293–298 K) –100 (293–303 K) –99 (293–298 K) –98 (293–298 K) –100 (298 K) –97 (293–298 K)
Ref. 1 1 1 2 1 2 2 3 2
λ (nm) 589.3 632.8
656.28 706.52 1013.98
dn/dT × 106 (K–1) –80 (293 K) –97 (293–298 K) –96 (293–298 K) –98.5 (298 K) –106 (293–303 K) –96 (293–298 K) –95 (293–298 K) –100 (293–303 K)
Ref. 4 2 2 3 1 2 2 1
References: 1. Schiebener, P., Straub, J., Levelt Sengers, J. M. H., and Gallagher, J. S., J. Phys. Chem. Ref. Data 19, 677 (1990). 2. Kaye, G. W. and Laby, T. H., Tables of Physical and Chemical Constants (Longman Group, London, 1986). 3. Hauf, W. and Grigull, U., Optical Methods in Heat Transfer (Academic Press, New York, 1970). 4. Kaye, G. W. and Laby, T. H., Tables of Physical and Chemical Constants (Longmans, Green & Co., London, 1959).
© 2003 by CRC Press LLC
382
Handbook of Optical Materials
5.3 Physical Properties of Selected Liquids Data in the following tables are in large part from the CRC Handbook of Chemistry and Physics, 82nd edition, Lide, D. R., Ed. (CRC Press, Boca Raton, FL). Physical and chemical property data for many additional organic and inorganic liquids are given in this reference.
Liquid acetic acid, C2H4O2 acetone, C3H6O benzene, C6H6 bromobenzene, C6H5Br carbon disulfide, CS2 carbon tetrachloride, CCl4 chloroform, CHCl3 cyclohexane, C6H12 1,2–dichloroethane, C2H4Cl2 dichloromethane, CH2Cl2 dimethylsulfoxide, C2H6OS 1,4–dioxane, C4H8O2 ethanol, C2H6O ethylene glycol, C2H6O2 glycerine (glycerol), C3H8O3 heptane, C7H16 hexadecane, C16H34 hexane, C6H14 methanol, CH4O methylcyclohexane, C7H14 1–methylnaphthalene, C11H10 nitrobenzene, C6H5NO2 toluene, C7H8 2,2,4–trimethylpentane, C8H18 water, H2O heavy water, D2O
Molecular weight
Density (g/cm3)
60.05 58.08 78.11 157.01 76.14 153.82 119.38 84.16 98.96 84.93 78.14 88.11 46.07 76.10 92.10 100.20 226.45 86.18 32.04 98.19 142.20 123.11 92.14 114.23 18.01528 20.02748
1.0492 0.7856 0.8765 1.4950 1.2556 1.5833 1.4800 0.7731 1.2457 1.3266 1.0955 1.0286 0.7873 0.9598 1.2567 0.6837 0.7733 0.6563 0.7872 0.7694 1.0202 1.1985 0.8647 0.6877 0.99705 1.1044
Dielectric constant ε 6.20 21.01 2.2825 5.45 2.6320 2.2379 4.8069 2.0243 10.10 8.93 47.24 2.2189 25.3 41.4 46.53 1.9209 2.0460 1.8865 33.0 2.024 2.915 35.6 2.379 1.943 80.100 79.754
Electric dipole moment (D) 1.74 2.88 0 — 0 0 1.01 0 — 1.6 3.96 — 1.69 2.28 — ≈0 — — 1.70 ≈0 — — — — — —
Density at 298 K. 1 D = 3.33564 × 10–30 C m
Dielectric Strength of Liquids* Liquid
Dielectric strength (kV/mm)
Ref.
carbon tetrachloride, CCl4
5.5
1
chlorobenzenze, C6H5Cl
7.1
1
helium, He, liquid, 4.2 K
10
2
carbon tetrachloride, CCl4
16.0
3
© 2003 by CRC Press LLC
Section 5: Liquids
383
Dielectric Strength of Liquids*—continued Dielectric strength (kV/mm)
Liquid chlorobenzenze, C6H5Cl
Ref.
18.8
3
20
4
nitrogen, N2, liquid, 77 K: coaxial cylinder electrodes sphere to plane electrodes cyclohexane, C6H12
60
4
42–48
5
hexane, C6H14
42.0
5
water, H2O
65–70
6
2,2,4–trimethylpentane, C8H18
140
7,8
benzene, C6H6
163
7,8
heptane, C7H16
166
7,8
toluene, C6H5C H3:
199
7,8
46
5
20.4 12.0
3 1
* The dielectric strength (or breakdown voltage) of a material depends on the specimen thickness, the electrode shape, and the rate of the applied voltage increase.
References: 1. Nitta, Y. and Ayhara, Y., IEEE Trans. EI–1, 91 (1976). 2. Okubo, H. Wakita, M., Chigusa, S., Nayakawa, N., and Hikita, M., IEEE Trans. DEI–4, 120 (1997). 3. Gallagher, T. J., IEEE Trans. EI–12, 249 (1977). 4. Hayakawa, H., Sakakibara, H., Goshina, H., Hikita, M., and Okubo, H., IEEE Trans. DEI–4, 127 (1997). 5. Wong, P. P. and Forster, E. O., Dielectric Materials. Measurements and Applications, IEE Conf. Publ. 177, 1 (1979). 6. Jomes, H. M. and Kunhards, E. E., IEEE Trans. DEI–1, 1016 (1994). 7. Kao, K. C., IEEE Trans. EI–11, 121 (1976). 8. Sharbaugh, A. H., rowe, R. W., and Cox, C. B., J. Appl. Phys. 27, 806 (1956).
Physical Properties
Liquid acetic acid, C2H4O2 acetone, C3H6O benzene, C6H6 bromobenzene, C6H5Br carbon disulfide, CS2 carbon tetrachloride, CCl4 chloroform, CHCl3 cyclohexane, C6H12 1,2–dichloroethane, C2H4Cl2
© 2003 by CRC Press LLC
Melting point (ºC)
Boiling point (ºC)
16.6 –94.8 5.53
117.9 56.05 80.09
–30.6 –111.5 –23 –63.6 6.6 –35.5
156 46 76.8 61.17 80.73 83.5
Specific heat capacity (J/g K) 2.05 2.17 1.74 — 1.00 0.85 0.96 1.84 1.30
Volume thermal expan. coeff. Βt (103 K–1)
1.1 1.43 1.23 — 1.19 1.22 1.28 1.1a 1.16a
384
Handbook of Optical Materials Physical Properties—continued
Liquid dichloromethane, CH2Cl2 dimethylsulfoxide, C2H6OS 1,4–dioxane, C4H8O2 ethanol, C2H6O ethylene glycol, C2H6O2 glycerine (glycerol), C3H8O3 heptane, C7H16 hexadecane, C16H34 hexane, C6H14 methanol, CH4O methylcyclohexane, C7H14 1–methylnaphthalene, C11H10 nitrobenzene, C6H5NO2 toluene, C7H8 2,2,4–trimethylpentane, C8H18 water, H2O heavy water, D2O
Melting point (ºC)
Boiling point (ºC)
–95.1 — 11.8 –114.1 –13 18.2
1.19 1.96 4.9 2.44 2.39 2.38 2.24 — 2.26 2.53 1.88 — 1.51 1.71 —
40 — 101.5 78.29
–90.6 18.1 –95.3 –97.68
98.5 286.8 68.73 64.6
–126.6 –30.4 5.7 –94.99
100.9 244.7 210.8 110.63
–107.3
99.2
0.00 3.82
Specific heat capacity (J/g K)
100.00 101.42
Volume thermal expan. coeff. βt (103 K–1)
— — 1.03a 1.10 0.566 0.53 — — 1.35 1.19 — — 0.83 1.06 —
4.1818 —
0.256 —
Specific heat capacity and volume thermal expansion coefficients measured at 298 K except for measured at 293 K.
a
5.3.1 Thermal conductivity Thermal conductivity values correspond to a nominal pressure of 1 atmosphere. The values for water, benzene, and toluene are particularly well determined and can be used for calibration purposes. Thermal conductivity (W/m K) Liquid
–25ºC
acetic acid, C2H4O2 acetone, C3H6O benzene, C6H6 carbon disulfide, CS2 carbon tetrachloride, CCl4 chlorobenzene, C6H5Cl chloroform, CHCl3 cyclohexane, C6H12 dibromomethane, CH2Br2 1,4–dioxane, C4H8O2 ethanol, C2H6O ethylene glycol, C2H6O2
© 2003 by CRC Press LLC
0ºC
25ºC
50ºC
75ºC
100ºC
0.153
0.149
0.1329
0.1247
0.136
0.154 0.104 0.131
0.158 0.161 0.1411 0.149 0.099 0.127
0.093 0.122
0.088 0.117
0.112
0.127 0.137 0.120
0.122 0.129 0.114
0.117 0.121 0.108
0.112 0.113 0.103
0.107
0.102
0.147 0.162 0.256
0.135
0.123
0.176 0.256
0.159 0.169 0.256
0.256
0.256
0.169
0.144
0.097
Section 5: Liquids
385
Thermal conductivity (W/m K)—continued Liquid
–25ºC
0ºC
glycerine (glycerol), C3H8O3
25ºC
50ºC
75ºC
0.292
0.295
0.1077
heavy water, D2O
0.297
100ºC 0.300
heptane, C7H16
0.1378
0.1303
0.1228
0.618 0.1152
0.636
hexadecane, C16H34 hexane, C6H14 methanol, CH4O nitrobenzene, C6H5NO2 toluene, C7H8 water, H2O
0.144
0.140
0.136
0.133
0.129
0.125
0.137 0.214
0.128 0.207
0.120 0.200
0.111 0.193
0.102
0.093
0.1461
0.1386 0.5610
0.1311 0.6071
0.1236 0.6435
0.1161 0.6668
0.6791
From the table in CRC Handbook of Chemistry and Physics, 75th edition, Lide, D. R., Ed. (CRC Press, Boca Raton, FL, 1994), p. 6–249. Thermal conductivity data for additional organic and inorganic liquids are given in this reference.
5.3.2 Viscosity Viscosity (mPa s) Liquid acetic acid, C2H4O2 acetone, C3H6O benzene, C6H6 bromobenzene, C6H5Br carbon disulfide, CS2 carbon tetrachloride, CCl4 chloroform, CHCl3 cyclohexane, C6H12 1,2–dichloroethane, C2H4Cl2 dichloromethane, CH2Cl2 dimethylsulfoxide, C2H6OS 1,4–dioxane, C4H8O2 ethanol, C2H6O ethylene glycol, C2H6O2 glycerine (glycerol), C3H8O3
–25ºC
0.540
0.988
0.727
0ºC
25ºC
50ºC
75ºC
1.056 0.306 0.436 10.74
0.786 0.247 0.335 0.798
0.599
0.464
0.395 0.604
0.627
0.512
0.352 0.908 0.537 0.894 0.464 0.413
0.656 0.427 0.615 0.362 1.290 0.787 0.694 6.554 152 0.301
0.569 0.476 3.340 39.8 0.243
2.487
1.609
1.132
0.429 1.0321 0.706
0.533
100ºC
0.494 0.447
0.757
0.523
1.987 1.177 1.074 16.1 934 0.378
methylcyclohexane, C7H14
0.300 0.544 0.679
0.240
1.258
0.405 0.793 0.991
0.501
0.390
0.316
nitrobenzene, C6H5NO2 toluene, C7H8 water, H2O
1.165
3.036 0.778 1.793
1.863 0.560 0.890
1.262 0.424 0.547
0.918 0.333 0.378
0.704 0.270 0.282
heptane, C7H16 hexadecane, C16H34 hexane, C6H14 methanol, CH4O
3.262
1.786
Viscosity values correspond to a nominal pressure of 1 atmosphere.
© 2003 by CRC Press LLC
1.975 14.8
386
Handbook of Optical Materials
5.3.3 Surface Tension Surface tension σ (mN/m) Liquid
10ºC
25ºC
50ºC
75ºC
27.10 23.46 28.22 35.24
24.61 20.66 25.00 32.34
22.13
31.58 26.43 26.67 24.65 31.86 27.20
27.87 23.37 23.44 21.68 28.29
42.92 32.75 21.97 47.99 19.65
40.06 29.28 19.89 45.76 17.20
25.80
22.32
43.54 14.75
41.31
27.05
24.91
22.78
20.64
19.42 23.23 24.989
17.89 22.07 23.29
15.33 20.14 20.46
29.71 74.23
27.93 71.99
40.56 24.96 67.94
37.66 21.98 63.57
34.77 19.01 58.91
acetic acid, C2H4O2 acetone, C3H6O benzene, C6H6 36.98
bromobenzene, C6H5Br carbon disulfide, CS2 carbon tetrachloride, CCl4 chloroform, CHCl3 cyclohexane, C6H12 1,2–dichloroethane, C2H4Cl2
33.81
26.43
dichloromethane, CH2Cl2 dimethylsulfoxide, C2H6OS 1,4–dioxane, C4H8O2 ethanol, C2H6O ethylene glycol, C2H6O2
23.22 21.12
heptane, C7H16 hexadecane, C16H34 hexane, C6H14 methanol, CH4O methylcyclohexane, C7H14 nitrobenzene, C6H5NO2 toluene, C7H8 water, H2O
21.77 29.44 20.31 20.20
100ºC
26.54 17.25
24.72
5.3.4 Absorption Ultraviolet Absorption of Pure Liquids: The following tables present data on the UV absorption edge of several common liquids. The data were obtained using a 1.00–cm pathlength cell and a water reference. From Bruno, T. J. and Svoronos, P. D. N., CRC Handbook of Basic Tables for Chemical Analysis (CRC Press, Boca Raton, FL, 1989), p. 213. Acetone Wavelength (nm) 330 340 350 375 400
© 2003 by CRC Press LLC
Benzene Maximum absorbance 1.000 0.060 0.010 0.005 0.005
Wavelength (nm) 278 300 325 350 400
Maximum absorbance 1.000 0.020 0.010 0.005 0.005
Section 5: Liquids Carbon tetrachloride Wavelength Maximum (nm) absorbance 263 275 300 350 400
1.000 0.100 0.005 0.005 0.005
Cyclohexane Wavelength Maximum (nm) absorbance 200 225 250 300 400
1.000 0.170 0.020 0.005 0.005
1,4–Dioxane Wavelength Maximum (nm) absorbance 215 250 300 350 400
1.000 0.300 0.020 0.005 0.005 Hexane
Wavelength (nm)
Maximum absorbance
195 225 250 275 300
1.000 0.050 0.010 0.005 0.005
Chloroform Wavelength Maximum (nm) absorbance 245 250 275 300 400
Dimethyl sulfoxide Wavelength Maximum (nm) absorbance 268 275 300 350 400
284 300 325 350 400
© 2003 by CRC Press LLC
1.000 0.500 0.200 0.020 0.005
Hexadecane Wavelength Maximum (nm) absorbance 190 200 250 300 400
1.000 0.500 0.020 0.005 0.005
Methanol Wavelength Maximum (nm) absorbance 205 225 250 300 400
Toluene Wavelength (nm)
1.000 0.300 0.005 0.005 0.005
1.000 0.160 0.020 0.005 0.005 Water
Maximum absorbance 1.000 0.120 0.020 0.005 0.005
Wavelength (nm) 190 200 250 300 400
Maximum absorbance 0.010 0.010 0.005 0.005 0.005
387
388
Handbook of Optical Materials Transmission Limits* Liquid
acetone, C3H6O benzene, C6H6 carbon tetrachloride, CCl4 chloroform, CHCl3 cyclohexane, C6H12 n–decane, C10H22 p–dioxane, C4H8O2 ethanol, C2H6O
Limit (nm)
200 270 2250 220 211 173 203 189
Liquid heptane, C7H16 n–hexane, C6H14 methanol, CH4O methylcyclohexane, C7H14 1–octene, C6H16 n–pentane, C5H12 toluene, C7H8 water, H2O
Limit (nm)
196 202 183 206 210 205 274 178
* Transmission limits are the wavelengths of the last visible blackening on a spectrogram for reasonable exposure and development time. From Klevens, H. B. and Platt, J. R., Ultraviolet transmission limits of some liquids and solids, J. Am. Chem. Soc. 69, 3055 (1947).
Spectral transmission ranges of several fluids used for liquid filters. The end points are for 50% transmission through 1 mm of the liquid [from Cook, L. M. and Stokowski, S. E., Filter materials, in Handbook of Laser Science and Technology, Volume IV: Optical Materials, Part 2 (CRC Press, Boca Raton, 1995), p. 151]. For other organic and inorganic filter solutions, see Pellicori, S. F., Transmittances of some optical materials for use between 1900 and 3400 Α, Appl. Opt. 3, 361 (1964); Bass, A. M., Short wavelength cut–off filters for the ultraviolet, J. Opt. Soc. Am. 38, 977 (1948); Ingersoll, K. A., Liquid filters for the visible and near infrared, Appl. Opt. 10, 2473 (1971); Ingersoll, K. A., Liquid filters for the ultraviolet, visible, and near infrared, Appl. Opt. 11, 2781 (1972).
© 2003 by CRC Press LLC
Section 5: Liquids
5.4 Index of Refraction 5.4.1 Organic Liquids Index of Refraction of Selected Liquids (293 K)
nD
Liquid
nD
Liquid
methanol, CH4O
1.3288
ethylene glycol, C2H6O2
1.4318
acetone, C3H6O
1.3588
hexadecane, C16H34
1.4345
ethanol, C2H6O
1.3611
1,2–dichloroethane, C2H4Cl2
1.4448
acetic acid, C2H4O2
1.3720
chloroform, CHCl3
1.4459
hexane, C6H14
1.3749
carbon tetrachloride, CCl4
1.4601
heptane, C7H16
1.3878
glycerine (glycerol), C3H8O3
1.4746
2,2,4–trimethylpentane, C8H18
1.3915
toluene, C7H8
1.4961
dimethylsulfoxide, C2H6OS
1.4170
benzene, C6H6
1.5011
1,4–dioxane, C4H8O2
1.4224
nitrobenzene, C6H5NO2
1.5562
methylcyclohexane, C7H14
1.4231
bromobenzene, C6H5Br
1.5597
dichloromethane, CH2Cl2
1.4242
1–methylnaphthalene, C11H10
1.6170
cyclohexane, C6H12
1.4266
carbon disulfide, CS2
1.6319
Measured at a wavelength of 589 nm (sodium D line). 2.3
2.2
Chalcogenide glasses 2.1
2.0
Refractive index nd
1.9
TaSF LaSF
1.8
LaSK TaF
Optical Glasses
LaF
SF
NbF
SFS
LaK
1.7
BaSF BaF
SSK
SK
1.6
BaLF BaK
FZ
1.5 FP 1.4
PK
BK
KF
K
FK
carbon disulfide
F
KzFS
PSK
TiSF
LF LLF TiF
benzene toulene
glycerine
carbon tetrachloride
Fluoride glasses
acetone methanol
ethanol
water
1.3
Areas populated by commercial optical liquids
1.2
100
80
60
40
20
Abbe number νd
Comparison of selected liquids and optical glasses in an index of refraction Abbe number plot.
© 2003 by CRC Press LLC
389
390
Handbook of Optical Materials Index of Refraction n of Selected Liquids Acetic acid1
λ (nm)
n (296.05 K)
434.05 486.13 589.3 656.28
1.38003 1.37610 1.37152 1.36944
Benzene1
Acetone1 λ (nm)
n (292.55 K)
λ (nm)
434.05 486.13 589.3 656.28
1.36750 1.36366 1.35886 1.35672
434.05 486.13 589.3 656.28
Carbon disulfide1
λ (nm)
n (293.15 K)
λ (nm)
276.3 298.1 313.3 361.0 434.05 486.13 508.6 589.3 656.28 0.8 1.0 1.5 1.85
1.625 1.598 1.582 1.548 1.52361 1.51327 1.509 1.50144 1.49663 1.489 1.485 1.480 1.478
361.0 394.4 434.05 441.6 479.99 486.13 508.6 533.8 589.3 656.28
Chloroform1 λ (nm)
n (293.15 K)
n (291.15 K) 1.740 1.704 1.67665 1.673 1.656 1.6539 1.647 1.640 1.6295 1.62011
λ (nm)
n (293.15 K)
1.5051 1.4911 1.4806
265.5 289.4 313.1
1.4741 1.4631 1.4549
486.13 589.3 656.28
1.45024 1.44432 1.44189
486.13 589.3 656.28
1.36662 1.36242 1.36062
1,2-Dichloroethane2
Ethanol1
λ (nm)
n (293.15 K)
λ (nm)
n (291.5 K)
434.05 486.13 589.3 656.28
1.45528 1.45024 1.44432 1.44189
434.05 486.13 589.3 656.28
1.37011 1.36662 1.36242 1.36062
n (285.45 K) 1.4835 1.4726 1.4656 1.4599
Toluene2 λ (nm) 404.66 434.05 435.84 479.99 486.13 546.07 589.3 632.8 656.28 706.52
Cyclohexane1
265.5 289.4 313.1
© 2003 by CRC Press LLC
Carbon tetrachloride1
n (293.15 K) 1.526120 1.51970 1.517830 1.509285 1.508315 1.500715 1.49693 1.493680 1.49365 1.489795
1,4–Dioxane2 λ (nm) 265.5 289.4 313.1 546.07 589.3
n (293.15 K) 1.4699 1.4583 1.4500 1.4330 1.4311
Ethylene glycol2 λ (nm) 435.83 546.07 589.3
n (293.15 K) 1.4400 1.4330 1.4311
Section 5: Liquids
391
Index of Refraction n of Selected Liquids—continued Glycerine1 λ (nm)
Hexane1
n (293.15 K)
434.05 486.13 589.3 656.28
1.4839 1.4795 1.4740 1.4717
Methanol1
λ (nm)
n (293.15 K)
λ (nm)
n (287.65 K)
434.05 486.13 589.3 656.28
1.38365 1.37988 1.37536 1.37337
434.05 486.13 589.3 656.28
1.33801 1.33490 1.33118 1.32948
Nitrobenzene1 λ (nm)
n (293.15 K)
486.13 589.3 656.28
1.57124 1.55291 1.54593
References: 1. 2.
International Critical Tables of Numerical Data, Physics and Chemistry and Technology, Vol. VII, Washburn, E. W., Ed. (McGraw–Hill, New York, 1930). James, A. M. and Lord, M. P., Macmillan's Chemical and Physical Data (Macmillan, London, 1992).
Temperature Derivative of the Index of Refraction Methanol λ (nm)
dn/dT ×
434.05 486.13 546.07 600 632.8 656.28
–3.90 (T = 288 K) –4.00 (T = 288 K) –4.05 (T = 298 K) –4.68 (T = 278–298 K) –4.00 (T = 288 K) –4.00 (T = 298 K)
λ (nm)
dn/dT × 104 (K–1)
486.13 600 656.28
–2.70 (T = 288 K) –3.06 (T = 278–298 K) –2.60 (T = 288 K)
104
(K–1)
Ethanol λ (nm)
dn/dT × 104 (K–1)
546.07 600 632.8
–4.05 (T = 298 K) –4.38 (T = 278–298 K) –4.00 (T = 298 K)
Ref.
λ (nm)
dn/dT × 104 (K–1)
Ref.
1 3 1
486.13
–2.30 (T = 288 K)
1
656.28
–2.20 (T = 288 K)
1
Ref. 1 1 2 3 2 1
Ethylene glycol
© 2003 by CRC Press LLC
Ref.
2 3 2
Glycerine
392
Handbook of Optical Materials Temperature Derivative of the Index of Refraction—continued Hexane
Cyclohexane
λ (nm)
dn/dT ×
(K–1)
Ref.
λ (nm)
dn/dT × 104 (K–1)
Ref.
434.05 486.13 546.07
–5.60 (T = 298 K) –5.50 (T = 298 K) –5.43 (T = 298 K)
1 1 2
632.8 656.28
–5.40 (T = 298 K) –5.30 (T = 298 K)
2 1
434.05 486.13 546.07 589.3 632.8 656.28
–5.60 (T = 298 K) –5.50 (T = 298 K) –5.46 (T = 298 K) –5.40 (T = 298 K) –5.43 (T = 298 K) –5.40 (T = 298 K)
1 1 2 3 2 1
104
Benzene
Carbon tetrachloride
λ (nm)
dn/dT ×
(K–1)
Ref.
λ (nm)
dn/dT × 104 (K–1)
Ref.
434.05 486.13 546.07 589.3 632.8 656.28
–6.70 (T = 293 K) –6.60 (T = 293 K) –6.42 (T = 298 K) –6.50 (T = 293 K) –6.40 (T = 298 K) –6.40 (T = 293 K)
4 4 2 4 2 4
434.05 486.13 546.07 589.3 632.8 656.28
–5.60 (T = 288 K) –5.60 (T = 288 K) –5.99 (T = 298 K) –5.50 (T = 288 K) –5.98 (T = 298 K) –5.40 (T = 288 K)
1 1 2 1 2 1
104
Carbon disulfide
Toluene
λ (nm)
dn/dT ×
(K–1)
Ref.
λ (nm)
dn/dT × 104 (K–1)
Ref.
267.7 274.9 361.0 394.4 434.1 441.6 467.8 479.99 508.6 533.8 546.07 589.3 632.8 656.28
–17.50 (T = 291 K) –15.00 (T = 291 K) –9.60 (T = 291 K) –9.00 (T = 291 K) –8.70 (T = 291 K) –8.60 (T = 291 K) –8.40 (T = 291 K) –8.30 (T = 291 K) –8.20 (T = 291 K) –8.10 (T = 291 K) –7.96 (T = 298 K) –8.00 (T = 291 K) –7.96 (T = 298 K) –7.80 (T = 291 K)
4 4 4 4 4 4 4 4 4 4 2 4 2 4
404.66 435.84 479.99 486.13 546.07 587.56 589.00 589.59 632.8
–5.97 (T = 293 K) –5.88 (T = 293 K) –5.77 (T = 293 K) –5.76 (T = 293 K) –5.65 (T = 293 K) –5.60 (T = 293 K) –5.60 (T = 293 K) –5.60 (T = 293 K) –5.56 (T = 293 K) –5.55 (T = 298 K) –5.55 (T = 293 K) –5.54 (T = 293 K) –5.51 (T = 293 K)
5 5 5 5 5 5 5 5 5 2 5 5 5
104
643.85 656.28 706.52
Acetic acid
Chloroform
λ (nm)
dn/dT ×
(K–1)
Ref.
λ (nm)
dn/dT × 104 (K–1)
Ref.
486.13
–3.80 (T = 288 K)
1
656.28
–3.70 (T = 288 K)
1
546.07 632.8 656.28
–5.98 (T = 298 K) –5.98 (T = 298 K) –5.30 (T = 298 K)
2 2 1
© 2003 by CRC Press LLC
104
Section 5: Liquids Acetone
393
Nitrobenzene
λ (nm)
dn/dT ×
(K–1)
Ref.
λ (nm)
dn/dT × 104 (K–1)
Ref.
486.13 546.07 589.3 632.8 656.28
–5.00 (T = 288 K) –5.31 (T = 298 K) –5.00 (T = 288 K) –5.31 (T = 298 K) –4.90 (T = 288 K)
1 2 1 2 1
486.13 546.07
–4.80 (T = 288 K) –4.68 (T = 298 K)
1 2
632.8 656.28
–4.68 (T = 298 K) –4.60 (T = 288 K)
2 1
104
References: 1. Timmermans, J., Physico-Chemical Constants of Pure Organic Compounds (Elsevier, New York, 1950). 2. Hauf, W. and Grigull, U., Optical Methods in Heat Transfer (Academic Press, New York, 1970). 3. Lusty, M. E. and Dunn, M. H., Appl. Phys. B 44, 193 (1987). 4. International Critical Tables of Numerical Data, Physics and Chemistry and Technology, Vol. VII, Washburn, E. W., Ed., (McGraw-Hill, New York, 1930). 5. Kaye, G. W. and Laby, T. H., Tables of Physical and Chemical Constants (Longman Group, London, 1986).
5.4.2 Inorganic Liquids Name
Formula
Temperature (ºC) –77
nD (589 nm)
ammonium
NH3
antimony pentachloride
SbCl5
argon
Ar
arsenic trichloride
AsCl3
16
1.604
bromine tribromide
BrF3
16
1.312
carbon disulfide
CS2
20
1.62774
germanium tetrabromide
GeBr4
26
1.6269
germanium tetrachloride
GeCl4
25
1.4614
helium
He
hydrogen peroxide
H2 O2
22 –188
–269 28 –183
1.3944 (578 nm) 1.5925 1.2312
1.02451 (546 nm) 1.4061 1.2243 (578 nm)
oxygen
O2
phosphorus tribromide
PBr3
25
1.687
phosphorus trichloride
PCl3
21
1.5122
sulfur dichloride
SCl2
14
1.557
sulfur trioxide
SO3
20
1.40965
tetrabromosilane
SiBr4
31
1.5685
tetrachlorosilane
SiCl4
25
1.41156
tin tetrabromide
SnBr4
31
1.6628
25
1.5086
tin tetrachloride
SnCl4
xenon
Xe
–112
1.3918 (578 nm)
Reference: Wohlfarth, C. and Wohlfarth, B., Landolt-Börnstein, Numerical Data and Functional Relationships in Science and Technology, New Series, III/38A, Martienssen, W., Ed. (Springer-Verlag, Heidelberg, 1996). The index of refraction at other temperatures and wavelengths may be found in this reference.
© 2003 by CRC Press LLC
394
Handbook of Optical Materials
5.4.3 Calibration Liquids The six liquids below are available in highly pure form and their index of refraction has been accurately measured as a function of wavelength and temperature. They are therefore useful for calibration of refractometers. The estimated uncertainties in the values are: 2,2,4-Trimethylpentane Hexadecane trans-Bicyclo[4.0.0]decane 1-Methylnaphthalene Toluene Methylcyclohexane
±0.00003 ±0.00008 ±0.00008 ±0.00008 ±0.00003 ±0.00003
Further details are given in the references below. This table is reprinted from Reference 1 by permission of the Intemational Union of Pure and Applied Chemistry. References: 1. Marsh, K. N., Ed., Recommended Reference Materials for the Realization of Physicochemical Properties (Blackwell Scientific Publications, Oxford, 1987). 2. Tilton, L. W., J. Opt. Soc. Am. 32, 71 (1941).
λ (nm) 667.81 656.28 589.26 546.07 501.57 486.13 435.83
λ (nm)
2,2,4-Trimethylpentane 20°C 25°C 30°C 1.38916 1.38945 1.39145 1.39316 1.39544 1.39639 1.40029
1.38670 1.38698 1.38898 1.39068 1.39294 1.39389 1.39776
1.38424 1.38452 1.38650 1.38820 1.39044 1.39138 1.39523
trans-Bicyclo[4.0.0]decane 20°C 25°C 30°C
20°C
Hexadecane 25°C
30°C
1.43204 1.43235 1.43453 1.43640 1.43888 1.43993 1.44419
1.43001 1.43032 1.43250 1.43436 1.43684 1.43788 1.44213
1.42798 1.42829 1.43047 1.43232 1.43480 1.43583 1.44007
20°C
1-Methylnaphthalene 25°C 30°C
667.81 656.28 589.26 546.07 501.57 486.13 435.83
1.46654 1.46688 1.46932 1.47141 1.47420 1.47535 1.48011
1.46438 1.46472 1.46715 1.46923 1.47200 1.47315 1.47789
1.46222 1.46256 1.46498 1.46705 1.46980 1.47095 1.47567
1.60828 1.60940 1.61755 1.62488 1.63513 1.63958
λ (nm)
20°C
Toluene 25°C
30°C
20°C
667.81 656.28 589.26 546.07 501.57 486.13 435.83
1.49180 1.49243 1.49693 1.50086 1.50620 1.50847 1.51800
1.48903 1.48966 1.49413 1.49803 1.50334 1.50559 1.51506
1.48619 1.48682 1.49126 1.49514 1.50041 1.50265 1.51206
1.42064 1.42094 1.42312 1.42497 1.42744 1.42847 1.43269
© 2003 by CRC Press LLC
1.60592 1.60703 1.61512 1.62240 1.63259 1.63701 1.65627
1.60360 1.60471 1.61278 1.62005 1.63022 1.63463 1.65386
Methylcyclohexane 25°C 30°C 1.41812 1.41#42 1.42058 1.42243 1.42488 1.42590 1.43010
1.41560 1.41591 1.41806 1.41989 1.42233 1.42334 1.42752
Section 5: Liquids
395
5.4.4 Abnormal Dispersion Liquids Chromatic aberrations in complex lens systems can be corrected by combining lenses made of materials having different refractive indices and dispersions. When the partial dispersion of a material (refractive index for a pair of wavelengths) is plotted versus its Abbe number, most materials lie along a straight line, the so-called “normal” line. (Plots of relative dispersions showing the deviation of various glass types from the normal curve are included in most optical glass catalogs.) To correct for the secondary spectrum in apochromatic lens system (one corrected for three wavelengths), at least one of the materials must have an abnormal dispersion, that is, one lying off the normal line. The wavelength dependence of the refractive index of a material can be described by the Buchdahl equation N(ω) = N0 + ν1ω + ν2ω2 + . . . νjωj , where N0 is the refractive index at the wavelengths λ, ν1, ν 2 , . . . characterize the dispersion, and ω is the chromatic coordinate ω = (λ − λ0/[1 + 5/2(λ − λ0)]. The dispersive power of a material in this model is given by n
D(λ) = δN(λ) /(N0 – 1) = ∑ ηiω, i=1
where n is the order of the Buchdahl dispersion equation. The dispersion coefficients η are defined by η i = νi/(N0 – 1). Below is a plot of the primary and secondary dispersion properties of 178 Schott optical glasses and 300 Cargille optical liquids (courtesy of R. D. Sigler).
References: 1. 2.
Sigler, R. D., Apochromatic color correction using liquid lenses, Appl. Opt. 29, 2451 (1990). Petrova, M. V., Petrovskii, G. T., Tolstoi, M. N., and Volynkin, V. M., Abnormal dispersion liquids, Opt. Eng. 31, 664 (1992).
© 2003 by CRC Press LLC
396
Handbook of Optical Materials
5.5 Nonlinear Optical Properties Abbreviations for Materials Abbreviations 4-BCMUy 4ABP 123TB 124TB 1234TB 1235TB α-NPA BBPEN BEEDT bis-MSB BP4B BPDDT BRD BSQ BTMSF DCV DEANS DMF DMSM DNTA DPA DQCI DR1 ISQ MDCB MDNB Mg:OPTAP MNA MNTPM MNTPMP MOMT NFAI NPCV P(4ABP) P(DPA) PBPC PMTBQ PPV PTPC R6G RB rB
© 2003 by CRC Press LLC
Material Yellow form of poly-4-BCMU 4-Aminobiphenyl 1,2,3-Trimethyl benzene 1,2,4-Trimethyl benzene 1,2,3,4-Tetramethyl benzene 1,2,3,5-Tetramethyl benzene a-NPO (2-(1-naphthyl)-5-phenyloxazole) Bis[n-butyl, 2-phenyl-1,2-ethenedithiolato(2-)-S,S ′] nickel Bis(1,2-diethyl-1,2-ethenedithiolato(2-)-S,S’) nickel p-Bis(o-methylstyryl)benzene Benzopurpurin 4B trans-(Bis-(1-decyl-2-phenylethenedithiolato-S,S’) nickel Bacteriorhodopsin 1,3-Bis(4’-N,N-dibutylamino-2’-hydroxyphenyl)-cyclobutene-2,4-dione Bis (trimethylsilyl) ferocene 4-N,N-Diethylamino-4’-b,b-dicyanovinyl (azobenzene) 4-Diethylamino-4’-nitrostilbene Dimethylformamide 4’-Dimethylamino-N-methyl-4-stilbazolium methylsulfate 4-Nitrothenylidenyl (4’-N,N-dimethylaminoanilide) Diphenyl amine 1,3’-Diethyl 1-2,2-quinolythiacarbocyanice iodide Disperse red 1 1,3-Bis(3’,3’-dimethyl-2’-indoleninylidenyl)-cyclobutene-2,4-dione m-Dicyanobenzene m-Dinitrobenzene Magnesium octaphenyl tetraazaporphyrin 2-Methyl-4-nitroaniline Zinc meso-tetra-( p-methoxphenyl) tetrabenzporphyrin Zinc meso-tetra-( p-methylphenyl) tetrabenzporphyrin Magnesium octamethyltetrabenzporphyrin 5-Nitro(2-furanacroleindenyl (4’-N,N-dimethylaminoanilide) 4-N,N -Dibutylamino-4’-(b-cyano-b-(4’-nitrophenyl) vinyl) (azobenzene) Poly(4-amino biphenyl) with 1.5% tetrafluoroborate doping Poly(diphenyl amine) with 1.5% tetrafluoroborate doping Pb-phthalocyanine Nonconjugated derivative of a polythiophene Poly ( p-phenylene vinylene) Pt-phthalocyanine Rhodamine 6G Rhodamine B Rhodamine B
Section 5: Liquids
397
Abbreviations for Materials—continued Abbreviations Retinal retinal Retinyl acetate SiNc SiPc TBPP TCV TKCPPC TNF ZHDFT ZMTM ZMTMF ZMTP ZMTPDMAP
Material 6-s-cis and completelty trans retinal trans-Retinal, malononitrile Knoevenagel adduct 6-s-cis and completety trans retinyl 1,2Silicon naphthalocyanine Silicon phthalocyanine Tetrabenzporphyrin 4-N,N-Diethylamino-4’-tricyanovinyl (azobenzene) Tetrakis(cumylphenoxy)phthalocyanines 2,4,7-Trinitrofluorenone Zinc hexadecafluorotetrabenzporphyrin Zinc meso-tetramethyltetrabenzporphyrin Zinc meso-tetra-(m-fluorophenyl) tetrabenzporphyrin Zinc meso-tetraphenyltetrabenzporphyrin Zinc meso-tetra-( p-dimethylaminohenyl) tetrabenzporphyrin
Experimental Methods Abbreviation AFRS AI1 DFWM ID KE L MSI OKE OL PS PST SA SFL TBC TL TPDR TPIF TRI
Method anharmonic forced Rayleigh scattering attenuation vs. irradiance for a single beam degenerate four-wave mixing ionization decay DC Kerr effect luminescence or fluorescence modified Sagnac interferometry optical Kerr effect optical limiting polarization spectroscopy power for self-trapping saturated absorption self-focal length two-beam coupling thermal lensing two-photon double resonance spectroscopy two-photon induced fluorescence time-resolved interferometry
Ref. 1 2,3 4 5 6 7,8 9 10 11 12 13 14 15 14 16 17 18 19
References: 1. 2. 3.
Lequime, M., and Hermann, J. P., Reversible creation of defects by light in one dimensional conjugated polymers, Chem. Phys. 26, 431 (1977). Liu, P., Smith, W. L., Lotem, H., Bechtel, J. H., Bloembergen, N., and Adhav, R. S., Absolute two-photon absorption coefficients at 355 and 266 nm, Phys. Rev. B 17(12), 4620 (1978). Bivas, A., Levy, R., Phach, V. D., and Grun, J. B., Biexciton two-photon absorption in the nanosecond and picosecond range in copper halides, in Physics of Semiconductors 1978, Inst. Phys. Conf. Ser. No. 43 (AIP, New York, 1979).
© 2003 by CRC Press LLC
398
Handbook of Optical Materials
4.
Friberg, S. R., and Smith, P. W., Nonlinear optical glasses for ultrafast optical switches, IEEE J. Quantum Electron. QE-23, 2089 (1987). 5. McGraw, D. J., Michaekson, J., and Harris, J. M., Anharmonic forced Rayleigh scattering: A technique for study of saturated absorption in liquids, J. Chem. Phys. 86, 2536 (1987). 6. Hellwarth, R. W., and George, N., Nonlinear refractive indices of CS2 -CCl4 mixtures, Opt. Electron. 1, 213 (1969). 7. Hermann, J. P., and Ducuing, J., Absolute measurement of two-photon cross sections, Phys. Rev. A 5(6), 2557 (1972). 8. Webman, I., and Jortner, J., Energy dependence of two-photon absorption cross sections anthracene, J. Chem. Phys. 50(6), 2706 (1969). 9. Gabriel, M. C., Whitaker, Jr., N. A., Dirk, C. W., Kuzyk, M. G., and Thakur, M., Measurement of ultrafast optical nonlinearities using a modified Sagnac Interferometer, Opt. Lett. 16 (17), 1334 (1991). 10. Ho, P. P., and Alfano, R. R., Optical Kerr effect in liquids, Phys. Rev. A 20(5), 2170 (1979). 11. Winter, C. S., Oliver, S. N., and Rush, J. D., n2 measurements on various forms of ferrocene, Opt. Commun. 69, 45 (1988). 12. Marcano, O., A., Abreu, R. A., and Garcia-Golding, F., Electronic and thermal contributions to the polarization spectrum of DQCI, J. Phys. B: At. Mol. Phys. 17, 2151 (1984). 13. Wang, C. C., Nonlinear susceptibility constants and self-focusing of optical beams in liquids, Phys. Rev. 152(1), 149 (1966). 14. Tompkin, W. R., Boyd, R. W., Hall , D. W., Tick, P. A., J. Opt. Soc. Am. B 4, 1030 (1987). 15. Hongyo, M., Sasaki, T., and Yamanaka, C., Nonlinear effects of POCl3 liquid laser, Technol. Rep. Osaka Univ. 23(1121–1154), 455 (1973). 16. Twarowski, A. J., and Kliger, D. S., Multiphoton absorption spectra using thermal blooming, Chem. Phys. 20, 259 (1977). 17. Chen, C. H., and McCann, M. P., Measurements of two-photon absorption cross sections for liquid benzene and methyl benzenes, J. Chem. Phys. 88 (8), 4671 (1988). 18. Rice, J. K., and Anderson, R. W., Two-photon, thermal lensing spectroscopy of monosubstituted benzenes in 1B2u(1Lb) – 1A1g(1A) and 1B1u(1La) – 1A1g(1A) transition regions, J. Chem. Phys. 90, 6793 (1986). 19. Milam, D., and Weber, M. J., Measurement of nonlinear refractive-index coefficients using timeresolved interferometry: application to optical materials for high-power neodymium laser, J. Appl. Phys. 47, 2497 (1976).
5.5.1 Two-Photon Absorption Cross Sections The two-photon absorption cross section σ2 is related to the two-photon absorption coefficient β by σ2 = (hν/N)β, where N is the number density of molecules. Two-Photon Absorption Coefficient β Liquid
Wavelength (nm)
Pulse length (ns)
β × 1011 (m/W) 1.5 4.5 × 10-5
1 1
1.9
2
1.2 6.3 × 10-4
1 1
benzene, C6H6
354.7 532.1
5 5
cyclohexane, C6H12
694.3
14
toluene, C7H8
354.7 532.1
5 5
References: 1. Chen, C. H. and McCann, M. P., J. Phys. Chem. 8S, 4671 (1988). 2. Lotem, H. and de Araujo, C. B., Phys. Rev. B 16, 1711 (1977).
© 2003 by CRC Press LLC
Ref.
Section 5: Liquids
399
Two-Photon Absorption Cross Sections
Material
Excitation duration (ns)
Method
Two–Photon cross section σ2 10–50cm4 s/ phot. mol.
Applied two–photon energy (eV)
Ref.
123TB 124TB 1234TB 1235TB
TPIF TPIF TPIF TPIF
5 5 5 5
4.66 4.66 4.66 4.66
0.0021 0.075 0.076 0.18
1 1 1 1
α-NPA
L
0.002–0.003
3.57–4.62
Relative spectrum
2
Aniline
TL
3.96–5.69
Relative spectrum 3 (8.8 × benzene @ 4.10 eV)
Anthracene
L
40
3.57
14
4
Azulene
AFRS
42–67
4.66
1070
5
Benzene
TL
4.46–5.69
Relative spectrum 3 (49.0 × benzene @ 4.98 eV) 0.00025 1
TPIF
5
4.66
Bis-MSB
L
0.002–0.003
3.57–4.62
Relative spectrum (690 @ 4.24 eV)
2
BRD
TPDR TPDR TPDR TPDR TPDR TPDR TPDR TPDR TPDR TPDR TPDR
6 6 6 6 6 6 6 6 6 6 6
2.07 2.12 2.16 2.21 2.30 2.36 2.56 2.70 2.78 2.92 3.02
169 207 247 289 288 244 201 167 127 174 199
6 6 6 6 6 6 6 6 6 6 6
Fluorobenzene
TL
4.46–5.69
Relative spectrum 3 (1.5 × benzene @ 4.65 eV and 5.5 × benzene @ 5.69 eV)
Mesitylene
TPIF
5
4.66
0.096
1
m-Xylene
TPIF
5
4.66
0.028
1
o-Xylene
TPIF
5
4.66
0.035
1
p-Xylene
TPIF
5
4.66
0.052
1
© 2003 by CRC Press LLC
400
Handbook of Optical Materials
Two-Photon Absorption Cross Sections—continued
Material
Excitation duration (ns)
Method
Applied two–photon energy (eV)
Two–Photon cross section σ2 10–50cm4 s/ phot. mol.
Ref.
Phenol
TL
4.21–5.69
Relative spectrum (0.8 x benzene @ 4.39 eV and 8.6 × @ 5.45 eV)
3
Pyridine
TL
4–6.2
Relative spectrum (0.27 @ 4.5 eV)
7
R6G
AI1
0.015
3.57
180
8
RB
AI1
0.015
3.57
120
8
Retinal
L
40
3.57
27 (in ethanol)
4
Retinyl acetate
L L
40 40
3.57 3.57
26 (in n-hexane) 29 (in EPIP
4 4
Toluene
TL
4.46–5.69
Relative spectrum (2.1 × benzene @ 4.59 eV and 3.3 × @ 5.62 eV)
3
4.66
0.0036
1
TPIF
5
Table from Garito, A. F. and Kuzyk, M G., Two-photon absorption, organic materials, in Handbook of Laser Science and Technology, Supplement 2: Optical Materials (CRC Press, Boca Raton, FL, 1995), p. 329.
References: 1. 2. 3.
4.
5. 6.
7. 8.
Chen, C. H., and McCann, M. P., Measurements of two-photon absorption cross sections for liquid benzene and methyl benzenes, J. Chem. Phys. 88, 4671 (1988). Kennedy, S. M., and Lytle, F. E., p-bis(o-Methylstyryl)benzene as a power-squared sensor for two-photon absorption measurements between 537 and 694 nm, Anal. Chem. 58, 2643 (1986). Rice, J. K., and Anderson, R. W., Two-photon, thermal lensing spectroscopy of monosubstituted benzenes in 1B2u(1Lb) ← 1A1g(1A) and 1B1u(1La) ← 1A1g(1A) transition regions, J. Chem. Phys. 90, 6793 (1986). Bachilo, S. M., and Bondarev, S. L., Spectral and polarization features of two-photon absorption in retinal and retinyl acetate, J. Appl. Spectrosc. 45, 1078 (1986); translated from Zhurnal Prikladnoi Spektroskopii 45, 623 (1986). McGraw, D. J., Michaekson, J., and Harris, J. M., Anharmonic forced Rayleigh scattering: A technique for study of saturated absorption in liquids, J. Chem. Phys. 86, 2536 (1987). Birge, R. R., and Zhang, C. F., Two-photon double resonance spectroscopy of bacteriorhodopsin. Assignment of the electronic and dipolar properties of the low-lying 1Ag*– -like and 1Bg*+ -like π, π* states, J. Chem. Phys. 92, 7178 (1990). Salvi, P. R., Foggi, P., Bini, R., and Castellucci, E., The two-photon spectrum of liquid pyridine by thermal lensing techniques, Chem. Phys. Lett. 141, 417 (1987). Sperber, P., and Penzkofer, H., S0-Sn two-photon absorption dynamics of rhodamine dyes, Opt. Quantum Electron. 18, 281 (1986).
© 2003 by CRC Press LLC
Section 5: Liquids
401
5.5.2 Nonlinear Refraction Nonlinear Refractive Index γ Liquid
Wavelength (µm)
γ × 1020 (m2/W)
Ref.
acetic acid, C2H4O2
0.6943
22.6
1
acetone, C3H6O
0.6943
13.3
1
benzene,* C6H6
0.57 0.6943
38 35
carbon disulfide,* CS2
0.53 0.6943 1.0642 1.32 10.6
310 ± 30 390 ± 50 290 ± 30 330 390 ± 150
4,7 1 3 4 5 4 6
carbon tetrachloride, CCl4
0.53 0.56-0.59 0.6943
10.2 8.0 5.8
4,7 8 1
chloroform, CHCl3
0.53 0.6943
20 17
4,7 1
cyclohexane, C6H12
0.53 0.55-0.58
7.6 12.3 ± 0.9
4,7 9
1,2-dichloroethane, C2H4Cl2
0.53
24
4,7
ethanol, C2H6O
0.53
5.2
4,7
glycerine (glycerol), C3H8O3
0.53
4.7
4,7
heavy water, D2O
1.06
6.4
10
methanol, CH4O
0.53
4.7
4,7
nitrobenzene, C6H5NO2
0.53 0.6943
450 240
4,7 1
toluene, C7H8
0.53 0.6943
113 85
4,7 1
water, H2O
0.53 0.6943 1.0642
2.7 2.8 5.4(?)
4,7 1 10
Measurements made at room temperature. * Materials used for liquid optics based on nonlinear self-focusing [Ramanthan, D. and Molian, P. A., Laser micromachining using liquid optics, Appl. Phys. Lett. 78, 1484 (2001)].
References: 1. 2. 3. 4. 5.
Smith, W. L., Nonlinear refractive index, in CRC Handbook of Laser Science and Technology, Vol. III, Optical Materials: Part 1 (CRC Press, Boca Raton, FL, 1986), p. 259. Owyoung, A. and Peercy, P. S., J. Appl. Phys. 48, 674 (1977). Bennett, H. E., Guenther, A. H., Milam, D., and Newnam, B. E., Appl. Opt. 26, 813 (1987). Witte, K. J., Galanti, M., and Volk, R., Opt. Commun. 34, 278 (1980). Cherlow, J. M., Yang, T. T., and Hellwarth, R. W., IEEE J. Quantum Electron. QE-12, 644 (1976).
© 2003 by CRC Press LLC
402
Handbook of Optical Materials
6. Sheik-Bahae, M., Said, A. A., Wei, T.-H., Hagan, D. J., and Van Stryland, E. W., IEEE J. Quantum. Electron. 26, 760 (1990). 7. Ho, P. P. and Alfano, R. R., Phys. Rev. A 20, 2170 (1979). 8. Levenson, M. D. and Bloembergen, N., J. Chem. Phys. 60, 1323 (1974). 9. Song, J. J. and Levenson, M. D., J. Appl. Phys. 48, 3496 (1977). 10. Smith, W. L., Liu, P., and Bloembergen, N., Phys. Rev. A 15, 2396 (1977).
Nonlinear Refraction Data for Solutions Dye weight fract.(%)
Material
Solvent
4-BCMUy DEANS DMSM DMSM MNA P(4ABP) P(DPA) PBPCa PMTBQa PTPCa
DMF 14 DMF 3 Ethanol 5 Formamide 20 Ethanol 5 –2 DMF 10 –10–3 M/l DMF 10–2–10–3 M/l 0.73 M/l CHCl3 DCM 100 0.73 M/l CHCl3 DMSO 10–3 M/l 0.73 M/l CHCl3
Retinal TKCPPCa
Method
Pulse length (ns)
DFWM OKE OKE OKE OKE DFWM DFWM DFWM DFWM DFWM DFWM DFWM
0.033 6 6 6 6 0.040 0.040 0.035 0.030 0.035 6 0.035
Wavelength (nm)
Linear ( 3) ( 3) refract. χ 1111 , χ 1212 –12 3 index ( 10 cm /erg) Ref.
1064 700, 830 700, 830 700, 830 700, 830 1064 1064 1064 532 1064 532 1064
1.43
1.43 1.43
1.4 ª0.2 0.46 3 ª0.2 0.31, 0.17 0.48, 0.22 200 4600 20 4.3 4.0
7 8 8 8 8 9 9 10 11 10 12 10
aExtrapolated from solution measurement.
Nonlinear Refraction Data for Dye Solutions
Dye A9860 b-Carotene BDN BEEDT BPDDT DNTPC DTTC IR5 Nigrosine S501
Solvent 1,2-dichloroethane EtOH Toluene Dichloromethane Dichloromethane MtOH MtOH 1,2-Dichloroethane H2 O o-Dichlorobenzene
© 2003 by CRC Press LLC
Dye conc. (1022cm–3)
Method
Pulse length (ns)
Wavelength (nm)
Linear refract. index
0.58
DFWM
0.16
532
1.45
1.8
2,3
20 1.6 0.0001
DFWM DFWM DFWM
0.16 0.16 0.1
532 532 1064
1.3 1.49
0.2 1.7 0.36
1,3 2,3 4
0.0001
DFWM
0.1
1064
1.36
4
4.3 25 1
DFWM DFWM DFWM
0.16 0.16 0.16
532 532 532
1.3 1.3 1.45
1.0 0.8 2.1
2,3 2,3 2,3
42 0.5
DFWM DFWM
0.16 0.16
532 532
1.33 1.55
2.6 1.25
2,3 2,3
( 3)
χ 1111 (10–20m2/V2) Ref.
Section 5: Liquids
403
Nonlinear Refraction Data for Dye Solutions—continued
Dye
Absorption Pulse coeff. length α(cm–1) Method (ns)
Solvent
BP4B BP4B BP4B BP4B Chrysoidina Chrysoidin Chrysoidin DQCI DQCI DQCI Malachite green Malachite green Malachite green
Acetone Ethanol Glycerol Methanol Acetone Ethonal Methonal Acetone Acetone Acetone Acetone Acetone Acetone
0.39 0.67 2.28 0.74 0.21 0.67 0.66 92 16.1 267 27.6 82.8 175
DFWM DFWM DFWM DFWM DFWM DFWM DFWM PS PS PS PS PS PS
20 20 20 20 20 20 20 6 6 6 6 6 6
Wave( 3) length χ 1111 –20 2 (nm) (10 m /V2) 532 532 532 532 532 532 532 590 590 590 610 610 610
( 3)
( 3)
χ 1212 , χ 1221
(10–12cm3/erg)
Ref.
8000 1600 20000 8800 4000 7000
5 5 5 5 5 5 5 6 6 6 6 6 6
89 151 130 146 83.1 113 146
aLinear refractive index = 1.33. Dye conc. Dye BDN CoTPP H2TPP IR5 S501 ZnTPP
Solvent Toluene Toluene Toluene 1,2–Dichloroethane 1,2–Dichloroethane Toluene
Pulse length
Wavelength
Linear refract.
(nm)
index
(10–4 M/l)
Method
(ns)
* 0.727 3.86 *
DFWM DFWM DFWM DFWM
0.18 0.08–0.2 0.08–0.2 0.18
1064 532 532 1064
1.5
*
DFWM
0.18
1064
2.29
DFWM
0.08–0.2
532
( 3)
χ 1111 – (10 20 m2/V2) Ref.
1.45
91 10 40 62
2 2 2 2
1.45
59
2
20
2
*Dye concentration adjusted for 50% transmission in a 2-mm cell.
Dye
Solvent
MNTPM MNTPMP MOMT TBPP ZHDFT ZMTM ZMTMF ZMTP ZMTPDMAP
© 2003 by CRC Press LLC
THF THF THF THF THF THF THF THF THF
Dye
Pulse
Wave-
Linear
conc. (10–4 g/ml)
Method
length (ns)
length (nm)
refract. index
0.1–1.0 0.1–1.0 0.1–1.0 0.1–1.0 0.1–1.0 0.1–1.0 0.1–1.0 0.1–1.0 0.1–1.0
DFWM DFWM DFWM DFWM DFWM DFWM DFWM DFWM DFWM
17 17 17 17 17 17 17 17 17
532 532 532 532 532 532 532 532 532
( 3)
χ 1111
(10–12 cm3/erg) Ref. 14000 12000 8000 3000 2000 15000 13000 3000 28000
1 1 1 1 1 1 1 1 1
404
Handbook of Optical Materials Nonlinear Refraction Data for Liquids
Liquid
Method
Pulse length (ns)
4ABP α-Picoline Benzene Benzene Benzene Benzene Benzene Benzene
DFWM TRI OKE OKE OKE OKE OKE TRI
0.040 0.025 0.03 0.03 0.03 0.03 0.03 0.025
Benzene
DFWM
chloride BTMSF CCl4 CH3COCH3 Chloroform
OL TRI TRI TRI
CS2
DFWM
CS2 CS2 CS2 Cyclohexane
PST TRI SFL RTI
DMF DPA Molten ferrocene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene P(4ABP) P(DPA) PPV Toluene
DFWM
Wavelength (nm) 1064 532 1064, 459 1064, 472 1064, 496 1064, 517 1064, 590 532
0.033
1064
10 0.025 0.025 0.025
1060 532 532 532
0.033
1064
130 0.025 3 0.025
10600 532 10600 532
0.033
DFWM OL
0.040 10
OKE OKE OKE OKE OKE OL TRI DFWM DFWM DFWM RTI
0.03 0.03 0.03 0.03 0.03 10 0.025 0.040 0.040 0.0004 0.025
Linear ( 3) ( 3) refract. χ 1111 , χ 1212 index (10–12 cm3/erg)
1.52a 1.52a 1.51a 1.51a 1.50a 1.51
χ 1.55 1.45
1064, 459 1064, 472 1064, 496 1064, 517 1064, 590 1060 532 1064 1064 602,580 532
( 3) 1212
0.05
0.049
= 0.11
0.008 0.009 0.015
1.45 1.63 1.63 1.63 1.43
0.60 0.007
χ
( 3) 1212
1.58a 1.58a 1.57a 1.56a 1.55a 1.56 1.55
15 16 16 16
8.75 0.68 0.83 0.009
16 13 17 13
7
= 0.033
7
1.49
0.17 0.13 0.168 0.146 0.132 0.084 0.11 = 100 = 100 400 0.018
9 13 14 14 14 14 14 13
0.20 0.009 0.010 0.019
= 3 1.55
Ref.
7
( 3) χ 1212 = 0.32
1064 1064 1060
<_(3) > = 3 0.045 0.057 0.057 0.068 0.059 0.070 0.036
( 3)
χ 1111 (10–12 cm3/erg)
0.20 0.13
0.038
9 15 14 14 14 14 14 15 13 9 9 18 13
a Refractive index of probe beam. The tables above are from Garito, A. F. and Kuzyk, M G., Two-photon absorption, organic materials, Handbook of Laser Science and Technology, Supplement 2: Optical Materials (CRC Press, Boca Raton, FL, 1995) , p. 289.
© 2003 by CRC Press LLC
Section 5: Liquids
405
References: 1. 2. 3. 4. 5. 6. 7. 8. 9.
10.
11. 12. 13. 14
15. 16 17. 18.
Rao, D. V. G. L. N., Aranda, F. J., Roach, J. F., and Remy, D. E., Third-order, nonlinear optical interactions of some benzporphyrins, Appl. Phys. Lett. 58(12), 1241 (1991). Maloney, C., Byrne, H., Dennis, W. M., and Blau, W., Picosecond optical phase conjugation using conjugated organic molecules, Chem. Phys. 21, 21 (1988). Maloney, C., and Blau, W., Resonant third-order hyperpolarizabilities of large organic molecules, J. Opt. Soc. Am. B 4(6), 1035 (1987). Winter, C. S., Hill, C. A. S., and Underhill, A. E., Near resonance optical nonlinearities in nickel dithiolene complexes, Appl. Phys. Lett. 58(14), 107 (1991). Mailhot, S., Galarneau, P., Lessard, R. A., and Denariez-Roberge, M.-M., Degenerate four-wave mixing in organic azo dyes chrysoidin and benzopurpurin 4B, Appl. Opt. 27(16), 3418 (1988). Marcano, A., and Aranguren, L., Absolute values of the nonlinear susceptibility of dye solutions measured by polarization spectroscopy, J. Appl. Phys. 62(8), 3100 (1987). Nunzi, J. M., and Grec, D., Picosecond phase conjugation in polydiacetylene gels, J. Appl. Phys. 62(6), 2198 (1987). Kanabara, H., Kobayashi, H., and Kubodera, K., Optical Kerr shutter performance of a solution of organic nonlinear optical materials, IEEE Phot. Tech. Lett. 1(6), 149 (1989). Chandrasekhar, P., Thorn, J. R. G., and Hochstrasser, R. M., Third-order nonlinear-optical properties of poly(diphenyl amine) and poly(4-amino biphenyl), novel processible conducting polymers, Appl. Phys. Lett. 59(14), 1661 (1991). Shirk, J. S., Lindle, J. R., Bartoli, F. J., Hoffman, C. A., Kafafi, Z. H., and Snow, A. W., Offresonant third-order optical nonlinearities of metal-substituted phthalocyanines, Appl. Phys. Lett. 55(13), 1287 (1989). Jenekhe, S. A., Lo, S. K., and Flom, S. R., Third-order nonlinear optical properties of a soluble conjugated polythiophen derivative, Appl. Phys. Lett. 54 (25), 2524 (1989). Sakai, T., Kawabe, Y., Ikeda, H., and Kawasaki, K., Third-order nonlinear optical properties of retinal derivatives, Appl. Phys. Lett. 56(5), 411 (1990). Xuan, N. P., Ferrier, J - L, Gazengel, J., and Rivoire, G., Picosecond measurements of the third order susceptibility tensor in liquids, Opt. Commun. 51(6), 433 (1984). Kuzyk, M. G., Norwood, R. A., Wu, J. W., and Garito, A. F., Frequency dependence of the optical Kerr effect and third-order electronic nonlinear-optical processes of organic liquids, J. Opt. Soc. Am. B 6(2), 154 (1989). Winter, C. S., Oliver, S. N., and Rush, J. D., n2 measurements on various forms of ferrocene, Opt. Commun. 69(1), 45 (1988). Mohebi, M., Aiello, P. F., Reali, G., Soileau, M. J., and Van Stryland, E. W., Self-focusing in CS2 at 10.6 mm, Opt. Lett. 10(8), 396 (1985). Golub, I., Beaudoin, Y., and Chin, S. L., Nonlinear refraction in CS2 at 10.6 µm, Opt. Lett. 13 (6), 488 (1988). Bhanu, Singh, P., Prasad, P. N., and Karasz, F. E., Third-order non-linear optical properties of oriented films of poly( p-phenylene vinylene) investigated by femtosecond degenerate four wave mixing, Polymer 29, 1949 (1988).
© 2003 by CRC Press LLC
406
Handbook of Optical Materials
5.5.3 Kerr Constants DC Kerr Constants of Pure Liquids
Liquid acetone, C3H6O benzene, C6H6 carbon disulfide, CS2 carbon tetrachloride, CCl4 bronobenzene, C6H5Br cyclohexane, C6H12
DC Kerr constant B0 (10–16 (m/V2)
Liquid
DC Kerr constant B0 (10–16 (m/V2)
1814 66 358.9 8.2 1012 8.2
cyclohexane, C6H12 ethanol, C2H6O hexane, C6H14 methanol, CH4O nitrobenzene, C6H5NO2 toluene, C7H8
8.2 85.5 5.0 107.9 28500 83.3
Measurements made at a wavelength of 589.3 nm and 293 K.
Reference: 1. Shen, Y. R., Electrostriction, optical Kerr effect and self-focusing of laser beams, Phys. Lett. 20, 378–380 (1966).
DC Kerr Response of Binary Liquids
Material A
Material B
Benzene Benzene Benzene Benzene Cyclohexane Cyclohexane Cyclohexane Cyclohexane Cyclohexane Nitromethane Nitromethane Nitromethane Nitromethane Pyridine Pyridine Pyridine
Chlorobenzene Chlorobenzene Chlorobenzene Chlorobenzene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene Chlorobenzene Chlorobenzene Chlorobenzene Chlorobenzene 2,6-Lutidine 2,6-Lutidine 2,6-Lutidine
Molar
Wave-
Linear
fraction A
length (nm)
refract. index
0 0.3 0.6 1.0 0 0.2 0.4 0.8 1.0 0 0.4 0.7 1.0 0 0.6 1.0
632.8 632.8 632.8 632.8 632.8 632.8 632.8 632.8 632.8 632.8 632.8 632.8 632.8 632.8 632.8 632.8
1.524
1.501 1.556
1.427 1.524
1.382 1.495 1.509
Temp. (°C) 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25
(2) (2) n1111 − n1122 (10–20 m2/V2)
9.15 6.21 3.28 0 28.2 16.4 9.32 1.41 0 9.15 10.7 12.3 8.28 8.28 11.9 14.5
Reference: Piazza, R., Degiorgio, V., and Bellini, T., Kerr effect in binary liquids, J. Opt. Soc. Am. B 3, 1642 (1986).
© 2003 by CRC Press LLC
Section 5: Liquids
407
DC Kerr Response of Binary Liquids Weight Material A B Lutidine Lutidine Lutidine Lutidine Lutidine Lutidine Lutidine
Linear
Percent of A (%)
Wavelength (nm)
0 35 35 35 100 100 100
632.8 632.8 632.8 632.8 632.8 632.8 632.8
H2 O H2 O H2 O H2 O H2 O H2 O H2 O
refractive Index 1.33
1.495
(2) (2) n1111 − n1122 (10–20 m2/V2)
Temp. (°C) 23–32.8 23 32 32.8 32 32.8 23
24.0 10.2 21.9 38.0 8.76 8.76 8.76
Reference: Piazza, R., Degiorgio, V., and Bellini, T., Kerr effect in binary liquids, J. Opt. Soc. Am. B 3, 1642 (1986). The tables above are from Garito, A. F. and Kuzyk, M. G., Two-photon absorption, organic materials, Handbook of Laser Science and Technology, Supplement 2: Optical Materials (CRC Press, Boca Raton, FL, 1995), p. 289.
Optical Kerr Constant The laser-induced Kerr constant is given by B0 = λp is the linearly polarized probe beam wavelength.
2 π/ n λ p χ(3) 1 2 1 2 +
χ ( 3 )1 2 2 1
, where
Optical Kerr Constants of Pure Liquids Liquid acetic acid
Wavelength (nm) 532 694
Optical Kerr constant B0 (10–16 m/V2)
1064
33.0 22.9 21.5
acetone, C3H6O
694
8.2
benzene, C6H6
532 694 1064
carbon disulfide, CS2
694 1064
carbon tetrachloride, CCl4
chlorobenzene, C6H5Cl chloroform, CHCl3
694
470 360
1064
8.9 3.3
1064
89.9
694 1064
© 2003 by CRC Press LLC
79 70 51
23 18
408
Handbook of Optical Materials Optical Kerr Constants of Pure Liquids—continued Liquid
Wavelength (nm)
Optical Kerr constant B0 (10–16 m/V2)
cyclohexane, C6H12
694
6.8
m-dichlorobenzene, C6H4Cl2
694
170
o-dichlorobenzene, C6H4Cl2
694
179
ethanol, C2H6O
694 1064
5.22 5.1
heavy water, D2O
1064
2.9
heptane, C7H16
694 1064
11.3 7.6
694
20.2
694
9.9 6.9
hexadecane, C16H34 hexane, C6H14
1064 methanol, CH4O
1064
694
4.76 3.3
methylcyclohexane, C7H14
694
7.7
nitrobenzene, C6H5NO2
694 1064
420 260
tetrachloroethylene, C2Cl4
694
148
toluene, C7H8
694
120 99
1064 water, H2O
o-xylene, C8H10 m-xylene, C8H10 po-xylene, C8H10
694
4.6
1064
2
694 694 694
130 125 120
Measurements at room temperature.
Reference: 1. Harrison, N. J. and Jennings, B. R., Laser-induced Kerr constants for pure liquids, J. Phys. Chem. Ref. Data 21, 157–163 (1992).
© 2003 by CRC Press LLC
Section 5: Liquids
409
5.5.4 Third-Order Nonlinear Optical Coefficients
Liquid acetone, C3H6O benzene, C6H6
Nonlinear optical process (−ω; ω, ω, −ω) (−ω; ω, ω, −ω)
(−ω1; ω1, ω2, −ω2) (−2ω1+ ω2; ω1, ω1, −ω2)
(3ω; ω, ω, ω) (−2ω; ω, ω, 0) bromobenzene, C6H5Br
(−2ω1+ ω2; ω1, ω1, −ω2)
carbon disulfide, CS2
(−ω; ω, ω,−ω)
chloroform, CHCl3 1,2-dichloroethane, C2H4Cl2 1,4-dioxane, C4H8O2 ethanol, C2H6O
(−ω1; ω1, ω2, −ω2) (−2ω; ω, ω, 0) (−ω; ω, ω,−ω) (−2ω; ω, ω, 0) (−ω; ω, ω,−ω) (−2ω; ω, ω, 0) (−2ω; ω, ω, 0) (−ω; ω, ω,−ω)
glycerine (glycerol), C3H8O3 heptane, C7H16 hexane, C6H14 methanol, CH4O methylbenzene, C6H8 nitrobenzene, C6H5NO2
(−ω; ω, ω,−ω) (−2ω; ω, ω, 0) (−2ω; ω, ω, 0) (−2ω; ω, ω, 0) (−2ω; ω, ω, 0) (−ω; ω, ω,−ω)
carbon tetrachloride, CCl4
(−ω1; ω1, ω2, −ω2) (−2ω; ω, ω, 0) nitromethane, CH3NO2 toluene, C7H8 water, H2O
© 2003 by CRC Press LLC
(−2ω; ω, ω, 0) (−2ω; ω, ω, 0) (−2ω; ω, ω, 0)
Coefficient 20 2 –2 Cjn × 10 m V
Wavelength (µm)
C11 = 0.252 ± 0.056 C11 = 0.518 ± 0.07 C18 = 0.098 C18 = 0.0782 C18 = 0.091 C18 = 0.028 C11 = 0.56 C11 = 0.242 ± 0.024 C11 = 0.00859 ± 0.00037 C18 = 0.252 ± 0.00014 C11 = 0.0184 ± 0.056 C11 = 0.02215 ± 15% C11 = 0.02215 ± 15% C11 = 0.084 C11 = 0.0196 ± 15% C18 = 0.476 C18 = 0.560 C18 = 0.266 C11 = 0.06233 ± 15% C18 = 0.0168 ± 30% C11 = 0.0182 ± 15% C18 = 0.07 ± 30% C11 = 0.042 ± 15% C11 = 0.01351 ± 15% C18 = 0.0315 C11 = 0.196 ± 0.042 C11 = 0.196 ± 0.07 C11 = 0.84 ± 15% C11 = 0.7105 ± 15% C11 = 0.301 ± 15% C11 = 0.056 C18 = 0.42 C18 = 0.322 C11 = 1.148 ± 0.140 C18 = 0.182 C11 = 0.585 ± 15% C11 = 0.360 ± 15 C11 = 0.042 ± 0.093 C11 = 0.0238 ± 15% C11 = 0.0616 ± 15%
0.6943 0.6943 0.5000 0.6943 0.694 0.4880 0.694 0.5250 0.545 0.545 1.89 1.06 1.318 0.6943 1.06 0.694 0.500 0.4880 1.06 0.694 1.06 1.06 1.06 1.06 0.694 0.6943 0.6943 1.06 1.06 1.06 0.6943 0.500 0.6943 0.6943 0.4880 1.318 1.06 0.6943 1.06 1.06
410
Handbook of Optical Materials
Data in the preceding table are from S. Singh, Nonlinear optical materials, Handbook of Laser Science and Technology, Vol. III: Optical Materials, Part 1 (CRC Press, Boca Raton, FL, 1986), p. 54 ff. Data for additional liquids are included in this reference.
5.5.5 Stimulated Raman Scattering Observed SRS Lineshifts ω of Liquids Substance bromoforrn tetrachloroethylene carbon tetrachloridea ethyl iodide hexafluorobenzenea bromoform chlorine methylene bromide trichloroethylene carbon disulfide ethylene bromide chloroform α-xylene FC104b sulfur hexafluoride α-dimethylphenethylamine dioxane morpholinea thiophenola nitromethanea deuterated benzene potassium dihydrogen phosphate cumenea pyridine 1,3-dibromobenzene benzene aniline styrene m-toluidinea acetophenone bromobenzene chlorobenzenea tert-butylbenzene benzaldehydea ethylbenzoate benzonitrile ethylbenzene toluene
–1
ω (cm ) 222 448 460 497 515 539 552 580 640 655 660 667 730 757 775 836 836 841 916 927 944 980 990 991 992 992 997 998 999 999 1000 1001 1000 1001 1001 1002 1002 1004
Observed SRS Lineshifts ω of Liquids—continued
© 2003 by CRC Press LLC
Ref. 1 2 3 4 3 1 5 3 1 6 7 1 8 9 10 11 1 3 3 3 12 13 3 12 2 12 14 15 3 16 14 3 2 2 16 14 8 12
Section 5: Liquids
Substance fluorobenzene γ-picoline m-cresola m-dichlorobenzenea 1-fluoro-2-chlorobenzened 1-fluoro-2-chlorobenzened iodo-benzenea benzoyl chloridea benzaldehydea anisolea pyrrolea furana nitrous oxide styrene nitrobenzene 1-bromonaphthalene 1-chloronaphthalene 2-ethylnaphthalene m-nitrotoluenea carbon dioxide quinolinea homocyclohexane furana methyl salicylatea cinnamaldehyde styrene 3-methylbutadiene pentadiene isoprene 1-hexyne dimethyl sulfoxidec α-dichlorobenzenea benzonitrile acetonitrile 1,2-dimethylaniline nitrogen hydrobromic acid hydrochloric acid methylcyclohexane methanol cis trans, 1,3-dimethylcyclohexane tetrahydrofuran cyclohexane cis- l,2-dimelhylcyclohexane
–1
ω (cm ) 1012 1016 1029 1034 1034 1034 1070 1086 1086 1097 1178 1180 1289 1315 1344 1363 1374 1382 1389 1392 1427 1438 1522 1612 1624 1631 1638 1655 1792 2116 2128 2202 2229 2250 2292 2327 2493 2814 2817 2831 2844 2849 2852 2853
Observed SRS Lineshifts ω of Liquids—continued
© 2003 by CRC Press LLC
Ref. 17 3 3 3 2 2 3 3 3 3 3 3 10 15 12 12 18 2 3 10 3 4 3 3 18 15 19 19 11 2 20 3 18 4 3 21 9 9 3 1 2 18 12 2
411
412
Handbook of Optical Materials
Substance α-dimethylphenethylamine dioxane decahydronaphthalene cyclohexane cyclohexanone cis. trans-1,3-dimethylcyclohexane cyclohexane dichloromethanea dimethyl sulfoxide morpholine cargille 5610f 2,3-dimethyl-1,5-hexadiene limonene o-xylene 1-hexyne cis-2-heptene 2-octene acetonitrile mesitylene 2-bromopropane acetone ethanol cis-1,2-dimethylcyclohexane carvone cis, trans-1,3-dimethylcyclohexane 2-chloro-2-methylbutane dimethylformamide m-xylene 1,2-diethyl tartrate o-xylene piperidine 1,2-diethylbenzene 1-bromopropane piperidine tetrahydrofuran decahydronaphthalene piperidine cyclohexanone 2-nitropropane 1,2 diethyl carbonatea 1,2 dichloroethanea trans-dichloroethylene methyl fluoride 1-bromopropane
–1
ω (cm ) 2856 2856 2860 2863 2863 2866 2884 2902 2916 2902 2908 2910 2910 2913 2916 2916 2918 2920 2920 2920 2921 2921 2921 2922 2926 2927 2930 2933 2933 2933 2933 2934 2935 2936 2939 2940 2940 2945 2945 2955 2956 2956 2960 2962
Observed SRS Lineshifts ω of Liquids—continued
© 2003 by CRC Press LLC
Ref. 11 1 9 1 8 2 1 3 20 3 9 2 11 8 2 2 2 9 11 2 8 1 2 11 2 2 1 8 11 8 8 2 2 8 18 9 8 8 2 3 3 1 10 2
Section 5: Liquids
Substance 2-chloro-2-methylbutane α-dimethylphenethylamine dioxane methyl chloride cyclohexanola cyclopentanea cyclopentanola bromocyclopentanea o-dichlorobenzene p-chlorotoluene a-picolinea p-xylene o-xylene dibutyl-phthalatea 1, 1, 1-trichloroethane ethylene chlorohydrina isophoronea nitrosodimethylaminea propylene glycola cyclohexanea styrene pyridine benzene tert-butylbenzene 1-fluoro-2-chlorobenzene turpentinea pseudocumenea acetic acida acetonylacetonea methyl methacrylatea γ-picolinea aniline watera a b c d e f
–1
ω (cm ) 2962 2967 2967 2970 2982 2982 2982 2982 2982 2982 2982 2988 2992 2992 3018 3022 3022 3022 3022 3038 3056 3058 3064 3065 3082 3090 3093 3162 3162 3162 3182 3300 3651
Ref. 2 11 1 10 3 3 3 3 3 3 3 8 8 3 1 3 3 3 3 3 15 2 12 2 2 3 3 3 3 3 3 14 3
Observed at low resolution Product of 3M Co., St. Paul, MN 1:1 mixture with tetrachloroethylene Very weak and diffuse Deuterated Product of Cargille Laboratories, Cedar Falls, NJ
Table from Milanovich, F. P., Stimulated Raman scattering, Handbook of Laser Science and Technology, Vol. III: Optical Materials (CRC Press, Boca Raton, FL, 1986), p. 283.
© 2003 by CRC Press LLC
413
414
Handbook of Optical Materials
References: 1. Kern, S. and Feldman, B., Stimulated Raman Emission, Vol. 3, Massachusett Institute of Teehnology, Lincoln Laboratory, Bedford, MA. (1974), p. 18. 2. Barrett, J. J. and Tobin, M. C., Stimulated Raman emission frequencies in 21 organic liquids, J. Opt. Soc. Am. 56, 129 (1966). 3. Murtin, M. D. and Thomas, E. L., Infrared difference frequency generation, IEEE J. Quantum Electron. QE-2, 196 (1966). 4. El-Sayed, M. A., Johnson, F. M., and Duardo, J., A., Comparative study of the coherent Raman processes using the ruby and the second harmonic neodymium giant-pulsed lasers, J. Chim. Phys. 1, 227 (1967). 5. Kaiser, W. and Maier, M., Stimulated Rayleigh, Brillouin and Raman spectroscopy, in Laser Handbook, Vol. 2. Arrecchi, F. T. and Schultz-Dubois, E. O., Eds. (North-Holland, Amsterdam, 1972), p. 1078. 6. Giordmaine, J. A. and Howe, J. A., Intensity-induced optical absorption cross section in CS2, Phys. Rev. Lett. 11, 207 (1963). 7. Prasada Rao, T. A. and Seetharaman, N., Amplification of stimulated Raman scattering by a dye. Ind., J. Pure Appl. Phys. 13, 207 (1975). 8. Geller, M., Bortfeld, D. P., and Sooy, W. R., New Woodbury-Raman laser materials, Appl. Phys. Lett. 3, 36 (1961). 9. Smith, W. L. and Milanovich, F. P., Lawrence Livermore National Laboratory. Livermore. CA, private communication (1973). 10. Maple, J. R. and Knudtson, J. T., Transient stimulated vibrational Raman scattering in small molecule liquids. Chem. Phys. Lett. 56, 241 (1978). 11. Wright, J. K., Carmichael, C. H. H., and Brown, B. J., Narrow linewidth output from d Qswitched, Nd3+/glass laser. Phys. Lett. 16, 264 (1965). 12. Eckardt, G., Hellwarth, R. W., McClung, F. J., Shwarz, S. E., and Weiner, D., Stimulated Raman scattering from organic liquids, Phys. Rev. Lett. 9, 455 (1962). 13. Srivastava, M. K. and Crow, R. W., Raman susceptibilily measurements and stimulated Raman effect in KDP, Opt. Commun. 8, 82 (1973). 14. Maker, P. D. and Terhune, R. W., Study of optical effects due to an induced polarization third order in the electric field strength, Phys. Rev. 137, A801 (1965). 15. Bortlfeld, D. P., Geiller, M., and Eckhardt, G., Combination lines in the stimulated Raman spectrum of styrene. J. Chem. Phys. 40, 1770 (1964). 16. Orlovich, V. A., Measurement of the coefficient of stimulaled Raman scattering in organic liquids with the aid of an amplifier with transverse pumping, Zh. Prikl. Spektrosk. 23, 224 (1975). 17. Calvieilo, J. A. and Heller, Z. H., Raman laser action in mixed liquids, Appl. Phys. Lett. 5, 112 (1964). 18. Eckhardt, C., Selection of Raman laser materials, IEEE J. Quantum Electron.. QE-2, 1 (1966). 19. Subov, V. A., Sushchinskii, M. M., and Shuvalton, I. K., Investigation of the excitation threshold of induced Raman scattering, J. Exp. Theor. Phys. U.S.S.R. 47, 784 (1964). 20. Decker, C. D., High-efficiency stimulated Raman scattering/dye radiation source, Appl. Phys. Lett. 33, 323 (1978). 21. Stoicheff, B. P., Characteristics of stimulated Raman radiation generated by coherent light, Phys. Lett. 7, 186 (1963).
© 2003 by CRC Press LLC
Section 5: Liquids
415
5.5.6 Stimulated Brillouin Scattering Brillouin Gain Parameters for Selected Liquids
Material Acetone
Pump wavelength (nm)
Benzyl alcohol Butyl acetate
∆ν (MHz)
τB (ns)
gB (cm/GW)
n
1059
2.987
119 ± 5
1.34
15.8
1.355
532
5.93
361
0.44
12.9
1.359 (NaD)
20
532 Benzene
Frequency shift (GHz)
6.0
320
0.497
1059
4.124
228
0.7
9.6
532
8.33
515
0.31
12.3
532
9.38
2120
0.08
5.75
0.791
Ref. 1 2 3
1.4837
0.879
1
1.501 (NaD)
0.874
2
1.54 (Na-D)
1.045
2
1.394 (NaD)
0.882
2
1.595
1.262
1
3.8
1.452
1.595
1
8.77
532
6.23
575
0.28
CS2
1060
3.761
50
3.2
68
7.7
120
1.9
130
CCl4
1060
2.772
528
0.3
532
Density (g/cm3)
9.13
3
532
5.72
890
0.18
1.4595
1.594
2
Chloroform
532
5.75
635
0.25
11.7
1.446 (NaD)
1.492
2
Cyclohexane
532
7.19
1440
0.11
5.8
1.426 (NaD)
0.779
2
N,N-Dimethyl
532
7.93
615
0.26
7.8
1.431 (NaD)
0.944
2
Dichloromethane
532
5.92
255
0.62
16.8
1.424
1.325
2
o-Dichlorobenzene
532
8.03
1340
0.12
4.7
1.551
1.306
2
Ethanol
532
5.91
546
0.29
1.36
0.785
2
Ethylene glycol
532
10.2
3630
0.04
0.85
1.431
1.113
2
Freon 113
532
3.72
81
0.18
5.5
1.3578
1.575
2
n-Hexane
532
5.64
580
0.27
8.8
1.379
0.67
2
1060
4.255
396
0.4
7.2
1.5297
1.206
1
1.329
.791
formamide
Nitrobenzene Methanol
532
5.47
325
0.49
10.6
530
5.6
210
0.334
13
532
8.92
746
0.21
2.21 ± 0.02
182 ± 12
0.874
532
4.71
357
0.45
1060
3.070
216
0.735
Toluene
532
7.72
1314
0.12
Trichloroethylene
532
5.94
765
0.21
1060
3.703
170
0.935
Pyridine Tin tetrachloride Titanium
1064
14 11.2 ± 0.5
2 3
1.51
0.978
1.36
2.226
2 4 2
14.2
1.577
1.73
1
8.4
1.496
0.867
2
1.4755
1.464
2
1.324
1
1
tetrachloride
Water Xylenes
12 3.8
532
7.4
607
0.26
2.94
1.333
1
2
532
7.74
1211
0.13
9.3
1.497
0.86
2
References: 1. Erohkin, A. I., Kovalev, V. I., and Faizullov, F. S., Determination of the parameters of a nonlinear response of liquids in an acoustic resonance region by the method of nondegenerate four wave interaction, Sov. J. Quantum Electron. 16, 872 (1986). 2. Dyer, M. J., and Bischel, W. K., unpublished data. 3. Narum, P., Skeldon, M. D., and Boyd, R. W., Effect of laser mode structure on stimulated Brillouin scattering, IEEE J. Quantum Electron. QE-22, 2161 (1986). 4. Amimoto, S. T., Gross, R. W. F., Garman-DuVall, L., Good, T. W., and Piranian, J. D., Stimulated Brillouin-scattering properties of SnCl4, Opt. Lett. 16, 1382 (1991).
© 2003 by CRC Press LLC
416
Brillouin Materials Used for Phase Conjugation Wavelength λ (nm)
Refract. index
Sound speed v s (km/s)
Acetic acid 295 Acetone
295 293
Acetonitrile
1.36
1.355
Gain g (cm/GW)
Density ρ (g/cm3)
235 4 1.8 0.44
40 90 361
1.168
2.97 5.93 5.00 5.05 2.987
1.19
4.600
260 119 a 180 175
5.52
300
2.67
18 12.9 12.9 12.9 15.8 20 18
0.791
1064 1060 1060
3 4 5 6 7 7 2 8 9 11 2 6
694 632 532
293 323
Ref. 1 2
400
4.61 3.1
1.19
Line width ∆v b ( M H z )
1064
Benzene
© 2003 by CRC Press LLC
1.40
633
BCl3
Phonon lifetime τp (ns)
5.05 5.64
633 694 1064 1064 1064 1064 532 633 1064 694 694
Brillouin shift at λ (GHz)
1.5 1.50
1.5 1.4837 1.4648
1.5 1.473 1.359
7.10 8.33 7.03 7.08 4.124 3.757
0.31
3 1.40 1.07
245 340 515 520
228 a 297
18 12.3
18 9.6
0.879
11 3 7 2 1 5 8 8
Handbook of Optical Materials
Liquids
Temp. (K)
289 a
Benzene
694
6.470
Benzyl alcohol
532
9.38
Butanol
633
5.63
Butyl acetate
532
6.23
0.28
575
9.13
7
C 2Cl 3F 3
532
3.72
0.18
865–880
5.50
7
1.86
0.72
220
5.5
6
(Freon 113)
1064
Carbon disulfide, CS2
694 694 1064 1060 1060 1064 694 633 633 633
293 300
301 162
694 694 1064 532 633
0.728 1.25 1.142
1.62 1.593
1.46 1.46
1.250
0.92 1.05 1.05 1.04?
5.85 3.8 3.76
2120
5.75
7
720
7 6.4 4.9 6.7 2.1
55 80 23
140 132 396
4.41
630 430 1.3 0.18
2
45 50 68
1.263 1.263
130
6.45 6.24 9.05
2.9 5.72 4.82
9
122 890 1260
1.595 8 6 3.8 8.77
1.591
11 3 5 8 8 4 10 2 11 11 3 11 5 6 7 2
Section 5: Liquids
Carbon tetrachloride, CCl4
1.36
0.08
18
417
© 2003 by CRC Press LLC
418
Brillouin Materials Used for Phase Conjugation—continued
Carbon tetrachloride, CCl4
Wavelength λ (nm)
293
Refract. index 1.452
Sound speed v s (km/s) 1.012
Brillouin shift at λ (GHz) 2.772
Phonon lifetime τp (ns) 0.60
Line width ∆v b ( M H z )
Gain g (cm/GW)
Density ρ (g/cm3)
528 a
3.8
1.595
650
6 8
1060 4.390
Chloroform
532 633
Cyclohexane
532 1064 694 694
1.43
0.25
635 840
11.7
7 2
7.19
0.11 1
1440 774 b 670
5.8 7 6.8 6.8
7 5 9 11
16.8 16.9
7 4
12 c
7 2 9
1.35 5.550 1.35
532
5.92 2.96
0.62 2.5
255 64
Ethanol
532 633 694
5.91 5.04 4.550
0.29
546 600 353 b
532
Germanium tetrachloride, GeCl4 Glycerol
© 2003 by CRC Press LLC
10.2
0.04
3630
1.46
298 245
8 12 9 9
5.75 4.88
Dichloromethane, CCl2H2
Ethylene glycol
Ref.
0.85 12
2.8 3.3
382
7 1.87
6
11 11
Handbook of Optical Materials
Liquids
Temp. (K)
166 Methanol
1064 532 633 694 694
N,N-Dimethyl formamide
1.33
1.12 5.47 4.68 4.250
1.33
532 1064 694 694 694
Nitrobenzene 293 313
694 1064 1060 1060
3.7 0.49
1.113
1.56 1.530 1.521
1.56 1.56 1.474 1.414
325 260 250 b 200
13 10.6 13 13.2
5 7 2 9 11
7.93
0.26
615
7.8
7
5.64
0.27 3.5
580
8.80 19 26 19 10
7 5 9 11 9
4.5 4.5 7.2
11 5 8 8
1.11
1.37
11
220 212 212 900 4.255 4.057
0.8 0.80 0.77
8.03
0.12
396 a 416 1340
4.70
PCl3 Pyridine
1.206
7 8.6
532 633 633
8.92 7.38 7.36
0.21
746 780
14.00
6 7 13 2
Section 5: Liquids
532
1.37
42
1.118
532
n-Hexanes
o-Dichlorobenzene
3.7
419
© 2003 by CRC Press LLC
420
Brillouin Materials Used for Phase Conjugation—continued Wavelength λ (nm)
Silicon tetrachloride, SiCl4 Tin tetrachloride, SnCl4
Water, H2O
© 2003 by CRC Press LLC
Brillouin shift at λ (GHz)
Phonon lifetime τp (ns)
Line width ∆v b ( M H z )
Gain g (cm/GW) 10
1.51 308
293
Trichloroethylene
Sound speed v s (km/s)
Density ρ (g/cm3)
6 0.830
1064 532 1064 1064 1064 532 1064 1064 1060 694 532 633 1064
1.7 0.45 1.8
182 357 89
11.2
14
1.05
3.2 4.71
2 0.45
80 357
1.577
1.032
3.070
1.47
2.0 216 a
1.38 7.72 6.41 1.4
532 1064 1064 532 633
11 2.21 4.71 2.36
1.62
1.5
1.33
Ref.
1.48
1.41
Titanium tetrachloride, TiCl4
Toluene
Refract. index
1.48
480 0.12 1000 1.5
1314
14.2 13 8.4 10
14 7 7 6 1.73
20 ± 4 1.73
5 7 15 6 8 11 7 2 5
5.94
.21
765
12.00
7
3.7 3.7 7.4 6.23
1.1 0.26
152 607 440
2.94 2.94
7 7 2
Handbook of Optical Materials
Liquids
Temp. (K)
293
1064 1060
1.33 1.324
694 694
1.33
Water, D2O Xylenes 26 Organic liquids 30 Organic liquids
3.703
3.4 1.87a
1.482 1.488 5.69
1.33 532
1.49
1.38
3.46
3.4
7.74
0.13
170 a
4.8 3.8
220 317 b
4.8 4.8
47
3.1
1211
0.997
5 8 16 11 9
1.1
9.30
XeCl laser
17
532
18
aThese authors assume that lifetime = 1/(π × linewidth); bThis is the spontaneous scattering linewidth; these authors report different values for the spontaneous and stimulated scattering linewidth; cThis is a theoretically calculated, not an experimental, number; d Density in amagats rather than pressure in atmospheres. Table from Pepper, D. M., Minden, M. L., Bruesselbach, H. W. and Klein, M. B., Nonlinear optical phase conjugation materials, in Handbook of Laser Science and Technology, Suppl. 2: Optical Materials (CRC Press, Boca Raton, FL, 1995), p. 467.
Section 5: Liquids 421
© 2003 by CRC Press LLC
422
Handbook of Optical Materials
References: 1. Cummins, H. Z., and Gammon, K. W., J. Chem Phys. 44, 2785 (1966). 2. Ratanaphruks, K., Grubbs, W. T., and MacPhail, R. A., CW stimulated Brillouin gain spectroscopy of liquids, Chem. Phys. Lett. 182, no. 3–4, 371–8 (2 Aug. 1991). 3. Laubereau, A., Englisch, W., and Kaiser, W., Hypersonic absorption of liquids determined from spontaneous and stimulated Brillouin scattering, IEEE J. Quantum Electron. QE-5, 410–415 (1969). 4. Chiao, R. Y., Brillouin scattering and coherent phonon generation, Ph.D. Diss. No. 0753, Massachusetts Institute of Technology, Cambridge, MA (1965). 5. Bespalov, V. I., and Pasmanik, G. A., Nonlinear Optics and Adaptive Laser Sytems (Nauka, Moscow, U.S.S.R. (1985). Trans. by Translation Division, Foreign Technology Division,Wright Patterson Air Force Base, OH, document FTD-ID(RS)T-0889-86). 6. Bubis, E. L., Vargin, V. V., Konchalina, L. R., and Shilov, A. A., Study of low-absorption media for SBS in the near-IR spectral range, Opt. Spektrosk. (Opt. Spectrosc.) 65, 1281–1285 (759–9) (Dec. 1988). 7. Dyer, M. J., and Bischel, W. K., Stimulated Brillouin spectroscopy of liquids, Paper No. CTuN5, Conference on Lasers and Electro-Optics (CLEO), Anaheim, CA, May 10–15 (1992). 8. Erokhin, A. I., Kovalev, V. I., and Faizullov, F. S., Determination of the parameters of a nonlinear response of liquids in an acoustic resonance region by the method of nondegenerate four-wave interaction, Kvantovaya Elektronika, Moskva (Sov. J. Quantum Electron.) 13, no.7 (16, no.7), 1328–1335 (872–7) (July 1986). 9. Kaiser, W., and Maier, M., Stimulated Rayleigh, Brillouin and Raman spectroscopy, Laser Handbook, Vol. 2, Arecchi, F. T.. and Schulz-Dubois, E. O., Eds. (North-Holland Publishing, Amsterdam, 1972), p. 1115. 10. Pohl, D., and Kaiser, W., Time-resolved investigations of stimulated Brillouin scattering in transparent and absorbing media: determination of phonon lifetimes, Phys. Rev. B (Solid State) 1, 31–43 (1 Jan. 1970). 11. MacPhail, R. A., and Grubbs, W. T., Cw stimulated Brillouin gain spectroscopy of liquids, supercooled liquids, and glasses, Quantum Electronic Laser Science Conference (QELS), Anaheim, CA (May 10–15, 1992). 12. Volynkin, V. M., Gratsianov, K. V., Kolesnikov, A. N., Kruzhilin, Yu I., Lyubimov, V. V., Markosov, S. A., Pankov, V. G., Stepanov, A. I., and Shklyarik, S. V., Reflection by stimulated Brillouin scattering mirrors based on tetrachlorides of group IV elements, Kvantovaya Elektronika, Moskva (Sov. J. Quantum Electron.) 12, 2481–2 (1641–1642) (Dec. 1985). 13. Jain, V. K., and Whittenburg, S. L., Rayleigh-Brillouin light scattering studies of neat pyridine, J. Phys. Chem., 92, 2023–2027 (7 April 1988). 14. Amimoto, S. T., Gross, R. W. F., Garman-DuVall, L., Good, T. W., and Piranian, J. D., Stimulated-Brillouin-scattering properties of SnCl4, Optics Lett. 16, 1382–1384 (15 Sept. 1991). 15. Anikeev, I. Yu, Gordeev, A. A., Zubarev, I. G., Mironov, A. B., and Mikhailov, S. I., Gain and lifetime of acoustic phonons under conditions of stimulated Brillouin scattering in titanium tetrachloride, Kvantovaya Elektronika, Moskva (Sov. J. Quantum Electron.) 12, no.5 (15, no.5), 1081–3 (712–713) (May 1985). 16. Fleury, P. A., and Chiao, R. Y., J. Acoust. Soc. Am. 39, 751 (1966). 17. Eichler, H. J., Konig, R., Menzel, R., Patzold, H., and Schwartz, J., SBS reflection of broad band XeCl excimer laser radiation: comparison of suitable liquids, J. Phys. D (Appl. Phys.) 25, 1161–1168, 14 (Aug. 1992). 18. Azzeer, A. M., Masilamani, V., Salhi, M. S., and Al-Dwayyan, A., Phase conjugation by stimulated scattering from organic liquids, Arab. J. Sci. Eng. 17, 245–252 (April 1992).
© 2003 by CRC Press LLC
Section 5: Liquids
423
5.6 Magnetooptic Properties The following tables and figure are from Munin, E., Magnetooptic materials: organic and inorganic liquids, Handbook of Laser Science and Technology, Suppl. 2: Optical Materials (CRC Press, Boca Raton, 1995), p. 403. 5.6.1 Verdet Constants of Inorganic Liquids Verdet Constants V of Inorganic Liquids Liquid
λ(nm)
AsCl3 COCl2 D2 O
589 589 578 589 578 589 589 578 589 589 578 578 589 589 589 589 589 589 578 578 578
H2 O N2 NH3 O2 Pa PBr3 PCl3 P4S Sa SO2 SbCl5 S2Cl2 SiCl4 SnCl4 TiBr4 TiCl4
T(°C)
n
V(rad/T⋅m)
1.60 3 19.7 19.7 11.5 10 –195.5 –40 –182.5 33 20 26 16 114 –10 16 16 16 28 46 17
12.4 3.93 3.819 3.656 3.971 3.811 1.21 5.47 2.27 38.7 17.6 8.78 32.0 23.5 5.23 20.5 12.2 5.50 13.0 –15.4 –4.80
1.35 2.07 1.70 1.511 1.93 1.39
1.516 1.612
Ref. 1 1 1 1 1 1 2 3 2 1 1 1 2 1 2 2 2 2 1 5 6
aFused.
5.6.2 Verdet Constants of OrganicLiquids Verdet Constants V of Organic Liquids (from Ref. 7) Formula CCl4 CHCl3 CH2Br3 CH2O2 CH2Cl2 CH2Br2 CH2I2 CH3Cl CH3Br CH3I CH4O CH3O2N
© 2003 by CRC Press LLC
Name
λ (nm)
T(°C)
V (rad/T m)
tetrachloromethane trichloromethane tribromomethane formic acid
589 589 589 589
25.1 20.0 17.9 20.8
4.65 4.72 9.10 3.04
dichloromethane dibromomethane diiodomethane monochloromethane monobromomethane monoiodomethane methyl alcohol mononitromethane
589 589 589 589 589 589 589 589
11.9 15.9 15.0 23 1.5 19.5 18.7 9.9
4.65 7.97 4.39 3.99 5.93 9.74 2.79 2.40
424
Handbook of Optical Materials Verdet Constants V of Organic Liquids (from Ref. 7)—continued
Formula C2H3Br C2 H4 O C2 H4 O C2 H4 O2 C2 H4 O2 C2H4Cl2 C2H4Cl2 C2H4Br2 C2H5Cl C2H5Br C2 H5 I C2 H6 O C2 H6 O2 C2 H6 S C2H2O2Cl2 C2H3O2Cl C2H3O2Cl3 C2 H5 O2 N C3 H4 O C3 H4 O3 C3 H6 O C3 H6 O C3 H6 O C3 H6 O2 C3 H6 O2 C3 H6 O2 C3H7Cl C3H7Cl C3H7Br C3H7Br C3 H7 I C3 H7 I C3 H8 O C3 H8 O C3 H8 O3 C3 H9 N C3 H5 O9 N3 C3 H7 O2 N C4 H6 C4 H8 C4 H8 C4 H8 C4H10 C4H10 C4 H4 O C4 H4 S C4 H6 O3
© 2003 by CRC Press LLC
λ (nm)
T(°C)
V (rad/T m)
vinylbromide ethyleneoxide (1,2-epoxiethane) acetaldehyde (ethanal) acetic acid
589 589 589 589
7.8 8.0 16.3 21.0
6.11 2.68 2.91 3.04
methylformate 1,1-dichloroethane 1,2-dichloroethane 1,2-dibromoethane monochloroethane monobromoethane monoiodoethane ethyl alcohol glycol (1,2-ethanediol) ethylmercaptan dichloroacetic acid chloroacetic acid (cloroethanoic acid) chloralhydrate mononitroethane acrolein (propenal) pyruvic acid (2-oxopropanoic acid) allyl alcohol propyl alcohol (1-propanol) acetone (2-propanone) propionic acid (propanoic acid) formic acid ethyl ester (ethylmethanoate) acetic acid methyl ester (methyl acetate) propylchloride (1-chloropropane) isopropylchloride (2-chloropropane) propylbromide (1-bromopropane) isopropylbromide (2-bromopropane) propyliodide (1-iodopropane) isopropyliodide (2-iodopropane) n-propyl alcohol (1-propanol) isopropyl alcohol (2-propanol) glycerine (1,2,3-propanetriol) n-propylamine nitroglycerine 1-nitropropane 1,3-butadiene (erythrene) 1-butene (a-butylene) cis-2-butene (b-butylene) trans-2-butene butane isobutane (2-methylpropane) furan (furfuran) thiophene (thiofuran) acetic anhydride (ethanoic anhydride)
589 589 589 589 589 589 589 589 589 578 589 589 589 589 578 589 589 589 589 589 589 589 589 589 589 589 589 589 589 589 589 589 589 589 589 589 589 589 589 589 589 589 589
16.5 14.4 14.4 15.2 5.0 19.7 18.1 16.8 15.1 16.0 13.5 64.5 54.6 10.2 20.0 14.5 18.3 13.6 20 20.3 18.8 20.0 16.1 17.2 19.2 17.1 18.1 26.3 15.6 20.0 16.0 9.6 13.5 18.9 15.0 15.0 15.0 15.0 15.0 15.0 20.0 20.0 20.0
2.79 4.39 4.80 7.74 3.96 5.29 8.58 3.29 3.64 5.38 4.42 3.87 4.80 2.75 5.12 3.52 4.65 3.17 3.24 3.20 3.05 3.00 3.90 3.90 5.21 5.15 7.82 7.65 3.49 3.58 3.87 3.87 2.62 2.96 6.28 4.04 4.01 3.75 3.17 3.23 5.18 8.23 3.24
Name
Section 5: Liquids
425
Verdet Constants V of Organic Liquids (from Ref. 7)—continued Formula C4 H8 O2 C4 H8 O2 C4 H8 O2 C4H10O C4H10O C4H10O C4H10O C5 H6 C5 H8 C5 H8 C5 H8 C5H10 C5H10 C5H10 C5H12 C5H12 C5 H4 O2 C5 H5 N C5H10O2 C5H10O2 C5H14N2 C6 H6 C6H12 C6H14 C6H4Cl2 C6 H5 F C6H5Cl C6H5Br C6 H5 I C6 H6 O C6 H7 N C6H11Cl C6H12O3 C6H14O C6H14O C6H14O C6 H4 O4 N2 C6 H5 O2 N C7 H8 C7H14 C7H16 C7 H5 N C7H7Cl C7H7Cl C7H7Br C7H7Br C7 H8 O
© 2003 by CRC Press LLC
Name n-butyric acid (butanoic acid) ethyl acetate (ethyl ethanoate) propionic acid methyl ester ethyl ether (ethoxyethane) n-butyl alcohol (1-butanol) isobutyl alcohol (2-methyl-1-propanol) sec-butyl alcohol (methylethylcarbinol) cyclopentadiene 1,3-pentadiene isoprene (2-methyl-1,3-butadiene) cyclopentene 1-pentene isopentane (2-methyl-1-butane) cyclopentane pentane isopentane (2-methylbutane) furfural (2-furancarbonal) pyridine propionic acid ethyl ester acetic acid propylester cadaverine (1,5-pentanediamine) benzene cyclohexane hexane 1,4-dichlorobenzene (p-dichlorobenzene) fluorobenzene (phenylfluoride) chlorobenzene (phenylchloride) bromobenzene (phenylbromide) iodobenzene (phenyliodide) phenol (hydroxibenzene) aniline (aminobenzene) chlorocyclohexane (cyclohexylchloride) paraldehyde (paraacetaldehyde) 2-hexanol (butylmethylcarbinol) 3-hexanol (ethylpropylcarbinol) 2-methyl-3-pentanol 1,3-dinitrobenzene (m-dinitrobenzene) nitrobenzene toluene (methylbenzene) 1-heptene (a-heptylene) heptane benzonitrile (benzenecarbonitrile) o-chlorotoluene (2-chloro-1-methylbenzene) p-chlorotoluene (4-chloro-1-methylbenzene) o-bromotoluene (2-bromo-1-methylbenzene) p-bromotoluene(4-bromo-1-methylbenzene) o-cresol (o-methylphenol)
λ (nm)
T(°C)
V (rad/T m)
589 589 589 589 589 589 589 589 589 589 589 589 589 589 589 589 578 589 589 589 589 589 589 589 589 589 589 589 589 589 589 589 589 589 589 589 589 589 589 589 589 589 589 589 589 589 589
18.8 20.0 20.0 20.0 20.0 17.7 20.0 15.0 15.0 15.0 15.0 15.0 15.0 20.0 15.0 15.0 20.0 11.9 20.0 15.7 14.7 15.0 20.0 15.0 64.5 19.0 15.0 15.0 15.0 39.0 15.0 13.0 17.3 20.0 20.0 20.0 17.1 15.0 15.0 18.0 15.0 15.7 15.4 15.2 16.7 39.0 16.0
3.35 3.14 3.11 3.17 3.58 3.69 3.69 5.88 6.05 6.05 4.42 4.04 4.04 3.58 3.35 3.40 5.99 7.50 3.29 3.29 4.45 8.73 3.61 3.49 7.82 7.30 8.49 9.48 11.8 9.34 12.2 4.25 3.46 3.81 3.78 3.84 6.31 6.31 7.88 4.16 3.58 7.97 8.58 7.71 8.96 8.38 8.93
426
Handbook of Optical Materials Verdet Constants V of Organic Liquids (from Ref. 7)—continued
Formula C7 H8 O C7 H8 O C7 H9 N C7 H9 N C7 H9 N C7H14O C7H16O C7H16O C7H16O C7 H7 O2 N C7 H7 O2 N C8H10 C8H10 C8H10 C8H10 C8H16 C8H16 C8H18 C8H18O C8H18O C8H18O C9H12 C9H12 C9H12 C9H12 C9H20 C10H8 C10H20 C10H22 C10H7Cl C10H7Br C10H8O C10H9N C10H12O2 C10H12O2 C10H12O2 C10H12O2 C10H12O2 C10H12O2 C10H12O2 C10H18O C10H18O C10H18O4 C10H10O6 C10H20O C11H24 C12H26
© 2003 by CRC Press LLC
Name m-cresol (m-methylphenol) p-cresol (p-methylphenol) o-toluidine (o-methylaniline) m-toluidine (m-methylaniline) p-toluidine (p-methylaniline) enanthaldehyde (heptanal) 1-heptanol (n-heptylalcohol) 2-heptanol (amylmethylcarbinol) 3-heptanol (butylethylcarbinol) o-nitrotoluene p-nitrotoluene ethylbenzene (phenylethane) o-xilene (1,2-dimethylbenzene) m-xilene (1,3-dimethylbenzene) p-xilene (1,4-dimethylbenzene) 1-octene (a-octylene) 2-octene (b-octylene) octane 1-octanol (n-octyl alcohol) 2-octanol (methylhexylcarbinol) 3-octanol (ethylamylcarbinol) o-ethyltoluene (1-ethyl-2-ethylbenzene) m-ethyltoluene (1-ethyl-3-ethylbenzene) p-ethylbenzene (1-ethyl-4-ethylbenzene) mesitylene (1-3-5-trimethylbenzene) nonane naphthalene 1-decene (n-decylene) decane 1-chloronaphthalene (a-chloronaphthalene) 1-bromonaphthalene (a-bromonaphthalene) b-naphthol (2-hydroxinaphthalene) 1-naphthylamine (a-naphthylamine) isoeugenol (4-propenylguaiacol) eugenol (4-allylguaiacol) benzoic acid propylester (n-propylbenzoate) o-toluic acid ethyl ester p-toluic acid ethyl ester a-toluic acid ethyl ester (ethylphenylacetate) methylsaliciclic acid ethylester a-terpineol Citronellal dipropylsuccinate tartaric acid dipropyl ester (propyltartrate) menthol undecane dodecane
λ (nm)
T(°C)
589 589 589 589 589 589 589 589 589 589 589 589 589 589 589 589 589 589 589 589 589 589 589 589 589 589 589 589 589 578 578 578 589 589 589 589 589 589 589 589 589 589 589 589 589 589 589
17.9 17.0 17.3 15.0 50.0 16.2 12.6 20.0 20.0 18.0 54.3 15.0 15.0 15.0 15.0 15.0 15.0 15.0 20.0 20.0 20.0 15.0 15.0 15.0 15.0 15.0 89.5 21.0 15.0 18.0 20.0 13.6 32.6 19.3 15.4 15.4 15.2 15.0 14.0 18.6 16.0 14.5 11.4 15.4 45.2 20.5 21.5
V (rad/T m) 8.41 8.46 11.0 10.4 9.80 3.67 3.87 3.84 3.99 6.28 5.73 8.14 7.62 7.18 7.16 4.19 4.16 3.67 3.87 3.90 3.87 6.75 8.46 6.89 6.63 3.72 13.0 4.22 3.78 14.3 15.1 14.0 19.9 10.33 8.38 6.40 6.54 6.34 6.54 7.27 4.54 4.39 3.55 3.61 4.07 3.81 3.84
Section 5: Liquids
427
Verdet Constants V of Organic Liquids (from Ref. 7)—continued Formula
Name
C14H10 C16H34 C18H14 C18H22
phenanthrene hexadecane 1,2-diphenylbenzene 1,6-diphenylhexane
5.6.3
λ (nm)
T(°C)
V (rad/T m)
578 589 589 589
100.0 15.0 15.0 20.0
17.0 3.93 13.7 8.00
Dispersion of the Verdet Constants Dispersion of the Verdet Constant V in the Near Ultraviolet and Visible
Formula
Name
347.1
CH3NO2 CH4O C2 H4 O2 C2 H6 O C3 H6 O H2 O CCl4 C6H5NO2 C7 H8 C6 H6 CS2
nitromethane methanol acetic acid ethanol acetone water carbon tetrachloride nitrobenzene toluene benzene carbon disulfide
8.46 9.75 10.5 10.5 12.4 15.4 31.4
457.9 4.07 4.68 5.29 5.61 5.64 6.78 8.03 10.7 14.3 16.0 22.2
V(λ)(rad/T·m), λ(nm) 488.0 514.5 580.0 3.58 4.16 4.65 4.95 4.95 5.85 7.04 9.60 12.2 13.6 19.2
3.26 3.69 4.13 4.45 4.45 5.24 6.31 8.41 10.7 12.1 16.8
Liquids are listed in increasing order of the Verdet constant.8
Dispersion of the Verdet constant for several liquids listed in the table above
© 2003 by CRC Press LLC
2.60 3.00 3.29 3.49 3.46 4.10 4.95 6.66 8.09 9.13 12.9
632.8 2.15 2.40 2.71 2.90 2.84 3.35 4.04 5.41 6.60 7.39 10.4
694.3 1.67 1.88 2.09 2.30 2.79 2.66 3.23 4.33 5.24 5.93 8.26
428
Handbook of Optical Materials Dispersion of the Verdet Constant V in the Near Infrared2
Formula H2 O SnCl4 TiCl4 CCl4 CS2 CHCl3 CH3I CH2I2 CH4O C2 H5 I C2 H6 O C3 H6 O C4H10O C4H10O C6 H6 C6H5NO2 C7 H8 C7H16 C8H10 C10H7Br
Name water tin tetrachloride titanium tetrachloride carbon tetrachloride carbon disulfide chloroform methyl iodide methylene iodide methyl alcohol ethyl iodide ethyl alcohol acetone ethyl ether n-butyl alcohol benzene nitrobenzene toluene n-heptane xilene α-bromonaphthalene
0.6 3.67 11.9 –3.81 4.68 11.5 4.51 9.25 13.8 2.71 8.12 3.23 3.00 2.97 3.49 8.17 6.08 7.50 3.46 6.75 13.4
Vλ) (rad/T⋅m), λ(µm) 0.8 1.0 1.5 2.04 6.31 –1.45 2.59 6.23 2.50 5.18 7.80 1.48 4.39 1.75 1.77 1.69 1.95 4.45 3.32 3.99 1.92 3.72 7.13
1.28 3.93 –0.756 1.66 3.93 1.63 3.26 4.92 0.931 2.82 1.11 1.16 1.05 1.25 2.76 2.12 2.53 1.25 2.33 4.42
2.0
(0.844 at 1.25 _m) 1.75 0.902 –0.291 –0.145 0.727 0.378 1.69 0.902 0.698 0.378 1.40 0.785 2.12 1.16 0.553 0.378 1.19 0.698 0.553 0.291 0.495 0.262 0.465 0.233 0.524 0.407 1.13 0.640 0.902 0.524 1.02 0.582 0.524 0.262 1.02 0.553 1.83 1.02
Temperature = 23ºC.
References: 1. Mallemann, R. de, Tables des constantes selectionnées, pouvoir rotatoire magnétique (effet Faraday) (Hermann & Cie, Paris, 1951). 2. International Critical Tables of Numerical Data, Physics, Chemistry and Technology (McGraw Hill, New York, 1929). 3. Mallemann, R. de, and Gabiano, P., Pouvoir rotatoire magnétique de l’azote ammoniacal, Comptes Rendus 200, 823 (1935). 4. Mallemann, R. de, and Suhner, F., Rotativités du chlorure de silicium et du cyclohexane vaporisés, Comptes Rendus 227, 804 (1948). 5. Fritsch, P., Pouvoir rotatoire magnétique du tétrabromure de titane, Comptes Rendus 217, (1943). 6. Mallemann, R. de, and Suhner, F., Pouvoir rotatoire magnétique du chlorure titanique vaporisé, Comptes Rendus 227, 546 (1948). 7. Handbook of Chemistry and Physics, 72nd edition (CRC Press, Boca Raton, FL, 1991). 8. Villaverde, A. B., and Donatti, D. A., Verdet constant of liquids; measurements with a pulsed magnetic field, J. Chem. Phys. 71, 4021 (1979).
© 2003 by CRC Press LLC
Section 5: Liquids
429
5.7 Commercial Optical Liquids Cargille Refractive Index Liquids are examples of commercially available liquids having a wide range of known property values for optical applications. Specific refractive index and dispersion values are maintained by exacting quality control. These liquids are sold individually or in sets covering certain refractive index ranges at 25ºC and 589.3 nm: Series AAA Series AA Series A Series B Series M Series H Series EH Series FH Series GH
1.300–1.395 1.400–1.458 1.460–1.640 1.642–1.700 1.705–1.800 1.81–2.00 2.01–2.11 2.12–2.21 2.22–2.31
Other Cargille liquids are available with special properties of dispersion, transmittance, compatibility, fluorescence, stability, toxicity, etc. for special applications. Whereas evaporation of a pure substance will not change the index of refraction, liquids that are mixtures of substances with different indices of refraction and different volatilities change refractive index through evaporation. Typical optical liquids transmit well in the visible, begin to absorb in the near-UV and are characterized by a series of absorption bands from 800 to 1600 nm. Exceptions to this pattern are Cargille Laser Liquids Code 433 and Code 3421 which do not reach a UV cutoff until below 240 nm and which are highly transparent, without peaks and valleys in the IR out to 2500 nm. The best optical liquids with refractive index above 1.810 are arsenic based, highly toxic, and corrosive (Cargille Refractive Index Liquids Series H, EH, FH, and GH). Properties of representative Cargille optical immersion and laser liquids are given in the following three tables. For a discussion of the optical, physical, and chemical properties of liquids, see R. Sacher and W. Sacher, Optical liquids, Handbook of Laser Science and Technology, Suppl. 2, Optical Materials (CRC Press, Boca Raton, FL, 1995).
© 2003 by CRC Press LLC
430
Properties of representative Cargille immersion liquids liquid
Formula code Refractive index range for code (nD 25°C) Refractive index @25°C and percent transmittance through 1 cm at representative wavelengths (nm)
1
2
1.433 1.461 67% 73% 365 l 1.418 1.444 98% 98% 404.7 h 1.4127 1.4382 99% 99% 486.1 F 1.4054 1.4306 100% 100% 589.3 D 1.4000 Calibrated 1.4250 at nD 25°C 100% 100% ±0.0005 656.3 C 1.3977 1.4227 100% 100% 1064.8 1.392 1.417 96% 96% 1300 1.390 1.415 97% 94% 1550 1.390 1.415 75% 79% Abbe ν, (nD – 1)/(nF – nC) 52 54 Temp. Coeff., dnD/dt (°C) –.000412–.000402–.000388 Viscosity, cSt, @25°C 10 13 Density g/cm3 @25°C 0.930 0.887 Thermal exp. cm3/cm3/°C 0.0010 0.0009 0.0008 Flash point, °C >138 Pour point, °C <–7 Boiling point, °C >200 Toxicity (request MSDS) Low
© 2003 by CRC Press LLC
3
4
S1050 1.400–1.458 290
5
6
7
8
1.499 82% 1.478 99% 1.4719 99% 1.4637 100% 1.4580 100% 1.4557 100% 1.450 95% 1.449 90% 1.448 84% 57 –.000393 17 0.831 0.0008
– 0% 1.500 17% 1.4920 85% 1.4819 98% 1.4750 100% 1.4722 100% 1.465 96% 1.464 90% 1.463 84% 49 –.000401 22 0.855 0.0008
– 0% 1.531 1% 1.5214 67% 1.5086 96% 1.5000 99% 1.4966 100% 1.488 96% 1.487 90% 1.486 85% 42 –.000411 31 0.894 0.0008
– 0% – 0% 1.5625 49% 1.5460 92% 1.5350 99% 1.5307 100% 1.520 97% 1.518 91% 1.517 86% 35 –.000421 50 0.948 0.0007 >138 <–7 >262 Low
9
10
40BN 1.571–1.656
5040 1.459–1.570
11
12
BNDN 1.657–1.698
–
–
–
–
0%
0%
0%
0%
–– 0%0%
–
–
1.711
1.750
1.776
–
0%
0%
1%
50%
12%
0%
1.6036
1.6437
1.6832
1.7174
1.7408
1.7690
35%
45%
58%
72%
17%
2%
1.5833
1.6170
1.6504
1.6794
1.7001
1.7250
89%
90%
90%
90%
64%
40%
1.5700
1.6000
1.6300
1.6560
1.6750
1.6980
99%
99%
99%
99%
98%
96%
1.5648
1.5936
1.6224
1.6473
1.6657
1.6881
100%
100%
100%
100%
99%
99%
1.552
1.578
1.605
1.628
1.645
1.666
97%
98%
99%
99%
99%
99
1.550
1.576
1.602
1.624
1.641
1.662
91%
93%
94%
96%
96%
97%
1.549
1.574
1.600
1.622
1.639
1.659
86%
89%
92%
94%
94%
94%
31 –.000438 82 1.003 0.0007
26 –.000454 29 1.184 0.0006
22 –.000468 10 1.359 0.0006 >113 <6 >279 Moderate
20 –.000473 4 1.511 0.0006
2019 –.000479 44 1.608 0.0006 >93 <6 >279 Moderate
1.722
Handbook of Optical Materials
Representative
Representative liquid (cont.) 1
2
Compatible (c) and incompatible (i) Acrylic Polycarbonate Polyethylene Polypropylene Polystyrene
c na c c c
c c c c i
c i c c i
c na c c i
Latex rubber Neoprene rubber Silicone rubber Aluminum Copper Steel Color stability in sun
i c i c c c Very high
i i i (some) c c c Moderate
i i c c i c Low to moderate
i i c c i i Low
Best solvents
3
4
5
6
ethyl ether, naphtha, xylene, toluene, heptane, methylene chloride, turpentine
7
8
9
10
11
12
Acetone, ethyl ether, naphtha, xylene, methylene chloride, toluene, heptane, turpentine
na = not available; MSDS=materials specification data sheet.
Section 5: Liquids
Table from Sacher, R. and Sacher, W., Optical Liquids, Handbook of Laser Science and Technology, Supplement 2:Optical Materials (CRC Press, Boca Raton, FL, 1995), p. 97.
431
© 2003 by CRC Press LLC
432
Properties of representative special Cargille optical immersion liquids liquid
Formula code Refractive index range for code (nD 25°C) Refractive index @25°C and percent transmittance through 1 cm at representative wavelengths (nm) Calibrated at nD 25°C ±0.0005
290 365 404.7 486.1
589.3 656.3 1064.8 1300 1550
Abbe ν, (nD – 1)/(nF – nC) Temp. Coeff., dnD/dt (°C) Viscosity, cSt @25°C Density, g/cm3 @25°C Thermal Exp., cm3/cm3/°C Flash point, °C Pour point, °C Boiling point, °C Toxicity (request MSDS)
© 2003 by CRC Press LLC
1
2
3
4
4550* 50350* 4501 1.452–1.457 1.452–1.470 1.458–1.475 1.489 56% l 1.471 100% h 1.4655 100% F 1.4577 100% 1.4520 D 100% C 1.4497 100% 1.444 94% 1.442 88% 1.442 81% 57 43 –.000394 11 0.816 0.00080.0010 >135 <2 >244 None
– 0% 1.500 53% 1.4902 96% 1.4779 100% 1.4700 100% 1.4670 100% 1.460 95% 1.459 85% 1.458 84% 58 –.000488 0.4 0.840 0.0007 >47 <2 >178 Moderate
1.518 72% 1.496 99% 1.4894 100% 1.4809 100% 1.4750 100% 1.4726 100% 1.467 93% 1.466 87% 1.465 81% 42 –.000360 112 0.867 0.0007 >138 <–7 >262 None
5
6
1160 1.482–1.538 – 0% 1.512 90% 1.5024 95% 1.4902 99% 1.4820 100% 1.4788 100% 1.471 97% 1.469 92% 1.468 87% 38 –.000348 41 0.969 0.0007
– 0% 1.535 90% 1.5237 95% 1.5094 99% 1.5000 100% 1.4963 100% 1.487 97% 1.486 93% 1.485 88% 32 –.000349 41 1.016 0.0006 >199 <–45 >370 Low
– 0% 1.584 90% 1.5686 95% 1.5501 99% 1.5380 100% 1.5333 100% 1.522 97% 1.520 94% 1.519 90% 24 –.000350 41 1.115 0.0007
7
8
9
10
50BN*
5095
1.459–1.656
1.458–1.580
– – – – 0% 0% 0% 0% 1.673 1.715 1.536 1.647 75% 71% 94% 85% 1.6481 1.6853 1.5244 1.6243 80% 76% 98% 95% 1.6185 1.6511 1.5097 1.5972 93% 92% 100% 100% 1.6000 1.5000 1.6300 1.5800 99% 99% 100% 100% 1.5931 1.6221 1.4962 1.5735 100% 100% 100% 100% 1.577 1.604 1.487 1.558 98% 99% 96% 98% 1.574 1.601 1.485 1.555 94% 95% 92% 95% 1.573 1.599 1.484 1.554 91% 93% 86% 90% 22 37 25 58 –.000446 –.000458 –.000398 –.000416 6 5 14 10 1.322 1.426 0.881 0.981 0.0007 0.0008 0.0007 0.0008 >113 >138 <6 <–7 >262 >262 ModerateModerate Low
11
12
OHGL*
OHZB
1.333–1.470 1.333–1.556
1.503 59% 1.488 97% 1.4832 98% 1.4757 100% 1.4700 100% 1.4676 100% 1.461 80% 1.460 58% – 0% 33 –.000377 679 1.254 0.0006 >165 <18 >212 Moderate
– 0% 1.598 78% 1.5847 91% 1.5679 97% 1.5560 99% 1.5512 100% 1.539 93% 1.537 60% – 0% –.000330 9 2.498 None <1 >212
Handbook of Optical Materials
Representative
Representative liquid (cont.) 1
2
3
4
5
6
7
8
9
10
11
12
Compatible (c) and incompatible (i) Acrylic Polycarbonate Polyethylene Polypropylene Polystyrene
c c c c c
na na na na na
c c c c c
c c c c i
c i c c i
c c c c i
c c c c c
c na c c c
Latex rubber Neoprene rubber Silicone rubber Aluminum Copper Steel Color stability in sun
i c i (some) c c c Very high
na na na na na na Moderate
i c i (some) c c c Very high
c i c c c c High
i i c c c c Low to moderate
i i i (some) c c c Moderate
c c c i i i na
c c c i i c Moderate
Water, ethanol
Water, ethanol, acetone
Best solvents
Ethyl ether, naphtha, xylene, methylene chloride toluene, heptane, turpentine
Ethanol, acetone, ethyl, ether, naphtha, xylene methylene chloride, toluene
Ethyl ether, naphtha xylene, methylene chloride toluene, heptane, turpentine
*=very low fluorescence 356 nm excitation; na = not available; MSDS = materials specification data sheet.
Section 5: Liquids
Table from Sacher, R. and Sacher, W., Optical Liquids, in Handbook of Laser Science and Technology, Supplement 2:Optical Materials (CRC Press, Boca Raton, FL, 1995), p. 97.
433
© 2003 by CRC Press LLC
434
Properties of representative Cargille laser liquids liquid
Formula code Refractive index range for code (nD 25°C) Refractive index @25°C and percent transmittance through 1cm at representative wavelengths (nm)
1 433 1.295–1.319
1.31 34% 365 l 1.301 100% 486.1 F 1.2970 100% 1.2950 589.3 D 100% Calibrated 656.3 C 1.2941 at nD 25°C 100% ±0.0002 1064.8 1.292 100% 1300 1.291 100% 1550 1.291 100% 2500 1.29 89% Abbe ν: (nD – 1)/(nF – nC) 101 100 Temp. Coeff., dnD/dt (°C) –.000351 Viscosity, cSt @25°C 3 Density, g/cm3 @25°C 1.896 Thermal Exp., cm3/cm3/°C 0.00120.0010 Flash point, °C None Pour point, °C <–20 Boiling point, °C >174 Toxicity (request MSDS) Low
© 2003 by CRC Press LLC
240
2
3
3421 1.320–1.400 1.33 1.44 11% 22% 1.327 1.414 100% 100% 1.3222 1.4041 100% 100% 1.3200 1.4000 100% 100% 1.3190 1.3983 100% 100% 1.316 1.394 100% 100% 1.316 1.393 100% 100% 1.315 1.392 100% 100% 1.31 1.39 90% 95% 69 51 –.000326 –.000346 30 18 1.982 1.903 0.0009 0.0010 None <–20 >215 None
4 S1056 1.398–1.459
5
6
7
5610 1.460–1.535
1.45 – 8% 0% 1.418 1.483 98% 95% 1.4055 1.4631 100% 100% 1.4000 1.4550 100% 100% 1.3977 1.4518 100% 100% 1.392 1.444 96% 96% 1.390 1.442 97% 95% 1.390 1.441 75% 74% – – 0% 0% 40 38 –.000412 –.000414 10 22 0.933 0.981 0.0009 0.0008 >121 <–70 >149 Low
– 0% 1.507 95% 1.4840 100% 1.4750 100% 1.4713 100% 1.462 96% 1.460 95% 1.459 75% – 0%
5610 1.460–1.535 290
8
9
10
1057 1074 1.535–1.557 1.558–1.578
1.579 1.633 – 42% 34% 0% 365 l 1.537 1.579 1.608 93% 92% 80% 404.7 h 1.5252 1.5639 1.5909 96% 95% 97% 486.1 F 1.5102 1.5457 1.5704 99% 99% 99% 589.3 D 1.5000 1.5340 1.5570 100% 100% 100% 656.3 C 1.4960 1.5295 1.5518 100% 100% 100% 1064.8 1.486 1.519 1.539 96% 97% 99% 1300 1.484 1.517 1.537 95% 95% 95% 1550 1.483 1.516 1.535 77% 80% 84% 35 33 30 29 –.000407 –.000397 –.000383 –.000414 46 125 484 40 1.011 1.049 1.101 1.062 0.0008 0.0007 0.0007 0.0007 >121 >121 >221 <–22 <–22 <–20 >149 >149 >288 None None None
11
12
5763 1.579–1.630
– – – 0% 0% 0% 1.631 1.663 1.705 80% 15% 2% 1.6139 1.6416 1.6795 92% 82% 70% 1.5923 1.6163 1.6491 97% 96% 96% 1.5780 1.6000 1.6300 99% 99% 99% 1.5724 1.5937 1.6229 100% 100% 100% 1.559 1.579 1.606 100% 99% 99% 1.556 1.576 1.603 97% 96% 95% 1.555 1.574 1.602 83% 87% 92% 27 24 –.000426 –.000425 –.000423 177 454 1734 1.092 1.135 1.196 0.0006 0.0006 >243 >243 <–6 <5 >288 >476 None Low
Handbook of Optical Materials
Representative
Representative liquid (cont.) 1 Compatible (c) and incompatible (i) Acrylic Polycarbonate Polyethylene Polypropylene Polystyrene Latex Rubber Neoprene Rubber Silicone Rubber Aluminum Copper Steel Color stability in sun Best solvents chloride,
2
3
4
5
6
7
8
9
10
11
12
c na c c c
c na c c c
c c c c c
c c c c c
c c c c c
c c c c c
c c c c c
c c c c c
c c c c c c
c c i (some) i c c
c c i (some) c c c
c c i (some) c c c
c c i (some) c c c
c c c c c c
c c c c c c
c c i (some) c c c
Very high
Very high
Very high
Very high
Very high
Very high Very high
Low
Freon TF and other
Ethyl ether,
Acetone, ethyl, ether,
Acetone, ethyl, ether, xylene, methylene
chlorofluorocarbons; also remove with soap and water
naphtha, xylene, methylene Chloride
naphtha, xylene, methylene chloride
toluene, turpentine
na = not available; MSDS=materials specification data sheet.
Section 5: Liquids
Table from Sacher, R. and Sacher, W., Optical Liquids, in Handbook of Laser Science and Technology, Supplement 2:Optical Materials (CRC Press, Boca Raton, FL, 1995), p. 97.
435
© 2003 by CRC Press LLC
Section 6: Gases
6.1 6.2 6.3 6.4 6.5 6.6
Introduction Physical Properties of Selected Gases Index of Refraction Nonlinear Optical Properties Magnetooptic Properties Atomic Resonance Filters
© 2003 by CRC Press LLC
Section 6: Gases
439
Section 6 GASES 6.1 Introduction Gases included in this section: Hydrogen, H2 Deuterium, D2 Nitrogen, N2 Oxygen, O2 Carbon monoxide, CO Carbon dioxide, CO2 Nitrous oxide, N2O Nitric oxide, NO Methane, CH4 Ammonia, NH3
Noble gases Helium, He Neon, Ne Argon, Ar Krypton, Kr Xenon, Xe
Composition of Air Molecular weights and assumed fractional-volume composition of sea-level dry air: Gas
species
Molecular weight (kg/kmol)
Fractional volume (percent)
N2
28.0134
0.78084
O2
31.9988
0.209476
Ar
39.948
0.00934
CO2
44.00995
0.000314
Ne
20.183
He
4.0026
0.00001818 0.00000524
Kr
83.80
0.00000114
Xe
131.30
0.000000087
CH4 H2 N2O
16.04303 2.01594 44.0129
0.000002 0.0000005 0.0000005
From the “U.S. Standard Atmosphere, 1976,” National Oceanic and Atmospheric Administration, National Aeronautics and Space Administration and the United States Air Force, 1976. The U.S. Standard Atmosphere, 1976, is an idealized, steady-state representation of the earth’s atmosphere from the surface to 1000 km, as it is assumed to exist in a period of moderate solar activity The air is assumed to be dry, and at heights sufficiently below 86 km, the atmosphere is assumed t o be homogeneously mixed with a relative-volume composition leading to a mean molecular weight.
© 2003 by CRC Press LLC
440
Handbook of Optical Materials
Mean Free Path of Gases Gas Argon Helium Hydrogen
Pressure 1 mm Hg (293 K) 4.73 x 10-5 m
Pressure 760 mm Hg (273 K)
Collision frequency (293 K)
Gas
6.30 x 10-8 m
9150 x 106
Ammonia
13.32
17.4
Argon
4000
8.81
11.1
Carbon monoxide
5100
Carbon dioxide
6120
Helium
4540
Krypton
3.63
4.8
Neon
9.4
12.4
Nitrogen
4.5
5.9
Hydrogen
10060
Oxygen
4.82
6.3
Nitrogen
5070
Xenon
2.62
3.5
Oxygen
4430
6.2 Physical Properties of Selected Gases Values of all properties in this section are for atmospheric pressure, P = 101.325 kPa. Physical Properties
Gas
Specific gravity (kg/m3)
Molecular mass
Mole fraction solubility* in H 2 O (× 1 0 5 )
Noble gases He
0.17846
4.0026
0.6997
Ne
0.90035
20.180
0.8152
Ar
1.7839
39.948
2.519
Kr
3.745
83.80
4.512
Xe
5.8971
131.29
7.890
Other gases H2 D2
0.08988 —
2.01588
1.411
4.0282
1.460
O2
1.42897
31.9988
2.293
CO
1.2504
28.0104
1.774
N2
1.2506
28.0134
1.183
CO2
1.97693
44.0098
6.1.5
CH4
0.5547
16.0428
2.552
NO
1.3402
30.0061
3.477
N2O
1.977
44.0129
43.67
NH3
0.7710
17.031
—
air
1.205
28.966
—
* Mole fraction solubility is at 298 K.
© 2003 by CRC Press LLC
Section 6: Gases
441
Physical Properties—continued Gas
Ionization potential (eV)
Permittivity ε
Polarizability 1 0 – 2 4 cm 3
Dipole moment µ/ D
—
0
0.15 1
Dielectic strength*
Noble gases He
24.5874
1.0000650
Ne
21.5645
1.00013
0.3956
0
0.16,2 0.251
Ar
15.7596
1.0005172
1.6411
0
0.18 2
Kr
13.9996
1.00078
2.4844
0
—
Xe
12.1299
1.00126
4.044
0
—
H2
15.4259
1.0002538
0.8042
0
D2
15.46
O2
12.07
Other gases
—
0.50 1,2
0.7954
0
1.0004947
1.5812
0
0.92 2
—
N2
15.581
1.0005480
1.7403
0
1.00
CO
14.014
1.00262
1.95
0.110
1.02,1 1.052
CO2
13.723
1.000922
2.911
0
0.82,2 0.881
CH4
12.71
1.00081
2.593
0
1.00,1 1.132
NO
9.264
1.00060
1.70
0.159
N2O
12.886
1.00104
3.03
0.161
NH3
10.2
1.00622
2.81
—
—
—
air
—
1.0005364
1.24 2 — 0.97 3 3.0 kV/mm4 ~0.5 V/mm5 1.4 kV/mm6
Values for the permittivity (dielectric constant) and the average electric dipole polarization for ground state molecules are for 293 K. Debye unit: 1 D = 3.33564 x 10-30 C m. * Relative to nitrogen. The dielectric strength (or breakdown voltage) of a material depends o n the specimen thickness, the electrode shape, and the rate of the applied voltage increase. Values are given for standard conditions.
References: CRC Handbook of Chemistry and Physics, 82nd edition, Lide, D. R., Ed. (CRC Press, Boca Raton, FL, 2001). Gas properties at other temperatures are also given in this reference. 1. Vijh, A. K., IEEE Trans. EI-12, 313 (1997). 2. Brand, K. P., IEEE Trans. EI-17, 451 (1982). 3. Shugg, W. T., Handbook of Electrical and Electronic Insulating Materials (Van Nostrand Reinhold, New York, 1986). 4. Encyclopedic Dictionary in Physics, Vedensky, B. A. and Vul, B. M., Eds. (Moscow, 1986). 5. Kubuki, M., Yoshimoto, R., Yoshizumi, K., Tsuru, S., and Hara, M., IEEE Trans. DEI-1, 305 (1994). 6. Al-Arainy, A. A., Malik, N. H., and Cureshi, M. I., IEEE Trans. EI-12, 313 (1997).
© 2003 by CRC Press LLC
442
Handbook of Optical Materials Physical Properties—continued
Gas
Heat capacity at 288 K C p (J/kg K)
Thermal conductivity κ(W/m K)
Viscosity at 300 K (µPa)
Noble gases He
0.1567*
5192
20.0
Ne
0.0498*
1030
Ar
0.0179*
519.2
22.9
Kr
0.0095*
247.0
25.6
Xe
0.0055*
158.3
23.2
32.1
Other gases H2
0.1869
14277
D2 0.0263
O2
9.0
7250
12.6
917
20.8
N2
0.0260
1043
17.9
CO
0.0250*
1031
17.8
CO2
0.0166
CH4
0.0341
2226
11.2
NO
0.0259
—
19.2
N2O
0.0174
—
15.0
NH3
0.0244
2091
air
0.0262
1005
843.2
15.0
— 18.6
* Low pressure limiting value. In general values differ by less than 1% at atmosphere pressure. Reference: CRC Handbook of Chemistry and Physics, 75th edition, Lide, D. R., Ed. (CRC Press, Boca Raton, FL, 1994). Values of properties at other temperatures are also given in this reference.
Thermal Conductivity at Different Temperatures Thermal Conductivity (mW/m K) Gas
100 K
200 K
300 K
400 K
500 K
600 K
222.3
252.4
Ref.
Noble gases He*
75.5
119.3
156.7
190.6
1
Ne*
22.3
37.6
49.8
60.3
69.9
78.7
1
Ar*
6.2
12.4
17.9
22.6
26.8
30.6
1,2
Kr*
3.3
6.4
9.5
12.3
14.8
17.1
1
Xe*
2.0
3.6
5.5
7.3
8.9
10.4
1
© 2003 by CRC Press LLC
Section 6: Gases
443
Thermal Conductivity (mW/m K)—continued Gas
100 K
200 K
300 K
400 K
186.9
230.4
500 K
600 K
Ref.
Other gases H2
68.6
131.7
O2
9.3
18.4
3
26.3
33.7
41.0
48.1
4
25.0
32.3
39.2
45.7
5
18.7
26.0
32.3
38.3
44.0
6
9.6
16.8
25.1
33.5
41.6
7
CH4
22.5
34.1
49.1
66.5
84.1
8,9
NO
17.8
25.9
33.1
39.6
46.2
10
N2O
9.8
17.4
26.0
34.1
41.8
10
18.4
26.2
33.3
39.7
45.7
11
CO* N2
9.8
CO2
air
9.4
* Low pressure limiting value. In general values differ by less than 1% at atmosphere pressure.
References: 1. Kestin, J. et al., Equilibrium and transport properties of the noble gases and their mixtures at low density, J. Phys. Chem. Ref. Data 13, 299 (1984). 2. Younglove, B. A. and Hanley, H. J. M., The viscosity and thermal conductivity of coefficients of gaseous and liquid argon, J. Phys. Chem. Ref. Data 15, 1323 (1986). 3. Assael, M. J., Mixafendi, S., and Wakeham, W. A., The viscosity of normal hydrogen in the limit of zero density, J. Phys. Chem. Ref. Data 15, 1315 (1986). 4. Younglove, B. A., Thermophysical properties of fluids. I. Argon, ethylene, parahydrogen, nitrogen, nitrogen trifluoride, and oxygen, J. Phys. Chem. Ref. Data 11, Suppl. 1 (1982). 5. Millat, J. and Wakeham, W. A., The thermal conductivity of nitrogen and carbon monoxide in the limit of zero density, J. Phys. Chem. Ref. Data 18, 565 (1989). 6. Stephen, K., Krauss, R., and Laesecke, A., Viscosity and thermal conductivity of nitrogen for a wide range of fluid states, J. Phys. Chem. Ref. Data 16, 993 (1987). 7. Vescovic, V. et al., The transport properties of carbon dioxide, J. Phys. Chem. Ref. Data 19 (1990). 8. Younglove, B. A. and Ely, J. F., Thermophysical properties of fluids. II. Methane, ethane, propane, isobutane, and normal butane, J. Phys. Chem. Ref. Data 16, 577 (1987). 9. Friend, D. G., Ely, J. F., and Ingham, H., Thermophysical properties of methane, J. Phys. Chem. Ref. Data 18, 583 (1989). 10. Ho, C. Y., Ed., Properties of Inorganic Fluids, CINDAS Data Series on Materials Properties, Vol. V-1 (Hemisphere Publishing Corp., New York, 1988). 11. Kadoya, K., Matsunagz, N., and Nagashima, A., Viscosity and thermal conductivity of dry air in the gaseous phase, J. Phys. Chem. Ref. Data 14, 947 (1985).
© 2003 by CRC Press LLC
444
Handbook of Optical Materials
Viscosity Viscosity in micropascal seconds (µ Pa s) Gas
100 K
200 K
300 K
400 K
500 K
600 K
Ref.
Noble gases He*
9.7
15.3
20.0
24.4
28.4
32.3
1
Ne*
14.4
24.3
32.1
38.9
45.0
50.8
1
Ar*
8.0
15.9
22.9
28.8
34.2
39.0
1,2
Kr*
8.8
17.1
25.6
33.1
39.8
45.9
1
Xe*
8.3
15.4
23.2
30.7
37.6
44.0
1
H 2*
4.2
6.8
9.0
10.9
12.7
14.4
3
D 2*
5.9
9.6
12.6
15.4
17.9
20.3
4
O 2*
7.5
14.6
20.8
26.1
30.8
35.1
5
CO
6.7
Other gases
12.9
17.8
22.1
25.8
29.1
6
N 2*
12.9
17.9
22.2
26.1
29.6
5
CO2
10.0
15.0
19.7
24.0
28.0
7,8
CH4
7.7
11.2
14.3
17.0
19.4
8
NO
13.8
19.2
23.8
28.0
31.9
6
N2O
10.0
15.0
19.4
23.6
27.4
6
air
13.3
18.6
23.1
27.1
30.8
9
* Low pressure limiting value. In general values differ by less than 1% at atmosphere pressure. References: 1. Kestin, J. et al., Equilibrium and transport properties of the noble gases and their mixtures at low density, J. Phys. Chem. Ref. Data 13, 299 (1984). 2. Younglove, B. A. and Hanley, H. J. M., The viscosity and thermal conductivity of normal hydrogen in the lmit of zero density, J. Phys. Chem. Ref. Data 15, 1323 (1986). 3. Assael, M. J., Mixafendi, S., and Wakeham, W. A., The viscosity of normal hydrogen in the limit of zero density, J. Phys. Chem. Ref. Data 15, 1315 (1986). 4. Assael, M. J., Mixafendi, S., and Wakeham, W. A., The viscosity of normal deuterium in the limit of zero density, J. Phys. Chem. Ref. Data 16, 189 (1987). 5. Cole, W. A. and Wakeham, W. A., The viscosity of nitrogen, oxygen, and their binary mixtures in the limit of zero density, J. Phys. Chem. Ref. Data 14, 209 (1985). 6. Ho, C. Y., Ed., Properties of Inorganic Fluids, CINDAS Data Series on Materials Properties, Vol. V-1 (Hemisphere Publishing Corp., New York, 1988). 7. Vescovic, V. et al., The transport properties of carbon dioxide, J. Phys. Chem. Ref. Data 1 9 (1990). 8. Trengove, R. D. and Wakeham, W. A., The viscosity of carbon dioxide, methane, and sulfur hexafluoride in the limit of zero density, J. Phys. Chem. Ref. Data 16, 175 (1987). 9. Kadoya, K., Matsunagz, N., and Nagashima, A., Viscosity and thermal conductivity of dry air in the gaseous phase, J. Phys. Chem. Ref. Data 14, 947 (1985).
© 2003 by CRC Press LLC
Section 6: Gases
6.3 Index of Refraction Index of Refraction n of Helium, He λ vac (µm )
λ air (µm )
n (273 K)
Ref.
0.092
1.0000485
1
O.1000
1.0000453
1
0.1100
1.0000426
1
0.1200
1.0000407
1
0.1300
1.0000396
1
0.1400
1.0000389
1
0.1500
1.0000383
1
0.1600
1.0000378
1
0.1700
1.0000374
1
0.1800
1.0000373
1
0.1820
1.00003720
3
0.184949
1.00003718
3
0.194232
1.00003690
3
0.213923
1.00003634
3
0.228872
1.00003601
3
0.253728
1.00003549
3
0.275278
1.00003573
3,4
0.289360
1.00003562
3,4
0.292541
1.00003559
3,4
0.296728
1.00003557
3,4
0.302150
1.00003553
3,4
0.312566
1.00003547
3,4
0.334148
1.00003536
3,4
0.366328
1.00003523
3,4
0.390641
1.00003516
3,4
0.404656
1.00003512
3,4
0.435835
1.00003505
3,4
0.479992
1.00003498
5
0.508582
1.00003494
5
0.521007
1.00003493
3
0.546226
0.546074
1.00003490
3
0.577120
0.576959
1.00003486
3
0.579227
0.579065
1.00003486
3
0.644025
0.643847
1.00003481
3
0.742511
1.00003477
5
0.826452
1.00003474
5
0.912296
1.00003472
5
1.013979
1.00003470
5
© 2003 by CRC Press LLC
445
446
Handbook of Optical Materials
Index of Refraction n of Helium, He—continued λ vac (µm )
λ air (µm )
n (273 K)
1.371857
1.00003466
5
1.529596
1.00003465
5
2.058128
1.00003464
5
Ref.
References: 1. Huber, M. C. E. and Tondello, G., Refractive index of He in the region 920 AA, J. Opt. Soc. Am. 64, 390 (1974). 2. Abjean, R., Mehu, A., and Johannin-Gilles, A., Comptes Rendus 271, 835 (1970). 3. Leonard, P. J., Atomic Data and Nuclear Data Tables 14, 21 (1974). 4. Cuthbertson, C. and Cuthbertson, M., Proc. Roy. Soc. A 135, 40 (1932). 5. Mansfield, C. R. and Peck, E. R., Dispersion of helium, J. Opt. Soc. Am. 59, 199 (1969).
Dispersion formula [λ (µ m) in vacuum at T = 273 K] 2
2
n = 1 + 0.01470091λ /423.98λ – 1
Range (µm ) 0.48–2.06
Reference: Mansfield, C. R. and Peck, E. R., Dispersion of helium, J. Opt. Soc. Am. 59, 199 (1969).
Index of Refraction n of Neon, Ne λ vac (µm )
λ air (µm )
n (273 K)
Ref.
0.1404
1.00007736
1
0.1525
1.00007520
1
0.1641
1.00007317
1
0.1702
1.00007280
1
0.180731
1.00007221
1
0.184949
1.00007190
1
0.194232
1.00007095
1
0.213923
1.00007017
1
0.228872
1.00006941
1
0.253728
© 2003 by CRC Press LLC
1.00006872
1
0.289360
1.00006860
2,3
0.296728
1.00006850
2,3
0.302150
1.00006843
2,3
0.313183
1.00006831
2,3
0.334148
1.00006812
2,3
0.366328
1.00006788
2,3
0.390641
1.00006773
2,3
0.404656
1.00006766
2,3
0.407781
1.00006765
2,3
0.435835
1.00006753
2,3
0.479992
1.00006739
2
Section 6: Gases
447
Index of Refraction n of Neon, Ne—continued λ vac (µm )
λ air (µm )
n (273 K)
Ref.
0.491604
1.00006736
2,3
0.508582
1.00006731
2
0.521007
1.00006729
2
0.546226
0.546074
1.00006724
2
0.577120
0.576959
1.00006718
2
0.579227
0.579065
1.00006718
2
0.644025
0.643847
1.00006711
2
References: 1. Bideau-Mehu, A., Guern, R., Abjean, Y., and Johannin-Gilles, A., Measurement of refractive indexes of He, Ar, Kr, and Xe in the 253.7–140.4 nm wavelength range. Dispersion relation and estimated oscillator strength of the resonance lines, J. Quant. Spectrosc. Radiat. Transfer 25, 395 (1981). 2. Leonard, P. J., Atomic Data and Nuclear Data Tables 14, 21 (1974). 3. Cuthbertson, C. and Cuthbertson, M., Proc. Roy. Soc. A 135, 40 (1932). Dispersion formula [λ (µ m) in vacuum at T = 273 K] 2
2
2
2
n = 1 + 0.012055[0.1063λ /(184.661λ – 1) + 182.90λ /(376.840λ – 1)]
Range (µm ) 0.14–0.66
Reference: Bideau-Mehu, A., Guern, R. Abjean, Y., and Johannin-Gilles, A., Measurement of refractive indexes of He, Ar, Kr, and Xe in the 253.7–140.4 nm wavelength range. Dispersion relation and estimated oscillator strength of the resonance lines, J. Quant. Spectrosc. Radiat. Transfer 25, 395 (1981).
Index of Refraction n of Argon, Ar (vacuum ultraviolet) λ vac ( µm )
n (273 K)
Ref.
λ vac (µm )
n (273 K)
Ref.
0.1110
1.0008025
1
0.1700
1.0003451
1
0.1140 0.1160
1.0006435
1
0.1702
1.0003446
2
1.0005878
1
0.1805
1.0003352
1
0.1180
1.0005492
1
0.180731
1.0003352
2
0.1200
1.0005200
1
0.184949
1.0003315
2
0.1210
1.0005080
1
0.1850
1.0003318
1
0.1216
1.0005016
1
0.1900
1.0003281
1
0.1250
1.0004707
1
0.194232
1.0003256
2
0.1300
1.0004394
1
0.2000
1.0003220
1
0.1350
1.0004166
1
0.2100
1.0003169
1
0.1400
1.0003966
1
0.213923
1.0003150
2
0.1404
1.0003964
2
0.2200
1.0003127
1
0.1500
1.0003749
1
0.228872
1.0003102
2
0.1525
1.0003685
2
0.2300
1.0003091
1
0.1600
1.0003577
1
0.253728
1.0003029
2
0.1641
1.0003514
2
© 2003 by CRC Press LLC
448
Handbook of Optical Materials Index of Refraction Index n of Argon, Ar (ultraviolet, visible, and near infrared)
λ vac (µm )
λ air (µm )
n (273 K)
Ref.
0.230209
1.00030922
3
0.234555
1.00030786
3
0.237999
1. 00030689
3
0.244691
1.00030507
3
0.246407
1.00030463
3
0.257630
1.00030202
3
0.267499
1.00030002
3
0.275278
1.00029865
3
0.275971
1.00029852
3
0.289357
1.00029643
3
0.292541
1.00029599
3
0.334148
1.00029135
3
0.380166
1.00028806
3
0.410807
1.00028285
3
0.467947
0.467816
1.00028434
3,4
0.480126
0.479992
0.508724
3 3,4
0.491604
1.00028368
3
0.508582
1.00028325
3,4
0.521007 0.546226
1.00028399 1.00028398
1.00028322
3
1.00028296
3
0.546074
1.00028247
3
0.567717
1.00028209
3
0.577120
0.576959
1.00028190
3
0.579227
0.579065
1.00028190
3
0.644025
0.643847
1.00028103
3
0.703435
0.703241
1.00028045
3,4
0.724716
0.724511
1.00028028
3,4
0.826679
0.826452
1.00027962
3,4
0.912547
0.912296
1.00027923
3,4
0.922703
0 922449
1.00027920
3,4
0.966043
0.965778
1.00027904
3,4
1.014257
1.013979
1.00027890
3,4
1.372233
1.371857
1.00027825
3,4
1.475650
1.475246
1.00027814
3,4
1.529354
1.528936
1.00027810
3,4
1.530015
1.529596
1.00027809
3,4
1.694521
1.694057
1.00027798
3,4
2.058691
2.058128
1.00027782
3,4
© 2003 by CRC Press LLC
Section 6: Gases
449
References: 1. Chashchina, G. I., Gladushchak, V. I., and Shreider, E. Ya., Opt. Spektrosk. 24, 1008-1010 (1968) English transl.: Opt. Spectrosc. USSR 24, 542 (1968). 2 . Bideau-Mehu, A., Guern, R., Abjean, Y., and Johannin-Gilles, A., J. Quant. Spectrosc. Radiat. Transfer 25, 395 (1981). 3. Leonard, P. J., Atomic Data and Nuclear Data Tables 14, 21 (1974). 4. Peck, E. R. and Fisher, D. J., J. Opt. Soc. Am. 54, 1362 (1964).
Temperature variation of the index of refraction of argon at 293 K. dn/dT (K-1) = -0.897x10-6 at 546.1 nm dn/dT (K-1) = -0.894x10-6 at 632.8 nm Dispersion formula [λ in vacuum (µ m) at T = 273 K] 2
2
2
2
n = 1 + 0.012055[0.2075λ /(91.012 λ – 1) + 0.0415λ /(87.892λ – 1) 2
Range (µm )
Ref.
0.14–2.1
1
0.47–2.06
2
2
+ 4.3330λ /(214.02λ – 1)] 2
2
n = 1 + [67.86711 + 30182.943λ /(144λ – 1)]x10
-6
References: 1. Bideau-Mehu, A., Guern, R., Abjean, Y., and Johannin-Gilles, A., Measurement of refractive indexes of He, Ar, Kr, and Xe in the 253.7–140.4 nm wavelength range. Dispersion relation and estimated oscillator strength of the resonance lines, J. Quant. Spectrosc. Radiat. Transfer 25, 395 (1981). 2. Peck, E. R. and Fisher, D. J., J. Opt. Soc. Am. 54, 1362-1364 (1964).
Index of Refraction n of Krypton, Kr λ vac (µm )
λ air (µm )
n (273 K)
Ref.
0.1404
1.0007723
1
0.1525
1.0006548
1
0.1641
1.0005973
1
0.16846
1.0005829
2
0.16991
1.0005780
2
0.17015
1.0005773
2
0.1702
1.0005801
1
0.17044
1.0005767
2
0.17134
I .0005740
2
0.17224
1.0005718
2
0.18169
1.0005483
2
0.18365
1.0005442
2
0.1844
1.0005433
1
0.18455
1.0005425
2
0.18475
1.0005423
2
0.18507
1.0005416
2
© 2003 by CRC Press LLC
450
Handbook of Optical Materials Index of Refraction n of Krypton, Kr—continued λ vac (µm )
λ air (µm )
n (273 K)
Ref.
0.19013
1.0005326
2
0.19832
1.0005197
2
0.19889
1.0005191 0.202551
0.20588
1.00051493
2 3,4
1.0005101
2
0.2062
1.0005108
1
0.21248
1.0005028
2
0.213923
1.0005023
1
0.214438
1 00050126
3,4
0.219463
1.00049664
3,4
0.22116
1.0004950
0.22174
1.0004946 0.226502
0.228872
1.00049089 1.0004890
2 2 3,4 1
0.230209
1.00048845
3,5
0.232928
1.00048617
3,4
0.234555
1.00048542
3,5
0.237999
1.00048318
3,5
0.24359
1.0004791
2
0.244691
1.00047910
3,5
0.246407
1.00047815
3,5
0.25073
1.0004751
2
0.25151
1.0004747
2
0.25169
1.0004746
2
0.25200
1.0004745
2
0.25249
1.0004742
2
0.25293
1.0004740
2
0.257309
1.00047221
3,4
0.257630
1.00047236
3,5
0.267499
1.00046804
3,5
0.274858
1.00046489
3,4
0.275278
1.00046499
3,5
0.275971
1.00046471
3,5
0.283691
1.00046181
3,4
0.285697
1.00046138
3,5
0.26321
1.0004691
0.28824
© 2003 by CRC Press LLC
1.0004601
2
2
0.289360
1.00046017
3,5
0.292541
1.00045924
3,5
0.298063
1.00045739
3,4
0.334148
1.00044933
3,5
Section 6: Gases
451
Index of Refraction n of Krypton, Kr—continued λ vac (µm )
0.480126
λ air (µm )
n (273 K)
Ref.
0.340365
1.00044829
3,4
0.380166
1.00044241
3,5
0.410807
1.00043909
3,5
0.441304
1.00043621
3,4
0.479992
1.00043391
3,4
0.491604
1.00043333
3,5
0.508724
0.508582
1.00043245
3,4
0.546226
0.546074
1.00043084
3
0.567717
1.00043011
3,5
0.607262
1.00042885
3,5
0.612327
1.00042873
3,5
0.623437
1.00042847
3,5
References: 1. Bideau-Mehu, A., Guern, R., Abjean, Y., and Johannin-Gilles, Measurement of refractive indexes of He, Ar, Kr, and Xe in the 253.7–140.4 nm wavelength range. Dispersion relation and estimated oscillator strength of the resonance lines, J. Quant. Spectrosc. Radiat. Transfer 25, 395 (1981). 2. Smith, P. L., Parkinson, W. H., and Huber, M. C. E., The refractive index of krypton for 168 nm to 288 nm, Opt. Commun. 14, 374 (1975). 3. Leonard, P. J., Atomic Data and Nuclear Data Tables 14, 21-37 (1974).. 4. Kronjager, W., Z. Physik 98, 17 (1936). 5. Koch, J., Kungl. Fysiografiska Sällskapets i Lund Förhandlingar 19, 173 (1949). Dispersion formula [λ (µ m) in vacuum at T = 273 K] 2
2
2
2
n = 1 + 0.012055[0.2104λ /(65.4742λ – 1) + 0.2270λ /(73.698λ – 1) 2
Range (µm ) 0.15–0.62
2
+ 5.14975λ /(181.08λ – 1)]
Reference: See reference 1 above. Index of Refraction n of Xenon, Xe λ vac (µm )
λ air (µm )
n (273 K)
Ref.
0.1483
1.005091
0.1495
1.003210
1
0.1525
1.0020686
1
0.1550
1.0018107
2
0.1600
1.0014614
2
0.1641
1.0013192
1
0.1650
1.0012978
2
0.1700
1.0011934
2
0.1702
1.0011867
1
0.1750
1.0011213
2
0.1800
1.0010678
2
0.180731
1.0010630
1
© 2003 by CRC Press LLC
1
452
Handbook of Optical Materials Index of Refraction n of Xenon, Xe—continued λ vac (µm )
λ air (µm )
n (273 K)
Ref.
0.184949
1.0010302
1
0.1850
1.0010226
2
0.1900
1.0009917
2
0.194232
1.0009713
1
0.1950
1.0009635
2
0.2000
1.0009398
2
0.2050
1.0009194
2
0.2100
1.0009018
2
0.213923
1.0008941
1
0.2150
1.0008862
2
0.2200
1.0008725
2
0.2250
1.0008603
2
0.228872
1.0008584
1
0.2300
1.0008494
2
0.230209
1.00085519
3,4
0.234555
1.00084664
3,4
0.237999
1.00084025
3,4
0.244691
1.00082907
3,4
1.00082640
3,4
0.246407 0.253728
0.546226
1.0008127
1
0.257630
1.00081078
3,4
0.267499
1.00079923
3,4
0.275278
1.00079124
3,4
0.275971
1.00079060
3,4
0.285697
1.00078186
3,4
0.289360
1.00077885
3,4
0.292541
1.00077637
3,4
0.334148
1.00075143
3,4
0.380166
1.00073430
3,4
0.410807
1.00072623
3,4
0.491604
1.00071241
3,4
0.546074
1.00070660
3
0.567717
1.00070477
3,4
0.607262
1.00070188
3,4
0.612327
1.00070157
3,4
0.623437
1.00070091
3,4
1. Bideau-Mehu, A., Guern, R., Abjean, Y., and Johannin-Gilles, A., J. Quant. Spectrosc. Radiat. Transfer 25, 395 (1981). 2. Chashchina, G. I. and Shreider, E. Ya., Opt. Spektrosk. 27, 161 (1969) English transl.: Opt. Spectrosc. USSR 27, 79-80 (1969). 3. Leonard, P. J., Atomic Data and Nuclear Data Tables 14, 21-37 (1974). 4. Kronjager, W., Z. Physik 98, 17 (1936).
© 2003 by CRC Press LLC
Section 6: Gases
Dispersion formula [λ (µ m) in vacuum at T = 273 K] 2
2
2
Range (µm )
2
n = 1 + 0.012055[0.26783λ /(46.301λ – 1) + 0.29481λ /(50.578λ – 1) 2
453
0.15–0.62
2
+ 5.0333λ /(112.74λ – 1)]
Reference: Bideau-Mehu, A., Guern, R., Abjean, Y., and Johannin-Gilles, A., Measurement of refractive indexes of He, Ar, Kr, and Xe in the 253.7–140.4 nm wavelength range. Dispersion relation and estimated oscillator strength of the resonance lines, J. Quant. Spectrosc. Radiat. Transfer 25, 395 (1981). Index of Refraction n of Hydrogen, H2 λ air (µm )
n (273 K)
λ air (µm )
n (273 K)
0.230209
1.0001594
0.334148
1.0001461
0.237832
1.0001577
0.354308
1.0001450
0.244691
1.0001563
0.366328
1.0001443
0.246406
1.0001560
0.390641
1.0001432
0.253652
1.0001547
0.398400
1.0001430
0.257630
1.0001540
0.404656
1.0001427
0.267499
1.0001525
0.407781
1.0001426
0.275278
1.0001515
0.410807
1.0001426
0.275971
1.0001514
0.435835
1.0001418
0.285697
1.0001503
0.486133
1.0001406
0.289360
1.0001499
0.491604
1.0001405
0.292541
1.0001495
0.546074
1.0001397
0.296728
1.0001491
0.579065
1.0001393
0.312567
1.0001477
0.656279
1.0001387
0.313184
1.0001477
0.670784
1.0001385
Reference: Leonard, P. J., Atomic Data and Nuclear Data Tables 14, 21 (1974) Index of Refraction n of Deuterium, D 2 λ air (µm )
n (273 K)
λ air (µm )
n (273 K)
0.230209
1.00015680
0.289357
1.00014756
0.234555
1.00015584
0.292541
1.00014725
0.237999
1.00015510
0.334148
1.00014395
0.244691
1.00015378
0.380166
1.00014160
0.246407
1.00015347
0.410807
1.00014048
0.257630
1.00015158
0.491604
1.00013850
0.267499
1.00015014
0.546074
1.00013766
0.275278
1.00014915
0.576959
1.00013731
0.275971
1.00014906
0.579065
1.00013727
Reference: Leonard, P. J., Atomic Data and Nuclear Data Tables 14, 21-37 (1974)
© 2003 by CRC Press LLC
454
Handbook of Optical Materials Index of Refraction n of Nitrogen, N 2 (vacuum ultraviolet, ultraviolet, and visible) λ vac (µm )
λ air (µm )
n (273 K)
Ref.
0.1641
1.0003748
1
0.1702
1.0003656
1
0.180731
1.0003552
2
0.184949
1.0003495
2
0.194232
1.0003435
2
0.213923
1.0003349
2
0.228872
1.0003299
2
0.237832
1.0003261
3
0.244691
1.0003241
3
0.246406
1.0003236
3
0.253652
1.0003218
3
0.253728
1.0003217
2
0.257630
1.0003208
3
0.267499
1.0003187
3
0.275278
1.0003172
3
0.275971
1.0003171
3
0.285697
1.0003154
3
0.289360
1 0003148
3
0.292541
1.0003143
3
0.296728
1.0003137
3
0 334148
1.0003094
3
0.354308
1.0003076
3
0.390641
1.0003051
3
0.398400
1.0003047
3
0.407781
1.0003042
3
0.410807
1.0003041
3
0.491604
1.0003011
3
0.546074 0.546226
1.0002977
3
l.0002911
4
References: 1. Bideau-Mehu, A., Guern, Y., Abjean, R., and Johannin-Gilles, A., Measurement of refractive indexes of gases in the vacuum ultraviolet and revised values for krypton, Opt. Commun. 16, 186 (1976). 2. Abjean, R., Mehu, A., and Johannin-Gilles, A., Interferometric measurement of the refractive indices of neon and helium in the ultraviolet, Comptes Rendus 271, 411-414 (1970). 3. Leonard, P. J., Atomic Data and Nuclear Data Tables 14, 21-37 (1974). 4. Peck, E. R. and Hanna, B. N., J. Opt. Soc. Am. 56, 1059-1063 (1966).
© 2003 by CRC Press LLC
Section 6: Gases
455
Index of Refraction n of Nitrogen, N 2 (vacuum ultraviolet, ultraviolet, and visible) λ vac (µm )
λ air (µm )
n (273 K)
Ref.
0.1641
1.0003748
1
0.1702
1.0003656
1
0.180731
1.0003552
2
0.184949
1.0003495
2
0.194232
1.0003435
2
0.213923
1.0003349
2
0.228872
1.0003299
2
0.237832
1.0003261
3
0.244691
1.0003241
3
0.246406
1.0003236
3
0.253652
1.0003218
3
0.253728
0.546226
1.0003217
2
0.257630
1.0003208
3
0.267499
1.0003187
3
0.275278
1.0003172
3
0.275971
1.0003171
3
0.285697
1.0003154
3
0.289360
1 0003148
3
0.292541
1.0003143
3
0.296728
1.0003137
3
0.334148
1.0003094
3
0.354308
1.0003076
3
0.390641
1.0003051
3
0.398400
1.0003047
3
0.407781
1.0003042
3
0.410807
1.0003041
3
0.491604
1.0003011
3
0.546074
1.0002977
3
l.0002911
4
References: 1. Bideau-Mehu, A., Guern, Y., Abjean, R., and Johannin-Gilles, A., Measurement of refractive indexes of gases in the vacuum ultraviolet and revised values for krypton, Opt. Commun. 16, 186 (1976). 2. Abjean, R., Mehu, A., and Johannin-Gilles, A., Interferometric measurement of the refractive indices of neon and helium in the ultraviolet, Comptes Rendus 271, 411 (1970). 3. Leonard, P. J., Atomic Data and Nuclear Data Tables 14, 21 (1974). 4. Peck, E. R. and Hanna, B. N., J. Opt. Soc. Am. 56, 1059 (1966).
© 2003 by CRC Press LLC
456
Handbook of Optical Materials Index of Refraction n of Nitrogen, N 2 (visible and near infrared) λ vac (µm )
λ vac (µm )
n (288 K)
n (288 K)
0.467947
1.00028543
0.978719
1.00028000
0.480126
1.00028507
1.014257
1.00027989
0.508724
1.00028433
1.129050
1.00027961
0.546226
1.00028352
1.350788
1.00027926
0.703435
1.00028149
1.372233
1.00027923
0.724716
1.00028130
1.475650
1.00027912
0.826679
1.00028063
1.529354
1.00027907
0.912547
1.00028023
1.694521
1.00027896
0.922703
1.00028019
2.058691
1.00027879
0.966043
1.00028004
Reference: Peck, E. R. and Hanna, B. N., J. Opt. Soc. Am. 56, 1059 (1966). Temperature variation of index of refraction at 293 K: dn/dT (K–1) = -0.953 × 10–6 at 546.1 nm dn/dT (K–1) = -0.949 × 10–6 at 632.8 nm Dispersion formula [λ (µ m) in vacuum at T = 273 K] 2
2
n = 1 + [68.5520 + 32431.57λ /144λ – 1)]x10
–6
Reference: Peck, E. R. and Hanna, B. N., J. Opt. Soc. Am. 56, 1059 (1966). Index of Refraction n of Oxygen, O2 λ air (µm )
n (273 K)
0.275278
1.0003242
0.289360
1.0002936
0.302150
1.0002912
0.318770
1.0002879
0.388865
1.0002797
0.447148
1.0002763
0.471250
1.0002751
0.501568
1.0002740
0.587562
1.0002718
0.667815
1.0002708
Reference: Abjean, R., Mehu, A., and JohanninGilles, A., Comptes Rendus 271, 411 (1970).
Temperature variation of the index of refraction of oxygen at 293 K: dn/dT (K–1) = -0.864 × 10–6 at 546.1 nm dn/dT (K–1) = -0.858 × 10–-6 at 632.8 nm
© 2003 by CRC Press LLC
Range (_m) 0.47–2.06
Section 6: Gases
457
Index of Refraction n of Carbon Dioxide, CO2 λ vac (µm )
n (273 K)
λ vac (µm )
n (273 K)
0.180731
1.0005513
1
0.410925
1.0004582
2
0.184949 0.194232
1.0005441
1
0.480126
1.0004534
3
1.0005333
1
0.491720
1.0004529
2
0.206230
1.0005207
1
0.508724
1.0004520
3
0.213923
1.0005142
1
0.546223
1.0004505
2
0.228872
1.0005034
1
0.724716
1.0004461
3
0.237910
1.0004973
2
0.744095
1.0004458
3
0.244764
1.0004937
2
0.826679
1.0004446
3
0.246482
1.0004929
2
0.877716
1.0004440
3
0.253728
1.0004895
1
0.893115
1.0004439
3
0.257708
1 0004878
2
0.912547
1.0004437
3
0.267577
1.0004840
2
0.922703
1.0004436
3
0.276058
1.0004811
2
0.966043
1.0004431
3
0.285780
1.0004781
2
1.014257
1.0004427
3
0.296813
1.0004752
2
1.296021
1.0004405
3
0.334242
1.0004674
2
1.372232
1.0004399
3
0.354469
1.0004644
2
1.475650
1.0004392
3
0.368104
1.0004625
2
1.529354
1.0004387
3
0.398507
1.0004593
2
1.694521
1.0004374
3
Ref.
Ref.
References: 1. Bideau-Mehu, A., Guern, Y., Abjean, R., and Johannin-Gilles, A., Interferometric determination of the refractive index of CO2 in the ultraviolet region, Opt. Commun. 9, 432 (1973). 2. Leonard, P. J., Atomic Data and Nuclear Data Tables 14, 21 (1974). 3. Old, J. G., Gentili, K. L., and Peck, E. R., Dispersion of carbon dioxide, J. Opt. Soc. Am. 61, 8 9 (1971). Temperature variation of the index of refraction of carbon dioxide at 293 K: –1
–6
–1
–6
dn/dT (K ) = 1.432 × 10 dn/dT (K ) = 1.424 × 10
at 546.1 nm at 632.8 nm
Dispersion formula [λ (µ m) in vacuum at T = 273 K] 2
2
2
Range (µm ) 2
n = 1 + 0.012055[0.579925λ /(166.175λ – 1) + 0.12005λ (79.609λ – 1) 2
2
2
0.18–1.7
2
+ 0.0053334λ /(56.3064λ – 1) + 0.0043244λ /(46.0196λ – 1) 2
2
+ 0.0001218145λ /(0.0584738λ – 1)]
Reference: Bideau-Mehu, A., Guern, Y., Abjean, R., and Johannin-Gilles, A., Interferometric determination of the refractive index of CO2 in the ultraviolet region, Opt. Commun. 9, 432 (1973).
© 2003 by CRC Press LLC
458
Handbook of Optical Materials Index of Refraction n of Methane, CH4
λ air (µm )
n (273 K)
Reference
0.5290
1.0004478
1
0.5718
1.0004454
1
0.5893
1.000444
2
0.5935
1.0004435
1
0.6375
1.0004411
1
0.6585
1.0004404
1
References: 1. International Critical Tables of Numerical Data, Physics and Chemistry and Technology, Vol. VII, Washburn, E. W., Ed., (McGraw-Hill, New York, 1930). 2. Kaye, G. W., and Laby, T. H., Tables of Physical and Chemical Constants (Longman Group, London, 1986).
Index of Refraction n of Ammonia, NH3 λ air (µm )
n (273 K)
Reference
0.47999
1.0003830
1
0.50858
1.0003808
1
0.52091
1.0003800
1
0.54607
1.0003786
1
0.57695
1.0003771
1
0.57905
1.0003770
1
0.5893
1.000376
2
0.64385
1.0003746
1
0.67078
1.0003738
1
References: 1. International Critical Tables of Numerical Data, Physics and Chemistry and Technology, Vol. VII, Washburn, E. W., Ed., (McGraw-Hill, New York, 1930). 2. Kaye, G. W., and Laby, T. H., Tables of Physical and Chemical Constants (Longman Group, London, 1986).
© 2003 by CRC Press LLC
Section 6: Gases
459
Index of Refraction n of Air λ air (µm )
n (288 K)
λ vac –λ a i r (µm )
λ air (µm )
n (288 K)
λ vac –λ a i r (µm )
0.200
1.0003256
0.0000651
0.560
1.0002769
0.0001551
0.210
1.0003188
0.0000670
0.570
1.0002768
0.0001578
0.220
1.0003132
0.0000689
0.580
1.0002766
0.0001604
0.230
1.0003086
0.0000710
0.590
1.0002765
0.0001631
0.240
1.0003047
0.0000731
0.600
1.0002763
0.0001658
0.250
1.0003014
0.0000754
0.610
1.0002762
0.0001685
0.260
1.0002986
0.0000776
0.620
1.0002761
0.0001712
0.270
1.0002962
0.0000800
0.630
1.0002760
0.0001739
0.280
1.0002941
0.0000824
0.640
1.0002759
0.0001766
0.290
1.0002923
0.0000848
0.650
1.0002758
0.0001792
0.300
1.0002907
0.0000872
0.660
1.0002757
0.0001819
0.310
1.0002893
0.0000897
0.670
1.0002756
0.0001846
0.320
1.0002880
0.0000922
0.680
1.0002755
0.0001873
0.330
1.0002869
0.0000947
0.690
1.0002754
0.0001900
0.340
1.0002859
0.0000972
0.700
1.0002753
0.0001927
0.350
1.0002850
0.0000998
0.710
1.0002752
0.0001954
0.360
1.0002842
0.0001023
0.720
1.0002751
0.0001981
0.370
1.0002835
0.0001049
0.730
1.0002751
0.0002008
0.380
1.0002829
0.0001075
0.740
1.0002750
0.0002035
0.390
1.0002823
0.0001101
0.750
1.0002749
0.0002062
0.400
1.0002817
0.0001127
0.760
1.0002749
0.0002089
0.410
1.0002812
0.0001153
0.770
1.0002748
0.0002116
0.420
1.0002808
0.0001179
0.780
1.0002748
0.0002143
0.430
1.0002803
0.0001205
0.790
1.0002747
0.0002170
0.440
1.0002799
0.0001232
0.800
1.0002746
0.0002197
0.450
1.0002796
0.0001258
0.810
1.0002746
0.0002224
0.460
1.0002792
0.0001284
0.825
1.0002745
0.0002265
0.470
1.0002789
0.0001311
0.850
1.0002744
0.0002332
0.480
1.0002786
0.0001338
0.875
1.0002743
0.0002400
0.490
1.0002784
0.0001364
0.900
1.0002742
0.0002468
0.500
1.0002781
0.0001391
0.925
1.0002741
0.0002536
0.510
1.0002779
0.0001417
0.950
1.0002740
00002604
0.520
1.0002777
0.0001444
0.975
1.0002740
0.0002671
0.530
1.0002775
0.0001471
1.000
1.0002739
0.0002739
0.540
1.0002773
0.0001497
1.050
1.0002738
0.0002875
0.550
1.0002771
0.0001524
1.100
1.0002737
0.0003011
Reference: CRC Handbook of Chemistry and Physics, 75th edition, Lide, D. R., Ed. (CRC Press, Boca Raton, FL, 1994).
© 2003 by CRC Press LLC
460
Handbook of Optical Materials
6.4 Nonlinear Optical Properties 6.4.1 Nonlinear Refractive Index γ (300 K) γ (10– 22 m 2 / W )
λ( n m )
Gas Noble gases He Ne Ar
Ref.
694.3 694.3 248.4 694.3
0.014 0.006 0.29 ± 0.10 0.25
1 2 2 1
694.3 694.3 248.4 694.3 248.4 694.3 248.4 694.3 248.4 694.3
0.21 0.21 3.0 ± 0.3 0.21 0.76 ± 0.26 0.21 0.32 1.1 1.1 ± 0.4 0.47
3 1 2 1 2 1 1 2 2 1
Other gases H2 D2 O2 N2 CO2 CH4
References: 1. Rado, W. G., Appl. Phys. Lett. 11, 123 (1967) 2. Shaw, M. J., Hooker, C. J., and Wilson, D. C., Opt. Commun. 103, 153 (1993). 3. Martin, W. E. and Winfield, R. J., Appl. Opt. 27, 577 (1988)
6.4.2
Two-Photon Absorption Two-Photon Absorption Coefficients
Gas
Excitation duration (ns)
Anthracene Benzene Benzene Benzene Benzene Benzene Perylene POPOP
30 10 10 10 10 10 30 30
Applied two-photon energy (eV) 3.57 4.92 8.43 8.44 8.53 8.87 3.57 3.57
Two-photon cross-section 10–50c m 4 s / phot. mol. 0.09 0.0126 0.0016 0.00075 0.00146 0.00001 1.2 0.05
Ref. 1 2 2 2 2 2 1 1
Additional information 503 K, 1.7 Torr 30 Torr, Ar buffer 30 Torr, Ar buffer 30 Torr, Ar buffer 30 Torr, Ar buffer 30 Torr, Ar buffer 583 K, 0.6 Torr 603 K, 1.23 Torr
POPOP : 1,4-di[2-(5-phenyloxazolyl)] benzene.
References: 1. Blokhin, A. P., Povedalio, V. A., and Tolkachev, V. A., Polarization of two-photon excited fluorescence of vapors of complex organic molecules, Opt. Spectrosc. (USSR) 60, 37 (1986). 2. Zheng, B., Lin, M., Zhang, B., and Chen, W., Study of two-photon absorption cross section b y multiphoton ionization spectroscopy, Opt. Commun. 73, 208 (1989).
© 2003 by CRC Press LLC
Section 6: Gases
461
6.4.3 Third-Order Nonlinear Optical Coefficients
Gas
Nonlinear optical process
Cjn
Coefficient 20 2 -2 x 10 m V
mic
Wavelength (µm)
Noble gases Helium, He
(−2ω 1+ ω2; ω1, ω1, −ω2) (−3ω; ω, ω, −ω) (−2ω; 0, ω, ω)
C 11 = 0.00245 C 11 = 0.00122 C 22 = 0.0027
0.6943 0.6943 0.6943
Neon, Ne
(−2ω; 0, ω, ω) (−3ω; ω, ω, −ω)
C 22 = 0.00735 ± 0.00024 C 11 = 0.00312 ± 0.00053
0.6943 0.6943
Argon, Ar
(−2ω 1+ ω2; ω1, ω1, −ω2) (−3ω; ω, ω, −ω) (−2ω; 0, ω, ω)
C11 = 0.0217 ± 10% C 11 = 0.0875 C 11 = 0.0441 ± 0.007 C 22 = 0.0833 ± 0.0027
0.6943 0.308 0.6943 0.6943
Krypton, Kr
(−3ω; ω, ω, −ω) (−2ω; 0, ω, ω)
C 11 = 0.13516 ± 0.0262 C 22 = 0.2037 ± 0.0098
0.6943 0.6943
Xenon, Xe
(−2ω; 0, ω, ω)
C 11 = 0.3426 ± 0.0655 C 22 = 0.5635 ± 0.0392
0.6943 0.6943
(−2ω 1+ ω2; ω1, ω1, −ω2) (−3ω; ω, ω, −ω)
C11 = 0.028 ± 10% C 11 = 0.054 ± 0.008
0.6943
Carbon monoxide, CO
(−2ω 1+ ω2; ω1, ω1, −ω2) (−3ω; ω, ω, −ω)
C11 = 0.0252 ± 10% C11 = 1.95
0.6943 9.33
Deuterium, D2
(−2ω 1+ ω2; ω1, ω1, −ω2)
C11 = 0.0182 ± 10%
0.6943
Ethane, C2H8
(−2ω 1+ ω2; ω1, ω1, −ω2)
C11 = 0.0868 ± 10%
0.6943
Hydrogen, H2
(−2ω 1+ ω2; ω1, ω1, −ω2) (−3ω; ω, ω, −ω)
C11 = 0.0294 ± 10% C 11 = 0.028 ± 0.0024
0.6943 0.6943
Methane, CH4
(−2ω 1+ ω2; ω1, ω1, −ω2) (−2ω; 0, ω, ω) (−ω; 0, 0,+ ω) (−2ω; ω, ω,0)
Nitric oxide, NO
(−2ω 1+ ω2; ω1, ω1, −ω2)
C11 = 0.0588 ± 10%
0.6943
Nitrogen, N2
(−2ω 1+ ω2; ω1, ω1, −ω2) (−3ω; ω, ω, −ω)
C11 = 0.0189 ± 10% C 11 = 0.03745 ± 0.006
0.6943 0.6943
Oxygen, O2
(−2ω 1+ ω2; ω1, ω1, −ω2)
C11 = 0.0182 ± 10%
0.6943
Sulfur hexafluoride, SF6
(−2ω 1+ ω2; ω1, ω1, −ω2) (−3ω; ω, ω, −ω)
C11 = 0.035 ± 10% C 11 = 5862
Other gases Carbon dioxide, CO2
mic
C jn = 0.1925 ± 0.0161 mic C jn = 0.1708 ± 0.084 C 22 = 0.1806 ± 0.013 C11 = 0.0413 ± 10%
0.6943 0.6943 0.6943 0.6943
0.6943 10.6
Data from a table of S. Singh, Nonlinear optical materials, Handbook of Laser Science and Technology, Vol. III: Optical Materials, Part 1 (CRC Press, Boca Raton, FL., 1986), p. 60 ff.
© 2003 by CRC Press LLC
462
Handbook of Optical Materials
6.4.4 Stimulated Raman Scattering Stimulated Raman Scattering Transitions in Gases Raman frequency shift ν o (cm - 1 )
Substance barium vapor,a Ba cesium vapor,a Cs hydrogen fluoride, HF potassium vapor,a K rubidium vapor,a Rb para-hydrogen, p-H2 silane, SiH4 germane, GeH4 sulfur hexafluoride, SF6 carbon tetrafluoride, CF4 oxygen, O2 nitrogen, N2 potassium vapor, K methane, CH4 deuterium, D2 hydrogen deuteride, HD hydrogen, H2
Ref.
IRb IRb FlR b IRb IRb 354 2186 2111 775 980 1552 2331 2721 2916 2991 3628 4155
11 12,13 14 13,15 16 17,18 5 5 5 19 24 20 21 22 22 23 22
a Stimulated electronic Raman scattering (SERS). b Generally tunable transitions in the infrared (IR) and far infrared (FIR). The above table is from Milanovich, F. P., Stimulated Raman scattering, Handbook of Laser Science and Technology, Vol. III: Optical Materials (CRC Press, Boca Raton, FL, 1986), p. 283.
Raman Gain Parameters of Selected Gases at 298 K Gas
H2
Mode
Q(1)
νo
∆ν g
( c m –1)
(MHz) a
Ref.
gain (cm/GW)
309 + 52.2ρ ρ
1
2.5 ± 0.4
20
532
2
2.64 ± 0.2 3.5 ± 0.3 5.7 6.6 ± 0.8
60 20 High density 20
532 477 350 308
3 2 4 2
4155
Q(0)
p-H2 (81 K) (80 K)
(amagat)
(nm)
Ref.
1
7.00
>20
248
5
1.2
High density
350
4
10P(20)b 10R(20)b 9P(20)b 9R(20)b
6 6 6 6
587
119ρ
4
Q(0)
354
76.6 + 45.4ρ ρ
1
© 2003 by CRC Press LLC
λl
257 + 76.6ρ ρ
S(1)
S(1)
ρ
0.096 ± .009 0.102 ± .014 0.111 ± .012 0.123 ± .014
Section 6: Gases
463
Raman Gain Parameters of Selected Gases at 298 K—continued Gas D2
Mode Q(2)
νo
∆ν g
( c m –1)
(MHz) a
Ref.
gain (cm/GW)
7,8
0.45 ± 0.05
66ρ
4
101 +120ρ ρ
2987
ρ
λl
(amagat)
(nm)
Ref.
60 atm
532
3
1.9 0.47
High density High density
350 350
4 4 4
0.23 0.098
High density High density
350 350
4 4
115
532 248
3 5
248 400 566 400 565.5 400 565 400 564.5
5 9 10 9 10 9 10 9 10
D2
S(2)
414
124ρ
4
HD
Q(1)
3628
693ρ
4
S(1)
443
760ρ
4
CH4
ν1
2917
8220 + 384ρ 9000 (1<ρ<10)
3 5
1.26 0.12ρ 1.2 0.66
N2
Q branch S(6)
2327 60
S(8)
76
S(10)
92
S(12)
108
22.5 (ρ<10) 0.00285 (D) 3570ρ 0.00363 (D) 3570ρ 0.00441 (D) 3570ρ 0.00516 (D) 3570ρ
5 9 10 9 10 9 10 9 10
0.3ρ 0.0063 0.0036 0.0073 0.0046 0.0072 0.0048 0.0061 0.0043
O2
Q branch
1552
54
5
0.012ρ
248
5
SiH4
Q branch
2186
15 (est)
5
0.19ρ
248
5
GeH4
ν1
2111
15 (est)
5
0.27ρ
248
5
CF4
ν1
980
21 (est)
5
0.008ρ
248
5
SF6
ν1
775
30 (est)
5
0.014ρ
248
5
>1 torr >.01 >1 torr >.01 >1 torr >.01 >1 torr >.01
a ρ is measured in amagats b CO2 laser lines. (D) Doppler
The above table is from Reintjes, J. F., Stimulated Raman and Brillouin scattering, Handbook o f Laser Science and Technology, Suppl. 2: Optical Materials (CRC Press, Boca Raton, FL, 1995), p. 334.
Polarization Dependence of Relative Gain Pump polarization Rotational scattering, linear molecules
© 2003 by CRC Press LLC
linear linear circular circular
Stokes polarization linear parallel linear, perpendicular circular, same sense circular, opposite sense
Relative gain 1.0 0.75 0.25 1.5
464
Handbook of Optical Materials
References: 1. Bischel, W. K., and Dyer, M. J., Temperature dependence of the Raman linewidth and lineshift for the Q(1) and Q(0) transitions in normal and para H2, Phys Rev A 33, 3113 (1986). 2. Bischel, W. K., and Dyer, M. J., Wavelength dependence of the absolute Raman gain coefficient for the Q(1) transition in H2, J. Opt. Soc. Am. B 3, 677 (1986). 3. Ottusch, J. J., and Rockwell, D. A., Measurement of Raman gain coefficients of hydrogen, deuterium and methane, IEEE J. Quantum Electron. QE-24, 2076 (1988). 4. Bischel, W. K., Stimulated Raman gain processes in H2, HD and D2, unpublished. 5. Murray, J. R., Goldhar, J., Eimerl, D., and Szoke, A., Raman pulse compression of excimer lasers for application to laser fusion, IEEE J. Quantum Electron. QE-15, 342 (1979). 6. Corat, E. J., Airoldi, V. J. T., Scolari, S. L., and Ghizoni, C. C., Gain measurements in stimulated rotational Raman scattering in para hydrogen, Opt. Lett. 11, 368 (1986). 7. Russel, D. A., and Roh, W. B., High resolution CARS measurements of Raman linewidths of deuterium, J. Mol. Spect. 24, 240 (1987). 8. Smyth, K. C., Rosasco, G. J., and Hurst, W. S., Measurements and rate law analysis of D2 Qbranch line broadening coefficients for collisions with D2, He, Ar, H2 and CH4, J. Chem. Phys. 87, 1001 (1987). 9. Rokni, M., and Flusberg, A., Stimulated rotational Raman scattering in the atmosphere, IEEE J. Quantum Electron. QE-22, 1102 (1986). 10. Herring, G. C., Dyer, M. J., and Bischel, W. K., Temperature and wavelength dependence of the rotational Raman gain coefficient in N2, Opt. Lett. 11, 348 (1986). 11. Carlsten, J. L. and Dunn, P. C., Stimulated stokes emission with a dye laser: intense tunable radiation in the infrared, Opt. Commun. 14, 8 (1975). 12. Cotter, D., Hanna, D. C., Kärkkäinen, P. A., and Wyatt, R., Stimulated electronic Raman scattering as a tunable infrared source, Opt. Commun. 15, 143 (1975). 13. Sorokin, P. P., Wynne, J. J., and Landkard, J. R., Tunable coherent IR source based upon fourwave parametric conversion in alkali metal vapors, Appl. Phys. Lett. 22, 342 (1973). 14. DeMartino, A., Frey, R., and Pradere, F., Tunable far infrared generation in hydrogen fluoride, Opt. Commun. 27, 262 (1978) 15. Cotter, D., Hanna, D. C., Kärkkäinen, P. A., and Wyatt, R., Stimulated electronic Raman scattering as a tunable infrared source, Opt. Commun. 15, 143 (1975). 16. May, P., Bernage, P, and Bocquet, H., Stimulated electronic Raman scattering in rubidium vapour, Opt. Commun. 29, 369 (1979). 17. Byer, R. L. and Trutna, W. R., 16-µm generation by CO2-pumped rotational Raman scattering in H2, Opt. Lett. 3, 144 (1978). 18. Rabinowltz, P., Stein, A., Brickman, R., and Kaldor, A., Efficient tunable H2 Raman laser, Appl. Phys. Lett. 35, 739 (1979). 19. Pochon, E., Determination of the spontaneous Raman linewidth of CF4 by measurements of stimulated Raman scattering in both transient and steady states, Chem. Phys. Lett. 77, 500 (1981). 20. Kinkald, B. E. and Fontana, J. R., Raman cross-section determination by direction stimulated Raman gain measurements, Appl. Phys. Lett. 28, 12 (1975). 21. Roknl, M. and Yatslv, S., Resonance Raman effects in free atoms of potassium, Phys. Lett. 24, 277 (1967). 22. Minck, R. W., Terhune, R. W., and Rado, W. G., Laser-stimulated Raman effect and resonant four-photon interactions in gases H2, D2, and CH4, Appl. Phys. Lett. 3, 181 (1963). 23. Komine, H., Northrop Corp., Palos Verdes, CA (private communication, F. P. Milanovich (1983). 24. Geller, M., Bortfeld, D. P., and Sooy, W. R., New Woodbury-Raman laser materials, Appl. Phys. Lett. 11, 207 (1963).
© 2003 by CRC Press LLC
6.4.5 Brillouin Phase Conjugation Gases Used for Brillouin Phase Conjugation
Gas Argon, Ar
Wavelength λ (nm)
Refract. index n
1064
Sound speed v s (km/s)
Brillouin shift at λ (GHz)
0.34
Phonon lifetime τp (ns)
Line width ∆v b ( M H z )
3
Gain g (cm/GW) 4
Density ρ (g/cm3)
Ref.
50 a
1
Chlorotrifluoromethane, CClF3 (Freon 13) Dichlorodifluoromethane, CCl2F2 (Freon 12)
2
248
1.001
0.15
1.2
960
0.19
1
Hexafluoroethane, C 2F 6 (Freon 116) Methane, CH4
Sulfur hexafluoride, SF6
2
1064 694 694 694 694 694 1064 694 1064 694 694
0.46
3 32 22 20 20
0.36 0.39 0.14 0.113
10 15
15
20 6 14
8 18 40 72 100
150 a 50 75 105
1 4 4 4 5,6
5b 4 30
150 a 135
7 1 4
6 8 35
20 10 22
1 2 3c
Section 6: Gases
Nitrogen, N2
3c
465
© 2003 by CRC Press LLC
466
Gases Used for Brillouin Phase Conjugation—continued
Xenon
1064 694 694 694 1315
Refract. index n
Sound speed v s (km/s) 0.18
Brillouin shift at λ (GHz)
Phonon lifetime τp (ns)
Line width ∆v b ( M H z )
Gain g (cm/GW)
11
47 10 90 44
35 6d 15
0.149 65
Density ρ (g/cm3) 40 a 20 a 80 a 39 50
Ref. 1 2 2 4 8
aDensity in amagats rather than pressure in atmospheres; bThis is the transient gain; the authors calculate steady-state gain as 30 cm/GW, and give a pressure dependence as well; cSome of the numbers in this row are theoretical calculations; the reference reports energy conversions; dDamzen et. al.2 give the formula tB(ns) = 0.65lL2p (atm). Table from Pepper, D. M., Minden, M. L., Bruesselbach, H. W., and Klein, M. B., Nonlinear optical phase conjugation materials, Handbook of Laser Science and Technology, Suppl. 2: Optical Materials (CRC Press, Boca Raton, FL, 1995), p. 467.
References: 1. Bespalov, V. I., and Pasmanik, G. A., Nonlinear Optics and Adaptive Laser Sytems (Nauka, Moscow, USSR, 1985). Trans. by Translation Division, Foreign Technology Division, Wright Patterson Air Force Base, OH, document FTD-ID(RS)T-0889-86. 2. Damzen, M. J., Hutchinson, M. H. R., and Schroeder, W. A., Direct measurement of the acoustic decay times of hypersonic waves generated by SBS, IEEE J. Quantum Electron. QE-23, 328 (March 1987). 3. Tomov, I. V., Fedosejevs, R., and McKen, D. C. D., Stimulated Brillouin scattering of KrF laser radiation in dichlorodifluoromethane, IEEE J. Quantum Electron. QE-21, 9 (January 1985). 4. Kovalev, V. I., Popovichev, V. I., Ragul’skii, V. V., and Faizullov, F. S., Gain and line width in stimulated Brillouin scattering in gases, Kvantovaya Elektronika, Moskva (Sov. J. Quantum Electron.), no.7 (2, no.1), 78–80 (69–71) (July–Aug. 1972). 5. Hammond Jr., C. M., and Wiggins, T. A., Rayleigh-Brillouin scattering from methane, J. Chem. Phys. 65, 2788 (1 Oct. 1976). 6. Cazabat, A. M., and Larour, J., Rayleigh-Brillouin scattering in compressed gases, J. Phys. 36, 1209 ( Dec. 1975). 7. Hagenlocker, E. E., Minck, R. W., and Rado, W. G., Effects of phonon lifetime on stimulated optical scattering in gases, Phys. Rev. 154, 226 (1967). 8. Dolgopolov, Yu V., Komarevskii, V. A., Kormer, S. B., Kochemasov, G. G., Kulikov, S. M., Murugov, V. M., Nikolaev, V. D., and Sukharev, S. A., Experimental investigation of the feasibility of applying the wave front reversal phenomenon on induced Mandelstam-Brillouin scattering, Z. Eksperiment. Teoret. Fiziki (Sov. Phys.-JETP) 76, 908 (March 1979).
© 2003 by CRC Press LLC
Handbook of Optical Materials
Gas
Wavelength λ (nm)
Section 6: Gases
467
6.5 Magnetooptic Properties Verdet Constant V (degrees/Tesla meter) of Gases at 273 K 363.5
400
500
Wavelength (nm) 600 700 800
900
He
0.0209
0.0168
0.0106
0.0074
0.0054
0.0041
0.0034
Ne
0.0388
0.0326
0.0204
0.0137
0.0090
0.0064
0.0052
0.0047
Ar
0.4106
0.3297
0.2055
0.1403
0.1004
0.0768
0.0610
0.0516
Kr
0.8637
0.6820
0.4232
0.2855
0.2040
0.1531
0.1203
0.1004
Xe
2.1112
1.64492 1.0055
0.6684
0.4766
0.3567
0.2812
0.2354
H2
0.2882
0.2308
0.1425
0.0969
0.0690
0.0531
0.0422
0.0351
D2
0.2815
0.2221
0.1375
0.0943
0.0679
0.0522
0.0413
0.0344
O2
0.1948
0.1620
0.1144
0.0886
0.0725
0.0631
0.0568
0.0536
N2
0.2820
0.2268
0.1407
0.0968
0.0698
0.0527
0.0421
0.0359
CO2
0.4205
0.3391
0.2104
0.1445
0.1044
0.0789
0.0583
0.0536
CH4
0.7875
0.6246
0.3861
0.2618
0.1881
0.1433
0.1140
0.0953
987.5
Noble gases
Other gases
References: Ingersoll, L. R. and Liebenberg, D. H., Faraday effect in gases and vapors. I, J. Opt. Soc. Am. 44, 566 (1954). Ingersoll, L. R. and Liebenberg, D. H., Faraday effect in gases and vapors. II, J. Opt. Soc. Am. 46, 538 (1956).
6.6 Atomic Resonance Filters Atomic resonance filters (ARFs) are a class of filter devices that have very narrow bandwidth (~0.001 nm) and a wide field of view (180°). A cell containing atomic vapor (e.g., Rb, Cs, etc.) is placed between two narrow bandpass filters. The input filter has a peak transmission wavelength corresponding to a strong electron transition in the vapor species. Incoming light is then strongly absorbed, yielding an excited state population which decays, emitting photons of a second wavelength. The bandpass of the output filter corresponds to the emitted wavelength. Use of both ground state (passive operation) and excited state (laser-pumped operation) transitions have been reported for a variety of atomic vapors operating at a variety of wavelengths. A detailed review of the physics of ARFs is given by Gelbwachs.1 Atomic Resonance Filters Atomic species
Wavelength
Pump
Input
Output
source
Na
1480 nm 2340 nm 3420 nm
489 nm 569 nm 616 nm
optical optical optical
2 2 2
K
~10.6 µm
497 nm
optical
3
Rb
20,487–776 nm 459 nm
420 nm 894 nm
diode laser none
1 4
© 2003 by CRC Press LLC
Ref.
468
Handbook of Optical Materials Atomic Resonance Filters—continued
Atomic
Wavelength
species Cs a Tl Mg Caa
Pump
Input
Output
source
Ref.
456 nm 534 nm 535 nm
852 nm 404 nm 378 nm
none diode laser photochemical
518 nm
384 nm
Nd:YAG
7
423 nm
272 nm
diode laser
8
4 5 6
a Not experimentally verified.
An alternative atomic resonance filter design is the Faraday anomalous dispersion optical filter (FADOF).2,3 An atomic vapor cell is placed in a magnetic field between crossed polarizers. The resonant Faraday effect causes polarization rotation at frequencies corresponding to atomic transitions. At other frequencies rotation is negligible. Thus, by proper adjustment of atomic vapor concentration, cell length, and magnetic field strength, ultranarrow-linewidth bandpass filters may be produced. FADOFs do not shift the output wavelength, and no reponse delay occurs. In principle, transmission is near unity at the center of the filter bandpass for linearly polarized incident light. Atomic Faraday Filter Data Atomic species
Operating wavelength ( n m )
K Rb Cs
766, 770 780 852
Peak transmission 71 63 82
(%)
Bandwidth (GHz)
Rejection ratio
1.6 1.0 0.6
10 5 10 5
Ref. 9 9 10
The above table is from Cook, L. M., Filter materials, Handbook of Laser Science and Technology, Suppl. 2: Optical Materials (CRC Press, Boca Raton, FL, 1995), p. 115 (with additions).
References: 1. Gelbwachs, J., Atomic resonance filters, IEEE J. Quantum Electron. 24, 1266 (1988). 2. Gelbwachs, J., Klein, C., and Wessel, J., Infrared detection by an atomic vapor quantum counter, IEEE J. Quantum Electron. QE-14, 77 (1978). 3. Gelbwachs, J., and Wessel, J., Atomic vapor quantum counter: narrow-band infrared upconverter, IEEE Trans. Electron. Dev. ED-27, 99 (1980). 4. Marling, J., Nilsen, J., West, L., and Wood, L., An ultrahigh Q isotropically sensitive optical filter employing atomic resonance transitions, J. Appl. Phys. 50, 610 (1979). 5. Shay, T., Ultrahigh-resolution, wide-field-of-view Cs optical filter for doubled Nd lasers, Opt. Commun. 77, 368 (1990). 6. Liu, C., Chantry, P., and Chen, C., A 535 nm active atomic line filter employing the thallium metastable state as the absorbing medium, SPIE Proc. 709, 132 (1986). 7. Chan, Y., Tabat, M., and Gelbwachs, J., Experimental demonstration of internal wavelength conversion in the magnesium atomic filter, Opt. Lett. 14, 722 (1989). 8. Gelbwachs, J., 422.7-nm atomic filter with superior solar background rejection, Opt. Lett. 15, 236 (1990). 9. Zhang, Y., Jia, X., Ma, Z., and Wang, Q., Potassium Faraday optical filter in line-center operation, Opt. Commun. 194, 147 (2001). 10. Dick, D., and Shay, T., Ultrahigh-noise rejection optical filter, Opt. Lett. 16, 867 (1991). 11. Menders, J., Benson, K., Bloom, S., Liu, C., and Korevaar, E., Ultranarrow line filtering using a Cs Faraday filter at 852 nm, Opt. Lett. 16, 846 (1991).
© 2003 by CRC Press LLC
Appendices
Appendix I Appendix II
Safe Handling of Optical Materials Abbreviations, Acronyms, Initialisms, and Mineralogical or Common Names of Optical Materials Appendix III Abbreviations for Methods of Preparing Optical Materials and Thin Films Appendix IV Fundamental Physical Constants Appendix V Units and Conversion Factors © 2003 by CRC Press LLC
Appendix I
471
APPENDIX I Safe Handling of Optical Materials When using any optical material—solid, liquid, or gas—it is always advisable to consult the Material Safety Data Sheet (MSDS). These informative documents prepared by the manufacturer or importer of a hazardous substance describe the physical and chemical properties of the product, are helpful in understanding potential health and physical hazards, and describe how to respond effectively to exposure situations. They include information such as hazardous ingredients, physical data of the material, fire and explosion hazard data, health hazard data, reactivity data, spill or leak procedures, special protection information, and emergency and first aid procedures. Hazards associated with optical materials depend on how the material is used. This is particularly important in the case of liquids where properties such as viscosity, toxicity, and system compatibility may need to be considered. Within the refractive index range of 1.45 to 1.55 there are so many possible liquids that one can easily choose one with low toxicity. Outside this range of indices the choices of liquid are fewer, thus some degree of toxicity may be unavoidable and the use of ventilation, fume hoods, protective gloves, eye protection, and other protective devices may be mandatory. When working with optical liquids, it is always a good idea to wear appropriate gloves and eye protection and to work where ventilation is sufficient. The following tables present information about the suitability of various common glove materials for handling liquids and about the flammability of selected liquids. Resistance to Liquids of Common Glove Materials Natural rubber
Liquid
Neoprene
Nitrile
Vinyl
acetic acid, C2H4O2
excellent
excellent
excellent
excellent
acetone, C3H6O
good
good
good
fair
benzene,a C6H6
poor
fair
good
fair
carbon disulfide, CS2
poor
poor
good
fair
poor
fair
good
fair
fair
excellent
—
poor
carbon
tetrachloride,a
CCl4
cyclohexane, C6H 12 diethyl ether, CH2Cl2
fair
good
excellent
poor
dimethylsulfoxide,b C2H 6OS
—
—
—
—
ethylene glycol, C2H 6O 2
good
good
excellent
excellent
glycerine (glycerol), C3H 8O 3
good
good
excellent
excellent
hexane, C6H14
poor
excellent
—
poor
toluene, C7H 8
poor
fair
good
fair
a
Aromatic and halogenated hydrocarbons will attack all types of natural and synthetic glove materials. b No data are available on the resistance to methylsulfoxide of natural rubber, neoprene, nitrile rubber, or vinyl materials; the manufacturer recommends the use of butyl rubber gloves.
© 2003 by CRC Press LLC
472
Handbook of Optical Materials
Flammability of Selected Liquids Properties listed in the table below: Boiling point: at a pressure of 101.325 kPa. Flash point: minimum temperature at which the vapor pressure of the liquid is sufficient to form an ignitable mixture with air near the surface of the liquid. Ignition temperature (also called autoignition temperature): minimum temperature required for self-sustained combustion in the absence of an external ignition source. Both the flash point and the ignition temperature are not intrinsic properties but depend on the test conditions. Observed values may differ by several degrees and large uncertainties should be assumed. Flammability Liquid acetic acid, C2H4O2
Boiling point (ºC)
Flash point (ºC)
Ignition temperature (ºC)
117.9
39
463
acetone, C3H6O
56
-20
465
benzene, C6H6
80.0
-11
498
carbon disulfide, CS2
46
-30
90
cyclohexane, C6H 12
80.7
-20
245
1,2-dichloroethane, C2H 4Cl2
83.5
13
413
dicloromethane, CH 2Cl2
40
—
556
34.5
-45
180
95
215
diethyl ether, C4H 10O dimethylsulfoxide, C2H 6OS
189
1,4-dioxane, C4H 8O 2
101.5
12
180
78.2
13
363
ethylene glycol, C2H 6O 2
197.3
111
398
glycerine (glycerol), C3H 8O 3
290
199
370
ethanol, C2H6O
heptane, C7H 16
98.5
—
204
hexane, C6H14
68.7
-22
225
methanol, CH4O
64.6
11
464
methylcyclohexane, C7H 14
100.9
250
nitrobenzene, C6H5NO2
210.8
88
482
toluene, C7H 8
110.6
4
480
Data for the above tables are from the CRC Handbook of Chemistry and Physics, 82nd ed., Lide, D. R., Ed. (CRC Press, Boca Raton, FL, 2001), p. 16–13 and 16–16. This reference contains extensive data on the flammability of many additional chemical substances.
© 2003 by CRC Press LLC
Appendix I
473
References: The internet site www.MSDS-Search.com provides links to all major online MSDS databases. Other references to the handling and disposition of hazardous materials include: Prudent Practices for Handling Hazardous Chemicals in Laboratories, National Academy Press, Washington, DC (1981). Prudent Practices for Disposal of Chemicals from Laboratories, National Academy Press, Washington, DC (1981). Fire Protection Guide to Hazardous Materials, 10th edition, National Fire Protection Association, Quincy, MA (1991). Bretherick, L., Handbook of Reactive Chemical Hazards, 3rd edition, (Butterworths, London-Boston, 1985). Urben, P. G., Ed., Bretherick's Handbook of Reactive Chemical Hazards, 5th edition (Butterworth-Heinemann, Oxford, 1995).
© 2003 by CRC Press LLC
Appendix II
475
APPENDIX II Abbreviations, Acronyms, Initialisms, and Mineralogical or Common Names of Optical Materials α-quartz αβ-YAG AANP AB5 ABS
silicon dioxide (crystal) alphabet YAG 2-adamantylamino-5-nitropyridine ammonium pentaborate acrylonitrile, butadiene, styrene terpolymer
acrylic ADA AD*A(a) ADC ADP AD*P AGS AGSe AHC alexandrite ALON altaite alumina AMTIR AN anatase andalusite anglesite AODCST apatite APDA
polymethyl methacrylate ammonium dihydrogen arsenate deuterated ammonium dihydrogen arsenate allyl diglycol carbonate ammonium dihydrogen phosphate deuterated ammonium dihydrogen phosphate silver gallium silicate silver gallium sellenide alkali halide crystal Cr-doped chrysoberyl aluminum oxynitride lead selenide aluminum oxide amorphous GeAsSe (glass) acrylonitrile titanium dioxide aluminum silicate lead sulfate alkyl-oxydicyanostyrene calcium phosphate plus fluorine or chlorine 8-(4'-acetylphenyl)-1,4-dioxa-8azaspiro[4,5]decane APO amorphous polyolefin aragonite calcium carbonate ASN strontium magnesium aluminate ATCC allythiourea cadmium chloride AZF alumino-zirco-fluoride (glass) β"-alumina beta double-prime alumina BANANAS barium sodium niobate © 2003 by CRC Press LLC
SiO2 Y3Al5O12:Ho3+,Er3+,Tm3+ NH4B5O8•4H2O [CH2CH(CN)]x-[CH2CHCHCH2]y[CH2CH(C6H5)]z [CH2C(CH3)(COOCH3)]n NH4H2AsO4 NH4(H,D)2AsO4 O(CH2CH2OCOOCH2CHCH2)2 NH4H2PO4 NH4(H,D)2PO4 AgGaS2 AgGaSe2 BeAl2O4:Cr 5AlN-9Al2O3 PbSe Al2O3 GeAsSe [CH2CH(CN)]n TiO2 Al2SiO5 PbSO4 Ca5(PO4)3(F,OH,Cl)
[CH2CRR']n CaCO3 SrMgAl11O19 variable compositions Na1+xMgxAl11-xO17 Ba2NaNb5O15
476
Handbook of Optical Materials
Abbreviations, Acronyms, Initialisms, and Mineralogical or Common Names of Optical Materials—continued barite BBB BBcP BBO BCBF BCT BEL berlinite beryl BFAP BGO BGO BIBO BIG BIGGSe BluB BMAG BNB BOV bromellite bromyrite brookite BSG BSKNN BSO BST BSTN BT BTO BYF BZMA CAAP CAB
barium sulfate beta barium borate 2,5-bis(benzylidene) cycloheptanone barium metaborate barium calcium fluoroborate barium calcium titanate lanthanum beryllate aluminum phosphate beryllium aluminum silicate barium fluoroapatite bismuth germanate bismuth germanium oxide bismuth metaborate bismuth substituted iron garnet barium-indium-gallium-germanium selenide glass barium lanthanium borate barium magnesium germinate m-bromonitrobenzene barium vanadate beryllium oxide silver bromide titanium dioxide borosilicate glass barium strontium potassium sodium niobate bismuth silicate barium strontium titanate barium strontium titanium niobate barium titanate bismuth titanate barium yttrium fluoride benzyl methacrylate calcium fluoroarsenite cellulose acetate butyrate
CaGB calcite
calcium gadolinium borate calcium carbonate
© 2003 by CRC Press LLC
BaSO4 β-BaB2O4 BaB2O4 BaCaBO3F Ba0.77Ca0.23TiO3 La2Be2O5 AlPO4 Be3Al2(SiO3)6 Ba5(PO4)3F Bi12GeO20 Bi4Ge3O12 BiB3O6 Bi3xY3(1-x)Fe5O12 variable compositions Ba3La(BO3)3 Ba2MgGe2O7 Br(C6H4NO2) Ba5(VO4)3 BeO AgBr TiO2 variable compositions Ba2-xSrxK1-yNayNb5O15 Bi12SiO20 Ba1-xSrxTiO3 Ba4Sr2Ti2Nb8O30 BaTiO3 Bi12TiO20 BaY2F8 [CH2C(CH3)(COOCH2C6H5)]n Ca5(AsO4)3F (C6H7O2)(C2H3O2)x(C4H7O2)y(OH)z Ca3Gd2(BO3)4 CaCO3
Appendix II
477
Abbreviations, Acronyms, Initialisms, and Mineralogical or Common Names of Optical Materials—continued CALO calomel CAMGAR CAS cassiterite CAT CAZGAR CBN CBO CBS CDA CD*A cerargyrite cerussite CGA CGS ChG chrysoberyl cinnabar CIS CIGS CLBO CMP-M CMT CNGG COANP colquiriite corundum cotunnite CPAP CPF CR 39 cristobalite cryolite CS-FAP CTA
cerium aluminate mercurous chloride calcium magnesium garnet calcium aluminum silicate tin oxide cadmium triallyd thiource calcium zinc garnet cubic boron nitride cesium triborate carbon black suspension cesium dihydrogen arsenate deuterated cesium dihydrogen arsenate silver chloride lead carbonate cadmium germanium arsenate calcium gallium silicate chalcogendie glass beryllium aluminate mercury sulfide copper indium diselenide copper indium gallium diselenide cesium lithium triborate 2-cyano-3-(2-methyl phenyl)-propenoic acid methyl ester cadmium mercury telluride calcium niobate gallium garnet 2-cyclo-octylamino-5-nitropyridine lithium calcium aluminum fluoride aluminum oxide, alumina lead chloride calcium fluoroapatite calcium fluoroapatite allyl diglycol carbonate silica (allotropic form) sodium fluoroaluminate calcium-strontium fluoroapatite cesium titanyl arsenate
© 2003 by CRC Press LLC
CeAlO3 HgCl CaY2Mg2Ge3O12 Ca2Al2SiO7 SnO2 CaZn2Y2Ge3O12 BN CsB3O5 C + liquid CsH2AsO4 Cs(H,D)2AsO4 AgCl PbCO3 CdGeAs2 Ca2Ga2SiO7 variable compositions BeAl2O4 HgS CuInSe2 CuIn1-xGaxSe2 CsLi(BO3)3O
Cd1-xHgxTe Ca3(NbLiGa)5O12 LiCaAlF6 Al2O3 PbCl 2 Ca5(PO4)3F Ca5(PO4)3F [O(CH2CH2OCOOCH2CHCH2)2]n SiO2 Na3AlF6 (Ca,Sr)5(PO4)3F CsTiOAsO4
478
Handbook of Optical Materials
Abbreviations, Acronyms, Initialisms, and Mineralogical or Common Names of Optical Materials—continued CTH:YAG CTP cunyite CVAP CWO CYB CYS CZ CZT DAN DANS DAST DBNMNA DCANP D-CDA DCM DCMNA DEANS` DEANST diamond diopside D-KB5 D-KDA D-KDP D-LAP DMC DMNP DMSM dolomite D-RDA DTGS ECOB EDDT elpasolite
chromium-thulium-holmium doped YAG cesium titano phosphnate calcium germanate calcium fluorovandate cadmium tungstate calcium yttrium borate calcium yttrium silicate oxyapatite cubic zirconia cadnium zinc telluride 4-(N,N-dimethylamino)-3-nitroacetanilide 4-di-methylamino-4'-nitrostilbene dimethylamino-N-methyl-4stilbazolium-tosylate 2,6-dibromo-N-methyl-4-nitroailne 2-docosylamino-5-nitropyridine deuterated cesium dihydrogen arsenate 4-dicyanomethylene-2-methyl-6dimethylamino-4'-nitrostyrene 2-docosyl-2-methyl-4-nitroaniline 4-di-ethylamino-4'-nitrostilbene 4-(N,N-diethylamino)-b-nitrostyrene carbon calcium magnesium silicate deuterated potassium pentaborate deuterated potassium dihydrogen arsenate deuterated potassium dihydrogen phosphate deuterated L-arginine phosphate 7-dimethylamino-4-methylcoumarin 3,5-dimethyl-1-(4 nitrophenylpyrzole trans-4'-dimethylamino-N-methyl-4stilbazolium methyl sulfate calcium magnesium carbonate deuterated rubidium dihydrogen arsenate deuterated triglycine sulfate erbium calcium oxyborate ethylene diamine dextrotartrate potassium sodium aluminum fluoride
© 2003 by CRC Press LLC
Y3Al5O12:Cr,Tm,Ho CsTiOPO4 Ca2GeO4 Ca5(VO4)3F CdWO4 Ca3Y2(BO3)4 CaY4(SiO4)3O ZrO2 (Cd,Zn)Te
Cs(H,D)2AsO4
C CaMgSi2O6 KB5O8•4D2O K(H,D)2AsO4 K(H,D)2PO4 [C6H7+xD8-xN4O2]+•H2PO4.H2O C14H17NO2
CaMg(CO3)2 Rb(H,D)2AsO4 [N(H,D)2CH2COOH)3•H2SO4 ErCa4(BO3)3O C6H14N2O6 K2NaAlF6
Appendix II
479
Abbreviations, Acronyms, Initialisms, and Mineralogical or Common Names of Optical Materials—continued emerald eulytite EVA EYAB FAG FAP FEP fluorapatite fluorite forsterite fused quartz fused silica GAB gahnite galena garnet GASH g-C gelenite GFG GGG GIGG GLF GLS GLS GOS greenockite grossularite GSAG GSGG GSO GVO GYAG halite HAP hematite HMF
Cr-doped beryl bismuth silicate ethylene-vinyl acetate erbium yttrium aluminum borate fluoroaluminate glass calcium fluoroapatite perfluorinated ethylene propylene calcium phosphate fluoride calcium fluoride magnesium silicate silicon dioxide (amorphous)(b) silicon dioxide (amorphous) gadolinium aluminate borate zinc aluminate lead sulfide complex family of mineral compositions quanidinium aluminate sulfate hexahydrate graphite calcium aluminium silicate gallium fluoride garnet gadolinium gallium garnet gadolinium indium gallium garnet gadolinium lithium tetrafluoride generating luminescence stekla (Russian) gallium lanthanum sulfide (glass) gadolinium oxysulfide cadmium sulfide calcium aluminum silicate garnet gadolinium scandium aluminum garnet gadolinium scandium gallium garnet gadolinium orthosilicate gadolimium vanadate gadolimium-yttrium luminum garnet sodium chloride high-average-power (laser) glass ferric oxide heavy metal fluoride (glass)
© 2003 by CRC Press LLC
Be3Al2Si6O18:Cr Bi4Si3O12 [CH2CH2]x-[CH2CH(OCOCH3)]v YAl3(BO3)4:Er variable compositions Ca5(PO4)3F Ca5(PO4)3(F,Cl,OH) CaF2 Mg2SiO4 SiO2 SiO2 GdAl3(BO3)4 ZnAl2O4 PbS A3B2C3O12 (CN3H6)Al(SO4)2•6H2O C Ca2Al2SiO7 Na3Ga2Li3F12 Gd3Ga5O12 Gd3In2Ga3O12 GdLiF4 laser glass ~70GaS–30La2O3 Gd2O2S CdS Ca3Al2Si3O12 Gd3Sc2Al3O12 Gd3(Sc,Ga)2Ga3O12 Gd2SiO5 GdVO4 (Gd,Y)3Al5O12 NaCl variable compositions Fe2O3 variable compositions
480
Handbook of Optical Materials
Abbreviations, Acronyms, Initialisms, and Mineralogical or Common Names of Optical Materials—continued HMO HPP glass hydroxyapatite ilmenite iodyrite Irtran 1 Irtran 2 Irtran 3 Irtran 4 Irtran 5 Irtran 6 ITO KABO KAP KB5 KBBF KCND KDA KD*A(a) KDP KD*P(a) KGW KLGF KLN KLND KLTN KLYF KN KNB KNLF KNSBN KRS-5 KRS-6 KRTA KSAG KTA
heavy metal oxde (glass) high-peak-power (laser) glass calcium phosphate hydroxide
variable compositions variable compositions Ca5(PO4)3OH
iron titanate silver iodide magnesium fluoride (polycrystalline) zinc sulfide (polycrystalline) calcium fluoride (polyscrystalline) zinc selenide (polycrystalline) magnesium oxide (polycrystalline) cadmium tellurite (polycrystalline) indium tin oxide potassium aluminum borate potassium acid phthalate potassium pentaborate potassium beryllium borate fluoride potassium cerium nitrate dihydrate potassium dihydrogen arsenate deuterated potassium dihydrogen arsenate potassium dihydrogen phosphate deuterated potassium dihydrogen phosphate potassium gadolinium tungstate potassium lithium gadolinium fluoride potassium lithium nitrate potassium lanthanum nitrate dihydrate potassium lithium tantalate niobate potassium lithium yttrium fluoride potassium niobate potassium niobium borate potassium neodymium lithium fluoride potassium sodium strontium barium niobate thallium bromoiodide thallium chlorobromide potassium-rubidium titanyl arsenate lutetium scadium aluminum garnet potassium titanyl arsenate
FeTiO3 β-AgI MgF2 ZnS CaF2 ZnSe MgO CdTe ~0.9In2O3–0.1SnO2 K2Al2B2O7 C8H5O4K KB5O8•4H2O KBeBO3F2 K2Ce(NO3)5.H2O KH2AsO4 K(H,D)2AsO4 KH2PO4 K(H,D)2PO4 KGd(WO4)2 KLiGdF5 K3Li2-xNb5+xO15+2x K2La(NO3)5.2H2O K1-yLiyTa1-xNbxO3 KLiYF4 KNbO3 KNbB2O6 K5NdLi2F10 (KxNa1-x)0.4(SryBa1-y)0.8Nb2O6 Tl(Br1-x,Ix) Tl(Cl1-x,Brx) (K,Rb)TiOAsO4 Lu3Cs2Al5O12 KTiOAsO4
© 2003 by CRC Press LLC
Appendix II
481
Abbreviations, Acronyms, Initialisms, and Mineralogical or Common Names of Optical Materials—continued KTN KTP KTP-GTR kyanite KYF LABO LAP LB LBG LBO LC Lexan LFM LGO LGS LI LiBAF LiCAF LiChrom LiSAF LiSGaF litharge LLF LLGG LMA LN LNA LNP LNPP LOP LSB LSO LT LuAG Lucalox magnesite
potassium tantalate niobate potassium titanyl phosphate potassium titanyl phosphate-greytrack resistant aluminum silicate potassium yttrium fluoride lanthanum metaborate L-arginine phosphate Langmuir–Blodgett (film) lanthanium boron germanium oxide lithium triborate liquid crystal polycarbonate plastic lithium formate monohydrate lithium germanate lanthanum gallium silicate lithium iodate lithium barium aluminum fluoride lithium calcium aluminum fluoride lithium strontium chromium fluoride lithium strontium aluminum fluoride lithium strontium gallium fluoride lead oxide Lutetium lithium fluoride lanthanum lutetium gallium garnet lanthanum magnesium hexaluminate lithium niobate lanthanum neodymium hexaluminate lithium neodymium tetraphosphate lanthum neodymium pentaphosphate lutetium orthophosphate lanthanium scandium borate lutetium silicon oxide (orthosilicate) lithium tantalate lutetium aluminum garnet alumina (polycrystalline) magnesium carbonate
© 2003 by CRC Press LLC
KTa1-xNbxO3 KTiOPO4 KTiOPO4 Al2SiO5 KYF4 LaB3O6 [C6H15N4O2]+ •H2PO4-•H2O various compositions LaBGeO5 LiB3O5 various compositions [OCOOC6H4C(CH3)2C6H4]n LiHCO2•H2O Li2GeO5 La3Ga5SiO14 LiIO3 LiBaAlF6 LiCaAlF6 LiSrCrF6 LiSrAlF6 LiSrGaF6 PbO LuLiF4 (La,Lu)3(Lu,Ga)2Ga3O12 LaMgAl11O19 LiNbO3 LaMgAl11O19:Nd LiNdP4O12 La1-xNdxP5O14 LuPO4 LaSc3(BO3)4 Lu2SiO5 LiTaO3 Lu3Al5O12 Al2O3 MgCO3
482
Handbook of Optical Materials
Abbreviations, Acronyms, Initialisms, and Mineralogical or Common Names of Optical Materials—continued magnetite MAP massicot MBANP MBBF MCT MEH-PPV
mullite NAB nantokite NAS
iron oxide methyl-(2,4-dinitrophenyl)-aminopropanoate lead oxide 2-(a-methyl benzylamino)-5-nitropyridine alkali metal beryllium borate fluoride mercury cadmium telluride poly(2-methoxy-5-(2'-ethyl-hexyloxy)-1,4phenylene vinylene MgO-doped lithium niobate MgO-doped stoichiometric lithium niobate potassium aluminosilicate methylmethacrylate 3-methyl-4-methoxy-4'-nitrostilbene 2 methyl-4-nitro-aniline 4-methoxy-4'-nitro-diphenyl-diacetylene2-methyl-4-nitro-N-methylaniline 4-methyl-4'-nitrolan rare earth phosphate modified polymethylmethacrylate magnesium silicate 5-methylthio-thiophenecarboxaldehyde-4nitrophenyl-hydrazone aluminum silicate neodymium aluminum borate copper chloride methyl methacrylate styrene copolymer
NBD-Cl NdPP NGAB NMBA NPP NPP NPPA NYAB olivine ORMOSIL
7-chloro-4'-nitrobenzo-2-oxa-1,3-diazole neodymium pentaphosphate neodymium gadolinium aluminum borate 4-nitro-4'-methyl-benzylidene aniline N-4-nitrophenyl-(L,S)-prolinol neodymium pentaphosphate N-(4-nitro-2-pyridinyl)-phenylalaninol neodymium yttrium aluminum borate magnesium iron silicate organic modified silicate
Mg:LN Mg:SLN mica MMA MMONS MNA MND MNMA MNT monazite MPMMA MSO MTTNPH
© 2003 by CRC Press LLC
Fe3O4 C10H12N3O6 PbO (Na,K)BeBO3F2 HgCdTe
Mg:LiNbO3 Mg:LiNbO3 KAl3Si3O10.(OH)2 CH2C(CH3)(COOCH3) CH3NH2NO2C6H4
(rare earth)PO4 Mg2SiO4
Al6Si2O13 NdAl3(BO3)4 CuCl [CH2C(CH3)(COOCH3)]x[CH2CH(C6H5)]y NdP5O14 NdxGd1-xAl3(BO3)4
NdP5O14 NdxY1-xAl3(BO3)4 (Mg,Fe)2SiO4 SiO2
Appendix II
483
Abbreviations, Acronyms, Initialisms, and Mineralogical or Common Names of Optical Materials—continued orpiment PAMS paratelluride PBDG PBLG PBN PBSP PBT PBZT PCS PDA PDBT PDHG PDHS PDLC periclase perovskite PET PGO plattnerite PLZT PMMA PMPS PNP POF poly4BCMU POM POMT PSC powellite PPKTP PPLN PPLT PPNA PPRTA PPV
arsenic trisulfide poly(alpha-methylstyrene) tellurium oxide poly(g-benzl-D-glutamate) poly(g-benzl-L-glutamate) lead barium niobate photonic band-gap structure polybenzothiazole poly(p-phenylene benzo bis thiozole) plastic clad silica polydiacetylene poly(3,4-dibutoxythiophene poly(di-n-hexylgermane) poly(di-n-hexylsilane) polymer dispersed liquid crystal magnesium oxide calcium titanate pentaery-thritol lean germanium oxide lead oxide lead lanthanum zirconium titanate polymethylmethacrylate poly(methyl phenyl silane) 2-(N-prolinol)-5-nitropyridine plastic optical fiber polydiacetylene poly-[5,7-dodecadiyn-2,12diol-bis(n-butoxycarbonyl-methyl-urethane] 3-methyl-4-nitropyridine-1-oxide poly(3-octyloxy,4-methyl thiophene) porous silicon carbide calcium molybdate periodically poled potassium titanyl phosphate periodically poled lithium niobate periodically poled lithium tantalate poly-p-nitroaniline periodically poled rubidium titanyl arsenate poly(p-phenylene vinylene)
© 2003 by CRC Press LLC
As2S3 TeO2
Pb1-xBaxNb2O6 variable compositions [C6H3NSC]n
[C(R)CCC(R)]n
variable compositions MgO CaTiO3 [OCH2CH2OOCC6H4CO]n Pb5Ge3O11 PbO PbLa(Zr,Ti)O3
variable compositions
NO2• CH3NOC5H4 SiC CaMoO4 KTiOPO4 LiNbO3 LiTaO3 RbTiOAsO4
484
Handbook of Optical Materials
Abbreviations, Acronyms, Initialisms, and Mineralogical or Common Names of Optical Materials—continued proustite PrPP PS PSG PSZ PT PTB PTG PTOPT PTS
silver arsenic sulfide praseodymium pentaphosphate polystyrene porous silica glass partially stabilized zirconia polythiophene lead tetraborate poly(3-hexylthiophene poly-[3-(4-octylphenyl)]-2,2'-bithiophene poly-bis-(p-toluene sulfonate)-2,4-hexazine -1,6-diole PTV poly(2,5-thienyl vinylene) PU polyurethane pucherite bismuth vanadate PV polyvinylxylene PVA polyvinyl alcohol PVF2 polyvinylidene fluoride PVP polyvinyl-pyrrolidimone pyrite iron sulfide PZT lead zirconium titanate QC quantum crystallite (quantum dot) quartz silicon dioxide (crystal) RAP rubidium acid phthalate RB5 rubidium pentaborate RbAP rubidim acid phthalate RDA rubidium dihydrogen arsenate RD*A deuterated rubidium dihydrogen arsenate RDP rubidium dihydrogen phosphate RD*P deuterated rubidium dihydrogen phosphate RGB rubidium gadolinium bromide rochelle salt sodium potassium tartrate rocksalt sodium chloride RTA rubidium titanyl arsenate RTP rubidium titanyl phosphate ruby Cr-doped corundum (sapphire) rutile titanium dioxide SAN styrene acrylonitrile copolymer © 2003 by CRC Press LLC
Ag3AsS3 PrP5O14 [CH2CH(C6H5)]n SiO2 ZrO2: (Mg,Ca,Y) PbB4O7
[OCONHRNHCOOR']n BiVO4 [CH2CH(CH2C6H4CH3)]n
FeS2 Pb(Zr,Ti)O3 SiO2 C8H5O4Rb RbB5O8•4H2O CO2HC6H4CO2Rb RbH2ASO4 Rb(H,D)2AsO4 RbH2PO4 Rb(H,D)2PO4 RbGd2Br7 NaKC4H4O6•4H2O NaCl RbTiOAsO4 RbTiOPO4 Al2O3:Cr TiO2 [CH2CH(C6H5)]x-[CH2CH(CN)]v
Appendix II
485
Abbreviations, Acronyms, Initialisms, and Mineralogical or Common Names of Optical Materials—continued sapphire sapphire SBA SBBO SBN SCAB scheelite SDG sellaite S–FAP SGGM silica SIMOX SLG SMA SMMA
aluminum oxide aluminum oxide (gemstone) sodium-β'' alumina strontium beryllium borate strontium barium niobate scandium aluminum beryllate calcium tungstate semiconductor-doped glass magnesium fluoride strontium fluoroapatite strontium gadolinium gallium melilite silicon dioxide separation by implanation of oxygen (silicon-on-insulator material) strontium lanthanum gallate polystyrene co-maleic anhydride polystyrene co-methyl methacrylate
SNA SOAP SOI SOS SPAP SPF spodumene sphalerite STRAP sphalerite spinel spodumene SrYBO styrene STZO S-VAP sylvite SYS T-12
strontium aluminate calcium silico-oxyapatite silicon-on-insulator (material) silicon (Si) epitaxial film on sapphire substrate strontium fluoroapatite strontium fluoroapatite lithium aluminum silicate zinc sulfide (cubic) strontium fluoroapatite zinc sulfide magnesium aluminate lithium aluminum silicate strontium yttrium borate polystyrene strontium titanate zironate strontium vanadium fluoroapatite potassium chloride strontium yttrium silicate oxyapatite barium fluoride-calcium fluoride
© 2003 by CRC Press LLC
Al2O3 Al2O3:Ti,Fe Na1+xMgxAl11-xO17 Sr2Be2B2O7 Sr1-xBaxNb2O6 ScAlBeO4 CaWO4 variable compositions MGF2 Sr5(PO4)3F SrGdGaO7 SiO2
SrLaGa3O7 [CH2CH(C6H5)CH(COOCO)CH]n [CH2C(CH3)(COOCH3)]x[CH2CH(C6H5)]y SrAl12O19 CaY4(SiO4)3O Si/Al2O3 Sr5(PO4)3F Sr5(PO4)3F LiAlSi2O6 ZnS Sr5(PO4)3F ZnS MgAl2O4 LiAlSi2O6 Sr3Y(BO3)3 ~0.8SrTiO3–0.2ZrO2 Sr5(VO4)3F KCl SrY4(SiO4)3O BaF2-CaF2
486
Handbook of Optical Materials
Abbreviations, Acronyms, Initialisms, and Mineralogical or Common Names of Optical Materials—continued TAS TBPc TCDMA TCO TCNQ TEOS TeX TGG TGS TGSe THAM-P THAM-S TiOPc Ti:S Ti sapphire TlAP TMOS TOC topaz tourmaline TPX tridymite TSCCC
thallium arsenic selenide tetrakis (tert-butyl) phthalocyanine tricyclodecyl co-methacrylate transparent conductive oxide 7,7,8,8-tetracyanoquinodimethane tetraethyl orthosilicate tellurium halide glass terbium gallium garnet triglycine sulfate triglycine selenate tris-hydroxylmethylaminomethane-phosphate tris-hydroxylmethylaminomethane-sulfate titanyl pthalocyanine Ti-doped corundum/alumina Ti-doped corundum/alumina thallium acid phthalate tetramethyloxysilane transparent optical ceramic aluminum silicate fluoride hydroxide sodiun aluminum borosilicate methyl pentene polymer silicon dioxide thiosemicarbazide cadmium chloride monohydrate tysonite lanthanum trifluoride urea urea crystal VAC vinyl acetate VB vinyl benzoate villiaumite sodium fluoride VOPc vanadyl phthalocyanine VPAC vinyl phenyl acetate VTE LN vapor-transport-equilibrated lithium niobate weberite sodium magnesium aluminum fluoride willemite zinc silicate wollastonite calcium silicate wulfenite lead molybdate wurtzite zinc sulfide (hexagonal) © 2003 by CRC Press LLC
Tl3AsSe3 [CH2C(CH3)(COOC10H15)]n e.g., ITO (C2H5O)4Si variable composition Tb3Ga5O12 (NH2CH2COOH)3•H2SO4
Al2O3:Ti Al2O3:Ti C8H5O4Tl Si(OCH3)4 various compositions Al2SiO4(F,OH)2 Na3Al6Si6O18(BO3)2(OH,F)4 SiO2
LaF3 CH4N2O [CH2CH(OCOCH3)]n NaF [CH2CH(OCOC6H5)]n LiNbO3 NaMgAlF7 ZnSiO4 CaSiO3 PbMoO4 ZnS
Appendix II
487
Abbreviations, Acronyms, Initialisms, and Mineralogical or Common Names of Optical Materials—continued xenotime YAB YAG YAlG valliaumite yablonovite YAlO YAP YAM YBF YGG YGO YGOB YIG YIGG YLF YOP YOS YSAG YSB YSGG YSO YSZ yttralox Zerodur zinc blende zincite ZTS zircon zirconia
yttrium phosphate yttrium aluminum borate yttrium aluminum garnet(c) yttrium aluminum garnet sodium fluoride photonic bandgap crystal yttrium orthoaluminate yttrium aluminum perovskite yttrium aluminum monoclinic yttrium barium fluoride yttrium gallium garnet yttrium gadolinium oxide yttrium gadolinium borate yttrium iron garnet yttrium indium gallium gadolinium garnet yttrium lithium fluoride yttrium orthophosphate yttrium orthosilicate yttrium scandium aluminum garnet yttrium scandium borate yttrium scandium gallium garnet yttrium silicon oxide (orthosilicate) yttria stabilized zirconia yttrium oxide (polycrystalline) glass ceramic zinc sulfide (cubic) zinc oxide zinc tris(thiourea) sulfate zirconium silicate zirconium dioxide
YPO4 YAl3(BO3)4 Y3Al5O12 Y3Al5O12 NaF variant of the diamond structure YAlO3 YAlO3 Y4Al2O9 Y2BaF8 Y3Ga5O12 (Y,Gd)2O3 CaY4(BO3)3O Y3Fe5O12 Y3(In,Ga)2Gd3O12 YLiF4 (LiYF4) YPO4 Y2SiO5 Y3Sc2Al3O12 YSc3(BO3)4 Y3Sc2Ga3O12 Y2SiO5 ZrO2:Y2O3 Y2O3 SiO2–Al2O 3+ . . . ZnS ZnO Zn[CS(NH2)2]3SO4 ZrSiO4 ZrO2
(a) When crystals are grown in heavy water (D2O) solution, hydrogen is replaced in part or totally by deuterium. Such crystals are designated by a prefix d- or D-, or by an asterisk, e.g., d-CDA and CD*A. (b) Produced from natural quartz. (c) Nd-doped YAG lasers are frequently simply called YAG lasers.
© 2003 by CRC Press LLC
Appendix III
APPENDIX III Abbreviations for Methods of Preparing Optical Materials and Thin Films ACR ACRT ALE ALL MBE APCVD APD APE ARE BARE BE Br CAIBE CAMBE CBE CLD CVD CVT Cz DIBD DIBS DMILC DWB ED EDFF EFG FHD FIB FICZ FZ GD GILD GS-MBE HBr HCD HEM HGF HIP HPBr HPVB © 2003 by CRC Press LLC
— — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — —
accelerated crucible rotation (flux growth) accelerated crucible rotation technique atomic layer epitaxy atomic layer-by-layer molecular beam epitaxy accelerated plasma chemical vapor deposition accelerated plasma deposition annealed proton exchange activated reactive evaporation biased activated reactive evaporation bond and etch (waveguide structure) Bridgman (growth) chemically-assisted ion beam epitaxy chemically-assisted molecular beam epitaxy chemical beam epitaxy chemical liquid deposition chemical vapor deposition chemical vapor transport Czochralski (growth) dual ion beam deposition dual ion beam sputtering double-metal-induced lateral crystallization direct wafer bonding (waveguide structure) electrodeposition edge-defined film-fed (growth) edge-defined film-fed growth flame hydrolysis deposition focused ion beam (sputtering) flat interface Czochralski (growth) float zone glow discharge gas immersion laser doping gas-source molecular beam epitaxy horizontal Bridgman (growth) hollow cathode discharge deposition heat exchange method horizontal gradient freeze hot isostatic pressing high-pressure Bridgman (growth) high-pressure vertical Bridgman
489
490
Handbook of Optical Materials Abbreviations for Methods of Preparing Optical Materials and Thin Films—continued HTS HTSG HVPE IAD IAD IBD IBE IBED IBS ICB ICBD ISZ-THM IVD IVDO JVD LAD LAD LB LBD LCVD LEC LECVD LEVGF LHPG LPCVD LPCVD LPE LP-MOVPE LTE LTGCz LT-MBE LVRIP MBD MBE MCVD MIC MILC MOCVD MOMBE MOVD MOVPE
© 2003 by CRC Press LLC
— — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — —
high temperature solution high temperature solution growth hydride vapor-phase epitaxy ion assisted deposition ion beam assisted deposition ion beam deposition ion beam etching ion beam enhanced deposition ion beam sputtering ion cluster beam ionized cluster beam deposition increasing solution zone travelling heater method inside vapor deposition inside vapor deposition oxidation jet vapor deposition laser aerosol deposition laser-assisted deposition Langmuir-Blodgett (film technique) Langmuir-Blodgett deposition laser-induced chemical vapor deposition liquid-encapsulated Czochralski (growth) liquid-encapsulated chemical vapor deposition liquid-encapsulated vertical gradient freeze laser heated pedestal growth liquid-phase chemical vapor deposition low-pressure chemical vapor deposition liquid phase epitaxy low-pressure metal-organic vapor-phase epitaxy local thermal equilibrium low-thermal gradient Czochralski (growth) low-temperature molecular beam epitaxy low-voltage reactive ion plating molecular beam deposition molecular beam epitaxy modified chemical vapor deposition metal-induced crystallization metal-induced lateral crystallization metal-organic chemical vapor deposition metal-organic molecular beam epitaxy modified vapor deposition metal-organic vapor-phase epitaxy
Appendix III
491
Abbreviations for Methods of Preparing Optical Materials and Thin Films—continued MPD NSP OMCVD OMMBE OMVPE OVD OVPO PCVD PACVD PAE PCVD PE PECVD PIBD PICVD PLD PLD PVD PVT RAP RE RIBE RICBD RIE RS SAM SIBD SOL GEL SPCVD SPE SPVT SSE SSMOCVD SSVG St TGZM THM TNFC TSFZ TSM TSSG
© 2003 by CRC Press LLC
— — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — —
microwave plasma deposition neutral solution processing organometallic chemical vapor deposition organometallic molecular beam epitaxy organometallic vapor-phase epitaxy outside vapor deposition outside vapor phase plasma chemical vapor deposition plasma-assisted chemical vapor deposition plasma assisted epitaxy plasma chemical vapor deposition plasma etching plasma-enhanced chemical vapor deposition primary ion beam deposition plasma ionization chemical vapor deposition physical liquid deposition pulsed laser deposition physical vapor deposition physical vapor transport reactive atmosphere processing reactive evaporation reactive ion beam etching reactive ionized cluster beam deposition reactive ion etching reactive sputtering self-assembled monolayer secondary ion beam deposition solution gelation (processing) surface-plasma chemical vapor deposition solid phase epitaxy seeded physical vapor transport solid-state epitaxy solid source metal-organic chemical vapor deposition self-selected vapor growth Stockbarger (growth) temperature-gradient zone melting travelling heater method top nucleated floating crstal (growth) travelling solvent float zone travelling solvent method top-seeded solution growth
492
Handbook of Optical Materials Abbreviations for Methods of Preparing Optical Materials and Thin Films—continued UHV-CVD VAD VBr VD VGD VGF VLPC VD VLS VMS VPE VPG VPO VT VTE ZM ZMR
© 2003 by CRC Press LLC
— — — — — — — — — — — — — — — — —
ultra-high-vacuum chemical vapor deposition vapor-phase axial deposition vertical Bridgman (growth) vacuum deposition vapor gel deposition vertical gradient freeze very-low-pressure chemical vapor deposition vapor-liquid-solid vapor melt solid vapor-phase epitaxy vapor-phase growth vapor-phase oxidation vapor transport vapor transport equilibrated zone rnelted zone melting recrystallization
Appendix IV
493
APPENDIX IV Fundamental Physical Constants Quantity speed of light in vacuum permeability of vacuum, 4π x 10-7 permittivity of vacuum, 1/µ0c2 Planck constant elementary charge magnetic flux quantum, h/2e electron mass proton mass fine structure constant, µ0ce2/2h inverse fine-structure constant Rydberg constant, mecα2/2h Bohr radius, α/4πR∞ Hartree energy, e2/4πε0a0 = 2R∞hc in eV, Eh/e Compton wavelength, h/mec classical electron radius, α2a0 Bohr magneton, eh/4πme nuclear magneton, eh/4πmp electron magnetic moment magnetic moment anomaly, µe/ µB – 1 electron g factor, 2(1 + ae) proton gyromagnetic ratio Avogadro constant Boltzmann constant, R/NA Faraday constant, NAe molar gas constant Stefan-Boltzmann constant
Symbol c µ0 ε0 h e Φ0 me mp α 1/α R y , R∞ a0 Eh
Value
λC re µB µN µe ae ge γp NA k
299 792 458 m/s 1.256 637 061 4 × 10-6 N/A2 8.854 187 817 × 10-12 F/m 6.626 075 5 × 10-34 J s 1.602 177 33 × 10-19 C 2.067 834 61 × 10-15 Wb 9.109 389 7 × 10-31 kg 1.672 623 1 × 10-27 kg 7.297 353 08 × 10-3 137.035 989 5 10 973 731.534 m-1 0.529 177 249 × 10-10 m 4.359 748 2 × 10-18 J 27.211 396 1 eV 2.426 310 58 × 10-12 m 2.817 940 92 × 10-15 m 9.274 015 4 × 10-24 J/T 5.050 786 6 × 10-27 J/T 9.284 770 1 × 10-24 J/T 1.159 653 193 × 10-3 2.002 319 304 386 2.675 221 28 × 108 s-1T-1 6.022 136 7 × 1023 mol-1 1.380 658 × 10-23 J/K
F R s
96 485.309 C/mol 8.314 510 J/mol K 5.670 51 × 10-8 W/m2 K4
References: Cohen, E. R., and Taylor, B. N., The 1986 adjustment of the fundamental physical constants, Rev. Mod. Phys. 59, 1121 (1987). Taylor, B. N., and Cohen, E. R., Recommended values of the fundamental physical constants: a status report, J. Res. Natl. Inst. Stand. Technol. 95, 497 (1990). For updated values see NIST Web site: physics.nist.gov/constants.
© 2003 by CRC Press LLC
Appendix V
495
APPENDIX V Units and Conversion Factors Energy E(eV) Multiply E(eV) by 1.6022 × 10-19 to convert to E(J) Multiply E(eV) by 8065.5 to convert to E(cm-1) Photon energy (eV) = 1.2398/λvacuum(µm) Linear absorption coefficient α (cm-1) = (4πn × 104/λ)k, where n is the index of refraction of the material, the wavelength λ is in microns (µm), and k is the complex index of refraction. Two-photon absorption coefficient β (m/W) β (m/W) = (N/E)σ2, where N is the number density of molecules per cm3, E is the photon energy (J), σ2 is the two-photon absorption cross section (cm4 s/molecule). Multiply β (m/W) by 10-9 to convert to the CGS system (cal/cm s/erg) Nonlinear index of refraction γ (m2/W) Multiply γ (m2/W) by 2.386 × 106n to convert to the esu system, where n is the index of refraction of the material. n2[cm3/erg] = 238.7n γ[cm2/W] Linear electrooptic coefficient r (m/V) Multiply r (m/V) by 2.9979 × 104 to convert to the CGS system (cm/statvolt) Kerr constant B (10-16m V2) Multiply B (10-16m V2) by 8.988 × 106 to convert to the CGS system (cm/statvolt2) Verdet constant V (rad/T m) Multiply V (rad/T m) by 3.438 × 10-3 to convert to the CGS system (min/Oe cm) Temperature T(K) Temperature T(˚C) = T(K) – 273.15 Specific heat capacity cp (J/kg K) Multiply cp (J/kg K) by 2.388 × 10-4 to convert to the CGS system (cal/g K) Thermal conductivity κ (W/m K) Multiply κ (W/m K) by 2.388 × 10-3 to convert to the CGS system (cal/cm s K) Hardness (Knoop or Vickers) 1 kgf/mm2 = 9.8066 N/mm2 Pressure, mechanical stress (Pa) 1 Pa = 1 N/m2 = 1 kg/m s2 105 Pa = 1 bar 3 1 psi = 6.9 x 10 Pa
© 2003 by CRC Press LLC